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Abstract

This work is dedicated to the development of an advanced behavior constitutive model coupling various
physical phenomena, for the precise prediction of the behavior and ductile damage of thin sheets during
their forming at high temperature. Interest is mainly focused on hexagonal-close-packed (HCP) metals such
as magnesium and titanium alloys. The proposed constitutive equations take into account: (i) initial and
induced anisotropies, (ii) tension-compression asymmetry, (31) isotropic and kinematic mixed nonlinear
hardening, (41) yield surfaces distortion induced by the loading path, (51) loading rate dependence within a
unified viscoplastic formulation, and (61) strong coupling between the various phenomena including
isotropic ductile damage. In particular, the coupling with ductile damage takes into account the microcracks
closure with a novel approach based on a dual dependence on the stress triaxiality and the Lode angle. The
formulation of the model is carried out within the framework of the thermodynamics of irreversible
processes with state variables and considering a unified theory of non-associative viscoplasticity in finite
transformations. Associated numerical aspects are developed as part of the finite element (FE) method and
implemented in the ABAQUS/Explicit FE calculation code via the VUMAT user routines. A parametric
study is systematically performed to show the predictive capabilities of the proposed model. The procedure
for identifying model parameters is then discussed. This procedure is based on minimizing the difference
between the experimental measurements and the numerical simulation results by considering the responses
of the materials for different tests conducted until the fracture occurrence. Finally, FEM numerical
simulations of various high temperature thin sheet forming processes are performed and their comparisons

to the experimental results are presented and analyzed.
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Résumé

Ce travail est dédi¢ au développement d’un modéle de comportement avancé couplant divers phénoménes
physiques pour la prédiction fine du comportement et de I’endommagement en simulation des procédés de
mise en forme de toles minces a hautes températures. L’intérét est principalement porté aux métaux a
structure hexagonale compacte (HC) comme les alliages de Magnésium et de Titane. Les équations
constitutives proposées prennent en compte : (i) les anisotropies initiales et induites, (ii) I’asymétrie de
traction-compression, (31) un écrouissage mixte non linéaire isotrope et cinématique, (41) la distorsion de la
surface de charge induite par le trajet de chargement, (51) la dépendance a la vitesse de chargement dans le
cadre d’une formulation viscoplastique unifiée, et (61) le couplage fort entre les différents phénoménes
incluant I’endommagement ductile isotrope. Particuliérement, le couplage avec I’endommagement ductile
tient compte de la fermeture des microfissures avec une nouvelle approche originale basée sur une double
dépendance a la triaxialité des contraintes et a I'angle de Lode. La formulation du mode¢le est réalisée dans
le cadre de la thermodynamique des processus irréversibles considérant une théorie unifiée de viscoplasticité
non-associée en transformations finies. Les aspects numériques associés, sont développés dans le cadre de
la méthode des ¢é1éments finis (EF) et implémentés dans le code de calcul par EF ABAQUS/Explicit via des
routines utilisateurs VUMAT. Une étude paramétrique est systématiquement réalisée pour montrer les
capacités prédictives de la modélisation proposée. La procédure d’identification des parameétres du modele
est ensuite discutée. Cette procédure est basée sur la minimisation de la différence entre les mesures
expérimentales et les résultats des simulations numériques en considérant les réponses des matériaux dans
différents essais menés jusqu’a rupture. Finalement, des simulations numériques par EF de quelques
procédés de mise en forme de toles minces a hautes températures sont réalisées et leurs comparaisons aux

résultats expérimentaux sont présentées et analysées.



Notations

First-rank tensor or vector X, x,

Second-rank tensor X, X,

Fourth-rank tensor Xs Xjjpa »

Second rank identity tensor 1,0,,

Fourth-rank symmetric identity tensor L, 1,,=5(5,6,+6,0,),

Fourth-rank symmetric deviatoric identity tensor

éD: [,5;1 = %(5%6/‘1 +5i15jk)_%§ij5kl’

Transpose of 2nd rank tensor

Symmetric part of second-rank tensor

Skew part of second-rank tensor

Hydrostatic part of second-rank tensor

[x] = %tr(ﬁ)l >

Deviatoric part of second-rank tensor

[x]” =x—[x]"

Inverse of second-rank tensor X, X,
-1 -1

Inverse of fourth-rank tensor X5 Xy

Time derivative of second-rank tensor X, X

Simple contraction of two second-rank tensors

Double contraction of two second-rank tensors

Tensorial product of two second-rank tensors:,

z2=x®y, Zy =Xy

The trace of the second-rank tensor (1st invariant)

X, =tr(x) =,

Second invariant of the second-rank tensor

x, = [0 ()~ tr(x*)]/ 2

Third invariant of the second-rank tensor

X, = det(x)




Introduction

Introduction

The increasing demand on lightweight engineering materials in automotive and aerospace industries has
increased dramatically due to the urgent need for improving fuel efficiency and reducing CO- emissions.
With a low density and a high strength to weight ratio, high strength (HS) metallic materials (e.g.,
Magnesium (Mg) alloys, Titanium alloys...) become ideal candidates. However, their formability is highly
decreased when performed at room temperature. The simplest way to increase the formability properties of
these HS metallic materials is to perform their forming processes under adequately high temperature usually
called hot forming. On the other hand, it is well known that this kind of materials exhibit complex
microstructure leading to highly complex mechanical behavior at room temperature. Note that, performing
hot forming processes is not a new task by itself since it is widely used for bulk metal forming (forging,
stamping, extrusion...). However, for sheet metal forming, mainly performed at room temperature, it is still
a novel task. This requires the use of advanced and highly predictive constitutive models together with

associated numerical methods.

For the case of Mg alloys, the industrial applications are limited by different kinds of pronounced initial and
induced anisotropies [Agnew05, Khanl1, Shil3], the strong Strength Differential (SD) effect (tension-
compression asymmetry) [Kelley68, Khan11, Steglich11], the hardening asymmetry [Khan11, Kabirian16,
Leel7] and the poor formability at room temperature [Chen03, Kim13, Rodriguez16]. These properties are
related to their Hexagonal-Close-Packed (HCP) crystalline microstructure. Consequently, the modeling of

these complex material behaviors is still today a highly challenging task.

Efforts have been made to describe the material behavior of these microstructurally complex materials at
various scales. Crystal plasticity theory [Jain07; Argon08; Proust09, Yoshidal6] provides a naturally
convenient framework to deduce the macroscopic (i.e. valid for an aggregate of single crystals) material
behavior from the individual behavior of each crystal. This aims to relate the single crystal constitutive
behavior with that of the overall aggregate with full field approaches or mean field approaches
[Lebensohn(07; Perdahcioglull] as the self-consistent approach [Lebensohn93; Saanouni96; Boudifa09]
which are widely used to model the interaction of a grain with the surroundings. The initial anisotropy and
tension-compression asymmetry of magnesium alloys were investigated by many researchers [Agnew01;
Agnew05; Lou07; Guol5; Zhoul6] at the microscale. It is noted that the microscopic models are useful for
capturing the macroscopic mechanical behavior of these highly heterogeneous metals. However, to fulfill
the aim of modeling large-scale forming processes with acceptable computational efficiency, a macroscopic

phenomenological approach is more suitable. On the other hand, the simple associative plasticity theory
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with a single yield function is not efficient to describe the various strong initial and induced anisotropies of
the advanced metallic materials [ Stoughton02]. Accordingly, the use of non-associative flow rule to describe
the anisotropic plastic flow of metals is more convenient. In addition, the accurate prediction of the inelastic
flow localization giving rise to ductile damage initiation and macroscopic cracks propagation under various
complex loading paths require advanced models accounting for the strong coupling between the behavior
and the damage occurrence [Caol5]. The framework of continuum damage mechanics (CDM) has been
developed and applied to describe the ductile damage with including complex material behaviors in the last
decades [Lemaitre85, Saanouni03, Bonora05, Besson09, Lemaitre09, Murakamil2, Saanounil2]. Due to its
convenience in coupling damage with different material phenomena, the CDM approach is adopted in this
work in order to describe the damage occurrence in metallic materials formed by large anisotropic inelastic

strains.

With this motivation, the aim of this thesis is dedicated to develop a thermodynamically consistent
phenomenological model to well describe the complex behaviors which can be applied to hot sheet metal
forming processes with higher accuracy. The modeling of this problem involves many strong couplings with
large inelastic strains, kinematic and isotropic hardenings, thermal effects, and the ductile damage. Based
on the theoretical and numerical framework developed by our research team (LASMIS), an anisotropic
thermo-elasto-viscoplastic model with non-linear mixed hardening (isotropic, kinematic and distortional
hardening) strongly coupled with isotropic ductile damage is proposed in this thesis. Microcracks closure
effect and Lode angle dependence are carefully taken into account. Asymmetry in yield stresses is captured
by introducing the J; invariant into Hill yield function, and the description of hardening asymmetry is

realized by Lode angle dependence function of hardening parameters.

The formulations of the model are performed in the framework of thermodynamics of irreversible processes
using generalized non-associative theory under finite transformations. The associated numerical aspects are
developed in the framework of finite element method and implemented in ABAQUS/Explicit FE code via
the users’ developed subroutines VUMAT.

The calibration of the anisotropic parameters is conducted by minimizing the objective function between
the numerical results and experimental observations [Yoonl4].To identify the behavior and damage
parameters, an inverse methodology is applied which is based on minimum error value between simulation
and experimental responses. This inverse procedure was realized throughout Python script which combines

the ABAQUS/Explicit FE software with the MATLAB-based minimization code [Yuel5, Soutol5].

An exhaustive parametric study is conducted to check the ability of the proposed model in capturing the

complex phenomena characterizing the behavior and ductile damage of the materials. Finally, applications
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are investigated to some sheet metal forming processes under high temperature with comparison to some

available experimental results.

The thesis is organized as following:
Chapter I starts by a review of sheet metal forming processes, then presents the complex phenomena
exhibited by the innovative lightweight materials in both a typical hot and cold sheet metal forming

processes.

Chapter II gives the fundamentals of finite strain viscoplasticity theory, as the kinematics of elasto-
viscoplastic decomposition, strain and stress measures as well as the main conservation laws. A review of
the existing ductile damage models is presented as well as the description on physical aspects of ductile
damage. A literature survey about the development of time-independent plasticity and viscoplasticity
theories to capture complex material behaviors mentioned in Chapter 1 is given based on some published
works. The proposed anisotropic thermo-elasto-visco-plastic constitutive equations fully coupled with
isotropic ductile damage with embracing many phenomena observed in metal viscoplasticity (initial and
induced anisotropies, SD effect, hardening asymmetry, etc.) are given in Section 2.6. A new formulation of
the microcracks closure damage effect is developed and discussed. Finally, a short discussion of the contact

and friction in metal forming are given.

Chapter III is dedicated to the numerical aspects for solving the equilibrium problems with fully coupled
thermo-mechanical equations under large inelastic strains with damage effect. First, the strong and weak
forms of the initial and boundary value problem (IBVP) are defined. Then the time and space discretization
of the IBVP leading to obtain of highly nonlinear and strongly coupled algebraic system is given. The
dynamic explicit resolution scheme is used to solve the IBVP while an iterative local integration scheme is
used to perform the local integration of fully coupled ordinary differential equations (ODEs) associated with

thermo-elasto-viscoplastic constitutive equations with damage.

In Chapter 1V, a systematic parametric study is conducted with RVE. The effects of anisotropy, tension-
compression asymmetry, temperature, strain rate, hardening asymmetry parameters are carefully
investigated. The combined effect of distortion of the yield surface and tension-compression asymmetry is

studied. The triaxiality and Lode angle effect on the ductile fracture locus are carefully discussed.

In chapter V, the parameters determinations and applications of fully coupled CDM model are given. Based
on the available experimental results, the material parameters are calibrated. Finally, the applications of the
proposed damage model to three point bending test (TPB), circular cup deep drawing test (CCD) and cross-

shaped cup deep drawing test (CSD) are performed and their results are discussed.

Finally, the main conclusions and some perspectives of the present work are presented.

3
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Chapter 1

Major physical phenomena exhibited in hot sheet
metal forming
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1.3.2.4 Hardening asymmetry
1.4 Damage and fracture
1.4.1 Ductile damage
1.4.2 Creep damage
1.4.3 Example of defects involved in hot sheet metal forming
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1.1 Introduction

Sheet metal forming is widely used for automotive production among many other industrial sectors. In these
processes of sheet metal forming, the final shape of a part is made from a flat metal sheet. First, sheet plate
is cut into pieces by different operations like shearing, slitting, cutting, sawing or produce from coil; then
the desired shape can be achieved by punching, stamping, embossing, bending, stretch forming, deep
drawing and a variety of other processes. During these forming processes, the changes in the shape of the
sheet are mainly obtained by large plastic deformation. In this chapter, the sheet metal forming processes
are presented, a general introduction to sheet materials as well as the major physical phenomena involved
during their forming by large inelastic strains including material behaviors and different failure mode are

given.
1.2 General presentation of sheet metal forming

Metal forming processes are suitable for quantity production of components with high production rates and
a minimum waste of material. Among the metal forming processes, sheet metal forming processes are
commonly used in many industries, such as automotive industry (car doors, hoods, fenders, etc.), household
products (cooker hoods, refrigerators, sinks, etc.), food industry (cookware, canned goods, etc.), aerospace,
ships, etc. In recent years, the demand of lightweight engineering materials in automotive and aerospace
industries has increased significantly due to the urgent need for reducing energy consumption as well as
CO; emissions. Accordingly, nowadays lightweight construction design concept has become a popular term
in new industrial development. However, the formability of certain lightweight metals (i.e. Mg alloys) at
room temperature are not satisfied for large-scale industrial application. To avoid this limitation, the forming
processes are performed under high temperature. Since the ductility of the material is expected to increase
with the temperature increase, the formability of these metals is quitely improved at elevated temperature.
Meanwhile, forming forces and applied pressure are reduced as a result of the material “softening” induced
by the temperature increase. These processes are commonly called warm or hot forming. From literature,
there are two kinds of definition for material forming at elevated temperature: (1) when the heating
temperature is above the temperature of recrystallization, the forming process is hot forming, warm forming
means the heating temperature is between the room and recrystallization temperatures. (2) The forming
process is classified to cold forming which has no pre-heating, otherwise, it is called hot forming if there is

heating process. In this thesis, we will focus on the second way to define the hot forming. Typical hot
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forming process is shown in Figure 1.1, the metal sheet is processed in heating, transporting to forming

process, followed by quenching and ageing, finally, the desired form is obtained.

—h—

.
|

-
>

Temperature

Time

Figure 1.1: Schematics of hot forming process.

Figure 1.2 illustrates an example of deep drawing process and its loading conditions. The punch moves
towards the metal sheet clamped between the die and the blank holder and deforms it to obtain a desired
shape. The external force from the blank holder is to prevent wrinkling and allow the control of the
homogeneous material flow. The two principal deformation modes in this process may depend directly on
the blank holder action and its corresponding force [Teixeiral2]. During this drawing process, the
deformation mode changes from shear, compression to tension or from shear, tension to compression

(bending/unbending), depending on the location in the sheet thickness.

shear
compression

~ "
tension

Figure 1.2: Schematic view of a deep drawing operation and its deformation modes [Kim13].
1.3 Materials and major physical phenomena
1.3.1 Target materials of hot sheet metal forming

The innovative lightweight construction materials, such as magnesium alloys, titanium alloys, aluminum

alloys with excellent material properties are very promising materials in recent years, since these materials
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are widely demanded in many industrial fields, as shown in Figure 1.3. Aluminum alloys have been already
widely used in automotive manufacturing (frames, car body panels and wheels, etc), ship building, as well
as aircraft and other aerospace structures. Titanium alloys are often used in aerospace applications such as
for turbine blades engines, airframe applications and space applications, due to their superior strength to
weight ratio. They are also used in offshore petroleum industry, such as drilling risers, because of their high

flexibility (low ratio of modulus over strength), excellent corrosion and fatigue resistance.

However, their application in automotive industry is impeded by their high price. Magnesium alloys, with
a high ratio of strength versus density, are excellent candidate for use in automotive applications aiming to
enable lightweight design and improve fuel economy, which also makes them a good alternative to
traditional steel and aluminum alloys. For instance, magnesium alloys can save 20%-25% weight over
aluminum alloys in the car of full-size “Savana” and “Express” vans of General motors [Elektron14, Jial6].
In addition to these materials, the high-strength and ultra-high strength steel materials, with a high specific
strength in comparison with conventional steel materials, also demonstrate their capability in reducing the
weight of car component. However, these innovative lightweight construction materials and the high-
strength/ultra-high strength steel materials have limitations in terms of forming capability and some of them
are classified as hard-to-deform materials at room temperature. As a result, they become the target materials

of hot sheet metal forming.

Figure 1.3: Innovative lightweight construction materials in automotive, aircraft, ship and petroleum

industries.
1.3.2 Material behaviors
1.3.2.1 Temperature and strain rate dependent material behavior

A fatal drawback of the innovative lightweight materials is that they often exhibit very poor formability
compared with traditional steels. For example, the poor formability of Magnesium alloys at room
temperature is due to the limited number of active slip systems in their hexagonal close-packed (HCP)
crystal structure [Agnew05, Wul5, Trang18]. It is important to recall that the plastic strain of HCP materials
is divided into slip and twinning mode. The activation of these modes is highly dependent on both critical

stress and loading directions. Figure 1.4 shows the loading directions to activate preferentially one of these
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deformation mode in ideal HCP monocrystal textures.

¢ ¢ ¢ 4 ¢ 4@

@G@@G@

{10-12} twinning basal slip pyramidal prismatic
<c+a> slip slip

Figure 1.4: Schematic of the ideal HCP mono-crystal textures with loading direction to activate each

deformation mode [Chapuis16].

Even though twinning and non-basal slip are activated to some extent at room temperature, the improvement
with respect to formability is very small. In order to form these kind of materials with complex component
geometries, additional glide planes should be activated. The use of hot forming can be applied to overcome
this shortcoming of Mg alloys, since pyramidal slip system can be thermally activated at elevated
temperature, which improve their ductility and formability obviously [Mekonen13]. Figure 1.5a shows the
temperature dependency of inelastic flow of Mg AZ31B, at a given strain rate, significant thermal softening
caused by the temperature increase can be observed, unlike the room temperature behavior, ductility and
formability are greatly improved with elevated temperatures [Khanl1, Taril5, Rodriguez16]. The forming
force and the spring back effect are decreased with the temperature increases. The strain rate has very
important influence on the flow curves, as illustrated in Fig. 1.5b, the flow stress increased obviously with
the strain rate increase. With the temperature increase, the strain rate sensitivity becomes more evident, as
shown in Figure 1.5¢, about 85% decrease in flow stress and 100% increase in elongation to failure at
temperature of 300°C over the same range of strain rate can be found. For aluminum and titanium alloys,

the same temperature dependent material behavior can also be observed [Abedrabbo06a, Tabeil7].
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Figure 1.5: Tension responses of AZ31: (a) Different temperatures with strain rate10~s!; (b) Different

strain rate at temperature of 100°C; (c) Different strain rate at temperature of 300°C [Rodriguez16].
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1.3.2.2 Initial plastic anisotropy and tension-compression asymmetry

Since the final sheet metals are obtained by successive rolling operations, a clear initial anisotropy is
conferred to these sheets|Banabic00]. This initial anisotropy has a strong effect on the formability of sheet
metals [Vladimirov11]. As shown in Figure 1.6, the initial yield stress and R-value of titanium alloys Ti-

6Al-4V in tension varying significantly with the material orientations [Gilles11].
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Figure 1.6: Yield stresses and R-values at different orientations of titanium alloy Ti-6Al-4V.

Another pronounced anisotropic behavior has been observed in some Mg alloys (e.g. AZ31), as shown in
Figure 1.7, where the yield stress in tension is much higher than that in compression. This behavior is often
called tension-compression asymmetry or Strength Differential (SD) effect [Kelly68, Cazacu04, and
Cazacu06]. This special feature of magnesium alloys results from the activation of deformation twinning
under compression stress state. For titanium Ti-6Al-4V, the compressive yield stress is higher than the tensile
yield stress [Khan12], but the asymmetric behavior is not pronounced. The tension-compression asymmetry

in yield stress is also observed in other materials (i.e. DP980 steel), as reported in [Holmen17, Maedal8].
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Figure 1.7: Yield loci of Mg alloy AZ31 at different plastic strains [Cazacu06].
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1.3.2.3 Induced anisotropy

In practice of sheet metal forming, the sheet metals are formed with large plastic strains under complex
loading paths, the initial anisotropies evolve due to the textural changes inside the material. This affects the
hardening evolution and consequently causes the yield surface distortion. As shown in Figure 1.8, the
evolution of the yield surface of aluminum AL1100 is highly dependent on the loading path [Khan10]. The
initial yield surface evolves to subsequent yield surfaces through translation, distortion, extension or
shrinkage, represented by a sharp nose in the loading direction and flat in the opposite direction, depending
on the applied loading path. Other cross- effects were correlated to the different hardening properties. The
induced anisotropic behavior is also reported by [Shil7] for magnesium alloy AZ31 and by [Khan12] for
titanium alloy Ti-6Al-4V.
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Figure 1.8: Distortion of the yield surface depending on loading path [Khan10].
1.3.2.4 Hardening asymmetry

In addition to the anisotropy and asymmetry of yielding, Mg alloys also exhibit unusual hardening evolution
[Agnew05, Guol5] compared to other materials, the stress-strain flow evolution has a sigmoidal shape

[Khan11, Kabirian16], which is referred as hardening asymmetry [Leel7].
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Figure 1.9: Typical stress-strain evolution curve of Mg alloy AZ31B under uniaxial tension and

compression at room temperature [Zhang 19].
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The evolution of compressive stress-strain response of Mg alloy AZ31, as shown in Figure 1.9, follows a
sigmoidal evolution with a lower flow stress plateau and upper flow stress plateau with an inflection point.
At lower strain stage, the plastic flow is governed by the twinning mechanism, where a low stress plateau
was observed, with the plastic strain increase, the slip-dominated deformation becomes active, with a high

hardening rate, and finally the upper flow stress plateau appears.
1.4 Damage and fracture
1.4.1 Ductile damage

It is vital to understand the mechanisms that cause the inelastic strain localization which eventually leads to
ductile damage occurrence in a sheet metal component. Damage is regarded as micro-defects density, which
accumulates to a certain level before the initiation of macroscopic cracks. From the physical point of view,
ductile damage is described as nucleation, growth and coalescence of microcavities or microcracks induced
by large inelastic strains in the vicinity of inclusions in material. In metal forming by large irreversible
inelastic strains, the damage mechanism is often ductile fracture occurring in areas where large inelastic
strains strongly localize, rather than brittle fracture occurring without appreciable plastic strain. In sheet
metal applications three failure phenomena are usually observed [Bjorklund14]: (i) Ductile tensile fracture,

(i) ductile shear fracture and (iii) necking, as shown in Figure 1.10.

Both diffuse necking and localized necking are two types of instability occurring in sheet metal tensile test
before the sheet fracture, as shown in Figure 1.10. Diffuse necking is caused by a reduction of the width
over a length. Localized necking occurs inside the diffuse zone because of a reduction of thickness along a

narrow band. Sometimes, localized necking can take place without the preceding diffuse necking.

Ductile tensile fracture
e ‘

e
e W

IS
Necking

Localized necking

Diffused necking

Figure 1.10: Different failure types of sheet metals [Bjorklund14].
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1.4.2 Creep damage

In addition to ductile damage, there are other damage types like creep damage under high temperature,
fatigue damage under cyclic loading, etc. Normally, for metallic materials, the yield stress decreases at
elevated temperature, meanwhile, the material behavior is more sensitive to strain rate. Creep damage takes
place at high temperature, from mid to elevated temperatures that are above about one third of the absolute
melting temperature for metals. The creep damage mechanisms are thermally activated phenomena and the
microdefects initiate and evolve along the grain boundaries often, starting from initial defects as triple-joint.

A

Primary
creep

Ine

Steady Icreep

state :

Elastic creep :
strain ¢ : >
7 -

Figure 1.11: Creep strain versus time.

As illustrated in Figure 1.11, creep is subdivided into three stages: primary creep where the material
hardening is active and is the most important phenomenon, (ii) secondary (or steady state) creep where the
hardening is saturated leading to a constant creep strain rate, and (iii) tertiary creep where the creep damage
is active and is the most important phenomenon evolving quickly to the final fracture. Creep damage should
be taken into account for life assessment during design procedure of the components which are used at high
temperature and subjected to static loading paths (i.e. loading paths with relatively low velocity). However,
in this work dealing with sheet metal forming where the loading velocity is high enough, the creep damage
is neglected and only ductile damage is considered, since the targeted sheet metal forming applications for
the lightweight engineering materials are performed at elevated temperature subject to rapidly evolving

loading paths which cannot result in creep damage.
1.4.3 Example of defects of target material in metal forming

For the sake of simplicity, the forming tools are assumed perfectly made without any defect and only the
defects of the deforming sheet or blank in the forming process are considered. For example, in the deep
drawing process, one of the most widely used forming process, three currently observed defects that occur

in deep drawing operations for sheet metals are:
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(1) Earing

The light-weight material with pronounced initial anisotropy due to its crystallographic texture induced by
rolling process exhibits earing. The planar anisotropy in the sheet metal drawing leads to the formation of
irregularities in the upper edge of a deep drawn cup, which is called earing, as shown in Figure 1.12d.

However, if the plastic flow in the material is perfectly isotropic, earing will not appear.
(2) Wrinkling

Wrinkling generally occurs in the wall or flange of the part, as shown in Figure 1.12a and Figure 1.12b. The
flange of the blank undergoes radial drawing stress and tangential compressive stress during the stamping
process, which sometimes results in the formation of wrinkles. When the wrinkled flange is drawn into the

cup, these ridges appear in the vertical wall.
(3) Tearing

Tearing usually occurs near the base of the drawn cup leading to a macroscopic open crack in the vertical
wall, due to high tensile stresses that cause plastic flow localization, ductile damage occurrence, sheet
thinning (where the plane stress condition is no longer valid) and failure of the metal at this location as

shown in Figure 1.12c.

(b) () (d)
Figure 1.12: Sheet Metal defects in drawn parts: (a) Wrinkling in the flange, (b) Wrinkling in the wall, (c)

Tearing, (d) Earing.
1.5 Conclusions

In this chapter, we have presented the major physical phenomena exhibited by the thin sheet materials in
both typical hot and cold sheet metal forming processes. In order to predict the damage occurrence of these
kind of metallic materials, advanced mechanical models will be developed accounting for the full coupling
between all these phenomena including the ductile damage. It should bear in mind that ductile damage is
the natural consequence of large hardened inelastic strains localization in narrow (shear) bands. Inside these
highly localized zones, inelastic flow, hardening, damage and thermal exchanges are highly active.

Consequently strong interactions between all these phenomena cannot be ignored. It should be noted that
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the reliability of the simulation of the forming processes is highly dependent on the constitutive equations
prediction capabilities. The use of fully coupled thermo-mechanical behavior with damage in numerical

simulations can be:

(1) In order to avoid the damage initiation during some bulk and sheet metal forming processes and
ensure formed parts without defects.
(2) Or contrarily, in order to accelerate the damage initiation and growth in sheet metal cutting, blanking

or metal machining by chip formation among others.

In this work, we focus mainly on the prediction of ductile damage which may occur during metal forming
in order to avoid its occurrence. Even without final fracture, the ductile damage can locally take place in
formed parts leading to strong changes in the material properties. The formulation of an advanced thermo-
elasto-viscoplastic model fully coupled with ductile damage and accounting for the main aspects

characterizing HCP materials will be developed in more detail in next chapter.
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2.1 Introduction

This chapter is dedicated to the theoretical aspects related to the formulation of the fully coupled constitutive
equations in the framework of thermodynamics of irreversible processes with pairs of state variables. In
order to present the developed model, some fundamentals of the finite viscoplasticity theory and some basic
elements of mechanics and thermodynamics of the materially simple continua are given. These details are
taken from literature mainly in [Callen60, Lemaitre85, Lemaitre92, Khan95, Saanounil2], among others.
Next, the framework of Continuum Damage Mechanics (CDM) is presented and used to develop the full
coupling with the isotropic ductile damage [Lemaitre85, Lemaitre92, Murakamil2, Saanounil2]. Some
developments on anisotropic elasto-visco-plasticity theory are reviewed. Finally, an anisotropic thermo-
elaso-visco-plastic constitutive equations fully coupled with isotropic ductile damage for metallic materials

under large strains are formulated.
2.2 Fundamentals of finite viscoplasticity
2.2.1 Homogeneous transformation and deformation gradient

In line with the standard notations in continuum mechanics, a deformable solid body is assumed to occupy
at time #=0the initial undeformed configuration C,, while C, is the current configuration (deformed) at
time >0, as shown in Figure 2.1[Sidoroff73, Lemaitre92, Saanounil2]. Every material point P, in the
reference configuration C, can be identified by its position vector X = X& + X, + X,é, , it can be
transformed into Pof coordinates ¥(X,7) in the current configuration C, by deformation mapping function

#(X,t) according to :
X=@(X,0)= X +il(X,1) (2-1)
In which i(X,r) is the displacement vector of the material point P, at time ¢ The gradient of the

homogeneous transformation between C,and C, , is the second-rank operator £ (or F; ) which is also called

deformation gradient. In the classical local (or Cauchy) continuum, the transformation gradient £ allows

the complete description of the changes in shape, size and orientation of the continuum.

F =Grad(p)=0%(X,t)/0X = (X +ii(X,t))/0X = 1 +6ii(X,t)/0X = 1 + Grad (u) (2-2)
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It bears to emphasize that the value of J = det(F) must verify 0<J <o to define correctly the motion of

the local continuum.

Figure 2.1: Reference and current configurations of a material body.
2.2.2 Polar decomposition of deformation gradient

According to the polar decomposition theorem, the deformation gradient F can be decomposed into a pure

rotation (orthogonal tensor) and a pure stretch (symmetric tensor) in the following form:
F=RU=V-R (2-3)

where R is the rigid body orthogonal rotation tensor, U is the right (Lagrangian) symmetric stretch tensor

of second-rank defined with respectto C,, Vis the left (Eulerian) stretch tensor (second-rank) defined with

e

c =
7

respect to C, (as shown in Figure 2.2).

=~

Figure 2.2: Schematic illustration of the polar decomposition of F.
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2.2.3 Strain and strain rate tensors

In order to define and quantify the change of distance between two material points between original and

deformed configuration, we define the right Cauchy-Green stretch tensor C defined in C, and left Cauchy-

Green stretch tensor B defined in C, by:
2-4)

A simple way to obtain the material deformation in the homogeneous transformation is to calculate the
difference between the scalar products of the elementary vectors dx.di' —dX.dX', as given below:

didi' —dX dX'=dX [C-1]dX' =di[1-B™ | d¥ (2-5)

Accordingly, the Green-Lagrangian strain tensor £ and the Euler-Almansi strain tensor 4 are defined

respectively as:

E

Yoron=te- _
JW D=2~ (2-6)

’N
[

U-r)=2U-5) (2-7)

o | —

Numerous strain measures can be obtained by using the Lagrangian and Eulerian stretch tensors. For

instance, the overall Lagrangian definitions can be rationalized in the forming form (with m is an integer).

l[u”’ ~1] if m#0

g=ym-— = (2-8)
@)  if m=0
The time derivatives of the transformation gradient from Eq. (2-1) gives:
&% = FdX = FFd% = Ldx (2-9)

where the spatial velocity gradient Lwhich can also be decomposed into a symmetric tensor D (total strain

rate tensor) and a skew symmetric tensor # (material spin or rotation rate tensor), defined as:
L=FEF' =RUU"R" +RR" =D+W (2-10)
D=L =[EF'] =R[UU'F R (2-11)

=R[UU']"R" +RR’ (2-12)
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2.2.4 Stress tensors

The Cauchy stress is the most widely used measure of stress to describe the surface forces. As illustrated in
Figure 2.3, the elementary force vector dF is defined at the current configuration C, at point P , the
elementary section 4S, oriented by the normal 7 in C, is transformed from dS, oriented by the normal 7,

at reference configuration C,.

dS, = ri,dA, ds, = 1idA,

Figure 2.3: Representation of all quantities used to define stress measures.

The second-rank and symmetric Cauchy stress is defined using the measure of the elementary internal force

in the material point P according to:
(2-13)

In large strains, numerous definitions for the stress tensors can be found in the literature [Khan95, Mase99,
Saanounil2, Voyiadjis15], among others. Unfortunately, most of them do not have physical sense, these
various stress tensors can be easily expressed by each other and the transformation gradient. The relationship
between the different stresses tensors are summarized in Table 2.1, readers can refer to [Saanounil2] for

more details.

The formulation of mechanical models consists of the definition of some relations (i.e. constitutive equation)
between stress and strain tensors. The use of Eulerian tensors has the advantage to get simple relations but
poses the problem of the objectivity when anisotropic media are considered. However, the Lagrangian
tensors avoid the objectivity problem because they are defined with respect to the unchanged initial
configuration but they induce complex relationships without physical meaning. The formulation in a rotating
frame which consists of the use of stress and strain quantities having Eulerian eigenvalues and Lagrangian

orientation and leads to avoid the problems of the pure Eulerian and Lagrangian formulations.
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Table 2.1 Relations between different stress measures

Cauchy 0 Kirchhoff 7 Piola-Lagrange 77 Piola-Kirchhoff S
Cauchy o z/J zF"/J (FESE"YIJ
Kirchhoff T Jo zF" FS.F"
Piola-Lagrange 7 Jo.(F" .(F " FS
Piola-Kirchhoff S JF o (F7) Flo(F ™Y F'z

2.2.5 Kinematics of elasto-viscoplastic decomposition

Based on the concept of intermediate configuration and in order to study the elastoplastic media numerous
works have focus on the decomposition of the total gradient F into elastic F° and plastic F” parts, i.e.
F=F°-F" [Lee83, Mandel71, Rice71, and Sidoroff73], among others. Two particular intermediate

configurations namely C; and C, which ensure the fulfillment of the objectivity requirement can be defined
[Dogui89, Sidoroff01, Badreddinel0, Saanounil2], their orientation is defined by a rigid body rotation

tensor Q. In the same manner as for time independent plasticity model, we can postulate a multiplicative

decomposition of the total deformation gradient F into elastic part F° and viscoplastic part F*”

respectively[Lee69, Sidoroff73, Dogui89, Sidoroff01, Badreddine10, Saanounil2]:
F=F F*=QV -F"=0F (2-14)

This kinematics is illustrated in Figure. 2.4. The elastic part of deformation gradient is obtained by unloading

from actual configuration C, giving the isoclinic inelastic configuration C” (i.e. having the same

orientation as the reference configuration C, ).

