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Résumé des travaux en français
Notre vie quotidienne est de plus en plus imprégnée par de nombreux
logiciels interconnectés. On discute avec nos amis, notre famille et nos
collègues via des applications de messagerie instantanée, nous planifions
nos vacances avec Google Maps, partageons nos derniers repas sur In-
stragram, nous nous divertissons sur Netflix ou YouTube... Le logiciel

Note: This part is a summary written
in French of the manuscript; the rest is
written in English and starts with an in-
troduction in Chapter 1.

ressemble un peu à des briques de Lego qui semblent (en apparence) sim-
ples et bon marché à assembler, dans l’optique de produire d’autres logiciels
plus grands. De cette apparente simplicité résulte une grande complexité
logicielle : de nos jours, le moindre logiciel s’avère être un monstre de
dépendances logicielles. Par exemple, vérifier simplement le solde de son
compte bancaire au moyen de la belle et agréable interface utilisateur
affichée par son application bancaire fait en réalité appel à de nombreux
et très complexes logiciels, dont probablement certains vieux programmes
COBOL1. Parmi toutes les constructions humaines, ce sont probablement 1En 2017, selon l’agence Reuters, 43%

des systèmes bancaires utilisaient toujours
COBOL.

les logicielles qui sont les plus complexes.
Le moindre incident se produisant dans l’un des composants d’un

logiciel peut être suffisant pour provoquer un bug. Un bug est un com-
portement logiciel incorrect, c’est-à-dire un comportement qui n’était
pas prévu. Évidemment, les bugs peuvent produire toutes sortes d’effets
désagréables. Un exemple de bug est l’accélération incontrôlée des voitures
Toyota [Koo14], où des erreurs basiques de programmation ont coûté la
vie à plusieurs dizaines de personnes. Sur une note différente, un bug
dans un contact Etherum a conduit à la disparition d’environ 50 millions
de dollars. L’Institut National des Normes et de la Technologie des États
Unis (NIST) a estimé le coût des bugs logiciels à près de 59,5 milliards de
dollars chaque année [Pla02].

Les programmes sont exécutés sur des ordinateurs, qui comprennent
un langage particulier : le langage machine qui, comme son nom l’indique,
est conçu pour être interprété facilement par nos ordinateurs. Ainsi, le
langage machine n’est que peu lisible, gpeu pratique et peu productif. Tout
comme des ingrédients de qualité subliment un plat délicieux, de bons
langages de programmation sont essentiels pour la qualité logicielle. Il
existe de très nombreux langages de programmation : la quête pour Le
Meilleur Langage de Programmation est loin d’être achevée. Pour accomplir
cette quête, un premier pas serait de décider d’une métrique pour juger
de la qualité d’un langage de programmation. Puisque nous recherchons
la meilleure qualité logicielle, dans cette thèse nous sommes intéressés
par les langages de programmation qui aident le programmeur à éliminer
systématiquement les bugs. Nous nous intéressons aux langages équipés de
systèmes de typage fort, et qui mettent en œuvre par exemple les types
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dépendants ou raffinés.

Typage et précision La notion de type est apparue en premier lieu avec
le langage de programmation Fortran2, qui permettait de distinguer les 2Le terme de “type” lui-même n’a été intro-

duit qu’un peu plus tardivement avec le lan-
gage Algol.

nombres entiers des flottants par exemple. L’entier 42 est représenté par
une séquence de bits différente du flottant 42.0 : une addition entière
sur des flottants par exemple, produira un résultat incohérent. Puisqu’ils
présupposent des représentations, les types des entiers et des flottants sont
qualifiés de primitifs. Toutefois, les types peuvent être bien plus expressifs,
comme en témoignent certains langages de programmation modernes (par
exemple, Haskell [Pey07] ou les langages de la famille ML), avec des types
inductifs par exemple. Alors que les types primitifs existent pour aider les
compilateurs, les types plus avancés aident le programmeur.

En effet, plus un programmeur travaille avec des types précis, plus son
compilateur lui interdit d’écrire certains programmes incorrects : les types
très précis agissent alors comme des spécifications. Au lieu d’écrire un
programme en espérant qu’il corresponde à la spécification imaginée, on
écrit un programme avec des types traduisant concrètement la spécification
en question. Le compilateur3 vérifie ensuite que le programme corresponde 3Notons que l’on parle ici de typage statique,

c’est-à-dire que la procédure de vérification
du bon typage d’un programme se déroule
avant l’exécution de celui-ci.

bien au type donné : tout écart vis-à-vis de la spécification provoque alors
une erreur de compilation. Selon les systèmes de typage, les types sont plus
ou moins expressifs : seuls certains permettent d’écrire des spécifications
arbitrairement riches dans leurs types.

Expressivité des types et contraintes. Malheureusement, plus un sys-
tème de type autorise d’expressivité, plus la procédure de vérification des
types devient indécidable. Par exemple, la procédure de vérification des
types d’un système vérifiant la terminaison est trivialement indécidable
par le problème de l’arrêt [Chu36; Tur37]. Par conséquent, écrire un
programme affublé de types forts requiert fatalement une assistance parti-
culière de la part du programmeur : il ou elle doit alors fournir des indices,
des annotations ou même des preuves manuelles au système de typage.

Notre travail est ancré dans cette observation : utiliser des types très
expressifs demande du travail manuel supplémentaire. L’un des langages
de programmation proposant des types dépendants les plus connus, Coq,
n’a pas été conçu comme un langage de programmation généraliste, mais
davantage comme un assistant de preuve ; c’est-à-dire un environnement
dans lequel on peut écrire des théorèmes et des preuves. Au contraire,
Idris ou F? sont des langages de programmation généralistes équipés de
systèmes de typages forts et expressifs. F? est particulièrement intéressant,
en effet il fait appel à un SMT solver pour alléger l’effort de preuve pour
le programmeur. Aussi, F? ressemble beaucoup à OCaml et est équipé
d’un système d’effets monadiques très souple, et son système de typage
permet l’usage de types raffinés et dépendants. C’est un langage qui a
récemment brillé avec le Projet Everest [EVEREST] dont a découlé une série
de librairies cryptographiques vérifiées performantes : HACL* [Zin+17],
ValeCrypt [Bon+17] et EverCrypt [Pro+20] ; ces librairies sont par exemple
utilisées et déployées dans le logiciel Mozilla Firefox.
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Analyse statique. Le typage fort n’est pas la seule approche à la vérifi-
cation formelle. La plupart des programmes intéressants sont bien trop
complexes pour être testés pour chaque entrée possible : une solution bril-
lante à ce problème est l’interprétation abstraite [CC77]. Au lieu d’essayer
d’exécuter un programme dans un monde concret, infini et complexe,
dans l’optique de remarquer des propriétés, l’idée est d’interpréter un pro-
gramme dans un monde abstrait choisi avec soin pour faire émerger des
propriétés pratiques, par exemple la terminaison systématique de toute
interprétation.

Dans cette thèse, nous nous intéressons aux interactions entre l’analyse
statique (et plus particulièrement l’interprétation abstraite) et les systèmes
de typage fort. Nous commençons par étudier la manière dont les types
raffinés et dépendants mis en oeuvre dans F? peuvent nous aider à implé-
menter un interpréteur abstrait vérifié. Ensuite, nous prenons le problème
à l’envers : partant d’un interpréteur abstrait vérifié, par quel moyen
pouvons-nous améliorer l’inférence de type dans un système de type tel
que celui de F? ? Nous répondons à cette question par la présentation
d’un système de transformation de monade de pré-condition la plus faible.
Enfin, nous nous penchons sur la manière dont il est possible de vérifier
l’analyse de flux d’informations (Information Flow) à l’aide de types forts.

Nous nous proposons de résumer les travaux menés dans cette thèse
en suivant l’organisation du manuscrit.

Chapitre 2. Le chapitre 2 est une introduction au langage de program-
mation F?, dans lequel nous formalisons les différents travaux de cette
thèse. Cette introduction à F? démarre par une brève section sous la forme
d’un tutoriel, passant en revue sa syntaxe et ses concepts fondamentaux.
Elle se poursuit ensuite avec une présentation détaillée du système d’effets
de F?, en expliquant le principe des monades de calcul, de spécification,
des monades indexées et des monades de pré-condition la plus faible.

Chapitre 3. Les interpréteurs abstraits sont des outils d’analyse statique
permettant d’inférer automatiquement des propriétés sur un programme.
L’interprétation abstraite est une théorie d’approximation correcte des pro-
grammes : si les algorithmes d’interprétation abstraite infèrent qu’un pro-
gramme respecte une certaine propriété, on a une garantie mathématique.
Malheureusement, la plupart des interpréteurs abstraits, bien qu’ils suivent
les algorithmes très solides donnés par l’interprétation abstraite, sont sujets
à des bugs d’implémentation, mettant à mal leurs garanties. Ainsi, certains
interpréteurs abstraits ont été vérifiés formellement en utilisant l’assistant
de preuve Coq. Vérifier de tels programmes demande une expertise avec
Coq, et requiert l’écriture de longues, complexes et peu accessibles preuves
manuelle en Coq. Écrire un interpréteur abstrait vérifié avec Coq demande
beaucoup de temps et d’expertise : par exemple, l’interpréteur abstrait véri-
fié Verasco a demandé environ 17.000 lignes [Jou+] de preuves manuelles
Coq.

Dans le chapitre 3, nous montrons qu’il est possible d’écrire un interpré-
teur abstrait accessible à un public non expert en assistants de preuves. En
effet, le chapitre 3 présente presque tout le code source de l’interpréteur :
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95 % des 527 lignes de son code. Pensée et construite avec les fonction-
nalités d’automatisation de F? en tête, notre implémentation ne fait appel
qu’à très peu de preuves manuelles4. Dans le chapitre 3.2, nous définissons 4Notre interpréteur ne contient qu’un peu

moins de 40 lignes de lignes de preuves
explicites, soit un peu moins de 8 % de
la totalité de son implémentation. C’est
un ratio environ dix fois plus bas que les
interpréteurs vérifiés existants.

le langage impératif jouet IMP, équipé d’une mémoire faisant correspon-
dre des noms de variables vers des entiers machines signés, d’opérateurs
binaires, d’assignations, de choix non déterministes, de séquences et de
boucles. Nous donnons ensuite une sémantique opérationnelle à IMP dans
le chapitre 3.3. Nous définissons la notion de domaine abstrait dans le
chapitre 3.4, puis du domaine abstrait numérique des intervalles en 3.5.
Le chapitre 3.6 formalise en F? la notion d’opérateurs d’élargissement,
tandis que les chapitres 3.7 et 3.8 définissent une mémoire et un domaine
de mémoire abstrait. Enfin, le chapitre 3.9 équipe notre langage IMP avec
une sémantique abstraite, donnant lieu à notre interpréteur abstrait vérifié.

Chapitre 4. Fort du développement du chapitre 3, nous étudions dans
le chapitre 4 la manière dont l’interprétation abstraite peut, à son tour,
être utilisée pour aider et rendre plus automatique la vérification de pro-
grammes avec effets de bord en F?. En effet, le système d’inférence de
type de F?, et ce particulièrement en présence d’effets de bord, n’est pas
conçu pour inférer des types particulièrement précis : F? n’est pas capa-
ble par exemple d’inférer un invariant de boucle. C’est justement là que
l’interprétation abstraite joue tout son rôle : elle est capable d’inférer de
tels invariants, réduisant ainsi les annotations nécessaires au bon typage
d’un programme. Ainsi, le chapitre 4 propose une méthodologie pour
injecter un interpréteur abstrait dans une monade de pré-condition la plus
faible.

Après un aperçu général du but poursuivi par notre travail avec le
chapitre 4.1, le chapitre 4.2 décrit précisément la forme d’interpréteur
abstrait et de monades de pré-condition la plus faible avec lesquelles nous
travaillons, ainsi qu’une notion de compatibilité pour un tel couple. En-
suite, le chapitre 4.3 définit un tel couple d’un interpréteur abstrait et
d’une monade pour le langage impératif IMP×, proche du langage IMP
défini dans le chapitre 3. Le chapitre 4.4 illustre la définition de la monade
de pré-condition la plus faible hybride correspondant au couple interpré-
teur abstrait et monade de pré-condition la plus faible définie dans le
chapitre 4.3. Une monade hybride de pré-condition la plus faible calcule
non seulement une pré-condition, mais aussi, dans le même temps, une in-
terprétation abstraite. Une telle monade hybride produit alors des preuves
d’obligations aidées d’invariants provenant de l’interprétation abstraite
embarquée. Le théorème de correction de cette construction hybride est
détaillé et expliqué dans le chapitre 4.5, puis prouvé dans le chapitre 4.6.
Notre travail est finalement généralisé dans le chapitre 4.7, en consid-
érant un interpréteur abstrait comme un transformateur de monades de
pré-condition la plus faible.

Chapitre 5. Après avoir étudié comment le système de type de F? pou-
vait aider à produire des analyses statiques (chapitre 3) et vice-versa
(chapitre 4), nous étudions dans le chapitre 5 une forme d’analyse sta-
tique assez différente, en étudiant la manière dont les types dépendants
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et le système d’effets de F? pouvait aider à l’implémention d’une librairie
permettant la vérification de politiques de flux d’information (IFC). Notre
travail est largement inspiré de Labeled Input Output (LIO) [Ste+11], une
librairie Haskell monadique, qui permet de décrire et mettre en oeuvre des
politiques d’IFC dynamiquement. Notre librairie, LIO*, permet de vérifier
de telles politiques de manière très flexible : une politique d’IFC peut être
vérifiée sur un programme de manière statique, dynamique ou une combi-
naison des deux. Le programmeur peut choisir de vérifier statiquement une
politique d’IFC pour éliminer tout coût à l’exécution et garantir un certain
comportement pour un composant logiciel critique, tout en choisissant
la simplicité d’une vérification dynamique pour un autre. Notre librairie
se comporte comme une couche logicielle au dessus de Low? [Pro+17]
(un langage dédié dans F? pour écrire des programmes bas niveau, et qui
profite d’une extraction vers C grâce à l’outil KreMLin [Pro+17]) : ainsi, il
est possible d’écrire des programmes profitant à la fois de notre librairie
d’IFC et d’une extraction bas niveau vers C.

En premier lieu, dans le chapitre 5.4, nous présentons GLIO*, une
librairie d’IFC entièrement statique qui ne fait qu’ajouter des vérifications
statiques, et qui disparaît entièrement5 à la compilation ou à l’extraction. 5En usant d’optimisations et de l’outil KreM-

Lin, les modules constituant notre librairies
se retrouvent traduits en des fichiers C vides
de toute ligne de code.

Ensuite, nous présentons DLIO* dans le chapitre 5.5, qui n’est en réalité
qu’une sur-couche de GLIO*, consistant à ajouter des vérifications dy-
namiques à l’exécution : DLIO* n’est en réalité qu’un client comme les
autres de notre librairie statique GLIO*. Enfin, nous abordons dans le
chapitre 5.7 le problème de la non-interférence, une propriété fondamen-
tale pour un système d’IFC. Nous étudions une manière de générer et de
prouver automatiquement des théorèmes de non-interférence étant donné
un client particulier de notre librairie.
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CHAPTER 1

Introduction
Our daily life is getting more and more impregnated with interconnected
software of all kinds. We chat with our friends, family and colleagues
throughmessaging apps, plan our holidays with Google Maps, share the last
meal we cooked on Instragram, entertain ourselves on Netflix or YouTube,
manage our money from our smartphone, buy more and more online...
Pieces of software are just like virtual Lego bricks; it is in appearance easy
and cheap to compose them together to grow more and more complex
systems. As a result, nowadays the slightest piece of software (e.g. a website
or an application) quickly becomes a monster of software dependencies,
yielding an impressive complexity. For instance, checking the balance
of your account from the pretty and snappy user interface displayed by
your banking app yields utterly complex pieces of software, among which
we probably find some pieces of old legacy COBOL programs. Among all
human-built artifacts, software ones are probably the most complex.

One slight misbehavior happening in one of the components of a piece of
software may be enough to cause a bug. A bug is an incorrect or unexpected
software behavior, and obviously, it can cause a variety of annoyances. An
example is Toyota’s unintended acceleration [Koo14]: it shows that trivial
programming errors can lead to severe fatalities. On a different note, a
bug in an Etherum contract led to about $50M worth of cryptocurrency
vanishing [Fou]. The US National Institute of Standards and Technology
(NIST) estimates the cost of software bugs to around $59.5 billions each
year [Pla02]. In view of all the problems that defective software can cause,
software quality is of uppermost importance.

“

”

Language is the raw material of soft-
ware engineering, rather as water is
the raw material for hydraulic engi-
neering. The difference is that water
is rather well understood by physi-
cal science; but software –as a raw
material– is still not scientifically un-
derstood. Nevertheless our software
engineers have filled the world with
software at enormous speed. —
Robin Milner

Software is run on computers, which understandmachine code. Despite
the relative coolness of writing raw machine code, it is neither practical
nor productive. As Harold Abelson wrote, “programs must be written for
people to read, and only incidentally for machines to execute”. Machine
code is far from being pleasant to read. Just like good and fresh ingredi-
ents sublimate a great dish, good programming languages are essential to
software quality. There are hundreds of such languages in the wild: the
quest for The Best Programming Language is still ongoing. To complete this
quest, a first step would be to choose a metric to judge what a good pro-
gramming language is, and what a bad one is. Seeking for the best quality
of software, we are interested in this thesis in programming languages
that help the programmer to altogether eliminate bugs. We are interested
in languages equipped with strong type systems, implementing features
such as dependent types or refinement types.
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1.1 Types and Precision
The first commercially available language was Fortran and already had
types in the sense that it had a static distinction between e.g. integers
and floating-point numbers. The word type was popularized later on with
the Algol programming language. At the time of Fortran and Algol, the
available types existed by necessity: the integer 42 and the floating-point
number 42.0 are represented by different sequences of bits. Such types
are qualified of primitive: they suppose a certain bit-level representation.
In the case of such primitive types, typing a value as an “integer” or a
“floating-point number” (i) ensures a correct machine interpretation, and
(ii) helps the compiler to decide how to lay out that value in memory. Types
help the programmer to avoid certain undefined behaviors. For instance,
the arithmetic addition is expected to be fed with two numbers; if one
was to feed a string and an array to the arithmetic addition operator, one
would yield an undefined (potentially dangerous) behavior.

Types can serve higher-level purposes. Modern programming lan-
guages such as Haskell [Pey07] or languages of the ML family allow much
more expressive types, for example user defined custom types (i.e. induc-
tive types) and function types. While primitive types help the compiler,
combining them in compound types helps the programmer.

Verifying that an expression is typed correctly can either happen before
or after the execution of a program. A static type system reads the source
code of a program before its execution and tries to type-check it. When
static type-checking succeeds, then the program is supposed not to hit
type-related issues at run-time. By contrast, a dynamic type system checks
if a value is typed correctly just before it is actually used in the program,
at runtime.

Specification precision. The range of bugs and unexpected runtime
behaviors one can avoid with a static type system depends on the level
of expressiveness it offers. To get some intuition about which kind of
expressiveness a type system can offer, let us consider the following function
sum. It is a recursive function that computes the sum of integers from 0 to
its input n:

let rec sum n = if n≤0 then 0 else n + sum (n - 1)

This behavior of the function sum can be described more or less precisely.
Let us exercise and give sum a few specifications, ranging from very weak
and imprecise ones to very strong and precise ones:

(i) sum is a program that takes an input and produces an output;

(ii) sum maps an integer to another integer;

(iii) sum maps an integer to a non-negative integer;

(iv) sum maps n an integer to m an integer greater than n;
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Fig. 1.2: The specification (iii) is repre-
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fication (iv) by the red area, and (v) by
the blue line. There exists a lot of func-
tions that stick to specification (iv) for
instance: the violet lines give some ex-
amples of such functions. By contrast,
specification (iv) is much more restric-
tive.

(v) sum maps n to max(n,0)2+max(n,0)
2 .

Figure 1.2 illustrates what it takes for a function to satisfy specifications
(iii), (iv) and (v). Visually, it is clear that specification (iii) has a different
nature from specification (iv) or (v). Indeed, the specification (iii) restricts
the output values of sum independently from its input; by contrast, (iv) and
(v) state specifications taking into account the input of sum. This notion of
dependencies is important: there is a gap of expressiveness between (iii)
and (iv)/(v).

Type expressiveness. These various specifications can all be encoded as
types, but not all type systems can encode these specifications. Figure 1.1
gives some examples of programming languages whose type system is able
to handle these different specifications. Not all type systems are equal.
The specification (iii) is easy to encode as type: it is a function that maps
integers to positive numbers. Hence, if one definesNa type that represents
positive numbers, the specification is implemented exactly as the arrow
type Z→ N. Defining such a typeN is easy. A natural number is either
zero or the successor of another natural number, leading to the following
algebraic data type definition:

type N = | O | Succ: N→N

In comparison with specification (iii) for which we definedN, specifi-
cation (iv) requires a typeZge that depends on a value. More commonly,
type systems allow for polymorphism, that is, types that are indexed by
other types (e.g. lists). By contrast, here we are looking for a type indexed
by an integer. For instance, the type Zge 4 is inhabited by every integer
greater or equal to 4. Types indexed by values are called dependent types.
Similarly, given a simple arrow type τ → β, the type β cannot be indexed
by input values of type τ . Instead, a dependent arrow type can be in the
form x:τ → β x, and express a dependency. Given an integer-indexed
type Zge exists, the specification (iv) can be encoded as the dependent
arrow type n:Z→Zge n.

1.2 Type Expressiveness Versus Ease
of Use

As a type system gets stronger, its procedure for type-checking becomes
undecidable. For example, the type-checking procedure of a type system
that checks for termination is trivially undecidable by reduction to the
halting problem [Chu36; Tur37]. In consequence, writing a program with
such expressive types requires the programmer to assist the type system
by supplying hints, annotations or even proofs to the type system.

Our work is rooted in the observation that programming languages
that offer a great type expressiveness suffer from automation issues. One
of the most well-known programming languages equipped with dependent
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types is Coq [The04]. Coq is not aimed at general-purpose programming;
it is rather a proof assistant, that is, a system that allows to formally
state proofs and to prove them interactively. As such, Coq is primarily
designed for specifications and proofs to be written in a precise way. Writing
programs with specifications as type in Coq often yields great amount of
proof obligations, resulting in a lot of proof effort.

Liquid Haskell [Vaz+14] is somehow the opposite approach: it sup-
plements the well-known general-purpose programming language Haskell
with more expressive types. It enables Haskell types to be refined with
restricted (QF-UFLIA [BST+10]) logical predicates with a great degree of
automation. It was extended to properties about arbitrary Haskell func-
tions [Vaz+18], turning Liquid Haskell into a theorem prover.

By contrast to Coq, Idris [Bra13] or F? [Swa+16] are general-purpose
programming languages equipped with dependent types. Equipped with
dependent types and built-in SMT solver facilities, F? provides both an
OCaml-like experience and proof assistant capacities. Its type system fea-
tures both dependent and refinement types, weakest-precondition calculi
and monadic effects. It recently shone with the Project Everest [EVER-
EST] which delivered a series of formally verified, high-performance,
cryptographic libraries: HACL* [Zin+17], ValeCrypt [Bon+17] and Ev-
erCrypt [Pro+20]; these are for instance used and deployed in Mozilla
Firefox. While F? can always resort to proof scripts similar to Coq ones,
most proof obligations in F? are automatically discharged by the SMT solver
Z3 [DB08]. Even if using SMT solvers can help lower the amount of proofs
a programmer shall write to verify that a function matches a specification,
it does not help type inference.

Strong typing is not the only approach to formal verification. Most
interesting programs are way too complex to be executed and tested thor-
oughly for every possible input: abstract interpretation [CC77] is a brilliant
answer to this problem. Instead of attempting at running programs in the
–infinite and rough– concrete world to capture properties, the idea is to
interpret programs in an abstract world carefully chosen to enjoy pleasant
properties, e.g. systematic termination. Such abstract interpretations in-
evitably yield approximations, but in turn allow for automatic discovery of
properties in finite time. Our work aims precisely at better type inference
in the settings of strong type systems. In the case of dependent types,
type inference amounts to automatic inference of program properties. The
thesis defended in this dissertation is the following:

“
”

Static analysis –and particularly abstract interpretation– and type
systems equipped with dependent types are complementary and
can learn from each other.
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1.3 Contributions and Structure of
the Document

The first chapter (Chapter 2) is introductory, and presents how to program
in a proof-oriented style with the F? programming language. After a short
tutorial to F? basics, we explore the underlying concepts behind effects by
describing the concepts of computation, specification and indexed monads.
The effect system is one of the most important –and distinctive– features of
F?: after looking at their foundations, the chapter ends with an overview
of the common use-cases of effects in F?.

In Chapter 3, we are interested in abstract interpretation, a theory of
sound approximation which is notably used to certify that a software re-
spects certain properties. While abstract interpretation algorithms provide
sound approximations, an implementation of abstract interpreter might
diverge slightly from these algorithms. There exists provably sound imple-
mentations of abstract interpreters. They are mostly written in Coq and
yield the best guarantees of soundness, at the cost of proof scripts, which
are very difficult to understand for those who are not Coq experts. Our
work presents a verified sound abstract interpreter implemented in F? with
very few manual and explicit proofs. As a result, we are able to fit the
entire source code of our interpreter in the chapter, gaining an order of
magnitude in terms of amount of proofs required, compared to similar
works.

Chapter 4 presents a methodology that gives a way of turning an ab-
stract interpreter into a weakest-precondition monad transformer. The idea
of this work is to exploit the expressive power of specification monads that
implement a weakest-precondition calculus to inject a property inference
mechanism derived from an abstract interpreter. As a result, we get a
hybrid weakest-precondition calculus that uses abstract interpretation to
lighten its computed proof obligations a user shall discharge. As supple-
mentary material, we provide an instance of our methodology, that is a
hybrid weakest-precondition with a partial mechanized proof of soundness.

Chapter 5 changes of scope and focuses on the verification of Infor-
mation Flow Control (IFC) policies of F? programs. It implements an IFC
system as a library whose originality lies in the fact it enables different
shades of verification, from fully static to fully dynamic, according to the
need of the programmer. This chapter describes another use case of static
analysis embedded in a type system: our library infers IFC-related proper-
ties about programs. The F? clients of our library can also be extracted to C
code when they are written in the Low? subset, which enjoys compilation
to C.

To conclude this dissertation, Chapter 6 summarizes our contributions
and discusses possible extensions to our work.

Notes about Chapters 3, 4, and 5

Online material Chapter 3, 4, and 5 have their companion F? imple-
mentations available as supplementary materials at the

16



URL https://lucas.franceschino.fr/phd-thesis/.

Contributions The work presented in Chapter 3 has been accepted for
publication at the 28th Symposium on Static Analysis
(SAS21) [FPT21]. Chapter 5 relates to a collaborative
work with Jean-Joseph Marty, Jean-Pierre Talpin and
Niki Vazou and was the suject of a pre-publication on
ArXiV [Mar+20]. However, Chapter 5 presents an en-
tirely revised version of this work. I’m the single contrib-
utor of the formal developments of Chapter 3 and 4. I au-
thored the F? implementation of the library presented in
Chapter 5, and designed most of its meta-programming
procedure.
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let even = n:Z{n % 2 == 0}
let odd = n:Z{n % 2 == 1}
let empty = _:unit{⊥}

Fig. 2.1: Refinement types exam-
ples.The type empty is inhabited by
nothing: it is isomorphic to type⊥.
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F? is a general purpose functional programming language. It is aimed at
verified programming: it features dependent types and refinement types,
allowing for proving properties of programs. This chapter assumes the
reader is familiar with a functional programming language such as OCaml,
with which F? shares a similar syntax. It presents how to write verified
programs in F?, and details some of its features and foundations.

Classically, most of the code that one writes corresponds to the different
steps necessary to compute a result, in order to solve a given problem.
In verified programming, one also writes specifications and proofs which
have no impact on computations. The sole aim of such a computationally
irrelevant code is to verify properties about portions of programs.

Section 2.1 goes through various simple programs to present how veri-
fied programs can be written in F?. Then Section 2.2 introduces the notion
of computation and specification monads, and finishes with a presentation
of F? Dijkstra monads. The latter play an important role in one of the
major features of F?: effects. This feature gives F? a modular means to
verify programs with a wide spectrum of side effects. Section 2.3 presents
what effects are made of, and highlights a selection of interesting use-cases
in Sections 2.3.2 and 2.3.3.

2.1 Writing and Proving Functional
Programs

This section starts with a short tutorial to functional programming in F?.
We exhibit a selection of features and syntaxes in use in the rest of this
document.

2.1.1 Refinement Types
From the point of view of an F? user, refinement types is the most important
feature of F?: they allow for simple and flexible, yet powerful specifications.
The syntax x:τ{φ} denotes the refinement of the base type τ by the formula
φ that might refer to the variable x. A simple example of type refinement is
the definition of the type for natural numbers. GivenZ the type of relative
numbers,N = n:Z{n≥0} is the type of natural numbers. Fig. 2.1 gives
some more examples.
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Fig. 2.2: The green shape represents
the dependent type r:pos{r ≥ n}.
The 5 points corresponds to the 5 first
values of the factorial function. The
type n:N→r:pos{r ≥ n} captures only
a little of the behavior of the factorial
function.

Below, we give the F? definition of fact, that computes a factorial. The
let rec denotes a recursive top-level declaration. The type of fact is
n:N→ r:pos{r≥n}: such a type is called an arrow type. Moreover, the
return type r:pos{r≥n} refers not only to r, but is also parameterised by
n: we thus call it a dependent type. Here, the refinement types act as pre-
and post-conditions: given n a non-negative integer, the function returns
a strictly positive number greater or equal than n. Figure 2.2 illustrates
this refinement type. The declaration pos is a type synonym: we do not
introduce any type constructor, we just introduce a name for the refinement
n:Z{n > 0}.

type pos = n:Z{n>0}
let rec fact (n: N): r:pos{r ≥ n}
= if n = 0 then 1 1

else 2 multiply (fact (n - 1)) n

(2.1)

Let us review manually why fact typechecks. For any natural number
n, fact n should be of type r:pos{r≥n}. Eliminating the refinement type,
the proof obligation becomes (if n=0 then 1 else 2 ) ≥ n. In other
words, the proof obligation is the conjunction of n = 0 =⇒ 1≥n and n 6=0
=⇒ 2 ≥n. The left part of the conjunction is trivial. Let us look at the
formula 2 ≥ n under the hypothesis n 6=0:

• fact expects n - 1 to be of typeN. By elimination of the refinement
held inN, this expectation amounts to the proof obligation n - 1 ≥
0. The conjunction of our hypothesis n 6= 0 with the elimination of
the refinement n:N gives us our objective n - 1≥0.

• We can now use our recursive call fact (n - 1), that has the type
r:pos{r ≥ n - 1}. This latter type is a subtype of pos: eliminating
this refinement type, we get fact (n - 1)≥1. 2 ≥ n is now trivial
for the SMT solver: the multiplication fact (n - 1) by n is greater or
equal to 1×n.

2.1.2 Inductive Types
Without surprise, F? allows the user to define custom types. Below, we
define two inductive types: one for simple lists (list), and one for lists
with specific lengths (vector). The inductive type list is indexed over τ
a type: the type of list is thus Type→ Type. However, in F?, a type can
be indexed by any sort of values, not only by types. An example of such a
type is vector, whose type is Type→N→ Type.

type list (a: Type): Type
= | Cons: hd:a→ tl:list a→ list a
| Nil: list a

type vector (a: Type): N→ Type
= | VCons: #n:N→ hd:a→ tl:vector a n→ vector a (n+1)

| VNil: vector a 0
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Accessors, implicit types and discriminators For each constructor,
F? produces one discriminator and a set of accessors. In the case of the
constructor Cons: F? produces the accessors Cons?.hd and Cons?.tl, along
with a discriminator Cons?. Their type are given below, and are arrow
types. In a function type, the syntax #x:t denotes an implicit argument
named x of type t. A very common use-case for implicit arguments is
polymorphism. A polymorphic function takes one or multiple type(s) as
parameter(s). Such parameters are redundant: they can generally be
inferred automatically looking at other parameters. In the declaration
implicit, Cons 42 Nil is of type list Z, and the parameter #a is inferred
automatically as Z. In opposition, definition explicit fixes the implicit
type a manually, to set it as the refined typeN.

Cons? : #a:Type→ l:list a→ bool
Cons?.hd : #a:Type→ l:list a{Cons? l}→ a
Cons?.tl : #a:Type→ l:list a{Cons? l}→ list a

let implicit = Cons?.hd (Cons 42 Nil)
let explicit = Cons?.hd #N (Cons 42 Nil)

List of fixed lengths The inductive type vector is designed specifically
to keep track of one specific property: the length of lists. This property is
established by the constructors themselves: a value of type vector Z n is,
by construction, a list of n elements.

However, in F?, lists with specific lengths might be defined in another,
easier way: with refinements. Below, len maps lists to their lengths. The
type synonym vector' takes advantage of this definition and provides an
alternative type for fixed-length lists.

let rec len (l: list τ): N
= match l with | Cons _ tl→ 1 + len tl

| Nil→ 0
type vector' (a: Type) (n: N) = l: list a {len l == n}

This second definition vector' is simpler, and any function that oper-
ates on list τ will also operate on vector' τ n for any n. If x inhabits1 1When a value x is of some type τ , we say x

inhabits the type τ .the type vector' τ n, x is a list for which a proof that len l == n
exists. Refinement types are very flexible and simple to use: vector' is
the standard way to define length-constrained lists in F?.

2.1.3 Inductive Proofs
We begin by defining nth, a function that dereferences the nth element
of a list. The index argument i is refined to be a valid index for the
list l. i is a witness that there exists at least one valid index for l, thus
l is not empty. In consequence, we know that l was constructed with
Cons. 1 destructs directly the list into hd its head and tl its tail, without
pattern matching. nth expects the subtraction 2 to be a valid index for tl.
(i) By 3 and i being a natural number, (ii) by the refinement of i, and
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(iii) by the unrolling of function len, we have (i) i > 1, (ii) i < len l and
(iii) len tl = len l - 1. The SMT solver deduces i - 1 < len tl, which can
be introduced as a refinement so that i is subtyped as j:N{j < len tl}.

let rec nth (l: list τ) (i: N {i < len l}): τ
= let 1 Cons hd tl = l in
if 3 i = 0 then hd else nth tl ( 2 i - 1)

Most languages, devoid of dependent types, cannot express the refine-
ment nth had. They thus implement nth as a partial function. In our case,
the SMT solver is able to automate the inductive proof that nth is a total
function.

We now present two functions that assert the membership of an element
in a list. The first one, mem0 (Equation 2.2), is straigthforward: it maps any
list and element to a boolean, by unfolding the list recursively.

let rec mem0 (#a:eqtype) (l: list a) (e: a): bool
= match l with
| Cons hd tl→ hd = e || mem0 tl e
| Nil→ false

(2.2)

The second one, mem (Equation 2.3), does an identical job, but also
proves that if mem l x holds, there exists an index i such that nth i equals
x. The refinement 1 acts as a lemma about the function mem here. Such an
embedded lemma is called intrinsic. When the list is empty, the lemma is
trivial: there exists no index for an empty list, thus false ⇐⇒ (∃ i. nth
Nil i == e). Otherwise, the list can be destructed as Cons hd tl. Then,
when the head hd equals the element e we are looking for, ∃ i. nth (Cons
hd tl) i == e holds: nth (Cons hd tl) 0 equals to e by definition of
nth. The line 2 helps F? by asserting that latter fact as an intermediate
lemma. When hd is not equal to e, we can use our hypothesis of recurrence
introduced by the recursive call mem tl e, that we reformulate with 3 .

let rec mem (#a:eqtype) (l: list a) (e: a)
: (r:bool{ 1 r ⇐⇒ (∃ i. nth l i == e)})
= match l with
| Cons hd tl→ 2 assert (nth l 0 == hd);

3 assert (∀(i:N{i < len tl}).
nth (Cons hd tl) (i + 1)
== nth tl i);

4 hd = e || mem tl e
| Nil→ false

(2.3)

Note that here, the assertions 2 and 3 are mandatory. If one of
them is omitted, F? fails type-checking. F? fails at subtyping the boolean
we return at 4 as a boolean refined with the predicate 1 . In this case,
these assertions are in fact intermediate lemmas about our function nth.
To find such missing assertions, the F? programmer can play with admit
expressions, that admit a given statement holds.
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Type universes Until now, we wrote Type (or eqtype above) to denote
the “type of types”. However we sometimes need more precision (e.g.
Section 4.2.2 or 5.2.2). In F?, types are organized along a sequence of
non-cumulative type universes [Mou+15]. The first type universe, denoted
Type u#0 (and abbreviated Type0), is inhabited by “ordinary” types, such
asZ or list Z. Then, the first universe of type Type0 inhabits the second
universe Type u#1, which itself inhabits Type u#2, etc. However, type
universes are not cumulative: for instance, Type u#0 doesn’t inhabit Type
u#2. The F? syntax x <: τ denotes type ascriptions. Below, we use type
ascription abusively to demonstrate how type universes nest in F?.

