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A toute algèbre de Lie sur le corps des complexes, nous pouvons lui associer le groupe quantique considéré comme généralisation de l'algèbre. C'est la deformation de l'algèbre enveloppante universelle U(g). En prenant la limite q tend vers 1, nous retrouvons l'algèbre enveloppante universelle. L'algèbre de Lie possède une généralisation naturelle en dimension innie qui est l'algèbre de Lie ane. La déformation de l'algèbre enveloppante d'une algèbre de Lie ane non-tordue nous permet de dénir les algebres anes quantiques. Due à V.G. Drinfel'd les algèbres anes quantiques possèdent une deuxième réalisation en terme de générateurs de Drinfel'd. Cet isomorphisme est prouvé Par I. Damiani et J. Beck. Ceci nous permet de dire qu'on peut effectuer l'anisation avant ou bien après la quantication. On a un diagramme commutative. En plus, on peut denir la quantication ane qui nous per-met d'associer à toute algèbre de Lie de type nie une algèbre quantique ane dans la réalisation de Drinfel'd. Le procédé de quantication ane peut être eectué sur une algèbre ane non tordue. Ceci est la denition des algèbres toroidales quantiques. Le résultat est une algèbre qui est doublement ane. Dans cette thèse nous étudions les algèbres toroidales quantiques et leurs représentations. La première partie est consacrée à l'étude de l'algèbre toroidale quantique de type A1. Par action du groupe des tresses, nous construisons une nouvelle presentation de l'algèbre qui nous donne une nouvelle décomposition triangulaire. Dans la seconde partie, nous utilisons ce résultat pour dénir et classier les représentations simples de plus hauts t-poids.

Finalement, nous généralisons les résultats de la première partie pour obtenir une action du groupe des tresses sur tout autres systems de racines.

presentation only depends on the underlying nite root system, i.e. the one with the extra ane simple root removed. Now it turns out that this inherently ane presentation still makes sense if, instead of a nite root system, one takes an ane root system.

In that case, the doubly ane algebra one obtains is known as a quantum toroidal algebra. Although the latter are believed to be relevant in various areas of theoretical physics, ranging from quantum integrable systems to CFT, not much is presently known about their representation theory. From a more mathematical perspective, the interest in these algebras essentially stems form the fact that, in type A, they are known to be Frobenius-Schur duals of the widely studied doubly ane Hecke algebras or DAHA originally introduced by Cherednik in order to prove Mac-Donald's conjectures.

In this thesis we study quantum toroidal algebras and their representation theory. In the rst section, we construct a new presentation of the algebra using the braid group action on the generators and show the existence of an isomorphism between both presentations. This allows us to dene a new triangular decomposition. Using these results, we dene and classify highest-weight representations. Finally, we generalize the action of the braid group to any root system. 
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T π (x ± i (z)) = x ± π(i) (z) , T π (k ± i (z)) = k ± π(i) (z) , T π (C 1/2 ) = C 1/2 , T π (D) = D . (0.1.1)
ii. Pour tout i ∈ İ, il existe un unique automorphism de F-algèbre T ω ∨ i ∈ Aut( Uq ( ȧ1 )) tel que

T ω ∨ i (x ± j (z)) = z ±δ ij x ± j (z) T ω ∨ i (k ± j (z)) = C ∓δ ij k ± j (z) T ω ∨ i (C 1/2 ) = C 1/2 T ω ∨ i (D) = D (0.1.2)
iii. Il existe un unique anti-homomorphisme involutive de F-algèbre η ∈ Aut( Uq ( ȧ1 )) tel que:

η(x ± i (z)) = x ± i (1/z) η(k ± i (z)) = k ∓ i (1/z) η(C 1/2 ) = C 1/2 η(D) = D (0.1.3)
iv. Il existe un unique anti-homomorphisme involutive de F-algèbre ϕ ∈ Aut( Uq ( ȧ1 )) tel que:

ϕ(x ± i (z)) = x ∓ i (1/z) ϕ(k ± i (z)) = k ∓ i (1/z) ϕ(C 1/2 ) = C -1/2
ϕ(D) = D -1 ϕ(q) = q -1 (0.1.4) Proposition 0.1.2. Il existe un unique automorphisme d'algèbre T ∈ Aut( Uq ( ȧ1 )) tel que:

T (C 1/2 ) = C 1/2 T (D) = D T (k ± 0 (z)) = k ± 0 (zq 2 )k ± 1 (z)k ± 1 (zq 2 ) T (k ± 1 (z)) = k ± 1 (z) -1 (0.1.5) T (x + 0 (z)) = 1 [2] q res z 1 ,z 2 z -1 1 z -1 2
x + 1 (z 1 ), x + 1 (z 2 ), x + 0 (zq 2 ) G - 10 (z 2 /zq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /zq 2 ) (0.1.6)

T (x - 0 (z)) = 1 [2] q res z 1 ,z 2 z -1 1 z -1 2 x - 0 (zq 2 ), x - 1 (z 1 ) G + 10 (zq 2 /z 1 ) , x - 1 (z 2 ) G + 11 (z 1 /z 2 )G + 10 (zq 2 /z 2 ) (0.1.7) T (x + 1 (z)) = -x - 1 (C -1 z)k + 1 (C -1/2 z) -1 (0.1.8) T (x - 1 (z)) = -k - 1 (C -1/2 z) -1 x + 1 (C -1 z) (0.1.9)
Ces automorphismes seront associés aux générateurs du groupe de tresse toroidale pour construire les générateurs de la nouvelle présentation.

Denition 0.1.3. Soit Ḃ le groupe de tresses ane de type ȧ1 . Soit B := Ḃ P ∨ , i.e. B est isomorphe au groupe de dont les générateurs sont t, y and (x λ ) λ∈P ∨ tels que:

ty -1 t = y , tx λ t -1 = x sα 1 (λ) , x λ y = yx λ , (0.1.10)

Pour tout λ ∈ P ∨ .

Ceci denit l'extension du groupe de tresses toroidale de type ȧ1 . Le théorème suivant est la base de la construction des générateurs double-Drinfel'd:

Theorem 0.1.4.

t → T y → Y := T π • T x ω ∨ i → T ω ∨ i (0.1.11)
s'étend à un homomorphisme de groupe B → Aut( Uq ( ȧ1 )).

En appliquant l'automorphisme Y , nous construisons ψ + 1,m (z):

Y m k - 1 (z) -1 x - 1 (C 1/2 z) , x + 1 (v) G - 01 (z/C 1/2 v) = -δ q 2m z C 1/2 v ψ + 1,m (v) (0.1.12) où G ± ij (z 1 /z 2 ) = z 1 q ∓c ij -z 2 z 1 -q ∓c ij z 2 |z 2 | |z 1 | . (0.1.13)
les génerateurs de al sous algèbre de Cartan sont denis tels que:

K + 1,m (v) := (q -q -1 )k - 1 (C 1/2 vq -2m )ψ + 1,m (v), où m ∈ N × et X ± 1,m (z) := Y ∓m (x ± 1 (z)).
Pour obtenir les relations dans cette nouvelle presentation il faut: établir les relations entre ψ + 1,m (z) et les générateurs de la presentation de Drinfel'd, établir les relations dans Ü+ q (a 1 ), Ü0 q (a 1 ) et Üq (a 1 ), établir les relations entre les trois sous-algèbres: Ü+ q (a 1 ), Ü0 q (a 1 ) et Üq (a 1 ).

Nous pouvons maintenant fournir la nouvelle presentation: Denition 0.1.5. L'algèbre de double anization quantique Üq (a 1 ) de type a 1 est la F-algèbre dont les générateurs sont 

{D 1 , D -1 1 , D 2 , D -1 2 , C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r , X + 1,r,s , X - 1,r,s : m ∈ N, n ∈ N × ,
D ±1 1 D ∓1 1 = 1 D ±1 2 D ∓1 2 = 1 D 1 D 2 = D 2 D 1 (0.1.16) D 1 K ± 1,±m (z)D -1 1 = q ±m K ± 1,±m (z) D 1 X ± 1,r (z)D -1 1 = q r X ±
1,r (z) , (0.1.17)

D 2 K ± 1,±m (z)D -1 2 = K ± 1,±m (zq -1 ) D 2 X ± 1,r (z)D -1 2 = X ±
1,r (zq -1 ) , (0.1.18)

res v,w 1 vw K ± 1,0 (v)K ∓ 1,0 (w) = 1 , (0.1.19)
(v -q ±2 z)(v -q 2(m-n∓1) z)K ± 1,±m (v)K ± 1,±n (z) = (vq ±2 -z)(vq ∓2 -q 2(m-n) z)K ± 1,±n (z)K ± 1,±m (v) , (0.1.20) (Cq 2(1-m) v -w)(q 2(n-1) v -Cw)K + 1,m (v)K - 1,-n (w) = (Cq -2m v -q 2 w)(q 2n v -Cq -2 w)K - 1,-n (w)K + 1,m (v) , (0.1.21)

(v -q ±2 z)K ± 1,±m (v)X ± 1,r (z) = (q ±2 v -z)X ± 1,r (z)K ± 1,±m (v) , (0.1.22)
(Cv -q 2(m∓1) z)K ± 1,±m (v)X ∓ 1,r (z) = (Cq ∓2 v -q 2m z)X ∓ 1,r (z)K ± 1,±m (v) , (0.1.23) (v -q ±2 w)X ± 1,r (v)X ± 1,s (w) = (vq ±2 -w)X ± 1,s (w)X ± 1,r (v) , (0.1.24)

[X + 1,r (v), X - 1,s (z)] = 1 q -q -1    δ
Cv q 2(r+s) z |s| p=1 c -C -1/2 q (2p-1)sign(s)-1 z -sign(s) K + 1,r+s (v) Denition 0.1.6. Soit M un module de Üq (g). On dit que M est un t-poids module s'il existe un ensemble denombrable {M α : α ∈ A} indecomposables appelés espaces de t-poids tel que:

-δ C -1 v q 2(r+s) z |r| p=1 c + C -1/2 q (1-2p)sign(r)-1 v sign(r) K - 1,r+s (z) 
M ∼ = α∈A M α (0.1.30)
où chaque M α est un module de Ü0 q (g).

Nous pouvons ensuite classier les modules de plus hauts t-poids.

Theorem 0.1.7. L'unique module simple de plus haut t-poids possède un nombre de poids classique ni ssi sont espace de plus haut t-poids est un module de Ü0 q (g) simple t-dominant.

0.1.3 Action du Groupe de Tresses: Le Cas Général Dans ce qui suit nous donnons le théorème principale pour généraliser les résultats de cette thèse à toute autre système de racines.

Theorem 0.1.8. ∀i = j ∈ İ, nous dénissons T i tel que:

T i (C) = C, T i (D) = D T i (x + i (z)) = -x - i (zC -1 )k + i (zC -1/2 ) -1 , T i (x - i (z)) = -k - i (zC -1/2 ) -1 x + i (zC -1 ) T i (k ± i (z)) = k ± i (z) -1 , T i (k ± j (z)) = |-a ij | p=1 k ± i (zq 2-2p-a ij i )k ± j (zq 2 i ) T i (x + j (z)) = x + i -a ij j (zq -a ij i ) [-a ij ] q i , T i (x - j (z)) = x - ji -a ij (zq -a ij i ) [-a ij ] q i .
en plus, on donne

T -1 i (C) = C, T -1 i (D) = D T -1 i (x + i (z)) = -k + i (zC 1/2 ) -1 x - i (zC ), T -1 i (x - i (z)) = -x + i (zC)k - i (zC 1/2 ) -1 T -1 i (k ± i (z)) = k ± i (z) -1 , T -1 i (k ± j (z)) = |-a ij | p=1 k ± i (zq 2-2p-a ij i )k ± j (zq -2 i ) T -1 i (x + j (z)) = x + ji -a ij (zq a ij ) [-a ij ] q i , T -1 i (x - j (z)) = x - i -a ij j (zq a ij ) [-a ij ] q i .
Ceci nous permet d'avoir une action par automorphismes T i du groupe de tresse B sur l'algèbre Uq ( ġ).

Introduction Quantum Groups

Quantum groups have been a subject of interest for the past 35 years and interestingly enough, to this day, do not have an agreed upon satisfactory denition. The name was popularized by V.G. Drinfel'd and dened by M. Jimbo and V.G. Drinfel'd [START_REF] Difrncesco | Hopf algebras and the quantum Yang-Baxter equation[END_REF] [Jim86] as the q-deformation of the universal envoloping algebra U (g).

Quantum groups quickly gained popularity in physics too. Specically, they were rst used to address statistical mechanics problems such as inverse scattering methods. Ever since, the eld exploded in multiple research directions in both mathematics and physics. On the mathematical side, one can look at multiple results ranging from geometry and knot theory to representation theory. When the deformation parameter q is not a root of unity, the representation theory of quantum groups is quite similar to that of complex simple Lie algebras. However, a remarkable result appears in the case q is a root of unity. In this case, if q is the p-th root of unity the representation theory becomes closely linked to that of the Lie algebra over a nite eld with p elements. Whereas for physics [START_REF] Pasquier | Common structures between nite systems and conformal eld theories through quantum groups[END_REF], we can see applications to integrable systems, conformal eld theories, and lattice models relevant to statistical mechanics problems. Quantum groups in the case of nite integrable systems play a similar role as the Virasoro algebra in the case of conformal theories. In the case of the XXX open spin chain, there is an su 2 symmetry. Its counterpart is a U q (su 2 ) symmetry for an open XXZ spin chain with an appropriate boundary condition. We can think of this as deforming the spin chain in one direction so that the interaction along one of the directions is dierent. Moreover, U q (sl 2 ) is the Schur-Weyl dual of the Temperley-Lieb algebra for 2D lattice systems,such as loop models, or equivalently spin chains that are built out of the Temperley-Leib algebra.

Quantum Ane Algebras

For every Lie algebra g we denote by ġ the untwisted ane Kac-Moody algebra associated to g. The quantum ane algebra U q ( ġ) is obtained through a Drinfel'd-Jimbo quantisation of ġ. These algebras are still a eld of very active research in both physics and mathematics too. Although it is practically impossible to list all of them, especially on the mathematical side, we will list a few and focus on what was most relevant during the development of this work. For physicists these algebras are especially interesting because of the trigonometric R-matrix, solution to the Yang-Baxter equation. Quantum ane algebras also arise in the context of integrable quantum eld theories. However we will start shifting our interest to the mathematical side here. The quantum ane algebra admits two presentations. One in terms of the Drinfel'd-Jimbo generators and the second, denoted here as Uq (g) in terms of Drinfel'd's current generators. The isomorphism between the two presentations is due to I. Damiani and J. Beck. [START_REF] Damiani | A basis of type PBW for the quantum algebra of sl 2[END_REF], [START_REF] Beck | Braid Group Action and Quantum Ane Algebras[END_REF] and the latter depends on the nite root system data only. In fact, Drinfel'd's presentation was the key that unlocked the study of the representation theory of quantum ane algberas, an idea that we will come back to in the toroidal setting. Contrary to classical Lie algebras, highest weight representations of quantum ane algebras are innite dimensional. However, V. Chari and A. Pressley [START_REF] Chari | Quantum ane algebras and their representations[END_REF] established that a representation of Uq (g) is nite dimensional if and only if there exists a polynomial called Drinfel'd polynomial with constant coecient 1 called -weight.

Quantum Toroidal Algebras

Quantum toroidal algebras were rst introduced by V. Ginzburg, M. Kapranov, and E. Vasserot for type A in [START_REF] Ginzburg | Langlands reciprocity for algebraic surfaces[END_REF] and then generally by H. Nakajima and N. Jing in [Nak01] [START_REF] Jing | Quantum Kac-Moody algebras and vertex representations[END_REF]. Then, M. Varagnolo and E.

Vasserot established a Schur-Weyl duality between quantum toroidal algebras and the double ane Hecke algebra (DAHA) [START_REF] Varagnolo | Schur duality in the toroidal setting[END_REF]. Most recently, G. Noshita, and A. Watanabe in [START_REF] Noshita | Quiver Quantum Toroidal Algebras[END_REF] introduced quiver quantum toroidal algebras as a q-deformation of the quiver Yangian as the quantum toroidal gl 1 . One can also dene quantum toroidal algebras in the same fashion as quantum ane algebras. By which we mean, if we use Drinfel'd's quantum anization on an untwisted ane Kac-Moody algebra, then we obtain quantum toroidal algebras. The representation theory of quantum toroidal algebras is far from being understood although one nds several results such as plane partition representations of quantum toroidal gl 1 by B. Feigin, M. Jimbo, T.

Miwa and E. Mukhin [START_REF] Feigin | Quantum toroidal gl 1 -algebra: Plane partitions[END_REF] as well as vertex representations by Y. Saito [S98].

The thesis is organized as follows. In chapter 1, we will give a small review on the results that are most relevant for this work. This review can also be seen as a road map because the results we are presenting in this thesis are an anized version of the review. In chapter 2, we give a double Drinfel'd current presentation for quantum toroidal sl 2 through an anized Damiani-Beck isomorphism. In chapter 3, we use this new presentation to discuss some representation theoretic consequences by dening a new notion of niteness as well as providing an evaluation homomorphism. As we know, one does not expect to have nite dimensional representations for quantum toroidal algebras. Therefore, we introduce the idea of classical weight-niteness and prove that it generalizes the classication result of V. Chari and A. Pressley for Uq (sl 2 ). Then, in chapter 4 we give the action of the braid group on the quantum toroidal algebras of any rank. This chapter is the stepping stone for generalizing chapter 2 to higher ranks. Finally, we give possible future directions and conjecture how the double Drinfel'd presentation Üq (g) should look like for any simple nite dimensional Lie algebra g.

Chapter 1

A Brief History

Quantized Enveloping Algebra

When it comes to quantized enveloping algebras, a lot of its structure carries over from Lie algebras all thanks to the fact that semisimple complex Lie algebras are at the heart of the quantized enveloping algebra denoted U q (g).

We start by a reminder that for a root system with basis Π, a Cartan matrix A, and a ij the Cartan matrix entries, the Lie algebra g in the Chevalley-Serre presentation is generated by the generators e + i , e - i , and h i satisfying the following relations:

[h i , h j ] = 0, [h i , e + i ] = a ij e + i , (1.1.1) 
[h i , e + i ] = -a ij e - i , [e + i , e - j ] = δ ij h i , (1.1.2)

(ad e + i ) 1-a ij e + j = 0 (1.1.3)

(ad e - i ) 1-a ij e - j = 0 (1.1.4)

Then, the enveloping algebra is dened as the associative algebra with the same generators and relations where we quotient by [x, y] = xy -yx. This means that we can rewrite the last relations as:

1-a ij i=0 (-1) i 1 -a ij i (e + i ) 1-a ij -i e + j (e + i ) i (1.1.5) 1-a ij i=0 (-1) i 1 -a ij i (e - i ) 1-a ij -i e - j (e - i ) i (1.1.6)
Now let q ∈ C such that q = 0 and q is not a root of unity. Let q i = q (α i ,α i )/2 and dene the q-numbers by:

[n]

q i = q n i -q -n i q i -q -1 i (1.1.7)
Then, the quantized enveloping algebra U q (g) is the algebra with generators E ± i and K i , and K -1 i satisfying:

K i K j = K j K i (1.1.8) K i K -1 i = K -1 i K i = 1 (1.1.9) K i E + j K -1 i = q (α i ,α j ) i E + j (1.1.10) K i E - j K -1 i = q -(α i ,α j ) i E - j (1.1.11) 1-a ij i=0 (-1) i 1 -a ij i q i (E + i ) 1-a ij -i E + j (E + i ) i (1.1.12) 1-a ij i=0 (-1) i 1 -a ij i q i (E - i ) 1-a ij -i E - j (E - i ) i (1.1.13)
We can clearly see all the parallels between the two presentations of a Lie algebra and the quantized enveloping algebra. As it was the case for Lie algebras, we denote by U q (g) ± , and U q (g) 0 the subalgebras respectively generated by E ± i , and K i together with K -1 i . We also have the following triangular decomposition:

U q (g) ∼ = U q (g) + ⊗ U q (g) 0 ⊗ U q (g) - (1.1.14)
which will once again be relevant for the representation theory part of course.

Furthermore, by setting:

∆(E + i ) = E i ⊗ 1 + K i ⊗ E + i , (E + i ) = 0 (1.1.15) ∆(E + i ) = E i ⊗ K -1 i + 1 ⊗ E - i , (E - i ) = 0 (1.1.16) ∆(K i ) = K i ⊗ K i , (K i ) = 1 (1.1.17) S(E + i ) = -K -1 i E + i , S -1 (E + i ) = -E + i K -1 i (1.1.18) S(E - i ) = -E - i K i , S -1 (E - i ) = -E - i K i (1.1.19) S(K i ) = K -1 i , S -1 (K i ) = K -1 i (1.1.20)
for the comultiplication ∆, the counit , and the antipode S, we make the quantized enveloping algebra into a Hopf algebra.

We can now give the two unique automorphisms on U q (g) denoted ω, and τ given by:

ω(E + i ) = E - i , ω(E - i ) = E + i , ω(K i ) = K -1 i (1.1.21) τ (E + i ) = E + i , τ (E - i ) = E - i , τ (K i ) = K -1 i (1.1.22)
The proof is straightforward and all we have to do is check this on the algebra relations.

Representation Theory

As it is the case for Lie algebras, the representation theory of U q (g) stems mostly from the representation theory of U q (sl 2 ). We will start by giving some of the important results of that in the case where q is not a root of unity and the eld F is of characteristic zero.

The presentation of U q (sl 2 ) is the same as the one presented in the previous section where we get rid of the subscript i because it can only take one value since we only have one simple root.

If M is a U q (sl 2 )-module then set for all λ ∈ F × :

M λ = {m ∈ M |K.m = λ.m} (1.1.23)
This means that M λ is the eigenspace of K with eigenvalue λ. As we have done for Lie algebras, the λ's will be called the weights. Taking the algebra relations into account, it is clear that we have:

E + .M λ ⊂ M q 2 λ , E -.M λ ⊂ M q -2 λ (1.1.24)
More precisely, we have that the direct sum of any weight spaces of the form M q 2n λ is a submodule. From this we can conclude that if M is simple, we have M = n M q 2n λ . We now have the following proposition:

Proposition 1.1.1. Suppose M is a nite-dimensional U q (sl 2 )-module, then M is a direct sum of its weight spaces with weights of the form ±q a for a ∈ Z.

For each λ ∈ F, there is an innite dimensional U q (sl 2 )-module with basis m 0 , m 1 , ... where the algebra generators act as:

K.m i = λq -2i m i , F.m i = m i+1 , (1.1.25) E.m i = 0, if i = 0, (1.1.26) E.m i = [i] q λq 1-i -λ -1 q i-1 q -q -1 , otherwise (1.1.27)
We now nish the part about the representation theory of U q (sl 2 ) with the following two theorems:

Theorem 1.1.2. Let M be a nite dimensional U q (sl 2 )-module that is a direct sum of its weight spaces, then M is a semisimple module.

Analogously to sl 2 , Theorem 1.1.3. For each n ≥ 0 there are two simple U q (sl 2 )-modules denoted respectively L(N, +), and L(N, -) with basis m 0 , m 1 , ..., m n , and m 0 , m 1 , ..., m n such that:

K.m ( ) i = q n-2i m ( ) i (1.1.28) E + .m ( ) i = 0 if i = 0 (1.1.29) E + .m ( ) i = [i] q [n + 1 -i] q m ( ) i-1 otherwise (1.1.30) E -.m ( ) i = 0 if i = n (1.1.31) E -.m ( ) i = m ( ) i+1 otherwise (1.1.32)
1.1.2 Representation Theory of U q (g)

Most of the representation theory results of U q (g) arise from what we have seen in the case of U q (sl 2 ). Moreover, there are a lot of similarities between the representation theory of U q (g) and that of g. In this section, we will introduce the category of nite dimensional U q (g)-modules and give the classication theorem of its objects.

Let λ be a weight and µ an element of the root lattice ZΦ. For any U q (g)-module M , let for all λ and all σ : ZΦ → {±1} M λ,σ be the subspace of M given by:

M λ,σ = {m ∈ M |K µ m = σ(µ)q (λ,µ) m}. (1.1.33)
M λ,σ are the weight spaces of M . In case M is a nite dimensional module, then

M = σ,λ M λ,σ (1.1.34)
since all the K i 's are simultaneously digonalizable. Moreover, we have for all λ, and σ:

E + i M λ,σ ⊂ M λ+α i ,σ , and 
E - i M λ,σ ⊂ M λ-α i ,σ (1.1.35)
for all simple roots α i . This is clear from the algebra relations.

Furthermore, the generators E ± i act nilpotently. This is because the module M holds U q (sl 2 )-submodules for each α i .

For a module M given by the direct sum as above, we will say that it is of type σ if M = M λ,σ and of type 1 if in addition to that we have σ(α) = 1 for all α.

The previous results can be summarized as follows: the category of nite dimensional U q (g)-modules is the direct sum of the categories of all nite dimensional modules of type σ.

However, we can dene the involutary automorphism σ by:

σ(E ± i ) = σ(α i ) 1±1 2 E ± i , σ(K i ) = σ(α i )K i (1.1.36)
that allows us to twist any module of type σ into a module of type 1. Clearly, this is a functor that allows us to say that we have an equivalence between the category of nite dimensional modules of type 1 and that of type σ. Now, since U q (g) has the structure of a Hopf algebra, most of the results of the section on U q (sl 2 ) generalize to U q (g). The coproduct allows us to dene the tensor product of modules, and since we have:

∆(K i ) = K i ⊗K i
then we have:

M λ,σ ⊗ M λ ,σ ⊂ (M ⊗ M ) λ+λ ,σσ (1.1.37)
The fact that the tensor product of two modules of type 1 is of type 1 follows immediately. Once more, we have a trivial one dimensional module given by the and dening for each σ : ZΦ → {±1} such that:

σ (E ± i ) = 0, and σ (K i ) = σ(α i ) (1.1.38)
gives us a one dimensional module denoted L(0, σ).

From now on, since we can twist any module, we will stick to type 1 modules.

Since the set of weights is always nite, there exists for every module M a weight λ such that M λ = 0 but M λ = 0 for any λ > λ. This holds true in particular if λ is a simple root. This means that if M is a nite dimensional module, there exists v ∈ M λ , v = 0, but E + i v = 0 for all i. In this case, λ is called a dominant weight. Moreover, we have:

(E - i ) a+1 v = 0 with a = 2 (λ,α i ) (α i ,α i )
. This holds because otherwise, the U q (sl 2 )-submodule corresponding to the simple root α i would be innite dimensional.

We will now construct the universal highest weight module (Verma module) of highest weight λ.

Any weight λ denes a one dimensional U q (g) 0 -module where we have:

K i m = q (λ,α i ) m, E + i m = 0 (1.1.39)
for all m ∈ M . The kernel of this representation is an ideal I 0 λ given by:

I 0 λ = α i ∈Π U q (g) 0 E + i + α i ∈Π U q (g) 0 (K i -q (λ,α i ) ).
(1.1.40)

Clearly, we have:

U q (g) = U q (g) -⊕ I λ (1.1.41)
where,

I λ = α i ∈Π U q (g)E + i + α i ∈Π U q (g)(K i -q (λ,α i ) ).
(1.1.42) due to I λ being a left ideal and the triangular decomposition of U q (g). Taking the quotient:

M (λ) = U q (g)/I λ ,
where it is clear that we have:

E + i v λ , K i v λ = q (λ,α i ) v λ (1.1.43)
makes M (λ) into a universal highest weight module. The existence of such module means that we have a bijection between elements in U q (g) µ and M (λ) λ-µ where each U q (g) µ is nite dimensional where we get:

M (λ) λ = Fv λ , M (λ) λ-nα i = F(E - i ) n v λ . (1.1.44)
for all integers n ≥ 0. We obtain the unique up to isomorphisms submodule of L(λ) by taking the quotient:

L(λ) = M (λ)/N (λ)
where N is the unique maximal submodule. This λ is unique therefore it is the largest weight of the module meaning that it is a dominant weight. In order to complete the classication of simple nite dimensional modules we need to show that if λ is dominant, then the module is nite dimensional.

We can now dene a homomorphism of U q (g)-modules φ:

φ : v λ-(n+1)α i → (E - i ) n+1 v λ . (1.1.45)
This can be easily proven by using the relation between E + i and E - j on (E - i ) n+1 v λ to verify the universal property of the module.

Another interesting result that will be useful for proving that the modules are nite dimensional is the fact

E ±
i act nilpotently on the on the module U q (g)/I where I is the ideal generated by (E + i ) m(α i ) and (E - i ) n(α i ) where m(α i ), and n(α i ) are both positive integers. Now, for an important result for the classication theorem, let

φ α i : M (λ -(n(α i ) + 1)α i ) → M (λ). The U q (g)-module L(λ) M (λ)/ α i im(φ α i ) is nite dimensional.
It is clear that upon identifying M (λ) with U q (g) -, we identify the image of φ α i with

U q (g) -(E - i ) n(α i +1) . Then, L(λ) U q (g)/( α i ∈Π U q (g)E + i + α i ∈Π U q (g)(E - i ) n(α i )+1 + α i ∈Π U q (g)(K i -q (λ,α i ) ).) (1.1.46)
which means that E ± i act nilpotently on L(λ). The approach will be strictly weight oriented. We will show that the weights are stable under the Weyl group action and the weight space contains nitely many dominant weights in the orbits under this action we get a nite dimensional module. It suces to show that for a weight β the image after a simple reection is still a weight of L(λ). This relies on the fact that we have U q (sl 2 )-modules for each simple root and that since E ± i act nilpotently then that the U q (sl 2 )-modules V = n V n are nite dimensional and dim V n = dim V -n . In fact, consider:

V = n∈Z L(λ) β+nα i (1.1.47)
We can make the identication

V m = L(λ) β+nα i with m = 2 (β,α i ) (α i ,α i ) + 2n.
Then by setting r = 2 (β,α i ) (α i ,α i ) , we have:

V r = L(λ) β , V -r = L(λ) sα i (β) (1.1.48) which means that s α i (β) is a weight in L(λ).
Finally, the classication theorem follows:

Theorem 1.1.4. For each dominant weight λ the module L(λ) is nite dimensional and each nite dimensional U q (g)-module is isomorphic to exactly one L(λ) with λ dominant.

Quantum Ane Algebras

After constructing the quantum group U q (g) for a simple nite dimensional Lie algebra, an obvious question is whether we can repeat this process but for an ane Lie algebra. Clearly, the answer is yes. Upon replacing the root system data by that of an ane Lie algebra, i.e. instead of using a nite type Cartan matrix we use a Cartan matrix of an untwisted ane Kac-Moody algebra, we obtain what is called a quantum ane Lie algebra denoted U q ( ġ).

Then, the quantum ane algebra U q (g) is the algebra with generators E ± i and K i , and K -1 i satisfying:

K i K j = K j K i (1.2.1) K i K -1 i = K -1 i K i = 1 (1.2.2) K i E + j K -1 i = q (α i ,α j ) i E + j (1.2.3) K i E - j K -1 i = q -(α i ,α j ) i E - j (1.2.4) 1-a ij i=0 (-1) i 1 -a ij i q i (E + i ) 1-a ij -i E + j (E + i ) i (1.2.5) 1-a ij i=0 (-1) i 1 -a ij i q i (E - i ) 1-a ij -i E - j (E - i ) i (1.2.6)
where, i ∈ İ with İ = 0, 1, ..., n the set corresponding to the nodes of the Dynkin diagram. We remind you that each node corresponds to a simple root and the 0th node is the ane root. Therefore, we can simply that we have the following diagram:

g Classical Anization --------------→ ġ Quantization     Quantization U q (g) --------------→ Classical Anization U q ( ġ)
As usual, our goal is to study the representation theory of these algebras. However, it turns out that this presentation of quantum ane algebras isn't the best one for understanding and classifying its representations.

Drinfel'd then proposed another presentation usually also known as Drinfel'd current presentation of quantum ane algebras. The name comes from the fact that this new presentation is in fact very similar in spirit to that of the central extension of the loop algebras in the case of Kac-Moody algebras. In fact, Drinfel'd gave the presentation but the proof that the two algebras were actually isomorphic was done by I. Damiani (for the injectivity part of the isomorphism) and J. Beck (for the surjectivity part of the isomorphism). Therefore, in the next part we will review the main points that lead to constructing Drinfel'd's presentation which unlocked the representation theory of quantum ane algebras.

Damiani-Beck Isomorphism

We will start this section by stating the isomorphism theorem that gives us the new presentation and then work our way through dening all the relevant material that leads to it.

Theorem 1.2.1. Let Uq (g) be the associative algebra generated by the generators

D, D -1 , C 1/2 , C -1/2 , k + i,n , k - i,-n , x + i,m , x - i,m : i ∈ I, m ∈ Z, n ∈ N
subject to the following relations

C ±1/2 is central C ±1/2 C ∓1/2 = 1 D ±1 D ∓1 = 1 (1.2.7) Dk ± i (z)D -1 = k ± i (zq -1 ) Dx ± i (z)D -1 = x ± i (zq -1 ) (1.2.8) res z 1 ,z 2 1 z 1 z 2 k ± i (z 1 )k ∓ i (z 2 ) = 1 (1.2.9) k ± i (z 1 )k ± j (z 2 ) = k ± j (z 2 )k ± i (z 1 ) (1.2.10) k - i (z 1 )k + j (z 2 ) = G - ij (C -1 z 1 /z 2 )G + ij (Cz 1 /z 2 )k + j (z 2 )k - i (z 1 ) (1.2.11) G ∓ ij (C ∓1/2 z 2 /z 1 )k + i (z 1 )x ± j (z 2 ) = x ± j (z 2 )k + i (z 1 ) (1.2.12) k - i (z 1 )x ± j (z 2 ) = G ∓ ij (C ∓1/2 z 1 /z 2 )x ± j (z 2 )k - i (z 1 ) (1.2.13) (z 1 -q ±c ij z 2 )x ± i (z 1 )x ± j (z 2 ) = (z 1 q ±c ij -z 2 )x ± j (z 2 )x ± i (z 1 ) (1.2.14) [x + i (z 1 ), x - j (z 2 )] = δ ij q i -q -1 i δ z 1 Cz 2 k + i (z 1 C -1/2 ) -δ z 1 C z 2 k - i (z 2 C -1/2 ) (1.2.15) σ∈S 1-a ij 1-a ij k=0 (-1) k 1 -a ij k q i x ± i (z σ(1) ) • • • x ± i (z σ(k) )x ± j (z)x ± i (z σ(k+1) ) • • • x ± i (z σ(1-a ij ) ) = 0 (1.2.16)
where, for every i ∈ I, we dene the following Uq (g)[[z, z -1 ]]-valued formal distributions

x ± i (z) := m∈Z x ± i,m z -m ∈ Uq (g)[[z, z -1 ]] ;
(1.2.17)

k ± i (z) := n∈N k ± i,±n z ∓n ∈ Uq (g)[[z ∓1 ]] , (1.2.18)
for every i, j ∈ İ, we dene the following F-valued formal power series

G ± ij (z) := q ±a ij i + (q i -q -1 i )[±a ij ] q i m∈N × q ±ma ij i z m ∈ F[[z]] (1.2.19)
and

δ(z) := m∈Z z m ∈ F[[z, z -1 ]] (1.2.20) is an F-valued formal distribution. Note that G ± ij (z) is invertible in F[[z]] with inverse G ∓ ij (z), i.e. G ± ij (z)G ∓ ij (z) = 1 , (1.2.21)
and that it can be viewed as the power series expansion of a rational function of (z 1 , z 2 ) ∈ C 2 as |z 2 | |z 1 |, which we shall denote as follows

G ± ij (z 1 /z 2 ) = z 1 q ∓a ij i -z 2 z 1 -q ∓a ij i z 2 |z 2 | |z 1 |
.

(1.2.22)

We will now see how the generators:

k + i,n , k - i,-n , x + i,m , x - i,m : i ∈ I, m ∈ Z, n ∈ N
are dened from the generators of the Drinfel'd-Jimbo presentation. In order to do this, we need to make a small but necessary detour and talk about the braid group action on U q ( ġ).

Automorphisms and Braid Group Action on U q ( ġ)

We start by introducing the C-algebra automorphisms φ, and Ω which are given by:

φ(E ± i ) = E ∓ i , φ(K i ) = K i , φ(q) = q -1 (1.2.23) Ω(E ± i ) = E ∓ i , Ω(K i ) = K -1 i , Ω(q) = q -1 (1.2.24)
The braid group associated to the Weyl group W with generators T i acts on the generators of the algebra as follows:

T i (E + i ) = -E - i K i , T i (E - i ) = -K -1 i E - i (1.2.25) T i (E + j ) = -a ij n=0 (-1) n-a ij q -n i (E + i ) (-n-a ij ) E + j (E + i ) (n) (1.2.26) T i (E - j ) = -a ij n=0 (-1) n-a ij q -n i (E - i ) (-n-a ij ) E - j (E - i ) (n) (1.2.27) T i (K α ) = K s i (α) (1.2.28)
Extend that group with T τ where τ is Dynkin diagram automorphism and denote P the group of automorphisms generated by T ω ∨ i and their inverses. Note that for w ∈ W such that w = τ s i 1 ...s in we have

T w = T τ T i 1 ...T in .
We can now dene the current generators of Uq (g) by using the braid group action as follows:

k + i,+n = (q i -q -1 i )K i ψ i,+n (1.2.29)
where n ∈ N × , and

ψ i,r = C -k/2 (q -2 i E + i T k ω i (K -1 i E - i ) -T k ω i (K -1 i E - i )E + i ) (1.2.30)
The denition of k + i,+n follows from using the automorphisms above and the fact that we have ΩT i = T i Ω. We now move to dening the generators x ± i,k :

x ± i,k = T ∓k ω i (E ± i ) (1.2.31) for i ∈ I, k ∈ Z.
The surjectivity part is checked directly on the relations of the algebra, whereas for the injectivity, I. Damiani

shows it by restricting to the case q = 1 and showing that on one side one obtains the central extension of the loop algebra and on the other side the ane Lie algebra.

Representation Theory of Quantum Ane Algebras

As in the case of Lie algebras and quantum groups, the representation theory of quantum ane algebras is heavily based on that of Uq (sl 2 ). This section is a review of the classication papers by V. Chari and A. Pressley.

[CP91] Set q ∈ C × not a root of unity.

By looking at the presentation of U q (sl 2 ) and Uq (sl 2 ), it is clear that Uq (sl 2 ) has subalgebras which are isomorphic to U q (sl 2 ) given by the map:

E + → x + k , E -→ C -kx - -k , K → KC k (1.2.32)
for all k ∈ Z. The image of this map is the diagram subalgebras U i , for i = 0, 1 corresponding to the nodes of the Dynkin diagram of Uq (sl 2 ).

Since it will be useful down the line we remind you that the two irreducible representions V n, of U q (sl 2 )

with basis {v 0 , ...v n } are given by:

K.v i = q n-2i v i , E + .v i = [n -i + 1] q v i-1 , E -.v i = [i + 1] q v i+1 (1.2.33) with = ±1.
We can also twist one choice of into the other. Therefore, one can stick to one value of .

Moreover, when it comes to nite-dimensional irreducible representations of Uq (sl 2 ), the central charge acts as 1. We now dene the subalgebras Uq (sl 2 ) This is easily proven by contradiction. By letting V be as above, assume there are no non-zero vectors annihilated by any of the x + k . This means that for an eigenvector v of k + 0 , there exists an innite sequence of vectors given by

v, x + k 1 .v, x + k 2 .v, x + k 3 .v, ... (1.2.35)
all non-zero and eigenvectors of k + 0 with distinct eigenvalues. This makes them linearly independent. Clearly this contradicts the nite-dimensional aspect of V.

Furthermore, since C acts as 1 on V and we can always obtain any representation by twisting a type 1 representation, it suces to consider representations of U q (L(sl 2 )) where we remind you that L(sl 2 ) is the loop algebra of sl 2 .

A representation of uqls is highest weight if it is generated by a vector v which is annihilated by x + k for all k and such that:

k + +n .v = d + n v, k - -n .v = d + -n v (1.2.36)
for n ∈ N, and d ± ±n ∈ C. The collection d = {d n } is the highest weight. As it was the case for Lie algebras, Kac-Moody algebras, and quantum groups, we construct the universal highest weight module M (d) by taking the quotient of U q (L(sl 2 )) by the left ideal generated by 

{x + k , k + +n -d + n .1, k - -n -d - -n .1, k ∈ Z, n ∈ N} (1.
∞ n=0 d + n z n = q deg(P ) P (zq -2 ) P (z) |z| 1 , (1.2.38) ∞ n=0 d - -n z -n = q deg(P ) P (zq -2 ) P (z) |z -1 | 1 , (1.2.39)
The polynomial P , is unique once its constant coecient is normalized to 1 and called Drinfel'd's polynomial.

The proof of this theorem depends on two inputs. The "only if" part is proven by using some elements in the subalgebra Uq (sl 2 ) 0 , and the "if" part makes use of the evaluation homomorphism dened by Jimbo as well as some properties of the tensor product of representations. Starting with the only if part, there exists P r , Q r ∈ Uq (sl 2 ) 0 given by:

P r ≡ (-1) r q r 2 (x + 0 ) (r) (x - 1 ) -(r) (k 0 ) -r mod Uq (sl 2 ) Uq (sl 2 ) + (1.2.40) Q r ≡ (-1) r q -r 2 (x + -1 ) (r) (x - 0 ) -(r) (k 0 ) r mod Uq (sl 2 ) Uq (sl 2 ) + (1.2.41) P r = q -r (q -q -1 )[r] q r-1 j=0 k + j+1 P r-j-1 K -1 , (1.2.42) Q r = -q r (q -q -1 )[r] q r-1 j=0 k - -j-1 Q r-j-1 K -1 , (1.2.43) (-1) r q r(r-1) (x + 0 ) ( r -1)(x - 1 ) ( r) ≡ - r-1 j=0 x - j+1 P r-j-1 K r-1 mod Uq (sl 2 ) Uq (sl 2 ) + (1.2.44) (-1) r q -r(r-1) (x + -1 ) ( r -1)(x - 0 ) -(r) ≡ - r-1 j=0 x - -j Q r-j-1 K -r+1 mod Uq (sl 2 ) Uq (sl 2 ) + ). (1.2.45)
where,

X (r) = X r [r] q (1.2.46)
Then, by denig

P(z) = ∞ r=0 P r z r , Q(z) = ∞ r=0 Q r z -r (1.2.47) we have k + (z) = K P(zq -2 ) P(z) , k -(z) = K -1 Q(zq 2 ) Q(z) (1.2.48)
Assume now that dim L(d) < ∞ with highest weight r ∈ Z + for the action of the U q (sl 2 )-subalgebra of Uq (sl 2 ) associated to the 0th-node of the Dynkin diagram. From our previous results we know that for the highest weight vector v, we have :

K.v = q r v (1.2.49)
and it follows that the subrepresentation generated by this highest weight vector is an (r + 1) dimensional irreducible representation and in particular we have :

(x - 0 ) r+1 .v = 0 (1.2.50)
which gives

P(z).v = P (z)v (1.2.51)
as an immediate consequence. Then, due to the expression of k ± (z) in terms of P(z) the only if part of the theorem follows.

For the remaining part of the theorem, we have to introduce the evaluation homomorphism ev a .

For any a ∈ C × , there is a homomorphism of algebras Uq (sl 2 ) → U q (sl 2 ) such that:

ev a (x + k ) = q -k a k K k E + (1.2.52) ev a (x - k ) = q -k a k E -K k (1.2.53)
which allows us to deduce how the homomorphism maps the rest of the generators by using the algebra relations. Therefore, we can construct representations by pulling back representations of U q (sl 2 ) by the evaluation homomorphism. Then, we deduce the action of x ± k on L n (a) which is given by:

x + k .v = a k q k(n-2i+1) [n -i + 1] q v i-1 (1.2.54) x + k .v = a k q k(n-2i-1) [i + 1] q v i+1 (1.2.55)
This is a highest weight representation with v 0 its highest weight vector and polynomial P given by:

P (z) = (1 -q n-1 az)(1 -q n-3 az)...(1 -q -n+1 az) (1.2.56)
Moreover, we clearly have that:

q n P (q -2 z) P (z) = q n (1 -q -n-1 az) (1 -aq n-1 z) .
(1.2.57)

Finally, as we promised, the nal part to complete this proof is the properties of the weights corresponding tensor product of irreducible nite dimensional representations. For an irreducible tensor product V ⊗ W of two irreducible repressentation of U q (L(sl 2 )), we have P V ⊗W = P V P W . This is due to the group-like structure of the comultiplication of k + (z) and the fact that V ⊗ W is isomorphic to W ⊗ V when the tensor product is irreducible. The group-like structure of the coproduct means that a tensor product of highest weight vectors is a highest weight vector. Now take the tensor product

V = V 1 (a 1 ) ⊗ V 1 (a 2 ) ⊗ ... ⊗ V 1 (a r ) (1.2.58)
where the a -1 i are the roots of the Drinfel'd polynomial. Clearly, V contains a vector with weight q r . This is the tensor product of all the highest weight vectors in each factor. This vector generates a subrepreentation V which contains a maximal subrepresentation N . Then, the nite dimensional representation V /N is irreducible and has P (z) = r i=1 (1 -a i z) as the associated polynomial. This concludes the proof of the theorem. Clearly, there exists a generalized version if this theorem for Uq (sl 2 ).

Theorem 1.2.4. Let (d i,r ) be a pair of I × Z-tuples of complex numbers. Then, the irreducible representation V (d) of Uq (sl 2 ) is nite dimensional if and only if there exists P = (P i ) i∈I such that:

∞ r=0 d + i,r z r = q deg (P i ) P i (q -2 z) P i (z) = ∞ r=0 d - i,-r z -r (1.2.59)
Proof. Starting with the "if" part of the proof, we clearly have k ± i,0 = K ±1 i . This means that we can set λ(i) = deg (P i ) with λ(i) the classical weight of the highest weight vector v P of the highest weight representation V (P ). We also have that V (P ) = Cv P and

V (P ) = α∈Q + V (P ) λ-α .
(1.2.60)

This part of the proof boils down to the following two statements:

i. V (P ) λ-α = 0 for nitely many α ∈ Q.

ii. V (P ) λ-α is nite dimensional for all α ∈ Q.

However, if we have that for a vector v ∈ V (P ) µ , V i = U i .v, where U i is the diagram subalgebra U q i (sl 2 ), i. would be a consequence of having the weights stable under the action of the Weyl group of the nite dimensional Lie algebra g and that for any µ ∈ P such that V (P ) µ = 0, w(µ) ∈ W.{α ∈ P + |α ≤ λ}.

Clearly this also follows from the fact that there exists an N > 0 such that for r > N , V (P ) λ-rα = V (P ) λ+rα = 0 for r > 3h + λ(i) where h is the ehight of the λ -µ. Going one step further, the last statement follows from the fact that V (P ) λ-rα is spanned by:

X - 1 x - i 1 ,k 1 X - 2 x - i 2 ,k 2 ...X - h x - i h ,k h X - h+1 v P (1.2.61) for λ -µ = α i 1 + α i 2 + ... + α i h , X - p = x - i,l 1,p x - i,l 2,p ...x - i,lr p,p , and 
r 1 + r 2 + ... + r h+1 = r.
This is actually straightforward because of the weak PBW theorem giving us Uq (g) = Uq (g) + . Uq (g) 0 . Uq (g) and by making use of the algebra relations between x - i,k and x - i ,k . When it comes to ii. by induction on on the height h of α, we have nothing to prove in case h = 0.

For h = 1, x - i,k .v P is in the nite dimensional space Ũi .v P , where Ũi is the Uq (g)-subalgebra generated by {x ± i,k , k ± i,±n } which is nite dimensional due to the results of U q (L(sl 2 )). Assume we have proven all the cases up to but not the one of height h. The weight space V (P ) λ-α for α = α i 1 + α i 2 + ... + α i h is spanned by vectors of the form:

x i 1 ,k 1 x i 2 ,k 2 ...x i h ,k h .v P (1.2.62)
We can x a set {i 1 , ..., i h } and prove that the vectors above span a nite dimensional space. Now, by the induction hypothesis, there exists an M ∈ N such that for all i ∈ {i 1 , ..., i h }, V (P ) 

= α i 1 + α i 2 + ... + α i h is contained in: V = M k 2 =-M x - i 2 ,k 2 .V (P ) λ-α+α i 2 + x - i 1 ,0 .V (P ) λ-α+α i 1 (1.2.64)
Clearly, any vector of the form x i 1 ,k 1 x i 2 ,k 2 ...x i h ,k h .v P can be written as a linear combination of

x i 2 ,k 2 x i 1 ,k 1 ...x i h ,k h .v P (1.2.65) x i 2 ,k 2 +1 x i 1 ,k 1 -1 ...x i h ,k h .v P (1.2.66) x i 1 ,k 1 -1 x i 2 ,k 2 +1 ...x i h ,k h .v P (1.2.67)
by using the algebra relations. The rst two are clearly in V and the last one can be shown to be in V by an induction on k 1 . This completes this part of the proof.

