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RÉSUMÉ EN FRANÇAIS

Dans notre société, les ordinateurs sont des outils de communication essentiels et sont
devenus, au fil des années, fondamentaux dans de nombreux domaines, aussi bien dans
la vie quotidienne que dans l’industrie, la finance, les transports, etc. Pourtant, comme
ces systèmes sont développés par des humains, ils sont sujets à des erreurs de conception,
généralement appelées bugs. Selon le contexte, un bug peut être considéré comme une
gêne mineure ou comme un problème majeur. En effet, lorsque des vies humaines, des
infrastructures coûteuses ou des données privées sont en danger, les bugs peuvent avoir
des conséquences dramatiques, que nous illustrons par quelques exemples. En 1996, un
bug dans le logiciel du lanceur de la fusée Ariane 5 a produit un débordement d’entier
dans le système informatique, qui a finalement conduit à la destruction de la fusée [Ben01].
En 2014, un rapport a mis en évidence des erreurs de programmation dans les voitures
Toyota, qui sont soupçonnées d’être responsables de dizaines de décès [Koo14]. En 2002,
un autre rapport s’est intéressé au coût global des bugs logiciels dans l’industrie. Ils ont
été estimés à près de 60 milliards de dollars par an pour l’économie américaine [Pla02].
Enfin, les bugs peuvent également entraîner des menaces pour la sécurité, en rendant
les programmes vulnérables à des attaques. Récemment, la pandémie de COVID-19 a
provoqué une augmentation sans précédent des cyber-attaques, ciblant à la fois les citoyens
travaillant à domicile et les infrastructures nationales de soins de santé [Aya16].

Comme les conséquences des erreurs dans les logiciels critiques peuvent être drama-
tiques, cela motive l’utilisation des méthodes formelles. Les méthodes formelles consistent
en un ensemble de techniques mathématiques, dont la sémantique formelle, permettant de
raisonner rigoureusement sur l’exécution d’un programme dans un langage donné. Le but
de ces méthodes est d’obtenir des garanties formelles sur un programme, en particulier
qu’il soit sûr, c’est-à-dire que son exécution ne donne jamais lieu à un bug.

Afin de raisonner sur un programme, on utilise la sémantique formelle pour définir
précisément le comportement d’un programme. Pour la plupart des langages de program-
mation, la sémantique du langage est définie en utilisant le langage naturel, qui peut
parfois être ambigu. Au contraire, une sémantique formelle est un objet mathématique
qui décrit rigoureusement l’exécution d’un programme, et ne laisse donc aucune place à
ces ambiguités.

Les méthodes formelles sont généralement appliquées au niveau du langage source,
c’est-à-dire sur un programme lisible par l’homme, écrit dans un langage tel que le C. Or,
l’objectif de ces méthodes est d’obtenir des garanties sur le programme réellement exécuté,
c’est-à-dire le code machine produit après sa compilation. Deux options apparaissent
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dans cette situation. Premièrement, nous pouvons effectuer des analyses statiques sur le
programme compilé. Cependant, comme de nombreuses abstractions (les fonctions, les
instructions de contrôle de flux comme les boucles, les types, etc.) sont perdues après la
compilation, le raisonnement sur le code machine est beaucoup plus difficile que sur un
programme source.

L’autre possibilité consiste à établir des propriétés sur un programme au niveau source,
puis à s’appuyer sur la compilation formellement vérifiée pour s’assurer que les garanties
sont préservées par la compilation. Nous nous concentrons sur cette deuxième option dans
cette thèse.

Compilation formellement vérifiée. Le but d’un compilateur est de transformer
un programme écrit dans un langage source S en un langage cible T . Par exemple, un
compilateur C typique traduit un programme C en code assembleur. Les compilateurs
sont aussi généralement des programmes volumineux et complexes, qui mettent en œuvre
plusieurs traductions et optimisations. Comme tout autre programme, ils sont sujets à
des bugs, menant à la production d’un code incorrect par le compilateur.

Même les compilateurs populaires et largement testés, tels que LLVM ou GCC, ne peu-
vent être considérés comme exempts de bugs. Par exemple, en 2011, une étude empirique
a mis en évidence plusieurs bugs dans ces compilateurs [Yan+11]. Ces bugs incluent soit
la production d’un code incorrect, soit un crash du compilateur lors de la compilation
d’un code source valide. Ces bugs peuvent être considérés comme négligeables par rap-
port aux bugs potentiels présents dans le programme source. Cependant, la possibilité
que des bugs soient introduits pendant la compilation ne peut être ignorée dans le cas de
logiciels critiques, pour lesquels la sûreté est essentielle.

En outre, de nombreux outils d’analyse statique existent pour raisonner sur les pro-
priétés de sûreté indécidables d’un programme. Par exemple, l’absence d’erreur d’exécution
(pas d’accès hors limites, pas de division par zéro, etc.) peut être établie pour un logiciel
en utilisant ces outils. Cependant, comme la plupart de ces outils ne raisonnent typique-
ment que sur le code source, il n’y a aucune assurance que ces garanties soient préservées
par le compilateur.

L’objectif de la compilation formellement vérifiée est de résoudre ce problème. Un
compilateur formellement vérifié est un compilateur qui est accompagné d’une preuve de
correction. Intuitivement, la correction du compilateur indique que le programme compilé
a le même comportement que le programme source, en ce qui concerne la sémantique
formelle des langages source et cible. Par conséquent, toute propriété de sûreté énoncée
sur le programme source est garantie d’être préservée sur le code cible produit par le
compilateur.

Dans la littérature, plusieurs projets ont abordé avec succès le problème de la compila-
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tion formellement vérifiée. Ces projets incluent CakeML [Kum+14], qui compile depuis un
sous-ensemble de ML vers du code assembleur, Vellvm [Zha+12], un outil permettant de
raisonner formellement sur la représentation intermédiaire et les optimisations de LLVM,
ou encorele compilateur CompCert [Ler09; Ler+12]. Dans cette thèse, certaines de nos
contributions reposent sur le compilateur CompCert.

Un fossé entre la sûreté et la sécurité. Nous avons discuté du besoin de sûreté
dans le cas de logiciels critiques, où les bugs peuvent avoir des conséquences dévastatri-
ces. Cependant, dans certains cas, la sûreté n’est pas suffisante. Même un code correct
et sûr peut être exploité par des attaquants malveillants, généralement pour apprendre
des informations censées rester secrètes. Le domaine de la cryptographie est particulière-
ment vulnérable aux failles de sécurité car le code cryptographique manipule des données
sensibles telles que des clés privées, et ces données doivent rester secrètes à tout prix.

Cependant, l’impact du compilateur sur la sécurité d’un programme est une question
pertinente. En effet, même si on qu’un programme source est sécurisé, la compilation
peut produire code non sécurisé. On dit dans ce cas que la compilation ne préserve pas
la sécurité du programme. Ce problème vient du fait que les menaces de sécurité peuvent
provenir d’éléments qui ne sont pas capturés par la sémantique formelle du langage source
considéré par le compilateur, et ne peuvent donc pas être spécifiés comme une propriété de
sûreté. Contrairement au problème de la préservation de la sûreté, qui est une conséquence
directe de la correction d’un compilateur, la préservation de la sécurité ne peut pas être
directement déduite. Cet écart, qui est appelé l’écart correction-sécurité, est largement
discuté dans [DPS15].

Le domaine de la compilation sécurisée vise à étudier les compilateurs préservant les
politiques de sécurité. Avec un tel outil, il est possible d’utiliser l’analyse statique pour
établir une propriété de sécurité au niveau d’un programme source, puis de se fier au
compilateur préservant la sécurité pour préserver la politique de sécurité tout au long de
la compilation. Dans cette thèse, nous nous concentrons sur l’étude de la préservation des
contre-mesures contre les attaques dites par canaux cachés temporels.

Attaques par canaux cachés temporels. Les attaques par canaux cachés sont une
classe de menaces de sécurité, résultant du fait qu’un logiciel est exécuté sur un ordina-
teur, qui interagit nécessairement avec son environ nement physique. L’observation de ces
interactions peut permettre de découvrir des informations sensibles censées rester secrètes.
Ces interactions se présentent sous de nombreuses formes, mais les plus courantes sont
la puissance consommée pendant l’exécution d’un programme, le temps d’exécution d’un
programme, l’émanation sonore ou électromagnétique produite lors d’une exécution, etc.

Le domaine de la cryptographie est particulièrement vulnérable aux attaques par
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canaux cachés temporels, c’est-à-dire les attaques exploitant le temps d’exécution d’un
programme. De nombreux exemples d’attaques temporelles réelles montrent comment
de très petites variations du temps d’exécution peuvent être utilisées pour récupérer par-
tiellement des clés secrètes de primitives cryptographiques. Ces attaques sont relativement
simples à réaliser, et peuvent également être exécutées à distance, sur un réseau, tant que
les variations sont assez importantes pour être remarquées [Ber05].

Les variations du temps d’exécution peuvent provenir de différents types de con-
structions de programmes. Toute branche (instructions if, boucles, etc.) est susceptible
d’introduire une variation temporelle qui dépend des conditions testées. De même, tout
accès à la mémoire est susceptible d’introduire une variation temporelle, en raison des mé-
canismes de cache existant sur la plupart des architectures informatiques modernes [Ber05;
YGH17].

Afin de contrer les attaques par canaux cachés temporels, les experts en cryptographie
ont développé une politique de sécurité populaire, appelée cryptographic constant-time,
ou plus simplement constant-time. Il s’agit d’une discipline de programmation qui im-
pose de fortes restrictions sur le code des primitives cryptographiques. Notons que le nom
de cette politique peut être trompeur, car cette politique ne considère aucune notion de
temps d’exécution réel. Au lieu de cela, la politique stipule que le flux de contrôle du
programme, et la liste des d’accès à la mémoire effectués pendant une exécution doivent
être indépendants des données secrètes manipulées par le programme. En termes plus
simples, si nous considérons une variable secrète appelée secret, tout programme con-
tenant un branchement conditionnel dépendant de cette variable (if (secret)), ou un
accès mémoire dépendant de cette variable (array[secret]) serait rejeté par la politique
constant-time. La politique constant-time a été utilisée avec succès pour implémenter
de nombreuses bibliothèques cryptographiques populaires, telles que Curve25519 [Ber06;
Lan15], TEA [WN94], NaCl [BLS12], mbedTLS [ARM16], ou OpenSSL [Ope19].

Une autre politique également utilisée dans des implémentations cryptographiques est
la politique constant-resource [Wu+18; Aga00; Ngo+17]. Cette politique est plus relachée
que la politique constant-time, car elle impose moins de contraintes sur les programmes
pour qu’ils soient considérés comme sécurisés. On considère ici un modèle de consomma-
tion de ressources pendant une exécution, qui peut modéliser le temps d’exécution par
exemple. Un programme sécurisé peut contenir des branchements dépendants de variables
secrètes, tant que les deux branches sont équilibrées vis-à-vis du modèle de consommation
de ressources.

Contenu de la thèse. Dans cette thèse, nous présentons principalement les deux con-
tibutions suivantes.

Dans un premier temps, nous nous intéressons à la politique constant-time, et à sa
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préservation lors de la compilation au sein du compilateur CompCert. Nos travaux se
concentrent uniquement sur les modifications que nous avons apportées à ce compilateur
afin qu’il préserve cette politique de sécurité.

Dans un second temps, nous nous intéressons à la politique constant-resource. Au
meilleur de nos connaissances, aucuns travaux n’avaient eu pour but de s’intéresser à
la préservation de cette politique lors d’une transformation de programme. C’est le défi
que nous relevons dans cette thèse. Plus précisement, nous proposons une politique plus
flexible et des techniques de preuves permettant de démontrer la préservation de cette
politique lors d’une transformation de programme. Enfin, nous appliquons ces méthodes
sur des optimisations de programmes classiques.

Tous les résultats présentés dans cette thèse sont prouvés avec l’aide de l’assistant de
preuve Coq.
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Chapter 1

INTRODUCTION

In our society, computers are essential communication tools and have become funda-
mental over the years in many different fields, including daily life as well as industry,
banking, transportation, etc. Yet, as these systems are developed by humans, they are
prone to errors in their conception, usually referred to as bugs. Depending on the context,
a bug may be considered as a minor annoyance or as a major issue. Indeed, when humans
lives, costly infrastructures or private data are at risk, bugs may have dramatic conse-
quences, that we illustrate with a few examples. In 1996, a bug in the software of the Ariane
5 rocket launcher produced an integer overflow in the computer system, which ultimately
led to the destruction of the rocket [Ben01]. In 2014, a report highlighted programming
errors in Toyota cars, that are suspected to be responsible for tens of deaths [Koo14]. In
2002, another report focused on the overall cost of software bugs in the industry. They
were estimated to cost almost 60 billions dollars per year to the U.S. economy [Pla02].
Last, bugs may also lead to security threats, by allowing an attacker to perform attacks
exploiting vulnerabilities in a program. Recently, the COVID-19 pandemic has created
an unprecedented raise in cyber-attacks, targeting both working at home citizens and
national healthcare infrastructures [Aya16].

As the aftermath of errors in critical software can be dramatic, the motivation to
use formal methods rises. Formal methods consist of a set of mathematical techniques,
including formal semantics, allowing to rigorously reason on the execution of a program in
a given language. The goal of these methods is to obtain formal guarantees on a program,
such as ensuring that a program is safe, i.e., that its execution never results in a bug.

In order to reason on a program, formal semantics are used to precisely define the
behavior of a program. For most real-life programming languages, the semantics of the
language is defined using natural language, which may sometimes be ambiguous. Instead,
a formal semantics is a mathematical object that rigorously describes the execution of a
program.

Formal methods can be enforced by formal verification, which is the action of mechan-
ically proving a property of a software, with respect to a specification. Proof assistants,
such as Coq [19], Isabelle/HOL [NPW02] or ACL2 [KMM13], are tools that can check
the validity of a mathematical reasoning. Using a proof assistant to verify a proof gives a
high level of confidence, as only the correctness of the proof assistant needs to be trusted.
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Formal methods also include the use of static analyzers, which are tools whose goal is
to verify whether or not a given property is satisfied by a program, for any set of input.
In the general case, this is an undecidable problem, according to Rice’s theorem [Ric53].
Several static analyzers have been successfully developed and even used in industrial
contexts. We highlight here some examples. Astrée [DS07] is a static analyzer, whose goal
is to show the absence of run-time errors in C programs. It has been used to this end on
several instances of Airbus embedded software. Verasco [Jou+15] is another instance of
static analyzer aiming at proving the absence of run-time error in a program. Its most
distinguishing trait is the fact that it is implemented and proved using the Coq proof
assistant.

These methods are typically applied at a source-level language, i.e., on a human-
readable program, written in a language such as C. Yet, the goal of these methods is
to obtain guarantees on the program actually being executed, i.e., the machine code
produced after its compilation. Two options appear in this situation. First, we can perform
static analyses on the compiled program. However, as many abstractions (e.g., functions,
control flow constructs such as loops, types, etc) are lost after the compilation, reasoning
on machine code is much harder than on a source program.

The other possibility consists in establishing properties on a program at source level,
and then relying on formally verified compilation to ensure that the guarantees are pre-
served by the compilation. We focus on this second option in this thesis.

Formally Verified Compilation. The goal of a compiler is to transform a program
written in a source language S into a target language T . As an example, a typical C
compiler translates a C program into assembly code. Compilers are also usually large and
complex programs, implementing several translations and optimizations. As any other
programs, they are prone to bugs, leading to a compiler producing incorrect code.

Even popular and extensively tested compilers, such as LLVM or GCC, cannot be
considered as bug free. For example, in 2011, an empirical study highlighted several bugs
in these compilers [Yan+11]. These bugs include either the production of incorrect code or
a crash of the compiler while compiling a valid source code. These bugs may be considered
as negligible when compared to potential bugs present in the source program. However,
the possibility of bugs being introduced during the compilation cannot be ignored in the
case of critical software, for which the safety is essential.

In addition, many static analysis tools exists to reason on undecidable safety properties
of a program. For example, the absence of run-time error (no out-of-bound access, no
division by zero, etc) may be established for a software by using these tools. However, as
most of these tools typically reason on source code only, there is no insurance that these
guarantees are preserved by the compiler.
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The goal of formally verified compilation is to solve this issue. A formally verified
compiler is a compiler that comes with a proof of correctness. Intuitively, the correctness
of the compiler states that the compiled program has the same behavior as the source
program, with respect to the formal semantics of the source and target languages. There-
fore, any safety property stated on the source program is guaranteed to be preserved on
the target code produced by the compiler.

In the literature, several projects have successfully tackled the problem of formally ver-
ified compilation. These projects include CakeML [Kum+14], compiling a subset of ML
to assembly, Vellvm [Zha+12], a framework allowing to formally reason on LLVM’s in-
termediate representation and optimizations, or the CompCert compiler [Ler09; Ler+12].
In this thesis, some of our contributions rely on the CompCert compiler, that we detail
further.

The CompCert Compiler. The CompCert compiler is moderately optimizing com-
piler, developed for critical embedded software, compiling source programs written in
(a large subset of) C language, down to assembly code. Supported target architectures
include x86, ARM, PowerPC and RISC-V.

The CompCert compiler has been mechanically verified using the Coq proof assis-
tant [19]. A correctness theorem has been proved, that captures the idea that if the
compilation is successful, then the source program and its compiled counterpart have the
same behavior for any set of input. It is stated as follows:

Theorem 1: CompCert’s semantic preservation [Ler+12].
For all source programs S and compiler-generated code C, if the compiler, applied to
the source S, produces the code C, without reporting a compile-time error, then the
observable behavior of C is one of the possible observable behaviors of S.

In the theorem above, an observable behavior is a product of the execution of the
program, and is defined through the formal semantics of the language considered. A direct
corollary of Theorem 1 shows that any safety property verified by the source program is
verified by the produced program as well. It is stated as follows:

Theorem 2: CompCert’s safety property preservation [Ler+12].
Let Σ be a set of acceptable behaviors, characterizing a desired safety or liveness
property of the program. Assume that a source program S satisfies Σ: all possible
observable behaviors of S are in Σ. Further assume that the compiler, applied to the
source S, produces the code C. Then, the compiled code C satisfies Σ: the observable
behavior of C is in Σ.
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The underlying idea of this theorem is that for any specification, given by a user, such
as the absence of errors during the execution of a program, is guaranteed to be preserved
during the compilation. In other words, if the source program is proved to be safe, then
the CompCert compiler carries over this property to the compiled program.

In chapter 3, we will present our first contribution, which is based on the CompCert
compiler. This chapter contains a more detailed background on the implementation part
of CompCert. Namely, we will detail implementation choices, such as the intermediate
representations and passes of the compiler.

A Gap between Safety and Security. We discussed the need for safety in the case of
critical software, where bugs may have devastating consequences. However, in some cases,
safety is not sufficient. Even correct and safe code may be exploited by malicious attackers,
typically to learn information supposed to remain secret. The field of cryptography is
particularly vulnerable to security breaches, as cryptographic code manipulates sensitive
data such as private keys, and this data must remain secret.

However, the impact of compiler on the security of a program is a relevant question.
Indeed, a source program may be proved to be secure with respect to a given attacker,
yet, the compilation may not preserve the security, and produce unsecure code. This
problem comes from the fact that security threats may arise from elements that are not
captured by the formal semantics of the source language considered by the compiler, and
thus can not be specified as a safety property. Unlike the problem of safety-preservation
(Theorem 2), which is a direct consequence of the correctness of a formally-verified
compiler (Theorem 1), the preservation of security can not directly be deduced. This
gap, called the correctness-security gap, is largely discussed in [DPS15], and we now
illustrate it with an example.

We give an example of non-preservation of security through compilation. We consider
an attacker trying to deduce secret information by measuring the execution-time of a
program. This is a case timing side-channel attack [Ber05], where the execution-time
reveals information on secret values. Intuitively, the notion of security we focus on can
be expressed as: “execution-time must be independent of secret data.” Respecting this
property ensures that any measurement of the execution-time of a program does not
allow to deduce any sensitive information. However, as execution-time is typically not
specified in the semantics of a language, such property is not guaranteed to be preserved,
even by a formally-verified compiler.

For example, consider the following code snippet in Figure 1.1, where we consider
a secret value n, bounded between 0 and 32, that an attacker tries to discover. We also
consider a function update, and for the sake of simplicity, we assume this function to have
a constant execution-time that we call t. We last consider the function dummyUpdate, a
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repeat(n) { update(); }
repeat(32 - n) { dummyUpdate(); }

Figure 1.1 – Example of program with secret-dependent loop and padding.

function specifically designed to have the same constant execution-time t as update, while
doing nothing.

The underlying idea of this program is that useless code (i.e., the second line of the
example) has been introduced in order to keep the global execution-time constant (here,
equal to 32 × t). Introducing such useless code is called padding. The general idea is to
improve the security by introducing padding, which aims at balancing the branches of the
program, so that every path of execution performs computations with similar execution-
time. Note that this is a simplified example, and that reasoning on actual execution
time is almost impossible. Indeed, especially on modern architectures, behaviors such
as pipelining or branch-prediction make modeling the execution-time of a program a
very complex task. Such architectural considerations are out of the scope of this thesis.
However, the introduction of such padding can be seen as a first step towards a more
secure program, and is used in real-life cryptographic implementations [Ath+18].

Yet, some issues may appear when compiling this program. An optimizing compiler
would be likely to detect the second line of the program (i.e., the second loop containing
padding) as dead-code, and thus be likely to simply remove it. Indeed, this code has
no impact on the observable behavior of the program. Removing this assignment would
increase the performance of the program, while preserving its semantics, which is what
an optimizing compiler is designed to do. However, the security of the program is not
preserved by this optimization. Indeed, the execution-time of the optimized program would
be n× t, and thus this new program violates the security property, as the execution-time
depends on the secret value n. A timing side-channel attack would then be easier to
perform.

The simple example above motivates the need for secure compilation. Secure compi-
lation is an emerging field, that aims at reducing the correctness-security gap. Its goal
is to study compilers that take security models into account, and design compilers that
either enforce or preserve security properties. In this thesis, we focus on the study of
the preservation of countermeasures against timing side-channel attacks. When combined
with static analysis tools able to verify that a source program is secure with respect to tim-
ing side-channel attacks [BPT19], such compilers then allow to ensure that this security
property is propagated down to the compiled program.
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if (secret) {
/* ... */

} else {
/* ... */

}

(a) Secret dependent branch

array[secret] = /* ... */

(b) Secret dependent memory access

Figure 1.2 – Two examples of non constant-time programs

Timing Side-channel Attacks. Side-channel attacks [Koc96] is a class of security
threats, arising from the fact that software is executed on a computer, that necessar-
ily interacts with the physical world. Observing these interactions may allow to discover
sensitive information supposed to remain secret. Such interactions come in many forms,
but the most common ones include the power consumed during the execution of a pro-
gram [KJJ99; Koc+11], the execution-time of a program [Koc96], sound or even electro-
magnetic emanation produced during an execution, etc.

The field of cryptography is particularly vulnerable to this kind of attacks. Many
examples of real-life timing attacks show how very small variations of execution-time can
be used to partially recover secret keys from cryptographic primitives. These attacks are
relatively simple to perform, and may also be performed remotely, over a network, as long
as variations are big enough to be noticed [Koc96].

Variations in execution-time may arise from different kinds of program constructs.
As we saw earlier, any branch (if statements, loops, ...) is likely to introduce a timing
variation depending on the value of the condition. Similarly, any memory access is likely
to introduce a timing variation, because of cache mechanisms existing on most computer
architectures [Ber05; YGH17].

In order to counter timing side-channel attacks, experts in cryptography have devel-
oped a popular security policy, called cryptographic constant-time, or simply constant-
time [Alm+16]. This is a programming discipline that imposes strong restrictions on the
implementation of cryptographic primitives. Note that the name of this policy may be
misleading, as this policy do not consider any notion of actual execution-time. Instead,
the policy states that the control flow of the program, and the list of memory accesses
performed during an execution must be independent from the secret data manipulated by
the program. In simpler terms, if we consider a secret variable called secret, any program
containing one of the code snippet of Figure 1.2 would not be considered to be constant-
time. The constant-time policy has been successfully used to implement many popular
cryptographic libraries, such as Curve25519 [Ber06; Lan15], TEA [WN94], NaCl [BLS12],
mbedTLS [ARM16], or OpenSSL [Ope19]. In this thesis, our first contribution focuses on
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the preservation of the constant-time policy by the CompCert compiler.
Spectre attacks [Koc+19] are a recent kind of side-channel attacks. They exploit the

speculative execution performed by modern processors, that can speculate on the result
of the calculation. For example, if a branching depends on the result of a memory read
being performed, the processor may speculate on the value and proceed the execution in
the speculated branch. If the speculation was correct, the execution continues normally,
otherwise, the speculative execution is discarded and proceeds in the other branch. Such
discarded executions are invisible from an architectural point of view (e.g., content of
registers), however, they can leave a trace in the microarchitectural state, typically in the
cache. Thereafter, a usual cache side-channel attack may leak secret data that have been
wrongly stored in the cache due to a mispeculated execution.

Spectre attacks were discovered in 2018, and have been since extensively studied. Sev-
eral variants have been studied, along with tools allowing to detect vulnerabilities [DBR21],
or to automatically remove vulnerabilities [Vas+21]. These works rely on security policies
allowing to protect software against these attacks. In particular, the speculative constant-
time [Cau+20] policy is an adaptation of the constant-time policy that acts as a coun-
termeasure against Spectre attacks. Spectre attacks are out of the scope of this thesis,
however, we will detail works related to these attacks as a perspective for future work in
our conclusion.