Type u#0 <: (Type u#1 <: (Type u#1 <: (Type u#2 <: ...)))

Type u#1

Type u#0

Z

3
9 −5...

N×N

(3,2)
(9,0)...

un
it

char

N→N
list N

Nil
Cons......

x:Type0→x→Z

Fig. 2.3: Type universe illustration.

The Type notation, with no universe information, denotes an arbitrary
universe of types. F? has an inference mechanism for universes. Thus, uni-
verses are, most of the time, invisible and left implicit. F? also has universe
polymorphism: in Section 2.1.2, we claim that list is of type Type→ Type.
Showing explicitly type universe, list has the (universe polymorphic) type
Type u#n→ Type u#n. Universe expressions obey the following grammar:
(i) natural number literals (i.e. u#3), (ii) universe variables (i.e. u#foo),
(iii) addition between literal constants and universe variables (i.e. u#(foo
+ 4)), (iv) or the maximum of any universe expressions (i.e. u#(max (foo
+ 4) bar)). A universe polymorphic value can be monomorphized: for
instance, list u#5 has the non-universe-polymorphic type Type u#5 →
Type u#5.

An inductive type with a constructor that holds a value of type Type
u#n will live in the type universe of rank at least n+1. Below, we give
an example of such a constructor by defining heterogeneous lists. The
constructor HCons takes as first argument ( 1 ) a type, and a value of that
type as second argument ( 2 ). The definition ex1 is a heterogeneous list of
values (Nand>). Its type inhabits Type u#1; in opposition, the type of ex0
inhabits Type0. The definition ex2 fails2 to be typechecked: F? handles 2In F?, declarations, inner let bindings,

binders in arrow types, and record fields
can be decorated with attributes. An at-
tribute is an arbitrary F? term. The listing
below decorates ex2 with expect_failure,
causing F? to expect the typechecking of
ex2 to fail. Other attribute of interest
includes tcnorm that requests the type-
checker to normalize a declaration, or
plugin, that marks a declaration for native
plugin compilation.

universe polymorphism only on top-level declarations.

noeq type hlist: Type u#(n+1) =
| HCons: 1 t:Type u#n→ 2 hd:t→ tl:hlist→ hlist
| HNil: hlist

let ex0: hlist u#0 = HCons string "Hello!" (HCons Z 4 HNil)
let ex1: hlist u#1 = HCons Type0 N (HCons Type0 > HNil)
[@@expect_failure] let ex2 = HCons Type0 N (HCons N 1 HNil)

Coming back to our definitions of mem and mem0, the type eqtype is
specifically a subset of Type0. A type t inhabits eqtype if there exists
a decidable equality3 Such an equality is automatically generated when 3That is, a function of type x:t → y:t →

r:bool{r ⇐⇒ x == y}: a computable
boolean equality that respects propositional
equality. More precisely, eqtype is a re-
finement over the universe of type Type0:
a:Type0{hasEq a}. The predicate hasEq
is axomatized, and mirrors the types for
which F? was able to generate decidable
equalities.

possible by F? when defining an inductive type. This generation can be
disabled with noeq (as hlist does above).

Extrinsic lemmas While the refinement on mem’s outcome acts as an
intrinsic lemma, one can also state detached (or extrinsic) lemmas. Below,

22



mem_eq_lemma is a lemma that demonstrates the equality between our two
functions mem and mem0. It is a very simple proof by induction.

let rec mem_eq_lemma (#a: eqtype) (l: list a) (x: a)
: Lemma (mem0 l x == mem l x)
= match l with | Cons hd tl→ mem_eq_lemma tl x

| Nil→ ()

(2.4)

The reader might wonder why, in the case where l is Nil, we simply wrote
(), which denotes the only inhabitant of the type unit.

In Section 2.1.2, we explain that a value of type l:list{len l == 3}
is a list for which there exists a proof that len l == 3. Similarly, a value of
type _:unit{mem0 Nil x == mem Nil x} is a value for which there exists a
proof that mem0 Nil x == mem Nil x. The point is that F? encodes proofs
(or lemmas) as particular refinement of the uninformative type unit.

Coming back to our proof when l is the empty list, the sub-goal we
are trying to prove is mem0 Nil x == mem Nil x. When we simply write
(), F? asks the SMT solver whether the value () is of type _:unit{mem0
Nil x == mem Nil x}. This amounts to questioning whether _:unit{mem0
Nil x == mem Nil x} is a subtype of unit (or _:unit{>}), which itself
amounts to proving the following statement, that is proven automatically
by the SMT solver:

> =⇒ mem0 Nil x == mem Nil x

With l non-empty, we use our induction hypothesis mem_eq_lemma tl x
which has type _:unit{mem0 tl x == mem tl x}. To solve the proof goal,
F? tries to subtype mem_eq_lemma tl x as _:unit{mem0 l x == mem l
x}. By elimination of these refinements, the proof obligation becomes:

(mem0 tl x == mem tl x) =⇒ (mem0 l x == mem l x)

Unfolding mem0 and mem, the SMT solver discharges the proof obligation.
The last bit of syntax which we left unexplained is the syntax Lemma.

Until now, every arrow type we gave was of the form τ0→ τ1→ ...→ β,
with τ i and β being any type. The syntax τ0→ τ1→ ...→ β is actually a
syntactic sugar for τ0→ τ1→ ...→ Tot β. Tot indicates pure and total
computations. In F?, arrow types are4 of the shape τ0→ τ1→ ...→ E β 4More specifically, an arrow type of arity

1 is of the shape x:τ → E (y:β x) e1
... en, with τ:Type and b:τ→ Type. The
n arguments e1 ... en are effect indexes
(see 2.3). Arrow type of bigger arity can
be derived by nesting. Three alternative
syntaxes exist for the binder x:
• #x:τ denotes an implicit binder;

• (#[tau] x:τ) denotes an implicit
binder resolved by the ad-hoc tactic tau;

• {| tc ... |} denotes a typeclass con-
straint (which are used a lot in Chap-
ter 3).

where E is an effect. Lemma is simply an effect.
This section presented what F? is made of, and how it can be used. We

will now dive into its internals by discussing effects and Dijkstra monads.

2.2 Dijkstra Monads and Effects
As the previous section underlined, one of the strengths of F? is refined types
and the way subtyping is (mostly) decided by an SMT solver. Another key
feature of F? is its built-in effect system, allowing computations to perform
side-effects and the programmer to reason precisely about them. Before

23



Left and right identity:
retM x >>=M f ≡ f x

f >>=M retM ≡ f

Associativiy:
(f >>=M g) >>=M h ≡ f >>=M (g >>=M h)

Fig. 2.4: Monad laws.

“

”

Left identity: The first monad law
states that if we take a value, put it in
a default context with return and then
feed it to a function by using bind, it’s
the same as just taking the value and
applying the function to it.
Right identity: The second law states
that if we have a monadic value and
we use bind to feed it to return, the
result is our original monadic value.
Associativity: The final monad law
says that when we have a chain of
monadic function applications with
bind, it shouldn’t matter how they’re
nested.

— Learn You a Haskell

diving into F? effects, this section provides some background about monads,
which are the basis of effects.

Real-world programming inherently involves a great number of side
effects that can take many different forms. Non-determinism, interac-
tion with the external world, exceptions or stateful computations are all
side-effects. Most programming languages handle such side-effects via
dedicated and ad hoc syntax. For instance, JavaScript supports exceptions
via a dedicated mechanism and syntax throw, try and catch. Such side-
effects or language feature can however be abstracted in a uniform manner
thanks to monads[Mog91; PW93].

2.2.1 Computational Monads
A monad is an algebraic structure consisting in: (i) a representation, in the
form of a type M: Type→Type; (ii) a return operation retM: τ→M τ ; (iii) a
bind operation (>>=M): M τ→(τ → M β)→M β. A bind operator defines
what the composition of two monadic computations is. The return operator
lifts a value as a monadic computation. The bind and return operations
are expected to obey certain laws: those are presented in Figure 2.4 and
explained by the quotation below it.

In the scope of a purely functional language, every object is just a
function, that is, a relation associating each element of a given domain
to a single element of its codomain. Thus, as such, features like non-
determinism are impossible to bring to pure functions. A great property
for pure functions is to have referential transparency [WR10]: a call to a
pure function can be replaced by its value without changing the meaning
of the program. Monads model computation, not functions.

Let us be more concrete with an example: the state monad st. The
state monad represents computations that can read and write values from a
store. The word computation is important: a computation is not a function
(i.e. not a relation). A computation c of type st Z that returns its current
state is not subject to referential transparency. Indeed, the evaluation of
c at time t1 cannot be replaced with a previous evaluation of c at time
t0. c’s outcome depends on its context. The monad st represents stateful
computations.

Figure 2.5 presents a functional and pure implementation for themonad
st. A stateful computation of type st τ can be seen as a function mapping
an initial store to a final store and a value τ , whence the type st. The
operation returnst x injects a pure value x in the monad st, resulting in
a constant store transformer. The bind operation bindst f g first computes
f and feeds f’s final store to g. The read and write are the actions of the
monad st: they are the interface to the two features offered by the state
monad. read and write are computations in st.

type st (a: Type) = s→ a × s
let returnst (x: τ): st τ = λs0 → x, s0
let writest (x: s): st unit = λ_→ (), x

let bindst (f: st τ) (g: τ → st β)
= λs0 → let x, s1 = f s0 in
g x s1

let readst : st s = λs0 → s0, s0

Fig. 2.5: Definition of the state monad.
24



Monads can encode a very wide variety of language features. While
such monad-encoded functionalities usually concern computations, we will
see that monads manipulating type-level information exist as well, and are
of particular interest.

2.2.2 An Interlude: Hoare Logic and Weakest-Preconditions
As the reader might suspect, the kind of type-level monads we are particu-
larly interested in involves weakest-preconditions. Thus, before discussing
type-level monads, let us look at the particular class of denotational se-
mantics that are weakest precondition calculi, and at Hoare logic.

The Hoare triple {P } f {Q } is a logical statement that holds when,
for an initial context where the predicate P holds, the context after evalu-
ating f satisfies the predicate Q. As an example, let’s consider the triple

Note: For simplicity in this subsection
we let free variables of pre- and post-
conditions implicitly refer to variables
from either initial or final context from
the program in stake.

i = 0; r = 1;
while (i < n)
{ i = i+1; r = r*i; }

Fig. 2.6: fact program.

{X } fact { r > 100 }, with fact the imperative program from Figure 2.6
that computes the factorial of the number stored at variable n into an
other variable r. We are looking for X a suitable pre-condition so that
evaluating fact leads to a context in which r is greater than 100. Since
5! equals 120, a suitable precondition X is n=5. This precondition is far
from being unique: after all, 6! or 10! are also greater than 100. More
specifically, any predicate that implies the factorial of n to be greater than
100 is a valid precondition. Defined below, X is the set of preconditions so
that X ∈ X =⇒ {X } fact { r > 100 }.

X = {P | {P } fact { r > 100 }}

Logical propositions are partially ordered by implication. Note that
X is not empty: it trivially contains ⊥. The set X contains the precondi-
tions that are sufficient to prove the post-condition r > 100. While the
precondition n = 42 is sufficient, it is clearly not necessary. Hence, among
the preconditions in X, we are looking for the loosest possible, the most
permissible one. Such a pre-condition is called a weakest-precondition.

As we just saw, Hoare logic allows one to verify whether a post-condition
holds after executing a program given a certain pre-condition. A weakest-
precondition calculus is a set of computable functions that, given a code
fragment f and a post-condition P , computes a weakest-precondition X
such that {X } f {P }.

2.2.3 Specification Monads
As discussed previously, monads usually represent computationally relevant
behaviors: for instance, throwing an exception changes the control flow
and semantics of a program. By contrast to such computational monads,
specification monad are purely producing type-level information, leaving
aside any concrete outcome.

A specification monad is defined as a monad whose representation type
is inhabited by non-informative values. The reader might then wonder how
such monads, computing only type-level information, are any different
from more standard and straightforward static analysis techniques. Indeed,
evaluating a type-level only computation is basically the same operation as
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performing a static analysis. However, specification monads and computa-
tional monads can be arranged together as indexed monads. Such monads
enjoy the benefits of both specification and computation monads.

Below, Section 2.2.4 defines an example of weakest-preconditionmonad,
that is, a certain sort of specification monad. Section 2.2.5 presents what
indexed monad are on a simple example, so that Section 2.2.6 defines a
monad indexed by a weakest-precondition monad.

2.2.4 Weakest-Precondition Monad
A weakest-precondition monad is a specification monad that computes
weakest-preconditions. As an example, we define such a monad for stateful
computations. We define the type st of state, which is inhabited by partial
maps from addresses to integers. A pre-condition in this setting maps an
initial state to a proposition5; a post-condition maps an outcome value 5In opposition to booleans, propositions of

type Type0 can represent arbitrary non-
decidable logical statements.

and a final state to a proposition. A weakest-precondition transforms
post-conditions into pre-conditions.

let state = address:Z→ option Z
let pre = s0:state→ Type0
let post a = value:a→ s1:state→ Type0
let wp a = post a→ pre

Let us now write a monad that produces weakest-preconditions: a
monad whose representation is wp. Note that inhabitants of wp τ are
continuations. A value x is lifted as a weakest-precondition by writing a
continuation: given a post-condition p and an initial state s0, lifting x does
not update the state, thus its precondition is just p fed with x and s0. Thus,
we simply pass x and the initial state to the post-condition. Binding a
computation6 f to a computation g is done by feeding g as a post-condition 6The word “computation” is to be un-

derstood as “an inhabitant of the repre-
sentation type of the monad in stake”.
The monad in stake having weakest-
precondition as representation, a compu-
tation here is a weakest-precondition.

to f. In other words, to compute the weakest-precondition of “f then g”
given a post-condition p, we compute the weakest-precondition of f given
the precondition required so that g holds given p. Due to the continuation
nature of wp, our monad somehow computes in a backward fashion.

let returnW (v:τ): wp τ
= λ(p: post τ) s0 → p v s0

let bindW (f: wp τ) (g: τ → wp β): wp β
= λp s0 → f (λx s1 → g x p s1) s0

The store operation returns nothing, but performs a side effect. store
address v respects a post-condition p:post unit when p () s1 holds,
with s1 an updated state. read address requires its initial state to be
initialized at address.

let storeW (address: Z) (v: Z): wp unit
= λp s0 → p () (λi→ if i = address then Some v else s0 i)

let readW (address: Z): wp Z
= λp s0 → match s0 address with | Some v→ p v s0

| None→⊥
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The actions we introduced (returnW , bindW , storeW and readW), along
with the representation type wp form a specification monad of weakest-
precondition. We call this monad W.

2.2.5 Indexed Monads
As a motivating example, let us consider a state monad which deals with
finite stacks of numbers, modeled as lists. Just as the state monad from
Figure 2.5, it is tempting to choose a simple representation to define
our monad, as we do below with reprNAIVE

stack . Notice that this definition is
extremely similar to the one given in Figure 2.5.

type reprNAIVE

stack (a: Type): Type = list Z→ a × list Z
let returnNAIVE

stack (v: τ): reprNAIVE

stack τ = λs0 → v, s0
let bindNAIVE

stack (f: reprNAIVE

stack τ) (g: τ → reprNAIVE

stack τ): reprNAIVE

stack τ
= λs0 → let r, s1 = f s0 in g r s1

let pushNAIVE

stack (v:Z): reprNAIVE

stack unit = λstack→ (), v::stack
[@@expect_failure]
let popNAIVE

stack : reprNAIVE

stack Z = λ( ! v::stack)→ v, stack

Here, the catch is that, while the operation pushing a value on the stack
is easy to define, it is not possible to define popNAIVE

stack since the destruction of
arbitrary list (at ! ) is a partial operation. The representation type of our
monad, reprNAIVE

stack is not expressive enough to state whether computations
produce stacks that are empty or not.

In consequence, below we define the type reprstack , which is indexed
with two numbers before and after. A stack computation is thus defined
as a map from lists of length before to a tuple whose right field is a list of
size after.

type reprstack (a: Type) (before: N) (after: N): Type
= (s0:list Z {before == length s0})

→ a × (s1:list Z {after == length s1})

This extra expressiveness allows us to quantify the side effects of a stack
computation. For example, the type of returnstack makes sure returning
a value in our monadic context leaves the size of the stack unchanged.
Similarly, the type of bindstack restricts how two computations can be
composed, e.g. a computation f that produces an empty stack cannot be
composed with g, a computation that expects a non-empty stack.

let returnstack #n (v: τ): reprstack τ n n = λs0 → v, s0
let bindstack (#beforef #afterf #afterg: N)

(f: reprstack τ beforef afterf)
(g: τ → reprstack τ afterf afterg)
: reprstack τ beforef afterg

= λs0 → let r, s1 = f s0 in g r s1

For any n, the action pushstack is a computation that transports a stack
of size n to a stack of size n+1. Now pop is easy to define as a stack
computation that expects a non-empty initial stack.
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let pushstack (#n: N) (v:Z): reprstack unit n (n + 1)
= λ stack → (), v::stack

let popstack (#n: pos) : reprstack Z n (n - 1)
= λ(v::stack)→ v , stack

The indexed monad we just defined is limited. Its indexes are two
numbers, and only allow to state properties about stack sizes. Instead of
indexing a monad simply by a pair of integer, the following section defines
an monad indexed by a weakest-precondition monad.

2.2.6 A Computational Monad Indexed By a Weakest-Precondition
Specification Monad

Our objective here is to write a computational monad M equipped with
the weakest-precondition calculus implemented by W. A computation in W
(of type wp τ) cannot be executed: W gives no computation model, only a
specification. M should hence implement an actual model of computation.
Just as the st monad of Figure 2.5, M computations are represented as
state transformers.

However, its representation reprM is more complicated. Just like the rep-
resentation reprstack of our indexed state monad defined in Section 2.2.5,
reprM is indexed by two values. f:reprM Z w is the representation for
a monadic computation producing integers and respecting the weakest-
precondition w. f is a state transformer parameterized by post-conditions.

let reprM (a: Type) (w: wp a)
= p: post a
→ s0:state {w p s0}
→ r:(a × state) { let v, s1 = r in p v s1 }

On a computational level, M is really similar to st of Figure 2.5. As high-
lighted below, putting the type and the post-condition aside, the definition
returnM and bindM are very similar to returnst and bindst .

let returnM (v:τ): reprM τ (returnW v)
= λ_ s→ v, s

let bindM #fW #gW (f: reprM τ fW) (g: (x:τ)→ reprM β (gW x))
: reprM β (bindW fW gW)
= λp s0 → let x, s1 = f (λx→ gW x p) s0 in

g x p s1

Let us review the type of returnW and bindW . Returning a value v:τ
with returnW v is a computation in M of type τ indexed by the weakest-
precondition returnW v. The specification is completely delegated to
W. Consider f a computation in M of type τ , indexed with the weakest-
precondition fW, and g a continuation from a value x of type τ to a com-
putation in M of type β indexed by a weakest-precondition gW x. Notice
that gW x is, symetrically to g itself, not a weakest-precondition, but a
continuation to a weakest precondition7. Binding f and g results in a 7Keep in mind that computations in monad

W and weakest-preconditions are one same
thing.
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computation in M of type β, indexed by the monadic W bind of its respective
weakest-preconditions.

In our monad M, two monadic computations occur at the same time.
One in the world of the values (that is, what follows the equal sign in
the definitions returnM and bindM above), and one in the world of types
(that is, computing the index of the computation in stake). This exact
mechanism is also used for the last two actions to be defined.

let storeM (address: Z) (v: Z)
: reprM unit (storeW address v)
= λp s0 → (), (λi→ if i = address then Some v else s0 i)

let readM (address: Z)
: reprM Z (readW address)
= λp s0 → match s0 address with

| Some v→ v, s0

We have shown how to construct M, a monad indexed by W a weakest-
precondition monad. The notation of Dijkstra Monads includes monads
such as M.

2.2.7 Dijkstra Monads
The term of Dijkstra monad was first introduced by [Swa+13], from the
observation that a weakest-precondition calculus forms a monad. Previous
works (Hoare Type Theory [NMB08] and Ynot [Nan+08]) have paved the
way up to Dijkstra monad by i.e. exhibiting Hoare monads, that is, monads
indexed by pre- and post-conditions.

In the literature, Dijkstra monads refer either to specification monads
producing weakest-preconditions [Swa+16], or to computational monads
indexed by specificationmonad producingweakest-preconditions [Swa+13;
Ras+21]. These two different definitions are related to the history of how
effects have been implemented in F?, so far in three flavors: primitive,
dm4free/dm4all and layered. The following Section 2.3 leverages the no-
tion of specification and Dijkstra monads previously highlighted to precisely
introduce this notion of effects.

2.3 Effects
The notion of effect lives at the core of F?. In F?, every computation is
associated with type-level information about the nature and scope of its
side effects. Each effect models a certain kind of side effects: stateful com-
putations, divergence, exceptions, etc. Each effect comes with parameters
to specify the scope of side effects. Thus every F? code fragment lives in a
specific effect.

Section 2.3.1 presents commonly useful effects, and gives an intuition
about their nature. The last two sections present more exotic effects. The
first section (Section 2.3.2) presents Tac, an effect dedicated to F? meta-
programming. The second section (Section 2.3.3) is dedicated to effects
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Fig. 2.7: A selected slice of the F? par-
tial order formed by the effects imple-
mented by F?’s standard library [FSt-
dLib].

that implement shallow or deep embeddings. Such a thrilling effect is
Low?. It makes possible low-level and C-like programming right within
F?’s syntax. Under certain restrictions, the functions living in Low?’s effects
can be extracted as raw C code, free of any runtime.

2.3.1 The Bestiary of F? Predefined Effects
Figure 2.7 presents the various effects available out of the box in F?. The
effects with a blue background represent total computations; other ones
potentially represent divergent computations. The effects represented in
the figure with a dotted outline are simply reformulations of another effect.
For instance, Tot and Lemma are both effect abbreviations for PURE. An
arrow from an effect E to F means that a computation in E can be lifted
to a computation in F. For instance, by transitivity, a total computation of
type x:τ → Tot τ can be lifted as a stateful computation of type x:τ →
STATE τ ..., while the other way around is not possible. The effects form
a structure equipped with a partial order, allowing F? to lift computations
from an effect to another in a completely automated fashion.

The PURE effect models pure and total computations. It is a Dijkstra
monad indexed by weakest-preconditions. Figure 2.8 illustrates weakest-

let divpure (n: Z)
: PURE Z (λp→ n 6= 0

∧ p (4 / n))
= 4 / n

let divtot (n: Z{n6=0})
: Tot Z = 4 / n

Fig. 2.8: Example of the same compu-
tation defined as PURE and then as Tot.

preconditions on pure computations. divpure and divtot divide the literal 4
by an input n; yielding the obligation n 6= 0. The only difference between
these two functions is their type annotations. The signature of divtot is
straightforward: given a non-zeroZ, we get anZ. The divtot signature is
more convoluted: it takes any n:Z, and returns a PURE computation of type
Z annotated with the weakest-precondition presented by Equation 2.5. It
means that, for any post-condition p, if the pre-condition n 6=0∧p (4 / n)
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holds on n the input of divpure, then divpure n admits p as post-condition.

λ(p: Z→ Type0)→ n 6= 0 ∧ p (4 / n) (2.5)

As mentioned above, effect Tot is an abbreviation for PURE. Effect PURE
exposes a weakest-precondition interface to specify pure computations,
which is a bit over complicated. The interface of Tot is sufficient. As it has
no side effects whatsoever, the outcome of a pure function only depends
on its formal arguments. Consequently any pre- and post-condition one
could express on a pure function can be encoded as refinement type, i.e.:

f: x:τ{pre-condition}→ r:β{post-condition}

This observation leads to Tot’s own definition, that gives a very strong
not-weakest-precondition transformer to the effect PURE, as presented in
Equation 2.6. The keyword effect introduces a new effect abbreviation.

effect Tot (a:Type) = PURE a (λp→∀ (r:a). p r) (2.6)

In opposition, the effect STATE presented in Figure 2.7 models stateful
computation. Due to the implicit state, refinement types alone are not
sufficient to express state-sensitive properties about computations in STATE.

The last effect we will present here is GHOST. It is an exact clone of
PURE. The difference is their position on the partial order of effects: a GHOST
computation cannot be lifted to any other effect. A computation g in GHOST
is trapped in GHOST, and is marked by F? are computationally irrelevant: g
will be erased at extraction. Non-constructive operations are allowed in
GHOST: for instance, given a proof that ∃ x. p x, a GHOST computation is
allowed to witness such a x.

Primitives A primitive effect is exactly a weakest-precondition monad:
it provides no model of computation. An example of such an effect is
STATE: as Section 2.3.3 will present, STATE is only a specification of stateful
computation. The computation model of STATE is given by F? extraction
to either OCaml or C.

Dijkstra Monad for Free (DM4Free) DM4Free is a way of generating
both a weakest-precondition specification monad and a computational
monad, bundled as an effect. DM is the input language for DM4Free,
and is embedded in F*. It is a simply-typed lambda calculus. Thus the
expressiveness of the representation of effects defined via DM4Free has
some limitations. Defining effects in this way is now deprecated in F? in
favor of layered effects.

Layered effects A layered effect is a full Dijkstra monad in the sense
that it’s a monad-like structure indexed by a specification monad. The
representation of a layered effect might be an arbitrary arrow type ...→
E ..., with effect E arbitrary. This allows for very expressive and flexible
abstractions. Chapter 5 will illustrate this flexibility.
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Reification and reflection Dijkstra monads for free and layered effects
bring to F? effects that can be viewed as computational monads indexed
by specification monads. Consider E: a0:τ0→ ...→ an:τn→ Effect an
effect and repr a0...an: Type its representation. The act of transforming
f: E a0...an into f': repr a0...an is called reification8. The opposite 8In the context of monadic programming,

such a transformation is very common. The
Haskell ST monad is reified by invoking
runST [HaskST] for instance.

transformation is called reflection. An effect can be marked as reifiable
and/or reflectable. Chapter 5 makes use of reification and reflection.

2.3.2 Tactics: Manual Proving and Meta-Programming
This subsection briefly presents the Tac effect that hosts effectful compu-
tations that have a special role. We have seen how to prove properties
about programs with the help of the SMT solver. In proof assistants like
Coq, proofs are carried out by proof scripts. Such scripts are effectful
computations dealing with a proof goal. A proof goal is a set of subgoals,
each constituted of a set of hypotheses and of a formula to be proven.

2.3.2.1 Proving theorems in Coq with tactics

Consider the statement p =⇒ (p ∨ q), given two propositions p and
q. The corresponding proof goal is presented by 1 in Figure 2.9: the
hypotheses are that p and q are propositions, and the goal is p=⇒p∨q.
Coq provides a number of operations that, as a side effect, manipulate the

1

p, q : prop
---------
p=⇒p∨q

2

p, q : prop
h : p
---------
p∨q

3

p, q : prop
h : p
---------
p

Fig. 2.9: Proof goal examples.

current proof goal in a sound way. Those operations are called tactics. The
tactic intro pulls a hypothesis from an implication. Running this tactic on
the proof goal 1 given in Figure 2.9 computes no value but transforms
the proof goal from 1 to 2 as side effect. The tactic left eliminates the
disjunction presented in 2 and gets us to 3 . The tactic exact h finishes
the proof: the hypothesis h solves exactly 3 ’s goal p.

Tactics are very useful, since they allow the user to incrementally build
proof terms. But ultimately, Coq tactics are just producing proof terms
in the calculus of (inductive) constructions [CH86]. In this sense, tactics
are meta-programs: their role is to generate terms. For instance, the Coq
tactics we employed on p =⇒ (p ∨ q) build the proof term λ(x:p) =>
or_introl x, where or_introl is a constructor for the inductive type or.
Given x a proof that p holds, we construct the term or_introl x of type p
∨ q (a.k.a. or p q), that is a proof of p ∨ q.

While Coq programs are written in a language called Gallina, meta-
programs are written in separate languages, hosted in Coq.

2.3.2.2 Tactics in F?

F? also provides facilities to build proof terms from tactics. F? tactics are
regular computations, living in the effect TAC. This effect is defined by
the F? standard library [FStdLib]. The representation of a computation
f: TAC τ wp, with wp a weakest-precondition, is of shape proofstate →
result a, with result a either holding a value τ and a proofstate, or
an error and a proofstate. TAC computations are stateful, potentially
divergent, and potentially failing.
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1
a:eqtype l:list a x:a

mem0 l x == mem l x

2

a:eqtype l:list a x:a

hd:a→ tl:list a→
l==Cons hd tl→
mem0 l x == mem l x

a:eqtype l:list a x:a

l==Nil→ mem0 l x == mem l x

3

a l x:... hd:a tl:list a
h: (l == Cons hd tl)

mem0 l x == mem l x

+ Same second goal as 2

4

a l x:... hd:a tl:list a
h: (l == Cons hd tl)

mem0 (Cons hd tl) x ==
mem (Cons hd tl) x

+ Same second goal as 2

5

a l x:... hd:a tl:list a
h: (l == Cons hd tl)

(hd=x || mem0 tl x) ==
(hd=x || mem tl x)

+ Same second goal as 2

6

a l x:... hd:a tl:list a
h: (l == Cons hd tl)

((hd = x || mem tl x) ==
(hd = x || mem tl x))

+ Same second goal as 2

3’
a l x:... h:l==Nil

mem0 l x == mem l x

4’
a l x:... h:l==Nil

mem0 Nil x == mem Nil x

5’
a l x:... h:l==Nil

false == false

Fig. 2.10: Proof goals for the program
mem_eq_tac.

TAC is indexed by weakest-precondition; in the same spirit as PURE and
Tot, the abbreviation Tac τ denotes tactics that compute values of type
τ , without more specification. Another type abbreviation, TacH, allows
for Hoare-style specifications for meta-programs, allowing for verified
meta-programming.

2.3.2.3 Example

To illustrate how proving with tactics in F? feels, reconsider the mem0
and mem functions presented in Equations 2.2 and 2.3. Below, we present
Lemma 2.7 which is the manual and tactic-based alternative to the previous
lemma 2.4. The aim is to prove that the functions mem0 and mem are point-
wise equal.

let rec mem_eq_tac (#a: eqtype) (l: list a) (x: a)
: Lemma (ensures (mem0 l x == mem l x)) (decreases l)
= assert (mem0 l x == mem l x) by (

1 destruct (quote l);
2 repeat' (λ_→
let hyps = intros () in
3 guard (Cons? hyps); rewrite (last hyps);
4 norm [zeta;deltaonly[`%mem0;`%mem]]; norm[iota];
5 l_to_r [quote mem_eq_tac];
6 trefl ()

)
)

(2.7)

Figure 2.10 presents the different states our proof mem_eq_tac goes
through. To begin with, at 1 , the goal consists in the hypotheses that the
three arguments a, l and x exist. Then we destruct the list l. Function
quote reflects F? terms as syntactic trees (of type term): its type is #a:Type
→ a→ term. Destructing l leads to the proof state 2 , composed of two
subgoals: one if the list is empty, the other if it is not the case. repeat'
takes a computation of type unit→ Tac unit and repeats it until nothing
remains to be proven.

The first repetition focuses on the goal where l is non-empty. The
first sub-goal of 2 presents is an arrow type: given some hd and some
tl, we shall prove mem0 l x == mem l x. To use hd and tl as hypotheses,
we introduce them: intros introduces as many names as possible. Using
the last hypothesis (last hyps in the code, and h in the Figure 2.10), we
rewrite our goal that becomes ( 4 ) mem0 (Cons hd tl) == mem (Cons hd tl).
Unrolling mem0 and mem, we get 5 . norm normalizes a term given a list
of reductions: after δ-reducing mem0 and mem, we ι-reduce to simplify
superfluous matches. l_to_r rewrites every sub-term of the goal from
left to right using specified lemmas. Here we recursively use our lemma
mem_eq_tac, so that it is applied on tl and x. In consequence, mem0 tl x
is rewritten into mem tl x. 6 presents a goal which is true by reflexivity
of equality, hence we apply the tactic trefl.

The second repetition of repeat' takes care of the case where l is
empty. After introducing the hypothesis l==Nil, we rewrite the proof state
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let factc (n: U32.t {v n 6= 0 ∧ v n ≤ max})
: Stack U32.t (λ_→>)

(λh0 r h1 → 1 v r == fact (v n))
= push_frame (); // Pushes a new stack frame, solely for specification
let r = Buffer.alloca 1ul 1ul in
let h0 = get () in // Gets a (computationally irrelevant) reflection of the current memory
let inv h1 m = // inv is the invariant our for loop below should respect

live h1 r // it requires the liveness of the buffer r
∧ modifies (loc_buffer r) h0 h1 // appart from r, nothing changes in the memory
∧ v (Buffer.get h1 r 0) == fact m in // r should always be exactly fact m (m is the loop index)
for 1ul n inv (
λi→ let r0 = !*r in

r *= (r0 × (i + 1ul))
);
let r = !*r in
pop_frame (); // Pops the frame we pushed previously
r

Fig. 2.11: Low-level verified implemen-
tation of the factorial function in F?.

3’ to rewrite l into Nil and get 4’ . mem Nil x and mem0 Nil x both
unfolds to false, as 5’ shows. The step involving l_to_r is not useful,
and does nothing here. Again, the goal 5’ is trivial by reflexivity.

F? tactics are just plain computations that live in a specific effect, TAC.
We saw the function quote that quotes F? terms: the standard library
provides a great number of primitives to interact with F?. The meta-
programming facilities combined with refinement and dependent types al-
low for interesting use-cases. Section 5.7 makes use of meta-programming
more deeply.

2.3.3 Effects Implementing Domain-Specific Languages
Last but not least, effects can implement domain-specific languages. Such
domain-specific languages then benefit from all F? capabilities in terms
of verification. Low? [Pro+17] is an F? library that models the C mem-
ory model and provides effects allowing C-like low-level programming
as a shallow embedding in F?. Let us dive directly into an example with
Figure 2.11 which presents an efficient low-level implementation of our
function fact. In supplement to Low?, KreMLin [Pro+17] is a tool that
extracts an F? program as C code. KreMLin won’t extract any F? program;
it requires the target program to respect certain restrictions implemented
in part by Low?’s effects. In addition, certain features for which there
exists no clear C counterpart, i.e. higher-order functions, are forbidden by
KreMLin. Figure 2.12 presents the C code generated by KreMLin for the
Low? factorial function of Figure 2.11.

Low? programs can however rely on the full F? feature set (i.e. higher-
order functions) when it comes to specifications. For example, in Fig-
ure 2.11, the specification 1 of factc is given by reflecting our previous
functional implementation fact from Equation 2.1.

Low? has been very effective: for example, it enabled the formal verified
implementation of HACL* [Bha+17], a cryptographic library deployed for
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uint32_t fact_c(uint32_t n)
{
uint32_t r = (uint32_t)1U;
for (uint32_t i = (uint32_t)1U; i < n; i++){
uint32_t r0 = *&r;
*&r = r0 * (i + (uint32_t)1U);

}
uint32_t r1 = *&r;
return r1;

}

Fig. 2.12: C code generated from the
extraction of the F? factorial function
of figure 2.11.

example in Firefox or Wireguard VPN. KreMLin can also directly compile
Low? to WebAssmbly [Pro+19].

In a similar way, the Vale project [PEVale21] includes an embedding
of x64 assembly [Fro+19] in F?. Another interesting F? DSL is Ever-
Parse [Ram+19], which is a parser generator for binary data formats.
Finally, Steel [Swa+20] is an ongoing effort to embed a concurrent sepa-
ration logic framework in F*.

All these examples illustrate the wide range of scenarios F? can be used
for. Thanks to its effects, F? is very versatile and can be used for a great
number of situations.

2.4 Conclusion
This section has presented a selection of features F? offers. Through re-
finement (Section 2.1.1) and dependent types (Section 2.1.2), F? allows
to state and verify property about programs in a flexible and powerful
way. Its focus on effects and on Dijkstra monads (Section 2.2) allows
verification for computations which have all kinds of side effects. Most of
the time, F? verification conditions are automatically discharged by SMT
solver techniques (Section 2.1). When automation is too weak, proofs can
be written, entirely or (more commonly) partially, in a more classical proof
assistant style with proof scripts (Section 2.3.2). Programs written and
proven correct in F? can be extracted as OCaml programs. A number of F?
shallow embeddings (Section 2.3.3) allows to write and prove low-level
programs and to extract them as, i.e., C, WebAssembly, or x64 assembly.

Those different features make F? very interesting and promising for
writing real-world verified software. Such capabilities have been demon-
strated with HACL* for instance. The picture is not all bright however;
certain patterns, such as stateful code or recursion, require from the pro-
grammer some rather boring annotation. F? could use some help from
static analysis approaches. Chapter 3 presents a static analyzer imple-
mented and verified in F?. Then, the Chapter 4 establishes a hybridization
of such verified F? analyser with F? effects, with the aim of lightening the
annotation effort of F? programmers.
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In Chapter 2, we presented the dependently typed language F?. A language
equipped with a very powerful and precise type system is one of the ways to
achieve formal verification of programs. In the case of such a programming
language, a program implementation directly embeds its specifications.
Each code fragment is typed, and thus has a specification. In such settings,
programs are specified and implemented at the same time.