{ ™y

Figure 2.4 The rotating frame concept and the multiplicative decomposition of the total deformation

gradient.
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By comparison with time independent elastoplasticity this last configuration shall vary in time in the context
of viscoplasticity. This time dependency of this configuration can be related physically, to some recovery
phenomena [Lemaitre09]. However, these phenomena of recovery need long time to take place and induce
significant effects [Lemaitre09]. For metal forming processes the loading velocity is high enough so that the
elastic unloading can be supposed time independent as for classical time independent elastoplasticity.
Accordingly, the kinematics defined for time independent elastoplasticity, can be extended to the elasto
viscoplastic framework and the objectivity can be ensured by the use of the rotating frame formulation

defined by the rotation tensor Q representing the orientation of the isoclinic triad with respect to the current

configuration. The main idea is that all the tensors defined in the current configuration are transformed

(mapped) by the rotation tensor Q leading to the use of the Eulerian eigenvalues and Lagrangian orientations

of the isoclinic configuration [Sidoroff73, Dogui89, Sidoroff01, Badreddine10, Saanounil2]. So any tensor

with upper bar (%) is mapped to the isoclinic configuration by Q according to:

o"-T-9 (second—rank tensor)

(Q ® QT_) :T: (QT ® Q) (fourth—rank tensor)

2-15)

1N 1)

In the above equations, V*is the right elastic stretch tensor. F” is the viscoplastic deformation gradient with

respect to the isoclinic configuration C* . Finally, any tensorial quantity defined in the current configuration
is mapped to the locally rotated configurations C” and C on which all the constitutive equations are expected

to be objective. According to the work of [Badreddinel0], by considering Eq.(2-14) as well as the small

elastic strain assumption (i.e. V° =1+z° with | <1 ) in the velocity gradient L=F.F", the total strain

Ec

rate D and spin rate 7 can be written as follows:

IS

SLF =i +2[£ 07 + DT =5 + D7 (2-16)

IS

T W - (2-17)

0=

o

where D” :[E ¥ .F7') is the viscoplastic strain rate. £ is the rotated Jaumann rate of the small elastic
strain tensor. 7" is the viscoplastic spin rate which will rule the rotating frame evolution according to Eq.(2-
17). Different possible choices for this tensor have been discussed in [Badreddinel0], in the present work
we assume a kinematical definition for this tensor giving W = K(V*): D” where K (V") is a fourth-rank
tensor which is function of the viscoplastic stretch tensor 7, if the corotational (or Jaumann) rotating frame
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is chosen, this leads to a general equation of type: K V"ry= 0 (refer to [Badreddine10] for the different forms
of K(7") depending in the rotating frame).

In the following parts, all the developed constitutive equations are made with respect to the locally rotated

configurations C” or C (Figure 2.4) and for the sake of conciseness the upper bar is not used.

2.3 Fundamental laws of thermodynamics

Any formulation of a behavior model shall be done within the framework of thermodynamic of irreversible
processes with appropriate number of state variables pairs. So it is necessary to recall the basic concepts of
thermodynamics of continuum mechanics since they are very important in governing representative state
variables of material continuum in material modeling. In this section, the main conservation laws of the

physics of material continuum are presented.

2.3.1 Mass conservation law

The first conservation law postulates that the mass of the domain is kept unchanged for every transformation,

this law can be easily expressed in the following differential form:
P+ pdivii=0 (2-18)
where div, [ﬂ denotes the spatial divergence (with respect to Euler coordinates) of the velocity field.

2.3.2 Momentum conservation law or the principle of virtual power

The momentum balance is obtained when the sum of the virtual power of internal force P, and external

int

forces SP,, is equal to the total virtual power of inertia forces 5P, :

8P +S8P. =8P (2-19)

int ext a

The local form momentum balance can be expressed by the following partial differential equation with

associated Neumann boundary condition:

{div(g)Jr f=pi=0 in Q (2-20)

F:gﬁ on r

where o is the Cauchy stress tensor, the surface forces vector and the body forces vector are Fand 7

respectively, i is the acceleration vector, and # is the outward vector normal to the boundary surface r of

the solid.
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2.3.3 The first law of thermodynamics or energy conservation

The first law of thermodynamics, also called energy conservation law, states that the internal energy rate per
unit volume of the isolated system with volume o , must be equal to the sum of the external stress power
and the heat flux received by Q . The local form of the first principle of thermodynamics can be

mathematically expressed as below:
o:D—pé+&—div(ig)=0 (2-21)
where the product of total strain rate tensor D and Cauchy stress tensor stands for the stress power per unit

volume in the deformed configuration, e is the specific internal energy (per mass unit ), £ is the internal or

body heat source, and ¢ is the heat flux vector received by the system throughout its boundaries.

2.3.4 The second law of thermodynamics

The second law of thermodynamics states that the total entropy of an isolated system can never decrease
over time. Therefore, the rate of the entropy production is always greater than or equal to the amount of heat

received divided by the absolute temperature. Its local form expressed in the current configuration:

g &
+div(=)-=>0 2-22
pi+div( )= 2 (2-22)
where s is the specific (per unit of mass) entropy and 7 is the absolute temperature.

2.3.5 The Clausius-Duhem inequality

The Clausius-Duhem inequality is the combination of the first and second laws of the thermodynamics
stated above. After eliminating the internal body heat quantity, the new inequality called Clausius-Duhem

inequality is expressed by:
g:l_)—p(t/'/+ST)—%giZld(T) >0 (2-23)
where the specific free energy or Helmholtz free energy per unit mass  is defined by:
v=e—Ts (2-24)

This inequality can be used as a measure for the thermodynamic admissibility, which plays an important
role in the formulation of the constitutive equations of continua in the framework of the thermodynamics of

irreversible processes.
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2.4 Ductile damage
2.4.1 Physical aspects of ductile damage

Damage in metallic materials is associated with a physical process of creation and evolution of micro-voids
and microcracks following the well-known three stages of microdefects nucleation, growth and coalescence.
Ductility is regarded as an intrinsic ability of materials to undergo a certain amount of plastic strains before
the final fracture occurs. The fracture of ductile material occurs in areas where large inelastic strains strongly
localize prior to the initiation of macroscopic cracks. The damage occurring under large plastic or
viscoplastic strains is called ductile damage (different from brittle damage, creep damage or fatigue damage)
which is frequently observed in metal forming failure. As illustrated in Figure 2.5, the representation of
ductile damage evolution in different length-scale is established at the characteristic time of the deformation
process. At the smallest length scale, damage is related to the same processes of inelastic strains. At macro-
scale, damage is represented as the progressive degradation of a material, which exhibits a decrease in

material properties as stiffness and strength.
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Figure 2.5: Multiscale damage in nature [Bonoral7].

2.4.2 Classification of ductile damage models

In order to describe the ductile damage, many damage models can be found in literature. They can be
classified into three types: (1) uncoupled failure criteria; (2) weakly coupled models; (3) fully coupled

models often formulated in the framework of continuum damage mechanics (CDM).

(1) The uncoupled approaches are based on specific failure criteria written in terms of stress or strain
invariants giving the final fracture when their critical values are reached [Freudenthal50, Johnson85,
Bao04, Ebnoether13]. The advantage of these approaches are their simplicity by using the so-called
failure indicators (criteria) which are easy to implement in FE software. Due to their uncoupled
nature, the presence of micro-defects has no effect on mechanical fields (i.e. no interactions between
the microdefects and the material behavior or no coupling). So that these models do not consider
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stress and stiffness softening within the material caused by damage occurrence during deformation.
This leads to an easy to use calibration of the material parameters. However, their major weakness
relies in application to complex loading paths and large plastic strains. Recently, the research team
of MIT proposed a phenomenological model in which the effect of stress triaxiality and Lode angle
on fracture are taken into account, as illustrated in Figure 2.6, the fracture surface of the modified
Mohr-Coulomb damage criterion [Bai08] is an asymmetry fracture locus in 3D as given in Figure
2.6¢, which is quite different from the Johnson—Cook’s model (Figure 2.6a) and the model proposed
by Wierzbicki and Xue[Xue08](Figure 2.6b).

(b)

Figure 2.6: Different fracture locus: (a) Johnson-Cook model independent of Lode angle; (b) Symmetric

fracture locus with Lode angle dependency proposed by Xue and Wierzbicki[Xue08];(c)Asymmetric
fracture locus with Lode angle dependency proposed by Bai and Wierzbicki [BaiO8].

(2) In the second approach, the influence of ductile damage in the yield condition is taken into account
only on the yield function, by a porosity fraction and failure is predicted to occur when the porosity
reaches a given critical value. The elastic stiffness is then not affected by damage (no decrease of
the stiffness due to the damage occurrence). The first damage model within this approach was
proposed by Gurson[Gurson77]. Later, Tvergaard and Needleman [Needleman84, Tvergaard84]
extended the Gurson model to include the void coalescence mechanism, this is called GTN model).
The starting point of Gurson’s theory is the microscopic idealization of porous metals as aggregates
containing voids of simple geometric shapes embedded in a metallic matrix whose behavior is
governed by a rigid plastic von Mises yield function. The damage variable is considered as the local
voids volume fraction. Extensions of the GTN model based on micromechanical studies (e.g.
[Acharya(00, Tvergaard04, Bonfoh04]) have been made. However, there are still some limitations
of this kind of models, where a large number of material constants needs to be identified and their
physical meaning clarified, making their calibration procedure very difficult. Readers can refer to

the work by [Cao13] for more details.

(3) The continuum damage mechanics (CDM) is based on the thermodynamics framework leading to
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describe the ductile damage by a scalar or tensorial variable [Lemaitre85, Lemaitre92, Voyiadjis92,
Saanouni03, Lemaitre05, Lemaitre09, Bessonl10, Saanounil2, Murakamil2]. Due to the strong
coupling between the ductile damage and the material behavior, the material properties are deeply
affected by the damage occurrence. The concept of effective stress was first introduced by Kachanov
[Kachanov58] to define the concept of continuum damage mechanics. Since that, this kind of CDM
approaches have been used for damage prediction in various situations assuming various types of
coupling in many published works [Lemaitre85, Lemaitre92, Voyiadjis92, Saanouni03, Lemaitre05,
Lemaitre09, Bessonl0, Saanounil2, Murakamil2, Baddridinel0, Bouchardll, Soylansanl6,
Wulfinghoff17]. Within the CDM approach, isotropic damage assumes that spherical micro-void
cluster are homogeneously distributed without any privileged evolution direction. While the
description of the anisotropic damage assumes that the microcracks with various shapes and
orientations are highly influenced by the initial microstructure of the material and its evolution
(texture) as well as by the direction of the applied loading paths. Many extensions have been made
based on this framework in order to avoid some limitations, such as nonlocal formulation to avoid
the mesh dependencies of the local models [Saanounil2, Saanounil3, Brepolsl7,
Diamantopouloul7]. The CDM approach with local formulation is adopted in this work in order to
describe the isotropic ductile damage occurrence in metallic materials formed by large anisotropic

visco-plastic strain at elevated temperature.
2.4.3 The concept of effective state variables in CDM

Ductile damage occurrence results from a progressive deterioration process of each material point including
nucleation, growth and coalescence of microvoids and microcracks. The macroscopic behavior of the

material is highly affected by these micro-defects at a given point of the material.
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Figure 2.7: Schematic representation of the damage effect on the force-elongation curve [Saanounil2].
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The typical force-displacement curve with ductile damage effect is given in Figure 2.7. Clearly, from this
figure, the ductile damage has deep effect on both elasticity and plasticity behaviors as the ductile damage
grows. In the CDM framework, the damage interacts strongly with all the thermo-mechanical fields

according to the appropriate coupling theories [Lemaitre85, Lemaitre05, Besson10 and Saanounil2].

According to the effective stress concept of Kachanov [Kachanov58], two configurations can be defined: (i)
the real damaged configuration including the local micro-discontinuities due to the micro-cracks and micro-
voids, (ii) the continuum undamaged fictitious configuration, as shown in Figure 2.8. In the damaged
configuration the RVE with the cross-section area 4 is subjected to the uniaxial tensile force: F =A4-0. A
fictitious undamaged configuration (effective configuration) is introduced by removing all the voids and
cracks. Then we can obtain F = 4 -6 . Equating the two expressions of # obtained from both configurations,

one obtains the following expression for the effective uniaxial stress:

6:L, where a’:ﬂ (2-25)
1-d A

The damage variable 4 €[0,1] where the lower bound, d = 0, represents the intact material without any
damage, and the upper bound, d= I, represents complete fracture of the material.

Effective

3T

A

e damaged real RVE =

“db

RVE with micro-defects

Figure 2.8: Effective stress concept defined in a typical representative volume element (RVE).

Since in the damaged configuration the cross-section area is highly discontinuous and the distribution of the
micro-defects is unknown, it is not easy to define the state variables at any damaged area. To make this
easier, a fictitious undamaged configuration (Figure 2.8b) fully continuous and free from any defect in which

the state variables can be easily defined.

In this fictitious undamaged configuration, effective state variables can be defined as function of the damage
variable based on appropriate equivalence assumptions. In the literature, various equivalence principles are

defined, such as: strain equivalence, stress equivalence and energy equivalence [Besson10, Murakami 12].
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In this work, the full coupling between the ductile damage and the material behaviour is performed thanks
to the definition of effective state variables through total energy equivalence assumption [Saanouni94,
Saanounil2]. The total energy is assumed to be the sum of the elastic (reversible) energy W., the energy
dissipated in the kinematic hardening W, and the energy stored in the isotropic hardening W,. This total
energy is assumed to be the same for both configurations. It enables the systematic definition of pairs of
effective state variables that can be indifferently used both in stress and in strain spaces with the Legendre—
Fenchel transformation. It not only achieves a strong coupling between damage and all other phenomena,

but also can keep the interaction between the various phenomena.

For the isothermal problems the observable variables are the total strain and stress tensors(¢ ,o), and the

internal variables represent different dissipative phenomena as the inelastic flow (¢°,0), the isotropic

hardening (r, R) ,the kinematic hardening (&, X) and the isotropic ductile damage (4, Y).

This suggests the existence of a fictitious undamaged configuration (where d = Y = 0), in which the state
space is defined by the couples of effective variables (¢,, o), (@, X), (. R). The assumption of total

energy equivalence postulates that the two configurations have the same total energy so that the effective

and real variables are related by the following equations:

W (e,d)=1/2(¢,:0)=1/2(&, :0) =W, () =& =¢.(d)s,, c_?=§(d) (2-26)
W (a.d)=1/2a:X)=1/2a: X)=W, (@) =a=&da, X=§)—((d) (2-27)
W.(r,d)=1/2(r-R)=1/2(F-R) =W, (7) =i=& (d)r, R:% (2-28)

There are many choices for the damage effect functions &.(d), &(d) and &(d). They are always positive and
decreasing functions with respect to the isotropic damage variable d. Their values are varying from 1 (for a

virgin undamaged RVE &, (4 =0) =1) to zero (i.e. for a totally damaged RVE &, (d =1)=0).

2.5 Time-independent plasticity and viscoplasticity theories without damage effects

In order to model the complex material behaviors introduced in Chapter 1, many works have been made to
describe these complex behaviors at various scales. Crystal plasticity models [Jain07, Argon08, Proust09]
are provided by relating the single crystal constitutive behavior with that of the overall aggregate basing on
full field approaches or mean field approaches [Lebensohn07, Besson10, Perdahcioglull] like the self-

consistent approach [Lebensohn93, Saanouni96, Boudifa09, Saanounil2] which are widely used to model
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the scale transition from grains scale to the macroscale (the RVE scale). For example, the initial anisotropy
and tension-compression asymmetry of magnesium alloys were investigated by many works [Agnew 01,
Agnew05, Lou07, Guol5 and Zhoul6] at the microscale. It is noted that the microscopic models are useful
for capturing the mechanical behavior of these highly heterogeneous metals. However, to fulfill our aim of
modeling macro-scale forming processes with acceptable computational efficiency, a macroscopic
phenomenological approach is more suitable. The following sections are focused on the modeling of the

material behaviors at macro-scale based on phenomenological approach.
2.5.1 Time-independent plasticity

Yield condition, hardening model and flow rule are the basic plasticity concepts in phenomenological
modeling. In order to define the limits which determines the transition from reversible and irreversible
strains, the yield criterion is needed. The flow rule is a link of the stress and plastic strain components. The
hardening models describe the evolution of the yield function during the inelastic strains. In time
independent plasticity, all the above aspects are not sensitive to the rate effect i.e. to the velocity of the

applied loading path.
2.5.1.1 Yield function

The yield functions are usally formulated in the stress space as a convex scalar valued function of the stress

invariants. Generally, the stress invariants-based yield functions are defined using the stress invariant/,, J,

and J, expressed as follows:

Iy =tr(g) =0, +0y, +0y (2-29)

1
J, = Eg 18 =788, =8, =858, + S]22 +S223 +S123 (2-30)
Jy = det(S) = 818,85 +25,,5,,8,, _S122S33 _S223S11 _S123S22 (2'31)

where Sis the deviatoric stress tensor, defined as S = g—gtr(g)l, with / is the second-rank identity tensor.

The classical well-known von Mises yield criterion assumes that the plasticity of the metals occurs when

the J, reaches a yield value shown as follows:

f=\3, -0, = %g:g—ay ~0 (2-32)

Hill’s criterion [Hill49] represents an extension of von Mises criterion by using the generalization of

invariants to anisotropy.
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f={S:H:S-0,=0 (2-33)

where H is the forth-rank tensor which defined by six anisotropic parameters (£, G, H, L, M and N) to
define various orthotropies. This criterion widely used for his simplicity to describe the initial anisotropic
flow, it cannot describe accurately the plastic flow under complex (non-monotonic and non-proportional)
loading paths, including some SD (Strength Differential) effects.

By including the effect of the third stress invariant J, which enables proper relative weighting of all shear
stresses, Drucker [Drucker49] proposed a yield function capable to describe the experimental data points
located between von Mises and Tresca yield surfaces:

f=Ji-cJ} —Tf, =0 (2-34)

To predict the SD effects in the anisotropic models, Blarlat and his co-authors [CazacuOl, Cazacu04,
Cazacu06] have developed two kinds of yield functions: (1) by introducing the third stress invariant based
on the Drucker’s criterion [Drucker49], named CB04 given by Eq.(2-35); (2) by introducing a new material
parameter to control the asymmetry in tension and compression and with extension to anisotropy using a

linear stress translation based on Balart’s non-quadratic yield criterion, named CPB06 in Eq.(2-36).
f=0) e -7 =0 (2-35)
F=(B]=k2) +(2]-%-2,) +(jZ]-£-5,) -0, =0 (2-36)
where X, , X, and X, are the principal values of £=C:S, with C the operator of plastic anisotropy. The

stress invariants in Eq.(2-34) are replaced by J, =%Z :Zand J; =det(2) . These two yield functions have

been extended by others to describe the pronounced in-plane anisotropy [PlunkettO8].

Yoon [Yoon14] proposed an anisotropic and asymmetric yield function based on CB04 for pressure sensitive

metals given by:
S =bl+( ~al) ~o, =0 (2-37)

These models have been successfully implemented into finite element codes and validated through
numerical simulations of metal forming processes for different materials [Lil6, Barros17]. Other methods
to account for initial plastic flow anisotropy based on non-quadratic criteria, consist of using linear
transformation stress tensors in isotropic yield functions to take into account the orthotropic behavior, as
proposed for aluminum sheet metals [Barlat89, Barlat91, Karafillis93, Barlat03, Bron04, Aretz12, Grilo16].

Various orthotropic non-quadratic yield functions can also be found among others [ Yoshida02, Banabic05,
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Banabic10].

It is also important to describe correctly the evolution of all the internal variables as well as the evolution of
yield surfaces. Indeed, the appropriate flow rule and hardening models play an important role in constitutive

modeling.

To define the evolutions of dissipative phenomena with several strongly nonlinear and fully coupled
dissipative phenomena (plasticity, viscoplasticity, hardening, thermal exchange, damage, etc.), the concept
of flow potential which has the same properties of convexity in the stress space with yield function is defined.

The flow potential r can be taken as the same with the yield function f (F = 1), this case is called the

associative plasticity theory leading to Associative Flow Rules (AFR). However, the general case of the

Non-Associative Flow Rules (non-AFR) is defined by considering F # f with df /0o = 0F /0o and even
with df /6o # OF / da . It is important to recall that the amount of plastic flow increment is governed, for a
given stress state and history, by the yield function /', while the direction of flow is collinear to the plastic

potential normal. In crystalline plasticity, the resolved shear stress on several intersecting slip systems
determines the yield function, the activation of any slip system determines the flow potential. The choice of
these two flow rules depends on whether the stress states have the same effect on the plastic flow. In practice,
the use of the non-associative theory is more convenient to a better prediction of experimental results of a
wide class of metallic materials with multiple dissipative phenomena. In this work, the non-associative

plasticity is used.

The proportional expansion of the yield surface is described by the isotropic hardening, which is represented
by a pair of scalar state variables in continuum mechanics framework. However, the sliding of the yield
surface center is classically described by the kinematic hardening, which is represented by a couple of
symmetric and deviatoric second-rank tensor state variables called back stress and its associated strain
variable, as shown in Figure 2.9. The kinematic hardening plays an important role in describing the
Bauschinger effect in reversal loading. Several linear [Prager56, Ziegler59] and non-linear [ Armstrong66,
Chaboche86, Yoshida02, Dettmer04] kinematic hardening model can be found in the literature. However,
the texture evolution in polycrystals due to rotation of the atomic lattice in single grains during large inelastic
strains can lead to complex macroscopic mechanical behaviors, and the complex interplay at the microscale
of a polycrystal leads to an evolving macroscopic anisotropy of the yield surface. The anisotropic behavior

evolves with the material texture change during large plastic strain under complex loading paths. This
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induced anisotropy cannot be characterized only by classical isotropic and kinematic hardening without
changing the shape of the yield surface. Meanwhile, unusual hardening evolution at compression loading of
Mg alloys also need to be described by specific constitutive model. The macroscopic modeling of these

aspects are discussed in the following:
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Figure 2.9: Yield surface evolution according to different hardening models.
-Distortional hardening

In order to capture the yield surface distortion (Figure 2.9) during the large plastic flow under non-

proportional loading paths, distortional hardening should be taken into account as an induced anisotropy.

Attempts to model distortion of the yield surfaces have been made by various approaches in several works
[Ortiz83; Voyiadjis90, Kurtyka96, Teodosiu98, Francois01, Haddadi06, Feigenbaum(07, Barlat11]. Teodosiu
model [Teodosiu98] can capture the cross hardening effect, but it cannot describe the evolving distortion of
the yield function. An alternative method, motivated from physical point of view, has been used based on
an evolving plastic fourth-rank tensor to describe the distortion of the yield surface [ Voyiad;jis90, Haddadi06,
Feigenbaum07, Pietrygal2]. Feigenbaum and Dafalias [FeigenbaumO7] proposed a thermodynamically-
consistent framework with strong coupling between kinematic hardening and distortional hardening, but
this model could only strictly be complying with the second law of thermodynamics in the case of small
strains. However, the subsequent works have been made to extend the model to large strains framework
[Feigenbaum14]. Frangois model [Francois01] is the first work that includes distortional hardening using a
distorted deviatoric stress tensor instead of the classical deviatoric stress tensor in the yield criterion. Within
other authors as [Shutov12], the distortion was described by introducing a so-called distortional back stress
in the equivalent stress. Barlat and coworkers [Barlatll, Barlatl3; Barlatl4; Jeongl7] proposed a
Homogeneous Anisotropic Hardening (HAH) model to describe the plastic flow during strain path changes.

It can describe the yield surface distortion using an internal structure tensor in the yield stress. Based on
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these distortional hardening models, extensions by coupling with other physical phenomena have been made.
Shi and Mosler [Shil3] analyzed three distortional hardening models with application to Magnesium alloys.
Bartels and Mosler [Bartels17] extended the distortional hardening model modified by [Shil4] to the
thermomechanical coupled setting. Badreddine et al. [Badreddine17] extended the Francois [FrangoisO1]
model to the non-associative plasticity including the full coupling with isotropic ductile damage. Rokhgireh
[Rokhgireh17] proposed a new distortional yield surface model which can describe the egg-shaped distorted
yield surface, and the model shows better prediction of uniaxial and multiaxial ratchetting for steels. Qin et
al. [Qin18] combined distortional hardening with isotropic and kinematic hardening in their model for
complex loading paths, in which a scalar variable was introduced to expand the yield surface only in the
orthogonal direction associated to the dislocation microstructure orientation, in such a manner that the yield

surface is distorted.

The fundamentals of some distortional hardening models are briefly discussed in the following:
(1)Frangois’ model [Frang¢ois01]
Francois’ model [Frangois01] is constructed by using a new deviatoric stress tensor namely S, to describe

the distortion of the yield surface during the plastic deformation. It should be noted that the new ‘distorted

stress’ S, is not included as a new thermodynamic force, but only a function of deviatoric part of the Cauchy

stress tensor and kinematic hardening stress tensor.

The yield function has the following form:

f(e. X, R) =[S, ~X|-R-c, <0 (2-38)
where S, is defined by:
S =842y (2-39)
2X,,(R+0))

with X, is a scalar parameter denoting the saturation value of the kinematic hardening, the orthogonal part

of S, to the kinematic hardening X defines s, =5 - SiX

- lxr

(2) Teodosiu’s model [Teodosiu98]

The Teodosiu’s model [Teodosiu98, Haddadi06] is based on a modified Hill-type yield function according

to:

[=J8-X):H:(S-X)-R-f({)-0,<0 (2-40)
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where f(¢) represents the contribution of the organized dislocation structures on the isotropic hardening.

The evolutions of isotropic and kinematic hardenings are given as follows:

R=Cy(R, -R)A and X =C, (X n-X)A (2-41)

sat sat —

where C, and C, are isotropic and kinematic hardening modules, 7 is the current direction of the plastic

> " Vsat

strain rate tensor, R, and X_, are saturation values of r and X depending on the fourth-rank tensor ¢'. There

are two parts of dislocation structures contributing to the strength, one is associated with current slip systems

given as ¢, =n:¢ :n, and the other is related to the latent slip systems denoted by ¢, =¢-¢,n®n , their

evolution equations are postulated as:

& =~Cole ) feo ¢ i and &y =~Con €160 —€o) - 226, 14 (2-42)

where C,, and C,, are respectively the saturation rates of ¢, and ¢,. ¢, is the saturation value of ¢, .

g, and g, are strain-dependent parameters [Haddadi06, Shil3].

(3)Feigenbaum and Dafalias’ model [Feigenbaum07]
The distinguished character of Feigenbaum and Dafalias’ model [Feigenbaum07] is that a fourth-rank tensor
is used to describe the evolution of distortional hardening and derived all evolution equations on the basis
of the fulfillment of the dissipation inequality.

[=(S-X):(H,+(n, : X)A):(S-X)-R* <0 (2-43)

| S ————
Hy

The fourth-rank tensor H, defines the shape of the yield surface which evolves with the strain through the
fourth-rank anisotropic tensor 4, the evolution function of this tensor is given in Eq.(2-44). The termn, : X
is responsible for the directionality of the distortion while H, is a constant fourth-rank tensor representing
the initial plastic anisotropy.

A=-i4|s- x| [(g_ :X)n, ®n, +%A2A} (2-44)

where 4, and 4, are material parameters.

(4) HAH model [Barlatl 1]
The homogeneous yield function-based anisotropic hardening (HAH) model [Barlat11] describes a partial
distortion of the yield surface under plastic loading which can describe the Bauschinger effect without the

concept of kinematic hardening. This yield function f is given by:
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S [ —
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} +f;[ﬁ:g+

H o, (s2)<0  (2-45)

The yield function combines the stable component ¢ and the fluctuating component ¢” , i is the
deviatoric microstructure tensor. The material parameters f, and f, can be represented by two new

parameters g, and g, [Barlatl1], according to:

f :{%—1}4 and f, = H_IT (2-46)

1 2

with g, =d, /ijand g, =d, /i,, the two variables are depending on the sign of / :s, while the parameters
d i, d,and i, are such that —d 4 and d,h are deviatoric stress states on the current distorted yield surface

while —i, h and i E would be on the yield surface if hardening is isotropic. In such a manner, the yield

surface can be divided into forward and negative parts, covering different shapes with a nearby mathematical

way. If f, = f, =0, the yield function reduces to the classical isotropic or anisotropic yield function given
by f(s)=¢(s)-0,(cl)<0.
-Tension-compression asymmetry in hardening

In addition to the tension-compression asymmetry in yielding, Mg alloys also exhibit unusual hardening
evolution due to the twinning effect [Guo15], the flow stress-strain evolution has a sigmoidal shape [Khanl1,
Kabirian16], which have referred as hardening asymmetry [Leel7]. Lee et al. [Lee08] extended the two-
surface hardening model for Mg alloys to include the unusual hardening asymmetry, the gap function is
used to control the gap between the two surfaces in such a manner that the hardening differential effect can
be captured. Li et al. [Li10] used an isotropic von Mises type yield surface with an evolving non-zero back
stress to describe the reverse loading behavior of Mg alloys. Also, temperature effect and distortional
hardening are later included in modelling of anisotropic/asymmetric behavior [Kim13, Leel5, Leel7].
Another model, proposed by Nguyen et al. [Nguyen 13], can be regarded as a special case of the two-surface
model proposed by Lee et al. [Lee08]. This model consists of three different yield functions corresponding
to three deformation modes (slip, twinning and detwinning) to capture the macroscopic sigmoidal stress-
strain evolution. In fact, the difference of three deformation modes only appears in isotropic hardening, and
the use of isotropic von Mises yield function is not sufficient for the strong anisotropy of Mg alloys.
Muhammad et al. [Muhammad15] developed another constitutive model which include the anisotropic yield

function of CPB06 for three different deformation modes which is similar to the idea of [Nguyenl3].
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However, each of the three deformation modes has been assigned to both equivalent stress and isotropic
hardening. Moreover, the parameters corresponding to the anisotropy and asymmetry are evolving with the
accumulated plastic strain. No translation was accounted for the yield surfaces (i.e. no kinematic hardening)
in these two above models since only isotropic hardening is taken into account. A phenomenological
plasticity model which incorporate the micro-mechanisms of deformation was proposed by Steglich et al.
[Steglich16]. In this model, the strain contribution resulting from slip and twinning is treated separately,
since the isotropic hardening is dependent on both slip and twinning deformation while kinematic hardening
is only dependent on slip deformation. Even though this model can be only used to model monotonic loading
behavior since without incorporating the detwinning mechanism, but it is more straightforward from
physical point of view and more practical in application to sheet metal forming simulations. This model has
been extended to characterize the fracture limits of Mg alloys by Lee et al. [Leel8] and to describe the 3D
plastic anisotropy of HCP metals by Kondori et al. [Kondoril8]. Jia and Bai [Jial6] developed a ductile
fracture model based on the Modified-Mohr-Coulomb model in which the asymmetry hardening effect and
ductile fracture are accounted for. The fundamentals of some models including the tension-compression

asymmetry in hardening are briefly discussed in the following:
(1) Two-surface model proposed by Lee et al. [Lee08]

There are two yield surfaces in this model: a loading surface inside and a bounding surface outside, as shown
in Figure 2.10. The current stress on the loading surface is at point @ and the corresponding stress on the
bounding surface is at point A. The correspondence between these two points is defined by the common
yield surface normal directions. The hardening rate is determined by the gap between the current and
corresponding stresses. The two surfaces can be contacted at points with the same normal direction. The

yield functions for the loading and bounding surfaces are written as:

=0O(o-a)-oc. = loading  surface
{fl ( )= G, g surft (2-47)

g-«a
fHh= H(E—A)—i, =0 bounding  surface
where o is the Cauchy stress and &is the back stress of the loading surface, £ and A are the stress and back
stress of the bounding surface. &, and X, represent the size of the loading surface and bounding surface

respectively. The corresponding stress X on the bounding surface shares the same normal direction with

the current stress Oat the loading surface, since the shapes of these two surfaces are the same.
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Figure 2.10: A schematic view of the two-surface model.
(2)Three-surface model proposed by Nguyen et al. [Nguyenl3]

Three yield functions are proposed to handle three different deformation mechanism, namely, slip mode,

twinning mode and detwinning dominant modes:

J,=Ry—0,=0 for slip mode
f=4J,-R,—0,=0 for twinning mode (2-48)
J,-R, -0, =0 for detwinning mode

where o .,0

-0, are the yield stresses for different deformation modes. The modeling of the hardening

¥

asymmetry is achieved through defining three different isotropic hardening given as below:

a

e L+exp(—((&] ~ &)/ ;1)) + 0y (I=exp(=by(&; = &p)))
7 + 0y (1=exp(=by (2 ~2,)) (2-49)

P v exp(—((B —2,0)/ ¢y)
Ry =0, (1- exp(—bS g_sp )

The subsequent work in the same lab have been done to take into account the temperature effect and
distortional hardening [Kim13, Leel5, Leel7] with some changes in the equivalent stress and slight
modification of hardening corresponding to different deformation modes. The idea remains the same, which
is to apply three different yield criteria at three different deformation modes. To achieve this, a deformation
criterion determining deformation modes under the plane stress condition should always be defined
previously [Kim13, Leel5]. The slip-dominant mode which is equivalent to uniaxial tension, the twinning-
dominant mode which is equivalent to uniaxial compression, and the detwinnning-dominant mode which is

equivalent to tension after compression are defined as follows:
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Ag +Ag, >0 = slip mode
Ag +Ag, <0 = twinning mode (2-50)

Ag +Ag, >0 and & = detwinning mode

where Ag, and Aeg, are the major and minor in-plane principal strain increments respectively, &7 is the

accumulated plastic strain at twinning-dominant mode. This three-surface model was modified by
[Muhammad15] to include the anisotropic yield function of CPB06 for three different deformation modes.
Each of the three deformation modes has been assigned to both equivalent stress and isotropic hardening.
No location translation of the yield surfaces was considered (i.e. no kinematic hardening). Another
disadvantage is that a large number of material parameters need to be identified, since the anisotropic

parameters are evolving with the accumulated plastic strain.

(3) Steglich ‘s model [Steglichl6]

Steglich et al. [Steglich16] proposed a phenomenological plasticity model in which the slip and twinning
are treated separately. Two yield surfaces are applied in this model, an anisotropic yield criterion f,

proposed by Barlat together with the isotropic and kinematic hardening law is applied to describe the

dislocation induced deformation, the CPBO06 criterion f was chosen to describe the deformation by
twinning.

1
dg )ag _Eg(&_‘gs‘?,):o

“ 4|5, -3,

“+]z, -3,

1
Je = E(|22 -2

f=(2]=k-z)" (|2 —k-2)" + (2| -k -%5)" -5,(5) =0

2-51)

where X, , %, and X, are the principal values of £ = C: (g - X) with the linear transformation using the forth
rank tensor C. X[, %) and X} are the principal values of £'=C': S, here the operator of plastic anisotropy C’
and Care different. The interaction between the glide and twinning mechanism is realized through the

isotropic hardening evolution shown as follows:

{ag (5,,8) = R, +H,8 + 0, [1-exp(-,Z,) |+ O, [ 1-exp(-D,,,) ] (2-52)

Et (gt) = Rt + Ht‘?‘r + Qlt [exp(_blzgt) - 1] + ta [1 - exp(—bzté_‘,)]

This model accounts for the transition behavior from twining-dominated to crystallographic slip-dominated
deformation. It is different from the two-surface model proposed by Lee et al. [Lee08] and the three-surface
model proposed by Nguyen et al. [Nguyen13], it provides phenomenological descriptions which take into
account the information on the micro-mechanisms. Since the “detwinning” mechanism is not included, the

model is unable to represent reverse loading paths.
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2.5.2 Thermo-viscoplasticity (time-dependent plasticity)
..... [ Viscoplasticity potential

With the thermodynamic approach a viscoplastic potential Q,, should be included. By using the effective

state variables, various forms of viscoplastic potential with strain hardening and damage can be introduced
[Besson01]. Two viscoplastic potentials are often used, the first is the power function of the yield criterion

f which is called Norton-Hoff potential as give below:

m, +1

0, (6.8 1) = <f<é’ ’)‘(’T)> (2-53)

Q,, (8.R,X,T)=K'K; cosh <M> (2-54)

where K,, m", K and K, are the material parameters. The evolution equations can be obtained by deriving

the viscoplastic potential Q  with respect to the state variables.
2.5.2.2 Thermo-mechanical coupling

Within the hot sheet metal forming processes, the temperature rise is mainly caused by the heating operation.
The complexity of the mechanical behavior including anisotropy and hardening of the material is also
increased by the thermomechanical coupling. It bears emphasis that the anisotropic material parameters
have a very high non-linear change with the corresponding temperatures, for instance, high order polynomial
fitting functions was adopted as a compromise method to predict the nonlinear variation of material
parameters with temperature in the work of [Abedrabbo06] which investigates the anisotropic yield behavior
of AA3003-H111 alloy at elevated temperatures. Khan and his coauthors [Khan12] established a strain rate
and temperature dependent anisotropic yield criterion based on Khan-Huang-Liang (KHL)

phenomenological model.

