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Résumé:A toute algébre de Lie sur le corps des com-
plexes, nous pouvons lui associer le groupe quan-
tique considéré comme généralisation de |'algébre.
C'est |la deformation de I'algébre enveloppante uni-
verselle U(g). En prenant la limite q tend vers 1,
nous retrouvons |'algébre enveloppante universelle.
L’algébre de Lie posséde une généralisation naturelle
en dimension infinie qui est |'algébre de Lie affine.
La déformation de I'algébre enveloppante d’une al-
gebre de Lie affine non-tordue nous permet de définir
les algebres affines quantiques. Due & V.G. Drinfel’d
les algébres affines quantiques possédent une deux-
iéme réalisation en terme de générateurs de Drin-
fel'd. Cet isomorphisme est prouvé Par I. Damiani
et J. Beck. Ceci nous permet de dire qu'on peut ef-
fectuer I'affinisation avant ou bien aprés la quantifi-
cation. On a un diagramme commutative. En plus,

on peut definir la quantification affine qui nous per-

met d'associer a toute algébre de Lie de type finie
une algébre quantique affine dans la réalisation de
Drinfel'd. Le procédé de quantification affine peut
étre effectué sur une algébre affine non tordue. Ceci
est la definition des algébres toroidales quantiques.
Le résultat est une algébre qui est doublement affine.

Dans cette thése nous étudions les algébres
toroidales quantiques et leurs représentations. La
premiére partie est consacrée a |'étude de I'algébre
toroidale quantique de type Al. Par action du
groupe des tresses, nous construisons une nouvelle
presentation de I'algébre qui nous donne une nou-
velle décomposition triangulaire. Dans la seconde
partie, nous utilisons ce résultat pour définir et classi-
fier les représentations simples de plus hauts t-poids.
Finalement, nous généralisons les résultats de la pre-
miére partie pour obtenir une action du groupe des

tresses sur tout autres systems de racines.




Title: Quantum Toroidal Algebras and their Representation Theory

Keywords: Quantum Algebras, Representation Theory, Braid Group.

Abstract: With every irreducible finitenite root sys-
tem, one can associate the corresponding Drinfel'd-
Jimbo quantum group.This is a Hopf algebra, which
can be thought of as a deformation of the universal
enveloping algebra of the Lie algebra of the same
Cartan type. It naturally comes equipped with a
universal R-matrix, thus providing solutions of the
Yang-Baxter equation which plays a definitional role
in the theory of quantum integrable systems and un-
derlies the algebraic Bethe ansatz. In case the ini-
tial root system is affine instead of finite, the re-
sulting Drinfel'd- Jimbo quantum groups are known
as quantum affine algebras. Drinfel'd proposed an
alternative presentation of these algebras though,
closer in spirit to their classic current or loop pre-
sentation as Lie algebras. It is now widely referred
to as the Drinfel'd presentation and was rigorously
established by Damiani and Beck, making crucial use
of Lusztig's affine braid group symmetries; a quan-
tum analogue of the classical Weyl group symme-
tries of simple Lie algebras. As one expects in view
of the classical current Lie algebra case, Drinfel'd’s
presentation only depends on the underlying finite
root system, i.e. the one with the extra affine simple

root removed. Now it turns out that this inherently

affine presentation still makes sense if, instead of a
finite root system, one takes an affine root system.
In that case, the doubly affine algebra one obtains is
known as a quantum toroidal algebra. Although the
latter are believed to be relevant in various areas of
theoretical physics, ranging from quantum integrable
systems to CFT, not much is presently known about
their representation theory. From a more mathe-
matical perspective, the interest in these algebras
essentially stems form the fact that, in type A, they
are known to be Frobenius-Schur duals of the widely
studied doubly affine Hecke algebras or DAHA origi-
nally introduced by Cherednik in order to prove Mac-
Donald’s conjectures.

In this thesis we study quantum toroidal algebras
and their representation theory. In the first section,
we construct a new presentation of the algebra using
the braid group action on the generators and show
the existence of an isomorphism between both pre-
sentations. This allows us to define a new triangular
decomposition. Using these results, we define and
classify highest-weight representations. Finally, we
generalize the action of the braid group to any root

system.
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0.1 Synthése en Francais

A toute algebre de Lie de type fini g, on peut lui associer |'algébre de Kac-Moody affine non-tordue §. Les
algebres de Kac-Moody affines sont obtenues en remplacant les données d'un systéme de racine fini par les
données d'un systéme de racines affine. C'est le procédé d’affinization classique des algébres de Lie. Un
autre procédé est celui de la quantification de ces algébres. Dans ce cas, on obtient d'une part les groupes
quantiques U, (g) qui ont étaient introduits par V.G. Drifel'd et M. Jimbo. Les groupes quantiques sont une
déformation de I'algébre enveloppente d'une algébre de Lie finie. D'autre part, quand on applique le procéssus
de quantification sur une algébre de Kac-Moody affine non-tordue, on obtient les algébres quantiques affines.
Les algébres quantiques affines possédent deux présentations en termes de générateurs et relations d’algébre.
La premiére, celle de Dinfel'd et Jimbo, Uy(g), est obtenue en remplagant les données du systéme de racine
fini par celles d'un systéme de racines affine. La deuxiéme, Uq(g) due a Drinfel'd est en terme de générateurs
de Drinfel'd et depend uniquement d'un systéme de racines fini. L'isomorphisme entre ces deux présentations

a été démontré par |. Damiani et J. Beck. Ceci nous permet d’écrire le diagramme commutatif suivant:

Affinisation Classique

Affinisation Quantiquel lQuantification

Ug(o) = Uq(g)

isom. Damiani-Beck

Le fait que la présentation des algébres affine quantiques Uq(g) dépend d’un systéme de racines fini nous
permet de definir une troisiéme algébre, Uq(g) doublement affine, en remplacant encore une fois le systéme de
racine fini par un systéme de racine affine. C'est la définition algeébrique des algébres toroidales quantiques. Les
algébres quantiques toroidales, introduientt par Ginzburg-Kapranov-Vasserot, apparaissent naturellement dans
certaines constructions géométriques des groupes quantiques reliées aux théories de gauge en physique, plus
précisement les théories de jauge-carquois. Le sujet de cette these est de définir une présentation des algébres
toroidales quantiques a la Drinfel'd en terme de générateurs a lacets doubles. La thése est divisée en trois

parties:

e Dans la premiére nous présentons les demarches nécessaires pour obtenir une presentation a la Drinfel'd

de 'algébre toroidale quantique de type A;.

e Dans la deuxiéme nous utilisons cette nouvelle présentation pour définir une nouvelle catégorie de module

et nous les classifions.

e Dans la troisiéme nous donnons I'outils crucial pour généraliser ces résultats pour couvrir tous systéme

de racine.

0.1.1 Double Affinisation Quantique

Dans la section "On Double Quantum Affinization" nous suivons les mémes étapes suivies par |. Damiani et J.
Beck pour definir un isomorphisme dans le cas de algébres toroidales quantiques. Voici les ingrédients principaux

pour construire la nouvelle présentation:

10



e Automorphismes de I'algébre U, (g)

e Extension du groupe de tresses toroidale
e Définition des générateurs lacets doubles
Pour les automorphismes d’algébres:

Proposition 0.1.1. i. Pour tout automorphisme de diagramme de Dynkin: 7 : I > I, il eziste un

unique automorphisme de F-algébre T, € Aut(Ugy(ay)) tel que:

To(xt(2) =xcky (2), Tulki(2) = K

(4

(2),  TH(C'Y*)=CY*,  T(D)=D. (0.1.1)

i. Pour tout i € I, il existe un unique automorphism de F-algebre T,y € Aut(U,(a1)) tel que

T (xj(2) = 2% (2)  Tov(k(2)) = CTkf(z)  Ty(CY?)=C'?  T,w(D)=D

i Il existe un unique anti-homomorphisme involutive de F-algebre n € Aut(Ugy(aq)) tel que:

nxE() =xE(1/z)  n(c(x) =kF(1/z)  n(CV?)=C'*  pD)=D  (0.13)

7

. Il existe un unique anti-homomorphisme involutive de F-algébre ¢ € Aut(Ug(a1)) tel que:
P () =x7(1/2) ek (2) =ki(1/z)  o(C*) =07 oD)=D"  pl@)=q"

o —

Proposition 0.1.2. Il existe un unique automorphisme d’algébre T' € Aut(Uy(ay)) tel que:

T(CY?) = CY? T(D)=D T(ki(:) = ki Ak () TOG(2) =ki(z)™ (0.15)

1 1 -
T(XS_(Z)) = W ZrleZSQ 21 122 1 [xf(zl)v [XT(22)7Xa_(zq2>]G1_0(z2/zq2):|G—( )G (21/26%) (0.1.6)
a7 11\71/22)Ggl21/2
_ 1 1 - _ _ _
T(xg(2)) = m ZI;?ZSQ 21 1Zz ' [[Xo (2¢%), %] (21)]G1+0(zq2/zl) » X1 (22)}Gﬁ(zl/m)GTO(qu/zQ) (0.1.7)
T(x{ (2)) = —x1 (C2)k{ (C71/?2) 7! (0.1.8)
T(x; (2)) = —ky (C7%2)7'xf (C7'2) (0.1.9)

Ces automorphismes seront associés aux générateurs du groupe de tresse toroidale pour construire les

générateurs de la nouvelle présentation.

