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Abstract 

This work is dedicated to the development of an advanced behavior constitutive model coupling various 

physical phenomena, for the precise prediction of the behavior and ductile damage of thin sheets during 

their forming at high temperature. Interest is mainly focused on hexagonal-close-packed (HCP) metals such 

as magnesium and titanium alloys. The proposed constitutive equations take into account: (i) initial and 

induced anisotropies, (ii) tension-compression asymmetry, (3i) isotropic and kinematic mixed nonlinear 

hardening,  (4i) yield surfaces distortion induced by the loading path, (5i) loading rate dependence within a 

unified viscoplastic formulation, and (6i) strong coupling between the various phenomena including 

isotropic ductile damage. In particular, the coupling with ductile damage takes into account the microcracks 

closure with a novel approach based on a dual dependence on the stress triaxiality and the Lode angle. The 

formulation of the model is carried out within the framework of the thermodynamics of irreversible 

processes with state variables and considering a unified theory of non-associative viscoplasticity in finite 

transformations. Associated numerical aspects are developed as part of the finite element (FE) method and 

implemented in the ABAQUS/Explicit FE calculation code via the VUMAT user routines. A parametric 

study is systematically performed to show the predictive capabilities of the proposed model. The procedure 

for identifying model parameters is then discussed. This procedure is based on minimizing the difference 

between the experimental measurements and the numerical simulation results by considering the responses 

of the materials for different tests conducted until the fracture occurrence. Finally, FEM numerical 

simulations of various high temperature thin sheet forming processes are performed and their comparisons 

to the experimental results are presented and analyzed. 
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Résumé 

Ce travail est dédié au développement d’un modèle de comportement avancé couplant divers phénomènes 

physiques pour la prédiction fine du comportement et de l’endommagement en simulation des procédés de 

mise en forme de tôles minces à hautes températures. L’intérêt est principalement porté aux métaux à 

structure hexagonale compacte (HC) comme les alliages de Magnésium et de Titane. Les équations 

constitutives proposées  prennent en compte : (i) les anisotropies initiales et induites, (ii) l’asymétrie de 

traction-compression, (3i) un écrouissage mixte non linéaire isotrope et cinématique, (4i) la distorsion de la 

surface de charge induite par le trajet de chargement, (5i) la dépendance à la vitesse de chargement dans le 

cadre d’une formulation viscoplastique unifiée, et (6i) le couplage fort entre les différents phénomènes 

incluant l’endommagement ductile isotrope. Particulièrement, le couplage avec l’endommagement ductile 

tient compte de la fermeture des microfissures avec une nouvelle approche originale basée sur une double 

dépendance à la triaxialité des contraintes et à l'angle de Lode. La formulation du modèle est réalisée dans 

le cadre de la thermodynamique des processus irréversibles considérant une théorie unifiée de viscoplasticité 

non-associée en transformations finies. Les aspects numériques associés, sont développés dans le cadre de 

la méthode des éléments finis (EF) et implémentés dans le code de calcul par EF ABAQUS/Explicit via des 

routines utilisateurs VUMAT. Une étude paramétrique est systématiquement réalisée pour montrer les 

capacités prédictives de la modélisation proposée. La procédure d’identification des paramètres du modèle 

est ensuite discutée. Cette procédure est basée sur la minimisation de la différence entre les mesures 

expérimentales et les résultats des simulations numériques en considérant les réponses des matériaux dans 

différents essais menés jusqu’à rupture.  Finalement, des simulations numériques par EF de quelques 

procédés de mise en forme de tôles minces à hautes températures sont réalisées et leurs comparaisons aux 

résultats expérimentaux sont présentées et analysées. 
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Notations 

First-rank tensor or vector , ix x


 

Second-rank tensor , ijx x , 

Fourth-rank tensor , ijklx x , 

Second rank identity tensor 1 , ij  , 

Fourth-rank symmetric identity tensor 1
2, ( )ijkl ik jl il jkI I      , 

Fourth-rank symmetric deviatoric identity tensor 1 1
2 3, ( )D D

ijkl ik jl il jk ij klI I         , 

Transpose of 2nd rank tensor , ( )T T
ij jix x x  

Symmetric part of second-rank tensor 1
2[ ] ( )S Tx x x   

Skew part of second-rank tensor 1
2[ ] ( )A Tx x x   

Hydrostatic part of second-rank tensor 1
3[ ] ( )1Hx tr x , 

Deviatoric part of second-rank tensor [ ] [ ]D Hx x x   

Inverse of second-rank tensor 1 1, ijx x   

Inverse of fourth-rank tensor 1 1, ijklx x   

Time derivative of second-rank tensor , ijx x   

Simple contraction of two second-rank tensors . , ij ik kjz x y z x y   

Double contraction of two second-rank tensors : ij jiz x y x y   

Tensorial product of two second-rank tensors:, , ijkl ij klz x y z x y    

The trace of the second-rank tensor (1st invariant) ( )I kkx tr x x   

Second invariant of the second-rank tensor 2 2[ ( ) ( )] / 2IIx tr x tr x   

Third invariant of the second-rank tensor det( )IIIx x  
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Introduction  

The increasing demand on lightweight engineering materials in automotive and aerospace industries has 

increased dramatically due to the urgent need for improving fuel efficiency and reducing CO2 emissions. 

With a low density and a high strength to weight ratio, high strength (HS) metallic materials (e.g., 

Magnesium (Mg) alloys, Titanium alloys…) become ideal candidates. However, their formability is highly 

decreased when performed at room temperature.  The simplest way to increase the formability properties of 

these HS metallic materials is to perform their forming processes under adequately high temperature usually 

called hot forming. On the other hand, it is well known that this kind of materials exhibit complex 

microstructure leading to highly complex mechanical behavior at room temperature. Note that, performing 

hot forming processes is not a new task by itself since it is widely used for bulk metal forming (forging, 

stamping, extrusion…). However, for sheet metal forming, mainly performed at room temperature, it is still 

a novel task. This requires the use of advanced and highly predictive constitutive models together with 

associated numerical methods. 

For the case of Mg alloys, the industrial applications are limited by different kinds of pronounced initial and 

induced anisotropies [Agnew05, Khan11, Shi13], the strong Strength Differential (SD) effect (tension-

compression asymmetry) [Kelley68, Khan11, Steglich11], the hardening asymmetry [Khan11, Kabirian16, 

Lee17] and the poor formability at room temperature [Chen03, Kim13, Rodriguez16]. These properties are 

related to their Hexagonal-Close-Packed (HCP) crystalline microstructure. Consequently, the modeling of 

these complex material behaviors is still today a highly challenging task. 

Efforts have been made to describe the material behavior of these microstructurally complex materials at 

various scales. Crystal plasticity theory [Jain07; Argon08; Proust09, Yoshida16] provides a naturally 

convenient framework to deduce the macroscopic (i.e. valid for an aggregate of single crystals) material 

behavior from the individual behavior of each crystal. This aims to relate the single crystal constitutive 

behavior with that of the overall aggregate with full field approaches or mean field approaches 

[Lebensohn07; Perdahcıoğlu11] as the self-consistent approach [Lebensohn93; Saanouni96; Boudifa09] 

which are widely used to model the interaction of a grain with the surroundings. The initial anisotropy and 

tension-compression asymmetry of magnesium alloys were investigated by many researchers [Agnew01; 

Agnew05; Lou07; Guo15; Zhou16] at the microscale. It is noted that the microscopic models are useful for 

capturing the macroscopic mechanical behavior of these highly heterogeneous metals. However, to fulfill 

the aim of modeling large-scale forming processes with acceptable computational efficiency, a macroscopic 

phenomenological approach is more suitable. On the other hand, the simple associative plasticity theory 
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with a single yield function is not efficient to describe the various strong initial and induced anisotropies of 

the advanced metallic materials [Stoughton02]. Accordingly, the use of non-associative flow rule to describe 

the anisotropic plastic flow of metals is more convenient. In addition, the accurate prediction of the inelastic 

flow localization giving rise to ductile damage initiation and macroscopic cracks propagation under various 

complex loading paths require advanced models accounting for the strong coupling between the behavior 

and the damage occurrence [Cao15]. The framework of continuum damage mechanics (CDM) has been 

developed and applied to describe the ductile damage with including complex material behaviors in the last 

decades [Lemaitre85, Saanouni03, Bonora05, Besson09, Lemaitre09, Murakami12, Saanouni12]. Due to its 

convenience in coupling damage with different material phenomena, the CDM approach is adopted in this 

work in order to describe the damage occurrence in metallic materials formed by large anisotropic inelastic 

strains. 

With this motivation, the aim of this thesis is dedicated to develop a thermodynamically consistent 

phenomenological model to well describe the complex behaviors which can be applied to hot sheet metal 

forming processes with higher accuracy. The modeling of this problem involves many strong couplings with 

large inelastic strains, kinematic and isotropic hardenings, thermal effects, and the ductile damage. Based 

on the theoretical and numerical framework developed by our research team (LASMIS), an anisotropic 

thermo-elasto-viscoplastic model with non-linear mixed hardening (isotropic, kinematic and distortional 

hardening) strongly coupled with isotropic ductile damage is proposed in this thesis. Microcracks closure 

effect and Lode angle dependence are carefully taken into account. Asymmetry in yield stresses is captured 

by introducing the J3 invariant into Hill yield function, and the description of hardening asymmetry is 

realized by Lode angle dependence function of hardening parameters. 

The formulations of the model are performed in the framework of thermodynamics of irreversible processes 

using generalized non-associative theory under finite transformations. The associated numerical aspects are 

developed in the framework of finite element method and implemented in ABAQUS/Explicit FE code via 

the users’ developed subroutines VUMAT.  

The calibration of the anisotropic parameters is conducted by minimizing the objective function between 

the numerical results and experimental observations [Yoon14].To identify the behavior and damage 

parameters, an inverse methodology is applied which is based on minimum error value between simulation 

and experimental responses. This inverse procedure was realized throughout Python script which combines 

the ABAQUS/Explicit FE software with the MATLAB-based minimization code [Yue15, Souto15]. 

 An exhaustive parametric study is conducted to check the ability of the proposed model in capturing the 

complex phenomena characterizing the behavior and ductile damage of the materials. Finally, applications 
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are investigated to some sheet metal forming processes under high temperature with comparison to some 

available experimental results.  

The thesis is organized as following: 

Chapter I starts by a review of sheet metal forming processes, then presents the complex phenomena 

exhibited by the innovative lightweight materials in both a typical hot and cold sheet metal forming 

processes.  

Chapter II gives the fundamentals of finite strain viscoplasticity theory, as the kinematics of elasto-

viscoplastic decomposition, strain and stress measures as well as the main conservation laws. A review of 

the existing ductile damage models is presented as well as the description on physical aspects of ductile 

damage. A literature survey about the development of time-independent plasticity and viscoplasticity 

theories to capture complex material behaviors mentioned in Chapter 1 is given based on some published 

works. The proposed anisotropic thermo-elasto-visco-plastic constitutive equations fully coupled with 

isotropic ductile damage with embracing many phenomena observed in metal viscoplasticity (initial and 

induced anisotropies, SD effect, hardening asymmetry, etc.) are given in Section 2.6. A new formulation of 

the microcracks closure damage effect is developed and discussed. Finally, a short discussion of the contact 

and friction in metal forming are given.  

Chapter III is dedicated to the numerical aspects for solving the equilibrium problems with fully coupled 

thermo-mechanical equations under large inelastic strains with damage effect. First, the strong and weak 

forms of the initial and boundary value problem (IBVP) are defined. Then the time and space discretization 

of the IBVP leading to obtain of highly nonlinear and strongly coupled algebraic system is given. The 

dynamic explicit resolution scheme is used to solve the IBVP while an iterative local integration scheme is 

used to perform the local integration of fully coupled ordinary differential equations (ODEs) associated with 

thermo-elasto-viscoplastic constitutive equations with damage. 

In Chapter IV, a systematic parametric study is conducted with RVE. The effects of anisotropy, tension-

compression asymmetry, temperature, strain rate, hardening asymmetry parameters are carefully 

investigated. The combined effect of distortion of the yield surface and tension-compression asymmetry is 

studied. The triaxiality and Lode angle effect on the ductile fracture locus are carefully discussed. 

In chapter V, the parameters determinations and applications of fully coupled CDM model are given. Based 

on the available experimental results, the material parameters are calibrated. Finally, the applications of the 

proposed damage model to three point bending test (TPB), circular cup deep drawing test (CCD) and cross-

shaped cup deep drawing test (CSD) are performed and their results are discussed. 

Finally, the main conclusions and some perspectives of the present work are presented.
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1.1 Introduction 

Sheet metal forming is widely used for automotive production among many other industrial sectors. In these 

processes of sheet metal forming, the final shape of a part is made from a flat metal sheet. First, sheet plate 

is cut into pieces by different operations like shearing, slitting, cutting, sawing or produce from coil; then 

the desired shape can be achieved by punching, stamping, embossing, bending, stretch forming, deep 

drawing and a variety of other processes. During these forming processes, the changes in the shape of the 

sheet are mainly obtained by large plastic deformation. In this chapter, the sheet metal forming processes 

are presented, a general introduction to sheet materials as well as the major physical phenomena involved 

during their forming by large inelastic strains including material behaviors and different failure mode are 

given. 

1.2 General presentation of sheet metal forming 

Metal forming processes are suitable for quantity production of components with high production rates and 

a minimum waste of material. Among the metal forming processes, sheet metal forming processes are 

commonly used in many industries, such as automotive industry (car doors, hoods, fenders, etc.), household 

products (cooker hoods, refrigerators, sinks, etc.), food industry (cookware, canned goods, etc.), aerospace, 

ships, etc. In recent years, the demand of lightweight engineering materials in automotive and aerospace 

industries has increased significantly due to the urgent need for reducing energy consumption as well as 

CO2 emissions. Accordingly, nowadays lightweight construction design concept has become a popular term 

in new industrial development. However, the formability of certain lightweight metals (i.e. Mg alloys) at 

room temperature are not satisfied for large-scale industrial application. To avoid this limitation, the forming 

processes are performed under high temperature. Since the ductility of the material is expected to increase 

with the temperature increase, the formability of these metals is quitely improved at elevated temperature. 

Meanwhile, forming forces and applied pressure are reduced as a result of the material ‘‘softening’’ induced 

by the temperature increase. These processes are commonly called warm or hot forming. From literature, 

there are two kinds of definition for material forming at elevated temperature: (1) when the heating 

temperature is above the temperature of recrystallization, the forming process is hot forming, warm forming 

means the heating temperature is between the room and recrystallization temperatures. (2) The forming 

process is classified to cold forming which has no pre-heating, otherwise, it is called hot forming if there is 

heating process. In this thesis, we will focus on the second way to define the hot forming. Typical hot 
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forming process is shown in Figure 1.1, the metal sheet is processed in heating, transporting to forming 

process, followed by quenching and ageing, finally, the desired form is obtained. 

 

Figure 1.1: Schematics of hot forming process. 

Figure 1.2 illustrates an example of deep drawing process and its loading conditions. The punch moves 

towards the metal sheet clamped between the die and the blank holder and deforms it to obtain a desired 

shape. The external force from the blank holder is to prevent wrinkling and allow the control of the 

homogeneous material flow. The two principal deformation modes in this process may depend directly on 

the blank holder action and its corresponding force [Teixeira12]. During this drawing process, the 

deformation mode changes from shear, compression to tension or from shear, tension to compression 

(bending/unbending), depending on the location in the sheet thickness. 

 
Figure 1.2: Schematic view of a deep drawing operation and its deformation modes [Kim13]. 

1.3 Materials and major physical phenomena 

1.3.1 Target materials of hot sheet metal forming 

The innovative lightweight construction materials, such as magnesium alloys, titanium alloys, aluminum 

alloys with excellent material properties are very promising materials in recent years, since these materials 
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are widely demanded in many industrial fields, as shown in Figure 1.3. Aluminum alloys have been already 

widely used in automotive manufacturing (frames, car body panels and wheels, etc), ship building, as well 

as aircraft and other aerospace structures. Titanium alloys are often used in aerospace applications such as 

for turbine blades engines, airframe applications and space applications, due to their superior strength to 

weight ratio. They are also used in offshore petroleum industry, such as drilling risers, because of their high 

flexibility (low ratio of modulus over strength), excellent corrosion and fatigue resistance.  

However, their application in automotive industry is impeded by their high price. Magnesium alloys, with 

a high ratio of strength versus density, are excellent candidate for use in automotive applications aiming to 

enable lightweight design and improve fuel economy, which also makes them a good alternative to 

traditional steel and aluminum alloys. For instance, magnesium alloys can save 20%-25% weight over 

aluminum alloys in the car of full-size “Savana” and “Express” vans of General motors [Elektron14, Jia16].  

In addition to these materials, the high-strength and ultra-high strength steel materials, with a high specific 

strength in comparison with conventional steel materials, also demonstrate their capability in reducing the 

weight of car component. However, these innovative lightweight construction materials and the high-

strength/ultra-high strength steel materials have limitations in terms of forming capability and some of them 

are classified as hard-to-deform materials at room temperature. As a result, they become the target materials 

of hot sheet metal forming. 

 

Figure 1.3: Innovative lightweight construction materials in automotive, aircraft, ship and petroleum 

industries. 

1.3.2 Material behaviors  

1.3.2.1 Temperature and strain rate dependent material behavior 

A fatal drawback of the innovative lightweight materials is that they often exhibit very poor formability 

compared with traditional steels. For example, the poor formability of Magnesium alloys at room 

temperature is due to the limited number of active slip systems in their hexagonal close-packed (HCP) 

crystal structure [Agnew05, Wu15, Trang18]. It is important to recall that the plastic strain of HCP materials 

is divided into slip and twinning mode. The activation of these modes is highly dependent on both critical 

stress and loading directions. Figure 1.4 shows the loading directions to activate preferentially one of these 
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deformation mode in ideal HCP monocrystal textures.  

 

Figure 1.4: Schematic of the ideal HCP mono-crystal textures with loading direction to activate each 

deformation mode [Chapuis16]. 

Even though twinning and non-basal slip are activated to some extent at room temperature, the improvement 

with respect to formability is very small. In order to form these kind of materials with complex component 

geometries, additional glide planes should be activated. The use of hot forming can be applied to overcome 

this shortcoming of Mg alloys, since pyramidal slip system can be thermally activated at elevated 

temperature, which improve their ductility and formability obviously [Mekonen13]. Figure 1.5a shows the 

temperature dependency of inelastic flow of Mg AZ31B, at a given strain rate, significant thermal softening 

caused by the temperature increase can be observed, unlike the room temperature behavior, ductility and 

formability are greatly improved with elevated temperatures [Khan11, Tari15, Rodriguez16].  The forming 

force and the spring back effect are decreased with the temperature increases. The strain rate has very 

important influence on the flow curves, as illustrated in Fig. 1.5b, the flow stress increased obviously with 

the strain rate increase. With the temperature increase, the strain rate sensitivity becomes more evident, as 

shown in Figure 1.5c, about 85% decrease in flow stress and 100% increase in elongation to failure at 

temperature of 300°C over the same range of strain rate can be found. For aluminum and titanium alloys, 

the same temperature dependent material behavior can also be observed [Abedrabbo06a, Tabei17]. 

   
   (a)                (b)               (c) 

Figure 1.5: Tension responses of AZ31: (a) Different temperatures with strain rate10-3s-1; (b) Different 

strain rate at temperature of 100°C; (c) Different strain rate at temperature of 300°C [Rodriguez16]. 
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1.3.2.2 Initial plastic anisotropy and tension-compression asymmetry 

Since the final sheet metals are obtained by successive rolling operations, a clear initial anisotropy is 

conferred to these sheets[Banabic00]. This initial anisotropy has a strong effect on the formability of sheet 

metals [Vladimirov11]. As shown in Figure 1.6, the initial yield stress and R-value of titanium alloys Ti-

6Al-4V in tension varying significantly with the material orientations [Gilles11]. 

 

Figure 1.6: Yield stresses and R-values at different orientations of titanium alloy Ti-6Al-4V. 

Another pronounced anisotropic behavior has been observed in some Mg alloys (e.g. AZ31), as shown in 

Figure 1.7, where the yield stress in tension is much higher than that in compression. This behavior is often 

called tension-compression asymmetry or Strength Differential (SD) effect [Kelly68, Cazacu04, and 

Cazacu06]. This special feature of magnesium alloys results from the activation of deformation twinning 

under compression stress state. For titanium Ti-6Al-4V, the compressive yield stress is higher than the tensile 

yield stress [Khan12], but the asymmetric behavior is not pronounced. The tension-compression asymmetry 

in yield stress is also observed in other materials (i.e. DP980 steel), as reported in [Holmen17, Maeda18]. 

 

Figure 1.7: Yield loci of Mg alloy AZ31 at different plastic strains [Cazacu06]. 
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1.3.2.3 Induced anisotropy 

In practice of sheet metal forming, the sheet metals are formed with large plastic strains under complex 

loading paths, the initial anisotropies evolve due to the textural changes inside the material. This affects the 

hardening evolution and consequently causes the yield surface distortion. As shown in Figure 1.8, the 

evolution of the yield surface of aluminum AL1100 is highly dependent on the loading path [Khan10]. The 

initial yield surface evolves to subsequent yield surfaces through translation, distortion, extension or 

shrinkage, represented by a sharp nose in the loading direction and flat in the opposite direction, depending 

on the applied loading path. Other cross- effects were correlated to the different hardening properties. The 

induced anisotropic behavior is also reported by [Shi17] for magnesium alloy AZ31 and by [Khan12] for 

titanium alloy Ti-6Al-4V. 

 

Figure 1.8: Distortion of the yield surface depending on loading path [Khan10]. 

1.3.2.4 Hardening asymmetry 

In addition to the anisotropy and asymmetry of yielding, Mg alloys also exhibit unusual hardening evolution 

[Agnew05, Guo15] compared to other materials, the stress-strain flow evolution has a sigmoidal shape 

[Khan11, Kabirian16], which is referred as hardening asymmetry [Lee17].   

 
Figure 1.9: Typical stress-strain evolution curve of Mg alloy AZ31B under uniaxial tension and 

compression at room temperature [Zhang 19]. 
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The evolution of compressive stress-strain response of Mg alloy AZ31, as shown in Figure 1.9, follows a 

sigmoidal evolution with a lower flow stress plateau and upper flow stress plateau with an inflection point. 

At lower strain stage, the plastic flow is governed by the twinning mechanism, where a low stress plateau 

was observed, with the plastic strain increase, the slip-dominated deformation becomes active, with a high 

hardening rate, and finally the upper flow stress plateau appears.  

1.4 Damage and fracture  

1.4.1 Ductile damage 

It is vital to understand the mechanisms that cause the inelastic strain localization which eventually leads to 

ductile damage occurrence in a sheet metal component. Damage is regarded as micro-defects density, which 

accumulates to a certain level before the initiation of macroscopic cracks. From the physical point of view, 

ductile damage is described as nucleation, growth and coalescence of microcavities or microcracks induced 

by large inelastic strains in the vicinity of inclusions in material. In metal forming by large irreversible 

inelastic strains, the damage mechanism is often ductile fracture occurring in areas where large inelastic 

strains strongly localize, rather than brittle fracture occurring without appreciable plastic strain. In sheet 

metal applications three failure phenomena are usually observed [Björklund14]: (i) Ductile tensile fracture, 

(ii) ductile shear fracture and (iii) necking, as shown in Figure 1.10.  

Both diffuse necking and localized necking are two types of instability occurring in sheet metal tensile test 

before the sheet fracture, as shown in Figure 1.10. Diffuse necking is caused by a reduction of the width 

over a length. Localized necking occurs inside the diffuse zone because of a reduction of thickness along a 

narrow band. Sometimes, localized necking can take place without the preceding diffuse necking. 

 

 

Figure 1.10: Different failure types of sheet metals [Björklund14]. 



Chapter 1: Major physical phenomena exhibited in hot sheet metal forming 

12 

 

1.4.2 Creep damage 

In addition to ductile damage, there are other damage types like creep damage under high temperature, 

fatigue damage under cyclic loading, etc. Normally, for metallic materials, the yield stress decreases at 

elevated temperature, meanwhile, the material behavior is more sensitive to strain rate. Creep damage takes 

place at high temperature, from mid to elevated temperatures that are above about one third of the absolute 

melting temperature for metals. The creep damage mechanisms are thermally activated phenomena and the 

microdefects initiate and evolve along the grain boundaries often, starting from initial defects as triple-joint. 

 

Figure 1.11: Creep strain versus time. 

As illustrated in Figure 1.11, creep is subdivided into three stages: primary creep where the material 

hardening is active and is the most important phenomenon, (ii) secondary (or steady state) creep where the 

hardening is saturated leading to a constant creep strain rate, and (iii) tertiary creep where the creep damage 

is active and is the most important phenomenon evolving quickly to the final fracture. Creep damage should 

be taken into account for life assessment during design procedure of the components which are used at high 

temperature and subjected to static loading paths (i.e. loading paths with relatively low velocity). However, 

in this work dealing with sheet metal forming where the loading velocity is high enough, the creep damage 

is neglected and only ductile damage is considered, since the targeted sheet metal forming applications for 

the lightweight engineering materials are performed at elevated temperature subject to rapidly evolving 

loading paths which cannot result in creep damage. 

1.4.3 Example of defects of target material in metal forming 

For the sake of simplicity, the forming tools are assumed perfectly made without any defect and only the 

defects of the deforming sheet or blank in the forming process are considered. For example, in the deep 

drawing process, one of the most widely used forming process, three currently observed defects that occur 

in deep drawing operations for sheet metals are: 
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(1) Earing  

The light-weight material with pronounced initial anisotropy due to its crystallographic texture induced by 

rolling process exhibits earing. The planar anisotropy in the sheet metal drawing leads to the formation of 

irregularities in the upper edge of a deep drawn cup, which is called earing, as shown in Figure 1.12d. 

However, if the plastic flow in the material is perfectly isotropic, earing will not appear. 

(2) Wrinkling  

Wrinkling generally occurs in the wall or flange of the part, as shown in Figure 1.12a and Figure 1.12b. The 

flange of the blank undergoes radial drawing stress and tangential compressive stress during the stamping 

process, which sometimes results in the formation of wrinkles. When the wrinkled flange is drawn into the 

cup, these ridges appear in the vertical wall. 

(3) Tearing 

Tearing usually occurs near the base of the drawn cup leading to a macroscopic open crack in the vertical 

wall, due to high tensile stresses that cause plastic flow localization, ductile damage occurrence, sheet 

thinning (where the plane stress condition is no longer valid) and failure of the metal at this location as 

shown in Figure 1.12c. 

 
Figure 1.12: Sheet Metal defects in drawn parts: (a) Wrinkling in the flange, (b) Wrinkling in the wall, (c) 

Tearing, (d) Earing. 

1.5 Conclusions 

In this chapter, we have presented the major physical phenomena exhibited by the thin sheet materials in 

both typical hot and cold sheet metal forming processes. In order to predict the damage occurrence of these 

kind of metallic materials, advanced mechanical models will be developed accounting for the full coupling 

between all these phenomena including the ductile damage. It should bear in mind that ductile damage is 

the natural consequence of large hardened inelastic strains localization in narrow (shear) bands. Inside these 

highly localized zones, inelastic flow, hardening, damage and thermal exchanges are highly active. 

Consequently strong interactions between all these phenomena cannot be ignored.  It should be noted that 



Chapter 1: Major physical phenomena exhibited in hot sheet metal forming 

14 

 

the reliability of the simulation of the forming processes is highly dependent on the constitutive equations 

prediction capabilities. The use of fully coupled thermo-mechanical behavior with damage in numerical 

simulations can be: 

(1) In order to avoid the damage initiation during some bulk and sheet metal forming processes and 

ensure formed parts without defects.  

(2) Or contrarily, in order to accelerate the damage initiation and growth in sheet metal cutting, blanking 

or metal machining by chip formation among others.  

In this work, we focus mainly on the prediction of ductile damage which may occur during metal forming 

in order to avoid its occurrence. Even without final fracture, the ductile damage can locally take place in 

formed parts leading to strong changes in the material properties. The formulation of an advanced thermo-

elasto-viscoplastic model fully coupled with ductile damage and accounting for the main aspects 

characterizing HCP materials will be developed in more detail in next chapter.
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2.1 Introduction 

This chapter is dedicated to the theoretical aspects related to the formulation of the fully coupled constitutive 

equations in the framework of thermodynamics of irreversible processes with pairs of state variables. In 

order to present the developed model, some fundamentals of the finite viscoplasticity theory and some basic 

elements of mechanics and thermodynamics of the materially simple continua are given. These details are 

taken from literature mainly in [Callen60, Lemaitre85, Lemaitre92, Khan95, Saanouni12], among others. 

Next, the framework of Continuum Damage Mechanics (CDM) is presented and used to develop the full 

coupling with the isotropic ductile damage [Lemaitre85, Lemaitre92, Murakami12, Saanouni12]. Some 

developments on anisotropic elasto-visco-plasticity theory are reviewed. Finally, an anisotropic thermo-

elaso-visco-plastic constitutive equations fully coupled with isotropic ductile damage for metallic materials 

under large strains are formulated. 

2.2 Fundamentals of finite viscoplasticity 

2.2.1 Homogeneous transformation and deformation gradient 

In line with the standard notations in continuum mechanics, a deformable solid body is assumed to occupy 

at time 0t  the initial undeformed configuration 0C , while tC is the current configuration (deformed) at 

time 0t   , as shown in Figure 2.1[Sidoroff73, Lemaitre92, Saanouni12]. Every material point 0P   in the 

reference configuration 0C   can be identified by its position vector 1 1 2 2 3 3X X e X e X e  
     , it can be 

transformed into tPof coordinates ( , )x X t
  in the current configuration tC  by deformation mapping function 

( , )X t
  according to : 

 ( , ) ( , )x X t X u X t  
     (2-1) 

In which ( , )u X t
  is the displacement vector of the material point 0P   at time t. The gradient of the 

homogeneous transformation between 0C and tC , is the second-rank operator F (or ijF  ) which is also called 

deformation gradient. In the classical local (or Cauchy) continuum, the transformation gradient F allows 

the complete description of the changes in shape, size and orientation of the continuum.  

 ( ) ( , ) / ( ( , )) / 1 ( , ) / 1 ( )F Grad x X t X X u X t X u X t X Grad u             
              (2-2) 
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It bears to emphasize that the value of det( )J F  must verify 0 J   to define correctly the motion of 

the local continuum.  

 

Figure 2.1: Reference and current configurations of a material body. 

2.2.2 Polar decomposition of deformation gradient 

According to the polar decomposition theorem, the deformation gradient F can be decomposed into a pure 

rotation (orthogonal tensor) and a pure stretch (symmetric tensor) in the following form: 

 F R U V R     (2-3) 

where R  is the rigid body orthogonal rotation tensor, U  is the right (Lagrangian) symmetric stretch tensor 

of second-rank defined with respect to 0C , V is the left (Eulerian) stretch tensor (second-rank) defined with 

respect to tC  (as shown in Figure 2.2). 

 

Figure 2.2: Schematic illustration of the polar decomposition of F. 
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2.2.3 Strain and strain rate tensors 

In order to define and quantify the change of distance between two material points between original and 

deformed configuration, we define the right Cauchy-Green stretch tensorC defined in 0C  and left Cauchy-

Green stretch tensor B defined in tC by: 

  
2

2

. . . .

. . . .

T T

T T

C F F U R RU U

B F F V R R V V

   


  
  (2-4) 

A simple way to obtain the material deformation in the homogeneous transformation is to calculate the 

difference between the scalar products of the elementary vectors . .dx dx dX dX 
  

, as given below:  

   1. . . 1 . . 1 .dx dx dX dX dX C dX dx B dx         
      

 (2-5) 

Accordingly, the Green-Lagrangian strain tensor E  and the Euler-Almansi strain tensor A  are defined 

respectively as: 

 21 1
( ) ( )

2 2
E U I C I      (2-6) 

 21 1
( ) ( )

2 2
A I V I B       (2-7) 

Numerous strain measures can be obtained by using the Lagrangian and Eulerian stretch tensors. For 

instance, the overall Lagrangian definitions can be rationalized in the forming form (with m is an integer). 