For the "only if" part of the proof, it is very similar to that of U q (L(sl 2 )) case. In fact, all you have to do is dene P i,r , and Q i,r for each node i. The elements are in Uq (g) 0 and are dened by: Starting with the only if part, there exists P r , Q r ∈ Uq (sl 2 ) 0 given by:

P i,r ≡ (-1) r q r 2 i (x + i,0 ) (r) (x - i,1 ) -(r) (1.2.68) Q i,r ≡ (-1) r q -r 2 i (x + i,-1 ) (r) (x - i,0 ) -(r)
(1.2.69)

P r = q -r i (q i -q -1 i )[r] q i r-1 j=0 k + i,j+1 P i,r-j-1 K -1 i , (1.2.70) Q r = -q r i (q i -q -1 i )[r] q i r-1 j=0 k - i,-j-1 Q i,r-j-1 K i , (1.2.71) (-1) r q r(r-1) i (x + i,0 ) (r-1) (x - i,1 ) (r) ≡ - r-1 j=0 x - i,j+1 P i,r-j-1 K r-1 i (1.2.72) (-1) r q -r(r-1) i (x + i,-1 ) (r-1) (x - i,0 ) -(r) ≡ - r-1 j=0 x - i,-j Q i,r-j-1 K -r+1 i . (1.2.73)
The rest of the proof follows the same steps as of that of sl 2 .

q-Characters

When it comes to characters, the classical notion of characters does not oer much insight in the case of the quantum ane algebras. This prevents us from trying to understand the Grothendieck ring structure of nite dimensional representation. However, E. Frenkel and N. Reshetikhin in [START_REF] Frenkel | Reshetikhin The q-characters of representations of quantum ane algebras and deformations of W-algebras[END_REF] introduced the idea of q-characters. Moreover, q-characters were a very useful tool for D. Hernandez and B. Leclerc, to show that there exists a cluster algebra structure on that Grothendieck ring.

Denition 1.2.5. Let R be the universal R-matrix satisfying the Yang-Baxter equation and let (V, π V ) be a nite-dimensional representation of Uq (g). Then, dene the the following operator:

L V = L V (z) = (π V (z) id)(R). (1.2.74)
This allows us to dene the transfer matrix t V as:

t V = t V (z) = T r V q 2ρ L V (z) (1.2.75)
where,

q 2ρ = k2 1 ... k2 n .
(1.2.76)

The following proposition is crucial for dening χ q and showing its properties as a character.

Proposition 1.2.6. The linear map ν q sending V inRep( Uq (g))

to t V (z) ∈ Uq (b -)[[z]] is a C × -equivariant ring homomorphism from Rep( Uq (g)) to Uq (b -)[[z]].
Now, we dene the second map that will play an equally important role in giving us the q-character.

Denition 1.2.7. Let Ũq (g) be the subalgebra of Uq (g) generated by x ± i,n , k i , h i,n for i ∈ I, n ≤ 0. Now denote by h q the restriction to U q (b -) of the projection from Ũq (g) to Ũq (h).

Theorem 1.2.8. The map χ q : Rep( Uq (g)) → Ũq (h) [[z]] given by the composition of ν q and h q is an injective ring homomorphism such that χ q : Rep( Uq (g)) → Z[Y i,a i ] i∈I,a i ∈C × ⊂ Ũq (h).

Quantum Toroidal Algebras

Schur-Weyl Duality

In this section we review the main results that led to the Schur-Weyl duality theorem by M. Varagnolo and E.

Vasserot in [START_REF] Varagnolo | Schur duality in the toroidal setting[END_REF].

Denition 1.3.1. The toroidal Hecke algebra Ḧ of type gl n is the unital associative algebra over A = C[x ±1 , y ±1 , q ±1 ] with generators:

T ±1 i , X ±1 j , Y ±1 j , i ∈ n -1 × , j ∈ n × (1.3.1)
subject to the following relations:

(T i -q 2 )(T i + 1) = 0 (1.3.2) T i T -1 i = T i -1 T i = 0 (1.3.3) T i T i+1 T i = T i+1 T i T i+1 = 1 (1.3.4) T i T j = T j T i = 1 |i -j| > 1 (1.3.5) X 0 Y 1 = xY 1 X 0 , X i X j = X i X j , Y i Y j = Y i Y j , (1.3.6) X j T i = T i X j , Y j T i = T i Y j , if j = i, i + 1 (1.3.7) T i X i T i = q 2 X i+1 , T -1 i Y i T -1 i = q -2 Y i+1 (1.3.8) X 2 Y -1 1 X -1 2 Y 1 = q -2 yT 2 1 . (1.3.9)
where, X 0 = X 1 X 2 ...X n .

Taking x = 1 gives the double ane Hecke algebra.

Let Ḣ (1) , Ḣ (2) ⊂ Ḧ be the subalgebras generated respectively by T ±1 i , Y ±1 j , and

T ±1 i , X ±1 j (i ∈ n -1 × , j ∈ n × ).
These two subalgebras are siomorphic to the ane Hecke algebra.

Let H ⊂ Ḧ be the subalgebra generated by T ±1 i , (i ∈ n -1 × ). This is the subalgebra isomorphic to the Hecke algebra of type gl n . Now we dene:

Ḧ = Ḧ ⊗ A C x,y,q , Ḧ = H ⊗ A C x,y,q
(1.3.10)

Ḣ (1) = Ḣ ⊗ A C x,y,q , Ḣ (1) = H ⊗ A C x,y,q (1.3.11)
Denition 1.3.2. Let Uq ( ṡl n+1 ) be the associative F = C[c ±1 , d ±1 , q ±1 ]-algebra generated by the generators

D, D -1 , C 1/2 , C -1/2 , k + i,n , k - i,-n , x + i,m , x - i,m : i ∈ İ, m ∈ Z, n ∈ N
subject to the following relations

C ±1/2 is central C ±1/2 C ∓1/2 = 1 D ±1 D ∓1 = 1 (1.3.12) Dk ± i (z)D -1 = k ± i (zq -1 ) Dx ± i (z)D -1 = x ± i (zq -1 ) (1.3.13) res z 1 ,z 2 1 z 1 z 2 k ± i (z 1 )k ∓ i (z 2 ) = 1 (1.3.14) k ± i (z 1 )k ± j (z 2 ) = k ± j (z 2 )k ± i (z 1 ) (1.3.15) k - i (z 1 )k + j (z 2 ) = G - ij (C -1 z 1 /z 2 )G + ij (Cz 1 /z 2 )k + j (z 2 )k - i (z 1 ) (1.3.16) G ∓ ij (C ∓1/2 z 2 /z 1 )k + i (z 1 )x ± j (z 2 ) = x ± j (z 2 )k + i (z 1 ) (1.3.17) k - i (z 1 )x ± j (z 2 ) = G ∓ ij (C ∓1/2 z 1 /z 2 )x ± j (z 2 )k - i (z 1 ) (1.3.18) (z 1 -q ±c ij z 2 )x ± i (z 1 )x ± j (z 2 ) = (z 1 q ±c ij -z 2 )x ± j (z 2 )x ± i (z 1 ) (1.3.19) [x + i (z 1 ), x - j (z 2 )] = δ ij q i -q -1 i δ z 1 Cz 2 k + i (z 1 C -1/2 ) -δ z 1 C z 2 k - i (z 2 C -1/2 ) (1.3.20) σ∈S 1-a ij 1-a ij k=0 (-1) k 1 -a ij k q i x ± i (z σ(1) ) • • • x ± i (z σ(k) )x ± j (z)x ± i (z σ(k+1) ) • • • x ± i (z σ(1-a ij ) ) = 0 (1.3.21)
where, for every i ∈ İ, we dene the following Uq ( ṡl n+1 )[[z, z -1 ]]-valued formal distributions

x ± i (z) := m∈Z x ± i,m z -m ∈ Uq ( ṡl n+1 )[[z, z -1 ]] ; (1.3.22) k ± i (z) := n∈N k ± i,±n z ∓n ∈ Uq ( ṡl n+1 )[[z ∓1 ]] , (1.3.23)
for every i, j ∈ İ, we dene the following F-valued formal power series

G ± ij (z) := q ±a ij i + (q i -q -1 i )[±a ij ] q i m∈N × q ±ma ij i z m ∈ F[[z]] (1.3.24) and δ(z) := m∈Z z m ∈ F[[z, z -1 ]] (1.3.25)
is an F-valued formal distribution.

Similarly to the toroidal Hecke algebra, we dene:

i) U (1) q , U (2) 
q ⊂ Uq ( ṡl n+1 ) as the subalgebras of Uq ( ṡl n+1 ) respectively generated by: k + i,n , k - i,-n , x + i,m , x - i,m , and k + i,0 , k - i,0 , x + i,0 , x - i,0 , i ∈ İ. These subalgebras are isomorphic to the quantum ane algebra of sl n+1 , one in Drinfel'd's current presentation and the other in the Drinfel'd Jimbo presentation.

ii) U q ⊂ Uq ( ṡl n+1 ) be the subalgebra generated by

k + i = k + i,0 , k - i = k - i,0 , x + i = x + i,0 , x - i = x - i,0 , i ∈ I.
This subalgebra is ismorphic to the quantum group of sl n+1 .

Let C c,d,q = F/N c,d,q where N c,d,q is the maximal ideal generated by d -d, c -c, q -q. Then,

Ü = Uq ( ṡl n+1 ) ⊗ F C c,d,q , U = U q ⊗ F C c,d,q (1.3.26) U (1) = U (1) q ⊗ F C c,d,q , U (2) = U (2) q ⊗ F C c,d,q (1.3.27) Denition 1.3.3. A module M is integrable if M = λ∈Z n M λ , M {λ 0 ,λ 1 ,...λn} = {m ∈ M |k + i,0 m = q λ i m} (1.3.28)
and x + i,0 , x - i,0 are locally nilpotent on M .

Let V be the fundamental representation of U and V ⊗n the left U-module induced by the coproduct as dened in chapter 1. This action of U on the module commutes with a left H-action given by:

T i = 1 ⊗i-1 ⊗ T ⊗ 1 ⊗n-i-1
, where T ∈ End(V ⊗2 ) satises the following relations:

T (v r ⊗ v s ) = q 2 v r ⊗ v s if r = s (1.3.29) T (v r ⊗ v s ) = qv s ⊗ v r if r < s (1.3.30) T (v r ⊗ v s ) = qv s ⊗ v r + (q 2 -1)v r ⊗ v s if r > s (1.3.31)
Denition 1.3.4. We can dene T i , i ∈ n + 1 × as the automorphism of U by setting:

T i (x + i ) = -x - i k i , T i (x + j ) = -a ij s=0 (-1) s-a ij q -s (x + i ) (-a ij -s) x + j (x + i ) ( s), i = j (1.3.32) T i (x - i ) = -k -1 i x + i , T i (x + j ) = -a ij s=0 (-1) s-a ij q s (x - i ) (s) x + j (x + i ) (-a ij -s) , i = j (1.3.33) T i (k j ) = k s i (j) (1.3.34)
where s i is the transposition (i i + 1). Moreover, we can dene the braid action on an integrable U -module M by setting:

T i (m ) = r-s+t=0 (-1) s+k q s-rt (x + i ) (r) (x + i ) (s) (x + i ) (t) m . (1.3.35)
and for all m ∈ M , and all u ∈ U ,

T i (um ) = T i (u)T i (m ) (1.3.36)
Let M be a right Ḣ-module. By the previous statements, M is also a right H-module. We consider the dual left U -module M ⊗ H V ⊗n . This module has the structure of a left U -module given by:

x + n+1 (m ⊗ v) = n j=1 mY -1 j ⊗ x - θ (v), x - n+1 (m ⊗ v) = n j=1 mY j ⊗ x + θ (v) (1.3.37) k n+1 (m ⊗ v) = m ⊗ (k -1 θ ) ⊗n (v). (1.3.38)
where x ± θ , and k θ ∈ End C (V). Similarly, let M be a right Ḧ-module therefore, M ⊗ H V ⊗n has the structure of a U -module. Moreover, by introducing the map ψ : M ⊗ H V ⊗n → M ⊗ H V ⊗n given by:

ψ(m ⊗ v j ) = mX -δ n+1,j 1 1 ...X -δ n+1,jn 1 v 1+j 1 ⊗ v 1+j 2 ⊗ ... ⊗ v 1+jn (1.3.39)
with the condition: v n+2 = v 1 , we can show that:

Proposition 1.3.5. For i ∈ n + 1 × , we have the following:

ψ -1 x + i (z)ψ = x + i-1 (q -1 dz), ψ -2 x + 1 (xz)ψ 2 = x + n (q n-1 d 1-n z), ψ -1 x - i (z)ψ = x - i-1 (q -1 dz), ψ -2 x - 1 (xz)ψ 2 = x - n (q n-1 d 1-n z), ψ -1 k i (z)ψ = k i-1 (q -1 dz), ψ -2 k 1 (xz)ψ 2 = k n (q n-1 d 1-n z).
We can now state the theorems that lead to the duality theorem.

Theorem 1.3.6. Suppose that x = d -n-1 q n+1 , and c = y = 1. Then for any right Ḧ-module, the following formulas:

x + 0 (m ⊗ v) = n j=1 mX j ⊗ x - θ,j (v), x - 0 (m ⊗ v) = n j=1 mX -1 j ⊗ x + θ,j (v) (1.3.40) k 0 (m ⊗ v) = m ⊗ (k θ -1 ) ⊗n (v) (1.3.41)
give a left integrable Ü -module.

The proof of this theorem relies on the previous proposition.

Theorem 1.3.7. Let M be an integrable left Ü -module with trivial central charge and level n. There exists a Ḧ-module M, such that M ∼ = M ⊗ H V ⊗n as Ü -module.

Finally, we give the duality theorem which stems from the previous two.

Theorem 1.3.8. The functor M → M × H V ⊗n is an equivalence between the category of right Ḧ-modules and the category of left integrable Ü -modules with trivial central charge and level n.

A word on Quiver Quantum Toroidal Algebras

In their recent paper, G. Noshita and A. Watanabe [START_REF] Noshita | Quiver Quantum Toroidal Algebras[END_REF] provide a presentation of the quantum toroidal algebra associated to a quiver Q. However, they do not provide a set of Serre relations as it remains an open question for that topic. When it comes to the other relations, their presentation is obtained by replacing the Cartan data by a set of rules on the quiver Q. Specically, it is rules on the set of arrows and loops of the quiver that would help identify the data replacing the Cartan matrix elements. Moreover, they proceed to show that there exists a Hopf algebra structure on the quiver quantum toroidal algebra.

Chapter 2

On Double Quantum Anization: Type a 1

Introduction

Let g be a simple Lie algebra and denote by ġ the corresponding untwisted ane Ka£-Moody algebra. Starting from g and ġ or from their respective root systems, one can construct two a priori dierent algebras: on one hand, the quantum ane algebra U q ( ġ) is the standard Drinfel'd-Jimbo algebra associated with ġ; whereas on the other hand, the quantum anization Uq (g) of g, which we dene as U q ( ġ) in its Drinfel'd current presentation, is associated with the simple nite root system of g. Now Uq (g) and U q ( ġ) are isomorphic by virtue of a theorem established by Damiani and Beck,[START_REF] Damiani | A basis of type PBW for the quantum algebra of sl 2[END_REF][START_REF] Beck | Braid Group Action and Quantum Ane Algebras[END_REF], which can be regarded as a quantum version of the classic result that each ane Lie algebra is isomorphic to the corresponding untwisted ane Ka£-Moody Lie algebra. The situation can be summarized by the following diagram

g Classical Anization --------------→ ġ Quantum Anization     Quantization Uq (g) ∼ --------------→ Damiani-Beck isom. U q ( ġ)
It turns out that quantum anization still makes sense for the already ane Lie algebra ġ, thus yielding a doubly ane quantum algebra known as the quantum toroidal algebra Uq ( ġ). These originally appeared in type a n in the work of Ginzburg, Kapranov and Vasserot, [START_REF] Ginzburg | Langlands reciprocity for algebraic surfaces[END_REF]. Quantum toroidal algebras have received a lot of attention in the past see [START_REF]Quantum toroidal algebras and their representations[END_REF] for a review and are presently the subject of a renewed interest due to their relevance for integrable systems see e.g. [FFJ + 11, FJMM12, FJMM15] and for 5 dimensional supersymmetric Yang-Mills theory and related AGT like correspondence see [AKM + 17]. From a more mathematical perspective, it is well known see [START_REF] Varagnolo | Schur duality in the toroidal setting[END_REF] that they are the Frobenius-Schur duals of Cherednik's Doubly Ane Hecke Algebras (DAHA) see [START_REF] Cherednik | Double Ane Hecke Algebras[END_REF][START_REF] Macdonald | Ane Hecke Algebras and Orthogonal Polynomials[END_REF] for classic references on the latter.

The purpose of the present work is to reconsider quantum toroidal algebras as topological Hopf algebras.

On the one hand, this is only natural since the existence of an algebraic comultiplication for quantum toroidal algebras is still essentially open to this date although see [START_REF] Guay | Coproduct for the Yangian of an ane Kac-Moody algebra[END_REF] for recent results on algebraic comultiplications for ane Yangians that may suggest the existence of similar results for quantum toroidal algebras and only a topological coalgebra structure is provided by the so-called Drinfel'd current coproduct. On the other hand, the existence of a braid group action by bicontinuous algebra automorphisms, generalizing those in [START_REF] Ding | Weyl group extension of quantized current agebras[END_REF], provides us with a topological version of the Lusztig symmetries that prove pivotal in both Damiani's and Beck's proofs of Drinfel'd's current presentation. We may therefore expect, in that context, the existence of an alternative presentation for quantum toroidal algebras, in terms of double current generators. In the same spirit as Drinfel'd's current presentation, such a presentation could be regarded as dening the double quantum anization Üq (g) of g and (a subalgebra Ü q (a 1 ) of) Üq (g) should be isomorphic to (the completion of) Uq ( ġ) see section 2.3. We therefore expect a diagram of the form

g Classical Anization --------------→ ġ Double Quantum Anization     Quantum Anization Ü q (g) Uq ( ġ) Completion     Completion Ü q (g) ∼ ------------------→ Ane Damiani-Beck isom. Uq ( ġ)
In the present paper we prove such results in the particular case where g is of type a 1 . It is fairly natural to conjecture that similar results hold for higher rank root systems, thus yielding Conjecture 2.1.1. Every simple Lie algebra g admits a (unique up to isomorphisms) double quantum anization Üq (g).

and

Conjecture 2.1.2. Every untwisted ane Ka£-Moody Lie algebra ġ admits a (unique up to isomorphisms) double quantum anization Üq ( ġ).

Note that the latter would naturally provide a denition for the so far elusive triply ane quantum algebras.

The latter are believed to play an important role in mathematical physics, as the conformal block side of an AGT type correspondence with 6-dimensional super Yang-Mills theories, [AKM + 17].

In any case, Üq (a 1 ) and presumably other double quantum anizations if any admits a triangular decomposition ( Üq (a 1 ), Ü0 q (a 1 ), Ü+ q (a 1 )). The latter naturally leads to an alternative notion of weight and highest weight modules that we shall refer to as t-weight and highest t-weight modules. Natural analogues of the nite dimensional modules over quantum ane algebras also appear, that we refer to as weight-nite modules see section 2.3 for denitions. We actually expect that it will be possible to classify simple weightnite modules over Üq (a 1 ), by essentially classifying those simple Ü0 q (a 1 )-modules that appear as their highest t-weight spaces see section 2.3 for the corresponding discussion. This is the subject of ongoing work.

Quite remarkably, there exists an algebra homomorphism f : E q -4 ,q 2 ,q 2 → Ü0 + q (a 1 ), where Ü0 + q (a 1 ) is a closed subalgebra of Ü0 q (a 1 ) and, for every q 1 , q 2 , q 3 such that q 1 q 2 q 3 = 1, E q 1 ,q 2 ,q 3 is the corresponding elliptic Hall algebra see section 2.3. The latter was rst dened by Miki in [START_REF]A (q, γ)-analog of the W 1+∞ algebra[END_REF] as a (q, γ)-analogue of the W 1+∞ algebra. It reappeared later in [FFJ + 11], as the quantum continuous gl ∞ algebra. Schimann then identied it with the Hall algebra of the category of coherent sheaves on some elliptic curve whose Weil numbers are related to q 1 , q 2 , q 3 , [START_REF] Schimann | Drinfeld realization of the elliptic Hall algebra[END_REF]. More recently, it also appeared in [START_REF] Feigin | Quantum toroidal gl 1 -algebra: Plane partitions[END_REF] and in subsequent works by Feigin et al. as the quantum toroidal algebra associated with gl 1 . As we shall see, it appears natural to make the following Conjecture 2.1.3. Ü0 + q (a 1 ) is isomorphic to the completion of E q -4 ,q 2 ,q 2 . If it held true, the above conjecture would have many interesting implications. On one hand, in view of Schimann's results, it seems reasonable to expect that the double quantum anization Üq (a 1 ) admits a Ktheoretic realization, in the spirit of Nakajima's quiver varieties realization of quantum ane algebras [START_REF] Nakajima | Quiver varieties and nite dimensional representations of quantum ane algebras[END_REF],

wherein the generators outside of the elliptic Hall algebras would be realized as correspondences. At the level of representation theory on the other hand, conjecture 2.1.3 would imply that the classication of the simple Ü0 q (a 1 )-modules that appear as highest t-weight spaces of simple weight-nite Üq (a 1 )-modules would almost entirely reduce to a classication of the corresponding subclass of simple modules over the elliptic Hall algebra.

Again, we leave these questions for future work.

The paper is organized as follows. In section 2.2, we briey review some well known facts about quantum toroidal algebras, including their denition and natural gradings. We endow them with a topology and construct the corresponding completion. On the latter, we construct a set of automorphisms, including anized versions of Lusztig's symmetry. Analogues of these for simply laced untwisted ane ȧn≥2 -types appeared in the work of Ding and Khoroshkin [START_REF] Ding | Weyl group extension of quantized current agebras[END_REF]. The ȧ1 version we give here plays a crucial role in section 2.4 where we prove the main result of this paper. In section 2.3, we dene the double quantum anization of type a 1 , Üq (a 1 ).

We prove that there exists an algebra homomorphism from the elliptic Hall algebra E q 1 ,q 2 ,q 3 to its subalgebra Ü0 q (a 1 ). We also ellaborate on the consequences at the level of representation theory and introduce the notions of (highest) t-weights and of weight-niteness. Finally, in section 2.4, we prove the anized version of the Damiani-Beck isomorphism. The appendix contains a short review of formal distributions as relevant to the present work. This is already covered in the literature see e.g. [START_REF] Kac | Vertex Algebras for beginners: Second Edition[END_REF] , however, since our conventions slightly dier from the standard ones, we included it for the sake of clarity.

Notations and conventions

We let N = {0, 1, . . . } be the set of natural integers including 0. We denote by N × the set N -{0}. For every m ≤ n ∈ N, we denote by m, n = {m, m + 1, . . . , n}. We also let n = 1, n for every n ∈ N. For every nite subset Σ ⊂ N with card Σ = N , any n ≤ N and any m 1 , . . . , m n ∈ N such that m 1 +• • •+m n = N , we let P (m 1 ,...,mn) Σ denote the set of ordered (m 1 , . . . , m n ) set n-partitions, i.e. any A = (A (1) , . . . , A

(n) ) ∈ P (m 1 ,...,mn) Σ is such that i. for every p ∈ n , card A (p) = m p ; ii. for every p ∈ n , A (p) = {A (p) 1 , . . . , A (p) mp } ⊂ Σ, with A (p) 1 < • • • < A (p) mp ; iii. A (1) • • • A (n) = Σ.
We let sign : Z → {-1, 0, 1} be dened by setting, for any n ∈ Z,

sign(n) =          -1 if n < 0; 0 if n = 0; 1 if n > 0.
We assume throughout that K is a eld of characteristic 0 and we let F := K(q) denote the eld of rational functions over K in the formal variable q. As usual, we let K × = K -{0} and F × = F -{0}. We make F a topological eld by endowing it with the discrete topology.

For every m, n ∈ N, we dene the following elements of

F [n] q := q n -q -n q -q -1 , [n] ! q :=    [n] q [n -1] q • • • [1] q if n ∈ N × ; 1 if n = 0; n m q := [n] ! q [m] ! q [n -m] ! q . (2.1.1)
We shall let

a [A, B] b = aAB -bBA ,
for any symbols a, b, A and B provided the r.h.s of the above equations makes sense. At some point we may need the following obvious identities

[[A, B] a , C] b = [[A, C] b , B] a + [A, [B, C]] ab , (2.1.2) [ a [A, B], C] b = a [[A, C] b , B] + a [A, [B, C]] b . (2.1.3)
We refer to the Appendix for conventions and more details on formal distributions.

The Dynkin diagrams and correponding Cartan matrices in type a 1 and ȧ1 are reminded in the following table.

Type Dynkin diagram Simple roots Cartan matrix

a 1 1 Φ = {α 1 } (2) ȧ1 0 1 Φ = {α 0 , α 1 } 2 -2 -2 2 2.2
The quantum toroidal algebra of type a 1 and its completion

Denition

Let İ = {0, 1} be the above labeling of the nodes of the Dynkin diagram of type ȧ1 and let Φ = {α 0 , α 1 } be a choice of simple roots for the corresponding root system. We denote by (c ij ) i,j=0,1 the entries of the associated Cartan matrix. Let Q± = Z ± α 0 ⊕ Z ± α 1 and let Q = Zα 0 ⊕ Zα 1 be the type ȧ1 root lattice.

Denition 2.2.1. The quantum toroidal algebra Uq ( ȧ1 ) is the associative F-algebra generated by the generators

D, D -1 , C 1/2 , C -1/2 , k + i,n , k - i,-n , x + i,m , x - i,m : i ∈ İ, m ∈ Z, n ∈ N subject to the following relations C ±1/2 is central C ±1/2 C ∓1/2 = 1 D ±1 D ∓1 = 1 (2.2.1)
Dk ± i (z)D -1 = k ± i (zq -1 ) Dx ± i (z)D -1 = x ± i (zq -1 ) (2.2.2) res z 1 ,z 2 1 z 1 z 2 k ± i (z 1 )k ∓ i (z 2 ) = 1 (2.2.3) k ± i (z 1 )k ± j (z 2 ) = k ± j (z 2 )k ± i (z 1 ) (2.2.4) k - i (z 1 )k + j (z 2 ) = G - ij (C -1 z 1 /z 2 )G + ij (Cz 1 /z 2 )k + j (z 2 )k - i (z 1 ) (2.2.5) G ∓ ij (C ∓1/2 z 2 /z 1 )k + i (z 1 )x ± j (z 2 ) = x ± j (z 2 )k + i (z 1 ) (2.2.6) k - i (z 1 )x ± j (z 2 ) = G ∓ ij (C ∓1/2 z 1 /z 2 )x ± j (z 2 )k - i (z 1 ) (2.2.7) (z 1 -q ±c ij z 2 )x ± i (z 1 )x ± j (z 2 ) = (z 1 q ±c ij -z 2 )x ± j (z 2 )x ± i (z 1 ) (2.2.8) [x + i (z 1 ), x - j (z 2 )] = δ ij q -q -1 δ z 1 Cz 2 k + i (z 1 C -1/2 ) -δ z 1 C z 2 k - i (z 2 C -1/2 ) (2.2.9) σ∈S 1-c ij 1-c ij k=0 (-1) k 1 -c ij k q x ± i (z σ(1) ) • • • x ± i (z σ(k) )x ± j (z)x ± i (z σ(k+1) ) • • • x ± i (z σ(1-c ij ) ) = 0 (2.2.10)
where, for every i ∈ İ, we dene the following Uq ( ȧ1 )-valued formal distributions

x ± i (z) := m∈Z x ± i,m z -m ∈ Uq ( ȧ1 )[[z, z -1 ]] ;
(2.2.11)

k ± i (z) := n∈N k ± i,±n z ∓n ∈ Uq ( ȧ1 )[[z ∓1 ]] ,
(2.2.12)

for every i, j ∈ İ, we dene the following F-valued formal power series

G ± ij (z) := q ±c ij + (q -q -1 )[±c ij ] q m∈N × q ±mc ij z m ∈ F[[z]] (2.2.13) and δ(z) := m∈Z z m ∈ F[[z, z -1 ]] (2.2.14) is an F-valued formal distribution. Note that G ± ij (z) is invertible in F[[z]] with inverse G ∓ ij (z), i.e. G ± ij (z)G ∓ ij (z) = 1 , (2.2.15)
and that it can be viewed as the power series expansion of a rational function of (z 1 , z 2 ) ∈ C 2 as |z 2 | |z 1 |, which we shall denote as follows

G ± ij (z 1 /z 2 ) = z 1 q ∓c ij -z 2 z 1 -q ∓c ij z 2 |z 2 | |z 1 | . (2.2.16)
Observe furthermore that we have the following useful identity in

F[[z, z -1 ]] G ± ij (z) -G ∓ ij (z -1 ) q -q -1 = [±c ij ] q δ zq ±c ij .
(2.2.17) Remark 2.2.2. In type a 1 , İ = {0, 1}, c ij = 4δ ij -2 and we have an additional identity, namely G ± 10 (z) = G ∓ 11 (z). We refer to section 5.1.3 of the Appendix for more identities involving the formal power series

G ± ij (z).
Uq ( ȧ1 ) is obviously a Z-graded algebra, i.e. we have

Uq ( ȧ1 ) = n∈Z Uq ( ȧ1 ) n ,
where for all n ∈ Z Uq ( ȧ1 ) n := {x ∈ Uq ( ȧ1 ) :

DxD -1 = q n x} . (2.2.18)
It was proven in [START_REF] Hernandez | Representations of quantum anizations and fusion product[END_REF] to admit a triangular decomposition ( Uq ( ȧ1 ), U0 q ( ȧ1 ), U+ q ( ȧ1 )), where U± q ( ȧ1 ) and U0 q ( ȧ1 ) are the subalgebras of Uq ( ȧ1 ) respectively generated by

x ± i,m : i ∈ İ, m ∈ Z and C 1/2 , C -1/2 , D, D -1 , k + i,m , k - i,m : i ∈ İ, m ∈ Z .
Observe that U± q ( ȧ1 ) admits a natural gradation over Q± that we shall denote by

U± q ( ȧ1 ) = α∈ Q± U± q ( ȧ1 ) α . (2.2.19)
Of course Uq ( ȧ1 ) is graded over the root lattice Q. We nally remark that the two Dynkin diagram subalgebras Uq (a 1 ) (0) and Uq (a 1 ) (1) of Uq ( ȧ1 ) generated by

D, D -1 , C 1/2 , C -1/2 , k + i,n , k - i,-n , x + i,m , x - i,m : m ∈ Z, n ∈ N ,
with i = 0 and i = 1 respectively, are both isomorphic to Uq (a 1 ), thus yielding two injective algebra homomorphisms ι (i) : Uq (a 1 ) → Uq ( ȧ1 ).

Automorphisms of Uq ( ȧ1 )

Proposition 2.2.3.

i. For every Dynkin diagram automorphism π : İ ∼ -→ İ, there exists a unique

F-algebra automorphism T π ∈ Aut( Uq ( ȧ1 )) such that T π (x ± i (z)) = x ± π(i) (z) , T π (k ± i (z)) = k ± π(i) (z) , T π (C 1/2 ) = C 1/2 , T π (D) = D . (2.2.20)
ii. For every i ∈ İ, there exists a unique F-algebra automorphism T ω ∨ i ∈ Aut( Uq ( ȧ1 )) such that

T ω ∨ i (x ± j (z)) = z ±δ ij x ± j (z) T ω ∨ i (k ± j (z)) = C ∓δ ij k ± j (z) T ω ∨ i (C 1/2 ) = C 1/2 T ω ∨ i (D) = D (2.2.21)
iii. There exists a unique involutive F-algebra anti-homomorphism η ∈ Aut( Uq ( ȧ1 )) such that

η(x ± i (z)) = x ± i (1/z) η(k ± i (z)) = k ∓ i (1/z) η(C 1/2 ) = C 1/2 η(D) = D (2.2.22)
iv. There exists a unique involutive K-algebra anti-homomorphism ϕ such that

ϕ(x ± i (z)) = x ∓ i (1/z) ϕ(k ± i (z)) = k ∓ i (1/z) ϕ(C 1/2 ) = C -1/2 ϕ(D) = D -1 ϕ(q) = q -1 (2.2.23)
Remark 2.2.4. In the present case, the Dynkin diagram being that of type ȧ1 , İ = {0, 1} and the only nontrivial diagram automorphism is dened by setting π(0) = 1 and π(1) = 0.

Remark 2.2.5. Note that ϕ restricts as a non-trivial automorphism of the eld F and that, as such, it yields e.g.

ϕ(G ± ij (z)) = G ∓ ij (z) .
(2.2.24)

The completions Uq ( ȧ1 ) and Uq ( ȧ1 ) ⊗m≥2

Let, for every n ∈ N,

Ω n := r≥n s≥n Uq ( ȧ1 ) • Uq ( ȧ1 ) -r • Uq ( ȧ1 ) • Uq ( ȧ1 ) s • Uq ( ȧ1 ) .
Proposition 2.2.6. The following hold true:

i. For every n ∈ N, Ω n is a two-sided ideal of Uq ( ȧ1 );

ii. For every n ∈ N, Ω n ⊇ Ω n+1 ;

iii.

Ω 0 := n∈N Ω n = Uq ( ȧ1 ); iv. n∈N Ω n = {0}; v. For every m, n ∈ N, Ω m + Ω n ⊆ Ω min(m,n) ; vi. For every m, n ∈ N, Ω m • Ω n ⊆ Ω max(m,n) .
Proof. Points i. and ii. are obvious. As sets, it is clear that Ω 0 ⊆ Uq ( ȧ1 ). Now, 1 ∈ Uq ( ȧ1 ) 0 and for

every x ∈ Uq ( ȧ1 ), we can write x = 1 • x • 1 thus proving that x ∈ Ω 0 . Point iii. follows. Point v. is
an easy consequence of point ii.. Point vi. is obvious given i.. So let us nally prove point iv.. In order to do so, it suces to prove that for every x ∈ Uq ( ȧ1 ) -{0}, there exists a largest integer ν x ∈ N such that x ∈ Ω νx ; for then indeed x / ∈ Ω νx+1 , whereas obviously 0 ∈ Ω n , for every n ∈ N. Relations ((4.2.5) (4.2.9)) respectively imply that, for every i, j ∈ İ, every m ∈ N and every n ∈ N × ,

k + i,m k - j,-n = k - j,-n k + i,m -(q c ij -q -c ij )(C -C -1 ) min(m,n) p=1 q -pc ij C p -q pc ij C -p q -c ij C -q c ij C -1 k - j,-n+p k + i,m-p , k + i,m x ± j,-n = q ±c ij x ± j,-n k + i,m + (q ±c ij -q ∓c ij ) m p=0 C ∓p/2 q ±pc ij x ± j,-n+p k + i,m-p , x ± i,m k - j,-n = q ±c ij k - j,-n x ± i,m + (q ±c ij -q ∓c ij ) n p=0 C ∓p/2 q ±pc ij k - j,-n+p x ± i,m-p , x ± i,m x ± j,-n = q ±c ij x ± j,-n x ± i,m + (q ±c ij -q ∓c ij ) min(m,n)-1 p=0 q ±pc ij x ± j,-n+p x ± i,m-p -q ±(min(m,n)-1)c ij x ± j,min(m,n)-n x ± i,m-min(m,n) + q ± min(m,n)c ij x ± i,m-min(m,n) x ± j,min(m,n)-n , x ± i,m x ∓ j,-n = x ∓ j,-n x ± i,m ± δ ij q -q -1          C ± m+n 2 k + i,m-n if m > n; -C ∓ m+n 2 k - i,n-m if m < n; C ±m k + i,0 -C ∓m k - i,0 if m = n. Now let B =    b a,m = --→ p∈ n ξ ap,mp : n ∈ N, a = (a 1 , . . . , a n ) ∈ ( Φ -Φ İ) n , m = (m 1 , . . . , m n ) ∈ Z n    ,
where, for every (a, m)

∈ ( Φ -Φ İ) × Z, ξ a,m =    x ± i,m if a = ±α i ∈ ± Φ, i ∈ İ; k ± i,m if a = i ∈ İ and m ∈ Z ± .
If we omit C ±1/2 and D ±1 which are clearly irrelevant for the present discussion, B is obviously a spanning set for Uq ( ȧ1 ). Making repeated use of the above relations, one then easily shows that, for every n ∈ N,

every a ∈ ( Φ -Φ İ) n and every m ∈ Z n , b a,m -c a,m --→ p∈ n mp<0 ξ ap,mp --→ p∈ n mp≥0 ξ ap,mp ∈ Ω N (m)-1 -Ω N (m) ,
where c a,m ∈ F × and

N (m) = min     - p∈ n mp<0 m p , p∈ n mp≥0 m p     .
As a consequence, ν ba,m ≤ N (m), which concludes the proof.

Similarly, making use of the natural Z-grading of the tensor algebras Uq ( ȧ1 ) ⊗m , m ∈ N × , we let, for every

n ∈ N, Ω (m) n := r≥n s≥n Uq ( ȧ1 ) ⊗m • Uq ( ȧ1 ) ⊗m -r • Uq ( ȧ1 ) ⊗m • Uq ( ȧ1 ) ⊗m s • Uq ( ȧ1 ) ⊗m .
One easily checks that for every m ∈ N × , {Ω

: n ∈ N} has the same properties as the ones established in proposition 3.3.6 for {Ω n = Ω : n ∈ N}. These turn Uq ( ȧ1 ) into a (separated) topological algebra. We then let Uq ( ȧ1 ) denote its completion and we extend by continuity to Uq ( ȧ1 ) all the (anti)-automorphisms dened over Uq ( ȧ1 ) in the previous section. We eventually denote by Uq ( ȧ1 ) ⊗m≥2 the corresponding completions of Uq ( ȧ1 ) ⊗m≥2 .

Proof. The addition is automatically continuous in the above dened topology of Uq ( ȧ1 ). The continuity of the multiplication follows from point vi. of proposition 3.3.6. Point iv., in turn, implies that Uq ( ȧ1 ), as a topological space, is Hausdor. The continuity of the unit map η : F → Uq ( ȧ1 ) is easily checked remember that F is given the discrete topology.

Remark 2.2.8. It is worth noting that the above topology is actually ultrametrizable. In the notations of the previous proof, let indeed, for every x ∈ Uq ( ȧ1 ),

x =    exp (-ν x ) if x ∈ Uq ( ȧ1 ) -{0}; 0 if x = 0.
Since obviously ν x+y ≥ min(ν x , ν y ) for every x, y ∈ Uq ( ȧ1 ), the ultrametric inequality for the metric dened by d(x, y) = x -y follows immediately as a consequence of the inequality x + y ≤ max( x , y ).

Continuous Lusztig automorphisms

Following [START_REF] Macdonald | Ane Hecke Algebras and Orthogonal Polynomials[END_REF] we make the following Denition 2.2.9. The ane braid group Ḃ of type ȧ1 is generated by t and y subject to the relation

ty -1 t = y.
The coweight lattice P ∨ of ȧ1 is an abelian group whose generators we shall denote as x λ for every λ ∈ P ∨ .

In particular, we shall write

x λ x µ = x µ x λ = x λ+µ , (2.2.25)
assuming that x 0 = 1. There exists a unique group homomorphism Ḃ → Aut(P ∨ ) dened by letting

t(x λ ) = x sα 1 (λ) , y(x λ ) = x λ , (2.2.26) 
where s α 1 denotes the reection in the simple root α 1 , i.e. s α 1 (λ) = λ -(α ∨ 1 , λ)α 1 . This action allows us to make the following Denition 2.2.10. We let B := Ḃ P ∨ , i.e. B is isomorphic to the group with generators t, y and (x λ ) λ∈P ∨ obeying the relations

ty -1 t = y , tx λ t -1 = x sα 1 (λ) , x λ y = yx λ , (2.2.27)
for every λ ∈ P ∨ .

We now dene an action of B on Uq ( ȧ1 ) by bicontinuous algebra automorphisms, i.e. we construct a group homomorphism B → Aut( Uq ( ȧ1 )). In order to do so, we rst describe the image of the latter, following

[DK00].
Proposition 2.2.11. There exists a unique bicontinuous algebra automorphism T ∈ Aut( Uq ( ȧ1 )) such that

T (C 1/2 ) = C 1/2 T (D) = D T (k ± 0 (z)) = k ± 0 (zq 2 )k ± 1 (z)k ± 1 (zq 2 ) T (k ± 1 (z)) = k ± 1 (z) -1 (2.2.28) T (x + 0 (z)) = 1 [2] q res z 1 ,z 2 z -1 1 z -1 2 x + 1 (z 1 ), x + 1 (z 2 ), x + 0 (zq 2 ) G - 10 (z 2 /zq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /zq 2 )
(2.2.29)

T (x - 0 (z)) = 1 [2] q res z 1 ,z 2 z -1 1 z -1 2 x - 0 (zq 2 ), x - 1 (z 1 ) G + 10 (zq 2 /z 1 ) , x - 1 (z 2 ) G + 11 (z 1 /z 2 )G + 10 (zq 2 /z 2 )
(2.2.30)

T (x + 1 (z)) = -x - 1 (C -1 z)k + 1 (C -1/2 z) -1 (2.2.31) T (x - 1 (z)) = -k - 1 (C -1/2 z) -1 x + 1 (C -1 z) (2.2.32)
Proof. It suces to check all the relations, which is cumbersome but straightforward. The inverse automorphism is given by

T -1 (C 1/2 ) = C 1/2 T -1 (D) = D T -1 (k ± 0 (z)) = k ± 0 (zq -2 )k ± 1 (z)k ± 1 (zq -2 ) T -1 (k ± 1 (z)) = k ± 1 (z) -1 (2.2.33) T -1 (x + 0 (z)) = 1 [2] q res z 1 ,z 2 z -1 1 z -1 2 x + 0 (zq -2 ), x + 1 (z 1 ) G - 10 (zq -2 /z 1 ) , x + 1 (z 2 ) G - 11 (z 1 /z 2 )G - 10 (zq -2 /z 2 )
(2.2.34)

T -1 (x - 0 (z)) = 1 [2] q res z 1 ,z 2 z -1 1 z -1 2 x - 1 (z 1 ), x - 1 (z 2 ), x - 0 (zq -2 ) G + 10 (z 2 /zq -2 ) G + 11 (z 1 /z 2 )G + 10 (z 1 /zq -2 ) (2.2.35) T -1 (x + 1 (z)) = -k - 1 (C 1/2 z) -1 x - 1 (Cz) (2.2.36) T -1 (x - 1 (z)) = -x + 1 (Cz)k + 1 (C 1/2 z) -1 (2.2.37)
Remark 2.2.12. Making use of the dening relations of Uq ( ȧ1 ), one easily shows that indeed

x + 1 (z 1 ), x + 1 (z 2 ), x + 0 (zq 2 ) G - 10 (z 2 /zq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /zq 2 ) = [2] q δ z 1 q 2 z 2 δ z 2 z T x + 0 (z) , (2.2.38) x - 0 (zq 2 ), x - 1 (z 1 ) G + 10 (zq 2 /z 1 ) , x - 1 (z 2 ) G + 11 (z 1 /z 2 )G + 10 (zq 2 /z 2 ) = [2] q δ z 1 q 2 z 2 δ z 1 z T (x - 0 (z)) . (2.2.39)
The following is straightforward but will be useful.

Proposition 2.2.13. We have

i. ϕ • T π = T π • ϕ; ii. ϕ • T = T • ϕ; iii. T -1 = η • T • η.
We have nally, Theorem 2.2.14. The assignement

t → T y → Y := T π • T x ω ∨ i → T ω ∨ i (2.2.40)
extends to a group homomorphism B → Aut( Uq ( ȧ1 )).

Proof. This is a cumbersome but straightforward exercise that we leave to the reader.

Remark 2.2.15. In [START_REF] Miki | Toroidal Braid Group Action and an Automorphism of Toroidal Algebra U q (sln + 1, tor) (n ≥ 2)[END_REF], Miki constructed an algebraic action by automorphisms of the extended elliptic braid group on Uq ( ȧ1 ) which should not be confused with the topological action of B on Uq ( ȧ1 ) provided by the above theorem.

2.2.5 Topological Hopf algebra structure on Uq ( ȧ1 )

Denition 2.2.16. We endow the topological F-algebra Uq ( ȧ1 ) with:

i. the comultiplication ∆ : Uq ( ȧ1 ) → Uq ( ȧ1 ) ⊗ Uq ( ȧ1 ) dened by

∆(C ±1/2 ) = C ±1/2 ⊗ C ±1/2 , ∆(D ±1 ) = D ±1 ⊗ D ±1 , (2.2.41) ∆(k ± i (z)) = k ± i (zC ±1/2 (2) ) ⊗ k ± i (zC ∓1/2
(1) ) , (2.2.42)

∆(x + i (z)) = x + i (z) ⊗ 1 + k - i (zC 1/2 (1) ) ⊗x + i (zC (1) ) , (2.2.43) ∆(x - i (z)) = x - i (zC (2) ) ⊗k + i (zC 1/2 (2) ) + 1 ⊗ x - i (z) , (2.2.44)
where

C ±1/2 (1) = C ±1/2 ⊗ 1 and C ±1/2 (2) = 1 ⊗ C ±1/2 ; ii. the counit ε : Uq ( ȧ1 ) → F, dened by ε(D ±1 ) = ε(C ±1/2 ) = ε(k ± i (z)) = 1, ε(x ± i (z)) = 0 and;
iii. the antipode S : Uq ( ȧ1 ) → Uq ( ȧ1 ), dened by

S(D ±1 ) = D ∓1 , S(C ±1/2 ) = C ∓1/2 and S(k ± i (z)) = k ± i (z) -1 , S(x + i (z)) = -k - i (zC -1/2 ) -1 x + i (zC -1 ) , S(x - i (z)) = -x - i (zC -1 )k + i (zC -1/2 ) -1 .
With these operations so dened and the topologies dened in section 3.3.2, Uq ( ȧ1 ) is a topological Hopf algebra.

Non-degenerate Hopf algebra pairing

Dene U≥ q ( ȧ1 ) (resp. U≤ q ( ȧ1 )) as the subalgebra of Uq ( ȧ1 ) generated by

k - i,-m , x + i,n : i ∈ I, m ∈ N, n ∈ Z (resp. k + i,m , x - i,n : i ∈ I, m ∈ N, n ∈ Z ).
In view of the triangular decompositon of Uq ( ȧ1 ) see [Her05] and of its dening relations, it is clear that U≥ q ( ȧ1 ) (resp. U≤ q ( ȧ1 )), as an F-vector space, is spanned by

x + i 1 ,r 1 • • • x + im,rm k - j 1 ,-s 1 • • • k - jn,-sn : m, n ∈ N, ((i 1 , r 1 ), . . . , (i m , r m )) ∈ ( İ × Z) m ((j 1 , s 1 ), . . . , (j n , s n )) ∈ ( İ × N) n (2.2.45) resp. x - i 1 ,r 1 • • • x - im,rm k + j 1 ,s 1 • • • k + jn,sn : m, n ∈ N, ((i 1 , r 1 ), . . . , (i m , r m )) ∈ ( İ × Z) m , ((j 1 , s 1 ), . . . , (j n , s n )) ∈ ( İ × N) n . (2.2.46)
Proposition 2.2.17. There exists a unique non-degenerate Hopf algebra pairing , : U≥ q ( ȧ1 ) × U≤ q ( ȧ1 ) → F, dened by setting

x + i (z), x - j (v) = δ ij q -q -1 δ z v , (2.2.47) k - i (z), k + j (v) = G - ij z v , (2.2.48) k - i (z), x - j (v) = x + i (z), k + j (v) = 0 . (2.2.49)
By denition, it is such that, for every a, b ∈ U≥ q ( ȧ1 ) and every x, y ∈ U≤ q ( ȧ1 ),

a, xy = a (1) , x a (2) , y , ab, x = a, x (2) b, x (1) , a, 1 = ε ≥ (a) 1, x = ε ≤ (x) ,
where we have set

ε ≤ = ε | U≤ q ( ȧ1 ) , ε ≥ = ε | U≥ q ( ȧ1 )
and we have made use of Sweedler's notation for the comultiplication

∆(x) = x (1) ⊗x (2) .
Proof. A proof can be found in [START_REF] Negut | Quantum toroidal and shue algebras, R-matrices and a conjecture of Kuzetsov[END_REF].

Before we can establish the continuity of the above dened pairing, we need the following Lemma 2.2.18. For every m + , m -, n + , n -∈ N, (i ± 1 , . . . , i ± m ± ) ∈ İm ± and every (j ± 1 , . . . , j ± n ± ) ∈ İn ± , we have

x + i + 1 (u 1 ) • • • x + i + m + (u m + )k - j + 1 (v 1 ) • • • k - j + n + (v n + ), x - i - 1 (w 1 ) • • • x - i - m - (w m -)k + j - 1 (z 1 ) • • • k + j - n - (z n -) = δ m + ,m -     r∈ n + s∈ n - G - j + r ,j - s v r z s     σ∈Sm +     1≤r<s≤m + σ(r)>σ(s) G - i + r ,i + s u r u s     t∈ m + δ i + t ,i - σ(t) q -q -1 δ w σ(t) u t . (2.2.50)
Proof. One easily proves by recursion the results for n + = n -= 0 and m + = m -= 0, respectively. The general case then follows by a straightforward calculation.

It follows that remember F is given the discrete topology Corollary 2.2.19. The Hopf algebra pairing , is (separately) continuous.

Proof. It suces to prove that for every x ∈ U≥ q ( ȧ1 ) there exists an m ∈ N such that, for every n ≥ m

x,

Ω n ∩ U≤ q ( ȧ1 ) = {0} .
In order to prove the latter, it suces to prove it over the spanning sets of (2.2.45) and (2.2.46). Now this easily follows by inspection, making use of lemma 2.2.18 and of the fact that, for any y ∈ Uq ( ȧ1 ) -{0}, there exists ν y ∈ N such that y / ∈ Ω νy+1 see proof of proposition 3.3.6.