Definition 0.1.3. Soit B le groupe de tresses affine de type a;. Soit B := B x PV, ie. B est isomorphe

au groupe de dont les générateurs sont ¢,y and (z)) epv tels que:

ty lt=y, tept™t = Tso (V) TAY = YTy, (0.1.10)

Pour tout A € PV.

11



Ceci definit I'extension du groupe de tresses toroidale de type d;. Le théoréme suivant est la base de la

construction des générateurs double-Drinfel'd:

Theorem 0.1.4.
t—T y—Y :=T,oT Ty = Ty (0.1.11)

k3 k3

—

s’étend & un homomorphisme de groupe B — Aut(U,(ay)).

En appliquant I'automorphisme Y, nous construisons qbfm(z):

2m
m (1— (. \—1low—(1/2 + _ q 'z +
[y (i 6 (€22) ot 0] =0 (e ) #a (01.12)
ou -
Ci]'_z2
Gf(21/22)=<zlq > . (0.1.13)
! 21— g2 |22|>>|21]

les génerateurs de al sous algébre de Cartan sont definis tels que:

K, (v) = (q—q ki (C?vg ™) (v),

1,m

ol m € N* et

Xfm(z) = Y¢m(xi(2)).
Pour obtenir les relations dans cette nouvelle presentation il faut:
e établir les relations entre dffm(z) et les générateurs de la presentation de Drinfel'd,
e établir les relations dans UJ(al), Ug(al) et U;(al),
e établir les relations entre les trois sous-algébres: U;(al), Ug(ul) et U;(al).
Nous pouvons maintenant fournir la nouvelle presentation:

Definition 0.1.5. L’algébre de double affinization quantique Uq(al) de type a; est la F-algébre dont les

générateurs sont

-1 -1 ~1/2 ~-1/2 + _— + - + — + - . X
{D1,Dy", Dy, D51, C2 C2 e K s Ko Kl s KT g X s X s €Ny € N¥ 1,5 € Z}

) emo

tels que:
C*1/2 et ¢*(2) sont les charges centrales (0.1.14)
1oL

il =1 0.1.15
res - c*(v)ct(w) =1, ( )
DF'Df' =1  Di'Df'=1 DDy =DyD;4 (0.1.16)
DiKY 1, (2)D7" = ¢*"Ki 4, (2)  DiXi,(2)D7! = ¢'X{,(2), (0.1.17)
DoKi i (2)D5 " =Kiy(2¢7")  DaXi,(2)Dy' = X{,(2¢7"), (0.1.18)
res K (0)KFo (w) = 1 (0.1.19)

v VW 1,0 1,0 ’ ot



(v —q22) (v — q2<m—”¢1>z)p<f e (VKT L, (2) = (6™ = 2)(vg™2 — q2<m—n>z)Kf e (2)KT 4 (V) (0.1.20)

(CPI0 — w)(@" Do = Cw)KT,,, (1)K _, (w) = (Cg~>™v — *w) (g™ — Cg~2w)K_, (w)KT,, (v),

(0.1.21)
(0 = 22)KT 1 (0)XT,(2) = (720 = 2)XT, (2)KT 1y (0) (0.1.22)
(Co— " TV2)KT 1 (0)XT,(2) = (CaT20 — " 2)XT, (2) K 1y (0), (0.1.23)
(v — qi2w)Xfr(v)X1i’s(w) = (vqi2 — w)st(w)Xfr(v) , (0.1.24)
Is| .
_ 1 Cv o Dsien(s)—1 ) ~5ign(s)
Xi (), X 4(2)] = pa—— 5 (qz(m)Z) IIc (c 1/24(2p=1)sign(s) 12) K is(©)
p=1
Ir| .
con (1) — sign(r) .
( 2<r+s>z> H c ( —1/2(1=2p)sign(r) lv) Kips(z)p,  (0.1.25)
avec m,n € N, r,s € Z et

=3 i, (0.1.26)

meN
KEo(2) Z Kioimz™" (0.1.27)

meN
et pour tout m € N* et r € Z,

Kt (2) =) Kip,2 7%, (0.1.28)

SEL
X, (2) =) X{, 27" (0.1.29)

SEZL

n (5.0.6), we further assume that Ki

1¢m( z) = 0 pour tout m € N*.

0.1.2 Représentations des Algébres Toroidales Quantique de Type a4

La nouvelle définition de I'algébre toroidale quatique nous donne une nouvelle decomposition triangulaire pour

etudier et classifier les modules de cette algébre.

Definition 0.1.6. Soit M un module de Uq (g). On dit que M est un t-poids module s’il existe un ensemble
denombrable {M,, : « € A} indecomposables appelés espaces de t-poids tel que:

M= M, (0.1.30)
acA

ou chaque M, est un module de ﬁg(g).
Nous pouvons ensuite classifier les modules de plus hauts t-poids.

Theorem 0.1.7. L’unique module simple de plus haut t-poids posséde un nombre de poids classique fini

ssi sont espace de plus haut t-poids est un module de Ug(g) simple t-dominant.
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0.1.3 Action du Groupe de Tresses: Le Cas Général

Dans ce qui suit nous donnons le théoréme principale pour généraliser les résultats de cette thése a toute autre

systéme de racines.

Theorem 0.1.8. Vi # j € I, nous définissons Tj tel que:

T(C)=C,  T(D)=D
Ti(x(2)) = =x; (070K (0727, T (2) = =k (20727 x (2071

TikE(2) =ki(2) ), Tki(2) = [[ kiGed ")k (z¢?)
p=1
Xtaij '(Zqi_aij) X'_'*aij (zqi_aij)
Ti(xf(2) = L Tix;(2)) = L

[—aijlq, [—aijlg,

[—aijl
THkE(2) =k ()Y, TONkE(2) = [] K(eq, ")k (2q;72)
p=1
x+_a“ (2q"7) —aj; (2q%7)
L) = F e TG ) =

—

Ceci nous permet d’avoir une action par automorphismes T; du groupe de tresse B sur Ualgebre Uq(g)
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Introduction

Quantum Groups

Quantum groups have been a subject of interest for the past 35 years and interestingly enough, to this day, do
not have an agreed upon satisfactory definition. The name was popularized by V.G. Drinfel'd and defined by
M. Jimbo and V.G. Drinfel'd | 11 | as the g-deformation of the universal envoloping algebra U(g).

Quantum groups quickly gained popularity in physics too. Specifically, they were first used to address
statistical mechanics problems such as inverse scattering methods. Ever since, the field exploded in multiple
research directions in both mathematics and physics. On the mathematical side, one can look at multiple results
ranging from geometry and knot theory to representation theory. When the deformation parameter ¢ is not
a root of unity, the representation theory of quantum groups is quite similar to that of complex simple Lie
algebras. However, a remarkable result appears in the case ¢ is a root of unity. In this case, if ¢ is the p-th
root of unity the representation theory becomes closely linked to that of the Lie algebra over a finite field with
p elements.

Whereas for physics | ], we can see applications to integrable systems, conformal field theories, and
lattice models relevant to statistical mechanics problems. Quantum groups in the case of finite integrable
systems play a similar role as the Virasoro algebra in the case of conformal theories. In the case of the X X X
open spin chain, there is an suy symmetry. Its counterpart is a U,(su2) symmetry for an open X X Z spin chain
with an appropriate boundary condition. We can think of this as deforming the spin chain in one direction so
that the interaction along one of the directions is different. Moreover, U,(slz) is the Schur-Weyl dual of the
Temperley-Lieb algebra for 2D lattice systems,such as loop models, or equivalently spin chains that are built

out of the Temperley-Leib algebra.

Quantum Affine Algebras

For every Lie algebra g we denote by g the untwisted affine Kac-Moody algebra associated to g. The quantum
affine algebra Uy(g) is obtained through a Drinfel’'d-Jimbo quantisation of g. These algebras are still a field
of very active research in both physics and mathematics too. Although it is practically impossible to list all of
them, especially on the mathematical side, we will list a few and focus on what was most relevant during the
development of this work. For physicists these algebras are especially interesting because of the trigonometric
R-matrix, solution to the Yang-Baxter equation. Quantum affine algebras also arise in the context of integrable
quantum field theories. However we will start shifting our interest to the mathematical side here. The quantum
affine algebra admits two presentations. One in terms of the Drinfel’d-Jimbo generators and the second, denoted
here as Uq(g) in terms of Drinfel’d’s current generators. The isomorphism between the two presentations is
due to |I. Damiani and J. Beck. [ 1. ] and the latter depends on the finite root system data only. In
fact, Drinfel'd’s presentation was the key that unlocked the study of the representation theory of quantum affine
algberas, an idea that we will come back to in the toroidal setting. Contrary to classical Lie algebras, highest
weight representations of quantum affine algebras are infinite dimensional. However, V. Chari and A. Pressley
[ | established that a representation of Uq(g) is finite dimensional if and only if there exists a polynomial

called Drinfel'd polynomial with constant coefficient 1 called /-weight.
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Quantum Toroidal Algebras

Quantum toroidal algebras were first introduced by V. Ginzburg, M. Kapranov, and E. Vasserot for type A
in [ | and then generally by H. Nakajima and N. Jing in [ Il ]. Then, M. Varagnolo and E.
Vasserot established a Schur-Weyl duality between quantum toroidal algebras and the double affine Hecke
algebra (DAHA) | ]. Most recently, G. Noshita, and A. Watanabe in [ | introduced quiver quantum
toroidal algebras as a g-deformation of the quiver Yangian as the quantum toroidal gl;. One can also define
quantum toroidal algebras in the same fashion as quantum affine algebras. By which we mean, if we use
Drinfel'd’s quantum affinization on an untwisted affine Kac-Moody algebra, then we obtain quantum toroidal
algebras. The representation theory of quantum toroidal algebras is far from being understood although one
finds several results such as plane partition representations of quantum toroidal gl; by B. Feigin, M. Jimbo, T.
Miwa and E. Mukhin [ | as well as vertex representations by Y. Saito [S98].