Note that the dissipation phenomena caused by inelastic strains leads to temperature increase inside the
material. The experimental investigations in [Bednarek06] proved that not only the temperature itself but
also the heating rate has a significant effect on carrying capacity of the structure. Many thermomechanical
coupled elasto-viscoplasticity theories can be found in the literature [Simo92, Chaboche97, Voyiadjis04,
Chaboche08, Saanounil2]. Lestriez [Lestriez04] focused on the ‘strong’ coupling between the thermal and

the elasto-viscoplastic behavior. A detailed description of viscoplasticity was presented in [Chaboche0§],
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in which the necessity of temperature rate terms in the context of hardening rules was discussed. Ganczarski
and Skrzypek [Ganczarski09] considered the temperature dependence of all material functions that
characterize viscoplasticity and damage with the additional temperature rate terms in all evolution equations
of thermodynamic conjugate forces. A thermodynamic framework for constitutive modeling of rate-
dependent materials was derived in [Al-Rub12]. In the work of [Egnerl12], a thermo-mechanical coupled
formulation with non-associative plasticity and non-associative damage is developed, in which not only
accounting for temperature-induced softening but also damage-induced softening. Soyarslan and Bargmann
[Soyarslan16] formulated a consistent-thermodynamic framework for finite multiplicative thermo-plasticity
coupled to damage along the same lines with Simo and Miehe [Simo092]. Based on all these works, the

proposed model is presented in the following section.
2.6 Formulation of the proposed fully coupled model
2.6.1 State variables and effective state variables

In this work, the model is formulated in the framework of the thermodynamics of irreversible processes with
state variables [Lemaitre90, Saanounil2, Skrzypek13]. The observable variables and internal variables are

introduced, as shown in Table 2.2. Two pairs of observable variables:

e (B,7) for total strain tensor and stress tensor or ( B, o ) if total incompressibility is accepted.

e (T,s,) for absolute temperature and specific entropy.
Five pairs of internal variables:

o (&°,0) describing the elasto-plastic flow with the small elastic strain tensor and the Cauchy stress

tensor;

e (q/T,g=grad(T)) describing thermal flux vector and its conjugate force;
e (7,R) describing the isotropic hardening depicting the change of the yield surface size (radius);
e (a,X ) describing the kinematic hardening i.e. the change of the yield surface center location;

e (d,Y) describing the isotropic ductile damage. The scalar variable d is an average measure of
damage for different directions; with d = 0 for the initial undamaged (or safe) material point, while

d =1 for the fully damaged material point.

The strong coupling between the plastic flow with hardening and the ductile damage is performed in the

framework of the total energy equivalence assumption [Saanouni94, Saanounil2], leading to the definition
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of the effective state variables (g’, Q) (g?,)_? ) and (r”,l?) as defined in Eq.(2-26) to Eq.(2-28). By defining

the specific choice & (d)=¢,(d)=+1-d and & (d)=+1-d” which give:

O
£ =l-dg°, 6=—= 2-55
g &, G 1_a,) (2-55)
(@g=i—da, X = fd) (2-56)
(Feimdrr, R=—R_) (2-57)
1-d7

The parameter ) represents a coupling parameter governing different damage effects on the isotropic

hardening [Saanounil2].

Table 2.2 Internal variables and their associated variables

State variables Associated variables
Elasticity B r=Jo
Observables
Temperature T S,
Plasticity B¢org’ o
Kinematic hardening: o X
Internal variables
Isotropic hardening: r R
Isotropic damage d Y
Thermal transfer 4}/ T § = grad(T)

In order to take into account the microcracks closure effect which consists of rigidity recovery as well as a
lower damage rate under compression(negative stress) than that in tension(positive stress), Lemaitre and
Ladeveze [Lemaitre85] proposed a spectral decomposition of the elastic damage force to a negative (or
compressive) part and positive (or tensile) part. This straightforward spectral decomposition is applied to
both strain and stress tensors to get positive and negative parts [Lemaitre05, Lemaitre09, Bouchard11,

Saanounil2]. Any symmetric second-rank tensor T can be additively decomposed in unique way into

positive and negative partsT = (T) +(T) , the trace of tensor 7'can also be decomposed into positive and

negative parts7:1=(T:1) +(T:1) . The application to stress and strain tensors can be done as follows:

(6). = <;Z _>d (6) = J% (2-58)
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—

(&), = f—> (&) = <1§_e>hd (2-59)

Accordingly, the effect of the ductile damage on the elastic behavior described by the effective variables

can be decomposed into deviatoric and hydrostatic parts as following:

(2-60)

eD

where £ is the deviatoric part of the small elastic strain tensor £° , £*'is the hydrostatic part. S is the

deviatoric part of Cauchy stress and ¢” is the hydrostatic part. The microcracks closure parameter # has a

range from 0 to 1, when 4 =0 the microcracks close as soon as the stress tensor is negative, while 2 =1, the
microcracks closure effect is neglected (see discussion in [Saanounil2]). The disadvantage of this approach
is that it includes some discontinuity of the potential functions due to the spectral decomposition and the
effect of the microcracks closure is only applied to the elastic part of damage energy release rate. To avoid
the problem of discontinuity in all the previous works [Saanounil2, BadreddinelO, Badreddinel5,
Badreddinel7a,b, Yuel5, Yuel7] this decomposition is only used to define the evolution of damage and the
rigidity recovery is ignored, so that in the yield surface and plastic potential the spectral decomposition is

ignored to conserve their continuities.

In this work, in order to avoid the problem induced by the spectral decomposition, and to include the effect
of microcracks closure effect on all the considered phenomena, a new approach is proposed. The basic idea

consists in considering a continuous function of parameter # depending on triaxiality in the following form:

1+h 1-h
h(7) = —=+—=tanh(,1) (2-61)
where 7 = % is the triaxiality, 4 and &, are two material parameters which control the evolution of 7,
2@

the objective of this function is to ensure #=1 when 77 is greater than a certain positive value, meanwhile
when 77 is smaller than a certain negative value, / should be equal to # (smaller than 1). As illustrated in
Figure 2.11a, &, is set to 2, 4 is the critical value of & when 77 is smaller than a certain negative value, if
h, =1, the value of / is not varying with the triaxiality. The parameter &, controls the evolution form of
the value of %, as shown in Figure 2.11b, when &, =0.5, the evolution is quasi-linear according to triaxiality,

when &, =8, then the value of % stays at the critical value # when 7 <—1/3 and then increases in the range
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—-1/3<n<1/3, finally, it reaches #=1 when 7 >1/3. From this dependent function, the desired values of
hat tension, shear and compression can be achieved by adjusting the two parameters 4 and &, . There is

no need to decompose the stress and strain into positive and negative parts, which makes the model more

straightforward and can cover the whole range of the triaxiality.

— &8

&2
— &=
—_— 505

= lhe

»
>

T 23 13 g 1B 23 1 1 2 113 g 3 23 1
n

(@ (b)
Figure 2.11: The evolution of the microcracks closure effect parameter according to triaxiality: (a)

different values of 7 ; (b) different values of &, .

The definition of the effective state variables is rewritten in the following form:

& =\1=haa’ 2" and 6" =

(2-62)

-
J1=h(p)d*
s

&P = I—h(p)de* and § = —=— (2-63)

1-h(n)d
G = I"h(pda and ¥ -—% (2-64)
1-h(n)d

F=\1-h(n)d”r and R= R (2-65)
1=h(m)d”

The parameters y, and y, are coupling parameters governing different damage effects on the hydrostatic

stress and isotropic hardening respectively.

2.6.2 State potential and state relations

The specific Helmholtz free energy ‘P(g",g,r,T,d)=‘P(§",0_?,F,T), defined in the fictive undamaged

configuration as a convex function of strain-like state variables in the effective strain space and concave of

the temperature, is taken as a state potential [Germain86, Saanounil2]. It can be decomposed into a thermo-

elastic part " and a thermo-inelastic part ¥"" considering the assumption that the inelastic strain and
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hardening do not affect the elastic properties of the material.

plP =p\Pme(ée,T)+p\P’hm(i,F,T)= p\Pthe(ge’T’d)_'_p\chin(g’r’T’d) (2_66)

PP = L (DE" 8 (DE 56 =3, (T, (T-TE" D=2 (-7,

0

= %(l—h(n)d"’ )i, (T)Ee™ 1 &™)+ (1=h(d)p, (T)(E™ : )

31 hd’ Kk (T)E, (T =T, )™ :1)—’;—?0—%)2

0

(2-67)

. % CNé: & +% O(T)* = %(1 ~h(md)C(T)e: & +%(l —h(n)d" HO(T)r*

In these equations, s, (T) and A/(T) are the Lame’s constants ( A,(7)=vE(T)/((1+v)(1-2v)) and
u,(T)=ET)/(2(0+v)) ), «,(T) is the compressibility modules defined by the following equation
k,(T)=BA(T)+2u,T))/3=ET)/(3(1-2v)) , E(T) and o,(T) are the temperature-dependent Young’s
modulus and yield stress, C(T)and Q(T) are the temperature dependent kinematic and isotropic hardening
moduli. Also the microcracks closure parameter 4 (7) can be defined as a function of temperature. The
thermal expansion coefficient &, , the specific heat at constant volume C,, the density pand the Poisson’s
ratio v are assumed to be constant values, assuming their insensitivity to the temperature. 7 and Tjare the

absolute temperature and its reference value. The state potential can be written using the effective damaged

material properties as following:

PP =%fé (T &™)+ i, (T 1)

~3, (NG, (=T D=2 (=T, (2-68)

0

P = 20N @+ O

where the effective damaged material properties are expressed as:

£.(T) = p () (1-h()d) , &(T) = k(D) (1=h(d™ ), &, =& 1-hmd”

C(T)=C(T)(1-h(n)d) and O(T)= Q(T)(1~h(md" ).

Figure 2.12 shows how the effective Lame’s constant j, evolves with the triaxiality for a given value of
damage d=0.3. The values of i’ , i and i’ represent its value at tension, compression and shear. With

the effect of the microcracks closure effect, the value of /, is increased form tension to compression, which

leads to /i’ < i’ < ii° . This case is also suitable for the other effective damage material properties( £,,C,0 ).
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v

Figure 2.12: The value of i, varying with the triaxiality 77.

The combination between the first and second principle of thermodynamics supplies the Clausius-Duhem
inequality which expresses a statement concerning the irreversibility of natural processes. In the local form,

the Clausius-Duhem inequality can be written as follows:
o:D-p(¥+5,T) —% grad(T) >0 (2-69)

Taking the time derivative of Helmholtz free energy defined by Eq. (2-65) gives

L L S CL P LAY (2-70)
o’ oa or 8d 6T

Substituting Eq. (2-70) into Eq.(2-69), we obtain the following local form of Clausius-Duhem inequality:

a\}' W . oV o, 0¥, G
DY - = —d ~ L orad(T)> 0 2-71
o)L +0:D (Se+6T) p(a a+ P ) Tgra (T) (2-71)

This inequality is very important in the formulation of constitutive equations. It gives the expression of

natural irreversibility processes which involved the energy dissipation.

By cancelling some terms in this inequality, a classical thermodynamic state law for the overall stress-like

variables can be easily obtained:

gH

o=p X — -k (D™ — 31— h(pd’ (1) (T -T,)£,1
o (2-72)
+2(1-h(md) 1, (T)e™
s =-2% \/1 Hd™ &, (" 21 (2-73)
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X=X 24 hipaycra (2-74)
oa 3
oY
R=p === (1= h)d" QT (2-75)
al}l e (24 T
Y——pa—y "rY +Y (2'76)

ye =%h(77)78d”lffe ()™ : ™)+ hopu () (7 £7)

_ 3h(77)7edyfl’(e(T)§(T_To) (geI[ ‘1) (2-76a)
v =ShC(ha:a 2-76b)
V' = hnyy,d” 0T 2760

2.6.3 Dissipation analysis
It is assumed that the mechanical and the thermal dissipation are separately positive, so the dissipation

analysis can be split into two parts: mechanical (or intrinsic) part ®" and the thermal part ®" .

O=00" +d" 20 2-77)
@’ = —%gmd(T) >0 (2-78)
OY =g:D” - X:a—-Ri+Yd (2-79)

2.6.3.1Thermal dissipation analysis

The heat flux vector ¢ can be obtained from Fourier potential using the classical linear heat theory

[Saanounil2] in which £ is the heat conduction coefficient.

G =—kgrad(T) (2-80)

The generalized heat equation can be obtained by using this equation in conjunction with the first law of
thermodynamics [Lestriez03, Saanouni03, Saanounil2]. It will be used for solving the weak variational

function associated with the thermal problem.
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—k - div(grad(T))+ ®" — pC,T +T a—‘—’:ge+a—)—(:g+a—Rr'-a—Yd =0
or or or  or

Isentropic coupling term

(2-81)

Appropriate mixed Dirichlet and Neumann Boundary Conditions
2.6.3.2 Mechanical dissipation

In order to define the flux variables (D" ,a,#,d) using the non-associative plasticity theory, the intrinsic

dissipation should satisfy the residual inequality defined in Eq.(2-77). For this end a yield criterion
f(o,X,R,d,T) and dissipation potential F(c,X,R,Y,d,T) are defined as follows:

f=(|ZC;_W|Zc 13) B R —6.(T)<0 (2-82)
Ji=hpd — i=hepa”
_ ("Zp"j, - W"Zp"Js) R axx)
Ji=htmd — i=hpar 4C(T)(1-h(n)d) (2-83)

bR® N S(7.6,) r-rm\""
20(T)(1-h(pd” ) (s(T)+1)(1-h(pd)"" \ $(T.8,)

where S(T),s(T),Y,(T), B(T),y,(T) are damage parameters, « and b define the nonlinear evolution of mixed

isotropic and kinematic hardening. To capture the asymmetric behavior in hardening exhibited by Mg alloys
with accuracy, the two hardening parameters a (for kinematic hardening) and & (for isotropic hardening) are

assumed to be function of the normalized Lode angle #, and equivalent plastic strain p according to:
_ 1 _
a(0,,p)=a,(T)+ 5[1 —Tanh(4,0,)1[a,(T) = (a,(T) + a5 (T))Tanh(¢,(p — p,(T)))] (2-84)

b(6,,p)=b(T) +%[l ~Tanh($0,)1[b,(T) ~ (b,(T) + b, (T))Tanh(¢,(p ~ p,(T))] (2-85)

where a,(T),a,(T),a,(T),b,(T),b,(T),b,(T),4,,4,, p,(T) are the material parameters, p is the equivalent plastic

strain, the normalized Lode angle 8, (-1<8, <1)is given by:

— 66 3J3J
0, =1-—L=1 —zarccos(%
z z R

(2-86)

The unusual stress-strain evolution appears only in compression, while in tension the behavior is normal.
The idea is that the hardening parameters a and b shall keep constant in tensile loading while their values

evolve under compressive loading. The variation tendency of the two parameters in compression takes very
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high values at the beginning of the plastic flow in order to achieve a very fast saturation of hardening (see
the first plateau which appears in the stress-strain curve in Figure 1.9). This stage is twinning dominant
hardening, then their values decrease when the equivalent plastic strain increases and an important hardening
rate can be found in this stage. After passing the inflection point, the slip dominant mode is activated and
the hardening parameters a and b reduce gradually to a small constant value which leads to another value

of the hardening stress saturation.

The typical variation of the kinematic hardening parameter a and isotropic hardening parameter » with the
normalized Lode angle and plastic strain is shown in Figure 2.13. The value of parameter a and b reaches a

high value at uniaxial compression (&, = —1) and at low plastic strain, while it stays at a small value at
uniaxial tension (@, =1) and high plastic strain level. It should be noted that the calculation of the

normalized Lode angle does not depend on the rotation frame as shown below:
det(S,) = det(g SQ) = det(g )-det(S)- det(Q) = det(QT 0)-det(S) = det(S) (2-87)

where S, is the rotated deviator of the stress tensor. A detailed parametric study of these material parameters

is performed in Chapter 4.

Value ofaorb

Figure 2.13: Typical variation of parameters a and b versus Lode angle and equivalent plastic strain.

It has been proved that the ductility of some materials is dependent on the stress state which is represented
by the stress invariants, especially the Lode angle [Bao04]. Different damage and fracture models have
included the Lode angle effect [ Xue08, Bai08, Cao13, Chbihil7]. In this thesis, the Lode angle effect on the
damage is considered. Since the ductile damage parameter S which concerns the material ductility controls
directly the value of the equivalent plastic strain at fracture, a new form of dependent function of damage

parameter S on the Lode angle is proposed:
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$(8,.T) = 5,(T)+(S,,,(T)~5,,(T)) Tanh(8,|*) (2-88)

The parameter S, (T), S

ten

(T)and & are used to adjust the value of S according to different stress states. The
detailed description can be found in Chapter 4.
The equivalent relative stress is characterized by the accounting for both second and third invariant of the

Hill equivalent stress in order to take into account the Strength Differential effect exhibit by HCP materials

(e.g., Mg alloys) [Cazacu04, Yoon14] :

|z, =S - ) BTy (S5 - %) 5 G={e.p) (2-89)
|2'],, = det(z") = det (&T): (5, - X)) & (i={e.p) (2-90)

where H and H' are two anisotropic fourth-rank symmetric operators characterized by six material
constants respectively, all these parameters are considered to be varying with temperature. In the non-
associative theory, each of these two operators is independently used in the criterion (Eq. 2-82) and in the
flow potential (Eq. 2-83). Note that by taking w=1 the equivalent stress of [Cazacu04] is obtained, by taking
w=0 the orthotropic Hill’s quadratic equivalent stress is recovered, meanwhile, the equivalent stress can

be restricted to classical von Mises one when w=0 and H =% 1" =%(I-X1®1).

(G +H  -H -G 0 0] (GwH" —H" -G" 0 0 0|
“H' H+F  -F 0 0 0 ~H'" H'+wF"' —F" 0 0 0
H = -G SFLFeHS 00 0 i -G -F' FUwH' 0000 (2:91)
= 0 0 0 2N 0 0 = 0 0 0 N0 0
0 0 0 2M' 0 0 0 0 2M'"' 0
i 0 0 0 0 2o 0 0 0 0 0 20"

Following the work of Frangois [FrangoisO1], a simple way to describe the distortion hardening within the
classical thermodynamics framework is using the kinematic hardening variable to control the distorted yield
surface. In this work, the Frangois model is modified the by using three adequate material parameters to

control the yield surface distortion [Yuel4, Badreddinel7]. The classical deviatoric stress tensor S is
replaced by a “distortion stress’ S, as shown hereafter:

S,:8,

S =5+ X
21 ) X (DR /1= h(pd” +0, (7))

. (2-92)
X:X g

20 X, (DRI +0,))
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S, 18,

Sh=S+ X (2:93)
21 = hoDd) X ()R- hnd” +,()
S,=5-5, and S =2y (2-94)
XX

The distortion hardening parameters X, (T), X/ (T), X,,(T) are dependent on temperature. X, (7)and X}/ (T)
control the distortion ratio of the yield surface and plastic potential, X;,(7) affect the size of the yield surface

in the direction orthogonal to loading directions. It bears to emphasize that the distortional hardening
parameters should be greater than the saturation value of the kinematic hardening (i.e. X;,”(T) < X_, =C/a)

to keep the convexity of the yield surface [ Yuel4, Badreddinel7, Zhang18].

In the context of viscoplasticity, the following fluxes variables which define the evolution of the dissipative

phenomena can be postulated as follows [Lemaitre09, Skrzypek15]:

Eulerian viscoplastic strain rate tensor:

.. OF .
Q P = Aj' @ = A]»ﬂp (2'95)
Kinematic hardening strain rate tensor:
G=-h, 2_2 A, (" ~a(@. pa) (2-96)
Isotropic hardening strain rate:
_ . OF o, =
F==A, R =A, (n —b(@,p)r) (2-97)
Isotropic ductile damage rate:
. OF A, -xan\"
d=A,—= — 03 (2-98)
Loy  (I-h(p)d)y’™\ S(T,0)
with
) 1 4|0 X®S, (2-99)

N PR L
J=hond |- |F (l—h(n)d)X,’l’(T)(R/ \—h(n)d" +o-y(T))

51



Chapter 2: Theorectical modeling of thermo-elasto-visco-plasticity coupled with isotropic ductile damage

4 (S, :5) 4

n' - n
| 21— h(p)d) X" (T)(R/«/l—h(n)d” ‘o, (T))
A= (2-100)

T -k | (S:X)(X:n') s
(=) X (1) (R 11=h(md” +0, (1)) (X )

, 1 (S, : 8 )" : X)

- _+1 (2-101)
N 2(1-h(n)d)" X7, (T)(R/ 1-h(n)d” +o, (T))

Il (ar)-2)- Sl 2" 1

2/3
[l ~wlzl ]

A4
n =

(2-102)

where the amount of viscous strain rate A, can be defined with the following Norton-Hoff form

[Lemaitre09]:

2" (T)
L f )
Ay —<KV(T)> (2-103)

The positive scalar A, can be assimilated to a viscoplastic ‘multiplier’ similarly to the time independent

plasticity. But this viscoplastic ‘multiplier’ is not defined by a consistency condition like in time
independent plasticity because the yield function given by Eq.(2-82) can be greater than zero for the context

of viscoplasticity.

From Eq.(2-103) we can deduce the following viscoplastic “yield function” given by:

fvP(g,)_(,R,O'v,d,T):f(g,)_(,R,d,T)—KV(T)(Af )%V(T) :f(ga)_(’RadaT)_Uv =0 (2_104)

. ]
where the viscous stress o, = K V(T)(A/ )A"m is defined by a scalar quantity where K*(T') and »'(T) are

material parameters characterizing the viscous effect. Eq.(2-104) is the yield function in viscoplasticity and

will be solved numerically at each integration point of each finite element in next chapter.
2.6.4 Thermodynamical admissibility

The thermodynamical admissibility consists in proving the positivity of the Clausius-Duhem inequality, the

viscoplastic intrinsic dissipation is expressed as:

[oX ¢
®" =g:D” - X:¢—Ri+Yd (2-105)
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With the evolution equations in Egs. (2-95) to (2-98), the inelastic dissipation can be rewritten as below:

s(T)
VP . Y Y-1,(7)
Ao:n”-X:(n"—a(T)a)-R(n —b(T)r)+(1_h(ﬂ)d)ﬁ(T)< S((;") > JZO (2-106)
Since A, >0, the equation becomes:
n? X (n” T R(n" —b(T Y Y—YO(T) A-(T)>0 (2-107)
g:n”-X:(n"—a(T)a)-R(n" —b( )r)+(1_h(n)d)ﬂ(f) S(7) >

Since |S,| < S| especially when the loading path is linear at least by part, we assume that

1

A
x P n r

~n’ ~—=—andn" ¥ —————" The equation above can be rewritten as:
B T J1=hpd” 1
L4 _ s(T)
@0 R r)xiasbTyme—7— (FHIN L, (2-108)
Ji=h(pd i n(pyd” (1-h(md)""\  S(T)

Let Z~o - X , the first term in Eq. (2-108) can be written as:

o xyent W (Z:H@):2)- 52, 27 @2 [, -wie,, ]

N [ I T

(2-109)

Similarly, with Eq. (2-109) in state relations, we can obtain the following form:

/3
[l —#2l.. ] R b)) R

J=d  Jimma o) (—hamd™)

3a(T) x:x v renm\"
+ + >0
2C(T) A=h(mpd)  (1—-hmd)""\ S(T)

(2-110)

By combining Eq. with Eq.(2-110), we can simplify the equation as follows:

ezl -vlzl,. |~ &
i=h(pd — J1-h@pa”
o (2-111)
BT) R 3a(T) x:x Y <Y—YO(T>>““”
+ =+ 20
O(T) (1=h(p)d”)  2C(T) (A-h(m)d) (1-h(p)d)"™ \ S(T)

Part2>0 Part3>0 Part4>0

-0,(T)-o, |+0,(T)+0,+

Part1>0

As shown in Eq.(2-111), all the parts are positive if b(T) has the same sign as Q(7) and a(T) have the same
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sigh as C(7). This means that the constitutive equations defined by the state relations and the evolution
equations fulfill the Clausius-Duhem inequality which is the combination of the first and second principle

of thermodynamics. The thermodynamic consistency of the proposed model is thus proved.
2.7 Contact and friction

The contact and friction between tools and pieces have an important influence on the metal forming process
through large inelastic strains. In order to obtain accurate simulation results, the contact-friction
phenomenon must be treated carefully in the simulation. In this thesis, we will not propose any new model
of contact-friction, however, a general introduction of the common used friction model in FE code Abaqus®
is indispensable. Detailed study on modeling of contact-friction phenomenon can be found in literature

[Shillor04, Hashiguchi09, Laursen13]. More deep-going study on this topic is still needed.
2.7.1 Kinematics of contact

Generally, the contact problem is always considered between a pair of solids, as shown in Figure 2.14, two

solids occupying configurations with the volume Q, and Q, with boundaries 0Q, and6Q, .

Figure 2.14: Schematization of the contact problem between two solids A and B.

To model the contact between the two solids A and B, the vector related to displacement  and the vector

of force Fare defined as shown in Figure 2.14. The displacement and the force of the contact are given as

follows:
ii(A) =1, (A)-ii(A)+u,(A)-T(A) (2-112)
F(A) = F,(A)-7i(A) + F,(A) -1 (A) (2-113)
where u,(A) and u,(A) are the algebraic measurement of normal and tangent displacement, F,(A) and F,(A)
are the normal contact force and tangent contact force respectively.

The unilateral contact is commonly used in the finite element calculation. This system of solids in contact
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must verify the following additional conditions:

e Impenetrability condition: u,(A)+u,(B) <0
e Contact surface non-adhesion condition: (u,(A)+u,(B))F,(A)<0

e Non-contact condition: u, >0 and F, =0
2.7.2 Friction model

Friction models are constitutive equations for contact interfaces between solids under the framework of

thermodynamics of irreversible process. Two commonly used friction model are presented below.
2.7.2.1 Tresca-type friction model

The Tresca-type friction model is a time-independent friction model which only has one friction constant,

the sliding limit is not dependent on the normal stress. This model is given as follows:

||FT (A)|| <u 55 = v, =0 (2-114)
|7 )] = u% = 3720,5,(A) = —nF(A) (2-115)

Where # is the Tresca coefficient (0 < x <1), this model shows that the friction stress

E, (A)" is proportional

to the sliding force 7, the description of this model at space (v,, F;) is given in Figure 2.15.

Slipping contact
Adhesive contact

Slipping contact

Figure 2.15: Schematic representation of Tresca-type friction model.
2.7.2.2 Coulomb-type friction model

The Coulomb-type friction model is often applied to describe friction between bodies in sliding contact in

the case of low contact pressure. It is not dependent on time. The model can be expressed as follows:
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|Fr @] - ] Eua] <0 (2-116)
ﬁT(A)"s p F;(A)|| = ¥,(A)=0 (2-117)
E@|=ulE @] = 30205, =nF®) (2-118)

where £ is the coulomb friction coefficient, the value of 4 is often chosen between0.01(with thin films

lubrication) and 0.5(without lubrication). It should be noted that Coulomb friction model is appropriate only
when the mean contact pressure between the two contact bodies lies below the flow stress of the softer body.

The Coulomb-type friction model is illustrated in Figure 2.16.

I 4

Slipping contact
Adhesive contact

SN

pleontact presssion)

Adhesive contact

Slipping contact

Figure 2.16: Schematic representation of Coulomb friction model.

The tribological tests show that the friction coefficient is dependent on temperature and sliding velocity
[Griiebler09]. Moreover, using friction model considering the temperature and velocity dependence of
friction coefficient can obtain more accurate results than only using constant friction coefficient in metal
forming simulation [Klockel5]. Some proposed dependent functions [Juanicotena06, NayebiO8, and

Griiebler09] of the friction coefficient are given below:

. th+ BV
For the velocity: ulV) = oy (2-119)
M+, = py)e ™
A +[1—(T/T/.)M J
For the temperature: u() = . (2-120)
1- 1, ol

where v =|[v| is the slip velocity, T is the current temperature, 7y is the melting temperature
Ly Ly [ 14,5 1, 1, and g, are material parameters. To take into account the effect of temperature and

velocity at the same time, the dependent functions for velocity and temperature can be composed together

by multiplication as follows:
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Hio

uV,T) = (u +tqu)(1_/uoeT+y”) (2-121)

In a similar way, some other influencing factors can also be considered, i.e. a friction model considering the

contact pressure, velocity and the temperature can be found in [Klocke15].
2.7.3 Heat generation from friction

During the frictional processes of two solids, the transformation of mechanical energy into internal energy
or heat is often observed, leading to increase of the temperature [Kennedy01]. This amount of heat generated
at the contact interfaces is distributed in the two solids in contact, by conduction, convection and/or radiation.
Frictional heating and the resulting contact temperatures have an important effect on the contacted solids
[Martins16]. The contact interfaces temperatures can increase high enough to cause changes in the
mechanical properties of the sliding materials, oxidation of the surface, and possibly even melting of the
contacting solids. The heat generation represented by a general two-body sliding contact is shown in Figure
2.17, the “fine” description of the topology of surfaces showing that the contact is not perfectly flat but
made up of numerous “pads” of contact between roughness of contacting surfaces, the friction force and the
relative sliding velocity determines the rate of total energy dissipated in the sliding contact. The total heat

g generated from the friction is given by:
q, =uPV =FV (2-122)

Where uis the coefficient of friction, r is the friction force, p is the contact pressure, Vis the relative

sliding velocity.

| —on< X <40

o x

Yy 0<y<+w

Figure 2.17: Heat generation during friction.

In order to solve the thermal problem (Eq. 2-81) which includes the heat generation (Eq.2-119) at the contact
interface, the suitable thermal boundary conditions applied to different operating conditions and geometry

of the contacting solid bodies are needed. For example, the Dirichlet condition specifies that a temperature
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is imposed on one part of the boundary of each of the solids outside the contact interfaces, and the Neumann
condition, specifying that a heat flow can be imposed on other parts of the solid boundaries outside the

contact interfaces (see [Saanounil?2] for further details).
2.8 Conclusions

In this chapter, the first two sections (Section 2.2 and 2.3) illustrate the fundamentals of finite strain elasto-
viscoplasticity theory and some basic elements of mechanics and thermodynamics of the materially simple
continua to obtain a better understanding the framework in which the whole model is formulated. The
physical aspects of the ductile damage and the different ductile damage models are described in Section 2.4,
followed by a summary of the framework of continuum damage mechanics. A review of time-dependent
and time-independent plasticity are discussed in Section 2.5. The formulation of the proposed anisotropic
thermo-elaso-visco-plasticity model fully coupled with isotropic ductile damage is given in Section 2.6. The
proposed fully coupled model, which is under the framework of thermodynamics of irreversible processe
with state variables, embraces many phenomena observed in metal inelastic flow (initial and induced
anisotropies, SD effect, hardening asymmetry, etc.). Especially, in this section a new formulation of the
microcracks closure effect is developed and discussed. Finally, a short discussion of the contact and friction

in metal forming are given.

In the next chapter (Chapter 3) the fully coupled constitutive equations developed in the present chapter will
be discretized in space and in time and implemented in the general purpose finite element code and used for

the simulation of various metal forming processes.
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3.1 Introduction

The numerical aspects for solving the equilibrium problems of the fully coupled thermo-mechanical
equations by large inelastic strains with damage effect is elaborated in this chapter. First, the strong and
weak forms of the initial and boundary value problem (IBVP) are defined in section 3.2.1. Then the time
and space discretization of the IBVP leading to obtain the highly nonlinear and strongly coupled algebraic
system, as given in section 3.2.2. The method to solve the IBVP is the global resolution scheme of the
dynamic explicit solver and the local constitutive integration scheme. A fairly detailed presentation of the
numerical integration of fully coupled ordinary differential equations (ODEs) associated with thermoelasto-
viscoplastic constitutive equations with damage are illustrated in section 3.2.3 and 3.2.4. Finally the

implementation of a user defined subroutine-VUMAT is given in section 3.3.
3.2 Numerical method for thermo-mechanical problems
3.2.1 Thermo-mechanical initial and boundary value problem

The mechanical and thermal problems are posed with the strong and weak forms of the equilibrium

equations and the heat equations. As illustrated in Figure 3.1, a deformable and damageable solid occupying

at any time ¢ [to, t/.], a volume Q, with boundary T, .

Figure 3.1 A deformable solid and boundary condition at a given time ¢ .

The following force fields are imposed:

=F
- Force field F imposed on I'7;
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- Contact force ?C imposed in T;

- Displacement field (jt imposed on I'}.
- Atemperature field 7 imposed on T
- Aheat flowg imposed on T'¢

The boundary T, is composed on the following sub-surfaces T, T7 ,T'?, TT and ', for which the following

classical relationships are fulfilled at each time #:

ryrryreyureur’ =r
{tUtUtUtUt t (3_1)

IO =T NI =r"Nre=r'Nr’ =g
All the kinematics and state variables must fulfill all of the field equations governing the equilibrium of
forces and temperature.

For the mechanical problem, the strong form is defined by the classical equilibrium equations together with

mixed Dirichlet and Neumann Boundary conditions:

%(g()?,t)) + f(%0)= ptﬁ()?,t) XxeQ, tel (3-2)
Ux,t)=U, ] onTl’ (3-3)
o(x,t)-n, = EF onl":v

where o is the Cauchy stress tensor defined by the fully coupled constitutive equations, p, is the solid
density and U is the acceleration vector.

The weak form of the IBVP is deduced from the strong form defined above by Eq. (3-1) to Eq. (3-3), thanks
to the well-known weighted residual method together with Galerkin assumption. If the updated Lagrangian
formulation is used, the weighted residual method applied to Eq. (3-1) and after the integration by part and

the use of the Neumann Boundary condition, the following weak form is obtained:

s s ~ b - — - —=F —=C - -
J(U, 5U,T):jg:QdV—jp,U-5UdV +ij-5UdV—j[F +F )~5Uds:0 VoU K.A. (3-4)
Q Q Q rr

where U is the kinematically admissible (K.4.) virtual velocity field and D is the associated virtual total

strain rate tensor.

For the thermal problem on the same volume Q,, the heat equation is written in the case of single-surface

and isotropic damage theory as follows:

k-Lap(T(%,0)) - pC,T(Z,0)+ EF 1)+ Rpl(%,1) =0  %eQ rel (3-5)
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The appropriated mixed Dirichlet and Neumann boundary conditions should be added after the
discretization of Eq. (3-5) by the FEM.

{T(?c,t) =T onTT (3-6)

(§(x.0)) i, ==k (VT (%,0)) i, = g, onT?

