Martin REBERT

Two views camera motion in the presence of planar degeneracy

The number of unmanned vehicles is increasing and their field of application is widening. Although they are not all autonomous yet, each generation is more autonomous than the previous one. For vehicles, autonomy comes notably from the capacity to navigate on its own. To navigate one must be able to locate oneself. To that end several technologies are available and among them, vision based localization appears to be interesting for military application as it gives the opportunity to avoid an external infrastructure and active sensors, which are easier to detect. The process of es-UHA for their warm welcome and the nice working atmosphere during the thesis.

timating the motion of a camera between two images is called visual odometry. Even though it has already been well studied, it is still compromised in some situations, notably depending on the presence of planar structures in the scene or 3D. Planar scenes call for a homographic model and 3D scenes for the epipolar geometry. Unfortunately the models are not interchangeable, which is problematic in environments whose flatness or structure is not guaranteed. For this reason, a method called the Parallax Beam has been developed. It bridges to two models depending on the flatness of the scene, with the advantage of never wasting computational effort, which is important on embedded hardware, where resources are limited. The method has proved itself capable of correctly handling 3D scenes when tested over the available datasets. To prove its capacity to handle strong planar degeneracy, the design of test cases with a dominant planar structure has been necessary. The design is motivated by the absence of datasets containing enough planar structures with an adequate ground truth usually due to the orientation of the camera, which is different from our application. It led to creation of synthetic images features recreating the motion of the wheeled vehicle moving in scenes made solely of planar elements. The Parallax Beam has finally been tested in challenging planar degenerated scenes, with successful results. The method has also been tested on the field and compared to a high precision GPS on the test vehicle of the University of Haute-Alsace. Finally the method developed is capable of estimating the camera motion in planar and non planar scenes in an efficient manner suited for small platforms with limited hardware. 
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• computer science,

• mathematics,

• automation, signal and image processing.

It is in the 3 rd area that the thesis is hosted. The IRIMAS has active developments in the autonomy of systems such as command-control, perception and data fusion. In the perception field IRIMAS works also on new sensors that could be used for the visual perception of autonomous systems mostly plenoptic cameras and derived versions of it [START_REF] Riou | A four-lens based plenoptic camera for depth measurements[END_REF].

The French-German Research Institute of Saint-Louis (ISL) is a bi-national research center shared by France and Germany. It is co-founded by the French and the German ministries of defense. Therefore its research is focused on military and security applications. The research activities are quite varied with 4 main areas:

• the energetic and advanced protective materials. This area includes the manufacturing and processing of energetic materials for propellants and explosives down to a nanometric scale, pyrotechnic and, the elaboration and testing of advanced protection materials.

• The flight techniques for projectiles, which includes aerodynamics, telemetry and communication and, guidance and navigation.

• The laser and electromagnetic technologies, which includes the development of new laser sources, power semiconductors and pulsed power technologies. There is also a project on the development of an electromagnetic rail-gun.

• The protection technologies and situational awareness, which includes explosives and ballistic protection, sound processing, computer vision and radiation interaction with matter.

It is within the protection technologies and situational awareness branch the thesis took place.

Context of the work

Unmanned vehicles also referred sometimes as uncrewed vehicles are vehicles operating without a human on board. These vehicles have been initially used for exploration purposes with the example of space rovers or probes and underwater exploration.

They extend the human exploration capacity without the need to develop life support hardware and thus can be of small size, which is interesting to carry them aboard a ship or within a space rocket. Unmanned Aerial Vehicles (UAVs) or drones are being used in the military for two decades principally for reconnaissance missions or targeted strikes. Their small size compared to a conventional aircraft make them hard to detect and easy to deploy. Their terrestrial counterparts, Unmanned Ground Vehicles (UGVs), such as the one shown in Figure 1.1, are also at use in diverse applications, which are military or civil, e.g. mine-clearing, fire fighting or logistics in the industry.

Within the UGV family, robots occupy a large share of the development and applications. Lately, a famous UGV took the form of a self-driving car (even though it is not really unmanned) and commercial drones have become largely available for professional or leisure purposes. Unmanned leisure vehicle can also take the form of a toy car and its remote-control.

Unmanned vehicles can be differentiated by their degree of autonomy. It goes from zero autonomy, when they are totally remote controlled. All the intelligence is embedded in the human operator holding the remote. Automatic guided vehicles (AGV), often used in industrial applications, are partially autonomous as they navigate in known environment marked with long lines or wires on the floor. Partial autonomy is also achieved on some specific functions, e.g. the follow me function present in some leisure drones. With this function the drone is capable to follow an identified subject. But what does it mean to be autonomous for an unmanned vehicle? It means that it is capable of sensing its environment and navigate within it on its own from a point A to a point B. This process is usually decomposed in the following steps: perception, decision and action. The perception step consists in understanding its environment.

To understand it one must first localize oneself within it. Once the localization is obtained, pieces of the environment, that have been sensed at different locations, can be put together to form a map of the explored environment. Within the map it is then possible to identify obstacles, objects or constraints (e.g. traffic rules, pavement vs roadside) that can influence the navigation. The decision uses the information from the perception to plan the next move of the vehicle, according to the position of the destination, the local position (localization) and the information gathered in the map.

A short term objective is then defined from these elements in order to follow as good as possible the trajectory joining point A and point B. Finally comes the action step, which is the physical translation of the decision. It controls the actuators of the vehicle to influence the steering, the acceleration, the brakes, the thrust, etc. and takes various forms, which can be an electric tension, a Pulse Width Modulated (PWM) signal, a quantity of fuel injected, etc. The thesis places itself in the perception step and more precisely in the localization part, i.e. estimating the position of the vehicle within its environment.

The localization part of the perception can rely on various sensors. Some require an external infrastructure such as Global Navigation Satellite Systems (GNSS), e.g. the Global Positioning System (GPS). It also possible to locate itself using the telecommunication signals transmitted from the surroundings base stations. There are also other sensors that do not require an external infrastructure. Among these, are cameras, Li-DARs, Inertial Measurement Units (IMUs), RADARs, ultrasonic sensors. All of them except the IMU are capable of sensing the environment of the vehicle. The IMUs are only measuring intrinsic forces applied to the vehicle.

The targeted applications for the thesis work are in the field of defense. When it comes to autonomous navigation in military condition, there are several things to consider.

First, the environment might be unfriendly and might not offer optimum conditions to move or get your bearings. For example, most of the last exterior military operations of France are located in desert or semi-desert areas. In the desert the lack of visual landmark can be an issue to locate oneself. The environment might also be hostile due to the presence of an adverse force. In that case an external infrastructure might not be reliable. For example radio signals might be jammed, which includes the communication to and from your autonomous platform and the localization signals from the GPS.

The unreliable infrastructure is also true in civilian applications as a full coverage is impossible to guarantee, e.g. tunnels or urban canyons for the GPS, which block or disrupt signals. Secondly, it is better to remain as discreet as possible. To that end, active sensors like RADAR or LiDAR are usually not the solution of choice, as these sensors might reveal your presence or in the worst case give away your position. Finally, there is also an economical dimension to the problem. It is always preferable to contain the cost. The bulk of the system should also be contained as autonomous platform tend to be small or as light as possible to extend the battery life.

Therefore, the previous constraints could be summed up as follow:

• one should not rely on finding anything specific in the scene or on having lots of structure,

• one should not rely on external communication and should be completely operational on its own,

• one should be as discreet as possible, hence passive sensors should be preferred,

• one should look for the best price-quality ratio.

For the previously mentioned reasons, passive sensors are preferred. They include camera and IMU. The former is more versatile than the latter due to its capacity to sense the environment of the vehicle. It is impossible for example to detect an obstacle with an IMU, unless hitting it. Although it is possible to fuse the information coming from different sensors to increase the performance, the focus here is on a localization system purely based on a camera. There are several types of cameras depending on the number of sensors or lenses, such as monocular with one sensor and one lens, stereo which mimics the human vision with two sensors and two lenses, omnidirectional The choice of the camera used in the thesis is inherited from an other project. In this project, a vision-based assistance system for road-clearance and mine-clearance operations has been developed. The system uses a monocular camera tilted toward the ground to cover the area where threats are. The system is mounted on a former military vehicle and visible in chapter 9. In short, the system records images while a human drives the vehicle. Latter when driving on the same path the system highlights all the changes that happened in the environment between the two drives. Prior work made possible to perform the second drive autonomous. The system controls the vehicle to follow the path defined by the recorded images. It may also divert from its path (e.g. an obstacle) and it finds its way back to the recorded path. The localization of the vehicle is vision-based, there is not any GPS involved. The system is capable of estimating how it moves by processing the recorded images, this process is called visual odometry. When the system follows a known trajectory established from previous images, it does not accumulate errors in its position because it locates itself with respect to a known environment, i.e. it does not drift. This prior knowledge is a strong constraint and it is as previously mentioned not always available. When avoiding an obstacle for a few hundreds of meters, the environment is not known anymore and the system continuously estimates its motion to update its position. However there is always an error in the estimation of the motion, which accumulates over time and the estimated position drifts from the true one. Additionally the visual odometry process used in the project appears to be sensitive to a large amount of 3D in the environment and to multiple planar structures. This sensitivity leads to failure in the motion estimation of the vehicle, hence an erroneous localization of the vehicle. Indeed it relies on finding a known planar structure: the ground. This assumption is a strong prior knowledge the scene and it is unfortunately not always respected, especially when navigating indoor or close to vertical structures (walls, barriers). In short the assumption is used to lift a mathematical ambiguity arising during the motion estimation and if it is not respected the ambiguity is not correctly lifted. The visual odometry process must then be upgraded because it is unacceptable to have a wrong localization of the vehicle and to sometime rely on crossing one's fingers for the disambiguation to happen correctly.

In brief, in the context of a military unmanned vehicle localization using a single embedded passive sensor (a camera) and limited hardware, the estimation of the vehicle motion thanks to the images must be upgraded to cope with planar environments as well as 3D environment. But it should not rely on finding a specific structure as the environment is a priori unknown. In the thesis entitled Two views camera motion in the presence of planar degeneracy , the focus is on the particular problem of estimating the motion of the camera between two views, when planar structures are present but not only. Therefore it should be robust to 3D and multiple planar structures to provide a precise positioning of the vehicle while containing the accumulated drift.

This assessment lead to the following contribution:

• A review of the mathematical models used to estimate the camera motion from two images and their comparison in planar environments and in 3D environments.

• The development of method called the Parallax Beam, which bridges the models depending on the planar nature of the environment. The Parallax Beam uses both models to cover planar and 3D environment since none of the models work in both cases and it has the advantage of reusing all the computational effort made for one model in the other one. So no effort is wasted.

• A review of the existing datasets for visual odometry to find one with planar structures and a full ground truth. It lead to the creation of synthetic images features mimicking the motion a wheeled vehicle in planar environments, because the existing datasets do not provide enough scenes with strong planar degeneracy. The created features also exhibit the same distribution as in the implementation of ISL. The Parallax Beam is tested on visual odometry datasets for the 3D parts and on the synthetic features for the planar part.

• Late experiments were also conducted on the ARTEMIPS vehicle of IRIMAS. The localization of the visual odometry is compared with the high precision GPS of the car.

Proceedings of the thesis

The work during the thesis led to 4 publications that occurred in the following manner.

At the beginning of the thesis I familiarized myself with the existing implementation of the visual navigation present in ISL. The existing implementation was based on a homography that is estimated between two images of the same scene. This homography is then decomposed to estimate the motion of the camera between the two views.

Early work focused on the these two steps in order to acquire a good understanding of the process, why it is used and its limitations. Later following a given hint I took an interest in the epipolar geometry. This geometry is used to express relationships between images of the same scene but taken at different points of view. Notably the motion of the camera between the two images. While this geometry solves problems that were occurring with the homography, it also creates other issues that are absent 1.3. Proceedings of the thesis 7 when using a homography. This comparison of the two methods led to a first publication at the ORASIS conference in 2017 [START_REF] Rebert | Comparaison de décompositions de la matrice homographique et essentielle pour l'estimation du mouvement de caméra[END_REF].

This part of the work reached the conclusion that none of the two models could solve on their own all the situations. Rather than using both models at the same time to cover all the cases, I investigated the means of combining them. I was willing to keep the homography as much as possible since it is estimated by the system and to ensure as far as possible the compatibility with the existing implementation. A thorough review of the existing methods in the literature concluded that there was not any satisfying method except one, but it was only theoretical and already discarded in this form for practical use. So I worked to understand the practical limitations of the principle found in the literature and how to overcome them. It led to the definition of the parallax beam, which was published in the Journal Of Electronic Imaging [START_REF] Rebert | Parallax beam: a vision-based motion estimation method robust to nearly planar scenes[END_REF]. It consists of a method based on the plane-and-parallax principle with considerations to make it usable in the field. An early version was also published in French at the ORASIS conference in 2019.

The evaluation of the capacity of the parallax beam to overcome nearly planar configurations, which are the limitations of the previously mentioned methods. After going through the existing datasets related to visual navigation that have a ground truth available, I concluded that none were containing enough planar scenes with adequate ground truth, this review was published at the Quality Control by Artificial Vision (QCAV) conférence in 2019 [START_REF] Rebert | A review of the dataset available for visual odometry[END_REF]. An evaluation was nevertheless conducted over the KITTI Vision Benchmark Suite. It showed a draw between the 5-point algorithm and the parallax beam but challenging situations were not yet present. So an effort has been made to recreate situation were planar configurations are very present.

To that end, the focus was on recreating synthetic image features having the same behavior as the Harris corner detector in the ISL system and coherent with the motion of a wheeled vehicle. This evaluation step allowed the parallax beam to outrank the methods to which it was compared.

The parallax beam method was also used for a publication to the Intelligent Vehicle conference in 2020 [START_REF] Bazeille | Characterization of the impact of visual odometry drift on the control of an autonomous vehicle[END_REF]. The publication investigates how the an erroneous localization of the vehicle might impact the control of an autonomous vehicle.

Alongside the thesis work on vision based localization, some time has also been dedicated to the estimation of the pose of 3D object from a 2D image and it resulted in 2 publications. This problem benefited from the knowledge gathered during the thesis as it uses similar concepts. The object in question is a drone and the estimation of its pose was used to feed a path prediction model. The final goal being to aim countermeasures accurately by predicting the motion of the drone. The pose was used to estimate the thrust induced by the propellers. The problem of estimating the pose of Chapter 1. General introduction a 3D object from a fixed camera can be thought as the dual problem of estimating the motion of camera from images of a fixed world. The related work has been published in the Journal of Optical Engineering [START_REF] Rebert | Prediction of microunmanned aerial vehicle flight behavior from two-dimensional intensity images[END_REF] and at a conference [START_REF] Laurenzis | Tracking and prediction of small unmanned aerial vehicles' flight behavior and three-dimensional flight path from laser gated viewing images[END_REF]. However this work is not presented within this thesis.

For more details, the abstract of each publication can be found in chapter 8.

Structure of the manuscript

The thesis manuscript entitled Two views camera motion in the presence of planar degeneracy covers the previous points using the structure hereinafter.

In a first part of the document, chapter 2, we introduce the concept of autonomous navigation with an emphasize of the positioning sensors and techniques. This part is completed by a more thorough description of the needs of ISL regarding autonomous platforms.

From this we jump in a second part, chapter 3, where we present the processing base that is inherited from the ISL change detection system. The limits of use are pointed out and defined, which leads to the comparison with an other model. This part concludes on the necessity of having something hybrid.

The third part, chapter 4, details the Parallax Beam method, which has been designed

during the thesis to overcome the limitations of the models presented in the previous section.

However to prove its superiority specific testing scenarios are needed, it will be the focus of chapter 5. An adequate ground truth associated with the specific scenarios could not be found in the open-access datasets for camera motion estimation. Therefore a way to design challenging testing scenarios with high planar degeneracy has been created.

The chapter 6 validates the Parallax Beam method in 3D rich environment. Evaluations are conducted using 11 km of video sequences from the KITTI Vision Benchmark Suite, the ARTEMIPS test vehicle of UHA and ISL' UGV Patrol.

In a final part, chapter 7, a conclusion is drawn regarding the work achieved and its perspectives for the future as well as future improvements.

The manuscript also includes three appendices. In chapter 8, the abstract of the publications written during the thesis. In chapter 9, the different experimental platforms of ISL, regarding the change detection and the visual localization.

Vision for unmanned vehicle localization

In this chapter, the concept of unmanned vehicles is introduced with their various degrees of autonomy. The autonomy is thought regarding the navigation capacity. In order to navigate, autonomous systems have to be able to locate themselves and several sensors are available and are presented within the chapter. Due to the constraints linked to the military domain, the camera (vision sensor) appears to be better suited.

Among cameras there are several hardware architectures that are used for localization and several processing schemes as well. After this overview on the techniques used for vision based localization, the chapter ends on the choices made for the applications in the French-German Research Institute of Saint-Louis.

Unmanned vehicles

Unmanned vehicles such as spacecraft do not have any people in them and operate automatically or are controlled from a distance. [Collins dictionary] Unmanned vehicles are designed to go to places, where humans cannot go or can go but with high difficulty or risk. The physical nature of the places can be limiting like deep underwater exploration, where the pressure is too important for humans. The places can also be of dangerous nature despite being accessible, for example in mine clearing operations. Space exploration is also an important user of unmanned systems as they are much less sensitive to the duration of travel, require less attention to life support than a human crew and there is no need to plan a return flight. Unmanned systems represent a large group of applications, but instead of listings all their applications, the focus will be placed on one of their feature: their autonomy. Using this feature alone, unmanned systems can be divided into categories, from the toy to the space exploration rover.

Remote-controlled

The first unmanned systems were remote-controlled. This way of functioning implies that a link is maintained between the system and a human operator. The system is Remote-controlled unmanned vehicle are capable of going in complex environments Chapter 2. Vision for unmanned vehicle localization and performing complex tasks providing they are equipped with the correct tools, because the intelligence of the system resides in the human operator. The weak point on these vehicle is external, it is the link between the remote control and the vehicle.