The thesis is organized as follows. In chapter 1, we will give a small review on the results that are most
relevant for this work. This review can also be seen as a road map because the results we are presenting in this
thesis are an affinized version of the review. In chapter 2, we give a double Drinfel'd current presentation for
quantum toroidal sly through an affinized Damiani-Beck isomorphism. In chapter 3, we use this new presentation
to discuss some representation theoretic consequences by defining a new notion of finiteness as well as providing
an evaluation homomorphism. As we know, one does not expect to have finite dimensional representations
for quantum toroidal algebras. Therefore, we introduce the idea of classical weight-finiteness and prove that
it generalizes the classification result of V. Chari and A. Pressley for Uq(ﬁ[g). Then, in chapter 4 we give the
action of the braid group on the quantum toroidal algebras of any rank. This chapter is the stepping stone for
generalizing chapter 2 to higher ranks. Finally, we give possible future directions and conjecture how the double

Drinfel'd presentation Uq(g) should look like for any simple finite dimensional Lie algebra g.
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Chapter 1

A Brief History

1.1 Quantized Enveloping Algebra

When it comes to quantized enveloping algebras, a lot of its structure carries over from Lie algebras all thanks
to the fact that semisimple complex Lie algebras are at the heart of the quantized enveloping algebra denoted
Uy(o).

We start by a reminder that for a root system with basis II, a Cartan matrix A, and a;; the Cartan matrix
entries, the Lie algebra g in the Chevalley-Serre presentation is generated by the generators e;r, e; , and h;

satisfying the following relations:

[hiy by} = 0, [hisef] = agzef, (1.1.1)
[hisef ] = —aije; [ef,ej_} = 05N, (1.1.2)
(adef)' ~"ief =0 (1.1.3)

(ad ei_)lfa”'ej_ =0 (1.1.4)

Then, the enveloping algebra is defined as the associative algebra with the same generators and relations where

we quotient by [z,y] = zy — yx. This means that we can rewrite the last relations as:

1—(11']'

> v

() el (&) (1.1.5)

Z(_Di 1—iaij (ei—>1—aij—iej—<ei—)i (1.1.6)
1=0 L J

Now let ¢ € C such that ¢ # 0 and ¢ is not a root of unity. Let ¢; = ¢{*®)/2 and define the g-numbers by:

n__ 7N
g, = 4 (1.1.7)
qi — g,

Then, the quantized enveloping algebra U,(g) is the algebra with generators Ef and K, and K;l satisfying:

KK; = K;K; (1.1.8)
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KK '=K'K =1 (1.1.9)

KEFK ' = ¢ Bt (1.1.10)
KE K[ =g " E; (1.1.11)
l—CLj]' '1 T
. — Q5 . .
Yot Y (BH T BN (B (1.1.12)
=0 L] Qi
17(12']' r T
i |1 = ag —\l—ai;—i —( —\i
S (E7) 9By (E;) (1.1.13)
=0 - -4

We can clearly see all the parallels between the two presentations of a Lie algebra and the quantized
enveloping algebra. As it was the case for Lie algebras, we denote by Uq(g)i, and U,(g)? the subalgebras
respectively generated by EZjE and K together with Ki_l. We also have the following triangular decomposition:

Uy(g) = Uq<9)+ ® Uq(g)o ® Uq(g)™ (1.1.14)

which will once again be relevant for the representation theory part of course.

Furthermore, by setting:

AEN)=E®1+K,®E", €EH=0 (1.1.15)
AEN=EoK '+1®E;, «E )=0 (1.1.16)
AK) =K@ K;, e(K;) =1 (1.1.17)
S(Ef) =-K'Ef, STYEf) =-EfK! (1.1.18)
S(E7)=-E; K;, S YE )=-EK; (1.1.19)
S(K;) =K', SHK;)=K;' (1.1.20)

for the comultiplication A, the counit ¢, and the antipode S, we make the quantized enveloping algebra into a
Hopf algebra.
We can now give the two unique automorphisms on U,(g) denoted w, and 7 given by:

wBN) =E, wE)=E'" wkK;)=K" (1.1.21)

17 7

r(EN)=E, 7(E)=E , 7(K;)=K" (1.1.22)

70 70

The proof is straightforward and all we have to do is check this on the algebra relations.

1.1.1 Representation Theory

As it is the case for Lie algebras, the representation theory of U,(g) stems mostly from the representation theory
of Uy(slz). We will start by giving some of the important results of that in the case where ¢ is not a root of
unity and the field IF is of characteristic zero.

The presentation of Ug(sly) is the same as the one presented in the previous section where we get rid of

the subscript i because it can only take one value since we only have one simple root.
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If M is a Uy(slz)-module then set for all A € F*:
My = {m € M|K.m = Am} (1.1.23)

This means that M), is the eigenspace of K with eigenvalue A. As we have done for Lie algebras, the \'s will

be called the weights. Taking the algebra relations into account, it is clear that we have:
E* .My C Mpy, E~.M)C M, (1.1.24)

More precisely, we have that the direct sum of any weight spaces of the form M 2n ) is a submodule. From this

we can conclude that if M is simple, we have M = @, M 2n). We now have the following proposition:

Proposition 1.1.1. Suppose M is a finite-dimensional Uy(sly)-module, then M is a direct sum of its
weight spaces with weights of the form +£q® for a € Z.

For each A € T, there is an infinite dimensional U,(slz)-module with basis mg,m1, ... where the algebra

generators act as:

Km; = ¢ %mi, Fom; =mi1, (1.1.25)
Em; =0, ifi=0, (1.1.26)
by 1—2 Afl i—1
E.m; = [i], a _lq , otherwise (1.1.27)
q—4q

We now finish the part about the representation theory of U,(slz) with the following two theorems:

Theorem 1.1.2. Let M be a finite dimensional Uy(sly)-module that is a direct sum of its weight spaces,

then M is a semisimple module.
Analogously to sls,

Theorem 1.1.3. For each n > 0 there are two simple Uy(sly)-modules denoted respectively L(N,+), and

L(N, —) with basis mg,my, ..., my, and mg, mY, ..., m}, such that:
Km!) = g 2m{) (1.1.28)
Etm) =0 ifi=0 (1.1.29)
ETm{) =[ilyn+1—1d,m), otherwise (1.1.30)
E-m{)=0 ifi=n (1.1.31)
E-m{) =ml),  otherwise (1.1.32)

1.1.2 Representation Theory of U,(g)

Most of the representation theory results of U, (g) arise from what we have seen in the case of U,(slz). Moreover,
there are a lot of similarities between the representation theory of U,(g) and that of g. In this section, we will

introduce the category of finite dimensional U,(g)-modules and give the classification theorem of its objects.

19



Let A be a weight and p an element of the root lattice Z®. For any U,(g)-module M, let for all A and all
0 : Z® — {£1} M), be the subspace of M given by:

My, = {m € M|K,m = o(u)g™m}. (1.1.33)

M)  are the weight spaces of M.

In case M is a finite dimensional module, then
M= My, (1.1.34)
o,

since all the K;'s are simultaneously digonalizable. Moreover, we have for all A, and o:
EYMyo C Myta, 0, and E; M, C My_qo, (1.1.35)

for all simple roots ;. This is clear from the algebra relations.

Furthermore, the generators E: act nilpotently. This is because the module M holds U, (sls)-submodules
for each «;.

For a module M given by the direct sum as above, we will say that it is of type o if M = M) , and of type
1 if in addition to that we have o(a) =1 for all a.

The previous results can be summarized as follows: the category of finite dimensional U,(g)-modules is the
direct sum of the categories of all finite dimensional modules of type o.

However, we can define the involutary automorphism & by:

1+1

5(EF) =o(a;) 2 EF

1 ?

5(K$) = O'(Oéi)Kz‘ (1.1.36)

that allows us to twist any module of type o into a module of type 1. Clearly, this is a functor that allows us
to say that we have an equivalence between the category of finite dimensional modules of type 1 and that of
type o.

Now, since Ug(g) has the structure of a Hopf algebra, most of the results of the section on U, (sl2) generalize
to Uy(g). The coproduct allows us to define the tensor product of modules, and since we have: A(K;) = K;®QK;
then we have:

My @ My 50 C (M@ M'))jx o0 (1.1.37)

The fact that the tensor product of two modules of type 1 is of type 1 follows immediately. Once more, we

have a trivial one dimensional module given by the € and defining for each o : Z® — {£1} such that:

&(EF) =0, and ¢, (K;) = o() (1.1.38)

gives us a one dimensional module denoted L(0, ).

From now on, since we can twist any module, we will stick to type 1 modules.

