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Chapter 1

Introduction

1.1 Context and problematic

Human faces are the most characteristic features which can be used to distinguish
one person from the others. Recognizing the parents and the family is the very first
lesson for each human being. Since the development of imagery technology, human
brains are charged with another task: face recognition from a photo. This task is
now the most critical identification solution in our society when our face appears
in many papers such as passports, ID card, driver license, student card ... At this
era of digital technology, the task of face recognition is more and more entrusted
to automatic systems. The powerful computer is able to accomplish many complex
tasks including people detection and authentication, movement tracking and pre-
dicting, illness detection and classification... Face recognition is now applied in a
wide range of use-cases with different levels and constraints of security. There are
passive systems using by the authority to inspect the activity in sensitive regions.
There are active calibrated systems for access control in airports, companies ... and
many other facilities. There are also many distributed uncalibrated systems like lap-
top unlock program, smartphone identification application which gives users more
initiatives to decide the environmental conditions of their attempt.

However, visible face recognition is theoretically and practically vulnerable to
face spoofing attack. A well-performing authentication system can be easily by-
passed using a photo of a genius user’s face presented in front of the system’s cam-
era. The threat is especially dangerous since many people let their pictures be public
on the internet, in particular, on social networks. An intruder can find many high-
quality photos without needing anything more than the user’s name and exploits
them to operate the attack. In order to strengthen the authentication process, the
administration can add to the system a new security layer which can reduce this
vulnerability as known as the liveliness detector or face spoofing detector. The ex-
istent solutions for such layer are wide large in terms of technology but almost all
the precise methods require a complex system with two or more cameras and even
other types of sensor. The more complex the system, the less applicable the solution,
these methods are useless outside its use-cases. Therefore, in this study, we propose
a new way for liveliness detection dedicated to simple mono-camera systems like
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smartphones and tablets. This novel method exploits their movability to make use
of not only one picture but a whole video of user’s face in many poses in order to
rebuild the face in 3D coordination which is used later to distinguish a genius face
from the attack attempts.

Another crucial problem of visible face recognition is linked to the fact that all
the light and color that can be observed from human faces is only a reflection of
the light from other sources such as the sun, the lamps. Obviously, visible imagery
is highly dependent on the illumination conditions. Some research has proposed
methods that can function correctly across the change of light intensity, but there
is always a decrease in terms of precision when the modification is so brutal. No
visible face recognition method can be processed in the lack of light, but the ne-
cessity of authentication in darkness is not overrated. In this context, infrared and
particularly thermal imagery has become a promising alternative and complement
method for face recognition. However, until this day, thermal face recognition does
not achieve the required mature level to be applied widely and distributively. In
fact, the application of infrared images in face recognition process is challenged by
the lack of distinguishable feature in these images. IR spectrum has its own prob-
lems which can affect the precision of the identification program. In order to deal
with this problem, we aim to introduce a new method of thermal face recognition
solution employing 3D models of the head which contains information of vascular
network measured from a thermal video. The process is dedicated to functioning in
different use-cases where the only required equipment is a single thermal camera.

1.2 Outline

This first chapter of the Thesis introduces, in general, the context and the problems
that lead to this study. Il also describes the structure of this Thesis. The second chap-
ter is dedicated to present an overview of the automatic face recognition domain
which, in this study, is divided into two principal sections: Visible face recognition
and thermal face recognition. In the first section of this chapter, the Thesis introduces
the advantage and problematic of visible imagery. It also provides some representa-
tive methods from the beginning of computer vision to this day. Infrared technology
is presented in the next section where we emphasize how it can bypass the problem-
atic of visible imagery. But, as having been stated above, infrared technology is not
void of its challenges which is also described in the second section.

The third chapter introduces a novel approach to model the head of users by its
3D features. The chapter starts by reviewing the advantage of representing users’
face data using its 3D model. Then, the next section is dedicated to giving an
overview of the 3D reconstruction method using different sensors. The last part of
the chapter presents the details process to make this 3D model from a single video
of users’ face which is applied in two principal directions of this Thesis.
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The fourth chapter constructs and examines a new method for the detection of
one of the major problems in the visible face recognition domain: face-spoofing at-
tack. It starts with a recall of face-spoofing attack and how it can affect the authenti-
cation process. The next section describes the detailed scheme to detect this attack.
In the last part, we provide the performance of this method using the result of our
experiment.

In the fifth chapter, we propose a novel face recognition solution using a 3D
model of the head computed from a thermal video which contains information of
vascular network. By its nature, the thermal imagery can obviously detect the face-
spoofing attack and stay invariant to illuminant conditions. However, there is less
distinguishable information in a thermal image than a visible image which reduces
the precision of the face recognition process. The 3D reconstruction provides geo-
metric data of the face which can be mixed with vascular network information from
thermal imagery to improve its performance.
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Chapter 2

Literature Review

Face recognition is a task so common to humans that the individual does not even
notice the extensive number of times it is performed every day. Nowadays, face
recognition has been studied as a specific case of object recognition. It has received
special attention in recent years due to a great variety of applications such as robot-
human interaction, control by gesture, surveillance, security, and people tracking.
A lot of face modeling techniques and classification methods have appeared and
have progressed in the last three decades. The very first section of this chapter is
dedicated to introducing some features of visible face recognition with its advan-
tages and problematics. Some representative methods of visible face recognition are
also mentioned and compared with each other inside a brief overview. The second
section analyzes the potential of applying infrared technology in face recognition to
solve at the same time two major problems in visible imagery linked to illumination
conditions and face spoofing attacks.

2.1 Visible Face Recognition

2.1.1 State of the art

Introduction

Authentication by biometric characteristics is the most important demand which
makes evolute face recognition. This technique has become more and more popular
and plays a key role in many security systems such as passport identification for
some airports, access control for a lot of companies and even unblocking application
for some smartphone.

The reason of this phenomenon can be explained by several advantages that face
recognition holds over other biometric technique. Face recognition is above all, a
very natural, very human-friendly process which scores the highest percentage of
compatibility with machine-readable travel documents among the 6 biometric tech-
niques (face, finger, hand, voice, eye, signature).

However, facial features are not considered as the most reliable biometric tech-
nique because of its limits in terms of performance in unconstrained environment
[1]. Facial expression, various illumination conditions, face spoofing attack, twin
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FIGURE 2.1: Face recognition example

faces problems, disguise or makeup, many data imperfection continues to challenge
the computer vision community for further progress in face recognition method.

The following part is dedicated to highlighting some typical solutions for face-
recognition challenge from the early state of this domain to now. However, visible
imagery is always vulnerable to face spoofing attacks as we asserted this problem in
the next subsection. A study of state of the art about face spoofing detection can be
found in the third part of this section.

Methods

Eigenfaces Identifying the different face from an image is the primary purpose
of face recognition. Little noise (unconstrained environmental conditions) exists in
every photo, but the presence of these noises does not make the image totally ran-
dom. There are some patterns which help in recognizing the different features of
the image. A lot of patterns which can be seen in face recognition are in the neigh-
borhood of the nose, eye, and mouth or the distance between the facial features. In
facial recognition field, these characteristics are known as eigenfaces [2]. Most of
these experiments are processed on the frontal view of the face. Principle compo-
nent analysis (PCA) is a method for extracting these eigenfaces from an image. It
is a vice-versa, that is if a system is including a set of eigenfaces then the original
image of the face can be restored. This process is efficient and practical compared to
others techniques in constrained conditions [3, 4, 2].

But this approach has a few weaknesses over unconstrained environment and
behavior such as facial expressions in which there are some changes in facial feature
and shape. Besides, the variety in pose heads to the distortion of the distance of the
elements. Thirdly, the changes in the illumination conditions, for example, the bright
light will make image saturate. But the illumination conditions can be overcome
using the Fisher face method which is an enhancement of eigenfaces, but it uses the
Fisher’s linear discriminant analysis (LDA) [5, 6].
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FIGURE 2.2: Face description using Eigenface and Fisherface

Neural Networks Neural network gives a nonlinear method to the face recogni-
tion demand. Its principal advantage over the linear techniques is that it reduces the
rate of bad classification within the neighborhood classes. The first neural network
solution used for face recognition is WISARD; it includes the dedicated network for
each individual [7]. The development of a neural network is essential for face recog-
nition. The training time of the technique takes about 4 hours and the classification
time is up to 0.5 seconds.

There are multiple techniques of face recognition which employs the neural net-
work approach for face authentication. PDBNN is a probabilistic decision-based
neural network and it applies the idea of decision based neural network (DBNN)
[8, 9]. The network approach is not entirely connected with this method. The net-
work is split into K subnets; each subnet identifies one individual from the set. Its
neurons use Gaussian activation function. The "face-subnet" is the summation of
neuron outputs..

This method primarily consists of two stages. Firstly, the subnets are trained
by their own face models, and after that, the subnet features are trained by some
other appropriate samples from other face class, this stage is called as decision-
based learning scheme. Only misclassified features are utilized by the decision-
based learning scheme and not the whole of the training samples for the training.
If the samples are classified to the wrong subnet, then the parameters of the legiti-
mate subnet will be attuned, so that its decision region will be shifted closer to the
misclassified sample. PDBNN classification has the benefits of both statistical meth-
ods and neural network techniques [8]. It is simple to implement its distributed
computing process on parallel machines.
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Geometrical feature matching The overall geometrical feature of a face is enough
for identifying a person. The facial form is represented by the location and the di-
mension of the facial elements like nose, mouth, eyebrows, eye, and the face out-
line [10, 11, 12]. Mixture-distance-based method was proposed by I.J.Cox et.al [12],

FIGURE 2.3: Geometrical features detected in the face

which scored the accuracy of 95%. They used 30 manually extracted distances to
describe each face. B.S. Manjunath et. al. created 35-45 characteristic points for each
face by applying Gabor Wavelet Decomposition [13]. After counterbalancing the
various centroid position, two cost estimations, the similarity index, and topological
index were calculated. The identification accuracy, which is the best match to the
right person, was 86% and 94% of the right individual faces. The distance between
characteristics points may be convenient for finding the matches in the data set. But
they are more dependent upon the accuracy of the feature-dependent algorithm.

Template Matching In the template matching approach, images are described by
the 2D matrix of intensity, and these values are compared by metrics methods such
as Euclidean distance using a single template which describes the whole face. There
are multiple techniques based on the template matching, in which the entire face is
represented by more than one model [14].

Bruneli and Poggio chose four feature regions (eyes, mouth, nose and the whole
face) [15]. While comparing the performance between the template matching solu-
tion and the geometrical matching solution on the same face database, they observed
that the geometrical matching solution is less accurate than the template matching
algorithm. However, the requirement of high capacity in computation is the most
crucial limit of template matching and, furthermore, the difficulty also situates in the
template representation. There are a few discrepancies between the test image and
the template. This tolerance might influence the achievement of the face recognition
method.
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FIGURE 2.4: Regions for template matching

Thermal image based technique The thought of a thermal image was introduced
to overcome the distortions and the illumination variation. It takes the subsurface
characteristics of the face which may be admitted as a biometric feature. In this
method the obtained thermal images are given to morphological processes and fil-
tration, selecting the features of the face which can be employed for face recognition.
Principally the outlines of the face are taken into account.

A study was conducted by Chen in which they compared the visible image meth-
ods and infrared methods [16]. In the experiments, it was shown that the visible
image methods were outperformed by the infrared technique when they were done
in an environment where the illumination condition was not constrained.

Selinger and Socolinsky affirmed that the combination of the two (infrared and
visible imagery techniques) improved the performance when the experiments were
taken outdoor whereas the thermal image based techniques have a few drawbacks
such as the temperature of the skin [17, 18]. Although, it has been remarked that
unlike thermal imagery, the hyperspectral information of the face is least influenced
by the temperature than the thermal radiance. Before it, the spectroscopy has also
been studied broadly in the remote sensing applications and biomedicine, assessing
that various people show a high variation on the hyperspectral features of the facial
texture, but these characteristics do not vary for the same person under different
brightness condition and over the time.

Problematic

Illumination A face is a 3D object, thanks to which various light source on the face
can cause different obscurations and various brightness [19]. The variation in face
images of different individuals can be less notable than the variation of the image of
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FIGURE 2.5: Face recognition’s problematics.

the same individual in different illumination conditions. There have been multiple
studies to develop facial features which are invariant against lighting variations [20].

Another problem associated to the absence or the lack of illumination which
makes visible imagery useless. In this dark environment, even face detection cannot
be accomplished. The presence of another camera type such as thermal sensor is
necessary in this case.

Face spoofing attack Spoofing attack is trying to get a false acceptance of the au-
thentication system using fake evidences. In the case of face spoofing, the attacker
can use a photo, a video or a 3D mask of legitimate user as fake proof. In this digital
era, a photo of normal person can be easily found in social network which makes
the whole system become vulnerable.

Twin Faces Due to security purposes, the issue of twin faces was introduced. Even
the human eyes get a lot of difficulty in recognizing the twins. There have been mul-
tiple studies performed on twin faces, but those are under calibrated environmental
conditions i[21]. To recognize identical twins these methods either uses the entire
face or different facial elements such as eyes, nose, and mouth.

Disguise Disguise is the most significant security menace of a system, or we can
assume that disguise is still a significant problem for face-recognition methods to
recognize a person when he or she seeks to cover its own identity to imitate some-
one else. There are few proposed solutions by researchers in which the difficulty of
disguise can be resolved [22].

However, this problem is not necessarily considered in an authentication system
which can demand the person to take off his or her disguise when it detects one. It
is the make-up, a type of unintentional disguise, which is the real problem for the
identification process.
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Facial expressions The expression is an internal movement of the image which cre-
ates huge intra-class variations. Various facial expressions which hinder the perfor-
mance of face identification are joy, astonishment, anger, anxiety, sorrow, excitement
and many more. To handle these expression problems, there are 3D model-based
approach and local features based approach [23, 24].

FIGURE 2.6: Facial expression changes the face model.

In our first study, we concentrate on the research of a new method that can detect
the face spoofing attack using a single uncalibrated normal camera such as smart-
phone. The concept of this type of attack will be introduced in the next section.

2.1.2 Face Spoofing Attack

Introduction

Face spoofing is an active attack against the authentication system by face recogni-
tion [25, 26, 27, 28, 29, 30]. The notion active emphasizes the real intention of the
attacker instead of a normal user’s mistake like the case of makeup or natural prob-
lems such as illumination conditions of facial expressions. In this case, the attacker
is supposed to have sufficient knowledge of the system mechanism.

Attackers have many ways to attack a facial recognition system [31, 32, 33]. They
can utilize a photo of legitimate user printed on a piece of paper or displayed on an
LCD screen and present it in front of the camera in operation. They can also replay
a video which filmed the victim previously or evenly use a 3D mask to mislead the
face detection process. Face spoofing can be classified into two types of attack by
their false proof of authentication: 2D attack and 3D attack. The 2D attack can be
further divided into photo attack of video attack (replay attack). Since the attackers
are supposed to know the authentication method, they can choose and customize
their attack for each system.

Photo attack

In the early age, face spoofing could be accomplished using a single printed photo
of a legitimate user. The attacker shows this photo to the biometric sensor (in our
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FIGURE 2.7: Different types of face spoofing attack.

case, the biometric modality is usually a camera) which considers this one as a proof
of authentication and grants access to the owner. This type of simple process bears
the name of its material: photo attack. It is the easiest and also the most widespread
method especially as users photo can be simply retrieved from the social networks
such as Facebook, Twitter, and Instagram [34] .

An advanced type of photo-attack in which high-resolution prints of eyes and
mouth are morphed is developed under the name photographic masks. During the
attack, the impostor placed himself behind, so that certain facial movements like
eyes blinking or random face expression is reproduced [35]. Photographic masks
become a crucial threat to a lot of face liveliness detection methods which uses these
facial movements as the ultimate information for their classification.

Video attack

Video attack is another advanced version of photo attack in which the attacker re-
plays a video of the genuine user in front of the camera [36]. The video can be taken
by a smartphone, a tablet, a surveillance camera, with or without the cooperation of
the user. The screen that displays that video can also be diverse in terms of size and
resolution. The main purpose of replacing a photo with a video is also to reproduce
some facial movement in order to deceive the authentication system [37, 38].

For the same idea to mimic certain face movement video attack is closer to the
original version than photographic masks. However, the video replayed is a fixed
sequence which cannot interact with the system. In some case of an active system
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FIGURE 2.8: Photo attack illustration.

which demands the user to generate an unexpected expression, the video attack may
be totally inefficient. Furthermore, a video which focuses the most on the users’ face
is more difficult to retrieve than a single photo.

3D mask attack

The 3D mask attack is the most advanced attack due to the depth elements in the
facial features [39]. In 3D mask attack, attackers have to focus on their target and
do firstly manage to construct a 3D mask or maybe a sculpture of the target. The
3D masks are usually made of different materials and sizes, i.e., paper, plastics and
silicon. If the mask is constructed perfectly, there is less chance to detect it. However,
the achievement of this type of attack is quite difficult and expensive.

2.1.3 Face Spoofing Detection

The issued research studies through the former 20 years have shown that important
protection against the spoofing of biometric proof has taken place making biometric
method safer and more robust thanks to the intense efforts of researchers [40, 41].
Many approaches have been proposed in the literature to deal with face spoofing
attacks using different features like texture, liveliness, structure, etc. These types of
method of detection can be introduced as follows:
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FIGURE 2.9: 3D-mask attack enhanced by painting.

Textural information

Textural information, which manages to be different between real-face images and
fake ones, can be exploited for face spoofing detection. From a single image, Matta et
al. [42] propose to analyze the texture of facial images using multi-scale Local Binary
Pattern (LBP). In the same spirit, Kim et al. [43] , also utilized LBP, but in fusion with
frequency analyses by using the power spectrum. Other researchers exploited the
Local Graph Structure (LGS) [44] or its improved versions (ILGS, SLGS) as texture
descriptors to conceptualize their face spoofing detection method. Another method
proposes to exploit the statistic behavior of the distribution of noises local variances
to detect face spoofing attacks [45].

Zhang et al. [46] proposed a texture based technique in which Lambertian model
was employed to recognize the human skin and SVM (Support Vector Machine) was
applied to classify the real person and imposter. This liveness detection method
has some limit dueing with real-time spoofing attempt in unconstrained conditions.
The low-resolution webcam ( 320x240 pixel frames at 25 fps) used in this experiment
gave an accuracy of 7% error rate.

Zinelabidine Boulkenafet et al. [47] described a face spoofing detection tech-
nique using color texture analysis. In this algorithm, the researcher concentrated
on luminance data of the face photo and the chrominance data was rejected so that
this method could recognize the legitimate users. This novel approach is tested on
CASIA-FASD database, Replay Attack database, MSU mobile face spoof database.
The results showed by experimentation is n accuracy of 0.4% error rate.

Ivana Chingovska et al.[48] suggested a texture feature technique in which the
Local Binary Pattern (LBP) algorithm was applied. Tests were made various sorts of
databases: NUAA Photograph Imposter Database, Replay Attack Database, Public
Database, and CASIA Face Antispoofing Database. This strategy presented 15%
total error rate of different databases.

Jukka Komulainen et al. [49] presented a context-based face anti-spoofing method
in the year of 2013. The experiment was tested with two publically accessible databases,
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FIGURE 2.10: Face spoofing detection algorithm based on color tex-
ture analysis. [47]

and it made 3% error rate to recognize the genuine person and the imposter.
Nesli Erdogmus et al. [50] proposed a 3D mask spoofing attack detection method

in 2014. The researcher applied Linear Discriminant Analysis (LDA), Modified Local
Binary Pattern (MLBP), and Support Vector Machine (SVM) to distinguish the gen-
uine user and the imposter in biometric techniques. Morpho database and 3D Mask
databases were employed to make the experiments. According to the suggested
process, the test showed a 3% error rate.

Santosh Tirunagari et al. [51] introduced a visual dynamic method. The re-
searcher suggested a classification scheme including Principal Component Analysis
(PCA), Local Binary Pattern (LBP), Dynamic Mode Decomposition (DMD), and Sup-
port Vector Machine (SVM). All these combinations of classification techniques pro-
vided more precise results to detect the spoofing attack. This scheme was tested em-
ploying three accessible databases: Replay Attack Database, Print Attack Database,
and CASIA-FASD Database. The test shows an error rate of 9.50%.

Shervin Rahimzadeh et al. [52] introduced various descriptor mixing method.
This kernel mixing method was constructed based on a fast kernel discriminant
analysis (KDA). The test was executed on another publically accessible database. In
this method, multi-scale, dynamics binarized statistical image patents were utilized.
The researcher assessed the method on Replay Attack database, CASIA database,
NUAA Photograph Imposter and Cross database which generated an error rate of
1.67%. The obtained results display an improvement in recognizing the different
spoof attacks as compared to other methods.

Allan Pinto et al. [53] suggested a face spoofing technique based on visual code-
books of spectral-temporal cube methods. This texture-based technique was based
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on support vector machine. Mid-level feature extractors were used rather than low-
level feature extractors. This suggested method was realized on databases of all
types such as photos, video, and 3D mask database and the achieved results were a
0.6% error rate on different databases.

Akshay Agarwal et al. [54] introduced a novel strategy using hard lick method
on Face antispoofing. The technique yielded an error rate of 1.1% on video database.
However, the technique demonstrated less effective performance on photo databases
and 3D databases.

Liveliness Detection

Some approaches manage to distinguish real faces from spoofed faces by seeking
proofs of liveness from a sequence of images or from a video capturing the face.
Kollreider et al. [55] proposed an approach in which lip movements are exploited
for face spoofing detection while the user is asked to speak some numerical digits.
Huyng-Keun Jee et al. [56] , in their approach, proposed to study uncontrollable
movements of eyes regions, such as the eye blinking or pupil movement.

FIGURE 2.11: Score the eye closity to detect eye blinking.

Lin Sun et al. [39, 57] described a real-time liveness detection method against
photo attack in 2006. This method detects involuntary eye blinking. This method de-
mands no additional device besides a webcam. Adaboost classifier and HMM meth-
ods are applied for eye blinking detection which yields high accuracy results with
3% error rate. In these studies, the researchers exploit eyes movements by modeling
and detecting the two principal states of the eyes: opened-state and closed-state.

Mihai Gavrilescu et al. [58] proposed soft biometric methods using the neural
network and principal component analysis. In this video-based face recognition
scheme, the researchers employed several facial expressions on people in various
frames. The results showed an error rate of 5.5%.
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Structure and motion study

Some other methods exploit the differences between 2D objects and a 3D face in their
structure, their moving features or the depth information that they provide. For
instance, Kim et al. [59] proposed to compare images captured in different focusing.
For a 3D object, due to depth information, the difference between images of different
focusing will be clearer than the one in the case of 2D objects. The approach permits
to identify efficiently spoofing attacks using a 2D display support. Studying the
difference in the behavior of optical flow generated by 2D spoofed face and real face
have been also envisaged.

