
HAL Id: tel-03617216
https://theses.hal.science/tel-03617216

Submitted on 23 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of next-generation Tb/s turbo codes
Vinh Hoang Son Le

To cite this version:
Vinh Hoang Son Le. Design of next-generation Tb/s turbo codes. Networking and Internet Ar-
chitecture [cs.NI]. Ecole nationale supérieure Mines-Télécom Atlantique, 2021. English. �NNT :
2021IMTA0239�. �tel-03617216�

https://theses.hal.science/tel-03617216
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE 

 
 

 

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE 

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE 
 
 

ECOLE DOCTORALE N° 601  
Mathématiques et Sciences et Technologies  
de l'Information et de la Communication  
Spécialité : Télécommunications 
 

Conception des Turbocodes à Très Haut-Débit 
 
Design of Next-Generation Tbps Turbo Codes (in English) 
 
Thèse présentée et soutenue à IMT Atlantique – Campus de Brest (visio-conférence), le 9 mars 2021 
Unité de recherche : Lab-STICC 
Thèse N° : 2021IMTA0239 

Par 

Vinh Hoang Son LE 

 

 

Rapporteurs avant soutenance : 
 
Charly Poulliat Professeur des Universités, INP-ENSEEIHT Toulouse 
Guido Masera Full Professor, Politecnico di Torino 
 
Composition du Jury :  
 
 
Président : Christophe Jégo Professeur des Universités, Bordeaux INP/ENSEIRB-MATMECA 
Examinateurs :  Charbel Abdel Nour  Maître de Conférences, IMT Atlantique 

Charly Poulliat  Professeur des Universités, INP-ENSEEIHT Toulouse 
Guido Masera  Full Professor, Politecnico di Torino 

Dir. de thèse : Catherine Douillard Professeur, IMT Atlantique 
Co-dir. de thèse : Emmanuel Boutillon Professeur des Universités, Université Bretagne Sud 
 
Invité(s) 
David Gnaedig  Directeur Technique, TurboConcept  
Jean-François Hélard Professeur des Universités, INSA Rennes 



Contents

Contents ii

List of Figures v

List of Tables viii

Acronyms x
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paramètres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

7 Comparaison des performances entre l’algorithme Local-SOVA radix-4 et
l’algorithme MLM radix-4 employés dans le décodeur UXMAP avec KP =
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et modulation BPSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii

12 Comparaison des performances entre les algorithmes MLM, dual-LM et
dual-MLM avec K = 400 bits. . . . . . . . . . . . . . . . . . . . . . . . . . xxxiv

13 Comparaison des performances entre les algorithmes MLM, dual-LM et
dual-MLM avec K = 992 bits. . . . . . . . . . . . . . . . . . . . . . . . . . xxxiv

2.1 Simplified block diagram of a digital communication system with channel
coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Performance amelioration due to convolutional codes. . . . . . . . . . . . . 9
2.3 Two typical types of convolutional encoder. . . . . . . . . . . . . . . . . . 10
2.4 FSM of the convolutional encoder in Figure 2.3b. . . . . . . . . . . . . . . 11
2.5 Trellis diagram of the convolutional encoder in Figure 2.3b. . . . . . . . . . 12
2.6 Recursive systematic encoder of (17, 7, 15, 11, 13)oct convolutional code. . 13
2.7 SOVA process of finding the reliability value of bit ut in trellis section t. . . 16

v



2.8 Turbo encoder as the parallel concatenation of two convolutional encoders. 22

2.9 Turbo decoder consisting of two SISO decoders with the exchange of ex-
trinsic information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Constituent RSC encoder of the LTE standard. . . . . . . . . . . . . . . . 24

2.11 Performance comparison of decoding algorithms in turbo decoder . . . . . 25

3.1 Decoding process of turbo codes with 2 iterations using (a) sequential de-
coding and (b) shuffle decoding . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Metric calculations in the Max-Log-MAP algorithm. . . . . . . . . . . . . . 29

3.3 Basic SISO decoder architecture. . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Generic computation units in a SISO decoder for a binary RSC with ν = 2. 30

3.5 Butterfly scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Decoding with sliding windows (a) FB scheduling (b) butterfly scheduling. 31

3.7 State metric initialization by (a) ACQ, (b) NII, and (c) combining both
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 The PMAP architecture with P = 4. . . . . . . . . . . . . . . . . . . . . . 35

3.9 The XMAP decoder with P = 4 with (a) the scheduling with the delay
of 1 clock cycle between sub-trellis processing and (b) the architectural
overview of the corresponding XMAP decoder. . . . . . . . . . . . . . . . 36

3.10 The XMAP core comprising chain of computation units and pipeline registers. 37

3.11 A radix-4 trellis section made of two consecutive radix-2 trellis sections. . . 37

3.12 The FPMAP architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.13 The UXMAP architecture with two iterations. . . . . . . . . . . . . . . . . 41

3.14 The detailed UXMAP architecture with 2 iterations (4 HIs) and with 4
XMAP cores per HI. The area complexity of the decoder can be reduced
with the increasing number of XMAP cores employed in parallel [2]. . . . . 42

4.1 Trellis representation of a convolutional code with ν = 2. Dashed branches
correspond to data bits equal to 0 and solid branches to data bits equal to 1. 46

4.2 Binary tree architecture used for the soft output computation in the local-
SOVA decoder for the code of Fig.4.1. . . . . . . . . . . . . . . . . . . . . . 53

4.3 Basic architecture considered for the local-SOVA using the FB scheduling. 55

4.4 Hardware architecture of Algorithm 2 for layer l = 1. This is also consid-
ered as the ACSU of the local-SOVA. . . . . . . . . . . . . . . . . . . . . . 57

4.5 SOU architecture of (a) the MLM algorithm and (b) the local-SOVA with
the merge operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Generic hardware architecture of a merge operation M of two paths in-
dexed 2p and 2p− 1 at layer l > 1. . . . . . . . . . . . . . . . . . . . . . . 58

4.7 A radix-4 stage for an convolutional code with ν = 2. . . . . . . . . . . . . 58

4.8 Radix-4 local-SOVA ACSU architecture implementing 2-bit merge opera-
tors according to (4.39). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Generic hardware architecture of path merging operation using function ω. 61

4.10 BER performance of a LTE decoder using radix-8 MLM algorithm, local-
SOVA and its variant with K = 1056, r = 1/3 after 5.5 iterations. AWGN
channel, BPSK modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.11 A radix-16 trellis section made of two radix-4 trellis sections. . . . . . . . . 67

vi



4.12 BER performance of a LTE decoder using radix-16 MLM algorithm, local-
SOVA and its variants with K = 1056, r = 1/3 after 5.5 iterations. AWGN
channel, BPSK modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 The schematic of the radix-4 Max-Log-MAP ACS operator using (a) a
tree-like architecture, and (b) a LUT approach. . . . . . . . . . . . . . . . 73

5.2 The architecture schematic of the radix-4 MLM SOU that produces two
extrinsics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Example of (a) a valid value of bitwidth W , and (b) a non-valid value of
bitwidth W which causes a wrong result. . . . . . . . . . . . . . . . . . . . 77

5.4 BER performance of UXMAP decoder with KP = 32 for different settings. 79
5.5 ACSU processing of one surviving path in the radix-4 local-SOVA. . . . . . 82
5.6 The SOU architecture for the radix-4 local-SOVA with (a) the hardware

processing the first part of (5.16) for the set of upper paths (the process for
the lower paths is identical) and (b) the hardware processing the second
part of (5.16) for both upper paths and lower paths, and then applying the
φ operation and calculating the extrinsic information. . . . . . . . . . . . 84

5.7 BER performance comparison between the radix-4 local-SOVA and the
radix-4 MLM algorithm employed in the UXMAP decoder with KP = 32
for frame sizes K = 128, K = 256 and K = 512. . . . . . . . . . . . . . . . 85

5.8 Selected BMU architecture for the radix-16 local SOVA decoder. . . . . . . 88
5.9 Type-II ACSU architecture for radix-16 local SOVA decoder. . . . . . . . . 89
5.10 BER performance comparison between the MLM algorithm and the radix-

16 local-SOVA employed in the UXMAP decoder with KP = 32 for frame
sizes K = 128, K = 256 and K = 512. . . . . . . . . . . . . . . . . . . . . 91

6.1 Comparison between a section of the original trellis generated from Gsys(D)

and a section of the dual trellis generated from H̃(D) (Example 6.2). . . . 98
6.2 Implementation comparison between dual-LM and radix-4 MLM decoders [1].103
6.3 Procedure for obtaining the reciprocal dual trellis of a high-rate punctured

convolutional code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Performance comparison between MAP and dual-MAP algorithms for var-

ious high-rate schemes for K = 400. AWGN channel and BPSK modulation.110
6.5 The function f(∆) converges to

√
2 when ∆ goes to zero, while the function

g(∆) does not converge and is −∞ as ∆ = 0. . . . . . . . . . . . . . . . . 111
6.6 Hardware architecture of an SMA operator performing z = x+ y. . . . . . 112
6.7 Hardware architecture for the calculation of (6.43) for bit at position j. . . 112
6.8 Proposed hardware architecture of a local-SOVA decoder used to compute

(6.76) and (6.77) for N = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.9 Hardware architecture of a merge operator that selects the minimum metric

with its corresponding sign and updates the reliability value. . . . . . . . . 116
6.10 Performance comparison between the MLM, the dual-LM and the dual-

MLM algorithms with K = 400 bits. . . . . . . . . . . . . . . . . . . . . . 119
6.11 Performance comparison between the MLM, the dual-LM and the dual-

MLM algorithms with K = 992 bits. . . . . . . . . . . . . . . . . . . . . . 120

vii



List of Tables

1 Comparaison des implémentations de turbo-décodeurs à haut débit. . . . . xix
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différents rendements de codage. . . . . . . . . . . . . . . . . . . . . . . . . xxxiii

1.1 Summary of FEC level KPI for different use cases under 28 nm technology
node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Computational complexity per decoded bit of the MLM algorithm with FB
scheduling, sliding window and ACQ according to Figure 3.7c. Convention
for complexity: one addition equals one compare-select operation and is
counted as one computational unit. . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Comparison of high-throughput turbo decoder implementations. . . . . . . 39

3.3 Comparison of the implementation results of the UXMAP and FPMAP
architectures in 28 nm CMOS technology. . . . . . . . . . . . . . . . . . . 43

4.1 Comparison of the computational complexity of the MLM algorithm and
the local-SOVA for various radix schemes (Add: adder; CS: compare-select). 65

4.2 Comparison of the computational complexity of various radix-8 algorithms
(CS: compare-select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Bitwidth of the branch metrics given the channel bitwidth w = 6 bits . . . 76

5.2 Maximum values for ∆Γ, ∆SM, ∆max and minimum bitwidth of the state
metrics for various radix orders for the MLM algorithm, given the channel
bitwidth is w = 6 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



5.3 Maximum values for ∆Γ, ∆SM, ∆max and minimum bitwidth of the state
metrics for various radix orders for the local-SOVA , given the channel
bitwidth is w = 6 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Post place & route area of computational units (in µm2) in radix-4 MLM
and radix-4 local-SOVA decoders. . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Post place & route area of computational units (in µm2) in radix-8 MLM
and radix-8 local-SOVA decoders. . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Post place & route area of computational units (in µm2) in radix-16 MLM
and radix-16 local-SOVA decoders without specific optimization. . . . . . . 87

5.7 Post place & route area of computational units (in µm2) in type-I and
type-II radix-16 local-SOVA decoders. . . . . . . . . . . . . . . . . . . . . . 90

6.1 Parity puncturing pattern for K = 400 . . . . . . . . . . . . . . . . . . . . 109
6.2 ARP interleaver parameters for K = 400 . . . . . . . . . . . . . . . . . . . 109
6.3 Complexity comparison between the dual-LM and the dual-MLM decoders

for various coding rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 ARP interleaver parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5 Parity puncturing patterns for various coding rates . . . . . . . . . . . . . 118

ix



Acronyms

ACQ Acquisition
ACS Add-Compare-Select
ACSU Add-Compare-Select Unit
ARP Almost Regular Permutation
APP A Posteriori Probability
AWGN Additive White Gaussian Noise

BCH Bose–Chaudhuri–Hocquenghem
BCJR Bahl-Cocke-Jelinek-Raviv
BER Bit Error Rate
BMU Branch Metric Unit
BPSK Binary Phase Shift Keying
BR Battail Rule

CS Compare-Select

Dual-LM Dual-Log-MAP
Dual-MLM Dual-Max-Log-MAP
DVB Digital Video Broadcasting
DVB-RCS Digital Video Broadcasting - Return Channel via Satellite
DVB-SH Digital Video Broadcasting - Satellite Handheld

ESF Extrinsic Scaling Factor

FB Forward-Backward
FEC Forward Error Correction
FER Frame Error Rate
FPMAP Fully-Parallel MAP
FSM Finite State Machine

HI Half-Iteration
HR Hagenauer Rule
HSPA High Speed Packet Access

KPI Key Performance Indicators

LDPC Low Density Parity Check

x



LLR Log-Likelihood Ratio
LM Log-MAP
LTE Long Term Evolution
LUT Lookup Table

MAP Maximum A Posteriori
ML Maximum Likelihood
MLM Max-Log-MAP

NII Next Iteration Initialization

PMAP Parallel MAP

QPP Quadratic Permutation Polynomial

RSC Recursive Systematic Convolutional

SIHO Soft-Input Hard-Output
SISO Soft-Input Soft-Output
SM Sign-Magnitude
SMA Sign-Magnitude Addition
SMD Sign-Magnitude Division
SMM Sign-Magnitude Multiplication
SNR Signal-to-Noise Ratio
SOU Soft-Output Unit
SOVA Soft-Output Viterbi Algorithm

UMTS Universal Mobile Telecommunications System
UXMAP Unrolled XMAP

VA Viterbi Algorithm

WiMAX Worldwide Interoperability for Microwave Access

XMAP Pipelined MAP

xi



Conception des turbocodes à très
haut-débit

Chapitre 1. Introduction

Les communications numériques sans fil peuvent être considérées comme l’un des do-
maines les plus dynamiques du secteur des télécommunications aujourd’hui. Ces dernières
décennies ont été marquées par un accroissement de la recherche et des activités indus-
trielles dans ce domaine.

Le succès de la deuxième génération (2G) de communications mobiles a été considéré
comme une démonstration concrète de la possibilité de réaliser de solides systèmes de
communication numérique sans fil. Cependant, le système 2G se concentre principalement
sur la communication vocale, car il ne peut fournir qu’un débit maximal de 9,6 kb/s. Par
la suite, la demande de transmission de données avec des débits de plus en plus élevés
a stimulé la naissance de la technologie UMTS en 1999, qui permet d’atteindre un débit
de 384 kb/s. Puis, le débit maximal de 84 Mb/s a pu être atteint par la technologie
HSPA+ en 2007, et la norme LTE permet de transmettre avec un débit maximal de 300
Mb/s. Avec les normes mobiles les plus récentes, le LTE Advanced Pro [3] et la 5G
New Radio [4], des débits de quelques Gb/s à quelques dizaines de Gb/s peuvent être
atteints. En suivant cette tendance, le débit des communications mobiles à large bande
sera de l’ordre de centaines de Gb/s, voire jusqu’à quelques Tb/s dans un futur proche,
notamment avec l’avènement des communications THz.

En tant que partie du système de communication, le codage de canal, ou code cor-
recteur d’erreurs (FEC), joue un rôle essentiel dans l’activation de la liaison de communica-
tion. Un FEC ajoute des informations redondantes à l’information originale à transmettre.
Grâce à la redondance, les informations corrompues par le bruit et les dégradations du
canal peuvent être corrigées pour récupérer le message du côté du récepteur. L’utilisation
de FECs sophistiqués peut améliorer considérablement la fiabilité de la communication,
permettant ainsi une transmission efficace des données entre des dispositifs dont la puis-
sance d’émission est limitée. Les turbocodes font partie de ces codes capables de fonc-
tionner à une fraction de dB de la limite de Shannon. L’invention des turbocodes par C.
Berrou en 1991 est considérée comme l’un des jalons les plus importants de la recherche
sur le codage de canal. Depuis lors, les turbocodes ont été choisis comme FEC dans de
nombreuses normes de communication numérique, telles que les normes mobiles 3G/4G
et les normes de diffusion vidéo numérique DVB-RCS/RCS2 et DVB-SH [5].

L’augmentation du débit jusqu’au Tb/s vient avec la nécessité de passer à des fréquences
de l’ordre du THz (0,1 THz - 10 THz) et de disposer du traitement en bande de base cor-
respondant approprié, notamment pour le FEC. À cette fin, le projet européen H2020
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EPIC (Enabling Practical Wireless Tb/s Communications with Next Generation Chan-
nel Coding, https://epic-h2020.eu/) s’est attaché à développer un ensemble de nouvelles
technologies de FEC répondant aux exigences de coût et de performance d’une variété de
cas d’utilisation futurs de Tb/s sans fil. L’une des conclusions principales du projet EPIC
est la prédiction selon laquelle l’évolution vers des débits de données sans fil de l’ordre
du Tb/s ne se fera pas sans heurts : les améliorations apportées par les seuls progrès
de la technologie du silicium au cours de la prochaine décennie ne permettront pas de
relever le défi du Tb/s pour les FECs [6]. Par conséquent, le projet EPIC repose sur
la thèse selon laquelle des innovations algorithmiques et architecturales majeures seront
nécessaires dans la conception et la mise en œuvre des algorithmes FEC afin de rendre les
communications sans fil Tb/s réalisables. Comme candidats pour les technologies FEC,
le projet EPIC a considéré trois classes de codes : les turbocodes, les codes LDPC et
les codes polaires, car les performances de correction d’erreurs de ces trois familles sont
proches de la limite de Shannon.

Cette thèse se concentre sur le développement des turbocodes dans le cadre du projet
EPIC. Atteindre efficacement un débit ultra élevé (jusqu’au Tb/s) pour les turbocodes
est très difficile, car leur décodage fait intrinsèquement appel à des calculs en série au
niveau des décodeurs élémentaires. En plus de l’exigence principale en matière de débit,
dans le cadre du projet EPIC, des contraintes supplémentaires telles que la surface de
la puce, l’efficacité surfacique, la densité de puissance, la flexibilité du code et le taux
d’erreur binaire (TEB) doivent également être prises en compte [7].

Dans cette thèse, un nouvel algorithme de décodage à entrées et sorties pondérées
ou SISO (soft-input soft-output), nommé Local-SOVA, a été développé. Il présente une
complexité de calcul inférieure à celle de l’algorithme conventionnel du maximum a poste-
riori avec approximation max-log (Max-Log-MAP) lorsqu’il est utilisé pour le décodage
de radix élevés afin d’augmenter le débit, tout en ayant la même performance de correc-
tion d’erreurs même lorsqu’il est utilisé dans un processus de turbo-décodage. Ensuite,
l’intégration du Local-SOVA dans une architecture matérielle dédiée au très haut débit,
appelée Unrolled-XMAP (UXMAP), a été étudiée. Le Local-SOVA permet de réduire le
coût en surface de l’architecture UXMAP dans les schémas à haut radix, ce qui peut se
traduire par un débit plus élevé du décodeur. D’autre part, la thèse a également exploré
des algorithmes de décodage basés sur le treillis dual des codes convolutifs.
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Chapitre 2. Codes convolutifs et turbocodes

Ce chapitre vise à donner les informations de base nécessaires sur les codes convolutifs et
les turbocodes dans le contexte d’une châıne de communication numérique point à point.
Une attention particulière sera portée aux différents algorithmes de décodage de ces codes.

Codes convolutifs

Dans les codes convolutifs, le message d’information de longueur K est divisé en M blocs
d’information de k bits. Ensuite, pour chaque k bits d’entrée, l’encodeur produit n bits
de sortie générés par une combinaison linéaire des k entrées d’information actuelles et
de l’information précédente à travers ν étapes de mémoire de code, connues comme la
longueur mémoire du code convolutif. En outre, pour chaque message de longueur K, le
processus de codage produit au total M blocs de n bits de sortie, et la longueur du mot
de code est N = n×M . Ainsi, pour les codes convolutifs, le rendement R peut être décrit
par k/n = K/N .

Un encodeur convolutif est constitué d’un ensemble de registres à décalage, et la sortie
est calculée comme une combinaison linéaire de l’entrée et du contenu des registres à
décalage. Par conséquent, l’encodeur convolutif peut être considéré comme une machine
à états finis (FSM). Le diagramme en treillis est alors simplement obtenu en déroulant dans
le temps le diagramme d’état de la FSM. Le diagramme en treillis d’un code convolutif
est une représentation utile car il permet de visualiser à la fois le processus de codage et
le processus de décodage du code.

Algorithmes de décodage pour les codes convolutifs

Un code convolutif peut être utilisé comme un code autonome, ou être concaténé en
série ou en parallèle avec un code externe. Par conséquent, selon le cas, deux principaux
types de décodeurs peuvent être utilisés : les décodeurs SIHO (soft-input hard-output) et
les décodeurs SISO (soft-intput soft-output). L’algorithme de Viterbi (VA) est présenté
comme un candidat pour les décodeurs SIHO. Pour les décodeurs SISO, l’algorithme
de Viterbi à sortie souple (SOVA) et les algorithmes de la famille basée sur le critère du
maximum a posteriori (MAP) sont présentés dans ce manuscrit. Notez que ces algorithmes
utilisent le diagramme en treillis du code pour le décodage. Pour les autres algorithmes
de décodage, le lecteur peut se référer à [8] pour une référence complète.

Le VA décode en utilisant exclusivement le diagramme en treillis du code convolutif.
En utilisant les logarithmes du rapport de vraisemblance, ou LLR, des informations issues
du canal, le VA trouve la séquence d’état dans le diagramme de treillis qui maximise la
fonction de vraisemblance. Ensuite, à partir de la séquence d’état estimée, le mot de code
ainsi que le message peuvent être récupérés. L’algorithme se compose de deux processus :
le processus de propagation récursif des chemins pour trouver la vraisemblance de chaque
chemin et le processus de traçage pour trouver les états de vraisemblance maximale et
donc les décisions dures.

L’algorithme de Viterbi à sortie souple (SOVA) a été proposé par Hagenauer en 1989
afin de répondre au besoin d’un décodeur convolutif à sortie souple [9]. En plus des
décisions dures fournies par le VA, le SOVA produit également des valeurs de fiabilité
pour ces décisions. En général, un décodeur SOVA est constitué de deux parties : un
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décodeur VA classique et une unité de mise à jour de la fiabilité pour produire les valeurs
de fiabilité.

D’autre part, l’algorithme MAP, encore appelé algorithme BCJR, estime la probabilité
a posteriori (APP) pour chaque symbole de données, puis choisit la décision dure qui
correspond à l’APP maximale. La mise en œuvre de l’algorithme BCJR se déroule un
peu comme la propagation du chemin de l’algorithme de Viterbi, mais dans les deux sens
sur le diagramme de treillis. Elle implique deux processus récursifs appelés récursion
avant et récursion arrière. Une fois les deux récursions terminées, l’APP et la décision
dure peuvent être obtenues pour chaque symbole de données. En outre, dans la pratique,
l’application de l’algorithme BCJR dans le domaine logarithmique (algorithme Log-MAP
ou LM) et sa simplification éventuelle à l’aide de l’approximation max-log (algorithme
Max-Log-MAP ou MLM) le rend mieux adapté à une implémentation matérielle.

Turbocodes

Les turbocodes ont été proposés pour la première fois par Berrou en 1993 [10] comme des
codes convolutifs concaténés en parallèle. Un turbo-encodeur se compose généralement
de deux encodeurs convolutifs systématiques récursifs (RSC) concaténés en parallèle et
séparés par un entrelaceur. L’entrelaceur est un composant clé des turbocodes. Son
premier objectif est l’étalement dans le temps des erreurs qui pourraient être produites en
rafales sur le canal de transmission. Ensuite, la conception de l’entrelaceur a un impact
important sur les performances de correction d’erreurs du turbocode et notamment sur
sa distance de Hamming minimale. La figure 1 montre un turbo-encodeur typique obtenu
en concaténant en parallèle deux codes convolutifs.

 

 

Figure 1: Turbo-encodeur: une concaténation parallèle de deux encodeurs convolutifs.

L’architecture du turbo-décodeur a également été proposée par Berrou dans [10] : elle
consiste en deux décodeurs SISO connectés par un entrelaceur puis un désentrelaceur. Les
deux décodeurs SISO échangent les informations décodées par un processus itératif. La
figure 2 montre le processus de décodage d’un turbocode. Par convention, le processus
d’utilisation d’un décodeur SISO est considéré comme une demi-itération (HI), et deux
HI complètes sont considérées comme une itération.

Le SOVA, l’algorithme LM ou l’algorithme MLM peuvent être utilisés pour les décodeurs
SISO et leurs performances respectives sont présentées en figure 3. On constate que les
algorithmes LM et MLM surpassent le SOVA d’un écart de 0,7 dB et 1 dB, respective-
ment. De plus, l’algorithme LM surpasse l’algorithme MLM d’environ 0,3 dB, mais avec
une complexité et une latence plus élevées. Cependant, le MLM peut être facilement
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Figure 2: Turbo décodeur composé de deux décodeurs SISO avec échange d’informations
extrinsèques.

amélioré à l’aide d’un facteur d’échelle extrinsèque (ESF) pour compenser la surestima-
tion de l’information extrinsèque causée par l’approximation max-log. Par conséquent,
dans ce travail, l’algorithme MLM avec ESF = 0,75 est utilisé.
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Figure 3: Comparaison des performances des algorithmes de décodage dans un turbo-
décodeur.
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Chapitre 3. Turbo-décodeurs à haut débit

Ce chapitre présente plusieurs techniques et architectures de décodeurs qui ont été pro-
posées dans la littérature afin de concevoir des turbo-décodeurs avec un débit allant
jusqu’à 100 Gb/s.

En considérant l’algorithme MLM, le processus de décodage SISO implique le calcul
de la métrique de branche, la récursion avant, la récursion arrière et le calcul de la sortie
souple. Ces calculs sont effectués par les unités de calcul suivantes : l’unité métrique de
branche (BMU), les unités d’addition-comparaison-sélection (ACSUs) avant et arrière, et
l’unité de sortie souple (SOU).

Dans l’algorithme MLM, l’ordre d’exécution de la récursion avant, de la récursion
arrière et du calcul de la sortie souple peut varier en fonction de l’ordonnancement. Il
existe deux types d’ordonnancement de base : l’ordonnancement Forward-Backward (FB)
et l’ordonnancement papillon [11, 12]. La quantité de mémoire nécessaire pour stocker la
métrique d’état d’un décodeur SISO augmente linéairement avec la longueur du treillis
K, ce qui peut être un facteur limitant pour les trames de grande taille. La technique de
la fenêtre glissante a donc été proposée [13] pour surmonter cet inconvénient. Le treillis
de longueur K est divisé en fenêtres de longueur W et l’ordonnancement de décodage
est appliqué au niveau de la fenêtre, ce qui réduit les besoins en mémoire : la quantité
de mémoire requise pour les métriques d’état est linéaire avec W au lieu de K. Si les
métriques d’état arrière à la limite des fenêtres glissantes sont initialisées avec des valeurs
équiprobables, il peut en résulter une mauvaise performance de correction d’erreur du
décodeur, en particulier si W est faible. Il est donc nécessaire d’initialiser les métriques
d’état avec des valeurs de fiabilité à la limite de la fenêtre. Deux techniques principales
peuvent être trouvées dans la littérature [11] : l’acquisition (ACQ) et l’initialisation de
l’itération suivante (NII).

Architectures à haut débit

L’architecture de base du turbo-décodeur considérée dans la section précédente ne peut
atteindre qu’un débit de quelques dizaines de Mb/s [12, 13]. Cependant, en raison de la
demande croissante de débit, de nouvelles techniques et architectures doivent être conçues.
La littérature sur les architectures parallèles pour les turbocodes envisage principalement
de diviser le treillis en sous-treillis, puis de le traiter à l’aide d’une architecture MAP
parallèle (PMAP) [14] ou de l’architecture XMAP [15].

L’architecture PMAP est la méthode la plus simple pour augmenter le débit en divisant
le treillis en P sous-treillis de plus petite longueur. Ensuite, chaque sous-treillis est décodé
indépendamment en parallèle. Cependant, pour mettre en œuvre l’architecture PMAP,
la quantité de ressources matérielles augmente d’un facteur P puisque chaque sous-treillis
est traité par un décodeur SISO indépendant. Il est à noter que la PMAP peut utiliser
l’ordonnancement à fenêtre glissante et l’ordonnancement FB, ainsi que l’ordonnancement
papillon. De plus, l’initialisation NII et/ou ACQ peut être utilisée pour compenser la
perte de dépendance des données due à la division en sous-trellis, préservant ainsi les
performances inhérentes de correction d’erreurs du turbo-décodeur.

L’architecture XMAP divise également le treillis en P sous-treillis de taille KP . Mais,
elle décode chaque sous-treillis sur la base d’un noyau XMAP. Ce noyau a une structure de
pipeline d’un seul sous-treillis, composé d’une châıne d’unités de calcul (BMU, ACSU, et
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SOU) connectées par des registres de pipeline. Pour chaque cycle d’horloge, un nouveau
sous-treillis est placé dans le pipeline de traitement et, par conséquent, pour chaque cycle
d’horloge, le décodeur peut produire KP valeurs de fiabilité. En termes de complexité,
le noyau XMAP nécessite 2KP BMUs, 2KP ACSUs, KP SOUs, ainsi que les registres du
pipeline pour les métriques d’état, les métriques de canal et les informations a priori. De
plus, dans le cas où l’initialisation ACQ est utilisée, les registres du pipeline et le nombre
de BMU et ACSU augmentent avec la longueur de l’ACQ.

Une autre technique pour améliorer le débit est l’utilisation de schémas à haut radix,
qui a été proposée dans [16] pour augmenter le débit du calcul des métriques d’état
en agrégeant des sections de treillis successives. Pour les codes RSC binaires avec un
rendement 1/n, le treillis original est sous forme de radix-2. Ensuite, l’agrégation de deux
sections successives de treillis radix-2 donne une section de treillis radix-4. De même,
l’agrégation de trois et quatre sections de treillis radix-2 donne respectivement une section
de treillis radix-8 et radix-16. L’utilisation de schémas radix-2T produit T sorties souples
en un seul cycle d’horloge. Ainsi, idéalement, elle permet d’augmenter le débit du décodeur
d’un facteur T tout en conservant les mêmes performances de correction des erreurs.
Cependant, les schémas radix-2T nécessitent une augmentation de la complexité des unités
de calcul (BMU, ACSU, SOU). De plus, ils induisent également une augmentation du
chemin critique de l’ACSU, ce qui diminue la fréquence maximale de fonctionnement et
donc le débit du décodeur.

Pour l’algorithme MLM, il a été démontré que l’utilisation de radix-4 permettait
d’obtenir un débit plus élevé que les schémas radix-2, au prix d’une plus grande complexité
du décodeur pour le turbocode LTE [17]. Cependant, les ordres de radix supérieurs à 2
(radix-8, radix-16 et plus) se sont montrés inefficaces en raison de la complexité supérieure
et du chemin critique plus long [18].

Le tableau 1 donne une vue d’ensemble des implémentations récentes de turbo-décodeurs
rapportées dans la littérature, qui utilisent les techniques à haut débit décrites précédemment.
Ce tableau montre qu’en employant l’architecture PMAP ou XMAP avec ou sans l’utilisation
de schémas à haut radix, les décodeurs turbo peuvent atteindre des débits de données de
l’ordre de plusieurs Gb/s.

Architectures à très haut débit

Dans le contexte du projet EPIC, des débits de dizaines de Gb/s à des centaines de
Gb/s sont requis dans plusieurs cas d’utilisation. A notre connaissance, il existe deux
architectures qui peuvent répondre à de telles contraintes de haut débit : l’architecture
MAP entièrement parallèle (FPMAP) et l’architecture unrolled-XMAP (UXMAP).

La FPMAP est un cas extrême de l’architecture PMAP où la taille des sous-treillis est
de 1. L’approche a été présentée pour la première fois dans [25] et une implémentation
basée sur les turbocodes LTE a été publiée dans [26]. Les auteurs ont montré que pour
K = 6144, le débit du FPMAP avec 39 itérations et une fréquence d’horloge de 100 MHz
est de 15,8 Gb/s en CMOS 65 nm. Cependant, la complexité de la surface est de 109
mm2, ainsi, l’efficacité de la surface est de 0,145 Gb/s/mm2. Par conséquent, malgré sa
capacité à atteindre un débit élevé, la FPMAP présente une efficacité de surface inférieure
à celle des architectures PMAP.

En outre, l’architecture FPMAP présente d’autres inconvénients. En premier lieu,
son manque de flexibilité avec la taille des blocs à coder. De plus, la combinaison d’une
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Reference [19] [20] [21] [21] [22] [23] [24]

Code - Flexibilité LTE-A LTE-A LTE-A LTE-A LTE-A
K =
4096

LTE-A

Taille de bloc max. 6144 6144 6144 6144 6144 4096 6144

Architecture PMAP PMAP PMAP PMAP PMAP PMAP XMAP

Radix/P 4/16 4/32 2/64 2/64 2/64 16/32 4/192

Taille de la fenêtre 32 192 96 96 64 32 32

Nb. max d’itérations 5.5 6 8 5.5 6 8 7

Technologie (nm) 65 65 90 90 65 90 28

Débit (Gb/s) 1.0 2.2 2.3 3.3 1.3 1.4 1.1

Fréquence (MHz) 410 450 625 625 400 175 625

Surface (mm2) 2.5 7.7 19.8 19.8 8.3 9.6 0.49

Efficacité surfacique
(Gb/s/mm2)

0.41 0.3 0.1 0.2 0.2 0.1 2.3

Table 1: Comparaison des implémentations de turbo-décodeurs à haut débit.

taille de sous-treillis de 1 et du décodage shuffle dégrade les performances de correction
d’erreurs du décodeur. Aux rendements faibles tels que R = 1/3, la FPMAP a besoin de
16 à 32 itérations pour compenser cette perte de performance. Mais pour des rendements
élevés tels que 8/9 et 18/19, il est montré dans [18] que le nombre d’itérations augmente
drastiquement jusqu’à 80.

L’UXMAP est une architecture entièrement pipelinée qui déploie plusieurs noyaux
XMAP en parallèle et déroule les itérations du processus de turbo-décodage. Avec un
pipeline entièrement rempli, l’UXMAP peut terminer le décodage d’un turbocode entier
en un cycle d’horloge. Par conséquent, son débit n’est limité que par la fréquence d’horloge
réalisable. De plus, l’architecture UXMAP est flexible en termes de taux de poinçonnage,
et la flexibilité en termes de trames de l’UXMAP a été traité dans [27].

Le tableau 2 montre la comparaison entre les architectures FPMAP et UXMAP, toutes
deux implémentées en technologie CMOS 28 nm et rapportées dans [18, 27]. Pour K =
128, l’UXMAP peut atteindre un débit de 102,4 Gb/s avec une surface de 23,61 mm2 avec
un seul noyau XMAP par HI [18], et avec une surface de 16,52 mm2 avec 4 noyaux XMAP
en parallèle par HI [27]. La FPMAP, quant à lui, ne peut atteindre que 39,86 Gb/s de
débit avec une surface similaire (24,09 mm2) pour K = 6144. De plus, pour K = 128, la
FPMAP ne peut atteindre que 1.6 Gb/s avec une surface de 1.04 mm2. Par conséquent,
en termes d’efficacité surfacique, l’architecture UXMAP surpasse l’architecture FPMAP
d’un facteur de 2,6 – 4,0.
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Architecture UXMAP [18] UXMAP [27] FPMAP [18] FPMAP [26]

K 128 128 128 6144

Radix/P 4/1 4/4 2/128 2/6144

Fréquence (MHz) 800 800 500 252

Débit (Gb/s) 102.4 102.4 1.6 39.86

Surface (mm2) 23.61 16.52 1.04 24.09

Eff. surf. (Gb/s/mm2) 4.34 6.20 1.53 1.65

Table 2: Comparaison des résultats des architectures UXMAP et FPMAP en technologie
CMOS 28 nm.

Chapitre 4. L’algorithme Local-SOVA

Ce chapitre est dédié à la description d’un algorithme complètement nouveau qui a été
développé dans cette thèse, et que nous avons appelé algorithme de Viterbi à sortie souple
en local (Local-SOVA). L’algorithme et son application au décodage SISO à haut radix
sont présentés dans ce chapitre.

Le Local-SOVA est issu d’une combinaison entre l’algorithme MLM et les règles de
mise à jour employées dans les différentes variantes du SOVA : la règle de Hagenauer (HR)
et la règle de Battail (BR). Plus précisément, l’algorithme proposé effectue la récursion
métrique avant et arrière comme dans l’algorithme MLM, mais il produit la sortie sou-
ple d’une manière plus efficace, en particulier avec des schémas à radix élevé. Notons
également que la sortie souple produite par le Local-SOVA est la même que dans le
MLM.

L’algorithme Local-SOVA

Étant donné une section de treillis dans le diagramme de treillis d’un code convolutif, nous
définissons un chemin P comme un 3-tuple composé d’une métrique de chemin désignée
par M , d’une décision dure désignée par u et d’une valeur de fiabilité relative à u, désignée
par L :

P = {M,u, L} ∈ R× {0, 1} × R+, (1)

où R est l’ensemble des nombres réels et R+ est l’ensemble des nombres réels positifs.
Si le chemin P passe par la branche (s, s′) dans la section de treillis k, sa métrique de

chemin M est
Mk(s, s

′) = Ak(s) + Γk(s, s
′) +Bk+1(s′), (2)

où Ak(s) est la métrique d’état avant à l’instant k et à l’état s, Γk(s, s
′) est la métrique

de branche entre l’état s et s′ de la section k, et Bk+1(s′) est la métrique d’état arrière à
l’instant k+ 1 et à l’état s′. De plus, la décision dure u du chemin P est le bit de donnée
transporté par la branche correspondante dans la section du treillis. La fiabilité de la
décision dure, L, est initialisée à +∞ ou à la plus grande valeur possible réalisable avec
la quantification utilisée.

Nous définissons également l’opération de fusion

M : {R× {0, 1} × R+}2 → R× {0, 1} × R+, (3)
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prenant deux chemins comme arguments et produisant un chemin comme sortie. En
supposant que Pa = {Ma, ua, La} et Pb = {Mb, ub, Lb} sont deux chemins, la détermination
du chemin Pc tel que Pc = M(Pa, Pb) implique trois procédures : trouver Mc, uc et
Lc. La métrique de chemin de sortie Mc et la décision dure uc peuvent être obtenues
en comparant les métriques de chemin Ma et Mb. Soit p = arg maxa,b(Ma,Mb), alors
Mc = Mp et uc = up. Grâce à ce mécanisme, le chemin de sortie de la fusion de plusieurs
chemins se verra attribuer la plus grande métrique de chemin et sera considéré comme le
chemin à maximum de vraisemblance, ou chemin ML. Ensuite, la décision portée par le
chemin ML est également la décision dure produite par le décodeur. En outre, afin de
trouver Lc, nous employons les deux règles bien connues de mise à jour de la fiabilité :
HR et BR [9, 28, 29]. Ces deux règles ont été proposées indépendamment à la fin des
années 80 pour les décodeurs SOVA :

1. If ua 6= ub, appliquer HR
Lc = min

(
Lp,∆p,p′

)
. (4)

2. If ua = ub, appliquer BR

Lc = min
(
Lp,∆p,p′ + Lp′

)
. (5)

où p = arg maxa,b(Ma,Mb), p
′ = arg mina,b(Ma,Mb), et ∆p,p′ = Mp−Mp′ . Ces deux règles

de mise à jour peuvent être résumées par l’opérateur φ suivant :

Lc = φ
(
Lp, Lp′ ,∆p,p′ , up, up′

)

= min
(
Lp,∆p,p′ + δ(up, up′)Lp′

)
, (6)

où

δ(up, up′) =

{
1, if up = up′

0, otherwise.
(7)

Nous avons alors le théorème suivant sur l’opération de fusion.

Theorem. L’opération de fusion est commutative et associative.

• Propriété commutative : soit Pa, Pb deux chemins fusionnés, alors

M(Pa, Pb) =M(Pb, Pa), (8)

• Propriété associative : si Pa, Pb et Pc sont trois chemins fusionnés, alors

M(M(Pa, Pb), Pc) =M(Pa,M(Pb, Pc)). (9)

L’opérateur “=” entre deux chemins est défini comme l’égalité entre tous les éléments de
leurs tuples.

Sur la base des propriétés commutatives et associatives de l’opération de fusion, deux
conséquences importantes peuvent être déduites :

• Nous pouvons étendre l’opération de fusion à plus de deux chemins. Par exemple,
pour quatre chemins Pa, Pb, Pc et Pd, nous pouvons écrire M(Pa, Pb, Pc, Pd) pour
désigner le chemin de sortie obtenu par la fusion des quatre chemins.
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• L’opération de fusion peut être traitée de manière dichotomique :

M(Pa, Pb, Pc, Pd) =M
(
M(Pa, Pb),M(Pd, Pc)

)
,

oùM(Pa, Pb) etM(Pc, Pd) peuvent être traités en parallèle, puis les chemins résultants
sont fusionnés pour donner le chemin de sortie.

Par conséquent, étant donné un ensemble de N chemins avec différentes métriques
de chemin et décisions dures, l’application de l’opération de fusion sur les chemins peut
produire le chemin final dont la décision dure est la décision dure du décodeur, et dont la
valeur de fiabilité est la sortie souple du décodeur.

Le Local-SOVA utilise largement l’opération de fusion pour trouver la sortie souple
du décodeur SISO. Tout d’abord, il calcule la métrique d’état avant et la métrique d’état
arrière comme dans l’algorithme MLM. Une fois que ces métriques d’état sont disponibles
pour la section de treillis de traitement, il forme les chemins basés sur les branches de
la section de treillis, et trouve la sortie souple avec l’opération de fusion. Les sorties
souples produites par le Local-SOVA sont exactement les mêmes que celles produites par
l’algorithme MLM.

Algorithmes de décodage à haut radix utilisant le Local-SOVA

Pour un schéma radix-2T donné, nous agrégeons T sections de treillis radix-2 pour former
une section de treillis radix-2T dans le diagramme en treillis. Nous définissons alors un
chemin radix-2T P passant par la branche (s, s′) comme suit :

P = {M,u1, . . . , uT , L1, . . . , LT} ∈ R× {0, 1}T × {R+}T (10)

où M est la métrique du chemin, u1, . . . , uT sont les T décisions dures attachées à la
branche (s, s′), et L1, . . . , LT sont les valeurs de fiabilité pour chaque décision dure et sont
initialisées à +infty.