Since the set of weights is always finite, there exists for every module M a weight A such that M, # 0
but M} = 0 for any A > X. This holds true in particular if A" is a simple root. This means that if M is

a finite dimensional module, there exists v € M), v # 0, but E;"v = 0 for all 4. In this case, A is called a
(Avai)
(ciyai)”

dominant weight. Moreover, we have: (E; )*"lv = 0 with a = 2 This holds because otherwise, the
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Uy (sl2)-submodule corresponding to the simple root «; would be infinite dimensional.
We will now construct the universal highest weight module (Verma module) of highest weight .

Any weight ) defines a one dimensional U,(g)”"-module where we have:
Kim = ¢ m Efm =0 (1.1.39)

for all m € M. The kernel of this representation is an ideal Ifo given by:

0 =% U0 B + Y Uyle)™(K; — ¢>)). (1.1.40)
a; eIl a; €Il
Clearly, we have:
Uqg(g) = Ugla)” & In (1.1.41)
where,
Iv=Y Uy@)E"+ ) Uyl — ey, (1.1.42)
a; €Il a; eI1

due to I being a left ideal and the triangular decomposition of U,(g). Taking the quotient: M(X) = U,(g)/1,
where it is clear that we have:
Efvy, Ky = ¢y, (1.1.43)

makes M () into a universal highest weight module. The existence of such module means that we have a

bijection between elements in Uq(g)u and M (A)x—, where each Uq(g)u is finite dimensional where we get:
MA)x =Fux, M(N)x—na; = F(E; ) vx. (1.1.44)

for all integers n > 0. We obtain the unique up to isomorphisms submodule of L(\) by taking the quotient:
L(A) = M(X\)/N(X\) where N is the unique maximal submodule. This A is unique therefore it is the largest
weight of the module meaning that it is a dominant weight. In order to complete the classification of simple
finite dimensional modules we need to show that if \ is dominant, then the module is finite dimensional.

We can now define a homomorphism of U,(g)-modules ¢:
¢ VA (nt1)a; = (B ox, (1.1.45)

This can be easily proven by using the relation between E; and E; on (E; )" uy to verify the universal
property of the module.

Another interesting result that will be useful for proving that the modules are finite dimensional is the fact
E" act nilpotently on the on the module U, (g)/I where I is the ideal generated by (E;")™() and (E;)™(@)
where m(a;), and n(q;) are both positive integers.

Now, for an important result for the classification theorem, let ¢n, : M (XA — (n(a;) + 1)a;) — M (). The
U,(g)-module L(\) =~ M(N\)/3., _im(¢q;) is finite dimensional.

It is clear that upon |dent|fy|ng M(X) with Ugy(g) ™, we identify the image of ¢, with
Uyla)™ (B )@ D). Then,

L) = Ug(a)/( > Ug@)E; + D Uyl et 43" U ( g™y (1.1.46)

a; €11 a; €11 a; €11

21



which means that Eli act nilpotently on I:()\) The approach will be strictly weight oriented. We will show
that the weights are stable under the Weyl group action and the weight space contains finitely many dominant
weights in the orbits under this action we get a finite dimensional module. It suffices to show that for a weight
the image after a simple reflection is still a weight of L(\). This relies on the fact that we have U, (sl3)-modules
for each simple root and that since Eli act nilpotently then that the Ugy(sl)-modules V' = @, V,, are finite

dimensional and dim V,, = dim V_,,. In fact, consider:

V =P LN ssna, (1.1.47)
neL
We can make the identification V,, = L(\)gyna, With m = 2% + 2n. Then by setting r = 2((5%1)) we
have:
Ve =L(\)g, Vop=L(\s, 4 (1.1.48)

which means that s, (8) is a weight in L(\).

Finally, the classification theorem follows:

Theorem 1.1.4. For each dominant weight A the module L(X\) is finite dimensional and each finite di-

mensional Ugy(g)-module is isomorphic to exactly one L(X) with A dominant.

1.2 Quantum Affine Algebras

After constructing the quantum group Ug,(g) for a simple finite dimensional Lie algebra, an obvious question
is whether we can repeat this process but for an affine Lie algebra. Clearly, the answer is yes. Upon replacing
the root system data by that of an affine Lie algebra, i.e. instead of using a finite type Cartan matrix we use a
Cartan matrix of an untwisted affine Kac-Moody algebra, we obtain what is called a quantum affine Lie algebra
denoted Ugy(g).

Then, the quantum affine algebra U, (g) is the algebra with generators E5* and K;, and K; ! satisfying:

KK = K;K; (1.2.1)
KK '=K 'K =1 (1.2.2)
KEFK ' = ¢ EY (1.2.3)
KE K =g " E; (1.2.4)
1—ai_, '1 T
. — Q5 . .
S0 B e (B (1.2.5)
i=0 o ! -4
17&1']' B T
i |1 = ag —\1—ai;—i p— ( —\i
S|y () (1.2:)
=0 - - q

where, i € I with I = 0,1, ..., n the set corresponding to the nodes of the Dynkin diagram. We remind you

that each node corresponds to a simple root and the 0th node is the affine root. Therefore, we can simply that
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we have the following diagram:
Classical Affinization

Quantizationl lQuantization

U U, (¢
q(g) Classical Affinization q(g)

As usual, our goal is to study the representation theory of these algebras. However, it turns out that this
presentation of quantum affine algebras isn't the best one for understanding and classifying its representations.
Drinfel’d then proposed another presentation usually also known as Drinfel'd current presentation of quantum
affine algebras. The name comes from the fact that this new presentation is in fact very similar in spirit to
that of the central extension of the loop algebras in the case of Kac-Moody algebras. In fact, Drinfel'd gave
the presentation but the proof that the two algebras were actually isomorphic was done by I. Damiani (for the
injectivity part of the isomorphism) and J. Beck (for the surjectivity part of the isomorphism). Therefore, in
the next part we will review the main points that lead to constructing Drinfel'd’s presentation which unlocked

the representation theory of quantum affine algebras.

1.2.1 Damiani-Beck Isomorphism

We will start this section by stating the isomorphism theorem that gives us the new presentation and then work

our way through defining all the relevant material that leads to it.

Theorem 1.2.1. Let Uq(g) be the associative algebra generated by the generators

» Vino Mo, —no Yimo Yim

{D,D*1,01/2,0*1/2 Kt kT at aT siel,meZne N}

subject to the following relations

CEY2 s central ~ CFV2CTV2 =1 DFIDTL =1 (1.2.7)
Dk (z)D7" =k (2¢7")  Dx;(2)D7" =x;(2q7") (1.2.8)
ves ——kc* (21)kF(z2) = 1 (1.2.9)
21,22 Z1R9
kif (21)ki (22) = kT (22)ki(21) (1.2.10)
ki_(Zl)k;r(ZQ) = Gi_j(Cilzl/ZQ)G;;(CZl/ZQ)k;—(ZQ)ki_(Zl) (1.2.11)
GHCT P a2k (21)x] (22) = % (22)K; (21) (1.2.12)
k; (21)xF (22) = GE(CT221 ) 2)xF (22)K; (21) (1.2.13)
(21 — 599 20)x (21)X T (22) = (2147 — 20)xF (22)x (21) (1.2.14)
5 -

[xi"(21), %5 (22)] = —2— {5 (C’fl > k' (207Y2) 4 <"’10> k; (220—1/2)] (1.2.15)

qi — 4q; 22 22

1—a;j;

l—ai'
S S 0N )k ot R i) K ) =0 (12.16)
q

0’6517(12.]. k=0

i
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where, for every i € I, we define the following Uq(g)[[z,z_l]]—valued formal distributions

xF(2) == Y 25,27 € Ug(g)[[z, 2] (1.2.17)
meZ

k7 (2) == ) kg2 € Ugla)[[27]], (1.2.18)
neN

for every i,j € I, we define the following F-valued formal power series

GE(2) =™ + (a — ¢, V[Faly, Y @ """ € B[] (1.2.19)
meNX
and
8(z) =Y 2" €F[lz,2"]] (1.2.20)
meZ

s an F-valued formal distribution.
Note that Gf;(z) is invertible in F[[z]] with inverse G7(2), i.e.
ENGF () —
G (2)Gj(2) =1, (1.2.21)

and that it can be viewed as the power series expansion of a rational function of (z1,22) € C2? as |2] > |2],

which we shall denote as follows

+ zgq -z _
Gi(a1/z2) = | ——Fa;— : (1.2.22)
174 22 sy

We will now see how the generators:

{lﬂ+ k- xt xr :iEI,mGZ,nEN}

,n? Vi,—n? Yim? Yi,m

are defined from the generators of the Drinfel'd-Jimbo presentation. In order to do this, we need to make a

small but necessary detour and talk about the braid group action on Uy(g).

1.2.2 Automorphisms and Braid Group Action on U,(g)

We start by introducing the C-algebra automorphisms ¢, and 2 which are given by:

$(EF) = EF, o(K)=Ki, ¢(g)=q" (1.2.23)
WUES) = EF, QK)=K "' Qq=q" (1.2.24)
The braid group associated to the Weyl group W with generators T; acts on the generators of the algebra
as follows:

T,(Ef) = -E; K;, T,(E;)=-K;'E; (1.2.25)

—ai;
T(EF) =Y (=) g (B ) B ()™ (1.2.26)

n=0
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TUE;) = Y (—1) g, (By) ) B (B;)™) (1.2.27)
n=0

Ti(Ko) = Kqy(a) (1.2.28)

Extend that group with T where 7 is Dynkin diagram automorphism and denote P the group of auto-
morphisms generated by T),v and their inverses. Note that for w € W such that w = 7s;,...5;, we have
T, = T,T;,..T,

We can now define the current generators of Uq(g) by using the braid group action as follows:

n"

Bl = (0 = 4, ) Kithi (1.2.29)
where n € N*, and
vip = C Mg EFTE (K EY) - T (K E)EY) (1.2.30)

The definition of k:i"ﬂm follows from using the automorphisms above and the fact that we have QT; = T;Q).

