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Résumé en Français

1 Introduction

La synthèse de vues est actuellement un de champs de recherche en vision par ordinateur.
Elle vise à créer de nouvelles vues d’une scène capturée à partir de plusieurs points de vue.
Le problème est, étant donné plusieurs images d’un objet particulier prises à partir de points
spécifiques dans la scène avec des réglages et des orientations spécifiques de la caméra, es-
sayer de créer une image synthétique à partir d’une caméra virtuelle placée à une position
différente dans la même scène. Les domaines de la CVR et de l’intelligence artificielle (IA)
sont impliqués dans la définition d’approches appropriées au problème qui consiste à créer
une image synthétique à partir d’une caméra virtuelle. Un exemple d’application de la syn-
thèse de vues est la Free Viewpoint Television (FTV). La FTV est un système de visualisation
d’une vidéo naturelle qui permet à l’utilisateur de contrôler de manière interactive le point
de vue et de générer de nouvelles vues d’une scène dynamique à partir de n’importe quelle
position 3D. Dans la FTV, le centre d’attention peut être contrôlé par les spectateurs plutôt
que par un réalisateur, ce qui implique que chaque spectateur peut observer un point de vue
unique.

La capture Multi-View Video (MVV) change de la prise en charge partielle (générale-
ment environ 30 degrés) à la prise en charge intégrale (360 degrés) de la scène. Par con-
séquent, il est possible de générer des vues stéréoscopiques appropriées pour une visualisa-
tion avec un écran 3D ou d’autres méthodes 3D. Les systèmes équipés de plusieurs caméras
physiques peuvent saisir des images avec une plus grande couverture de la scène observable.
Cependant, certaines régions seront occultées d’une façon permanente, quel que soit le point
de vue. Un nombre plus important de caméras devrait permettre d’obtenir un résultat de
haute qualité car moins d’interpolations sont nécessaires. Dans cette thèse, nous étudions
les effets de transition vidéo dans une scène capturée MVV pour passer virtuellement d’un
point de vue réel à un autre dans la même scène. Ainsi, lors du déroulement d’une vidéo,
le spectateur ne peut s’arrêter que sur des vues réelles et faire une transition naturelle en-
tre elles en utilisant des vues virtuelles synthétisées. La génération virtuelle de ce type de
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transitions permet de réduire un nombre important de caméras dans une scène en les rem-
plaçant par des caméras virtuelles. Elle réduit ainsi le coût de la mise en place des MVV
dans une seule scène. En même temps, elle offre au spectateur une navigation interactive et
naturelle d’un point de vue à un autre comme si la caméra était en mouvement. Moins le
nombre de caméras réelles est élevé, moins les dépenses nécessaires à la capture du MVV
sont importantes, mais plus la distance inter-caméras est grande. Comme approche à notre
problème, il existe de nombreux types de transition pour joindre deux points de vue dans une
scène, depuis la plus classique comme la transition Coupure, où un plan passe au plan suivant
dans une vidéo sans aucun effet, jusqu’aux plus récentes comme les méthodes de transition
basées View Synthesis. Les méthodes de synthèse de vues telles que le warping 3D utilisent
les informations 3D de la scène (par exemple, la carte de profondeur) pour reconstruire un
nouveau point de vue; Il semble donc que ces méthodes soient les plus prometteuses pour
générer les transitions que nous visons et qui ont retenu notre attention dans notre étude.
Cependant, les méthodes de synthèse de vue existantes souffrent toujours d’artefacts visuels
dans l’image rendue finale, dus aux occultations dans la nouvelle position du point de vue.

En effet, un nombre restreint de caméras dans une scène élargit la distance à partir du
point de vue virtuel, ce qui implique une multiplication des informations manquantes dans
les zones non perçues par les caméras de référence et perçues par la nouvelle caméra à
reconstruire. Ces contraintes entraînent un inconvénient majeur dans les méthodes proposées
pour gérer le problème des grandes occultations. L’objectif principal de la thèse est d’offrir
au spectateur une expérience interactive, où il peut librement changer de point de vue tout en
regardant une vidéo. Le principal enjeu est de diminuer le nombre de caméras dans la scène
en conservant les points de vue essentiels et en reconstruisant une transition fluide entre les
caméras réelles.

Les méthodes de transition basées sur la synthèse de vues semblent être les plus naturelles
et les plus réalistes par comparaison avec les méthodes plus classiques qui n’utilisent pas une
reconstruction 3D de la scène. Alors que les méthodes traditionnelles de synthèse de vues
ont duré plus de deux décennies, les méthodes de synthèse de vues basées machine learning
ont connu un essor considérable au cours des deux dernières années, en raison des résul-
tats exceptionnels obtenus dans ce domaine. Les faiblesses des méthodes de synthèse de
vues existantes dans la littérature ont encouragé l’exploration des méthodes de synthèse de
vues pour construire une transition naturelle et fluide entre deux points de vue dans une
scène. Nous avons étudié les méthodes algorithmiques et les méthodes basées machine
learning utilisées pour la synthèse de vues, en essayant de tirer le meilleur parti des deux
approches et de développer une méthode optimale de synthèse de vues pour la synthèse de
vues à grande baseline. De plus, nous gardons l’expérience de l’utilisateur au centre de notre
étude puisque le spectateur est l’utilisateur final de notre application. C’est pour cette raison
que nous avons réalisé une série de tests subjectifs pour évaluer les différentes méthodes de
transition sur la base de jugements humains.
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2 Contributions

La première partie de ce travail vise à mettre au point une nouvelle approche pour la syn-
thèse de vues à large baseline. À cette fin, nous avons introduit de nouvelles architectures de
réseaux de neurones pour l’étape de fusion des vues tout en utilisant une méthode algorith-
mique de pointe pour l’étape de warping des vues de référence du processus de synthèse des
vues. Cette méthode vise à réduire la taille significative des filtres du réseau pour warper les
images de référence, réduisant ainsi la complexité. Deux approches différentes sont étudiées
dans cette partie de la thèse:

• Une approche hybride pour la synthèse de vues à large base avec ConvNet (CNN-
VB):

Les Convolutional Neural Networks (ConvNets) ont été récemment utilisés [1–3] pour
mettre en œuvre des architectures de synthèse de vues complètes de bout en bout, du
warping de la vue de référence au blending de la vue cible tout en traitant également
les occultations. Cependant, la taille des filtres de convolution doit augmenter avec
la distance entre les vues de référence, ce qui rend les approches de convolution trop
complexes pour les configurations à large baseline. Dans ce travail, nous proposons
une approche hybride de la synthèse de vues où nous faisons d’abord un warp des
vues de référence en corrigeant les occultations. Ensuite, nous développons une archi-
tecture à convolution plus simple pour mélanger les vues pré-processées. En faisant
warper les vues de référence, nous diminuons la distance équivalente entre les vues
de référence, ce qui permet d’utiliser des filtres convolutionnels plus petits et donc de
réduire la complexité du réseau. Nous proposons également un algorithme de remplis-
sage des trous pour combler les désocclusions dans les vues warpées. Nous montrons
de manière expérimentale que notre méthode se comporte favorablement par rapport
aux méthodes de synthèse traditionnelles et de convolution, tout en conservant une
complexité moins importante par rapport à ces dernières.

• Blender hybride à double flux pour la synthèse de vues à large baseligne (HDSB):
La navigation libre dans une scène nécessite de warper certaines vues de référence vers
un point de vue cible souhaité et de les fusionner pour synthétiser une vue virtuelle.
Les méthodes basées sur les ConvNets peuvent apprendre conjointement les tâches de
warping et de blending. Ces méthodes, comme [4], sont souvent conçues pour une
distance de baseline inter-caméras limitée, et des kernels plus grands sont nécessaires
pour le warping si la distance de baseline augmente. Les méthodes algorithmiques
peuvent gérer de grandes distances de baseline ; cependant, la vue synthétisée souffre
d’artefacts au voisinage des pixels disocclus. Nous présentons une approche hybride
dans laquelle les vues de référence sont warpées de manière algorithmique vers la
position cible, puis fusionnées via un ConvNet. La déformation préliminaire des vues



xii

permet de réduire la taille des noyaux convolutifs, et donc le nombre de paramètres
apprenables. Nous proposons un encodeur-décodeur résiduel pour le fusionnement
d’images avec un encodeur siamois pour maintenir les paramètres à un nombre faible.
Nos expériences de synthèse de vues sur des séquences multivues réelles montrent une
meilleure qualité d’image objective que les méthodes de l’état de l’art en raison de la
diminution des artefacts dans les images synthétisées.

Les contributions de cette thèse se concentrent donc sur la qualité d’expérience de l’utilisateur
pour la transition vidéo et l’ensemble de données. Premièrement, nous réalisons un dataset
créatif pour la qualité de l’expérience de transition vidéo. Ensuite, notre travail vise à éval-
uer subjectivement les approches de synthèse de vues proposées sur 8 séquences vidéo dif-
férentes en réalisant une série de tests subjectifs.Ainsi, les contributions de cette partie sont
divisées en deux segments :

• Une base de données vidéo stéréoscopique multi-vues avec écran vert (MTF &
Pandemonium) pour l’évaluation de la qualité d’expérience de la transition vidéo:

Nous présentons tout d’abord une base de données vidéo stéréoscopique multi-vues
avec écran vert, appelée MTF et Pandemonium, destinée à être utilisée dans des ap-
plications de vision par ordinateur, en particulier pour la navigation libre, la télévision
à vue libre et l’évaluation de la qualité d’expérience des transitions vidéo. Le MTF
contient des vidéos full-HD de scénarios réels composés de 3 scènes. Une particu-
larité de ce dataset est que pour comprendre son storytelling ; les utilisateurs doivent
changer leur point de vue dans la scène à un moment donné. À cette fin, nous devons
le plus souvent générer une transition pour joindre deux points de vue dans la même
scène. Les techniques de vision par ordinateur qui permettent de telles transitions,
comme les méthodes de synthèse de vues, s’appuient sur un ensemble d’images de
la scène pour générer de nouvelles vues à partir de différents points de vue. Cepen-
dant, ces méthodes peuvent présenter de nombreux cas de défaillance qui entraînent
des artefacts dans la transition vidéo finale restituée. Dans la plupart des tests de syn-
thèse de vues, le contenu n’est pas conçu pour rendre la transition entre deux points
de vue valide ou captivante pour les spectateurs, par exemple, ils n’ont pas besoin de
faire une transition pour obtenir plus d’informations afin de mieux comprendre le con-
tenu. Nous supposons donc que les participants jugeront sévèrement les artefacts et
les imperfections de la transition effectuée. Ainsi, le MTF est censé mieux analyser
l’impact visuel des artefacts persistants dans la transition finale restituée. Dans notre
dataset, toutes les scènes sont enregistrées dans un studio à écran vert, qui est sou-
vent utilisé pour ajouter des effets spéciaux et des décors lors du montage selon des
besoins spécifiques. Notre jeu de données présente également une large configuration
de caméras de référence, une contrainte difficile pour les techniques de synthèse de
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vues. Enfin, The MTF & Pandemonium peuvent également être utilisés comme un
ensemble de données complémentaires à d’autres dans la littérature dans diverses ap-
plications de vision par ordinateur, telles que la compression vidéo, le contenu vidéo
3D, l’environnement immersif de réalité virtuelle, l’estimation du flux optique...

• MUlti-view Synthesis Enhancer (MUSE) :

Enfin, nous proposons une extension des solutions proposées précédemment pour la
synthèse de vues. Cette approche propose d’améliorer les vues warpées pré-fusionnées
en utilisant la méthode de l’encodeur Hybrid Dual Stream Blender (HDSB) puisque
maintenant nous n’avons qu’une seule image d’entrée au lieu de deux. Par con-
séquent, le réseau ne fusionne pas les vues mais corrige les artefacts d’image provenant
de l’image pré-fusionnée et améliore la qualité de l’image finale. Nous proposons
également un processus d’apprentissage intra-contenu, dans lequel nous réalisons un
training pour chaque contenu. La pré-fusion des textures déformées et non peintes
provenant des vues latérales de référence garantit, en particulier, une fusion uniforme
des zones non-lambertiennes de l’image.

3 Conclusion

Malgré les nombreuses innovations apportées aux méthodes de synthèse de vue pour
générer une vue nouvelle sans artefacts, la gestion des occultations pour les caméras à large
baseline reste une tâche difficile dans la communauté de la vision par ordinateur. En effet,
l’introduction de technologies basées sur l’apprentissage profond a permis au domaine de la
synthèse de vue de voir à nouveau la lumière après les échecs constants des approches al-
gorithmiques traditionnelles. Cependant, la demande en calcul des méthodes de synthèse de
vues basées sur l’apprentissage est encore plus importante, surtout pour des cas d’utilisation
évolutifs.

L’objectif de cette thèse est donc, d’une part, d’étudier une approche de synthèse de vues
légère, à la fois algorithmique et basée sur l’apprentissage, qui ne soit pas coûteuse en temps
et en mémoire. Néanmoins, en même temps, cette approche peut générer un nouveau point
de vue plausible pour une large base de données. D’autre part, cette thèse visait également
à mettre l’utilisateur au centre des investigations, ce qui nous a conduit à une série de tests
subjectifs permettant à l’utilisateur d’évaluer les différentes méthodes de synthèse de vues
proposées sur des cas réels, et de faire une préférence sur un type de transition vidéo. En
conséquence, nous avons été encouragés à créer une base de données plus adaptable qui
est un ensemble de données stéréoscopiques multi-vues pour la qualité d’expérience des
transitions vidéo.
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Chapter 1

Introduction

1.1 Context and challenges

1.1.1 Free Navigation

Visual media has a significant impact on our society and culture given all the services it pro-
vides (digital images, digital videos, video games, websites, social media, digital data, videos
tapes...) and it can be created, viewed and broadcast on all electronic devices (TV, smart-
phones, computers ...). Since it requires high memory, storage and bandwidth, advances
in data compression and video coding made digital multimedia distribution and streaming
practically possible, allowing for billions of people to share, create, modify and store visual
media via personal computers and smartphones. More specifically, International Standard-
ization Organizations had provided Discrete Cosine Transform (DCT)-based practical video
coding formats, most notably the MPEG video formats. Moreover, the evolution of visual
media types has been invested heavily in terms of image resolution (Standard Definition
(SD) → High Definition (HD) → 4K → 8K), image dynamic range (Standard Dynamic
Range (SDR)→ High Dynamic Range (HDR)), but also in realism, depth sensation and in-
teractivity (2D → 3D → 4D). The 3D depth impression in visual media gained popularity
among the users in particular in video games, cinema and home TVs. However, these sys-
tems produce 2D/3D scenes that can be only seen from one fixed point of view and do not
allow the users to choose the viewpoints of the captured 2D/3D scene.

In order to further enahnce user’s experience, advanced work in visual multimedia tech-
nologies and computer graphics have enabled the development of new types of visual media,
such as the free viewpoint video media and the immersive media. The former allows the
user to freely and interactively change his viewpoints within a multi-view captured 2D/3D
scene. The latter, also referred to as Extended Reality (XR), embraces the Virtual Reality
(VR), Augmented Reality (AR), Mixed Reality (MR) and 360-degree videos, where the real
world is simulated in a digital world.



2 Introduction

The term Degrees of Freedom (DoF) refers to the movement of the head in space, or
how we account for the head’s position and orientation. Fig. 1.1 illustrates the three differ-
ent degrees of freedom the user can have during an immersive experience : 3 Degrees Of
Freedom (3DoF), 3 Degrees Of Freedom Plus (3DoF+) and 6 Degrees Of Freedom (6DoF).
The first ones and simplest head-mounted display offers 3DoF which allows one to rotate
the head over the three axis: Pitch, Roll and Yaw, with Pitch, tilting forward and backward
on the X-axis. Yaw, turning left and right on the Y-axis, and Roll tilting side to side on
the Z-axis. 3DoF+ and 6DoF come with more advanced head-mounted displays and three
different movements. The 3DoF+ allows the user to move the head and the chest left and
right on the X-axis, up and down on the Y-axis, forward and backward on the Z-axis, with no
body displacement of the user. The 6DoF offers the swaying movement that allows the user
to move left and right on the X-axis. The heave moves up and down on the Y-axis, and the
surge moves forward and backward on the Z-axis, while supporting unlimited displacements
of the user in the scene.

The 360° videos can be viewed with a 3DoF headset. The 3DoF+ video navigation has
not yet been democratized but already mentioned [13]. The 6DoF navigation is, however, a
very active research topic.

The higher the number of DoF means the more one can engage with the movement.
Degrees of freedom, together with stereoscopic and spatial audio, intensify the sense of
presence. The greater the DoF, the greater the experience in XR, because the greater you
can suspend disbelief from the real to the virtual and engage with the content, which led us
to the notion of parallax. The parallax is the horizontal shift of two homologous points of a
stereoscopic pair’s right and left views. The parallax effect consists in creating an illusion
of depth and, thus, 3D to the user. The motion parallax refers to changes in the projective
relationships between the images of objects resulting from the observer’s movement in his
environment.

While VR headsets may not be a standard household item yet, there is a lot of buzz around
the immersive media, and the consumers are interested in experiencing it for themselves.
However, the crowd is even more excited looking for both interactive and immersive contents
together.

1.1.2 View synthesis

The View Synthesis (VS) is currently a study category of Computer Vision Research (CVR)
that aims to create new views of a specific subject starting from several snapshots taken
from given points of view. CVR and Artificial Intelligence (AI) fields are involved in the
definition of suitable approaches to the problem. Fig. 1.2 illustrates the problem which is
given several pictures I1 and I2 of a particular subject taken from specific points with specific
camera settings and orientations, try to create a synthetic image Iv from a virtual camera
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Fig. 1.1 Illustration of the different degrees of freedom (Degree Of Freedom) that a user has
during his immersive experience.

placed at a different point and given settings.

Fig. 1.2 Image rendering process

An example application of View Synthesis is Free Viewpoint Television (FTV). FTV is
a system for viewing a natural video, allowing the user to interactively control the viewpoint
and generate new views of a dynamic scene from any 3D position. In FTV, the center of
attention can be controlled by the viewers rather than a director, implying that each viewer
may be observing a unique viewpoint [14].

Several cameras are placed around the scene to obtain the views necessary to allow a
high-quality rendering of the scene from any angle. Either in a studio environment [15] or
an outdoor venue, such as a sporting stadium [5]. The output Multi-View Video (MVV)
must then be packaged so that the data may be compressed. The users’ viewing device can
easily access the relevant views to interpolate new views [16] [17]. In addition to placing
cameras around the scene to be captured, it is essential to estimate the geometry of the
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camera set up by a process known in computer vision as camera calibration [18] [19]. The
manual arrangement would be too cumbersome, so typically, an alignment is performed
before capturing a test pattern used to generate calibration parameters.

MVV capture changes from partial (usually about 30 degrees) to complete (360 degrees)
scene coverage. Therefore, it is possible to output stereoscopic views proper for viewing with
a 3D display or other 3D methods. Systems with more physical cameras can capture images
with more coverage of the viewable scene. However, certain regions would permanently be
occluded from any viewpoint. A more significant number of cameras should make it possible
to obtain high-quality output because less interpolation is needed.

In this thesis, we study the video transition effects in a MVV captured scenes to virtually
move from one real viewpoint to another in the same scene. Therefore, while watching a
video, the viewer can only stop on real views and make a natural transition between them
using virtual synthesized views.

The targeted use-case provides that a user can move freely from one real view to an-
other in a given scene. However, of course, the views we are discussing here correspond to
where the cameras are placed. If we consider a scene that is shot with several cameras, as
shown, for example, in Fig. 1.3 we capture a narrative scene of three actors using multi-view
video setup, the views correspond to the cameras represented by the blue pictograms, and a
transition happens between two adjacent cameras.

Fig. 1.3 Example of a scene map.

Generating virtually those kinds of transitions reduces a significant number of cameras
in a scene replaced by virtual ones. It thus reduces the cost of the MVV setup in a single
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scene. At the same time, it offers the viewer interactive and natural navigation from one
viewpoint to another as if the camera was moving. The fewer real cameras we use, the fewer
expenses required in the MVV capture; however, the larger the baseline is (i.e., inter-cameras
distance).

Many transition types exist to join two viewpoints in a scene, as an approach to our
problem, from the more classical one such as the Cut transition, where one shot transitions
to the next shot without any effect, to the most recent one such as View Synthesis-based
transition methods. View Synthesis methods such as 3D warping use the 3D information
of the scene (e.g., depth map) to reconstruct a new viewpoint; Therefore, it seems that these
methods could be the most promising to generate the transitions we are aiming at and retained
our attention in our study.

In the literature, the view synthesis methods are divided into two categories: the classical
algorithmic-based methods [20–23] and the learning-based methods [1, 4, 24–26]. Other
work aims to improve the inpainting task of the view synthesis process to fill in the holes due
to occlusions. These methods could be traditional inpainting methods [27–29] or learning-
based methods [30–32]. However, these methods still suffer from visual artifacts in the final
rendered image due to occlusions in the newviewpoint position. Indeed, a sparse number
of cameras in a scene enlarge the baseline from the virtual viewpoint, which implies an
increase of missing information in areas non-visible by the references cameras and visible
by the newone to be reconstructed. Such constraints lead to a critical drawback in these
proposed methods when dealing with large disocclusions.

1.1.3 Immersive and Interactive free viewpoint video

Broadcasters and content creators are so far controlling the viewing angles and positions
showed to users in a video. The key benefit of free viewpoint video (FVV) is providing a
new immersive user experience and interactivity that goes beyond higher image quality and
higher realism. It is an advanced visual media type that allows the users to chose their desired
point of view in a 3D/4D space from multi-view captured video, meaning an interactive free
navigation.

Unlike computer graphics applications, FVV aims at capturing real world scenes using
real cameras and creates virtually all the other possible point of views of the scene, which
is very attractive to users in many applications. It allows the user, for example, to enjoy
watching a DVD of a concert or an opera from different point of view freely chosen by him
(his objective can focus on the singer, the band, his favorite musical instrument or maybe the
audience...). As well as in post-production systems, such for a sport event like football or
basketball, FVV offers the user the freedom to go anywhere in the field that he wants as a
fan. It is an improved experience to watch the game whether the user is sitting in the stadium
or at home, bringing him closer to the game to see different perspective even if it was not
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shot by any camera. It also provides him replay angles of the game that he would never be
able to see, putting him in the action with the players.

The director of Carnegie Mellon’s Robotics institute Takeo Kanade, calls this technology
"Virtualized reality", as opposite to virtual reality, that is based on events taking place in the
real world, which are captured and processed by computer manipulation, and he said:

"The output from these multiple cameras shooting a scene together from many angles
actually can create totally new views that were not captured by any camera.". He added,
"because our models are derived from real images, the models look much more real than
typical virtual world."

Indeed, this technology offers a completely new way of watching an entertainment event
where the user can customize the perspective from which they watch. For example Intel
proposes the True View platform that delivers new views that traditional cameras can’t. Fig.
1.4 illustrates dozens of small cameras installed in a ring around the venue, capturing the
entire field of play. They generate massive amounts of volumetric data; the camera array
is connected to Intel servers, where all data is stored and processed. Intel TrueView ren-
ders 360-degree replays, stunning freeze frames, and never-before looks at the most exciting
plays.

Fig. 1.4 Example of a customized entertainment event [5]

In addition, both immersive and interactive aspects are available in such applications.
However, this technology is totally new and the user is not very familiar with it and thus,
many questions arise. The first thing that intrigued the experts is about losing bearings in an
immersive experience which can cause dizziness and motion sickness [33] for some users,
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and a lot of work [34] has been already done on this topic and still going on. Content creators
and image quality experts are the most involved in these studies to provide to the user an
immersive experience as comfortable and pleasant as it is while watching on a flat screen.
Not less than the immersion aspect, studies about interactivity experience have been taking
an important place too in the community of the Quality Of Experience (QoE) studies [35].
The user has always been passive when it comes to watch any kind of entertainment show
(concert, football, theater, cinema ...). The fact that the user has from now on, to control
his viewing angle while watching a dynamic scene, would not necessary be unanimous [36].
Therefore, the experts work on it and their work is essentially based on subjective quality
assessment tests. One interesting and very rare possible interactivity is the one applied on a
narrative contents (movies, series, theater, ...) where the director has a very important role
in it, as he is the one who defines what to show or not to the viewer. Offering the possibility
to the viewer to change their point of view in the middle of a movie scene in a coherent
and motivated way, is very challenging for a collective and coordinated work between the
scenarist, the director and content creators.

1.1.4 Interactivity in Narrative content

There are two modes of interactivity in narrative content nowadays:

• choose-your-own-adventure mode.

• change-your-point-of-interest mode.

Fig. 1.5 Black mirror:Bandersnatch series [6]
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Choose-your-own-adventure

Most interactive movies are a particular type of movie that blends the interactivity of the
games with the narrative experience of films. This mode of interactivity does not let the
viewer passive to the storytelling, but it gives them the power to make narrative decisions.
However, this mode is not really new technology, since it has existed for decades as video
games. Games are fully-interactive, with users making every possible decision within an ex-
perience. Some games have little to no "story", while others have narratives within them that
may or may not be influenced by a player’s actions. Some producers and content creators are
excited about this “novelty”, blurring lines between high-quality passive filmed content and
consumer-decision content. For example in Fig. 1.5 Netflix wants to make more interactive
TV shows. For example, in Black mirror:Bandersnatch series, the viewer in this scene can
decide the character’s reaction, by destroying the computer or hitting the desk. In this con-
text, there is no “winning”. Viewers have minimal control, and the quality of the outcome
is entirely subjective. Furthermore, the viewer can make choices on behalf of the charac-
ters, as the story takes shape based on the viewer’s choice. Each choice leads to a different
adventure, so the story will be renewed each time the viewer sees the movie again.

Change-your-point-of-interest

This is the mode on which we are focusing in this manuscript, which is the rarest mode to
be implemented in narrative content. In films, directors decide on the sequence of points of
view in a filmed scene; depending on the scenario, he switches from one point of view to
another to produce a scene that pleases the viewers. There are three different types of point
of view. First, the “subjective” point of view, where one identifies with the character. In this
view, the spectator does not see the actor; instead, it is his eyes.

Second, through “witness” point of view, we are spectators of the scene, either we watch
what happens, fixed shots, or we follow the action, moving shots; the choice is that of the
desired effect on the spectator: passive, he observes, explores the interior of the image,
anticipates, or active: he participates in the action and is surprised.

Finally, the “narrator” point of view or simply an exterior point of view. However, this
view allows the user to realize the situation by giving an overall view. The camera is led to
take unreasonable positions such as an exterior view of an apartment at the top of a building,
a point of view that no one ever has, a “god’s eye” view. This unique status would place
oneself too much on the outside, retreat from the story, and rarely being unique. However,
here the viewer is just a passive spectator.

It could sound ominous, but the idea is to let the viewer participate in the “directing” of
the movie by letting him change his point of view based on his interest. The main reason to
change a point of interest in the scene is either the actual point of interest is not interesting
anymore to the viewer, or the other point of interest in the same scene seems more attractive
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to this viewer. It also could be changing a point of view of the same point of interest.
In cinemas, another point of view could be more plausible, more enjoyable, less harmful,

less aggressive to the viewer depending on the scene, without losing the story events.
In theater, this option gives the viewer the power to move around in the play as he wishes.

It is up to each viewer to decide how they want to see their movie or play, giving them some
power. This mode will expand the number of viewers. For example, in a given brutal scene
of two actors, we can keep watching the torture or change the point of interest to watch other
actors’ reactions to avoid such scenes to sensitive people.

To make this change of point of interest happen, we will need to generate a visual effect
to link both real points of view together; we call it a video transition. In our case, this video
transition is a technique used in the post-production and editing of a movie to combine two
different points of view in the same scene.

Video transition: a middle run towards the 6DoF

In an immersive interactive experience, the “6 degrees of freedom (6DoF)” offers the user
the possibility to be tracked not only by his head movement but also his body location as
he physically moves left, right, forward, backward up, and down. The user can thus move
around to freely change his location and point of view while watching a video.

The video transition is an intermediate step towards the 6DoF, where the user is not en-
tirely free but has the choice to change his point of view using a transition that can seamlessly
join two adjacent points of view of real cameras in the scene. Fig. 1.6 illustrates an example
of a video transition in the same scene where a viewer can move from Camera A to Camera
B to change his point of view in the scene while watching a video. A typical format for these
applications is the MultiView Video composed of a set of N video sequences representing
the same scene, referred to as real views, acquired simultaneously by a system of N cameras
positioned under different spatial configurations. An alternative representation is the Multi-
View-Plus-Depth (MVD) format [17], where the depth and texture information are used for
each viewpoint.

We call the seamless video transition “a middle run towards the 6DoF”, and it will be ex-
plored in this manuscript, from its creation, conception to its purpose. However, we assume
that it is essential to seamlessly maintain the sense of orientation in the viewer when transi-
tioning between video shots of a scene by relating the two- and three-dimensional space of
action, else the viewer will become lost in the environment.

The Cut transition is when another image instantly replaces the first image. The blend is
also overlapping, which is when the new image gradually replaces the first one. The blur is
when a progressive and then digressive blur achieves the switch from the first point of view to
the other. Furthermore, state-of-the-art computer vision allowed more advanced techniques
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Scene

Camera A Camera B

Two-side video transition in the same scene

Fig. 1.6 Example of video transition in a multi-view video sequence representing the same
scene.

to reconstruct the static geometry of a scene in a video, which encouraged the video-based
rendering transitions. These transitions types, particularly the video-based rendering transi-
tions, retained our attention in the rest of the manuscript.

1.2 Goals and Motivations

The work of this thesis is part of the two projects named ’INVATE’ and ’VANTAGE’ of the
research institute b<>com, whose objective is to develop a new audio-visual technology that
offers the user an immersive interactive experience putting him in the center of the action.

The main objective of the thesis is to offer the viewer an interactive experience, where
he can freely change his point of view while watching a video. The main challenge is to
decrease the number of cameras in the scene by retaining the essential points of view and
reconstruct a seamless transition between the real cameras. View synthesis-based transition
methods seem to be the most natural and realistic transitions compared to more classical
methods that do not use a 3D reconstruction of the scene. While the traditional view synthe-
sis methods lasted more than two decades, learning-based view synthesis methods acknowl-
edged a significant rise in the past two years because of their outstanding achievements we
are witnessing nowadays, in this domain.

The existing drawbacks in the literature encouraged exploring the existing view synthesis
methods to build a suitable natural and seamless transition between two viewpoints in a
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scene. We studied both the algorithmic and learning-based methods for view synthesis,
trying to get the best out of both approaches and develop an optimal view synthesis method
for wide baseline view synthesis. Moreover, we keep the user experience at the center of our
study since the viewer is the end user of our application. Therefore, we conduct a series of
subjective tests to evaluate different transition methods based on human judgements.

1.3 Contributions

Fig. 1.7 The list of the thesis contributions

Fig. 1.7 illustrates the list of the thesis contributions.The first part of this work aims at
achieving a novel approach for wide baseline view synthesis. To this end, we introduced
novel neural network architectures for the view blending step while using a state-of-the-
art algorithmic method for the view warping step of the view synthesis process. It aims to
reduce the significant size of model filters to warp such reference images, thus reducing the
complexity. Two different approaches are investigated in this part of the thesis:

• A hybrid approach to wide baseline view synthesis with ConvNet (CNN-VB):

ConvNets have been recently employed [1–3] for implementing complete end-to-end
view synthesis architectures, from reference view warping to target view blending
while dealing with occlusions as well. However, the convolutional size filters must
increase with the distance between reference views; which makes all-convolutional
approaches prohibitively complex for wide baseline setups. In this work, we propose
a hybrid approach to view synthesis where we first warp the reference views resolving
the occlusions. Then we train a simpler convolutional architecture for blending the
preprocessed views. By warping the reference views, we reduce the equivalent dis-
tance between reference views, allowing smaller convolutional filters and thus lower
network complexity. We also contribute a hole inpainting algorithm to fill the dis-
occlusions in the warped views. We experimentally show that our method performs
favorably against both traditional and convolutional synthesis methods while retaining
lower complexity concerning the latter.
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• Hybrid dual stream blender for wide baseline view synthesis (HDSB): Free navi-
gation of a scene requires warping some reference views to some desired target view-
point and blending them to synthesize a virtual view. ConvNets based methods can
learn both the warping and blending tasks jointly. Such methods such as [4] are often
designed for moderate inter-camera baseline distance, and larger kernels are required
for warping if the baseline distance increases. Algorithmic methods can deal with large
baselines; however, the synthesized view suffers from artifacts near disoccluded pixels.
We present a hybrid approach where reference views are algorithmic-ally warped to
the target position and then blended via a ConvNet. Preliminary view warping allows
reducing the size of the convolutional kernels, and thus the learnable parameters count.
We propose a residual encoder-decoder for image blending with a Siamese encoder to
keep the parameters low. Our view synthesis experiments on real multiview sequences
show better objective image quality than state-of-the-art methods due to fewer artifacts
in the synthesized images.

The contributions of this thesis focus then, on the user quality of experience for the video
transition and dataset. First, we accomplish a creative dataset for video transition quality
of experience. Second, our work aims to subjectively evaluate the proposed view synthesis
approaches on 8 different video sequences by achieving a series of subjective tests.

Thus the contributions in this part are divided into two segments:

• A Multi-View Stereoscopic Video Database With Green Screen (MTF & Pande-
monium) For Video Transition Quality-of-Experience Assessment:

First, we introduce a multi-view stereoscopic video database with a green screen,
called MTF, for the usages in computer vision applications, particularly for free nav-
igation, free-viewpoint television, and video transition QoE assessment. The MTF
contains full-HD videos of actual storytelling made up of 3 scenes. One particularity
of this dataset is that to understand its storytelling; users must change their point of
view in the scene at a given time. To this end, we usually need to generate a transition
to link two points of view in the same scene. Computer vision techniques that enable
such transitions, like view synthesis methods, rely on a set of images of the scene to
render some new views from different viewpoints. However, these methods may have
many failure cases that lead to artifacts in the final rendered video transition. In most
view synthesis QoE tests, the contents are not designed to make the transition between
two points of view valid or exciting for the viewers, e.g., they do not need to transition
to capture more information to understand the content better. We thus assume that
participants will harshly judge artifacts and imperfections in the rendered transition.
Thus, the MTF is expected to analyze better the visual impact of persistent artifacts
in the final rendered transition. In our dataset, all the scenes are recorded in a green
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screen studio, which is often used to superimpose special effects and scenery during
editing according to specific needs. Our dataset also presents a wide baseline camera
setup, a challenging constraint for view synthesis techniques. Finally, The MTF &
Pandemonium can also be used as a complementary dataset with others in literature in
various computer vision applications, such as video compression, 3D video content,
immersive virtual reality environment, optical flow estimation...