A main part of our contribution builds upon the constant-time policy, that we intu-
itively presented above. It can be formally defined as a non-interference policy, which we
now detail.

The Non-Interference Policy. Non-Interference (NI) [GM82; GM84] is a security
policy used to model a system in which users may have different security levels (or security
classes). In such a system, a low security level user must never be allowed to access high
security level data. The Non-Interference (NI) policy formally captures this objective. A
program may manipulate data with different security levels, and a program is said to be
NI-secure if its execution does not allow a user to learn information he is no supposed to
have access to.

In order to define the NI policy, we first introduce the notion of security classes [Den76].
To keep the definitions simple, we use the simplest relevant classification, that consists of
two distinct security classes, that we call L and H.

— Security class L, which stands for low security, contains all the variables of the
program that can be accessed or modified without any restriction. We also say
that the variables of L are public or have low sensitivity.

— Security class H, which stands for high, corresponds to variables whose access is
restricted. The variables of H are said to be private, secret or sensitive.
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Users of a system are then also assigned a security class as their security level. A user
with security level H can access and modify any variable is the system, while a user
with security level L should only be able to access and modify low sensitivity (i.e., in
L) variables. The goal of non-interference is to ensure that a program does not leak the
sensitive variables to public users.

Definition of Non-Interference. In order to define the NI policy, we consider a
program p that manipulates variables contained in a memory. Executing program p from
initial memory a leads to output memory b. Every input and output of the program
are specific locations in the memory. For a memory m, we denote as mP the memory
m restricted to variables of class P . mL represents the public variables of m, and mH

represents the secret variables of m. NI is then defined as follows:

Definition 1: Non-interference.
A program p satisfies the non-interference policy if, for any memories a and a′ such
that aL = a′L, executing p on a and a′ respectively leads to memories b and b′, such
that bL = b′L. Such a program is said to be NI-secure, and written NI(p).

Definition 1 considers two executions starting from memories that have identical
public variables. In other words, if these memories differ, they only differ on their secret
variables. Therefore, from the perspective of a low-security user, these two executions
should have identical effects on public variables, otherwise this user could learn infor-
mation on secret values. This is why we expect the resulting memories to have identical
public variables; the resulting secret values however may differ: this is irrelevant as the
low user may not access them anyway.

Examples of Interferent Programs. We illustrate the NI policy by stating two
example programs that do not satisfy the policy.

Example 1: Explicit Flow.
We consider two variables public ∈ L and secret ∈ H. The following program does
not satisfy the NI policy:

public = secret;

We elaborate why this program is interferent. We consider two input memories a and
a′, that share identical public variables (i.e., public has the same value in both a and
a′). After the execution, the value of public is replaced with the value of secret,
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on which we do not make any assumption. Therefore, the resulting memories are not
ensured to share identical public variables.

However, all the following assignments satisfy the NI policy:

public = public;
secret = secret;
secret = public;

Indeed, assignments between variables of the same security class are always allowed,
and assigning a public value in a secret variable does not present any security threat.

The example above highlights that assigning a value to a variable which has a lower
security class may break the NI policy. Such an assignment is called an explicit flow. It is
natural to forbid such an operation, as storing a secret value in a public variable makes
the value available for any user. Forbidding explicit flows is a first step towards NI, but
is not sufficient, as explained in this second example.

Example 2: Implicit Flow.
We consider two variables public ∈ L and secret ∈ H. The following program must
be forbidden.

if (secret) {
public = 1;

} else {
public = 0;

}

Indeed, a public user could deduce the truth value of secret by observing public.
Indeed, secret evaluates to true when public = 1, and secret evaluates to false
when public = 0. More precisely, we consider two input memories a and a′, that share
identical public variables. After the execution, the values of public are conditionally
replaced with value 0 or 1, depending on the truth value a the secret variable, on
which we do not make any assumption. Therefore, the resulting memories are not
ensured to share identical public variables.

This second example highlights that modifying a public value in a branch whose con-
dition depends on a secret may break the NI policy. Indeed, any user could then observe
the resulting public value to deduce the truth values of the secret conditions. This is called
an implicit flow, and forbidding implicit flows is another step toward NI.
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Forbidding both explicit and implicit flows is a sufficient (but not necessary) condition
to enforce the NI policy. These flows can typically be detected by using a type-system.
In chapter 2, we will present an extended background on the NI policy. We will present a
type-system allowing to detect flows, and conduct a didactic proof its soundness.

Observational Non-Interference. The NI policy can be used to detect flaws in
a system allowing different levels of security for users, by ensuring that high-security
data never flows to lower security data. However, this does not capture the side-channel
behavior of a system.

The side-channel behavior of a program includes the information that may be mea-
sured by an attacker, including execution-time, power consumption, etc. It should then be
considered as public data, and the attacker may deduce sensitive information from these
measurements.

The Observational Non-Interference (ONI) [BGL18] policy captures this idea. For-
mally, the semantics of the language is instrumented to encompass a notion of leakage
emitted by an execution. The leakage is typically a list of events that capture the side-
channel behavior of the execution. We assume that an execution of a program p relates
an initial memory a to a leakage `.

Definition 2: Observational Non-Interference (ONI).
A program p satisfies the Observational Non-Interference (ONI) policy if, for any
memories a and a′ such that aL = a′L, executing p on a and a′ respectively leaks ` and
`′, such that ` = `′.

Similarly to the non-interference policy, ONI considers two executions starting from
memories that have similar identical public variables. For any pair of executions, the
leakages produced must be identical. Indeed, any difference in the leakage would lead to
a flow from sensitive data towards leaked information.

Interestingly, ONI may be used to model several popular side-channels countermea-
sures. This includes the constant-time policy, and another policy known in the literature
as time-balancing or constant-resource [Wu+18; Aga00; Ngo+17]. This policy, which we
will exclusively refer to as Constant-Resource (CR) throughout this thesis, can be seen as
a relaxation of constant-time; indeed, it allows more programs, that may contain secret-
dependent branches that are balanced with respect to a given timing model. In chapter 3,
our work will focus on the constant-time policy, and we will develop our second contri-
bution on the CR policy in chapter 4. The problem of preservation of the CR policy is
challenging, as existing proof methodology for other well-studied ONI policies, such as
constant-time, can not be used in this case.
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Enforcement of Security during Compilation. Our work focuses on the preser-
vation of side-channel security during compilation, as our setting assumes the source
programs to be secure, which is typically ensured by a prior program analysis. Other
works also consider the problem of constant-time preservation, that we now present. Jas-
min [Alm+17; Alm+19] is a programming framework, allowing the programmer to write
programs in the Jasmin programming language. The Jasmin programming language al-
lows the programmer to control low-level details (assembly instructions, registers, etc.),
but also provides high-level abstractions (e.g., variables, functions, etc.). The language
is then particularly suitable to implement cryptographic primitives. The Jasmin compiler
then compiles programs down to efficient assembly code, that uses vectorized instruc-
tions [Alm+19], that is resistant to timing side-channel attacks. The Jasmin compiler is
formally verified for semantic correctness, but not for preservation of security. Still, the
author argue that the Jasmin compiler preserves the constant-time policy.

In [Cau+19], the authors present FaCT, a domain specific language addressing the
challenge of writing human-readable constant-time cryptographic code. The language pro-
vides high-level constructs, that are compiled by the FaCT compiler down to constant-time
LLVM bytecode. It is designed to make cryptographic libraries easier to implement. In-
deed, a FaCT developer can focus on the correctness of the implementation, and then rely
on the compiler to apply usual recipes (such as bitwise operations) yielding a constant-time
compiled program. The FaCT compiler relies on a static information-flow type-system.
The type-system allows to annotate variables as secret or public, then reject unsafe pro-
grams. However, they only rely on empirical evaluation, using dudect [RBV17], to ensure
that the generated code has a constant-time behaviour. Dudect is an experimental tool
designed to evaluate whether or not a program runs with a constant execution-time, using
empirical measurements and classic statistical tests.

In [Mur+16], the authors present a flow-sensitive dependent type-system for shared-
memory programs, which enforces a strong policy: timing-sensitive non-interference for
concurrent programs. Then in [SM19], the authors study the preservation of this policy
during compilation. The authors formally verify the preservation of their policy through
compilation from a small concurrent imperative language to a RISC architecture. Their
approach relies on the use of an information-flow type-system in the compilation chain.
Their work is mechanically verified using the Isabelle proof assistant.

In [BDJ19], the authors consider the preservation of Information-Flow during com-
pilation. The property they study does not deal with timing side-channels, but rather
considers an attacker capable of observing an arbitrary amount of information during an
execution. Their policy ensures that a compiled program does not leak more information
than the associated source program, for instance by optimizing away code erasing secret
values in the memory. They also present proof principles designed to prove that a trans-
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formation preserves their security policy. In recent work [Coh+21], the authors consider
a similar problem with a different approach. They introduce an opaque annotation, and a
security policy enforcing that any observation occurring in an opaque area must be pre-
served through compilation, thus allowing to prevent unwanted dead-code elimination.
They study the preservation of their policy from C code to machine code. Their opaque
annotations disable aggressive optimizations, while the compiler does not need to know
the security levels of the variables.

In [Vas+21], the authors focus on speculative attacks, and present Blade, an automatic
tool able to repair a program vulnerable to this kind of attacks. They use a leakage
modeling the effects of speculative execution. Their approach is based on the insertion
of a minimal amount of annotations called protect in the source code. These annotations
may then be implemented as memory fence instructions at assembly level.

Recently, in [Bar+21a], the authors tackle the problem of integrating the verification
of the speculative constant-time policy into the Jasmin framework. They also modify the
Jasmin language to include a new fence instruction, that is compiled down to an assembly
memory fence instruction. Memory fences after conditionals and before load instructions
is a standard way to protect against speculative attacks, as fences disable the speculative
mechanisms [Wan+19; Bar+21a]. The authors explain that the stack sharing pass of the
Jasmin compiler is likely to break the speculative constant-time policy. They then check
that a program is secure after this pass, and argue that the remaining compiler passes
preserve speculative constant-time.

In another recent work [PG21], the authors present a compilation framework allow-
ing to reason about classes of speculative execution attacks. This framework targets the
usual imperative While language equipped with speculative semantics. The speculative
semantics consists in always executing a fixed number of steps in the wrong branch of
every branch instruction, before rolling back, and thus do not model any microarchitec-
tural behavior. The authors then present speculative non-interference (SNI), that exactly
captures the information leaked only by speculative execution, and address the problem of
the preservation of SNI during compilation. The paper also define speculative safety (SS),
a sound taint-based over-approximation of SNI. Finally, the authors present a method-
ology to prove or disprove their preservation criteria, and apply it to study common
countermeasures implemented in compilers against Spectre v1.

Contributions and Organization of the Thesis. In this thesis, we focus on formally
verified secure-compilation that preserves countermeasures against timing side-channel
attacks. More precisely, we tackle mainly two questions.

1. How can we modify an existing compiler, so that it preserves the constant-time
policy?
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2. How to ensure the preservation of the constant-resource policy?

We provide our answers to these challenges in this document. The first question raises
issues from a compilation perspective. Specifically, we answer it in the case of the Com-
pCert compiler, that we modified in order to make it constant-time preserving.

We tackle the second question by focusing on the preservation of the constant-resource
policy, which had never been tackled in the literature to the best of our knowledge.
Studying the preservation of this policy has raised several challenges, that led us to define
a more generic security policy. In this work, we focus on a small language and reason on
common optimization techniques, rather than the CompCert compiler.

We present our answers to the questions above as follows.
— First, chapter 2 is designed as a didactic background on the Non-Interference (NI)

policy. In this chapter, we show how type-systems can be used to enforce NI policies,
and present a didactic proof of the soundness of such type-system, in the case of
a language equipped with a small-step semantics with continuation. Using these
results, we discuss the limitations of this approach when interacting with compilers
to better justify the methodology we follow in the rest of this thesis.

— In chapter 3, we directly tackle the problem of secure compilation preserving coun-
termeasures against timing side-channel attacks. We focus on the cryptographic
constant-time policy, and study how to make the CompCert compiler constant-time
preserving. This chapter is based on the work published in the 47th Symposium
on Principles of Programming Languages (POPL) in [Bar+19]. The contribution
of this work was to present a machine checked proof that a modified version of
CompCert preserves the constant-time policy. This work presented two distinct
contributions: (a) a modification of the compiler, that fixes problematic parts that
explicitly break the policy and (b) a proof methodology, applied to all the interme-
diate transformations, allowing to prove that the whole modified compiler preserves
the policy. Our personal contribution is the first of these two items. In chapter 3,
we present in detail this work. Specifically, we first present a detailed background
on the CompCert compiler, detailing its architecture (i.e., intermediate represen-
tations, transformations), then we highlight several parts that we modified in the
compiler, in order to make it constant-time preserving. The modifications presented
in this chapter have since been integrated in the current version of CompCert.

— Last, in chapter 4, we tackle the problem of the preservation of the Constant-
Resource (CR) policy. We study this policy in the case of a small imperative
language, and study the preservation of the policy through usual optimizations.
Our contribution includes the introduction of a more generic security policy, that
we call CR#. The CR# relies on syntactic annotations, called atomic annotations,
used to keep track of secret values in a program without the need of a taint-tracking
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type-system. This new policy can be seen as a flexible mix between the constant-
time and the CR policies. We then study standard optimizations operating on a
small imperative language. We describe how to implement these program trans-
formations in a CR#-preserving way. Our approach relies the introduction of a
minimal amount of padding instructions. This chapter is a longer version of the
work published in the 34th Computer Security Foundations Symposium (CSF) in
[Bar+21b].

The results presented in this thesis have all been formally specified, implemented and
mechanically verified using the Coq proof assistant [19], but this document is intended
to be readable with only very little knowledge of this tool. The whole development is
provided as supplementary material and can be found online 1. The electronic version of
this document contains links to the development for every definition, theorem or proof
presented in this thesis. These links are indicated with Coq logos: .

1. https://remihut.in/thesis/coq/toc.html
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Chapter 2

ENFORCING NON-INTERFERENCE WITH

TYPING

In chapter 1, we introduced the notion of Non-Interference (NI). We recall that this
policy relies on a classification of the security level of the variables of the program. In our
example, we reason on a two levels classification: L refers to the public variables, and H
refers to the secret variables. A program is then said to be NI if considering two executions
starting from memories that have identical public variables, the resulting memories also
have identical public variables.

In this chapter, we present a more complete study of the NI policy. This chapter is
intended to be didactic, and inspires a lot on works by Volpano, Irvine and Smith [VIS96],
and Barthe, Pichardie and Rezk [BPR07]. We follow a similar methodology, but apply it
to a language equipped with a different kind of semantics: specifically, we use a small-step
semantics with continuations.

More precisely, in this chapter, we first introduce a language, with its detailed se-
mantics, in section 2.1. In particular, we justify our choice of semantics in this section.
Next, in section 2.2, we present a type-system, called the secure flow type-system, whose
goal is to prevent both direct and indirect flows in a program. We then present a de-
tailed proof in section 2.3 that any well-typed program is secure with respect to the NI
policy. Afterwards, in section 2.4, we also highlight of the limitations of type-system we
introduce when used inside the compilation chain of a realistic compiler. Ultimately, the
goal of this chapter is to better motivate the approach we follow in chapter 3 and chap-
ter 4, in which we study the preservation during compilation of information-flow policies
with a methodology that does not rely on a taint-tracking mechanism (such as the secure
flow type-system). Last, we conclude that chapter by introducing the Observational Non-
Interference (ONI) policy, a generalization of the NI policy, that can be used to model
policies protecting against side-channels attacks. The constant-time and constant-resource
are examples of such policies, and can be formally defined as instances of ONI. We will
study these policies in respectively chapter 3 and chapter 4.

Type-Systems. A type-system is a usual addition to a programming language, allowing
to associate a type (boolean, integer, array, pointer, ...) to every variable in the program.
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The goal of the type-system is to restrict the operations performed by the program, by
forbidding some operations that do not make sense in the language (e.g., dividing an
integer by an array). The type-system then ensures that a well-typed program does not
perform such operation.

A type-system is usually written as a relation between a typing environment Γ, a
program p and a type τ , written as Γ ` p : τ , and which means that program p has type
τ in environment Γ. The type-system may then be defined as inference rules. We give an
example below:

Example 3: Simple type-system.
We consider a simple type-system for integer expressions, defined by the following
inference rules:

int
Γ ` n : int

var
Γ(x) = int
Γ ` x : int

add
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Rule int means that any integer literal n has type int. Rule var means that if a
variable x has type int is the environment Γ, then the expression x is well-typed of
type int. Rule add allows to deduce the type of an addition of expression: if both
operands have type int, then the expression has type int.

We can use this type-system to deduce the type of expression a + 5, assuming that
Γ(a) = int. We have the following deductions:

add
var

Γ(a) = int
Γ ` a : int

int
Γ ` n : int

Γ ` a + 5 : int

This type-system allows to conclude that a + 5 is well-typed of type int. However, if
a had a different type in Γ, say Γ(a) = array, this expression would have been rejected
by the type-system.

Type-systems are generic tools, that can be used as an automatic procedure to either
accept or reject a program. They are a standard way to enforce the NI policy, which is
what we will focus on in this chapter. In other words, we will see how to build a type
system such that any well-typed program is NI:

Γ ` p : τ =⇒ NI(p)

Such a type-system is designed to reject any program that performs either explicit or
implicit flows, and is thus call a Secure Flow type system.
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Plan of the chapter. During this chapter, we will first define a language L in sec-
tion 2.1, and define a Secure Flow type system for this language in section 2.2. Then,
in section 2.3, we will conduct a proof of the soundness of this type-system, i.e., we will
prove that any well-typed program is non-interferent. During section 2.4, we will study
the case of preservation of the non-interference policy during compilation. We address this
problem by studying the preservation of the Secure Flow type-system during the compi-
lation, and present the limitations of this approach. Last, we will extend the NI policy in
section 2.5, and introduce the Observational Non-Interference (ONI) policy.

2.1 Definition of a Language
In this section, we define a language L by giving its syntax and its semantics. This

language will be used and extended throughout this document. This precise definition will
later allow us to reason about the execution of a program.

2.1.1 Syntax of L

We consider an imperative language, that can manipulate integer variables and integer
arrays of constant size, and that contains usual if and while statements. In this language,
arrays are statically allocated, and their size is never modified during an execution. The
syntax is given in the following definition:

Definition 2.1: Syntax of L .

〈exp〉 ::= 〈int〉 | 〈ident〉 | 〈ident〉 [ 〈exp〉 ] | 〈exp〉 � 〈exp〉 |
〈stmt〉 ::= skip

| 〈ident〉 := 〈exp〉
| 〈ident〉 [ 〈exp〉 ] := 〈exp〉
| 〈stmt〉 ; 〈stmt〉
| if( 〈exp〉 ) { 〈stmt〉 } else { 〈stmt〉 }
| while( 〈exp〉 ) { 〈stmt〉 }

Language L consists of expressions 〈exp〉 and statements 〈stmt〉 . An expression is
either an integer constant n, a variable identifier x, an access to an array element x[e] or
an operation applied to a pair of expressions (e.g., arithmetic operations, comparisons,
...). A statement is either a skip (which does nothing), an assignment s := e with e

33

https://remihut.in/thesis/coq/NI.Language.html


Partie , Chapter 2 – Enforcing Non-Interference with Typing

an expression, an assignment to an array element s[e1] := e2 with e1, e2 expressions, a
sequence of statements s1; s2, and usual control flow with if and while statements.

2.1.2 Big-step Semantics for Expressions of L

We define a formal semantics for language L . We first present a semantics for the
expressions of the language. As the evaluation of an expression always terminates in our
model, we choose to define their semantics using a big-step style semantics.

Our semantics relies a on notion of values and environments. The set of values V de-
scribes the values to which the variables of our language may evaluate to. In our language,
a value v may either be an integer n ∈ Z or an array of integers of constant size. The set
of value is defined as follows:

Definition 2.2: Set of values V.

〈value〉 ::= n | [n1; . . . ;nm]

Next an environment σ is a partial mapping from variable identifiers to the set of
values V . We denote σ[x] the value associated to the identifier x in the environment σ.
If identifier x is not defined in σ, then σ[x] evaluates to the default value 0. We denote
σ[x ← v] the environment that is identical to σ, except for the identifier x which is now
mapped to the value v.

The semantics of expressions is defined as a relation 〈e, σ〉 ⇓ v. It reads as expression
e, evaluated in environment σ, produces value v. It is defined as follows:

Definition 2.3: Evaluation of expression 〈e, σ〉 ⇓ v.

var
σ[x] = v

〈x, σ〉 ⇓ v

array
σ[x] = [v1; ...; vn; ...vm] 〈e, σ〉 ⇓ n 1 ≤ n ≤ m

〈x[e], σ〉 ⇓ vn

const

〈n, σ〉 ⇓ n

op_bin
〈e1, σ〉 ⇓ v1 〈e2, σ〉 ⇓ v2

〈e1 � e2, σ〉 ⇓ v1 � v2

There are four rules in Definition 2.3. Evaluating an integer constant n produces the
value n itself, no matter the environment the expression is being evaluated in (rule const).
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Evaluating a variable identifier x in environment σ produces value v where v = σ[x] (rule
var). Evaluating an array access identifier x[e] in environment σ requires to evaluate e in
σ to value n, and requires x to be an array of length at least n in σ. x[e] then evaluates
to vn, the nth element of array x (rule array). Last, evaluating a binary operation �
between two expressions e1 and e2 in environment σ first requires to evaluate e1 and e2 in
σ to their respective values v1 and v2. Expression e1 � e2 then produces the value v1 � v2

(rule op_bin). Note that for the sake of simplicity, we use the same symbol � both for
the syntax of the binary operation and its semantics.

2.1.3 Small-step Semantics with Continuations

We now focus on statements of our language, for which we define a semantics in a
small-step style using continuations. We choose this style of semantics for the following
two reasons:

— First, small-step semantics with continuations are easier to reason about than
usual small-step semantics. They allow to avoid the need to reason inductively
when dealing with loops and sequences. This can be observed in the proofs that
will be conducted in this chapter.

— Second, this type of semantics is largely used in the CompCert compiler. Our goal
in this work is to adapt existing proof methodologies from [VIS96; BPR07], to
better fit to the restrictive framework of the CompCert compiler. To the best of
our knowledge, the proof of the soundness of a secure flow type-system with this
kind of semantics had never been tackled in the literature.

Our semantics is expressed as a transition system between pairs of environments and
continuation.

We define a continuation k as a stack of statements. The top element in the continu-
ation is the statement being currently executed, and the other elements of the stack will
only be executed once the current statement is done. We use notation s · k to denote the
continuation with statement s on top, with k the rest of the continuation. We also denote
k1 + k2 as the concatenation of continuations k1 and k2, and ε the empty continuation.
Last, we denote ‖k‖ the length of the continuation k.

Executing the continuation s1 ·s2 ·s3 ·ε consists in executing s1, then s2, then s3, before
terminating. During an execution, new elements can be stacked in the continuation.

A step of execution is defined with the following step relation:

〈σ1, k1〉 7−→ 〈σ2, k2〉

Note that the current instruction does not explicitly appear in the step relation, but
remember that it is hidden in the top element of k1. The execution terminates when
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the empty continuation ε is reached, which means that nothing is left to execute. The
complete definition of the step relation is presented below:

Definition 2.4: Step relation for statements 〈σ1, k1〉 7−→ 〈σ2, k2〉.

skip

〈σ, skip · k〉 7−→ 〈σ, k〉

assign
〈σ, e〉 ⇓ v v is an integer

〈σ, (x := e) · k〉 7−→ 〈σ[x← v], k〉

assign_array
σ[x] = [v1; ...; vn; ...vm] 〈σ, e1〉 ⇓ n 〈σ, e2〉 ⇓ v′ 1 ≤ n ≤ m v′ ∈ Z

〈σ, (x[e1] := e2) · k〉 7−→ 〈σ[x← [v1; ...; vn−1; v′; vn+1; ...vm]], k〉

seq

〈σ, (s1; s2) · k〉 7−→ 〈σ, s1 · s2 · k〉

if_true
〈σ, e〉 ⇓ v v 6= 0

〈σ, (if(e) {s1} else {s2}) · k〉 7−→ 〈σ, s1 · k〉

if_false
〈σ, e〉 ⇓ v v = 0

〈σ, (if(e) {s1} else {s2}) · k〉 7−→ 〈σ, s2 · k〉

while

〈σ, (while(e) {s}) · k〉 7−→ 〈σ, if(e) {s; while(e) {s}} else {skip} · k〉

By convention, executing a program p with initial environment σ with our semantics
is done by executing from the pair 〈σ, p · ε〉, i.e., the continuation made of only one
element: the program to be executed. The execution is over when an empty continuation
ε is reached.
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We now detail the semantics. All the rules are defined depending on the top element of
the continuation, i.e., the current instruction. Executing a skip instruction does nothing,
the execution the proceeds to the next element of the continuation (rule skip). Executing
an assignment x := e first requires to evaluated expression e to a value v. The step leads
to environment σ[x ← v], in which the rest of the continuation k will later be executed
(rule assign). Executing an assignment to an array element x[e1] := e2 first requires
both e1 and e2 to evaluate to integer values, respectively n and v′. The step leads to
the environment in which the nth element of x is replaced by v′ (rule assign_array).
Executing a sequence s1; s2 only consists in stacking s2 then s1 on the continuation.
This means that the execution will proceed by executing s1, and will later execute s2

when execution of s1 is done (rule seq). Executing a if(e) {s1} else {s2} statement
first requires to evaluate the condition e. Depending on the result, the appropriate branch
statement s1 or s2 is stacked on the continuation, to be executed later (rules if_true
and if_false). Executing a while(e) {s} loop consists in stacking the whole statement
if(e) {s; while(e) {s}} else {skip}. In other words, our semantics unrolls one iter-
ation of the while loop.