We now move to defining the generators x;tk
+ ¥kt
vy =15 (E;) (1.2.31)

foriel, kel
The surjectivity part is checked directly on the relations of the algebra, whereas for the injectivity, |. Damiani
shows it by restricting to the case ¢ = 1 and showing that on one side one obtains the central extension of the

loop algebra and on the other side the affine Lie algebra.

1.2.3 Representation Theory of Quantum Affine Algebras

As in the case of Lie algebras and quantum groups, the representation theory of quantum affine algebras is
heavily based on that of Uq(E[Q). This section is a review of the classification papers by V. Chari and A. Pressley.
[ ] Set ¢ € C* not a root of unity.

By looking at the presentation of U,(sly) and U,(sly), it is clear that U,(sly) has subalgebras which are
isomorphic to U, (sl2) given by the map:

ET—af, E-w—C ks, K~ KC* (1.2.32)

for all k € Z. The image of this map is the diagram subalgebras U?, for i = 0, 1 corresponding to the nodes of
the Dynkin diagram of U,(sl2).
Since it will be useful down the line we remind you that the two irreducible representions V;, . of U, (sl2)

with basis {vg, ...v, } are given by:
Ko, = eqnfmvi, E+.1)i = E[TL —1+ 1],11)2'_1, E v = [Z + 1]qvi+1 (1.2.33)

with € = +1. We can also twist one choice of € into the other. Therefore, one can stick to one value of e.

Moreover, when it comes to finite-dimensional irreducible representations of Uq<5[2), the central charge acts

as 1. We now define the subalgebras Uq(ﬁ[g)i, and Uq(ﬁ[g)o generated by xf and {ki,,C} respectively. It
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follows that
Uq(5[2) = Uq(ﬁ[g)_Uq(ﬁ[z)OUq(5[2)+ (1.2.34)

which allows us to say that a vector v in a representation of U, (sl2) is a highest weight vector if v is annihilated
by azz for all k € Z.

We can now present the first result in the following proposition
Proposition 1.2.2. Every finite-dimensional wrreducible representation of Uq(ﬁ[z) 15 highest weight.

This is easily proven by contradiction. By letting V' be as above, assume there are no non-zero vectors
annihilated by any of the z;7. This means that for an eigenvector v of k;, there exists an infinite sequence of
vectors given by

+ + +
U, Ty U, Ty Uy T, (1.2.35)

all non-zero and eigenvectors of kj with distinct eigenvalues. This makes them linearly independent. Clearly
this contradicts the finite-dimensional aspect of V.

Furthermore, since C' acts as 1 on V' and we can always obtain any representation by twisting a type 1
representation, it suffices to consider representations of U,(L(sl2)) where we remind you that L(sly) is the loop
algebra of sls.

A representation of ugls is highest weight if it is generated by a vector v which is annihilated by xz for all
k and such that:

ki v=div, kZ,v=d" v (1.2.36)

—-n

for n € N, and df, € C. The collection d = {d,} is the highest weight.
As it was the case for Lie algebras, Kac-Moody algebras, and quantum groups, we construct the universal
highest weight module M (d) by taking the quotient of U,(L(sl2)) by the left ideal generated by

{z} kT, —d}1,k=, —d_,.1,k € Z,n € N} (1.2.37)

and once more any representation of highest weight d is a quotientof M (d) and there exists a unique irreducible

quotient L(d). Now for the main theorem:

Theorem 1.2.3. The irreducible highest weight representation L(d) is finite dimensional if and only if

there exists a polynomial P with non-zero constant term such that

= P(zq™2
Y dfen = gleoP) <§D(q>> , (1.2.38)
o 2) /<
00 —2
> dT, = g% (ngq )> : (1.2.39)
o (2) /<

The polynomial P, is unique once its constant coefficient is normalized to 1 and called Drinfel’d’s polynomial.
The proof of this theorem depends on two inputs. The "only if" part is proven by using some elements in
the subalgebra Uq<5[2)0, and the "if" part makes use of the evaluation homomorphism defined by Jimbo as
well as some properties of the tensor product of representations. Starting with the only if part, there exists
P.Q,c Uq(slg)o given by:

Po=(—1)"¢ (z0) " (x7) (ko)™ mod Uy(sly)Uy(sly)™ (1.2.40)
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Qr=(—1)"¢ " (1) (@5) (ko) mod U,(sly)Uy(sly)t (1.2.41)

—r r—1
q + ~1
Po=—"—— N kb, P_j_ K (1.2.42)
(q _ qfl)[r]q jz(:) 7+1 7—1
_qr r—1
Qr=+——1 7 D k1@ K, (1.2.43)
(g —q V)], = j—1 j—1
r—1 ] ]
(_1>rq7‘(7"*1) (J,‘S-)(T — 1)(3;1_)(7“) = — ij__HPr—j—lKril mod Uvq(ﬁ[g)Uvq(ﬁ[g)+ (1244:)
j=0
,ril . .
(—1)"q "I @) = 1)(2g) " = = " 2Z.Qrj 1 KT mod Ug(sly)Uy(shy) ™). (1.2.45)
j=0
where, o
X = 1.2.46
[r]q ( )
Then, by definig
Pl2)=> B, Q)= Q" (1.2.47)
r=0 r=0
we have g o)
kH(2) = K2l ) () = k1= 1.2.48
(2) Pla) (2) o0 ( )

Assume now that dim L(d) < oo with highest weight » € Z for the action of the U,(sly)-subalgebra of
U, (sly) associated to the Oth-node of the Dynkin diagram. From our previous results we know that for the
highest weight vector v, we have :

Kv=q"v (1.2.49)

and it follows that the subrepresentation generated by this highest weight vector is an (r + 1) dimensional

irreducible representation and in particular we have :
(2g) v =0 (1.2.50)
which gives
P(z).v = P(z)v (1.2.51)
as an immediate consequence. Then, due to the expression of k*(z) in terms of P(z) the only if part of the
theorem follows.
For the remaining part of the theorem, we have to introduce the evaluation homomorphism ev,.
For any a € C*, there is a homomorphism of algebras U, (slz) — U,(sl2) such that:
eve(a)) = ¢ Fa" KPET (1.2.52)
eve(z;) = ¢ Fa"ET K" (1.2.53)

which allows us to deduce how the homomorphism maps the rest of the generators by using the algebra rela-

tions. Therefore, we can construct representations by pulling back representations of Uy (sl2) by the evaluation
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homomorphism. Then, we deduce the action of xf on L, (a) which is given by:
af o= a2 D i 1] (1.2.54)

o= abgFn=2=1; 4 1]qvit1 (1.2.55)
This is a highest weight representation with vy its highest weight vector and polynomial P given by:
P(z)=(1—¢"taz)(1 — ¢"3az)...(1 — ¢ " az) (1.2.56)
Moreover, we clearly have that:

) - ee)
P(2) (1—aqn1z) "

(1.2.57)

Finally, as we promised, the final part to complete this proof is the properties of the weights corresponding
tensor product of irreducible finite dimensional representations. For an irreducible tensor product V@ W of two
irreducible repressentation of U,(L(sl2)), we have Pygw = Py Py . This is due to the group-like structure of
the comultiplication of k7 (2) and the fact that V' ® W is isomorphic to W ® V when the tensor product is
irreducible. The group-like structure of the coproduct means that a tensor product of highest weight vectors is

a highest weight vector. Now take the tensor product
V = Vl(a1)®V1(a2) ®...®V1(ar) (1.2.58)

where the ai_l are the roots of the Drinfel'd polynomial. Clearly, V' contains a vector with weight ¢". This is
the tensor product of all the highest weight vectors in each factor. This vector generates a subrepreentation V’
which contains a maximal subrepresentation N. Then, the finite dimensional representation V' /N is irreducible
and has P(z) = []._,(1 — a;2) as the associated polynomial. This concludes the proof of the theorem.

Clearly, there exists a generalized version if this theorem for U, (sly).

Theorem 1.2.4. Let (d;,) be a pair of I x Z-tuples of complex numbers. Then, the irreducible represen-
tation V (d) of Uy(sl) is finite dimensional if and only if there ewists P = (P;)ies such that:

0 P, _9 )
Z d;:rZT — qdeg (Pz)l(jq(z)z) — Z d,;_,,,Z_T (1259)
r=0 v r=0

*

2

set A(i) = deg (FP;) with (i) the classical weight of the highest weight vector vp of the highest weight
representation V(P). We also have that V(P) = Cvp and

Proof. Starting with the "if" part of the proof, we clearly have k) = Kiﬂ. This means that we can

V(P)= P V(P)ra: (1.2.60)
aceQt

This part of the proof boils down to the following two statements:
i. V(P)x—q # 0 for finitely many o € Q.
ii. V(P)a—q is finite dimensional for all a € Q.