K.Kollreider et al. [60] described a holistic liveness detection technique. In this
integral method, K.Kollreider proposed a lightweight novel optical flow method us-
ing score based technique. This method based on Gabor and SVM (Support Vector
Machine) yields an error rate of less than 0.5%.

Anjos et al. [35] proposed a motion-based method which uses the monotone mo-
tion of a photo attack. In this method, the Print-Attack database, which includes 200
videos for 200 real-time attempts using 50 photogs were employed. The experiment
demonstrates a moderate success of the technique with an error rate of 10%.
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TABLE 2.1: Existing methods comparing.

Author Methods Attacks Database Accuracy
Pan et al.
(2007)

Eyeblink Detection using
conditional random field
(CRP)

Photo Public Database
and NUAA Pho-
tograph Imposter
Database

Error Rate= 2%

Kollreider et
al. (2008)

Motion Detection Photo and
Video

Proprietary Error Rate= 3.5%

Kollreider et
al. (2009)

Face motion Detection us-
ing optical flow of lines

Photo Proprietary Error Rate= 0.5%

Tan et al.
(2010)

Face texture using the
Lambertian model

Photo Public Database
and NUAA Pho-
tograph Imposter
Database

Error Rate= 15%

Anjos et al.
(2011)

Context-Based using cor-
relation between face mo-
tion v/s background mo-
tion

Photo Public Database
and Print Attack
Database

Error Rate= 10%

Zhang et al.
(2011)

Reflectance using multi-
spectral lighting in 2D im-
ages

Photo, Video
and 3D
Masks

Public Database
and Print Attack
Database

Error Rate= 7%

Chingovska
et al. (2012)

Face Texture using Local
Binary Pattern (LBP)

Photo and
Video

Public Database,
Replay Attack
Database, NUAA
Photograph Im-
poster Database
and CASIA Face
Antispoofing
Database

Error Rate= 15%

Komulainen
et al. (2013)

Context based using up-
per body & spoof support
Detection

Photo and
Video

Public Database,
NUAA Photo-
graph Imposter
Database and
CASIA Face Anti-
spoofing Database

Error Rate= 3%

Nesli Erdog-
mus et al.
(2014)

Modified Local Binary
Pattern (MLBP) + Linear
Discriminant Analysis
(LDA) + Support Vector
Machine (SVM)

Photo and
3D Mask

Morpho Database
and 3D Mask At-
tack Database

Error Rate= 3%

Santosh
Tirunagari
et al. (2015)

Principal Component
Analysis (PCA) + Local
Binary Pattern (LBP) +
Support Vector Machine
(SVM)

Photo and
Video

Print Attack
Database, Replay
Attack Database
and CASIA-FASD
Database

Error Rate= 9.5%

Infrared technology is also known as a robust solution against face spoofing at-
tack. In the next section, we focus on thermal face recognition methods in recent
years and assert its capacity to compete with visible imagery in some particular
cases.
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TABLE 2.2: Existing methods comparing.

Author Methods Attacks Database Accuracy
Shervin
Rahimzadeh
Arashloo et
al. (2015)

Spectral Regression ker-
nel discriminant analysis
(SR-KDA)

Photo and
Video

Replay Attack
Database, CASIA
Face Antispoof-
ing Database,
NUAA Photo-
graph Imposter
Database and
Cross-Database
Evaluation

Error Rate= 1.67%

Mihai
Gavrilescu
et al. (2015)

Neural Network (NN)
+ Principal Component
Analysis (PCA)

Photo and
Video

Honda/UCSD
Video Database,
Youtube Faces
Database, Replay
Attack Database,
NUAA Photo-
graph Imposter
Database and
CASIA Face Anti-
spoofing Database

Error Rate= 5.5%

Allan Pinto
et al. (2015)

Partial Least Square (PLS)
and Support Vector Ma-
chine (SVM)

Photo, Video
and 3D
Masks

Replay Attack
Database, CASIA
Face Antispoofing
Database, UVAD
Database, 3DMAD
Database

Error Rate= 0.6%

Zinelabidine
Boulkenafet
et al. (2016)

YCbCR + HSV Photo and
Video

Replay Attack
Database, CASIA-
FASD Database
and MSU mo-
bile face spoof
Database

Error Rate= 0.4%

Akshay Ag-
garwal et al.
(2016)

Haralick Texture Features
+ Discrete Wavelet Trans-
formed + Principal Com-
ponent Analysis + Sup-
port Vector Machine

Photo and
Video

3DMAD Database,
CASIA-FASD
Database and
MSU-MFSD
Database

Error Rate= 1.1%

2.2 Thermal Face Recognition

For the last few years, Infrared imagery has attracted particular attention, princi-
pally thanks to its robustness against the changes in illumination by visible light
and its capacity of liveliness detection. This section is divided into three parts. The
first subsection analyzes the thermal spectrum with its features, its advantages, and
its limits. The second part gives a brief overview of thermal face recognition solu-
tions. A very potential solution using the vascular network is described in the last
subsection.
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2.2.1 Introduction

Thermal Spectrum

Infrared radiation (IR) is a type of electromagnetic radiation (EMR) of which wave-
lengths are longer than wavelengths of visible light. Infrared radiation is ordinarily
invisible to the human eye and hardly distinguishable by human perception. A de-
tailed report of its physical characteristics, which is outside the border of this thesis,
can be found in [61]. Infrared imagery can be used in many applications as follows:

FIGURE 2.12: Infrared imagery application

In the scope of face recognition, information obtained by an infrared sensor has
particular advantages over standard cameras which are used in the visible spectrum.
For instance, thermal data of the faces can be acquired under any illumination con-
dition, even in the absence of any lighting source or absolute dark environments,
and there is some study which proves that infrared face image may exhibit a higher
degree of robustness to facial expression change [62].

Infra-red radiation is also less affected by scattering and absorption by dust or
smoke than reflected visible light [63, 64]. Another advantage of infrared imagery
is based on its capacity to detect any disguise in the face of which the material may
not radiate the same way as human skin. In contrast to visible spectrum imagery,
infrared imagery can be used to extract not only exterior features but also useful
subcutaneous anatomical information, such as the blood perfusion or the vessels
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FIGURE 2.13: Infrared image for face recognition

feature of a face [65]. Finally, unlike visible spectrum imaging, thermal vision can
naturally detect face spoofing attack.

Spectral Composition: In the existing literature, it has been customary to divide
the infrared spectrum into four sub-bands :

• Near IR (NIR): wavelength 0.75 - 1.4 µm.

• Short wave IR (SWIR): wavelength 1.4 - 3 µm.

• Medium wave IR (MWIR): wavelength 3 - 8 µm.

• Long wave IR (LWIR) : wavelength 8 - 15 µm.

FIGURE 2.14: Transmitting rate in atmosphere of IR spectrum

This classification of the IR spectrum is also observed in the manufacturing of
infrared cameras, which are usually made with sensors that correspond to energy
radiation constrained to a specific sub-band.
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It should be highlighted that this classification of the IR spectrum is not arbitrary.
Instead, different sub-bands correspond to continuous frequency chunks of the solar
spectrum which are divided by absorption lines of different atmospheric gasses [61].
In the scope of face recognition, one of the most significant differences between the 4
IR sub-bands emerges as a result of the human skin’s heat emission spectrum which
is, in ideal condition, shown in Figure 2.15.

FIGURE 2.15: Infrared spectrum

Usually, the NIR and SWIR bands can be referred to as "the reflected infrared
radiation." The human’s body does not emit a significant amount of electromagnetic
energy in these sub-bands. In fact, the NIR and SWIR bands are dominated by the
reflected radiation. Just like the visible imagery, these two sub-bands require an
additional energy source ( which can be in the form of light or heat.

The MWIR and LWIR bands are often labeled as "thermal infrared radiation".
Unlike NIR and SWIR bands, they do not require any additional source of infrared
energy since the human’s body emits strong electromagnetic radiation in these spec-
tra. Since IR sensors in these bands depend mostly on the amount of emitted energy
of a recorded object, they are, in the contrast of visible light camera, invariant to the
change of lighting conditions, robust against a lot of problems like weather condi-
tions and can operate in complete darkness.

Especially, since most of the heat radiation is emitted in LWIR sub-band, MWIR
sub-band plays a lower role in the thermal spectrum. However, heat energy emitted
in MWIR sub-band is usually strong enough to overcome any other type of radiation.
Both of these sub-bands can be used in a passive thermal system. That is one of the
reasons why thermal sub-band like LWIR or MWIR have received the most attention
in the context of face recognition. Unlike them, body heat emission in the SWIR and
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FIGURE 2.16: SWIR image is almost as details as visible image

NIR sub-bands is minimal, and face recognition systems operating on data acquired
in these sub-bands require appropriate illuminators. The sensors used in NIR sub-
band is very close to the ones used in visible imagery which make it start to receive
a lot of attention from the face recognition community, while the utility of the SWIR
sub-band has yet to be studied in depth.

FIGURE 2.17: Face image in the visible spectrum (left), SWIR, MWIR,
LWIR(right)

Infrared images captured under different sub-bands tend to have different prop-
erties. Infrared images provide fewer details than visible cameras since they are
monochrome. The color obtained in the visible spectrum can be naturally inter-
preted and contains more information. The one taken under SWIR or NIR is very
detailed, close to visible imagery. The details level of the infrared image decreases
when the wavelength increases. LWIR camera provides the least details among these
sub-bands, and it is also the only sub-band which achieves full invariance to illumi-
nation conditions.

In general, infrared sensor does not distinguish various wavelengths inside a
sub-band. Color sensors require a highly complex structure to classify wavelength
which is very difficult to be applied into infrared modality. The infrared spectrum
is much larger than the visible spectrum and cannot map uniformly into the human
color system. Outside the visible spectrum, color does not have a natural interpreta-
tion.

Infrared images are typically displayed in the form of grayscale images which de-
scribe the intensity of infrared energy captured by each pixel. Lighter area represents
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TABLE 2.3: Infrared sub-bands comparing.

NIR SWIR MWIR LWIR

Wavelength 0.75 - 1.4 µm 1.4 - 3 µm 3 - 8 µm 8 - 15 µm

Illuminator + + - -

Details ++ + - –

Lighting Invariance – - + ++

Type Reflected Reflected Thermal Thermal

higher temperature (eyes, lips) However, in some particular case, these monochro-
matic infrared images can be shown in pseudo-color where different colors represent
the change in intensity. This technique favors the human vision of which color con-
ception can be easier to distinguish different intensities. The pseudo-color is not
absolute but relative, that means in different images, one temperature may be repre-
sented by different colors depending on the temperature range of the object and the
background.

The use of infrared imagery for automatic face recognition has its own problems
and challenges. For example, thermal images are sensitive to the environmental
heating condition, as well as the emotional, physical and health condition of the
person. LWIR images are even affected by alcohol intake. Another problem source
is the eyeglasses which are totally opaque to many of the IR spectrum (LWIR, MWIR
and SWIR) [66, 67]. This means that a large area of the face wearing eyeglasses
may be occluded, causing the loss of important discriminative features around the
eyes. Unsurprisingly, each of the problem has begun a new research direction. Some
researchers have proposed fusing the information from IR and visible modalities as
a hybrid solution to the problem of eyeglasses opaqueness. Others have suggested
methods which use infrared images to extract a map of invariant features such as
facial blood perfusion data[ [65] or vascular network [68] in order to overtake the
temperature dependency of thermal "appearance".

Thermal Sensors

Cooled infrared detectors: The conventional cooled infrared sensors detect and
convert electromagnetic energy in the same way as standard visible-light camera (in-
deed, they are made of different materials). Without any cooling system, the infrared
radiation of the object is mixed with the energy emitted by the sensors themselves.
The cooling system can keep the sensor’s temperature at a prefixed level so that the
energy captured by sensors does not vary by detector status.
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FIGURE 2.18: Infrared image in pseudo-color

Cooled infrared sensors are mainly contained in a vacuum-sealed case or Dewar
and cryogenically cooled. The cooling system is requisite for the operation of the
semiconductor materials used in these sensors. Depending on the sensor technology,
operating temperatures can vary from 4o K to a little lower than room temperature.
However, a great part of cooled detectors functions in the 60 o K to 100 o K range.
The most commonly used cooling systems are rotary Stirling engine cryocoolers.

The disadvantage of cooled infrared cameras is their expensive cost to produce
and to operate. Cooling is not only energy consuming but also take a lot of time.
These cameras may need several minutes to cool down before they can begin to
run. Although the cooling apparatus is comparatively bulky and expensive, cooled
infrared sensors provide images in higher quality compared to uncooled detector
thanks to their superior capture rate.
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FIGURE 2.19: Image taken by cooled Infrared camera(left) in high
capture rate compared to one taken by uncooled camera(right)

Uncooled infrared detectors: Unlike the cooled camera, uncooled thermal cam-
eras use a sensor running at ambient temperature or a sensor which could be sta-
bilized at a temperature level just below ambient temperature using small temper-
ature control elements. Modern uncooled detectors all use microbolometer sensors
that work by the change of electric aspects like resistance, voltage or current when
heated by infrared radiation. Unlike photons detectors, energy detectors like mi-
crobolometer do not directly count the amount of input photons but measure only a
total captured energy level. The variation of these electric elements is measured and
compared to the original values of the sensor.

Uncooled infrared sensors do not require any bulky, expensive, energy consum-
ing cryogenic coolers. They also need to be stabilized to a fixed operating temper-
ature to reduce image noise, but this temperature is not as low as the one required
by a cooled detector. These advantages make infrared cameras smaller and cheaper
than cooling technology so that an uncooled camera can be added into any individ-
ual machine such as smartphone or drone.

However, in uncooled detectors, the temperature variance at the sensor pixels
are miniature; a 1oK variation at the object produces merely a 0.03 oK difference at
the detector. The pixel response rate is also much lower than a cooling system, at the
level of tens of milliseconds. This makes their resolution and image quality more
moderate than a cooled camera. This is because of differences in their fabrication
material which is limited by currently available technology.

Uncooled sensors are principally based on pyroelectric and ferroelectric materi-
als or microbolometer technology. These materials are used to form pixels with a
high level of temperature-dependency in some electrical properties.

Advantages

A significant part of the early work on the capacity of infrared images as identity
proof was studied by Prokoski et al. [69]. They were the first to propose the idea that



2.2. Thermal Face Recognition 27

FIGURE 2.20: Microbolometer used in Uncooled infrared detectors

thermal "appearance" of a face could be used to retrieve distinct biometric features
which contain a high level of repeatability and uniqueness.

The invariance to complex Ilumination condition The invariance to complex Ilu-
mination condition is the most essential advantage of using thermal face recognition
compared to using standard visible imagery. The lightning has very little affectation
upon the infrared signature. The longer the wavelength, the weaker the variance.
Under LWIR sub-band, thermal radiation does not depend on any illumination fac-
tor. This is also the main purpose of using thermal imagery in face recognition [70].

FIGURE 2.21: Thermal image is more robust against various illumi-
nation conditions than visible one
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FIGURE 2.22: Early vascular network model

Facial expression and pose positions are two challenges that a face-recognition
system must overcome in order to be useful in most real case application. Using the
image space differences between infrared and visible images, Friedrich et al. [62]
shown that infrared images are more robust against changes in facial expression or
head pose than their standard visible imagery.

Face spoofing and disguise are also crucial risks that attack the authentication sys-
tem by face recognition. The property of thermal imagery also opens the possibility
of non-invasive extraction of superficial anatomical features for recognition such as
blood perfusion and vessel patterns. Naturally, the blood vessel which transport cir-
culating blood continuously , are warmer than the surrounding area. This property
can be captured by the thermal camera and be extracted by processing technique
in order to isolate the blood vessel from the face image. An essential characteristic
of these patterns which makes them particularly interested in face identification is
that the blood vessels are defined by young day and form a realative network which
remains very little affected by ageing factors such as ageing. Furthermore, it seems
that the human vessel feature can also respond for another key challenge: the scala-
bility in large populations. Prokoski et al. assume that about 175 blood vessel based
minor features can be retrieved from a complete facial image [71] which, they con-
sidered, can represent a far greater amount of possible setting than the number of
the maximum human population. However, the authors did not propose a particu-
lar method to obtain the minutiae in question.

In the very same work, Prokoski et al. also indicated that spoofing attempts and
disguises can both be detected naturally by infrared imagery. The critical proof is
that the temperature signature of artificial hair or other facial mask differs from the
heat distribution of natural skin and hair, allowing them to be distinguable one from
another. This fact also provides thermal imagery immunity against the face spoofing
attack. Making a mask which can match the vessel pattern of someone else is almost
impossible for now.
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Monozygotic twins: An interesting issue first proposed by Prokoski et al. [71]
involves the thermal signature of monozygotic twins. The image of monozygotic
twins is almost indistinguishable in the visible spectrum. Using a little number of
infrared image of monozygotic twins which were evaluated for similarity, Prokoski
et al. observed that the variation in appearance was significantly higher in the in-
frared imagery than in the standard visible representation, and provides sufficient
proof to automatically distingue these twins.

Limits

In the scope of automatic face recognition and identification, the main problematic
specific to the LWIR sub-band images, the only sub-band of the infrared spectrum
can provide absolute invariance to illumination, arises from the fact that the heat
model emitted by the object is affected by a lot of mixing variables, such as envi-
ronmental temperature, atmosphere flow conditions, postprandial metabolism, ex-
ercise, sickness, alcohol and drugs [72]. Some of these variables create local, other
global infrared appearance changes. Wearing make-up, enduring stress, blushing,
having an infected tooth or even a headache are examples of issues which can affect
the thermal appearance.

The great sensibility of the facial infrared image in no small number of exter-
nal factors challenges the thermal face recognition community in finding persistent
and discriminative features. It also provides proof for the ideas first proposed by
Prokoski et al. [71] who discussed against the use of appearance-based methods for
thermal face recognition in favor of superficial anatomical feature based approaches
which is robust against many aforementioned factors.

FIGURE 2.23: Thermal image perturbed by eyeglasses(They are not
sun eyeglasses)
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Another issue of using the thermal spectrum for face recognition is that glass,
and indeed, eyeglasses are entirely opaque to wavelengths beyond the NIR sub-
band, thus all the SWIR, MWIR, LWIR sub-bands. Consequently, an essential part of
the face which is very rich in discriminative features may be occluded in the thermal
images. In particular, the void of crucial information around the eyes can signifi-
cantly decrease recognition accuracy. Many multimodal fusion based methods have
been proposed to deal with this problem.

2.2.2 Methods

FIGURE 2.24: Categorization of thermal face recognition

The most critical challenge in face recognition is that facial thermograms provide
different details compared to image in the visible spectrum. They contain less data
in the structure and almost no information concern color and skin texture. It is cru-
cial to define features that highlight thermal face characteristics in order to use in
classification.

In the last decade, many studies in thermal face recognition have been realized
using the same methodology as visible imagery. However, the result of these meth-
ods is far lower than the original one. A few other methods which devote only to
thermal imaging are also developed by exploiting some unique feature of infrared
images. A lot of methods use more than one step of feature extraction before the
classification that makes categorizing thermal face recognition methods more com-
plex.

In this study, we use the categorization of Ghissa el al in [73, 74], a comprehensive
survey on infrared face recognition methods. These methods are regrouped accord-
ing to their core feature extraction descriptor in three categories: Appearance-based
method, Feature-based method, and Hybrid method.



2.2. Thermal Face Recognition 31

Appearance-based approach

Inside the Appearance-based category, there are two types of approach: global ap-
pearance approach and local appearance method.

Global appearance-based approaches are the first developed methods for thermal
face recognition. These approaches reuse essentially early technologies of visible
face recognition like PCA (Principal Component Analysis) or LDA (Linear Discrim-
inant Analysis) to project the thermal image into a high-dimensional vector space.
Most of the early methods follow the work of Prokoski et al. and Socolinsky et al.
[75] The approach was enhanced by Hermosilla et al.[76] and by Desa et al. [77] who
applied KPCA (Kernel PCA) and KLDA (Kernel LDA) methods to thermal image
respectively. One drawback of these approaches is that they require a huge number
of samplings to maintain the accuracy of the covariance matrix.

Cutler described in his study an application of eigenfaces in infrared face recog-
nition using a database of 24 persons at three viewpoints (frontal, left and right pro-
files) and two facial expressions (thus 288 images in total) [78]. This database is
taken under SWIR and MWIR sub-bands. Moulay et al. [79] also proposed a face
recognition framework using probabilistic Bayesian and SVM on Equinox and Laval
University multispectral face databases. However, in the same study, the author re-
ported that the best result is obtained by LDA.

Wu et al. proposed in [80] an architecture using CNN (convolutional neural net-
work) for face recognition. The author wants to replace traditional methods using
hand-crafted features that need a great work for feature selection and extraction
by an auto process. CNN method is also applied experimentally on RGB-D-T face
database . Simon et al. state that CNN architecture can achieve higher accuracy
in face recognition than other traditional features like LBP or HOG (Histograms of
Oriented Gradients) [81]. Using CNN method for NIR image, NIRFaceNet [82] pro-
posed by Peng et al. reached 98,48% in terms of recognition rate.

Another work studied by Orji et al. [83] combined CNN and FWT (Fast Wavelet
Transform) in order to form a deep neural network of 6 layers (one input, two con-
volution layers, two subsampling layers and an output). The author also compared
the result between with and without the preprocessing using PCA and LDA. In their
work, Kwasniewska et al. [84] used deep neural network Inception v3 for face detec-
tion and human tracking with a low-resolution thermal image acquired by a portable
camera.

Also based on deep learning, Sarfraz et al. present in their work [85] a ther-
mal/visible cross face recognition methods using DPM (Deep Perceptual Mapping).
This study has the most extensive use case among all the thermal face recognition
approach. The authentication system can match a thermal signature an object to its
visible image database which is usually already available.



32 Chapter 2. Literature Review

FIGURE 2.25: CNN structure for thermal face recognition

FIGURE 2.26: Thermal/visible cross matching using DPM

Local appearance approach considers the thermal image as a pseudo-type of vis-
ible images. It applies to some well-known local transformation like LBP (Local Bi-
nary Pattern), SIFT(Scale-Invariance Feature Transform), SURF (Speeded Up Robust
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Features), WLD(Weber Linear Descriptor), GJD (Gabor Jet Descriptor) to describe
the information of thermal images [76].