Finally, we define a multi-step relation, denoted with 〈σ1, k1〉 7−→∗ 〈σ2, k2〉, meaning
that executing form 〈σ1, k1〉 will lead to 〈σ2, k2〉 in any number of steps (including 0).
7−→∗ is the reflexive, transitive closure of 7−→. A complete execution of a program p is
then characterized by 〈σ1, p · ε〉 7−→∗ 〈σ2, ε〉 Similarly, 〈σ1, k1〉 7−→n 〈σ2, k2〉 means that
〈σ1, k1〉 leads to 〈σ2, k2〉 in exactly n steps.

2.1.4 Definition of Non-Interference
We now formally define the notion of non-interference for our language L . This se-

curity policy is defined w.r.t. to a security lattice (L,≤) of security levels, as defined
in [Den76]. The most common security lattice is {L,H} with L ≤ H, where L and H

respectively represent low and high security levels. We will use this lattice to illustrate
our examples, even though our work is defined in the general case of an arbitrary security
lattice, with ≤ a partial order on L .

We then introduce a security typing environment Γ that matches every variable iden-
tifier to a security level. For example, if variable x verifies Γ[x] = H, then x is a secret
variable. The notion of non-interference is defined relative to a security level τobs, that
corresponds to the security level of an attacker. Intuitively, the attacker is allowed to
observe variables whose security level is lower or equal to τobs (and wants to deduce data
he is not allowed to observe). We fix once and for all this security level τobs.

We first define a notion of a indistinguishability between two environments. Intuitively,
two environments are indistinguishable with respect to the security level τobs if any ob-
servable variable x (i.e., Γ[x] ≤ τobs) has the same value in both environments. Formally:
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Definition 2.5: Indistinguishability.
Two environments σ1 and σ2 are indistinguishable, denoted as σ1 'τobs

σ2, if:

σ1 'τobs
σ2 , ∀x,Γ(x) ≤ τobs =⇒ σ1[x] = σ2[x]

Non-interference is then defined as follows. Intuitively, a program p is non-interferent
if for any pair of indistinguishable initial environments σ1 and σ2, executing p from both
environments will lead to indistinguishable final environments. Formally:

Definition 2.6: Non-interference.
Let p be a program and τobs a security level. If for any initial environments σ1 and σ2

such that:
— σ1 'τobs

σ2

— 〈σ1, p · ε〉 7−→∗ 〈σ′1, ε〉
— 〈σ2, p · ε〉 7−→∗ 〈σ′2, ε〉

we have that σ′1 'τobs
σ′2 (i.e., the final states are indistinguishable), we then say that

p is non-interferent. We denote it as NI(p).

Note that this definition is a direct instanciation of Definition 1, adapted to our
language L . The definition we choose to express the NI policy is termination-insensitive.
This means that we only considers terminating executions of programs (indeed, we expect
both executions to reach the empty continuation i.e., the end of the execution in our
language), and ignore diverging executions (e.g., infinite loops). Termination-sensitive
definition of NI have been studied in the literature [DP10; KWH11].

This conclude this section of definitions of the language L . In the next section, we
will focus on the Secure Flow type-system, whose goal is to enforce NI.

2.2 Secure Flow Type-System
We introduce the Secure Flow type-system that can enforce the NI policy. The goal

of this type-system is to reject any program performing either an explicit or an implicit
flow. Therefore, any well-typed program with respect to this type system should be NI.
The type-system we present here is flow-insensitive, which means that a variable x has
a fixed security level Γ(x) throughout an execution, given by the typing environment Γ.
Flow-sensitive definitions exists as well, and allow the security of variables to be modified
during an execution. Flow-insensitivity is easier to define and reason about, but is also
more restrictive, as NI-secure programs may be rejected by a flow-insensitive type-system,
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but accepted by a flow-sensitive one. Yet, this restriction can be relaxed with program
transformation ensuring that variables are assigned only once during an execution, and
thus that their security level does not need to be modified. This is detailed in [HS06].

2.2.1 Type-system for Expressions
The following definition presents the type-system for expressions.

Definition 2.7: Secure Flow type-system for expressions Γ ` e : τ .

const

Γ ` n : τ

var
Γ(x) = τ

Γ ` x : τ

array
Γ[a] = τ Γ ` e : τ

Γ ` a[e] : τ

op_bin
Γ ` e1 : τ Γ ` e2 : τ

Γ ` (e1 � e2) : τ

subtype_e
Γ ` e : τ1 τ1 ≤ τ2

Γ ` e : τ2

A constant value n is well-typed and can be assigned any type τ (rule const). A
variable identifier x is well-typed if and only if it is defined in the typing environment Γ;
its type is then Γ[x] (rule var). An operation e1 � e2 is well-typed of type τ if and only
if both e1 and e2 are well-typed with the same type τ (rule op). This rule is restrictive
as it only allows to combine expressions of the same type. Intuitively, we want l+h to
be well typed, and we want it to be of type H. This is why we introduce the last rule
subtype_e. This rule states that any well-typed expression can be casted into a larger
type (w.r.t. ≤). For example, any L expression can be casted to H.

Below is an example of the typing derivation of the expression l+h.

Example 4: Typing of l+h.
To illustrate the type-system, we introduce variable identifiers l and h, which are of
respective type L and H.

op_bin
subtype_e

var
Γ(l) = L

Γ ` l : L L ≤ H

Γ ` l : H
var

Γ(h) = H

Γ ` h : H
Γ ` (l+h) : H

Typing derivation of expression l+h, with l and h of respective types L and H.
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2.2.2 Type-system for Statements

The following definition presents the type-system for statements.

Definition 2.8: Secure Flow type-system for statements Γ ` s : τ .

skip

Γ ` skip : τ

asn
Γ(x) = τ Γ ` e : τ

Γ ` (x := e) : τ

array_asn
Γ[a] = τ Γ ` e1 : τ Γ ` e2 : τ

Γ ` (a[e1] := e2) : τ

seq
Γ ` s1 : τ Γ ` s2 : τ

Γ ` (s1; s2) : τ

if
Γ ` e : τ Γ ` s1 : τ Γ ` s2 : τ

Γ ` (if e then s1 else s2) : τ

while
Γ ` e : τ Γ ` s : τ
Γ ` (while e do s) : τ

subtype_s
Γ ` s : τ2 τ1 ≤ τ2

Γ ` s : τ1

First, a skip instruction can be assigned any arbitrary type τ (rule skip). An assign-
ment instruction x := e is well-typed of type τ if and only both variables x and expression
e have the same type τ (rule asn). Note that thanks to the subtyping rule for expressions,
this intuitively means that the type of e is lower than the type of x (w.r.t. ≤). This rule
then prevents explicit flows, as a statement l := h is rejected by the type-system. The
rules seq, if and while all require every sub-expression and sub-statement to be well-
typed of type τ , in order to type the resulting statement. In the case of rule if (reasoning
is similar for rule while), it prevents implicit flows. Indeed, a statement if(h) {l := 2}
is rejected by the type-system, as h has type H and l := 2 has type L. However, the
rules here are too restrictive, as statement if(l) {h := 2} is similarly rejected by the
type-system, whereas it does not present any information flow. This is why we introduce
the last rule subtype_s. This rule states that any well-typed statement can be casted
into a smaller type (w.r.t. ≤).

Below is an example of the typing derivation of the statement if(l) {h := 2}.

Example 5: Typing of if(l) {h := 2}.
To illustrate the type-system, we introduce variable identifiers l and h, which are of
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respective type L and H.

if
var

Γ(l) = L

Γ ` l : L
subtype_s

asn
Γ(h) = H Γ ` 2 : H

Γ ` (h := 2) : H L ≤ H

Γ ` (h := 2) : L
Γ ` (if(l) {h := 2}) : L

Typing derivation of statement if(l) {h := 2}, with l and h of respective types L
and H. The else branch is omitted for brevity.

This conclude this section introduction the Secure Flow type-system. In the next
section, we will conduct a complete and didactic proof that the type-system enforces the
NI policy.

2.3 Soundness of the Type-System

The Secure Flow type-system introduced in section 2.2 is used to reject any program
performing implicit or explicit flows. Our goal is to prove that this restriction on programs
is sufficient to enforce the NI policy. In other words, we want to prove the following
theorem:

Theorem 2.1: Type Soundness.
Any program well-typed program p is non-interferent.

In this section, we conduct a detailed and didactic proof of this theorem, and thus
introduce several intermediate lemmas, and introduce some proof artifacts. More specif-
ically, in subsection 2.3.1 we first extend the Secure Flow type-system to continuations,
and state a generalized type soundness theorem, dealing with continuations. Next, we
prove several lemmas about the indistinguishability relation in subsection 2.3.2. Next, we
introduce another relation called unobservable, and prove interesting results about this
relation in subsection 2.3.3. In subsection 2.3.4, we introduce a useful lemma allowing us
to reason on a prefix of an execution of a program. Last, in subsection 2.3.5, we use all
these results to conduct the proof of the generalized type soundness theorem.

The proof methodology presented in this section is adapted from [BPR07]. Specifically,
we tried to reuse as many intermediate lemmas as possible, while keeping similar names
(e.g., locally respects, high branching, high step, etc).
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2.3.1 Generalization to Continuation
First, in order to conduct our proof, we need to introduce some generalized definition.

We need to be able to reason on complete executions of an arbitrary continuation. We
then extend the definition of the non-interference property and of the type-system to
continuations (instead of statements only). We say that a continuation k is well-typed if
each of its elements are well-typed. We denote it as Γ ` k. We define it formally as follows.

Definition 2.9: Secure Flow type-system for continuations Γ ` k : τ .

epsilon

Γ ` ε : τ

push
Γ ` s : τ Γ ` k : τ

Γ ` s · k : τ

subtype_k
Γ ` k : τ2 τ1 ≤ τ2

Γ ` k : τ1

We can remark that this definition is consistent with the typing rule of the sequence of
instructions. Note also that the subtyping rule is identical to the subtyping of statements.

Second, we naturally extend the non-inference policy to continuation as follows:

Definition 2.10: Non-interference with continuation.
Let k be a continuation and τobs a security level. If for any initial environments σ1 and
σ2 such that:

— σ1 'τobs
σ2

— 〈σ1, k〉 7−→∗ 〈σ′1, ε〉
— 〈σ2, k〉 7−→∗ 〈σ′2, ε〉

we have that σ′1 'τobs
σ′2 (i.e., the final states are indistinguishable), we then say that

k is non-interferent. We denote it as NI(k).

We use these definitions to reason on the complete execution of a continuation. Note
that definition Definition 2.6 is an instance of Definition 2.10, with k = p · ε. Our goal
is now to prove that any well typed continuation k is NI, with respect to the definitions
above.

2.3.2 Indistinguishability Lemmas
We state here two lemmas about the indistinguishability relation and the security

type-system. Our first lemma states that if an expression e is well typed of type τobs, then
the value it executes to only depends on variables of type ≤ τobs. We express this lemma
as follows:
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Lemma 2.2: Observable expression.
Suppose:

σ1 'τobs
σ2(I)

〈σ1, e〉 ⇓ v1(E1)
〈σ2, e〉 ⇓ v2(E2)
Γ ` e : τobs(T )

Then: v1 = v2

Intuitively, a direct consequence of the type-system is that for any well typed expres-
sion of type τ , all its sub-expressions may also be typed with type τ at most. Lemma 2.2
is a direct consequence of this fact. Below is a more complete proof:

Proof of Lemma 2.2.
We reason by induction on E1.

— Case const: e is necessarily a constant n, thus v1 = v2 = n.
— Case var: e is necessarily a variable identifier x. Therefore, we have v1 = σ1[x]

and v2 = σ2[x]. From hypothesis T , we deduce that Γ[x] = τobs. By definition of
indistinguishability (Definition 2.5), we then have σ1[x] = σ2[x].

— Case bin_op: e is necessarily an operation e1 � e2. We conclude by applying the
induction hypothesis on e1 and e2.

Our second lemma deals with the step relation starting from an arbitrary continuation
k. It states that if k is well typed, taking a step from indistinguishable environments σ1

and σ2 will lead to two other indistinguishable environments σ′1 and σ′2. In other words,
taking a step on a well typed continuation preserves the indistinguishability relation. Note
that we do not conclude on the resulting continuations, that are arbitrary. The lemma is
stated as follows, and is followed by a formal proof.

Lemma 2.3: Locally respects.
Suppose:

σ1 'τobs
σ2(I)

〈σ1, k〉 7−→ 〈σ′1, k′1〉(S1)
〈σ2, k〉 7−→ 〈σ′2, k′2〉(S2)
Γ ` k(T )

Then: σ′1 'τobs
σ′2
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Proof of Lemma 2.3.
As we assume we can take a step from continuation k, it is necessarily non-empty. Let s be
the top element of k. We reason by cases on the step relation. For every case except asn,
the step relation does not modify the output environment, and we then have σ1 = σ′1 and
σ2 = σ′2, hence σ′1 'τobs

σ′2.
For case asn. s is necessarily an assignment x := e. We need to prove σ′1 'τobs

σ′2. As
σ′1 and σ′2 trivially have the same domain, we need to show that if Γ[x] ≤ τobs, σ′1[x] = σ′2[x]
(as every other variables are not altered). We then assume that Γ[x] ≤ τobs.

As we can take a step in both S1 and S2, e evaluates in σ1 and σ2, say respectively to
v1 and v2. We need to show that v1 = v2. We know that s is typed (hypothesis T ), and
thus that Γ ` e : τ with τ ≤ Γ[x] (consequence of the subtyping). We conclude using the
observable expression Lemma 2.2.

This concludes our list of lemmas about the indistinguishability relation.

2.3.3 The Unobservability Relation

We previously stated a typing relation for continuations, that expects each of its ele-
ments to be well typed themselves. This relation represents the initial knowledge that we
expect to have about a continuation k, i.e., we will show that this is the only assumption
that we need to prove that k is NI. However, this typing relation does not carry a lot of
information, as it discards all the types of its element. We introduce here a stronger rela-
tion called unobservable. Intuitively, a continuation k is said to be unobservable w.r.t.
a type τobs if all its elements are well typed of type strictly greater than τobs. Intuitively,
an unobservable continuation characterizes a high security part of the program, which
means that an observer will not be able to deduce any information from this execution.
Formally, we define it as follows:

Definition 2.11: Unobservable continuation.

unobservable(Γ, τobs, k) , ∀s ∈ k, ∀τ � τobs, Γ ` s : τ

We will use this definition to characterize high-security parts of the continuation.
Specifically, we will see that branchings depending on secret values (i.e., greater than
τobs) may only happen if the continuation is unobservable. The unobservable relation
has good properties w.r.t. the step relation. The following lemma states that any step
from an unobservable continuation will lead to another unobservable continuation.
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Lemma 2.4: unobservable preservation.
Suppose:

〈σ1, k1〉 7−→ 〈σ2, k2〉(S)
unobservable(Γ, τobs, k1)(U)

Then: unobservable(Γ, τobs, k2)

Proof of Lemma 2.4.
We reason by case analysis on the step relation (S).

— cases skip and skip are trivial as they remove the top element of the continuation.
— cases seq, if and while insert elements in the continuation k′, we need to prove these

elements to be unobservable. Again by case analysis, we can show that as all these
elements come from unobservable continuation k, they are themselves unobservable.

The next lemma states that if we take a step from an unobservable continuation, the
input and output environments are indistinguishable (w.r.t. the same τobs).

Lemma 2.5: Indistinguishability of unobservable step.
Suppose:

〈σ1, k1〉 7−→ 〈σ2, k2〉(S)
unobservable(Γ, τobs, k1)(U)

Then: σ1 'τobs
σ2

Proof of Lemma 2.5.
We reason by case analysis on the step relation (S). For every case except asn, the step
relation does not modify the output environment. We thus have σ1 = σ2.

For case asn. s is necessarily an assignment x := e. We need to show that if Γ[x] ≤
τobs, σ1[x] = σ2[x] (as every other variables are not altered). We then assume that Γ[x] ≤ τobs.

We know that s is unobservable (hypothesis U), and thus that Γ ` e : τ with τ � τobs.
However, as a consequence of the subtyping, we have τ ≤ Γ[x]. Therefore τ ≤ τobs, which is
a contradiction.

Additionally, we easily show that σ1 and σ2 have the same domain to conclude the
proof.

Our most important lemma about the unobservable relation is the following. We as-
sume to have two different steps from a single statement s leading to two different con-
tinuations k1 6= k2 (think of a branching leading to the then branch on one hand, and to
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the else branch on the other hand). If the starting environments are indistinguishable
and s is well typed, then k1 is unobservable (and so is k2 by symmetry).

Intuitively, the lemma can be interpreted as follows: if an if statement executed from
indistinguishable environments leads respectively to the then branch and the else branch,
then both branches are high-security (i.e., unobservable) parts of the program.

Lemma 2.6: unobservable branching.
Suppose:

〈σ1, s · ε〉 7−→ 〈σ′1, k1〉(S1)
〈σ2, s · ε〉 7−→ 〈σ′2, k2〉(S2)
Γ ` s : τ(T )
k1 6= k2(D)
σ1 'τobs

σ2(I)

Then: unobservable(Γ, τobs, k1)

Proof of Lemma 2.6.
We reason by case analysis on the step relations S1 and S2. The only case that yields different
continuations k1 and k2 is the case if, the other cases are therefore trivially proved.

We focus on case if, s is then necessarily an if statement: s = if(e) {s1} else {s2}.
As s is well-typed (hypothesis T ), e, s1 and s2 are all well-typed with type τ ′ such that
τ ≤ τ ′.

We reason by cases.
— If τ ′ ≤ τobs, we can use the observable expression lemma to deduce that e evaluates

to the same value in both σ1 and σ2. As this would imply that k1 = k2, this is a
contradiction.

— If τ ′ � τobs, k1 and k2 are unobservable by definition.
This concludes our list of lemmas about the unobservability relation.

2.3.4 Reasoning on Prefixes of Executions
Last, we state a lemma that only deals with the semantics of our program, and none

of the security definitions that we introduced before. This lemma assume that we take
n step from a continuation k1 + k2 (i.e., an arbitrary continuation in which we identify
a prefix that we call k1) leading to a continuation k whose length is less or equal of the
length of k1. This lemma shows that k1 will step to ε in at most n steps. In other words,
k1 must be fully executed before execution of k2 begins, and k2 has no impact on the
execution of k1.
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In other words, when executing a continuation, any prefix has to be fully executed
before executing the rest of the continuation.

Lemma 2.7: Bottleneck.
Suppose:

〈σ1, k1 + k2〉 7−→n 〈σ2, k〉(a)
‖k1‖ ≤ ‖k‖(b)

Then we can find n′ ∈ N such that n′ ≤ n and a state σ′, such that:

〈σ1, k1〉 7−→n′ 〈σ′, ε〉.

This lemma shows this if we have an execution of 〈σ1, k1 + k2〉 7−→n 〈σ2, k〉, with
‖k1‖ ≤ ‖k‖, then there is a bottleneck state 〈σ′, k2〉 that will be encountered during the
execution, verifying:

〈σ1, k1 + k2〉 7−→n′ 〈σ′, k2〉 7−→(n−n′) 〈σ2, k〉

2.3.5 Proof of Type Soundness

We now have all the tools needed to prove the type soundness theorem, that we state
as follows:

Theorem 2.8: Type Soundness.
Suppose:

Γ ` k(T )
σ1 'τobs

σ2(I)
〈σ1, k〉 7−→n1 〈σ′1, ε〉(E1)
〈σ2, k〉 7−→n2 〈σ′2, ε〉(E2)

Then: σ′1 'τobs
σ′2

Proof of Theorem 2.8.
We reason by induction on n = max(n1, n2). If n = 0, then n1 = n2 = 0. We directly deduce
that σ′1 = σ1 and σ′2 = σ2, allowing us to conclude. Otherwise, both n1 and n2 have to be
strictly positive. This is a consequence of the fact that both executions start in environments
that have the same domain of definition (I) and both executions terminate.
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We then know that both executions take a step. We can find k1, k2, ρ1, ρ2 such that:

〈σ1, k〉 7−→ 〈ρ1, k1〉
〈σ2, k〉 7−→ 〈ρ2, k2〉

(2.1)

Using Lemma 2.3 (locally respects), we directly deduce that ρ1 'τobs
ρ2, i.e., ρ1 and ρ2

are indistinguishable.
If we suppose that k1 = k2, we then have:

〈ρ1, k1〉 7−→(n1−1) 〈σ′1, ε〉

〈ρ2, k1〉 7−→(n2−1) 〈σ′2, ε〉
(2.2)

We can then directly conclude using the induction hypothesis, as both these executions
are strictly shorter that n.

Otherwise, let us now assume that k1 6= k2. First, note that k is necessarily non-empty
(we could not take a step otherwise). We then introduce k = s · k′, s being the top element
of the continuation. By case analysis on the step relation, k′ is necessarily a suffix of both
k1 and k2. We note:

k1 = k′1 · k′

k2 = k′2 · k′
(2.3)

where k′1 and k′2 are the respective prefixes of k1 and k2 (they may be empty).
Furthermore, taking a step from continuation s · k′ will not modify k′ (again by case

analysis of the semantics). We then have the following executions:

〈σ1, s · ε〉 7−→ 〈ρ1, k
′
1〉

〈σ2, s · ε〉 7−→ 〈ρ2, k
′
2〉

(2.4)

Using the Lemma 2.6 (unobservable branching), we can now conclude that both k′1
and k′2 are unobservable.

Next, using the bottleneck lemma, we can find two environments ρ′1 and ρ′2 such that:

〈ρ1, k
′
1〉 7−→m1 〈ρ′1, ε〉

〈ρ2, k
′
2〉 7−→m2 〈ρ′2, ε〉

(2.5)

with m1 ≤ n1 and m2 ≤ n2.
Using Lemma 2.4 (unobservable preservation) and Lemma 2.5 (indistinguishability of

unobservable step), we can deduce any intermediary continuation appearing during both
executions (2.5) are unobservable. We can also deduce that the intermediary environments
are pairwise indistinguishable. Thus: ρ′1 'τobs

ρ′2.
Finally, we can append the k′ continuation (this does not impact the executions as they

both terminated in a fixed number of steps) to show that:
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〈ρ1, k
′
1 · k′〉 7−→m1 〈ρ′1, k′〉

〈ρ2, k
′
2 · k′〉 7−→m2 〈ρ′2, k′〉

(2.6)

We conclude by applying the induction hypothesis on states 〈ρ′1, k′〉 and 〈ρ′2, k′〉.

This proof concludes this section, in which we proved the soundness of the Secure
Flow type-system, in the case of a small-step semantics with continuations.

2.4 Type Preserving Compilation
In the previous sections of this chapter, we introduced the NI policy, and then presented

a secure flow type-system. We then proved that this type-system enforces the NI policy,
i.e., that any well-typed program is non-interferent:

∀p, Γ ` p : τ =⇒ NI(p)

This is a strong result, but it is not satisfying when considering the compilation of
a program. Indeed, even if a source program is proved to be non-interferent, there is a
priori no guarantee that this policy will be preserved by a compiler. This is a property
that needs to be proved about a compiler. Formally, a transformation T preserves the NI
policy if:

∀p, NI(p) =⇒ NI(T (p))

However, as the NI policy is only enforced by the secure flow type-system, we can
restrict this preservation property to well-typed programs only. In other words, we want
to prove that any well-typed program p, which is then non-interferent, is compiled to T (p),
also non-interferent. A way to prove this result is to prove that the typing is preserved by
the transformation:

∀p, Γ ` p : τ =⇒ Γ ` T (p) : τ

Indeed, the result above allows to conclude as T (p) being well-typed implies that
T (p) is non-interferent. This approach then consists in turning the compiler into a type-
preserving compiler. A compiler being usually split into several passes, each of them needs
to be proved to preserve the type system. In other words, the whole compilation chain
needs to preserve the type system.

However, the criteria above is very restrictive and can be relaxed. First, we do not
need the transformed program to have the same type as the source program. Indeed, we
only need to prove that the transformed program is typed by any type τ ′ to imply it
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is non-interferent. In other word, we only need to verify that the typability is preserved.
Second, expecting the transformed program to be typable in the same environment Γ is
a strong expectation. Indeed, a transformation could be allowed to modify the security
level of a variable. Indeed, it does not pose any security issue to transform a source public
variable into a private variable, and some transformations may have to perform such
modifications, as we will see during this section. However, the security level of a variable
should never be reduced by a transformation, to avoid the introduction of information flow
during the transformation. Formally, the transformed typing environment Γ′ must verify
∀x,Γ[x] ≤ Γ′[x]. We then define our criteria for a typability-preserving transformation as
follows:

Definition 2.12: Typability-preserving transformation.
A transformation T is said to be typability-preserving if for any program p such that:

Γ ` p : τ

we can find a type τ ′ and a typing environment Γ′ verifying ∀x,Γ[x] ≤ Γ′[x], such that:

Γ′ ` T (p) : τ ′

On the one hand, designing a typability-preserving compiler is interesting, as it allows
the compiler to be aware of the precise security level of each variable it manipulates
at every level of the compilation chain. Therefore, the compiler may take advantage of
this information to compile differently a piece of code, depending on the type-system.
For example, if an optimization breaks the NI policy (by introducing explicit or implicit
flows), the compiler may still decide to optimize if the security levels of the variables
allow it. If the compiler was not aware of the security levels, it could not give such special
treatment, and would most likely have to restrict its optimization.