En outre, l’opération de fusion peut également être appliquée aux chemins à radix
élevé. Notez que l’opération de fusion dans ce cas est également commutative et associa-
tive. Par conséquent, comme le nombre de chemins dans la section du treillis augmente
de façon exponentielle avec l’ordre de radix, nous avons plus de liberté pour choisir la
façon dont les chemins sont fusionnés. En effet, puisque nous connaissons a priori les
décisions dures des chemins, le Local-SOVA peut organiser efficacement l’ordre de fusion
de manière à utiliser le moins possible l’opérateur φ (pour mettre à jour les valeurs de fia-
bilité). Cela permet de réduire la complexité du décodeur Local-SOVA par rapport à son
homologue MLM lorsqu’il s’agit de schémas à haut radix, sans affecter les performances
de correction d’erreurs du décodeur.

Le tableau 3 présente l’analyse de la complexité pour les radix-2, radix-4 et radix-8 du
Local-SOVA par rapport au MLM. Dans cette analyse, nous utilisons un code convolutif
à 8 états, et la complexité de décodage, désignée par C, est rapportée pour une section de
treillis composée de huit ACSUs avant, huit ACSUs arrière et un SOU :

C = (8× CF ) + (8× CB) + CS, (11)

où CF , CB et CS désignent la complexité de calcul de l’ACSU avant, de l’ACSU arrière
et du SOU, respectivement. Nous pouvons voir que pour radix-2, l’algorithme MLM et

xxii



le Local-SOVA ont à peu près la même complexité, tandis que pour les schémas radix-4
et radix-8, le Local-SOVA est moins complexe. Pour les systèmes de radix élevé (4 et
8), l’utilisation du Local-SOVA réduit la complexité de 27%. De plus, la complexité par
bit décodé de l’algorithme MLM augmente de 79 à 206/2 = 103 unités de calcul lors du
passage du radix 2 au radix 4. En revanche, elle diminue de 77 à 75,5 d’unités de calcul
pour le Local-SOVA. Par conséquent, l’utilisation du Local-SOVA pour les schémas de
radix-4 peut augmenter l’efficacité du décodeur.

Table 3: Comparaison de la complexité de calcul de l’algorithme MLM et du Local-SOVA
pour différentes valeur de radix (Add : additionneur ; CS : comparaison-sélection).

Radix
Max-Log-MAP Local-SOVA

CLSOVA

CMLM
8×CF 8×CB CS CMLM

8×CF 8×CB CS CLSOVA
Add CS Add CS Add CS Add CS Add CS Add CS

Radix-2 16 8 16 8 17 14 79 16 8 16 8 22 7 77 0.975

Radix-4 32 24 32 24 34 60 206 32 24 40 32 22 21 151 0.733

Radix-8 64 56 64 56 67 186 493 64 56 96 88 29 28 361 0.732

Il est également à noter que, comme il y a un grand nombre de chemins dans une section
de treillis à radix élevé, les valeurs de fiabilité des chemins seront divergentes. Dans ce
cas, nous pouvons appliquer une approximation à l’opérateur φ dans l’opérateur de fusion.
Contrairement à l’opérateur φ qui utilise à la fois HR et BR pour mettre à jour la valeur
de fiabilité, nous avons la possibilité d’utiliser uniquement HR comme dans [9]. Nous
avons appelé ω ce nouvel opérateur qui n’utilise que la règle HR. L’opérateur ω est moins
complexe que l’opérateur φ, mais le prix à payer est une dégradation des performances.
Cependant, dans le Local-SOVA, nous pouvons choisir où déployer les opérateurs φ, et
où déployer les opérateurs ω. Il a été démontré que si nous remplaçons uniquement les
opérateurs φ par les opérateurs ω dans les premières couches de l’opération de fusion,
nous pouvons réduire considérablement la complexité sans dégrader les performances du
décodeur.

La figure 4 montre les performances du Local-SOVA radix-8 et de ses variantes avec
différents paramètres d’opérateurs φ et d’opérateurs ω. Nous avons désigné par DEC 1
l’algorithme MLM, par DEC 2 le Local-SOVA avec seulement des opérateurs φ, et pour
DEC 3 à DEC 6, nous avons substitué progressivement les opérateurs φ par les opérateurs
ω dans l’ACSU et ensuite le SOU. Comme prévu, le Local-SOVA avec seulement des
opérateurs φ (DEC 2) a les mêmes performances que l’algorithme MLM (DEC 1). De
plus, en remplaçant les opérateurs φ par des opérateurs ω dans les ACSUs (DEC-3),
les courbes simulées confirment que la performance de correction d’erreur du décodeur
n’est pas dégradée, offrant ainsi une alternative peu complexe par rapport au décodeur
original Local-SOVA. En remplaçant progressivement les opérateurs φ dans le SOU, la
performance est dégradée de 0,05 dB à BER = 10−6 lorsque les opérateurs ω sont utilisés
dans les deux premières couches et d’environ 0,3 dB lorsque seuls les opérateurs ω sont
implémentés.

La complexité de ces décodeurs est indiquée dans le tableau 4. Le décodeur MLM
(DEC 1) est pris comme référence. Nous pouvons observer que si nous utilisons des
opérateurs ω au lieu des opérateurs φ dans les ACSU (DEC 3), la complexité résultante
est réduite à 67% de la complexité du décodeur de référence par rapport à 73% si seuls
les opérateurs φ sont utilisés, sans impact notable sur la performance de correction. Si
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DEC 1: MLM
DEC 2: L-SOVA ACSU-(0,3) SOU-(0,3)
DEC 3: L-SOVA ACSU-(3,0) SOU-(0,3)
DEC 4: L-SOVA ACSU-(3,0) SOU-(1,2)
DEC 5: L-SOVA ACSU-(3,0) SOU-(2,1)
DEC 6: L-SOVA ACSU-(3,0) SOU-(3,0)
DEC 7: classic SOVA

Figure 4: Performance d’un décodeur LTE utilisant l’algorithme MLM radix-8, Local-
SOVA et sa variante avec K = 1056, r = 1/3 après 5,5 itérations. Canal AWGN,
modulation BPSK.

l’on souhaite une complexité plus faible, le Local-SOVA avec presque tous les opérateurs
ω sauf la dernière couche (DEC 5) peut être utilisé pour atteindre 63% de la complexité
de référence, au prix d’une dégradation des performances de 0, 05 dB.

Table 4: Comparaison de la complexité de calcul de divers algorithmes radix-8 (CS :
comparaison-sélection).

Algorithm
8× CB 8× CF CS Computational

complexity C

Complexity

normalization

Performance loss

at BER 10−6 (dB)Add CS Add CS Add CS

MLM 64 56 64 56 67 186 493 1 −

DEC 2 64 56 96 88 29 28 361 0.73 0.0

DEC 3 64 56 64 88 29 28 329 0.67 < 0.01

DEC 4 64 56 64 88 17 28 317 0.64 0.05

DEC 5 64 56 64 88 11 28 311 0.63 0.05

DEC 6 64 56 64 88 8 28 308 0.62 0.3

De plus, pour utiliser le radix-16 dans un code RSC à 8 états, le MLM doit employer des
ACSUs radix-16, qui sont beaucoup plus complexes que les radix-8, mais qui introduisent
également un chemin critique plus long, ce qui diminue le débit du décodeur. D’un
autre côté, le Local-SOVA peut résoudre ce problème en déplaçant la première couche
de l’opération de fusion dans l’unité métrique de branche (BMU) afin que les ACSU
du Local-SOVA puissent rester en radix-8. Il faut également noter que la BMU n’a
pas de boucle récursive, elle n’a donc pas d’impact sur le chemin critique du décodeur.

xxiv



La figure 5 montre les performances du Local-SOVA radix-16. Nous pouvons observer
que les performances ne sont pas affectées par l’inclusion du BMU dans l’opération de
fusion et l’utilisation d’ACSU radix-8. De plus, nous pouvons toujours remplacer les
opérateurs φ par des opérateurs ω dans l’ACSU et dans la première couche du SOU avec
une dégradation négligeable des performances. Cependant, d’autres substitutions ne sont
pas recommandées car une pénalité de 0, 4 dB à 10−4 de BER peut être observée si nous
utilisons uniquement des opérateurs ω.
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Radix-16 MLM
Radix-16 L-SOVA ACSU-(0,3), SOU-(0,3)
Radix-16 L-SOVA ACSU-(3,0), SOU-(0,3)
Radix-16 L-SOVA ACSU-(3,0), SOU-(1,2)
Radix-16 L-SOVA ACSU-(3,0), SOU-(2,1)
Radix-16 L-SOVA ACSU-(3,0), SOU-(3,0)

Figure 5: Performance d’un décodeur LTE utilisant l’algorithme MLM radix-16, Local-
SOVA et ses variantes avec K = 1056, r = 1/3 après 5.5 itérations. Canal AWGN,
modulation BPSK.

Conclusion

Nous avons observé que l’utilisation de l’algorithme Local-SOVA dans les turbo-décodeurs
LTE radix-8 réduit considérablement la complexité de calcul du décodeur par rapport à
l’architecture Max-Log-MAP radix-8 de référence. Par exemple, l’utilisation de l’algorithme
Local-SOVA pour le décodage radix-8 du turbocode LTE réduit la complexité de 33% sans
aucune dégradation des performances et de 36% avec une légère pénalité de seulement 0,05
dB. De plus, le Local-SOVA permet d’augmenter l’ordre de radix sans pénaliser les per-
formances de correction d’erreur ou le chemin critique du décodeur, mais au prix d’une
complexité accrue. Ces avantages font du Local-SOVA un algorithme de premier choix
pour le développement de turbo-décodeurs à haut radix.
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Chapitre 5. Le Local-SOVA et l’architecture unrolled-

XMAP

Ce chapitre traite de l’implémentation des unités de calcul des décodeurs Local-SOVA
radix-4, radix-8 et radix-16 dans l’architecture UXMAP pour les applications à haut débit.
Pour chaque ordre de radix, des architectures matérielles sont proposées et implémentées
pour observer comment les réductions en complexité de calcul se traduisent en réduction
de surface.

Performance de l’algorithme MLM radix-4 avec l’architecture
UXMAP

Nous commençons par étudier les performances de l’algorithme MLM radix-4 avec l’architecture
UXMAP. Cela nous servira de base de référence à laquelle nous pourrons nous comparer
lorsque nous développerons le Local-SOVA avec l’architecture UXMAP.

Nous avons simulé trois configurations d’un turbo-décodeur MLM/UXMAP (KP = 32)
pour différentes tailles de trame K = 128, 256, 512 et 8, 6, 5 HIs, respectivement, en
virgule fixe avec les LLR de canal quantifiés sur 6 bits. Ces paramètres sont choisis
parce qu’ils fournissent des performances de correction similaires tout en ayant un nombre
d’itérations différent. Les courbes de BER correspondantes sont présentées sur la figure 6.
Nous pouvons clairement voir que les trois paramètres offrent des performances similaires
avec un gain de codage de 0,25 dB pour K = 256 avec 6 HIs, et une dégradation des
performances de 0,25 dB pour K = 512 avec 5 HIs, par rapport au cas de l’utilisation de
K = 128 avec 8 HIs.
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K128 - 8 HIs
K256 - 6 HIs
K512 - 5 HIs

Figure 6: Performance du décodeur MLM/UXMAP avec KP = 32 pour différents
paramètres.
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Local-SOVA à radix élevé dans l’architecture UXMAP

Local-SOVA radix-4 et radix-8

Dans l’implémentation des ACSUs radix-4 du Local-SOVA, les auteurs de [30] ont proposé
une méthode de calcul des valeurs de fiabilité compatible avec l’approche lookup-table
(LUT) [17, 30, 31]. Cela équivaut à l’utilisation d’opérateurs φ dans les ACSUs radix-4.
En outre, pour alléger la complexité du SOU radix-4, les auteurs de [30] ont proposé
d’utiliser les opérateurs ω sauf pour la dernière couche seulement où l’opérateur φ est
employé à la place. Comme cela a déjà été montré dans le Local-SOVA original, cela
n’a pratiquement aucun impact sur les performances du décodeur. Néanmoins, nous
avons simulé les performances de correction d’erreurs des implémentations en virgule fixe
du turbo-décodeur LTE en utilisant un décodeur Local-SOVA radix-4 et l’architecture
UXMAP. La figure 7 compare les courbes de performance obtenues avec celles obtenues à
l’aide de l’algorithme MLM. Nous pouvons constater que le Local-SOVA avec l’utilisation
d’opérateurs ω dans les deux premières couches du SOU n’entrâıne qu’une dégradation
négligeable des performances (moins de 0,05 dB) par rapport à l’algorithme MLM pour
les trois paramètres.
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Figure 7: Comparaison des performances entre l’algorithme Local-SOVA radix-4 et
l’algorithme MLM radix-4 employés dans le décodeur UXMAP avec KP = 32 pour des
tailles de trame K = 128, K = 256 et K = 512.

Les unités de calcul (BMU, ACSU et SOU) de l’algorithme radix-4 Local-SOVA ont
été implémentées en VHDL, et les conceptions ont été placées et routées avec Syn-
opsis IC Compiler pour un processus CMOS 28 nm sous des contraintes PVT (Pro-
cess/Voltage/Temperature) du pire cas et une fréquence d’horloge cible de 800 MHz.
À titre de comparaison, les BMU, ACSU et SOU de l’algorithme MLM radix-4 ont
également été implémentés, placés et routés. La comparaison en termes de surface de
silicium résultante est présentée dans le tableau 5. Ainsi, pour décoder 6 sections de
treillis radix-4 (équivalentes à 12 sections de treillis radix-2), le schéma radix-4 nécessite
6 BMU, 6 ACSU et 6 SOU. La complexité globale des décodeurs radix-4MLM et radix-4
Local-SOVA est indiquée dans la dernière colonne du tableau 5. Ces résultats nous perme-
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ttent d’affirmer que l’utilisation du Local-SOVA permet une réduction de complexité de
33% par rapport au MLM, ce qui est en accord avec l’analyse de la complexité calculatoire
du chapitre précédent.

Algorithme BMU ACSU SOU 6 sections de
treillis radix-4

Max-Log-MAP 1200 3885 10485 93420

Local-SOVA 1200 4076 5267 63258

Local-SOVA
Max-Log-MAP 1.0 1.05 0.5 0.677

Table 5: Surfaces après placement et routage des unités de calcul (en µm2) dans les
décodeurs MLM radix-4 et Local-SOVA radix-4.

En outre, l’architecture Local-SOVA radix-4 peut être mise à l’échelle en radix-8 en
utilisant une LUT plus grande pour le radix-8. Dans ce cas, les performances sont les
mêmes. Le tableau 6 montre la complexité du Local-SOVA radix-8 et du MLM radix-8.
Pour décoder 4 sections de treillis radix-8 (équivalentes à 12 sections de treillis radix-2),
l’utilisation du décodeur Local-SOVA permet de réduire la complexité de 42% par rapport
au MLM. En revanche, par rapport au décodeur Local-SOVA radix-4, le décodeur Local-
SOVA radix-8 est environ 1,5 fois plus complexe. Notez que cette augmentation de la
complexité est échangée contre une diminution de la latence et une augmentation du
débit puisqu’un décodeur radix-8 décode une trame 1,5 fois plus vite qu’un décodeur
radix-4, si l’on néglige la latence d’I/O.

Algorithme BMU ACSU SOU 4 sections de
treillis radix-8

Max-Log-MAP 5341 9022 26444 163228

Local-SOVA 5341 11673 6792 95224

Local-SOVA
Max-Log-MAP 1.0 1.29 0.26 0.58

Table 6: Surfaces après placement et routage des unités de calcul (en µm2) dans les
décodeurs MLM radix-8 et Local-SOVA radix-8.

Local-SOVA radix-16

Pour le Local-SOVA radix-16, on peut continuer à augmenter l’échelle de l’architecture
radix-8. Cependant, la surcharge de l’approche LUT est plus importante que l’avantage
apporté par le radix-16. Il a été noté que le Local-SOVA radix-16 straightforward a une
complexité 3,7 fois plus élevée que le Local-SOVA radix-4, alors que le débit est seulement
doublé. L’efficacité surfacique du décodeur est par conséquent réduite. Nous avons donc
effectué les modifications nécessaires pour réduire la complexité et la rendre plus efficace.

Tout d’abord, comme indiqué dans le chapitre précédent, la BMU peut jouer un rôle
important pour pré-éliminer la moitié des chemins de la section treillis radix-16. En
outre, nous pouvons pipeliner le traitement dans la BMU afin qu’il n’affecte pas le chemin
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critique du décodeur. Cependant, comme les ACSUs reçoivent les chemins en sortie de
la BMU, l’approche conventionnelle LUT ne peut être utilisée car les décisions dures de
ces chemins ne sont pas déterministes. Ainsi, nous avons également apporté plusieurs
modifications aux ACSUs, ce qui a donné lieu à deux types d’ACSUs : type-I et type-II.
L’ACSU de type-I modifie le contenu de la LUT, qui sera plus complexe que la LUT
du radix-8. Par ailleurs, l’ACSU de type-II utilise une cascade de quatre opérateurs de
comparaison-sélection de radix-2, et un opérateur de comparaison-sélection de radix-4 mis
en œuvre à l’aide de l’approche LUT, de manière similaire à [32].

La surface résultante pour le radix-16 de type-I et le radix-16 de type-II est indiquée
dans le tableau 7. La surface de la BMU est la même dans les deux cas. Cependant, avec
l’utilisation d’une architecture plus simple composée de 4 opérateurs de comparaison-
sélection (CS) radix-2 et d’un CS radix-4, l’ACSU de type-II donne une complexité plus
faible (55%) par rapport à l’ACSU de type-I. Bien que le SOU de type-II soit légèrement
plus complexe que le SOU de type-I (4,5%), la surface globale pour 3 sections de treil-
lis radix-16 (équivalent à 12 sections de treillis radix-2) du Local-SOVA de type-II ne
représente que 70% de la surface de la solution de type-I. En outre, le décodeur Local-
SOVA radix-16 de type-II présente la même complexité de surface que le décodeur Local-
SOVA radix-8, tout en offrant une solution à latence réduite et à débit plus élevé.

Architecture BMU ACSU SOU 3 sections de
treillis radix-16

Radix-16 type-I 5491 30860 8778 135387

Radix-16 type-II 5491 16996 9174 94983

Table 7: Surfaces après placement et routage des unités de calcul (en µm2) dans les
décodeurs Local-SOVA radix-16 de Type-I et Type-II.

De plus, la figure 8 montre les performances du décodeur Local-SOVA radix-16 de
Type-I et de Type-II comparées au MLM radix-4. La performance du Type-I est légèrement
dégradée avec moins de 0,1 dB pour tous les paramètres. En même temps, comme les
simplifications ont été faites dans le Type-II, sa performance est encore plus dégradée
résultant en une perte globale d’environ 0.1 dB.

Par rapport au décodeur Local-SOVA radix-4, la surface du décodeur local-SOVA
radix-16 de Type-II est 1,5 fois plus élevée, mais la latence du décodeur est divisée par 2
et le débit est doublé. Par conséquent, l’architecture UXMAP avec Local-SOVA radix-16
de Type-II est recommandée pour les applications nécessitant une faible latence et un
débit élevé et tolérant une petite perte de performance (environ 0,1 dB) ainsi qu’une
complexité plus élevée.

Conclusion

Dans ce chapitre, les implémentations de Local-SOVA radix-4, radix-8 et radix-16 avec
l’architecture UXMAP ont été présentées. Par rapport au décodeur MLM radix-4, le
décodeur Local-SOVA radix-4 utilisé dans l’architecture UXMAP offre une solution moins
complexe avec une économie de 33% en surface, au prix d’une légère perte de performance
(inférieure à 0,05 dB). Les implémentations radix-8 et radix-16 ont une complexité de sur-
face plus élevée que l’implémentation radix-4, mais ont l’avantage d’une latence plus faible.
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Figure 8: Comparaison des performances entre l’algorithme MLM et le Local-SOVA radix-
16 utilisé dans le décodeur UXMAP avec KP = 32 pour les tailles de trame K = 128,
K = 256 et K = 512.

En effet, l’implémentation radix-16 est 1,5 fois plus complexe mais peut encore augmenter
le gain de latence/ débit d’un facteur 2, au prix d’une très faible dégradation des per-
formances (environ 0,1 dB) par rapport au schéma radix-4. Par conséquent, en fonction
des exigences de l’application, les schémas radix-4, radix-8 ou radix-16 du Local-SOVA
peuvent être avantageusement utilisés à la place du décodeur MLM dans l’architecture
UXMAP.
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Chapitre 6. Algorithmes de décodage SISO utilisant

le treillis dual

Dans un contexte de haut débit, une partie du travail de thèse a été consacrée au décodage
efficace de codes convolutifs à haut rendement de codage. Par conséquent, ce chapitre se
concentre sur le décodage des codes convolutifs à rendement élevé (r > 1/2) en utilisant
le treillis des codes duaux correspondants, i.e. le treillis dual.

Les auteurs de [33] ont proposé une dérivation de l’algorithme BCJR basée sur le code
dual qui est parfaitement équivalente à l’algorithme BCJR appliqué au code convolutif
original. Pour un code avec un rendement r = k/n, le code dual a un rendement (n−k)/n.
Si k > n/2, c’est-à-dire si r > 1/2, le code dual a un rendement inférieur à celui du
code original. Par conséquent, le treillis dual est moins complexe que le treillis original
puisqu’il comporte moins de branches par section de treillis. Ainsi, on s’attend à ce que, si
l’algorithme BCJR est appliqué au treillis dual, le processus d’estimation de la probabilité
a posteriori, puis sa conversion dans le code original, soit également moins complexe que
l’application directe du BCJR au code original.

L’application du BCJR au treillis dual est appelée l’algorithme dual-MAP. Comme
son homologue dans le treillis original, il comprend également le calcul de la métrique
de branche, la récursion avant, la récursion arrière et le calcul de la sortie souple. Par
conséquent, les mêmes techniques et architectures pourraient également être appliquées à
l’algorithme dual-MAP. Cependant, comme l’algorithme BCJR, l’algorithme dual-MAP
nécessite un grand nombre de multiplications et de divisions et est donc trop complexe
pour les implémentations matérielles pratiques. Par conséquent, pour rendre le décodage
sur le treillis dual réalisable, l’application de l’algorithme dual-MAP dans le domaine
logarithmique, appelée dual-Log-MAP (dual-LM), a été étudiée dans [34].

Dans [1], deux implémentations matérielles d’un décodeur dual-LM et d’un décodeur
MLM radix-4 conventionnel sont rapportées et comparées en termes de débit et de surface
de circuit, pour des turbocodes utilisant des codes convolutifs de rendement k/(k+1)
avec k = 2, 4, 8, 16. La figure 9 tirée de [1], montre la comparaison des résultats de
l’implémentation. Nous pouvons voir que pour un rendement de codage moyen tel que
r = 2/3, les deux algorithmes donnent le même débit mais la surface de circuit de décodage
dual-MAP est plus de deux fois supérieure à celle du décodeur MLM radix-4. Cependant,
pour des rendements de codage plus élevés tels que r = 4/5 ou r = 8/9, le débit du
décodeur MLM reste inchangé alors que la surface du circuit augmente avec le rendement
de codage. Au contraire, le débit du décodeur dual-LM est doublé de r = 2/3 à r = 4/5
et de r = 4/5 à r = 8/9, alors que la surface de son circuit n’augmente que de 140 kportes
à r = 2/3 à 180 kportes à r = 8/9.

Construction du treillis dual pour les codes convolutifs poinçonnés

Cette section propose une procédure entièrement générique pour construire le treillis dual
à partir de codes convolutifs poinçonnés de rendement élevé, afin qu’ils puissent être
décodés à l’aide de l’algorithme dual-LM.

Le treillis dual est construit sur la base de la matrice H̃(D), qui est la réciproque
de la matrice de contrôle de parité H(D). Ainsi, l’idée principale de la procédure est
que, étant donné un code mère (par exemple, r = 1/2) et un pattern de poinçonnage
pour atteindre un rendement k/n, nous trouvons d’abord la matrice génératrice non-
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Figure 9: Comparaison de l’implémentation des décodeurs MLM radix-4 et dual-LM [1].

systématique Gns(D) de taille k×n équivalente au code convolutif poinçonné original de

taux k/n. Ensuite, la matrice de contrôle de parité H(D) et sa réciproque H̃(D) peuvent

être dérivées et le treillis dual est construit directement à partir de la matrice H̃(D). Ce
processus est représenté sur la figure 10.

Low rate CC
(e.g. r = 1/2)

G(D)

Puncturing
pattern

P

Equivalent
non-systematic
generator matrix

Gns(D)

Invariant factor
decomposition

Gns(D) = A(D)Γ(D)B(D)

Basic parity-check
matrix H(D)

Minimum basic
parity-check

matrix Hmb(D)

Reciprocal
parity-check matrix

H̃(D)
Dual trellis

Figure 10: Procédé d’obtention du treillis dual réciproque d’un code convolutif poinçonné
à rendement élevé.

Étant donné un turbocode avec des codes constitutifs à rendement élevé obtenus par
poinçonnage d’un code RSC à rendement de 1/2, la figure 11 montre les performances de
décodage de l’algorithme log-MAP sur le treillis original et de l’algorithme dual-LM sur le
treillis dual construit par notre méthode. On peut voir que les deux approches de décodage
donnent des performances de correction d’erreur similaires. D’après les résultats de la
simulation, nous pouvons assurer que pour n’importe quel code convolutif à rendement
élévé donné, obtenu par une matrice de codage à rendement élevé ou par poinçonnage, le
treillis dual correspondant peut toujours être dérivé et l’algorithme dual-LM produit les
mêmes performances que l’algorithme log-MAP.

L’algorithme dual-Max-Log-MAP

Le prix à payer pour obtenir un débit élevé dans le dual-LM est une plus grande surface du
circuit. Cette augmentation de la surface est actuellement considérée comme le principal
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Figure 11: Comparaison des performances entre les algorithmes log-MAP et dual-MAP
pour différents schémas à haut débit pour K = 400. Canal AWGN et modulation BPSK.

obstacle à une mise en œuvre à grande échelle de l’algorithme dual-LM. À cette fin, un
nouvel algorithme de décodage basé sur le treillis dual est proposé, appelé dual-Max-
Log-MAP (dual-MLM). Par rapport à l’algorithme dual-LM, il présente une complexité
moindre tout en conservant la propriété de haut débit.

Plus précisément, dans le dual-LM, le calcul de la sortie souple nécessite un grand
nombre de LUTs. Le dual-MLM s’attaque à ce problème en appliquant l’approximation
max-log au calcul de la sortie souple. En outre, l’opération de fusion dans le Local-SOVA
a été proposée pour mettre en œuvre efficacement le calcul de la sortie souple approximée.
Par conséquent, seul un petit nombre de LUTs est nécessaire pour le dual-MLM.

Le tableau 8 montre une comparaison simplifiée de la complexité, en termes de nombre
d’additionneurs et de LUTs requis par le décodeur, entre le dual-LM et les algorithmes
dual-MLM proposés, pour un code convolutif à 8 états avec différents taux de codage
k/(k + 1). Malgré une augmentation mineure du nombre d’additionneurs, l’algorithme
dual-MLM utilise beaucoup moins de LUTs que l’algorithme dual-LM.

Table 8: Comparaison de la complexité des décodeurs dual-LM et dual-MLM pour
différents rendements de codage.

Coding

rate

dual-Log-MAP dual-Max-Log-MAP

Adders LUTs Adders LUTs

4/5 168 142 184 24

8/9 288 256 320 32

16/17 528 480 592 48

Les figures 12 et 13 montrent les performances du MLM dans le treillis original, du
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dual-LM et du dual-MLM dans le treillis dual pour des tailles de trame K = 400 et
K = 900, respectivement. Nous pouvons constater que les algorithmes dual-LM et MLM
ont un taux d’erreur similaire, comme prévu. Cependant, l’algorithme dual-MLM entrâıne
une perte d’environ 0, 2− 0, 3 dB par rapport à l’algorithme dual-LM au taux de codage
r = 2/3 mais cette perte se réduit à 0, 1− 0, 2 dB aux taux de codage r = 4/5 et r = 8/9.
Par conséquent, l’algorithme dual-MLM peut être considéré comme un algorithme de
décodage sous-optimal mais à faible complexité par rapport à l’algorithme dual-LM.
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Figure 12: Comparaison des performances entre les algorithmes MLM, dual-LM et dual-
MLM avec K = 400 bits.
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Figure 13: Comparaison des performances entre les algorithmes MLM, dual-LM et dual-
MLM avec K = 992 bits.
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Conclusion

Dans ce chapitre, nous avons montré qu’un code convolutif à rendement élevé (r > 1/2)
peut être décodé en utilisant le treillis dual. Nous avons proposé une procédure générique
pour construire le treillis dual pour un code convolutif à rendement élevé donné.

De plus, comme le montre [1], l’utilisation du treillis dual offre l’avantage d’un décodage
à haut débit pour les codes de rendement élévé et le rapport entre le débit et la surface
de la puce est largement augmenté par rapport au décodage utilisant le treillis origi-
nal du code mère. Néanmoins, la surface du circuit du décodeur utilisant l’algorithme
dual-LM est toujours supérieure à celle du décodeur MLM. Nous avons alors proposé un
nouvel algorithme pour le treillis dual, nommé dual-MLM. Une analyse de la complexité
a été menée, montrant que le nombre de LUTs employés dans le décodeur peut alors
être considérablement réduit par rapport à l’algorithme dual-LM. En outre, sur la base
de simulations numériques, nous avons observé que le décodage dual-MLM n’entrâıne
qu’une perte mineure d’environ 0, 2 dB en termes de performance à 10−6 de taux d’erreur
binaire par rapport au décodage dual-LM. Par conséquent, il peut être considéré comme
un algorithme de décodage sous-optimal viable et pratique de faible complexité.
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Chapitre 7. Conclusions et perspectives

Dans cette thèse, nous avons étudié et implémenté un nouvel algorithme de décodage qui
peut être employé dans un turbo décodeur avec une faible complexité et fournir plusieurs
compromis entre complexité, latence et performance de correction d’erreurs. En outre, le
processus de décodage utilisant le treillis dual a été étudié, où une méthode de construction
de treillis dual généralisée et un nouvel algorithme de décodage à faible complexité ont
été proposés.

Tout d’abord, une revue des turbocodes et des algorithmes de décodage utilisés dans
les turbocodes a été présentée. Nous nous sommes ensuite intéressés aux techniques et
aux architectures employées dans les turbo-décodeurs pour augmenter le débit et réduire
la complexité du décodeur. Pour les cas d’utilisation définis dans le projet H2020 EPIC,
les besoins en débit étaient de l’ordre de 500 Gb/s jusqu’à 1 Tb/s. Par conséquent,
l’architecture UXMAP a été choisie pour atteindre cet objectif en matière de turbo-
décodage en raison de sa capacité à fournir un très haut débit avec une grande efficacité
surfacique.

Nous avons ensuite étudié le nouvel algorithme de décodage proposé, appelé Local-
SOVA. Le Local-SOVA peut offrir les mêmes performances de correction d’erreurs que
l’algorithme MLM, mais avec une complexité moindre. L’analyse liée au Local-SOVA a
révélé que le Local-SOVA peut avoir une complexité de calcul inférieure d’environ 30%
dans les schémas à haut radix et peut fournir de nombreux compromis entre complexité
et performance de correction d’erreurs. Ensuite, les implémentations du Local-SOVA à
haut radix avec l’architecture UXMAP ont été développées pour consolider l’analyse.

Le travail présenté dans cette thèse a montré que le Local-SOVA a un très fort potentiel
comme algorithme de décodage pour les décodeurs SISO de codes convolutifs et de tur-
bocodes. A partir de maintenant, lorsqu’on considère un algorithme de décodage pour les
codes convolutifs et les turbocodes, le Local-SOVA sera un candidat pour concurrencer les
algorithmes MLM, LM ou SOVA. En particulier, avec l’architecture UXMAP, il est évident
que le Local-SOVA devrait maintenant remplacer l’algorithme MLM. Pour d’autres archi-
tectures de turbo-décodeurs, le Local-SOVA mérite clairement plus d’attention et pourrait
être employé à la place de l’algorithme MLM. De plus, pour les applications impliquant
un diagramme de treillis avec un nombre élevé d’états, le Local-SOVA peut être considéré
comme un candidat en plus du SOVA classique.

D’autre part, ce travail s’est également concentré sur le développement du treillis dual
et des algorithmes de décodage utilisant le treillis dual. L’avantage principal du décodage
d’un code convolutif utilisant son treillis dual est que le débit de décodage augmente avec
le rendement du codage. Par conséquent, nous avons d’abord généralisé la méthode de
construction du treillis dual pour les codes convolutifs poinçonnés à rendement élévé. Nous
avons également introduit une nouvelle variante du dual-Log-MAP (dual-LM), appelé
le dual-Max-Log-MAP (dual-MLM), qui peut réduire considérablement l’utilisation des
LUTs dans le dual-LM. Bien qu’une légère dégradation des performances de 0, 1 − 0, 2
dB puisse être observée, ce nouvel algorithme offre une solution moins complexe pour
un processus de décodage utilisant le treillis dual pour les codes convolutifs à rendement
élévé.

Pour cet aspect, une étude approfondie de la mise en œuvre matérielle de l’algorithme
dual-MLM est envisagée à l’avenir. L’analyse effectuée a déjà conduit à un algorithme
moins complexe, mais une mise en œuvre matérielle est nécessaire pour compléter l’étude
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de l’algorithme dual-MLM. Si les résultats de la mise en œuvre sont conformes à l’analyse
préliminaire, l’algorithme dual-MLM pourra être considéré comme un algorithme de
décodage de premier choix pour les décodeurs convolutifs et turbo à rendement élévé
et à haut débit.
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Chapter 1

Introduction

Digital wireless communications can be considered as the most dynamic area in the com-
munication field today. The last few decades have seen a surge of research and industrial
activities in the area. A combination of several factors can explain this surge. The first
and most obvious is the demand for wireless connectivity. Cordless devices are now able
to communicate efficiently with each other and can access the information without ge-
ographical boundaries. Furthermore, the development of the semiconductor technology,
which is governed by Moore’s law [35], allows sophisticated signal processing algorithms to
be integrated into the devices with small area and low power consumption. Last but not
least, the development of information theory, pioneered by Claude Shannon in his original
article [36], paved the way for efficient communication systems to be implemented with
high reliability.

Subsequently, the success of the second generation (2G) of mobile communication stan-
dards was a concrete demonstration that good wireless digital communication systems can
be achieved. However, the 2G system still concentrates mostly on voice communication,
as it can only provide a bidirectional communication link with a maximum throughput of
9.6 kb/s. Then, the demand for data transmission with increasingly high data rates, in-
cluding video telephony, drove the world of wireless communications. It is these challenges
and also the related interests that have fascinated many researchers and attracted them
to this field. In 1999, the UMTS technology [37] was introduced, which allows a data rate
of 384 kb/s to be achieved. Since then, transmission with increased data throughput has
been one of the most important aspects of wireless communications. As a result, a data
rate of 84 Mb/s can be reached by the HSPA+ technology [38], released in 2007, and the
LTE standard [39] can transmit with a maximum data rate of 300 Mb/s. With the most
recent mobile standards, LTE Advanced Pro [3] and the 5G New Radio [4], throughputs
from a few Gb/s to a few tens of Gb/s can be achieved. Following this trend, the through-
put of mobile broadband communications will be in the order of hundreds of Gb/s and
up to Tb/s in the near future, especially with the advent of THz communications.

As part of the communication system, channel coding, or forward error correction
(FEC), plays a critical role in enabling the communication link. A channel code adds
redundant information to the original information to be transmitted. Thanks to the re-
dundancy, corrupted information due to noise and channel impairments can be corrected
to recover the message at the receiver side. Sophisticated channel codes can drastically
improve the reliability of the communication, thus allowing efficient data transmission
between devices with limited transmit power. Many channel codes can be found in the
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literature as well as in industrial communication standards. The two classic code families
are block codes, such as Hamming, Golay, BCH, or Reed-Solomon codes, and convolu-
tional codes [8]. Then, in the nineties came the turbo codes with iterative decoding [40],
the rediscovery of low-density parity-check (LDPC) codes [41] and more recently the polar
codes [42]. The invention of turbo codes by C. Berrou in 1991 is considered as one of the
most important milestones of the channel coding research. They were the first practical
codes able to operate within a fraction of a dB of the Shannon limit. Since then, turbo
codes have been chosen as the channel code in many digital communication standards,
such as the 3G/4G mobile standards and the digital video broadcasting DVB-RCS/RCS2
and DVB-SH standards [5]. Furthermore, the iterative decoding of these codes and the
concept of extrinsic information have had influences on the decoding of LDPC codes but
also on many other elements of the communication chain, like modulation, equalization,
and multi-antenna techniques.

1.1 Motivation and Challenges

For the time being, wireless digital communications using the LTE Advanced Pro or the
newly 5G standards can provide up to tens of Gb/s communication links. As a result,
we can enjoy high-quality media material and streaming while on the move with our
mobile phones. Nevertheless, as technologies develop, so do applications. Therefore,
the demand for even higher data rates of hundreds of Gb/s or Tb/s can be foreseen in
the future. Yet, new use cases of this “ultra-high-throughput” era have already been
identified. Several examples can be cited, such as wireless intra-devices communication
[43], mobile augmented/virtual reality communications [44], wireless backhaul/fronthaul
[45], communications in data centers [46], hybrid fiber-wireless networks [47], and high-
throughput satellites communications [48].

The increase of throughput up to Tb/s comes with the need to move to frequencies at
the THz range (0.1 THz − 10 THz) as well as with having the appropriate corresponding
baseband processing, especially for FEC. To this end, the European H2020 project EPIC
(Enabling Practical Wireless Tb/s Communications with Next Generation Channel Cod-
ing, https://epic-h2020.eu/) lent itself to develop a set of new implementation-ready
FEC technologies that meet the cost and performance requirements of a variety of future
wireless Tb/s use cases.

In the past, steady progress in silicon technology – as governed by Moore’s law –
could be regarded as the enabler of large leaps in data rates without the need for major
algorithmic innovations on the FEC design part. However, a key finding of EPIC is
the prediction that the upgrade to Tb/s wireless data rates will not be smooth: the
improvements carried by silicon technology progress in the next decade will significantly
fall short of meeting the Tb/s FEC challenge [6]. Therefore, the EPIC project is based
on the thesis that major algorithmic and architectural innovations will be required in the
design and implementation of FEC algorithms to make Tb/s wireless communications
feasible. As candidates for the FEC technologies, the EPIC project considered three code
classes: turbo codes, LDPC codes, and polar codes, as their error correction performance
come close to the Shannon limit.

This thesis focuses on the development of turbo codes in the framework of the EPIC
project. Efficiently achieving ultra-high throughput (up to Tb/s) for turbo codes is very
challenging, since turbo codes are inherently serial at the component decoder level. Be-
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sides the main requirement in throughput, within the EPIC project framework, additional
constraints such as chip area, area efficiency, power density, code flexibility, and bit error
rate (BER) should also be met [7]. Table 1.1 shows the main FEC Key Performance
Indicators (KPI) in the EPIC context under 28 nm technology node. Addressing all
these constraints requires the exploration of new decoding algorithms and highly parallel
architecture templates.

Applications BER Flexibility Latency
Throughput

(Gb/s)

Area eff.

(Gb/s/mm2)

Power dens.

(W/mm2)

Energy eff.

(pJ/bit)

Virtual Reality 10−6 high 0.5 ms 500 50 0.02 0.48

Intra-Device Com. 10−12 low 100 ns 500 50 0.13 1.00

Fronthaul 10−13 medium 25 ns 1000 100 0.17 0.60

Backhaul 10−8 medium 100 ns 250 25 0.09 3.60

Data Center > 10−12 medium 100 ns 1000 100 0.20 0.75

Hybrid Fiber-Wireless 10−12 medium 200 ns 1000 100 0.23 1.13

High Throughput Sat. 10−10 medium 10 ms 100 - 1000 100 0.27 0.50

Table 1.1: Summary of FEC level KPI for different use cases under 28 nm technology
node.

1.2 Objectives, Contribution and Outline

The objective of this thesis is to explore innovative turbo decoding techniques, allow-
ing the decoder to achieve or approach very high-throughput transmission (Tb/s). The
contribution of the thesis is shown as follows.

• The discovery of a new soft-input soft-output (SISO) decoding algorithm based on
the manipulation of paths in the trellis diagram, namely the Local-SOVA. It exhibits
a lower computational complexity than the conventional maximum a posteriori algo-
rithm with Max-Log approximation (Max-Log-MAP) when employed for high-radix
decoding in order to increase throughput, while having the same error correction
performance even when used in a turbo decoding process. Furthermore, with some
simplifications, it offers various trade-offs between error correction performance and
computational complexity.

• The application of the Local-SOVA in an associated hardware architecture, the
Unrolled-XMAP (UXMAP). This architecture combines iteration unrolled and spa-
tial parallelism with fully pipelined component decoders. Since complete decoded
frames are produced in each clock cycle, the UXMAP architecture guarantees a very
high-throughput for the turbo decoder. The Local-SOVA helps lower the area cost
of the UXMAP architecture in high-radix schemes, which can translate into a higher
decoder throughput. The high-radix Local-SOVA also proposes several low latency
solutions to the UXMAP architecture.

• The exploration of decoding algorithms based on the dual trellis of the convolutional
codes. To this end, we generalized the method for constructing the dual trellis, given
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a convolutional code with arbitrary code rate k/n. Furthermore, a new decoding
algorithm using the dual trellis was proposed with a lower complexity than the
state-of-the-art algorithms.

The remainder of this thesis is structured as follows:

• Convolutional Codes and Turbo Codes (Chapter 2): This chapter first in-
troduces the concept of channel coding in a point-to-point communication context.
It further presents convolutional codes, the process of encoding as well as the de-
coding algorithms using the trellis diagram. Then, it gives an overview of turbo
codes consisting of the encoding process, the role of interleavers, and the iterative
decoding process.

• High-Throughput SISO Decoders (Chapter 3): This chapter first provides
several key performance indicators for the turbo decoders such as throughput, la-
tency, complexity, error performance, and flexibility. Furthermore, the chapter de-
scribes well-known techniques employed in turbo decoders to increase the through-
put and to lower the complexity. Then, several parallelism architectures applicable
to turbo decoders are discussed. Notably, for high-throughput, the PMAP and
XMAP architectures are considered, and for very-high-throughput, the FPMAP
and the UXMAP architectures are discussed and compared to each other.