If the link is damaged or broken, the vehicle is left ineffective. For vehicles using radio waves as communication channel, their is a risk of going out of range or being jammed. Drones can run out of power far from their take-off point if not used properly.

For space exploration further than the moon, the remote-control is not an option. For the moon, it is already more than a second for a one-way transmission. For Mars, it would between 3 minutes and 21 minutes depending on the relative position of Earth and Mars. For theses reasons, unmanned vehicles tend to be more and more autonomous, when navigating.

Partially autonomous

Even if being controlled by humans, some manned or unmanned vehicles are equipped to be autonomous in specific situations, usually to prevent the loss of the vehicle or its occupants or to delegate some tasks to the machine.

For leisure drones, it is possible to replace the attitude and power commands sent by the remote by a higher level command. This higher level command consists of way-points, through which the drone has to fly. The drone autonomously adjusts its altitude, speed and orientation to reach the successive way-points. There is still a feedback from the drone to the remote but there is not need to actively pilot the drone. In Figure 2.6, which is a screenshot from the DJI application to control the drone, the way-point autonomous navigation is enabled and the drone will fly through all the way-points even if the connection with the remote-control is lost. The way-points are recorded during an initial flight during which the drone visits all the way-points. Autonomous navigation is also used for safety features, drones have Return To Home (RTH) functions [START_REF] Darul Says | ANAFI's Smart Return to Home[END_REF]. The drone learns the position of its take-off point. When the connection with the remote-control is lost, the drone is capable of returning on its own to the take-off point. It also returns to the take-off point, when the battery is running low. Drones can also have the Follow Me feature, which is used mostly used for outdoor activities. In this feature, the drone follows a specified subject, while recording a video sequence.

Outside of drones, autonomy is increasing in the automotive industry. From driving assistance features such as emergency brakes to fully autonomous navigation, the Society of Automotive Engineers (SAE) has defined 6 levels of autonomy, see Figure 2.7, depending on the amount of driving that is handled by the car. Cars tend to become unmanned vehicles is the sense that the humans it carries are passengers only. For cars it would be more precise to mention a driverless vehicle than an unmanned one. Cars or drones are manned vehicles that have unmanned features embedded. There are also systems that have been designed to operate without direct human supervision.

Towards fully autonomous systems

In relatively static environments, there are already fully capable autonomous vehicles.

Two examples can be found in modern households. The robotic vacuum cleaner, Fig- Mines are a bit less static, therefore there are operators monitoring the activity of the trucks. Nevertheless there are less operators than drivers if it would conventional trucks.

In opposition, there are applications that require the vehicle to navigate in opened and moving environments, to deal with rules and interact with humans. The task of navigating which is mastered in static environment becomes much more complex due to the additional constraints. Examples of such applications can be found in the logistic with autonomous robots delivering packages like the Amazon's Scout or the Kiwibot (Figure 2.9(a-b)). They are intended to drive on the sidewalk, which is potentially crowed thus a very dynamic environment. TwinswHeel ( Navigation appears then to be the combination of three actions,

• estimating one's position,

• planning the path according to one's position with respect to the destination and,

• piloting the vehicle.

Although these actions could be performed simultaneously, navigation can be thought as a cycle, as depicted in Figure 2.10. From the definition it can also be noticed, that navigation is not an exploration process but rather the action of going from a point A to a point B on a more or less defined path. The move part is handled by the actuators of the vehicle. The sensors part is mostly found in estimating the position of the vehicle. The position can be either estimated relatively to some reference point or globally if the position on the world can be retrieved. The sensors are also used in the path planning part to detect the environmental constraints that would impact the path planning, like the presence of obstacles, road signs, holes, etc... The focus of the thesis is on the Estimate position block. The detection of path planning constraints is not covered.

Global Navigation Satellite Systems (GNSS)

The original sensor used in the Change Detection system was a GNSS receiver. GNSS rely on an external infrastructure composed of artificial satellites to provide a geospatial positioning. As depicted in Figure 2.11, a GNSS device receives signals from different satellites in orbit and it computes its position on Earth from the position of each satellite and the distance from them. Ideally three satellites would be enough to triangulate the position, but the precision of the clock on the GNSS receiver (compared to the atomic clocks in the satellites) makes that only time differences are reliable, thus four satellites are needed. The Figure 2.11 only illustrates the basic setup to compute the position from satellites. The real system uses some ground stations to update the satellites and/or ground relays, so the signals can be blocked or corrupted. Li-DAR, IMU and Camera are not dependant on any infrastructure. Making them inoperative would require to physically interact with the sensor.

• Stealth is the capacity of not being easly detectable while being in use. GNSS, IMU and Camera are passive sensors, compared to the LiDAR that is an active sensor. It emits laser beams, that significantly increase its detectability.

• Multipurpose expresses the versatility of the sensor. GNSS and IMUs have one use, the first one provides a position information while the second estimates the pose from the motion. LiDAR and camera are not sensors dedicated to estimate the pose. They can be used for other purposes as well, to detect obstacles or to create a 3D map of the surroundings for example.

Therefore, a camera appears as a wise choice as it possesses these three attributes.

However there are several types of camera that can be used for the estimation of the motion of a vehicle. These different types are presented in the next section.

Different types of camera

When using cameras to estimate the position of a moving platform on which they fixed, five main configuration of sensors are used in existing systems,

• Stereo cameras,

• Monocular camera,

• Omnidirectional cameras,

• Plenoptic camera.

Stereo cameras

Stereo cameras were the initial choice for visual motion estimation. They can either be fully integrated device as in Figure 2.13 (a) or be formed from several individual cameras as in Figure 2.13 (b). From the fixed and known distance between the cameras, the trajectory and the scene can be estimated and reconstructed with an absolute scale.

Although it has been more than a decade that stereo visual odometry systems have been on Mars [START_REF] Maimone | Two years of visual odometry on the mars exploration rovers[END_REF], it is still an active topic. The focus is on the efficiency in order to be used in Micro Aerial Vehicles (MAV) or light autonomous platforms [START_REF] Castro | Efficient on-board Stereo SLAM through constrainedcovisibility strategies[END_REF][START_REF] Mei | A Constant-Time Efficient Stereo SLAM System[END_REF][START_REF] Pire | Real-time dense map fusion for stereo SLAM[END_REF].

A standard configuration for stereo cameras implies that they an overlapping field of view. It is also possible that the cameras do not overlap [START_REF] Kazik | Real-time 6D stereo Visual Odometry with non-overlapping fields of view[END_REF][START_REF] Truong | Semi-independent Stereo Visual Odometry for Different Field of View Cameras[END_REF].

Monocular camera

A monocular vision system is composed of a single camera from which the motion has to be estimated. The work on motion estimation in a monocular context started later than for stereo systems. It became more visible with the MonoSLAM [START_REF] Davison | MonoSLAM: Real-Time Single Camera SLAM[END_REF], which was the first SLAM with a single camera. Monocular motion estimation and SLAM are interesting because they can be used on a wider variety of platforms such as smartphones 1 [START_REF] Tomažič | Monocular Visual Odometry on a Smartphone[END_REF] or drones [START_REF] Wang | Monocular visual SLAM for small UAVs in GPS-denied environments[END_REF] which are becoming always more present. A single camera is also a low-cost solution with a contained footprint when designing a platform. However the monocular configuration has a major drawback. It is not possible to recover the absolute scale of the motion or the scene without additional knowledge. It is up to now an important topic in monocular visual odometry. In many ground platforms application, the scale is estimated from the height of the camera to the surface on which the platform is moving [START_REF] Wang | Monocular Visual Odometry Scale Recovery Using Geometrical Constraint[END_REF][START_REF] Zhou | Ground Plane based Absolute Scale Estimation for Monocular Visual Odometry[END_REF]. It can also be recovered from known elements in the environment, in [START_REF] Verlaine | Tackling The Scale Factor Issue In A Monocular Visual Odometry Using A 3D City Model[END_REF] they make use of 3D model of the city they navigate into.

Omnidirectional Camera

Omnidirectional camera might be slight misuse of language as all the cameras depicted as such do not provide necessarily of a Field Of View (FOV) equivalent to the full sphere but it represents a cross-section of the sphere (360 • ). There are several ways to obtain an omnidirectional camera as depicted in Figure 2.14. These cameras are useful for SLAM [START_REF] Caruso | Large-Scale Direct SLAM for Omnidirectional Cameras[END_REF] or visual odometry applications [START_REF] Matsuki | Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras[END_REF][START_REF] Reich | Omnidirectional Visual Odometry for Flying Robots using Low-power Hardware[END_REF][START_REF] Seok | ROVO: Robust Omnidirectional Visual Odometry for Wide-baseline Wide-FOV Camera Systems[END_REF] as they provide a bigger overlap between images and for a longer period of time.

1 Although the high-end smartphones tend to be equipped with several imaging sensors 

Plenoptic camera

Plenoptic cameras or light-field cameras have also recently been used for visual odometry [START_REF] Dansereau | Plenoptic flow: Closed-form visual odometry for light field cameras[END_REF][START_REF] Zeller | Narrow field-of-view visual odometry based on a focused plenoptic camera[END_REF][START_REF] Zeller | Scale-Awareness of Light Field Camera Based Visual Odometry[END_REF]. Compared to standard cameras, the plenoptic cameras are capable of retrieving the 3D information of the scene from a single image as they measure the direction of the incoming rays of light thanks to an array of micro-lenses placed between the lens and the sensor of a standard camera [START_REF] Ihrke | Principles of Light Field Imaging: Briefly revisiting 25 years of research[END_REF]. Each micro-lenses create a micro image of the scene, each time seen from a slightly different angle. Therefore the final image has to be computed from all the micro images, which adds an extra process compared to a standard camera. However the gain comes from the full-focus image that is computed. There are no parts of the image that are blurred from being out of focus.

Once a type of camera is chosen, there are different ways of handling the processing to locate the camera based on the images its records. The main distinction can be made on the fact that the camera is aware or not of its environment. This awareness to the environment usually takes the form of a map and it is the subject of the next section.

Summary of the sensors

Throughout the previous section a variety of sensors have been covered. Each of them having capabilities, pros and cons, which are summarized in Table 2.2.

Vision-based positioning processing

The vision-based trajectory estimation is the process of estimating the successive positions of a camera based on the images it acquires. Two main families can be identified 

The map-less methods

Map-less methods focus on the recovery of the camera ego-motion and these methods are often referred as visual odometry [START_REF] Mohammad | Review of visual odometry: types, approaches, challenges, and applications[END_REF][START_REF] Nistér | Visual odometry[END_REF][START_REF] Poddar | Evolution of Visual Odometry Techniques[END_REF]. Similarly to wheel odometry2 or an IMU, visual odometry recovers the motion of the camera from measurements and integrates its position. In Figure 2.15, the position of the vehicle is known at T-1 and the motion between T-1 and T is estimated based on the images at T-1 and T. If the pose of the camera at T-1 is expressed as P T-1 and the pose of the camera at T is P T , they are linked by the motion M of the camera between the two poses:

P T = P T-1 M, (2.1) 
where P i and M are in the form:

P i , M =       R t 0 0 0 1      
with R being a 3D rotation matrix and t a 3D translation vector. Therefore drift is accumulated over time, leading to erroneous positions if the system is not regularly corrected. Nevertheless the exteroceptive nature of the camera leads to smaller drifts than the interoceptive sensors (IMU and wheel odometer).

Although these methods are called-here map-less, there are visual odometry methods that output a 3D point cloud, a map, representing the visited environment. When creating a 3D point cloud, one can also use Bundle Adjustment (BA). BA is the process of estimating the different parameters of the camera together with the structure of the 3D environment [START_REF] Triggs | Bundle Adjustment -A Modern Synthesis[END_REF]. The parameters of the camera are the intrinsic ones, i.e.

the calibration and the extrinsic ones, its pose in the environment. The 3D structure consists in the 3D position of an observed point. Having the projection matrices P i , x j the j th 3D point and u j i the observed point corresponding to x j in camera i, BA aims of the point cloud and it continuously integrates the position of the camera as it is not able to recognize an already visited place.

Navigating in map

These methods are estimating their position from a map of their environment that has been built since the system started. The map of their environment consists of a more or less 3D representation of the world they have seen. V-SLAM is a subgroup of the family of the SLAM methods. SLAM is a widely used technique for localization in robotic and autonomous driving [START_REF] Bresson | Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving[END_REF] and V-SLAM is its restriction to cameras as the only sensors available. Several reviews [START_REF] Cadena | Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age[END_REF][START_REF] Fuentes-Pacheco | Visual Simultaneous Localization and Mapping: A Survey[END_REF][START_REF] Taketomi | Visual SLAM algorithms: a survey from 2010 to 2016[END_REF] have already been proposed

and they offer a good overview of the existing techniques and the challenges in this domain. The main steps of a V-SLAM system are as follow:

1. an initialization step that uses map-less motion estimation techniques to estimate the first poses of the cameras. From the first poses a first triangulation initializes the map.

2. The position of the cameras is tracked within the explored environment (the generated map). This step is similar to a motion-only BA, the structure is known and the tracked elements are the camera extrinsic parameters.

3. If the cameras are located of the edge of the map and are viewing new elements then the map is updated while maintaining a global consistency.

Among the challenges that were or are encountered by the visual methods there are

• the consistency of the map to ensure when there are moving objects in the scene [START_REF] Risqi | Visual SLAM and Structure from Motion in Dynamic Environments: A Survey[END_REF],

• recognizing places that have been visited when viewing them later on. This part is called loop closure [START_REF] Bazeille | Combining Odometry and Visual Loop-Closure Detection for Consistent Topo-Metrical Mapping[END_REF][START_REF] Bazeille | Incremental topo-metric SLAM using vision and robot odometry[END_REF][START_REF] Lowry | Visual Place Recognition: A Survey[END_REF][START_REF] Williams | A comparison of loop closing techniques in monocular SLAM[END_REF]. This process is especially useful to correct the accumulated drift, as the system is able to correct its position, if it views the same scene it should be in the same place. Changes in illumination, new occlusions, changed weather conditions, etc. can significantly increase the difficulty of the task. There is also the kidnapped robot problem [START_REF] Lee | Vision-Based Kidnap Recovery with SLAM for Home Cleaning Robots[END_REF]: the robot is placed in a known map but without knowing where it came from and it has to find its position within the map.

The map is usually a 3D representation of the viewed surroundings. The representation can be either a sparse point cloud or a dense one with added textures. It is the trend now to generate a higher level of representation with a semantic SLAM models [START_REF] Ling Tan | A Semantic SLAM Model for Autonomous Mobile Robots Using Content Based Image Retrieval Techniques[END_REF][START_REF] Wang | A Computationally Efficient Semantic SLAM Solution for Dynamic Scenes[END_REF]. This is also made possible with the improvement of object detection in images, usually with deep neural networks such as YOLOv3 [START_REF] Redmon | YOLOv3: An Incremental Improvement[END_REF].
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The main families of techniques to estimate the position of a camera have been introduced. Having these techniques in mind the next section will focus on the vision of ISL for its camera based navigation.

Application context

All the STAMINA-UGV platforms have a common behavior for the vision-based navigation, which is inherited from the change detection project [START_REF] Monnin | Detecting suspicious objects along frequently used itineraries[END_REF]. The description of the project is the object of the next section. It will be followed by the motivations to add some autonomy in the navigation thanks to the existing camera and how it is considered for the applications.

Change Detection for road clearance

The steps toward autonomous navigation in ISL originally started from the Change Detection [START_REF] Monnin | Detecting suspicious objects along frequently used itineraries[END_REF] project. As it is quite straightforward from its name, it detects changes.

The project takes place in a defense context and focuses on the task of road clearance for military convoys. The system acts as a counter-measure for Improvised Explosive Devices (IED), which are the changes to be detected. The behavior of the system is given hereinafter.

When a military convoy moves, the head of the convoy is occupied by mine-clearing experts. They look ahead of the convoy for anything suspicious. In case of suspicion, an exact assessment has to be made regarding its dangerous nature. Specialized vehicles are also in use, the Souvim vehicle in Chapter 2. Vision for unmanned vehicle localization military context, the use of the GPS is also a liability. As explained in section 2.2, the signal can be jammed or corrupted. To compensate the weakness of the GPS, a vision based matching has been developed to find the closest image between the live feed from the camera and the reference itinerary.

Later ISL started to investigate the possibility of replaying the reference itinerary autonomously. For road clearance operations, it can mitigate the parallax effect created by a too important difference of point of view. The head vehicle would autonomously drive along the reference, hence being as close as possible. It also offers the possibility to remove human personnel from the vehicle, reducing the risk of human causalities in case of a missed IED. The autonomous replay of a known/learned itinerary is also of interest for robotic mules that are foreseen to equip modern armies in the coming years. These mules could be used as logistical convoys or perform RTH missions carrying a wounded person for example.

Vision-based localization

As presented in subsection 2.6.1, a reference itinerary is recorded when the vehicle discovers the itinerary for the first time Figure 2.19(a). The reference passage is driven manually, then the later passages are driven autonomously by the STAMINA-UGVs.

The visual positioning used to guide the system has two main operating modes, see 

Path-following

When the system has a reference trajectory to follow and has visual contact on it, the estimation of the position can done from the previously known position and from the reference path to follow, see Figure 2.18. As long as the system has visual contact on the reference the system performs a continuous loop closure as in [START_REF] Bazeille | A Light Visual Mapping and Navigation Framework for Low-Cost Robots[END_REF]. For each image it processes, it positions itself with respect to its previous position, the visual odometry part, and with respect to the reference, the loop closure part, which corrects the inherent drift of visual odometry.

Monocular Visual Odometry

The notion of visual odometry has been established as the capacity of estimating the position of the camera thanks to its video stream by computing the successive motions between images. In the general case, the motion of the camera has 6 degrees of freedom (DOFs), 3 for the translation and 3 for the rotation. In the work presented in the thesis the visual part is handled by a monocular camera and a review a visual odometry techniques using a monocular camera is given hereafter. Previous reviews over the topic [START_REF] Mohammad | Review of visual odometry: types, approaches, challenges, and applications[END_REF][START_REF] Poddar | Evolution of Visual Odometry Techniques[END_REF] proposed the same categorization of the techniques and the same one is used here. The techniques are divided into two main families: the geometric ones and the learning ones.