 
1

0

ln( ) 0

mU I if m
m

U if m


      
 

 (2-8) 

The time derivatives of the transformation gradient from Eq. (2-1) gives: 

 1dx FdX FF dx Ldx  
     (2-9) 

where the spatial velocity gradient Lwhich can also be decomposed into a symmetric tensor D  (total strain 

rate tensor) and a skew symmetric tensor W (material spin or rotation rate tensor), defined as: 

 1 1 T TL FF RUU R RR D W          (2-10) 

 1 1. .[ . ] .
SS S TD L F F R U U R     

   (2-11) 

 1 1. .[ . ] . .
AA A T TW L F F R U U R R R      

    (2-12) 
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2.2.4 Stress tensors 

The Cauchy stress is the most widely used measure of stress to describe the surface forces. As illustrated in 

Figure 2.3, the elementary force vector tdF   is defined at the current configuration tC  at point tP  , the 

elementary section tdS


 oriented by the normal tn


 in tC  is transformed from 0dS


 oriented by the normal 0n


 

at reference configuration 0C . 

 
Figure 2.3: Representation of all quantities used to define stress measures. 

The second-rank and symmetric Cauchy stress is defined using the measure of the elementary internal force 

in the material point tP according to: 

 t tdF dS


 (2-13) 

In large strains, numerous definitions for the stress tensors can be found in the literature [Khan95, Mase99, 

Saanouni12, Voyiadjis15], among others. Unfortunately, most of them do not have physical sense, these 

various stress tensors can be easily expressed by each other and the transformation gradient. The relationship 

between the different stresses tensors are summarized in Table 2.1, readers can refer to [Saanouni12] for 

more details. 

The formulation of mechanical models consists of the definition of some relations (i.e. constitutive equation) 

between stress and strain tensors. The use of Eulerian tensors has the advantage to get simple relations but 

poses the problem of the objectivity when anisotropic media are considered. However, the Lagrangian 

tensors avoid the objectivity problem because they are defined with respect to the unchanged initial 

configuration but they induce complex relationships without physical meaning. The formulation in a rotating 

frame which consists of the use of stress and strain quantities having Eulerian eigenvalues and Lagrangian 

orientation and leads to avoid the problems of the pure Eulerian and Lagrangian formulations. 
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Table 2.1 Relations between different stress measures 

 Cauchy   Kirchhoff   Piola-Lagrange   Piola-Kirchhoff S  

Cauchy   / J   . /TF J  ( . . ) /TF S F J  

Kirchhoff  J   . TF  . . TF S F  

Piola-Lagrange  1.( )TJ F   1.( )TF    .F S  

Piola-Kirchhoff S  1 1. .( )TJF F   1 1. .( )TF F   1.F    

2.2.5 Kinematics of elasto-viscoplastic decomposition 

Based on the concept of intermediate configuration and in order to study the elastoplastic media numerous 

works have focus on the decomposition of the total gradient F  into elastic eF  and plastic pF  parts, i.e. 

e pF F F    [Lee83, Mandel71, Rice71, and Sidoroff73], among others. Two particular intermediate 

configurations namely
p
tC  and tC  which ensure the fulfillment of the objectivity requirement can be defined 

[Dogui89, Sidoroff01, Badreddine10, Saanouni12], their orientation is defined by a rigid body rotation 

tensorQ. In the same manner as for time independent plasticity model, we can postulate a multiplicative  

decomposition of the total deformation gradient F  into elastic part eF   and viscoplastic part vpF  

respectively[Lee69, Sidoroff73, Dogui89, Sidoroff01, Badreddine10, Saanouni12]: 

  . .e vp e vpF F F Q V F Q F      (2-14) 

This kinematics is illustrated in Figure. 2.4. The elastic part of deformation gradient is obtained by unloading 

from actual configuration tC   giving the isoclinic inelastic configuration vp
tC   (i.e. having the same 

orientation as the reference configuration 0C  ).  

 

Figure 2.4 The rotating frame concept and the multiplicative decomposition of the total deformation 

gradient. 
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By comparison with time independent elastoplasticity this last configuration shall vary in time in the context 

of viscoplasticity. This time dependency of this configuration can be related physically, to some recovery 

phenomena [Lemaitre09]. However, these phenomena of recovery need long time to take place and induce 

significant effects [Lemaitre09]. For metal forming processes the loading velocity is high enough so that the 

elastic unloading can be supposed time independent as for classical time independent elastoplasticity. 

Accordingly, the kinematics defined for time independent elastoplasticity, can be extended to the elasto 

viscoplastic framework and the objectivity can be ensured by the use of the rotating frame formulation 

defined by the rotation tensor Q representing the orientation of the isoclinic triad with respect to the current 

configuration. The main idea is that all the tensors defined in the current configuration are transformed 

(mapped) by the rotation tensor Q leading to the use of the Eulerian eigenvalues and Lagrangian orientations 

of the isoclinic configuration [Sidoroff73, Dogui89, Sidoroff01, Badreddine10, Saanouni12].  So any tensor 

with upper bar ( )  is mapped to the isoclinic configuration by Q according to:  

 
   

(second rank tensor)

: : (fourth rank tensor)

T

T T

T Q T Q

T Q Q T Q Q

    


   
 (2-15) 

In the above equations, eV is the right elastic stretch tensor. vp
F is the viscoplastic deformation gradient with 

respect to the isoclinic configuration vpC . Finally, any tensorial quantity defined in the current configuration 

is mapped to the locally rotated configurations vpC and C  on which all the constitutive equations are expected 

to be objective. According to the work of [Badreddine10], by considering Eq.(2-14) as well as the small 

elastic strain assumption (i.e. 1e eV    with  1e   ) in the velocity gradient 1.L F F  , the total strain 

rate D and spin rate W  can be written as follows: 

 [ ] 2 .
SS e e vp vp eJ vpD L W D D         

    (2-16) 

 Q T vpW Q Q W W      (2-17) 

where 1[ . ]vp vp vp SD F F    is the viscoplastic strain rate. eJ is the rotated Jaumann rate of the small elastic 

strain tensor. vpW is the viscoplastic spin rate which will rule the rotating frame evolution according to Eq.(2-

17). Different possible choices for this tensor have been discussed in [Badreddine10], in the present work 

we assume a kinematical definition for this tensor giving  ( ) :vp vp vpW K V D  where ( )vpK V  is a fourth-rank 

tensor which is function of the viscoplastic stretch tensor vpV , if the corotational (or Jaumann) rotating frame 
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is chosen, this leads to a general equation of type: ( ) 0vpK V  (refer to [Badreddine10] for the different forms 

of ( )vpK V  depending in the rotating frame).  

In the following parts, all the developed constitutive equations are made with respect to the locally rotated 

configurations vpC or C (Figure 2.4) and for the sake of conciseness the upper bar is not used.   

2.3 Fundamental laws of thermodynamics 

Any formulation of a behavior model shall be done within the framework of thermodynamic of irreversible 

processes with appropriate number of state variables pairs. So it is necessary to recall the basic concepts of 

thermodynamics of continuum mechanics since they are very important in governing representative state 

variables of material continuum in material modeling. In this section, the main conservation laws of the 

physics of material continuum are presented. 

2.3.1 Mass conservation law 

The first conservation law postulates that the mass of the domain is kept unchanged for every transformation, 

this law can be easily expressed in the following differential form: 

 0xdiv u  


   (2-18) 

where xdiv u  

  denotes the spatial divergence (with respect to Euler coordinates) of the velocity field.  

2.3.2 Momentum conservation law or the principle of virtual power 

The momentum balance is obtained when the sum of the virtual power of internal force intP  and external 

forces extP  is equal to the total virtual power of inertia forces aP : 

 int ext aP P P      (2-19) 

The local form momentum balance can be expressed by the following partial differential equation with 

associated Neumann boundary condition: 

 
( ) 0div f u in

F n on

 



    


 

  


   (2-20) 

where  is the Cauchy stress tensor, the surface forces vector and the body forces vector are F


 and f


respectively, u

  is the acceleration vector, and n


 is the outward vector normal to the boundary surface   of 

the solid. 
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2.3.3 The first law of thermodynamics or energy conservation 

The first law of thermodynamics, also called energy conservation law, states that the internal energy rate per 

unit volume of the isolated system with volume  , must be equal to the sum of the external stress power 

and the heat flux received by   . The local form of the first principle of thermodynamics can be 

mathematically expressed as below: 

 : ( ) 0D e div q     


  (2-21) 

where the product of  total strain rate tensor D and Cauchy stress tensor stands for the stress power per unit 

volume in the deformed configuration, e is the specific internal energy (per mass unit ),   is the internal or 

body heat source, and q


 is the heat flux vector received by the system throughout its boundaries. 

2.3.4 The second law of thermodynamics 

The second law of thermodynamics states that the total entropy of an isolated system can never decrease 

over time. Therefore, the rate of the entropy production is always greater than or equal to the amount of heat 

received divided by the absolute temperature. Its local form expressed in the current configuration: 

 ( ) 0
q

s div
T T

   


   (2-22) 

where s  is the specific (per unit of mass) entropy and T is the absolute temperature.  

2.3.5 The Clausius-Duhem inequality 

The Clausius-Duhem inequality is the combination of the first and second laws of the thermodynamics 

stated above. After eliminating the internal body heat quantity, the new inequality called Clausius-Duhem 

inequality is expressed by: 

 : ( ) ( ) 0
q

D sT grad T
T

  


   


   (2-23) 

where the specific free energy or Helmholtz free energy per unit mass  is defined by: 

 e Ts     (2-24) 

This inequality can be used as a measure for the thermodynamic admissibility, which plays an important 

role in the formulation of the constitutive equations of continua in the framework of the thermodynamics of 

irreversible processes. 
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2.4 Ductile damage 

2.4.1 Physical aspects of ductile damage 

Damage in metallic materials is associated with a physical process of creation and evolution of micro-voids 

and microcracks following the well-known three stages of microdefects nucleation, growth and coalescence. 

Ductility is regarded as an intrinsic ability of materials to undergo a certain amount of plastic strains before 

the final fracture occurs. The fracture of ductile material occurs in areas where large inelastic strains strongly 

localize prior to the initiation of macroscopic cracks. The damage occurring under large plastic or 

viscoplastic strains is called ductile damage (different from brittle damage, creep damage or fatigue damage) 

which is frequently observed in metal forming failure. As illustrated in Figure 2.5, the representation of 

ductile damage evolution in different length-scale is established at the characteristic time of the deformation 

process. At the smallest length scale, damage is related to the same processes of inelastic strains. At macro-

scale, damage is represented as the progressive degradation of a material, which exhibits a decrease in 

material properties as stiffness and strength.  

 

Figure 2.5: Multiscale damage in nature [Bonora17]. 

2.4.2 Classification of ductile damage models 

In order to describe the ductile damage, many damage models can be found in literature. They can be 

classified into three types: (1) uncoupled failure criteria; (2) weakly coupled models; (3) fully coupled 

models often formulated in the framework of continuum damage mechanics (CDM). 

(1) The uncoupled approaches are based on specific failure criteria written in terms of stress or strain 

invariants giving the final fracture when their critical values are reached [Freudenthal50, Johnson85, 

Bao04, Ebnoether13]. The advantage of these approaches are their simplicity by using the so-called 

failure indicators (criteria) which are easy to implement in FE software. Due to their uncoupled 

nature, the presence of micro-defects has no effect on mechanical fields (i.e. no interactions between 

the microdefects and the material behavior or no coupling). So that these models do not consider 
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stress and stiffness softening within the material caused by damage occurrence during deformation. 

This leads to an easy to use calibration of the material parameters. However, their major weakness 

relies in application to complex loading paths and large plastic strains. Recently, the research team 

of MIT proposed a phenomenological model in which the effect of stress triaxiality and Lode angle 

on fracture are taken into account, as illustrated in Figure 2.6, the fracture surface of the modified 

Mohr-Coulomb damage criterion [Bai08] is an asymmetry fracture locus in 3D as given in Figure 

2.6c, which is quite different from the Johnson–Cook’s model (Figure 2.6a) and the model proposed 

by Wierzbicki and Xue[Xue08](Figure 2.6b). 

  
(a)                                               (b)                                              (c) 

Figure 2.6: Different fracture locus: (a) Johnson-Cook model independent of Lode angle; (b) Symmetric 

fracture locus with Lode angle dependency proposed by Xue and Wierzbicki[Xue08];(c)Asymmetric 

fracture locus with Lode angle dependency proposed by Bai and Wierzbicki [Bai08]. 

(2) In the second approach, the influence of ductile damage in the yield condition is taken into account 

only on the yield function, by a porosity fraction and failure is predicted to occur when the porosity 

reaches a given critical value. The elastic stiffness is then not affected by damage (no decrease of 

the stiffness due to the damage occurrence). The first damage model within this approach was 

proposed by Gurson[Gurson77]. Later, Tvergaard and Needleman [Needleman84, Tvergaard84] 

extended the Gurson model to include the void coalescence mechanism, this is called GTN model). 

The starting point of Gurson’s theory is the microscopic idealization of porous metals as aggregates 

containing voids of simple geometric shapes embedded in a metallic matrix whose behavior is 

governed by a rigid plastic von Mises yield function. The damage variable is considered as the local 

voids volume fraction. Extensions of the GTN model based on micromechanical studies (e.g. 

[Acharya00, Tvergaard04, Bonfoh04]) have been made. However, there are still some limitations 

of this kind of models, where a large number of material constants needs to be identified and their 

physical meaning clarified, making their calibration procedure very difficult. Readers can refer to 

the work by [Cao13] for more details. 

(3) The continuum damage mechanics (CDM) is based on the thermodynamics framework leading to 
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describe the ductile damage by a scalar or tensorial variable [Lemaitre85, Lemaitre92, Voyiadjis92, 

Saanouni03, Lemaitre05, Lemaitre09, Besson10, Saanouni12, Murakami12]. Due to the strong 

coupling between the ductile damage and the material behavior, the material properties are deeply 

affected by the damage occurrence. The concept of effective stress was first introduced by Kachanov 

[Kachanov58] to define the concept of continuum damage mechanics. Since that, this kind of CDM 

approaches have been used for damage prediction in various situations assuming various types of 

coupling in many published works [Lemaitre85, Lemaitre92, Voyiadjis92, Saanouni03, Lemaitre05, 

Lemaitre09, Besson10, Saanouni12, Murakami12, Baddridine10, Bouchard11, Soylansan16, 

Wulfinghoff17]. Within the CDM approach, isotropic damage assumes that spherical micro-void 

cluster are homogeneously distributed without any privileged evolution direction. While the 

description of the anisotropic damage assumes that the microcracks with various shapes and 

orientations are highly influenced by the initial microstructure of the material and its evolution 

(texture) as well as by the direction of the applied loading paths. Many extensions have been made 

based on this framework in order to avoid some limitations, such as nonlocal formulation to avoid 

the mesh dependencies of the local models [Saanouni12, Saanouni13, Brepols17, 

Diamantopoulou17]. The CDM approach with local formulation is adopted in this work in order to 

describe the isotropic ductile damage occurrence in metallic materials formed by large anisotropic 

visco-plastic strain at elevated temperature. 

2.4.3 The concept of effective state variables in CDM 

Ductile damage occurrence results from a progressive deterioration process of each material point including 

nucleation, growth and coalescence of microvoids and microcracks. The macroscopic behavior of the 

material is highly affected by these micro-defects at a given point of the material.  

 

Figure 2.7: Schematic representation of the damage effect on the force-elongation curve [Saanouni12]. 
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The typical force-displacement curve with ductile damage effect is given in Figure 2.7. Clearly, from this 

figure, the ductile damage has deep effect on both elasticity and plasticity behaviors as the ductile damage 

grows. In the CDM framework, the damage interacts strongly with all the thermo-mechanical fields 

according to the appropriate coupling theories [Lemaitre85, Lemaitre05, Besson10 and Saanouni12]. 

According to the effective stress concept of Kachanov [Kachanov58], two configurations can be defined: (i) 

the real damaged configuration including the local micro-discontinuities due to the micro-cracks and micro-

voids, (ii) the continuum undamaged fictitious configuration, as shown in Figure 2.8.  In the damaged 

configuration the RVE with the cross-section area A  is subjected to the uniaxial tensile force: F A   . A 

fictitious undamaged configuration (effective configuration) is introduced by removing all the voids and 

cracks. Then we can obtain F A    . Equating the two expressions of F  obtained from both configurations, 

one obtains the following expression for the effective uniaxial stress: 

 ,
1

A A
where d

d A

 
 




   (2-25) 

The damage variable  0,1d   where the lower bound, d = 0, represents the intact material without any 

damage, and the upper bound, d= 1, represents complete fracture of the material. 

 

Figure 2.8: Effective stress concept defined in a typical representative volume element (RVE). 

Since in the damaged configuration the cross-section area is highly discontinuous and the distribution of the 

micro-defects is unknown, it is not easy to define the state variables at any damaged area. To make this 

easier, a fictitious undamaged configuration (Figure 2.8b) fully continuous and free from any defect in which 

the state variables can be easily defined.  

In this fictitious undamaged configuration, effective state variables can be defined as function of the damage 

variable based on appropriate equivalence assumptions. In the literature, various equivalence principles are 

defined, such as: strain equivalence, stress equivalence and energy equivalence [Besson10, Murakami 12]. 
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In this work, the full coupling between the ductile damage and the material behaviour is performed thanks 

to the definition of effective state variables through total energy equivalence assumption [Saanouni94, 

Saanouni12]. The total energy is assumed to be the sum of the elastic (reversible) energy We, the energy 

dissipated in the kinematic hardening Wα and the energy stored in the isotropic hardening Wr. This total 

energy is assumed to be the same for both configurations. It enables the systematic definition of pairs of 

effective state variables that can be indifferently used both in stress and in strain spaces with the Legendre–

Fenchel transformation. It not only achieves a strong coupling between damage and all other phenomena, 

but also can keep the interaction between the various phenomena. 

For the isothermal problems the observable variables are the total strain and stress tensors  ,  , and the 

internal variables represent different dissipative phenomena as the inelastic flow ( , )e   , the isotropic 

hardening  ,r R  ,the kinematic hardening  , X  and the isotropic ductile damage  ,d Y .  

This suggests the existence of a fictitious undamaged configuration (where d = Y = 0), in which the state 

space is defined by the couples of effective variables  ( , )e   ,  ( , )X  , ( , )r R  . The assumption of total 

energy equivalence postulates that the two configurations have the same total energy so that the effective 

and real variables are related by the following equations: 

 ( , ) 1 / 2( : ) 1 / 2( : ) ( ) ( ) ,
( )e e e e e e e e e

e

W d W d
d

         


           (2-26) 

 ( , ) 1 / 2( : ) 1 / 2( : ) ( ) ( ) ,
( )k

k
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W d X X W d X

d       


          (2-27) 
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( )r r i
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W r d r R r R W r r d r R

d



            (2-28) 

There are many choices for the damage effect functions e(d), k(d) and i(d). They are always positive and 

decreasing functions with respect to the isotropic damage variable d. Their values are varying from 1 (for a 

virgin undamaged RVE ( 0) 1e d   ) to zero (i.e. for a totally damaged RVE ( 1) 0e d   ). 

2.5 Time-independent plasticity and viscoplasticity theories without damage effects 

In order to model the complex material behaviors introduced in Chapter 1, many works have been made to 

describe these complex behaviors at various scales. Crystal plasticity models [Jain07, Argon08, Proust09] 

are provided by relating the single crystal constitutive behavior with that of the overall aggregate basing on 

full field approaches or mean field approaches [Lebensohn07, Besson10, Perdahcıoğlu11] like the self-

consistent approach [Lebensohn93, Saanouni96, Boudifa09, Saanouni12] which are widely used to model 
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the scale transition from grains scale to the macroscale (the RVE scale). For example, the initial anisotropy 

and tension-compression asymmetry of magnesium alloys were investigated by many works [Agnew 01, 

Agnew05, Lou07, Guo15 and Zhou16] at the microscale. It is noted that the microscopic models are useful 

for capturing the mechanical behavior of these highly heterogeneous metals. However, to fulfill our aim of 

modeling macro-scale forming processes with acceptable computational efficiency, a macroscopic 

phenomenological approach is more suitable. The following sections are focused on the modeling of the 

material behaviors at macro-scale based on phenomenological approach. 

2.5.1 Time-independent plasticity 

Yield condition, hardening model and flow rule are the basic plasticity concepts in phenomenological 

modeling. In order to define the limits which determines the transition from reversible and irreversible 

strains, the yield criterion is needed. The flow rule is a link of the stress and plastic strain components. The 

hardening models describe the evolution of the yield function during the inelastic strains. In time 

independent plasticity, all the above aspects are not sensitive to the rate effect i.e. to the velocity of the 

applied loading path. 

2.5.1.1 Yield function 

The yield functions are usally formulated in the stress space as a convex scalar valued function of the stress 

invariants. Generally, the stress invariants-based yield functions are defined using the stress invariant 1I , 2J  

and 3J  expressed as follows: 

 1 11 22 33( )I tr         (2-29) 

 2 2 2
2 11 22 22 33 33 11 12 23 13

1
:

2
J S S S S S S S S S S S         (2-30)  

 2 2 2
3 11 22 33 12 23 13 12 33 23 11 13 22det( ) 2J S S S S S S S S S S S S S       (2-31) 

where S is the deviatoric stress tensor, defined as
1

( ) I
3

S tr   , with I is the second-rank identity tensor. 

The classical well-known von Mises yield criterion assumes that the plasticity of the metals occurs when 

the 2J  reaches a yield value shown as follows: 

  2

3
3 : 0

2y yf J S S        (2-32) 

Hill’s criterion [Hill49] represents an extension of von Mises criterion by using the generalization of 

invariants to anisotropy.  
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   : : 0yf S H S     (2-33) 

where H  is the forth-rank tensor which defined by six anisotropic parameters (F, G, H, L, M and N) to 

define various orthotropies. This criterion widely used for his simplicity to describe the initial anisotropic 

flow, it cannot describe accurately the plastic flow under complex (non-monotonic and non-proportional) 

loading paths, including some SD (Strength Differential) effects. 

By including the effect of the third stress invariant 3J  which enables proper relative weighting of all shear 

stresses, Drucker [Drucker49] proposed a yield function capable to describe the experimental data points 

located between von Mises and Tresca yield surfaces: 

 3 2 6
2 3 0yf J cJ       (2-34) 

To predict the SD effects in the anisotropic models, Blarlat and his co-authors [Cazacu01, Cazacu04, 

Cazacu06] have developed two kinds of yield functions: (1) by introducing the third stress invariant based 

on the Drucker’s criterion [Drucker49], named CB04 given by Eq.(2-35); (2) by introducing a new material 

parameter to control the asymmetry in tension and compression and with extension to anisotropy using a 

linear stress translation based on Balart’s non-quadratic yield criterion, named CPB06 in Eq.(2-36). 

 3 2 6
2 3( ) ( ) 0yf J c J       (2-35) 

      1 1 2 2 3 3 0
a a a

yf k k k                 (2-36) 

where 1  , 2  and 3  are the principal values of :C S   , with C  the operator of plastic anisotropy. The 

stress invariants in Eq.(2-34) are replaced by 2

1
:

2
J     and 3 det( )J    . These two yield functions have 

been extended by others to describe the pronounced in-plane anisotropy [Plunkett08]. 

Yoon [Yoon14] proposed an anisotropic and asymmetric yield function based on CB04 for pressure sensitive 

metals given by:  

 3/2 1/3
1 2 3( ) 0yf bI J cJ        (2-37) 

These models have been successfully implemented into finite element codes and validated through 

numerical simulations of metal forming processes for different materials [Li16, Barros17]. Other methods 

to account for initial plastic flow anisotropy based on non-quadratic criteria, consist of using linear 

transformation stress tensors in isotropic yield functions to take into account the orthotropic behavior, as 

proposed for aluminum sheet metals [Barlat89, Barlat91, Karafillis93, Barlat03, Bron04, Aretz12, Grilo16]. 

Various orthotropic non-quadratic yield functions can also be found among others [Yoshida02, Banabic05, 
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Banabic10].  

2.5.1.2 Flow rule 

It is also important to describe correctly the evolution of all the internal variables as well as the evolution of 

yield surfaces. Indeed, the appropriate flow rule and hardening models play an important role in constitutive 

modeling. 

To define the evolutions of dissipative phenomena with several strongly nonlinear and fully coupled 

dissipative phenomena (plasticity, viscoplasticity, hardening, thermal exchange, damage, etc.), the concept 

of flow potential which has the same properties of convexity in the stress space with yield function is defined. 

The flow potential F  can be taken as the same with the yield function f  ( F f ), this case is called the 

associative plasticity theory leading to Associative Flow Rules (AFR). However, the general case of the 

Non-Associative Flow Rules (non-AFR) is defined by considering F f  with / /f F       and even 

with / /f F      . It is important to recall that the amount of plastic flow increment is governed, for a 

given stress state and history, by the yield function f , while the direction of flow is collinear to the plastic 

potential normal. In crystalline plasticity, the resolved shear stress on several intersecting slip systems 

determines the yield function, the activation of any slip system determines the flow potential. The choice of 

these two flow rules depends on whether the stress states have the same effect on the plastic flow. In practice, 

the use of the non-associative theory is more convenient to a better prediction of experimental results of a 

wide class of metallic materials with multiple dissipative phenomena. In this work, the non-associative 

plasticity is used. 

2.5.1.3 Hardening models 

The proportional expansion of the yield surface is described by the isotropic hardening, which is represented 

by a pair of scalar state variables in continuum mechanics framework. However, the sliding of the yield 

surface center is classically described by the kinematic hardening, which is represented by a couple of 

symmetric and deviatoric second-rank tensor state variables called back stress and its associated strain 

variable, as shown in Figure 2.9. The kinematic hardening plays an important role in describing the 

Bauschinger effect in reversal loading. Several linear [Prager56, Ziegler59] and non-linear [Armstrong66, 

Chaboche86, Yoshida02, Dettmer04] kinematic hardening model can be found in the literature. However, 

the texture evolution in polycrystals due to rotation of the atomic lattice in single grains during large inelastic 

strains can lead to complex macroscopic mechanical behaviors, and the complex interplay at the microscale 

of a polycrystal leads to an evolving macroscopic anisotropy of the yield surface. The anisotropic behavior 

evolves with the material texture change during large plastic strain under complex loading paths. This 
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induced anisotropy cannot be characterized only by classical isotropic and kinematic hardening without 

changing the shape of the yield surface. Meanwhile, unusual hardening evolution at compression loading of 

Mg alloys also need to be described by specific constitutive model. The macroscopic modeling of these 

aspects are discussed in the following: 

 

Figure 2.9: Yield surface evolution according to different hardening models. 

-Distortional hardening 

In order to capture the yield surface distortion (Figure 2.9) during the large plastic flow under non-

proportional loading paths, distortional hardening should be taken into account as an induced anisotropy.  

Attempts to model distortion of the yield surfaces have been made by various approaches in several works 

[Ortiz83; Voyiadjis90, Kurtyka96, Teodosiu98, François01, Haddadi06, Feigenbaum07, Barlat11]. Teodosiu 

model [Teodosiu98] can capture the cross hardening effect, but it cannot describe the evolving distortion of 

the yield function. An alternative method, motivated from physical point of view, has been used based on 

an evolving plastic fourth-rank tensor to describe the distortion of the yield surface [Voyiadjis90, Haddadi06, 

Feigenbaum07, Pietryga12]. Feigenbaum and Dafalias [Feigenbaum07] proposed a thermodynamically-

consistent framework with strong coupling between kinematic hardening and distortional hardening, but 

this model could only strictly be complying with the second law of thermodynamics in the case of small 

strains. However, the subsequent works have been made to extend the model to large strains framework 

[Feigenbaum14]. François model [François01] is the first work that includes distortional hardening using a 

distorted deviatoric stress tensor instead of the classical deviatoric stress tensor in the yield criterion. Within 

other authors as [Shutov12], the distortion was described by introducing a so-called distortional back stress 

in the equivalent stress. Barlat and coworkers [Barlat11, Barlat13; Barlat14; Jeong17] proposed a 

Homogeneous Anisotropic Hardening (HAH) model to describe the plastic flow during strain path changes. 

It can describe the yield surface distortion using an internal structure tensor in the yield stress. Based on 
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these distortional hardening models, extensions by coupling with other physical phenomena have been made. 

Shi and Mosler [Shi13] analyzed three distortional hardening models with application to Magnesium alloys. 

Bartels and Mosler [Bartels17] extended the distortional hardening model modified by [Shi14] to the 

thermomechanical coupled setting. Badreddine et al. [Badreddine17] extended the François [François01] 

model to the non-associative plasticity including the full coupling with isotropic ductile damage. Rokhgireh 

[Rokhgireh17] proposed a new distortional yield surface model which can describe the egg-shaped distorted 

yield surface, and the model shows better prediction of uniaxial and multiaxial ratchetting for steels. Qin et 

al. [Qin18] combined distortional hardening with isotropic and kinematic hardening in their model for 

complex loading paths, in which a scalar variable was introduced to expand the yield surface only in the 

orthogonal direction associated to the dislocation microstructure orientation, in such a manner that the yield 

surface is distorted.  

The fundamentals of some distortional hardening models are briefly discussed in the following: 

(1)François’ model [François01] 

Francois’ model [François01] is constructed by using a new deviatoric stress tensor namely dS  to describe 

the distortion of the yield surface during the plastic deformation. It should be noted that the new ‘distorted 

stress’ dS  is not included as a new thermodynamic force, but only a function of deviatoric part of the Cauchy 

stress tensor and kinematic hardening stress tensor.  

The yield function has the following form: 

 ( , , ) 0d yf X R S X R       (2-38) 

where dS  is defined by: 

 
:

2 ( )
o o

d
sat y

S S
S S X

X R 
 


 (2-39) 

with satX  is a scalar parameter denoting the saturation value of the kinematic hardening, the orthogonal part 

of dS  to the kinematic hardening X defines
2

:
o

S X
S S X

X
  .   

(2) Teodosiu’s model [Teodosiu98] 

The Teodosiu’s model [Teodosiu98, Haddadi06] is based on a modified Hill-type yield function according 

to: 

 ( ) : : ( ) ( ) 0yf S X H S X R f          (2-40) 



Chapter 2: Theorectical modeling of thermo-elasto-visco-plasticity coupled with isotropic ductile damage 

35 

 

where ( )f   represents the contribution of the organized dislocation structures on the isotropic hardening. 

The evolutions of isotropic and kinematic hardenings are given as follows: 

 ( )R satR C R R     and ( )X satX C X n X     (2-41) 

where RC  and xC  are isotropic and kinematic hardening modules, n  is the current direction of the plastic 

strain rate tensor, satR  and satX  are saturation values of R  and X depending on the fourth-rank tensor . There 

are two parts of dislocation structures contributing to the strength, one is associated with current slip systems 

given as : :D n n  , and the other is related to the latent slip systems denoted by L D n n      , their 

evolution equations are postulated as: 

 ( )nl
L SL L sat LC        and  1 2( )D SD sat D DC g g           (2-42) 

where SLC and SDC  are respectively the saturation rates of L   and D . sat  is the saturation value of D . 

1g   and 2g  are strain-dependent parameters [Haddadi06, Shi13].  

(3)Feigenbaum and Dafalias’ model [Feigenbaum07] 

The distinguished character of Feigenbaum and Dafalias’ model [Feigenbaum07] is that a fourth-rank tensor 

is used to describe the evolution of distortional hardening and derived all evolution equations on the basis 

of the fulfillment of the dissipation inequality.  