• The Local-SOVA (Chapter 4): The Max-Log-MAP algorithm has been em-
ployed extensively for decoding the component convolutional codes in a turbo code.
When consider high-radix schemes, the complexity of the Max-Log-MAP algorithm
increases rapidly with the radix orders. Therefore, in this chapter, we propose a new
decoding algorithm and name it the Local-SOVA. The Local-SOVA can operate in
a similar manner to the Max-Log-MAP algorithm, and exhibits a lower computa-
tional complexity with the same error performance. Thus, the Local-SOVA can be
employed in various turbo decoder architectures. For high-radix schemes such as
radix-4 and radix-8, we investigate the saving in complexity that the Local-SOVA
can provide compared to the Max-Log-MAP. Furthermore, the Local-SOVA enables
even higher radix orders (radix-16, radix-32) to be implemented efficiently.

The results of this work were published in the IEEE Transaction on Communications
[49].

• The Local-SOVA in Unrolled-XMAP Architecture (Chapter 5): Based
on the computational complexity analysis of the Local-SOVA, this chapter focuses
on the analysis of several Local-SOVA implementations in the UXMAP architec-
ture. The chapter first gives an overview of the UXMAP architecture coupled with
the Max-Log-MAP algorithm. Then, the implementation of the Local-SOVA com-
putational units are carried out and compared with the Max-Log-MAP algorithm
in terms of throughput and area complexity. The chapter also provides different
Local-SOVA schemes with different radix orders to further exploit the possibility of
using the Local-SOVA in the context of a high throughput, low latency UXMAP
architecture.

• SISO Decoding Algorithms with The Dual-Trellis (Chapter 6): For de-
coding a convolutional codes with high code rates, the decoder usually employs
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the trellis of the mother code in case of puncturing at the encoder side. This ap-
proach has the advantages of flexibility but the throughput of the decoder is always
bounded by the throughput of decoding the mother code. To this end, decoding a
high-rate convolutional codes on the dual trellis provides a high-throughput solution.
This chapter first introduces the concept of dual trellis and presents the decoding
algorithms for the dual trellis in the literature. Then, we generalize the method
of constructing the dual trellis for a given convolutional codes with arbitrary code
rates. Secondly, a new decoding algorithm is proposed with a lower complexity than
the state-of-the-art algorithms in exchange with a sub-optimal error performance.

The contributions discussed in this chapter were published and presented in the
following conferences and workshop [50], [51], and [52].

• Conclusion and Future Works (Chapter 7): This chapter concludes the thesis
and gives an perspective to the future works that can be done with the Local-SOVA
and the decoding algorithm using the dual trellis.
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Chapter 2

Convolutional Codes and Turbo
Codes

This chapter aims at giving the necessary background information about convolutional
codes and turbo codes in the context of a point-to-point digital communication chain.
Special attention will be given to the different decoding algorithms for these codes.

The rest of this chapter is organized as follows. First, Section 2.1 introduces the trans-
mission system model considered throughout this thesis with a specific focus on channel
coding. Then, Section 2.2 gives an overview of convolutional codes: the convolutional
encoding process, the main techniques to achieve high coding rates, the trellis diagram
representation of the encoder. Decoding algorithms for these codes are reviewed in Sec-
tion 2.3 consisting of the Viterbi algorithm, the soft-output Viterbi algorithm, and the
MAP-based algorithms. Next, Section 2.4 introduces turbo codes, their encoding process,
and the role of the interleaver is explained. The principle of turbo decoding and the choice
of the decoding algorithm are discussed in Section 2.5. Finally, Section 2.6 summarizes
the chapter.
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2.1 Short Introduction to Channel Coding

Figure 2.1 depicts the simplified diagram of a point-to-point digital communication chain
used to convey information between the source and the destination (or the sink).

Figure 2.1: Simplified block diagram of a digital communication system with channel
coding.

The source generates information in packets of length K represented by vector u =
[u0, . . . , uK−1]. This information is provided in digital format that could come from a
text, an image, a video, or could be the sample of an analog signal, possibly after a
compression step. After that, channel encoding is used to map the input information
onto a codeword c = [c0, . . . , cN−1] of length N . Note that N should be greater than K
since the role of the channel code is to add redundant information to the original message
so that at the receiver, the redundant information can be used to recover the corrupted or
distorted message information. The ratio R = K/N denotes the code rate of the channel
code. Then, the channel codeword is modulated to convert the digital sequence to an
analog waveform compatible with the transmission channel. The channel here is modeled
to mimic the physical channel. Noise, distortion, interference can be elements of a channel
that cause degradation in the received signal.

At the receiver, reverse processing blocks are employed to recover the transmitted
message. The received symbol sequence y is first demodulated to provide the conditional
probabilities or the log-likelihood ratios to the channel decoder. The channel decoder
then employs specific decoding algorithms to get the estimate of transmitted message
information or the decoded message denoted by û = [û0, . . . , ûK−1].

In this work, a simple modulation/demodulation scheme and channel model have been
chosen to facilitate the assessment of our study. However, the work done and the achieved
results are also valid for other modulations and channels. For modulation, binary phase
shift keying (BPSK) is employed. The modulator maps a codeword bit ck ∈ {0, 1} to
a modulated symbol xk ∈ {−1,+1}. Moreover, the channel is assumed to be additive
white Gaussian noise (AWGN) with zero mean and variance σ2. Thus, the received noisy
symbol is

yk = xk + wk, for k = 0, 1, . . . , N − 1, (2.1)
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where wk ∼ N (0, σ2). The conditional probability of the received symbol yk is

Pr{yk|xk} =
1√

2πσ2
exp

(
−(yk − xk)2

2σ2

)
. (2.2)

Then, the likelihood ratio can be derived as

Pr{yk|xk = 1}
Pr{yk|xk = −1}

= exp

(
−(yk − 1)2

2σ2
+

(yk + 1)2

2σ2

)
= exp

(
2yk
σ2

)
. (2.3)

Finally, the log-likelihood ratio (LLR) is obtained by taking the natural logarithm of (2.3)

L {yk|xk} =
2yk
σ2

. (2.4)

In order to assess the performance of a communication system, bit-error rate (BER)
and frame-error rate (FER) measurements are usually employed. These metrics are usu-
ally obtained by Monte-Carlo simulations where the decoded message û is compared with
the original message u. Furthermore, the performance of the system varies with the
signal-to-noise ratio (SNR). In digital communication systems, the SNR is described by
Eb/N0, where Eb is the bit energy and N0 represents the power spectrum density (PSD)
of the white noise. The general expression for the SNR is

Eb/N0 =
Es

R×M×N0

, (2.5)

where Es is the symbol energy, R is the code rate of the channel code, and M is the
number of bit per modulated symbol. In the case of BPSK modulation, M is equal to
one bit per symbol.

In simulations, for a given Eb/N0, the symbol energy Es is assumed to have a nominal
value of 1 Joule, then the noise PSD is

N0 =
1

R×Eb/N0

(Watt/Hz). (2.6)

Consequently, the variance of the band-limited AWGN is

σ2 =
N0

2
=

1

2R×Eb/N0

, (2.7)

and is used to generate the Gaussian noise added to the transmitted symbols.
Figure 2.2 shows the performance in BER of different communication settings with

and without the use of channel coding. The channel code employed in the figure is a
convolutional code with various code rates. The first observation is that compared to the
uncoded scheme, using channel coding tends to have higher BER at low SNR region (from
0 ∼ 1 dB, as shown in the figure). However, as the SNR increases, the performances of
the coded schemes are far superior to the uncoded one. It is also important to observe
that different code rates yield different performance at a given SNR. For high code rates,
although the bit energy Eb is higher, the amount of redundant information is less than
the lower code rates. Thus, the performance is worse as the code rate increases. Nonethe-
less, the use of less redundant information means that more message information can be
transmitted for a fixed bandwidth. Therefore, high code rates produce higher data rates
at the expense of performance deterioration.
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Figure 2.2: Performance amelioration due to convolutional codes.

2.2 Convolutional Codes

The field of channel coding is traditionally partitioned into two categories: block codes
and convolutional codes. In block codes, each input message u of length K is mapped to a
codeword c of length N by linear combinations. These linear combinations are often rep-
resented by a K×N generator matrix G. Each input message is encoded independently;
hence, the encoding process of block codes is memoryless.

In convolutional codes, the information message of length K is divided into M infor-
mation chunks of k bits. Then, for each k input bits, the convolutional encoder produces
n output bits generated by a linear combination of the k current information inputs and
the previous information through ν steps of code memories, known as the memory length
of the convolutional code. The value (ν + 1) is also usually referred as the constraint
length of the convolutional code. Therefore, a convolutional code can be denoted as a
3-tuple (ν, k, n). Moreover, for each message of length K, the encoding process produces
in total M chunks of n output bits, and the codeword length is N = n×M . Thus, for
convolutional codes, the code rate R can be described by k/n = K/N .

Convolutional codes were first proposed in 1955 by Elias [53]. But it was not until
1967 when Viterbi proposed a maximum-likelihood decoding algorithm with reasonable
complexity [54], that convolutional codes started to be widely employed.

2.2.1 Convolutional Encoding

A (ν, k, n) convolutional code can be described by a generator matrix G, or its D-transform
notation G(D). While the former can be seen as a K×N generator matrix as in block
codes, the latter is more convenient to represent convolutional codes.

The matrix G(D) is referred as the polynomial generator matrix consisting of k×n
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polynomials gi,j(D)

G(D) =




g0,0(D) g0,1(D) . . . g0,n−1(D)
g1,0(D) g1,1(D) . . . g1,n−1(D)

...
...

. . .
...

gk−1,0(D) gk−1,1(D) . . . gk−1,n−1(D)


 . (2.8)

Consequently, a convolutional encoder can be viewed as a set of digital filters - linear,
time invariant - characterized by the transfer functions defined by the entries of the
polynomial generator matrix G(D). Figure 2.3a shows a (2, 1, 2) convolutional encoder
with polynomial generator matrix:

G(D) = (1+D+D2 1+D2). (2.9)

Furthermore, the polynomial entries can also be represented in octal numbers with the
most significant bit (MSB) being the highest degree of the polynomial. For example, the
polynomial generator matrix in (2.9) can also be represented as (7, 5)oct.

Encoders for convolutional codes can be classified as systematic or non-systematic.
For a rate R = k/n systematic convolutional encoder, k out of n outputs from the
encoder are replicas of the k inputs. Otherwise, the encoder is said to be non-systematic.
Furthermore, convolutional encoders can also fall into two classes: recursive (or feedback)
and non-recursive (or feedforward). A convolutional encoder is recursive if there exists
an output entry that is fed back to the calculation of the shift registers. In other words,
if there exists an entry of the polynomial generator matrix G(D) whose realization is an
infinite impulse response filter, then the encoder is recursive. Otherwise, the encoder is
non-recursive. The generator matrix in (2.9) and its encoder shown in Figure 2.3a are
non-recursive and non-systematic. Meanwhile, the polynomial generator matrix

Gsys(D) =

(
1

1+D2

1+D+D2

)
, (2.10)

and its encoder shown in Figure 2.3b are recursive and systematic.

(a) Non-recursive non-systematic (b) Recursive systematic

Figure 2.3: Two typical types of convolutional encoder.

Note that the non-recursive non-systematic generator matrix in (2.9) and the recursive
systematic one in (2.10) are equivalent. Both encoders will generate the same codespace
(the set of all codewords). Therefore, depending on the applications, the convolutional
encoder could be chosen to be non-recursive and non-systematic, or to be recursive and
systematic. While the former could be observed in applications such as the control channel
of mobile communication systems, the latter is extensively used in systems employing
turbo codes.
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2.2.2 The Trellis Diagram Representation of Convolutional En-
coders

A convolutional encoder consists of a set of shift registers, and the output is calculated
as a linear combination of the input and the contents of the shift registers. Therefore,
the convolutional encoder can be viewed as a finite state machine (FSM). Then the trellis
diagram is simply a cascade over time of the state diagram of the state machine. The
trellis diagram is a useful representation of a convolutional code since it helps to visualize
the encoding process as well as the decoding process of the code.

Given an encoder of a (ν, k, n) convolutional code, the process of constructing the
trellis diagram is as follows. First, the FSM of the encoder is obtained: for each of the 2ν

states s of the FSM and for each input symbol, the next state s′ and the output symbols
are computed. Figure 2.4 depicts the FSM of the convolutional encoder shown in Figure
2.3b. Then, the trellis diagram of the convolutional code is deduced from the FSM, as
shown in Figure 2.5 for the same code.

Figure 2.4: FSM of the convolutional encoder in Figure 2.3b.

The trellis diagram can be viewed as a two-dimensional plane. The horizontal axis
consists of time instants, and the vertical axis consists of the values of the encoder states.
In this work, we consider mostly binary convolutional codes (ν, k, n). Therefore, if an
input message has K information symbols, the trellis diagram of the encoder consists
of (K/k + 1) time instants. At each time instant t, the state st can take a value in
[0, 2ν−1]. The interval between time instants t and (t+1) is called trellis section t. The
states at instant t are connected to states at instant (t+1) in trellis section t by branches
in the trellis diagram. In the case of binary convolutional codes with k = 1 as shown
in Figure 2.5, there are two branches coming out of any state s at instant t, each being
connected to a state at instant (t+1). Of the two branches, one is associated with input
bit ut = 0 (dashed line) and the other with input bit ut = 1 (solid line). An aggregation
of continuous successive branches forms a state sequence which defines a path in the trellis
diagram. The concept of path is extensively useful for decoding convolutional codes using
the well-known Viterbi algorithm.

In the case of packet transmission, the convolutional code can be made into a block
code by the means of trellis termination. There are two main termination methods that
are used: force-to-zero [55] and tailbiting [56]. Terminating with force-to-zero introduces
additional dummy bits at the end of the message to force the trellis from state s at
instant K to a known state (usually state 0) at instant K+ν. On the other hand, with
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Figure 2.5: Trellis diagram of the convolutional encoder in Figure 2.3b.

the tailbiting technique, the initial state of the trellis diagram is found based on the input
sequence. This initial state is obtained to ensure that the final state will be equal to the
initial state, thus making the trellis diagram circular.

2.2.3 High-Rate Convolutional Codes

For high-throughput transmission, the redundancy part of the channel encoder is usually
limited so that higher number of information can be transmitted with the same transmis-
sion resources. This is generally referred to as high coding rate schemes.

For convolutional codes, high coding rates can be achieved with two methods: with
true high-rate encoders or by puncturing a mother encoder with lower coding rate.

2.2.3.1 True High-Rate Convolutional Encoding

A first method to achieve high coding rates is the direct use of true high-rate convolutional
encoders. The convolutional encoder is characterized by a k×n polynomial generator
matrix. Common coding rates values are of the form R = k/(k+1), i.e. n = k + 1. For
a systematic convolutional codes, this corresponds to the case where 1 output symbol is
computed for very k-symbol chunk.

Good convolutional codes with high coding rates have been studied in the literature
for both non-systematic [57, 58] and systematic codes [59]. The following example is taken
from table IV in [59], where a (3, 4, 5) recursive systematic convolutional code is described
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by the following systematic generator matrix:

Gsys(D) =




1 0 0 0 1+D+D2+D3

1+D+D3

0 1 0 0 1+D+D2

1+D+D3

0 0 1 0 1+D2+D3

1+D+D3

0 0 0 1 1+D3

1+D+D3


 (2.11)

The corresponding encoder is shown in Figure 2.6. The recursive systematic encoder
with code rate k/(k + 1) can also be represented by a vector of octal numbers, where
the first k entries are the numerator polynomials and the last entry is the denominator
polynomial of the last column of Gsys(D). For this example, the corresponding octal
vector is (17, 7, 15, 11, 13)oct.

Figure 2.6: Recursive systematic encoder of (17, 7, 15, 11, 13)oct convolutional code.

2.2.3.2 High-Rate Codes Obtained by Puncturing

Besides the use of true high-rate convolutional encoders, puncturing a low-rate mother
encoder is an alternative technique to obtain a high-rate convolutional code. The message
is first encoded using a rate R = 1/n convolutional code (the mother code), but the coded
symbols are not all transmitted over the transmission channel. For ease of specification
and implementation, the discarded symbols can be periodically removed (or punctured)
following a periodic pattern, called the puncturing pattern represented by a n×p matrix F,
where p is the puncturing period. The successive rows of matrix F describe the pattern
applied for the n outputs of the mother code. For example, a rate-4/5 code can be
obtained from a rate-1/2 mother code using the following puncturing pattern:

F =

(
1 1 1 1
1 0 0 0

)
. (2.12)

The search for good puncturing patterns has been intensively studied in [60, 61] for
feedforward convolutional codes and in [59, 62] for recursive systematic convolutional
(RSC) codes, employed in turbo codes.

The main advantage of the puncturing technique over the true high-rate encoder is
the flexibility in changing the code rate. Indeed, a wide range of code rates can be easily
achieved by changing the puncturing pattern. Meanwhile, changing code rates in the true
high-rate method requires different encoders, each for a specific code rate. Furthermore,
since punctured high-rate codes solely employ the trellis diagram of the mother code, one
single decoder for the mother code can be used for various code rates. On the contrary,
different decoders should be employed for each code rate with true high-rate codes. That
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is why, in most transmission systems using convolutional codes, puncturing is the chosen
solution for achieving high coding rates. In return, true high-rate codes show better error
correction performance than punctured high-rate codes [59].

2.3 Decoding Algorithms for Convolutional Codes

In communication systems, a convolutional code can be employed as a stand-alone code, or
it can be concatenated in serial or in parallel with an outer code. Therefore, depending on
the case, two main types of decoders can be used: soft-input hard-output (SIHO) decoders
and soft-intput soft-output (SISO) decoders. In this section, the Viterbi algorithm (VA) is
introduced as a candidate for SIHO decoders. For SISO decoders, the soft-output Viterbi
algorithm (SOVA) and the maximum a posteriori (MAP) based family algorithms will
be presented. Note that these algorithms uses the code trellis diagram for decoding. For
other decoding algorithms, readers can refer to [8] for a full reference. Furthermore, for
the sake of simplicity, we restricted ourselves to binary convolutional codes with code rate
R = 1/n.

2.3.1 The Viterbi Algorithm

The VA was first introduced in 1967 by Andrew Viterbi [54] as a decoding algorithm with
reasonable complexity for convolutional codes. Then, in 1973, the VA was recognized as
a maximum-likelihood decoder by Forney in [63]. Since then, the VA and its derivatives
play a major role in decoding convolutional codes.

The VA decodes by exclusively employing the trellis diagram of the convolutional code.
The trellis diagram is used to represent a finite-state discrete-time Markov process ob-
served in white noise. Using the channel LLRs introduced in (2.4), the VA finds the state
sequence s in the trellis diagram that maximizes the log-likelihood function ln Pr {y|s}.
Then, from the estimated state sequence, the codeword as well as the message can be re-
trieved. The decoding algorithm consists of two processes: the recursive path propagation
process and the traceback process.

2.3.1.1 The Path Propagation Process

Let us denote Mt(s) the path metric at instant t for state s ∈ [0; 2ν − 1] in the trellis
diagram. To compute the path metrics at instant t, the VA recursively calculates the
path metrics from the initial instant t = 0. In case the trellis diagram starts from the
state zero, the 2ν path metrics are initialized as

M0(s) =

{
+∞, if s = 0,

0, otherwise,
(2.13)

and in case in case the initial state is not known in advance, they are initialized as

M0(s) = 0, ∀s ∈ [0; 2ν−1]. (2.14)

Assuming there are 2ν paths at instant t, the VA then calculates the path metric for
the next instant t+1. For binary convolutional codes, there are two branches coming
from two different states s0

t and s1
t at instant t that merge to state st+1 at instant t+1.

14



Therefore, there are two candidate paths for state st+1. The path metric of each candidate
is computed as

Mt(s
i
t) + Γt(s

i
t, st+1), i = 0, 1, (2.15)

where Γt(s
i
t, st+1) is the metric of the branch connecting sit and st+1. The branch metric

is calculated as

Γt(s
i
t, st+1) =

n(t+1)−1∑

j=nt

cj(s
i
t, st+1)× L{yj|xj}, (2.16)

where cj(s
i
t, st+1) ∈ {0, 1} is the j-th output bit labelling branch (sit, st+1), and L{yj|xj}

is the j-th channel LLR. The path metric for state sk+1 is selected as the most probable
path between the candidates as

Mt+1(st+1) = max
(
Mt(s

0
t ) + Γt(s

0
t , st+1),Mt(s

1
t ) + Γt(s

1
t , st+1)

)
. (2.17)

The selected path is usually referred to as the surviving path and the other path is consid-
ered as the discarded path. Based on its elementary operators, equation (2.17) is widely
recognized as the add-compare-select (ACS) operation. Furthermore, the VA use the ACS
operation for each state st+1 ∈ [0; 2ν−1] at instant t+1, resulting in 2ν new path metrics.
The VA then stores these metrics to calculate the path metrics for the next instant t+ 2.
As a result, the path metrics for every instant can be calculated recursively using the
same computation unit, denoted as the add-compare-select unit (ACSU). The process of
calculating recursively the path metrics is the path propagation process.

2.3.1.2 The Traceback Process

When the path propagation has reached the end of the trellis diagram, the maximum-
likelihood (ML) path can be obtained. If the trellis diagram is terminated by forcing to
zero, then the surviving path at state 0 is the ML path. Otherwise, if the ending state is
not known in advance, the ML path should be the path with the highest metric. Then,
from the ML path, the ML state sequence and the ML codeword can be retrieved. This
can be done by allowing the ACSU, while selecting the surviving paths at instant t, to store
also the corresponding output bits of the branches in the trellis section t. Consequently,
the ML state and ML bits can be recursively obtained from the ending state of the ML
path and the stored surviving bits. However, this procedure may require a large amount
of memory to store the surviving bits for every trellis section and may also introduce a
large additional latency to the decoder. To this end, the VA employs a low complexity
traceback.

Assuming that the surviving paths have reached the time instant t, the path con-
vergence property of convolutional codes [63] dictates that all these surviving paths at
instant t originate from a state s at time instant (t−D). With the stored surviving bits,
this state s can be traced back from any surviving path, and it is considered as the ML
state at instant (t−D). The value of D should be chosen large enough to ensure that
the convergence property is satisfied with sufficiently high probability [64]. As a result,
memories of only size D are necessary for storing the surviving bits of D previous trellis
sections to perform the traceback.
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2.3.2 The Soft-Output Viterbi Algorithm

The Soft-Output Viterbi Algorithm (SOVA) was proposed by Hagenauer in 1989 in order
to meet the need for a soft-output convolutional decoder [9]. In addition to the hard
decisions provided by the VA, the SOVA also produces reliability values for these decisions.
In general, a SOVA decoder is made of two parts: a conventional VA decoder and a
reliability update unit to produce the reliability values.

The reliability update process can be demonstrated from the perspective of the bit ut
in the trellis section t as shown in Figure 2.7. Assuming that the path propagation of the
VA has reached instant (t+D+1) as depicted in Figure 2.7a, then the traceback process
provides the ML state s at instant (t+1). Then, the metric difference ∆t+1(s) between
the surviving path and the discarded path at instant t for state s is the very first estimate
on the reliability of the decision on bit ut in section t

Lt = ∆t+1(s). (2.18)

Note that this metric difference can be obtained by two approaches. In an intuitive way,
the values of ∆t+1(s) can be stored in memory when the ACSU of the VA calculates
the path metrics at instant (t+1). The second approach involves recomputing the metric
difference by performing two traceback processes, one for the surviving path and one for
the discarded path [10].

(a) First update where Lt = ∆t+1(s)

(b) Second update of the reliability value of ut using HR

Figure 2.7: SOVA process of finding the reliability value of bit ut in trellis section t.

Next, the VA moves to instant (t+D+2) and produces the ML state s′ for instant (t+2)
as shown in Figure 2.7b. Similarly, the metric difference ∆t+2(s′) between the surviving
path and the discarded path at instant (t+2) is obtained. Furthermore, denoting by ust
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and udt the sought bit decision of the surviving path and the discarded path, respectively,
the reliability of bit ut can be updated using the following rule known as the Hagenauer
rule (HR)

Lt =

{
min (∆t+2(s′),Lt) , if ust 6= udt ,

Lt, if ust = udt .
(2.19)

Subsequently, as the VA continues tracking the ML state for subsequent instants, the
reliability of bit ut is be consecutively updated with the HR. Finally, the LLR of bit ut is
computed as

L{ut} = (2ût − 1)× Lt, (2.20)

where ût is the hard decision of the t-th bit provided by the VA. The quality of the
reliability value of a bit in the SOVA depends on the number of updates, denoted by
U . In [65], the authors proposed that for ν = 3, with U = 24 and D = 32, there is no
significant difference in performance compared to the global traceback and update case.

2.3.3 MAP-Based Algorithms

The decoding algorithms based on the MAP criterion are very popular alternatives for
SISO decoding. Different from the Viterbi-based algorithms, these algorithms focus on
finding the most likely transmitted symbol rather than finding the most likely sequence.
The algorithm was proposed in 1974 to decode linear codes, and the name of the algorithm
is given after the names of the authors, the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm
[66].

The BCJR algorithm estimates the a posteriori probability (APP) for each data sym-
bol, and then the hard decision is chosen that corresponds to the maximum APP. The
implementation of the BCJR algorithm proceeds somewhat like the path propagation of
the Viterbi Algorithm but in both directions over the trellis diagram. It involves two
recursive processes called forward recursion for the propagation from left-to-right and
backward recursion for the propagation from right-to-left in the trellis diagram, respec-
tively. Once both recursions have been completed, the APP and the hard decision can be
obtained for each data symbol. Furthermore, in practice, applying the BCJR algorithm
in the logarithmic domain (Log-MAP algorithm) and possibly simplifying it using the
max-log approximation (Max-Log-MAP or MLM algorithm) makes it more suitable for
hardware implementation.

2.3.3.1 The BCJR Algorithm

Assuming a binary convolutional code with rate R = 1/n, and y being the received vector
of length N , the APP of bit ut in trellis section t is expressed as [66]

Pr{ut; y} =
∑

(s′,s)|ut

Pr {st = s′, st+1 = s; y} , (2.21)

which is equivalent to the sum of probability of all the sequence having ut ∈ {0, 1}.
The BCJR algorithm defines the following probability functions where yji = [yi, yi+1, . . . , yj]
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is the sub-vector from index i to j (0 ≤ i < j ≤ N−1) of vector y

σt(s
′, s) = Pr {st = s′, st+1 = s; y} , (2.22)

αt+1(s) = Pr
{
st+1 = s; y

n(t+1)−1
0

}
, (2.23)

βt+1(s) = Pr
{

yN−1
n(t+1) | st+1 = s

}
, (2.24)

γt(s
′, s) = Pr

{
st+1 = s; y

n(t+1)−1
nt | st = s′

}
. (2.25)

Furthermore, the probability σt(s
′, s) can be decomposed as

σt(s
′, s) = Pr

{
st = s′; ynt−1

0

}
Pr
{
st+1 = s; yN−1

nt | st = s′
}

= αt(s
′)Pr

{
st+1 = s; y

n(t+1)−1
nt | st = s′

}
Pr
{

yN−1
n(t+1) | st+1 = s

}

= αt(s
′)γt(s

′, s)βt+1(s). (2.26)

As a result, from (2.21) and (2.26), the APP is

Pr{ut; y} =
∑

(s′,s)|ut

αt(s
′)γt(s

′, s)βt+1(s), (2.27)

where γt(s
′, s), αt(s

′), and βt+1(s) are the branch metric, the forward state metric, and
the backward state metric, respectively. The branch metric γt(s

′, s) can be derived from
(2.25) as

γt(s
′, s) = Pr {st+1 = s | st = s′}Pr

{
y
n(t+1)−1
j=nt | st = s′; st+1 = s

}

= Pr {st+1 = s | st = s′}Pr
{

y
n(t+1)−1
j=nt | cn(t+1)−1

j=nt (s′, s)
}

= Pr {st+1 = s | st = s′}
n(t+1)−1∏

j=nt

Pr {yi | cj(s′, s)} , (2.28)

where Pr {st+1 = s | st = s′} is the probability having st+1 = s, given st = s′. Note that
if no a priori information is given, this probability is equal for all branches (s′, s) in
the trellis and it can be omitted since it does not affect the final MAP decision. The
branch metric in (2.28) can be calculated locally per trellis section from the conditional
probability of the received symbol given in (2.2). Moreover, the forward state metric is
computed as

αt+1(s) =
∑

s′

Pr
{
st = s′; st+1 = s; y

n(t+1)−1
0

}

=
∑

s′

Pr
{
st = s′; ynt−1

0

}
Pr
{
st+1 = s; y

n(t+1)−1
nt | st = s′

}

=
∑

s′

αt(s
′)γt(s

′, s). (2.29)
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Similarly, the backward state metric can be expanded as

βt(s
′) =

∑

s

Pr
{
st+1 = s; yN−1

nt | st = s′
}

=
∑

s

Pr
{

yN−1
n(t+1) | st+1 = s

}
Pr
{
st+1 = s; y

n(t+1)−1
nt | st = s′

}

=
∑

s

βt+1(s′)γt(s
′, s). (2.30)

It is important to note that the state metrics in (2.29) and (2.30) can be calculated
recursively during the forward recursion and backward recursion, respectively. Once the
forward and backward state metrics are available for each instant t, the final step of the
BCJR algorithm is to find the MAP decision, which can be derived from (2.27) as

ût = arg max
ut∈{0,1}

∑

(s′,s)|ut

αt(s
′)γt(s

′, s)βt+1(s). (2.31)

Operating in the probability domain, the BCJR algorithm employs multiplications in
(2.25), (2.29), (2.30) and (2.26) making it not attractive for implementation. To circum-
vent this shortcoming, the BCJR can be applied in logarithmic domain, resulting in the
Log-MAP (LM) algorithm.

2.3.3.2 The Log-MAP Algorithm

The LM algorithm is the implementation of the BCJR algorithm in the logarithmic do-
main. Therefore, similarly to the BCJR algorithm, it consists of four steps: the branch
metric calculation, the forward recursion, the backward recursion, and the soft-output
calculation. Furthermore, instead of computing probability functions, the LM algorithm
employs LLRs as the basis for every calculation, using the channel LLRs obtained from
Eq. (2.4).

In the LM algorithm, the branch metric is denoted as Γt(s
′, s) = ln γt(s

′, s) and is
calculated as

Γt(s
′, s) = ln Pr {st+1 = s | st = s′}+

n(t+1)−1∑

j=nt

cj(s
′, s)L{yj|xj}. (2.32)

Now, since the convolutional code is binary, each branch (s′, s) in trellis section t is
attached to an information bit ut(s

′, s) having its value in {0, 1}. Assuming that the
decoder has the following a priori information on bit ut,

La{ut} = ln
Pr{ut = 1}
Pr{ut = 0}

, (2.33)

the logarithm probability of branch (s′, s) is derived as

ln Pr {st+1 = s | st = s′} = ln Pr{ut = ut(s
′, s)}, (2.34)

and can be normalized as

ln Pr {st+1 = s | st = s′} = ln
Pr{ut = ut(s

′, s)}
Pr{ut = 0}

+ ln Pr{ut = 0} (2.35)

=

{
La{ut}, if ut(s

′, s) = 1

0, if ut(s
′, s) = 0.

(2.36)
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Note that from (2.35) to (2.36), the term ln Pr{ut = 0} is omitted since it will be cancelled
out in the subsequent calculations. As a result, equation (2.32) can be transformed into

Γt(s
′, s) = ut(s

′, s)× La{ut}+

n(t+1)−1∑

j=nt

cj(s
′, s)× L{yj|xj}. (2.37)

The forward state metric in the LM algorithm, denoted as At+1(s) = ln(αt+1(s)), is
computed by applying the logarithm function to Eq. (2.29)

At+1(s) = ln

(∑

s′

αt(s
′)γt(s

′, s)

)
= ln

(∑

s′

eAt(s′)+Γt(s′,s)

)
. (2.38)

Following [67], (2.38) can be reformulated using the Jacobian logarithm defined as

ln(eδ1 + eδ2) = max*(δ1, δ2) = max(δ1, δ2) + ln
(
1+e−|δ1−δ2|

)
, (2.39)

where the logarithmic correction term ln
(
1+e−|δ1−δ2|

)
can be easily pre-calculated and

stored in a lookup table for implementation. Note that the Jacobian logarithm can be
extended to any number of inputs greater than two by successively using (2.39). As a
result, the forward state metric can be expressed as

At+1(s) = max*
s′

(At(s
′) + Γt(s

′, s)) . (2.40)

Similarly, using the Jacobian logarithm in the backward recursion yields

Bt(s
′) = max*

s
(Bt+1(s) + Γt(s

′, s)) . (2.41)

In terms of the soft output, the LM algorithm produces the LLR of the APP of bit ut
as

L(ut) = ln

∑
(s′,s)|ut=1 αt(s

′)γt(s
′, s)βt+1(s)

∑
(s′,s)|ut=0 αt(s

′)γt(s′, s)βt+1(s)
. (2.42)

By using the max* operation, it turns into

L(ut) = max*
(s′,s)|ut=1

(At(s
′) + Γt(s

′, s) +Bt+1(s))

− max*
(s′,s)|ut=0

(At(s
′) + Γt(s

′, s) +Bt+1(s)) .
(2.43)

Moreover, the hard decision of bit ut can be derived as

ût =

{
0, if L(ut) < 0,

1, if L(ut) ≥ 0.
(2.44)

2.3.3.3 The Max-Log-MAP Algorithm

The MLM algorithm is considered as a sub-optimal version of the LM algorithm but with
lower complexity [67]. The algorithm uses the max-log approximation

ln
(
eδ1 + eδ2 + . . .+ eδk

)
≈ max (δ1, δ2, . . . , δk) , (2.45)
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which discards the correction term in the max* operation and turns it into a max oper-
ation. As a result, the forward recursion, the backward recursion, and the soft-output
calculation in the MLM algorithm are performed as follows

At+1(s) = max
s′

(At(s
′) + Γt(s

′, s)) (2.46)

Bt(s
′) = max

s
(Bt+1(s) + Γt(s

′, s)) (2.47)

L(ut) = max
(s′,s)|ut=1

(At(s
′) + Γt(s

′, s) +Bt+1(s))

− max
(s′,s)|ut=0

(At(s
′) + Γt(s

′, s) +Bt+1(s)) . (2.48)

In spite of a slight loss in performance compared to the LM algorithm due to the
max-log approximation, the MLM algorithm gets rid of the use of lookup tables for the
correction terms. Therefore, it is attractive due to its lower complexity. In practice, for
turbo codes, the decoders employ mostly the MLM algorithm to decode the constituent
convolutional codes.

2.4 Turbo Codes

Turbo codes were first proposed by Berrou et al. in 1993 [40] as convolutional parallel
concatenated codes. For the past two decades, turbo codes have been adopted as chan-
nel codes in several wireless communication standards thanks to their outstanding error
correction capabilities with a high degree of flexibility, in terms of block length and code
rate. Notably, turbo codes were chosen for the third and fourth generations (3G and
4G) of wireless mobile telecommunications as well as WiMAX, but also in digital video
broadcasting standards such as DVB-RCS/RCS2 and DVB-SH [5].

2.4.1 Turbo Encoding

A turbo encoder generally consists of two recursive systematic convolutional (RSC) en-
coders concatenated in parallel and separated by an interleaver. Figure 2.8 shows the
diagram of a typical turbo encoder. Let RSC1 and RSC2 be the first and second RSC
encoder. Then the information message u is encoded by RSC1 producing the systematic
part and the first parity part of the codeword, denoted by cs and cp1 , respectively. On the
other hand, the information message is also passed through the interleaver to produce the
interleaved information uπ. This sequence is then encoded by the second encoder RSC2

to produce the second parity part of the codeword cp2 . Note that encoder RSC2 does
not produces any systematic part, since the systematic bits need to be transmitted only
once. In the end, the systematic, the first parity and the second parity parts are grouped
together to make the turbo codeword c = [cs, cp1 , cp2 ]. Furthermore, assuming that the
code rate of RSC1 and RSC2 are R1 and R2, the code rate of the turbo code is

R =
R1R2

R1 +R2 −R1R2

. (2.49)

If both RSC codes are identical with the same code rate R′, then the code rate of the
turbo code is R = R′/(2−R′). Furthermore, if they are binary RSC codes with R′ = 1/2,
then the turbo rate is R = 1/3.

21



 

 

Figure 2.8: Turbo encoder as the parallel concatenation of two convolutional encoders.

Similarly to convolutional codes, high-rate turbo codes can be achieved by employing
true high-rate RSC codes or by puncturing low-rate RSC mother codes. In most commu-
nication standards that employ turbo codes, the puncturing technique is chosen since it
provides flexibility in changing the code rate and it allows the reuse of the same decoder.

2.4.2 The Interleaver

The interleaver is placed in-between the two RSC component encoders of the turbo code.
It plays the basic role of scrambling the information message before passing it to the second
RSC2 encoder. Given the information sequence in natural order u = [u0, u1, . . . , uK−1],
the interleaved sequence is uπ = [uπ(0), uπ(1), . . . , uπ(K−1)], where j = π(i) is the in-
terleaver function. Reversely, as the interleaver function is bijective, the deinterleaver
function can be defined as i = π−1(j).

The interleaver is a key component of turbo codes. Its first purpose is the time-
spreading of errors that could be produced in bursts over the transmission channel. Sec-
ondly, the interleaver design has a great impact on the error correction performance of
the turbo code and especially on its minimum Hamming distance.

In the literature, interleavers are generally classified into two categories: random-based
interleavers and structured interleavers. The random-based interleaving function is gen-
erated using random or pseudo-random methods. Hence, their practical implementation
involves the process of memorizing the addresses of the interleaving/deinterleaving func-
tions. As a result, the required memory increases the power consumption and area cost
of the turbo encoder and decoder, especially for large frame sizes.

On the contrary, for structured interleavers, the interleaving/deinterleaving functions
are generally obtained by simple algebraic equations, only requiring the storage of a small
set of parameters. Furthermore, their structure is more appropriate for hardware imple-
mentations of turbo decoders, and for parallel architectures if they have the contention-free
property [68]. The most popular structured interleavers are quadratic permutation poly-
nomial (QPP) interleavers [69] and almost regular permutation (ARP) interleavers [70].
The QPP interleavers have been adopted in the LTE standard and are defined as

π(i) = (f1i+ f2i
2) modK, ∀i = 0, 1, . . . , K − 1, (2.50)

where f1 and f2 are predefined interleaver coefficients for each information size. On the
other hand, the ARP interleavers have been adopted in communication standards such as
DVB-RSC/RSC2 and are defined as follows

π(i) = (Pi+ SimodQ) modK, (2.51)
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where P and Q are the interleaver period and the disorder degree, respectively. Also,
S = [S0, . . . , SQ−1] is a vector of length Q called the shift vector.

2.5 Turbo Decoding

2.5.1 Principle

The basic turbo decoder structure was proposed by Berrou in [40]. It consists of two
SISO decoders connected through an interleaver and a deinterleaver, which exchange
information through an iterative process. The turbo decoding process is depicted in
Figure 2.9. Generally, it starts with the first SISO decoder, named SISO1, whose inputs
are the systematic part received from the channel, Ls, the received first parity part Lp1

and the a priori information La provided by the other SISO decoder, if available. Then,
SISO1 computes the a posteriori LLRs, denoted by L, and the extrinsic information Le

is extracted as follows:

Lei = Li − (Lsi + Lai ), ∀i = 0, 1, . . . , K−1. (2.52)

The extrinsic information was originally proposed by Berrou as the additional but not
repetitive information to be provided by a SISO decoder to the other in the iterative
process. Therefore, the extrinsic information extracted from SISO1 is interleaved and
used as a priori information for the second decoder SISO2.

 

 

Figure 2.9: Turbo decoder consisting of two SISO decoders with the exchange of extrinsic
information.

Then, SISO2 performs a similar decoding process with inputs consisting of the in-
terleaved systematic and the second parity parts received from the channel and of the
extrinsic information provided by the first decoder and used as a priori information.
SISO2 decoder also computes a posteriori information as well as extrinsic information.
Then, the extrinsic information is de-interleaved and used by the first decoder to start a
second iteration.

Conventionally, the process of decoding one constituent RSC code is counted as one
half-iteration (HI) and a complete two HIs is considered as a full-iteration or iteration
for short. The iterative process of turbo decoding continues until a predefined number
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of iterations is reached or until a stopping criterion is fulfilled. In mobile standards, the
use of cyclic redundancy check (CRC) codes [3] to detect decoding errors can serve as the
stopping criteria.

From the decoding principle, the turbo decoder is affected by the choice of the con-
stituent SISO decoders. Different SISO decoding algorithms can be used and, thus, have
different effects on the performance, complexity, throughput, etc. of the turbo decoder.

2.5.2 Comparison of Constituent Codes Decoding Algorithms

In this section, we compare the error correction performance of three candidates for the
constituent SISO decoding algorithm of turbo decoders: the LM algorithm, the MLM
algorithm, and the SOVA. These algorithms have been already detailed in section 2.3.
Note that for turbo decoding with iterative process, the branch metric calculation is now
including the a priori information as in equation (2.37).

In order to make the comparison, the following setting is carried out for the turbo
code. First, the (13, 15)oct constituent RSC code of the LTE standard is chosen with
generator matrix

GLTE =

(
1

1+D+D3

1+D2+D3

)
(2.53)

and the encoder shown in Figure 2.10. We also use the QPP interleaver defined in the
LTE standard. The information length is set to K = 256, and the code rate of the
turbo code is R = 1/3, yielding codewords of length N = 768. The codewords are
then transmitted using BPSK modulation through the AWGN channel. The number of
iterations for turbo decoder is set to eight, and all the SISO decoding algorithms use a
floating-point arithmetic representation of data.

Figure 2.10: Constituent RSC encoder of the LTE standard.

Figure 2.11 shows the turbo decoder performance for the three decoding algorithms.
We can observe that, at 10−6 BER, the LM and the MLM algorithms outperform the
SOVA by a gap of 0.7 dB and 1 dB, respectively. Thus, although the SOVA is claimed
to require half of the number of computational operators compared to LM and MLM
[67], the interest of this algorithm for turbo decoding remains limited due to its lower
performance. Furthermore, the serial processing of traceback and reliability update in
the SOVA make it not inherently suitable for parallel processing.

Regarding the comparison between the LM and MLM algorithms, the LM outperforms
the MLM algorithm by about 0.3 dB at the expense of higher complexity and latency due
to the additional correction terms (2.39). However, MLM can be easily improved with
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Figure 2.11: Performance comparison of decoding algorithms in turbo decoder

the introduction of an extrinsic scaling factor (ESF) to compensate for the overestimation
of the extrinsic information caused by the max-log approximation [71]. Extrinsic scaling
with the ESF allows the gap between the LM and the MLM to drop under 0.1 dB, as
shown in Figure 2.11. Usually, the ESF is set to 0.75 for easy hardware implementation.
Additionally, another advantage of the MLM over the LM algorithm is that the MLM is
insensitive to a bad estimation of the SNR, making it more robust than the LM algorithm
[72].