Geometric techniques

The geometric techniques make use of the camera geometry to estimate the camera motion. The camera geometry is a well studied field [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] and is part of the projective geometry. It establishes the correspondence problem of projecting a 3D world onto a 2D plane (the image). Compared to the well-known Euclidean geometry it introduces the concept of vanishing points and lines. Two 3D parallel lines intersect in a vanishing point once projected. These vanishing points are located at infinity, which is defined in projective geometry. Methods using the projective geometry can be further sub-divided depending on the abstraction level they work on.

Features-based

Features-based methods, also referred as indirect methods, do not operate directly on the image. They rely on a prior step called feature extraction and matching. Key features, which are easily identifiable are detected in the image. Several methods exist to detect features in an image. Features have the property of having a well defined position, their detection is highly reproducible and they are unaffected by global or local changes in the image such as illumination, brightness, scale and point of view. Among the most used, there are the popular Scale-Invariant Feature Transform (SIFT) [START_REF] David | Distinctive Image Features from Scale-Invariant Keypoints[END_REF] and the Speeded Up Robust Features (SURF) [START_REF] Bay | Speeded-Up Robust Features (SURF)[END_REF], which are point detectors. The SURF is inspired from the SIFT and has a significant gain in rapidity. The Features from Accelerated Segment Test (FAST) [START_REF] Rosten | Machine Learning for High-Speed Corner Detection[END_REF] achieves another speed gain over SURF. The Fast detector is notably used within the Oriented FAST and Rotated BRIEF (ORB) [START_REF] Rublee | ORB: An efficient alternative to SIFT or SURF[END_REF]. Despite its old age the Harris corner detector [START_REF] Harris | A Combined Corner and Edge Detector[END_REF] is still used in applications, where the computation cost is a concern.

These detected features are matched or tracked over several images in order to establish correspondences between the images. The goal is to identify in each image the Chapter 2. Vision for unmanned vehicle localization position of the same 3D point observed from different view points. From the feature matches, extensive work has been presented to:

• estimate the motion from the minimum number of feature matches,

• filter out outliers (features incorrectly matched together) before or during the motion estimation process,

• avoid group of matches in degenerate configuration, leading to an incorrect motion estimation.

The motion of a moving camera can be recovered using the epipolar geometry. It defines relationships between common elements viewed at different positions. The epipolar geometry can be recovered from a set of features matches thanks to the estimation of the fundamental matrix or the essential matrix. One matrix is estimated over the other depending on the knowledge of the camera intrinsic parameters, although knowing the intrinsic parameters results in a more robust and accurate motion estimation [START_REF] Nister | An efficient solution to the five-point relative pose problem[END_REF]. If the matched features happen to be correspond to coplanar elements in 3D, a homographic model can be used instead of the epipolar geometry as it is not uniquely defined in this case. The general case estimators for the essential matrix and the homography matrix are covered more thoroughly in chapter 3. For now, it is worth knowing that their minimal estimators require 5 feature matches to estimate the essential matrix and 4 feature matches to estimate the essential matrix. It has been possible

to further reduce these numbers by adding constraints/prior knowledge about the observed scene or the possible motion of the camera.

For ground based vehicles, it is possible to assume that the motion is planar. Since the vehicle drives on the road it is unlikely that it tips over or takes off. From that assumption, 3 DOFs can be removed. 2 for the rotation, only the rotation around the vertical axis remains and 1 for the translation, the vertical translation is impossible. In this configuration it is possible to use only 2 correspondences to estimate the epipolar geometry [START_REF] Ortín | Indoor robot motion based on monocular images[END_REF]. Additionally, ground based vehicles with a front steering axle and rear fixed one can satisfy the Ackermann steering geometry. In this case the vehicle has an instantaneous center of rotation. Thus there are only 2 DOFs [START_REF] Scaramuzza | Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC[END_REF], namely the rotation angle and the radius of curvature. In this situation the author derived an estimator requiring only 1 point correspondence. If the environment is partially known or common directions can be identified between couples of images, it also possible to reduce the number of correspondences necessary. The common direction can be found using the automatic detection of vanishing points 3 [START_REF] Kalantari | Robust and automatic vanishing points detection with their uncertainties from a single uncalibrated image, by planes extraction on the unit sphere[END_REF][START_REF] Schaffalitzky | Planar grouping for automatic detection of vanishing lines and points[END_REF] or using an IMU, which provides the direction of gravity [START_REF] Fraundorfer | A Minimal Case Solution to the Calibrated Relative Pose Problem for the Case of Two Known Orientation Angles[END_REF][START_REF] Saurer | Homography Based Egomotion Estimation with a Common Direction[END_REF]. In [START_REF] Fraundorfer | A Minimal Case Solution to the Calibrated Relative Pose Problem for the Case of Two Known Orientation Angles[END_REF], the essential matrix can be recovered using only 3 correspondences and in [START_REF] Saurer | Homography Based Egomotion Estimation with a Common Direction[END_REF] a homography can be recovered using 2 correspondences. Later, in [START_REF] Guan | Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation Using Minimal Solutions[END_REF], the estimation of the motion is made 3 Point where parallel lines intersect in projective geometry.

also from a homography. The rotation and the translation are decoupled based on the fact that the points far from the camera exhibit a motion only due to the rotation.

Reducing the number of feature matches needed to estimate a model is interesting for screening outliers from the data. This robust estimation is usually made using a RANSAC [START_REF] Martin | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] or MLESAC [START_REF] Torr | MLESAC: A New Robust Estimator with Application to Estimating Image Geometry[END_REF] rejection scheme. The first one operates on the number of feature matches fitting the estimated model (inliers) and the second one the likelihood of the feature matches to be outliers and inliers. Variants of RANSAC and MLESAC are also used to reject degenerate configurations of feature matches 4 .

These variants and schemes are covered at the end of chapter 3.

Until here the presented methods work on 2D feature matches in the images. Once the motion between two images is estimated the feature matches can be triangulated to recover the corresponding 3D point, but only up-to-scale due to the monocular configuration. When the position of 3D points is available, from the image at T-2

and T-1, it is possible to recover the pose of the camera at T. The pose is obtained by minimizing the reprojection error of the 3D points onto the image at T. This estimation process is known as the perspective from n points problem (PnP) [START_REF] Xin | A Review of Solutions for Perspective-n-Point Problem in Camera Pose Estimation[END_REF] and the minimal solver called P3P for perspective from 3 points can be used in an outlier rejection scheme to obtain a robust estimation. This approach inspired [START_REF] Pani | 2D-3D Camera Fusion for Visual Odometry in Outdoor Environments[END_REF] as they combine 2D-2D

features matching with a 2D-3D matching to solve the P3P problem. In the paper, the 3D points are however obtained using a 3D camera, which is an active sensor.

The triangulation step and the epipolar geometry are sensitive to the distance between images. If the camera barely moves between images, the epipolar geometry becomes ill-defined and does not exist if the camera does not translate between two images.

The triangulation estimates poorly the position of the 3D points because the rays of light coming from matched features are nearly parallel, hence the poorly located intersection. To cope with that problem, the notion of keyframes is important. It means that not all of the images acquired by the camera contribute to the motion estimation.

Several techniques to select keyframes among the camera stream exist. The simplest one consists in sub-sampling the stream by taking one frame every n frames. However it does not detect an idle camera. ISL's systems select keyframes based on the distance in pixels between the inliers of a homography estimated between the current frame and the last keyframe. If the mean distance is below a threshold the current frame is discarded, otherwise the camera motion is estimated. This can also be done by discarding frames as long as a sufficient number of features can be tracked. As suggested in [START_REF] Scaramuzza | Visual odometry [tutorial][END_REF], a keyframe can also be selected based on the uncertainty of the triangulated 3D points. Using keyframes is beneficial in terms of having a better conditioning for the motion estimation and reducing the computational load as each frame does not need to be processed.
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Once the motion is estimated and the pose of several frames obtained, it is possible and advised to refine the results. Several tools are available. Pose-graph optimization [START_REF] Olson | Fast iterative alignment of pose graphs with poor initial estimates[END_REF] represents camera poses as vertexes and transformations (motions) as edges. Each motion between camera poses provides a constraint , which defines the following cost function:

∑ i,j P i -M i,j P j 2 (2.
3)

The pose-graph optimization minimizes this cost function over the camera poses parameters. Loop closures are very beneficial for pose-graph estimation as they provide strong constraints since the same pose is reached from two different motions. The refinement of the motion or camera poses can also be performed locally using a windowed bundle adjustment Equation 2.2. Contrary to the pose-graph optimization, bundle adjustment refines the camera poses alongside the 3D points generated by the triangulation.

Appearance-based

Appearance-based methods are an other family of visual odometry techniques. They are referred as direct methods as they do not require a feature extraction and matching step but work directly on the pixel intensity. A nice introduction to the concept of direct methods to recover the 3D camera motion is given in [START_REF] Irani | About Direct Methods[END_REF]. Direct methods use the brightness constancy constraint to find the displacement between two images.

Having I 1 and I 2 , two images, this constraint formulates as:

I 2 (x, y) = I 1 (x + u(x, y), y + v(x, y)), (2.4) 
where (x, y) are pixels coordinates and, u(x, y) and v(x, y) are the displacement of the pixel (x, y) between I 1 and I 2 . In the case of visual odometry the displacement u and v are expressed according to the 3D motion of the camera between the two images [START_REF] Irani | About Direct Methods[END_REF].

Several formulations of the 3D motion exist, the motion can be represented by a homographic model, a plane-and-parallax model or by an instantaneous velocity field.

The last one is given hereinafter, in this representation the rotation elements and the translation elements of the 3D motion are directly visible in the formula.

u(x, y) = -xyΩ X + (1 + x 2 )Ω Y -yΩ Z + T X -T Z x D (2.5) v(x, y) = -(1 + y 2 )Ω X + xyΩ Y + xΩ Z + T Y -T Z y D , (2.6) 
where (Ω X , Ω Y , Ω Z ), (T X , T Y , T Z ) are the rotation and translation parameters according to the axis X, Y and Z. D is the depth of the 3D element corresponding to the pixel (x, y).

While most of the direct methods appear to be using optical flow as a basis, some are using region-based matching [START_REF] Mohammad | Adaptive-search template matching technique based on vehicle acceleration for monocular visual odometry system[END_REF][START_REF] Nourani | Correlation-based visual odometry for ground vehicles[END_REF][START_REF] Yu | Appearance-based monocular visual odometry for ground vehicles[END_REF], whose goal is to align images using a template to be matched between consecutive images. The template matching is done using a similarity measure. The widely measures are the sum of squared differences (SSD), the sum of absolute differences (SAD) and the normalized cross correlation (NCC). The choice of the measure is a tradeoff between speed and accuracy as NCC is more accurate but slower than SSD and SAD [START_REF] Mohammad | Review of visual odometry: types, approaches, challenges, and applications[END_REF]. According to [START_REF] Poddar | Evolution of Visual Odometry Techniques[END_REF], region-based schemes require interest areas to be defined and the registration process subjected to local minimum and divergence. Moreover the presence of moving objects can be an issue too. This issue can be compensated using optical flow as it operates over the whole image.

Methods based on optical flow are either dense, if optical flow is computed for every pixels or sparse, if it is computed for salient element only. Optical flow estimates the displacement of brightness patterns from one image to the other using the neighboring pixels of a point. Among the techniques relying on optical flow LSD-SLAM [START_REF] Engel | LSD-SLAM: Large-Scale Direct Monocular SLAM[END_REF] and Direct Spare Odometry (DSO) [START_REF] Engel | Direct Sparse Odometry[END_REF] are notorious examples. DSO minimizes the photometric error using several frame to estimate the motion while containing the drift.

[3] states that sparse optical flow is preferred over dense approaches for its increased robustness to noise. The preference for sparse approaches is confirmed in real-time applications for its reduced computational load [START_REF] Engel | Semi-dense Visual Odometry for a Monocular Camera[END_REF][START_REF] Forster | SVO: Fast semi-direct monocular visual odometry[END_REF][START_REF] Schops | Semi-dense visual odometry for AR on a smartphone[END_REF].

Learning techniques

More recently, with the progress of machine learning, the improvements of computing capacities and the spread of deep learning techniques throughout computer vision, learning based approaches have been applied to visual odometry. Contrary to the geometric approaches, which rely on the camera geometry and the projective geometry, the learning approach uses labelled data to learn from the video stream the motion made by the camera. The result of the learning phase is then applied to an unknown video sequence, where the approach has to infer the motion of the camera.

In [START_REF] Mohanty | DeepVO: A Deep Learning approach for Monocular Visual Odometry[END_REF], a convolutional neural network (CNN) based on AlexNet is used to extract high-level features from the images and recover a planar motion between the images.

The authors also tried 4D images as an input by stacking RGB images with extracted FAST features. The results appear promising, notably the ability of the network to recover the scale of the translation in the monocular scheme. However this approach operates on only two images simultaneously. Other approaches use the time dimension of visual odometry by using recurrent neural networks (RNN) and long shortterm memory (LSTM) structures. In [START_REF] Wang | End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks[END_REF], the authors use a CNN to extract high-level features, which are then fed into a RNN performing the sequential learning. However RNN's memory is relatively short due to the vanishing gradient problem [START_REF] Goodfellow | Deep Learning[END_REF]. For
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this reason LSTM to exploit the correlation between images on a longer time scale, which is beneficial for long trajectories. The network called ESP-VO is recovering a 6D motion with scale in unknown environments. A similar approach is also used in MagicVO [START_REF] Jiao | MagicVO: End-to-End Monocular Visual Odometry through Deep Bi-directional Recurrent Convolutional Neural Network[END_REF].

Even though these approaches are capable of recovering the scaled motion in a monocular scheme and without the knowledge of the camera calibration, they still require labelled data to train on, which reduces the ability to learn in scenarios uncovered by labelled data. For this reason it is possible to use unsupervised learning to learn the depth of the scene and the visual odometry from a stereo camera to later infer it with a monocular camera [START_REF] Zhan | Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction[END_REF]. Applications which links command-control with visual odometry from a monocular camera can also use reinforcement learning to locate and control the vehicle [134]. A trial and error approach where the vehicle learns from the corrections made by the human driver and the intelligence driving the car is rewarded proportionally to the distance it drove without human intervention.

Discussion

In the previous sections, two main families of monocular visual odometry methods have been introduced, the geometric methods and the learning-based methods. Despite being younger than geometric methods, the learning based ones already exhibit interesting performance. In terms of precision and drift they are already comparable and may be their most interesting trait is their ability to recover the scale of the motion despite having a monocular camera. This ability has never been achieved by a geometric method without additional knowledge of a known dimension in the scene.

However at the moment the biggest drawback of learning methods is the computational power needed to run the inference in real-time on embedded platforms. This drawback should be overcome in the coming years with the development of dedicated hardware for artificial intelligence [START_REF] Kalray | the processor at the heart of intelligent systems. en-US[END_REF][START_REF]NVIDIA Jetson TX2 : IA à hautes performance sur systèmes Edge[END_REF]. The current embedded hardware within ISL's platforms are CPU only and desirably fanless. Therefore they do not have the capacity to run them.

Geometric methods are most suited for the capacity of the hardware and the choice must then be made between feature based and appearance based methods. Normally feature-based approaches are more suited for textured environments as they extract salient elements and perform poorly in low-textured environment such as sand, asphalt or concrete. However ISL developed a low cost feature extraction based on a

Harris corner detector, which also works in low-textured environment. This modified Harris ensures a uniform distribution over the image and a good repeatability of the detection. This modified version has been presented in [START_REF] Gond | Optimized featuredetection for on-board vision-based surveillance[END_REF] and will be detailed in the next chapter. Using this modified Harris compared to an optical flow approach contains the computational cost. Moreover the use of features allows a sparse and thus for the loop closure of the path-following mode (section 2.6.3) and it is then desirable to keep a homgraphy in the computation loop.

Conclusion

In this chapter, the concept of unmanned vehicles has been introduced with a focus on their different degree of autonomy. The needs of ISL regarding unmanned platforms have then been explained, they mainly consist in an improved change detection system and mules applications. To make an autonomous moving platform, there is a need of a positioning sensor. For that the most commonly used methods have been presented. The focus was then on cameras as they provide cost effective way to tackle the constraints linked to military applications. Within the area of cameras there are several sub-families, which have presented. Each of them having its own advantages and drawbacks. On the processing side there are several ways to perform vision-based navigation, mostly regarding the use, the construction or the absence of a map. Finally the navigation performed by ISL is a mix between map navigation but without the 3D structure and map-less navigation, and it is on the later part that the thesis is focusing.

Concerning the category of methods to be used, the thesis work is constructed over an existing project. This project falls already in the category of indirect methods, i.e.

feature-based as presented in the next chapter. Having these feature, we would like to have a motion estimation method that fits our operational needs and conditions of application, which imply a large degree of planar degeneracy and to some extent 3D rich scenes.

In the next chapter, the camera motion estimation for visual odometry is explained in a feature-based approach . A first version inherited from the ISL change detection processing scheme and a potential replacement candidate. Both of the models are compared in terms of performance and limitations to show that there is a need for designing a suitable method for our needs.

Camera ego-motion estimation from two views

The chapter introduces the basis of the camera motion estimation from two views, when using features. At the beginning, the notion of camera projection is introduced along the feature extraction and matching process from ISL in section 3.1. Then the models to recover the motion of the camera from the features are described, in section 3.2 for the homographic model and in section 3.3 for the epipolar geometry. Both models are then tested in our condition of application, in section 3.4, and it results in none of them working in all the conditions. Finally an investigation on ways to combine the models is done in section 3.5 to exploit their combined strength and mitigate their weaknesses.

Feature extraction and matching on ISL's platforms

The methods estimating the camera motion that will be presented later are indirect methods. It means that they require a pre-processing which extracts feature points from the images. These feature points are interest points, which have well defined position in the image.