Li et al. [86] proposed an infrared face recognition method based on LBP under
NIR sub-bands. In this study, the author trait NIR image as a pseudo-visible image
and reuse standard face recognition technology to operate the classification. In order
to deal with the illumination issue, the author proposed a schema of NIR image
detector device which reduces the influence of lighting condition on face images.

In another study, Mendez et al. [87] also used LBP representation for LWIR im-
ages. They also indicated that LBP is robust against fixed-pattern noise so that not
only no noise suppressing process is necessary, but also non-uniformity correction is
not needed. Xie et al. [88] enhanced the method of applied joint encoding of multi-
scale LBP. This approach considers the correlation in divers microstructures using a
co-occurrence matrix of multiscale LBP. This method can achieve 91.2% in accuracy
under standard heating conditions which outperform classic LBP-based methods.

Other studies introduced by Wang [89] and by Majumder [90] used Gabor trans-
formation as a feature generator. However, these methods are limited by the fact
that thermal imaged have fewer details than visible ones and therefore it’s hard to
recognize the face.

Feature-Based Method

Feature-Based Method studies some unique literal features of thermal images which
do not appear in visible images. The blood perfusion model developed is a very
example of the Feature-based approach category. Seal et al. stated that thermal face
recognition could exploit local temperature changes in the face image [91]. The heat
imbalance region represents anatomical information because of the heating effect
caused by the blood flow under the skin. The author indicated that this imbalance
could be observed as texture features and could be extracted by Haar wavelet trans-
form.

In another recent study [92], Xie et al. indicated that veins structure induces a
unique thermal signature of the face which is similar to a fingerprint. A feed-forward
back propagation neural network with five layers was used in classification phases
to obtain 95.24% in terms of accuracy. The author also highlights that segmentation
preprocessing such as DAD (directional anisotropic diffusion) or region growing is
required to extract blood perfusion features.

The blood perfusion model is appreciated for its simplicity in implementation
and its robustness against various changes such as aging or illness. This thermal sig-
nature is not only independent of face geometric but also impossible to be spoofed.
The main drawback of this model is that the resolution required of the image has a
minimum, under this limit, the process cannot operate normally. The infrared cam-
era has to be closed to user’s face that makes this technique more appropriate for
authentication than passive identification.
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FIGURE 2.27: Blood perfusion model

The vascular network studied by Buddharaju [93] and later by Ghiass et al. [68]
extracts blood vessels from an image using morphological filters. These approaches
are proven to be effective and robust as a recognition method but they suffer from a
high sensibility to normalization process.

Hybrid Method

Despite a lot of advantages, the accuracy rate of infra-red face recognition is far lower
than the performance of standard visible imagery. In order to enhance the reliabil-
ity of biometrics systems, research community tends to combine thermal imaging
with other technologies and form hybrid solutions. In this category, many ther-
mal/visible fusion methods, multi-spectral methods, multimodal methods are men-
tioned as follows.

In their work [94], Bourlai et al. investigate the advantages and limitations of
cross-matching from SWIR, MWIR or NIR to visible imaging. The author state that
long distant cast a severe consequence upon thermal face recognition rate. Their
experiments indicated that cross-spectral matching is a tough challenge which de-
mands further investigation.

Zhang et al. considered in their work [95] that direct application of visible face
recognition model into thermal spectrum do not reach a satisfactory performance.
Therefore, they proposed the TV-GAN (Thermal-to-Visible Generative Adversarial
Network ), a transformation technique allows obtaining a pseudo-visible image cor-
responding to the original thermal image. The transformation is said to be able to
conserve enough of identification features to operate a visible face authentication.

Saxena et al. evaluated the possibility to used features from a CNN pre-trained
on standard visible images in heterogeneous face recognition [96]. After having ex-
plored various learning strategies with different modalities, the author state that
Near Infrared (NIR) image can recognize using the CNN pre-trained features of vis-
ible spectrum images.
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FIGURE 2.28: TV-GAN generates Visible image from IR image

In a controlled environment, Kim et al. introduced a 3D multi-spectrum sensor
system which contains three types of sensors: standard visible, thermal-IR and time-
of-flight (ToF) [97]. They evaluated different sensor combinations to determinize the
optimal one. With the proposed system, four different kinds of data could be ob-
tained: 3D depth data from the ToF camera; near-infrared data from the ToF camera;
visible (RGB) data from the color camera and thermal-IR data from the thermal-IR
camera. The system could generate 3D multi-spectrum data including the 3D model
of the head which can be used in the classification phase. The method reached 98.8%
in experimentation with lighting variation and 98.4% with pose variation.

FIGURE 2.29: 3D multi-spectrum sensor system
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2.2.3 Vascular Network

Introduction

The vascular network is the product of anatomical observations in thermal imagery.
The key idea of this feature is the higher temperature of the blood vessel in com-
paring with neighbor region. The method is proposed by [93] and is enhanced by
Reza Shoja Ghiass [68] . The so-called vascular network is a map of tubular struc-
tures extracted from a thermal image. This type of feature is proven to be a effective
transformation in thermal face representation.

Method Details

For each frame Fi (i = 1, ..., n) consider the two eigenvalues λ1 and λ2 of the Hessian
matrix computed at a certain image locus and at a particular scale s. Without loss of
generality let us also assume that |λ1| 6 |λ2| The two key values used to quantify
how tubular the local structure at this scale is are RA and S:

RA =
|λ1|
|λ2|

,

S =
√

λ2
1 + λ2

2

(2.1)

The former of these measures the degree of local "blobiness".If the local appearance
is blob-like, the Hessian is approximately isotropic and |λ1| ≈ |λ2|making RA close
to 1. For a tubular structure RA should be small. On the other hand, S ensures that
there is sufficient local information content at all: in nearly uniform regions, both
eigenvalues of the corresponding Hessian will have small values. For a particular
scale of image analysis s, the two measures, RA and S, are then unified into a single
vesselness measure:

V(s) =

 0 i f λ2 > 0,

(1− e
− RA

2β2 )× (1− e−
S

2c2 ) otherwise,
(2.2)

FIGURE 2.30: 3D vascular network model
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where β and c are the parameters that control the sensitivity of the filter to RA and
S.

In fact, the "vessel value" of a pixel is represented by the measure V(s) of the
(6s+ 1)× (6s+ 1) block centered at this pixel. Finally, if an image is analyzed across
scales from smin to smax, the vesselness of particular image locus can be computed as
the maximal vesselness across the range:

V0 = max
smin≤s≤smax

V(s) (2.3)

In the end, each vertex is associated with a value V0 which presents the vessel prob-
ability at this point. Another column V0 can be added to matrix M:

M =


x1 x2 ... xN

y1 y2 ... yN

z1 z2 ... zN

V0(1) V0(2) ... V0(N)

 (2.4)

For each intensity image, the poses, positions and contributions to the 3D model is
computed under a texture map. By using this texture map, these vascular networks
can be projected to the 3D model in order to form a 3D vessel model which represents
the 3D coordinates of vessel features (Fig.5.5).

Advantage

In our studie, Vascular Network is highly appreciated as a feature extraction ap-
proach thanks to its advantages compared to other methods.

The vessel features are robust against the change of image scale. The size of the
user’s face inside an input image or video cannot be predicted. Almost all the global
and local appearance-based methods are highly dependent on image’s resolution. A
lot of features disappear when there are not enough pixels describing them.

The vessel features are also less affected by ageing or illness. There is not any
significant change in a user’s vascular network except the case of plastic surgery.
But even in such extreme case, it is practically impossible to mimic the vessel map
of someone else.

The Vascular Network is lately mentioned in the fifth chapter of this thesis as the
primary feature extraction of the thermal image. The next chapter looks at the 3D
model of user’s face and its reconstruction by various techniques. A methodology
using minimal equipment to obtain 3D data will be described at the end of that chap-
ter. This little restraint allows a broad range of applications for this methodology.
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Chapter 3

3D Reconstruction

3.1 Introduction

3D reconstruction is the domain appearing to respond for the need of capturing and
recognizing the 3D geometric form of a subject. 3D reconstruction has numerous
applications in various areas such as:

• Computer vision : object description for augmented reality, motion capture for
body tracking, robotics mapping ...

• Medicine : organ scanning and modeling.

• Entertainment: filming and gaming.

• Archaeology: visualizing constructions and objects.

• Security: face recognition, fingerprint recognition, human tracking, video surveil-
lance.

In this chapter, we will examine the capacity of representing users’ face data by its
3D model. The following section synthesizes the state of the art of 3D reconstruction
method using various sensor and technology. The last section introduces our scheme
to obtain this model from a single video of user’s face.

3.2 Existing Methods

3D reconstruction is the process of capturing the shape and appearance of real ob-
jects. This process can be accomplished either by active or passive methods. In pas-
sive methods, the number of cameras and images used in the process divides this
type into: Monocular Cues Methods, Binocular Stereo Vision and Structure From
Motion.

3.2.1 Active Method

Active methods, i.e. range data methods, using the depth map, rebuild the 3D sur-
face by digital approximation method and reconstruct the object in scenario based
on the model . These techniques actively interfere with the rebuild object, either
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mechanically or radiometrically using rangefinders, to obtain the depth map, e.g.
structured radiation, laser range finder, and other active sensing methods. A simple
example of a mechanical technique would employ a depth gauge to estimate a gap to
a rotating object placed on a turntable. More relevant active scanners release some
radiation, beam or light and catch its reflection or diffraction passing through the
object to probe an object or environment. Examples cover from colored visible light,
time-of-flight lasers, moving light source to ultrasound and microwaves [98, 99, 100].

Time-of-flight : The time-of-flight laser scanner is an active scanner that employs
laser beams to examine the subject. At the core of this kind of sensor, a time-of-flight
laser range finder resides. The laser range finder spots the distance of a facade by
measuring the round-trip period of pulsation of light. A laser is utilized to release
a pulse of light and the amount of time before a detector recognizes the reflected
light is measured. Because the speed of light c is constant, the round-trip interval is
enough to calculate the travel distance of the light, which is twice the gap between
the surface, the scanner. If t is the round-trip interval, then the distance can be cal-
culated by c× t/2 . The exactitude of a time-of-flight 3D laser scanner relies on how
accurate is the measured time t : 3.3 picoseconds (approx.) is the time needed for
light to move 1 millimeter.

The laser range finder only estimates the distance of one object in its direction of
view. Thus, the scanner examines point by point its entire field of view by turning
the range finder’s direction of view to examine various points. The view orientation
of the laser range finder can be modified either by pivoting the range finder itself or
by employing a set of turning mirrors. The latter method is usually applied since
mirrors are much lighter and can thus be rotated much quicker and with higher
precision. Standard time-of-flight 3D laser scanners are able to estimate the distance
of 10,0001̃00,000 points per second.

Triangulation based 3D laser scanners are also active scanners that employ laser
radiation to examine the environment. Concerning time-of-flight 3D laser scanner,
the triangulation laser irradiates a laser on the object and utilizes a camera to localize
the laser dot. Depending on the distance between the object’s surface and the cam-
era, the laser mark rises at various places in the camera’s range of view. This method
is named triangulation because of the triangle created by the laser emitter, the laser
dot, and the camera. The length of one side of the triangle, the one between the laser
emitter and the camera can be determined. The direction of the laser emitter corner
is also defined. The angle of the camera corner can be defined by examining the
position of the laser dot in the camera’s range of view. These three sets of informa-
tion entirely limit the contour and dimension of the triangle and provide the place
of the laser dot angle of the triangle. In most circumstances, a laser line, rather than
a single laser dot, is swept over the object to accelerate the scan process.

Time-of-flight and triangulation range finders each possess advantages and dis-
advantages which make them favorable for different circumstances. The strength of



3.2. Existing Methods 41

FIGURE 3.1: Function of Time-of-flight 3D laser scanner

TOF range finders is that they can operate across really long distances, on the scale
of kilometers. These machines are thus fitting for examining huge structures such
as buildings, houses. The problem of TOF range finders is their precision. Because
of the high speed of the laser beam, measuring the round-trip time is challenging,
and the exactitude of the length measurement is very limited, on the order of mil-
limeters. Triangulation range finders are precisely the opposite. They hold a limited
range, on the level of meters, but their precision is relatively high. The accuracy of
the triangulation range finders is on the scale of some micrometers.

Time-of-flight scanner’s precision can reduce when the beam knocks the edge of
an object since the data which is transmitted back to the machine is from two dis-
tinct places for one laser pulsation. The coordinate corresponding to the machine’s
location for a point that has stricken the edge of an object will be determined us-
ing a mean and hence will set the point in an incorrect position. When utilizing a
high-resolution scanner on a subject, the possibilities of the laser striking an edge are
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grown, and the resulting information will expose noise just behind the sides of the
object. Machines including a smaller laser width can solve this problem, but they are
restricted by the range since the laser width increments over distance. The algorithm
can also help by determining that the first object to be stricken by the beam should
eliminate the second.

At a speed of 10,000 points per second, low-resolution scans can use less than one
second, but high-resolution scans, demanding millions of samples, can use several
minutes for some TOF Machine. The difficulty that produces is distortion from the
movement. Since each point is examined at a different time, any movement in the
object or the machine will distort the obtained information. Thus, it is regularly
required to fix both the object and the device on stable stands and reduce vibration.
Utilizing these machines to scan objects in movement is pretty tough.

Lately, there have been studies on counterbalancing for distortion from tiny amounts
of vibration and distortions due to movement and rotation . When examining in one
area for any length of time slight change can happen in the machine position due
to variations in temperature. If the machine is arranged on a tripod and there is
strong daylight on one view of the device, then that side of the tripod will expand
and slowly distort the obtained information from one view to another. Some laser
machines have scale compensators included inside them to offset any motion of the
device during the scan time.

FIGURE 3.2: Principle of a laser triangulation sensor.

Hand-held laser scanners : Hand-held laser scanners generate a 3D model using
the triangulation technique introduced before: a laser dot or line is projected onto
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an object from a portable machine, and a sensor (typically a charge-coupled sensor
or position sensitive sensor) estimates the gap to the surface [101, 102, 103]. Infor-
mation is retrieved using an inner coordinate system and therefore to obtain infor-
mation when the device is in motion the position of the device must be defined. The
location can be determined by the device employing indicating points on the sur-
face or by utilizing an external tracking technique. External tracking usually takes
the appearance of a laser tracker (to give the device location) with integrated camera
(to determine the direction of the device) or a photogrammetric method employing
3 or more cameras implementing the entire six degrees of freedom of the device.
Both methods conduce to utilize infrared light-emitting diodes associated with the
machine which are observed by the camera(s) through filters giving resilience to
ambient lighting.

Information is retrieved by a machine and registered as points cloud in three-
dimensional coordination, with processing this can be reformed into a triangulated
mesh and then a computer design model, usually as non-uniform rational B-spline
surfaces. Hand-held laser devices can join this information with passive, visible-
light cameras which capture an object’s textures and colors to reconstruct a complete
3D model.

Structured-light 3D scanner : emit a pattern of light beams on the object and study
the deformation of this pattern. The pattern is projected onto the object employing
either an LCD projector or another constant light source. A camera, offset slightly
from the projector device, studies the appearance of the pattern and measures the
distance of every dots in the range of view.

Structured-light scanning is still a very active area of research with many re-
search papers published each year. Perfect maps have also been proven useful as
structured light patterns that solve the correspondence problem and allow for error
detection and error correction.

The advantage of structured-light 3D scanners is speed and precision. Instead
of scanning one point at a time, structured light scanners scan multiple points or
the entire field of view at once. Scanning an entire field of view in a fraction of a
second reduces or eliminates the problem of distortion from the motion. Some ex-
isting systems are capable of scanning moving objects in real-time. VisionMaster
creates a 3D scanning system with a 5-megapixel camera so 5 million data points are
acquired in every frame. A real-time scanner utilizing digital fringe projection and
phase-shifting method (certain types of structured light techniques) was developed,
to catch, build, and render high-density features of a dynamically deformable sub-
ject (like facial expressions) at the speed of 40 frames every second. Lately, another
device has been developed. Various patterns can be used to this method, and the
frame rate for capturing and data processing reaches 120 frames every second. It
is also able to examine isolated surfaces, for example, two swaying hands. By us-
ing the binary defocusing method, speed breakthroughs could achieve millions of
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frames every tens second.

FIGURE 3.3: Fringe pattern recording system with 2 cameras (avoid-
ing obstructions)

Two principal methods of stripe pattern generation have been developed: Laser
interference and projection. The laser interference technique operates with two broad
planar laser beam fronts. Their interference issues in regular, equidistant line pat-
terns. Multiple pattern sizes can be generated by adjusting the angle between these
lasers. The system allows for the precise and easy generation of very fine patterns
with unlimited depth of field. Drawbacks are the high cost of implementation, com-
plexities giving the ideal beam geometry, and common laser effects such as speckle
noise and the potential self-interference with beam parts reflected from subjects.
Usually, there is no means of modulating individual stripes, such as with gray codes.

The projection technique uses incoherent light and primarily operates as a video
projector. Patterns are typically produced by emitting light through a digital spa-
tial light modulator, usually using one of the three currently most popular digital
projection method:digital light processing (DLP; moving micromirror) modulators,
transmissive liquid crystal or reflective liquid crystal on silicon (LCOS) , which have
many comparative strength and weaknesses for this purpose. Other techniques of
projection could be and have been applied, however.

Patterns created by digital display projectors have little discontinuities due to
the pixel boundaries in the displays. Adequately small boundaries, however, can
reasonably be neglected as they are evened out by the smallest defocus. A standard
measuring assembly including one projector and at least one camera. For several
applications, two cameras on opposing sides of the projector have been established
as useful.

Invisible (or imperceptible) structured light utilizes structured light without in-
terfering with other computer vision tasks for which the projected pattern will be
complicated. Example techniques involve the use of infrared light or extremely high
frame rates shifting between two exact opposing patterns.
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Geometric distortions by optics and perspective must be offset by a calibration of
the measuring devices, using particular calibration patterns. An analytical model is
applied for representing the imaging features of the projector and cameras. Primar-
ily based on the simple geometric properties of a pinhole camera, the model also has
to take into account the geometric distortions and optical irregularity of projector
and camera lenses. The parameters of the camera, as well as its direction in space,
can be defined by a series of calibration analyses, utilizing photogrammetric bundle
adjustment.

There are various depth cues included in the detected stripe patterns. The dis-
placement of any single stripe can immediately be transformed into 3D coordinates.
For this purpose, the individual line has to be recognized, which can, for example,
be achieved by tracking or counting stripes (pattern recognition technique). An-
other standard method projects alternating line patterns, resulting in binary Gray
code chains classifying the number of each stripe striking the object. An impor-
tant depth cue is also produced from the changing stripe widths along the subject
surface. Stripe width is a function of the steepness of a surface part, i.e., the first
derivative of the elevation. Finally, the wavelet transforms recently are considered
for the same goal.

In many practical implementations, sets of measures combining pattern recogni-
tion, Fourier transforms, and Gray codes are obtained for a full and unambiguous
reconstruction of shapes. Another approach also relating to the area of the fringe
projection has been described, employing the depth of the field of the camera. It is
also possible to apply projected patterns primarily as a method of structure insertion
into scenes, for an essentially photogrammetric acquisition. The optical resolution
of fringe projection techniques depends on the width of the stripes related and their
visual nature. It is also restricted by the wavelength of light.

Popular optical stripe pattern profilometry hence permits for feature resolutions
down to the wavelength of light, under one micrometer, and with broader stripe
patterns, to approximate 1/10 of the stripe dimension. Concerning level precision,
interpolating over many pixels of the received camera image can produce a stable
high resolution and also accuracy, down to 1/50 pixel. Arbitrarily big objects can be
measured with correspondingly broad stripe patterns and structures. Practical im-
plementation is documented concerning objects of which size can be several meters.

As with all optical methods, reflective or transparent surfaces raise difficulties.
Reflections cause light to be reflected either away from the camera or right into its
optics. In both cases, the dynamic range of the camera can be exceeded. Transparent
or semi-transparent surfaces also cause major difficulties. In these cases, coating
the surfaces with a thin opaque lacquer just for measuring purposes is a common
practice. A recent method handles highly reflective and specular objects by inserting
a 1-dimensional diffuser between the light source (e.g., projector) and the object to be
scanned. Alternative optical techniques have been proposed for handling perfectly
transparent and specular objects.
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Double reflections and inter-reflections can cause the stripe pattern to be over-
laid with unwanted light, entirely eliminating the chance for proper detection. Re-
flective cavities and concave objects are therefore difficult to handle. It is also hard
to handle translucent materials, such as skin, marble, wax, plants and human tissue
because of the phenomenon of the subsurface scattering. Recently, there has been
an effort in the computer vision community to handle such optically complex scenes
by redesigning the illumination patterns. These methods have shown promising
3D scanning results for traditionally difficult objects, such as highly specular metal
concavities and translucent wax candles.

3.2.2 Monocular Cues Methods

The monocular cues systems indicate to use images (one, two, three or more) from
one viewpoint (camera) to proceed 3D reconstruction. It makes use of 2D charac-
teristics(e.g. Silhouettes, shading, and texture) to measure 3D form, and that is the
reason, for which it is also entitled Shape-From-X, where X can be silhouettes, mo-
tion, contour, shading, texture, etc. 3D reconstruction by monocular cues is quick
and straightforward, and only one suitable numerical image is required thus only
one camera is sufficient. Technically, it eludes stereo correspondence, which is mod-
erately complicated.

FIGURE 3.4: Example of Shape From Shading ambiguities

Shape From Shading is the method of estimating the three-dimensional shape
of an object from one image of its surface. Contrary to most of the other three-
dimensional reconstruction problems (such as stereo and photometric stereo), in the
Shape of Shading problem, information is minimal.
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Since 70’s, the first study [104] by Horn introduced the Shape of Shading problem
directly and rigorously as determining the solution of a nonlinear first-order Partial
Differential Equation (PDE) named the illumination equation. In the later decade,
the researchers concentrate on the computational section of the problem, attempting
to calculate directly analytical solutions. Topics about the existence and uniqueness
of such solutions were completely not even appeared at that moment with the critical
exception of the studies of Bruss [105] and Brooks [106]. Because of the lousy quality
of the issues, these problems, as well as those related to the convergence of digital
schemes for computing solutions, became principal in the last decade of the 20th
century.

Now, the Shape From Shading approach is considered as an ill-posed problem.
For example, many articles prove that the existing solution is not unique. Such con-
cave/convex ambiguities have usually represented the encountered problems like
the one presented in Figure 3.4. In this figure, the ambiguity is due to a variation in
the calculation of the parameters of the illumination. In fact, this sort of ambiguity
can be usually generalized. Belhumeur et al. [107] show that when the lighting ori-
entation and the Lambertian reflectance of the object are undefined, then the same
image can be captured by a connected family of surfaces (relying linearly on three
parameters). In other words, they prove that neither shading nor shadowing of a
subject, observed from a single image shows its correct 3D structure.