• MUlti-view Synthesis Enhancer (MUSE):

Finally, we propose an extension of the previously proposed solutions for the view
synthesis. This approach proposes to enhance the pre-merged warped views using the
one-encoder Hybrid Dual Stream Blender (HDSB) method since now we only have
one input image instead of two. Therefore, the network does not blend the views
but corrects the image artifacts emerging from the pre-merged image and improves the
quality of the final image. We also propose an intra-content learning process, where we
achieve one training for every content. The pre-merging of the warped and inpainted
textures coming from the lateral reference views guarantees, in particular, a uniform
blending of the non-Lambertian areas of the image.

1.4 Organization of this thesis

Chapter 2 includes background information essential to the development of this thesis. It is
first introducing the 6DoF navigation and its applications in immersive and interactive video
content. We describe the free navigation application in narrative content, discussing about its
purposes. Then, we present the video transition in narrative content like a middle run towards
the 6DoF and the difference with the 6DoF. Second, we introduce the view synthesis methods
that allow such video transitions in narrative content, and we explain its phenomena from the
capturing camera model to the depth estimation.

Chapter 3 describes the state of the art of view synthesis. This part presents an overview
of the related work based on traditional techniques based on classic algorithms; moreover,
we review the work based on the more recent techniques for the view synthesis that mixed
the deep learning methods.

Chapter 4 describes the first contribution of this thesis that proposes a novel approach
of view synthesis based on a new architecture for the view blending to generate novel view
synthesis. We show preliminary results and the improvements over the state-of-the-art tradi-
tional methods for the view synthesis, and finally, we show the drawbacks and limitations of
the method.

Chapter 5 describes the second contribution which is an extension of the previously men-
tioned view synthesis approach. This one tackles the remaining problems of the first con-
tribution and overcomes purely algorithmic and purely learnable state-of-the-art approaches.
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The proposed view synthesis method is detailed in this, where we experimentally evaluate
the performance of our method, including an ablation study.

Chapter 6 describes the proposed multi-view stereoscopic video database with a green
screen called MTF. An overview of the related work is first given. Then, the pipeline of
creating the dataset from the storytelling to the film shooting is presented in detail.

Chapter 7 introduces the last extension of our view synthesis approach that we evaluate
and compare with previous work and traditional methods using subjective tests. Thus, in
this chapter, we describe the three subjective tests. The first two aim to evaluate our novel
approach compared to the state-of-the-art; however, the last test describes the user preference
for the view synthesis transition types.

Chapter 8 concludes this dissertation. The initial goals are first reminded, and the achieved
work is then summarized. Finally, future work prospects and potential improvements are dis-
cussed.

Finally, Appendix A lists the different scenes of the dataset; in Appendix B, we list
the three test instructions given to the users during the tests. Finally, Appendix C lists the
publications produced during this thesis.



Chapter 2

General background on Video Navigation

The central problem addressed through the work described in this thesis is the following:
“what should be the effect proposed to a user when he decides to move from one point
of view to another?” This chapter gives some insights to this question regarding technical
solutions of video transition.

Since most of the transition methods discussed require the definition of the camera pa-
rameters and projections functions, the camera model used and the associated projections
functions and their parameters are described in Sec. 2.1. Sec. 2.2 enumerates the different
video transitions techniques and details their methods of creation. Some video transition
techniques require the 3D information of the scene, such as the depth map. Sec. 2.3 is ded-
icated to the description of the depth estimation method using a stereoscopic camera setup.
Finally, we conclude the chapter in Sec. 2.4, introducing the next chapter.

2.1 Camera model

Throughout this chapter, the modeling of the image creation process within a camera is the
pinhole model.

Fig. 2.1 illustrates the set of the coordinate systems (world, camera and image plane),
where the camera is associated with its optical center and is marked by point C. The point
M is a point in the real world filmed. The point M is projected on the image plane in Q,
the intersection of the line joining the points M and C with the image plane. The point
P is the principle point: it is the orthogonal projection of the optical center in the image
plane. The line perpendicular to the image plane and passing through the point P is called
the optical axis. The focal length f is the distance between the Camera Center and the image
plane, which corresponds to the length of the segment [CP]. With the help of projections and
changes of coordinate system, it is then possible to describe the situation in terms of linear
algebra.
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Camera projections and parameters

This paragraph describes the functions used to project a real world point M position to the
Projected image point Q position and obtain the parameters from one frame of reference to
another. All the notations used in what follows correspond to those in Fig. 2.1 which illus-
trates the set of the coordinate systems (the camera coordinate system, the image coordinate
system and the world coordinate system).

Fig. 2.2 shows a lateral view of the projection of a point 3D point M in the image plane,
where it is possible to obtain the projection coordinates of the point M expressed in the cam-
era coordinate system in the image coordinate system. Fig.2.3 shows a view from above of
the projection between two coordinate systems process. We add an exponent to the coordi-
nates of the points to specify in which coordinate system they are expressed: .w for the world
coordinate system and .c the camera coordinate system.

The coordinates of the point Qc = (x,y) (in the camera coordinate system), projected
from Mw = (X ,Y,Z) (in the world coordinate system) verify :

x = f
Xc

Zc (2.1)

y = f
Y c

Zc (2.2)
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Using the homogeneous coordinates, it is possible to put this relation in matrix form:

Qc =

x
y
1

∼
 f 0 0 0

0 f 0 0
0 0 1 0




Xc

Y c

Zc

1

 (2.3)
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The coordinates of the pointQc = (x,y) correspond to the coordinates of the point M
projected in the image plane, in the camera coordinate system. To obtain its coordinates in
the image in pixels, we must now proceed to a change of coordinate system that will take into
account the origin of the image plane and the pixel density of the image. We note (x0,y0) the
coordinates of the bottom left corner of the image (usually chosen as the origin of the image
coordinate) in the camera coordinate. In addition, we note ku and kv densities of pixels in the
direction of axes u and v of the image coordinate. This data corresponds to the number of
pixels contained in a unit that used for the coordinate camera.

To obtain the coordinates of Qc = (x,y) in the image coordinate system (u,v), it is nec-
essary to perform a translation for the change of origin then a change of unit to pass into
pixels. Using the homogeneous coordinates, we obtain:

u
v
1

=

ku 0 0
0 kv 0
0 0 1


1 0 x0

0 1 y0

0 0 1


x

y
1

 (2.4)

Thus, by combining the equations 2.3 and 2.4, we obtain the projection of a point of the
camera coordinate in the pixel coordinate:

u
v
1

∼
ku f 0 kux0 0

0 kv f kvy0 0
0 0 1 0




Xc

Y c

Zc

1

 (2.5)

The 3×3 matrix resulting from Eq. 2.5 by removing the last column is the matrix of the
camera’s intrinsic parameters.

The starting point for the calculations so far is the camera coordinate. There is no addi-
tional step to perform when the world coordinate system is the same as the camera. However,
this is rarely the case, and the objective is to have multiple cameras. Therefore, it is essential
to consider a world coordinate that is different from that of the camera.

We must then model the position of the camera in this coordinate system and its orienta-
tion concerning this coordinate system. We note thus :

(
t
1

)
=


Cx

Cy

Cz

1

 (2.6)

the position vector of the camera in the world coordinate, in homogeneous coordinates.
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R the rotation matrix of the camera in the same coordinate system.
For M = (Xw,Yw,Zw) a point expressed in the world coordinate system. The transition

from the world coordinate to the camera coordinate is done by first changing the origin and
then applying the rotation. This is then expressed in matrix form as follows:

Xc

Y c

Zc

= R


Xw

Y w

Zw

−
Cx

Cy

Cz


 (2.7)

= R

Xw

Y w

Zw

−R

Cx

Cy

Cz

 (2.8)

= R

Xw

Y w

Zw

−Rt (2.9)

This can be expressed in homogeneous coordinates as :
Xc

Y c

Zc

1

=

(
R −Rt
0T 1

)
Xw

Y w

Zw

1

 (2.10)

The matrix 4×4 of the equation 2.10 is the matrix of camera extrinsic parameters.
With the two matrices defined above, it is then possible to give the complete equation of

the projection model:

u
v
1

∼
ku f 0 kux0 0

0 kv f kvy0 0
0 0 1 0

( R −Rt
0T 1

)
Xw

Y w

Zw

1

 (2.11)

Let us recall the important elements defined here. We have thus :

• the matrix of intrinsic parameters which defines the parameters related to the camera
sensor:

K =

ku f 0 kux0

0 kv f kvy0

0 0 1

 (2.12)
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• the matrix of extrinsic parameters which gives information about the position and ori-
entation of the camera: (

R −Rt
0T 1

)
(2.13)

• the projection matrix, product of the two previous ones completed with zero vectors :

P∼

ku f 0 kux0 0
0 kv f kvy0 0
0 0 1 0

( R −Rt
0T 1

)
(2.14)

2.2 Video transition techniques

The most commonly used transition in movies is the instant transitions or cut, it represents
a change of context. It is effective when visual displacement is significant, yet its use does
not preserve the space of action. However, it is the simplest way to join two points of
view. Besides the cut, multiple transitions exist to communicate a message and conceive
impressions in the viewer’s mind.

The blend or blur are commonly used in movies to represent a passage of time. They
could be used between two shots in the same action scene since we have time differences
between the two points of view. Nevertheless, they add nothing over a cut to help maintain
the space of action.

Video morph or warp transitions are often used as a special effect in movies to transform
one object into another. However, recent advances in robust feature point correspondence
have allowed view change transitions as well. Warp transitions provide an alternative both to
transitions that require geometry and to plane transitions. While we classify plane transitions
as a subset of warps with global 2D transformations (4-point correspondence), warps can also
be computed from many hundreds of points to exploit more accurate correspondence [16].

With machine graphics, we can also generate natural transitions that rely on scene ge-
ometry and virtual cameras. They sustain the space of action and sense of orientation in the
viewer by rendering a perspective-correct view from virtual cameras that join both points of
view. This transition also preserves as much as possible the motion of dynamic objects by
projecting performing video shots onto the scene geometry.

View synthesis is the process of extrapolating or interpolating a view from other avail-
able views. It is a popular research topic in computer vision, and numerous methods have
been developed in this field over the past four decades. Image-based rendering (IBR) is a
virtual view synthesis technique based only on one or more images, without a prior knowl-
edge of the 3D geometry of the scene, contrary to the technique of view synthesis by 3D
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computer graphics where the 3D geometry of the scene is wholly acquired. View synthesis
can be divided into three categories [37]. (Fig. 2.4) according to the major or minor use of
the scene geometry: the techniques using no prior information of the 3D geometry of the
scene; the techniques that require implicit information of the 3D geometry, like some pixel
correspondences in the available and synthesized view, that can be computed using optical
flow [16] [38]; and the techniques that require explicit knowledge of the 3D geometry such
as the depth map, also called Depth-Image-Based-Rendering (DIBR) [39] [40].
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View-dependent geometry
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Fig. 2.4 IBR techniques based on their need for scene geometry [7]

The light field [41] method generates new views from arbitrarily positioned cameras in
a scene, without needing any depth information or correspondence between the real images
but a simple combination and sampling between them. Instead, it is a matter of interpreting
the input images as 3D pieces of a 4D function. This function characterizes the flow of light
diffused in a static scene with static illumination.

The lumigraph [42] is similar to the light field, with the same 4D parameterization and
the same display principle but with an irregular sampling:

The Layered Depth image (LDI) [43] technique is a new image-based rendering method
for objects with complex geometries. Unlike methods that represent objects by triangular
meshes like most computer graphics models, LDI represents objects as an array of pixels
viewed from a single camera position. Each LDI pixel is represented by its color, depth, and
other properties specific to the LDI method.

We exclude these methods from our transition types to focus instead on methods that
allow view change transitions, particularly for a wide baseline transition, where the dis-
placement between the two points of view is significant.

2.2.1 View morph or warp

The concept of view morphing is to preserve 3D shapes [8]. The "morphs" generated to
create the transition give the impression that the objects move rigidly by rotation and 3D
translation between their positions in the two images. In other words, the view morphing
effect will give the user the impression that the camera is being moved from one place to
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another in the same scene. View morphing creates, by interpolation, virtual cameras at any
point between the real positions of the two cameras.

This method requires geometric information about the scene and is classified as an IBR
technique with implicit geometry information cf. Fig. 2.5.
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Fig. 2.5 View morph technique [7]

View morphing requires, in addition to the two original input images (I0, I1) and the
correspondence points between them, the two projection matrices (Π0,Π1) of each of the
cameras that captured the I0 and I1 images. Thus, the method uses two 2D images and
attempts to perform interpolations between 3D transformations.

In the case of view morph between parallel views (I0, I1), for example, the intermedi-
ate generated views by view interpolation are parallel to I0 and I1, and consequently, the
projection matrices of I0 and I1 are as follows:

Π0 =

 f0 0 0 0
0 f0 0 0
0 0 1 0



Π1 =

 f1 0 0 − f1Cx

0 f1 0 − f1Cy

0 0 1 0


We consider that the optical center of I0 is the origin, with a focal length f0, and that the

optical center of I1 is translated with respect to the origin as a function of x and y (Cx and
Cy), and a focal length f1.

The linear interpolation of these two projection matrices gives :

Πs = (1− s)Π0 + sΠ1 (2.15)

Πs =

(1− s) f0 + s f1 0 0 −s f1Cx

0 (1− s) f0 + s f1 0 −s f1Cy

0 0 1 0





2.2 Video transition techniques 23

With s ∈ [0,1] which weights the distance between the new and the real views. The
optical center of this camera position and its focal length are :

Cs = (sCx,sCy,0) (2.16)

fs = (1− s) f0 + s f1 (2.17)

From the projection matrix of the new position, we can generate a view parallel to the original
views at the same position by linear interpolation of the matching pixels (cf figure 2.6)

Fig. 2.6 Morphing from two parallel views I0 and I1. I0.5 represents a new parallel view of
the same scene [8].

2.2.2 3D warping

This method falls into the category of DIBR techniques [44]. It differs from the previous
ones because it requires additional information about the scene’s geometry, in this case, the
depth. The method, therefore, belongs to the category of techniques with explicit knowledge
of the scene (cf. Fig 2.7).

3D warping, also called view synthesis, is the process of interpolating or extrapolating
a view from other real views. A depth or disparity map is beneficial for warping the pixel,
available in the real views, to the correct position in the synthesized view.

DIBR methods rely on the geometric information of the camera to re-project a point in
the reference image in the real world and then in a new image plane [45]. We consider two
cameras with C1 and C2 optical centers, respectively, and their image planes (cf. Fig.3.19).

The projections of a real point P in each of the planes are noted by p1 and p2. The goal
is to express p2 as a function of p1 and its depth. The homogeneous coordinates (u1,v1,1),
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Fig. 2.7 3D warping category [7]

Fig. 2.8 Warping a pixel from a reference image to another target image

(u2,v2,1) of p1 and p2 can be expressed as a projection P(x,y,z):

zc1 p1 = K1R1

x
y
z

−K1R1C1 (2.18)

zc2 p2 = K2R2

x
y
z

−K2R2C2 (2.19)

where K1,K2 and R1,R2 are 3x3 matrices of intrinsic parameters and 3x3 matrices of rotation
for each camera, respectively. zc1,zc2 are the z coordinates of the 3D point P in the camera
coordinate, provided by the depth map. From the equation 2.18, we express the point P by:x

y
z

= (K1R1)
−1(zc1 p1 +K1R1C1) (2.20)
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Replacing the equation 2.20 in the equation 2.19, we obtain:

zc2 p2 = K2R2(k1R1)
−1(p1 +K1R1C1)−K2R2C2 (2.21)

If we assume that the two cameras are identically rectified, then K1 = K2,R2 = I3 (no rotation
between the angles of the cameras, I3 being the identity matrix), zc2 = zc1 = z,C2 = (cx,0,0)T

(camera 2 is positioned in the X axis in the world coordinate). In this case, the equation 2.21
becomes:

p2 = p1+K


cx
z
0
0

 (2.22)

and u2,v2 can be expressed such that

u2 = u1 +
f .cx

z
, et v2 = v1 (2.23)

With f the focal length of the cameras, u2−u1 =
f .cx
z is also called the disparity and cx is the

distance between the two optical centers of the two cameras.

A common problem in view synthesis is areas occluded in the available views but should
be visible in the virtual ones. These areas appear as holes in virtual views, also referred to as
disocclusions. This problem is currently resolved by using inpainting algorithms such as [29]
and [28]. Two of the most popular inpainting algorithms were developed by Bertalmio and
Sapiro [27], and Criminisi et al. [46]. More recently, Pathak et al [47] developed the first
Generative Adversarial Network (GAN) based inpainting algorithm that aims to fill missing
parts in the image. This architecture is then enhanced by Yang et al [48].

Concerning the calculation of the depth map for such a DIBR method, we studied the
method that consists of estimating each viewpoint’s depth from a pair of cameras placed side
by side I1 and I2.

2.3 Depth estimation

The information of the depth of each reference view is essential for the view synthesis.
Indeed, the more precise the depth value is, the more accurate the pixel’s position in the 3D
world is. A classical way to find an approximation of the depth for a reference view is to use
another camera placed at a small distance and estimate the offset of the pixels between them.
This shift, also called disparity, is inversely proportional to the depth.

The disparity d (in pixels) is a function of the focal length of the camera f (in pixels),
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the camera-object distance z (in meter) and the distance between cameras b (in metre) :

d =
b. f
z
. (2.24)

The maximum disparity dmax (resp. minimal dmin) is calculated for the nearest (resp.
farthest) object in the scene :

dmax =
b. f
zmin

(2.25)

dmin =
b. f
zmax

(2.26)

The amplitude of disparity a is given by

a = dmax−dmin (2.27)

Therefore, we can find the depth map of the reference view in question. Thus we compute
the optical flow of each reference view.

In the case of parallel I1 and I2 input images, we can compute the optical flow or the
disparity, which is only different from zero in the x-axis. This allows us to use the simplified
equation to compute the depth map:

D = f ·B/d (2.28)

where D is the depth of the actual view, f is the focal length obtained in the camera pa-
rameters, B is the distance between the two stereo cameras, and d is the horizontal disparity
between the two cameras.

Fig. 2.9 illustrates an example of the result of depth map estimation on real stereo images.

2.4 Conclusion

In this chapter, we classified all the video transition techniques from the basic ones to the
recent ones.

Despite that, the view synthesis with DIBR methods still suffers from artifacts and imper-
fections in the final rendered image due to the disocclusion problem; the work for improving
view synthesis methods is still relevant now more than ever. Notably, the improved DIBR
solution seems to bring the most promising and natural video transition to our problem with
improved depth maps obtained with ConvNets.



2.4 Conclusion 27

I1 I2

Depth map

Fig. 2.9 Example of depth map obtained after computing the optical flow computed on real
stereo captured images I1 and I2.

In the following, we enumerate all the state-of-the-art methods for view synthesis and
their drawbacks. Furthermore, we aim to improve the existing view synthesis methods to
obtain the most plausible rendered image quality to attain the required transition quality.





Chapter 3

State of the art of Depth-based View
Synthesis techniques

In this chapter we describe the state of the art of the view synthesis techniques and we high-
light the relative limitations. View synthesis methods can be roughly divided into algorithmic-
based methods and learning-based methods. Sec.3.1 is dedicated to the algorithmic-based
view synthesis methods. In Sec.3.2 we discuss the traditional and the learning-based image
inpainting methods. In Sec.3.3 we describe in detail the learning-based view synthesis meth-
ods. Finally, in Sec.3.4 we recapitulate on the limitations of existing view synthesis methods
that motivate our work.

3.1 Algorithmic-based View Synthesis methods

3.1.1 View Synthesis Reference Software (VSRS)

The MPEG proved a considerable interest in MVD formats for their capacity to support 3D
video applications. Therefore, this new activity focuses on developing a 3D extension of
the High Efficiency Video Coding (HEVC) [49] video coding standard. They developed as
well an experimental framework in order to conduct the evaluation experiments [9]. This
framework defined a View Synthesis Reference Software (VSRS), which supports several
new rendering techniques.

The VSRS algorithm [50] takes two reference views, and two depth maps as inputs to
generate a synthesized virtual view. The software has two main modes referred to as “Gen-
eral mode” non-parallel camera setups (convergent camera rig) and “1D mode” for 1D paral-
lel setup (cameras aligned perpendicularly to their optical center). The intrinsic and extrinsic
camera parameters are required.

In the general mode they use a “reverse warping” algorithm, which is reported to give a
higher rendering quality [9]. First, the left and right depth maps DL and DR are warped to the
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target virtual view position giving the warped depth maps DLw and DRw. The highest depth
value (closest to the camera) handles the occlusions; usually, the depth values are reversed
quantized from 0 to 255 such that the highest value in the depth map corresponds to the
lowest depth of the scene [19]. To fill small holes in the warped depth maps DLw and DRw,
we apply a median filter, giving D f

Lw and D f
Rw. A binary mask is maintained for each view to

keep track of larger holes caused by disocclusions. D f
Lw and D f

Rw are then used to warp the
texture views TL and TR to the virtual view position, giving TLw and TRw. If available, holes
in one of the warped views are filled with non-hole pixels from the other warped view. This
gives T f

Lw and T f
Rw, blended to form one new image.

The blending can be a weighted average according to the distance of each view to the
virtual viewpoint (Blending-On mode), or it can simply consist in taking the closest view
to the virtual viewpoint and discarding the other (Blending-Off mode). The binary masks
of each view are merged at this stage. The remaining holes are filled at the final stage of
the algorithm by propagating the color information within the region boundaries. Fig. 3.1
illustrates the rendering process in the general mode of VSRS.
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Fig. 3.1 Flow diagram for View Synthesis Reference Software (VSRS) general mode [9]

The 1D mode of VSRS works a bit differently. In this mode, the camera setup should
be 1D parallel. This allows making several simplifications to the warping process, which



3.1 Algorithmic-based View Synthesis methods 31

is reduced to a simple horizontal shift. First, the color video is up-sampled for half-pixel
or quarter pixel accuracy. Second, a “CleanNoiseOption” and “WarpEnhancementOption”
withdraw warping unreliable pixels. Finally, the process gives two warped images, two
warped depth maps, and two binary masks from the left and right reference views. Each pair
is then merged together. When a pixel is warped from both the left and the right reference
views, the final pixel value is the pixel closest to the camera or an average of the two. The
remaining holes are filled by propagating the background pixels into the holes along the
horizontal row. Finally, the image is downsampled to its original size.

Fig.3.2 illustrates the rendering process in the 1D mode of VSRS.

Fig. 3.2 Flow diagram for View Synthesis Reference Software (VSRS) 1D mode [9]

3.1.2 Reference View Synthesis (RVS)

The Reference view synthesis was created for the 3DoF+ investigations [51] by the MPEG.
The 3DoF+ 360°videos are positioned between 3DoF and 6DoF, which can realize the mo-
tion parallax with relatively simple virtual reality software in head-mounted displays.
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The Reference View Synthesis (RVS) is a view synthesis software that takes multiple in-
put views to deal with a large baseline between the input views. The warping process of RVS
consists in computing the floating-point floating-point image coordinate map, then, Unpro-
ject input image coordinates, which is the reference coordinate system to world coordinates.
A single affine transformation x→ Rx+ t is applied to make the virtual camera the reference
coordinate system, and the world coordinates are projected to the virtual image. The input
view is divided into triangles with the centers of the pixels as peaks. Finally, the triangles
are warped using the affine transformation before being filled with interpolated colors. The
colors are the tri-linear interpolations between every three vertices of the triangle. Disconti-
nuities between objects creating disocclusions and tangential surfaces may lead to triangles
with very elongated shapes. They will not be kept in the final result, as they get eliminated
during the blending phase.

All the synthesized images corresponding to each input view will be blended. The depth
of a pixel and the shape of the triangle it belongs to determine whether a pixel is good
quality. An exemplary pixel quality has low depth and belongs to a triangle with a regular
shape. Concerning the inpainting step, it is straightforward where the color of the nearest
pixel using a Manhattan distance are propagated.

3.1.3 Versatile View Synthesizer for 6DoF Immersive Video (VVS)

VVS [21] is a later reference software for view synthesis released by the MPEG superseding
VSRS as a result of a challenge for 6DoF of the MPEG-Immersive (MPEG-I) group.

VVS is conceptually similar to VSRS; however, it accounts for the compression artifact
on view textures and depth maps at the receiver side. Namely, VVS improves the precision
of the backward texture warping and better preserves edges via a conditional depth blending
process, up-sampling the reference textures, and using reliability maps that indicate which
pixels are safe to be warped to the target view position. Unlike VSRS, VVS prioritizes
foreground pixels during warping and warps “triangles” instead of “points” to generate fewer
occlusion artifacts in the warped view followed by a series of hole inpainting steps.

Fig. 3.3 illustrates the processing chain implemented for generating synthesized views
T w (and associated depth map Dw) from the texture maps T i and depth map Di is associated
to each reference viewpoint. The different treatments carried out are summarized here:

• Reference view ranking: reference views are ranked from “closest” to “farthest” ac-
cording to an original metric. The farthest maps are not considered if the number of
reference views set is limited.

• Pre-processing of depth and texture maps: this step includes the generation of resam-
pled depth maps Di, and the generation of spatially oversampled texture maps T i.
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• The classification of pixels likely to be incorrectly projected: this step includes the
generation of a binary mask Bi

map of the pixels located at the border of the objects of
the scene and whose depth is often severely estimated.

• Computation of the depth map associated with the virtual view (Di
w): projection of the

depth map points on the virtual view, triangular interpolation, and computation of the
map Ai of the areas not observed by the view i.

• Conditional mixing of depth maps and computation of the merged map Di
wm.

• The generation of the texture map T i
w associated with the source view i: for each

pixel of the view to be synthesized, a 3D point can be estimated and projected on the
oversampled source view where the pixel value of T i

w can be interpolated. The value
of T i

w is 0 if the point is projected outside T i.

• Merging texture and depth maps: the associated texture and depth maps T i
w and Di

wm

are merged to obtain the maps Tw and Dw.

• Inpainting of the unobserved areas: compute the new texture map Tw and the mask of
the “imagined” pixels Iw.

• Temporal filtering: a non-motion compensated temporal average restricted to “imag-
ined” pixels is used.

• Spatial filtering: The final Tw texture map is obtained by local correction of object
boundary pixels and “imagined” pixels (using a 5x5 Gaussian filter for these areas).

VVS outperforms many view synthesis methods in reason of the high quality of the
warped reference views.

It is worth noting that [21] compares favorably VVS, in terms of Peak Signal to Noise
Ratio (PSNR), to the reference software VSRS and RVS based on Common Test Conditions
(CTC) selected by the MPEG Immersive Video (MIV) group.

3.1.4 Rendering-algorithmic-based techniques in the literature

Chaurasia et al. [52] introduced the depth synthesis and local warps for image-based naviga-
tion method. Their objective is to provide a plausible free-viewpoint navigation for complex
geometry in everyday scenes (such as vegetation, vehicles.) captured with a simple digital
camera, where large regions are poorly reconstructed. Their main contribution is a two-
step approach (depth-synthesis and Local Shape-Preserving Warp and Rendering) applied
on over-segmented multiple input images. The over-segmentation creates super-pixels of
homogeneous color content preserving depth discontinuities. The depth-synthesis algorithm
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Fig. 3.3 Flow diagram for VVS [10]

is a pre-processing step to non-locally fill in poorly reconstructed super-pixels depth from
“similar” super-pixels of the image. The poorly reconstructed super-pixels are identified by
the over-segmentation and the projected depth. Three super-pixels are selected in color and
spatial proximity as best super-pixel matching the poorly reconstructed super-pixel depth.
This area is then filled by interpolation of the depth of these best matching super-pixels. The
Local Shape-Preserving Warp and Rendering step aims to avoid visible artifacts in rendering
due to the non-local warping process. Therefore a local shape-preserving warp is performed
on each super-pixel individually. However, this method has several drawbacks since the
depth synthesis algorithm fails to fill the poorly reconstructed super-pixels in more complex
scene geometry (e.g., tree) and for dynamic content (e.g., people). The over-segmentation
also does not capture very thin structures. Finally, their hole-filling approach results in blur-
ring and artifacts for wide baseline view synthesis.

Approaches that use 3D reconstructions such as [52] require additional steps to fill in
missing depth from the 3D reconstruction and suffer from hard tears at depth boundaries
and occlusions. Penner et al. [23] propose a soft 3D representation that retains partial depth
ambiguity to handle complex cases plausibly, and their geometry aims to be linearly interpo-
lated smoothly into virtual views, with occlusions and image edges being explicitly modeled.
Therefore they developed a 3D soft reconstruction and a view synthesis algorithm that com-
putes depth maps using a fast local stereo method that provides visibility estimates to perform
per-pixel view selection and improve depth edges. Then, the soft 3D reconstruction consists
of volumetric vote volumes that model uncertainty from stereo and depth refinement (voting)
operations. This representation is refined iteratively by providing a soft visibility estimate
for per-pixel view-selection in a subsequent stereo pass. Finally, they use the exact soft rep-
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resentation directly to model ray visibility and occlusion during view-synthesis. However,
this method may work well for a small baseline camera setup; it still suffers from visible
artifacts for wide baseline viewpoint reconstruction.

Lin et et al. [53] assumes that these methods mentioned do not entirely solve the funda-
mental problem of how to achieve real-time 3D video generation. Therefore, to simplify the
generation process of virtual viewpoint images, the proposed algorithm uses the principle
of a reverse search for matching to fast generate multi-view 3D images directly from 2D
images. It is also reported to help reducing operation time and memory usage and lower
hardware cost. The method consists of calculating the parallax range of the original image,
then generates a warped image through a reverse mapping, containing information for eight
different viewpoints. Finally, the image modification can be made. However, there is no sig-
nificant visual improvement reported comparing to the classical DIBR methods, especially
for wide baseline cases.

Prakash et el al. [54] targeted a new view synthesis algorithm that focuses on scenes
with wide-baseline capture, allowing free-viewpoint navigation for far from the input views
at interactive frame-rate. Their work first identifies the common Image-based-Rendering
(IBR) artifacts and combines the strengths of different algorithms to discover a good balance
in the speed/quality tradeoff. Their contribution lies in proposing a new multi-view image
harmonization algorithm that reduces color differences in diffuse regions in wide-baseline
captured scenes. The color differences are due to different camera parameters (exposure,
white balance, etc.) or lightning that may change during capture; we call these regions
view-independent effects. At the same time, they tend to preserve the view-depend effects,
such as glossy material appearance, which are identified and re-injected in the harmonized
input images. This results in modified input images with diffuse regions that can be seam-
lessly blended in IBR while preserving view-dependent content. Then they propose a blend-
ing algorithm for Per-View Meshes (PVM) and analyze the depth errors of view-dependent
meshes to propose a new filtering approach based on the clustering of the depth of the dif-
ferent meshes, followed by spatial filtering. Finally, they analyze the potential of different
rendering algorithms by identifying regions where the global mesh is sufficient by estimating
geometric uncertainty and use the new filtering per-view mesh IBR algorithm for the uncer-
tain region. This final hybrid IBR method provides a quality/speed tradeoff. Despite that
this method combines the strength of three different algorithms in a novel hybrid algorithm
without a neural network, it stills suffers from drawbacks that result in artifacts or ghosting
in the rendered image whenever the method assumptions are violated.

Scalable inside-out image-based rendering [55] is a new system that allows users to con-
vert a room in their house into virtual computer graphics. They can navigate interactively
and freely move in a photorealistic scene where the reflections and highlights come and go
accordingly. Everything in this reconstruction subsequent image-based rendering pipeline is
computed automatically when footage of a scene is captured. The user shoots in all directions
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using a regular camera and a standard color plus depth camera like the Microsoft Kinect. The
system discards the frames that it does not need, so more is better during capture. To build
a 3d wireframe mesh of the scene, they explored many algorithms designed to merge color,
images depth, or both. Ultimately, they adopted a standard structure from a motion algorithm
based on interest points to register the color images into a sparse 3d point cloud. The depth
images are then fused onto a scaffolding. The payoff of this approach is that footage can be
captured by non-experts and leads to reconstructions with coverage of the whole room. Such
a global reconstruction agrees with all the footage; however, some details visible in just
subsets of images are then lost in the process. For improved image-based rendering, they
compute additional local geometry from just nearby views. While the local reconstruction
may not agree with all the other footage of the scene, it does align more closely with details
in a specific image. For the interactive rendering, their image-based rendering is designed to
cope with large scenes while still providing good quality at an interactive rate. However, an
increasing number of input images affects quality and performance. Their primary method
uses meshes simplification enabling interactive framerate with hundreds of images on a PC.
Nevertheless, considering all input views rendering causes the frame time to be linear in the
number of the input images. For better scalability, they built a spatial scalability tiling and
prioritization process. This helps larger scenes run at interactive rates and makes the system
usable on more modest hardware. The quality difference with and without tiling is minimal.

Early works, such as that of Xiao et al. [56], propose a scalable bit allocation scheme,
where a single ordering of depth and texture packets is derived. Furthermore, depth packets
are ordered based on their contribution to the reduction of the synthesized view distortion.
Another method for improving the synthesis’s quality is applying a non-linear transforma-
tion to the depth maps [22]. Specifically, the depth range of points in the background is
compressed, such that these points would have the same or slightly different depths. This
reportedly reduces holes in the synthesis. The transformation depends on the depth map
histogram. Objective gains are not presented, but a visible improvement is noticed on the
shown images.

3.2 Disocclusion inpainting methods for Depth-based View
Synthesis

A common issue with all the above methods is recovering occlusions in the reference views,
i.e., areas occluded in all references, showing up in the synthesized view as visual artifacts.
Resolving occlusions is a challenge per se, and several approaches have been proposed,
mainly based on hole inpainting [19, 24–26, 57–59].
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3.2.1 Traditional image inpainting methods

Traditional image inpainting, are mainly divided into diffision-based methods [27], [60], [61]
and patch-based methods [62], [46], [63].