Pinhole Camera Model

When a camera records an image, it makes a 2D representation of the 3D part of the world it sees. The pinhole camera model is used to express how a point from the environment projects onto the image plane when viewed by the camera. In Figure 3.1, the problem is expressed in a simple way. There is a tree and a camera, the pinhole model is used to express how the tree projects itself to form the image acquired by the camera.

In the pinhole model, the camera is reduced to a point: the projection center. All the rays coming from the environment converge to this point, Figure 3.1. The image obtained by the camera is formed onto the image plane. This plane is placed at distance equal to the focal length from the projection center.
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x = (u, v, 1) T .    u ′ v ′ 1    =    h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9       u v 1    (3.6)
The homography contains 9 elements but only has 8 degrees of freedom because the matrix is only defined up to scale. The homography can be estimated from a set of 4 corner matches. Each match provides two constraints, one for each coordinate of the corner (u and v). The estimation is performed by a linear algorithm, the Direct Linear Transformation (DLT) algorithm [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. The Equation 3.5 is expressed in term of a cross-product by multiplying each side by x ′ i . It leads to:

x ′ i × Hx i = 0. (3.7)
which can be rearranged to obtain an equation in the form of A i h = 0.

0 0 0 -u -v -1 v ′ u v ′ v v ′ u v 1 0 0 0 -u ′ u -u ′ v -u ′                   h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9                   = 0 0 (3.8) 
A set of 8 equations is obtained by stacking the A i matrices obtained for each of the 4 correspondences x ′ ↔ x. Finally obtaining Ah = 0 where A is a 8 × 9 matrix. Since the norm of h is arbitrary, it can be set to h = 1 and h is then the singular vector associated with the smallest singular value of A.

The robust estimation in the presence of outliers is obtained via a RANdom SAmpling Consensus (RANSAC) [START_REF] Frahm | RANSAC for (quasi-) degenerate data (QDEGSAC)[END_REF] technique. Subsets of 4 corner matches are randomly picked to estimate a candidate homography H c . H c is then tested over all the corner matches to count how many matches satisfy this homography with a given threshold t H . The criteria used is the maximum symmetric projection error. 

max x ′ i -Hx i , x i -H -1 x ′ i ≤ t H (3.9) (x,
= (x 1 , x 2 , x 3 ) T in R 2 is ( x 1 x 3 , x 2
x 3 ) T . with l 1 ≥ l 2 ≥ l 3 being the singular values of H m,s . We define the value s = det(U) det(V). Now depending on the multiplicity of the singular values multiple cases are possible.

Homography-based motion estimation

If l 1 = l 2 = l 3 , the decomposition is unique and,

a = l 3 l 1 -s, n = V 3 , t = aU 3 , R = H m,s l 1 -aU 3 V 3 T . (3.13)
Where V i stands for the i th column of the matrix V, i.e. the right singular vector associated with l i . U i is the i th column of the matrix U, i.e. the left singular vector associated with l i .

If l 1 = l 2 = l 3 , the decomposition is also unique and,

a = l 1 l 2 -s, n = V 3 , t = aU 3 , R = H m,s l 3 -aU 3 V 3 T . ( 3 

.14)

V i stands for the i th column of the matrix V, i.e. the right singular vector associated with l 3 . The two previous cases correspond to a rotation around the origin and then a translation along the normal direction n of the plane.
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If l 1 = l 2 = l 3 , we are in the general case and,

δ = l 1 2 -l 2 2 l 2 2 -l 3 2 , α = l 1 + sl 3 δ 2 l 2 (1 + δ 2 ) , β = -1 -α 2 , R a = U    α 0 β 0 1 0 -sβ 0 sα    V T , (3.15 
)

R b = U    α 0 -β 0 1 0 sβ 0 sα    V T , t a = -βU 0 + l 3 2 -sα U 3 , t b = βU 0 + l 3 2 -sα U 3 , n a = δV 0 + V 3 , n b = -δV 0 + V 3 .
There are then four decompositions possible in the form:

(R a , t a , n a ) (R b , t b , n b ) (R a , -t a , -n a ) (R b , -t b , -n b ), (3.16)
Finally if l 1 = l 2 = l 3 , the motion is a pure rotation and,

t = 0, n = 0, (3.17) 
R = H m,s l 1 .
Almost all the time, the general case of the homography decomposition happens, when driving with the ISL's UGV platforms. For these platform a pure rotation is impossible and the translation along the normal of the plane is unlikely unless driving straight into a wall. associated with the 4 different motions. The 2 red ones are the ones not satisfying the visibility constraint. The green one is selected because it has a normal vector which is perpendicular and the yellow is the rejected second solution.

The homography based motion estimation presents some limitations. The decision to select the solution with the most vertical normal vector usually performs well in large spaces, as in Figure 3.11(a). However in narrower environments, the homography estimation usually finds a homography induced by another dominant planar structure.

For example a wall when being indoor. The estimation can also retrieve a homography induced by a virtual plane, which does not correspond to any structure in the scene, as in Figure 3.11(b). The RANSAC procedure finds the homography satisfying most corner matches, there is not any constraint to fit an actual planar structure. In [START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF] provides analytic relationship between the solutions of the decomposition of H. Among these relations, the one linking the normal vectors is of interest. Given (R a , t a , n a ), n b can be expressed as:

n b = 1 ρ t a n a + 2 t a R a T t a , ρ = 2n a + R a T t a . (3.19)
Taking a translation vector and rotation matrix corresponding to the motion of a front steered vehicle, an ambiguity angle could be determined. The normal n a is selected randomly on the quarter of the unit sphere depicted in Figure 3.13 in blue. Having R a , t a and n a , the normal n b can be computed from Equation 3.19. For the blue positions of n a the normal n b occupies only the orange part of the quarter sphere. Most interestingly for the hypothesis of selecting the ground plane while decomposing the homography, it can be seen that a clear separation is possible between the two normal vectors. This separation is materialized by the red line. If n a lies below the red line, the decomposition corresponding to n b cannot be chosen. However if n a lies above the 56 Chapter 3. Camera ego-motion estimation from two views then the singular vector of A associated with the smallest singular value. An extra step ensures that the estimated F has a rank 2. The algorithm suffered instability from the various orders of magnitude between the coordinates and their cross-products. It was later solved by normalizing the coordinates of the corner matches [START_REF] Hartley | In defence of the 8-point algorithm[END_REF]. The 8point algorithm provides one constraint more than the degrees of freedom of F, so a 7-point estimator [START_REF] Richard | Projective reconstruction and invariants from multiple images[END_REF] is also possible. It uses the fact that A has a right null space of size 2 and F has a rank 2 to build a cubic polynomial equation resulting in one or three possible F matrices depending on the complex nature of the solutions of the polynomial equation.

Both estimators are used in combination with a RANSAC procedure when working on corner matches containing outliers. To test the support of the estimated fundamental matrix, the distance used is the Sampson distance ǫ Sampson because it is an accurate estimation of the re-projection error and its has a small runtime [START_REF] Fathy | Fundamental matrix estimation: A study of error criteria[END_REF].

ǫ Sampson = x ′ i T Ex i (Ex i ) 1 2 + (Ex i ) 2 2 + (E T x ′ i ) 1 2 + (E T x ′ i ) 2 2 . (3.23)
with (Ex i ) j standing for the j th coordinate of the vector (Ex i ). For RANSAC procedures it is normally advised to draw the minimum number of samples to estimate the model to have a better chance of not picking any inliers. When ensuring a 99% probability of selecting only correct samples and having a ratio 30% outliers, the 8-point would need to do 78 iterations and the 7-point only 54. However the difference becomes negligible because the 7-point estimator may result in 3 matrices to be tested for each iteration. The 8-point is often preferred for its simplicity and its availability in most computer vision libraries.

The essential matrix has also several estimators available. There are the 6-point algorithms [START_REF] Li | A simple solution to the six-point two-view focal-length problem[END_REF][START_REF] Stewénius | A minimal solution for relative pose with unknown focal length[END_REF], which use 6 corner matches to estimate E. [START_REF] Stewénius | A minimal solution for relative pose with unknown focal length[END_REF] makes use of the Gröbner elimination technique to solve a polynomial system, while [START_REF] Li | A simple solution to the six-point two-view focal-length problem[END_REF] favors the hidden variable technique to solve the system. Both methods assumed that the focal length was unknown and are recovering it along with the essential matrix. However the limitations are that the focal axis from both views cannot intersect at equal distance from both cameras and the camera cannot undergo a pure translation (translation without a rotation). The first limitation is unlikely to be met for a vehicle application with the camera facing forward, on the other hand the second one is more likely to be experienced. The 6 point estimator is therefore not an interesting choice.

E has also 5-point estimators [START_REF] Botterill | Fast RANSAC hypothesis generation for essential matrix estimation[END_REF][START_REF] Li | Five-Point Motion Estimation Made Easy[END_REF][START_REF] Lui | An Iterative 5-pt Algorithm for Fast and Robust Essential Matrix Estimation[END_REF][START_REF] Nister | An efficient solution to the five-point relative pose problem[END_REF]. [START_REF] Nister | An efficient solution to the five-point relative pose problem[END_REF] was the first efficient algorithm solving the 5-point pose problem and could be used within a RANSAC process. Later the research on the topic of estimating the essential matrix has been focused on estimating E faster or with a simpler method. [START_REF] Li | A simple solution to the six-point two-view focal-length problem[END_REF] proposed a simpler implementation for 3.3. Epipolar geometry 57 non-expert user by using the hidden variable technique rather than a heuristic process to solve a polynomial system. Later [START_REF] Botterill | Fast RANSAC hypothesis generation for essential matrix estimation[END_REF] proposed a numerical optimization using Levenberg-Marquardt algorithm [START_REF] Marquardt | An Algorithm for Least-Squares Estimation of Nonlinear Parameters[END_REF] to find subsets for possible essential matrices.

Compared to the standard closed-form estimation of the essential matrix, the gain in processing time was claimed to be around 25%. However the gain was not achieved when corner matches corresponding to coplanar points are common. [START_REF] Lui | An Iterative 5-pt Algorithm for Fast and Robust Essential Matrix Estimation[END_REF] proposed an iterative process to generate potential essential matrices from 5 corner matches. As for [START_REF] Botterill | Fast RANSAC hypothesis generation for essential matrix estimation[END_REF] the robustness is left to a RANSAC loop. The gain is claimed on speed and simplicity. Despite the improvements in speed and simplicity, the 5-point solver from [START_REF] Nister | An efficient solution to the five-point relative pose problem[END_REF] is still the one implemented in popular libraries such as OpenCV or Matlab's Computer Vision Toolbox.

After the RANSAC process, the best essential or fundamental matrix is kept with its inlier set. However at this point the matrix has only been estimated using 5, 6, 7 or 8 points. The estimate needs to be refined over the whole inlier set. For this purpose it is common [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] to use the Levenberg-Marquardt algorithm to minimize an error function over the inlier set. As previously mentioned the Sampson error is well fitted for this task.

Decomposition of the essential matrix

As for the homography, the essential matrix can be expressed in terms of a translation and a rotation. Using the same camera projection matrices as in subsection 3.2.2, P A =

[I|0] and P B = [R|t], the essential matrix E can be expressed as

E = [t] × R. (3.24)
with [t] × is cross-product operator with t 3 . The goal is to recover R and t from E.

However as E has only 5 degrees of freedom, there is a scale ambiguity on t. Referring to Figure 3.14, the relative orientation of the images with respect to each other and the direction of the baseline can be recovered, but the length of the baseline is unknown without having a known dimension in the scene4 .

3 For a vector a = (x a , y a , z a ) T , the cross-product with t = (x t , y t , z t ) T can be expressed as

t × a =   0 -z t y t z t 0 -x t -y t x t 0     x a y a z a   = [t] × a.
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Extracting the motion from the essential matrix is based on the singular values decomposition (SVD) of E, an orthogonal matrix W and a skew-symmetric one Z.

W =    0 1 0 -1 0 0 0 0 1    Z =    0 1 0 -1 0 0 0 0 0   
With the SVD of E being E = UΣV T . There are two possible rotations R a and R b and a possible translation t with its opposite -t, see [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] for the full proof.

R a = UWV T R b = UW T V T [t] × = UZU T (3.25)
From the two rotations and the two translations, four couple of solutions (R, t) can be formed. But there is only one couple of solution that is projecting the matched corners used to estimate E in front of both cameras. This test is also sometimes referred as the chierality test [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF].

Field-tests of each model: homographic and epipolar

In this section, the focus is on the general estimators for the epipolar geometry and the homography without any further constraint that finding a plane for the homography.

They both are tested to point out their limits.

Comparison on real sequences

In this part the estimation of the camera motion based on a homography and based on the essential matrix are compared. The input to all methods is as described in section 3.1. The essential matrix is estimated in two different ways:

• using the implementation of the 5-point estimator of [START_REF] Nister | An efficient solution to the five-point relative pose problem[END_REF] available in OpenCV,

• using the implementation of the 8-point estimator of [START_REF] Hartley | In defence of the 8-point algorithm[END_REF] available in OpenCV to estimate F and use Equation 3.22 to make the link.

The decomposition of E will be done as described in subsection 3.3.3. The homography is estimated and decomposed as presented in subsection 3.2.1 and subsection 3.2.2.

State of the art of methods handling both models

3. Estimate the epipolar geometry using one or several homographies, subsection 3.5.3, called combination.

Competition

The first category of methods use a competition between the two models, they are both estimated, then compared according to a metric and only the best one is kept. An example of metrics for model selection is the quantity of information needed to encode the model [START_REF] Philip Hs Torr | Robust detection of degenerate configurations while estimating the fundamental matrix[END_REF] or a ratio between the inliers subsets of the two models associated with a threshold to choose between the two [START_REF] Mur-Artal | ORB-SLAM: a Versatile and Accurate Monocular SLAM System[END_REF]. The main critic that can be made for these methods is that both models are estimated in parallel and from scratch to finally reject one, so half of the computation effort is wasted.

Rejection

The second category of methods tries to detect and avoid degenerate configurations while estimating the fundamental matrix. The BEEM algorithm [START_REF] Goshen | Balanced Exploration and Exploitation Model Search for Efficient Epipolar Geometry Estimation[END_REF] relies on an efficient data exploration scheme to escape degeneracies. It relies on the SIFT [START_REF] David | Distinctive Image Features from Scale-Invariant Keypoints[END_REF] features and its extension to features like Harris corners [START_REF] Harris | A Combined Corner and Edge Detector[END_REF] is not straightforward. We mention Harris corners because they appeared to be the best approach for our application [START_REF] Gond | Optimized featuredetection for on-board vision-based surveillance[END_REF]. Moreover, SIFT features are also not the best choice for real-time systems.

The QDEGSAC [START_REF] Frahm | RANSAC for (quasi-) degenerate data (QDEGSAC)[END_REF] method is a variant of RANSAC [START_REF] Martin | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] testing the number of constraints provided by the data with successive RANSAC loops, if less constraints are given and the same result is obtained, then the initial data did not provide enough constraint, hence it is likely degenerated. It is however failing, when the data is indeed degenerated. In [START_REF] Decker | Dealing with degeneracy in essential matrix estimation[END_REF], the degeneracy is tested by successively testing motion models with decreasing degrees of freedom (DOF). If almost the same inlier support is obtained by the model with less DOF, then the data is degenerated for the previous.

It has the advantage of dealing with the special cases of the pure translation, the pure rotation and the no-motion, but four different models might need to be tested for a single image pair. The DEGENSAC [START_REF] Chum | Two-view geometry estimation unaffected by a dominant plane[END_REF] is also a RANSAC based approach, but instead of successive model estimations, it detects the degeneracies within the RANSAC sample test. If one part of the sample test is coherent with a homography, then the fundamental matrix is recalculated using the plane-and-parallax principle [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF], compared to the one obtained by the 7-point algorithm and finally the best one is kept. A critic can be made regarding the computational effort, choosing the 7-point algorithm as the entry point leads to minimum three fundamental matrices to test in each loop and four plus five homographies in the worst case. The methods in this category do not allow to recover the camera motion when the data are actually planar. Only the method in [START_REF] Decker | Dealing with degeneracy in essential matrix estimation[END_REF] comes near as it deals with the pure rotation motion, which implies a homography.

Unfortunately, it does not deal with motion and planar case.

Combination

The third category of methods recovers the epipolar geometry by exploiting the degeneracies from scenes. They usually concentrate on scenes, in which several planes could be found. It would mean that we have dominant plane in the image and the remaining part of the image is also planar. These methods do not perform any detection or avoidance step, the degeneracy is in contrary plainly used. Among these methods a distinction can be made on whether they rely on at least two homographies or only one. The most straightforward method consists in a robust estimation of at least two different homographies from an image pair [START_REF] Vincent | Detecting planar homographies in an image pair[END_REF] and use their combined inlier sets to estimate the fundamental matrix. Alternatively, one can use the compatibility equation [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] between the homographies and the fundamental matrix to estimate its parameters. The latter needs a proper normalization [START_REF] Zhou | A Revisit of Methods for Determining the Fundamental Matrix with Planes[END_REF], otherwise it is unstable [START_REF] Luong | Determining the fundamental matrix with planes: instability and new algorithms[END_REF]. Moreover, the two independently estimated homographies are not necessarily compatible with the epipolar geometry [START_REF] Szpak | Robust multiple homography estimation: An ill-solved problem[END_REF] leading to inconsistent motions, i.e. two homographies can lead to different sets of epipolar lines, hence different motions. From the two homographies, a homology transferring the epipole onto itself can also be built [START_REF] Sinclair | Using the relation between a plane projectivity and the fundamental matrix[END_REF]. The epipole corresponds then to the eigenvector associated with the unique eigenvalue, the two others being identical. However, with real noisy data, it is not guaranteed to have two identical eigenvalues, then choosing the unique one becomes problematic. If it is not possible to rely on finding two independent homographies, e.g. there is only one plane in the scene, the epipolar geometry can still be recovered from a single homography and two off-plane points. In [START_REF] Sinclair | Using the relation between a plane projectivity and the fundamental matrix[END_REF] the author lists different least squares problems to recover the fundamental matrix from a single homography, however nothing is said regarding outliers rejection and initial values for the minimization. A closer look indicates that the epipole is needed to recover the fundamental matrix from a single homography. The epipole is found using the plane-and-parallax approach [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][START_REF] Szeliski | Geometrically constrained structure from motion: Points on planes[END_REF][START_REF] Zhou | A Revisit of Methods for Determining the Fundamental Matrix with Planes[END_REF], which in the given form presents several drawbacks. It treats all the parallax vectors identically, but intuitively points that lie closest to the plane provide less reliable information. Additionally, it is sensitive to noise, when off-plane points are scarce leading to incorrect epipole locations.