We can now extend , from U≥ q ( ȧ1 ) × U≤ q ( ȧ1 ) to U≥ q ( ȧ1 ) × U≤ q ( ȧ1 ) by continuity. Importantly, we have Proposition 2.2.20. The extended pairing , : U≥ q ( ȧ1 ) × U≤ q ( ȧ1 ) → F is non-degenerate in the sense that, if for every x ∈ U≥ q ( ȧ1 ), x, y = 0 for some y ∈ U≤ q ( ȧ1 ), then y = 0.

Proof. Let {O n : n ∈ N} be any neighbourhood basis at 0 ∈ F for the discrete topology on F. Then, let for every n ∈ N,

A n := U≥ q ( ȧ1 ), - -1 (O n ) = y ∈ U≤ q ( ȧ1 ) : ∀x ∈ U≥ q ( ȧ1 ) x, y ∈ O n .
We clearly have, for every n ∈ N, {0} ⊆ A n ⊆ U≤ q ( ȧ1 ) and A n ⊇ A n+1 . The non-degeneracy of the pairing further implies that

n∈N A n = {0} .
As a consequence, for every n ∈ N and every y ∈ A n -{0}, there exists an N ∈ N such that for every

m ≥ N , y / ∈ A m . Now, given n 1 ∈ N, let µ(n 1 ) ∈ N be the largest integer such that A n 1 ⊆ Ω µ(n 1 )
. By the previous discussion, for every point y ∈ A n 1 -Ω µ(n 1 )+1 , there exists (a smallest) n 2 ∈ N such that for every m ≥ n 2 , y / ∈ A m . Hence, for every m ≥ n 2 , A m ⊆ Ω µ(n 1 )+1 and we conclude that µ(n) = µ(n 1 ) for every n ∈ n 1 , n 2 -1 , whereas µ(n 2 ) = µ(n 1 ) + 1. By induction, it follows that µ : N → N so dened is increasing and that, as a consequence, lim n→+∞ µ(n) = +∞. We have therefore proven that, for every

n ∈ N, ∀x ∈ U≥ q ( ȧ1 ) x, y ∈ O n ⇒ y ∈ Ω µ(n) .
(2.2.51)

If we nally let (y n ) n∈N ∈ U≤ q ( ȧ1 ) N be any Cauchy sequence that does not converge to 0, the proposition is obviously equivalent to claiming that there exists an x ∈ U≥ q ( ȧ1 ) such that

lim n→+∞ x, y n = 0 .
Indeed, since (y n ) n∈N does not converge to 0, there exist m ∈ N such that for every N ∈ N, y n / ∈ Ω m for some n ≥ N . We can therefore extract a subsequence (y n k ) k∈N such that y n k /

∈ Ω m for every k ∈ N. The contrapositive of (2.2.51) then implies that there exists (x k ) k∈N ∈ U≥ q ( ȧ1 ) N such that, for every k ∈ N,

x k , y n k / ∈ O ν(m)
where ν(m) = min{n ∈ N : µ(n) = m}. But since (y n ) n∈N is Cauchy, so is (y n k ) k∈N and, upon taking k, l ∈ N large enough, we can make x k , y n l -y n k arbitrary small. This eventually concludes the proof.

Double quantum anization in type a 1

We now dene and study the main object of interest in this paper; the double quantum anization in type a 1 , Üq (a 1 ). We let I = {1} be the labeling of the unique node of the type a 1 Dynkin diagram and we let

Q ± = Z ± α 1 .
We denote by Q = Zα 1 the type a 1 root lattice.

Denition of Üq (a 1 )

Denition 2.3.1. The double quantum anization Üq (a 1 ) of type a 1 is dened as the F-algebra generated by

{D 1 , D -1 1 , D 2 , D -1 2 , C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r , X + 1,r,s , X - 1,r,s : m ∈ N, n ∈ N × , r, s ∈ Z} subject to the relations C ±1/2 and c ± (z) are central (2.3.1) res v,w 1 vw c ± (v)c ∓ (w) = 1 , (2.3.2) D ±1 1 D ∓1 1 = 1 D ±1 2 D ∓1 2 = 1 D 1 D 2 = D 2 D 1 (2.3.3) D 1 K ± 1,±m (z)D -1 1 = q ±m K ± 1,±m (z) D 1 X ± 1,r (z)D -1 1 = q r X ± 1,r (z) , (2.3.4) D 2 K ± 1,±m (z)D -1 2 = K ± 1,±m (zq -1 ) D 2 X ± 1,r (z)D -1 2 = X ± 1,r (zq -1 ) , (2.3.5) res v,w 1 vw K ± 1,0 (v)K ∓ 1,0 (w) = 1 , (2.3.6) (v -q ±2 z)(v -q 2(m-n∓1) z)K ± 1,±m (v)K ± 1,±n (z) = (vq ±2 -z)(vq ∓2 -q 2(m-n) z)K ± 1,±n (z)K ± 1,±m (v) , (2.3.7) (Cq 2(1-m) v -w)(q 2(n-1) v -Cw)K + 1,m (v)K - 1,-n (w) = (Cq -2m v -q 2 w)(q 2n v -Cq -2 w)K - 1,-n (w)K + 1,m (v) , (2.3.8) (v -q ±2 z)K ± 1,±m (v)X ± 1,r (z) = (q ±2 v -z)X ± 1,r (z)K ± 1,±m (v) , (2.3.9) (Cv -q 2(m∓1) z)K ± 1,±m (v)X ∓ 1,r (z) = (Cq ∓2 v -q 2m z)X ∓ 1,r (z)K ± 1,±m (v) , (2.3.10) (v -q ±2 w)X ± 1,r (v)X ± 1,s (w) = (vq ±2 -w)X ± 1,s (w)X ± 1,r (v) , (2.3.11) [X + 1,r (v), X - 1,s (z)] = 1 q -q -1    δ Cv q 2(r+s) z |s| p=1 c -C -1/2 q (2p-1)sign(s)-1 z -sign(s) K + 1,r+s (v) -δ C -1 v q 2(r+s) z |r| p=1 c + C -1/2 q (1-2p)sign(r)-1 v sign(r) K - 1,r+s (z)    , (2.3.12) 
where m, n ∈ N, r, s ∈ Z and we have set

c ± (z) = m∈N c ± ±m z ∓m , (2.3.13) K ± 1,0 (z) = m∈N K ± 1,0,±m z ±m , (2.3.14)
and, for every m ∈ N × and r ∈ Z,

K ± 1,±m (z) = s∈Z K ± 1,±m,s z -s , (2.3.15) X ± 1,r (z) = s∈Z X ± 1,r,s z -s . (2.3.16)
In (5.0.6), we further assume that K ± 1,∓m (z) = 0 for every m ∈ N × .

Denition 2.3.2. We dene Ü0

q (a 1 ) as the subalgebra of Üq (a 1 ) generated by

C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r : m ∈ N, n ∈ N × , r ∈ Z .
We dene similarly ܱ q (a 1 ) as the subalgebra of Üq (a 1 ) generated by X ± 1,r,s : r, s ∈ Z .

Remark 2.3.3. Obviously, ܱ q (a 1 ) is graded over Q ± whereas Üq (a 1 ) is graded over the root lattice Q of a 1 . Üq (a 1 ) is also graded over

Z 2 = Z (1) × Z (2) ; Üq (a 1 ) = (n 1 ,n 2 )∈Z 2 Üq (a 1 ) (n 1 ,n 2 ) ,
where, for every (n 1 , n 2 ) ∈ Z 2 , we let

Üq (a 1 ) (n 1 ,n 2 ) = x ∈ Üq (a 1 ) : D 1 xD -1 1 = q n 1 x, D 2 xD -1 2 = q n 2 x .
Remark 2.3.4. It is worth emphasizing that, were it not for relation (5.0.6), the above denition of Üq (a 1 ) would be purely algebraic. However, the r.h.s. of (5.0.6) involves two innite series and we may equip Üq (a 1 ) with a topology, along the lines of what was done in section 3.3.2 for Uq ( ȧ1 ), making use of the Z (2)grading in order to construct a basis Ωn : n ∈ N of open neighbourhoods of 0. In that case, both series are convergent in the corresponding completion Üq (a 1 ) and we shall further require that the subalgebras Üq (a 1 ), Ü0 q (a 1 ) and Ü+ q (a 1 ) be dened as closed subalgebras of Üq (a 1 ). We shall eventually denote with a hat their respective completions. An alternative point of view on this question, which might actually prove more useful when it comes to studying representation theory, consists in observing that Üq (a 1 ) is proalgebraic. Indeed, for every N ∈ N, let Üq (a 1 ) (N ) be the F-algebra generated by (2.3.17)

{C 1/2 , C -1/2 , c + n , c - -n , K + 1,0,m , K - 1,0,-m , K + 1,p,r , K - 1,-p,r , X + 1,r,s , X - 1,r,s : m ∈ N, n ∈ 0, N , p ∈ N × , r, s ∈ Z}
Now clearly, each Üq (a 1 ) (N ) is algebraic since the sums on the r.h.s. of (5.0.6) are both nite whenever c ± (z) -1 is involved, just multiply through by c ± (z) to get an equivalent algebraic relation. Moreover, letting I N be the two-sided ideal of Üq (a 1 ) (N ) generated by {c + N , c - -N } (resp. {c + 0 -1, c - 0 -1}) for every N > 1 (resp. for N = 0), we obviously have a surjective algebra homomorphism

Üq (a 1 ) (N ) -→ Üq (a 1 ) (N -1) ∼ = Üq (a 1 ) (N ) I N (2.3.18)
and we can dene Üq (a 1 ) as the inverse limit

Üq (a 1 ) = lim ←-Üq (a 1 ) (N )
of the system of algebras

• • • -→ Üq (a 1 ) (N ) -→ Üq (a 1 ) (N -1) -→ • • • -→ Üq (a 1 ) (0) -→ Üq (a 1 ) (-1) .
We shall refer to the quotient of Üq (a 1 ) (-1) by the two-sided ideal generated by {C 1/2 -1} as the double quantum loop algebra of type a 1 .

Denition 2.3.5. In Ü0

q (a 1 ), we dene

p ± (z) = m∈N p ± ±m z ∓m = c ± (z)K ∓ 1,0 (C -1/2 z) -1 K ∓ 1,0 (C -1/2 zq 2 )
and for every m

∈ N × , t + 1,m (z) = n∈N t + 1,m,n z -n = - 1 q -q -1 K + 1,0 (zq -2m ) -1 K + 1,m (z) , t - 1,-m (z) = n∈N t - 1,-m,n z n = 1 q -q -1 K - 1,-m (z)K - 1,0 (zq -2m ) -1 .
Then, we let Ü0 + q (a 1 ) be the closed subalgebra of Ü0 q (a 1 ) generated by

{C 1/2 , C -1/2 , p + m , p - -m , t + 1,p,n , t - 1,-p,n : m ∈ N, n ∈ Z, p ∈ N × } .
Denition 2.3.6. We denote by Ü q (a 1 ) the subalgebra of Üq (a 1 ) generated by

{D 2 , D -1 2 , C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r , X + 1,r,s , X - 1,r,s : m ∈ N, n ∈ N × , r, s ∈ Z} ,
i.e. the subalgebra generated by all the generators of Üq (a 1 ) except D 1 and D -1 1 . We shall denote by

 : Ü q (a 1 ) → Üq (a 1 )
the natural injective algebra homomorphism. We extend it by continuity into  : Ü q (a 1 ) → Üq (a 1 ) .

The main result of the present paper is the following Theorem 2.3.7. There exists a bicontinuous F-algebra isomorphism Ψ : Uq ( ȧ1 ) ∼ -→ Ü q (a 1 ).

Proof. Relations ((3.3.7)-(3.3.10)) respectively imply

K ± 1,0 (v)K ± 1,0 (z) = K ± 1,0 (z)K ± 1,0 (v) , (2.3.19) K + 1,0 (v)K - 1,0 (w) = G + 11 (Cv/w)G - 11 (C -1 v/w)K - 1,0 (w)K + 1,0 (v) (2.3.20) K ± 1,0 (v)X ± 1,r (z) = G ∓ 11 (v/z)X ± 1,r (z)K ± 1,0 (v) , (2.3.21) K ± 1,0 (v)X ∓ 1,r (z) = G ± 11 (Cv/z)X ∓ 1,r (z)K ± 1,0 (v) , (2.3.22) since K ± 1,0 (z) ∈ Ü q (a 1 )[[z ±1 ]].
It also easily follows from relation (5.0.5) that

X + 1,0 (v), X + 1,-1 (w) G - 11 (v/w) = δ vq -2 w Υ + (w) , (2.3.23) X - 1,1 (v), X - 1,0 (w) G + 11 (v/w) = δ vq 2 w Υ -(w) , (2.3.24)
for some

Υ ± (w) ∈ Ü q (a 1 )[[w, w -1 ]].
Hence, the only possible obstructions to setting

Ψ(D ±1 ) = D ±1 2 Ψ(C ±1/2 ) = C ±1/2 , Ψ(k ± 0 (z)) = -c ± (z)K ∓ 1,0 (C -1/2 z) -1 Ψ(k ± 1 (z)) = -K ∓ 1,0 (C -1/2 z) Ψ(x + 0 (z)) = -c -(C 1/2 z)K + 1,0 (z) -1 X - 1,1 (Cz) Ψ(x - 0 (z)) = -X + 1,-1 (Cz)c + (C 1/2 z)K - 1,0 (z) -1 Ψ(x ± 1 (z)) = X ± 1,0 (z) ,
and to extending it as an algebra homomorphism Ψ : Uq ( ȧ1 ) → Ü q (a 1 ) are Υ ± (w) and the images under Ψ of the l.h.s. of the quantum Serre relations (4.2.10). We shall see in section 2.4 that both obstructions actually vanish. We also postpone until section 2.4 the construction of the continuous algebra homomorphism Ψ -1 : Ü q (a 1 ) -→ Uq ( ȧ1 ).

The subalgebra Ü0

q (a 1 ) and the elliptic Hall algebra

Another remarkable feature of Üq (a 1 ) and, more particularly of its subalgebra Ü0 q (a 1 ), is the existence of an algebra homomorphism onto it, from the elliptic Hall algebra that we now dene. Denition 2.3.8. Let q 1 , q 2 , q 3 be three (dependent) formal variables such that q 1 q 2 q 3 = 1. The elliptic Hall algebra E q 1 ,q 2 ,q 3 is the Q(q 1 , q 2 , q 3 )-algebra generated by

C 1/2 , C -1/2 , ψ + m , ψ - -m , e + n , e - n : m ∈ N, n ∈ Z , with ψ ± 0 invertible, subject to the relations C ±1/2 is central , (2.3.25) ψ ± (z)ψ ± (w) = ψ ± (w)ψ ± (z) , (2.3.26) g(Cz, w)g(Cw, z)ψ + (z)ψ -(w) = g(z, Cw)g(w, Cz)ψ -(w)ψ + (z) , (2.3.27) g(C 1±1 2 z, w)ψ ± (z)e + (w) = -g(w, C 1±1 2 z)e + (w)ψ ± (z) , (2.3.28) g(w, C 1∓1 2 z)ψ ± (z)e -(w) = -g(C 1∓1 2 z, w)e -(w)ψ ± (z) , (2.3.29) [e + (z), e -(w)] = 1 g(1, 1) δ Cw z ψ + (w) -δ w Cz ψ -(z) , (2.3.30) g(z, w)e + (z)e + (w) = -g(w, z)e + (w)e + (z) , (2.3.31) g(w, z)e -(z)e -(w) = -g(z, w)e -(w)e -(z) , (2.3.32) res v,w,z (vwz) m (v + z)(w 2 -vz)e ± (v)e ± (w)e ± (z) = 0 , (2.3.33)
where m ∈ Z and we have introduced

g(z, w) = (z -q 1 w)(z -q 2 w)(z -q 3 w) , (2.3.34) ψ ± (z) = m∈N ψ ± ±m z ∓m , (2.3.35) e ± (z) = m∈Z e ± m z -m . (2.3.36)
Remark 2.3.9. The elliptic Hall algebra E q 1 ,q 2 ,q 3 is Z-graded and can be equipped with a natural topology along the lines of what we did for Uq ( ȧ1 ) in section 3.3.2. It then becomes a topological algebra and we denote by E q 1 ,q 2 ,q 3 its completion.

Proposition 2.3.10. There exists a unique continuous F-algebra homomorphism f : E q -4 ,q 2 ,q 2 → Ü0 + q (a 1 ) such that

f (C 1/2 ) = C 1/2 , (2.3.37) f (ψ ± (z)) = (q 2 -q -2 ) 2 p ± (C 1/2 zq -2 ) , (2.3.38) f (e ± (z)) = t ± 1,±1 (z) .
(2.3.39)

Proof. We prove that, starting from ((3.3.50) (2.3.39)), we can extend f as an algebra homomorphism.

For that purpose, it suces to check the relations in E q -4 ,q 2 ,q 2 , observing that, in addition to (2.3.19) and

(2.3.20), we also have

K ± 1,0 (v)K ± 1,±1 (z) = G ∓ 11 (v/z)G ± 11 (vq 2 /z)K ± 1,±1 (z)K ± 1,0 (v) , (2.3.40) K ∓ 1,0 (v)K ± 1,±1 (w) = G ∓ 11 (Cv/w)G ± 11 (C -1 q 2 v/w)K ± 1,±1 (w)K ∓ 1,0 (v) , (2.3.41)
as direct consequences of (3.3.7) and (3.3.8) respectively, since K ±

1,0 (z) ∈ Ü q (a 1 )[[z ±1 ]].
One then easily obtains ((3.3.33) (3.3.36)) and ((3.3.38) (3.3.39)). For example, we have

g(v, z)f (e + (v))f (e + (z)) = 1 (q -q -1 ) 2 g(v, z)G + 11 (z/v)G - 11 (zq -2 /v)K + 1,0 (vq -2 )K + 1,0 (q -2 z)K + 1,1 (v)K + 1,1 (z) = v -z (q -q -1 ) 2 (v -q 2 z)(v -q -2 z)K + 1,0 (vq -2 )K + 1,0 (q -2 z)K + 1,1 (v)K + 1,1 (z) (2.3.42) = v -z (q -q -1 ) 2 (vq 2 -z)(vq -2 -z)K + 1,0 (vq -2 )K + 1,0 (q -2 z)K + 1,1 (z)K + 1,1 (v) = v -z (q -q -1 ) 2 (vq 2 -z)(vq -2 -z)G + 11 (vq -2 /z)G - 11 (v/z) ×K + 1,0 (q -2 z)K + 1,1 (z)K + 1,0 (vq -2 )K + 1,1 (v) = -g(z, v)f (e + (z))f (e + (v)) .
Considering (3.3.37), we observe that (3.3.8) implies that there exist θ

± (z) ∈ Ü q (a 1 )[[z, z -1 ]] such that K + 1,1 (v), K - 1,-1 (w) G + 11 (Cvq -2 /w)G - 11 (C -1 vq 2 /w) = δ Cv w θ -(v) + δ v Cw θ + (w)
and one easily sees that

f (e + (v)), f (e -(w)) = - 1 (q -q -1 ) 2 K + 1,0 (vq -2 ) -1 K + 1,1 (v), K - 1,-1 (w) G + 11 (Cvq -2 /w)G - 11 (C -1 vq 2 /w) K - 1,0 (wq -2 ) -1 = - 1 (q -q -1 ) 2 K + 1,0 (vq -2 ) -1 δ Cv w θ -(v) + δ v Cw θ + (w) K - 1,0 (wq -2 ) -1 .
Therefore, it suces to prove that

- 1 (q -q -1 ) 2 K + 1,0 (Cwq -2 ) -1 θ + (w)K - 1,0 (wq -2 ) -1 = (q 2 -q -2 ) 2 g(1, 1) p + (C 1/2 q -2 w) (2.3.43) - 1 (q -q -1 ) 2 K + 1,0 (vq -2 ) -1 θ -(v)K - 1,0 (Cvq -2 ) -1 = - (q 2 -q -2 ) 2 g(1, 1) p -(C 1/2 q -2 v) (2.3.44)
We postpone the proof of ((2.3.43) (2.3.44)), as well as that of

res v,w,z (vwz) m (v + z)(w 2 -vz)f (e ± (v))f (e ± (w))f (e ± (z)) = 0 , (2.3.45)
until section 2.4.

We now naturally make the following Conjecture 2.3.11. f : E q -4 ,q 2 ,q 2 → Ü0 + q (a 1 ) is a bicontinuous F-algebra isomorphism.

Remark 2.3.12. It is worth mentioning that the above conjecture is supported by the fact that, in view of

((3.3.38) (3.3.39)), there clearly exists e ± ±2 (z) ∈ E q 1 ,q 2 ,q 3 [[z, z -1 ]] such that G ∓ 01 (q ∓2 v/w)G ∓ 11 (v/w) e ± (w), e ± (v) G ∓ 01 (q ∓2 w/v)G ∓ 11 (w/v) = ± [2] q δ q 2 v w e ± ±2 (w) -δ wq 2 v e ± ±2 (v)
and that we can therefore set

f -1 (t ± 1,±2 (v)) = e ± ±2 (v) .
In order to complete the proof, one would similarly need to construct f -1 (t ± 1,±m (v)) for any m > 2.

2.3.3

Uq (a 1 ) subalgebras of Üq (a 1 )

Interestingly, Üq (a 1 ) admits countably many embeddings of the quantum ane algebra Uq (a 1 ). This is the content of the following Proposition 2.3.13. For every m ∈ Z, there exists a unique injective algebra homomorphism ι m :

Uq (a 1 ) → Üq (a 1 ) such that

ι m (C ±1/2 ) = C ±1/2 ι m (D ±1 ) = D ±1 2 (2.3.46) ι m (k ± 1 (z)) = - |m| p=1 c ± q (1-2p)sign(m)-1 z sign(m) K ∓ 1,0 (C -1/2 z) , (2.3.47) ι m (x ± 1 (z)) = X ± 1,±m (z) . (2.3.48)
Proof. Let ι (1) : Uq (a 1 ) → Uq ( ȧ1 ) be the injective algebra homomorphism mapping Uq (a 1 ) to the Dynkin diagram subalgebra of Uq ( ȧ1 ) associated with the vertex labeled 1 ∈ İ see section 2.2.1. It naturally extends to an injective algebra homomorphism ι (1) : Uq (a 1 ) → Uq ( ȧ1 ). Then, let for every m ∈ Z, ι m be the composite

ι m : Uq (a 1 ) -→ ι (1) Uq ( ȧ1 ) ∼ -→ Y -m Uq ( ȧ1 ) ∼ -→ Ψ Ü q (a 1 ) -→  Üq (a 1 ) .
Thus, ι m is clearly injective. Moreover, one easily checks ((3.3.71) (3.3.73)) see next section.

Automorphisms of Ü

q (a 1 ) Ü q (a 1 ) naturally inherits, through Ψ, the automorphisms dened over Uq ( ȧ1 ) in the previous section.

Proposition 2.3.14. Conjugation by Ψ clearly provides a group isomorphism Aut( Uq ( ȧ1 )) ∼ = Aut( Ü q (a 1 )). In particular, for every f ∈ Aut( Uq ( ȧ1 )), we let ḟ = Ψ • f • Ψ -1 ∈ Aut( Ü q (a 1 )).

Triangular decomposition of Üq (a 1 )

Denition 2.3.15. Let A be a complete topological algebra with closed subalgebras A ± and A 0 . We shall say that (A -, A 0 , A + ) is a triangular decomposition of A if the multiplication induces a bicontinuous isomorphism of vector spaces

A -⊗A 0 ⊗A + ∼ → A.
In order to prove the triangular decomposition of Üq (a 1 ), we shall make use of the following classic Lemma 2.3.16. Let A be a complete topological algebra with a triangular decomposition (A -, A 0 , A + ).

Let I ± be a closed two-sided ideal of A ± such that I + .A ⊆ A.I + and A.I -⊆ I -.A. Then the quotient algebra B = A/(A.(I + + I -).A) admits a triangular decomposition (B -, A 0 , B + ) where B ± is the set of equivalence classes of A ± in B. Moreover, there exists a bicontinuous algebra isomorphism

B ± ∼ = A ± /I ± .
Proof. See e.g. [START_REF] Jantzen | Lectures on Quantum Groups[END_REF].

Recalling the denitions of ܱ q (a 1 ) and Ü0 q (a 1 ) from denition 3.3.1, we have Proposition 2.3.17. ( Ü- q (a 1 ), Ü0 q (a 1 ), Ü+ q (a 1 )) is a triangular decomposition of Üq (a 1 ) and ܱ q (a 1 ) is bicontinuously isomorphic to the algebra generated by {X ± 1,r,s : r, s ∈ Z} subject to relation (5.0.5).

Proof. Let A be the F-algebra generated by 

{D 1 , D -1 1 , D 2 , D -1 2 , C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r , X + 1,r,s , X - 1,r,s : m ∈ N, n ∈ N × ,
D 1 , D -1 1 , D 2 , D -1 2 , C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r : m ∈ N, n ∈ N × , r ∈ Z
and A ± be the closed subalgebra of A generated by X ± 1,r,s : r, s ∈ Z . An easy recursion proves that relations (5.0.1) and (3.3.10) imply that, for every N ∈ N and every m ∈ N, l, r, s ∈ Z,

X + 1,r,s K + 1,m,l -q 2 K + 1,m,l X + 1,r,s -(q 2 -q -2 ) N p=1 q 2p K + 1,m,l+p X + 1,r,s-p + q 2N K + 1,m,l+N +1 X + 1,r,s-N -1 ∈ Ων + s,l (N ) K - 1,-m,l X - 1,r,s -q -2 X - 1,r,s K - 1,-m,l +(q 2 -q -2 ) N p=1 q -2p X - 1,r,s+p K - 1,-m,l-p +q 2N X - 1,r,s+N +1 K - 1,-m,l-N -1 ∈ Ων - s,l (N ) K + 1,m,l X - 1,r,s -q -2 X - 1,r,s K + 1,m,l + (q 2 -q -2 ) N p=1 C -p q 2p(m-1) X - 1,r,s+p K + 1,m,l-p +C -(N +1) q 2(N +1)(m-1)+2 X - 1,r,s+N +1 K + 1,m,l-N -1 ∈ Ων - s,l (N ) X + 1,r,s K - 1,-m,l -q 2 K - 1,-m,l X + 1,r,s -(q 2 -q -2 ) N p=1 C p q 2p(1-m) K - 1,-m,l+p X + 1,r,s-p +C N +1 q 2(N +1)(1-m) K - 1,-m,l+N +1 X + 1,r,s-N -1 ∈ Ων + s,l (N )
where ν ± s,l (N ) = min(±l, ∓s) + N + 1. It obviously follows that (A -, A 0 , A + ) is a triangular decomposition of A. Now let I ± be the closed two-sided ideal of A ± generated by

X ± 1,r,m+1 X ± 1,s,n -q ±2 X ± 1,r,m X ± 1,s,n+1 -q ±2 X ± 1,s,n X ± 1,r,m+1 + X ± 1,s,n+1 X ± 1,r,m : r, s, m, n ∈ Z .
Clearly Üq (a 1 ) ∼ = A/(A.(I + + I -).A). In view of the above rewritings of (5.0.1) and (3.3.10), it is clear that I + .A 0 ⊆ A 0 .I + and A 0 .I -⊆ I -.A 0 . Moreover, relations (5.0.1), (3.3.10) and (5.0.6) are easily shown to imply that, for every r, s, t ∈ Z, ii. c ± ±m acts by multiplication by 0 on M , for every m ≥ N .

(v -q ±2 w)X ± 1,r (v)X ± 1,s (w) -(vq ±2 -w)X ± 1,s (w)X ± 1,r (v), X ∓ 1,t (u) = 0 , hence proving that I + .A -⊆ A.I + and A + .I -⊆ I -.A.
We shall say that M is of type (1, 0) if points i. and ii. above hold for every m > 0 and, in addition, c ± 0 acts as id on M .

Remark 2.3.19. Let N ∈ N × . Then the Ü q (a 1 )-modules of type (1, N ) are in one-to-one correspondence with the Üq (a 1 ) (N -1) /(C 1/2 -1)-modules see remark 3.3.3 for a denition of Üq (a 1 ) (N ) . Similarly, Ü q (a 1 )-modules of type (1, 0) descend to modules over the double quantum loop algebra of type a 1 , Üq (a 1 ) (-1) /(C 1/2 -1).

In view of the triangular decomposition ( Üq (a 1 ), Ü0 q (a 1 ), Ü+ q (a 1 )) of Ü q (a 1 ) see proposition 3.3.11 , we naturally expect that a new, adapted notion of highest weight modules exists, in which Ü0 q (a 1 ), although non-abelian, plays the role usually played by the Cartan subalgebra. Thus, we restrict our attention to modules over Ü q (a 1 ) which, regarded as Ü0 q (a 1 )-modules, split as direct sums of indecomposable modules over Ü0 q (a 1 ).

We refer to those summands as t-weight spaces. Moreover, the injective algebra homomorphism ι 0 of proposition 2.3.13 restricts to an injective algebra homomorphism U0 q (a 1 ) → Ü0 q (a 1 ) from the quantum Heisenberg subalgebra U0 q (a 1 ) of Uq (a 1 ) to Ü0 q (a 1 ). Therefore, considering any Ü q (a 1 )-module M of type (1, 0), we get an action of the innite-dimensional abelian algebra U0 q (a 1 )/(C 1/2 -1) on all the t-weight spaces of M . Whenever the latter decompose into direct sums of generalized eigenspaces of the commuting family of linear operators {K + 1,0,m , K - 1,0,-m : m ∈ N}, we shall say that the t-weight-spaces are -weight. In the latter case, we let Sp(M ) denote the set of all the eigenvalues of K + 1,0,0 over M .

Denition 2.3.20. We shall say that a (topological) Ü q (a 1 )-module M is a t-weight module if there exists a countable set {M α : α ∈ A} of indecomposable -weight Ü0 q (a 1 )-modules, called the t-weight spaces of M , such that, as Ü0 q (a 1 )-modules,

M ∼ = α∈A M α . (2.3.49) We shall say that M is weight-nite if, in addition, Sp(M ) is nite. A vector v ∈ M -{0} is a highest t-weight vector of M if v ∈ M α
for some α ∈ A and, for every r, s ∈ Z,

X + 1,r,s .v = 0 . (2.3.50)
We shall say that M is highest t-weight if M ∼ = Ü q (a 1 ).v for some highest t-weight vector v ∈ M -{0}.

It is reasonably clear that, owing to the triangular decomposition ( Üq (a 1 ), Ü0 q (a 1 ), Ü+ q (a 1 )) of Ü q (a 1 ), for every highest t-weight Ü q (a 1 )-module M and every highest t-weight vector v ∈ M -{0}, we have

M ∼ = Ü- q (a 1 ). Ü0 q (a 1 ).v . (2.3.51)
Remark 2.3.21. In view of (2.3.51), simple highest t-weight Ü q (a 1 )-modules, including simple weight-nite Ü q (a 1 )-modules, are entirely determined as M ∼ = Üq (a 1 ).M 0 , by the data of their unique highest t-weight space M 0 ∼ = Ü0 q (a 1 ).v. Classifying simple weight-nite Üq (a 1 )-modules therefore amounts to classifying those simple Ü0 q (a 1 )-modules that appear as their highest t-weight spaces. We intend to undertake that classication in a future work.

Remark 2.3.22. (2.3.51) induces a partial ordering of the t-weight spaces through the Q --grading of Üq (a 1 ).

Topological Hopf algebra structure on Ü

q (a 1 ) Denition-Proposition 2.3.23. We dene

∆ = Ψ ⊗ Ψ • ∆ • Ψ -1 , (2.3.52) Ṡ = Ψ • S • Ψ -1 , (2.3.53) ε = ε • Ψ -1 . (2.3.54)
Equipped with the above comultiplication, antipode and counit, Ü q (a 1 ) is a topological Hopf algebra. The latter is easily extended into a topological Hopf algebraic structure on Üq (a 1 ) by setting, in addition,

∆(D ±1 1 ) = D ±1 1 ⊗ D ±1 1 , Ṡ(D ±1 1 ) = D ∓1 1 and ε(D ±1 1 ) = 1 .
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In this last section, we complete the proof of theorem 3.3.22 by constructing Ψ -1 : Ü q (a 1 ) → Uq ( ȧ1 ); i.e. by constructing a realization of the generators of Ü q (a 1 ) in Uq ( ȧ1 ).

Double loop generators

Denition 2.4.1. For every m ∈ Z, we set

X ± 1,m (z) := Y ∓m (x ± 1 (z)).
It is clear that Proposition 2.4.2. For every m ∈ Z, we have

ϕ X ± 1,m (z) = X ∓ 1,-m (1/z) . (2.4.1)
Proposition 2.4.3.

i. There exists a unique

ψ + 1,1 (z) ∈ Uq ( ȧ1 )[[z, z -1 ]] such that Y k - 1 (w) -1 x - 1 (C 1/2 w) , x + 1 (z) G - 10 (C -1/2 w/z) = -δ C -1/2 q 2 w z ψ + 1,1 (z) . (2.4.2) ii. Set ψ - 1,-1 (z) = ϕ ψ + 1,1 (1/z)
. Then, we have

x - 1 (z), Y x + 1 (C 1/2 w)k + 1 (w) -1 , G + 10 (C 1/2 z/w) = -δ C -1/2 q 2 w z ψ - 1,-1 (z) . (2.4.3)
Proof. The proof of i. is immediate from the denitions. ii. then follows by applying ϕ to (2.4.2).

Remark 2.4.4. It is worth noting that

ψ ± 1,±1 (z) / ∈ Uq ( ȧ1 )[[z, z -1 ]].
Corollary 2.4.5. For every i ∈ İ, we have i.

k - i (v)ψ ± 1,±1 (z) = G ∓ i,0 (C ∓1/2 q 2 v/z)G ∓ i,1 (C ∓1/2 v/z)ψ ± 1,±1 (z)k - i (v); ii. ψ ± 1,±1 (z)k + i (v) = G ∓ i,0 (C ∓1/2 q -2 z/v)G ∓ i,1 (C ∓1/2 z/v)k + i (v)ψ ± 1,±1 (z);
Proof. ii. follows by applying ϕ to i. and i. is a direct consequence of (2.4.2) and (2.4.3) on one hand and of (4.2.6) and (4.2.7) on the other hand.

Let us then dene the following Uq ( ȧ1 )-valued formal power series

Γ ± 0 (z) := k ± 0 (z)k ± 1 (z) ∈ Uq ( ȧ1 )[[z ∓1 ]] . (2.4.4)
Denoting by Z( Uq ( ȧ1 )) the center of Uq ( ȧ1 ), it is straightforward to check that indeed Proposition 2.4.6.

Γ ± 0 (z) ∈ Z( Uq ( ȧ1 ))[[z ∓1 ]].
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Similarly, dene

℘ ± (z) := k ± 0 (z)k ± 1 (zq 2 ) ∈ Uq ( ȧ1 )[[z ∓1 ]] .
(2.4.5)

Then we establish an important result.

Proposition 2.4.7. We have the following xed points of Y ;

Y ℘ ± (z) = ℘ ± (z) , (2.4.6) Y ψ ± 1,±1 (z) = ψ ± 1,±1 (z) . (2.4.7) Moreover Y Γ ± 0 (z) = Γ ± 0 (zq 2 ) , (2.4.8)
Proof.

(2.4.6) and (2.4.8) are obvious. We prove (2.4.7) for the upper choice of signs. In order to do so, we rst rewrite (2.4.2) as

x + 0 (w), x + 1 (z) G - 10 (w/z) = δ q 2 w z ψ + 1,1 (z) .
Now, (2.2.38) and the denition of Y imply that, on one hand,

x + 0 (z 1 ), x + 0 (z 2 ), x + 1 (wq 2 ) G - 10 (z 2 /wq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /wq 2 ) , x - 0 (C -1 z)k + 0 (C -1/2 z) -1 G - 10 (w/z) = -[2] q δ z 1 z 2 q 2 δ z 2 w Y x + 0 (w) , Y x + 1 (z) G - 10 (w/z) = -[2] q δ z 1 z 2 q 2 δ z 2 w Y x + 0 (w), x + 1 (z) G - 10 (w/z) = -[2] q δ z 1 z 2 q 2 δ z 2 w δ wq 2 z Y ψ + 1,1 (z) ,
whereas, on the other hand, (2.2.38), (4.2.6), (4.2.7) and (4.2.9), as well as corollary 2.4.5, imply that

x + 0 (z 1 ), x + 0 (z 2 ), x + 1 (wq 2 ) G - 10 (z 2 /wq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /wq 2 ) , x - 0 (C -1 z)k + 0 (C -1/2 z) -1 G - 10 (w/z) = x + 0 (z 1 ), x + 0 (z 2 ), x + 1 (wq 2 ) G - 10 (z 2 /wq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /wq 2 ) , x - 0 (C -1 z) k + 0 (C -1/2 z) -1 = 1 q -q -1 δ z 1 z δ z 2 w k + 0 (z 1 C -1/2 ), ψ + 1,1 (wq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /wq 2 ) + δ z 2 z x + 0 (z 1 ), k + 0 (z 2 C -1/2 ), x + 1 (wq 2 ) G - 10 (z 2 /wq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /wq 2 ) k + 0 (C -1/2 z) -1 = δ z 1 z δ z 2 w G + 00 (w/z 1 )G + 01 (q 2 w/z 1 ) -G - 11 (z 1 /w)G - 10 (z 1 /wq 2 ) q -q -1 ψ + 1,1 (wq 2 ) +δ z 2 z δ z 1 w G + 01 (q 2 w/z 2 ) -G - 10 (z 2 /wq 2 ) q -q -1 ψ + 1,1 (wq 2 ) .
Making use of (3.3.68) and (5.1.5) for the latter, see Appendix , we eventually get

x + 0 (z 1 ), x + 0 (z 2 ), x + 1 (wq 2 ) G - 10 (z 2 /wq 2 ) G - 11 (z 1 /z 2 )G - 10 (z 1 /wq 2 ) , x - 0 (C -1 z)k + 0 (C -1/2 z) -1 G - 10 (w/z) = [2] q δ z 1 z δ z 2 w δ w z 1 -δ wq 2 z 1 ψ + 1,1 (wq 2 ) -[2] q δ z 2 z δ z 1 w δ w z 2 ψ + 1,1 (wq 2 ) = -[2] q δ z 1 z δ z 2 w δ wq 2 z 1 ψ + 1,1 (z) ,
thus proving the result. The case with lower choice of signs follows by applying ϕ.

Proposition 2.4.8. For every m ∈ Z, we have i.

ψ + 1,1 (z), X - 1,m (v) = -[2] q δ Cz v ℘ -(C 1/2 q -2 z)X - 1,m+1 (Cq -2 z); ii. ψ + 1,1 (z), X + 1,m (v) G - 10 (z/vq 2 )G - 11 (z/v) = [2] q δ z vq 2 X + 1,m+1 (z).
iii.

ψ - 1,-1 (z), X + 1,-m (v) = [2] q δ Cz v X + 1,-(m+1) (Cq -2 z)℘ + (C 1/2 q -2 z); iv. G + 10 (vq 2 /z)G + 11 (v/z) ψ - 1,-1 (z), X - 1,-m (v) = -[2] q δ z vq 2 X - 1,-(m+1) (z). v. ψ + 1,1 (z), ψ - 1,-1 (v) = [2]q q-q -1 δ z Cv ℘ + (C -1/2 q -2 z) -δ Cz v ℘ -(C -1/2 q -2 v) .
Proof. i. and ii. are readily checked for m = 0. Then, assuming they hold for some m ∈ Z and applying Y ±1 , it follows from propositon 2.4.7 that they also hold for m ± 1. iii. and iv. are obtained by applying ϕ to i. and ii. respectively. Finally v. is obtained by direct calculation from the denitions of ψ + 1,1 (z) and

ψ - 1,-1 (v), i.e. δ C -1/2 q 2 w z δ C 1/2 q -2 u v ψ + 1,1 (z), ψ - 1,-1 (u) = x + 0 (C -1/2 w), x + 1 (z) G - 10 (C -1/2 w/z) , x - 1 (u), x - 0 (C -1/2 v) G + 10 (C 1/2 u/v) = [2] q δ C -1/2 q 2 v u δ z Cu x + 0 (C -1/2 w), x - 0 (C -1/2 v)k + 1 (C -1/2 z) G - 10 (C -1/2 w/z) -δ Cw v k - 0 (C -1 v)x - 1 (u), x + 1 (z) G - 10 (C -1/2 w/z) = [2] q q -q -1 δ C 1/2 q -2 u v δ C -1/2 q 2 w z δ z Cu k + 0 (C -1 w)k + 1 (C -1/2 z) -δ Cz u k - 0 (C -1 v)k - 1 (C -1/2 u) .
Compare with (2.4.5) to conclude the proof.

Denition-Proposition 2.4.9. For every m ∈ N × there exist

ψ + 1,m (z), Γ + m (z) ∈ Uq ( ȧ1 )[[z, z -1 ]], such that Γ + 1 (v) = 0 (2.4.9)
and, for every m, n ∈ N × ,

Y m k - 1 (z) -1 x - 1 (C 1/2 z) , x + 1 (v) G - 01 (z/C 1/2 v) = -δ z C 1/2 v Γ + m (v) +(q -q -1 ) m-2 k=1 δ q 2k z C 1/2 v ψ + 1,k (v)Γ + m-k (v) -δ q 2m z C 1/2 v ψ + 1,m (v) , (2.4.10) Y ψ + 1,m (v) = ψ + 1,m (v) , (2.4.11) Y Γ + m (v) = Γ + m (vq 2 ) ,
(2.4.12) 

G - 01 (q -2m v/w)G - 11 (q 2(1-m) v/w) ψ + 1,1 (w), ψ + 1,m (v) G - 01 (w/vq 2 )G - 11 (w/v) = [2] q δ w vq 2 ψ + 1,m+1 (q 2 v) -[2] q δ q 2m w v ψ + 1,m+1 (v) , (2.4.13) [ψ + 1,n (w), Γ + m (v)] = 0 . ( 2 
every m ∈ N × , [2] q δ z uq 2 Y -1 Y m+1 k - 1 (C -1/2 v) -1 x - 1 (v) , x + 1 (uq 2 ) G - 01 (C -1 q -2 v/u) -[2] q δ Cz v Y m+1 k - 1 (C 1/2 q -2 z) -1 x - 1 (Cq -2 z) , x + 1 (u) G - 01 (z/uq 2 ) (2.4.15) = G - 10 (v/Cz)G - 11 (vq 2 /Cz) ψ + 1,1 (z), Y m k - 1 (C -1/2 v) -1 x - 1 (v) , x + 1 (u) G - 01 (C -1 v/u) G - 10 (z/uq 2 )G - 11 (z/u)
.

If m = 1, (3.3.82) is an easy consequence of the above equation. Now assume that the proposition holds up to some m ∈ N × . Then (2.4.15) reads, for that m,

[2] q δ z uq 2 Y -1 Y m+1 k - 1 (C -1/2 v) -1 x - 1 (v) , x + 1 (uq 2 ) G - 01 (C -1 q -2 v/u) -[2] q δ Cz v Y m+1 k - 1 (C 1/2 q -2 z) -1 x - 1 (Cq -2 z) , x + 1 (u) G - 01 (z/uq 2 ) = -δ v Cu G - 10 (v/Cz)G - 11 (vq 2 /Cz) ψ + 1,1 (z), Γ + m (u) G - 10 (z/uq 2 )G - 11 (z/u) +(q -q -1 ) m-2 k=1 δ q 2k v Cu G - 10 (v/Cz)G - 11 (vq 2 /Cz) ψ + 1,1 (z), ψ + 1,k (u) G - 10 (z/uq 2 )G - 11 (z/u) Γ + m-k (u) -δ q 2m v Cu G - 10 (v/Cz)G - 11 (vq 2 /Cz) ψ + 1,1 (z), ψ + 1,m (u) G - 10 (z/uq 2 )G - 11 (z/u) = -[2] q (q -q -1 )δ v Cu δ v Cz -δ vq 2 Cz ψ + 1,1 (z)Γ + m (u) +[2] q (q -q -1 ) m-2 k=1 δ q 2k v Cu δ z uq 2 ψ + 1,k+1 (uq 2 ) -δ zq 2k u ψ + k+1 (u) Γ + m-k (u) -[2] q δ q 2m v Cu δ z uq 2 ψ + 1,m+1 (uq 2 ) -δ zq 2m u ψ + 1,m+1 (u) .
It immediately follows that (2.4.10) holds at rank m + 1, for some

Γ + m+1 (z) ∈ Uq ( ȧ1 )[[z, z -1 ]
] satisfying (2.4.12). Considering (2.4.15) at rank m + 1, and substituting the above results, we get

[2] q δ z uq 2 Y -1 Y m+2 k - 1 (C -1/2 v) -1 x - 1 (v) , x + 1 (uq 2 ) G - 01 (C -1 q -2 v/u) -[2] q δ Cz v Y m+2 k - 1 (C 1/2 q -2 z) -1 x - 1 (Cq -2 z) , x + 1 (u) G - 01 (z/uq 2 ) = -δ v Cu G - 10 (v/Cz)G - 11 (vq 2 /Cz) ψ + 1,1 (z), Γ + m+1 (u) G - 10 (z/uq 2 )G - 11 (z/u) +[2] q (q -q -1 ) m-1 k=1 δ q 2k v Cu δ z uq 2 ψ + 1,k+1 (uq 2 ) -δ zq 2k u ψ + k+1 (u) Γ + m+1-k (u) -δ q 2(m+1) v Cu G - 10 (v/Cz)G - 11 (vq 2 /Cz) ψ + 1,1 (z), ψ + 1,m+1 (u) 
G - 10 (z/uq 2 )G - 11 (z/u)
.

It readily follows that, on one hand, there exists some

ψ + 1,m+2 (v) ∈ Üq (sl 2 )[[v, v -1 ]
] such that (3.3.82) holds for m + 1 and that, on the other hand,

(uq 2 -z)(u -z) ψ + 1,1 (z), Γ + m+1 (u) = 0 . Since Y (Γ + m+1 (u)) = Γ + m+1 (uq 2 ), we have that (uq 2(p+1) -z)(uq 2p -z) ψ + 1,1 (z), Γ + m+1 (u) = 0
for every p ∈ Z and, as a consequence, (2.4.14) holds for m + 1. Finally, (2.4.11) for m + 1 follows from the corresponding case of (3.3.82), which concludes the proof.

Remark 2.4.10. Note that since [ψ + 1,n (z), Γ + m (v)] = 0 for every m, n ∈ N × , we have that

ψ + 1,n,k Γ + m,l = Γ + m,l ψ + 1,n,k ∈ Ω l-k ∩ Ω k-l , (2.4.16)
guaranteeing the convergence in Uq ( ȧ1 ) of each of the terms of the series ψ + 1,k (z)Γ + m-k (z) on the the r.h.s of eq. (2.4.10).

Denition 2.4.11. For every m ∈ N × , let

Γ - -m (z) = ϕ(Γ + m (1/z)) and ψ - 1,-m (z) = ϕ(ψ + 1,m (1/z)) .
(2.4.17)

Then,

Corollary 2.4.12. We have

Γ - -1 (v) = 0 (2.4.18)
and, for every m, n ∈ N × ,

x - 1 (v), Y m x + 1 (C 1/2 z)k + 1 (z) -1 G + 01 (C 1/2 v/z) = -δ z C 1/2 v Γ - -m (v) -(q -q -1 ) m-2 k=1 δ q 2k z C 1/2 v Γ - -(m-k) (v)ψ - 1,-k (v) -δ q 2m z C 1/2 v ψ - 1,-m (v) , (2.4.19) Y ψ - 1,-m (v) = ψ - 1,-m (v) , (2.4.20) Y Γ - -m (v) = Γ - -m (vq 2 ) ,
(2.4.21)

G + 01 (q 2m w/v)G + 11 (q 2(m-1) w/v) ψ - 1,-m (v), ψ - 1,-1 (w) G + 01 (vq 2 /w)G + 11 (v/w) = [2] q δ w vq 2 ψ - 1,-(m+1) (q 2 v) -[2] q δ q 2m w v ψ - 1,-(m+1) (v) , (2.4.22) [ψ - 1,-n (w), Γ - -m (v)] = 0 . (2.4.23)
Proof. It suce to apply ϕ to the results of the previous proposition.

Proposition 2.4.13. For every i ∈ İ and for every m ∈ N × , we have i.

k - i (v)ψ ± 1,±m (z) = G ∓ i,0 (C ∓1/2 q 2m v/z)G ∓ i,1 (C ∓1/2 v/z)ψ ± 1,±m (z)k - i (v); ii. ψ ± 1,±m (z)k + i (v) = G ∓ i,0 (C ∓1/2 q -2m z/v)G ∓ i,1 (C ∓1/2 z/v)k + i (v)ψ ± 1,±m (z);
Proof. Clearly ii. follows by applying ϕ to i.. We prove i. by induction on m ∈ N × . The case m = 1 is corollary 2.4.5i. Now, assuming that i. holds for some m ∈ N × , we can make use of (3.3.82) and (2.4.22) to show that

k - i (v)ψ ± 1,±(m+1) (z) = G ∓ i,0 (C ∓1/2 q 2(m+1) v/z)G ∓ i,1 (C ∓1/2 q 2m v/z) ×G ∓ i,0 (C ∓1/2 q 2m v/z)G ∓ i,1 (C ∓1/2 z/v)ψ ± 1,±m (z)k - i (v) = G ∓ i,0 (C ∓1/2 q 2(m+1) v/z)G ∓ i,1 (C ∓1/2 z/v)ψ ± 1,±m (z)k - i (v)
whch completes the recursion.