Photometric stereo is a method in computer vision for evaluating the surface nor-
mals of a subject by observing that subject under varying illumination conditions.
It is built on the basis that the quantity of light reflected from a surface is reliant on
the direction of the surface concerning the light source and the observer system. By
estimating the quantity of light bounced into a camera, the set of possible surface di-
rections is restrained. Given sufficient light sources from various angles, the surface
direction may be limited to a single direction.

Woodham originally proposed the method in 1980. Photometric stereo has since
been generalized to multiple other circumstances, including extended radiation sources
and non-Lambertian subject. Latter research tries to get the technique work in the
appearance of projected shadows, highlights, complex and non-uniform lighting.

The first stage in the evaluation of the normal map is to calibrate the light source
by estimating the light orientation. One method to do this is to utilize a chrome ball
on which the brightest spot is employed to recognize the orientation of the light.

Shape-from-texture Regarding a pattern with some sort of regularity, or texture,
converging on a receding surface, humans can readily recognize the 3D depth of the
scene. This fact has long since intrigued many researchers, and studies have been
made to reproduce, by a computer, this apparently highly intelligent human capac-
ity. This topic is now generally remembered as 3D recovery of shape from texture.
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FIGURE 3.5: Synthetic data generated using OpenGL to verify light
calibration

FIGURE 3.6: Depthmap by Photometric stereo

Typically, 3D reconstruction from texture is potential if we have some prior informa-
tion about the right texture; if the observed surface has characteristics separate from
those of the true texture, the 3D shape is calculated in such a way that the inconsis-
tency is accounted for. For example, if the true texture is given to be an arrangement
of components with a given shape, say circular, the patent gradient can be deduced
from the perceived distorted shape, say elliptical, of the components. If the true
texture components are given to be periodically distributed at periods of the same
interval, the patent gradient can be evaluated from the rate of the converging period
lengths. If the true texture components are aligned on parallel lines, or if individ-
ual texture components have parallel line sections, the surface gradient is induced
from the fading points determined by pairs of such lines. Similar logic is reasonable
if the true texture elements or their alignments are given to hold orthogonality or
symmetry of some sort. One significant problem about these methods is that we
must first identify the structure of the real texture regularity, periodicity, collinearity,
parallelism, orthogonality or symmetry. This is in overall very challenging to auto-
mate by a computer as the perceived texture does not show the expected regularity,
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FIGURE 3.7: Photometric stereo’s schema

periodicity, etc.
Despite this setback, these structure-based methods have been tried by many

researchers. Perhaps this is because humans apparently seem to apply this type of
reasoning: identification of such texture object is very natural for humans. Then, a
new method which does not demand the identification of texture structure arrived.
It is based on statistical hypotheses about the real texture population. For example,
if the real texture is distributed isotropically, i.e., the line sections creating the texture
possess no favored directions, the 3D surface shape can be calculated from detected
favored directions. This method was first introduced by Witkin, and the process was
developed by Davis et al. Kanatani provided an accurate numerical representation
of the problem and explicit mathematical formulae by requesting tensor calculation
and stereology.

Another potential statistical hypothesis is uniformity. When perceived, the tex-
ture seems dense on the surface part far away from the device and sparse on the
region near the device. This phenomenon has also been acknowledged to play an
essential role in human recognition of the external world (Gibson, Sedwick ) and
many tries have been done to mimic this effect by a computer. However, most of
the reasons were based on natural inspiration or heuristics (e.g., Bajcsy and Lieber-
man, Rosenfeld, Zucker et al. ). It was not until Aloimonos and Swain and Dunn
that the question was handled in analytical expressions based on the imagery ge-
ometry of perspective projection. However, their creations include several ad-hoc
approximations and hypotheses.
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3.2.3 Binocular Stereo Vision

Binocular Stereo Vision receives the 3-dimensional geometric data of a subject from
multiple images based on the study of the human visual system. The results are
displayed in the form of depth images. Images of a subject obtained by two cameras
concurrently in separate viewing angles, or by one single camera at separate times
in various viewing angles, are used to reconstruct its 3D geometric data and restore
its 3D form and position. This is more direct than Monocular techniques like shape-
from-shading.

Binocular stereo vision system needs two similar cameras with parallel optical
axis to perceive one same subject, obtaining two photos from different positions of
view. In words of trigonometry connections, depth data can be determined from the
variation. Binocular stereo vision technique is well matured and contributes to bene-
ficial 3D reconstruction, heading to a more significant performance when compared
to other 3D construction techniques. Regrettably, it is computationally expensive,
besides it works rather inadequately when baseline distance is considerable.

2D digital image acquisition is the data source of 3D reconstruction. Usually used
3D reconstruction is based on two or more images, although it may use only one
image in some circumstances. There are different types of techniques for image ac-
quisition that depends on the circumstances and objectives of the specific system.
Not only must the specifications of the system be met, but also the visual variation,
brilliance, production of camera and the feature of the scene should be considered.

Camera calibration in Binocular Stereo Vision relates to the measurement of the
mapping relationship between the image points P1 and P2, and space coordinate P
in the 3D acquisition. Camera calibration is a fundamental and necessary part in 3D
restoration using Binocular Stereo Vision.

Feature extraction is the method which intends to obtain the properties of the pho-
tos, through which the stereo correspondence performs. As a consequence, the prop-
erties of the photos approximately connect to the selection of matching techniques.
There is no such globally appropriate theory of features descriptor, heading to a
large diversity of stereo correspondence in Binocular Stereo Vision study.

Stereo correspondence this is to build the correspondence between fundamental
elements in photos, such as to match P1 and P2 from two photos. Some interference
elements in the background should be remarked, like light, noise, surface physical
property, etc.
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FIGURE 3.8: Structure from motion’s principles

3.2.4 Structure From Motion

Structure from motion (SfM) is an imaging method for determining three-dimensional
object from two-dimensional photo arrays that may be joined with local movement
signals. Humans recognize a lot of data about the three-dimensional object in their
surroundings by moving over it. When the person moves and the objects around
the person move, data is received from images seen over time. Obtaining structure
from motion represents a similar question to obtaining structure from stereo vision.
In both cases, the correspondence between photos and the reconstruction of the 3D
structure must be discovered.

The structure of an image is a projection from a 3D scene onto a 2D plane, during
which the depth data is dropped. The 3D point corresponding to a particular image
pixel is constrained to be on the line of view. From a single photo, it is improbable
to decide which point on the line corresponds to the image pixel. If two images are
accessible, then the position of a 3D point can be located at the intersection of the two
projection line. This method is related to as triangulation. The core of this method is
the connections between multiple views which conduct the data that corresponding
sets of points must include some structure and that this structure is linked to the
position and the orientation of the camera.
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FIGURE 3.9: Gray-scale and iron-palette version

3.3 Scheme

In our study, the input thermal video is supposed to contain many frames from
various poses of one head. An algorithm of 3D reconstruction is used to compute a
3D point cloud which describes the head filmed in the video. In this scenario, we use
VisualSFM - Structure from motion [108], developed by Changchang Wu , a robust
and stable reconstruction algorithm which uses not only the shape but also the color
of each pixel to compute the coordination of the face. Therefore, instead of using the
gray-scale version of intensity, the experiment observes another color representation
of thermal image: the Iron-palette which can be computed from the gray-scale one
(Fig.3.9).

These features(common edges and points) are tracked from one frame to next so
the position and orientation of each frame can be estimated by geometric calculation.
Different views of one point which can be obtained from many consecutive frames
are extracted to estimate its deep coordination and then its 3D position.

From the original video, a set of frame Fi (i = 1, ..., n where n is the number of
frames) can be extracted. Each frame is an image (p × q pixels) which contains a
view of the face:

Fi =


xi

1,1 xi
1,2 ... xi

1,q

xi
2,1 xi

2,2 ... xi
2,q

... ... ... ...
xi

p,1 xi
p,2 ... xi

p,q

 (3.1)

In fact, each frame is compared to all other frames by method SIFT (scale-invariant
feature transform). Two frames (Fc1 , Fc2 ) which maximize the similarity index are
chosen to form the base of 3D object. These common points of Fc1 and Fc2 will form
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a first model which is called ST2 (ST1 do not exist).

(c1, c2) = argmax
i 6=j

SIFT(Fi, Fj) (3.2)

Then, the process sorts all images in the decreased order of SIFT(Fc1 , Fi) which
make a complete sequence c3, c4, ..., cn. For each frame Fci (i = 3, ...n), the process will
firstly try to find the common points with STi−1 which will be called STFi (STFi ⊆
STi−1). So we have a certain points STFi in 3D coordination and its project in the
plan of camera: Fci . Thus the process will try to estimate the orientation and the
position of the camera by maximizing the similarity index between the two sets:

(Rci , Pci) = argmax
R,P

SIFT(Fci , TP(PROJR(STFi)) (3.3)

where TP is the translation operator by vector P and PROJR is the projection operator
by rotation matrix R.

Pci =

 x
y
z

 (3.4)

Rci =

 r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 (3.5)

The geometric information of Fci is represented in position matrix Pci and rotation
matrix Rci (which can be transformed to orientation matrix `i)

`i =

 θx

θy

θz

 (3.6)

(x,y,z) is the coordination of the center pixel of frame Fci , (θx, θy, θz) is its orientation
respectively in the view of Ox, Oy and Oz.

The process will, then, studies the extra part of frame Fci which is not exist inside
STFi and try to match it’s with some other nearest frame to find additional common
points STPi

STi = STi−1 ∪ STPi (3.7)

The last one (STi) becomes the 3D model formed by {Fc1 , ..., Fci}.
The set STn definite the 3D model of all frame. This 3D model form a matrix

which represents a cluster of featured points in a Cartesian coordinate system. Notes
Mini the 3D model , it can be represented as:

Mini =

 x1 x2 ... xN

y1 y2 ... yN

z1 z2 ... zN

 (3.8)
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FIGURE 3.10: 3D mesh and camera’s position

With color video a RGB matrix Mc can be associated with M

Mc =

 r1 r2 ... rN

g1 g2 ... gN

b1 b2 ... bN

 (3.9)

where N is the number of feature points and (xk, yk, zk) (k = 1, ..., N) are the
coordinates of the k-th point in the space Oxyz. (rk, bk, gk) (k = 1, ..., N) represent
the pseudo-color (which is computed from intensity) of this point.

The obtained point cloud, which is neither dense nor periodic, must be improved
using the Patch-based Multi-view Stereo (PMVS) developed by Yasutaka Furukawa
[109] and using the Poisson Surface Reconstruction studied by Michael Kazhdan
[110]. By this supplement process, the set of point is transformed into a dense col-
lection of small oriented rectangular. The algorithm of PMVS can be decomposed in
3 steps:

• Matching: Pixel-level correspondences of point cloud is computed to enhance
a portion of features points. Features found by Harris and difference-of-Gaussians
operators are first matched across multiple pictures, yielding a sparse set of
patches associated with salient image regions

• Expande: Initial matches is spread to nearby pixels to obtain a denser cloud of
points.
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FIGURE 3.11: point cloud (left), dense vertex (middle), surface (right)

• Filtering: Intensity constraints (and a weak form of regularization) are used to
eliminate incorrect matches.

These 3 steps are repeated for several iterations until the set of points (the mesh) is
dense enough. This mesh can be further refined by a mesh-based MVS algorithm
that enforces the photometric consistency with regularization constraints like Pois-
son Surface Reconstruction . The resolution of the mesh model is adaptive, and the
size of a triangle depends on the density of the nearby oriented points: The denser
the points are, the finer the triangles become. The PSR software outputs a closed
mesh model even when patches are only reconstructed for a part of a scene. In or-
der to remove extraneous portions of the mesh, we discard triangles whose average
edge length is greater than six times the average edge length of the whole mesh since
triangles are large where there are no points.

So, in fact, after the PMVS process, a matrix M (having the same structure as
Mini but having much more points, here we always use N as the number of points )
is obtained. This rebuild 3D model includes a huge number of vertex and triangular
surfaces which can be considered as a dense facial surface (Fig.3.11).

This scheme of 3D reconstruction which is applied both in visible imagery and
thermal imagery is one of the core features of our study. Geometric data from the
3D model provide robust proof to detect face spoofing attack which is described in
the next chapter. On the other hand, depth information extracted from this model
is exploited in the fifth chapter to improve the performance of our method of face
recognition.





57

Chapter 4

Face Spoofing Detection Using 3D
Model

4.1 Introduction

4.1.1 Problematic and Objectives

Authentication by facial recognition can be exploited as an additional solution to
reinforce the security level of our information systems. However, it is proven that
this solution is vulnerable. Facial recognition is easily compromised by face spoofing
attacks. Therefore, photos and video widely shared on social networks may become
a weapon against their owner’s security. Attackers have many ways to attack a facial
recognition system. They can utilize a photo of a legitimate user printed on a piece
of paper or displayed on an LCD screen and present it in front of the camera in
operation. They can also replay a video which filmed the victim previously or just
use a 3D mask to mislead the face detection process. In 3D-mask attack, attackers
have to focus on their target and do firstly manage to construct a 3D mask or maybe
a sculpture of the target. If the mask is constructed perfectly, there is less chance
to detect it. However, the achievement of this type of attack is quite difficult and
expensive. In this paper, the proposed method seeks to detect basically the photo
and video-replay attacks.

4.1.2 Contributions

In this study, we construct and investigate a new face-spoofing detection using a 3D
model of the head computed from a video captured by the user’s smartphone.

• The novel method is designed for one of the most challenging use cases: face
recognition using a smartphone which is highly dependent on the user’s be-
havior. However, the study explores some convenient features of smartphone
such as the movement capacity and motion sensor to construct an adaptive
method.

• The 3D model is super-effective against photo-attack as different in geometric
features between a real object and an image is pretty significant.
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• The process also compares the prior-motion of the camera and the captured-
motion estimated from the input video to justify the credibility of the user. This
phase can detect a large portion of video-attack.

4.2 Method Details

In the last few years, we can remark a constant evolution of mobile technology and
of the smartphone market. More and more people use smartphones to ease their
daily life as well as their professional activities. Myriad mobile applications require
or have access to personal or private information of users. Therefore, they need a
high level of security. Authentication by facial recognition is proposed as a solution
to reinforce the security of mobile systems. However, the problem of face spoofing is
always unavoidable. Actual solutions are quite relevant and optimized to settle this
problem, but just in some provided cases study. Thus, an efficient solution dedicated
to smartphone system is indispensable.

In the case of a smartphone system, which is mobile, images or videos could
be captured under different conditions of lighting, under different orientations and
with an uncontrollable background. The quality of acquisition could also be affected
by the movement of the camera and the movement relative of the acquisition sys-
tem (e.g. when a user authenticates while he is traveling in a train). In addition,
the diversity and the constant evolution of smartphone models, as well as the diffi-
culty in calibrating their cameras, are also among the big barriers for an efficient face
spoofing detection solution.

However, the presence of different sensors integrated into a smartphone may be
an advantage which allows us to develop a novel dedicated solution to face spoof-
ing detection. Indeed, with the help of the movement sensors and the multitasking
ability of smartphones, we can simultaneously capture the device’s movement in-
formation while filming the user’s face by our Android Application. (Notice that all
smartphones in our day include at least the gyroscope sensor.) At the end of this
phase, the output will include a video of the head and sensors raw data. In the case
of legit authentication, information given by movement sensors is a priori coherent
with information estimated from the camera’s outputs, but it is generally not the
same case when a spoofing attack happens. Therefore, it is a good idea to exploit the
coherence between these two sources of information as features for face spoofing
detection. Our proposed solution relies mainly on this idea.

The proposed solution consists of three major steps. Figure 4.1 shows the detec-
tion flowchart of the solution. Firstly, a 3D model of the face is estimated thanks to a
3D reconstruction process. Then, a Photo Attack Detection (PAD) classifier exploit-
ing the 3D shape is employed to retrieve photo attacks (which use a static image of
legitimate user, e.g. photo printed on paper or displayed on an LCD screen). The
construction of PAD classifier is described in the section 4.2.2. For the ones which
pass through the PAD classifier, they will be after that classified thanks to the Video
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FIGURE 4.1: Flowchart of the whole proposed detection process

Attack Detection (VAD) classifier, described in the section 4.2.3. The VAD classifier
permits to detect video-replay attacks. The ones which finally pass through the VAD
classifier would be considered as legitimate authentication.

FIGURE 4.2: Camera movements during authentication process

Apart from the necessary movement of smartphone (Figure 4.2) which requires
the collaboration of user, all other processes can be automatic. In this study, the
video and sensor data collector, 3D reconstructor and classifier are regrouped inside
an unique android application. However, the 3D reconstruction is not real-time yet
that slows down the detection. In a real scenario, it is recommended to offshore 3D
reconstruction and final classification to a dedicated server.

The next section gives details about our solution to face spoofing detection start-
ing with an overview of the method. Step by step, we will explain how our scheme
can distinguish photo and video attacks from valid attempts of authentication. The
result will be given in the last section where we discuss more about the performance
and the perspectives of the method.

4.2.1 Preprocessing: Facial 3D reconstruction

In the process of proposed method, a three-dimensional model of the object (e.g.
real face or fake face) is constructed from a video captured during the authentication
process. For a better quality of the 3D model, the user is asked to move the phone’s
camera around their face in such a way as various head poses can be captured in the
video. Two simple camera movements are considered in our proposed approach: in
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the vertical direction (i.e. upwards or downwards) and in the horizontal direction
(i.e. to the left or to the right) (Figure 4.2). These proposed basic movements al-
low applications to easily communicate with users during authentication. They also
permit to simplify the measure of coherence mentioned above.

In our study, 3D reconstruction process is assured by VisualSFM, a 3D recon-
struction application developed by C. Wu [108] using Structure From Motion (SFM).
The method requires a sequence of images in input. It gives as outputs the 3D recon-
struction of the object captured as well as information related to the camera poses.
Other recent solutions can replace VisualSFM in this step such as a faster 3D recon-
struction proposed by Maninchedda et al . The choice of technology here doesn’t
affect the final outcome severely but highly depends on the computation capacity of
smartphone .

In fact, each frame Fi in the video (i = 1, ..., n where n is the number of frames)
is compared to all other frames by method SIFT (scale-invariant feature transform).
Two frames (Fc1 , Fc2 ) which maximize the similarity index are chosen to form the
base of 3D object. After that, an extraction of common edges and interest points
(corners) is applied for all pairs of two frames:(Fi, Fcj ) where i = 1, ..., n and j = 1, 2
(this extraction based on the derivation of intensity and color of pixels). These fea-
tures(common edges and points) are tracked from one frame to next so the position
and orientation of each frame can be estimated by geometric calculation. Different
views of one point which can be obtained from many consecutive frames are ex-
tracted to estimate its deep coordination and then its 3D position. The next step is
the filter of relevant features points which appears in many frames to form the 3D
model.

The 3D model is a matrix which represents a cluster of featured points in a Carte-
sian coordinate system. Notes M the 3D model , it can be represented as:

M =


x1 y1 z1

x2 y2 z2

... ... ...
xN yN zN

 (4.1)

With color video a RGB matrix Mc can be associated with M

Mc =


r1 b1 g1

r2 b2 g2

... ... ...
rN bN gN

 (4.2)

where N is the number of feature points and (xk, yk, zk) (k = 1, ..., N) are the
coordinates of the k-th point in the space Oxyz. (rk, bk, gk) (k = 1, ..., N) represent
the color of this point.

Figure 4.3 gives an example of a real face reconstructed in the form of point cloud.
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FIGURE 4.3: Point cloud of a real face 3D model

For each frame Fi (i = 1, ..., n), all the appeared features are saved in a matrix Mi:

Mi =


k1 px1 py1

k2 px2 py2

... ... ...
kNi pxNi pyNi

 (4.3)

where Ni is the number of appeared feature points of frame Fi, (pxj, pyj) (j = 1, ...Ni),
is the pixel that represents the j-th point in Fi, k j is the coordination of this point in
M.

The geometric information of Fi is also calculated and represents in position ma-
trix Pi and rotation matrix Ri (which can be transformed to orientation matrix `i)

Pi =
[

x y z
]

(4.4)

Ri =

 r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 (4.5)

`i =
[

θx θy θz

]
(4.6)

(x,y,z) is the coordination of the camera when it captured frame Fi, (θx, θy, θz) is its
orientation respectively in the view of Ox, Oy and Oz.

4.2.2 Photo Attack Detection

2D Photo Attack

In the case of photo attacks, the 3D reconstruction given by SFM method is clearly
different from the one given in the case of a real face. Figure 4.4 shows different
views of the 3D reconstruction of a printed face. It is easy to realize that the form of



62 Chapter 4. Face Spoofing Detection Using 3D Model

the 3D reconstruction is flattering in the case of photo attack. It can be explained by
the fact that a real face is a real 3D object which contains much more depth informa-
tion than a face printed on a piece of paper.

FIGURE 4.4: Different views of a printed face 3D model

Thus, the more a 3D model is flat, the higher possibility of a photo attack. So that
we can base on the thickness of the 3D reconstruction to eliminate photo attacks.

The thickness of 3D reconstruction can be relativity estimated using Principal
Component Analysis (PCA). The PCA technique permits to transform the 3D recon-
struction into a new coordinate system (w = (w(1), w(2), w(3))), where each coordi-
nate is represented by a principal component. This transformation is defined in such
a way that the first principal component (w(1)) has the largest possible variance (i.e.
it accounts for as much of the variability in the data as possible), and each succeed-
ing component, in turn, has the highest variance possible under the constraint that it
is orthogonal to the preceding components. In that way, the variance of point cloud
projected in the last component (w(3)) is the minimum among all vectors of space
that can be used to represent the "thickness".

w(3) =

[
arg min
‖w‖=1

n

∑
i=1

(mi.w)2

]
(4.7)

where n is the number of points of the cloud, mi = (xi, yi, zi) with i = 1, .., n is the
coordination vector of i-th point.

For a simplicity of the PCA transformation, the columns of the matrix M are
firstly shifted to have a zero-mean. Without ambiguity, we use the same term M as
the matrix shifted for the following development. The principal component matrix
P is defined as an orthogonal linear transformation of the matrix M:

P = MW (4.8)

where the matrix W is a 3-by-3 matrix whose columns are the eigenvectors of MTM.
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Denote vj the variance of the i-th column of P (j = 1, 2, 3). The order of magnitude
of each column, denotes di, is given as follows:

di =
vi

v1 + v2 + v3
(4.9)

For a face spoofing attack, the points of the 3D reconstruction is in a plan. There-
fore, there is almost no information in the third component that makes d3 very tiny.
Meanwhile, for a real face, the thickness play a significant part in the total informa-
tion. Figure 4.5 (a) and (b) give an illustration of the three principal components
obtained respectively from fake and real face 3D models.