Conclusion

At this point there are 2 models to recover the motion between 2 views. First the homographic model that is inherited from the ISL change detection system. It proved itself not to be less capable than the other models if the plane inducing the homography is not slanted by more than 60 • . Otherwise the wrong decomposition is chosen.

The less than 60 • is usually met if the depth of field is large and no large vertical plane is present in the image. In open-space the homographic navigation is at ease and troubled in urban areas. On the contrary the epipolar model performs well as long as the

Conclusion

67 scene provides enough constraints, which is not the case when the scene is planar [START_REF] Nister | An efficient solution to the five-point relative pose problem[END_REF].

When using the epipolar model, the estimation of the essential matrix thanks to the 5-point algorithm should be preferred over the estimation of the fundamental matrix. The 8-point algorithm presented an instability with respect to the threshold used in the RANSAC. For all the experiments on KITTI, the threshold value was the only change and a value of 2 pixels lead to erroneous estimations. Explanations regarding the phenomena are still to be found. The bigger subset of samples to use in RANSAC added to this instability discarded the model. Yet an intermediate between the 5-point and the homography estimation is to be found because none of the two models could perform correctly in all the presented cases.

The development of an hybrid method between the two models is the object of the next chapter. The method is called: the parallax beam.

Combining models from a homography

In this chapter, the combination of the homographic and the epipolar is developed using a new model for the parallax induced by the homography. Among the method to combine the models, one stands out: the plane-and-parallax principle. However the principle is not adapted to recover the camera motion from real data. The Parallax Beam method introduced in this chapter is an answer to the issues related to the plane-and-parallax principle and it transforms the principle into a working method.

The Parallax Beam method bridges an already estimated homography and its induced parallax on a 3D scene with the fundamental matrix. It is the desired link of Fig- the homography estimation. The focus will be notably on the plane-and-parallax step, which recovers the epipolar geometry from a plane-and-parallax approach and later on the motion refinement, which has to be tuned to increase its robustness.

Plane-and-parallax principle: a promising candidate

Our application makes the presence of planar scenes recurrent. Therefore, the third category of methods, presented in section 3.5 appears to be the most adapted. In our applications a homography would often be enough and we would like to recover the epipolar geometry only when necessary. Most of the methods in this category rely on finding several homographies associated with different planar structures, which is not a reliable assumption in our case. We want to rely only on the homography that would normally be estimated by our system and to reuse it as much as possible if it appears not to be sufficient. The plane-and-parallax approach appears to be our candidate.

Computing the essential matrix using the plane-and-parallax

Before going into the plane-and-parallax principle, the input data are clearly defined.

To this end, the Figure 4.2 depicts the different sets of features involved in the process:

1. the initial data correspond to the matched features in the form of the Harris corners of section 3.1.

2. Over the initial data, a homography is estimated (subsection 3.2.1) using a RANSAC procedure, which separates the input data in two sets. The ones corresponding to the homography model: the homography inliers, and the rest: the homography outliers.

3. The homography outliers still contain information about the camera motion, because they fit the more global epipolar model. The homography outliers can be divided in the epipolar inliers and the true outliers corresponding to erroneous data (false correspondences). The epipolar inliers include also the homography inliers.

The goal of the plane-and-parallax principle is to use the estimated homography to recover the epipolar inliers belonging to the homography outliers and this is detailed hereinafter.

The plane-and-parallax formulation [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] estimates the fundamental matrix from image features, which are partially coplanar. The coplanar ones are transferred from one image plane to the other by a homography H. For the corresponding image features x i and x ′ i , we have x ′ i = Hx i if they are on the homographic plane. For the ones not in the support of the homography, i.e. x ′ i = Hx i , the line passing through x ′ i and Hx i is designated here as the parallax line. This line and the epipolar line through x ′ i are theoretically the same [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. The notion of parallax line obtained from a plane induced parallax is shown in Figure 4.3. The points x ′ i and Hx i corresponds to the red and green dots shown in Figure 4. 3(b). From the definition of epipolar lines, if at least two of them are available, the epipole is at their intersection, as in 

Limitation of the plane-and-parallax lines approach

From our experience, the method presents several limitations. First, the epipole might not be estimated correctly, when there is an even number of lines that seems to intersect in two different points, as in i and Hx i , the more the noise can change the orientation of the line, but the lines are all considered in the same way to estimate the epipole. Third, the method relies on a threshold defining the closeness to the intersection point and its value is difficult to set meaningfully. The values between 10 and 100 pixels are usually good guesses, but it is quite scene dependent to select an optimal value within these boundaries. To cope with this limitation, a beam concept for the parallax is proposed in the next section. When considering that the position of the corners, x ′ i and x i , is a bit erroneous due to the finite precision of the corner detector, a vicinity around the detected corners can be used and should contain the ideal position of the corners. This vicinity is shown in The experiences show that considering noise in either the data or the model results in a family of parallax lines that could describe the epipolar geometry. The families of parallax lines form a beam that widens proportionally to the distance with the detected and projected corners. When considering the noise/imprecision on the position of the detected corners, circular areas around them and their projection can be considered. The noise/imperfection on the homography results in an oval shape centered around the raw projection. However the homography is estimated using a least squares process, which already cope with noise/imprecision, therefore it is less relevant to consider the noise on the coefficients of the homography to be as significant as the imprecision on the detected corners. These experiences show that the noise affects the orientation of ideal epipolar lines, yet their orientation remains constrained in a geometric form close to a beam. In the next part, we will model each beam as a longitudinal section of a double cone.

The construction of the plane-and-parallax beam

As seen before, when a random noise is added to the position of x i and x ′ i , the potential epipolar lines are organized in a beam shape. It implies that all the epipolar lines do not intersect in a single point. From a geometric point of view, this beam shape is close to a longitudinal section of a double cone. In this part, we will model this double cone section using circles representing the uncertainty on the position of the point correspondences. This modelling is called the beam. From the set of beams corresponding to x i and x ′ i , the position of the epipole is estimated and the outliers are rejected without using a RANSAC approach.

When the position of the image features is corrupted with noise, the true position lies in the vicinity of the detected point. Usually the noise is assumed Gaussian with a standard deviation σ. For the sake of simplicity, we differ by considering a uniform circular noise around the detected image feature depicted in Figure 4.10 (a). The uniform circular noise is defined by its radius r. Even though the inner distribution is different, by taking r = 3σ we ensure that 99 % of the Gaussian values fall within the circle boundaries. Since the method is intended to work on consecutive images, we consider the distortion induced by the homography to be small enough so that the circular noise can still apply on the projected feature. The circles around the image feature and its homographic projection define a set of possible parallax lines, Fig. 4.10.

The orientation of these lines is contained between the two diagonal common tangents of the two circles. Therefore, by considering the area between the tangents, that contains both circles, we have all the parallax lines that could be obtained from our noisy feature points. This area is referred hereafter as the beam. When comparing with Figure 4.10 (b), we note that the parallax distance influences the opening angle of the the epipole is estimated, the inliers are defined as the image features, whose beam contains the epipole. Otherwise they are considered as outliers. Different size of parallax were used to generate Figure 4.12 to highlight another interest of the method. Since the diagonal tangents of both circles define the envelop of the beam, the opening of the beam, i.e. the angle between the tangents, also depends on the size of the parallax.

The smaller the size of the parallax, the more open is the beam. This is in accordance with the intuition that in the presence of noise, the points close to the homographic plane are less reliable to estimate the epipole. We can see in Figure 4.12 that the beam generated from a parallax of 1.9 pixels has a wider opening than the beam generated from the parallax of 21.8 pixels. Thus it provides a weaker constraint on the position of the epipole due to the bigger area covered by the beam. Our new plane-and-parallax beam paradigm brings then the following improvements:

• It models the noise on the image features by considering an uncertainty area around them. This area is a uniform circular distribution of points from which a set of likely parallax lines is derived. This set is represented by our beam. We gave a key to relate the uniform circular distribution to the classic Gaussian noise model.

• The reliability of the image features, depending on the distance to the homographic plane, is included in the approach. The further, the more reliable because the noise has less influence.

• It relies on a estimation of the standard deviation of the noise, which has more physical meaning than the notion of proximity for the intersection of lines.

Finally, Figure 4.13 illustrates the capacity of our approach compared to the standard line intersection in the presence of noise. In that case the plane-and-parallax from the intersection of lines fails. It actually has a 50 % chance of finding the correct epipole location depending on the order the RANSAC trials. One could also filter the parallax lines to use based on the length of the parallax, which would solve the problem in Fig. 4.13. However, such threshold would also remove small but correct parallax, that our method is able to use but it grants it a smaller influence in the estimation process.

On the interest of recovering the essential matrix from a homography

The formulation of the essential matrix from the rotation matrix and the translation vector and the formula linking the homography matrix with the fundamental matrix are relatively similar. If we recall Equation 3.24 and Equation 4.1, we have:

E = [t] × R, F = e ′ × H.

Refine rotation and translation
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Just by analogy between the formulas, having estimated a homography is almost like having estimated the rotational part of the motion already and finding the epipole relates to the estimation of the translation vector. Therefore once the homography is estimated, 3 DOFs out of 5 for the motion in the monocular case are already estimated.

It is interesting to capitalize on this homography as most of the effort is already done.

The reuse of the homography to estimate the essential matrix is one of the added value offered by the beam method compared to the literature, essential matrix and the homography matrix are often computed separately and/or sequentially, hence a waste of computational resources. We take here the opposite stance of what it usually made, the estimation of E then H if necessary. We estimate first H and then E, if necessary.

We do so because the camera orientation of ISL makes planar scenes to be frequent and because the simpler model should be estimated first.

Refine rotation and translation

The motion of the camera between two frames is composed of a rotation R and a translation t as in Equation 2.1. Once the fundamental matrix has been estimated using the plane-and-parallax beam, the motion between the two views can be recovered up-to-scale by the decomposition of the essential matrix E (subsection 3.3.3) and E is recovered from F using Equation 3.22. The rotation matrix and the translation vector obtained are raw result and their values can be further refined.

At this point a first estimation of the camera motion is available. To increase the precision on the motion recovery, the rotation and translation components can be refined based on their initial estimation and the inliers features correspondences from the plane-and-parallax beam step. We will here construct the refinement loop to achieve this goal. In a first step, a minimal representation of the translation and the rotation is presented. This representation ensures that the number of parameters to estimate fits the number of DOFs, while ensuring the necessary constraints in the refinement loop.

In the case of the motion estimated by the Parallax Beam, there are 3 DOFs for the rotation and 2 DOFs for the translation 2 . Then using the inliers output of the planeand-parallax beam approach, a particular attention must be given on the potential outliers remaining in the data, as shown in Figure 4. [START_REF] Chum | Two-view geometry estimation unaffected by a dominant plane[END_REF]. The overall refinement loop is presented in Figure 4.14. Its various elements are introduced in the next sections.

Representations of a rotation

In a transformation matrix such as M, Equation 2.1, the rotation is represented by a 3 × 3 matrix. This matrix contains 9 coefficients, which leaves 9 DOFs instead of 3. Therefore a smaller representation of the rotation must be used. A 3D rotation can be 2 The translation is only correct up-to-scale.

hyperplane is 2D. For a ground vehicle with a front facing camera, the main component of the translation vector is often along the z-axis of the camera. Therefore the formulas from [START_REF] Terzakis | On quaternion based parameterization of orientation in computer vision and robotics[END_REF] are modified to use the east pole the sphere rather than the south one. Using the south pole would result in very little (SP) vectors or the null one if the translation would happen to be purely along the z-axis. This would result in the ray r(t) intersecting the plane at infinity. In the modification, we have then,

S = (-1, 0, 0) T , r(t) = (-1, 0, 0) T + t(x, y, 1) T . ( 4.13) 
Similarly to the quaternion constraint, we obtain,

P(t) = x 2 -y 2 -1 α 2 , 2xy α 2 + 1 , 2x α 2 + 1 , (4.14) 
α 2 = x 2 + y 2 .
With P(t) = (a, b, c), ψ ψ ψ t = (x, y) is recovered as:

x = a + 1 c , y = b c . (4.15) 
The ψ ψ ψ t representation of the translation vector gives a 2D representation of the 3D unitary translation vector having only 2 degrees of freedom. The partial derivatives used in the refinement step are given hereinafter in Equation 4. [START_REF] Chum | Two-view geometry estimation unaffected by a dominant plane[END_REF].

dP dψ ψ ψ t = ∂P ∂x ∂P ∂y , = 1 (α 2 + 1) 2    4x(y 2 + 1) -4yx 2 2y(y 2 -x 2 + 1) 2(x 3 + x) 2(y 2 + 1) -4xy    , (4.16 
)

α 2 = x 2 + y 2 .

Robust estimation

The rotation and the translation have a minimal representation corresponding to their degrees of freedom. The focus is now on the non-linear least squares error minimization, the error function and the cost function used.

Error The Sampson distance (Equation 3.23) is the function to be minimized because of its accurate estimation of the re-projection error and its small runtime [START_REF] Fathy | Fundamental matrix estimation: A study of error criteria[END_REF].

with ξ = 10 -12 . The gain from the refinement on the estimation of the translation and the rotation is shown in subsection 4.3.5 and it is compared to the standard approach.

dǫ ǫ ǫ dψ ψ ψ = ∂ǫ ǫ ǫ ∂ψ ψ ψ q ∂ǫ ǫ ǫ ∂ψ ψ ψ t (4.18)

dǫ ǫ ǫ dψ ψ ψ q = dǫ ǫ ǫ dE dE dR dR dq dq dψ ψ ψ q dǫ ǫ ǫ dψ ψ ψ t = dǫ ǫ ǫ dE dE dt dt dψ ψ ψ t

Evaluation of the refinement

In this section, the gain from the refinement step presented in section 4.3 is shown.

The gain is illustrated using video sequences for which the motion of the camera is known frame by frame. The video sequences are taken from the KITTI Vision Benchmark Suite [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF], which is detailed in chapter 5 and chapter 6. The result obtained after the plane-parallax step (section 4.2 and subsection 3.3.3) are compared with the one obtained after the refinement step. In Figure 4.18, the Sampson distance for each estimated motion is displayed before and after the refinement step. An average gain of 81.25 % is measured over the sequence. In Figure 4.19, the focus is on the gain of the estimated parameters, rotation and translation. The proposed refinement is compared to a standard approach consisting of a Levenberg-Marquardt [START_REF] Marquardt | An Algorithm for Least-Squares Estimation of Nonlinear Parameters[END_REF] and squared cost function. The proposed refinement and the standard approach perform similarly most of the time. Some peaks can be observed when using the standard approach, they correspond to motions where the Parallax Beam does not screen out all outliers.

For example the peak observed after the motion 300 corresponds to the image pair shown in Figure 4. [START_REF] Chum | Two-view geometry estimation unaffected by a dominant plane[END_REF]. The proposed refinement is able to cope with these data. On average, the proposed refinement gives a gain of 4.09 % and 28.51 % on the rotation and the translation respectively. The standard approach has an average negative performance due to its divergence, when applied to corrupted data. The effect of the refinement on 4 video sequences is given in Table 4.2. The same trend is observed, the translation improves more than the rotation. The explanation is already introduced in subsection 4.2.3. The homography matrix estimated before the plane-and-parallax step is related to the rotation, yet it is estimated using a least-squares process. It is then already more precisely estimated than the translation before the refinement step. The rotation and the translation parts of the motion do not enter the refinement step with the same level of precision, hence the difference in the gain brought by the refinement step. 

Refinement mean(ǫ

Switching between homography and essential matrix

Having presented the two branches of the process introduced in The previous threshold on the orientation of the homography is used in combination with a coverage threshold. If the estimated homography fits more than 50 % of the matched corners and there is a decomposition below the 50 • threshold, than this decomposition is used. Otherwise the plane-and-parallax beam is triggered.

Finally if the scene can be described by a homography, it is unlikely that parallax can be found and used by the parallax beam. So a criteria on the number of inliers for the homography is also used. If the homography fits more than 80 % of the matched corners, the homography decomposition is used.

Conclusion

In this chapter, the Parallax Beam method has been introduced as an answer for nearly planar situations. A first homography is estimated over the matched corners and may be sufficient if the scene is planar. However if the scene is not planar, the epipolar
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geometry can be estimated from the already estimated homography and the resulting virtual parallax. To cope with the noise and the uncertainty of the input data, a beam model is used for the parallax instead of the line approach from the literature. The motion obtained from the Parallax Beam method is later further optimized to obtain a more precise estimation of the motion between the two views.

The next chapter focuses on the creation of evaluation conditions to proof the performance of the Parallax Beam approach.

Transformation of an existing dataset for suitable evaluation

In this chapter, the focus is made on the use of test sequences, which contain planar degeneracies to highlight the benefit of the Parallax Beam. The chapter starts with a review of the existing dataset for visual odometry. This review concludes on the lack of video sequences containing planar degeneracies associated with a precise ground truth suitable for the evaluation. From this conclusion, a hijacking method is created to use the ground truth of an existing dataset but associated with synthetic scenes containing the looked-for degeneracy. Finally the chapter ends on the evaluation of the Parallax Beam using these synthetic scenes and the ground truth from the KITTI Vision Benchmark Suite [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF].

Review and classification of the existing datasets: a quest

for planar degeneracy and ground truth

Ground Truth

The notion of ground truth is not constant across the different datasets available or the techniques to recover it. In the remaining parts of the paper, we propose to use the classification in Table 5.1. The notion of ground truth is divided into four types depending on the information it provides. The position of the camera stands for its localization into the 3D space, usually written as (x, y, z). The orientation of the camera stands for the rotation of the coordinate system of the camera with respect to the world/reference coordinate system, sometimes referred as (yaw, pitch, roll) or Euler angles. The pose of the camera includes both the position and the orientation. In the type I, only the position of the camera is known but not on a frame-by-frame basis.