In conclusion, throughout this work, we will use the MLM algorithm with ESF = 0.75
as the baseline for the SISO decoders employed in turbo decoding processes.

2.6 Summary

In this chapter, we provided the necessary background information about convolutional
codes and turbo codes in the context of a point-to-point digital communication chain.
In particular, we described the main decoding algorithms for these codes and especially
the SISO algorithms that are usually used for turbo decoding, namely the BCJR, the
Log-MAP, and the Max-Log-MAP algorithms, as well as the SOVA that served as a basis
for a part of our work. Furthermore, we made a brief review of turbo codes, a family
of codes consisting of a parallel concatenation of two recursive systematic convolutional
codes separated by an interleaver. The turbo decoding principle was explained, and
we introduced the concept of extrinsic information. Finally, a performance comparison
between the main SISO decoding algorithms was carried out in the context of turbo codes,
which led to the choice of the Max-Log-MAP algorithm as the baseline decoding algorithm
for the next chapters.
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Chapter 3

High-Throughput Turbo Decoders

As presented in the previous chapter, SISO decoder plays a fundamental part of a turbo
decoder architecture. However, inherently, the component SISO decoder is serial in nature
due to the recursive calculation of the state metrics using the MLM algorithm. As a result,
the SISO decoder requires a relatively large amount of memory for storing the state
metrics, and its throughput is very limited. This, in turns, also limits the throughput
of the turbo decoder. Therefore, this chapter presents several techniques and decoder
architectures that have been proposed in the literature in order to design turbo decoders
with a throughput up to 100 Gb/s.

The chapter starts by introducing in Section 3.1 the basic turbo decoding process with
several basic techniques making a practical decoder feasible. We also define a set of useful
metrics to analyze and evaluate the advantages and disadvantages of each technique or
architecture. Then, in Section 3.2, techniques to increase the throughput of the decoder
are presented, such as splitting the trellis into sub-trellises and processing with parallel or
pipelined architectures. High-radix schemes are also considered because they allow several
trellis sections to be aggregated, so as to be processed in a single clock cycle, thus further
increasing the throughput. Next, ultra-high-throughput architectures that examine fully
parallel or fully pipelined solutions are reviewed in Section 3.3. Finally, we summarize
the contents of the chapter in Section 3.4.
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3.1 Basic Turbo Decoders

The turbo decoding process is carried out through an iterative process where two com-
ponent SISO decoders exchange extrinsic information. The two component decoders can
process in serial (sequential decoding) or in parallel (shuffle decoding) as shown in Figure
3.1a and 3.1b, respectively. The former has been described in the previous chapter where
the completion of one component decoding is referred to as one half-iteration (HI). In
the latter, two SISO decoders process simultaneously, thus, each decoder acquires the a
priori information more quickly than in the sequential decoding, which translates into a
faster convergence of the decoding algorithm. The drawback of shuffle decoding is that
it requires two SISO decoders in the implementation, while only one SISO decoder is
employed in sequential decoding, since it can be reused for all HIs. Therefore, double the
amount of hardware resources is needed for shuffle decoding. As a result, in this work,
unless stated otherwise, we only consider the sequential decoding schedule.

Figure 3.1: Decoding process of turbo codes with 2 iterations using (a) sequential decoding
and (b) shuffle decoding

The main objective of this work is to design a very high throughput turbo decoder.
Hence, the decoder throughput is considered as the main performance indicator that needs
to be optimized. The decoder throughput is defined as the number of decoded bits per
time unit. Since the turbo decoder consists of component SISO decoders, the throughput
of the turbo decoder can easily be derived from that of a SISO decoder. Additionally, in
the framework of the EPIC project, other criteria should be taken into account to validate
an architectural solution such as:

• Complexity: it can be measured by the algorithmic computational complexity
and/or architectural complexity. The former is very useful in the phase of algorithm
development to provide an overview and estimate of the architectural complexity.
It determines the number of elementary operations performed by the decoding algo-
rithm. In the case of the MLM algorithm, additions and compare-select operations
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are considered as the elementary operations. Also, the amount of required mem-
ory should also be counted in this phase. Then, the architectural complexity can be
measured as the number of hardware resources required to implement the developed
algorithm. If an application-specific integrated circuit (ASIC) is targeted, the area
(in mm2) is a direct measure of the complexity. If a field-programmable gate array
(FPGA) is targeted, the complexity is measured as the number of functional units
occupied by the algorithm (LUTs, RAM blocks, Flip-Flops).

• Error correction performance: it is measured in terms of BER and/or FER
at a given SNR as explained in Section 2.1. In the context of high throughput
decoding, some operations can be carried out in parallel and approximations can
be introduced into the decoding algorithm, thus degrading the error performance
of the decoder. If such a degradation is not tolerated, additional iterations can be
required or counteracting techniques can be introduced, which translate into a higher
complexity or a throughput decrease. Depending on the context, some applications
accept the error performance degradation in exchange for a throughput gain.

• Latency: this is the elapsed time between the moment the decoder receives an
input frame and the moment the decoding process has been completed. Among the
use cases defined by the EPIC project [7], some applications have a very stringent
latency requirement such as wireless connectivity in data centers (0.1 µs), hybrid
fiber-wireless networks (0.2 µs), while others have more relaxed requirements like
mobile virtual reality (500 µs) or communications through high-throughput satellites
(10000 µs).

• Flexibility: it is characterized by the scalability of the architecture in terms of
frame size and coding rate (rate compatibility). In other words, it is given by the
number of code lengths and code rates that the decoder architecture can support
without changing its structure.

• Other metrics: others metrics have also to be taken in account, such as the area
efficiency (in bit/s/mm2, throughput per unit area), the energy efficiency (in pJ/bit,
energy required for decoding one information bit) or the power density (in W/mm2,
power dissipation per unit area), which must be admissible with respect to the
thermal dissipation of the device.

3.1.1 Generic Components of SISO Decoders

When considering the Max-Log-MAP algorithm, the SISO decoding process involves
branch metric calculations (Eq. (2.37)), a forward recursion (Eq. (2.46)), a backward
recursion (Eq. (2.46)), and the soft output calculation (Eq. (2.48)). These calculations
are carried out respectively by the following computation units: the branch metric unit
(BMU), the forward and the backward ACSUs, and the soft-output unit (SOU). Figure
3.2a illustrates the decoding process mapped on the trellis diagram of an RSC code.

Intuitively, one can schedule the decoding process as shown in Figure 3.2b. First, the
forward state metrics are recursively calculated by the BMU and the forward ACSU. The
calculated state metrics are stored in the memory. Then, after reaching the end of the
trellis diagram, the backward state metrics are calculated by the BMU and the backward
ACSU. In the same time, the forward state metrics Ak(s) are loaded from the memory, and
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are added to the intermediate values of (Bk+1(s′)+Γk(s, s
′)). The sums are then fed to the

SOU for calculating the a posteriori and extrinsic LLRs. The architecture implementing
this scheduling is depicted in Figure 3.3, and the structures of the component computation
units are shown in Figure 3.4. Note that the presence of the feedback loop of the ACSU
for the state metrics recursion prevents this unit from being pipelined or parallelized [73].
Therefore, the ACSU contains the critical path of the decoder, which limits the maximum
operating frequency.

 

  

Figure 3.2: Metric calculations in the Max-Log-MAP algorithm.

  

Figure 3.3: Basic SISO decoder architecture.

3.1.2 Scheduling SISO decoding

In the Max-Log-MAP algorithm, the order of execution of the forward recursion, backward
recursion and soft ouput computation can vary, depending on the scheduling. There are
two basic types of scheduling: Forward-Backward (FB) scheduling and butterfly schedul-
ing [11, 12]. FB scheduling corresponds to the intuitive way of running MAP-based
algorithms and has already been introduced in the previous section and illustrated by
Figure 3.3(b): the forward state metrics are recursively calculated and stored in mem-
ories. Then, the backward ACSU calculates the backward state metrics, and the soft
output can be computed on the fly. Another equivalent alternative is backward-forward
scheduling, which reverses the order of forward and backward recursions.
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Figure 3.4: Generic computation units in a SISO decoder for a binary RSC with ν = 2.

Butterfly scheluding is shown in Figure 3.5 where the forward and backward state
metrics are calculated in parallel. At halfway, two SOUs are necessary for producing the
soft output along with the state metric calculation in both directions.

The soft output produced by the two types of scheduling is the same; hence, they
yield the same error correction performance. Furthermore, the computational complexity
of both schedulings is similar and the amount of memory needed to store the state metrics
is the same. However, in terms of hardware complexity, butterfly scheduling requires two
ACSU in parallel and two SOUs to operate compared to only one ACSU and one SOU
for FB scheduling, making it more complex. Nevertheless, butterfly scheduling inherently
offers a higher throughput and a lower latency due to the fact that it can decode in
K recursion steps compared to 2K recursion steps for FB scheduling. Therefore, the
constraints and requirements of the target application dictate the type of scheduling, FB
or butterfly, to be applied.

3.1.3 Sliding Window Decoding

We can observe from Figures 3.2b and 3.5 that the amount of memory required to store
the state metrics of a SISO decoder increases linearly with the trellis length K, which
can be a limiting factor for long frame sizes. Therefore, the sliding window technique was
proposed [13] to overcome this drawback. The trellis of length K is split into windows
of length W and the decoding schedule is applied at window level, thus reducing the
memory requirements: the amount of storage required for the state metrics is linear with
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Figure 3.5: Butterfly scheduling.

W intead of K. Figure 3.6 shows the overall decoding schedule with sliding windows for
both considered types of scheduling. Note that there is a continuity of forward recursions
between consecutive windows, while the data dependency of the backward recursions is
loosened due to the discontinuity at the window borders. This raises the question of the
initialization of the backward metrics for each window.

The sliding window technique can be coupled with either FB scheduling or butterfly
scheduling as depicted in Figure 3.6a and 3.6b, respectively. We can observe that, for both
types of scheduling, the amount of storage is reduced by a factor of K/W . Furthermore,
for FB scheduling, using sliding window reduces the decoding latency from 2K recursion
steps down to (K+W ) steps. For butterfly schedule, the decoding latency with sliding
window is still K recursion steps. From the memory requirement and latency points of
view, a low window size W is better. However if the window is too small, the error
correcting performance of the decoder can be degraded [74]. For applications where the
value of K/W is relatively large, sliding window is usually employed with FB scheduling
since it generates nearly the same throughput and latency while having lower complexity
than butterfly scheduling.

Figure 3.6: Decoding with sliding windows
(a) FB scheduling (b) butterfly scheduling.
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3.1.4 State Metric Initialization

If the backward state metrics at the border of the sliding windows are initialized with
equiprobable values, this can result in poor error correction performance of the decoder,
especially if W is low. Therefore, initializing the state metrics with reliable values at the
window border is necessary. Two main techniques can be found in the literature [11]:
Acquisition (ACQ) and next iteration initialization (NII).

The use of ACQ initialization combined with FB scheduling and sliding window is
shown in Figure 3.7a, in dashed line: LACQ recursion steps are performed prior to the
regular resursion steps to initialize the state metric values at the beginning of each win-
dow. The ACQ step can be regarded as a tool to enrich the backward state metrics before
the decoder starts producing the soft outputs. Using the ACQ stage prevents the error
correction performance of the decoder to be degraded, at the expense of increased hard-
ware complexity, due to an additional BMU and ACSU. This is all the more important
for high coding rates R obtained with puncturing. This can be explained by the fact
that the frequency of parity bits in the punctured codeword is low for high coding rates.
Therefore, in this case, the ACQ length LACQ should cover at least several non-punctured
parity bit positions so that the resulting state metric is reliable enough.

NII is another technique to obtain good estimates for the initial state metrics as shown
in Figure 3.7b. The principle is based on storing the last calculated state metric at the
end of a window and using it as the initial value for the next window at the next iteration.
Therefore, at the cost of extra memory to store the final state metric values, the error
correction performance can be improved without extra processing unlike in the case of
ACQ. On the other hand, since the initial state metrics cannot benefit from NII at the
first iteration, one additional iteration can be needed to obtain the same performance as
with ACQ. Therefore, a combination of ACQ and NII can be employed and is particularly
useful for punctured high rate codes to limit the number of iterations. Figure 3.7c depicts
an example of combining ACQ and NII in a turbo decoding process.

3.1.5 Evaluation of Basic Key Performance Indicators for Turbo
Decoders

This section shows the analytical evaluation of basic key performance indicators (KPI)
for turbo decoders using the MLM SISO decoding algorithm. The basic turbo decoder
uses sequential decoding as shown in Figure 3.1 with only one SISO decoder for different
half-iterations. This means that the LLRs output from the channel and the extrinsic
information from each half-iteration are stored in the memory. For each half-iteration,
the SISO decoder reads those values from the memory and performs the MLM decoding
algorithm. Furthermore, we assume that the SISO decoder performs FB scheduling with
sliding window and that the state metrics are initialized using combined ACQ and NII as
shown in Figure 3.7c.

First of all, in terms of throughput and latency, we assume the maximum operating
frequency is f and it is limited by the critical path of the ACSU. Then, by neglecting the
I/O latency, the latency of the decoder can be roughly estimated as

Latency =
1

f
× (K +W )× nHI, (3.1)

where nHI is the number of half iterations performed by the decoding process. The
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Figure 3.7: State metric initialization by (a) ACQ, (b) NII, and (c) combining both
methods.

throughput of the decoder is then expressed as

Throughput =
K

(K +W )× nHI

× f. (3.2)

Note that one can increase the throughput by decreasing W or nHI but it will yield a
degradation in the error correction performance. Furthermore, we can see that the decoder
throughput is a monotonic function increasing with the frame size K. Asymptotically,
the throughput of the decoder as K goes to infinity is

lim
K→∞

1

1 +W/K
× f

nHI

=
f

nHI

, (3.3)

and is bounded by the operating frequency f . For a turbo decoder with 6 iterations
(nHI = 12), with the operating frequency f of 800 MHz, the asymptotic throughput of
this decoder is about 67 Mb/s.

The algorithmic computational complexity of each decoded bit in the component SISO
decoder in each half iteration is shown in Table 3.1 for a binary RSC code with rate 1/2
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and ν memory elements. Note that for each decoded bit, the branch metric calculation
and the ACS operation are performed three times (ACQ, forward and backward), and the
soft output calculation is performed once. For implementation, this basic turbo decoder
requires 3 BMU, 3 ACSU and 1 SOU with W memory units for the state metrics. Note
that these computation and memory units are reused for each half iteration in a sequential
decoding fashion, thus, resulting in a relatively low complexity decoder. Furthermore, this
implementation can support any frame size that is a multiple of the window size W , and
can support any code rate with puncturing. Intuitively, one can increase the throughput

Addition
Comparison-

selection
Total

Branch metrics calculation
(forward & backward)

2 0 2

State metrics recursion
(forward & backward)

2×2ν 2ν 3×2ν

Soft-output calculation 2×2ν + 1 2×(2ν−1 − 1) 3×2ν − 1

Computational complexity
per decoded bit

8×2ν + 7 4×2ν − 2 12×2ν + 5

Table 3.1: Computational complexity per decoded bit of the MLM algorithm with FB
scheduling, sliding window and ACQ according to Figure 3.7c. Convention for complexity:
one addition equals one compare-select operation and is counted as one computational
unit.

of the decoder by applying direct spatial parallelism, i.e. by using multiple instance
of the basic decoder running in parallel. However, this method does not reduce the
latency and the area efficiency (throughput/complexity) remains unchanged. Therefore,
in the subsequent sections, we introduce alternative parallelism techniques to increase the
throughput of the decoder, at the architectural and algorithmic levels.

3.2 High-Throughput Architectures

The basic turbo decoder architecture considered in the previous section can only achieve
a throughput of tens of Mb/s [73, 75]. However, due to the increasing throughput demand
over time, new techniques and architectures have to be devised. The literature on parallel
architectures for turbo codes mainly considers splitting the trellis into sub-trellises and
then processing it using a parallel MAP (PMAP) architecture architecture [14] or the
so-called XMAP architecture [15]. On top of that, the algorithmic parallelism technique
consisting in processing several trellis sections at the same time and called high-radix
processing [16] is also considered to help further increase the decoding throughput.

3.2.1 The PMAP Architecture

A straightforward method to help increase the throughput is to divide the trellis into
sub-trellis of length KP , and having each sub-trellis decoded independently in parallel.
This architecture is generally referred to as the PMAP architecture [14]. Denoting by
P = K/KP the number of sub-trellises, by neglecting the I/O latency and the latency
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due to metric initialization, the latency of the PMAP architecture can be estimated in
terms of clock cycles as

LatencyPMAP = (KP +W )× nHI, (3.4)

and the throughput of the PMAP architecture is

ThroughputPMAP =
K

(KP +W )× nHI

× f. (3.5)

With a fixed frame size K, the throughput increases inversely with KP , i.e. it increases
with the number of parallel sub-trellises P . As K goes to infinity, the asymptotic through-
put of the PMAP architecture is

lim
K→∞

1

(KP/K +W/K)

f

nHI

=
Pf

nHI

. (3.6)

As an example, with P = 64 independent SISO cores, f = 800 MHz and nHI = 12 (6
iterations), the asymptotic throughput of the PMAP architecture is about 4.2 Gb/s.

Figure 3.8: The PMAP architecture with P = 4.

On the other side, to implement the PMAP architecture, the amount of hardware
resources increases by a factor P since each sub-trellis is processed by an independent
SISO decoder. Figure 3.8 shows the scheduling and the architectural overview of the
PMAP decoder. Note that Figure 3.8a shows the PMAP employing sliding window and
FB scheduling, but the butterfly scheduling can also be used instead. Furthermore, NII
and/or ACQ initialization can be used to compensate for the loss in data dependency due
to sub-trellis division, thus preserving the inherent error correction performance of the
turbo decoder.

3.2.2 The XMAP Architecture

Given P sub-trellises of length KP , the XMAP architecture [15] processes a single sub-
trellis at a time. Sub-trellises are time-multiplexed into a pipeline consisting of a chain of
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computation units (BMU, ACSU and SOU) connected through pipeline registers. As a
result, for each clock cycle, the decoder can produce KP soft-output values. Note that the
XMAP architecture only differs from the PMAP architecture in the way each individual
sub-trellis is processed.

An example of the XMAP architecture with 4 sub-trellises is shown in Figure 3.9 with
the scheduling on the left and the architectural overview on the right. Furthermore, the
X-shaped architecture of the XMAP core is shown in Figure 3.10. By neglecting the I/O
latency and the latency due to metric initialization, the latency in clock cycles of the
turbo decoder with XMAP architecture is

LatencyXMAP = (KP + P − 1)× nHI, (3.7)

and the throughput is

ThroughputXMAP =
K

(KP + P − 1)× nHI

× f. (3.8)

Since the XMAP core consists of a chain of computation units setting up in a pipeline
fashion, its complexity increases linearly with the sub-trellis length KP . Particularly,
given the architecture shown in Figure 3.10, the XMAP core requires 2KP BMUs, 2KP

ACSUs, KP SOUs, as well as the pipeline registers for the state metrics, the channel and
the a priori information. Furthermore, if ACQ initialization is employed, the pipeline
registers and the number of BMUs and ACSUs will increase with the ACQ length.

Figure 3.9: The XMAP decoder with P = 4 with (a) the scheduling with the delay
of 1 clock cycle between sub-trellis processing and (b) the architectural overview of the
corresponding XMAP decoder.

3.2.3 High-Radix Schemes

For SISO decoding algorithms based on the trellis diagram, like the SOVA and the MAP-
based algorithms, the state metrics are calculated recursively by the ACSU. As a result,
the decoder processes one trellis section per clock cycle. This is a bottleneck for a high
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Figure 3.10: The XMAP core comprising chain of computation units and pipeline registers.

throughput implementation of SISO decoding algorithms. To overcome this problem, the
authors in [16] proposed a high-throughput computation of the state metrics by aggregat-
ing successive trellis sections. This technique was first proposed for the Viterbi Algorithm
and then was applied to the SOVA and the MAP-based algorithms.

For a binary RSC code with rate 1/n, the original trellis is in radix-2 form since there
are two branches coming in and out of a state. Then, the aggregation of two successive
radix-2 trellis sections results in a radix-4 trellis section as there are four branches coming
in and going out of a state. Similarly, the aggregation of three and four radix-2 trellis
sections leads to a radix-8 and radix-16 trellis section, respectively. Figure 3.11 shows an
example of a radix-4 trellis section of a binary RSC code with ν = 2.

Figure 3.11: A radix-4 trellis section made of two consecutive radix-2 trellis sections.
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Denoting by T the radix order, the forward state metrics calculation of the radix-2T

(T > 1) scheme for the Max-Log-MAP algorithm is obtained as follows

Ak+T (s) = max
s′

(
Ak(s

′) + Γk→k+T (s′, s)
)
, (3.9)

where Γk→k+T (s′, s) is the radix-2T branch metric connecting state s′ at instant k and
state s at instant k+T , and is calculated as the accumulation of T component radix-2
branch metrics. As a result, a high-radix BMU has to compute all the combinations of
the component radix-2 branch metrics to obtain the high-radix branch metrics provided
to the ACSU. Furthermore, the a posteriori LLR of bit uk in radix-2T is calculated as

L(uk) = max
(s′,s)|uk=1

(Ak(s
′) + Γk→k+T (s′, s) +Bk+T (s))

− max
(s′,s)|ut=0

(Ak(s
′) + Γk→k+T (s′, s) +Bk+T (s)) , (3.10)

where the set of branches (s′, s) for each max operator has 2ν+T−1 elements, which in-
creases exponentially with the radix order.

In terms of advantages, using radix-2T schemes produces T soft-output in a single
clock cycle. Hence, ideally, it helps increase the throughput of the decoder by a factor T
while keeping the same error correction performance. However, radix-2T schemes require
an increase in complexity in terms of computation units (BMU, ACSU, SOU) as shown
in (3.9) and (3.10). Furthermore, as shown in (3.9), the size of the set of state for the
max operation in the ACSU increases with the radix order. This induces an increase in
the critical path of the ACSU, which in turns lowers the maximum operating frequency,
thus decreasing the throughput of the decoder.

For the MLM algorithm, the use of radix-4 has been demonstrated to provide a higher
throughput than radix-2 schemes at the expense of a higher decoder complexity for the
LTE turbo code [17]. However, radix orders greater than 2 (radix-8, radix-16 and above)
were shown to be inefficient due to the increased complexity and longer critical path [18].

3.2.4 High-Throughput Turbo Decoders: State of the Art

Table 3.2 provides an overview of state-of-the-art turbo decoder implementations reported
in the literature, which use the high-throughput techniques described in the previous
sections. This table shows that, by employing the PMAP or XMAP architecture with or
without the use of high-radix schemes, turbo decoders can achieve data rates in the order
of several Gb/s.

3.3 Ultra-High-Throughput Architectures

Previous architectures and techniques can support applications with throughput require-
ments up to several Gb/s. However, in the context of the EPIC project, throughputs
of tens of Gb/s up to hundreds of Gb/s are required in several use cases. As far as we
know, there are two architectures that can meet such high-throughput constraints: the
fully-parallel MAP [25] and the unrolled-XMAP architectures.

1Throughput measured at the maximum number of iterations
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Reference [19] [20] [21] [21] [22] [23] [24]

Code - Flexibility LTE-A LTE-A LTE-A LTE-A LTE-A
K =
4096

LTE-A

Max block size 6144 6144 6144 6144 6144 4096 6144

Architecture PMAP PMAP PMAP PMAP PMAP PMAP XMAP

Radix/P 4/16 4/32 2/64 2/64 2/64 16/32 4/192

Window size 32 192 96 96 64 32 32

No. iterations max 5.5 6 8 5.5 6 8 7

Technology (nm) 65 65 90 90 65 90 28

Throughput (Gb/s)1 1.0 2.2 2.3 3.3 1.3 1.4 1.1

Frequency (MHz) 410 450 625 625 400 175 625

Area (mm2) 2.5 7.7 19.8 19.8 8.3 9.6 0.49

Area efficiency
(Gb/s/mm2)

0.41 0.3 0.1 0.2 0.2 0.1 2.3

Table 3.2: Comparison of high-throughput turbo decoder implementations.

3.3.1 The Fully-Parallel MAP (FPMAP) Architecture

The FPMAP architecture combines shuffle decoding with a splitting of the trellis into sub-
trellises of size KP = 1, which can be seen as an extreme case of the PMAP architecture
with P = K. The approach was first presented in [25] and an implementation based on
the LTE turbo codes was published in [26].

A schematic of the FPMAP architecture is shown in Figure 3.12. It employs 2K pro-
cessing elements (PE). Each PE computes the branch metrics, the forward and backward
state metrics and the extrinsic information for one trellis step in one clock cycle. The
calculated state metrics at the border are then exchanged with neighbouring PEs, and
the calculated extrinsic information is fed to the interleaved/deinterleaved PEs.

Figure 3.12: The FPMAP architecture.

For the LTE turbo code, the use of the odd-even QPP interleaver helps split the
PEs into two groups, where each group can be processed independently. The first group
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consists of K/2 PEs of the SISO1 with even index and K/2 PEs of the SISO2 with odd
index (shown by grey blocks in Figure 3.12). The second group is made of K/2 PEs
of the SISO1 with odd index and K/2 PEs of of the SISO2 with even index (shown by
white blocks in Figure 3.12). Then, one complete iteration is the decoding process of
a group, with the alternation of the first and the second group. This setting halves the
implementation complexity [25] since one PE can be used to process two consecutive trellis
sections. However, this setting also halves the throughput of the decoder as it now takes
two clock cycles to finish an iteration. By neglecting the I/O latency, the decoder latency
in clock cycles of the FPMAP is

LatencyFPMAP = 2× nI, (3.11)

where nI is the number of iterations. The throughput of the FPMAP decoder is calculated
as

ThroughputFPMAP =
K × f
2× nI

, (3.12)

In [26], the authors showed that for K = 6144, the throughput of the FPMAP with 39
iterations and a clock frequency of 100 MHz is 15.8 Gb/s in 65 nm CMOS. Furthermore,
with this implementation the area complexity of the FPMAP decoder is 109 mm2, thus,
the area efficiency is 0.145 Gb/s/mm2. Therefore, although the FPMAP can achieve a
high throughput, the price to pay is a decrease in area efficiency compared to the PMAP
architectures [19, 20] shown in Table 3.2.

Moreover, other drawbacks of the FPMAP architecture should be the lack of flexibility
with respect to code block sizes. Furthermore, the combination of sub-trellis size of 1 and
shuffle decoding degrades the error correction performance of the decoder. At low code
rates such as R = 1/3, the FPMAP requires 16 to 32 iterations to compensate for the
performance loss. However, for high code rates such as 8/9 and 18/19, it is shown in [18]
that the number of iterations increases drastically up to 80.

3.3.2 The Iteration Unrolled XMAP (UXMAP) Architecture

Starting from the XMAP core shown in Figure 3.10, using multiple cores in parallel and
unrolling the iterations of the turbo decoding process leads to the fully-pipelined UXMAP
architecture shown in Figure 3.13. Assuming a completely filled pipeline, by neglecting the
I/O latency and the latency due to the metric initialization, the decoder produces a com-
plete decoded frame of K bits per clock cycle, thus resulting in the following throughput
expression:

ThroughputUXMAP = K × f. (3.13)

Note that this throughput is only limited by the frame size and the achievable clock
frequency. In terms of flexiblity, the UXMAP architecture is rate-flexible with puncturing,
and the frame-flexible aspect of the UXMAP was treated in [27].

Figure 3.14 shows the UXMAP architecture in more details, displaying the different
computations units and the pipeline registers. For a radix-2 sub-trellis of size KP , each
XMAP component employs 2KP BMUs, KP ACSUs for the forward state metrics, KP

ACSUs for the backward state metrics, and KP SOUs for the computation of the extrinsic
information. Besides, pipeline registers are employed extensively to carry the channel
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Figure 3.13: The UXMAP architecture with two iterations.

values, the calculated state metrics and the extrinsic information throughout the UXMAP
decoder. The latency of the decoder can be derived in clock cycles from Figure 3.14 as

LatencyUXMAP = nHI × (TBMU +KP + TSOU), (3.14)

where TBMU and TSOU are the number of clock cycles required for processing the first
BMU and the last SOU, respectively. Moreover, the ACSU takes one clock cycle to finish
a trellis section, thus, it takes KP clock cycles to finish a sub-trellis. Furthermore, the
interleaving and the deinterleaving functions of the UXMAP architecture are hardwired
between the XMAP components [18], so that it provides no processing latency during
extrinsic exchange between HIs in the decoder.

Employing high radix schemes in the fully pipelined UXMAP architecture has a par-
ticular impact. Increasing the number of trellis sections processed in a clock cycle leads
to a reduction in the number of pipeline stages for all the pipeline registers (state metrics,
channel and extrinsic information). Hence, using radix-4 instead of radix-2 yields an area
saving of about 50% and halves the overall pipeline latency. However, as we increase the
radix order, the area overhead in the computation units also increases. For Max-Log-
MAP decoders using radix-8 and radix-16 processing, this overhead supersedes the area
savings in the pipelines, making the use of radix greater than 4 unattractive [18].

Table 3.3 shows the comparison between the FPMAP and the UXMAP architectures
both implemented in 28 nm CMOS technology and reported in [18, 27]. For K = 128,
the UXMAP can achieve a throughput of 102.4 Gb/s with an area of 23.61 mm2 with
only one XMAP core per HI [18], and with an area of 16.52 mm2 with 4 XMAP cores
in parallel per HI [27]. The FPMAP, on the other hand, can only achieve 39.86 Gb/s
in throughput with similar area consumption (24.09 mm2) for K = 6144. Beside, for
K = 128, the FPMAP can only achieve 1.6 Gb/s with an area consumption of 1.04 mm2.
Therefore, in terms of area efficiency, the UXMAP architecture outperforms the FPMAP
architecture by a factor of 2.6 – 4.0.
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Figure 3.14: The detailed UXMAP architecture with 2 iterations (4 HIs) and with 4
XMAP cores per HI. The area complexity of the decoder can be reduced with the increas-
ing number of XMAP cores employed in parallel [2].

3.4 Summary

This chapter presents an overview of the techniques required for the hardware implementa-
tion of turbo decoders, such as scheduling, sliding window, and state metric initialization.
When high data rates are needed, the throughput of the turbo decoder can be increased
by employing various parallel or pipelined architectures like PMAP, XMAP, FPMAP, and
UXMAP, combined with a high-radix processing of the code trellis. As a result, depending
on the chosen techniques and architecture, the throughput of a turbo decoder can range
from hundreds of Mb/s up to 100 Gb/s.

Moreover, a set of metrics have been defined in order to evaluate these architectures
and several turbo decoder implementations reported in the literature have been provided.
Although we focus on the throughput metric in this work, one should also take account
of the complexity and the latency of the decoder. To this end, it has been shown that
the UXMAP architecture combined with a radix-4 processing of the trellis sections can
achieve 102.4 Gb/s with a relatively high area efficiency of 4.32 Gb/s/mm2. Therefore,
the UXMAP was chosen as our main architecture template for our work towards the
design of an ultra high-throughput turbo decoder.
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Architecture UXMAP [18] UXMAP [27] FPMAP [18] FPMAP [26]

K 128 128 128 6144

Radix/P 4/1 4/4 2/128 2/6144

Frequency (MHz) 800 800 500 252

Throughput (Gb/s) 102.4 102.4 1.6 39.86

Area (mm2) 23.61 16.52 1.04 24.09

Area Eff. (Gb/s/mm2) 4.34 6.20 1.53 1.65

Table 3.3: Comparison of the implementation results of the UXMAP and FPMAP archi-
tectures in 28 nm CMOS technology.
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Chapter 4

The Local-SOVA

This chapter is dedicated to the description of a completely new algorithm that I developed
in my thesis, which I called the local Soft-Output Viterbi algorithm (local-SOVA). The
algorithm, the corresponding hardware architecture, and its application to high-radix
SISO decoding are presented thoroughly.

The rest of this chapter is organized as follows. Section 4.1 gives an overview of high-
radix schemes and provides the motivation for the introduction of the local-SOVA. Section
4.2 recalls the MLM algorithm and analyzes it from the SOVA perspective. Section 4.3
describes the local-SOVA and a corresponding hardware architecture. It is also shown
that the MLM algorithm can be seen as an instance of the proposed local-SOVA. High-
radix turbo decoders using local SOVA are then considered with new simplifications in
Section 4.4 and simulation results and a computational complexity analysis are provided
to illustrate the advantages of the local-SOVA. Finally, Section 4.5 concludes the chapter.
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4.1 Introduction

In this chapter, we mainly focus on how to enable high-order radix decoding schemes
for turbo decoders. Previous works in the literature, such as [76, 77], mainly tried to
increase the throughput of BCJR-based SISO decoders, without specifically considering
the complexity reduction of the studied algorithm. Only in [32], a low-complexity radix-
16 SISO decoder for the MLM algorithm was proposed, with the introduction of specific
processing to limit the resulting error correction degradation at high signal-to-noise ratios.

On the other hand, the SOVA [9] has been recently reconsidered as an efficient SISO
candidate for turbo decoding [78, 79]. However, the interest in this algorithm remains
limited. This is because, first of all, the MLM algorithm outperforms the SOVA by about
0.75 dB when used for turbo decoding [67] and, second, the serial nature of the SOVA
is even more pronounced when compared to the MLM algorithm due to the involved
traceback and the soft output update procedures. Nevertheless, the SOVA provides an
alternative way to perform the soft output computation for SISO decoding. In [80], the
authors proposed the modified SOVA that combines two update rules, the Hagenauer
rule [9] and the Battail rule [28, 29]. This modified algorithm performs better than the
classical SOVA [9] where only the Hagenauer rule is employed. Nonetheless, the decoder
in [80] is a SOVA-like decoder involving the soft output update procedure, which is a
serial process in nature. The modified SOVA is able to achieve the same performance as
the MLM algorithm but the decoder has then to perform the soft output update for each
bit in each path every time it calculates the metric difference in the trellis. Consequently,
it exhibits higher complexity and memory consumption than the classical SOVA.

In this section, we propose the local-SOVA, a combination between the MLM algorithm
and the two above-mentioned update rules, the Hagenauer rule (HR) and the Battail rule
(BR). More specifically, the proposed algorithm first performs the forward and backward
state metric recursions as in the MLM algorithm. Then, for each trellis section, while the
MLM generates the soft output as the difference between the maximum cumulated metric
corresponding to the value 1 of the considered bit and the maximum cumulated metric
corresponding to the value 0 of the considered bit, the proposed local-SOVA applies a
different computational process using both update rules. Note that both methods result
into the same soft output value. In fact, we will show that the MLM generation of soft
output appears to be a particular case of the local-SOVA method. Moreover, the proposed
algorithm does not involve either the traceback nor the soft output update of the classical
SOVA and it applies computation steps closer to the MLM algorithm except for the soft
output calculation. When applied to high-radix orders, the algorithm reveals to be quite
different from the MLM and SOVA algorithms. Indeed, it performs high-radix decoding of
convolutional codes in an efficient way, simplifying the high-throughput implementations
of turbo decoders.

4.2 The Max-Log-MAP algorithm from the SOVA

viewpoint

Referring to Section 2.3.3.3, the Max-Log-MAP (MLM) algorithm consists of the following
steps: branch metric calculation, forward recursion, backward recursion and soft-output
computation. For an RSC code with coding rate r = 1/2, these processes are expressed
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as follows:

Γk(s, s
′) = csk(s, s

′)×
(
Lak + Lsk

)
+ cpk(s, s

′)× Lpk, (4.1)

Ak+1(s′) = max
s

(Ak(s) + Γk(s, s
′)) , (4.2)

Bk(s) = max
s′

(Bk+1(s′) + Γk(s, s
′)) , (4.3)

LMLM(uk) = max
(s,s′)|uk=1

(Ak(s) + Γk(s
′, s) +Bk+1(s))

− max
(s,s′)|uk=0

(Ak(s
′) + Γk(s

′, s) +Bk+1(s)) , (4.4)

where

• csk(s, s′), c
p
k(s, s

′) are the systematic and the parity symbols labeling the trellis branch
(s, s′);

• Lsk, Lak, L
p
k are the systematic, the a priori and the parity LLRs for trellis section k;

• Γk(s, s
′) is the metric of branch (s, s′) for trellis section k;

• Ak(s) is the forward state metric of state s at instant k, Bk+1(s′) is the backward
state metric of state s′ at instant k + 1;

• LMLM(uk) is the soft-output calculated by the MLM algorithm for the decoded bit
uk.

Let us take as an example the estimation of the soft output related to uk at trellis
section k in Fig. 4.1, using the MLM algorithm. The forward and backward propagations
provide all the values for Ak(s), s = 0, . . . , 3 and Bk+1(s′), s′ = 0, . . . , 3. Then, assuming
that (s, s′) = (0, 0) is the most likely trellis branch for uk = 0 (bold, dashed line) and that
(s, s′) = (2, 1) is the most likely trellis branch for uk = 1 (bold, solid line), LMLM(uk) can
be written as:

LMLM(uk) = (Ak(2) + Γk(2, 1) +Bk+1(1))− (Ak(0, 0) + Γk(0, 0) +Bk+1(0)) (4.5)
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Figure 4.1: Trellis representation of a convolutional code with ν = 2. Dashed branches
correspond to data bits equal to 0 and solid branches to data bits equal to 1.
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On the other hand, the LLRs provided by the MLM algorithm can also be seen in a
different way, involving paths in the trellis diagram. From section 2.2.2, a path is a state
sequence corresponding to a particular input bit sequence in the trellis. Furthermore,
performing the forward state metrics recursion in the MLM from instant 0 to instant k
is equivalent to performing the path propagation process of the VA (see Section 2.3.1.1)
from instant 0 to k. As a result, at instant k, there are 2ν values of Ak that can be
considered as 2ν surviving paths. Similarly, the backward state metric recursion can also
be considered as a path propagation process but in the backward direction and one can
identify another set of 2ν surviving paths after calculating Bk+1.

Furthermore, thanks to the path convergence property of convolutional codes [63], the
surviving paths can be truncated to some manageable length L to limit the amount of
memory necessary for their storage, without any noticeable impact on the error correction
performance. For a truncation length of L trellis sections, the VA needs to process the
trellis paths until instant k to take the decision on the information bit at instant (k−L).
The value of L should be chosen large enough so that the 2ν surviving paths from the
forward propagation originate from a single state at instant (k−L) with sufficiently high
probability [64]. The same rule applies if a backward propagation is carried out: in this
case, the VA needs to process the trellis paths until instant k′ to take the decision on the
information bit at instant (k′ + L).

Now, let us consider that both forward and backward propagations are carried out
through the trellis. Then, for trellis section k, there are 2ν surviving paths at instant k
resulting from the forward propagation and 2ν surviving paths at instant k + 1 resulting
from the backward propagation. Connecting these two sets of paths with the 2ν+1 trellis
branches yields a total number of 2ν+1 surviving paths for trellis section k. The path
going through state s at instant k and through state s′ at instant k+1 has its path metric
equal to Ak(s)+Γk(s, s

′)+Bk+1(s′). Moreover, because of the path convergence property,
all 2ν+1 paths originate from a single state at instant k′ such that max(0, k−L) ≤ k′ < k
in the forward propagation and from a single state at instant k′′ such that k + 1 < k′′ ≤
min(k + L+ 1, K) in the backward propagation. So, these 2ν+1 paths merge together at
times indexes k′ and k′′.

Now, with the concept of path merging exploited in the SOVA [9], for each pair of
merging paths, we can obtain the metric difference between these two paths by subtracting
the lower path metric from the higher one. Then, we can manipulate these resulting metric
differences between paths to get the soft estimate of bit uk for trellis section k.

Taking the example in Fig. 4.1, the forward propagation and the backward propaga-
tion provide us with four forward surviving paths at instant k and four backward surviving
paths at instant k+1, respectively. So, eight paths have to be considered for trellis section
k, and as shown in Fig. 4.1, these paths merge into state 2 at instant k′ = k− 2 and into
state 0 at instant k′′ = k+4. Furthermore, if we denote by P0 the path going through the
branch (0,0) and by P1 the path going through the branch (2,1) in trellis section k, the
LLR of bit uk can be estimated as the metric difference ∆ between these two paths where
the path metric M0 of P0 is M0 = (Ak(0) + Γk(0, 0) +Bk+1(0)) and the path metric M1 of
P1 is M1 = (Ak(2) + Γk(2, 1) + Bk+1(1)). The result is then equal to the LLR estimated
by the MLM algorithm in (4.5).

Based on this equivalence, we can reformulate the MLM algorithm. In the trellis dia-
gram, each trellis section k involves 2ν+1 paths going through 2ν+1 branches and merging
together. If a path goes through the branch (s, s′), its path metric Mk is then expressed
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as
Mk(s, s

′) = Ak(s) + Γk(s, s
′) +Bk+1(s′). (4.6)

The soft output related to bit uk is then equal to the metric difference between the path
with the largest path metric carrying uk = 1 and the path with the largest path metric
carrying uk = 0. In the next section, we define the path merge operation, present its
properties and show how it can be used to reformulate the MLM algorithm.

4.3 The Local-SOVA

Conventionally, a path in a trellis diagram is defined as a sequence of states and is as-
sociated with an input bit sequence and a path metric. Starting from this section, we
will adopt an alternative mathematical definition of a path, with a more local sense, that
focuses on a particular trellis section k. In the following, all the derivations focus on trellis
section k. Therefore, for sake of simplicity, we will omit k in the notations.

We define a path P as a 3-tuple consisting of a path metric denoted by M , a hard
decision denoted by u and a reliability value related to u, denoted by L:

P = {M,u, L} ∈ R× {0, 1} × R+, (4.7)

where R is the set of real numbers and R+ is the set of positive real numbers.
As stated in the previous section, if path P goes through branch (s, s′) at trellis section

k, its path metric M is given by (4.6) where we omit (s, s′) for the sake of simplicity.
Moreover, the hard decision u is the data bit carried by the corresponding branch in the
trellis diagram (0 for a dashed line or 1 for a solid line in Fig. 4.1). The reliability of the
hard decision, L, is initialized to +∞ or to the largest possible value achievable with the
used quantization.

We further define the merge operation

M : {R× {0, 1} × R+}2 → R× {0, 1} × R+, (4.8)

taking two paths as arguments and producing one path as output. Pa = {Ma, ua, La} and
Pb = {Mb, ub, Lb} being two paths, determining path Pc such that Pc =M(Pa, Pb) involves
three procedures: finding Mc, uc and Lc. The output path metric Mc and hard decision uc
can be obtained by comparing the path metrics Ma and Mb. Let p = arg maxa,b(Ma,Mb),
then Mc = Mp and uc = up. Through that mechanism, if several paths merge at a
trellis stage, the resulting output path will be assigned the largest path metric and will
be considered as the ML path. Then, the hard decision carried by the ML path is the
decision with highest path metric, and this is also the hard decision provided by the
decoder. Furthermore, in order to find Lc, we employ the two well-known reliability HR
and BR update rules [9, 28, 29]. Both rules were proposed independently in the late 80’s
for SOVA decoders.