However, if we have that for a vector v € V(P),, V; = U;.v, where U; is the diagram subalgebra Uy, (sl2),
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i. would be a consequence of having the weights stable under the action of the Weyl group of the finite
dimensional Lie algebra g and that for any p € P such that V(P), # 0, w(p) € W{a € PTla < A}
Clearly this also follows from the fact that there exists an N > 0 such that for r > N, V(P)x_pa =
V(P)xtra = 0 for 7 > 3h + A(i) where h is the ehight of the A — p.

Going one step further, the last statement follows from the fact that V(P)y_,q is spanned by:

Xy ap o Xy wy, Xy wy o X vp (1.2.61)

i1,k1

for
A==y + i, + g,
X, =x

p iyll,pxial&p“.xi’lrp,p7
and

ritrot ..+ rpp =71

This is actually straightforward because of the weak PBW theorem giving us Uq (9) = Uq (g
and by making use of the algebra relations between Ty and Ty g

When it comes to ii. by induction on on the height h of «, we have nothing to prove in case h = 0.
For h =1, T; - UP is in the finite dimensional space U;.vp, where Uj is the Uq(g)—subalgebra generated by
{a:iik, k:ziin} which is finite dimensional due to the results of Uy(L(sl2)). Assume we have proven all the
cases up to but not the one of height h. The weight space V(P)\_, for a = oy, + i, + ... + @, is spanned

by vectors of the form:

Ly k1 Lig ko-Lip kp - VP (1262)

We can fix a set {i1,...,i,} and prove that the vectors above span a finite dimensional space. Now, by the

induction hypothesis, there exists an M € N such that for all i € {i1,....3n}, V(P)r—a+a, is panned by

vectors
Ljo,laTjoly Ly by -UP (1.2.63)
with |l1], [l2], ..., [ln] < M. Thus it suffices to prove that the space for a = a;, + a4, + ... + o, is contained
in:
Z Tig oV (P)r—atas, + 75 0-V(B)r—atay, (1.2.64)

ko=—M

Clearly, any vector of the form x;, r, ®i, ko---Ziy, k), -vP can be written as a linear combination of

Tig ko Tiy k1 - Lip Jop, VP (1.2.65)
$i2’k2+1xi17k1_1...I‘ih’kh.UP (1266)
Ly, k1 —1Lig ko+1---Lip kyp, -UP (1.2.67)

by using the algebra relations. The first two are clearly in V' and the last one can be shown to be in V' by
an induction on ki. This completes this part of the proof.

For the "only if" part of the proof, it is very similar to that of U,(L(slz)) case. In fact, all you have to
do is define P;,, and Q;, for each node i. The elements are in Uq(g)o and are defined by: Starting with
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the only if part, there exists Py, Q, € U,(slp)? given by:

Py = (-1)q (af) ()~ (1.2.68)
i = (1) (@) (@) ™) (1.2.69)
q_r r—1
P=—"_  Npt P K 1.2.70
PRI (:2.70)
r r—1
—q; _
Qr = T A~r 1 ki7_j_1Qi,r—j—1Ki, (1.2.71)
(Qi -4 )[T]Qi =0
r—1
(=17 @f ) D @) = = a P K (1.2.72)
j=0
r—1
(_1)rqfr(r71)¢(IZ_I)(rfl)(xZO)*(T) = _ Z x;_jQi,r—j—lKi_r—H' (1.2.73)
§=0
The rest of the proof follows the same steps as of that of sls. O

1.2.4 g-Characters

When it comes to characters, the classical notion of characters does not offer much insight in the case of
the quantum affine algebras. This prevents us from trying to understand the Grothendieck ring structure of
finite dimensional representation. However, E. Frenkel and N. Reshetikhin in [ | introduced the idea of
g-characters. Moreover, g-characters were a very useful tool for D. Hernandez and B. Leclerc, to show that

there exists a cluster algebra structure on that Grothendieck ring.

Definition 1.2.5. Let R be the universal R-matrix satisfying the Yang-Baxter equation and let (V) y)

be a finite-dimensional representation of Uq (g). Then, define the the following operator:
Ly = Ly(z) = (my(»)id)(R). (1.2.74)

This allows us to define the transfer matrix ty as:

tV = tv(z) = T?”VqQPLv(Z) (1.2.75)
where,
P = k2R (1.2.76)

The following proposition is crucial for defining x, and showing its properties as a character.

Proposition 1.2.6. The linear map v, sending V inRep(U,(g)) to ty(2) € Uy(b_)[[2]] is a C* -equivariant
ring homomorphism from Rep(U,(g)) to U,(b_)[[]].

Now, we define the second map that will play an equally important role in giving us the g-character.

Definition 1.2.7. Let U,(g) be the subalgebra of Uq(g) generated by a3 ki, hip for i € I, n < 0. Now

i,n?

denote by hg the restriction to U, (b_) of the projection from U,(g) to U,(h).
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Theorem 1.2.8. The map x, : Rep(U,(g)) — U,(h)[[2]] given by the composition of v, and hq is an
injective ring homomorphism such that x, : Rep(U,(g)) — Z[Y;,a;)ier,a;ecx C U,(b).

1.3 Quantum Toroidal Algebras

1.3.1 Schur-Weyl Duality

In this section we review the main results that led to the Schur-Weyl duality theorem by M. Varagnolo and E.

Vasserot in [ ]

Definition 1.3.1. The toroidal Hecke algebra H' of type gl,, is the unital associative algebra over A =
Clx*!, y*!, q*'] with generators:

T XFLYS ien—1]%, jen]” (1.3.1)

subject to the following relations:

(Ti = ¢*)(T;+1) =0 (1.3.2)

T =TT =0 (1.3.3)

LT T, =Ty TiTi 1 =1 (1.3.4)

T, =TTi=1 |i—j>1 (1.3.5)

XoV1 =xV1Xo, XiX;=X,X;, YY; =Yy, (1.3.6)
X;T, =TiX;, YT, =TY; ifj#ii+1 (1.3.7)
T,XT =’ Xip1, T, YT =q *Yip (1.3.8)
XY, ' X' = q Py Ty (1.3.9)

Where, XO = X1X2...Xn.

Taking x = 1 gives the double affine Hecke algebra.
Let ﬂ’(l),ﬂ’(Q) C H’ be the subalgebras generated respectively by Tiﬂ, Yjﬂ, and Tiil, X;El (i €
[n—1]%, j€[n]”). These two subalgebras are siomorphic to the affine Hecke algebra.
Let H' C H’ be the subalgebra generated by 7!, (i € [n — 1]*). This is the subalgebra isomorphic to
the Hecke algebra of type gl,,.
Now we define:
H=H ©,C,y, H=H®,Csy, (1.3.10)

) )

o' - we, Ceygs 5 (i * Cryg (1.3.11)

Definition 1.3.2. Let Uq(§[n+1) be the associative F = C[c*!,d*!, q*!]-algebra generated by the gener-
ators

{D,D—1,01/2,C—1/2 kY kT at 4T sielmeZne N}

»Vimo Vi,—no Yimo Yim
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subject to the following relations

C*/2 s central ~ C*TV2CFV2 =1  pEpPFL—1 (1.3.12)
Dkf(z)D™' =kf(z¢7")  DxF(z)D7' =xF(z¢7) (1.3.13)
res —— I (21)kF(z2) = 1 (1.3.14)

21,22 21292
ki (21)k (22) = k¥ (22)ki (21) (1.3.15)
ki_(zl)k;'_(ZQ) = G&(C_lzl/,@) (CZl/ZQ Zg)k- (2’1) (1.3.16)
GH(OT 2 )21k (21)x] (22) = ‘i(ZZ)k;r(Zl) (1.3.17)
k; (21)x7 (22) = GF(CTY221 [ 20)xT (22)k; (21) (1.3.18)
(21 — ¢ 20) %5 (21)x i(22) (21479 — 2z9)x i(Zz) E(21) (1.3.19)

5z'j z _ z1C _ _

[x; (21), x5 (22)] = p—— {5 (c;) K (znC7Y2%) —4 (;) kK (22C 1/2)] (1.3.20)

1—a;;

— Gy
Z Z ( ]> Xii(za(l)) o 'th(za(k))X;E(Z)Xii(za(k-i-l)) o Xii(za(l—tlij)) =0 (1321)
qi

oeS1_ aj; k=0

where, for every i € I, we define the following Uy (sl,41)[[2, 2~ !]]-valued formal distributions

=Y at, 2 € Uglshorn)[[z, 2 7] (1.3.22)
meZ
=D Firan?™ € Ug(sbus) 7], (1.3.23)
neN

for every 4,j € I, we define the following F-valued formal power series

GE(2) =™ + (6 — g7 DEayly Y ¢ 2™ € F[2]] (1.3.24)
meNX
and
z) = Z 2™ € Fllz, 27 1] (1.3.25)
mez

is an F-valued formal distribution.
Similarly to the toroidal Hecke algebra, we define:

i) Uq( ) U, Dy 4(5ln11) as the subalgebras of U, (sl,,.1) respectively generated by: ;' o K T s T

and kio, k.o ;FO, T, 1€ I. These subalgebras are isomorphic to the quantum affine algebra of sl,, 1,

one in Drinfel'd’s current presentation and the other in the Drinfel'd Jimbo presentation.

i) Uy C Uq(ﬁ.[n+1) be the subalgebra generated by k" = k:;fo,k; = k:;o,xj = x;fo,x; =z, i €1. This

subalgebra is ismorphic to the quantum group of sl ;.
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Let C.gq = F/Nca,q where N 4, is the maximal ideal generated by d — d,c — ¢,q — g. Then,
U = Uq(ﬁ.[n.H) RE (Cc,d,(p U= Ué RE (CQC[’q (1.3.26)

U(l) = Ué(l) ®F (Cc,d,qa U(Q) == U(;(Q) ®IF Cc,d,q (1327)

Definition 1.3.3. A module M is integrable if

M= M, Mpgp, o ={m e Mlkjm = ¢m} (1.3.28)
AEZ™

and x;fo, ;o are locally nilpotent on M.