The position can be known only for a few frames or for none but the trajectory of the camera is known, e.g. a vision system with a not synchronized GPS module (even though the precision of the GPS can be questionable). The type II adds the orientation to the type I. Therefore the pose of the camera is known for a few frames along the trajectory. The type III adds the continuity to the type I, meaning that the position of the camera is known for each frame of the recorded trajectory. Finally the type IV angles have been reported to be invalid. The Urban@Cras dataset [START_REF] Rita | Urban@CRAS dataset: Benchmarking of visual odometry and SLAM techniques[END_REF] provides a position only ground truth, for one complete sequence and partial for the others. The ground truth position is given as a 2D vector and not in 3D, therefore the I-and the III-.

Robotic

The datasets oriented for robotic applications are also present [START_REF] Alismail | Evaluating Pose Estimation Methods for Stereo Visual Odometry on Robots[END_REF][START_REF] Fallon | The MIT Stata Center dataset[END_REF][START_REF] Smith | The New College Vision and Laser Data Set[END_REF][START_REF] Sturm | A Benchmark for the Evaluation of RGB-D SLAM Systems[END_REF]. Compared to the automotive datasets, they are mostly indoors and have platforms moving slower than cars, usually up to a few kilometers per hour. It results in scenes having smaller depths and inter-frame motions with less amplitude. The different platforms allow movements that were not possible with cars and provide shaky recordings if the surface is not even due to the absence of suspensions. The indoor scenarios and the slower speed make the illumination to vary slower. The presence of man-made flat surfaces is more important that urban outdoor scenarios and the presence of repetitive patterns or specular reflections on the floor is possible especially in the Wean Hall dataset [START_REF] Alismail | Evaluating Pose Estimation Methods for Stereo Visual Odometry on Robots[END_REF]. The scenes are globally static but the presence of moving objects, usually humans, is possible.

Hand-held and MAV

The hand-held and Micro Aerial Vehicle (MAV) datasets are less numerous. The carrying capacity is reduced compared to cars and robots, hence the number of sensors is reduced and the possibility to create a ground truth also. Even though the Zurich Urban Micro Aerial Vehicle Dataset [START_REF] András L Majdik | The Zurich urban micro aerial vehicle dataset[END_REF] includes a GPS/IMU device, they reconstructed the ground truth photogrammetrically and sub-sampled it at 1 fps. The Eu-RoC dataset [START_REF] Burri | The EuRoC micro aerial vehicle datasets[END_REF] makes use of an external tracker to record the ground truth position of the MAV. The hand-held datasets [START_REF] Engel | A Photometrically Calibrated Benchmark For Monocular Visual Odometry[END_REF][START_REF] Zeller | A Synchronized Stereo and Plenoptic Visual Odometry Dataset[END_REF] use loop-closure to align the beginning and the end of the sequence and correct the accumulated drift. The other hand-held dataset [START_REF] Sturm | A Benchmark for the Evaluation of RGB-D SLAM Systems[END_REF] uses a motion tracker to follow the movement of the camera during the recording. The EuRoC dataset [START_REF] Burri | The EuRoC micro aerial vehicle datasets[END_REF] offers high speed motion indoor compared to the robotic datasets. The hand-held datasets provide recordings which are very shaky and the orientation of the camera varies within the sequences. It does not always look forwards, but sometimes sideways or backwards. They provide the greater variety of movements among all the presented datasets and combine indoor and outdoor sequences, even within sequences.

Summary of the datasets

The reviewed datasets are summed up in 

A dataset with planar degeneracies

After reviewing the existing datasets used for the evaluation of visual odometry it appears that datasets containing lots a planar degeneracy are hard to come by. Automotive datasets are usually using front facing cameras or omnidirectional ones. So the ground plane usually occupies less than half of the image and the application of selfdriving cars implies relatively deep field of views compared to the other applications.

Hence the very little presence of planar degeneracies in these datasets. Hand-held and MAV datasets contains mostly 3D scenes, where the ground plane is sometimes barely visible in the image. Therefore they are not suitable for the evaluation. Among the robotic datasets, the Wean Hall dataset [START_REF] Alismail | Evaluating Pose Estimation Methods for Stereo Visual Odometry on Robots[END_REF] was very promising because it contains many planar structures due to the robot moving in corridors. However the lack of a precise ground truth makes a motion-wise evaluation impossible. None of the reviewed datasets provides a similar camera orientation as the ISL change detection system. Also among the datasets with a ground truth of type IV, there is not enough planar degeneracy to further demonstrate the capacity of the Parallax Beam algorithm.

Also the ISL's vehicle are not equipped to be able to provide a frame-by-frame ground truth and the vehicle ARTEMIPS of UHA (section 6.3) could generate a ground truth but it would provide images close to the ones in the KITTI dataset.

Nevertheless during the review, datasets with frame by frame ground truth were identified. Notably in the KITTI Vision Benchmark Suite [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF], where the pose of the camera is known for each frame. In the next section, we propose to twist this rich ground truth and use it in scenes containing planar degeneracies to suit our needs. Using known camera poses in a controlled environment that we design increases the possibility of testing compared to picking few suitable images in the existing dataset. The controlled environment allows the creation of strong planar degeneracies to challenge the Parallax Beam, even more than on real data regarding this aspect. The next section focuses on feeding degenerated synthetic input data to the Parallax Beam using known camera motions.

Transforming an existing dataset: The poor's dataset

It is possible to reproduce the corner matches that the ISL system is feeding to the Parallax Beam. The goal is to reproduce the matches from Figure 3.7 but virtually.

A virtual camera is taken and the projection uses the pinhole camera model (subsection 3.1.1).

The process of creating synthetic image features matches is illustrated in Figure 5.1.

The process contains 6 main steps, which are as follow.

1. A first camera position; C 1 is chosen with its pose matrix P 1 set to identity. A second camera motion, C 2 , is created from a known rigid motion composed of R and t. The second camera pose matrix, P 2 , is obtained using Equation 2.1 and according to the rotation and translation recorded in the KITTI database.

2. In the image corresponding to C 1 , synthetic image features are randomly drawn.

To mimic the behavior of the feature extraction and matching of ISL, a maximum of 256 features is created and they are distributed over the grid in the same way as Figure 3.6.

3. The features are back-projected, which results in rays through the 3D space.

4. On the intersection between the rays and a given scene, 3D points are created.

They are the scene points corresponding to the created synthetic features.

5. These 3D points are projected onto the image plane of the camera C 2 using the pinhole camera model.

6. Synthetic features matches are then obtained between the camera C 1 and C 2 .

Only the features visible by both camera are kept. The position of the features within both image planes is disturbed using a white Gaussian noise and a ratio 

Radius value r

In this section we investigate the influence of the radius r on the motion. To that end, the same comparison is used as in subsection 3. It would then displace the epipole significantly and initialize the motion refinement poorly. In that case it could not converge to a correct estimation of the motion. A little improvement is observed for the value 0.5 notably for the translation, so for the rest of the study, the value of 0.5 will be used.

and corresponds to the angle between the two vectors.

The motion between the camera P 1 and P 2 is taken from successive poses of a KITTI ground truth file. The rotation part of camera pose matrix P 1 corresponds to a rotation by 20 • towards the ground around the x-axis and placed at a height of 1.6 m. We use the ground truth files of the KITTI Vision Benchmark Suite [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF]. It is a benchmark For each distance, we run 500 motions. The data are corrupted to include 20 % of outliers and Gaussian noise is added on the feature points location.

The statistics on ǫ R and ǫ t are given in Table 5.4 for the inter-frame motion estimation error. The table contains the mean translation and rotation error, their standard deviation and the maximum error made by the motion estimation on the translation and rotation.

In the general case, when the wall is at 5 m, the planar degeneracy is not present in the scene as both plane are equally visible. The recovered trajectories are visible in a bit behind, when it comes to the maximum error, especially on the translation. The plane-and-parallax lines from Algorithm 1 performs behind the others behind this scenario due to its sensitivity to equally present planes in the image [START_REF] Zhou | A Revisit of Methods for Determining the Fundamental Matrix with Planes[END_REF].

In the scenarios with the wall placed at 2.5 m and 10 m, a planar degeneracy is introduced in the scene. A vertical and a horizontal one respectively. For the vertical one, it means that the baseline created by the two views is perpendicular to the plane. It is parallel in the case of the horizontal degeneracy. Although it performs well in the general case, the 8-point is strongly affected by the planar degeneracy in both cases.

The 5-point algorithm is also affected. Despite having a higher average error at 2.5 m, the maximum error is significantly lower. The difference of performance is explained in [START_REF] Nister | An efficient solution to the five-point relative pose problem[END_REF], the algorithm is essentially unaffected by planar degeneracy if the baseline created by the two views is perpendicular to the plane, which is the case in the d = 2.5 m. The plane-and-parallax lines appears to be more sensitive to the vertical degeneracy and exhibits similar performance than the 8-point algorithm at 2.5 m. The Parallax Beam performs the best in both cases, with error values which are comparable in both.

The recovered trajectory in the planar degenerated cases are presented in Figure 5. Overall, the Parallax Beam performs the most consistently over the three scenarios, barely affected by the planar degeneracy. We noticed that the rotation appears to be always the estimated element with the less error and we also expected similar errors on the rotation part between the Parallax Beam and plane-and-parallax lines since they use the same homography as a working basis. However our expectation is going to confirmed on the real scenarios from chapter 6. 

KITTI Vision Benchmark Suite

Average and maximum inter-frame errors

The methods are compared on the KITTI Vision Benchmark Suite. The comparison of the methods is performed on the sequences 00, 02, 03 and 10. The focus is on the inter-frame motion estimation, so that the error comes purely from the estimation and from the accumulated drift.

The error metrics used in this section are the same as the ones used in subsection 5.3.2, which means that both the rotation and the translation are evaluated using an angular error. The statistics on the measured errors are presented in Table 6.3

Similarly to the results obtained on the synthetic data, the translation is the part of the motion, which is estimated with the less precision. The 8-point algorithm algorithm appears to be a good estimator of the motion in 3D rich environment. It has often the lowest mean error, even if it sometimes strongly fails as in KITTI 02 and KITTI 10. The same behavior was observed on the synthetic image features. We noted that all the methods failed over the same images in the KITTI 00. At image 550 of the sequence, the car stops at a stop sign, hence high errors due to the poor conditions to estimate the epipolar geometry. The error rotation part for the Parallax Beam and the plane-andparallax lines is similar because the rotation is estimated from the same homography.

Among the methods tested, the five-point algorithm appears to be the least precise of the four. The Parallax Beam scores sometimes the best results and if not it falls to the second place by only a short margin. It proves that the method performs also well in non planar degenerated environments.

Indeed the KITTI sequences do not provide scenes with strong planar degeneracy to prove the interest of the parallax beam method. Nevertheless, the KITTI sequences proved our method to be usable in generic scenes, where there is not any particular plane dominating the image content. After analyzing the images, we notice that most of the time the homography used in the parallax beam fits a virtual plane, i.e. it does not correspond to any physical plane in the scene. It relaxes the constraint of having a well identify plane in the scene to use the parallax beam method, which extends its scenarios of usage. When referring to Figure 4.1, the consequence of the homography fitting a virtual plane is that the homography branch is not activated. 

Trajectories on KITTI

The trajectories driven by the vehicle in the four sequences have been reconstructed.

We start by presenting the sequence KITTI 03 in Figure 6.4, which is the shortest of the four. On this trajectory, the result obtained by all the methods is depicted. It appears immediately that the homography method is ill-suited for the sequences of KITTI and is therefore not displayed anymore. On the following trajectories, the erroneous estimation have been removed from the figures to keep a good readability. The trajectories obtained on the KITTI 00, KITTI 02 and KITTI 10 are presented in Figure 6.6, Figure 6.8 and Figure 6.10 respectively. The trajectories are displayed in the x-z plane from the camera axis system (Figure 9.2). The trajectories are also given in a more complete representation in Figure 6.7, Figure 6.9, Figure 6.5 and Figure 6.11 From the coordinates of each trajectory, it is visible that the drift principally applies to the y-coordinate of the position and on the pitch angle. This could be due to the shape of the images in the KITTI dataset, which are wide but not very high. The estimation on the pitch angle and therefore the y-axis are the less good conditioned.

The performance of the parallax beam over the KITTI sequences is presented in Table 6.4 and compared to the other methods. The average errors are obtained using the KITTI Vision Benchmark Suite development kit. The average errors in the table are the average error per meter driven. So for the rotation it is expressed in degrees per meter.

For translation it would be in meter per meter, therefore we display it as a percentage. positive toward in front of the vehicle, Y axis is perpendicular to X axis and positive to the left side of the vehicle and the value of Z coordinates is positive upward. The camera is located bellow the inside rear mirror and it is configured with an automatic gain and an automatic exposure. Image resolution was 2464 x 2056 pixels with a maximum frame rate of 20 fps and 8mm focal camera lens (1:1.6/8mm). Also, optical polarimetric system has been added onto the camera lens to suppress the light reflection. The embedded computer of ARTEMIPS runs the middleware RTMaps from the Intempora company [START_REF]Intempora -RTMaps[END_REF]. This solution links all sensors and/or actuators of the platform and it allows to timestamp, record, synchronise and replay the collected data.

The test sequence

The test sequence was recorded using the MANTA camera inside the ARTEMIPS vehicle. The recording took place at the Cité de l'Automobile in Mulhouse (France) over a 8-shaped track, Figure 6.13. While the vehicle was manually driven, the camera was recording around 7-8 images per second depending on the light level. The GPS position is measured at a rate of 100 Hz. The driven path has a length of 354 m. For this path 530 images were recorded. to a preprocessed image. The motion estimation block is fed with these images. In the overview of the track given in Figure 6.13, one can notice that the sun was relatively low due to the season (winter) and the early hour. It is partially blinding the camera each time the car was facing the South-East (Figure 6.13(c) and (e)). The MANTA camera was calibrated using Zhang's method [START_REF] Zhang | A flexible new technique for camera calibration[END_REF]. The calibration process estimated also the distortion and the gray scale images are undistorted. The resulting intrinsic camera matrix K ARTEMIPS is: 

K ARTEMIPS =    1202 

Trajectory estimation of the visual odometry compared to the GPS

The raw motion estimation from the parallax beam is used to compute the position and attitude of the vehicle and is compared to the GPS data. The obtained trajectory is shown in Figure 6.15. The estimated trajectory appears qualitatively fair. Nevertheless errors appear very soon in the trajectory close to the A point and later in the trajectory close to the E point. The blinding sun at E appears to be responsible for the estimated trajectory to deviate significantly from E. Concerning the A point, it appears not to be an environmental issue but rather an intrinsic one. The distance between two images is quite constant along the trajectory between 0.5 m and 0.9 m except for the beginning of the trajectory, where the vehicle accelerates. The small distance between images causes the motion estimation to be less well defined for the estimation of the epipolar geometry (if the distance is null, the geometry is not defined). More importantly, the less distance between images, the more inliers in the homography, which reduces the number of points on which the parallax beam can work. A small distance between images also implies that outliers of the homographic have a small induced parallax by the homography, which opens the beams widely, hence reducing the precision on the estimation of the translation. Along the trajectory, the same observation as on the KITTI sequences was made: the homography fits mostly a virtual background plane, hence the homography only processing branch of Figure 4.1 is not activated. A forward facing camera with its optical axis parallel to the ground plane is not suitable for fitting a homography on the ground plane without additional constraints such as image crops, regions of interest (ROI), etc... Interestingly, the parallax beam model appears to be more prone to errors on the estimation of the translation part of the motion than on the rotation. On the trajectory The ORB-SLAM initializer is expecting mostly 3D scenes and uses its homography only for some specific motions, pure rotation or no motion. Nevertheless both the epipolar geometry and the homography are estimated for each frame. Whereas the parallax beam expects mostly planar scenes and is able to recover from a large amount of 3D by bridging the homography matrix to the epipolar geometry. So as depicted in Figure 6.20, both models are estimated only 10% of the time, which saves some computation needs. In a worst case scenario, where only 3D is present (like KITTI or ARTEMIPS), the parallax beam estimates both models for each frames like the ORB-SLAM initializer. Yet it has the elegance of jumping from one model to the other rather than keeping them independent.

Summary of the results

The results obtained on the difference sequences of this chapter are summed up in 

Conclusion

The chapter focused on the evaluation of the Parallax Beam method in real conditions. After an evaluation on planar degenerated synthetic features in the chapter 5, the evaluation presented here happened using sequences of the KITTI Vision Benchmark Suite, the ARTEMIPS test vehicle of UHA and a UGV of ISL, for a total of 11 km of video sequences. The content of the KITTI and ARTEMIPS video sequences differs from the conditions of applications of ISL, they represent then a more general evaluation with a front facing camera and 3D rich scenes. Despite that, the Parallax Beam performed well. It reached the best performance and when it did not, it usually ranked 2nd. Nevertheless, the ability to switch between a homography and planeand-parallax beam could not be evaluated here due to the camera orientation.

This evaluation happened using the ISL's UGV STAMINA Patrol equipped with a front and tilted camera. In these conditions of acquisition, the ground usually is the dominant plane and sometimes the only element visible. In these scenes, the homography based motion estimation excels and the homography branch of the Parallax Beam is activated. However it happens that the environment creates other planar structures in the field of view, as in the tunnel part of the ISL tunnel sequence. In this part, a homography is not the best tool and the Parallax Beam successfully detects that and triggers the plane-and-parallax beam branch. This ability to switch between two robust models gives the Parallax Beam a robustness in planar degenerated scenes and in 3D rich environments. The originality of the approach is to use the homography as the base model from which the system can either estimate its motion or reach a more general epipolar model. This ability to reuse an already made computation is important to embedded systems as energy and computation power are limited. It would be regrettable to waste the resource.