The above proposition has the obvious Corollary 2.4.14. For every m ∈ N × , we have

℘ -(v)ψ ± 1,±m (z) = G ∓ 00 (C ∓1/2 q 2m v/z)G ∓ 01 (C ∓1/2 v/z) G ∓ 01 (C ∓1/2 q 2(m+1) v/z)G ∓ 11 (C ∓1/2 q 2 v/z)ψ ± 1,±m (z)℘ -(v) ;
(2.4.24)

ψ ± 1,±m (z)℘ + (v) = G ∓ 00 (C ∓1/2 q -2m z/v)G ∓ 01 (C ∓1/2 z/v) G ∓ 01 (C ∓1/2 q -2(m+1) z/v)G ∓ 11 (C ∓1/2 q -2 z/v)℘ + (v)ψ ± 1,±m (z) .
(2.4.25)

Proposition 2.4.15. For every m, n ∈ N × , we have

ψ + 1,m (v), ψ - 1,-n (w) = [2] q (q -q -1 ) δ Cq 2(1-m) v w ℘ -(C -1/2 q -2m v)ψ - 1,-(n-1) (wq -2 )ψ + 1,m-1 (v) -δ q 2(n-1) v Cw ψ - 1,-(n-1) (w)ψ + 1,m-1 (vq -2 )℘ + (C 1/2 q -2 v) ,
where we assume that

ψ ± 1,0 (z) = 1 q -q -1 .
(2.4.26)

Proof. The case m = n = 1 follows immediately by proposition 2.4.8.v. Now, applying a → [a, ψ - 1,-n (w)] and a → [ψ + 1,n (w), a] to (3.3.82) and (2.4.22) respectively and making use of corollary 2.4.14, one easily completes the recursion.

Exchange relations

Proposition 2.4.16. For every m ∈ N, there exists some

ξ m (z) ∈ Uq ( ȧ1 )[[z, z -1 ]] such that, for every n ∈ Z, [X - 1,m+n+1 (w), X - 1,n (z)] G - 01 (w/z) = -[X - 1,n+1 (w), X - 1,m+n (z)] G - 01 (w/z) = δ wq 2 z Y n (ξ m (z)) . (2.4.27)
Proof. Assume rst that n = 0. The case m = 0 then follows immediately from the denition of X - 1,1 (w) and relations (4.2.7) and (4.2.9), leading to ξ 0 (z) = 0, as it should. Taking the commutator of the case

m = 0 with ψ + 1,1 (v), we get 0 = [[X - 1,1 (w), X - 1,0 (z)] G - 01 (w/z) , ψ + 1,1 (v)] = [[X - 1,1 (w), ψ + 1,1 (v)], X - 1,0 (z)] G - 01 (w/z) + [X - 1,1 (w), [X - 1,0 (z), ψ + 1,1 (v)]] G - 01 (w/z) = [2] q ℘ -(v) δ C 1/2 q 2 v w [X - 1,2 (wq -2 ), X - 1,0 (z)] G - 01 (wq -2 /z) +δ C 1/2 q 2 v z G - 01 (zq -2 /w)G - 11 (z/w) [X - 1,1 (w), X - 1,1 (zq -2 )] G - 01 (w/z)
.

The latter implies that

[X - 1,2 (wq -2 ), X - 1,0 (z)] G - 01 (wq -2 /z) = δ w z ξ 1 (z) , (2.4.28) G - 01 (zq -2 /w)G - 11 (z/w) [X - 1,1 (w), X - 1,1 (zq -2 )] G - 01 (w/z) = -δ w z ξ 1 (z) , (2.4.29) for some ξ 1 (z) ∈ Uq ( ȧ1 )[[z, z -1 ]].
Multiplying (2.4.29) by (zq -2 -w) and subsequently factoring (z-q -2 w),

we get that

G - 01 (zq -2 /w) [X - 1,1 (w), X - 1,1 (zq -2 )] = δ w z ξ 1 (z) + δ w zq 2 η 0 (z) , (2.4.30) for some η 0 (z) ∈ Uq ( ȧ1 )[[z, z -1 ]].
Multiplying the above equation by q -2 (z -w), we get

(zq -4 -w)X - 1,1 (w)X - 1,1 (zq -2 ) -q -2 (z -w)X - 1,1 (zq -2 )X - 1,1 (w) = z(1 -q 2 )δ w zq 2 η 0 (z) . (2.4.31)
But, on the other hand,

(zq -4 -w)X - 1,1 (w)X - 1,1 (zq -2 ) -q -2 (z -w)X - 1,1 (zq -2 )X - 1,1 (w) = Y (zq -4 -w)x - 1 (w)x - 1 (zq -2 ) -q -2 (z -w)x - 1 (zq -2 )x - 1 (w) = 0
by relation (4.2.8). Substituting back into (2.4.31) proves that η 0 (z) = 0 and that (2.4.30) eventually reads

G - 01 (zq -2 /w) [X - 1,1 (w), X - 1,1 (zq -2 )] = δ w z ξ 1 (z) .
(2.4.32)

Combining (2.4.28) and (2.4.32), we get the case m = 1. Now assume that the result holds for all nonnegative integer less than m ∈ N. Taking the commutator of (2.4.27) with ψ + 1,1 (v) yields

[2] q ℘ -(v) δ C 1/2 q 2 v w [X - 1,m+2 (wq -2 ), X - 1,0 (z)] G - 01 (wq -2 /z) +δ C 1/2 q 2 v z G - 01 (zq -2 /w)G - 11 (z/w) [X - 1,m+1 (w), X - 1,1 (zq -2 )] G - 01 (w/z) = -[2] q ℘ -(v) δ C 1/2 q 2 v w [X - 1,2 (wq -2 ), X - 1,m (z)] G - 01 (wq -2 /z) +δ C 1/2 q 2 v z G - 01 (zq -2 /w)G - 11 (z/w) [X - 1,1 (w), X - 1,m+1 (zq -2 )] G - 01 (w/z) = δ wq 2 z [ξ m (z), ψ + 1,1 (v)]
The latter implies that

[X - 1,m+2 (wq -2 ), X - 1,0 (z)] G - 01 (wq -2 /z) = δ w z ξ m+1 (z) + δ wq 2 z η 1 (z) , (2.4.33) G - 01 (zq -2 /w)G - 11 (z/w) [X - 1,m+1 (w), X - 1,1 (zq -2 )] G - 01 (w/z) = -δ w z ξ m+1 (z) + δ wq 2 z η 1 (z) , (2.4.34) [X - 1,2 (wq -2 ), X - 1,m (z)] G - 01 (wq -2 /z) = δ w z η 3 (z) -δ wq 2 z η 1 (z) , (2.4.35) 
G - 01 (zq -2 /w)G - 11 (z/w) [X - 1,1 (w), X - 1,m+1 (zq -2 )] G - 01 (w/z) = -δ w z η 3 (z) -δ wq 2 z η 2 (z) , (2.4.36)
for some ξ m+1 (z), η 1 (z), η 2 (z), η 3 (z) ∈ Uq ( ȧ1 )[[z, z -1 ]]. Multiplying (2.4.36) by (z -wq 2 ) and subsequently factoring (zq 2 -w), we get that

[X - 1,m+1 (z), X - 1,1 (w)] G - 01 (z/w) = -δ w zq 2 η 3 (w) + δ w zq 4 η 4 (z) , (2.4.37) for some η 4 (z) ∈ Uq ( ȧ1 )[[z, z -1 ]]. But, by the recursion hypothesis, [X - 1,m+1 (z), X - 1,1 (w)] G - 01 (z/w) = Y [X - 1,m (z), X - 1,0 (w)] G - 01 (z/w) = δ w zq 2 Y (ξ m-1 (w)) .
Comparing with (2.4.37), it follows that

η 3 (w) = -Y (ξ m-1 (w)) and η 4 (z) = 0 .
By the recursion hypothesis, we also have

[X - 1,2 (wq -2 ), X - 1,m (z)] G - 01 (wq -2 /z) = Y [X - 1,1 (wq -2 ), X - 1,m-1 (z)] G - 01 (wq -2 /z) = -δ w z Y (ξ m-1 (z)) = δ w z η 3 (z)
Comparing the above result with (2.4.35), we conclude that η 1 (z) = 0. As a consequence, (2.4.33) now reads

[X - 1,m+2 (w), X - 1,0 (z)] G - 01 (w/z) = δ wq 2 z ξ m+1 (z) .
(2.4.38)

On the other hand, multiplying (2.4.34) by (z -wq 2 ) and subsequently factoring (zq 2 -w), we get that

G - 01 (zq -2 /w) [X - 1,m+1 (w), X - 1,1 (zq -2 )] = δ w z ξ m+1 (z) + δ w zq 2 η 5 (z) , (2.4.39) for some η 5 (z) ∈ Uq ( ȧ1 )[[z, z -1 ]].
Multiplying the above equation by (z -w) yields

Y (zq -2 -wq 2 )X - 1,m (w)X - 1,0 (zq -2 ) -(z -w)X - 1,0 (zq -2 )X - 1,m (w) = z(1 -q 2 )δ zq 2 w η 5 (z) . (2.4.40)
But the recursion hypothesis

[X - 1,m (w), X - 1,0 (zq -2 )] G - 01 (wq 2 /z) = δ wq 4 z ξ m-1 (z) (2.4.41)
implies, upon multiplication by (zq -2 -wq 2 ), that

(zq -2 -wq 2 )X - 1,m (w)X - 1,0 (zq -2 ) -(z -w)X - 1,0 (zq -2 )X - 1,m (w) = 0 . (2.4.42)
Substituting back into (2.4.40) proves that η 5 (z) = 0 and that (2.4.39) eventually reads Corollary 2.4.17. For every m ∈ N and every n ∈ Z, we have

G - 01 (w/z) [X - 1,m+1 (z), X - 1,1 (w)] = δ wq 2 z ξ m+1 (z) . ( 2 
[X + 1,m+n+1 (z), X + 1,n (w)] G + 01 (z/w) = -[X + 1,n+1 (z), X + 1,m+n (w)] G + 01 (z/w) = δ wq 2 z ϕ • Y -m-n-1 (ξ m (1/z)) .
(2.4.44)

Proof. It suces to apply ϕ • Y -m-n-1 to (2.4.27).

We now return to the proof of theorem 3.3.22 and to the map Ψ : Uq ( ȧ1 ) → Ü q (a 1 ).

Corollary 2.4.18. We have i. Υ ± (w) = 0;

ii. and for every i = j,

σ∈S 3 3 k=0 (-1) k 3 k q Ψ(x ± i (z σ(1) )) • • • Ψ(x ± i (z σ(k) ))Ψ(x ± j (z))Ψ(x ± i (z σ(k+1) )) • • • Ψ(x ± i (z σ(3) )) = 0 .
Proof. The proof of proposition 2.4.16 makes it clear that the relations (4.2.9) with i = j there, both follow from the relations

X + 1,0 (v), X + 1,-1 (w) G - 11 (v/w) = 0 (2.4.45)
and

X - 1,1 (v), X - 1,0 (w) G + 11 (v/w) = 0 (2.4.46)
in the completion Uq ( ȧ1 ). A tedious but straightforward calculation shows that the quantum Serre relations (4.2.10) similarly follow from

X + 1,-1 (v), X + 1,-2 (w) G - 11 (v/w) = 0 (2.4.47)
and

X - 1,2 (v), X - 1,1 (w) G + 11 (v/w) = 0 , (2.4.48)
which in turn are a consequence of ((2.4.45) (2.4.46)) just apply Y there. We can therefore extend Ψ : Uq ( ȧ1 ) → Ü q (a 1 ) by continuity 1 into Ψ : Uq ( ȧ1 ) → Ü q (a 1 ) and it suces to check point i. Since by construction Uq ( ȧ1 ) is dense in Uq ( ȧ1 ), there exists a sequence

(u n (v, w)) n∈N ∈ Uq ( ȧ1 )[[v, v -1 , w, w -1 ]] N such that lim n→+∞ u n (v, w) = 0 , (2.4.49)
whereas, on the other hand,

lim n→+∞ Ψ(u n (v, w)) = δ vq ∓2 w Υ ± (w) .
(2.4.50)

Take for example the partial sum of the series involved on the l.h.s. of equations ((2.4.45) (2.4.46))

above. The result now follows by the continuity of Ψ.

Remark 2.4.19. We have therefore completed the proof of that part of theorem 3.3.22 that claims the existence of a continuous algebra homomorphism Ψ : Uq ( ȧ1 ) → Ü q (a 1 ). We still have to construct the inverse continuous algebra homomorphism Ψ -1 : Ü q (a 1 ) → Uq ( ȧ1 ). This shall be done at the end of the present section.

Weight grading relations

The results of the previous subsection have the following Corollary 2.4.20. For every m ∈ N × and every n ∈ Z, we have:

i. [Γ + m+1 (u), X - 1,n (z)] = 0; ii. [ψ + 1,m+1 (u), X - 1,n (z)] = -℘ -(C 1/2 uq -2(m+1) ) G + 01 (Cuq 2(1-m) /z) [X - 1,n+1 (zq -2 ), ψ + 1,m (u)] G - 01 (z/Cuq 2(1-m) ) ∝ δ Cu zq 2 m ; iii. [Γ + m+1 (u), X + 1,n (z)] = 0; iv. [ψ + 1,m+1 (v), X + 1,n (z)] G + 01 (v/z)G + 11 (v/zq 2(m+1) ) = -G - 01 (z/vq 2m ) [X + 1,n+1 (v), ψ + 1,m (z)] G + 01 (v/z) ∝ δ zq 2 v .
Proof. It suces to prove the proposition for n = 0 as the general case then follows by applying Y n for any n ∈ Z. Assuming that n = 0 in i. and ii., it then suces to take the commutator of (2.4.27) for n = 1 there with x + 1 (z). 1 Ψ is obviously Z (2) -graded, hence continuous. 

× , Γ + m (z) ∈ Z( Uq ( ȧ1 ))[[z, z -1 ]].
Indeed, in the next section we actually establish that these central elements consistently vanish.

The central elements Γ ± m>2 (z)

Before we can actually establish that these central elements vanish, we need to establish a few lemmas. In what follows, we let U< q ( ȧ1 ) = U≤ q ( ȧ1 ) -U≤ q ( ȧ1 ) ∩ U0 q ( ȧ1 ).

Lemma 2.4.22. For every

p ∈ N × , i. ∆(ψ - 1,-p (v)) = 1 ⊗ ψ - 1,-p (v) mod U< q ( ȧ1 ) ⊗ Uq ( ȧ1 ); ii. ∆(X + 1,-p (v)) = p-1 =1 Γ + 0 (C -1/2 q 2 v) -1 k + 0 (C -1/2 v) -1 ⊗X + 1,-p (v) mod U< q ( ȧ1 ) ⊗ Uq ( ȧ1 ). Proof. First one easily checks that ∆(ψ - 1,-1 (z)) = 1 ⊗ ψ - 1,-1 (z) + [2] q (q -q -1 )x - 1 (z) ⊗x - 0 (q -2 z)k + 1 (z) + ψ - 1,-1 (z) ⊗℘ + (q -2 z) ,
which proves i. for p = 1. Assuming i. holds for some p ∈ N, the result for p + 1 easily holds making use of (2.4.22) and of the recursion hypothesis.

Similarly, one easily checks that

∆(X + 1,-1 (v)) = X + 1,-1 (v) ⊗ 1 + k + 0 (C -1/2 v) -1 ⊗X + 1,-1 (v) ,
which proves ii. in the case p = 1. Assuming the result holds for some p ∈ N, the result for p + 1 easily follows making use of proposition 2.4.8.iii. and of the recusrion hypothesis.

For every N ∈ N × , we let

S < 2N -1 := {σ ∈ S 2N -1 : σ(1) = 1 ∀p ∈ N -1 σ(2p) < σ(2p + 1) σ(2N -4) < σ(2N -1)} (2.4.51) Dene : Z → İ = {0, 1} by setting, for every n ∈ Z, (n) :=    0 if n is even; 1 if n is odd.
(2.4.52)

Lemma 2.4.23. For every r ∈ N and every i 1 , . . . , i 2r-1 ∈ İ, there exists

(β r,σ ) σ∈S < 2r-1 ∈ F S < 2r-1 such that x + i 1 (z 1 ) . . . x + i 2r-1 (z 2r-1 ), X + 1,-r (v) = - [2] r-1 q q -q -1 σ∈S < 2r-1 β r,σ 2r-1 n=1 δ i σ(n) ,π(n) δ z σ(n) q νr(n) v (2.4.53)
where we have dened π : N → İ and ν r : N → Z by setting, for every n ∈ N,

π(n) =    0 if n = 1; (m) if n > 1 (2.4.54) and ν r (n) =    2(1 -r) if n = 1; 2(1 -r) + n -3 (n) if n > 1.
(2.4.55)

Proof. The case r = 0 holds by denition of the pairing. Assume that (2.4.53) holds for some r ∈ N.

Then, making use of the previous lemma, one easily shows that, for every i 1 , . . . , i 2r+1 ∈ İ

x + i 1 (z 1 ) . . . x + i 2r+1 (z 2r+1 ), ψ - 1,-1 (z), X + 1,-r (v) = [2] q q -q -1 A∈P (2,2r-1) 2r+1 m∈ 2 δ i A (1) m ,1-(m) δ z A (1) m q 2 (m) z x + i A (2) 1 (z A (2) 1 ) . . . x + i A (2) 2r-1 (z A (2) 2r-1 ), X + 1,-r (v) × R < A (z A ) -G + i A (1) 1 ,0 (C -1/2 z A (1) 1 /v)G + i A (1) 2 ,0 (C -1/2 z A (1) 2 /v)R > A (z -1 A ) ,
where

R < A (z A ) = m∈ 2 n∈ 2r-1 A (2) n <A (1) m G - i A (2) n ,i A (1) m (C -1/2 z A (2) n /z A (1) m ) ; R > A (z -1 A ) = m∈ 2 n∈ 2r-1 A (2) n >A (1) m G - i A (2) n ,i A (1) m (C 1/2 z A (1) m /z A (2) n ) .
Making use of proposition 2.4.8.iii. on the l.h.s. and of the recursion hypothesis on the r.h.s., we get

[2] q δ Cz v x + i 1 (z 1 ) . . . x + i 2r+1 (z 2r+1 ), X + 1,-(r+1) (vq -2 ) = - [2] r q (q -q -1 ) 2 A∈P (2,2r-1) 2r+1 σ∈S < 2r-1 β r,σ m∈ 2 δ i A (1) m ,1-(m) δ z A (1) m q 2 (m) z n∈ 2r-1 δ i A (2) σ(n) ,π(n) δ   z A (2) σ(n) q νr(n) v   × Q < σ,A (v/z) -G + 0,0 (C -1/2 zq -2 /v)G + 1,0 (C -1/2 z/v)Q > σ,A (z/v) , (2.4.56) 
where

Q < σ,A (v/z) = m∈ 2 n∈ 2r-1 A (2) σ(n) <A (1) m G - π(n),1-(m) (C -1/2 vq λr(m,n) /z) ; and 
Q > σ,A (z/v) = m∈ 2 n∈ 2r-1 A (2) σ(n) >A (1) m G - π(n),1-(m) (C 1/2 z/vq λr(m,n) ) ;
where λ r (m, n) = 2 (m) -ν r (n). In view of the δ(Cz/v) factor on the l.h.s of (2.4.56), it is clear that the relevant factors in Q < σ,A (v/z) and Q > σ,A (z/v) are the ones contributing to a pole at Cz = v, i.e. the ones for which λ r (m,

n) = c π(n),1-(m) or λ r (m, n) = -c π(n),1-(m)
respectively. We thus let

L ± r := (m, n) ∈ 2 × 2r -1 : λ r (m, n) = ±c π(n),1-(m)
and determine, by inspection, that, for every r ≥ 3,

L + r = {(1, 2r -2), (2, 2r -3)} , whereas L - r = {(2, 2r -4)} .
Since we cannot have A

(2) σ(2r-4) > A

(1)

2 while A (2) σ(2r-3) < A (1)
2 for σ ∈ S < 2r-1 , we see that the relevant pole is necessarily a simple pole; as one might have expected, given the absence of a δ (Cz/v) factor on the l.h.s of (2.4.56). It easily follows that

Q < σ,A (v/z) -G + 0,0 (C -1/2 zq -2 /v)G + 1,0 (C -1/2 z/v)Q > σ,A (z/v) = [2] q (q -q -1 )γ σ,A δ Cz v
for every (σ, A) ∈ S < 2r-1 × P

(2,2r-1) 2r+1

such that A

(2)

σ(2r-2) < A (1)
1 and either:

A (2) σ(2r-4) > A (1)
2 (and then necessarily, A

σ(2r-3) > A

(1)

2 ); or

A (2)
σ(2r-4) < A

(1) 2 and A

(2)

σ(2r-3) < A (1) 2 ; 
and, for each such pair (σ, A), γ σ,A ∈ F. Note that the above conditions impose that A

(2)

σ(1)=1 < A (1)
1 and hence A

(2) 1 = 1. Now, for each pair (σ, A) as above, dene

σ := 1 2 . . . 2r -1 2r 2r + 1 1 A (2) σ(2) . . . A (2) 
σ(2r-1) A

(1) 1

A

(1) 2

.

It is obvious that σ ∈ S < 2r+1 . Actually, setting (σ, A) → σ denes a map S < 2r-1 × P

(2,2r-1) 2r+1

→ S < 2r+1 which is easily seen to be a bijection. Observing furthermore that ν r -2 = ν r+1 and setting β r+1,σ = β r,σ γ σ,A , we can rewrite (2.4.56) as

x + i 1 (z 1 ) . . . x + i 2r+1 (z 2r+1 ), X + 1,-(r+1) (v) = - [2] r q q -q -1 σ ∈S < 2r+1 β r+1,σ 2r+1 n=1 δ i σ (n) ,π(n) δ z σ (n) q ν r+1 (n) v ,
which completes the recursion.

Proposition 2.4.24. For every m ∈ N × , we actually have

Γ + m (v) = Γ - -m (v) = 0.
Proof. It suces to prove that, say Γ - -m (z) = 0 for every m ∈ N × and to apply ϕ -1 to get the result for Γ + m (z). Considering the root space decomposition, it is obvious that having

x + i 1 (z 1 ) • • • x + i 2m (z 2m ), Γ - -m (z) = 0 ,
for every i 1 , . . . , i 2m ∈ I, is a sucient condition. Now, making use of the previous lemma, one easily shows that

x + i 1 (z 1 ) • • • x + i 2m (z 2m ), X + 1,-m (v), x - 1 (z) = - [2] q (q -q -1 ) 2 A∈P (1,2m-1) 2m σ∈S < 2m-1 β m,σ δ i A (1) 1 ,1 δ z A (1) 1 z n∈ 2m-1 δ i A (2) n ,π(n) δ   z A (2) σ(n) q νm(n) v   × G + i A (1) 1 ,0 (C 1/2 z A (1) 1 /v)R < A (z A ) -R > A (z -1 A ) ,
where

R < A (z A ) = n∈ 2m-1 A (2)
n >A

(1) 1

G - i A (1) 1 ,i A (2) n (C -1/2 z A (1) 1 /z A (2) n ) , R > A (z -1 A ) = n∈ 2m-1 A (2)
n <A

(1) 1

G - i A (1) 1 ,i A (2) n (C 1/2 z A (2) n /z A (1) 1 
) .

Hence, upon rewriting, we get

x + i 1 (z 1 ) • • • x + i 2m (z 2m ), X + 1,-m (v), x - 1 (z) = - [2] q (q -q -1 ) 2 A∈P (1,2m-1) 2m σ∈S < 2m-1 β m,σ δ i A (1) 1 ,1 δ z A (1) 1 z n∈ 2m-1 δ i A (2) n ,π(n) δ   z A (2) σ(n) q νm(n) v   × G + 1,0 (C 1/2 z/v)Q < σ,A (z/v) -Q > σ,A (v/z) ,
where

Q < σ,A (z/v) = n∈ 2m-1 A (2) σ(n) >A (1) 1 G - 1,π(n) (C -1/2 zq νm(n) /v) , Q > σ,A (v/z) = n∈ 2m-1 A (2) σ(n) <A (1) 1 G - 1,π(n) (C 1/2 vq -νm(n) /z) .
In view of (2.4.19), the contributions to

x + i 1 (z 1 ) • • • x + i 2m (z 2m ), Γ - -m (z)
in the above expression must come from terms with a pole at z = C 1/2 v. The latter happen for factors in

Q < σ,A (z/v) or Q > σ,A (v/z) such that ν m (n) = c 1,π(n) or ν m (n) = -c 1,π(n) respectively. We thus let M ± m = {n ∈ 2m -1 : ν m (n) = ±c 1,π(n) } .
Upon inspection, one easily sees that

M + m = {2m -4} , whereas M - m = {2m -1} .
Now, for σ ∈ S < 2m-1 , we have σ(2m -4) < σ(2m -1) and no term has a pole at z = C 1/2 v. We conclude that

x + i 1 (z 1 ) • • • x + i 2m (z 2m ), Γ - -m (z) = 0.
2.4.5 Relations in Ψ -1 ( Ü0 q (a 1 )) Denition 2.4.25. We set K + 1,0 (v) := -k - 1 (C 1/2 v) and, for every m ∈ N × ,

K + 1,m (v) := (q -q -1 )k - 1 (C 1/2 vq -2m )ψ + 1,m (v) .
We then let

K - 1,0 (v) := ϕ K + 1,0 (1/v) = -k + 1 (C 1/2 v)
and, for every m ∈ N × ,

K - 1,-m (v) := ϕ K + 1,m (1/v) = -(q -q -1 )ψ - 1,-m (v)k + 1 (C 1/2 vq -2m ) .
It is straigthforward to establish that

k - 1 (C 1/2 w)ψ + 1,m (v) = G + 11 wq 2m v G - 11 w v ψ + 1,m (v)k - 1 (C 1/2 w) .
(2.4.57)

By making repeated use of the above relation, one readily checks that, in terms of (K + 1,m (v)) m∈N × , the relations (2.4.10) and (3.3.82), as well as the relations in corollary 2.4.20ii. and iv. of the previous subsections respectively read

[x + 1 (v), X - 1,n (z)] = 1 q -q -1 δ zq 2n Cv   n-1 p=0 Γ - 0 (C -1/2 zq 2p ) -1   K + 1,n (v) (2.4.58) [K + 1,1 (w), K + 1,m (v)] G - 11 (w/v)G + 11 (wq 2(m-1) /v) = [2] q δ wq 2m v K + 1,0 (vq -2m )K + 1,m+1 (v) -δ w vq 2 K + 1,0 (v)K + 1,m+1 (vq 2 ) (2.4.59) [K + 1,m+1 (v), X - 1,n (z)] G + 11 (Cv/zq 2(m+1) ) = -Γ - 0 (C 1/2 vq -2(m+1) )[X - 1,n+1 (zq -2 ), K + 1,m (v)] G + 11 (zq 2(m-1) /Cv) ∝ δ zq 2m Cv (2.4.60) [K + 1,m+1 (v), X + 1,n (z)] G - 11 (v/z) = -[X + 1,n+1 (v), K + 1,m (z)] G - 11 (v/z) ∝ δ zq 2 v (2.4.61)
Proposition 2.4.26. For every m, n ∈ N, we have

(v -q ±2 z)(v -q 2(m-n∓1) z)K ± 1,±m (v)K ± 1,±n (z) = (vq ±2 -z)(vq ∓2 -q 2(m-n) z)K ± 1,±n (z)K ± 1,±m (v) , (2.4.62)
Proof. We apply the map a → [a, X - 1,n (u)] G + 11 (Cv/uq 2(m+1) ) to the relation (2.4.61) with n = 0 there. Making use of identity (2.1.2) on the left hand side, we get

[[K + 1,m+1 (v), X - 1,n (u)] G + 11 (Cq -2(m+1) v/u) ∝δ C -1 uq 2m v , x + 1 (z)] G + 10 (v/z) + K + 1,m+1 (v), x + 1 (z), X - 1,n (u) G + 10 (v/z)G + 11 (Cq -2(m+1) v/u) ∝ δ zq 2 v
Multiplying through by C -1 uq 2m -v zq 2 -v and making use of (2.4.58), it follows that

0 = C -1 uq 2m -v zq 2 -v δ uq 2n Cz K + 1,m+1 (v), K + 1,n (z) G + 10 (v/z)G + 11 (Cq -2(m+1) v/u) = zq 2(m-n) -v zq 2 -v δ uq 2n Cz K + 1,m+1 (v), K + 1,n (z) G + 10 (v/z)G + 11 (q 2(n-m-1) v/z)
Hence the result for the upper choice of signs in (2.4.62). The case with lower choice of signs follows by applying ϕ to the above equation.

At this point it should be clear that we have obtained Ψ -1 . Indeed, it suces to let, for every m ∈ N and every n ∈ Z,

Ψ -1 (D ±1 2 ) = D ±1 (2.4.63) Ψ -1 (C ±1/2 ) = C ±1/2
(2.4.64)

Ψ -1 (c ± (z)) = Γ ± 0 (z) (2.4.65) Ψ -1 (K ± 1,±m (z)) = K ± 1,±m (z) 
(2.4.66)

Ψ -1 (X ± 1,n (z)) = X ± 1,n (z) (2.4.67)
The relations in Ü q (a 1 ) are obviously all the relations we have derived in the present section. Ψ -1 therefore extends as an algebra homomorphism. This concludes the proof of theorem 3.3.22.

Returning to the proof of proposition 3.3.18, it is also clear that

f (ψ ± (z)) = (q 2 -q -2 ) 2 Ψ(℘ ± (C 1/2 zq -2 )) (2.4.68) f (e ± (z)) = Ψ(ψ ± 1,±1 (z)) (2.4.69)
Therefore ((2.3.43) (2.3.44)) follow from proposition 2.4.8.v. In order to complete the proof of proposition 3.3.18, we still have to prove the compatibility of f with the Serre relations (3.3.40) of E q 1 ,q 2 ,q 3 . This is the purpose of the next section.

The Serre relations of the elliptic Hall algebra

By the compatibility of f with (3.3.40), we actually mean that we should have, for every m ∈ Z,

res v,w,z (vwz) m (v + z)(w 2 -vz)f (e ± (v))f (e ± (w))f (e ± (z)) = 0 .
(2.4.70)

Now we have already identied f (e ± (z)) with Ψ(ψ ± 1,±1 (z)) in (2.4.69) above. The latter means that proving (2.4.70) is equivalent to proving Proposition 2.4.27. For every m ∈ Z, we have

res v 1 ,v 2 ,v 3 (v 1 v 2 v 3 ) m (v 1 + v 3 )(v 2 2 -v 1 v 3 )ψ ± 1,±1 (v 1 )ψ ± 1,±1 (v 2 )ψ ± 1,±1 (v 3 ) = 0 . (2.4.71)
Proof. The upper choice of signs immediately follows from the lower one upon applying ϕ. Moreover, considering the root space decomposition, it is clear that having

res v 1 ,v 2 ,v 3 (v 1 v 2 v 3 ) m (v 1 + v 3 )(v 2 2 -v 1 v 3 ) x + i 1 (z 1 ) . . . x + i 6 (z 6 ), ψ - 1,-1 (v 1 )ψ - 1,-1 (v 2 )ψ - 1,-1 (v 3 ) = 0
for every i 1 , . . . , i 6 ∈ İ is a sucient condition for the result to hold. Now, making use of lemma 2.4.22, one easily obtains that

x + I 1 (z 1 ) . . . x + i 6 (z 6 ), ψ - 1,-1 (v 1 )ψ - 1,-1 (v 2 )ψ - 1,-1 (v 3 ) = [2] q q -q -1 3 A∈P (2,2,2) 6 3 p=1 m∈A (p+1) ••• A (3) n∈A (p) n>m 2 k=1 δ i A (p) k , (k) δ   z A (p) k q (k) v k   G - im,in (C -1/2 z m /z n ) .
There is obviously an action of S 3 on P

(2,2,2) 6

given by setting σ(A) = (A (σ(1)) , A (σ(2)) , A (σ(3)) ) for every σ ∈ S 3 and every A ∈ P

(2,2,2) 6

. It is also quite clear that P (2,2,2) 6

S 3 ∼ = T (2,2,2) 6
, where T

(2,2,2) 6

:= A ∈ P (2,2,2) 6 : A (1) 1 < A (2) 1 < A (3) 1 
.

For every triple n = {n 1 , n 2 , n 3 } ⊂ 6 , we further let

T (2,2,2) 6 (n) := A ∈ T (2,2,2) 6 : A (p) 2 : p ∈ 3 = n .
With these notations in place, we can now write

res v 1 ,v 2 ,v 3 (v 1 v 2 v 3 ) m (v 1 + v 3 )(v 2 2 -v 1 v 3 ) x + I 1 (z 1 ) . . . x + i 6 (z 6 ), ψ - 1,-1 (v 1 )ψ - 1,-1 (v 2 )ψ - 1,-1 (v 3 ) = [2] q q -q -1 3 n⊂ 6 card n=3 z m n δ i 6 -n ,1 δ in,0 A∈T (2,2,2) 6 (n) 3 p=1 δ z A (p) 1 q 2 z A (p) 2 c A ,
where, by denition,

z m n = 3 i=1 z m n i , δ in,0 = 3 j=1 δ in j ,0 , δ i 6 -n ,1 = m∈ 6 -n δ im,1 (2.4.72) c A = σ∈S 3 F (z A (σ(1)) 2 , z A (σ(2)) 2 , z A (σ(3)) 2 ) 1≤p <p≤3 H A,σ,p,p (z A (σ(p)) 2 /z A (σ(p )) 2 ) (2.4.73) F (x, y, z) = (x + z)(y 2 -xz) (2.4.74) H A,σ,p,p (z A (σ(p)) 2 /z A (σ(p )) 2 ) = 2 k,k =1 G - (k), (k ) (C -1/2 q 2(k-k ) z A (σ(p)) 2 /z A (σ(p )) 2 ) (A,σ,p,p ,k,k ) (2.4.75) (A, σ, p, p , k, k ) =    1 if A (σ(p)) k < A (σ(p )) k ; 0 otherwise.
(2.4.76)

Denoting each A ∈ T

(2,2,2) 6

as the tableau A tedious but straightforward calculation see appendix for useful identities shows that, e.g.

A (1) 1 A (2) 1 A (3) 1 A (1) 2 A (2) 2 A ( 
c 1 2 4 6 3 5 = (q 2 -q -2 ) 2 (1 + q 2 )(1 -q 2 )z 3 3 q 2 δ z 3 q 2 z 6 δ z 6 z 5 -δ z 3 z 6 δ z 6 q 2 z 5 +q -2 (q 2 -q -2 )(1 + q 2 ) 2 (1 -q 2 ) 6 H 1 (z 3 /z 5 ) z 5 δ z 6 z 5 -z 3 δ z 3 z 6 c 1 2 4 3 6 5 = (q 2 -q -2 ) 2 (1 + q 2 )(1 -q 2 )z 3 3 δ z 3 z 6 δ z 6 q 2 z 5 +q -2 (q 2 -q -2 )(1 + q 2 ) 2 (1 -q 2 ) 6 H 1 (z 3 /z 5 )z 3 δ z 3 z 6 +q -2 (q 2 -q -2 )(1 + q 2 ) 2 (1 -q 2 ) 6 H 2 (z 3 /z 5 )z 5 δ z 6 z 5 c 1 2 4 5 3 6 = -q 2 (q 2 -q -2 ) 2 (1 + q 2 )(1 -q 2 )z 3 3 δ z 5 z 6 δ z 3 q 2 z 5 -q -2 (q 2 -q -2 )(1 + q 2 )(1 -q 2 ) 6 H 1 (z 3 /z 5 )z 5 δ z z -q -2 (q 2 -q -2 )(1 + q 2 )(1 -q 2 ) 6 H 2 (z 3 /z 6 )z 3 δ z z c 1 2 4 3 5 6 = q -2 (q 2 -q -2 )(1 + q 2 )(1 -q 2 ) 6 H 2 (z 3 /z 6 ) z 3 δ z 3 z 5 -z 6 δ z 5 z 6 .
where we have set

H 1 (z 3 /z 5 ) = z 2 3 z 2 5 (z 3 + z 5 ) 3 (z 3 q 2 -z 5 )(q 4 z 3 -z 5 )(z 3 -q 2 z 5 ) 3 |z 5 | |z 3 | , H 2 (z 3 /z 5 ) = z 2 3 z 2 5 (z 3 + z 5 ) 3 (z 3 q 4 -z 5 )(z 3 -q 2 z 5 ) 4 |z 5 | |z 3 | . It easily follows that A∈T (2,2,2) 6 ({3,5,6}) 3 p=1 δ z A (p) 1 q 2 z A (p) 2 c A = 0 .
(2.4.77)

Similar calculations show that, eventually, for every n ⊂ 6 such that card n = 3 and T

(2,2,2) 6

(n) = ∅, we have

A∈T (2,2,2) 6 (n) 3 p=1 δ z A (p) 1 q 2 z A (p) 2 c A = 0 , (2.4.78)
thus proving the result.

Chapter 3

Weight-nite modules over the quantum ane and double quantum ane algebras of type a 1

Introduction

The representation theory of quantum ane algebras is a vast and extremely rich theory which is still the subject of an intense research activity after more than three decades. The recent discovery of its relevance to the monoidal categorication of cluster algebras provides one of the latest and most striking illustrations of it see [START_REF] Hernandez | Quantum ane algebras and cluster algebras[END_REF] for a review on that subject. Probably standing as one of the most signicant breakthroughs in the early days of this research area, the classication of the simple nite-dimensional modules over the quantum ane algebra of type a 1 , U q ( ȧ1 ), is due to Chari and Pressley [START_REF] Chari | Quantum ane algebras[END_REF]. It relies, on one hand, on a careful analysis of the -weight structure of those modules made possible by the existence of Drinfel'd's presentation Uq (a 1 ) of U q ( ȧ1 ) see [START_REF] Damiani | A basis of type PBW for the quantum algebra of sl 2[END_REF] for the proof that Uq (a 1 ) ∼ = U q ( ȧ1 ) and, on the other hand, on the existence of evaluation modules, proven earlier by Jimbo,[START_REF] Jimbo | Hecke algebra, and the Yang-Baxter equation[END_REF]. This seminal work paved the way for a more systematic study of the representation theory of quantum ane algebras of all Cartan types, leading to the development of powerful tools such as q-characters, (q, t)-characters and, consequently, to a much better understanding of the categories FinMod of their nite-dimensional modules that recently culminated with the realization that the Grothendieck rings of certain subcategories of the categories FinMod actually have the structure of a cluster algebra, [START_REF] Hernandez | Cluster algebras and quantum ane algebras[END_REF].

By contrast, it is fair to say that the representation theory of quantum toroidal algebras, which were initially introduced in type a n by Ginzburg, Kapranov and Vasserot [START_REF] Ginzburg | Langlands reciprocity for algebraic surfaces[END_REF] and later generalized to higher rank types, is signicantly less well understood and remains, to this date, much more mysterious although see [START_REF]Quantum toroidal algebras and their representations[END_REF] for a review and references therein. In our previous work, [MZ], we constructed a new (topological)

Hopf algebra Üq (a 1 ), called double quantum anization of type a 1 , and proved that its completion (in an appropriate topology) is bicontinuously isomorphic to (a corresponding completion) of the quantum toroidal algebra Uq ( ȧ1 ). Whereas Uq ( ȧ1 ) is naturally graded over Z × Q, where Q stands for the root lattice of the untwisted ane root system ȧ1 of type A

(1) 1 , Üq (a 1 ) is naturally graded over Z 2 × Q, where Q stands for the root lattice of the nite root system a 1 of type A 1 . Thus Üq (a 1 ) turns out to be to Uq ( ȧ1 ) what Uq (a 1 ) is to U q ( ȧ1 ), i.e. its Drinfel'd presentation. The latter, in the quantum ane case, has a natural triangular decomposition which allows one to dene an adapted class of highest weight modules, namely highest -weight modules, in which nite-dimensional modules are singled out by the particular form of their highest -weights. Therefore, it is only natural to ask the question of whether Üq (a 1 ) plays a similar role for the representation theory of Uq ( ȧ1 ), leading, in particular, to a new notion of highest weight modules. We answer positively that question and introduce the corresponding notion of highest t-weight modules. Schematically, whereas the transition from the classical Lie theoretic weights to -weights can be regarded as trading numbers for (rational) functions, the transition from -weights to t-weights can be regarded as trading (rational) functions for entire modules over the non-commutative Ü0 q (a 1 )-subalgebra of Üq (a 1 ). That substitution can be interpreted from the perspective of a conjecture in [MZ], stating that Ü0 q (a 1 ) is isomorphic to a split extension of the elliptic Hall algebra E q -4 ,q 2 ,q 2 which was initially dened by Miki, in [START_REF]A (q, γ)-analog of the W 1+∞ algebra[END_REF], as a (q, γ)-analogue of the W 1+∞ algebra and reappeared later on in dierent guises; the quantum continuous gl ∞ algebra in [FFJ + 11], the Hall algebra of the category of coherent sheaves on some elliptic curve in [START_REF] Schimann | Drinfeld realization of the elliptic Hall algebra[END_REF], or the quantum toroidal algebra associated with gl 1 in [START_REF] Feigin | Quantum toroidal gl 1 -algebra: Plane partitions[END_REF] and in subsequent works by Feigin et al. Our conjecture is actually supported by the existence of an algebra homomorphism between E q -4 ,q 2 ,q 2 and Ü0 q (a 1 ) which we promote, in the present paper, to a (continuous) homomorphism of (topological) Hopf algebras. Intuitively, the weights adapted to our new triangular decomposition can therefore be regarded as representations of a quantized algebra of functions on a non-commutative 2-torus.

On the other hand, unless the value of some scalar depending on the deformation parameter is taken to be a root of unity, the question of the existence of nite-dimensional modules over quantum toroidal algebras of type a n≥2 was already answered negatively by Varagnolo and Vasserot in [START_REF] Varagnolo | Schur duality in the toroidal setting[END_REF]. However, it is possible to push further the analogy with the quantum ane situation by dening another type of niteness condition, namely weight-niteness. It turns out that, in type 1, i.e. when the central charges act trivially, Ü0 q (a 1 ) admits an innite dimensional abelian subalgebra that, itself, admits as a subalgebra the Cartan subalgebra U 0 q (a 1 ) of the Drinfel'd-Jimbo quantum algebra U q (a 1 ) of type a 1 . Hence, we can assign classical Lie theoretic weights to the t-weight spaces of our modules and declare that a Ü q (a 1 )-module is weight-nite whenever it has only nitely many classical weights. The same notion is readily dened for modules over Uq (a 1 ) and we then focus on WFinMod˙(resp. WFinMod), i.e. the full subcategory of the category Mod˙(resp. Mod) of Üq (a 1 )-modules (resp. Uq (a 1 )-modules) whose modules are weight-nite. Of course, the widely studied category FinMod of nite-dimensional Uq (a 1 )-modules is a full subcategory of WFinMod. The main results of the present paper consist in showing that, on one hand, the simple objects in WFinMod are all nite-dimensional and therefore coincide with the simple nite-dimensional Uq (a 1 )-modules classied by Chari and Pressley, and, on the other hand, in classifying the simple objects in WFinMod˙in terms of their highest t-weight spaces. These results clearly establish WFinMod˙as the natural quantum toroidal analogue of FinMod and suggest studying further its structure and, in particular, the structure of its Grothendieck ring.

Another natural development at this point would be to generalize to the quantum toroidal setting the interesting classes of Uq (a 1 )-modules outside of FinMod, for example by constructing a quantum toroidal analogue of category O. We leave these questions for future work.

The present paper is organized as follows. In section 3.2, we briey review classic results about the quantum ane algebra Uq (a 1 ) and its nite-dimensional modules. Then, we prove that simple objects in WFinMod are actually nite-dimensional. In section 3.3, we review the main relevant results of [MZ] and establish a few new results, as relevant for the subsequent sections. We dene highest t-weight modules in section 3.4 and, by thoroughly analyzing their structure, we establish one implication in our classication theorem, namely theorem 3.4.22. The opposite implication is established in section 3.5 by explicitly constructing a quantum toroidal analogue of the quantum ane evaluation modules. That construction is obtained after proving the existence of an evaluation homomorphism between Üq (a 1 ) and an evaluation algebra built as a double semi-direct product of Uq (a 1 ) with the completions of two Heisenberg algebras. The evaluation modules are then obtained by pulling back induced modules over the evaluation algebra along the evaluation homomorphism.

Notations and conventions

We let N = {0, 1, . . . } be the set of natural integers including 0. We denote by N × the set N -{0}. For every m ≤ n ∈ N, we denote by m, n = {m, m + 1, . . . , n}. We also let n = 1, n for every n ∈ N. For every m, n ∈ N × , we let

C m (n) := λ = (λ 1 , . . . , λ m ) ∈ N × m : λ 1 + • • • + λ m = n ,
denote the set of m-compositions of n, i.e. of compositions of n having m summands.

We let sign : Z → {-1, 0, 1} be dened by setting, for any n ∈ Z,

sign(n) =          -1 if n < 0; 0 if n = 0; 1 if n > 0.
We assume throughout that K is an algebraically closed eld of characteristic 0 and we let F := K(q)

denote the eld of rational functions over K in the formal variable q. As usual, we let K × = K -{0} and F × = F -{0}. Whenever we wish to evaluate q to some element of K × , we shall always do so under the restriction that 1 / ∈ q Z × . For every m, n ∈ N, we dene the following elements of F

[n] q := q n -q -n q -q -1 ,

[n] ! q :=    [n] q [n -1] q • • • [1] q if n ∈ N × ; 1 if n = 0; n m q := [n] ! q [m] ! q [n -m] ! q . (3.1.1)
Given an F-algebra (A, η) with unit η : F → A, we shall write the image of any a ∈ A under the canonical algebra homomorphisms η ⊗p-1 ⊗ id A ⊗ η ⊗n-p : A → A ⊗n , 1 ≤ p ≤ n ∈ N × , as a (p) , always assuming that the value of n should be clear from the context. This is easily extended to A-valued formal distributions in

A[[z, z -1 ]],
essentially by applying the canonical algebra homomorphisms term by term to their coecients, and the corresponding image of a(z

) ∈ A[[z, z -1 ]] can be naturally denoted by a (p) (z) ∈ A ⊗n [[z, z -1 ]].
As is customary though, in order to avoid the proliferation of unnecessary subscripts, we shall abuse notations and prefer e.g. to the more rigorous expression a

(1) zc (2) b (2) (z ) ∈ A ⊗2 [[z, z -1 , z , z -1 ]], with a(z) ∈ A[[z, z -1 ]], b(z ) ∈ A[[z , z -1 ]
] and c ∈ A, the somewhat less rigorous but more transparent a zc (2) ⊗ b(z ).

We shall say that a polynomial P (z) ∈ F[z] is monic if P (0) = 1. For every rational function P (z)/Q(z),

where P (z) and Q(z) are relatively prime polynomials, we denote by

P (z) Q(z) |z| 1 (resp. P (z) Q(z) |z| -1 1 )
the Laurent series of P (z)/Q(z) at 0 (resp. at ∞).

k ± 1 (z) := n∈N k ± 1,±n z ∓n ∈ Uq ( ȧ1 )[[z ∓1 ]] ,
(3.2.10) the following F-valued formal power series

G ± (z) := q ±2 + (q -q -1 )[±2] q m∈N × q ±2m z m ∈ F[[z]] (3.2.11) and δ(z) := m∈Z z m ∈ F[[z, z -1 ]] (3.2.12)
is an F-valued formal distribution. We denote by U q (a 1 ) the subalgebra of Uq (a 1 ) generated by

C 1/2 , C -1/2 , k + 1,n , k - 1,-n , x + 1,m , x - 1,m : m ∈ Z, n ∈ N .
We denote by U0 q (a 1 ) the subalgebra of U q (a 1 ) generated by

C 1/2 , C -1/2 , k + 1,n , k - 1,-n : n ∈ N .
We let U≥ q (a 1 ) (resp. U≤ q (a 1 )) denote the subalgebra of U q (a 1 ) generated by

C 1/2 , C -1/2 , k + 1,n , k - 1,-n , x + 1,m : m ∈ Z, n ∈ N (resp. C 1/2 , C -1/2 , k + 1,n , k - 1,-n , x - 1,m : m ∈ Z, n ∈ N
). We let Uq (a 1 )˘denote the F-algebra generated by the same generators as U q (a 1 ), subject to the relations (3.2.3 -3.2.7) i.e. we omit relation (3.2.8). We dene the type a 1 quantum loop algebra U q (La 1 ) as the quotient of U q (a 1 ) by its two-sided ideal (C 1/2 -1) generated by C 1/2 -1, C -1/2 -1 . Similarly, we let U ≥ q (La 1 ) = U≥ q (a 1 )/(C 1/2 -1) and U ≤ q (La 1 ) = U≤ q (a 1 )/(C 1/2 -1). We eventually set Ȗq (La 1 ) = Uq (a 1 )˘/(C 1/2 -1).

Obviously, Proposition 3.2.2. There exists a surjective F-algebra homomorphism Ȗq (La 1 ) → U q (La 1 ).