By contrast, most other approaches to formal verification dissociate
implementation from verification. Such formal verification tools build a
mathematical model from an existing implementation of a program. This
mathematical model –faithful to the implementation semantics– is then
used to certify the implementation as respecting certain given properties.
The workflow thus consists first in writing a program, then in building a
faithful model of its semantics, to finally verify whether a property holds.

This chapter focuses on abstract interpretation. Most of the tools that
follow the methodology of abstract interpretation do not formally establish
a relation between their algorithmic theory and implementations. Sev-
eral abstract interpreters have however been proven correct. The most
notable one is Verasco [Jou+], a static analyser of C programs that has
been entirely written, specified and proven in the proof assistant Coq.
However, understanding the implementation and proof of Verasco requires
an expertise with Coq and proof assistants.

Proofs in Coq are achieved thanks to an extensive use of proof scripts,
that are very difficult for non expert to read. By contrast with a handwritten
proof, a Coq proof can be very verbose, and does often not convey a good
intuition for the idea behind a proof. Thus, writing and proving sound a
static analyzer is a complex and time-consuming task: for example, Verasco
requires about 17k lines [Jou+] of manual Coq proofs. Such an effort,
however, yields the strongest guarantees and provides complete trust in
the static analyser.

This chapter showcases the F? implementation of a sound static analyser,
by presenting about 95% of its 527 lines of code. It is an abstract interpreter
equipped with the numerical abstract domain of intervals, forward and
backward analyses of expressions, widening, and syntax-directed loop
iteration. The implementation we present is the first abstract interpreter
verified with SMT techniques. We gain an order of magnitude in the number
of proof lines in comparison with similar works with Coq implementations.
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5

25

ERR

6

36

-3

7

49

-2

i ∈ [5, 7]

i ∈ [25, 49]

ERR

i = random(5, 7)

i = i * i

i = i / (25 - i)

CONCRETE SEMANTICS ABSTRACT SEMANTICS

Fig. 3.2: Concrete and abstract inter-
pretation of a simple program.

3.1 Some Intuition About Abstract
Interpretation

Abstract interpretation is a theory of sound approximation of program
semantics. A standard program interpreter runs a program in a concrete
world: the possibly wide domain of inputs and possible non-determinism
may yield an enormous number of possible execution trajectories. The
white lines of Figure 3.1 represent such many concrete trajectories for a
variable x. By contrast, an abstract interpreter runs that same program
in an abstract world: instead of mapping variables to precise concrete
values, variables are mapped to (sound) sets of possible values. The shape
of Figure 3.1 represents such an approximation over time for a variable
x. Figure 3.2 presents the concrete and abstract interpretation for a 3

program steps
va
ria
bl
e
x

Fig. 3.1: An abstract interpreter catches
the many possible concrete seman-
tics (the white lines) by approximating
them (the colored shape).

instructions program which consists in arithmetic operations on a random
number between 5 and 7. There exists three different paths for its concrete
interpretations. Instead of interpreting the program with concrete values,
the abstract interpreter approximates the program with abstract values.
In this example, the abstract values are intervals of numbers: the interval
[5, 7] describes exactly the set of concrete values {5, 6, 7}, and the interval
[25, 49] is an over approximation of the concrete values 25, 36 and 49. Here,
it is possible to run a concrete interpretation for every possible path. The
concrete interpretation would be sufficient here to spot the division by
zero.

Now, consider the program in Figure 3.4. The integer N being an
arbitrarily large integer, the number of possible concrete interpretations is
possibly very big. For N sufficiently big, running all the possible concrete
interpretations is impossible in a reasonable amount of time. On the
abstract interpreter side however, this is not a problem: the analysis is
still performed in 3 steps. Indeed, a random number between 5 and N is
approximated by [5,∞[, which leads to the division by zero being spotted.
This is the power of abstract interpretation: it provides an approximate but
sound interpretation of a program in finite time.

2
-1
5

4
1
-5

i∈[2,4]

i∈[-1,1]

ERR

i=rand(1,2)*2

i = i - 3

i = 5 / i
CONCRETE ABSTRACT

Fig. 3.3: Example of a false alarm.

Abstract interpretation is a sound theory, meaning that if the analysis
finds no runtime error, then the program won’t fail at runtime. The other
way around is not true: an abstract interpreter approximates the semantics
of a program, and thus misses some of its subtleties. Its approximate
analysis might yield a false alarm, warning about an issue that will not
occur in practice. Figure 3.3 illustrates such a false alarm: [−1, 1] over
approximates the concrete values 1 and −1, and the abstract interpreter
warns about a (possible) division by zero.
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CONCRETE SEMANTICS ABSTRACT SEMANTICS

Fig. 3.4: Concrete and abstract inter-
pretation of a simple program with
more possible execution paths. N is an
arbitrarily large integer.

3.2 IMP: a Small Imperative Lan-
guage

To present our abstract interpreter, we first show the language on which it
operates: IMP. It is a simple imperative language, equipped with memories
represented as functions from variable names varname to signed integers,
intm . This chapter is also an opportunity to examplify some aspects of
F? presented in Chapter 2. IMP’s F? definition looks like OCaml; the
main difference is the explicit type signatures for constructors in algebraic
data types. IMP has numeric expressions, encoded by the type expr, and
statements stmt. Booleans are represented numerically: 0 represents
false, and any other value stands for true. The enumeration binop equips
IMP with various binary operations. The constructor Unknown encodes
an arbitrary number. Statements in IMP are the assignment, the non-
deterministic choice1, the sequence and the loop. 1The conditional if JcK then JaK else JbK is

thus represented as a non-deterministic
choice between Seq (Assume c) a and
Seq (Assume c') b, with c' the negation
of c.

type varname = | VA | VB | VC | VD
type mem τ = varname τ
type binop = | Plus | Minus | Mult | Eq | Lt | And | Or
type expr = | Const: intm expr | Var: varname expr

| BinOp: binop expr expr expr | Unknown
type stmt = | Assign: varname expr stmt

| Assume: expr stmt | Loop: stmt stmt
| Seq: stmt stmt stmt
| Choice: stmt stmt stmt

The type intm is a refinement of the built-in F? typeZ: while every integer
lives in the type Z, only those that respect certain bounds live in intm .
Numerical operations (+, - and×) on machine integers wrap on overflow,
i.e. adding one to the maximal machine integer results in the minimum
machine integer. We do not give the detail of their implementation.

3.3 Operational Semantics
This section defines an operational semantics for IMP. We choose to for-
mulate our semantics in terms of sets. Sets are encoded as maps from
values to propositions prop. Those are logical statements and shouldn’t be
confused with booleans. Below,⊆quantifies over every inhabitant of a type:
stating whether such a statement is true or false is clearly not computable.
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Arbitrarily complex properties can be expressed as propositions of type
prop.

In the listing below, notice the Greek letters: we use them throughout
the manuscript. They denote implicit type arguments: for instance, below,
∈ works for any set set τ , with any type τ . F? provides the propositional
operators ∧, ∨ and ==, in addition to boolean ones (&&, || and =). We use
them below to define the union, intersection and differences of sets.

type set τ = τ prop let (∈) (x: τ) (s: set τ) = s x
let (∩) s0 s1 = λx x∈s0 ∧ x∈s1 let (\) s0 s1 = λv s0 v ∧ ~(s1 v)
let (∪) (s0 s1: set τ): set τ = λx x ∈ s0 ∨ x ∈ s1
let (⊆) (s0 s1: set τ): prop = ∀ (x: τ). x ∈ s0 =⇒ x ∈ s1
let set_inverse (s: set intm): set intm = λ(i: intm) s (-i)

To be able to work conveniently with binary operations on integers in our
semantics, we define lift_binop, that lifts them as set operations. For
example, the set lift_binop (+) a b (a and b being two sets of integers)
corresponds to {va+ vb | va ∈ a ∧ vb ∈ b}.

let lift_binop (op: τ τ τ) (a b: set τ): set τ
= λr ∃ (va:τ). ∃ (vb:τ). va ∈ a ∧ vb ∈ b ∧ r == op va vb

unfold let lift op = lift_binop (concrete_binop op)

The binary operations we consider are enumerated by binop. The function
concrete_binop associates these syntactic operations to integer operations.
For convenience, lift maps a binop to a set operation, using lift_binop.
This function is directly inlined by F? when used because of the keyword
unfold; intuitively lift behaves as a macro.

unfold let concrete_binop (op: binop): intm intm intm
= match op with | Plus nadd | Lt ltm | ... | Or orim

The operational semantics for expressions is given as a map from memories
and expressions to sets of integers. Notice the use of both the syntax val
and let for the function osemexpr. The val syntax gives osemexpr the type
mem expr set intm , while the let declaration gives its definition. The
semantics itself is uncomplicated: Unknown returns the set of every intm ,
a constant or a Var returns a singleton set. For binary operations, we lift
them as set operations, and make use of recursion.

val osemexpr: mem expr set intm
let rec osemexpr m e = λ(i: intm)

match e with | Const x i==x | Var v i==m v | Unknown >
| BinOp op x y lift op (osemexpr m x) (osemexpr m y) i

The operational semantics for statements maps a statement and an initial
memory to a set of admissible final memories. Given a statement s, an
initial memory mi and a final one mf , osemstmt s mi mf (defined below) is
a proposition stating whether the transition is possible.

val osemstmt (s: stmt): mem set mem
let rec osemstmt (s: stmt) (mi mf: mem)
= match s with
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mi m1 mf
a b

Seq a b

Fig. 3.5: Illustration of the operational
semantics for the statement Seq a b.
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Fig. 3.6: The lattice of intervals of inte-
gers between 0 and 3.
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| Assign v e ∀w. if v = w then mf v ∈ osemexpr mi e
else mf w == mi w

| Seq a b ∃ (m1: mem). m1 ∈ osemstmt a mi
∧ mf ∈ osemstmt b m1

| Choice a b mf ∈ (osemstmt a mi ∪ osemstmt b mi)
| Assume e mi == mf

∧ (∃ (x: intm). x 6= 0 ∧ x ∈ osemexpr mi e)
| Loop a closure (osemstmt a) mi mf

The simplest operation is the assignment of a variable v to an expression e:
the transition is allowed if every variable but v in mi and mf is equal and
if the final value of v matches with the semantics of e. Assuming that an
expression is true amounts to require the initial memory to be such that at
least a non-zero integer (that is, the encoding of true) belongs to osemexpr
mi e. As Figure 3.5 illustrates, the statement Seq a b starting from the
initial memory mi admits mf as a final memory when there exists (i) a
transition from mi to an intermediate memory m1 with statement a and
(ii) a transition from m1 to mf with statement b. The operational semantics
for a loop is defined as the reflexive transitive closure of the semantics of
its body. The closure function computes such a closure, and is provided
by F? standard library.

3.4 Abstract Domains
The core of an abstract interpreter is its abstract domain. Section 3.1
presents a few examples relying on intervals as an abstract domain for
integers. Interval [1; 3] describes the set of values {1; 2; 3} and is thus a
sound over-approximation of, e.g. the value 2. An abstract value is to
be seen as a property: [1; 3] meaning “between 1 and 3”. Each abstract
domain has its own expressivity in terms of invariants: for instance, the
interval domain can only represent a limited class of properties, e.g., the
range of variables.

Abstract interpretation of programs computes abstract values instead
of concrete ones. Abstract domains are lattices partially ordered by a
relation v# that models properties entailment. For instance, in the lattice
presented in 3.6, [0; 3] is greater than [1; 3]: if “between 1 and 3” holds
on some x, then “between 0 and 3” holds on x as well. Consider the
lattice (P(Z),⊆) of concrete properties on numerical values and another
one (D#,v#), the abstract domain, for some D# set. Suppose D# is an
abstract domain that approximates P(Z), the concrete domain of integers.
Then, an abstraction function α maps concrete properties x ∈ P(Z) to
α(x) ∈ D#, its best abstract approximations. The concretization function
γ does the opposite. A concrete interpreter associates a computation F to
a partial function f : Z→ Z, whereas an abstract interpreter associates F
to a total function f# : D# → D#.

There exists a lot of different domains with different expressivities.
The domain of intervals is non relational: it cannot express relationship
between variables. Figure 3.7 illustrates the gap of expressivity between
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non-relational domains and relational ones.

Parametricity Our abstract interpreter is parametrized over relational
domains. We instantiate it later with a weakly-relational2 [Cou+05] mem- 2A non relational domain augmented with

a relational but weak property is called
weakly-relational. Later, we consider ab-
stract memories, mapping variables to in-
tervals. We augment this mapping with a
⊥ element, encoding unreachability, this
property being relational.

ory. This section defines lattices and abstract domains. Such structures are
a natural fit for typeclasses [Mar+19], which allow for ad hoc polymor-
phism. In our case, it means that we can have one abstraction for lattices
for instance, and then instantiate this abstraction with implementations
for, say, sets of integers, then intervals, etc. Typeclasses can be seen as
record types with dedicated dependency inference. Below, we define the
typeclass lattice: defining an instance for a given type equips this type
with a lattice structure.

Refinement types Below, the syntax x:τ{p x} denotes the type whose
inhabitants both belong to τ and satisfy the predicate p. For example,
the only inhabitant of the type bot:N{∀(n:N). bot≤n} is 0, the smallest
natural number. To typecheck x:τ , F? collects the proof obligations implied
by "x has the type τ ", and tries to discharge them with the help of the SMT
solver. If the SMT solver is able to deal with the proof obligations, then
x:τ typechecks. In the case of "0 is of type bot:N{∀(n:N). bot≤n}", the
proof obligation is ∀(n:N). 0≤n.

Below, most of the types of the fields from the record type lattice
are refined. Typechecking i against the type lattice τ yields a proof
obligation asking (among other things) for i.join to go up in the lattice
and for bottom to be a lower bound. Thus, if "i has type lattice τ "
typechecks, it means that there exists a proof of the properties on i written
as refinements in the definition of lattice. We found convenient to let
bottom represent unreachable states. Note lattice is under-specified, i.e.
it doesn’t require join to be provably a least upper bound, since such a
property plays no role in our proof of soundness. This choice follows Blazy
and al. [BLP16].

class lattice τ = { corder: order τ
; join: x:τ y:τ r:τ {corder x r ∧ corder y r}
; meet: x:τ y:τ r:τ {corder r x ∧ corder r y}
; bottom: bot:τ {∀x. corder bot x}; top: top:τ {∀x. corder x top}}

For our purpose, we need to define what an abstract domain is. In our set-
ting, we consider concrete domains with powerset structure. The typeclass
adom encodes them: it is parametrized by a type τ of abstract values. For
instance, consider itv the type for intervals: adom itv would be the type
inhabited by correct abstract domains for intervals.

Implementing an abstract domain amounts to implementing the fol-
lowing fields: (i) c, that represents the type to which abstract values τ
concretize; (ii) adomlat, a lattice for τ ; (iii) widen, a widening operator that
ensures convergence of fixpoint iterations; (iv) γ, a monotonic concretiza-
tion function from τ to set c; (v) order_measure, a measure ensuring the
abstract domain doesn’t admit infinite increasing chains, so that termina-
tion is provable for fixpoint iterations; (vi) meetlaw, that requires meet to
be a correct approximation of set intersection; (vii) toplaw and botlaw, that
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ensure the lattice bottom concretization matches with the empty set, and
similarly for top.

class adom τ = { c: Type; adomlat: lattice τ
; γ: (γ: (τ set c) {∀ (x y: τ). corder x y =⇒ (γ x ⊆ γ y)})
; widen: x:τ y:τ r:τ {corder x r ∧ corder y r}
; order_measure: measure adomlat.corder
; meetlaw: x:τ y:τ Lemma ((γ x ∩ γ y) ⊆ γ (meet x y))
; botlaw: unit Lemma (∀ (x:c). ~(x ∈ γ bottom))
; toplaw: unit Lemma (∀ (x:c). x ∈ γ top)}

Notice the refinement types: we require for instance the monotony of γ.
Every single instance for adom will be checked against these specifications.
No instance of adomwhere γ is not monotonic can exist. Given a proposition
p, the Lemma p syntax signals a function whose outcome is computationally
irrelevant, since it simply produces (), the inhabitant of type unit. How-
ever, as Section 2.1.3 explains, it does not produce an arbitrary unit: it
produces an inhabitant of _:unit {p}, that is, the type unit refined with
the goal p of the lemma itself.

For practicality, we define some infix operators for adomlat functions.
The syntax {|...|} lets one formulate typeclass constraints: for example,
(v) below ask F? to resolve an instance of the typeclass adom for the type
τ , and name it l. Below, (u) instantiates the lemma meetlaw explicitly:
meetlaw x y is a unit value that carries a proof in the type system.

let (v) {|l:adom τ|} = l.adomlat.corder
let (t) {|l:adom τ|} (x y:τ): r:τ { corder x r ∧ corder y r

∧ (γ x ∪ γ y) ⊆ γ r } = join x y
let (u) {|l:adom τ|} (x y:τ): r:τ { corder r x ∧ corder r y

∧ (γ x ∩ γ y) ⊆ γ r }
= let _ = meetlawx y in meet x y

Lemmas are functions that produce refined unit values carrying proofs.
Below, given an abstract domain i, and two abstract values x and y,
join_lemma i x y is a proof concerning i, x and y. Such an instanti-
ation can be manual (i.e. below, i.toplaw () in top_lemma), or automatic.
The automatic instantiation of a lemma is decided by the SMT solver. Below,
we make use of the SMTPat syntax, that allows us to provide the SMT solver
with a list of patterns. Whenever the SMT solver matches a pattern from
the list, it instantiates the lemma in stake. The lemma join_lemma below
states that the union of the concretization of two abstract values x and
y is below the concretization of the abstract join of x and y. This is true
because of γ monotony: we help the SMT solver a little by giving a hint
with assert. This lemma is instantiated every time a proof goal contains
x v y.

Because of a technical limitation, we cannot write SMT patterns directly
in the meetlaw, botlaw and toplaw fields of the class adom: below we thus
reformulate them.

let top_lemma (i: adom τ) (let bot_lemma, meet_lemma = ...)
: Lemma (∀ (x: i.c). x ∈ i.γ i.adomlat.top)
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[SMTPat (i.γ i.adomlat.top)] = i.toplaw ()
let join_lemma (i: adom τ) (x y: τ)

: Lemma ((i.γ x ∪ i.γ y) ⊆ i.γ (i.adomlat.join x y))
[SMTPat (i.adomlat.join x y)]

= let r = i.adomlat.join x y in assert (γ x ⊆ γ r ∧ γ y ⊆ γ r)

3.5 An Example of Abstract Domain:
Intervals

Until now, we mostly presented specificational aspects of our abstract
interpreter. This section presents the abstract domain of intervals, and thus
shows how proof obligations are dealt with in F?.

3.5.1 Definition of Intervals
Below, the type itv' is a dependent tuple: the refinement type on its
right-hand side component up depends on low. If a pair Lx,yM is of type
itv', we have a proof that x ≤ y. Function dfst takes the first element of
a dependent tuple, dsnd the second one.

type itv' = low:intm & up:intm {low≤up} type itv = withbot itv'

The machine integers being finite, itv' naturally has a top element. How-
ever, itv' cannot represent the empty set of integers, whence itv, that
adds an explicit bottom element using withbot. For convenience, mkmakes
an interval out of two numbers, and itvcard computes the cardinality of
an interval. We will use it later to define a measure for intervals. inbounds
x hold when x:Z fits machine integer bounds.

type withbot (a: Type) = | Val: v:a withbot a | Bot
let mk (x y: Z): itv = if inbounds x && inbounds y && x ≤ y

then Val Lx,yM else Bot
let itvcard (i:itv):N = match i with | Bot 0 | Val i dsnd i - dfst i + 1

Below, latitv is an instance of the typeclass lattice for intervals: intervals
are ordered by inclusion, the meet and join operations consist in unwrap-
ping withbot, then playing with bounds. latitv is of type lattice itv: it
means for instance that we have the proof that the join and meet operators
respect the order latitv.corder, as stated in the definition of lattice.
Note that, here, not a single line of proofs is required: F? transparently
builds up proof obligations, and asks the SMT to discharge them, which
does so automatically.

instance latitv: lattice itv =
{ corder = withbotord #itv' (λLa,bM Lc,dM a≥c && b≤d)
; join = (λ(i j: itv) match i, j with

| Bot, k | k, Bot k
| Val La,bM, Val Lc,dM Val Lmin a c, max b dM)

; meet = (λ(x y: itv) match x, y with
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Fig. 3.8: Abstract interpretation of the
iteration of abstract operator f , start-
ing at interval x. The sequence F is de-
fined by F0 = x and Fi+1 = Fi∪f Fi.
Thus F is strictly increasing: it accumu-
lates properties. Here, F 7 is a fixpoint:
for any i, the approximation f i x is con-
tained in F 7.

| Val La,bM, Val Lc,dM mk (max a c) (min b d)
| _ Bot); bottom = Bot; top = mk minintm maxintm }

3.5.2 Fixpoint Iterations With a Widening Operator
To reason about loops, loop invariants are of particular interest. An invari-
ant is a property that holds before and after each iteration. As exposed
in Section 3.1, an abstract value can be interpreted as a property. In the
settings of abstract interpretation, we are hence looking for abstractions
capturing loop invariants. Figure 3.8 illustrates the computation of a fix-
point. In certain abstract domains, there exists infinite increasing chains
(of such iterations with respect to the lattice order): in such cases, a fix-
point iteration as presented in Figure 3.8 would never end. Even if in our
case the lattice of intervals over bounded integer is finite, such iterations
can be slow (i.e. proportional to the height of the lattice). To prevent
non-convergent or slow fixpoint computation in abstract domains, we need
to make use of widening [CC77].

Section 3.6 presents an F? formalization of widening operators. For
the sake of simplicity however, our abstract interpreter assumes its abstract
domains to be finite. In such settings, widening operators trivially converge,
thus we avoid the complexity addressed in Section 3.6.

Below, widen implements a very classical widening operator for inter-
vals, based on thresholds. Without a single line of proof, widen is shown
as respecting the order corder.

let thresholds: list intm
= [minintm;-64;-32;-16;-8;-4;4;8;16;32;64;maxintm]

let widen_bound_r (b: intm): (r:intm {r>b ∨ b=maxintm}) =
if b=maxintm then b
else find' (λ(u:intm) u>b) thresholds

let widen_bound_l (b: intm): (r:intm {r<b ∨ b=minintm}) =
if b=minintm then b
else find' (λ(u:intm) u<b) (rev thresholds)

let widen (i j: itv): r:itv {corder i r ∧ corder j r}
= match i, j with | Bot, x | x, Bot x
| ValLa,bM,ValLc,dM

Val L (if a≤c then a else widen_bound_l c)
, (if b≥d then b else widen_bound_r d)M

Similarly, turning itv into an abstract domain requires no proof effort.
Below itvadom explains that intervals concretize to machine integers (c =
intm), how it does so (with γ = itvγ ), and which lattice is associated with
the abstract domain (adomlat = latitv). As explained previously, the proof
of a proposition p in F* can be encoded as an inhabitant of a refinement of
unit, whence the "empty" lambdas: we let the SMT solver figure out the
proof on its own.

let itvγ: itv set intm
= withbotγ (λ(i:itv') x dfst i≤x ∧ x≤dsnd i)

instance itvadom: adom itv =
{ c = intm; adomlat = latitv; γ = itvγ
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; meetlaw = (λ_ _ ()); botlaw = (λ_ ()); toplaw = (λ_ ())
; widen = widen; order_measure={f=itvcard;max=sizeintm}}

3.5.3 Forward Binary Operations on Intervals
This subsection takes care of defining common arithmetic and logical
operators for intervals. Most of these binary operators on intervals can
be written and shown correct without any proof. Our operators handle
overlows of machine integers. For instance, add_overflows returns a
boolean indicating whether the addition of two integers overflows, solely
by performing machine integer operations.

Arithmetic operations

The refinement of add_overflows states that the returned boolean r should
be true if and only if the addition inZ differs from the one in intm . The
correctness of itvadd is specified as a refinement: the set of the additions
between the concretized values from the input intervals is to be included
in the concretization of the abstract addition. Its implementation is very
simple, and its correctness is proved automatically.

let add_overflows (a b: intm)
: (r: bool {r ⇐⇒ int_arith.nadd a b 6= int_m_arith.nadd a b})
= ((b<0) = (a<0)) && abs a > maxintm - abs b

let itvadd (x y: itv): (r: itv {(γ x + γ y) ⊆ γ r})
= match x, y with | Val La, bM, Val Lc, dM

if add_overflows a c || add_overflows b d
then top else Val La + c, b + dM | _ Bot

However in the case of interval inversion, the SMT solver sometimes misses
a necessary lemma, for which we give a tactic-based proof below (as ex-
plained in Section 2.3.2). Everything within the parenthesis following the
by keyword is a tactic. It proves that subtracting two numerical sets a and
b is equivalent to adding a with the inverse of b.

Unfortunately, due to the nature of lift_binop, this yields existential
quantifications which are difficult for the SMT solver to deal with. After
normalizing our goal (with compute ()), and dealing with quantifiers
and implications (forall_intro, implies_intro and elim_exists), we
are left with ∃y. b (-y) ∧ r=x+y knowing b z ∧ r=x-z given some
z as an hypothesis. Eliminating ∃y with -z is enough to complete the
proof. This showcases the power and flexibility of F? type system: one can
state arbitrarily mathematically-hard propositions (for which automation is
hopeless). In such cases, one can always resort to Coq-like manual proving
to handle hard proofs.

let set_inverse (s: set intm): set intm = λ(i: intm) s (-i)
let lemmainv (a b: set intm)

: Lemma ((a-b) ⊆ (a+set_inverse b)) [SMTPat (a+set_inverse b)]
= assert ((a-b) ⊆ (a+set_inverse b)) by ( compute ();

let _= forall_intro () in let p0 = implies_intro () in
let witX,p1 = elim_exists (binder_to_term p0) in
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let witY,p1 = elim_exists (binder_to_term p1) in
let z: Z = unquote (binder_to_term witY) in
witness witX; witness (quote (-z)))

Notice the SMT pattern: the lemma lemmainv will be instantiated every
time the SMT deals with an addition involving an inverse. Defining the
subtraction itvsub is a breeze: it simply performs an interval addition
and an interval inversion. Here, no need for a single line of proof for its
correctness (expressed as a refinement).

let itvinv (i: itv): (r: itv {set_inverse (γ i) ⊆ γ r})
= match i with | ValLlower, upperM ValL-upper, -lowerM | _ i

let itvsub (x y:itv): (r: itv {(γ x - γ y) ⊆ γ r}) = itvadd x (itvinv y)

Proving multiplication sound on intervals requires a lemma which is not
automatically inferred:

∀x ∈ [a, b], y ∈ [b, c].x× y ∈ [min (ac, ad, bc, bd) ,max (ac, ad, bc, bd)]

In that case, decomposing that latter lemma into sublemmas lemmamin and
lemmamul is enough. Apart from this lemma, itvmul is free of any proof term.

The syntax `f` denotes the infix
notation for function f. For in-
stance, x `f` y is desugared into
f x y.

let lemmamin (a b c d: Z) (x: Z{a≤x ∧ x≤b}) (y: Z{c≤y ∧ y≤d})
: Lemma (x×y≥a×c ∨ x×y≥a×d ∨ x×y≥b×c ∨ x×y≥b×d) = ()

unfold let inbtw (x: Z) (l u: Z) = l≤u ∧ x≥l ∧ x≤u
let lemmamul (a b c d x y: Z)
: Lemma (requires inbtw x a b ∧ inbtw y c d)

(ensures x×y ≥ (a×c) `min` (a×d) `min` (b×c) `min` (b×d)
∧ x×y ≤ (a×c) `max` (a×d) `max` (b×c) `max` (b×d))

[SMTPat (x×y); SMTPat (a×c); SMTPat (b × d)]
= lemmamin a b c d x y; lemmamin (-b) (-a) c d (-x) y

let mul_overflows (a b:intm):(r:bool{r6=inbounds (int_arith.nmula b)})
= a 6= 0 && abs b > maxintm `divm` (abs a)

let itvmul (x y: itv): r:itv {(γ x × γ y) ⊆ γ r}
= match x, y with

| Val La, bM, Val Lc, dM
let l = (a×c) `min` (a×d) `min` (b×c) `min` (b×d) in
let r = (a×c) `max` (a×d) `max` (b×c) `max` (b×d) in
if mul_overflows a c || mul_overflows a d
|| mul_overflows b c || mul_overflows b d
then top else Val Ll, rM

| _ Bot

Logical operations

The forward boolean operators for intervals require no proof at all.
Booleans being represented by integers, itv_as_bool returns TT when an
interval does not contain 0, FF when it is the singleton 0, Unk otherwise.
This behavior is illustrated by Figure 3.9.
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Fig. 3.10: Behavior of logical binary
operations itvlt , itvandi and itveq
on intervals. Every possible concrete
boolean operation is represented by
a line bewteen two numbers. A line
is continuous and green when the op-
eration returns true, and dotted red
otherwise.
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let β (x: intm): itv = mk x x
let itveq (x y:itv): r:itv {(γ x = γ y)⊆ γ r}

= if x = y && itvcard x = 1
then β 1 else if Bot? (x u y) then β 0 else mk 0 1

let itvlt (x y: itv): (r: itv {(γ x < γ y) ⊆ γ r})
= match x, y with | Bot, _ | _, Bot β 1
| ValLa,bM,ValLc,dM if b<c then β 1

else if a>d then β 0 else mk 0 1
let itvcγ (i: itv) (x:intm): r:bool {r ⇐⇒ itvγ i x}

= match i with | Bot false | Val Ll, uM l ≤ x && x ≤ u
type ubool = | Unk | TT | FF
let itv_as_bool (x:itv): ubool

= if β 0=x || Bot?x then FF else if itvcγ x 0 then Unk else TT
let itvandi (x y: itv): (r: itv {(γ x && γ y) ⊆ γ r})
= match itv_as_bool x, itv_as_bool y with
| TT, TT β 1 | FF, _ | _, FF β 0 | _, _ mk 0 1

let itvori (x y: itv): (r: itv {(γ x `nor ` γ y) ⊆ γ r})
= match itv_as_bool x, itv_as_bool y with
| FF, FF β 0 | TT, _ | _, TT β 1 | _, _ mk 0 1

3.5.4 Backward Operators
While a forward analysis for expressions is essential, another powerful
analysis can be made thanks to backward operators. Typically, it aims
at extracting information from a test, and at refining the abstract values
involved in this test, so as to gain in precision on those abstract values. As
an example, consider the test x + y ≤ 5 in an abstract memory in which x
is approximated by [1, 3], and y by [3, 6]. As illustrated in Figure 3.11, if x
is greater than 2 or y greater than 4, the test x + y ≤ 5 cannot be true.
Thus, knowing that the test holds, we can refine the abstract of x to [1,3]
and y to [3;4].

Given a concrete binary operator⊕, we define←−⊕ its abstract backward
counterpart. Assume given three intervals x#, y#, and r#. ←−⊕ x# y# r#

tries to find the most precise intervals x## and y## supposing γ x# ⊕ γ y#

⊆ γ r#. The soundness of←−⊕ x# y# r# can be formulated as below. We
later generalize this notion of soundness with the type sound←−op, which is
indexed by an abstract domain and a binary operation.

let x##, y## = (
←−⊕) x# y# r# in

∀ x y. (x ∈ γ x# ∧ y ∈ γ y# ∧ op x y ∈ γ r#)
=⇒ (x ∈ γ x## ∧ y ∈ γ y##)

As the reader will discover in the rest of this section, this statement of
soundness is proved entirely automatically against each and every back-
ward operator for the interval domain. For op a concrete operator, sound←−op
itv op is inhabited by sound backward operators for op in the domain of
intervals. If one shows that←−⊕ is of type sound←−op itv (+), it means exactly
that ←−⊕ is a sound backward binary interval operator for (+). The rest
of the listing shows how light in proof and OCaml-looking the backward
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operations. Below, we explain how←−ltworks: it is a bit complicated because
it hides a "←−ge" operator.

let
←−
add: sound←−op itv nadd = λx y r x u (r-y), y u (r-x)

let
←−
sub: sound←−op itv nsub = λx y r x u (r+y), y u (x-r)

let
←−
mul: sound←−op itv nmul = λx y r

let h (i j:itv) = (if j=β 1 then iur else i) in
h x y, h y x

let ←−eq: sound←−op itv neq
= λx y r match itv_as_bool r with

| TT xuy,xuy | _ x,y
let (\) (x y: itv): (r: itv {(γ x \ γ y) ⊆ γ r}) =...

let
←−
and: sound←−op itv nand = λx y r

match itv_as_bool r, itv_as_bool x, itv_as_bool y with
| FF, TT, _ x, y u β 0 | FF, _, TT x u β 0, y
| TT, _, _ x \ β 0, y \ β 0 | _ x, y

let ←−or: sound←−op itv nor = λx y r
match itv_as_bool r, itv_as_bool x, itv_as_bool y with
| TT,FF,Unk | TT,FF,FF x, y \ β 0 | TT,Unk,FF x \ β 0, y
| FF, _, TT | FF, TT, _ x u β 0, y u β 0 | _ x, y

Let us look at ←−lt. Knowing whether x < y holds, ←−lt helps us to refine
x and y to more precise intervals. Let x be the interval [0; maxintm ], y be
[5; 15] and r be [0; 0]. Since the singleton [0; 0] represents false,←−lt x y r
aims at refining x and y knowing that x < y doesn’t hold, that is, knowing
x ≥ y. In this case, ←−lt finds x' = [5; maxintm ] and y' = [5; 15]. Indeed,
when r is [0; 0], itv_as_bool r equals to FF. Then we rewrite ¬(x < y)
either as y < x+1 (when x is incrementable) or as y−1 < x. In our case,
the upper bound of x is maxintm (the biggest intm): x is not incrementable.
Thus we rewrite ¬([0; maxintm ] < [5; 15]) as [6; 16] < [0; maxintm ].

Despite the handling of these different cases, the implementation of←−lt
requires no proof: the SMT solver takes care of everything automatically.

let
←−
lttrue (x y: itv)

= match x, y with | Bot, _ | _, Bot x,y
| ValLa,bM, ValLc,dM mk a (min b (d-1)), mk (max (a+1) c) d

let decrementable i=Val?i&&dfst(Val?.v i)>minintm let incr.=...

let
←−
lt: sound←−op itv nlt

= λx y r match itv_as_bool r with | TT
←−
lttrue x y

| FF if incrementable x // x < y ⇐⇒ y > x+1
then let ry, rx =

←−
lttrue y (itvadd x (β 1)) in

itvsub rx (β 1), ry
else if decrementable y // x < y ⇐⇒ y-1 > x

then let ry, rx =
←−
lttrue (itvsub y (β 1)) x in

rx, itvadd ry (β 1)
else x,y | _ x, y
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3.6 A Word on Widening Operators
For simplicity, our abstract interpreter requires its abstract lattices to be
equipped with a measure. Such measures exist only for lattices without
infinite decreasing or increasing chains.

This section presents how Cousot’s widening operators can be for-
malized in F?, and how they can be used to ensure convergence even
in presence of lattice admitting infinite decreasing or increasing chains.
A widening operator ∇ : D# → D# → D# is a binary operator in an
abstract domain (D#,⊆) when:

• ∇ computes upper bounds, that is ∀x y ∈ D#, x ⊆ x∇y ∧ y ⊆ x∇y;

• for any sequence (un)n∈N in D#, the sequence (vn)n∈N defined as
v0 = u0, vn+1 = vn∇un+1 stabilizes in finite time, that is ∃n.vn =
vn+1.