Diffusion-based image inpainting mainly spreads the pixel information around the bro-
ken hole in the image and synthesizes new textures to fill the hole. Unfortunately, the in-
formation around the hole usually restricts reconstruction; it is difficult to learn from distant
information reasonably and lack a high-level semantic understanding of the image, making it
challenging to restore meaningful texture structure in the disappeared area. Moreover, as the
distribution distance of pixel information around the hole increases, the larger the hole is, the
less effective pixel information will be obtained in the center. So the traditional diffusion-
based method is more suitable for structure texture background inpainting and removal of
small objects in the image. However, the effectiveness of large-hole restoration for natural
scene objects with complex textures in real life is limited.

The patch-based image inpainting assumes that the degraded area and visible area of the
image have related content. It searches for the best matching similar patch in the visible area
of the image and then mimics the information to fill the missing area at pixel level. The
traditional method [64] usually requires immense computing power to calculate the similar-
ity score between patches. PatchMatch [63] reduces the high memory and computational
cost of the search process by using a fast nearest-neighbor field algorithm. Furthermore, it
shows a particular practical advantage in image editing applications. However, more often,
the content of the image loss area may be a completely independent small individual or disor-
ganized biased damage. Thus, at this time, the traditional patch-based method may become
challenging to handle.

In exceptional cases, it may not be possible to find a patch similar to the missing area
in the image. Therefore, some researchers have proposed image inpainting between images,
which mainly refers to searching for an image with similar semantics to the target damaged
image in the existing image, and then select appropriate patch information for porting and
acquiring. James Hays et al. [65] used million-level data to find the most similar image of
the target inpainting image. They then extracted corresponding area information to complete
the degraded image. This method can better repair degraded images when there is a large
amount of image data in a particular field. However, it also often means that a large amount
of field data collection and the best match search need to be carried out [66], [67], [68]. So
in the real scene, such methods have fewer applicable scenarios, and the application range is
relatively limited.

To minimize disocclusion holes in the synthesized novel view, Thatte et al. [69] proposed
a statistical model that predicts the likelihood of missing data in synthesized images as a
function of the viewpoint translation. Li et al. [70] employed multiple views to synthesize
output virtual views. They propose a scheme of selective warping of complementary views
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developed by locating a small number of valuable pixels for hole reduction. In [58], multiple
reference views are warped and combined to generate a blended image. Other methods use
the neighbor pixel color or the depth information to extrapolate or interpolate the occluded
pixels [43, 57], or by pre-processing the warped depth maps [71]. In [31], Luo et al. extract
the foreground objects in reference images and synthesize the background to be used to fill
holes in the synthesized view, as they consider that occluded pixels have the same patterns
as the background. Yao et al. [72] exploit the temporal correlation of texture and depth
information to generate a background reference image, used to fill the holes associated with
the dynamic parts of the scene.

Bi et al. [73] assume that filling the holes generated due warping process using only
texture image has low efficiency, that is why they proposed a hole filling approach with
the corresponding depth maps. Their main contribution is that after warping the reference
views using a classical DIBR 3D warping method, they layer the complex depth scene into
simple scenes and fill holes in these layered depth scenes using the approach based on patch
sparsity in the layer. Namely, the priority of holes is calculated for each simple scene of
a layer. Due to the strong structure of hole edges, the priority of patch in hole edge might
be too high, which will result in filling an order from foreground to background. Similarly,
Satapathy et al. [74] work to enhance the disparity maps estimated from stereo pairs and
depth maps. First, they deal with small missing pixels in every degraded depth map by
exploiting a non-local extension of the Gauss-Markov Random Field (GMRF) prior. Second,
they handle the large occlusions, using an over-segmentation on the corresponding RGB
frame using superpixels. These superpixels are overlaid on the degraded depth map wherein
large missing regions are inpainted by optimizing an objective function formulated using the
non-local GMRF prior.

For a better hole filling, Lee et al. [75] maintain the depth structure of occlusions and
perform morphological operations on images and the background depth levels. They use
DIBR to image warping with a weighted gradient vector flow. The edge detection algorithm
allows the image-labeling method to find the edges of large holes; thus, the gradient vector
flow direction is used to find color and depth information of the edges of large holes. An n
by n weighted gradient vector flow is created for the labeled large holes of the images and
the maps, and the weighted gradient vector flow is used to process the images and the maps.
Finally, a median filter is used to fill the holes. Similarly, Gao et al. [76] claim to subjectively
overcome deep and non-deep learning methods significantly with their disocclusion filling
approach. They first use the Gaussian mixture model to extract the background from the
image. Then, they propose a refined foreground depth temporal correlation approach that
recovers the background frame-by-frame based on depth information. These two methods
are used to chose the adaptive pixels background for a good filling.
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3.2.2 Learning-based image inpainting methods

The emergence of generative models such as GAN [77], [78], allowed the image inpainting
method based on generative model to learn the high and low-frequency feature information
of the degraded image visible area and learn the consistency of image structure and texture
at the high-level semantic level . This can be done by adding different constraints to generate
novel and reasonable features to complement the degraded area. Therefore, in recent years,
various deep learning image inpainting models based on the generative network have been
the hot direction for many researchers to improve.

Pathak et al. [47] proposed an image inpainting network called context-encoder, which
employs unsupervised feature learning induced by context-based pixel prediction to large-
hole image inpainting. Overall, architecture is a simple encoder-decoder. The encoder ex-
tracts feature representation of the input image, and the decoder expands the compressed
feature map step by step to restore to the size of the original picture. Convolutional lay-
ers cannot directly connect all locations within a specific feature map. Thus, the encoder
composed of convolutional layers is no way for information to propagate directly from one
corner of the feature map. Therefore, a fully connected layer with groups based on stride one
convolution to propagate information cross channels method is proposed as the intermediate
connection between the encoder and the decoder to propagate information within activities
of each feature map. Context-encoder adopts reconstruction loss (L2) and adversarial loss
to handle both continuities within the context and multiple modes in the output. The recon-
struction loss is responsible for capturing the overall structure of the repaired area and the
consistency with the surrounding visible area; the adversarial loss predicts the repaired area
looks real. Thus, the best possible inpainting results can be generated by maintaining the
balance of them. Context-encoder can understand image semantics to a certain extent and
predict pixels according to information around the hole to generate new content. At that
time, it was a very cutting-edge image inpainting technology.

Researchers have proposed a globally and locally consistent image completion method
[79] to solve context-encoder defects inspired by context-encoder [47]. For example, we can
only process static low-resolution images. The mask area must be located in the center of
the image. The complete area cannot maintain local consistency with the surrounding area.
The network uses two auxiliary context discriminators for training. The global discriminator
network takes the entire image as input. The local discriminator network takes only a small
region around the completed area as input to ensure the global and local semantics of the
restored image, respectively. Dilated convolution [80] is used in the middle four layers of
the complete network to increase the receptive field of the extracted features. Thus, images
of any size can be completed, and new textures and objects can be generated according to
local and global structural-semantic information.

Image-level inpainting methods [46], [63], [79] generally lack understanding of the high-
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level semantics of the image. Indeed, searching for similar patches in the visible area of
the image and copying them to the damaged area for texture synthesis to fill the damaged
area cannot produce semantically reasonable results. Moreover, even if generative mod-
els [47], [30] can enhance semantic consistency of repair region, stacked constructions and
poolings to a certain degree can cause image resolution details to be over-smooth and lack vi-
sually realistic. Zeng et al. [81] proposed a Pyramid-context Encoder network (PEN-Net). It
consists of a pyramid-context encoder, multi-scale decoder, and an adversarial training loss.
It can fill missing regions at both image-level and feature-level for improving capability in
image inpainting. The main innovations are as follows: A transfer network is introduced to
learn the affinity in a high-level feature map between the damaged and visible areas. Then
convert visible area-related features into low-level higher resolution feature maps according
to the patch affinity weight to fill the missing content through ensuring image restoration’s
visual and semantic coherence. A multi-scale decoder with deep supervision of pyramid loss
and adversarial loss is proposed. Similar features learned by the transfer network and latent
features are decoded together to obtain corrected images through skip connections. This
design can not only make training converge fast but also can make the test more realistic.

Previous image inpainting methods are often limited to low-resolution image inpainting,
typically smaller than 1 K. Yu and Lin et al. [82] proposed a high-resolution image inpainting
method to remove large target blocks without a trace. The whole inpainting process is di-
vided into two steps. In the first step, the coarse inpainting result of a low-resolution image is
obtained using the coarse cascade to fine network structure. Then, in the fine inpainting step,
the confidence map of the repair result is introduced to assist iterative correction of the unsat-
isfied area in obtaining the fine inpainting result. The second step is with a guided inpainting
upsampling network to generate an inpainting image given the first step inpainting result.
The guided upsampling network consists of two shallow networks, one branch for learning
patch similarity by patchGAN discriminator [83] and the other for image reconstruction.

Meng-Li et al. [32] want to generate a 3d photo from one single RGBD input. To achieve
this, they propose a 3 step pipeline to identify a fill-in realistic content in the regions occluded
in the input. Given a single RGB image as input, first the depth edges are identify, then from
each detected depth edge they generate a context and the synthesis region. Finally they use
a local context to inpaint the depth edges in a synthesis region and then use the inpainted
depth edges as a structured guidance to synthesis color and the depth values. This approach
can generate 3d photos in a wide variety of settings. It is used for personal photos, or to
reanimate historical moments.

In a nutshell, image inpainting technology has become an essential branch in the field
of vision research. Deep learning image inpainting based on generation network gradually
becomes the mainstream method. Researchers have continuously innovated and made sig-
nificant progress in generation model selection, network structure design, the introduction
of prior guidance, discriminator optimization, loss function optimization. However, several
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problems still need to be solved, such as improving the inpainting effect of complex textures,
large holes, and high-resolution images.

3.3 Artificial intelligence for View Synthesis

Over the years, a number of learning-based approaches to view synthesis relying on Con-
vNets have been proposed. Early approaches to view synthesis mainly addressed the prob-
lem of temporal frame rate upsampling, where missing pixels are interpolated temporal or
spatial neighbors.

Niklaus et al. [20], for example, propose a convolutional architecture capable of joint
motion estimation and pixel synthesis for temporal up-sampling. Liu et al. [3] propose a
convolutional architecture that output is a 3D voxel flow field, used to sample the original
input video with a volume sampling function to synthesize the final frame. The work in [12]
deals with large object motion or occlusion by explicitly detecting occlusion leveraging the
depth information to warp the temporally adjacent frames. Such approaches assume that
the equivalent camera displacement between consecutive frames of the same view is small.
So, they are intrinsically unsuited to the free viewpoint scenario we address due to the large
baseline distance between cameras. Regmi et al. [84] use a homography as a pre-processing
step to map the images between reference views and guide a generative adversarial networks
to inpaint the missing regions in the novel view. However, their method mainly addresses
the problem of generating images across street and aerial views.

Later on, view synthesis methods designed especially for free-navigation have been pro-
posed. These methods are divided into two categories:

• the methods that use deep learning as complementary to their view synthesis algorith-
mic approach

• the methods that use deep learning for all the view synthesis steps.

3.3.1 Novel view synthesis using deep learning

Zhou et al. [11] give reference source image with the pose provided in their proposed solu-
tion for novel view synthesis. Then they take the second source image, which is a similar
viewpoint, and they do a plane sweep of this image to get various information throughout the
different depths of the image. This is fed into a neural network that extracts a background
color image and blending weights. These blending weights are used to create representations
of the image at different depth values. These different blending weights and background col-
ors are blended to create an MPI representation such as in Fig. 3.4. A multi-plane image is
an RGB-A version of an image at different depth levels or disparity levels. The disparity is
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the inverse of the depth, so as something has a farther depth, it will have a smaller dispar-
ity, and if something has a shallower depth, it will have a more significant disparity. These
planes describe fronto-parallel scenes, so essentially the same scene with being parallel at
different depths. The novel view synthesis is created using these RGB-A images and basic
camera parameters, allowing for novel viewpoints to be created through homography-based
calculations along with alpha compositing, which allows the objects in the images to have a
particular value allowing for closer images to have a more significant alpha value and farther
images to a lesser alpha value.

Fig. 3.4 An illustration of the (MPI) representation. An MPI consists of a set of fronto-
parallel planes at fixed depths from a reference camera coordinate frame, where each plane
encodes an RGB image and an alpha map that capture the scene appearance at the corre-
sponding depth. The MPI representation can be used for efficient and realistic rendering of
novel views of the scene [11] .

The following related work is the DeepMVS: Learning multi-view in stereopsis for
Huang et al. [85]. This network is a three-part process. The first part is a patch-matching
network that finds similarities with different images, all from the same objects but from dif-
ferent viewpoints. The next part is an intra-volume aggregation which takes the features
from these different patches and aggregates them into one common feature map. The feature
maps can then be aggregated into a single volume aggregation, which gives a total summary
of the image depth within the input image. The output is a disparity map which is just a map
that describes the different depths within the image.

• Patch-matching : it takes a reference image along with single patches from a plane
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sweep volume and the camera pose of those images. The camera poses can be given
manually or they can be defined using a structure from motion algorithm and COLMAP.
This patch-matching algorithm extracts a 64 channel feature from both patches and
then concatenates the two patches into a single feature of a 4 channel patch. This pro-
cess is repeated for all the images at all different depth levels (in this paper they use
a 100 depth levels, which is considered as a middle-ground for memory consumption
and speed).

• The intra-volume feature aggregation is a UNet architecture that also encodes features
from a vgg-based network. It takes neighboring images and concatenates the four-
channel patches that were taken from the previous network. While encoding and then
decoding, the features from the vgg-based architecture encoded at every level of the
encoding process, they are all concatenated on, and then once the channels are then
decoded, the output at 800 channel volume, which essentially describes the disparity
within the whole image.

• The inter-volume feature aggregation: After having a volume representation of all
these scenes, all these scenes can be then aggregated into one scene. This is done by
using max-pooling because it allows for the network to have an arbitrary amount of
images and an arbitrary image order. We have the essential features within the disparity
map, so we look for the maximum values. Finally, we downsample using standard
convolutional layers once these values are aggregated, and we get a D-channel pixel
map.

To further improve the quality of the results, they apply the Fully-Connected Conditional
Random Field (Dense-CRF) [86] to the raw disparity predictions. The use of DenseCRF
encourages the spatially close pixels and with similar colors to have closer disparity predic-
tions.

Choi et al. [87] try to propose a new solution for extreme view synthesis. Extreme views
are defined as having a small number of input sources as little as two in this network. They
want to be able to synthesize new views that are varying substantially from the original view-
points. In addition, they are trying to generate synthesized images that create disocclusion by
viewing certain objects from different viewpoints. Finally, they want to increase the baseline
magnification of these images, allowing for more explicit images. Therefore, the proposed
solution is to estimate depth probability volumes using the DeepMVS network. These depth
probability volumes are just the disparity maps. Once all the depth probability maps are
available for all the source images, they can fuse them and warp them with the novel new
depth. This is done with a simple affine transformation. Once the synthesized image is cre-
ated, there will be artifacts and holes within the image as expected when we have a novel
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viewpoint. Thus, they propose a refinement network that takes this image and clears it up at
the patch level.

This network overcomes the [11], and [23] methods; however, their refinement network
does not hallucinate pick pixels. It only looks at patches from different viewpoints and finds
similarities between them, and refine the actual image. In addition, the novel views are
affected by depth quantization artifacts, meaning that it could be challenging to define the
depth values along the edges, which entails creating artifacts.

Flynn et al. [25] present a new technique for photo realistic view synthesis. Using a
set of sparse input views, the method uses the learned gradient descent to generate a MPI,
which is, as we said before, a representation of the scene that allows real-time rendering to
new viewpoints with standard graphics hardware. MPI is a representation that can model
complex appearance effects, including transparency reflections and even volumetric effects.
To render an MPI to an image on a new viewpoint, their MPI images are first warped and
then composited using a standard alpha blending. To create those MPI, Flynn et al. [25] use
the learned gradient descent. This technique combines the best features of deep learning and
direct optimization. Traditional deep learning relies on optimization only during the training
to find the network weights. However, learn gradient descent models inverse problems such
as MPI generation as unrolled optimizations at inference time. This is achieved by replacing
the simple gradient descent update rule with the ConvNets. The idea is that the ConvNets
can learn to take larger steps than the standard gradient descent update rule and reduce over-
fitting by constraining the generated model (the MPIs) to lie on a plausible manifold scene.
These gradient computations and update blocks are stacked repeatedly, creating a form of
the recurrent network. They train a whole unrolled network by rendering the generated MPI
to a held-out view. The network showed to make significant improvements at each itera-
tion requiring only a few steps. They show that the gradients provided to the ConvNets an
intuitive interpretation in terms of visibility clues. Effectively later iteration uses visibility
to find a better solution in occluded regions. Their method correctly reconstructs complex
geometry such as trees, and thin structures, and transparent surfaces; they overcome [23],
and [11] methods.

Volker et al. [88] build upon [25] approach with the concern of creating a lightweight
network that can be trained on a limited dataset. They mainly address view synthesis from
large baseline light fields by turning a sparse set of input views into an MPI. Because avail-
able datasets are limited, they propose a lightweight network that does not require lengthy
training. Unlike DeepView [25], they do not estimate color layers but only encode the scene
geometry within the MPI alpha layers, which is a segmentation problem. Then, they imple-
ment a recurrent refinement, where the same network loops on successively enhanced MPIs.
This allows a lightweight model that is successfully trained on a reduced dataset consisting
of a few dozen light field sequences.

Broxton et al. [13] (Google) proposed a pipeline that turns the traditional photography
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and video into something more immersive 3d video, that led to look around the object and
move freely without uncomfortable limits on the head motion. Google calls this new tech-
nology “Immersive light field video with layered mesh representation,” a system capable
of capturing, reconstructing, compressing, and rendering high-quality immersive light field
views at a bandwidth low enough to be streamed over a regular Wi-Fi. In the new system,
wild field of view scene can be recorded playback to move around within the video after it
has been captured. The system can capture challenging content such as reflective surfaces.
The authors use a custom low-cost 46 time-synchronized camera mounted to an acrylic dome
called a camera rig to record an immersive light field. From this data, they will produce 6 de-
grees of freedom volumetric video with a wide 80cm viewing baseline, 10 pixels per degree
of angular resolution, and a wild field of view at 30fps video framerate. Even if the cameras
are placed 18cm apart on average, the system can reconstruct objects as close as 20cm to
the camera rig. A machine-learning algorithm developed by DeepView [25] is used to com-
bine the producing from each camera into a 3d representation of the scene being recorded.
They replaced the deep freeze underlying multiple images with MPI representation with a
collection of spherical shells better suited for representing panoramic light field content. The
data is then processed to reduce many shell layers to a small fixed number of RGB+D layers
without significant loss in visual quality. The system layered mesh representation is a series
of concentrated layers with semi-transparent texture rendered from back to front, bringing
the scene vividly and realistically to life and resolving the issue of synthesizing viewpoint
that was never captured by the camera in the first place. This enables the user to experience
a natural range of head movement, as they will explore light field video content. The result-
ing RGB-alpha depth channel in a layer is compressed using conventional texture analyzing
video compression technology. The final compressed representation is lightweight and can
be rendered on mobile via VR/AR platforms or in a web browser. The user will be able to
stream light field video content over a typical fast internet connection. However, a drawback
of this method is that it is complex dis-occluded regions sometimes appear blurry; This re-
sults from the following approximations: First, due to GPU memory constraints, they train
with a local cluster of only seven cameras, although they still perform inference with all 46
cameras. Thus, during training, the network has a more limited ability to peek around ob-
jects and learn to distinguish foreground and background content. Second, there is a loss of
quality when converting to layered meshes. However, this method allows only a restitution
in 3DoF and not in 6DoF.

In [26] Hedman et al. follows a similar architecture to InsideOut [55] described in 3.1.4,
but enhances realism to the improved per-view geometry and deep blending. Their crucial
novelty is the introduction of a deep blending method for IBR that synthesizes each novel
view after having learned to compute the blending weights to combine the relevant input
photos. The input to their method is a set of input photographs of a scene. First, they
calibrated the cameras using Structure From Motion (SFM). They use per-view meshes for
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rendering. The goal is to provide high-quality per-view depth map refinement and generate
compact meshes that respect occlusion edges as much as possible. To allow a per-frame
interactive rendering loop that includes ConvNets evaluation, they use the U-net architecture
and generate a fixed set of inputs to the ConvNets. For the rendering, they build on InsideOut
[55] which at each output pixel selects a variable number of input photos to blend into a final
image. The rendering loop ranks these per-pixel selections to generate a fixed number of
mosaics blended into the novel view. Each pixel of the first mosaic contains the color value
of the best-selected pixel. The second mosaic contains the color value of the second-best
and so on. Pixels are ranked according to an IBR cost. The blending step of IBR aims to
compensate for geometric and visibility errors and view-and image-dependent effects. They
trained a convolutional neural network to generate Blending weights that are then used to
combine warped contributions from different input images. The network architecture has a
receptive field of 63 pixels at the bottleneck, giving it the power to correct artifacts that are
at most this size. This network requires a fixed number of inputs, which are five images in
this paper, one global mesh renders, and 4 source-image mosaics, that need to be blended.
Similar to InsideOut, their rendering algorithm uses a spatial acceleration data structure to
select, at each output pixel, pixels in multiple input images that contribute to the novel view.
However, this method degrades and creates blur in regions with missing geometry or where
difficult decisions need to be made.

Neural radiance fields or Nerf [89] is a new method for representing complex scenes that
achieves state-of-the-art results of view synthesis. Given a set of input images of a scene,
they optimize a volumetric representation of the scene as a vector-valued function defined for
any continuous 5d coordinate consisting of a location (x,y,z) and view direction. The scene
representation is parametrized as a fully connected deep network that takes each single 5d
coordinate and outputs the corresponding volume density and view-dependent emitted RGB
radiance at that location.

Then, they use techniques from volume rendering to composite these values along a
camera array to render any pixel. This rendering is fully differentiable, so it is possible to
optimize the scene representation by minimizing the error of rendering all camera rates from
a collection of standard RGB images.

Wizadwongsa et al. [90] want to capture the real world and turn it into a digital 3d
model. Given a sparse set of input images from different viewpoints, about 10 to 30 images
are turned into a scene representation that allows real-time rendering on standard graphics
hardware. This representation, or what is called Nex MPI, is a multiplane image but with
significant improvements that allow modeling view-dependent effects. After reconstructing
the Nex-MPI, we can use it to generate new images from novel viewpoints. This method
aims to reproduce challenging objects in the scene, like a transparent glass, the specular
highlights on a spoon, or the reflections of food plates. Their main contributions are a new
representation that can render the scene with challenging view-dependent effects in real-time.
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This is done by re-parameterizing each pixel as a combination of view-dependent neural
basis functions. Then, they introduce a mixed modeling strategy that uses both implicit and
explicit representations and achieves the best visual quality scores across all the significant
metrics on three benchmark datasets. Finally, they introduce a new dataset called shiny,
which contains scenes with highly challenging effects such as the rainbows reflections on
CDs. The representation is based on MPI, and in order to synthesize these novel views,
MPI uses a set of semi-transparent planes stacked together along a viewing frustum. This
technique is capable of real-time rendering; however, it cannot model view-dependent effects
because each pixel is represented with RGBα , which is the same for all viewing directions.
To model view-dependent effects, the color of each pixel needs to be a function of both the
spatial location xyz and the viewing direction φ ,θ . The key in this method is to factorize this
5d function into the sum of products between kn and hn:

RGB(x,y,z,φ ,θ)≈
N

∑
n=0

kn(x,y,z)hn(φ ,θ) (3.1)

where kn depends on the location and hn depends on the viewing direction. This technique
is closely related to the problem of light field factorization. In this work, they propose to
use neural networks to learn both kn and hn showing that it outperforms other fixed basis
functions. In the original MPI, each pixel is represented by RGBα values; the Nex-MPI
each pixel is represented by α k0 to kn. These k’s are coefficients of the basis functions,
and each k has three dimensions corresponding to the RGB channels. Finally, they can
evaluate this linear combination and produce the final view-dependent RGB value given the
location and the viewing direction. This method achieves higher PSNR than Nerf [89] and
can successfully recover fine detail while Nerf is struggling. Importantly, it is possible to
render the scene with over 60 frames/sec. In terms of megaflops for 1 pixel, Nerf uses 200
while Nex uses 0.16, which is about a thousand times faster. However, the model cannot fully
reproduce the most complex scenes in the Shiny dataset with extremely sharp highlights.
Training MPI still takes a long time and may require more input views to replicate view-
depend effects.

Yoon et al. present a new method to synthesize a novel view from dynamic scenes using
a monocular camera. Given images captured from a dynamic scene, the goal is to synthesize
the images at arbitrary views and times. The key idea is to combine the strengths of stereo-
based and learning-based depth to estimate a scale and variant and complete depth map.
Using this depth map they render a photorealistic virtual view by warping and refining the
images. The method enables various applications such as space-time navigation, bullet time
effects, and customized cinemagraphs. It is applicable to general dynamic content.
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3.3.2 End-to-end View Synthesis networks

PixelNerf [91] is a new framework for predicting neural radiance fields from one or a few
images in a feed-forward manner. PixelNerf can seamlessly incorporate multiple observa-
tions such that given two views, it can output a more accurate representation. Furthermore,
PixelNerf models the entire scene to be trained on more complex settings with more than
one object without modification. PixelNerf can be applied to real scenes from the DTU
dataset without test time optimization. In contrast, because Nerf [89] is unable to exploit
prior knowledge common across scenes and purely relies on multi-view consistency, it per-
forms poorly when only three input views are available. PixelNerf equips the volumetric
Nerf representation with fully convolutional image features to learn priors across the scenes.
The input image is first encoded into a pixel-aligned. Then, they render points along with
a target array. Finally, for each 3d point, they query the feature grid at the projected pixel
coordinate in the input image and pass the image feature along with the coordinates of the
point in view space into the network to get color and opacity. This is done for every point
along the target ray then volumetrically rendered to the pixel value in the novel target view.
When multiple input views are available, every input image is encoded into a feature grid.
The multiple features are processed in parallel and aggregated into the final color and opac-
ity. The authors claim that this method operates in view space and does not require mask
supervision. It can also perform wide baseline view synthesis on real complex scenes from
the DTU dataset using 88 training scenes. PixelNerf can obtain some reconstruction from
only one view and outputs better results with more observations. In contrast, Nerf [89]fails
to achieve good results with very few views. Despite being trained on three input views, their
method also improves slightly with more views. Note that all the results shown in this paper
are the direct output of the network without test time optimization. Whereas the training
on Nerf takes 14 hours for each scene with a set of input views. Ultimately this approach
bottlenecked by the availability of large-scale wide baseline multi-view datasets, limiting the
applicability to ShapeNet and DTU.

In [92] they presented work on Generative View Synthesis (GVS) from single view se-
mantics to novel view images. Semantic image synthesis techniques, for instance, convert
a semantic map to a realistic image. Artists and the general public have well-received these
methods. The GVS problem consists in rendering an input 2d semantic map from an arbi-
trary camera poses. A generative view synthesis approach takes 2d semantics as input and
renders a scene from multiple novel views. GVS is, thus, related to image-to-image trans-
lation and monocular view synthesis problems. A straightforward GVS approach could be
devised by combining state-of-the-art image-to-image and monocular view synthesis meth-
ods. However, the input semantics are first translated to a photo-realistic image. The
translated image is rendered from arbitrary camera poses using a monocular view synthe-
sis method. [92] claims that such combination results in unsatisfactory outputs. Thus, they
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propose the GVSNet, which renders novel views by lifting the input semantics into a hybrid
layered 3d semantic representation and performing image-to-image translation in this lifted
semantic space. Semantic lifting from 2d to 3d is a key idea that enables this method to
produce novel views that are semantically consistent with the semantic input map. GVSNet
has three main sub-networks: Semantic Uplifting Network (SUN), Layered Translation Net-
work (LTN), and the Appearance Decoder Network (ADN). SUN is trained to convert the 2d
semantics into a multiple plane image semantics MPI-S. This method uses a hybrid model
where scenes semantics are compressed into few-layer semantic images. This allows our
model to capture the semantics of all surfaces in the scene without wasting memory. The
lifted semantics representation are converted into a layered appearance using LTN. Layered
appearance features are then converted into an MPI appearance via an association tensor
predicted by SUN. The MPI appearance model contains high dimensional features at each
pixel location on every plane. Therefore, projecting the MPI appearance to novel views
gives per-pixel appearance descriptors at each pixel location in the novel view. ADN is ap-
plied at the end to convert the projected appearance descriptors into color values. Projecting
high-dimensional features allows for the propagation of neighborhood information from the
source camera to novel views. This local neighborhood information is crucial in mitigating
rendering artifacts from multi-plane discretization of the 3d space. The results show that
this method can synthesize more geometrically coherent views while preserving semantic
structures present in the input semantics.

Riegler et al. [93] propose a method that erects a geometric scaffold and then uses a re-
current mapping and blending network to render new views of the scenes. First, they use
SFM to estimate the camera parameters for the input images. Next, they run a multi-view
stereo to get an initial 3d reconstruction of the scene. Delaunay-based surface reconstruction
is used to obtain 3d proxy geometry. This proxy geometry assists the mapping of image fea-
tures from input views to new target views. A recurrent network that integrates information
from multiple source images performs the processing of image features in the target view.
Each source image is first encoded using a convolutional network. The encoded features are
then mapped to the target view using the proxy geometry. The mapped features are decoded
by another convolutional network that produces estimated colors and confidence values in
the target view. Estimated colors for multiple nearby source images are integrated into a
coherent prediction. The results show that this method overcomes Nerf [89]; however, there
is no temporal consistency as they synthesize images frame-by-frame. Thus synthesized
videos exhibit temporal instability. Second, the pipeline will produce visible artifacts if the
3D model used for mapping misses large parts of the scene or has gross outliers.

[4] propose a method for performing view synthesis from a single image. It is trained
end-to-end using a new differentiable point cloud rendered. It achieves impressive results for
single image view synthesis. Given a single scene image, it learns a model to address what
would happen if we changed viewpoint, such as moving forward and then turning left. To
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solve this problem, their model has to learn about two aspects. First, it must understand the
3d structure of the scene to manipulate the pixels. The model must also understand the con-
text in order to inpaint missing regions. To solve this problem, they use a latent point cloud
representation. Given an image, they pass it through a network to obtain features at each
pixel location. The depth map is also predicted at each location used to create a point cloud
of features. Then they apply the available camera transformation to view the point cloud
at the new viewpoint. Using ideas from traditional graphics approaches, they introduce the
differentiable point cloud renderer, which renders these features at the new viewpoint. This
gives a set of projected features, but it will have holes and potentially artifacts from where
the point cloud does not project, such as regions in the new image that are not visible in
the original one should not have projected features. In order to fix this, they use a genera-
tor network that is based on GAN models in order to fill in the missing regions. A set of
losses is applied: discriminator loss and L2 loss, and a perceptual loss. At training time,
the supervision is the input image, the rotation, the translation, and the target image, and no
ground-truth depth is used. The depths and features networks are trained end-to-end using
the differentiable point cloud renderer. At test time, the target image is not needed for the
loss; they only take an image and desired new viewpoint as input. This is passed to a net-
work to generate a new image of the scene at that new viewpoint. The results show that the
model can generate viewpoints for indoor and outdoor scenes. However, approaches such [4]
for single-view synthesis make small camera transformations, such as rotation by a few de-
grees. The following method is a single-view synthesis approach that aims at expanding the
possible camera changes to include large transformations.

Rombach et al. [94] present a probabilistic approach to Novel View Synthesis based on
transformers, which does not require explicit 3D priors. They synthesize plausible novel
views that exhibit high fidelity given a single source frame and a camera transformation.
They demonstrate that by modeling interactions between far-flung regions and the source
image and target images, transformers can implicitly represent the required geometric trans-
formation without requiring hand-engineered operations. Therefore, they propose learning a
probabilistic model for view synthesis that appropriately considers the uncertainties inherent
in the task. They analyze the need for explicit 3D inductive biases in transformer architec-
tures and find that transformers make it obsolete to explicitly code 3D transformations into
the model. Instead, they can learn the required transformation implicitly. Finally, they found
that the benefits of providing geometric information in the form of explicit depth maps are
relatively small. They also investigated the ability to recover an explicit depth representation
from the layers of a transformer, which has learned to represent the geometric transformation
implicitly and without any depth supervision. The experiments show that no such geometric
priors are required and that the transformer is capable of implicitly learning 3D relationships
between images. Furthermore, this approach outperforms the state of the art (notably [4]) in
terms of visual quality while covering the full distribution of possible realizations.
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3.4 Conclusion

To generate the most natural transition between two viewpoints in a scene, we studied pos-
sible computer vision methods that allow such transition. The one that retained our attention
is the view synthesis with 3D warping. The 3D warping process is divided into three stages.
The view warping stage is responsible for warping the reference views in the scene to the
target novel viewpoint. The view blending stage blends the warped reference views alto-
gether to obtain one final view. Finally, the view inpainting stage takes care of filling the
holes generated by discolusions. Therefore in this chapter, we enumerate the most effective
state-of-the-art view synthesis methods divided into three categories: the classic algorithmic-
based view synthesis methods such as [21] [23]. The tradition algorithmic-based [28] [27]
and learning-based [31] [30]inpainting state-of-the-art methods. Finally, the learning-based
view synthesis state-of-the-art methods [25] [26] [4].

Recent research is mainly based on deep learning methods, used either such end-to-end
view synthesis architectures [4], or such a booster for one or multiple view synthesis stages
such as for blending [26] or inpainting [31]. The learning-based view synthesis methods ac-
celerated and condensed the work in this field. They are achieving encouraging, outstanding
results in a domain that has been challenging dealing with for the past two decades. However,
these methods focused mainly on improving the quality of the visual rendered image novel
view. Regardless of the number of input images and the computational and memory cost,
the spectacular improvement is mainly performed on small baselines from the target view-
point and many input viewpoints. Therefore, such methods are often designed for moderate
inter-camera baseline distance, and larger kernels are required for warping if the baseline
distance increases. Those methods can deal with large baselines; however, the synthesized
view suffers from artifacts near disoccluded pixels.

In the following chapters, our work focuses on developing solutions that deal with large
baselines view synthesis while mixing the advantages in algorithmic-based warping method
with the benefits of ConvNets on improving the final rendered image quality. Our objective
is to propose new solutions for large baselines to the target viewpoint position, with the min-
imum costs in terms of ConvNets learnable parameters, computational and memory storage,
and reducing the number of the input reference images to two inputs.