Finite dimensional U

q (a 1 )-modules Let Mod be the category of U q (a 1 )-modules. We denote by FinMod the full subcategory of Mod whose objects are nite-dimensional. Following [START_REF] Chari | Quantum ane algebras[END_REF], we make the following Denition 3.2.3. We shall say that a U q (a 1 )-module M is: a weight module if k + 1,0 acts semisimply on M ;

of type 1 if it is a weight module and C 1/2 acts on M as id;

highest -weight if it is of type 1 and there exists v ∈ M -{0} such that

x + 1 (z).v = 0 , k ± 1 (z).v = κ ± (z)v 81 for some κ ± (z) ∈ F[[z ∓1
]] and M = U q (a 1 ).v. We shall refer to any such v as a highest -weight vector and to κ = (κ + (z), κ -(z)) as the corresponding highest -weight.

Clearly, type 1 U q (a 1 )-modules coincide with U q (La 1 )-modules.

Denition 3.2.4. For every

κ ∈ F[[z -1 ]]×F[[z]]
, we construct a one-dimensional U ≥ q (La 1 )-module F κ ∼ = F by setting

x + 1 (z).1 = 0 , and k ± 1 (z).1 = κ ± (z) .

We then dene the universal highest -weight U q (a 1 )-module with highest -weight κ by setting

M (κ) := U q (La 1 ) ⊗ U ≥ q (La 1 ) F κ as U q (La 1 )-modules. Let N (κ) be the maximal U q (La 1 )-submodule of M (κ) such that N (κ) ∩ F κ = {0}
and set

L(κ) := M (κ)/N (κ) .
By construction, L(κ) is a simple highest -weight U q (La 1 )-module with highest -weight κ. It is unique up to isomorphisms.

The simple objects in FinMod were classied by Chari and Pressley in [START_REF] Chari | Quantum ane algebras[END_REF]. The main result is the following Theorem 3.2.5 (Chari-Pressley). The following hold:

i. any simple nite-dimensional U q (a 1 )-module M can be obtained by twisting a simple nite-dimensional U q (a 1 )-module of type 1 with an algebra automorphism of Aut( U q (a 1 ));

ii. every simple nite dimensional U q (a 1 )-module of type 1 is highest -weight;

iii. the simple highest -weight module L(κ) is nite-dimensional if and only if

κ ± (z) = q deg(P ) P (q -2 /z) P (1/z) |z| ∓1 1 ,
for some monic polynomial

P (1/z) ∈ F[z -1 ] called Drinfel'd polynomial of L(κ).
Proof. The proof can be found in [START_REF] Chari | Quantum ane algebras[END_REF].

Up to isomorphisms, the simple objects in FinMod are uniquely parametrized by their Drinfel'd polynomials and we shall therefore denote by L(P ) the (isomorphism class of the) simple U q (a 1 )-module with Drinfel'd polynomial P . Note that the roles of U≥ q (a 1 ) and U≤ q (a 1 ) in the above constructions are clearly symmetrical and we could have equivalently considered lowest -weight modules. In particular, point iii of the above theorem immediately translates into Proposition 3.2.6. The simple lowest -weight module with lowest -weight κ = (κ

+ (z), κ -(z)) ∈ F[[z -1 ]]× F[[z]] is nite-dimensional if and only if κ ± (z) = q -deg(P ) P (1/z) P (q -2 /z) |z| ∓1 1 ,
for some monic polynomial

P (1/z) ∈ F[z -1 ].
In the latter case, we denote it by L(P ).

3.2.3 Weight-nite simple U q (La 1 )-modules

We now wish to consider a slightly broader family of modules over U q (a 1 ). In particular, we want to allow these modules to be innite-dimensional, while retaining some of the nice features of nite dimensional U q (a 1 )modules such as the fact that they decompose into -weight spaces. This is achieved by introducing the following notion.

Denition 3.2.7. We shall say that a (not necessarily nite-dimensional) U q (a 1 )-module M is -weight if there exists a countable set {M α : α ∈ A} of indecomposable locally nite-dimensional U0 q (a 1 )-modules, called the -weight spaces of M , such that, as U0 q (a 1 )-modules,

M ∼ = α∈A M α .
We shall say that M is of type 1 if C 1/2 acts on M by id.

Denition-Proposition 3.2.8. Let M be an -weight U q (a 1 )-module. Then:

i. C 2 acts as id over M ;

ii. for every -weight space M α , α ∈ A, of M , there exists κ α,0 ∈ F × and (κ ± α,±m

) m∈N × ∈ F N × such that M α ⊆ v ∈ M : ∃n ∈ N × , ∀m ∈ N k ± 1,±m -κ ± α,±m id n .v = 0 ,
where we have set κ ± α,0 = κ ±1 α,0 .

We let Sp(M ) = {κ α,0 : α ∈ A} and refer to the formal power series

κ ± α (z) = m∈N κ ± α,±m z ∓m
as the -weight of the -weight space M α .

Proof. Let M α be an -weight space of M and let v ∈ M α -{0}. By denition, there exists a nite dimensional U0 q (a 1 )-submodule Mα of M α such that v ∈ Mα . Over Mα , C must admit an eigenvector and, since C is central, it follows that C acts over Mα by a scalar mutliple of id. Assume for a contradiction that C-C -1 does not act by multiplication by zero. Then, it is possible to pull back Mα into a nite-dimensional module over the Weyl algebra A 1 (K) = K x, y /(xy -yx -1) by the obvious algebra homomorphism

A 1 (K) → U0
q (a 1 ). But the Weyl algebra is known to admit no nite-dimensional modules. A contradiction. It follows that C 2 acts as id over Mα . But this could be repeated for any non-zero vector in any -weight space of M . i follows. As for ii, observe that, as a consequence of i and of the dening relations (3.2.3) and (3.2.4), k + 1,m , k - 1,-m : m ∈ N acts by a family of commuting linear operators over M . Thus ii follows from the decomposition of locally nite-dimensional vector spaces into the generalized eigenspaces of a commuting family of linear operators; the indecomposability of M α further imposing that it coincides with a single block in a single generalized eigenspace. Remark 3.2.9. It is worth emphasizing that denition 3.2.7 and denition-proposition 3.2.8 straightforwardly generalize to (topological) modules over any (topological) algebra A containing U0 q (a 1 ) as a (closed) subalgebra.

Making use of (3.2.8), one easily proves that, for every n ∈ 0, N -1 ,

x + 1 (z).v(z 0 , . . . , z n ) = 1 q -q -1 n p=0 δ z p z   κ + (z) n r=p+1 G -(z r /z) (3.2.17) -κ -(z) n r=p+1 G + (z/z r )   v(z 0 , . . . , z p , . . . , z n ) ,
where a hat over a variable indicates that it should be omitted. Combining (3.2.16) and (3.2.8), we get

-x - 1 (z 0 )x + 1 (z).v(z 1 , . . . , z N ) = [x + 1 (z), x - 1 (z 0 )].v(z 1 , . . . , z N ) = 1 q -q -1 δ z 0 z   κ + (z) N p=1 G -(z p /z) -κ -(z) N p=1 G + (z/z p )   v(z 1 , . . . , z N ) .
Making use of (3.2.17) and (3.2.13), the above equation eventually yields

N p=0 δ z p z   κ + (z p ) N r=p+1 G -(z r /z p ) -κ -(z p ) N r=p+1 G + (z p /z r )   v(z 0 , . . . , z p , . . . , z N ) = 0 .
Acting on the l.h.s of the above equation with

x + 1 (ζ N ) • • • x + 1 (ζ 1
) and making repeated use of (3.2.17), one easily shows that

σ∈S N +1 N i=0 δ z i ζ σ(i)     κ + (z i ) N r=i+1 σ(r)>σ(i) G -(z r /z i ) -κ -(z i ) N r=i+1 σ(r)>σ(i) G + (z i /z r )     v = 0 , (3.2.18)
where we have set ζ 0 = z. Since v = 0, its prefactor in the above equation must vanish. Now, it is clear that multiplication of the latter by N -1 j=0 (z 0 -ζ j ) annihilates all the summands with σ such that σ(0) = N . Similarly, multiplication by 1 i=0 N -i-1 j=0 (z i -ζ j ) annihilates all the summands with σ such that σ(0) = N and σ(1) = N -1. Repeating the argument nitely many times, we arrive at the fact that multiplication by N i=0 N -i-1 j=0 (z i -ζ j ) annihilates all the summands with σ = (N, N -1, . . . , 0), so that, eventually,

0 = N i=0 δ z i ζ N -i N -i-1 j=0 (z i -ζ j ) κ + (z i ) -κ -(z i ) = N i=0 δ z i ζ N -i N -i-1 j=0 (z i -z N -j ) κ + (z i ) -κ -(z i ) .
Taking the zeroth order term in ζ j for j = 0, . . . , N , we get

0 = N i=0 N j=i+1 (z i -z j ) κ + (z i ) -κ -(z i ) = [κ + (z 0 ) -κ -(z 0 )] [κ + (z 1 ) -κ -(z 1 )] . . . [κ + (z N ) -κ -(z N )] z 0 [κ + (z 0 ) -κ -(z 0 )] z 1 [κ + (z 1 ) -κ -(z 1 )] . . . z N [κ + (z N ) -κ -(z N )] . . . . . . . . . . . . z N -1 0 [κ + (z 0 ) -κ -(z 0 )] z N -1 1 [κ + (z 1 ) -κ -(z 1 )] . . . z N -1 N [κ + (z N ) -κ -(z N )]
.

Hence, the rows of the matrix on the r.h.s. of the above equation are linearly dependent and it follows that there exists a P (z) ∈ F[z] -{0} of degree at most N -1, such that

P (z) κ + (z) -κ -(z) = 0 . (3.2.19)
As a consequence, there clearly exists

Q(z) ∈ F[z] such that deg Q = deg P and κ ± (z) = Q(z) P (z) |z| ∓1 1 .
Now considering (3.2.17) with n = 0 and multiplying it by P (z 0 ) obviously yields

x + 1 (z).P (z 0 )v(z 0 ) = 0 . (3.2.20)
Set for every m ∈ Z,

w m = res z 0 z -1-m 0 P (z 0 )v(z 0 ) . (3.2.21)
Then, (3.2.20), together with (3.2.15) for n = 1, implies that m∈Z Uq (a 1 ).w m is a strict submodule of the simple U q (La 1 )-module M and it follows that w m = 0 for every m ∈ Z.

Consequently, in view of (3.2.21), Similarly, assume we have proven that

P (z 0 )v(z 0 ) = 0 . ( 3 
∀k ∈ 0, n ,   n p=k+1 (z p -q 2 z k )   P (z k )v(z 0 , . . . , z n ) = 0
for some n ∈ 0, N -1 , as we did with (3.2.22) above for n = 0. It is clear, in view of (3.2.17), that, for

every k ∈ 0, n + 1 , x + 1 (z).     n+1 p=k+1 (z p -q 2 z k )   P (z k )v(z 0 , . . . , z n+1 )   = 0
and the same argument as above, making use of the simplicity of M , implies that indeed

∀k ∈ 0, n + 1 ,   n+1 p=k+1 (z p -q 2 z k )   P (z k )v(z 0 , . . . , z n+1 ) = 0 .
By recursion, the above equation therefore holds for every n ∈ 0, N -1 and for every k ∈ 0, n . But this means that, for every n ∈ 0, N -1 , the linear span of {v m 1 ,...,mn : m 1 , . . . , m n ∈ Z} is nite dimensional, which eventually concludes the proof.

Corollary 3.2.12. Let M be a weight-nite simple highest (resp. lowest) -weight U q (La 1 )-module. Then M ∼ = L(P ) (resp. M ∼ = L(P )), for some monic polynomial P .

Proof. In the highest -weight case, this follows directly by the previous theorem and the classication of the simple nite dimensional U q (La 1 )-modules, theorem 3.2.5. In the lowest -weight case, see proposition 3.2.6.

3.3 Double quantum anization of type a 1

Denition of Üq (a 1 )

Denition 3.3.1. The double quantum anization Üq (a 1 ) of type a 1 is dened as the F-algebra generated by 

{D 1 , D -1 1 , D 2 , D -1 2 , C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r , X + 1,r,s , X - 1,r,s : m ∈ N, n ∈ N × ,
res v,w 1 vw c ± (v)c ∓ (w) = 1 , (3.3.2) D ±1 1 D ∓1 1 = 1 D ±1 2 D ∓1 2 = 1 D 1 D 2 = D 2 D 1 (3.3.3) D 1 K ± 1,±m (z)D -1 1 = q ±m K ± 1,±m (z) D 1 X ± 1,r (z)D -1 1 = q r X ± 1,r (z) , (3.3.4) D 2 K ± 1,±m (z)D -1 2 = K ± 1,±m (zq -1 ) D 2 X ± 1,r (z)D -1 2 = X ± 1,r (zq -1 ) , (3.3.5) res v,w 1 vw K ± 1,0 (v)K ∓ 1,0 (w) = 1 , (3.3.6) (v -q ±2 z)(v -q 2(m-n∓1) z)K ± 1,±m (v)K ± 1,±n (z) = (vq ±2 -z)(vq ∓2 -q 2(m-n) z)K ± 1,±n (z)K ± 1,±m (v) , (3.3.7) (Cq 2(1-m) v -w)(q 2(n-1) v -Cw)K + 1,m (v)K - 1,-n (w) = (Cq -2m v -q 2 w)(q 2n v -Cq -2 w)K - 1,-n (w)K + 1,m (v) , (3.3.8) (v -q ±2 z)K ± 1,±m (v)X ± 1,r (z) = (q ±2 v -z)X ± 1,r (z)K ± 1,±m (v) , (3.3.9) (Cv -q 2(m∓1) z)K ± 1,±m (v)X ∓ 1,r (z) = (Cq ∓2 v -q 2m z)X ∓ 1,r (z)K ± 1,±m (v) , (3.3.10) (v -q ±2 w)X ± 1,r (v)X ± 1,s (w) = (vq ±2 -w)X ± 1,s (w)X ± 1,r (v) , (3.3.11) [X + 1,r (v), X - 1,s (z)] = 1 q -q -1    δ Cv q 2(r+s) z |s| p=1 c -C -1/2 q (2p-1)sign(s)-1 z -sign(s) K + 1,r+s (v) -δ C -1 v q 2(r+s) z |r| p=1 c + C -1/2 q (1-2p)sign(r)-1 v sign(r) K - 1,r+s (z)    , (3.3.12)
where m, n ∈ N, r, s ∈ Z and we have set

c ± (z) = m∈N c ± ±m z ∓m , (3.3.13) K ± 1,0 (z) = m∈N K ± 1,0,±m z ±m , (3.3.14)
and, for every m ∈ N × and r ∈ Z,

K ± 1,±m (z) = s∈Z K ± 1,±m,s z -s , (3.3.15) X ± 1,r (z) = s∈Z X ± 1,r,s z -s . (3.3.16)
In (5.0.6), we further assume that K ± 1,∓m (z) = 0 for every m ∈ N × .

Denition 3.3.2. We denote by Ü q (a 1 ) the subalgebra of Üq (a 1 ) generated by

{D 2 , D -1 2 , C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r , X + 1,r,s , X - 1,r,s : m ∈ N, n ∈ N × , r, s ∈ Z} ,
i.e. the subalgebra generated by all the generators of Üq (a 1 ) except D 1 and D -1 1 . We shall denote by

 : Ü q (a 1 ) → Üq (a 1 )
the natural injective algebra homomorphism.

Denition 3.3.3. We denote by Ü0

q (a 1 ) the subalgebra of Üq (a 1 ) generated by

C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r : m ∈ N, n ∈ N × , r ∈ Z
and by Ü0,0 q (a 1 ) the subalgebra of Ü0 q (a 1 ) generated by

C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m : m ∈ N .
Similarly, we denote by ܱ q (a 1 ) the subalgebra of Üq (a 1 ) generated by X ± 1,r,s : r, s ∈ Z . We eventually denote by Ü≥ q (a 1 ) (resp. Ü≤ q (a 1 )) the subalgebra of Üq (a 1 ) generated by

C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r , X + 1,r,s : m ∈ N, n ∈ N × , r, s ∈ Z (resp. C 1/2 , C -1/2 , c + m , c - -m , K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r , X - 1,r,s : m ∈ N, n ∈ N × , r, s ∈ Z )
Remark 3.3.4. Obviously, ܱ q (a 1 ) is graded over Q ± whereas Üq (a 1 ) is graded over the root lattice Q of a 1 . Üq (a 1 ) is also graded over

Z 2 = Z (1) × Z (2) ; Üq (a 1 ) = (n 1 ,n 2 )∈Z 2 Üq (a 1 ) (n 1 ,n 2 ) ,
Denition-Proposition 3.3.7. We endow Üq (a 1 ) with the topology τ whose open sets are either ∅ or nonempty subsets O ⊆ Üq (a 1 ) such that for every x ∈ O, x + Ω(1) n ⊆ O for some n ∈ N. Similarly, we endow each tensor power Üq (a 1 ) ⊗m≥2 with the topology induced by { Ω(m) n : n ∈ N}. These turn Üq (a 1 ) into a (separated) topological algebra. We then let Üq (a 1 ) denote its completion and we extend by continuity to Üq (a 1 ) all the (anti)-automorphisms dened over Üq (a 1 ) and its subalgebras in the previous section In particular, we extend  : Ü q (a 1 ) → Üq (a 1 ) into  : Ü q (a 1 ) → Üq (a 1 ) .

Similarly, we denote with a hat the completion of any subalgebra of Üq (a 1 ), like e.g. Üq (a 1 ), Ü0 q (a 1 ) and Ü+ q (a 1 ). We eventually denote by Üq (a 1 ) ⊗m≥2 the corresponding completions of Üq (a 1 ) ⊗m≥2 .

Proof. This was proven in [MZ].

Remark 3.3.8. As was noted in [MZ], the above dened topology is actually ultrametrizable.

The double quantum loop algebra

An alternative way to make sense of relations (5.0.6) consists in observing that Üq (a 1 ) is proalgebraic. Indeed, for every N ∈ N, let Üq (a 1 ) (N ) be the F-algebra generated by (3.3.17)

{C 1/2 , C -1/2 , c + n , c - -n , K + 1,0,m , K - 1,0,-m , K + 1,p,r , K - 1,-p,r , X + 1,r,s , X - 1,r,s : m ∈ N, n ∈ 0, N , p ∈ N × , r, s ∈ Z}
Similarly, dene Üq (a 1 ) (-1) as the F-algebra generated by

{C 1/2 , C -1/2 , K + 1,0,m , K - 1,0,-m , K + 1,p,r , K - 1,-p,r , X + 1,r,s , X - 1,r,s : m ∈ N, p ∈ N × , r, s ∈ Z}
subject to relations ((3.3.1) (5.0.6)), where c ± (z) = 1. Now clearly, each Üq (a 1 ) (N ) , N ∈ N ∪ {-1}, is algebraic since the sums on the r.h.s. of (5.0.6) are both nite whenever c ± (z) -1 is involved, just multiply through by c ± (z) to get an equivalent algebraic relation.

Moreover, letting I N be the two-sided ideal of Üq (a 1 ) (N ) generated by {c + N , c - -N } (resp. {c + 0 -1, c - 0 -1}) for every N > 1 (resp. for N = 0), we obviously have a surjective algebra homomorphism

Üq (a 1 ) (N ) -→ Üq (a 1 ) (N -1) ∼ = Üq (a 1 ) (N ) I N (3.3.18)
and we can dene Üq (a 1 ) as the inverse limit

Üq (a 1 ) = lim ←-Üq (a 1 ) (N )
of the system of algebras

• • • -→ Üq (a 1 ) (N ) -→ Üq (a 1 ) (N -1) -→ • • • -→ Üq (a 1 ) (0) -→ Üq (a 1 ) (-1) .
Denition 3.3.9. We shall refer to the quotient of Üq (a 1 ) (-1) by the two-sided ideal generated by C 1/2 -1 as the double quantum loop algebra of type a 1 and denote it by Lq (a 1 ). Correspondingly, we denote by L± q (a 1 ) and L0 q (a 1 ), the subalgebras of Lq (a 1 ) respectively generated by X ± 1,r,s : r, s ∈ Z and

K + 1,0,m , K - 1,0,-m , K + 1,n,r , K - 1,-n,r : m ∈ N, n ∈ N × , r ∈ Z .
We denote by L0,0 q (a 1 ) the subalgebra of L0 q (a 1 ) generated by

K + 1,0,m , K - 1,0,-m : m ∈ N .
It is worth emphasizing that L0,0 q (a 1 ) is abelian.

Triangular decomposition of Ü

q (a 1 )

In [MZ], we proved that Ü q (a 1 ) has a triangular decomposition in the following sense.

Denition 3.3.10. Let A be a complete topological algebra with closed subalgebras A ± and A 0 . We shall say that (A -, A 0 , A + ) is a triangular decomposition of A if the multiplication induces a bicontinuous isomorphism of vector spaces A -⊗A 0 ⊗A + ∼ → A.

Recalling the denitions of ܱ q (a 1 ) and Ü0 q (a 1 ) from denition 3.3.1, we have Proposition 3.3.11. ( Ü- q (a 1 ), Ü0 q (a 1 ), Ü+ q (a 1 )) is a triangular decomposition of Ü q (a 1 ) and ܱ q (a 1 ) is bicontinuously isomorphic to the algebra generated by {X ± 1,r,s : r, s ∈ Z} subject to relation (5.0.5).

Proof. See [MZ].

The closed subalgebra Ü0

q (a 1 ) as a topological Hopf algebra Denition 3.3.12. In Ü0 q (a 1 ), we dene

p ± (z) = m∈N p ± ±m z ∓m = c ± (z)K ∓ 1,0 (C -1/2 z) -1 K ∓ 1,0 (C -1/2 zq 2 ) (3.3.19)
and for every m

∈ N × , t + 1,m (z) = n∈N t + 1,m,n z -n = - 1 q -q -1 K + 1,0 (zq -2m ) -1 K + 1,m (z) , (3.3.20) t - 1,-m (z) = n∈N t - 1,-m,n z n = 1 q -q -1 K - 1,-m (z)K - 1,0 (zq -2m ) -1 . (3.3.21)
Then, we let Ü0 + q (a 1 ) be the subalgebra of Ü0 q (a 1 ) generated by

{C 1/2 , C -1/2 , p + m , p - -m , t + 1,p,n , t - 1,-p,n : m ∈ N, n ∈ Z, p ∈ N × } .
and we let Ü0 + q (a 1 ) be its completion in the inherited topology.

Clearly, the closed subalgebra Ü0 q (a 1 ) can be presented as in denition 3.3.3 or, equivalently, in terms of the generators in

{C 1/2 , C -1/2 , K + 1,0,m , K - 1,0,-m , p + m , p - -m , t + 1,p,n , t - 1,-p,n : m ∈ N, n ∈ Z, p ∈ N × } .
In section 3.3.10, we will endow Ü q (a 1 ) with a topological Hopf algebraic structure. It turns out that, for that structure, the closed subalgebra Ü0 q (a 1 ) is not a closed Hopf subalgebra of Üq (a 1 ) see lemma 4.22 in [MZ] or lemma 3.3.30 below. However, it is possible to endow Ü0 q (a 1 ) with its own topological Hopf algebraic structure as follows.

Denition-Proposition 3.3.13. We endow Ü0 q (a 1 ) with: i. the comultiplication ∆ 0 : Ü0 q (a 1 ) → Ü0 q (a 1 ) ⊗ Ü0 q (a 1 ) dened by

∆ 0 (C ±1/2 ) = C ±1/2 ⊗ C ±1/2 (3.3.22) ∆ 0 (K ± 1,0 (z)) = -K ± 1,0 (zC 1∓1 2 (2) ) ⊗ K ± 1,0 (zC 1±1 2
(1) ) , (3.3.23)

∆ 0 (p ± (z)) = p ± (zC ±1/2 (2) ) ⊗ p ± (zC ∓1/2
(1) ) , (3.3.24)

∆ 0 (t + 1,m (z)) = t + 1,m (z) ⊗ 1 + m k=1 p -(zq -2k C 1/2 (1) ) ⊗t + 1,m (zC (1) ) -(q -q -1 ) m-1 k=1 m l=k+1 p -(zq -2l C 1/2 (1) )t + 1,k (z) ⊗t + 1,m-k (zq -2k C (1) ) , (3.3.25) ∆ 0 (t - 1,-m (z)) = t - 1,-m (zC (2) ) ⊗ m k=1 p + (zq -2k C 1/2 (2) ) + 1 ⊗ t - 1,-m (z) +(q -q -1 ) m-1 k=1 t - 1,-(m-k) (zq -2k C (2) ) ⊗t - 1,-m (z) m l=+1 p + (zq -2l C 1/2 (2) ) ,(3.3.26) for every m ∈ N, ii. the counit ε(C) = ε 0 (K ± 1,0 (z)) = ε 0 (p ± (z)) = 1, ε 0 (t ± 1,±m (z)) = 0, for every m ∈ N,
iii. and the antipode dened by

S 0 (C ±1/2 ) = C ∓1/2 , (3.3.27) S 0 (K ± 1,0 (z)) = K ± 1,0 (zC -1 ) -1 , (3.3.28) S 0 (p ± (z)) = p ± (z) -1 , (3.3.29) S 0 (t + 1,m (z)) = - m k=1 p -(zq -2k C -1/2 ) -1 m n=1 λ∈Cn(m) (-1) n-1 c m,λ t + 1,λ (zC -1 ) , (3.3.30) S 0 (t - 1,-m (z)) = - m n=1 λ∈Cn(m) c m,λ t - 1,-λ (zC -1 ) m k=1 p + (zq -2k ) -1 , (3.3.31)
where we have set, for every m ∈ N × and every λ ∈ C n (m),

c m,λ = (q -q -1 ) n-1 [m + 1] q [m -1] q n i=1 [λ i -1] q [λ i + 1] q and t + 1,λ (zC -1 ) = ← -- i∈ n t + 1,λ i (zq -2 n k=i+1 λ k C -1 ) , t - 1,-λ (zC -1 ) = --→ i∈ n t - 1,-λ i (zq -2 n k=i+1 λ k C -1 ) .
for every m ∈ N.

With these operations, Ü0 q (a 1 ) is a topological Hopf algebra.

Proof. One easily checks that ∆ 0 as dened by (3.3.22 3.3.26) is compatible with the dening relations of Ü0 q (a 1 ) and that S 0 is compatible with both the multiplication and the comultiplication.

In that presentation, one readily checks that Proposition 3.3.14. Ü0 + q (a 1 ) is a closed Hopf subalgebra of Ü0 q (a 1 ).

Proof. Ü0 + q (a 1 ) is a closed subalgebra of Ü0 q (a 1 ) and it is clearly stable under ∆ 0 and S 0 .

3.3.6

The closed subalgebra Ü0 q (a 1 ) and the elliptic Hall algebra

As emphasized in [MZ], another remarkable feature of Ü q (a 1 ) and, more particularly of its closed subalgebra Ü0 q (a 1 ), is the existence of an algebra homomorphism onto it, from the elliptic Hall algebra that we now dene.

Denition 3.3.15. Let q 1 , q 2 , q 3 be three (dependent) formal variables such that q 1 q 2 q 3 = 1. The elliptic

Hall algebra E q 1 ,q 2 ,q 3 is the Q(q 1 , q 2 , q 3 )-algebra generated by where m ∈ Z and we have introduced g(z, w) = (z -q 1 w)(z -q 2 w)(z -q 3 w) , (3.3.41)

C 1/2 , C -1/2 , ψ + m , ψ - -m , e + n , e - n : m ∈ N, n ∈ Z , with ψ ± 0 invertible, subject to the relations C ±1/2 is central , (3.3.32) ψ ± (z)ψ ± (w) = ψ ± (w)ψ ± (z) , (3.3.33) g(Cz, w)g(Cw, z)ψ + (z)ψ -(w) = g(z, Cw)g(w, Cz)ψ -(w)ψ + (z) , (3.3.34) g(C 1±1 2 z, w)ψ ± (z)e + (w) = -g(w, C 1±1 2 z)e + (w)ψ ± (z) , (3.3.35) g(w, C 1∓1 2 z)ψ ± (z)e -(w) = -g(C 1∓1 2 z, w)e -(w)ψ ± (z) , (3.3.36) [e + (z), e -(w)] = 1 g(1, 1) δ Cw z ψ + (w) -δ w Cz ψ -(z) , ( 3 
ψ ± (z) = m∈N ψ ± ±m z ∓m , (3.3.42) e ± (z) = m∈Z e ± m z -m . (3.3.43)
Remark 3.3.16. The elliptic Hall algebra E q 1 ,q 2 ,q 3 is Z-graded and can be equipped with a natural topology along the lines of what we did for Üq (a 1 ) in section 3.3.2. It then becomes a topological algebra and we denote by E q 1 ,q 2 ,q 3 its completion. Similar topologies can be constructed on its tensor powers.

Denition-Proposition 3.3.17. We endow E q 1 ,q 2 ,q 3 with:

i. the comultiplication ∆ E : E q 1 ,q 2 ,q 3 → E q 1 ,q 2 ,q 3 ⊗E q 1 ,q 2 ,q 3 dened by

∆ E (ψ ± (z)) = ψ ± (zC 1±1 2 (2) ) ⊗ ψ ± (zC 1∓1 2
(1) ) , (3.3.44) ii. the counit ε E :

∆ E (e + (z)) = e + (z) ⊗ 1 + ψ -(z) ⊗e + (zC ( 
E q 1 ,q 2 ,q 3 → F dened by ε E (C ±1/2 ) = ε E (ψ ± (z)) = 1, ε E (e ± (z)) = 0,
iii. the antipode S E : E q 1 ,q 2 ,q 3 → E q 1 ,q 2 ,q 3 dened by

S E (ψ ± (z)) = ψ ± (zC -1 ) -1 , (3.3.47) S E (e + (z)) = -ψ -(zC -1 ) -1 e + (zC -1 ) , (3.3.48) S E (e -(z)) = -e -(zC -1 )ψ + (zC -1 ) -1 . (3.3.49)
With the above dened operations, E q 1 ,q 2 ,q 3 is a topological Hopf algebra.

Proposition 3.3.18. There exists a unique continuous Hopf algebra homomorphism f : E q -4 ,q 2 ,q 2 → Ü0 + q (a 1 ) such that

f (C 1/2 ) = C 1/2 , (3.3.50) f (ψ ± (z)) = p ± (C 1/2 zq -2 ) , (3.3.51) f (e + (z)) = t + 1,1 (z) , (3.3.52) f (e -(z)) = t - 1,-1 (z) (q 2 -q -2 ) 2 .
(3.3.53)

Proof. In [MZ], we proved that the assignment

C 1/2 → C 1/2 ψ ± (z) → (q 2 -q -2 ) 2 p ± (C 1/2 zq -2 ) , e ± (z) → t ± 1,±1 (z)
dened an F-algebra homomorphism. Hence, f , which is obtained from the above assignment by rescaling the images of p ± (z) and e -(z), is obviously an F-algebra homomorphism. Moreover, it suces to write (3.3.24), (3.3.25) and (3.3.26) with m = 1, to get

∆ 0 (p ± (z)) = p ± (zC ±1/2 (2) ) ⊗ p ± (zC ∓1/2
(1) ) ,

∆ 0 (t + 1,1 (z)) = t + 1,1 (z) ⊗ 1 + p -(zq -2 C 1/2 (1) ) ⊗t + 1,1 (zC (1) ) , ∆ 0 (t - 1,-1 (z)) = t - 1,-1 (zC (2) ) ⊗p + (zq -2 C 1/2 (2) ) + 1 ⊗ t - 1,-1 (z) ,
as well as (3.3.29), (3.3.30) and (3.3.31), with m = 1, to get

S 0 (p ± (z)) = p ± (z) -1 , S 0 (t + 1,1 (z)) = -p -(zq -2 C -1/2 ) -1 t + 1,1 (zC -1 ) , S 0 (t - 1,-1 (z)) = -t - 1,-1 (zC -1 )p + (zq -2 C -1/2 ) -1 ,
and thus to prove that (f ⊗f )

• ∆ E = ∆ 0 • f and f • S E = S 0 • f as claimed.
Remark 3.3.19. Note that we have f

(ψ + 0 )f (ψ - 0 ) = f (ψ - 0 )f (ψ + 0 ) = 1
, meaning that f descends to the quotient of E q -4 ,q 2 ,q 2 by the two-sided ideal generated by {ψ + 0 ψ - 0 -1, ψ - 0 ψ + 0 -1}. That quotient is actually Miki's (q, γ)-analogue of the W 1+∞ algebra [START_REF]A (q, γ)-analog of the W 1+∞ algebra[END_REF].

The quantum toroidal algebra Uq ( ȧ1 )

Let İ = {0, 1} be a labeling of the nodes of the Dynkin diagram of type ȧ1 and let Φ = {α 0 , α 1 } be a choice of simple roots for the corresponding root system. Let Q± = Z ± α 0 ⊕ Z ± α 1 and let Q = Zα 0 ⊕ Zα 1 be the type ȧ1 root lattice. Denition 3.3.20. The quantum toroidal algebra Uq ( ȧ1 ) is the associative F-algebra generated by the generators

D, D -1 , C 1/2 , C -1/2 , k + i,n , k - i,-n , x + i,m , x - i,m : i ∈ İ, m ∈ Z, n ∈ N
subject to the following relations

C ±1/2 is central C ±1/2 C ∓1/2 = 1 D ±1 D ∓1 = 1 (3.3.54) Dk ± i (z)D -1 = k ± i (zq -1 ) Dx ± i (z)D -1 = x ± i (zq -1 ) (3.3.55) k ± i (z 1 )k ± j (z 2 ) = k ± j (z 2 )k ± i (z 1 ) (3.3.56) k - i (z 1 )k + j (z 2 ) = G - ij (C -1 z 1 /z 2 )G + ij (Cz 1 /z 2 )k + j (z 2 )k - i (z 1 ) = 1 mod z 1 /z 2 (3.3.57) G ∓ ij (C ∓1/2 z 2 /z 1 )k + i (z 1 )x ± j (z 2 ) = x ± j (z 2 )k + i (z 1 ) (3.3.58) k - i (z 1 )x ± j (z 2 ) = G ∓ ij (C ∓1/2 z 1 /z 2 )x ± j (z 2 )k - i (z 1 ) (3.3.59) (z 1 -q ±c ij z 2 )x ± i (z 1 )x ± j (z 2 ) = (z 1 q ±c ij -z 2 )x ± j (z 2 )x ± i (z 1 ) (3.3.60) [x + i (z 1 ), x - j (z 2 )] = δ ij q -q -1 δ z 1 Cz 2 k + i (z 1 C -1/2 ) -δ z 1 C z 2 k - i (z 2 C -1/2 ) (3.3.61) σ∈S 1-c ij 1-c ij k=0 (-1) k 1 -c ij k q x ± i (z σ(1) ) • • • x ± i (z σ(k) )x ± j (z)x ± i (z σ(k+1) ) • • • x ± i (z σ(1-c ij ) ) = 0 (3.3.62)
where, for every i ∈ İ, we dene the following Uq ( ȧ1 )-valued formal distributions

x ± i (z) := m∈Z x ± i,m z -m ∈ Uq ( ȧ1 )[[z, z -1 ]] ; (3.3.63) k ± i (z) := n∈N k ± i,±n z ∓n ∈ Uq ( ȧ1 )[[z ∓1 ]] , (3.3.64) 
for every i, j ∈ İ, we dene the following F-valued formal power series

G ± ij (z) := q ±c ij + (q -q -1 )[±c ij ] q m∈N × q ±mc ij z m ∈ F[[z]] (3.3.65) is an F-valued formal distribution, Note that G ± ij (z) is invertible in F[[z]] with inverse G ∓ ij (z), i.e. G ± ij (z)G ∓ ij (z) = 1 , (3.3.66) 
and that it can be viewed as the power series expansion of a rational function of (z 1 , z 2 ) ∈ C 2 as |z 2 | |z 1 |, which we shall denote as follows

G ± ij (z 1 /z 2 ) = z 1 q ∓c ij -z 2 z 1 -q ∓c ij z 2 |z 2 | |z 1 | . (3.3.67)
Observe furthermore that we have the following useful identity in

F[[z, z -1 ]] G ± ij (z 1 /z 2 ) -G ∓ ij (z 2 /z 1 ) q -q -1 = [±c ij ] q δ z 1 q ±c ij z 2 . (3.3.68)
Remark 3.3.21. In type a 1 , İ = {0, 1}, c ij = 4δ ij -2 and we have an additional identity, namely G ± 10 (z) = G ∓ 11 (z). Uq ( ȧ1 ) is obviously a Z-graded algebra, i.e. we have

Uq ( ȧ1 ) = n∈Z Uq ( ȧ1 ) n ,
where for all n ∈ Z Uq ( ȧ1 ) n := {x ∈ Uq ( ȧ1 ) :

DxD -1 = q n x} . (3.3.69)
It was proven in [START_REF] Hernandez | Representations of quantum anizations and fusion product[END_REF] to admit a triangular decomposition ( Uq ( ȧ1 ), U0 q ( ȧ1 ), U+ q ( ȧ1 )), where U± q ( ȧ1 ) and U0 q ( ȧ1 ) are the subalgebras of Uq ( ȧ1 ) respectively generated by x ± i,m : i ∈ İ, m ∈ Z and

C 1/2 , C -1/2 , D, D -1 , k + i,m , k - i,m : i ∈ İ, m ∈ Z .
Observe that U± q ( ȧ1 ) admits a natural gradation over Q± that we shall denote by

U± q ( ȧ1 ) = α∈ Q± U± q ( ȧ1 ) α . (3.3.70)
Of course Uq ( ȧ1 ) is graded over the root lattice Q. We nally remark that the two Dynkin diagram subalgebras Uq (a 1 ) (0) and Uq (a 1 ) (1) of Uq ( ȧ1 ) generated by

D, D -1 , C 1/2 , C -1/2 , k + i,n , k - i,-n , x + i,m , x - i,m : m ∈ Z, n ∈ N ,
with i = 0 and i = 1 respectively, are both isomorphic to Uq (a 1 ), thus yielding two injective algebra homomorphisms ι (i) : Uq (a 1 ) → Uq ( ȧ1 ). In [MZ], making use of their natural Z-grading, Uq ( ȧ1 ) and all its tensor powers were endowed with a topology along the lines of what we did in section 3.3.2 for Üq (a 1 ) and its tensor powers, and subsequently completed into Uq ( ȧ1 ) and Uq ( ȧ1 ) ⊗r . The main result in [MZ] theorem 3.7 there is the following Theorem 3.3.22. There exists a unique bicontinuous F-algebra isomorphism Ψ : Uq ( ȧ1 ) ∼ -→ Ü q (a 1 ) such that

Ψ(D ±1 ) = D ±1 2 Ψ(C ±1/2 ) = C ±1/2 , Ψ(k ± 0 (z)) = -c ± (z)K ∓ 1,0 (C -1/2 z) -1 Ψ(k ± 1 (z)) = -K ∓ 1,0 (C -1/2 z) Ψ(x + 0 (z)) = -c -(C 1/2 z)K + 1,0 (z) -1 X - 1,1 (Cz) Ψ(x - 0 (z)) = -X + 1,-1 (Cz)c + (C 1/2 z)K - 1,0 (z) -1 Ψ(x ± 1 (z)) = X ± 1,0 (z) .
Proof. See [MZ] for a proof.

3.3.8

Uq (a 1 ) subalgebras of Üq (a 1 )

Interestingly, Üq (a 1 ) admits countably many embeddings of the quantum ane algebra Uq (a 1 ). This is the content of the following Proposition 3.3.23. For every m ∈ Z, there exists a unique injective algebra homomorphism ι m :

Uq (a 1 ) → Ü q (a 1 ) such that ι m (C ±1/2 ) = C ±1/2 ι m (D ±1 ) = D ±1 2 (3.3.71) ι m (k ± 1 (z)) = - |m| p=1 c ± q (1-2p)sign(m)-1 z sign(m) K ∓ 1,0 (C -1/2 z) , (3.3.72) ι m (x ± 1 (z)) = X ± 1,±m (z) . (3.3.73)
Proof. See proposition 3.13 in [MZ].

Remark 3.3.24. The injective algebra homomorphisms ι m , m ∈ Z, dened above should not be mistaken with the injective algebra homomorphisms ι (i) , i ∈ {0, 1}, from the Dynkin diagram subalgebras Uq (a 1 ) (0)

and Uq (a 1 ) (1) to Uq ( ȧ1 ) see discussion before theorem 3.3.22 for a denition of the latter.

We also have Proposition 3.3.25. For every i ∈ İ = {0, 1}, Ψ • ι (i) is an injective algebra homomorphism.

Proof. This is obvious since Ψ is an isomorphism and ι (i) is an injective algebra homomorphism.

3.3.9 (Anti-)Automorphisms of Ü q (a 1 ) Ü q (a 1 ) naturally inherits, through Ψ, all the continuous (anti-)automorphisms dened over Uq ( ȧ1 ).

Proposition 3.3.26. Conjugation by Ψ clearly provides a group isomorphism Aut( Uq ( ȧ1 )) ∼ = Aut( Ü q (a 1 )). In particular, for every f ∈ Aut( Uq ( ȧ1 )), we let

ḟ = Ψ • f • Ψ -1 ∈ Aut( Ü q (a 1 )).
As an example, consider the Cartan anti-involution ϕ of Uq ( ȧ1 ) dened in proposition 2.3.iv. of [MZ]. It extends by continuity into an anti-involution ϕ over Uq ( ȧ1 ) which eventually yields, upon conjugation by Ψ, an anti-involution φ over Ü q (a 1 ). One can easily check that,

φ(q) = q -1 , φ(D ±1 2 ) = D ∓1 2 , φ(C ±1/2 ) = C ∓1/2 , φ(c ± (z)) = c ∓ (1/z) , φ(K ± 1,±m (z)) = K ∓ 1,∓m (1/z) , φ(X ± 1,r (z)) = X ∓ 1,-r (1/z) ,
for every m ∈ N and every r ∈ Z.

In addition to the above, Ü q (a 1 ) also admits the following automorphisms that will prove useful in the study of its representation theory. Proposition 3.3.27.

i. There exists a unique F-algebra automorphism τ of Ü q (a 1 ) such that, for every m ∈ N and every n ∈ Z,

τ (C) = -C , τ (c ± (C -1/2 z)) = c ± (∓C -1/2 z) , τ (K ± 1,±m (z)) = K ± 1,±m (∓z) , τ (X ± 1,n (z)) = X ± 1,n (∓z) . 
ii. There exists a unique F-algebra automorphism σ of Ü q (a 1 ) such that

σ(C 1/2 ) = -C 1/2 , σ(c ± (z)) = c ± (z) , τ (K ± 1,±m (z)) = K ± 1,±m (-z) , τ (X ± 1,n (z)) = X ± 1,n (-z) .
Proof. It suces to check the dening relations of Üq (a 1 ).

Topological Hopf algebra structure on Ü

q (a 1 ) Denition 3.3.28. We endow the topological F-algebra Uq ( ȧ1 ) with:

i. the comultiplication ∆ : Uq ( ȧ1 ) → Uq ( ȧ1 ) ⊗ Uq ( ȧ1 ) dened by

∆(C ±1/2 ) = C ±1/2 ⊗ C ±1/2 , ∆(D ±1 ) = D ±1 ⊗ D ±1 , (3.3.74)
where ψ + 1,m (z) can be recursively dened by setting

x + 0 (w), x + 1 (z) G - 10 (w/z) = δ q 2 w z ψ + 1,1 (z) (3.3.81)
and

G - 01 (q -2m v/w)G - 11 (q 2(1-m) v/w) ψ + 1,1 (w), ψ + 1,m (v) G - 01 (w/vq 2 )G - 11 (w/v) = [2] q δ w vq 2 ψ + 1,m+1 (q 2 v) -[2] q δ q 2m w v ψ + 1,m+1 (v) . (3.3.82)
Hence, i for m = 0 is clear. From (3.3.81) and denition 3.3.28, and making use of relations (4.2.6) and (4.2.7) as well as of the identity (3.3.68), we deduce that

∆(ψ + 1,1 (z)) = ψ + 1,1 (z) ⊗ 1 + ℘ -(zq -2 C 1/2 (1) ) ⊗ψ + 1,1 (zC (1) ) -[2] q (q -q -1 )k - 1 (zC 1/2 (1) )x + 0 (zq -2 ) ⊗x + 1 (zC (1) ) ,
where

℘ -(v) = k - 0 (v)k - 1 (vq 2 ).
Applying Ψ ⊗ Ψ to the rst two terms obviously yields ∆ 0 (t + 1,1 (z)). Since, on the other hand, Ψ(x + 0 (z)) ∈ Ü< q (a 1 )[[z, z -1 ]] see theorem 3.3.22 , applying Ψ ⊗ Ψ to the third term yields an element of Ü< q (a 1 ) ⊗ Ü> q (a 1 )[[z, z -1 ]] and it follows that i holds for m = 1 and for upper choices of signs. Suppose it holds for upper choices of signs and for some m ∈ N × . Then, making use of (3.3.82), one easily checks that i holds for m + 1 and for upper choices of signs, which completes the proof of i for upper choices of signs. Observe that ϕ ⊗ϕ • ∆ cop = ∆ • ϕ and that, as a consequence,

∆ • φ = φ ⊗ φ • ∆cop .
Similarly, one easily checks that

∆ 0 • φ| Ü0 q (a 1 ) = φ ⊗ φ | Ü0 q (a 1 ) • ∆ 0,cop .
Thus, i for lower choices of signs follows after applying φ to i with upper choices of signs.

As for ii, we let, for every r ∈ Z,

X + 1,r (z) = Ψ -1 (X + 1,r (z)) .
In [MZ] see denition 4.1 and proposition 4.8 , we proved that X + 1,r (z) could be dened recursively by setting X + 1,0 (z) = x + 1 (z) and letting, for every r ∈ N,

ψ + 1,1 (z), X + 1,r (v) G - 10 (z/vq 2 )G - 11 (z/v) = [2] q δ z vq 2 X + 1,r+1 (z) (3.3.83) and ψ - 1,-1 (z), X + 1,-r (v) = [2] q δ Cz v X + 1,-(r+1) (Cq -2 z)℘ + (C 1/2 q -2 z) , (3.3.84) 
where

ψ - 1,-1 (z) = ϕ(ψ + 1,1 (1/z)) see proposition 4.3 in [MZ]. Making use of ϕ ⊗ϕ • ∆ cop = ∆ • ϕ, we clearly get Ψ ⊗ Ψ • ∆(ψ - 1,-1 (z)) = ∆ 0 (t - 1,-1 (z)) mod Ü< q (a 1 ) ⊗ Ü> q (a 1 )[[z, z -1 ]] .
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Now, applying Ψ ⊗ Ψ to (3.3.76) in denition 3.3.28 clearly proves ii in the case r = 0. Assuming it holds for r ∈ N, it suces to apply Ψ ⊗ Ψ • ∆ to (3.3.83) above to prove that it also holds for r + 1. Similarly, if ii holds for some r ∈ -N, applying Ψ ⊗ Ψ • ∆ to (3.3.84) to prove that it also holds for r -1. This concludes the proof.

3.4 t-weight Üq (a 1 )-modules 3.4.1 -weight modules over Ü0 q (a 1 )

Remember that Ü0,0 q (a 1 ) contains a subalgebra that is isomorphic to U0 q (a 1 ) see proposition 3.3.5. Hence, in view of remark 3.2.9, we can repeat for modules over Ü0 q (a 1 ) what we did in section 3.2.3 for modules over Uq (a 1 ). We thus make the following Denition 3.4.1. We shall say that a (topological) Ü0 q (a 1 )-module M is -weight if there exists a countable set {M α : α ∈ A} of indecomposable locally nite-dimensional Ü0,0 q (a 1 )-modules called -weight spaces of M , such that, as Ü0,0 q (a 1 )-modules,

M ∼ = α∈A M α .
For every α ∈ A, we let [-] Mα : M → M α denote the canonical projection, so that, for every

v ∈ M , [v] Mα
is the projection of v on M α . Since for every α ∈ A, M α is locally nite-dimensional, it is the colimit of its nite-dimensional submodules and we shall refer to the latter as local -weight spaces.

As in section 3.2.3, it follows that Denition-Proposition 3.4.2. Let M be an -weight Ü0

q (a 1 )-module. Then:

i. C 2 acts on M by id;

ii. for every -weight space M α , α ∈ A, of M , there exist κ α,0 ∈ F × and sequences

(κ ± α,±m ) m∈N × ∈ F N × such that M α ⊆ v ∈ M : ∃n ∈ N × , ∀m ∈ N K ± 1,0,±m -κ ± α,±m id n .v = 0 , (3.4.1) 
where we have set κ ± α,0 = κ ±1 α,0 .

We let Sp(M ) = {κ α,0 : α ∈ A} and we shall refer to

κ ± α (z) = m∈N κ ± α,±m z ±m
as the -weight of the -weight space M α . We shall say that M is of type 1 if C 1/2 acts by id over M ; of type (1, N ) for N ∈ N × if it is of type 1 and, for every m ≥ N , c ± ±m acts by multiplication 0 over M ; of type (1, 0) if it is of type (1, 1) and c ± 0 acts by id over M .

Proof. The proof follows the same arguments as the proof of denition-proposition 3.2.8.