4.3.1 Reliability Update Rules

Let Pa and Pb be two paths to be merged and let us define p and p′ as

p = arg max
a,b

(Ma,Mb); p′ = arg min
a,b

(Ma,Mb), (4.9)
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and the metric difference between Pa and Pb as ∆p,p′ = Mp −Mp′ . Note that the metric
difference between two paths is always positive. Then, if Pc =M(Pa, Pb), Lc is calculated
as follows:

1. If ua 6= ub, apply HR
Lc = min

(
Lp,∆p,p′

)
. (4.10)

2. If ua = ub, apply BR
Lc = min

(
Lp,∆p,p′ + Lp′

)
. (4.11)

These two update rules can be summarized using the following update function φ:

Lc = φ
(
Lp, Lp′ ,∆p,p′ , up, up′

)

= min
(
Lp,∆p,p′ + δ(up, up′)Lp′

)
, (4.12)

where

δ(up, up′) =

{
1, if up = up′

0, otherwise.
(4.13)

The combination of these two rules for SOVA decoding was already proposed in [80]
and the authors proved the equivalence with the MLM algorithm. However, in [80], the
authors only considered forward propagation. To estimate the reliability of the hardware
decision at trellis section k, the algorithm carries out a forward propagation up to trellis
stage k + L and then performs a traceback procedure. Thus, a large number of paths
should be considered, which translates into a massive use of function φ and also into large
memory for storing the reliability values after each update.

We propose an alternative algorithm that uses both forward and backward propaga-
tions and hence limits the number of paths considered for trellis section k to 2ν+1, thus
reducing the use of function φ.

4.3.2 Commutative and Associative Properties of the Merge
Operation

As already mentioned earlier, the merge path operation described above involves three
procedures: 1) selecting the output path metric 2) selecting the related hard decision
and 3) updating the related reliability value using function φ in (4.12). We show in this
section that the merge operation has the commutative and associative properties.

Theorem 4.1. The merge operation is commutative and associative.

• Commutative property: let Pa, Pb be two merging paths, then

M(Pa, Pb) =M(Pb, Pa), (4.14)

• Associative property: let Pa, Pb, and Pc be three merging paths, then

M(M(Pa, Pb), Pc) =M(Pa,M(Pb, Pc)). (4.15)

The “=” operator between two paths is defined as the equality between all the elements in
their tuples.
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Proof. We will prove the commutative and associative properties of the three above-
mentioned procedures of the merge operation.

For the commutative property, let us define p and p′ as in (4.9). The path metric of the
output path is then MM(Pa,Pb) = Mp, the hard decision is uM(Pa,Pb) = up, and according
to (4.12), the reliability value is then updated as

LM(Pa,Pb) = min(Lp, δ(up, up′)Lp′ + ∆p,p′). (4.16)

Since p and p′ do not depend on the order of Pa and Pb, the merge operation is commu-
tative.

For the associative property, we can easily show that selecting a path metric and
providing a hard decision are associative procedures because they get the values of the
path with the largest metric and the maximum function is associative since

max(Ma,max(Mb,Mc)) = max(max(Ma,Mb),Mc).

Concerning the reliability update procedure, without loss of generality, we assume that
Mc is the largest path metric and we define p and p′ as in (4.9). The updated reliability
values of M(Pa,M(Pb, Pc)) and M(M(Pa, Pb), Pc) in (4.15) are respectively derived as

LM(Pa,M(Pb,Pc)) = min
(

min
(
Lc, δ(uc, ub)Lb + ∆c,b

)
, δ(uc, ua)La + ∆c,a

)

= min
(
Lc, δ(uc, ub)Lb + ∆c,b, δ(uc, ua)La + ∆c,a

)
, (4.17)

LM(M(Pa,Pb),Pc) = min
(
Lc, δ(uc, up) min

(
Lp, δ(up, up′)Lp′ + ∆p,p′

)
+ ∆c,p

)

= min(Lc, δ(uc, up)Lp + ∆c,p, δ(uc, up)δ(up, up′)Lp′ + δ(uc, up)∆p,p′ + ∆c,p).
(4.18)

Note that both δ(uc, up) and δ(up, up′) can take value in {0, 1} as defined by (4.13), the
proof is then divided into four cases:

1. δ(uc, up) = 1 and δ(up, up′) = 1, then (4.18) becomes

min(Lc, Lp + ∆c,p, Lp′ + ∆p,p′ + ∆c,p) = min(Lc, Lp + ∆c,p, Lp′ + ∆c,p′), (4.19)

where ∆c,p + ∆p,p′ = ∆c,p′ . Moreover, (4.17) becomes

min(Lc, Lb + ∆c,b, La + ∆c,a). (4.20)

We can see that (4.19) is equivalent to (4.20).

2. δ(uc, up) = 1 and δ(up, up′) = 0, then (4.18) becomes

min(Lc, Lp + ∆c,p,∆c,p + ∆p,p′) = min(Lc, Lp + ∆c,p,∆c,p′). (4.21)

Without loss of generality, assuming that p = b and p′ = a, then δ(uc, ub) = 1 and
δ(uc, ua) = 0, and (4.17) becomes

min(Lc, Lp + ∆c,p,∆c,p′), (4.22)

which is the same as (4.21).
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3. δ(uc, up) = 0 and δ(up, up′) = 1, then (4.18) becomes

min(Lc,∆c,p). (4.23)

Without loss of generality, assuming that p = b and p′ = a, then δ(uc, ub) = 0 and
δ(uc, ua) = 0, and (4.17) is expressed as

min(Lc,∆c,p,∆c,p′) = min(Lc,∆c,p,∆c,p + ∆p,p′). (4.24)

Note that ∆c,p + ∆p,p′ ≥ ∆c,p, hence, (4.24) is equivalent to (4.23).

4. δ(uc, up) = 0 and δ(up, up′) = 0, then (4.18) becomes

min(Lc,∆c,p). (4.25)

Again, without loss of generality, assuming that p = b and p′ = a, then δ(uc, ub) = 0
and δ(uc, ua) = 1, and (4.17) is expressed as

min(Lc,∆c,p, Lp′ + ∆c,p′) = min(Lc,∆c,p, Lp′ + ∆c,p + ∆p,p′). (4.26)

Also note that Lp′ + ∆c,p + ∆p,p′ ≥ ∆c,p, therefore, (4.26) is equivalent to (4.25).

Therefore, the associative property is proved for all four cases.

Remark. Based on the commutative and associative properties of the merge operation,
two important statements can be inferred:

• We can extend the merge operation to more than two paths. For instance, for four
paths Pa, Pb, Pc and Pd, we can writeM(Pa, Pb, Pc, Pd) to refer to the output path
obtained by merging the four paths.

• The merge operation can be processed in a dichotomous fashion:

M(Pa, Pb, Pc, Pd) =M
(
M(Pa, Pb),M(Pd, Pc)

)
,

whereM(Pa, Pb) andM(Pc, Pd) can be processed in parallel and then the resulting
paths are merged to yield the output path.

4.3.3 The MLM Algorithm as an Instance of the Merge Opera-
tion

Referring back to the analyze in Section 4.2, let us consider the 2ν+1 paths going through
trellis section k and merging together. Among them, n = 2ν paths, denoted by {Pp01 , . . . , Pp0n},
carry hard decision u = 0 at trellis section k and the remaining n, denoted by {Pp11 , . . . , Pp1n},
carry hard decision u = 1. The reliability value related to bit u provided by the MLM
algorithm is

LMLM(u) = max
i=1,...,n

{Mp1i
} − max

j=1,...,n
{Mp0j

}. (4.27)

Now, we can take a look at the operation merging all the paths with hard decision
u = 1: M(Pp11 , . . . , Pp1n). The resulting output hard decision is obviously 1 and the output
path metric is M1 = maxi=1,...,n{Mp1i

}. For the output reliability, merging paths with the
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same hard decision value requires the application of BR (4.11). Since the reliability
values are all initialized at +∞, applying (4.11) yields an output reliability also equal
to +∞. Similarly, merging together all the paths carrying hard decision u = 0 applying
M(Pp01 , . . . , Pp0n) results in an output hard decision 0, an output path metric equal to
M0 = maxi=1,...,n{Mp0i

} and an output reliability at +∞.
Then, if we merge the two resulting paths:

M
(
M(Pp11 , . . . , Pp1n),M(Pp01 , . . . , Pp0n)

)
, (4.28)

the computation of the output reliability amounts to the application of HR (4.10):

LM = min
(

+∞,
∣∣M1 −M0

∣∣
)

=
∣∣M1 −M0

∣∣, (4.29)

which is the absolute value of the expression of LMLM in (4.27). If we denote by uM the
output hard decision deriving from (4.28), then LMLM is equal to

LMLM(uk) = (2uM − 1)× LM. (4.30)

Therefore, the result of the MLM algorithm can be interpreted as the outcome of a merge
operation applied to all the paths.

On another note, thanks to the commutative and associative properties of the merge
operation stated in (4.14) and (4.15), the operation merging all the paths (4.28) can
be performed in a different order for a better match with efficient software or hardware
implementations. In particular, instead of first merging the paths with the same hard
decision, one can start by merging pairs of paths with different hard decisions (Pp1i , Pp0i ),
i = 1, . . . , n as

M
(
M(Pp11 , Pp01), . . . ,M(Pp1n , Pp0n)

)
. (4.31)

Moreover, if Pp1i and Pp0i are chosen in such a way that the corresponding trellis branches
at trellis section k, (sp1i , s

′
p1i

) and (sp0i , s
′
p0i

) verify s′
p1i

= s′
p0i

= s′, the merge operation of

the pair of paths yields the following path metric

Mpi = max(Mp1i
,Mp0i

)

= max
(
Ak(sp1i ) + Γk(sp1i , s

′) +Bk+1(s′), Ak(sp0i ) + Γk(sp0i , s
′) +Bk+1(s′)

)

= max
(
Ak(sp1i )+Γk(sp1i , s

′), Ak(sp0i )+Γk(sp0i , s
′)
)

+Bk+1(s′) (4.32)

= Ak+1(s′) +Bk+1(s′), (4.33)

and since up1i 6= up0i , the updated reliability with HR is

Lpi = min
(

+∞,∆p1i ,p
0
i

)
= ∆p1i ,p

0
i

(4.34)

where

∆p1i ,p
0
i

=
∣∣∣Mp1i

−Mp0i

∣∣∣ =
∣∣∣
(
Ak(sp1i ) + Γk(sp1i , s

′)
)
−
(
Ak(sp0i ) + Γk(sp0i , s

′)
)∣∣∣. (4.35)

The output hard decision upi is provided by the path, Pp0i or Pp1i , with the higher path
metric.

We can see from (4.32) and (4.33) that, with the proposed merge ordering, the cal-
culation of the output path metric for this scheduling proposal M(Pp1i , Pp0i ) includes the
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derivation of the forward state metric Ak+1(s′) as in the forward recursion (4.2). There-
fore, there is no need to perform a preliminary calculation of the forward state metrics.
Only the backward state metrics need to be computed in advance. Similarly, one can
show that if the paths Pp1i and Pp0i are chosen in such a way that the corresponding trel-
lis branches at trellis section k are stemming from the same state (sp1i = sp0i = s), the
calculation of the output path metric includes the same derivation of the backward state
metric Bk(s) as in the backward recursion (4.3). Then, there is no need to perform a
preliminary calculation of the backward state metrics and only the forward state metrics
need to be computed in advance.

For a convolutional code with memory length ν, the overall merge operation for the
computation of the soft output for the decoder can be carried out in a dichotomous
fashion: the merge operation then requires a binary tree of 2ν+1 − 1 elementary merge
operators organized in ν + 1 layers. Taking Fig. 4.1 as an example, ν = 2 and the soft
output related to bit uk is obtained by a binary tree consisting of ν + 1 = 3 layers of
merge operators, as shown in Fig. 4.2.
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Figure 4.2: Binary tree architecture used for the soft output computation in the local-
SOVA decoder for the code of Fig.4.1.

The next section describes the overall algorithm implementing this particular arrange-
ment for the merge operations.

4.3.4 The Soft Output Computation Algorithm

The soft output calculation using the merge operations in a dichotomous fashion can be
performed according to Algorithm 1. Note that this algorithm is a generic version that
assumes that all the forward and backward state metrics are pre-computed and stored in
a memory.

Specific simplifications can be made for the local-SOVA. First, at the initialization step,
we can organize the set of transitions T so that two adjacent transitions (s2i−1, s

′
2i−1) and

(s2i, s
′
2i) have the same state on the left, i.e. s2i−1 = s2i, for i = 1, . . . , 2ν . Then, in line 4

of the Algorithm 1, we can initialize path metrics Mp(0) to be Γk(s, s
′) +Bk+1(s′) instead
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Algorithm 1 The generic local-SOVA

Assumption: The values of Γk(s, s
′), Ak(s), Bk+1(s′) are available for all k =

0, . . . , K − 1, and for all pair of (s, s′).
Initialization: T = [T (1) . . . T (2ν+1)] is the set of 2ν+1 transitions of the trellis
section defined by the pairs of states (s, s′);

1: for each trellis section k = 0, . . . , K − 1 do
2: for each path p = 1, . . . , 2ν+1 do
3: (sp, s

′
p) = T (p)

4: Mp(0) = Ak(sp) + Γk(sp, s
′
p) +Bk+1(s′p);

5: up(0) = data bit on transition (sp, s
′
p);





Initialize path Pp,
p = 1, . . . , 8,
for layer l = 06: Lp(0) = +∞;

7: end for

8: for each layer l = 1, . . . , ν + 1 do
9: for each path p = 1, . . . , 2(ν−l+1) in layer l do

10: a = arg maxj∈{2p−1,2p}{Mj(l − 1)};
11: b = arg minj∈{2p−1,2p}{Mj(l − 1)};
12: ∆a,b = Ma(l − 1)−Mb(l − 1);
13: Mp(l) = Ma(l − 1);





Process the
(ν+1)-layer
binary tree14: up(l) = ua(l − 1);

15: Lp(l) = φ
(
La(l − 1), Lb(l − 1),∆a,b,
ua(l − 1), ub(l − 1)

)
;

16: end for
17: end for
18: ûk = u1(ν + 1); . Hard output
19: L̂(uk) = (2ûk − 1)×L1(ν + 1); . Soft output
20: end for

of Ak(s) + Γk(s, s
′) +Bk+1(s, s′). The resulting path metric Ma(1) at layer l = 1 is equal

to Bk(s), thus allowing the backward recursion to be incorporated into the soft output
computation. To compensate for omitting Ak(s) in the expression of Mp(0), the output
path metric Mp(1) in line 13 should be taken equal to

Mp(1) = Ma(1) + Ak(s). (4.36)

Furthermore, in line 15 of Algorithm 1, the output reliability Lp(1) can be directly assigned
∆a,b and the calculation of the reliability value at the first layer can be replaced by a simple
assignment operation, making the initial assignment to infinity in line 6 unnecessary. After
layer l = 1, the subsequent layers should be carried out following Algorithm 1 without
any modification.

As mentioned in Chapter 3, for a practical application of SISO decoding algorithms,
a scheduling (FB or Butterfly) has to be chosen and a sliding window technique can be
applied to limit the memory consumption. To achieve high throughputs, parallel archi-
tectures have to be implemented. Therefore, like the MLM algorithm, the local-SOVA
should be compatible with these techniques and architectures. In fact, this is not a prob-
lem since the only difference between the proposed local-SOVA and the MLM algorithm
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is the way the soft output is calculated. The local-SOVA performs the branch metric
calculation and the state metric recursion in the same way as the MLM algorithm does.
Thus, not only these techniques are applicable to the local-SOVA, but the memory for the
state metrics are the same for both decoding algorithms. As an illustration, a local-SOVA
compatible with the FB scheduling is described in Algorithm 2. In the FB scheduling, the
forward state metrics are first recursively calculated and stored in the memory. Then, the
algorithm recursively calculates the backward state metrics and derives the soft output.
The application of sliding window and other technique is straightforward.

To complete this algorithmic description, the next sections provide some details about
possible hardware architectures for a local-SOVA decoder. To this end, we first focus on
a radix-2 trellis and highlight the differences with a conventional MLM decoder.

4.3.5 Radix-2 Local-SOVA Decoder Architecture

Since the proposed algorithm only differs from the MLM algorithm in the soft output
calculation, its global architecture is composed of the same blocks as the architecture of
a MLM decoder. In case of FB scheduling, it consists of the BMU, the forward ACSU,
the backward ACSU, and the SOU. Fig. 4.3 shows the corresponding basic architecture
for the local-SOVA with FB scheduling. Note that the forward recursion is not shown in
the figure since it is the same as for the MLM algorithm. Furthermore, we assume the
forward state metrics have already been recursively calculated and stored in a state metric
memory. If a symmetric forward-backward scheduling is applied, the roles of forward and
backward units are just swapped.

BMU ACSU

SOU

State	Metric
Memory

a-priori	&
channel
information

soft	output

Max-Log-MAP:
	intermediate	values	of

Local	SOVA:
	paths	with

metric	

Backward	recursion

Figure 4.3: Basic architecture considered for the local-SOVA using the FB scheduling.

At trellis section k, the BMU calculates all possible values of Γk(s, s
′) and forwards

them to the ACSU. For the local-SOVA architecture, the first layer of Algorithm 2, de-
picted in Fig. 4.4, performs the backward state metric recursion as well as it produces the
hard decision, the reliability value and the path metric for subsequent layers.

Besides the right-hand side adder, the structure shown in Fig. 4.4 for l = 1 is very
close to the ACSU structure of a conventional MLM decoder. Therefore, in order to make
the local-SOVA easy to compare with the MLM algorithm, we consider this sub-structure
as the ACSU of the local-SOVA decoder and the final adder plus the units processing the
subsequent layers as its SOU.

As already mentioned, the main difference between the local-SOVA and the MLM
algorithm comes from the SOU. In the MLM architecture, 2ν+1 intermediate values
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Algorithm 2 The local-SOVA compatible with FB scheduling

Assumption: The values of Ak(s), are available for all k = 0, . . . , K − 1 from the
forward recursion;
Initialization: T = [T (1) . . . T (2ν+1)] is the set of 2ν+1 transitions of the trellis sec-
tion defined by the pairs of states (s, s′) so that two adjacent transitions (s2i−1, s

′
2i−1)

and (s2i, s
′
2i) have the same state on the left, i.e. s2i−1 = s2i, for i = 1, . . . , 2ν ;

1: Initialize BK(s);
2: for each trellis section k = K − 1, . . . , 0 do
3: Calculate Γk(s, s

′) according to (4.1);
4: for each path p = 1, . . . , 2ν+1 do
5: (sp, s

′
p) = T (p);

6: Mp(0) = Γk(sp, s
′
p) +Bk+1(s′p);

7: up(0) = data bit on transition (sp, s
′
p);

8: if (p mod 2 = 0) then
9: a = arg maxj∈{p−1,p}{Mj(0)};

10: b = arg minj∈{p−1,p}{Mj(0)};





Initialize paths,
process layer l = 1,
recursion of Bk(s)11: q = p/2;

12: Mq(1) = Ma(0) + Ak(sq)
13: uq(1) = ua(0);
14: Lq(1) = Ma(0)−Mb(0);
15: Bk(sq) = Ma(0);
16: end if
17: end for

18: for each layer l = 2, . . . , ν + 1 do
19: for each path p = 1, . . . , 2(ν−l+1) in layer l do
20: a = arg maxj∈{2p−1,2p}{Mj(l − 1)};
21: b = arg minj∈{2p−1,2p}{Mj(l − 1)};
22: ∆a,b = Ma(l − 1)−Mb(l − 1);
23: Mp(l) = Ma(l − 1);





Process the
next ν layers

24: up(l) = ua(l − 1);
25: Lp(l) = φ

(
La(l − 1), Lb(l − 1),∆a,b,
ua(l − 1), ub(l − 1)

)
;

26: end for
27: end for
28: ûk = u1(ν + 1); . Hard output
29: L̂(uk) = (2ûk − 1)×L1(ν + 1); . Soft output
30: end for

Bk+1(s′) + Γk(s, s
′) computed in the ACSU are added to Ak(s). Then, the most reli-

able branch for bit uk = 1 and for bit uk = 0 are selected using two 2ν-input maximum
selection operators and the LLR is obtained by computing the difference between the
terms Ak(s) + Γk(s, s

′) +Bk+1(s′) for these two branches as shown in Fig. 4.5a for ν = 2.
On the other hand, the local-SOVA SOU takes the 2ν values of Bk(s), adds them to 2ν

corresponding values of Ak(s) to provide the path metrics. The hard decisions and their
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Figure 4.4: Hardware architecture of Algorithm 2 for layer l = 1. This is also considered
as the ACSU of the local-SOVA.

reliability values computed by the ACSU are forwarded to the SOU. The SOU has then to
process 2ν paths using a binary tree of merge operators. The structure of merge operators
used to process layers l > 1 is depicted in Fig. 4.6 and the overall structure of the tree is
shown in Fig. 4.5b for ν = 2 (including the adders actually part of layer l = 1).

Merge

Merge

Merge

processed	at
layer	

layer	2 layer	3

Max

Max

Max

Max

Max

Max

Figure 4.5: SOU architecture of (a) the MLM algorithm and (b) the local-SOVA with the
merge operations.

In terms of computational complexity, with the convention that one adder is equivalent
to one max or min operator and is accounted for as one computational unit and neglecting
the multiplexers, the operator implementing function φ consists of one adder and one min
operator and is therefore accounted for as two computational units. Consequently, the
MLM SOU requires (4× 2ν − 1) computational units while the local-SOVA SOU requires
(4 × 2ν − 3) computational units. Since the ACSU and the BMU of both architectures
are similar, both algorithms have roughly the same computational complexity when a
conventional radix-2 architecture is implemented. However, the proposed algorithm is
mainly of interest when higher radix orders are considered, as explained in the following
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Figure 4.6: Generic hardware architecture of a merge operation M of two paths indexed
2p and 2p− 1 at layer l > 1.

section.

4.4 High-Radix Decoding Algorithms Using Local-

SOVA

In the previous section, we have been considering the conventional radix-2 trellis diagram.
In this section, we will concentrate on higher radix orders. Recall that in a radix-2T trellis
diagram, T > 1, there are 2T branches coming in and out of a state s at instant k. This
is obtained by aggregating T consecutive radix-2 trellis sections. Hence, a branch in a
radix-2T trellis stage is now labeled with T systematic bits and we have to reconsider the
definition of a path and its corresponding merge operation.

01

10

11

Figure 4.7: A radix-4 stage for an convolutional code with ν = 2.

For a radix-2T trellis diagram, we define a radix-2T path P going through the branch
(s, s′) as

P = {M,u1, . . . , uT , L1, . . . , LT} ∈ R× {0, 1}T × {R+}T (4.37)

where M is the path metric, u1, . . . , uT are the T hard decisions attached to branch (s, s′),
and L1, . . . , LT are the reliability values for each hard decision and are initialized to +∞.
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We also define the radix-2T merge operationM as in Section 4.3 with three procedures:
path metric selection, hard decision selection and update of the reliability values. The
selection of the path metric remains unchanged. The only difference is now that we have
to select T hard decisions instead of one, and to update T reliability values using function
φ, one for each hard decision. Note that the merge operation for high-radix paths is also
commutative and associative, therefore, the order of the paths in the merge operation
does not affect the output. To this end, if we arrange wisely the input paths, we can
reduce complexity when compared to a straightforward implementation.

4.4.1 Radix-4 Local-SOVA Decoder with Minimum Complexity
ACSU

A branch in a radix-4 trellis diagram is the aggregation of two consecutive branches in a
radix-2 diagram, as illustrated in Fig. 4.7 for an convolutional code with ν = 2. From
instant k + 2 to instant k, four branches are leaving and merging into each trellis state,
corresponding to the transmission of two systematic bits with possible values 00, 10, 01 and
11. Therefore, at instant k, there are four radix-4 paths, denoted by {P00, P01, P10, P11},
merging into each state s. Since these four paths have the same Ak(s) value, as in section
4.3.4 we can initialize the corresponding path metrics with Γk→k+2(s, s′)+Bk+2(s′), where
Γk→k+2(s, s′) is the sum of the two successive branch metrics at sections k and k + 1 in
the equivalent radix-2 trellis diagram. Then, we perform the radix-4 merge operation:

M
(
P00, P01, P10, P11

)
. (4.38)

The path metric resulting from this layer-1 merge operation is also the backward state
metric of state s at instant k, Bk(s). Hence, we can consider the operator implementing
(4.38) as the radix-4 ACSU of the local-SOVA decoder.

An important property of the radix-4 local-SOVA ACSU is that its complexity depends
on the processing order of the paths in the merge operation (4.38). If we implement (4.38)
as

M
(
M(P00, P01),M(P10, P11)

)
(4.39)

with the hardware architecture shown in Fig. 4.8, only one φ operator has to be imple-
mented. Actually, we do not need to resort to function φ in the first layer since the output
reliability is +∞ or the metric difference between the two paths, depending whether BR
or HR is employed.

On the other hand, if we implement (4.38) as

M
(
M(P00, P11),M(P01, P10)

)
, (4.40)

we can use HR for both bits at the first layer but have to use a φ operation for each bit
at the second layer since we do not know a priori which hard decision will be selected.
Therefore, the implementation of (4.39) is less complex than the one of (4.40) and it has
minimum complexity. Note that (4.39) is not unique, since other processing orders of the
paths can also yield the same complexity, such as M

(
M(P00, P10),M(P01, P11)

)
.

At the output of the radix-4 ACSU, 2ν radix-4 paths are forwarded to the radix-4 SOU.
First of all, each path metric is added to the appropriate Ak(s) since it has been omitted
in the ACSU. Then, a ν-layer tree of radix-4 merge operators is employed to produce the
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Figure 4.8: Radix-4 local-SOVA ACSU architecture implementing 2-bit merge operators
according to (4.39).

final hard decision along with its reliability value. Note that the radix-4 merge operation
requires two φ operators for updating the reliability values, one for each bit.

When radix orders higher than 4 are considered, techniques for further reducing com-
plexity can be considered, as explained in the following section.

4.4.2 Radix-8 local-SOVA Decoder Using a Simplified Reliabil-
ity Update Operator

In this section, we introduce a sub-optimal but less complex version of the function φ,
called ω. Consequently, by combining the corresponding operator with the minimum
complexity ACSU previously described in Section 4.4.1, we propose a number of local-
SOVA architectures with different complexity-performance tradeoffs.

A radix-8 trellis section aggregates three consecutive radix-2 trellis sections. Each
path is now composed of a path metric, three hard decisions and their three reliability
values. From instant k + 3 to instant k, eight radix-8 branches are leaving and merging
into each trellis state. Therefore, at instant k, there are eight radix-8 paths merging
into each state s, denoted by {P000, P001, . . . , P111}, where the indices represent the hard
decisions associated with each path. Similarly to the previous cases, when applying the
radix-8 merge operation to this set of paths

M
(
P000, P001, . . . , P111

)
, (4.41)

the resulting path metric is also the backward state metric of state s at time index k,
Bk(s). This merging step can therefore be considered as the ACSU of the radix-8 local-
SOVA decoder. Then the output path is processed by the SOU to produce the soft
decision.

The minimum complexity radix-8 ACSU can be obtained by implementing (4.41) as

M
(
M
(
M(P000, P001),M(P010, P011)

)
,M

(
M(P100, P101),M(P110, P111)

))
. (4.42)
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We can see from (4.42) that the first bit in M
(
M(P000, P001),M(P010, P011)

)
is always

zero, hence, we can resort to a radix-4 merge operation for the last two bits using only
one φ operator. Similarly, the first bit inM

(
M(P100, P101),M(P110, P111)

)
is always one,

then again, only one φ operator is necessary. In the second stage, the first bit is always
different in the two input paths, thus only the second and the third bits require the
implementation of a φ operator. In total, four φ operators have to be implemented in a
minimum complexity radix-8 ACSU.

However, employing φ operators has two main drawbacks. First of all, they consist
of one adder and one min operator, therefore prohibitively increasing the complexity of
the decoder if used excessively. Second and more importantly, the adder and the min
operators are connected serially. This is not desirable since the ACSU dictates the critical
path of the decoder [73]. Therefore, we propose a lower complexity, lower latency, sub-
optimal update operator, based on new update function, called function ω.

4.4.2.1 The Function ω

Motivated by the the possibility of using only HR as in [9], one can substitute a simplified
function ω for function φ. Assuming that paths P2p−1 and P2p are to be merged at layer
l − 1, the output reliability is then computed as:

Lp(l) = ω
(
La,∆a,b, u2p−1(l − 1), u2p(l − 1)

)

=

{
min(La,∆a,b), if u2p−1(l − 1) 6= u2p(l − 1)

Lp, if u2p−1(l − 1) = u2p(l − 1)
(4.43)

where a, b and ∆a,b are defined at lines 10, 11 and 12, respectively, in Algorithm 1.
Fig. 4.9 shows the architecture of the elementary path merging operator using function
ω. The ω operator is less complex than the φ operator since it uses only a min operation
and a multiplexer resulting in a computational complexity of about one unit. However,
the price to pay is a degradation of error correction performance. Indeed, a performance
degradation of 0.5 dB is observed between the conventional SOVA that uses only functions
φ [80] and the one that uses functions ω [9].
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Figure 4.9: Generic hardware architecture of path merging operation using function ω.

Unlike the classical SOVA, the local-SOVA can mix both types of functions. There-
fore, this provides the flexibility of several complexity/correction performance trade-offs.
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However, care must be taken in making substitutions so that paths with high metrics
are not eliminated from the selection process due to simplification. This is less likely to
happen if the simplifications are made in the first layers of the tree, where the number of
paths to be processed is high. Consequently, we observed that if we only substitute the
ω operators for the φ operators in the first layers, we can significantly reduce complexity
without degrading the performance of the decoder.

4.4.2.2 Radix-8 ACSU and SOU using ω operators

For a binary convolutional code with ν = 3, the first 3 layers of the path merge binary
tree are in the ACSU while the last 3 layers are processed by the SOU.

As already mentioned above, the radix-8 ACSU requires 4 φ operators to update the
reliability values. Substituting the ω operators for the φ operators reduces the complexity
by 4 computational units. For ν = 3, the use of 2ν = 8 ACSUs saves 32 computation
units.

For the 3 layers of the binary tree implementing the radix-8 SOU, 7 radix-8 merge
operations are required, resulting in the use of 21 φ operators (3 per merge operation).
Replacing φ operators with ω operators reduces complexity but is expected to penalize
the performance of the decoder.

4.4.3 Simulation Results

Simulations were carried out to assess the error performance of the radix-8 local-SOVA
and its variants for the LTE turbo code, in order to compare them with the radix-8
MLM algorithm. For radix-2 and radix-4 local-SOVA, we proved in Section 4.3.3 that the
LLR produced by the local-SOVA is the same as with the MLM algorithm. Therefore,
their performance should be identical. Nevertheless, we first simulated the radix-8 local-
SOVA with only φ operators to confirm this fact. Then, we gradually substituted ω
operators for φ operators to observe the impact on error correction when simplifications
are made to the radix-8 local-SOVA. We use the notations ACSU-(i, j) and SOU-(i, j) to
represent the different configurations, where i and j are the number of layers where ω and
φ operators are employed, respectively. For example, ACSU-(2,1) means that ω operators
are implemented in the two first layers of the ACSU and that φ operators are used in the
last layer of the ACSU. Similarly, if we use SOU-(1,2), it means that we use ω operators
in the first layer of the SOU and use φ operators in the last two layers of the SOU.

We simulated the following seven configurations for the SISO decoding algorithms,
where L-SOVA is an abbreviation for local-SOVA:

• DEC 1: MLM algorithm.

• DEC 2: L-SOVA with ACSU-(0,3) and SOU-(0,3).

• DEC 3: L-SOVA with ACSU-(3,0) and SOU-(0,3).

• DEC 4: L-SOVA with ACSU-(3,0) and SOU-(1,2).

• DEC 5: L-SOVA with ACSU-(3,0) and SOU-(2,1).

• DEC 6: L-SOVA with ACSU-(3,0) and SOU-(3,0).
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• DEC 7: classical SOVA.

The simulations were carried out with information frames of K = 1056 bits, encoded with
the non-punctured r = 1/3 LTE turbo code, modulated by BPSK and transmitted over
the AWGN channel. A floating point representation of data is used in the decoder. The
resulting bit error rate (BER) is measured after 5.5 decoding iterations. Fig. 4.10 shows
that, as expected, the local-SOVA with only φ operators (DEC 2) has the same perfor-
mance as the MLM algorithm. Moreover, by substituting ω operators for φ operators in
the ACSUs, i. e. in the first three layers, (DEC-3) the simulated curves confirm that
the error correction performance of the decoder is not degraded, thus providing a low
complexity alternative to the original local-SOVA decoder. By gradually replacing the
φ operators in the SOU, the performance is degraded by 0.05 dB at BER = 10−6 when
ω operators are used in the first two layers and by about 0.3 dB when only ω operators
are implemented. Fig. 4.10 also shows that the classical SOVA (DEC 7) performs 0.1
dB worse than the local-SOVA with only ω operators (DEC 6). According to [80], using
φ operators instead of ω operators in the both the classical and local-SOVAs would be
equivalent to apply the MLM algorithm (DEC 1). However, contrary to the classical
SOVA, the operations in the local-SOVA are arranged so as to minimize the number of
used φ operators. Therefore the performance gap between DEC 6 and DEC 7 is explained
by the fact that the number of sub-optimal ω operators needed in DEC 7 is greater than
in DEC 6.
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Figure 4.10: BER performance of a LTE decoder using radix-8 MLM algorithm, local-
SOVA and its variant with K = 1056, r = 1/3 after 5.5 iterations. AWGN channel, BPSK
modulation.
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4.4.4 Computational Complexity Analysis

In this section, we perform the comparison between the local-SOVA and the MLM al-
gorithm in terms of complexity for different radix orders. To quantify complexity, we
calculate the number of additions and the number of compare select (CS) operations and
consider again one adder or CS operator as one computational unit. In this comparison,
we use the FB scheduling and we do not take the memory requirements into account and
only consider computational complexity. As aforementioned, the difference between the
local-SOVA decoder and the MLM decoder resides in the way it calculates the soft output.
Therefore, the memory for the channel information, the state metrics and the extrinsic
information is the same as in the MLM decoder. Moreover, sliding window techniques or
different decoding schedules can also be applied to the local-SOVA, hence, the memory
consumption of the decoder depends on the hardware architecture.

In this analysis, we use a convolutional code with 8 states (ν = 3). The decoding
complexity, denoted by C, is reported for one trellis section consisting of eight forward
ACSUs, eight backward ACSUs, and one SOU as

C = (8× CF ) + (8× CB) + CS, (4.44)

where CF , CB and CS denote the computational complexity of the forward ACSU, the
backward ACSU, and the SOU, respectively. Note that we excluded the BMU in the
expression since the calculation of branch metrics is the same for the local-SOVA and the
MLM algorithm. For the MLM algorithm, the forward and backward ACSUs have the
same computational complexity. Since we are considering the FB schedule, the forward
ACSU of the local-SOVA is the same as in the MLM algorithm. However, the backward
ACSU of the local-SOVA not only calculates the state metrics but also take part in the
soft output calculation with φ and ω operators. Therefore, there will be some difference
compared to the backward ACSU of the MLM algorithm.

Firstly, we perform the complexity comparison between the local-SOVA employing
only φ operators and the MLM algorithm to observe the change of the complexity differ-
ence versus the radix order. Then, for radix-8, we perform further complexity analysis
for cases where φ operators are gradually replaced by ω operators.

4.4.4.1 Radix-2 local-SOVA and radix-2 MLM algorithm

As shown in Section 4.3.5, the forward ACSUs of the local-SOVA and the MLM algorithm
are identical. Therefore, for both algorithms, the forward ACSU and the backward ACSU
have the same complexity and consist of two adders and one CS operator. For the SOU,
the structures are shown in Fig. 4.5a and Fig. 4.5b for the MLM algorithm and the
local-SOVA, respectively. With ν = 3, the MLM SOU consists of 17 adders and 14 CS
operators, whereas the SOU of the local-SOVA requires 22 adders and 7 CS operators. In
total, applying (4.44), the complexity of the MLM decoder is 79 computational units and
the complexity of the local-SOVA decoder is 77 computational units.

4.4.4.2 Radix-4 local-SOVA and radix-4 MLM algorithm

For the MLM algorithm, the backward and the forward ACSUs have the same complexity
and consist of 4 adders and 3 CS operators. Furthermore, the SOU of the MLM algorithm
begins by adding 32 intermediate values of Γk→k+1(s, s′) + Bk+2(s′) to Ak(s), using 32
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adders. Next, two maximum selection trees for each systematic bit, each consisting of
15 CS operators, are needed. Finally, each LLR value is obtained by using one extra
subtractor (adder). In total, MLM decoding requires 98 adders and 108 CS operators, i.e.
206 computational units.

As for the local-SOVA, the forward ACSU is the same as for the MLM algorithm.
Apart from the calculation of the state metric, the backward ACSU of the local-SOVA
requires one extra φ operator (one adder and one CS operator) to update the reliability
values, as shown in Section 4.4.1. Therefore, the backward ACSU of the local-SOVA
consists of 5 adders and 4 CS operators. For the SOU, the Ak(s) values are added to 8
path metrics using 8 adders. Then, a 3-layer tree of radix-4 merge operators is employed,
which consists of 7 CS operators and (2×7) φ operators (to decode 2 bits). Therefore,
the total complexity of the SOU for the local-SOVA is 22 adders and 21 CS operators.
Finally, from (4.44), the complexity of the radix-4 local-SOVA is 151 computational units.

4.4.4.3 Radix-8 local-SOVA and radix-8 MLM algorithm

For the MLM algorithm, the forward/backward ACSU requires 8 adders and 7 CS oper-
ators. The MLM SOU uses 64 adders to add Ak(s) to the intermediate values provided
by the backward ACSU. Then, two maximum selection trees, each consisting of 31 CS
operators, are employed for each systematic bit. Finally, 3 extra subtractors are required
to compute the LLR of the 3 bits. In total, the complexity of the radix-8 MLM decoder
is 493 computational units.

On the other hand, for the local-SOVA, the backward ACSU requires 4 extra φ op-
erators to update the reliability values. For the SOU, 8 adders are first required to add
the values of Ak(s) to the path metrics. Then, a 3-layer tree of radix-8 merge operators
is employed, which consists of 7 CS operators and (3×7) φ operators (to decode 3 bits).
Thus, in total, the complexity of the radix-8 local-SOVA decoder is 361 computational
units.

Table 4.1 summarizes the results of the complexity analysis for radix-2, radix-4 and
radix-8 schemes. CMLM and CLSOVA denote the computational complexity of the MLM
algorithm and the local-SOVA, respectively. For radix-2, the MLM algorithm and the
local-SOVA have roughly the same complexity, while for radix-4 and radix-8 schemes,
the local-SOVA is less complex. For high-radix schemes (4 and 8), using the local-SOVA
reduces complexity by 27%.

Table 4.1: Comparison of the computational complexity of the MLM algorithm and the
local-SOVA for various radix schemes (Add: adder; CS: compare-select).

Radix

schemes

Max-Log-MAP local-SOVA
CLSOVA

CMLM
8×CF 8×CB CS CMLM

8×CF 8×CB CS CLSOVA
Add CS Add CS Add CS Add CS Add CS Add CS

Radix-2 16 8 16 8 17 14 79 16 8 16 8 22 7 77 0.975

Radix-4 32 24 32 24 34 60 206 32 24 40 32 22 21 151 0.733

Radix-8 64 56 64 56 67 186 493 64 56 96 88 29 28 361 0.732

Furthermore, the complexity per decoded bit of the MLM algorithm increases from 79
to 206/2 = 103 computational units when moving from radix 2 to radix 4. In contrast, it
decreases from 77 to 75.5 computational units for the local-SOVA. Therefore, using the
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local-SOVA for radix-4 schemes can further increase the efficiency of the decoder. On
the other hand, for radix-8 schemes, although the local-SOVA is less complex than the
MLM algorithm, its complexity per decoded bit is raised to 120.3 computational units.
It is higher than for radix 4 but enables a throughput increase. Moreover, it can be
significantly reduced by replacing the φ operators by ω operators, as shown in the follows.

4.4.4.4 Radix-8 local-SOVA with ω operators

The complexity analysis of the local-SOVA for a radix-8 scheme was reiterated by grad-
ually replacing φ operators by ω operators in the backward ACSUs and in the SOU. We
considered the same configurations and notations as in Section 4.4.3, and the computa-
tional complexity is still calculated based on (4.44).

The complexity comparison is shown in Table 4.2, where the MLM decoding complex-
ity is taken as a reference for complexity normalization and performance comparison. We
can observe that if we use ω operators instead of φ operators in the backward ACSUs
(DEC 3), the resulting complexity is reduced to 67% of the complexity of the reference
decoder compared to 73% if only φ operators are used, with no noticeable impact on the
correction performance. If a lower complexity is desired, the local-SOVA with ACSU-
(3,0) and SOU-(2,1) (DEC 5) can be employed to reach 63% of the reference complexity,
at the cost of a performance degradation of 0.05 dB. Table 4.2 also shows that using
only ω operators (DEC 6) further reduces the complexity by 1% but the resulting 0.3 dB
performance loss makes this configuration less attractive.

Table 4.2: Comparison of the computational complexity of various radix-8 algorithms
(CS: compare-select).

Algorithm
8× CB 8× CF CS Computational

complexity C

Complexity

normalization

Performance loss

at BER 10−6 (dB)Add CS Add CS Add CS

MLM 64 56 64 56 67 186 493 1 −

DEC 2 64 56 96 88 29 28 361 0.73 0.0

DEC 3 64 56 64 88 29 28 329 0.67 < 0.01

DEC 4 64 56 64 88 17 28 317 0.64 0.05

DEC 5 64 56 64 88 11 28 311 0.63 0.05

DEC 6 64 56 64 88 8 28 308 0.62 0.3

4.4.5 Radix-16 Local-SOVA Decoder for Convolutional Codes
with Memory Length ν = 3

In this section, we extend the previous study by considering a particular implementation
of the radix-16 local-SOVA for ν = 3 (8-state) convolutional codes. A section of a radix-16
trellis diagram is the aggregation of four consecutive sections in a radix-2 trellis diagram
or, equivalently, of two consecutive sections in a radix-4 trellis diagram. With the latter
representation, a pair of states s and s′ between two instants k and k + 4 are connected
by two parallel branches as illustrated in Fig. 4.11 between s = 2 and s′ = 4.
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Figure 4.11: A radix-16 trellis section made of two radix-4 trellis sections.

