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Abstract

As one of the cornerstones for delivering flexibility and ease of deployment, Wireless Local Area Networks

(WLANs), especially IEEE 802.11, have been widely deployed in a variety of situations: homes, corporate or

campus networks, public areas, which has led to the explosion of wireless data usage and the colossal rise

of access points, smartphones, and various mobile devices. In such dense environments, a device seeking

connectivity must choose among multiple available Wi-Fi networks that are within its radio range. However,

the procedure for selecting an access point is still a striking concern and a critical ongoing challenge, especially

in public areas (e.g., train stations, airports, malls, etc.), since it is based on simple criteria that do not relate

to the quality of service that the device will experience. In particular, the network load is not taken into

account even though it is a key parameter for the quality of service and experience. In this dissertation, we

study the possibility/capacity for an unmodified vanilla device, especially a smartphone, to estimate the

load of a network from local measurements in the user space with no interventions from the access points

nor root permissions. The network load can be expressed in many ways. In this work, we consider the Busy

Time Fraction (BTF), defined as the fraction of time the wireless medium is sensed busy due to successful or

unsuccessful transmissions.

In this regard, we propose relatively simple and versatile analytical Markovian models specific to the

application of BTF estimation in the presence of the IEEE 802.11 frame aggregation scheme introduced in

recent 802.11 amendments. We model and simulate different scenarios in which a device induces the UpLink

(UL) or the DownLink (DL) mean aggregation levels, in the user space, of an aggregated deterministic probe

traffic competing with the traffic present in the network that can aggregate or not its frames.

We then propose a novel and practical method called Frame Aggregation based Method (FAM). It leverages

the frame aggregation mechanism to estimate the network load through its BTF and characterize the network

traffic type. FAM combines an active probing technique to measure the actual packet aggregation level and

analytical Markov models that provide the expected rate as a function of the volume and nature of the traffic

on the network.

The performance evaluation of the proposed Markovian models and the method has been established with

the aid of the ns-3 network simulator and experimental test-beds under several scenarios. Results have shown

that our method FAM is able to infer the network load with a granularity based on six levels of network loads

for the considered scenarios.

Keywords: IEEE 802.11 networks, aggregated MAC protocol data unit (A-MPDU), Performance evaluation,

Network load, Markov chain.





Résumé

La technologie Wi-Fi est devenue un réel besoin puisqu’elle répond de manière fiable et rapide à la demande

exponentielle des services de données sans fil. Les réseaux Wi-Fi se sont densifiés ces dernières années et ils

ont été largement déployés dans de nombreuses situations: réseaux d’entreprises ou de campus, espaces

publics, etc. Dans de tels environnements denses, un terminal cherchant à se connecter doit choisir parmi

plusieurs réseaux Wi-Fi disponibles. Cependant, la procédure de sélection d’un point d’accès (AP) reste une

préoccupation majeure, en particulier dans les espaces publics (gare, aéroport, etc.), car elle est basée sur des

critères simples qui prennent en compte que la qualité du lien d’un utilisateur et négligent les informations

prenant en compte les autres. En particulier, la charge du réseau n’est pas prise en compte alors qu’elle est un

paramètre clé pour la qualité du service. Dans cette thèse, nous abordons comment un appareil non modifié,

en particulier un smartphone, pourrait estimer la charge d’un réseau via le temps d’occupation du canal

(BTF) dans l’espace utilisateur sans aucune intervention des APs. Le BTF est défini comme étant la fraction de

temps pendant laquelle le support sans fil est considéré comme occupé en raison de transmissions réussies

ou non.

À cet égard, nous proposons des modèles analytiques, basés sur des chaines de Markov relativement simples

et polyvalents, spécifiques à l’application de l’estimation de BTF en présence du mécanisme d’agrégation

de trames IEEE 802.11 introduit dans les récents standards (802.11n, ac, ax). Nous modélisons et simulons

différents scénarios dans lesquels un terminal induit le taux d’agrégation moyen de la liaison montante

(UpLink) ou descendante (DownLink) d’un trafic de sondage déterministe agrégé en concurrence avec le

trafic présent dans le réseau qui peut agréger ou non ses trames dans l’espace utilisateur.

Nous proposons ensuite une nouvelle méthode nommée FAM (Frame Aggregation based Method). Elle

exploite le mécanisme d’agrégation de trames pour inférer le BTF et caractériser le type de trafic réseau qui

peut agréger ou non ses trames. Cette méthode combine une technique de sondage actif pour mesurer le taux

réel d’agrégation de trames et des modèles analytiques basés sur des chaines de Markov qui fournissent

le taux d’agrégation théorique en fonction du niveau de charge et de la nature du trafic dans le réseau.

Les modèles et la méthode sont confrontés à des simulations effectuées sur le simulateur réseau ns-3 et à

des expérimentations réelles. Les résultats ont montré que notre méthode FAM est capable de déduire la

charge du réseau avec une granularité basée sur différents niveaux de charges du réseau pour les scénarios

considérés.

Mots clés : Réseaux IEEE 802.11, Agrégation de trames A-MPDU, Évaluation des performances, charge du

réseau, Chaîne de Markov.





Résumé Long

Les réseaux Wi-Fi se sont densifiés ces dernières années ce qui mène à la forte augmentation des points

d’accès (APs). Dans un environnement qui propose plusieurs réseaux Wi-Fi, un client cherche toujours à se

connecter au réseau Wi-Fi ou point d’accès (AP) (lorsque le réseau est constitué de plusieurs AP) capable

de lui offrir le meilleur service à ce moment-là. Le critère de sélection conventionnelle est la puissance du

signal en réception. Néanmoins, cette approche peut amener à préférer un point d’accès qui ne donnera

pas forcément les meilleures performances. Par exemple, si il y a plusieurs APs avec différentes puissances

de signal en réception, en se basant sur ce critère, tous les appareils peuvent sélectionner le même AP. Les

autres APs ne sont pas choisis alors qu’ils peuvent proposer de meilleures performances (moins chargés par

exemple).

Pour palier à ce problème, aujourd’hui les entreprises et les universités déploient un ensemble d’APs

correspondant au même réseau Wi-Fi logique (identifié par un identifiant commun : le Service Set ID).

L’ensemble des APs d’un même réseau Wi-Fi est géré par un contrôleur. Celui-ci collecte des informations

provenant des APs (nombre de clients associés, canaux, bande passante disponible, etc.) et applique des

algorithmes centralisés permettant d’améliorer les performances (répartition de charges, allocation des

canaux optimaux, la sécurité, etc.).

Toutefois, la densification des réseaux Wi-Fi est aussi liée au fait que des réseaux Wi-Fi différents sont

déployés dans des mêmes zones. Il est possible d’avoir à portée radio les box free (auquel les clients free

peuvent se connecter), le réseau de la ville, le réseau de la gare SNCF, le réseau Wi-Fi du café auquel on est

installé, etc. Un client a donc potentiellement le choix entre des réseaux Wi-Fi différents. Mais ces réseaux

étant différents, ils ne sont pas contrôlés par un serveur central et le client ne peut pas savoir quel est le

réseau pouvant lui offrir le meilleur service. Par conséquent, la procédure de sélection d’un AP reste une

préoccupation majeure, en particulier dans les espaces publics puisqu’elle repose sur des critères simples qui

prennent en compte que la qualité du lien d’un utilisateur et négligent les informations prenant en compte

les autres. En particulier, la charge du réseau n’est pas prise en compte alors qu’elle est un paramètre clé de la

qualité de service.

Parallèlement à l’omniprésenceduWi-Fi, la dernière générationde terminauxmobiles tels que les smartphones,

les smartwatches et les tablettes sont rapidement devenues omniprésentes dans notre quotidien. Le succès

des équipements électroniques portables par le grand public a amené à l’émergence de mobile crowd-
sensing. Le mobile crowd-sensing est un nouveau paradigme dont le principe est d’utiliser ces équipements

portables, dotés d’une multitude de capteurs intégrés, pour développer des plates-formes de mesures

(mesures capteurs). Cette approche offre un grand nombre de possibilités dans la mesure où l’on profite des

équipements omniprésents pour mesurer un phénomène donné sans avoir à déployer une infrastructure où

un ensemble de capteurs spécifiques. Les applications visées et existantes sont multiples : du monitoring de

quantités environnementales aux conditions de trafic sur les routes. Une question théorique sous-jacente au

crowd-sensing qui est au cœur de cette thèse concerne la capacité à exploiter la masse et la diversité des

mesures pour inférer une information que chaque objet ne peut pas mesurer individuellement. Par exemple,

dans une application type « waze », chaque smartphone mesure sa vitesse de déplacement instantanée. Le

système est ensuite en capacité d’inférer une estimation globale des temps de trajet (voire une prédiction).

L’objectif de cette thèse consiste à étudier la possibilité de fournir les bases techniques d’une future application

de mobile crowd-sensing. Cette application permettrait d’améliorer le processus de la sélection d’un point

d’accès dans les espaces publics de la manière suivante. Nous concevons une application de crowd-sensing

dans laquelle les appareils participants mesurent et partagent la charge de leurs réseaux environnants. Ils

construiraient un savoir collectif de sorte que lorsqu’un appareil arrive dans une zone et veut se connecter

à un réseau Wi-Fi, il pourrait choisir le point d’accès le moins chargé pour essayer de se connecter. Pour

atteindre cet objectif, il est nécessaire qu’un appareil non modifié puisse estimer la charge d’un réseau sans

exigence sur les points d’accès. Cette fonctionnalité permettrait donc d’optimiser/de coordonner au travers



d’une association intelligente des réseaux Wi-Fi différents, d’améliorer la qualité de service utilisateur, et

inciter les utilisateurs à participer aux applications collaboratives crowd-sensing.

Il est à noter que, dans cette thèse, nous nous intéressons au choix du type d’informations à collecter et le

déploiement de mécanismes pour les mesurer. En particulier, nous étudions la possibilité/capacité d’un

terminal mobile, généralement un smartphone, à estimer la charge du réseau Wi-Fi à partir de mesures

dans l’espace utilisateur. La charge du réseau peut être exprimée de plusieurs façons. Dans ce travail, nous

considérons le temps d’occupation du cannal (BTF), définie comme la fraction de temps pendant laquelle

le médium sans fil est considéré comme occupé en raison de transmissions réussies ou non. Il s’agit de

transmissions simultanées, constituant la charge de l’AP, ainsi que l’interférence inter-réseau.

Contributions de la thèse

Dans cette thèse, tout en relevant les défismentionnés ci-dessus, nous apportons les contributions suivantes:

La première contribution est la proposition de deux modèles analytiques basés sur des chaînes de Markov

spécifiques à l’application de l’estimation de la charge du réseau par un terminal mobile en utilisant

l’agrégation de trames IEEE 802.11. Dans la première génération de modèles, nous avons supposé que

la connexion entre l’AP et le serveur était idéale. Nous l’avons donc modélisée comme si le serveur était

implémenté sur l’AP. Ces modèles permettent d’estimer les niveaux d’agrégation moyens de la liaison

montante (UpLink (UL)) d’un trafic de sondage déterministe agrégé en concurrence avec le trafic du réseau

actuel qui peut agréger ou non ses trames. Nous avons démontré par des simulations et des expérimentations

que le débit qu’une station peut obtenir dépend du fait que le trafic concurrent utilise ou non l’agrégation

de trames. Par conséquent, le premier modèle considère un trafic concurrent agrégé, tandis que le second

modèle considère un trafic concurrent non agrégé. Les résultats numériques obtenus avec le simulateur de

réseau ns-3 et une expérimentation ont montré l’efficacité de cette solution.

La deuxième contribution est de dériver la deuxième génération de modèles analytiques qui considèrent un

scénario différent, plus réaliste et plus pratique. Ils considèrent que le serveur est intégré à un second dispositif

sans fil appartenant à l’utilisateur et connecté au même point d’accès par le biais du même réseau Wi-Fi. Ils

évaluent les niveaux d’agrégation de trames du trafic de sondage de la liaison descendante (DownLink (DL))

entre deux stations connectées au même AP. Deux chaînes de Markov sont proposées pour la génération de

ce modèle. Le premier modèle est basé sur un trafic concurrent agrégé tandis que le deuxième est basé sur un

trafic concurrent non agrégé. Tous les modèles proposés ont révélé que l’agrégation de trames incorpore un

ensemble riche de propriétés qui peuvent être utilisées pour discerner la charge du réseau.

La troisième contribution consiste à proposer une nouvelle méthode nommée FAM (Frame Aggregation

based Method). Elle exploite le mécanisme d’agrégation de trames, introduit depuis le standard IEEE 802.11n,

pour estimer le temps d’occupation du canal (BTF) et donc la charge actuelle. Vu que le débit qu’un terminal

peut obtenir dépend du fait que le trafic concurrent utilise ou non l’agrégation de trames, FAM estime

non seulement le BTF mais aussi la nature du trafic. La précision de FAM est évaluée par des simulations

effectuées sur le simulateur réseau ns-3 et des expérimentations. A partir des résultats, nous pouvons obtenir

les informations techniques suivantes sur la faisabilité d’une plateforme de mobile crowd-sensing pour

l’estimation de la charge du réseau.

I La précision du FAM est suffisante pour une classification de la charge en quelques niveaux.

I Lorsque la majorité du trafic concurrent n’utilise pas de mécanisme d’agrégation de trames, il n’est

possible d’identifier que deux classes de la charge.

Les modèles et la méthode sont confrontés à des simulations effectuées sur le simulateur réseau ns-3 et à

des expérimentations réelles. Les résultats ont montré que notre méthode FAM est capable de déduire la

charge du réseau avec une granularité basée sur différents niveaux de charges du réseau pour les scénarios

considérés.
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1.1 General context

Since its apparition in the late 1980s, the advent of the Internet brought

in several new revolutions. The beginning of the 20th century saw a

revolution in the field of telecommunications with the advent of so called

radio network technologies such as cellular (e.g., 3G, 4G) andwireless fidelity

(Wi-Fi), among others. Unsurprisingly, Internet users have vigorously

embraced these new ways of networking since they allow a cordless

experience and quickly became the most favored manner for delivering

several advantages over wired networks such as mobility, flexibility, ease

of deployment, as well as reducing deployment costs.

“We are all now connected by the Internet,

like neurons in a giant brain. ”

– Stephen Hawking

In this work, we focus on IEEE 802.11 technology (commonly known

as Wi-Fi). Nearly all indoor and outdoor environments such as com-

panies, universities, enterprises, and homes use Wi-Fi to satisfy users’

connectivity needs. Such proliferation has led to the explosion of wireless

data usage and the colossal rise of access points (APs), smartphones,

and various mobile devices, and these sharp increases are projected to

continue in the foreseeable future. According to Cisco [1] [1]: Cisco (2020), Cisco Annual Internet
Report (2018–2023) White Paper

, Internet users

represented 3.9 billion in 2018, and they will exceed 5.3 billion by 2023,

while the number of Wi-Fi hotspots will grow four-fold from 169 million

hotspots in 2018 to nearly 628 million public Wi-Fi hotspots by 2023.

Such massive utilization has resulted in higher expectations from Wi-

Fi users (efficiency, throughput, etc.), in particular, with the parallel

enhancement of cellular networks and the advent of the fifth generation

(5G) cellular technology [2] [2]: Agiwal et al. (2016), ‘Next Generation

5G Wireless Networks: A Comprehensive

Survey’

that lies in providing very high data rates

(typically of Gbps order) and offering one of the highest performances

with extremely low latency. To meet the increasing and continuous

demand of Wi-Fi consumers, this technology has undergone a myriad

of remarkable enhancements for both Physical Layer (PHY) and MAC

Medium Access Control Layer (MAC), resulting in several generations of

IEEE 802.11 standard amendments and the deployment of evenmore APs.

In the dawning of the last new IEEE 802.11ax amendment,Wi-Fi networks

are settled for the relentlessly booming of mobile devices that must share

the spectral resources. Given the narrow spectrum for wireless channels,

optimizing and evaluating the Wi-Fi performance in an efficient way is

paramount important. That is what we aim to address in this dissertation

in order to improve the users’ perceived Quality of Service (QoS).

To join a Wi-Fi network, a wireless STAtion (STA) has to associate with

an Access Point (AP). In some environments such as companies and

universities, the choice of the access point is controlled: the objective is

to join a specific network that is composed of a set of APs corresponding

to the same logical Wi-Fi network (Extended Service Set (ESS)) and

identified by a common Service Set IDentifier (SSID). This ESS ismanaged

and coordinated by a centralized WLAN controller. This controller
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Figure 1.1: Centralized management

Wired network of the
company/ University

APs send informations about the
Wi-Fi network utilization 

Central
controller

can implement performance optimization algorithms such as channel

allocation and load balancing [3, 4][3]: Sood et al. (2015), ‘Dynamic access

point association using Software Defined

Networking’

[4]: Amer et al. (2018), ‘Considering Frame

Aggregation in Association Optimiza-

tion forHighThroughputWi-FiNetworks’

to eke out as much performance as

possible, improve the network functionality, and guide the device to a

chosen AP as shown in Figure 1.1. In this figure, the four APs offer the

same Wi-Fi network to clients. These APs send data about the network

utilization (number of associated clients, bandwidth, the channel used,

etc.) to the controller. Based on collected information, the controller

configures the APs. Such an approach aims to ensure efficient coverage of

aWi-Fi network and offers the STA the possibility to have at least an AP in

its vicinity and judiciously associate with the optimal AP that guarantees

the QoS it will experience. Furthermore, some works propose to manage

networks trough software-defined networking (SDN) paradigm [5][5]: Yang et al. (2015), ‘Software-Defined

and Virtualized Future Mobile and

Wireless Networks: A Survey’

.

1.2 Thesis statement

The spatial densification of Wi-Fi networks is also related to the fact

that many different Wi-Fi networks can be deployed in the same area,

especially in public areas. In such areas, there may be the choice between

several access points, potentially belonging to different networks, without

any coordination between them. If we take the example of a train station,

a Wi-Fi network with a couple of APs may have been deployed by the

train’s company to offer free Wi-Fi service. Shops, bars, and restaurants

may have deployed their own Wi-Fi networks, each composed of one

or several independent APs. These public networks are managed by

different entities and there is no common policy or rational management

to help the devices select the Wi-Fi network or AP that offers the best

performance. It is then up to the terminal to choose the access point it will

associate with. This heterogeneity in the wireless networks is, therefore,

an increasing problem that breaks down coordination between wireless

terminals and APs and leads to a bad distribution of the load in the

network, irrational management of the resources, and a penalty of the

overall network performance.

Along with the ubiquity of heterogeneous Wi-Fi networks, the latest

generation of mobile devices such as smartphones, smartwatches, and
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tablets have quickly become necessary in our daily life. By taking advan-

tage of their ubiquitous nature and rapid evolution over recent years,

mobile computing devices with several embedded sensors (e.g., cameras,

accelerometers, etc.) have led to the emergence of Mobile Crowd Sensing.

This paradigm is defined as “individuals with sensing and computing

devices collectively share data and extract information to measure and

map phenomena of common interest” [6] [6]: Ganti et al. (2011), ‘Mobile crowdsens-

ing: current state and future challenges’

. This approach offers a large

number of possibilities where we take advantage of ubiquitous equip-

ment to measure a given phenomenon without having to deploy an

infrastructure or a set of specific sensors. The targeted applications and

devices’ existing systems are numerous: from monitoring environmental

quantities to traffic conditions on the roads. For example, in a typical

application “Waze”, each smartphone measures its instantaneous speed

of movement. These applications can be grouped into two categories:

personal and community sensing based on the kind of phenomena being

monitored. The personal sensing applications aim tomonitor phenomena

pertaining to an individual (e.g., walking, running,...). On the other hand,

community sensing aims to supervise large-scale phenomena that cannot

be performed by an object/person individually (e.g., air pollution level

and traffic congestion monitoring). Based on the type of involvement

from users, the community can be broadly classified into participatory

sensing and opportunistic sensing. Participatory crowd sensing requires

the active involvement of individuals in contributing sensing information

(e.g., taking a picture) related to any large-scale processes of common

interest whereas opportunistic crowd sensing requires a minimal user

involvement where the data is sensed and shared automatically without

user intervention.

Our long-term objective is to design a crowd-sensing application. This

approachwould improve the access point selection process in public areas

in the following way. We design a crowd-sensing application in which

participant devices measure and share the load of their surrounding

networks. They would build a collective knowledge so that when a device

arrives in some area and wants to connect to a Wi-Fi network, it could

choose the less loaded AP to try and attach. To reach this goal, it is

necessary that an unmodified device can estimate the load of a network

with no requirements on the access points. It is worth noting that, in

this dissertation, we are interested in choosing the type of information

to collect and deploying mechanisms to measure them. In particular,

we study the possibility/capacity for a vanilla Wi-Fi client, typically a

smartphone, to infer the Wi-Fi network load from local measurements in

the user space.

1.3 Contributions

In this thesis, while tackling the above-mentioned challenges, we make

the following contributions.

Thefirst contribution is thepropositionof twoanalyticalmodels basedon

Markov chains specific to the application of the network load estimation

by a device under the IEEE 802.11 frame aggregation scheme. In this

first generation of models, we assumed that the connection between the

AP and the server is ideal. We, therefore, modeled it as if the server is
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implemented on the AP. These models allow estimating the UpLink (UL)

mean aggregation levels, in the user space, of an aggregated deterministic

probe traffic competing with current network traffic that can aggregate

or not its frames. We demonstrated through simulations and a test-

bed experiment that the throughput that a joining device could get

depends on whether the competing traffic uses frame aggregation or

not. Therefore, the first model considers aggregated concurrent traffic,

whereas the second model captures non-aggregated cross traffic. The

numerical results obtainedwith the network simulator ns-3 and a test-bed

experiment have shown the effectiveness of this solution.

The second contribution is to derive the second generation of the ana-

lytical models that consider a different scenario which is a more realistic

and practical one. They consider that the server is embedded on a second

wireless device owned by the user and connected to the same AP through

the same Wi-Fi network. They appraise the frame aggregation levels of

the DownLink (DL) probe traffic between two stations connected to the

same AP. Two Markov chains are proposed for this model generation.

The first model is based on aggregated cross traffic while the second is

based on non aggregated cross traffic. All the proposed models revealed

that the frame aggregation scheme embodies a rich set of Wi-Fi link

properties that can be used to discern the network load.

The third contribution is to propose a novel method Frame Aggregation

based Method (FAM). It leverages the frame aggregation mechanism,

introduced since the IEEE 802.11n amendment, to estimate the channel

Busy Time Fraction (BTF), thus the current load. As the throughput that

a joining device could get depends on whether the competing traffic

uses frame aggregation or not, FAM estimates not only the BTF but also

the nature of the traffic. FAM accuracy is evaluated through extensive

discrete-event simulations and test-bed experiments. From the results,

we can get the following engineering insights on the feasibility of a

crowd-sensing platform for network load estimation.

I The accuracy of FAM is enough for the classification of the load in

a few levels.

I When the majority of the competing traffic does not use frame

aggregation, it is only possible to identify two load classes.

I The number of devices composing the DownLink competing traf-

fic which is coming from the same AP does not influence the

prediction.

1.4 Thesis outline

This manuscript is organized in seven chapters.

Chapter 1 presents the general context, as well as the motivation and

contributions of this thesis.

Chapter 2 gives a survey on the IEEE 802.11 standard evolution from

the first IEEE 802.11 release (1999), published more than two decades

ago, up to the bleeding edge, IEEE 802.11ax (2020). It gives a description

of the most MAC and PHY layers mechanisms while highlighting their

evolution over the years.
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Chapter 3 reviews some of the existing approaches in the field of network

performance evaluation that one can use to evaluate these networks,

with a focus on the IEEE 802.11 standard. We establish a taxonomy of

these works according to several criteria. This chapter brings out the

motivation of our contributions, discusses several open problems, and

contextualizes the novelty of our work.

Chapter 4 gives a detailed description of the system technical implemen-

tation. It first exposes the various network load measurement metrics. A

special focus has been laid on the metric of interest related to our work.

It then exhibits the main challenges faced while estimating the network

load in a vanilla device and provides the procedure of detecting the frame

aggregation level at the user space. This chapter also presents the network

simulation environment and the choice of the programming languages

used throughout this thesis coupled with detailed explanations of the

reasoning behind such choices. In the interest of clarity, we also include

a detailed general description of the system that we consider in our

modeling approaches that should help the reader to better understand

the rest of this manuscript.