3.6.1 An F? Definition
Below we define ub (≥), the type of binary operators computing upper
bounds (≥)-wise. seq τ defines sequences of values of type τ as maps
from natural numbers to τ . The predicate stabilizes s n holds if the
sequence s stabilizes after index n.

type ub #a ((⊆): order a) = x:a y:a r:a {x ⊆ r ∧ y ⊆ r}
type seq (t: Type) = N t
let stabilizes #t (s: seq t) (n:N): prop
= ∀ (i: N). i ≥ n =⇒ s (i + 1) == s i

Given any sequence u: seq τ , widenseq (∇) u corresponds to the sequence
(vn)n∈N described above, with ∇ the widening operator. The refinement
type wop (⊆) is inhabited by widening operators, that is, binary opera-
tors computing upper bounds and ensuring convergence of (vn)n∈N-like
sequences. The function stabilizesat returns a witness of the index at
which a sequence stabilizes; it is not computable, thus lives in the effect
GTot.

let rec widenseq (#(⊆):order τ) ((∇):ub (⊆)) (u:seq τ):seq τ
= λn if n=0 then u 0

else widenseq (∇) u (n-1) ∇ u n
type wop (#a: Type) ((⊆): order a)
= w:ub (⊆){∀(s:seq a). ∃ n. stabilizes (widenseq w s) n}

val stabilizesat (s:seq τ{∃ n. stabilizes s n})
: GTot (n:N{stabilizes s n})

The function finite_ub_to_widen (t) m subtypes a join-like binary
operator (t) into a widening operator, under the condition that a mea-
sure m exists. Most of the proof is carried out by the auxiliary lemma
finite_ub_to_widen' (t) m i u, which is explained in Figure 3.12.
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Fig. 3.12: Given a measure m and an ar-
bitrary sequence u (in blue), v (in red)
is the sequence widenseq (t) u, with
a join operator. By construction, v is
monotonically increasing. The proof
that (t) is a widening operator consists
in an induction on i a growing index,
that makes the size of the purple ar-
rows decrease. These arrows represent
the difference between the maximal
measure and the measure for vi. On
the illustration, when i=8, we hit the
base case (hatched area on the right):
vj = vj+1 for any j greater than 8.
Otherwise, the sequence v is not stable
after i: there exists a j so that vi 6= vj .
For instance here, if i = 2, there exists
j = 4 with v2 6= v4. Thus, we use our
hypothesis of recurrence: there exists
an index so that v stabilizes, by calling
our lemma recursively with i = j (the
arrow from a to b on the illustration).

let increasing ((⊆):order τ) (u:seq τ) = ∀i. u i ⊆ u (i+1)
let rec increasing_transitive ((⊆):order τ) (u:seq τ) (i j:N)
: Lemma (requires increasing (⊆) u ∧ i<j)

(ensures u i ⊆ u j) (decreases j-i)
= if j-i=1 then () else increasing_transitive (⊆) u i (j-1)

let rec finite_ub_to_widen'
(#(⊆): order τ) ((t): ub (⊆))
(m: measure (⊆)) (i: N) (u: seq τ)
: Lemma (ensures ∃ n. stabilizes ( 1 widenseq (t) u) n)

(decreases m.max - m.f ( 2 widenseq (t) u i))
= let v = 3 widenseq (t) u in
let p (j:N) = 4 j > i ∧ v i /== v j in
let goal = ∃ n. stabilizes (widenseq (t) u) n in
let sub (): Lemma (requires ∃ j. p j) (ensures goal)
= ∃elim goal () (λ( 5 j: N{p j})

increasing_transitive (⊆) v i j;
finite_ub_to_widen' (t) m j u)

in move_requires sub ()
let finite_ub_to_widen

(#o: order τ) (w: ub o) (m: measure o): wop o
= forall_intro (finite_ub_to_widen' w m 0); w

3.6.2 Computing Fixpoints for Abstract Operators
Our ultimate goal is to be able to infer loop invariant. Consider the loop
Loop f, and let the abstract operator f#: A A, with A being an abstract
domain, ordered by⊆.

We are looking for an approximation p:A for any number of iteration
of f#. Both seqwop (∇) f# x0 and seqwop' (∇) f# x0 implement
the sequence v0 = x0, vn+1 = vn∇f#vn. Their equivalence is proven
by seq_wop_eq. The latter defines (vn)n∈N in terms of seqwop'' (∇)
f# x0 and widenseq, so that it benefits from widenseq stabilization. This
stabilization allows us to define fp so that fp (∇) f# x0 terminates.
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let rec seqwop (#o: order τ) (w: wop o) (f:τ τ) (x0:τ) (n:N)
: Tot τ (decreases n)
= if n=0 then x0 else let x1=seqwop w f x0 (n-1) in

x1 `w` f x1
let rec seqwop'' (#o:order τ) (w:wop o) (f:τ τ) (x0:τ) (n:N)

: Tot τ (decreases n)
= if n=0 then x0
else f (widenseq w (λm if m≥n then x0

else seqwop'' w f x0 m)
(n-1))

let seqwop' (#o: order τ) (w: wop o) (f:τ τ) (x0: τ)
= widenseq w (seqwop'' w f x0)

val seq_wop_eq (#o:order τ) (w:wop o) (f:τ τ) (x0:τ) (n:N)
: Lemma (seqwop w f x0 n == seqwop' w f x0 n)

val fp (#o: order τ) (w: wop o) (f:τ τ) (x0: τ)
: x:τ{∃m. x == seqwop' w f x0 m ∧ stabilizes (seqwop w f x0) m}

3.7 Specialized Abstract Domains
Abstract domains are defined in Section 3.4 as lattices equipped with a
sound concretization operation. Our abstract interpreter analyses IMP
programs: its expressions are numerical, and IMP is equipped with a
memory. Thus, this section defines two specialized abstract domains: one
for numerical abstractions, and another one for memory abstractions.

3.7.1 Numerical Abstract Domains
In Section 3.5.4, we explain what a sound backward operator is in the
case of the abstract domain of intervals. There, we mention a more generic
type sound←−op that states soundness for such operators in the context of any
abstract domain. We present its definition below:

type sound←−op (a:Type) {|l:adom a|} (op:l.c l.c l.c)
= ←−op: (a a a (a & a)) {
∀ (x# y# r#: a). let x##, y## = ←−op x# y# r# in

(∀ (x y: l.c). (x ∈ γ x# ∧ y ∈ γ y# ∧ op x y ∈ γ r#)
=⇒ (x ∈ γ x## ∧ y ∈ γ y##))}

We define the specialized typeclass numadom for abstract domains that con-
cretize to machine integers. A type that implements an instance of numadom
should also have an instance of adom, with intm as concrete type. Whence
the fields naadom, and adomnum. Moreover, we require a computable con-
cretization function cgamma, that is, a function that maps abstract values
to computable sets of machine integers: intm bool. The β operator
lifts a concrete value in the abstract world. We also require the abstract
domain to provide both sound forward and backward operator for every
syntactic operator of type binop presented in Section 3.2. The function
abstract_binop maps an operator op of type binop to a sound forward
abstract operator. Its soundness is encoded as a refinement. Similarly,
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←−−−−−−−−−−−
abstract_binop maps a binop to a corresponding sound backward opera-
tor. To ease backward analysis, gt0 and lt0 are abstractions for non-null
positive and negative integers.

class numadom (a: Type) =
{ naadom: adom a; adomnum: squash (naadom.c == intm)
; cgamma: x#:a x:intm b:bool {b ⇐⇒ x ∈ γ x#}
; abstract_binop: op:_ i:a j:a r:a {lift op (γ i) (γ j) ⊆ γ r}

;
←−−−−−−−−−−−
abstract_binop: (op: binop) sound←−op a (concrete_binop op)

; gt0: x#:a {∀(x:intm). x>0 =⇒ x ∈ γ x#}
; lt0: x#:a {∀(x:intm). x<0 =⇒ x ∈ γ x#}; β: x:intm r:a{x ∈ γ r} }

For a proposition p, the F? standard library defines squash p as the type
_:unit{p}, that is, a refinement of the unit type. This can be seen as a
lemma with no parameter.

3.7.1.1 Instance for intervals

Section 3.5 defines everything that is required by numadom, thus below we
give an instance of the typeclass numadom for intervals.

instance itv_num_adom: numadom itv = {
naadom = solve; adomnum = (); cgamma = itvcγ ; β = (λ x β x);
abstract_binop = (function | Plus itvadd ... | Or itvori);←−−−−−−−−−−−
abstract_binop = (function | Plus

←−
add ... | Or ←−or );

lt0 = (mk minintm (-1)); gt0 = (mk ( 1) maxintm) }

3.7.2 Memory Abstract Domains
From the perspective of IMP statements, an abstract domain for abstract
memories is fairly simple. An abstract memory should be equipped with
two operations: assignment and assumption. Those are directly related
to their syntactic counterpart Assume and Assign. Thus, memadom has a
field assume_ and a field assign. The correctness of these operations are
elegantly encoded as refinement types.

Let us explain the refinement of assume_: let m#0 an abstract memory,
and e an expression. For every concrete memory m0 abstracted by m#0 ,
the set of acceptable final memories osemstmt (Assume e) m0 should be
abstracted by assume_ m#0 e.

class memadom µ = { maadom: adom µ; mamem: squash (maadom.c == mem);
assume_: m#0:µ e:expr m#1:µ

{∀ (m0: mem{m0 ∈ γ m#0}). osemstmt (Assume e) m0 ⊆ γ m#1};

assign: m#0:µ v:varname e:expr m#1 :µ

{∀ (m0: mem{m0 ∈ γ m#0}). osemstmt (Assign v e) m0 ⊆ γ m#1}}
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3.8 A Weakly-Relational Abstract
Memory

In this section, we define a weakly-relational abstract memory. This abstrac-
tion is said weakly-relational because the entrance of an empty abstract
value in the map systematically launches a reduction of the whole map to
Bot. Below we define an abstract memory (amem) as either an unreachable
state (Bot), or a mapping (map τ) from varname to abstract values τ . The
mappings map τ are equipped with the utility functions mapi, map1, map2
and fold.

type map τ =... type amem τ = withbot (map τ)
let get': map τ varname τ =... let fold: (τ τ τ) map τ τ =...
let mapi: (varname τ β) map τ map β =...
let map1: (τ β) map τ map β = λf mapi (λ_ f)
let map2: (τ β γ) map τ map β map γ =...

3.8.1 A Lattice Structure
The listing below presents amem instances for the typeclasses order,
lattice and memadom. Once again, the various constraints imposed by
these different typeclasses are automatically discharged by the SMT solver.

let amem_update (k: varname) (v: τ) (m: amem τ): amem τ
= match m with | Bot Bot
| Val m Val (mapi (λk' v' if k'=k then v else v') m)

instance amemlat {| l: adom τ |}: lattice (amem τ) =
{ corder = withbotord (λm0 m1 fold (&&) (map2 corder m0 m1))
; join = (λx y match x, y with

| Val x, Val y Val (map2 join x y) | m,Bot | _,m m)
; meet = (λx y match x, y with

| Val x, Val y
let m = map2 (u) x y in
if fold ( || ) (mapi (λ_ v l.adomlat.corder v bottom) m)
then Bot else Val m

| _ Bot); bottom = Bot; top = ...}
instance amemadom {|l:adom τ|}: adom (amem τ) = { c = mem' l.c
; adomlat=solve; meetlaw=(λ_ _ ()); toplaw=(λ_ ()); botlaw=(λ_ ())
; γ = withbotγ (λm# m fold (∧) (mapi (λv x m v ∈ γ x) m#))
; widen = (λx y match x, y with
| Val x, Val y Val (map2 widen x y) | m,Bot | _,m m)

; order_measure = let {max; f} = l.order_measure in
{ f = (function | Bot 0 | Val m# 1 + fold (+) (map1 f m#))
; max = 1 + max × 4 }}

The rest of this section defines a memadom instance for our memories
amem. The typeclass memadom is an essential piece in our abstract interpreter:
it provides the abstract operations for handling assumes and assignments.
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3.8.2 Forward Expression Analysis
We define asemexpr, mapping expressions to abstract values of type τ .
It is defined for any abstract domain, whence the typeclass argument
{|numadom τ|}. The abstract interpretation of an expression e given m#0
an initial memory is defined below as asemexpr m#0 e. It is specified via a
refinement type to be a sound abstraction of the operational semantics
osemexpr m0 e of e. This function leverages the operators from the different
typeclasses for which we defined instances just above. β:intm τ and
abstract_binop:binop ... come from numadom, while top:τ comes from
lattice.

val get: m:amem τ {Val? m} varname τ
let get (Val m) = get' m
let rec asemexpr {|numadom τ|} (m#0: amem τ) (e: expr)

: (r: τ { ∀ (m0: mem). m0 ∈ γ m#0 =⇒ osemexpr m0 e ⊆ γ r })

= if m#0 v bottom then bottom else
match e with
| Const x β x | Unknown top | Var v get m#0 v

| BinOp op x y abstract_binop op (asemexpr m#0 x)

(asemexpr m#0 y)

3.8.3 Backward Analysis
Our aim is to have an instance for our memory of memadom: it expects an
assume_ operator. Thus, below a backward analysis is defined for expres-
sions. Given an expression e, an abstract value r# and a memory m#0 ,

←−−asem
e r# m# computes a new abstract memory. That abstract memory refines
the abstract values held in m#0 as much as possible under the hypothesis
that e lives in r#. The soundness of this analysis is encoded as a refine-
ment on the output memory. Given any concrete memory m0 and integer v
approximated by some r#, if the operational semantics of e at memory m0
contains v, then m0 should also be approximated by the output memory.

When e is a constant which is not contained in the concretization of
the target abstract value r#, the hypothesis "e lives in r#" is false, thus
we translate that fact by outputting the unreachable memory bottom. In
opposition, when e is Unknown, the hypothesis does not bring any new
knowledge, thus we return the initial memory m#0 . In the case of a variable
lookup (i.e. e = Var v for some v), we consider x#, the abstract value
living at v. Since our goal is to craft the most precise memory such that
Var v is approximated by r#, we alter m#0 by assigning x# u r# at the
variable v. Finally, in the case of binary operations, we make use of the
backward operators and of recursion. Figure 3.13 illustrates how the
recursive backward analysis is performed. Note that it is the only place
where we need to insert a hint for the SMT solver: we assert an equality by
asking F? to normalize the terms. We explicitly state that the operational
semantics of a binary operation reduces to two existentials: we manually
unfold the definition of osemexpr and lift_binop. The decreases clause
explains to F? why and how the recursion terminates.
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Fig. 3.13: Example of backward analysis
for the expression x+(y−z) given the
hypothesis that it is positive. The initial
abstractions are [−3, 2] for x, [−9, 5]
for y and [4, 9] for z.

let rec ←−−asem {|l:numadom τ|} (e: expr) (r#: τ) (m#0: amem τ)

: Tot (m#1: amem τ { (* decreases: *) m#1 v m#0 ∧ (* soundness: *)

(∀(m0:mem) (v:intm). (v∈γ r# ∧ m0∈γ m#0 ∧ v ∈ osemexpr m0 e)

=⇒ m0 ∈ γ m#1)}) (decreases e)

= if m#0 v bottom then bottom else match e with

| Const x if cgamma r# x then m#0 else bottom | Unknown m#0
| Var v let x#: τ = r# u get m#0 v in

if x#vbottom then Bot else amem_update v x# m#0
| BinOp op ex ey let ←−op =

←−−−−−−−−−−−
abstract_binop op in

let x#, y# = ←−op (asemexpr m#0 ex) (asemexpr m#0 ey) r# in

let r#: amem τ = ←−−asem ex x# m#0 u
←−−asem ey y# m#0 in

assert_norm (∀ (m: mem) (v: intm). v ∈ osemexpr m e
⇐⇒ (∃ (x y:intm). x ∈ osemexpr m ex ∧ y ∈ osemexpr m ey

∧ v == concrete_binop op x y));
r#

3.8.4 Iterating the Backward Analysis
While a concrete test is idempotent, it is not the case for abstract ones. Our
goal is to refine an abstract memory under a hypothesis as far as possible.
Since←−−asem is proven sound and decreasing, we can repeat the analysis as
much as we want. We introduce prefixpoint that computes a pre-fixpoint.
However, even if the function from which we want to get a prefixpoint
is decreasing, this is not a guarantee for termination. The type measure
below associates an order to a measure that ensures termination. Such a
measure cannot be implemented for a lattice that has infinite decreasing
or increasing chains. We also require a maximum for this measure, so that
we can reverse the measure easily in the context of postfixpoints iteration.

type measure #a (ord: a a bool)
= { f: f: (a N) {∀ x y. x `ord` y =⇒ x /== y =⇒ f x < f y}
; max: (max: N {∀ x. f x < max}) }
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Let us focus on prefixpoint: given an order v with its measure m, it
iterates a decreasing function f, starting from a value x. The argument r
is a binary relation which is required to hold for every couple (x, f x). r
is also required to be transitive, so that (morally, for any n) r x (fn x)
holds. prefixpoint is specified to return a prefixpoint y, that is, with r x
y holding.

let rec prefixpoint ((v): order τ) (m: measure (v))
(r: τ τ prop {trans r}) (f: τ τ {∀e. f e v e ∧ r e (f e)}) (x:τ)
: Tot (y: τ{r x y ∧ f y == y ∧ y v x}) (decreases (m.f x))
= let x' = f x in if x v x' then x else prefixpoint (v) m r f x'

Below is defined ←−−asem_fp, the iterated version of ←−−asem. Besides using
prefixpoint, the only thing required here is to spell out t, the relation
we want to ensure.

let ←−−asem_fp {|numadom τ|} (e:expr) (r:τ) (m#0:amem τ)

: Tot (m#1 : amem τ {(∀ (m0:mem) (v:intm). m#1 vm
#
0 ∧

(v∈γ r ∧ m0∈γ m#0 ∧ v∈osemexpr m0 e) =⇒ m0∈γ m#1 )})
= let t (m#0 m#1: amem τ) = ∀ (m: mem) (v: intm).

(v ∈ γ r ∧ m ∈ γ m#0 ∧ v ∈ osemexpr m e) =⇒ m ∈ γ m#1 in

prefixpoint corder order_measure t (←−−asem e r) m#0

3.8.5 A memadom Instance
We defined both a forward and backward analysis for expressions. Im-
plementing a memadom instance for amem is thus easy, as shown below. For
any numerical abstract domain τ , amemory_mem_adom provides a memadom,
that is, an abstract domain for memories, providing nontrivial proofs of
correctness. Still, this is proven automatically.

instance amemory_mem_adom {| nd: numadom τ |}: memadom (amem τ) =
let adom: adom (amem τ) = amemadom in { maadom = adom; mamem = ()
; assume_ = (λm# e ←−−asem_fp e gt0 m# t ←−−asem_fp e lt0 m#)
; assign = (λm# v e let v#: τ = asemexpr m# e in

if v# v bottom then Bot else amem_update v v# m#)}

3.9 Statement Abstract Interpreta-
tion

Wrapping up the implementation of our abstract interpreter, this section
presents the abstract interpretation of IMP statements. For every memory
type µ that instantiates the typeclass of abstract memories memadom, the
abstract semantics asemstmt maps statements and initial abstract memories
to final memories. memadom is defined and proven sound below.

Given a statement s, and an initial abstract memory m#0 , memadom s m#0
is a final abstract memory so that for any initial concrete memory m approx-
imated by m#0 and for any acceptable final concrete memory m' considering
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the operational semantics, m' is approximated by memadom s m#0 . Here, we
give two hints to the SMT solver: by normalization (assert_norm), we
unfold the operational semantics in the case of choices or sequences. The
analysis of an assignment or an assume is very easy since we already have
operators defined for these cases. The sequence of two statements is han-
dled by recursion. Similarly, when the statement is a choice, we recurse on
its two subterms, and merge together the two resulting abstract memories.
The last case to be handled is the loop, that is some statement of the shape
Loop body. We compute a fixpoint m#1 for body, by widening: it therefore
approximates correctly the operational semantics of Loop body, since it
is defined as a transitive closure. The standard library of F? [FStdLib]
provides the lemma stable_on_closure; of which we give a simplified
signature below. The concretization γ m#1 is a set, that is a predicate: we
use this lemma with γ m#1 as predicate p and with the operational semantics
as relation r.

val simplified_stable_on_closure: r:(τ τ prop) p:(τ prop)
Lemma (requires ∀ x y. p x ∧ r x y =⇒ p y)

(ensures ∀ x y. p x ∧ closure r x y =⇒ p y)

let rec asemstmt {| md: memadom µ |} (s: stmt) (m#0: µ)

: (m#1:µ {∀(m m':mem). (m∈γ m#0 ∧ m'∈osemstmt s m) =⇒ m'∈γ m#1})
= assert_norm(

(∀s0 s1 (m0 mf:mem). osemstmt (Seq s0 s1) m0 mf
== (∃(m1:mem). m1 ∈ osemstmt s0 m0 ∧ mf ∈ osemstmt s1 m1))

∧ (∀a b (m0 mf:mem). osemstmt (Choice a b) m0 mf
== (mf ∈ (osemstmt a m0 ∪ osemstmt b m0)))

);
if m#0 v bottom then bottom

else match s with | Assign v e assign m#0 v e

| Assume e assume_ m#0 e | Seq s t asemstmt t (asemstmt s m#0)

| Choice a b asemstmt a m#0 t asemstmt b m#0
| Loop body let m#1: µ = postfixpoint corder order_measure

(λ(m#:µ) widen m# (asemstmt body m# <: µ))
in stable_on_closure (osemstmt body) (γ m#1) (); m#1

Below we show the definition of postfixpoint that is similar to
prefixpoint. However, it is simpler because it only ensures that its out-
come is a postfixpoint.

let rec postfixpoint ((v): order τ) (m: measure (v))
(f: τ τ {∀ x. x v f x}) (x: τ)
: Tot (y: τ{f y == y ∧ (v) x y}) (decreases (m.max - m.f x))
= let x' = f x in if x' v x then x else postfixpoint (v) m f x'

3.10 Related work
Efforts in verified abstract interpretation are numerous, and most of them
have been focused on concretization-based formalizations. Such formaliza-
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tions aim at providing provably sound and terminating abstract interpreter
implementations. This concretization-based approach has been proven
successful [Dav05; CP10; BLP16], and scales up to Verasco [Jou+], a
real-world abstract interpreter verified in Coq.

Verasco targets C#minor, one of the intermediary languages the for-
mally verified C compiler CompCert [Ler+16] uses. Since the semantics
preservation theorem of CompCert guarantees that properties on C#minor
semantics carry over to their compiled assembly code counterpart, Ve-
rasco’s analysis also carries out to assembly code. Blazy et al. [BLP16] and
Verasco closely follow the modular design of Astrée [Cou+05]. Their de-
sign consists in three layers which are interconnected with clear interfaces:
numerical abstract domains, memory models and the abstract iterator itself.
Verasco implements both non-relational abstract domains (integer intervals,
integer congurences, floating-point intervals, points-to sets) and relational
ones (convex polyhedrons, symbolic equalities, octagons [Jou17]). Our
interpreter is an order of magnitude simpler, but still follows this modular
architecture.

Such analysers however require a non-trivial amount of mechanized
proofs; in constrast, this chapter shows that implementing a formally
verified abstract interpreter with very few manual proofs is possible. Ours
is up to 17 times more proof efficient. It is very compact, and requires
a negligible amount of manual proofs. Table 3.1 compares the line-of-
proof vs. line-of-code ratio of our implementation compared to some of
the available verified abstract interpreters. This comparison has its limits,
since the different formalizations do not target the same programming
languages: [Jou+] and [BLP16] handle the full C language, while [CP10]
and the current paper deal with more simple imperative languages. Also,
proof effort does not usually scale linearly.

Code Proof Ratio Feature set
This paper 487 39 0.08 Simple imperative language

Pichardie et al. [CP10] 3 725 5 020 1.35 Simple imperative language
Verasco [Jou+] 16 847 17 040 1.01 CompCert C langage

Blazy et al. [BLP16] 4 000 3 500 0.87 CompCert C langage

Table 3.1: Comparison of the num-
ber of line of code and of line of
proof of different sound abstract
interpreters.

The work of Nipkow [Nip12] is similar to ours in terms of objectives:
formalizing a sound abstract interpreter in a comprehensible way. The
originality of this work is to iterate over ASTs annotated with semantics
information. This approach yields a very pleasant and illustrative abstract
interpretation: as the iteration goes, one can observe the annotations get-
ting more precise. This iterating process is proven sound and implemented
in about 2000 lines of code using the Isabelle/HOL [NPW02] proof assis-
tant. Since Nipkow aims at simplicity, its abstract interpreter has no full
fledged widening or narrowing, consider a memory of unbounded integer,
and only consider addition as arithmetic operation. Still, our interpreter
is about four times more compact. Similarly, Bertot [Ber08] also presents
an annotation-based approach. Its particularity is that the soundness of
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the abstract analysis is stated and proven against a weakest-precondition
semantics.

The work of Darais et al. [DMV15; Dar+17] advocates for using Galois
connections to prove abstract interpreter implementations sound. [DMV15]
aims at a reusable and modular abstract interpretation. While Verasco is
modular in the sense of, e.g., its abstract domains, in the work of Darais,
the aim is to implement a meta-theory for sound abstract interpretations
in a language-agnostic way. This is achieved by defining the concept of
Galois transformers, which are monad transformers that transport Galois
connection properties. A Galois transformer provides a given static analysis,
and is proven sound once for all, independently from the language. In
this framework, an abstract analyzer is an interpreter of computations
whose monad is a stack of Galois transformers, each providing a specific
analysis. One of the benefits of Galois transformers is that they are self-
contained in terms of soundness: the hope is that this approach is therefore
more comprehensible to a public unfamiliar with strong typing or proof
assistants. Our work makes formally verified abstract interpretation more
accessible in a much more pragmatic way. Our soundness statements are
very straightforward and standard in terms of abstract interpretation. Our
implementation being specifically designed with F? automations in mind,
it yields almost no manual proving.

3.11 Conclusion
We presented almost the entire code of our abstract interpreter for IMP.
Our approach to abstract interpretation is concretization-based, and follows
the methodology of [BLP16; Jou+]. While using F?, we did not encounter
any issue regarding expressiveness, and additionally gained a lot in proof
automatization, to finally implement a fairly modular abstract interpreter.
The sources of our abstract interpreter sources are available along with
a set of example programs; building it natively or as a web application is
easy, reproducible3 and automated. 3Our build process relies on the purely func-

tional Nix package manager.This work is very far from the scope of Verasco which required about
four years of human time [Lap15; Jou16], but our results, which required
3 months of work with F? expertise, are very encouraging.

As further work, we aim at following the path of Verasco by adding
real-world features to our abstract interpreter. It would be interesting to
study how much manual proving is necessary to implement more powerful
abstract domains (e.g. octagons domains). Also, we would like to consider
a more realistic target language such as one of the CompCert C-like input
languages. One of the weaknesses of Verasco is its poor efficiency: using
purely functional data structures and Coq’s integer arithmetic, Verasco
takes a lot of time to analyze programs. Using the C DSL Low? (See
Section 2.3.3), it would be possible to write an abstract interpreter which
is both very efficient and formally verified. Of course such an efficient
analyzer would come with a nontrivial additionnal effort related to Low?
and low-level data structures and related invariants.

This development also opens the way to enrich F? automation via
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verified abstract interpretation. This is exactly what the following Chapter 4
investigates.
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With great powers comes great
annotations.

F? is a dependently typed programming language, just like Coq, Agda
or Idris. As illustrated in Chapter 2, type systems in such languages are
very expressive. By contrast with most verification approach, a depen-
dently typed programming language sets on equal footing (i) programs,
(ii) specifications and (iii) proofs, leaving a very thin frontier between them.
Specification can leverage program facilities (i.e. higher-order functions,
polymorphism, etc.), programming can be driven by specifications and
eased by proof facilities (i.e. tactics), etc. The dependent type approach
is thus far from being only focused on verification: this approach also
revolutionizes the experience of programming [Bra17]. It moreover allows
one to place the cursor from simple types ensuring no runtime failure to
arbitrarily rich types, encoding precise program specifications.

The tremendous power brought by dependent types comes with the
cost of undecidability. Since types can virtually encode any property, no
procedure deciding whether an arbitrary term inhabits an arbitrary type
exists. The type system of F? relies in part on an SMT solver to decide
whether a given term inhabits a certain type, so that the F? user hits the
undecidability of the type system less often. When the type system cannot
decide, the programmer has to supply evidences to F?: add annotations or
lemmas (See Section 2.1.3), write a tactic-based proof (See Section 2.3.2),
etc.

Inference of refinement types The type system of F? has great automa-
tion for deciding type inhabitation, but what about type inference? In the
case of recursion, inferring precise types is difficult; non-trivial recursion
requires annotations in F?. Consider the recursive functions add0, add1
and add2 below:
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1 int i = 0; int lst[5] = {-1, -2, 42, -3, 5};

2 while (i<5 && lst[i]<0) i++; // i ∈ [0; 4] ∧ lst[i] < 0

3 if (i >= 5) failwith("Not found");
4 else return lst[i]; // i ∈ [0; 4] ∧ lst[i] ≥ 0

Fig. 4.1: Example find program, imple-
mented in a C-like language.

let rec add0 (x y: N) = if x=0 then y else 1 + add0 (x - 1) y
↪→has typeN→N→Z

let rec add1 (x y: N): N = if x=0 then y else 1 + add1 (x - 1) y
↪→has typeN→N→N

let rec add2 (x y: N): r:N {r = x + y} = if x=0 then y else 1 + add2 (x - 1) y
↪→has (dependent) type x:N→ y:N→ r:N {r = x+ y}

The result type of add0 is omitted; F? infersZ. The operator (+) is of
type Z→ Z→ Z, thus the expression add0 (x - 1) y has to be at least
of typeZ. This type is weak: for instance, F? is not able to automatically
subtype add0 16 2 into a natural number. The fact the type system of F?
is undecidable is here irrelevant: add1, that simply adds a type annotation,
is type-checked automatically. One step further, the return type of add2
embeds a very precise specification. In fact, the refinements added by
add1 and add2 are recursion invariants: it is not surprising F? type system
doesn’t infer such precise invariants.

Abstract interpretation As presented in Chapter 3, abstract interpre-
tation is precisely good at inferring invariants: an abstract interpreter
statically analyses a program to discover properties and invariants automat-
ically. The expressiveness of an abstract interpreter –even with numerous
abstract domains– is limited. For instance, the invariant spelled out in add1
is easily represented in an abstract domain (i.e. sign or interval domain),
while the one of add2 is too complex for simple abstract domains. This
lack of expressiveness is fine: the work presented in this chapter aims at
freeing the F? programmer from boring annotations. By boring, we mean
trivial, simple or repetitive properties.

Example The imperative program in Figure 4.1 gives us an additional
motivation: imperative programs often yield verbose annotations. find
simply finds a positive number in a list of values. Line 2 contains the loop
invariant and line 4 the post-condition. In a standard weakest-precondition
approach, adding the framed part is mandatory. Our technique provides a
hybrid weakest-precondition calculus in which the user is freed from this
task. While this example is very simple, it reveals some of the many small
annotations a typical low-level F? program would require.

Contributions This chapter provides a weakest-precondition calculus
transformer indexed by sound abstract interpreters. The resulting, so called
hybrid, weakest-precondition calculus embeds an abstract interpreter that
inserts automatically sound invariants as free hypothesis. We define a
hybrid weakest-precondition calculus enriched by abstract interpretation
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on a minimalistic imperative language (Sections 4.3 and 4.4). We provide
a statement of the soundness for the generated hybrid proof obligations
along with a proof partially mechanized in F? (Section 4.5). As artifact, we
provide an implementation of our transformer in F?, parameterized over
a given abstract interpreter, and we instantiate it. Section 4.7 explores
the generalization and mechanization of this hybridization, by turning our
experiment into an actual monad transformer.

Current limitations. While our approach is indeed able to generate
lighter and sound proof obligations, our hybridization currently yields
an exponential number of forks of abstract analysis as the number of
conditional statements increases. This forking issue for conditionals has
repercussions on fixpoint iterations as well. The Section 4.4.4 gives more
details and explanations about this.

4.1 Overview
This section provides a glimpse of our approach by expressing the find pro-
gram of Figure 4.1 in the subset language of F?, Low? (see Section 2.3.3). At
1 and 2 , in Figure 4.2 we allocate an array l of integers {-1,-2,42,-3,5}.
Following Low?’s syntax, literals with suffix ul are unsigned integer literals;
those with suffix l are signed literals. At 3 , Low?’s operator v converts
a signed integer to a natural number. The while loop at 4 looks for a
positive number. test is the condition of the while loop, body its body
that increments i. testpre and testpost are the pre- and post-conditions of
function test. It returns true when i is in the bounds of l and points to a
negative number. At 5 , main either finds a positive number and returns it,
or throws an error.

The Effect ST Function main has a particular type signature: ST int32
(λh0 →>) (λh0 r h1 → r ≥ 0l), which defines it as an effectful
computation producing an int32. The effect ST is a variant of the effect
Stack presented in Figure 2.11. Similarly, it is indexed by a computation
type, a pre- and a post-condition.

Precondition λ(h0: mem)→>maps memories h0 to the statement>:
main has no precondition. Postcondition λh0 r h1 → r ≥ 0l maps result
r and the initial and final memories h0-h1 to the statement r ≥ 0l: the
outcome of main shall be greater or equal to zero. The proof obligation of
function main is computed according to the weakest-precondition calculus
the effect ST implements, as explained in Section 2.2.6.

In the example of Figure 4.1, the while loop has to be annotated with
simple invariants, such as i being between 0 and 4, or l being live in
memory. An abstract interpreter is well-suited to discover and infer such
invariants statically. The memory model of the abstract interpreter we
formalized in Chapter 3 is too weak, and cannot handle arrays, thus cannot
either handle this find program. However, for instance Verasco [Jou+] can
check our find program free of run-time errors by inferring these required
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let main (): ST int32 (λh0 →>) (λh0 r h1 → r ≥ 0l) =
let i = malloc root 0ul 1ul in
let l = 1 malloc root 0l 5ul in
2 assignlist [-1l; -2l; -42l; -3l; -5l] l;
let testpre (h: mem): Type0

= live h i ∧ live h l
∧ length i = 1 ∧ length l = 5

in
let testpost (r: bool) (h: mem): Type0
= live h i ∧ live h l
∧ r == ( get h i 0 < 5ul

&& get h l (v (get h i 0)) < 0l )
in
let test (): Stack bool testpre (λ_ r h→ testpost r h)
= if !*i < 5ul then l.(!*i) < 0l else false

in
4 while test (λ()→ i *= (!*i + 1ul));
5 if !*i ≥ 5ul then failwith "Not found!" else l.(!*i)

Fig. 4.2: find program expressed in
Low?.

let main (): STh ># int32 (λh0 →>) (λh0 r h1 → r ≥ 0l) =
let i, l = malloc root 0ul 1ul, malloc root 0l 5ul in
assignlist [-1l; -2l; -42l; -3l; -5l] l;
let test () = if !*i < 5ul

then l.(!*i) < 0l else false in
let body () = !*i ← !*i + 1ul in
while test body;
if !*i ≥ 5ul then failwith "Not found" else l.(!*i)

Fig. 4.3: The program find expressed in
the (hypothetical) effect STh.

invariants. Solely resorting to abstract interpretation would of course not
be satisfactory for our purpose: we would then lose the advantages brought
by dependent types, that is, expressiveness.

Lighter Annotations Using an Enriched Effect Instead of choosing be-
tween abstract interpretation and dependent types, we propose to combine
them. We aim at augmenting effects by abstract interpretation. Section 4.4
defines such a hybridization by considering a simple effect designed for the
purpose of our demonstration. To elaborate further on the find example,
consider STh, the hypothetical hybridization of the effect ST. Just as ST, STh
computes proof obligations. While computing proof obligations, STh also
performs static analysis that automatically generates additional invariants.
These “properties for free” lighten the hybrid proof obligations. In STh,
function main in Figure 4.3 would require no manual annotation.
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4.2 Anatomy of our Weakest-
Precondition Monad Trans-
former

Our aim is to enhance weakest-precondition monads with abstract inter-
pretation techniques: for that purpose, we want to define a transformer of
such monads, producing hybrid monads that embed abstract interpretation.
This section focuses on describing which kinds of inputs this hybridization
is fed with, and which kinds of outputs it produces.

There exists no unique shape for specification monads working with
weakest-preconditions. Such monads can be formulated in various ways,
and express a lot of different features. We therefore impose some restric-
tions on the monads we consider: Section 4.2.1 describes the various
type-signatures a monad should conform to in order to be eligible for our
transformation. Similarly, abstract interpretation is a very broad domain,
and an abstract interpreter has no canonical form; Section 4.2.2 states
what we assume in terms of semantics, soundness, type signatures and
behavior.

4.2.1 Weakest-Precondition Monads
As stated in Section 2.2.4, a weakest-precondition monad is a monad
whose representation is a weakest-precondition. In this chapter, a weakest-
precondition shall be of the type (given below) wp' st w τ , for some st, w
and τ . The type wp' st w τ is inhabited by weakest-preconditions about
possibly stateful1 computations producing values of type τ wrapped in 1One can always take st to be non-

informative, e.g. unit.some indexed type w. To encode partial computations for instance, one
can let w be the indexed type option.

type pre (st: Type) = st→ prop
type post (st: Type) (w: Type→ Type) (t: Type)
= st→ w t→ prop

type wp' st w τ = post st w τ → pre st

A weakest-precondition wp' st w τ is defined as a map from post-
conditions to pre-conditions. A pre-condition is a predicate about an initial
state of type st, while a post-condition is a predicate about a final state
and a wrapped value of type w t.