     2
0: ( ( : ) ) : 0

d

r

H

f S X H n X A S X R     


 (2-43) 

The fourth-rank tensor dH  defines the shape of the yield surface which evolves with the strain through the 

fourth-rank anisotropic tensor A, the evolution function of this tensor is given in Eq.(2-44). The term :rn X  

is responsible for the directionality of the distortion while 0H  is a constant fourth-rank tensor representing 

the initial plastic anisotropy. 

  2

1 2

3
:

2r r rA A S X n X n n A A        
   (2-44) 

where 1A  and 2A are material parameters. 

 (4) HAH model [Barlat11] 

The homogeneous yield function-based anisotropic hardening (HAH) model [Barlat11] describes a partial 

distortion of the yield surface under plastic loading which can describe the Bauschinger effect without the 

concept of kinematic hardening. This yield function f  is given by: 
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The yield function combines the stable component q  and the fluctuating component h , ˆ s
h  is the 

deviatoric microstructure tensor. The material parameters 1f  and 2f  can be represented by two new 

parameters 1g and 2g [Barlat11], according to: 
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with 1 1 1/g d i and 2 2 2/g d i , the two variables are depending on the sign of ˆ :
s

h s , while the parameters 

1 1,d i  2d and 2i  are such that 1
ˆs

d h  and 2
ˆs

d h  are deviatoric stress states on the current distorted yield surface 

while 1
ˆs

i h  and 2
ˆs

i h  would be on the yield surface if hardening is isotropic. In such a manner, the yield 

surface can be divided into forward and negative parts, covering different shapes with a nearby mathematical 

way. If 1 2 0f f  , the yield function reduces to the classical isotropic or anisotropic yield function given 

by   ( ) ( ) 0p
y eqf s s     .  

-Tension-compression asymmetry in hardening 

In addition to the tension-compression asymmetry in yielding, Mg alloys also exhibit unusual hardening 

evolution due to the twinning effect [Guo15], the flow stress-strain evolution has a sigmoidal shape [Khan11, 

Kabirian16], which have referred as hardening asymmetry [Lee17].  Lee et al. [Lee08] extended the two-

surface hardening model for Mg alloys to include the unusual hardening asymmetry, the gap function is 

used to control the gap between the two surfaces in such a manner that the hardening differential effect can 

be captured. Li et al. [Li10] used an isotropic von Mises type yield surface with an evolving non-zero back 

stress to describe the reverse loading behavior of Mg alloys. Also, temperature effect and distortional 

hardening are later included in modelling of anisotropic/asymmetric behavior [Kim13, Lee15, Lee17]. 

Another model, proposed by Nguyen et al. [Nguyen 13], can be regarded as a special case of the two-surface 

model proposed by Lee et al. [Lee08]. This model consists of three different yield functions corresponding 

to three deformation modes (slip, twinning and detwinning) to capture the macroscopic sigmoidal stress-

strain evolution. In fact, the difference of three deformation modes only appears in isotropic hardening, and 

the use of isotropic von Mises yield function is not sufficient for the strong anisotropy of Mg alloys. 

Muhammad et al. [Muhammad15] developed another constitutive model which include the anisotropic yield 

function of CPB06 for three different deformation modes which is similar to the idea of [Nguyen13]. 
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However, each of the three deformation modes has been assigned to both equivalent stress and isotropic 

hardening. Moreover, the parameters corresponding to the anisotropy and asymmetry are evolving with the 

accumulated plastic strain. No translation was accounted for the yield surfaces (i.e. no kinematic hardening) 

in these two above models since only isotropic hardening is taken into account. A phenomenological 

plasticity model which incorporate the micro-mechanisms of deformation was proposed by Steglich et al. 

[Steglich16]. In this model, the strain contribution resulting from slip and twinning is treated separately, 

since the isotropic hardening is dependent on both slip and twinning deformation while kinematic hardening 

is only dependent on slip deformation. Even though this model can be only used to model monotonic loading 

behavior since without incorporating the detwinning mechanism, but it is more straightforward from 

physical point of view and more practical in application to sheet metal forming simulations. This model has 

been extended to characterize the fracture limits of Mg alloys by Lee et al. [Lee18] and to describe the 3D 

plastic anisotropy of HCP metals by Kondori et al. [Kondori18]. Jia and Bai [Jia16] developed a ductile 

fracture model based on the Modified-Mohr-Coulomb model in which the asymmetry hardening effect and 

ductile fracture are accounted for. The fundamentals of some models including the tension-compression 

asymmetry in hardening are briefly discussed in the following: 

(1)Two-surface model proposed by Lee et al. [Lee08] 

There are two yield surfaces in this model: a loading surface inside and a bounding surface outside, as shown 

in Figure 2.10. The current stress on the loading surface is at point a and the corresponding stress on the 

bounding surface is at point A. The correspondence between these two points is defined by the common 

yield surface normal directions. The hardening rate is determined by the gap between the current and 

corresponding stresses. The two surfaces can be contacted at points with the same normal direction. The 

yield functions for the loading and bounding surfaces are written as: 

 
 
 

1

2

0

0

iso

iso

f loading surface

f A bounding surface

       


    
  (2-47) 

where   is the Cauchy stress andis the back stress of the loading surface,  and are the stress and back 

stress of the bounding surface. iso and iso represent the size of the loading surface and bounding surface 

respectively.  The corresponding stress   on the bounding surface shares the same normal direction with 

the current stress at the loading surface, since the shapes of these two surfaces are the same. 
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Figure 2.10: A schematic view of the two-surface model. 

(2)Three-surface model proposed by Nguyen et al. [Nguyen13]  

Three yield functions are proposed to handle three different deformation mechanism, namely, slip mode, 

twinning mode and detwinning dominant modes: 
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where , ,yS yT yD    are the yield stresses for different deformation modes. The modeling of the hardening 

asymmetry is achieved through defining three different isotropic hardening given as below: 
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The subsequent work in the same lab have been done to take into account the temperature effect and 

distortional hardening [Kim13, Lee15, Lee17] with some changes in the equivalent stress and slight 

modification of hardening corresponding to different deformation modes. The idea remains the same, which 

is to apply three different yield criteria at three different deformation modes. To achieve this, a deformation 

criterion determining deformation modes under the plane stress condition should always be defined 

previously [Kim13, Lee15]. The slip-dominant mode which is equivalent to uniaxial tension, the twinning-

dominant mode which is equivalent to uniaxial compression, and the detwinnning-dominant mode which is 

equivalent to tension after compression are defined as follows: 
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where 1   and 2   are the major and minor in-plane principal strain increments respectively, p
T  is the 

accumulated plastic strain at twinning-dominant mode. This three-surface model was modified by 

[Muhammad15] to include the anisotropic yield function of CPB06 for three different deformation modes. 

Each of the three deformation modes has been assigned to both equivalent stress and isotropic hardening. 

No location translation of the yield surfaces was considered (i.e. no kinematic hardening). Another 

disadvantage is that a large number of material parameters need to be identified, since the anisotropic 

parameters are evolving with the accumulated plastic strain. 

 (3) Steglich‘s model [Steglich16] 

Steglich et al. [Steglich16] proposed a phenomenological plasticity model in which the slip and twinning 

are treated separately. Two yield surfaces are applied in this model, an anisotropic yield criterion gf  

proposed by Barlat together with the isotropic and kinematic hardening law is applied to describe the 

dislocation induced deformation, the CPB06 criterion tf   was chosen to describe the deformation by 

twinning.  
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where 1 , 2 and 3 are the principal values of : ( )C X   with the linear transformation using the forth 

rank tensorC. 1
 , 2

 and 3
 are the principal values of :C S   , here the operator of plastic anisotropy C 

and C are different. The interaction between the glide and twinning mechanism is realized through the 

isotropic hardening evolution shown as follows: 
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This model accounts for the transition behavior from twining-dominated to crystallographic slip-dominated 

deformation. It is different from the two-surface model proposed by Lee et al. [Lee08] and the three-surface 

model proposed by Nguyen et al. [Nguyen13], it provides phenomenological descriptions which take into 

account the information on the micro-mechanisms. Since the “detwinning” mechanism is not included, the 

model is unable to represent reverse loading paths. 
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2.5.2 Thermo-viscoplasticity (time-dependent plasticity) 

2.5.2.1 Viscoplasticity potential 

With the thermodynamic approach a viscoplastic potential vp  should be included. By using the effective 

state variables, various forms of viscoplastic potential with strain hardening and damage can be introduced 

[Besson01]. Two viscoplastic potentials are often used, the first is the power function of the yield criterion 

f  which is called Norton-Hoff potential as give below: 
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The second viscoplastic potential is a hyperbolic function of the yield criterion f with the following form: 
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where vK , vm , 1
vK  and 2

vK are the material parameters. The evolution equations can be obtained by deriving 

the viscoplastic potential vp  with respect to the state variables. 

2.5.2.2 Thermo-mechanical coupling 

Within the hot sheet metal forming processes, the temperature rise is mainly caused by the heating operation. 

The complexity of the mechanical behavior including anisotropy and hardening of the material is also 

increased by the thermomechanical coupling. It bears emphasis that the anisotropic material parameters 

have a very high non-linear change with the corresponding temperatures, for instance, high order polynomial 

fitting functions was adopted as a compromise method to predict the nonlinear variation of material 

parameters with temperature in the work of [Abedrabbo06] which investigates the anisotropic yield behavior 

of AA3003-H111 alloy at elevated temperatures. Khan and his coauthors [Khan12] established a strain rate 

and temperature dependent anisotropic yield criterion based on Khan-Huang-Liang (KHL) 

phenomenological model.  

Note that the dissipation phenomena caused by inelastic strains leads to temperature increase inside the 

material. The experimental investigations in [Bednarek06] proved that not only the temperature itself but 

also the heating rate has a significant effect on carrying capacity of the structure. Many thermomechanical 

coupled elasto-viscoplasticity theories can be found in the literature [Simo92, Chaboche97, Voyiadjis04, 

Chaboche08, Saanouni12]. Lestriez [Lestriez04] focused on the ‘strong’ coupling between the thermal and 

the elasto-viscoplastic behavior.  A detailed description of viscoplasticity was presented in [Chaboche08], 
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in which the necessity of temperature rate terms in the context of hardening rules was discussed. Ganczarski 

and Skrzypek [Ganczarski09] considered the temperature dependence of all material functions that 

characterize viscoplasticity and damage with the additional temperature rate terms in all evolution equations 

of thermodynamic conjugate forces. A thermodynamic framework for constitutive modeling of rate-

dependent materials was derived in [Al-Rub12]. In the work of [Egner12], a thermo-mechanical coupled 

formulation with non-associative plasticity and non-associative damage is developed, in which not only 

accounting for temperature-induced softening but also damage-induced softening. Soyarslan and Bargmann 

[Soyarslan16] formulated a consistent-thermodynamic framework for finite multiplicative thermo-plasticity 

coupled to damage along the same lines with Simo and Miehe [Simo92]. Based on all these works, the 

proposed model is presented in the following section. 

2.6 Formulation of the proposed fully coupled model 

2.6.1 State variables and effective state variables  

In this work, the model is formulated in the framework of the thermodynamics of irreversible processes with 

state variables [Lemaitre90, Saanouni12, Skrzypek13]. The observable variables and internal variables are 

introduced, as shown in Table 2.2. Two pairs of observable variables:  

 ( ,B ) for total strain tensor and stress tensor or ( ,B ) if total incompressibility is accepted. 

 ( , eT s ) for absolute temperature and specific entropy.  

Five pairs of internal variables: 

 ( ,e  ) describing the elasto-plastic flow with the small elastic strain tensor and the Cauchy  stress 

tensor; 

 ( /q T


, ( )g grad T
 

) describing thermal flux vector and its conjugate force;  

 ( ,r R ) describing the isotropic hardening depicting the change of the yield surface size (radius); 

 ( , X  ) describing the kinematic hardening i.e. the change of the yield surface center location;  

 ( ,d Y  ) describing the isotropic ductile damage. The scalar variable d is an average measure of 

damage for different directions; with d = 0 for the initial undamaged (or safe) material point, while 

d = 1 for the fully damaged material point. 

The strong coupling between the plastic flow with hardening and the ductile damage is performed in the 

framework of the total energy equivalence assumption [Saanouni94, Saanouni12], leading to the definition 
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of the effective state variables  ,e     , X   and  ,r R  as defined in Eq.(2-26) to Eq.(2-28). By defining 

the specific choice ( ) ( ) 1e kd d d    and ( ) 1i d d     which give:  

 ( 1e ed   , 
1 d

 


 )   (2-55) 

 ( 1 d   , 
1

X
X

d



 ) (2-56) 

 ( 1r d r  , 
1

R
R

d 



 ) (2-57) 

The parameter   represents a coupling parameter governing different damage effects on the isotropic 

hardening [Saanouni12]. 

Table 2.2 Internal variables and their associated variables 

State variables Associated variables 

 

Observables 

Elasticity                       B    J  

Temperature                  T   es  

 

 

Internal variables 

Plasticity             eB or  e    

Kinematic hardening:      X  

Isotropic hardening:       r   R  

Isotropic damage           d   Y  

Thermal transfer        /q T


 ( )g grad T
 

 

 

In order to take into account the microcracks closure effect which consists of rigidity recovery as well as a 

lower damage rate under compression(negative stress) than that in tension(positive stress), Lemaitre and 

Ladeveze [Lemaitre85] proposed a spectral decomposition of the elastic damage force to a negative (or 

compressive) part and positive (or tensile) part. This straightforward spectral decomposition is applied to 

both strain and stress tensors to get positive and negative parts [Lemaitre05, Lemaitre09, Bouchard11, 

Saanouni12]. Any symmetric second-rank tensor T  can be additively decomposed in unique way into 

positive and negative partsT T T
 

  , the trace of tensor T can also be decomposed into positive and 

negative parts : 1 : 1 : 1T T T
 

  .  The application to stress and strain tensors can be done as follows: 

 
1 1d hd

 
  

 
 

 
    (2-58) 
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Accordingly, the effect of the ductile damage on the elastic behavior described by the effective variables 

can be decomposed into deviatoric and hydrostatic parts as following: 
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where eD  is the deviatoric part of the small elastic strain tensor e  , eH is the hydrostatic part. S  is the 

deviatoric part of Cauchy stress and H  is the hydrostatic part. The microcracks closure parameter h  has a 

range from 0 to 1, when 0h   the microcracks close as soon as the stress tensor is negative, while 1h  , the 

microcracks closure effect is neglected (see discussion in [Saanouni12]). The disadvantage of this approach 

is that it includes some discontinuity of the potential functions due to the spectral decomposition and the 

effect of the microcracks closure is only applied to the elastic part of damage energy release rate. To avoid 

the problem of discontinuity in all the previous works [Saanouni12, Badreddine10, Badreddine15, 

Badreddine17a,b, Yue15, Yue17] this decomposition is only used to define the evolution of damage and the 

rigidity recovery is ignored, so that in the yield surface and plastic potential the spectral decomposition is 

ignored to conserve their continuities. 

In this work, in order to avoid the problem induced by the spectral decomposition, and to include the effect 

of microcracks closure effect on all the considered phenomena, a new approach is proposed. The basic idea 

consists in considering a continuous function of parameter h  depending on triaxiality in the following form:  

 
1 1

( ) tanh( )
2 2

c c
h

h h
h   

 
   (2-61) 

where 
2

( )

( )

tr

J




  is the triaxiality, ch  and h  are two material parameters which control the evolution of h , 

the objective of this function is to ensure h =1 when   is greater than a certain positive value, meanwhile 

when   is smaller than a certain negative value, h  should be equal to ch  (smaller than 1). As illustrated in 

Figure 2.11a, h  is set to 2, ch is the critical value of h  when   is smaller than a certain negative value, if 

1ch  , the value of h  is not varying with the triaxiality. The parameter h controls the evolution form of 

the value of h , as shown in Figure 2.11b, when h =0.5, the evolution is quasi-linear according to triaxiality, 

when h =8, then the value of h  stays at the critical value ch when 1 / 3    and then increases in the range
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1 / 3 1/ 3   , finally, it reaches h =1 when 1/ 3  . From this dependent function, the desired values of 

h at tension, shear and compression can be achieved by adjusting the two parameters ch  and h . There is 

no need to decompose the stress and strain into positive and negative parts, which makes the model more 

straightforward and can cover the whole range of the triaxiality. 

  
(a)      (b) 

Figure 2.11: The evolution of the microcracks closure effect parameter according to triaxiality: (a) 

different values of ch ; (b) different values of h . 

The definition of the effective state variables is rewritten in the following form: 

 1 ( ) eeH eHh d      and 
1 ( ) e

H
H
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   (2-62) 

  1 ( )eD eh d     and 
1 ( )

S
S

h d



  (2-63) 

 1 ( )h d     and 
1 ( )

X
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h d



  (2-64) 

 1 ( ) rr h d r   and  
1 ( ) r

R
R

h d 



  (2-65) 

The parameters e and r are coupling parameters governing different damage effects on the hydrostatic 

stress and isotropic hardening respectively. 

2.6.2 State potential and state relations 

The specific Helmholtz free energy    , , , , , , ,e er T d r T          , defined in the fictive undamaged 

configuration as a convex function of strain-like state variables in the effective strain space and concave of 

the temperature, is taken as a state potential [Germain86, Saanouni12]. It can be decomposed into a thermo-

elastic part the  and a thermo-inelastic part thin  considering the assumption that the inelastic strain and 
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hardening do not affect the elastic properties of the material. 

 ( , T) ( , , T) ( , T, ) ( , , T, )e ethe thin the thinr d r d                    (2-66) 
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In these equations, ( )e T  and ( )e T  are the Lame’s constants (  ( ) ( ) / (1 )(1 2 )e T E T       and

 ( ) ( ) / 2(1 )e T E T    ),  ( )e T   is the compressibility modules defined by the following equation 

( ) (3 ( ) 2 ( )) / 3 ( ) / (3(1 2 ))e e eT T T E T        , ( )E T   and ( )y T  are the temperature-dependent Young’s 

modulus and yield stress, ( )C T and ( )Q T are the temperature dependent kinematic and isotropic hardening 

moduli. Also the microcracks closure parameter ( )ch T  can be defined as a function of temperature. The 

thermal expansion coefficient  , the specific heat at constant volume vC , the density and the Poisson’s 

ratio  are assumed to be constant values, assuming their insensitivity to the temperature. T  and 0T are the 

absolute temperature and its reference value. The state potential can be written using the effective damaged 

material properties as following: 
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where the effective damaged material properties are expressed as: 

 ( ) ( ) 1 ( )e eT T h d     ,  ( ) ( ) 1 ( ) e
e eT T h d     , 1 ( ) eh d 

      

 ( ) ( ) 1 ( )C T C T h d   and  ( ) ( ) 1 ( ) rQ T Q T h d   .   

Figure 2.12 shows how the effective Lame’s constant e  evolves with the triaxiality for a given value of 

damage d=0.3. The values of T
e  , C

e  and S
e represent its value at tension, compression and shear. With 

the effect of the microcracks closure effect, the value of e is increased form tension to compression, which 

leads to T S C
e e e      . This case is also suitable for the other  effective damage material properties( , ,e C Q   ). 
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Figure 2.12: The value of e  varying with the triaxiality .   

The combination between the first and second principle of thermodynamics supplies the Clausius-Duhem 

inequality which expresses a statement concerning the irreversibility of natural processes. In the local form, 

the Clausius-Duhem inequality can be written as follows: 

 : ( ) ( ) 0e

q
D s T grad T

T
     

    (2-69) 

Taking the time derivative of Helmholtz free energy defined by Eq. (2-65) gives 

 : :e
e

r d T
r d T

 


    
        

   
      (2-70) 

Substituting Eq. (2-70) into Eq.(2-69), we obtain the following local form of Clausius-Duhem inequality: 

 ( ) : : ( ) ( : ) ( ) 0e vp
ee

q
D s T r d grad T

T r d T
      


    

        
   

     (2-71) 

This inequality is very important in the formulation of constitutive equations. It gives the expression of 

natural irreversibility processes which involved the energy dissipation. 

By cancelling some terms in this inequality, a classical thermodynamic state law for the overall stress-like 

variables can be easily obtained: 

 
 0(1 ( ) ) ( ) 3 1 ( ) ( ) 1

2(1 ( ) ) ( )

H

e eeH
e ee

S

eD
e

h d T h d T T T

h d T



 
       



  


     



 




 (2-72) 

 0
0

3
1 ( ) ( :1) (T T )e eHe

e

C
s h d

T T
 




  



     


 (2-73) 



Chapter 2: Theorectical modeling of thermo-elasto-visco-plasticity coupled with isotropic ductile damage 

47 

 

 
2

(1 ( ) ) ( )
3

X h d C T  



  


 (2-74) 

 (1 ( ) ) ( )rR h d Q T r
r

 
  


 (2-75) 

 e rY Y Y Y
d

     


  (2-76) 

 

 1

1
0

1
( ) ( )( : ) ( ) ( ) :

2

3 ( ) ( ) (T T )
( : 1)

2 1 ( )

e

e

e

e eH eH eD eD
e e e

eHe e

Y h d T h T

h d T

h d







        

   








 






 (2-76a) 

 
1
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 1 21
( ) ( )

2
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2.6.3 Dissipation analysis 

It is assumed that the mechanical and the thermal dissipation are separately positive, so the dissipation 

analysis can be split into two parts: mechanical (or intrinsic) part M  and the thermal part T . 

 0M T       (2-77) 

 ( ) 0T q
grad T

T
    

 
  (2-78) 

 : :vpM D X Rr Yd         (2-79) 

2.6.3.1Thermal dissipation analysis 

The heat flux vector q


  can be obtained from Fourier potential using the classical linear heat theory 

[Saanouni12] in which k is the heat conduction coefficient.  

 ( )q k grad T 
   (2-80) 

The generalized heat equation can be obtained by using this equation in conjunction with the first law of 

thermodynamics [Lestriez03, Saanouni03, Saanouni12]. It will be used for solving the weak variational 

function associated with the thermal problem. 
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2.6.3.2 Mechanical dissipation 

In order to define the flux variables ( , , , )vpD r d   using the non-associative plasticity theory, the intrinsic 

dissipation should satisfy the residual inequality defined in Eq.(2-77). For this end a yield criterion

( , , , , )f X R d T  and dissipation potential ( , , , , , )F X R Y d T  are defined as follows: 
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where 0( ), ( ), ( ), ( ), ( )rS T s T Y T T T  are damage parameters, a and b define the nonlinear evolution of mixed 

isotropic and kinematic hardening. To capture the asymmetric behavior in hardening exhibited by Mg alloys 

with accuracy, the two hardening parameters a (for kinematic hardening) and b (for isotropic hardening) are 

assumed to be function of the normalized Lode angle L  and equivalent plastic strain p according to:  

 1 1 2 2 3 2

1
( , ) ( ) [1 ( )][ ( ) ( ( ) ( )) ( ( ( )))]

2L L sa p a T Tanh a T a T a T Tanh p p T         (2-84) 

 1 1 2 2 3 2

1
( , ) ( ) [1 ( )][ ( ) ( ( ) ( )) ( ( ( )))]

2L L sb p b T Tanh b T b T b T Tanh p p T         (2-85) 

where 1 2 3 1 2 3 1 2( ), ( ), ( ), ( ), ( ), ( ), , , ( )sa T a T a T b T b T b T p T  are the material parameters, p is the equivalent plastic 

strain, the normalized Lode angle L ( 1 1L   ) is   given by: 

 3
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2
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     (2-86) 

The unusual stress-strain evolution appears only in compression, while in tension the behavior is normal. 

The idea is that the hardening parameters a and b shall keep constant in tensile loading while their values 

evolve under compressive loading. The variation tendency of the two parameters in compression takes very 
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high values at the beginning of the plastic flow in order to achieve a very fast saturation of hardening (see 

the first plateau which appears in the stress-strain curve in Figure 1.9). This stage is twinning dominant 

hardening, then their values decrease when the equivalent plastic strain increases and an important hardening 

rate can be found in this stage. After passing the inflection point, the slip dominant mode is activated and 

the hardening parameters a and b reduce gradually to a small constant value which leads to another value 

of the hardening stress saturation.  

The typical variation of the kinematic hardening parameter a and isotropic hardening parameter b with the 

normalized Lode angle and plastic strain is shown in Figure 2.13. The value of parameter a and b reaches a 

high value at uniaxial compression ( 1L   ) and at low plastic strain, while it stays at a small value at 

uniaxial tension ( 1L   ) and high plastic strain level. It should be noted that the calculation of the 

normalized Lode angle does not depend on the rotation frame as shown below: 

 det( ) det( ) det( ) det( ) det( ) det( ) det( ) det( )T T T
QS Q SQ Q S Q Q Q S S        (2-87) 

where QS is the rotated deviator of the stress tensor. A detailed parametric study of these material parameters 

is performed in Chapter 4. 

 

Figure 2.13: Typical variation of parameters a and b versus Lode angle and equivalent plastic strain. 

It has been proved that the ductility of some materials is dependent on the stress state which is represented 

by the stress invariants, especially the Lode angle [Bao04]. Different damage and fracture models have 

included the Lode angle effect [Xue08, Bai08, Cao13, Chbihi17]. In this thesis, the Lode angle effect on the 

damage is considered. Since the ductile damage parameter S  which concerns the material ductility controls 

directly the value of the equivalent plastic strain at fracture, a new form of dependent function of damage 

parameter S  on the Lode angle is proposed: 
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The parameter ( )shS T , ( )tenS T and s are used to adjust the value of S  according to different stress states. The 

detailed description can be found in Chapter 4. 

The equivalent relative stress is characterized by the accounting for both second and third invariant of the 

Hill equivalent stress in order to take into account the Strength Differential effect exhibit by HCP materials 

(e.g., Mg alloys) [Cazacu04, Yoon14] : 

  ( ) : ( ) : ( ) ; ( , )i i i
d i dH

Z S X H T S X i c p      (2-89) 

      
3

det det ( ) : ( ) ; ( , )i i i
i dJ

Z Z H T S X i c p       (2-90) 

where H  and 'H   are two anisotropic fourth-rank symmetric operators characterized by six material 

constants respectively, all these parameters are considered to be varying with temperature. In the non-

associative theory, each of these two operators is independently used in the criterion (Eq. 2-82) and in the 

flow potential (Eq. 2-83). Note that by taking 1w  the equivalent stress of [Cazacu04] is obtained, by taking 

0w  the orthotropic Hill’s quadratic equivalent stress is recovered, meanwhile, the equivalent stress can 

be restricted to classical von Mises one when 0w  and 3 3 1
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(2-91) 

Following the work of François [François01], a simple way to describe the distortion hardening within the 

classical thermodynamics framework is using the kinematic hardening variable to control the distorted yield 

surface. In this work, the François model is modified the by using three adequate material parameters to 

control the yield surface distortion [Yue14, Badreddine17]. The classical deviatoric stress tensor S   is 

replaced by a ‘distortion stress’ dS  as shown hereafter: 
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The distortion hardening parameters 1 1 2( ), ( ), ( )c p c
l l lX T X T X T  are dependent on temperature. 1( )c

lX T and 1 ( )p
lX T

control the distortion ratio of the yield surface and plastic potential, 2 ( )c
lX T affect the size of the yield surface 

in the direction orthogonal to loading directions. It bears to emphasize that the distortional hardening 

parameters should be greater than the saturation value of the kinematic hardening (i.e. ,
1 sat( ) X C/ ac p

lX T   )  

to keep the convexity of the yield surface [Yue14, Badreddine17, Zhang18]. 

In the context of viscoplasticity, the following fluxes variables which define the evolution of the dissipative 

phenomena can be postulated as follows [Lemaitre09, Skrzypek15]: 

Eulerian viscoplastic strain rate tensor: 

 vp p
f f

F
D n




   


   (2-95) 

Kinematic hardening strain rate tensor: 
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Isotropic hardening strain rate: 
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Isotropic ductile damage rate: 
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where the amount of viscous strain rate f   can be defined with the following Norton-Hoff form 

[Lemaitre09]:  

 
 

( )vn T

f v

f

K T
   (2-103) 

The positive scalar f  can be assimilated to a viscoplastic ‘multiplier’ similarly to the time independent 

plasticity.  But this viscoplastic ‘multiplier’ is not defined by a consistency condition like in time 

independent plasticity because the yield function given by Eq.(2-82) can be greater than zero for the context 

of viscoplasticity.   

From Eq.(2-103) we can deduce the following viscoplastic “yield function” given by: 

  
1

( )( , , , , , ) ( , , , , ) ( ) ( , , , , ) 0
vvp v n T

v f vf X R d T f X R d T K T f X R d T           (2-104) 

where the viscous stress  
1

( )( )
vv n T

v fK T     is defined by a scalar quantity where ( )vK T   and ( )vn T   are 

material parameters characterizing the viscous effect. Eq.(2-104) is the yield function in viscoplasticity and 

will be solved numerically at each integration point of each finite element in next chapter. 

2.6.4 Thermodynamical admissibility 

The thermodynamical admissibility consists in proving the positivity of the Clausius-Duhem inequality, the 

viscoplastic intrinsic dissipation is expressed as: 
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With the evolution equations in Eqs. (2-95) to (2-98), the inelastic dissipation can be rewritten as below: 
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Since 0f  , the equation becomes: 

      
 

 

 
0: : ( ) ( ) 0

(1 ( ) )

s T

p x r

T

Y Y TY
n X n a T R n b T r

S Th d 
 




     


 (2-107) 

Since OS S   especially when the loading path is linear at least by part, we assume that 
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. The equation above can be rewritten as: 
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Let Z X   , the first term in Eq. (2-108) can be written as: 
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  (2-109) 

Similarly, with Eq. (2-109) in state relations, we can obtain the following form: 
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 (2-110) 

By combining Eq. with Eq.(2-110), we can simplify the equation as follows: 
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 (2-111) 

As shown in Eq.(2-111), all the parts are positive if b(T) has the same sign as Q(T) and a(T) have the same 
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sigh as C(T). This means that the constitutive equations defined by the state relations and the evolution 

equations fulfill the Clausius-Duhem inequality which is the combination of the first and second principle 

of thermodynamics. The thermodynamic consistency of the proposed model is thus proved.  

2.7 Contact and friction 

The contact and friction between tools and pieces have an important influence on the metal forming process 

through large inelastic strains. In order to obtain accurate simulation results, the contact-friction 

phenomenon must be treated carefully in the simulation. In this thesis, we will not propose any new model 

of contact-friction, however, a general introduction of the common used friction model in FE code Abaqus© 

is indispensable. Detailed study on modeling of contact-friction phenomenon can be found in literature 

[Shillor04, Hashiguchi09, Laursen13]. More deep-going study on this topic is still needed. 

2.7.1 Kinematics of contact 

Generally, the contact problem is always considered between a pair of solids, as shown in Figure 2.14, two 

solids occupying configurations with the volume A  and B with boundaries A  and B . 

 

Figure 2.14: Schematization of the contact problem between two solids A and B. 

To model the contact between the two solids A and B, the vector related to displacement u


 and the vector 

of force F

are defined as shown in Figure 2.14.  The displacement and the force of the contact are given as 

follows: 

 (A) (A) (A) (A) (A)n tu u n u t   
 

  (2-112) 

 (A) (A) (A) (A) (A)n tF F n F t   
    (2-113) 

where (A)nu and (A)nu are the algebraic measurement of normal and tangent displacement, (A)nF and (A)tF

are the normal contact force and tangent contact force respectively. 

The unilateral contact is commonly used in the finite element calculation. This system of solids in contact 
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must verify the following additional conditions: 

 Impenetrability condition: (A) ( ) 0n nu u B   

 Contact surface non-adhesion condition:  (A) ( ) (A) 0n n nu u B F   

 Non-contact condition:   0nu   and 0nF    

2.7.2 Friction model 

Friction models are constitutive equations for contact interfaces between solids under the framework of 

thermodynamics of irreversible process. Two commonly used friction model are presented below. 