Chapter 5 presents a thorough description of our analytical Markovian

models by exposing the system model, generic assumptions, notation,

and mathematical formulation used in the different models. We then

evaluate the accuracy of the models against a set of ns-3 simulations that

consider different scenarios and a test-bed experiment.

Chapter 6 exposes the third contribution of this thesis which is the

method FAM that helps a vanilla device to choose the less loaded AP in a

given area by relying on themeasurement of the actual frame aggregation

level and the expected rate returned by the analytical models as a function

of the volume and nature of the traffic on the network. The proposed

method is evaluated through ns-3 simulations, a test-bed experiment,

and a real-world trace-driven simulation, and a detailed analysis of the

results is given.

Finally, Chapter 7 draws conclusions and discusses potential enhance-

ments and drawbacks of our solutions.

1.5 Publications

The contributions of this thesis have been published or submitted in

several peer-reviewed national and international conferences and inter-

national journals.

International Conferences

I Nour El Houda Bouzouita, Anthony Busson, Hervé Rivano, Ana-
lytical Study of Frame Aggregation Level to Infer IEEE 802.11 Network
Load. 2020 International Wireless Communications and Mobile

Computing (IWCMC), 2020, pp. 952–957

I Nour El Houda Bouzouita, Anthony Busson, Hervé Rivano, Exploit-
ing Frame Aggregation to Enhance Access Point Selection. Performance

Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks

(PE-WASUN), 2021.
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National Conferences

I Nour El Houda Bouzouita, Anthony Busson, Hervé Rivano. "Etude
du niveau d’agrégation des trames dans les réseaux IEEE 802.11 pour
l’évaluation du niveau de charge". CORES 2020, Sep 2020, Lyon,

France.

Journal paper

I [Undermajor revision]Nour ElHouda Bouzouita, Anthony Busson,

Hervé Rivano. FAM: A Frame Aggregation Based Method to Infer the
Load Level in IEEE 802.11 networks. Computer Communications.
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This chapter goes into detail about the general context of this thesis. The

first part of this chapter (Section 2.1) presents the basic architectures and

mechanisms of the IEEE 802.11 standard. Section 2.2 brings a synthesis

of the evolution of the IEEE 802.11 made over the years, from the original

802.11 standard published in 1997 to the IEEE 802.11ax amendment, while

highlighting themain improvements brought generation after generation.

We then present in Section 2.3 some new IEEE 802.11 features, mainly

those related to this thesis. In Section 2.4, we present data rates and

modulation and coding scheme. Section 2.5 exposes the channel access

modes in Wi-Fi networks. At last, in Section 2.6, several challenges were

mentioned to point out the relevance of the association process when it

comes to choosing the best AP in public areas.

2.1 IEEE 802.11 overview

The IEEE 802.11 standards, known as Wi-Fi, are focused on the two

lowest layers of the Open Systems Interconnection (OSI) model: the MAC

Medium Access Control Layer (MAC), determining how to access the

medium and send data, and the Physical Layer (PHY), dictating the

details of transmission and reception.

The design of a wireless network under the IEEE 802.11 specifications

relies on a specified architecture composed of multiple physical compo-

nents as follows.

“ I feel the need...the need for speed! ”

– Maverick and Goose, Top Gun

Access Point (AP): an AP is a specific Wi-Fi node that performs the

wireless-to-wired bridging function. In addition, it performs a

number of other roles, such as the management of transmissions

between devices that belong to the same Wi-Fi network.

STAtion (STA): a STA is a computing device with a wireless network

interface such as a smartphone, laptop, tablet, etc. These STAs can

be either mobile or fixed.

Wireless medium: awirelessmedium is used to transport transmissions

from a node to another node. Multiple PHY layers were developed

to support the 802.11 MAC layer.

Distribution System: in order to ensure the connection of the AP to the

network, eachAP is associatedwith aDistribution System (DS). The

DS is a logical component that forwards frames to their destination.

The IEEE 802.11 standard does not specify any specified technology

for the distribution system. The Ethernet is the commonly used

technology.

The design of any WLAN relies on the Basic Service Set (BSS). The BSS is

the set composed of a number of nodes in a specific way to communicate
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together. Each BSS has a unique 48-bit identifier referred to as Basic

Service Set IDentifier (BSSID).

BSSs can be of different kinds: Infrastructure BSS (known as infrastructure

mode), Independant Basic Service Set (IBSS) (known as Ad-Hoc mode)

or the Mesh Basic Service Set (MBSS) (Known as mesh mode). Figure

2.1 illustrates an example of the three modes. Infrastructure mode is

distinguished by the utilization of the AP. In order to set up a network

service, A STA must associate with an AP. All the communications must

be centralized by taking two hops relayed through the AP. In Ad-Hoc

mode, STAs communicate directly with each other. In mesh mode, nodes

are comprised of mesh clients, mesh routers, and gateways, where each

node acts as a host and a router, forwarding traffic on behalf of other nodes

that might not be within the direct radio range of their destinations.

The 802.11 standard allows a group of BSSs to form an Extended Service

Set (ESS) to create coverage in large-sized networks. An ESS is formed by

linking BSSs together through the distribution system. It permits stations

within the same ESS to communicate with each other, even though they

belong to different Basic Service Area (BSA).

Figure 2.1: Comparison of infrastructure (left), ad-hoc (middle) and mesh (right) modes in WLANs.

2.2 IEEE 802.11 evolution

The first IEEE 802.11 standard was initially published in 1997 [7][7]: IEEE (1997), ‘IEEE Standard for Wire-

less LANMedium Access Control (MAC)

and Physical Layer (PHY) specifications’

by

the Working Group 11 of IEEE 802 LAN/MAN Standards Committee,

providing the data rate of 1 or 2 Mbps and operating in the unlicensed

2.4 GHz radio frequency band. This band is reserved for the Industrial,

Scientific and Medical (ISM) band. The PHY layer of this version uses

either frequency hopping spread spectrum (FHSS), infrared (IR) or Direct

Sequence Spread Spectrum (DSSS).

Since then, the IEEE802.11workinggroupquickly beganworkingon faster

radio layers and developing new techniques implemented in different

802.11 standard amendments. In 1999, they standardized and published

both 802.11b and 802.11a, operating respectively in the 2.4 GHz band and

5 GHz band, which is taken from the Unlicensed National Information

Infrastructure (U-NII). The complementary code keying (CCK) mode

was introduced in 802.11b to support up to 11 Mbps, whereas Orthogonal
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Table 2.1:Comparison of 802.11 standards.

standard Speed Frequency band

802.11 Up to

2 Mbps

2.4GHz

802.11a Up to

54 Mbps

5GHz

802.11b Up to

11 Mbps

2.4GHz

802.11g Up to

54 Mbps

2.4GHz

802.11n Up to

600 Mbps

2.4 GHz

5 GHz

802.11ac Up to

1 Gbps

5GHz

802.11ax Up to

10 Gbps

2.4 GHz

5 GHz

Frequency-DivisionMultiplexing (OFDM)was applied for 802.11a, which

pushes the original 2 Mbps data rate up to 54 Mbps.

On the other hand, there was a demand for higher data rates than 11b

systems in the 2.4 GHz band. In 2003, 802.11g [8] [8]: (2003), ‘IEEE Standard for Informa-

tion technology– Local and metropolitan

area networks– Specific requirements–

Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY)

Specifications: Further Higher Data Rate

Extension in the 2.4 GHz Band’

was released, which is

a 2.4 GHz standard supporting the data rate up to 54 Mbps by bringing

the OFDMmodulation technique of 11a.

With the stunning growth of the usage of Internet browsing and mul-

timedia services, the demand for higher data rates has never stopped

growing in WLAN. In 2009, the IEEE working group made a significant

step forward by publishing the 802.11n amendment, called Wi-Fi 4, or

High Throughput (HT), reaching a theoretical maximum data rate of 600

Mbps. This throughput enhancement was made possible by introducing

a bunch of new features to both PHY and MAC layers. These include:

I PHYEnhancements:802.11n introduced theMultiple-InputMultiple-

Output (MIMO) technology,which allows theutilizationofmultiple

antennas at both the transmitter and receiver sides to send up to

four spatial streams simultaneously for every single user (Single

user MIMO). It also supports deployment of wider channels, with

a width of 40 MHz, which is twice larger than those used in the

previous 802.11a/b/g and uses higher 5/6 coding rates;

I MACEnhancements: for enhancing efficiency, themain approaches

in 802.11n are frame aggregation and block acknowledgments (de-

tailed in Section 2.3). In addition, 802.11n introduces a newReduced

Inter-Frame Space (RIFS) of 2 �s that can be exploited instead of

the 10 or 16 �s Short Inter-Frame Space (SIFS).

After the completion of 802.11n in 2009, an evolution from 802.11n

was released, 802.11ac, called Wi-Fi 5. This new amendment, initiated

by the Very High Throughput (VHT) study group and referred to as

VHT standard, maintains the specifications of 802.11n while adopting

some remarkable improvements. It introduced more advanced MIMO

techniques. Unlike 802.11n that uses MIMO only to increase the number

of data streams sent to a single client, 802.11ac deployed a DownLink

(DL)Multiple User MIMO (MU-MIMO) that allows an AP to send data to

multiple clients at the same time. 802.11ac also added new wider channel

sizes: 80 MHz, 160 MHz, and “80+80 MHz", introduced the 256-QAM

modulation that supports eight bits per symbol period and specifies up

to eight spatial streams. Rather than operating all across the unlicensed

spectrum bands allocated to WLANs, 802.11ac is restricted only to the 5

GHz frequency band.

Finally, the 802.11ax, which is both referred to as High Efficiency (HE) and

Wi-Fi 6, was introduced by the IEEE 802.11 ax Task Group (TGax), mainly

dealing with the performance ofWLANs in massively crowded scenarios

with a high density of user stations and APs. Similar to the previous

amendments, 802.11ax develops a new set of PHY layer specifications.

First, it has introduced the Orthogonal Frequency-Division Multiple

Access (OFDMA), widely deployed in cellular networks, and has adopted

it for bothDownLink (DL) andUpLink (UL) transmissions. This technique

relies on the same approach as OFDM but offers more resilience and

enhancements by assembling adjacent sub-carriers (tones) into a Resource

Unit (RU). A sender can thus choose the best RU for each particular

receiver. Conversely to earlier standards, OFDMA allows allocating a
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channel to multiple users in the same time slot, thereby improving the

overall network efficiency. Moreover, unlike 802.11ac, which uses only

the DownLink MU-MIMO, 802.11ax extends the MU communication by

adopting the UpLink MU-MIMO which is based on sending multiple

spatial streams tomultiple stations. Additionally, 802.11ax has introduced

the 1024-QAMmodulation andhas quadrupled thedurationof theOFDM

symbols used for the PHY payload up to 12.8�s. When it comes to the

MAC layer, multiple improvements have been proposed. One of the most

key features is the improvement of the Spatial Reuse (SR) operations

such as enhancement of the PHY Clear Channel Assessment (CCA),

BSS coloring, and Interference management, thereby enabling better

management of the available resources.

In order to embrace the accumulated changes, a revision was applied to

the original 802.11-1997 standard known as a roll-up. The roll-up of the

approved amendments is carried out only once every several years since

the modification of the entire 802.11 standard is a delicate mission. So

far, the standard has been revised in 2007, 2012, 2016, and 2020 with the

802.11-2020 [9][9]: IEEE (2021), ‘Standard for Information

Technology–Telecommunications and

Information Exchange between Systems -

Local and Metropolitan Area Networks–

Specific Requirements - Part 11: Wireless

LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications’

being the most recent roll-up available.

In the next section, we will goes into detail about the new MAC features,

introduced since IEEE 802.11n, since our contributions, discussed in the

following chapters, are based on their behavior.

2.3 New IEEE 802.11 features overview

The recently rewritten IEEE 802.11 standard [9] and the most recent

amendments, IEEE 802.11n, IEEE 802.11ac, and IEEE 802.11ax, made

significant network efficiency and channel utilizationgains by introducing

new PHY and MAC layers features. The improvement of the MAC layer,

since 802.11n, relies mainly on two new mechanisms, Frame Aggregation

and Block acknowledgments (BlockACK). In the following, we briefly

describe these two enhancements. We then give a brief description of

how the AP queue handles packets under the frame aggregation, being

of special interest to Chapter 5.

Frame aggregation

“ We must, indeed, all hang together, or

most assuredly we shall all hang sepa-

rately. ”

– Benjamin Franklin

Before adapting the HT enhancement in 802.11n, each source node

spends a notable amount of time trying to gain access to the wireless

shared medium instead of sending data. As a result, 802.11 MAC is

generally reckoned to be 50% efficient. A simple solution to effectively

spread the cost of gaining access to the radio resource is to send frames

that carry several higher-layer packets (e.g., IP packets) known as frame

aggregation. There are two types ofmethods that perform thismechanism:

the Aggregate MAC Protocol Data Unit (A-MPDU) and the Aggregate

MAC Service Data Unit (A-MSDU). These two schemes differ by wherein

the network stack they apply the frame aggregation.

I A-MSDU: This scheme is performed before the MAC header en-

capsulation process. Its concept is to allow multiple Service Data

Units (SDUs) to be grouped together. As shown in Figure 2.2, each

A-MSDU sub-frame consists of a sub-frame header, an MSDU, and
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padding bytes. The resulting A-MSDU, a common MAC header

and Frame Check Sequence (FCS) are concatenated in a single

MPDU with a PHY header to be sent to the same sink node. Con-

sequently, the corruption of any sub-frame during transmission

causes the corruption of the whole aggregated frame. The benefit

of using A-MSDU is reducing the overhead. However, in noisy

environments, the cost of the retries may be bigger than the gain of

the aggregated frames.

Sub-frame Header MSDU Padding

Sub-frame 1 Sub-frame 2 Sub-frame N

MAC Header A-MSDU

...

PHY Header FCS

Figure 2.2: A-MSDU frame aggregation

I A-MPDU: This method is performed after the MAC encapsula-

tion. Its principle is to assemble several MAC Protocol Data Units

(MPDUs) sub-frames into a single PHY protocol data unit (PPDU)

frame with a common PHY header and send it to the same re-

ceiver. Each A-MPDU, as illustrated in Figure 2.3, starts with an

MPDU delimiter followed by the MPDU, consisting of its own

MAC header, MAC payload, and FCS, and ends with padding

bytes. Consequently, the corruption of any A-MPDU sub-frame

does not cause the corruption of the whole A-MPDU, and only

the corrupted MPDUs must be transmitted again. In environments

that are prone to error with lots of retries, A-MPDU aggregation

permits the receiver to acknowledge the MPDUs individually and

definitely results in higher throughput than when using A-MSDU.

Note that the maximum number of frames assembled within the

same A-MPDU depends on many factors.

• The block ACK frame can acknowledge a maximum of 64

frames (the 802.11ax amendment increased it to 256).

• The size of an A-MPDU is limited and depends on the Wi-Fi

card vendor’s implementation.

• Any of the following three conditions occur: 1) the number

of bytes reaches the maximum; 2) the estimated transmission

duration of the A-MPDU reaches the maximum; or 3) the

number of frames within the same A-MPDU reaches the

maximum.

The frame aggregation level is therefore dependent on the sender

buffer state at the moment it accesses the medium.
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Figure 2.3: A-MPDU frame aggregation

MPDU Delimiter MPDU Padding

Sub-frame 1 Sub-frame 2 Sub-frame N

PHY Header A-MPDU

...

Toourknowledge,A-MSDUaggregation is rarely implemented inpractice.

In this thesis, we focus on A-MPDU aggregation because it is mandatory

in the standard and implemented by default in recent Wi-Fi cards.

Block acknowledgment

Rather than sending an individual positive acknowledgment following

each data frame, the 802.11e QoS extensions introduce Block acknowledg-

ments (BlockACK) technique, allowing the receiver to transmit a burst of

frames and have them all acknowledged at once by a single BlockACK

frame. This mechanismwas carried over to 802.11n, 802.11ac, and 802.11ax

since it is well-suited for use with frame aggregation. By setting up a

window, this scheme allows a receiver to selectively acknowledge all the

successfully received frames within this latter and request the retransmis-

sion of just the lost frames by using the bitmap field. In this bitmap, each

bit indicates the reception status (failure:bit=0/success:bit=1) of a sub-

frame that has that offset from the starting sequence number. For example,

if the starting sequence number is 200, then the first bit acknowledges

sequence number 200, the second bit acknowledges sequence number

201, and so on.

Conversely to the normal ACK, which is automatically expected after

a frame transmission, the BlockACK has to be negotiated through a

BlockACK session. Two types of BlockACK were defined. The first

one is the Immediate BlockACK (Figure 2.4a) which enables a receiver

to acknowledge frames right away from their reception by implicitly

requesting the BlockACK within the Data frame. This latter is used for

applications with strong latency requirements. The second one is the

Delayed BlockACK (Figure 2.4b) that allows a receiver to transmit the

BlockACK later. It is rather intended for applications without strong

latency constraints.

Both immediate BlockACKanddelayed BlockACK sessions are composed

of three main phases. Each session begins with the setup phase that

consists of an exchange of ADD Block ACK (ADDBA) request and ADD

Block ACK (ADDBA) response. The second phase consists in sending

the Data blocks from the originator to the recipient. Once all data frames

are correctly received, and the final BlockACK has been completed, the

originator sends the DELBA request frame to its recipient. The recipient
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of the DELBA frame shall release all resources allocated for the BlockACK

transfer.

ADDBA Request

ACK

ADDBA Response

ACK

QoS Data

BlockACK

DELBA Request

ACK

Originator Recipient 

Setup

Data transfer

Tear down 

(a) Immediate BlockACK

ADDBA Request

ACK

ADDBA Response

ACK

QoS Data

BlockACK

DELBA Request

ACK

BlockACK Request

ACK

ACK

Setup

Data transfer

Tear down 

Originator Recipient 

(b) Delayed BlockACK

Figure 2.4: BlockACK

AP queuing system under frame aggregation

Before the introduction of frame aggregation scheme and for a given

Enhanced Distributed Channel Access (EDCA) class (an extension of

the Distributed Coordination Function scheme that includes Quality of

Service traffic prioritization for data packets.), the AP purses a prede-

fined per-packet scheduling method (e.g, First In First Out (FIFO)). It is

important to note that building a queuing algorithm is up to product

designers that decide how to manage a transmit queue.

With frame aggregation, the aggregated transmissions act as a batch

scheduler which alters the timing characteristics of received packets [10,

11] [10]: Zhu et al. (2020), ‘A Frame-

Aggregation-Based Approach for Link

Congestion Prediction in WiFi Video

Streaming’

[11]: Song et al. (2017), ‘Leveraging

Frame Aggregation for Estimating WiFi

Available Bandwidth’

. Figure 2.5 illustrates the following example. It consists of an AP

queue with two interleaved sequences of packets sent to two different

clients, A and B, on a Wi-Fi link. �8 defines the 8Cℎ packet targeted to

client Awhile �8 is the 8Cℎ packet destined to client B. In the case depicted

in Figure 2.5, the packet at the head of the AP queue is addressed to A.

All A’s packets (within the limit of the maximum number of aggregated

sub-frames) will be aggregated and sent out as an A-MPDU. Then, an

aggregated frame with B’s packets is sent. In this thesis, we consider

this approach in order to build the third Markovian model (detailed in

Section 5.3).
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Figure 2.5: An Example of scheduling un-

der frame aggregation.

A1 A2 A3 A4 A5B1 B2 B3 B4 A6

B1 B2 B3 B4

Send B's packets as an A-MPDU

Send A's packets as an A-MPDU PHY  Header A1 A2 A3 A4 A5 A6

PHY  Header B1 B2 B3 B4

A-MPDU

A-MPDU

AP Queue

AP Queue

Time

2.4 Data rates and modulation and coding

scheme

Each IEEE 802.11 standard defines a list of available data rates. The first

802.11-1997 standard has only two available data rates, 1 Mbps and 2

Mbps, while the modern standards starting from the 802.11n provide a

list of data rates ranging from low to high. These latter are achieved by

introducing the Modulation and Coding Scheme (MCS) that index the

modulation type (e.g., BPSK, QPSK, 1024 QAM...) and the coding rate

(such as 1/2, 2/3, 3/4...) couples. The physical transmission rate is thus a

combination of the following parameters: the MCS index, the number of

spatial streams, the channel width, and the guard interval length.

2.5 Channel access modes

To mediate the access to the shared wireless medium in IEEE 802.11

networks, coordination functions are used. Like Ethernet, Wi-Fi employs

the Carrier Sense, Multiple Access (CSMA) scheme, operating in the

MAC Layer in which carrier sensing is used before each transmission

to circumvent simultaneous access (collisions) on the wireless medium.

Nevertheless, rather than Carrier Sense, Multiple Access with Collision

Detection (CSMA/CD) used by Ethernet that detects collisions as they

happen on the medium, 802.11 relies on collision avoidance CSMA/CA.

The wireless source node senses the radio link before transmitting and

waits for it to be available since it cannot listen and transmit at the same

time.

Clear Channel Assessment

In order to determine whether the wireless medium is currently in use

before attempting to transmit, each 802.11 device performs a Clear Chan-

nel Assessment (CCA). The CCA includes two modes: carrier sensing

and energy detection. The carrier sense mode is based on measuring

the received signal strength and comparing it to a predefined threshold

at which the CCA scheme detects a transmission. Any signal that is
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greater than this threshold results in detecting a busy channel. For the

energy detection mode, each device measures the energy level on the

medium and compares it to a given threshold. Note that the thresholds

for the two modes are predefined in the standard. For robustness, 802.11

also uses the virtual carrier sensing function, called Network Allocation

Vector (NAV) which is a nonzero value included in most frames and

indicates the number of microseconds that a device must wait for before

attempting to transmit.

Inter-Frame Space

To handle the channel access for the STAs, the Distributed Coordination

Function (DCF) relies on several timers called Inter-Frame Space (IFS)

which is a period of inactivity between two successive frames. 802.11

defines four types of IFS to build up a set of systempriority levels between

different types of frames.

I Distributed Inter-Frame Space (DIFS): this Inter-Frame Space is

used to separate atomic exchanges.

I Short Inter-Frame Space (SIFS): is the shortest of the four Inter-

Frame spaces. It is used to separate frames within the same trans-

mission (e.g., between the data frame and its ACK or BlockACK, or

between fragments of the same frame.

I PCF Inter-Frame Space (PIFS): is used during the Point Coordina-

tion Function (PCF) mode in which any station is free to transmit if

the medium is idle for the duration of one PIFS.

I Extended Inter-Frame Space (EIFS): is the longest of the four Inter-

Frame spaces. It is used when an error occurs in transmission.

Note that 802.11n devices may use a new IFS called Reduced Inter-Frame

Space (RIFS). This latter does not define a new priority level. Its only

goal is to be used in place of the SIFS to increase the efficiency since it is

shorter.

Distributed coordination function

IEEE 802.11 devices use the basic mechanism of Distributed Coordination

Function (DCF) to gain access to the channel. An example of the basic of

the DCF atomic transmission is depicted in Figure 2.6.

Before transmitting, each node has to make sure that the resource is not

in use by listening to the medium for the period DIFS. Next, the node

prepares the exponential contention window called backoff by picking a

random slot and waiting for it. The station that picks the lowest number

wins the medium and can transmit once its backoff counter reaches zero,

while the backoffs of other stations are frozen and resumed when the

medium becomes idle again. The backoff duration is calculated as the

product of an integer value randomly generated in the interval [0, CW]

and the slot time )B;>C , where �, is the current contention window size.

The mean duration of the backoff period is given as:

)102:> 5 5 =

�,<8= × )B;>C
2

(2.1)
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SIFS

PIFS

EIFS

DIFS

Backoff Window Next FrameBusy Medium

Time

Defer Access

Slot Time

Contention Window

DIFS

Figure 2.6: Basic channel access in DCF mode.

After the backoff duration has elapsed, the STA can then transmit for a

duration referred to as Transmission Opportunity (TXOP). In 802.11 net-

works, the positive ACK or the blockACK are the only proof of successful

transmissions. Each unicast data frame must be acknowledged by the re-

ceiver, or the frame is assumed to be lost and will be retransmitted. These

types of frames are sent after the SIFS period. Since the ACK/BlockACK

frame presents one of the management frames, this latter is sent using

a data rate belonging to the basic rate set, which defines the list of the

mandatory data rates that must be supported by any station wishing to

make a happy union with the network. In case of non-received frames,

the DCF, stations must wait for the EIFS period.