(a) (b)

FIGURE 4.5: PCA of real (a) and fake (b) face 3D reconstruction

The different is so net that a simple SVM classifier fed by the order of magnitude
di can be employed as a PAD classifier without any other processing.

Advanced photo attack

However, in a more sophisticated situation where the attacker uses some deformed
photos to create a model which a significant depth dimension, the PCA is not per-
formance enough for the detection. Here, we propose a method to extract the depth
image of the face from the 3D model to produce another proof of liveliness.

Plan estimation and coordination In this stage of preprocessing, the depth image
can be trivially extracted by fixing a plan which is perpendicular to the normal vector
of view and calculating the distance of each vertex to this plan. Ensemble of these
distances forms a map which can be called a depth image. (Fig.4.6)

For each pixel in this depth image, one vertex is linked and also its value of
vessel intensity. However, 3D reconstruction process is not always stable, it gives
relative measure rather than absolute one. This is the reason why depth value must
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FIGURE 4.6: Depth image of a face

be adjusted into [0,1].

D =


u1 v1 d1

u2 v2 d2

... ... ...
uN vN dN

 (4.10)

where ui, vi (i ∈ 1, ..., N) are the projected coordination of i-th vertex in the plan.
di is depth value which corresponds to this vertex. However, the point cloud is
not uniformly distributed. There are regions that contain much higher density of
point than the others. There are also some parts of the face representing almost all
the distinguishable features of this user that makes studying other parts is wastes.
These problems are fixed in the normalization phase.

Normalization There are two normalizations in this preprocessing: the crop of ef-
fective region of the face and the pixelization of depth and vessel image. In the
scenario of observation of a front view, the crop of effective region is simply the ap-
plication of the elliptic mask on the face using the nose tip detection. The location of
the nose tip can be easily determined by the depth image and the width of the ellip-
tic mask is calculated by the localization of information region. This crop is applied
on both images to eliminate unnecessary points.

The pixelization is, in fact, the transformation of the point cloud to an image (in
this case an image of 320× 256-pixels). This is very similar to a scaling process apart
from the fact that the point cloud is not equi-distributed. Our solution is using an
adapted version of bilinear interpolation which can be summarized as follows. For
p1, p2...ph ∈ 1, ..., N are the points inside a pixel (h ∈ 0, .., N). Assume that the depth
measure follows a linear relation to u-axis and v-axis, it can be represented by a local
function D(u, v):

D(u, v) = c0 + c1u + c2v + c3uv (4.11)

where c0, c1, c2, c3 are 4 coefficients to be determined.
In the case of h ≥ 4, the problem becomes a linear least-square problem esti-

mating C=(c0, c1, c2, c3)T that minimizes the sum S (for the case h = 4, the equation
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becomes a standard bilinear interpolation and the minimized sum must be zero):

S =
h

∑
j=1

(dpj − (c0 + c1upj + c2vpj + c3upj vpj))
2 (4.12)

This equation could be represented in matrix form as follows:

S =
h

∑
j=1

(dpj − D(upj , vpj))
2 (4.13)

where 
D(up1 , vp1)

D(up2 , vp2)

...
D(uph , vph)

 =


1 up1 vp1 up1 vp1

1 up2 vp2 up2 vp2

....
1 uph vph uph vph

×


c0

c1

c2

c3

 (4.14)

The result of this minimization problem can be directly obtained by matrix equation:

Ĉ = (QTQ)−1QT × d (4.15)

where d = [D(up1 , vp1), D(up2 , vp2)...D(uph , vph)]
T and

Q =


1 up1 vp1 up1 vp1

1 up2 vp2 up2 vp2

....
1 uph vph uph vph

 (4.16)

The depth value of the pixel can be calculated by D(u0, v0) with (u0, v0) is the center
of the pixel. In the rare event when h < 4, values of neighbor pixels can be used to
feed the bilinear interpolation solution. At the end of this phase, a depth image of
160× 128 pixels is obtained .

Gabor transformation In this study, 2D Gabor filters are applied to all depth im-
ages in order to characterize each video. The Gabor wavelets contain information
of spatial localization, orientation selectivity and spatial frequency selectivity . A lot
of robust 2D face recognition algorithms use Gabor wavelet as the principal repre-
sentation of face which places great emphasis in both spatial frequency and spatial
relations. The Gabor kernel can be described as follows:

Ψ(Z) =
k2

µ,ν

σ2 exp(
−k2

µ,νZ2

2σ2 )[exp(ikµ,νZ)− exp(−σ2

2
)] (4.17)

where µ and ν represent the orientation and scale of the Gabor wavelets. Ψ(Z) is
the value of Gabor wavelet at Z = (tu, tv). tu, tv are the centered coordination of any
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point in the plan. The coefficient kµ,ν is defined by kµ,ν = kνeiφµ with kν = kmax/ f ν

and φµ = πµ/8 so that eiφµ determines the orientation of the kernel and kν places it
into a scale. In this study, we use five scales ν ∈ {0, 1, ..., 4} and eight orientations
µ ∈ {0, 1, ..., 7}which make 40 Gabor kernels with the other parameters as following:
σ = 2π, kmax = π/2 and f =

√
2.

The representation of an image by Gabor wavelets, so-called the Gabor image,
is the convolution of the image with a Gabor kernel. However, the convolution
gives each pixel a complex value with two Gabor parts: the real part and the imag-
inary part. These two parts can be transformed to two types of information: Gabor
magnitude features and Gabor phase features. In this study, only Gabor magnitude
features are used to describe the face. For 40 Gabor kernel, 40 Gabor image can
be computed/ Each image is an ellipse of size 256x320 which includes about 63600
features, so in total 2,544,000 features to feed into the classification algorithm.

Feature Selection and final classifier The richness of Gabor transformation in terms
of quantity of features improves significantly the result of classification. However,
the complexity of this algorithm increases with the number of features. Therefore, a
scheme proposed by Chenghua Xu is applied to divide the whole system into small
ones which can work in parallel. This hierarchical selection includes two stages:

LDA sub-sampling: for each Gabor vessel image, the optimal LDA sub-sampling
extrudes massively non-efficient or redundant features by minimizing the within-
class distance when maximizing the between-class distance.

Unlike the usual sub-sampling method where the sub-windows is uniformly dis-
tributed in the image, this optimal method aims for rich-information regions where
the features could provide more proof of recognition. Gabor images under different
orientation and scale may not share the same sub-sampling pixels. Therefore, 40 sets
of sub-sampling positions are constructed correspondents to 40 Gabor depth images.
To minimize the within-class distance (explain by scatter matrix SW) and maximize
the between-class distance (SB), the optimal discriminant vectors constructing the
LDA subspace is computed by solving the following criterion in the standard LDA
algorithm:

W∗ = argmax(J(W)) =
WTSBW
WTSWW

(4.18)

where

W =




w1,1

w2,1

...
wp,1




w1,2

w2,2

...
wp,2




...

...

...

...




w1,vmax

w2,vmax

...
wp,vmax


 (4.19)

Here, p = 15900 is the number of pixels in one image and vmax is the amount of
discrimination vectors (each vector is one column of W). The summation vector V
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can be computed as follows:

V =

(
k=vmax

∑
k=1
|wk,1|,

k=vmax

∑
k=1
|wk,2|, ...,

k=vmax

∑
k=1
|wk,p|

)
(4.20)

The magnitude of V at a particular position represents the corresponding variations
among the training set, which also reflects the corresponding importance in distin-
guishing the faces. After this stage, only 1278 features in each image are chosen for
AdaBoost selection.

AdaBoost learning: a supervisor learning which applies a weak and tiny classi-
fier on each feature of the sample in order to:

• Select the less redundant group of effective features which can discriminate
the two hypotheses,

• Construct weak classifiers using these features,

• Build a strong cascaded classifier .

The algorithm of Adaboost learning for feature selection can be introduced as below:
Given example couple images (I1, J1, y1),(I2, J2, y2)...(In, Jn, yn) where yi=1 when

Ii and Ji are all images of genius faces or all images of the same type of attack (photo
or video) and yi=0 in other case (negative examples).

Initialize weights w1,i=1/2m or 1/2l, for yi=0,1, respectively, where m and l are
the number of negatives and positives examples.

For t=1,...,T (T is the maximum number of chosen features)

• 1. Normalize the weights: wt,i := wt,i
∑n

j=1 wt,j

• 2. For each feature, j, train a LDA classifier hj which using only this feature
(which has 2 values). The error is evaluated by: εj = ∑i wi|hj(xi)− yi|.

• 3. choose the classifier hj which minimizes the error εj. j is the feature chosen
in this step.

• 4.Update the weights wt+1,1 = wt,iβ
1−ei
t where ei = 0 if example xi is classified

correctly, ei = 1 otherwise and βt = εj/(1− εj)

Each iteration, the algorithm searches for a feature that minimize l’error of clas-
sifier which is pondered by the weight of each sample in training set. By this way,
each time the algorithm choses a feature as efficient feature, it will update the weight
of all the samples so that the incorrectly classified samples become more important
for next iterations.

Instead of one image, our examples become any couple of images possible. The
database includes 1001 videos of 3 people including sensors data, therein: 451 cases
of legitimate authentication, 362 cases of video-replay attack and 188 cases of photo
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attack. However, in the training set we used only 100 cases of legitimate authentica-
tion, 50 cases of video-replay attacks and 50 cases of photo attack which makes 7400
intra-case couples and 12500 extra-case couples.

In this stage, the AdaBoost selection is used twice as following:

• Individual learning: apply AdaBoost method to each Gabor depth image to se-
lect the effective feature for each image (about 30-38 per image) and group all
these features into one set.

• Total learning: apply AdaBoost to this set of features to reduce one more time
the number of features (about 127 features in this case).

The final step of training phase is the construction of a cascaded strong classifier
from these 127 features. That cascaded classifier contains many layers, each layer
is also building by the efficient features in features learning stage. In fact, instead
of constructing a big classifier of a lot of features in order to achieve a detection
rate D and limit the false positive rate under F, the method aims to build some
small independent classifiers that provide a higher detection rate dl with a huge
false positive rate fl . When these classifiers are used as layers for a bigger one we
can choose the layer so that:

F =
l=L

∏
l=1

fl (4.21)

D =
l=L

∏
l=1

dl (4.22)

where L is the number of layers. In this way, from 12 classifiers with high false
positive rate (by 50%), cascaded classifier can be building which limits F at 0.510 ≈
10−3. The algorithm of Adaboost learning for strong classifier can be introduced as
below:

• 1. Parameters initialization: selecting the value of f (the maximum acceptable
false positive rate per layer) and d (the minimum acceptable detection rate per
layer). This step depends essentially on the efficiency of features

• 2.Target determination: selecting the value overall false positive rate (Ftarget).
This step depends on the result we aim to

• 3. P = set of positive examples.

• 4. N = set of negative examples.

• 5. Initialization: F0 = 1.0; D0 = 1.0; l = 0

• 6. While Fl > Ftarget:

– l← l + 1

– nl = 0; Fl = Fl−1
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– While Fl > f × Fi−1

∗ nl ← nl + 1

∗ Use P and N to train a classifier with nl features using AdaBoost

∗ Evaluate current cascaded classifier on validation set to determine Fl

and Dl .

∗ Decrease threshold for the l-th classifier until the current cascaded
classifier has a detection rate of at least d× Dl−1(this also affects Fl)

– N← ∅

– If Fi > Ftarget then evaluate the current cascade detector on the set of non-
face images and put any false detections into the set N

The output of our experiment is a cascaded strong classifier with 12 layers and
108 features.

4.2.3 Video Attack Detection

In the scenario of a video attack, a clip of authentic user’s head is displayed in a LCD
screen in front of the camera. The video is edited so that the head moves in the same
way to mimic the process. This attack can pass the PAD classifier since the moving
head can provide different views of user’s face to construct a genuine 3D model of
the head. The form of the 3D reconstruction doesn’t give us enough information for
spoofing detection. Therefore, we proposed to study, in addition, the camera poses.

FIGURE 4.7: General schema of video attack detection.

In fact, the movement of the camera can be observed in two ways. The first is
the positions and the poses of camera corresponding to each image. These positions
which represent the movement of the camera according to the user’s face can be
located by 3D reconstruction. Figure 4.8 shows an example of the camera’s positions
estimated from the 3D reconstruction.

The 3D reconstruction describes the movement by position vectors Pi for the
camera’s position and by orientation vectors `i for the camera poses with i = 1, .., n
is the index of the frame. Since the movement is mono-direction (the camera move
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FIGURE 4.8: Example of the camera’s positions estimated from the
3D reconstruction. Direction of the camera’s move is marked form 1

to 8.

by x-axis, y-axis but not both at the same time), the position and orientation can be
represented separately axis by axis in the form of sequence:

Xi = Pi,x (4.23)

θx
i = θi,x (4.24)

This trajectory observed by the 3D model is, in fact, the relative movement of the
camera in view of the head. These motions come from 2 sources: the absolute move-
ment of this camera and head trajectory.

The second observation is the trajectory of camera captured by movement sen-
sors (e.g. accelerometer, gyroscope). These sensors observe the acceleration of trans-
lation and rotation of camera continuously by the time that allows to describe that
movement independently. The gyroscope captures rotation acceleration and the ac-
celerometer captures linear acceleration of the device affected by the force of gravity.

a(t) =
[
ax, ay, az

]
(4.25)

a`(t) =
[
gx, gy, gz

]
(4.26)

Where t ∈ R+ is an index of time, gx, gy, gz is gyroscope data. Since the δt (time
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FIGURE 4.9: Orientation of camera described by gyroscope sensor
(blue for θx

i , red for θ
y
i and green for θz

i ,

between two consecutive measures) is very small, the acceleration data can be con-
sidered as continuous.By the same reason of mono-direction, we can observe the
movement only by x-axis or y-axis.

d2x(t)
dx2 = ax(t) (4.27)

d2θx(t)
dx2 = gx(t) (4.28)

By using integration method, the position and orientation of the camera can be
calculated from the acceleration as the initial speed and initial position are both ze-
ros. Let’s tmax is the length of video, on frame is taken each ∆t = tmax

n−1 second. An-
other sequence of the camera’s state can be obtained from sensor data:

X̂i = x(ti) (4.29)

θ̂x
i = θx(ti) (4.30)

where i = 1, .., n, t1 = 0, tn = tmax, ti = ∆t.(i− 1)
The camera poses are compared to the information captured from movement

sensors (e.g. accelerometer, gyroscope) to obtain some similarity index. For a legit
authentication case, the process does not demand any head’s movement. The head’s
motion becomes insignificant that makes a high coherence between absolute and
relative trajectory. Meanwhile, when attackers use a video to authenticate, in order
to mimic a 3D object, they must display some motion in this video (without motion,
it becomes a normal 2D photo). Therefore, the similarity between the two sources
would not be assured. Here, the dissimilarity index is, in fact, a factor of head’s
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FIGURE 4.10: Correlations between θx
i (black)and θ̂x

i (red) and be-

tween θ
y
i (black) and θ̂

y
i (red).

motion. To estimate this dissimilarity, a simple correlation can be applied for each
couple of data as: (θx

i ,θ̂x
i ), (θy

i ,θ̂y
i ), (Xi,X̂i) and (Yi,Ŷi). All these features (correlation

results) are fed to an SVM classifier to form the VAD classifier mentioned previously.

4.3 Result and Evaluation

4.3.1 Result

The proposed video-replay attack detection process requires the data of motion sen-
sors integrated within the smartphone. Actually, there are no public face spoofing
datasets responding to this requirement. Therefore, we tested the proposed method
in a specific database constructed in our laboratory. The database includes 1001
videos of 3 people including sensor data, therein: 451 cases of legitimate authenti-
cation, 362 cases of video-replay attack and 188 cases of photo attack. The videos
are captured in different light conditions and movement speed by three devices: 2
instances of Samsung Galaxy Alpha and a Samsung Galaxy Tab. The database is
divided into 2 sets. Each set has all three types of videos (legitimate, photo-attack
and video-replay attack authentication). One set is used for training the PAD and
VAD classifiers and the other set is used for testing. From the training set, we used
all videos to train the PAD classifier, but we used just legitimately and video-replay
attack authentication videos to train the VAD one. We also implemented the multi-
scale Local Binary Pattern method, which applies for a single image. Therefore,
frames from the videos are used as input to implement this method. Figure 4.11
shows the Receiver Operating Characteristics (ROC) curves of the proposed method
and the LBP one. Our method performs much better than the LBP one especially
for a small rate of false positive. In fact, a large portion of false alarms links to the
bad behavior in capturing phase. A lot of problems such as the blurry frame due to
the high speed of movement or the escape of user’s face from the input video make
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the 3D reconstruction phase unstable. So in a real use case, the process asks natu-
rally for another capturing phase. This option ameliorates the process performance
significantly 4.11.

FIGURE 4.11: ROC curve for the proposed detection method (Red) in
comparison with the one of LBP method(blue). The proposed method

with recapturing option is displayed in yellow.

4.3.2 Evaluation

Our solution for photo attack detection is, in fact, a classification of 3D objects based
on their depth images. The different is quite large between the form of a genius
face and the form of a material that displays a photo. It is the reason why we can
obtain 100% in detection rate. Because of the maximum percentage obtained by
different methods of feature extraction, we present only Gabor transformation here
to emphasis that Gabor wavelet outperform other methods in case of depth image.
An experimental proof of this statement can be found in the next chapter.

In the process of Video attack detection, we assume the worst case of authenti-
cation where users have total control of proof capturing phase: authentication using
smartphone. We do not have any idea of what they place in the face of the camera,
what material they can use to display the video and what type of movement in the
attacking video. We do not control which type of smartphone used in the process or
any supplemental calibration information. The unstable smartphone’s camera (due
to vibration of manual manipulation) is the principal source of false detection. The
error is generated by the manipulation itself but not by the user which explains the
fact that a large percentage of false detection linked to first or second videos of each
scenario. In the real application, a demand for "retry" for another capturing phase
can reduce significantly the false detection rate.
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In other solution where the situation is more controlled, maybe, with a mechan-
ically moving smartphone or a calibrated camera, the performance can be signifi-
cantly ameliorated. However, 3D mask attack is theoretically immune against our
detection because all of our proof is based on the hypotheses that the attacker use
a 2D material for authentication. In general, 3D mask attacks are very efficient in
case of visible face recognition. A perfect mask can overcome any system using
an only normal camera. Nevertheless, this type of attack can be easily detected by
other types of sensor such as IR detector. In the next chapter, we will present a novel
method of face recognition using an uncooled thermal camera which solves not only
face spoofing attack but also illumination problem.
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Chapter 5

Face Recognition by Thermal
Video Using Vesselness Features in
Multiview 3D Projections

5.1 Introduction

In this chapter, we present a novel method for face recognition by a movable thermal
uncalibrated camera. The first section mentions some problematic of face recogni-
tion in general which leads to the necessity of our method. We will also point out the
advantages and limits of our solution in comparing with others. The general process
is divided into 2 phases: preprocessing and main-processing which are correspond-
ingly described inside the second and the third section. The last section proposes an
ameliorated scheme of the solution which alternates the main-processing with only
one frontal pose by a multi-pose method.

5.1.1 Problematic and Objectives

Promoted by impressive growth of computation capacity in recent years, face recog-
nition has conquered a large portion of biometric security domain and has appeared
in many applications such as authentication, identification, human tracking and
surveillance. Inherit from numerous studies in computer vision over the last there
decades, face recognition is now broadly used in a lot of information systems, from
giant immigration control in airports to tiny user unlock solution for smartphone,
from extremely strict authentication for Internet banking transaction to popular iden-
tification for Facebook photo...

However, visible face recognition always suffers from crucial limits due to com-
plex illumination conditions. Another persistent problem in visible face recognition
authentication comes from the face spoofing attack using images, video or 3D mask
with the face of the victim. These problems have opened a road for thermal im-
agery to join in the competition. This last one is more robust not only against envi-
ronmental variations but also against facial expressions. Thermal images can solve
many impossible challenges in face recognition like complete dark environment or
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monozygotic twin problems. Despite all these advantages, the average accuracy of
thermal image classification is always lower than the visible one that requires new
solution to improve its performance.

5.1.2 Proposed approach

FIGURE 5.1: Framework

In this study, we propose a new solution for face recognition combining 3D infor-
mation and vesselness features observed from a thermal video. Like other biometric
systems, our framework (Fig. 5.1), contains two phases: the training phase and the
testing phase. The training phase can be described as follows:

• Preprocessing: The 3D model of the head is reconstructed using a video which
includes various poses and positions of the head . A blood vessel transforma-
tion is applied to each frame of this video to obtain a vessel map . These blood
vessel maps are projected on the 3D model in order to obtain a 3D vesselness
representation. Thanks to this new model, we can obtain a depth image and
a vessel map for each pose. Our first experiment had used only frontal view
which had neglected a large portion of information in other poses. Later, the
process has been tested for different combinations of views to choose the most
relevant result in terms of accuracy and computation.

• Feature representation: A lot of transformations widely used in visible imagery
(like LBP, Weber, ...) are tested to combine the two informations. We finally
chose Gabor filters as the primary transformation in feature representation.
These filters with multiple scales and multiple orientations are applied to the
depth image and vessel map to extract a lot of Gabor features. Each feature in-
cludes two values, one from vessel network, another from depth information.

• Feature selection: As described above, many Gabor features are extracted from
the depth image and vessel map, but not all of these informations are effec-
tive to the recognition system. In this phase, a hierarchical scheme for effective
feature selection is proposed using linear discriminant analysis (LDA) and Ad-
aBoost method .

The testing phase uses the same preprocessing scheme as training phase. The fea-
ture templates constructed in training phase are now applied to select the feature in
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FIGURE 5.2: Preprocessing

testing model. The input is consequently coupled with each training video to com-
pute their similarity using the learned classifier. Finally, an 1-NN(nearest neighbor)
algorithm classifies the input video into one category.

5.1.3 Contributions

In this study, we propose and examine a new face recognition solution using a 3D
model of the head computed from a thermal video which contains information of
vascular network. Its contributions are as follows:

• The reconstruction of a 3D model from a thermal video and the projection of
the map of blood vessels on this model give a new 3D representation of vascu-
lar network.