Remember in Section 2.2.2 that weakest-precondition transformers
and Hoare logic are closely related. Consider the fragment of code c,
and w its corresponding weakest-precondition (transformer). Given any p
post-condition, by construction of w, if the pre-condition w p holds, then
the post-condition p holds after the evaluation of c. In other words, for all
post-conditions p, the Hoare triple {w p}c{p} holds. From this relation to
Hoare triples, w should be a monotonic map: the pre-condition w p shall
never get easier when p gets stronger. The type wpmon below avoids such
inconsistencies by ensuring monotony via a refinement.
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let post_order #st #w (p q: post st w τ)
= ∀ (r: w τ) (s: st). p s r =⇒ q s r

let monotony #st #w (f: wp' st w τ)
= ∀(p q: post st w τ). post_order p q =⇒(∀s. f p s =⇒ f q s)

let wpmon st w τ = f: wp' st w τ {monotony f}

Finally, we require our monads to provide the standard return and bind
operations, along with an if operation. The record type monadwp recaps all
the information related to what we expect a weakest-precondition monad
to be. It might provide any number of other actions (i.e. a stateful store
operation), whence the field actions.

type monadwp = {
st: Type;
w: Type→ Type;
return: x:τ → wpmon st w τ;
bind: wpmon st w τ → (τ → wpmon st w β)→ wpmon st w β;
if_: wpmon st w Z→ wpmon st w τ → wpmon st w τ → wpmon st w τ;
while: wpmon st w Z→ wpmon st w unit→ wpmon st w unit;
e_actions: ...;

}

4.2.2 Abstract Interpreter Interface
Under the term “abstract interpretation techniques”, there exists a plethora
of algorithms and theories. We presented in Chapter 3 an abstract inter-
preter. This section states the different assumptions we do over the abstract
interpreters we consider. These assumptions are materialized by the record
type abint below.

type abint = {
M#: Type0;
M: Type0;
γ: M# → set M;
order#: o: (M# →M# → bool) {antisym o ∧ transitive o};
top: top:M#{∀ αs. αs `order#` top};
widening: x:M# → y:M# → r:M# {order# x r ∧ order# y r};
widening_lemma: ...;
sequence#: (M# →M#)→ (M# →M#)→M# →M#;

exp: Type0 → Type u#1;
γe: exp Zm →M# → set Zm;
assume#: exp Zm →M# →M#;

ab_actions: ...;
}

An abstract interpreter that implements the type abint is equipped
with abstract memories M# that concertize to concrete memories M via the
function γ. Abstract states are ordered by order# and top is the biggest
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an
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(wState→ prop)→ prop

p# (β m0)
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let m0:wState
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precise q

with pwp q m0
q:(wState→ prop)

γ (p# (β m0))
wState→ prop

γ

SPACE OF MEMORIES

Fig. 4.4: Sound approximation of a
weakest-precondition-defined seman-
tics by an abstract semantics. On
the left, the program p is given a pre-
condition by a weakest-precondition
calculus. On the right, p is interpreted
abstractly. The weakest-precondition
yields satisfiable preconditions only
for certain states (the dotted shapes
in red). The abstract state computed
on the right is represented by the
green continuous polygon. In the illus-
tration, the abstract interpretation at
stake over-approximates the seman-
tics yielded by the considered weakest-
precondition calculus: the memories in
dotted red are indeed contained in the
green continuous-line abstraction.

abstraction for memories. A widening operator for abstract states shall be
provided (fields widening and widening_lemma). An abstract interpreta-
tion of a program is an abstract state transformer, i.e. of type M# →M#.
The field sequence# composes two such interpretations. The abstract in-
terpreter shall also be capable of backward analysis for expression, whence
the indexed type exp and the field assume#. The field γe computes the
abstraction of the abstract semantics of an expression given an abstract
memory. Finally, the field ab_actions has the same role as e_actions in
the record monadwp above: the abstract interpreter is free to implement any
number of other actions (for instance, the forward analysis of additions).

4.2.3 Typing our Transformer
Our monad and abstract interpreter transformer intuitively have the arrow
type w:monadwp → ab:abint → h:monadwp , i.e. a map from weakest-
precondition specification monads and abstract interpreters to weakest-
precondition specification monads. However, we do not hybridize a monad
with an abstract interpreter if they do not share the same semantics. Fig-
ure 4.4 illustrates such a connection. The weakest-precondition computa-
tion of some program p is demonstrated on the left, and its abstract inter-
pretation on the right. The connection we are looking for is summarized by
the “space of memories” illustration: we want the abstract interpretation to
be a sound approximation of the semantics that the weakest-precondition
yields. Following this illustration, a first condition is that the memory type
ab.M (to which abstract memories ab.M# concretize to) should be equal
to w.st. Then every action (bind, sequence...) implemented by w should
have a semantically compatible counterpart as an action implemented by
ab. We explore this relation more in-depth in Section 4.5.2.

Similarly, the output monad structure h should inherit some properties
from w. We compute weakest-precondition to perform formal verification
of programs: h should yield a sound weakest-precondition calculus suitable
for verification as well. Such properties are discussed more in-depth in
Section 4.5.1.

4.3 A Weakest-Precondition
Monad and Abstract Inter-
preter for IMPx

In order to present our idea of hybrid weakest-precondition monads, we
instantiate our transformer with concrete inputs. This section defines an
abstract interpreter W#:abint (Section 4.3.3) and a weakest-precondition
monad W:effect (Section 4.3.2), that both target an imperative language
similar to the one defined in Chapter 3 (Section 4.3.1).

The language IMP was designed to be simple enough so that Chapter 3
could present a full implementation of its abstract interpretation. Our
aim is different here, and the memories IMP models are too simple to
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represent arrays, and thus are too weak to encode our example find. As
a consequence, Section 4.3.1 defines another imperative language, IMPx.
We conjecture the existence of a sound abstract interpreter written in F?,
similar to the one presented in Chapter 3, but that analyses IMPx. This trio
–IMPx, W and W#– is used throughout this chapter to define and illustrate
our hybridization method.

4.3.1 Defining the Language IMPx

First, we need to define a simple language in which it is still easy to write
imperative programs like our find example. To this end, we consider the
IMPx language presented in Eq. (4.1), that operates on memories of type
M, mapping variable names to fixed-length arrays of numbers. The initial
memory maps every variable name to a zero-length array.

type varname = string
type binop = | Plus | Minus | Mult

| Eq | Lt | And | Or
type expr: Type→ Type =

| Const: (#a:Type)→ a→ expr a
| Deref: varname→ expr Z→ expr Z
| BinOp: binop→ expr Z→ expr Z→ expr Z

type stmt =
| Alloc: varname→Z→ stmt
| Assign: varname→ expr Z→ expr Z→ stmt
| Seq: stmt→ stmt→ stmt
| If: expr Z→ stmt→ stmt→ stmt
| While: expr Z→ stmt→ stmt

(4.1)

IMPx has numeric expressions expr and instructions stmt; Const con-
structs constants, false is encoded as 0, true as any other number. Variable
names are of type varname. All variables in IMPx are mapped in memory to
arrays, and we use arrays of size one to manipulate scalar variables. In the
rest of this document, i and lst are two variable names of type varname.
The expression Deref v i dereferences the ith item of the array at variable
v in the store, as presented in rule (4.2).

M ` i ↓ i′ M [v] = 〈a0 . . . ai′ . . . 〉
M ` Deref v i ↓ ai′ (4.2)

The instruction Alloc v c allocates a zero-filled array of size c to the
variable v in the store (Rule (4.3)). If i is an expression that evaluates to
i′ and e evaluates to e′, then Assign v i e stores the value x' at the i'
offset of the array at the variable name v (Rule (4.4)).

c is a positive constant
M ` Alloc v c ↓M

{
v 7→ 〈0 . . . 0〉︸ ︷︷ ︸

length c

}
(4.3)

M ` i ↓ i′ M ` e ↓ e′ M [v] = 〈a0 . . . ai′ . . . 〉
M ` Assign v i e ↓M {v 7→ 〈a0 . . . e′ . . . 〉} (4.4)
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Just as in Section 3.3 of Chapter 3, osemexpr and osemstmt implement
the semantics of expressions and statements of our language, partially
given by the rules above.

let rec osemstmt (m0: M) (s: stmt): set M = ...

let rec osemexpr (m0: M) (e: expr τ): set τ = ...

They resemble the ones of Chapter 3, thus we omit their definition and
give only their signature.

4.3.2 W: A Dijkstra Monad for IMPx

The memory model underlying the language IMPx is a map from variable
names to arrays of integers. The language IMPx does not feature exceptions
or such other mechanisms. In consequence, the representation for our
weakest-precondition monad is wp′w , defined below. We also define type
synonyms for pre- and post-conditions.

type prew = pre M
type postw t = post M id t
type wp′w t = wp' M id t
type wpmonw t = wpmon M id t

The two monadic operations bind and return are uncomplicated and
very similar to those defined previously in Section 2.2.4. Note that the
weakest-precondition of an expression Const x is return x, for any x.

let bindw (f: wpmonw τ) (g: id τ → wpmonw ν): wpmonw ν
= λ(p: postw ν) (s: stw)→ f (λ(s': stw) v→ g v p s') s

let returnw (v:τ): wpmonw τ = λp s→ p s v

Following the definition of the language IMPx, we now define actions
that handle expressions. To this end, the function liftBinOpw takes a
binary operation and lifts it as a binary action of our monad. The helper
function concrete_op_of_binop maps a binary operation of type binop
to an actual numerical binary operation.

let concrete_op_of_binop: binop→Z→Z→Z
= λop→ match op with

| Plus→ (λx y→ x + y)
| Lt → (λx y→ if x<y then 1 else 0)
| ...

let liftBinOpw (op: binop): Z→Z→ wpmonw Z
= λ(x y: Z)→ returnw (concrete_op_of_binop op x y)

Using this helper function, it is easy to define various actions that com-
pute the weakest-preconditions of expressions involving binary operators.
For example, below we define additionw : if x and y are two integers,
then additionw x y is the weakest-precondition of BinOp Plus (Const
x) (Const y). Given xe and ye two expressions, and xwp and ywp their
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weakest-preconditions, the weakest-precondition of BinOp Plus xe ye
can be computed by binding xwp and ywp with the bindw action we defined
above: bindw xwp (λx→ bindw ywp (additionw x)).

let additionw: Z→Z→ wpmonw Z = liftBinOpw Plus
let eqw : Z→Z→ wpmonw Z = liftBinOpw Eq
let minusw, ltw, andw, ... = ...

After showing how to compute the weakest-preconditions of expres-
sions involving binary operations and constants (with returnw), the last
expression operators to take care of are the dereference operator and the
assignment statement. They both resemble the actions assignW and readW
a lot, defined in Section 2.2.4.

Let v a variable name, i an index, p a post-condition and s0 an initial
state. The pre-condition derefw v i p s0 for the expression Deref v
(Const i) consists in proving the post-condition p given s0 as final state
and the dereferenced value index (s0 v) i as outcome2. The pre-condition 2With index l i being the function that

looks up the ith value of the list l. The
type of function index is the dependent
arrow l:list τ→i:N{i<length l}→τ .

assignw v i x p s0 for the instruction Assign v (Const i) (Const x)
consists in proving p for the updated memory where the ith value pointed
by variable v is x.

let derefw (v: varname) (i: Z): wpmonw Z
= λ(p: postw Z) (s: M)→

i ≥ 0 ∧ i < length (s v)
∧ p s (index (s v) i)

let assignw (v: varname) (i: Z) (x: Z): wpmonw unit
= λ(p: postw unit) (s: M)→ i ≥ 0 ∧ i < length (s v)

∧ p (memupd s v (arrupd (s v) i x)) ()

The weakest-precondition of the sequence of two instructions a and
b is defined by the monadic composition of the weakest-preconditions of
a and the constant function λ_→b. The combinator if is straightforward.
The action that handles the instruction While requires a loop invariant inv
as a parameter (it has no equivalent in IMPx).

let sequencew (f: wpmonw unit) (g: wpmonw unit): wpmonw unit
= bindw f (λ_→ g)

let ifw (c: Z) (a: wpmonw τ) (b: wpmonw τ): wpmonw τ
= λp s→ if c=0 then b p s else a p s

let whilew (inv: M→ prop) (c: wpmonw Z) (body: wpmonw unit)
: wpmonw unit
= λp s0 → inv s0
∧ (∀ (s1: M {inv s1}).

let f c': wpmonw unit
= λq s2 → if c' = 0 then q s2 ()

else (inv s2 ∧ body (λs3 _→inv s3) s2)
in bindw c f p s1 )

Consider the IMPx loop While cond lbody, with cond:exprZ its con-
dition and lbody:stmt its body. Let p be a post-condition of the loop. Let
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c be the weakest-precondition of the expression cond and body be the one
of the statement lbody. whilew inv c body is the weakest-precondition
of the while loop w.r.t. the invariant inv. It requires inv to hold before the
loop (inv s0), and after any evaluation of lbody in a state satisfying the
invariant (body (λs3→inv s3) s2). The post-condition p should hold for
any state in which inv holds and cond evaluates to zero.

Example To illustrate how weakest-preconditions are computed, let us
reconsider the example find of Figure 4.1 and focus on the first four lines.
Here, the loop invariant is put on loop entry before the entry test, while
the invariant presented in Figure 4.1 and in Section 4.1 was put after
the entry test. By composing the definitions of this section, the following
definition example computes the weakest-precondition of the example up
to the While loop.

let ( >>= ) = bindw // Shortcuts for easier use
let ( >> ) = sequencew // of bind and sequence
let example i lst: wpmonw unit =
let inv s: prop
= length (s i) = 1 ∧ length (s lst) = 5
∧ ( let i = derefspec s i 0 in

i < 5 ∧ i ≥ 0 ∧ derefspec s lst i ≥ 0 )
in let condition: wpmonw Z =

derefw i 0 >>= (λi→ ltw i 5)
>>= (λx→ derefw i 0 >>= derefw lst

>>= ltw 0 >>= andw x)
in let body: wpmonw unit
= derefw i 0 >>= additionw 1 >>= assignw i 0

in allocw i 1 >> allocw lst 5
>> assignw lst 0 (-1) >> assignw lst 1 (-2)
>> assignw lst 2 42 >> assignw lst 3 (-3)
>> assignw lst 4 (-5)
>> whilew inv condition body

(4.5)

Semantics. Let us review the relation between the weakest-precondition
calculus we just defined and the semantics of IMPx. For the sake of sim-
plicity, we only consider the allocation of an array of size n at variable v.
Below, alloc_sem_lemma connects allocw with the operational semantics
of the statement Alloc v n (let us denote it s).

let setpost (p: postw unit): set M
= λs→ p s ()

let alloc_sem_lemma (v: varname) (n: Z) (m0: M)
(p: postw unit {osemstmt m0 (Alloc v n) ⊆ setpost p})
: Lemma ((∃ r. r ∈ osemstmt m0 (Alloc v n))

⇐⇒ m0 ∈ allocw v n p)
= ()
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Fig. 4.5: Connection between the
operation semantics of a statement
s with its corresponding weakest-
precondition wp.

We consider any initial memory m0. In Figure 4.5, the semantics of
s (the arrow osemstmt m0 s) connects this initial memory to three final
memories, m1, m2 and m3. Then we consider any post-condition p that
includes3 the final memories characterized by the semantics of s from m1. 3A post-condition p of type wpw unit is a

predicate about unit values and memories:
in other terms, p is simply a predicate about
memories, that is, a set. This is exactly what
the function setpost does.

In the figure, such a p is illustrated by p1, p2 and p3: the three of them
indeed include m1, m2 and m3.

The expression allocw v n p should be the weakest-precondition so
that evaluating the statement Alloc v n yields the post-condition p. As
pre-conditions are predicates over memories (that is sets of memories), let
us rephrase: allocw v n p is the set of admissible initial memories for the
allocation to produce a final memory that belongs to the set p. In yet other
terms, if allocw v n p computes a correct weakest-precondition, then it
should include the initial memory m1 since p includes the final memories
osemstmt m0 s.

The double implication comes from the fact an invalid allocation
(e.g. Alloc i (-3)) yields an empty osemstmt m0 s.

4.3.3 W#: Abstract Interpretation for IMPx

This section details our conjecture that an abstract interpreter written and
proven sound in F? is easy to write for our language IMPx, in a similar
fashion to the one described in 3. Let us call this abstract interpreter W#. It
has abstract memories of type M#, and enjoys abstract semantics asemexpr
and asemstmt for IMPx expressions and statements with builtin soundness
as type refinement.

val M#: Type
instance aState_adom: adom M# = { c = M ; ... }
val asemexpr (m#0: M#) (e: expr Z)

: (r:itv{∀(m0:M). m0 ∈ γ m#0 =⇒ osemexpr m0 e ⊆ γe r})

val asemstmt (s: stmt) (m#0: M#)

: (m#1: M# {∀ (m m': M). (m ∈ γ m#0 ∧ m' ∈ osemstmt m s)

=⇒ m' ∈ γ m#1 })
val assume#: M#→ expr Z→M#

Below we define the actual definition of W#, in the form of a record of
type abint, as we described in Section 4.2.2.

let W# = { M# = M#; M = stw; γ = aState_adom.γ
; γe = (λe s#→ itvγ (asemexpr s# e))
; order# = aState_adom.corder ; top = aState_adom.top
; widening = aState_adom.widen; widening_lemma = ...

; sequence# = (λf g s#→ g (f s#)); exp = expr
; assume# = assume#; ab_actions = ... }

The pair (W#, W) will now serve as an example input for the effect trans-
former we try to define here. After focusing on the input, in the next section
(Section 4.4), we will focus on the output of our transformer.
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4.4 Wh: Hybridization of W and W#

This section illustrates our transformation by the definition of the weakest-
precondition monad Wh that arranges together W# and W. In this aim,
Sections 4.3.2 and 4.3.3 instantiate find on W# and W to produce the invariant
inv of (4.5): the index i refers to an array of size one in memory, while
the list is of size five and the i ∈ [0,4]. This invariant is the one required
by the weakest-preconditions of W for the loop.

4.4.1 Hybrid State, Values and Weakest-Preconditions
The hybridization combines the abstract and concrete views of the
same program. Structurally, Wh acts as a cartesian product of our
monad W and our abstract interpreter W#. A computation f is seen
as hybrid: the abstract and W monadic representation of f are super-
posed. As a result, the representation of computations producing τ
values in Wh is a weakest-precondition on hybrid values hVal τ , deal-
ing with hybrid states Mh. Both types are defined below, as well as
types for hybrid postconditions, preconditions and weakest-preconditions.
The first and second items of a tuple are returned by fst and snd.

type Mh = M × M#

type hVal τ = τ × expr τ
type preh = Mh → prop

type wph τ = posth τ → preh
type posth τ = Mh → hVal τ → prop
val fst: τ×β → τ val snd: τ×β → β

4.4.2 Actions Computing Weakest-Precondition for Expres-
sions

We now define the actions that allow our Wh monad to compute weakest-
preconditions of the expressions that IMPx allows.

First, let us focus on the expressions that consist in a numerical binary
operation. Such expressions are of the shape BinOp op xe ye , where op
is a numerical binary operation (e.g. Plus or Eq), and where xe and ye
are both expressions. The helper function liftBinOpw of Section 4.3.2
lifted binary operations to the monad W. The function liftBinOph is the
hybridization of liftBinOpw : given a binary operation, it builds up on
liftBinOpw to interleave some abstract bits. It takes a binary operation of
type binop as first parameter, and returns a hybrid action indexed by two
hybrid integers.

The abstract expression bits of these two hybrid integers are of type
W#.exp, which is defined as expr. The hybrid integers are tuples: those are
destructed at 1 as the tuples (x, x#) and (y, y#). Computing the binary
operation op on the abstract expressions x# and y# in our case trivially
amounts to the expression BinOp op x# y#, denoted r# at 2 . At 3 , we
return a weakest-precondition of type wph Z. Given a post-condition p and
a hybrid memory (s, s#) –s a concrete memory and s# an abstract one–
we return a precondition based on liftBinOpw op, that is, the action of
typeZ→Z→ wpw Zwe are seeking to hybridize. The concrete bits x, y
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and s are fed to liftBinOpw op, which is an action that expects concrete
values, not hybrid ones. However, the weakest-precondition we define at 3

receives a hybrid post-condition p of type posth Z. The post-condition at
4 adds a free hypothesis4 ( 5 ) from the abstract interpreter: the concrete 4Such an hypothesis consists in running a

forward analysis of the expression r# in the
abstract memory s#. A simple –and thus not
very powerful– example of such a hypoth-
esis with the abstract domain of intervals
is yielded by the call liftBinOph Plus (a,
Var A) (b, Var B) p (s, s#) with s#

an abstract memory such that “a∈γ s[A]”,
“b ∈ γ s[B]” and “s[A]=s[B]=[0,5]”, and
with p a post-condition. In this case, 5

amounts to r ∈ [0,10]: proving the post-
condition p is made easier using this fact.
Obviously, for such a trivial example, the
benefit is nonexistent: an SMT solver is of
course able to figure such an invariant au-
tomatically.

result r is in the approximation r#. Then, the non-hybrid post-condition
4 hands over to the hybrid one p, by crafting tuples: the new hybrid state
consists in the new concrete state s' with the unchanged abstract state
s#, while the hybrid value consists in the concrete value r (passed to the
post-condition 4 by liftBinOpw op) with the expression r#.

let liftBinOph (op: binop): hVal Z→ hVal Z→ wph Z
= 1 λ(x, x#) (y, y#)→

let 2 r# = BinOp op x# y# in
3 λp (s, s#)→
liftBinOpw op x y ( 4 λs' r→

5 r ∈ W#.γv r# s# =⇒ p (s',s#) (r,r#)
) s

Similarly to Section 4.3.2, having defined the binary operation in the form
of the indexed hybrid action liftBinOph , it becomes trivial (see below) to
write down the actions additionh , subtractionh , eqh , etc.

let additionh = liftBinOph Plus
let subtractionh = liftBinOph Minus
let eqh = liftBinOph Eq

Dereference operator, allocation and assignement are very similar to
what is done in liftBinOph .
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let derefh (vn: varname): hVal Z→ wph unit
= λ(i, i#)→

let r# = Deref vn (Const i#) in
λp (s, s#)→

derefw vn i (λs' r→
s' ∈ W#.γv r# s# =⇒ p (s', s#) (r, r#)

) s

let alloch (vn: varname) (n: Z): wph unit
= λp (s0, s#0 )→

let s#1 = asemstmt (Alloc vn n) s#0 in
varw vn (λs1 ()→
s1 ∈ W#.γ s#1 =⇒ p (s1, s#1 ) ((), ()#)

) s

let assignh (vn: varname): hVal Z→ hVal Z→ wph unit
= λ(i, i#) (x, x#)→

λp (s, s#0)→
let s#1 = asemstmt (Assign vn i# x#) s#0 in
assignw vn i x (λs' ()→
s' ∈ W#.γ s#1 =⇒ p (s', s#1) ((), ()#)

) s

Now, let us introduce some rationale and intuition behind hybrid
weakest-preconditions: we explain the link between hybrid weakest-
preconditions and regular proof obligations. Consider additionh x y
(given some x and y): the resulting predicate maps a postcondition and a
hybrid state (that is, both a concrete and abstract state) to a proof obli-
gation relative to the concrete state, lightened by assumptions brought
by the abstract state. While this doesn’t feel like a weakest-precondition
at first glance, such hybrid weakest-preconditions can however be reified
as regular weakest-preconditions. Given an abstract memory s# and a
concrete memory s abstracted by s#, the abstract knowledge accumulated
from s# can be used to lighten the proof obligations.

λ(p:postw Z) (s:M).
s ∈ W#.γ s# =⇒

additionw x y (λs' (r, r#)→ x s' r)
(s, s#)

4.4.3 Hybrid Monadic Operators
To define the hybrid Dijkstra monad Wh, we need a bind and a return
operator. In the case of W, these operations are very canonical. However, a
return and a bind operation can implement very diverse behaviors, handle
errors for instance. We choose the functions returnh and bindh , to directly
inherit from returnw and bindw .
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Fig. 4.6: Illustration of the abstract in-
terpretation of a conditional statement
whose condition is c and branches are
b#> and b#⊥.

let returnh (v: τ): wph τ =
λp (s, s#)→ returnw v (λs' v'→ p (s', s#) (v', Const v)) s

Given a value v, returnh crafts the value (v', Const v) (with v' being
morally v). This hybrid value is fed to the given postcondition p, inside a
lambda abstraction given as postcondition to returnw . The bind operator
is more interesting: a composition of given hybrid computations f and
g is a particular composition of the regular views of these computations.
Recall the cartesian product nature of our hybridization (Section 4.4.1):
structurally, a hybrid postcondition is a postcondition in W that carries an
abstract view of memory and values. The same holds for hybrid weakest-
preconditions. post↓h reformulates a hybrid postcondition p: posth τ as
a postcondition of type postw (hVal τ × M#).

let post↓h (p: posth τ): postw (hVal τ×M#)
= λs (v, a)→ p (s, a) v

let post↑h (p: postw (hVal Z×M#)): posth Z
= λ(s, a) v→ p s (v, a)

let wp↓h (w: wph τ) (a: M#): wpw (hVal τ × M#)

= λ(p: postw (hVal τ × M#)) (s: M)→ w (post↑h p) (s, a)

let wp↑h (w: wpw (hVal Z × M#)): wph Z
= λp s→ w (post↓h p) (fst s)

let bindh (f: wph τ) (g: hVal τ → wph τ): wph τ
= λ(p: posth τ) (s: Mh)→

wp↑h (wp↓h f (snd s) `bindw` (λ(v, a)→ wp↓h (g v) a)) p s

The hybrid bind down-lifts its hybrid arguments f and g, passes them
to bindw , and up-lifts the result to obtain a hybrid weakest-precondition:
g is lifted in the lambda-abstraction right of bindw and given a value of
type hVal τ × M# that injects the hybrid value in g, and lifts the result
given the abstract state.

4.4.4 Conditional
A conditional alters the control-flow upon a condition. The abstract inter-
pretation of a conditional is summarized by Figure 4.6: for each conditional
branch, an abstract interpretation is run with an alteration to the initial
abstract memory s#0 . This alteration consists in supposing that the con-
dition is either true or false (the two uppermost arrows on Figure 4.6).
The abstract analysis of the two branches results in two memories s#>' and
s#⊥', that are then joined together to form s#>&⊥. This abstract memory s#>&⊥
captures the abstract semantics of the conditional: whatever path taken, a
concrete execution of the conditional is approximated by s#>&⊥.

This last joining step is the culprit of the limitations our approach
suffers from. Indeed, we encode abstract interpretations right into our
hybrid weakest-precondition. This means that our hybridization manip-
ulates abstract interpretations through weakest-preconditions reductions.
Consider a computation f, its abstract interpretation f#:M# → M# and
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its regular and hybrid weakest-preconditions fwp :wpw τ and fwp ':wph τ .
From fwp ', it is possible to extract a view of f# (see the meta post-condition
constantmp given in Section 4.6.1.1), but doing this inevitably generates
some pre-conditions with respect to fwp . As a consequence, the two hybrid
memories of the figure, s#>' and s#⊥' cannot be computed in a same contin-
uation, and thus s#>&⊥is impossible to craft. For the sake of the presentation
however, the definition of ifh supposes, for now, the existence of a joined
s#>&⊥at 1 .

let ifh: wph Z→ wph unit→ wph unit→ wph unit
= λ 2 (c, c#) a b→

λp (s, s#)→
let assumewp (cond: exp Z) (wp: wph unit): wpw unit
= λ(q: postw M#) (s: M)→

3 s ∈ assume# cond s# =⇒
wp (λ(s', 4 _) _→ q s' ((), ()#)) s

in
let s#>&⊥ = 1 ... in
ifw c ( 5 assumewp c# a)

( 6 assumewp (Not' c#) b)

(λs' ()→ 7 p (s',s#>&⊥) ((), ()#))
s

At 2 , the function ifh takes a hybrid condition and a weakest-
precondition for each branch, a and b. The helper function assumewp
assumes (at 3 ) some expression holds in the initial abstract memory s#,
and lifts a hybrid weakest-precondition wp as a regular one, dropping (at
4 ) the computed abstract memory. This helper function is used at 5 and
6 to call ifw . Finally, at 7 , we craft a regular post-condition out of p the
hybrid post-condition to satisfy. This post-condition uses s#>&⊥.

4.4.5 While
Computing a weakest-precondition for a loop is achieved relative to a suit-
able invariant. By contrast, abstract interpretation infers such an invariant.
Let us focus on this inference process. Consider b:M#→M#, an abstract
loop body, and an initial abstract state s#0 . The following sequence defines
the cumulative abstract states for any n, s#n v# s#n+1.

s#n+1
def
= s#n ∇ b s#n

The widening operator ∇ computes upper bounds in the state lattice
and ensures the convergence of its iteration to reach a fixpoint, i.e., an m
such that s#m = s#m+1. The abstract memory s#m is exactly a loop invariant
for the head of the loop: a concrete state respects the invariant iff it is
abstracted by s#m. This construction can be mirrored in our hybrid weakest-
precondition calculus. However, in such a setting, a body b is not an
abstract state transformer anymore: it is a weakest-precondition, that is,
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a continuation. Then, a fixpoint for b, in terms of state, is computed as
below, where sn+1 is equal to sn, the fixpoint. This fixpoint is then passed
to a continuation function ct.

b (λs1 → b (λs2 → · · · b (λsn+1→ ct sn) sn · · · ) s1) s0

Next, function fp computes an abstract state fixpoint in a similar way.
It takes a weakest-precondition f, a continuation ct, concrete and abstract
states s and a#s, and a fuel n. fp evaluates f with the postcondition 1

that tests whether the abstract state is stable or not, using the widening
operator W#.widening. If a fixpoint is reached (i.e. if condition at 2 is
true), it is passed to the continuation ct v s#0 . Otherwise, we recurse with
our new and widened abstract state s#2 ( 3 ).

let rec fp (f:wph τ) (ct:τ →M#→ prop) (s:M) (s#0:M#) (n:N)
: prop
= if n=0 then ct v >#

M else

f ( 1 λ(s#1, _) (v, _)→
let s#2 = s#0 `W#.widening` s#1 in

if 2 s#2 = s#0 then ct v s#0
else 3 fp f ct s s#2 (n-1)

) (s, s#0)

Since abstract interpretation and weakest-precondition computations
are coupled in our hybrid setting, fp also necessarily computes a weakest-
precondition given a concrete state. Note that each recursive call is per-
formed with the same concrete state: we compute the same weakest-
precondition, but with different abstract states, until stabilization. Having
the function fp that computes abstract invariants, it is easier to define how
hybrid while loops work.

Here, we are interested in computing the hybrid weakest-preconditions
of statements of the shape While c body, with c an expression of type expr
Z and body:stmt a statement. Let cwp and bodywp their respective hybrid
weakest-preconditions, of type wph Z and wph unit. In these conditions,
whileh inv cwp body is the hybrid weakest-precondition for While c
body, given an invariant inv about concrete memories.
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let whileh (inv: M→ prop) (cwp : wph Z) (bodywp : wph unit)
: wph unit
= let 1 loopbody: wph (expr Z)

= bindh cwp (λ(c, c#)→
bindh (ifh (c, c#) bodywp (returnh ((), ()#)))

(λ_→ 2 returnh c#))
in
λq (s, s#)→
3 fp loopbody ( 4 λc# s#i →
5 whilew (λs'→ 6 inv s' ∧ s' ∈ γ s#i )

(λp s'→ 7 cwp (λ(s, _) (c, _)→ p s c) (s', s#i ))

(λp s'→ 8 bodywp (λ(s, _) _→ p s ()) (s', s#i ))

(λs' _→ 9 q (s', assume# (!# c#) s#i ) ((),()#))
s

) s s# 10

The hybrid computation that we conduct here takes place in two phases:
first, finding a fixpoint in terms of abstract memories, second, handing
over to the W action whilew .

First, at 1 , we let loopbody be the weakest-precondition of the statement
If c body nothing: just as in Chapter 3, since we look for a fixpoint,
considering infinite loops instead of while loops is more convenient. The
binding loopbody is of type wph (expr Z): it captures the expression c#

reflecting the conditional, which was obtained after binding cwp . The
function fp then (at 3 ) computes a fixpoint for loopbody in the form of
s#i , an abstract memory. The expression c# of the loop condition and the
invariant (abstract memory) s#i are provided by the continuation passed to
fp at 4 .

Second, at 5 we re-use the W action whilew . We craft a new invariant
enriched with abstract interpretation at 6 , using the invariant computed
by fp: the abstract memory s#i . The weakest-preconditions cwp and bodywp
are transformed into non-hybrid weakest-preconditions (at 7 and 8 ) and
then fed to whilew . Finally, 9 is the post-condition supplied to whilew :
we adapt the hybrid weakest-precondition q injecting s#i ', the abstract
invariant assuming the loop condition does not hold anymore.

4.4.6 Functions and Reification
Language IMP neither defines procedures nor functions. We explained
what hybrid weakest-preconditions are made of, but not how one can use
them: this is what this subsection is intended for. Consider a program
that sorts an array in memory: the specification “the program results in
the list being indeed sorted” has nothing to do with abstract states or
values. Abstract bits are not to be exposed to the user: they solely exist for
inference purposes. The specification of such a “sort” example is tied to the
behavior of “sort”, and has nothing to do with our choice of analyzing our
program through a regular or a hybrid weakest-precondition. Consider a
function f mapping integers to integers of effect Wh, this section explains
how to compute its weakest-precondition fh , of type hVal Z→ wph Z. fW
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is the reification of fh : a regular weakest-precondition, of type wpw Z. By
nature, fW (i) approximates its input x by >#, the expression holding no
knowledge; (ii) approximates its initial concrete state by >#

M; (iii) injects
the regular post-condition p in fh by ignoring hybrid parts.

let fW (x: Z): wpw Z = λ(p: postw Z) (s: M)→
fh (>#, x) (λ(_, s) (_, r)→ p s r) (>#

M, s)

However, approximating every concrete piece of data by the greatest ele-
ment of the corresponding abstract lattice is weak. Commonly, an effectful
Dijkstra monad is given a Hoare-style interface for writing specification:
this is the case of Low?. For the sake of simplicity, we do not define such
an interface here. Nonetheless, for a function whose input and initial state
are constrained by a given precondition, it is possible to craft abstract
expressions and states that approximate this precondition precisely, e.g.,
the abstract state {A 7→ [11;∞]} from the precondition “variable A in
memory is greater than 10”.

In this section, we demonstrated how to embed and benefit from the ab-
stract interpreter W# in our Dijkstra monad W. We now study the soundness
of this calculus.

4.5 Statement of Soundness
Specification monads aim at program verification by computing proof
obligations for programs. Section 4.5.1 details the generation of a proof
obligation for an IMPx program with either a regular or a hybrid specifica-
tion monad. Section 4.5.3 states a theorem of soundness.

4.5.1 Proof Obligations
A proof obligation is a formula to be proven, in order to ensure that a
given program matches a given specification, consisting of pre- and post-
conditions.

4.5.1.1 Regular weakest-preconditions

Recall the instructions stmt and expressions expr of the IMPx language
(Section 4.3.1). Proving the specification (pre, post) of a program prg:
stmt correct using a weakest-precondition amounts to (i) computing prg’s
weakest-precondition W , (ii) deriving a proof obligation from W , and
(iii) proving that proof obligation. Below, wpstmtw and wpexprw give instructions
or expressions a regular weakest-precondition by induction.

81



let rec wpexprw (e: expr Z): wpmonw Z
= match e with
| Const x → returnw x
| Deref v i → bindw (wpexprw i) (derefw v)
| BinOp op a b→ bindbinw (wpexprw a)

(wpexprw b) (liftBinOpw op)

let rec wpstmtw (i: stmt): wpmonw unit
= match i with
| Alloc v n→ allocw v n
| Assign v ie xe →

bindw (wpexprw ie)
(λi→ bindw (wpexprw xe) (assignw v i))

| Seq i j→ sequencew (wpstmtw i) (wpstmtw j)
| If ce tb fb→ bindw (wpexprw ce)

(λc→ ifw c (wpstmtw tb)
(wpstmtw fb))

| While inv e body→ whilew inv (wpexprw e)
(wpstmtw body)

A proof obligation is a statement to prove true so that a specification holds.
Below POW i pre post computes the proof obligation that should hold
to ensure that the program i respects its specification (pre, post). The
weakest-precondition for the evaluation of i starting at state sW to satisfy
the post-condition post is (wpstmtw i) post sW. This weakest-precondition
should hold whenever the state sW respects the precondition pre.

let POW (i: stmt') (pre: prew) (post: postw unit)
= ∀ (sW: M). pre sW =⇒ wpstmtw i post sW

4.5.1.2 Hybrid weakest-preconditions

Similarly, wpstmth and wpexprh map instructions and expressions to hybrid
weakest-preconditions, the only differences being the nature (hybrid or
regular) of the combinators.

let rec wpexprh (e: expr Z): wpmonh Z
= match e with
| Const x → returnh x
| Deref v i → bindh (wpexprh i) (derefh v)
| ...

let rec wpstmth (i: stmt): wpmonh unit
= match i with
| Alloc v n→ alloch v n
| Assign v ie xe →

bindh (wp_h_of_exp ie)
(λi→ bindh (wp_h_of_exp xe) (assignh v i))

| ...