On the other hand, designing a Secure Flow preserving compiler is a very challenging
task. At source level, on a simple memory model, the Secure Flow type-system is naturally
defined as we did previously in this chapter. However, for a low level language and memory
model, this is much more challenging. A low level memory level is usually a simple array
of bytes, that contains all the variables manipulated by the program. This then requires
to design a more complex security type-system, as variables are not identified by a unique
name but by an address in a memory. Such a type-system then needs to keep track of the
variables through addresses in the memory and subtle reasoning on the indices of arrays,
which requires complex analyses such as alias analysis.

The goal of this section is to highlight the limitations of a security type system such as
the one previously introduced in this chapter. We show how this type-system is not suitable
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for low level languages and memory model. To this end, we introduce a transformation
emulating a low-level program transformation. The salient feature of this transformation
is that it concatenates the memory into one big array of integers, similarly to low-level
memory models. We then show that this transformation can not be proved to be typability-
preserving.

2.4.1 A Problematic Transformation: Array Concatenation

We introduce a transformation
a2
≡V
a1

, where a1 and a2 are two array identifiers. We define

it as a relations between programs. p
a2
≡V
a1

p′ means that p is transformed into p′. The goal
of this transformation is to concatenate arrays a1 and a2 into a1. More specifically, if
a1 and a2 are arrays of respective length n1 and n2, a1 is transformed into an array of
length n1 +n2, where the n1 first elements remain untouched, and the n2 following are the
elements from a2. Meanwhile, after the transformation, a2 is never referred to and can be
safely removed from the environment. In order to infer the length of arrays a1 and a2, we
also use a type-system, different from the Secure Flow type-system. As this is a simple
standard type-system, we do not detail its definition. We simply write ∆(a) = n when
array a has length n in the source program.

The transformation
a2
≡V
a1

is defined as follows:

Definition 2.13: Array concatenation transformation.

∆(a1) = n1 e
a2
≡V
a1

e′

a2[e]
a2
≡V
a1

a1[e′ + n1]

a 6= a2 e
a2
≡V
a1

e′

a[e]
a2
≡V
a1

a[e′]

∆(a1) = n1 e1
a2
≡V
a1

e′1 e2
a2
≡V
a1

e′2

(a2[e1] := e2)
a2
≡V
a1

(a1[e′1 + n1] := e′2)

a 6= a2 e1
a2
≡V
a1

e′1 e2
a2
≡V
a1

e′2

(a[e1] := e2)
a2
≡V
a1

(a[e′1] := e′2)

We omit the other cases, that simply recursively apply the transformation to sub-
expressions and sub-statements.

We give below an example of this transformation, applied to a simple program:
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Example 6: Example of array concatenation transformation.
We consider the following program, where t1 and t2 are arrays, both of length 10. x,
y, are z are integer variables.

x = t1[2];
y = t2[3];
t2[4] = z;

Applying the transformation
t2
≡V
t1

yields the following resulting program. t1 is now
the result of the concatenation of t1 and t2, and has a length of 20.

x = t1[2];
y = t1[13];
t1[14] = z;

Even though we consider here a high-level language, this transformation is designed
to imitate what happens at low level in a compiler. Indeed, this transformation combines
two arrays into one larger array. By successively applying this transformation to every
array in the initial memory, the resulting memory will contain one single array, which is
close to what a low-level memory model may look like in a realistic compiler.

As the transformation modifies the memory layout, it also needs to modify the input
environment (σ) for the transformation to be semantically correct. We define it as follows:

Definition 2.14: Concatenation of environments.

∆(a1) = n σ[a1] = [v1; . . . ; vn]
σ[a2] = [u1; . . . ;um] σ′[a1] = [v1; . . . ; vn;u1; . . . ;um] ∀a /∈ {a1, a2}, σ[a] = σ′[a]

σ
a2
≡V
a1

σ′

2.4.2 Limitations of the Type-system

We now state a few results about the transformation
a2
≡V
a1

. The first lemma is the
semantic correction of the transformation.
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Lemma 2.9: Transformation correct.

Let p be a program and p′ its transformed program such that p
a2
≡V
a1

p′. We consider

two input environments σ1 and σ′1, such that σ1
a2
≡V
a1

σ′1. Assuming 〈p, σ1〉 ⇓ σ2, then

we can find σ′2 such that 〈p′, σ′1〉 ⇓ σ′2 and σ2
a2
≡V
a1

σ′2.

This is a standard result that we do not detail this proof here as we rather focus on the
typability-preservation of this transformation. In fact, we show that this transformation
does not preserve the typability-preservation criteria defined in Definition 2.12, hence
the following theorem:

Theorem 2.10: The concatenation transformation is not type preserving.

The underlying idea is that there exists source programs that well-typed, but whose
transformed program cannot be typed. The problems appear when the transformation
has to concatenate arrays of different security levels. This is highlighted in the following
proof.

Before detailing the proof, we first extend our language with a usual print instruction.
We do not formally detail its semantics as is it standard - defining it typically done by
extending the semantics with a list of observable events, and every call to the print
instruction append a value to the list.

The definition of NI could be naturally modified, to ensure that the list of observable
events is independent from secret data. The interesting feature comes from the fact that
the print instruction must then force the security level of a variable to be public, as
printing as high security variable would trivially break the NI policy. This would then lead
to modify the secure flow type-system accordingly, in order to prevent private variable to
be printed, by introducing the following rule:

Γ ` print(x) : τobs

We use this newly introduced instruction to find a counterexample in the following
proof, in which the security level is forced to be public throughout the transformation.
We now detail the proof of Theorem 2.10:
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Proof of Theorem 2.10.
We assume the transformation

a2
≡V
a1

to be typability-preserving. We show that this leads to a
contradiction.

We introduce several elements:
— let x be a variable identifier, that we assume to be different from both a1 and a2.
— let L and H be two security level. We assume to have L ≤ τobs and τobs � H

(intuitively, L is public, H is private).
— let p be the following program:

x := a2[1]; print(x)

— let Γ be the following typing environment:

Γ = [a1 ← H][a2 ← L][x← L]

i.e., a1 is private, and a2 and x are public in Γ.
First we can verify that p is well typed in Γ. Indeed, the assignment does not perform

an explicit flow, and the printed variable x is public.
Second, p is transformed by

a2
≡V
a1

into the following program that we call p′:

x := a1[1 + n]; print(x)

with n = ∆(a1).
By assumption, as

a2
≡V
a1

is typability-preserving, we can find τ ′ and Γ′ such that:

Γ′ ` p′ : τ ′ and ∀x, Γ[x] ≤ Γ′[x]

We make the following conclusions:
— The type of a1 cannot the lowered during the transformation, thusH = Γ[a1] ≤ Γ′[a1].
— Variable x cannot remain public, to avoid an explicit flow. Therefore, we must have

Γ′[a1] ≤ Γ′[x].
— As variable x is printed, its type must be lower than τobs. Thus: Γ′[x] ≤ τobs.
As, by definition we also have τobs � H, we deduce:

H ≤ Γ′[a1] ≤ Γ′[x] ≤ τobs � H

which is a contradiction and then concludes the proof.

In order to make the concatenation transformation typability-preserving, we would
need to introduce a more precise, but more complex type-system. This type-system would
require to keep precise track of each individual value, instead of only assigning a global
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security level to an array. This type-system would then require to reason on the indices of
the memory locations. As a memory locations may be referred to more than one pointer,
it requires to perform an alias analysis which limits the precision of the type-system. This
is a very complex task, and as far as we know, no real-life compiler on a realistic low-level
language manages to perform this goal.

We use this section as a motivation for our methodology in this document. In the
following chapter, we will focus on security policies, that are similar to NI, and which may
be enforced with similar type-systems. We will more specifically study the preservation of
these polices during a transformation of program. However, we follow a different approach
than the sketch presented in this section. We will focus on methodologies that do not
rely on the preservation of a type-system by a compiler, in order to avoid the problems
presented here. The policies we will focus on are instances of a generic security policy,
called Observational Non-Interference (ONI). The next and last section of this chapter
will focus on its definition.

2.5 Extension to Observational Non-Interference

2.5.1 Instrumenting a Semantics with Leakages
In order to formally define the ONI policy, we first need to introduce the notion of

leakage. This is usually done by instrumenting the semantics of the language, i.e., by
defining a semantics that outputs the leakage of an execution. We do not fully define it
yet, but we introduce a big-step semantics for our language L , written as:

〈p, σ〉 ⇓ (σ′, `)

It reads as follows: program p executes from input environment σ down to environment σ′.
The execution produces a leakage `. With this definition, the ONI policy can be defined
as follows:

Definition 2.15: Observational Non-Interference (ONI).
Let p be a program and τobs a security level. We assume to have initial environments
σ1 and σ2 such that σ1 'τobs

σ2, and the executions 〈p, σ1〉 ⇓ (σ′1, `1) and 〈p, σ2〉 ⇓
(σ′2, `2). If we have that `1 = `2, we then say that p is ONI.

This definition of ONI is dependent on the way we define the leakage in the semantics
of the language. With different instances of leakage, the ONI policy can be instantiated
into different security policies. As an example, the Cryptographic Constant-Time (CCT)
policy can be defined as an instance of ONI. In the remaining of this document, we will
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〈p, σ〉 ⇓1 σ
′

〈p, σ〉 ⇓2 σ
′

〈p, σ〉 ⇓3 σ
′

L

ONI1

ONI2

ONI3

Figure 2.1 – Definition workflow of 3 instances of ONI, using 3 semantics.

work on three different instances of ONI, and specifically focus on the preservation of these
policies during a program transformation. We will also precisely compare these policies.

Defining three instances of ONI requires to define three semantics for L that are
very similar. This is summed up in the diagram presented in Figure 2.1. In this figure,
we illustrate how we could introduce three semantics for our language L , denoted as
⇓1, ⇓2, and ⇓3, and these semantics to define three different instances of ONI. This is
not convenient, as it requires to introduce several definitions that only differ on a few
elements. But it becomes really clumsy if we want to compare theses policies, and we
would have to reason on executions that use different semantics for a same program.

For these reasons, we choose a slightly different approach. We define a unique semantics
for our language, that contain all the leakage we need to define the three policies we are
interested in. We call this leakage the raw leakage of an execution. Then, to define an
ONI policy, we define a projection function π, that takes a leakage as input and filters it
to only keep the leakage relevant for this instance of ONI. The projected leakage is what
we use to define ONI. Formally, we use the following definition:

Definition 2.16: Observational Non-Interference (ONI).
Let π be a projection function. Let p be a program and τobs a security level. We assume
to have initial environments σ1 and σ2 such that σ1 'τobs

σ2, and the executions
〈p, σ1〉 ⇓ (σ′1, `1) and 〈p, σ2〉 ⇓ (σ′2, `2). If we have that π(`1) = π(`2), we then say that
p is ONI with respect to π. We denote it as ONIπ(p, τobs).

Using this definition, defining several instances of ONI becomes much easier, as we
only need to define the corresponding projection functions. It is also easier to compare
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〈p, σ〉 ⇓ σ′L π2

π1

π3

ONI1

ONI2

ONI3
Figure 2.2 – Definition workflow of 3 instances of ONI, using 1 semantics and projection
functions.

these policies, as they are all based on the same semantics, that emits the raw leakage.
This is summed up in Figure 2.2. In this figure, we illustrate one single semantics, denoted
as ⇓ is used to define three instances of ONI, using three projection function π1, π2 and π3.
Using this approach, defining a new instance of ONI only comes down to simply defining
a new projection function π.

In our work, we follow this second approach. The instrumented semantics of L will
be incrementally augmented throughout this document, by introducing new kind of raw
leakages when needed. The first version of this semantics will be defined in the following
section, in which we define the CCT policy as an instance of ONI.

2.5.2 Defining the Constant-Time Policy as an Instance of ONI

The CCT policy focuses on the control-flow of an execution, and on the memory
accesses performed during this execution. More precisely, to be considered CCT, a program
must never perform a branching that depend on a secret value, nor any memory access
whose location depends on a secret value. To define CCT as an instance of ONI, we
can naturally define the emitted leakage as the control-flow and the sequence of memory
accesses performed by the execution. This definition ensures that observing the leakage
(i.e., the control-flow and the memory accesses) does not allow to learn any information
on the secret of the program.

We define a leakage as a list events. Whenever a program executes a branching or a
memory access, a corresponding event is emitted in the leakage. We then need two kinds
of events, to records both the control-flow and the sequence of memory accesses. The set
of events E is defined as follows:
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Definition 2.17: Set of event E.

〈event〉 ::= eB(b) | eM(id, n)

eB(b) is an event emitted at a branch, where b is a boolean value. b is the truth
value to which to condition has evaluated to. eM(id, n) is an event emitted at a memory
access, where id is an array identifier, and n is the index of the value accessed in this
array.

We now define a leakage as a list of events, using notation e·` to add event e to leakage
`, and notation `1 · `2 to denote the concatenation of leakages. ε is an empty leakage.

Example 7: Example of leakage.
For example, if an execution emits leakage eB(true) · eM(x, 2) · eb(false), this means
that the execution first encountered a branching, whose condition evaluated to true.
Then, the execution encountered a memory access to the index 2 of array x. Then,
another branching whose condition evaluated to false.

We now provide a complete big-step semantics, in the following definitions, both for
expressions and statements.

Definition 2.18: Evaluation of expression 〈e, σ〉 ⇓ (v, `).

var
σ[x] = v

〈x, σ〉 ⇓ (v, ε)

array
σ[x] = [v1; ...; vn; ...vm] 〈e, σ〉 ⇓ (n, `) 1 ≤ n ≤ m

〈x[e], σ〉 ⇓ (vn, (` · eM(x, n)))

const

〈n, σ〉 ⇓ (n, ε)

op_bin
〈e1, σ〉 ⇓ (v1, `1) 〈e2, σ〉 ⇓ (v2, `2)
〈e1 � e2, σ〉 ⇓ (v1 � v2, (`1 · `2))

Definition 2.19: Evaluation of statement 〈s, σ〉 ⇓ (σ′, `).

skip

〈skip, σ〉 ⇓ (σ, ε)

assign
〈e, σ〉 ⇓ (v, `)

〈id:=e, σ〉 ⇓ (σ[id← v], `)
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assign_array
σ[x] = [v1; ...; vn; ...vm]

〈e1, σ〉 ⇓ (n, `1) 〈e2, σ〉 ⇓ (v′, `2) 1 ≤ n ≤ m v′ ∈ Z
〈a[e1]:=e2, σ〉 ⇓ (σ[a← [v1; . . . ; vn−1; v′; vn+1; . . . ; vm]], (`1 · `2 · eM(x, n)))

seq
〈p1, σ〉 ⇓ (σ′, `1) 〈p2, σ

′〉 ⇓ (σ′′, `2)
〈(p1; p2), σ〉 ⇓ (σ′′, (`1 · `2))

if_true
〈e, σ〉 ⇓ (n, `) n 6= 0 〈p1, σ〉 ⇓ (σ′, `1)

〈if(e) {p1} else {p2}, σ〉 ⇓ (σ′, (` · eB(true) · `1))

if_false
〈e, σ〉 ⇓ (n, `) n = 0 〈p2, σ〉 ⇓ (σ′, `2)

〈if(e) {p1} else {p2}, σ〉 ⇓ (σ′, (` · eB(false) · `2))

while_true
〈e, σ〉 ⇓ (n, `) n 6= 0 〈p, σ〉 ⇓ (σ′, `′) 〈while(e) {p}, σ′〉 ⇓ (σ′′, `′′)

〈while(e) {p}, σ〉 ⇓ (σ′′, (` · eB(true) · `′ · `′′))

while_false
〈e, σ〉 ⇓ (n, `) n = 0

〈while(e) {p}, σ〉 ⇓ (σ, (` · eB(false)))

The key feature of these semantics is the emission of leakage. We can indeed notice
that we emit event eM(x, n) when the index n of array x is accessed, both read (rule
array) and write (rule assign_array). In rules if_true and while_true, we emit
event eB(true), and in rules if_false and while_false, we emit event eB(false). In all
the rules, the leakage emitted by sub-expressions and sub-statements are concatenated.

Last, CCT as ONIπ, with π the identity function. In other words, the projection
function π keeps the whole leakage for now. Projection functions we see more use in
chapter 4, where we will define two other instances of ONI.

2.5.3 Enforcing CCT with a Type-System
The Secure Flow type-system introduced in section 2.2 can easily be adapted to enforce

the CCT policy. Indeed, we want to forbid both memory accesses and branchings that
dependent on a secret value. We describe how to achieve this goal. We first define a new
type-system, called the Constant-time type-system, which is a direct adaptation to the
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one presented in section 2.2. This new type-system is defined with respect to a security
level τobs. It is defined as follows, both for expressions and statements:

Definition 2.20: Constant-time type-system for expressions Γ ` e : τ .

const

Γ ` n : τ

var
Γ(x) = τ

Γ ` x : τ

array
Γ[a] = τobs Γ ` e : τobs

Γ ` a[e] : τobs

op_bin
Γ ` e1 : τ Γ ` e2 : τ

Γ ` (e1 � e2) : τ

subtype_e
Γ ` e : τ1 τ1 ≤ τ2

Γ ` e : τ2

Definition 2.21: Constant-time type-system for statements Γ ` s : τ .

asn
Γ(x) = τ Γ ` e : τ

Γ ` (x := e) : τ

array_asn
Γ[a] = τobs Γ ` e1 : τobs Γ ` e2 : τobs

Γ ` (a[e1] := e2) : τobs

seq
Γ ` s1 : τ Γ ` s2 : τ

Γ ` (s1; s2) : τ

if
Γ ` e : τobs Γ ` s1 : τobs Γ ` s2 : τobs

Γ ` (if e then s1 else s2) : τobs

skip

Γ ` skip : τ

while
Γ ` e : τobs Γ ` s : τobs

Γ ` (while e do s) : τobs

subtype_s
Γ ` s : τ2 τ1 ≤ τ2

Γ ` s : τ1

Note that the Constant-time type-system is very close to the Secure Flow type-system.
The only difference is that memory accesses and branchings are only allowed if they have
type τobs, thus forbidding secret dependent branchings and memory accesses.

We can now state the soundness of this type system, capturing the idea that any
well-typed program is CCT-secure.

Theorem 2.11: Soundness of the Constant-time type-system.
Let p be a program. If p is well-typed, i.e., Γ ` p : τ , then p is CCT-secure with respect
to the security level τobs, i.e., CCT(p, τobs).
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2.6. Conclusion

We provide a mechanized proof of this theorem, although we do not detail it in this
document.

2.5.4 Preservation of ONI

We conclude this section by defining the preservation of the ONI policy by a transfor-
mation. A transformation T is ONI-preserving when given a ONI-secure program P , then
T (P ) is ONI-secure as well. The underlying hypothesis is that P starts from two indis-
tinguishable states and so does T (P ). However, these two pairs of state are not related.
In the same way, there is no relation between the two leakages observed during the two
executions of P and T (P ). This definition expresses the preservation of an ONI policy,
but it is too general to be proved by a simple induction. For that reason, we define in
chapter 4 less general preservation properties that fit to our program transformations and
are easier to prove.

Definition 2.22: Preservation of ONI.
Let π be a leakage projection. A transformation T is ONIπ-preserving when, for any
program p:

ONIπ(p) =⇒ ONIπ(T (p))

2.6 Conclusion
In this chapter, we first presented the non-interference policy, then a secure flow type

system. We then didactically proved this type system to enforce the non-interference
policy, in the case of a language with a small-step semantics with continuations.

Next, we presented the problem of the preservation of this policy during the compila-
tion of a program, with a type-preserving approach. We presented the limitations of this
approach. In the following chapters of this document, we will focus on the preservation
of policies similar to non-interference, by using approaches that do not rely on a type
preserving compiler.

Last, we presented the Observational Non-Interference (ONI) policy, as well as the
Cryptographic Constant-Time (CCT) policy, that we defined as an instance of ONI. The
next chapter will be devoted to the study of the preservation of CCT by the CompCert
compiler. In chapter 4, we will focus on a different instance of ONI, called Constant-
Resource (CR)

Throughout this chapter, we showed that type-systems are powerful tools that can be
used to enforce security policies such as NI and ONI at source level. However, we also
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saw that such type-systems are hard to preserve during a program transformation. In the
following chapters, we will focus on the preservation of ONI policies, using methodologies
that do not rely on the preservation of a type-system.
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Chapter 3

A CONSTANT-TIME PRESERVING

COMPCERT COMPILER

Formally verified compilers, such as the CompCert compiler, guarantee the preser-
vation of the observable behavior of programs during the compilation. The absence of
correctness bugs introduced by the compiler is then guaranteed, but this does not en-
compass security bugs that may still be introduced during the compilation. For instance,
the constant-time policy may easily be broken by a compiler. We recall that a program
is said to be constant-time if its control-flow and memory accesses do not depend on
the secret values of the program. Therefore, as the compiler is not aware of the taints
of the program (i.e., which values are secret or not), any introduction of if statements
or memory accesses during the compilation may break the constant-time policy. Several
common compilation passes and optimizations, such as optimizations on multiplications,
lazy operations, or register allocation are thus likely to break this policy. As a matter of
fact, most standard C compilers break this policy, as we will see in Section 3.1.

Yet, a constant-time preserving compiler is an appealing goal to achieve. Indeed, even
though the constant-time policy may seem conceptually simple, according to its infor-
mal definition provided above, writing correct and secure constant-time code is a very
challenging task. To help practitioners, many tools have been developed to check that
cryptographic libraries adhere to the constant-time discipline. As the compiler can not be
trusted to preserve the policy, these tools target low-level machine code, which presents
several drawbacks. First, the analysis is less precise than at source level. Second, the re-
sult of the analysis is usually difficult to understand by the programmer. A constant-time
preserving compiler would then allow to delegate this checking step to the source level,
eliminating these drawbacks, by then relying on the compiler to preserve the policy down
to the low-level code.

Several constant-time preserving compilers exist in the literature, such as FaCT and
Jasmin. However, they all target custom domain specific languages. Our goal here is to
target a realistic C compiler: the CompCert compiler. This challenge raises two questions.
First, how can we modify the CompCert compiler in order to make it constant-time
preserving. Second, how can we formally prove that this modified CompCert preserves
this policy. In this chapter, we will exclusively focus on the former, while details on the
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later question are orthogonal to our contribution, and can be found in [Bar+19].
Specifically, we will first present examples of standard C compilers that break the

constant-time policy in Section 3.1. Next, we will present the selection operation, a pro-
gram construct commonly used by practitioners to write constant-time code in Section 3.2.
We will then present some specific background on the CompCert compiler, detailing its
architecture in Section 3.3. The last sections will be devoted to the changes we made to
the compiler.

Note: Throughout this chapter, we will study two distinct notions that share a very
similar name. First, we will focus on several passes of the compilers, including one named
Instruction Selection. Second, we will focus on a specific instruction, called the selection
operation. In order to avoid ambiguity, we adopt the following notations:

— Passes (including Instruction Selection) will be referred to using a bold style: In-
struction Selection.

— Instructions (including the selection operation) will be referred to using a type-
writer style and their implementation name: select.

— Intermediate languages will be referred to using a sans-serif style: CompCert C.

3.1 Examples of Standard Compilers Breaking the
Constant-time Policy

During the compilation of a program, the different transformations occurring may
modify the intermediate computations, as long as the overall observable behavior of the
program is preserved. A program may be modified either to improve the performance
of the program, but may also sometimes require to be modified in order to bypass the
target language limitations, such as instructions present in the source language that do
not exists in the target language. We present an example for both cases, that breaks the
constant-time policy during compilation.

3.1.1 Optimization Breaking Constant-time
Our first example is an optimization performed on arithmetic operations. Consider the

operation b * x where b is a boolean value, and x is an integer value. The result of this
operation is semantically equivalent to x if b is true, and 0 otherwise.

Consider the following C function:
Note that we force the value b to be a boolean value by applying the negation operator

! twice. We compile it using the Clang compiler on the latest version (version 11), targeting
a 32 bits x86 architecture. Figure 3.2 presents the generated assembly code. We first
compile it without any compiler optimization. The produced assembly code is presented
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int f(int b, int x) {
return (!!b) * x;

}

Figure 3.1 – A C function multiplying a boolean and an integer.

in (Figure 3.2a). Its interesting feature is that is does not contain any introduced jump
instruction, and thus preserves the constant-time policy on this example. We then compile
it using the level 1 optimization. The produced code (Figure 3.2b) is equivalent in C source
code to the instruction if(b) { return x; } else { return 0; }. This time, the code
produced contains a jump instruction, which means that the compiler introduced a branch
during the compilation. Therefore, Clang explicitly broke the constant-time policy. This
kind of behavior must be prevented in a constant-time preserving compiler.

(a) Without optimization (-O0) (b) With level 1 optimization (-O1)

Figure 3.2 – Assembly code generated by Clang.

3.1.2 Floating Point Value Conversion

Our second example targets a limitation of the x86 architecture about conversion
between floating-point values and integer values. The C language provides several cast
operations between these types of values, which are handled at machine level by specific
instructions. However, some of these conversion instructions do not exist at machine level
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and thus require a workaround that may introduce a branch during the compilation. We
observe this behavior on the latest version (version 11) of the GCC compiler.

unsigned f1(float x) {
return x;

}

(a) Conversion from float to unsigned int.

unsigned long f2(float x) {
return x;

}

(b) Conversion from float to unsigned long
int.

Figure 3.3 – Conversions between float and unsigned integer values.