Chapter 4

A hybrid approach to wide baseline View
Synthesis with ConvNet

This chapter proposes a hybrid approach to view synthesis where we first warp the refer-
ence views resolving the occlusions. Then we train a simpler convolutional architecture for
blending the preprocessed views. By warping the reference views, we reduce the equiva-
lent distance between reference views, allowing smaller convolutional filters and thus lower
network complexity. Later on, we improved our architecture by adding more convolutional
layers while keeping the learnable parameters low and thus the complexity.

The rest of this paper is organized as follows. Section 4.1 reviews the relevant method
challenges and introduces the related background. Section 4.2 describes the proposed view
synthesis method. Section 4.3.1 experimentally evaluates the performance of our method.
Section 4.3.4 describes the upgraded version of our method and shows the experimental
results. Finally, Section 4.4 concludes the paper.

4.1 Context and challenges

View synthesis is the process of generating a virtual view of a scene by leveraging a set
of neighbor reference views [95]. This tool would enable special services such as free
navigation in a scene [18]. Methods based on Depth-image-based-rendering perform virtual
view synthesis exploiting the scene’s geometry where the virtual view is synthesized from
two or more adjacent references. Even though multiple different approaches to DIBR exist,
in most cases, first, the reference views are warped to the target view position using the depth
maps and then are blended to synthesize the virtual view. Occlusions around the object edges,
noise, or errors in the depth maps, can yield visible artifacts in the virtual views, demanding
complex disocclusion filling or mitigation techniques before the images are blended.

Many inpainting and hole-filling methods are proposed to cope with occlusions in syn-
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thesized views. For instance, in [96, 97] multiple warped input images are combined to
generate one blended image. Nevertheless, such methods cannot avoid minor artifacts, and
some holes are still present after blending. Some methods are based on interpolation or
extrapolation of the hole regions with neighboring pixel color or depth information as [43]
and [98], or by pre-processing the warped depth map like in [99]. Luo et al. [31] assume that
black holes areas have similar patterns as background. Therefore, they extract foreground
objects in the reference image and use the reconstructed and synthesized background to fill
holes in the virtual desired image. However, the performance of such methods depends on
content-specific parameters such as scene geometry, texture complexity, or baseline distance
between cameras.

Recently, several methods based on ConvNets [100] have been proposed for image syn-
thesis tasks such as video temporal interpolation or image super-resolution. Such meth-
ods [2], [3] [1] attempt to perform all the above steps with a learning-based approach. How-
ever, even in the case of moderate baseline (i.e., inter-camera distance), typical multiview
sequences would require large convolutional kernels. Thus, it will be increasing the com-
plexity of the above methods and making the network prone to overfit to the training data,
demanding, in turn, large training sets to achieve satisfying generalization capabilities. Of
course, this problem is only worse in the case of a large baseline.

In the following, we propose a hybrid approach to view synthesis that relies on DIBR for
preliminary view warping and a ConvNets for view blending. Preliminary, we warp the ref-
erence views to the target position to minimize the disparity between views. Next, we handle
occlusions around foreground object edges with a simple yet effective hole filling scheme.
Finally, we blend the warped, disoccluded views with a lightweight ConvNets simple enough
to be trainable in a fully supervised way. Compared to the DIBR-based state-of-the-art refer-
ences, the proposal shows better image quality thanks to reduced artifacts such as ghosting,
despite the moderate-to-large disparity between views.

4.2 The view synthesis approach

Our proposed method for view synthesis is schematized in Fig. 4.2, whereas Fig. 4.1 exem-
plifies the synthesis process. In a nutshell, first, we warp the reference views to the target
position to reduce the camera baseline. Then, we resolve the occluded pixels, and finally, the
two views are blended using a convolutional network.

4.2.1 View warping

As a first step, we warp the left and the right reference views T L and T R to the position
corresponding to the target view to synthesize exploiting the relative depth maps DL and DR.
For simplicity, in the following, we assume that cameras are arranged in a mono-dimensional
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Fig. 4.1 Typical view synthesis process: the reference views T L,T R are warped to the target
view position as T Lw,T Rw; occlusions-free warped views are indicated as T Lw

f ,T Rw
f ; the

target blended view is indicated as TV .

setup, i.e., arranged as a linear array whose geometry is known. Under these assumptions,
the horizontal displacement of each pixel of each reference view to the target view can be
computed as

d =
f ·b
z

, (4.1)

f is the camera focal length, b is the baseline distance between the reference view and the
target view, and z represents the pixel depth. The warping process has a sub-pixel precision
of 1/4 pixel. That is, we first upsample the two reference images four times their resolution.
Then, we shift each pixel to its new position and downsample the warped image to its original
resolution. Fig. 4.1 illustrates the output of this process, consisting of the two reference
views (T L,T R) warped to the target view position (T Lw,T Rw).
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Fig. 4.2 The proposed method for view synthesis: the original views are pre-warped to the
target position (left), occlusions are resolved via hole-filling (center) and the disoccluded
views are blended using a convolutional network.

4.2.2 Hole filling

Due to the warping process of the reference view towards the target view, some visible area
in the target view are invisible in the reference view and thus, they are represented as black
holes in the warped views where each disoccluded pixel at a given position (r,c), T Lw(r,c)
is set to zero. In Fig. 4.2, occluded pixels in the warped views (T Lw,T Rw) are represented
as black holes (occlusions are typically located to the side of foreground objects edges). The
hole inpainting process fills in holes in textures (T Lw and T Rw) generated during warping
as a result of pixel disocclusions. Namely, hole inpainting takes as input the left and right
warped textures (T Lw and T Rw) and produces as output the corresponding warped, filled,
textures (T Lw

f and T Rw
f ) respectively. First, every disoccluded pixel at the position (r,c) in

T Lw (i.e, every T Lw(r,c) == 0) is filled with the value of the co-located pixel at the position
(r,c) in T Rw if the latter is not occluded (i.e T Rw(r,c) 6= 0). Then, the same procedure is
followed to fill T Rw using non-occluded pixels from T Lw. However some pixels may still be
occluded at this point when the new area in the target view is invisible in both left and right
reference views. For example, Fig. 4.3 illustrates the case of a camera of a reference view
warped from right to left.

To fill the remaining holes in T Lw
f and T Rw

f , we use for each remaining disoccluded pixel
in T Lw

f and T Rw
f its non-occluded neighboring pixels. Therefore, we assume that the disoc-

cluded pixels may appear only to the left or the right of foreground objects of the scene re-
garding the warping direction. Accordingly, we assign to each disoccluded pixel the median
value of its five left or right neighboring valid pixels. Considering the remaining disoccluded
pixels in T Lw

f to be filled, each disoccluded T Lw(r,c) value is filled with the median value
of the following five neighboring valid non-occluded pixels: T Lw

f (r−1,c),T Lw
f (r−1,c+1),

T Lw
f (r,c+ 1),T Lw

f (r+ 1,c+ 1) and T Lw
f . (r+ 1,c). A pseudo-code of this algorithm applied

on the left warped image T Lw is in Alg. 1.
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In a nutshell, to fill holes in the left warped view, we leverage the knowledge that the
holes will appear on the right side of the foreground objects, and we want to fill the missing
information using the background. Thus, we sweep the image row after row, from left to
right, filling holes pixel by pixel using the median over five right not occluded neighbours.
We use the same technique to fill holes in the right warped image but instead we sweep the
image from right to left, since the holes appears on the left of the foreground objects, using
the median over the left five not occluded neighbors. Combining the two steps together, our
technique allows reasonable results with large holes.

Fig. 4.3 Disoccluded holes representation in warped left image. The occluded pixel in red is
resolved from right side neighboring pixels in green.

4.2.3 CNN-based View blending (CNN-VB)

The network comprises four convolutional layers where the first two are duplicated to oper-
ate on the two input images independently. The two layers are 64 and 32 filters, respectively,
both sized W ×W , and project the two warped images over 32 feature maps for the left
warped view and 32 for the right view. The third and fourth convolutional layers include 16
and 1 filters, respectively sized W ×W , and combine the 32 feature maps extracted from the
left view and the 32 feature maps extracted from the right view into the desired intermedi-
ate view. For simplicity, here we assume that we deal with single-channel (i.e., grayscale)
images.

Proper padding is employed wherever necessary to guarantee that the convolution oper-
ator does not reduce the size of the output feature map concerning the layer input image or
feature map. Concerning the activation functions, all convolutional layers are followed by
Rectified Linear Units (ReLu) except for the last, followed by a Hyperbolic Tangent (Tanh)



58 A hybrid approach to wide baseline View Synthesis with ConvNet

function. The network is designed to input and output images with approximately zero-
mean, and pixel intensity bounded in the [-1, +1] interval. Not shown in the picture, we
added a batch normalization layer after each convolutional layer to speed up the network
convergence at training time.

The network takes two images as input and predicts additional information exploiting
sub-pixel scale differences between input images. Namely, besides the enhancements related
to super-resolution, the network also learns to correct object edges, deal with non-matching
pixels (e.g., foreground in one warped image and background in another), and infer missing
information from the surrounding areas.

Notice that the filter size W affects the maximum camera baseline distance that the net-
work can handle. Therefore, we will experimentally find an appropriate W value for the
considered test material in the following section.

4.2.4 Training procedure

The above network is trained end-to-end in a fully supervised way as follows. Training data
consist in triplets of images (T Lw

f ,TC,T Rw
f ) where TC is the view to synthesize and T Lw

f and
T Rw

f are the pre-warped, hole-filled reference views generated as above. From each triplet of
images, we crop at a random position the three co-located 64×64 patches (t lw

f , tc, trw
f ). Each

patch is normalized, so pixel values lie in the [−1,1] interval and have approximately zero
mean.

Next, we randomly flip each patch as a form of data augmentation. In our experiments,
such a method was shown very influential towards reducing the likelihood of overfitting
on the training data. However, only a vertical flip could be applied due to the disparity
between the left and right images. Therefore, a horizontal flip should be coupled with a
Left-Right image switching. The initial values of the weight s of all convolutional layers
but the output layer are drawn from a N (0,0.01). Concerning the output layer, we applied
a Xavier initialization [101]. For all layers, biases are initialized at zero. For each pair of
reference patches (t lw

f , trw
f ) provided in input, the network learns to minimize the quadratic

error between the network output tv and the ground truth tc. Formally, we minimize the loss
function

L(w, tv, tc) =
1
n

n

∑
i=1

(tv
i − tc

i )
2, (4.2)

where tv
i and tc

i are the i-th pixel of tv and tc, respectively.
We train our network following the standard practice of back-propagating the gradient

of the above error function with respect to the learnable parameters w and updating the
parameters using the Adam algorithm [102] for determining the actual update step-size. Our
experiments revealed that a reasonable trade-off between performance and convergence time
could be achieved using batches of 128 patches and a learning rate of 0.0001. The training
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procedure ends after the above loss function measured over a validation set distinct from the
training set stops decreasing.

4.3 Experimental results

In this section, after describing our experimental setup, we evaluate our method over several
multi-view video sequences having moderate-to-large baselines.

4.3.1 Experimental setup

We experiment using the seven multiview sequences summarized in Tab. 4.1 and provided by
Nagoya University 1, Poznan University and Technicolor. Such sequences account for vari-
ous content types with natural or artificial light, complex or straightforward objects motion,
and different video resolution. All sequences are captured using multiple cameras arranged
in a linear array except for Painter captured using a 2D array. For each view of each se-
quence are made available also the corresponding depth map, either acquired or computed.
All sequences are available in uncompressed YUV colorspace, and we consider only the lu-
minance channel Y in our experiments. From each sequence, we select two reference views
(T L,T R) and one target view TC so that TC is adjacent to both T L and T R. For the sole
Painter sequence captured using a 2D camera array, we extract three different target views
from three different camera rows, bringing the total number of experimental setups to 9.

Next, we pre-warp and disocclude T L and T R using the method described in the previous
section. Then, from each sequence we extract at random 10k triplets of 64× 64 co-located
patches (̃t l, tc, t̃r) as described in the previous section. Each sequence is alternatively reserved
for testing for a total of 10k testing patches. In contrast, the other eight sequences are used
for training and validation purposes, for a total of 70k training patches and 10k validation
patches. The results below referred to the network trained from scratch over the eight train
sequences and tested on the left-out sequence. Our experimental testbed is implemented in
python language for hole filling and patch extraction using the PyTorch for neural network
deployment. All networks were trained and tested over an NVIDIA RTX2080 GPU.

1http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
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Sequence Characteristics Setup Resolution (T L, TC, T R) (T L, T R)

Balloons Indoor, colorful 1D 1024x768 (1,3,5) 20 cm
Kendo Indoor, white smoke 1D 1024x768 (2,4,6) 20 cm
Newspaper Indoor, people 1D 1024x768 (2,4,6) 20 cm
PoznanStreet Outdoor, nature 1D 1088x1920 (2,4,6) 55 cm
PoznanHall Indoor, building hall 1D 1088x1920 (5,6,7) 27.5 cm
Lovebirds Outdoor, nature 1D 1024x768 (4,6,8) 15 cm
Painter-1 Indoor, art studio 2D 2048x1088 (0,1,3) 14-21 cm
Painter-5 " " " (4,5,6) "
Painter-9 " " " (8,9,10) "

Table 4.1 The seven multiview video sequences used in our experiments (all sequences are
100 frames, average camera baseline is 24 cm).

4.3.2 Preliminary Experiments

As a preliminary experiment, we explore the performance of our proposed scheme as a func-
tion of the convolutional kernel size W , comparing against the case where the network is
trained to blend the original, not warped images. While the original images boast better
quality because they are not affected by the occlusions induced by view warping, the base-
line between the views poses a challenge for the convolutional network in blending the views.
For this experiment, we test the trained network only on the Kendo sequence (the network is
trained on the other six sequences in Tab. 4.1 due to the time required to explore all the pos-
sible configurations. Tab. 4.2 shows that as the size of the filters increases, the performance
of both methods improves. However, the unwarped case performs significantly worse for the
same kernel size, showing the benefits of preliminarily warping the views before blending.

We also observed that as the filters size increases, the network is more prone to overfit
the training data. It can be easily explained by looking at how the number of learnable
parameters increases with the size of the filter. In the rest of this section, we will experiment
with 9×9 filters as they have shown a reasonable trade-off between complexity in terms of
learnable parameters and performance.

kernel size 7x7 9x9 13x13 17x17
CNN-VB 37.71 38.21 38.68 38.98

CNN-VB-unwarped 21.26 21.75 24.29 24.75
Parameters 6400 10496 21760 37120

Table 4.2 Synthesized view PSNR for proposed method and proposed method on original
views, Kendo sequence.
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4.3.3 Synthesized View Quality

The goal of view synthesis is to create high-quality virtual views. Therefore, we evaluated
the generated images through both non-perceptual (PSNR) and perceptual (SSIM) quality
metrics. As mentioned, we set W = 9 for our filters and performed the cross-validation over
the the 6 sequences in Tab. 4.1. The results are reported in Tab. 4.3, where we show the
PSNR and the SSIM of the synthesized view TV concerning the ground truth TC. As a
first reference scheme, we consider the MPEG reference view synthesis software VVS. As
a second reference, we consider the convolutional architecture for temporal super-resolution
[12].

Our proposed method outperforms VVS for all sequences in terms of SSIM and all but
one sequence in PSNR. For example, Fig. 4.4 shows a detail of the Kendo sequence, where
our method outperforms VVS by 0.7 dB. The figure shows a significant improvement in
image detail around the warrior mask.

Concerning PoznanStreet, VVS outperforms our method by almost 0.8 dB: Fig. 4.5
shows that errors in the blended image are localized around foreground objects. We point
out that this sequence has a different baseline (55cm) than the other sequences (between
20 and 27.5 cm) used for training, and we hypothesize two explanations for our results.
First, the more significant baseline of this sequence may require convolutional filters more
extensive than the 9x9 filters we used. To verify this hypothesis, we retrained our network
with larger convolutional kernels of size 13x13. With this setup, the PSNR of our proposed
method improved from 36.17 to 36.9 dB, nearly equalling VVS (36.96 dB), albeit at the
price of doubling the number of learnable parameters (see Tab. 4.2). Second, the blending
network may not have learned to generalize over baseline distances that differ from those of
the training images. Due to the limited availability of depth maps for the training sequences,
we were unable to train our network on multiple baselines. This observation highlights the
importance of training the network to generalize across different camera baselines.

Finally, reference scheme [12] is consistently outperformed by both VVS and the pro-
posed method: we recall that this scheme was designed for temporal super-resolution; this is
not meant to deal with the wide baseline distance of our multiview sequences.
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PSNR SSIM
Sequence [12] VVS CNN-VB VVS CNN-VB
Balloons 30.39 37.07 36.92 0.922 0.965
Kendo 26.88 38.21 38.98 0.972 0.976

Newspaper 27.95 34.53 35.08 0.930 0.950
PoznanStreet 32.20 36.96 36.17 0.922 0.932
PoznanHall 34.08 37.26 37.43 0.921 0.932

Painter-1 29.80 37.86 37.88 0.948 0.956
Painter-5 32.17 38.04 38.12 0.945 0.953
Painter-9 30.53 36.36 36.44 0.930 0.941
Lovebirds 25.716 34.56 34.7 0.909 0.933

Table 4.3 Quality of the synthesized view for the proposed and reference methods VVS and
depth-aware video frame interpolation [12].

Fig. 4.4 Detail of the synthesized view for the Kendo sequence. Left: ground truth; center:
VVS; right: proposed method.

Fig. 4.5 Detail of the synthesized view for the PoznanStreet sequence. Left: ground truth;
center: VVS; right: proposed method.
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The CNN-VB study proves to us that we need larger filter sizes to handle such displace-
ment with a relatively large focal length and a significant disparity between the actual view
and the desired view. However, as shown previously, this solution requires doubling the num-
ber of parameters and complexity. One idea is to make our architecture deeper by increasing
the number of convolutional layers while keeping the parameters low. In the following sec-
tion, we detail the upgraded version of CNN-VB.

4.3.4 CNN-based view blending upgraded (CNN-VB+)

CNN-VB+ as illustrated in Fig. 4.6 is an improved version of CNN-VB that we developed
later on. Since CNN-VB is initially a very primitive architecture that validates preliminary
warping, the views to use a smaller filter, we assume that this architecture can improve in
two aspects.
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Fig. 4.6 The CNN-VB+ architecture as an improved version of CNN-VB

First, after warping and disoccluding the views, we compute two reliability maps that
signal which pixels result from a disocclusion. The two maps are then provided in input to
the ConvNet in charge of blending, which exploits the reliability maps as hints to improve the
quality of the synthesized view. Second, we double the depth (8 vs.4 layers) of the ConvNet
in charge of blending while keeping the parameters count constant. Each pair of warped
texture and reliability maps is provided in input to a separate branch of four convolutional
layers with 64, 50, 42, and 32 filters, respectively, all sized 5×5 rather than 9×9. The last
four convolutional layers include 50, 42, 32, and 3 filters respectively sized 3×3 in place of
5×5. It can be shown that each feature produced in output by these four convolutional layers
enjoys the same receptive field as in the case of the CNN-VB architecture. Therefore, this
scheme enjoys a deeper convolutional pipeline to learn potentially better representations of
the input views, leaving untouched complexity and receptive field size. Finally, CNN-VB+
takes in input and outputs RGB rather than grayscale images.
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4.3.4.1 Results and discussion

Concerning CNN-VB and CNN-VB+, the latter improves over the former in all sequences,
with gains in excess of 0.5 dB for PoznanStreet and Lovebirds. Similarly, CNN-VB+ out-
performs MPEG VVS almost for all sequences, with a 0.8 dB gain for Kendo. We attribute
such gains in part to the more profound convolutional architecture, introducing the reliabil-
ity maps. Concerning SSIM, CNN-VB+ outperforms CNN-VB on average, albeit in some
cases, CNN-VB scores better. Anyhow, a visual inspection of the synthesized view (Fig. 4.7)
shows that even CNN-VB+ produces artifacts in the synthesized views, showing the intrinsic
limits of this pooling-less architecture in view synthesis.

PSNR [dB]
Sequence

VVS CNN-VB CNN-VB+

Balloons 37.07 36.92 37.18
Kendo 38.21 38.98 39.08
Newspaper 34.53 35.08 35.35
PoznanStreet 36.96 36.17 36.81
PoznanHall 37.26 37.43 37.50
Painter-1 37.86 37.88 38.01
Painter-5 38.04 38.12 38.18
Painter-9 36.36 36.44 36.51
Lovebirds 34.56 34.70 35.34
Average ± Std 36.76 ±1.38 36.85 ±1.41 37.11±1.26

Table 4.4 Quality of the synthesized view for the proposed and reference methods in terms
of PSNR

4.4 Conclusion

In this work, we explored the idea of preliminarily warping the reference views to the target
position before a convolutional neural network eventually takes care of blending the warped
views to the target position. Our experiments showed that our approach allows us to deal with
more extensive baseline sequences with convolutional filters of reduced size and thus com-
plexity, comparing favorably concerning state-of-the-art methods for view synthesis. Our
research also showed the importance to train the convolutional network so that it can learn
to generalize across images with different baseline distances. Later on, we improved our ar-
chitecture by adding more convolutional layers while keeping the learnable parameters low
and thus the complexity. We also add reliability maps that go along with the warped tex-
tures as inputs to the network. However, the network showed reduced performance on more



4.4 Conclusion 65

Fig. 4.7 Details from PoznanStreet (top) and PoznanHall (bottom) sequences. First column
is ground truth, second column is VVS, and the last column is the proposed CNN-VB+.

complex cases, mainly due to the limited generalization capacity of such a simple architec-
ture. Exploring CNN-VB and CNN-VB+ as simple architectures led us to understand the
importance of more complex architectures that better understand input views and ensure a
better generalization. In the following chapter, we detail a new approach for ConvNet-based
Blender architecture.
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Algorithm 1: Hole inpainting algorithm exemplified for view T Lw

Input: (T Lw,T Rw)
Output: Filled textures (T Lw

f ,T Rw
f )

1 ListLe f t← the list of occluded pixels in ILw;
2 ListRight← the list of occluded pixels in IRw;
3 for (r,c) in ListLe f t do
4 if if (r,c) is in ListLeft but not in ListRight
5 then
6 copy right to left, and remove from ListLeft
7 else if (r,c) is in ListRight but not in ListLeft then
8 copy left to right and remove from ListRight;
9 end

10 for (r,c) in ListRight do
11 if if (r,c) is in ListRight but not in ListLeft then
12 copy left to right, and remove from ListRight
13 else if (r,c) is in ListLeft but not in ListRight then
14 copy left to right and remove from ListLeft;
15 end
16 for (r,c) in ListLe f t do
17 if neighbor pixels are valid pixels not in ListLeft
18 then
19 T Lw

f (r,c) = Median[valid neighbor pixels in T Lw
f ]

20 else
21 continue
22 end
23 end
24 for (r,c) in ListRight do
25 if neighbor pixels are valid pixels not in ListRight
26 then
27 T Rw

f (r,c) = Median[valid neighbor pixels in T Rw
f ]

28 else
29 continue
30 end
31 end



Chapter 5

Hybrid Dual Stream Blender For Wide
Baseline View Synthesis

This chapter proposes a residual encoder-decoder for image blending with a Siamese encoder
to further keep the parameters count low. We also contribute a hole inpainting algorithm to
fill the disocclusions in the warped views. After describing the context and the challenges of
this method, we organize the rest of this chapter as follows:
Section 5.2 describes the proposed view synthesis method. Section 5.3 experimentally eval-
uates the performance of our method, including an ablation study. Finally, Section 5.4 dis-
cusses the learned lessons and discusses future research.

5.1 Context and challenges

In our previous work Chap. 4, we explored the idea of preliminary warping the reference
views to the target position, then blending the warped views with the aid of a ConvNets.
We showed that a plausible novel target view could be obtained with a simple architecture,
which outperforms traditional algorithmic methods (blending and inpainting) in most cases.
However, the network showed reduced performance on more complex cases, mainly due to
the limited generalization capacity of such a simple architecture. The present work builds
upon our previous research in Chap. 4 retaining the ideas of a hybrid algorithmic-learning
scheme where reference views are preliminarily warped to the target position and using an
inpainting method built around a median filter to handle occlusions. However, this work
improves our previous approach under several aspects:

• We blend the warped views using a residual encoder-decoder architecture inspired by
recent advances in image-to-image translation [83, 103]. Namely, we reformulate our
problem as an image-to-image translation task, aiming to translate warped input real
views into the target view.
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• We provide the ConvNets in charge of blending the warped views, both the warped
and the inpainted views, to allow the network to pick whatever is the best source for
resolving each occluded pixel.

• Unlike image-to-image translation problems, we must deal with multiple reference
views, which entails one encoder for each view. To keep low the parameter count, we
introduce a flip-convolve-flip scheme that allows sharing parameters between encoders
operating on symmetric inputs.

• We experiment using binary masks as an alternative to the inpainted views inputs to
reduce the network complexity.

We experimentally evaluate our proposed approach over multiple wide baseline mul-
tiview video sequences comparing with purely algorithmic and purely learnable state-of-
the-art approaches. Our experiments show that our architecture outperforms competitors in
image quality for wide baseline sequences while striking a favorable balance between com-
plexity and performance.

Our state-of-the-art analysis suggests that none of the existing methods is free from draw-
backs in the form of artifacts in the synthesized image. With algorithmic-based approaches
such as VVS, view blending and hole inpainting yield artifacts in the synthesized view. With
learning-based methods, problems in generalization and consistency can be traced back to
the end-to-end view warping and blending process. While blending warped reference views
allows handling large baselines with small kernels, it does not solve the problem with the
artifacts in the synthesized view. In our previous work [104], we took inspiration from con-
volutional architectures for image super-resolution [105]. Conversely, in this work, we take a
different approach inspired by recent advances in Image-To-Image (I2I) translation [83,103].
I2I translation consists of mapping one image to another and tackles problems such as im-
age colorization, super-resolution, and, to some extent, also view synthesis. Most I2I ap-
proaches rely on encoder-decoder architectures where the input image is first projected on
a latent feature space by a convolutional encoder. Usually, the encoder relies on pooling
layers or multiple-strided convolutional layers to reduce the spatial resolution of the feature
maps. Next, such features may pass through a bottleneck layer that projects them over a
feature space of (usually) lower dimensionality. Then, these features are projected back to
the original pixel domain by a transposed convolutions decoder. The decoder usually em-
ploys transposed convolutions (or fractionally-strided convolutions) to recover the original
resolution of the translated image. The transposed convolution is used to conduct optimal
up-sampling, it also has learnable parameters. A further key challenge for our application is
how to prevent occlusions in the warped images from generating artifacts in the synthesised
view, a problem that in I2I architectures is usually not present. In the next section, we pro-
pose a convolutional architecture for view synthesis that takes inspiration from I2I methods
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yet tackles challenges unique to view synthesis problems.

5.2 Hybrid dual stream blender (HDSB)

Warping process
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Fig. 5.1 The proposed hybrid pipeline for wide-baseline view synthesis: reference views are
first warped to the target position, disocclusions are inpainted and eventually blended by a
ConvNets.

Fig. 5.1 illustrates the proposed wide-baseline view synthesis pipeline, where given two
left and right input reference views IL and IR are composed by textures T L and T R, and
depths DL and DR respectively. We aim at synthesizing texture T v of the target view that
lies in the middle between the reference views. Towards this end, we propose a pipeline
for view synthesis composed of a warping step followed by a hole filling step and a final
blending step. First, the reference views are warped to the target position, producing warped
references aligned with the target view to synthesize. Warping allows us to blend the warped
images using a ConvNets with small kernels later on. Second, the hole inpainting consists in
generating a filled texture (T Lw

f and T Rw
f ) for each warped reference texture (T Lw and T Rw).

Third and last, a ConvNets blends the left and right warped references (with filled textures
T Lw

f and T Rw
f ) to the target view T v. The details of each step are detailed in the following.

5.2.1 Warping the reference views to the target position

The warping process consists in warping textures (T Lw,T Rw) to the target view position
(T v) with the aid of the depth maps. Namely, this step takes as input the two left and right
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reference views T L and T R and produces as outputs two warped reference views T Lw and
T Rw to the same intermediate novel target view position T v. The textures are back-projected
to the target position as follows. Let pixels tr and tv be the projections of a same real world
point denoted by X , and with coordinates (ur,vr,1), (uv,vv,1) respectively. Lets us consider
Kr, Kv and Rr, Rv the respectively 3x3 intrinsic camera parameters and the 3x3 rotation
matrix for each camera. Then, tv can then be expressed as

tv = KvRv(KrRr)
−1(ztr +KrRrCr)−KvRvCv, (5.1)

where z is the depth value. In particular, the two pairs of texture and depth IL = {T L,DL} and
IR = {T R,DR} are up-sampled to half-pixel or quarter-pixel accuracy, in which the warping
and interpolation steps are carried out. In practical implementations of the above method, one
has to decide the value to assign to pixels that are occluded in the reference views but visible
in the target (disoccluded pixels). In practice, those pixels are often arbitrarily assigned a
zero value, which entails a few drawbacks. A zero-valued pixel is ambiguous as it could
represent either a non-occluded dark pixel or a disocclusion. While the ConvNets in charge
of blending the warped views may learn this, this would make the learning problem more
challenging. One possible solution is to provide an occlusion map for each warped texture
as input to the network, allowing a hypothesis on each pixel claiming whether yes or not
it should be given a value, An even better solution (at least, according to our experimental
results) is to provide a different version of the warped image where the disoccluded pixels
are filled as much as possible with relevant information. We take this latter approach, and
we detail it in the following section.

5.2.2 Hole inpainting

The hole inpainting process and algorithm is the same used in previous work Chap. 4 Sec.
4.2.2. Therefore, due to the warping process of the reference views to the target position,
some visible areas in the target view are invisible in the reference view, and thus, they appear
as black holes in the warped views where each disoccluded pixel at a given position (r,c),
T Lw(r,c) is set to zero.

We cope with occlusions using a two-steps hole filling process. As a first step, we copy
non-occluded pixels in T Lw to fill the black pixels in T Rw, and vice versa. However, pixel
copy is not sufficient to resolve all occluded pixels, thus as a second step we resolve the
residual holes by applying the algorithm described in Alg. 1. An example of the filled
textures (T Lw

f or T Rw
f ) is represented in Fig. 5.2.

The resulting filled textures (T Lw
f , T Rw

f ) go along within the warped textures (T Lw, T Rw)

as inputs to the ConvNets responsible for the blending step described in the next section.
Finally, an approximation of the proposed method consists in using binary masks, in place
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TLw TRw

T Lw T Rw
f f

Fig. 5.2 The two left and right warped input textures T Lw and T Rw and their corresponding
filled textures T Lw

f and T Rw
f with details Baloons sequence.

of the filled textures, increasing speed and trading off visual quality. Eventually, since gener-
ating filled warped textures is time and memory-consuming, we propose a lower complexity
alternative based on occlusion maps. First, we generate a binary mask for each reference
warped texture by labeling occluded pixels as 1, 0 otherwise. Fig 5.3 illustrates how oc-
cluded pixels in the reference image correspond to the visual black holes valued as 0. There-
fore, as a low-complexity alternative, we propose to use the two reference warped textures
and their corresponding binary masks (ML

b ,M
R
b ) as inputs to our architecture, instead of the

filled textures. In Sec. 5.3.3.2 we will use such method as a benchmark method to evaluate
our proposed hole inpainting algorithm.

TL T RML
b MR

b

Fig. 5.3 The two left and right warped input textures and their corresponding binary masks
Baloons sequence.
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5.2.3 ConvNet-based blending

As a third and final step, the warped textures (T Lw,T Rw) and the relative filled counterparts
(T Lw

f ,T Rw
f ) are blended into a novel viewpoint using a ConvNets. We describe here the

architecture of the ConvNets and the relative training procedure.

5.2.3.1 ConvNet architecture

Recently, image-to-image translation architectures [83, 106] have shown that it is possible
to map an image from a first visual domain to another image from a different domain. In-
deed, we consider that the image-to-image problem is refined to view blending, so it may be
reasonable to take inspiration from these architectures. However, there are some remarkable
differences between image-to-image translation and the view blending problem considered
here. First, we need to deal with a total of four inputs (the two warped reference textures
and the relative filled textures) rather than with a single input image. Second, each pair of
inputs (T Lw,T Lw

f ) and (T Rw,T Rw
f ) (cf. Fig 5.1), is characterized by a specific type of artifacts

to be recovered. As one reference view is warped from the left side and the other from the
right side, they do not share the same disocclusion problems. Therefore, our network should
learn how to exploit such inputs together to obtain one synthesized view using and adapted
architecture originally conceived for image-to-image translation task. Thus, we propose a
specific encoder-decoder architecture that combines its four inputs and generates one output.
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Fig. 5.4 Hybrid Dual Stream Blender Architecture sharing parameters in the encoder stage.

Our architecture is illustrated in Fig. 5.4 and is composed of three parts, the two encoders,
the blender, and the decoder.

Encoders

Our ConvNets includes a pair of identical encoders, one for the left and one for the right
view. We assume that all textures are 3-channels color images, e.g, in RGB or YUV format.
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The left encoder (the top encoder in Fig. 5.4) takes in input the left view composed of
textures (T Lw,T Lw

f ); the right encoder(the bottom encoder in Fig. 5.4) takes in input the
right view made of textures (T Rw

f ,T Rw). The role of each encoder is to project the views
to a spatially-subsampled latent feature space. To this end, each encoder includes three
convolutional layers with 64, 128 and 256 filters respectively of size 7x7 for the first layer
and 3x3 for the last two, all followed by ReLu activations. Filters in the convolutional layers
have 2-units stride, so that the feature maps in output of each layer are half the size of
the feature maps in input to the layer. Eventually, the feature maps output by the encoder
are 1

8 − th the size of the input textures. We found by extensive experimentation that such
encoder topology achieves the best tradeoff between semantic depth and spatial resolution
of the output feature maps. Next, we propose to reduce the number of learnable parameters
by sharing weights among encoders [107]. However, just sharing the same weights among
the two encoders would be suboptimal (as we experimentally verify in Sec. 5.3.3.4) since
the left and right views do not share identical disocclusion artifacts. Indeed, occluded pixels
in the left warped views will occur on the right side of objects, whereas in the right warped
views occlusions will occur on the left side. That is, occlusion artifacts will show on the two
opposite side of the objects in left and right views. Therefore, we propose a flip-convolve-flip
approach that allows sharing parameters among encoders. First, we horizontally flip (mirror)
the right view so that occluded pixels show on the right side of objects, as in the left view
and as illustrated in Fig. 5.5. Then, the feature maps generated from the right encoder are
horizontally flipped a second time. This produces feature maps that are semantically similar
to those generated by the left encoder and can be easily merged by the bottleneck block later
on while sharing parameters among encoders. While an extension of this scheme to the case
of vertically arranged cameras by applying a vertical mirroring rather than horizontal may be
theoretically envisaged, its discussion is out of the scope of this work which deals with arrays
of 1-D horizontally arranged cameras. In Fig. 5.4, the mirroring operations are denoted by
circled arrows.