Intuitively, one could decode this code with a radix-16 ACSU using 16-input max-select
operations to produce the state metrics. However, increasing the number of inputs of the
max-select operators results in a longer propagation path in the ACSU, thus lengthening
the critical path of the decoder. To get around this problem, the authors of [32] suggested
that we can select the branch with larger branch metric Γk→k+4(s, s′) among the two
parallel branches connecting two states, and discard the other one. Since this task could
be done in the BMU to reduce by half the number of branches, we can then use radix-
8 ACSUs for the calculation of the state metrics. However, the main drawback of this
approach when applied to the MLM algorithm is that the branches selected after the
BMU might carry either uj = 1 or uj = 0, for j = k, . . . , k + 3, which we cannot know
in advance. This creates a ratio between the number of branches having uj = 1 and the
number of branches having uj = 0 that varies over different trellis sections and different
received frames. This causes a major problem for the MLM SOU since it naturally employs
max-select operations with a constant number of inputs referring to hard decisions 1 and
0.

On the other hand, from the local-SOVA perspective, the two parallel branches pro-
cessed by the BMU can be considered as the merge of two paths. Hence, we can use the
path merging operation to produce one path carrying the selected hard decision and the
updated reliability value. The BMU can then forward 64 paths to radix-8 ACSUs, which
in turn produce 8 output paths for the SOU to finally compute the soft output. So, in
the radix-16 local-SOVA decoder, the BMU, the ACSU and the SOU constitute a path
merging binary tree with 7 layers: the first layer is in the BMU, and thus not in the
critical path, the three next layers are in the ACSU, and the last three layers in the SOU
that are also not in the critical path. In addition, since the order of the input paths does
not affect the result of the merge operations, the local-SOVA is immune to the problem
of the non-static ratio of hard decision value mentioned above for the MLM algorithm.

Extensive simulations with the radix-16 local-SOVA were also carried out. Similarly to
the radix-8 case, we first performed a radix-16 local-SOVA with only φ operators. Then,
we gradually substituted ω operators for φ operators in order to observe the behavior of
the decoder. The results are shown in Fig. 4.12. We can observe that we can still replace
φ operators by ω operators in the ACSU and in the first layer of the SOU with a negligible
degradation in performance. However, further substitutions are not recommended since
a penalty of 0.4 dB at 10−4 of BER can be observed if we use solely ω operators.

When considering higher radix orders such as 32 and 64 for the same convolutional
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Figure 4.12: BER performance of a LTE decoder using radix-16 MLM algorithm, local-
SOVA and its variants with K = 1056, r = 1/3 after 5.5 iterations. AWGN channel,
BPSK modulation.

code, there are respectively 4 and 8 parallel branches connecting two states in each high-
radix trellis section. In this case, the BMU selects the path with the largest path metric
among the 4 or 8 paths. Moreover, since the BMU does not involve a recursive loop as
in the ACSU, it can be pipelined to ensure that the critical path always resides in the
ACSU. However, since the complexity of the decoder increases exponentially with the
number of bits decoded simultaneously, it is then necessary to find the processing order
of the paths with the best compromise between throughput and complexity. Nonetheless,
using local-SOVA with high-radix orders provides an ultra high throughput solution for
convolutional and turbo codes since the critical path of the decoder can always remains
in the radix-8 ACSU while decoding an increasing number of systematic bits in a single
clock cycle.

4.5 Conclusion

In this chapter, we have introduced a new SISO decoding algorithm for convolutional
codes: the local-SOVA. The decoder architecture for the local-SOVA is shown to exhibit
a more hierarchical structure and a lower computational complexity than the conventional
Max-Log-MAP algorithm.

We observed that using local-SOVA in radix-8 LTE turbo decoders significantly re-
duces the computational complexity of the decoder compared to the respective radix-8
Max-Log-MAP architecture. For instance, employing the local-SOVA algorithm for radix-
8 decoding of the LTE turbo code reduces the complexity by 33% without any performance
degradation and by 36% with a slight penalty of only 0.05 dB. Moreover, the local-SOVA
makes it possible to increase the radix-order without penalizing the error correction per-
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formance or the critical path of the decoder, but at the cost of added complexity. These
advantages make local-SOVA our first-choice algorithm for developing high-radix turbo
decoders.

The study of the proposed algorithm and its results were published in the IEEE
Transaction on Communications [49].
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Chapter 5

The Local-SOVA in Unrolled-XMAP
Architecture

The previous chapter showed that, when used with high radix orders, the local-SOVA
decoder has a lower computational complexity than the MLM decoder. Therefore, this
chapter deals with the implementation of the computational units of radix-4, radix-8 and
radix-16 local-SOVA decoders in the UXMAP architecture introduced in Section 3.3.2 for
high-throughput applications. For each radix order, hardware architectures are proposed
and implemented to observe how the computational complexity savings translate into area
savings.

The rest of the chapter is organized as follows. Section 5.1 briefly describes the
UXMAP architecture and provides an overview of the benefits of employing the local-
SOVA in the UXMAP architecture. Then, the state-of-the-art UXMAP architecture with
the MLM algorithm is described in Section 5.2. Section 5.3 presents the implementation
of the radix-4, radix-8 and radix-16 local-SOVA decoders. These high-radix schemes are
also compared with the standard MLM decoder and with each other in terms of area
complexity, error correction performance and latency/throughput. Finally, Section 5.4
concludes the chapter.
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5.1 Introduction

It was recently shown that a turbo decoder using the UXMAP architecture and imple-
mented in CMOS 28 nm technology could achieve a throughput of 100 Gp/s for K = 128
with the radix-4 MLM algorithm and 4 decoding iterations (8 HIs) [18, 2]. According to
Eq. (3.13) in Section 3.3.2, the throughput of a turbo decoder with the UXMAP archi-
tecture increases linearly with K since it produces K decoded bits in a single clock cycle
when the pipeline is full. Therefore, a throughput of 1 Tb/s can in theory be achieved
with the UXMAP architecture when K ≈ 1280. However, for a given number of decoding
iterations, the area complexity of the UXMAP decoder also increases with the frame size
K. Nonetheless, when K increased, the correlation between the two constituent RSC
decoders is reduced provided the interleaver is well designed [62] and the error correction
performance is improved. On that basis, the authors in [2] showed that the UXMAP
architecture with K = 256 and K = 512 only needs 3 and 2.5 decoding iterations, re-
spectively, to achieve the same correction performance as in the case of K = 128 with 4
iterations. As a result, for K = 512, the decoder throughput is increased by 4 times, while
the area complexity is only increased by 2.5 times, thus, resulting in an area efficiency
increased by 1.6 times.

Furthermore, the previous chapter showed that the local-SOVA has a lower compu-
tational complexity than the MLM algorithm, expecially for high radix orders. For the
radix-4 case, the analysis in Chapter 4 led to a reduction of 27% in computational com-
plexity. Assuming that this computational complexity saving can be translated into area
saving, one can expect that embedding a radix-4 local-SOVA in the UXMAP architecture
can reduce the decoder area by 25 to 30% compared to a radix-4 MLM UXMAP decoder.
Equivalently, keeping the same area complexity as the MLM decoder, we can increase K
by 1.4 times by using the local-SOVA decoder instead, and thus, have a throughput gain
and an area efficiency gain of 1.4.

The promising results of Chapter 4 encouraged us to consider using even higher radix
schemes (radix-8, radix-16) with the UXMAP architecture. There are then several aspects
to be taken into account. Assuming that using higher radix schemes does not lower the
operating frequency, then the latency of the decoder can be reduced, since more bits are
processed in a clock cycle. This characteristic is particularly interesting for applications
requiring low processing latency. Using higher radix schemes also means that the number
of computational units (BMU, ACSU, SOU) and registers in the pipeline of the UXMAP
can be decreased, leading to a reduction in the area complexity. But, on the other hand,
the complexity of the computational units also increases with the radix order. Therefore,
the actual impact of increasing the radix order can only be meaningfully assessed through
implementing these high radix local-SOVA decoders in an UXMAP architecture.

In the next section, the fixed-point implementation of the UXMAP with the radix-
4 MLM algorithm is discussed. This will serve as a basis for the design of our local-
SOVA/UXMAP decoder and for comparisons. All the implementations and comparisons
were carried out for the LTE turbo code using rate-1/2 RSC component codes.
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5.2 Fixed-Point Implementation of the Radix-4

MLM/UXMAP Decoder

This section describes the implementation of turbo decoders using the UXMAP archi-
tecture with the radix-4 MLM decoding algorithm. As described in Section 3.3.2, the
fully pipelined UXMAP architecture unrolls the decoding iterations and applies a spatial
parallelization of the XMAP cores where each XMAP core processes a sub-trellis of length
KP within a half-iteration. The authors in [2] have shown that KP = 32 is the optimal
length for each XMAP core as smaller lengths entail a performance degradation, which
in turns requires more iterations to be compensated for. It is also shown in [2] that,
compared to higher sub-trellis lengths (KP = 64 or KP = 128), using KP = 32 with a
small ACQ length at the first iteration does not degrade the error correction performance
and up to 40% of the area complexity can then be saved. Moreover, using KP = 32 also
enables frame size flexibility to support K = 128, 64, 32 [27].

The XMAP core is made of computational units and pipeline registers as described in
Section 3.3.2. Three distinct computational units, BMU, ACSU and SOU, constitute the
backbone of the XMAP core and hence of the UXMAP architecture. The next section
deals with the implementation of these computational units.

5.2.1 Computational Units Implementation

5.2.1.1 Branch Metric Unit

The BMU calculates all the branch metrics of the current trellis section and send them
to the ACSU for further process. The constituent RSC code has coding rate R = 1/2.
Therefore, for a radix-2 trellis section k, there are one systematic bit and one parity bit,
and we have 4 branch metrics values:





Γk(00) = 0

Γk(01) = Lpk
Γk(10) = Lsk + Lak
Γk(11) = Lsk + Lak + Lpk

(5.1)

This representation suppose that all the branch metrics are normalized by subtracting
the metric of the all-zeros branch.

The radix-4 branch metrics can be directly calculated from the radix-2 branch metrics
of sections k and k+1. The implementation of the radix-4 BMU is therefore a network of
adders and can be straightforwardly implemented.

5.2.1.2 Add Compare Select Unit

The ACSU receives the branch metrics from the BMU and computes the forward and
backward state metrics recursively. For instance, the forward state metric calculation in
radix-4 scheme is expressed as

Ak+2(s) =
∑

s′

(
Ak(s

′) + Γk→k+2(s′, s)
)
, (5.2)
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where the size of the set of state s′ in the summation is 4. Equation (5.2) is implemented
by an ACS operator. The radix-4 ACS operator can be implemented as a tree-like struc-
ture as shown in Figure 5.1a or can be carried out by six compare-select (CS) operators
followed by a look-up table (LUT) [17, 30, 31] as shown in Figure 5.1b. The tree-like
structure has lower complexity but it has higher critical path [17]. Moreover, the tree-
like architecture could not be pipelined because it would have the same throughput and
latency compared to the radix-2 case but with higher complexity. On the other hand,
although the implementation using LUT in Figure 5.1b is more complex (6 CS operators)
than to the tree-like implementation (3 CS operators), this architecture shortens the crit-
ical path of the ACSU by about 50% as shown in [17]. Therefore, it is the one that we
chose to be implemented in the UXMAP architecture, since we are seeking high operating
frequency for high throughput and low latency.

Figure 5.1: The schematic of the radix-4 Max-Log-MAP ACS operator using (a) a tree-like
architecture, and (b) a LUT approach.

5.2.1.3 Soft Output Unit

The input of the SOU are metrics Ak(s), Γk→k+2(s, s′), and Bk+2(s′). It performs the soft
output calculation for two bits uk and uk+1 as follows:

L(ui) = max
(s′,s)|ui=1

(Ak(s
′) + Γk→k+2(s′, s) +Bk+2(s))

− max
(s′,s)|ui=0

(Ak(s
′) + Γk→k+2(s′, s) +Bk+2(s)) , i = k, k+1. (5.3)

Then, the extrinsic information of the systematic bits can be derived from the soft output
by subtracting the a priori LLR La(ui) and the channel LLR Lc(ui) from the soft output

Le(ui) = L(ui)−
(
La(ui) + Lc(ui)

)
. (5.4)

Finally, an extrinsic scaling factor of 0.75 is applied to the extrinsic information.
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An architecture for the radix-4 SOU was proposed in [20] and is shown in Figure 5.2
where CS-2 denotes a CS operator with two inputs and CS-4 denotes a CS operator with
four inputs. Note that the SOU should be pipelined (through the use of the pipeline
registers) to ensure that its critical path is smaller than that of the ACSU. In this case,
the CS-4 stage of the SOU can be carried out by using the LUT approach as in the
ACSU which takes only one clock cycle since its critical path is equal to the critical path
of the ACSU. Alternatively, it can be implemented with the tree-like architecture where
another extra pipeline stage should be added between two layers of the tree to ensure
that its critical path is always smaller than that of the ACSU. As a result, depending
on the choice of the CS-4 architecture, the SOU takes 4 or 5 clock cycles to produce two
extrinsic LLRs for bit uk and uk+1.

Figure 5.2: The architecture schematic of the radix-4 MLM SOU that produces two
extrinsics.

5.2.2 Metrics Quantization

In this work, we only considered uniform quantization to represent the different metrics.
It is defined by two parameters: the range of the metric and the number of bits used
to represent that metric, also referred as to the metric bitwidth. For a metric in the
decoder with a fixed range of values, the bitwidth should be chosen very carefully since the
hardware complexity increases linearly with the defined bitwidth but, on the other hand,
the error correction performance of the decoder worsens when the bitwidth decreases.

For the computational units in the UXMAP, there are 4 types of metrics that should be
considered for quantization: the channel metrics representing the LLRs of the systematic
and parity bits, the branch metrics, the state metrics, and the extrinsic information (which
is also the input a priori information). To this end, we only needs to define the range
of the channel metrics since other metrics are calculated based on the channel metrics.
However, the bitwidth for each metric should be defined very carefully to avoid using
more bits or less bits than necessary.
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5.2.2.1 Quantization of Channel Values and Extrinsic Information

The turbo decoder receives the channel LLRs computed by the demodulator. Assuming a
transmission over an AWGN channel using BPSK modulation, the received channel LLRs
at the receiver are

Lci =
2yi
σ2
, i = 0, . . . , N − 1 (5.5)

where σ is the variance of the additive white Gaussian noise. Note that in order to
calculate the channel LLRs in (5.5), receiver needs to estimate of the noise variance σ2.
This estimation is not required with the MLM algorithm [72] since a constant multiplier
to the channel LLRs does not affect the decoder performance. The MLM decoder can
therefore directly perform the quantization of the received values yi, i = 0, . . . , N − 1.

In the fixed-point implementation of the UXMAP, the two’s complement representa-
tion of numbers is used. The reason is that it facilitates the modulo normalization of the
state metrics (see Section 5.2.2.3). Let A be the interval of the quantization, meaning
that yi is quantized between [−A,A). With the bitwidth of w bits, the two’s complement
quantization function Q is defined as

yQi = Q(yi) = sat

(⌊
yi

2w − 1

A
+ 0.5

⌋
, 2w
)
, (5.6)

where bxc is the floor function returns the greatest integer less than or equal to x, and
the saturation function sat(a, b) is defined as

sat(a, b) =





a, if a ∈ [−b, b− 1]

b− 1, if a > b− 1

−b, if a < −b
(5.7)

The value of A should be chosen so that it provides the optimal performance of the
code. If A is too large, most of uncertain values around zero would be quantized to zero.
On the contrary, if A is too small, the saturation function prevents the quantized value
from taking high reliability values. In [81], the authors proposed that, for a rate 1/2 turbo
code, the value of A could be taken around 1.2. Furthermore, as the code rate increases,
the value of A can be decreased.

On the other hand, the choice of the channel bitwidth w depends on the target error
performance and the decoder architecture. Typical values of w are between 3 to 6 bits [81].
For the UXMAP architecture, a quantization of 6 bits for the channel LLRs was chosen in
[18, 27, 2]. From the chosen channel bitwidth w, the bitwidth for the extrinsic information
(and also the a priori information) is then w + 1 = 7 bits [2, 81]. Therefore, the value
of the extrinsic information is in the range of [−2A, 2A), and if the SOU produces an
extrinsic value out of this range, it should be saturated as given by (5.7) with b = 2w+1

before sending to the other constituent decoder.

5.2.2.2 Quantization of Branch Metrics

The bitwidth of the branch metrics can be directly deduced from the branch metric
calculation. For a radix-2 trellis section k, according to (5.1), if Lsk and Lpk are quantized
with w bits and Lak is quantized with (w + 1) bits, the bitwidth of the radix-2 branch
metric should be w + 2.
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The bitwidth of the high-radix branch metrics can then be obtained from the bitwidth
of radix-2 branch metrics. For example, the bitwidth of the radix-4 branch metrics is
w + 3, and the bitwidth of the radix-8 branch metrics is w + 4. Table 5.1 provides the
bitwidth of the branch metrics for different radix orders with the channel bitwidth w = 6
bits.

Radix Branch Metric Bitwidth

Radix-2 w + 2 = 8

Radix-4 w + 3 = 9

Radix-8 w + 4 = 10

Radix-16 w + 5 = 11

Table 5.1: Bitwidth of the branch metrics given the channel bitwidth w = 6 bits

Another important metric that we need to exploit is the maximum difference between
the branch metrics, denoted by ∆Γ. This metric will be used later to decide the bitwidth
of the state metrics. Similarly to the process of finding the bitwidth of the branch metrics,
this maximum difference can be deduced by setting the extreme case where all the channel
values and a priori information reach their minimum values. In this case, the maximum
difference is the difference between the branch with all bits equal to one and the branch
with all bits equal to zero. The resulting value is ∆Γ = 2 × 2w for the radix-2 scheme,
4× 2w for the radix-4 scheme, 6× 2w for the radix-8 scheme, and 8× 2w for the radix-16
scheme.

5.2.2.3 Quantization of State Metrics

In order to determine the number of bits to represent the state metrics, the authors in [82]
showed that for the Viterbi algorithm, the difference between path metrics was bounded
by a value at any time instant on the trellis diagram. Since the forward and backward state
metric recursion share the same process as the path propagation in the Viterbi algorithm,
the difference between forward state metrics and the difference between backward state
metrics are also bounded at any time instant. We denote this bound value for the state
metric as ∆SM

Furthermore, since the state metrics are calculated recursively, if no normalization is
used, the metrics would increase over time. Therefore, metric normalization should be em-
ployed in fixed-point implementation. A straightforward normalization method involves
subtracting the minimum state metric from all the state metrics. Then, the minimum
number of bits required to represent the state metric is dlog2(∆SM)e [81]. However, this
method implies that additional hardware resources are needed to find the minimum met-
ric and then to subtract it from all the metrics. This increases both the complexity and
the critical path of the recursion unit.

Another method to normalize the state metrics consists in using directly two’s com-
plement arithmetic where modulo normalization corresponds to the overflow mechanism
of adders [82]. The advantage of this method is that there is no additional hardware
cost provided that the state metric range is sufficiently large. For a given set of metrics
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{m1(t), . . . ,mn(t)} that change over time, let us assume that the difference between these
metrics is always bounded by ∆max, i.e. at any time instant t,

|mi(t)−mj(t)| ≤ ∆max, ∀i, j ∈ 1, . . . , n. (5.8)

Then, if we want to represent these metrics with W bits with two’s complement repre-
sentation ranging in [−2W−1, 2W−1 − 1), the following condition has to be met [82]:

∆max ≤ 2W−1 − 1. (5.9)

Figure 5.3 shows two examples of a valid and a non-valid bitwidth value W . Note that the
set of possible values for the quantized metrics are equally spaced on the circumference
of the circle. As the metrics increase over time, their two’s complement quantized values
rotate counter-clockwise over the circle. Condition (5.9) ensures that, at a given time
instant, the difference between two metrics is always less than or equal to ∆max as shown
in Figure 5.3a, and does not take value 2W−1−

(
∆max mod 2W−1

)
as shown in Figure 5.3b.

Figure 5.3: Example of (a) a valid value of bitwidth W , and (b) a non-valid value of
bitwidth W which causes a wrong result.

For trellis section k, the MLM algorithm calculates:

Ak+1(s) = max
(
Ak(s0) + Γk(s0, s), Ak(s1) + Γk(s1, s)

)
. (5.10)

If we assume that, at time instant k, the difference between the state metrics Ak(s0) and
Ak(s1) reaches the bound value ∆SM and the difference between two branch metrics also
reaches the maximum value of ∆Γ mentioned in the previous section, then, the bitwidth
for Ak+1(s) has to be large enough to support a difference equal to (∆SM + ∆Γ).

Moreover, for the soft output calculation, we use two intermediate values Ak(s0) +
Γk(s0, s) and Ak(s1)+Γk(s1, s

′), which are added up to Bk+1(s) and Bk+1(s′) respectively.
Now, if the differences between the two forward state metrics, between the two branch
metrics and between the two backward state metrics reach their corresponding bound
values, then, the bitwidth of the state metric has to be large enough to support the
difference of (2∆SM + ∆Γ) since for the representation of the a posteriori LLR.

Consequently, for the MLM algorithm, the maximum difference ∆max that the state
metrics have to support while fulfilling condition (5.9) is

∆max = 2∆SM + ∆Γ, (5.11)
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and the bitwidth of the state metric, denoted as wSM, can be obtained from (5.9) as

wSM = dlog2 (2∆SM + ∆Γ + 1) + 1e, (5.12)

where dxe is the ceiling function that returns the least integer greater than or equal to x.
As explained in 5.2.2.2, the value of ∆Γ is 2T ×2w, where T is the radix order and w is

the bitwidth of the channel values. Regarding the value of ∆SM, there are several bounds
derived in the literature [82, 81, 12]. Nonetheless, to derive the exact bound of the state
metric, the authors in [12] proposed a process using simulation. By starting from all-zero
state metrics, we perform the state metric recursion with all the channel values and a
priori information having their corresponding minimum values, until the system reaches
a steady state. Then, the maximum difference between state metrics is ∆SM. For the
LTE constituent RSC code [39], the simulation method provided a value of ∆SM equal to
4× 2w.

Table 5.2 shows the resulting bitwidths for the state metrics representation in the
MLM algorithm for radix-2, radix-4, radix-8 and radix-16 LTE RSC code with the channel
bitwidth w = 6. We can observe that the bitwidth for the state metrics remains 11 bits
for radix-2, radix-4 and radix-8 schemes, despite the changes in the value of ∆max, and
only the radix-16 scheme requires a state metrics bitwidth of 12 bits.

Radix ∆Γ ∆SM ∆max wSM

Radix-2 128 256 640 11 bits

Radix-4 256 256 768 11 bits

Radix-8 384 256 896 11 bits

Radix-16 512 256 1024 12 bits

Table 5.2: Maximum values for ∆Γ, ∆SM, ∆max and minimum bitwidth of the state metrics
for various radix orders for the MLM algorithm, given the channel bitwidth is w = 6 bits

5.2.3 Performance of the MLM/UXMAP Architecture

In this section, we take the architecture of the computation units as well as their corre-
sponding quantization schemes into account, and perform simulation to assess the perfor-
mance. It is important to note that the results from the simulation are bit-true. Therefore,
an implementation of the solution in hardware should produce the same performance.

We simulated three settings of an MLM/UXMAP turbo decoder (KP = 32) for differ-
ent frame sizes K = 128, 256, 512 and 8, 6, 5 HIs respectively. These settings are chosen
because they provide similar correcting performances while having different number of
iterations. The coding rate 1/3 LTE turbo code with QPP interleaver is considered [39].
The modulation scheme is BPSK and the channel is AWGN. Furthermore, the channel
LLRs are quantized using w = 6 bits. The corresponding BER curves are shown in Figure
5.4. We can clearly see that the three settings provide similar performance with a 0.25 dB
coding gain for K = 256 with 6 HIs, and 0.25 dB performance degradation for K = 512
with 5 HIs, compared to the case of using K = 128 with 8 HIs.

Concerning area and throughput, the implementation of the decoder with K = 128
and 8 HIs was reported in [27] with an area complexity of 16.54 mm2 and a throughput
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of 102.4 Gb/s for a clock frequency equal to 800 MHz in CMOS 28 nm technology node.
Therefore, the area and throughput of the two other decoders can be deduced from these
values. The estimates of the throughput of the decoder for K = 256 and K = 512 are
204.8 Gb/s and 409.6 Gb/s, respectively. The estimated area for the case K = 256 and
6 HIs is 24.81 mm2, and 41.35 mm2 for the case K = 512 with 5 HIs. As a result, using
the setting K = 512 and 5 HIs provides an area efficiency of 9.91 Gb/s/mm2, which is
greater than the area efficiency of the setting K = 256 and 6 HIs (8.25 Gb/s/mm2) and
almost twice the area efficiency of the setting K = 128 and 8 HIs (6.19 Gb/s/mm2).
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Figure 5.4: BER performance of UXMAP decoder with KP = 32 for different settings.

5.3 High-Radix Local-SOVA in UXMAP Architec-

ture

This section focuses on the application of the local-SOVA to the UXMAP architecture.
As shown in Section 4.4.4, the computational complexities of the local-SOVA and MLM
algorithm are similar for radix 2, but the local-SOVA is less complex for radices 4 and 8.
Therefore, we skipped the radix-2 implementation and we focused directly on the radix-4,
radix-8 and radix-16 implementations of the local-SOVA.

In this section, we first perform the analysis on the bitwidth of the state metric for
the local-SOVA. Then, we implemented the three computational units (BMU, ACSU and
SOU) for the local-SOVA and compared them with the MLM units in terms of area
complexity. Moreover, in order to perform area complexity comparisons between radix-
4, radix-8 and radix-16 local-SOVA implementations, we implemented the equivalent of
12 radix-2 trellis sections, which correspond to 6 radix-4 trellis sections, 4 radix-8 trellis
sections and 3 radix-16 trellis sections, respectively.
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5.3.1 Metric Quantization in the Local-SOVA

For the local-SOVA, since the decoding process is different from the MLM algorithm,
the analysis related to the bitwidth of state metrics has to be carried out again. In the
local-SOVA, the ACSU also performs the maximum selection for the state metric as in
(5.10). Therefore, the bitwidth of the state metrics should also support the difference of
∆SM + ∆Γ. However, for the soft output calculation, the local-SOVA employs the metrics
(Ak+1(s)+Bk+1(s)) instead of (Ak(s

′)+Γk(s
′, s)+Bk+1(s′)) in the MLM algorithm. So, the

maximum difference that the state metrics have to support in the SOU of the local-SOVA
is only 2∆SM. Consequently, the value of ∆max in the local-SOVA is

∆max = max
(
∆SM + ∆Γ, 2∆SM

)
(5.13)

Table 5.3 shows the resulting bitwidths for the state metrics representation in the
local-SOVA algorithm for radix-2, radix-4, radix-8 and radix-16 LTE RSC code with the
channel bitwidth w = 6. We can observe that the bitwidth for the state metrics remains
11 bits for all radix orders, despite the changes in the value of ∆max.

Radix ∆Γ ∆SM ∆max wSM

Radix-2 128 256 512 11 bits

Radix-4 256 256 512 11 bits

Radix-8 384 256 640 11 bits

Radix-16 512 256 768 11 bits

Table 5.3: Maximum values for ∆Γ, ∆SM, ∆max and minimum bitwidth of the state metrics
for various radix orders for the local-SOVA , given the channel bitwidth is w = 6 bits

5.3.2 Radix-4 Computational Units

For the radix-4 local-SOVA, the BMU operates in the same way as for the MLM algorithm.
Therefore, we only focus on the implementation of the ACSU and the SOU for the radix-4
local-SOVA in this section.

5.3.2.1 The radix-4 ACSU

Section 4.4.1 mentioned the possibility of implementing the radix-4 ACSU through a tree
of merge operations. However, for the same reason as for the radix-4 maximum selection in
the MLM decoder, the tree-like architecture introduces long critical paths into the ACSU,
thus drastically limiting the maximum operating frequency of the decoder. Therefore, one
need to resort to the radix-4 ACSU using the LUT approach. The local-SOVA ACSU,
apart from calculating the next state metrics (the surviving paths), also has to find the
reliability values for each surviving path to be provided to the SOU. To this end, the
authors in [30] proposed a method for calculating the reliability values that is compatible
with the LUT approach. Different from the original method that updates the reliability
values by the HR and BR using the metric differences, the proposed method acts on the
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absolute value of the metrics and provides the reliability values represented by the path
metrics of the contenders of the surviving path.

Let us denote by {P0, P1, P2, P3} the set of 4 paths considered for the selection of the
surviving path for state s′ at instant k+ 2 in the radix-4 ACSU. Each path Pi is a 3-tuple
consisting of the path metric Mi, the set of two hard decisions ui and the set of two
reliability values li. For a forward ACSU, each path metric corresponds to the sum of
the forward state metric Ak(s) and the branch metric Γk→k+2(s, s′). The hard decisions
are the two systematic bits labeling the corresponding branch. The ACSU takes these 4
paths and produce a surviving path

P s′ = {M s′ ,us
′
, ls
′}, (5.14)

where M s′ = Ak+2(s′) and us
′

= {us′0 , us
′

1 } are the surviving path metric and the hard
decisions. The values of ls

′
= {ls′0 , ls

′
1 } are defined as the metrics of the contender paths,

which are interpreted as the highest path metrics having different hard decisions with
respect to us

′
0 and us

′
1 , respectively. This new definition of the reliability values is different

from the original definition L in Section 4.3, which is based on the difference between
path metrics. Nonetheless, we will come back to the L values later in the next section
dealing with the SOU.

With the LUT approach, the ACSU first computes the set of difference values between
the path metrics as in the MLM algorithm. Then, from the sign of these metric differences,
the index of the path with the highest metric and its corresponding hard decisions are
retrieved. For the computation of the reliability values, the input paths can be arranged
in a pre-determined order according to the hard decisions. Therefore, from the index of
the maximum path and the signs of the path metric differences, the index of the contender
paths can the deduced, and the reliability values computed. For example, we can arrange
the input paths according to the hard decisions such that u0 = {0, 0}, u1 = {0, 1},
u2 = {1, 0}, and u3 = {1, 1}, and from the LUT we know that M1 is the highest path
metric. Then, metric of the contender path for the first bit is either M2 or M3 and can
be decided by the sign of the difference between them. Similarly, the metric of contender
path for the second bit is either M0 or M2 and is decided by the sign of (M0 − M2).
Note that the resulting reliability values produced by this approach are equivalent to the
original approach shown in Figure 4.8 in Section 4.4.1.

Figure 5.5 shows the hardware architecture of the radix-4 ACSU producing one surving
path. For a convolutional codes with 2ν states, the ACSU should employ 2ν replica
of Figure 5.5. Compared to the radix-4 MLM architecture, the radix-4 ACSU of the
local-SOVA has a complexity overhead for the LUTs for the contender paths and the
multiplexers for the selection of these paths.

5.3.2.2 The radix-4 SOU

According to the original local-SOVA that we have studied in Chapter 4, for a code with
2ν states, the SOU receives 2ν surviving paths from the forward ACSU, and it also receives
2ν values of Bk+2(s′) from the pipeline registers in the UXMAP. First, the SOU adds the
values of Ak+2(s′) to Bk+2(s′) to compute the new path metrics for the 2ν paths. Then,
the merge operators are applied in a dichotomous fashion to produce the soft output. The
update rules in the merge operators can be either only HR (ω operator) or both HR and
BR (φ operator).
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Figure 5.5: ACSU processing of one surviving path in the radix-4 local-SOVA.

However, the reliability values received from the ACSU being the path metrics l instead
of the metric differences L, the application of the update rules, especially the BR, can
be obstructed since these rules should act on metric differences. As a first approach, one
could convert the values of l into L by subtracting l from their corresponding forward
state metric Ak+2(s′). However, this process requires a high number of subtractors and
introduces a high complexity overhead. Therefore, the authors in [30] proposed a low-
complexity solution for the SOU, described hereafter.

In Section 4.4.3, for the LTE RSC code with 8 states (3 layers of merge in the SOU),
we have observed from the simulations that, in the first two layers of the SOU, one can
employ only ω operators (i.e. only apply HR) and then use φ operators (both HR and
BR) in the last layer with negligible performance degradation of the decoder. Therefore,
we can split 8 paths in the SOU into two sets of 4 paths, the upper set and the lower
set, and perform ω operators with each set. Note that using the ω operators for a set
of paths means that we find the maximum path metric, its corresponding hard decisions
and update the reliability values for the hard decision using HR. For example, the output
reliability (metric difference) of the i-th hard decision in the upper set is expressed as

Lhi = min
(
Lhi , {∆

h,j
i }), (5.15)

where the subscript h is the index of the path with the highest metric in the upper set,
Lhi is the reliability value (metric difference) of the i-th decision of the h-th path, and
{∆h,j

i } is the set of metric differences between the h-th path and the other paths having
a different i-th hard decision.

Since the min operator in (5.15) is commutative and associative, we can rewrite it as

Lhi = min
(

min({∆h,j
i }), Lhi

)

= min
(

∆h
i,min, Ak+2(h)− lhi

)
, (5.16)

where ∆h
i,min = min({∆h,j

i }). The process of implementing (5.16) can be as follows.
First, we find the index h of the path with the highest metric, which can be obtained by
calculating the metric differences between all pairs of paths followed by a LUT. Then, from
the index h and the hard decision differences between paths, we can get the set of {∆h,j

i }
and select the minimum metric difference between them as ∆h

i,min. Furthermore, from the
index h, we can also obtain Ak+2(h) and lhi . Then, we can compute Lhi = Ak+2(h) − lhi ,
and perform the min operation between Lhi and ∆h

i,min. The advantage of this method is
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that we only have to convert the value of lhi into the value of Lhi for the h-th path. The
process can be generalized to other bit decisions and to the lower set of paths (denoted
by subscript g).

After having selected the path metric and the hard decisions, the application of (5.16)
to the set of upper paths and to the sets of lower paths gives two paths for the last layer
of the SOU. We then can employ the φ operator to find the final hard decisions and the
a posteriori LLRs, and from that, the scaled extrinsic information can be obtained.

The architecture of the SOU is depicted in Figures 5.6a and 5.6b. In order to reduce
the critical path of the decoder, the implementation of Eq. (5.16) is divided into the first
clock cycle cycle (Figure 5.6a) and the second clock cycle (Figure 5.6b). Note that Figure
5.6a shows the architecture for the set of upper paths. The architecture for the set of
lower paths is identical but with different inputs. Overall, the SOU takes 4 clock cycles
to produce the extrinsic information. Therefore, for the set of upper and lower paths,
intermediate registers are required to hold the values of Ak+2(h), lh, and the values of ∆h

as the metric difference between the h-th path and other paths.

5.3.2.3 Error correction performance and implementation results

We have simulated the error correction performance of the fixed-point implementations of
the LTE turbo decoder using a radix-4 local-SOVA decoder and the UXMAP architecture.
The simulation settings are the same as in Section 5.2.3. Figure 5.7 compares the resulting
performance curves with those obtained using the MLM algorithm. We can see that the
local-SOVA with the use of ω operators in the first two layers of the SOU only entails a
neligible performance degradation (less than 0.05 dB) compared to the MLM algorithm
for all three settings.

The computational units (BMU, ACSU, and SOU) of the radix-4 local-SOVA were
implemented in VHDL, and the designs were placed and routed with Synopsis IC Com-
piler for a CMOS 28 nm process under PVT (Process/Voltage/Temperature) worst case
constraints and a target clock frequency of 800 MHz. For comparison, the respective
BMU, ACSU and SOU of the radix-4 MLM algorithm were also implemented, placed and
routed. The resulting area complexity comparison is shown in Table 5.4. We can see that,
as expected, the BMU complexity is the same for both algorithms and that the area of
the local-SOVA ACSU is a little higher due to the LUTs and multiplexers required for
the contender paths. In return, the SOU of the local-SOVA decoder occupies only half of
the area of the MLM SOU.

To decode 6 radix-4 trellis sections (equivalent to 12 radix-2 trellis sections), the radix-
4 scheme needs 6 BMUs, 6 ACSUs and 6 SOUs. The overall complexity of the radix-4
MLM and the radix-4 local-SOVA decoders is shown in the last column of Table 5.4. From
these results, we can state that using the local-SOVA yields a complexity reduction of
33% compared to the MLM, which is in line with the computational complexity analysis
performed in Section 4.4.4.

5.3.3 Radix-8 Computational Units

The radix-8 XMAP core consists of the implementation of a radix-8 BMU, a radix-8 ACSU
and a radix-8 SOU. For a convolutional code with 8 states, the radix-8 trellis is fully
connected but there are no parallel branches. Then, the radix-8 BMU of the local-SOVA
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Figure 5.6: The SOU architecture for the radix-4 local-SOVA with (a) the hardware
processing the first part of (5.16) for the set of upper paths (the process for the lower
paths is identical) and (b) the hardware processing the second part of (5.16) for both
upper paths and lower paths, and then applying the φ operation and calculating the
extrinsic information.

and the MLM decoder should be the same and their implementation is straightforward
from the branch metric calculation.

The ACSU of the local-SOVA takes 8 input paths and produces one surviving path
for each state s′ at time instant k + 3. The surviving path can be described similarly to
(5.14), except that each path has now 3 hard decisions as well as 3 contender paths, one
for each hard decision. The input paths can also be organized in a predetermined order
according to the hard decisions. Then, the metric differences of path pairs are computed,
and LUTs are employed to find the index of the surviving path as well as the indices of the
contender paths. The architecture of the radix-8 ACSU is similar to the radix-4 ACSU
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Figure 5.7: BER performance comparison between the radix-4 local-SOVA and the radix-4
MLM algorithm employed in the UXMAP decoder with KP = 32 for frame sizes K = 128,
K = 256 and K = 512.

Algorithm BMU ACSU SOU 6 radix-4 trellis
sections

Max-Log-MAP 1200 3885 10485 93420

Local-SOVA 1200 4076 5267 63258

Local-SOVA
Max-Log-MAP 1.0 1.05 0.5 0.677

Table 5.4: Post place & route area of computational units (in µm2) in radix-4 MLM and
radix-4 local-SOVA decoders.

architecture shown in Figure 5.5, except that 26 subtractors are required compared to 6
subtractors for the radix-4 ACSU, since there are 8 path metrics. Furthermore, the size
of the LUTs and multiplexers required to find and select a path among 8 is also increased.
Nonetheless, despite these changes, the critical path of the radix-8 ACSU does not limit
the target frequency of 800 MHz.

Concerning the SOU, the radix-8 architecture is also similar to the radix-4 one shown
in Figure 5.6. The only changes is that some operators now require 3 units instead of
2 in order to process the 3 bits of the radix-8 unit in parallel. Therefore, it is expected
that the complexity of the radix-8 SOU does not exceed 1.5 times the complexity of the
radix-4 SOU.

Overall, the radix-8 local-SOVA uses the same decoding structure as the radix-4 local-
SOVA, where φ operators are employed in the ACSUs and in the last layer of the SOU
and ω operators are used in the first two layers of the SOU. Therefore, the error correction
performance of the UXMAP turbo decoder using radix-8 local-SOVA is not expected to
differ from the radix-4 case, shown in Figure 5.7.

85



The area complexity resulting from the implementation of the radix-8 computational
units is shown in Table 5.5 for the local-SOVA and MLM decoders. There is an overhead
of 29% in the ACSU of the local-SOVA decoder due to the LUTs for the contenders.
However, an area reduction of 73% is observed for the SOU of the local-SOVA decoder
compared to the MLM decoder. Overall, to decode 4 radix-8 trellis sections (equivalent
to 12 radix-2 trellis sections) using the local-SOVA decoder yields an area complexity
reduction of 42%. On the other hand, when compared to the radix-4 local-SOVA decoder,
the radix-8 local-SOVA decoder is approximately 1.5 times more complex. Note that this
increase in complexity is traded for a decrease in latency and an increase in throughput
since a radix-8 decoder decodes a frame 1.5 times faster than a radix-4 decoder, if we
neglect the I/O latency.

Algorithm BMU ACSU SOU 4 radix-8 trellis
sections

Max-Log-MAP 5341 9022 26444 163228

Local-SOVA 5341 11673 6792 95224

Local-SOVA
Max-Log-MAP 1.0 1.29 0.26 0.58

Table 5.5: Post place & route area of computational units (in µm2) in radix-8 MLM and
radix-8 local-SOVA decoders.

5.3.4 Radix-16 Computational Units

This section describes the implementation of the radix-16 local-SOVA decoder for the
same code as above.

5.3.4.1 Straightforward approach

Intuitively, one can implement the radix-16 computational units with the same structures
as for the radix-4 and radix-8 cases. In the straightforward radix-16 implementation, the
BMU calculates 128 branch metrics and pass them to the ACSU. The ACSU adds the
state metrics to the branch metrics, calculates 128 metric differences and uses a LUT to
find the maximum state metric. For comparison, in the radix-4 and radix-8 cases, 6 metric
differences and 28 metric differences have to be considered, respectively. Therefore, the
radix-16 SOU can be implemented with a structure similar to the radix-4 and radix-8
SOUs but with an increased complexity due to the higher number of bits to be processed
in parallel (4 bits).

Table 5.6 shows the area complexity of the computational units for the local-SOVA
and the MLM algorithm, as well as the area required to decode 3 radix-16 trellis sections
(equivalent to 12 radix-2 trellis sections). Compared to the radix-4 local-SOVA, the
complexity of the radix-16 local-SOVA decoder is 3.7 times higher while the latency is
divided by only a factor of 2 (and consequently the throughput is doubled). Therefore,
modifications should be introduced to the radix-16 local-SOVA architecture to make it
more efficient.

According to Section 4.4.5, since there are two parallel branches connecting two states
in a radix-16 trellis section, the BMU can actually select one branch and discard the
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Algorithm BMU ACSU SOU 3 radix-16 trellis
sections

Max-Log-MAP 22457 26301 64574 339996

Local-SOVA 22457 45800 8949 231618

Local-SOVA
Max-Log-MAP 1.0 1.74 0.14 0.68

Table 5.6: Post place & route area of computational units (in µm2) in radix-16 MLM and
radix-16 local-SOVA decoders without specific optimization.

other based on the branch metric. This means that it only passes 64 branch metrics to
the ACSU, and the ACSU can use the radix-8 structure to calculate the state metrics
and calculate the reliability values. Note that this is already a saving in area since this
method can be directly applied to the first half process of the XMAP core, where we only
need to calculate the state metrics and do not need to calculate the reliability values.
However, for the second half, care should be taken to the radix-16 BMU, ACSU and SOU
for calculating the reliability values.