(4.6)
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osemstmt

W#
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1

Fig. 4.7: Consistency of the semantics
implemented by the regular weakest-
precondition calculus W, the opera-
tional semantics osemstmt , and the ab-
stract semantics of W#. Each arrow is a
relation between the semantics imple-
mented by two entities. The dashed
arrow is the relation we are looking for.

The second step is to define how hybrid weakest-preconditions are
translated into proof obligations. Whether we are dealing with hybrid
or regular weakest-preconditions has no impact on the specification one
is interested in. Thus, even to formulate a proof obligation using hybrid
weakest-precondition, the specification is still described by regular pre-
and post-conditions. Function POh hence defines a proof obligation given
a hybrid weakest-precondition against a regular one.

type approx = pre:prew → s#: M# {∀ s. pre s =⇒ s ∈ γ s#}
let POh (α: approx) (f: instr') (pre: prew) (post: postw unit)
=∀(sW:M). pre sW=⇒wpstmth f (λ(s′W,_) (rW,_)→ post s′W rW) (α pre,sW)

In this proof obligation, the hybrid weakest-precondition is given a
regular postcondition post, and applied on a hybrid state (α pre, sW).
Given a precondition pre, α:approx constructs an abstract state that ap-
proximates pre: any concrete state that satisfies pre is approximated by
(α pre), that is pre ⊆ W#.γ (α pre).

4.5.2 Abstract Interpreter Soundness
The soundness proof of our hybrid weakest-precondition calculus relies on
the fact the abstract interpreter W# is a sound abstract interpretation w.r.t.
the semantics implemented by the regular weakest-precondition calculus
W. This fact (the dashed arrow on Figure 4.7) can be derived from (i) the
soundness of W# w.r.t. the operational semantics of IMPx (arrow 1 on the
figure) provided by the refined type of asemstmt (Section 4.3.3), and (ii) the
connection between W and the operational semantics of IMPx (arrow 2 on
the figure), discussed in Section 4.3.2.

As an example, below alloc_W#_W is the Alloc instance for the dashed
arrow on Figure 4.7. Given any variable name v, length n, abstract state m#0
that approximates an initial state m0, and p a post-condition, alloc_W#_W v
n m0 m#0 p states that the regular weakest-precondition rules allocw and
the abstract semantics asemstmt (Alloc v n) reflects a same semantics.

let alloc_W#_W (v: varname) (n: Z)
(m0: M) (m#0: M# {m0 ∈ γ m#0 }) (p: postw unit)
: Lemma (allocw v n p m0 =⇒

allocw v n (λm1 _→ m1 ∈ γ (asemstmt (Alloc v n) m#0 )
∧ p m1 ()

) m0
)

= ...

Definition 1 reformulates this notion, which is then generalized for any
statement of IMPx in Theorem 1.

Definition 1 (W# is sound w.r.t. W) An abstract interpretation f#, of type
M# →M#, is sound w.r.t. its W f, of type wpw unit, if αsound f# f holds:
given any initial abstract state s# and concrete state sW ∈ γ s#, proving a
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post-condition on f is stronger than proving that same post-condition and
computed concrete state approximated by γst (f# s#).

let αsound (f#:M# →M#) (f: W.wp unit)
= ∀ (p: postw unit) (s#: M#) (s: M). s ∈ γst s# =⇒

(f p s ⇐⇒ f (λc1 _→ c1 ∈ γst (f# s#) ∧ p c1 ()) s)

More specifically, for any instruction i, the abstract interpretation
(wpstmtw i) of i should be sound w.r.t. its regular weakest-precondition
wpstmtw i.

Theorem 1 For any statement s:stmt, asemstmt s is sound with respect to
wpstmtw i.

Proof 1 By composition of the soundness of W# w.r.t. IMPx’s semantics and
the fact the weakest-precondition calculus formed by the monad W implements
IMPx’s semantics.

4.5.3 Statement of Soundness
This section presents Theorem 2, our theorem of soundness. It states that
one can confidently prefer to prove a specification on a program using its
computed hybrid proof obligation, instead of proving the original, more
complicated, proof obligation.

Theorem 2 (The hybridization Wh is sound) For any program prg of
type stmt, any pre-condition pre of type prew , any post-condition post
of type postw unit, and any α: approx, the lightened proof obligation POh
α prg pre post implies the original proof obligation POW prg pre post.

∀ (α: approx) (prg: statement) (pre: prew) (post: postw unit).
POh α prg pre post =⇒ POW prg pre post

4.6 Proof Overview
This Section aims at giving some intuition about the way our proof is
conducted. The full details are available as F? code. The statement of
Theorem 2 holds for every program of type statement. The building
blocks of our hybrid weakest precondition monad Wh are the different
combinators of Section 4.4. Most of the proofs consist in proving that those
combinators admit certain properties. Before looking at which property we
are interested in, let us understand the meaning, definition and verification
of a property about a weakest-precondition combinator.

At the end of Section 4.3.2, we presented how weakest-preconditions of
type wpw unit can be seen as maps from an initial memory to a set of admis-
sible final memories. More generally, the function fwp of type wpmonst w τ

5 5With st a state type, w a type transformer
for wrapping results and τ the type of the
computation in stake
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is a weakest-precondition but can also be seen as a map from states st to
the Cartesian product of states st and outcome values of type τ . Indeed,
the expression λs0 s→fwp (curry s) s0

6 is of type st→(st×τ)→prop. 6With curry being the function defined be-
low.
let curry (f:(τ×β)→γ): τ → β→ γ

= λx y→ f (x,y)

In this section, we focus on the properties that the semantics reflected by
a weakest-precondition yields. By abuse of language, we will refer to the
initial and final states (or final outcome values) a weakest-precondition
admits.

4.6.1 Reasoning on Weakest-Precondition: “Meta” Hoare
Triples

4.6.1.1 A First Example: purity

Our language IMPx separates expressions and statements making sure
expressions are pure, i.e. have no effect on the memory store. Thus, among
all possible weakest-preconditions, it is interesting to select the ones that
reflect a pure semantics. Consider fwp : wp st w τ , with arbitrary st, w
and τ . For every initial state s0:st, and post-condition p:post st w τ ,
the post-condition q defined as λs1 _→ s0 == s1 should be given for free
by fwp . That is, fwp p s0 should imply fwp (p⊕q) s0. The expression
p ⊕ q denotes the conjunction of p and q. The definition of operator⊕ is
given below.

let (⊕) #t #st #w (p q: post st w t)
: (r: post st w t {orderpost r p ∧ orderpost r q})
= λs r→ p s r ∧ q s r

We generalize this kind of reasoning by introducing “meta” Hoare
triples, i.e. a pre- and a (meta) post-condition about a weakest-precondition.
A meta post-condition is a post-condition indexed by an initial state. The
predicate respects p fwp mq states that fwp always yield post-condition
mq s0 for free given when p s0 holds. It is then easy to write down the
refined type constantwp , that is inhabited by the weakest-preconditions
of pure computations.

type postmeta st w (t: Type) = st→ post st w t
let respects #st #w

(p:pre st) (f: wp' st w τ) (q:postmeta st w τ): prop
= ∀ (r: post st w τ) s.

p s =⇒ f r s =⇒ f (q s ⊕ r) s
let constantmp #st #w #t: postmeta st w t = λs0 s1 _→ s0 == s1
type constantwp #st #w #t
= f: wp' st w t {respects pretop f constantmp }

Let us now take a tour of some of the meta properties we are interested
in for our proof of soundness.

4.6.1.2 State Consistence

We call a hybrid state (s#,s) consistent whenever s is approximated by
s#, that is, s ∈ W#.γ s#. This is illustrated by Figure 4.8. This notion is
implemented as a meta pre-condition and post-condition below.
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(s#0,s0)
(s#1,s1),
(s#2,s2),

...
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s#0
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s2s#2

Fig. 4.8: Illustration of state preserva-
tion of consistence. Here, the weakest-
precondition fwp , given a consistent ini-
tial hybrid state (i.e. (s#0 ,s0) with s0 ∈
s#0 ), yields hybrid state consistence as a
free post-condition.

(s#0,s0)
(s#1,s1),
(s#1,s2),

...
{ }gwp

s0

s#0
s1

s#1

s2
s3

s4

s5

s6

g#

Fig. 4.9: Illustration of a hybrid
weakest-precondition fwp respecting
an abstract interpretation f#.

let consistentStpre: pre st

= λ(s#0 , s0)→ s0 ∈ s#0
let consistentStmp : postmeta st hVal τ

= λ_ (s#1, s1) _→ s1 ∈ s#1

It is easy to state that fwp (from Figure 4.8) is a weakest-precondition
that preserves consistency (i.e. starting with an initial consistent state
leads to final states that are consistent as well), by using the predicate
respects. It amounts to using the pre- and post-conditions we just defined,
as following: respects consistentStprefwp consistentStmp .

4.6.1.3 Weakest-Preconditions Respecting Given Abstract Interpreta-
tions

Below we define the type wp_prop_h, that holds the hybrid weakest-
preconditions whose abstract semantics coincides with some abstract in-
terpretation. The hybrid meta post-condition eqAbStmp f# states that
abstract final states s1 should be exactly f# s0. This post-condition is
illustrated by Figure 4.9: the initial and final abstract state admitted by
gwp exactly corresponds to an abstract interpretation g#. Note that the
weakest-precondition fwp of Figure 4.8 does not respect one given abstract
interpretation since an initial abstract state s#0 admits two distinct abstract
states s#1 and s#2 .

Similarly to eqAbStmp , hybrid meta-post condition eqAbExpmp r# states
that the abstract component of outcome values should be exactly r#.

let eqAbStmp #t (f#: A.t): postmeta st hVal t

= λ(s#0 ,_) (s#1,_) _→ s#1 == f# s#0
let eqAbExpmp (r#: exp τ): postmeta st hVal τ

= λ_ _ (r#',_)→ r# == r#'

let wp_prop_h τ
= f: wpmon st hVal τ {

(∃ f#. respects pretop f (eqAbStmp f#))
∧ (∃ r#. respects pretop f (eqAbExpmp r#))
}

Bind Below we define the lemma bind_respects. It states that the
hybrid bind operation transports meta Hoare triples.

let bind_respects #u #v
(fpre: pre st) (f: wpmonh u) (fpost: postmeta st hVal u)
(g: hVal u→ wpmonh v) (gpost: st→ hVal u→ postmeta st hVal v)
: Lemma (requires respects fpre f fpost

∧ (∀ s0 r1. respects (λs1 → fpost s0 s1 r1)
(g r1)
(gpost s0 r1)

)
)
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(ensures respects fpre
(bind_wp_mon_h f g)
(λs0 s2 r2 →∃ s1 r1.

fpost s0 s1 r1
∧ gpost s0 r1 s1 s2 r2

)
)

= ...

This lemma can be used to propagate properties in a bind operation.
Reconsidering our example of pure computation, the lemma makes it easy
to prove if xwp is pure, then plus5 xwp below is pure as well. Below, lemma
xy_lemma makes a trivial use of bind_respects to encode the preservation
of purity we discussed.

let plus5 (xwp : wp_h_mon Z): wp_h_mon Z
= bindh xwp (λx => 5 + x)

let xy_lemma (xwp : wp_h_mon Z)
: Lemma (requires respects pretop xwp constantmp )

(ensures respects pretop (plus5 xwp ) constantmp )
= bind_respects pretop xwp constantmp plus5 constantmp

4.6.2 Per Weakest-Precondition Soundness
While the statement of Theorem 2 operates on statements, below we define
a statement indexed with both a regular and a hybrid weakest-precondition,
soundE. Given a hybrid precondition pre, a hybrid weakest-precondition
fh and a regular weakest-precondition fW, soundE pre fh fW states that
for any regular post-condition p and state s0 approximated by abstract
state s#0 , if the precondition holds, then the hybrid proof obligation with
the post-condition p via should be at least as strong as the regular one.

let soundE (pre: preh) (fh: wpmonh τ) (fW: wpmonw τ): prop

= ∀ (p: postw τ) s#0 s0.

pre (s#0 , s0)

=⇒ s0 ∈ γ s#0
=⇒ fh (λ(_,s1) (_,r)→ p s1 r) (s#0 , s0)
=⇒ fW p s0

Bind. For example, below bind_soundE carries soundness in the bind
operation. Given a hybrid fh that yields the post-condition fpost given
the pre-condition fpre holds, below 1 states that fpost should entail
consistentStmp . The proof that fh is sound w.r.t. fW (and similarly for gh
and gW) is transformed by bind_soundE into a proof that the hybrid bind
of fh with gh is sound w.r.t. bindw fW gW.

let bind_soundE
(fh: wpmonh τ) (gh: hVal τ → wpmonh β)
(fW: wpmonw τ) (gW: id τ → wpmonw β)
(fpre: pre st) (fpost: postmeta st hVal τ)
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: Lemma (requires soundE fpre fh fW
∧ respects fpre fh fpost
∧ 1 orderMETA

post fpre fpost consistentStmp
∧ (∀ s0 r1. soundE (λs1 → fpost s0 s1 r1)

(gh r1)
(gW (snd r1))

)
)
(ensures soundE fpre (bind_wp_mon_h fh gh) (bindw fW gW))

4.6.3 Proving Soundness
The proof of Theorem 2 is conducted by induction on statements. In Sec-
tion 4.5.1.2, the function wpstmth constructs a hybrid weakest-precondition of
type wpmonh unit given a statement. Below, we provide the type signature of
swpstmth , that produces state consistency preserving weakest-preconditions,
of type wp_prop_h. This type ensures there exists an abstract interpreta-
tion encoding the very initial to final abstract memory mapping for each
inhabited weakest-precondition. The refinement also mentions that the
produced weakest-preconditions are sound w.r.t. their regular counter-part.

The implementation of swpstmth consists in applying the different prop-
erties we discussed in this section on the various combinators involved.

let rec swpstmth (i: stmt)
: r: wp_prop_h unit

{ soundE pretop r (wpstmtw i)
∧ respects consistentStpre r consistentStmp }

= ...

Function swpstmth is actually a slight reformulation of Theorem 2.
Statement-wise swpstmth produces the same weakest-preconditions as wpstmth .

4.7 Generalization: a Dijkstra
Monad Transformer

We demonstrated the realization of our hybridization (Section 4.4) on a
given input (Section 4.3). This section aims at showing how this instance
of hybridization can be generalized so that it can be applied to other
weakest-precondition monads and abstract interpreters.

First, we show how to fill out the blanks left in Sections 4.2.1 and 4.2.2:
more precisely, below, Section 4.7.1 gives a proper type for the fields
e_actions and ab_action from the record type monadwp and abint. Sec-
ond, Section 4.7.2 shows how these action-related fields can be used to
generically produce hybrid actions.

In this section, we consider a couple of weakest-precondition monads
and abstract interpreters (e, ai), of type (monadwp × abint).
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4.7.1 Actions
In this generalization, we only consider actions that have no impact on
control flow; we disregard conditionals or loops. This can indeed be
observed in the definition of record types monadwp and abint given in
Sections 4.2.1 and 4.2.2: they have fields for certain fixed operations
(i.e. bind, if, while).

Dereference operator and assignment are actions that cannot alter the
control flow of the program by themselves. For simplicity, we only consider
either pure actions whose outcome might be informative (e.g. addition),
or impure actions whose outcome is non-informative (e.g. assignment).
This distinction is encoded by the type actionkind. The type actiontype is
inhabited by descriptions of the arrow type of an action.

type actionkind =
| Exp: output:Type→ actionkind
| Stmt: actionkind

type actiontype = list Type × actionkind

It is then possible to write a type-level function that transforms
such an action type description into an actual arrow type: that is what
action_wp_type does below. It is indexed by a weakest-precondition
monad transformer and an action type description, and its outcome is
a weakest-precondition respecting the monad in stake. For instance, the
description ([Z;Z], Exp Z) is transformed into e.w Z→ e.w Z→ wpmon
e.st e.w Z by action_wp_type e considering e a monad.

let action_wp_type: monadwp → actiontype → Type
let action_abint_type: abint→ actiontype → Type

In a very similar way, action_abint_type transforms a type description
into an abstract interpretation type.

The type of the field e_actions of a monad e consists in a list of de-
scriptions and implementations of actions. A weakest-precondition action
actionwp e gathers a type description with a corresponding implementa-
tion. The exact same process goes for abstract interpretation as well, with
the type actionai .

type actionwp (e: monadwp ) =
| Actionwp : typedesc: actiontype

→ implem: action_wp_type e typedesc
type actionai (ai: abint) =
| Actionai : typedesc: actiontype

→ implem: action_ai_type ai typedesc

4.7.2 Generic Hybridization
Consider the type description ([t0;...;tn],Stmt), a weakest-precondition
monad e equipped with an action actione of type e.w t0 → ...→ e.w
tn → wp e.st e.w unit, and an abstract interpreter ai equipped with
an action actionai of type ai.exp t0 → ...→ ai.exp tn → ai.M# →
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ai.M#. Then, the hybridization of actione and actionai is defined as
below. Note it is very similar to alloch defined in Section 4.4.2.

let actionh (x0: e.w t0) ... (xn: e.w tn): wpmon unit
= λ(x0, x#0) ... (xn, x#n)→

λp (s0, s#0)→
let s#1 = actionw x0 ... xn s#0 in
actionw x0 ... xn (λs1 r→
s1 ∈ ai.γ s#1 =⇒ p (s1, s#1 ) ((), ()#)

) s0

The process of generalizing pure actions is very similar to the one above,
following the definition of derefh given in Section 4.4.2.

4.8 Related Work
The burden of annotating F? programs has been addressed in numerous
ways. Low* [Pro+17] model memory as hyper-stacks, enabling modular
region-specific and hence lighter invariants to be specified. Monotonic
states [Swa+13; Ahm+18] facilitate the expression of invariants that
are preserved over time, reducing the need for explicit invariants. Steel-
Core [Swa+20] is a concurrent separation logic in F? that makes, among
others, concurrency-related invariants easier to express. These approaches
ease the formulation of invariants in a specific use case; instead, our hy-
bridization infers invariants directly.

K. Maillard et al [Mai+19] develop a powerful framework for ma-
nipulating Dijkstra monads, and focus on monad morphisms from com-
putational to specificational monads. This allows to extend the scope of
language features in F? (non-determinism, IO) in a unified correctness
framework. In our work, extending computational monads is irrelevant
because our only aim is to lighten proof obligations by transforming speci-
ficational monads. Consequently, we did not leverage K. Maillard’s frame-
work in our soundness proof. Our statement of soundness amounts to a
simple implication between proof obligations.

R. Jhala et al [JMR] introduce a verification procedure for higher-
order functional programs using static analysis designed for imperative
languages and leveraging refinement types. They translate refinement
constraints about high-order programs as first-order programs: these can
then be analyzed by a regular abstract interpreter, thus reducing the need
for annotations.

A. Ivašković et al [IMO20] embed a control-flow analysis into a type
system, using graded monads, in a non-dependent type setting. Instead,
we directly embed an abstract interpreter in the Dijkstra monads of a
dependent type system.

Liquid Types (Logically Quantified Data Types [MKJ08]) enable a
restricted but decidable form of dependent type checking. Liquid Types
leverage abstract interpretation to seek the strongest refinement satisfying
a set of constraints. Liquid Haskell [VSJ14] is a static type checker that
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brings refinement types to Haskell, using Liquid Types independently
of Haskell type checking. This approach has the benefit of automation,
requires few (function type signature) annotations, at the cost of a relatively
weak specification logic (QF-EUFLIA [VSJ14]). Dijkstra monads allow for
much higher expressiveness, but yield a requirement of heavy annotations
that our work strives to reduce using abstract interpretation.

4.9 Conclusion and Future Work
We introduce a method to embed abstract interpretation in a weakest-
precondition calculus by transforming Dijkstra monads. This hybridization
lightens the amount of both required annotations and generated proof
obligations of the calculus. It is supported by the implementation of a
working prototype in the dependently-typed language F? and a proof of
soundness. Our implementation is purposefully a proof of concept: it
models a simple Dijkstra monad, implements a simple abstract interpreter
to run a simple IMPx language, for the purpose of demonstrating the key
concepts of our method. One current important limitation to the concrete
use of our approach is our conditional combinator, that forks abstract
memories in an exponential manner; consequently our approach currently
disappoints our expectations in terms of applicability.

Currently, our method relies on a basic abstract interpreter that infers
numerical intervals for program variables. To handle, e.g., C constructs, we
would need to incorporate abstraction techniques used in Verasco or Astrée
to track properties such as liveness of memory frames, alignments, and
aliases. Similarly, our prototype transforms Dijkstra monads, not actual
F? definitions in its effect system. Layered effects [Ras+21] make effects
more flexible and expressive, and would make our hybridization easier to
implement on actual F? effects. Having actual F? effect transformations and
full C abstract interpreters is an attractive direction for future works which,
we believe, would be a valuable contribution to F?/Low? community.
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Chapter 3 showcased a straightforward and accessible implementation of
a verified sound abstract analyser. Such a verified analyser enables trust-
worthy automatic formal analysis of programs. Then, Chapter 4 proposed
a monad transformer leveraging such sound abstract analysers in order to
ease verified programming. The scope of properties that these two chapters
aim at verifying is relatively general. In this chapter, we investigate the
opposite approach by picking one specific kind of properties to analyze.

This chapter is interested in Information Flow Control (IFC) policies. It
implements an F? variant of Labeled Input Output (LIO) [Ste+11] (Sec-
tions 5.4 and 5.5), a monadic IFC Haskell library. Our library intends to
ease specification and verification of IFC policies for F? and Low? programs.
We investigate the full spectrum of such policies, from fully static (Sec-
tion 5.4) to fully dynamic (Section 5.5) verification. The clients of our
library enjoy the compatibility of our library with Low?, enabling their ex-
traction to efficient C programs1 (See Sections 5.4.6 and 5.6). Leveraging

1As explained in Chapter 2, in order to be ex-
tracted to C, the clients of our library should
however be written in the Low? subset of
F?.

Low? and KreMLin (a tool for extracting F? to C code, see Section 2.3.3),
our library is well-suited for software aimed at low-level, embedded and/or
resources-constrained devices. We also propose a method to formulate and
prove noninterference theorems using meta-programming (Section 5.7).

5.1 Introduction
The software systems that surround us are very often composed of mul-
tiple different components. For instance, consider a car. As illustrated
by Figure 5.1, the on-board computer of a car acts as an orchestrator; it
receives and sends information from and to various components of very dif-
ferent sensitivity levels. In this context, an example of an information flow
property is that no brake-related decision should be taken by the on-board
computer based on data emanating from the car radio component.

An IFC system tracks the various bit of data fed into a software along
its lifespan. Each piece of information being tracked, it is possible to
verify whether its flow respects a given policy. An example of IFC policy is
isolation, i.e. a secret should never interact with a given portion of code.
Such isolation policies meet security concerns: hence information flow
policy is a broad and well studied topic. IFC systems are either dynamic
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on-board 
computer

Fig. 5.1: A car on-board computer deals
with different components that should
not interact with each other in an arbi-
trary way. For instance, the blue-linked
components shall not interact with red
ones.

or static: either the control of the flow happens at runtime, or a type
system ensures it. In the former case, the runtime representation of data is
enriched with a label, tracking, e.g., whether the data is secret or public. In
the latter case, it is the type system itself that tracks such meta-information,
and leaves the runtime representation of data untouched. One downside of
a system that ensures an information flow policy at runtime is its overhead
in terms of memory and computations. Moreover, it leaves room for policy-
related failures: a program that violates a policy will yield an exception
or terminate. Those two issues are particularly bothering in the case of
critical embedded devices.

On the other side, consider a program that manipulates data of arbitrary
sensitivity levels. To get some compile-time knowledge of the data at stake,
the developer has to write tests to discriminate its sensitivity. Certain
use-cases simply yield so many such tests that we end up with a runtime
overhead comparable to the one implemented by a dynamic IFC library,
without the practicality of such a library. In such cases, a dynamic library
is better suited.

So, what is the better: dynamic or static IFC systems? It largely depends
on the needs. The different tasks performed in a same program might
meet very different needs. Whence our library, that lets the programmer
choose at any point the nature of the IFC policy enforcement, from static
to dynamic.

5.2 Labeling Information
In order to verify information flow policies, we have to keep track of the
roles played by the various pieces of data at stake in a program. To do so,
we label the various values we deal with, by wrapping them into labeled
values. The type of labeled values lv is indexed by a label type and a value
type. Consider the enumeration type type label = | Secret | Public
which allows us to differentiate values that are public from the ones that
shall stay private. An integer labeled with a tag Secret or Public has the
type lv label Z. Importantly, the type lv has no public constructor and
cannot be destructed: one shall not unlabel a secret protected by a “private”
label (for instance Secret) and, e.g. shall send it over the internet. The
unwrapping of such labeled values must be controlled.

5.2.1 Hiding type constructors
By default, in F?, a module exports all its definitions: a client to a module
can see all its implementation details. The mechanism of module inter-
faces however allows a module to be split into an implementation and
an interface. An interface can contain signature declarations without im-
plementation, as well as implemented definitions. A client to a module
equipped with an interface is blind to the declaration from the implemen-
tation, and only sees the interface.

In order to control construction and unwrapping of labeled values, in
the interface of the module providing labeled values, we only declare the
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signature of lv without any constructor. Figure 5.2 presents this interface.
Given a label type lt and a value type a, lv lt a is the type of labeled a
values, with labels of type lt. Notice that the type signature of lt is a type
transformer with explicit type-universes (See Section 2.1.3). Given a label
type of universe u#lt and a value type of universe u#a, labeled values are
of type whose type universe is u#(max lt a).

val lv (lt: Type u#lt) (a: Type u#a): Type u#(max lt a)
val labelOfe (v: lv τ β): Ghost.erased τ
val valueOfe (v: lv τ β): Ghost.erased β
let labelOf (v: lv τ β): GTot τ = Ghost.reveal (labelOfe v)
let valueOf (v: lv τ β): GTot β = Ghost.reveal (valueOfe v)
val ghostmake (l:τ) (v:β)
: GTot (r:lv τ β {labelOf r == l ∧ valueOf r == v})

Fig. 5.2: Interface for the module pro-
viding labeled values.

5.2.2 Computational Relevance
The observation of the label or content of a labeled value is possible via the
functions labelOfe and valueOfe . Such observations are computationally-
irrelevant: functions2 labelOfe and valueOfe both produce values of 2Recall that an arrow type τ → β is

a shortcut for τ → Tot β. The
effect-explicit type of labelOfe is thus
v:lv τ β→Tot (Ghost.erased τ).

type of the shape Ghost.erased ε, with some ε. Such values of type
Ghost.erased ε are isolated from the world of informative values. The
type Ghost.erased ε wraps values of type ε in a box that, virtually, has
() (the inhabitant of unit) as runtime representation: no decision can be
derived from ().

The only interface provided for unwrapping erased value is the function
Ghost.reveal. For any type τ , it has the arrow type erased τ → GTot
τ : it transforms an erased value into a non-informative computation. As
explained in Section 2.3.1, the effect GTot acts as a sink: information
emanating from a GTot computation is marked non-informative and cannot
be used in a computationally-relevant context. Our goal being to control
how information flows to avoid leakage at runtime, it is fine to represent
labels and values at type-level.

Functions labelOfe and valueOfe live in the Tot effect, but they pro-
duce erased values. By contrast, functions labelOf and valueOf live in the
GTot effect of non-informative computations, but produce plain values. It
is often more convenient to work directly with unwrapped values, whence
these ghost computations.

5.2.3 A Zero-Cost Abstraction
Now, let us take a look at Figure 5.4, presenting the –hidden by means of a
module interface– implementation of our labeled value module. Note that
the runtime representation of a labeled value of type lv τ β is isomorphic
to β, since Ghost.erased τ is computationally irrelevant. Via a few F?
attributes and qualifiers3, it is easy to instruct KreMLin to completely 3The module abstraction allows to e.g. hide

type constructors for verification purposes.
However, it is possible to teach F? to drop
such modular abstractions while extract-
ing F? code to C or OCaml. Also, the
noextract attribute teaches KreMLin it
should not extract a specific definition.
Other methods can be used to eliminate
useless abstractions, i.e. normalizing cer-
tain definitions when extracting.

eliminate the record type lv τ β: every labeled value of type lv τ
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Fig. 5.3: The computable representa-
tion of a labeled value is isomorphic
to its wrapped value. Two values con-
nected by an arrow are isomorphic in
terms of runtime representation.

{Bob, Alice} {Bob, Eve} {Alice, Eve}

{Bob} {Alice} {Eve}

∅

{Bob, Alice, Eve}

Fig. 5.5: The lattice (set user, ⊆)
formed by sets of users and ordered
by inclusion.

β is simply regarded as a plain value of type β. Figure 5.3 illustrates
this elimination. Similarly, KreMLin eliminates every call to labelOfe ,
valueOfe , labelOf... The entire module related to labeled values is actually
eliminated during KreMLin’s extraction to C. In consequence, we cannot
illustrate how this module is translated to C, as it is outright dropped.

type lv lt a = { lbl: Ghost.erased lt; v: a }
let labelOfe v = v.lbl
let valueOfe v = v.v
let ghostmake l v = { lbl = l; v = v }
let trustedmake (l: Ghost.erased τ) (v: τ) = {lbl = l; v = v}

Fig. 5.4: Hidden implementation for
the module providing labeled values.

Also note the definition trustedmake: the reader might wonder what its
purpose is since it is not exported in the interface of themodule (Figure 5.4),
and hence remains invisible. F? modules can have friend modules, sharing
their hidden definitions. Section 5.4.4 will present how our main IFC effect
makes use of this feature.

5.2.4 Values With a Runtime Label
In various scenarios, the label protecting a value is part of the runtime data.
Consider for example a private note web application: its database would
contain a table of notes, where each row stores a note of type string
along with a user identifier of type e.g. user = | Bob | Alice | Eve. Let us
consider the lattice presented in Figure 5.5, taking set user as label type.
One can represent such rows by considering different type representations.
A first approach would be to represent a row as a lv user string. This
however amounts to discarding the column “user”: the label of a labeled
value lv disappears at runtime. A solution is then to encode a row as a
tuple user × lv user string. On a type-level point of view, such a tuple
type is disappointing: it allows for tuples whose runtime label is not equal
to the type-level label held in the labeled value.

Our library provides the type lvrt to represent labeled values with a
runtime representation, and to ensure the consistency between type-level
and runtime labels. Its field vrt is refined so that lblrt is always equal to
vrt ’s type-level label.

type lvrt τ β = {lblrt :τ; vrt : x:lv τ β {labelOf x==lblrt }}

This section presents both statically and dynamically labeled values.
Dynamically labeled values proxy the protection of statically labeled values.
However this section does not present how one deals with such protected
values: the protected values cannot (yet) be constructed or unwrapped.
Before diving in the monadic behavior of LIO (Section 5.4), which enables
labeled valuemanipulation, the next section looks at which kind of structure
labels form.
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5.3 Labels as a Lattice
Labeled values allow us typically to track the security level of values dealt
within a program. Let l the type of labels; i.e. the enumeration type l
= | Low | Medium | High representing three security levels. As soon
as we start mixing values together– i.e. concatenating two values– the
security levels should be mixed as well. Some security labels are higher
than others: reading a value labeled Low is fine in a context dealing with
High values. The fact a value (protected by a certain label) can flow to
a certain (labeled) context of security is decided by an order on labels,
denoted v. For instance Low v Medium means that Low-sensitive values
can flow to a Medium context of security. We also consider t the binary
operation that mixes two labels together, that is t is of type l→ l→ l.
For consistency, the structure (l,v) should form a join-semilattice, thus
the join operatort should compute least upper bounds [Den76]. Below,
we define a new typeclass for join-semilattices, to which we refer simply
as lattices in this chapter. Every inhabitant of lattice τ (for τ a type)
shall provide proofs for v’s reflexivity (reflord), transitivity (transord) and
anti-symmetry (antisymord). The field t is a binary operator refined so
that it is an upper bound v-wise; moreover, joinlub ensures t computes
least upper bounds.

class lattice a = {
v: a→ a→ bool;
t: x:a→ y:a→ r:a { x v r ∧ y v r };
reflord : l:a→ Lemma (l v l);
transord : x:a→ y:a→ z:a→
Lemma (requires x v y ∧ y v z) (ensures x v z);

antisymord: x:a→ y:a→
Lemma (requires x v y ∧ y v x) (ensures x == y);

joinlub: x:a→ y:a→ l:a→
Lemma (requires x v l ∧ y v l) (ensures (x t y) v l);

}

We define two auxiliary extrinsic lemmas reflsmt and transsmt, that
introduce SMT patterns. Thanks to them, the SMT solver will automatically
instantiate reflexivity and transitivity for v operators when used.

let reflsmt (l: lattice τ) (x: τ)
: Lemma (x v x) [SMTPat (x v x)]
= reflord x

let transsmt (l: lattice τ) (x y z: τ)
: Lemma (requires x v y ∧ y v z) (ensures x v z)

[SMTPat (x v z); SMTPat (x v y)]
= transord x y z

We now enjoy a few tools to represent and work with labeled informa-
tion. In the beginning of this section, we discussed security contexts. In
the following section, we are going to see that such contexts can be defined
in a monadic way, using F?’s layered effects.
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5.4 GLIO*: A Static Monadic IFC
System

We described how a security lattice of labels can be used to protect values
by wrapping them as labeled values. In this section, we introduce the effect
GLIO, that keeps a type-level track of the security context of computations.
Such a fully static approach allows to verify flow information policies
without any runtime cost and without any IFC-related failure at runtime.
The downside of such an approach is the human time cost: one shall prove
his program respects given policies.

Section 2.2.6 presented the concept of computational monads indexed
by weakest-precondition monads. In F?, such indexed monads can be
written as layered effects. This section continues the discussion of Sec-
tion 2.2.6 by defining GLIO, a concrete layered effect implementing a static
IFC system.

Similarly to LIO [Ste+11], the IFC context (of type context) of a GLIO
computation consists in cur, a current label and cle, a clearance. The
current label reflects the level of security of the computation going on: for
instance, in a LowvMediumvHigh lattice, after reading a secret the current
label of a computation would be High. The notion of clearance is useful to
state that a component of a program should never reach a certain level of
security. Consider a component that is expected to manipulate non-critical
only pieces of information. A simple way to ensure the component never
deals with values beyond Medium (for instance) is to set the clearance to
λcur→ cur v Medium. This predicate holds on labels that are below High
in the lattice. In other words, a clearance allows to forbid a computation to
flow to certain labels in the lattice. A few clearance policies are illustrated
by the red dots in Figure 5.6.

type context = { cur: Ghost.erased labelType
; cle: cle: (labelType→ Type0) {cle cur} }

The current label cur is of type Ghost.erased labelType, thus current
labels are computationally irrelevant, and erasable by KreMLin. The
type labelType and its lattice are implemented by a per-client module4 4At the time of writing, a bug in the extrac-

tion of layered effects forbids us to have
an effect indexed by a type used as a state.
See issue 1879. Instead of having our effect
parametrized by label type, we thus fix it in
a F? module Parameters. A client defines
its own Parametersmodule to be used with
the library.

Parameters. The field cle is a map from labelType to Type0. Type0 is
inhabited by computationally irrelevant values: non-decidable predicates
only have constructors, one cannot discriminate or destruct them; in other
terms, it is not possible to derive any sort of information from those values.
A total map whose codomain is erasable is erasable as well; thus the values
of type context can safely be erased by KreMLin. The extraction mech-
anism therefore eliminates any sort of IFC contexts. We do not want to
consider contexts in which the current label is forbidden by the clearance:
whence the refinement of the field cle.
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The types HST.stpre and HST.stpost are
part of Low? library. As we will detail later,
our library lives in a Low? effect. Conse-
quently, a pre- or post-condition about a
GLIO program is an extended pre- or post-
condition about a computation living in a
Low? effect. HST refers to F? standard li-
brary module FStar.HyperStack.ST.

6≪

≪

Fig. 5.6: Example of ordering between
contexts. Each diagram represents the
constraint that a context sets on the
lattice at stake. The labels disallowed
by the context clearance are red, the
current label is green. Blue labels are
the accessible labels.

5.4.1 A Specification Monad for GLIO
Following Section 2.2.3, in order to define the effect GLIO, we first define
a monad of specification whose representations are weakest-preconditions.
A weakest-precondition for a computation whose outcome type is τ is a
map from post-conditions postt τ to pre-conditions pret . Just like in
Chapter 4, weakest-preconditions should be monotonic, post-condition
wise. Let wp: postt τ → pret , p:postt τ and q:postt τ . If p is stronger
than q, then the pre-condition wp p should be stronger than wp q. This
property is spelled out by wpmon.

type pret = context→ HST.stpre
type postt a = HST.stpost (a × context)
let wpmon (wp: postt τ → pret)
= ∀ (p q: postt τ).