In order to enhance transmission efficiency under some circumstances,

such as the hidden node problem that usually occurs in ad-hoc networks,

the DCF may use the Request to Send, Clear to Send (RTS/CTS) clearing

mechanism to further reduce the possibility of collisions. The node that

gains the medium starts by first sending the RTS frame to explore the

availability for exchanging data. If the sink node accepts the communi-

cation, it sends a CTS frame. Note that, in our work, we do not use the

RTS/CTS mechanism.

Other access modes

Because contention-based channel access modes necessarily lead to

collisions, the 802.11 standard defines other access modes. The PCFmode,

built on top of the DCF, is used if contention-free services are required.

This function is performed by special stations called Point coordinators,

employed to guarantee that themedium is suppliedwithout contention.

To enhance the QoS requirements, the IEEE 802.11e has put a notable

effort and has introduced the Hybrid Coordination Function (HCF).

This mode provides two channel access methods. The first one is the

Enhanced Distributed Channel Access (EDCA) which is an enhanced

version of the contention-based DCF that includes traffic prioritization

based on differentiated Access Category (AC) that distinguish from

the highest to the lowest priority: voice (AC_VO), video (AC_VI), best

effort (AC_BE) and background (AC_BK). The second one is the Hybrid
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Controlled Channel Access (HCCA) which is a contention-free technique

that provides algorithms to schedule transmissions as a function of

specific QoS demands such as, the bandwidth and the packet loss ratio.

TheAPuses eitherDCF accessmode or PCF accessmode. In this thesis,we

focus on the DCF which is the mode used in practice on the products.

2.6 Which AP to choose?

The widespread deployment of 802.11 networks means that a wireless

STA is usually in the vicinity of several AP with which to affiliate.

To join a network from these infrastructure-based networks, a user

terminal has to associate with one AP. Networks deployed in public

areas, such as airports, train stations, are usually independent BSSs

managed by different entities and there is neither common policy or

rational management nor coordination between them, to help the devices

selecting the Wi-Fi network or AP that offers the best performance. It is

then up to the terminal to choose the access point it will associate with.

Despite its importance, the choice made by the device’s operating system

is often based on simple criteria considering that the device is alone in

its vicinity. Conceptually, usual metrics focus blindly on the Received

Signal Strength Indicator (RSSI) which is the de-facto approach on most

devices, if not only on a static list established from the user’s connection

history. However, these metrics do not convey information regarding

other parameters that affect user performance. In particular, they do

not consider the number of already associated STAs per AP nor the

STA’s data rate. Indeed, user terminals with low data rates occupy

the channel longer than the terminals using high data rates, thereby

significantly penalizing high data rate STAs. Therefore, the association

between APs and STA must be based on other metrics that relate to the

quality of service and experience that the device will experience in order

to enhance the overall wireless network performance. A survey on the

Wi-Fi performance evaluation metrics and tools that helps choose the

best AP in terms of performance and availability is presented in the next

chapter.
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With the increasing presence of WLANs and their densification, any

reader familiar with the MAC and PHY layers improvements of the

modern IEEE 802.11 standards can understand that properly building a

functional Wi-Fi is far from a simple task. If not, Chapter 2 introduces

the reader to the Wi-Fi standards and their evolution over the years. The

performance evaluation of such networks has been intensely studied in

the literature since their first introduction in the late 1990s to offer relevant

information and methods to help its configuration and improvement.

As the IEEE 802.11 standards have quickly evolved over the years, so

did the works that modeled, simulated, and analyzed them. The various

challenges ofWi-Fi performance evaluation can generally be grouped into

two classes of work: those that relate to the performance methodology

itself and those that relate to picking the relevant performance metric or

combination of metrics depending on the desired goal. In this chapter,

we focus on methods that focus on choosing the most appropriate metric.

In this regard, we are interested in four categories of work that evaluate

the performance of WLANs: bandwidth estimation, crowd-sensing of

wireless networks, Analytical models, and Wi-Fi AP selection.

This chapter gives a detailed literature review regarding these topics.

We first review the preliminary concepts and explore the existing works

in the general Fields of active and passive bandwidth estimation while

classifying them into sub-categories based on the specific metrics used.

For the crowd-sensing and analytical models, the existing works are

classified into different application scenarios and purposes. Finally, we

discuss the main differences between the existing works and highlight

the need for novel methods and approaches for the case of network load

estimation for unmodified handheld devices.

3.1 Bandwidth estimation for performance

evaluation of Wi-Fi networks

As a crucial metric for the QoS and Quality of Experience (QoE), the

bandwidth estimation in computer networks has become a key parameter

for measuring the overall network performance. Based on the metrics

used, existing bandwidth estimation tools primarily estimate one or

more of three related properties: capacity, available bandwidth, and bulk

transfer capacity (achievable throughput). In Table 3.1, we provide a

taxonomy of bandwidth estimation tools according to the bandwidth

metric they try to discern.
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Table 3.1: Bandwidth estimation related works summary.

Available bandwidth

Active

Packet Rate Model (PRM) [12], [13], [14], [15], [11]
1

Probe Gap Model (PGM) [16], [17], [18], [19]
1
, [20]

1

Passive [21], [22]
1
, [23]

1

capacity [24], [25], [26], [27], [28], [29], [30]

Achievable throughput [31], [32], [33], [34], [35], [36]

1
Wi-Fi.

Capacity

The capacity presents the maximum transmission rate a device can

achieve on a link. In the following, we distinguish between the data

link capacity (Layer 2 (L2)) and the Internet Protocol (IP) link capacity

(Layer 3 (L3)). In literature, the term link capacity generally refers to the

measurement carried out at the application layer which is usually less

than the data link transmission rate due to the layer 2 encapsulation’s

overhead and framing. Let us assume that the maximum transmission

rate at layer 2 is �!2 and its header is �!2. The layer 3 capacity, denoted

�!3 when the payload size is % is given by:

�!3 = �!2 ×
%

% + �!2

(3.1)

When applying this definition to an end-to-end network path, composed

of a sequence of hops, this capacity is generally determined by the

minimum link capacity along the path, called the narrow link, expressed
as:

� = <8= �8, 8 = 1, ..., # (3.2)

Where �8 represents the capacity of the 8th hop and # denotes the

number of hops in the network path.

It is worth keeping in mind that some technologies do not operate with a

constant transmission rate, such as IEEE 802.11 WLANs that send their

frames using different transmission rates depending on the bit error rate

of the wireless medium. In these cases, the capacity is computed for

given time periods in which the capacity remains constant.

Several capacity measurement techniques have been proposed. These

works can be divided into two groups as follows.

Per-Hop capacity estimation techniques Per-Hop capacity estimation

techniques aim at inferring the capacity of each hop in the network path.

The end-to-end capacity is thereby the minimum of all hop measures.

In 1997, Jacobson designed Pathchar [30][30]: Jacobson (1997), Pathchar: A tool to
infer characteristics of Internet paths

, a tool aiming at estimating

the characteristics of individual links along an Internet path. Since then,

multiple techniques have been proposed to measure the per-hop capacity

of the network path, such as clink [27][27]: Downey (1999), ‘Using Pathchar to

Estimate Internet Link Characteristics’

, pchar [24]

[24]: Mah (2000), ‘Pchar: A tool for

measuring internet path characteristics’

, and [28]

[28]: Lai et al. (2000), ‘Measuring Link

Bandwidths Using a Deterministic Model

of Packet Delay’

. These

methods are based on a commonmeasurement technique namedVariable

Packet Size (VPS). Bellovin [37]

[37]: Bellovin (1992), ‘A Best-Case Network

Performance Model’

and Jacobson [30]were the first to propose

this scheme. It sends probe packets from the source while varying packet

size and the Time-To-Live (TTL) field of the IP header. The latter is used

to force probing packets to expire at a specific hop. The router at that hop
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discards these packets, thereby sending back an Internet ControlMessage

Protocol (ICMP) time-exceeded error messages to the source. The source

then uses these messages to measure the Round Trip Time (RTT) metric

that in turn will be used to estimate the latency and bandwidth of each

hop in the path. However, relying on such messages from routers limits

the accuracy and the applicability of these tools.

End-to-End Capacity Estimation Tools To extend the capacity estima-

tion fromper-hop to end-to-end, several tools attempt to infer the capacity

of the narrow link along an end-to-end path also referred to as bottleneck
bandwidth. Most of them use the packet pair or packet train technique

(presented below). Bprobe [25] [25]: Carter et al. (1996), Dynamic Server
Selection Using Bandwidth Probing in
Wide-Area Networks

utilizes the packet pair dispersion tech-

nique to discern the capacity along a given path by leveraging the ICMP

protocol messages. In order to improve its accuracy, this tool processes

variable-sized probing packets using union and intersection filtering

to produce the final capacity estimate. The authors of [29] [29]: Lai et al. (1999), ‘Measuring

bandwidth’

proposed

Nettimer which is a capacity estimation packet pair tool to passively

measure the bottleneck bandwidth of a path in real-time. It uses a statis-

tical technique called Kernel density estimation that processes the packet

pair measurements. Based on the distribution of these measurements,

it then identifies the dominant mode. It is worth noting that nettimer is

a method that performs both per-hop capacity estimation by using the

packet tailgating technique [28] and end-to-end capacity estimation using

the packet pair technique [29]. Pathrate [26] [26]: Dovrolis et al. (2001), ‘What do

packet dispersion techniques measure?’

gathers many packet pair

measurements using several probing packet sizes. It then Analyzes the

distribution of the resulting measurements that reveals all local modes,

one of which typically relates to the capacity of the path.

TCP throughput and Bulk transfer capacity

One of the common bandwidth-related metrics in TCP/IP networks is

the Transmission Control Protocol (TCP) throughput of a TCP connection.

TCP throughput metric is a crucial factor that is of great interest to end

users since it remains the most widely used protocol till today (carries

more than 80% of the internet traffic) [38] [38]: Murray et al. (2017), ‘An analysis

of changing enterprise network traffic

characteristics’

. The Bulk Transfer Capacity

(BTC) represents the TCP achievable throughput, i.e., the maximum

throughput obtained by a TCP connection. TReno [34]

[34]: Mathis (1999), TReno Bulk Transfer
Capacity

and cap [35]

[35]: Allman (2001), ‘Measuring End-to-

End Bulk Transfer Capacity’

are

considered as the pioneering works that help measuring the BTC.

Today, the throughput test tools such as, ttcp [32], netperf [33], iperf [31]

have widely been embraced for TCP performance measurement. In

addition, many popular Internet speed tests applications, such as [36, 39]

[36]: (2021), Ookla Speedtest
[39]: (2021), AT & T Internet Speed Test

offer suitable measurements via the web. As part of the measurement

process, these tools examine the performance of an underlying end-to-

end network path by performing an active TCP upload from a client to

a server and an active TCP download to estimate the UL and DL TCP

throughput respectively.

While throughput tests provide valuable insights into network state, they

suffer from high intrusiveness (generated traffic) and dependence on

transport and application protocol. Unfortunately, the expected through-

put of a TCP connection cannot be easily forecast by an end-user as it

depends on multiple factors, such as the transfer size, the number of
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Figure 3.1: A three-hop network path

competing TCP connections, and the type of the cross traffic (UDP or

TCP).

Available bandwidth

In order to avoid the intrusiveness and high-cost time of achievable

throughput tests, several works focus on estimating the available band-

width to infer the network status. The end-to-end available bandwidth of

a network path, i.e., the residual capacity that is left over by other traffic,

is determined by its tight link, which is the link that has the minimal

available bandwidth, during a certain time period. The available band-

width of a link depends on the underlying technology, its transmission

parameters and medium, and the traffic load at that link.

At any time instant, the network link is either transmitting using a given

capacity or idle. So its available bandwidth is given by:

�8 = �8 × (1 −*8) (3.3)

where �8 defines the available bandwidth of the hop 8 during a specific

time period, �8 presents the ith hop’s capacity, and *8 is the average

utilization.

Figure 3.1 illustrates an example of an end-to-end network path with

three hops, where each hop is modeled by a pipe. The width of each pipe

corresponds to the capacity of the corresponding link. The green area of

each pipe depicts the utilized part of that link’s capacity, while the yellow

area depicts the available capacity. The minimum link capacity, �1 in

this example, determines the end-to-end capacity, whereas the minimum

available bandwidth �3 determines the end-to-end available bandwidth.

This example nicely highlights the fact that the narrow link of this path

is not the same as the tight link.

In order to conduct Available bandwidth estimation in IP networks, there

are primarily two types of measurements: passive and active. The former

non-intrusively monitors and analyses the current real traffic while the

latter involves extra traffic during the estimation process.

Passive measurement approaches [21, 40][40]: Nayak et al. (2019), ‘Virtual Speed

Test: an AP Tool for Passive Analysis of

Wireless LANs’

[21]: Zhu et al. (2020), ‘A Frame-

Aggregation-Based Approach for Link

Congestion Prediction in WiFi Video

Streaming’

evaluate the available band-

width based on the non-intrusive monitoring of network traffic without

emitting any traffic. These tools capture and analyze live network traffic

by relying on specific hardware, e.g., chipsets that can switch to monitor

mode and dedicated capture software. Some techniques even need to

be run on routers or require direct access to the router or any node in

the network path. Additional challenges include the capturing speed

used during the measurement, data storage capabilities, and processing

energy for analyzing data traces. On the contrary, active methods often

need a lighter set-up, are easier to deploy and run on regular devices

and grant a flexible design of the probe packets. The counterpart is that

they strain the network by injecting probe traffic, thus perturbing the

measure itself and laying additional burdens over the resource in terms

of intrusiveness. In this dissertation, we focus on active measurements

since it is non-trivial to collect the network performance information

from passive measurements.
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Multiple active measurement techniques have been developed, in the

field of estimation of available bandwidth and busy time, in wired and

wireless networks.

Available bandwidth estimation in wired networks

Most of the available bandwidth estimation techniques can be grouped

into two classes.

Time

Network
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Figure 3.2: Packet Rate Model

The Packet Rate Model (PRM) This model (Figure 3.2) is based on the

concept of self-induced congestion. It calculates the end-to-end available

bandwidth by monitoring the transmitted and received packet rates and

detecting the queuing delays. For doing so, a sequence of small probe

packets is sent at different rates from a source to a sink node. If the probe

packet rate exceeds the actual available bandwidth, then probe packets

will be queued up at a router, and the packet rate at the reception will be

therefore lower than at emission. Thus, the available bandwidth can be

discerned by detecting the turning rate at which queuing delays start to

occur.

A significant number of PRM techniques have been developed, such as

TOPP [12] [12]: Melander et al. (2000), ‘A new

end-to-end probing and analysis method

for estimating bandwidth bottlenecks’

, pathload [13]

[13]: Jain et al. (2002), ‘Pathload: A

Measurement Tool for End-to-End

Available Bandwidth’

, pathChirp [14]

[14]: Ribeiro et al. (2003), ‘PathChirp:

Efficient Available Bandwidth Estimation

for Network Paths’

and DietTOPP [15]

[15]: Johnsson et al. (2006), ‘An Analysis

of Active End-to-end Bandwidth Mea-

surements in Wireless Networks’

. These tools

differ according to the probing rate adjustment and in their receiver-side

analysis approaches. Pathload uses Constant Bit Rate (CBR) streams

and adjusts the probe rate during each round based on a binary search

method. TOPP relies on a linearly growing rate. As a typical PRM

technique, DietTOPP deploys the TOPP algorithm with a simplified

search method. Compared to Pathload, PathChirp reduces probe traffic

overhead by using a sequence of exponentially spaced probe packets of

the same size, denoted chirps. Within the same chirp, several rates can

be probed, thereby improving accuracy.

The Probe Gap Model (PGM) This model (Figure 3.3) measures the

available bandwidth by inferring the intensity of the cross traffic at the

bottleneck. PGM techniques typically send a batch of probes into the

network path at a single rate. These packets are sent with a defined

packet size ! and inter-packet gap referred to as input gap �8= . While

traversing through the network path, the probe packets compete with the

cross traffic and reach the receiver with a new inter-packet gap denoted

�>DC . These techniques then rely on the dispersion in time between two

successive probes at the receiver side ∆ = �>DC − �8= to estimate the cross

traffic. The dispersion is positive, i.e., �>DC > �8= , when the cross traffic
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Figure 3.3: Packet pair dispersion

packets get inserted between the probe traffic packets. The dispersion is

null if the path is empty of any cross traffic (which is far from realistic in

practice). Finally, the negative dispersion is treated as infeasible and thus

discarded by available bandwidth techniques. The PGM approaches,

such as Spruce [16][16]: Strauss et al. (2003), ‘A Measurement

Study of Available Bandwidth Estimation

Tools’

and Initial Gap Increase/Packet Transmission Rate

(IGI/PTR) [18]

[18]: Hu et al. (2003), ‘Evaluation and

characterization of available bandwidth

probing techniques’

send batches of probe packets and measure the inter-

arrival time of the consecutive packets. Since the contention with the

cross traffic induces queuing delays, the packets will be dispersed in

time. This dispersion increases with the load, thus making it possible to

infer the available bandwidth. Delphi [17][17]: Ribeiro et al. (2000), ‘Multifractal

cross-traffic estimation’

probes the path with a series

of chirp trains. Based on the transmitted and the received inter-packet

delays relationship, it can estimate the load induced by the cross traffic.

Most of the aforesaid techniques have been designed for classic wired

networks. The rise of wireless networks and complex network infrastruc-

tures have fostered the development of available bandwidth estimation

approaches, e.g., for 3G/4G networks [41][41]: Aceto et al. (2018), ‘Available

Bandwidth vs. Achievable Throughput

Measurements in 4G Mobile Networks’

, cloud networks [42]

[42]: Ha et al. (2019), ‘A Novel Times-

tamping Mechanism for Clouds and Its

Application on Available Bandwidth

Estimation’

, ad-hoc

networks [43, 44]

[43]: Castellanos et al. (2019), ‘Available

Bandwidth Estimation for Adaptive

Video Streaming in Mobile Ad Hoc’

[44]: Zhao et al. (2009), ‘Accurate

available bandwidth estimation in IEEE

802.11-based ad hoc networks’

, or SDN networks [45]

[45]: Megyesi et al. (2017), ‘Challenges

and solution for measuring available

bandwidth in software defined networks’

. The advent of these new

tools has motivated some studies, such as [46]

[46]: Salcedo et al. (2018), ‘Available

bandwidth estimation tools: Metrics,

approach and performance’

to propose an updated

summary of the metrics, characteristics, and techniques related to the

measurement of the available bandwidth.

Themethods developed for wired networks fail when applied toWi-Fi, in

particular, because of the CSMA/CAMAC method that implies complex

waiting times, e.g., random backoff, DIFS, etc. The mechanisms used to

cope with the fluctuating wireless channel conditions, e.g., interference,

fading, and bit error rates need also specific attention: dynamic rate

adaptation, Automatic Repeat Request (ARQ).

Available bandwidth estimation in IEEE 802.11 networks

As this dissertation primarily focuses on bandwidth characterization

on IEEE 802.11 networks, in this section, we present an overview of the

corresponding available bandwidth estimation tools.

Available bandwidth estimation in IEEE 802.11 networks Exact [47]

[47]: Shah et al. (2003), Available Bandwidth
Estimation in IEEE 802.11-based Wireless
Networks

was one of the earliestworks that leveraged theMAC layer overheadwhile

estimating the available bandwidth inWi-Fi networks. By supposing that

this overhead is constant for every single packet, Exact varies the packet

size to generate various transmission times. It then infers the available
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bandwidth by removing the constant cost from the MAC layer. As an

application case study, EXACT uses the available bandwidth obtained in

dynamic bandwidth management for single-hop mobile ad hoc networks

and an explicit rate-based flow-control scheme for multi-hop mobile ad

hoc networks.

In order to handle the different link behavior on wireless networks,

the authors of [48] [48]: Lakshminarayanan et al. (2004),

‘Bandwidth Estimation in Broadband

Access Networks’

proposed ProbeGap that considers a more realistic

wireless link model for bandwidth characterization that addresses the

problems caused by non-First In First Out (FIFO) scheduling and the case

where the link supports multiple distinct rates. ProbeGap probes for the

idle periods called gaps in the link by gathering One Way Delay (OWD)

samples and then multiplying by the capacity to obtain an estimation for

the available bandwidth.

In [49] [49]: Lee et al. (2006), ‘Bandwidth Esti-

mation in Wireless Lans for Multimedia

Streaming Services’

, the authors proposed IdleGap, which requires running on a real-

time system. It infers the idle time fraction, defined as the fraction of time

inwhich the channel is idle and in turn estimates the available bandwidth,

based on low layer information, such as the Network Allocation Vector

(NAV). Such information is generally not available at the upper layer

making this technique difficult to implement in practice. WBest [19] [19]: Li et al. (2008), ‘WBest: A bandwidth

estimation tool for IEEE 802.11 wireless

networks’

is a

PGM tool consisting of two steps. In the first step, it sends pairs of probe

packets and infers the effective capacity of the network, defined as the

maximum capability of the wireless network to deliver network layer

traffic [50] [50]: Li et al. (2006), ‘Packet Dispersion in

IEEE 802.11 Wireless Networks’

. It then transmits a probe packet train at the estimated rate

and infers the available bandwidth based on the dispersion rate.

All cited approaches were proposed before the implementation of the

frame aggregation scheme by the recent IEEE 802.11 standards, making

them ill-suited for deployment. Unfortunately, when using the frame

aggregation scheme, the assumption of FIFOper-packet based scheduling

does not hold as the aggregated transmissions act as a batch scheduling

which dramatically alters the timing properties of received packets.

Indeed at the application level, packets aggregated within the same

frame are received at the same time. These packets thus appear to have

negligible packet gaps between each other. PGM techniques cannot

process the negligible gap between packets that were aggregated in the

same frame. On the other hand, PRM techniques assume that when

passing through a congested link, the packet rate at the reception should

be typically less than the probe rate at the emission. Nevertheless,

this approach breaks under the frame aggregation. PRM schemes may

therefore distort and overestimate or underestimate the received rate.

Aggregation aware available bandwidth estimation Recent works

have adapted PGM and PRM techniques to take into account frame ag-

gregation. In [20] [20]: Farshad et al. (2014), ‘On the

impact of 802.11n frame aggregation

on end-to-end available bandwidth

estimation’

, the authors proposed WBest+ that deploys the WBest

algorithmwith a modified packet rate calculation method by considering

aggregated frames as a unique jumbo frame. The available bandwidth

estimation is performed based on the time between aggregated frames

instead of the time between probe packets. Another solution is proposed

by L. Song andA. Striegel [11] [11]: Song et al. (2017), ‘Leveraging

Frame Aggregation for Estimating WiFi

Available Bandwidth’

, who have proposedAggregation Intensity

based WiFi Characterization (AIWC), aiming at estimating the frame

aggregation level at the reception side to capture link congestion and

deduce the available bandwidth. To capture the aggregation, AIWC and
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WBest+ rely on a threshold-based method: if the gap time between two

consecutive received packets is less than a given threshold, the corre-

sponding packets are deemed to be aggregated. The network scenario

used in these papers consists of a server with a wired Internet connection

that sends the probing traffic along the network path from the server

to the client with a last-hop wireless connection that is assumed to be

the bottleneck. The scenario considered in this thesis (as we will see in

Chapter 4) is different as the probe traffic is sent from the client to the

server. In addition, while the authors of AIWC [11] assume that the first

packet that arrives in the AP queue will be held for a pre-defined delay

time to wait for more traffic, the authors of [51][51]: Skordoulis et al. (2008), ‘IEEE 802.11n

MAC frame aggregation mechanisms

for next-generation high-throughput

WLANs’

suppose that there is no

waiting time for forming an A-MPDU frame, and the maximal delay can

be set to 1 s to form an A-MSDU. Therefore, the parameterization of these

methods is empirical. A fundamental yet challenging task is to perform

a formal study of the aggregation behavior as a function of the traffic to

settle these types of techniques and prove their accuracy.

3.2 Crowd-sensing for performance evaluation

of Wi-Fi networks

Thanks to their ubiquitous nature and built-in sensors, crowd-sensing

applications have become an excellent approach to crowd-sense the

Wi-Fi performance to actively estimate the end-to-end network perfor-

mance. The idea of exploiting smartphones to monitor the wireless

networks and/or spectrum has been a hot topic in the literature due to

the technology advance and the remarkable benefits.