• The depth and blood vessels intensity aren’t treated like unbound features but
are jointed to form a single feature with two values. In this way, the face recog-
nition system bases essentially on the 3D location of vascular network.

• The 3D model is represented in the form of a combination of depth images
in different views. This process make possible the feature selection and the
classification of a complex object without any loss of information.

5.2 Preprocessing

In this paper, we propose a four-step process (Fig. 5.2): rebuilding of 3D model from
every frames of the input thermal video, vessels extraction for each video frame and
the projection of these vessels on the 3D model, estimation of the depth image and
finally a step of the normalization.

5.2.1 Reconstruction of 3D model

In our study, the input thermal video is supposed to contain many frames from
various poses of one head. An algorithm of 3D reconstruction is used to compute
a 3D point cloud which describes the head filmed in the video. In this scenario, we
use VisualSFM - Structure from motion, developed by Changchang Wu , a robust
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FIGURE 5.3: Gray-scale and iron-palette version

and stable reconstruction algorithm which uses not only the shape but also the color
of each pixel to compute the coordination of the face. Therefore, instead of using the
gray-scale version of intensity, the experiment observes another color representation
of thermal image: the Iron-palette which can be computed from the gray-scale one
(Fig.5.3).

These features(common edges and points) are tracked from one frame to next so
the position and orientation of each frame can be estimated by geometric calculation.
Different views of one point which can be obtained from many consecutive frames
are extracted to estimate its deep coordination and then its 3D position.

From the original video, a set of frame Fi (i = 1, ..., n where n is the number of
frames) can be extracted. Each frame is an image (p × q pixels) which contains a
view of the face:

Fi =


xi

1,1 xi
1,2 ... xi

1,q

xi
2,1 xi

2,2 ... xi
2,q

... ... ... ...
xi

p,1 xi
p,2 ... xi

p,q

 (5.1)

In fact, each frame is compared to all other frames by method SIFT (scale-invariant
feature transform). Two frames (Fc1 , Fc2 ) which maximize the similarity index are
chosen to form the base of 3D object. These common points of Fc1 and Fc2 will form
a first model which is called ST2 (ST1 do not exist).

(c1, c2) = argmax
i 6=j

SIFT(Fi, Fj) (5.2)

Then, the process sorts all images in the decreased order of SIFT(Fc1 , Fi) which
makes a complete sequence c3, c4, ..., cn. For each frame Fci (i = 3, ...n), the pro-
cess will firstly try to find the common points with STi−1 which will be called STFi

(STFi ⊆ STi−1). So we have a certain points STFi in 3D coordination and its project
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in the plan of the camera: Fci . Thus the process will try to estimate the orientation
and the position of the camera by maximizing the similarity index between the two
sets:

(Rci , Pci) = argmax
R,P

SIFT(Fci , TP(PROJR(STFi)) (5.3)

where TP is the translation operator by vector P and PROJR is the projection operator
by rotation matrix R.

Pci =

 x
y
z

 (5.4)

Rci =

 r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 (5.5)

The geometric information of Fci is represented in position matrix Pci and rotation
matrix Rci (which can be transformed to orientation matrix `i)

`i =

 θx

θy

θz

 (5.6)

(x,y,z) is the coordination of the center pixel of frame Fci , (θx, θy, θz) is its orientation
respectively in the view of Ox, Oy and Oz.

The process will, then, studies the extra part of frame Fci which does not exist
inside STFi and try to match its with some other nearest frame to find additional
common points STPi

STi = STi−1 ∪ STPi (5.7)

The last one (STi) becomes the 3D model formed by {Fc1 , ..., Fci}.
The set STn definite the 3D model of all frame. This 3D model form a matrix

which represents a cluster of featured points in a Cartesian coordinate system. Notes
Mini the 3D model , it can be represented as:

Mini =

 x1 x2 ... xN

y1 y2 ... yN

z1 z2 ... zN

 (5.8)

With color video a RGB matrix Mc can be associated with M

Mc =

 r1 r2 ... rN

g1 g2 ... gN

b1 b2 ... bN

 (5.9)

where N is the number of feature points and (xk, yk, zk) (k = 1, ..., N) are the
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coordinates of the k-th point in the space Oxyz. (rk, bk, gk) (k = 1, ..., N) represent
the pseudo-color (which is computed from intensity) of this point.

The obtained point cloud, which is neither dense nor periodic, must be improved
using the Patch-based Multi-view Stereo (PMVS) developed by Yasutaka Furukawa
and using the Poisson Surface Reconstruction studied by Michael Kazhdan . By this
supplement process, the set of point is transformed into a dense collection of small
oriented rectangular. The algorithm of PMVS can be decomposed in 3 steps:

• Matching: Pixel-level correspondences of point cloud is computed to enhance
a portion of features points. Features found by Harris and difference-of-Gaussians
operators are first matched across multiple pictures, yielding a sparse set of
patches associated with salient image regions

• Expande: Initial matches is spread to nearby pixels to obtain a denser cloud of
points.

• Filtering: Intensity constraints (and a weak form of regularization) are used to
eliminate incorrect matches.

These 3 steps are repeated for several iterations until the set of points (the mesh) is
dense enough. This mesh can be further refined by a mesh-based MVS algorithm
that enforces the photometric consistency with regularization constraints like Pois-
son Surface Reconstruction. The resolution of the mesh model is adaptive, and the
size of a triangle depends on the density of the nearby oriented points: The denser
the points are, the finer the triangles become. The PSR software outputs a closed
mesh model even when patches are only reconstructed for a part of a scene. In or-
der to remove extraneous portions of the mesh, we discard triangles whose average
edge length is greater than six times the average edge length of the whole mesh since
triangles are large where there are no points.

So, in fact, after the PMVS process, a matrix M (having the same structure as
Mini but having much more points, here we always use N as the number of points )
is obtained. This rebuild 3D model includes a huge number of vertex and triangular
surfaces which can be considered as a dense facial surface (Fig.5.4).

5.2.2 Vessel extraction and projection

The vascular network is the product of anatomical observations in thermal imagery.
The key idea of this feature is the higher temperature of the blood vessel in compar-
ing with neighbor region. The method is proposed by Buddharaju and is enhanced
by Reza Shoja Ghiass. The so-called vascular network is a map of tubular structures
extracted from a thermal image.
This type of feature is proven to be a effective transformation in thermal face repre-
sentation.

For each frame Fi (i = 1, ..., n) consider the two eigenvalues λ1 and λ2 of the
Hessian matrix computed at a certain image locus and at a particular scale s. Without
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FIGURE 5.4: point cloud (left), dense vertex (middle), surface (right)

loss of generality let us also assume that |λ1| 6 |λ2| The two key values used to
quantify how tubular the local structure at this scale are RA and S:

RA =
|λ1|
|λ2|

,

S =
√

λ2
1 + λ2

2

(5.10)

The former of these measures the degree of local "bloodiness”. If the local appear-
ance is blob-like, the Hessian is approximately isotropic and |λ1| ≈ |λ2| making RA

close to 1. For a tubular structure RA should be small. On the other hand, S ensures
that there is sufficient local information content at all: in nearly uniform regions,
both eigenvalues of the corresponding Hessian will have small values. For a partic-
ular scale of image analysis s, the two measures, RA and S, are then unified into a
single vesselness measure:

V(s) =

 0 i f λ2 > 0,

(1− e
− RA

2β2 )× (1− e−
S

2c2 ) otherwise,
(5.11)

where β and c are the parameters that control the sensitivity of the filter to RA and
S.

In fact, the "vessel value" of a pixel is represented by the measure V(s) of the
(6s+ 1)× (6s+ 1) block centered at this pixel. Finally, if an image is analyzed across
scales from smin to smax, the vesselness of particular image locus can be computed as
the maximal vesselness across the range:

V0 = max
smin≤s≤smax

V(s) (5.12)
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FIGURE 5.5: 3D vascular network model

In the end, each vertex is associated with a value V0 which presents the vessel prob-
ability at this point. Another column V0 can be added to matrix M:

M =


x1 x2 ... xN

y1 y2 ... yN

z1 z2 ... zN

V0(1) V0(2) ... V0(N)

 (5.13)

For each intensity image, its poses, positions and contributions to the 3D model is
computed under a texture map. By using this texture map, these vascular networks
can be projected to the 3D model in order to form a 3D vessel model which represents
the 3D coordinates of vessel features (Fig.5.5).

5.2.3 Plan estimation and coordination

In this stage of preprocessing, the study aims to obtain a couple of depth and vessel
images corresponding to a certain view. The depth image can be trivially extracted
by fixing a plan which is perpendicular to the normal vector of view and calculating
the distance of each vertex to this plan. Ensemble of these distances forms a map
which can be called a depth image. (Fig.5.6)

FIGURE 5.6: Depth image of a face

For each pixel in this depth image, one vertex is linked and also its value of
vessel intensity. However, 3D reconstruction process is not always stable, it gives
relative measure rather than absolute one. This is the reason why depth value must
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FIGURE 5.7: Elliptic mask (left), cropped intensity image(middle) and
cropped vessel image(right)

be adjusted into [0,1]. Base on this information, a vessel image correspondent can be
regrouped to the depth information in order to make a double image.

D =


u1 u2 ... uN

v1 v2 ... vN

d1 d2 ... dN

V0(1) V0(2) ... V0(N)

 (5.14)

where ui, vi (i ∈ 1, ..., N) are the projected coordinations of i-th vertex in the plan. di

and Vi are depth value and vessel measure which corresponds to this vertex. How-
ever, the point cloud is not uniformly distributed. There are regions that contain
much higher density of points than the others. There are also some parts of the face
representing almost all the distinguishable features of this user that makes studying
other parts is wastes. These problems are fixed in the normalization phase.

5.2.4 Normalization

There are two normalizations in this preprocessing: the crop of effective region of the
face and the pixelization of depth and vessel image. In the scenario of observation
of a front view, the crop of effective region is simply the application of the elliptic
mask on the face using the nose tip detection. The location of the nose tip can be
easily determined by the depth image and the width of elliptic mask is calculated by
the localization of information region (Fig.5.7). This crop is applied on both images
to eliminate unnecessary points

The pixelization is, in fact, the transformation of the point cloud to an image (in
this case an image of 160× 128-pixels). This is very similar to a scaling process apart
from the fact that the point cloud is not equi-distributed. Our solution is using an
adapted version of bilinear interpolation which can be summarized as follows. For
p1, p2...ph ∈ 1, ..., N are the points inside a pixel (h ∈ 0, .., N). Assume that the depth
measure follows a linear relation in u-axis and v-axis, it can be represented by a local
function D(u, v):

D(u, v) = c0 + c1u + c2v + c3uv (5.15)
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where c0, c1, c2, c3 are 4 coefficients to be determined.
In the case of h ≥ 4, the problem becomes a linear least-square problem esti-

mating C=(c0, c1, c2, c3)T that minimizes the sum (for the case h = 4, the equation
becomes a standard bilinear interpolation and the minimized sum must be zero):

S =
h

∑
j=1

(dpj − (c0 + c1upj + c2vpj + c3upj vpj))
2 (5.16)

This equation could be represented in matrix form as follows:

S =
h

∑
j=1

(dpj − D(upj , vpj))
2 (5.17)

where 
D(up1 , vp1)

D(up2 , vp2)

...
D(uph , vph)

 =


1 up1 vp1 up1 vp1

1 up2 vp2 up2 vp2

....
1 uph vph uph vph

×


c0

c1

c2

c3

 (5.18)

This equation becomes:
d = Q× C (5.19)

where d = [D(up1 , vp1), D(up2 , vp2)...D(uph , vph)]
T and

Q =


1 up1 vp1 up1 vp1

1 up2 vp2 up2 vp2

....
1 uph vph uph vph

 (5.20)

The result of this famous problem can be directly obtained by matrix equation:

Ĉ = (QTQ)−1QT × d (5.21)

The depth value of the pixel can be calculated by D(u0, v0) with (u0, v0) is the
center of the pixel. This process also works for vessel measure. In the rare event
when h < 4, values of neighbor pixels can be used to feed the bilinear interpolation
solution. At the end of this phase, a double image (Id and IV) of 160× 128 pixels is
obtained where each pixel has a couple of value (d, V) correspond to depth informa-
tion and vessel measure.

5.3 Feature learning

As mentioned above, the training phase (Fig.5.8) includes three steps which are:
first, the data representation by Gabor transformation, then the hierarchical feature
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FIGURE 5.8: Learning and testing phase of classifier

selection using LDA sub-sampling and AdaBoost feature learning, and finally the
AdaBoost classifier learning .

5.3.1 Gabor Transformation

In this study, 2D Gabor filters are applied to all double images in order to character-
ize each video. The Gabor wavelets contain information of spatial localization, ori-
entation selectivity and spatial frequency selectivity . A lot of robust 2D face recog-
nition algorithms use Gabor wavelet as the principal representation of face which
places great emphasis in both spatial frequency and spatial relations. The Gabor
kernel can be described as follows:

Ψ(Z) =
k2

µ,ν

σ2 exp(
−k2

µ,νZ2

2σ2 )[exp(ikµ,νZ)− exp(−σ2

2
)] (5.22)

where µ and ν represent the orientation and scale of the Gabor wavelets. Ψ(Z) is
the value of Gabor wavelet at Z = (tu, tv). tu, tv are the centered coordination of any
point in the plan. The coefficient kµ,ν is defined by kµ,ν = kνeiφµ with kν = kmax/ f ν

and φµ = πµ/8 so that eiφµ determines the orientation of the kernel and kν places it
into a scale. In this study, we use five scales ν ∈ {0, 1, ..., 4} and eight orientations
µ ∈ {0, 1, ..., 7}which make 40 Gabor kernels with the other parameters as following:
σ = 2π, kmax = π/2 and f =

√
2.

The representation of an image by Gabor wavelets, so-called the Gabor image,
is the convolution of the image with a Gabor kernel. However, the convolution
gives each pixel a complex value with two Gabor parts: the real part and the imag-
inary part. These two parts can be transformed to two types of information: Gabor



86
Chapter 5. Face Recognition by Thermal Video Using Vesselness Features in

Multiview 3D Projections

magnitude features and Gabor phase features. In this study, only Gabor magnitude
features are used to describe the face. For 40 Gabor kernel, 40 Gabor image can be
computed/ Each image is an ellipse of size 128x160 which includes about 15900 fea-
tures, each feature has two dimensions (one dimension for the depth and another
for the vessel intensity), so in total 1,272,000 features to feed into classification algo-
rithm.

5.3.2 Feature Selection and final classifier

The richness of Gabor transformation in terms of quantity of features improves sig-
nificantly the result of classification. However, the complexity of this algorithm in-
creases with the number of features. Therefore, a scheme proposed by Chenghua Xu
is applied to divide the whole system into small ones which can work in parallel.
This hierarchical selection includes two stages:

LDA sub-sampling: for each Gabor vessel image, the optimal LDA sub-sampling
extrudes massively non-efficient or redundant features by minimizing the within-
class distance when maximizing the between-class distance .

Unlike the usual sub-sampling method where the sub-windows is uniformly dis-
tributed in the image, this optimal method aims for rich-information regions where
the features could provide more proof of recognition. Gabor images under differ-
ent orientation and scale may not share the same sub-sampling pixels. Therefore, 40
sets of sub-sampling positions are constructed correspondents to 40 Gabor double
images. To minimize the within-class distance (explain by scatter matrix SW) and
maximize the between-class distance (SB), The optimal discriminant vectors con-
structing the LDA subspace are computed by solving the following criterion in the
standard LDA algorithm:

W∗ = argmax(J(W)) =
WTSBW
WTSWW

(5.23)

where

W =




w1,1

w2,1

...
wp,1




w1,2

w2,2

...
wp,2




...

...

...

...




w1,vmax

w2,vmax

...
wp,vmax


 (5.24)

Here, p = 15900 is the number of pixels in one image and vmax is the amount of
discrimination vectors (each vector is one column of W). The summation vector V
can be computed as follows:

V =

(
k=vmax

∑
k=1
|wk,1|,

k=vmax

∑
k=1
|wk,2|, ...,

k=vmax

∑
k=1
|wk,p|

)
(5.25)
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FIGURE 5.9: LDA template for Gabor image with u = 4 and v = 8

The magnitude of V at a particular position represents the corresponding variations
among the training set, which also reflects the corresponding importance in distin-
guishing the faces. After this stage, only 1278 features in each image are chosen for
AdaBoost selection.(Fig.5.9)

AdaBoost learning: a supervisor learning which applies a weak and tiny classi-
fier on each feature of the sample in order to:

• Select the less redundant group of effective features which can discriminate
the two hypotheses ,

• Construct weak classifiers using these features,

• Build a strong cascaded classifier .

The algorithm of Adaboost learning for feature selection can be introduced as below:
Given example couple images (I1, J1, y1),(I2, J2, y2)...(In, Jn, yn) where yi=1 when

Ii and Ji are images of a same person (positive examples) and yi=0 in other case
(negative examples).

Initialize weights w1,i=1/2m or 1/2l, for yi=0,1, respectively, where m and l are
the number of negatives and positives examples.

For t=1,...,T (T is the maximum number of chosen features)

• 1. Normalize the weights: wt,i := wt,i
∑n

j=1 wt,j

• 2. For each feature, j, train a LDA classifier hj which using only this feature
(which has 2 values). The error is evaluated by: εj = ∑i wi|hj(xi)− yi|.

• 3. choose the classifier hj which minimizes the error εj. j is the feature chosen
in this step.

• 4.Update the weights wt+1,1 = wt,iβ
1−ei
t where ei = 0 if example xi is classified

correctly, ei = 1 otherwise and βt = εj/(1− εj)
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Each iteration, the algorithm searches for a feature that minimize l’error of clas-
sifier which is pondered by the weight of each sample in training set. By this way,
each time the algorithm choses a feature as efficient feature, it will update the weight
of all the samples so that the incorrectly classified samples become more important
for next iterations.

The AdaBoost learning algorithm essentially solves a two-class classification prob-
lem. So, we have to reduce the face recognition multi-class problem to a two-class
problem: intra-personal versus extra personal. Instead of one image, our examples
become any couple of images possible. We have 4 persons and 5 videos training for
each person who makes 40 intra-personal couples and 150 extra personal couples. In
our study, since each feature has two values, the LDA classifier (Linear Discriminant
Analysis) with two dimensions is chosen as the elemental "weak classifier" used in
AdaBoost algorithm in order to consider simultaneously the depth and vessel infor-
mations of a feature.

In this stage, the AdaBoost selection is used twice as following:

• Individual learning: apply AdaBoost method to each Gabor double image to
select the effective feature for each image (about 30-38 per image) and group
all these features into one set.

• Total learning: apply AdaBoost to this set of features to reduce one more time
the number of features (about 127 features in this case).

The final step of training phase is the construction of a cascaded strong classifier
from these 127 features. That cascaded classifier contains many layers, each layer
is also building by the efficient features in features learning stage. In fact, instead
of constructing a big classifier of a lot of features in order to achieve a detection
rate D and limit the false positive rate under F, the method aims to build some
small independent classifiers that provide a higher detection rate dl with a huge
false positive rate fl . When these classifiers are use as layers for a bigger one we can
choose the layer so that:

F =
l=L

∏
l=1

fl (5.26)

D =
l=L

∏
l=1

dl (5.27)

where L is the number of layers. In this way, from 10 classifiers with high false
positive rate (by 50%), cascaded classifier can be building which limits F at 0.510 ≈
10−3. The algorithm of Adaboost learning for strong classifier can be introduced as
below:

• 1. Parameters initialization: selecting the value of f (the maximum acceptable
false positive rate per layer) and d (the minimum acceptable detection rate per
layer). This step depends essentially on the efficiency of features
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• 2.Target determination: selecting the value overall false positive rate (Ftarget).
This step depends on the result we aim to

• 3. P = set of positive examples.

• 4. N = set of negative examples.

• 5. Initialization: F0 = 1.0; D0 = 1.0; l = 0

• 6. While Fl > Ftarget:

– l← l + 1

– nl = 0; Fl = Fl−1

– While Fl > f × Fi−1

∗ nl ← nl + 1

∗ Use P and N to train a classifier with nl features using AdaBoost

∗ Evaluate current cascaded classifier on validation set to determine Fl

and Dl .

∗ Decrease threshold for the l-th classifier until the current cascaded
classifier has a detection rate of at least d× Dl−1(this also affects Fl)

– N← ∅

– If Fi > Ftarget then evaluate the current cascade detector on the set of non-
face images and put any false detections into the set N

The output of our experiment is a cascaded strong classifier with 10 layers and
96 features.

5.3.3 Testing phase

In testing phase, the process of preprocessing and feature extraction (Gabor transfor-
mation) is the same as in training phase. However, the features are extracted directly
by using the selected template from training phase. The testing video is paired with
each training video and generate 20 examples of couples. These 20 examples are
classified into two classes: intra-personal and extra personal with a score of the sim-
ilarity (S(V0, Vk) where k ∈ 1, 2, ...20) for two videos in each couple:

S(V0, Vk) =
L

∑
l=1

nl

∑
p=1

αl,phl,p(V0, Vk) (5.28)

where L = 10 is the number of layers and nl is the number of features in l-th
layer. hl,p is a weak classifier which is based on one efficient double-feature and αl,p

is its weight. V0 is the testing video and Vk where k ∈ 1, 2, ...20 are training video.
Among 20 scores of similarity, the k − NN classifier chooses k training video

which are the most similar to the input video to decide the result of the test (Fig.5.8).
The number of reference sample (k) depends on the number of training samples for
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FIGURE 5.10: Roc curve of the strong classifier.

each face. Here in this study, because the database has only 5 samples for each face,
we chose k = 1 which implies that only one nearest neighbor is enough to identify
the face.

As none of the existing thermal database provides video with the movement re-
quired in this study, we have decided to test our method in our own thermal video
database. This database contains 161 videos of 4 subjects which are captured using
a Therm-app camera.
In experiment phase, the database is randomly divided into two subsets: the training
set and the testing set. The training set contains 5 videos of each subject (20 in total)
and the testing set contains 141 other videos. In order to prove the improvement
of this method compared to local matching approach using Gabor transformation, 3
tests are evaluated at the same time: one uses only intensity information (Intensity
only), another one mixes the intensity and depth data at the decision level (Deci-
sion mix), and the last one mixes the two types of information at feature level (our
method: Feature mix).

The experimental results (Table 5.1) prove the advantage of mixing intensity and
depth information in feature level. The same concept can be used with any other de-
scriptor like LBP or Weber local descriptors. The different between the performance
of three tests is reduced when the number or training videos increases (for training
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TABLE 5.1: Average results after repeating 20 times the process of
experimentation.