2.7.2.1 Tresca-type friction model 

The Tresca-type friction model is a time-independent friction model which only has one friction constant, 

the sliding limit is not dependent on the normal stress. This model is given as follows: 

 (A) 0
3
s

T g

F
F v  


  (2-114) 

 (A) 0, (A) (A)
3
s

T g T

F
F v F       
 

 (2-115) 

Where  is the Tresca coefficient (0 1)  , this model shows that the friction stress (A)TF


 is proportional 

to the sliding force sF , the description of this model at space ( , )g Tv F  is given in Figure 2.15. 

 

Figure 2.15: Schematic representation of Tresca-type friction model. 

2.7.2.2 Coulomb-type friction model 

The Coulomb-type friction model is often applied to describe friction between bodies in sliding contact in 

the case of low contact pressure. It is not dependent on time. The model can be expressed as follows: 
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 (A) (A) 0T nF F 
 

 (2-116) 

 (A) (A) (A) 0T n gF F v  
  

 (2-117) 

 (A) (A) 0, (A) (A)T n g TF F v F       
  

 (2-118) 

where is the coulomb friction coefficient, the value of   is often chosen between0.01(with thin films 

lubrication) and 0.5(without lubrication). It should be noted that Coulomb friction model is appropriate only 

when the mean contact pressure between the two contact bodies lies below the flow stress of the softer body. 

The Coulomb-type friction model is illustrated in Figure 2.16. 

 

Figure 2.16: Schematic representation of Coulomb friction model. 

The tribological tests show that the friction coefficient is dependent on temperature and sliding velocity 

[Grüebler09]. Moreover, using friction model considering the temperature and velocity dependence of 

friction coefficient can obtain more accurate results than only using constant friction coefficient in metal 

forming simulation [Klocke15]. Some proposed dependent functions [Juanicotena06, Nayebi08, and 

Grüebler09] of the friction coefficient are given below:  

                 For the velocity:        
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    (2-119)                          

                 For the temperature:  
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       (2-120)              

where V v
  is the slip velocity, T is the current temperature, Tf is the melting temperature 

1 2 1 2, , , , ,t v t t       and 0 are material parameters. To take into account the effect of temperature and 

velocity at the same time,   the dependent functions for velocity and temperature can be composed together 

by multiplication as follows: 
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        (2-121) 

In a similar way, some other influencing factors can also be considered, i.e. a friction model considering the 

contact pressure, velocity and the temperature can be found in [Klocke15]. 

2.7.3 Heat generation from friction 

During the frictional processes of two solids, the transformation of mechanical energy into internal energy 

or heat is often observed, leading to increase of the temperature [Kennedy01]. This amount of heat generated 

at the contact interfaces is distributed in the two solids in contact, by conduction, convection and/or radiation. 

Frictional heating and the resulting contact temperatures have an important effect on the contacted solids 

[Martins16]. The contact interfaces temperatures can increase high enough to cause changes in the 

mechanical properties of the sliding materials, oxidation of the surface, and possibly even melting of the 

contacting solids. The heat generation represented by a general two-body sliding contact is shown in Figure 

2.17, the “fine” description of the topology of surfaces showing that the contact is not perfectly flat but 

made up of numerous “pads” of contact between roughness of contacting surfaces, the friction force and the 

relative sliding velocity determines the rate of total energy dissipated in the sliding contact. The total heat 

tq   generated from the friction is given by: 

 tq PV FV    (2-122) 

Where  is the coefficient of friction, F  is the friction force, P  is the contact pressure, V is the relative 

sliding velocity. 

 

Figure 2.17: Heat generation during friction. 

In order to solve the thermal problem (Eq. 2-81) which includes the heat generation (Eq.2-119) at the contact 

interface, the suitable thermal boundary conditions applied to different operating conditions and geometry 

of the contacting solid bodies are needed. For example, the Dirichlet condition specifies that a temperature 
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is imposed on one part of the boundary of each of the solids outside the contact interfaces, and the Neumann 

condition, specifying that a heat flow can be imposed on other parts of the solid boundaries outside the 

contact interfaces (see [Saanouni12] for further details). 

2.8 Conclusions 

In this chapter, the first two sections (Section 2.2 and 2.3) illustrate the fundamentals of finite strain elasto-

viscoplasticity theory and some basic elements of mechanics and thermodynamics of the materially simple 

continua to obtain a better understanding the framework in which the whole model is formulated. The 

physical aspects of the ductile damage and the different ductile damage models are described in Section 2.4, 

followed by a summary of the framework of continuum damage mechanics. A review of time-dependent 

and time-independent plasticity are discussed in Section 2.5. The formulation of the proposed anisotropic 

thermo-elaso-visco-plasticity model fully coupled with isotropic ductile damage is given in Section 2.6. The 

proposed fully coupled model, which is under the framework of thermodynamics of irreversible processe 

with state variables, embraces many phenomena observed in metal inelastic flow (initial and induced 

anisotropies, SD effect, hardening asymmetry, etc.). Especially, in this section a new formulation of the 

microcracks closure effect is developed and discussed. Finally, a short discussion of the contact and friction 

in metal forming are given.  

In the next chapter (Chapter 3) the fully coupled constitutive equations developed in the present chapter will 

be discretized in space and in time and implemented in the general purpose finite element code and used for 

the simulation of various metal forming processes. 
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3.1 Introduction 

The numerical aspects for solving the equilibrium problems of the fully coupled thermo-mechanical 

equations by large inelastic strains with damage effect is elaborated in this chapter. First, the strong and 

weak forms of the initial and boundary value problem (IBVP) are defined in section 3.2.1. Then the time 

and space discretization of the IBVP leading to obtain the highly nonlinear and strongly coupled algebraic 

system, as given in section 3.2.2. The method to solve the IBVP is the global resolution scheme of the 

dynamic explicit solver and the local constitutive integration scheme. A fairly detailed presentation of the 

numerical integration of fully coupled ordinary differential equations (ODEs) associated with thermoelasto-

viscoplastic constitutive equations with damage are illustrated in section 3.2.3 and 3.2.4. Finally the 

implementation of a user defined subroutine-VUMAT is given in section 3.3.  

3.2 Numerical method for thermo-mechanical problems  

3.2.1 Thermo-mechanical initial and boundary value problem 

The mechanical and thermal problems are posed with the strong and weak forms of the equilibrium 

equations and the heat equations. As illustrated in Figure 3.1, a deformable and damageable solid occupying 

at any time 0 , ft t t    , a volume t  with boundary t .  

 

Figure 3.1 A deformable solid and boundary condition at a given time t . 

The following force fields are imposed: 

- Force field  
 F

F


imposed on F
t ; 
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- Contact force 
C

F


 imposed in C
t ; 

- Displacement field tU


imposed on u
t . 

- A temperature field tT


 imposed on T
t  

- A heat flow tq
  imposed on q

t  

The boundary t is composed on the following sub-surfaces u
t , F

t , q
t , T

t and C
t , for which the following 

classical relationships are fulfilled at each time t: 

 
u F C q T
t t t t t t

F u F C u C q T
t t t t t t t t

      

           

   
   

 (3-1) 

All the kinematics and state variables must fulfill all of the field equations governing the equilibrium of 

forces and temperature. 

For the mechanical problem, the strong form is defined by the classical equilibrium equations together with 

mixed Dirichlet and Neumann Boundary conditions: 

 ( ( , )) ( , ) ( , ) ,t t tdiv x t f x t U x t x t I    
      (3-2) 

 
( , ) on

( , ) on

u
t t

F F
t t t

U x t U

x t n F

  

   

 
   (3-3) 

where   is the Cauchy stress tensor defined by the fully coupled constitutive equations, t  is the solid 

density and U

  is the acceleration vector.  

The weak form of the IBVP is deduced from the strong form defined above by Eq. (3-1) to Eq. (3-3), thanks 

to the well-known weighted residual method together with Galerkin assumption. If the updated Lagrangian 

formulation is used, the weighted residual method applied to Eq. (3-1) and after the integration by part and 

the use of the Neumann Boundary condition, the following weak form is obtained: 

 ( , , ) : 0
F

F C
V

tJ U U T D dV U UdV f UdV F F U ds     
   

          
    

               . .U K A

   (3-4) 

where U

  is the kinematically admissible (K.A.) virtual velocity field and D  is the associated virtual total 

strain rate tensor.  

For the thermal problem on the same volume t , the heat equation is written in the case of single-surface 

and isotropic damage theory as follows: 

 ( ( , )) ( , ) ( , ) ( , ) 0 ,v t tk Lap T x t C T x t x t Rpl x t x t I       
       (3-5) 
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The appropriated mixed Dirichlet and Neumann boundary conditions should be added after the 

discretization of Eq. (3-5) by the FEM.  

 
   

( , )

( , ) . ( , ) .

T
t t

q
t t t t

T x t T on

q x t n k T x t n q on

  


    


        (3-6) 

In Eq. (3-5) ( , )x t    is the body heat source, while plR   is the internal heat generation from mechanical 

dissipation which is the sum of the intrinsic volume dissipation and the isentropic term with mixed hardening 

and isotropic damage, defined by: 

 : : : :in e
pl J

X R Y
R D X Rr Yd T r d

T T T T

                   
       (3-7) 

When considering the contact with friction between different solids, the heat generated at the contact 

interfaces cannot be underestimated, since this could cause a significant rise of temperature in both solids, 

the contact interfaces behave as a heat source, which can distribute the heat by conduction, convection 

and/or radiation. The density of the heat flow comes from the different heat fluxes generated at the contact 

interface are expressed in the following form: 

 c r sq q q q  
   

  (3-8) 

where ( )B A
cq h T T 


and 4 4(( ) ( ) )B A
r rq h T T 


are the heat flux density form the solid by conduction and 

radiation respectively. The vector sq


 is the density of the heat flux generated by friction at the contact 

interfaces. 

The weak form associated with heat equation can be obtained by applying the weighted residuals method to 

heat equation in Eq. (3-5): 

 ( , , ) ( ) 0
t t t t

v plJ T T U T C TdV TR dV T dV Tdiv q dV      
   

       
     . .T K A   (3-9) 

With the Fourier model ( )q kg T 
 

 , the divergence theorem ( )
t S

div Tq dV TqndS 


 
 

 it comes: 

 ( ) ( )
t tS

Tdiv q dV TqndS qdiv T dV  
 

   
  

 (3-10) 

Then the weak form of the heat equation is written by: 

 ( , , ) ( ) 0
t t t t

v pl

S

J T T U T C TdV TR dV T dV TqndS qdiv T dV       
   

         
     . .T K A  (3-11) 
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Taking into account the thermal boundary conditions imposed on T
t and q

t , the final form of the associated 

weak form is finally expressed as: 

 

( , , ) ( ). ( )

0 . .

t t t t

T q
t t

v pl

f T q

J T T U T C TdV TR dV T dV kg T g T dV
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    (3-12) 

3.2.2 Time and space discretization of IBVP  

The two weak forms defining the thermo-mechanical IBVP discussed above are strongly coupled and highly 

nonlinear [Bergheau08]. In order to linearize these variational forms, the discretization of them in time and 

space are needed, which can obtain the IBVP in an incremental form of a nonlinear algebraic system to be 

solved over each time increment. 

3.2.2.1 Space discretization of the IBVP 

Using the FE method based on the displacement and temperature fields, the discretization of the total volume 

t  of the solid into eN  finite elements with the elementary volume e  leading to: 

 
1

eN
e

t
e

    (3-13) 

To each finite element e with eN  nodes defined in the working space  1 2 3, ,x x x  is associated a reference 

element r  defined in the reference space  1 2 3, ,   , so that: 

       e e
i ix N x     

 
 (3-14) 

where   x 


  is the coordinates vector of any material point of r  ,  e
iN  

  


  are the shape polynomial 

functions and  e
ix  are the coordinates of the eN  nodes of the element. 

By applying this type of nodal approximation, together with the Galerkin assumption, the real and the virtual 

displacement vector and temperature are approximated by: 

        ( ) ( ) and ( ) ( )e e e e e e
u i u iU U N U U N U            

   
 (3-15) 

    ( ) ( ) and ( ) ( )e e e e e e
T i T iT N T T N T      

   
  (3-16) 

where  e
uN 


  and ( )e
TN 


 are the interpolation functions of the displacement and temperature fields 

respectively. The velocity and acceleration vectors, as well as the rate of temperature can be obtained by the 
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derivative with respect to time: 

    ( ) ( )e e e
I IU N U    

   and    ( ) ( )e e e
I IU N U    

    (3-17) 

  ( ) ( )e e e
T iT N T 

    (3-18) 

where  e
IU  is the accelerations vector of the element nodes.  

By using the equations above, the weak form associated to the mechanical and thermal problem written for 

a single iso-parametric (i.e. ( ) ( )e e
I IN N       
 

) reference element is easily expressed with the following 

matrix form: 
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  (3-19) 

For the mechanical problem, the internal element force vector and the external forces vectors are defined 

for a typical element under the following form: 
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  (3-20) 

For the thermal problem, the internal and external thermal force vectors are given for a typical element by: 
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  (3-21) 

where eM    is the consistent mass matrix given by: 

 
r

Te e eM N N dV


            (3-22) 

The capacitance matrix is defined by: 

  
r

e e e
T v TC N C N dV



      (3-23) 

eB   and e
TB   are two interpolation matrix derived from the derivatives of the interpolation functions with 
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respect to the coordinates and, defined by: 

 
e e
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e e

N N
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x x





                       



     (3-24) 
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    (3-25) 

If   indicates the finite element assembly operator, the discretized weak form of Eq. (3-19) can be written 

as: 

 
           

           

int
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 (3-26) 

Leading to: 

 
        
        

int

int

0

0

ext

ext

M U F F

C T G G

   


  




  (3-27) 

where  U  is the global (for all nodes of all of the structure elements) accelerations vector, and 

 
1

eN
e

e
M M


      is the global lumped mass matrix,    int int

1

eN
e

e
F F


   and    

1

eN
e

ext ext
e

F F


   are the global internal 

and external mechanical force vectors.  
1

eN
e

e
C C


     is the lumped overall thermal capacitance matrix,

   int int1

eN
e

e
G G


   and   

1

eN
e

ext exte
G G


  are the overall internal and external thermal force vectors. 

3.2.2.2 Time discretization of the IBVP 

The discretization in time of the IBVP consist of dividing the total time into subintervals with empty 

intersections, which leads to the approximation  0 1
0

, ,
tN

f n n n
n

t t t t t t


        .  The unknowns of the IBVP are 

determined by solving the non-linear problem at each time increment. When all the unknowns are assumed 

to be known at time nt , this problem is to obtain the unknowns at the end of each time increment at time 

1nt  .  

3.2.3 Global resolution scheme: computation of displacement and temperature 

When dealing with the numerical simulations in metal forming processes, the strong multi-physical coupling 

between the various partial differential equations (PDEs) is always taken place. Regarding the mathematic 
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nature of the problems, there are two frequently used global resolution schemes: dynamic explicit (DE) 

schemes and static implicit (SI) schemes. They are applied to solve the highly nonlinear algebraic system 

over each typical time increment 1n nt t t   . The static implicit schemes are usually used for solving the 

static (or quasi-static) problems for which an incremental tangent matrix can be relatively easily computed. 

When concerning the damage-induced softening as well as a very large number of contact nodes, it is 

difficult to obtain an incremental tangent matrix due to strong nonlinearities and physical instabilities 

induced by the damage effects. In that case, the dynamic explicit scheme is preferred to solve the IBVP 

using the lumped mass and capacitance matrices [Saanouni 12]. Due to the fact that the damage is fully 

coupled in our constitutive model, the DE resolution scheme is applied in this work to perform the 

simulation of sheet metal forming process. 

For the coupled thermo-mechanical problem, the DE method is used based on the mass matrix  M  and 

capacitance matrix  C .This method has been implemented into the FE code ABAQUS/Explicit to calculate 

the unknowns at 1nt   which are the functions of the values known at nt . For the mechanical problem, the 

acceleration vector can be obtained when the internal and external force vectors as well as the mass matrix 

are known as follows:   

       1

int
L

extn n n n
U M F F


   

  (3-28) 

Once the acceleration vector is known at the beginning of the time increment, the displacement velocity at 

the middle of the time increment is approximated by the following Taylor development truncated at the first 

term: 

       1

1/2 1/2
...

2
n n

n n n

t t
U U U

 

  
       (3-29) 

Then the displacement vector at the end of the increment 1nt   is obtained using the same method: 

      11 1/ 2
...nn n n

U U t U 
     (3-30)

 

The same method is applied to the heat equation by computing first the temperature rate at nt : 

       1

int
L

extn n n n
T M G G


   

  (3-31) 

The temperature at time 1nt  is then obtained by: 

      1 nn n n
T T t T


     (3-32) 
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In this DE resolution scheme neither iterations nor tangent stiffness matrix are required, however the 

accuracy and the stability of the solutions are highly conditioned by the time step amplitude t . Accordingly, 

attention should be paid to the control of time increment step t  to ensure the stability and accuracy of the 

solution [Hughes87]. The stable time increment is defined:  

 2

max

2
( 1 )t

w
        (3-33) 

where maxw  is the highest eigenvalue, and  is the damping parameter. In practice, the estimation of the 

largest eigenvalue are determined by the highest value of volume expansion of all elements. In 

ABAQUS/Explicit, the stable time increment is set to be the minimum value of the mechanical step and 

thermal step which is expressed below: 

 
2

min( , )
2

e e
u T

d

L L
t t t

C C

        (3-34) 

where eL   is the smallest mesh element dimension. dC   is the dilatational wave speed travelling in the 

element, approximated by ( 2 ) /d e eC       and the material diffusion can be expressed by: 

/ ( )vC k C  , where   is the material density, e  and e  are the Lame’s constants. 

In this work, the mechanical and thermal problems are solved sequentially over the same typical time 

increment  1,n n nt t t t     assuming the weak thermomechanical coupling (See [Saanouni12] for more 

details).  First, the mechanical problem is solved over the time interval under isothermal condition (i.e.

1n nT T  ) in order to obtain the mechanical variables at 1nt  . Once the stress, hardening and damage variables 

are known at 1nt    , the thermal problem is then solved in order to compute the temperature 1nT    at 1nt 

terminating the resolution of the thermomechanical problems over the same time increment 

 1,n n nt t t t    . This incremental procedure will not be stopped unless the total time exceeds the final 

time 1n ft t  . The resolution of the mechanical step and thermal step are in the following manner: 

 Resolution of the equation of displacement field:  

(1) Calculate the lumped mass matrix eM   at time nt ; 

(2) Obtain the values of the variables at time nt ( ....nu u  ); 

(2) Estimate the stable time increment ut  using the Eq. (3-34); 

(3) Calculate the displacement field 1nU   using the nU and 1/ 2nU 
 ; 

(4) Update the state variables, e.g. 1n  , (n 1)p  , using the local integration scheme(see next section); 
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(5) Compute the internal forces  int
eF  and external  e

extF  forces using the Eq. (3-20); 

(6) Select the critical time step for the mechanical problem. 

 Resolution of the equation of local temperature: 

(1) Calculate the lumped capacitance matrix [C ]e  and the thermal force vectors at nt with knowing 

the results of mechanical variable at 1nt  ; 

(2) Estimate the stable time increment Tt ; 

(3) Calculate the temperature rate nT   and temperature 1nT  ; 

(4) Compute the internal flux vector  int
eG  by Eq. (3-31); 

(6) Select the critical time step for the thermal problem. 

 Numerical treatment of contact with friction 

In the simulation of metal forming processes, attention should be paid to the numerical treatment of 

contact with friction, since the friction has an important influence on the numerical results. A standard 

way in Abaqus (see Abaqus Analysis User’s Guide) to calculate the contact forces is to use the penalty 

method which calculates the interpenetration gap between solids at a given contact interface node, 

and uses this displacement and a penalty parameter to compute the contact forces. 

 Here the numerical treatment of contacting nodes based on master/slave surfaces algorithm is to 

ensure the proper contact conditions. The contact forces, function of the penetration distance, are 

applied to the slave nodes to oppose the penetration, while equal and opposite forces act on the master 

surface distributed at the penetration point. The Coulomb friction model describes the linear 

relationship between the transmitted shear and the normal forces through the friction parameter, it is 

used to represent the friction between the contacting bodies. 

As illustrated above, the explicit resolution procedure for the fully coupled thermo-mechanical problem is 

accelerated, since the diagonal character of the lumped mass and capacitance matrices. Furthermore, the 

mass scaling procedure will be applied in the simulation with ABAQUS/Explicit, it can increase the mass 

of the elements with small size while preserving the real time scale, in such a manner that the size of the 

time step is increased, finally, the goal of reducing the CPU time is reached. 

3.2.4 Local integration scheme: computation of state variables 

In order to calculate the internal force vectors which characterizing the IBVP, the Cauchy stress tensor 1n  , 

the kinematic hardening 1n  , the isotropic hardening 1nr  , the isotropic damage 1nd   and the temperature 

1nT   at each integration point at each element at time step 1nt  need to be computed. The calculation of these 
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state variables is performed using the well-known elastic prediction and plastic correction scheme 

throughout the numerical integration of the ODEs used in constitutive equations. The Newton-Raphson 

implicit iterative integration method will be applied in this work to solve all the first-order ODEs in 

constitutive equations which are highly nonlinear and strongly coupled.  

Usually, when the time domain is discretized into many small time intervals, as  1,n n nt t t t    , the first-

order ODE integration problem can be expressed in the following form: 

 
 

 
 1 1

1

,
,

n n

n n

n n

y y t
t t t

y t t y

 


  
 


 (3-35) 

Suppose that the variable ny  at the beginning of the time increment nt is known, the problem is to obtain its 

value 1ny  at the end of the time increment 1nt  . With the  -method, the solution can be written in the 

following form: 

   1 1 (0 1)n n n ny y t y y for             (3-36) 

The forward Euler purely implicit scheme can be set when 1  , we will confine ourselves to use this scheme 

in the thesis.  For the specific type of Euler first-order differential equations which need to be solved are 

given below: 

 
   

 
 1 1 1 1

1

, ,
,

n n n n

n n

n n

y y t y t y
t t t

y t t y

    


       
 


 (3-37) 

The asymptotic solution for Eq. (3-37) is given as: 

        exp 1 exp (0 1)n n n n ny y y t y t y for                     (3-38) 

In the purely implicit case when 1  , this solution becomes: 

        1 1 1 1exp 1 expn n n n ny y y t y t y               (3-39) 

3.2.4.1 Pose of the problem 

The anisotropic thermo-elasto-viscoplasticity model fully coupled with isotropic ductile damage 

constitutive equations developed in Chapter 2 are summarized below: 

Yield function     
 1/33

3
( ) 0

1 ( ) 1 ( ) r

c c

H J

y

Z w Z R
f T

h d h d 
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 where                  
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  3

2/33

3

( ) : : ( )
3
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H J
A

H J

w
Z H T Z Z Z H T

n
Z w Z

 


  

  

 

These fully coupled constitutive equations presented above have been implemented into ABAQUS/Explicit 

FE code using the user defined subroutine VUMAT. Since the constitutive equations above have the general 

form of first-order ordinary differential equations except the kinematic hardening and isotropic hardening 

having the Euler-type differential equations, their numerical integration can be performed by combining the 

backward Euler fully implicit ( 1  ) scheme and the fully implicit asymptotic scheme (see [Saanouni12]). 

The discretized equations can be easily obtained as follows: 
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 (3-40) 

with        
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(3-43) 
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            and         1 1 1

1
( )1

3n n nS tr                                    (3-44) 

The stress-like variables are given by: 
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1 1 1
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                                        1 1 1(1 ( ) ) ( )r
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                                        1 1 1 1
e r

n n n nY Y Y Y
                                                                                              (3-48) 
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1 1 1
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3n n n nY h C T                   (3-50) 

1 2
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1
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2
rr

n r n n nY h d Q T r  
     (3-51) 

The damage stress-like variable can be transferred to the stress space by Legendre transformation. The 

detailed description of this transformation can be found in [Issa10]. 
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   (3-55) 

The related strain-like variables are expressed as below: 

 1 1
vp vp p
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And finally the damage equation is given by: 
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3.2.4.2 Elastic prediction 

The elastic strain at time 1nt    is given by: 

 1 1 1 ( )

e ee vp
n n

eH eD eH eD eH eDe eH eD H D vpH vpD
n n n n n n n

   

            
  

                   
   

 (3-64) 

   where ( )eH H vpH vptr            and eD D vpD        

In this trial step, we suppose that the total strain increment    is purely elastic under the constant 

temperature 1n nT T    over the current time step, which means no dissipative phenomena(i.e. 0   ), 
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leading to: 

 ( 0; 0; 0; 0vp r d         )  ( 1 1 1 1; ; ;vp vp
n n n n n n n nr r d d          ) (3-65) 

The elastic trial strain at time 1nt   is given by: 
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 (3-66) 

In which *
1

eH
n  and *

1
eD
n   are the hydrostatic and deviatoric part of the trial strain, so the corresponding 

hydrostatic and deviatoric stress *
1

H
n   and *

1nS  are obtained: 
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then the trial stress *
1n  can be expressed by: 
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Noting that **
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n d n nZ S X   , the trial viscoplastic “yield function” * *
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Check for yielding: if  * *
1 1( , , , , ) 0vp

n n n n n nf X R d T   , then the assumption of elastic behavior in this isothermal 

trial state is true, and the solution of the present loading step is given by: 
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 (3-74) 

3.2.4.3 Inelastic correction 

If * *
1 1( , , , , ) 0vp

n n n n n nf X R d T   , the state variables at trial state will be corrected at time 1nt  by computing the 

best values of 1 1 1 ( 1) 1, , , ,n n n v n nX R d       fulfilling the viscoplastic criterion i.e. 

1 1 1 1 ( 1) 1( , , , , , ) 0vp
n n n n v n n nf X R d T         , the corrected stress-like state variables can be obtained. The 

hydrostatic and deviatoric part of the stress with respect to the trial stress can be written in the following 

form: 
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 (3-76) 

The Cauchy stress tensor is then given by: 
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 (3-77) 

The kinematic hardening: 
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 (3-78) 

The isotropic hardening: 
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 (3-79) 

The viscous stress: 
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 (3-80) 

With the discretized nonlinear equations developed above. Considering the calculation efficiency, the 

discretization equation system can be reduced to four equations with four unknowns  , 1nd  , 1nX    and 

1
p
nn  as given below: 
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 (3-81) 

This system is solved thanks to the classical linearization by Newton-Raphson method according to: 
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 (3-82) 

or under the matrix form: 
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 (3-83) 

This system can be solved with respect to   , 1nd   , 1nX  and 1
p
nn  :  
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 (3-84) 

Once the nonlinear system is solved by the Newton-Raphson iterative scheme and the iterative process 

converges, the state variables should be updated at time 1nt  using Eqs. (3-71) to (3-74) for the current time 

increment. 

The problem is solved with the material Jacobian matrix which is based on the derivatives below: 
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  (3-86) 
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 (3-88) 

The partial derivatives of state variables with respect to   are given by: 

    1( 1) 1 0( 1)

1 2( ) ( )
c

nd n n nc
l n l n

A A
S S X S

X T X T
 

        and   1( 1) 1

1 ( )
p

nd n n p
l n

A
S S X

X T


     (3-89) 

    
 

0( 1) 0( 1)

1 1

:

2 / 1 ( ) ( )r

n n

n n y n

S S
A

R h d T
  

 

 


 

 and 
 

( 1) ( 1)

1 1

:

2 / 1 ( ) ( )r

n n

n n y n

X X
A

R h d T
  

 

 


 

  (3-90) 

1

1
( 1)

1 1 1 0 0

1 1 2 2

0

1 2( )
( )

( ) ( ) ( ) ( )

n
c n
d n

n n n
c c c c
l n l n l n l n

c c
nl l

SX
X T X

S A A
S

A A A AS X S SX

X T X T X T X T

 

   

 

    






  

  


 
  

    
    

 

   

 (3-91) 

1

1
( 1) 1 1 1

1 1

1
( )

( )

( ) ( )

n
p n
d n n n n

p c
l n l n

p
nl

X
X T

S A
S A AS X X

X T X T


 

    




   

 
  

   
    



   (3-92) 

    0( 1) 0( 1) 0( 1) 1 1 1

1 1 1 1

: 1
:

2( ) ( ) ( ) 1 ( ) r

n n n n n n

n y n y n y n

S S SA AS RX
A

R R R h d

 
        

     

   

                     
    (3-93) 

    1 1 1 1 1

1 1 1 1

: 1
:

2( ) ( ) ( ) 1 ( ) r

n n n n n

n y n y n y n

A A RX X X X

R R R h d

 

      
    

   

  
   

        
    (3-94) 

    0( 1) 1 1n n n
S S X

A  
  

  
 

  
   (3-95) 

     1
1 11 ( ) 2 ( ) pn

n e n n

S
h d T n 




 


  


    (3-96) 

    
( )

( )( )1
1

1

2
( )(1 ( ) ) ( ( ))

3 1 ( )

n

n

x a T
na Tn

n n n n

n

n eX
C T h d e a T

h d


 

 

 
 




 
    
   

  (3-97) 



Chapter 3: Numerical aspects 

80 

 

    
( )

( )( )1
1

1

( )(1 ( ) ) ( ( ))
1 ( )

n

nr

r

b Tr
nb Tn

n n n n

n

n eR
Q T h d r e b T

h d







 

 
 





      
   

 (3-98) 

    

1 1 1 1

1 1
12

1

1 1 1
1 12

1

1
1 1 1

( )
:

2 ( )(1 ( ) )

3 ( )
: :

4 ( )(1 ( ) )

( )

( )(1 ( )

r

X R
n n n n

n n
n

e n n

X
n n n

n n

n n

R
n r n n

n

Y Y Y Y

Y Sh
S

T h d

Y X Xh
X X

C T h d

Y h d R

Q T h







   


  


  

 
 

   

 




  
 




  

   
  

   
  

     
   

       



 

1
2

1)r

n

n

R

d  














 




 (3-99) 

The partial derivatives of state variables with respect to the 1nd   are given by: 
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 (3-107) 

The partial derivatives of state variables with respect to the kinematic hardening are given by: 
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Finally, the partial derivatives of state variables with respect to 1
p

nn   are given by: 
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3.2.5 Calculate the heat generation  

In order to calculate the internal flux vector  intG which is described in the resolution scheme, we need to 

calculate the internal heat generation. The expression of plR is given below: 
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The isentropic term needs to be calculated with the derivatives of the state variables 1 1 1 1( , , , )n n n nX R Y       

with respect to temperature. This process concerns the calculation the derivatives of the temperature 

dependent material parameters, see the work of [Lestriez03, Issa10] for more details. 

3.3 Practical implementation of user defined subroutine-VUMAT 

The user defined subroutine provides us an approach to perform simulations using proposed constitutive 

models which are not existed in commercial finite element (FE) code to accurately represent the material 

behavior.  The user defined material model can be implemented in user subroutine UMAT and VUMAT in 

ABAQUS/Standard and ABAQUS/Explicit respectively. In this thesis, the VUMAT is chosen to make the 

simulation in ABAQUS/Explicit, since it is relatively easy to reach convergence with a reasonable 

computational time. The significant features of the VUMAT as well as the differences between the UMAT 

and VUMAT are listed below:  

 The stresses and strains are stored as vectors. For plane stress elements, plane strain and 

axisymmetric elements, the storage scheme is the same in UMAT and VUMAT. The difference is in 

storage of three-dimensional elements, as shown below: 

VUMAT:  11 22 33 12 23 13, , , , ,        

UMAT:  11 22 33 12 13 23, , , , ,       

 The shear strain is stored as tensor shear strains in VUMAT( 12 122    ), while UMAT uses 

engineering shear strain( 12 12

1

2
   ) . 

 In VUMAT, the initial values at the beginning of each increment are put in the ‘old’ arrays, the 

updated values at the end of the each increment must be assigned in the ‘new’ arrays. 