Spectrum Sensing and Monitoring In [52][52]: Nychis et al. (2014), ‘Using Your

Smartphone to Detect and Map Heteroge-

neousNetworks andDevices in theHome’

, the authors proposed an

approach that uses smartphones to capture and map heterogeneous

networks and devices in home networks. The system periodically carries

out measurements and utilizes them to capture new devices, discern the

impact of one device on another, etc. The works presented in [53–55][53]: Nika et al. (2014), ‘Towards

Commoditized Real-Time Spectrum

Monitoring’

[54]: Zhang et al. (2015), ‘A Wireless

Spectrum Analyzer in Your Pocket’

[55]: Lin et al. (2020), ‘Crowdsensing for

Spectrum Discovery: A Waze-Inspired

Design via Smartphone Sensing’

are

three crowd-sensing-based Radio Frequency (RF) spectrum monitoring

tools using smartphones. In order to perform spectrum measurements,

these techniques do not use only smartphones but also an external

hardware: a software defined radio in [53] and a frequency translator

in [54]. In [55], the authors designed a spectrum discovery tool, where the

cloud collects the spectrum sensing information frommany smartphones

and infers location-specific spectrum availability based on data fusion.

Wireless Measurements The authors of [56][56]: Rosen et al. (2014), ‘MCNet:

Crowdsourcing wireless performance

measurements through the eyes of mobile

devices’

proposed MCNet, a tool

based on active smartphonemeasurements to estimate the user-perceived

performance in enterprise wireless networks. Another work [57]

[57]: Shi et al. (2016), ‘A walk on the client

side: Monitoring enterprise Wifi networks

using smartphone channel scans’

based

on channel scans was also proposed. It is based on passive measurements

while our work investigates the effectiveness of active ones. The authors

in [58]

[58]: Farshad et al. (2014), ‘Urban WiFi

characterization viamobile crowdsensing’

proposed a measurement crowd-sensing study in the city of

Edinburgh to characterize urbanWi-Fi. It revealed several problems inWi-

Fi deployments in public spaces. However, none of these works involves

the network load while crowd-sensing the network performance.
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3.3 Analytical models for performance

evaluation of Wi-Fi networks

At the other end of the literature, there are the modeling approaches

that analyze the performance of the MAC Frame aggregation techniques

based on analytical models. Hajlaoui et al. proposed a Discrete-Time

Markov Chain (DTMC) to model the functioning of the aggregation

mechanism and block acknowledgment under the assumption of a

binary symmetric channel [59] [59]: Hajlaoui et al. (2018), ‘An accurate

two dimensional Markov chain model for

IEEE 802.11n DCF’

. Then, they presented an analytical model

to evaluate IEEE 802.11n saturation throughput based on the proposed

DTMC. A property of this model is that it considers saturated networks.

Because the saturation assumption can be deemed too restrictive in some

cases, in [60] [60]: Kim et al. (2008), ‘Effect of Frame

Aggregation on the Throughput Perfor-

mance of IEEE 802.11n’

, Kim et al. proposed an enhanced DTMC to evaluate the

impact of A-MPDU and A-MSDU frame aggregation mechanisms on the

throughput under unsaturated conditions. However, the objectives of

these works differ from ours since in this dissertation we explore how to

profit from the frame aggregation in order to infer the network load for

vanilla devices. Moreover, the scenarios considered in these papers are

not suitable for network load estimation as they require different traffic

patterns.

3.4 Wi-Fi access point selection for

performance evaluation of Wi-Fi networks

Since their important role in improvingWi-Fi performance, several works

of Access Point selection, also known as user association, have been

proposed in the literature based on several network metrics.

The authors in [22] [22]: Lee et al. (2008), ‘Available

Bandwidth-Based Association in IEEE

802.11 Wireless LANs’

proposed the new metric Estimated aVailable bAnd-

width (EVA) that passively computes the average transmission time per

data unit based. It then uses this metric to choose the AP that provides

the maximum achievable throughput among scanned APs. By leveraging

the broadcasting nature of WiFi networks, SmartAssoc [23] [23]: Xu et al. (2013), ‘SmartAssoc:

Decentralized Access Point Selection

Algorithm to Improve Throughput’

captures

packet transmission rate information by monitoring the network from

the client-side. A common property of these methods is that they are

based on the passive measurements approach, which is not applicable in

our work (See Chapter 4). In [61] [61]: Song et al. (2017), ‘Leveraging frame

aggregation to improve access point

selection’

, the authors proposed a new method

AMPDU-based ap LoAdMechanism (ALAM), that exploits the character-

istics of aggregated frames to infer the expected throughput of a link for

the purpose of AP selection. This method acknowledges the throughput

information to mobile users via beacon frames. However, this thesis aims

at inferring the network load without modifications neither on APs nor

on STAs.

3.5 Summary

In Table 3.2, we summarize the main characteristics of a selection of the

Wi-Fi performance evaluation related works. We highlight the case where

the proposed tools take into account the considered criteria.
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I We first notice that most of the existing works fall in the category

of available bandwidth estimation, and only a few of them tackle

the problem of network load estimation in Wi-Fi networks.

I As shown in Table 3.2, only a few works take into consideration

the frame aggregation mechanism while optimizing the Wi-Fi

performance. Unfortunately, all these works breakwith this scheme.

Consequently, these approaches became irrelevant for our context.

I To the best of our knowledge, these existing works have so far never

been applied to the available bandwidth/throughput estimation on

vanilla handheld devices, especially smartphones. In fact, in some

works [11, 19, 20], the probe traffic is sent from an application server

with a wired Internet connection along the network path to a client

with a last-hop wireless connection. In addition, the bottleneck

constraint is relaxed by assuming that the last Wi-Fi hop is the

bottleneck. Nevertheless, this is not the case for many networks, in

particular those with a low capacity broadband Internet connection.

Table 3.2: Related work taxonomy with several criteria taken into account

Paper Metric Frame aggregation Type of measurements Applicable to smartphones

WBest [19] Available bandwidth - Active -

WBest+ [20] Available bandwidth X Active -

AIWC [11] Available bandwidth X Active -

Idlegap [49] Available bandwidth - Passive -

EXACT Available bandwidth - active -

ALAM [61] Throughput X Active -

EVA [22] Available bandwidth - Passive -

SmartAssoc [23] Available bandwidth - Passive -

3.6 Discussion and conclusion

The question of interest that we pose in this dissertation is: how could a

device choose an access point to associate with based on the expected net-

work performances? To that aim, choosing the appropriate performance

evaluation metric is a crucial decision. Not only does the choice affect

the kind of expected outcome, but it often characterizes the complexity

of the adopted approach. This choice can thereby be a make or break

factor.

A STA would much rather pick the best AP according to its expected

throughput. Unfortunately, determining the average throughput cannot

be easily forecast by a device. Indeed, this value is a function of the AP

conditions. The available bandwidth asmeasured by a given STAdepends

on many factors, including the antenna and channel gains that are

approximately captured by the Received Signal Strength Indicator (RSSI),

but also many other hardware or software parameters that condition

the modulation and coding schemes it can use. Moreover, the available

bandwidth estimation does not necessarily reflect what a STA may

actually get as it is difficult to interpret it to accurately indicate the user

experience. The network load and the characteristics of the competing

traffic are also crucial. In this regard, this thesis considers the estimation of

the network load. We propose conceptually simple analytical Markovian

models specific to the application of BTF estimation in the presence
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of the IEEE 802.11 frame aggregation scheme. We model and simulate

scenarios inwhich a vanilla device infers themean aggregation level of an

aggregated deterministic probe traffic competing with a cross traffic that

can aggregate or not its frames. The analysis results are then delivered to

our scheme FAM to characterize the channel load and the cross traffic

type.

Our aim in the following chapter is to give an overview of the various

network load measurement metrics, exhibit the main challenges faced

while estimating thismetric in a vanilla device, and provide the procedure

of detecting the frame aggregation level at the user space. This chapter

will also present the network simulation environment and the choice

of the programming languages used throughout this thesis, coupled

with detailed explanations of the reasoning behind such choices. In

addition, we will describe the system that we consider in our modeling

approaches.
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The years of this thesis were essentially focused on answering the fol-

lowing question: how an unmodified vanilla device, in particular a

smartphone, could estimate the load of a network in the user space with

no requirements from the access points and without root permissions?

To answer this question, we intrinsically need to answer other questions:

1) which metric should we take into account to measure the network

load? 2) what information can be collected from an Android smartphone

and how much could we learn about surrounding Wi-Fi networks by

performing channel scans? 3) can this information provide new engi-

neering insights on the feasibility of a network load estimation method

for vanilla handheld devices? These are the questions that we set out to

answer in this chapter. We first give a description of the network load

measurement used metrics. We then detail the various challenges that

we encountered with smartphones while estimating the network load of

the wireless channel that we believe highlight the complexity of the task.

Note that we are only interested in smartphones that use Android as an

operating system since it is more open than iOS or Windows. We then

introduce the technique used to estimate the level of frame aggregation

at the application layer and show the importance of choosing the right

network simulator tool when evaluating the Wi-Fi performance. Finally,

we dedicate the last part of this chapter to the network load measurement

system considered in our contributions (themodeling approaches and the

scheme FAM). We provide a high-level description of the corresponding

system coupled with explanations of the reasoning behind our choices.

4.1 Technical implementation issues

Before plunging into the details of our system, this section presents

multiple key backgrounds by giving an overview of the network load

measurement and its related metrics and discusses the challenges faced

when adapting this type of measurement in Android smartphones.

Network load measurement

A variety of metrics are used for measuring the Wi-Fi network load.

These metrics, which are chosen according to the desired aim, share the

same goal that consists of unloading the most loaded APs by balancing

the network load between them. In the following, we express the load of

an AP in three ways:

I Load as the number of stations in the BSS: this approach is

meaningful only if we assume that each station has the same data

rate, traffic pattern, and, thereby, the same bandwidth requirements.

Unfortunately, in practice, this approach is not applicable since the

relation between the number of stations per AP and the network
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Figure 4.1: Example topology

load is nonlinear. Unsurprisingly, those stations might be actively

transmitting or in sleeping mode. Even among active stations,

their demands in terms of bandwidth may differ from one station

to another. In Figure 4.1, we have two APs, �%1 and �%2. The

�%1 has five stations associated with it where ()�5 is actively

transmitting (the active transmissions are represented through

the solid lines) while ()�1, ()�2, ()�3, and ()�4 are inactive

(represented through short dashed lines). On the other hand, the

�%2 has three active associated stations and handles a network load

higher than �%1’s load. Based on the number of stations approach,

a new STA seeking connection will be automatically associated

with �%2, hence further exacerbating the issue.

I Load as the number of frames: this approach is based on the

number of frames that an AP can successfully handle per unit of

time. The number of frames does not give the real load of an AP

due to several reasons:

1. the packets can have different sizes. Indeed sending ten pack-

ets of 1500 bytes is not the same as sending ten packets of 64

bytes;

2. there are different MCS indexes (different data rates) per STA

and, therefore, even the same traffic can have a very different

impact depending on the used data rate (which affects the

transmission time);

3. taking all these parameters (MCS indexes for each station,

number of frames per STA, number of retransmissions, the use

of frame aggregation or not, the activity of the neighboring

APs, etc.) into account is a difficult problem. We rather need a

single metric that is easy to be forecast and that reflects the

real WLAN load.

I Load as the channel busy time fraction: this load is defined as

the fraction of time the wireless medium is sensed busy due to

successful or unsuccessful transmissions. It captures concurrent

transmissions and summarizes when the channel is above the CCA,

constituting the AP load, as well as inter-network interference. This

metric thereby measures the real load, conditions the throughput,

and is independent of the transmissions’ conditions of the device.

Since metrics such as the number of frames and the number of STAs per

AP do not provide an accurate indication of the real AP’s load, this work

measures the network load (named BTF hereafter) through its BTF or

the channel utilization as it seems more appropriate. When relying on

some specific hardware, this quantity can be easily obtained.

I Atheros (Qualcomm) wireless chipsets offer direct access to the

BTF. The QualcommAtheros 802.11ac and 802.11n chipsets support

the spectral scanmode that can passively measure the radio activity

on a channel.

I From a protocol point of view, the BTF may be included in IEEE

802.11k measurement reports [62]
[62]: IEEE (2008), ‘IEEE Standard for

Information technology– Local and

metropolitan area networks– Specific

requirements– Part 11: Wireless LAN

Medium Access Control (MAC) and

Physical Layer (PHY) Specifications

Amendment 1: Radio Resource Measure-

ment of Wireless LANs’

. It should be noted that this

value is only available to the APs implementing this amendment,

and it is not provided to the end-user device.

I It is also possible, under some hardware conditions, for a computer

to switch its Wi-Fi card in monitor mode and obtain the BTF.
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Unfortunately, it requires privileged access, and not all drivers are

offering this functionality.

In summary, the critical technical obstacle here is that all the afore-

mentioned techniques cannot be applied to vanilla non-rooted Android

devices with traditional operating systems. In the next section, we detail

Wi-Fi information that one should expect to get from an Android-based

smartphone. We then discuss the challenges faced under such a plat-

form.

Challenges of Wi-Fi performance measurement on

Android smartphones

Built on Linux, Android embeds various sensors, processors, and memo-

ries andprovides several interfaces orApplicationProgramming Interface

(API) for sending packets, recording timestamps, spontaneously per-

forming channel scans by listening passively to devices’ Wi-Fi broadcasts,

and collecting the network performance information. In the following,

we summarize information that a non-rooted Android smartphone can

learn about surrounding Wi-Fi connections using the android.net.wifi API

when it performs a simple channel scan.

I Service Set IDentifier (SSID): the name of the Wi-Fi network.

I Encryption type: describes authentication, key management, and

encryption schemes supported by the AP.

I Frequency: the Wi-Fi network operates mostly in two frequency

bands: the 2.4GHz or the 5GHz band.

I Received Signal Strength Indicator (RSSI): it measures the link

quality between a STA and an AP. This metric does not take into

account the number of already attached STAs per AP, neither the

traffic load on the APs.

I Link speed: the data rate used by the device.

During the one minute it takes to read this paragraph, over three billion

Android-based devices worldwide will naturally perform Wi-Fi channel

scans that record the information of nearbyWi-Fi APs listed above. While

considered as a client-side network measurement tool, this approach

tends to be poor and useless since it does not provide the potential

for network load characterization. In order to get more Wi-Fi network

information under the Android platform, the smartphone could switch

its low-power Wi-Fi adapter in monitor mode and use a dedicated

packet capture utility. However, this action requires root permission,

which needs risky and warranty breaking manipulations. Besides, not

all smartphones chipsets can support monitor mode. Therefore, we need

to develop a new efficient BTF measurement technique for non-rooted

smartphones.

4.2 Our methodology

The goal of this thesis is to address earlier issues by exploring new

alternatives in order to evaluate the possibility for a vanilla Wi-Fi client,

typically a smartphone, to infer the Wi-Fi network load from local
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Figure 4.2: Android software stack

measurements in the user space. To circumvent the aforesaid limitations,

we consider active probing of the network, which has been widely used

in the literature to estimate network loads (cf. Chapter 3). In this thesis,

we propose relatively simple and versatile analytical Markovian models

specific to the application of BTF estimation in the presence of the IEEE

802.11 frame aggregation scheme. We explore how the usage of such

a scheme can be exploited to properly discern not only the BTF of an

AP but also to accurately convey the type of traffic. In this regard, we

model and simulate scenarios in which a vanilla device induces the mean

aggregation level of an aggregated deterministic probe traffic competing

with cross traffic that can aggregate or not its frames in the user space.

The analysis results are then delivered to our scheme FAM to characterize

the channel load and the cross traffic type. In the following, we first

detail how the proposed method estimates the ground truth of the BTF

which serves as a reference for the proposal. We then discuss the choice

of the programming language used to implement the probing sender

application for Android devices, and we present how the method detects

the frame aggregation levels at the user application level. We then discuss

the choice of the network simulator environment.

Measuring the ground truth value of the BTF

Serving as a reference for our scheme FAM, we here give the computation

details of the ground truth BTF. For doing so, we used a computer

(Sniffer) with a specific Wireless Network Interface Controller (WNIC)

that supports the survey dump feature of the iw commandwhich is a Linux

utility that shows the survey information of all the available channels

including the channel busy time and channel active time.We therebymeasure

the ground truth value of the BTF as follows.

�)� =

2ℎ0==4; 1DBH C8<4

2ℎ0==4; 02C8E4 C8<4

It is worth noting that not all drivers support this feature.

Choosing the right programming language in Android

As this dissertation primarily focuses on the network load estimation on

Android smartphones, in this section we briefly describe the Android

platform. We then highlight the benefit of using native applications to

build sensitive-time network measurement applications.

Google Android is an open-source software stack that includes the

Linux operating system, middleware, and applications. Although built

on Linux, the platform Android differs from other Linux distributions

by putting a Java interpreter and runtime environment called Android

RunTime (ART). The diagram in Figure 4.2 shows the major components

of this platform.

For developing Android applications, Google provides two kits:

I Android Software Development Kit (SDK): released in December

2007, the SDK includes the necessary tools and libraries to develop

and run Android applications using Java or Kotlin.
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I Android Native Development Kit (NDK): released in June 2009, the

NDK allows developers to embed native codes written in C/C++

and assembly language in Android applications.

Choosing the right kit and the adequate programming language for time-

critical applications requires careful consideration. While most of the

Android applications are willfully Java programs, C/C++ programming

is possible too thanks to the NDK. In order to call the functions in

the native library, the Java Native Interface (JNI) is used. Since Java is

comparatively slow and it is not a good programming language for

handling network measurement, many works propose to use C/JNI

applications. The authors of [63] [63]: Batyuk et al. (2009), ‘Developing and

Benchmarking Native Linux Applications

on Android’

compared the performance between

native C and Java applications under the same tasks, and proved that

native C applications can be up to 30 times faster than running Java in

Dalvik Virtual Machine (DVM) (DVM is the runtime system used on

Android devices running versions below 5.0 and has since been replaced

with ART). The papers [64, 65] [64]: Li et al. (2015), ‘On the accuracy

of smartphone-based mobile network

measurement’

[65]: Li et al. (2018), ‘Toward Accurate

Network Delay Measurement on Android

Phones’

studied the delay overhead in 802.11

networks and recommended using native C implementation in order

to mitigate the user level overhead. In this thesis, we therefore delegate

the sending of the probe traffic task from Java to native libraries written

using the C programming language.

Detecting the frame aggregation levels at the application

level

In order to get the aggregation level ground truth in the experiments

conducted throughout this thesis, we used the wireless packet capturing

method for its easy deployment and low cost. This latter is a simple

technique that passivelymonitors the wireless network traffic by listening

to the WNIC of the device. We used a computer configured into monitor

mode to capture the aggregated frames by using the dedicated capture

software Wireshark. The aggregation level is then computed according

to the A-MPDU reference number in the radiotap header (additional

information added by the wireless adapter or its driver). We also disable

the security options (e.g., WPA, WEP) to simplify the decoding of the

frames.

We note that since the final targeted application cannot use this approach,

our technique will rely on a threshold-based method as a workaround.

This latter computes the inter-arrival time between two packets at the

application layer. If the gap time between two consecutive received

packets is less than a given threshold, the corresponding packets are

deemed to be aggregated. The rationale behind this approach is that if

probe packets are aggregated, they are sent over the Wi-Fi link as part

of the aggregated frame and not as individual probe packets. At the

reception, these probes are decapsulated from a frame, thereby making

it challenging to classify which probes belonged to which frame. Based

on the fact that aggregated probe packets tend to have a small interval

between them, we can reconstruct aggregated frames and count the

number of probe packets of each frame. It should be borne in mind

that this technique is used by much of the prior literature [11, 20] [20]: Farshad et al. (2014), ‘On the

impact of 802.11n frame aggregation

on end-to-end available bandwidth

estimation’

[11]: Song et al. (2017), ‘Leveraging

Frame Aggregation for Estimating WiFi

Available Bandwidth’

. To

assess the effectiveness of this approach, we conducted the following

experiment.
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Experimental setup

To verify this approach, we conducted the following experiment. Our

experimental environment (Figure 4.3) was set up as follows. The prob-

ing traffic sender application, executed on an Android smartphone, was

written using C (by using the Android NDK) and Kotlin programming

languages. It sends a set of UDP probe packets to the server. The server’s

source code, which receives the probes, records their reception times-

tamps, and infers the corresponding aggregation level, was written in

C and executed on a laptop running Ubuntu 18.04. The client, as well

as the server, were connected to an 802.11 Linksys LAPAC1750 AP. The

sniffer was configured in monitor mode and running the packet capture

utilityWireshark to capture the wireless frames forwarded by the AP to

the server. We ran this experiment at noon at a residence with all the

real-world wireless interference.

Figure 4.3: Experimental setup

Probe traffic Sender

 Linksys LAPAC1750 
AP

Server

Probe traffic

Sniffer

Numerical results

In Figure 4.4, we compare the mean aggregation levels computed by the

server with those captured by the sniffer. Several experiments have been

performed with equivalent results, the figure shows two of them. We

tested several thresholds. For these experiments, a value of 250 �s gives
inferred aggregation levels that match well with the ones observed by

the sniffer. It is noteworthy that this threshold probably depends on the

system used.
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Figure 4.4: The mean aggregation levels

captured by the server versus the sniffer

Choosing the network simulator

Having already described the procedure to detect the frame aggregation

level at the application layer and how to measure the ground truth BTF

in practice, we now set the IEEE 802.11 network simulation environment

used throughout this thesis.

In the domain of networks, multiple simulation tools, free or not, have

been developed in order to mimic the behavior of networks by re-

implementing sophisticated network stacks, from the PHY layer up

to the application layer. The simulation tool is practical since one can

design any network scenario close to real-life while freely adjusting

the parameters. In this regard, choosing the right simulator tool for

evaluating the performance of our approach is a crucial task that needs

careful consideration.

We resort to using discrete-event simulators that are considered capable

of rendering results close to real-life scenarios. The ns-2 discrete event

simulator [66] [66]: (2010), The Network Simulator ns-2,
https://www.isi.edu/nsnam/ns/

hadbeen thenetwork simulation tool of choice for academic

research in networks until the development of ns-3 [67]

[67]: (2021), The Network Simulator ns-3,
https://www.nsnam.org/

discrete event

simulator in July 2006. Built using C++ and Python, ns-3 quickly took

the place of ns-2 and has become one of the leading network simulators.

Compared to its predecessor ns-2, it includes multiple additional features

allowing to model additional wireless technologies.

In this thesis, we opted for the ns-3. This choice is driven by the fact that

the latter is the de facto standard for the simulation of Wi-Fi networks.

Indeed, ns-3 is an open-source network simulator that implements all the

basic schemes of the IEEE 802.11 standard and the DCF method. Since its

first release in June 2008, this tool actively kept on developing by adding

all newer standard amendments and their features, e.g., the 802.11ax

standard amendment including HE MCS indexes. In this manuscript, we

used ns-3.30 since it was the latest version at the time of setting up our

simulations. The simulation under ns-3 relies on several existingmodules.

Users can configure the network either by using those modules or by

expanding them to cover non-supported features if needed. Focusing

on the Wi-Fi module, both the MAC and the PHY are modeled, up to

the 802.11ax amendment, including all the modes (ad-hoc, infrastructure,

and mesh modes).
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4.3 System architecture

Now that we have a way to compute the aggregation level at the user

application level and a way to compute the ground truth BTF, in this

section, we describe the system architecture used in our contributions

(the analytical models and the scheme FAM).

The system we consider is a general WLAN that uses the IEEE 802.11

Distributed Coordination Function (DCF). Figure 4.5 depicts the overall

architecture. We distinguish two different entities: an AP and user STAs

that are assumed to be covered by the AP and can be either user stations

or servers.

Figure 4.5: Architecture scenario 1

AP1 STA1

STA2

Remote 
server

WirelessWired

Probe traffic  Node

Probe traffic

Cross traffic

Cross traffic  Node

The user device is denoted as the probe traffic node. It associates with

�%1 and sends probe traffic to the server. We present three hypotheses

on the server’s position inside the network’s topology.

Figure 4.5 presents a scenario similar to classical "Speed Test" applications

where the server is located outside the local networks of the Wi-Fi

APs. However, the characteristics of the connection within the Internet

between the AP and the server are too complex to capture and model.