It is possible to achieve better results, when using more views to compute the motion and limit the drift accumulated. For this reason, we believe the Parallax Beam could also find its way as an efficient initializer in replacement of the initialization process in ORB-SLAM and other multi-view architectures as they usually require a two-view initialization.

Conclusion & Perspectives

Conclusion

Unmanned vehicles are used to extend the human capacity of exploration in hostile environments, to remove humans from potentially hazardous situations, to assist and replace them in low level tasks. These vehicles were remotely controlled at first but nowadays they are gaining in autonomy. Their increased autonomy might replace totally the operator as it is intended for self-driving cars or it allows the user to give highlevel commands instead of piloting the vehicle, for example the follow me function of leisure drones. For an autonomous unmanned vehicle it also implies to navigate autonomously in its environment, i.e. to sense it, to locate itself and to move within it.

In the thesis, the focus was on the localization part. This part can be achieved using a variety of sensors. Some are active, others are passive, some are standalone, others require an external infrastructure. Among this offer, a camera appears as an interesting choice. It is standalone, it provides a rich information about the environment, which allows to understand it but also to recover the motion of the camera. This process of estimating the motion of the camera from images is called visual odometry.

In a context of defense, ISL uses visual odometry to improve and estimate the localization of vehicles. It has developed a change detection system as a counter measure to improvised explosive devices. The system initially located itself using the GPS, however its precision and non-reliability in military operations due to jamming called for another localization method, which uses the second sensor of the system: a camera.

A first direct extension of the change detection system lead to a homography based motion estimation. From the homography used to register the current image with the reference the motion was estimated. The same process was applied between the previous and current image. It has been shown that this method works well except in a few cases. The decomposition of a homography results in several solutions, one is kept by assuming the homography is induced by the ground plane. Even this hypothesis is rarely true on not planar scenes, it sill performs well unless the plane inducing the homography is too slanted. The homography decomposition was then considered to be replaced by the decomposition of the essential matrix. This matrix is representing the motion between two views of the same scene. However it is not capable of providing The parallax beam method was developed to use the strength of both. Reusing the estimated homography but also its induced parallax when the scene is not planar, was an existing principle but ill-suited to real data. The principle was turned into a working method, the parallax beam, by adding noise consideration on the data, which lead to intersect families of parallax lines for each corner detected instead of one line per corner detected.

The evaluation under strong planar degeneracy needed some further investigation.

The review of the available visual odometry datasets concluded that there is not any dataset providing a precise ground truth with a lot of planar degeneracy, due to the camera orientation commonly used in the datasets. Images acquired with a front faced camera usually have a large depth of field, hence there is little to no planar degeneracy compared to a tilted camera as used on the platforms and application of ISL. Therefore synthetic corner matches were created to have synthetic scenes made of planes with a known motion. These synthetic features were designed to reproduce the motion of a ground vehicle and the behavior of the corner detector and matcher implemented on the platforms of ISL. Thanks to them it proved the advantage of the parallax beam method compared to the classic estimators of the epipolar geometry. The parallax beam was also tested and compared on the KITTI Vision Benchmark, on recorded sequences from the ARTEMIPS experimental platform of IRIMAS and on the STAMINA platforms of ISL.

Finally the thesis lead to:

• The comparison of the estimators of the epipolar geometry and a homography in the general case (no hypothesis about the motion or the environment). This comparison stated that none of the estimators are capable of handling planar scenes and 3D scenes.

• The development of a method to recover the epipolar geometry from a homography and the induced parallax on the rest of the scene. This method called the parallax beam performs robustly in the presence of 3D, planar structure and multiple planes. It also has the benefit of reusing all the computed elements along the process.

• A review of visual odometry datasets to find sequences containing planar degeneracies with a frame by frame ground truth. However such a sequence could not be identified.

• The development of synthetic image features to simulate degenerated scenes, while mimicking the behavior of the corner matching of ISL. With these features 7.2. Perspectives 141 it was possible to show the superiority of the parallax beam.

• Various experiments on real data, mostly on the ISL platforms but also on the ARTEMIPS vehicle of IRIMAS.

Perspectives

Despite the achievements of the thesis, the work can still be improved. On an implementation level, an optimized and embedded version of the code of the parallax beam needs to be finished. On the method itself, things could be considered differently.

On a system level, the visual odometry block of ISL still requires a more robust estimation of the scale factor than considering the height of the camera to the ground plane.

A reduction from the drift would also be beneficial and can be achieved by adding a bundle adjustment on top and that would be robustly initialize using the parallax beam method.

On an experimental level, experiments using the IRIMAS and ISL vehicles should be continued and might lead to the creation of a dataset containing trajectories with significant planar parts and an adequate ground truth. As visual odometry is used here to compensate the loss or inaccuracy of the GPS signals in some situation, one must think about cases when visual odometry is impaired and how to recover from that. This happened in the experiments when the sun was blinding the camera or when lightning conditions inside a tunnel provide too dark conditions. Sensor fusion is likely to be the answer and an other thesis started between IRIMAS and ISL on the fusion of camera data with an IMU.

On a domain level, I am intrigued by the performance displayed by the new methods based on deep neural network and especially the ones using unsupervised or reinforcement learning. I would like to explore this part of visual navigation, without forgetting about the geometrical and algorithms learned and tried during these years.

I believe the wheel must not be reinvented, one must just estimate its path.

8 Abstracts of the publications 8.1 Comparaison de décompositions de la matrice homographique et essentielle pour l'estimation du mouvement de caméra [START_REF] Rebert | Comparaison de décompositions de la matrice homographique et essentielle pour l'estimation du mouvement de caméra[END_REF] The epipolar geometry is one of the candidates to improve a visual odometry system so far based on the decomposition of an homography matrix. This geometry enables the use of the 3D information present in the scene. The rigid transformation between the two camera positions can be obtained by the decomposition of the homography or the essential matrix, these decompositions are compared in this paper.

The comparison is made on synthetic scenes and on real images as well. The precision of the transformation is evaluated on the translation and the rotation part. The decomposition of the essential matrix appears to be at least as precise and more robust than the one of the homography matrix.

Parallax beam: a vision-based motion estimation method

robust to nearly planar scenes [START_REF] Rebert | Parallax beam: a vision-based motion estimation method robust to nearly planar scenes[END_REF] In computer vision, the epipolar geometry embeds the geometrical relationship between two views of a scene. This geometry is degenerated for planar scenes as they do not provide enough constraints to estimate it without ambiguity. Nearly planar scenes can provide the necessary constraints to resolve the ambiguity. But classic estimators such as the 5-point or 8-point algorithm combined with a random sampling strategy are likely to fail in this case because a large part of the scene is planar and it requires lots of trials to get a non-degenerated sample. However, the planar part can be associated with a homographic model and several links exist between the epipolar geometry and homographies. The epipolar geometry can indeed be recovered from at least two homographies or one homography and two non-coplanar points. The latter fits a wider variety of scenes, as it is unsure to be able to find a second homography in the non-coplanar points. This method is called plane-and-parallax. The equivalence between the parallax and the epipolar lines allows to recover the epipole as their common intersection and the epipolar geometry. Robust implementations of the method are rarely given, and we encounter several limitations in our implementation. Noisy
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 11 FIGURE 1.1: One of ISL's UGV: the STAMINA-UGV Patrol.
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 23 FIGURE 2.3: Reaper drone.
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 24 FIGURE 2.4: An underwater ROV.
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 24 Figure 2.4, commands and feedback between the ROV and the operator travel via a cable. The first lunar rover, Lunokhod 1 [19] (Figure 2.5), was remotely operated from earth. It was equipped with four cameras for the navigation feedback and devices to run tests on the lunar soil. The control of the rover could only happened in near-real time as radio waves need approximately 1.25 seconds to travel from the Earth to the moon.
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 25 FIGURE 2.5: Lunokhod 1.
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 28 FIGURE 2.8: (a) Roomba I7+, (b) Husqvarna Lawn Mower, (c) Case IH Prototype.
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 2 8(a), navigates autonomously in a given room to clean it. It needs supervision only to define the limits of its world, to set its activation time and to free it when blocked. Using similar supervision, autonomous lawnmowers, Figure2.8(b), are fully autonomous to cut the grass within their area of action. On a bigger scale, autonomous tractors, Figure2.8(c), for agriculture and autonomous mine trucks are already commercialized. The static nature of a living room, a garden or a crop field permitted to focus the development on the autonomous navigation to perform the desired task. Of course these systems are also equipped with collision avoidance for safety reasons.
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 2210 FIGURE 2.10: The three steps performed while navigating.
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 213 FIGURE 2.13: Two individual cameras in a standard stereo configuration. The same scene is observed from two different point of views.

FIGURE 2 . 14 :

 214 FIGURE 2.14: Omnidirectional cameras: (a) A catadioptric omnidirectional camera (a standard camera and a mirror, source: Institut Pascal), (b) a omnidirectional camera composed of 2 Fish-eye cameras (Ricoh Theta S), (c) a omnidirectional camera composed of 6 cameras (Ladybug5)

2. 5 .

 5 Vision-based positioning processing 23 among the methods that are estimating the position of a camera. There are the methods estimating only the successive positions of the camera and the methods building a map of the environment viewed by the camera while estimating the successive positions. The constructed map is 3D representation of the environment viewed by the camera.

Figure 2 .

 2 FIGURE 2.16: (a) The Souvim vehicle (Photo: Yves Debay). (b) The Buffalo Vehicle (Source: defense.gouv.fr).

Figure 2

 2 Figure 2.19.

2. 8 .

 8 Conclusion 37 lightweight representation of the image. This representation is interesting when saving a reference trajectory as only the features are saved and not the images. Therefore features are used for the work presented in this thesis. Concerning the motion estimation itself, ISL started with a two-view estimation based on a homography inherited from the registration made by the change detection project. This homography is used

FIGURE 3 .

 3 FIGURE 3.11: (a) An example of scene where the hypothesis of estimating a ground plane induced homography is valid. (b) An example of scene where the estimated homography is not likely to be induced by the ground plane.

ure 3 .

 3 scheme have been introduced in chapter 3. This chapter presents the no branch after

1

 1 Figure 4.4 (a). Given the Algorithm Epipole from parallax lines: Parallax lines Estimate a homography on point correspondences and keep the homography outliers while iteration < maxIteration do Select randomly 2 lines formed by x ′ i and Hx i : (a, b, c) and (a ′ , b ′ , c ′ ) Compute their intersection point p = (x, y, 1) such that ax + by + c = a ′ x + b ′ y + c ′ Count how many lines pass, within a given threshold, near the intersection point if count > biggestCountSoFar then Remember the intersection point and the lines passing near it end if end while Apply a linear least-squares to find the closest point to the remembered lines by solving Ap = 0, with A =   . . . . . . . . . a i b i c i . . . . . . . . .

Figure 4 .

 4 4 (b) or in Figure 4.6 for an example the situation presented Figure 4.3. Second, the parallax lines are not equally influenced by the noise. The smaller the distance between x ′

4. 2 . 4 . 2 . 1

 2421 Plane-and-Parallax Beam principle: an enhanced candidate 4.2 Plane-and-Parallax Beam principle: an enhanced candidate From a single epipolar line to a family of lines When a homography is estimated between two successive images, one at time T and the other at T-1, it tends to fit a 3D plane that is common to the maximum number of matches. The homography is obtained through the RANSAC procedure described in subsection 3.2.1. On a concret example, Figure 4.7, a homography is estimated over the set of matches between the image at T and at T-1. The matches correspond to the blue dots and cover the whole images. After the RANSAC procedure a homography fits the matches with an orange cross on top. The homographic inliers are located on the ground and on the left sidewalk (Figure 4.7(a)). To recover the epipolar geometry from a single homography and a set of off-plane points 1 , parallax lines need to be generated from the outliers of the homographic model. The focus is now on one of these outliers, the red square in Figure 4.7(b).

Figure 4 .

 4 Figure 4.8(a), where 1000 noisy positions for each detected corners were obtained by adding a Gaussian noise of average 0 and standard deviation 0.1 pixels. The detected corner in the image at time T is depicted as the red dot and the detected corner in the image at time T-1 is projected in the image at time T by the homography as the blue dot. Their vicinity is obtained by adding noise to the detected position. From all the potential positions of the ideal detected corners in the vicinity, a set of parallax lines can be drawn (the pink lines on Figure 4.8). A parallax line joins a point in the yellow vicinity to a point in the yellow vicinity. On a larger scale, Figure 4.8(b), it generates a beam that widens when the distance to the detected and projected corners increases.In a second experience, the detected corners are kept without noise but the imperfection of the homography is considered. A Gaussian noise is added to each coefficient of the homography such that on average each coefficient has a signal to noise ratio (SNR) of 50 dB. This experience only affects the position of the projected corner. The positions shown in Figure4.9(a) are obtained by considering 1000 noisy homographies and projecting the detected corner from the image at T-1. The positions of the projections are more of an oval shape than the circles of the previous experience. However on a more macroscopic scale it also results in a family of parallax lines generating a beam that covers a part of the image surface.

Figure 4 .

 4 1, the only remaining part is to decide when to use one branch or the other. As explained in subsection 3.2.3, the homography decomposition is chosen assuming that the homography fits a plane corresponding to the ground. It was shown that there is a tolerance on the orientation of the plane fitted by the homography relative to the ground plane. This tolerance has been established at 60 • . In order to keep a margin of error, a lower value is used, 50 • . If among the decompositions of the homography there are only planes which are slanted by more than 50 • compared to the ground plane, then the Parallax Beam is triggered.

5. 3 . 105 5. 3 5 . 3 . 1

 31053531 Evaluation of the Parallax Beam using the synthetic features Evaluation of the Parallax Beam using the synthetic features Influence of the Parallax Beam parameters Before evaluating the motion estimation obtained by the Parallax Beam method, the influence of its two main parameters is investigated, Figure 4.11. The first parameter is the radius r, which defines the size of the uncertainty circle around the feature points. The radius r notably influences the opening of the Parallax Beams used to recover the epipole. The second parameter is the threshold used in the RANSAC process responsible for estimating the homography. This parameter modifies the number of feature points which are fitted by the homography. The influence on the Parallax Beam takes place in the number of feature points generating parallax and on the distance l between x ′ i and Hx i visible in Figure 5.3. In short, Radius r: corresponds to the uncertainty on the features position, it influences the opening of the beam. RANSAC threshold for the homography: it influences the minimum value for l, hence indirectly the number of widely open beams. It also relates the number of homography outliers available for the plane-and-parallax beam to work on.

4 . 1 .

 41 The results are shown in Figure 5.4. The graph represent the maximum error made by the Parallax Beam depending on the value of the radius and over 1000 motions estimations. The maximum error over each degree of freedom is measured. It appears that the radius does not have a large influence over the results. Nevertheless, the results suggest that too little values are not desired. Choosing a very little radius for the Parallax Beam would make it behave like the plane-and-parallax lines from Algorithm 1 as the beams would not be wider than lines. On the other hand values over 1.0 are not recommended. Large values of the radius may lead to several distinct regions of maximum overlap Figure 4.12.

  focused on self-driving cars and it covers several research topics such as optical flow, object detection, object tracking, semantic analysis, depth computation, road/lane detection and odometry. To evaluate the methods, the odometry part of the benchmark is used. This part of the benchmark consists in 22 video sequences, which were recorded using a grayscale stereo camera and a color stereo camera on top of a car. Along with the video sequences, the data from a Velodyne Lidar are also available. The recording of the sequences took place in the city of Karlsruhe (Germany) and the vehicle is driven in urban areas and on highways. The first 11 sequences are supplied with a ground truth obtained from the Velodyne Lidar and a GPS localization system. The ground truth is in 6 dimensions. The 3 components of the position and the 3 components of the orientation are available. Using KITTI provides a ground truth motion coherent with a vehicle using the Ackermann steering geometry (car-like) and large variety of motions.Out of the ground truth, three sequences are created, which differ by the distance of P 1 to the wall. d = 2.5 m : the camera P 1 is close to the wall. There is a strong planar degeneracy as only a small part of the ground is visible. d = 5.0 m : in this position the wall and the ground are equally represented in the image, the planar degeneracy is the weakest of the three sequences as none of the visible plane is dominant. d = 10.0 m : in this position the ground is the dominant plane, but the wall still represents around 25 % of the image.

Figure 5 . 6 .

 56 Figure 5.6. The best method among the four is the 8-point algorithm, which performs significantly better than the others in this scenario. The Parallax Beam falls however

7 and

 7 Figure 5.8.

FIGURE 6 . 1 :

 61 FIGURE 6.1: Parallax Beam process used in the ISL platforms to cope with planar scenes and non planar scenes

Figure 6 .

 6 14(a) gives as an example one of the recorded images. The bottom of the image is occupied by the dashboard of the car. This part is cropped 1 as it is useless to estimate the motion of the car. In fact this part induces a second motion in the image, a motionless one. For the Harris corner detector to work properly the images are also converted to gray scale and resized with a factor 0.5. The resulting images have a size of 1232×760 pixels.

Figure 6 .

 6 14(b) corresponds

FIGURE 6 .

 6 FIGURE 6.14: (a) Raw image recorded by the camera within the ARTEMIPS vehicle. (b) The part corresponding to the dashboard is cropped and the image is converted to gray scale image.

6. 4 .Figure 6 . 19 .

 4619 Figure 6.19. The performance of the ORB-SLAM initializer is worse and incomplete due to the ORB feature extraction having difficulties on the large tarmac part.In a later part of the test sequence, between the point C and the point D, the platform STAMINA Patrol starts on a parking lot, turns into a pedestrian tunnel and makes a second turn into the tunnel. The setup of this trajectory contains the following notable sections. In the parking lot, the scene viewed by the camera of the STAMINA Patrol is mostly planar, as the camera sees mostly the bitumen and little of the cars parked.When entering the tunnel the platform turns in front of a wall a barrier, which makes the ground plane not to be the dominant one. Once in the tunnel, 3 distinct planes are visible, the 2 side walls and the ground plane. The trajectory along with representative frames is visible in Figure6.20. In the figure, the parallax beam is compared with the standard estimators of the epipolar geometry and the homography only motion estimation. The estimators of the epipolar geometry unsurprisingly failed on the parking lot, where the scene is quasi-planar. A difference can be noticed between the 5-point estimator and the 8-point estimator. The second one is completely off, while the first one seems to select the wrong decomposition and goes back and forth on the planar part. Only the parallax beam successfully covers the whole trajectory, thanks to its capacity to extend the homography when needed and without restarting from scratch.The switch between the homography decomposition and the parallax beam is shown

Figure 6 . 21 .