Proposition 3.4.3. Let M be a type 1 -weight Ü0 q (a 1 )-module and let M α and M β be two local -weight spaces of M such that, for some m ∈ N × and some n ∈ Z, M α ∩ K ± 1,±m,n .M β = {0}. Then, there exists a unique a ∈ F × such that: i. the respective -weights κ ε α (z) and κ ε β (z) of M α and M β be related by

κ ε α (z) = κ ε β (z)H ε m,a (z) ±1 ,
where ε ∈ {-, +} and

H ± m,a (z) = (1 -q -2 a/z)(1 -q -2(m-1) a/z) (1 -q 2 a/z)(1 -q -2(m+1) a/z) |z| ±1 1 ; (3.4.2) ii. (z -a) N M α ∩ K ± 1,±m (z).M β = {0} for some N ∈ N × .
Proof. There clearly exist two bases

{v i : i = 1, . . . , dim M α } and {w i : i = 1, . . . , dim M β } of M α and M β respectively, in which ∀i ∈ dim M α , K ± 1,0 (z).v i = κ ± α (z) dim Mα k=i η ± α,i,k (z)v k , ∀j ∈ dim M β , K ± 1,0 (z).w j = κ ± β (z) dim M β l=j η ± β,j,l (z)w l , for some η ± α,i,k (z), η ± β,j,l (z) ∈ F[[z ±1 ]], with i, k ∈ dim M α and j, l ∈ dim M β , such that η ± α,i,i (z) = 1 for every i ∈ dim M α and η ± β,j,j (z) = 1 for every j ∈ dim M β . Moreover, for every j ∈ dim M β , K ± 1,±m (z).w j Mα = i∈ dim Mα ξ ± m,j,i (z)v i , for some ξ ± m,j,i (z) ∈ F[[z, z -1 ]] see denition 3.4.1 for the denition of [-] Mα . Now, if M α ∩ K ± 1,±m,n .M β = {0}, there must exist a largest nonempty subset J ⊆ dim M β such that, for every j ∈ J, K ± 1,±m (z).w j Mα = {0}. Let j * = max J.
Obviously, for every j ∈ J, there must exist a largest nonempty subset I(j) ⊆ dim M α such that, for every j ∈ J and every i ∈ I(j), ξ ± m,j,i (z) = 0. Consequently, for every j ∈ J,

K ± 1,±m (z).w j Mα = i∈I(j) ξ ± m,j,i (z)v i , where ξ ± m,j,i (z) ∈ F[[z, z -1 ]] -{0}
, whereas ξ ± m,j,i (z) = 0 for any (j, i) outside of the set of pairs {(j, i) : j ∈ J, i ∈ I(j)}. For every j ∈ J, we let i * (j) = min I(j) and, for simplicity, we let i * = i * (j * ). Making use of the relations in Üq (a 1 ) namely (3.3.7) and (3.3.8) , we get, for ε ∈ {-, +},

(z 1 -q ±2 z 2 )(z 1 -q 2(m∓1) z 2 )K ± 1,±m (z 1 )K ε 1,0 (z 2 ).w j = (z 1 q ±2 -z 2 )(z 1 q ∓2 -q 2m z 2 )K ε 1,0 (z 2 )K ± 1,±m (z 1 ).w j .
The latter easily implies that, for every j ∈ J and every i ∈ I(j),

(z 1 -q ±2 z 2 )(z 1 -q 2(m∓1) z 2 )κ ε β (z 2 ) l∈J l≥j η ε β,j,l (z 2 )ξ ± m,l,i (z 1 ) = (z 1 q ±2 -z 2 )(z 1 q ∓2 -q 2m z 2 )κ ± α (z 2 ) k∈I(j) k≤i η ε α,k,i (z 2 )ξ ± m,j,k (z 1 ) . (3.4.3)
Taking i = i * and j = j * in the above equation immediately yields

(z 1 -q ±2 z 2 )(z 1 -q 2(m∓1) z 2 )κ ε β (z 2 ) -(z 1 q ±2 -z 2 )(z 1 q ∓2 -q 2m z 2 )κ ε α (z 2 ) ξ ± m,j * ,i * (z 1 ) = 0 .
The latter is equivalent to the fact that, for every p ∈ Z,

ξ ± m,j * ,i * ,p q 2m z 2 + ξ ± m,j * ,i * ,p+2 κ ε β (z) -κ ε α (z) = ξ ± m,j * ,i * ,p+1 z (q 2(m∓1) + q ±2 )κ ε β (z) -(q 2(m±1) + q ∓2 )κ ε α (z) . (3.4.4)
where, as usual, we have set

ξ ± m,j * ,i * ,p = res z z p-1 ξ ± m,j * ,i * (z) .
Since ξ ± m,j * ,i * (z) = 0, there must exist a p ∈ Z such that ξ ± m,j * ,i * ,p = 0. Assuming that ξ ± m,j * ,i * ,p+1 = 0, one easily obtains that, on one hand κ ε β (z) = κ ε α (z) and that, on the other hand, (q 2(m∓1) + q ±2 )κ ε β (z) -(q 2(m±1) + q ∓2 )κ ε α (z) = 0 .

A contradiction. By similar arguments, one eventually proves that ξ ± m,j * ,i * ,p = 0 for every p ∈ Z. But then, dividing (3.4.4) by ξ ± m,j * ,i * ,p+1 , we get

a -1 p q 2m z 2 + a p+1 κ ε β (z) -κ ε α (z) = z (q 2(m∓1) + q ±2 )κ ε β (z) -(q 2(m±1) + q ∓2 )κ ε α (z) ,
for every p ∈ Z, where a p = ξ ± m,j * ,i * ,p+1 /ξ ± m,j * ,i * ,p ∈ F × . Since the r.h.s. of the above equation is obviously independent of p, so is its l.h.s. and it easily follows that, for every p ∈ Z, a p = a for some a ∈ F × , so that, eventually,

q 2m z 2 + a 2 κ ε β (z) -κ ε α (z) -az (q 2(m∓1) + q ±2 )κ ε β (z) -(q 2(m±1) + q ∓2 )κ ε α (z) = 0 .
i follows. Moreover, we clearly have

ξ ± m,j * ,i * (z) = A ± m,j * ,i * δ(z/a) ,
for some A ± m,j * ,i * ∈ F × . More generally, we claim that,

∀j ∈ J , ∀i ∈ I(j) , ξ ± m,j,i (z) = N (i,j) p=0 A ± m,j,i,p δ (p) (z/a) , (3.4.5) 
for some A ± m,j,i,p ∈ F and some N (i, j) ∈ N. This is proven by a nite induction on j and i. Indeed, making use of (3.4.2), we can rewrite (3.4.3) as

(z 1 -q ±2 z 2 )(z 1 -q 2(m∓1) z 2 )(z 2 -q ±2 a)(z 2 -q -2(m±1) a) l∈J l≥j η ε β,j,l (z 2 )ξ ± m,l,i (z 1 ) = (z 1 q ±2 -z 2 )(z 1 q ∓2 -q 2m z 2 )(z 2 -q ∓2 a)(z 2 -q -2(m∓1) a) k∈I(j) k≤i η ε α,k,i (z 2 )ξ ± m,j,k (z 1 ) , (3.4.6) 
for every j ∈ J and every i ∈ I(j). Now, assume that (3.4.5) holds for every pair in

{(j, i) : j ∈ J, i ∈ I(j), j > j 0 } ∪ {(j 0 , i) : i ∈ I(j 0 ), i ≤ i 0 } ,
for some j 0 ∈ J and some i 0 ∈ I(j 0 ) such that i 0 < max I(j 0 ). Let i 0 be the smallest element of I(j 0 ) such that i 0 < i 0 . It suces to write (3.4.6) for j = j 0 and i = i 0 , to get

(z 1 -a)z 2 (z 1 a -q 2m z 2 2 )(q ∓2 + q -2(m∓1) -q ±2 -q -2(m±1) )ξ ± m,j 0 ,i 0 (z 1 ) = -(z 1 -q ±2 z 2 )(z 1 -q 2(m∓1) z 2 )(z 2 -q ±2 a)(z 2 -q -2(m±1) a) l∈J l>j 0 η ε β,j 0 ,l (z 2 )ξ ± m,l,i 0 (z 1 ) +(z 1 q ±2 -z 2 )(z 1 q ∓2 -q 2m z 2 )(z 2 -q ∓2 a)(z 2 -q -2(m∓1) a) k∈I(j 0 ) k≤i 0 η ε α,k,i 0 (z 2 )ξ ± m,j 0 ,k (z 1 ) . (3.4.7) 
Combining the recursion hypothesis and lemma 5.1.8 from the appendix, one easily concludes that (3.4.5) holds for the pair (j 0 , i 0 ). Repeating the argument nitely many times, we get that it actually holds for all the pairs in {(j, i) : j ∈ J, i ∈ I(j), j ≥ j 0 }. Now, either j 0 = min J and we are done; or j 0 > min J and there exists a largest j 0 ∈ J such that j 0 > j 0 . Writing (3.4.6) for j = j 0 and i = i * (j 0 ), we get

(z 1 -a)z 2 (z 1 a -q 2m z 2 2 )(q ∓2 + q -2(m∓1) -q ±2 -q -2(m±1) )ξ ± m,j 0 ,i * (j 0 ) (z 1 ) = -(z 1 -q ±2 z 2 )(z 1 -q 2(m∓1) z 2 )(z 2 -q ±2 a)(z 2 -q -2(m±1) a) l∈J l≥j 0 η ε β,j 0 ,l (z 2 )ξ ± m,l,i * (j 0 ) (z 1 ) .
Combining again the recursion hypothesis and lemma 5.1.8, we easily get that (3.4.19) holds for (j 0 , i * (j 0 )).

It is now clear that the claim holds for every j ∈ J and every i ∈ I(j). Letting

N = 1 + max{N (i, j) : j ∈ J, i ∈ I(j)} ,
ii follows. Furthermore, for every b ∈ F -{a} and every n ∈ N, we obviously have

(z -b) n M α ∩ K ± 1,±m (z).M β = {0}
, thus making a the only element of F satisfying ii. This concludes the proof.

Remark 3.4.4. It is worth emphasizing that proposition 3.4.3.i holds for arbitrary pairs of (possibly nonlocal) -weight spaces since it must hold for at least one pair of local -weight spaces therein.

We let ω 1 denote the fundamental weight of a 1 and we let P = Zω 1 be the corresponding weight lattice. In view of proposition 3.4.3, it is natural to make the following Denition 3.4.5. Let M be a type (1, 0) -weight Ü0

q (a 1 )-module and let {M α : α ∈ A} be the countable set of its -weight spaces. We shall say that M is rational if, for every α ∈ A, there exist relatively prime

monic polynomials P α (1/z), Q α (1/z) ∈ F[z -1 ], called Drinfel'd polynomials of M , such that the -weight κ ± α (z) of M α be given by κ ± α (z) = -q deg(Pα)-deg(Qα) P α (q -2 /z)Q α (1/z) P α (1/z)Q α (q -2 /z) |z| ±1 1 .
With each rational -weight κ ± α (z) of a rational Ü0 q (a 1 )-module M , we associate an integral weight λ α ∈ P , by setting

λ α = [deg(P α ) -deg(Q α )] ω 1 .
We shall say that M is -dominant (resp. -anti-dominant) if it is rational and there exists N ∈ N × such that, for every α ∈ A, deg

(P α ) = N and deg(Q α ) = 0 (resp. deg(P α ) = 0 and deg(Q α ) = N ).
Remark 3.4.6. The classical weight N ω 1 (resp. -N ω 1 ) associated with any -dominant (resp. -antidominant) type 1 -weight rational Ü0 q (a 1 )-module M is a dominant (resp. anti-dominant) integral weight. Note that the converse need not be true.

Remark 3.4.7. The data of the -weights of a rational Ü0 q (a 1 )-module is equivalent to the data of its Drinfel'd polynomials {(P α , Q α ) : α ∈ A} which, in turn, is equivalent to the data of their nite multisets of roots {(ν + α , ν - α ) : α ∈ A}. The latter are nitely supported maps ν ± α :

F × → N such that, for every α ∈ A, P α (1/z) = x∈F × (1 -x/z) ν + α (x) and Q α (1/z) = x∈F × (1 -x/z) ν - α (x) .
Note that, in the above formulae, since ν ± α is nitely supported, the products only run through the nitely many numbers in the support supp(ν ± α ) of ν ± α . Moreover, since P α and Q α are relatively prime for every α ∈ A, we have supp(ν + α ) ∩ supp(ν - α ) = ∅. We denote by N F × f , the set of nitely supported N-valued maps over F × . As is customary in the theory of q-characters, we associate with every -weight given by a pair (P α , Q α ) of Drinfel'd polynomials or, equivalently, by a pair

(ν + α , ν - α ) with ν + α , ν - α ∈ N F × f and supp(ν + α ) ∩ supp(ν - α ) = ∅, a monomial m α = Y ν + -ν -= x∈F × Y ν + α (x)-ν - α (x) x ∈ Z[Y a , Y -1 a ] a∈F × .
Denition 3.4.8. Let M be an -dominant Ü0

q (a 1 )-module and let M α and M β be any two -weight spaces of M with respective -weights

κ ± α (z) = -q deg(Pα) P α (q -2 /z) P α (1/z) |z| ±1 1 and κ ± β (z) = -q deg(P β ) P β (q -2 /z) P β (1/z) |z| ±1 1 , where P α (1/z), P β (1/z) ∈ F[z -1
] are two monic polynomials. By proposition 3.4.3.i., if M α ∩K ± 1,±m (z).M β = {0} for some m ∈ N × , then there exists a unique a ∈ F × such that

κ ε α (z) = κ ε β (z)H ε m,a (z) ±1 ,
where ε ∈ {-, +}. We shall say that M is t-dominant if, for any pair of -weight spaces satisfying the above assumptions, we have, in addition, that

P β (1/aq -(m±m) ) = P β (1/aq 2-(m±m) ) = 0 .
For every a ∈ F × , we let δ a ∈ N F × f be dened by

δ a (x) =    1 if x = a; 0 otherwise.
For every a ∈ F × , we let N F × a = ν ∈ N F × f : {a, aq 2 } ⊆ supp(ν) and we dene, for every m ∈ Z, an operator Γ m,a :

N F × aq -2m → N F × a by letting 1 , for every ν ∈ N F × aq -2m , Γ m,a (ν) = ν -δ aq -2m -δ aq 2-2m + δ a + δ aq 2 .
Γ m,a is obviously invertible, with inverse

Γ -1 m,a : N F × a → N F × aq -2m
given by Γ -1 m,a = Γ -m,aq -2m . Note that, for every a ∈ F × , Γ 0,a = id over N F × a . Given two nite multisets ν, ν ∈ N F × f , we we shall say that they are equivalent and write ν ∼ ν i

ν = Γ m 1 ,a 1 • • • • • Γ mn,an (ν ) , (3.4.8) 
for some n ∈ N, m 1 , . . . , m n ∈ Z n and some a 1 , . . . , a n ∈ F × . In writing (3.4.8), it is assumed that, for every The equivalence relation ∼ similarly extends from

p = 2, . . . , n, Γ mp,ap • • • • • Γ mn,an (ν ) ∈ N F × a p-1 q -2m p-1 . It is clear that ∼ is
N F × f to Z[Y b , Y -1 b ] b∈F × . Note that, setting H m,a = Y -1 aq -2m Y -1 aq 2-2m Y a Y aq 2 ∈ Z[Y b , Y -1 b ] b∈F × ,
for every a ∈ F × and every m ∈ Z, we have, for every

ν ∈ N F × a Γ m,a (Y ν ) = H m,a Y ν .
Corollary 3.4.9. Let M be a simple t-dominant Ü0

q (a 1 )-module. Then there exists a multiset ν ∈ N F × f such that all the monomials associated with the -weights of M be in the equivalence class of Y ν .

Proof. By proposition 3.4.3, for any two -weight spaces, M α and M β , of an -dominant Ü0 q (a 1 )-module M , with respective -weights κ ± α (z) = -q deg(Pα) P α (q -2 /z) P α (1/z) |z| ±1 1 and κ ± β (z) = -q deg(P β ) P β (q -2 /z) P β (1/z) |z| ±1 1 ,

1 Although the denition of Γ ±1 ±1,a easily extends to ν ∈ N F × f : aq -(1±1) ∈ supp(ν) , we will not make use of that extension and exclusively regard Γ ±1 ±1,a as a map

N F × aq -2(1±1) → N F × aq 2(1∓1) . if M α ∩ K ± 1,±m,n .M β = {0}
for some m ∈ N × and some n ∈ Z, then we must have

P α (q -2 /z) P α (1/z) = P β (q -2 /z) P β (1/z) (1 -q -2 a/z)(1 -a/z) (1 -a/z)(1 -q 2 a/z) (1 -q -2m a/z)(1 -q -2(m-1) a/z) (1 -q -2(m+1) a/z)(1 -q -2m a/z) ±1 , (3.4.9)
for some a ∈ F × . Now, denote by ν α (resp. ν β ) the multiset of roots of P α (1/z) (resp. P β (1/z)) and assume m > 1, it is clear that:

-for the upper choice of sign on the right hand side of the above equation, we get

(1 -q -2m a/z)(1 -q -2(m-1) a/z)P α (1/z) = (1 -a/z)(1 -q 2 a/z)P β (1/z) , implying that ν α + δ aq -2m + δ aq -2(m-1) = ν β + δ a + δ aq 2 ;

-for the lower choice of sign,

(1 -a/z)(1 -q 2 a/z)P α (1/z) = (1 -q -2m a/z)(1 -q -2(m-1) a/z)P β (1/z) ,

implying that ν α + δ a + δ aq 2 = ν β + δ aq -2m + δ aq -2(m-1) .
If on the other hand m = 1, since M is t-dominant, we have, by denition, that aq ∓2 is a root of P β (1/z).

In any case, it is clear that ν α ∼ ν β and hence Y να ∼ Y ν β . Since M is simple, there can be no non-zero -weight space M β of M such that M α ∩ K ± 1,±m,n .M β = {0} for every -weight space M α of M , every m ∈ N × and every n ∈ Z.

In view of denition-proposition 3.4.2, we can make the following Denition 3.4.10. For every monic polynomial P (1/z) ∈ F[z -1 ], denote by F P the one-dimensional Ü0,0 q (a 1 )-module such that K ± 1,0 (z).v = -q deg(P ) P (q -2 /z)

P (1/z) |z| ±1 1 v ,
for every v ∈ F P . There exists a universal Ü0 q (a 1 )-module M 0 (P ) ∼ = Ü0 q (a 1 ) ⊗ Ü0,0 q (a 1 )

F P that admits theweight associated with P . Denoting by N 0 (P ) the maximal Ü0 q (a 1 )-submodule of M 0 (P ) such that N 0 (P )∩ F P = {0}, we dene the unique up to isomorphisms simple Ü0 q (a 1 )-module L 0 (P ) = M 0 (P )/N 0 (P ).

Proposition 3.4.11. For every simple -dominant Ü0 q (a 1 )-module M , there exists a monic polynomial

P (1/z) ∈ F[z -1 ] such that M ∼ = L 0 (P ).
Proof. Obviously, for every v ∈ M -{0}, we have M ∼ = Ü0 q (a 1 ).v. Now since M is -dominant, v can be chosen as an -weight vector, i.e. K ± 1,0 (z).v = -q deg(P ) P (q -2 /z) P (1/z) |z| ±1 1 v

for some monic polynomial

P (1/z) ∈ F[z -1 ].
107 Remark 3.4.12. The above proof makes it clear that if {P α : α ∈ A} is the set of Drinfel'd polynomials of a simple -dominant Ü0 q (a 1 )-module M , then, for every α ∈ A, M ∼ = L 0 (P α ).

Theorem 3.4.13. For every monic polynomial P (1/z) ∈ F[z -1 ], L 0 (P ) is t-dominant.

Proof. We postpone the proof of this theorem until section 3.5, where we construct L 0 (P ) for every P and directly check that it is indeed t-dominant.

Proposition 3.4.14. Any topological Ü0

q (a 1 )-module pulls back to a module over the elliptic Hall algebra E q -4 ,q 2 ,q 2 . Proof. It suces to make use of the Hopf algebra homomorphism

E q -4 ,q 2 ,q 2 f -→ Ü0 + q (a 1 ) → Ü0 q (a 1 ) ,
where f is dened in proposition 3.3.18 and the second arrow is the canonical injection into Ü0 q (a 1 ) of its Hopf subalgebra Ü0 + q (a 1 ) see proposition 3.3.12.

Remark 3.4.15. It is worth mentioning that, as an example of the above proposition, -anti-dominant Ü0 q (a 1 )-modules pullback to a family of E q -4 ,q 2 ,q 2 -modules that were recently introduced in [DK19]. It might be interesting to investigate further the class of E q -4 ,q 2 ,q 2 -modules obtained by pulling back other (rational) Ü0

q (a 1 )-modules.

We conclude the present subsection by proving the following Lemma 3.4.16. Let M be an -dominant Ü0

q (a 1 )-module. Suppose that, for any two local -weight spaces M α and M β of M , with respective -weights κ ± α (z) and κ ± β (z), such that M α ∩ K ± 1,±1 (z).M β = {0}, the unique a ∈ F × such that κ ε α (z) = κ ε β (z)H ε 1,a (z) ±1 , for every ε ∈ {-, +}, and (z -a) N M α ∩ K ± 1,±1 (z).M β = {0} for some N ∈ N × see proposition 3.4.3 also satises P β (1/a) = 0. Then M is t-dominant.

Proof. Let M be as above and let M α and M β be two local -weight spaces of M with respective -weights

κ ± α (z) = -q deg(Pα) P α (q -2 /z) P α (1/z) |z| ±1 1 and κ ± β (z) = -q deg(P β ) P β (q -2 /z) P β (1/z) |z| ±1 1 . Suppose that M α ∩K ± 1,±m (z).M β = {0} for some m ∈ N × . If m > 1, writing down κ ε α (z) = κ ε β (z)H ε m,a (z) ±1
, we obtain equation (3.4.9) as in the proof of corollary 3.4.9. By the same discussion as the one following equation (3.4.9), we conclude that P β (1/aq -(m±m) ) = P β (1/aq 2-(m±m) ) = 0, as needed see denition 3.4.8. Finally, if m = 1, writing down κ ε α (z) = κ ε β (z)H ε 1,a (z) ±1 , we obtain

P α (q -2 /z) P α (1/z) = P β (q -2 /z) P β (1/z) (1 -a/z) (1 -q 2 a/z) (1 -q -2 a/z) (1 -q -4 a/z) ±1 .
Then, it is clear that:

-for the upper choice of sign on the right hand side of the above equation, we get

(1 -q -2 a/z)P α (1/z) = (1 -q 2 a/z)P β (1/z) ;
for some monic polynomial Q m . Now since

ι m (k ± 1 (z)) = - |m| p=1 c ± q (1-2p)sign(m)-1 z sign(m) K ∓ 1,0 (C -1/2 z)
and Ψ(k ± 0 (z)k ± 1 (z)) = c ± (z), we must have

q deg(Qm) Q m (q -2 /z) Q m (1/z) |z| ∓1 1
= q deg(P 1 )+m(deg(P 1 )-deg(P 0 )) P 1 (q -2 /z) P 1 (1/z) |z| ∓1 1 × |m| p=1 P 1 (q (2p-1)sign(m)-1 /z)P 0 (q (2p-1)sign(m)+1 /z) P 1 (q (2p-1)sign(m)+1 /z)P 0 (q (2p-1)sign(m)-1 /z)

sign(m) |z| ∓1 1 (3.4.14)
for every m ∈ Z × . In the limit as z -1 → 0, this implies q deg(Qm) = q deg(P 1 )+m(deg(P 1 )-deg(P 0 )) for every m ∈ Z and, consequently, deg(P 0 ) = deg(P 1 ) = deg(Q m ). After obvious simplications, (3.4.14) becomes

Q m (q -2 /z) Q m (1/z) |z| ∓1 1 = P 1 (q -1
-sign(m) /z) P 0 (q sign(m)-1 /z) P 0 (q 2m+1-sign(m) /z) P 1 (q 2m+1-sign(m) /z)

sign(m) |z| ∓1 1 (3.4.15)
for every m ∈ Z × . Now, z -1 = 0 is not a root of P (1/z) for any monic polynomial P . Moreover, q being a formal parameter in case q is regarded as a complex number, we shall assume that 1 / ∈ q Z × , it follows that the map z -1 → q m z -1 has no xed points over the set of roots of a monic polynomial. Thus, for |m| large enough, the respective sets of roots of P 1 (q -1-sign(m) /z) and P 1 (q 2m+1-sign(m) /z) are disjoint. Similarly, for |m| large enough, the respective sets of roots of P 0 (q sign(m)-1 /z) and P 0 (q 2m+1-sign(m) /z) are disjoint. It follows that, for |m| large enough, on the r.h.s. of (3.4.15), cancellations can only occur between factors on opposite sides of the same fraction line. Now, either P 0 = P 1 , which obviously solves (3.4.15); or P 0 = P 1 . Assume for a contradiction that P 0 = P 1 . In that case, there exist a monic polynomial P with deg(P ) < deg(P 0 ) = deg(P 1 ), an integer n ∈ N × with n ≤ deg(P 0 ) = deg(P 1 ) and two n-tuples (α p ) p∈ n ,

(β p ) p∈ n ∈ F n with {α p : p ∈ n } ∩ {β p : p ∈ n } = ∅ , such that P 0 (1/z) = P (1/z) n p=1 (1 -β p /z) and P 1 (1/z) = P (1/z) n p=1
(1 -α p /z) .

Thus, in that case, (3.4.15) yields

Q m (q -2 /z) Q m (1/z) |z| ∓1 1 =    P (q -2 /z) P (1/z)   n p=1 1 -α p q -sign(m)-1 /z 1 -β p q sign(m)-1 /z   sign(m)    |z| ∓1 1 ×   n p=1 1 -β p q 2m+1-sign(m) /z 1 -α p q 2m+1-sign(m) /z   sign(m) |z| ∓1 1
, where, for |m| large enough, cancellations on the r.h.s. can only involve factors in the numerators and denominators of the leftmost two fraction lines. The third fraction must therefore be a factor in the l.h.s.

But this leads to a contradiction since we cannot have simultaneously

{β p : p ∈ n } ⊂ p∈ n α p q -2N × ,
as required when m > 0, and

{β p : p ∈ n } ⊂ p∈ n α p q 2N × ,
as required when m < 0. Hence P 0 = P 1 and i follows.

Although we must postpone the proof of part ii of theorem 3.4.22, the proof above still makes it clear that Proposition 3.4.23. If a type (1,0) simple highest t-weight Üq (a 1 )-module L(M 0 ) is weight-nite, then its highest t-weight space M 0 is a simple -dominant Ü0 q (a 1 )-module.

Proposition 3.4.24. Let M be a t-weight Üq (a 1 )-module and let M α and M β be two local -weight spaces of M such that, for some m, n ∈ Z, M α ∩ X ± 1,m,n .M β = {0}. Then, there exists a unique a ∈ F × such that:

i. the respective -weights κ ε α (z) and κ ε β (z) of M α and M β be related by

κ ε α (z) = κ ε β (z)A ε a (z) ±1 , (3.4.16) 
where ε ∈ {-, +} and

A ± a (z) = q 2 1 -q -2 a/z 1 -q 2 a/z |z| ±1 1 ; ii. (z -a) N M α ∩ X ± 1,m (z).M β = {0} for some N ∈ N × .
Proof. We keep the same notations as in the proof of proposition 3.4.3. More specically, we have two bases {v i : i = 1, . . . , dim(M α )} and {w j : j = 1, . . . , dim(M β )} of M α and M β respectively, in which

∀i ∈ dim M α , K ± 1,0 (z).v i = κ ± α (z) dim Mα k=i η ± α,i,k (z)v k , ∀j ∈ dim M β , K ± 1,0 (z).w j = κ ± β (z) dim M β l=j η ± β,j,l (z)w l , for some η ± α,i,k (z), η ± β,j,l (z) ∈ F[[z ±1 ]], with i, k ∈ dim M α and j, l ∈ dim M β , such that η ± α,i,i (z) = 1 for every i ∈ dim M α and η ± β,j,j (z) = 1 for every j ∈ dim M β . Moreover, for every j ∈ dim M β , X ± 1,m (z).w j Mα = i∈ dim Mα ξ ± m,j,i (z)v i , for some ξ ± m,j,i (z) ∈ F[[z, z -1 ]] see denition 3.4.1 for the denition of [-] Mα . Now, if M α ∩ X ±
1,m,n .M β = {0}, there must exist a largest nonempty subset J ⊆ dim M β such that, for every j ∈ J, X ± 1,m (z).w j Mα = {0}. Let j * = max J. Obviously, for every j ∈ J, there must exist a largest nonempty subset I(j) ⊆ dim M α such that, for every j ∈ J and every i ∈ I(j), ξ ± m,j,i (z) = 0. Consequently, for every j ∈ J,

X ± 1,m (z).w j Mα = i∈I(j) ξ ± m,j,i (z)v i ,
where ξ ± m,j,i (z) ∈ F[[z, z -1 ]] -{0}, whereas ξ ± m,j,i (z) = 0 for any (j, i) outside of the set of pairs {(j, i) : j ∈ J, i ∈ I(j)}. For every j ∈ J, we let i * (j) = min I(j) and, for simplicity, we let i * = i * (j * ). Making use of the relations in Üq (a 1 ) namely (5.0.1) and (3.3.10) , we get, for every j ∈ J and every ε ∈ {-, +},

(z 1 -q ±2 z 2 )X ± 1,m (z 1 )K ε 1,0 (z 2 ).w j = (z 1 q ±2 -z 2 )K ε 1,0 (z 2 )X ± 1,m (z 1 ).w j .
The latter easily implies that, for every j ∈ J and every i ∈ I(j),

(z 1 -q ±2 z 2 )κ ε β (z 2 ) l∈J l≥j η ε β,j,l (z 2 )ξ ± m,l,i (z 1 ) = (z 1 q ±2 -z 2 )κ ± α (z 2 ) k∈I(j) k≤i η ε α,k,i (z 2 )ξ ± m,j,k (z 1 ) .
(3.4.17)

Taking i = i * and j = j * in the above equation immediately yields

(z 1 -q ±2 z 2 )κ ε β (z 2 ) -(z 1 q ±2 -z 2 )κ ε α (z 2 ) ξ ± m,j * ,i * (z 1 ) = 0 .
The latter is equivalent to the fact that, for every p ∈ Z,

ξ ± m,j * ,i * ,p z q ±2 κ ε β (z) -κ ε α (z) = ξ ± m,j * ,i * ,p+1 κ ε β (z) -q ±2 κ ε α (z) , (3.4.18) 
where, as usual, we have set ξ ± m,j * ,i * ,p = res z z p-1 ξ ± m,j * ,i * (z) .

Since ξ ± m,j * ,i * (z) = 0, there exists at least one p ∈ Z such that ξ ± m,j * ,i * ,p = 0. Assuming that ξ ± m,j * ,i * ,p+1 = 0, one easily derives a contradiction from (3.4.18) and, repeating the argument, one proves that ξ ± m,j * ,i * ,p = 0 for every p ∈ Z. Dividing (3.4.18) by ξ ± m,j * ,i * ,p , one gets

z q ±2 κ ε β (z) -κ ε α (z) = a p κ ε β (z) -q ±2 κ ε α (z) ,
where we have set, for every p ∈ Z, a p = ξ ± m,j * ,i * ,p+1 /ξ ± m,j * ,i * ,p ∈ F × . Since the l.h.s. of the above equation is independent of p, so it its r.h.s. and there must therefore exist an a ∈ F × such that a p = a for every p ∈ Z, eventually yielding

z q ±2 κ ε β (z) -κ ε α (z) = a κ ε β (z) -q ±2 κ ε α (z) .
i. now follows. Moreover, we clearly have

ξ ± m,j * ,i * (z) = A ± m,j * ,i * δ(z/a) ,
for some A ± m,j * ,i * ∈ F × . More generally, we claim that, ∀j ∈ J , ∀i ∈ I(j) , ξ ± m,j,i (z) =

N (i,j) p=0 A ± m,j,i,p δ (p) (z/a) , (3.4.19)
for some A ± m,j,i,p ∈ F and some N (i, j) ∈ N. This is proven by a nite induction on j and i. Indeed, making use of (3.4.16), we can rewrite (3.4.17) as

(z 1 -q ±2 z 2 )(z 2 -q ±2 a) l∈J l≥j η ε β,j,l (z 2 )ξ ± m,l,i (z 1 ) = (z 1 q ±2 -z 2 )(q ±2 z 2 -a) k∈I(j) k≤i η ε α,k,i (z 2 )ξ ± m,j,k (z 1 ) , (3.4.20)
for every j ∈ J and every i ∈ I(j). Now, assume that (3.4.19) holds for every pair in {(j, i) : j ∈ J, i ∈ I(j), j > j 0 } ∪ {(j 0 , i) : i ∈ I(j 0 ), i ≤ i 0 } , for some j 0 ∈ J and some i 0 ∈ I(j 0 ) such that i 0 < max I(j 0 ). Let i 0 be the smallest element of I(j 0 ) such that i 0 < i 0 . It suces to write (3.4.20) for j = j 0 and i = i 0 , to get

(z 1 -a)z 2 (1 -q ±4 )ξ ± m,j 0 ,i 0 (z 1 ) = -(z 1 -q ±2 z 2 )(z 2 -q ±2 a) l∈J l>j 0 η ε β,j 0 ,l (z 2 )ξ ± m,l,i 0 (z 1 ) +(z 1 q ±2 -z 2 )(q ±2 z 2 -a) k∈I(j 0 ) k≤i 0 η ε α,k,i 0 (z 2 )ξ ± m,j 0 ,k (z 1 ) . (3.4.21)
Combining the recursion hypothesis and lemma 5.1.8 from the appendix, one easily concludes that (3.4.19) holds for the pair (j 0 , i 0 ). Repeating the argument nitely many times, we get that it actually holds for all the pairs in {(j, i) : j ∈ J, i ∈ I(j), j ≥ j 0 }. Now, either j 0 = min J and we are done; or j 0 > min J and there exists a largest j 0 ∈ J such that j 0 > j 0 . Writing (3.4.20) for j = j 0 and i = i * (j 0 ), we get

(z 1 -a)z 2 (1 -q ±4 )ξ ± m,j 0 ,i * (j 0 ) (z 1 ) = -(z 1 -q ±2 z 2 )(z 2 -q ±2 a) l∈J l≥j 0 η ε β,j 0 ,l (z 2 )ξ ± m,l,i * (j 0 ) (z 1 ) .
Combining again the recursion hypothesis and lemma 5.1.8, we easily get that (3.4.19) holds for (j 0 , i * (j 0 )).

It is now clear that the claim holds for every j ∈ J and every i ∈ I(j). Letting

N = 1 + max{N (i, j) : j ∈ J, i ∈ I(j)} ,
ii. follows. Furthermore, for every b ∈ F -{a} and every n ∈ N, we obviously have 

(z -b) n M α ∩ X ± 1,m (z).M β = {0},
∆ 0 (K + 1,1 (z)) = -c -(zq -2 C 1/2 (1) )K + 1,0 (z) ⊗K + 1,1 (zC (1) ) -K + 1,1 (z) ⊗K + 1,0 (zq -2 C (1) ) , ∆ 0 (K - 1,-1 (z)) = -K - 1,-1 (zC (2) ) ⊗K - 1,0 (z)c + (zq -2 C 1/2 (2) ) -K - 1,0 (zq -2 C (2) ) ⊗K - 1,-1 (z) .
Since both M 0,α and N 0,β are -weight spaces, it follows that

∆ 0 (K ± 1,±1 (z)). M 0,α ⊗ N 0,β ⊆ K ± 1,±1 (z).M 0,α ⊗ N 0,β ⊕ M 0,α ⊗ K ± 1,±1 (z).N 0,β ,
Therefore, condition (3.4.26) holds only if the direct sum on the r.h.s. above has a non-vanishing intersection with M 0,α ⊗ N 0,β . But since the latter is an -weight space, this happens only if either M 0,α ∩ K ± 1,±1 (z).M 0,α = {0} or N 0,β ∩ K ± 1,±1 (z).N 0,β = {0}. The t-dominance of M 0 and N 0 implies that, for the only a ∈ F × such that (z -a) m M 0,α ∩ K ± 1,±1 (z).M 0,α = {0} for some m ∈ N × , P α (1/a) = 0; or, for the only b ∈ F × such that (z -b) n N 0,β ∩K ± 1,±1 (z).N 0,β = {0} for some n ∈ N × , P β (1/b) = 0. In any case, P α (1/a)P β (1/a) = 0 or P α (1/b)P β (1/b) = 0 and M 0 ⊗N 0 is t-dominant. i follows. By lemma 3.3.30, it is clear that ∆(X + 1,r (z)). M 0 ⊗N 0 = {0}. Hence M 0 ⊗N 0 is a highest t-weight space in L(M 0 ) ⊗L(N 0 ). Let N denote the largest closed Ü q (a 1 )-submodule of L(M 0 ) ⊗L(N 0 ) such that N ∩ M 0 ⊗N 0 = {0}. ii obviously follows. iii is clear.

An evaluation homomorphism and evaluation modules

In this section, we construct an evaluation algebra A t and an F -algebra homomorphism ev : Üq (a 1 ) → A t , that we shall refer to as the evaluation homomorphism.

The quantum Heisenberg algebras H +

t and H - t Denition 3.5.1. The quantum Heisenberg algebra H ± t is the Hopf algebra generated over K(t) by

γ 1/2 , γ -1/2 , α ± , α -1 ± , α ±,m : m ∈ Z × ,
subject to the relations,

γ 1/2 , γ -1/2 , α ± , α -1 ± are central, [α ±,-m , α ±,n ] = - δ m,n m [2m] t γ m -γ -m t -t -1 ,
for every m, n ∈ Z × , with comultiplication ∆ dened by setting

∆(γ 1/2 ) = γ 1/2 ⊗ γ 1/2 , ∆(γ -1/2 ) = γ -1/2 ⊗ γ -1/2 , ∆(α ± ) = α ± ⊗ α ± , ∆(α -1 ± ) = α -1 ± ⊗ α -1 ± , ∆(α ±,m ) = α ±,m ⊗ γ |m|/2 + γ -|m|/2 ⊗ α ±,m ,
for every m, n ∈ Z × , antipode S dened by setting

S(γ 1/2 ) = γ -1/2 , S(γ -1/2 ) = γ 1/2 , S(α ± ) = α -1 ± , S(α -1 ± ) = α ± S(α ±,m ) = -α ±,m ,
and counit ε dened by setting

ε(γ 1/2 ) = ε(γ -1/2 ) = ε(α ± ) = ε(α -1 ± ) = ε(1) = 1 , ε(α ±,m ) = 0 .
Denition 3.5.2. In H + t , we let

L + (z) = 1 + m∈N × L + -m z m = exp   -(t -t -1 ) m∈N × α +,-m (t 2 z) m   , R + (z) = α +   1 + m∈N × R + m z -m   = α + exp   (t -t -1 ) m∈N × α +,m (t -2 z) -m   .
Similarly, in H - t , we let

L -(z) = α -   1 + m∈N × L - -m z m   = α -exp   -(t -t -1 ) m∈N × α -,-m (t -2 z) m   , R -(z) = 1 + m∈N × R - m z -m = exp   (t -t -1 ) m∈N × α -,m (t 2 z) -m   .
Then, we have the following equivalent presentation of H ± t .

Proposition 3.5.3. H ± t is the Hopf algebra generated over K(t) by

{γ 1/2 , γ -1/2 , L ± -m , R ± m : m ∈ N} subject to the relations [L ± (v), L ± (z)] = [R ± (v), R ± (z)] = 0 ,
where we have dened θ ± (z) ∈ Z(H t )[[z]], by setting

θ ± (z) = (1 -t 2±4 γz)(1 -t ±4-2 γ -1 z) (1 -t ±4-2 γz)(1 -t 2±4 γ -1 z) |z| 1 .
Furthermore, we have

∆(L ± (z)) = L ± (zγ 1/2 (2) ) ⊗ L ± (zγ -1/2 (1) ) , ∆(R ± (z)) = R ± (zγ -1/2 (2) ) ⊗ R ± (zγ 1/2 (1) ) ,
where, by denition,

γ 1/2 (1) = γ 1/2 ⊗ 1 , γ -1/2 (1) = γ -1/2 ⊗ 1 , γ 1/2 (2) = 1 ⊗ γ 1/2 , γ -1/2 (2) = 1 ⊗ γ -1/2 and S(L ± (z)) = L ± (z) -1 , S(R ± (z)) = R ± (z) -1 . Finally, ε(L ± (z)) = ε(R ± (z)) = 1.
Proof. This is an easy consequence of the denition of H ± t .

Remark 3.5.4. Observe that θ + (z) and θ -(z) are not independent and that we actually have θ -(z) = θ + (t -8 z).

A PBW basis for H ± t

For every n ∈ N × , we let Λ n := {λ = (λ 1 , . . . , λ n ) ∈ (N × ) n : λ 1 ≥ • • • ≥ λ n } denote the set of n-partitions.

We adopt the convention that Λ 0 = {∅} reduces to the empty partition and we let Λ = n∈N Λ n be the set of all partitions.

Proposition 3.5.5. Dene, for every λ ∈ Λ,

L ± λ = L ± -λ 1 • • • L ± -λn , (3.5.1) R ± λ = R ± λ 1 • • • R ± λn , (3.5.2)
with the convention that

L ± ∅ = R ± ∅ = 1. Then, Φ ± λ,µ = L ± λ R ± µ : λ, µ ∈ Λ (3.5.3) is a K(t)[γ 1/2 , γ -1/2 ]-basis for H ± t .
Proof. The relations in H ± t read, for every m, n ∈ N,

[L ± -m , L ± -n ] = [R ± m , R ± n ] = 0 , R ± m L ± -n = L ± -n R ± m + min(m,n) p=1 θ ± p L ± p-n R ± m-p ,
where, for every p ∈ N, θ ± p ∈ K(t)[γ 1/2 , γ -1/2 ] can be obtained from

θ ± (z) = 1 + p∈N × θ ± p z p .
It is clear that any monomial in {L ± -m , R ± m : m ∈ N} can therefore be rewritten as a linear combination with coecients in K(t)[γ 1/2 , γ -1/2 ] of elements in {φ ± λ,µ : λ, µ ∈ Λ}. The independence of the latter is clear.

A convenient way to encode the above basis elements is through H ± t -valued symmetric formal distributions. Let indeed, for every n + , n -, m + , m -∈ N, every n ± -tuple z ± = (z ± 1 , . . . , z ± n ± ) and every m ± -tuple

ζ ± = (ζ ± 1 , . . . , ζ ± m ± ) of formal variables, Φ ± (z ± , ζ ± ) = L ± (z ± )R ± (ζ ± ) ,
where we have set

L ± (z ± ) = n ± p=1 L ± (z ± p ) , R ± (ζ ± ) = m ± p=1 R ± (ζ ± p ) ,
with the convention that if n ± (resp. m ± = 0), then L ± (∅) = 1 (resp. R ± (∅) = 1). It turns out that

Φ ± (z ± , ζ ± ) ∈ H ± t [[z ± , (ζ ± ) -1 ]] S n ± ×S m ± .
Indeed, owing to the commutation relations in H ± t , the formal distribution Φ ± (z ± , ζ ± ) is symmetric in each of its argument tuples, z ± and ζ ± respectively; i.e. it is invariant under the natural action of S n ± × S m ± on its arguments. It is also clear that, for every λ ± ∈ Λ n ± and µ ± ∈ Λ m ± ,

Φ ± λ ± ,µ ± = res z ± ,ζ ± (z ± ) -1-λ ± (ζ ± ) -1+µ ± Φ ± (z ± , ζ ± ) ,
where we have set

(z ± ) -1-λ ± = n ± p=1 (z ± p ) -1-λ ± p and (ζ ± ) -1+µ ± = m ± p=1 (ζ ± p ) -1+µ ± p .
3.5.3 The dressing factors L ± m (z) and R ± m (z) Denition 3.5.6. For every m ∈ Z × , we let

L ± m (z) = |m| p=1 L ± (zt ±2(1-2p)sign(m)+2 ) ±sign(m) (3.5.4) R ± m (z) = |m| p=1 R ± (zt ±2(1-2p)sign(m)+2 ) ±sign(m) (3.5.5)
iii. the antipode S : Ȗq (La 1 ) → Ȗq (La 1 ), dened by

S(k ± 1 (z)) = k ± 1 (z) -1 , S(x + 1 (z)) = -k - 1 (z) -1 x + 1 (z) , S(x - 1 (z)) = -x - 1 (z)k + 1 (z) -1 .
With the operations so dened, Ȗq (La 1 ) becomes a topological Hopf algebra that we shall denote simply Ȗq (La 1 ). It has an invertible antipode and we denote by Ȗq (La 1 ) cop its coopposite topological Hopf algebra.

Proposition 3.5.10. The quantum Heisenberg algebra H + t (resp. H - t ) is a left Ȗt 2 (La 1 )-module algebra (resp. a left Ȗt 2 (La 1 ) cop -module algebra) with

k ε 1 (v) γ 1/2 = k ε 1 (v) γ -1/2 = 0 , k ε 1 (v) L ± (z) = λ ε,± (v, z)L ± (z) , k ε 1 (v) R ± (z) = ρ ε,± (v, z)R ± (z) , x ε 1 (v) γ 1/2 = x ε 1 (v) γ -1/2 = x ε 1 (v) L ± (z) = x ε 1 (v) R ± (z) = 0 ,
for ε ∈ {-, +} and where we have set

λ ε,± (v, z) = t 2∓2 v -t -2±2 z v -t ±4 z |z/v| ε1 1 and ρ ε,± (v, z) = t ±4 v -z t 2±2 v -t -(2±2) z |z/v| ε1 1 .
Proof. One readily checks the compatibility with the dening relations of H ± t and Ȗt 2 (La 1 ).

Proposition 3.5.11. For every m ∈ Z × and every ε ∈ {-, +}, we have

k ε 1 (v) L ± m (z) = λ ε,± m (v, z)L ± m (z) , k ε 1 (v) R ± m (z) = ρ ε,± m (v, z)R ± m (z) , x ε 1 (v) L ± m (z) = x ε 1 (v) R ± m (z) = 0 ,
where we have set

λ ε,± m (v, z) = t -2(1∓1)m v -t ±4-2(1±1)m z v -t ±4 z |z/v| ε1 1 and ρ ε,± m (v, z) = t ±4 v -z t ±4-2(1∓1)m v -t -2(1±1)m z |z/v| ε1 1 .
Proof. This is readily checked making use of denition 3.5.6, of the Hopf algebraic structures of Ȗt 2 (La 1 )

and Ȗt 2 (La 1 ) cop , of the Ȗt 2 (La 1 )-module algebra structures of H + t and of the Ȗt 2 (La 1 ) cop -module algebra structure of H - t .

Denition-Proposition 3.5.12. We denote by H + t Ȗt 2 (La 1 ) cop H - t the associative F-algebra obtained by endowing H + t ⊗ Ȗt 2 (La 1 ) ⊗ H - t with the multiplication given by setting, for every h + , h + ∈ H + t , every h -, h -∈ H - t and every x, x ∈ Ȗt 2 (La 1 ),

(h + ⊗ x ⊗ h -) . h + ⊗ x ⊗ h -= h + x (1) h + ⊗ x (2) x ⊗ h -x (3) h -,
see proposition 3.5.11 for the denition of the Ȗt 2 (La 1 )-module algebra structure of H + t and of the Ȗt 2 (La 1 ) cop -module algebra structure of H - t . In that algebra, {γ 1/2 -t, γ -1/2 -t -1 } generates a left ideal.

The latter is actually a two-sided ideal since γ ±1/2 is central and, denoting it by (γ Remark 3.5.14. We shall subsequently identify Ȗt 2 (La 1 ), H + t and H - t with their respective images in Bt under the injective algebra homomorphisms of the above proposition. Proposition 3.5.15. In Bt , for every m ∈ Z × and every ε ∈ {-, +}, we have the following relations

(v -t ±4 z)(v -t ±4(1+m-n) z)R ± m (v)L ± n (z) = (v -t ±4(1-n) z)(v -t ±4(1+m) z)L ± n (z)R ± m (v) , (3.5.13) (zt ±4 -v)k ε 1 (v)L ± m (z) = (zt ±4-2(1±1)m -vt -2(1∓1)m )L ± m (z)k ε 1 (v) , (3.5.14) (zt ±4 -v)x ± 1 (v)L ± m (z) = (zt ±4-2(1±1)m -vt -2(1∓1)m )L ± m (z)x ± 1 (v) , (3.5.15) x ± 1 (v)L ∓ m (z) = L ∓ m (z)x ± 1 (v) , (3.5.16) (zt -2(1±1)m -vt ±4-2(1∓1)m )k ε 1 (v)R ± m (z) = (z -vt ±4 )R ± m (z)k ε 1 (v) , (3.5 
.17)

(zt -2(1±1)m -vt ±4-2(1∓1)m )x ± 1 (v)R ± m (z) = (z -vt ±4 )R ± m (z)x ± 1 (v) , (3.5.18) x ± 1 (v)R ∓ m (z) = R ∓ m (z)x ± 1 (v) , (3.5.19)
Proof. In order to prove (3.5.13), it suces to check that

θ ± (z) = (1 -z)(1 -t ±8 z) (1 -t ±4 z) 2 |z| 1 mod (γ 1/2 -t)
and that subsequently, for every m, n ∈ Z × ,

θ ± m,n (z) = (1 -t ±4(1-n) z)(1 -t ±4(1+m) z) (1 -t ±4 z)(1 -t ±4(1+m-n) z) |z| 1 mod (γ 1/2 -t) .
As for the equations (3.5.14 3.5.19), they immediately follow from the denitions of H + t Ȗt 2 (La 1 ) cop H - t and of the actions of Ȗt 2 (La 1 ) on H + t and H - t see proposition 3.5.11. E.g., we have, by denition,

x + 1 (v)L + m (z) = 1 ⊗ x + 1 (v) ⊗ 1 L + m (z) ⊗ 1 ⊗ 1 = x + 1 (v) (1) L + m (z) ⊗ x + 1 (v) (2) ⊗ x + 1 (v) (3) 1 = x + 1 (v) L + m (z) ⊗ 1 ⊗ 1 + k - 1 (v) L + m (z) ⊗ x + 1 (v) ⊗ 1 + k - 1 (v) L + m (z) ⊗ k - 1 (v) ⊗ ε(x + 1 (v))1 = λ + m (v, z)L + m (z)x + 1 (v) , Lemma 3.5.20. For every m, n ∈ Z × , H ± -m (z) -1 = H ± m (zt ±4m ) (3.5.20) H ± m (zt ±4m )H ± n (z) = H ± m+n (zt ±4m ) (3.5.21)
Proof. Follows directly from the denition in the same way as lemma 3.5.8.