 There is no need to define the Jacobian matrix. 

 The time increment cannot be redefined. 

 The vectorized interface is applied. This structure allows vectorization of the routine, but branching 

inside loops has to be avoided. 
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 The data are passed in and out in large blocks(‘nblock’), it has a value of 64 or128. All material 

points in the same block have the same material name and belong to the same element type. 

Figure 3.2 shows how the fully damaged Gauss points and fully damaged elements are treated in the 

implementation in Abaqus/Explicit. Once the unknowns at time 1nt   are obtained, the value of damage will 

be compared with the critical damage value cd . If it has not reached the critical damage value, all the state 

variables will be updated. If damage reaches its critical value, the values of the state variables will be set to 

zero. The element in FE code will be deleted, which leads to the micro-crack, with accumulating the micro-

cracks, finally the macro-crack can appear in the structure. This is how the damage is used to describe the 

cracking inside the structure. 

 

Figure 3.2 Numerical aspects of the proposed model implementation in FE code. 

3.4 Conclusions 

In this chapter, the numerical aspects of the fully coupled thermo-mechanical model were discussed. The 

following aspects were presented: the strong and weak forms of the initial and boundary value problem, the 

time and space discretization of the IBVP, the global resolution scheme of the dynamic explicit solver and 

the local constitutive integration scheme, the implementation of user defined subroutine-VUMAT.   

In the next chapter, we will show the high predictive capabilities of using the constitutive equations with 

FEM to account for the complex phenomena in hot sheet metal forming.
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4.1 Introduction 

In order to show and analyze the capabilities as well as the limitations of the proposed model(summarized 

in Table 4.1), in this chapter an exhaustive parametric study was conducted to explore its newly developed 

features. The parametric study of the local response was done with Representative Volume Element (RVE) 

(which in fact is nothing but a material point representing an integration point), to analyze the effects of 

anisotropy and tension-compression asymmetry, the distortion of the yield surface, the temperature and 

strain rate, the hardening asymmetry, the microcracks closure, the stress triaxiality and Lode angle.  

Table 4.1 Summary of the constitutive equations 
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4.2 Initial anisotropy and asymmetry 

Recall that in the case of plane stress, the yield function in Table 4.1 (Eq. (a)) contains 9 parameters which 

determine the shape of the yield surface. The case of initial plastic isotropy (or von Mises yield function) 

corresponds to the generic values given by: F=G=H=F’=G’=H’=0.5 and N=N’=1.5. We will focus on the 

study of parameters F, G, H, F’, G’, H’ and w effects, by varying one by one every parameter while the 

others have fixed values. Note that, as shown in Figure 4-1, the case of w=0 reduces the yield surface to the 

classical von Mises yield stress, while when considering w=2 or w=-2, the yield asymmetry is activated to 

get respectively larger yield stresses in tension (w=2) and in compression (w=-2).  

 
Figure 4.1: Yield surfaces with different value of parameter w. 

 

  
Figure 4.2: Effect of the anisotropic parameters on the yield surface with w=1 (plane stress condition):  

(a) parameter F; (b) parameter G; (c) parameter H; (d) parameter F’; (e) parameter G’; (f) parameter H’. 
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Figure 4.2 illustrates different shapes of the yield surfaces with varying the anisotropic parameters and 

considering yield asymmetry with larger yield stress in tension (w=1). It is worth noting that the parameters 

F and F’ affect the yield surface shape in the transverse direction as shown in Figures 4.2a and 4.2d  without 

changing the yield stresses in rolling direction. The parameters G and G’ affect the yield surface in rolling 

direction without changing the yield stresses in the transverse direction (Figures 4.2b and 4.2e). Varying 

parameters H and H’ conserve the equi-biaxial stresses and allow changes in both rolling and transverse 

directions as shown in Figure 4.2c and Figure 4.2f. It is to be highlighted that the sensitivity of parameters 

F, G and H (involved in J2 part of equivalent stress) are more significant than those of parameters F’, G’ and 

H’ (involved in J3 part of equivalent stress). It is also observed that the effect of these anisotropic parameters 

are highly coupled and requires an appropriate optimization method to be accurately determined. 

4.3 Distortion of the yield surfaces 

In order to examine the distortional parameters effects, new simulations are made with the proposed model 

using the material parameters given in Table 4.2, the initial plastic isotropy is considered with w=0 to avoid 

the initial plastic flow anisotropy effect on the yield surface. 

Table 4.2 Assumed material parameters 

E(GPa) υ σy(MPa) C(MPa) a Q(MPa) b F=G=H L=M=N F’=G’=H’ L’=M’=N’ w

43.5 0.35 100.0 3000.0 50.0 200.0 10.0 0.5 1.5 0.5 1.5 0

The Figure 4.3 shows the evolution of the yield surface with distortion effect after 5% of equivalent plastic 

strain on different stress planes, namely, the deviatoric plane ( -plane), the principal stresses plane ( 11 22,  ) 

and the tension – shear plane ( 1 2
3
2 : , 3 :e e  ). Each symmetric stress tensor can be expressed by the 

following six-dimensional unit tensor [Yue14, Badreddine17]: 

1 2 3 4 5 6

2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0
1 1 1 1 1 1

0 1 0 , 1 0 0 , 0 0 0 , 0 0 1 , 0 1 0 , 0 1 0
6 2 2 2 2 3

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1

e e e e e e

           
                             
                      

  

From Figure 4.3, it can be found that, when the effect of 2
c
lX is neglected, the distortional parameter 1

c
lX affects 

the distortional ratio of the yield surface, but the size of the yield surface remains the same. Smaller value 

of 1
c
lX  leads to a high distortion of the yield surface. Figure 4.3b, 4.3d, 4.3f show that with the value of 2

c
lX

decreasing, the yield surface is expanded. It means that 2
c
lX  controls the cross size of the yield surface 

orthogonal to the loading direction. It should be noted that negative value of 2
c
lX  leads the yield surface be 

shrink in the orthogonal direction as shown in Figure 4.3d and 4.3f. Another noteworthy feature is the loss 
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of yield surface convexity happening for the case the value of 1
c C
l sat aX X  , i.e. when 1

c
lX =40.0. In order to 

keep the convexity of the yield surface, the distortional parameters should fulfil to the condition c
li satX X . 

Effect of parameter 1
c
lX ( 2

c
lX   )               Effect of parameter 2

c
lX  ( 1 100c

lX  ) 

 
Yield surfaces in deviatoric plane (π-plane) 

 
Yield surfaces in principal stress plane 

 
Yield surfaces in tension-shear plane 

Figure 4.3: Effect of the distortional parameters on the yield surface of the proposed model. 
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4.4 Combined SD effect and distortion of yield surface with thermal effects 

The influence of temperature on the initial yield surface is treated in this section, the initial anisotropy and 

tension-compression asymmetry are affected by the temperature through changing the values of anisotropic 

parameters at different temperatures. We use a real case of Mg alloy AZ31 to show this phenomenon by 

using the identified parameters in Table 5.5 of Chapter 5.  

 
Figure 4.4: Effect of the temperature on the predicted initial yield surfaces with or without considering 

the tension-compression asymmetry: (a) Hill yield function; (b) proposed model. 

As shown in Figure 4.4, the size of the yield surface is shrunken by the increase of temperature. Since the 

Hill criterion can only describe initial anisotropy in tension similar to compression, the yield surfaces are 

always symmetric between tension and compression and keep the same shape at different temperatures. 

From Figure 4.4b, the tension-compression asymmetry is evolving with the temperature. At room 

temperature, the yield surface shows significant tension-compression asymmetry of the yield stresses, while 

at high temperature, this phenomenon becomes very weak. The comparison of yield surfaces obtained from 

these two models shows the interest of the proposed model to capture the evolving tension-compression 

asymmetry for different temperatures. 

The temperature effect on the induced anisotropy is included by using temperature dependent distortional 

parameters. The assumed material parameters are given in Table 4.3.  

Table 4.3 Assumed material parameters 

No. T σy(MPa) C(MPa) a Q(MPa) b 
1
c
lX  

1
c
lX  

2
c
lX  

T1 25 100 3000 20 200 10 150 150 200 
T2 100 75 2500 20 150 10 125 125 150 
T3 200 50 2000 20 100 10 100 100 100 

Figure 4.5 shows, in the -plane, the different yield surfaces with distortion at different temperatures and 5% 

plastic strain. The surfaces have a big change when the distortion (lines with hallow symbol in Figure 4.5) 
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is taken into account compared with the case without distortion (discontinuous lines in Figure 4.5, 1
p

lX = 1
c
lX

= 2lX =∞). With the case coupled with temperature, the surfaces become smaller at higher temperature, and 

center of the surface move left because of the decrease in kinematic hardening induced by temperature. 

 
Figure 4.5: Effect of temperature on the distorted yield surfaces. 

In order to study the combined distortion hardening effect and tension compression asymmetry effect under 

complex loading paths, a parametric study based on the identified material parameters [Zhang18] of Mg 

alloys, given in Table 4.4, was conducted.  

Table 4.4 Model parameters for the AZ31with experimental results from [Khan11] 

T(°C) H G F N H’ G’ F’ N’ L=M L’=M’
65 1.203704 0.67226 0.539721 3.335803 2.286705 0.219813 0.208985 2.968164 1.5 1.5 
150 0.905765 0.627792 0.423295 2.378798 2.470310 0.138736 0.113971 2.544293 1.5 1.5 

 E (GPa) υ σy (MPa) C(MPa) a Q(MPa) b 
1
c
lX  1

p
lX  2

c
lX  

65 42.0 0.35 145.0 3117.7 50.5 376.9 6.4 60 60 100 
150 32.18 0.35 110.0 1118 50.5 176.9 6.4 30 30 30 

 
Figure 4.6: Different loading paths. 
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In this section, different loading paths are defined in Figure 4.6. Two loading paths are performed using the 

proposed model, namely, path I: uniaxial tension-compression reverse loading path (A-B-A), Path II: 

uniaxial tension followed by monotonic uniaxial tension into the orthogonal direction (A-B-C). 

 

Figure 4.7: Evolution of the yield surfaces predicted by the proposed model for AZ31 under two loading 

paths at two temperatures: (a) loading path I at 65°C, (b) loading path II at 65°C, (c) loading path I at 

150°C, (d) loading path II at 150°C. 

The evolution of the yield surfaces during path I and path II at temperature of 65°C and 150°C with strain 

rate of 10-4 s-1 are computed. As shown in Figure 4.7, for each loading path, four yield surfaces at different 

strain are illustrated to show the evolution of yield surface. During the loading path I in Figure 4.7a and 

Figure 4.7c, the yield surface has a distinct change in the size, location and shape, which is caused by the 

coupling of isotropic, kinematic and distortional hardening. A slight rotation of the main diameter of the 

yield surface to the orthogonal direction is observed in the loading path II (Figure 4.7b and Figure 4.7d). 

During this loading path, the changes of size, location and shape of the yield surfaces are revealed. In these 

evolving surfaces on different directions, the yield surfaces show a high curvature in loading direction for 

all the applied loading paths. The evolution of the yield surfaces at these two loading paths have the same 
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trend with the numerical predictions of other distortional hardening models which was reported in [Shi13]. 

By comparing the yield surfaces at two temperatures, the mentioned effects at different loading paths are 

more pronounced at temperature of 65°C compared to that at 150°C. This is caused by the decreasing of 

isotropic, kinematic and distortional hardening with the increasing of temperature i.e. temperature-induced 

softening. 

4.5 Effect of the asymmetric hardening parameters 

The hardening asymmetry is introduced through the kinematic and isotropic hardening parameters a and b 

by defining dependence functions to both normalized Lode angle and equivalent plastic strain. The value of 

a and b are reduced to a1 and b1  respectively under tension ( 1L  ), so a1 has the same effect as the classical 

model in which a higher value of a1 leads to a quicker saturation of kinematic hardening. The same remark 

can be made for isotropic hardening for which a higher value of b1 leads to a faster saturation (see Saanouni, 

2012). The effect of the parameters 1 , 2 , a2, a3, b2, b3 and ps on the hardening asymmetry without the 

damage effect is investigated using assumed values of the material parameters given in Table 4.5.  

Table 4.5 Assumed material parameters 

H G F N H’ G’ F’ N’ L=L’  M=M’ σy 
1.2255 0.48639 0.42001 3.44122 2.70885 0.15525 0.13115 3.49908 1.5 1.5 161.6

C Q a1 a2 a3 b1 b2 b3 ps 1   2  

3000 500 50.0 100.0 35.0 6.0 10.0 3.0 0.04 3.0 40.0

First, we study the influence of different choices of 1 for the stress-strain evolution, as shown in Figure 4.8. 

This parameter only affects the shear response, without changing the response in tension and compression. 

Indeed, from Table 4.1(h) the parameter 1 is designed to adjust the effect of L  only in shear. When the 

value of 1  decreases, the shear stress is decreased at the beginning and increased at high plastic strain level.  

 
Figure 4.8: Effect of parameter 1  on the shear stress-strain response. 
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The effect of varying parameter a2 on the stress-strain curves in tension and compression is now investigated 

while keeping the kinematic hardening parameter a always positive, to ensure the thermodynamic 

admissibility of the model which requires that the ratio C/a (as well as the ratio Q/b for isotropic hardening) 

should be positive (see Chapter 2). Figure 4.9(a) indicates that a2: (i) has no effect in tension curves, (ii) 

while it has an important effect in compression. Indeed, the smaller values of a2 lead to increase the stress 

level in compression from the early stage of hardening. This effect is much depreciated for high values of 

plastic strain (p>0.2). As shown in Figure 4.9(b), the value of a2 affects deeply the value of parameter a at 

the beginning of hardening (lower values of plastic strain), which decreases significantly from its initial 

value going to its asymptotic value which is a = a1 – a3= 50.0 – 35.0 = 15.0 (see Table 4.4 and Table 4.1 

(h)). Accordingly, when the value of a is high, the kinematic hardening saturates very fast giving the 

nonlinear (compression) hardening curves at low plastic strain (p<0.05). As the value of a decreases 

approaching its asymptotic value, the kinematic hardening nonlinearity decreases leading to a quasi-linear 

kinematic hardening and the stress increases linearly again. Finally, when a = a1 – a3= 15.0 becomes constant 

a slightly nonlinear kinematic hardening is observed again and the kinematic hardening tends to slightly 

saturate (Figure 4.9a). It is worth noting that a is still constant in tension with a = a1 =50.0 (see Table 4.4 

and Table 4.1 (h)). The impact of this evolution of the kinematic hardening parameter with respect to the 

parameter a2 for the shear loading is shown in Figure 4.9c. Similarly, the larger value of a2 results in a 

decrease of the shear stress for plastic strain lower than 0.1.  

 

Figure 4.9: Effect of parameter a2: (a) Stress-plastic strain curves in compression and tension; (b) 

Evolution of the parameter a in compression; (c) Stress-plastic strain curves in shear. 

The same observation can be made concerning the isotropic hardening, but with small effects on stress-

plastic strain curves in compression and in shear as shown in Figure 4.10. Due to the lower value of isotropic 

hardening modulus Q compared to kinematic hardening one C, the effect is less obvious compared to the 

parameter a2, especially at the starting stage of the plastic strain. For most important class of metallic 

materials, the values of the parameters we chose to do the parametric study determine that the kinematic 
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hardening modulus have dominant influence for the first stage of plastic strain. 

 

Figure 4.10: Effect of parameter b2: (a) Stress-plastic strain curves in compression and tension;  

(b) Evolution of the parameter b in compression; (c) Stress-plastic strain curves in shear. 

Figure 4.11 represents the effects of the parameter a3 for the same loading paths. No effect of this parameter 

in tension, a strong effect is observed in compression and a much less effect is noticed in shear. Indeed, from 

these figures we can see that parameter a3 has no effect on the first nonlinear hardening in compression (for 

p<0.05), but has a significant effect on the second hardening stage (for p>0.05). Note that when considering 

a3 = a1 = 50, the hardening will have linear evolution (no saturation will occur since a = 0). The increase of 

a3 leads to the increase in shear stress at high plastic strain, but the effect is very weak. The isotropic 

hardening parameter b3 has the same influence with the kinematic hardening parameter a3 on the stress strain 

evolution for tension and shear, but the effect is delayed for large plastic strain, as illustrated in Figure 4.12. 

 
Figure 4.11: Effect of parameter a3: (a) Stress-plastic strain curves in compression and tension;  

(b) Evolution of the parameter a in compression; (c) Stress-plastic strain curves in shear 
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Figure 4.12: Effect of parameter b3: (a) Stress-plastic strain curves in compression and tension;  

(b) Evolution of the parameter b in compression; (c) Stress-plastic strain curves in shear. 

The effect of parameter ps is illustrated in Figure 4.13. Clearly, when ps increases the width of the first 

hardening saturation stage in compression increases; while at the second hardening saturation stage, the 

hardening rate of each curve does not change significantly. So the parameter ps mainly controls the transition 

between the two hardening stages (size of the plateau) in compression. From Figure 4.13(b), ps affects how 

the parameter a evolves. For example, for the highest values of ps (ps = 0.08) , the value of a stay unchanged 

during the early stage of plastic strain (p<0.05), then starts to decrease going to its asymptotic value equal 

to 15.0. From Figure 4.13(c), this parameter has a significant influence under shear, i.e. the shear stress is 

decreased a lot when the value of ps increases. 

 

Figure 4.13: Effect of parameter ps: (a) Stress-plastic strain curves in compression and tension; (b) 

Evolution of the parameter a in compression; (c) Stress-plastic strain curves in shear. 

Figure 4.14 depicts the stress-strain evolution with different value of 2  . A lower curvature is found in 

compression when 2 decreases, in other words, the hardening rate is smaller with the lower values of 2 . The 

parameter 2  controls the curvature of the hardening curve in compression. From Figure 4.14(b), the 

parameter a starts with different values and evolves by decreasing to reach the same value around 150 for 

p=ps=4% after which this evolution is inverted going to a clear independence of a from 2 after 12% plastic 

strain. A very limited rise in shear stress can be found with the increase of 2  as shown in Figure 4.14(c). 
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Figure 4.14:  Effect of parameter 2 : (a) Stress-plastic strain curves in compression and tension; (b) 
Evolution of the parameter a in compression; (c) Stress-plastic strain curves in shear. 

Through this parametric study, the different sigmoidal hardening of Mg alloys in compression can be 

achieved by adjusting the parameters of the proposed model. We can finally note that a2 controls the first 

hardening saturation stage and a3 controls stress saturation at high plastic strain in compression. For shear 

loading path, a2 affects the stress evolution at low plastic strain and a3 has a weak effect on stress curve at 

high plastic strain level. The influence of isotropic parameters b2 and b3 are similar with kinematic hardening 

parameters respectively a2 and a3. However, depending on modules C and Q the effect is important form the 

start of the plastic flow (as the case of the kinematic hardening) or for large plastic strain (as the case of 

isotropic hardening). The parameter 1   has influence only under shear loading paths without effect on 

uniaxial tension and compression. The parameter 2 has influences on the curvature of the stress-strain curve 

concerning loading cases defined by normalized Lode angle 1L  (i.e. different from uniaxial tension). The 

parameter ps defines the size of the initial low strain plateau in compression, and higher value of ps leads to 

stress decrease in shear.  

4.6 Hardening asymmetry fully coupled with ductile damage 

We focus in this section on the effect of the full coupling of the ductile damage with the strength-differential 

(SD) effect and hardening asymmetry (HA) effect. The generic set of damage parameters are given in Table 

4.6. 

Table 4.6 Assumed damage parameters 

S s γ β Y0(MPa) h 
2.2 3.0 3.0 2.0 0.0 0.2-1.0

If only the SD effect is taken into account, the stress-strain curves for tension and compression loadings will 

have the same trend in evolution but at different stress levels due to the difference in terms of initial yield 

stresses between these two loading paths. So the final fracture is delayed for the loading having the lower 

yield stress which is the case of the compression as shown in Figure 4.15a confirmed by the damage 

evolution curves in Figure 4.15b. When only hardening asymmetry (HA) is considered, the initial yield 
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stresses for tension and compression are the same, while the stress evolution with respect to the plastic strain 

is quite different for the two loading paths. Indeed, the two successive hardening stages leads to a significant 

increase of the stress in comparison with the SD effect only. Consequently, the final fracture appears much 

earlier in compression than in tension and also than a compression with SD effect only as depicted in Figure 

4.15a and Figure 4.15b. So the SD effect and HA effect have the opposite influence on final damage. 

The case combining SD and HA effects is shown in green line in Figure 4.15 (note that the results of this 

figure are obtained without microcracks closure effect i.e. h=1). In this figure, as expected, it is observed 

that the damage evolution is more important in compression than that in tension, so that final fracture occurs 

at lower plastic strain in compression compared to tension. 

 

Figure 4.15: Effect of SD and HA fully coupled with ductile damage in stress vs plastic strain curves in 

uniaxial tension and compression: (a) Stress-plastic strain curves; (b) Ductile damage evolution. 

 
Figure 4.16: Effect of combined SD and HA fully coupled with ductile damage considering the 

microcracks closure effect through parameter  h in stress vs plastic strain curves in uniaxial tension and 

compression:(a) stress-strain evolution; (b) damage energy density release rate. 

In order to obtain a more predictive ability related to the physical phenomena, the microcracks closure effect 

is considered to enhance the damage coupling for loading cases altering tension and compression stress 

states. As described in detail in chapter 2, damage evolution shall be different in tension and compression 
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due to the microcracks closure effect described by introducing parameter h, as given in Eq.(2-60). When 

this parameter varies in the range from 0 (no damage effect in compression) to 1 (damage effect in 

compression is similar to tension) the response in compression will be varied without any change in tension 

response, as illustrated in Figure 4.16a. When small values of this parameter (h<1) are taken, the damage 

energy release rate (Y*) is delayed obviously in compression (see Figure 4.16b) giving rise to a clear delay 

of the final fracture in compression with lower values of h as indicated in Figure 4.16a. Indeed, it is observed 

that the plastic strain at the maximum point of Y* in compression is decreased by increasing the value of h, 

namely, the final failure is delayed with the decreasing of h in compression due to the fact that damage 

evolution (or rate) in compression is much lower than in tension.  

Through this parametric study we can highlight, for compression loading, competition ruling damage 

evolution between hardening (due to HA effect allowing increasing of damage evolution) and microcracks 

closure (allowing reduction of damage evolution). 

4.7 Effects of temperature and strain rate fully coupled with ductile damage 

In this section, parametric study on the effects of temperature and strain rate (viscoplasticity) is performed 

in a material point to examine the response of the proposed anisotropic thermo-elasto-visco-plastic 

anisotropic model fully coupled with isotropic ductile damage. For each of the temperature dependent 

parameters
              , , , , ,v

yP T E T C T Q T S T K T T
, the dependence to the absolute temperature is 

postulated as [Lestriez03]:   

   0 0 01 [( ) / ( )]fP T P T T T T        (4-1) 

where 0P is its value at the reference temperature 0T , fT is the melting temperature of the material and  is 

a temperature independent material parameter.  

The simulations are made with the proposed model using the material parameters given in Table 4.7, 

assuming the initial plastic isotropy with w=0; F=G=H=0.5 and L=M=N=1.5; Here fT =650 °C; 0T =20 °C 

the parameters =4 for Young’s modulus; =1.08 for capital S of damage equation, and =1.03 for the 

remaining parameters. 

Table 4.7 Assumed material parameters 

E(GPa) υ σy(MPa) C(MPa) a Q(MPa) b Kv mv S  s γ β Y0

43.5 0.35 161.6 3000.0 50.0 500.0 6.0 20.0 7.0 1.5 1.2e-5 1.0 1.0 1.0 0.0

Figure 4.17a shows the stress vs strain response and damage evolution of the uniaxial tension test at different 

temperature with constant strain rate 10-4 s-1, with the fully uncoupled and fully coupled models results 
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illustrated. Clearly, from the evolution of stress vs plastic strain curves, the yield stress drops significantly 

as the temperature increases due to the viscous effect. Also with the fully coupled model, the final 

accumulated plastic strain at fracture becomes larger as the temperature increases due to the temperature-

induced softening leading to lower stresses. 

Figure 4.17b shows the strain rate effects on the uniaxial tension test at T=200 °C, with the increase of the 

strain rate the yield stress increase drastically (lower viscosity effect) while the final accumulated plastic 

strain at fracture becomes slightly smaller due to the higher damage rate. The two figures show clearly the 

viscous effects. From the damage evolution at various temperature and strain rate, it is clear that the 

evolution of damage is delayed by the raise of the temperature and the total strain rate decelerated. So the 

proposed model could describe the obvious change in ductility with temperature change and the strain rate 

sensitivity at a constant temperature.  

 
(a) Various temperatures (strain rate 1.0E-4 s-1)               (b) Different strain rates (T=200°C) 

Figure 4.17: Stress-plastic strain curve and damage evolution for three values of temperature and imposed 

total strain rate. 

To study the damage effect on the complex loading path with temperature effects. A non-proportional 

loading path shown in figure 4.18 is applied to RVE at three temperatures and constant strain rate of 10-4s-1 

using the material parameters reported in [Zhang18]. Note that all the simulations performed under this 

complex loading path are conducted until the final fracture of the RVE. 
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Figure 4.18: Non-proportional loading path. 

The results of equivalent stress and equivalent kinematic hardening stress are illustrated in Figure 4.19a. 

With the temperature increase, both of these two stresses are decreased (temperature-induced softening) at 

all the stages of this loading path. The damage is obviously delayed as the temperature is high.  In order to 

compare the damage and distortional hardening effects, a case uncoupled with damage and a case without 

distortion are computed as shown in Figure 4.19b. The damage effect results in stress decreasing and it 

becomes more obvious at higher plastic strain level. Accordingly, at the final stage of the loading path III, 

the stress vs strain curve evolves to fracture very quickly. The distortional hardening has a very significant 

impact on the stress strain evolution after comparing with the case without distortion. The notable changes 

can be observed when the loading direction is suddenly changed.  

 

Figure 4.19: Evolution of the equivalent stress and kinematic hardening stress invariant vs the plastic strain 

for non-proportional loading path III (A-B-C-D-A) for AZ31: (a) comparison of different temperatures fully 

coupled with damage, (b) four cases at temperature of 65°C. Lines with solid symbols are equivalent stress,  

lines with hollow symbols are kinematic hardening stress. 

The yield surfaces at points A, B, C, D (where the loading path changes) of this non-proportional loading 

path plotted in tension-shear plane are depicted in Figure 4.20 together with the yield surface without 
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distortion for comparison purpose. At point B which is the end of tension, the yield surface has a high 

curvature in the loading direction, while the two corners in the opposite direction are expanded, which makes 

the yield surface very flat. When the loading path changed from tension to shear (from B to C), apparently, 

there is a rotation of the front point of the yield surface.  

 

Figure 4.20: Yield surfaces at the end of each loading stage of path III, B: end of stage AB, C: end of 

stage BC, D: end of stage CD, A: end of stage DA. Grey lines are the yield surfaces without distortion. 

 

Figure 4.21: Detailed evolution of the yield surfaces from point B to point C. 

A specific evolution of the yield surface from point B to point C is displayed in Figure 4.21, from the red 

line to the purple line, the clear change is the rotation, once the rotation reach a certain level, more obvious 

change of the yield surface is the extension in the shear direction, which can be seen from green line to blue 
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line. The motion of the yield surface center and rotation of the front point of the yield surfaces still follows 

the applied loading directions at point C and A. It should be noted that the damage effect shrinks the size of 

yield surface, when damage reaches to its critical value (final fracture), the yield surface will become a 

coincident point at origin of coordinates.  

4.8 Triaxiality and Lode angle effects on damage evolution 

Many works [Bao04, Bai08, Lou13a, Gachet14] in experimental fields have established a link between the 

ductile fracture and the stress triaxiality as well as Lode angle.  The representation of the space of stress 

triaxiality versus normalized Lode angle is shown in Figure 4.22. Upsetting tests of cylindrical specimens 

are close to the normalized uniaxial compression condition with L =-1, while uniaxial tensile tests of round 

bars are about the normalized uniaxial tension with L =1, between this two conditions is the torsion or pure 

shear with L =0. 

 

Figure 4.22: Stress state in the space of stress triaxiality() versus normalized Lode angle ( L ). 

In this work, the stress triaxiality effect is embedded in the microcracks closure effect with the parameter h  

depending on triaxiality as shown in Table 4.1 (g). From this dependent function, the desired values of h  in 

tension, shear and compression can be achieved by adjusting the two parameters ch  and h . The evolution 

of microcracks closure effect parameter versus the stress triaxiality is shown in Figure 2.11 (Chapter 2).  
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Figure 4.23: Influence of normalized Lode angle parameter L  on the ductility parameter S : (a) for 

different values of s (Sten = 2.0, Ssh = 1.0); (b) for different values of Sten and Ssh  (s = 2.0). 

The Lode angle effect is taken into account in ductility parameter S which becomes function of the 

normalized Lode angle as given in Table 4.1 (j). The parameter shS , tenS and s are used to adjust the value of 

S   according to different stress states. Figure 4.23 shows the Lode angle dependency of the ductility 

parameter S , when Sten = 2.0 and Ssh = 1.0, showing that the value of S is symmetric with respect to the 

vertical axis defined L = 0, the smallest value of S is obtained for L = 0, then it increases symmetrically 

at both the negative and positive sides of L  . The parameters controls how the value of S evolve with L , 

when s increases, the curve becomes more flat at the middle part (corresponding to the small absolute values 

of L ). As shown in Figure 4.23b, the evolution curve is convex when Sten > Ssh , otherwise, it is concave 

when Sten < Ssh, and the minor and major values of S can be achieved by varying the values of Sten and Ssh.  

 
         (a)                    (b) 

Figure 4.24: Effect of parameter hc on the curves accumulated plastic strain vs stress triaxiality for d=0.9: 

(a) Sten = Ssh= 0.5; (b) Sten = 0.5 and Ssh = 0.1. 
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In Figure 4.24a is displayed the effect of parameter hc on the curves of accumulated plastic strain vs 

triaxiality (for critical damage value d=0.9, near the final fracture), when the condition Sten=Ssh is considered, 

for which no Lode angle effect is considered for the damage evolution. Note that the case when hc=1.0 

corresponds to an h parameter independent of triaxiality (h=1.0). With the decrease of hc , the fracture strain 

at low triaxiality is increased. When hc reaches a small value (i.e. hc=0.1), the difference between final 

fracture strain at low and high triaxiality is significantly important. Since the negative value and positive 

value of triaxiality represent the compressive and tensile loading respectively, the parameter hc controls the 

different damage evolutions from tension to compression.  

The Lode angle effect with Sten=0.5 and Ssh=0.1 is shown in Figure 4.24b, the equivalent plastic strain at 

fracture is no longer a monotonic evolution with stress triaxiality, it increases with the increase of stress 

triaxiality within the range ( 0 0.33  ) and ( 0.566 0.66  ), meanwhile, it decreases with the increase 

of stress triaxiality within the remaining ranges ( 0.33 0   ) and ( 0.33 0.566  ).  The parameter hc 

does not affect the value of fracture strain when 0.33  , a smaller value of hc leads to a high equivalent 

plastic strain at fracture for the lower stress triaxiality range. The parameters Sten and Ssh in the CDM damage 

model make it possible to describe the Lode angle dependency of fracture strain as reported in [Bao04, 

Xue07, Bai07, Lou13a].   

 
Figure 4.25: Effect of parameter Ssh on the curves of accumulated plastic strain at fracture vs triaxiality 

given for d=0.9 considering Sten=0.5 and hc=0.1. 

Figure 4.25 shows the effect of varying the parameter Ssh (under the condition Ssh <Sten) on the evolution of 

accumulated plastic strain at fracture vs stress triaxiality. This figure shows a local maximum for positive 

triaxiality corresponding to both simple tension ( 1/ 3  ) and equi-biaxial tension ( 2 / 3  ) loading paths. 