Left warped texture Right warped texture Mirrored right warped texture

Fig. 5.5 Occlusions in the left view appear to the right of objects, occlusions in the right view
to the left. When the right view is flipped, occlusions appear on the right of objects, as for
the left view (Newspaper sequence).
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Blender

The blender includes 6 residual blocks with 512 filters each and blends the feature maps
extracted from the left and right views into a set of feature maps that holds a suitable repre-
sentation of the desired target view. Our experiments showed that residual blocks are better
suited than convolutional layers for the task of blending the downsampled feature maps into
the target view. The blender block is our original answer to the problem of blending fea-
tures in a latent, spatially subsampled, space originated from two different views of the same
scene. By comparison, other image-to-image translation architectures deal with monoscopic
images only, so they do not need to address this additional problem. In CNN-VB and CNN-
VB+ 4, features extracted from the input views did not undergo any spatial downsampling
and they were only concatenated to synthesize the target view. We will experimentally show
by ablation study the advantages of blending the features in a spatially subsampled feature
space.

Decoder

The decoder finally synthesizes the virtual view at the target position exploiting the down-
sampled feature maps produced by the blender. The decoder includes 3 transposed convo-
lutional layers with 256, 128 and 3 filters per layer of size 3x3 for the first two layers and
7x7 for the last layer. The decoder upsamples the low resolution feature maps produced by
the blender component to a higher resolution. The first two layers are followed by ReLu
activation function, while the output layer is followed by a Tanh. We also stack a batch
normalization layer after each convolutional layer as in ResNet blocks, as our experiments
showed it speeds up the training process. Overall, our network produces in output a three-
channels view where each view is expected to have approximately zero-mean and the pixel
intensity is bounded in the [−1,+1] interval by the output layer nonlinearity.

5.2.3.2 Training procedure

The network is trained in a fully supervised way on quintuplets of patches (̃t lw, t̃ lw
f , tc, t̃rw

f , t̃rw)

extracted respectively from textures (T Lw, T Lw
f , TC, T Rw, T Rw

f ), where and TC is the ground-
truth image to synthesize.

The training process for the proposed scheme may be hindered by the limited availability
of suitable data. In facts, multiview plus depth video sequences are not easily produced or
available, and most of our sequences are taken from the MPEG test material. However, we
avoided the use of computer-generated (CG) video sequences. Typically, the characteristics
of CG data are relevantly different from natural content. In CG data we have perfect depth-
maps but also, depending on the rendering techniques, one can typically achieve a some-
what limited complexity of textures, noise levels are much lower than natural videos, and
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some phenomena are more difficult and more computationally intensive to be rendered (e.g.,
non-Lambertian surfaces, sub-surface scattering, etc.). In short, relying only on computer-
generated data would not improve the training process so much if the methods are then to be
used on natural data.

We randomly apply a vertical flip on each quintuplet as a form of data augmentation,
to increase the diversity in our training samples. Our experiments showed that, due to the
limited availability of suitable video contents, such augmentation method is fundamental to
avoid overfitting on the training data. In order to keep the geometrical relationship between
left, center and right patches, only a vertical flip is applied in this case. Before being provided
in input to the network, patches are normalized so that the average per-channel pixel intensity
has zero mean and unitary deviation.

Concerning the loss function to minimize at training time, we alternatively experiment
with two options. The first function measures the distortion in the pixel space over a ground
truth, while the latter aims instead at assessing image reconstruction quality as perceived by
the user.

Pixel-based reconstruction loss.

For each pair of reference patches (̃t lw, t̃rw) provided in input, the network is trained to min-
imize the quadratic error between the network output tv and the ground truth tc. That is, at
training time we minimize the loss function

L(w, tv, tc) =
1
n

n

∑
i=1

(tv
i − tc

i )
2, (5.2)

where tv
i and tc

i are the i-th pixel of tv and tc, respectively. We train our network by back-
propagating the gradient of the above error function and the network parameters are updated
using the Adam algorithm [102].

Perceptual reconstruction loss.

Alternatively, we experiment with a perceptual loss function [108] to observe the perceived
quality of the synthesized view. Perceptual loss relies on a feature extractor usually trained
for image classification to compare two images based on their high-level features represen-
tations. Style transfer [83] experiments show that the perceptual loss training may achieves
visually more pleasant images than per-pixel loss functions. Johnson et al. [109] first pro-
posed the use of perceptual loss of image transformation tasks using a VGG16 trained on
ImageNet [108]. The feature reconstruction loss is defined as

lφfeat(ỹ,y) =
1

CHW
‖φ(ỹ)−φ(y)‖2 , (5.3)



76 Hybrid Dual Stream Blender For Wide Baseline View Synthesis

where lφfeat is the feature reconstruction loss from one layer of loss network φ of the
content image ỹ and content representation of the output image y. C is the number of filter in
the input image, H and W are the height and the width of the input image. φ(ỹ) and φ(y) are
the feature representation of the content of the target image and the feature representation
of the output of the target image respectively. Our image transformation network is thus
trained using stochastic gradient descent to get weights that minimize the total loss, which
is a weighted product of the feature reconstruction loss. The training procedure ends after
the perceptual loss function measured over a validation set distinct from the training set stop
decreasing.

5.3 Experiments and Results

In this section, we quantitatively and qualitatively evaluate our method HDSB in a compar-
ative way and we perform ablation studies to validate each of our design choices.

5.3.1 Experimental setup

Fig. 5.6 Example of large holes (in green) in the Technicolor painter sequence with a baseline
= 21cm.

We experiment with well-known multi-view sequences commonly used in MPEG exper-
iments as defined in the MPEG CTCs and detailed in Tab. 4.1 (views and depth maps are in
uncompressed YUV format). Such sequences account for a wide range of content types with
natural or artificial light, simple or complex objects motion, and different resolution. All
sequences are captured with a linear 1D camera array, i.e. cameras axes are parallel, non-
convergent. The inter-cameras distance is up to 55cm (e.g. poznanstreet) cf. Tab. 4.1 with
a moderately long focal length (23mm on average) which makes the angle of view narrower
and the overlap in the field of view smaller. Therefore, we notice large holes in the warped
views even in our smallest baseline sequences, like the "painter" sequence, as illustrated in
Fig. 5.6. The Painter sequence is captured with a 2D camera array, so we extract three linear,



5.3 Experiments and Results 77

non-overlapping, camera setups of this scene for a total of 9 sequences. From each sequence
we extract 3 neighbor views from the first 100 frames: the left and right views are used as
references (T L,T R) and the central view is used as target view (i.e ground-truth) TC. For
each sequence, we preliminary warp T L and T R to obtain T Lw and T Rw and then we generate
the corresponding filled textures T Lw

f and T Rw
f using the methods described in the previous

Sec. 4.2.1. Then, from each sequence we randomly extract 10k quintuplets of co-located
patches (̃t lw, t̃ lw

f , tc, t̃rw
f , t̃rw). Each sequence is alternatively reserved for testing for a total of

10k testing patches. The other 8 sequences are used for training and validation purposes, for
a total of 70k training patches and 10k validation patches. Such approach guarantees that
the test sequence is always left out from the training set, i.e. there is no cross-contamination
between train and test sets. All patches used for training are 64× 64 as our experiments
revealed it allows a favorable tradeoff between patch size and number of non-overlapping
patches that can be extracted from the available training video sequences. Patches have fifty-
fifty chance to be vertically flipped forming data augmentation. Our experiments reveal that
a reasonable trade-off between performance and convergence time can be achieved using
batches of 128 patches, and a learning rate of 0.0001, leading to the convergence of our
learning algorithm after 100 epochs. In all our experiments, including losses experiments,
we use the same hyper-parameters showing the best results. Concerning the parameters opti-
mization algorithm, we rely on Adam, with weight decay = 0 and betas = (0.9,0.999). Our
method is implemented in Pytorch and all the experiments are performed on a server with
an NVIDIA RTX2080GPU. Finally, in all our experiments we measure the quality of the
synthesized view both using the PSNR and the SSIM metrics computed over the Y (luma)
channel.

5.3.2 Comparison with prior works

In this subsection we compare our proposed view synthesis method with a number of refer-
ences and provide a quantitative and qualitative analysis of the synthesized view quality.

5.3.2.1 Reference schemes

Many of the state-of-the-art methods listed in Chap. 3 are learnable end-to-end architectures
in principle comparable with ours. However, while some require in input more than two
reference views, others deal only with small baseline views [110], [4]. The pipeline pro-
posed in [26] is comparable to our, however it relies on four warped reference textures and
a global mesh of the scene as input to their blending/inpainting network and the source code
to reproduce their method is not available. On the other hand, the video frame interpolation
method [12] when applied to our setup did yield very weak performances, we hypothesize
because designed for different purposes purposes. For the above reasons, we compare with
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the following reference schemes:
CNN-VB is the method described in 4, It shares with the approach proposed here the

preliminary algorithmic warping followed by a learnable blending. This architecture notably
includes no pooling layers nor other feature downsampling methods and, albeit very prim-
itive, validated the idea of preliminary warping the views to use smaller filters. For these
reasons, we keep it as a very baseline reference.

CNN-VB+ It is an improved version of CNN-VB as illustrated in Fig. 4.6 described
in Chap. 4. This scheme improves over CNN-VB in two aspects: 1) the reliability maps
and 2) the number of the convolutional layers). Therefore, this scheme enjoys a deeper
convolutional pipeline to learn potentially better representations of the input views, leaving
untouched complexity and receptive field size. Finally, CNN-VB+ takes in input and outputs
RGB rather than grayscale images, so it is to compare with our proposed HDSB.

VVS, the MPEG-I view synthesizer reference software described in Sec. 3.1.3. This
method is not learning-based and is completely based on an algorithmic approach. VVS and
HDSB share the basic warping scheme, so VVS is a proper reference to assess the benefits
of a learning-based blending stage over an algorithmic based approach.

Synsin, [4] is a purely learnable end-to-end view synthesis method. Synsin allows for
synthesizing novel target views of a scene given a single image only, using generative ad-
versarial networks (GAN) techniques and a new differentiable point cloud renderer. In our
experiments, it is refined on our training set following the same procedure described for the
other methods to allow for a fair comparison.

5.3.2.2 Results and discussion

In Tab. 5.1 and 5.2, we compare our proposed method HDSB with the references above. It is
clear that Synsin shows weak performances in all sequences, in terms of visual quality and
objective quality (cf. Tab. 5.1,Tab. 5.2 and Fig. 5.7). The results are linked to the use of only
one reference image unwarped as input to the network, to generate a high-resolution novel
view located at a long distance from the reference view. A possible explanation to this result
could be that, this method is effective on small baseline cases and lower image resolution.
Concerning CNN-VB and CNN-VB+, the latter improves over the former in all sequences,
with gains in excess of 0.5 dB for PoznanStreet and Lovebirds. Similarly, CNN-VB+ out-
performs MPEG VVS almost for all sequences, with a 0.8 dB gain for Kendo. We attribute
such gains in part to the deeper convolutional architecture, in part to the introduction of the
reliability maps. Concerning SSIM, CNN-VB+ outperforms CNN-VB on the average, albeit
in some cases CNN-VB scores better. Anyway, a visual inspection of the synthesized view
(Fig. 5.7) shows that even CNN-VB+ produces artifacts in the synthesized views, showing
the intrinsic limits of this pooling-less architecture in view synthesis. In the following, we
compare HDSB mainly against CNN-VB+, which is the best reference so far.
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PSNR [dB]
Sequence Synsin [4] VVS [10] CNN-VB [104] CNN-VB+ proposed HDSB

Balloons 20.84 37.07 36.92 37.18 37.59
Kendo 21.87 38.21 38.98 39.08 39.19
Newspaper 19.28 34.53 35.08 35.35 35.65
PoznanStreet 18.16 36.96 36.17 36.81 37.44
PoznanHall 18.65 37.26 37.43 37.50 38.30
Painter-1 20.45 37.86 37.88 38.01 38.21
Painter-5 20.32 38.04 38.12 38.18 38.87
Painter-9 20.17 36.36 36.44 36.51 38.01
Lovebirds 19.89 34.56 34.70 35.34 35.54
Average ± Std 19.9589 ±1.13 36.76 ±1.38 36.85 ±1.41 37.11±1.26 37.64±1.28

Table 5.1 Quality of the synthesized view for the proposed and reference methods in terms
of PSNR

Tab. 5.1 shows that HDSB significantly outperforms all references by a significant mar-
gin (over 0.5 dB on the average). HDSB scores a top gain of 0.8 dB over CNN-VB+ for the
PoznanHall sequence and improves by 0.6 dB for PoznanStreet. SSIM results show similar
trends, with HDSB consistently outperforming every reference. We hypothesize that such
gains are mainly due to the downsampling and upsampling of the feature maps performed by
the encoder and the decoder respectively. In addition, we hypothesize that residual blocks
in the bottleneck may have also a role in such gain. Concerning the visual assessment, Fig.
5.7 illustrates how HDSB improves over the three references. For PoznanStreet, for exam-
ple, HDSB preserves the hanging lines on the image background, that are otherwise lost by
the reference methods. Similarly, the shape of the black pole in the foreground looks much
more like the ground truth as synthesized by HDSB. For PoznanHall, our method remark-
ably approaches the desired outcome in the reconstruction of the stairs and the handrail, or
the clarity of the exit green plate on the wall.

Concerning computational complexity, inference and training times are as follows. The
inference time of CNN-VB+ network is around few seconds (2− 3 sec) per frame, and
around 8 hours for the network to converge in the training process with the Mean Squared
Error (MSE) loss over 100 epochs. The inference time of our network HDSB is on average
4.32s/frame, and the required training time the network to converge is 12 hours using MSE
loss on 100 epochs. For both methods, training time drops by 3 times using the perceptual
loss. Finally, Synsin inference time lies between 2 and 10 seconds per frame depending on
image resolution, while training required 3 days to converge over 350 epochs. About the
purely algorithmic VVS, the time to synthesize one frame is around 100 sec, where 83% of
this time is due to inpainting/blending.
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SSIM
Sequence Synsin [4] VVS [10] CNN-VB [104] CNN-VB+ proposed HDSB

Balloons 0.752 0.922 0.965 0.964 0.978
Kendo 0.826 0.972 0.976 0.981 0.992
Newspaper 0.875 0.930 0.950 0.951 0.967
PoznanStreet 0.728 0.922 0.932 0.956 0.968
PoznanHall 0.745 0.921 0.932 0.961 0.966
Painter-1 0.841 0.948 0.956 0.955 0.970
Painter-5 0.829 0.945 0.953 0.948 0.961
Painter-9 0.813 0.930 0.941 0.937 0.952
Lovebirds 0.789 0.909 0.933 0.951 0.973
Average ± Std 0.7998±0.049 0.933±0.02 0.949±1.16 0.956±0.12 0.969±0.01

Table 5.2 Quality of the synthesized view for the proposed and reference methods in terms
of SSIM

5.3.3 Ablation studies

In this subsection, we alternatively ablate one element from our HDSB architecture and we
assess the effect on the synthesized view quality.

5.3.3.1 Encoder-decoder architecture

As a first ablation study, we explore the advantages of the encoder-decoder architecture with
feature map downsampling implemented by HDSB. Namely, we modify HDSB avoiding
to downsample the feature maps by reducing the stride of the filters in the convolutional
layers to 1 pixel (we refer to this architecture as "Wo/EnDe"). In other words, Wo/EnDe is
such that all the feature maps produced by the hidden convolutional layers have the same
size as the input and output images. This architecture is composed of three convolutional
layers, operating independently on the left and the right views with 64 filters each and kernel
size 7× 7, 3× 3, and 3× 3 respectively. The bottleneck is composed of 8 residual blocks,
and the last convolutional layer is composed of 3 filters with 7× 7 kernel size. The only
difference with respect to HDSB is the removal of the down-sampling. Indeed we preserve
the same number of convolutional layers, the residual blocks, and the number of the learnable
parameters to study the impact of an encoder-decoder architecture on the training/testing
processes.

We train and test this architecture from scratch according to the same procedure used for
HDSB. However, due to the lack of downsampling, this architecture has a larger memory
footprint which forced us to reduce the batch size from 128 to 80 samples. Preliminary
experiments show that such architectures slows down the training process and increases the
convergence time.

In Tab. 5.3, the experiments show how adopting an architecture without an encoder-
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Fig. 5.7 Details from PoznanStreet (top) and PoznanHall (bottom) sequences. First column
is ground truth, second column is Synsin, third column is VVS, fourth column is CNN-VB+,
and the last column is the proposed HDSB.

decoder reduces in average the PSNR and the SSIM by almost 0.5 dB and 0.023 respectively
on our test sequences. We illustrated the results in Fig. 5.8 for Balloons and Newspaper
respectively. We notice that the architecture without encoder-decoder (refered to in Tab. 5.3
as Wo/EnDe) do not generalize well, and tends to overfit on the training data.

Indeed, HDSB our method focuses during training on fewer number of activation points
to reduce redundancy in feature maps. It also yields the network output to be more toler-
ant for small translational changes in input images, which means that an encoder-decoder
architecture can tolerate equivariances in input images produced due to the warping process.
Indeed the two reference views are warped to the same target position, however they do not
originally share the same lighting and angles conditions.

5.3.3.2 Hole inpainting experiments

We also elaborate on the effect of using different additional inputs to our network rather than
the filled textures with the warped images. The filled textures T Lw

f and T Rw
f , were introduced

in our proposed approach to strengthen the inpainting task in the network, and thus by better
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Fig. 5.8 Ablation of the feature map downsampling: Balloons (top) and Newspaper (bottom).
First column is the ground truth, second column is the architecture without encoder-decoder,
and last column is our proposed architecture.

filling the occluded pixels in the output texture.
We notice that using filled textures yields to better PSNR performances than using binary

masks on all our test sequences in table 5.4. Whereas, for the SSIM we did not notice any
distinction. However, the improvements achieved in terms of PSNR are not easily visible
with the naked eye, and thus the visual quality difference is indistinguishable between the
two methods on our test datasets. Notably, we significantly raise the computational speed
and we lower the memory consumption by using binary masks. Therefore, for the sake of
simplicity, we use the binary masks as inputs to our network in the following experiments.

5.3.3.3 Loss functions experiments

In this section we consider the effect of changing the loss function used to train our network.
All the results presented previously in this paper come from our neural network trained
using a per-pixel loss function, the MSE. We re-train the proposed architecture on the same
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PSNR[dB] SSIMSequence Wo/EnDe HDSB Wo/EnDe HDSB

Balloons 36.90 37.59 0.943 0.972
Kendo 38.71 39.19 0.966 0.985
Newspaper 35.25 35.65 0.942 0.962
PoznanStreet 36.76 37.44 0.947 0.965
PoznanHall 37.30 38.30 0.960 0.965
Painter-1 38.04 38.21 0.958 0.964
Painter-5 38.39 38.87 0.944 0.958
Painter-9 37.58 38.01 0.933 0.949
Lovebirds 35.11 35.54 0.896 0.969
Average ± Std 37.12±1.27 37.56±1.35 0.943±0.02 0.966±0.01

Table 5.3 Quality of the synthesized view with our encoder-decoder architecture HDSB and
without encoder-decoder architecture

PSNR[dB]
Sequence

HDSB Wo binary mask

Balloons 37.24 37.59
Kendo 39.12 39.19
Newspaper 35.53 35.65
PoznanStreet 37.22 37.44
PoznanHall 38.25 38.30
Painter-1 38.09 38.21
Painter-5 38.85 38.87
Painter-9 37.95 38.01
Lovebirds 35.41 35.54
Average ± std 37.56±1.35 37.63±1.36

Table 5.4 Quality of the synthesized view using the filled textures and the binary masks.
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SSIM for HDSB PSNR for HDSBSequence w/per-pixel loss w/perceptual loss w/per-pixel loss w/perceptual loss

Balloons 0.972 0.980 37.24 35.84
Kendo 0.985 0.989 39.12 37.16
Newspaper 0.962 0.968 35.53 33.35
PoznanStreet 0.965 0.966 37.22 34.27
PoznanHall 0.965 0.968 38.25 36.41
Painter-1 0.964 0.965 38.09 37.03
Painter-5 0.958 0.962 38.85 37.18
Painter-9 0.949 0.957 37.95 36.22
Lovebirds 0.969 0.971 35.41 32.94
Average ± std 0.966±0.01 0.969±0.01 37.56±1.35 35.6±1.65

Table 5.5 Quality of the synthesized view using two different loss functions during the train-
ing process.

training datasets, but we use instead the perceptual loss function, detailed in Sec. 5.2.3.2,
essential for the training convergence. The experiment shows that high-quality visual images
are generated when the perceptual loss is minimized. As well as it increases the SSIM on
all the sequences, cf. Tab. 5.5, over 0.003 in average. With the perceptual loss function
the computation of the loss between the output and the desired image is based on the image
content and style rather than on the individual pixel values, and thus we expect that the PSNR
will decrease. However, we notice that when the network is optimized towards another
metric the PSNR decreases of 2 dB as shown in Tab. 5.5. Finally, in terms of complexity,
the training with perceptual loss is three times faster than with MSE. In all our experiments
in this work, we used the MSE loss function to evaluate and compare our results using both
perceptual SSIM and non perceptual PSNR quality metrics. In the end, we observed that
perceptual loss leads to visually pleasant synthesized images, while somehow reducing the
training time. On the other hand, MSE is more appropriate when objectively benchmarking
methods in PSNR terms.

5.3.3.4 Effect of the encoder architecture

Unlike image-to-image mapping monoscopic architectures that feature just one encoder, our
neural architecture features one one encoder for the left view and one for the right view. Such
design choice is motivated by the observation that disocclusion artifacts in the two warped
views lie on opposite side of the objects. For the same reason, we proposed the flip-convolve-
flip approach to be able to share parameters among encoders. We now experiment with two
different encoder typologies as follows.

First, we consider a HDSB variant where we drop the two convolve-flip-convolve en-
coders with shared parameters in favor of a single encoder. This scheme leaves inaltered the
number of learnable parameters in the network, however the encoder takes in input both left
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PSNR SSIMSequence HDSB HDSB-1E HDSB-2E HDSB HDSB-1E HDSB-2E

Balloons 37.24 35.92 37.03 0.978 0.967 0.972
Kendo 39.12 39.30 39.20 0.992 0.990 0.985
Newspaper 35.53 35.24 35.46 0.967 0.965 0.962
PoznanStreet 37.22 36.3 37.18 0.968 0.958 0.965
PoznanHall 38.25 38.32 38.31 0.966 0.964 0.965
Painter-1 38.09 38.01 38.18 0.970 0.963 0.964
Painter-5 38.85 38.25 38.81 0.961 0.960 0.958
Painter-9 37.95 37.55 37.67 0.952 0.941 0.949
Lovebirds 35.41 34.51 34.92 0.973 0.962 0.969
Average 37.52 37.04 37.42 0.970 0.963 0.966

Table 5.6 Effect of the encoder architecture: HDSB-1E includes just one shared encoder for
both views, HDSB-2E includes separated encoders for each view.

and right warped views and relative masks. That is, the encoder now faces the challenge of
dealing with occlusions potentially on both sides of the objects. This scheme is referred to
as HDSB-1E in the following.

Second, we consider another HDSB variant where the encoders do not share parameters,
i.e. each encoder indipendently processes the left or the right view. This scheme has the
potential to deliver better performance as the network includes more learnable parametrs and
each encoder learns specialized feature for each view. Obviously, in this case the right view
is not mirrored anymore. This scheme is referred to as HDSB-2E in the following. We train
and test both architectures as for HDSB, and we show the results of these experiments in
Tab. 5.6.

Concerning HDSB-1E, the quality of the synthesized view is usually lower than HDSB.
For example, for Balloons HDSB-1E scores 35.92 dB against 37.59 dB of HDSB, i.e. HDSB
scores almost 0.5 dB higher. While for some sequences (e.g.: Kendo, PoznanHall) HDSB-1E
scores marginally better, on the average HDSB scores almost 0.5 dB higher on the average.
In terms of SSIM, HDSB-1E always score worse than HDSB. We recall that HDSB and
HDSB-1E count the same number of parameters, nevertheless the inspection of the training
curves shows that the loss function of HDSB-1E flutters more. We attribute such results to
the complexity of the single encoder to deal with occlusions on both sides of the objects.

Concerning HDSB-2E, it outperforms HDSB-1E almost for any sequence yet it outper-
forms HDSB only for Painter-1. We recall that HDSB-2E counts twice as many parameters
in the encoder as HDSB-1E. The analysis of the training curves show that HDSB-2E is more
likely to overfit to the training data in reason of the higher parameters count. We hypothesize
that if significantly more training sequences are available, HDSB-2E may have an edge over
HDSB.
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5.3.4 Approach’s limitations

In this work, we have a limited amount dataset because of the non-availability of its open-
source. Furthermore, this dataset shares more or less the same characteristics (such as cam-
eras configuration rigs, focal length, object distances from the camera). Therefore, we were
interested in testing our method on completely different scene contents and configurations
than those used in the training dataset. In these following examples, we do not dispose of the
ground truth of the synthesized camera; thus we visually note its quality.

The first example was using a convergent camera configuration rig to understand why
HDSB shows its drawbacks since there are no similar cases in the training dataset. As a
result, our network could not predict well a plausible performance. PoznanFencing is a scene
proposed by the University of Poznan as a contribution [111] to the MPEG-I Video working
group. The camera rig of PoznanFencing is convergent and includes 10 cameras, and an
illustration of the views and depth maps of the different cameras is available in Appendix
A.6.

Fig. 5.9 shows the results of HDSB on PoznanFecing comparing to VVS. We visually
notice that VVS did not reconstruct well the novel view, but either does HDSB. The per-
formance of HDSB is mainly related to the incapacity of the network to generalize with not
enough variety (in particular convergent rigs) in the training dataset, which is a challenging
task to be made.

The second example was applying HDSB on a parallel camera configuration rig but with
a vast disparity and small cameras angle of view (PandmoniumRig1 scene). Thus, the cam-
eras share a little information about the scene, and the displacement from one reference point
of view to another is significant (80cm). PandemoniumRig1is a scene produced for b<>com
project. The camera rig of PandemoniumRig1 is linear and consists of 5 stereo camera pairs.
Since there are no similar cases in our training dataset, HDSB has difficulties reconstructing
high-quality novel synthesized views.

Fig. 5.9 illustrates the results of HDSB on PandmoniumRig1 scene comparing to VVS,
where once again both failed. An illustration of the views and depth maps of the different
cameras is available in Appendix A.4.

5.4 Conclusion

We presented a hybrid approach to wide baseline view synthesis where the warping is algo-
rithmic while the blending is learnable and inspired by image-to-image convolutional archi-
tectures. Extensive experiments on real multi-view video sequences show better performance
than pure-algorithmic approaches while avoiding the complexity of purely learning-based
approaches and taught us some lessons. First, an encoder-decoder architecture improves
over our previous super-resolution-based method by projecting the input features over a spa-
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HDSBVVS

VVS HDSB

Fig. 5.9 Limitation of HDSB and VVS on: PoznanFencing (top) and Pandemoniumrig1
(bottom). The red circles point out the main area affected by the drawbacks of the methods.

tially subsampled latent feature space. Second, the encoder complexity can be reduced by
resorting to a smart flip-convolve-flip approach that allows us to share parameters among
encoders reducing the network complexity. Third, providing additional filled textures to the
blender helps to prevent disocclusions-induced artifacts better than binary masks. Finally,
experiments with perceptual loss show visually pleasant images, yet at the expense of a drop
in objective visual quality.

Our current research aims to exploit the method’s drawbacks and limitations to improve
the method efficiency and generalization on as many different scene contents as possible.
That is the reason that conducted the research work that is studied and detailed in the follow-
ing chapter.





Chapter 6

A Multi-View Stereoscopic Video
Database With Green Screen (MTF &
Pandemonium) For Video Transition
Quality-of-Experience Assessment

In this chapter, we introduce a multi-view stereoscopic video database with a green screen,
called MTF, for the usages in computer vision applications, particularly for free navigation,
free-viewpoint television, and video transition QoE assessment.

In the following sections, we describe the context and the challenges in Sec.6.1. In Sec.
6.2 we review state-of-the-art datasets used for free navigation. In Sec. 6.3 we detail the
process of the creation of our dataset, and we dedicated one section 6.4 to the description of
the content of the dataset. The dataset characteristics are listed in section 6.5. Finally, we
conclude in section 6.6.

6.1 Introduction and context

A film transition is a technique used in post-production of film/video editing by which a
series of frames or different points of view are combined. In this chapter we talk about the
transition from one point of view to another. In the past decades we were used to watch all
kinds of films on a simple 2D display such as television, tablet, cinema, or mobile phone,
where all the transitions have become naturally acceptable by the viewer’s eye. Few years
ago, the Head-Mounted Display (HMD) started to take a big place in the rising technologies,
as it gives the user the opportunity to experience the immersive environments. In this case,
the viewer’s eyes are much closer to the screen than any other simple tablet screen. In both
cases, the viewers often need to change their point of view to have a better understanding of
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the storytelling. To make this transition happen a visual effect is required, known as transi-
tion. Often when filmmakers want to join two shots together, they use a basic cut where the
first image is instantly replaced by the next. However, there are many other advanced types
of transition that can reconstruct the geometry of the scene in the video and provide a virtual
video-based-rendering transition to seamlessly join two videos. Likewise, in free navigation
systems, users can interactively control their point of view while watching a video. Such ap-
plications use a relatively small number of real cameras in the scene, and intermediate views
are generated using DIBR algorithms. This process provides realistic transitions between
real cameras of the scene. For a given visualization system the transition type is definitely an
impact factor on the user’s QoE. For example, since human brain may not adapt to the tran-
sition in the HMD yet, viewers may feel a sort of disorientation or dizziness. But different
transition type may cause different level of discomfort.

Tompkin et al. [112] made a study comparing different types of transition in a video to
determine users’ preference. For their study they captured their own videos. It is a collection
of real outdoor touristic places, where the dynamic video transition helps in having a different
view of the touristic site. The dataset used in the free navigation in [52] includes vegetation,
vehicles and other complex geometry presented in everyday urban scenes. MPEG-I [113]
released a series of multi-view test videos for free-viewpoint television such as the MPEG
contributions of Poznan University [111, 114, 115]( e.g. ’poznanHall’, ’poznanStreet’) and
Nayoga university [116] (e.g. ’Balloons’, ’Kendo’). They focused on real dynamic, com-
plex and textured scenes with moving actors, sometimes with shows and audience. In these
sequences, a transition is made to allow users to randomly change their point of view in
the scene with small camera displacements (5 to 30 cm). Other navigation dataset is for
autonomous driving research [117], or for a virtual house or place visiting [118, 119].

We know that existing open access video sequences are hardly representative of actual
DIBR method use-cases. Due to the lack of major points of interest in a scene, observers’ at-
tention may only be drawn by the persistent artifacts and imperfections all over the rendered
image, which may result in severe judgements.

In our first shooting, we filmed a scene theater called Pandemonium, where we placed
the cameras so the viewer would need to change his point of view to follow the actors and
keep going with the scene story.

In our second shooting ’MTF’, we try to draw observers’ attention by one or two major
points of interest of the storytelling, so observer’s attention would be restricted to one par-
ticular area of the scene. Moreover, our contents are designed to prompt the users to change
their point of view in the scene at a given time to help understand the story events. In total
we created three different scenarios that motivate viewers to change their point of view while
watching a scene:

• Moving point of interest: when the point of interest of the scene is not visible anymore
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in the current point of view and become visible in another point of view of the scene.

• Changing point of interest: when the user have two points of interest from two different
points of view and he wants to switch between them.

• Out of curiosity: when changing the point of view in a scene is not necessary for the
understanding of the story but useful for curious viewers to see more details of the
scene.

Unlike other state-of-the-art datasets, our sequences were recorded in a studio instead
of on-locations. Shooting all our videos against a green screen offers the possibility to vir-
tually change scene locations and to add colors, textures or virtual subjects to the back-
ground, based on the experiment objectives when the MTF is used. Another new charac-
teristic of our dataset is the wide distance between real cameras of the scene, which re-
mains a challenging constraint for DIBR methods. The MTF (Mystery in Thorigné Fouil-
lard) is publicly available on : https://drive.google.com/drive/folders/1MYiD7WssSh6X2y-
cf8MALNOMMish4N5j?usp=sharing

6.2 Related work

We briefly introduce existing multi-view video datasets in this section. This section is divided
into two categories: (1) state-of-the-art synthetic scenes, and (2) state-of-the-art real scenes.

6.2.1 Synthetic Scenes

With the rising of machine learning, a large dataset is often required for massive training.
Generating synthetic content is much easier in terms of volume. Replica’s high level of
realism rendering dataset [120] has a challenging goal to enable machine learning research
that relies on many computer vision tasks. The challenging task is to make machine learning
systems trained on their dataset to be directly transferred to real-world image and video data.
Synthia [121] is also proposed for semantic segmentation in urban scenarios, and it contains
realistic synthetic frame sequences captured by a driving car in a virtual world.

6.2.2 Real scenes

To push forward the performance of visual recognition, several real scene datasets have been
developed, e.g., Middlebury [122], and optical flow [123]. KITTI [117] is a dataset orig-
inally proposed for stereo, optical flow visual odometry, and 3D object detection tasks. It
contains frame sequences captured by a car traveling through urban city scenes with camera
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poses. Matterport3D [124] is a large dataset of building-scale scenes used keypoint match-
ing semantic segmentation and region classification. MPEG-I [113] they created a series
of datasets aiming for free-viewpoint tasks. They are widely used for view synthesis QoE
assessment, and they are the most similar to our dataset [111, 114–116].

Unlike our dataset, we do not find a QoE-relevant real scene dataset with a green screen
and a wide baseline for video transition evaluation in all these databases.