We, therefore, introduce the scenario in Figure 4.6 in which we assume

that the connection between the AP and the server is ideal. We model it

as if the server were implemented on the AP.



4.3 System architecture 39

server STA1

STA2

Probe traffic Node

Cross traffic

Probe traffic

Wireless

Cross traffic Node

Figure 4.6: Architecture scenario 2

The scenario of Figure 4.7 is amore realistic and practical one.We consider

that the server is embedded on a second wireless device owned by the

user and connected to the same AP through the same Wi-Fi network.

The task of deploying the first scenario proves to be very challenging

and complicated. In this dissertation, we therefore model, simulate, and

implement the second and third scenarios.

server

AP1

STA2

STA1
Probe traffic

Probe traffic  Node

Cross traffic

WirelessWireless

Cross traffic Node

Figure 4.7: Architecture scenario 3

The probe traffic node and the server run an application that aims to

infer the two following information.

I The load of the channel: this load can be generated by the traffic

from �%1 or other APs/stations (STAs) using the same channel.

The load is defined here as the BTF.

I The type of traffic: do other nodes aggregate their frames or not?

The traffic carried by the network is denoted the cross traffic. We consider

that the DownLink (DL) cross traffic is the predominant compared to
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UpLink (UL) traffic. The amount of UL flow is considered negligible, or

at least not significant, as opposed to DL traffic [68][68]: Gupta et al. (2012), ‘WiFox: Scaling

WiFi Performance for Large Audience

Environments’

.

When the probing application runs, it generates supplementary traffic

denoted the probe traffic. It is UpLink traffic from the probe node to the

AP. In the wireless server scenario, it is also DownLink.

To perform the BTF estimation and determine the type of concurrent

traffic, the probe traffic node sends a sequence of small probe packets

to the server with an increasing inter-packet arrival using the UDP. The

probing node is assumed to aggregate frames and thus uses a recent

IEEE 802.11 amendment (since IEEE 802.11n). Upon receiving the probe

packets, the server analyzes them with the algorithms given in Chapter 6

and deduces the BTF and the presence of aggregation. This estimation

relies on an analytical modeling approach described in Chapter 5. Based

on the scenario used, we propose twomodels. The first model, called Ideal
server, simulates the simplified case where the connection between the

AP and the server is ideal and therefore the server is modeled as if it were

implemented on the AP or close to the AP. The second model is called

Wireless server and captures the case where the server is embedded on a

device associated with the AP. The frame aggregation level is computed

using the corresponding model in each case.

4.4 Conclusion

This chapter has dealt with the technical implementation system coupled

with a presentation of the main obstacles and challenges encountered

while measuring the network load through its BTF for vanilla hand-

held devices, especially Android-based devices. We exposed the system

architecture scenarios adopted throughout this thesis and presented

the solutions to overcome the different faced issues. In doing so, we

first showed the importance of choosing the right performance metric

when optimizing the network performance, we identified the pitfalls of

BTF measurement in practice, and we provided the information that an

Android smartphone can learn from a channel scan on a Wi-Fi network.

We then presented our methodology by presenting the method used to

measure the ground truth of the BTF, introducing the network simulation

tool ns-3, and highlighting that is possible to infer the frame aggregation

level at the device’s user application level by proposing a simple feasible

application. At last, we presented the system architecture used by our

proposed analytical models as well as the method FAM.

In brief, this chapter sets out the technical implementation details. Based

on several analytical models, the system provides the BTF estimation of

the Wi-Fi network for an Android-based device. In the next chapter, we

will describe the proposed Markovian models, their resolution, and their

numerical validation.
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Having already described the overall architecture system and the scenar-

ios considered throughout this thesis in the previous chapter, we now

try to solve the following question: how can we develop an analytical

model that helps infer the frame aggregation behavior as a function

of the competing traffic in WLANs? To that aim, the main objective

of this chapter is to propose analytical models and validate them. In

order to strengthen the study, analysis of performance based on several

simulations and an experimental test-bed are proposed.

This chapter is organized as follows. The systemmodel, common assump-

tions, and parameters are presented in Section 5.1. Section 5.2 details the

model Ideal server and Section 5.3 details the mathematical formulation

of the model Wireless server. Validation and comparison of the proposed

models are then exposed in Section 5.4 by exposing the advantages and

drawbacks of each solution. Conclusions are drawn in Section 5.5. Finally,

some perspectives are exposed in Section 5.6.

5.1 System model

In this section, we describe the system considered for the proposed

models coupled with a presentation of the common assumptions as well

as the system notations.

We consider a general IEEE 802.11 infrastructure WLAN based on the

DCF access method composed of two different entities: an AP and user

STAs that are assumed to be covered by the AP and can be either user

stations or servers. Each station or AP has its own physical transmission

rate (MCS index).

The two proposed analytical models are Discrete-Time Markov Chain

(DTMC). They evaluate the aggregation levels of the probe traffic for a

given cross traffic load in congested and non-congested networks. While

the first model (Ideal server) estimates the probe aggregation level of

the UL traffic sent by the probe node, the second model (Wireless server)
appraises the aggregation level of the DL traffic forwarded by the AP to

the server.

As the probe frame aggregation level depends on the nature of cross traffic

(aggregated or non-aggregated traffic), each model relies on two Markov

chains. The first chain considers that the cross traffic uses the frame

aggregation scheme, whereas the second is based on non-aggregated

cross traffic. Table 5.1 summarizes the principal notations used in the

models and provides a listing of the used IEEE 802.11 parameters.

Our prediction models rely on the following assumptions:
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Table 5.1: Principal notations.

Parameter (unit) Definition

)���( (�s) Distributed Inter Frame Space duration

)(��( (�s) Short Inter Frame Space duration

)%�. (�s) Preamble and physical header duration

��( (�HC4B) Frame Check Sequence

)�;>2:�� (�s) Required time to send the block acknowledgment

)�� (�s) Required time to send the acknowledgment

)102:> 5 5 (�s) Average backoff time

)B;>C (�s) Slot time

�,<8= Minimum size of the contention window

32 (�s) Inter-arrival time of cross traffic packets

3? (�s) Inter-arrival time of probe traffic packets

�"%�*�% Maximum A-MPDU size for the AP

�"%�*% Maximum A-MPDU size for the probe traffic node

12>=38C8>= Indicator function that equals to 1 if 2>=38C8>= is true and 0 otherwise

Ideal server model

%
(8 , 9)(; ,<)

Transition probability from state (; , <) to state (8 , 9)

5 (:) (�s) Required time to send k probe traffic aggregated sub-frames

6(:) (�s) Required time to send k cross traffic aggregated sub-frames

ℎ (�s) Required time to send a single cross traffic frame

Wireless server model

%
(8 , 9 ,:,D)(; ,<,@,E)

Transition probability from state

(8 , 9 , :, D) to state (; , <, @, E)

)�%(:) (�s) Required time to send k DL probe aggregated sub-frames by the AP

)(%(:) (�s) Required time to send k UL probe aggregated sub-frames by the probe traffic node

)�� (:) (�s) Required time to send k DL cross traffic aggregated sub-frames by the AP

)�� (�s) Required time to send a single DL cross traffic frame by the AP

I probe traffic: it is a Constant Bit Rate (CBR) traffic, sent at regular

interval 3? . Frame aggregation scheme is always enabled for this

flow;

I cross traffic: the cross traffic is modeled by a CBR source sending

packets at regular interval 32 and managed by a unique queue. The

cross traffic can be either aggregated or not. This flow is coming

from the distribution system (a wired network connected to the AP,

which is not represented in Figure 4.6 and Figure 4.7 (Chapter 4))

and sent to the cross traffic node;

I buffers: the probe traffic node, the cross traffic node, and the AP

buffers are assumed to have a finite size. More precisely, we assume

that when an aggregated frame is sent for a given destination, the

corresponding buffer becomes empty for this destination.

The impact of these assumptions is evaluated through simulations and

test-bed experiments and discussed in Section 5.4.

In building the four Markov chains, we first present the set of possible

states and transitions and compute the transitions probabilities for each

chain. We then detail the calculation of the stationary probabilities and

the mean aggregation levels of the probe traffic for all the proposed

models.
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5.2 Ideal server model

Let us first consider the Ideal server model that models the scenario

of Figure 4.6. There are three nodes: an AP, and two user stations. The

first sends the probing packets to the server located on the AP. The

second receives the cross traffic forwarded by the AP. As mentioned

earlier, we propose two Markov chains for each model. The first model

is referred to as Ideal server model based on aggregated cross traffic and the

second one as Ideal server based on non-aggregated cross traffic. This scenario
permits us to evaluate the aggregation level of the UL probe traffic sent

by the probe traffic node.

Ideal server model based on aggregated cross traffic

In this section, we describe the first Markov chain of the Ideal servermodel

where the frame aggregation mechanism is enabled for the cross traffic.

We consider the Markov chain defined as the couple (-= , .=)=≥0. The

process -= describes the number of aggregated sub-frames contained

in the =Cℎ transmitted probe frame, while the process .= represents the

number of packets at the cross traffic buffer at themoment of the =Cℎ probe

frame transmission. The set of all possible states is {0, ..., �"%�*%} for
the -= process and {0, ..., �"%�*�%} for the .= process.

The transition probabilities are fully determined by the time between two

consecutive probe traffic transmissions. As both probe and cross traffics

are deterministic, this time sets the number of packets that arrived in the

two buffers between two transmissions and thus the number of frames

that will be sent in the aggregated frame. Consequently, we analyze the

events that may occur between two probe traffic transmissions. Figure

5.1 shows an example of the possible events between two probe traffic

transmissions. Let assume that the current state of the Markov chain

at step = is (; , <), i.e. (-= = ; , .= = <). First, the probe traffic frame is

sent. The transmission duration is denoted 5 (;). Note that if ; > 1, it is

an A-MPDU frame that contains ; aggregated packets. It is important to

note that 5 (;) counts the time to access the medium (composed of the

DIFS, and the mean backoff estimated as
�,<8=·)B;>C

2
), the physical header

(PHY Overhead), the MAC header, the payload, the FCS, the SIFS, and

the ACK or BlockACK.

We get:

5 (;) = )���( + )102:> 5 5 + )%�. + )(��( + )�;>2: �� 

+

1

5 A4@D4=2H
· )�;>2: �� '4@D4BC

+

("%�*�4;8<8C4A + "02�4034A + %0H;>03 + ��() × 8 × ;
%ℎHB820; CA0=B<8BB8>= A0C4

(5.1)

where )�;>2: �� '4@D4BC means that a response is requested upon trans-

mission of a frame whose sequence number is distant at least by a given

threshold multiplied by the transmit window size from the starting

sequence number of the transmit window. We compute the frequency
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Probe traffic

Cross traffic
 

Time between two successive transmissions

Time

Time 

Figure 5.1: Possible events between two successive probe traffic transmissions for the Ideal server model based on aggregated cross traffic. At

the step =, the =Cℎ probe frame is transmitted. It contains -= sub-frames. Its duration is 5 (-= ). The competing station accesses the medium

to transmit the previous data at its buffer (.= ) plus the packets that arrived during the period 5 (-= ). The amount of time to send those

packets is given by 6
( ⌊
.= +

5 (-= )

32

⌋ )
. In this case, between the transmission of the -= and the -=+1 frames, the cross traffic succeeds to

access the medium two successive times.

of sending of these frames and we add its duration to the frame dura-

tion. Note that )�;>2: �� and )�;>2: �� '4@D4BC also count their physical

header.

During this transmission, the number of received packets that arrived

in the two buffers can be approximated by b 5 (;)3?
c and b 5 (;)32

c for probe
and cross traffic respectively (we round down these values to the nearest

integers). At the end of this transmission, the probe traffic buffer contains

b 5 (;)3?
c packets, and the AP buffer contains # (1)

= < + b 5 (;)32
c cross traffic

packets.

Before the next probe transmission, several successive transmissions of

cross traffic may occur. Let # (:)
be the number of packets in the cross

traffic buffer at the time when the cross traffic tries to access the medium

for the :Cℎ time. # (1)
has already been computed and corresponds to

the buffer size at the end of the probe traffic transmission. If it succeeds

to access the medium (assuming that # (1) > 0), a frame or aggregated

frame composed of # (1)
packets is sent. During this transmission, # (2)

packets arrived in the cross traffic buffer with:

# (2)

=

⌊ 6(# (1)
)

32

⌋
(5.2)

The function 6(G) is the duration of the transmission of a frame (G = 1)

or an aggregated frame (with G > 1 sub-frames). The only difference
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with 5 (.) is the physical transmission rate and the packet size that can be

different from the probe traffic.

More generally, for : > 1, we get:

# (:)

=

⌊ 6(# (:−1)
)

32

⌋
(5.3)

Now, we compute the probability that : cross traffic frames are sent

successively. It is denoted ℙ
(
&(; , <) = :

)
where < and ; denote the

buffer states as in the previous equations and &(; , <) is the number

of successive times that the cross traffic accesses to the medium. : = 0

means that the cross traffic does not access to the medium between two

successive probe traffic transmissions. It can be due to an empty buffer or

because the probe traffic wins access to the medium. We denote ?(:) the

probability for the cross traffic to access the medium at least : successive

times given that probe and cross traffics have non-empty buffers. This

probability depends on the contention window and :. We get:

(5.4)ℙ
(
&(; , <) = 0

)
= 1

<+

5 (;)

32 <1

+ (1 − ?(1)) · 1
<+

5 (;)

32 ≥1

For : > 0, we get,

ℙ
(
&(; , <) = :

)
=

:∏
@=1

1# (@)≥1
·
(
?(:)1# (:+1)

=0
+ (?(:) − ?(: + 1))1# (:+1)>0

)
(5.5)

In this equation, the product corresponds to the probability that the

cross traffic has a non-empty buffer during each of the : successive

transmissions. The term in brackets describes the probability that the

cross traffic does not access the medium after its :Cℎ transmission, either

because it loses access to themedium at the :+1 accesseswhen competing

with the probe traffic (where the term (?(:) − ?(: + 1)) is a factor) or

because of an empty buffer. In the numerical results section, we take

?(:) =
1

2
: , but a more complex formula can be considered instead.

To obtain the transition probabilities, we condition by the number of

cross traffic accesses and their transmission times. As the probe traffic is

CBR, the number of frames in the probe traffic buffer is directly deduced

from this time. For 8 ≥ 2 we obtain:

%(8 , 9)(; ,<) =

∞∑
:=0

ℙ
(
&(; , <) = :

)
· 13? ·8≤ 5 (;)+∑:

@=1
6(# (@)

)<3? ·(8+1)
· 1# (:+1)

=9

(5.6)

For 8 = 1 we get:

(5.7)%(8 , 9)(; ,<) =

∞∑
:=0

ℙ
(
&(; , <) = :

)
· 1

0≤ 5 (;)+∑:
@=1

6(# (@)
)<23?

· 1# (:+1)
=9
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Probe traffic

Cross traffic
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Figure 5.2: Example timeline of possible events between two successive probe transmissions for the Ideal server model based on

non-aggregated cross traffic.

Ideal server model based on non-aggregated cross traffic

We now describe the secondMarkov chain of the Ideal servermodel where

the frame aggregation mechanism is disabled for the cross traffic.

The principle of this second model is the same: we condition by the

number of successive cross traffic transmissions except that each trans-

mission consists only of a single frame. For the sake of clarity, we recourse

to Figure 5.2 to describe the execution steps of the proposed model. It

shows an example of possible events between two successive probe traffic

transmissions when the aggregated probe traffic and the non-aggregated

cross traffic are competing for the channel resource.

In this example, at time 0, we start from a state (; , <), i.e., (-= = ; , .= = <)

((4, 2) in Figure 5.2). By construction, a transition begins by a probe

transmission. It sends the ; frames currently in its buffer, aggregating

them in a unique A-MPDU (4 in our example) using a specific data rate.

Its transmission duration is also 5 (;).

During this transmission, the probe buffer receives b 5 (;)3?
c packets and

the cross traffic buffer receives b 5 (;)32
c. Consequently, at the end of this

transmission, the probe and cross buffers will contain respectively, b 5 (;)3?
c

and < + b 5 (;)32
c packets (2 and 4 in our example).

Before the next probe frame transmission, an arbitrary number : of

successive transmissions of cross traffic can occur. In our example, the

cross traffic gains two successive medium accesses. We denote"(:)
the

number of frames in the cross traffic buffer before its :Cℎ transmission.

"(1)
is equal to < + b 5 (;)32

c. As cross traffic is not aggregated, a single

frame among the "(1)
is sent. We denote this frame duration by ℎ. It
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differs from 6(.) as the local properties (transmission rates, packet sizes)

and the protocol is different (IEEE 802.11g, for instance) for the cross

traffic. For the non-aggregated cross traffic, the transmission duration is

expressed as:

(5.8)

ℎ = )���( + )102:> 5 5 + )%�. + )(��( + )�� 

+

("02�4034A + %0H;>03 + ��() × 8

%ℎHB820; CA0=B<8BB8>= A0C4

At the end of the first cross traffic transmission, the cross buffer contains

"(2)
frames which can be calculated by"(1) − 1 + b ℎ32 c. Generalizing for

: > 1, we get:

(5.9)"(:)

= "(:−1) − 1 +

⌊
ℎ

32

⌋
Similarly to our previous Markov chain, we define &(; , <) the random

variable that describes the number of consecutive times that the cross

traffic gains access to the medium. Once again, we denote by ?(:) the

probability for the cross traffic to access the medium at least : successive

times given that probe and cross traffics have non-empty buffers.

We distinguish the case where &(<, ;) = 0:

(5.10)ℙ
(
&(; , <) = 0

)
= 1

<+

5 (;)

32 <1

+ (1 − ?(1)) · 1
<+

5 (;)

32 ≥1

The first term corresponds to the case where the cross traffic buffer is

empty, and the second term where the cross node loses access to the

medium at its first attempt.

For : > 0, we get,

ℙ
(
&(; , <) = :

)
=

:∏
@=1

1"(@)≥1
·
(
?(:)1"(:+1)

=0
+ (?(:)− ?(: + 1))1"(:+1)>0

)
(5.11)

Analogously to the previous Markov chain, we take ?(:) =
1

2
: in the

numerical results section.

We are now able to calculate the transition probabilities based on the

number of cross traffic accesses and their transmission times. As the

probe traffic is deterministic, the number of frames at the probe traffic

buffer is thereby fully determined from this time.

For 8 ≥ 2, we get:

(5.12)%(8 , 9)(; ,<) =

∞∑
:=0

ℙ
(
&(; , <) = :

)
· 13? ·8≤ 5 (;)+∑:

@=1
ℎ<3? ·(8+1)

· 1"(:+1)
=9

For 8 = 1, we get:

(5.13)%(8 , 9)(; ,<) =

∞∑
:=0

ℙ
(
&(; , <) = :

)
· 1

0≤ 5 (;)+∑:
@=1

ℎ<23?
· 1"(:+1)

=9
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5.3 Wireless server model

We now move to the description of the second generation of models

namedWireless servermodels. In theWireless servermodel, the server is

embedded on an additional wireless device associated with the AP, as

depicted in Figure 4.7. In this section, we extend the previous model to

deal with real-world implementation constraints. The paradigm shifts

from the evaluation of the aggregation levels of the UL probe traffic to

the aggregation levels of the DL probe traffic forwarded by the AP to the

server. Two Markov chains are proposed for this model.

Wireless server model based on aggregated cross traffic

In the following,we present theWireless servermodel based on aggregated

cross traffic.

We consider theMarkov chain defined as (-= , .= , /= , (=)=≥0. The process

-= describes the number of probe sub-frames contained in the AP queue

at themoment of the =Cℎ frame transmissiondeparture. Thepossible states

are {0, .., �"%�*�%}. The process.= defines the number of cross traffic

sub-frames in the AP queue. The possible states are {0, .., �"%�*�%}.
Let/= be the number of packets at the probe traffic node. It takes its values

in the set {0, .., �"%�*%}. Finally, (= describes the =Cℎ transmission. It

takes three possible values {�%�, �%%, (%}. �%% (Access Point Probe)

is a DL transmission of Probe traffic from the AP. �%� (Access Point

Cross) denotes a cross traffic transmission from the AP to the cross server,

while (% (Station Probe) corresponds to a UL transmission from the

probe traffic node.

Transition probabilities

Having defined the set of possible states for each process, we shall

now derive the transition probabilities. The transition probabilities are

denoted %(8 , 9 ,:,D)(; ,<,@,E), and represents the probability to go from state

(-= , .= , /= , (=) = (8 , 9 , :, D) to state (-=+1 , .=+1 , /=+1 , (=+1) = (; , <, @, E).

The transition probabilities depend on the time between two successive

transmissions. As both UL probe and UL cross traffics are deterministic,

this time sets the number of packets that arrived in the AP buffer

and the probing node buffer between two transmissions and thus the

number of frames that will be sent in the next aggregated frame. We,

therefore, analyze the events that may occur between two successive

transmissions.

The next stage of our modeling approach is to decide when a transition

from one state to another is allowed and compute its probability. Note

that impossible transitions have zero probability and that the associated

transition probability is computed by assuming that all concerned nodes

are equally likely to access the channel. For ease of illustration, we

categorize the state transitions into the following three classes.
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Figure 5.3: Possible events between two successive transmissions for theWireless servermodel based on aggregated cross traffic when the

current transmission is APP.

Class I: Transition from state APP For the sake of clarity, we recourse

to Figure 5.3 to describe the possible transition probabilities and their

computations. It illustrates an example of possible events between two

successive transmissions when the current transmission is APP (an

aggregated frame containing probe packets is transmitted by the AP).

In this example, at time C = 0, we start from state (8 , 9 , :, �%%) (i.e.,

(3,2,2,APP) in Figure 5.3). The AP sends the 8 corresponding probe

frames currently in its buffer (8 = 3 in this example), aggregating them in

a single A-MPDU using its current MCS index. Its transmission duration

is denoted )�%(8) (the same formula used to compute 5 (;) for the two

previous Markov chains). Note that the AP has a single buffer that

contains at once the probe and the cross traffics, but in order to clarify the

explanation of the model, we distinguish between them in Figure 5.3.

During this transmission, the probe traffic node buffer receives b )�% (8)
3?
c

packets and the AP buffer receives b )�% (8)
32
c cross traffic packets. As a

result, at the end of the APP state, the probe traffic node buffer and the

AP will contain respectively : + b )�% (8)
3?
c of probe packets and 9 + b )�% (8)

32
c

of cross traffic packets ((4,4) in the Figure 5.3).

At the end of this transmission, the buffer of the AP does not have probing

frames to send (-=+1 = 0 almost surely), and another APP transmission

is impossible ((=+1 6= �%% almost surely). So from this state, only two

transitions are allowed: to APC or SP with -=+1 = ; = 0. It can occur only



50 5 Analytical Study of Frame Aggregation Level

if .=+1 = < > 0 and /=+1 = @ > 0 respectively.

We derive the non-null transition probabilities as follows. If the AP gains

access to the channel, it will send the cross traffic currently in its buffer.

For < > 0, the next transmission will be APC with probability:

%(8 , 9 ,:,�%%)(0,<,@,�%�) = %
(
(=+1 = �%� |(= = �%%, -=+1 = ; = 0,

.=+1 = < > 0, /=+1 = @
)
· 1

:+b )�% (8)

3?
c=@ · 19+b )�% (8)

32
c=<

where 12>=38C8>= is the indicator function that equals to 1 if 2>=38C8>=

is true and 0 otherwise. %
(
(=+1 = �%� |(= = �%%, -=+1 = ; = 0, .=+1 =

< > 0, /=+1 = @
)
denotes the probability that the event APC will occur

given that the event APP has already occurred. In the interest of brevity,

we postpone the computation of such probabilities to the Appendix

on Page 95.

Now, if the probe traffic node gains access, the next event will be SP and

the transition probability from APP to SP for @ > 0 is given by:

%(8 , 9 ,:,�%%)(; ,<,@,(%) = %
(
(=+1 = (% |(= = �%%, -=+1 = ; = 0,

.=+1 = <, /=+1 = @ > 0

)
· 1

:+b )�% (8)

3?
c=@ · 19+b )�% (8)

32
c=<

Class II: Transition from state APC Once again, when presenting

the transition probabilities of this class, we resort to Figure 5.4. It de-

picts a timeline of feasible events between two successive transmission

departures when we start from the state APC.