Accuracy Precision Recall

Gabor-Intensity only 79.43% 77.62% 81.76%

Gabor-Decision mix 82.64% 80.12% 85.21%

Gabor-Feature mix 88.43% 87.05% 90.83%

LBP-Intensity only [? ] 86.11% 85.05% 87.70%

LBP-Mix 87.36% 88.55% 88.79%

set of 40 videos, 10 for each subject, the accuracy of these tests is all around 99%).
These results which came from the frontal pose of the head can be enhanced by mix-
ing with other poses from the 3D model to achieve a complete process.
By comparing the proposed method with another process based on LBP [? ], we
observe that LBP is far better than Gabor in description of intensity data. However,
by mixing these intensity data with deep information, we obtain a great ameliora-
tion in classification using Gabor features (9%) which help this last one surpass the
method using LBP-features. This result becomes a solid evidence to our choice of
using Gabor-description for geometry data.

5.4 Multi-pose recognition

The result of last experiments proves the advantage of mixing depth and intensity
data at feature level. However,by using only frontal view, the process neglects a
large source of information in profile views. In fact, the profile views are proven to
be more effective than frontal image in automatic face recognition. At this stage, the
study aims to get some projected images of 3D model in profile views in order to
ameliorate the strong classifier.

5.4.1 Profile views images

The profile views are normally taken at 90◦. However, the process of 3D reconstruc-
tion is based on a couple of frontal photos at the first step. The farther this process
goes from the original couple, the less precise the performance of 3D reconstruction.
90◦ views are normally the ultimate views this process can get, but they are also the
most imprecise. To bias between getting more information and resting accurate, the
profile views are projected at 60◦. Firstly, the 3D model will be rotated by 60◦ and
-60◦.
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Multiview 3D Projections

Mleft = θle f t ×M (5.29)

Mright = θright ×M (5.30)

Where θle f t and θright are respectively the matrix of 60◦ rotation and -60◦ rotation.
(Notice that the intensity value does not depend on the rotation)

`left =


− sin π

3 0 cos π
3 0

0 1 0 0
cos π

3 0 sin π
3 0

0 0 0 1

 (5.31)

`right =


− sin−π

3 0 cos−π
3 0

0 1 0 0
cos−π

3 0 sin−π
3 0

0 0 0 1

 (5.32)

The projection of these two models (Mle f t and Mright) by z-axis will be processed in
the same way of frontal views to make 2 double-images: Dle f t from Mle f t and Dright

from Mright.

Dleft =
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Dright =


ur

1 ur
2 ... ur

N

vr
1 vr

2 ... vr
N

dr
1 dr

2 ... dr
N

V0(1) V0(2) ... V0(N)

 (5.34)

where (ul
i , vl

i) and (ur
i , vr

i ) (i ∈ 1, ..., N) are respectively the projected coordination
of i-th vertex in the left-plan and the right-plan. dl

i and dr
i are depth values which

corresponds to this vertex.
The normalization phase is now more complicated as the oval model centered

on the nose is no longer adapted. The oval model is determined by the nose at the
extreme pixel of the left and the chin is at a fixed point of the oval

5.4.2 Experiments and results

The feature extraction of multi-view is similar to the frontal view. The complexity of
the training process is estimated as:

T = O(h2k) + O(k2) (5.35)
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FIGURE 5.11: Profile view.

where h is the number of pixels in a double-image and k the number of views using
for classification. (O(h2k) is featured training time and O(k2) is strong cascaded clas-
sifier building time). As the number of features is tripled, the feature training-time
is also tripled but the strong cascaded classifier building last 9 times more compared
to mono-views process. Because of this link between the number of features and the

FIGURE 5.12: Normalized profile view.
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FIGURE 5.13: Roc curve of the strong classifier for mono-view and
multi views.

TABLE 5.2: Average results for 20 test sets.

Accuracy Precision Recall

Mono-view 88.43% 87.05% 90.83%

Multi-views 92.27% 89.25% 93.231%

training-time, the study is limited at 3 views which can provide information about
most part of the face.

In experiment phase, the training-set contains 20 videos (5 for each subject). The
test-set contains 100 videos among the rest. All the sets are chosen randomly. The
classification is processed for mono-view and multi-views at the same time in order
to provide a comparison between them.

The result ameliorate significantly from using only frontal view of using 3 prin-
cipal views. This fact proves that a combination of views can represent a 3D model.
The result can be ameliorated a little more by augmenting the number of views us-
ing in the combination. However, the increase in the computation cost reduces the
performance of the method.
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Chapter 6

Conclusions and Perpectives

6.1 Conclusion

The development of imaging technology and computing capacity lead us to an era
where user’s face can be considered as their proof of authentification toward an
automatic system. The most convenient and natural method is trying to mimic the
human’s vision using computer vision. Because of this reason, visible imagery is the
first option for every system authentication by facial recognition.

However, visible imagery technology is not robust enough to be used as the only
source of identification information. This method has two major limits that make the
authentication systems vulnerable. The first limit is its sensitivity to the illumination
condition. The very nature of visible image that is captured inside trivial cameras
is a reflection of the lighting which hit the object placed in front of the lens. This
type of photo depends not only on the color of the object but also on the nature and
intensity of light source. The second problem is an active attack where the attacker
uses a signature of genius user’s face in order to bypass the authentication system.
The signature may be a photo, a video found in social network or even a 3D mask of
this user.

In the first part of this study, we aim to construct a solution against the face-
spoofing attack with minimum equipment required. Our hardest use-case associates
to the face recognition method for smartphones with a visible camera. This use-case
is complicated since the system is based on a single uncalibrated camera and the
scene of authentication depends entirely on users. We adjust our general solution
for this case by exploring the capacity of movement and some motion sensors inside
the smartphone. From a set of video’s frames, the method uses a 3D reconstruction
process to build a 3D model of the head which is highly effective against photo-
attack as differences in geometric features between a real object and an image is truly
large. The video attack can be detected by observing the synchronization between
the prior motion of the smartphone (explored by motion sensors) and the captured-
motion calculated by the 3D reconstruction process. The limit of our first study is
that it can only justify if the object has a real 3D form of user’s faces, but it is not able
to detect a mask attack.
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The delicate mask attack is not readily revealed by visible imagery technology
because its imprint is very close to the genius face. However, in thermal imagery
where the emission source of the spectrum is human’s face, the detection of all types
of face-spoofing attack is trivial. The thermal imagery technology can solve the other
major problem of visible imagery concerning illumination conditions. Though, in
general, thermal images provide less information than visible images. In our second
study, we aim to improve the performance of infrared face- recognition method by
using a 3D model of the head computed from a thermal video. Vascular network
build from the thermal video is now observed in intensity level and geometric fea-
ture. The depth information and blood vessels data aren’t handled like unchained
marks but are associated to form a single feature with two values. By this way, the
face recognition method bases mainly on the 3D position of the vascular network.

6.2 Perpectives

For the face-spoofing detection method which is introduced in chapter 4, there is
always a type of attack which is not considered in the study: the 3D mask attack.
Until this step, our face spoofing detection is independent of the face recognition
process. We do not use the same database as authentication system but a database
dedicated to our solution. In fact, the geometric information can be used further in
face recognition phase which makes 3D mask attacks detectable in this layer. How-
ever, this type of solution requires enough images of each user in different positions
in the database to compare with the attempt. Another solution is to study the nature
of the object’s material to distingue the genius face from the attacks. In fact, each
type of material generates a special imprint of noise which can be used to detect if
the object is made by human’s skin.

The thermal face recognition method comes all the way to construct a 3D model
of the vascular network. However, we do not make direct use of this 3D model but
its projection into a set of depth images. The process with multi-pose depth-images
augment our method’s performance but cannot achieve an entire comparison of 3D
model. In some future works, we aim to construct a method that can study directly
these 3D model in order to make uses of all the provided information.
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Appendix A

Résumé en français

A.1 Contexte et problématique

Le visage humain est une caractéristique qui permet de distinguer une personne des
autres. Reconnaître les parents et la famille est la toute première leçon pour chaque
être humain. Depuis le développement des technologies d’imagerie, le cerveau hu-
main est chargé d’une autre tâche : la reconnaissance d’un visage à partir d’une
photo. Cette tâche est aujourd’hui la solution d’identification la plus critique dans
notre société car notre visage apparaît sur de nombreux papiers tels que des passe-
ports, carte d’identité, permis de conduire, carte d’étudiant... A l’ère du numérique,
la reconnaissance faciale est de plus en plus confiée à des systèmes automatiques. Le
plus puissant ordinateur est capable d’accomplir de nombreuses tâches complexes,
y compris la détection et l’authentification des personnes, le suivi et la prédiction
des mouvements, la détection et la classification des maladies.... La reconnaissance
faciale est maintenant appliquée dans une large gamme de cas d’utilisation avec dif-
férents niveaux et contraintes de sécurité. Il existe des systèmes passifs utilisés par
les autorités. Il existe des systèmes actifs calibrés pour le contrôle d’accès dans les
aéroports, les entreprises et de nombreuses autres installations. Il existe également
de nombreux systèmes distribués non calibrés comme le déverrouillage d’un ordi-
nateur portable et l’identification par un téléphone.

Cependant, la reconnaissance faciale dans le visible est théoriquement vulnérable
à l’attaque par usurpation d’identité. Un système d’authentification performant
peut être facilement contourné en utilisant une photo du visage d’un utilisateur
présentée devant l’appareil photographique. La menace est d’autant plus impor-
tante que de nombreuses personnes laissent leurs photos sur Internet, en partic-
ulier sur les réseaux sociaux. Afin de renforcer le processus d’authentification, il
est possible d’ajouter au système une nouvelle couche de sécurité qui peut réduire
cette vulnérabilité. Les solutions existantes sont vastes en termes de technologie,
mais presque toutes les méthodes nécessitent un système complexe avec deux ou
plusieurs caméras et même d’autres types de capteurs. Plus le système est complexe,
moins la solution est difficilement applicable. C’est pourquoi, dans cette étude, nous
proposons une nouvelle méthode de détection dédiés aux systèmes mono-caméra
comme les smartphones et les tablettes. Cette nouvelle méthode exploite une vidéo
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du visage de l’utilisateur dans de nombreuses poses afin de reconstruire le visage
3D qui est ensuite utilisé pour distinguer un visage des tentatives d’attaques.

Un autre problème crucial de la reconnaissance faciale dans le visible est lié au
fait que toute la lumière et la couleur que l’on peut observer sur les visages humains
n’est qu’un reflet de la lumière venant d’autres sources comme le soleil ou les lam-
pes. L’imagerie dans le visible dépend fortement des conditions d’éclairage. Cer-
taines recherches proposent des méthodes qui peuvent fonctionner correctement à
travers le changement d’intensité lumineuse, mais il y a toujours une diminution en
termes de précision lorsque la modification est importante. Aucune méthode de re-
connaissance faciale dans le visible ne peut être traitée avec un manque important de
lumière. Dans ce contexte, l’imagerie infrarouge et particulièrement l’imagerie ther-
mique est devenue une méthode alternative et complémentaire prometteuse pour la
reconnaissance faciale. Cependant, jusqu’à ce jour, la reconnaissance du visage avc
une caméra thermique n’atteint pas le niveau de maturité requis pour être appliquée
à grande échelle. En fait, l’application des images infrarouges dans le processus de
reconnaissance faciale est remise en question par l’absence de caractéristiques dis-
tinctes sur ces images. Le spectre IR a ses propres problèmes qui peuvent affecter
la précision du programme d’identification. Pour faire face à ce problème, nous
avons introduit une nouvelle méthode de reconnaissance faciale thermique utilisant
un modèle 3D de la tête qui contient des informations sur le réseau vasculaire de la
tête. Le processus est dédié au fonctionnement dans différents cas d’utilisation où le
seul équipement requis est une caméra thermique.

A.2 Descriptif

Le premier chapitre de la thèse présente, d’une manière générale, le contexte et les
problèmes qui ont conduit à cette étude. Il décrit également la structure de cette
thèse. Le deuxième chapitre est consacré à présenter un aperçu du domaine de la
reconnaissance automatique de visages qui, dans cette étude, est divisé en deux sec-
tions principales : la reconnaissance du visage dans le visible et la reconnaissance du
visage à partir d’images thermiques. Dans la première section de ce chapitre, la thèse
présente l’avantage et la problématique de l’imagerie dans le visible. Il fournit égale-
ment quelques méthodes représentatives depuis le début de la vision par ordinateur
jusqu’à ce jour. La technologie infrarouge est présentée dans la section suivante où
nous soulignons comment elle peut contourner la problématique de l’imagerie dans
le visible.

Le troisième chapitre présente une nouvelle approche pour modéliser la tête
des utilisateurs par des caractéristiques 3D. Le chapitre commence par examiner
l’avantage de représenter les données faciales des utilisateurs à l’aide de son modèle
3D. Ensuite, la section suivante donne un aperçu de la méthode de reconstruction
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3D à l’aide des différents capteurs. La dernière partie du chapitre présente le proces-
sus détaillé de réalisation de ce modèle 3D à partir d’une seule vidéo du visage de
l’utilisateur.

Le quatrième chapitre construit et examine une nouvelle méthode pour la dé-
tection d’un des problèmes majeurs dans le domaine de la reconnaissance faciale
dans le visible : l’attaque par usurpation d’identité. Il commence par un rappel de
l’attaque de face-spoofing et comment elle peut affecter le processus d’authentification.
La section suivante décrit le schéma détaillé pour détecter cette attaque. Dans la
dernière partie, nous fournissons la performance de cette méthode.

Dans le cinquième chapitre, nous proposons une nouvelle solution de reconnais-
sance faciale utilisant un modèle 3D de la tête obtenu à partir d’une vidéo thermique
qui contient des informations sur le réseau vasculaire. De par sa nature, l’imagerie
thermique peut évidemment détecter l’attaque par projection du visage et rester in-
variable aux conditions d’éclairage. Cependant, il y a moins d’informations iden-
tifiables dans une image thermique qu’une image visible, ce qui réduit la précision
du processus de reconnaissance faciale. La reconstruction 3D fournit des données
géométriques du visage qui peuvent être mélangées avec les informations du réseau
vasculaire issues de l’imagerie thermique pour améliorer les performances.

A.3 Détection d’une attaque de l’usurpation de visage à l’aide
d’un modèle 3D

Ce chapitre construit et examine une nouvelle méthode pour la détection d’un des
problèmes majeurs dans le domaine de la reconnaissance faciale dans le visible :
l’attaque par usurpation d’identité. Il commence par un rappel de l’attaque de face-
spoofing et comment elle peut affecter le processus d’authentification. La section
suivante décrit le schéma détaillé pour détecter cette attaque. Dans la dernière par-
tie, nous fournissons la performance de cette méthode.

A.3.1 Introduction

L’authentification par la reconnaissance faciale permet de renforcer un système d’authentification
en intégrant un facteur lié à l’identité d’une personne. Cependant, la reconnais-
sance faciale dans le visible est théoriquement vulnérable à l’attaque par usurpation
d’identité. Un système d’authentification performant peut être facilement contourné
en utilisant une photo du visage d’un utilisateur présentée devant l’appareil pho-
tographique. La menace est d’autant plus importante que de nombreuses personnes
laissent leurs photos sur Internet, en particulier sur les réseaux sociaux.

Afin de renforcer le processus d’authentification, il est possible d’ajouter au sys-
tème une nouvelle couche de sécurité qui peut réduire cette vulnérabilité. Les solu-
tions existantes sont vastes en termes de technologie, mais presque toutes les méth-
odes nécessitent un système complexe avec deux ou plusieurs caméras et même
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d’autres types de capteurs. Plus le système est complexe, moins la solution est diffi-
cilement applicable. C’est pourquoi, dans cette étude, nous proposons une nouvelle
méthode de détection dédiée aux systèmes mono-caméra comme les smartphones
et les tablettes. Cette nouvelle méthode exploite une vidéo du visage de l’utilisateur
dans de nombreuses poses afin de reconstruire le visage 3D qui est ensuite utilisé
pour distinguer un visage des tentatives d’attaques.

FIGURE A.1: Différentes types de l’attaque de l’usurpation de visage.

A.3.2 Description de la détection de l’attaque

Les principales difficultés de la reconnaissance faciale dans le domaine visible à
l’aide de smartphones ou tablette est la variation des conditions d’éclairage, de
l’orientation ou encore d’arrière-plans non maîtrisés. De plus le mouvement de
l’appareil et le mouvement relatif du système d’acquisition peuvent affecter la qual-
ité de l’acquisition. De même la calibration du système est un frein à l’efficacité
de la méthode de détection. Cependant, la présence de différents capteurs dans un
smartphone se révèle être un avantage qui nous permet de développer une nouvelle
solution opur la détection de Face spoofing. En effet, les capteurs de mouvement
et la possibilité des smartphones de gérer plusieurs tâches simultanément permet-
tent de récupérer les informations liées au mouvement pendant la prise de vues de
l’utilisateur. a l’issue de cette première étape, nous obtenons une vidéo du visage
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de l’utilisateur ainsi que les données brutes des capteurs. Dans le cas d’une authen-
tification légitime, les données liées au mouvement sont cohérentes avec celles de la
prise de vue. Ce n’est généralement pas le cas dans le cadre d’une attaque par Face
spoofing. La solution que nous proposons repose sur l’exploitation de la cohérence
entre ces données.

La méthode proposée se décompose en trois étapes principales présentées sur la
Figure A.2.

FIGURE A.2: Processus de détection de l’attaque de l’usurpation de
visage.

Le première étape consiste à estimer un modèle 3D du visage grâce à un pro-
cessus de reconstruction 3D. Ensuite un classifieur PAD (Photo Attack Detection)
utilise la représentation 3D pour détecter si le visage a été remplacé par une photo
(c’est-à-dire si une impression ou une image numérique du visage de l’utilisateur
est utilisée pur l’authentification). Si cette étape est validée, un deuxième classifieur
VAD (Video Attack Detection) est utilisé pour détecter si l’authentification a été réal-
isée à partir d’une vidéo. Cela permet de détecter une "video-replay" attaque. Les
reconstructions 3D qui satisferaient les deux détections seraient considérées comme
authentiques et l’authentification seraient donc validées.

Mis à part les tests de mouvement du téléphone qui sont demandés explicitement
à l’utilisateur (de haut en bas et de gauche à droite), le processus est automatisé. Une
application Android regroupe la collecte des informations (vidéo et données issues
des capteurs), la reconstruction 3D et les classifications. Bien que la reconstruction
3D ne soit pas en temps réel pour le moment, dans un scénario réaliste, il est recom-
mandé d’effectuer la reconstruction 3D et la classification finale sur un serveur dédié.

Les sections suivantes présentent les différentes étapes du processus de détection
de Face spoofing.

Reconstruction 3D du visage

Dans la méthode proposée, un modèle 3D de l’objet (visage réel ou falsifié) est con-
struit à partir de la vidéo capturée durant le processus d’authentification. Pour
obtenir une bonne qualité du modèle 3D, il est demandé à l’utilisateur de bouger la
caméra du téléphone autour du visage de manière à ce que différentes poses soient
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capturées. Nous considérons deux mouvements simples : selon la direction verti-
cale et selon la direction horizontale. Ces mouvement permettent notamment de
simplifier la mesure de cohérence nécessaire à notre algorithme.

La reconstruction 3D est réalisée avec VisualSFM, une application développée
par C. Wu [108] qui utilise le mouvement (Structure From Motion). Cette application
nécessite une séquence d’images en entrée et renvoie une reconstruction 3D d’un
objet capturé ainsi que des informations relatives aux poses de la l’appareil photo.
D’autres solutions plus récentes pourraient être utilisées. Le choix de la solution
utilisée n’affecte pas beaucoup le résultat mais dépend essentiellement des capacités
de calcul du smartphone utilisé.

Chaque image Fi de la vidéo (i = 1, ..., n où n est le nombre d’images) est com-
parée aux autres avec la méthode SIFT (Scale-Invariant Feature Transform) ou Trans-
formation de Caractéristiques visuelles Invariante à l’Echelle. Deux images (Fc1 , Fc1)

maximisant l’indice de similarité sont choisies pour former la base de l’objet 3D.
Après cela, une extraction des contours et des points d’intérêt communs est ap-
pliquée pour toutes les paires d’images : (Fi, Fcj) où i = 1, ..., n et j = 1, 2. Ces
caractéristiques (contours et points d’intérêt) sont suivies d’une image à l’autre afin
de calculer la position et l’orientation de chaque image. Différentes vues d’un point
d’intérêt sont extraites pour estimer sa profondeur et donc ses coordonnées 3D.
L’étape suivante est un filtre des points clés apparaissant dans plusieurs images pour
réaliser le modèle 3D.

La Figure A.3 présente un exemple de visage réel reconstruit en 3D à l’aide d’un
nuage de points.

FIGURE A.3: Nuage de points du modèle 3D d’un visage réel

Détection de l’attaque par photo (PAD)

Dans le cas d’une attaque par photo, la reconstruction 3D donnée par la méthode
SFM est très différente de celle obtenue dans le cas d’un visage réel. La Figure A.4
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porésente différentes vues d’une reconstruction 3D d’un visage imprimé.

FIGURE A.4: Différentes vues de la modèle 3D d’une attaque par
photo.

Détection de l’attaque par vidéo (VAD)

On peut facilement voir que la reconstruction 3D du visage est aplatie dans le cas
d’une attaque par photo. Cela s’explique notamment par le fait qu’un visage réel
est un vrai objet 3D qui contient davantage d’information sur la profondeur qu’un
visage imprimé sur une feuille. Ainsi, plus le modèle 3D est plat, plus grande est la
probabilité qu’il s’agisse d’une attaque par photo. Nous avons donc choisi de baser
notre détection d’une attaque par photo sur le critère de l’épaisseur de la reconstruc-
tion 3D.

L’épaisseur d’une reconstruction 3D peut être estimée au moyen d’une Anal-
yse en Composantes Principales (ACP). Cette méthode permet de transformer la
représentation 3D en un nouveau système de coordonnées (w = (w(1), w(2), w(3)))

où chacune des coordonnées est représentée par une composante principale. Cette
transformation est définie de manière à ce que la première composante principale
(w(1)) ait la variance la plus grande, et que chacune des composantes principales
aient la plus grande variable possible sous la contrainte d’être orthogonale aux com-
posantes précédentes. De cette manière, la variance d’un point du nuage projeté sur
la dernière composante (w(3)) est le minimum de tous les vecteurs de l’espace qui
peut être utilisé pour représenté l’épaisseur.

w(3) =

[
arg min
‖w‖=1

n

∑
i=1

(mi.w)2

]
où n est le nombre de points du nuage, mi = (xi, yi, zi) avec i = 1, .., n est le

vecteur de coordonnées du i-ème point.
Pour simplifier l’ACP, les colonnes de la matrice M sont centrées pour avoir une

moyenne nulle. La matrice de composantes principales P est définie comme une
transformation linéaire orthogonale de la matrice M : P = MW.
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Soit vj (j = 1, 2, 3) la variance de la i-ème colonne de P. L’ordre de grandeur de
chaque colonne, noté di, est donné par :

di =
vi

v1 + v2 + v3

Dans le cas d’une attaque par photo, les points de la reconstruction 3D sont dans
un plan. Ainsi, il n’y a quasiment pas d’information dans la troisième composante
ce qui rend d3 très petit. En revanche, pour un visage réel, l’épaisseur joue un rôle
important dans l’information totale.