(∀ x m. p x m =⇒ q x m)
=⇒ (∀ c m. wp p c m =⇒ wp q c m)

One last property we want for our weakest-preconditions is directly related
to IFC. Atomically, a computation should never decrease its contextual
current security label: a computation that has initially access to secret
informations should not be considered as non-sensitive. Similarly, a compu-
tation should never make its own clearance more permissive. Thus, below,
we define the order≪ over contexts; ⊆ being an order for clearances.
Figure 5.6 illustrates how contexts are ordered on an example lattice. The
predicate wp_ctx_increases wp states that for every post-condition p, wp
p should be stronger (or actually equivalent when wp is monotonic) than
wp q, with q being the same as p but ensuring the correct order between
contexts. The type wpt refines maps from post-conditions to pre-conditions
to form the type inhabited by well-formed weakest-preconditions to IFC
computations.

let (⊆) (s0 s1: τ → Type0) = ∀ (x:τ). s0 x =⇒ s1 x
let (≪) c0 c1 = c0.cur v c1.cur ∧ c1.cle ⊆ c0.cle
let add_ctx_increases (c0: context) (p: postt τ): postt τ
= λ(x,c1) m1 → c0 ≪ c1 ∧ p (x,c1) m1

let wp_ctx_increases (wp: postt τ → pret)
= ∀ (p: postt τ) (c0: context) m0.

wp p c0 m0 =⇒ wp (add_ctx_increases c0 p) c0 m0
type wpt a = wp: (postt a→ pret) { wpmon wp

∧ wp_ctx_increases wp }

The return operation returnwp τ x lifts x:τ in our weakest-precondition
monad. returnwp τ x amounts to wrapping x in a continuation of type
wpt τ . The bind operation bindwp τ β f g is of type wpt β: we bind
the two weakest-preconditions and we inject invariants about increasing
contexts.
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let returnwp (a:Type) (x:a): wpt a = λp c0 m→ p (x, c0) m
let bindwp (a:Type) (b:Type)
(wpf:wpt a) (wpg:a→ wpt b): wpt b
= λp c0 h0 → wpf (λ(x, c1) h1 →

c0 ≪ c1
∧ wpg x (λ(y,c2) h2 → c1 ≪ c2 ∧ p (y,c2) h2) c1 h1
) c0 h0

The structure formed by returnwp , bindwp and wpt is our specification
monad.

5.4.2 An Indexed Computation Monad for GLIO
We aim at defining an effect for fully static verification of information flow
policies. Following [Ste+11], we use a monadic approach that consists in
a state monad tracking the current security level thanks to an IFC context.
Our effect GLIO consists in a layer above STATE, the principal effect of Low?.
A GLIO computation f of type τ admitting wp as weakest-precondition
is represented by an inhabitant of the type repr τ wp. More precisely,
such a GLIO computation f is represented by a STATE computation that
explicitly passes around a context state. Note that, from a computation
point-of-view, repr τ wp is just a STATE computation without any context:
context inhabitants are computationally irrelevant. Below we define the
combinators return and bind. Notice their definitions are very straight-
forward: contexts being computationally irrelevant, no GLIO combinator
(or computation) can derive any decision from them, thus their definition
is rather canonical. The magic happens at the type level, in the second
index of the representation type repr, where weakest-preconditions are
computed via the specification monad we defined in Section 5.4.1.

let return (a:Type) (x:a): repr a (returnwp a x) = λc0 → x,c0
let bind (a b:Type) (wpf:wpt a) (wpg:a→ wpt b)

(f:repr a wpf) (g:(x:a→ repr b (wpg x)))
: repr b (bindwp a b wpf wpg)

= λc0 → let (x, c1) = f c0 in g x c1

5.4.3 Effect definition
An F? (layered) effect E consists in an indexed monad along with a few
other definitions: an effect gives to F? the various rules required to compute
weakest-preconditions of computations in E. The definition if_then_else
acts as an effect-wise typing rule for if ... then ... else ... construc-
tions. The function subcomp teaches F? how subtyping works in our effect.
In our case, subtyping is simple: a computation f: repr a wpf can be
subtyped as repr a wp′f for any wp′f weaker than wpf .
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Fig. 5.7: Reification and reflection are
two sides of a same coin, transforming
a computation into its representation
and vice-versa.

let if_then_else_wp (a:Type) (wpf wpg:wpt a)
(p:eqtype_as_type bool): wpt a = if p then wpf else wpg

let if_then_else (a:Type) (wpf wpg:wpt a)
(f:repr a wpf) (g:repr a wpg) (p: bool): Type

= repr a (if_then_else_wp a wpf wpg p)
let subcomp (a:Type) (wpf:wpt a) (wp′f:wpt a) (f:repr a wpf)
: Pure (repr a wp′f)

(∀ p c h. wp′f p c h =⇒ wpf p c h)
(λ_→>)

= f

Our actual GLIO effect is defined below. It is indexed by a type and a
weakest-precondition (whence the type a:Type→wpt a→Effect).

reifiable reflectable layered_effect {
GLIO : a:Type→ wpt a→ Effect

with repr=repr; return=return; bind=bind;
subcomp=subcomp; if_then_else=if_then_else

}

Before the keyword layered_effect, note the qualifiers reifiable and
reflectable. As explained in Section 2.3.1, reflection (in our setting) is
the process of transforming a computation of type repr τ wp into GLIO
τ wp. Reification is the reverse process: given a GLIO τ wp computation,
reification exposes its underlying representation repr τ wp. Figure 5.7
summarizes these processes. Obviously, such features partially defeat the
policy enforcement of our IFC system, and are not to be used but for trusted
IFC actions.

Before defining such actions, recall that F? organises effects onto a
lattice. Our effect is not marked with the qualifier total, and thus allows
for divergence. This choice follows the effect STATE, the effect of the under-
lying representation of GLIO, that also allows for divergent computations.
Regardless whether it terminates or it diverges, a pure computation can be
lifted as a computation in GLIO. Using the syntax sub_effect DIV  GLIO,
we let F? automatically lift DIV computations into GLIO.

let liftdiv a (wp:purewp a) (f:unit→ DIV a wp)
: repr ... = ...

sub_effect DIV  GLIO = liftdiv

As shown in Figure 2.7, Tot computations can be lifted as DIV computations:
by transitivity, a pure total computation can thus be lifted as GLIO as well.
We do not detail liftdiv, that encodes DIV computations under repr, the
representation type of GLIO.

Writing a specification in the form of a weakest-precondition is not
intuitive, and leads to hard-to-understand specifications. This is why the
F? library comes with Hoare-style variants for its various effects. For
example, ST is an Hoare-style synonym for the effect STATE. The func-
tion glio_hoare_to_wp constructs a weakest-precondition given a pre-
condition pre and a post-condition post.
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let glio_hoare_to_wp (#a: Type)
(pre: pret)
(post: ( c0:context → m0:MHS.mem {pre c0 m0}

→ r:a
→ c1:context{c0≪c1}→ m1:MHS.mem
→ Type0
))

: wpt a
= λ(p: postt a) (c0:context) (m0: MHS.mem)
→ pre c0 m0
∧ (∀ (r: a) (c1: context) (m1: MHS.mem).

(c0 ≪ c1 ∧ post c0 m0 r c1 m1)
=⇒ p (r, c1) m1

)

The following declaration defines GLio, a synonym effect indexed by a
type, a pre-condition and a post-condition.
effect GLio (a: Type)
(pre: pret)
(post: ( c0:context → m0:MHS.mem {pre c0 m0}

→ r:a
→ c1:context{c0≪c1}→ m1:MHS.mem
→ Type0
))

= GLIO a (glio_hoare_to_wp pre post)

5.4.4 IFC actions
So far, our effect GLIO is minimal: it only has a bind and return operation.
Here, we define actions that manipulate IFC contexts and labeled values,
following [Ste+11]. Remember GLIO is a layered effect: an effect whose
underlying monad is an indexed monad. Each GLIO action thus comes
in no less than three flavors: (i) an action in our specification monad of
weakest-precondition (of type wpt ...); (ii) an other one in our computation
monad (of type repr ... ...); (iii) and a last one, a GLIO computation (of
type GLIO ... ...)..

GLIO computations are allowed to inspect the current IFC context, for
specificational purpose only, via the action getctx. Similarly, getmem proxies
HST.get from Low?, which allows Low? clients to inspect their memory
model. Note the use of GLIO?.reflect: it enables us to re-interpret, i.e.
getctx', as GLIO computations.

let getwpctx : wpt context = λp c h→ p (c,c) h
let getctx' (): repr context getwpctx = λc→ c, c
let getctx (): GLIO context getwpctx
= GLIO?.reflect (getctx' ())

let getwpmem : wpt HS.mem = λp c h→ p (h,c) h
let getmem' (): repr HS.mem getwpmem = λc→ HST.get (), c
let getmem (): GLIO _ getwpmem

= GLIO?.reflect (getmem' ())
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It is always safe to raise the current label to the extent that the current
clearance allows it. In a similar manner, one can always make the current
clearance more restrictive. In other terms, one can always replace the
current IFC context with a new one if it respects the order≪.

let setwpctx (c1: context): wpt unit
= λp c0 h→ c0 ≪ c1 ∧ p ((),c1) h

let setctx' (c1: context): repr unit (setwpctx c1)
= λc→ ((), c1)

let setctx (c1: context): GLIO unit (setwpctx c1)
= GLIO?.reflect (setctx' c1)

Labeled values The most interesting actions are related to labeled value
manipulation. The label action lets a GLIO client label a value v at any
label l as long as l is above the current label. Whence c.curvl in the
specification labelwp of label.

let labelwp (#a:Type) (l: Ghost.erased labelType) (v: a)
: wpt (lv labelType a)
= λp c m→ c.cur v l ∧ p (ghostmake (Ghost.reveal l) v,c) m

val label' (#a:Type) (l: Ghost.erased labelType) (v: a)
: repr (lv labelType a) (labelwp l v)

let label (#a:Type) (l: Ghost.erased labelType) (v: a)
: GLIO (lv labelType a) (labelwp l v)
= GLIO?.reflect (label' l v)

Notice that there is no implementation given for label': indeed, the
constructor and destructor of the type lv are hidden (Section 5.2.1). To
be able to construct labeled values, the module implementing GLIO actions
is declared as a friend (See Section 5.2.3) of the one implementing labeled
values. This friendship mechanism enforces isolation. From the definition
of the type context (that is, begining of Section 5.4) to here, all the
definitions we gave were exposed in the interface of the module GLIO.
The public code present in the interface, even if friend with a labeled
value module, cannot construct labeled values. label is defined in the
implementation side of the module; we give it below. It simply leverages
the trustedmake unsafe construct presented by Section 5.2.3.

let label' l v = λc→ trustedmake l v, c

The unlabel primitive allows to unwrap labeled values, and follows the
same rules as label: its actual definition is hidden. Unwrapping a labeled
value causes the current label to be raised: this is what the specification
action unlabelwp encodes.
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let unlabelwp (#a:Type) (v: lv labelType a): wpt a
= λp c m→ c.cle (c.cur t labelOf v)
∧ p (valueOf v, {cur = c.cur t labelOf v; cle = c.cle}) m

val unlabel' (#a:Type) (v: lv labelType a): repr a (unlabelwp v)
let unlabel (#a:Type) (v: lv labelType a): GLIO a (unlabelwp v)
= GLIO?.reflect (unlabel' v)

The hidden implementation of unlabel' destructs the labeled value and
performs a ghost join of the current label with the one specified by the
labeled value at stake.

let unlabel' v
= λc→ v.v, { cur = c.cur t labelOf v

; cle = c.cle }

The last IFC core action is toLabeled. It is illustrated by Figure 5.8. It
allows to run a computation without raising the current label or lowering
the clearance. Instead, the context is preserved, and the eventual raise
of the current label is captured by wrapping its outcome in a labeled
value. Note that toLabeled' works with representations repr ... and
not with GLIO computations. Consequently toLabeled, which takes a
GLIO computation as input, reifies its input into a representation, so that
toLabeled' can be called and its resulting computation be reflected as a
GLIO computation.

let toLabeledwp #a (wpf: wpt a): wpt (lv labelType a)
= λp c0 m0 →
wpf (λ(r,c1) m1 →

p (ghostmake (Ghost.reveal c1.cur) r,c0) m1
) c0 m0

val toLabeled' (#a:Type) (#wpf:wpt a) ($f: repr a wpf)
: repr (lv labelType a) (toLabeledwp wpf)

let toLabeled #a #wpf ($f: unit→ GLIO a wpf)
: GLIO (lv labelType a) (toLabeledwp wpf)
= let f: repr a wpf = reify (f ()) in
GLIO?.reflect (toLabeled' f)

The hidden implementation of toLabeled' runs the computation f:repr
τ ... it receives as input. The outcome of f is a tuple (r,c1), with r of
type τ and c1 a context. The context current label c1.cur is used to wrap
r as a labeled value. The context returned is not c1; this context c1 is
discarded, and the initial context c0 is restored.

let toLabeled' f
= λc0 → let r,c1 = f c0 in trustedmake c1.cur r, c0

5.4.5 A Basic Interface to Memory
Since our effect GLIO is represented as a Low? computation, we can easily
proxy a subset of the memory model and API of Low?. Our library provides
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buffer with GLIO’s malloc triggers an
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the buffer is to be filled with. Updating
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an interface for allocating, dereferencing and updating buffers in memory.
Below we provide the simplified type signature for these primitives. The
types B.buffer and HS.rid are provided by Low?; the former denotes
pointers to buffers (that is, region of arbitrary size) while the latter denotes
memory regions.

unfold let malloc (r:HS.rid) (v: τ) (len:U32.t)
: GLio (B.buffer (lv labelType τ)) ... = ...

let index (b:B.buffer (lv labelType τ)) (i: U32.t)
: GLio τ ... = ...

let upd (b:B.buffer (lv labelType τ)) (i:U32.t) (v:τ)
: GLio unit ... = ...

Our interface is designed to maintain IFC invariants: the memory-related
actions make sure the data being stored in memory is always labeled. The
memory API of GLIO forbids any access to non-labeled values stored in
memory. Figure 5.9 illustrates how the API bridges memory operations to
Low?.

5.4.6 An Example of GLIO computation
The program ex below has two arguments: x a pointer to a labeled integer
and y a labeled integer. It dereferences the pointer x with index; v is
thus an integer of type U32.t, that is a 32-bits unsigned integer. Then, it
returns the addition of v with the value held in y, unwrapped with a call
to unlabel. The pre-condition to ex ensures x points to a live region in
memory, and requires (for the sake of simplicity) the clearance to authorize
every single label. As a post-condition, we require that the label of the
labeled value y is below the final current label. This is trivially true because
here, labelType is the chain lattice LvMvH.

let ex (x: B.pointer (lv labelType U32.t))
(y: lv labelType U32.t)

: GLio U32.t
(λc0 m0 → B.live m0 x ∧ (∀ x. c0.cle x))
(λc0 m0 x c1 m1 → labelOf y v c1.cur)

= let v = index x 0ul in
U32.add_underspec v (unlabel y)

uint32_t ex(uint32_t *x, uint32_t y)
{

uint32_t x1 = x[0U];
uint32_t x10 = x1;
uint32_t x2 = y;
return x10 + x2;

}

The code on the left is written in F?; the code on the right is the
corresponding C code generated by KreMLin. Notice that the whole GLIO
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let mean (l:list (lvrt N)) =
let marks = 1 map unlabel l in
let sum = 2 fold (+) marks in
sum / length l

Fig. 5.11: Example of a program dealing
with labeled values of arbitrary labels.

library is entirely erased by KreMLin; there is not a single definition left.
The three useless assignments put apart, the C code of ex is very small as
expected. The superfluous assignments are not problematic, as any modern
C compiler will get rid of them.

If this library is purely specificational, this is not always desirable:
building on GLIO, the next section will focus on another kind of IFC system,
namely DLIO, a runtime-oriented IFC system.

5.5 DLIO*: A Dynamic IFC System
as a GLIO* Client

In some scenarios, it is desirable to rely on a concrete representation of
the current label. As discussed in Section 5.2.4, the label protecting a
value is sometimes part of the data available at runtime. Similarly, the
contextual label of a computation can actually be a useful piece of (runtime)
information.

As an example, let us consider the following scenario in a school context.
After an assignment, each student is given a mark. Consider the use-case
where one wants to compute the means of different subsets of marks, and
then sends the result to the correct person in charge of that subset. A set
of marks can be encoded as a list of (runtime) labeled natural numbers.
Consider the lattice presented in Figure 5.10, that isolates two groups of
students in two different classes. The program in Figure 5.11 unlabels the
various labeled numbers it receives ( 1 ), adds them up ( 2 ) then returns
their mean. Here, the contextual label resulting from a call to mean is
useful for our computation: we would like to capture it, so that we know
to whom the mean should be sent.

This section presents DLIO, an effect that unlike GLIO, keeps a runtime
representation of current security label of computations. DLIO is a shallow
layer above GLIO. A DLIO computation is represented directly as a GLIO
computation; thus the IFC policy implemented by DLIO is exactly the one
from GLIO. The effect DLIO does not bring supplementary trusted code
base.

Note This section describes a new IFC effect; this section thus defines
similar functions. We shadow certain definitions from Section 5.4; to refer
to a shadowed definition def from that section, from now on, we write
GL.def.

5.5.1 A Runtime Context
The type for contexts with runtime representations for current labels and
clearance is defined below. The field cle is a computable predicate, while
the field GL.cle (that is the field cle of the type context defined in Sec-
tion 5.4) was for a non-computable predicate. Similarly, the cur field is
a raw label, while the field GL.cur was erased. Relating inhabitants of
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context and GL.context is however easy; the relation≡ is such that x ≡ y
holds when the runtime-represented context x:context is and the erased
context y:GL.context represents the same context.

noeq
type context = { cur: labelType

; cle: cle: (labelType→ bool) {cle cur} }
let (≡) (c: context) (gc: GL.context): prop
= Ghost.reveal gc.GL.cur == c.cur
∧ (∀ x. c.cle x ⇐⇒ gc.GL.cle x)

The computations in the effect DLIO that this section aim at defining are
equipped with a runtime-represented state: a context. We store the current
state in memory, using Low? memory model through the minimal, IFC-
aware, memory API we presented in Section 5.4.5. Consequently, the type
pointer_context is a pointer to labeled contexts. The memory model of
GLIO indeed enforces that pointers only reference labeled values. The type
B.pointer is a refinement over B.buffer. A B.pointer τ is a pointer to a
memory buffer of size one that holds a value of type τ .

type pointer_context = B.pointer (lv labelType context)

We omit the definition of two specifications: deref_context and
as_ghost_context. Given m a specification model of a memory and pc a
pointer to a context (of type pointer_context), deref_context m0 pc is
a computation in effect GTot that returns a context. Given c a runtime-
represented context, as_ghost_context lifts c as a type-level context of
type GL.context.

5.5.2 A Representation for DLIO
The specification monad for DLIO is straightforward: it reuses GLIO defini-
tions, adding a concrete state. For instance, one refinement away, the type
pret of pre-conditions for DLIO computations is defined as the arrow type
pointer_context→ GL.pret . As mentinoned earlier, DLIO is just a proxy
of GLIO that mirrors type-level IFC operations into the world of computa-
tions, by keeping a runtime context around. Hence computations in DLIO
are, without much surprise, simply represented as GLIO computations of
the shape pointer_context→GLIO .... The more rigorous definition for
the representation of the effect DLIO is given below.

let repr (a: Type) (wp: wpt a) =
pc:pointer_context
→ GLIO a

(λ(p:GL.postt a) (c0: GL.context) m0 →
wfmem pc c0 m0 ∧ wp p pc c0 m0)

Note that wpt refers to a DLIO variant of the type wpt from GLIO. The
predicate wfmem makes sure that the concrete context pointed at by pc
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reflects the erased GLIO context c0. It also makes sure that pc points to a
live area in memory. We skip the details about the effect definition itself:
as the representation type points out, DLIO itself is almost just a regular
state monad.

reifiable reflectable layered_effect {
DLIO : a:Type→ wpt a→ Effect
with repr=repr; ...

}

We define the DLio Hoare-style effect variant of DLIO. Having our effect
defined, let us now look at the IFC-related action label, unlabel and
toLabeled, to fully understand how DLIO enjoys GLIO IFC policy enforce-
ment.

5.5.3 Reflecting GLIO Computations
Lifting a GLIO computation as a DLIO computation is all about crafting a
correct DLIO context. When a computation f of type unit → GLIO τ ...

can be proven to leave its IFC context untouched, turning it into a DLIO
computation is trivial. Consider g = λ() _→ f (): it is a computation
of type unit → anything → GLIO τ .... Fixing anything to context, g
is actually of type unit → repr τ .... Reflecting g thus gives a DLIO
computation.

More concretely given a GLIO weakest-precondition f,
glio_wp_to_dlio f computes its corresponding DLIO weakest-
precondition. It alters f by injecting the systematic supplementary
post-condition 1 . Recall wfmem pc c1 m1 spells out that the context
pointed by pc:pointer_context at memory m1 should be equivalent to
the erased context c1:GL.context. Consequently, even if a computation
with weakest-precondition f seems to be free to alter its GLIO context,
the computation at stake is also required to end its computation with a
memory in which the runtime-represented context corresponds to the new
context. In other words, if the computation does not update the memory
pointed by pc, the computation cannot change its context.

let glio_wp_to_dlio (f: GL.wpt τ): wpt τ
= λp pc c0 m0 →

f (λ(x, c1) m1 → c0 ≪ c1
∧ 1 wfmem pc c1 m1
∧ p (x, c1) m1

) c0 m0

Having this weakest-precondition mapping, the function runconstglio defined
below, that maps GLIO computations to DLIO ones, is trivial to write.

let runconstglio #a #wp ($f: unit→ GLIO a wp)
: DLIO a (glio_wp_to_dlio wp)
= DLIO?.reflect (λ_→ f ())
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However, this interface is not practical for computations which alter their
IFC contexts. We instead define runglio f c, which runs a GLIO compu-
tation f, given a proof that f alters its context into exactly the context
c.

let runglio #a (c: context) #wpf ($f: unit→ GLIO a wpf)
: DLIO a (runwpglio wpf c)
= DLIO?.reflect (λpc→ let r = f () in

GL.upd pc 0ul c;
r

)

Notice the weakest-precondition involved: runwpglio wpf c. Again, we
need to transform GLIO weakest-preconditions into DLIO ones, but in a
different way. Just as glio_wp_to_dlio, here, we add systematic post-
conditions to the weakest-precondition wpf . 1 adds the requirement that
the outcome context of the computation to be executed (modeled by the
weakest-precondition wpf here) corresponds to the erased context c1. After
running a computation f, run_glio_r updates the pointer to the current
context, whence the quantifier m2. For every memory m2 ( 2 ) which is
point-wise equal to memory m1 except for address pc ( 3 ), if the pointed
context is well-formed in m2 ( 6 ) and is a labeled value protected by c.cur
( 4 ) of value c ( 5 ), then the post-condition at stake p should hold at
memory m2 ( 7 ).

let runwpglio (wpf: GL.wpt τ) (c: context): wpt τ
= λp pc c0 m0 →

wpf (λ(x, c1) m1 →
c0 ≪ c1

∧ 1 c ≡ c1
∧ B.live m1 pc
∧ (∀ 2 m2. ( 3 M.modifies (M.loc_buffer pc) m1 m2

∧ 4 deref_context m2 pc == c
∧ 5 label_of_context m2 pc == c.cur
∧ 6 wfmem pc c1 m2 )
=⇒ 7 p (x, c1) m2

)
) c0 m0

Note that the computation to be run by both runglio and runconstglio is expected
to be of type unit→GLIO ..., not of type GLIO .... A computation in F?,
disregarding the effect it is attached to, shall be an arrow type. Every other
value is considered as a constant; a constant cannot be effectful, thus the
type E ... on its own (with E an effect) is forbidden. For convenience, the
function apply turns any GLIO computation τ→GLIO β wp into τ→ unit
→GLIO β wp.

let apply #a (#b: a→ Type) (#wp: (i:a→ GL.wpt (b i)))
($f: (i:a→ GLIO (b i) (wp i)))

: i:a→ unit→ GLIO (b i) (wp i)
= λi _→ f i
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The definitions apply, runglio and its variant runconstglio pave the road for
bringing the IFC-related action of GLIO to DLIO.

5.5.4 Reflecting GLIO Actions
IFC-related actions mostly deal with labeled values. Our library provides
two kinds of labeled values: we first bridge GLIO primitives on labeled
values without runtime representation (indexed type lv), then we define
wrappers for runtime-represented ones (indexed type lvrt ). Turning a
value into an erased labeled value has no impact on the IFC context; thus
the helper runconstglio is enough to bridge the action label. labelrt labels
values in a runtime labeled values.

let label #a (l: Ghost.erased labelType) (v: a)
: DLIO (lv labelType a) (λp pc→ labelwp l v p)
= runconstglio (apply (GL.label l) v)

let labelrt #a (l: labelType) (v: a)
: DLIO (lvrt labelType a)

(λp pc c m→ c.GL.cur v l
∧ p ({vrt = ghostmake l v; lblrt = l}, c) m)

= let lv = label l v in
assert (Ghost.reveal (labelOf lv) == l);
{ lblrt = l; vrt = lv}

Unlabeling a piece of information possibly causes the raise of the current
label; thus runconstglio is unsuitable. Below, unlabel uses runglio to bridge
GL.unlabel, and replicates the type-level v performed by GL.unlabel in
the world of computations. getctx dereferences and unlabels the current
(DLIO) context.

let unlabel #a (cur: labelType) (v: lv labelType a)
: DLIO a (unlabelwp cur v)
= let c0 = getctx () in
runglio ({cur = c0.cur t cur; cle = c0.cle})

(apply GL.unlabel v)
let unlabelrt #a (runtimev: lvrt labelType a)
: DLIO a (unlabelwp runtimev.lblrt runtimev.vrt )
= unlabel runtimev.lblrt runtimev.vrt

The last action we will take a look at will also be the most interesting
one: toLabeled. Below we define its first variant, toLabeled_glio, a DLIO
computation that runs a GLIO computation and wraps the raise of its con-
textual label as a labeled value. The purpose of the action GL.toLabeled
is to capture any change to the current IFC context; as a result the IFC con-
text of the computation GL.toLabeled f (for any f:GLIO ...) remains un-
touched. The action toLabeled_glio consequently bridges GL.toLabeled
in a straightforward manner using runconstglio .
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Fig. 5.12: Lattice representing a school
hierarchy.

let toLabeled_glio #a #wpf ($f: unit→ GLIO a wpf)
: DLIO (lv labelType a)

(glio_wp_to_dlio (GL.toLabeledwp wpf))
= runconstglio (λ_→ GL.toLabeled f)

Performing the operation toLabeled f where f is a DLIO computa-
tion requires one more step: we need to reify f into a GLIO computa-
tion, and then use the previously defined toLabeled_glio. Computation
dlio_wp_to_glio is the opposite of glio_wp_to_dlio: given a pointer to
a runtime context, it transforms a DLIO weakest-precondition into a GLIO
one.

let dlio_wp_to_glio (dwp : wpt τ) pc: GL.wpt τ
= λp c0 m0 → wfmem pc c0 m0 ∧ dwp p pc c0 m0

let toLabeled #a #wpf (l: labelType) ($f: unit→ DLIO a wpf)
: DLIO (lv labelType a) (λp pc c0 m0 →

runwpglio (GL.toLabeledwp (dlio_wp_to_glio wpf pc))
(deref_context m0 pc)
p pc c0 m0

)
= let pc = get_ctx_pointer () in
toLabeled_glio' (λ_→ reify (f ()) pc)

5.6 An Example of Computation
Mixing Statically and Dynam-
ically Checked IFC Policy

In this section, we develop the school example introduced at the begin-
ning of Section 5.5. We begin by giving an F? definition to the lattice
informally introduced in Figure 5.10 through type labelType below. The
value labelTypeLat implements an instance of the typeclass lattice for
labelType which is presented in Figure 5.12. The lattice represents the
organization of a school with two groups of students, group A and group
B, which have each one teacher and a few students.

type group = | A | B
type labelType = | Headmaster | Bot

| Teacher: group→ labelType
| Student: string→ group→ labelType

instance labelTypeLat: lattice labelType = {
v = (λx y→ match x, y with

| Bot, _ | _, Headmaster→ true
| Student _ gx, Teacher gy→ gx = gy
| _→ x = y);

t, reflord, transord, antisymord, joinlub = ...; }
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The IFC policy at stake in this example is that (i) no personal information
from a student should fall into the hand of another student, and (ii) an
information concerning a group of students should never be shared with
another group of students. We consider the scenario where we send a
report containing the mean of a set of marks (from –possibly– various
students) to one person in the school (that is, a student, a teacher, or the
headmaster). In this scenario, we don’t want the mean value of the marks
from group A to be sent to, e.g., a student in group B and vice-versa.

Let us consider the function select_marks_of_group below, for which
we only give a type signature. Given a group g, it selects the marks of
all the students that belong to group g. At 1 , the type signature of this
function ensures that the maximally labeled value from the computed list
l is at most labeled at Teacher g. This function does not alter the IFC
context, as specified at 2 .

val select_marks_of_group: g: group
→ GLio (l: list (lvrt labelType U32.t) {Cons? l})

(λ_ _→>)
(λc0 _ l c1 _→ 2 c0 == c1∧ 1 max Bot l v Teacher g)

let max cur (l: list (lvrt labelType U32.t))
= foldleft (t) cur (map (λx→ x.lblrt ) l)

A list of marks emanating from select_marks_of_group is easy to deal
with in GLio: the list provably contains only values labeled below a certain
element of the lattice. The computation ex1 below computes a mean using
this fact. In this scenario, there is no clearance policy: every computation
is allowed to raise its current label to any degree. Encoding this absence
of clearance leads to a certain verbosity, hence for the sake of clarity, we
write the symbol C where we omit clearance-related predicates. The
list l at 1 is known to contain value labeled at most at Teacher g. The
function sumglio is specified (at 2 ) to raise the current label to the union
of the maximum label contained in l and the current label. Since the
initial current label of ex1 is specified (at 3 ) to be Bot, it is trivial to prove
statically that sumglio lwill bring the current label to –at most– Teacher g.
A report –which simply consists in the mean– is then sent, by the mean of
the function send_mean_to, whose specification checks (at 5 ) the current
label to be lower than the label corresponding to the person the report is
sent to.
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let rec sumglio (l: list (lvrt labelType U32.t))
: GLio U32.t (λc0 _→ C )

(λc0 _ _ c1 _→ 2 c1.cur == max c0.cur l ∧ C )
= match l with
| []→ 0ul
| hd::tl→ let hd = GL.unlabel hd.vrt in

hd + sumglio tl
val send_mean_to: v:U32.t→ who:labelType
→ GLio unit (λc0 m0 → 4 c0.cur v who ∧ C ) ...

let ex1 g (): GLio unit (λc0 _→ 3 c0.cur == Bot ∧ C )
(λ...→>)

= let l = 1 select_marks_of_group g in
let mean = sumglio l / lengthu32 l in
send_mean_to mean (Teacher g)

Another scenario is a report about a set of marks of arbitrary students,
embodied by definition sample_marks. We have no static knowledge about
sample_marks: it might contain marks from only one specific student, a
whole class or the whole school, we don’t know. Computation ex2 is a DLio
computation: it sums up the marks contained in sample_marks. Since
we have no static knowledge about sample_marks, function sumdlio might
raise the current label to any point in the lattice. Effect DLio keeping a
representation of the current label, we can just use the current label to
know to whom the report should be sent (that is the label target at 1 ).
Then, at 2 we simply run the GLio computation send_mean_to to send
the mean.

val sample_marks: l: list (lvrt labelType U32.t) {Cons? l}
let rec sumdlio (l: list (lvrt labelType U32.t))
: DLio U32.t ... // trivial pre/post
= match l with | []→ 0ul

| hd::tl→ let hd = unlabelrt hd in
hd + sumdlio tl

let ex2 (): DLio unit (λ_ c0 _→ c0.cur == Bot ∧ C ) (λ...→>)
= let mean = sumdlio sample_marks

/ lengthu32 sample_marks in
let target = 1 (DL.getctx ()).DL.cur in
2 runconstglio (apply (send_mean_to mean) target)

Below, computation main reuses ex1 and ex2 to compute three different
means in two different ways: main combines computations in GLio (at 1

and 2 ) with a computation in DLio (at 3 ). Each mean computation (at
1 , 2 or 3 ) inevitably raises the current label. To be able to compute
three different means and send three different reports, we wrap them into
toLabeled, and we discard their result.
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let main (): GLio unit (λc0 _→ c0.cur == Bot ∧ C ) (λ...→>)
= let ctx = {DL.cur = Bot; DL.cle = (λ_→ true)} in
let _ = 3 toLabeled (apply (run_dlio_in_glio ex2) ctx) in
let _ = 1 toLabeled (ex1 A) in
let _ = 2 toLabeled (ex1 B) in
()

5.7 A Tentative of Noninter-
ference Proof Using Meta-
Programming

In this section, we present our attempt to generate theorems of nonin-
terference [Den76] using the meta-programming facilities offered by F?
(Meta-F? [Mar+19]).

Noninterference of actual clients. The IFC system we implement in
this chapter is a library on top of F?, and it uses the effect system of F? to
formulate flow control policies. Unlike some other approaches that consist
in designing from the ground up a programming IFC-aware language,
“IFC as a library” approaches [Ste+11; RCH09; Rus15; BVR15; Ste+17;
PVH19] leverage their host language facilities (often Haskell [Pey07],
Agda [CC99], and in our case F?) to encode an IFC system. One downside
of such approaches is that proving a general property on the library at
stake is complicated due to the host language. For instance, to prove that
Haskell programs using a given library behave in a certain way, one would
need to universally quantify the proof over all Haskell programs; such a
proof is intractable. The common technique to overcome this intractability
is to prove the desired property not on the library itself, but on a model of
it. The resulting theorem about the desired property on the actual library
consequently supposes one hypothesis: the model of the library and its
implementation in the host language should have the same semantics.

The intractable aspect of a direct proof about the host language seman-
tics is mainly due to the intractability of the host language semantics itself.
Instead of considering a proof about any program under our library, our
idea is to generate a mechanized and automated proof per library client
program. In this way, a client can enjoy a noninterference proof generated
in an ad-hoc manner, directly on the concrete library semantics, and not
on a model.

Parametricity. Recently, parametricity [Rey83] has been applied to prove
noninterference of clients of such “IFC as a library” approaches, directly on
the library implementations. Parametricity has been successfully applied
for both static [AB19] and dynamic [ABH21] IFC libraries. Such proofs
emanate from a clever type encoding; consequently, they are concise and
concern the library itself, not a model.

113



Parametricity however relies on Dependency Core Calculus [Aba+99],
which does not handle side-effects. Our library is defined on top of the
primitive effect STATE of Low?: a primitive effect is only about specifications
(See 2.3.1), and provides no computational model, that is, no monad of
computation. The side-effects of the clients of our effect GLIO thus cannot
be represented in a monadic form. As a consequence, in our settings,
applying parametricity is, at least, very challenging.

Meta-programming. Instead, we choose to leverage the meta-
programming facilities F? provides means to implement a proof of nonin-
terference based on erasure [LZ10; RCH08]. In this chapter, we need to be
able to reify and normalize the IFC computations at stake; thus in through-
out this chapter, by GLIO we denotes a variant of our effect GLIO that is not
equipped with a memory API and whose representation is reifiable as a
GHOST computation.

5.7.1 Noninterference: an Overview
We express the notion of noninterference of GLIO computations using a
notion of l-view, with l being a label.

The l-view of a piece of information i is the visible information from
the point of view of an observer allowed to see up to labeled information
l. We derive the l-view of a value via an erasure function: every piece of
information tainted with a label greater than l is replaced by a “hole” value
•. As an example, consider the lattice L v M v H; the L-view of the list5 5Note that here, the list itself is not labeled;

only its elements are. While the elements
of the list are protected, the list itself is not.

[〈L,4〉;〈M,8〉;〈L,2〉;〈H,4〉] would be [〈L,4〉;•;〈L,2〉;•]. The syntax
〈l,v〉 denotes the value v labeled at l. The l-view of a value v of any type
is given by erase l v.

5.7.1.1 Standard encoding of noninterference.

Consider a computation f of type τ→ GLIO β wpf , with τ and β two types
and wpf:GL.wpt τ a weakest-precondition. The noninterference of f is
commonly [PVH19] stated as in Equation 5.1. It states that the evaluation
of f (i.e. ↓c (f x)) and the evaluation of its erasure (i.e. ↓c ((εl f) x))
cannot be distinguished after erasure, for any erasure level l, input x and
initial context c.

∀l (x:τ) (c:context). εl (↓c (f x)) =t εl (↓c ((εl f) x)) (5.1)

Note that this definition of noninterference treats function f as a term;
whence the equality =t on terms. Similarly, function ↓c evaluates a term
and function εl erases a term.