In Eq. (3-5) &(%,1) is the body heat source, while R, is the internal heat generation from mechanical

dissipation which is the sum of the intrinsic volume dissipation and the isentropic term with mixed hardening

and isotropic damage, defined by:

0X . OR. oY } (3-7)

; C ey do . .
R,=c:D"-X:a—-Ri+Yd+T —g:gf+—.g+—r——d
! or — or or or

When considering the contact with friction between different solids, the heat generated at the contact
interfaces cannot be underestimated, since this could cause a significant rise of temperature in both solids,
the contact interfaces behave as a heat source, which can distribute the heat by conduction, convection

and/or radiation. The density of the heat flow comes from the different heat fluxes generated at the contact

interface are expressed in the following form:
4=q.+4,+4, (3-8)

where §. =h(T* -T")and G, = ho(T")* —(T")") are the heat flux density form the solid by conduction and
radiation respectively. The vector ¢, is the density of the heat flux generated by friction at the contact

interfaces.

The weak form associated with heat equation can be obtained by applying the weighted residuals method to

heat equation in Eq. (3-5):

J(T,8T,U) = j ST pC TdV - j STR,,dV - j STEAV + j STdiv(§)dV =0 VT K.A. (3-9)
Q, Q, Q, Q,

With the Fourier model ¢ =—kg(T) , the divergence theorem I div(5Tg)dV = J'(STc}ﬁdS it comes:

Q, s

j STdiv(G)dV = j STGiidS — j Gdiv(ST)dV (3-10)

Q, N Q,

t t

Then the weak form of the heat equation is written by:

J(T,8T,U) = [ 8TpC,TdV ~ [ STR,aV — [ 5TEdV + [ 5TgidS - [ Gdi(ST)dV =0 V6T K.A. (3-11)

Q, Q Q, s Q,
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Taking into account the thermal boundary conditions imposed on I'" and T'?, the final form of the associated

weak form is finally expressed as:

J(T,8T,U) = [ 8T pC,7dV — [ STR,dV - [ STEAV + [ kg(ST).E(T)aV
Q Q, Q Q,

(3-12)
+ j STq  7i,dS + j 5TGii,dS =0 VST K.A
T/ re

3.2.2 Time and space discretization of IBVP

The two weak forms defining the thermo-mechanical IBVP discussed above are strongly coupled and highly
nonlinear [Bergheau08]. In order to linearize these variational forms, the discretization of them in time and
space are needed, which can obtain the IBVP in an incremental form of a nonlinear algebraic system to be

solved over each time increment.
3.2.2.1 Space discretization of the IBVP

Using the FE method based on the displacement and temperature fields, the discretization of the total volume

Q, of the solid into N°¢ finite elements with the elementary volume Q° leading to:
o, =Jo (3-13)

To each finite element Q°with N nodes defined in the working space (x,, x,, x,) is associated a reference

element Q, defined in the reference space (¢, ¢,, ¢,), so that:
@)=V ()] (3-14)
where {x(Z)} is the coordinates vector of any material point of Q,_, [ﬁf (Z)} are the shape polynomial

functions and {xf } are the coordinates of the N° nodes of the element.

By applying this type of nodal approximation, together with the Galerkin assumption, the real and the virtual

displacement vector and temperature are approximated by:
Ulu @)} =[N J{ur} and {sU @ =[ Ni() [{sUr) (3-13)
() =(N;@) (T} and  6T*(0) =(N; ()){oTy} (3-16)

where N; (Z) and N:(¢) are the interpolation functions of the displacement and temperature fields

respectively. The velocity and acceleration vectors, as well as the rate of temperature can be obtained by the
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derivative with respect to time:
{0} =[N © {Ui}and (T} = N1 () ]{T;) (3-17)
() =(N; ()T} (3-18)
where {Ur} is the accelerations vector of the element nodes.

By using the equations above, the weak form associated to the mechanical and thermal problem written for

a single iso-parametric (i.e. [1\7,9 (E)J = [N," (2)}) reference element is easily expressed with the following

matrix form:
(3-19)

For the mechanical problem, the internal element force vector and the external forces vectors are defined

for a typical element under the following form:

(=[BT o},

j FV J,dv +j FF}JdA +j FC}JdA
Ve

N —_—

(3-20)

For the thermal problem, the internal and external thermal force vectors are given for a typical element by:

b= [ [vr Ry, + [ (B B7) (T} v,
b 7 (3-21)

j < eav, + j ¢ Jgrar+ j < |gar
-
where [ M* ] is the consistent mass matrix given by:
M= [[N] p[N*]av (3-22)
a,
The capacitance matrix is defined by:

c]=[{n;}pC, (N;)av (3-23)

[BeJ and [B;] are two interpolation matrix derived from the derivatives of the interpolation functions with

64



Chapter 3: Numerical aspects

respect to the coordinates and, defined by:

[Bﬁ]{mc}:—a]f[aﬂ (3-24)

ox ] |oc |lox
2] [T 2] 529
Ox |0 |Lox

If A indicates the finite element assembly operator, the discretized weak form of Eq. (3-19) can be written

T ::/V\;JE(U", 8U*,1°) = (sU)[M]{U} +{F, |~ {F.,})={0} VoU K.4. 526
Jy = NI (1,67 0% ) = (T[T} +{G ) - (G }) =10} ¥oT Kot
Leading to:
(MO} +{Fo} = {Fu} = {0} 327

[c){7} +{Gimt} ~{G..} =10}

where {U} is the global (for all nodes of all of the structure elements) accelerations vector, and

¢

[Mm¢] is the global lumped mass matrix, {F,,} = N/} {Fg} and {F,,} = XI{F;;,} are the global internal

i>=

[M]=

and external mechanical force vectors. [C]= A [C} is the lumped overall thermal capacitance matrix,
e=l

re

} and{Gm} = ?\ {an} are the overall internal and external thermal force vectors.
\ 10

e

v
{Gim} = ;/}1 {G:ﬂ
3.2.2.2 Time discretization of the IBVP

The discretization in time of the IBVP consist of dividing the total time into subintervals with empty
”

intersections, which leads to the approximation [to,t ,.] ~ U[t,.t,,, =t, +Ar] . The unknowns of the IBVP are
n=0

determined by solving the non-linear problem at each time increment. When all the unknowns are assumed

to be known at time ¢ , this problem is to obtain the unknowns at the end of each time increment at time

t

n+l *
3.2.3 Global resolution scheme: computation of displacement and temperature
When dealing with the numerical simulations in metal forming processes, the strong multi-physical coupling

between the various partial differential equations (PDEs) is always taken place. Regarding the mathematic
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nature of the problems, there are two frequently used global resolution schemes: dynamic explicit (DE)
schemes and static implicit (SI) schemes. They are applied to solve the highly nonlinear algebraic system

over each typical time incrementAz =¢, , —¢, . The static implicit schemes are usually used for solving the

static (or quasi-static) problems for which an incremental tangent matrix can be relatively easily computed.
When concerning the damage-induced softening as well as a very large number of contact nodes, it is
difficult to obtain an incremental tangent matrix due to strong nonlinearities and physical instabilities
induced by the damage effects. In that case, the dynamic explicit scheme is preferred to solve the IBVP
using the lumped mass and capacitance matrices [Saanouni 12]. Due to the fact that the damage is fully
coupled in our constitutive model, the DE resolution scheme is applied in this work to perform the

simulation of sheet metal forming process.
For the coupled thermo-mechanical problem, the DE method is used based on the mass matrix [M ] and
capacitance matrix [C].This method has been implemented into the FE code ABAQUS/Explicit to calculate

the unknowns at ¢, which are the functions of the values known at ¢ . For the mechanical problem, the

n+l
acceleration vector can be obtained when the internal and external force vectors as well as the mass matrix

are known as follows:

{0}, =[] ({7, 1A, (3-28)

Once the acceleration vector is known at the beginning of the time increment, the displacement velocity at
the middle of the time increment is approximated by the following Taylor development truncated at the first

term:

(0),,,,=(0),,, + Bt B) gy (3-29)

n+l/2 N 2

Then the displacement vector at the end of the increment ¢,,, is obtained using the same method:

n+l

(U}, =10}, + a0, {U] (3-30)

n+1/2

The same method is applied to the heat equation by computing first the temperature rate at ¢, :

(7}, =[] ({6..}, ~{0u),) (331)

The temperature at time z,,, is then obtained by:

n+l

{1}, ={T}, +Ar, {7} (3-32)
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In this DE resolution scheme neither iterations nor tangent stiffness matrix are required, however the
accuracy and the stability of the solutions are highly conditioned by the time step amplitude Af . Accordingly,
attention should be paid to the control of time increment step Az to ensure the stability and accuracy of the
solution [Hughes87]. The stable time increment is defined:

A< 2 Wi+ & -9 (3-33)

w

max

where w,__ is the highest eigenvalue, and @ is the damping parameter. In practice, the estimation of the
largest eigenvalue are determined by the highest value of volume expansion of all elements. In
ABAQUS/Explicit, the stable time increment is set to be the minimum value of the mechanical step and

thermal step which is expressed below:

. L L
At <min(Af, = =%, At, = —%) (3-34)
c, 2C,

where L, is the smallest mesh element dimension. C, is the dilatational wave speed travelling in the

element, approximated by C,=./(4, +2u,)/p and the material diffusion can be expressed by:

C,=k/(pC,),where p is the material density, 4, and x, are the Lame’s constants.

In this work, the mechanical and thermal problems are solved sequentially over the same typical time

increment |z t,., =t, +At] assuming the weak thermomechanical coupling (See [Saanounil2] for more

details). First, the mechanical problem is solved over the time interval under isothermal condition (i.e.

T

n+l

=T ) in order to obtain the mechanical variables at ¢,,, . Once the stress, hardening and damage variables

n+l

are known at ¢ the thermal problem is then solved in order to compute the temperature 7., at ¢

n+l 2 n+l

terminating the resolution of the thermomechanical problems over the same time increment

[¢, . 1, =t +At]. This incremental procedure will not be stopped unless the total time exceeds the final

time ¢,,, >¢, . The resolution of the mechanical step and thermal step are in the following manner:

n+l

e Resolution of the equation of displacement field:

(1) Calculate the lumped mass matrix [M ] at timez, ;

(2) Obtain the values of the variables at time ¢, (u=u,.... );
(2) Estimate the stable time increment Az, using the Eq. (3-34);

(3) Calculate the displacement field U, ,, using the U, andU

n+l n+l/2 2

(4) Update the state variables, e.g. o,,, & using the local integration scheme(see next section);

=n+l12 Zp(n+l) >
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(5) Compute the internal forces {Fijl} and external {Fg

ext

} forces using the Eq. (3-20);

(6) Select the critical time step for the mechanical problem.
e Resolution of the equation of local temperature:

(1) Calculate the lumped capacitance matrix [C*] and the thermal force vectors at ¢, with knowing

the results of mechanical variable at ¢ ;

n+l 2

(2) Estimate the stable time increment Az, ;

(3) Calculate the temperature rate 7, and temperature 7, ;

n+lo
(4) Compute the internal flux vector {Gfm} by Eq. (3-31);

(6) Select the critical time step for the thermal problem.

e Numerical treatment of contact with friction
In the simulation of metal forming processes, attention should be paid to the numerical treatment of
contact with friction, since the friction has an important influence on the numerical results. A standard
way in Abaqus (see Abaqus Analysis User’s Guide) to calculate the contact forces is to use the penalty
method which calculates the interpenetration gap between solids at a given contact interface node,

and uses this displacement and a penalty parameter to compute the contact forces.

Here the numerical treatment of contacting nodes based on master/slave surfaces algorithm is to
ensure the proper contact conditions. The contact forces, function of the penetration distance, are
applied to the slave nodes to oppose the penetration, while equal and opposite forces act on the master
surface distributed at the penetration point. The Coulomb friction model describes the linear
relationship between the transmitted shear and the normal forces through the friction parameter, it is

used to represent the friction between the contacting bodies.

As illustrated above, the explicit resolution procedure for the fully coupled thermo-mechanical problem is
accelerated, since the diagonal character of the lumped mass and capacitance matrices. Furthermore, the
mass scaling procedure will be applied in the simulation with ABAQUS/Explicit, it can increase the mass
of the elements with small size while preserving the real time scale, in such a manner that the size of the

time step is increased, finally, the goal of reducing the CPU time is reached.
3.2.4 Local integration scheme: computation of state variables

In order to calculate the internal force vectors which characterizing the IBVP, the Cauchy stress tensor o

Zn+l?

the kinematic hardening ¢, ,,, the isotropic hardening r,,, , the isotropic damage d,,, and the temperature

Zn+l> +1 n+l

T

n+l

at each integration point at each element at time step ¢, need to be computed. The calculation of these

n+l
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state variables is performed using the well-known elastic prediction and plastic correction scheme
throughout the numerical integration of the ODEs used in constitutive equations. The Newton-Raphson
implicit iterative integration method will be applied in this work to solve all the first-order ODEs in

constitutive equations which are highly nonlinear and strongly coupled.

Usually, when the time domain is discretized into many small time intervals, as [¢ =1, +At], the first-

n tn+1

order ODE integration problem can be expressed in the following form:

{ynﬂ = ¢)(yn+1 ’t)

Vtelt,t,, (3-35)
y(t =1, ) =), [ 1]

Suppose that the variable y, at the beginning of the time increment ¢, is known, the problem is to obtain its
value y,  at the end of the time increments,, . With the @-method, the solution can be written in the

following form:
Voeo =¥, T (03, +(1-0),) for (0<0<) (3-36)

The forward Euler purely implicit scheme can be set when =1, we will confine ourselves to use this scheme
in the thesis. For the specific type of Euler first-order differential equations which need to be solved are

given below:

) = 7t +7t “ n+
{%H POr O d g (3-37)
y(t=t)=y,

The asymptotic solution for Eq. (3-37) is given as:
Tneo =3, XD(=0p (1,5 ) At) +[ 1=exp(~00(,.5) At) |$(3,.5)  Sor 0<O<1) (3-38)
In the purely implicit case when @=1, this solution becomes:

o =2, exp(=0(3,.,) A1) +[ 1-exp(~0(,..) A1) [ $(,.,) (3-39)
3.2.4.1 Pose of the problem

The anisotropic thermo-elasto-viscoplasticity model fully coupled with isotropic ductile damage

constitutive equations developed in Chapter 2 are summarized below:

(| Z j{ B W"Zﬂ ||J3 )1/3 R
Yield function f = - -0, (1)<0

Ji-hd 1= hpd”
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12|, = J(Si - %) (1) (8, - %)

where , _ _ (i={c.p})
||g'||” =det(Z")=det(H/(T):(S; - X))
§;:§+ §0:§0 1_ X'K §0
21=hd) X (D(RI1=had” +0,()) " 20=hd)Xo(T) R/ =™ +0,(D))
si=5+ 2o o X
2(1- h()d) X (T) (R II=h(md” +a, (T))
S,=5-5, and S -2y
XX
State equations Evolution equations
" s
Cauchy o = p X (= ha )2, (D)™ + 20~ hnd) (TN b_ A OF 4 o, A,
os’ D" =A,—=A,n"= n
stress - oo 1-d
~31-h(pd” &,(T)(T~T,)£1
: : v 2 . OF
Kinematic  x = p=—=Z(1-h(5)d)C(T)a a=-A,—=A( i" —a(T)a)
hardening da 3 Tox T\ —d
Isotropic R= pa—\P = (1= h()d" )O(T)r F=-A, aF_i (" =b(T)r)
hardening or OR
Damage . A - :
o e PO AN VR = A
g g od oYy  (A-h(mady’\ S(T,0)
force
P — 1 n/l . [D + £®§0
Ji=h(pd |~ 1= a-napd)x? (T)(R I\1=h(pd” +o, (T))
nt— (8y:80) .
where: o 2(1-h)d) X} (1) (R 1 1=h(d” +0,(T))
Y (S: X)X :n")
+ S,
(1= Hd) X5 D) (RINI=hod” + 6, (D) (X : X)
. 4.,
n = 1 (Sy:8)n" : X) +1

NI=h(m)d”™ | 21— h(p)d)* X (T)( R/1-h(p)d” +o, (T))2
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Il (- 2)-Z 2], 27" 1)

2/3
[l ~wlel,. ]

These fully coupled constitutive equations presented above have been implemented into ABAQUS/Explicit

FE code using the user defined subroutine VUMAT. Since the constitutive equations above have the general

form of first-order ordinary differential equations except the kinematic hardening and isotropic hardening

having the Euler-type differential equations, their numerical integration can be performed by combining the

backward Euler fully implicit (6=1) scheme and the fully implicit asymptotic scheme (see [Saanounil2]).

The discretized equations can be easily obtained as follows:

(

1
J3 )n+l Rn+l
- 7r(Ty)
JI=hd,. = h@pd

ZC

3
_W|
H

Z(‘

W
S (@ s X R s O\ (ne1y d,..T,)=

n+l

ith ||Zi|H(n+l) = \/(g(m) -X,.): I;Ii (T,): (§(ir'(n+l) -X,.) 5 (= {c,p})
w1
12]....,, = det(2") = det(#:(T,)+ (i = X,.)
N S
§;(n+l) :§n+l + e X,
2=, ) X5 (TR, =R, + 0, (1)
Knﬂ :le S
- - D o(n+1)
217, X (1) (R, 1= h) 2y +0,(T,))
Z( ) - o+ §0(n+l) :§0(n+l) X 1
21, ) Xf TR,y 1=, +,(T,)|
(3-43)
Sn+ :anr 1
§0(n+1) = §n+1 _MKHI and §n+l =0, _gtr(gnﬂ)l

The stress-like variables are given by:

H
Tyl Spn

0, =(=h(m)d’)2,(T)e, + 20— h(n)d,, ) 1, (T,)eo,

~3l=hd};, k, (T)(T-T,) L
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_n+1 =75 (1 h(ﬂ)dnﬂ)C(T )_n+1 (3_46)
n+l (l h(n)dnﬂ )Q(T;l)rnﬂ (3_47)
Yo=Y, +Y L +Y, (3-48)

h(nm Al AT ED )+ hu (T)(£5 :£7)

3h(n)y d" 'k (T)ET, - T,) D) (3-49)
N
n+1 h(’?)C(T )_,,+1 :_n+l (3_50)

n+1 =5 h(ﬁ)yrdnyﬂ IQ(T;z )rn2+1 (3_51)

The damage stress-like variable can be transferred to the stress space by Legendre transformation. The

detailed description of this transformation can be found in [Issal0].

A S RS (3-52)
L)) 2 N B h) (S0:5,..)
T e L T A,
_3h(y A"k, (T)HET, T)( )
24 (T)A-hapdry™
v 3h(1) XX, (3-54)
4C(T)YA-h()d,,,)
S ()2 R (3-55)
20T, A= k()]
The related strain-like variables are expressed as below:
£l =gl ~Adnl, (3-56)
X ®S
with 7, =——2 |t 117 A1 ¥ o) (3-57)

= i=hepd,, | T E (l—h(n)dnﬂ)X“(];)(RM/1/1 h(q)dmmy(n))
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1

—(A/lQ;H +a, ) Forward Euler
(1+a(1,)AL)
2y = . (3-58)
—a,AL N, _—a(T,)M .
a.e +—a T )(1 e ) Asymptotic
nA _ (§0(n+]) : §0(n+l)) ]’ZA
+1 —n+l
. | 21, )XE ) (R = b +0,(T)
with »' = ——— (3-59)

ik, | (St X)X 1) S
=0(n+1
(A=hd XL T (R NI=h) 0, (D)X X,

! ( A’ + ”n) Forward Euler
(1+b(T, )A2)
- y (3-60)
P R — == E— PR Asymptotic
BT, 1-d, | )
with = 1 (Sogeny :g(nn))(ﬂlfn X)) +1

n+l

V=hODd Ly | 20y, X5 T (R, TR +0,(T,))

(3-61)

w = . 2
s ||Z|H(,,+1) (];[(Tn) : Z)(}Hl) _EHZ"‘IS(/H]) Z T)('Hl) I;I (T") (3—62)

—n+l 2/3

LIzl ~wlzl..

And finally the damage equation is given by:

(n+1)

s(T,)
AL Y., -Y (T
dn+l = dn + T = 0( n) (3—63)
(1-d,.)""™\  S(T)
3.2.4.2 Elastic prediction
The elastic strain at time ¢,,, is given by:
P As¢ £ As Ae”
— —
gn=elten =g vel +Ae™ +he” =& +& + 0" +he" — (g™ +Ae™") (3-64)

where Ag” =Ag"” —As™ =tr(As—As”) and As® =As” —Ag””

In this trial step, we suppose that the total strain increment Ags is purely elastic under the constant

temperature 7,,, =7, over the current time step, which means no dissipative phenomena(i.e. A1=0),
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leading to:
(A" =0; Aa=0; Ar=0; Ad=0)= (g/,=¢5/; @, =a,; r,=r; d,.=d,) (3-65)
The elastic trial strain at time ¢,,, is given by:
& Ae
el =g ten =g el +As" + Ag” (3-66)
In which ¢ and ¢, are the hydrostatic and deviatoric part of the trial strain, so the corresponding
S, are obtained:
(3-67)

hydrostatic and deviatoric stress ¢ and S
S, +2(1=h(n)d,)u,(T,)Ae”

=2(1-h(p)d, ) u, (T e +Ae”) =

= (1= h(n)d?)A (T, tr(s + Ae)l
=0, +(1=h()d])2,(T,) tr(Ae) ] =3\1-h(m)d} & (T )NT, - T,,)&, L

can be expressed by:
(3-69)

o]

then the trial stress o,
.

0, =20=h(n)d, ), (L)) + (L= h(m)d VA (T)es =3\1=h(n)d’ x,(T,) (T, T, , )L

]—;1—1)51

VA (T,) te(Ae)] =31 = h(myd} x,(T,)(T, -

S +o'+2(1=h(n)d ), (T )Ae” + (1= h(9)d?)A, (T, ) tr(Ag)] -3

(3-68)

_n+1

;
H —
Sorn i So
S n+ _Sn+ + (n+1) * 20(n+1) ¥
ST 1= d )V XST R, I1-d T o (1)
(3-70)
X, X, :
2(1 d)X,(T, )(R/W co.(T) Soen
: * * it X,
§o(n+1) §n+l §x<n+1) and §X(n+l) __&nl X (3-71)
Sc*"* —n+ )
D4 (n+1) | .

= (S =X, H(T)
=det(2"") = det(H/(T,): (S50, — X,010))

L*
Zn+l
c*
| Zn+1

T)) is the particular

_n’ n’

the trial viscoplastic “yield function” f*/ (o,,,

NOtlng that Zn+l = §;n+l) no
case of Eq. (3-40) in which o,,,,, =0.
(3-73)

s

3 13
(| Z* )
Zn+l R
H J3
n
= o)

.d,.T,) = -
Vi-d, 1-d,

—W|Z

Zn+l

*
.f,‘:fl (gn+1 >—=n ’

74



Chapter 3: Numerical aspects

Check for yielding: if f*'(c..,,X,,R,,d,,T,) <0, then the assumption of elastic behavior in this isothermal

trial state is true, and the solution of the present loading step is given by:

G =Cps  E)a =8 ()
ilﬁ»l = K}l ’ QI‘H-I = Qn (b) (3_74)
Rn+1 = Rn 4 rn+l = rn (C)
Y, =Y, d,, =d, (d)

3.2.4.3 Inelastic correction

If £ (o,.,X,.R,.d,,T,)>0, the state variables at trial state will be corrected at time¢,, by computing the

n+l

best  values of o.,X . ..R d

n+1%=n+12

fulfilling  the  viscoplastic  criterion  i.e.

w415 O (nrys @

100, X5 Ry 150 » 4,0 T,) =0, the corrected stress-like state variables can be obtained. The

hydrostatic and deviatoric part of the stress with respect to the trial stress can be written in the following

form:

1= h(d, .,

Sun = 200N T )EY + A" =Ag™) == RS,

+2(1-h(p)d, ) 1,(T,)AAn?,, (3-75)

ol =(=h(m)d ) (T)tr(e! +Ae—Ae”)]

(3-76)
MO g 3 [ kg (T, T, )6

Ty 2
The Cauchy stress tensor is then given by:

= (=h(d]:) AT, ety —tr(A2nf, ) +2(0=h()d,. )4, (T, &5y —AAn,)

3W TN -T, )el

_1=hOpdly e 1=h(pd

" —2(1-h(n)d T YAAn? 3-77
1 h(?])d: =n+l 1—h( )d =n+l ( (77) n+l)/ue( n)( Hnﬂ ( )
_3\/1 h(myd):, (T, )( T, );;L
* 1-h(n)d):, H* 1-h(n)d,.,, *
= +(———2 -1 +(—————2-DS .. -2(1-h(n)d T )AL
gn+l (l_h(n)d’:ﬁ) )gﬂ+l ( 1—h(f7)d” )_n+l ( (77) n+l )/’lg( )( n +l)
The kinematic hardening:
1-h(n)d 1 —a(T,)AL 2C(T,) —a(T)ALY X
X  =—-"2"X WMy ——1" 1-h(n)d ., (1— " 3-78
= n+l l—h(ﬂ)dn _ne 3 a(].;1) (77) n+l( e )ﬂnﬂ ( )

The isotropic hardening:
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1-h(n)d! " T,
- (7) nR oI o(7,) /l—h(n)dn’f")(l—e’b(T"’M)n;ﬂ (3-79)
1=h(m)d,"" b(T,)
The viscous stress:
1
AL \m, (1)
o=k (1) 2] G50

With the discretized nonlinear equations developed above. Considering the calculation efficiency, the

discretization equation system can be reduced to four equations with four unknowns A1, d,,,X,., and
n”_  as given below:
3 1/3
1), s
f;zﬂ (A4, dn+1’—n+1’)—(n+l’]-;r) = m - BT -0, (Ty,) —O,(s1) = 0
—h(n)d, ., 1- h(n)dm
gnH(Aﬂ, d'Hl,_nH, nH,T ) dn _ A/l oy n+l(A/1 n,l+l’ n+1:T) Y (T) 0
(A=h(md,..)"" S(T,) (3-81)
—A(n+ Xn+l ®§0(n+1)
_n+1(Aﬂ’ dn+1’_n+l’ ~n+l? n) _n+1 # !d =
\j 1 h(’])dn+1 B Xll (7:1 )(RNH - h(ﬂ)drﬁl + O-y (7;1 ))
La(BAd, 0l X, T) =X, C(T )1~ h(ﬂ)d)[a (T, )e " += (";‘) (1-e )] =0
This system is solved thanks to the classical linearization by Newton-Raphson method according to:
U F f U
fn+1 (8Aﬂ. wir TOAL +( nel ( n+1 on,., ( n+1 10X,.,=0
gk+l ( +l aA/I +( +1 ad +1 +( ) +1 +1 + (a_g)kH 5X +1 O
n aAl n ad n n n —Vl aX n —n
(3-82)

Oh
6dn+] +( = )n+1 . _n+l +(__)/;+1 :5—n+] :Q

+( N ),,H 5M+(—) X

_n+l n+l

—n+1

oL
Gt ‘)M "OAL+ (—;)ﬁ+l'5dm+(§)ﬁﬂ L ‘)Mif?_m:Q

or under the matrix form:
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[ 6f k % k ( af )k g k
8Aﬂ. n+l 8d n+l 62" n+l 6)_( n+l
S VI U VIR 3 ALY (0
S| | 0A Codt Copt ™ ox ™ ||6d,, | o (3-83)
. n _ _
h,, (ﬂ)kﬂ (%)kH ( Oh ) (%)k+l on,., 0
gﬂ aA/I ' ad ' a}lp ' 6)—( ' 5)_(n+1 Q
VIR VR YN
_(GA/I)"+1 (8d)"+1 (aﬂp )n+1 (a}_()nﬂ |
This system can be solved with respect to A4, &d,, ,5X,, and 6n”,,:
PRI AR VR AV
BA/?, n+l (ad)n-H (aﬂp )n+1 (8)_()”+1
5Al ( ag k (a_g k ( ag )k (a_g k f;’k*l
5d,,+1 6A/1 n+l 6(,1, n+l aﬂp n+l a)_( n+l gfﬂ (3 84)
oura || Dy Shy (b G )R
§X 1 aAﬂ, n+l ad n+l anp n+l a)_( n+l gk
—nt - =n+l
o 0Ly 0L oLy
_(6A/1)n+1 (ad)nﬂ (aﬁp )n+1 (a)_()nﬂ |

Once the nonlinear system is solved by the Newton-Raphson iterative scheme and the iterative process

converges, the state variables should be updated at time ¢

n+l

using Eqgs. (3-71) to (3-74) for the current time

increment.

The problem is solved with the material Jacobian matrix which is based on the derivatives below:

vp V) V] P
(1)i AT g
OAA on,, 0X,, ad, .,
6pr _ 1 I’lc 6§2(n+1) _ a_n+1 _ 1 8Rn-H _ ao—:ﬁl
oA I-h(pd,, """ 0AL aMA ) fi—h(p)ar, AL 0AA
of” _ Eil(n+]) . 6§2(n+l) B 0X,.,
onl,  \1-hGpd,., \ on, oonl,
of” _ ﬂil(n-H) : 6§fl(n+l) g (3—85)
0X,.. l-h(pd,., \ 0X,., =
or” _ h(n)o—eq + Q;(}H—l) ag;(nﬂ) _ 0X,.,
adnﬂ 2(1 - h(n)dnﬂ )3/2 AY, 1 - h(n)dnﬂ adn+1 adnH
hepy'd”™ 1 0R,
- r n+l B
2(1-h(pd;,, )" \/1—}1(;7)%1 od, .,
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2 ) 2 and %
aM 6nn+l aXerl adn+1
K s—1
ag _ 1 Yn+1 _YO _ Aﬂ,S Yn+1 _YO 6Yn+l
OAA (l_h(ﬂ)dml)ﬂ S, Sn+1(1_h(77)dn+1)ﬂ S, O0AA
g _ M I AN
onl.,  S,u(=h(pd,.)"\ S.. [ on],
g ___ M AN aYM (3-86)
6X:+1 Sn+1(1 - h(ﬂ)dn+1)ﬁ Sn+1 a)_(n+l
s(7,)-1
ag =1- ( )Ai <Yn+l_Y0(T;t)> aYn-H
od,..  S(T,)(1-hipd,, )™\ S(T,) ad,,
s(7,)
__ hopar <Y —YO(T,,)>
(1=hpd,, )"\ S(T)
3 ) oh oh and Oh
6M an a_nﬂ adnﬂ
oh __ 1 Jan X ®S0(n+l) . aﬂi(ml)
AL fi-h(pd,, [T XET)R,, /1=h(pd,. +0,(T,) | A4
- _ anA(nH) a(Sa'(nJrl) _n+1) —_A: 6(_d(wrl) —n+l)
- a(sd(nﬂ) —n+1) OAL - = 0AL
ak — Id _ 1 Id + Xn+l ®SO(nJrl) . aﬂi(ml) — Id —A: %
only = J1=h(pd,,, |~  XET)R,,/1-hGpd,,, +o,(T))| on., = = onl,
—J1_A- anA(nH) a(Sd(nH) X)) —1'_AB: a(Sd(nH) X))
= = a(Sd(nJrl) —n+1)) aﬂnﬂ - == aﬂnﬂ
oh _ 1 Id 4 X, ®S0(n+l) , 8nA(;M)
0X,.i \/1 h(md,,, |~ (TR, /J1=h(p)d,,, +o,(T,) | 0X,,
—_A- aQZ(nH) _ —A . aﬂi a(_d(nﬂ) —n+l)) —_A'B: a(_d(nH) —n+l))
= om,, - a(Sd(n-H) _n+l)) X, == 0X,.,
oh _ 1 Jan X, ®S5 : h(n)ﬂi(nn) _ aﬂﬁ(wl)
oy, Tk, | = XET) R, T hd, o, | | 20-hd, )7 ad,
A h(ﬂ)ﬂﬁ(nm _aﬁA(nn) —A- h(ﬂ)ﬁﬁ(m]) _B- a(Sd(nH) X,.) (3-87)
= 2(1_h(77)dn+1)1/2 adnﬂ = z(l_h(n)d;1+l)l/2 = adnﬂ
@2L oL oL g oL
OAL annﬂ 6Xf+l adﬁ“
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8ﬁ _ a)—(nﬂ 2 ,,Ai —a,(T,)AL X
TS =S Ca =R, ) (~a,, (T w e )
or  ox,., I )
— - C(T Y1-h(m)d,, e
annﬂ annﬂ 3 77 1){ (T )

8( 2 1 on’
=1'-2C(T)1-h(n)d,,)| ———(1-e“™* )=
o~ L3 C@ -k Hl{an(m( e )aX ]
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The partial derivatives of state variables with respect to the kinematic hardening are given by:

8Yn-v—l :aYn(-’v—l 8Yr1)+(-1 +6Ynli1
od,, od, aod, od,
oy, hprdy (ag::l: " hn) (ag P j
od,, AT —hmdi) ad,, 2 2 (T )(1-hipd,, ) \od,, >
3h()yd” K, (T)ET, T)(aam D
22,(T)A=h(md},)"* - ad,.,
¥
2; T 20T —3h(n)dn+l)2 (6)(:11 'K"”} 8C(T, )(f/i(z(indm ) (X i)
aYn]il _ 7,dn+1 OR, _ h(77)7,d:+11Rn+1 OR,
od,.,  OT)(1-dl,) éd,., OT,)1-h(m)d],) éd,,,
oy R (= Dd (= hpd ) + 45 h)y, )
20(T,)(1 - h(m)d},)’

X So
c oS Sl
04w _ S + ) XC)
a&m—l airﬁl
a§n+1 ~)—(n+l ® 8A5 4 — A'f Id —— §0 ® aA’] A’] a§0
0K, X(T) oX,, XiT)T X,(1T) 0X,., Xy(T)oX,.,
X,
oS =
asg("ﬂ) ( ”H 5 XP(T ) a§n+l )—(nﬂ ® 8A5 + Af [d
0X,. 0X,,  0X. XiT) 0X,, X(T)"
6A§ _ 0 SO(n+l) '§0(n+1) _ §O(n+l) ) a§0(n+l)
ainﬂ —n+1 2(Rn+l +O—y) (Rrﬁ-l +O—y) ' alnﬂ
61477 a Xn-H :Krm-l X}H»] . 1d
ainﬂ ainﬂ 2(Rn+l +O—y) (Rn+] +O— ) =
6§0("+1) _ 6§n+l —Agld
oX,, 0X,, °7
as ., on?
—tl = (1-h(n)d,,, )2u, (T )AL —=
8Xnﬂ ( (n) ’H]) 'ue( ”) =+l
aYnH = 3 2 K}H»l :Ld
oX 2C(T,)A=h(myd,,.,) =

n+l1

Finally, the partial derivatives of state variables with respect to »n”, are given by:
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3.2.5 Calculate the heat generation

In order to calculate the internal flux vector {G,, } which is described in the resolution scheme, we need to

calculate the internal heat generation. The expression of AR, is given below:

AR, =0, :Ae" - X, :Aa-R,  Ar+Y, Ad
0 oX oR oY (3-123)
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The isentropic term needs to be calculated with the derivatives of the state variables (o,.,,X,.,,R,.;»Y,..)

n+12“=n+l>
with respect to temperature. This process concerns the calculation the derivatives of the temperature

dependent material parameters, see the work of [Lestriez03, Issal0] for more details.
3.3 Practical implementation of user defined subroutine-VUMAT

The user defined subroutine provides us an approach to perform simulations using proposed constitutive
models which are not existed in commercial finite element (FE) code to accurately represent the material
behavior. The user defined material model can be implemented in user subroutine UMAT and VUMAT in
ABAQUS/Standard and ABAQUS/Explicit respectively. In this thesis, the VUMAT is chosen to make the
simulation in ABAQUS/Explicit, since it is relatively easy to reach convergence with a reasonable
computational time. The significant features of the VUMAT as well as the differences between the UMAT
and VUMAT are listed below:

® The stresses and strains are stored as vectors. For plane stress elements, plane strain and
axisymmetric elements, the storage scheme is the same in UMAT and VUMAT. The difference is in

storage of three-dimensional elements, as shown below:
VUMAT: (0,,,0,,,04,0,,,0,;,0;)
UMAT: (0,,,0,,,04,0,,0,3,05;)
® The shear strain is stored as tensor shear strains in VUMAT( y,, =2¢, ), while UMAT uses

. . . 1
engineering shear strain( ¢, = > ).
® [n VUMAT, the initial values at the beginning of each increment are put in the ‘old’ arrays, the
updated values at the end of the each increment must be assigned in the ‘new’ arrays.
® There is no need to define the Jacobian matrix.
® The time increment cannot be redefined.