The difference between the fracture plastic strain increases when the difference between Sten and Ssh is 
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significant. When Sten=Ssh, Lode angle effect disappears from the accumulated plastic strain at fracture. With 

the decrease of the Ssh, the Lode angle effect is more obvious. 

  
Figure 4.26: Effect of parameter h on the curves accumulated plastic strain vs stress triaxiality for d=0.9 

and considering hc=0.1 and Sten=Ssh=0.5. 

Recall that the parameter h controls the shape of the evolution curve of parameter h with respect to stress 

triaxiality. In Figure 4.26 are displayed the curves in terms of fracture plastic strain with respect to stress 

triaxiality for different values of parameter h . Note that a small value of parameter h  (i.e. h = 0.5) gives 

quasi-linear evolution with insignificant difference between fracture plastic strain for negative and positive 

stress triaxiality. However, the difference becomes more significant when h  is increased. For example, for 

the case h =6, the maximum value of fracture plastic strain reaches 0.42 for =-0.33, while the fracture 

strain is only about 0.12 for the stress triaxiality higher than 0.33  .   

 
Figure 4.27: Effect of parameter S on the curves accumulated plastic strain vs stress triaxiality given for 

d=0.9 considering Sten=0.5, Ssh=0.1 and hc=0.1. 
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The effect of parameter S on the evolution of accumulated plastic strain at fracture vs stress triaxiality 

considering d=0.9, Sten=0.5, Ssh=0.1 and hc=0.1 is shown in Figure 4.27. The parameter S affects the shape 

of the curve giving, for high values of this parameter, singularities for 1 3   (simple tension) and 2 3 

(biaxial tension). 

 
Figure 4.28: Effect of (Sten-Ssh) on the iso-damage surface displayed in the deviatoric strain plane. 

The iso-damage surfaces including the Lode angle effect are plotted in Figure 4.28. The circular surface can 

be obtained when Sten=Ssh (no Lode angle effect). When Ssh <Sten, the shape of fracture locus at constant 

triaxiality varies from a right hexagon to a six-point star. When Ssh >Sten, the fracture locus at constant stress 

triaxiality is transferred to a shape of flower with six petals. Note that for this case of isotropic plasticity, 

the iso-damage surfaces has a / 3  symmetry so that fracture locus at six vertices with 1L    are the same. 

It should be bear in mind that the ductile fracture tends to occur at the region between the two vertices (shear 

or plane strain mode), which is proved experimentally by [Lou13a].  

The effect of parameter S on the isotropic damage surface displayed in the strain deviatoric plane 

(considering Sten=0.5, Ssh=0.1 and hc=1.0) is given in Figure 4.29. When S = 2, the shape of fracture locus 

looks like a six-point star with maximum fracture strain at the axis of 1L    and minimum fracture strain 

at the axis of 0L  , with the increase of S, the fracture locus becomes more approaching at the two sides 

of 1L    (as shown in the case S =9), and a plateau with symmetric axis of 0L  appears.  
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Figure 4.29: Effect of parameter S on the iso-damage surface displayed in the strain deviatoric plane 

given for d=0.9 and considering Sten=0.5, Ssh=0.1 and hc=1.0. 

The effect of stress triaxiality on the iso-damage surface without Lode angle effect (Sten= Ssh=0.5) are shown 

in Figure 4.30. The fracture plastic strain are the same at different normalized Lode angles for a given stress 

triaxiality. The size of the iso-damage surface becomes smaller with the increase of triaxiality, which makes 

the fracture plastic strain larger for negative value of stress triaxiality than for positive stress triaxiality.  

 
Figure 4.30: Effect of stress triaxiality on the iso-damage surface displayed in the deviatoric strain plane 

for d=0.9 and considering Sten= Ssh = 0.5 and hc= 0.2. 
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When considering Lode angle effect with Sten=0.5,  Ssh=0.1, the shape of fracture locus, like a six-point star, 

expanded with the decrease of the value of triaxiality, as illustrated in Figure 4.31. However, the expansion 

of the iso-damage surfaces is no longer isotropic, compared to the surfaces shown in Figure 4.30. The points 

on the axis with 1L     move further than the points on the axis 0L    with the decrease of the stress 

triaxiality value. It also shows that the fracture is easy to occur for shear loading ( 0L  ) under high values 

of stress triaxiality.  

 
Figure 4.31: Effect of stress triaxiality on the iso-damage surfaces displayed in the deviatoric strain plane 

for d=0.9 and considering Sten=0.5,  Ssh=0.1 and hc=0.2. 

The combined effect of stress triaxiality and Lode angle are clearly presented. The Lode angle and triaxiality 

dependence of the damage surfaces is included in our proposed fully coupled CDM model, which could 

make more accurate predictions of damage in sheet metal forming simulations. 
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coupled model and their effects on the ductile fracture locus were carefully illustrated in section 4.8. 

From all these parametric studies in this chapter, the novelty of the proposed fully coupled model were 

clearly presented. In the next chapter, the methodology of the identification for material parameters will be 

introduced. The fully coupled damage model will be applied to the simulation of different hot sheet metal 

forming processes.
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5.1 Introduction 

This chapter consists of two parts: the first part focuses on the identification procedure required to determine 

the values of the material parameters entering the proposed fully coupled constitutive equations for Mg and 

Titanium alloys, and the second part concerns the applications of hot sheet metal forming for the same 

materials.  

According to the modular structure of the fully coupled constitutive equations, the material parameters for 

inelastic flow anisotropy, hardenings and damage parameters are determined separately based on specific 

identification methodology using Python scripts, ABAQUS FE software and MATLAB-based minimization 

code.  Both AZ31B and Ti-6Al-4V alloys are investigated.  

The applications are made to hot sheet metal forming processes using the calibrated material parameters of 

Mg and Titanium alloys. The proposed constitutive model is firstly validated using simple tensile tests (ST), 

then three point bending test (TPB), circular cup deep drawing test (CCD) and cross-shaped cup deep 

drawing test (CSD) are performed. Finally, some comparisons between simulation results and experimental 

results are performed, analyzed and discussed. 

5.2 Material parameters identification 

The identification of the developed model material parameters is performed in various steps as schematized 

in Figure 5.1. This figure illustrates the ductile damage effect on a typical stress-strain curve from initial 

safe state (no damage) to the final fracture state. First of all, the elasticity modulus E  as well as the initial 

yield stress y    are easily obtained from uniaxial tensile test using quasi-linear path O-A (Figure 5.1). 

Second, the parameters of initial plastic anisotropy ( , , , , ', ', ', 'H G F N H G F N  ) are identified using the yield 

stresses measured at the early stage of plastic strain (i.e. point A of Figure 5.1 conventionally defined at 

0.02% of total strain) of uniaxial tensile and compressive tests in different orientations lying from the rolling 

to the transverse directions together with the balanced biaxial tests. Third, the hardening parameters 

( 1 2 3 1 2 3 1 2, , , , , , , , , , sC Q a a a b b b p  ) are calibrated based on uniaxial tension and compression tests to fit part A-

B of the experimental curve and can be extrapolated to point F (Figure 5.1).  Fourth, the damage parameters 

( 0, , , , , , ,sh ten s cS S s Y h   ) are fitted from the path B-C-D (Figure 5.1) where the damage-induced softening 

occurs. Finally, the values of hardening parameters and damage parameters can be readjusted in order to get 

a best fit with the complete nonlinear curve A-B-C-D (Figure 5.1). In summary, we assume that at the 
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beginning of the plastic flow, the damage effect is small enough so that we can neglect it to only identify 

the undamaged behavior parameters based on the curve A-B-F. Once the hardening parameters are obtained 

and fixed, the damage parameters can be identified according to B-C and C-D parts of the stress-strain curve.  

For the temperature dependent material parameters, first, their values are calibrated with respect to different 

isothermal test conducted with various constant temperature values. A polynomial function is then used to 

calibrate these material parameters over the range of temperature under concern. In this work, both analytical 

and inverse methodologies are applied to obtain the best sets of adequate values of material parameters.  

 

Figure 5.1: Schematic representation of the material parameters identification procedure 

The identification of anisotropic parameters needs the definition of analytical expressions for yield stress 

function at different material orientations. In 11 22( )   plane, we denote T
  and C

   uniaxial tensile and 

compressive yield stresses respectively along material orientation   according to the rolling direction: 

 In tension: 2
11 = cosT T

    , 2
22 = sinT T

   , 12 = cos sinT T
     

 In compression: 2
11 = cosC C

    , 2
22 = sinC C

   , 12 = cos sinC C
     

Substituting the above equations into the yield function defined by Eq. (2-82) in chapter 2, T
 and C

 can 

be obtained as follows: 

 
1/33/2

1 2/T
y K wK       (5-1) 

 
1/33/2

1 2/C
y K wK        (5-2) 

where    4 2 2 4 2 2
1 cos 2 cos sin sin 2 sin cosK G H H H F N            
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The uniaxial tensile yield stresses 0
T  , 45

T  , 90
T  and compressive yield stresses 0

C  , 45
C  , 90

C   are calculated 

using Eq.(5-1) and Eq.(5-2). These yield stresses are expressed in three classical directions 0 , 45 ,90o o o  as 

follows: 

                                
1/ 33/ 2

0 /T
y G H wH G G H          

 (5-3) 
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 (5-4) 
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The in-plane balanced biaxial tensile T
b and compressive C

b stresses are also obtained by substituting the 

stress components of ( , , 0)T T
b b  and ( , ,0)C C

b b   into the yield function, giving: 
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Together with all the functions Eq. (5-3) to Eq. (5-10), the set of eight parameters , , , , , , ,G H F N G H F N     

are expressed using the algebraic system of eight equations expressed for the eight considered tests. In order 

to identify the anisotropic parameters, an objective function is built based on stress ratio as follows:  
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where the superscripts ‘exp’ and ‘sim’ refer to the experimental and simulation data respectively and the 

index i represents the loading paths of uniaxial tension (i=T) and compression (i=C). The variables ,
b  

are weight coefficients to balance the different experimental results. The objective function is optimized 

using down-hill simplex method (Nelder and Mead, 1965) , also recently adopted by [Li16, Yoon14]. Under 
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3D loading paths, four additional anisotropy parameters (namely , , ,M L M L  ) need to be calibrated. To 

achieve this goal, uniaxial tensile and compressive yield stresses in the 11 33( )  and 22 33( )  planes 

should be used. Related equations are given in the following. 

Uniaxial tensile 45(11 33)
T  and compressive 45(11 33)

C   yield stresses in the 11 33( )   plane: 
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Uniaxial tensile 45(22 33)
T   and compressive 45(22 33)

T   yield stresses in the 22 33( )  plane: 
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For the case of non-AFR model, the objective function like Eq.(5-11) can be constructed using different 

Lankford R-values, giving the following expressions: 
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Figure 5.2: Identification methodology of the material parameters by combining different software. 

The identification of the hardening and damage parameters are performed within an inverse approach, which 
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is based on minimizing deviation value between numerical and experimental results [Yue14, Souto15]. The 

procedure is realized using Matlab and Python subroutines in connection with Abaqus/Explicit FE software, 

the detailed process of this identification scheme is illustrated in Figure 5.2. 

5.2.1 Anisotropic and hardening parameters calibration 

In this work, both Mg alloys and Titanium alloys are investigated to validate the proposed model. The 

anisotropic and hardening parameters are calibrated using the experimental data in the following published 

works [Khan11, Gilles11, Tari13, Tari14, Tari15, Habib17]. The results of identification are discussed in the 

following sub-sections. 

Titanium alloys 

Using the identification method described above, together with the experimental data in [Gilles11], the 

anisotropic parameters of Titanium alloy Ti-6Al-4V are obtained, as given in Table 5.1. 

Table 5.1 Calibrated anisotropic parameters of Ti-6Al-4V 
F  G H  N  F  G  H   N   

0.51268 0.57484 0.37089 1.53660 -0.42908 -0.19191 0.72270 0.63820 

Figure 5.3 displays the predicted yield surface and experimental data points. The proposed yield function is 

compared to Hill yield function, which only describes the initial anisotropy in tension. It is observed that 

the proposed model can capture the anisotropy and tension compression asymmetry of titanium alloy Ti-

6Al-4V accurately.  

 

Figure 5.3: Yield surfaces predicted by Hill criterion and proposed yield function. 

The tensile and compressive yield stresses at different orientations with respect to the rolling direction are 

compared with experimental results in Figure 5.4. The difference of the two yield functions are slight in 

tension, both can fit most of the experimental points. The predicted yield stresses according to Hill criterion 
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induces a significant error compared to experimental data in compression, while the proposed yield function 

shows good agreement with experimental results in both tension and compression tests. 

 
    (a) Yield stresses of tension  (b) Yield stresses of compression 

Figure 5.4: Initial anisotropy in tensile and compressive stress states for Ti-6Al-4V according to Hill 

[Hill48] and new proposed model. 

Mg alloys (Experimental data from UMD) 

In this section, the experimental data are taken form the published works [Khan11, Habib17] of a research 

group from University of Maryland (UMD). Both Mg alloys AZ31 and ZEK100 are investigated to validate 

the predictive capability of the proposed model in describing the initial anisotropy and asymmetry at room 

temperature, since both of them exhibit strong initial anisotropy and tension-compression asymmetry in 

yield stress. The anisotropic parameters of AZ31 and ZEK100 are given in Table 5.2.  

Table 5.2 Anisotropic parameters of AZ31 and ZEK100 
       L=M= L’=M’=1.5 

Material H G F N H’ G’ F’ N’ 
AZ31 1.2255 0.48639 0.42001 3.44122 2.70885 0.15525 0.13115 3.49908 

ZEK100 1.030511 0.420433 1.607213 3.44436 0.287824 1.473031 -0.26309 0.39605 

The predicted yield surfaces and experimental data of two Mg alloys are shown in Figure. 5.3. It should be 

noted that the experimental data of balanced biaxial tests are not available in the work of [Khan11, Habib17], 

they are assumed to the mean values of three uniaxial yield stresses ( 0 45 90( 2 ) / 4 ( , )i i i i
b i T C       ). 

The yield function correctly describes the experimental yield stresses of AZ31 with few differences except 

for the assumed balanced biaxial compressive yield stress (Figure. 5.3a). The predicted yield surface of 

ZEK100 fits well with the experimental measurements (Figure. 5.3b).  The initial anisotropy and asymmetry 

of AZ31 and ZEK100 are well captured by the proposed model.  
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Figure 5.3: Comparison between numerically predicted yield surfaces and experimental data: (a) AZ31; 

(b) ZEK100 (Solid symbols are experimental data; hollow symbols are mean values). 

Table 5.3 Material parameters of AZ31 

E(GPa) υ σy(MPa) C(MPa) Q(MPa) a1 a2 a3 b1
 

43.5 0.35 161.6 2656 699 60.5 1000 50 9.4 
b2 b3 ps 1   2       

80 3 0.035 10 85     

Table 5.4 Material parameters of ZEK100 

E(GPa) υ σy(MPa) C(MPa) Q(MPa) a1 a2 a3 b1
 

36.5 0.35 194 1580 156 36.2 120 34 6 
b2 b3 ps 1   2       

20 2 0.012 20 42     

The identified hardening parameters of AZ31 and ZEK100 at room temperature using the experimental data 

of UMD [Khan11, Habib17] are shown in Table 5.3 and Table 5.4 respectively. They are determined by 

using tension, shear and compression tests, while only tension and compression experimental results are 

available for ZEK100. The predicted stress-strain curves for AZ31 (see Figure 5.4a) in tension, shear and 

compression show a nice fit with the experimental results. For ZEK100, good fitting with experimental data 

can also be observed in both tension and compression as shown in Figure. 5.4b. The evolution of the 

compressive stress for both these two Mg alloys follows a typical sigmoidal function, the low plastic strain 

is governed by the twinning mechanism. While at higher strain level, it is mainly dominated by classical 

plastic slip mechanism, as we can see the sigmoidal hardening of AZ31 is more obvious than the case of 

ZEK100. The proposed model can well predict the unusual hardening evolution for both of these Mg alloys. 
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Figure. 5.4. Comparison of experimental data and simulation results of stress-strain evolution under 

uniaxial tension, shear and compression: (a) AZ31B; (b) ZEK100. 

Mg alloy AZ31 (Experimental results from UW) 

Tension and compression tests have been conducted over a wide range of temperatures lying between 23 to 

250°C and strain rates varying between 0.001 to 1.0 s-1 taken from [Tari13, Tari14, Tari15]. By using these 

experimental data, the anisotropic parameters and hardening parameters at different temperatures are 

calibrated, and given in Table 5.5 and 5.6. 

Table 5.5 Anisotropic parameters of magnesium alloy AZ31 

L=M=L’=M’=1.5 
T (°C) H G F N H’ G’ F’ N’ 

RT 1.205501 0.496391 0.418510 3.441221 2.608850 0.155251 0.160252 3.499081 
150 0.477407 0.773161 0.621849 1.652781 1.332151 0.193945 0.175041 1.460198 
200 0.474259 0.555571 0.467317 1.463941 0.427075 0.230738 0.326213 0.608006 
250 0.480181 0.557180 0.444049 1.483791 0.390420 0.232581 0.373659 0.437981 

Table 5.6 Hardening parameters of magnesium alloy AZ31 

T (°C) E(GPa) 
y (MPa)  Kvp m Q C b1 b2 b3 a1 a2 a3 1  2   ps 

RT 43.05 161.6 5 3 800 3500 3.0 30 2.5 35 200 32 10 100 0.035 
150 33.68 112.6 15 3 580 1950 3.0 20 1.2 35 90 25 10 50 0.011 
200 30.50 73.49 24 3 300 1150 3.0 10 1.0 35 40 23 10 30 0.0 
250 27.40 58.39 25 3 200 800 3.0 5.0 0.9 35 10 22 10 10 0.0 

Comparison of predicted yield surfaces and experimental measurements of AZ31B at different temperatures 

are shown in Figure 5.5. The SD effect is significant at room temperature, the predicted yield surface could 

fit the experimental data at room temperature with a satisfied accuracy.  It should be noted that the high 

temperature weaken the SD effect, when the temperature is elevated (150°C, 200°C, 250°C), the predicted 

yield surfaces have a good agreement with the experimental data. 
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Figure 5.5 Comparison of predicted yield surfaces and experimental measurements of AZ31B at different 

temperatures. (Solid symbols are experimental data; hollow symbols are mean values) 

Comparison of stress-strain evolution between simulation and experimental results of AZ31B at four 

different temperature values at constant strain rate 0.001s-1 are presented in Figure 5.6.  

 
(a) tension                (b) compression 

Figure 5.6: Stress-strain evolution of simulation and experimental results of AZ31B along the rolling 

direction at different temperatures at constant strain rate 0.001 s-1. 

Stress-strain curves in tension and compression at room temperature are slightly over estimated compared 

to experimental results at low plastic strain. This is may be due to the limited form of viscous stress which 

is introduced instantaneously for a given strain rate at the beginning of inelastic flow. The hardening 

asymmetry is prominent at room temperature and the numerical results describe correctly the sigmoidal 

shape evolution for compression at room temperature. With the temperature increase, the effect of hardening 

asymmetry is reduced significantly. The simulated stress-strain curves at elevated temperatures fit well with 
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the experimental data for both tension and compression at constant strain rate 0.001s-1. 

 

 

Figure 5.7: Tensile stress-strain evolution of simulation and experimental results of AZ31B along the 

rolling direction at different temperatures and strain rates. 

The viscosity parameters are identified using the tensile tests at different strain rates, the simulation results 

are compared with the experimental data in Figure 5.7. At room temperature, the strain rate sensitivity is 

weak and the viscous stress is small. The strain rate sensitivity becomes more evident at higher temperatures 

as shown in Figure 5.7c, and 5.7d.  A large deviation can be observed in the prediction of stress at low 

viscoplastic stain for higher strain rate at 200°C, it is mainly due to the fact that the equation to calculate the 

viscous stress is directly added in the yield function, giving rise to a significant increase in the stress for low 

viscoplastic strain range. The stress-strain curves at higher viscoplastic strain can be well fitted by the 

simulation results. The evolution trends caused by the strain rate sensitivity can be reasonably captured by 

our proposed model. However, improvement of the proposed viscous stress can be acted by introducing for 

example a dependency of the viscous module on the equivalent viscoplastic strain. 
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5.2.2 Ductile damage parameters calibration 

The influence of the damage parameters 0, , , , YS s   on the damage evaluation has been presented in detail 

in [Issa10, Saanouni12, Liu17].  In this work, the Lode angle effect is taken into account through ductility 

parameter S , as described in Chapter 4. The ductile damage parameters are determined using notched tensile 

and shear tests. The global force-displacement curves from numerical tensile and shear simulations are used 

into the optimization program to compare with the experimental responses. The critical damage value is set 

to cd  0.99 to describe the whole evolution of damage until fracture. Titanium alloy Ti-6Al-4V and Mg 

alloy AZ31B are investigated in this section. 

 Titanium alloy Ti-6Al-4V 

A systematic test program was carried out on a wide range of stress states of Ti-6Al-4V at Politecnico di 

Milano [Giglio12, Allahverdizadeh13, Allahverdizadeh15]. Tensile tests of shear specimen and notched 

specimens with different radius were conducted. In this work, these tests are used to determine the damage 

parameter for Ti-6Al-4V. The design and FEM mesh for the specimens are illustrated in Figure 5.8. In the 

central part of the specimen where the fracture is often observed, the mesh size of 0.1mm is used on the 

plate surface and through thickness direction.  

        
(a) Notched specimen;             (b) Shear specimen 

Figure 5.8: FEM mesh of the notched and shear specimen (Element type C3D8R). 

The influence of the damage parameters ( 0, , ,Y ,s h   ) on the damage evolution was elaborated in 

[Saanouni12]. The critical damage value is cd  0.99 and constant values are fixed to three parameters (  

= 4.0, 0Y = 0.0, h  = 1.0).  Using the inverse approach by minimizing the objective function, the damage 

parameters of Ti-6Al-4V are obtained as shown in Table 5.7.  
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Table 5.7 Damage parameters for Ti-6Al-4V 

Ssh Sten ξs s γ β Y0(MPa) h 
16 25 1.0 2.0 4.0 2.0 0.0 1.0 

Simulations of a simple CDM damage model (Model1) and a modified Mohr-Coulomb (MMC) damage 

model were also performed in [Allahverdizadeh13, Allahverdizadeh15]. The simple CDM damage model 

has no Lode angle effect, while the MMC model (Model2) takes the Lode angle effect into account without 

coupling with viscoplasticity. Since, the Lode angle effect is included in our advanced fully coupled CDM 

model (Model3).  

 

 
Figure 5.9: Comparison of numerical and experimental response of tensile tests: (a) shear specimen; (b) 

notch radius 6.67 mm; (c) notch radius 10 mm; (d) notch radius 20 mm. 

Improvement of the different models is presented by comparison of the results of each one with experimental 

data. As illustrated in Figure 5.9, the different numerical simulation results and the experimental response 

of tensile tests are compared. All the predictions made by the three models have discrepancy with the 

experimental data, our fully coupled damage model (Model3) has a better fitting with experimental results 

compared to other models, and especially the displacement of the specimen at final fracture is well predicted. 
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von Mises stress Damage Accumulated plastic strain 

   

(a) Displacement U = 0.5 mm 

  

(b) Displacement U = 1.15 mm 

 

(c) Displacement U = 1.2 mm 
(d) Predicted final fracure (e) Experimental fracure 

  

Figure 5.10: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for the tensile 

specimen with notch radius 6.67 mm. 
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von Mises stress Damage Accumulated plastic strain 

   

(a) Displacement U = 1.0 mm 

   

(b) Displacement U = 1.4 mm 

   

(c) Displacement U = 1.5 mm 
(d) Predicted final fracure (e) Experimental fracure 

 

 

Figure 5.11: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for tensile 

specimen with notch radius 10.0 mm at different displacements. 
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von Mises stress Damage Accumulated plastic strain 

   

(a) Displacement U = 1.0 mm 

   

(b) Displacement U = 1.8 mm 

 
(c) Displacement U= 1.85 mm 

(d) Predicted final fracure (e) Experimental fracure 

  

Figure 5.12: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for tensile 

specimen with notch radius 20.0 mm at different displacements. 
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von Mises stress Damage Accumulated plastic strain 

   

(a) Displacement U = 1.0mm 

 
(b) Displacement U = 1.45 mm 

 
(c) Displacement U = 1.5 mm 

(d) Predicted final fracure (e) Experimental fracure 

  

Figure 5.13: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for shear 

specimen at different displacements. 
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Concerning the Ti-6Al-4V alloy, the simulation results for three different values of the notch radius at 

different displacements are given in Figure 5.10 to 5.12.  The von Mises stress, plastic strain and ductile 

damage are localized in the central notched area. With the increase of displacement, a strong localization of 

damage is observed at the central part of the specimen where the onset of fracture takes place (damage 

initiation), then propagates horizontally to the edges of the notched part. As expected, with the increase of 

the notch radius, the onset of fracture is obviously delayed. The predicted final forms of the fractured 

specimens are compared with the experimental measurements when it is known. The predicted crack path 

of specimen with notch radius 10.0 mm is obviously different from the experiments, while the other two are 

well predicted. Figure 5.13 shows the distribution of von Mises stress, damage (SDV14) and plastic strain 

(SDV15) for shear specimen at different displacements. The localization of stress, strain and damage occurs 

at the two edges of the specimen. The final crack initiates at the edges of the shear specimen and evolves 

vertically to the center.  

Recall the Figure 4.28 of Chapter 4 which shows the effect of (Sten-Ssh) on the iso-damage surface, at the 

condition Ssh >Sten, the fracture locus is located outside the isotropic damage surface of Sten=Ssh (no Lode 

angle effect), the fracture locus shape looks like a flower with six petals indicates that the ductile fracture 

tends to occur at larger values of absolute value of L .  To confirm this, the simulation using the specimen 

with notch radius 6.67 mm is conducted under the condition ( 16.0, 8.0sh tenS S  , Case_1). The simulation 

results under the condition ( 16.0, 25.0sh tenS S  ) in Figure 5.14 is named Case_2 for comparison purpose.  

Comparisons of von Mises stress, damage (SDV14) and plastic strain (SDV15) distributions for the different 

cases are shown in Figure 5.14. Before fracture occurs, the strong strain localization is found at the border 

edge of the specimen for Case_1, which is quite different from the results of Case_2 (at the center of the 

specimen). The crack of Case_1 starts at the two outer edges of the notched region while the onset of fracture 

for Case_2 is in the center area. The final crack path for Case_1 is extremely flat compared to the one of 

Case_2.  

Figure 5.15 shows the normalized Lode angle along the horizontal axis of the notched part, at the two edge 

sides the value of L is near 1 which is higher than that in the center not exceeding 0.5. Recall the Eq. (2-

88) in Chapter 2 as well as the Figure 4.28 in Chapter 4, for Case_1 ( 16.0, 8.0sh tenS S  ), the value of damage 

parameter S is smaller at the two border sides ( 1L  ), which leads to a faster damage evolution at the outer 

edge than at the central area (where 0.46L  ), so the cracks start at the border of the specimen for Case_1. 

Even though this case is not consistent with the experimental measurement for Ti-6Al-4V, it is discussed 

here to demonstrate the capacity of the proposed model in predicting ductile damage occurrence at different 

location of the specimen [Thuillier11]. 
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von Mises stress Damage Accumulated plastic strain 

 

(a) Before fracture (Case_1) 

 

(b) Before fracture (Case_2) 

 

(c) Onset of fracture (Case_1) 

 

(d) Onset of fracture (Case_2) 

  

(e) Final fracture of Case_1 (f) Final fracture of Case_2 

Figure 5.14: Comparison of von Mises stress, damage (SDV14) and plastic strain (SDV15) for different 

cases of damage parameters (Case_1 with 16.0, 8.0sh tenS S  ; Case_2 with 16.0, 25.0sh tenS S  ). 
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Figure 5.15: Normalized Lode angle along the horizontal direction of the notched part. 

Magnesium alloy AZ31B 

Experimental tests on Mg alloy AZ31B under different temperature values at quasi-static state were 

conducted at Shandong University (SDU), and used to identify the damage parameters. Two well-designed 

specimens shown in Figure 5.16 are used to perform both the tensile and shear tests. 

 

Figure 5.16: Geometry of the notched and shear specimens with dimensions. 

Using the same methodology as for damage parameters identification of Ti-6Al-4V, the best values of the 

calibrated damage parameters for AZ31B at different temperatures are given in Table 5.8 

Table 5.8 Damage parameters for AZ31B 

T(°C) Ssh Sten ξs s γ β Y0(MPa) h 
RT 1.6 3.0 1.0 2.0 4.0 1.0 0.0 0.2 
150 3.0 5.7 1.0 1.0 4.0 1.0 0.0 0.2 
200 5.0 8.9 1.0 1.0 4.0 1.0 0.0 0.2 
250 8.0 12.5 1.0 1.0 4.0 1.0 0.0 0.2 

The predicted force-displacement responses at different values of the imposed temperature are compared to 

the experimental results in Figure 5.17. The predicted results fit well with the experimental data for both 

notched tensile and shear tests. Small discrepancies are observed for 250°C for these two tests at large 

displacement level. This seemed caused by the necking which occurs in experiments. With the temperature 
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increase, the fracture occurrence is delayed.  The onset of fracture for notched and shear specimen are 

predicted with a satisfied accuracy.   

 

Figure 5.17: Comparison of numerical and experimental response of tensile tests: (a) notched specimen 

with radius 4.0 mm; (b) shear specimen. 

 
Figure 5.18: Comparison of the crack path of the shear specimen obtained from simulation and 

experiments at different temperatures. 



Chapter 5: Parameter identification and hot sheet metal forming applications 

132 

 

The final fracture of notched AZ31 specimen are all located in the center of the notched specimens, which 

is similar to titanium specimens presented in the previous sections. The numerically predicted final fracture 

of the shear specimens are compared with the experiments, as shown in Figure 5.18. The fracture often takes 

place at one side (upper or lower part) of the sheared regions. At room temperature, the fracture occurs faster 

at the displacement of 1.25 mm, as presented in Figure 5.17. However, at high temperature, a severe rigid 

body rotation can be found at the shear region, and the fracture surface is inclined. The predicted crack path 

in shear specimen has a good consistency with the experimental observations (see Figure 5.18). 

5.2.3 Material parameters dependent to the temperature 

There are many choices for the thermal softening functions P(T), namely: Linear, Power Law and 

Polynomial functions, and so on. The Polynomial functions were chosen for the current work for more 

flexibility by varying the polynomial order.  

 



Chapter 5: Parameter identification and hot sheet metal forming applications 

133 

 

 

Figure 5.19: Plot of elasticity, hardening and damage parameters as function of temperature for AZ31. 

In this work all the temperature dependent material parameters are expressed by a third-order polynomial 

function, as given in Eq. (5-17):  

   3 2
3 2 1 0* * *P T P T P T P T P      (5-17) 

However, the evolution of some parameters with respect to temperature can be well captured by a lower 

order function, as the Young’s module E. The detailed fitting curves and functions for the temperature 

dependent parameters of AZ31 are given in Figure 5.19, Figure 5.20 and Table 5.9. 

 
Figure 5.20: Variation according to temperature of anisotropic parameters. 