6.3 Dataset creation

In a film studio with green screen, we set up the scenery, which is about a rest-bar with all
the essential equipment, such as chairs/tables and a bar counter. The main characters are
three volunteer actors, and some other volunteers played the role of the random clients in
the rest-bar. Due to our tight budget, we only select the necessary equipment required for a
film-making.

First, we develop and design a capturing system that allows to parameterize and syn-
chronize real cameras in a scene. In the following, we details the three sub-systems of this
capturing system, which are :

• The monitoring system

• The control system

• The camera mounting system that responds to the filming constraints.

6.3.1 General architecture

The objective of the capturing system is to be able to control a set of cameras via a monitoring
software. This system is made of three parts:

• A hardware control system based on electronic components

• A software control system to drive the components and to monitor the images of the
cameras

• A physical system for fixing the cameras responding to the cameras positioning con-
straints.

6.3.1.1 Operating principle

The system implemented must meet the specific needs of our project:

• Cameras are arranged in pairs and must be positioned in a rectilinear way.
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• The distance between two cameras of each pair is 11 cm.

• The distance between each two pairs of cameras is 80 cm.

• The cameras must be all synchronized at image capturing level.

• All cameras have the same settings (focus, aperture and sensitivity and the start/stop
trigger control)

The Fig. 6.1 shows the blocks forming the whole solution in a simplified version. The
following parts detail each block.

Control and monitoring 
software

+

Synchro Linear Timecode 
Flow Generator

Control flow

Video streaming

Sync flow

Harware equipements
(Camera control and 
video streaming digitization)

Control flow

Video streaming

Sync flow

Physical 
camera fixation

Cameras 

Fig. 6.1 The general architecture scheme
.

6.3.1.2 Exchanged streams

To control and synchronize all the cameras, it is necessary to implement several types of
streams:

• Image synchronization recording stream: this stream of type Genlock flow (REF IN 1)
sends a set of peaks to each camera indication to the camera when each image should
be recorded. Therefore, all cameras are recorded at the same time.

• Synchronization stream between the cameras: In addition to the REF IN stream, it is
necessary to provide the cameras a time-code audio stream (Linear TimeCode (LTC)
2) to add a timestamp to each image in its metadata. This stream allows the synchro-
nization of all the cameras between them. However, it is possible that some cameras

1The REF IN clock is a standard tri-level signal that synchronizes all the camera clocks so that the image
recordings happen at the same time.

2The LTC allows to indicate a universal clock to a set of off-network equipment, here cameras
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start recording one frame earlier than the rest. Thanks to the time-code it is possible
re-synchronize all the cameras in the post-production phase.

• Control stream: We chose the S-Bus 3 protocol to send the control commands to the
cameras. The S-Bus messages implemented in the selected cameras (Blackmagic),
allow us to adjust the cameras (aperture, sensitivity, framerate encoding, focus) and at
the same time to control the recording.

All those logical streams (S-Bus, REF IN and LTC) go through and electronic box called
the Master Card designed especially for this project. The streams are uni-directional toward
the cameras however, the cameras do not notify with a receipt confirmation. In addition
to these logical streams, and electronic stream was set up to empower the cameras and to
avoid any possible problems related to the battery autonomy. To reduce the number of the
cable installation, the logical and electronic streams flow through the same Video Graphics
Array (VGA) cable (DB15 connector). Finally, the monitoring video stream goes through
High-Definition Multimedia Interface (HDMI) cables connected to a hub whose function is
to convert the video flow into an IP flow that is more easily usable (cf. 6.2.
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Fig. 6.2 The general architecture of the monitoring control system
.

6.3.1.3 Hardware and Software elements

The hardware part is formed of :

3Historically the S-bus is propriety protocol used in model making. It allows to send control commands.
Blackmagic Micro Cinema Camera (BMMCC) use this protocol for remote control
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• BMMCC, which offers the particularity of providing a DB15 connector (The DB15
connector is an analog socket, with 15 pins, from the D-Subminiatures (D-Sub) con-
nector family) through which, all the control flows, as well as the power supply.

• A camera support system that meets the project requirements.

• A Master card driven by the control PC. This card is the core of the control system,
it receives a set of streams (Ref In, timecode, PC command) and redistributes them to
the HUB cards. The master card is powered by the control PC via the usb cable.

• HUB cards that multiply the signals from the Master card to the cameras. Each HUB
card allows the connection of up to eight cameras. The HUB cards are connected to
each other in a sequence. The HUB cards also supply the cameras with power.

• A control PC that drives the Master card via a monitoring software. The control PC
also transmits the timecode signal via its audio output (3.5mm jack).

• A multi-channel HDMI-IP converter that receives video streams on the camera’s
HDMI port and outputs a video stream over IP. Each input stream generates an output
stream on an Ethernet port.

• A switch that allows the connection of all the IP video streams with the control PC.
Each camera emits a stream which is transmitted through an Ethernet cable once the
HDMI-IP conversion is done.

• A Genlock generator which emits the sync signal (REF IN). This generated is con-
nected to the Master.

• A power supply units to supply each HUB card with±5V and the eight cameras with
15V .

• Extension cards that connect between the camera and the VGA cable. These cards
are necessary because of the presence of short-circuited signals in the VGA cable. The
extension board allows the VGA cable to be connected to the camera by redirecting
the power signal.

In terms of cabling, only two cables reach the camera:

• A VGA-type cable with DB15 connector for the REF IN, S-BUS and power supply
streams. This cable also has 3.5mm jack connector to transmit the LTC stream.

• A HDMI type cable to get the monitoring video streams.

The software part is composed of:
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• A Monitoring-Control software that is located in the control PC, it is designed to
display a set of nine monitoring windows. The streams that feed these windows come
from the HDMI-IP converter. In addition to this monitoring function, the software
sends control commands to the master box for the control of the cameras.

• A Control Software that is located in the master box. Its function is to convert the
commands received from the control PC into intelligible S-BUS commands for the
cameras. It also addresses the cameras via the HUB cards.

Fig. 6.3 illustrates the detailed hardware and software elements.
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Fig. 6.3 The detailed hardware and software elements.

6.3.2 The monitoring system

The monitoring system consists of two parts:

• a software that displays the monitoring screens, and

• a hardware part that feeds the software with video streams.

6.3.2.1 The monitoring software

The monitoring software is developed in C++/QT framework, and uses the VLC-QT library
which allows to benefit from the functionalities of the VLC video player inside a program
developed via the QT framework. The software offers the possibility to open a display up to
nine video streams in full HD (1080p) over IP simultaneously (cf. 6.4. To monitor more than
nine feeds, a pagination system allows you to add other pages to add nine more monitoring
screens each time. The monitoring software allows each screen to be displayed in "zoom"
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mode to better visualize particular stream. In addition to the monitoring functionalities, the
software offers a set of controls for the piloting of the cameras. These functionalities are all
accessible via the menu located in the lower part of the interface.

Fig. 6.4 Main screen of the developed monitoring system.

6.3.2.2 Hardware monitoring system

As previously mentioned, each camera has an HDMI output dedicated to monitoring. These
streams are digitized via an HDMI-PI converter. The monitoring task is to check if the
cameras are well positioned (focusing on the elements of interest in the scene) and well
adjusted (the focus is correct). The HDMI-IP converter has a standalone conversion unit that
accepts and HDMI stream as input, and generates an video stream on IP as output. The use
of converter allows to increase the capacity by adding additional processing units if needed.

6.3.3 The control system

6.3.3.1 Control software

To control the cameras at the recording level and to be able to modify their settings, the mon-
itoring software includes a set of buttons that activate the transmission of the corresponding
commands to the master box.

REC start/stop: The recording command works as a trigger. The same command acti-
vates and deactivates the recording. There is no feedback on whether or not the camera is
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taking the command into account.
Aperture/Iris: For the aperture value we multiply it by 10 to deal with integers.
Focus: The focus control allows the fine tuning.
ISO: The ISO command works as a trigger. There is no feedback from the camera, the

current value is unknown.
White Balance: The white balance works as a trigger. There is no feedback from the

camera, the current value is not known.
Framerate = 60 f ps
Codec = ProRes HQ.

6.3.3.2 Hardware control equipment

The control system is based on the use of:

• A PC under Windows to run the monitoring-control software but also to power the
master box via a USB plug.

• A master box which hosts an ’Arduino nano’ which runs the software for the master
box also it sends the Reflex signals to the HUb cards. The master box also sends the
REF IN and the time-code signals to the HUB cards.

• HUB cards whose mission is to re-transmit the commands from the master box to the
cameras. These cards are also responsible for transmitting the other streams (power,
REF IN, signal, time-code) to the cameras.

• VGA cables with audio plug that connect the master box, the HUB cards and the
cameras. The choice of these cables was guided by the fact that the Black-magic
cameras have a DB15 connector that accepts as input all the streams necessary for the
project.

6.3.4 The camera mounting system

Fig. 6.5 shows the specific mounting system we developed to place the cameras at the same
height level. As shown in Fig. 6.6 the system consists of individual camera supports and
aluminum rectangular rulers, that are rigid enough to handle the cameras’ weight. Hinges
are then used to connect the camera supports with the ruler, using vertical adjustable stands.
Finally, we mount stands to keep steady the aluminum rulers. All these pieces except for the
stands, are created with a 3D printers, then modeled and duplicated for mass production.
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Fig. 6.5 Cameras mounting system, with cameras numbered from 1 to 6.

Fig. 6.6 Individual adjustable camera supports and rectangle aluminum ruler connected to-
gether using hinges.

6.4 Dataset content

6.4.1 Pandemonium

Pandemonium is a famous theater play played all over the world in different languages. As
the capital of Hell is known in the epic poem, Pandemonium combines the Greek prefix pan-,
meaning "all," with the Late Latin daemonium, meaning "evil spirit."
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Fig. 6.7 Pandemonium- behind the scene.

Nowadays, Pandemonium is defined as a place with chaos, noise, and confusion. We
called over a group of professional actors that are used to perform this play. We filmed them
from 10 different points of view, by placing the cameras at different positions, where some
of them show the backstage scenes as shown in Fig. 6.7. Fig. 6.8 illustrates an example of
the different points of view that the viewer can navigate through to follow the play storyline.

6.4.2 MTF

The storytelling that we present comprises three scenes, each of that has a video length of 1
minute.

The story is about a young man called Charles, who has recently moved to the city for his
studies and has rented a room at his new landlady’s house. Charles is from a very well-known
noble family in his hometown. At that time a special symbol was designed exclusively for
this family as a sign of honor and respect. This symbol defines each member of this family
throughout history. Born and raised in his family’s hometown, Charles moved to a nearby
town for study purposes when he was eighteen. Shortly after he left, he luckily met his new
landlady, and they seem to get along with each other. One night the landlady decided to
invite Charles to have a drink in a restaurant to get to know each other better.
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Viewpoint 1 Viewpoint 2

Viewpoint 3 Viewpoint 4

Fig. 6.8 Pandemonium- different viewpoints of the scene.

6.4.3 Scene 1: "key-chain"

The landlady was at the bar, standing next to the door waiting for Charles who was a few
minutes late, coming back from university. When Charles arrived, he was feeling a little
uncomfortable and nervous about being late for their first drink out, so he apologized to
her and dropped by accident his key-chain. Afterwards, the landlady had already spotted an
available table for two, so they decided to get it. Suddenly, while walking towards that table,
and after being very close to the table, Charles noticed that he lost his keys. He panicked
and started looking for them while the landlady tried to calm him down by giving him her
hand. Shortly after, the landlady found the keys on the ground next to the entrance door.
Charles felt relieved, whereas the landlady was admiring his beautiful key-chain and told
him so. Charles proudly explained to her that it is a symbol of his family, and only him and
his siblings own this unique key-chain.
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6.4.4 Scene 2: "The gossip"

Now that things got back on track, they went back to their places and enjoyed their time, or-
dered something to drink and started gossiping about anything and everything. The landlady
couldn’t help herself but ask more details about the story behind the key-chain. With a lot of
pleasure Charles opened up to her and told her his story, which helped them to bond with
each other.

6.4.5 Scene 3: "The barman"

The third scene is about the mysterious barman. Few hours later, they decided to finally
leave so they stood up and went towards the checkout. Finding no one to whom they could
pay the bill, The landlady waved at the barman who was a little busy preparing drinks for
other clients. He replied by just shaking his head as a sign that he is ’coming’. The landlady
noticed directly a tattoo on his arm which looked exactly the same as Charles’s key-chain.
Curiously, Charles had just told her that it was a symbol of his family only! Who is this guy?
Charles was extremely shocked and puzzled and kept staring at him wondering about the
truth behind what he just saw!

6.5 Dataset characteristics

The particular features that we identify in our dataset are: the use of a green screen, the wide
baseline camera configuration and finally, the creation of points of interest in the scenes to
draw the viewer’s attention and motivate him to change his point of view. The dataset also
comes with additional utilities to facilitate its usage, which are described later in this paper.

6.5.1 Green Screen

Our three scenes are recorded in a green screen studio as shown in Fig. 6.9, which en-
ables the background matting process. This process consists in separating the foreground
from the image background thus, it will allow to replace the background with a wide variety
of applications, in particular background related to bars/restaurants. To facilitate the fore-
ground/background separation, we avoided the use of green color in the scene. Background
matting is widely used in video production, graphics, studio filming, photoshop, and it is
modeled with the following formula

I = (1−α) ·B+α ·F (6.1)

Where every pixel in a given image I is a combination of foreground F and background
B, and α controls the image opacity, a key component to separate the foreground image.
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Fig. 6.9 The three pairs of cameras in the green screen studio

6.5.2 Wide baseline camera setup

DIBR methods use real images to generate new virtual images. However these techniques
still suffer from disocclusions when there is a large displacement between the real and the
desired point of view. Some visible area in the real view become invisible in the synthesized
one, and missing information appears as black holes which need to be filled. Our dataset
with its small number of real cameras and wide baseline setup, can be a useful experimental
material for wide baseline DIBR method test bed.

6.5.3 Points of interest and stimulated transitions

In every scene we created a scenario that motivates the user to move from the current point
of view to another. In the following we present examples of transitions for each scene.

6.5.3.1 Moving point of interest (scene 1)

We spot two interesting points of view as illustrated in Fig. 6.10, the first view (Camera N°5)
shoots the entrance of the restaurant next to the entrance door, and the second one (Camera
N°1) covers the scene around the table. Therefore, we placed a pair of cameras in front of
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Fig. 6.10 Scene 1: Moving point of interest. At time t1 the user is watching the view of
Camera N°5. At time t2, the user move to the view of Camera N°1.

the entrance and another pair in front of the table. The user is going to move between these
two locations according to the moving points of interest (Charles and the landlady).

At 45" of the video: actors disappear from the field of view (Camera N°5) and start to
appear in another view (Camera N°1). The viewer will thus, naturally move from Camera
N°5 to Camera N°1.

At 1’05" of the video: actors shows up again in the Camera N°5 and disappear from the
Camera N°1. The viewer will naturally, move from Camera N°1 to Camera N°5.

6.5.3.2 Changing the point of interest (scene 2)

Fig. 6.11 illustrates two people talking around a table. Here, we have two views, each of
which points to one character, Charles (Camera N°1) or the landlady (Camera N°4). We
placed a pair of cameras in front of Charles and another pair in front of the landlady. In this
case, the user switches between the two points of view when he changes his point of interest,
e.g the person who is talking may draw more attention.
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Fig. 6.11 Scene 2: Changing point of interest. At time t1 the user is watching the view of
Camera N°1. At time t2, the user move to the view of Camera N°4.

6.5.3.3 Out of curiosity (scene 3)

There are two different points of view, the first one (Camera N°5) captures Charles and the
landlady waiting to pay their order, and the second one (Camera N°1) shows the barman
preparing drinks. We placed two pairs of parallel cameras in front of each point of view as
shown in Fig.6.12.

At 47" of the video, the viewer in Camera N°5 sees that the landlady waves at the barman
and notices the tattoo. The viewer moves from Camera N°5 to Camera N°1, to see the
barman’s tattoo out of curiosity.

At 53" of the video, the viewer can go back to the Camera N°5, to continue watching the
events of the main characters. The viewer moves from Camera N°1 to Camera N°5.

Note that, in the three scenes, we have an intermediate point of view between the left and
right views.

6.5.4 Dataset utilities

Our dataset is provided with essential utilities to facilitate its usage.
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Fig. 6.12 Scene 3: Out of curiosity. At time t1 the user is watching the view of Camera N°5.
At time t2, the user move to the view of Camera N°5.

6.5.4.1 ColorChecker

As a pre-filming step our cameras captured a ColorChecker to be used for color calibration.
In particular, it helps for color correction between two points of view that may have a dif-
ferent color cast, due to lightning coloration difference. To achieve this we recommend the
DAVINCI RESOLVE color correction software [125].

6.5.4.2 Calibration checkerboard

Likewise, our cameras captured a checkerboard for camera calibration (intrinsic and extrin-
sic camera parameters estimation). In particular, it helps in cameras pose estimation. To
realize this we recommend several softwares: Alicevision meshroom software [126] , the
photogrammetry software Colmap [127] and the Capturing Reality Software [128].

6.5.4.3 Scene complexity

Fig. 6.13 shows the Spatial Information (SI) and Temporal Information (TI) indexes [129] ,
computed on the luminance component of each sequence (six sequences of our dataset in red,
and MPEG test sequences in blue [113–116]). The MPEG sequences are the mostly used in
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Fig. 6.13 Spatial Information (SI) and Temporal Information (TI) indexes of our scenes (red)
and MPEG test sequences (blue)

QoE tests, in particular for view synthesis quality assessment. From Fig. 6.13, we can notice
that our sequences can also be used complementary to MPEG sequences, for some usages.

6.5.4.4 Audio files

In our dataset storytelling, the audio is a key component for the understanding of the tran-
sition motivation. Therefore, we provide the audio file for each point of view (a pair of
cameras) of the scene. The videos are syncing with their respective audio files and can be
played using any video/audio player, e.g. VLC media player using open multiple files option.
In addition to the standard microphones, we used Higher Order Ambisonics (HOA) which is
a flexible approach for representing and rendering 3D sound fields. The format used in our
scenes, is 4th order HOA microphones (25 channels).
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6.6 Conclusion

In this chapter, we present a new dataset with a green screen production for video transition
QoE assessment. Our dataset has a storytelling, and each transition between two points of
view has an interest for the user. As well as it has similar scene complexity as state-of-the-art
dataset and can be considered as complementary sequences with additional features. Due to
our limited budget and time we only have 2 sequences. However, the green screen will allow
us to change the background of the scenes and multiply the dataset. Finally, our work may
attract new collaborations, that allow us to extend our production.



Chapter 7

MUSE: A Multi-view Synthesis Enhancer

In this chapter, we introduce the MUSE (MUlti-view Synthesis Enhancer) method, which is
an evolution of the HDSB method and is also based on a hybrid algorithmic-learning-based
scheme. We evaluate the visual quality of this new approach by using subjective tests to
compare the visual rendering quality with the studied view synthesis methods: HDSB and
VVS. Two tests are performed for this purpose. The first one aims to determine whether
MUSE is better than the two others or not. The second one’s objective is to learn whether
the level of quality obtained depends on the content of the scene or the configuration of the
filming rings. Finally, a third test is performed to determine whether users prefer different
transition effects. For this purpose, the test focuses on comparing a transition performed with
a view synthesis method with the most common transition effects.

7.1 Context and challenges

The last chapter presented a hybrid approach where reference views were algorithmically
warped to the target position and then blended via a ConvNet. We proposed a residual
encoder-decoder for image blending with a Siamese encoder to keep the parameters low. We
also contributed a hole inpainting algorithm to fill the disocclusions in warped views. How-
ever, this method did not guarantee a network generalization due to the lack of variety in
the limited available training database. The present work builds upon our previous research
retaining the idea of a hybrid algorithmic-learning scheme where reference views are prelim-
inarily warped to the target position using an inpainting method built around a mean value
to handle occlusions. However, this work improves our previous approach under several
aspects:

• The warped and inpainted left and right reference views are preliminary merged by a
sum weighted by a factor α , to increase the contribution of the closest reference view.
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• The masks of the disocclusion areas are preliminary merged by the boolean binary
operator “and”, to generate one mask that contains areas invisible by either the two
reference views.

• A concatenation of the generated mask and the merged references form the only one
input data considered by the network, and a single encoder can thus be used.

• The network does not blend the views but corrects the image artifacts resulting from
the pre-merged image, and improves the quality of the final image.

• The learning process of the network is called “intra-content” and therefore, it is dif-
ferent from the inter-content learning process used for HDSB. Only the triplet images
(left warped image, right warped image and the reference view) are considered for a
given content.

The merging of the warped and inpainted textures coming from the lateral reference
views ensures, in particular, a blending of the non Lambertian areas of the image (e.g. re-
flections, surfaces changing appearance according to the viewpoint).

7.2 Pre-synthesis process

The pre-synthsis process, in the same way as in HDSB method, uses the two reference views
to generate the view to be synthesized. The steps leading to the generation of the warped
and inpainted left and right reference texture images T Lw

f T Rw
f , and the generation of the

binary masks (ML, MR) corresponding to the disocclusion area in (T Lw ,T Rw) respectively,
are the same as those described for the HDSB method (add reference section). The view T ′

is pre-synthesized by merging the warped ans inpainted texture images T Lw
f T Rw

f by a sum
weighted by a factor α:

T ′ = α · (T Lw
f )+(α−1) ·T Rw

f , (7.1)

We use a factor for α that corresponds to the normalized distance between the virtual
view and the two reference views and allows to increase the contribution of the reference
view that is closest to the virtual one. For example, if the virtual view is very close to the left
view, the factor α will be close to 1 and the contribution of the left view will be dominant.
The fusion of the binary masks MLb, MRb is performed by the boolean operator and, and the
produced common disocclusion map contains then only the areas that are not observed by
either the left or the right view. The tensor B is the result of the concatenation of T ′ which
is a 3-channels color image (in RGB or YUV format) and the mask M′ of the disoccluded
areas. B is the input to the neural network whose role is to improve the quality of the pre-
synthesized view T v.
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7.3 ConvNet-based View enhancer

The ConvNet view enhancer corresponds to enhancing the pre-synthesized image T ′ quality,
which is the last phase of the process. We briefly describe here the architecture and the
relative training procedure.

7.3.1 ConvNet architecture

The architecture of the enhancer neural network is similar to the architecture used by the
HDSB method. However, there are some remarkable differences between HDSB architecture
and the view-enhancing problem considered here. First, we only need to deal with a single
input (the concatenation of the merged reference views with the mask, B rather than four
inputs in HDSB architecture, thus only one encoder can be used instead of two. Second,
the pre-synthesized image is characterized by particular types of artifacts other than those
generated due to disocclusion problems, but instead due to algorithmic blending/inpainting
imperfections, such as ghosting problems (as shown in 7.1).

1

2

3

4

1 2 3 4

Fig. 7.1 Illustrations of algorithmic blending/inpainting imperfections in the pre-synthesized
image.

Therefore, our network should learn how to enhance the quality of the input blended
image by reducing artifacts and ghosting effects and refining the image details using an
adapted architecture. Thus, we propose a specific encoder-decoder architecture that uses
a single blended image as input and generates one output image. Fig.7.2 illustrates our
architecture made of three parts, the encoder, the enhancer and the decoder.

Encoder. Our ConvNet, includes one encoder that takes in input the view made of the
pre-synthesized view T ′ and the mask M′. Similarly to HDSB encoders, the role of MUSE
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and

Fig. 7.2 Illustration of the MUSE architecture. MUSE is based on two main stages: the pre-
synthesis of the view T ′ and its correction or enhancement T v. The parameter α corresponds
to the normalized distance between the virtual view and the two left and right reference
views that frame the target view and regulate the reference views’ mixing within the pre-
synthesized view.

encoder is to project the view to a spatially-subsampled latent feature space. To this end, the
encoder includes three convolutional layers with 64, 128 and 256 filters respectively of size
7x7 for the first layer and 3x3 for the last two, all followed by ReLu activations. Filters in
the convolutional layers have 2-units stride, so that the feature maps in output of each layer
are half sized of the feature maps in input to the layer. This encoder typology is inspired
by HDSB architecture as it achieves the best tradeoff between semantic depth and spatial
resolution of the output feature maps.

Enhancer. The enhancer of our ConvNet is similar to the blender in HDSB architecture,
and it aims to correct the input image imperfections and artifacts. The enhancer includes 6
residual blocks with 512 filters each. These layers combine the feature maps extracted from
the pre-synthesized image and based on these features it makes the decision about how to
transform them into a set of feature maps that holds a suitable representation of the desired
target view.

Decoder. Similarly to the HDSB decoder, MUSE decoder synthesizes the virtual view at
the target position exploiting the downsampled feature maps produced by the enhancer. This
decoder also includes 3 transposed convolutional layers with 256, 128 and 3 filters per layer
of size 3x3 for the first two layers and 7x7 for the last layer. The decoder upsamples the low
resolution feature maps produced by the enhancer component to a higher resolution. The first
two layers are followed by ReLU activation function, while the output layer is followed by a
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hyperbolic tangent. We also stack a batch normalization layer after each convolutional layer
as in ResNet blocks, as our experiments showed it speeds up the training process. Overall,
MUSE network just as HDSB network, produces in output a three-channels view where each
channel is expected to have approximately zero-mean and the pixel intensity is bounded in
the [−1,+1] interval by the output layer nonlinearity.

7.3.2 Dataset and protocol

We train and test our network with multi-view sequences commonly used in MPEG exper-
iments as defined in the MPEG CTCs (views and depth maps are in uncompressed YUV
format). We also add our sequences (real and synthetic) to that list of sequences, producing
views and depth maps in the same format as MPEG sequences. Tab. 7.1 summarizes the
characteristics of the different sequences.

Sequence PandemoniumRig1 PoznanStreet PoznanFencing PoznanCarpark OrangeShaman TechnicolorPainter Adventure VikingVillage
Baseline [m] 0.79 0.14 0.22 0.14 0.2 0.072 0.8 0.8
hfov [deg] 36 58 58 58 90 46 66 92
Focal [pix] 2900 1700 1700 1700 960 2400 1500 940
depth n5 [m] 3.7 4.8 0.63 4.6 1.3 2.4 3.1 7.7
depth n95 [m] 7.5 44 0.8 28 4.6 4.2 6.6 85
Disparity min [pix] 310 5.4 470 8.5 42 42 180 8.8
Disparity max [pix] 630 49 600 52 150 73 390 97
Delta disparity [pix] 320 44 130 44 110 31 210 88
Number of images 600 250 250 250 300 300 510 510
Length [s] 10 10 10 10 10 10 10 10
Frame rate [image/s] 60 25 25 25 30 30 50 50
Type natural natural natural natural synthetic hybrid synthetic synthetic
Number of cameras 10 9 10 9 5 4 22 22
Resolution [pix] 1920 x 1080 1920 x 1088 1920 x 1080 1920 x 1088 1920 x 1080 2048 x 1088 1920 x 1080 1920 x 1080

Table 7.1 Summary of the characteristics of each scene and their associated capturing system

We used 8 contents or multi-view video scenes, where 3 contents are synthetic (Ad-
venture, OrangeShaman, and Viking Village), and the other 5 are from real video captur-
ing (PandemoniumRig1, PoznanCarpark, PoznanFencing, PoznanStreet, and Technicolor-
Painter). Fig. 7.3 illustrates the 8 different contents created and selected.
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(a) Adventure (b) OrangeShaman (c) VikingVillage

(d) PandemoniumRig1 (e) PoznanCarpark (f) PoznanFencing

(g) PoznanStreet (h) TechnicolorPainter

Fig. 7.3 Illustration of the selected contents.

Adventure is a scene generated for MUSE experiments using the Unity3D platform
(cf. [130]) from a free 4D scene model. The camera rig of the Adventure scene is linear and
has 11 stereo camera pairs.

An illustration of the views and depth maps of the different cameras is available in Ap-
pendix A.1.

OrangeShaman is an excerpt from the original scene proposed by Orange as a contribu-
tion [131] to the MPEG Immersive Video working group. Only the cameras in the third row
of the original camera array were selected.

An illustration of the views and the depth maps of the different cameras is available in
the Appendix A.2.

VikingVillage is a scene generated for the purposes of MUSE experiments, using the
Unity3D platform, from a free 4D scene model.

An illustration of the views and depth maps of the different cameras is available in Ap-
pendix A.3.

PandemoniumRig1 is a scene produced for the purposes of b<>com project. The cap-
turing equipment used is identical to that described in Sec. 7.3.2. The camera rig of Pande-
moniumRig1 is linear and consists of 5 stereo camera pairs.
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Intrinsic and extrinsic camera calibrations were performed using the Meshroom1 method
proposed by AliceVision. The depth maps were estimated from the results of calibrated and
dense stereo pairs using Flownet2 [132].

An illustration of the views and depth maps of the different cameras is available in Ap-
pendix A.4.

PoznanCarpark is a scene excerpt from the original scene proposed from the original
scene proposed by the University of Poznan as a contribution [133] to the MPEG-I Video
working group. The camera rig of PoznanCarpark is linear and consists of 9 cameras.

An illustration of the views and depth maps of the different cameras is available in Ap-
pendix A.5.

PoznanFencing is a scene excerpt from the original scene proposed by the University of
Poznan as a contribution [111] to the MPEG Immersive Video working group. The camera
rig of PoznanFencing is convergent and includes 10 cameras.

An illustration of the views and depth maps of the different cameras is available in Ap-
pendix A.6.

PoznanStreet is a scene excerpt from the original scene proposed by the University of
Poznan as a contribution [133] to the MPEG-I Video working group. The camera rig of
Poznanstreet is linear and consists of 9 cameras.

An illustration of the views and depth maps of the different cameras is available in Ap-
pendix A.7.

TechnicolorPainter is an extract of the original scene proposed by Technicolor as a
contribution [134] to the MPEG-I Video working group. Only the images from the cameras
in the second row of the original 4x4 camera array were selected.

An illustration of the views and depth maps of the different cameras is available in Ap-
pendix A.8.

7.3.3 Training procedure

The network is trained in a fully supervised way on a triplets of patches (t̃ ′, m̃, tc) extracted
respectively from the mask M′ and the textures (T ′,TC), where TC is the ground-truth image
to synthesize. However, the training process follows the intra-content training strategy which
is one of the very successful strategy used in [23]. Thus, the network is only trained on the
triplet images (the merged warped left and right reference images, the mask and the ground-
truth image) of the given content. Previously, in the HDSB network, we faced network
generalization problems due to the limited production and availability of multiview plus
depth sequences used for the training process. To deal with this problem, one idea is to
perform one complete network training per sequence by using each time the available real

1cf.https://alicevision.org/meshroom
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views of this sequence (the real left and right views to be warped to a real intermediate
view that corresponds to the one to be synthesized). We assume that this method will allow
the network to retain the sequence content features by over-learning on the available views.
Therefore, such a network will produce a better image quality of a virtual point of view in
the same sequence.

For each sequence, we extract three neighbor views from the first 750 frames: the left
and right views are used as references (T L, T R), and the central view is used as target view
(i.e. ground-truth TC). For each triplet, we preliminary warp, inpaint, and blend T L and
T R to obtain T ′, and we generate the corresponding binary mask M′ using the methods de-
scribed earlier in Sec.5.2.2. From each sequence we extract 75k triplets of co-located patches
(t̃ ′, m̃, tc), where 7500 patches are reserved for testing. The other patches are used for train-
ing and validation purposes, for a total of 52k training patches and 15k validation patches.
Similar to the HDSB method, for the training, we used patches of 64x64, batches of 128
patches, and a learning rate of 0.0001, leading to the convergence of our learning algorithm
after 100 epochs. Concerning the parameters optimization algorithm, we use Adam with
weight decay = 0 and betas = (0.9, 0.999). In all our training experiments, we use the same
hyper-parameters showing the best results. This method is also implemented in Pytorch, and
all the experiments are performed on a server with an NVIDIA RTX2080GPU.

Concerning the loss function to minimize training time, we use the same MSE loss de-
scribed in the previous chapter 5.

7.4 Experiments and results

In this section, we qualitatively evaluate MUSE. We perform a series of subjective tests
aiming to evaluate the visual quality of our method in the case of an actual view synthesis
application, which is a video transition. A video transition is a technique used in post-
production video-editing in order to join two shots together. In this experiment, we consider
the transition from one point of view to another in the same scene. Therefore, we use our
method to create a virtual transition between two cameras in the same scene to change the
user’s point of view.

To achieve this, we create several intermediate views that are played one after another,
such as a "path" between the starting and ending points. Tab. 7.1 shows the scene properties
for each sequence to create the transitions, i.e., the number of real cameras in the scene,
the baseline... It also shows the number of synthesized images in every scene, necessary to
transition between two real cameras, with its duration. Fig. 7.5 shows the geometry of the
path where it is a straight line in all the sequences except for PoznanFencing sequence it
is a curve. We can rely on the methods described in Sec. 2.2.2 and 2.3 for the generation
of virtual views in a parallel cameras setup (straight-line transition) or convergent cameras
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setup ( curved transition).

We evaluate the quality of such transition applied on all the contents enumerated in the
Sec. 7.3.2. We thus, compare the quality of transitions generated by MUSE to transitions
created with other view synthesis methods.

Fig. 7.4 illustrates the final targeted user experience. The user (1) visualizes, with the
help of a 6-DoF player installed on a device such as a PC, a tablet, or a virtual reality headset,
the video sequence associated with a real camera (2). He/she can navigate from one real point
of view to another real point of view. Between two real points of view, the images associated
with a virtual camera (3) are generated by an off-line synthesizer such as MUSE and played
back by the player (1).