Consider the C functions presented in Figure 3.3. These functions are similar and
perform a simple cast from a floating point value to respectively an unsigned integer
and an unsigned long integer. Still, compiling these functions with GCC, using the level 1
optimization yields very different machine code. The generated assembly code is presented
in Figure 3.4. We can notice that the conversion in function f1 is directly compiled into
one specific x86 instruction. However, the compilation of f2 introduced a branch, and
thus broke the constant-time policy. The branch has been inserted by the compiler as
there is no native x86 instruction to convert a float to a value of type unsigned long int.
Instead, it is implemented using the float to unsigned int instruction and a branch.

(a) Conversion from float to unsigned
int.

(b) Conversion from float to unsigned long int.

Figure 3.4 – Assembly code generated by GCC -O1.

3.1.3 Conclusion
We showed two examples of very simple programs illustrating that the latest version of

standard C compiler (Clang and GCC) may break the constant-time policy. A constant-
time preserving must avoid these behaviors in order to strictly preserve the constant-time
policy. The examples presented in this section will be used in the rest of this chapter.
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3.2 A Constant-time Selection Operation
In a constant-time program, the control-flow must not depend on the secret value

of the program. This means that a program as simple as if(c) x = 1; else x = 2;
is forbidden, when c is a secret. Still, when writing cryptographic code, it is useful to
be able to semantically perform a choice between two values, depending on a secret
value, in a constant-time way. This is called a selection operation, and will denote it
ctselect(cond, e1, e2). The operation x = ctselect(cond, x1, x2) is semantically
equivalent to if(c) x = x1; else x = x2;, but has to be implemented in a constant-
time way.

At source level, there exists several ways to implement it in a branchless way, by using
clever arithmetic operation or bitwise manipulation. Figure 3.5 presents two of these
possible implementations. Such program constructs can be found in cryptographic code,
however, they both present two drawbacks. First, they are less efficient than their natural
implementations using an if statement. And most importantly, they are not guaranteed
to be compiled in a constant-time way by the compiler. As presented in Section 3.1.1,
the compiler may optimize these implementations by replacing the arithmetic or bitwise
operations with a branch.

unsigned ctselect1(int cond, int x1, int x2) {
return cond * x1 + (1 - cond) * x2;

}

(a) Constant-time selection with arithmetic operation.

unsigned ctselect1(int cond, int x1, int x2) {
return x1 ^ ((x2 ^ x1) & (-(unsigned)cond));

}

(b) Constant-time selection with bitwise operation.

Figure 3.5 – Implementations of constant-time selection at source level.

A possible solution to fix this issue is to disable the optimizations responsible for this
behavior, but it is actually not necessary. Indeed, not only such a selection operation is
useful as source level to perform a branchless selection between values, but it may also be
useful inside the compilation chain of a constant-time preserving compiler. As illustrated
in Section 3.1.2, a transformation may have to introduce a branch during the compilation.
Replacing these introduced branches with selection operations is thus a relevant solution.

This is the solution we adopted in order to make the CompCert compiler constant-
time preserving. We introduce a selection operation ctselect at source level, and at
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intermediary language of the compiler. This operation is shared by all the languages and
the passes, and is thus unaffected by the existing optimizations of the compiler. This
operation is also available to be used in any pass of the compiler. This will be detailed a
lot during the following sections.

This raises one last question. At the end of the compilation chain, the selection oper-
ation must be implemented into machine code. Similarly to the source implementations
of Figure 3.5, the selection operation can be implemented at low-level using arithmetic or
bitwise operations. However, the x86 architecture provides a specific instruction that can
serve this purpose: the cmov instruction. This instruction is commonly used by practition-
ers to write constant-time code. It has the following semantics: executing cmov c r1 r2
will move the value of the register r2 into the register r1 if the condition c is verified. Oth-
erwise, nothing happens. This looks like a branch, but is empirically executed in a time
that does not depend on the condition. This cmov instruction is then commonly assumed
to have a constant execution time and can be used in constant-time code. Figure 3.6 give a
possible low-level implementation of the ctselect operation using two cmov instructions.
We will detail the way we did it in the CompCert compiler in the following sections.

cmov cond r r1
cmov (!cond) r r2

Figure 3.6 – A low-level implementation of r ← ctselect(cond, r1, r2).

3.3 Detailed Background on the CompCert Compiler
The CompCert compiler compiles C source code down to assembly. It is designed as

a sequence of 20 consecutive compilation passes, and uses 8 intermediate languages. This
section aims at giving on overview of these transformations and languages. Specifically,
we will present details on the version 3.4 of CompCert, on which our work is based on.
We will later refer to this overview when presenting our modifications on the CompCert
compiler.

3.3.1 Architecture of CompCert
Figure 3.7 presents all the passes and languages of CompCert, including CompCert C

(source) and ASM (target). Boxes represent the languages, and labeled arrows represent
the transformations. The compiler is divided into two parts, the frontend compiler and
the backend compiler.
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CompCert C Clight Csharpminor Cminor

Linear LTL RTL CminorSel

Mach ASM

SimplExpr

SimplLocals

Cshmgen Cminorgen

Selection

Stacking

CleanupLabels,
Debugvar Tunneling

Linearize

Tailcall, Inlining,
Renumber, Constprop,

CSE, Deadcode,
Unusedglob

Allocation RTLgen

ASMgen

Figure 3.7 – The CompCert compilation chain.

Frontend Compiler

The frontend compiler is independent from the target architecture. It compiles pro-
grams from a source language called CompCert C down to Cminor. All the intermediate
languages are structured with statements and expressions constructs. The source language
is the C99 language with only a few exceptions that are detailed in the documentation of
CompCert [Ler+12].

The first pass, called SimplExpr compiles CompCert C to Clight [BL09]. This language
is a large subset of C, which mean that any valid Clight program is a valid C program. It
contains only pure expressions: unlike the C language, expression can no longer contain
side-effects. Therefore, in this language, function calls and assignments cannot occur in
expressions but only in statements. The goal of this design is to ensure the determinism
of the evaluation the language. Ternary conditions (expression such as cond ? a : b in
the source language) are also compiled into if statements in Clight.

The next two languages, Csharpminor and Cminor, and their associated transformations
Cshmgen and Cminor aim for several goals [BDL06]. First, the control-flow constructs
of the source language (if, switch, while, for, do...while) are compiled to more sim-
ple low-level constructs. Second, operator overloading is resolved with type inference:
type-dependent operators, such as arithmetic or conversion operators, are made explicit.
Last, local variables are stack-allocated, and accesses to these variables are replaced with
corresponding load/store operations.

Finally, we highlight here the fact that the final language, Cminor, defines a notion
of operation. It encompasses all the operations that exist in the C language, such as
arithmetic, boolean, bitwise, comparison or conversion operations.
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Backend Compiler

The remaining of the compiler, called the backend part, is dependent on the chosen
target architecture. In our work, we only focus on the x86 architecture, but we believe
in can easily be adapted to other target architectures. Programs are compiled down to
ASM, a language describing the abstract syntax tree of the chosen target assembly code.

The first pass, called Selection, connects the frontend and the backend of the compiler.
This is a standard compilation pass, that aims at mapping the source operations of the
Cminor language (which are the ones from the C language) to the operations supported
by the target architecture. In CompCert, this pass is performed on high-level structured
languages. Indeed, just like Cminor, CminorSel is structured with expressions, statements
and functions. Both languages are similar, except for this notion of operation. For most
operations, the translation from source to target operations is straightforward, as most
of C operations have their x86 counterpart. For example, the source bitwise and operator
& can be translated to the and x86 instruction. However, some source operations cannot
be directly translated and thus require a workaround to be implemented. This will be
detailed and discussed later.

Note that the architecture-dependent operations used in Cminor are defined and shared
for every language of the backend compiler. The next pass, RTLgen compiles CminorSel
programs to the RTL language. RTL, which stands for register transfer language, is a
language in which programs are represented as 3-address code. This is the first language
of the compilation chain which is not structured with expressions and statements, but
which instead represents program as a control-flow graph.

Next, because of the simple structure of the RTL language most of CompCert’s opti-
mizations are performed at RTL level. These optimizations include for example Constant
Propagation, Common Subexpression Elimination, Deadcode Elimination and
Function Inlining.

The next pass is the register Allocation pass, which compiles a RTL program to LTL
program. RTL and LTL have a similar structure, but LTL has a limited amount of register
available, while RTL can manipulate infinitely many registers.

Next, the Linearize pass compiles program from LTL to the Linear language. In this
language, the program does not longer have a control-flow graph, but is instead a list of
instructions that contains conditional jumps.

Finally, during then ASMgen pass, the Mach code is transformed into assembly
code. This pass truly depends on the target architecture.
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3.3.2 x86 Operations in CompCert

In CompCert, the backend of the compiler is the only architecture-dependent part.
Yet, most of the backend compiler is shared between the different supported architec-
tures, and only a minimal part of the backend actually depends on the architecture.
Specifically, CompCert introduces a notion of architecture-dependent operation, which
roughly represents what the processor may execute in one instruction. This notion of op-
eration is shared between all the languages of the backend. Architecture-dependent parts
of the compiler mainly include:

— the definition of this set of operations,
— the generation of these operations during the Instruction Selection pass,
— the Register Allocation pass, which depends on the number of registers available

on the hardware,
— the generation of assembly code from these operations during the ASMgen pass.
We detail here the definitions of the architecture-dependent set of operations for the

x86 architecture. For brevity, we only show some illustrative cases of these operations,
and omit the others.

Syntax of Operations

The syntax of the operations does not include the non-constant operands of the oper-
ation. Indeed, their definition is designed to be generic enough to be used in structured
languages (such as CminorSel) or machine code (such as Mach). Therefore, these opera-
tions are meant to be applied to expressions in the former (i.e., an operation uses a list
of expressions as operands), and to registers in the latter (i.e., an operation uses a list of
registers as operands).

The syntax of the x86 backend operation is presented in Figure 3.8a. It consists of a
list of instructions supported by the x86 architecture. In the comments of the definition,
[rd] is the result of the operation and [r1], [r2], etc, are the operands.

This list includes the move instruction Omove, instructions setting a register to a con-
stant value, usual 32-bit and 64-bit arithmetic and bitwise instructions, floating-point
arithmetic instructions, conversion instructions and comparisons. Most of these instruc-
tions have several variations, used to support the different types of integers supported
by the hardware (8-bit, 16-bit, 32-bit, 64-bit, both signed and unsigned). Some of these
instructions support an immediate value as a parameter, such as the Omulimm instruction.
These instructions are then parameterized by an integer value. Last, the comparison oper-
ation Ocmp is parameterized by a condition, whose definition is given in Figure 3.8b, and
is used to represent a comparison between two registers. These conditions exist in many
variation to support every size of integer, both signed and unsigned, and floating-point
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value comparisons. We again only show a few of them here.

Semantics of Operations

The semantics of the operations is defined as a function that evaluates an operation
to a value. A value is a type that is defined in CompCert and which is every intermediate
language of the compiler. It can represent a machine integer value, a machine floating-
point value, a pointer, or an undefined value, used to represent an arbitrary content.

The semantics is defined through the function eval_operation, and present its defini-
tion in Figure 3.9. It maps an operation op, a list of values vl (the arguments to be applied
to the operation). The function also takes as parameter a global environment genv, that
defines symbols and functions in the program, a memory mem, and the stack pointer sp.
The function computes the associated resulting value, to be stored in the target register.
The evaluation of an instruction may fail (e.g., a division by 0), which is captured by
returning the value None.

We give the semantics of a few of the operations previously presented. To evaluate a
Omove, the semantics excepts exactly one value (and would fail otherwise), and returns
this value. Evaluating an integer constant consists in returning a value containing the
constant itself. Note that all these definition are fairly simple, and rely on evaluation of
values, which is shared between of the languages of CompCert. Evaluating a division Odiv
relies on the function Val.divs, which may return None if v2 is zero.

Assembly Generation

During all the following passes of the backend of CompCert, the operations are trans-
mitted from a language to the next without any modification, until the assembly gen-
eration pass. During this pass, one specific function translates generic operations into
assembly code. This function, call transl_op, is presented in Figure 3.10. For brevity, we
only present one of the many cases of this function. The function as parameter an opera-
tion op, a list of operand registers args, a destination register res. This transformation
is defined using continuations, which is why the function takes as parameter k, the rest
of the assembly code, to which to generated code is prepended. The function returns the
generated assembly code. We present the case of the generation of a multiplication oper-
ation Omul. This operation has to be applied to exactly two operand registers a1 and a2;
any different number of operands would fail the compilation. The generated code contains
monads to handle errors values. As such, the function first checks that the first operand
a1 and the destination register res are the same registers. This is achieved through Com-
pCert’s previous optimizations during register allocation. Next, the compiler checks that
both registers res and a2 are integer registers. If this condition is verified, then the code
Pimull_rr res a2 is generated, which corresponds to IMUL x86 instruction.
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Inductive operation : Type :=
| Omove (* [rd = r1] *)

(* constants *)
| Ointconst (n: int) (* [rd] is set to the given integer constant *)

(* 32-bit integer arithmetic: *)
| Oneg (* [rd = - r1] *)
| Osub (* [rd = r1 - r2] *)
| Omul (* [rd = r1 * r2] *)
| Omulimm (n: int) (* [rd = r1 * n] *)
| Odiv (* [rd = r1 / r2] *)
| Omod (* [rd = r1 % r2] *)

(* 64-bit integer arithmetic: *)
| Omakelong (* [rd = r1 << 32 | r2] *)
| Osubl (* [rd = r1 - r2] *)
| Omull (* [rd = r1 * r2] *)

(* Floating-point arithmetic: *)
| Onegf (* [rd = - r1] *)
| Oabsf (* [rd = abs(r1)] *)
| Oaddf (* [rd = r1 + r2] *)

(* Conversions between int and float: *)
| Ointoffloat (* [rd = signed_int_of_float64(r1)] *)
| Ofloatofint (* [rd = float64_of_signed_int(r1)] *)

(* Comparisons: *)
| Ocmp (cond: condition) (* [rd = 1] if condition holds, [rd = 0] otherwise. *)

(* 81 other cases omitted for brevity ... *)

(a) Definition of x86 operations in CompCert.

Inductive condition : Type :=
| Ccomp (c: comparison) (* signed integer comparison *)
| Ccompu (c: comparison) (* unsigned integer comparison *)
| Ccompl (c: comparison) (* signed 64-bit integer comparison *)
| Ccompfs (c: comparison) (* 32-bit floating-point comparison *)
(* 10 other cases omitted for brevity ... *)

(b) Definition of x86 comparison in CompCert.
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Definition eval_operation
(F V: Type) (genv: Genv.t F V) (sp: val)
(op: operation) (vl: list val) (m: mem): option val :=

match op, vl with
| Omove, v1::nil ⇒ Some v1

| Ointconst n, nil ⇒ Some (Vint n)

| Oneg, v1::nil ⇒ Some (Val.neg v1)
| Omulimm n, v1::nil ⇒ Some (Val.mul v1 (Vint n))
| Odiv, v1::v2::nil ⇒ Val.divs v1 v2

| Onegf, v1::nil ⇒ Some(Val.negf v1)

| Ointoffloat, v1::nil ⇒ Val.intoffloat v1
| Ofloatofint, v1::nil ⇒ Val.floatofint v1

(* 90 other cases omitted for brevity ... *)

| _, _ ⇒ None
end.

Figure 3.9 – Semantics of x86 operations in CompCert.

Definition transl_op
(op: operation) (args: list mreg) (res: mreg) (k: code) : Errors.res code :=

(* ... *)
| Omul, a1 :: a2 :: nil ⇒

assertion (mreg_eq a1 res);
do r ← ireg_of res; do r2 ← ireg_of a2; OK (Pimull_rr r r2 :: k)

(* ... *)

Figure 3.10 – Semantics of x86 operations in CompCert.
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3.4 CCT-preservation Breach in CompCert
In this section, we detail how the version 3.4 of CompCert does not preserve the

constant-time policy. We specifically present details of the implementation that explicitly
break the property by introducing a branch. We then present our approach to fix it.

3.4.1 Non-preservation of the Constant-time Policy by the In-
struction Selection Pass

In Cminor, there are 5 kinds of constants, 33 unary operators and 40 binary operators.
All the following intermediate languages, from CminorSel to Mach, share the same defi-
nition of operators, which are architecture dependent. To handle in a uniform way this
large variety of shared operators, a generic notion of backend operator that we presented
previously 3.3.2.

Among the Cminor operations are int-to-float and float-to-int conversions. Two of them
may introduce conditional branches that are not present in the source program, to work
around a limitation of the target instruction set architecture: in x86, there is no instruction
allowing to convert an unsigned 32-bit integer to a float. The workaround is to emulate
the generic source operations with several target instructions, sometimes involving new
conditional branches. During instruction selection, there are two conversion operations and
several comparison operations that generate conditional branches. Figure 3.11a shows in
C syntax how the unsigned int to float conversion is defined in CompCert. It uses
the signed int to float conversion (represented by the function floatofints), and
introduces a new conditional branch to handle the conversion of an out-of-bound (i.e.,
greater than or equal to 231) unsigned integer value. Indeed, the signed int to float
operator can only be applied on an integer whose value is in the interval [−231 ; 231). The
floatofintu operation is then implemented as follow in CompCert. If the operand x is
in [0; 231), then we use the floatofints operator to convert it. Otherwise, the operand x
is in [231; 232). We then subtract 231 from x, apply the floatofints operator to x− 231,
which is in the correct range, then add back the float value 231 too the result. This a
correct implementation despite infamous float computation round errors. In our context,
the most important point to remember is that this implementation insert a branch in the
program, which breaks the constant-time policy.

In a similar way, the conversion from a float to an unsigned int operation does not
exists in x86. Figure 3.11b shows in C syntax how the float to unsigned int conversion
is defined in CompCert. It uses the float to signed int conversion (represented by
the function intsoffloat). The intsoffloat can only convert float values in range
[−231 ; 231). Similarly to the previous case, the implementation intuoffloat in CompCert
uses the intsoffloat operation by conditionally performing a shift on the operand when
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need. Again, a branch is introduced by this implementations.
Moreover, on 32-bit architectures, comparing 64-bit integers introduces conditional

branches. Indeed, in the CompCert memory model, a 64-bit integer is represented by a
pair of two 32-bit integers. For efficiency reasons of the generated code, comparing two
64-bit integers consists in first comparing their upper-32 bits, and second in comparing
their lower-32 bits only if necessary. Therefore, any comparison between 64-bit integers
may introduce new conditional branches, as shown in the example of Figure 3.11c. Given
two signed 64-bit integers called x and y, it shows the two conditional branches gen-
erated when compiling the instruction if (x <= y) goto lthen; else goto lelse;.
The syntax (xh, xl) = x; introduces the pair of 32-bit integers representing x.

3.5 Modification of the CompCert Compiler
We previously presented three examples of operations that introduce branches during

the Instruction Selection pass of CompCert. Consequently, it breaks the constant-time
policy and our goal is to fix these implementations. We also want to keep the changes we
make to CompCert as light as possible, and we want our modified CompCert to produce
as efficient code as possible.

Fixing these implementations requires to replace the introduced branches by branch-
less choices. As discussed in Section 3.2, a branchless choice may be performed using
arithmetic or bitwise manipulation, and also using the specific x86 cmov instruction. As
the latter is significantly more efficient, we chose to use this instruction. Luckily, the cmov
instruction is already implemented in CompCert, but it only exists in the last language
of the compilation chain, ASM.

We want to be able to perform branchless choices in the Instruction Selection pass,
but CompCert currently implements the cmov instruction much later in the compilation
chain. We then have to choose.

— We can either extend the definitions of all the intermediate languages of the back-
end to also include a cmov instruction. We can then modify all the transformations
to compile cmov instructions from CminorSel to ASM. Then, we can use the newly
introduced cmov instruction in the Instruction Selection pass the implement the
problematic operation in a branchless way.

— We can also introduce a selection operation, as the one discussed in Section 3.2,
in all the languages of the backend, and modify the transformations accordingly.
Then, the newly introduced selection operation can be compiled down to cmov
instructions at ASMgen level.

Both these scenarios may seem similar, but we chose the second one for the following
reason. Recall that CompCert provides a generic backend operation set that is shared by
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float floatofintu(unsigned int x) {
float y = 0x1p31; // 231

if (x < 0x80000000) // 231

return floatofints(x);
else

return y + floatofints(x - 0x80000000);
}

(a) The unsigned int to float conversion.

unsigned int intuoffloat(float x) {
float y = 0x1p31; // 231

if (x < y)
return intsoffloat(x);

else
return 0x80000000 + intsoffloat(x - y);

}

(b) The float to unsigned int conversion.

(xh, xl) = x; (yh, yl) = y;
if (xh == s yh)

if (xl <=u yl) goto lthen;
else goto lelse;

else if (xh <s yh) goto lthen;
else goto lelse;

(c) Comparison ≤ for the signed 64-bit integers x and y, using signed (s) and unsigned (u)
operators.

Figure 3.11 – Examples (in C-like syntax) of conditional branches introduced by Com-
pCert.
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Inductive operation : Type :=
(* All the previously defined cases *)
| Oselect: condition → typ → operation.

(**r [rd = r1] if condition holds, [rd = r2] otherwise. *)

Figure 3.12 – New selection operation.

all the languages of the backend, that we presented in Section 3.3.2. Adding one operation
to this set is a very light modification, that can modify all the backend of CompCert
directly. However, the cmov instruction cannot be added to the set of these operations, for
the following reason. The semantics used to evaluates operations (Figure 3.9) expects that
evaluating an operation will produce a value that only depends on its operands. Consider
the following pseudo-code:

r ← add [v1;v2]

It consists in evaluating the operation add on operands v1 and v2, and storing the result
in r. The operation Eop add [v1;v2] produces a value v1+v2, which indeed depends on
the operands. If we now consider the following hypothetical code:

r ← cmov [cond;v]

It consists in performing a cmov on the value v, depending on condition cond, and storing
the result in r. However, we cannot express the value produced by the operation using only
the operands. Indeed, the value eventually stored in r would be if cond then v else r.
In other words, the cmov instruction performs a side-effect and thus cannot be imple-
mented as a backend operation without heavily modifying the compiler.

On the other hand, a selection operation perfectly fits the requirements of the set of
operations of the backend, and we thus chose this option.

3.5.1 Modification of the Set of Operations of the Backend Com-
piler

Our first modification consists in introducing a operations to the set we presented in
Figure 3.9. We extend this definition in Figure 3.12. We introduce the Osel operation.
It is parameterized with a condition (similar to the Ocmp operation) and a type, which
corresponds to the type (i.e., integer of floating point values) of the operands. Note that
the condition does not belong to the operand list, mainly because of the peculiar way
conditions are evaluated on x86 assembly (i.e., using flags registers). This operation has
to be applied to two operands r1, and r2, and will return r1 if the condition holds, r2
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otherwise. We then define a semantics for this operation, that follows this description.

3.5.2 Modification of the Assembly Generation Pass

Our next modification focuses on the assembly generation pass. There, the new selec-
tion operation is compiled down to the cmov instruction on x86 architecture.

At Mach level, res ← (Oselect c ty) [r1;r2] operates over two registers r1 and
r2, and stores the result in a register res. In order to generate efficient code and to
apply CompCert optimizations (e.g., register allocation) on the selection operation as
well, we defined Oselect as a two-address operation (i.e., its first argument r1 and
its result res lie in the same location). We then only have to compile operations such
as r1 ← (Oselect c ty) [r1;r2] (note that the first operand and the target reg-
ister are the same). For an integer selection operation (when ty = int), this is done
directly using only one cmov instruction and the negation of the condition c. So, the
Mach operation r1 ← (Oselect c ty) [r1;r2] is compiled down to the x86 instruc-
tion cmov (negate c) r1 r2.

Moreover, the cmov instruction requires c to be a testable condition (usable for a
conditional jump), which in our case requires to transform c because of the way compar-
isons proceed on x86 architecture. More precisely, the x86 hardware provides a way to
handle most comparisons of the source language; we call them testable conditions. Two
comparisons (namely equality and inequality between floating point numbers) cannot be
handled by the hardware, and require a software workaround. The idea is to split these
comparisons into several testable conditions, and to combine them with logical and or or
operators.

The case of equality between floating point numbers introduces a logical and in the con-
dition, we then need to compile the operation r1 ← (Oselect (c1 && c2) ty) [r1;r2].
It is done with the following sequence:

cmov (negate c1) r1 r2 ; cmov (negate c2) r1 r2

Finally, the case of inequality ( 6=) between floating point numbers introduces a logical or
in the condition, which is impossible to compile to a sequence of cmov as the previous case.
The solution we adopted consist in detecting these cases earlier in the compilation chain
(namely during the operation selection pass), and introduce the negation of the condition
there, while swapping the operands of the selection of operation. We then consider that
the problematic case of compiling a logical or may never during assembly generation.

Figure 3.13 presents our modifications to the transl_op function. Our modifications
introduce two auxiliary functions named transl_sel and mk_sel. First, in the transl_op
function, we check that the first operand register and the target register are the same,
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Definition transl_op (op: operation) (args: list mreg)
(res: mreg) (k: code) : Errors.res code :=

(* All the previously defined cases *)
| Osel c ty, a1 :: a2 :: args ⇒

assertion (mreg_eq a1 res);
do r ← ireg_of res; do r2 ← ireg_of a2;
transl_sel c args r r2 k.

Definition transl_sel (cond: condition) (args: list mreg)
(rd r2: ireg) (k: code) : res code :=

do k1 ← mk_sel (testcond_for_condition cond) rd r2 k;
transl_cond cond args k1.