5.7.1.2 Encoding in F?.

In our settings, f is not a term but a computation. Consequently, this
section reformulates the statement of Equation 5.1 accordingly.
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( {cur = L; cle = ...}
, [ {lbl = H; v = 1;}

; {lbl = M; v = 2;}
; {lbl = L; v = 3;} ]

)

eraseCtx L

[ •
; •
; {lbl = L; v = 3;} ]

Fig. 5.13: Erasure of a tuple emanating
from the representation of a GLIO com-
putation.

Encoding of evaluation. For a given x:τ , f x is not a function, but a
GLIO computation with a potential side effect; as such, one cannot evaluate
this expression. Reification (See Figure 5.7 and Section 2.3.1) transforms
f into its representation. The evaluation of ↓c f x is thus encoded as the
expression reify (f x) c, where reify (f x) is of type GL.repr τ , a
map from contexts to tuples of type τ×context.

Encoding of erasure. In Equation 5.1, the erasure is used to erase both
(i) the results produced after evaluation and (ii) the function f itself. For
the first case we define the eraseCtx function below.

class hasEraser τ
= { erase : labelType→ τ → GTot τ }

let eraseCtx {| hasEraser τ |} l ((x,c):(τ×context))
: GTot τ
= if c.cur v l then erase x else •

The function eraseCtx is designed to erase the tuple returned by GLIO
representation. Its first argument is the label to erase at, and the second
is the tuple produced after reifying a GLIO computation. When the label
c.cur of the reified context is below the erasure label, the information x is
observable from l. As illustrated in Figure 5.13, the value x might hold
labeled values, thus we return erase l x.

Erasure on arrow type inhabitants is defined differently; the terms that
constitute computations are erased separately by a meta-program. Our
meta-program takes a top-level definition (say p of arrow type t), inspects
its definition, and essentially produces an erased top-level p_erased of
type labelType→ t. More details about this meta-program are given in
Section 5.7.3.

Noninterference Lemma Generation. The meta-program
genNIStatement takes a name of an existing top-level GLIO compu-
tation, and generates a corresponding statement of noninterference.

let genNIStatement: name→ Tac unit = ...

Unsurprisingly, genNIStatement is a Tac computation (See 2.3.2). The
effect Tac offers an API for F? term inspection. The generation of the
noninterference lemma is a side effect of genNIStatement; the function
itself returns nothing, whence unit.

The Tac computations we saw (in lemma 2.7 or lemmainv of Section 3.5)
were manipulating and solving proof goals. This is not the only use of Tac
computations; as mentioned earlier, genNIStatement generates noninter-
ference statements in the form of a new top-level definition. While the
expression assert fact by tac invokes the tactic tac that solves the proof
goal fact, the declaration %splice[tl0;tl1;...;tln] tac invokes the tac-
tic tac that generates (at least) the top-levels named tl0, tl1, . . . and tln.
For simplicity we omit the top-level names and write %splice[...] tac.
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let f (lv labelType τ): GLIO β ... = ...

%splice[...] (genNIStatement "f") // generates the lemma below
let fni = l:labelType→ x:τ → c:context
→ Lemma ( eraseCtx l (reify (f x) c)

== eraseCtx l (reify (f_erased l x) c))

The f_erased top-level declaration mentioned in fni is also generated
by the invocation genNIStatement "f".

5.7.2 Erasure of Values
Erasure of values is achieved by the method erase from the typeclass
hasEraser. For a type τ that implements hasEraser and a value x:τ ,
erase l x is the value x where every piece of data inside x that is protected
by a label higher than l is replaced with a “hole”. This hole is encoded
in F? as •, an axiomatized polymorphic value, defined below; it has no
content and can be used to erase any value.

assume val • (a: Type {∃ (x:a). >})→ a

Erasing labeled values. Erasing labeled value at label l is the most
interesting case: when its label is above l, we replace its content by a hole.
Otherwise, it erases the data recursively on the structure of the type of
the data (using typeclass inference mechanism). In both cases, the label
remains untouched. Since we consider a variant of GLIO for which the
representation is GTot, note that we are free to make decisions on erased
labels and to construct labeled values (with ghostmake). We finally define
lv_eraser an instance of the typeclass hasEraser for labeled τ .

let eraseLV {|hasEraser τ|} (l:labelType) (x:lv labelType τ)
: GTot (lv τ)
= ghostmake (labelOf x)

(if labelOf x v l then erase l (valueOf x)
else •)

instance lv_eraser {|hasEraser τ|}
: hasEraser (labeled τ) = {
erase = eraseLV

}

Erasure of inductive inhabitants. For every primitive type (i.e. unit,
bool or Z) an eraser is just λ_ → id), where id is the identity. For
inductive data types, we define a meta-program that can derive an in-
stance of hasEraser inspecting its definition. For example, for lists, our
meta-program follows the list constructors to mechanically generate the
eraseList function below.

let rec eraseList {|hasEraser τ|} (l:labelType) (x:list τ)
: GTot (list τ)
= match x with
| hd::tl→ erase l hd :: eraseList l tl
| []→ []
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if

f

bind... 〈L,1〉

... g

〈H,3〉 ...

bind

g

... ...

h 〈M,...〉

dep
end

enc
y ...

h

dep
end

enc
y

if

f_erased l

bind... (if lvL ...)

...
g_erased l

if lvH ... ...

bind

g_erased l

... ...

h_erased l if lvM ...

...

h_erased l2

1

Fig. 5.14: Example of erasure for a top-
level definition f. An example abstract
syntactic tree for f is given at 1 , along
with that of two other top-level defini-
tions, g and h. Indeed, f depends on h
and g; those two should be erased as
well. 2 presents the three generated
top-level definitions.

5.7.3 Erasure of Computations
The meta-program eraseF erases computations. It is of type name→ Tac
unit: given the name of a top-level definition, it generates a number of
erased top-level definitions. Figure 5.14 illustrates this process.

Consider a top-level “f”; eraseF "f" generates (at least) f_erased. If
f has type t, then f_erased has type labelType→ t: this first argument
allows to set the erasure level. The body of the computation f_erased
follows the AST of f, where (i) each labeled sub-term is erased and, (ii) each
free variable referring to a top-level definition is replaced by its erased
version, as explained below.

(i). Labeled Sub-term Erasure. For every sub-term e in the AST of f,
when e represents a labeled value, it is replaced by eraseLabeled le e,
with le the erasure level argument introduced in f_erased. To discriminate
whether e is an erased label, we typecheck the AST of f6 substituting e 6At the time of writing, Meta-F? ’s reflec-

tion API did not allow to easily alter the
environment in which a sub-term is typed.
Thus, we could not collect the unbounded
free variables for a given sub-term and
keep an environment of them for later type-
checking. Hence, instead we typecheck an
alteration of the AST of f.

with the term eraseLabeled le "e".

(ii). Erasure of Free-Variables. If g v0 ... v1 is a sub-term of the AST
of f, with g being a free-variable, then it means that g denotes a top-level
definition. This also implies that the top-level g is a dependency for f.
Thus, we replace this sub-term with g_erased le v0 ... v1, le being the
extra-parameter of f_erased for erasure level. We also collect the transitive
closure of all the dependencies from f to other top-level definitions, and
recursively generate erased version of each of them.

However there are some exceptions for such replacements of an external
top-level g. When g refers to a definition that cannot be erased (i.e. only
it’s signature is known), and g is a constructor or refers to a type, then
applying our computation erasure makes no sense, and in this case we
leave the sub-term intact.
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5.7.4 Axiomatization of Contamination
Some operations in F? are built-in, and enjoy no F? implementation. For
instance, the decidable equality = is built-in. Whether x = y for some x,y:τ
(with τ a type equipped with decidable equality) is either decided by the
SMT solver or by the normalizer of F? (i.e. is the normal form of terms x and
y equal?). Then, it is clear that neither the SMT solver nor the normalizer
know what to decide about the equality • = 42. For the normalizer, • = 42
is stuck, i.e. no more reducing can be performed. There is no lemmas or
facts that can either help the SMT solver to decide whether • = 42 is true
or not.

This highlights a problem we call contamination. Contamination cap-
tures the propagation of • from arguments to results. Deciding whether
• = 42 is true would require to observe what integer is •. The hole • ab-
sorbs this comparison, • = 42 shall be reduced to • itself7. The definition 7Recall that • is an implicit polymorphic

value. By revealing its implicit argument,
we get that • #Z= 42 shall be reduced to
• #bool

contaminationDEq1 axiomatizes the contamination of decidable equality
in its first argument.

assume val contaminationDEq1 x
: Lemma ((• = x) == •)[SMTPat (• = x)]

In general if a function g consumes its ith argument, then the call of g
with a • on the ith position should be reduced to •. Also, an inductive type
that has only one constructor for which only one argument is informative,
then it shall be erased as well for this argument.

5.7.5 Limitations
Our hope was that the computation-wise generated lemmas of noninterfer-
ence would be, in general, simple enough to be proved automatically by
the SMT solver. Unfortunately, this is the case only for trivial computations.
Even simple non-recursive computations generate too complicated lem-
mas. One of the reasons for this struggling is our notion of contamination.
Indeed, the notion adds a rule for normalization; we tried to integrate
this rule as SMT patterns and with ad-hoc hand-written normalization
processes, but we still hit some difficulties where some terms simply do
not reduce as expected.

Also, our aim was to generate per-client proofs on their actual imple-
mentation. This aim is not fulfilled. Indeed, the representations of the
effects of our library are Low? computations: those are purely specifica-
tional, thus not reifiable. Our per-client lemmas are therefore stated against
a lighter effect whose representation is GTot.

In the end, our meta-programming approach was non-trivial to imple-
ment, but we did not succeed to scale our approach to a whole soundness
proof. All in all, we don’t end up with a full and scalable proof of noninter-
ference, but engineering this meta-program was however a quite enjoyable
experience, that led to interesting developments. Computation erasure for
instance led us to implement the browseterm meta-program8, which allows 8Which is available on GitHub:

https://github.com/W95Psp/
FStar-libs/blob/master/MetaTools/
MetaTools.BrowseTerm.fst.

to browse, patch or collect information from an F? term. Another example
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is the development of a meta-program that derives automatically a serial-
izer and dezerializer given an inductive type definition; the Appendix A.1
gives more details and context about this meta-program.

5.8 Related Works
The IFC system presented in this chapter descends directly from Stefan’s
LIO [Ste+11], which itself descends from a vast line of works. It started
with the basis of MAC [BL73] and with the general lattice-theoretical model
proposed by Denning [Den76] to verify information flow policies.

Since then, a wide spectrum of systems has been described, from fully
dynamic to fully static and from coarse to fine-grained systems. Our im-
plementation, just as Stefan’s LIO [Ste+11], is fine-grained, i.e. arbitrarily
small pieces of data can be labeled.

From coarse-grained systems... Typically, IFC operating systems (e.g.
[Efs+05]) are coarse grained: information flow policies are enforced and
tracked at the level of processes or threads. As an example, the open-source
RISC-V architecture supports extensions providing hardware IFC capabili-
ties encoded as a byte-size tag alongside with data [Pal+18; Fer+18] to
control data flow in accordance with the tag privileges. ARM’s Trustzone al-
lows to segregate encrypted and decrypted data in hardware-enforced trust
zones. [De +15] generalizes this meta-data tag mechanism to implement
more general software-defined IFC policies at hardware level. Virtual-
ization technology and resource isolation available in modern operating
systems and verified micro-kernels [Kle+09; Gu+16] is however far from
available to consumer-market, IoT-oriented, embedded micro-controller
architectures. On such targets, compartmentalization is a cost-effective
compilation technique to complement label-enforced IFC policy with defen-
sive code to isolate possible software faults and prevent program threads
from addressing data outside of their designated partitions [De +15;
Bes+19].

To fine-grained systems. Software-defined IFC helps to overcome hard-
ware limitations and can, when available, strengthen coarse-grain, hard-
ware security mechanisms (trust zones, virtualization, tags) with fine-
grained user-, task- or channel-level micro-policies [De +15]. Software-
level IFC was first proposed in [Mye99] to annotate Java programs with
IFC policies. [HKS06] provides a language-agnostic library to check IFC
properties in imperative C or Java programs.

Dynamic IFC policies have extensively been developed in operating
system design. [Zel+06] provides a survey covering this domain. For in-
stance, [Kro+07] proposes operating system mechanisms to systematically
check information flow read or written by system threads.

IFC as a library. The concept of “IFC as a library”, where the IFC system
is hosted in another –expressive enough– language, was first proposed by
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Li and Zdancewic [LZ06]. This work leverages arrows (a generalization
of monads [Hug00]) to implement an IFC system in Haskell. Russo et
al. [RCH09] shows that monads are enough to encode a library enforcing
statically IFC in Haskell. The current state-of-the-art Haskell library was
introduced by Stefan et al. [Ste+11], and followed by numerous LIO re-
lated works [Ste+12; BR13; BVR15; Ste+17; PVH19; GTA19]. Buiras et
al. [BVR15] mixes static and dynamic verification in Haskell: they provide
a defer primitive that captures certain kinds of static IFC constraints and
defers them as runtime checks. Vazou et al. [PVH19] presents an extension
to LIO that aims at transferring it usefulness to web applications: LWeb.
LWeb provides a formalization of LIO extended with database transaction,
along with a proof of non-interference using Liquid Haskell [VSJ14]. It
also implements an extension to Yesod [Sno15], one of the main Haskell
web frameworks. Gregersen et al. [GTA19] presents an IFC library, DepSec,
inspired by MAC [Vas+18]. This library is implemented in Idris, a de-
pendently typed language: DepSec investigates the extra expressiveness
brought by such a type system.

In parallel, Austin et al. [AF12; ASF17; Yan+16] develop the idea of
faceted values, i.e., tuples of dimension n holding the n different views for
each of the n different security labels. This approach is highly dynamic.

The application of software-defined IFC policies to embedded devices
with, e.g. LIO, faces two major obstacles. First, the policy enforcement
of LIO relies on automatically generated runtime checks that could, if not
properly sand-boxed, cause a device to crash unpredictably because of an
IFC exception. Second, embedded systems have limited resources: the
“IFC as a library” approach relying on facilities generally implemented by
high-level and garbage collected languages (i.e. monads and strong type
systems), such libraries are often not well-suited.

Our approach takes advantage of both the expressiveness of dependent-
types in the verified programming language F? [Swa+16] allowing us to
use F? effects to encode monadic IFC encapsulation, and the capability
of generating possibly zero-runtime C system code, by using its KreM-
Lin [Pro+17] code generator.

Like related approaches based on high-level programming languages,
[Ste+11; GTA19; BVR15], our library offers a lot of flexibility in the
IFC policy enforcement, and allows from runtime checks to static proof
obligations by using its powerful type system.

[BVR15] offers a different hybridation mechanism than ours: it elimi-
nates IFC runtime checks that can be ruled safe statically and keeps other,
call-dependent, dynamic checks. This is a more appropriate approach
for transactional applications, where throwing an exception from some
LIO client application is non-critical or fail-safe. However, in the case of
–possibly unattended– reactive applications, this is not an option, as fail-
ing safe usually means to restart a real-time and potentially mission- or
safety-critical application.

[SR09] provides a detailed review on the extensive number of related
approaches based on the static analysis of imperative system programs. The
recent [Gua+20], for instance, statically analyses bytecode to monitor pro-
grams that may leak unintended information when executed on speculative
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architectures. As in these approaches, our library offers the capability to
run verified code generated from the KreMLin compiler [Pro+17], without
the need for a runtime library or a garbage collector, and hence for direct
application for low-level, resource-constrained, embedded architectures.

5.9 Conclusion
This chapter presented an IFC framework designed with F? and leveraging
its effects system. Our library offers a compatibility –to some degree– with
the Low? subset of F?, since a client of our library (i) enjoys C extraction
via KreMLin [Pro+17] when it is written in Low?, and (ii) is able to deal
with a –small– fraction of the memory model of Low?.

The implementation of our library is split into two parts. The first
one is GLIO, which provides a fully static IFC system. A client of GLIO
enjoys zero runtime costs: the GLIO bits of our library have no runtime
representation. However, a client of GLIO shall prove statically that it is
respecting its IFC policy. Such static proofs can be time consuming, and
especially can be redundant with runtime operations: when the IFC policy
and the data coincide, checking –at least partially– IFC policies at runtime
can be relevant. The second part of our library consists in effect DLIO, which
precisely allows to verify an IFC policy in a more dynamical way. Static
and dynamic IFC are complementary: our library allows the programmer
to compose them together, according to the needs.

We also present a way of generating noninterference theorem state-
ments via meta-programming; however, as discussed in Section 5.7.5, this
approach suffers of some limitations. We miss an empirical evaluation of
our library. Thus, as a future work, we would like to implement a moti-
vating example for our library by implementing a real-word application
verified to comply to an IFC policy using both effects GLIO and DLIO. We
also aim at proving our library to ensure noninterference as a future work.
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CHAPTER 6

Conclusion: Summary and
Perspectives
6.1 Overview
An advanced type system –featuring dependent types for instance– offers
a great degree of expressiveness, but at the cost of an additional human
cost, in the form of manual annotations and proofs. The approach of
static analysis helps at inferring automatically semantic properties about
programs. In this manuscript, we studied several kinds of interactions
between static analysis methods and advanced type systems.

First, we focused on the advantages of using a smart and strong type
system for writing robust static analysis tools and proving their correct-
ness. Following this idea, we presented a static analyzer which implements
abstract interpretation algorithms and which enjoys a quite concise and
understandable F? implementation. This analyzer targets a simple impera-
tive language and implements the abstract domain of intervals, but enjoys
a modular design and remains accessible to understand. By leveraging
refinement types the components of our abstract interpretation are given
strong types, that directly encode theorems of soundness in a very clear
and intelligible way. Thanks to F? automation, the amount of manual
proofs required in our implementation is an order of magnitude less in
comparison with similar work.

Then, we looked at how such a verified abstract interpreter could, in
turn, help F? type inference. The procedure for type-checking a fragment
of code in F? consists in (i) building up a proof obligation via dedicated
weakest-precondition calculi implemented by effects, and then (ii) relies
on an SMT solver to discharge them automatically. Our idea was to operate
directly at the effect level of F?, which allows for a great modularity in
verification. An effect implements a weakest-precondition calculus: our
approach consists in hybridizing verified abstract interpreters with weakest-
precondition monads. In doing so, the weakest-precondition monads are
enriched with abstract interpreter reasoning and its inference abilities,
injecting invariants on-the-fly. In the end, this approach results in lighter
proof obligations and less manual annotations for the F? programmer.
To summarize, the work we have presented turns abstract interpreters
into weakest-precondition monad transformers. It allows for interactions
between weakest-precondition computations and static analyses. Our
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transformed hybrid monads however currently yield an exponential number
of abstract analyses, which is a severe limitation for practical use.

Finally, we investigated how a specific kind of analysis (namely, In-
formation Control Flow policies) could be encoded both statically and
dynamically as F? effects. We presented the implementation and design
of a library that allows the verifications of IFC properties on F? programs.
The library offers both static and dynamic verification of IFC policies; a
client is free to use any mix of static and dynamic verification, at her/his
convenience. It was also designed with low-level and embedded software
in mind. Indeed, the choice of a dynamic verification of a policy has conse-
quences in terms of memory usage and runtime performance; instead, our
library lets the user choose the right balance between runtime cost and
proof efforts. In this perspective, our library is written in Low? subset of
F?, which enjoys an extraction procedure to C and WebAssembly code via
the KreMLin tool. Consequently, a Low? client of our library also enjoys
this low-level code extraction. Finally, we also presented an attempt at
proving the noninterference of the clients of our library. Instead of proving
noninterference on a model of our library for any client, the idea was to
leverage meta-programming to automatically generate theorems of nonin-
terference per-client. This approach however turned out to yield a lot of
complexity, both in terms of specification and for the SMT solver.

6.2 Perspectives
6.2.1 A Low-Level Verified Abstract Interpreter Implemented

in Low?

The runtime efficiency of most verified abstract interpreters is poor, the
emphasis being placed mostly on soundness. For instance, the static ana-
lyzer Verasco is equipped with advanced abstract interpretation features
and targets an important subset of the C language, but takes a very long
time to analyse programs [Jou+]. F? has been very successful to imple-
ment verified low-level algorithms, using Low?, a subset of F? for which
the tool KreMLin provides an extraction process to C code. Low? is a C
DSL embedded in F?: while the Low? code is low-level and resembles C,
specifications and proofs still enjoy full F? features. This opens the path
for implementing a verified, low-level and efficient abstract interpreter in
Low?. Low-level code and low-level data structure yield more complexity
than their functional counterpart and therefore generate more complicated
and verbose proofs. In addition to the benefit of having an efficient verified
abstract interpreter, it would be interesting to observe the amount of proof
effort it would require.

6.2.2 Implement and Connect More Powerful Abstract Do-
mains

The abstract interpreter we presented in Chapter 3 is modular, and takes
abstract domains as a parameter. We implemented only the abstract domain
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of intervals and we observed it did not require a great amount of manual
proofs. This leads to questioning whether this lightness in terms of proof
would carry over more complicated domains. For example, implementing
Karr’s Domain [Kar76] requires different kinds of algorithms and proofs
(i.e. algorithms from basic algebra dealing with matrices, such as Gaussian
elimination) in comparison with the domains of intervals for instance.
Equipped with more domains, our abstract interpreter would also benefit
from abstract domain transformers such as the product domain.

6.2.3 More Powerful Formalization of Memory Abstractions
The interface for memory abstract domains in our abstract interpreter
reflects the expressiveness of our target language IMP. In consequence, it is
quite weak, and doesn’t support e.g. pointer arithmetic. A natural extension
to our abstract interpreter is to gradually enrich our target language to
support more advanced features, to eventually reach a real-world language.

6.2.4 Our Hybridization and its Exponential Analysis Time
Our hybridization methodology interleaves abstract interpretation with
weakest-precondition calculus too closely. This tight encoding causes us
problems to compute certain abstract states: when analyzing a conditional,
we fork abstract analysis and weakest-precondition calculus in two, but we
are not able to merge resulting analysis back. Consequently, analyzing a
sequence of n conditionals results in 2n independent abstract analysis.

An Impossibility? The first step into investigating further our idea of
weakest-precondition monad hybridization through abstract interpretation
would be to evaluate whether the premises to our hybridization lead to
an impossibility for computing abstract joins. Stating and proving such an
impossibility would be interesting but quite a theoretical challenge.

Free Monads to the Rescue! The difficulty in joining back forked ab-
stract interpretation comes from the tight encoding of our hybridization.
A simple way of loosening this encoding would be to make use of free
monads [Swi08]. A monad usually “computes” something: binding two
computations collapses their respective contexts. Free monads are monadic
structure nesting their contexts, leaving their user choose later how to
interpret and how to give meaning to this nesting. Our encoding requires to
interleave abstract interpretations and weakest-precondition computations
at every monadic step. Given a computation, our encoding produces a
hybrid representation atomically, from which we cannot extract an abstract
interpretation without yielding computing a weakest-precondition in the
same time. Using a free monad, we could enjoy a convenient interme-
diate representation, designed so that we can independently derive an
abstract interpretation or a weakest-precondition. Then, from this inter-
mediate representation, we could design a procedure to output hybrid
weakest-preconditions.
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6.2.5 Real Effects
The problem concerning the impossibility of joining abstract interpretations
put aside, an interesting extension to our hybridization method would be
to scale it up to real F? effects. Our approach defines a specification monad
transformer and an F? effect is usually a combination of computational
and specification monads. Layered effects allow one to define effects whose
representations are themselves computations living in other effects. Thus,
layered effects seem to be the perfect fit for implementing hybrid effects: a
hybrid effect would then be an effect layered onto the original effect to be
hybridized, but with a different specification monad. Technically, writing a
hybridized effect (for instance, the one of Section 4.4) as a layered effect
should not be too difficult. Writing the transformer itself would require
much more technical work however, as it would require writing a meta-
program that inspects and generates layered effect definitions, which is
not possible with Meta-F? at the time of writing.

6.2.6 Proving Noninterference with Parametricity
Our approach to noninterference in our IFC library has some flaws. Our
idea was to generate noninterference statements per-client so as nonin-
terference be proved on actual clients and library code, not on a model
of our library. However, the meta-programming procedure that generates
these statements is far from trivial. Thus, it is hard to be convinced that
the generated statements coincide with noninterference. In other words,
our meta-program is not verified to generate correct noninterference state-
ments. Also, while we expected the proof efforts to be low for our generated
statements, we observed that even for trivial cases we needed extensive
manual proofs. Thus, our library would benefit from a radically different
approach. Recent related works [ABH21; AB19] proceed in proving nonin-
terference via parametricity, and are very promising. However, such proofs
have only been demonstrated for pure IFC libraries, free of side-effects,
even though some theoretical results have appeared on encoding para-
metricity in effectful contexts [AR17]. Such a proof via parametricity for
our library would therefore yield both interesting technical and theoretical
challenges.

6.2.7 Experimenting with F?

In this manuscript, most of the work was conducted using the F? pro-
gramming language: working and hacking on F? was a quite pleasant
experience. During the three years of my Ph.D. studies, I wrote about
50k1 lines of F? code (excluding blanks or comments), of which about 1This number was obtained by analysing my

Git repositories hosted on GitHub and on
Inria’s GitLab.

2k are related to Chapter 3, 18k to Chapter 4, 16k to Chapter 5, the rest
being modules or libraries shared among the chapters. Of course, not
everything is rosy, and certain rough edges sometimes slowed us down. For
instance, F? typeclasses are interesting to work with in F? since they are
essentially an user-level feature, almost entirely implemented as Meta-F?.
In consequence, it is easy to hack on typeclasses (i.e. extract or generate
their definitions via meta-programming), but also its instance inference
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mechanism is not very powerful. For instance, it is possible to use F?
typeclasses to implement type families [KJS10], but this almost breaks the
inference. Designing the typeclasses of Chapter 3 was a bit of a balance
act between good inference and clean abstraction.

The reflection facilities provided by Meta-F? are not complete yet;
for instance, type universes or effect definitions are not exposed. Some
transformations of the noninterference meta-program in Chapter 5 have
thus been a bit complicated. Generation of effects via meta-programming
would also help for the extension discussed in Section 6.2.5.

A great feature of F? is its extraction to C through the tool KreMLin.
The distinction between which F? code is included in the Low? subset
and which is not can be quite complicated to grasp. This distinction is
ultimately decided by the OCaml implementation of KreMLin itself. Using
meta-programming, normalization and other such optimizations, it is
possible to extract astonishingly high-level and abstract F? code to C, but
this process is tedious.

However, low-level programming in F? has a bright future: the F?
community is already developing Steel [Swa+20] which is a very promis-
ing successor to Low?. Experimenting and writing verified software –for
example a low-level sound abstract interpreter– with Steel is the way to
make it more robust and more accessible.
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APPENDIX A

A Selection of F? Implementa-
tions
This manuscript presented three main works: a verified abstract interpreter
(Chapter 3), a specification monad transformer (Chapter 4), and a frame-
work for static to dynamic verification of IFC policies (Chapter 5). Each
of them required a certain amount of F? implementation; this appendix
briefly presents a selection of some of the technical challenges encountered.

A.1 Marshaling, Native Execution
and Meta-Programming

Running an F? program consists in compiling and running its extracted
OCaml (or e.g. C) code. One can also use the typechecker of F? to normalize
a term, and by this means, “run” total computations. However, running
a meta-program only makes sense during the type-checking phase: a
meta-program might for instance interact with a proof state. By default,
meta-programs are run through normalization allowing the user to write
meta-programs and use them in a flexible way on-the-fly. Normalization
is however not very efficient: to tackle performance issues, F? allows for
plugins.

A top-level definition can be marked with the plugin attribute. A
module with such plugin top-levels can then be extracted to OCaml and
compiled as a native shared library. Then one can plug this native library
back into F? so as the compiled top-levels marked with plugin are exe-
cuted with native performance instead of being normalized. Of course,
substituting a normalization into a call to a native compiled function in the
middle of a normalization process is not trivial. This involves some mar-
shalling from term representations (that is abstract syntax trees) to native
representations, and back. For instance, consider the following function
sum, that computes the sum of all numbers:

[@@plugin]
let rec sum (l: list Z): Z

= match l with
| []→ 0 | hd::tl→ hd + sum tl
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Figure A.1 illustrates the steps involved in the normalization of the term 2
+ 10 + sum (map (+ 5) (2::1::Nil)), when sum is native. The last steps
(7–8, 8–9 and 9–10) are particularly interesting: to invoke the function
sum, its argument should be completely normalized. Indeed, the normal
form of a term of type list is (i) either the top-level name "Nil" (and then
is represented as a native empty list), or (ii) a binary application of the
top-level name "::" (the second constructor of the inductive list) to some
list elements and some other lists. Once we have a native representation
r (see tree 8), running the native program sum r returns a native result
(here an integer, see tree 9), which shall be transformed back to a term.

F? defines such a transformation from terms to native representations
(and back) only for a small set of builtin types, such as lists, options, integers,
etc. F? provides no bridge between terms and native representation for
used-defined inductive types: a plugin whose type signatures contain
a type for which no bridge exists is rejected and cannot be extracted
or compiled. For instance, the first implementation of the transformer
presented in Chapter 4 was performing quite heavy transformations on
custom inductive types. Computing the hybrid weakest-precondition of a
simple program was taking a few minutes: compiling this procedure was
thus necessary.

To circumvent this issue, we wrote a meta-program that automatically
generates serializers and deserializers for a given inductive type. The
representation for serialized data is a type for which F? can derive a
native representation. At the cost of an indirection through serializers
and deserializers, this process enables any function to be a plugin. Below
is an example of extraction for a function f which involves two user-
defined types foo and bar. At 1 and 2 , we invoke the meta-program
generateSerialize, which generates the appropriate serializing functions.
Then, at 3 the function fser defines an indirection through serializion and
deserialization to the original function f. fser is marked as a plugin, and
has a correct type for native compilation. Finally, at 4 the function fnatv
goes the other way around and restores the type signature of function f.

type foo = ... type bar = ...

1 %splice[...] (generateSerialize (`%foo));
2 %splice[...] (generateSerialize (`%bar));
let f: foo→ bar = ...

[@@plugin]
3 let fser (x: serialized): serialized
= serialize (f (deserialize x))

4 let fnatv (x: foo): bar
= deserialize (f (serialize x))

This development of this meta-program can be found at the following
URL on GitHub:

github.com/W95Psp/FStar-libs/tree/master/Data/Serialize
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A.2 Parser Combinators and Pretty
Printers

In Chapter 3, we implement an abstract interpreter that analyses a small
imperative language. The prototype reads and parses files of this small
language; it also pretty prints abstract syntax trees. Instead of delegating
these tasks to an OCaml module for instance, we implemented two small
F? libraries that provide parser combinators and pretty-printing facilities.

Parser combinators. A common approach to lexing and parsing consists
in describing a grammar in a dialect of EBNF (Extended Backus-Naur
Form), and then in using a parser generator to transform it into an actual
executable parser. Parser combinators are a functional solution to parsing.
They are higher-order functions transforming one or several input parsers
into new parsers in output. Starting with basic building blocks (i.e. parsers
that exactly match one character), it is easy to combine them into bigger
parsers. For instance, given digit: parser Za parser for digits, it is easy to
parse numbers, using the many1: parser τ→parser (l: list τ {Cons?
l}) sequence combinator: many1 digit is a parser for sequences of digits,
of type l:list Z {Cons? l}. We implemented StarCombinator, a small
parser combinator library which defines basic parsers and combinators. Its
development can be found at the following URL on GitHub:

https://github.com/W95Psp/StarCombinator/

Pretty printer. For convenience, we also needed to be able to print the
trees we were parsing. Decent pretty printing of an AST is not so simple to
achieve; and abstracting away printing and formatting matters can greatly
enhance and simplify pretty printing. Thus, in the spirit of Wadler [Wad03],
we wrote a small module that provides a bunch of functions to help con-
structing documents (an inductive type that represents pretty-printed to
be strings), which then can be transformed into strings. This module can
be found at the following URL on GitHub:

https://github.com/W95Psp/verified-abstract-interpreter
/blob/master/src/app/PrettyPrinter/

A.3 Nix and F?

F? is an ever changing language, and every so often there is a bug fix or a
new functionality pushed on some branch of F? repository. Also, we spend
quite some time hacking on F? itself to tweak it, or add small features1. 1For instance for tweaking the reflection API

(i.e. adding range, comment, lemma, pars-
ing reflection API), or playing with certain
F? internals.

As a result, we tend to work with a certain number of different versions of
F?, often with custom patches.

The Nix Package Manger [NixPM] is a purely functional package man-
ager, leveraging the Nix functional lazy programming language. It is
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focused on reproducibility: building a same package on two different
computers (with same CPU architecture) must result in entirely bit-to-bit
identical binaries. Nix builds software in a side-effect free manner. Each
package is isolated and identified with a cryptographic hash of the build
dependency graph of the package.

We wrote a Nix expression that allows easy compilation of any num-
ber of versions of F? given a set of options, patches and sources. The
abstract interpreter of Chapter 3 leverages these Nix expressions, resulting
in an easy-to-reproduce development environment and binaries. This Nix
expression is available at the following URL on GitHub:

https://github.com/W95Psp/nix-flake-fstar

After using F? for a few years on very various projects, we experimented
a slight inconvenience: the F? ecosystem did not develop any notion of
third-party libraries. We often felt the urge of extracting certain modules
from a project, to isolate them into a small library. But since there is no
ready-made path to declare and reuse libraries, such F? libraries seem rare.
In consequence, the only F? library is basically the standard one [FStdLib].
But clearly, every module does not belong to the standard library of a
language. We thus wrote a small package manager for F? using Nix. It
allows to describe GitHub-based or local dependencies for a library. Also, it
generates development environments with pre-configured F? binaries and
auto-generation of native plugins, if any. The package manager also lets
the user to specify OCaml compilation targets. We aim at simplifying this
package manager and at augmenting it with C and JavaScript compilation
target. It is available at the following URL on GitHub:

https://github.com/W95Psp/fstar-nix-packer
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Titre : Programmation vérifiée à l’intersection des types dépendants et de l’analyse statique

Mot clés : Types dépendants, interprétation abstraite, programmation vérifiée

Résumé : La programmation dirigée par les
types ou orientée preuves consiste à écrire et
prouver des programmes simultanément. Elle
émerge grâce aux langages équipés de types
dépendants, et permet une formidable qualité
logicielle, au prix de temps passé à écrire des
preuves. Inversement, l’analyse statique vise
à inférer des propriétés en analysant des pro-
grammes existants.
Cette thèse étudie la façon dont les sys-
tèmes avancés de typage et l’analyse sta-
tique peuvent coopérer. Quant à l’analyse sta-
tique, nous nous focalisons principalement sur
une théorie correcte d’approximation de pro-
grammes : l’interprétation abstraite. Notre pre-
mière contribution démontre l’efficacité de la
programmation orientée preuves (avec le lan-
gage F*) pour écrire des interpréteurs abs-
traits formellement vérifiés. De tels interpré-

teurs existent, mais requièrent une expertise
avec les assistants de preuves et en interpré-
tation abstraite, les rendant particulièrement
inaccessibles. Notre approche ne nécessite
que très peu de preuves manuelles (un ordre
de magnitude inférieur en comparaison avec
les travaux similaires) : notre implémentation
est particulièrement concise et accessible.
Nous avons ensuite étudié l’hybridation d’in-
terpréteurs abstraits et de monades de pré-
condition la plus faible (WP). Notre approche
instrumente des interpréteurs abstraits en des
transformeurs de monades de WP.
Enfin, nous avons travaillé sur les bénéfices
des types dépendants et du système d’effets
de F* pour le contrôle de flux d’information
(IFC). Nous présentons une librairie permet-
tant de vérifier des politiques d’IFC de manière
flexible, entre statique et dynamique.

Title: Verified Programming at the Intersection of Dependent Types and Static Analysis

Keywords: Dependent types, abstract interpretation, verified programming

Abstract: Dependently-typed languages al-
low for a new paradigm: proof-oriented or
type-driven programming, consisting in writing
a program, its specifications and proofs simul-
taneously. This yields the greatest quality of
software, at the cost of manual proof effort.
Conversely, static analysis methods aim at in-
ferring properties by analyzing existing pro-
grams –usually written without proofs in mind.
This Ph.D. thesis studies how advanced type
systems and static analysis methods can
work cooperatively. As for the latter, we fo-
cus primarily on a theory of sound approxi-
mation: abstract interpretation. Our first con-
tribution demonstrates the effectiveness of
proof-oriented programming (with the F* lan-
guage) for writing verified sound abstract in-

terpreters. Such interpreters exist but un-
derstanding them requires expertise in both
proof-engineering and abstract interpretation.
Our approach yields an order of magnitude
less explicit proofs, leading to a very concise
and accessible implementation.
We then study how abstract interpretation and
weakest-precondition (WP) monads could be
hybridized, aiming at better type inference for
F*. Our approach consists in turning abstract
interpreters into WP monad transformers.
We finally look at the benefits of F* dependent
types and effects for Information Control Flow
(IFC). We present the design and implemen-
tation of a library allowing any combination of
static and dynamic IFC verification.
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