The AP sends the 9 cross traffic frames currently in its buffer as an

A-MPDU using the transmission rate associated to the Cross traffic

node. Its transmission duration is denoted )��(9). During the period

)��(9), the probe traffic node buffer receives b )�� (9)

3?
c packets and the AP

buffer receives b )�� (9)

32
c cross traffic packets. At the end of the APC state,

the probe traffic node buffer and the AP will thus contain respectively,

: + b )�� (9)

3?
c of probe traffic packets and b )�� (9)

32
c of cross traffic packets.

Conversely to the previous class of transitions where only two possible

transitions are allowed from the state APP, there are here three possible

transitions under some conditions. (=+1 can be APP, APC, or SP.

First, we suppose that there will be another APC, the transition from

APC to APC is deemed possible if and only if -= = 8 = 0 and .= = ; = 0:

it is impossible to have two successive APC transmissions if 8 > 0 or ; > 0

due to the AP queuing system detailed in Section 2.3 (Figure 2.5).

The transition probability from APC to APC with .=+1 = < > 0 is:

%(0, 9 ,:,�%�)(0,<,@,�%�) = %
(
(=+1 = �%� |(= = �%�, -= = -=+1 = 0,

.=+1 = < > 0, /=+1 = @
)
· 1b )�� (9)

32
c=< · 1:+b )�� (9)

3?
c=@



5.3 Wireless server model 51

Time between two 
successive 

transmission 
departures

APP

t=0

APC

Option2: SP

MAC decides who is 
going to access the 

channel

AP

Probe traffic 
client

Time 

Option1: APP

Figure 5.4: Possible events between two successive transmissions for theWireless server model based on aggregated cross traffic when the

current transmission is APC.

Now if we suppose that the AP gains the medium access to transmit the

DL probe flow, the transition probability from APC to APP is possible

only if -= = 8 = -=+1 = ; since the AP cannot receive probe frames in its

buffer during the transmission of the cross traffic and -=+1 = ; > 0. The

corresponding probability is given by:

%(8 , 9 ,:,�%�)(; ,<,@,�%%) = %
(
(=+1 = �%% |(= = �%�, -=+1 = -= = ; > 0,

.=+1 = <, /=+1 = @
)
· 1b )�� (9)

32
c=< · 1:+b )�� (9)

3?
c=@

If we assume that the probe traffic client gains the medium access, the

transition from APC to SP is also allowed only if -=+1 = ; = -= = 8 and

/=+1 = @ > 0. We have:

%(8 , 9 ,:,�%�)(; ,<,@,(%) = %
(
(=+1 = (% |(= = �%�, -=+1 = -= = ; ,

.=+1 = <, /=+1 = @ > 0,
)
· 1b )�� (9)

32
c=< · 1:+b )�� (9)

3?
c=@

Class III: Transition from state SP In order to derive the transition

probabilities of the last class, we apply the same principle. For this
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class, we, therefore, do not describe the details of the derived transition

probabilities.

From the SP state, we have three possible transitions APP, APC, or SP

depending on the competition for the channel resource. First, if the next

transition is APP with -=+1 = ; > 0, the transition probability is given

by:

%(8 , 9 ,:,(%)(; ,<,@,�%%) = %
(
(=+1 = �%% |(= = (%, -=+1 = ; > 0,

.=+1 = <, /=+1 = @
)
· 1;=8+: · 19+b )(% (:)

32
c=< · 1b )(% (:)

3?
c=@

Second, if the next transition is APC with .=+1 = < > 0, the transition

probability is defined as:

%(8 , 9 ,:,(%)(; ,<,@,�%�) = %
(
(=+1 = �%� |(= = (%, -=+1 = ; , .=+1 = < > 0,

/=+1 = @
)
· 1;=8+: · 19+b )(% (:)

32
c=< · 1b )(% (:)

3?
c=@

Finally, if the next transition is SP with /=+1 = @ > 0, the transition

probability is thus formulated as:

%(8 , 9 ,:,(%)(; ,<,@,(%) = %
(
(=+1 = (% |(= = (%, -=+1 = ; , .=+1 = <,

/=+1 = @ > 0

)
· 1;=8+: · 19+b )(% (:)

32
c=< · 1b )(% (:)

3?
c=@

Wireless server model based on non-aggregated cross

traffic

Let us now derive the second Markov chain of theWireless server model

where the frame aggregation scheme is disabled for the cross traffic.

Figure 5.5 breaks down the network topology simulated by this model

that consists of two co-located IEEE 802.11n and IEEE 802.11g WLANs

operating on the 2.4GHZ band. The 802.11n WLAN is composed of an

AP and two nodes. A probe traffic node to send the UL probe traffic, and

a server node to receive the forwarded DL traffic. The 802.11g WLAN is

composed of an AP and a node that receives the non-aggregated cross

traffic.
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Figure 5.5: Scenario modeled by theWire-
less server based on non-aggregated cross

traffic.

The rationale behind this model is the same as the model described in

the previous section except that each cross traffic transmission consists

only of a single frame. Like the aggregated version of the Wireless server
model, we divide the state transitions into the following three classes for

the non-aggregated version as follows.

Class I: Transition fromAPP We first consider the transition probabili-

ties when the current transmission is APP. Since during this transmission,

the 802.11n AP sends an aggregated probe frame to the probe traffic

server, the transitions probabilities from state APP are the same. We note

that the computation of the conditional probabilities related to these

three classes are given in Appendix B on Page 97.

If the 802.11g AP gains access to the channel, the transition probability

from state APP to state APC with .=+1 = < > 0 is:

%(8 , 9 ,:,�%%)(0,<,@,�%�) = %
(
(=+1 = �%� |(= = �%%, -=+1 = ; = 0,

.=+1 = < > 0, /=+1 = @
)
· 1

:+b )�% (8)

3?
c=@ · 19+b )�% (8)

32
c=<

Now if the probe traffic node gains the competition for the channel

resource, the transition from APP to SP with /=+1 = @ > 0 is given by:

%(8 , 9 ,:,�%%)(; ,<,@,(%) = %
(
(=+1 = (% |(= = �%%, -=+1 = ; = 0,

.=+1 = <, /=+1 = @ > 0

)
· 1

:+b )�% (8)

3?
c=@ · 19+b )�% (8)

32
c=<

Class II: Transition from APC

We second consider the transition probabilities when the current trans-

mission is APC. When presenting the probabilities of this class, we resort

to Figure 5.6. It exposes a set of possible events between two successive

transmission departures when we start from the state APC.
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Figure 5.6: Possible events between two successive transmissions for the Wireless server model based on non-aggregated cross traffic when

the current transmission is APC.

The 802.11g AP sends a single frame from the 9 cross traffic frames

currently in its buffer. Its transmission duration is denoted )�� . During

this period, the probe traffic node receives b )��3? c of probe packets, and
the 802.11g AP receives b )��32 c of cross traffic.

Here, there are three possible transitions. The process (=+1 can be APP,

APC, or SP. It should be noted that all the following transitions are

deemed possible if -= = 8 = -=+1 = ; since the 802.11n AP cannot receive

probe frames in its buffer during the transmission of the cross traffic by

the 802.11g AP.

If we assume that there will be another APC, the corresponding proba-

bility with .=+1 = < > 0 is defined as follows:

%(8 , 9 ,:,�%�)(; ,<,@,�%�) = %
(
(=+1 = �%� |(= = �%�, -=+1 = -= = 8 = ; ,

.=+1 = < > 0, /=+1 = @
)
· 1

9−1+b )��32 c=<
· 1

:+b )��3? c=@

Now if we expect that there will be APP, the transition probability from
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APC to APP with -=+1 = ; > 0 is given by:

%(8 , 9 ,:,�%�)(; ,<,@,�%%) = %
(
(=+1 = �%% |(= = �%�, -=+1 = -= = 8 = ;

= ; > 0, .=+1 = <, /=+1 = @
)
· 1

9−1+b )��32 c=<
· 1

:+b )��3? c=@

Finally, we establish the transition probabilities from APC to SP. This

transition is allowed if /=+1 = @ > 0 and given by:

%(8 , 9 ,:,�%�)(; ,<,@,(%) = %
(
(=+1 = (% |(= = �%�, -=+1 = -= = 8 = ; ,

.=+1 = <, /=+1 = @ > 0

)
· 1

9−1+b )��32 c=<
· 1

:+b )��3? c=@

Class III: Transition from SP

We now derive the transition probabilities of the last class of this model.

From the state SP, there are also three possible transitions APP, APC, or

SP depending on the competition for the channel resource.

First, if the next transition is APP with -=+1 = ; > 0, the transition

probability is given by:

%(8 , 9 ,:,(%)(; ,<,@,�%%) = %
(
(=+1 = �%% |(= = (%, -=+1 = ; > 0,

.=+1 = <, /=+1 = @
)
· 1;=8+: · 19+b )(% (:)

32
c=< · 1b )(% (:)

3?
c=@

Second, if the next transition is APC with .=+1 = < > 0, the transition

probability is formulated as:

%(8 , 9 ,:,(%)(; ,<,@,�%�) = %
(
(=+1 = �%� |(= = (%, -=+1 = ; , .=+1 = < > 0

/=+1 = @
)
· 1;=8+: · 19+b )(% (:)

32
c=< · 1b )(% (:)

3?
c=@

Finally, if the next transition is SP with /=+1 = @ > 0, the transition

probability is thus formulated as:

%(8 , 9 ,:,(%)(; ,<,@,(%) = %
(
(=+1 = (% |(= = (%, -=+1 = ; , .=+1 = <,

/=+1 = @ > 0

)
· 1;=8+: · 19+b )(% (:)

32
c=< · 1b )(% (:)

3?
c=@

Stationary probabilities for all the models

So far, we have evaluated all the transition probabilities for the four

models. The last step consists in deriving the stationary probability and

computing the frame aggregation levels. Let us recall that a Markov

chain is irreducible if and only if every state can be reached by any

other state through one or several transitions. Since our Markov chain is
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irreducible and has a finite number of states, it exists a unique stationary

distribution [69][69]: Ross (2010), Introduction to Probability
Models

. We solve this Markov chain through a numerical

method to compute the stationary probabilities. The vector containing the

corresponding values is denoted �. The mean probe traffic aggregation

levels for the first (Ideal server) and second (Wireless server)models denoted

respectively "40=�66�340; B4AE4A and "40=�66,8A4;4BB B4AE4A are then

given by:

"40=�66�340; B4AE4A =

�"%�*%∑
==1

= · �=

"40=�66,8A4;4BB B4AE4A =

�"%�*�%∑
==1

= · �=

5.4 Numerical results

In this section,we start by evaluating the accuracy of the proposedmodels

in predicting the frame aggregation levels of the probe traffic. We do so

under several scenarios with different network parameters, such as the

topology and its size, different IEEE 802.11 amendments, and different

traffic patterns. In this regard, we compare the aggregation levels given by

the models with those delivered by the discrete-event network simulator

3 (ns-3 version 3.30). We also compare the models’ aggregation levels

with the measurements made during a test-bed experiment in order to

get realistic scenarios that capture the complexity of the whole network

stack and definitely give a convenient behavior preview. Then, we study

the difference between the proposed Markovian models. For simplicity

reasons, we assume for all the scenarios that all nodes have a random but

fixed position during the whole simulation duration. We compute the

four models for six cross traffic loads/BTF levels: 0, 0.125, 0.25, 0.375, 0.5,

and 0.625 ranging from low to high levels of BTF. Themaximumnumbers

of aggregated sub-frames �"%�*�% and �"%�*% were set to 36. The

parameters used in the simulations and models are summarized in Table

5.2

Table 5.2: The DCF parameters for

IEEE 802.11n/g standard amendments in

2.4GHz band.

Parameter value

CWmin 15

)B;>C (�s) 9 or 20

)���( (�s) 28 or 50

)(��( �s 10

FCS (Bytes) 4

Packet Size (Bytes) 1024

Channel width 20MHz

Validation of the Ideal server model based on aggregated

cross traffic

We start by examining the accuracy of the Ideal Servermodel using the

Markov chain where frame aggregation mechanism is enabled for both

probe and cross traffics under the IEEE 802.11n amendment [70][70]: Bouzouita et al. (2020), ‘Analytical

study of frame aggregation level to infer

IEEE 802.11 network load’

. We
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compare the model outcomes to ns-3 simulations and a controlled lab

experiment.

Simulation - Two STAs

In this simulation, the network topology illustrated in Figure 5.7, is

composed of an AP, and two user STAs: a station that sends the probe

traffic and a second one for receiving the cross traffic from theAP. The two

stations are connected to the AP and satisfy IEEE 802.11n specifications.

The channel is assumed error-free, and all stations operate with the same

physical data rate corresponding to the HT-MCS 15 (144.4 Mbps).

Probe traffic node

Cross traffic node

AP

Figure 5.7: ns-3 simulation with two STA

for the Ideal server model based on aggre-

gated cross traffic.

Figure 5.8 shows the mean aggregation level for the probe traffic as a

function of the probe packet gap for the analytical model and simulations

for the three BTFs: 0.125, 0.25, and 0.375. In order to generate different

probing rates, we increase gradually the probe packet gap from 50 �s to
250 �s, and we fix the packet size to 1024 Bytes.

According to these results, it appears that the model follows closely the

pattern of the ns-3 simulations for all the three levels of network load

with a relative error typically less than 10%. We note that we obtain the

same results for the other three cases of BTF.

The obtained curves can be divided into two zones. We observe a first

zone where the aggregation level is at its maximum. It corresponds

to a very congested state where the probe traffic buffer is always full

and exceeds the maximum number of frames that can be aggregated.

When the probe packet interval increases, the aggregation decreases

and follows a curve close to a hyperbola explained by the fact that the

number of generated packets per second is the inverse of the probe packet

interval.

Simulation - Five STAs

In our Markov chain-based models, the cross traffic is sent by a single

queue. In practice, an AP will have several associated stations most of the

time. So this simulated scenario involves a more complex topology that

models cross traffic sent to four concurrent STAs to properly quantify the

impact of the number of stations to which the AP sends the DL traffic. The
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Figure 5.8: Mean aggregation levels of

Ideal server model based on aggregated

cross traffic versus ns-3 simulations - Two

STAs.
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(a) BTF=0.125.

50 75 100 125 150 175 200 225 250
Probe Packet Gap ( s)

0

5

10

15

20

25

30

35

M
ea

n 
Ag

gr
eg

at
io

n 
Le

ve
l

Simul
Model

(b) BTF = 0.25.
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(c) BTF = 0.375.

network topology is hence composed of an AP and five nodes, illustrated

in Figure 5.9.

Figure 5.9: ns-3 simulationwith five STAs

for the Ideal servermodel based on aggre-

gated cross traffic.

Probe traffic client

Cross traffic node1 

AP

Cross traffic node 2

Cross traffic node 3

Cross traffic node 4

In Figure 5.10, we compare the mean aggregation levels obtained with

ns-3 with the model based on aggregated cross traffic for this scenario.

The corresponding results show that the mean aggregation levels derived

from simulations are always close to our model, and all the curves show

similar patterns. We choose to present the results for the BTFs 0.125,

0.375, and 0.625, bearing in mind that the three other cases show the

same accuracy. Based on these results, we show that the model might

be relevant even for several stations composing the DL competing traffic

coming from the same AP.
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(a) BTF=0.125.
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(b) BTF=0.375.
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(c) BTF=0.625.

Figure 5.10: Mean aggregation levels of

Ideal server model based on aggregated

cross traffic versus ns-3 simulations - Five

STAs.

Experimental validation

Simulations are good for capturing bounds and trends of analytical

models, but not as good for evaluating the performance one should

expect in practice. Consequently, the analytical results were compared

andvalidatedusing an experimental test-bed. This experiment (illustrated

in Figure 5.11) was conducted in a controlled lab environment (a helical

room) where there is no interference or channel fading [71] [71]: Massouri et al. (2014), ‘CorteXlab:

An open FPGA-based facility for testing

SDR cognitive radio networks in a

reproducible environment’

. The general

setting is as follows: we used a Linux laptop to execute the probe traffic

sender application. Another computer, configured as an IEEE 802.11n

AP, was used as a server for the probe and client for the cross traffic.

The physical transmission rate was set to 144.4 Mbps (i.e., HT-MCS 15

in 802.11n). An Android phone was deployed, acting as the cross traffic

receiver application. Also, we configured a computer (Sniffer) with a

specific WNIC that supports the survey dump feature of the iw command

which is a Linux utility that shows the survey information of all the

available channels including the channel busy time and channel active
time, thereby we measure the ground truth value of the BTF as detailed

in Chapter 4. This computer is also configured inmonitormode to capture

the aggregated frames by using the dedicated capture softwareWireshark.
The aggregation level is computed according to the A-MPDU reference

number in the radiotap header (additional information added by the

wireless adapter or its driver).

All the devices hardware configurations versions are detailed in Table

5.3. All the nodes operate on channel 1 in the 2.4GHz band with 20MHz

bandwidth.
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Figure 5.11: Experimental test-bed.

Probe packet sender

Server

Sniffer

Cross traffic receiver

Probe traffic 

Cross traffic

Table 5.3:Mobile phone and laptops used

in the experiment.

Role Model WNIC

Packet Receiver

and Access Point

HP EliteBook 840 G1 Intel Dual-Band

Wireless-N 7260

Packet Sender

(computer)

HP EliteBook 840 G1 Intel Dual-Band

Wireless-N 7260

Packet Sender (Phone) Pixel 3 XL

Sniffer Dell Inspiron 7559 Intel Dual Band

Wireless-AC 3165

M.2 Card

Figure 5.12 shows the mean aggregation level for the probe traffic as

a function of the probe traffic packet gap for the analytical model and

experiments. In these experiments, frame aggregation is enabled for

cross traffic. Experiments are therefore compared to the Ideal servermodel

based on aggregated cross traffic outcomes. We show only the results of

0, 0.25, and 0.5 BTFs since the other cases present the same accuracy.

We observe that our model is able to capture with reasonable accuracy

the experimental mean aggregation level of the probe traffic for all the

levels of the cross traffic. Not surprisingly, for a very high level of probe

traffic (small probe packet gaps), the mean aggregation level reaches the

maximum. Then, it decreases until reaching 1. The slight discrepancy in

predicting the precise frame aggregation level can be explained by the

fact that our model does not take into account the Wi-Fi’s dynamic rate

adaptation algorithms. ForWi-Fi networks, the rate adaptation algorithm

is the process of choosing suitable transmission parameters to cope with

the fluctuating wireless channel conditions in order to maintain the QoS.

However, despite the slight discrepancy for some probe packet gaps,

the results returned by the model are in good agreement with those

provided by the experiments.

In summary, this experimentation allows us to test our model under a

more realistic PHY and MAC layers. Overall, these results demonstrate

that despite the complexity brought by the network stack layers (beacon

frames, congestion, ARQ, random backoff, etc.), our approach captures

the mean aggregation level with a reasonable level of precision in the

considered scenarios.
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(b) BTF = 0.25.
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(c) BTF = 0.5.

Figure 5.12: Mean aggregation levels of

Ideal server model based on aggregated

cross traffic versus experiments.

Simulation - 802.11ax traffic

With the advent of new IEEE 802.11 standards such as 802.11ax [72] [72]: IEEE (2019), ‘Draft Standard for

Information Technology – Telecommu-

nications and Information Exchange

Between Systems Local and Metropolitan

Area Networks – Specific Require-

ments Part 11: Wireless LAN Medium

Access Control (MAC) and Physical

Layer (PHY) Specifications Amendment

Enhancements forHighEfficiencyWLAN’

, the

performance ofWLANs has changed. The 802.11ax amendment offers HE

MCS indexes that provide higher data rates than any of its predecessors.

For the sake of completeness, we ran our model for another scenario

based on this recent standard. In this scenario, we study the model’s

accuracy when we change the underlying Wi-Fi network from 802.11n

to 802.11ax in the 2.4 GHz band for both the probe and the cross traffics.

We used the current implementation of the IEEE 802.11ax of ns-3. All

the nodes (AP and STA) operate at two data rates, 286.8"1?B (HE-MCS

11, spatial streams=2, 20MHz with 1024QAM, 0.8 Guard Interval (GI))

and 2402"1?B (HE-MCS 11, spatial streams=2, 160MHz with 1024QAM,

0.8 GI). The network topology is composed of an AP and two user STAs.

A probe traffic node that sends the probe traffic, and another node that

receives the aggregated cross traffic from the AP.

Figure 5.13 shows that the mean aggregation levels obtained with simu-

lations for BTF=0.25 perfectly fit the ones from the model for both the

low and the high data rates. We note that the model shows the same

accuracy for the other cases of BTF.

Validation of Ideal server model based on

non-aggregated cross traffic

We now examine the proposed approach’s accuracy when the frame

aggregation mechanism is disabled for the cross traffic. The considered
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Figure 5.13: Mean aggregation levels of

Ideal server model based on aggeragted

cross traffic versus ns-3 simulations -

802.11ax traffic.
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(a) �)� = 0.25, Data rate = 286.8

Mbps.
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(b) �)� = 0.25, Data rate = 2404

Mbps.

Figure 5.14: Mean aggregation levels

of Ideal server model based on non-

aggregated cross traffic versus ns-3 simu-

lations.
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(a) BTF = 0.
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(b) BTF = 0.125.

scenario consists of two co-located IEEE 802.11n and IEEE 802.11gWLANs

on the 2.4 GHz band. The 802.11n WLAN is composed of an AP and a

node that sends the probe traffic, while the 802.11g is composed of an

AP and a node that receives the non-aggregated cross traffic. The data

rate was set to 144.4 Mbps for the probe traffic and 54 Mbps for the cross

traffic.

We compare the aggregation given by the model to the values obtained

by the ns-3 simulations in Figure 5.14a and Figure 5.14b. It appears that

the model is able to estimate the mean aggregation level with reasonable

accuracy for the two BTFs. The difference that can be observed is due

to the fact that beacons are not taken into account in the model, that is

why it underestimates the aggregation level for some probe packet gaps.

We note that our models take into account the time to send block ACK

requests while computing the frame transmission duration.

Figure 5.15a and Figure 5.15b show the probe mean aggregation levels for

each of the six BTFs when the frame aggregation scheme is disabled or

enabled for the cross traffic respectively. Based on Figure 5.15a, we can see

that varying the level of cross traffic barely affects the probe aggregation

levels when the �)� > 0.25. In this case, each cross traffic frame is

sent independently, with short transmission times. Consequently, the

probe traffic receives less packets to aggregate between two consecutive

medium accesses. Also, cross traffic reaches saturation faster (as it sends

less frames on average). As soon as it has always a frame to send, its access

time does not depend on its buffer state. Consequently, the aggregation

level of the probe traffic becomes insensitive to the level of congestion
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(a) SimulatedMean Aggregation lev-

els for all BTFs when the cross traffic

does not aggregates its frames.
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aggregates its frames.

Figure 5.15:Mean aggregation levels ver-

sus BTFs, cross traffic aggregates or not its

traffic.

of the cross traffic. On the contrary (Figure 5.15b), when cross traffic

aggregates its frames, the state of its buffer has a deeper impact on

probe traffic aggregation since the cross traffic buffer state determines

the transmission duration. These results nicely highlight the fact that

varying the level of the aggregated network load significantly affects

the probe aggregation levels. Consequently, the results are sufficiently

separated to be used to infer the load level (Chapter 6).

Validation of the Wireless server model based on

aggregated cross traffic

We now examine the accuracy of the Wireless server model using the

Markov chain where frame aggregation scheme is enabled for both probe

and cross traffics under the 802.11 standard amendment.

Simulation - Same MCS

We start by examining the performance details of this model when the

same MCS index (HT-MCS 15 with a physical transmission rate of 144.4

Mbps) is used for the probe traffic node and the AP. The maximum

numbers of aggregated sub-frames �"%�*�% and �"%�*% are set

to 36. Figure 5.16 shows the mean aggregation level for the probe traffic

as a function of the probe packet gap for the model and simulations. We

let the probe packet gap gradually varies from 50�s to 1000�s. According
to these results, it appears that the model performs well since it follows

closely the pattern of the ns-3 simulations for the three levels of the

network loads (0.25, 0.375, and 0.5). It is also the case for the three other

BTFs (0, 0.125, and 0.625) that are not shown here. We can observe that

the aggregation levels depend on the loads of the network. Indeed, when

the BTF increases, the probe traffic has to wait longer, and more packets

are received between two successive probe transmissions.