Definition mk_sel (cond: extcond) (rd r2: ireg) (k: code) :=
match cond with
| Cond_base c ⇒

OK (Pcmov (negate_testcond c) rd r2 :: k)
| Cond_and c1 c2 ⇒

OK (Pcmov (negate_testcond c1) rd r2 ::
Pcmov (negate_testcond c2) rd r2 :: k)

| Cond_or c1 c2 ⇒
Error (msg "Asmgen.mk_sel") (* should never happen *)

end.

Figure 3.13 – Semantics of x86 operations in CompCert.
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as explained previously. We then check that both operand registers are integer registers.
Note that we only handle the case of integers, as the cmov instruction can only operate
over integer registers. Implementing a selection operation that can handle floating point
register would require a different workaround, which wasn’t necessary in our use case, as
we will develop later.

Our second function transl_sel generates the code needed to evaluate the condition
cond of the selection operation. To this end, we use the function transl_cond, which
already exists in CompCert. Next, we turn the condition into a testable condition with
the function testcond_for_condition, which also already exists in CompCert). We then
study the possible outcomes in the function mk_sel. There are three possible outcomes:

— If the condition is directly testable by the hardware (case Cond_base), then we can
proceed directly by generating one cmov instruction, and negating the condition as
explained before. This yields the following code: Pcmov (negate_testcond c) rd r2.

— If the condition isn’t directly testable by the hardware, and and need a logical and
as a workaround (case Cond_and), then we generate a sequence of two cmov.

— The last case (for which a logical or is required) may never happen as wee prevent
it earlier in the compilation chain (see next section). If it happens, the compilation
fails and throws an error.

3.5.3 Modification of the Instruction Selection Pass
Using the newly introduced select operation, we can now fix the implementations of

the operation introducing new branches. Still, these modifications are not straightforward.
Consider Figure 3.14a, that present a fix of the original implementation in which we
replaced the if statement by our select operation. This implementation in not correct
for two reasons. First, both branches are always executed, which can lead to call the
floatofints operation with an incorrect argument. For example, if x = 0, we will always
compute floatofints(-0x80000000) which is undefined. The generated code is thus
incorrect. Second, this code is incorrect as the select operation can only be applied to
integer parameter, while here we are trying to apply it to float values.

Section 3.5.2 only describes the compilation of the integer selection operation. Indeed,
the cmov instruction only operates over integer registers, and there is no x86 conditional
move instruction over floating point registers. Instead of implementing such an operation,
we were able to only use the integer selection operation, as shown in Figure 3.14b. In
this example, the conversion from unsigned int to float first computes the values of
temporaries a and b using two integer selection operations, and these values are converted
to floating point values. The value of a is always in the range of the float to the signed int
operation, and so is the value of b, with respect to the condition x < C. Figure 3.14d shows
our implementation of the comparison of 64-bit integers, which uses the new selection
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operation instead of conditional branches.

3.6 Integration to CompCert 3.6
All the changes that we presented in this chapter were discussed with Xavier Leroy.

Xavier Leroy integrated them into CompCert version 3.6. They extended this work to
the other target architectures: PowerPC, ARM and RISC-V. A selection operation is now
available in the backend compiler for all the target architectures.

This selection operation can be used during operation selection to implement some
operations, as we detailed in Section 3.5.3. Both original and branchless implementations
are available. To enable the branchless implementation, the flag -Obranchless must be
used.

This work has also been extended by Xavier Leroy to the frontend compiler. It is
implemented as a built-in function called __builtin_sel(a,b,c), available in the source
language. This function behaves as our select operation, i.e., it always evaluates b and c,
and performs a branchless choice between these values, depending on a. During operation
selection, this built-in function is compiled to the select operation. This built-in function
may then be used by the programmer to implement constant-time code.

3.7 Experimental Evaluation
All this chapter explained how we modified CompCert in order to make it constant-

time preserving. We now present an experimental evaluation of this modified compiler.
We focus on the performance of the generated code, compared to other compilers. We
measure the execution time on a benchmark of cryptographic code, selected from the
literature. We note that our experimental evaluation is primarily used to validate that
our approach is reasonable.

We first compare our version of CompCert to the original CompCert (version 3.4),
and to gcc, with and without optimizations. We test these compilers on a benchmark
of common cryptographic programs that were shown to be constant-time in [Alm+16;
BPT19]. They include cryptographic primitives such as an implementation of elliptic
curve arithmetic operations over Curve25519 [Ber06; Lan15], and TEA [WN94], together
with implementations from commonly used cryptographic libraries such as NaCl [BLS12]
and mbedTLS [ARM16]. These are C implementations that we experiment with in order
to evaluate our compiler, but it should be reminded that if performance is an issue, it is
generally better to use hand-optimized assembly code at the cost of portability.

We first measured the execution times (using an Intel i7-8550U CPU 1.8GHz, with
16GB of RAM), which are shown in Figure 3.15. We compiled these programs using the

82



3.7. Experimental Evaluation

float floatofintu(unsigned int x) {
float y = 0x1p31; // 231

return select(x < 0x80000000, floatofints(x),
y + floatofints(x - 0x80000000));

}

(a) Incorrect implementation of the unsigned int to float conversion.

float floatofintu(unsigned int x) {
unsigned int C = 0x80000000; // 231

int a = select(x < C, 0, -C);
int b = select(x < C, x, x - C);
return floatofints(b) - floatofints(a);

}

(b) Constant-time implementation of the unsigned int to float conversion.

unsigned int intuoffloat(float x) {
float y = (float) 0x80000000; // 231

return select(x < y, (int) x, 0x80000000 + (int) (x - y));
}

(c) Constant-time implementation of the float to unsigned int conversion.

(xh, xl) = x; (yh, yl) = y;
if (select(xh == s yh, xl <=u yl, xh <s yh))

goto lthen;
else

goto lelse;

(d) Comparison x ≤ y

Figure 3.14 – Constant-time implementations (in C-like syntax) of the examples of Fig-
ure 3.11.
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Figure 3.15 – Relative execution times of our benchmark.
We compare the original CompCert, our modified CompCert, and gcc from -O0 to -O3. We
normalized the measured execution times with the execution times of gcc -O0. The error bars
represent the 99% confidence intervals of our measurements.
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original CompCert 3.4, our modified version of CompCert, and gcc at different levels of
optimization. As all programs have a very short execution time, we executed them from
106 to 109 times depending on the program, and measure the average execution time.
We obtain shorter execution times than gcc without optimization. This is a promising
result, as cautious users who are wary of too aggressive compiler optimizations break-
ing constant-time security would use it to compile cryptographic implementations. Yet,
gcc -O1 and further optimizations remain more efficient. Moreover, we also noticed that
our modified CompCert is as efficient as the original CompCert. On average, programs
compiled with our modified CompCert are 1.45% slower than programs compiled with
the original CompCert.

We further compared two representative cryptographic primitives of our benchmark
(namely NaCl Chacha20 stream cipher and Poly1305 authenticator) against heavily op-
timized implementations using handwritten assembly or AVX instructions (that are not
supported by CompCert) from the OpenSSL [Ope19] and HACL* [Zin+17] libraries, and
implementations written in Jasmin [Alm+17; Alm+19]. For large message sizes, Jasmin
is 20 times faster that CompCert when it runs on Chacha 20, and 5 times faster when it
runs on Poly1305. These differences are reduced by a half when comparing HACL* and
CompCert. These comparisons show that there is still room for progress in CompCert by
adding support for extended instruction sets such as AVX for instance.

3.8 Conclusion
In this chapter, we first presented some minimalist examples breaking the constant-

time policy on real-life compilers. Specifically, we presented two simple programs that
are secure at source level with respect to the constant-time policy, but are compiled into
unsecure code, with either GCC or Clang.

We then highlighted that these problems also exist on the version 3.4 of the CompCert
compiler. Our goal was then to tackle this issue by modifying the compilation chain, so
that the constant-time policy is strictly preserved.

We then presented a detailed background about the CompCert compiler, with specific
details on its architecture, including the intermediate languages, the different passes,
and the set of operations of the compiler. After that, we presented the detail of our
modification, that impacted two of the passes of the compiler.

Last, we discuss how the changes presented in this chapter were integrated in Com-
pCert (in version 3.6), and also presented an experimental evaluation of our modifications,
showing that the impact on the performance of the generated code is very low.

85





Chapter 4

CONSTANT-RESOURCE POLICY

Timing side-channel attacks consider an attacker capable of deducing the value of
sensitive data by measuring the execution time of a program. As a consequence, we say
that a program is secure against timing side-channel attacks if its timing behavior does
not depend on secret values. Such a program is said to be timing-secure. This definition is
natural, but enforcing this property is a complex task, as the execution time of a program
depends, among other things, on architectural features of the machine executing it.

The Cryptographic Constant-Time policy (CCT), that we studied in the previous
chapter, is commonly used as a protection, and offers strong security properties against
timing side-channel attacks. By ensuring that (a) the execution flow of a program is secret-
independent and (b) every instruction whose execution time depends on the operands is
secret independent, the CCT policy ensures the independence between the secret values
of a program and its execution time. As such, any CCT program is secure w.r.t. timing
side-channel attacks. In other words, any CCT-secure program is timing-secure. Many
cryptographic implementations have been modified in order to respect the CCT policy.

However, the CCT policy presents a few drawbacks. On the one hand, complying to the
CCT policy is a complex task, and a CCT implementation usually has lower performance
than a natural implementation. On the other hand, the CCT policy may be considered
to be too restrictive, as program may be timing-secure but CCT-secure. Timing-security
may be achieved by using time-balanced secret-dependent branches, i.e., secret branches
that have identical execution time. Achieving such balance is challenging, and heavily
depends on architectural features.

Yet, it is possible to find some implementations of common cryptographic primitives
that do not strictly comply with the CCT policy, and present the pattern mentioned
above. We illustrate this with an example inspired from Amazon’s implementation of
TLS [AP16]. We consider the following program:

repeat(n) { update(); }

In this example, we consider a secret value n, bounded between 0 and 32. We also
consider a function update, whose execution time u is supposed to be known and constant.
We also assume loop control instructions to have negligible execution time compared to
u.
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The program above performs n calls to the function update. The measured execution
time t of this program is likely to be close to n × u, and then t

u
is going to be close to

the secret value n. In other words, the secret value n is leaked by the execution time. The
CCT policy would simply forbid this program, as a secret-dependent branch is performed
here. Instead, in [AP16], the authors suggest to repair it as follows:

repeat(n) { update(); }
repeat(32 - n) { dummyUpdate(); }

In this repaired program, we perform in addition 32 − n calls to a new function
dummyUpdate, and assume that the function dummyUpdate does nothing and is precisely
crafted in order to have an execution time as close as possible as update (i.e., u).
Therefore, executing this whole program would have an approximate execution time of
n× u+ (32− n)× u = 32u. In other words, the execution time is now constant and inde-
pendent from the secret value n. The program has been repaired by introducing padding,
i.e., code that does nothing but takes time to execute.

In this chapter, we focus on what we call the Constant-Resource (CR) policy, which
captures the relaxed CCT policy used by some practitioners, i.e., allows secret-dependent
balanced branchings, as illustrated in the previous example. We then focus on the preser-
vation of this policy during compilation.

The CR policy defines a notion of resource consumed during the execution of a pro-
gram. A resource can be a counter measuring the number of arithmetic operations, mem-
ory accesses or function calls. A more precise resource model can take branch prediction
and cache into account to model execution time on a given architecture. The CR policy
states that an attacker capable of measuring the resources consumed during the execution
of a program cannot deduce any information on the secrets of the program.

if(secret) { x+=2; } else { y+=3; }
(a) A program with balanced branches

if(secret) { p1 } else { p2 } ; p3

(b) A program with an atomic annotation

Figure 4.1 – Examples of CR-secure programs

The code snippet presented in Figure 4.1a consists of a branching on a secret value,
and two branches performing the same kind of operations (i.e., incrementing a variable by
a constant value). In a resource model counting the number of arithmetic operations, this
snippet is considered CR-secure, as the resource consumption is constant and does not
depend on the secret value of the snippet. Unlike the CCT policy, the CR policy tolerates
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a branching depending on a secret value, as long as the branches are balanced in terms
of costs. Because leakages are not constrained in these branches, the CR policy does not
satisfy the non-cancellation property.

In this chapter, we study the preservation by compilation of the CR policy and present
a proof methodology to prove that a transformation preserves the CR policy. Compiler
optimizations may easily break the CR policy. Indeed, as a CR-secure program may
contain balanced branches, any optimization that reduces the resource consumption in
one of the branches would directly break the balance.

To solve this issue, a first solution is to use information-flow typing to guide the
transformation. Type systems can detect high branches and forbid or restrict optimization
inside them. For example, in [Aga00] a standard type system [VIS96] is used to repair a
typable program that may contain unbalanced high branches. This is an elegant approach
but in our work we want to avoid the use of an information-flow type-system inside the
compilation chain. Modern compilers perform their optimizations at a low-level program
representation and running a taint analysis at this level is likely to conservatively declare
all the contents of the memory as secret-dependent.

Instead, our methodology relies on a new syntactic annotation that we call an atomic
annotation. It restricts the compiler, without asking it to perform a taint analysis at every
level of the compilation chain. Figure 4.1b presents an example of atomic annotation, that
we represent as a box notation around a part of the program. The atomic constructs can be
inserted at source level using a source type system or any program logic that detects high
branches. We introduce a more flexible policy, called CR#, which combines elements from
the CCT [Alm+16] and CR [Ngo+17] policies (i.e., leakages and costs). CR# leakages
track costs as well as the CCT boolean leakages of some branchings. The atomic construct
is used to decide whether or not the CR# policy tracks a branching statement.

4.1 An Introduction to CR-security
In this section, we introduce the CR policy, first informally through an example,

then with formal definition for our language L . We also focus on the problem of secure
compilation of CR programs, i.e., how to ensure that the CR policy is preserved during
a program transformation. We then motivate the need for the CR# policy.

4.1.1 Example: Common Subexpression Elimination

This section first gives examples of CR-secure programs. Then, it explains through the
example of Common Subexpression Elimination (CSE) how to adapt a transformation to
make it CR-preserving.
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if (cond) {
x = a*b;
y = (a*b)+c+d;

} else {
x = a+b;
y = (a+b)*c*d;

}

(a) A balanced pro-
gram with common
subexpressions a*b
and a+b

if (cond) {
x = a*b;
y = x+c+d;

} else {
x = a+b;
y = x*c*d;

}

(b) The unbalanced
optimized program
(with CSE)

if (cond) {
δδδ(T1);
x = a*b;
y = x+c+d;

} else {
δδδ(T2);
x = a+b;
y = x*c*d;

}

(c) The padded opti-
mized program

if (cond) {
δδδ(T1 − T);
x = a*b;
y = x+c+d;

} else {
δδδ(T2 − T);
x = a+b;
y = x*c*d;

}

(d) The padded op-
timized program with
minimal padding

Figure 4.2 – Example of branching programs
where T1 = Kmult +Kvar, T2 = Kadd +Kvar and T = min(T1, T2).

Example of CR-secure Programs

Figure 4.2 presents some code snippets written in C syntax. In the first one, if the
condition cond is secret, then this snippet is considered unsecure by the CCT policy.
In general, branchings on secrets are unsecure because an attacker able to measure their
execution time could determine which branch was executed, and thus the secret condition.
However, because both branches consume the same amount of resources (i.e., six accesses
to variables, two additions, two multiplications, and two assignments), we better consider
that these branches are indistinguishable from the perspective of such an attacker. This
program is then an example of CR-secure program.

The code snippet in Figure 4.2a presents some redundant computations, and it is a
good candidate for the CSE optimization. Figure 4.2b shows the optimized code snippet,
which is not CR-secure. Indeed, both branches perform five accesses to variables and two
assignments, but the then branch performs two additions and one multiplication, while
the else branch performs one addition and two multiplications. Hence, these branches
are no longer balanced. This illustrates how a simple transformation can break the CR
policy.

A CSE optimization that Preserves the CR Policy

Preserving the CR policy requires to carefully keep track of all the branches of the
program. Any optimization performed only in one branch could unbalance the whole pro-
gram. Our approach consists in preserving the balance by introducing a minimal amount
of padding in every unbalanced branch. We illustrate it with the example of the CSE
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optimization.
We add two steps to the CSE optimization to make it CR-preserving. First, our new

CSE adds padding to balance the consumption of resources between the branches, using
a new padding instruction called δδδ. It is parameterized by an integer n and executing
δδδ(n) consumes n resources. Second, our CSE performs a pass called M that minimises
the padding by factorising and removing as many δδδ instructions as possible, as long as
the CR policy is preserved. More precisely, any modification of the resource consumption
stemming from CSE is compensated by an adequate δδδ instruction.

In the then branch of Figure 4.2c, our CSE factorises a redundant evaluation and
modifies the resource consumption: the optimized program has one less multiplication and
one less variable access. So, our CSE compensates these changes by adding the instruction
δδδ(T1) in the then branch, with T1 = Kmult+Kvar, where theKmult andKvar constants are
statically computed and represent the cost of respectively a multiplication and a variable
access. The added δδδ instruction consumes the same amount of resources spared by CSE,
hence preserving the resource consumption of the whole program. Similarly, the padding
instruction δδδ(T2) is added in the else branch, with T2 = Kadd +Kvar. Figure 4.2d shows
the final code snippet, where the padding of both branches is reduced by T = min(T1, T2).
This last step minimises the padding while keeping both branches balanced.

Our modified version of the CSE optimization introduces padding to preserve the
balance of costs between branches. Then, it minimises the inserted padding as much as
possible, while preserving the CR policy. However, this behaviour may not always be de-
sired, as it makes the output program less efficient in terms of consumed resources. Indeed,
some branches could be secret dependent and balanced, while some other branches could
be non secret-dependent. The former branches would need a careful and restrained opti-
mization, similar to the example above. However, the latter branches could benefit from
a more aggressive optimization, without requiring any padding. To distinguish between
both cases, we introduce a syntactic annotation, called atomic, which delimits the areas
of the program to be carefully optimized. The padding insertion and minimisation passes
are then only performed in these areas.

The proof that our modified CSE preserves the CR policy consists of the individual
proofs of each of its steps. This proof effort led us to define a stronger security policy,
that we call CR#, and whose definition depends on the atomic annotations. This CR#

policy is discussed in the next section. Some proofs are trickier than others, and we define
in this chapter two other policies that are stronger than the CR# policy but facilitate
our proofs. In particular, we decompose M into two steps, and each of them is proved
using a different policy. We also prove that any of these policies implies the CR# policy.
Interestingly, these policies are not peculiar to CSE and could be reused to prove other
optimizations.
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4.1.2 Motivation of the CR# policy
This section first motivates the choice of our security policy. Our work is based on the

CR security property presented in [Ngo+17], which we describe first. We then present a
stronger property, called CR#, and motivate this definition. CR# is the security property
we will focus on during the rest of this chapter.

The CR Policy

In [Ngo+17], the authors present the CR policy. It captures the fact that a given notion
of resources consumed during the execution of a program does not reveal any information
on the secret values of this program. More formally, let us first consider a language L,
and its big-step semantics judgement 〈p, σ〉 ⇓ (σ′, q) instrumented to observe the resource
consumption of an execution. We read it as follows: the execution of a program p ∈ L
from an initial state σ to a final state σ′ consumes q resources, where q is an integer.
States map variable identifiers to values, and every variable is marked as either secret or
public.

Next, we consider a notion of indistinguishability between semantic states. Two states
σ1 and σ2 are indistinguishable, written as σ1 ∼ σ2, if every public variable has the
same value in both states. Then, the CR policy is defined as follows. A program is CR if
any pair of executions whose initial states only differ on secret values consume the same
amount of resources. This captures the idea that resource consumption does not reveal
any information on the secrets of a CR program.

Definition 4.1: CR-security.
Let p be a program, and states σ1 and σ2 such that σ1 ∼ σ2. Suppose that we have two
executions of p: 〈p, σ1〉 ⇓ (σ′1, q1) and 〈p, σ2〉 ⇓ (σ′2, q2). The program p is CR-secure
(written as CR(p)) when q1 = q2.

Secure Compilation of CR Programs

Our goal is to implement program transformations that preserve the CR policy, then
prove that these transformations always preserve the policy. Formally, we say that a
transformation T is CR-preserving if for any program p, we have CR(p) =⇒ CR(T (p)).

A first possibility is to use a type system, as in [Ngo+17], where the type system is
designed so that any well-typed program p, denoted as ` p, is CR-preserving: ` p =⇒
CR(p). We could then prove that T preserves such a type system. Formally, we would
prove the following property: ` p =⇒ ` T (p), stating that the type system enforces the
CR policy on both source and transformed programs. This approach would work in the
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context of a simple type system and a simple language. However, we argue that it would
not scale to a more realistic compiler, such as CompCert or LLVM, as type-preserving
compilers typically do not scale to realistic languages. As far as we know, no realistic
compiler includes a type system to verify the preservation of non-interference properties.
We refer to chapter 2 for more explanations. Another drawback of this approach is that the
compiler must explicitly know the security level (i.e., secret or public) of every variable.

Our methodology to prove that a transformation is CR-preserving does not rely on a
type system, but rather on an extended language and its instrumented semantics. Firstly,
we extend the language L with a syntactic annotation, that we call an atomic annotation.
Secondly, we extend the semantics of L, by instrumenting it with leakages that track the
branchings encountered during the execution. The information leaked is a partial control-
flow of the program, represented by a list of booleans values, that contains some of the
guards evaluated during the execution. The choice of leaked control-flow depends on the
atomic annotations, as secret branching conditions only appear inside of atomic annota-
tions. Last, we extend the CR policy to facilitate our proofs. We introduce a stronger
policy, called CR#, that is defined with respect to this newly introduced leakage.

We use the CR# policy in the following way. Firstly, we annotate any program p into
p#, so that CR(p) =⇒ CR#(p#). This will be discussed in Section 4.3.1. Secondly, we
prove that the transformation T we are focusing on preserves the CR# policy. Formally,
for any program p, CR#(p) =⇒ CR#(T (p)). Last, as CR# is stronger than CR, we
directly have for any program p, CR#(p) =⇒ CR(p).

In the following section, we will give precise definitions of the CCT and CR policies,
for an example language, and compare these policies. Then, in section Section 4.3, we will
give formal definitions of the CR# policy and of the atomic annotation.

4.2 Comparison between the CCT and CR Policies
In this section, we extend the language L presented in chapter 2, and extend its

semantics. This extended semantics emits a new kind of leakage, that captures the resource
consumption. We then use this leakage to formally define both the CCT and the CR
policies. Last, we compare these policies, and prove that any CCT-secure program is also
CR-secure.

4.2.1 Language Definition

We introduce below the new syntax of L . The only difference is the introduction of a
new padding instruction δδδ, parameterized by a quantity of consumed resources (i.e., the
execution of δδδ(n) where n is a constant consumes n resources).
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Definition 4.2: Extended syntax of L .

〈exp〉 ::= 〈int〉 | 〈ident〉 | 〈ident〉 [ 〈exp〉 ] | 〈exp〉 � 〈exp〉 |
〈stmt〉 ::= skip

| 〈ident〉 := 〈exp〉
| 〈ident〉 [ 〈exp〉 ] := 〈exp〉
| 〈stmt〉 ; 〈stmt〉
| if( 〈exp〉 ) { 〈stmt〉 } else { 〈stmt〉 }
| while( 〈exp〉 ) { 〈stmt〉 }

Next, we extend the notion of leakage introduced in subsection 2.5.2. We add a new
event eR(q), that captures the consumption of q ∈ Z resources. The new definition of the
set of event E is the following:

Definition 4.3: Set of event E.

〈event〉 ::= eB(b) | eM(id, n) | eR(q)

eB(b) is an event emitted at a branch, where b is a boolean value. b is the truth
value to which to condition has evaluated to. eM(id, n) is an event emitted at a memory
access, where id is an array identifier, and n is the index of the value accessed in this
array. eR(q) is an event emitted by any instruction that consumes q resources.

We now present the new instrumented semantics of L . It is identical to the semantics
presented in Definition 2.18 and Definition 2.19. The only difference is the emission of
resource consumption events by several language constructs, as we as a semantics of the
new δδδ operator. The semantics is parameterized by a set of constants denoted by K ... and
representing the unitary costs of basic syntactic constructs. For example, Kasn is the cost
of an assignment. The following definitions describe this semantics, both of expressions
and statements.