® The vectorized interface is applied. This structure allows vectorization of the routine, but branching

inside loops has to be avoided.
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® The data are passed in and out in large blocks(‘nblock’), it has a value of 64 or128. All material

points in the same block have the same material name and belong to the same element type.

Figure 3.2 shows how the fully damaged Gauss points and fully damaged elements are treated in the

implementation in Abaqus/Explicit. Once the unknowns at time ¢

n+l

are obtained, the value of damage will
be compared with the critical damage value d, . If it has not reached the critical damage value, all the state

variables will be updated. If damage reaches its critical value, the values of the state variables will be set to
zero. The element in FE code will be deleted, which leads to the micro-crack, with accumulating the micro-
cracks, finally the macro-crack can appear in the structure. This is how the damage is used to describe the

cracking inside the structure.

a,.a,,X,.5.R,.d, mmp 2.0, i 3,.2,.X,.7,.R,.4d,

macro-crack

VUMAT
Abaqus/Explicit

EJ‘I—[ A’;“d.l:—l

Yes
micro-crack 6. =0.@ =0.X,=0"" d=d.?
r=0R =0
RVE total failure i No
Ton @y X L R d ~— G,.1-%,., X 1 rf:-l'R d 1

—n+l? Zn+l?

Figure 3.2 Numerical aspects of the proposed model implementation in FE code.
3.4 Conclusions

In this chapter, the numerical aspects of the fully coupled thermo-mechanical model were discussed. The
following aspects were presented: the strong and weak forms of the initial and boundary value problem, the
time and space discretization of the IBVP, the global resolution scheme of the dynamic explicit solver and

the local constitutive integration scheme, the implementation of user defined subroutine-VUMAT.

In the next chapter, we will show the high predictive capabilities of using the constitutive equations with

FEM to account for the complex phenomena in hot sheet metal forming.
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4.1 Introduction

In order to show and analyze the capabilities as well as the limitations of the proposed model(summarized
in Table 4.1), in this chapter an exhaustive parametric study was conducted to explore its newly developed
features. The parametric study of the local response was done with Representative Volume Element (RVE)
(which in fact is nothing but a material point representing an integration point), to analyze the effects of
anisotropy and tension-compression asymmetry, the distortion of the yield surface, the temperature and

strain rate, the hardening asymmetry, the microcracks closure, the stress triaxiality and Lode angle.

Table 4.1 Summary of the constitutive equations
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4.2 Initial anisotropy and asymmetry

Recall that in the case of plane stress, the yield function in Table 4.1 (Eq. (a)) contains 9 parameters which
determine the shape of the yield surface. The case of initial plastic isotropy (or von Mises yield function)
corresponds to the generic values given by: F=G=H=F'=G’'=H =0.5 and N=N"=1.5. We will focus on the
study of parameters £, G, H, F’, G’, H’ and w effects, by varying one by one every parameter while the
others have fixed values. Note that, as shown in Figure 4-1, the case of w=0 reduces the yield surface to the
classical von Mises yield stress, while when considering w=2 or w=-2, the yield asymmetry is activated to

get respectively larger yield stresses in tension (w=2) and in compression (w=-2).

Figure 4.1: Yield surfaces with different value of parameter w.

2 2

(b)

- -
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-14 214
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ooy
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(d) (e)
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0,:,}’0,
Figure 4.2: Effect of the anisotropic parameters on the yield surface with w=1 (plane stress condition):
(a) parameter F; (b) parameter G; (c) parameter H; (d) parameter F’; (¢) parameter G ’; (f) parameter H .
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Figure 4.2 illustrates different shapes of the yield surfaces with varying the anisotropic parameters and
considering yield asymmetry with larger yield stress in tension (w=1). It is worth noting that the parameters
F and F’ affect the yield surface shape in the transverse direction as shown in Figures 4.2a and 4.2d without
changing the yield stresses in rolling direction. The parameters G and G’ affect the yield surface in rolling
direction without changing the yield stresses in the transverse direction (Figures 4.2b and 4.2¢). Varying
parameters H and H’ conserve the equi-biaxial stresses and allow changes in both rolling and transverse
directions as shown in Figure 4.2c and Figure 4.2f. It is to be highlighted that the sensitivity of parameters
E G and H (involved in J; part of equivalent stress) are more significant than those of parameters F’, G’ and
H’ (involved in J; part of equivalent stress). It is also observed that the effect of these anisotropic parameters

are highly coupled and requires an appropriate optimization method to be accurately determined.
4.3 Distortion of the yield surfaces

In order to examine the distortional parameters effects, new simulations are made with the proposed model
using the material parameters given in Table 4.2, the initial plastic isotropy is considered with w=0 to avoid

the initial plastic flow anisotropy effect on the yield surface.

Table 4.2 Assumed material parameters

E(GPa) v o (MPa) C(MPa) a OMPa) b F=G=H L=M=N F'=G'=H' L'=M'=N" w
435 035 1000 3000.0 500 2000 100 05 1.5 0.5 15 0

The Figure 4.3 shows the evolution of the yield surface with distortion effect after 5% of equivalent plastic

strain on different stress planes, namely, the deviatoric plane (7 -plane), the principal stresses plane (o,,, 5,,)
and the tension — shear plane (% ¢:0, 3¢ :c ). Each symmetric stress tensor can be expressed by the

following six-dimensional unit tensor [Yuel4, Badreddinel7]:

NERUN oo oo oo Jo 0o roo
g=——|0 -1 0|, e=-——1 0 0l,=—|0 0 0|,e,=—|0 0 1|, =——|0 -1 0|, =—|0 1 0
Ylo o o 200 0 0 2014 0 2001 0 200 0 1 Blo o

From Figure 4.3, it can be found that, when the effect of X7, is neglected, the distortional parameter X, affects

the distortional ratio of the yield surface, but the size of the yield surface remains the same. Smaller value

of X} leads to a high distortion of the yield surface. Figure 4.3b, 4.3d, 4.3f show that with the value of X},
decreasing, the yield surface is expanded. It means that X}, controls the cross size of the yield surface
orthogonal to the loading direction. It should be noted that negative value of X;, leads the yield surface be

shrink in the orthogonal direction as shown in Figure 4.3d and 4.3f. Another noteworthy feature is the loss
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of yield surface convexity happening for the case the value of X <X =<, i.e. when X} =40.0. In order to

keep the convexity of the yield surface, the distortional parameters should fulfil to the condition X, > X, .

Effect of parameter X, (X}, =o) Effect of parameter X, (X, =100)

(@) | ;
100 100 e X
‘ 3 R, — 160
ol ] e
Ao o — 300
o0 & 800
o

R ELLeCCCr T =100 4
Initial surface : Initial surface ;
00 0 100 200 -100 0 100 200
g 36:0

Yield surfaces in deviatoric plane (n-plane)

200 200
(d)
1004 1001
5 o
0 0
ol ol
-100 4 -100 4
Initial surface
-200 T T T -200
-200 -100 0 100 200 300 -200

gy Gy

Yield surfaces in principal stress plane

200

Initial surface,

-200

100 0 100 200 300 100 0 100 200 300
3

priiicion

o

Yield surfaces in tension-shear plane

Figure 4.3: Effect of the distortional parameters on the yield surface of the proposed model.
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4.4 Combined SD effect and distortion of yield surface with thermal effects

The influence of temperature on the initial yield surface is treated in this section, the initial anisotropy and
tension-compression asymmetry are affected by the temperature through changing the values of anisotropic
parameters at different temperatures. We use a real case of Mg alloy AZ31 to show this phenomenon by

using the identified parameters in Table 5.5 of Chapter 5.

L@ JUP o[ =N
L ~
230C s — W |aenmtie \ 7 ~
il 150°C—--,«-f—-_-.". [ . \, , 1l 23°C- - - —//’ e - \I
. zuuoc_/._’ ..... :.».”’ \‘ 5 : . 150°C_"_':/"’ P " \'. ’
0 y - ! / © 200°C == [ .
& , B vas » & e fr
8‘ 7 / ," _/’I "/ y / g 7 '.' & ’_r" "/" -
v A S T
AR 2 ——— - - A S o
\ N Y AF s e =
Y A I t -7
L RN N el
2 . 2l
2 1 1 2 -2 -1 2
cl1/oy cl1/oy

Figure 4.4: Effect of the temperature on the predicted initial yield surfaces with or without considering

the tension-compression asymmetry: (a) Hill yield function; (b) proposed model.

As shown in Figure 4.4, the size of the yield surface is shrunken by the increase of temperature. Since the
Hill criterion can only describe initial anisotropy in tension similar to compression, the yield surfaces are
always symmetric between tension and compression and keep the same shape at different temperatures.
From Figure 4.4b, the tension-compression asymmetry is evolving with the temperature. At room
temperature, the yield surface shows significant tension-compression asymmetry of the yield stresses, while
at high temperature, this phenomenon becomes very weak. The comparison of yield surfaces obtained from
these two models shows the interest of the proposed model to capture the evolving tension-compression

asymmetry for different temperatures.

The temperature effect on the induced anisotropy is included by using temperature dependent distortional

parameters. The assumed material parameters are given in Table 4.3.

Table 4.3 Assumed material parameters

No. T o(MPa) CMPa) a Q(MPa) b X X X;,
T1 25 100 3000 20 200 10 150 150 200
2 100 75 2500 20 150 10 125 125 150
73 200 50 2000 20 100 10 100 100 100

Figure 4.5 shows, in the n-plane, the different yield surfaces with distortion at different temperatures and 5%

plastic strain. The surfaces have a big change when the distortion (lines with hallow symbol in Figure 4.5)
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is taken into account compared with the case without distortion (discontinuous lines in Figure 4.5, X/ = X,
= X,,=). With the case coupled with temperature, the surfaces become smaller at higher temperature, and

center of the surface move left because of the decrease in kinematic hardening induced by temperature.

100 4

-100 4

200

i=1

-
Er—

(=]

Figure 4.5: Effect of temperature on the distorted yield surfaces.

In order to study the combined distortion hardening effect and tension compression asymmetry effect under
complex loading paths, a parametric study based on the identified material parameters [Zhang18] of Mg

alloys, given in Table 4.4, was conducted.

Table 4.4 Model parameters for the AZ31with experimental results from [Khan11]

7¢C) H G F N H’ G’ F’ N’ L=M L’=M"’
65 1.203704 0.67226  0.539721 3.335803 2.286705 0.219813 0.208985 2.968164 1.5 1.5
150 0.905765 0.627792 0.423295 2378798 2.470310 0.138736 0.113971  2.544293 1.5 1.5
E (GPa) ) oy (MPa) C(MPa) a QO(MPa) b Xt Xr X;,
65 42.0 0.35 145.0 3117.7 50.5 376.9 6.4 60 60 100
150 32.18 0.35 110.0 1118 50.5 176.9 6.4 30 30 30

c
1y Ry 2

Path I: Tension(A-B)
-Compression(B-A)

Path II: Tension{A-B)
-Orthogonal tension(B-C)

822
— >
0.004 - :
A - B
0.00 2 0.07

11

Figure 4.6: Different loading paths.
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In this section, different loading paths are defined in Figure 4.6. Two loading paths are performed using the
proposed model, namely, path I: uniaxial tension-compression reverse loading path (A-B-A), Path II:

uniaxial tension followed by monotonic uniaxial tension into the orthogonal direction (A-B-C).
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Figure 4.7: Evolution of the yield surfaces predicted by the proposed model for AZ31 under two loading
paths at two temperatures: (a) loading path I at 65°C, (b) loading path II at 65°C, (c) loading path I at
150°C, (d) loading path II at 150°C.

The evolution of the yield surfaces during path I and path II at temperature of 65°C and 150°C with strain
rate of 10*s™! are computed. As shown in Figure 4.7, for each loading path, four yield surfaces at different
strain are illustrated to show the evolution of yield surface. During the loading path I in Figure 4.7a and
Figure 4.7c¢, the yield surface has a distinct change in the size, location and shape, which is caused by the
coupling of isotropic, kinematic and distortional hardening. A slight rotation of the main diameter of the
yield surface to the orthogonal direction is observed in the loading path II (Figure 4.7b and Figure 4.7d).
During this loading path, the changes of size, location and shape of the yield surfaces are revealed. In these
evolving surfaces on different directions, the yield surfaces show a high curvature in loading direction for

all the applied loading paths. The evolution of the yield surfaces at these two loading paths have the same
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trend with the numerical predictions of other distortional hardening models which was reported in [Shil3].
By comparing the yield surfaces at two temperatures, the mentioned effects at different loading paths are
more pronounced at temperature of 65°C compared to that at 150°C. This is caused by the decreasing of
isotropic, kinematic and distortional hardening with the increasing of temperature i.e. temperature-induced

softening.
4.5 Effect of the asymmetric hardening parameters

The hardening asymmetry is introduced through the kinematic and isotropic hardening parameters a and b
by defining dependence functions to both normalized Lode angle and equivalent plastic strain. The value of
a and b are reduced to a; and b; respectively under tension (4, =1), so a; has the same effect as the classical
model in which a higher value of a; leads to a quicker saturation of kinematic hardening. The same remark
can be made for isotropic hardening for which a higher value of b; leads to a faster saturation (see Saanouni,

2012). The effect of the parameters ¢,d,, a» as, bz, bz and p, on the hardening asymmetry without the

damage effect is investigated using assumed values of the material parameters given in Table 4.5.

Table 4.5 Assumed material parameters

H G F N H G’ F’ N’ L=L" M=M" Oy
1.2255 0.48639 0.42001 3.44122 2.70885 0.15525 0.13115 3.49908 1.5 1.5 161.6
C 0 aj az as b, b> bs Ds & &
3000 500 500 1000 35.0 6.0 10.0 30 004 30 400

First, we study the influence of different choices of ¢ for the stress-strain evolution, as shown in Figure 4.8.

This parameter only affects the shear response, without changing the response in tension and compression.

Indeed, from Table 4.1(h) the parameter ¢ is designed to adjust the effect of §, only in shear. When the

value of ¢ decreases, the shear stress is decreased at the beginning and increased at high plastic strain level.
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Figure 4.8: Effect of parameter ¢ on the shear stress-strain response.
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The effect of varying parameter @ on the stress-strain curves in tension and compression is now investigated
while keeping the kinematic hardening parameter a always positive, to ensure the thermodynamic
admissibility of the model which requires that the ratio C/a (as well as the ratio O/b for isotropic hardening)
should be positive (see Chapter 2). Figure 4.9(a) indicates that a.: (i) has no effect in tension curves, (ii)
while it has an important effect in compression. Indeed, the smaller values of a, lead to increase the stress
level in compression from the early stage of hardening. This effect is much depreciated for high values of
plastic strain (p>0.2). As shown in Figure 4.9(b), the value of a, affects deeply the value of parameter a at
the beginning of hardening (lower values of plastic strain), which decreases significantly from its initial
value going to its asymptotic value which is a = a; — as= 50.0 — 35.0 = 15.0 (see Table 4.4 and Table 4.1
(h)). Accordingly, when the value of a is high, the kinematic hardening saturates very fast giving the
nonlinear (compression) hardening curves at low plastic strain (p<0.05). As the value of a decreases
approaching its asymptotic value, the kinematic hardening nonlinearity decreases leading to a quasi-linear
kinematic hardening and the stress increases linearly again. Finally, when a = a;—a3= 15.0 becomes constant
a slightly nonlinear kinematic hardening is observed again and the kinematic hardening tends to slightly
saturate (Figure 4.9a). It is worth noting that « is still constant in tension with a = a; =50.0 (see Table 4.4
and Table 4.1 (h)). The impact of this evolution of the kinematic hardening parameter with respect to the
parameter . for the shear loading is shown in Figure 4.9c. Similarly, the larger value of a; results in a

decrease of the shear stress for plastic strain lower than 0.1.
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Figure 4.9: Effect of parameter a,: (a) Stress-plastic strain curves in compression and tension; (b)

Evolution of the parameter a in compression; (c¢) Stress-plastic strain curves in shear.

The same observation can be made concerning the isotropic hardening, but with small effects on stress-
plastic strain curves in compression and in shear as shown in Figure 4.10. Due to the lower value of isotropic
hardening modulus Q compared to kinematic hardening one C, the effect is less obvious compared to the
parameter a,, especially at the starting stage of the plastic strain. For most important class of metallic

materials, the values of the parameters we chose to do the parametric study determine that the kinematic
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hardening modulus have dominant influence for the first stage of plastic strain.
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Figure 4.10: Effect of parameter b,: (a) Stress-plastic strain curves in compression and tension;
(b) Evolution of the parameter b in compression; (c) Stress-plastic strain curves in shear.
Figure 4.11 represents the effects of the parameter a; for the same loading paths. No effect of this parameter
in tension, a strong effect is observed in compression and a much less effect is noticed in shear. Indeed, from
these figures we can see that parameter a3 has no effect on the first nonlinear hardening in compression (for
p<0.05), but has a significant effect on the second hardening stage (for p>0.05). Note that when considering
a3 = a; = 50, the hardening will have linear evolution (no saturation will occur since a = 0). The increase of
as leads to the increase in shear stress at high plastic strain, but the effect is very weak. The isotropic
hardening parameter b; has the same influence with the kinematic hardening parameter as on the stress strain

evolution for tension and shear, but the effect is delayed for large plastic strain, as illustrated in Figure 4.12.
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Figure 4.11: Effect of parameter as: (a) Stress-plastic strain curves in compression and tension;

(b) Evolution of the parameter a in compression; (c) Stress-plastic strain curves in shear
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Figure 4.12: Effect of parameter b3: (a) Stress-plastic strain curves in compression and tension;

(b) Evolution of the parameter b in compression; (c) Stress-plastic strain curves in shear.

The effect of parameter ps is illustrated in Figure 4.13. Clearly, when p; increases the width of the first
hardening saturation stage in compression increases; while at the second hardening saturation stage, the
hardening rate of each curve does not change significantly. So the parameter p; mainly controls the transition
between the two hardening stages (size of the plateau) in compression. From Figure 4.13(b), p, affects how
the parameter a evolves. For example, for the highest values of p; (ps = 0.08) , the value of a stay unchanged
during the early stage of plastic strain (p<0.05), then starts to decrease going to its asymptotic value equal

to 15.0. From Figure 4.13(c), this parameter has a significant influence under shear, i.e. the shear stress is

decreased a lot when the value of p; increases.
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Figure 4.13: Effect of parameter p,: (a) Stress-plastic strain curves in compression and tension; (b)

Evolution of the parameter a in compression; (c) Stress-plastic strain curves in shear.
Figure 4.14 depicts the stress-strain evolution with different value of ¢. A lower curvature is found in
compression when g decreases, in other words, the hardening rate is smaller with the lower values of ¢. The

parameter ¢ controls the curvature of the hardening curve in compression. From Figure 4.14(b), the

parameter a starts with different values and evolves by decreasing to reach the same value around 150 for

Pp=ps=4% after which this evolution is inverted going to a clear independence of a from ¢, after 12% plastic

strain. A very limited rise in shear stress can be found with the increase of ¢, as shown in Figure 4.14(c).
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Figure 4.14: Effect of parameter ¢,: (a) Stress-plastic strain curves in compression and tension; (b)
Evolution of the parameter a in compression; (c) Stress-plastic strain curves in shear.
Through this parametric study, the different sigmoidal hardening of Mg alloys in compression can be
achieved by adjusting the parameters of the proposed model. We can finally note that a, controls the first
hardening saturation stage and a; controls stress saturation at high plastic strain in compression. For shear
loading path, a; affects the stress evolution at low plastic strain and a3 has a weak effect on stress curve at
high plastic strain level. The influence of isotropic parameters b, and b3 are similar with kinematic hardening
parameters respectively a» and as. However, depending on modules C and Q the effect is important form the
start of the plastic flow (as the case of the kinematic hardening) or for large plastic strain (as the case of

isotropic hardening). The parameter ¢ has influence only under shear loading paths without effect on
uniaxial tension and compression. The parameter ¢ has influences on the curvature of the stress-strain curve
concerning loading cases defined by normalized Lode angle 6, =1 (i.e. different from uniaxial tension). The
parameter p, defines the size of the initial low strain plateau in compression, and higher value of p; leads to
stress decrease in shear.

4.6 Hardening asymmetry fully coupled with ductile damage

We focus in this section on the effect of the full coupling of the ductile damage with the strength-differential
(SD) effect and hardening asymmetry (HA) effect. The generic set of damage parameters are given in Table
4.6.

Table 4.6 Assumed damage parameters

S s y s Yo(MPa) h
2.2 3.0 3.0 2.0 0.0 0.2-1.0

If only the SD effect is taken into account, the stress-strain curves for tension and compression loadings will
have the same trend in evolution but at different stress levels due to the difference in terms of initial yield
stresses between these two loading paths. So the final fracture is delayed for the loading having the lower
yield stress which is the case of the compression as shown in Figure 4.15a confirmed by the damage
evolution curves in Figure 4.15b. When only hardening asymmetry (HA) is considered, the initial yield
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stresses for tension and compression are the same, while the stress evolution with respect to the plastic strain

is quite different for the two loading paths. Indeed, the two successive hardening stages leads to a significant

increase of the stress in comparison with the SD effect only. Consequently, the final fracture appears much

earlier in compression than in tension and also than a compression with SD effect only as depicted in Figure

4.15a and Figure 4.15b. So the SD effect and HA effect have the opposite influence on final damage.

The case combining SD and HA effects is shown in green line in Figure 4.15 (note that the results of this

figure are obtained without microcracks closure effect i.e. ~=1). In this figure, as expected, it is observed

that the damage evolution is more important in compression than that in tension, so that final fracture occurs

at lower plastic strain in compression compared to tension.
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Figure 4.15: Effect of SD and HA fully coupled with ductile damage in stress vs plastic strain curves in

uniaxial tension and compression: (a) Stress-plastic strain curves; (b) Ductile damage evolution.
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Figure 4.16: Effect of combined SD and HA fully coupled with ductile damage considering the

microcracks closure effect through parameter /% in stress vs plastic strain curves in uniaxial tension and

compression:(a) stress-strain evolution; (b) damage energy density release rate.

In order to obtain a more predictive ability related to the physical phenomena, the microcracks closure effect

is considered to enhance the damage coupling for loading cases altering tension and compression stress

states. As described in detail in chapter 2, damage evolution shall be different in tension and compression
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due to the microcracks closure effect described by introducing parameter 4, as given in Eq.(2-60). When
this parameter varies in the range from 0 (no damage effect in compression) to 1 (damage effect in
compression is similar to tension) the response in compression will be varied without any change in tension
response, as illustrated in Figure 4.16a. When small values of this parameter (2</) are taken, the damage
energy release rate (Y7) is delayed obviously in compression (see Figure 4.16b) giving rise to a clear delay
of the final fracture in compression with lower values of / as indicated in Figure 4.16a. Indeed, it is observed
that the plastic strain at the maximum point of Y* in compression is decreased by increasing the value of 4,
namely, the final failure is delayed with the decreasing of / in compression due to the fact that damage

evolution (or rate) in compression is much lower than in tension.

Through this parametric study we can highlight, for compression loading, competition ruling damage
evolution between hardening (due to HA effect allowing increasing of damage evolution) and microcracks

closure (allowing reduction of damage evolution).
4.7 Effects of temperature and strain rate fully coupled with ductile damage

In this section, parametric study on the effects of temperature and strain rate (viscoplasticity) is performed
in a material point to examine the response of the proposed anisotropic thermo-elasto-visco-plastic

anisotropic model fully coupled with isotropic ductile damage. For each of the temperature dependent

P(T)e {E(T),C(T),Q(T),S(T),K“ (7)o, (T)}

parameters , the dependence to the absolute temperature is

postulated as [Lestriez03]:

P(T)=R[1-[(T-T)/(T, - T,)I" | (4-1)
where P, is its value at the reference temperature7;, 7, is the melting temperature of the material and yis
a temperature independent material parameter.

The simulations are made with the proposed model using the material parameters given in Table 4.7,

assuming the initial plastic isotropy with w=0; F=G=H=0.5 and L=M=N=1.5; Here T,=650 °C; 7,=20 °C
the parameters y=4 for Young’s modulus; ¥=1.08 for capital S of damage equation, and ¥=1.03 for the

remaining parameters.

Table 4.7 Assumed material parameters

E(GPa) v  o(MPa) CMPa) a QMPa) b K m" S I s y B Y
435 035 161.6  3000.0 50.0 5000 6.0 20.0 7.0 15 12e5 1.0 1.0 1.0 0.0

Figure 4.17a shows the stress vs strain response and damage evolution of the uniaxial tension test at different

temperature with constant strain rate 10 s, with the fully uncoupled and fully coupled models results
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illustrated. Clearly, from the evolution of stress vs plastic strain curves, the yield stress drops significantly
as the temperature increases due to the viscous effect. Also with the fully coupled model, the final
accumulated plastic strain at fracture becomes larger as the temperature increases due to the temperature-

induced softening leading to lower stresses.

Figure 4.17b shows the strain rate effects on the uniaxial tension test at T=200 °C, with the increase of the
strain rate the yield stress increase drastically (lower viscosity effect) while the final accumulated plastic
strain at fracture becomes slightly smaller due to the higher damage rate. The two figures show clearly the
viscous effects. From the damage evolution at various temperature and strain rate, it is clear that the
evolution of damage is delayed by the raise of the temperature and the total strain rate decelerated. So the
proposed model could describe the obvious change in ductility with temperature change and the strain rate

sensitivity at a constant temperature.
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Figure 4.17: Stress-plastic strain curve and damage evolution for three values of temperature and imposed

total strain rate.

To study the damage effect on the complex loading path with temperature effects. A non-proportional
loading path shown in figure 4.18 is applied to RVE at three temperatures and constant strain rate of 10™*s™!
using the material parameters reported in [Zhang18]. Note that all the simulations performed under this

complex loading path are conducted until the final fracture of the RVE.
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Figure 4.18: Non-proportional loading path.

The results of equivalent stress and equivalent kinematic hardening stress are illustrated in Figure 4.19a.
With the temperature increase, both of these two stresses are decreased (temperature-induced softening) at
all the stages of this loading path. The damage is obviously delayed as the temperature is high. In order to
compare the damage and distortional hardening effects, a case uncoupled with damage and a case without
distortion are computed as shown in Figure 4.19b. The damage effect results in stress decreasing and it
becomes more obvious at higher plastic strain level. Accordingly, at the final stage of the loading path III,
the stress vs strain curve evolves to fracture very quickly. The distortional hardening has a very significant
impact on the stress strain evolution after comparing with the case without distortion. The notable changes

can be observed when the loading direction is suddenly changed.
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Figure 4.19: Evolution of the equivalent stress and kinematic hardening stress invariant vs the plastic strain
for non-proportional loading path III (A-B-C-D-A) for AZ31: (a) comparison of different temperatures fully
coupled with damage, (b) four cases at temperature of 65°C. Lines with solid symbols are equivalent stress,

lines with hollow symbols are kinematic hardening stress.

The yield surfaces at points A, B, C, D (where the loading path changes) of this non-proportional loading
path plotted in tension-shear plane are depicted in Figure 4.20 together with the yield surface without
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distortion for comparison purpose. At point B which is the end of tension, the yield surface has a high
curvature in the loading direction, while the two corners in the opposite direction are expanded, which makes
the yield surface very flat. When the loading path changed from tension to shear (from B to C), apparently,

there is a rotation of the front point of the yield surface.
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Figure 4.20: Yield surfaces at the end of each loading stage of path III, B: end of stage AB, C: end of
stage BC, D: end of stage CD, A: end of stage DA. Grey lines are the yield surfaces without distortion.
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Figure 4.21: Detailed evolution of the yield surfaces from point B to point C.

A specific evolution of the yield surface from point B to point C is displayed in Figure 4.21, from the red
line to the purple line, the clear change is the rotation, once the rotation reach a certain level, more obvious

change of the yield surface is the extension in the shear direction, which can be seen from green line to blue
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line. The motion of the yield surface center and rotation of the front point of the yield surfaces still follows
the applied loading directions at point C and A. It should be noted that the damage effect shrinks the size of

yield surface, when damage reaches to its critical value (final fracture), the yield surface will become a

coincident point at origin of coordinates.

4.8 Triaxiality and Lode angle effects on damage evolution

Many works [Bao04, Bai08, Loul3a, Gachet14] in experimental fields have established a link between the
ductile fracture and the stress triaxiality as well as Lode angle. The representation of the space of stress
triaxiality versus normalized Lode angle is shown in Figure 4.22. Upsetting tests of cylindrical specimens

are close to the normalized uniaxial compression condition with @, =-1, while uniaxial tensile tests of round

bars are about the normalized uniaxial tension with @, =1, between this two conditions is the torsion or pure

shear with @, =0.

Flat groove:
tension

Equibiaxial tensi

d plates : Notched rou
e 3 par d) tension
1
1

o

nd bar

Tors

1
: Uniaxial ten
1
1

ion/Shear

"( ::

\-

=i

4
Uniaxial compressi

\f

Plane strain
compression

Equibi
compre

axial -
ssion

-1

Figure 4.22: Stress state in the space of stress triaxiality(77) versus normalized Lode angle ( 8, ).

In this work, the stress triaxiality effect is embedded in the microcracks closure effect with the parameter 4
depending on triaxiality as shown in Table 4.1 (g). From this dependent function, the desired values of % in
tension, shear and compression can be achieved by adjusting the two parameters # and &, . The evolution

of microcracks closure effect parameter versus the stress triaxiality is shown in Figure 2.11 (Chapter 2).
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Figure 4.23: Influence of normalized Lode angle parameter @, on the ductility parameter S: (a) for
different values of & (Sien= 2.0, Si = 1.0); (b) for different values of Si., and Sy (& = 2.0).

The Lode angle effect is taken into account in ductility parameter S which becomes function of the
normalized Lode angle as given in Table 4.1 (j). The parameter S, , S,,, and £ are used to adjust the value of

S according to different stress states. Figure 4.23 shows the Lode angle dependency of the ductility
parameter S, when S, = 2.0 and Sy, = 1.0, showing that the value of S is symmetric with respect to the

vertical axis defined 6, = 0, the smallest value of S is obtained for 8, = 0, then it increases symmetrically
at both the negative and positive sides of 6, . The parameteré, controls how the value of S evolve with g, ,

when & increases, the curve becomes more flat at the middle part (corresponding to the small absolute values

of 8, ). As shown in Figure 4.23b, the evolution curve is convex when S, > Sy , otherwise, it is concave

when Sin < Sy, and the minor and major values of S can be achieved by varying the values of S, and Sg.
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Figure 4.24: Effect of parameter /. on the curves accumulated plastic strain vs stress triaxiality for ¢=0.9:

(a) Sten = Si= 0.5; (b) Sten= 0.5 and S = 0.1.
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In Figure 4.24a is displayed the effect of parameter 4. on the curves of accumulated plastic strain vs
triaxiality (for critical damage value d=0.9, near the final fracture), when the condition S,=Ss is considered,
for which no Lode angle effect is considered for the damage evolution. Note that the case when 4.~1.0
corresponds to an /4 parameter independent of triaxiality (A=1.0). With the decrease of /., the fracture strain
at low triaxiality is increased. When /. reaches a small value (i.e. 4.=0.1), the difference between final
fracture strain at low and high triaxiality is significantly important. Since the negative value and positive
value of triaxiality represent the compressive and tensile loading respectively, the parameter 4. controls the

different damage evolutions from tension to compression.

The Lode angle effect with S;,=0.5 and S;»=0.1 is shown in Figure 4.24b, the equivalent plastic strain at
fracture is no longer a monotonic evolution with stress triaxiality, it increases with the increase of stress

triaxiality within the range (0 <7 <0.33) and (0.566 <7 <0.66 ), meanwhile, it decreases with the increase

of stress triaxiality within the remaining ranges (-0.33<7<0) and (0.33<7 <0.566). The parameter /.

does not affect the value of fracture strain when = 033 , a smaller value of 4. leads to a high equivalent
plastic strain at fracture for the lower stress triaxiality range. The parameters S, and Sy, in the CDM damage
model make it possible to describe the Lode angle dependency of fracture strain as reported in [Bao04,

Xue07, Bai07, Loul3a].
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Figure 4.25: Effect of parameter Sy, on the curves of accumulated plastic strain at fracture vs triaxiality

given for d=0.9 considering S;,=0.5 and 4.=0.1.

Figure 4.25 shows the effect of varying the parameter S, (under the condition Sy, <Sis) on the evolution of
accumulated plastic strain at fracture vs stress triaxiality. This figure shows a local maximum for positive

triaxiality corresponding to both simple tension (7 =1/3) and equi-biaxial tension (7 =2/3 ) loading paths.

The difference between the fracture plastic strain increases when the difference between Si., and S is
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significant. When S;.,=Ss, Lode angle effect disappears from the accumulated plastic strain at fracture. With

the decrease of the Sy, the Lode angle effect is more obvious.
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Figure 4.26: Effect of parameter &, on the curves accumulated plastic strain vs stress triaxiality for d=0.9

and considering 4.~0.1 and S,=Ss=0.5.

Recall that the parameter &, controls the shape of the evolution curve of parameter 4 with respect to stress

triaxiality. In Figure 4.26 are displayed the curves in terms of fracture plastic strain with respect to stress

triaxiality for different values of parameter &, . Note that a small value of parameter &, (i.e. £, =0.5) gives

quasi-linear evolution with insignificant difference between fracture plastic strain for negative and positive

stress triaxiality. However, the difference becomes more significant when &, is increased. For example, for
the case &, =6, the maximum value of fracture plastic strain reaches 0.42 for 7=-0.33, while the fracture

strain is only about 0.12 for the stress triaxiality higher than 7 >0.33.
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Figure 4.27: Effect of parameter &5 on the curves accumulated plastic strain vs stress triaxiality given for

d=0.9 considering S,=0.5, S¢»=0.1 and /4.=0.1.
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The effect of parameter &s on the evolution of accumulated plastic strain at fracture vs stress triaxiality
considering d=0.9, S;.,=0.5, S;=0.1 and /.~=0.1 is shown in Figure 4.27. The parameter &s affects the shape

of the curve giving, for high values of this parameter, singularities forn =1/3 (simple tension) and 7, = 2/3

(biaxial tension).
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Figure 4.28: Effect of (S...-Ssz) on the iso-damage surface displayed in the deviatoric strain plane.

The iso-damage surfaces including the Lode angle effect are plotted in Figure 4.28. The circular surface can
be obtained when S,.,=Ss (no Lode angle effect). When Sy, <Ses, the shape of fracture locus at constant
triaxiality varies from a right hexagon to a six-point star. When Sy, >S.n, the fracture locus at constant stress
triaxiality is transferred to a shape of flower with six petals. Note that for this case of isotropic plasticity,
the iso-damage surfaces has a 7 /3 symmetry so that fracture locus at six vertices with 8, = *1 are the same.
It should be bear in mind that the ductile fracture tends to occur at the region between the two vertices (shear

or plane strain mode), which is proved experimentally by [Loul3a].