Simulation - Different MCS

We now evaluate the performance details of the Wireless server model

when different MCS indexes are used for the probe traffic node and the
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Figure 5.16: Mean aggregation levels of

Wireless server model based on aggregated

cross traffic versus ns-3 simulations - Same

MCS.
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(a) BTF=0.25.
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(b) BTF=0.375.
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(c) BTF=0.5.

AP.

Figure 5.17 shows the corresponding results. Figure 5.17a plots the results

when we use the MCS 15 (144.4 Mbps) for the AP to send the DL probe

traffic and the cross traffic and the MCS 11 (57.8 Mbps) for the probing

node. Figure 5.17b provides the corresponding results when we use MCS

15 for the AP and MCS 13 (115.6 Mbps) for the probe traffic node. The

results show that considering different MCS indexes for the AP and the

probe traffic node does not impact the accuracy of our approach.

Simulation - Exponential On/Off cross traffic

To provide a broader overview of the accuracy reached by the proposed

modeling approach, this scenario simulates another traffic pattern for

the cross traffic which is exponential On/Off traffic, reflecting some

of the kinds of cross traffic that would occur in practice. In ns-3, we

use exponentially distributed On/Off periods thanks to the ns-3 OnOff

Application class. This latter mainly relies on an OffTime and OnTime
duration attributes that represent respectively the duration during which

the data transfer is switched off and the duration of the continuous data

transfer.

Figure 5.18 shows the mean aggregation levels for the BTFs 0.125, 0.25

and 0.375. These results show that the estimations made by our model

fit those delivered by ns-3 for the exponential On/Off aggregated cross

traffic. We conclude that the proposed models still perform well under

exponential On/Off traffic pattern.
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(a) BTF= 0.375, MCS 11 for the probe

traffic node.
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(b) BTF= 0.375, MCS 13 for the probe

traffic node.

Figure 5.17: Mean aggregation levels of

Wireless server model based on aggregated

cross traffic versus ns-3 simulations - Dif-

ferent MCS.
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(a) BTF=0.125
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(b) BTF=0.25.
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(c) BTF=0.375.

Figure 5.18: Mean aggregation levels of

Wireless server model based on aggregated

cross traffic versus ns-3 simulations - Ex-

ponential On/Off cross traffic.

Simulation - 802.11ax traffic

Here, we run the modelwireless serverwhen both the probe and cross traf-

fics use the 802.11ax standard. All the nodes use the data rate=286.8Mbps.

It is noticeable from Figure 5.19 that themean aggregation levels obtained

with simulations fit the ones from the model.

Validation of the Wireless server model based on

non-aggregated cross traffic

We now examine the accuracy of the wireless server model based on

non-aggregated cross traffic under several scenarios.
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Figure 5.19: Mean aggregation levels of

Wireless server model based on aggre-

gated cross traffic versus ns-3 simulations

- 802.11ax traffic.
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(a) BTF=0.125.
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(b) BTF=0.375.
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(c) BTF=0.5.

Simulation - Three STAs

We consider the same scenario described in Figure 5.5. We compare the

aggregation levels given by this model to the ns3 simulations’ outcomes.

The results are plotted in Figure 5.20 for the three levels of BTF: 0.375,

0.5 and 0.625.

Based on this figure, we observe that the model is able to reproduce the

DL probe traffic aggregation behavior for the three BTFs with a satisfying

degree of precision.

Simulation - Six STAs

We now consider the case where we increase the number of competing

cross traffic nodes from one to four. The results shown in Figure 5.21

reveal that the number of stations composing the DL competing traffic

coming from the same AP does not influence the prediction for the model

wireless server.

Overall, these analytical solutions are found to be accurate delivering

estimates in good agreement with the simulations results for the con-

sidered scenarios. Note that in order to investigate the robustness of the

Wireless servermodels, we explored the same scenarios used to validate

the accuracy of the Ideal server models. It was our experience that the

Wireless server models show the same accuracy.



5.4 Numerical results 67

200 400 600 800 1000
Probe Packet Gap ( s)

0

10

20

30

M
ea

n 
Ag

gr
eg

at
io

n 
Le

ve
l Model

Simul

(a) BTF=0.375.
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(b) BTF=0.5.
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(c) BTF=0.625.

Figure 5.20: Mean aggregation levels

of Wireless server model based on non-

aggregated cross traffic versus ns-3 simu-

lations - Three STAs.
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(a) BTF=0.375.
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(b) BTF=0.5.
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(c) BTF=0.625.

Figure 5.21: Mean aggregation levels

of Wireless server model based on non-

aggregated cross traffic versus ns-3 simu-

lations - Six STAs.
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Figure 5.22:Mean aggregation levels: Ideal
servermodel versus Wireless servermodel.
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(a) BTF=0.25.
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(b) BTF=0.375.
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(c) BTF=0.5.

Comparison between the models

We now compare the two proposed models according to the aggregation

levels. Figure 5.22 provides the mean probe aggregation levels when

frame aggregation is enabled for the cross traffic for the two models. It

can be seen that the UL aggregation levels obtained by the Ideal server
model are consistently lower than the DL aggregation levels returned by

theWireless servermodel. Indeed, the behavior of the aggregation levels

is more complex since the DL probe traffic depends on the competition

for medium access with the UL probe traffic and the cross traffic. In

particular, when the cross traffic increases, the DL probe traffic has to

wait longer. More packets may hence accumulate in the queue of the AP

and be aggregated when the next DL probe transmission occurs.

5.5 Conclusion

In this chapter, the overall goal was to propose new analytical Markov-

based models that discern the aggregation levels of an aggregated

deterministic probe traffic competing with the current network traffic

that can aggregate or not its frames. To that aim, we first proposed

the model named Ideal server. We have assumed that the connection

between the AP and the server is ideal. We modeled it as if the server

were implemented on the AP or close to the AP. This latter evaluates

the aggregation levels of the UL probe traffic. The second configuration

considers that the server is embedded on a second wireless device,

owned by the user and connected to the same AP. This model called
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Wireless server evaluates the aggregation levels of the DL traffic. Despite

the findings of the ideal server model, one has to acknowledge that

the wireless server model accommodates several improvements since it

emulates a more realistic scenario.

We made a thorough evaluation of the performance of the proposed

analytical modeling approaches through simulations and a test-bed

experiment. In all considered scenarios, the comparison of the frame

aggregation levels of the probe traffic computed thanks to the analytical

models and the one measured through ns-3 simulations, and the exper-

iment yielded similar performance. These results have shown that the

models allow an accurate estimation and nicely highlight the fact that

varying the level of the network load significantly affects the probe aggre-

gation levels for the proposed models. Consequently, these theoretical

findings are sufficiently separated to be used to infer the load level and

the type of the network. This correlation will therefore be addressed in

the next chapter.

5.6 Perspectives

The next step would consist in studying the feasibility of implementing

such Markovian models when the server is located outside the local

networks of the Wi-Fi APs. These future works would consider more

complicated network topology and discuss the impact of the placement

of the server, in particular, when the bottleneck is located somewhere

on the Internet between the AP and the server in order to establish

a convenient performance evaluation of different configurations. The

comparison would be based on analyzing the aggregation levels of the

probe traffic offered by each configuration under different scenarios that

would differ in the number of user stations, their data rates, the number

of hops constituting the network path, etc.

Our models are validated under the assumption that all the network

traffic is DL, i.e., downloaded from the AP to the STA such as P2P file

download application. It is worth keeping in mind that Internet traffic is

asymmetric since user STAs downloadmuchmore data than they upload

[68] [68]: Gupta et al. (2012), ‘WiFox: Scaling

WiFi Performance for Large Audience

Environments’

. Additional thoughts would, therefore, be dedicated to considering

the UL traffic in our modeling approach. Even if the DL is predominant,

the UL traffic can impact the results. Future work would consider more

scenarios that discuss the impact of such traffic on the accuracy of the

models.

An additional perspective will investigate the extension of the models to

incorporate the use of a more sophisticated function ?(:) that depends

on the contention window, the number of competing STAs and :. Overall,

all these kinds of improvements will allow us to modify our models in

order to accommodate the new findings.
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The previous chapter proposed analytical Markov-based models to esti-

mate the theoretical aggregation levels of the probe traffic and compiled

a series of observations indicating that we can rely on this estimation to

infer the network load for modern Wi-Fi networks. Specifically, we find

a strong correlation between the aggregation levels of the probe traffic

and the network load. This realization actually gives a stepping stone

to designing a system able to infer the latter from the former. In this

chapter, we hence introduce a novel network load inferencemethod called

Frame Aggregation based Method (FAM). It exploits the rich information

embedded in frame aggregation to infer both the BTF of an AP and the

type of traffic. Along with an active probing approach and Markovian

models, the designed BTF estimation approach conquered the problem of

estimating the BTF for vanilla devices, especially Android-based devices.

The designed proof of concept system is carefully evaluated under vari-

ous ns-3 scenarios, a test-bed experiment, and a real-world trace-driven

simulation.

This chapter is organized as follows. In Section 6.1, we give a detailed

overview of the method FAM by exposing all the involved algorithms. A

thorough performance evaluation is then presented in Section 6.2. Finally,

a short discussion on the strengths and limitations of the approach and

some conclusions are given in Section 6.3.

6.1 FAM overview

In this section, we describe our scheme, FAM, that allows the node

conducting the measurement to estimate the BTF of the wireless channel

and infer the type of traffic. Note that no changes are required, neither

to the device nor to the AP. The designed system aims at achieving this

estimation for an unmodified mobile device. The foundation of FAM is

mainly built on three steps as follows.

I Measurements of the mean aggregation levels for different probe

traffic flows

I Detection of the use of frame aggregation in the cross traffic

I Estimation of the wireless channel load

We unfold the details of the proposed approach by exposing the algo-

rithmic representation of each stride. Each step relies on one or many

algorithms. We note that all the algorithms detailed below are imple-

mented on the server except the client procedure (Algorithm 1), which is

implemented on the probe traffic node (as shown in Figure 6.1).



72 6 FAM: A Frame Aggregation Based Method to Infer the Load Level in IEEE
802.11 Networks

Figure 6.1: FAM work flow
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Initially, we start with the measurement of the aggregation levels of the

probe traffic. This process is described in algorithms 1 and 2. Algorithm 1

runs on the probe traffic node. It starts by sending successive batches of

probe packets. For each batch, the gap interval between packets, 3? , is

increased from 3?<8= to 3?<0G . In order to evaluate the mean aggregation

levels accurately while keeping the batch size as small as possible, the

number of packets in a batch, denoted =?, is not fixed. This number is

determined using the Central Limit Theorem (CLT) detailed in the server

procedure (Algorithm 2). Upon receipt of this batch, the server responds

with a packet that indicates to the probe traffic node whether to stop

sending packets. It is the convergence variable in the algorithm.

Algorithm 1 Client Procedure

Input: �"%�* : Maximum A-MPDU Length, =? : size of a batch of

probes

1: 3?<8= =

5 (�"%�*)

�"%�*

2: 3? = 3?<8=
3: repeat

4: repeat

5: client.send (3? , =?) ⊲ Send =? packets with interval 3?
6: client.receive(convergence)

7: until convergence is True

8: client.receive(<40=�66)

9: 3? = 3?+increment

10: until <40=�66 > 2

11: client.send(0, 1) ⊲ Send 1 packet to inform that the campaign is

finished.

On the other side, The Algorithm 2 runs on the server. It receives

and processes the incoming probe packets from the probe traffic node.

During a given batch, the mean aggregation is computed on the fly at

the reception of probe packets. We use the CLT to evaluate the accuracy

of the mean aggregation level. When the error is lower than the expected
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error �, the server sends the convergence notification to the probe traffic

node (that stops its batch). The use of the CLT allows the application

to appropriately measure the mean aggregation levels with a minimal

amount of time and bandwidth cost.

Algorithm 2 Server Procedure

Input: � :acceptable standard error of the mean, / : Value of the distri-

bution function

1: MeanAgg=∅, D=∅
2: while campaign in progress for this client do

3: = = 0, convergence = False, <40=�66 = 0

4: while !convergence do

5: server.receive(1) ⊲ Reception of the first packet that contains

the parameters (3? , =?)

6: server.receive(=? − 1) and store 0668+= , ∀8 ∈ {1, =?}
7: = = = + =?

8: <40=�66 =

∑=
9=1
0669

=

9: (2
=

1

=−1

∑=
8=1

(0668 − <40=�66)
2

10: 2>=E4A64=24 =

(
= ≥ /2×(2

�2

)
11: server.send(convergence)

12: end while

13: Add <40=�66 to vector MeanAgg

14: Add 3? to vector D

15: server.send(<40=�66)

16: end while

Output: (MeanAgg, D) ⊲ Returns two vectors: the “MeanAgg” and “D”

Cross traffic nature

Having already computed themean aggregation levels of the probe traffic,

we now proceed with the cross-traffic type estimation. Our intuition and

reasoning to assess the cross traffic nature are based on the idea that if

the cross traffic does not aggregate its frames, its channel access time

becomes constant in average when the channel load increases. This time

is defined here as the time the cross traffic uses the channel between two

successive probe traffic accesses. It corresponds to ℎ + ℎ in Figure 5.2 (cf.

Chapter 5). The cross traffic access time depends only on the successive

number of times it accesses the channel and the time to transmit a single

frame. When the two buffers (cross and probe) are non-empty, it becomes

independent of the number of frames/packets in these buffers and thus

on the probe and traffic loads. On the contrary, when the cross traffic

aggregates its frames, this time increases with the load as A-MPDU

contains more aggregated frames.

We use this observation to detect the nature of the cross traffic. The mean

cross traffic access time is denoted )� . If this time is constant with 3?
and with the load, we can express the mean aggregation level for the

probe traffic, <40=�66, through a fixed point equation. This equation is

formulated as:

<40=�66 = <8=

(
�"%�*,

5 (<40=�66)

3?
+

)�

3?

)
(6.1)
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where AMPDU is the maximumA-MPDU length (we note that �"%* =

�"%�*% for the Ideal servermodel and �"%�* = �"%�*�% for the

Wireless server model)

The rationale of this equation is that the mean number of aggregated

frames (<40=�66 on the left-hand side of the equation) is equal to the

number of frames received at the buffer since the last probe transmission.

In Figure 5.2, wewould get-=+1 =

5 (-= )

3?
+
ℎ+ℎ
3?

. Substituting (-= , -=+1) by

the mean aggregation (-= = -=+1 = <40=�66) and assuming that the

cross traffic access time is constant ((ℎ + ℎ) becomes )� for this example),

we obtain the Equation 6.1.

To verify this conjecture, we plot in Figure 6.2 the mean cross traffic

access time, )� (computed according to equation 6.1), as a function of the

probe packet gap. Based on these results, it appears clearly that )� varies

slightly with 3? and with the load when the �)� > 0.25.

Figure 6.2: )� versus Probe packet gap

for non-aggeragted cross traffic
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This approach is described in Algorithm 3. It takes as input the mean

aggregation level for the probe traffic and computes )� , according to

equation 6.1, for each probe packet gap 3? . It keeps only values of )�

for which

5 (<40=�66)

3?
+

)�
3?

is less than �"%�* . Then, it returns the

percentage of variation between the maximum and minimum of these

values. In Algorithm 6, this percentage is compared to a given threshold

to determine if )� can be considered as constant (cross traffic does not

aggregate its frames) or not (cross traffic aggregates its frames).

BTF estimation

Having already computed the mean aggregation levels and discussed

how to detect the cross traffic nature, we now detail how to estimate the

network load of a wireless channel via its BTF.

Two algorithms are proposed to estimate the BTF. They are both based on

the comparison between themean aggregation levels given by ourMarkov

chains and the measures made for different probe traffic batches.

Algorithm 4 computes the mean error as the sum of the difference

between theoretical values obtained by the models and the measures. It
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Algorithm 3 Percentage Increase Algorithm

Input: MeanAgg=

(
<40=�66(3?<8= ), ..., <40=�66(3?<0G )

)
,

D=(3?<8= , ..., 3?<0G )

1: )�_+��)$' = ∅
2: for all 3? ∈ � do

3: Compute )� :
4: )�(3?) = 3? ∗ <40=�66(3?) − 5 (<40=�66(3?))

5: if

5 (<40=�66)

3?
+
)�
3?

< �"%�* then

6: Add )�(3?) to vector )�_+��)$'
7: end if

8: end for

9: %8=2A40B4 ← <0G()�_+��)$')−<8=()�_+��)$')

<8=()�_+��)$')
∗ 100

Output: %8=2A40B4

returns the BTF that minimizes this error. The considered levels of BTF

are parameters of the algorithm. It returns a BTF for the model based on

aggregated competing traffic (F/�) and a BTF for the model based on

non-aggregated cross traffic (F>/�).

Algorithm 4 BTF Error Based Method Algorithm

Input: MeanAgg=

(
<40=�66(3?<8= ), ..., <40=�66(3?<0G )

)
,

D=(3?<8= , ..., 3?<0G )

1: for each 20B4 ∈ {F/�, F>/�} do
2: for 1C ∈ levels of BTF do

�AA>A(1C,20B4) =

1

(8I4("40=�66(.))

3?<0G∑
3?=3?<8=

| <>34;(20B4 ,3? ,1C)−<40=�66(3?) |

3: end for

Output: (argmin1C �AA>A(1C,F/�) , argmin1C �AA>A(1C,F>/�))

4: end for

Algorithm 5 considers a notion of score to infer the BTF. For each probe

packet gap 3? and a given model, the BTF that minimizes the error scores

one. For each model, the final BTF will be the one that maximizes this

score.

Algorithm 5 BTF Score Based Method Algorithm

Input: MeanAgg=

(
<40=�66(3?<8= ), ..., <40=�66(3?<0G )

)
,

D=(3?<8= , ..., 3?<0G )

1: for 3? ∈ � do

2: for each 20B4 ∈ {F/�, F>/�} do
3: for 1C ∈ all levels of BTF do

4: �AA>A(20B4 , 3? , 1C) =
1

(8I4(<40=�66(.)) |
<>34;(20B4 , 3? , 1C) − <40=�66(3?) |

5: end for

6: end for

7: (2>A4(argmin1C,20B4 �AA>A(20B4 , 3? , 1C), 20B4) + = 1

8: end for

Output: (argmax1C (2>A4(1C, F/�), argmax1C (2>A4(1C, F>/�))
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Finally, Algorithm 6 gives the final output of our method as follows. First,

it evaluates if the BTF is less or equal to 0.25. We have observed that, for

such a low load, it is difficult to distinguish precisely the nature of the

traffic since the cross traffic tends to have very small mean aggregation

levels. In this case, no precision on the aggregation is given. If the BTF

is greater than 0.25 at least for one of the two models, it computes the

percentage of variation of )� with Algorithm 3 and compares it to a

threshold). It determines if the cross traffic access time can be considered

as constant and consequently if the cross traffic aggregates or not. For

both cases, the corresponding BTF is returned with the cross traffic

nature.

Having fully described the BTF and cross traffic nature estimation

approach, we now provide its summary in a flowchart form in Figure

6.3).

Algorithm 6 BTF Estimation Algorithm

Input: T:Threshold, E: acceptable standard error of the mean

1: (MeanAgg, D) = Server Procedure(E, Z)

2: %� = %4A24=C064�=2A40B4("40=�66, �)

3: �)�F/� , �)�F>/� = Error Computation Procedure(MeanAgg,D)

4: �)�1F/� , �)�1F>/� = Score Computation Procedure(MeanAgg,D)

5: if (�)�F/� ≤ 0.25 >A �)�1F/� ≤ 0.25) 0=3 (�)�F>/� ≤
0.25 >A �)�1F>/� ≤ 0.25) then

6: return {F>/�, �)� ≤ 0.25}
7: else if 0 < %� < ) then

8: return {F>/�, �)� > 0.25}
9: else

10: return

{
F/�, �)�F/�

}
11: end if

As a summary, in this section, we introduced the algorithmic details of

the system FAM. We start by installing a dedicated client application on

the probe traffic node, that sends a probing flow to the server. This latter

uses the packet reception time to estimate the mean aggregation levels

that, in turn, will serve to discern the BTF and convey the network nature.

We recall that the computation of the frame aggregation level follows the

threshold-based method detailed in Chapter 4. The evaluation of this

method is detailed in the following section.
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Figure 6.3: FAM flowchart
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6.2 Performance evaluation

In this section, we evaluate the accuracy of the proposed method FAM by

relyingmainly upon the same ns-3 scenarios used in the previous chapter

(Chapter 5) that expose different network parameters, different IEEE

802.11 amendments, different traffic patterns, and the same experimental

test-bed. Moreover, we validate the method under another ns-3 scenario

that covers the case where the network traffic is a mix of aggregated

and non-aggregated traffic. We also evaluate the accuracy of our ap-

proach with the measurements made during a real-world trace-driven

simulation.

The parameters of our method are as follow. Similar to the analytical

models, we compute the four Markovian models for six cross traffic

loads/BTF levels: 0, 0.125, 0.25, 0.375, 0.5, and 0.625 ranging from low to

high levels of BTF. In algorithm 2, the FAMmethod uses a 95% confidence

interval (/ = 1.96) and an error � = 0.05. The CLT results indicated that

the relevant number of packets to send increases proportionally to the

probe rate. The number of sent packets ranges between 600 and 3800.

In algorithm 6, the threshold ) is chosen according to an empirical

method. Our simulations and experiments have shown that a value

of ) = 200% offers good performances. For instance, we take different

values for the parameter T that depend on the device’s transmission rate.

These values are known by FAM.

FAM validation for Ideal server model with aggregated

cross traffic scenarios

In this section, we assess the effectiveness of FAM when relying on the

theoretical aggregation levels returned by the Ideal servermodels when

the cross traffic implements or not the frame aggregation feature. As

noted earlier, FAM relies on the aggregated and non aggregated versions

outcomes of the model Ideal server in order to infer the BTF and the exact

type of traffic.

Simulation - Two STAs

We now evaluate the capacity/ability of FAM to infer the BTF and cross

traffic nature for the scenario depicted in Figure 5.7 under the 802.11n

amendment.

Table 6.1 presents the estimated BTF and cross traffic nature for the

considered scenario. The ground truth column gives the real value of

the BTF. In the table, ’S’ indicates the BTF and cross traffic nature that

were set in the simulations, and ’A’ presents the value returned by our

algorithm FAM. We note that FAM finds the good result when the two

letters (’S’/’A’) are in the same box. As FAM does not return the cross

traffic nature when the load is lower than 0.25, we set ’S’ and ’A’ in the

two corresponding boxes (aggregated and non-aggregated cross traffic)

in this case.

Based on these results, it is noticeable that FAM provides the good

BTF for all the cases except for the fifth case: BTF=0.5, where the frame
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aggregation scheme is enabled for the cross traffic. This error is only of

0.125 (approximately 10%). In addition, for all the cases, FAM is able to

infer that the cross traffic is aggregated (when BTF> 0.25).

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S/A

0.5 A S

0.625 S/A

Table 6.1: BTF and cross traffic nature es-

timations for ns-3 simulations - Two STAs

Simulation - Five STAs

We here reuse the scenario depicted in Figure 5.9 where the DL cross

traffic is sent to four concurrent cross traffic nodes instead of a single node.

Table 6.2 lists the estimated BTF and cross traffic nature returned by FAM

for this scenario. Similar to previous results, we notice that FAM provides

the good BTF for all the cases except for the seventh case: BTF=0.5. For

all the cases, it is able to infer that the cross traffic is aggregated (when

BTF> 0.25).

It is useful to recall that FAM seeks to infer the BTF based on six levels

of loads ranging from 0 to 0.625 with a resolution of 0.125. It tends to

classify the APs into three categories according to the network load: low,

medium, and high network loads to detect the APs that are less loaded.

In the following, we intentionally test the proposal under other values of

BTFs. In Table 6.2, we ran the ns-3 simulations with two new network

loads: 0.15 and 0.4. For BTF=0.15, the method returns that the BTF is less

or equal to 0.25, and the cross traffic is aggregated, which is true. For

BTF = 0.4, the method returns that the BTF = 0.375 since it is the nearest

value to 0.4. These results, therefore, demonstrate our method’s accuracy

and its possibility to adapt other network load levels.

We should bear in mind that if an application needs better resolution, we

can adapt our method according to this new resolution.