Table 5.9 Fit functions for anisotropic parameters 
Fit functions for anisotropic parameters 

3 27.262e-08* 8.531e-05* 0.02692* 4.01N ? 6T T T     
3 21.331e-07* 8.169e-05* 0.01634* .54 1H T T T     

3 22.877e-07* -0.0001401* 0.01866* 0.1 363T T TG    
3 21.876e-07* -9.343e-05* 0.01271* 0.1 724T T TF    

3 26.257e-07* -0.000239* 0.008719* . 7' 3 41T T TN    
3 28.018e-07* -0.0003343* 0.02636*' ? 2.15T T TH    
3 2-2.761e-08* +1.217e-05* 0.001058' * 0. 42 17T T TG  

3 2-8.17e-08* +4.046e-05* -0.004371' * 0.2 68 2T T TF   
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5.3 Validation with simple test for Ti-6Al-4V 

In this section, the proposed model is validated through simple tension tests using the calibrated material 

parameters in section 5.2 for Ti-6Al-4V. The uniaxial tension test using flat specimen of Ti-6Al-4V was 

reported in [Giglio12, Allahverdizadeh13]. Simulation using the identified material parameters with mesh 

size 0.1 mm in the central part of the specimen and C3D8R element type has been done. The mesh of the 

specimen is shown in Figure 5.21, a constant loading rate is controlled to ensure the quasi-static deformation 

state which is same with the identification processes. The numerical predicted force-displacement curve 

compared with the experimental results are shown in Figure 5.22. The FE simulation results reported in 

[Giglio12] and [Allahverdizadeh13] are also presented with the name of ‘FEM_01’ and ‘FEM_02’. The 

proposed model (‘FEM_03’) has a better prediction of fracture compared to the result of ‘FEM_01’, and the 

hardening evolution are fitted better compared to the result of ‘FEM_02’.  

 

Figure 5.21: Mesh of the flat tensile test. 

 
Figure 5.22: Comparison of numerical and experimental force-displacement curves for tensile test on flat 

specimen for titanium alloy Ti-6Al-4V. 
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(a) Displacement U=5.0 mm     (b) Displacement U=6.0 mm (c) Displacement U=6.95 mm 

 

(d) Finial fracture 

Figure 5.23: The damage evolution at different displacements of flat specimen. 

The damage evolution at different displacements are shown in Figure 5.23, a curvature along the loading 

direction (diffuse necking) and a reduction of thickness (localized necking) appears with the increase of 

displacement. The final fracture is located at the center of the specimen which is consistent with the 

experimental results in Figure 5.23. 

5.4 Applications to sheet metal forming processes  

5.4.1 Three-point bending (TPB) tests 

Three-point bending tests at room temperature were conducted for AZ31B as reported in [Tari15]. The 

sample is of rectangular shape with dimensions 140.0 mm length, 25.0 mm large and 1.57 mm thickness. A 

view of the experimental test facility as well as its FE representation are shown in Figure 5.24.  TBP tests 

are simulated using ABAQUS/Explicit with the proposed model. The sheets are meshed using C3D8R brick 

element. The cylinders are modeled as rigid body using shell element, as shown in Figure 5.24. The moving 

cylinders are applied with a constant velocity of 0.76 mm/s. The friction coefficient is fix to 0.048 for all 

the contacting surfaces. 
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Figure 5.24: Three-point bending test: (a) Test apparatus [Tari 2015]; (b) FE model with mesh 

Figure 5.25 shows the force-displacement curves obtained by three different simulations compared to 

experimental results. These simulations are conducted using von Mises model (SIM_01), current model 

without hardening asymmetry (SIM_02), and current model with hardening asymmetry (SIM_03). A higher 

level of loading force is observed for the von Mises model (SIM_01), both the current model without 

hardening asymmetry (SIM_02) and with hardening asymmetry (SIM_03) show a satisfactory agreement 

with the experimental curve. It is worth mentioning that the Model taking into account the hardening 

asymmetry (SIM_03) predicts more accurately the force displacement experimental response. 

 
Figure 5.25: Comparison of predicted force vs. displacement responses with experimental data 

Two elements located at the top (compression state) and bottom (tension state) of the sheet, as shown in 

Figure 5.26a, are selected to compare their response obtained from different models. As illustrated in Figure 

5.26b, the stress vs. plastic strain obtained from von Mises model (SIM_01) is symmetric in yield stress and 

hardening. The stress vs plastic strain response of SIM_02 and SIM_03 at bottom point (tension state) is 

almost the same, meanwhile, both simulation results of SIM_02 and SIM_03 can capture the tension 
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compression asymmetry of yield stress. However, only simulation results of SIM_03 shows the hardening 

asymmetry.  

 
(a) Location of Point_Top and Point_Bot;            (b)  Results obtained with different models 

Figure 5.26: Comparison of stress vs plastic strain response at different points using different models. 

The distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for TPBT at displacement 

of 30.0 mm is given in Figure 2.27. The damage effect is very limited with the 3 cases. The von Mises stress 

and plastic strain are tended to localize at the center of the sheet plate. 

 
Figure 5.27: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for TPBT at 

displacement of 30.0 mm. 
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5.4.2 Circular cup deep drawing tests (CCD) 

The simulations of circular cup deep drawing test for Magnesium alloy AZ31B are performed using FE 

code Abaqus/Explicit, the objective is to demonstrate the capability of the proposed model for hot sheet 

metal forming processes. Figure 5.28 shows the schematic representation of die, blank holder and punch 

[Tari 13]. The dimensions are given in Table 5.10. 

 

Figure 5.28: Schematic representation of die, blank holder and punch. 

Table 5.10 Dimensions of the component for CCD test 

Dp (mm) Dd (mm) Db (mm) Rp (mm) Rd (mm) 

101.9 110.6 228.6 12.0 12.0 

 

Figure 5.29: Different temperatures used for the blank sheet. 

A near iso-thermal forming of CCD test was conducted in [Tari 13], in which the temperature of the die and 

holder are 225 °C, the temperature of punch is 215 °C, the blank center at about 211°C. In this work, the 

heat transfer by radiation and conduction between the blank sheet and tools is ignored for simplicity, only 

the heat generated from the inelastic deformation is considered. However, to approach the real condition of 
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the experiment, the blank in the numerical simulation was divided into three sections to include the 

temperature gradient, as illustrated in Figure 5.29.  The thermal properties of material used in numerical 

analysis are given in Table 5.11.  

Table 5.11 Thermal properties [Tari13] 

Thermal conductivity Heat Capacity Density Inelastic heat fraction

95.8 W/(m K) 1049.3 J/(kg K) 1770.0 kg/m3 0.9 

In the numerical analysis, the blank holder force is 80.0 kN with punch speed of 4 mm/s. The punch, holder 

and die are rigid body, the blank sheet is meshed with element type C3D8RT. The friction coefficient is 

fixed to 0.05 for the contacted surfaces. The time step is increased to 5E-5 to reduce the simulation time 

thanks to the mass scaling method. The force vs displacement curves obtained from the simulation and 

experiment are compared in Figure 5.30. The simulation result over-predicts the force at large displacement 

slightly, and the predicted fracture occurs a little earlier compared to the experimental result. Despite all this, 

the maximum force and the displacement at fracture are relatively well predicted by the proposed model. 

 
Figure 5.30: Comparison of force vs. displacement curves for simulation and experimental results for 

CCD test.  

The distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for CCD test at different 

veritical punch displacements are given in Figure 5.31. At the displacement of 25.0 mm (Figure 5.31(a)), 

the damage is relatively low (Dmax = 2.4%), but is starts to localize at the top edge of the deformed cup. As 

the displacement increases, more significant damage localization at this place is observed (Dmax = 6.3% at 

U=40.0 mm; Dmax = 13.6% for U = 48.0 mm; Dmax=96% for U=52.0 mm). It should be noted that a 

localization at the bottom edge of sheet close to the punch is appeared with a lower magnitude compared to 
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the top edge. The macroscopic crack path predicted numerically (at punch displacement U = 52.0 mm) and 

the one observed experimentally appears at the top edge of the cup and are in good agreement (See Figure 

5.31(d) and 5.31(e)). 

von Mises stress Damage Accumulated plastic strain 

(a) Displacement U=25.0 mm 

(b) Displacement U=40.0 mm 

(c) Displacement U=48.0 mm 

 

(d) Predicted final crack path at U=52.0 mm (e) Experimentally observed crack path 

Figure 5.31: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for CCD test 

at different displacements. 

5.4.3 Cross-shaped cup deep drawing tests (CSD) 

In order to present the capability of our numerical simulation methodology for hot forming processes with 

complex geometry, the proposed fully coupled damage model was used for the cross-section deep drawing 

analysis. The geometry of the CSD process is shown in Figure 5.32. No symmetry condition is considered 
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and the simulation was performed with the full part. The element type for the blank is brick element C3D8RT 

from Abaqus element library and the mesh is shown in Figure 5.32 where different mesh size was set for 

the blank with the minimum mesh size of 0.35 mm in the region of interest. 

 
(a) Geometry                                                                 (b) Mesh of blank 

Figure 5.32: Numerical model for CSD test. 

The punch velocity is 1.5mm/s, blank-holding force and pad force are 2.5 kN and 1.5 kN respectively, the 

temperature of the blank sheet is assumed to isothermal and the contact with the tools will not change the 

temperature of the blank. 

The force vs displacement curves of AZ31B simulation results at different temperatures are shown in Figure 

5.33. A temperature-induced softening leading to a decrease of the force and increase of displacement is 

clearly observed as the temperature increases. At room temperature, final fracture appears at small 

displacement (5.1 mm), which indicates a low formability of CSD test for AZ31B. However, the 

displacement at final fracture increases with the temperature. Accordingly and as expected the formability 

is improved at high temperature.   

 
Figure 5.33: Force vs. displacement curves of CSD test at different temperatures. 
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To show clearly the blank deformation during the forming process, the distribution of von Mises stress, 

damage (SDV14) and plastic strain (SDV15) inside the formed AZ31B sheet under different temperatures 

at the same displacements are compared. Figure 5.34 shows that at the displacement of U=2.5 mm, the 

equivalent stress and plastic strain at different temperatures are augmented at the highly deformed region 

(corners of the cross-shaped punch).  The ductile damage is localized at the same places of the blank for 

different temperatures. At room temperature, the damage localization is weak (Dmax=1.175%) at the 

displacement of U=2.5 mm (see Figure 5.34(a)). The maximum value of ductile damage is decreased at high 

temperatures, as shown in Figure 5.34(b) and 5.34(c), which shows a delay of damage evolution at high 

temperatures. 

von Mises stress Damage Accumulated plastic strain 

(a) Room temperature (Displacement U=2.5 mm) 

(b) T=150 °C (Displacement U=2.5 mm) 

(c) T=200 °C (Displacement U=2.5 mm) 

Figure 5.34: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for AZ31B 

under different temperatures at displacement U=2.5 mm. 

Figure 5.35 shows the distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for 

AZ31B under different temperatures at displacement U=5.1 mm. At room temperature, the cracks appear at 

the corners of the punch for this displacement, and propagated along the horizontal direction of the blank. 

Due to the full coupling effects, severe drop of the equivalent stress (as well as all the internal stresses) is 
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then observed inside the fully damaged areas (see Figure 5.35(a)). The maximum value of accumulated 

plastic strain reaches 21.9% at the damaged areas. For the punch displacement of U=5.1 mm, no cracks 

appeared at high temperatures (T=150 °C, T=200 °C), as can be seen in Figure 5.35(a) and 5.35(b). However, 

the values of ductile damage at these two temperatures become more important (Dmax=11.7% for T=150 °C, 

Dmax=3.93% T=200 °C) compared to that at low displacement (Figure 5.34(b) and 5.34(c)). 

von Mises stress Damage Accumulated plastic strain 

(a) Room temperature (Displacement U=5.1 mm) 

(b) T=150 °C (Displacement U=5.1 mm) 

(c) T=200 °C (Displacement U=5.1 mm) 

Figure 5.35: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for AZ31B 

under different temperatures at displacement U=5.1 mm. 

Since the blank is fractured at room temperature for displacement U=5.1 mm, we continue to compare the 

distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for displacement of U=7.15 

mm under temperature of 150 °C and 200 °C, as given in Figure 5.36(a) and 5.36(b). The macroscopic 

cracks appear at the cross-shaped corners of the blank for temperature of 150 °C, while there is no cracks 

observed at temperature of 200 °C. The von Mises stresses at the fractured corners are approximately zero. 

For the temperature of 200 °C, the maximum value of damage and plastic strain reach to 22% and 63.48% 

respectively. The macroscopic cracks are observed at the displacement of U=8.72 mm, and the location is 

at the corners of the cross-shaped blank.  
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von Mises stress Damage Accumulated plastic strain 

 (a) T=150 °C (Displacement U=7.15 mm) 

(b) T=200 °C (Displacement U=7.15 mm) 

(c) T=200 °C (Displacement U=8.72 mm) 

Figure 5.36: Distribution of von Mises stress, damage (SDV14) and plastic strain (SDV15) for AZ31B at 

different temperatures and displacements.  

Through the comparison of Figure 5.34, Figure 5.35 and Figure 5.36, we can observe a similar scenario of 

crack initiation and propagation for the cases with different temperatures.  However, the crack initiation and 

propagation is delayed with the increase of temperature.  Large punch displacement can be reached at high 

temperatures. The formability is highly improved and the damage can be delayed with the temperature 

increases. For the case without cracks appearing, high temperature leads to a low damage value at the same 

displacements, as shown in Figure 5.34, Figure 5.35(b) and Figure 5.35(c). 

Temperature (SDV25) distribution before and after the onset of fracture with different initial blank 

temperatures (20°C ,150 °C, 200°C) are shown in Figure 5.37. The maximum temperature appears at the 

corners of the specimen where the cracks take place. The increase of temperature due to the behavior and 

damage is not significant (6.9°C for initial blank temperature 20°C, 10.6°C for initial blank temperature 

150°C, and 11.4°C for initial blank temperature 200°C).  
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20°C 150°C 200°C 

Before the onset of fracture 

After the onset of fracture 

Figure 5.37: Temperature (SDV25) distribution at different initial blank temperatures. 

For the purpose of comparison, an example of fractured cross-shaped blank sheet of AZ31B [Lee15] formed 

under non-isothermal condition is given in Figure 5.38, in which the experimentally determined forming 

height at fracture is 11.5 mm. The numerically predicted final fracture of the CSD test at different values of 

the initial blank temperature is shown in Figure 5.39. The failure of the blank sheet at different temperatures 

locates at the corners of the cross-shaped die for all the cases, which is consistent with the experimentally 

observed crack path as shown in figure 5.38.  

 

Figure 5.38: Example of fractured cross-shaped blank sheet of AZ31B [Lee15].  

The punch displacement at fracture under high temperature is highly increased compared to that at room 

temperature (i.e. 5.5 mm for room temperature and 11.97 mm for temperature of 250°C), as shown in Figure 

5.39. The crack path is well predicted by the numerical simulations. Therefore, the proposed fully coupled 
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damage model could predict the location of failure with good accuracy. The simulated forming height at 

fracture is increased with the temperature, which shows a significant improvement of the formability of 

AZ31B sheet at elevated temperature. The current model presents well the formability and fracture behavior 

of AZ31B.  

 

Figure 5.39: Final fracture and punch displacement of AZ31B for CSD test at different temperatures. 

5.5 Conclusions 

In this chapter, the identification methodology for anisotropic parameters, hardening parameters and damage 

parameters of the proposed model is presented in details. Titanium alloy Ti-6Al-4V are investigated at room 

temperature, and validated by simulation of flat tensile test, the simulation results show a good agreement 

with the experimental measurements. For Mg alloy AZ31B, the material parameters are calibrated under 

different temperatures. Simulations of three-point bending (TPB) tests at room temperature and circular cup 

deep drawing (CCD) tests at high temperature are performed to validate the capability the proposed 

constitutive model in sheet metal forming process for Mg alloy. Finally, the simulations of cross-shaped cup 
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deep drawing (CSD) tests are conducted at different temperatures, which shows a satisfied damage and 

fracture prediction ability of the proposed model in hot sheet metal forming processes.
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Conclusions and main perspectives 

Since the constitutive equations are vital in FE simulations of sheet metal forming processes, this work aims 

to develop the thermodynamically-consistent non-associative constitutive equations fully coupled with 

isotropic ductile damage for hot sheet metal forming. It should be addressed that the proposed theory 

embraces many phenomena observed in metal inelasticity. For example, the initial anisotropy, tension-

compression asymmetry, hardening asymmetry are successfully included in the proposed model. 

Furthermore, the CDM damage model is enhanced by accounting for the Lode angle and stress triaxiality 

effects. These achievements constitute the main contribution of this work. 

The proposed anisotropic elasto-visco-plastic constitutive model accounting for mixed nonlinear isotropic 

and kinematic hardenings strongly coupled with isotropic ductile damage was formulated in the framework 

of thermodynamics of irreversible processes. Then numerical simulations of sheet metal forming processes 

were applied. All the contents are presented sequentially in each Chapter, as summarized below:  

 The major phenomena observed in light weight metallic materials during hot sheet metal forming 

processes are presented and discussed.  

 Anisotropic thermo-elasto-visco-plastic constitutive equations fully coupled with isotropic ductile 

damage for metallic materials under large strains, are formulated based on continuum damage 

mechanics framework. The third stress invariant is added to Hill equivalent stress to describe the 

tension-compression asymmetry exhibited by HCP materials. Distortion of the yield surface is taken 

into account. The kinematic and isotropic hardening parameters are assumed to be function of the 

normalized Lode angle and equivalent plastic strain to capture the hardening asymmetry. The 

introduction of tension-compression asymmetry in yield stress and hardening helps to capture 

accurately the complex behavior exhibited by Mg alloys. A new approach to include the microcracks 

closure effect to influence the damage evolution under a wide range of stress triaxiality is proposed. 

Lode angle-dependent enhanced fully coupled damage model is developed to treat the Lode angle effect 

on ductile damage evolution. 

 The associated numerical aspects of the proposed model are presented. The constitutive equations have 

been discretized in time domain using appropriate finite difference scheme and in space domain using 

FEM. The global resolution scheme as well as the fully implicit local integration scheme of the 

viscoplastic model are elaborated. 

 The capability of the proposed fully coupled model is presented through a systematic parametric study. 

The initial anisotropy, tension-compression asymmetry, hardening asymmetry and distortion of the 
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yield surface are investigated first without coupling with isotropic ductile damage, while the interaction 

with temperature effect is carefully studied. When fully coupled with ductile damage is considered, 

significant effects on damage evolution induced by these phenomena are observed. Through the 

introduction in the fully coupled damage model of stress triaxiality and Lode angle effects, the 

capability of the proposed model is enhanced tremendously in terms of damage prediction under 

different loading paths (shear, tension, compression) within a wide range of stress triaxiality. The 

sensitivity of the newly proposed parameters (hardening parameters, damage parameters) on the 

macroscopic behavior shows clearly the strong ability of the current model in capturing the complex 

behaviors of light weight metallic materials. 

 The material parameters identification strategy is presented in detail. The anisotropic parameters, 

hardening parameters, damage parameters are calibrated successively at certain temperatures, then 

temperature dependent functions are used to describe the evolution of these parameters with 

temperature. The procedure is realized by MATLAB-based minimization software interfaced with 

ABAQUS FE code through the Python script. The desired values of the material parameters are 

determined through comparing the simulation results to the experimental data by minimizing the 

objective functions. The identification is applied for two materials (Titanium alloy Ti-6Al-4V at room 

temperature and Mg alloy AZ31B at elevated temperatures). 

 Three sheet metal forming processes namely three point bending test (TPB), circular cup deep drawing 

test (CCD) and cross-shaped cup deep drawing test (CSD), are simulated for Mg alloys AZ31B under 

room and high temperatures using the proposed fully coupled damage model. The high capability of 

the fully coupled CDM model is validated by the comparisons of the damage initiation and propagation.  

It bears to emphasize that the pursuit of more accurate prediction in material behaviors with simple 

numerical implementation is always desired. The current proposed model seeks to include the main physical 

phenomena under large strains of light weight metallic materials, such as various types of hardening 

(isotropic and kinematic hardening, distortional hardening), the various anisotropies (Initial anisotropy, 

tension-compression asymmetry) and fracture by ductile damage under complex loading paths. Besides the 

merits of the proposed model, it also has limitations: (1) the predicted yield surface shows large equi-biaxial 

compression stress, which indicated that more advanced yield function is still needed; (2) in order to capture 

the pronounced anisotropic and asymmetric behaviors of Mg alloy at room temperature, new material 

parameters are added, when applied for elevated temperatures, the identification work to obtain the material 

parameters are heavy. Considering the limitation of the model as well as the limited time for this work, 

further developments are needed to be done in the near future to enhance the proposed model, as summarized 

below: 
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 Mg alloys often exhibit more complex stress vs. strain response when applying cyclic loading path at 

room temperature, which is caused by the interaction of slip, twinning, de-twinning deformation modes 

respect to different loading paths. The current model could not describe this complex behavior which 

need to be exploited later, the use of multi-surface yield criterion could be feasible. 

 The proposed viscous stress could not accurately describe the stress vs. strain response at small plastic 

strain level. Enhanced viscous stress model by introducing dependency of the viscous module on 

equivalent viscoplastic strain should be considered. 

 The yield criterion used in the current work can describe the SD effect while it is unable to apply for 

pressure sensitive metals, to obtain a wide application range for different metals of the proposed model, 

extension by using more sophisticated yield functions to include the pressure sensitivity should be made 

[Chaboche06, Saanouni12, Lou13b, Yoon14].   

 Only anisotropic plastic behaviors are taken into account in this work, while ductile damage can be 

highly anisotropic in sheet metal. The proposed model could be extended to couple the anisotropic 

damage using existing anisotropic CDM damage model developed by our team [Nguen12, Rajhi14, 

Badreddine15]. 

 To obtain more accurate damage prediction in various metal forming processes, adaptive meshing 

methodology should be taken into account [Bouchard03, Labergere14]. To avoid the dependence of 

the numerical solution to the discretization aspects, the current fully coupled local model should be 

extended to the non-local formulation using the generalized framework of micromorphic theory 

[Saanouni12, Diamantopoulou17, Liu17]. 

 Systematic experimental works for Mg alloys or Titanium alloys are required to complete the 

identification of the proposed model correctly. Meanwhile, this model need to be applied for much 

more materials (i.e. ZEK100, pure Ti) to extend the applicability of the present model.
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Résumé extensif en Français 

Introduction  

Ce travail de thèse est dédié au développement d’une modélisation phénoménologique thermodynamique 

pour une meilleure description du comportement thermomécanique complexe avec endommagement ductile 

en mise en forme par grandes déformations à hautes températures de tôles métalliques.  Ce modèle permet 

de prendre en compte plusieurs couplages forts entre les déformations thermoélastiques, les grandes 

déformations inélastiques, les écrouissages (isotrope et cinématique), les échanges thermiques et 

l’endommagement ductile. En se basant sur les compétences en modélisation théoriques et numériques 

acquises au sein de l’équipe LASMIS, un modèle anisotrope thermo-élasto-viscoplastique couplé à 

l’endommagement ductile isotrope a été proposé dans ce travail. L’effet de la fermeture des microfissures, 

de la triaxialité des contraintes ainsi que l’angle de Lode, ont été pris en compte dans le modèle. L’asymétrie  

de la surface de charge a été prise en compte en introduisant la dépendance au 3ième invariant des contraintes 

J3  dans  le critère d’écoulement de Hill. Egalement la dissymétrie de l’écrouissage a été représentée par 

l’introduction, dans les paramètres de vitesse de saturation de l’écrouissage, d’une dépendance à l’angle de 

Lode.   

La formulation du modèle a été réalisée dans le cadre de la thermodynamique des processus irréversibles en 

utilisant une théorie générale de plasticité non associée à normalité non-associée en grandes déformations 

inélastiques. Les aspects numériques,  associés à l’implémentation du modèle dans le code de calcul par E.F. 

ABAQUS/Explicit  via la routine utilisateur VUMAT, ont été développés. 

La détermination des paramètres d’anisotropie est assurée par la minimisation d’une fonction objective qui 

représente l’écart au sens des moindres carrés entre  la prédiction du modèle et la mesure expérimentale 

[Yoon14]. Pour identifier les paramètres d’écrouissage et d’endommagement, une méthode inverse a été 

mise en œuvre basée sur la minimisation de l’écart entre les réponses du modèle et les résultats 

expérimentaux en termes de courbes force-déplacement.  Cette méthode  a nécessité le développement d’un 

programme Matlab couplé au code de calcul ABAQUS/Explicit via des scripts en Python [Yue15]. 

Une étude paramétrique exhaustive a été conduite sous divers trajets de chargement simples et complexes  

pour vérifier les capacités prédictives du modèle proposé. Enfin, des applications à des procédés de mise en 

forme à haute température de tôles minces sont réalisées et les résultats des simulations numériques sont 

comparés aux résultats expérimentaux s’ils sont disponibles. 

La thèse est organisée en cinq chapitres. 
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Chapitre 1: Les principaux phénomènes physiques exhibés en mise en forme à 
haute température 

Les nouveaux alliages légers à hautes propriétés mécaniques, comme les alliages d’Aluminium, de 

Magnésium et de Titane, sont des matériaux très prometteurs pour la construction mécaniques et sont de 

plus en plus étudiés durant les dernières années. En effet, la demande industrielle de ces matériaux ne cesse 

de s’accroitre dans plusieurs secteurs industriels (voir Figure 1.1) sous la pression des nouvelles normes de 

réduction des oxydes de carbone en faveur de la protection de l’environnement. Les alliages d’Aluminium 

ont déjà été très utilisés dans les secteurs  de construction automobile  (cadres, panneaux de carrosserie et 

roues), de construction navale et de l’industrie aéronautique et spatiale.  Les alliages de Titane, à cause de 

leurs modules spécifiques important, ils sont spécialement dédiés aux applications  aéronautiques et 

spatiales pour la fabrication par exemple d’aubes de turbes de moteurs à réaction. Egalement, à cause de 

leurs excellentes résistances à la corrosion et à la fatigue,  ils sont utilisés dans l’industrie pétrolière pour la 

fabrication des outils de forage. 

 

Figure 1.1: Matériaux légers de construction  innovante en industries  automobile, navale, aéronautique et 

pétrolière. 

Par contre leur utilisation dans le secteur de l’automobile est fortement limitée par leur coût onéreux. Les 

aciers à haute et à très haute résistance ayant des modules spécifiques très importants comparés aux aciers 

conventionnels, ont également fait leur preuve dans la construction automobile. Les alliages de Magnésium 

représentent un candidat intéressant pour le secteur de l’automobile et une alternative aux alliages 

d’Aluminium et aux aciers à haute résistance pour le rapport important entre leur contrainte à la rupture et 

leur densité permettant d’avoir des structures plus légères réduisant la consommation de l’énergie. Par contre, 

leur utilisation industrielle a été limitée par leurs fortes anisotropies initiale et induite [Agnew05, Khan11, 

Shi13] incluant une asymétrie importante entre traction et compression (effet-SD) [Kelley68, Khan11, 

Steglich11]. En effet, leur comportement mécanique exhibe un effet important d’asymétrie de l’écrouissage 

entre traction et compression [Khan11, Kabirian16, Lee17] ainsi qu’une très faible formabilité à température 

ambiante [Chen03, Kim13, Rodriguez16]. Ces caractéristiques sont surtout reliées à leur structure 

Hexagonale-compacte (HC).  Par conséquent, la modélisation du comportement mécanique complexe de ce 

type de matériau demeure un défi à relever.  
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Chapitre 2: Formulation théorique du modèle thermo-élasto-viscoplastique 

couplé à l’endommagement ductile isotrope 

2.1 Formulation du couplage du  modèle proposé  

2.1.1 Variables d’état et variable effectives 

Dans ce travail, le model est formulé dans le cadre de la thermodynamique des processus irréversibles 

avec variables internes  [Lemaitre90, Saanouni12, Skrzypek13]. Les couples de variables observables et 

internes sont les suivantes : 

 ( ,   ) pour la déformation totale et le tenseur des contraintes de Cauchy, 

  ( , eT s )  pour la température absolue et l’entropie spécifique, 

  ( ,e  ) représentant les déformations élastoplastiques avec l’hypothèse des petites déformations 

élastiques et le tenseur des contraintes de Cauchy, 

 ( /q T


, ( )g grad T
 

) représentant le vecteur flux de chaleur et sa force conjuguée,  

 ( ,r R ) représentant l’écrouissage isotrope qui représente la variation du rayon de la surface de charge, 

 ( , X ) représentant l’écrouissage cinématique  qui représente la variation de la position du centre de  

la  surface de charge  

 ( ,d Y ) représentant l’endommagement ductile isotrope. La variable scalaire d est une moyenne  de tous 

les endommagements dans différentes directions, avec d=0 pour un élément de volume initialement 

saint et d=1 pour un élément de volume complétement endommagé.  

Le couplage fort entre l’écoulement plastique, l’écrouissage et l’endommagement ductile est réalisé dans le 

cade de l’hypothèse d’équivalence en énergie totale [Saanouni94, Saanouni12], permettant  de définir les 

couples de variables effectives  ,e     , X   et  ,r R  comme décrit par les équations suivantes :  

 ( 1e ed   , 
1 d

 


 )  (1)  

 ( 1 d   , 
1

X
X

d



 ) (2) 

 ( 1r d r  , 
1

R
R

d 



 ) (3) 

Le paramètre   est un paramètre de couplage de l’endommagement et l’écrouissage isotrope [Saanouni12]. 
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Dans ce travail une nouvelle approche est proposée dans le but d’éviter le problème de continuité  induit par 

la décomposition spectrale pour tenir compte des fermetures de microfissures. L’idée de base consiste à 

considérer une fonction h de fermeture de microfissures dépendant de la triaxialité des contrintes comme 

suit : 

 
1 1

( ) tanh( )
2 2

c c
h

h h
h   

 
   (4) 

où 
2

( )

( )

tr

J




  est la triaxialité, ch  et h  sont deux paramètres matériau qui contrôlent evolution de h. 

L’objectif de cette forme proposée est d’assurer pour les fortes valeurs positives de la triaxialité des 

contraintes une valeur entière de h ( h =1) par contre pour des valeurs négatives de la triaxialité des 

contraintes les valeurs de h tendent vers ch . Notant que la transition entre ces deux valeurs limites  se fait de 

manière continue notamment pour le cas du cisaillement pur pour lequel  h(0)=(1+ ch )/2 . Les variables 

effectives sont alors redéfinies sous la forme suivante : 

 1 ( ) eeH eHh d      et  
1 ( ) e

H
H

h d 







   (5) 

  1 ( )eD eh d     et 
1 ( )

S
S

h d



  (6) 

 1 ( )h d     et 
1 ( )

X
X

h d



  (7) 

 1 ( ) rr h d r   et  
1 ( ) r

R
R

h d 



  (8) 

Les paramètres e et r sont des paramètres de couplage qui contrôlent l’effet de l’endommagement sur la 

partie hydrostatique de la contrainte et de l’écrouissage isotrope.  