Synchronized
Video Capture

Offline
Synthesizer

6 DoF 
player

User

Synthetized 
view

Camera
rig

Virtual camera

Virtual
camera

Real
camera

Fig. 7.4 From multi-view capture to 6DoF rendering

To generate the intermediate views corresponding to the displacement of the virtual cam-
era between two real viewpoints, the positions of the virtual cameras are computed. The
positions of the virtual cameras were linearly interpolated to guarantee the constant speed
of movement of the virtual viewpoint. The virtual camera orientations were determined by
interpolating the quaternions describing the real camera poses using the Spherical Linear in-
tERPolation (SLERP) method [135]. Fig. 7.5 illustrates the camera rig configurations associ-
ated with each scene (in green), and the virtual camera positions considered for intermediate
view synthesis (yellow).
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(a) Adventure

(b) OrangeShaman

(c) VikingVillage

(d) PandemoniumRig1

(e) PoznanCarpark

(f) PoznanFencing

(g) PoznanStreet

(h) TechnicolorPainter

Fig. 7.5 Illustration of the camera rig configurations of the different scenes (in green: ref-
erence cameras; in yellow: example of virtual cameras considered for the synthesis of the
intermediate views).
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7.4.1 Experimental setup

7.4.1.1 Test-bed

The hardware architecture implemented for our subjective tests is described in Fig. 7.6. The
PC manages the test sequencing, with the stimuli presentation to be evaluated. The display
of the voting interface follows after. In order to reproduce video sequences of different
frame rates (25Hz, 30Hz, 50Hz, and 60Hz depending on the content), a screen with V-
SYNC/G-SYNC capabilities is used to guarantee a real-time display without visual artifacts.
Therefore, the constituted test-bed optimizes the display of uncompressed video sequences
(yuv/1080p/8bits format), recorded on SSD and played with “mpv.”s player (an open-source
media player software based on ffmpeg, cf. [136]).

PC 
"mpv" video player 

GUI 
Test management

ASUS display 
Temporal frequencies up to 60Hz 

Vsync/Gsync features 

Observer

Display Port 
1080p video

Viewing distance 
3 times the height of the screen 

Fig. 7.6 Hardware architecture implemented for the subjective tests.

Operating with the display settings can affect the results of the subjective tests. There-
fore, it is essential to ensure that the display selected for the testing meets the requirements
of the subjective testing standards, particularly those defined at the International Telecom-
munication Union (ITU) [137]. The display used for our subjective tests is a 24-inch LED
PC monitor (ASUS VG248QE). The decision of the screen selection and the screen settings
was based on the following tests:

• measurement of the time responses oscillating between 30Hz and 60Hz,

• photo-metric and colorimetric calibration (SDR, BT.709) [138]

• black level adjustment (BT.814 test pattern standardized to ITU-R [137]) and

• Validation of the maximum spatial frequencies displayed on the screen (Society for
information display (SID) frequency test pattern [139]).

Temporal test patterns alternating white and black images at 30Hz and 60Hz were pre-
sented to validate the excellent display of video content on the display screen. The oscillating
time responses were calculated from the oscillograms of the temporal luminance variations
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displayed on the screen (Fig. 7.7 for 30Hz and Fig. 7.8 for 60Hz), The computation mea-
sures the time responses between 10 and 90 % of the response at one step (black to white for
the increasing time and white to black for the decreasing time).

Fig. 7.7 Temporal response of a test pattern with alternating black and white images at 30Hz.

Fig. 7.8 Temporal response of a test pattern with alternating black and white images at 60Hz.

The time responses measured with the photometer “Optiscope” and the software “Dis-
playSpec” of the company ELDIM are respectively 5.29 ms/1.43 ms (60Hz) and 5.1 5ms/1.65 ms
(30Hz) for the rise and fall times (Fig. 7.9 and Fig. 7.10).
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Fig. 7.9 Response time, up and down at 30Hz

Fig. 7.10 Response time, up and down at 60Hz

The photometric and colorimetric calibration of the screen was performed with “i1-
profiler” software and an “x-rite” sensor [140]. Finally, two test patterns were used to ad-
just the black level display (SDR test pattern according to recommendation ITU-R BT.814-
4 [137]) and the SID test pattern [139] to check the correct display of the maximum spatial
frequencies for HD image definition (Fig. 7.11).
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Fig. 7.11 Visual test pattern used to validate the display of HD images (1080p).

All the tests and settings carried out indicate a level of performance of the ASUS display
chosen is in line with the one required for the subjective tests.

7.4.1.2 Display conditions

All our subjective tests were performed in a dedicated room with the characteristics described
in Tab. 7.2. This viewing environment was defined according to the recommendations of
the ITU-R BT.500-14 [137]. It guarantees the visualization comfort of the participants and
ensures optimal visibility of the details and the reproducibility of the results compared to
similar studies. Fig. 7.12 illustrates the test environment.

display screen definition: 1920x1080
framerate: 25Hz, 30Hz, 50Hz et 60Hz
peak brightness: 120 cd/m2

viewing distance 3 times the height of the screen
background color grey

background brightness 15% of the peak brightness of the screen, i.e 18 cd/m2

Table 7.2 Display conditions.
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Fig. 7.12 Participant during a subjective test.

7.4.1.3 Testers

27 non-expert observers between the age of 23 and 53 participated in these tests. All of them
had a vision in accordance with the criteria defined in the ITU recommendations, namely:

• visual acuity of at least 10/10 (Snellen’s E test) and

• non-deficient color vision (Ishihara’s chromatic tests).

The following part is dedicated to the description of the first conducted subjective test to
evaluate and compare the visual quality of MUSE in a practical use-case.

7.4.2 Test 1: Evaluation of the perceived quality of the view synthesis
methods

The main objective of this subjective test is to compare the visual quality of the different view
synthesis methods studied in this work: VVS [21], HDSB and MUSE. These tests should al-
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low us to determine if the MUSE method outperforms the other two methods. Consequently,
a second objective is to establish whether the level of the restored quality depends mainly on
the content of the scenes or the configuration of the capturing rigs.

7.4.2.1 Assessment methodology

The assessment method used is the ACR method described in ITU-T recommendation P.913
(cf. [141]). The choice of this method was imposed by several constraints related to the
available scenes. There is no ground truth for the natural contents, i.e., there is no real cam-
era performing the path simulated by the studied view synthesis methods. The absence of
the ground truth led to selecting a test method without a reference sequence (real camera
path). These subjective test methods are not accurate in discriminating between view syn-
thesis methods, here HDSB, VVS, and MUSE. A Test 2 was defined to directly compare
the synthesis methods and assess their perceived quality difference on a 7-point comparison
scale to overcome this drawback.

The process of a subjective test according to the principles of the ACR method is as
follows:

Each video sequence to be evaluated is shown for 10 seconds on the display screen (Fig.
7.14). Before the video sequence, we show for 2 seconds a grey screen indicating the number
of the sequence to be evaluated. At the end of the video sequence, the observer must give his
opinion on the perceived visual quality by means of a rating scale comprising the following
labels: poor, mediocre, satisfying, good or excellent (Fig. 7.15). To this end, the user can
move a cursor over the category corresponding to the perceived quality level. Once the vote
is validated, the following video sequence is presented on the screen, preceded by a 2 seconds
grey screen indicating the sequence number, followed by the voting interface. Fig. shows an
example of transitions created by the three different methods (HDSB, VVS and MUSE) on
PoznanFencing sequence.

Sequence
N

Video N Vote
N

2s 10s Free time

Sequence
N+1

Vidéo N+1 Vote
N+1

2s 10s Free time

Fig. 7.14 Sequencing specific to the ACR method
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Real Camera 1

Real Camera 2

Virtual intermediate views (250 frames in total)

HDSB

Real Camera 1

VVS

Real Camera 2

Real Camera 1

MUSE

Real Camera 2

 

Fig. 7.13 Illustration of video transitions created by the three view synthesis methods (HDSB,
VVS and MUSE) on PoznanFencing video sequence

Fig. 7.15 User interface for the evaluation of video sequences with the ACR method.
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Scene MOS

PandemoniumRig1 1.4
PoznanFencing 1.7
PoznanCarpark 2.3
PoznanStreet 3.2
TechnicolorPainter 3.9
Adventure 2.8
OrangeShaman 3.2
VikingVillage 3.2

Table 7.3 MOS or average quality score obtained for each scene.

The 24 test transitions used are those extracted from the 8 different sequences described
in Sec. 7.3.2, and each of of these transitions is available in 3 versions (VVS, HDSB, and
MUSE) For each observer, the order of presentation of the sequences is different, and each
sequence is repeated once as specified in the ITU-T recommendation P.913 (cf. [141]). Be-
fore starting the test, the protocol and the objectives of the test are presented to each partici-
pant in a test instruction sheet (see Appendix B.1).

7.4.2.2 Results and discussion

This section details and analyzes the results in terms of MOS.

MOS vs Scene

Tab. 7.3 and Fig. 7.16 illustrate the MOS obtained by averaging the inter-observer and
inter-method scores (HDSB, VVS and MUSE) per scene.

We first observe that the results are strongly related to the scenes. The quality of Pan-
demoniumRig1 is perceived as bad, PoznanFencing and PoznanCarpark as mediocre, Ad-
venture, PoznanStreet, OrangeShaman and VikingVillage as satisfying, and Technicolor as
good. In yellow on the figure, the results obtained with the synthetic scenes are globally
better than those obtained with the natural scenes. The reliance of the results on the scenes
is confirmed by the results of ANalysis Of VAriance (ANOVA) shown in Tab. 7.5.

An ANOVA test is a method to see if an experiment’s results are meaningful. In other
words, it helps to figure out if we need to reject the null hypothesis or accept the alternate
hypothesis.

The p-values shown in the column (PR(> F) are below the 5% level of significance and
show that the distribution of the votes by content are significantly different.

The difference in the perceived quality between the scenes can be explained by visual
artifacts that change from one scene to another. Concerning the natural scenes, the most
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Fig. 7.16 MOS or average quality scores and 95% confidence intervals obtained for each
scene.

damaging artifacts are related to an imperfect estimation of the scene’s geometry or, in the
case of DIBR methods, to a problem of the estimation of the depth maps associated with
each reference view. These artifacts are even more important when the gap between the
reference view and the virtual view is more important. Tab. 7.1 lists the disparity (cf. Sec.
2.3) amplitudes associated to each scene.

We observe that the amplitudes 2 of disparity are more critical in the PandemoniumRig1
( 320 pixels) and PoznanFencing ( 130 pixels) scenes with the lowest perceived qualities.
TechnicolorPainter is the highest-rated and has the lowest range of disparity ( 31 pixels).

Concerning the synthetic scenes, the depth maps are ideal and the disparity amplitude
can not explain the difference in the perceived quality of the scenes sequences.

MOS vs Methods

Tab. 7.4 and Fig. 7.17 illustrate the MOS obtained by computing the average of the inter-
observer and inter-scene scores for each methods (HDSB, VVS and MUSE).

First, the result shows that the HDSB, VVS, and MUSE methods differ in the rendered
quality. The results obtained by MUSE are better than those obtained by the VVS and HDSB
methods. For MUSE, the quality performance level is globally considered as satisfying.

2The disparity amplitude is the difference between the maximum and minimum disparity.
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Method MOS

HDSB 2.4
MUSE 3.1
VVS 2.7

Table 7.4 MOS or average quality scores obtained for each view synthesis method.

HDSB MUSE VVS
Method

1

2

3

4

5
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Poor

Fair

Good

Excellent
MOS vs Method

Fig. 7.17 MOS or mean quality scores and 95% confidence intervals obtained for each view
synthesis method.

The ANOVA, shown in Tab. 7.5, highlights significant differences between the studied
methods. The values of the p-values for the factors C(methods), specified in the columns
(PR(> F)), are way below the level of 5% of significance.

MOS vs (Scenes , Methods)

We just noticed that the MUSE method performs better overall than the HDSB method, but it
is necessary to analyze the results for each content in detail. Tab. 7.6 and Fig. 7.18 illustrate
the MOS obtained by calculating the average of inter-observer scores for each scene and
each method (HDSB, VVS and MUSE).

We observe that MUSE obtains the highest quality rating for all scenes except for the
VikingVillage scene, for which the VVS method performs favorably. However, to assess the
significance of the differences between MOS, we need to conduct a more profound analysis.
First, the observer rejection procedure proposed in Appendix A of Recommendation [141]
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index sumsq df F PR(>F)

C(method) 43 2 67 4.6 ·10−27

C(scene) 390 7 170 2.7 ·10−14

C(method):C(scene) 39 14 8.7 2.6 ·10−17
Residual 190 600 - -

Table 7.5 Results of the ANOVA for all the methods (HDSB, VVS and MUSE).

was performed. The results from a single observer were discarded from the MOS calcula-
tions. From the original 27 observers, 26 voters are considered. Each observer’s bias voting
was estimated, and the votes of each user were corrected by this bias as recommended in
section 12.4 of the recommendation [141]. Finally, Student’s tests were performed, and the
results of the p-values are shown in Tab. 7.7.

These results show that:

• MUSE vs VVS: MUSE performs significantly better for Adventure, Pandemonium-
Rig1, PoznanCarpark, PoznanFencing and TechnicolorPainter contents. The MOS
differences for OrangeShaman and PoznanStreet contents are not significant. VVS
performs favorably for VikingVillage sequence.

• MUSE vs HDSB: MUSE has better performance for all contents. The difference in
MOS observed for the PoznanFencing scene is not significant.

• HDSB vs VVS: the difference in MOS for the Adventure, PandemoniumRig1, Poznan-
Carpark, PoznanStreet and TechnicolorPainter scenes are not significant. While for the
OrangeShaman and VikingVillage scenes, VVS performs favorably and significantly,
HDSB performs well for PoznanFencing.

Conclusions

The main objective of this subjective test is to compare the visual rendering quality of the
studied view synthesis methods (VVS, HDSB, and MUSE) to determine if we improve in
MUSE over the other two methods. The analysis of the results of this first subjective test
shows that:

• MUSE visual rendering quality is better than the VVS visual rendering quality for Ad-
venture, PandemoniumRig1, PoznanCarpark, PoznanFencing, and TechnicolorPainter
contents. The rendering quality of both methods is equivalent fro OrangeShaman and
PoznanStreet contents. VVS performs favorably for the VIkingVillage sequence. For
this scene, we could observe that prominent, annoying, and time-varying artifacts are
predominant in the areas where occlusion alternate with disocclusion zones. We can
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MOS
Method Scene

HDSB

Adventure 2.6
OrangeShaman 2.8
PandemoniumRig1 1.1
PoznanCarpark 2.1
PoznanFencing 1.8
PoznanStreet 2.8
TechnicolorPainter 3.6
VikingVillage 2.4

MUSE

Adventure 3.2
OrangeShaman 3.5
PandemoniumRig1 1.8
PoznanCarpark 2.7
PoznanFencing 2.2
PoznanStreet 3.4
TechnicolorPainter 4.2
VikingVillage 3.4

VVS

Adventure 2.6
OrangeShaman 3.4
PandemoniumRig1 1.2
PoznanCarpark 2.1
PoznanFencing 1.1
PoznanStreet 3.3
TechnicolorPainter 3.8
VikingVillage 3.9

Table 7.6 MOS or average quality scores obtained for each scene and each view synthesis
method.

reasonably hypothesize that the temporal smoothing provided by VVS would bring
again compared to the pure spatial processing performed by MUSE. Thus, the MUSE
method brings a global gain compared to the VVS method. The taking into account
of the temporal neighborhood represents an improvement perspective of the MUSE
method.

• The quality of the visual rendering of MUSE is better than that of the visual render-
ing of HDSB for all the contents except for the PoznanFencing scene for which it is
equivalent, so the improvement brought by the new approach compared to the first one
is obvious.

• HDSB gives equivalent results to VVS for the Adventure, PandemoniumRig1, Poz-
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Fig. 7.18 MOS or average quality scores and 95% confidence intervals obtained for each
scene and each view synthesis method.

nanCarpark, PoznanStreet, and TechnicolorPainter scenes. For OrangeShaman and
VikingVillage scenes, VVS performs favorably and significantly. HDSB performs fa-
vorably and significantly compared to VVS for the PoznanFencing scene.

As a corollary, a second objective was to determine if the level of rendered quality de-
pends on the scenes’ content or the configuration of the shooting rigs.

The analysis of the test results shows that the quality of the view synthesis is strongly
dependent on the content. The visible artifacts are related to errors in the depth maps, which
are more critical when the disparity amplitude is more significant. As well as the camera
focal lengths, the spacing, and the object relative distances in the scene, affect the quality of
the synthesized views. The synthetic contents for which ideal depth maps have been used
escape this rule. A more detailed study of the link between the configuration of the rig and
the quality of the synthesized views would allow us to confirm these hypotheses and is added
to the manuscript perspectives.
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Scene MUSEvsVVS MUSEvsHDSB HDSBvsVVS

Adventure 0.00023 0.00018 0.81
OrangeShaman 0.6 0.00012 0.002
PandemoniumRig1 4.6 ·10−05 9.2 ·10−06 0.61
PoznanCarpark 0.00035 0.00024 0.9
PoznanFencing 1.7 ·10−08 0.041 3 ·10−05

PoznanStreet 0.45 4.8 ·10−05 0.0087
TechnicolorPainter 0.0043 0.00069 0.29
VikingVillage 0.0018 4.8 ·10−07 8.2 ·10−12

Table 7.7 Results of the Student test associated with the average quality scores obtained.

7.4.3 Test 2: Quantification of the differences in the quality of the image
synthesis methods.

The objective of the second test is an extension of the previous test. Here, the objective is
to quantify the difference in visual quality between the different methods of view synthesis
(HDSB, VVS, and MUSE). This test is more accurate than the previous one in estimating
the differences in rendering between the synthesis methods from a subjective point of view.
Therefore, for each scene, it is possible to determine if MUSE offers a better visual rendering
than the two other solutions and quantify this difference on an appropriate perceptual scale.
However, this method does not determine the level of perceived visual quality for each mea-
surement point (a view synthesis method associated with a scene), as was the first subjective
test case. The two subjective tests are, thus, complementary.

7.4.3.1 Assessment methodology

The test method used proposes a test protocol similar to that of the DSCQS (Double Stim-
ulus Continuous Quality Scale) method described in the Recommendation ITU-RBT.500-
14 [137]. It requires prior scheduling of the sequences to be tested because the vies synthesis
methods will be compared in pairs (video A and video B). Therefore, for a given scene,
three pairs will be compared: (MUSE vs VVS), (MUSE, HDSB), and (VVS, HDSB). In the
subjective test, each pair is judge twice by each participant, and the order of each pair is
reversed. For each comparison, the order is as follows (see Fig. 7.19):

• First display of the pair “Video A/ Video B”

1. display of a grey screen showing the letter A (duration of 1 sec.)

2. display the content of the video A (duration 10 sec.)
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Sequence
N

A Video A B Video B

2s 10s1s 10s1s

Vote
N

A Video A B Video B

10s1s 10s1s Free time

Fig. 7.19 Sequencing specific to the comparison method

3. display of a grey screen showing the letter B (duration 1 sec.)

4. display the content of the video B (duration 10 sec.)

• Second display of the pair “Video A/ Video B”

1. display of a grey screen showing the letter A (duration of 1 sec.)

2. display the content of the video A (duration 10 sec.)

3. display of a grey screen showing the letter B (duration 1 sec.)

4. display the content of the video B (duration 10 sec.)

• display of the voting interface integrating the comparison scale

Due to the double showing of each pair, participants are then asked to report their opinion
on the perceived difference quality between each video via a 7-point comparison scale (cf.
Fig. 7.20). Each participant is thus, asked to judge whether the quality of video B is “Much
worse,” “Less good,” “Slightly worse,” “Equivalent,” “Slightly better,” “Better,” or “Much
better” compared to the quality of video A. The choice is then made by moving a cursor to
the appropriate category on the comparison scale. Once the vote is validated, the next pair is
presented to the participant.

Before starting the test, the protocol and the objectives of the test are presented to each
participant in a test instruction sheet (see Appendix B.2). From the collected data, we cal-
culate the mean and confidence interval of each comparison. We assign a score to each
category (from −3 for the “Much worse” difference to +3 for the “Much better” differ-
ence). Comparing the differences between the view synthesis methods can thus, be made on
a scene-by-scene basis or across all scenes.
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Fig. 7.20 User interface for comparing visual differences between view synthesis methods

7.4.3.2 Results and discussion

In the following sections, we analyze the results in terms of MOS or average quality scores
compared between each pair of methods.

MOS vs Methods

Tab. 7.8 and Fig. 7.21 illustrate the inter-observer and inter-scene MOS for each pair of the
compared methods.

MOS
Compared methods

HDSB vs VVS -0.335
MUSE vs HDSB 1.157
MUSE vs VVS 0.780

Table 7.8 MOS for each pair of compared methods .

We observe that:

• the quality results of HDSB are relatively equivalent to those of VVS

• the quality results of MUSE are slightly better than those of HDSB

• the quality results of MUSE are slightly better than those of VVS
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Fig. 7.21 MOS and 95% confidence intervals for each pair of methods compared.

MOS vs (Scenes, Methods)

Tab. 7.9 and Fig. 7.22 illustrate the inter-observer MOS for each scene and pair of compared
methods

We observe that:

• while HDSB performs favorably compared to VVS for Poznanfencing scene, it pro-
duces equal or worse results than VVS.

• MUSE is a real improvement compared to HDSB. If for the PoznanStreet and Tech-
nicolorPainter contents, the results are very slightly better, they are slightly better or
even better for the other contents.

• MUSE performs favorably compared to VVS for all contents except the VikingVillage
scene. The contributions are most significant for the real scenes PandemoniumRig1
and PoznanFencing. The results for the OrangeShaman and PoznanStreet sequences
are relatively comparable.
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MOS
Compared methods Scene

HDSB vs VVS

Adventure -0.74
OrangeShaman -0.98
PandemoniumRig1 -0.67
PoznanCarpark 0.28
PoznanFencing 1.60
PoznanStreet -0.54
TechnicolorPainter 0.26
VikingVillage -1.90

MUSE vs HDSB

Adventure 1.50
OrangeShaman 1.20
PandemoniumRig1 2.00
PoznanCarpark 0.96
PoznanFencing 1.30
PoznanStreet 0.48
TechnicolorPainter 0.44
VikingVillage 1.40

MUSE vs VVS

Adventure 0.87
OrangeShaman -0.04
PandemoniumRig1 1.90
PoznanCarpark 1.10
PoznanFencing 2.30
PoznanStreet 0.20
TechnicolorPainter 0.78
VikingVillage -0.83

Table 7.9 Inter-user MOS for each scene and pair of compared methods.

Conclusions

This test allowed us to quantify the difference in visual quality between the different view
synthesis algorithms (HDSB, VVS and MUSE). The analysis of the results corroborates the
conclusions of the first test and shows that:

• MUSE performs favorably compared to VVS for all the contents except for the VikingVil-
lage scene The contributions are most significant for the real scenes Pandemonium-
Rig1 and PoznanFencing. The results for the OrangeShaman and PoznanStreet se-
quences are relatively comparable

• MUSE is a real improvement over HDSB. The results for PoznanStreet and Techni-
colorPainter are very slightly better, while the results for the other contents are slightly
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Fig. 7.22 MOS and 95% inter-user confidence intervals for each scene and pair of compared
methods

better or even better.

• HDSB produces equivalent results, slightly worse or worse than those produced by
VVS, except for the PoznanFencing scene, for which the visual quality of the HDSB
method is judged better.

Therefore, MUSE allows a visual quality improvement over the state-of-the-art view
synthesis methods proposed by VVS. This improvement is judged slightly better on all the
contents.

These two tests allowed us to know what is the best view synthesis method in terms
of visual quality in an actual use case, which is the video transition between two points of
view in the same scene. As a result, we also discovered the relation between the type of the
content (type of textures, quality of the depth maps, baseline between the real and the virtual
viewpoint...) and the view synthesis method performance. However, the question then arises
as to whether these view-synthesis-based transitions are preferred over the classical transition
methods when realizing a transition between two real points of view in the same scene.
Indeed, in addition to the view synthesis, different “transition” modes can be chosen to move
from the point of view A to another B, such as Cut, Blend (or crossfade), Morphing, etc...
To chose the preferred transition mode, it is primordial to answer the following questions:

• What is the preferred mode of transition between two points of view of the same scene?

• Does the quality of the view synthesis affect the preferred mode of transition?

In order to provide answers to these questions, a third subjective test was performed. For
this test, a ranking by order of preference of different transition modes was performed by a
panel of 26 participants for different selected scenes.



138 MUSE: A Multi-view Synthesis Enhancer

In the following section, we describe in detail these subjective tests, and we discuss their
main results.

7.4.4 Test 3: Evaluation of the preference of different types of inter-
view transitions

A video transition is a technique used in live or post-production to change the point of view
in a given scene. It is usual in television when the director switches from one camera to
another, such as during a soccer game, and in film production when the dialogue is framed
in a field/counter-field mode.

There are several techniques to realize the transition from one point of view to another
in the same scene. Therefore, a transition can either be instantaneous or taking place over a
period of time associated with more advanced transition effects. The most common effects:

• The “Cut”, where the connection between the two points of view of the same scene is
made instantaneously, to the nearest frame. This type of transition is the most popular.

• The “Blend” (cross-fade), where the transition effect consists in progressively fading
the first point of view to make the second one appear progressively by an adequate mix
of the two views. This transition can be of variable duration depending on the required
artistic effect.

• The “Blur”, where the switch from the first point of view to the other is achieved by a
progressive and then digressive blur.

• The “Morphing”, it consists in deforming the image of the first point of view in order to
generate the image of the second point of view by an Ad-hoc geometrical deformation.
Morphing is usually used in film industry.

Several factors can affect the choice of a transition effect and the perception of its ren-
dering from a subjective point of view. These factors include artistic purpose, duration, and
dissimilarity of the two points of view.

This subjective test aims to determine whether there is a user preference for different
types of transition effects. To this end, the study focuses on comparing a transition performed
with a view synthesis method (here MUSE) with the most common effects mentioned above.
The preference will be evaluated for different scenes whose characteristics are detailed in
Sec. 7.3.2. These are the same scenes used in the previous two subjective tests.
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7.4.4.1 Preparing of the test sequences

From each of the 8 selected scenes, we created five sequences of 10 seconds duration from
the recorded videos of the two cameras in the scene. Concerning the transitions with tempo-
ral effect, the duration of the effect is set to two seconds (cf. Fig. 7.23).

First point of view
(Camera 1)

Second point of view
(Camera 2)

Transition
with effect

First point of view
(Camera 1)

Second point of view
(Camera 2)

5 seconds 5 seconds

4 seconds 4 seconds2 seconds

Transition without effect
(Cut)

Transition with effect
(interpolation, blur, blend

morphing)

Fig. 7.23 Transition effects evaluated for each scene in the subjective test

The post-production software “DaVinci Resolve” [125] from Blackmagic Design was
used to generate the different transitions, with our without effects. The two-camera view-
points integration in the timeline allowed the creation of the sequences with the effects pro-
posed by the software. Concerning the view-synthesis-based transition, the MUSE sequences
used in tests 1 and 2 were reused. In this specific case, the editing was made as follows: 4
seconds for the first point of view, 2 seconds for the sequence with the view synthesis (the
virtual transition created by generating 200 intermediate virtual frames), and finally 4 sec-
onds for the second point view. The format of the sequences used for the two points of
view was the same as for the classic transitions integrated into the software. Therefore, for
each scene, 5 types of transition were created: View synthesis (MUSE), Cut, Blend, Blur,
and Morphing. Fig. 7.24 illustrates an example of the 5 types of transitions created on the
Adventure sequence.

7.4.4.2 Assessment methodology

For a given scene, the chosen test method consists of ranking by order of preference the
different proposed transitions. To this end, a specific graphical interface was developed (cf.
Fig. 7.25). The user must then visualize video sequences identified by letters going from
A to E. By clicking on a letter, he/she starts the playback of a video sequence associated
with a type of transition, chosen among the five possible ones. After finishing the video, the
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observer must place the letter in front of an integer indicating an order of preference (1,2,3,4
or 5) using the “up” and “down” buttons, 1 being the preferred ranking. Each sequence
associated with a letter can be played several times, and the ranking can be reviewed as many
times as necessary until the final choice is made. Once the ranking is validated, the tester
is asked to rank in order of preference the five sequences associated with a new scene. The
transitions related to the buttons A to E are randomly assigned by scene and by participants.

Fig. 7.25 Voting interface used for preference testing of transitions between views

Before starting the test, the protocol and the objectives of the test are presented to each
participant in a test instruction sheet (see Appendix B.3). At the end of the test, each type
of transition (View synthesis, Cut, Blend, Blur, and Morphing) is associated with an order of
preference (number from 1 to 5) by scene and by the observer.

From the generated data, a statistical analysis of the results is performed. The objective
is to determine if there is a pronounced user preference for a particular transition effect type
among the five studied. After computing the average ranking of the transition effects, a Fried-
man test is performed to determine if the transitions have significantly different scores. If so,
a Conover’s posthoc test is done to compare the preferences between the two transitions.

7.4.4.3 Results and discussion

In the next sections, we analyze the results in terms of the average ranking of preference
votes for the different types of transition.
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Average ranking vs. transition type

Tab. 7.10 and Fig.7.26 illustrate the results obtained in terms of average inter-observer and
inter-scene ranking by transition type.

Averaged ranking
Transition type

Blur 4.2
Cut 2.5
Fading/blending 2.7
Morphing 3.9
View Synthesis/Muse 1.6

Table 7.10 Average ranking by transition type.

Blur Cut Fading/blending Morphing View Synthesis/Muse
Transition Type

1
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4

5
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nk
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g

Favorite

Least
Favorite

Preference Ranking vs Transition Type

Fig. 7.26 Average ranking by transition type.

We observe that view synthesis is the preferred type of transition, ahead of simple tran-
sitions with, in order of preference: Cut, Blend, Blur and Morph.

Average ranking vs (Scenes, Transition type)

Tab. 7.11 and Fig. 7.27 illustrate the results of the average inter-observer rankings by transi-
tion type and by scene.
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Fig. 7.27 Average inter-observer rankings by transition type and scene
.

Tab. 7.12 shows the results of the Friedman test by scene. We observe that the inter-
transition differences are significant for all scenes (p-value<0.05). Conover’s tests must thus,
be performed to evaluate the significance of the differences between the transition effects by
pair and by scene.

Scene pvalue

PoznanFencing 9.1 ·10−12

VikingVillage 1.5 ·10−10

PoznanCarpark 3.7 ·10−13

OrangeShaman 6.2 ·10−14

PandemoniumRig1 3.6 ·10−11

TechnicolorPainter 9.8 ·10−10

PoznanStreet 3.6 ·10−12

Adventure 5.9 ·10−14

Table 7.12 Results of the Friedman test by scene.

Tab. 7.13 shows the results of Conover’s tests of parity comparison of the transitions for
each scene. They reveal the importance in the classification.

We observe that:

• For the Adventure scene, the MUSE method is the preferred transition mode. However
the value of the Conover tests obtained for the pair of transitions (MUSE,CUT) (cf.
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Tab 7.13 (a)) is 0.27. In this case, the difference in the ranking between the Synthesis
and the Cut is not thus significant (i.e p-value>0.05). The two types of transition share
thus the first place in the ranking.

• For the OrangeShaman scene, the MUSE method is the preferred transition mode. The
p-value of the Conover test obtained for the pair of methods (MUSE, Cut) (cf. Tab.
7.13 (b)) is 0.023. The difference in the ranking seems significant (i.e p-value<0.05).
The Cut and the Blend occupy thus, the second place in the ranking behind the MUSE
method.

• For the PandemoniumRig1 scene, the Blend transition mode is preferred over the
MUSE method. The p-value of the Conover test obtained for the pair of methods
(Blend, Cut) (cf. Tab. 7.13 (c)) is 0.041. The difference does not seem significant
(i.e p-value>0.05) and the Cut shares the first place in the ranking. For this scene, the
MUSE method occupies the second place in the ranking.

• For the PoznanCarpark scene, MUSE is the preferred transition mode. The p-value of
the Conover test obtained for the pair of methods (MUSE,Cut) (cf. Tab. 7.13 (d)) is
0.037. he difference in the ranking seems significant (i.e p-value<0.05), and the Cut
takes thus, the second place in the ranking.

• For the PoznanFencing scene, the Blend method is the preferred transition mode. The
p-value of the Conover test obtained for the pair of methods (Blend, MUSE) (cf. Tab.
7.13 (e)) is 1. The difference does not seem significant (i.e p-value>0.05) and MUSE
shares thus the first place in the ranking. The first place is also shared with the Cut
method (p-value>0.94).

• For the PoznanStreet scene, MUSE is the preferred transition mode. The p-value of
the Conover test obtaned for the pair of methods (MUSE, Cut) (cf. Tab. 7.13 (f)) is
0.00079. The difference ranking is therefore very significant (i.e p-value< 0.05) and
the Cut is thus, ranked second.

• For the TechnicolorPainter scene, MUSE is the preferred transition mode. The p-value
of the Conover test obtained for the pair of methods (MUSE, Cut) (cf. Tab. 7.13 (g))
is 0.036. The difference in ranking is therefore significant (i.e p-value< 0.05) and the
Cut is thus, ranked second.

• For the VikingVillage scene, MUSE is the preferred transition mode. The p-value of
the Conover test obtained for the pair of methods (MUSE, Cut) (cf. Tab. 7.13 (h)) is
0.047. The difference in ranking is therefore significant (i.e p-value< 0.05) and the
Cut is thus, ranked second.
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It is interesting to note that the visual quality rendering of MUSE could affect the pref-
erence test results. Test 1 showed that the PandemoniumRig1 scene performs the worst in
the view synthesis quality assessment by being rated as “mediocre.” Considering the results
of MUSE preference ranking in the other scenes, it is likely that the quality of the rendered
view synthesis method has a negative impact on the order of preference classification for the
Pandemoniumrig1 scene.

Therefore, MUSE takes first place in ranking the preferred transitions for all the scenes
(of which five times it was solo), except for PandemoniumRig1, for which only the Cut
transition mode beats it. In comparison, the methods Cut and Blend only come out on top
twice each. These two methods seem as an alternative when the quality of the view synthesis
is judged to be mediocre. The Morphing and the Blur methods are not to be preferred in the
context of this study.

Conclusions

The goal of this subjective test was to determine whether there is a preference for differ-
ent types of transition effects. For this purpose, the study aimed to compare a transition
performed with a view synthesis method MUSE with the most common transition effects
mentioned above (Cut, Blend, Blur, or Morphing).

The results of this study showed that:

• MUSE takes the first place in the ranking of the preferred transitions modes in all
the scene except for PandemoniumRig1 which holds the second place. This shows
that even if the visual results present imperfections, they are preferred over the simple
transitions such as the Cut and the Blend.

• Cut and Blend are considered as alternatives when the quality of the view synthesis is
judged to be mediocre. The Morphing and the Blur are not preferred in our study.

7.5 Conclusion and discussion

In this Chapter, we proposed a new view synthesis method MUSE that improves over our
previous work (HDSB) and the state-of-the art methods such as VVS. The purpose of our
method is to generate virtual intermediate views using real views of the same scene.