Proposition 3.5.21. In H ± t , we have, for every m, n ∈ Z × ,

H ± m (z)H ± n (v) = Θ ± m,n (z, v)H ± n (v)H ± m (z) ,
where

Θ ± m,n (z, v) = (v -t ±4 z)(v -t ±4(1+n-m) z)(t ±4(1-n) v -z)(t ±4(1+m) v -z) (z -t ±4 v)(z -t ±4(1+m-n) v)(t ±4(1-m) z -v)(t ±4(1+n) z -v) .
Proof. In view of denition 3.5.19 and of the relations in proposition 3.5.7, it is clear that commuting H ± m (z) and H ± n (v) amounts to commuting, on one hand L ± m (z) and R ± n (v) and, on the other hand, R ± m (z) and L ± n (v). The result follows.

Proposition 3.5.22. For every m ∈ Z × and every ε ∈ {-, +}, we have

k ε 1 (v) H ± ±m (z) = H ε m,z (v) ±1 H ± ±m (z) , (3.5.22) x ε 1 (v) H ± m (z) = 0 . (3.5.23)
Proof. The left Ȗt 2 (La 1 )-module algebra (resp. a left Ȗt 2 (La 1 ) cop -module algebra) structure of H + t (resp. H - t ) see proposition 3.5.10 is extended by continuity to H + t (resp. H - t ) Then, it suces to check that, for every m ∈ Z × and every ε ∈ {-, +},

k ε 1 (v) H ± ±m (z) = λ ε,± ±m (v, z)ρ ε,± ±m (v, z)H ± ±m (z) ,
and that

H ε m,z (v) ±1 = λ ε,± ±m (v, z)ρ ε,± ±m (v, z) .
Corollary 3.5.23. For every m ∈ Z, every p ∈ N and every ε ∈ {-, +}, we have

p+1 k=1 k ε 1 (v k ) -H ε m,z (v k ) ±1 id ∂ p H ± ±m (z) = 0 ,
Proof. It suces to dierentiate (3.5.22) p times with respect to z to obtain

k ε 1 (v) -H ε m,z (v) ±1 id ∂ p H ± ±m (z) = p-1 k=0 p k + 1 ∂ k+1 ∂z k+1 H ε m,z (v) ±1 ∂ p-k-1 H ± ±m (z) .
The claim immediately follows.

Evaluation modules

Remember the surjective algebra homomorphism Ȗq (La 1 ) → U q (La 1 ) from proposition 3.2.2. It allows us to pull back any simple U q (La 1 )-module M into a simple Ȗq (La 1 )-module. With that construction in mind, we have Proposition 3.5.30. Let M be a simple nite dimensional U q (La 1 )-module. Then, i.

H + t ⊗ M ⊗ H - t is a H + t Ȗt 2 (La 1 )
cop H - t -module with the action dened by setting, for every

h + , h + ∈ H + t , every h -, h -∈ H - t , every x ∈ Ȗt 2 (La 1 ) and every v ∈ M , (h + ⊗ x ⊗ h -).(h + ⊗ v ⊗ h -) = h + x (1) h + ⊗ x (2) .v ⊗ h -x (3) h -
and extending by continuity.

ii.

H + t ⊗ M ⊗ H - t descends to a B t -module.
iii.

H + t ⊗ M ⊗ H - t /J . H + t ⊗ M ⊗ H - t is an A t -module.
It pulls back along ev to a Ü q (a 1 )-module that we denote by ev * (M ). iv. As a Ü q (a 1 )-module, ev * (M ) is weight-nite.

v. For any highest -weight vector v ∈ M -{0}, the Ü0 q (a 1 )-module

M0 ∼ = H + t ⊗ Fv ⊗ H - t /J . H + t ⊗ Fv ⊗ H - t ,
is a highest t-weight space of ev(M ). We denote by M 0 the simple quotient of M0 containing v and we let ev * (M 0 ) = Ü q (a 1 ).M 0 .

vi. M 0 is t-dominant.

Proof. i is readily checked. As for ii, it suces to check that I.

H + t ⊗ M ⊗ H - t = {0}
. But the latter is clear when M is obtained by pulling back a U q (La 1 )-module over which the relation generating I is automatically satised. iii is obvious. It easily follows from proposition 3.5.24 that, for every m ∈ Z × ,

[k ε 1,0 , H ± m (z)] = 0. Hence, Sp(ev * (M )) = Sp(M )
and the weight niteness of ev * (M ) follows from that of M , which proves iv. It is clear that, for every r ∈ Z, we have

ev(X + 1,r (z)). H + t ⊗ v ⊗ H - t = H + r (z)x + 1 (zt -4r ). H + t ⊗ v ⊗ H - t = H + r (z) x + 1 (zt -4r ) (1) H + t ⊗ x + 1 (zt -4r ) (2) .v ⊗ x + 1 (zt -4r ) (3) H - t = 0 .
v follows. Denote by P (1/z) ∈ F[z -1 ] the Drinfel'd polynomial associated with v and let ν ∈ N F × f denote the multiset of its roots. Then,

k ± 1 (z).v = -κ ∓ 0 (z)v , where κ ∓ 0 (z) = -t 2 deg(P ) P (t -4 /z) P (1/z) |z| ∓1 1 . (3.5.31)
Moreover, the partial fraction decomposition

P (t -4 /z) P (1/z) = a∈F × 1 (1 -a/z) ν(a)-ν(at 4 ) = C 0 + a∈F × ν(a)-ν(at 4 ) p=1 C p (a) (1 -a/z) p ,
in which C 0 , C p (a) ∈ F and the product and sum over a ∈ F × are always nite since P only has nitely many roots, allows us to write

k + 1 (z) -k - 1 (z) .v = t 2 deg(P ) a∈F × ν(a)-ν(at 4 )-1 p=0 (-1) p+1 C p+1 (a) p! a p+1 δ (p) z a v .
Letting Cp (a) = (-1) p+1 t 2 deg(P ) C p+1 (a)a -p-1 /p! for every a ∈ F × and every p ∈ 0, ν(a) -ν(at 4 ) -1 , it follows that, for every m ∈ N × ,

ev(K + 1,m (z)). (1 ⊗ v ⊗ 1) = t 2 deg(P ) a∈F × ν(at -4m )-ν(at 4(1-m) )-1 p=0 Cp (at -4m )δ (p) z a H + m (z) ⊗ v ⊗ 1 , (3.5.32) ev(K - 1,-m (z)). (1 ⊗ v ⊗ 1) = -t 2 deg(P ) a∈F × ν(at -4m )-ν(at 4(1-m) )-1 p=0 Cp (at -4m )δ (p) z a 1 ⊗ v ⊗ H - -m (z) .
(3.5.33)

Now, making use of (3.5.27), (3.5.31) and of corollary 3.5.23, one easily shows that, for every p ∈ N and

every a ∈ F × , p+1 k=1 ev(K ± 1,0 (z k )) -H ∓ m,a (z k )κ ± 0 (z k ) id . ∂ p H + m (a) ⊗ v ⊗ 1 = 0 , p+1 k=1 ev(K ± 1,0 (z k )) -H ∓ m,a (z k ) -1 κ ± 0 (z k ) id . 1 ⊗ v ⊗ ∂ p H - -m (a) = 0 , thus proving that ∂ p H + m (a) ⊗ v ⊗ 1 (resp. 1 ⊗ v ⊗ ∂ p H - -m (a)
) is an -weight vector in the -weight space ev * (M ) κ (+,m,a) (resp. ev * (M ) κ (-,m,a) ) of ev * (M ) with -weight κ

± (+,m,a) (z) = κ ± 0 (z)H ∓ m,a (z) (resp. κ ± (-,m,a) (z) = κ ± 0 (z)H ∓ m,a (z) -1
), as expected from proposition 3.4.3. On the other hand,

H -(z) k + 1 (zt -4 ) -k - 1 (zt -4 ) -H + (z) -1 k + 1 (z) -k - 1 (z) . (1 ⊗ v ⊗ 1) = a∈F ×    ν(at -4 )-ν(a)-1 p=0 Cp (at -4 )δ (p) z a 1 ⊗ v ⊗ H -(z) - ν(a)-ν(at 4 )-1 p=0 Cp (a)δ (p) z a H + (z) -1 ⊗ v ⊗ 1    .
Thus, modulo J , we have, for every a ∈ F × ,

ν(at -4 )-ν(a)-1 p=0 Cp (at -4 )δ (p) z a 1 ⊗ v ⊗ H -(z) = ν(a)-ν(at 4 )-1 p=0 Cp (a)δ (p) z a H + (z) -1 ⊗ v ⊗ 1 .
Chapter 4

Topological Braid Group Action on Uq ( ġ)

Introduction

Let ġ be an untwisted ane Kac-Moody algebra. By using Drinfel'd's quantum anization we dene Uq ( ġ) to be the quantum toroidal algebra associated to ġ and Uq ( ġ) its completion.

As in the case of the work of I. Damiani and J.Beck, the purpose of this chapter is to establish a (topological) braid group action on quantum toroidal algebras. This can be seen as a generalization of the work of J. Ding and S. Khoroshkin in [START_REF] Ding | Weyl group extension of quantized current agebras[END_REF] to all Dynkin diagrams and provides the building blocks for dening an anized version of the Damiani-Beck isomorphism for Uq ( ġ) thus allowing us to dene Üq (g) as the double Drinfel'd current presentation. We provide a proof by checking the algebra relations except for the Serre relation when a ij = a ji = -2, a ij = -3, -4 and a ij = -1. This is work still in progress at this stage but we conjecture that it will hold as for the proved cases. The proof of the Serre relation relies on dening r± k (v) which is an ane version of what Lusztig dened as i r ± see [Lusztig]. This chapter is organized as follows. First we start by giving several automorphisms of Uq ( ġ), crucial to many of the proofs. We then build our way to dening the braid group action of T i on the generators of the algebra in order to provide the main theorem. Then, in the remaining part of the chapter we construct the necessary machinery in order to to prove this theorem.

Denition of Uq ( ġ)

Denition 4.2.1. The quantum toroidal algebra Uq ( ġ) is the associative F-algebra generated by the generators

D, D -1 , C 1/2 , C -1/2 , k + i,n , k - i,-n , x + i,m , x - i,m : i ∈ İ, m ∈ Z, n ∈ N subject to the following relations C ±1/2 is central C ±1/2 C ∓1/2 = 1 D ±1 D ∓1 = 1 (4.2.1)
Dk ± i (z)D -1 = k ± i (zq -1 ) Dx ± i (z)D -1 = x ± i (zq -1 ) (4.2.2) res z 1 ,z 2 1 z 1 z 2 k ± i (z 1 )k ∓ i (z 2 ) = 1 (4.2.3) k ± i (z 1 )k ± j (z 2 ) = k ± j (z 2 )k ± i (z 1 ) (4.2.4) k - i (z 1 )k + j (z 2 ) = G - ij (C -1 z 1 /z 2 )G + ij (Cz 1 /z 2 )k + j (z 2 )k - i (z 1 ) (4.2.5) G ∓ ij (C ∓1/2 z 2 /z 1 )k + i (z 1 )x ± j (z 2 ) = x ± j (z 2 )k + i (z 1 ) (4.2.6) k - i (z 1 )x ± j (z 2 ) = G ∓ ij (C ∓1/2 z 1 /z 2 )x ± j (z 2 )k - i (z 1 ) (4.2.7) (z 1 -q ±c ij z 2 )x ± i (z 1 )x ± j (z 2 ) = (z 1 q ±c ij -z 2 )x ± j (z 2 )x ± i (z 1 ) (4.2.8) [x + i (z 1 ), x - j (z 2 )] = δ ij q i -q -1 i δ z 1 Cz 2 k + i (z 1 C -1/2 ) -δ z 1 C z 2 k - i (z 2 C -1/2 ) (4.2.9) σ∈S 1-c ij 1-c ij k=0 (-1) k 1 -c ij k q x ± i (z σ(1) ) • • • x ± i (z σ(k) )x ± j (z)x ± i (z σ(k+1) ) • • • x ± i (z σ(1-c ij ) ) = 0 (4.2.10)
where, for every i ∈ İ, we dene the following Uq ( ġ)-valued formal distributions

x ± i (z) := m∈Z x ± i,m z -m ∈ Uq ( ġ)[[z, z -1 ]] ; (4.2.11) k ± i (z) := n∈N k ± i,±n z ∓n ∈ Uq ( ġ)[[z ∓1 ]] , (4 
.2.12) for every i, j ∈ İ, we dene the following F-valued formal power series

G ± ij (z) := q ±a ij i + (q i -q -1 i )[±a ij ] q i m∈N × q ±ma ij i z m ∈ F[[z]] (4.2.13) and δ(z) := m∈Z z m ∈ F[[z, z -1 ]] (4.2.14)
is an F-valued formal distribution.

Automorphisms of Uq ( ġ)

Proposition 4.3.1.

i. For every Dynkin diagram automorphism π : İ ∼ -→ İ, there exists a unique

F-algebra automorphism T π ∈ Aut( Uq ( ġ)) such that T π (x ± i (z)) = x ± π(i) (z) , T π (k ± i (z)) = k ± π(i) (z) , T π (C) = C , T π (D) = D . (4.3.1)
ii. For every i ∈ İ, there exists a unique F-algebra automorphism T ω ∨ i ∈ Aut( Uq ( ġ)) such that

T ω ∨ i (x ± j (z)) = z ±δ ij x ± j (z) T ω ∨ i (k ± j (z)) = C ∓δ ij k ± j (z) T ω ∨ i (C) = C T ω ∨ i (D) = D (4.3.2)
iii. There exists a unique involutive F-algebra anti-homomorphism η ∈ Aut( Uq ( ġ)) such that

η(x ± i (z)) = x ± i (1/z) η(k ± i (z)) = k ∓ i (1/z) η(C) = C η(D) = D (4.3.3)
iv. There exists a unique involutive K-algebra anti-homomorphism ϕ such that

ϕ(x ± i (z)) = x ∓ i (1/z) ϕ(k ± i (z)) = k ∓ i (1/z) ϕ(C) = C -1 ϕ(D) = D -1 ϕ(q) = q -1 (4.3.4)

Braid group action

Denition 4.4.1. For all i = j ∈ İ, we let x + i 1 j (z) ∈ Uq ( ġ)[[z, z -1 ]] be dened by:

x + i (z 1 ); x + j (z 2 ) G - ij (z 1 /z 2 ) = δ z 1 z 2 q a ij i x + i 1 j (z 1 ). (4.4.1)
Proposition 4.4.2. For all i = j ∈ İ, we have:

z 1 -q 2 i z 2 x + i (z 1 )x + i 1 j (z 2 ) = z 1 q 2 i -z 2 G - ij (z 1 q 2 i /z 2 )x + i 1 j (z 2 )x + i (z 1 ) (4.4.2)
Proof. Making use of the previous denition, we can write:

z 1 -q 2 i z 2 x + i (z 1 ) x + i (z 2 )x + j (z 3 ) -G - ij (z 2 /z 3 )x + j (z 3 )x + i (z 2 ) = z 1 q 2 i -z 2 x + i (z 1 )x + i (z 2 )x + j (z 3 ) -z 1 -q 2 i z 2 G - ij (z 2 /z 3 )G - ij (z 1 /z 3 )x + j (z 3 )x + i (z 1 )x + i (z 2 ) + z 1 -q 2 i z 2 G - ij (z 2 /z 3 )δ z 2 z 3 q a ij i x + i 1 j (z 1 )x + i (z 2 ) = z 1 q 2 i -z 2 G - ij (z 1 /z 3 )x + i (z 2 )x + j (z 3 )x + i (z 1 ) + z 1 q 2 i -z 2 δ z 1 z 3 q a ij i x + i (z 2 )x + i 1 j (z 1 ) -z 1 q 2 i -z 2 G - ij (z 1 /z 3 )G - ij (z 2 /z 3 )x + j (z 3 )x + i (z 2 )x + i (z 1 ) -z 1 -z 2 q 2 i G - ij (z 2 /z 3 )x + i 1 j (z 1 )x + i (z 2 ) = z 1 q 2 i -z 2 G - ij (z 1 /z 3 )G - ij (z 2 /z 3 )x + j (z 3 )x + i (z 2 )x + i (z 1 ) + z 1 q 2 i -z 2 G - ij (z 1 /z 3 )δ z 2 q a ij i z 3 x + i 1 j (z 2 )x + i (z 1 ) -z 1 q 2 i -z 2 G - ij (z 1 /z 3 )G - ij (z 2 /z 3 )x + j (z 3 )x + i (z 2 )x + i (z 1 ) + z 1 q 2 i -z 2 δ z 1 q a ij i z 3 x + i (z 2 )x + i 1 j (z 1 ) -z 1 -z 2 q 2 i G - ij (z 2 /z 3 )δ z 1 q a ij i z 3 x + i 1 j (z 1 )x + i (z 2 ).
Thus, we can conclude that:

δ z 1 q a ij i z 3 z 1 -z 2 q 2 i x + i (z 1 )x + i 1 j (z 2 ) -z 1 q 2 i -z 2 G - ij (z 1 /z 3 )x + i 1 j (z 2 )x + i (z 1 ) = 0 δ z 1 q a ij i z 3 z 2 -z 1 q 2 i x + i (z 2 )x + i 1 j (z 1 ) -z 2 q 2 i -z 1 G - ij (z 2 /z 3 )x + i 1 j (z 1 )x + i (z 2 ) = 0.
and the result follows.

Lemma 4.4.3.

Let i = j ∈ İ, then x + i 1 j (z 1 ) = x + ij 1 (z 1 q -a ij i
).
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Proof. By denition 4.4.1, take m = 1, we get:

[x + i (z 1 ), x + i 0 j (z 2 )] G - ij (z 1 /z 2 ) = δ z 1 z 2 q a ij i x + i 1 j (z 1 ).
On the other hand, proposition 4.4.2 for m = 1 gives,

[x + j 0 i (z 1 ); x + j (z 2 )] G - i,i 0 j (z 1 /z 2 ) = δ z 1 z 2 q a ij j x + j 1 i (z 2 ).
Upon exchanging i and j in the previous equation, we get:

[x + ij 0 (z 1 ); x + j (z 2 )] G - j,j 0 i (z 1 /z 2 ) = δ z 1 z 2 q a ij j x + ij 1 (z 2 ). But G - j,j 0 i (z 1 /z 2 ) = G - ji (z 1 /z 2 ) = G - ij (z 1 /z 2 ) = G - i,i 0 j (z 1 /z 2 ).
Moreover,

q aji j = q d j a ji = q c ji = q c ij = q c ji = q d i a ij = q a ij i .
Therefore, we conclude that

[x + ij 0 (z 1 ), x + j (z 2 )] G - ij (z 1 /z 2 ) = δ z 1 z 2 q a ij j x + ij 1 (z 2 ) = δ z 1 z 2 q a ij j x + ij 1 (q -a ij i z 1 ).
Generalizing the above result, we can dene the following: Proposition 4.4.4. For all i = j ∈ İ and for all n ∈ N × , we let x + i n j (z) ∈ Uq ( ġ)[[z, z -1 ]] be dened by:

x + i (z 1 ); x + i n-1 j (z 2 ) G - i,i n-1 j (z 1 /z 2 ) = δ z 1 z 2 q a n-1 i x + i n j (z 2 ) (4.4.3)
where, a n = a ij if n = 0 and a n = 2 otherwise, whereas

G - i,i n-1 j (z 1 /z 2 ) = G - ii (z 1 /z 2 )G - i,i n-2 j (z 1 /z 2 q a n-2 ).
Proof. It suces to show that

z 1 -q 2 i z 2 x + i (z 1 )x + i n-1 j (z 2 ) = z 1 q 2 i -z 2 G - i,i n-2 j (z 1 /z 2 q a n-1 i )x + i n-1 j (z 2 )x + i (z 1 ) (4.4.4)
The proof is straightforward and follows the same steps as for the previous proposition.

Proposition 4.4.5. For all i = j ∈ İ,

ad(x + i (z 1 ))x + j (z 2 ) = δ z 1 q a ij i z 2 x + i 1 j (z 1 ) 134 
Proof. By denition, we have:

ad(x + i (z 1 ))x + j (z 2 ) = i x + i (z 1 ) (1) x + j (z 2 )S(x + i (z 1 ) (2) ) = x + i (z 1 )x + j (z 2 ) -k - i (z 1 )x + j (z 2 )k - i (z 1 ) -1 x + i (z 1 ) = x + i (z 1 ); x + j (z 2 ) G - ij (z 1 /z 2 ) = δ z 1 q a ij i z 2 x + i 1 j (z 1 ).
Therefore, and more generally, Proposition 4.4.6. For all i = j ∈ İ,

ad(x + i (z 1 )...x + i (z m ))x + j (v) = δ z 1 q 2 i z 2 ...δ z m-1 q 2 i z m δ z 1 q a ij i v x + i m j (z 1 )
Proof. We prove this proposition by induction on m. The case m = 1 is the previous proposition. Now assume the result holds for some m ∈ N × . Then,

ad(x + i (z 0 )x + i (z 1 )...x + i (z m ))x + j (v) = ad(x + i (z 0 ))ad(x + i (z 1 )...x + i (z m ))x + j (v) = x + i (z 0 )ad(x + i (z 1 )...x + i (z m ))x + j (v) -k - i (z 0 )ad(x + i (z 1 )...x + i (z m ))x + j (v)k - i (z 0 ) -1 x + i (z 0 ) = x + i (z 0 ); ad(x + i (z 1 )...x + i (z m ))x + j (v) G - ii (z 0 /z 1 )...G - ii (z 0 /zm)G - ij (z 0 /v) = δ z 1 q 2 i z 2 ...δ z m-1 q 2 i z m δ z 1 q a ij i v x + i (z 0 ); x + i m j (z 1 ) G - ii (z 0 /z 1 )G - i,i m j (z 0 q a m-1 i /z 1 )
and the result follows.

Lemma 4.4.7. Let i = j. Then,

[x + i 1 j (z 1 ); x - j (z 2 )] = -[a ji ] q j δ z 1 q -a ij C z 2 k - j (z 1 q -a i j i C 1/2 )x + i (z 1 ). (4.4.5)
Proof. By denition 4.4.1, we have

δ z 1 z 2 q a ij i [x + i 1 j (z 1 ); x - j (v)] = [x + i (z 1 ); x + j (z 2 )] G - ij (z 1 /z 2 ) ; x - j (v) = 1 q j -q -1 j x + i (z 1 ); δ z 2 Cv k + j (z 2 C -1/2 ) -δ z 2 C v k - j (vC -1/2 ) G - ij (z 1 /z 2 ) = - 1 q j -q -1 j δ z 2 C v G + ji (z 2 /z 1 ) -G - ij (z 1 /z 2 ) k - j (vC -1/2 )x + i (z 1 ) = -[a ji ] q j δ z 1 q -a ij C v δ z 1 z 2 q a ij i k - j (z 1 q -a i j i C 1/2 )x + i (z 1 ).
The result follows after taking the residue with respect to z 2 .

Corollary 4.4.8. i = j. Then,

x + ji 1 (z 1 ); x - i (v) = -[a ji ] q i δ z 1 q -a ji j C v k - i (z 1 C 1/2 )x + j (z 1 q a ij i ). (4.4.6)
Proof. This result follows immediately from the previous lemma upon interchanging i and j.

Lemma 4.4.9. Let i = j ∈ İ. Then ∀n ∈ N i)

x + i n j (z); x - i (v) = δ z Cv A n x + i n-1 j (zq -a n-1 i )k + i (zC -1/2 ) (4.4.7)
where,

A n = [n] q i [a ij + n -1] q i (4.4.8)
ii)

x - i (v); x + ji n (z) = δ v Cz A n k - i (zC -1/2 )x + ji n-1 (zq a n-1 i
).

(4.4.9)

Proof. The case n = 0 holds since it is one of the algebra dening relations. Now assume the result holds for some n ∈ N, therefore, by the denition of x + i n j (z), we can write:

x + i (z 1 ); x + i n j (z 2 ) G - i,i -a ij j (v/zq n i ) ; x - i (v) = δ z 1 z 2 q an i x + i n+1 j (z 1 ); x - i (v) = 1 q i -q -1 i δ z 1 Cv k + i (z 1 C -1/2 ) -δ v Cz 1 k - i (vC -1/2 ); x + i n j (z 2 ) G - i,i n j (z 1 /z 2 ) + x + i (z 1 ); x + i n j (z 2 ); x - i (v) G - i,i n j (z 1 /z 2 ) = 1 q i -q -1 i δ z 1 Cv G + i,i n j (z 2 /z 1 ) -G - i,i n j (z 1 /z 2 ) x + i n j (z 2 )k + i (z 1 C -1/2 ) + δ z 2 Cv A n x + i (z 1 ); x + i n-1 j (z 2 q a n-1 i )k + i (z 2 C -1/2 ) G - i,i n j (z 1 /z 2 ) = 1 q i -q -1 i δ z 1 Cv G + i,i n j (z 2 /z 1 ) -G - i,i n j (z 1 /z 2 ) x + i n j (z 2 )k + i (z 1 C -1/2 ) + δ z 2 Cv A n x + i (z 1 ); x + i n-1 j (z 2 q a n-1 i ) G - i,i n-1 j (z 1 /z 2 ) k + i (z 2 C -1/2 ) = -δ z 1 Cv δ z 1 z 2 A n x + i n j (z 2 )k + i (z 2 C -1/2 ) + A n+1 δ z 1 Cv δ z 1 z 2 q 2 i x + i n j (z 2 )k + i (z 1 C -1/2 ) + δ z 1 Cv δ z 1 z 2 A n x + i n j (z 2 )k + i (z 2 C -1/2 ).
and the result follows. Finally, it suces to apply η to i) to get ii).

Lemma 4.4.10. For all n ∈ N, we have:

i. x + i n+1 j (z 1 ); x - ji n (z 2 ) = α n δ Cz 1 q δn i z 2 k - j (z 1 C 1/2 q γn i ) n p=1 k - i (z 1 C 1/2 q γn,p i )x + j (z 1 q n i ) ii. x + i n j (z 1 ); x - ji n+1 (z 2 ) = φ(α n )δ Cz 2 q δn i z 2 x - i (z 2 q n i )k + j (z 2 C 1/2 q γn i ) n p=1 k + i (z 2 C 1/2 q γn,p i ) 136 
iii.

x

+ i n j (z 1 ); x - ji n (z 2 ) = β n   δ z 1 Cz 2 n p=1 k + i (z 1 C 1/2 q γn,p i )k + j (z 1 C 1/2 q γn i ) - n p=1 k - i (z 2 C -1/2 q γn,p i )k - j (z 2 C -1/2 q γn i )   (4.4.10)
Proof. It is clear that ∀n ∈ N, ii. is a consequence of i. -upon applying φ. Therefore, it suces to prove the rst and last equation. This is done by recursion. Both points hold for n = 0; i. boils down to the previous lemma if we set α 0 = -[a ji ] q j , δ 0 = γ 0 = -a ij , and 0 = 0. Now let us assume that both i. and iii. hold for the same n ∈ N we have:

x + i n+2 j (z 1 ); x - ji n+1 (v) δ z 1 z 2 q a n+1 = x + i (z 1 ); x + i n+1 j (z 2 ) G - i,i n+1 j z 1 z 2 ; x - ji n+1 (v) = x + i (z 1 ); x - ji n+1 (v) ; x + i n+1 j (z 2 ) G - i,i n+1 j z 1 z 2 + x + i (z 1 ); x + i n+1 j (z 2 ); x - ji n+1 (v) G - i,i n+1 j z 1 z 2 = δ z 1 C v A n+1 k - i (vC -1/2 )x - ji n+1 (vq -an ); x + i n+1 j (z 2 ) G - i,i n+1 j z 1 z 2 + x + i (z 1 ); x + i n+1 j (z 2 ); x - ji n+1 (v) G - i,i n+1 j z 1 z 2
Now we focus on the last term, we can write:

x + i n+1 j (z 2 ); x - ji n+1 (v) δ z 1 z 2 q an = x + i (z 1 ); x + i n j (z 2 )

G - i,i n j z 1 z 2 ; x - ji n+1 (v) = x + i (z 1 ); x - ji n+1 (v) ; x + i n j (z 2 ) G - i,i n j z 1 z 2 + x + i (z 1 ); x + i n j (z 2 ); x - ji n+1 (v) G - i,i n j z 1 z 2 = δ z 1 C v A n k - i (vC -1/2 )x - ji n (vq -a n-1 ); x + i n j (z 2 ) G - i,i n j z 1 z 2 + x + i (z 1 ); x + i n j (z 2 ); x - ji n+1 (v) G - i,i n j z 1 z 2
.

We can now make use of ii. and iii. and the result follows.

Proving iii. follows in the exact similar steps, making use of i. and ii.

Denition 4.4.11. ∀i = j ∈ İ T i (x + j (z)) =

x + i -a ij j (zq

-a ij i ) [-a ij ] q i (4.4.11)
where we recursiely dene x + i n j (z) by setting:

x + i (z 1 ); x + i n-1 j (z 2 )

G - i,i n-1 j (z 1 /z 2 ) = δ z 1 q a m-1 i z 2
x + i n j (z 2 ).

(4.4.12)

Main theorem Theorem 4.4.12. ∀i = j ∈ İ, setting T i as:

T i (C) = C, T i (D) = D T i (x + i (z)) = -x - i (zC -1 )k + i (zC -1/2 ) -1 , T i (x - i (z)) = -k - i (zC -1/2 ) -1 x + i (zC -1 ) T i (k ± i (z)) = k ± i (z) -1 , T i (k ± j (z)) = |-a ij | p=1 k ± i (zq 2-2p-a ij i
)k ± j (zq 2 i )

T i (x + j (z)) =

x + i -a ij j (zq

-a ij i ) [-a ij ] q i , T i (x - j (z)) =
x - ji -a ij (zq

-a ij i ) [-a ij ] q i .
makes T i into an algebra homomorphism on Uq ( ġ).

Moreover, by setting:

T -1 i (C) = C, T -1 i (D) = D T -1 i (x + i (z)) = -k + i (zC 1/2 ) -1 x - i (zC ), T -1 i (x - i (z)) = -x + i (zC)k - i (zC 1/2 ) -1 T -1 i (k ± i (z)) = k ± i (z) -1 , T -1 i (k ± j (z)) = |-a ij | p=1 k ± i (zq 2-2p-a ij i )k ± j (zq -2 i ) T -1 i (x + j (z)) = x + ji -a ij (zq a ij ) [-a ij ] q i , T -1 i (x - j (z)) = x - i -a ij j (zq a ij ) [-a ij ] q i .
we get an action of B on Uq ( ġ).

Proof. It suces to check this on the algebra relations. Equations 4.2.1 -4.2.7 are straightforward and left to the reader. The remaining part of this chapter will be dedicated to developing the needed machinery for proving this theorem on the rest of the algebra relations. Then, we can check T -1 i on the generators.

Proof of the main theorem

Proposition 4.5.1. We have i.

ϕ • T π = T π • ϕ; ii. ϕ • T i = T i • ϕ; iii. T -1 i = η • T i • η.
Proposition 4.5.2. For all i, j ∈ İ and a ij ∈ {-1, -2, -3, -4} the q-Serre relation is equivalent to

x + i 1-a ij j
(z) = 0 (4.5.1)

Proof. The proof is cumbersome but straightforward. However, we will highlight the main steps below for the case a ij = -3 and all the other cases are similar.

The q-Serre relations is given by:

σ∈S 1-a ij 1-a ij k=0 (-1) k 1 -a ij k q i x ± i (z σ(1) ) • • • x ± i (z σ(k) )x ± j (z)x ± i (z σ(k+1) ) • • • x ± i (z σ(1-a ij ) ) = 0 (4.5.2)
We start by expanding the sum over k. Then, we pick a specic ordering and by which we mean that we decide to move all the x + j (z) to the leftmost side of each term by using equation 4.4.12. Clearly, this will create terms in x + i 1 j (z) which we decide to move to the leftmost side of every term too. After repeating this process for x + i 2 j (z), and x + i 3 j (z) we now move to canceling all the terms except the ones with x + i 3 j (z). Obviously, the terms in x + i n j (z) for n = 0, 1, 2 can only be canceled with other terms of the same value of n. In order to do that, we factorize the coecients of each term so that we can make use of the algebra relation given by equation 4.2.8. Finally, the only reamining terms will combine to give us the result of the proposition.

Lemma 4.5.3. For all i = j ∈ İ,

T i (x + j (z)); T i (x - j (v)) = 1 q j -q -1 j δ z Cv T i k + j (zC -1/2 -δ zC v T i k - j (vC -1/2 ) (4.5.3)
where,

T i k ± j (z) = |-a ij | p=1 k ± i (zq 2-2p-a ij i
)k ± j (zq 2 i ) (4.5.4)

Proof. It suces to use the denition of T i on the generators as well as lemma 4.4.10 to get:

T i (x + j (z)); T i (x - j (v)) = 1 [-a ij ] 2 q i x + i -a ij j (zq -a ij i ); x - ji -a ij (vq -a ij i ) = β -a ij [-a ij ] 2 q i δ z Cv |-a ij | p=1 k + i (zq γ-a ij ,p -a ij i C -1/2 )k + j (zq γ-a ij i C -1/2 ) -δ Cz v |-a ij | p=1 k - i (vq γ-a ij ,p -a ij i C -1/2 )k - j (vq γ-a ij i C -1/2 )
and the result follows provided we have:

β -a ij [-a ij ] 2 q i = 1 q j -q -1 j .
(4.5.5) Lemma 4.5.4. ∀i = j ∈ İ, T i (x + j (z)); T i (x - i (v)) = 0. (4.5.6)

Proof. By denition, the latter is equivalent to

-x + i -a ij j (zq -a ij i ); k - i (vC -1/2 ) -1 x + i (vC -1 ) = k - i (vC -1/2 ) -1 x + i -a ij j (zq -a ij i ); x + i (vC -1 ) G - i,i -a ij j (v/zq -a ij i ) = δ C -1 v zq 2-a ij i k - i (vC -1/2 ) -1 x + i 1-a ij j (zq -a ij i ) = 0
Proof. It suces to prove that for every j ∈ İ -{i} and for every n ∈ 0, 1 -a ij

T i (x + ji n (z)) =            x + i -a ij -n j (zq an i ) Nn , if n ∈ 0, -1 -a ij x + j (zq -a ij i ) N -a ij , if n = -a ij 0 if n = 1 -a ij .
(4.5.14)

We do this recursively on n. The case n = 0 is just the denition and allows us to set N 0 = [-a ij ] q i . Now suppose that 4.5.14 holds for some n ∈ 0, -1 -a ij then it clearly holds for n ≥ 1 -a ij provided we set

x + i p j (z) = 0 since x + i 1-a ij j (z) = 0. Then, we have:

δ z 1 q an i z 2 T i (x + ji n+1 (z 2 ) = T i x + ji n+1 (z 2 ), x + i (z 1 ) G - i,i n j (z 1 /z 2 )
= T i (x + ji n+1 (z 2 )), T i (x + i (z 1 ))

G - i,i n j (z 1 /z 2 ) = -   x + i -a ij -n j (z 1 q -an i ) N n , x - i (z 2 C -1 )k + i (z 2 C -1/2 ) -1   G - i,i n j (z 1 /z 2 ) = -   x + i -a ij -n j (z 1 q -an i ) N n , x - i (z 2 C -1 )   G - i,i n j (z 1 /z 2 ) G- i,i -a ij -n j (z 1 /z 2 ) k + i (z 2 C -1/2 ) -1
Hence, we get:

T i (x + ji n+1 (z 2 ) =
x + i a ij -(n+1)j (zq Lemma 4.5.12. Let i = j ∈ İ and let p ∈ 0; m ij -1 . Then, i) T i,j,p (x + j (z)), T j,i,p (x

+ i (z)) ∈ U ij [[z, z -1 ]],
ii) T i,j,p (x + j (z)), T j,i,p (x

+ i (z)) ∈ U ij [[z, z -1 ]],
where we denote by U ij the closed Uq ( ġ) subalgebra generated by {res z z -1+m x + i (z), res z z -1+m x + j (z); m, n ∈ N} (4.5.17)

Proof. We consider all the values of m ij in {2, 3, 4, 6, ∞}. It is important to mention that there is no loss of generality in xing α i , α ∨ j = α j , α ∨ i = 0, or α j , α ∨ i = -1, and α i , α ∨ j ∈ {-1, -2, -3, -4}, or nally that α i , α ∨ j = α j , α ∨ i = -2.

i) Case m ij = 2, and α i , α ∨ j = α j , α ∨ i = 0. The case p = 0 is trivial, and for p = 1, we have

T i (x + j (z)) = x + j (z) ∈ U ij [[z, z -1 ]] (4.5.18)
and similarly for the remaining claims.

ii) Case m ij = 3, and α i , α ∨ j = α j , α ∨ i = -1. The case p = 0 is obvious.

T i (x + j (z)) = x + i 1 j (zq i ) ∈ U ij [[z, z -1 ]]. (4.5.19)
Now, apply T j to get

T j • T i (x + j (z)) = T j (x + i 1 j (zq i )) = x + i (zq 2 i q j ) N 1 ∈ U ij [[z, z -1 ]].
(4.5.20) Similar arguments apply for T i,j,p .

iii) Case m ij = 4, and α i , α ∨ j = -2, α j , α ∨ i = -1. The case p = 0 is obvious.

T i (x + j (z)) = x + i 2 j (zq 2 i ) [2] q i ∈ U ij [[z, z -1 ]] T j (x + i (z)) = x + j 1 i (zq j ) ∈ U ij [[z, z -1 ]].
By the previous lemma, we have on one hand

T i • T j (x + i (z)) =
x + i 1 j (zq 2 i q j ) N 1 ∈ U ij [[z, z -1 ]], and

T j • T i • T j (x + i (z)) = x + i (zq 2 i q 2 j ) N 2 1 ∈ U ij [[z, z -1 ]]
and on the other hand,

δ z vq 2 i T j • T i (x + j (z)) = δ z vq 2 i T j (x + i 2 j (zq 2 i )) [2] q i = T j (x + i (z), T j (x + ij (v)) G - i,ij (z/v) = x + ji 1 (zq j ), x + i (vq j ) G - i,ij (z/v) = δ z vq 2 i x + ji 2 (zq 2 j q -2 i ) N 1 ∈ U ij [[z, z -1 ]].
Eventually,

T i • T j • T i (x + j (z)) = x + j (zq 2 j q 2 i ) N 1 N 2 [2] q i ∈ U ij [[z, z -1 ]].
(4.5.21) iv) Case m ij = 6. The steps are very similar to the previous cases where we make a repeated use of the previous lemma. Finally, we can move to the last case.

v) Case m ij = ∞. In that case we must distinguish two subcases: a) a ij = α i , α ∨ j = -2 = α j , α ∨ i = a ji b) a ij = α i , α ∨ j = -4, a ji = α j , α ∨ i = -1.

In subcase a), we have: T j,i,2 (x + i (z)) =

δ z vq 2 i T j • T i (x + j (z)) = x + j 2 i (zq 2 j ) [2] q i , x + j 2 i (vq -2 j ) N 1 G - i,ij (z/v)
x + i 3 j (zq j q -2 i ) N 1 (4.5.23) Now,

δ z vq 2 i T j (x + i 2 j (z)) = T j (x + i (z)), T j (x + i 1 j(v)) G - i,ij (z/v) = δ z vq 2 i x + ji 2 (vq j ).
Similarly, T j (x + i 3 j (z)) = x + ji zq j , x + ji 2 (vq j q -2 i ) Lemma 4.5.13. ∀i, j, k ∈ İ we have:

G - i,i 2 j (z/v)
T k (z 1 -q ±c ij z 2 )x ± i (z 1 )x ± j (z 2 ) = T k (z 1 q ±c ij -z 2 )x ± j (z 2 )x ± i (z 1 ) (4.5.28)

Proof. The case i = j = k follows from the fact that T k is an adjoint action.

The remaining cases are proved by using the denition of T k on the generators and then comparing both sides of the equation after using equation 4.2.7 to move all the k ± i (z l ) to the left.

Denition 4.5.14. For every i ∈ İ, and every m ∈ Z, there exists a unique F-linear homomorphism r ± i,m : Uq ( ġ) + → Uq ( ġ) + such that: i) r ± i,m (1) = 0.

ii) r ± i,m (x + i (z 1 )x + i (z 2 )...

x + i (z n )) = n p=1 δ ip,i C ∓m z m p p-1 k=1 G i,i k zp z k ∓1 l∈ n x + i l (z 1 )
Clearly, for all i ∈ İ,

r ± i (v) = m∈Z r ± i,m v -m ∈ Hom F ( Uq ( ġ) + )[[v, v -1 ]]
(4.5.29) and we have:

r ± i (v)(x + i (z 1 )x + i (z 2 )...x + i (z n )) = n p=1 δ ip,i δ z p C ∓1 v p-1 k=1 G i,i k z p z k ∓1 l∈ n
x + i l (z 1 ). (4.5.30)

We extend r ± i (v) by continuity to Uq ( ġ).

Proposition 4.5.15. For all X ∈ Uq ( ġ) + , and all i ∈ İ, we have:

[X, x - i (v)] = k + i (vC 1/2 )r i (v)(X) -k - i (vC -1/2 )r - i (v)(X) q i -q -1 i (4.5.31)
Proof. It suces to prove this claim for X = x + i 1 (z 1 )x + i 2 (z 2 )...x + im (z m ). Obviously,

[x + i 1 (z 1 )x + i 2 (z 2 )...x + im (z m ), x - i (v)] = m p=1 δ ip,i q i -q -1 i x + i 1 (z 1 )x + i 2 (z 2 )...x + i p-1 (z p-1 ) δ z p C v k + i (vC -1/2 ) -δ z p C -1 v k - i (vC -1/2 ) × x + i p+1 (z p+1 )...x + im (z m ) = m p=1 δ ip,i q i -q -1 i δ z p C ∓1 v p-1 k=1 G - i,i k z p z k ∓1 k + i (vC -1/2 ) l∈ n -{p} x + i l (z 1 ) -δ z p C ∓1 v p-1 k=1 G + i,i k C -1 z p z k ∓1 k - i (vC -1/2 ) l∈ n -{p}
x + i l (z 1 ) .

Lemma 4.5.16. Let X ∈ Uq ( ġ) + and let i ∈ İ.

i) If T i (X) ∈ Uq ( ġ)

+ then r + i (v)(X) = 0.
ii) If T -1 i (X) ∈ Uq ( ġ)

+ then r - i (v)(X) = 0.
Proof. Without loss of generality we can restrict to cases where X is homogeneous. Assume that T i (X) ∈ Uq ( ġ)

+ .
By the previous proposition [X, x - i (v)] = k + i (vC 1/2 )r i (v)(X) -k - i (vC -1/2 )r - i (v)(X) q i -q -1 i (4.5.33) and lemma 4.5.9, for some Y ± (v, z 1 , ...z p ) ∈ Uq ( ġ) + [[v, v -1 ]]((z -1 1 , ..., z -1 p )). We apply T i to [X, x - i (v)] and we get:

r + i (v)(X
[T i (X), k - i (C -1/2 v)x + i (C -1 v)]
= 1 q i -q -1 i p∈N res z 1 ,...zp (-1) p z -1 1 ...z -1 p k∈ ( p)

x - i (C -1 z k )k - i (C -1/2 z k ) -1 {k + i (C 1/2 v) -1 T i (Y + (v, z 1 , ...z p ))

k - i (C -1/2 v) -1 T i (Y -(v, z 1 , ...z p ))}.

The left-hand side is in Uq ( ġ) ≥ then so is the right-hand side. Now by the triangular decomposition and the fact that T i restricts to the subalgebras Uq ( ġ) + [i], we have ∀p ≥ 0, T i (Y ± (v, z 1 , ...z p )) = 0 (4.5.35)

Since T i is an automorphism, we have Y ± (v, z 1 , ...z p ) = 0. The proof of ii) is similar.

Lemma 4.5.17. ∀X ∈ Uq ( ġ) + , ∀i ∈ İ, we have:

i) X, Y x - i (z) = res v v -1 k - i (C -1/2 v)r - i (v)(X) ⊗x + i (v); Y ⊗ x - i (z) ii) X, x - i (z)Y x - i (z) = res v v -1 x + i (Cv) ⊗r + i (v)(X) ⊗x + i (v); x - i (z) ⊗ Y
Proof. It suces to prove i) and ii) for any X = x - i 1 (z 1 )...x - im (z m ) (4.5.36) X = x - j 1 (v 1 )...x - j m-1 (v m-1 ) (4.5.37)

We have

∆(X) =

M ⊆ m k∈ m -M,l∈M

G + i l ,i k z l z k l∈M k - i l (z l C -1/2 ) k∈ m -M x + i k (z k ) ⊗ l∈M x + i l (z l C) (4.5.38) Hence, X, Y x - i (z) = δ ip,i q i -q -1 i δ z p C z p∈ m p-1 k=1 G + ip,i k z p z k k - ip (z p C 1/2 ) k∈ m -{p}
x + i k (z k ); Y (4.5.39)

On the other hand,

k - i (C -1/2 v)r - i (v)(X) ⊗x + i (v); Y ⊗ x - i (z) = -1 q i -q -1 i δ z v m p=1 δ i,ip δ z p C v p-1 k=1 G + i,i k z p z k k - i (vC -1/2 ) l∈ m -{p}
x + i l (z l ); Y and i) follows. The proof of ii) is very similar.

Proposition 4.5.18. Let α ∈ Q+ -{0} and let X ∈ Uq ( ġ) + α . If r ± i (v)(X) = 0, then X = 0.

Proof. Let X be as above. Either X = 0, or X = 0. In the latter case, the non-degeneracy of the pairing implies that there must exist Y ∈ Uq ( ġ) -such that, X; Y = 0. In particular, since X ∈ Uq ( ġ) α , we Then, Proof. From the denition of x + ji 1 (z), we have:

r+ i (v) ( a [X(z 1 ), Y (z 2 )] b ) = a [X(
δ z 1 z 2 q a ij i x + ji 1 (z 2 ) = [x + j (z 1 ), x + i (z 2 )] G - ij (z 1 /z 2 ) .
(4.5.54)

Then,

δ z 1 z 2 q a ij i k + l (vC 1/2 )x + ji 1 (z 2 ) = k + l (vC 1/2 )[x + j (z 1 ), x + i (z 2 )] G - ij (z 1 /z 2 ) = G - lj z 1 Cv -1 G - li z 2 Cv -1
x + j (z 1 ),

x + i (z 2 )] G - ij (z 1 /z 2 ) k + l (vC 1/2 ) = δ z 1 z 2 q a ij i G - lj z 2 q a ij i Cv -1 G - li z 2 Cv -1 x + ji 1 (z 2 )k + l (vC 1/2 )
Now assuming the result holds for n ∈ N × , we have:

δ z 1 z 2 q a ij i k + l (vC 1/2 )x + ji n+1 (z 2 ) = k + l (vC 1/2 )[x + ji n (z 1 ), x + i (z 2 )] G - i,i n j (z 1 /z 2 ) = δ z 1 z 2 q a ij i G - l,ji n z 2 q a ij i Cv -1 G - li z 2 Cv -1
x + ji n+1 (z 2 )k + l (vC 1/2 ) which completes the recursion.

Denition 4.5.28. ∀n ∈ N × , we dene x + i n (z 1 ) ∈ U+ q ( ġ)[[z, z -1 ]] recursively by setting :

x + i (z 1 ) = x + i (z 1 ) (4.5.55) x + j n i (z)k - l (vC -1/2 ) = G - l,j n i

δ z 1 z 2 q 2 i x + i n+1 (z 1 ) = [x + i n (z 1 ), x + i (z 2 )] G - i,i n (
C -1 v z -1
k - l (vC -1/2 )x + j n i (z) (4.5.66)

Proof. The proof is similar to that of lemma 4.5.27.

Lemma 4.5.34. ∀i = j ∈ İ such that a ij = -2 and a ji = -1, there exists a unique ξ ij (z) ∈ U+ q ( ġ)[[z, z -1 ]] such that: G - i,i (z 0 q 2 i /z 1 ) [x + ji 2 (z 0 q 2 i ), x + i (z 1 )] G - i,i 1 j (z 0 /z 1 ) (4.5.67)

[x + ji 1 (z 0 ), x + i 2 (z 1 q -2 i )] G - i,ij (z 0 q 2 i /z 1 )G - i,i 1 j (z 0 /z 1 )
(4.5.68)

Proof.