Let V be the fundamental representation of U and V®" the left U-module induced by the coproduct
as defined in chapter 1. This action of U on the module commutes with a left H-action given by: T; =
191 @ T @ 19771 where T € End(V®?) satisfies the following relations:

T (v, ®vs) = ¢*vy @ vs ifr=s (1.3.29)
T(v, @ vs) = qus @ vy ifr<s (1.3.30)
T (v, ® vs) = qus @ vy + (¢* — 1)v, ® vg ifr>s (1.3.31)

Definition 1.3.4. We can define T/, i € [n + 1%] as the automorphism of U by setting:

—ai
TZ/(.T;I—) = —a; ki, Tl/(x;') - Z(_1)S—aijq—S(x;")(_aij—s)xj'(x;')(s)’ i j (1.3.32)
s=0
—ai;
Ti(wy) ==k 'al,  Ti@)) =) (1) g (a))a] (@) ™), i (1.3.33)
s=0

T!(k;) = k

(]

where s; is the transposition (ii4 1). Moreover, we can define the braid action on an integrable U-module
M’ by setting:
rfi//(m/) _ Z (—1)S+qu_Tt($j)(T)(SU;F)(S)(xj)(t)m/. (1335)

r—s+t=0

and for all m’ € M’, and all u € U,
T () = T ()T (1) (1336)

Let M be a right H-module. By the previous statements, M is also a right H- module. We consider the
dual left U-module M @ V™. This module has the structure of a left U-module given by:

zh o (mev) = ZmY ®xy, (v), T, (mevVv)= ZmY ®zy (v (1.3.37)

kni1(m@v) =m e (k)" (v). (1.3.38)
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where xét, and kg € Endc(V). Similarly, let M be a right H-module therefore, M @1 VO™ has the structure
of a U-module. Moreover, by introducing the map ¢ : M @y VE" — M @u VO™ given by:

Y S b
1/1(m ® Vj) = le thd Xl o +17le+j1 R Vitjy @ «oo Q V145, (1339)

with the condition: v, 12 = v1, we can show that:

Proposition 1.3.5. Fori € [n+ 1]*, we have the following:

(0 1Xi+(z)7j) = X:r 1( 1dz) ( ) — ( n—ldl—nz)7
w_lxz_<z)w = XZ_,l(q_ld‘Z)7 w Xl (.’L’Z) TL 1d1 n ),
() =k (g7 dz), Tk (e2)y? = kn(qn_ldl_”z).

We can now state the theorems that lead to the duality theorem.

Theorem 1.3.6. Suppose that x = d~""'q"*, and c = y = 1. Then for any right H-module, the following

formulas:
n

Xé(m@V):Zij(g)Xejj(V% X&(m@V):Zijil@Xj’j(V) (1.3.40)
j=1 j=1

ko(m@v)=m® (k,”H®"(v) (1.3.41)
give a left integrable U-module.
The proof of this theorem relies on the previous proposition.

Theorem 1.3.7. Let M’ be an integrable left U-module with trivial central charge and level n. There
exists a H-module M, such that M’ = M @z V" as U-module.

Finally, we give the duality theorem which stems from the previous two.

Theorem 1.3.8. The functor M — M x5 V®" is an equivalence between the category of right H-modules

and the category of left integrable U-modules with trivial central charge and level n.

1.3.2 A word on Quiver Quantum Toroidal Algebras

In their recent paper, G. Noshita and A. Watanabe | ] provide a presentation of the quantum toroidal
algebra associated to a quiver (). However, they do not provide a set of Serre relations as it remains an open
question for that topic. When it comes to the other relations, their presentation is obtained by replacing the
Cartan data by a set of rules on the quiver Q). Specifically, it is rules on the set of arrows and loops of the
quiver that would help identify the data replacing the Cartan matrix elements. Moreover, they proceed to show

that there exists a Hopf algebra structure on the quiver quantum toroidal algebra.
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Chapter 2

On Double Quantum Affinization: Type a;

2.1 Introduction

Let g be a simple Lie algebra and denote by g the corresponding untwisted affine Kaé-Moody algebra. Starting
from g and g or from their respective root systems, one can construct two a priori different algebras: on one
hand, the quantum affine algebra U,(g) is the standard Drinfel'd-Jimbo algebra associated with g; whereas
on the other hand, the quantum affinization U,(g) of g, which we define as U,(g) in its Drinfel'd current
presentation, is associated with the simple finite root system of g. Now Uq(g) and U,(g) are isomorphic by
virtue of a theorem established by Damiani and Beck, | , ], which can be regarded as a quantum
version of the classic result that each affine Lie algebra is isomorphic to the corresponding untwisted affine

Kaé-Moody Lie algebra. The situation can be summarized by the following diagram

Classical Affinization

Quantum Affinizationl lQuantization

. ~

Uy(g) Uq(9)

Damiani-Beck isom.

It turns out that quantum affinization still makes sense for the already affine Lie algebra g, thus yielding a doubly

affine quantum algebra known as the quantum toroidal algebra Uq(g) These originally appeared in type a,, in the

work of Ginzburg, Kapranov and Vasserot, [ ]. Quantum toroidal algebras have received a lot of attention
in the past — see [ ] for a review — and are presently the subject of a renewed interest due to their relevance
for integrable systems — see e.g. [ : : ] — and for 5 dimensional supersymmetric Yang-
Mills theory and related AGT like correspondence — see | ]. From a more mathematical perspective,

it is well known — see [ ] — that they are the Frobenius-Schur duals of Cherednik’'s Doubly Affine Hecke
Algebras (DAHA) — see | , ] for classic references on the latter.

The purpose of the present work is to reconsider quantum toroidal algebras as topological Hopf algebras.
On the one hand, this is only natural since the existence of an algebraic comultiplication for quantum toroidal
algebras is still essentially open to this date — although see [ | for recent results on algebraic comulti-
plications for affine Yangians that may suggest the existence of similar results for quantum toroidal algebras
— and only a topological coalgebra structure is provided by the so-called Drinfel’d current coproduct. On the
other hand, the existence of a braid group action by bicontinuous algebra automorphisms, generalizing those in

[ |, provides us with a topological version of the Lusztig symmetries that prove pivotal in both Damiani's
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and Beck’s proofs of Drinfel'd’s current presentation. We may therefore expect, in that context, the existence
of an alternative presentation for quantum toroidal algebras, in terms of double current generators. In the same
spirit as Drinfel’d’s current presentation, such a presentation could be regarded as defining the double quantum

affinization U, (g) of g and (a subalgebra I"Jfl(al) of) U,(g) should be isomorphic to (the completion of) U,(§)

— see section 2.3. We therefore expect a diagram of the form

Classical Affinization

g
Double Quantum Affinizationl lQuantum Affinization
Ul (g) Uy(9)
Completionl lCompIetion
U/ (g = Uy(9)

Affine Damiani-Beck isom.

In the present paper we prove such results in the particular case where g is of type a;. It is fairly natural to

conjecture that similar results hold for higher rank root systems, thus yielding

Conjecture 2.1.1. Every simple Lie algebra g admits a (unique up to isomorphisms) double quantum
affinization U,(g).

and

Conjecture 2.1.2. Every untwisted affine Ka¢-Moody Lie algebra g admits a (unique up to isomorphisms)

double quantum affinization U,(g).

Note that the latter would naturally provide a definition for the so far elusive triply affine quantum algebras.
The latter are believed to play an important role in mathematical physics, as the conformal block side of an
AGT type correspondence with 6-dimensional super Yang-Mills theories, [ ]

In any case, Uq(al) — and presumably other double quantum affinizations if any — admits a triangular
decomposition (U;(al),ﬁg(al),ﬁg(al)). The latter naturally leads to an alternative notion of weight and
highest weight modules that we shall refer to as t-weight and highest ¢-weight modules. Natural analogues
of the finite dimensional modules over quantum affine algebras also appear, that we refer to as weight-finite
modules — see section 2.3 for definitions. We actually expect that it will be possible to classify simple weight-
finite modules over Uq(al), by essentially classifying those simple Ug(al)—modules that appear as their highest
t-weight spaces — see section 2.3 for the corresponding discussion. This is the subject of ongoing work.

P22 U2+(a1), where U2+(a1) is a

closed subalgebra of Ug(al) and, for every q1, g2, g3 such that q1g2g3 = 1, &;, 42,45 IS the corresponding elliptic

Quite remarkably, there exists an algebra homomorphism f : £, -4

Hall algebra — see section 2.3. The latter was first defined by Miki in | | as a (g, y)-analogue of the W+
algebra. It reappeared later in | ], as the quantum continuous gl algebra. Schiffmann then identified it
with the Hall algebra of the category of coherent sheaves on some elliptic curve whose Weil numbers are related
to q1, 92,93, [ ]. More recently, it also appeared in | ] and in subsequent works by Feigin et al. as

the quantum toroidal algebra associated with gl;. As we shall see, it appears natural to make the following

Conjecture 2.1.3. U2+ (a1) is isomorphic to the completion of &4 ;2 2.
If it held true, the above conjecture would have many interesting implications. On one hand, in view of
Schiffmann’s results, it seems reasonable to expect that the double quantum affinization Uq(al) admits a K-

theoretic realization, in the spirit of Nakajima’s quiver varieties realization of quantum affine algebras | ],
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wherein the generators outside of the elliptic Hall algebras would be realized as correspondences. At the level
of representation theory on the other hand, conjecture 2.1.3 would imply that the classification of the simple
Ug(al)—modules that appear as highest t-weight spaces of simple weight-finite U, (a;)-modules would almost
entirely reduce to a classification of the corresponding subclass of simple modules over the elliptic Hall algebra.
Again, we leave these questions for future work.