5.3.4.2 Optimized radix-16 BMU

For a radix-16 trellis section of the LTE RSC code, all pairs of parallel branches have
hard decisions in the form u = {u0, u1, u2, u3} and u′ = {u0, u1, u2, u3}, where ui is the
logical not of the bit ui ∈ 0, 1. This means that the metric difference between two parallel
branches, denoted by ∆BMU, is given by the reliability values of bits at positions 0, 2, and
3 for the surviving branch. These reliability values could then be passed to the ACSU
with the surviving branch metrics and be used to compute the output reliability values as
described in Section 4.4.5. However, as the the computation of the reliability values in the
ACSU is already a complex process, adding another layer to update the reliability values
would result in an excessive complexity overhead and a longer critical path. Instead, the
values of ∆BMU can be pushed into pipelined registers, and only be used at the end of
the SOU, where the maximum-likelihood path has already been determined. In this case,
the SOU will select the ∆BMU corresponding to the maximum-likelihood path to update
the final reliability values (for the bits at positions 0, 2 and 3) before calculating the
extrinsic information. The ACSU can then ignore these metric differences and process
the 64 branches from the BMU as if there were no a priori reliability values.

The structure of the radix-16 BMU that selects one out of two parallel branches was
proposed in [32] and is depicted in Figure 5.8. As mentioned above, the systematic bits
are the same for both parallel branches at position 1 and they are different at other
positions. The same can be observed for the parity bits, where the parity bits are the
same for both parallel branches at position 2 and they are different at other positions.
Therefore, out of 12 values (4 values of systematic LLRs, 4 values of parity LLRs, and 4
values of a priori LLRs), we only need 9 values to calculate the metric difference ∆BMU

and to select the surviving branch metric. Furthermore, although there are 64 pairs of
parallel branches, there are only 16 values of metric difference ∆BMU due to repetition.
The adopted radix-16 BMU needs two clock cycles to produce the branch metrics since
it has to select 16 surviving metrics before calculating 64 branch metrics.
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Figure 5.8: Selected BMU architecture for the radix-16 local SOVA decoder.

5.3.4.3 Optimized radix-16 ACSU

As mentioned earlier, the structure of the radix-8 ACSU can be used in order to implement
the radix-16 ACSU for the local-SOVA decoder. However, in the radix-8 ACSU, the hard
decisions of each path are known in advance, which facilitates the selection of the contender
paths. In the radix-16 case, except for the position 1, the hard decisions of the branches
coming from the BMU are not known in advance due to the merge in the BMU. The
uncertainty about hard decisions makes the selection for the contender paths much more
complex. Hence, this translates into more complex LUTs for contender paths than in the
radix-8 case. We called the ACSU which implements this approach type-I ACSU.

Another alternative structure which can be considered for the radix-16 ACSU is
the use of four radix-2 CS operators whose outputs are passed to a radix-4 CS opera-
tor implemented using the LUT approach, similarly to [32]. The corresponding archi-
tecture is shown in Figure 5.9. In order to avoid additional complexity in the LUTs
for contender paths, the metric differences ∆ACSU and decision differences dACSU =
{dACSU,0, dACSU,1, dACSU,2, dACSU,3}1 obtained from the radix-2 CS operators are passed
to the SOU to be processed later. ∆ACSU and dACSU can be selected according to the
maximum-likelihood path founded in the SOU. Then, the SOU can use them to update
the final reliability values with the HR. Concerning the ACSU, the reliability values of
the surviving paths are note updated during the radix-2 CS. Only the path metrics and
and hard decisions are selected for the surviving paths. We called the corresponding
architecture type-II ACSU.

5.3.4.4 Radix-16 SOU

The radix-16 SOU can reuse the architecture shown in Figure 5.6 for the radix-4 case.
However, the SOU architecture in Figure 5.6b has to be slightly modified to update the
reliability values after finding the maximum-likelihood path using the 16 metric differences
∆BMU provided by the BMU. To prevent the critical path from being increased by the

1dACSU,i = 1 means that the ith hard decisions between two paths are different.
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Figure 5.9: Type-II ACSU architecture for radix-16 local SOVA decoder.

SOU, we had to add another pipeline stage to perform the final update process right before
the extrinsic calculation and scaling. Furthermore, when the type-II radix-16 ACSU is
implemented, the SOU has to include the metric difference ∆ACSU in the final update of
the reliability values.

Let us denote by LML = {LML
0 , LML

1 , LML
2 , LML

3 } the reliability values of the maximum-
likelihood path before the final update taking account of ∆BMU, ∆ACSU and dACSU. At
this stage, from the maximum-likelihood path, we can choose the corresponding metric
difference ∆ML

BMU from the BMU and the corresponding metric difference ∆ML
ACSU and deci-

sion difference dML
ACSU from the ACSU (in the case of type-II ACSU). Then the reliability

values of the maximum-likelihood path are updated using HR as follows:

LML
i (type-II) =

{
min

(
LML
i ,∆ML

BMU, d
ML
ACSU,i×∆ML

ACSU

)
, i = 0, 2, 3

min
(
LML
i , dML

ACSU,i×∆ML
ACSU

)
, i = 1

(5.17)

The update process for LML
1 does not include ∆ML

BMU because in the merge of the BMU,
the hard decisions at position 1 are the same. If the type-I ACSU is employed, the final
reliability updates are

LML
i (type-I) =

{
min

(
LML
i ,∆ML

BMU

)
, i = 0, 2, 3

LML
i , i = 1

(5.18)

5.3.4.5 Area complexity and error correction performance

We described the hardware architecture of radix-16 local-SOVA computational units in
VHDL language and implemented them. The designs were placed and routed with Syn-
opsis IC Compiler for a CMOS 28 nm process under worst case PVT constraints and a
target clock frequency of 800 MHz. The resulting area complexity for type-I radix-16
and type-II radix-16 is shown in Table 5.7. The area of the BMU in both cases is the
same. However, with the use of a simpler architecture consisting of 4 radix-2 CS and a
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radix-4 CS, the type-II ACSU yields a lower complexity (55%) compared to the type-I
ACSU. Although the type-II SOU is slightly more complex than the type-I SOU (4.5%),
the overall area for 3 radix-16 trellis sections (equivalent to 12 radix-2 trellis sections) of
type-II local-SOVA is only 70% of the area of the type-I solution. Furthermore, the type-
II radix-16 local-SOVA decoder has the same area complexity as the radix-8 local-SOVA
decoder, while providing a lower latency and higher throughput solution.

Architecture BMU ACSU SOU 3 radix-16 trellis
sections

Radix-16 type-I 5491 30860 8778 135387

Radix-16 type-II 5491 16996 9174 94983

Table 5.7: Post place & route area of computational units (in µm2) in type-I and type-II
radix-16 local-SOVA decoders.

The error correction performance of the type-I and type-II radix-16 local-SOVA de-
coder is shown in Figure 5.10, where it is also compared with the radix-4 MLM algorithm.
For the type-I radix-16 local-SOVA, since we omit the initial reliability values in the BMU
and only use them for an update at the end of the process, the performance is slightly
degraded with less than 0.1 dB loss for all settings. Meanwhile, the type-II radix-16
local-SOVA further skips the reliability update in the first layer of the ACSU and also
uses them for the final update, the performance is then further degraded resulting in an
overall loss of about 0.1 dB.

Compared to the radix-4 local-SOVA decoder, the area complexity of the type-II radix-
16 local-SOVA decoder is 1.5 times higher, but the latency of the decoder is divided by
2 times and the throughput doubled. Therefore, the UXMAP architecture with type-
II radix-16 local-SOVA is recommended for applications requiring low latency and high
throughput and tolerating a small performance loss (about 0.1 dB) as well as a higher
complexity.

5.4 Conclusion

In this chapter, we have first reviewed the implementation of turbo decoders using UXMAP
architecture with the MLM algorithm. The corresponding computational units (BMU,
ACSU, SOU) are described in the case of the radix-4 MLM algorithm. The area com-
plexity and the error correction performance of the UXMAP architecture with the radix-4
MLM algorithm were also shown, which served as the baseline to compare with our im-
plementations of the local-SOVA in the UXMAP architecture.

The radix-4 local-SOVA decoder was first presented with the architecture of the com-
putational units. Compared to the radix-4 MLM decoder, the radix-4 local-SOVA decoder
employed in the UXMAP architecture provides a lower complexity solution with a saving
of 33% in area complexity, at the cost of a slight performance loss (smaller than 0.05
dB). In light of this complexity reduction, the radix-8 and radix-16 local-SOVA were also
investigated. Both schemes yield a higher area complexity than the radix-4 scheme, but
have the advantage of a lower latency. The radix-8 scheme is 1.5 times more complex
but provides a 1.5 gain in latency/throughput and no performance loss compared to the
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Figure 5.10: BER performance comparison between the MLM algorithm and the radix-16
local-SOVA employed in the UXMAP decoder with KP = 32 for frame sizes K = 128,
K = 256 and K = 512.

radix-4 scheme. Even better, the radix-16 scheme is also 1.5 times more complex but
can still increase the latency/throughput gain to a factor of 2, at the cost of a very small
degradation in performance (about 0.1 dB) compared to the radix-4 scheme. Therefore,
depending on the requirements of the application, the radix-4, radix-8 or radix-16 schemes
of the local-SOVA can be can be beneficially employed instead of the MLM decoder in
the UXMAP architecture.
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Chapter 6

SISO Decoding Algorithms Using
the Dual Trellis

In search of decoding algorithms for high-throughput contexts, a part of my thesis work
was devoted to the efficient decoding of high-rate convolutional codes. Therefore, this
chapter focuses on decoding convolutional codes with high coding rates (r > 1/2) using
the trellis of the corresponding dual codes, i. e., the dual trellis.

The authors in [33] have proposed a derivation of the BCJR algorithm based on the
dual code which is perfectly equivalent to the BCJR algorithm applied to the original
convolutional code. For a code with rate r = k/n, the dual code has rate (n − k)/n. If
k > n/2, i.e. if r > 1/2, the dual code has a rate lower than the original one. Therefore,
the dual trellis is less complex than the original trellis since it has fewer branches per
trellis section. Thus, it is expected that if the BCJR algorithm is applied to the dual
trellis, the process of finding the a posteriori probability estimate and then convert it into
the original code is also less complex than the straightforward application of the BCJR
to the original code.

The rest of the chapter is organized as follows. Section 6.1 introduces the benefits
of using the dual trellis to decode a convolutional code. Then, Section 6.2 describes
the state-of-the-art method for constructing the dual trellis, given a convolutional code
with rate k/(k + 1). The application of the BCJR algorithm and its logarithmic version
to the dual trellis are also presented and it is shown that they could provide a higher
throughput compared to the MLM algorithm. Section 6.3 then provides a method that
we have proposed to derive the dual trellis for a convolutional code with arbitrary rate
k/n. The construction method can be applied to a punctured convolutional code so that
decoding on the dual trellis can be applied. Then, a new sub-optimal low-complexity
decoding algorithm based on the dual trellis is presented and analyzed in Section 6.4. It
is shown that despite a minor loss of about 0.2 dB in performance, the new decoding
algorithm significantly reduces the decoder complexity compared to the state-of-the-art
algorithm. Finally, Section 6.5 concludes the chapter.
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6.1 Introduction

In communication systems requiring high data throughput, channel coding using high
rates is preferred as the number of transmitted redundancy bits is limited. For a (k, n, ν)
convolutional code, high coding rates (r = k/n > 1/2) can be achieved by puncturing or
by using true high-rate convolutional encoders.

With the former approach, the information message is encoded by a low-rate mother
code (e.g. with code rate 1/n). Then, the output from the mother code is punctured
using a puncturing pattern P to shorten the code length and achieve the desired coding
rate. At the receiving side, the decoder first sets the LLR of the punctured bits to 0.
Then, the decoder can use the MLM algorithm, the SOVA, or the local-SOVA on the
trellis of the low-rate mother code to compute the a posteriori LLRs.

The advantage of puncturing is that the decoder structure designed for the original
mother code can be reused for the high-rate punctured codes. Therefore, the complex-
ity for decoding high-rate punctured codes is about the same as for the original code.
Moreover, the code enjoys the flexibility to change the code rate by applying different
puncturing patterns at the encoder, without changing the decoder structure. However,
this also implies that, for high rates, the decoder inherits the throughput and decoding
latency of the mother code. In other words, regardless of the coding rate, the decoder
architecture always employs the trellis of the mother code, and thus, its throughput and
latency are defined by this trellis. Furthermore, as mentioned in Section 3.1.4, the de-
coders designed for high coding rates usually adopt the ACQ initialization technique with
long acquisition lengths to maintain the performance. Hence, the decoding latency is
further increased and the throughput is reduced. In [83], the authors proposed a solution
to mitigate the long acquisition lengths, namely the trellis compression. However, the
solution requires extra hardware resources for the ACQ steps [24]. As a consequence, for
high-rate schemes, other code families such as LDPC codes may provide a better perfor-
mance in terms of decoding complexity, throughput and latency compared to turbo codes
employing puncturing.

As mentioned earlier, another alternative to achieve a high code rate k/n is to use an
true high-rate encoder, characterized by a k × n generator matrix. However, the main
drawback of this method is the complexity of the trellis diagram of the code. Consider a
(k, n, ν) convolutional codes, then for a state s ∈ {0, . . . , 2ν − 1}, there are 2k branches
coming in and out, and there are 2k+ν branches in total for each trellis section. Processing
such a trellis section is equivalent to processing the radix-2k scheme for a code with rate
1/n. Since the complexity of the MLM algorithm increases exponentially with the radix
order, which is equal to k in this case, for high coding rates (e.g. k > 4), decoding
algorithms based on the trellis of the true high-rate encoder are not necessarily attractive.

To overcome the high complexity drawback in the original trellis, decoding a true
high-rate convolutional code can be carried out with the dual trellis of the code. For
a convolutional code C with rate k/n encoded by generator matrix G(D), there exists

an associated dual code C⊥ with rate (n − k)/n generated by matrix H̃(D) such that

GH̃> = 0. In other words, any codeword generated by G(D) should be orthogonal with

all codewords generated by H̃(D). The generator matrix H̃(D) is usually referred to as the
reciprocal parity-check matrix since it is the reciprocal of the parity-check matrix H(D) of

the code C. Then, the reciprocal dual trellis is constructed according to H̃(D), and we will
refer it as the dual trellis for short. In contrast, we will refer to the trellis generated by
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the generator matrix G(D) as the original trellis. A very interesting property of the dual
trellis is that there are 2(n−k+ν) branches in a trellis section. As the code rate increases,
the value of (n− k) decreases, and for a convolutional code with rate k/(k+ 1), there are
2ν+1 branches, which corresponds to the conventional radix-2 scheme.

6.2 The Dual Trellis and the MAP-Based Algorithms

on the Dual Trellis

As in Chapter 2, we begin with a presentation related to the dual trellis and the MAP-
based algorithms performed on the dual trellis. In this section, we only consider the case
of true high-rate convolutional codes with rate k/(k + 1) unless stated otherwise. The
generalization to arbitrary code rates k/n and punctured high-rate codes will be dealt
with in subsequent sections.

6.2.1 The Dual Trellis

As already stated in Section 2.2.1, a (k, n, ν) convolutional code C can be characterized
by a polynomial generator matrix G(D) with rank k, consisting of k×n polynomials
gi,j(D) ∈ F2(D):

G(D) =




g0,0(D) g0,1(D) . . . g0,n−1(D)
g1,0(D) g1,1(D) . . . g1,n−1(D)

...
...

. . .
...

gk−1,0(D) gk−1,1(D) . . . gk−1,n−1(D)


 , (6.1)

where F2(D) is the field of formal Laurent series with binary coefficients. We further
define the constraint length of the ith input of the generator matrix G(D) as

λj = max
0≤j<n

{
deg(gi,j(D))

}
, (6.2)

where deg(gi,j(D)) denotes the degree of the polynomial gi,j(D). Then, we define the
overall constraint length of the generator matrix as the sum of the constraint lengths for
all inputs

λ =
k∑

i=0

λi (6.3)

Let us denote by u = (u0,u1, . . .) and c = (c0, c1, . . .) the input sequence and output
sequence of the encoder, respectively, where ui = (u0

i , u
1
i , . . . , u

k−1
i ) is the ith input vector

consisting of k bits and ci = (c0
i , c

1
i , . . . , c

n−1
i ) is the ith output vector consisting of n bits.

The sequence u and c can be written as

u(D) =
∞∑

i=0

uiD
i ∈ F k(D), (6.4)

and

c(D) =
∞∑

i=0

ciD
i ∈ F n(D), (6.5)
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where Fm(D) is the m-dimensional vector space over F (D). Then, the encoder process
can be written as

c(D) = u(D)G(D). (6.6)

Given a convolutional code C encoded with an encoder characterized by the generator
matrix G(D) of size k × (k + 1), we are seeking to find the parity-check matrix H(D) of

this generator matrix in order to derive the reciprocal parity-check matrix H̃(D). To do
so, we first try to find a systematic version of G(D), denoted by Gsys(D), and then, the
parity check matrix can be directly derived from Gsys(D).

6.2.1.1 Generator matrix equivalence

Two convolutional codes are said to be equivalent if they generate the same codeword space
C. Two convolutional encoders are equivalent if their generator matrices are equivalent,
i. e.represent equivalent convolutional codes.

Theorem 6.1. Two rate k/n convolutional generator matrices G(D) and G′(D) are
equivalent if and only if there exists a k × k non-singular matrix T(D) such that

G(D) = T(D)G′(D). (6.7)

Proof. If (6.7) holds, then for any input u(D) ∈ F k(D), we have

u(D)G(D) = u(D)T(D)G′(D) (6.8)

= u′(D)G′(D), (6.9)

where u′(D) = u(D)T(D). Therefore, G(D) and G′(D) are equivalent.
Conversely, suppose that G(D) and G′(D) are equivalent. Then, there exists an input

ui(D) ∈ F k(D) such that

gi(D) = ui(D)G′(D), i = 0, . . . , k−1 (6.10)

where gi(D) ∈ F n(D) is the ith row of G(D). Then, by denoting

T(D) =




u0(D)
u1(D)

...
uk−1(D)


 , (6.11)

we have

G(D) = T(D)G′(D). (6.12)

Since G(D) and G′(D) are generator matrix, they have rank k. Therefore, T(D) also has
rank k and, hence, is non-singular.

6.2.1.2 Equivalent systematic encoders

Let T(D) be a k×k non-singular sub-matrix of G(D), where G(D) is a non-systematic
generator matrix of rate-k/(k + 1) convolutional code C. Without loss of generality, we
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assume that T(D) consists of the k left-most columns of G(D). Then, the systematic
generator matrix can be obtained as

Gsys(D) = T−1(D)G(D) =
(
Ik z(D)

)
, (6.13)

where Ik is the k×k identity matrix and z(D) is a k×1 column vector, which is the
product of the matrix T−1(D) with the last column of G(D). Since T−1 is also non-
singular, according to the Theorem 6.1, Gsys(D) is equivalent to G(D). Furthermore, the
elements of z(D) may be rational polynomials with the same denominator; hence, the
resulting systematic encoder may become recursive.

Example 6.1. Consider a rate r = 2/3 non-systematic convolutional encoder with gen-
erator matrix

G(D) =

(
1+D2 1 1+D+D2

D 1+D 1

)
. (6.14)

Let T(D) be the matrix consisting of the first two columns of G(D) as

T(D) =

(
1+D2 1
D 1+D

)
. (6.15)

Since T(D) is full rank, the determinant of T(D) is non zero and det(T(D)) = 1+D2+D3.
Therefore, the inverse of T(D) is

T−1(D) =
1

1+D2+D3

(
1+D 1
D 1+D2

)
. (6.16)

By multiplying G(D) with T(D), we obtain the systematic encoding matrix Gsys(D)
equivalent to G(D) as

Gsys(D) =
1

1+D2+D3

(
1+D 1
D 1+D2

)(
1+D2 1 1+D+D2

D 1+D 1

)

=




1 0
D3

1+D2+D3

0 1
1+D+D3

1+D2+D3


 . (6.17)

In this case, the systematic encoder is also recursive.

6.2.1.3 Parity-check matrix and reciprocal parity-check matrix

A (n − k)×n polynomial matrix H(D) is the parity-check matrix corresponding to the
k×n generator matrix G(D) if

G(D)H>(D) = 0, (6.18)

where > is the matrix transpose operator.
In the case of a k×(k+1) systematic generator matrix Gsys(D), we can rewrite it as

Gsys(D) =
(
Ik z(D)

)
=

(
Ik

1

q(D)
p(D),

)
(6.19)
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where p(D) is the column vector consisting of the numerators of z(D), and q(D) is the
common denominator of the elements of z(D). Then, the 1×(k + 1) parity-check matrix
H(D) can be obtained as

H(D) =
(
p>(D) q(D)

)
. (6.20)

We can verify that

Gsys(D)H>(D) =

(
Ik

1

q(D)
p(D)

)(
p(D)
q(D)

)
=
(
Ikp(D) + p(D)

)
= 0. (6.21)

Given a convolutional code C generated by the encoder with the k×n generator matrix
G(D), the dual code C⊥ of C is defined as the set of codewords c⊥ such that

c(c⊥)> = 0, ∀c ∈ C, c⊥ ∈ C⊥. (6.22)

It is important to note that the dual code C⊥ can be generated using the (n−k)×n
generator matrix H̃(D), where H̃(D) is the reciprocal of the parity-check matrix H(D)

[84]. The generator matrix H̃(D) is often referred to as the reciprocal parity-check matrix.

The procedure for obtaining the reciprocal parity-check matrix H̃(D) from the parity-
check matrix H(D) is as follows.

Let λi be the constraint length of the ith row hi(D) of H(D), i = 0, . . . , (n−k). Then,

the ith row of H̃(D), denoted by h̃i(D) is

h̃i(D) = Dλihi(D
−1). (6.23)

Example 6.2. Given the systematic generator matrix obtained from Example 6.1

Gsys(D) =




1 0
D3

1+D2+D3

0 1
1+D+D3

1+D2+D3


 , (6.24)

the parity-check matrix can be derived according to (6.20) as

H(D) =
(
D3 1+D+D3 1+D2+D3

)
. (6.25)

Then, by using (6.23), the reciprocal parity-check matrix is

H̃(D) = D3H(D−1)

=
(
1 1+D2+D3 1+D+D3

)
(6.26)

Fig. 6.1 shows the original trellis constructed from Gsys(D) and the dual trellis con-

structed from H̃(D). We can observe that a section of the original trellis has the form of
radix-4, with 4 branches entering and leaving each state. Meanwhile, a section of the dual
trellis has the form of radix-2, with only half the number of branches. This can be further
generalized to k > 2: the original trellis of a rate k/(k+ 1) code has the form of radix-2k;
hence, its complexity increases exponentially with k. The dual trellis, on the other hand,
always has the form of radix-2 and is much less complex than the original one. Therefore,
for values of k larger than 2, it seems attractive to resort to the dual trellis for decoding
high-rate convolutional codes.
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Figure 6.1: Comparison between a section of the original trellis generated from Gsys(D)

and a section of the dual trellis generated from H̃(D) (Example 6.2).

6.2.1.4 Decoding with the dual trellis

In this section, we take a retrospective look at the decoding process of a convolutional
code and we make the connection with the dual code.

Recalling from Section 2.3.3, a systematic convolutional encoder with rate k/n takes
input u = (u0, . . . , uK−1) and produces codeword c = (c0, . . . , cN−1). Then, we assume
that the codeword is transmitted over an AWGN channel using BPSK modulation. At
the receiver side, the LLR is computed for each bit cj, using the received vector y =
(y0, . . . , yN−1):

LI(cj; yj) = ln
Pr{cj = 1; yj}
Pr{cj = 0; yj}

(6.27)

= ln
Pr{yj|cj = 1}
Pr{yj|cj = 0}

+ ln
Pr{cj = 1}
Pr{cj = 0}

(6.28)

= Lc(yj|cj) + La(cj), (6.29)

where Lc(yj|cj) is the channel LLR, obtained from the demodulator after the zero-mean
AWGN channel with variance σ2, and is calculated according to Eq. (2.4) as

Lc(yj|cj) =
2yk
σ2

. (6.30)

Furthermore, La(ck) is the a priori LLR, which is zero with the assumption that cj ∈ {0, 1}
is equiprobable. However, in the context of conventional turbo decoding, then the a priori
LLR of the systematic bits might be non zero. Therefore, the previous LLR is derived as

LI(cj; yj) =

{
Lc(yj|cj) + La(cj), if cj is an systematic bit

Lc(yj|cj), if cj is a parity bit
(6.31)

The soft output of the decoder is the a posteriori LLR of the jth decoded bit ĉj,
which can be estimated via the original code C by taking into account the codewords
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c ∈ C having cj = 1 and the codewords c ∈ C having cj = 0, respectively. Therefore, for
each decoded systematic bit ĉj, the output LLR is computed as

L(ĉj) = ln

∑

c∈C|cj=1

N−1∏

l=0

exp
(
LI(cl; yl)×cl

)

∑

c∈C|cj=0

N−1∏

l=0

exp
(
LI(cl; yl)×cl

)

= ln

∑

c∈C|cj=1

exp
(
LI(cj; yj)×cj

) N−1∏

l=0,l 6=j

exp
(
LI(cl; yl)×cl

)

∑

c∈C|cj=0

exp
(
LI(cj; yj)×cj

) N−1∏

l=0,l 6=j

exp
(
LI(cl; yl)×cl

)

= LI(cj; yj) + ln

∑

c∈C|cj=1

N−1∏

l=0,l 6=j

exp
(
LI(cl; yl)×cl

)

∑

c∈C|cj=0

N−1∏

l=0,l 6=j

exp
(
LI(cl; yl)×cl

)
, (6.32)

where the second term from (6.32) is the extrinsic LLR provided by the decoder, which
has already been introduced in Chapter 2.

Alternatively, the value of L(ûj) can also be calculated using the dual code C⊥ of C as
[33]

L(ĉj) = LI(cj; yj) + ln

∑

c⊥∈C⊥

(
− 1
)c⊥j

N−1∏

l=0,l 6=j

tanh
(
LI(cl; yl)/2

)c⊥l

∑

c⊥∈C⊥

N−1∏

l=0,l 6=j

tanh
(
LI(cl; yl)/2

)c⊥l
, (6.33)

where c⊥ = (c⊥0 , . . . , c
⊥
N−1) denotes codewords of C⊥. By comparing (6.32) and (6.33),

we can see that both equations perform a sum over all codewords in their respective set.
However, the dimension of C is k, and the dimension of C⊥ is (n−k). Therefore, for high
code rates such that n− k < k, i.e. r > 1/2, C⊥ has less codewords than C.

Furthermore, we have seen in Chapter 2 that (6.32) can be obtained using the BCJR
or the log-MAP algorithm, which operates on the trellis of the original encoding matrix
G(D). Equivalently, (6.33) could also be implemented using the BCJR algorithm or its

logarithmic version on the trellis of the reciprocal parity-check matrix H̃(D), since H̃(D)
generates the codewords of the dual code C⊥. This trellis is referred to as the dual trellis,
and the decoding algorithms operating on the dual trellis are referred to as the dual-MAP
and dual-Log-MAPalgorithms, corresponding to their counterparts on the original trellis.
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6.2.2 The Dual-MAP and Dual-Log-MAP algorithms

6.2.2.1 The dual-MAP algorithm

In the original trellis, the BCJR algorithm consists of the following steps: branch metric
calculation, forward recursion, backward recursion and soft-output calculation. Equiv-
alently, the same steps can be applied into the dual trellis resulting in the dual-MAP
algorithm.

Given the received vector y of length N as the modulated and noisy version of the
codeword c, encoded by a rate k/n convolutional code with input message of length K, the
intrinsic LLRs {LI(cj; yj)}0≤j<N are calculated as in (6.31). According to (6.33), the first
step towards the decoding of the convolutional codes using the dual trellis is to convert
the intrinsic LLRs into bit metrics {dj}0≤j<N as

dj = tanh
(
LI(cj; yj)/2

)
. (6.34)

With the dual trellis, the received frame of length N is decomposed into T = N/n
trellis sections. Then, the bit metrics related to a specific section t, 0 ≤ t < T , are
{dnt+1, . . . , dnt+n}. Let (st, st+1) denote a branch between state st at instant t and st+1

at instant t+1, and let {c⊥nt+1(st, st+1), . . . , c⊥nt+n(st, st+1)} ∈ {0, 1}n be the bit decisions
carried by the branch (st, st+1).

In this section, we reuse the notation of the metrics in the original trellis for the dual
trellis. Therefore, γt(st, st+1) is the metric of branch (st, st+1), βt(st) is the backward
state metric of state st at instant t, and αt+1(st+1) is the forward state metric of state
st+1 at instant t+1. The branch metric calculation related to trellis section t in the dual
trellis yields

γt(st, st+1) =
nt+n∏

j=nt+1

(
dj
)c⊥j (st,st+1)

. (6.35)

Then, the forward and backward state metrics can be recursively calculated as

αt+1(st+1) =
∑

st

αt(st)γt(st, st+1), (6.36)

βt(st) =
∑

st+1

βt+1(st+1)γt(st, st+1). (6.37)

Note that, as in the original trellis, the forward state metric recursion in the dual trellis
also starts at instant t = 0 and moves up to t = N+1. Conversely, the backward recursion
starts at instant t = N+1 and the backward state metrics are then calculated recursively
down to t = 0. However, the initialization of the state metrics is different from the
initialization in the original trellis.

Recall that, in the original trellis, there are two widely employed methods to terminate
the trellis: force-to-zero and tailbiting. With the former termination method, the forward
state metrics at the trellis start and the backward state metrics at the trellis end are
initialized according to an impulse distribution δ(s, 0), where

δ(s, i) =

{
1, if the state s = i,

0, otherwise.
(6.38)
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For the tailbiting convolutional codes in the original trellis, the forward state metrics and
the backward state metrics are initialized according to a uniform distribution with equal
values for all states s.

The state metrics in the original trellis and the dual trellis exhibit a Fourier transform
relation [85]. Therefore, an impulse (resp. uniform) state metric distribution in the
original trellis corresponds to a uniform (resp. impulse) state metric distribution in the
dual trellis. Thus, if force-to-zero is used in the original trellis, the initialization of the
state metrics in the dual trellis is

α0(s) = 1, ∀s, (6.39)

βN+1(s) = 1, ∀s. (6.40)

Conversely, if tailbiting is used in the original trellis, the initialization of the state
metrics in the dual trellis is

α0(s) = δ(s, 0), (6.41)

βN+1(s) = δ(s, 0). (6.42)

For trellis section t, after having computed γt(st, st+1), αt(st), and βt+1(st+1), the a pos-
teriori likelihood ratio for each bit c⊥j of the dual code, denoted by zj, j ∈ {nt+1, . . . , nt+n}
is computed as

zj =
q1
j

q0
j

=

∑

(st,st+1)|c⊥j (st,st+1)=1

αt(st)γt(st, st+1)βt+1(st+1)

∑

(st,st+1)|c⊥j (st,st+1)=0

αt(st)γt(st, st+1)βt+1(st+1)
, (6.43)

where q1
j and q0

j are the summations of all the metrics of codeword c⊥ in C⊥ having
c⊥j = 1 and c⊥j = 0, respectively. By applying q0

j and q1
j into the sums in the numerator

and denominator of (6.33), the a prosteriori LLR of the decoded bit ĉj in the original
trellis is obtained as

L(ĉj) = LI(cj; yj) + ln
q0
j − q1

j/dj

q0
j + q1

j/dj

= LI(cj; yj) + ln
1− zj/dj
1 + zj/dj

= LI(cj; yj) + ln
1− uj
1 + uj

, (6.44)

where uj = zj/dj is the extrinsic information in the dual domain.

Equation (6.44) shows that one can completely derive the soft output related to de-
coded bit cj using the dual trellis. However, similar to the BCJR algorithm, the dual-MAP
algorithm requires a large number of multiplications and divisions and is therefore too
complex, taken as it is, for practical hardware implementations. Consequently, to make
the decoding on the dual trellis feasible, the application of the dual-MAP algorithm in the
logarithmic domain was investigated in [34], which we call the dual-Log-MAP algorithm.
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6.2.2.2 The dual-Log-MAP algorithm with sign-magnitude

The input bit metric of the dual-MAP decoder expressed in (6.34) can take positive or
negative values. Therefore, one can resort to the sign-magnitude (SM) representation as
in [34] to represent it in the logarithmic domain. Using the SM representation, a real
number x is expressed as

x = (−1)Xs exp(Xm) , [Xs;Xm], (6.45)

where Xs ∈ {0, 1} and Xm = log(|x|) are the sign and the magnitude of x, respectively.
Then, the arithmetic operations involved in the decoding algorithm can be expressed as
follows, using the SM representation:

• Sign-magnitude multiplication (SMM):

xy , [Xs ⊕ Ys;Xm + Ym]. (6.46)

• Sign-magnitude division (SMD):

x/y , [Xs ⊕ Ys;Xm − Ym]. (6.47)

• Sign-magnitude addition (SMA):

x+ y ,

{[
Xs;Xm − log

(
1 + (−1)Xs+Ys exp(Ym −Xm)

)]
, if Xm > Ym,[

Ys;Ym − log
(
1 + (−1)Xs+Ys exp(Xm − Ym)

)]
, otherwise.

(6.48)

With this representation, the multiplication and division operators used by the dual-
MAP decoder are replaced by SMM and SMD operators.

Furthermore, from (6.44), the extrinsic information in the original trellis can be ob-
tained as [1]

ln
1− (−1)Uj,s exp(Uj,m)

1 + (−1)Uj,s exp(Uj,m)
=





ln tanh

(∣∣∣∣
Uj,m

2

∣∣∣∣
)
, if Uj,s = 0

− ln tanh

(∣∣∣∣
Uj,m

2

∣∣∣∣
)
, otherwise

, (6.49)

where Uj,s and Uj,m are the sign and the magnitude of the extrinsic information in the
dual domain uj, respectively.

When considering the decoding algorithm in the logarithmic domain, the dual-Log-
MAP (dual-LM) decoder is more hardware friendly than the dual-MAP decoder: The
multiplications and divisions are now replaced by adders and subtractors and the SMA
can be implemented with a compare-select operator and two LUTs, while the extrinsic
information conversion can be implemented with one LUT for the logarithm of hyperbolic
tangent function.

In [1], two hardware implementations of a dual-LM decoder and a conventional radix-
4 MLM decoder are reported and compared in terms of throughput and circuit area,
for turbo codes using rate k/(k+1) component convolutional codes with k = 2, 4, 8, 16.
Figure 6.2 taken from [1], shows the comparison of the implementation results. Note that
the turbo decoder used in [1] is a PMAP architecture with two parallel SISO decoders
using forward-backward scheduling, sliding windows and ACQ initialization.
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Figure 6.2: Implementation comparison between dual-LM and radix-4 MLM decoders [1].

From Figure 6.2, we can see that for a medium code rate such as r = 2/3, both
algorithms yield the same throughput but the circuit area of the dual-MAP decoder is
more than twice compared to the radix-4 MLM decoder. However, for higher code rates
such as r = 4/5 or r = 8/9, the throughput of the MLM decoder remains unchanged while
the circuit area increases with the code rate. This is due to the need of longer decoding
windows and/or long acquisition sequences for state metric initialization to avoid any
correction performance loss. On the contrary, the throughput of the dual-LM decoder
is doubled from r = 2/3 to r = 4/5 and from r = 4/5 to r = 8/9, while its circuit
area only increases from 140 kgates at r = 2/3 to 180 kgates at r = 8/9. This can be
explained by the fact that, for a code rate k/(k+1), the dual-LM decoder is able to process
simultaneously k bits while the conventional radix-4 MLM decoder can only process 2 bits
at each trellis stage. These are the main advantages of decoding using the dual trellis
instead of the original trellis for high-rate convolutional codes.

6.3 Constructing the Dual Trellis for Punctured Con-

volutional Codes

In the previous section, we explained that the dual-LM algorithm employed on the dual
trellis had a better area efficiency than the MLM in the original trellis, when considering
true high-rate convolutional codes with rate k/(k+1), for k > 4. With that motivation,
this section proposes a fully generic procedure to construct the dual trellis for high-rate
punctured convolutional codes, so that they can also be decoded using the dual-LM algo-
rithm. This method is based on transformations proposed by Forney in [86].

The generic procedure is presented in Figure 6.3. The main idea of the procedure is
that, given a mother code (e.g. r = 1/2) and a puncturing pattern to achieve code rate
k/n, we first find the non-systematic generator matrix Gns(D) of size k×n equivalent to
the original punctured convolutional code of rate k/n. Then, parity-check matrix H(D)
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and its reciprocal H̃(D) can be derived and the dual trellis is constructed directly from

matrix H̃(D). The dual-LM algorithm then decodes the received codeword based on the
dual trellis yielding the soft estimate on the punctured codeword.

Low rate CC
(e.g. r = 1/2)

G(D)

Puncturing
pattern

P

Equivalent
non-systematic
generator matrix

Gns(D)

Invariant factor
decomposition

Gns(D) = A(D)Γ(D)B(D)

Basic parity-check
matrix H(D)

Minimum basic
parity-check

matrix Hmb(D)

Reciprocal
parity-check matrix

H̃(D)
Dual trellis

Figure 6.3: Procedure for obtaining the reciprocal dual trellis of a high-rate punctured
convolutional code.

6.3.1 Equivalent Non-Systematic Generator Matrix of Punc-
tured Convolutional Codes

The first step towards the reciprocal dual trellis involves converting the punctured con-
volutional code into a non-systematic encoding form, as described in [87]. This transfor-
mation has previously been used to assess the performance of convolutional codes, since
all equivalent forms share the same Hamming weight spectrum.

In order to get a punctured convolutional code k/n, we start from the following general
form of an generator matrix of a mother code with rate 1/m as

G(D) =
(
g0(D) g1(D) . . . gm−1(D)

)
(6.50)

where gi(D), i = 0, . . . ,m − 1 are the polynomials of the generator matrix. This convo-
lutional code can also be viewed as a rate-k/(km) code, for any value of k. Therefore,
we can derive a k × (km) generator matrix G′(D) that is equivalent to the generator
matrix of the mother code. This k × (km) matrix can be defined by km polynomials
obtained by splitting each polynomial gi(D), i = 0, . . . ,m − 1 into k sub-polynomials
fi,j(D), j = 0, . . . , k − 1 as follows

gi(D) =
k−1∑

j=0

Djfi,j(D
k). (6.51)

The element of the resulting k × (km) generator matrix G′(D) at row p and column q,
g′p,q(D), is defined as:

{
g′p,q(D) = fqmodn,bq/mc−p(D), if p×m ≤ q

g′p,q(D) = D×fqmodn,bq/mc−p+k(D), if p×m > q
(6.52)

where mod is the modulo operation. The generator matrix of the rate-k/n code is then
obtained by selecting n out of (km) columns in G′(D) according to a selected puncturing
pattern.
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Example 6.3. Given the generator matrix of a rate 1/2 mother code as G(D) = (g0(D), g1(D)),
the procedure to obtain an equivalent 3×6 generator matrix is as follows. With m = 2
and k = 3, two polynomials g0(D) and g1(D) can be each decomposed into three sub-
polynomials: {f0,j(D)}j=0,1,2 and {f1,j(D)}j=0,1,2, respectively. The generator matrix
G′(D) of the equivalent rate-3/6 code is

G′(D) =




f0,0(D) f1,0(D) f0,1(D) f1,1(D) f0,2(D) f1,2(D)
D×f0,2(D) D×f1,2(D) f0,0(D) f1,0(D) f0,1(D) f1,1(D)
D×f0,1(D) D×g1,1(D) D×f0,2(D) D×f1,2(D) f0,0(D) f1,0(D)


 .

(6.53)
The non-systematic punctured generator matrix Gns(D) of the rate-k/n code is then
obtained by selecting n columns out of kN in G′(D), according to a selected puncturing
pattern. For instance, if columns 1, 2, 3 and 5 in G′(D) are selected, the following matrix
generates a rate-3/4 code

Gns(D) =




f0,0(D) f1,0(D) f0,1(D) f0,2(D)
D×f0,2(D) D×f1,2(D) f0,0(D) f0,1(D)
D×f0,1(D) D×f1,1(D) D×f0,2(D) f0,0(D)


 . (6.54)

6.3.2 Reciprocal Parity-Check Matrix of Punctured Convolu-
tional Codes

6.3.2.1 Invariant-factor decomposition of the generator matrix

Let us start with the definition of a basic encoding matrix. An encoding matrix G(D) is
called basic if it has a right inverse G−1(D). The right inverse existence of an encoding
matrix ensures that the encoder is a bijective function. Therefore, given any two different
inputs, the basic encoder always yields two different codewords.

Based on the invariant-factor theorem, as in [86], or on the Smith form, as in [88],
the invariant-factor decomposition of the generator matrix G(D) of a convolutional code
with rate k/n gives

G(D) = A(D)Γ(D)B(D), (6.55)

where A(D) is a k × k polynomial matrix with unit determinant; B(D) is a n× n poly-
nomial matrix with unit determinant, thus having an polynomial matrix inverse B−1(D);
and Γ(D) is a k × n diagonal matrix, whose elements are called the invariant factors
of G(D) and are unique. In fact, matrix Γ(D) is obtained by permuting and linearly
combining the rows and the columns of matrix G(D). Since the permutation or linear
combination of rows (or columns) can be represented by the pre- (or post-) multiplica-
tion of a square matrix with unit determinant by G(D), A(D) is the result of all row
operations and matrix B(D) is the result of all column operations.

As pointed out in [86], matrix U(D) consisting of the first k rows of B(D) is a basic
encoding matrix equivalent to G(D). Since the polynomial matrix B(D) has a polynomial
inverse B−1(D), the matrix consisting of the last (n − k) columns of B−1(D) is the
transpose of the parity-check matrix, i.e., H>(D). This can be explained by the fact
that B(D)B−1(D) = In where In is the n × n identity matrix. Then, the inner product
between row i ∈ {0, . . . , k − 1} of B(D) and column j ∈ {n− k, . . . , n− 1} of B−1(D) is
the element at row i and column j of the identity matrix In. Since (In)i,j = 0 for j > i,
U(D)H>(D) = 0 and consequently, G(D)H>(D) = 0. Note that matrix H(D) is basic
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since it has a right inverse which is the transpose of the matrix consisting of the last
(n− k) rows of B(D).

6.3.2.2 Minimal basic parity-check matrix

According to Theorem 7 in [86], if G(D) is a basic encoder with overall constraint length
λ, then there exists an associated basic parity-check matrix H(D) with overall constraint
length λ. Recall from (6.3) that the overall constraint length of a polynomial matrix is
the sum of the constraint lengths for all rows.