Definition 4.4: Evaluation of expression 〈e, σ〉 ⇓ (v, `).
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var
σ[x] = v

〈x, σ〉 ⇓ (v, eR(Kvar))

array
σ[x] = [v1; ...; vn; ...vm] 〈e, σ〉 ⇓ (n, `) 1 ≤ n ≤ m

〈x[e], σ〉 ⇓ (vn, (` · eM(x, n) · eR(Karray)))

const

〈n, σ〉 ⇓ (n, eR(Kconst))

op_bin
〈e1, σ〉 ⇓ (v1, `1) 〈e2, σ〉 ⇓ (v2, `2)
〈e1 � e2, σ〉 ⇓ (v1 � v2, (`1 · `2))

Definition 4.5: Evaluation of statement 〈s, σ〉 ⇓ (σ′, `).

skip

〈skip, σ〉 ⇓ (σ, ε)

padding

〈δδδ(n), σ〉 ⇓ (σ, eR(n))

assign
〈e, σ〉 ⇓ (v, `)

〈id:=e, σ〉 ⇓ (σ[id← v], (eR(Kasn) · `))

assign_array
σ[x] = [v1; ...; vn; ...vm]

〈e1, σ〉 ⇓ (n, `1) 〈e2, σ〉 ⇓ (v′, `2) 1 ≤ n ≤ m v′ ∈ Z
〈a[e1]:=e2, σ〉 ⇓ (σ[a← [v1; . . . ; vn−1; v′; vn+1; . . . ; vm]], (`1 · `2 · eM(x, n) · eR(Kasn_array))

seq
〈p1, σ〉 ⇓ (σ′, `1) 〈p2, σ

′〉 ⇓ (σ′′, `2)
〈(p1; p2), σ〉 ⇓ (σ′′, (`1 · `2))

if_true
〈e, σ〉 ⇓ (n, `) n 6= 0 〈p1, σ〉 ⇓ (σ′, `1)

〈if(e) {p1} else {p2}, σ〉 ⇓ (σ′, (` · eB(true) · `1))

if_false
〈e, σ〉 ⇓ (n, `) n = 0 〈p2, σ〉 ⇓ (σ′, `2)

〈if(e) {p1} else {p2}, σ〉 ⇓ (σ′, (` · eB(false) · `2))

while_true
〈e, σ〉 ⇓ (n, `) n 6= 0 〈p, σ〉 ⇓ (σ′, `′) 〈while(e) {p}, σ′〉 ⇓ (σ′′, `′′)

〈while(e) {p}, σ〉 ⇓ (σ′′, (` · eB(true) · `′ · `′′))

while_false
〈e, σ〉 ⇓ (n, `) n = 0

〈while(e) {p}, σ〉 ⇓ (σ, (` · eB(false)))
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4.2.2 Semantic Properties of L
In this section, we state two semantic properties of L that will be used in the rest

of this chapter. First, the semantics is deterministic, both for the output state and the
emitted leakage.

Lemma 4.1: Determinism.
Let p be a program and σ an initial state. If we have two executions 〈p, σ〉 ⇓ (σ1, `1)
and 〈p, σ〉 ⇓ (σ2, `2), we then have σ1 = σ2 and `1 = `2.

The second property focuses on the non-cancellation of the leakage emitted by a pro-
gram. We assume to have two arbitrary executions of a program p, respectively emitting
leakages `1 and `2. The lemma states that for any arbitrary leakages `′1 and `′2, if we have
`1 · `′1 = `2`

′
2.

Lemma 4.2: Non-cancellation.
If we have the following hypotheses:

(E1) 〈s, σ1〉 ⇓ (σ′1, `1)
(E2) 〈s, σ2〉 ⇓ (σ′2, `2)
(EQ) l1 · l′1 = l2 · l′2,

then we have l1 = l2 and l′1 = l′2.

Proof of Lemma 4.2.
We prove this lemma by reasoning by induction on the execution (E1). We focus on some
representative cases; the other cases use similar reasoning.

— Case seq. s is then a sequence of statements, say s = (s1; s2). We apply the induction
hypothesis on statements s1 and (s2; p) to find that both executions of s1 emit the
same leakage, and so do both executions of (s1; s2). We then apply the induction
hypothesis on s2 to conclude.

— Case if. s is then an if-branch, say s = if(e) {s1} else {s2}. From the hypothesis
(EQ), we can deduce that e evaluates to the same truth value in both executions of
s. We consider that e evaluates to true. We then necessarily have two executions of
s1. We conclude by applying the induction hypothesis on s1.

4.2.3 Definition of the CCT and CR Policies
Using this new instrumented leakage, we can define both the CCT and the CR policies,

as instances of ONI. First, similarly to the definition presented in subsection 2.5.2, CCT

96

https://remihut.in/thesis/coq/NI.BigStep.html#BS.S.deterministic
https://remihut.in/thesis/coq/NI.NonCancellation.html#S.leakage_noncancellation


4.2. Comparison between the CCT and CR Policies

is now defined as ONIπ1 , where π1 is the projection function that ignores the resource
consumption events.

Example 8: Example of leakage projection with π1.

π1(eB(true) · eR(2) · eM(x, 2) · eR(4)) = eB(true) · eM(x, 2)

More generally, eR(n) events are removed, and the other events are not modified.

This new definition is strictly equivalent to the definition presented in subsection 2.5.2.
Next, we define the CR policy as another instance of ONI. This policy focuses on the

global cost of an execution, rather than on the list of individual costs. We define the global
cost of an execution as the sum of the individual costs, described by events eR(n) in the
leakage. Therefore, we define CR as ONIπ2 , where π2 is the projection function that sums
all the resource consumption of all the eR(n) events, and ignores any other event.

Example 9: Example of leakage projection with π2.

π2(eB(true) · eR(2) · eM(x, 2) · eR(4)) = 6

More generally, eR(n) events are summed, and the other events are ignored.

Note that these definitions are close, the only difference being that they both selectively
focus on one part of the leakage, through the projection functions. However, the CCT
policy is more restrictive than the CR policy. In fact, we can prove that any CCT program
is also CR. This is a consequence of the following result.

Lemma 4.3: CCT leakage implies CR leakage.
Let p be a statement. We assume to have the following 2 executions:

〈p, σ1〉 ⇓ (σ′1, `1)(E1)
〈p, σ2〉 ⇓ (σ′2, `2)(E2)

If we have π1(`1) = π1(`2), then π2(`1) = π2(`2).

This lemma states that if a pair of arbitrary executions of a program p emit the same
CCT leakage (i.e., list of memory accesses and branchings), then they consume the same
amount of resources. We provide a proof of this lemma below:

97

https://remihut.in/thesis/coq/NI.ONI.html##Relation.CCT_implies_CR


Partie , Chapter 4 – Constant-Resource Policy

Proof of Lemma 4.3.
The proof of this lemma heavily relies on the non-cancellation Lemma 4.2. We prove this
lemma by reasoning by induction on any execution, for instance (E1). We focus on some
representative cases; the other cases use similar reasoning.

— Case seq. p is then a sequence of statements, say p = (p1; p2). We then have two
executions of p1 and two executions of p2. We use the non-cancellation lemma to con-
clude that both executions of p1 produce the same leakage, and so do both executions
of p2. We can the conclude by applying the induction hypothesis on both p1 and p2.

— Case if. p is then an if-branch, say p = if(e) {p1} else {p2}. As both executions
have the same boolean leakage, they necessarily take the same path, i.e., e evaluates
to the same truth value in both executions. We can then conclude by applying the
induction hypothesis on either p1 or p2.

With the lemma above, we can directly prove the following main theorem.

Theorem 4.4: CCT implies CR.
Any CCT-secure program is also CR-secure.

Proof of Theorem 4.4.
Let p be a CCT program. Let E1 and E2 be two indistinguishable executions of p, emitting
respective leakages `1 and `2. As p is CCT, we have π1(`1) = π1(`2). Using Lemma 4.3, we
can deduce that the resource consumption are also equal, i.e., π2(`1) = π2(`2), and thus p is
also CR.

This concludes this section whose goal was to compare the CCT and the CR policies,
and we proved that any CCT-secure program is also CR-secure. In the next section, we
introduce our CR# policy, as introduced in 4.1.2. This new policy is defined as a mix
between the CCT and the CR policies.

4.3 Our Approach using a Syntactic Annotation

4.3.1 CR#, a more Flexible Policy

In this section, we extend our language L into L#, in order to introduce a new syntactic
annotation called atomic. Then, we discuss the relation between the CCT, CR and CR#

policies.
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Semantics of the L# Language

We extend the language L into L#, which contains one new feature: an annotation
called atomic. The syntax of L# is given in the following definition, and the annotation
is denoted using a box notation: p is the atomic version of p.

Definition 4.6: Extended syntax of L .

〈exp〉 ::= 〈int〉 | 〈ident〉 | 〈ident〉 [ 〈exp〉 ] | 〈exp〉 � 〈exp〉 |
〈stmt〉 ::= skip

| 〈ident〉 := 〈exp〉
| 〈ident〉 [ 〈exp〉 ] := 〈exp〉
| 〈stmt〉 ; 〈stmt〉
| if( 〈exp〉 ) { 〈stmt〉 } else { 〈stmt〉 }
| while( 〈exp〉 ) { 〈stmt〉 }

| 〈stmt〉

We also extend the notion of leakage by introducing a new event to the set of event
E . We call this event an atomic event, and denote it with a similar box notation around
a leakage `: ` is the atomic version of `.

Example 10: Example of leakage with atomic event.
For example, the following sequence of events is a valid leakage:

eB(true) · eR(2) · eB(false) · eR(4) · eM(x, 2)

It consists 4 events. The 3rd event is an atomic event, that consists of a leakage
eB(false) · eR(4).

We give below the extended definition of the set of events E :

Definition 4.7: Set of event E.

〈event〉 ::= eB(b) | eM(id, n) | eR(q) | `
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eB(b) is an event emitted at a branch, where b is a boolean value. b is the truth
value to which to condition has evaluated to. eM(id, n) is an event emitted at a memory
access, where id is an array identifier, and n is the index of the value accessed in this
array. eR(q) is an event emitted by any instruction that consumes q resources. ` is an
event emitted by an atomic annotation ; it contains a leakage `.

The semantics of L# is almost identical to the semantics of L. We only add the
semantic of the atomic annotation, that we give in the following definition:

Definition 4.8: Semantics of an atomic annotation.

Atomic
〈p, σ〉 ⇓ (σ′, `)
〈 p , σ〉 ⇓ (σ′, ` )

The execution of p executes p, and marks the whole leakage ` produced by p as atomic
(i.e., emits ` ). Intuitively, the goal of the atomic annotation is to allow secret-dependent
branches inside of these annotations, as long as the branches as balanced with respect
to the resource consumption. Outside of atomic annotations, secret-dependent branches
are never allowed. The CR# policy exactly captures this behavior, and is defined as an
instance of ONI, using an adequate projection function that selectively erase some parts
of the leakage, using the atomic events. We define it precisely in the following section.

Note that nested atomic annotations are allowed, both in the syntax of the language
and in the leakage. Especially, this gives our notion of leakage a surprising structure of
tree. However, nesting atomics has no effect, either on the execution of a program nor on
the CR# policy. We will only give example that do not contain nested atomics.

Semantic Definition of the CR# Policy

We now define the CR# policy. It is another instance of ONI and is defined as follows.

Definition 4.9: CRplus-security.
We define CR# as ONIπ3 , with π3 a projection function. π3(`) returns a pair (`′, q)
where `′ is a leakage and q ∈ Z is an amount of resources, such that:

— q = π2(`), i.e., q is the sum of all the eR(n) events encountered during an
execution. This applies recursively to atomic events.
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— `′ is the leakage ` in which we removed every eR(n) and atomic events. In other
words, we only keep the CCT leakage, and ignore anything happening inside
an atomic event.

We give below an example projected leakage using the π3 projection.

Example 11: Example of leakage projection with π3.

π3(eB(true) · eR(2) · eB(false) · eR(4) · eM(x, 2))

= (eB(true) · eM(x, 2), 6)

We can see that event eB(false) has been filtered out, as it is a branching event hap-
pening inside an atomic event. The cost of the execution is 6, as we sum both eR(2)
and eR(4) events, even though the latter appears inside an atomic event.

This projection function selectively erase some part of the leakage that appears inside
atomic events. Compared to the CCT policy, this is a relaxation, as we no longer expect
two indistinguishable executions to emit the same list of memory accesses and branchings
inside of atomic annotation. In other words, secret-dependent branchings and memory
accesses are then allowed by the CR# policy, inside of atomic annotations only.

However, this relaxation is limited by the resource consumption. Indeed, the CR#

policy always expects two indistinguishable executions to have an equivalent resource
consumption, regardless of atomic annotations. As a consequence, all secret-dependent
branches in a program will have to be balanced, or to balance each other, in order to
maintain a constant global resource consumption for such executions.

Examples of CR#-secure Programs

We present below a few programs, and discuss whether or not they respect the CR#

policy.

Example 12: Examples of CR#-secure programs.

P1: if(b) {δδδ(1) } else {δδδ(2) }
P2: if(b) {δδδ(1); δδδ(2) } else {δδδ(3) }
P3: if(b) {δδδ(2) } else {δδδ(3) } ; δδδ(4); if(b) {δδδ(4) } else {δδδ(3) }
P4: if(b) {δδδ(2) } else {δδδ(3) }; δδδ(4); if(b) {δδδ(4) } else {δδδ(3) }

For a program without atomic statement, the CR# policy is equivalent to the
CCT policy. Therefore, P1 is CR#-secure if and only if its condition b is public. Both
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branches of P2 are balanced with a cost of 3. P2 is CR#-secure if and only if its
condition is public, just like P1. However, P2 is always CR#-secure, as its branches are
balanced and inside atomic statements. P3 contains two unbalanced atomic branches
that balance each other. Indeed, whatever the initial value of b, the total amount of
consumed resources is 7. Therefore, P3 is always CR#-secure. This example illustrates
the fact that CR# leakages are not non-cancelling: a CR#-secure program can be
composed of several non-CR#-secure programs, that balance each other. P4 is similar
to P3, but only its second branch is atomic. If b is public, then P4 is CR#-secure.
However, if b is secret, P4 may never be CR#-secure because of the first branch, even
if as previously, branches balance each other. It illustrates that only atomic branches
can be used to balance each other.

We now focus on the problem of the preservation of the CR# policy by a transforma-
tion. A transformation T is CR#-preserving when given a CR#-secure program P , then
T (P ) is a CR# program. The underlying hypothesis is that P starts from two indistin-
guishable states and so does T (P ). However, these two pairs of state are not related.
In the same way, there is no relation between the two leakages observed during the two
executions of P and T (P ). This definition expresses the preservation of our CR# policy,
but it is too general to be proved by a simple induction. For that reason, we define in
Section 4.3.3 and Section 4.3.4 less general preservation properties that fit to our program
transformations and are easier to prove.

Definition 4.10: CR# preservation.
A transformation T is CR#-preserving when, for any program p:

CR#(p) =⇒ CR#(T (p))

Note that this a direct instance of Definition 2.22, using the CR# policy.

Relations between CCT, CR and CR#

We highlight here some interesting consequences of the definition of the CR# policy.
Firstly, we can express the CR policy with the CR# policy. For a program p, we have
CR(p) ⇐⇒ CR#( p ). In other words, CR is an instance of CR#, obtained by anno-
tating the whole program with an atomic annotation. Secondly, we can also express the
CCT policy with the CR# policy. For a program p without any atomic annotation, then
CR#(p) forbids any secret-dependent branch in p. For such a program p, we then have
the equivalence CCT(p) ⇐⇒ CR#(p). As a consequence, it is relevant to consider the
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CR# policy as a flexible mix between the CR and the CCT policies. The CR# policy can
observe both behaviors, depending on the added atomic annotations. It behaves as CR
inside of annotations, and as CCT outside of them.

Last, if we consider a program p which is CR-secure, then it is always safe to assume
that there exists a way to annotate it (denoted p#) so that we have CR#(p#). Indeed,
p is always a valid candidate. However, we will see in the next section that atomic
annotations also restrict the compiler. Therefor, finding candidates that contain fewer
annotations yields more efficient optimizations.

4.3.2 Implementation of Control-flow Preserving Transforma-
tions

This section explains how to adapt in a CR#-preserving way three optimizations that
are likely not to preserve the CR# policy: constant folding, CSE and dead-store elimina-
tion. These three usual transformations allow us to fully illustrate our approach. Constant
folding replaces any expression evaluating to a constant value by the value itself. Every
expression e1�e2, where e1 and e2 evaluate respectively to n1 and n2 is replaced by n1�n2.
This transformation modifies expressions (e.g., 1+2 becomes 3), hence the resource con-
sumption, and is thus likely to break the CR# policy. For example, this transformation
modifies x := 1+2 into x := 3, whose evaluation cost is lower. If the instruction x := 1+2
appears in a balanced secret-dependent if-branch, the balance could be broken.

CSE computes available expressions at every program point. Any available expres-
sion is replaced by the variable storing the result of its evaluation. CSE also introduces
assignments to store intermediary results, hence modifying the resource consumption.
Dead-store elimination aims at removing any occurrence of an assignment that is not
used later. Again, removing an instruction reduces the resource consumption and may
break the CR# policy.

The above examples share a similar structure: the composition of a data-flow analysis,
which does not modify the program, and of elementary transformations performing the
optimization. They consist mainly of substituting an expression with another expression,
introducing an assignment instruction, and removing an assignment instruction.

We implement each elementary transformation by compensating any modification in
the resource consumption with a padding δδδ instruction. Introducing an adequate padding
requires to compute the resource consumption of the evaluation of an expression. The
resource consumption of the execution of an expression does not depend on the current
state. We thus introduce a cost function Q : exp → Z, that statically computes the cost
of an expression.

Given an expression e, the substitution transformation S replaces the expression in the
right-hand side of an assignment with e. In order to preserve the resource consumption,
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S uses Q to add padding, hence S is parameterized by an expression e and a statement,
and we denote Se the substitution S with parameter e. Se : stmt → stmt is defined as
follows: Se(id := e′) = id := e; δδδ(Q(e′)−Q(e)). Any other statement is not modified
by this transformation.

The insertion transformation stores the result of a temporary computation e into a
fresh variable. It inserts an assignment before an arbitrary statement. The insertion is
compensated with a negative padding. The insertion transformation Ie : stmt→ stmt is
defined as follows: Ie(p) = tmp := e; δδδ(−Kasn−Q(e)); p, where tmp is a fresh variable
identifier never used in p, and Kasn represents the cost of an assignment. The removal
R transformation replaces an assignment with an adequate padding. More precisely, R :
stmt→ stmt is defined as R(id := e) = δδδ(Kasn +Q(e)).

By using these three elementary transformations (substitution, insertion and removal),
and heuristic functions, any control-flow preserving transformation, such as CSE or con-
stant propagation, can be implemented. We do not detail any further the complete defi-
nitions of such transformations, and only focus on the three elementary transformations
presented above. Indeed, we argue that they constitute the building blocks of any control-
flow preserving transformation. Our goal is now to prove that these elementary transfor-
mations preserve the CR# policy.

4.3.3 Using Leakage Preservation to prove CR# preservation

In order to prove that transformations S, I and R are CR#-preserving, we can not
use standard induction reasoning. This is a consequence of the fact that CR# leakages are
not non-cancelling. Our solution is to proceed in two steps and conduct simpler proofs.
First, we define a property called leakage preservation that is more constrained than
CR#-preservation, and we prove that each transformation is leakage preserving. Then, we
prove once for all that leakage preservation implies CR preservation. Moreover, we apply
this proof scheme to the first pass of the M transformation introduced in Section 4.1.1
to minimise padding.

Leakage Preservation implies CR# Preservation

We define a transformation as leakage preserving when it does not modify the leakage
(i.e., resource consumption and emitted boolean leakages). It is then more constrained
than the CR# preservation. We define leakage preservation as a backward property that
is required by theorem Theorem 4.6: given a property of the transformed program, it
states a property of the source program.
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Definition 4.11: Leakage preservation.
Let π be a leakage projection function. A transformation T is leakage preserving with
respect to π if, for any program p, given an execution 〈T (p), σ〉 ⇓ (σ2, `2) of the
transformed program, there exists an environment σ1 and a leakage `1 such that we
have 〈p, σ〉 ⇓ (σ1, `1) and π(`1) = π(`2). We denote it as LPπ.

Lemma 4.5: S, I and R leakage preserving.
Transformations S, I and R are LPπ3 , i.e., they preserve the leakage projected with
function π3.

We do not detail the proof of this lemma, as it is a direct consequence of the definition
of the transformations S, I and R

Theorem 4.6: Leakage preservation implies ONI preservation.
Let π be a leakage projection function. Any LPπ transformation is ONIπ-preserving.

Proof of Theorem 4.6.
Let π be a leakage projection function. Let T be a LPπ transformation, we want to prove
that T is ONIπ-preserving. Let p be a CR#-secure program, we need to prove that T (p) is
ONIπ-secure as well. To this end, we assume having two indistinguishable executions of the
transformed program T (p), and we then need to prove that both executions emit the same
leakage. As T is LPπ, we can find two similar executions of p, which are indistinguishable
as well, and emit the same projected leakages; this highlights the fact that we need leakage-
preservation to be a backward property. Next, as we know that p is ONIπ-secure, we can
deduce that both executions of p emit the same projected leakage. As these leakages are
identical to the one emitted by the two executions of T (p), this concludes the proof.

We can now combine these results to prove that transformations S, I and R all
preserve the CR# policy. This is a direct consequence of Lemma 4.5 and Theorem 4.6.

Theorem 4.7: Elementary transformations are CR#-preserving.
Elementary transformations S, I and R are CR#-preserving.

Leakage Preservation of the Normalisation Transformation

This section defines the normalisation transformation N and shows that it is a
leakage-preserving pass. The transformations S, I and R may introduce many δδδ in-
structions, that increase the overall resource consumption, and are then factorised and
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minimised by the M pass. M is designed to minimize δδδ instructions locally to every
atomic block, and will not try to balance out δδδ instructions across different atomic blocks.
We decompose M into a normalisation pass N followed by a deletion pass D and we
prove that N is leakage preserving, contrary to D (that is discussed in Section 4.3.4). We
define the N pass as follows:

Definition 4.12: Transformation N .
The N pass repeatedly performs the four following basic operations until convergence,
in order to merge and factorise as many δδδ instructions as possible. These four opera-
tions preserve the resources consumed during an execution, and are defined as rewrite
rules, using the VN notation .

1. Move upwards. First, δδδ instructions are moved as upward as possible, in order
to further group them together. Formally, N performs the following operation:

p; δδδ(n) VN δδδ(n); p

2. Merge. Then, δδδ instructions are merged:

δδδ(n); δδδ(m) VN δδδ(n+m)

3. Factorise ticks out of branches. Next, whenever a δδδ instruction appears in an if-
branch, it is factorised when it appears on the opposite branch as well. Formally:

if(b) {δδδ(n1); p1} else {δδδ(n2); p2} VN

δδδ(n); if(b) {δδδ(n1 − n); p1} else {δδδ(n2 − n); p2}

where n is the minimum between n1 and n2. Any resulting δδδ(0) instruction is
deleted. For example, we have:

if(b) {δδδ(3); p} else {δδδ(5); s} VN

δδδ(3); if(b) {p} else {δδδ(2); s}

4. Move out of atomic. Whenever a δδδ appears in an atomic annotation, outside of
a branch, we move it out. This is the main step of the normalisation pass; it
reduces the amount of δδδ instructions inside of atomic annotations, to prepare
for the deletion pass D. Formally:

δδδ(n); p VN δδδ(n); p
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N performs these operations, along with recursive calls for the sequence of two
instructions, if-branch, while loop, and atomic constructs.

We can additionally notice that N does not move any δδδ instruction outside of a loop.
We argue that it is not necessary to try to do so, for the following reason. If a loop is
present outside an atomic annotation, the following D transformation will optimize it
identically (see Section 4.3.4). If a loop is present inside an atomic annotation, it may
appear in a secret-dependent branch. This practice may be dangerous, but is still tolerated
by our CR# policy: such a choice is the programmer’s responsibility. However, we prefer
not to optimize the loop in this case, as this situation is not realistic.

Lemma 4.8: N is leakage preserving.
Transformations N is LPπ3 , i.e., it preserves the leakage projected with function π3.
N is leakage preserving.

By combining Lemma 4.8 and Theorem 4.6, we can conclude that N preserves the
CR# policy.

Theorem 4.9: N is CR#-preserving.
Transformations N is CR#-preserving.

4.3.4 A Cornerstone non Leakage-Preserving Transformation
This section is devoted to our last and trickiest transformation to prove CR# pre-

serving, the second pass D of theM minimisation of δδδ instructions (introduced in Sec-
tion 4.1.1). D deletes unnecessary δδδ instructions while preserving balanced branches in
atomic annotations. First, this section definesD. Then, it justifies why it is CR#-preserving.
Once again, we decompose the proof in two parts and define a stronger property than
CR# preservation.

Deletion Pass D

The D pass is given in the following definition:

Definition 4.13: Transformation D.
The D pass is defined in using rewrite rules, using notation VD.

skip VD skip δδδ(n) VD skip
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p1 VD p
′
1 p2 VD p

′
2

p1; p2 VD p
′
1; p′2

p1 VD p
′
1 p2 VD p

′
2

if(c) {p1} else {p2} VD if(c) {p′1} else {p′2}

pVD p
′

while(c) {p} VD while(c) {p′} p VD p

Our CR# policy considers that balance between branches must only hold inside of
atomic annotations. So, deleting a δδδ instruction outside of an atomic annotation has no
effect on any balanced branch. The transformation D thus deletes any occurrence of a
δδδ instruction outside of an atomic annotation. However, δδδ instructions inside of atomic
annotations are not deleted, in order to preserve the balance between potential balanced
secret-dependent branches. For example, we have δδδ(2); δδδ(3) VD δδδ(3) .

Proving that the Deletion Pass is CR# Preserving

Contrary to all the passes presented so far, D deletes some δδδ instructions, hence explic-
itly modifying the resource consumption. Therefor, D is clearly not leakage preserving.
Instead, we rely on the property that D only removes δδδ instructions that are outside
of atomic annotations. As a consequence, its impact on resource consumption must not
depend on secret input values, as all secret dependent if-branches appear inside an atomic
annotation.

More precisely, for a given program, let us consider two executions emitting the same
boolean leakage, meaning that outside of atomic annotations, both executions follow the
same path during the execution. Transforming both executions with D will have the
same impact on resource consumption. Indeed, outside of atomic annotations, as both
executions follow the same path, the transformation will have a similar impact on resource
consumption. Moreover, inside of atomic annotations, the program is not modified, and
neither are the executions.