0 = δ z 1 z 2 q 2 i δ z 0 z 1 q 2 i x + ji 3 (z 2 ) = [[x + ji 1 (z 0 ), x + i (z 1 )] G - i,i 1 j (z 0 /z 1 ) , x + i (z 2 )] G - i,i 2 j (z 1 /z 2 ) = [x + ji 1 (z 0 ), [x + i (z 1 ), x + i (z 2 )] G - i,i z 1 /z 2 ] G - i,i 1 j (z 2 /z 1 )G - i,i 1 j (z 0 /z 2 ) + G - i,i (z 1 /z 2 ) [[x + ji 1 (z 0 ), x + i (z 2 )] G - i,i 1 j (z 0 /z 2 ) , x + i (z 1 )] G - i,i 1 j (z 0 /z 1 ) = δ z 1 z 2 q 2 i [x + ji 1 (z 0 ), x + i 2 (z 2 )] G - i,i 1 j (z 0 /z 1 )G - i,i 1 j (z 0 /z 2 ) + δ z 0 z 2 q 2 i G - i,i (z 1 /z 2 ) [x + ji 2 (z 2 ), x + i (z 1 )] G - i,i 1 j (z 0 /z 1 )
multiplying the above equation by (z 0 -q 2 i z 2 ), (z 1 -q 2 i z 2 ) respectively and taking the residue with respect to z 2 , we get:

(z 0 -z 1 )[x +
ji 1 (z 0 ), x + i 2 (z 1 q -2 i )] G - i,i 1 j (z 0 /z 1 )G - i,i 1 j (z 0 q 2 i /z 1 ) = 0 (4.5.69)

(z 1 -z 0 ) G - i,i (z 1 q 2 i /z 0 ) [x + ji 2 (z 0 q -2 ), x + i (z 1 )] G - i,i 1 j (z 0 /z 1 ) = 0 (4.5.70) the latter imply that:

[x + ji 1 (z 0 ), x + i i 2 (z 1 )] G - i,i 1 j (z 0 /z 1 )G - i,i 1 j (z 0 q 2 i /z 1 ) = δ z 0 z 1 ξ ij (z 0 ) (4.5.71)

G - i,i (z 1 q 2 i /z 0 ) [x + ji 2 (z 0 q -2 ), x + i (z 1 )] G - i,i 1 j
(z 0 /z 1 ) = δ z 0 z 1 ξij (z 0 ) (4.5.72) by substituting the last two equations, we get:

δ z 0 z 1 δ z 1 z 2 q 2 i
[ ξij (z 0 ) + ξ ij (z 0 )] = 0 (4.5.73) the result follows.

Lemma 4.5.35. ∀i = j ∈ İ and a ij = -2, a ji = -1, [x + ji 1 (z 1 q 2 j ), x + ji 2 (z 2 q -2 i q 2 j )] G - i,i 2 j (z 1 /z 2 ) = 0 (4.5.74)

Proof. Clearly, the left-hand side of this equation is in U+ q ( ġ) 3α i +2α j . Therefore, it suces to prove that ∀k ∈ İ:

r+ k (v)([x + ji 1 (z 1 q 2 j ), x + ji 2 (z 2 q -2 i q 2 j )] G - i,i 2 j
(z 1 /z 2 ) ) = 0 (4.5.75) 150

Then, r+ k (v)([x + ji 1 (z 1 q 2 j ), x + ji 2 (z 2 q -2 i q 2 j )] G - i,i 2 j (z 1 /z 2 ) ) = [x + ji 1 (z 1 q 2 j ), r+ k (v)(x + ji 2 (z 2 q -2 i q 2 j ))] G - i,i 2 j (z 1 /z 2 )G - i,i 2 j(z 1 /z 2 ) -1 + G - k,ji 2 (z 2 q -2 i q 2 j /Cv) [r + k (v)(x + ji 1 (z 1 q 2 j )), x + ji 2 (z 2 q -2 i q 2 j )] G - i,i 2 j (z 1 /z 2 )

= δ kj δ z 2 q -2 i q 2 j Cvq γ i,j,2 i β i,j,2 [x + ji 1 (z 1 q 2 j ), x + i 2 (z 2 q -2 i q 2 j )]

G - i,i 2 j z 1 z 2 G - i,i 2 j z 1 z 2 -1
+ δ kj δ z 1 q 2 j Cvq γ i,j,k i β i,j,2 G - k,ji 2 (z 2 q -2 i q 2 j /Cv) [x + i (z 1 q 2 j ), x + ji 2 (z 2 q -2 i q 2 j )] G - i,i 2 j

(z 1 /z 2 ) .

Observe that:

G - i,i 2 j z 1 z 2 G - j,ji 1 z 1 q 2 i z 2 -1 = (z 1 q -2 i -z 2 q 2 i )(z 1 q 2 i -z 2 q -2 i ) (z 1 -z 2 ) 2 = G - i,i 1 j z 1 z 2 G - i,i 1 j z 1 q 2 i z 2 (4.5.76)
Similarly,

G - i,i 2 j z 1 z 2 = G - i,i z 1 q 2 i z 2 (4.5.77) Finally, G - j,ji 2 z 2 z 1 -1 = G - i,i 1 j z 1 z 2 (4.5.78)
Then, we get:

r+ k (v)([x +
ji 1 (z 1 q 2 j ), x + ji 2 (z 2 q -2 i q 2 j )] G - i,i 2 j

(z 1 /z 2 ) ) = [2] q i (q i -q -1 i )δ jk -δ z 2 q 2 i Cv δ z 2 z 1 ξ ij (z 1 q 2 j ) +δ z 2 q 2 i Cv δ z 2 z 1 ξ ij (z 1 q 2 j ) = 0 (4.5.79)

Corollary 4.5.36. ∀i = j ∈ İ such that a ij = -2, a ji = -1, we have:

T j (x + i 3 j (z)) = 0.
(4.5.80) Proof. By using the denitions of T j and x + i 3 j (z), observe that T j (x + i 3 j (z)) is proportional to [x + ji 1 (z 1 q 2 j ), x + ji 2 (z 2 q -2 i q 2 j )] G - i,

Then, by the previous lemma, the result follows.

Lemma 4.5.37. ∀i = j ∈ İ such that a ij = -1, a ji = -1, we have: Proof. Using the denition of x + i 2 j (z), the denition of T i , and 4.5.12, we get that:

T j (x + i 2 j (z))δ z z 1 q 2 i = T j (x + i (z 1 )), T j (x + i 1 j (z))

G - i,ij (z 1 /z) = x + j 1 i (z 1 q j ), x + i (z)

G - i,ij (z 1 /z) = x + ji 1 (z 1 ), x + i (z) G - i,ij (z 1 /z) = δ z z 1 q 2 i x +
ji 2 (z) = 0.

Proposition 4.5.38. ∀i = j ∈ İ such that m ij < ∞, we have the following braid group relation: Proof. Consider the case m ij = 4, and α i , α ∨ j = -2, α j , α ∨ i = -1. We will show that T i T j T i T j (x + j (z)) = T j T i T j T i (x + j (z)).

T i T j T i ...
(4.5.83)

The right-hand side is already given in the proof of lemma 4.5.12. Therefore, we apply T j to x + j (z) and,by making use of the denition of T j on the algebra generators, we get: T j (x + j (z)) = -x - j (zC -1 )k + j (zC -1/2 ) -1

(4.5.84) Then,

T i • T j (x + j (z)) = -T i (x - j (zC -1 ))T i (k + j (zC -1/2 ) -1 ).

(4.5.85)

Clearly, we can seperate the proof between the part regarding T i (x - j (zC -1 )) and T i (k + j (zC -1/2 ) -1 ) and multiply again both results at the end. The part concerning the k + j (zC -1/2 ) -1 is straightforward and follows immediately from the denition of T i on the generators for all i ∈ İ. We focus our attention on T i (x - j (zC -1 )). Observe that

T i (x - j (zC -1 )) = T i • ϕ(x + j (C/z)) = ϕ • T i (x + j (C/z)) = ϕ(x + i 2 j (q a ij i C/z)) (4.5.86)
Now apply T j to the previous result:

T j • ϕ(x + i 2 j (q a ij i C/z)) = ϕ • T j (x + i 2 j (q a ij i C/z)).
(4.5.87)

This allows us to use results from lemma 4.5.12 again. Therefore, we have: ϕ • T j (x + i 2 j (q 2 i C/z)) = ϕ(x + ji 2 (q j q 2 i /z)) (4.5.88) Finally, we apply T i one last time and use equation 4.5.14 to get our answer. We then multiply by the result we get from following the same steps on k + j (zC -1/2 ) -1 making us ready to compare with the righthand side obtained from the proof of lemma 4.5.12 and the result follows. The remaining cases are proven

  to as the Drinfel'd presentation and was rigorously established by Damiani and Beck, making crucial use of Lusztig's ane braid group symmetries; a quantum analogue of the classical Weyl group symmetries of simple Lie algebras. As one expects in view of the classical current Lie algebra case, Drinfel'd's
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  Automorphismes de l'algèbre Uq ( ġ) Extension du groupe de tresses toroidale Dénition des générateurs lacets doubles Pour les automorphismes d'algèbres: Proposition 0.1.1.

(

  r, s ∈ Z} tels que: C ±1/2 et c ± (z) sont les charges centrales

  avec m, n ∈ N, r, s ∈ Z et c ± (z) = m∈N c ± ±m z ∓m , ±m z ±m , (0.1.27) et pour tout m ∈ N × et r ∈ Z, ,s z -s . (0.1.29) In (5.0.6), we further assume that K ± 1,∓m (z) = 0 pour tout m ∈ N × . 0.1.2 Représentations des Algèbres Toroidales Quantique de Type a 1 La nouvelle dénition de l'algèbre toroidale quatique nous donne une nouvelle decomposition triangulaire pour etudier et classier les modules de cette algèbre.

n

  : n ∈ N}. Denition-Proposition 2.2.7. We endow Uq ( ȧ1 ) with the topology τ whose open sets are either ∅ or nonempty subsets O ⊆ Uq ( ȧ1 ) such that for every x ∈ O, x + Ω n ⊆ O for some n ∈ N. Similarly, we endow each tensor power Uq ( ȧ1 ) ⊗m≥2 with the topology induced by {Ω (m) n

  subject to relations ((3.3.1) (5.0.6)), where, this time, c ± (z) = N m=0 c ± ±m z ∓m .

  r, s ∈ Z} subject to the relations ((3.3.2) (3.3.10)) and (5.0.6), i.e. all the dening relations of Üq (a 1 ) but relation (5.0.5). Endow A with a topology along the lines of what was done in section 3.3.2 for Uq ( ȧ1 ), making use of its Z (2) -grading. This yields a basis Ωn : n ∈ N of open neighbourhoods of 0. Let furthermore A 0 be the closed subalgebra of A generated by

  .4.43) Combining (2.4.38) and (2.4.43) completes the recursion and the result holds for any m ∈ N, assuming n = 0. The cases n ∈ Z × are then obtained by applying Y n to the case n = 0.

  Remark 2.4.21. It turns out the, for every m ∈ N

  .2.22) On the other hand, all the vectors in {v m : m ∈ Z} see (3.2.14) can be expressed as linear combinations of the vectors in, say, v 1 , . . . , v deg(P ) and the linear span of {v m : m ∈ Z} turns out to be nite dimensional.

  r, s ∈ Z} subject to the relations C ±1/2 and c ± (z) are central (3.3.1)

  subject to relations ((3.3.1) (5.0.6)), where, this time, c ± (z) = N m=0 c ± ±m z ∓m .

  .3.37) g(z, w)e + (z)e + (w) = -g(w, z)e + (w)e + (z) , (3.3.38) g(w, z)e -(z)e -(w) = -g(z, w)e -(w)e -(z) , (3.3.39) res v,w,z (vwz) m (v + z)(w 2 -vz)e ± (v)e ± (w)e ± (z) = 0 , (3.3.40)

  1) ) , (3.3.45) ∆ E (e -(z)) = e -(zC (2) ) ⊗ψ + (z) + 1 ⊗ e -(z) , (3.3.46)

  an equivalence relation and we denote by [ν] ∈ N F × f / ∼ the equivalence class of ν in N F × f . Following remark 3.4.7, we naturally extend the action of Γ m,a to Z[Y b , Y -1 b ] b∈F × , by setting Γ m,a (Y ν ) = Y Γm,a(ν) .

  thus making a the unique element of F satisfying ii.. Remark 3.4.25. Obviously, proposition 3.4.24.i holds for arbitrary pairs of (possibly non-local) -weight spaces since it must hold for at least one pair of local -weight spaces therein.Corollary 3.4.26. The -weights of any type (1, 0) weight-nite simple Üq (a 1 )-module are all rational see denition 3.4.5.Proof. Let M be a type (1, 0) weight-nite simple Üq (a 1 )-module. By proposition 3.4.23, its highest t-for every m ∈ N the case m = 0 being just (3.3.23). Now M 0 and N 0 are both of type (1, 0) and (3.3.22) and (3.4.23) respectively imply that so is M 0 ⊗N 0 . Similarly, they are both -weight anddominant. It follows that, if {M 0,α : α ∈ A} and {N 0,β : β ∈ B} are the countable sets of -weights of M 0 and N 0 respectively, with respective Drinfel'd polynomials {P α : α ∈ A} and {P β : β ∈ B}, then {M 0,α ⊗ N 0,β : α ∈ A , β ∈ B} is the countable set of -weight spaces of M 0 ⊗N 0 . Moreover, the latter is obviously -dominant since its Drinfel'd polynomials are in {P α P β : α ∈ A β ∈ B}. Now let α, α ∈ A, β, β ∈ B and let P α , P α , P β and P β be the Drinfel'd polynomials of M 0,α , M 0,α , N 0,β and N 0,β respectively and assume that(M 0,α ⊗ N 0,β ) ∩ ∆ 0 (K ± 1,±1(z)). M 0,α ⊗ N 0,β = {0} . (3.4.26) Then, writing (3.4.24) and (3.4.25) above with m = 1, we get

  proof provided we set N n+1 = -Nn A -a ij -n . Denition 4.5.11. Let i = j ∈ İ. For every p ∈ 0; m ij -1 , we dene:T i,j,p = ...T i T j T i p-factors , T i,j,p = ...T -1 i T -1 j T -1 i p-factors (4.5.16)where (m ij ) i,j∈ İ is the Coxeter matrix of the ane Weyl group of ġ.

  in[Lusztig] 40.1.1 shows that:T i,j,p (x + j (z)) ∈ U ij [[z, z -1 ]].In subcase b) we have:

T

  j (x + i 4 j (z)) = x + ji zq j , T j (x + ji 2 (v) that ∀m = 1, ...,4T i (x + i m j (z)) ∈ U ij [[z, z -1 ]] (4.5.26)where Z is the subalgebra of Uq ( ġ) generated by:{res z z -1+m x + ji (z), res z z -1+m x + ji 2 (z); m, n ∈ Z}. (4.5.27)Clearly Z ⊂ U ij , and T i (Z) ⊂ U ij thus concluding the proof.

  m ij times = T j T i T j ... m ij times (4.5.82)

  

  Uq (sl 2 ) = Uq (sl 2 ) - Uq (sl 2 ) 0 Uq (sl 2 ) + (1.2.34) which allows us to say that a vector v in a representation of Uq (sl 2 ) is a highest weight vector if v is annihilated by x + k for all k ∈ Z. We can now present the rst result in the following proposition Proposition 1.2.2. Every nite-dimensional irreducible representation of Uq (sl 2 ) is highest weight.

± 

, and Uq (sl 2 ) 0 generated by x ± k and {k ±n , C} respectively. It follows that

  |, |l 2 |, ..., |l h | ≤ M . Thus it suces to prove that the space for α

		λ-α+α i is panned by
	vectors	
	x j 2 ,l 2 x j 2 ,l 2 ...x j h ,l h .v P	(1.2.63)
	with |l 1	

  1/2 -t), we can set Bt = H + Proof. Making use of the coassociativity of the comultiplication ∆, it is very easy to prove that, with the above dened multiplication, H + Proposition 3.5.13. Setting x → 1 ⊗ x ⊗ 1, for every x ∈ Ȗt 2 (La 1 ), denes a unique injective K(t)algebra homomorphism Ȗt 2 (La 1 ) → Bt . Similarly, h → h ⊗ 1 ⊗ 1 and h → 1 ⊗ 1 ⊗ h dene unique injective K(t)-algebra homomorphisms H + t → Bt and H - t → Bt respectively.

t Ȗt 2 (La 1 ) cop H - t /(γ 1/2 -t). t Ȗt 2 (La 1 )

cop H - t is actually an associative F-algebra.

  Let X ∈ Uq ( ġ) + . It is a linear combination of

	{ res z 1 ,z 2 ,...zn	z -1+m 1 1	...z -1+mn n	x + i 1 (z 1 )x + i 2 (z 2 )...x + im (z n )}.	(4.5.32)

  z 1 ), r+ i (v)(Y (z 2 ))] bθ X,i( + i (v)(X(z 1 )), Y (z 2 )] b (4.5.52)Proof. The proof is similar to that of lemma 4.5.20.Lemma 4.5.27. ∀l, i, j ∈ İ and ∀n ∈ N × :

	z 1 v ) + aθ y,i( v ) [r k + z 2 l (vC 1/2 )x + ji n (z) = G -l,ji n z Cv x + ji n (z)k + l (vC 1/2 ).	(4.5.53)

  z 1 /z 2 ) (4.5.56) Lemma 4.5.29. Let i = j ∈ İ. Then, ∀k ∈ İ, ∀n ∈ N × : Lemma 4.5.33. ∀l, i, j ∈ İ, ∀n ∈ N ×

	r+ k (v)(x + ji n (z)) = δ jk δ	z i Cvq γ i,j,n	β i,j,n x + i n (z)	(4.5.57)
	where,			

γ i,j,n = -a ij -2(n -1), if n ∈ N × 0 otherwise (4.5.58) β i,j,n = n-1 p=1 [p + a ij ] [p] q i .

(4.5.59)
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for any symbols a, b, A and B provided the r.h.s of the above equations makes sense.

The Dynkin diagrams and correponding Cartan matrices of the root systems a 1 and ȧ1 are reminded in the following table.

Type Dynkin diagram Simple roots Cartan matrix

3.2 Weight-nite modules over the quantum ane algebra

Uq (a 1 )

3.2.1

The quantum ane algebra Uq (a 1 ) Denition 3.2.1. The quantum ane algebra Uq (a 1 ) is the associative K(q)-algebra generated by D, D -1 , C 1/2 , C -1/2 , k + 1,n , k - 1,-n , x + 1,m , x - 1,m : m ∈ Z, n ∈ N subject to the following relations

where we dene the following Uq (a 1 )-valued formal distributions

(3.2.9) Denition 3.2.10. We shall say that an -weight U q (a 1 )-module M is weight-nite if Sp(M ) is a nite set. We let WFinMod denote the full subcategory of the category Mod of U q (a 1 )-modules whose objects are weight-nite.

Clearly, nite dimensional U q (a 1 )-modules are objects in WFinMod, but not every object in WFinMod is in FinMod. However we have Theorem 3.2.11. The following hold: i. every simple -weight U q (a 1 )-module can be obtained by twisting a simple -weight U q (a 1 )-module of type 1 with an algebra automorphism of Aut( Uq (a 1 ));

ii. every weight-nite simple U q (La 1 )-module is highest -weight;

iii. every weight-nite simple U q (La 1 )-module is nite dimensional.

Proof. In view of denition-proposition 3.2.8, C 2 acts as id over M . Since the latter is simple and since C 1/2 is central, it is clear that C acts over M either as id or as -id. In the former case, there is nothing to do; whereas in the latter, upon twisting as in the nite-dimensional case see [START_REF] Chari | Quantum ane algebras[END_REF] , we can ensure that C 1/2 acts as id. This proves i. As for ii, the same proof as for part ii of theorem 3.2.5 can be used. So, we eventually prove iii. Let M be a weight-nite simple U q (La 1 )-module. By ii it is highest -weight.

Hence, there exists v ∈ M -{0} such that M ∼ = U q (La 1 ).v, x + 1 (z).v = 0 and k ± 1 (z).v = κ ± (z)v, for some

The triangular decomposition of U q (La 1 ) implies that M = U - q (La 1 ).v and, setting for every n ∈ N v(z 1 , . . . , z n ) = x - 1 (z 1 )

it is clear that v m 1 ,...,mn = res z 1 ,...,zn

is a spanning set of M . The dening relations (3.2.5) and (3.2.6) of U q (La 1 ) easily imply that, for every

and, in particular, k ± 0 .v(z 1 , . . . , z n ) = (κ + 0 ) ±1 q -2n v(z 1 , . . . , z n ) .

Therefore, M being weight-nite, there must exist an N ∈ N such that

x - 1 (z).v(z 1 , . . . , z N ) = 0 .

(3.2.16)

where, for every (n 1 , n 2 ) ∈ Z 2 , we let Üq (a 1 ) (n 1 ,n 2 ) = x ∈ Üq (a 1 ) : D 1 xD -1 1 = q n 1 x, D 2 xD -1 2 = q n 2 x .

In the coming section, we shall also need the Z (2) -grades

for every n ∈ Z.

Proposition 3.3.5. The set C 1/2 , C -1/2 , K + 1,0,m , K - 1,0,-m : m ∈ N generates a subalgebra of Ü0,0 q (a 1 ) that is isomorphic to U0 q (a 1 ).

Proof. This can be directly checked from the dening relations. Otherwise, it suces to observe that the algebra isomorphism Ψ : Uq ( ȧ1 ) → Ü q (a 1 ) see theorem 3.3.22 restricts on that set to

Üq (a 1 ) as a topological algebra

Because of relation (5.0.6), the denition of Üq (a 1 ) is not purely algebraic. Indeed, the r.h.s. of (5.0.6) involves two innite series. One way to make sense of that relation is to equip Üq (a 1 ) and, for later use, its tensor powers with a topology, such that both series be convergent in the corresponding completion Üq (a 1 ) of Üq (a 1 ). Making use of the natural Z (2) -grading of the tensor algebras Üq (a 1 ) ⊗m , m ∈ N × , we let, for every

One easily checks that Proposition 3.3.6. The following hold true for every m ∈ N × :

Proof. See [MZ] for a proof in the Uq ( ȧ1 ) case that can be transposed to the present situation.

iii. the antipode S : Uq ( ȧ1 ) → Uq ( ȧ1 ), dened by

With the operations so dened and the topologies dened in section 3.3.7, Uq ( ȧ1 ) becomes a topological Hopf algebra see denition 2.16 in [MZ].

In view of theorem 3.3.22, it is clear that Üq (a 1 ) inherits that topological Hopf algebraic structure.

Denition-Proposition 3.3.29. We dene

Equipped with the above comultiplication, antipode and counit, Ü q (a 1 ) is a topological Hopf algebra.

Before we move on to introducing t-weight Ü q (a 1 )-modules, we give the following Lemma 3.3.30. For every m ∈ N and every r ∈ Z, we have i.

where we have set Ü> q (a 1 ) = Ü≥ q (a 1 ) -Ü≥ q (a 1 ) ∩ Ü0 q (a 1 ) and Ü< q (a 1 ) = Ü≤ q (a 1 ) -Ü≤ q (a 1 ) ∩ Ü0 q (a 1 ).

Proof. We rst prove i for upper choices of signs. Observe that (3.3.20) equivalently reads

for every m ∈ N × . For every m ∈ N × , let

In [MZ] see proposition-denition 4.9, denition 4.25 and eq. (4.66) , we proved that

-for the lower choice of sign on the right hand side of the above equation, we get

In any case, it follows that P β (1/aq ∓2 ) = 0. But by our assumptions on M , we also have that P β (1/a) = 0 and the t-dominance of M follows see denition 3.4.8.

3.4.2 t-weight Üq (a 1 )-modules Denition 3.4.17. For every N ∈ N × , we shall say that a (topological) module M over Ü q (a 1 ) is of type (1, N ) if: i. C ±1/2 acts as id on M ;

ii. c ± ±m acts by multiplication by 0 on M , for every m ≥ N .

We shall say that M is of type (1, 0) if points i. and ii. above hold for every m > 0 and, in addition, c ± 0 acts as id on M .

Remark 3.4.18. Let N ∈ N. Then the Ü q (a 1 )-modules of type (1, N ) are in one-to-one correspondence with the Üq (a 1 ) (N ) /(C 1/2 -1)-modules see section 3.3.3 for a denition of Üq (a 1 ) (N ) . Obviously Üq (a 1 )modules of type (1, 0) descend to modules over the double quantum loop algebra of type a 1 , Lq (a 1 ).

Denition 3.4.19. We shall say that a (topological) Üq (a 1 )-module M is a t-weight module if there exists a countable set {M α : α ∈ A} of indecomposable -weight Ü0 q (a 1 )-modules, called t-weight spaces of M , such that, as (topological) Ü0

q (a 1 )-modules,

(3.4.10)

We shall say that M is weight-nite if, regarding it as a completely decomposable Ü0 q (a 1 )-module, its Sp(M ) is nite see denition-proposition 3.4.2 for the denition of Sp. A vector v ∈ M -{0} is a highest t-weight vector of M if v ∈ M α for some α ∈ A and, for every r, s ∈ Z,

We shall say that M is highest t-weight if M ∼ = Üq (a 1 ).v for some highest t-weight vector v ∈ M -{0}.

Denition-Proposition 3.4.20. Let M be a t-weight Üq (a 1 )-module that admits a highest t-weight vector v ∈ M -{0}. Denote by M 0 the t-weight space of M containing v. Then M 0 = Ü0 q (a 1 ).v and, for every r, s ∈ Z,

We shall say that M 0 is a highest t-weight space of M . If in addition M is simple, then it admits a unique up to isomorphisms of Ü0 q (a 1 )-modules highest t-weight space M 0 .

Proof. It is an easy consequence of the triangular decomposition of Üq (a 1 ) see proposition 3.3.11 and of the root grading of Üq (a 1 ) that, indeed, X + 1,r,s . Ü0 q (a 1 ).v = {0}, for every r, s ∈ Z. Now since M 109 is highest t-weight, we have M ∼ = Üq (a 1 ).v. By proposition 3.3.11, M 0 ⊂ M ∼ = Üq (a 1 ) Ü0 q (a 1 ).v and it follows that M 0 ∼ = Ü0 q (a 1 ).v. Now, assuming that M is simple and that it admits highest t-weight spaces M 0 and M 0 , we have that Üq (a 1 ).M 0 ∼ = M ∼ = Üq (a 1 ).M 0 as Üq (a 1 )-modules. In particular, M 0 ∼ = M 0 as Ü0 q (a 1 )-modules.

In view of the triangular decomposition of Üq (a 1 ) see proposition 3.3.11 , the above proposition implies that any highest t-weight Üq (a 1 )-modules M is entirely determined as M ∼ = Üq (a 1 ).M 0 , by the data of its highest t-weight space M 0 , a cyclic -weight Ü0 q (a 1 )-module. Now for any v ∈ M 0 -{0} such that M 0 ∼ = Ü0 q (a 1 ).v, let N 0 be the maximal Ü0 q (a 1 )-submodule of M 0 not containing v and set L 0 = M 0 /N 0 2 . Then, by construction, L 0 is a simple Ü0 q (a 1 )-module such that, as Üq (a 1 )-modules, M ∼ = Üq (a 1 ).L 0 mod Üq (a 1 ).N 0 . We therefore make the following Denition 3.4.21. We extend every simple (topological) -weight Ü0 q (a 1 )-module M 0 into a Ü≥ q (a 1 )module by setting X + 1,r,s .M 0 = {0} for every r, s ∈ Z. This being understood, we dene the universal highest t-weight Ü q (a 1 )-module with highest t-weight space M 0 by setting

as Ü q (a 1 )-modules. Denoting by N (M 0 ) the maximal (closed) Üq (a 1 )-submodule of M(M 0 ) such that M 0 ∩ N (M 0 ) = {0}, we dene the simple highest t-weight Üq (a 1 )-module L(M 0 ) with highest t-weight space M 0 by setting L(M 0 ) ∼ = M(M 0 )/N (M 0 ). It is unique up to isomorphisms.

Classifying simple highest t-weight Üq (a 1 )-modules therefore amounts to classifying those simple -weight Ü0 q (a 1 )-modules M 0 that appear as their highest t-weight spaces. In the case of weight-nite Üq (a 1 )-modules, this is achieved by the following Theorem 3.4.22. The following hold: i. Every weight-nite simple Ü q (a 1 )-module M is highest t-weight and can be obtained by twisting a type (1,0) weight-nite simple Üq (a 1 )-module with an algebra automorphism from the subgroup of Aut( Ü q (a 1 )) generated by the algebra automorphisms τ and σ of proposition 3.3.27.

ii. The type (1,0) simple highest t-weight Ü q (a 1 )-module L(M 0 ) is weight-nite if and only if its highest t-weight space M 0 is a simple t-dominant Ü0 q (a 1 )-module see proposition-denition 3.4.5.

Proof. We shall prove ii in section 3.5. We now prove i. Let M be a weight-nite simple t-weight Üq (a 1 )module and assume for a contradiction that, for every w ∈ M -{0}, there exist r, s ∈ Z such that

Choosing w ∈ M -{0} to be an eigenvector of K + 1,0,0 with eigenvalue λ ∈ F × see denition-proposition 3.4.2 for the existence of such a vector , one easily sees from the relations that, for every n ∈ N, K + 1,0,0 .w n = λq 2n w n . It follows see denition-proposition 3.4.2 that {λq 2n : n ∈ N} ⊆ Sp(M ). A 2 N 0 clearly does not depend on the chosen generator v. Indeed, if N 0 contained a generator v of M 0 , it would contain all the others, including v. It follows that N 0 and hence L 0 are both independent of v.

contradiction with the weight-niteness of M . Thus, we conclude that there exists a highest t-weight

Obviously, M ∼ = Üq (a 1 ).v 0 , for Üq (a 1 ).v 0 = {0} is a submodule of the simple Üq (a 1 )-module M . Thus M is highest t-weight. Denote by M 0 = Ü0 q (a 1 ).v 0 its highest t-weight space. The latter is an -weight Ü0 q (a 1 )-module. As such, it completely decomposes into countably many locally nite-dimensional indecomposable Ü0,0 q (a 1 )-modules that constitute its -weight spaces. Over any of these, C 1/2 must admit an eigenvector. But since M is simple and C 1/2 is central, the latter acts over M by a scalar multiple of id. It follows from denitionproposition 3.4.2 that C acts over M by id or -id. In the former case, there is nothing to do; whereas in the latter, it is quite clear from proposition 3.3.27 that, twisting the Üq (a 1 ) action on M by τ , we can ensure that C acts by id. It follows that C 1/2 acts by id or -id. Again, in the former case, there is nothing to do; whereas in the latter, twisting by σ, we can ensure that C 1/2 acts by id. Similarly, for every m ∈ N, c ± ±m must admit an eigenvector over any locally nite-dimensional -weight space of M 0 . But again, since M is simple and c ± ±m is central, the latter must act over M by a scalar multiple of id. In any case, in view of (3.3.7) and (3.3.8), K ± 1,0,0 commutes with all the other generators of Ü0 q (a 1 ) and, since M 0 = Ü0 q (a 1 ).v 0 , we have K ± 1,0,0 .w = κ ±1 0 w for every w ∈ M 0 . Moreover, M 0 turns out to be a type 1 -weight Ü0 q (a 1 )-module and, by denition-proposition 3.4.2,

for every r, s ∈ Z. Pulling back with ι (0) and ι (1) respectively, we can simultaneously regard M as a U q (La 1 )-module for both of its Dynkin diagram subalgebras U q (La 1 ) (0) and U q (La 1 ) (1) see discussion before theorem 3.3.22 in section 3.3 for denitions. Let v ∈ M 0 -{0} be a simultaneous eigenvector of the pairwise commuting linear operators in

Thus v is a highest (resp. lowest) -weight vector of Uq (a 1 ) (1) .v (resp. Uq (a 1 ) (0) .v). The weight niteness of M now allows us to apply corollary 3.2.12 to prove that the respective simple quotients of U q (La 1 ) (0) .v and U q (La 1 ) (1) .v containing v are both nite-dimensional and isomorphic to a unique simple highest (resp. lowest) -weight module L(P 1 ) (resp. L(P 0 )). As a consequence of theorem 3.2.5 and of proposition 3.2.6, we conclude that

for some monic polynomials P 0 and P 1 . On the other hand, pulling back with ι m for every m ∈ Z see proposition 3.3.23 for a denition , we can regard M as a U q (La 1 )-module in innitely many independent ways. Again, for every m ∈ Z, v turns out to be a highest -weight vector for a unique simple weight nite, hence nite dimensional U q (La 1 )-module. As such, it satises

weight space M 0 is an -dominant simple Ü0 q (a 1 )-module. Hence, M ∼ = L(M 0 ) ∼ = Üq (a 1 ).M 0 and it easily follows by proposition 3.4.24 that all the -weights of L(M 0 ) are of the form

for some N ∈ N, some a 1 , . . . , a N ∈ F × and

for some monic polynomial

Hence, all the -weights of L(M 0 ) are of the form

for some relatively prime monic polynomials

which concludes the proof.

In view of remark 3.4.7, we can therefore associate with any weight-nite simple Üq (a 1 )-module a q-character dened as the (formal) sum of the monomials corresponding to all its rational -weights.

Proposition 3.4.27. Let M 0 and N 0 be two t-dominant simple Ü0

q (a 1 )-modules such that M 0 ⊗N 0 be simple. Then:

q (a 1 )-module of type (1, 0);

ii. there exists a short exact sequence of Üq (a 1 )-modules

Proof. 

(1) ) , (3.4.23)

It easily follows that Proposition 3.5.7. In H ± t , for every m, n ∈ Z × , we have

where we have set

Furthermore, we have, for every m ∈ Z × ,

It is worth emphasizing that the L ± m (z) are not indepedent for all values of m ∈ Z × and that neither are the R ± m (z). Indeed, we have Lemma 3.5.8. For every m, n ∈ Z × ,

The algebra B t

Remember the Hopf algebra Ȗq (La 1 ) from denition 3.2.1. It is naturally Z-graded and we can endow it with a topology following what was done for Üq (a 1 ) in section 3.3.2. Let Ȗq (La 1 ) denote the corresponding completion. Then, we have Denition 3.5.9. We endow the topological F-algebra Ȗq (La 1 ) with:

i. the comultiplication ∆ : Ȗq (La 1 ) → Ȗq (La 1 ) ⊗ Ȗq (La 1 ) dened by

as claimed.

Remark 3.5.16. In addition to the above, we obviously have in Bt , all the relations of its subalgebra Ȗt 2 (La 1 ) and all the relations of its subalgebras H + t and H - t modulo (γ 1/2 -t).

Denition-Proposition 3.5.17. Let I be the left ideal of Bt generated by

Then I. Bt ⊆ I and I is a two-sided ideal of Bt . Set B t = Bt /I.

Proof. In order to prove that I. Bt ⊆ I, it suces to prove that, for any x ∈ Bt ,

The latter easily follows by inspection, making use of the relevant relations in Bt and Ȗt 2 (La 1 ), namely (3.5.14 -3.5.19) and (3.2.3 -3.2.7).

Remark 3.5.18. Thus, in addition to the relations in Bt , we have, in B t ,

The completion B t of B t

Making use of its natural Z-grading, we endow B t with a topology, in the same way as we endowed Üq (a 1 ) with its topology in section 3.3. We denote by B t the corresponding completion. Consequently, its subalgebra H ± t inherits a topology and we denote by H ± t its corresponding completion in that topology.

The shift factors

Denition 3.5.19. In H ± t , we dene,

Similarly, for every m ∈ Z × , we let

Proposition 3.5.24. In B t , we have, for every m, n ∈ Z × ,

The evaluation algebra A t

Denition-Proposition 3.5.25. Let J denote the closed left ideal of B t generated by

Then, J . B t ⊆ J , making J a closed two-sided ideal of B t , and we let A t = B t /J .

Proof. In order to prove that J . B t ⊆ J , it suces to check that, for every x ∈ B t ,

The latter easily follows by inspection, making use of the relevant relations in B t , namely (3.5.133.5.19) in proposition 3.5.15.

Proposition 3.5.26. For every m ∈ Z, the following relation holds in A t ,

(3.5.25)

Proof. We prove (3.5.25) for m ∈ N × by induction. The case m = 1 corresponds to the vanishing of the generators of the ideal J , see (3.5.24). Assuming the result holds for some m ∈ N × , we have

The cases with m ∈ -N × follow by rewriting the above equation for m ∈ N × as

and making use of lemma 3.5.8.

Remark 3.5.27. In addition to the above relation, A t obviously inherits the relations in B t modulo J . In particular, all the relations in proposition 3.5.15 hold in A t .

The evaluation homomorphism

Remember Üq (a 1 ) (-1) from section 3.3.3 and ι 0 from section 3.3.8, proposition 3.3.23.

Proposition 3.5.28. There exists a unique continuous K-algebra homomorphism ev : Üq (a 1 ) (-1) → A t such that, for every m ∈ N × and every n ∈ Z, ev(q) = t 2 , (3.5.26)

We shall refer to ev as the evaluation homomorphism. It is such that ev • ι 0 = id over U t 2 (La 1 ).

Proof. It suces to check all the dening relations of Üq (a 1 ). E.g. we have, for every m, n ∈ Z,

If m + n = 0, making use of (3.5.25), we are done. Assuming that m + n > 0, lemma 3.5.8 allows us to write

so that, eventually,

A similar argument proves the case m + n < 0.

The following is obvious.

Corollary 3.5.29. For every N ∈ N there exists an algebra homomorphism ev (N ) : Üq (a 1 ) (N ) → A t making the following diagram commutative.

We can furthermore dene the algebra homomorphism ev (∞) : Üq (a 1 ) → A t by

The above equation makes it clear that every a ∈ F × such that ν(at -4 ) > ν(a) is a zero of order at least ν(at -4 )-2ν(a)+ν(at 4 ) of 1⊗v⊗H -(z), unless ν(at -4 )-ν(a) ≤ ν(a)-ν(at 4 ). Hence, in view of (3.5.33), we have ev

But the latter implies that P (1/a) = 0. A similar reasoning applies to any -weight vector in M0 and M0 is t-dominant by lemma 3.4.16. Taking the quotient of M0 to M 0 clearly preserves t-dominance and vi follows.

By the universality of M(M 0 ) see denition 3.4.21 and the above proposition, there must exist a surjective Ü q (a 1 )-module homomorphism π : M(M 0 ) ev * (M 0 ). Restricting the latter to the (closed) Ü q (a 1 )-submodule N (M 0 ) of M(M 0 ), we get the surjective Ü q (a 1 )-module homomorphism π |N (M 0 ) , whose image naturally injects as a Ü q (a 1 )-submodule in ev * (M 0 ). The canonical short exact sequence involving N (M 0 ), M(M 0 ) and the simple quotient L(M 0 ) see denition 3.4.21 allows us to dene a surjective Ü q (a 1 )-module homomorphism π to get the following commutative diagram,

where columns and rows are exact. It is obvious that π is not identically zero and, by the simplicity of L(M 0 ), we must have ker(π) = {0}. Hence, π is a Ü q (a 1 )-module isomorphism and we have constructed the simple weight-nite Ü q (a 1 )-modules L(M 0 ) as a quotient of the evaluation module ev * (M 0 ). To see that all the simple weight-nite Ü q (a 1 )-modules L(M 0 ) can be obtained in this way, it suces to observe that, by proposition 3.4.11, all the simple -dominant Ü0 q (a 1 )-modules are of the form L 0 (P ) for some monic polynomial P and that, in the construction above, one can choose any P , simply by choosing the corresponding simple nitedimensional U q (La 1 )-module M . Therefore, as a consequence of the above proposition, the highest t-weight space of any simple weight-nite Ü q (a 1 )-modules L(M 0 ) is t-dominant. This concludes the proof of part ii of theorem 3.4.22 as well as that of theorem 3.4.13. by virtue of the q-Serre relation. Lemma 4.5.5. ∀i ∈ İ,

Proof. The proof is similar to that of the previous two lemmas and follows immediately from the denition of T i and the algebra relations.

Denition 4.5.6. For every n ∈ N and every i = j ∈ İ, we recursively dene x + ji n (z) by setting:

x + ji n (z 2 ). (4.5.9) Denition 4.5.8. ∀i ∈ İ we denote by U+

Lemma 4.5.9. ∀i ∈ İ, we have i)

Proof. Any product of elements in {res z z -1+p x + i (z); res z z -1+m x + ji n (z) : p, m ∈ Z, n ∈ N, j ∈ İ -{i}} can be rewritten with modes of x + i (z) on the left by repeatedly making use of the identity

It is therefore an element of the r.h.s. of i). Moreover, since x + j (z) = x + ji 0 (z), any word over {res z z -1+m x + k (z) : m ∈ Z, k ∈ I} is a product of elements in the set {res z z -1+p x + i (z); res z z -1+m x + ji n (z) : p, m ∈ Z, n ∈ N, j ∈ İ -{i}} and the lemma follows. Part ii) follows by applying η on i).

Lemma 4.5.10. Let i ∈ İ. T i restricts to an algebra isomorphism:

must have X; Ỹ x - i (z) = 0. We also see that r - i (v)(X) = 0 implies X; Ỹ x - i (z) = 0 which proves the claim for lower choices of signs. The proof for the upper choices of signs is similar. Lemma 4.5.19. Let i ∈ İ, let Y ∈ U+ q ( ġ) and let X(z) ∈ U+ q ( ġ)[[z, z -1 ]] be such that:

Then,

Proof. We have:

and the result follows.

Lemma 4.5.20. Let i ∈ İ and let X(z), Y (z) ∈ U+ q ( ġ)[[z, z -1 ]] be such that:

and the result follows.

146 Lemma 4.5.21.

).

(4.5.45)

Proof. The case k = i follows from lemma 4.4.9 and prop. 4.5.15 .Moreover, it is clear that for k ∈ İ -{i, j}, we have:

We now move to the case k = j.

In particular, the case n = 1 gives:

An easy recursion shows that for every n ∈ N × this is always a multiple of k + j (vC 1/2 ). Therefore, by comparing the result with prop. 4.5.15 we get that r

Remark 4.5.22. Clearly the case n = 0 is nothing but the algebra relation.

Proof of the Serre relations

Denition 4.5.23. For every i ∈ İ dene r±

Proof. The proof follows from applying η to prop. 4.5.15. Proposition 4.5.25. Let α ∈ Q+ -{0} and let X ∈ U+

Proof. The proof is straightforward and follows from the previous denition.

Lemma 4.5.26. Let i ∈ İ and let

]] be such that:

Proof. By induction on n ∈ N. The case n = 0 is from the dening relations. Now suppose the lemma holds for some n ∈ N × .

After multiplying through by -q

z 1 ) we get:

The result follows and thus completing the recursion provided that:

and

Lemma 4.5.30. ∀i = j ∈ İ, ∀k ∈ İ and ∀n ∈ N:

Proof.

Proof. Apply η to denition 4.5.28.

Chapter 5

Further Directions

In this brief chapter, we will give some possible directions in which one might decide to venture in light of the results presented in chapter 2-4.

Conjecture 5.0.1. Every weight-nite simple U q (Lg)-module is nite dimensional.

An obvious direction is also generalizing to higher rank root systems. We will also conjecture that the Drinfel'd presentation of a quantum toroidal algebra associated to a Lie algebra g has the following relations:

Conjecture 5.0.2.

(5.0.1)

(5.0.2)

(5.0.5) and, for every m ∈ N × and r ∈ Z,

(5.0.10) At this moment we do not have anything regarding the Serre relations.

Conjecture 5.0.3. The quiver quantum toroidal algebra admits a similar braid group action.

Appendix 5.1 Formal distributions

Denitions and main properties

Let K be a eld of characteristic 0. For any K-vector space V , we let V [z, z -1 ] denote the ring of V -valued Laurent polynomials. Writing

where the sum runs over nitely many terms, for any v(z) ∈ V [z, z -1 ], we can dene

and set

It is clear that, for every n ∈ N, V n [z, z -1 ] ∼ = V 2n+1 as K-vector spaces. Now, if in addition V is a topological vector space with topology τ 1 , making use of that isomorphism, we can endow V n [z, z -1 ] with the box topology of V 2n+1 , for every n ∈ N. Denote by τ n that topology.

The obvious inclusions

] are clearly continuous and we dene a topology τ on V [z, z -1 ] as the inductive limit

We now assume that K is a topological eld.

Denition 5.1.1. The space V [[z, z -1 ]] of V -valued formal distributions is the K-vector space of continuous V -valued linear functions over the ring of K-valued Laurent polynomials K[z, z -1 ], the latter being endowed with the nal topology induced as above from the topology of K.

Proposition 5.1.2. Any

for some (v n ) n∈Z ∈ V Z and the action of v(z) on any Laurent polynomial f (z) ∈ K[z, z -1 ] is given by

where we let

is given the weak * -topology. It is actually a module over the ring

Proof. It is clear that, due to its linearity, any v(z) ∈ V [[z, z -1 ]] is entirely characterized by the data, for every n ∈ N, of

Now, writing v(z) = n∈Z v n z n , we also have

for every n ∈ N and the claim follows.

Let A be a topological K-algebra. Then A[[z, z -1 ]] is the space of A-valued formal distributions, i.e. of is convergent for every p ∈ Z. If A is complete as a topological algebra, it suces that the above series be Cauchy.

A-valued linear functions over

We let similarly

for some (v p 1 ...,pn ) p 1 ,...,pn∈Z ∈ V Z n . For every i = 1, . . . , n, we dene

where a hat over a variable indicates omission of that variable, by setting
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For every i = 1, . . . , n, we dene

If A is a topological K-algebra, then the multiplication in A naturally extends to bilinear maps 

If A is complete as a topological algebra, it suces that the above series be Cauchy.

Laurent expansion and the Dirac formal distribution

One way to obtain formal power series is to take the Laurent expansion of some holomorphic function f : C → C.

We shall usually write f (z) |z| 1 to denote the Laurent expansion around 0. Similarly, we shall denote by

Lemma 5.1.3. For every n ∈ N × , we have

Proof. It is straightforward to check that the result holds for n = 1. Assuming it holds for some n, it follows, upon dierentiation, that

which completes te recursion.

Lemma 5.1.4. For any n ∈ N and any A-valued Laurent polynomial f (z) ∈ A[z, z -1 ], we have

Proof. The case n = 1 is straightforward. Assuming the results holds for some n ∈ N, we have, upon dierentiation,

which completes the recursion.

Example 5.1.5. In particular, for any A-valued formal distribution f (z 1 , z 2 ) ∈ A[[z 1 , z -1 1 , z 2 , z -1 2 ]] with a well-dened localization f |z 1 =z 2 (z 1 ) see previous subsection for a denition , we have

Assuming that K is an algebraically closed eld, we have Lemma 5.1.6. Let P (z) ∈ K[z] be a polynomial of degree N , with roots {λ i : i ∈ n } and respective

] is a K-valued formal distribution, then

for some α i,p ∈ K.

Proof. The if part is easily checked making use of the previous lemma. The only if part follows by an easy recursion, after writing that P (z) = i∈ n (z -λ i ) m i .

Lemma 5.1.7. Let P (z), Q(z) ∈ K[z] be two coprime polynomials. Let {λ i : i ∈ n } be the set of roots of Q(z) and let {m i : i ∈ n } be their respective multiplicities. Then, in K[[z, z -1 ]],

where, for every i ∈ n and every p i ∈ m i , α i,p i is obtained from the partial fraction decomposition Proof. Given the partial fraction decomposition (5.1.3), we can write

where we have used lemma 5.1.3 to derive the last equality. The claim obviously follows. for some scalars f 0 , . . . , f n+1 ∈ F.

Proof. Consider rst the case where m = 0. Then, multiplying (5.1.4) by (z -a) n+1 , we get (z -a) n+2 A(v)F (z) = 0 .

Since A(v) = 0, there must exist k ∈ N such that res v v -1-k A(v) = 0 and, specializing the above equation to its v k term, it follows that In this last subsection, we derive identities involving the structure power series G ± ij (z) by applying lemma 5.1.7. Remember see remark 3.3.21 that in type ȧ1 , we have G ± 10 (z) = G ∓ 11 (z).

Proposition 5.1.9. The following hold true in F[[z, z -1 ]].

i. For every p ∈ Z -{2}, G + 10 (zq p )G + 11 (zq -p ) -G - 10 (z -1 q -p )G - 11 (z -1 q p ) q -q -1 = [2] q [p] q [p -2] q δ zq 2-p -δ zq p-2 .

(5.1.5)

In particular, when p = 1, we have G + 10 (zq)G + 11 (zq -1 ) -G - 10 (z -1 q -1 )G - 11 (z -1 q) q -q -1 = [2] q δ zq -1 -δ (zq) .

(5.1.6) 160

If p = 2, we have instead G + 10 (zq 2 )G + 11 (zq -2 ) -G - 10 (z -1 q -2 )G - 11 (z -1 q 2 ) (q -q -1 ) 2 = [2] 2 q δ (z) -δ (z) .

(5.1.7)

ii. Similarly, G + 11 (zq -2 ) 2 -G - 11 (z -1 q 2 ) 2 (q -q -1 ) 2 = 2q -2 [2] q q -q -1 δ (z) + [2] 2 q δ (z) .

(5.1.8)

Proof. In each case, it suces to determine the partial fraction decomposition of the l.h.s and to apply lemma 5.1.7 to get the desired result.