However, we observed that, in the previous decomposition, the parity-check matrix
H(D) consisting of the last (n− k) columns of B−1(D) usually has an overall constraint
length greater than λ, the overall constraint length of G(D). Therefore, we need to find
the minimal basic parity-check matrix Hmb(D) with overall constraint length λ that is
equivalent to H(D). To this end, the authors in [88] proposed an algorithm for finding
the minimal basic form of an encoding matrix, called Algorithm MB. The main idea of
this algorithm is to lower gradually the constraint length of the parity-check matrix by
linearly combining multiple rows. Then, after a number of steps, its overall constraint
length becomes equal to λ. Since the operation of linearly combining matrix rows can be
represented by the pre-multiplication of a unit determinant matrix by H(D), the resulting
minimal basic parity-check matrix Hmb(D) is equivalent to H(D).

Assuming that G(D) is a k × n encoding matrix, let [G(D)]h be a (0,1)-matrix with
1 in the position (i, j) if deg

(
gi,j(D)

)
= λi and 0 otherwise. The algorithm MB proceeds

as follows:

• Step 1: If [G(D)]h has full rank, then G(D) is a minimal basic encoding matrix
and the algorithm stops; otherwise go to Step 2.

• Step 2: [G(D)]h does not have full rank, meaning that there are at least two linearly
dependent rows in [G(D)]h. Without loss of generality, we let [ri1 ], [ri2 ], . . . , [rid ]
denote the set of linearly dependent rows in [G(D)]h such that λid ≥ λij , j =
0, . . . , d − 1. Then, if we let ri1 , ri2 , . . . , rid be the corresponding set of rows in
G(D), we can lower the constraint lengths by adding

Dλid−λi1ri1 +Dλid−λi2ri2 + . . .+Dλid−λid−1rid−1

to the id-th row of G(D). Return to Step 1.

6.3.2.3 Reciprocal parity-check matrix

After having derived the minimal basic parity-check matrix Hmb(D), the reciprocal parity

check matrix H̃(D) can be directly obtained by

H̃i(D) = DλiHmbi(D
−1), 0 ≤ i < n− k (6.56)

where H̃i(D) and Hmbi(D) are respectively the ith row of H̃(D) and Hmb(D).

Matrix H̃(D) is the encoder generating the dual codeword ṽ that is orthogonal to any
codeword v generated by the original high-rate punctured convolutional encoder. The
dual-MAP algorithm can be run using the dual trellis generated by H̃(D) to yield the
soft estimates related to codeword v.

To summarize, the procedure to obtain the dual trellis starting from the original high-
rate punctured convolutional code can be described as follows:
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• Find the equivalent high-rate non-systematic generator matrix Gns(D);

• Perform the invariant-factor decomposition

Gns(D) = A(D)Γ(D)B(D);

• Find the inverse matrix B−1(D), then the parity-check matrix H(D) is the transpose
of the matrix consisting of the last (n− k) columns of B−1(D);

• Apply Algorithm MB to derive the equivalent minimal basic parity-check matrix
Hmb(D) from H(D);

• Deduce the reciprocal parity-check matrix H̃(D) according to (6.56) and construct

the dual trellis based on H̃(D).

6.3.3 Example and Numerical Results

6.3.3.1 An example of dual trellis construction

In this section, we provide an example of derivation of the dual trellis from a high-rate
punctured convolutional code. The considered convolutional code is the constituent RSC
code of the LTE turbo code [39], punctured to achieve rate 5/7

GLTE(D) =
(

1 1+D+D3

1+D2+D3

)
; P =

(
1 1 1 1 1
1 0 0 1 0

)
,

thus yielding a rate-5/9 turbo code. In order to derive the dual trellis of the convolution
code, we first convert the recursive systematic generator matrix into a non-recursive form

G(D) = (1 +D2 +D3)
(

1 1+D+D3

1+D2+D3

)

=
(
1 +D2 +D3 1 +D +D3

)

and according to (6.7), GLTE(D) and G(D) are equivalent.

6.3.3.2 Equivalent non-systematic generator matrix

First, we find the equivalent non-punctured rate-5/10 generator matrix. According to
(6.51), we decompose G0(D) = 1 + D2 + D3 and G1(D) = 1 + D + D3 into 5 sub-
polynomials each

g0,0(D) = 1, g0,1(D) = 0, g0,2(D) = 1, g0,3(D) = 1, g0,4(D) = 0,
g1,0(D) = 1, g1,1(D) = 1, g1,2(D) = 0, g1,3(D) = 1, g1,4(D) = 0.

Then, the non-punctured rate-5/10 generator matrix G′(D) is




1 1 0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0 1 1
D D 0 0 1 1 0 1 1 0
D 0 D D 0 0 1 1 0 1
0 D D 0 D D 0 0 1 1
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The length of puncturing pattern P is 5. When applying it periodically to G(D), every
second, third and fifth parity bits are punctured. Since these parity bits are equivalently
generated by the even columns of G′(D), applying pattern P to G′(D) amounts to re-
moving columns 4, 6 and 10 from G′(D). The resulting non-systematic rate-5/7 generator
matrix Gns(D) is then:

Gns(D) =




1 1 0 1 1 1 0
0 0 1 0 1 0 1
D D 0 1 0 1 1
D 0 D 0 1 1 0
0 D D D 0 0 1




6.3.3.3 Reciprocal parity-check matrix

For the sake of simplicity, we do not show all the details of the invariant-factor decom-
position here. Readers may refer to Example 2.4 in [88] for a detailed example. The
invariant-factor decomposition of Gns(D) results in A(D)Γ(D)B(D) as




1 0 0 0 0
0 1 0 0 0
D 0 1 0 0
D D D 1 0
0 D 1+D 0 1




︸ ︷︷ ︸
A(D)




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0




︸ ︷︷ ︸
Γ(D)




1 1 0 1 1 1 0
0 0 1 0 1 0 1
0 0 0 1+D D 1+D 1
0 D 0 D2 1+D2 1+D2 0
0 D 0 1+D+D2 D2 1+D2 0
0 1 0 0 D D 0
0 0 0 1 0 0 0




︸ ︷︷ ︸
B(D)

Then, the inverse matrix B−1(D) is derived from B(D) by Gaussian elimination

B−1(D) =




1 0 0 1+D 0 1+D+D2 1+D2+D3

0 0 0 D 0 1+D2 D3

0 1 1 1+D 0 D+D2 1+D+D2+D3

0 0 0 0 0 0 1
0 0 0 1 1 0 1+D
0 0 0 0 1 D 1+D+D2

0 0 1 D 1 D+D2 D2+D3




(6.57)

The code rate of the dual code is 2/7. Therefore, the parity-check matrix H(D) is obtained
from the last 2 columns of B−1(D) as

H(D) =

(
1+D+D2 1+D2 D+D2 0 0 D D+D2

1+D2+D3 D3 1+D+D2+D3 1 1+D 1+D+D2 D2+D3

)
(6.58)

We can observe that the overall constraint length of H(D) in (6.58) is 5 while the
overall constraint length of Gns(D) in (6.3.3.2) is only 3. Therefore, one should apply
algorithm MB to matrix H(D). We first derive the following matrix

[H(D)]h =

(
1 1 1 0 0 0 1
1 1 1 0 0 0 1

)
. (6.59)
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Table 6.1: Parity puncturing pattern for K = 400

Turbo rate Parity puncturing pattern

8/11 1100000000000010

4/5 0100000000000010

8/9 0100000000000000

Table 6.2: ARP interleaver parameters for K = 400

Q P
(
S(0), . . . , S(Q− 1)

)

16 383
(8, 80, 311, 394, 58, 55, 250, 298,

56, 197, 280, 40, 229, 40, 136, 192)

Row 1 and row 2 of [H(D)]h are linearly dependent. Therefore, applying Step 2 of
algorithm MB, row 2 is changed according to

[Row 2]⇐= [Row 2] +D × [Row 1]

resulting in the minimal basic parity-check matrix whose overall constraint length is 3

Hmb(D) =

(
1+D+D2 1+D2 D+D2 0 0 D D+D2

1+D D 1+D 1 1+D 1+D 0

)
(6.60)

Finally, applying (6.56) yields the reciprocal parity-check matrix H̃(D) as

H̃(D) =

(
1+D+D2 1+D2 1+D 0 0 D 1+D

1+D 1 1+D D 1+D 1+D 0

)
(6.61)

6.3.4 Simulation Results and Discussion

We present simulation results that compare the error performance of turbo codes imple-
menting the conventional BCJR algorithm and the dual-LM algorithm based on the dual
trellis, for three high coding rates using puncturing. The mother code is the rate-1/2
constituent RSC code of the LTE turbo code. Data are transmitted in AWGN channel,
using BPSK modulation. The information frame length is K = 400 bits. The systematic
bits are not punctured. The puncturing patterns of the parity bits (Table 6.1) and the
internal ARP interleaver have been jointly optimized according to the method described
in [62]. The interleaver is defined by

π(i) =
(
Pi+ S

(
i mod Q

))
mod K. (6.62)

and the corresponding parameters are given in Table 6.2.
The simulations were carried out with floating point representation of data and the

number of iterations is set to 8. Fig. 6.4 shows that both decoding approaches yield
similar error correction performance for the turbo code. From simulation results, we
can assure that for any given high-rate convolutional code, obtained by true-high-rate
encoding matrix or puncturing, the corresponding dual-trellis can always be founded
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Figure 6.4: Performance comparison between MAP and dual-MAP algorithms for various
high-rate schemes for K = 400. AWGN channel and BPSK modulation.

and the dual-LM algorithm produces the same performance as the BCJR (or log-MAP)
algorithm.

Furthermore, the decoder throughput can be enhanced using the dual-LM algorithm,
as explained in Section 6.2.2.2 at the expense of a higher hardware complexity. It turns
out that this hardware complexity can be reduced by allowing some degradation in the
error performance of the decoder. The motivation for such a solution is the same that
led to the sub-optimal MLM algorithm with the original trellis. In the next section, we
derive a sub-optimal but less complex version of the dual-LM algorithm, also using the
dual trellis.

6.4 The Dual-Max-Log-MAP Algorithm

For convolutional codes with high coding rates k/n, since the dual trellis is shorter than
the original one, the decoding throughput of the dual-LM decoder increases with the
coding rate, while the decoding throughput of the MLM decoder remains unchanged.
The price to pay for a higher throughput is a larger circuit area of the dual-LM decoder
for all considered coding rates, since the dual-LM algorithm has to process a large number
of systematic and extrinsic information values in parallel. This area increase is currently
regarded as the main obstacle to the extensive implementation of the dual-LM algorithm.

In this section, a new decoding algorithm based on the dual trellis is proposed, called
dual-Max-Log-MAP (dual-MLM). Compared to the dual-LM algorithm, it exhibits a lower
complexity while keeping the high-throughput property. More specifically, the number of
LUTs required in the SOU is significantly reduced, compared to the dual-LM algorithm.
This reduction results in a decrease of the decoder circuit area at the cost of a minor
penalty in performance.
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6.4.1 Drawbacks of the Dual-Log-MAP Algorithm

Recalling from Section (6.2.2), if the SM representation of real numbers is adopted:

x = (−1)Xs exp(Xm) , [Xs;Xm], (6.63)

the different processing steps of the dual-LM algorithm are the branch metric calculation
(6.35), the forward metric recursion (6.36), the backward metric recursion (6.37), and soft
output calculation (6.43).

Therefore, multiplications and divisions between two real numbers can be carried out
by adding and subtracting their corresponding SM representations, respectively. However,
in order to implement the addition of two real numbers, the SMA is performed as

x+ y ,

{[
Xs;Xm − log

(
1 + (−1)Xs+Ys exp(Ym −Xm)

)]
, if Xm > Ym,[

Ys;Ym − log
(
1 + (−1)Xs+Ys exp(Xm − Ym)

)]
, otherwise.

(6.64)

This implementation requires the use of LUTs to perform the two following functions:

f(∆) = log
(
1 + exp(−∆)

)
, (6.65)

g(∆) = log
(
1− exp(−∆)

)
, (6.66)

where ∆ is a positive real number. Functions f(∆) and g(∆) are shown in Fig. 6.5
and the hardware architecture of the SMA is shown in Fig. 6.6. In the original trellis,
only function f(∆) is employed and it can be replaced in practice by a scaling factor in
the MLM decoder [71]. Differently, the bit metrics in the dual-MAP algorithm can be
negative, thus requiring the use of function g(∆). Function g(∆) is not bounded when ∆
goes to zero, therefore, it can not be discarded or approximated as in the case of function
f(∆) in the MLM or LM decoder.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Δ

−3

−2

−1

0

fΔΔ)
gΔΔ)

Figure 6.5: The function f(∆) converges to
√

2 when ∆ goes to zero, while the function
g(∆) does not converge and is −∞ as ∆ = 0.

The required use of two LUTs to implement an SMA operator has a penalizing impact
on the dual-LM decoder implementation. In order to achieve the highest possible through-
put, the SOU in charge of computing the a posteriori likelihood ratios, has to perform
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Figure 6.6: Hardware architecture of an SMA operator performing z = x+ y.

simultaneously the computation of (6.43) for every information bit in a section of the
dual trellis. The corresponding architecture is shown in Fig. 6.7 for a radix-2 dual trellis
with 4 states. Furthermore, the number of required SMA operators employed increases
with the number of states and with the rate of the original convolutional code: if the code
has 2ν states and rate r = k/n, the number of SMA operators required for the SOU of
the dual-LM decoder is 2k × (2ν − 1). Since each SMA operator requires two LUTs, the
SOU consists of a total of 4k × (2ν − 1) LUTs. Consequently, the implementation of the
dual-LM decoder is only of interest for very high coding rates: it was reported in [1] that,
for a rate-8/9 turbo code, the SOUs occupy more than 30 % the circuit area of the turbo
decoder.

SMA SMA

SMA

SMA SMA

SMA

SMD
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��
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Figure 6.7: Hardware architecture for the calculation of (6.43) for bit at position j.

6.4.2 Max-Log Approximation for the Extrinsic Information Cal-
culation

The complexity of the dual-LM decoder can be lowered by limiting the use of LUTs
to compute (6.65) and (6.66). These LUTs are mainly used to derive the soft outputs
according to (6.43) in the SOUs. Therefore, we consider approximating the calculation
in the logarithmic domain of q0

j and q1
j for each bit at position j in the trellis section t,
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where

q0
j =

∑

(st,st+1)|c⊥j (st,st+1)=1

αt(st)γt(st, st+1)βt+1(st+1), (6.67)

q1
j =

∑

(st,st+1)|c⊥j (st,st+1)=0

αt(st)γt(st, st+1)βt+1(st+1) (6.68)

For the calculation of q0
j , if the trellis section has N branches having bit decision equal

to zero at position j, we denote by Sj = {1, . . . ,N} the index set of those branches and
by ws the metric of branch s ∈ Sj corresponding to state transition (st, st+1):

ws = αt(st)γt(st, st+1)βt+1(st+1). (6.69)

Then, (6.67) can be rewritten as:

q0
j =

∑

s∈Sj

ws. (6.70)

The value of ws can be negative or positive and the corresponding sign is not known
a priori. Therefore, with the SM representation, one cannot apply the max-log approxi-
mation for a set of positive numbers

log
( N∑

i=1

exi
)
≈ max

i=1,...,N
{xi},

to the summation in (6.70). However, if we denote by S+
j and S−j the index sets of branches

having positive metrics and negative metrics, respectively, (6.70) can be expressed as

q0
j =

( ∑

r∈S+j

wr

)
+
( ∑

p∈S−j

wp

)
. (6.71)

Since the elements in the two summations terms in (6.71) have the same sign value, these
summations can be expressed in SM representation as

∑

r∈S+j

wr =
[
0; log

( ∑

r∈S+j

eWr,m
)]
, (6.72)

∑

p∈S−j

wp =
[
1; log

( ∑

r∈S−j

eWp,m
)]
. (6.73)

where Wr,m and Wp,m are the magnitudes of wr and wp, respectively. Then, based on the
max-log approximation, (6.72) and (6.73) can be approximated in the SM domain as

∑

r∈S+j

wr ≈
[
0; max

r∈S+j
(Wr,m) (6.74)

∑

p∈S−j

wp ≈
[
1; max

p∈S−j
(Wp,m)

]
(6.75)
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Finally, by substituting (6.74) and (6.75) into (6.71), the SM representation of q0
j after

the SMA operation can be written as

Q0
j,s = Wlj ,s, (6.76)

Q0
j,m ≈ Wlj ,m − log(1− e−∆j), (6.77)

where lj = arg mini∈Sj{Wi,m} and ∆j = |maxr∈S+j {Wr,m} − maxp∈S−j {Wp,m}|. We can

observe that the calculation of (6.77) involves only one LUT for function g(∆j), regardless
of the number of considered branches. Consequently, through branch rearrangement, we
can significantly reduce the number of LUTs employed by the dual MAP decoder.

However, another problem arises when implementing (6.77). Intuitively, (6.77) can be
computed by finding the minimum metric in S+

j and the minimum metric in S−j . Then,
∆j and Wlj ,s are the results of a subtraction and a sign detection, respectively. However,
the number of branches in S+

j and S−j is not constant. It depends on the considered
dual trellis section and varies with each received frame. Therefore, a predefined hardware
implementation for finding the minimum values in these two sets is not feasible in practice.
This problem can be solved by resorting to the local-SOVA (see Section 4.3), to compute
Wlj ,s, Wlj ,m and ∆j in (6.77).

6.4.3 Extrinsic Information Calculation using the Local-SOVA

The algorithm presented in this section is a variant of the original local-SOVA shown in
Chapter 4. The local-SOVA performs operations on 3-tuple entities, called paths. A path
P consists of a metric value denoted by M , a sign value S, and a reliability value related
to S, denoted by R:

P = {M,S,R} ∈ R× {0, 1} × R+, (6.78)

where R is the set of real numbers and R+ is the set of positive real numbers.
Given a set of N paths, each has a sign value which is positive (S = 0) or negative

(S = 1). Also, each path has a pre-computed path metric M and its initial reliability value
R is set to +∞ or to the largest possible value achievable with quantization. Then, the
local-SOVA processes as shown in Algorithm 3. The outcome of the algorithm is the path
with the minimum metric value among all paths. The corresponding sign and metric are
provided as well as the associated reliability value, which is the minimum metric among
the set of competing paths having a different sign value.

When using Algorithm 3 to calculate (6.76) and (6.77), the number of paths N to be
considered is the cardinality of set Sj. The metric of path p ∈ Sj is wp, which is written
as [Wp,s,Wp,m] using the SM representation. The N paths are initialized as

Pp = {Mp, Sp, Rp} = {Wp,m,Wp,s,+∞}, p = 1 · · · N . (6.79)

After having processed the local-SOVA according to Algorithm 3, the output path is
{M1, S1, R1}. If lj = arg maxp∈Sj{Wp,m}, and if we assume that lj ∈ S+

j , then we have:

M1 = Wlj ,m = max
r∈S+j
{Wr,m}, (6.80)

S1 = Wlj ,s, (6.81)

R1 = max
p∈S−j
{Wp,m}. (6.82)
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Algorithm 3 The local-SOVA for extrinsic information approximation

1: Initialization: N paths {P1, . . . , PN};
2: Pi = {Mi, Si, Ri}, for i = 1, . . . ,N ;
3: L = log2(N ) as the number of layers;
4: for each layer l = 1, . . . ,L do
5: for each path p = 1, . . . , 2(L−l) do
6: a = arg maxj∈{2p−1,2p}{Mj};
7: b = arg minj∈{2p−1,2p}{Mj};
8: if Sa = Sb then
9: Rp = min(Ra, Rb);

10: else
11: Rp = min(Ra,Mb);
12: end if
13: Mp = Ma; Sp = Sa;
14: end for
15: end for
16: Output:
17: M1: maximum metric among all paths,
18: S1: sign value of the path with maximum metric,
19: R1: maximum metric among paths having sign value different from S1.

If lj ∈ S−j , S+
j and S−j have to be swapped in (6.80) and (6.82). The value of ∆j in (6.77)

is then
∆j = |max

r∈S+j
{Wr,m} −max

p∈S−j
{Wp,m}| = |M1 −R1|. (6.83)

To summarize, the computation of q0
j using the local-SOVA results in:

Q0
j,s = S1 (6.84)

Q0
j,m = M1 − log

(
1− e−|M1−R1|

)
(6.85)

In addition, the practical implementation of the local-SOVA can be carried out in a
dichotomous fashion using elementary merge operations. In Algorithm 3, two paths P2p−1

and P2p at layer l− 1 are merged into a resulting path Pp at layer l. The overall extrinsic
information calculation can therefore be implemented as a tree structure composed of
elementary merge operators. For example, the overall structure using the local-SOVA
to calculate (6.76) and (6.77) with N = 4 paths is described in Fig. 6.8 in the form of
a binary tree with L = log2(N ) = 2 layers. A possible architecture for the elementary
merge operator is described in Fig. 6.9.

6.4.4 The Dual-Max-Log-MAP Algorithm

Based on the above analysis, we propose the new low-complexity dual-MLM algorithm
to decode high coding rates convolutional codes using their dual trellis. The decoding
procedure is described as follows. Note that we skip the branch metric calculation since
it is not different from the dual-LM algorithm.

As expressed in (6.36) and (6.37), the metric recursion involves summations of real
values. The number of required additions depends on the dual trellis structure. If a
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Figure 6.8: Proposed hardware architecture of a local-SOVA decoder used to compute
(6.76) and (6.77) for N = 4.
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Figure 6.9: Hardware architecture of a merge operator that selects the minimum metric
with its corresponding sign and updates the reliability value.

radix-2T dual trellis (2T state transitions enter and leave each state) is considered, the
decoder needs (2T − 1) adders for each backward or forward metric recursion. With the
SM representation, two LUTs are required for each SMA operator. Hence, a total number
of 2×(2T −1) LUTs are necessary for a straightforward implementation of each recursion.

However, thanks to the proposed SMA approximation and using the the local-SOVA
for its implementation, the number of LUTs needed to implement each recursion using
the SM representation is reduced to one.

The extrinsic information calculation for each bit in a dual trellis section is given by
(6.43). It involves the calculation of q0

j and q1
j for each position j as expressed in (6.67) and

(6.68), respectively. The corresponding calculation has already been dealt with the max-
log approximation and the local-SOVA implementation solution. Then, the a posteriori
information zj can be easily derived using an SMD operator.

As a final step, the conversion of the extrinsic information from the dual trellis domain
to the original trellis domain (6.49) is necessary. However, due to the above-mentioned
approximations, the resulting extrinsic information values in the dual trellis domain are
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found to be over-estimated, which in turn produce under-estimated values in the original
trellis domain. Therefore, we employed two scaling factors, denoted by φ1 and φ2, to
mitigate this over-estimation problem. Notice that the idea of using scaling factors is
commonly used with sub-optimal SISO decoding algorithms such as the MLM [71] or
SOVA [89] algorithms.

The expression used for the conversion of the extrinsic information into the original
trellis domain is therefore:

Le(ĉj) =




φ1 log

(∣∣ tanh(φ2
Uj,m

2
)
∣∣
)
, if Uj,s = 1,

−φ1 log
(∣∣ tanh(φ2

Uj,m

2
)
∣∣
)
, otherwise.

(6.86)

In practice, the optimal values for the scaling factors were found empirically. We per-
formed a computer search in an effort to find the values of φ1 and φ2 providing the best
error correcting performance.

6.4.5 Complexity Analysis and Simulation Results

In order to illustrate the benefits of the proposed dual-MLM algorithm, we first perform an
analysis of the complexity savings due to the simplifications and then present simulations
results to assess its error correction performance.

First, a simplified complexity comparison, in terms of number of adders and LUTs
required by the decoder, is carried out between the dual-LM and the proposed dual-MLM
algorithms, for an 8-state (3 memory elements) convolutional code with various coding
rates k/(k+1). In this comparison, we exclude the calculation of the branch metrics since
it is the same for both algorithms. As shown in Table 6.3, despite a minor increase in the
number of adders, the dual-MLM algorithm uses significantly less LUTs than the dual-ML
algorithm. More specifically, due to the max-log approximation, the use of function f(∆)
is no longer needed in (6.65) and the use of function g(∆) is also limited, thanks to the
local-SOVA. As the coding rate increases, the percentage of LUTs saved in the dual-MLM
decoder also increases. For instance, with coding rate 4/5, the total number of LUTs used
in the dual-LM decoder is 144, compared to 24 LUTs in the dual-MLM decoder. When
raising the coding rate up to 8/9, dual-MLM decoding requires only 32 LUTs compared
to 256 for dual-LM decoding.

Next, we conducted several numerical simulations to assess and compare the perfor-
mance of the dual-LM and the dual-MLM algorithms. For validation purposes, we also
included the performance of the MLM decoder on the original trellis as a reference.

In the simulations, information frames are encoded by the turbo code consisting of
two identical LTE constituent RSC codes [39] with generator matrix

GLTE(D) =
(

1 1+D+D3

1+D2+D3

)
. (6.87)

For the internal interleaver, we chose the ARP interleaver defined by

π(i) =
(
Pi+ S

(
i mod Q

))
mod K, i = 1, . . . , K. (6.88)

The parameters of the ARP interleaver are given in Table 6.4. Furthermore, puncturing
was employed to achieve different high coding rates, and the puncturing patterns of the
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Table 6.3: Complexity comparison between the dual-LM and the dual-MLM decoders for
various coding rates

Coding

rate

dual-Log-MAP dual-Max-Log-MAP

Adders
LUTs

Adders
LUTs

f(∆) g(∆) f(∆) g(∆)

4/5 168 72 72 184 0 24

8/9 288 128 128 320 0 32

16/17 528 240 240 592 0 48

Table 6.4: ARP interleaver parameters

Q P
(
S(0), . . . , S(Q− 1)

)

16 383
(8, 80, 311, 394, 58, 55, 250, 298,

56, 197, 280, 40, 229, 40, 136, 192)

Table 6.5: Parity puncturing patterns for various coding rates

Turbo rate CC rate Parity puncturing pattern

2/3 4/5 1000

4/5 8/9 01000000

8/9 16/17 0100000000000000
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parity bits were jointly optimized with the ARP interleaver as described in [62]. Table
6.5 shows the puncturing patterns used in the simulations for the coding rates 4/5, 8/9
and 16/17 of the constituent convolutional code.

The encoded frames are modulated using a BPSK modulation and are sent through
an AWGN channel. All three decoding algorithms were carried out with a fixed-point
representation of data, the channel values being quantized on 6 bits. The number of
iterations is set to 8 for all decoders. For the dual-MLM decoder, the values of the scaling
factors (φ1, φ2) are (1.3, 0.75) for r = 2/3, and (1.15, 0.75) for r = 4/5 and r = 8/9.
The simulation results are shown in Fig. 6.10 and Fig. 6.11 for information frame sizes
K = 400 bits and K = 992 bits, respectively. We can see that the dual-LM and the MLM
algorithms yield similar error rate, as expected. However, the dual-MLM algorithm entails
a loss of about 0.2 − 0.3 dB compared to the dual-LM algorithm at coding rate r = 2/3
but this loss reduces to 0.1 − 0.2 dB at coding rates r = 4/5 and r = 8/9. Therefore,
the dual-MLM algorithm can be regarded as a sub-optimal but low-complexity decoding
algorithm compared to the dual-LM algorithm.
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Figure 6.10: Performance comparison between the MLM, the dual-LM and the dual-MLM
algorithms with K = 400 bits.

6.5 Conclusion

In this chapter, we have shown that a high code rate (r > 1/2) convolutional code can
be decoded using the dual trellis, i. e. the trellis of the corresponding dual code. A high-
rate convolutional code can be acquired by two means: using a true high-rate encoding
matrix or puncturing. For both cases, we have shown a generic procedure to construct
the dual trellis for a given high code rate convolutional code. Then, the BCJR algorithm
and its logarithmic version can be used onto the dual trellis to decode the high-rate
convolutional code and produce the extrinsic information. Since these algorithms are
performed on the dual trellis, they are referred to as the dual-MAP and the dual-LM
algorithms. Numerical results have shown that these algorithms using the dual trellis
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Figure 6.11: Performance comparison between the MLM, the dual-LM and the dual-MLM
algorithms with K = 992 bits.

yield the same error correction performance as the BCJR and log-MAP algorithms, even
in the turbo iterative decoding process.

Furthermore, as shown in [1], using the dual trellis offers the advantage of high through-
put decoding for high-rate coding schemes and the ratio of throughput to chip area is
largely increased compared to decoding using the original trellis of the mother code. Nev-
ertheless, the circuit area of the decoder using the dual-LM algorithm is still higher than
the MLM decoder since the extrinsics for all systematic bits in a dual trellis section have
to be processed at the same time. Each extrinsic information calculation, in turns, in-
volves a large number of LUTs to operate. Therefore, an abundant number of LUTs
are required for the dual-LM algorithm. However, we have shown that the state met-
ric recursions and the extrinsic information calculations can then be reformulated using
the max-log approximation and can be implemented with the local-SOVA architecture.
With these solutions, we came up with a new algorithm for the dual trellis, namely the
dual-MLM algorithm. A complexity analysis was conducted, showing that the number
of LUTs employed in the decoder can then be considerably reduced compared to the
dual-LM algorithm. Also, based on numerical simulations, we observed that dual-MLM
decoding yields only a minor loss of about 0.2 dB in performance at 10−6 of bit error rate
compared to dual-LM decoding. Therefore, it can be considered as a viable and practical
low-complexity sub-optimal decoding algorithm.

The generalization of the dual trellis construction method was published and presented
at the 30th International Symposium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC 2019) [50]. A presentation on this subject was also given in the GdR ISIS
Workshop: Enabling Technologies for sub-TeraHertz and TeraHertz communications [51].

Furthermore, the proposed low-complexity dual trellis decoding algorithm was pub-
lished and presented at the Wireless Communications and Networking Conference (WCNC
2020) [52].
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

In this thesis, we have studied and implemented a new decoding algorithm that can be
employed in the turbo decoder with low complexity and provide several trade offs between
complexity, latency, and error correction performance. Furthermore, the decoding process
using the dual trellis was investigated, where a generalized dual trellis constructing method
and a new low complexity decoding algorithm was addressed.

First, a review on turbo codes and decoding algorithms employed in turbo codes
was given. We then focused further on techniques and architectures employed in turbo
decoders to increase the throughput and lower the complexity of the decoder. For the use
cases defined in the H2020 EPIC project, the requirement in throughput were in the order
of 500 Gb/s up to 1 Tb/s. Therefore, the UXMAP architecture was chosen to achieve
this goal in turbo decoding due to its ability to provide very-high-throughput with high
area efficiency.

Originally, the UXMAP architecture was coupled with the Max-Log-MAP decoding
algorithm and their combination has already led to a very high-throughput turbo decoder
(up to 400 Gb/s). Nevertheless, we investigated its combination with a new decoding
algorithm that we proposed and called Local-SOVA. Le local-SOVA can deliver the same
error correction performance as the MLM algorithm but with a lower complexity. The
analysis related to the local-SOVA was carried out in Chapter 4 revealing that the MLM
algorithm is actually an instance of the Local-SOVA and that the Local-SOVA can have a
lower computational complexity in high-radix schemes and can provide numerous trade-
offs between complexity and error performance.

The implementation of the Local-SOVA in the UXMAP architecture in Chapter 5 con-
solidated the analysis provided in Chapter 4. The first implementation was the radix-4
Local-SOVA decoder. In comparison with the radix-4 MLM decoder, the Local-SOVA de-
coder brings a saving in area complexity of 33% with negligible performance loss (smaller
than 0.05 dB). For the UXMAP architecture, this saving in area can be translated into
an increase in throughput by using larger frame sizes. Furthermore, we also investigated
the radix-8 and radix-16 local-SOVA decoders. Both schemes provide a lower latency
solution to the UXMAP architecture at the expense of area complexity and error correc-
tion performance. The radix-16 Local-SOVA has a 2 times lower latency than the radix-4
Local-SOVA, and this is traded with an increase of 50% in area complexity and a error
correction performance degradation of 0.1 dB.
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On the other hand, the development of the dual trellis and of decoding algorithms
using the dual trellis were studied in Chapter 6. The main advantage of decoding a
convolutional code using its dual trellis is that the decoding throughput increases with
the coding rate. On the contrary, when the decoding process uses the trellis of the mother
code through puncturing, the throughput of the decoder is almost the same for every code
rates. Therefore, we first generalized the method for constructing the dual trellis for high-
rate punctured convolutional codes. The decoding algorithm can then be applied to the
resulting dual trellis to produce the extrinsic information. One main drawback of the
conventional decoding algorithm using the dual trellis is the high number of LUTs that
are required for its hardware implementation, which leads to a high complexity decoder.
To this end, we introduced a new variant, namely dual-MLM, that can decrease drastically
the use of the LUTs. Although a small performance degradation of 0.1 − 0.2 dB can be
observed, the new decoding algorithm provides a lower complexity solution to the decoding
process using the dual trellis for high-rate convolutional codes.

7.2 Future Works

The work presented in this thesis showed that the local-SOVA has a very high potential as
a decoding algorithm for a SISO decoders of convolutional codes and turbo codes. From
now on, when considering a decoding algorithm for convolutional and turbo codes, the
local-SOVA shall be one candidate to compete with the MLM, LM or SOVA algorithms.

In particular, with the UXMAP architecture, it is obvious that the local-SOVA should
now replace the MLM algorithm. Nevertheless, the current implementations of the local-
SOVA are only a few realizations out of many possibilities that can be carried out, since
numerous trade-offs between complexity and error correction performance can be done.
The implemented radix-4 local-SOVA currently employs φ operators in the ACSU and a
mix of ω and φ operators in the SOU. Further simplifications without foreseeable impact
on the error performance, as shown in Chapter 4, should be investigated. However, each
solution should come with an efficient hardware implementation to leverage its advantages,
and this needs further investigation. For the radix-8 and radix-16 local-SOVA, further
investigation on other implementations can be carried out to minimize the increase in
complexity and reduce the performance loss. Furthermore, with the local-SOVA, one can
also consider the implementation of the radix-32 or even radix-64 schemes for applications
that require very low latency. As far as we know, these high-radix schemes are not feasible
in practice for the MLM algorithm. For the local-SOVA, the target should be to limit the
increase in complexity while providing an acceptable error correction performance.

For other turbo decoder architectures, the local-SOVA clearly deserves more attention
and could be employed instead of the MLM algorithm. Moreover, for applications in-
volving a trellis diagram with a high number of states, the local-SOVA can be considered
as a candidate besides the SOVA [30]. These applications can be demodulation, equal-
ization, and decoding in communication and storage systems. Compared to the SOVA,
the local-SOVA can have a lower latency due to the absence of the traceback and update
procedures. Furthermore, with a high number of states in the tellis diagram, the saving
in complexity using the local-SOVA can be more pronounced.

On another note, for high-rate convolutional codes, a thorough investigation of the
hardware implementation of the dual-MLM algorithm shall be considered in the future.
The performed analysis has already led to a lower complexity algorithm but a hardware
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implementation is required to complete the study of the dual-MLM algorithm. If the
implementation results are in line with the preliminary analysis, then the dual-MLM
algorithm can be considered as a first choice decoding algorithm for high-throughput
high-rate convolutional and turbo decoders.
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[11] O. Muller, A. Baghdadi, and M. Jézéquel, “Exploring parallel processing levels for
convolutional turbo decoding,” in Proc. 2nd ICTTA Conf., April 2006, pp. 2353–
2358.

125

https://epic-h2020.eu/downloads/EPIC-D1.2-B5G-Wireless-Tbs-FEC-KPI-Requirement-and-Technology-Gap-Analysis-PU-M07.pdf
https://epic-h2020.eu/downloads/EPIC-D1.2-B5G-Wireless-Tbs-FEC-KPI-Requirement-and-Technology-Gap-Analysis-PU-M07.pdf
https://epic-h2020.eu/downloads/EPIC-D1.2-B5G-Wireless-Tbs-FEC-KPI-Requirement-and-Technology-Gap-Analysis-PU-M07.pdf


[12] E. Boutillon, W. J. Gross, and P. G. Gulak, “Vlsi architectures for the MAP algo-
rithm,” IEEE Trans. Comm., vol. 51, no. 2, pp. 175–185, 2003.

[13] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “A soft-input soft-output
maximum a posteriori (MAP) module to decode parallel and serial concatenated
codes,” TDA progress report, vol. 42, no. 127, pp. 1–20, 1996.

[14] M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier, and N. Wehn, “A scalable system
architecture for high-throughput turbo-decoders,” Journal of VLSI signal processing
systems for signal, image and video technology, vol. 39, no. 1-2, pp. 63–77, 2005.

[15] A. Worm, H. Lamm, and N. Wehn, “A high-speed MAP architecture with optimized
memory size and power consumption,” in IEEE Workshop Signal Proc. Systems,
2000, pp. 265–274.

[16] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm implementation: breaking the
ACS-bottleneck,” IEEE Trans. Commun., vol. 37, no. 8, pp. 785–790, Aug 1989.

[17] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and implementation of
a parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE Journal Solid-State Circuits,
vol. 46, no. 1, pp. 8–17, 2011.

[18] S. Weithoffer, C. A. Nour, N. Wehn, C. Douillard, and C. Berrou, “25 Years of Turbo
Codes: From Mb/s to beyond 100 Gb/s,” in IEEE 10th International Symposium on
Turbo Codes and Iterative Information Processing (ISTC), Hong Kong, Dec. 2018,
pp. 1–6.

[19] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship, “ARP and QPP
interleavers for LTE turbo coding,” in IEEE Wireless Communications Networking
Conference, 2008, pp. 1032–1037.

[20] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15GBit/s turbo code decoder
for LTE advanced base station applications,” in IEEE 7th International Symposium
on Turbo Codes and Iterative Information Processing (ISTC), Gothenburg, Sweden,
Aug. 2012, pp. 21–25.

[21] R. Shrestha and R. P. Paily, “High-throughput turbo decoder with parallel architec-
ture for LTE wireless communication standards,” IEEE Trans. Circuits Systems I:
Regular Papers, vol. 61, no. 9, pp. 2699–2710, 2014.

[22] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a highly-parallel
3GPP LTE/LTE-advance turbo decoder,” Integration VLSI Journal, vol. 44, no. 4,
pp. 305–315, 2011.

[23] C. Wong and H. Chang, “High-efficiency processing schedule for parallel turbo de-
coders using QPP interleaver,” IEEE Trans. Circuits Systems I: Regular Papers,
vol. 58, no. 6, pp. 1412–1420, 2011.

[24] S. Weithoffer, F. Pohl, and N. Wehn, “On the applicability of trellis compression to
turbo-code decoder hardware architectures,” in IEEE 9th International Symposium
on Turbo Codes and Iterative Information Processing (ISTC), Brest, France, Sept.
2016, pp. 61–65.

126



[25] R. G. Maunder, “A fully-parallel turbo decoding algorithm,” IEEE Trans. Commun.,
vol. 63, no. 8, pp. 2762–2775, Aug 2015.

[26] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “VLSI
implementation of fully parallel LTE turbo decoders,” IEEE Access, vol. 4, pp. 323–
346, 2016.

[27] S. Weithoffer, O. Griebel, R. Klaimi, C. A. Nour, and N. Wehn, “Advanced hardware
architectures for turbo code decoding beyond 100 Gb/s,” in IEEE Wireless Commu-
nications and Networking Conference (WCNC), Seoul, South Korea, May 2020, pp.
1–6.

[28] G. Battail, “Pondération des symboles décodés par l’algorithme de Viterbi,” Ann.
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Titre : Conception des turbocodes à très haut-débit 

Mots clés : turbocodes ; codes convolutifs ; décodage à entrée et sortie pondérées ; algorithme de 
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Résumé :  Avec les normes récentes de 
communications mobiles telles que le LTE 
Advanced Pro ou la 5G New Radio les 
utilisateurs peuvent bénéficier de débits de 
données allant jusqu'à quelques dizaines de 
Gb/s. Des besoins en débits encore plus élevés 
(quelques centaines de Gb/s, voire quelques 
Tb/s) sont pressentis pour l'avenir. Le traitement 
en bande de base, dans lequel le codage 
correcteur d’erreurs (FEC) joue un rôle 
essentiel, devra par conséquent être capable de 
supporter de tels débits. Or, les seuls progrès 
des technologies des semi-conducteurs ne 
permettront pas de relever le défi du Tb/s pour 
les FECs. Par conséquent, des innovations 
algorithmiques et architecturales majeures sont 
nécessaires dans la conception et la mise en 
œuvre des algorithmes correspondants. 

L'objectif de cette thèse est de proposer, pour 
les turbocodes, des techniques innovantes de 
décodage permettant au décodeur d'atteindre 
ou d'approcher des débits de l’ordre du Tb/s. 
Un nouvel algorithme de décodage à radix 
élevé de faible complexité a été développé et a 
été optimisé conjointement avec une 
architecture dédiée à très haut débit. Le turbo-
décodeur qui en résulte peut ainsi approcher 
les Tb/s avec une efficacité surfacique sans 
précédent. En outre, un nouvel algorithme de 
décodage dédié aux turbocodes à hauts 
rendements de codage basé sur le treillis dual 
a été proposé et étudié de manière approfondie 
dans le cadre de ce travail. Les résultats 
obtenus sont prometteurs, l'algorithme proposé 
offrant une alternative peu complexe et sous-
optimale aux algorithmes de l’état de l’art. 

 

Title :  Design of next-generation Tb/s turbo codes 

Keywords :  turbo codes, convolutional codes, soft-input soft-output decoding, soft-output Viterbi 
algorithm, high-radix decoding, high throughput decoders, dual trellis 

Abstract : With  recent mobile communication 
standards such as LTE Advanced Pro or 5G 
New Radio, users can experience 
communication links with data rates up to tens 
of Gb/s. Along with the development of 
technology, the demand for even higher data 
rates of hundreds of Gb/s or Tb/s can be 
foreseen in the future.  Baseband processing, in 
which forward error correcting (FEC) plays an 
essential role, will therefore have to be able to 
support such data rates. However, advances in 
semiconductor technologies alone will not be 
sufficient to meet the Tb/s FEC challenge. 
Therefore, major algorithmic and architectural 
innovations are required in the design and 
implementation of the corresponding algorithms. 

The aim of this thesis is to propose, for turbo 
codes, innovative decoding techniques, 
allowing the decoder to achieve or approach 
throughput of Tb/s. A novel high-radix decoding 
algorithm with low-complexity property was 
developed and was jointly optimized with a 
dedicated very high-throughput architecture. 
The resulting turbo decoder can therefore 
approach Tb/s with a low complexity and high 
area efficiency. In addition, a new decoding 
algorithm dedicated for high-rate turbo codes 
was proposed and was thoroughly studied in 
this work. The obtained results are promising, 
where the proposed algorithm provides a low-
complexity sub-optimal alternative to the state-
of-the-art algorithms. 
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