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.15 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S/A

0.4 S/A

0.5 A S

0.625 S/A

Table 6.2: BTF and cross traffic nature es-

timations for ns-3 simulations - Five STAs
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Experimental validation

We now reveal the ability of FAM to infer the BTF and cross traffic nature

whenwe reuse the experiment illustrated in Figure 5.11. Table 6.3 presents

the estimated BTF and cross traffic nature for this experiment. In the

table, ’Exp’ indicates the BTF and cross traffic nature that were set in

the experiments, and ’A’ presents the value returned by our algorithm

FAM.

Table 6.3: BTF and cross traffic nature

estimations for test-bed experiment

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 Exp/A Exp/A

0.125 Exp/A Exp/A

0.25 Exp/A Exp/A

0.375 A Exp

0.5 A Exp

0.625 A Exp

Results show that the method finds good results for the three lowest

BTFs and slightly underestimates the BTF for the last three cases ($.375,

0.5, and 0.625). This error is only of 0.125 (approximately 10%), and FAM

returns the precise nature of the cross traffic for all the cases. Overall, the

experiment results show that the designed method can help capture the

BTF and the traffic nature in practice.

Simulation - 802.11ax traffic

In this scenario, we study the methodology’s accuracy when we change

the underlying Wi-Fi network from 802.11n to 802.11ax in the 2.4 GHz

band. As previous, all the nodes (AP and stations) operate at two data

rates, 286.8"1?B (corresponding to HE-MCS11 with a bandwidth of

20MHz) and 2402"1?B (corresponding to HE-MCS11 with a bandwidth

of 160MHz). The network topology is composed of an AP and two nodes.

A probe traffic node sends the probe traffic, and another node receives

the aggregated cross traffic from the AP. We run our FAM method while

considering an empirical threshold ) equal to 100 for transmission rate=

286.8"1?B and T equal to 40 for transmission rate=2402"1?B. This

threshold is adapted according to the transmission rate.

The results of FAM are shown in Table 6.4. It can be seen that FAM infers

reasonably well the BTF values for all the cases except the fifth case

BTF=0.5 for the first table where the transmission rate =286.6"1?B and

the fourth case BTF=0.375 for the second table where the transmission

rate = 2402"1?B (with typically 10% of error). Besides, it discerns the

right cross traffic nature for all the cases. These results highlight that our

approach is still relevant under the high data rates proposed by the last

standard amendment IEEE 802.11ax.
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Ground Truth BTF

Estimated BTF and cross traffic nature

cross traffic

aggregates

cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S/A

0.5 A S

0.625 S/A

(a) Transmission rate = 286.8 Mbps

Ground Truth BTF

Estimated BTF and cross traffic nature

cross traffic

aggregates

cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S A

0.5 S/A

0.625 S/A

(b) Transmission rate = 2402 Mbps

Table 6.4: BTF and cross traffic nature es-

timations for ns-3 simulations - 802.11ax

traffic

Real-world trace-driven evaluation

Because of the unlicensed nature of the Wi-Fi network, the network load

in real-environments is decided not only by the concurrent traffic on

the same AP but also by the interference on the same or overlapped

channel. In order to validate the accuracy of the Ideal servermodel and

the method FAM under real-environment conditions, we conducted a

trace-driven ns-3 scenario. For collecting the trace, we ran a sniffer capture

using Wireshark to record all the traffic transmitted on channel 1 of the

largest train station "Part Dieu" in the French city Lyon. We selected this

popular station suited in the downtown as many customers used free

Wi-Fi while waiting for their trains. With the densely deployed Wi-Fi

networks in the downtown area, we can not only capture the traffic inside

this particular station but also collect the traffic from several APs nearby.

This capture lasted 200 seconds. It is therefore long enough to collect a

trace that includes a variety of channel conditions, mobility, multiple APs,

multiple user stations, Wi-Fi, and non-Wi-Fi interference. This real-word

captured dataset is then injected in ns-3 as the cross traffic. By adjusting

a time factor that will be multiplied by the cross traffic inter-arrivals, we

obtained four different network loads: 0.11, 0.328, 0.459, and 0.729.

The results of FAM are shown in Table 6.6. We can observe that FAM

estimates well the BTF values and the cross traffic nature for the cases

0.11, 0.328 and 0.729 cases and slightly underestimates the BTF for the

case 0.459 since the nearest value to 0.459 is 0.5, not 0.375.

Overall, these results illustrate that despite using new traffic loads and

real-world traffic, the proposal still deliberates good estimates under the

considered scenario.
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Table 6.6: BTF and cross traffic nature

estimations for ns-3 simulations - Real-

world trace-driven simulation

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0.11 S/A S/A

0.328 S/A

0.459 A S

0.729 S/A

FAM validation for Ideal server model with

non-aggregated scenarios

We now examine the proposed approach’s accuracy when relying on

the Ideal server model. We consider non-aggregated cross traffic. The

considered scenario consists of two co-located IEEE 802.11n and IEEE

802.11g WLANs operating on the 2.4 GHz band. The 802.11n WLAN is

composed of an AP and a node that sends the probe traffic, while the

802.11g is composed of anAP and a node that receives the non-aggregated

cross traffic.

Table 6.7 lists the estimated BTF and cross traffic nature returned by FAM

for each of the BTF levels. For all the cases, we observe that the method

performs extremely well and provides the expected level of the channel

load and the precise nature of the cross traffic.

Table 6.7: BTF and cross traffic nature

estimations for ns-3 simulations - Non-

aggregated cross traffic

Ground Truth BTF Estimated BTF and cross traffic nature

cross traffic

aggregates

cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S/A

0.5 S/A

0.625 S/A

Additional simulation results under the Ideal server

model

For the sake of completeness, we also ran the Ideal server models and our

method FAM using a mix of aggregated and non-aggregated cross traffic

scenarios (based on 802.11n and 802.11g cross traffic).

We investigate the BTF of a mixed cross traffic. We present two scenarios.

The network topology is depicted in Figure 6.4. We simulate a scenario

where the mixed cross traffic is composed of 80% of aggregated traffic

and 20% of non-aggregated traffic (Scenario 1) and inversely (Scenario

2).
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IEEE 802.11n 
Probe traffic client

IEEE 802.11n AP

IEEE 802.11n Cross
      traffic node 

IEEE 802.11g AP

IEEE 802.11g Cross
      traffic node 

Figure 6.4: ns-3 simulation scenario for

the mixed cross traffic

Table 6.8 and Table 6.9 provide the estimations made by scheme FAM.

Table 6.8 shows that the method is able to find good results for the three

lowest BTFs, 0, 0.125, and 0.25. Since the cross traffic is composed of 80%

of aggregated traffic, the method tends to predict reasonably well the

nature of the cross traffic (aggregated) for the highest BTFs 0.375, 0.5,

and 0.625; however, the predicted values were slightly overestimated.

Table 6.9 reveals that FAM returned the same results as the cases of 100%

non-aggregated cross traffic, except for the fourth case: �)� = 0.375.

Note that we have 0.375 ∗0.8 = 0.3 of non-aggregated traffic in this case. It

is close to the case with a BTF of 0.25 of cross traffic with no aggregation

for which it has been shown that the access time )� varies significantly

(Figure 6.2).

Ground Truth BTF Estimated BTF and cross traffic nature

cross traffic

aggregates

cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S A

0.5 S A

0.625 S/A

Table 6.8: BTF and cross traffic nature es-

timations for ns-3 simulations with mixed

cross traffic, 80% of aggregated traffic and

20% of non-aggregated traffic
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Table 6.9: BTF and cross traffic nature es-

timations for ns-3 simulations with mixed

cross traffic, 20% of aggregated traffic and

80% of non-aggregated traffic

Ground Truth BTF Estimated BTF and cross traffic nature

cross traffic

aggregates

cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 A S

0.5 S/A

0.625 S/A

Note that in order to investigate the robustness of our approach, we

explored two other ns-3 scenarios where the mixed cross traffic is com-

posed of 60% of aggregated traffic and 40% of non-aggregated traffic

(first scenario) and inversely (second scenario). The corresponding results

are not presented in this manuscript. However, they show that FAM’s

accuracy is similar to the two previous mixed scenarios.

FAM validation for Wireless server model with

aggregated cross traffic scenarios

In this section, we assess the effectiveness of FAM when relying on the

theoretical aggregation levels returned by thewireless servermodels when

the cross traffic uses or not the frame aggregation feature. We want to

evaluate the ability of FAM to infer the BTF and the cross traffic type

when we consider aggregated cross traffic scenarios.

Simulation - Same MCS

We now study the case when all the nodes (AP and STAs) use the

same MCS index (MCS15 corresponding to 144.4 Mbps). We reuse the

three-STAs scenario of Figure 4.7.

Results presented in Table 6.10 show that the method finds the good

results for all the levels of BTF.

Table 6.10: BTF and cross traffic nature

estimations for ns3 simulations where the

cross traffic is aggregated - Same MCS

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S/A

0.5 S/A

0.625 S/A
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Simulation - Different MCS

Once again, we consider the scenario depicted in Figure 4.7 to study the

accuracy of our approach under nodes (AP and STAs) that have different

data rates. We use the MCS15 (144.4 Mbps) for the AP to send the DL

probe traffic and the cross traffic and the MCS 11 (57.8 Mbps) for the

probing node (scenario 1). Then, we use MCS15 for the AP and MCS13

(115.6 Mbps) for the probe traffic node (scenario 2).

Table 6.11 shows the results of scenario 2. We can observe that the method

finds the good results for the five BTFs 0, 0.25, 0.375, 0.5, and 0.625 and

slightly overestimates the BTF for the case 0.125. This error is only of

0.125 (approximately 10%) and is due to the fact that we neglect some

protocol aspects, such as the beacons sent by the AP. We note that we

obtain similar results as Table 6.11 for the scenario 2.

Overall, we notice that despite having STAs with significantly different

data rates, the method FAM is still able to deliver reasonable predictions

for the BTF.

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S A S

0.25 S/A S/A

0.375 S/A

0.5 S/A

0.625 S/A

Table 6.11: BTF and cross traffic nature

estimations for ns3 simulations where the

cross traffic is aggregated - Different MCS

Simulation - Exponential On/Off cross traffic

Instead of taking into account deterministic cross traffic, this scenario

considers cross traffic generated using exponentially distributed On/Off

periods.

Table 6.12 shows the results returned by FAM for the corresponding

scenario. It can be seen that FAM predicts reasonably well the BTF values

and the cross traffic nature for the 0, 0.125, 0.25, 0.375 and 0.625 cases

and slightly overestimates the BTF for the 0.5 case.

Overall, despite a slight discrepancy in estimating the precise level of BTF

in some cases, the results returned by the method are in good agreement

with those provided by the simulations.
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Table 6.12: BTF and cross traffic nature

estimations for ns3 simulations - Exponen-

tial On/Off aggregated cross traffic

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S/A

0.5 S A

0.625 S/A

Simulation - 802.11ax traffic

In order to further assess the validity of the approach, in this scenario,

we study FAM’s accuracy when relying on the wireless servermodel based

on 802.11ax aggregated probe and cross traffics in the 2.4 GHz band.

All the nodes (AP and stations) operate at HE-MCS11 corresponding to

286.8"1?B. The network topology is the same as the scenario depicted

in Figure 4.7. We run our FAMmethod while considering an empirical

threshold ) equal to 100.

The results of FAM are shown in Table 6.13. It can be seen that FAM

predicts reasonably well the BTF values for all the cases except the fifth

case: BTF=0.5 with 10% of error. In addition, it predicts well the nature of

the traffic for all the cases. We, therefore, can conclude that FAM provides

results that match well with the simulations under 802.11ax when relying

on theoretical estimates provided byWireless server models.

Table 6.13: BTF and cross traffic nature

estimations for ns3 simulations - 802.11ax

traffic

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S/A S/A

0.25 S/A S/A

0.375 S/A

0.5 A S

0.625 S/A

FAM validation for Wireless server model with

non-aggregated cross traffic scenarios

We use this section to validate the accuracy of our method FAM when

we consider the wireless server models’ outcomes based on aggregated

and non-aggregated cross traffic. We here consider non-aggregated cross

traffic scenarios. Analogously to the previous section, we validate the

method by comparing its estimation to the results delivered by the

network simulator.
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Simulation - Three STAs

We here evaluate FAM’s accuracy when we used the scenario described

in Section 5.4, where an 802.11n WLAN and an 802.11g WLAN were

deployed.

Table 6.14 shows that FAMestimateswell the BTF and the type of the traffic

for the cases 0, 0.25, 0.3.75, 0.5 and 0.625 and overestimates the BTF for

the case BTF=0.125. Unfortunately, the Wi-Fi link may experience several

transient effects in practice. Since the analytical model neglects some

protocol aspects such as beacons and MAC losses, it underestimates

the aggregation level for some probe packet gaps. As a result, FAM

overestimates the BTF which is typically a better outcome for most

applications than an aggressive underestimate.

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S A S

0.25 S/A S/A

0.375 S/A

0.5 S/A

0.625 S/A

Table 6.14: BTF and cross traffic na-

ture estimations for ns3 simulations, non-

aggregated cross traffic - Three STAs

Simulation - Six STAs

We now consider the case where we vary the number of cross traffic

nodes from one to four.

Table 6.15 shows the corresponding results. The results of four cross

traffic STAs show similar tendencies to the results with a single cross

traffic STA. Based on these results, we can observe that FAM finds the

same results as the previous case. In summary, we find that our method

provides relative errors generally smaller than 10%.

Ground Truth BTF Estimated BTF and cross traffic nature

Cross traffic

aggregates

Cross traffic does

not aggregate

≤ 0.25 0.375 0.5 0.625 ≤ 0.25 > 0.25

0 S/A S/A

0.125 S A

0.25 S/A S/A

0.375 S/A

0.5 S/A

0.625 S/A

Table 6.15: BTF and cross traffic nature

estimations for ns3 simulations for the case

where the cross traffic is non-aggregated -

Six STAs
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6.3 Discussion and conclusions

Our purpose in this chapter, was to propose a novel method, named FAM,

that allows a vanilla device, in particular a smartphone, to estimate the

network load via its BTF based on the observed frame aggregation level

and infers if the current traffic aggregates its frames or not. This method

was built by relying on the measurement of the actual frame aggregation

levels and the theoretical ones returned by analytical models.

We studied a variety of scenarios to assess the effectiveness of our method

by comparing its outcomes with those delivered by the ns-3 simulator,

test-bed experiment, and a real-world trace-driven evaluation. We con-

sidered several network topologies, different IEEE 802.11 amendments,

various levels of the channel load, several traffic patterns as well as sce-

narios where the cross traffic is a mix of aggregated and non-aggregated

traffics.

Overall, from a general viewpoint and for almost all the tested scenarios,

we find that FAM estimates with a satisfactory degree of precision the

Busy Time Fraction and the traffic nature with at most 10% of errors.

Based on six level of loads from 0 to 0.625 with a resolution of 0.125, FAM

seeks to classify the APs into three classes according to the network load:

low, medium, and high loaded APs. It, therefore, compares APs with

each other to detect the APs that are less loaded and provide guidance

to hierarchize different WLANs. However, we should note that if an

application needs better resolution, FAM can be adapted according to

this new resolution. Although the accuracy is not perfect, we believe that

FAM is a practical scheme for enabling mobile clients to crowd-sense

Wi-Fi performances, providing guidance to hierarchize different WLANs

by potentially finding more optimal association schemes for the stations,

and inferring the better access point selection. Moreover, we believe that

applying the utilization of FAM to the handover decision criterion would

enhance the throughput performance of mobile STAs.

In this work, there are several possible improvements that, mainly due

to time constraints, we were not able to finish. In order the compute the

aggregation level, FAM sends a sequence of probe traffic from the client

to the server. While this active probing method undoubtedly results in

finding good performance, the number of sent probes for each probe

packet gap is far from optimal and the overhead of the proposal was

neglected in the evaluation. Indeed, for instance, the method tends to

be expensive in terms of bandwidth as we use a large set of packet

intervals with fine granularity in order to test it. However, we believe

that optimizations are probably possible by significantly reducing the

number of sent packets by reducing the number of probing intervals

(probing rates). These future extensions would render our approach of

greater practical use.

Finally, as we already pointed out in this chapter, in order to predict the

cross traffic type, ourmethod relies on an empirical value of the threshold

) that is accordingly adapted as a function of the data rate. Although we

made sure to constantly evolve our system, this thesis does not provide a

methodology for this adaptation. Hence, a future extension would tackle

this issue as we believe that there are more optimal methods to adopt

the value of this threshold.
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This chapter wraps up this manuscript by reminding the addressed

issues, highlighting the main contributions made thus far, and discussing

potentially viable perspectives.

Concluding Remarks

In this dissertation, we considered the task of evaluating the possibility/-

capacity for a vanilla Wi-Fi client, typically an Android smartphone, to

infer the Wi-Fi network load from local measurements for the purpose

of optimal AP selection. This estimation is proceeded in the user space

without making modifications to network equipment (APs and STAs).

This crucial task has an important impact on the performance of Wi-Fi

networks in public areas where the Wi-Fi networks are managed by

independent entities.

The contributions of this thesis can be summarized into several main

axes:

1. We proposed analytical models based on Markov chains that

demonstrate how one could induce the theoretical frame aggrega-

tion levels of targeted probe traffic sent from a client to a server

across several scenarios.

2. We revealed how the frame aggregation scheme embodies a rich set

of Wi-Fi link properties that can be utilized to discern the network

load.We illustrated through ns-3 simulations, test-bed experiments,

and a real-world trace-driven simulation that frame aggregation

levels correlate extremely well with the expected BTF across a

variety of challenging scenarios and environments. Moreover, we

demonstrated that the throughput that a joining device could get

depends on whether the competing traffic uses frame aggregation

or not.

3. We proposed a novel method FAM that leverages both the theoret-

ical frame aggregation levels (returned by the analytical models)

and the measured ones to estimate not only the BTF but also the

nature of the traffic.

4. We demonstrated the robustness of the analytical Markovian mod-

els and FAM across varying network topologies, IEEE 802.11 stan-

dard amendments, traffic patterns, and levels of the wireless chan-

nel load. We showed that this proposal returns results with a

satisfactory degree of precision.

Initially, during the first months of the dissertation, after some initial

state of the art, our main goal was to evaluate the two Wi-Fi-based

available bandwidth estimation tools WBest+ [20] and AIWC [11] in the

presence of the frame aggregation scheme. For WBest+, the experiments

were conducted using its open-source code.
1

Despite having access

to the theoretical way the authors of AIWC managed to evaluate the
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available bandwidth, we could not get our hands on the real tools they

used to evaluate the effectiveness of their method. We, therefore, had

to recreate it by following the paper’s instructions as best as we could.

The two papers highlighted that their approaches should give precise

estimations. Unfortunately, we could not reproduce the results promised

by the authors of these two papers leading us to believe that studying the

analytical behavior of the frame aggregation as a function of the network

load has to be proposed to settle these approaches.

Over the course of this thesis, we proposed several simple and versatile

analytical Markovianmodels in accordancewith the IEEE 802.11 standard

specific to the application of BTF estimation under the IEEE 802.11 frame

aggregation scheme. We modeled and simulated scenarios in which a

device induces themeanaggregation levels of an aggregateddeterministic

probe traffic competing with a cross traffic that can aggregate or not its

frames in the user space.

In the first analytical solution, we proposed a mathematical model to

evaluate and predict themean aggregation level of the UL probe traffic for

given network traffic. In this model called Ideal server, we have assumed

that the connection between the server and the AP is ideal. We modeled

it as if the server were implemented on the AP. Even if this network

topology is rare, the results obtained by the model helped us to better

understand the relationship between the aggregation level of the probe

traffic and the network BTF. For this model, we have proposed two

Markov chains based on whether the cross traffic aggregates its frames

or not.

The system described for the Ideal servermodel is limiting as it is based

on a hypothesis that can be deemed too restrictive or unrealistic in some

scenarios. Nevertheless, this model provided us with solid understand-

ings that help the development of the subsequent model that would not

have been possible without it. The second solution proposed the wireless
servermodel that relies on more real architecture system. In this model,

the server is embedded on an additional wireless device associated with

the AP. The paradigm shifts from the evaluation of the aggregation levels

of the UL probe traffic to the aggregation levels of the DL probe traffic

forwarded by the AP to the server.

Based on the theoretical frame aggregation levels returned by the models,

we designed a network load estimation method FAM that relies on

theoretical andmeasured frame aggregation levels in order to discern not

only the BTF, but also the type of the traffic. From the findings, we can get

the following engineering insights on the feasibility of a crowd-sensing

platform for network load estimation.

I The accuracy of FAM is enough for the classification of the load in

a few levels.

I When the majority of the competing traffic does not use frame

aggregation, it is only possible to identify two load classes.

I The number of devices composing the DownLink competing traffic

coming from the same AP does not influence the prediction.

This dissertation has considered the main methods utilized in Wi-Fi

performance evaluation which are analytical modeling, experimentation,

and simulation. Based on several simplifying assumptions, analytical
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models tends to model the existing system with a given degree of fidelity.

Simulations, on the other hand, are often put between experiments and

models. They simply model a part of the real behavior of the network,

but their degree of detail gets close to experimentation. At last, the

experimentation has the less interrogated fidelity as it offers real-life

insights.

Overall, based on simulations and experiments, we find that FAM esti-

mateswith a satisfactory degree of precision the BTF and the traffic nature

with at most 10% of errors. We believe that such modeling approaches

and the method can be used to reconfigure networks in real-time to

balance the load among APs and share the available throughput among

STAs.

Perspectives

The contributions of this dissertation can be extended in several directions.

In the following, we present the directions that are worthy of exploring

in the future.

Crowd-sensing

One of the directions for continuing the contributions presented in this

thesis is the extension of the proposed method to be used in a crowd-

sensing context. This future work would propose a Waze-inspired (Waze

is a GPS-based mobile navigation application that collects traffic data

from users and gives real-time traffic information to help the user adapt

his route) crowd-sensing AP selection, where the cloud gathers the BTF

estimation results from many smartphones and infers location-specific

AP availability based on data fusion.

In such a case, collected data would be partial since only the smartphone

that integrates the crowd-sensing application would sense the channel

and perform the measurements. Given this limited sensing capability,

inference of missing data is, therefore, necessary in order to get more

accurate sensing results.

Furthermore, the BTF estimation tends to sample the BTF in a small

time window. This estimation is generally sensitive to any temporal

effect that occurred on the wireless channel. To take advantage of the

estimated results, we have to study their applicability. The issue thus

involves interpolating, i.e., predicting the estimation of a point between

the results, and extrapolating, i.e., inferring future or past results based

on given tests.

Association optimization

A logical next step regarding the best AP selection procedure is the

optimization of the association of wireless STAs to APs. Indeed, in order

to maximize the overall network throughput, for instance, through the

load balancing, the proposed method would have to propose a solution

to manage and optimize the actions of association and re-association.

More precisely, the proposal would aim at diminishing the load of the
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most loaded AP in the WLAN. This latter would not provide the same

set of APs to all the users because in such a case everyone goes on the

same AP. Instead, it would offer each user the more efficient subset of

APs. The load sharing problem could integrate geographic aspects to

optimize a given objective function which decreases with the distance

traveled by users.

Evolution of 802.11

Are our analytical models still relevant under 802.11ac and 802.11ax? The

skyrocketing evolution of 802.11 standards quickly renders some Wi-Fi

performance evaluation techniques irrelevant or obsolete, pushing us to

ask whether our method FAM and analytical models will have a practical

use in a decade?

The 802.11ax introduces two new features that change how the nodes

access the medium: the BSS coloring and OFDMA. The BSS coloring

permits the STAs operating on the same channel, but in different BSSs to

access the channel at the same time by using a different color for each

BSS. The OFDMA allows neighboring nodes to simultaneously transmit

on the same channel using different sub-carriers. While we systematically

assessed the effectiveness of our proposal under the standard 802.11ax

by using its current implementation on ns-3, we note that the ns-3.30

version used throughout this thesis does not include all 802.11ax features.

For now (2021), ns-3.30 does not support the 802.11ac/ax MU-MIMO

technique. We, therefore, need to revisit the analytical models and the

method FAMunder these new features. The BTF characterization in these

cases may need intrinsically different perspectives.

Optimization of the handover

Wi-Fi mobility mechanisms are based on the notion of handover: when a

STA moves from an AP coverage area to another, it is able to seamlessly

connect to a new AP while keeping a good connection quality. Our final

crowd-sensing application, based on mapping and measurements, could

allow anticipating/knowing points in the network where handovers

should be anticipated (within the same ESS or not). Comparison between

the default method and an "informed" method could be established

under several scenarios.
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