The effect of parameter &s on the isotropic damage surface displayed in the strain deviatoric plane
(considering S;,=0.5, S;»=0.1 and 4.~=1.0) is given in Figure 4.29. When &s = 2, the shape of fracture locus

looks like a six-point star with maximum fracture strain at the axis of§, = +1 and minimum fracture strain
at the axis of 4, =0, with the increase of &, the fracture locus becomes more approaching at the two sides

of 6, =+1 (as shown in the case & =9), and a plateau with symmetric axis of 6, = 0 appears.
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Figure 4.29: Effect of parameter & on the iso-damage surface displayed in the strain deviatoric plane

given for d=0.9 and considering S:,=0.5, S»=0.1 and A.=1.0.

The effect of stress triaxiality on the iso-damage surface without Lode angle effect (Sien= Ssv=0.5) are shown
in Figure 4.30. The fracture plastic strain are the same at different normalized Lode angles for a given stress
triaxiality. The size of the iso-damage surface becomes smaller with the increase of triaxiality, which makes

the fracture plastic strain larger for negative value of stress triaxiality than for positive stress triaxiality.
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Figure 4.30: Effect of stress triaxiality on the iso-damage surface displayed in the deviatoric strain plane

for d=0.9 and considering S;.,= Ss»= 0.5 and A~ 0.2.
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When considering Lode angle effect with S.,=0.5, S=0.1, the shape of fracture locus, like a six-point star,
expanded with the decrease of the value of triaxiality, as illustrated in Figure 4.31. However, the expansion
of the iso-damage surfaces is no longer isotropic, compared to the surfaces shown in Figure 4.30. The points
on the axis with @, =+1 move further than the points on the axis , =0 with the decrease of the stress

triaxiality value. It also shows that the fracture is easy to occur for shear loading (6, =0 ) under high values

of stress triaxiality.

10 —— Effect of triaxiality n
’ 9\:1 6_4: 0 9:—1
2, '\ e =033
_ / n=-029 _
05470 =026 0 =0
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Figure 4.31: Effect of stress triaxiality on the iso-damage surfaces displayed in the deviatoric strain plane

for d=0.9 and considering S;,=0.5, Sy=0.1 and /4.=0.2.

The combined effect of stress triaxiality and Lode angle are clearly presented. The Lode angle and triaxiality
dependence of the damage surfaces is included in our proposed fully coupled CDM model, which could

make more accurate predictions of damage in sheet metal forming simulations.
4.9 Conclusions

In this chapter, a systematic parametric study was conducted with the proposed model applied to a typical
RVE subject to various loading paths. From section 4.2 to 4.5, the isotropic ductile damage was not
considered, we have mainly presented the effects of initial anisotropy and tension-compression asymmetry,
hardening asymmetry parameters, distortion of the yield surface, as well as the interaction of these
phenomena with temperature. Then these effects were investigated again using the fully coupled model with
isotropic ductile damage in section 4.5 and 4.6. A detailed description of temperature and strain rate effects

was given in section 4.7. Finally, the stress triaxiality and Lode angle effect were included in the fully
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coupled model and their effects on the ductile fracture locus were carefully illustrated in section 4.8.

From all these parametric studies in this chapter, the novelty of the proposed fully coupled model were
clearly presented. In the next chapter, the methodology of the identification for material parameters will be
introduced. The fully coupled damage model will be applied to the simulation of different hot sheet metal

forming processes.
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5.1 Introduction

This chapter consists of two parts: the first part focuses on the identification procedure required to determine
the values of the material parameters entering the proposed fully coupled constitutive equations for Mg and
Titanium alloys, and the second part concerns the applications of hot sheet metal forming for the same

materials.

According to the modular structure of the fully coupled constitutive equations, the material parameters for
inelastic flow anisotropy, hardenings and damage parameters are determined separately based on specific
identification methodology using Python scripts, ABAQUS FE software and MATLAB-based minimization
code. Both AZ31B and Ti-6Al1-4V alloys are investigated.

The applications are made to hot sheet metal forming processes using the calibrated material parameters of
Mg and Titanium alloys. The proposed constitutive model is firstly validated using simple tensile tests (ST),
then three point bending test (TPB), circular cup deep drawing test (CCD) and cross-shaped cup deep
drawing test (CSD) are performed. Finally, some comparisons between simulation results and experimental

results are performed, analyzed and discussed.
5.2 Material parameters identification

The identification of the developed model material parameters is performed in various steps as schematized
in Figure 5.1. This figure illustrates the ductile damage effect on a typical stress-strain curve from initial
safe state (no damage) to the final fracture state. First of all, the elasticity modulus £ as well as the initial

yield stress o, are easily obtained from uniaxial tensile test using quasi-linear path O-A (Figure 5.1).

Second, the parameters of initial plastic anisotropy ( H,G,F,N,H',G",F',N' ) are identified using the yield
stresses measured at the early stage of plastic strain (i.e. point A of Figure 5.1 conventionally defined at
0.02% of total strain) of uniaxial tensile and compressive tests in different orientations lying from the rolling
to the transverse directions together with the balanced biaxial tests. Third, the hardening parameters

(C,0,a,,a,,a,,b,,b,,b,,¢,,4,, p,) are calibrated based on uniaxial tension and compression tests to fit part A-

B of the experimental curve and can be extrapolated to point F (Figure 5.1). Fourth, the damage parameters

(S,,S,,.5.Y,¢, 8,7,k ) are fitted from the path B-C-D (Figure 5.1) where the damage-induced softening

sh>>ten>
occurs. Finally, the values of hardening parameters and damage parameters can be readjusted in order to get

a best fit with the complete nonlinear curve A-B-C-D (Figure 5.1). In summary, we assume that at the
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beginning of the plastic flow, the damage effect is small enough so that we can neglect it to only identify
the undamaged behavior parameters based on the curve A-B-F. Once the hardening parameters are obtained

and fixed, the damage parameters can be identified according to B-C and C-D parts of the stress-strain curve.

For the temperature dependent material parameters, first, their values are calibrated with respect to different
isothermal test conducted with various constant temperature values. A polynomial function is then used to
calibrate these material parameters over the range of temperature under concern. In this work, both analytical

and inverse methodologies are applied to obtain the best sets of adequate values of material parameters.
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Figure 5.1: Schematic representation of the material parameters identification procedure

The identification of anisotropic parameters needs the definition of analytical expressions for yield stress
function at different material orientations. In (o, —o,,) plane, we denote o, and o, uniaxial tensile and
compressive yield stresses respectively along material orientation € according to the rolling direction:

e Intension: o/,=0, cos’ @ , ol,=0, sin’ @, o,=c, cosOsin&

e Incompression: o/,=-0 cos’ 8 ,o5,=—0, sin’ @, o,=—0, cosfsind

Substituting the above equations into the yield function defined by Eq. (2-82) in chapter 2, o, and o, can

be obtained as follows:

1/3

o, =0, /[ K> —wK, | (5-1)
of =0, I[K*+wK,]" (5-2)

where &, =(G+H)cos" @—2H cos’ Osin’ @+ (H + F )sin* @+ 2N sin” f cos” 6
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K,=(G”H'+G'H")cos® 0+(G'H” ~2H"F'~ HF" = F"*G'+4F'N")sin* 0 cos’ 0 +
(H'F?+H"F')sin® 0+ (F'H” =2G'H"” ~ H'G” = F'G"” + 4G'N"*)cos* Osin’ 0

The uniaxial tensile yield stresses o, , oL , 0., and compressive yield stresses o) , oy, , oy, are calculated

using Eq.(5-1) and Eq.(5-2). These yield stresses are expressed in three classical directions 8 = 0°,45°,90° as

follows:

ol =0, /[(G+1)" ~wiG (G + 1) (5-3)

3/2 o
Gfs = O",, /|:[%(F+G+2N)j —%(4(}7!_’_ Gy)N,z —G’ZF'_F!ZGf):I (5_4)
O'9To:Uy/|: F+H)3/2_WH’F'(F'+H,):|1/3 (5-5)

N 32 vt A3

O_():O—y/|:(G+H) +wHG(G +H):| (5_6)

! v 1/3
O'n)Cb:O'y/|:(F+H)3/2+wH'F’(F’+H;):|l/3 (5_8)

The in-plane balanced biaxial tensile o, and compressive oy stresses are also obtained by substituting the

stress components of (o, ,o; ,0) and (-0} ,—o, ,0) into the yield function, giving:

ol =0, /[(G +F)" +wF'G'(G'+ F’)]m (5-9)

1/3

of =0, I[(G+F)" -wF'G'(G'+ F")] (5-10)

Together with all the functions Eq. (5-3) to Eq. (5-10), the set of eight parameters G,H,F,N,G',H',F',N'
are expressed using the algebraic system of eight equations expressed for the eight considered tests. In order

to identify the anisotropic parameters, an objective function is built based on stress ratio as follows:

C 90 GLEXP C O-LEXP
Min(A)=Min| 0, > (=4—=1) + o, Y (L—-1y (5-11)
i=r =0 Og " Oy

where the superscripts ‘exp’ and ‘sim’ refer to the experimental and simulation data respectively and the

index i represents the loading paths of uniaxial tension (i=7) and compression (i=C). The variables w,,a,,

are weight coefficients to balance the different experimental results. The objective function is optimized
using down-hill simplex method (Nelder and Mead, 1965) , also recently adopted by [Lil16, Yoon14]. Under
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3D loading paths, four additional anisotropy parameters (namely M,L,M', L") need to be calibrated. To
achieve this goal, uniaxial tensile and compressive yield stresses in the (o, -o,,) and (o,, —o;) planes

should be used. Related equations are given in the following.
Uniaxial tensile o, 5, and compressive oy, ,, yield stresses in the (o,, —0o,;) plane:

r /3

3/2
Ol =0,/ G(F+H+2M)j —%(4(F’+H’)M’2 ~H"F'-F"H') (5-12)
r 1 32 /3
0'46;(“_33) =O'y/ [Z(F+H+2M)] +%(4(F'+H')M’2_HIZF!_FIZHI) (5_13)

Uniaxial tensile &,

1s2-5, and compressive o, ,, ., yield stresses in the (o, —o3;) plane:

q1/3

B 3/2
Ol =0,/ G(G+H+2L)j —%(4(G'+H')L’2 -H"G'-G"H') (5-14)

/3

B 32
Oisnzsy =0, / (%(G+H+2L)) +§(4(G’+H’)L’2 —H’ZG'—G'zH') (5-15)

I

For the case of non-AFR model, the objective function like Eq.(5-11) can be constructed using different

Lankford R-values, giving the following expressions:

o - pl
&g L0 . .8 3 oF 9
rp=—t=2—=— s1n29—f —s1n29—f +cos’ 0 ) y + ) (5-16)
& p doy, On do,, 0o, 00y,
Initial guess of the
parameters
]
INP file Parameters reading I
readin
l - Parameters writing
TE into INP file
Sl et Objective function Modify the
S calculation parameters
Criterion? NO
Results Min(A) <1x102 —
outputs Endo
Optimization
Python Matlab  YES iy

Figure 5.2: Identification methodology of the material parameters by combining different software.
The identification of the hardening and damage parameters are performed within an inverse approach, which

115



Chapter 5: Parameter identification and hot sheet metal forming applications

is based on minimizing deviation value between numerical and experimental results [Yuel4, Souto15]. The
procedure is realized using Matlab and Python subroutines in connection with Abaqus/Explicit FE software,

the detailed process of this identification scheme is illustrated in Figure 5.2.

In this work, both Mg alloys and Titanium alloys are investigated to validate the proposed model. The
anisotropic and hardening parameters are calibrated using the experimental data in the following published
works [Khanl11, Gilles11, Taril3, Taril4, Taril5, Habib17]. The results of identification are discussed in the

following sub-sections.

Using the identification method described above, together with the experimental data in [Gilles11], the
anisotropic parameters of Titanium alloy Ti-6Al-4V are obtained, as given in Table 5.1.
Table 5.1 Calibrated anisotropic parameters of Ti-6Al-4V
F G H N F' G’ H' N’
0.51268 0.57484 0.37089 1.53660 -0.42908 -0.19191 0.72270 0.63820

Figure 5.3 displays the predicted yield surface and experimental data points. The proposed yield function is
compared to Hill yield function, which only describes the initial anisotropy in tension. It is observed that
the proposed model can capture the anisotropy and tension compression asymmetry of titanium alloy Ti-

6Al-4V accurately.

TD Normalized Stress
o

RD Normalized Stress

Figure 5.3: Yield surfaces predicted by Hill criterion and proposed yield function.

The tensile and compressive yield stresses at different orientations with respect to the rolling direction are
compared with experimental results in Figure 5.4. The difference of the two yield functions are slight in

tension, both can fit most of the experimental points. The predicted yield stresses according to Hill criterion
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induces a significant error compared to experimental data in compression, while the proposed yield function

shows good agreement with experimental results in both tension and compression tests.
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Figure 5.4: Initial anisotropy in tensile and compressive stress states for Ti-6Al-4V according to Hill

[Hill48] and new proposed model.

In this section, the experimental data are taken form the published works [Khan11, Habib17] of a research
group from University of Maryland (UMD). Both Mg alloys AZ31 and ZEK 100 are investigated to validate
the predictive capability of the proposed model in describing the initial anisotropy and asymmetry at room
temperature, since both of them exhibit strong initial anisotropy and tension-compression asymmetry in
yield stress. The anisotropic parameters of AZ31 and ZEK 100 are given in Table 5.2.

Table 5.2 Anisotropic parameters of AZ31 and ZEK100

L=M=L"=M’=1.5
Material H G F N H G’ F’ N’

AZ31 1.2255 0.48639  0.42001  3.44122  2.70885  0.15525  0.13115 3.49908
ZEKI100 1.030511 0.420433 1.607213  3.44436  0.287824 1.473031 -0.26309 0.39605

The predicted yield surfaces and experimental data of two Mg alloys are shown in Figure. 5.3. It should be
noted that the experimental data of balanced biaxial tests are not available in the work of [Khan11, Habib17],
they are assumed to the mean values of three uniaxial yield stresses (o = (o, +20,; +0y,)/4 (i=T,C)).
The yield function correctly describes the experimental yield stresses of AZ31 with few differences except
for the assumed balanced biaxial compressive yield stress (Figure. 5.3a). The predicted yield surface of
ZEK100 fits well with the experimental measurements (Figure. 5.3b). The initial anisotropy and asymmetry

of AZ31 and ZEK100 are well captured by the proposed model.
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Figure 5.3: Comparison between numerically predicted yield surfaces and experimental data: (a) AZ31;

(b) ZEK100 (Solid symbols are experimental data; hollow symbols are mean values).

Table 5.3 Material parameters of AZ31

E(GPa) ) oy(MPa) C(MPa)  Q(MPa) a; a as b;
43.5 0.35 161.6 2656 699 60.5 1000 50 9.4
b; bs Ds 4 &
80 3 0.035 10 85

Table 5.4 Material parameters of ZEK100

E(GPa) ) oy(MPa) C(MPa)  Q(MPa) a; a as b;

36.5 0.35 194 1580 156 36.2 120 34 6
b; bs Ds ] @,
20 2 0.012 20 42

The identified hardening parameters of AZ31 and ZEK 100 at room temperature using the experimental data
of UMD [Khanl1, Habib17] are shown in Table 5.3 and Table 5.4 respectively. They are determined by
using tension, shear and compression tests, while only tension and compression experimental results are
available for ZEK100. The predicted stress-strain curves for AZ31 (see Figure 5.4a) in tension, shear and
compression show a nice fit with the experimental results. For ZEK 100, good fitting with experimental data
can also be observed in both tension and compression as shown in Figure. 5.4b. The evolution of the
compressive stress for both these two Mg alloys follows a typical sigmoidal function, the low plastic strain
is governed by the twinning mechanism. While at higher strain level, it is mainly dominated by classical
plastic slip mechanism, as we can see the sigmoidal hardening of AZ31 is more obvious than the case of

ZEK100. The proposed model can well predict the unusual hardening evolution for both of these Mg alloys.
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Figure. 5.4. Comparison of experimental data and simulation results of stress-strain evolution under

uniaxial tension, shear and compression: (a) AZ31B; (b) ZEK100.

Tension and compression tests have been conducted over a wide range of temperatures lying between 23 to
250°C and strain rates varying between 0.001 to 1.0 s! taken from [Taril3, Taril4, Tari15]. By using these
experimental data, the anisotropic parameters and hardening parameters at different temperatures are

calibrated, and given in Table 5.5 and 5.6.

Table 5.5 Anisotropic parameters of magnesium alloy AZ31

L=M=L'=M’'=1.5
T (°C) H G F N H G’ F’ N’
RT 1205501 0.496391 0418510  3.441221  2.608850 0.155251 0.160252 3.499081
150  0.477407 0.773161 0.621849  1.652781  1.332151 0.193945 0.175041 1.460198
200 0.474259 0.555571 0.467317 1463941  0.427075 0.230738 0.326213  0.608006
250 0.480181 0.557180 0.444049 1483791  0.390420 0.232581 0.373659 0.437981

Table 5.6 Hardening parameters of magnesium alloy AZ31

T(°C) E(GPa) o, (MPa) Kyp m Q C by by by ar a a; 4 &, Ds

RT  43.05 161.6 5 3 800 3500 3.0 30 25 35 200 32 10 100 0.035
150  33.68 112.6 15 3 580 1950 3.0 20 12 35 9 25 10 50 0.011
200  30.50 73.49 24 3 300 1150 3.0 10 1.0 35 40 23 10 30 0.0
250  27.40 58.39 25 3 200 &0 3.0 50 09 35 10 22 10 10 0.0

Comparison of predicted yield surfaces and experimental measurements of AZ31B at different temperatures
are shown in Figure 5.5. The SD effect is significant at room temperature, the predicted yield surface could
fit the experimental data at room temperature with a satisfied accuracy. It should be noted that the high
temperature weaken the SD effect, when the temperature is elevated (150°C, 200°C, 250°C), the predicted

yield surfaces have a good agreement with the experimental data.
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Figure 5.5 Comparison of predicted yield surfaces and experimental measurements of AZ31B at different

temperatures. (Solid symbols are experimental data; hollow symbols are mean values)

Comparison of stress-strain evolution between simulation and experimental results of AZ31B at four

different temperature values at constant strain rate 0.001s™! are presented in Figure 5.6.
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Figure 5.6: Stress-strain evolution of simulation and experimental results of AZ31B along the rolling

direction at different temperatures at constant strain rate 0.001 s

Stress-strain curves in tension and compression at room temperature are slightly over estimated compared
to experimental results at low plastic strain. This is may be due to the limited form of viscous stress which
is introduced instantaneously for a given strain rate at the beginning of inelastic flow. The hardening
asymmetry is prominent at room temperature and the numerical results describe correctly the sigmoidal
shape evolution for compression at room temperature. With the temperature increase, the effect of hardening

asymmetry is reduced significantly. The simulated stress-strain curves at elevated temperatures fit well with
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the experimental data for both tension and compression at constant strain rate 0.001s".
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Figure 5.7: Tensile stress-strain evolution of simulation and experimental results of AZ31B along the

rolling direction at different temperatures and strain rates.

The viscosity parameters are identified using the tensile tests at different strain rates, the simulation results
are compared with the experimental data in Figure 5.7. At room temperature, the strain rate sensitivity is
weak and the viscous stress is small. The strain rate sensitivity becomes more evident at higher temperatures
as shown in Figure 5.7c, and 5.7d. A large deviation can be observed in the prediction of stress at low
viscoplastic stain for higher strain rate at 200°C, it is mainly due to the fact that the equation to calculate the
viscous stress is directly added in the yield function, giving rise to a significant increase in the stress for low
viscoplastic strain range. The stress-strain curves at higher viscoplastic strain can be well fitted by the
simulation results. The evolution trends caused by the strain rate sensitivity can be reasonably captured by
our proposed model. However, improvement of the proposed viscous stress can be acted by introducing for

example a dependency of the viscous module on the equivalent viscoplastic strain.
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5.2.2 Ductile damage parameters calibration

The influence of the damage parameters S,s, 8,7,Y, on the damage evaluation has been presented in detail

in [Issal0, Saanounil2, Liul7]. In this work, the Lode angle effect is taken into account through ductility
parameter.S, as described in Chapter 4. The ductile damage parameters are determined using notched tensile
and shear tests. The global force-displacement curves from numerical tensile and shear simulations are used
into the optimization program to compare with the experimental responses. The critical damage value is set

to d. =0.99 to describe the whole evolution of damage until fracture. Titanium alloy Ti-6Al-4V and Mg

alloy AZ31B are investigated in this section.
Titanium alloy Ti-6Al-4V

A systematic test program was carried out on a wide range of stress states of Ti-6Al-4V at Politecnico di
Milano [Giglio12, Allahverdizadeh13, Allahverdizadeh15]. Tensile tests of shear specimen and notched
specimens with different radius were conducted. In this work, these tests are used to determine the damage
parameter for Ti-6Al-4V. The design and FEM mesh for the specimens are illustrated in Figure 5.8. In the
central part of the specimen where the fracture is often observed, the mesh size of 0.1mm is used on the

plate surface and through thickness direction.

2,
7y

Fhe gty
Tl
Vi sy

e

(a) Notched specimen; (b) Shear specimen

Figure 5.8: FEM mesh of the notched and shear specimen (Element type C3D8R).

The influence of the damage parameters ( s,f,7,Y,,2 ) on the damage evolution was elaborated in
[Saanounil2]. The critical damage value is d, =0.99 and constant values are fixed to three parameters (
= 4.0, ¥,= 0.0, 2 = 1.0). Using the inverse approach by minimizing the objective function, the damage

parameters of Ti-6Al-4V are obtained as shown in Table 5.7.
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Table 5.7 Damage parameters for Ti-6Al-4V

Ssh Sten fs N Yy ﬁ YO(MPCZ) h
16 25 1.0 2.0 4.0 2.0 0.0 1.0

Simulations of a simple CDM damage model (Modell) and a modified Mohr-Coulomb (MMC) damage
model were also performed in [Allahverdizadeh13, Allahverdizadeh15]. The simple CDM damage model
has no Lode angle effect, while the MMC model (Model2) takes the Lode angle effect into account without

coupling with viscoplasticity. Since, the Lode angle effect is included in our advanced fully coupled CDM
model (Model3).
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Figure 5.9: Comparison of numerical and experimental response of tensile tests: (a) shear specimen; (b)

notch radius 6.67 mm; (c) notch radius 10 mm; (d) notch radius 20 mm.

Improvement of the different models is presented by comparison of the results of each one with experimental
data. As illustrated in Figure 5.9, the different numerical simulation results and the experimental response
of tensile tests are compared. All the predictions made by the three models have discrepancy with the
experimental data, our fully coupled damage model (Model3) has a better fitting with experimental results

compared to other models, and especially the displacement of the specimen at final fracture is well predicted.
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von Mises stress Damage Accumulated plastic strain

(b) Displacement U = 1.15 mm

(c) Displacement U = 1.2 mm

(d) Predicted final fracure (e) Experimental fracure

Figure 5.10: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for the tensile

specimen with notch radius 6.67 mm.
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von Mises stress

Damage

Accumulated plastic strain

-
1

(a) Displacement U = 1.0 mm

(b) Displacement U = 1.4 mm

SOA

(c) Displacement U = 1.5 mm

(d) Predicted final fracure

(e) Experimental fracure

Figure 5.11: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for tensile

specimen with notch radius 10.0 mm at different displacements.
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von Mises stress
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(d) Predicted final fracure
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Figure 5.12: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for tensile

specimen with notch radius 20.0 mm at different displacements.
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von Mises stress Damage Accumulated plastic strain

(a) Displacement U = 1.0mm

(b) Displacement U = 1.45 mm

(c) Displacement U = 1.5 mm

(d) Predicted final fracure (e) Experimental fracure

.

Figure 5.13: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for shear

specimen at different displacements.
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Concerning the Ti-6Al-4V alloy, the simulation results for three different values of the notch radius at
different displacements are given in Figure 5.10 to 5.12. The von Mises stress, plastic strain and ductile
damage are localized in the central notched area. With the increase of displacement, a strong localization of
damage is observed at the central part of the specimen where the onset of fracture takes place (damage
initiation), then propagates horizontally to the edges of the notched part. As expected, with the increase of
the notch radius, the onset of fracture is obviously delayed. The predicted final forms of the fractured
specimens are compared with the experimental measurements when it is known. The predicted crack path
of specimen with notch radius 10.0 mm is obviously different from the experiments, while the other two are
well predicted. Figure 5.13 shows the distribution of von Mises stress, damage (SDV14) and plastic strain
(SDV15) for shear specimen at different displacements. The localization of stress, strain and damage occurs
at the two edges of the specimen. The final crack initiates at the edges of the shear specimen and evolves

vertically to the center.

Recall the Figure 4.28 of Chapter 4 which shows the effect of (Sw.,-Ssz) on the iso-damage surface, at the
condition Sy, >Ss, the fracture locus is located outside the isotropic damage surface of Sw.,=Ss (no Lode
angle effect), the fracture locus shape looks like a flower with six petals indicates that the ductile fracture

tends to occur at larger values of absolute value of 8, . To confirm this, the simulation using the specimen

with notch radius 6.67 mm is conducted under the condition (S, =16.0,S,, =8.0, Case 1). The simulation

> ~ten

results under the condition (S, =16.0,S

ten

=25.0) in Figure 5.14 is named Case_2 for comparison purpose.

Comparisons of von Mises stress, damage (SDV14) and plastic strain (SDV15) distributions for the different
cases are shown in Figure 5.14. Before fracture occurs, the strong strain localization is found at the border
edge of the specimen for Case 1, which is quite different from the results of Case 2 (at the center of the
specimen). The crack of Case 1 starts at the two outer edges of the notched region while the onset of fracture
for Case 2 is in the center area. The final crack path for Case 1 is extremely flat compared to the one of

Case 2.

Figure 5.15 shows the normalized Lode angle along the horizontal axis of the notched part, at the two edge

sides the value of 8, is near 1 which is higher than that in the center not exceeding 0.5. Recall the Eq. (2-

88) in Chapter 2 as well as the Figure 4.28 in Chapter 4, for Case 1 (S, =16.0,S,

ten

=8.0), the value of damage
parameter S is smaller at the two border sides (8, ~1), which leads to a faster damage evolution at the outer
edge than at the central area (where 8, ~ 0.46), so the cracks start at the border of the specimen for Case 1.

Even though this case is not consistent with the experimental measurement for Ti-6Al-4V, it is discussed
here to demonstrate the capacity of the proposed model in predicting ductile damage occurrence at different
location of the specimen [Thuillier11].
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von Mises stress Damage Accumulated plastic strain

(a) Before fracture (Case 1)

(b) Before fracture (Case 2)

(c) Onset of fracture (Case 1)

(d) Onset of fracture (Case 2)

(e) Final fracture of Case 1 (f) Final fracture of Case 2

Figure 5.14: Comparison of von Mises stress, damage (SDV14) and plastic strain (SDV15) for different
cases of damage parameters (Case 1 with S, =16.0,S,, =8.0; Case 2 with S, =16.0,S,, =25.0).

> ~ten
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Figure 5.15: Normalized Lode angle along the horizontal direction of the notched part.
Magnesium alloy AZ3 1B

Experimental tests on Mg alloy AZ31B under different temperature values at quasi-static state were
conducted at Shandong University (SDU), and used to identify the damage parameters. Two well-designed

specimens shown in Figure 5.16 are used to perform both the tensile and shear tests.
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Figure 5.16: Geometry of the notched and shear specimens with dimensions.

Using the same methodology as for damage parameters identification of Ti-6Al-4V, the best values of the

calibrated damage parameters for AZ31B at different temperatures are given in Table 5.8

Table 5.8 Damage parameters for AZ31B

T(OC) th Sten fs N Vs ﬁ Yo(MPa) h
RT 1.6 3.0 1.0 2.0 4.0 1.0 0.0 0.2
150 3.0 5.7 1.0 1.0 4.0 1.0 0.0 0.2
200 5.0 8.9 1.0 1.0 4.0 1.0 0.0 0.2
250 8.0 12.5 1.0 1.0 4.0 1.0 0.0 0.2

The predicted force-displacement responses at different values of the imposed temperature are compared to
the experimental results in Figure 5.17. The predicted results fit well with the experimental data for both
notched tensile and shear tests. Small discrepancies are observed for 250°C for these two tests at large

displacement level. This seemed caused by the necking which occurs in experiments. With the temperature
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increase, the fracture occurrence is delayed. The onset of fracture for notched and shear specimen are

predicted with a satisfied accuracy.

(a) X Onsel of fracture in simulation (b) X Onset of fracture in simulation
© Exp RT
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Figure 5.17: Comparison of numerical and experimental response of tensile tests: (a) notched specimen

with radius 4.0 mm; (b) shear specimen.

RT

150°C

Figure 5.18: Comparison of the crack path of the shear specimen obtained from simulation and

experiments at different temperatures.
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The final fracture of notched AZ31 specimen are all located in the center of the notched specimens, which
is similar to titanium specimens presented in the previous sections. The numerically predicted final fracture
of the shear specimens are compared with the experiments, as shown in Figure 5.18. The fracture often takes
place at one side (upper or lower part) of the sheared regions. At room temperature, the fracture occurs faster
at the displacement of 1.25 mm, as presented in Figure 5.17. However, at high temperature, a severe rigid
body rotation can be found at the shear region, and the fracture surface is inclined. The predicted crack path

in shear specimen has a good consistency with the experimental observations (see Figure 5.18).
5.2.3 Material parameters dependent to the temperature

There are many choices for the thermal softening functions P(7), namely: Linear, Power Law and
Polynomial functions, and so on. The Polynomial functions were chosen for the current work for more

flexibility by varying the polynomial order.
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Figure 5.19: Plot of elasticity, hardening and damage parameters as function of temperature for AZ31.

In this work all the temperature dependent material parameters are expressed by a third-order polynomial

function, as given in Eq. (5-17):

P(T)=P*T*+P,*T*+ PR *T + P,

(5-17)

However, the evolution of some parameters with respect to temperature can be well captured by a lower

order function, as the Young’s module E. The detailed fitting curves and functions for the temperature

dependent parameters of AZ31 are given in Figure 5.19, Figure 5.20 and Table 5.9.
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Figure 5.20: Variation according to temperature of anisotropic parameters.

Table 5.9 Fit functions for anisotropic parameters

Fit functions for anisotropic parameters

N =27.262e-08*T" +8.531e-05*T* —0.02692* T +4.016
H=-1.331e-07*T" +8.169e-05*T> —0.01634*T +1.54

G =2.877e-07*T°-0.0001401*T7 +0.01866* T +0.1363

F =1.876e-07*T°-9.343e-05*T° +0.01271*T +0.1724
N'=6.257e-07*T°-0.000239*T* +0.008719* T +3.417
H'=8.018e-07*T7-0.0003343*T* +0.02636*T +2.15
G'=-2.761e-08*T°+1.217e-05*T* —0.001058 * T +0.1742
F'=-8.17e-08*T°+4.046e-05*T7-0.004371* T +0.2268
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5.3 Validation with simple test for Ti-6Al-4V

In this section, the proposed model is validated through simple tension tests using the calibrated material
parameters in section 5.2 for Ti-6Al-4V. The uniaxial tension test using flat specimen of Ti-6A1-4V was
reported in [Gigliol2, Allahverdizadeh13]. Simulation using the identified material parameters with mesh
size 0.1 mm in the central part of the specimen and C3D8R element type has been done. The mesh of the
specimen is shown in Figure 5.21, a constant loading rate is controlled to ensure the quasi-static deformation
state which is same with the identification processes. The numerical predicted force-displacement curve
compared with the experimental results are shown in Figure 5.22. The FE simulation results reported in
[Giglio12] and [Allahverdizadeh13] are also presented with the name of ‘FEM 01’ and ‘FEM_02’. The
proposed model (‘FEM_03”) has a better prediction of fracture compared to the result of ‘FEM_01°, and the
hardening evolution are fitted better compared to the result of ‘FEM_02’.

Figure 5.21: Mesh of the flat tensile test.

---- B
£ o
4000041} %
= |l 1
@ i : I |
g —o— EXP |
e FEM_01 b
20000 f—..... FEM_02 3 ]
----- FEM 03 i
vl Hl
4
g
0 i
0 2 4 6 8 10

Displacement (mm)

Figure 5.22: Comparison of numerical and experimental force-displacement curves for tensile test on flat

specimen for titanium alloy Ti-6A1-4V.

134



Chapter 5: Parameter identification and hot sheet metal forming applications

sSDV14 sSDV14
(Avg: 759) SoV14 (vg: 75%)
teisiees (Avg: 75%) +3 034001
15855502 +1,3356-01 15
L 1223001 S
15555 +1.112e-01 +1.655-01
o Ui L
+8.899%e-02 .
e +7.7876-02 +88lee02
= +6.674e-02 +2. 758602
+0.000e+400 45 5626-02 +0.000e+00
+4.450e-02
+3.337e-02
+2.225e-02
+1.112e-02
+0.000e+00
(a) Displacement U=5.0 mm (b) Displacement U=6.0 mm (c) Displacement U=6.95 mm

|

(d) Finial fracture

Figure 5.23: The damage evolution at different displacements of flat specimen.

The damage evolution at different displacements are shown in Figure 5.23, a curvature along the loading
direction (diffuse necking) and a reduction of thickness (localized necking) appears with the increase of
displacement. The final fracture is located at the center of the specimen which is consistent with the

experimental results in Figure 5.23.
5.4 Applications to sheet metal forming processes
5.4.1 Three-point bending (TPB) tests

Three-point bending tests at room temperature were conducted for AZ31B as reported in [Taril5]. The
sample is of rectangular shape with dimensions 140.0 mm length, 25.0 mm large and 1.57 mm thickness. A
view of the experimental test facility as well as its FE representation are shown in Figure 5.24. TBP tests
are simulated using ABAQUS/Explicit with the proposed model. The sheets are meshed using C3D8R brick
element. The cylinders are modeled as rigid body using shell element, as shown in Figure 5.24. The moving
cylinders are applied with a constant velocity of 0.76 mm/s. The friction coefficient is fix to 0.048 for all

the contacting surfaces.
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Top cylinder
R=12.7mm Bottom cylinder

R=12.7mm

Figure 5.24: Three-point bending test: (a) Test apparatus [Tari 2015]; (b) FE model with mesh

Figure 5.25 shows the force-displacement curves obtained by three different simulations compared to
experimental results. These simulations are conducted using von Mises model (SIM_01), current model
without hardening asymmetry (SIM_02), and current model with hardening asymmetry (SIM_03). A higher
level of loading force is observed for the von Mises model (SIM_01), both the current model without
hardening asymmetry (SIM_02) and with hardening asymmetry (SIM_03) show a satisfactory agreement
with the experimental curve. It is worth mentioning that the Model taking into account the hardening

asymmetry (SIM_03) predicts more accurately the force displacement experimental response.
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Figure 5.25: Comparison of predicted force vs. displacement responses with experimental data

Two elements located at the top (compression state) and bottom (tension state) of the sheet, as shown in
Figure 5.26a, are selected to compare their response obtained from different models. As illustrated in Figure
5.26D, the stress vs. plastic strain obtained from von Mises model (SIM_01) is symmetric in yield stress and
hardening. The stress vs plastic strain response of SIM_02 and SIM_03 at bottom point (tension state) is

almost the same, meanwhile, both simulation results of SIM 02 and SIM 03 can capture the tension
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compression asymmetry of yield stress. However, only simulation results of SIM_03 shows the hardening
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Figure 5.26: Comparison of stress vs plastic strain response at different points using different models.

The distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for TPBT at displacement
of 30.0 mm is given in Figure 2.27. The damage effect is very limited with the 3 cases. The von Mises stress

and plastic strain are tended to localize at the center of the sheet plate.
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Figure 5.27: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for TPBT at

displacement of 30.0 mm.
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5.4.2 Circular cup deep drawing tests (CCD)

The simulations of circular cup deep drawing test for Magnesium alloy AZ31B are performed using FE
code Abaqus/Explicit, the objective is to demonstrate the capability of the proposed model for hot sheet
metal forming processes. Figure 5.28 shows the schematic representation of die, blank holder and punch

[Tari 13]. The dimensions are given in Table 5.10.

Holding
force

Figure 5.28: Schematic representation of die, blank holder and punch.

Table 5.10 Dimensions of the component for CCD test

D, (mm) D,y (mm) Dy (mm) R, (mm) R;(mm)
101.9 110.6 228.6 12.0 12.0

SOV25

(Avg: 75%)
+2.250e+02
+2.238e+02
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+2.2008+02
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+2.138s+02
+2,1258+02
+2,113e+02
+2.101e+02

Figure 5.29: Different temperatures used for the blank sheet.

A near iso-thermal forming of CCD test was conducted in [Tari 13], in which the temperature of the die and
holder are 225 °C, the temperature of punch is 215 °C, the blank center at about 211°C. In this work, the
heat transfer by radiation and conduction between the blank sheet and tools is ignored for simplicity, only

the heat generated from the inelastic deformation is considered. However, to approach the real condition of
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the experiment, the blank in the numerical simulation was divided into three sections to include the
temperature gradient, as illustrated in Figure 5.29. The thermal properties of material used in numerical

analysis are given in Table 5.11.

Table 5.11 Thermal properties [Taril3]

Thermal conductivity Heat Capacity = Density Inelastic heat fraction

95.8 W/(m K) 1049.3 J/(kg K)  1770.0 kg/m? 0.9

In the numerical analysis, the blank holder force is 80.0 kN with punch speed of 4 mm/s. The punch, holder
and die are rigid body, the blank sheet is meshed with element type C3D8RT. The friction coefficient is
fixed to 0.05 for the contacted surfaces. The time step is increased to SE-5 to reduce the simulation time
thanks to the mass scaling method. The force vs displacement curves obtained from the simulation and
experiment are compared in Figure 5.30. The simulation result over-predicts the force at large displacement
slightly, and the predicted fracture occurs a little earlier compared to the experimental result. Despite all this,

the maximum force and the displacement at fracture are relatively well predicted by the proposed model.
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Figure 5.30: Comparison of force vs. displacement curves for simulation and experimental results for

CCD test.

The distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for CCD test at different
veritical punch displacements are given in Figure 5.31. At the displacement of 25.0 mm (Figure 5.31(a)),
the damage is relatively low (Duax = 2.4%), but is starts to localize at the top edge of the deformed cup. As
the displacement increases, more significant damage localization at this place is observed (Dya = 6.3% at
U=40.0 mm; Dya = 13.6% for U = 48.0 mm; Dmax=96% for U=52.0 mm). It should be noted that a

localization at the bottom edge of sheet close to the punch is appeared with a lower magnitude compared to
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the top edge. The macroscopic crack path predicted numerically (at punch displacement U = 52.0 mm) and

the one observed experimentally appears at the top edge of the cup and are in good agreement (See Figure

5.31(d) and 5.31(e)).
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Accumulated plastic strain
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(d) Predicted final crack path at U=52.0 mm

(e) Experimentally observed crack path

Figure 5.31: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for CCD test

at different displacements.

5.4.3 Cross-shaped cup deep drawing tests (CSD)

In order to present the capability of our numerical simulation methodology for hot forming processes with

complex geometry, the proposed fully coupled damage model was used for the cross-section deep drawing

analysis. The geometry of the CSD process is shown in Figure 5.32. No symmetry condition is considered
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and the simulation was performed with the full part. The element type for the blank is brick element C3DSRT
from Abaqus element library and the mesh is shown in Figure 5.32 where different mesh size was set for

the blank with the minimum mesh size of 0.35 mm in the region of interest.

(a) Geometry (b) Mesh of blank
Figure 5.32: Numerical model for CSD test.

The punch velocity is 1.5mm/s, blank-holding force and pad force are 2.5 kN and 1.5 kN respectively, the
temperature of the blank sheet is assumed to isothermal and the contact with the tools will not change the

temperature of the blank.

The force vs displacement curves of AZ31B simulation results at different temperatures are shown in Figure
5.33. A temperature-induced softening leading to a decrease of the force and increase of displacement is
clearly observed as the temperature increases. At room temperature, final fracture appears at small
displacement (5.1 mm), which indicates a low formability of CSD test for AZ31B. However, the
displacement at final fracture increases with the temperature. Accordingly and as expected the formability

is improved at high temperature.
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Figure 5.33: Force vs. displacement curves of CSD test at different temperatures.
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To show clearly the blank deformation during the forming process, the distribution of von Mises stress,
damage (SDV14) and plastic strain (SDV15) inside the formed AZ31B sheet under different temperatures
at the same displacements are compared. Figure 5.34 shows that at the displacement of U=2.5 mm, the
equivalent stress and plastic strain at different temperatures are augmented at the highly deformed region
(corners of the cross-shaped punch). The ductile damage is localized at the same places of the blank for
different temperatures. At room temperature, the damage localization is weak (Duwwx=1.175%) at the
displacement of U=2.5 mm (see Figure 5.34(a)). The maximum value of ductile damage is decreased at high
temperatures, as shown in Figure 5.34(b) and 5.34(c), which shows a delay of damage evolution at high

temperatures.
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(c) T=200 °C (Displacement U=2.5 mm)
Figure 5.34: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for AZ31B

under different temperatures at displacement U=2.5 mm.

Figure 5.35 shows the distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for
AZ31B under different temperatures at displacement U=5.1 mm. At room temperature, the cracks appear at
the corners of the punch for this displacement, and propagated along the horizontal direction of the blank.

Due to the full coupling effects, severe drop of the equivalent stress (as well as all the internal stresses) is
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then observed inside the fully damaged areas (see Figure 5.35(a)). The maximum value of accumulated
plastic strain reaches 21.9% at the damaged areas. For the punch displacement of U=5.1 mm, no cracks
appeared at high temperatures (T=150 °C, T=200 °C), as can be seen in Figure 5.35(a) and 5.35(b). However,
the values of ductile damage at these two temperatures become more important (Dya=11.7% for T=150 °C,

Dnax=3.93% T=200 °C) compared to that at low displacement (Figure 5.34(b) and 5.34(c)).
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(c) T=200 °C (Displacement U=5.1 mm)
Figure 5.35: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for AZ31B

under different temperatures at displacement U=5.1 mm.

Since the blank is fractured at room temperature for displacement U=5.1 mm, we continue to compare the
distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for displacement of U=7.15
mm under temperature of 150 °C and 200 °C, as given in Figure 5.36(a) and 5.36(b). The macroscopic
cracks appear at the cross-shaped corners of the blank for temperature of 150 °C, while there is no cracks
observed at temperature of 200 °C. The von Mises stresses at the fractured corners are approximately zero.
For the temperature of 200 °C, the maximum value of damage and plastic strain reach to 22% and 63.48%
respectively. The macroscopic cracks are observed at the displacement of U=8.72 mm, and the location is
at the corners of the cross-shaped blank.
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von Mises stress Damage Accumulated plastic strain
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(c) T=200 °C (Displacement U=8.72 mm)
Figure 5.36: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for AZ31B at

different temperatures and displacements.

Through the comparison of Figure 5.34, Figure 5.35 and Figure 5.36, we can observe a similar scenario of
crack initiation and propagation for the cases with different temperatures. However, the crack initiation and
propagation is delayed with the increase of temperature. Large punch displacement can be reached at high
temperatures. The formability is highly improved and the damage can be delayed with the temperature
increases. For the case without cracks appearing, high temperature leads to a low damage value at the same

displacements, as shown in Figure 5.34, Figure 5.35(b) and Figure 5.35(c).

Temperature (SDV25) distribution before and after the onset of fracture with different initial blank
temperatures (20°C ,150 °C, 200°C) are shown in Figure 5.37. The maximum temperature appears at the
corners of the specimen where the cracks take place. The increase of temperature due to the behavior and
damage is not significant (6.9°C for initial blank temperature 20°C, 10.6°C for initial blank temperature
150°C, and 11.4°C for initial blank temperature 200°C).
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Figure 5.37: Temperature (SDV25) distribution at different initial blank temperatures.

For the purpose of comparison, an example of fractured cross-shaped blank sheet of AZ31B [Leel5] formed
under non-isothermal condition is given in Figure 5.38, in which the experimentally determined forming
height at fracture is 11.5 mm. The numerically predicted final fracture of the CSD test at different values of
the initial blank temperature is shown in Figure 5.39. The failure of the blank sheet at different temperatures
locates at the corners of the cross-shaped die for all the cases, which is consistent with the experimentally

observed crack path as shown in figure 5.38.

Figure 5.38: Example of fractured cross-shaped blank sheet of AZ31B [Leel5].

The punch displacement at fracture under high temperature is highly increased compared to that at room
temperature (i.e. 5.5 mm for room temperature and 11.97 mm for temperature of 250°C), as shown in Figure

5.39. The crack path is well predicted by the numerical simulations. Therefore, the proposed fully coupled
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damage model could predict the location of failure with good accuracy. The simulated forming height at
fracture is increased with the temperature, which shows a significant improvement of the formability of
AZ31B sheet at elevated temperature. The current model presents well the formability and fracture behavior
of AZ31B.
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Figure 5.39: Final fracture and punch displacement of AZ31B for CSD test at different temperatures.
5.5 Conclusions

In this chapter, the identification methodology for anisotropic parameters, hardening parameters and damage
parameters of the proposed model is presented in details. Titanium alloy Ti-6Al-4V are investigated at room
temperature, and validated by simulation of flat tensile test, the simulation results show a good agreement
with the experimental measurements. For Mg alloy AZ31B, the material parameters are calibrated under
different temperatures. Simulations of three-point bending (TPB) tests at room temperature and circular cup
deep drawing (CCD) tests at high temperature are performed to validate the capability the proposed

constitutive model in sheet metal forming process for Mg alloy. Finally, the simulations of cross-shaped cup
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deep drawing (CSD) tests are conducted at different temperatures, which shows a satisfied damage and

fracture prediction ability of the proposed model in hot sheet metal forming processes.
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Conclusions and main perspectives

Since the constitutive equations are vital in FE simulations of sheet metal forming processes, this work aims
to develop the thermodynamically-consistent non-associative constitutive equations fully coupled with
isotropic ductile damage for hot sheet metal forming. It should be addressed that the proposed theory
embraces many phenomena observed in metal inelasticity. For example, the initial anisotropy, tension-
compression asymmetry, hardening asymmetry are successfully included in the proposed model.
Furthermore, the CDM damage model is enhanced by accounting for the Lode angle and stress triaxiality

effects. These achievements constitute the main contribution of this work.

The proposed anisotropic elasto-visco-plastic constitutive model accounting for mixed nonlinear isotropic
and kinematic hardenings strongly coupled with isotropic ductile damage was formulated in the framework
of thermodynamics of irreversible processes. Then numerical simulations of sheet metal forming processes

were applied. All the contents are presented sequentially in each Chapter, as summarized below:

® The major phenomena observed in light weight metallic materials during hot sheet metal forming

processes are presented and discussed.

® Anisotropic thermo-elasto-visco-plastic constitutive equations fully coupled with isotropic ductile
damage for metallic materials under large strains, are formulated based on continuum damage
mechanics framework. The third stress invariant is added to Hill equivalent stress to describe the
tension-compression asymmetry exhibited by HCP materials. Distortion of the yield surface is taken
into account. The kinematic and isotropic hardening parameters are assumed to be function of the
normalized Lode angle and equivalent plastic strain to capture the hardening asymmetry. The
introduction of tension-compression asymmetry in yield stress and hardening helps to capture
accurately the complex behavior exhibited by Mg alloys. A new approach to include the microcracks
closure effect to influence the damage evolution under a wide range of stress triaxiality is proposed.
Lode angle-dependent enhanced fully coupled damage model is developed to treat the Lode angle effect

on ductile damage evolution.

® The associated numerical aspects of the proposed model are presented. The constitutive equations have
been discretized in time domain using appropriate finite difference scheme and in space domain using
FEM. The global resolution scheme as well as the fully implicit local integration scheme of the

viscoplastic model are elaborated.

® The capability of the proposed fully coupled model is presented through a systematic parametric study.

The initial anisotropy, tension-compression asymmetry, hardening asymmetry and distortion of the
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yield surface are investigated first without coupling with isotropic ductile damage, while the interaction
with temperature effect is carefully studied. When fully coupled with ductile damage is considered,
significant effects on damage evolution induced by these phenomena are observed. Through the
introduction in the fully coupled damage model of stress triaxiality and Lode angle effects, the
capability of the proposed model is enhanced tremendously in terms of damage prediction under
different loading paths (shear, tension, compression) within a wide range of stress triaxiality. The
sensitivity of the newly proposed parameters (hardening parameters, damage parameters) on the
macroscopic behavior shows clearly the strong ability of the current model in capturing the complex

behaviors of light weight metallic materials.

® The material parameters identification strategy is presented in detail. The anisotropic parameters,
hardening parameters, damage parameters are calibrated successively at certain temperatures, then
temperature dependent functions are used to describe the evolution of these parameters with
temperature. The procedure is realized by MATLAB-based minimization software interfaced with
ABAQUS FE code through the Python script. The desired values of the material parameters are
determined through comparing the simulation results to the experimental data by minimizing the
objective functions. The identification is applied for two materials (Titanium alloy Ti-6Al-4V at room

temperature and Mg alloy AZ31B at elevated temperatures).

® Three sheet metal forming processes namely three point bending test (TPB), circular cup deep drawing
test (CCD) and cross-shaped cup deep drawing test (CSD), are simulated for Mg alloys AZ31B under
room and high temperatures using the proposed fully coupled damage model. The high capability of
the fully coupled CDM model is validated by the comparisons of the damage initiation and propagation.

It bears to emphasize that the pursuit of more accurate prediction in material behaviors with simple
numerical implementation is always desired. The current proposed model seeks to include the main physical
phenomena under large strains of light weight metallic materials, such as various types of hardening
(isotropic and kinematic hardening, distortional hardening), the various anisotropies (Initial anisotropy,
tension-compression asymmetry) and fracture by ductile damage under complex loading paths. Besides the
merits of the proposed model, it also has limitations: (1) the predicted yield surface shows large equi-biaxial
compression stress, which indicated that more advanced yield function is still needed; (2) in order to capture
the pronounced anisotropic and asymmetric behaviors of Mg alloy at room temperature, new material
parameters are added, when applied for elevated temperatures, the identification work to obtain the material
parameters are heavy. Considering the limitation of the model as well as the limited time for this work,
further developments are needed to be done in the near future to enhance the proposed model, as summarized

below:
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Mg alloys often exhibit more complex stress vs. strain response when applying cyclic loading path at
room temperature, which is caused by the interaction of slip, twinning, de-twinning deformation modes
respect to different loading paths. The current model could not describe this complex behavior which

need to be exploited later, the use of multi-surface yield criterion could be feasible.

The proposed viscous stress could not accurately describe the stress vs. strain response at small plastic
strain level. Enhanced viscous stress model by introducing dependency of the viscous module on

equivalent viscoplastic strain should be considered.

The yield criterion used in the current work can describe the SD effect while it is unable to apply for
pressure sensitive metals, to obtain a wide application range for different metals of the proposed model,
extension by using more sophisticated yield functions to include the pressure sensitivity should be made

[Chaboche06, Saanounil2, Loul3b, Yoonl4].

Only anisotropic plastic behaviors are taken into account in this work, while ductile damage can be
highly anisotropic in sheet metal. The proposed model could be extended to couple the anisotropic
damage using existing anisotropic CDM damage model developed by our team [Nguenl2, Rajhil4,
Badreddinel5].

To obtain more accurate damage prediction in various metal forming processes, adaptive meshing
methodology should be taken into account [Bouchard03, Labergerel4]. To avoid the dependence of
the numerical solution to the discretization aspects, the current fully coupled local model should be
extended to the non-local formulation using the generalized framework of micromorphic theory

[Saanounil2, Diamantopouloul7, Liul7].

Systematic experimental works for Mg alloys or Titanium alloys are required to complete the
identification of the proposed model correctly. Meanwhile, this model need to be applied for much

more materials (i.e. ZEK100, pure Ti) to extend the applicability of the present model.
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Introduction

Ce travail de thése est dédi¢ au développement d’une modélisation phénoménologique thermodynamique
pour une meilleure description du comportement thermomécanique complexe avec endommagement ductile
en mise en forme par grandes déformations a hautes températures de téles métalliques. Ce modéle permet
de prendre en compte plusieurs couplages forts entre les déformations thermoélastiques, les grandes
déformations inélastiques, les écrouissages (isotrope et cinématique), les échanges thermiques et
I’endommagement ductile. En se basant sur les compétences en modélisation théoriques et numériques
acquises au sein de 1’équipe LASMIS, un mode¢le anisotrope thermo-élasto-viscoplastique couplé a
I’endommagement ductile isotrope a ét¢ proposé dans ce travail. L’effet de la fermeture des microfissures,
de la triaxialité des contraintes ainsi que 1’angle de Lode, ont été pris en compte dans le mode¢le. L’ asymétrie
de la surface de charge a été prise en compte en introduisant la dépendance au 3™ invariant des contraintes
Js dans le critere d’écoulement de Hill. Egalement la dissymétrie de 1’écrouissage a été représentée par
I’introduction, dans les paramétres de vitesse de saturation de 1’écrouissage, d une dépendance a I’angle de

Lode.

La formulation du mode¢le a été réalisée dans le cadre de la thermodynamique des processus irréversibles en
utilisant une théorie générale de plasticité non associée a normalité non-associée en grandes déformations
inélastiques. Les aspects numériques, associés a I’implémentation du modele dans le code de calcul par E.F.

ABAQUS/Explicit via la routine utilisateur VUMAT, ont ét¢ développés.

La détermination des parameétres d’anisotropie est assurée par la minimisation d’une fonction objective qui
représente 1’écart au sens des moindres carrés entre la prédiction du modéle et la mesure expérimentale
[Yoon14]. Pour identifier les paramétres d’écrouissage et d’endommagement, une méthode inverse a été
mise en ceuvre basée sur la minimisation de I’écart entre les réponses du modele et les résultats
expérimentaux en termes de courbes force-déplacement. Cette méthode a nécessité le développement d’un

programme Matlab couplé au code de calcul ABAQUS/Explicit via des scripts en Python [Yuel5].

Une étude paramétrique exhaustive a été conduite sous divers trajets de chargement simples et complexes
pour vérifier les capacités prédictives du modéle proposé. Enfin, des applications a des procédés de mise en
forme a haute température de toles minces sont réalisées et les résultats des simulations numériques sont

comparés aux résultats expérimentaux s’ils sont disponibles.

La thése est organisée en cinq chapitres.
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Chapitre 1: Les principaux phénomenes physiques exhibés en mise en forme a
haute température

Les nouveaux alliages légers a hautes propriétés mécaniques, comme les alliages d’Aluminium, de
Magnésium et de Titane, sont des matériaux trés prometteurs pour la construction mécaniques et sont de
plus en plus étudiés durant les derniéres années. En effet, la demande industrielle de ces matériaux ne cesse
de s’accroitre dans plusieurs secteurs industriels (voir Figure 1.1) sous la pression des nouvelles normes de
réduction des oxydes de carbone en faveur de la protection de ’environnement. Les alliages d’ Aluminium
ont déja été trés utilisés dans les secteurs de construction automobile (cadres, panneaux de carrosserie et
roues), de construction navale et de I’industrie aéronautique et spatiale. Les alliages de Titane, a cause de
leurs modules spécifiques important, ils sont spécialement dédiés aux applications aéronautiques et
spatiales pour la fabrication par exemple d’aubes de turbes de moteurs a réaction. Egalement, a cause de
leurs excellentes résistances a la corrosion et a la fatigue, ils sont utilisés dans I’industrie pétroliére pour la

fabrication des outils de forage.

Figure 1.1: Matériaux légers de construction innovante en industries automobile, navale, aéronautique et

pétrolicre.

Par contre leur utilisation dans le secteur de I’automobile est fortement limitée par leur colit onéreux. Les
aciers a haute et a trés haute résistance ayant des modules spécifiques trés importants comparés aux aciers
conventionnels, ont également fait leur preuve dans la construction automobile. Les alliages de Magnésium
représentent un candidat intéressant pour le secteur de I’automobile et une alternative aux alliages
d’Aluminium et aux aciers a haute résistance pour le rapport important entre leur contrainte a la rupture et
leur densité permettant d’avoir des structures plus Iégeres réduisant la consommation de 1’énergie. Par contre,
leur utilisation industrielle a été limitée par leurs fortes anisotropies initiale et induite [Agnew05, Khanl1,
Shil3] incluant une asymétrie importante entre traction et compression (effet-SD) [Kelley68, Khanll,
Steglich11]. En effet, leur comportement mécanique exhibe un effet important d’asymétrie de 1’écrouissage
entre traction et compression [Khan11, Kabirian16, Leel7] ainsi qu’une trés faible formabilité a température
ambiante [Chen03, Kiml13, Rodriguez16]. Ces caractéristiques sont surtout reliées a leur structure
Hexagonale-compacte (HC). Par conséquent, la modélisation du comportement mécanique complexe de ce
type de matériau demeure un défi a relever.
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Chapitre 2: Formulation théorique du modéle thermo-élasto-viscoplastique

couplé a ’endommagement ductile isotrope

2.1 Formulation du couplage du modéle proposé

2.1.1 Variables d’état et variable effectives

Dans ce travail, le model est formulé dans le cadre de la thermodynamique des processus irréversibles

avec variables internes [Lemaitre90, Saanounil2, Skrzypek13]. Les couples de variables observables et

internes sont les suivantes :

(&,0 ) pour la déformation totale et le tenseur des contraintes de Cauchy,

(7,s,) pour la température absolue et I’entropie spécifique,

(&,0 ) représentant les déformations élastoplastiques avec 1’hypothése des petites déformations
¢lastiques et le tenseur des contraintes de Cauchy,

(Z]/ T, § =grad(T)) représentant le vecteur flux de chaleur et sa force conjuguée,
(r,R) représentant 1’écrouissage isotrope qui représente la variation du rayon de la surface de charge,

(&, X ) représentant 1’écrouissage cinématique qui représente la variation de la position du centre de

la surface de charge

(d,Y ) représentant I’endommagement ductile isotrope. La variable scalaire d est une moyenne de tous
les endommagements dans différentes directions, avec d=0 pour un élément de volume initialement

saint et d=1 pour un ¢élément de volume complétement endommagg.

Le couplage fort entre I’écoulement plastique, I’écrouissage et I’endommagement ductile est réalisé dans le

cade de I’hypothése d’équivalence en énergie totale [Saanouni94, Saanounil2], permettant de définir les

couples de variables effectives (g",g) (g?,)_? ) et(F,ﬁ) comme décrit par les équations suivantes :

5 =\l—de’, 5-—2

(€ £, 8 1_a,) 1
(@=i-da, £-—2-) )
(F=J1-d"r, g=—R ) 3)

Le parameétre y est un paramétre de couplage de I’endommagement et 1’écrouissage isotrope [Saanounil2].
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Dans ce travail une nouvelle approche est proposée dans le but d’éviter le probléme de continuité induit par
la décomposition spectrale pour tenir compte des fermetures de microfissures. L’idée de base consiste a
considérer une fonction / de fermeture de microfissures dépendant de la triaxialité des contrintes comme
suit :

1+h,
2

) = +1‘2”f tanh(&,7) @)

_ (o)

ou
()

est la triaxialité, & et &, sont deux paramétres matériau qui contrdlent evolution de A.
2

L’objectif de cette forme proposée est d’assurer pour les fortes valeurs positives de la triaxialité des
contraintes une valeur entiére de 4 (/4 =1) par contre pour des valeurs négatives de la triaxialité des
contraintes les valeurs de / tendent vers /1. Notant que la transition entre ces deux valeurs limites se fait de
maniére continue notamment pour le cas du cisaillement pur pour lequel A(0)=(1+h)/2 . Les variables

effectives sont alors redéfinies sous la forme suivante :

H
= I=h(pyd’ g et &' =——2—— (5)
J1=h(pd”
= g §

éeD

1-h(n)de* == 6
VI-h(mde’ et § i (6)
a=\1-hp)da et ¥ =2 __ (7)
J1=h(n)d
R

FeJl-h(p)d"r et f-__ R (8)

1= h(n)d”

Les paramétres y, et y, sont des parameétres de couplage qui contrdlent I’effet de I’endommagement sur la

partie hydrostatique de la contrainte et de 1’écrouissage isotrope.
2.1.2 Potentiel d’état et relations d’état

L’énergie libre de Helmholtz ‘P( &,a,r,T ) = ‘P( &,a,rT,d ) , définie comme fonction convexe des variables

de type déformation et concave de la température [Germain86, Saanounil2], dans la configuration fictive

non-endommagée, est choisie comme un potentiel d’état. Il peut étre décomposé en une partie

thermoélastique W™ et une partie thermo-viscoplastique ¥*” en supposant que les déformations

inélastiques et les écrouissage n’affectent pas les propriétés d’élasticité :
pY = p¥" (& D+ p¥" (&7, T) = pP" (", T,d) + p¥"" (.7, T,d) )
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pe _ 1 ~eH | el ~eD | xeD ~ell C, )
PY = i (DE 87+ i (T)ET 2 E7) =3k (DE (T ~T)E" D~ E(T 1)

0

= %(l —h(m)d" Y (T)e™ : ™)+ A= h(md)u, (T)(e™ 1 ™)

3 hd Rk (DE, (T~ T,)(e™ 2 1) —’2—?(%%)2

0

(10)

PP = % Cha:a +% O(T)i* = é(l —h(d)C(T)a: a +%(l — h(p)d" YO(T )

Dans ces équations, x,(T) et A4,(T) sont les constantes de Lamé ( A,(T)=vE(T)/((1+v)(1-2v))) et
u,(T)=ET)/(20+v)) , &(T)=0CA(T)+2u,(T))/3=ET)/3(1-2v)) est le module de compressibilité,
E(T) et o,(T) sont le module de Young et la limite initiale d’¢lasticite , C(T)et Q(T) sont les modules
d’écrouissage cinématique et isotrope. Le parametre /,(T) est le paramétre de fermeture de microfissures
et peut étre considéré comme dépendant de la température. Le coefficient de dilatation thermique & , la
chaleur spécifique a volume constant C,, la densité p et le coefficient de Poisson v sont supposés

constants par rapport a la température. Pour les fonctions de température, on assume une variation par

rapport a une température de référence 7. Dans I’espace des variables effectives, le potentiel d’état s’écrit :

PP =%fé (T &™)+ i, (T 1)

3k (TE(T-T,)(e" :1)—3—?(%7;)2 (11)

0

P = 20N @+ O

Les relations d’état s’obtiennent par dérivation du potentiel d’état par rapport aux variables d’état comme
suit :

Q'H

6‘? eH ¥
o= p— = (=hed* )<, (e =3J1=h(md" x,(T)(T-T,)&,1 -
+2(1=h(md)u, ()™
a‘{” 3/('6 7, eH Cu
S =5 = JI=h(p)d" &, (e D+ =(T-T)) (13)
P 0
x=pZL - 2a- e (14)
a 3
R=p =L~ (1= hid " O(T)r (15)
oY .
— 4t _ye a 7 1
V=op =YY Y (16)
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V= hOyd (T 2™ ) o ()7 12

- 3h(77)7€dn?1’(e(T)é(T_To) (& :1) (162)
wi-wpa

v = hNC(aa 165)

v = hnyy,d O (160

2.1.3 Analyse des dissipations

Il est établi que la dissipation mécanique et la dissipation thermique sont toutes les deux séparément
positives, ce qui permet de séparer 1’analyse des dissipations en partie mécanique (ou intrinséque) notée

®" et partie thermique notée @' , de sorte que :

D=0 +d" >0 (17)
o =—%~grad(T)20 (18)
O =¢:D" - X:a—Ri-+Yd (19)

2.1.3.1 Analyse de la dissipation thermique

Le vecteur flux de chaleur ¢ peut étre obtenu a partir du potentiel de Fourrier ou & représente le coefficient

de conductivité thermique. On arrive alors a :
G =—kgrad(T) (20)

L’équation de la chaleur peut étre obtenue en combinant cette équation avec la premicre loi de
thermodynamique [Lestriez02, Saanouni03, Saanounil2]. Dans un milieux ¢lastoviscoplastique

endommageable elle s’écrit :

or ' Tor T ar T or

Isentropic coupling term

—k - div(grad(T)) + ®" —pCVT+T[6—g'ée +& R, —6—Yd} =0

€2y

Avec conditions aux limites Dirichlet et Neumann
2.1.3.2 Analyse de la dissipation intrinséque

Pour définir les évolution des variables d’état (D”,¢,7,d) nous définissons dans le cadre d’une théorie non-

associée un critére d’écoulement f(c,X,R,d;T) et un potentiel inélastique F (o, X,R,Y,d;T) permettant de
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vérifier a tout moment 1’inégalité résiduelle :

f= (|Zc j/ _W| A J3 )1/3 _ R —o (T) (22)
V1=h(m)d JI=h@pd
(zhzl) e s
JI=h(md Ji=hear 4C(T)(1-h(nd)

(23)

R s(ra) r-rm\"
20(T)(1-h(myd” ) (s(T)+1)(1=hepd )" \ S(7.6,)

ou S(T),s(T),Y,(T), (T)sont des parametres caractérisant 1’évolution de ’endommagement, « et b sont

des parameétres qui définissent la non linéarité de 1’écrouissage cinématique et isotrope respectivement. Pour
rendre compte de 1’asymétrie de I’écrouissage exhibé par les alliages de Magnésium, ces deux parameétres

sont définis comme fonction de I’angle de Lode normalisé 8, (-1<6, <1) ainsi que de la déformation

plastique équivalente p comme suit :
a(@,,p) = a(T) +%[1 —~Tanh($,0,)[a,(T) ~(a,(T) + a;(T)Tanh(¢,(p — p,(T))] (24)

b(@,.p) = b(T) +§[l ~ Tanh(@h0,)[b,(T) — (b, (T) + by (T Tanh(d, (p — p, (TY)] (25)

ou a,(7),a,(T),a,(T),b(T),b,(T),b,(T),4,4,,p,(T) sont des parameétres matériaux. L’angle de Lode
normalisé 6, (-1<6, <1) est défini comme suit :

80, _ 1- garccos(g'\/g;/];
V4 Vs J;

11 a été prouvé expérimentalement que, pour certain matériaux, la ductilité est fortement dépendante de 1’état

g,=1- (26)

des contraintes induite par le chargement qui peut étre représentée par I’angle de Lode [Bao04]. Différents
mod¢les d’endommagement et rupture ont été proposés basés sur la prise en compte de 1’angle de Lode
[Xue08, Bai08, Caol3, Chbihil7]. Dans ce travail, I’effet de I’angle de Lode sur ’endommagement est
considéré a travers le paramétre de ductilité S via I’expression suivante :
_ — £
S(8,.T)=$,,(T)+(S,(1)-S,,(T)) Tanh(8, | ") 27

Les paramétres S, (T), S,(T) et £ permettent d’ajuster la ductilité pour diverses états de contraintes.

Les contraintes équivalentes définies dans les équations Eq.(22) et Eq.(23) sont quadratiques de type Hill et
sont modifiées pour y introduire le troisiéme invariant de contrainte pour décrire 1’asymétrie des limites

d’écoulement entre les chargement de traction et de compression, observée pour les alliages de Magnésium
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[Cazacu04, Yoonl14] :

|Z], =S - X): (D) (S, -X) 5 (i={e.p) (28)
|2'],, = det(2") = det(H(T): (S, - 2)) (G ={e.p)) (29)
'G'+H  -H el 0 0 0] (G'+H'" —H" -G 0 0 0]
-H' H +F' —F' 0 0 -H" H'+F" —-F" 0 0 0
H - -G’ —F' F'+H' 0 0 0 H = -G' -F"' F'+H" O. 0 0 (30)
= 0 0 0 2N’ 0 0|~ 0 0 0 2N"' 0 0
0 0 0 2M" 0 0 0 0 2M7 0
|0 0 0 0 0 2L] | o 0 0 0 0 2L

ou H et H' sont deux opérateurs symétriques d’anisotropie d’ordre 4 caractérisés chacun par 6 parametres.
Ces derniers sont considérés dépendants de la température. Pour la théorie non-associée a normalité non

associée, ces opérateurs sont définis séparément pour le potentiel plastique ( £ ’, H "1y et pour le critére de

plasticité (4, H"") . Notons qu’en prenant w=1(in Eq.(22)) la contrainte équivalente de type [Cazacu04]
peut étre retrouvée et en prenant w=0 la contrainte équivalente classique de Hill peut étre obtenue. Pour
ce dernier cas si on fixe 1;1 =¥ i @ = %L{— /1®1) on retrouve la contrainte équivalente classique de von

Mises.

En suivant les travaux de Frangois [Francois01], une fagon simple pour décrire la distorsion de la surface
de charge dans le cadre de la thermodynamique consiste a définir 1’écrouissage cinématique comme étant
I’¢lément de controle de la distorsion. Dans ce travail, le modéle de Francois a été modifié permettant de
mieux décrire le changement de la surface de charge dans la direction orthogonale a la sollicitation [Yuel4,

Badreddinel7]. Dans cette approche la partie déviatorique de la contrainte S qui intervient dans les

contraintes équivalentes du critére et du potentiel d’écoulement inélastique est remplacée par une contrainte

de distorsion S, définie par :

S,:8
S =S+ — X
20-hnd) X5 (DR /fT=hna +0,(7))
(31)
. X:x s
21 —h(n)d)Xlz(T)(R/ 1—h(n)d" +ay(T))_0
S =5+ S x (32)

21 = o) X ()R- hnd” +,()

172



Résumé extensif en Francais

S,=5-S. et s =5 X (33)

=x =X

[><

[><
[><

Les parameétres de distorsions X (T), X} (T), X,,(T) sont définis comme fonction de la température : Les
parametres X, (7)) et X/ (7) contrdlent ’amplitude de la distorsion du critére de plasticité et du potentiel
plastique respectivement. Le parameétre X;,(7) affecte la taille de la surface de charge dans la direction
orthogonale de chargement. Pour assurer la continuité et la convexité de la surface de charge les paramétres
de I’écrouissage cinématique doivent vérifier la condition (X;”(T)<X, =C/a) [Yuel4, Badreddinel7,
Zhang18].