We qualitatively evaluate our method by creating two subjective tests (test 1 and 2) that
compare MUSE performances with two other view synthesis methods of the state-of-the-art
(HDSB and VVS). These tests were performed on an actual view synthesis use-case which
is a video transition between two points of view in the same scene. Our current research
regarding the view synthesis technique aims to exploit the temporal information to improve
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the hole filling procedure and impose temporal consistency among neighboring frames as an
additional constraint at training and inference times.

Concerning the first test, the three methods MUSE, HDSB and VVS were evaluated for
different selected scenes. The main objective of this test is the visual rendering quality of
the view synthesis methods to determine MUSE if improves over the two other methods. As
a consequence, a second objective is to determine if the level of quality rendered depends
on the scene content or on the configuration of the filming rigs. The analysis of the results
shows that:

• MUSE brings a global gain compared to the state-of-the-art method VVS.

• One perspective to improve MUSE performance is to exploit the temporal informa-
tion to improve the hole filling procedure and impose temporal consistency among
neighboring frames as additional constraint training and inference times.

• The first two subjective tests studied in this work showed that we improve in MUSE
over our previous work HDSB.

• The configuration of the rigs (focal lengths of the cameras, baselines and relative dis-
tance of the objects in the scene) has an impact on the quality of the synthesized views.
A more deep study of the relation between the rig configuration and the quality of the
synthesize view, is added to our perspective in this work. Such a study will give us
a better understanding on how to design a camera rig that meet a specific quality re-
quirements.

Concerning the second test, MUSE, HDSB, and VVS were compared, two by two, in
terms of visual quality. This test quantifies the difference in visual quality between the
different view synthesis algorithms (MUSE, HDSB, and VVS). The analysis of the results
confirms the previous test conclusions showing that: MUSE improves the visual quality of
the state-of-the-art view synthesis method proposed by VVS and HDSB. In general terms,
MUSE is judged slightly better in all contents.

These two tests led us to a third test that determines whether or not, in such use-case,
the view-synthesis-based transition is, anyhow, the transition mode preferred by the viewer.
Therefore, we compare this transition mode to other primary and widespread transition
modes such as the Cut, Blend, Blur, and Morphing. The results show that:

• MUSE takes first place in the ranking of the preferred transition as it is considered
the most natural transition in all the scenes except for PandemoniumRig1; it is the
second-best transition. This test shows that while visual results of the view synthesis
have imperfections, this transition mode is preferred over the simple ones like the Cut
or the Blend.
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• However, the Cut and Blend transitions seem to be alternatives when the view synthe-
sis quality is degraded. The Morphing and the Blur are the least preferred transition
methods in our context.
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Fig. 7.24 Transition effects generated for one sequence Adventure
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MOS
Transition type Scene

Blur

Adventure 4.6
OrangeShaman 4.3
PandemoniumRig1 4.6
PoznanCarpark 4.4
PoznanFencing 4.4
PoznanStreet 4.2
TechnicolorPainter 3.6
VikingVillage 3.8

Cut

Adventure 2.1
OrangeShaman 2.4
PandemoniumRig1 2.2
PoznanCarpark 2.4
PoznanFencing 2.5
PoznanStreet 2.9
TechnicolorPainter 2.9
VikingVillage 2.6

Fading/blending

Adventure 3.1
OrangeShaman 3
PandemoniumRig1 1.7
PoznanCarpark 3
PoznanFencing 2
PoznanStreet 3
TechnicolorPainter 3.2
VikingVillage 3

Morphing

Adventure 3.8
OrangeShaman 4.1
PandemoniumRig1 3.6
PoznanCarpark 3.9
PoznanFencing 4.1
PoznanStreet 3.8
TechnicolorPainter 4.1
VikingVillage 4.2

View Synthesis/Muse

Adventure 1.4
OrangeShaman 1.2
PandemoniumRig1 3
PoznanCarpark 1.3
PoznanFencing 2.1
PoznanStreet 1.1
TechnicolorPainter 1.3
VikingVillage 1.4

Table 7.11 Average inter-observer rankings by transition type and scene
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(a) Adventure

Blur Cut Fading/blending Morphing View Synthesis/Muse

Blur 1 1.3 ·10−06 0.0045 0.27 1.1 ·10−09

Cut 1.3 ·10−06 1 0.11 0.0011 0.27
Fading/blending 0.0045 0.11 1 0.27 0.0017
Morphing 0.27 0.0011 0.27 1 2.5 ·10−06

View Synthesis/Muse 1.1 ·10−09 0.27 0.0017 2.5 ·10−06 1

(b) OrangeShaman

Blur Cut Fading/blending Morphing View Synthesis/Muse

Blur 1 0.00048 0.017 0.73 2.5 ·10−09

Cut 0.00048 1 0.47 0.0013 0.023
Fading/blending 0.017 0.47 1 0.028 0.00079
Morphing 0.73 0.0013 0.028 1 1.2 ·10−08

View Synthesis/Muse 2.5 ·10−09 0.023 0.00079 1.2 ·10−08 1

(c) PandemoniumRig1

Blur Cut Fading/blending Morphing View Synthesis/Muse

Blur 1 2.9 ·10−06 2 ·10−08 0.092 0.0036
Cut 2.9 ·10−06 1 0.41 0.012 0.19
Fading/blending 2 ·10−08 0.41 1 0.00035 0.017
Morphing 0.092 0.012 0.00035 1 0.41
View Synthesis/Muse 0.0036 0.19 0.017 0.41 1

(d) PoznanCarpark

Blur Cut Fading/blending Morphing View Synthesis/Muse

Blur 1 0.00018 0.0079 0.47 1.7 ·10−09

Cut 0.00018 1 0.47 0.0054 0.037
Fading/blending 0.0079 0.47 1 0.086 0.0015
Morphing 0.47 0.0054 0.086 1 1.9 ·10−07

View Synthesis/Muse 1.7 ·10−09 0.037 0.0015 1.9 ·10−07 1

(e) PoznanFencing

Blur Cut Fading/blending Morphing View Synthesis/Muse

Blur 1 0.00013 1.5 ·10−06 1 4.1 ·10−06

Cut 0.00013 1 0.94 0.0019 1
Fading/blending 1.5 ·10−06 0.94 1 3.2 ·10−05 1
Morphing 1 0.0019 3.2 ·10−05 1 8 ·10−05

View Synthesis/Muse 4.1 ·10−06 1 1 8 ·10−05 1

(f) PoznanStreet

Blur Cut Fading/blending Morphing View Synthesis/Muse

Blur 1 0.021 0.029 0.79 2.5 ·10−09

Cut 0.021 1 0.86 0.14 0.00079
Fading/blending 0.029 0.86 1 0.16 0.00048
Morphing 0.79 0.14 0.16 1 1.3e-07
View Synthesis/Muse 2.5 ·10−09 0.00079 0.00048 1.3 ·10−07 1

(g) TechnicolorPainter

Blur Cut Fading/blending Morphing View Synthesis/Muse

Blur 1 0.43 0.79 0.7 8.6 ·10−06

Cut 0.43 1 0.79 0.035 0.0036
Fading/blending 0.79 0.79 1 0.26 0.00018
Morphing 0.7 0.035 0.26 1 4.4 ·10−08

View Synthesis/Muse 8.6 ·10−06 0.0036 0.00018 4.4 ·10−08 1

(h) VikingVillage

Blur Cut Fading/blending Morphing View Synthesis/Muse

Blur 1 0.027 0.23 0.54 2 ·10−06

Cut 0.027 1 0.54 0.0023 0.047
Fading/blending 0.23 0.54 1 0.047 0.0023
Morphing 0.54 0.0023 0.047 1 4.4 ·10−08

View Synthesis/Muse 2 ·10−06 0.047 0.0023 4.4 ·10−08 1

Table 7.13 Results of the Conover pairwise comparison tests of transitions for each scene.
Value values below 5%, highlighted in green, indicate the significance of the differences in
ranking





Chapter 8

Conclusion

Due to the numerous improvements of the view synthesis methods to generate a free-artifacts
novel view, dealing with occlusions for wide baseline camera setup remains a challenging
task in the computer vision community. Indeed, the introduction of technologies based on
deep learning allowed the view synthesis field to see the light again after the constant failures
of the traditional algorithmic approaches. However, the computational demand of the state-
of-the-art learning-based view synthesis methods is thus further increased, especially for
scalable use-cases.

The objective of this thesis is thus, on the one hand, to investigate a lightweight both algo-
rithmic and learning based view synthesis approach that is not time and memory-consuming.
Nevertheless, at the same time, it can generate a plausible novel viewpoint for a wide base-
line. On the other hand, this thesis aimed as well to put the user in the center of the inves-
tigations, that led us to a series of subjective tests allowing the user to evaluate the different
proposed view synthesis method on real cases, and to make a preference on a video transi-
tion type. Consequently, we were encouraged to create a more adaptable database which is
a multi-view stereoscopic dataset for video transition quality of experience.

8.1 Achieved Work

The contribution of this thesis is organized into two parts. The first one focused on devel-
oping a new view synthesis pipeline to build up a novel synthesized view that deals with the
disocclusion problems for wide baseline use-cases.

First, a low-complexity view synthesis scheme has been proposed based on preliminary
warping the reference views to the target position and blending them using a neural network
architecture. Our approach deals with wide baseline sequences with convolutional filters of
reduced size and thus complexity since we noticed that large kernels increase the network
complexity at deployment time and make the network prone to overfitting during training.
We can sum up the approach with three steps:
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• We use an algorithmic method to warp the two reference views to the target view
position.

• We develop a simple inpainting algorithm to fill in the discovery holes due to the
warping process.

• We use a convolutional neural network of four convolutional layers without downsam-
pling the feature maps.

This contribution mainly shows us the benefits of preliminarily warping the views before
blending with a ConvNets by showing how the unwarped case performs significantly worse
for the same kernel size and needs larger filter sizes for better results. Also, as the filter size
increases, the network is more prone to overfit the training data, looking at how the number
of learnable parameters increases with the size of the filters. We experimentally show that
our method performs favorably against both traditional and convolutional synthesis methods
while retaining lower complexity concerning the latter. However, this work also shows the
importance of training the convolutional network to generalize images with different baseline
distances. This work was presented in the International Conference on 3D Immersion (IC3D)
in 2019 [104].

Second, to deal with network model generalization, we propose a residual encoder-
decoder for image blending with a Siamese encoder to keep the parameters count low. There-
fore, while the warping is algorithmic, the blending is still learnable, inspired by image-to-
image convolutional architectures. We also contribute a hole inpainting algorithm to fill the
disocclusions in the warped views.

The difference from our previous work relies on the blender ConvNets where we project
input features over a spatially subsampled latent feature space. Second, we reduce the en-
coder complexity by resorting to a smart flip-convolve-flip approach that lets us share param-
eters among encoders decreasing the network complexity. The idea is to reduce the number
of learnable parameters by sharing weights among the two encoders [107] of the two left
and right reference warped inputs. However, just sharing the same weights among the two
encoders would be suboptimal since the left and right views do not share identical disoc-
clusion artifacts. The flip-convolve-flip approach allows sharing parameters among encoders
and thus lower the network complexity. Third, providing additional filled textures to the
blender helps to prevent disocclusions-induced artifacts better than binary masks. Our view
synthesis experiments on real multiview sequences show better objective image quality than
state-of-the-art methods due to fewer artifacts in the synthesized images. However, in this
approach, we identify the importance of having various enormous datasets to generalize the
network better and exploiting the temporal information for a temporal consistency between
frames used to create a virtual video transition. We presented this work at Signal Processing:
Image Communication Conference in 2021 [142].
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The second part of our contributions in this thesis focused on the user’s quality of expe-
rience for the video transition based on the view synthesis.

First, we assume that when a viewer watches a video for which the content is not attrac-
tive, he would harshly judge the image’s quality instead of focusing on the point of interest
in the image. Therefore, we propose a novel concept of creating a dataset for quality of ex-
perience video assessment where the storytelling draws the user’s attention in the scene. We
film two different scenarios; the first is a theater play called Pandemonium. We placed the
cameras in the scene, so the viewer must change the camera using a transition to follow up
with the storyline and keep sight of the characters. The second one is a short movie created
on behalf of the video transition quality of experience assessment. Each transition has an
interset to be done while watching the video. We thus, film three different scenes of the
movie with three different motivations for a transition. Thus, the users will be focused on the
exciting part of the scene and will maybe not pay attention to the tiniest artifacts all over the
image. We film the dataset in a green screen studio, which gives the possibility of a diver-
sity of contents. However, it requires a significant working time to explore the dataset and
post-processing it for computer vision purposes, from frames extraction to depth estimation
and synthesized views creation. The reason why only Pandemonium content was used in
our work, however, the movie dataset was presented at the Quality of Multimedia experience
international conference (Qomex) in 2021 [143] and received the best student paper award.

Last, for better network generalization, we propose a novel view synthesis approach
called MUSE, which is algorithmic for the warping and the blending and only learnable-
based for the inpainting/enhancement of the blended image. This approach’s particularity is
that training is done with the intra-content strategy, such as in [144]. Since it is hard to collect
many synthesized views of various contents with ground-truth images, applying this strategy
for the training stage seems beneficial. Then, to reduce the network inputs and help better
perform and generalize, we pre-blend the two warped reference views using an α weighting
factor that represent the distance from reference views to the target view. Therefore the input
image is reduced to only one image, and the training is applied on every sequence each time.

As part of the user experience contributions part, we evaluate this method using subjec-
tive tests by comparing our method to our previous work HDSB and state-of-the-art VVS. To
achieve this, we create video transitions using eight different contents, including Pandemo-
nium, with the three methods mentioned previously. Then, we develop two subjective tests
that aim to evaluate the quality of the video transition. The first one is to rate the general
quality and the second one to compare the quality of videos between every two methods. The
experiments show that our view enhancer architecture MUSE allows the best performance
in all sequences and overcomes the state-of-the-art methods, especially for wide baseline
sequences. Following the same prospect to explore the user experience, we perform the third
test. The latter aims to identify the user preference for a video transition type; we thus offer
five different types of transition (cut, blur, blend, morphing, and View synthesis). For the
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view synthesis, we use our so far best performer, MUSE. Our results show that the users’
preference mainly happens on the cut transition, where the view synthesis transition led to
visible and annoying artifacts in the final rendered transition. This work has been presented
in an ongoing revue.

8.2 Limitations

We have two significant limitations of the proposed method, MUSE. First, in a video transi-
tion generated by MUSE, we lack a temporal consistency between the reconstructed frames
due to the processing of frames one by one without building any relation between them. We
notice this problem in the image areas receiving uncoherent treatment of hole inpainting be-
tween two successive temporal frames. The second limitation is the necessary training for
each sequence, which requires having several real points of view placed in the scene to use
as ground truths for the training phase. Also, this strategy is time and memory consuming
which does not make it beneficial for real-time applications. Instead, the HDSB method is
designed for more generalized use-cases where the network only needs to be trained one
time. However, in this case, our main limitation is the limited availability of the training
dataset, which does not help the network perform on sequences more complex than the one
in the training dataset. Also, the warping process of data as input to the network for the train-
ing and testing is time and memory-consuming. Moreover, the time required for operating
with the dataset we created is more significant than the dataset in the state-of-the-art, which
was a limitation that did not permit using it in the series of the performed subjective tests.
Also, we could not explore the possibility of changing the background after filming our two
sequences in a green screen studio.

8.3 Prospects and Future Works

The contributions presented in this dissertation opens opportunities for future works on view
synthesis and quality of experience assessments for video transition. This section presents
the proposed research directions and prospects.

Concerning the view synthesis methods, we could improve the HDSB and MUSE meth-
ods’ performance. First, we give the network the two warped images and their correspon-
dents’ inpainted images as inputs. However, we assume that the depth information of the
warped images could be beneficial for a better prediction of the desired output image. Thus,
we could warp the depth maps of each reference view to the target position and apply an
inpainting algorithm to fill the holes that we assume will be better performing on texture-less
images. This idea will help the network better learn how to fill the missing information in
the image or enhance the quality of a pre-synthesized image. Second, we could improve
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the performance of the networks by adding the temporal information, which means give the
networks as inputs in addition to the textures at the current timestamp, the previous, and the
following frames of the video. This idea will help to coherently fill the holes of the dis-
occluded areas in a warped image. However, also it imposes a temporal consistency while
creating a video transition using several virtual frames.

Concerning the dataset we created for more meaningful subjective tests for video tran-
sition quality of experience assessment, we could make it more useful by developing a sub-
jective test for video transition using headphones to let the sound guide the video. We could
experiment with the importance of storytelling that draws the participants’ attention. In ad-
dition, it would be an interesting experiment to see the effect of their votes on the same
methods we are evaluating. For neural network training purposes, this dataset could be used
several times by changing the background of the green screen studio, which will provide an
enormous variety of different helpful content to increase the training dataset.

Furthermore, we could improve the proposed application, allowing the user to transition
between two real cameras, stop at an intermediate virtual camera, and watch the scene at any
desired position. This idea could be applied once we obtain a better-rendered image using
view synthesis methods, especially for a wide baseline camera setup.
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A.1 Details on the different scenes of the dataset

A.1.1 Adventure

Scene Adventure
Baseline [unit] 0.8
Horizontal field of view [deg] 66
Focal [pix] 1.5e+03
5th depth percentile [unit] 3.1
95th depth percentile [unit] 6.6
Min. Disparity [pix] 1.8e+02
Max. Disparity [pix] 3.9e+02
Disparity amplitude [pix] 2.1e+02
Number of frames 510
Transition Duration [s] 10
Framerate [frame/s] 50
Type synthetic
Camera number 22
Resolution [pix] 1920 x 1080

Table A.1 Main characteristics of the Adventure scene.
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Fig. A.1 Illustration of the views of the different cameras and the associated depth maps for
the sceneAdventure.
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A.1.2 OrangeShaman

Scene OrangeShaman
Baseline [unit] 0.2
Horizontal field of view [deg] 90
Focal [pix] 9.6e+02
5th depth percentile [unit] 1.3
95th depth percentile [unit] 4.6
Min. Disparity [pix] 42
Max. Disparity [pix] 1.5e+02
Disparity amplitude [pix] 1.1e+02
Number of frames 300
Transition Duration [s] 10
Framerate [frame/s] 30
Type synthetic
Camera number 5
Resolution [pix] 1920 x 1080

Table A.2 Main characteristics of the OrangeShaman scene.
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Fig. A.2 Illustration of the views of the different cameras and the associated depth maps for
the sceneOrangeShaman
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A.1.3 VikingVillage

Scene VikingVillage
Baseline [unit] 0.8
Horizontal field of view [deg] 92
Focal [pix] 9.4e+02
5th depth percentile [unit] 7.7
95th depth percentile [unit] 85
Min. Disparity [pix] 8.8
Max. Disparity [pix] 97
Disparity amplitude [pix] 88
Number of frames 510
Transition Duration [s] 10
Framerate [frame/s] 50
Type synthetic
Camera number 22
Resolution [pix] 1920 x 1080

Table A.3 Main characteristics of the VikingVillage scene.
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Fig. A.3 Illustration of the views of the different cameras and the associated depth maps for
the sceneVikingVillage
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A.1.4 PandemoniumRig1

Scene PandemoniumRig1
Baseline [unit] 0.43
Horizontal field of view [deg] 36
Focal [pix] 2.9e+03
5th depth percentile [unit] 2
95th depth percentile [unit] 4
Min. Disparity [pix] 3.1e+02
Max. Disparity [pix] 6.3e+02
Disparity amplitude [pix] 3.2e+02
Number of frames 600
Transition Duration [s] 10
Framerate [frame/s] 60
Type natural
Camera number 10
Resolution [pix] 1920 x 1080

Table A.4 Main characteristics of the PandemoniumRig1 scene.
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Fig. A.4 Illustration of the views of the different cameras and the associated depth maps for
the scenePandemoniumRig1
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A.1.5 PoznanCarpark

Scene PoznanCarpark
Baseline [unit] 1.6
Horizontal field of view [deg] 58
Focal [pix] 1.7e+03
5th depth percentile [unit] 53
95th depth percentile [unit] 3.3e+02
Min. Disparity [pix] 8.5
Max. Disparity [pix] 52
Disparity amplitude [pix] 44
Number of frames 250
Transition Duration [s] 10
Framerate [frame/s] 25
Type natural
Camera number 9
Resolution [pix] 1920 x 1088

Table A.5 Main characteristics of the PoznanCarpark scene.
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Fig. A.5 Illustration of the views of the different cameras and the associated depth maps for
the scenePoznanCarpark
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A.1.6 PoznanFencing

Scene PoznanFencing
Baseline [unit] 1.6
Horizontal field of view [deg] 58
Focal [pix] 1.7e+03
5th depth percentile [unit] 4.6
95th depth percentile [unit] 5.8
Min. Disparity [pix] 4.7e+02
Max. Disparity [pix] 6e+02
Disparity amplitude [pix] 1.3e+02
Number of frames 250
Transition Duration [s] 10
Framerate [frame/s] 25
Type natural
Camera number 10
Resolution [pix] 1920 x 1080

Table A.6 Main characteristics of the PoznanFencing scene.
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Fig. A.6 Illustration of the views of the different cameras and the associated depth maps for
the scenePoznanFencing
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A.1.7 PoznanStreet

Scene PoznanStreet
Baseline [unit] 1.6
Horizontal field of view [deg] 58
Focal [pix] 1.7e+03
5th depth percentile [unit] 56
95th depth percentile [unit] 5.2e+02
Min. Disparity [pix] 5.4
Max. Disparity [pix] 49
Disparity amplitude [pix] 44
Number of frames 250
Transition Duration [s] 10
Framerate [frame/s] 25
Type natural
Camera number 9
Resolution [pix] 1920 x 1088

Table A.7 Main characteristics of the PoznanStreet scene.
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Fig. A.7 Illustration of the views of the different cameras and the associated depth maps for
the scenePoznanStreet
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A.1.8 TechnicolorPainter

Scene TechnicolorPainter
Baseline [unit] 0.072
Horizontal field of view [deg] 46
Focal [pix] 2.4e+03
5th depth percentile [unit] 2.4
95th depth percentile [unit] 4.2
Min. Disparity [pix] 42
Max. Disparity [pix] 73
Disparity amplitude [pix] 31
Number of frames 300
Transition Duration [s] 10
Framerate [frame/s] 30
Type hybrid
Camera number 4
Resolution [pix] 2048 x 1088

Table A.8 Main characteristics of the TechnicolorPainter scene.
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Fig. A.8 Illustration of the views of the different cameras and the associated depth maps for
the sceneTechnicolorPainter
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Test instructions

B.1 Test instructions 1

Test instructions

Bienvenue à b<>com,
Vous allez participer à un test destiné à évaluer la qualité perçue de
séquences vidéo (image seule – sans audio). Votre jugement doit
prendre en considération votre ressenti global de la qualité vidéo
sur la durée totale de la séquence. Pour compléter votre jugement,
d’autres critères plus spécifiques peuvent être utilisés pour évaluer
la qualité vidéo, comme le rendu des détails et des mouvements ou
encore la perception de dégradations visuelles.
Huit contenus vidéo différents (scènes) ont été sélectionnés et seront
soumis à votre jugement (Escrime, Peintre, Village Viking, etc.). Le
thème des scènes ne doit pas être pris en compte dans la notation.
Les séquences vidéo présentées ont chacune une durée de 10 secon-
des.
Après la visualisation de chaque séquence, vous la noterez sur une
échelle de qualité, par l’intermédiaire d’un curseur. Pour chaque
évaluation, vous devez reporter votre jugement en utilisant un des
labels suivants : Mauvais, Médiocre, Assez bon, Bon, Excellent. A
l’issu du vote, il suffit d’appuyer sur le bouton « suivant » pour lancer
la visualisation de la séquence vidéo suivante.
Le test est constitué d’un total de 48 séquences vidéo à noter.
Nous vous remercions de votre participation.
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B.2 Test instructions 2

Consignes de test

Bienvenue à b<>com,
Vous allez participer à un test destiné à évaluer la qualité perçue de
séquences vidéo (image seule – sans audio). Votre jugement doit
prendre en considération votre ressenti global de la qualité vidéo
sur la durée totale de la séquence. Pour compléter votre jugement,
d’autres critères plus spécifiques peuvent être utilisés pour évaluer
la qualité vidéo, comme le rendu des détails et des mouvements ou
encore la perception de dégradations visuelles.
Huit contenus vidéo différents (scènes) ont été sélectionnés et seront
soumis à votre jugement (Escrime, Peintre, Village Viking, etc.). Le
thème des scènes ne doit pas être pris en compte dans la notation.
Pour chaque scène, les vidéos seront présentées par paires avec le
séquencement suivant :

« vidéo A » « vidéo B »
« vidéo A » « vidéo B »

« vote »

Les vidéos A et B ont chacune une durée de 10 secondes.
Après avoir visualisé deux fois les vidéos A et B, vous pourrez noter
la qualité vidéo perçue de la « vidéo B » par rapport à la « vidéo A
». Pour cela, vous utiliserez une échelle de comparaison à 7 notes
comprenant les labels suivants : Largement moins bon, Moins bon,
Légèrement moins bon, Equivalent, Légèrement meilleur, Meilleur,
Largement meilleur. A l’issu de votre vote, il suffit d’appuyer sur
le bouton « suivant » pour lancer la visualisation de la paire de
séquences vidéo suivante.
Le test est constitué d’un total de 48 paires de séquences vidéo à noter.
Une pause d’environ 10 minutes est prévue après la visualisation des
24 premières paires.
Nous vous remercions de votre participation.
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B.3 Test instructions 3

Test instructions

Bienvenue à b<>com,
Vous allez participer à un test destiné à évaluer la préférence de dif-
férents types de transition dans des séquences vidéo (image seule –
sans audio). Une transition est une façon de passer d’une caméra
à une autre caméra d’une même scène. Il existe différentes façons
d’effectuer ce changement de point de vue (passage d’une caméra à
l’autre). Votre jugement consiste à indiquer votre préférence pour
les différentes transitions proposées.
Huit contenus vidéo différents (scènes) ont été sélectionnés et seront
soumis à votre jugement (Escrime, Peintre, Village Viking, etc.). Le
thème des scènes ne doit pas être pris en compte dans la notation.
Pour chaque scène, 5 types de transition sont proposés. Les séquences
vidéo présentées ont chacune une durée de 10 secondes.
Avant d’évaluer votre préférence, vous devrez sélectionner une
séquence vidéo en cliquant sur le bouton associé (A, B, C, D, E) puis
la visualiser en appuyant sur le bouton « Lecture ». L’objectif du test
est de classer par ordre de préférence les transitions de 1 à 5. Pour
cela, vous devez utiliser les touches « haut » et « bas » pour changer
l’ordre selon votre préférence. La transition préférée sera classée 1 et
la moins préférée 5. Les autres transitions seront notées 2, 3 et 4 en
fonction de votre préférence.
Une fois le classement terminé, appuyer sur la touche « suivant » pour
passer à la scène suivante.
Nous vous remercions de votre participation.
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Titre: Amélioration de l’expérience utilisateur en navigation libre via la synthèse d’image

Mot clés : Synthèse de vue, Navigation libre, expérience utilisateur, dataset, transition vidéo

Resumé : Dans l’acquisition de la vidéo multi-vue le centre
d’attention peut être contrôlé par les téléspectateurs plutôt
que par un réalisateur, ce qui implique que chaque téléspec-
tateur peut observer un point de vue unique. Par con-
séquent, ceci exige de placer des caméras autour de la scène
à capturer, ce qui pourrait être très coûteux. La génération
de caméras virtuelles pour remplacer une partie des caméras
réelles de la scène réduit le coût de la configuration de la
vidéo multi-vues.

Cette thèse se concentre sur la génération de transitions
vidéo virtuelles dans les scènes capturées par vidéo multi-
vues pour se déplacer virtuellement d’un point de vue réel
à un autre dans la même scène. Moins nous utilisons de
caméras réelles, moins il y a de dépenses nécessaires dans
la vidéo multi-vues ; cependant, plus la baseline est impor-
tante.

Les méthodes de synthèse de vue ont attiré notre at-
tention, comme une approche de notre problème. Cepen-
dant, dans la littérature, ces méthodes souffrent toujours
d’artefacts visuels dans l’image rendue finale en raison des
occultations dans la nouvelle vue virtuelle cible.

Dans un premier temps, nous proposons une approche

hybride de la synthèse de vues dans laquelle nous défor-
mons d’abord les vues de référence en corrigeant les oc-
cultations. Nous fusionnons les vues pré-traitées via une
architecture de convolution simple. Le warping des vues
de référence réduit la distance entre les vues de référence,
ainsi que la taille des filtres convolutionnels et donc de ré-
duire la complexité du réseau. Ensuite, nous présentons
une approche hybride, où nous fusionnons les vues pré-
warpées via un encodeur-décodeur résiduel avec un en-
codeur siamois afin de maintenir le nombre des paramètres
bas. Nous proposons également un algorithme d’inpainting
des trous pour combler les désoccultations dans les vues
warpées.

En plus, nous nous concentrons sur la qualité de
l’expérience de l’utilisateur pour la transition vidéo et la
base de données. D’abord, nous réalisons un dataset créatif
pour la qualité d’expérience de la transition vidéo. Ensuite,
nous proposons un optimiseur de synthèse de vues multi-
ples algoritmic-learning-based. Le travail vise à évaluer
subjectivement les approches de synthèse de vues proposées
sur 8 différentes séquences vidéo en réalisant une série de
tests subjectifs.

Title: Improving the user experience in free navigation via image synthesis

Keywords : View synthesis, free navigation, quality of experience, dataset, video transition

Abstract : In multi-view capture, the focus of attention
can be controlled by the viewers rather than by a director,
which implies that each viewer can observe a unique point
of view. Therefore, this requires placing cameras around
the scene to be captured, which could be very expensive.
Generating virtual cameras to replace part of the real cam-
eras in the scene reduces the cost of setting up multi-view
video.

This thesis focuses on generating virtual video transi-
tions in scenes captured by multi-view video to virtually
move from one real viewpoint to another in the same scene.
The fewer real cameras we use, the less expensive is re-
quired in the multi-view video; however, the larger the base-
line is.

View synthesis methods have attracted our attention as
an approach to our problem. However, in the literature,
these methods still suffer from visual artifacts in the final
rendered image due to occlusions in the new target virtual
view.

As a first step, we propose a hybrid approach to view
synthesis. We first warp the reference views by correct-
ing the occlusions. We merge the pre-processed views via
a simple convolution architecture. Warping the reference
views reduces the distance between the reference views
and the size of the convolutional filters and thus reduces
the complexity of the network. Next, we present a hybrid
approach. We merge the pre-warped views via a residual
encoder-decoder with a Siamese encoder to keep the pa-
rameters low. We also propose a hole inpainting algorithm
to fill in disocclusions in warped views.

In addition, we focus on the quality of user experi-
ence for the video transition and the database. First, we
perform a creative dataset for the quality of experience of
the video transition. Second, we propose an algorithmic-
learning-based multiple view synthesis optimizer. The work
aims to subjectively evaluate the proposed view synthesis
approaches on 8 different video sequences by performing a
series of subjective tests.


	Table of contents
	List of figures
	List of tables
	Acronyms
	Introduction
	Context and challenges
	Free Navigation
	View synthesis
	Immersive and Interactive free viewpoint video
	Interactivity in Narrative content

	Goals and Motivations
	Contributions
	Organization of this thesis

	General background on Video Navigation
	Camera model
	Video transition techniques
	View morph or warp
	3D warping

	Depth estimation
	Conclusion

	State of the art of Depth-based View Synthesis techniques
	Algorithmic-based View Synthesis methods
	View Synthesis Reference Software (VSRS)
	Reference View Synthesis (RVS)
	Versatile View Synthesizer for 6DoF Immersive Video (VVS)
	Rendering-algorithmic-based techniques in the literature

	 Disocclusion inpainting methods for Depth-based View Synthesis 
	Traditional image inpainting methods
	Learning-based image inpainting methods

	 Artificial intelligence for View Synthesis
	Novel view synthesis using deep learning 
	End-to-end View Synthesis networks

	Conclusion

	A hybrid approach to wide baseline View Synthesis with ConvNet
	Context and challenges
	The view synthesis approach
	View warping
	Hole filling
	CNN-based View blending (CNN-VB)
	Training procedure

	Experimental results
	Experimental setup
	Preliminary Experiments
	Synthesized View Quality
	CNN-based view blending upgraded (CNN-VB+)

	Conclusion

	Hybrid Dual Stream Blender For Wide Baseline View Synthesis
	Context and challenges
	Hybrid dual stream blender (HDSB)
	Warping the reference views to the target position
	Hole inpainting
	ConvNet-based blending

	Experiments and Results
	Experimental setup
	Comparison with prior works
	Ablation studies
	Approach's limitations

	Conclusion

	A Multi-View Stereoscopic Video Database With Green Screen (MTF & Pandemonium) For Video Transition Quality-of-Experience Assessment
	Introduction and context
	Related work
	Synthetic Scenes
	Real scenes

	Dataset creation
	General architecture
	The monitoring system
	The control system
	The camera mounting system

	Dataset content
	Pandemonium
	MTF
	Scene 1: "key-chain"
	Scene 2: "The gossip"
	Scene 3: "The barman"

	Dataset characteristics
	Green Screen
	Wide baseline camera setup
	Points of interest and stimulated transitions
	Dataset utilities

	Conclusion

	MUSE: A Multi-view Synthesis Enhancer
	Context and challenges
	Pre-synthesis process
	ConvNet-based View enhancer
	ConvNet architecture
	Dataset and protocol
	Training procedure

	Experiments and results
	Experimental setup
	Test 1: Evaluation of the perceived quality of the view synthesis methods
	Test 2: Quantification of the differences in the quality of the image synthesis methods.
	Test 3: Evaluation of the preference of different types of inter-view transitions

	Conclusion and discussion

	Conclusion
	Achieved Work
	Limitations
	Prospects and Future Works

	References
	Contents
	Details on the different scenes of the dataset
	Adventure
	OrangeShaman
	VikingVillage
	PandemoniumRig1
	PoznanCarpark
	PoznanFencing
	PoznanStreet
	TechnicolorPainter


	Test instructions
	Test instructions 1
	Test instructions 2
	Test instructions 3

	Publications
	Scientific journals
	International Conferences