To capture this idea, we define a new policy called Leakage Preservaion with Offset
(LPO). It is defined as follows:

Definition 4.14: Leakage Preservation with Offset (LPO).
Let π be leakage projection function. For any program p, we assume to have two of its
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executions verifying:

〈p, σ1〉 ⇓ (σ′1, `1)
〈p, σ2〉 ⇓ (σ′2, `2)
π(`1) = π(`2)

If we can find leakages `′1, `′2 and r (we call r the offset leakage) such that we have:

〈p, σ1〉 ⇓ (σ′1, `′1)
〈p, σ2〉 ⇓ (σ′2, `′2)
π(r · `1) = π(`′1)
π(r · `2) = π(`′2)

we then say that program p is LPO with respect to π. We denote it as LPOπ(p).

LPO is not sufficient to imply that the transformation is CR#-preserving. We further
require the transformation to satisfy a property called “termination preservation”. It states
that if an execution of a transformed program from an initial state σ terminates, then an
execution of the source program from the same initial state σ also terminates. Similarly
to leakage preservation, termination preservation is a backward property.

Definition 4.15: Termination preservation.
A transformation T is termination preserving if, for any program p, supposing that we
have an execution 〈T (p), σ〉 ⇓ (σ2, `2) of the transformed program, then there exists
an output state σ1 and a leakage `1 such that we have the execution 〈p, σ〉 ⇓ (σ1, `1).

The following lemma states that any transformation complying to the two previous
properties is ONI-preserving. We then prove that D complies to both properties, hence
to CR# preservation.

Theorem 4.10: LPO implies ONI preservation.
Let π be a leakage projection function. Any LPOπ and termination preserving trans-
formation is ONIπ-preserving.

Proof of Theorem 4.10.
Let T be a transformation, that is LPOπ and termination preserving. Let p be a ONIπ-secure
program, we need to prove that T (p) is ONIπ-secure as well. To this end, we assume having
two indistinguishable executions E1 and E2 of T (p), and we then need to prove that they emit
the same leakage. As T is termination preserving, we can find two executions of p emitting
leakages that we call `1 and `2. As p is ONIπ-secure, these leakages verify π(`1) = π(`2).
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As the source executions emit the same projected leakage, we use the fact that T is
LPOπ to find leakages `′1, `′2 and a leakage offset r such that we have two target executions
of T (p) with identical initial states and emitting respective leakages `′1 and `′2, and such that
π(r · `′1) = π(r · `′2). We deduce that π(`′1) = π(`′2) from the hypotheses we have on the π
function.

Finally, as the semantics of L# is deterministic (see Lemma 4.1), these two target ex-
ecutions of T (p) are exactly the executions E1 and E2. As E1 and E2 emit the leakages `′1
and `′2 verifying π(`′1) = π(`′2), this concludes the proof.

Now, we can use this strong result to show that D is CR#-preserving. First, we need
to prove that it is termination preserving (we do not detail this proof here):

Lemma 4.11: D is termination preserving.
Transformation D is termination preserving.

We do not detail this proof, that can be conducted with a simple inductive reasoning
on the semantics of the program being transformed. Next, we show that D satisfies the
criterion LPO.

Lemma 4.12: D is LPO.
Transformation D is LPOπ3 , i.e., it is LPO with respect to leakage projection π3.

Proof of Lemma 4.12.
Let p be a program, we assume to have two executions of p emitting the same boolean leakage
l, and consuming respectively q1 and q2 resources. We need to find an offset r ∈ Z, such that
the associated executions of D(p) emit the same boolean leakage l, and consume respectively
q1 + r and q2 + r resources. We reason by induction on the semantics of one of the source
executions. We focus on some of the interesting cases.

— Case tick. We have p = δδδ(n) and D(p) = skip. We choose r = −n.
— Case seq. We have p = p1; p2, two executions of p1 and two executions p2. As the

boolean leakage is non-cancelling (see Lemma 4.2), we conclude that both executions
of p1 emit the same boolean leakage l1, and both executions of p2 emit the same
boolean leakage l2. Then we use the induction hypothesis and these two pairs of
executions to conclude.

— Case if. We have p = if(e) {p1} else {p2}. As both executions have the same
boolean leakage, e evaluates to the same value in both executions. When e evaluates
to true (resp. false), we have two executions of p1 (resp. p2), producing the same
boolean leakage. We then use the induction hypothesis on the executions of p1 (resp.
p2) to conclude.
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By combining Lemma 4.11, Lemma 4.12 and Theorem 4.10, we can conclude that
D preserves the CR# policy.

Theorem 4.13: D is CR#-preserving.
Transformations D is CR#-preserving.

4.3.5 Enforcing CR# with a Type-System

In subsection 2.5.3, we showed how to adapt the Secure Flow type-system presented
in section 2.2 in order to enforce the CCT policy. Similarly, we present here how to adapt
this type-system in order to enforce the CR# policy.

This type-system, that we call the CR# type-system, is designed to keep track of the
resource consumption in the type of program. In the type-system, a cost is an element
from Z ∪ {???}, i.e., an integer or a special element ???. We use element ??? whenever we can
not statically conclude on the cost of a program construct, e.g., in loops. We extend the
addition on integers to Z∪{???}, such that for any q ∈ Z∪{???}, q+??? = ???+q = ???. The type-
system relies on the same set of constants K ... used to define the instrumented semantics
of the language.

Our type-system is also able to insert atomic annotations in the program. Formally,
the type-system takes as input a program p ∈ L , i.e., that does not contain any atomic
annotation. Typing p also produces a program p# in L #, which is similar to p, but only
differs from p by the inserted atomic annotations.

The typing judgment for expressions is Γ ` e : (τ, q), with e an expression, τ an
element of the security lattice {L,H}, and q an element of Z∪{???}. It reads as e has type
(τ, q) in Γ. If q is not ???, the type-system is designed to ensure that any execution of e
costs q.

We define the type-system as follows, both for expressions and statements:

Definition 4.16: CR# type-system for expressions Γ ` e : τ, q.

const

Γ ` n : (τ, n)

var
Γ(x) = τ

Γ ` x : (τ,Kvar)

array
Γ[a] = L Γ ` e : (L, q)
Γ ` a[e] : (L,Karray + q)
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op_bin
Γ ` e1 : (τ, q1) Γ ` e2 : (τ, q2)

Γ ` (e1 � e2) : (τ, q1 + q2)

subtype_e
Γ ` e : (τ1, q) τ1 ≤ τ2

Γ ` e : (τ2, q)

The typing judgment for statements is Γ, s ` s# : (τ, q), with s ∈ L , s# ∈ L #, τ
an element of the security lattice {L,H}, and q an element of Z ∪ {???}. It reads as s has
type (τ, q) in Γ, and infers the annotated statement s#. If q is not ???, the type-system is
designed to ensure that any execution of s costs q.

Definition 4.17: CR# type-system for statements Γ, s ` s# : τ, q.

asn
Γ(x) = τ Γ ` e : (τ, q)

Γ, (x := e) ` (x := e) : (τ,Kasn + q)

array_asn
Γ[a] = L Γ ` e1 : (L, q2) Γ ` e2 : (L, q2)

Γ, (a[e1] := e2) ` (a[e1] := e2) : (L,Karray_asn + q1 + q2)

seq
Γ, s1 ` s#

1 : (τ, q1) Γ, s2 ` s#
2 : (τ, q2)

Γ, (s1; s2) ` (s#
1 ; s#

2 ) : (τ, q1 + q2)

if_low
Γ ` e : (L, q) Γ, s1 ` s#

1 : (L, q1) Γ, s2 ` s#
2 : (L, q2)

Γ, (if e then s1 else s2) ` (if e then s#
1 else s#

2 ) : (L,???)
if_balanced

Γ ` e : (τ, q) Γ, s1 ` s#
1 : (τ, q′) Γ, s2 ` s#

2 : (τ, q′)
Γ, (if e then s1 else s2) ` (if e then s#

1 else s#
2 ) : (τ, q + q′)

skip

Γ, skip ` skip : τ

while
Γ ` e : (τ, q) Γ, s ` s# : (τ, q′)

Γ, (while e do s) ` (while e do s#) : (τ,???)

subtype_s
Γ, s ` s# : (H, q) q 6= ???

Γ, s ` s# : (τ, q)

The idea of this type-system is to syntactically annotate the program anytime the
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subtyping rule is used. We therefore ensure that high-security parts any only present
inside atomics in the annotated program. The type-system also ensures that loops and
unbalanced branching are not present in high-security parts (i.e., atomics).

We can prove the following soundness result:

Theorem 4.14: Soundness of the CR# type-system.
Let p be a program. If p is well-typed, i.e., Γ, p ` p′ : (τ, q), then p is CR-secure and
the inferred program p# is CR#-secure.

4.4 Related Work
Our work focuses on a timing non-interference policy, which was first introduced

in [Aga00]. In [Aga00], the authors define a type system in which well-typed programs do
not leak secret information. This is a direct adaptation of [VIS96] but it adds control of
timing leaks on high branches. Their type system is undecidable because they rely on an
undecidable semantic judgement to check that high branches have equal timing costs. But
their approach can be refined with a more conservative judgement to become executable
and directly adapted to enforce the CR policy. When high branches are not time-balanced
but the program is typable with respect to the type system of [VIS96], they also show
how to repair the program by suitably padding both branches. Using this approach in
our setting could help repairing CR after a unsecure compiler transformation but will re-
quire running the type checking of [VIS96] after each compilation pass, even on low-level
languages where taint analysis is often too conservative to succeed. Our approach avoids
running a taint analysis inside the compiler, thanks to our atomic annotations.

In [Ngo+17], the authors introduce a timing non-interference policy called CR. We
extended this policy to also include control-flow leakages. They present a type system
used to verify that an implementation respects their policy. They also show how this type
system can automatically remove vulnerabilities from a program. In other works [HAH11;
Çiç+17], the authors use a similar notion of resource consumption to establish precise
bounds for worst and best cases resource usage. The main difference with our work is that
we focus on the preservation of a variation of this security policy. Our current paper does
not put to much emphasis on enforcing CR and CR# at source level because the work
of [Aga00] can be easily adapted to do it, by positioning carefully atomic annotations at
source level.

The work that is closest to ours is [Ath+18], where the authors use another relaxation
of the CCT policy called time balancing and defined as negligibly influenced by secrets.
To ensure that a program respects this policy, a global timing counter is added to measure
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the timing differences between branchings. Then, the Boogie deductive verifier checks for
each program the constraints required by the policy. This work is not formally verified
with a proof assistant but a tool was implemented to verify that the Amazon’s s2n imple-
mentation of TLS respects the time-balancing policy. Similarly to our work, the author
use padding or dummy instructions in order to balance branches in the program. Our
work differs as we use an instrumented operational semantics to model the timing behav-
ior of a program. Their policy also differs, as it allows pairs of executions with different
execution time, as long as this difference is bounded by a given constant value.

4.5 Conclusion
This concludes this chapter. We formalised the CR# security policy, a strong policy

defined as a mix between the CCT policy, and the CR policy which is used by some
cryptographic practitioners. We also formalised a methodology to adapt program trans-
formations so that they become CR# preserving; it relies on adding padding to balance
secret branchings and minimisation of padding. We proved that different transformations
used by compiler optimizations are CR# preserving. Last, we introduced an annotation
called atomic, used to delimit the high-security parts of the program. This annotation in-
dicates where to restrict the compiler optimizations in order to preserve the CR# policy.
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Chapter 5

CONCLUSION

In this thesis, we studied the problem of preservation of security policies against tim-
ing side-channel attacks, from two perspectives. We first tackled this problem from a
compilation perspective. We modified a realistic compiler, CompCert, by adapting 2 of
the 17 passes of the compilation chain, in order to make sure that the cryptographic
constant-time security policy is preserved during the compilation. We also ran experi-
mental validation to show that the impact on the performance of the generated code is
very low. At first, modifying the code of a large project such as CompCert was intimidat-
ing; the main difficulty we encountered was to find the right transformations to modify
in order to keep the changes to the compiler as light as possible, and then to adapt the
proof of correctness of the modified transformations.

We then tackled this question by focusing on a different security policy called Constant-
Resource (CR). To the best of our knowledge, the preservation of this policy during compi-
lation had never been tackled in the literature. This problem has proved to be challenging,
especially since usual proof techniques, used to study the preservation of the constant-
time policy for instance, can not be used in our case. This led us to introduce a more
flexible security policy. We studied this policy, introduced new proof schemes allowing to
show that a transformation preserves this new policy, and applied this methodology to
usual control-flow preserving optimizations.

In section 5.1, we summarize the results presented in this thesis, and we discuss short-
term improvements and perspectives in section 5.2.

5.1 Summary
In chapter 2, we first formally defined the Non-Interference (NI) policy, and presented

a secure-flow type-system classically used to enforce the NI policy. We then conducted a
didactic proof of the soundness of this type-system, in the case of a language equipped with
a small-step semantics with continuations. Next, based on this development, we illustrated
that such type-systems are unpractical when used in a compilation chain. Specifically, we
presented a simple (and realistic) transformation, aiming at concatenating arrays, and
showed that the compiled program can not always be typable by this type-system. Last,
we introduced the Observational Non-Interference (ONI) policy, a generic policy, based on
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leakages, that we later used to instantiate other security policies, such as constant-time or
constant-resource. We studied the preservation of ONI policies during a transformation, in
a way that does not rely on a taint-tracking mechanism, such as a secure-flow type-system.

In chapter 3, we first illustrated how real life compilers (e.g., GCC or Clang), break
the constant-time policy. More precisely, we highlighted examples of secure C programs,
that are compiled into unsecure programs. These behaviors existed as well in the ver-
sion 3.4 of CompCert, and we then presented our work aiming at removing them from
CompCert, so that it strictly preserves the constant-time policy. We then detailed our
modifications, that impacted two of the passes of the compiler, namely Instruction Selec-
tion and Assembly Generation. Prior to our work, Instruction Selection was responsible for
the non-preservation of the constant-time policy. Indeed, this pass introduced branching
when compiling specific conversion operations, e.g., between unsigned integer and floating
point values. We fixed these conversion operations, by replacing the introduced branchings
with a new instruction called select. During Assembly Generation, this newly introduced
instruction is then compiled to cmov x86 instructions, which are usually used to perform
an efficient branchless choice in constant-time implementations. Last, we discussed how
these changes were integrated in CompCert (in version 3.6), before experimentally eval-
uating our modifications. We showed that our modifications have a very low impact on
the performance of the generated code.

In chapter 4, we studied the problem of preservation of a ONI policy called Constant-
Resource (CR). Studying this policy proved to be challenging, as usual proof techniques
used for other ONI policies can not be applied in the case of the CR policy. In particular,
existing methodologies critically rely on leakage non-cancellation, which is not verified
in our case. This led us to propose a new methodology to use in order to show that a
transformation preserves the CR policy.

The CR policy relies on a resource consumption model, and is defined with respect
to an instrumented semantics that tracks the amount of resource consumed during the
execution of a program. The CR policy only ensures that the resource consumption is
independent from the secret values in the program. Therefore, the policy tolerates program
containing secret-dependent branches, as long as these branches are balanced with respect
to the resource model.

We then highlighted through a few examples that this policy is extremely fragile. In-
deed, as we chose to focus on a compiler that is not aware of the taints of the variables,
any optimization performed in a branch is likely to break the balance in resource con-
sumption, and thus prone to break the security policy. For this reason, we introduced a
syntactic annotation called atomic, that we assume to be introduced by a prior analysis.
We use this annotation to syntactically identify the high-security parts of the program,
by selectively choosing the leakage produced by an execution. We then introduced CR#,
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a more flexible security policy, defined as an instance of ONI. The atomic annotations are
used to selectively ignore some part of the leakage, allowing the policy to accept secret
dependent balanced branches. We showed how CR# can be seen as a mix between the
CR and the constant-time policies. Last, we detailed the proof that usual control-flow
preserving transformation can be adapted to preserve the CR# policy, by introducing a
minimal amount of padding.

5.2 Perspectives

5.2.1 Experimental Validation
As a first perspective for future work, we consider the experimental validation of the

constant-resource policy of chapter 4. The question we consider here is the following:
is it possible to provide a non-trivial CR program whose actual execution time does
not leak data? As execution time only makes sense at machine-code level, we try to
answer this question for machine-code programs only. Our approach relies on the use of
an experimental tool called dudect [RBV17], that we now present in detail.

The dudect tool

The dudect [RBV17] tool is designed to evaluate whether or not a program runs with
a constant execution-time, given a set of input values. The dudect tool works as follows:

— First, it performs empirical measurements on the tested program, on two sets of
inputs: a constant user-defined one (i.e., identical inputs for every measurement),
and a randomized one. Execution time is measured using architecture specific cycle
counting instructions, which gives the most precise measurements possible. This
step then provides two statistical distributions.

— Second, the obtained statistical distributions are post-processed, in order to discard
abnormally long executions, which might be triggered by external causes, such as
an OS interruption.

— Last, classic statistical test methods are applied in order to prove that the two
statistical distributions are different.

In practice, the tool repeats measurements indefinitely and reports any difference
in the statistical distribution as a potential leakage. If no leakage is detected, the tool
runs forever, and the tested program can then be considered to probably have a constant
execution-time with respect to input data.

In [RBV17] the authors run their tool on constant-time implementations of crypto-
graphic primitives and their tool did not manage to find any leakage, which empirically
validates the constant-time policy. Their experiments still managed to find a leakage in
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an implementation of the curve25519-donna primitive, when executed on a specific x86
processor performing a variable-time multiplication.

Proposed methodology

We tried to experimentally validate the Constant-Resource (CR) policy using the
dudect tool. Our goal here is to find a program that contains a secret-dependent branch,
where the branches are balanced so that the dudect tool does not detect any information
leakage. In other words, our goal here is to find a program that is not constant-time
secure, but that is not experimentally rejected by the dudect tool. We tried to craft
such a program by directly crafting it in assembly language and by precisely considering
the number of cycles needed to perform each instruction on the processor we run our
experiments on.

Unfortunately, microprocessor vendors typically never provide precise information on
the timing or number of cycles required to perform an instruction. Our experiments then
only rely on values measured empirically 1. Yet, despite our best efforts, we were not suc-
cessful in crafting such a program that is not detected as leaking data by the dudect tool.
We suspect the speculation mechanism to be responsible for this leaked data, as it makes
the number of cycles needed to perform a branch instruction hard to predict. We also tried
to use fences instructions, which is typically done to try to reduce Spectre vulnerabilities,
as it allows to prevent speculative execution [Wan+19; Bar+21a]. It experimentally made
the leakage harder to detect by the dudect tool, but did not remove the leakage entirely.

Still, as explained by the authors in [RBV17], the dudect tool may detect timing leaks
that are very hard to detect and may be impossible to exploit in practice. One may then
still consider an implementation presenting tiny leakage as usable in practice, as it is
done in Amazon’s implementation of TLS [Ath+18]. The CR policy is then still usable in
practice, even though the absence of leakage seems very hard to achieve.

As future work, we intend to try to apply the proposed methodology to simpler archi-
tectures, such as RISC, for which the execution-time is easier to predict. We hope to find
non constant-time programs that do not produce timing leakage according to the dudect
tool.

5.2.2 Extending the Atomic Annotation to Memory Accesses
In chapter 4, we introduced a new security policy, CR#, that relies on annotations

called atomic. The main idea of this policy is to syntactically mark some branchings as
secret dependent. The CR# policy is then designed to tolerate secret-dependent branch-
ings, as long as they are marked by an annotation. The program transformations we

1. https://www.agner.org/optimize/instruction_tables.pdf
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presented afterwards take the annotation into account, by preserving the resource con-
sumption between the annotated branches.

Another perspective we consider is to extend our approach to take memory accesses
into account. Intuitively, we could design a security policy that forbids secret-dependent
memory accesses, just like the constant-time or the CR# policies, but tolerates secret-
dependent memory accesses, as long as they are marked by the atomic annotation.

This idea is close to the work presented in [Bar+14], in which the authors present
an annotation called stealth, whose goal is similar to ours. The motivation of their work
comes from the development of system-level mechanisms, allowing to provide a program
with a private cache in which even secret-dependent memory accesses, can be performed
safely. Such memory locations are called stealth addresses. Memory accesses marked as
stealth must then naturally be performed at stealth addresses. They then introduce a
relaxed security policy called S-constant-time, which relies on the stealth annotation they
introduce. Intuitively, a program is S-constant-time secure if it does not branch on secrets
and only memory accesses to stealth addresses may depend on secret. They then present
an analysis allowing to verify that a program is secure with respect to the policy.

As a perspective, we then consider mixing our contribution with the one presented
above. Our goal is to define a relaxed constant-time policy, in which both secret-dependent
branches and memory accesses can be tolerated thanks to syntactic annotations. We then
plan to study the preservation of this policy through standard optimization transforma-
tions.

Another recent work [Coh+21] also considers the problem of secure compilation relying
on syntactic annotations, called opaque annotations. The authors introduce a security
policy enforcing that any observation occurring in an opaque area must be preserved
through compilation. Opaque annotations also restrict the optimizations performed by
the compiler, which resemble our atomic annotation. They study the preservation of
their policy from C code to machine code, although their implementation is not formally
verified. This work contains similarities with our work on the CR# policy, and we wish to
inspire from their contribution in future work.

5.2.3 Spectre Vulnerabilities
New types of attacks have emerged during the last few years, including the threat-

ening Spectre attacks [Koc+19]. These attacks come in several variants, and exploit the
speculative execution performed by modern processors, that can speculate on the result
of the calculation. Spectre attacks try to discover secret data by recovering data that have
been wrongly stored in the cache after a mispeculated execution.

Spectre attacks were discovered in 2018, and have been since extensively studied. This
led to the definition of a new security policy called speculative constant-time [Cau+20],
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acting as a countermeasure against side-channel attacks. Spectre attacks also raise several
challenges, such as the detection of spectre vulnerabilities. This challenge was tackled in
particular in [DBR21]. In this paper, the authors present Haunted, a tool that is designed
to detect variants of Spectre, called PHT and STL, at binary level. Their tool rely on an
instrumented semantics to model speculative execution. They use symbolic execution: for a
set of symbolic input, a logical formula records the list of branching condition encountered
during the symbolic execution. They then use a SMT solver to detect violation of the
speculative constant-time policy. They present sketches of proof of the correctness and
completeness of their tool.

The problem of repairing a program containing vulnerabilities is another challenge,
that was tackled in [Vas+21]. In this paper, the authors present a tool called Blade,
designed to automatically repair vulnerable programs. They use a similar speculative
constant-time policy, and a notion of speculation leakage modeling the effects of specula-
tive execution. Their approach is based on the insertion of annotations called protect in
the source code, allowing to prevent the speculation in specific parts of the code. These
annotations may then be implemented as memory fence instructions at assembly level, to
prevent the speculation mechanism. A type-system also ensures that a minimal amount
of annotations (to limit the performance overhead) are correctly inserted in a program.

As future work, we wish to consider the problem of formally verified secure-compilation
of speculative constant-time programs. The problem of secure-compilation of speculative
constant-time programs is also being considered in the case of the Jasmin compiler, as
detailed in [Bar+21a], although it is not formally verified. In particular, designing pro-
gram transformations that take advantage on syntactic annotations such as the protect
annotations seems like a promising idea. At first, we wish to explore these ideas on a small
prototype, such as a small language equipped with a speculative semantics, then study
the preservation of speculative constant-time during standard optimization transforma-
tions. In the longer term, we hope to integrate these ideas into a realistic compiler such
as CompCert.
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Titre : Compilation vérifiée et sécurisée contre les canaux cachés temporels

Mot clés : Vérification formelle, Compilation sécurisée, Canaux Cachés, Coq, CompCert

Résumé : Notre société est de plus
en plus dépendante des systèmes
informatiques. Assurer leur sécurité est
essentiel pour éviter les conséquences
dramatiques des attaques contre ces
systèmes. Dans cette thèse, nous nous
concentrons sur une classe de d’attaques
appelée attaques par canaux cachés
temporels. Nous étudions les protections
existantes contre ces attaques, telles que
les politiques constant-time et constant-
resource, et nous nous concentrons
sur leur interaction avec la compilation.
La compilation est le processus de
transformation d’un programme écrit par
un humain dans un langage source,

en code machine exécutable par un
ordinateur. Notre objectif est de s’assurer
que la compilation n’introduit aucune
vulnérabilité dans le code compilé,
par rapport aux politiques de sécurité
auxquelles nous nous intéressons ; c’est
ce qu’on appelle la compilation sécurisée.
Notre travail s’appuie également sur
des méthodes formelles pour donner
des garanties formelles sur les résultats
que nous présentons. Une de nos
contributions s’appuie sur le compilateur
formellement vérifié CompCert. Tous les
résultats présentés dans cette thèse sont
également vérifiés mécaniquement en
utilisant l’assistant de preuve Coq.

Title: Verified Secure Compilation against Timing Side-Channels

Keywords: Formal Verification, Secure Compilation, Side-Channels, Coq, CompCert

Abstract: Our society is increasingly de-
pendent on computer systems. Ensuring
their security is essential to avoid the dra-
matic consequences of attacks against
these systems. In this thesis, we focus
on a class of attacks called timing side-
channel attacks. We study existing protec-
tions against these attacks, such as the
constant-time and the constant-resource
policies, and focus on their interaction with
compilation. Compilation is the process of
transforming a program written by a hu-
man in a source language, into machine

code executable by a computer. Our goal
is to ensure that compilation does not in-
troduce any vulnerability in the compiled
code, with respect to the security policies
we focus on; this is called secure compila-
tion. Our work also relies on formal meth-
ods to give formal guarantees on the re-
sults we present. One of our contribution
relies on the formally verified CompCert
compiler. All the results presented in this
thesis are mechanically verified using the
Coq proof assistant.
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