 621 Figure 6.21. In the figure, some methods have been sometimes omitted for readability as their error were high. It appears that the two best motion estimation in the general 3D case present in the KITTI and ARTEMIPS sequences are the Parallax Beam and the 8-point algorithm. Nevertheless the advantage goes to the 8-point algorithm.

Chapter 7 .

 7 Conclusion & Perspectivesa correct motion estimation under planar scenes. The homography nor the essential matrix can cope with 3D and planar scenes.
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TABLE 2 .

 2 

		GNSS LiDAR IMU Camera
	Robust to jamming	No	Yes	Yes	Yes
	Stealth	Yes	No	Yes	Yes
	Multipurpose	No	Yes	No	Yes

1: Interesting sensor qualities for military applications.

TABLE 2 . 2 :

 22 Summary of the sensors capabilities

	Camera

  y, 1) is the homogeneous representation of p. All the points kp with k ∈ R * are equivalent. The Euclidean coordinates of p

TABLE 4 . 2 :

 42 Influence of the refinement on the mean translation error and the mean rotation error.

			t ) mean(ǫ R )
	KITTI 00		
	w/o ref.	0.027	1.556
	w/ ref.	0.016	1.520
	KITTI 02		
	w/o ref.	0.030	1.351
	w/ ref.	0.019	1.304
	KITTI 03		
	w/o ref.	0.023	0.892
	w/ ref.	0.011	0.856
	KITTI 10		
	w/o ref.	0.027	1.191
	w/ ref.	0.015	1.149

Table 5 .

 5 2. An overview of the type of camera, the environment, the kind of motion is given. Each dataset is associated with a 100 Chapter 5. Transformation of an existing dataset ground truth type as in Table5.1. We also indicate if other sensors are available for the datasets. 122 • , 98 • × 79 •

	Dataset	Camera	Environment	Ground Truth	Extra sensors
		Stereo	Urban, traffic		IMU
		Color	Car		GPS
	Malaga [8]	20 fps	36.8 km	III	Laser scanners
		1024 × 768	≤ 50 km/h		
		65 • (HFOV)			
		Stereo	Outdoor, park		IMU
		Grayscale	Segway-like robot		GPS
	College [112]	20 fps	2.2 km	IV	Laser scanners
		512 × 384			Camera 360 •
					Odometer
		Stereo	Urban, traffic		IMU
	Karlsruhe [37]	Grayscale	Car	III+	GPS
		1350 × 380	≤ 50 km/h		
		Stereo	Indoor		IMU
	Wean Hall [1]	Color 54 fps	LAGR Robot	I-	Gyro Laser scanner
		648 × 488	≤ 5 km/h		Odometer
		65 • (HFOV)			
		Stereo	Indoor		IMU
		Grayscale	MAV		
	EuRoC [11]	20 fps	0.893 km	III, IV	
		752 × 480	Fast, slow flights		
		Stereo	Urban, traffic, all weather		Cameras
	RobotCar [69]	Color 16 fps	Car 1010 km	II	Laser scanners IMU
		1280 × 960	≤ 50 km/h		GPS
		66 • (HFOV)			
		Monocular	Indoor, outdoor		None
	Monocular [21]	Grayscale 20-50 fps 1280 × 1024	Hand-held	I-II unscaled	
	Omnidirectional Color 148 • × Ford Cam-8 fps pus [87] 1600 × 600/camera	Urban, traffic Car 5.1 km	IV	IMUs Laser scanners GPS
		80 % of the full sphere			
		Monocular	Urban 5-15 m above ground		IMU
	Zurich Urban [71]	Color 30 fps 1920 × 1080	MAV 2 km	II	GPS Google Street View
		118 • × 69 •			

TABLE 5 .

 5 4: Statistics on ǫ R and ǫ t when estimating the camera motion on synthetic data. The values are given in degrees.

TABLE 6 .

 6 3: Statistics on ǫ R and ǫ t when estimating the camera motion on the KITTI sequences. The values are given in degrees.

TABLE 6 .

 6 Despite the Parallax Beam not being designed for the camera orientation of KITTI and 4: Average errors obtained on the sequences from KITTI for these 3D rich scenes, it achieves the best or second best average errors per meter on all of the 4 sequences.

		Paral. Beam 5-point 8-point Homogr. ORB-SLAM Ini.
	Sequence 00					
	Translation [%]	0.92	3.77	1.04	17.28	1.65
	Rotation [ • /m]	0.0041	0.0200	0.0049	0.0708	0.0197
	Sequence 02					
	Translation [%]	1.12	3.80	0.95	24.33	7.95
	Rotation [ • /m]	0.0049	0.0170	0.0038	0.0718	0.0552
	Sequence 03					
	Translation [%]	0.77	3.77	0.69	16.39	2.18
	Rotation [ • /m]	0.0035	0.0217	0.0026	0.0705	0.0154
	Sequence 10					
	Translation [%]	1.06	2.79	1.32	31.12	1.72
	Rotation [ • /m]	0.0081	0.0189	0.0059	0.1053	0.0129

Wheel odometry is the process of recovering the position of a vehicle from the turns made by the wheels since the last known position.

Valid features matches, which are placed so that the motion cannot be recovered uniquely.

When an off the shelf stereo camera the baseline is known and can be used to do a metric triangulation of the scene.

at least two in an ideal case.

It is better to crop the image rather than discarding the detected corner in this area. It saves some processing time to reduce the size of the image for the Harris corner detection.
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If r 3,3 < 0 and r 1,1 ≥ r 2,2 , t = 1 + r 1,1r 2,2r 3,3 , q = 1 2 (t) (r 3,2r 2,3 , t, r 1,2 + r 2,1 , r 3,1 + r 1,3 ). (4.6)

If r 3,3 < 0 and r 1,1 < r 2,2 , t = 1r 1,1 + r 2,2r 3,3 , q = 1 2 (t) (r 1,3r 3,1 , r 1,2 + r 2,1 , t, r 3,2 + r 2,3 ). (4.7)

If r 3,3 ≥ 0 and r 1,1 ≤ -r 2,2 , t = 1r 1,1r 2,2 + r 3,3 , q = 1 2 (t) (r 2,1r 1,2 , r 3,1 + r 1,3 , r 3,2 + r 2,3 , t). (4.8)

If r 3,3 ≥ 0 and r 1,1 > -r 2,2 ,

The downside of quaternions is that the unitary norm must be enforced during the optimization and it is the focus of the next section as there are several ways to do so.

Quaternion unitary norm constraint

A standard approach to constraint the norm of the quaternion during the least-squares would make use of the Lagrangian multipliers [START_REF] Zhang | Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting[END_REF], but it has the drawback of increasing the number parameters to estimate. On the opposite, the work of [START_REF] Schmidt | Using Quaternions for Parametrizing 3-D Rotations in Unconstrained Nonlinear Optimization[END_REF] makes use of the tangent hyperplan to the hypersphere in R 4 containing all the unit quaternions. It reduces the number of parameters to be estimated from four to three while ensuring the unit norm constraint. More recently [START_REF] Terzakis | On quaternion based parameterization of orientation in computer vision and robotics[END_REF] achieved the same results by using the intersection of a ray from a reference pole to the quaternion on the hypersphere. The quaternion is then represented by the intersection of the ray with the equatorial plane, see Figure 4.15. It has the advantage of avoiding the use of a SVD and having simple partial derivatives. Having a quaternion q, it is located on the 4D unit sphere at P. S is the south pole of the sphere and the ray r(t) passing through S and P intersect the hyperplane π at (x, y, z), which is the back-projection of P on π Chapter 5. adds the continuity to the type II. In this type, the pose of the camera is known for each frame of the recorded trajectory.

Visual odometry datasets

In the last decade, the number of datasets usable for visual odometry systems increased and with it the variety of environments available, acquisition device and motions. We provide in Table 5.2 a summary of each dataset regarding its acquisition settings, the environment contained in the frames and the type of motion. The provided ground truth is categorized according to Table 5.1. Even if we focus on visual odometry, the availability of other sensors is pointed out, as it can be of interest for scientific community researching on autonomous platforms and sensor fusion. We hope that it will help researchers to select the datasets, which are in accordance or close to their field of application.

Automotive

The majority of the datasets relates to autonomous driving and offers image sequences recorded from a car in traffic and in urban environment. Among these most of them acquire using stereo cameras [START_REF] Blanco-Claraco | The Málaga urban dataset: High-rate stereo and LiDAR Bibliography in a realistic urban scenario[END_REF][START_REF] Rita | Urban@CRAS dataset: Benchmarking of visual odometry and SLAM techniques[END_REF][START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF][START_REF] Geiger | StereoScan: Dense 3d reconstruction in real-time[END_REF][START_REF] Maddern | 1 Year, 1000km: The Oxford RobotCar Dataset[END_REF], the Ford dataset [START_REF] Pandey | Ford Campus vision and lidar data set[END_REF] uses an omnidirectional camera. These datasets in traffic conditions can be challenging for visual odometry methods as they contain moving objects, which complicate the task of estimating the camera ego-motion. They also contain parts, where the vehicle is not moving, e.g. stopped at a traffic light. These parts can rapidly generate drift if not handled properly. When attached to a car, the camera has not 6 degrees of freedom (DOFs). Motions purely parallel to the image plane are impossible if the camera is facing front. One can also make use of the instantaneous center of rotation (ICR) of cars to constraint the estimation of the motion [START_REF] Scaramuzza | Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC[END_REF]. Another particularity of the datasets related to autonomous driving is the higher speed, up to 100 km/h in KITTI [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF]. Illumination conditions may also vary rapidly from forest shadows to direct sunlight. The Robot-Car dataset [START_REF] Maddern | 1 Year, 1000km: The Oxford RobotCar Dataset[END_REF] stands out, because it consists in the same sequence but recorded at different periods of time over a year. The influence of the luminosity, weather, scene content could be assessed from it. The Karlsruhe dataset [START_REF] Geiger | StereoScan: Dense 3d reconstruction in real-time[END_REF] has ground truth III+ because it provides the yaw angle in addition to the 3D position. The roll and pitch

Chapter 5. Transformation of an existing dataset

Homography threshold for RANSAC 2 pixels Radius value for the Parallax Beam 0.5 pixels 

Summary

The chosen values for the parameters of the Parallax Beam are summarized in Table 5.3.

Comparison with 5-point, 8-point and parallax lines

The Parallax Beam method is compared with the plane-and-parallax lines algorithm

given Algorithm 1, the 5-point algorithm [START_REF] Nister | An efficient solution to the five-point relative pose problem[END_REF] and the 8-point algorithm [START_REF] Hartley | In defence of the 8-point algorithm[END_REF]. They are evaluated in a two-view configuration with the camera 1 having the projection matrix

] and the camera 2 having the projection matrix

where K is the intrinsic matrix, R is the rotation of the camera between the two views and t is the translation of the camera between the two views. The methods are evaluated on their ability to recover R and t. For the Parallax Beam the refinement is the one proposed in The rotation error ǫ R expresses the error between R and R gt . We express the difference rotation matrix R di f f = R T R gt , which is the identity matrix if the two rotation matrices are equal. Using the property of SO(3) that tr(R) = 1 + 2 cos(θ), ǫ R is defined as:

ǫ R corresponds physically to the angle of R di f f of the axis-angle representation of a rotation in 3D.

The translation error ǫ t expressed the error between t and t gt . In two-view geometry the translation vector can only be recovered up-to-scale, therefore a metric including the norm is not suited. We are rather interested to evaluate if t points in the same direction as t gt . Although in a setup similar to the one used in ISL (as used here), it would be possible to recover the scale, as the homography is expected to fit the ground plane. Nonetheless keeping the direction of the translation as the evaluation metric allows later comparison between the experiments on synthetic and on real data from chapter 6. ǫ t is then defined as:

Evaluations

In this chapter, the evaluation of the Parallax Beam method is performed on real images using the switchable process from Figure 6.1. The process allows the motion to be estimated using either a homography only or using the plane-and-parallax beam if the homography is deemed insufficient. The evaluation takes place first on the KITTI Vision Benchmark Suite (section 6.2), then using sequences recorded on-board the ARTEMIPS vehicle of UHA and compared to its high precision GPS (section 6.3). Finally, an experiment on the ISL STAMINA Patrol is presented to show the alternation of the motion estimation models within the Parallax Beam (section 6.4).

Chapter 6. Evaluations

The evaluation over the KITTI sequences and the ARTEMIPS auto sequence, will test the plane-and-parallax branch of the Parallax Beam process from Figure 6.1. Due to the nature of the scenes and the orientation of the camera the homography branch is intentionally deactivated. The sequence ISL tunnel will test the switch between the homography branch and the plane-and-parallax branch. The orientation of the camera in this sequence favors the homography branch and triggers the plane-and-parallax only if necessary.

Scale of the motion

The evaluation is performed in a monocular scheme, therefore the translation part of the motion is only recovered up to a scalar factor. In order to obtain the true displacement of the camera, additional information are needed. For the sake of not adding scale estimation errors into the errors of the motion, the ground truth scale is used when available. It means that for KITTI the true metric distance between poses is used as the scale for the translation. For the ARTEMIPS vehicle, the camera and the GPS are synchronized, so the geodesic distance between GPS position is used as the scale for the translation. For the ISL vehicle, the camera is the only sensor on-board so the scale must be estimated. The distance between the camera and the ground plane is used as the known value to estimate the scale of the translation and if the ground plane cannot be determined the scale will be kept constant. In the presented experiment the ground plane is considered found, if its normal is vertical ±20 • .

Compared methods

The Parallax Beam method is here compared again with the 5-point algorithm, the 8-point algorithm. To these two methods, the homography only process is added as well as the initializer function from ORB-SLAM [START_REF] Mur-Artal | ORB-SLAM: a Versatile and Accurate Monocular SLAM System[END_REF]. The initializer corresponds to the red part in Figure 6.3 and it occupies the same function as the parallax beam would in a SLAM architecture. As it was mentioned at the end of chapter 3, the initializer also uses both the homography and the epipolar geometry. Both model are estimated simultaneously and are then compared to define, which ones corresponds the more to the scene. To make the ORB-SLAM initializer work on the sequences recorded from the ISL Patrol, a few tweaks had to be added.

Platform Scale

KITTI

Metric distance between two 6D poses ARTEMIPS Geodesic distance between two GPS positions ISL Distance between the camera and the ground plane if the ground is found within the margin. Constant otherwise. Chapter 8. Abstracts of the publications image features and outliers make the lines not to be concurrent in a common point.

Also off-plane features are unequally influenced by the noise level. We noticed that the bigger the parallax is, the lesser the noise influence is. We, therefore, propose a model for the parallax that takes into account the noise on the features location to cope with the previous limitations. We call our method the "parallax beam." The method is validated on the KITTI vision benchmark and n synthetic scenes with strong planar degeneracy. The results show that the parallax beam improves the estimation of the camera motion in the scene with planar degeneracy and remains usable when there is not any particular planar structure in the scene. [START_REF] Rebert | A review of the dataset available for visual odometry[END_REF] During the last two decades the number of visual odometry algorithms has grown rapidly. While it is straightforward to obtain a qualitative result, if the shape of the trajectory is in accordance with the movement of the camera, a quantitative evaluation is needed to evaluate the performances and to compare algorithms. In order to do so, one needs to establish a ground truth either for the overall trajectory or for each camera pose. To this end several datasets have been created. We propose a review of the datasets created over the last decade. We compare them in terms of acquisition settings, environment, type of motion and the ground truth they provide. The purpose is to allow researchers to rapidly identifies the datasets that best fit their work. While the datasets cover a variety of techniques to establish a ground truth, we provide also the reader with techniques to create one that were not present among the reviewed datasets.

A review of the dataset available for visual odometry

Faisceau de parallaxe : estimation du mouvement de caméra robuste aux scènes planes

[ORASIS 2019] Autonomous vehicles are usually equipped with sensors allowing the perception of the vehicle surroundings (camera, structured light, LiDAR, ultrasonic sensor...). With these sensors the vehicle can detect obstacles, localize itself or map its environment, but the GPS receiver is often preferred for its simplicity of use and localization accuracy . However, when the GPS signal is absent or imprecise due to a forest, a tunnel or a jamming signal for example, another localization method is needed. In this paper, we present a new method for the estimation of the vehicle motion from a monocular camera. The method is designed to be robust to strong planar structures often present in scenes resulting from low structured environments.

Characterization of the impact of visual odometry drift on the control of an

autonomous vehicle 161

Characterization of the impact of visual odometry drift on

the control of an autonomous vehicle [START_REF] Bazeille | Characterization of the impact of visual odometry drift on the control of an autonomous vehicle[END_REF] Autonomous vehicle navigation requires the desired trajectory and the current localization to be able to calculate the command that must be sent to the actuators.

The localization of the vehicle (usually defined by a position vector and an orientation vector), can be provided by external systems. GPS localization is the most accurate solution but when it is no longer available or precise, an on-board localization estimation based on proprioceptive and exteroceptive sensors is needed. Visual odometry is a well-known approach to estimate the vehicle motion from a camera. Unfortunately, visual localization is subject to errors that increase over time (drift). In this paper, we provide a study of the impact of localization errors on the control of an autonomous 

Prediction of microunmanned aerial vehicle flight behav-

ior from two-dimensional intensity images [START_REF] Rebert | Prediction of microunmanned aerial vehicle flight behavior from two-dimensional intensity images[END_REF] The increasing number of microunmanned aerial vehicles (MUAVs) is a rising risk for personal privacy and security of sensitive areas. Owing to the highly agile maneuverability and small cross section of the MUAV, effective countermeasures 

STAMINA-UGV Aurochs

The STAMINA-UGV Aurochs,