2.1.2  Potentiel d’état et relations d’état 

L’énergie libre de Helmholtz    , , , , , , ,e er T r T d       , définie comme fonction convexe des variables 

de type déformation et concave de la température [Germain86, Saanouni12], dans la configuration fictive 

non-endommagée, est choisie comme un potentiel d’état. Il peut être décomposé  en une partie 

thermoélastique the   et une partie thermo-viscoplastique thin   en supposant que les déformations 

inélastiques et les écrouissage n’affectent pas les propriétés d’élasticité :  

 ( ,T) ( , ,T) ( ,T, ) ( , ,T, )e ethe thin the thinr d r d                   (9) 
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 (10) 

Dans ces équations, ( )e T  et ( )e T   sont les constantes de Lamé (  ( ) ( ) / (1 )(1 2 )e T E T       ) et 

 ( ) ( ) / 2(1 )e T E T    , ( ) (3 ( ) 2 ( )) / 3 ( ) /(3(1 2 ))e e eT T T E T         est le module de compressibilité, 

( )E T   et ( )y T   sont le module de Young et la limite initiale d’élasticité , ( )C T  et ( )Q T   sont les modules 

d’écrouissage cinématique et isotrope. Le paramètre ( )ch T  est le paramètre de fermeture de microfissures 

et peut être considéré comme dépendant de la température. Le coefficient de dilatation thermique  , la 

chaleur spécifique à volume constant  vC  , la densité    et le coefficient de Poisson   sont supposés 

constants par rapport à la température. Pour les fonctions de température, on assume une variation par 

rapport à une température de référence T0. Dans l’espace des variables effectives, le potentiel d’état s’écrit : 

 2
0 0

0

2

1
( )( : ) ( )( : )

2

3 ( ) ( )( :1) ( )
2

1 1
( ) : ( )

3 2

eH eH eD eDthe
e e
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e

thin

T T

C
T T T T T

T

C T Q T r




      


  

  


  


    



  


 



 

 (11) 

Les relations d’état s’obtiennent par dérivation du potentiel d’état par rapport aux variables d’état comme 

suit : 

 
 0(1 ( ) ) ( ) 3 1 ( ) ( ) 1

2(1 ( ) ) ( )

H

e eeH
e ee

S
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h d T h d T T T
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 1
( ) ( ) :

3
Y h C T      (16b) 

 1 21
( ) ( )

2
rr

rY h d Q T r      (16c) 
 

2.1.3 Analyse des dissipations 

Il est établi que la dissipation mécanique et la dissipation thermique sont toutes les deux séparément 

positives, ce qui permet de séparer l’analyse des dissipations en partie mécanique (ou intrinsèque) notée  

M  et partie thermique notée T  , de sorte que : 

 0M T       (17) 

 ( ) 0T q
grad T

T
    

 
  (18) 

 : :vpM D X Rr Yd         (19) 

2.1.3.1 Analyse de la dissipation thermique 

Le vecteur flux de chaleur q


  peut être obtenu à partir du potentiel de Fourrier où  k  représente le coefficient 

de conductivité thermique. On arrive alors à : 

 ( )q kgrad T 


  (20) 

L’équation de la chaleur peut être obtenue en combinant cette équation avec la première loi de 

thermodynamique [Lestriez02, Saanouni03, Saanouni12]. Dans un milieux élastoviscoplastique 

endommageable elle s’écrit :  

 

 
( ( )) : : 0

lim

M e

Isentropic coupling term

X R Y
k div grad T C T T r d

T T T T

Avec conditions aux ites Dirichlet et Neumann


                      





    
   (21) 

2.1.3.2 Analyse de la dissipation intrinsèque  

Pour définir les évolution des variables d’état ( , , , )vpD r d    nous définissons dans le cadre d’une théorie non-

associée un critère d’écoulement ( , , , ; )f X R d T et un potentiel inélastique ( , , , , ; )F X R Y d T  permettant de 



Résumé extensif en Français 

171 

 

vérifier à tout moment l’inégalité résiduelle : 
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 (23) 

où  0( ), ( ), ( ), ( )S T s T Y T T sont des paramètres caractérisant l’évolution de l’endommagement, a  et b  sont 

des paramètres qui définissent la non linéarité de l’écrouissage cinématique et isotrope respectivement. Pour 

rendre compte de l’asymétrie de l’écrouissage exhibé par les alliages de Magnésium, ces deux paramètres 

sont définis comme fonction de l’angle de Lode normalisé L   ( 1 1L    ) ainsi que de la déformation 

plastique équivalente p comme suit : 

 1 1 2 2 3 2

1
( , ) ( ) [1 ( )][ ( ) ( ( ) ( )) ( ( ( )))]

2L L sa p a T Tanh a T a T a T Tanh p p T         (24) 

 1 1 2 2 3 2

1
( , ) ( ) [1 ( )][ ( ) ( ( ) ( )) ( ( ( )))]

2L L sb p b T Tanh b T b T b T Tanh p p T         (25) 

où 1 2 3 1 2 3 1 2( ), ( ), ( ), ( ), ( ), ( ), , , ( )sa T a T a T b T b T b T p T    sont des paramètres matériaux. L’angle de Lode 

normalisé L  ( 1 1L   ) est défini  comme suit : 

 3
3/ 2
2

3 36 2
1 1 arccos( )

2
L

L

J

J




 
     (26) 

Il a été prouvé expérimentalement que, pour certain matériaux, la ductilité est fortement dépendante de l’état 

des contraintes induite par le chargement qui peut être représentée par l’angle de Lode [Bao04]. Différents 

modèles d’endommagement et rupture ont été proposés basés sur la prise en compte de l’angle de Lode 

[Xue08, Bai08, Cao13, Chbihi17]. Dans ce travail, l’effet de l’angle de Lode sur l’endommagement est 

considéré à travers le paramètre de ductilité S via l’expression suivante : 

  ( , ) ( ) ( ) ( ) Tanh( )
s

L sh t sh LS T S T S T S T


     (27) 

Les paramètres ( )shS T , ( )tS T et s  permettent d’ajuster la ductilité pour diverses états de contraintes.  

Les contraintes équivalentes définies dans les équations Eq.(22) et Eq.(23) sont quadratiques de type Hill et 

sont modifiées pour y introduire le troisième invariant de contrainte pour décrire l’asymétrie des limites 

d’écoulement entre les chargement de traction et de compression, observée pour les alliages de Magnésium 
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[Cazacu04, Yoon14] : 

  ( ) : ( ) : ( ) ; ( , )i i i
d i dH
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(30) 

où H et 'H  sont deux opérateurs symétriques d’anisotropie d’ordre 4 caractérisés chacun par 6 paramètres. 

Ces derniers sont considérés dépendants de la température. Pour la théorie non-associée à normalité non 

associée, ces opérateurs sont définis séparément pour le potentiel plastique ( , 'P PH H ) et pour le critère de 

plasticité ( , 'c cH H ) . Notons qu’en prenant 1w (in Eq.(22)) la contrainte équivalente  de type [Cazacu04] 

peut être retrouvée et en prenant 0w   la contrainte équivalente classique de Hill peut être obtenue. Pour 

ce dernier cas si on fixe 3 3 1
2 2 3 1 1)(devH I I     on retrouve la contrainte équivalente classique de von 

Mises. 

En suivant les travaux de François [François01], une façon simple pour décrire la distorsion de la surface 

de charge  dans le cadre de la thermodynamique consiste à définir l’écrouissage cinématique comme étant 

l’élément  de contrôle de la distorsion. Dans ce travail, le modèle de François a été modifié permettant de 

mieux décrire le changement de la surface de charge dans la direction orthogonale à la sollicitation [Yue14, 

Badreddine17]. Dans cette approche la partie déviatorique de la contrainte S   qui intervient dans les 

contraintes équivalentes du critère et du potentiel d’écoulement inélastique est remplacée par une contrainte 

de distorsion dS  définie par :  
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S X
S S S et S X

X X
     (33) 

Les paramètres de distorsions 1 1 2( ), ( ), ( )c p c
l l lX T X T X T  sont définis comme fonction de la température : Les 

paramètres 1( )c
lX T  et 1 ( )p

lX T contrôlent l’amplitude de la distorsion du critère de plasticité et du potentiel 

plastique respectivement. Le paramètre 2 ( )c
lX T  affecte la taille de la surface de charge dans la direction 

orthogonale de chargement. Pour assurer la continuité et la convexité de la surface de charge les paramètres 

de l’écrouissage cinématique doivent vérifier la condition  ( ,
1 sat( ) X C/ ac p

lX T   ) [Yue14, Badreddine17, 

Zhang18]. 

Dans le cadre la viscoplasticité, les variables flux qui définissent l’évolution des phénomènes dissipatifs 

peuvent être postulés comme suit [Lemaitre09, Skrzypek15]: 

Tenseur taux de déformations viscoplastiques :  

 vp p
f f

F
D n




   


   (34) 

Tenseur d’évolution de l’écrouissage cinématique: 

 ( ( , ) )x
f f

F
n a p

X
  
    


   (35) 

Evolution de l’écrouissage isotrope :  
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F
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   (36) 

Evolution de l’endommagement ductile : 
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où  l’amplitude de la déformation viscoplastique est défini par f  déterminé par la forme de Norton-Hoff 

[Lemaitre09]: 

 
 

( )vn T

f v

f

K T
   (42) 

Le scalaire positif f  peut être admis comme un  multiplicateur viscoplastique en comparaison avec la 

plasticité indépendante du temps. Par contre ce multiplicateur n’est pas déterminé par une condition de 

consistance comme pour le cas de la plasticité indépendante du temps.  

A partir de l’équation Eq.(42) on peut déduire le critère de charge viscoplastique suivant : 

  
1

( )( , , , , , ) ( , , , , ) ( ) ( , , , , ) 0vvp v n T
v f vf X R d T f X R d T K T f X R d T           (43) 

où  la contrainte visqueuse est définie par la forme scalaire  
1

( )( )
vv n T

v fK T     avec ( )vK T  and ( )vn T  

sont des paramètres caractérisant l’effet visqueux et sont dépendant de la température. 

Chapitre 3: Aspects numériques 

Le modèle développé  au chapitre 2, décrit par un  système d’équations fortement non linéaires, a été 

implémenté dans le code de calcul par E.F. ABAQUS/Explicit à travers la routine utilisateur VUMAT. 

L’ensemble des équations ont une forme classique d’équation différentielle ordinaire d’ordre 1 sauf les 

équations d’écrouissage cinématique et isotrope qui ont une forme spécifique qui se prête bien à une 

intégration numérique par schéma d’Euler purement implicite et un schéma asymptotique [Saanouni12] 

comme suit :   
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avec        
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Les variable force sont données par: 
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Les variables déformation associées sont exprimées comme suit: 
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Finalement l’expression de l’endommagement en fin du pas de temps: 
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Prédiction élastique 

La déformation élastique en fin du pas de temps 1nt  est donnée par : 

 1 1 1 ( )

e ee vp
n n

eH eD eH eD eH eDe eH eD H D vpH vpD
n n n n n n n

   

            
  

                   
   

 (63) 

avec ( )eH H vpH vptr            et eD D vpD        

Durant la prédiction élastique nous supposons que l’incrément de déformation imposé est purement 

élastique et pour une condition isotherme de température 1n nT T   ne produisant donc aucune dissipation  ce 

qui permet d’avoir :  
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 ( 0; 0; 0; 0vp r d         )  ( 1 1 1 1; ; ;vp vp
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La déformation  d’essai  élastique  à 1nt   est donnée par : 
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dans laquelle 
*
1

eH
n   et 

*
1

eD
n   sont les parties hydrostatique et déviatrice de la déformation d’essai élastique. 

Les parties hydrostatique *
1

H
n  et déviatrice *

1nS   de la contrainte sont données par : 
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D’où la contrainte d’essai élastique aura la forme suivante: 
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Notons que **
1 ( 1)

c
n d n nZ S X    le critère de charge viscoplastique d’essai * *

1 1( , , , , )vp
n n n n n nf X R d T   est obtenu 

à partir de l’équation Eq.(44) en fixant ( 1) 0v n   .  
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 (72) 

Si * *
1 1( , , , , ) 0vp

n n n n n nf X R d T    alors l’incrément de charge est bel et bien élastique et la solution est donnée 

par: 
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Correction viscoplastique avec endommagement: 

Si * *
1 1( , , , , ) 0vp

n n n n n nf X R d T     les variables d’état d’essai élastique doivent être corrigées à l’instant 1nt 
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discrétisées du système non linéaire peuvent être réduites à uniquement 4 équations fonctions des 4 variables 
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 (74) 

 

Chapitre  4: Etude paramétrique du modèle proposé  

4.1 Anisotropie initiale et asymétrie 

La Figure 4.1 illustre différentes formes de la surface de charge, dues à la variation des paramètres 

d’anisotropie considérant une asymétrie donnant une plus grande limite élastique en traction (w=1). Il est 

important de signaler que les paramètres F et F’ affectent la surface de charge le long de la direction 

transverse sans modifier la forme de la surface dans la direction de laminage. Les paramètres G et G’ 

affectent la forme de la surface de charge dans la direction de laminage sans modifier la forme de la surface 

dans la direction transverse. La variation des paramètres H et H’ n’affectent pas la taille de la surface en 

expansion équibiaxiale et permet la variation de la surface dans les deux directions, de laminage et transverse.  
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Figure 4.1: Effet des paramètres d’anisotropie sur la forme de la surface de charge en prenant w=1 (cas 

des contraintes planes): (a) paramètre F; (b) paramètre G; (c) paramètre H; (d) paramètre  F’; (e) 
paramètre G’; (f) paramètre H’. 

 
Figure 4.2: Effet de la température sur la prédiction de la surface initiale de plasticité avec et sans prise en 

compte de l’asymétrie: (a) Critère de Hill classique; (b) Modèle proposée. 

Comme illustré dans la Figure 4.2, la taille de surface est réduite en augmentant la température (sorte 

d’adoucissement thermique). Le critère de Hill ne permet de décrire que l’anisotropie initiale en traction ou 

en compression tout en gardant une forme symétrique en traction et en compression. La Figure 4.2b montre 

l’évolution de l’asymétrie traction-compression en fonction de la température. A la température ambiante 

l’asymétrie est significativement importante qui s’estampe lorsque la température croît. La comparaison des 

résultats  des deux modèles montre un intérêt important du modèle proposé vis-à-vis de la description de 

l’évolution de l’asymétrie avec la température. 
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4.2 Effet de l’asymétrie de l’écrouissage 

L’asymétrie de l’écrouissage est introduite à travers les paramètres de saturation de l’écrouissage 

cinématique a et l’écrouissage isotrope b. Ceci est effectué en définissant ces paramètres comme étant des 

fonctions de l’angle de Lode normalisé et de la déformation plastique équivalente cumulée. A travers cette 

étude paramétrique, les différents modes d’écrouissage caractérisant les alliages de Magnésium en 

compression peuvent être obtenues en ajustant les paramètres des fonctions proposées. On peut noter que 

dans le cas de la compression, le paramètre a2  contrôle le premier plateau à faible déformation plastique 

tandis que le paramètre  a3 contrôle la saturation de la contrainte aux grandes déformations viscoplastiques. 

Pour le chargement de cisaillement, le paramètre a2  induit une forte sensibilité de l’évolution de la contrainte 

à faible déformation plastique tandis que le paramètre a3 induit une faible sensibilité de l’évolution de la 

contrainte aux grandes déformations  viscolastiques.  L’effet des  paramètres b2 et b3 est similaire au 

paramètres a2 and a3. Cependant, la contribution dans la variation dépendra de la valeur des modules 

d’écrouissage C et Q.  Pour le cas examiné (comme le cas d’une large classe de matériaux réels) ayant un 

module d’écrouissage cinématique très important devant le module d’écrouissage isotrope, on observe une 

sensibilité plus grande aux paramètres d’écrouissage cinématique à faibles déformations viscoplastiques et 

une grande sensibilité aux paramètres d’écrouissage isotrope aux grandes déformations viscoplastiques .  Le 

paramètre 1  n’a d’effet important que pour le cas du cisaillement défini par 0L  .  Le paramètre 2  a une 

influence sur  la courbure de la courbe contrainte déformation pour tous les chargements excepté la traction 

(cas 1L  ). Ce paramètre définit la taille du premier plateau obtenu en compression  à faible déformation 

viscoplastique.  

 

Figure 4.3: Effet du paramètre a2 sur les courbes contrainte-déformation viscoplastique: (a) Traction et 

compression (b) Evolution du paramètre a en compression; (c) Cisaillement. 
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Figure 4.4 Effet du paramètre a3 sur les courbes contrainte-déformation viscoplastique (a) Traction et 

compression; (b) Evolution du paramètre a en compression; (c) Cisaillement. 

 

Figure 4.5: Effet du paramètre ps sur les courbes contrainte-déformation viscoplastique (a) Traction et 

compression; (b) Evolution du paramètre a en compression; (c) Cisaillement. 

Figure 4.6: Effet du paramètre 2  sur les courbes contrainte-déformation viscoplastique (a) Traction et 

compression; (b) Evolution du paramètre a en compression; (c) Cisaillement. 

4.3 Effet de la triaxialité des contraintes et de l’angle de Lode sur l’évolution de l’endommagement 

Dans ce travail, l’effet de triaxialité des contraintes est introduit dans le paramètre de fermeture de 

microfissures ( )h  . Les valeurs souhaitées du paramètre ( )h   en traction et en compression peuvent être 

ajustées en pilotant les paramètres ch  et h . L’effet de l’angle de Lode étant introduit dans le paramètre de 

ductilité ( )S  , les paramètres shS , tenS et s sont utilisés pour ajuster les valeurs de S pour différents état des 
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contraintes.  

Les surfaces d’iso-endommagement incluant l’effet de l’angle de Lode sont données dans la Figure 4.7. La 

surface circulaire est obtenue pour le cas Sten=Ssh (correspondant à aucun effet de l’angle de Lode). Pour le 

cas où Ssh <Sten  la forme de la surface d’iso-endommagement pour une triaxialité fixée varie d’une forme 

hexagonale à une forme d’étole à six côtés donnant une ductilité maximale en traction 1   et minimale en 

cisaillement 0  . Pour le cas Ssh >Sten  la surface d’iso-endommagement pour une triaxialité des contraintes 

fixée passe à une forme d’une fleur à six pétales donnant inversement une ductilité minimale en traction 

1   et maximale en cisaillement 0  . Notons que dans le cas d’un écoulement isotrope de Mises, les 

surface d’iso-endommagement possède une symétrie de façon que la surface a des valeurs identiques en six 

point de la surface définis par 1L   .  

 
Figure 4.7: Effet de (Sten-Ssh) sur la surface d’iso-endommagement exprimée dans le plan déviateur des 

déformations. 

L’effet de la triaxialité sur la définition de la surface d’iso-endommagement dans le cas (Sten= Ssh=0.5)  est 

montré sur la Figure 4.8a. Dans ce cas la forme circulaire est obtenue donnant la même déformation 

plastique à rupture quel que soit l’angle de Lode dû à  l’état des contraintes. L’augmentation de la triaxialité 

des contraintes induit une réduction de la taille de la surface, ce qui conduit à une augmentation de la 

déformation viscoplastique à rupture pour des valeurs négatives de la triaxialité des contraintes.  

Lorsque l’effet de l’angle de Lode est considéré avec Sten=0.5> Ssh=0.1, la forme en étoile à six branches de 

la surface d’iso-endommagement gonfle homothétiquement en décroissant la triaxialité des contraintes 

comme montré dans la Figure 4.8b.  
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(a) Sten= Ssh=0.5                                                     (b) Sten=0.5,  Ssh=0.1  

Figure 4.8: Effet de la triaxialité de contraintes sur la surface d’iso-endommagement tracée dans le plan 

déviateur des déformations pour d=0.9 et hc=0.2. 

Chapitre 5: Identification des paramètres matériaux et application à la mise 

en forme e à haute température. 

5.1 Identification des paramètres matériaux 

5.1.1 Détermination des paramètres d’anisotropie et d’écrouissage 

Des essais de traction et de compression ont été réalisés sur un alliage de Magnésium AZ31 au sein de 

l’université de waterloo [Tari13, Tari14, Tari15] à différentes températures  variant entre 23 et 250°C,  et 

différentes vitesses de déformation variant entre 0.001 et 1.0 s-1). En se basant sur ces essais, les meilleurs 

valeurs des paramètres d’anisotropie et d’écrouissage  identifiées sont données dans les Tables 5.1 et 5.2. 

Table 5.1 Paramètres d’anisotropies identifiées pour différentes températures de l’AZ31 

L=M=L’=M’=1.5 
T (°C) H G F N H’ G’ F’ N’ 

RT 1.205501 0.496391 0.418510 3.441221 2.608850 0.155251 0.160252 3.499081 
150 0.477407 0.773161 0.621849 1.652781 1.332151 0.193945 0.175041 1.460198 
200 0.474259 0.555571 0.467317 1.463941 0.427075 0.230738 0.326213 0.608006 
250 0.480181 0.557180 0.444049 1.483791 0.390420 0.232581 0.373659 0.437981 

Table 5.2  Paramètres d’écrouissage identifiés à différentes températures  de l’AZ31 

T (°C) E(GPa) 
y (MPa)  Kvp m Q C b1 b2 b3 a1 a2 a3 

1  2   ps 

RT 43.05 161.6 5 3 800 3500 3.0 30 2.5 35 200 32 10 100 0.035 
150 33.68 112.6 15 3 580 1950 3.0 20 1.2 35 90 25 10 50 0.011 
200 30.50 73.49 24 3 300 1150 3.0 10 1.0 35 40 23 10 30 0.0 
250 27.40 58.39 25 3 200 800 3.0 5.0 0.9 35 10 22 10 10 0.0 

La comparaison des surfaces initiales de plasticité prédites par le modèle les points expérimentaux de 
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l’alliage AZ31B à différentes température est réalisée dans la Figure 5.1. Cette figure montre clairement que 

l’effet de l’asymétrie est important à température ambiante et le modèle arrive à le prédire correctement. Il 

est à noter également que plus la température augmente plus l’effet de l’asymétrie est estampé et cette 

variation est correctement prédite par le modèle proposé. 

   

Figure 5.1 Comparaison des surfaces initiales de viscoplasticité prédites par le modèle et les mesures 

expérimentales  de l’alliage AZ31B à différentes températures. 

 

Figure 5.2: Comparaison des courbes issues du modèle et obtenues expérimentalement en termes de 

contrainte en fonction de la  déformation viscoplastique équivalente –de l’alliage AZ31B la longue 

direction de laminage à différentes températures et à vitesse de déformation 0.001s-1. 

Dans la Figure 5.2 sont comparées des courbes en termes de contrainte en fonction de la déformation  

viscoplastique équivalente entre prédiction du modèle et résultats expérimentaux de l’alliage AZ31B à 

différentes températures et vitesse de déformation constante 0.001s-1. Cette figure montre que pour des 

déformations faibles la prédiction du modèle surestime le résultat expérimental. Ceci est due essentiellement 

à la forme de la contrainte visqueuse utilisée dans le modèle qui est constante pour une vitesse de chargement 

donnée quel que soit le niveau de la déformation plastique. Notons également que l’asymétrie de 
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l’écrouissage est prédominante à température ambiante et il est bien prédit par le modèle. Cet effet régresse 

significativement lorsque la température croît. A haute température les résultats prédits par le modèle sont 

en accord avec les résultats expérimentaux en traction et en compression. 

5.2.2 Identification des paramètres d’endommagement 

Des essais de traction entaillés et de cisaillement menés jusqu’à rupture et à différentes températures  ont 

été réalisés sur l’alliage de Magnésium en collaboration avec l’Université Shandong. Ces essais utilisent des 

géométries originales des éprouvettes.  En utilisant une méthode inverse d’identification, les paramètres 

d’endommagement donnés dans la Table 5.3 ont été obtenus.  

Table 5.3 Paramètres d’endommagements identifiés pour l’alliage AZ31B à différentes températures. 

T(°C) Ssh Sten ξs s γ β Y0(MPa) h 
RT 1.6 3.0 1.0 2.0 4.0 1.0 0.0 0.2 
150 3.0 5.7 1.0 1.0 4.0 1.0 0.0 0.2 
200 5.0 8.9 1.0 1.0 4.0 1.0 0.0 0.2 
250 8.0 12.5 1.0 1.0 4.0 1.0 0.0 0.2 

 
Figure 5.3: Comparaison des résultats du modèle et expérimentaux : (a) Traction entaillé avec rayon 

d’entaille  4mm; (b) Cisaillement. 

Les réponses en termes  de courbes force-déplacement à différentes températures obtenues par le modèle 

sont comparées aux résultats expérimentaux dans la Figure 5.3. Les résultats prédits par le modèle 

concordent correctement avec les résultats expérimentaux aussi bien pour les essais de traction entaillés que 

pour les essais de cisaillement. Une différence notable entre expériences et calculs est tout de même 

observée à la température 250°C pour des déplacements importants qui est due à un problème de striction. 

L’accroissement de la température induit un retardement de la rupture du à l’endommagement ductile. 

L’amorçage de l’endommagement pour les essais de traction entaillés et de cisaillement sont prédits 

correctement par le modèle   

5.2 Applications à des procédés de mise en forme 
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5.2.2 Emboutissage d’un godet cylindrique (CCD) 

La simulation de l’emboutissage d’un godet cylindrique d’une tôle en alliage de Magnésium AZ31B est 

réalisée sur le code de calcul par E.F. ABAQUS/Explicit en utilisant notre modèle de comportement avec 

endommagement.  L’objectif est de montrer la capacité du modèle proposé à décrire le comportement de la 

tôle pour ce procédé de mise en forme à haute température. La Figure 5.4 montre  les différents outils qui 

sont utilisés pour la simulation de ce procédé [Tari 13]. 

 

Figure 5.4: Schématisation du procédé d’emboutissage d’un godet cylindrique. 

Les conditions de chargement du procédé sont définies par une force serre-flan de 80.0 kN et une vitesse de 

déplacement du poinçon de 4.0 mm/s. Le coefficient de frottement est fixé à 0.05 pour toutes les surfaces 

en contact. Dans la Figure 5.5 sont comparées les courbes force-déplacements issues de la simulation et de 

l’expérience. Nous pouvons constater que la courbe numérique surestime légèrement l‘effort maximal 

d’emboutissage et par conséquent la rupture intervient légèrement en avance par rapport aux résultats 

expérimentaux. 

 
Figure 5.5: Comparaison entre simulation et expérience en termes de courbe force –déplacement pour 

l’essai d’emboutissage du godet cylindrique.  

Les distributions des champs de contrainte de von Mises, d’endommagement et de déformation plastique 
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cumulée pour l’essai d’emboutissage du godet cylindrique pour différents déplacement de poinçon sont 

donnés dans la Figure 5.6. Pour le déplacement U=25mm, l’endommagement est relativement faible mais 

débute la localisation au niveau congé du poinçon. Plus le déplacement croît plus la valeur de 

l’endommagent croît tout en restant au même endroit. La rupture s’amorce à ce même endroit de l’embouti 

qui est en bon accord avec la fissure réelle. 

Contrainte de von Mises Endommagement Deformation plastique cumulée

U=25.0 mm 

U=40.0 mm 

U=48.0 mm 

 

Rupture finale 

Figure 5.6: Distribution des champs de contrainte de von Mises, d’endommagement et de déformation 

viscoplastique cumulée pour différents déplacement du poinçon pour l’essai d’emboutissage du godet 

cylindrique. 

5.2.2 Essai d’emboutissage en croix  
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Pour montrer la capacité prédictive du modèle dans la description du comportement des tôles en 

emboutissage de formes complexes à haute température, le modèle  développé  a été utilisé pour simuler  

l’essai d’emboutissage en croix schématisé dans la Figure 5.7. Le modèle complet a été utilisé en simulation 

et aucune symétrie n’a été considérée. Dés éléments solides thermomécaniques de type C3D8RT ont été 

utilisés dans la simulation. Une taille d’élément minimale de l’ordre de 0.35 mm a été définie dans la zone 

utile de l’embouti. La vitesse du poinçon  a été fixée à 1.5 mm/s et l’effort serre-flan  a été fixé à 1.5 kN. 

Une température initiale homogène a été imposée à la tôle. Les conditions de frottement sont considérées 

variables en fonction de la température.  

 
(a) Géométrie                                                                 (b) Maillage du flan 

Figure 5.7: Modèle numérique de l’essai d’emboutissage en croix. 

 
Figure 5.8: Courbes force –déplacement de l’essai d’emboutissage en croix à différentes températures. 

Les courbes en termes de force-déplacement obtenues pour l’essai d’emboutissage en croix sur l’alliage 

AZ31B  à différentes températures sont données dans la Figures 5.8.  Cette figure montre que le niveau 

d’effort décroit considérablement avec l’élévation de la température. A température ambiante, la rupture 

finale de l’embouti intervient avec un faible déplacement du poinçon autour de 5.1 mm (faible profondeur 

de l’embouti) qui caractérise une faible formabilité du matériau à cette température. Ce déplacement à 

rupture croît en fonction de la température ce qui indique que la formabilité est améliorée par l’élévation de 

la température. 
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Contrainte de von Mises Endommagement Déformation viscoplastique 
cumulée 

(a) température ambiante (Déplacement U=2.5 mm) 

(b) T=150 °C (Déplacement U=2.5 mm) 

(c) T=200 °C (Déplacement U=2.5 mm) 

Figure 5.9: Distribution des champs de contrainte de von Mises, d’endommagement et de déformation 

plastique cumulée pour différents température du poinçon pour l’essai d’emboutissage en croix 

(déplacement U=2.5mm). 

Contrainte de von Mises Endommagement Déformation viscoplastique 
cumulée 

(a) température ambiante (Déplacement U=5.1 mm) 

(b) T=150 °C (Déplacement U=5.1 mm) 
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(c) T=200 °C (Déplacement U=5.1 mm) 

Figure 5.10: Distribution des champs de contrainte de von Mises, d’endommagement et de déformation 

plastique cumulée pour différents température du poinçon pour l’essai d’emboutissage en croix 

(déplacement U=5.1mm). 

Contrainte de von Mises Endommagement Déformation viscoplastique 
cumulée 

 (a) T=150 °C (Déplacement U=7.15 mm) 

(b) T=200 °C (Déplacement U=7.15 mm) 

(c) T=200 °C (Déplacement U=8.72 mm) 

Figure 5.11: Distribution des champs de contrainte de von Mises, d’endommagement et de déformation 

plastique cumulée du poinçon pour l’essai d’emboutissage en croix. 

La distribution des champs de contrainte de von Mises, d’endommagement et de déformation plastique 

équivalente pour différents température du poinçon  et deux températures initiales du flan sont montrés dans 

les Figures 5.9, 5.10 et 5.11. A la température ambiante l’amorçage de la fissure prend place au niveau des 

congés de la grande et la petite branche du poinçon avec un gradient très important et pour un déplacement 
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du poinçon aux alentours de 5.1 mm. La fissure ensuite se propage horizontalement le long du congé du 

poinçon. Nous pouvons observer un scénario similaire d’initiation et de propagation de fissures pour les cas 

où les températures sont différentes. Cependant, l’initiation et la propagation de la fissure sont retardées par 

l’augmentation de la température. Le déplacement du poinçon est d’autant plus grand que la température 

augmente. La formabilité est très améliorée et l’amorçage des fissures est être retardé avec l'augmentation 

de la température. Pour le cas où aucune fissure n'apparaît, une température élevée conduit à une valeur de 

dommage faible pour les mêmes déplacements comme représenté sur la Figure 5.9, Figure 5.10(b) and 

Figure 5.10(c). 

Conclusions et  perspectives 

L’objectif de ce travail a été de développer un modèle de comportement thermo-elasto-viscoplastique couplé 

à l’endommagement ductile et thermodynamiquement admissible permettant décrire fidèlement   le 

comportement  des tôles mince fortement anisotrope à différentes température. Plusieurs aspects ont été pris 

en compte pour enrichir la fidélité du modèle au comportement réel. Parmi ces aspects  on cite : les 

anisotropies initiale et induite, l’asymétrie  de la limite initiale de plasticité et d’écrouissage, le couplage 

fort avec l’endommagement ductile et la variation de la ductilité vis-à-vis de la triaxialité et de l’angle de 

Lode.  

Cependant, des améliorations sont nécessaires pour augmenter le pouvoir prédictif du modèle développé : 

tels que la définition d’une théorie multi-surfaces pour capturer correctement le comportement en 

chargement-déchargement des alliages combinant déformations irréversibles et maclage tels que les alliages 

de Magnésium, Le modèle peut être également étendu dans le cade de la théorie de l’endommagement 

continu au cas de l’anisotropie de l’endommagement [Nguen12, Rajhi14, Badreddine15]. 

Pour améliorer les résultats de la simulation numérique, mieux décrire le trajet de fissure et en même temps 

réduire les temps de calcul CPU, le modèle peut être utilisé avec une méthodologie de remaillage adaptatif. 

Enfin pour réduire la dépendance  des résultats à la taille de maille, une extension du modèle à une 

formulation non locale dans le cadre d’une théorie micromorphique peut être envisagée [Saanouni12, 

Diamantopoulou17, Liu17].  
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