Les figures A.5 (a) et (b) présentent une illustration des trois composantes prin-
cipales obtenues respectivement pour un modèle 3D de visage réel (a) et falsifié (b).

(a) (b)

FIGURE A.5: PCA de la modèle 3D d’un utilisateur (a) et d’une at-
taque (b).

La différence est telle qu’un simple classifieur SVM sur les ordres de grandeur di

peut être utilisé comme classifieur pour la détection d’attaque par photo (PAD).

Attaque par photo avancée

Supposons que l’attaquant utilise une attaque plus évoluée en utilisant des photos
déformées qui généreraient un modèle 3D avec une profondeur significative. Dans
ce cas, l’ACP n’est pas suffisamment performante pour la détection. Nous proposons
donc une méthode pour extraire la profondeur de l’image d’un visage à partir du
modèle 3D pour produire une autre preuve d’authenticité.

La première étape consiste à extraire une image de profondeur en fixant un plan
perpendiculaire au vecteur normal d’une vue et en calculant la distance de chaque
vertex à ce plan. L’ensemble de ses distances forment une carte appelée image de
profondeur (voir Figure A.6).

A chacun des pixels de l’image de profondeur est lié un vertex et son inten-
sité. Cependant, le processus de reconstruction 3D n’est pas toujours stable puisqu’il
donne une mesure relative et non absolue. C’est pourquoi la profondeur doit être
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FIGURE A.6: Image de profondeur d’un visage

ajustée pour être comprise dans [0, 1]. Le nuage de points n’est pas uniforme : cer-
taines régions contiennent davantage de points que d’autres régions. Deux normal-
isations sont donc nécessaires : recadrer la zone du visage avec un masque et une
détection du nez et d’autre part, l’échantillonnage de l’image de profondeur en une
image de 320 × 256 pixels.

L’étape suivante consiste à faire une transformation de Gabor. Des filtres de Ga-
bor 2D sont appliqués à toutes les images de profondeur afin de caractériser chacune
des vidéos. Les ondelettes de Gabor permettent d’obtenir des informations de local-
isation spatiale et d’orientation. La représentation d’une image par les ondelettes de
Gabor est une convolution de l’image avec un noyau de Gabor. Nous n’utiliserons
que les caractéristiques liées à l’intensité pour décrire le visage. Nous obtenons au
total 2 544 000 caractéristiques à fournir à l’algorithme de classification.

Après avoir fait la transformation de Gabor, il faut choisir les caractéristiques
et construire le classifieur final. Le nombre important de caractéristiques obtenues
suite à une transformation de Gabor améliore significativement les résultats de la
classification. Cependant, la complexité de l’algorithme augmente également avec
le nombre de caractéristiques. Il est proposé de répartir les calculs selon la méth-
ode de Chenghua Xu en divisant le système global en plus petits qui peuvent être
traités en parallèle. La sélection des caractéristiques s’effectue en deux étapes : un
sous-échantillonage LDA et un apprentissage avec AdaBoost. Pour chacune des im-
ages Gabor, le sous-échantillonnage LDA permet d’éliminer les caractéristiques non
efficientes ou redondantes en minimisnt la distance au sein d’une même classe et en
augmentant la distance entre les classes. L’apprentissage AdaBoost permet quant
à lui de sélectionner les ensemble de caractéristiques qui discriminent le mieux les
deux hypothèses, de construire un classifieur utilisant ces caractéristiques et de con-
struire un classifieur final en cascade. Nous obtenons au final un classifieur en cas-
cade avec 12 étapes et 108 caractéristiques.
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Attaque par vidéo

Dans le scénario d’une attaque par vidéo, une vidéo avec le visage de l’utilisateur
est diffusée sur une écran LCD devant le smartphone. La vidéo est faite de telle sorte
que le visage bouge de la même manière pour simuler le processus d’authentification.
Cette attaque trompe le détecteur PDA puisque le mouvement de la tête permet
d’obtenir différentes vues du visage de l’utilisateur et donc de reconstruire un mod-
èle 3D réaliste du visage. Nous nous proposons donc d’utiliser les capteurs du
smartphone pour notre nouveau détecteur.

La Figure A.7 présente un exemple des positions de l’appareil photo estimées à
partir de la reconstruction 3D.

FIGURE A.7: Positions de l’appareil photo estimées à partir de la re-
construction 3D.

Nous pouvons également observer la trajectoire du smartphone enregistrée par
les capteurs de mouvement (accéléromètre ou gyroscope). Le capteur gyroscopique
mesure la vitesse angulaire alors que l’accéléromètre mesure l’accélération linéaire
de l’appareil.

Les poses du smartphone sont comparées aux informations mesurées par les cap-
teurs de mouvement afin d’obtenir un index de similarité. Pour estimer la dissimi-
larité, une simple corrélation peut être appliqué pour chacun des couples de données
: (Xi,X̂i) et (Yi,Ŷi), où Xi (resp. Yi) représente un vecteur de position et d’orientation
selon l’axe x (resp. y), X̂i (resp. Ŷi) un vecteur de position et d’orientation calculé
à partir des capteurs de mouvement selon l’axe x (resp. y). Ces caractéristiques de
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FIGURE A.8: Orientation de l’appareil photo à partir des données du
capteur gyroscopique (θx

i en bleu, θ
y
i en rouge, θz

i en vert)

FIGURE A.9: Corrélation entre θx
i (noir) et θ̂x

i (rouge) et entre θ
y
i

(black) et θ̂
y
i (red).

corrélation sont les données discriminantes qui permettent à un classifieur SVM, le
VAD de réaliser la détection souhaitée.

A.3.3 Performances de la méthode de détection proposée

Aucune base de données existante ne répond aux contraintes attendues par notre
détecteur d’attaque par vidéo (utilisant les données issues des capteurs de mou-
vement). Nous avons donc effectué nos tests sur une base de données crée dans le
laboratoire. Cette base de données contient 1001 vidéos de 3 personnes avec les don-
nées des capteurs de mouvement. Ces vidéos contiennent 451 cas d’authentification
légitime, 362 cas d’attaque par vidéo et 188 cas d’attaque par photo. Les vidéos sont
capturées sous différentes conditions d’illumination et de vitesse de mouvement. 3
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smartphones ont été utilisés : 2 Samsung Galaxy Alpha et un Samsung Galaxy Tab.
La base de données est séparée en deux ensemble contenant chacun les trois types
de vidéos (légitime, attaque par photo et attaque par vidéo). Un ensemble permet
de réaliser l’apprentissage, l’autre permet d’effectuer les tests.

Sur la courbe ROC (Figure A.10), nous observons que la méthode proposée présente
de meilleurs résultats que la méthode LBP, en particulier pour un taux faible de
fausse alarme. Une partie des fausses alarmes provient de la phase de capture. En
effet, si l’image est floue , la vitesse trop grande, ou que le visage sort du cadre, la
phase de reconstruction 3D n’est pas stable. Dans un scénario réel, une deuxième
phase de capture serait effectuée. Nous pouvons mesurer l’amélioration suite à cette
deuxième capture sur la courbe ROC (jaune). 4.11.

FIGURE A.10: Courbe ROC de la méthode proposée (rouge) en com-
paraison avec la méthode LBP (bleu). La méthode proposée avec une

seconde prise (jaune)

Dans le cas de l’attaque par photo, la classification est réalisée essentiellement
à partir de la profondeur de la reconstruction 3D. LA différence entre une image
falsifiée et une image réelle est suffisamment importante pour que le taux de détec-
tion avoisine les 100%. Dans le cas de l’attaque par vidéo, nous considérons le pire
cas, c’est-à-dire que l’utilisateur a un contrôle total sur la phase de capture.Nous ne
savons pas ce qu’il filme, quel mouvement il effectue ou quel smartphone il utilise.
Une erreur peut être générée par la manipulation du smartphone, c’est pourquoi
la possibilité d’une deuxième prise réduit significativement le taux de non détec-
tion. Une attaque avec un masque parfait serait efficace contre nos détecteurs. C’est
pourquoi dans le chapitre suivant, nous présentons une méthode de reconnaissance
faciale utilisant un capteur IR qui permet détecter cette attaque.
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A.4 Reconnaissance du visage par imagerie thermique

La reconnaissance du visage par imagerie thermique est la deuxième application
étudiée dans cette thèse. Nous proposons d’étudier une nouvelle méthode d’authentification
à partir d’images thermiques. Dans cette partie, nous présentons une nouvelle méth-
ode de reconnaissance faciale à partir d’une caméra thermique mobile non étalon-
née.

A.4.1 Problématique

FIGURE A.11: Les images thermiques ne sont pas sensibles à la con-
dition d’illumination

La reconnaissance du visage est une méthode d’authentification biométrique non-
intrusive. L’utilisateur n’a pas besoin de présenter des preuves supplémentaires au
système d’authentification, seul son visage est suffisant. Cette méthode est util-
isée dans plusieurs systèmes de sécurité et de surveillance. Les photopgraphies
numériques dans le domaine visible sont fortement sensibles aux changements d’illumination.
C’est la raison pour laquelle, nous avons proposé d’utiliser des caméras thermiques
comme source secondaire pour la reconnaissance faciale.

En effet, une caméra thermique capture une partie du spectre infrarouge (3-8µm
et/ou 8-15µm) pour estimer la température des objets placés devant la lentille. Elle
permet de visualiser pixel par pixel une image thermique de la scène qui est robuste
aux changements des conditions d’acquisition (figure A.11).
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FIGURE A.12: Différentes applications.

A.4.2 État de l’art

Des méthodes de reconnaissance faciale dans l’infrarouge peuvent se regrouper
en 4 groupes:

• Apparence globale : utiliser la totalité de l’image infrarouge de l’apparence d’un
visage pour la reconnaissance.

• Caractéristique: utiliser des caractéristiques extraites de l’image infrarouge tels
que la géométrie du visage, son réseau vasculaire ou la figure de perfusion
sanguine.

• Multi-spectral: modéliser le processus de formation d’une image infrarouge
pour décomposer des images de visages. Certaines approches utilisent di-
rectement les données de capteurs d’imagerie multi-spectrale ou hyperspec-
trale pour obtenir des images faciales à travers différentes sous-bandes de
fréquences.

• Multi-modal: combiner des informations contenues dans les images infrarouges
avec celles obtenues avec d’autres types de modalités, telles que les données
du spectre visible, afin d’exploiter leurs complémentarités.
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A.4.3 Solution proposée

Notre méthode de reconnaissance du visage s’effectue en deux étapes: l’extraction
d’informations caractéristiques et leur classification pour identifier la personne.

Extraction d’informations caractéristiques: La comparaison directe de deux pho-
tographies numériques est fortement sensible aux petits changements des conditions
d’acquisition. C’est pourquoi il est nécessaire d’extraire des informations utiles qui
permettent de différencier les images. En raison de leur nature différente, les car-
actéristiques extraites dans chacune de modalités d’imagerie (visible ou infrarouge)
sont différentes. Par exemple, des détails du visage peuvent ne pas apparaitre dans
l’image thermique si la température de surface reste la même.

FIGURE A.13: Réseau vasculaire d’une image thermique

C’est la raison pour laquelle, des nouvelles caractéristiques adaptées à l’imagerie
thermique ont été étudiées. Dans ce contexte, Ghiass et al [6] ont proposé d’utiliser
le réseau vasculaire qui est situé sous la peau pour réaliser une classification. Le
réseau vasculaire est un élément caractéristique (c’est à dire, il peut différencier des
personnes) qui est normalement plus chaud que d’autres parties du visage. Grâce à
ce petite décalage, on peut extraire ce réseau veineux de l’image thermique (figure
A.13). Pourtant, cette méthode présente des difficultés pour identifier une personne
dans le cas d’une pose différente à celle stockée dans la base de données. L’image
thermique est aussi très instable au changement de température extérieur qui peut
causer des imperfections dans l’extraction du réseau vasculaire.

Pour améliorer cette méthode et pour s’affranchir de l’impact du changement
de pose du visage, une reconstruction 3D de la tête par une vidéo/un ensemble
d’images consécutives est proposée. En utilisation ce modèle de visage, nous cher-
chons à localiser la position 3D du réseau vasculaire qui permet de mieux carac-
tériser le visage et donc de mieux identifier les personnes.

Classification: Après avoir extrait les informations caractéristiques et construit
un modèle, la tâche suivante concerne la comparaison entre le visage capturé et ceux



112 Appendix A. Résumé en français

FIGURE A.14: La reconstruction 3D de visage en utilisant des images
thermiques.

sauvegardés dans la base de données. Ce processus de comparaison est nommé clas-
sification. Dans le cas de la reconnaissance du visage, on utilise surtout la classifi-
cation k-NN (k-nearest neighbor:k plus proches voisins), c’est à dire, le résultat
va être déduit à partir de k modèles dans la base de données les plus similaires au
visage capturé.

A.4.4 Résultats

Après avoir reconstruit la forme 3D du visage et obtenu le réseau vasculaire pour
chaque image, nous avons réussi à localiser ce réseau dans la forme 3D (figure A.15
, A.16).

FIGURE A.15: Projection du réseau vasculaire dans le modèle 3D
pour personne A.

Ces résultats confirment l’hypothèse que le réseau vasculaire en 3D peut être util-
isé comme preuve d’identification des personnes. La qualité de la reconstruction
peut encore être amélioré. Nous envisageons deux pistes d’améliorations:
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FIGURE A.16: Projection du réseau vasculaire dans le modèle 3D
pour personne B.

• l’optimisation de la méthode de reconstruction 3D en temps et en performances,

• l’amélioration de la méthode d’extraction du réseau vasculaire.

Les capteurs utilisés pour reconstruire ces modèles 3D sont des ThermApps (cap-
teurs à petits prix 1000-2000 euros qui transmettent des données directement vers
un téléphone pour visualiser et traiter des images). Ces capteurs sont particulière-
ment bien adaptés à notre projet puisqu’il est facile d’obtenir des images provenant
de différents points de vue grâce à leur petite taille.(figure A.18)

A.5 Conclusion

Le développement des technologies de l’imagerie et de la capacité de calcul nous
a menés à une époque où le visage de l’utilisateur peut être considéré comme une
preuve d’authentification. La méthode la plus simple et la plus naturelle est d’essayer
d’imiter la vision de l’homme en utilisant la vision par ordinateur. Pour cette raison,
l’imagerie dans le visible est la première option pour un système d’authentification
par reconnaissance faciale.

Cependant, la technologie de l’imagerie dans le visible n’est pas assez robuste
pour être utilisée comme seule source d’information pour l’identification. Cette
méthode a deux limites majeures qui rendent les systèmes d’authentification vul-
nérables. La première limite est sa sensibilité aux conditions d’éclairage. L’image
dépend non seulement de la couleur de l’objet mais aussi de la nature et de l’intensité
de la source lumineuse. Le deuxième problème est qu’il existe des attaques où
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TABLE A.1: Résultats moyens après ayant répété 20 fois le processus
d’expérimentation.

Accuracy Précision Rappel

Uniquement Gabor-Intensité 79.43% 77.62% 81.76%

Mixage Gabor-décision 82.64% 80.12% 85.21%

Mixage Gabor-caractéristique 88.43% 87.05% 90.83%

Uniquement LBP-Intensité [? ] 86.11% 85.05% 87.70%

Mixage-LBP 87.36% 88.55% 88.79%

FIGURE A.17: La courbe de Roc du classificateur final.

l’attaquant utilise une signature de visage de l’utilisateur afin de contourner le sys-
tème d’authentification. La signature peut être une photo, une vidéo trouvée sur un
réseau social ou même un masque 3D de l’utilisateur.

Dans la première partie de cette étude, nous avons construis une solution con-
tre les attaques avec un minimum d’équipement requis. Notre cas d’utilisation une
méthode de reconnaissance faciale pour les smartphones à caméra dans le visible. Ce
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FIGURE A.18: Caméra ThermApp couplée avec un smartphone

cas d’utilisation est compliqué car le système est basé sur une seule caméra non cal-
ibrée et la scène d’authentification dépend entièrement des utilisateurs. Nous avons
ajusté notre solution pour ce cas en explorant le mouvement de certains capteurs
à l’intérieur du smartphone. A partir d’un ensemble d’images vidéo, la méthode
utilise un processus de reconstruction 3D pour construire un modèle 3D de la tête
qui est très efficace contre la photo-attaque car les différences de caractéristiques
géométriques entre un objet réel et une image sont très importantes. L’attaque vidéo
peut être détectée en observant la synchronisation entre le mouvement préalable du
smartphone et le mouvement calculé par le processus de reconstruction 3D. La lim-
ite de notre première étude est qu’elle n’est pas capable de détecter une attaque par
masque 3D.

L’attaque délicate du masque n’est pas facilement détectable par une technologie
d’imagerie dans le visible car son empreinte est très proche du visage. Cependant, en
imagerie thermique où la source d’émission du spectre est le visage humain, la détec-
tion de tous les types d’attaques est plus aisée. La technologie d’imagerie thermique
peut résoudre l’autre problème majeur de l’imagerie visible concernant les condi-
tions d’éclairage. Dans notre deuxième étude, nous avons amélioré les performances
de la méthode de reconnaissance faciale infrarouge en utilisant un modèle 3D de la
tête calculé à partir d’une vidéo thermique. La construction du réseau vasculaire à
partir de la vidéo thermique est maintenant observée au niveau de l’intensité et des
caractéristiques géométriques. Les informations de profondeur et les données sur
les vaisseaux sanguins sont associées pour former une seule caractéristique. Ainsi,
la méthode de reconnaissance faciale se base principalement sur la position 3D du
réseau vasculaire.

A.6 Perspectives

Pour la méthode de détection du spoofing qui est présentée au chapitre 4, il y a un
type d’attaque qui n’a pas été pris en compte dans l’étude : l’attaque avec un masque
3D. Jusqu’à cette étape, notre détection d’usurpation d’identité faciale est indépen-
dante du processus de reconnaissance faciale. Nous n’utilisons pas la même base
de données que le système d’authentification mais une base de données dédiée à
notre solution. En fait, les informations géométriques peuvent être utilisées dans la
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phase de reconnaissance faciale, ce qui rend les attaques avec un masque détecta-
bles. Cependant, ce type de solution nécessite suffisamment d’images de chaque
utilisateur dans différentes positions de la base de données pour pouvoir comparer
avec la tentative. Une autre solution est d’étudier la nature du matériau de l’objet
pour distinguer le visage des attaques. En fait, chaque type de matériau génère une
empreinte spéciale qui peut être utilisée pour détecter si l’objet est fait de peau hu-
maine.

La méthode de reconnaissance faciale thermique permet de construire un modèle
3D du réseau vasculaire. Cependant, nous n’utilisons pas directement ce modèle 3D
mais sa projection dans un ensemble d’images de profondeur. Le processus avec des
images de profondeur augmente les performances de notre méthode mais ne permet
pas d’obtenir une comparaison complète du modèle 3D. Dans nos travaux futurs,
nous avons l’intention de construire une méthode permettant d’étudier directement
le modèle 3D afin d’utiliser toutes les informations fournies.
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Reconnaissance faciale et détection de 
l’usurpation d‘identité par l’utilisation 
d’un modèle 3D 
 
 
L'amélioration des technologies d'imagerie nous 
conduit à une ère où le visage de l'utilisateur peut 
être reconnu comme une preuve d'authentification. 
L'imagerie dans le visible est naturellement la 
première option pour tout système de 
reconnaissance faciale. Cependant, cette technique 
présente deux inconvénients majeurs qui rendent le 
système d'identification vulnérable : sa dépendance 
à l'égard de la source lumineuse et la difficulté à 
détecter la projection d’un visage. La solution de 
reconnaissance faciale pour smartphones est le cas 
d'utilisation choisi. À partir d'un ensemble d'images 
vidéo, la méthode construit un modèle 3D de la tête 
en utilisant un schéma de reconstruction dédié. 
Cette méthode est très efficace contre les attaques 
par photographie, car les différences entre un visage 
et une image sont importantes. L'attaque par vidéo 
peut être détectée en déterminant une 
désynchronisation entre le mouvement du 
smartphone et le mouvement capturé par le 
processus de reconstruction 3D. En imagerie 
thermique où la source d'émission du spectre est le 
visage humain, la détection de tous les types 
d'attaques par projection du visage est facile et les 
conditions d'éclairage n'affectent pas les images 
thermiques. Dans notre deuxième étude, nous visons 
à améliorer la performance de la méthode de 
reconnaissance faciale thermique à l'aide d'un 
modèle 3D du réseau vasculaire calculé à partir 
d'une vidéo infrarouge. De nombreuses 
expérimentations sur des données réelles ont 
souligné la pertinence de l'approche proposée. 
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The improvement of imaging technology leads us to 
an era in which user's faces can be acknowledged 
as a biometric proof of authentication toward an 
automatic system. Visible imagery is naturally the 
first option for every facial recognition system. 
However, visible imagery has two major drawbacks 
that make the identification systems vulnerable: its 
dependency on the light source and its 
incompetence toward face-spoofing attacks. The 
first part of this study aims to construct a solution 
against the face-spoofing attack with minimum 
equipment required. The face recognition solution 
for smartphones is our hardest use-case because of 
the uncalibrated camera and unpredictable 
behaviors of users. From a set of video's frames, the 
method builds a 3D model of the head using a 
dedicated reconstruction scheme. This model is 
highly effective against photo-attack as differences 
between a real object and an image is truly large. 
The video attack can be detected by examining the 
synchronization between the prior motion of the 
smartphone (explored by motion sensors) and the 
captured-motion calculated by the 3D reconstruction 
process. In thermal imagery where the emission 
source of the spectrum is human's face, the 
detection of all types of face-spoofing attack is 
trivial, and the illumination conditions do not affect 
thermal images. Though, in general, thermal images 
present less information than visible images. In our 
second study, we aim to improve the performance of 
thermal face- recognition method using a 3D model 
of the vascular network computed from an infrared 
video. 
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