Dans le cadre la viscoplasticité, les variables flux qui définissent 1’évolution des phénomeénes dissipatifs

peuvent étre postulés comme suit [Lemaitre09, Skrzypek15]:

Tenseur taux de déformations viscoplastiques :

. . OF .
QP:A/_EZA/QP (34)

Tenseur d’évolution de I’écrouissage cinématique:

oF

a= _Af&: Af(ﬂx —a(g, p)a) (35)
Evolution de I’écrouissage isotrope :
_ . OF . ., -
F==A, R =A, (n —b(H,p)r) (36)

Evolution de I’endommagement ductile :

oF A, ((Y—YO(T» j”” 37)

TNy T U= hd) ™\ S(T,0)
avec
1 X®S
W= |nt " 2% (38)
J1=h(nd = (-h(pd)X! (T)(R/ 1= h(p)d” +ay(T))
_nA _ (S, :8,) n |
| B 2(1-h(q)d)Xg(T)(R/Jl-h(q)d% +o-y(T))_
o1 39
T Jha| | (5: X)X n') . 7
(A=) X[ (D(RINI=had” +0,(D) (X : X)

173



Résumé extensif en Francais

. 1 (Sy:8)(n": X) +1 (40)

NI=h(nd™ | 2(1- h(p)d )’ X7 (T)(R II=h(d” +a, (T))2

|2, (By:z)-Sl2l,. 2
n = S 273 (41)
[z, ~wlel,

ou I’amplitude de la déformation viscoplastique est défini par A s déterminé par la forme de Norton-Hoff

[Lemaitre09]:

' (T)
v
e <K" (r>> e

Le scalaire positif /.\/» peut étre admis comme un multiplicateur viscoplastique en comparaison avec la

plasticité¢ indépendante du temps. Par contre ce multiplicateur n’est pas déterminé par une condition de

consistance comme pour le cas de la plasticité indépendante du temps.

A partir de 1’équation Eq.(42) on peut déduire le critére de charge viscoplastique suivant :
f7(c.X.R0,.d.T)= f(c.X.R,d.T)-K"(T)(A, )%"(“ = f(c.X,R,d,T)~0c,=0 (43)

ot la contrainte visqueuse est définie par la forme scalaire o, = K*(T)(A, )%‘m avec K'(T) and n"(T)

sont des parameétres caractérisant 1’effet visqueux et sont dépendant de la température.

Chapitre 3: Aspects numériques

Le modele développé au chapitre 2, décrit par un systéme d’équations fortement non linéaires, a été
implémenté dans le code de calcul par E.F. ABAQUS/Explicit a travers la routine utilisateur VUMAT.
L’ensemble des équations ont une forme classique d’équation différentielle ordinaire d’ordre 1 sauf les
équations d’écrouissage cinématique et isotrope qui ont une forme spécifique qui se préte bien a une
intégration numérique par schéma d’Euler purement implicite et un schéma asymptotique [Saanounil2]

comme suit :

3
—w|
H

(

1
A z° )
— — s n+l Rn+l
- ~0,(T))-0o

1=h(m)d, ., 1-h(mpd,"

n+l

0 (44)

vp —
St (Gt Xts R s O\ (ns1)> d,..T,)=

v(n+l) —

||

oy =N Shaen =X, ) HAT) Sy = X,) 5 (i ={e,p))

|21]....., =det(2") = det(HIT,): (S = X,.))

avec
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§° -5 4 §0(n+1) :§0(n+1) X

Edmn+l) T Zn+l = n+l
20=h()d, )X (TR, 1=, +0,(T,))

Xt X

n+l * Z—n+l

- S0n+l
20-h)d, )Xo (T) (R 1=z +0, @)

5” §0(n+1) :§0(n+1) X
=n+l
21, ) Xf () (R, I I= ), +0,(T,)|

=d(n+l)

=S5, +

S X
§0(n+1) =S5, _%X et

Zn+l * Z=n+l

1
X ELRS | [P o _gtr(gnﬂ )l

Les variable force sont données par:

u
4 S,

=(1- h(n)dmu (T, +2(1-h(n)d,, )1, (T,)es,

—3\/1 h(md}, & (T)(T-T,)¢1

2
Xy =35 (A=h(n)d,.))C(T,)a,.,

=(=h(md, YT,

Y =Y. +Y5, +Y

n+l n+l n+l

n+1 h(n))/edr}t:rl lﬂ' (T )(g +1 : —n+l) + h(?])ﬂe (T )(—n+l : —n+l

3h(f7)7@d "k (LT, - T))

2J1=h(md;:,

h(ﬂ)C (T)a

(&% :D)

n+] - n+l * _n+l

Y., = h(ﬂ)ml,ﬁ1 o),

Les variables déformation associées sont exprimées comme suit:

er =gl =N’

X, .®S

Wlth np 1 A . D ZZn+l =0(n+1)
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;(Aig‘;“ + gn) Euler implicite
(1+a(1,)A4)
gnﬂ = X (57)
—a AL n,n —a (T, )AL .
" —= |l Asymptotique

a, A )( ) Asymptotiq

A (§0(n+1) :§0(n+1)) A

=n+l Zn+l

1 20-hnd, ) X{ T R, 1= +6,(7)
avec n' =——0—— (58)

T kG, | Syt X)Xy 1) s
=0(n+1
(A=hd DX (R N1=HOD 40, (D) (X i X,)

;<Alngﬂ + rn) Euler implicite
(1+56(T,)A%) 59)
rn+l = r
_b(T, )AL n,. —b (T, )AL .
re Y (- Asymptotique
b(T, ) 1-d,., ( )
S : S 41X

avec 1 (Soenen Sy By 2 X0) ‘1 (60)

a2, (B, TR o, (T

4 ||Z||H(n+]) (I;I(Tn) : Z)(,M) _%"Z"n(wl) (ZIJ)(HI) : 1;1,(]:7) (61)

—n+l1 213
[z, ~wlz,

(n+1)

Finalement I’expression de I’endommagement en fin du pas de temps:

s(T,)

Y. YT

dn+1 :d,, + Aﬂ’ - n+l 0( n) (62)
(1 _dn+1 )/;( 2 S(T;l)

Prédiction élastique

La déformation élastique en fin du pas de temps ¢

n+l

est donnée par :

£, Ag¢ £, Ae Ag'”
H D H D H D
e _ e [2 _ e e eH eD _ e e H D vpH vpD
Ern = E T E =€, Y&, AT +AeT =&+ +As" +Ag” —(Ae™ +As™") (63)

avec As” =As" — A" =tr(As—Ag”) et Ag” =Ag” —Ag””

Durant la prédiction €lastique nous supposons que ’incrément de déformation imposé est purement

¢lastique et pour une condition isotherme de température T

n+l

=T ne produisant donc aucune dissipation ce

qui permet d’avoir :
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(Agw 0 Aa 0 A]” 0 Ad O) = (8n+1 5 Qnﬂ :gn’ ’;HI :}/;1’ dn+l :dn) (64)
., est donnée par :
(65)

&

La déformation d’essai élastique a ¢
. N

eH * H D
_ e el el H
§n 8n+] +8n+] =& +£n +A£ +A§

dans laquelle &,,, et &,,, sont les parties hydrostatique et déviatrice de la déformation d’essai élastique

o*

Les parties hydrostatique o, et déviatrice S, de la contrainte sont données par :
S, +2(1-h()d, )t (T, )As” (66)

Sy =20=h(md, ) (T, )&, +As") =
ol = (=h(p)d )2, (T, tr(e, + Ag)] 6
=g, +(=h(md][)2A(T,)t(Ag)L =31 = h(m)d] k (T)(T, - T, ), L

D’ou la contrainte d’essai élastique aura la forme suivante
T 1
)¢l (68)

Syt
= 20=hnd, ), (T + (1= hnd7) A, (T,)es =3\J1= h(m)d? e, (T,)(T, -

JI=h(dr &, (T)(T, ~T,. )L

=S, +c"+2(1=h(n)d, ) u,(T,)Ae” + (1= h(n)d’ ) A, (T,) tr(Ae)I -3

. . St Sy
g;(rwl) =§n+l + e ) Xn
v
2(1-d)X5T)R, [ 1-d!™ + o ,(T,) 69)
XVI K}‘l *
21-d) X, (T)RI1=d™ +0,(T,) Sy
§0(n+1) = §n+1 _§x(n+1) and §x(n+l) = _);H ;n a4, (70)
|Z:il \/(E:Enﬂ) -X,.): [;Ii (7,): (§;’(kn+l) -X,) 1)
|25, = det(2"") = det(H/(T,): (S5, — X))
d,,T,) est obtenu

n+12 _n7

— X, le critére de charge viscoplastique d’essai f” (o,

Notons que Z §d(n+1)

a partir de I’équation Eq.(44) en fixant o =0.

v(n+l)

( =n+l ||y

d,T,)= \/l—dn _\/l—d; )

R o) (72)

1/
J3)

-—W

i+l

* *
f;zvfl (gﬂ+l H ‘Xn s

T,)< 0 alors 'incrément de charge est bel et bien élastique et la solution est donnée

n’n

Sl f;t (O-n+l’_n7

par:
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Gyl = Q-:Ha Exn =&, (a)
X . =X, a..=a b
Zn+l =n =n+l =n ( ) (73)
Rn+1 = Rn’ rn+1 = rn (C)
)/n-%-l = Yn’ dn+l = dn (d)
Correction viscoplastique avec endommagement:
Si f%(c..,,X,,R,.d,,T,)>0 les variables d’état d’essai élastique doivent étre corrigées a l’instant 7,

T3 Xit> ROy ,d,., permettant de vérifier que f,5,(0,., X1, R0, V(n+l)> d,.,,1,)=0. Les équations
discrétisées du systéme non linéaire peuvent étre réduites a uniquement 4 équations fonctions des 4 variables

AL, d, X, etn’

n+l% =n+l

. 3 1/3
(| Z H — 3 )n+1 Rn+1
f (Aﬂ d,,+17_;1+17)_(n+17]-;1) = — — _O-y(]:l)_o-v(nﬂ) =0
1=h0nd,a 1=,

(Ad,d T)=d. —d — AL Y (An, d T =Y (T)\ 0
o Bl Ko " U= hpd, )" S(T,) (74)

(AL,d T, )= & AN KXo ®§0(n+1) _
_n+1 n+l _n+1 _n+1 > _n+1 1 h(f])dnﬂ = X[] (7-;1 )(Rn+1 / 1_ h(ﬂ)dnﬂ + gy(]';l ))
—n+1 (Al dn+1 ’_n+l > _n+1 P T ) _,H.] C(Tn )(1 - h(?])d)[gn (Tn )eiaﬂM“ +%(1 _ e*fl,,(Tn)Al )] =0

Chapitre 4: Etude paramétrique du modéle proposé

4.1 Anisotropie initiale et asymétrie

La Figure 4.1 illustre différentes formes de la surface de charge, dues a la variation des paramétres
d’anisotropie considérant une asymétrie donnant une plus grande limite élastique en traction (w=1). Il est
important de signaler que les parametres F et F’ affectent la surface de charge le long de la direction
transverse sans modifier la forme de la surface dans la direction de laminage. Les paramétres G et G’
affectent la forme de la surface de charge dans la direction de laminage sans modifier la forme de la surface
dans la direction transverse. La variation des parameétres H et H’ n’affectent pas la taille de la surface en

expansion équibiaxiale et permet la variation de la surface dans les deux directions, de laminage et transverse.
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e 30,8

(d)

Figure 4.1: Effet des paramétres d’anisotropie sur la forme de la surface de charge en prenant w=1 (cas
des contraintes planes): (a) parametre F; (b) paramétre G; (c) paramétre H; (d) paramétre F; (€)
parameétre G ; (f) parametre H.
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Figure 4.2: Effet de la température sur la prédiction de la surface initiale de plasticité avec et sans prise en

compte de I’asymétrie: (a) Criteére de Hill classique; (b) Modéle proposée.

Comme illustré dans la Figure 4.2, la taille de surface est réduite en augmentant la température (sorte
d’adoucissement thermique). Le critere de Hill ne permet de décrire que 1’anisotropie initiale en traction ou
en compression tout en gardant une forme symétrique en traction et en compression. La Figure 4.2b montre
I’évolution de I’asymétrie traction-compression en fonction de la température. A la température ambiante
I’asymétrie est significativement importante qui s’estampe lorsque la température croit. La comparaison des
résultats des deux modéles montre un intérét important du modele proposé vis-a-vis de la description de

I’évolution de 1’asymétrie avec la température.
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4.2 Effet de ’asymétrie de I’écrouissage

L’asymétrie de 1’écrouissage est introduite a travers les paramétres de saturation de I’écrouissage
cinématique a et I’écrouissage isotrope b. Ceci est effectué¢ en définissant ces paramétres comme étant des
fonctions de I’angle de Lode normalisé et de la déformation plastique équivalente cumulée. A travers cette
étude paramétrique, les différents modes d’écrouissage caractérisant les alliages de Magnésium en
compression peuvent &tre obtenues en ajustant les paramétres des fonctions proposées. On peut noter que
dans le cas de la compression, le parametre a» contrdle le premier plateau a faible déformation plastique
tandis que le paramétre a;z contrdle la saturation de la contrainte aux grandes déformations viscoplastiques.
Pour le chargement de cisaillement, le paramétre a» induit une forte sensibilité de 1I’évolution de la contrainte
a faible déformation plastique tandis que le paramétre a3 induit une faible sensibilité de 1’évolution de la
contrainte aux grandes déformations viscolastiques. L’effet des paramétres b, et b3 est similaire au
parametres a, and as. Cependant, la contribution dans la variation dépendra de la valeur des modules
d’écrouissage C et Q. Pour le cas examiné (comme le cas d’une large classe de matériaux réels) ayant un
module d’écrouissage cinématique trés important devant le module d’écrouissage isotrope, on observe une
sensibilité plus grande aux paramétres d’écrouissage cinématique a faibles déformations viscoplastiques et
une grande sensibilité¢ aux parametres d’écrouissage isotrope aux grandes déformations viscoplastiques . Le

paramétre ¢ n’a d’effet important que pour le cas du cisaillement défini par 8, = 0. Le paramétre ¢, a une

influence sur la courbure de la courbe contrainte déformation pour tous les chargements excepté la traction
(cas 6, #1). Ce paramétre définit la taille du premier plateau obtenu en compression a faible déformation

viscoplastique.

(a)

=
(=]
o

400 -

. 300
z z
= =
] _ = 200 3
Eonot aZ=200 =150k a2=200
@ 22-100 hd Shear —— 927100
22=50 o a2=50
a2=15 a2=2%
— — -tension o - = -tension
Q . - 0 . .
0.0 01 02 0.0 X 02 b0 01 oz
Plastic strain Plastic strain Plastic strain

Figure 4.3: Effet du parametre a, sur les courbes contrainte-déformation viscoplastique: (a) Traction et

compression (b) Evolution du paramétre a en compression; (c) Cisaillement.
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{a) ,_f"

=400+

e

Z

%

% e

Rl 2 a3 50

< u3-35
a3=25
a3~ 10

0.0

= = -tlension

0.1 . R
Plastic strain

0.1

Plastic strain

02

Stress|MPa|

s
s

Shear
- a3~ 50

= a3 35
ui-25
a3-10

= = -tlension

1
Plastic strain

Figure 4.4 Effet du parametre ;s sur les courbes contrainte-déformation viscoplastique (a) Traction et

compression; (b) Evolution du paramétre a en compression; (c¢) Cisaillement.
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Figure 4.5: Effet du paramétre p; sur les courbes contrainte-déformation viscoplastique (a) Traction et

compression; (b) Evolution du parameétre a en compression; (c) Cisaillement.
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Figure 4.6: Effet du paramétre ¢ sur les courbes contrainte-déformation viscoplastique (a) Traction et

compression; (b) Evolution du paramétre a en compression; (c¢) Cisaillement.

4.3 Effet de la triaxialité des contraintes et de ’angle de Lode sur I’évolution de I’endommagement

Dans ce travail, I’effet de triaxialit¢ des contraintes est introduit dans le parameétre de fermeture de

microfissures i(n7) . Les valeurs souhaitées du paramétre i(n) en traction et en compression peuvent étre

ajustées en pilotant les parametres 4, et &, . L’effet de I’angle de Lode étant introduit dans le paramétre de

ductilité S(@) , les paramétres S, , S, et & sont utilisés pour ajuster les valeurs de S pour différents état des
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contraintes.

Les surfaces d’iso-endommagement incluant I’effet de 1’angle de Lode sont données dans la Figure 4.7. La
surface circulaire est obtenue pour le cas Sw.,=Ss (correspondant a aucun effet de I’angle de Lode). Pour le
cas ou Sy, <Se, la forme de la surface d’iso-endommagement pour une triaxialité fixée varie d’une forme
hexagonale a une forme d’étole a six cotés donnant une ductilité maximale en traction 6 =1 et minimale en
cisaillement & = 0 . Pour le cas Sy, >S.., la surface d’iso-endommagement pour une triaxialité des contraintes
fixée passe a une forme d’une fleur a six pétales donnant inversement une ductilit¢ minimale en traction
0 =1 et maximale en cisaillement @ = 0. Notons que dans le cas d’un écoulement isotrope de Mises, les
surface d’iso-endommagement posséde une symétrie de fagon que la surface a des valeurs identiques en six

point de la surface définis par 4, = +1.

-0,1
N\

034~ (7 - plane)

— : —
-0,3 -0,2 -0,1 0,0 0,1 0,2 03

D
€ |

Figure 4.7: Effet de (Six-Ss) sur la surface d’iso-endommagement exprimée dans le plan déviateur des

déformations.

L’effet de la triaxialité sur la définition de la surface d’iso-endommagement dans le cas (Swn= Ssn=0.5) est
montré sur la Figure 4.8a. Dans ce cas la forme circulaire est obtenue donnant la méme déformation
plastique a rupture quel que soit ’angle de Lode di a I’état des contraintes. L’augmentation de la triaxialité
des contraintes induit une réduction de la taille de la surface, ce qui conduit a une augmentation de la

déformation viscoplastique a rupture pour des valeurs négatives de la triaxialité des contraintes.

Lorsque I’effet de 1’angle de Lode est considéré avec S,.,—=0.5> Si=0.1, la forme en étoile a six branches de
la surface d’iso-endommagement gonfle homothétiquement en décroissant la triaxialité des contraintes

comme montré dans la Figure 4.8Db.

182



Résumé extensif en Francais

— Effect of triaxiality n 10— Effect of triaxiality n _

1,0 03 — , gl —
7=-033 —__ 2 ' 1 TO 7=l

- % RN =0

0,5 S \ 0,54
B 0,0 / / / \\’ \\ =1 o= 0,0_
% \ \ § \ w
05 -0,54
R ———

] S B ‘ o

10 \ii/ﬂ—plane) 10 gio (ﬂ_:plane)
10 05 00 05 1,0 10 0,0 0,5 1,0
g SDI
(a) Sien= Ss#=0.5 (b) Si=0.5, Sy=0.1

Figure 4.8: Effet de la triaxialité¢ de contraintes sur la surface d’iso-endommagement tracée dans le plan

déviateur des déformations pour d=0.9 et ~.=0.2.

Chapitre 5: Identification des paramétres matériaux et application a la mise

en forme e a haute température.

5.1 Identification des paramétres matériaux
5.1.1 Détermination des paramétres d’anisotropie et d’écrouissage

Des essais de traction et de compression ont été réalisés sur un alliage de Magnésium AZ31 au sein de
I’université de waterloo [Taril3, Taril4, Taril5] a différentes températures variant entre 23 et 250°C, et
différentes vitesses de déformation variant entre 0.001 et 1.0 s). En se basant sur ces essais, les meilleurs

valeurs des paramétres d’anisotropie et d’écrouissage identifiées sont données dans les Tables 5.1 et 5.2.

Table 5.1 Paramétres d’anisotropies identifiées pour différentes températures de I’AZ31

L=M=L'=M’'=1.5
T (°C) H G F N H G’ F’ N’
RT 1205501 0.496391 0418510  3.441221  2.608850 0.155251 0.160252 3.499081
150  0.477407 0.773161 0.621849  1.652781  1.332151 0.193945 0.175041 1.460198
200 0.474259 0.555571 0.467317 1463941  0.427075 0.230738 0.326213  0.608006
250  0.480181 0.557180 0.444049 1483791  0.390420 0.232581 0.373659 0.437981

Table 5.2 Parametres d’écrouissage identifiés a différentes températures de I’AZ31

T (°C) E(GPa) o,(MPa) K, m 0 C by by b3 ar a a3 4 9, Ps

RT  43.05 161.6 5 3 800 3500 3.0 30 25 35 200 32 10 100 0.035
150  33.68 112.6 15 3 580 1950 30 20 12 35 9 25 10 50 0.011
200  30.50 73.49 24 3 300 1150 3.0 10 1.0 35 40 23 10 30 0.0
250  27.40 58.39 25 3 200 80 30 50 09 35 10 22 10 10 0.0

La comparaison des surfaces initiales de plasticité prédites par le modéle les points expérimentaux de
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I’alliage AZ31B a différentes température est réalisée dans la Figure 5.1. Cette figure montre clairement que
I’effet de I’asymétrie est important a température ambiante et le modeéle arrive a le prédire correctement. Il
est a noter également que plus la température augmente plus ’effet de I’asymétrie est estampé et cette

variation est correctement prédite par le modéle proposé.

W"- '\'3-
= ’ \'"-\.
L] Y (P
& 1500 — < .. o b
= 200 — %
o o —20C 5% S —
Ix v e s
o] L |‘,_'Q___|y'-‘ e
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o11 [MPa]

Figure 5.1 Comparaison des surfaces initiales de viscoplasticité prédites par le modéle et les mesures

expérimentales de I’alliage AZ31B a différentes températures.

Exp_T=25°C | — Sim_T=25°C Exp_T=25°C
Exp_T=150°C| = Sim_T=150"C O Exp_T=150"C
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0 v ’ 0 , .
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Figure 5.2: Comparaison des courbes issues du modele et obtenues expérimentalement en termes de
contrainte en fonction de la déformation viscoplastique équivalente —de I’alliage AZ31B la longue

direction de laminage a différentes températures et a vitesse de déformation 0.001s™.

Dans la Figure 5.2 sont comparées des courbes en termes de contrainte en fonction de la déformation
viscoplastique équivalente entre prédiction du modele et résultats expérimentaux de 1’alliage AZ31B a
différentes températures et vitesse de déformation constante 0.001s™!. Cette figure montre que pour des
déformations faibles la prédiction du modéle surestime le résultat expérimental. Ceci est due essentiellement
a la forme de la contrainte visqueuse utilisée dans le modeéle qui est constante pour une vitesse de chargement
donnée quel que soit le niveau de la déformation plastique. Notons également que 1’asymétrie de

184



Résumé extensif en Francais

I’écrouissage est prédominante a température ambiante et il est bien prédit par le modele. Cet effet régresse
significativement lorsque la température croit. A haute température les résultats prédits par le modéle sont

en accord avec les résultats expérimentaux en traction et en compression.
5.2.2 Identification des paramétres d’endommagement

Des essais de traction entaillés et de cisaillement menés jusqu’a rupture et a différentes températures ont
été réalisés sur 1’alliage de Magnésium en collaboration avec I’Université Shandong. Ces essais utilisent des
géométries originales des éprouvettes. En utilisant une méthode inverse d’identification, les paramétres

d’endommagement donnés dans la Table 5.3 ont été obtenus.

Table 5.3 Paramétres d’endommagements identifiés pour I’alliage AZ31B a différentes températures.

7(°C) Ssh Sten & s y p Yo(MPa) h
RT 1.6 3.0 1.0 2.0 4.0 1.0 0.0 0.2
150 3.0 5.7 1.0 1.0 4.0 1.0 0.0 0.2
200 5.0 8.9 1.0 1.0 4.0 1.0 0.0 0.2
250 8.0 12.5 1.0 1.0 4.0 1.0 0.0 0.2
X Onsel of fraclure in simulalion {b) X Onset of fracture in simulation

© Exp RT
0 Exp_RT 0 Exp_150
o Exp_150 Y & Exp_200
& Exp_200 20001 I S # Exp_250

« FExp_250 T —#— Sim_RT
—#— Sim_RT g —=—8im_150
—+— Sim_150 ] A " —N—S@m 200
T | Sl

3 0 1 2 3 4 5

Displacement{mm)

Displacement(mm)
Figure 5.3: Comparaison des résultats du modele et expérimentaux : (a) Traction entaillé avec rayon
d’entaille 4mm; (b) Cisaillement.

Les réponses en termes de courbes force-déplacement a différentes températures obtenues par le modéle
sont comparées aux résultats expérimentaux dans la Figure 5.3. Les résultats prédits par le modele
concordent correctement avec les résultats expérimentaux aussi bien pour les essais de traction entaillés que
pour les essais de cisaillement. Une différence notable entre expériences et calculs est tout de méme
observée a la température 250°C pour des déplacements importants qui est due a un probléme de striction.
L’accroissement de la température induit un retardement de la rupture du a I’endommagement ductile.
L’amorcage de I’endommagement pour les essais de traction entaillés et de cisaillement sont prédits

correctement par le modele

5.2 Applications a des procédés de mise en forme

185



Résumé extensif en Francais

5.2.2 Emboutissage d’un godet cylindrique (CCD)

La simulation de I’emboutissage d’un godet cylindrique d’une téle en alliage de Magnésium AZ31B est
réalisée sur le code de calcul par E.F. ABAQUS/Explicit en utilisant notre modéle de comportement avec
endommagement. L’objectif est de montrer la capacité du modeéle proposé a décrire le comportement de la
tole pour ce procédé de mise en forme a haute température. La Figure 5.4 montre les différents outils qui

sont utilisés pour la simulation de ce procédé¢ [Tari 13].

Figure 5.4: Schématisation du procédé d’emboutissage d’un godet cylindrique.

Les conditions de chargement du procédé sont définies par une force serre-flan de 80.0 kN et une vitesse de
déplacement du poingon de 4.0 mm/s. Le coefficient de frottement est fixé a 0.05 pour toutes les surfaces
en contact. Dans la Figure 5.5 sont comparées les courbes force-déplacements issues de la simulation et de
I’expérience. Nous pouvons constater que la courbe numérique surestime Iégerement 1‘effort maximal

d’emboutissage et par conséquent la rupture intervient 1égérement en avance par rapport aux résultats

expérimentaux.

60000 4
3
& 40000
e
s

Experiment
200004 ¢ ——— Simulation
0 T T
0 20 40 60

Displacement(mm)

Figure 5.5: Comparaison entre simulation et expérience en termes de courbe force —déplacement pour

I’essai d’emboutissage du godet cylindrique.

Les distributions des champs de contrainte de von Mises, d’endommagement et de déformation plastique
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cumulée pour I’essai d’emboutissage du godet cylindrique pour différents déplacement de poingon sont
donnés dans la Figure 5.6. Pour le déplacement U=25mm, I’endommagement est relativement faible mais
débute la localisation au niveau congé du poingon. Plus le déplacement croit plus la valeur de
I’endommagent croit tout en restant au méme endroit. La rupture s’amorce a ce méme endroit de I’embouti

qui est en bon accord avec la fissure réelle.

Contrainte de von Mises Endommagement Deformation plastique cumulée

03
5 £45¢-04

U=25.0 mm

U=40.0 mm

U=48.0 mm

SDvV14

(Avg: 75%)
+9.628e-01
+8.826e-01
+8.027¢-01
+7.228e-01
+6.429e-01
+5.630e-01
+4.831e-01

+4.031e-01
+3.232¢-01

Rupture finale

Figure 5.6: Distribution des champs de contrainte de von Mises, d’endommagement et de déformation
viscoplastique cumulée pour différents déplacement du poingon pour I’essai d’emboutissage du godet
cylindrique.
5.2.2 Essai d’emboutissage en croix
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Pour montrer la capacité prédictive du modéle dans la description du comportement des tdles en
emboutissage de formes complexes a haute température, le modele développé a été utilisé pour simuler
I’essai d’emboutissage en croix schématisé dans la Figure 5.7. Le modéle complet a été utilisé en simulation
et aucune symétrie n’a été considérée. Dés éléments solides thermomécaniques de type C3D8RT ont été
utilisés dans la simulation. Une taille d’élément minimale de 1’ordre de 0.35 mm a été définie dans la zone
utile de I’embouti. La vitesse du poingon a été fixée a 1.5 mm/s et I’effort serre-flan a été fixé a 1.5 kN.
Une température initiale homogéne a été imposée a la tdle. Les conditions de frottement sont considérées

variables en fonction de la température.

Holder //

(a) Géométrie (b) Maillage du flan

Figure 5.7: Modé¢le numérique de I’essai d’emboutissage en croix.

—a— RT
—=—150°C
20000 4 —+—200°C
—+—250°C
z
§
L 10000 4
0 T T
0 5 10

Displacement(mm)
Figure 5.8: Courbes force —déplacement de I’essai d’emboutissage en croix a différentes températures.

Les courbes en termes de force-déplacement obtenues pour 1’essai d’emboutissage en croix sur 1’alliage
AZ31B a différentes températures sont données dans la Figures 5.8. Cette figure montre que le niveau
d’effort décroit considérablement avec 1’élévation de la température. A température ambiante, la rupture
finale de I’embouti intervient avec un faible déplacement du poingon autour de 5.1 mm (faible profondeur
de I’embouti) qui caractérise une faible formabilité du matériau a cette température. Ce déplacement a
rupture croit en fonction de la température ce qui indique que la formabilité est améliorée par 1’élévation de

la température.
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Contrainte de von Mises Endommagement Déformation viscoplastique
cumulée

5, Mises F 50v1S
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(c) T=200 °C (Déplacement U=2.5 mm)

Figure 5.9: Distribution des champs de contrainte de von Mises, d’endommagement et de déformation
plastique cumulée pour différents température du poingon pour I’essai d’emboutissage en croix

(déplacement U=2.5mm).

Contrainte de von Mises Endommagement Déformation viscoplastique
cumulée

(b) T=150 °C (Déplacement U=5.1 mm)
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(c) T=200 °C (Déplacement U=5.1 mm)

Figure 5.10: Distribution des champs de contrainte de von Mises, d’endommagement et de déformation
plastique cumulée pour différents température du poingon pour I’essai d’emboutissage en croix

(déplacement U=5.1mm).
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Figure 5.11: Distribution des champs de contrainte de von Mises, d’endommagement et de déformation

plastique cumulée du poingon pour I’essai d’emboutissage en croix.

La distribution des champs de contrainte de von Mises, d’endommagement et de déformation plastique
équivalente pour différents température du poingon et deux températures initiales du flan sont montrés dans
les Figures 5.9, 5.10 et 5.11. A la température ambiante 1’amorc¢age de la fissure prend place au niveau des

congés de la grande et la petite branche du poingon avec un gradient trés important et pour un déplacement
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du poingon aux alentours de 5.1 mm. La fissure ensuite se propage horizontalement le long du congé du
poingcon. Nous pouvons observer un scénario similaire d’initiation et de propagation de fissures pour les cas
ou les températures sont différentes. Cependant, ’initiation et la propagation de la fissure sont retardées par
I’augmentation de la température. Le déplacement du poingon est d’autant plus grand que la température
augmente. La formabilité est trés améliorée et I’amorgage des fissures est étre retardé avec 1'augmentation
de la température. Pour le cas ou aucune fissure n'apparait, une température élevée conduit a une valeur de
dommage faible pour les mémes déplacements comme représenté sur la Figure 5.9, Figure 5.10(b) and

Figure 5.10(c).
Conclusions et perspectives

L’objectif de ce travail a été de développer un modele de comportement thermo-elasto-viscoplastique couplé
a I’endommagement ductile et thermodynamiquement admissible permettant décrire fidelement le
comportement des téles mince fortement anisotrope a différentes température. Plusieurs aspects ont été pris
en compte pour enrichir la fidélit¢é du modele au comportement réel. Parmi ces aspects on cite : les
anisotropies initiale et induite, I’asymétric de la limite initiale de plasticité et d’écrouissage, le couplage
fort avec I’endommagement ductile et la variation de la ductilité vis-a-vis de la triaxialité et de I’angle de

Lode.

Cependant, des améliorations sont nécessaires pour augmenter le pouvoir prédictif du modéle développé :
tels que la définition d’une théorie multi-surfaces pour capturer correctement le comportement en
chargement-déchargement des alliages combinant déformations irréversibles et maclage tels que les alliages
de Magnésium, Le mod¢le peut étre également étendu dans le cade de la théorie de I’endommagement

continu au cas de I’anisotropie de I’endommagement [Nguen12, Rajhil4, Badreddinel5].

Pour améliorer les résultats de la simulation numérique, mieux décrire le trajet de fissure et en méme temps

réduire les temps de calcul CPU, le modéele peut étre utilisé avec une méthodologie de remaillage adaptatif.

Enfin pour réduire la dépendance des résultats a la taille de maille, une extension du modele a une
formulation non locale dans le cadre d’une théorie micromorphique peut étre envisagée [Saanounil2,

Diamantopouloul7, Liul7].
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Modélisation des anisotropies initiales
et induites en formage de tdles a chaud
avec endommagement ductile

Ce travail est dédié au développement d’un
modeéle de comportement avancé couplant divers
phénoménes physiques pour la prédiction fine du
comportement et de I'endommagement en
simulation des procédés de mise en forme de tdles
minces a hautes températures. Les eéquations
constitutives proposées prennent en compte : (i) les
anisotropies initiales et induites, (ii) I'asymétrie
de traction-compression, (3i) un écrouissage mixte
non linéaire isotrope et cinématique, (4i) Ia
dépendance a la vitesse de chargement et
(i) le couplage fort entre les différents
phénoménes incluant 'endommagement ductile
isotrope. Particulierement, le couplage avec
I’endommagement ductile tient compte de Ia
fermeture des microfissures avec une nouvelle
approche originale basée sur une dépendance a la
triaxialité des contraintes et a I'angle de Lode. La
formulation est réalisée dans le cadre de Ia
thermodynamique des processus irréversibles. Les
aspects numériques sont développés dans le cadre
de la méthode des éléments finis (EF) et
implémentés dans le code de calcul par EF
ABAQUS/Explicit via les routines utilisateurs VUMAT.
Une étude paramétrique est systématiquement
réalisée pour montrer les capacités prédictives du
modele proposé. La procédure d’identification des
paramétres du modéle est ensuite discutée.
Finalement, des simulations numériques par EF de
divers procédés de mise en forme de tdles minces a
hautes températures sont réalisées et leurs
comparaisons aux résultats expérimentaux sont
présentées et analysées.

Mots clés : anisotropie — endommagement, mé-
canique de I'(milieux continus) — éléments finis,
méthode des — viscoplasticité — simulation par ordi-
nateur.

Modeling of Initial and Induced
Anisotropies in Hot Sheet Metal Forming
in Presence of Ductile Damage

This work is dedicated to the development of an
advanced constitutive model coupling various
physical phenomena, for the fine prediction of the
behavior and ductile damage of thin sheets during
their forming at high temperature. The proposed
constitutive equations take into account: (i) initial
and induced anisotropies, (ii) tension-compression
asymmetry, (3i) isotropic and kinematic mixed
nonlinear hardening, (4i) loading rate dependence
and (bi) strong coupling between the various
phenomena including isotropic ductile damage. In
particular, the coupling with ductile damage takes
into account the microcracks closure with a novel
approach based on a dual dependence on the stress
triaxiality and the Lode angle. The formulation of the
model is carried out within the framework of the
thermodynamics of irreversible processes with state
variables. Associated numerical aspects are
developed as part of the finite element (FE) method
and implemented in the ABAQUS/Explicit FE
calculation code via the VUMAT user routines. A
parametric study is systematically performed to
show the predictive capabilities of the proposed
model. The procedure for identifying model
parameters is then discussed. Finally, FEM
numerical simulations of various high temperature
thin sheet forming processes are performed and
their comparisons to the experimental results are
presented and analyzed.

Keywords: anisotropy — continuum damage me-
chanics - finite element method - viscoplasticity —
computer simulation.
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