The paper is organized as follows. In section 2.2, we briefly review some well known facts about quantum
toroidal algebras, including their definition and natural gradings. We endow them with a topology and construct
the corresponding completion. On the latter, we construct a set of automorphisms, including affinized versions
of Lusztig's symmetry. Analogues of these for simply laced untwisted affine a,>2-types appeared in the work
of Ding and Khoroshkin [ ]. The a; version we give here plays a crucial role in section 2.4 where we prove
the main result of this paper. In section 2.3, we define the double quantum affinization of type aj, Uq(al).
We prove that there exists an algebra homomorphism from the elliptic Hall algebra &;, 4,4, to its subalgebra
Ug(al). We also ellaborate on the consequences at the level of representation theory and introduce the notions
of (highest) t-weights and of weight-finiteness. Finally, in section 2.4, we prove the affinized version of the
Damiani-Beck isomorphism. The appendix contains a short review of formal distributions as relevant to the
present work. This is already covered in the literature — see e.g. | ] —. however, since our conventions

slightly differ from the standard ones, we included it for the sake of clarity.

Notations and conventions

We let N = {0, 1, ...} be the set of natural integers including 0. We denote by N* the set N — {0}. For every
m < n € N, we denote by [m,n] = {m,m+1,...,n}. We also let [n] = [1,n] for every n € N. For every
finite subset ¥ C Nwith card ¥ = N, anyn < N and any m1,...,m, € Nsuch that mi+---+m, = N, we let

P(Eml"“’m”) denote the set of ordered (1, ..., m,,) set n-partitions, i.e. any A = (A ... AM) ¢ P(Eml""’m”)
is such that

i. for every p € [n], card AP) = Mp;
ii. for every p € [n], AP) = {A@,...,Aﬁ,ﬁ’l} C X, with Agp) < e < A,(ﬁzy;
i, AD L. uAm =3,

We let sign : Z — {—1,0,1} be defined by setting, for any n € Z,

-1 fn<O;
sign(n) =<0 ifn=0;
1

if n> 0.

We assume throughout that K is a field of characteristic 0 and we let F := K(q) denote the field of rational
functions over K in the formal variable ¢. As usual, we let K* = K — {0} and F* =F — {0}. We make I a
topological field by endowing it with the discrete topology.

For every m,n € N, we define the following elements of F

10 [y ==

A I N PR PR R A ()
= -a 1 ifn=0; ( )q' .
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We shall let
oA, B, =aAB - bBA,

for any symbols a, b, A and B provided the r.h.s of the above equations makes sense. At some point we may

need the following obvious identities
[[A, Bla, Cly = [[4, Clp, Bla + [4, [B, Cab , (2.1.2)

[a[A4, Bl, Clo = o[[A; Clo, B] + o[A, [B, CTJy - (2.1.3)

We refer to the Appendix for conventions and more details on formal distributions.

The Dynkin diagrams and correponding Cartan matrices in type a; and a; are reminded in the following

table.
Type | Dynkin diagram | Simple roots | Cartan matrix
1
ap ® ®={ou} (2)
0 1
. .%}. . 2 =2
ap ¢ = {Oé(),Oél} ( 9 9 )

2.2 The quantum toroidal algebra of type a; and its comple-

tion

2.2.1 Definition

Let I = {0, 1} be the above labeling of the nodes of the Dynkin diagram of type d; and let ® = {ag, a1} be a
choice of simple roots for the corresponding root system. We denote by (c;;)i,j—0,1 the entries of the associated
Cartan matrix. Let Qi =Z%ay @ Z*aq and let Q = Zag D Za be the type a; root lattice.

Definition 2.2.1. The quantum toroidal algebra Uq(dl) is the associative F-algebra generated by the
generators

{D,D_I,C'I/Q,C'_l/2 kK ok o axloan :in,mEZ,nEN}

» Vino Vi,—no Yimo Yi,m

subject to the following relations

CE/2 s central ~ CH/2CT2 =1 DFDTL =1 (2.2.1)
Dk (2)D™ = ki (2¢7}) Dxi(2)D = xF(2¢7) (2.2.2)
1
res —— ki (21)kf (22) = 1 (2.2.3)
21,22 Z1R9
ki (20)k7 (22) = K (22)k; (21) (2.2.4)

k- (Zl)k;_(zz) = G»_»(Cilzl/Zz)G:;(CZl/ZQ)k;F(ZQ)kZ-_(Zl) (2.2.5)

7 iJ
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GHCT a2k (21)x] (22) = % (22)K; (21) (2.2.6)

ki_(zl)xjc( 9) = G¢(011/221/22) (22)k; (21) (2.2.7)
(71 — ¢ 20) %5 (21)x jE(22) (2179 — z3)x jE(2:2) E(21) (2.2.8)
_ T / 20\, - ey
% (21), %5 (22)] = P [5 (CZ > ki (z10712) — 5< - )ki (2oC1 2)] (2.2.9)

1—cyj

S S 0 (1) K o) X o R o)X o) =0 (220

ocEeS1— cij k=0

where, for every i € I, we define the following Uq(dl)—valued formal distributions

= wimz ™ € Uga)llz, 271 (2.2.11)
meZ

= ki, 2T € Ug(an) (7)), (2.2.12)
neN

for every 4,5 € I, we define the following F-valued formal power series

GE(2) =5 + (g — ¢ DEeily Y ¢F"%92™ € Fl[2]] (2.2.13)
meNX
and
=> 2" EeF(z27 ] (2.2.14)
meEZ

is an F-valued formal distribution.

Note that Giij(z) is invertible in F[[z]] with inverse G7(2), i.e.
G5(2)GE(z) =1, (2.2.15)

and that it can be viewed as the power series expansion of a rational function of (z1,22) € C2? as |2] > |2],

which we shall denote as follows

FCi;
Ci(nfm) = (22 . (2.2.16)
“ Rl = q:FCU z2 |z2]>]21|

Observe furthermore that we have the following useful identity in F[[z, 27 1]]

G;(2) = GH=)

] = [Feijled (2a79) - (2.2.17)

q9—q

Remark 2.2.2. Tn type a1, I = {0,1}, ¢ij = 49;5 — 2 and we have an additional identity, namely Gﬁ)(z) =
GT,(z). We refer to section 5.1.3 of the Appendix for more identities involving the formal power series
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Ugy(aq) is obviously a Z-graded algebra, i.e. we have

Ug(i)) =P Ug(ar)n,  whereforallneZ  Ug(dn)n = {z € Ug(@r) : DD~ =q"z}. (22.18)
neZ

It was proven in [ ] to admit a triangular decomposition (U (a1), UY(a1), U (a1)), where UZ(a;) and
Ug(dl) are the subalgebras of U, (d;) respectively generated by {a:;tm ciel,me Z} and

{01/270_1/2,D,D_1 kb ok :z’ei,mez}.

? ,mY Tr,m

Observe that qu(cll) admits a natural gradation over QT that we shall denote by

Us(a) = P Uf(ar)a- (2.2.19)
Of course U, () is graded over the root lattice Q). We finally remark that the two Dynkin diagram subalgebras
Uy(a1)© and U,(ar)™ of Uy(a;) generated by

{D,D—1,01/2,c—1/2 kY kT ozt o= imeZne N} ,

»Vino Vi,—no Yimo Yim
with 4 = 0 and i = 1 respectively, are both isomorphic to Uq(al), thus yielding two injective algebra homomor-

phisms +) - U (a1) < Uy(ay).

2.2.2 Automorphisms of Uq(c'tl)

Proposition 2.2.3. i. For every Dynkin diagram automorphism m : I — I, there exists a unique

F-algebra automorphism T € Aut(Ug(a1)) such that

Tr(xi (2) = %5(2) . Telk(2) = ki (2), T(CY?y=C'Y?,  T.(D)=D. (2.2.20)

i. For every i € I, there exists a unique F-algebra automorphism T,y € Aut(Uq(éll)) such that

Ty (xj(2) = 255 (2)  Tv(kj(2)) = CTkf(2)  Ty(CY?)=C"Y?  T,(D)=D

iii. There exists a unique involutive F-algebra anti-homomorphism n € Aut(Ugy(a1)) such that

n(xf(2) =x7(1/2)  nkf(2) =k7(1/2) nCY?)=C"* pD)=D (2.2.22)

1. There exists a unique tnvolutive K-algebra anti-homomorphism ¢ such that

() =x7(1/2) @k (2) =ki(1/2)  @C*)=C""*  oD)=D"  olg)=q"
(2.2.23)

Remark 2.2.4. In the present case, the Dynkin diagram being that of type a1, I = {0,1} and the only

nontrivial diagram automorphism is defined by setting 7(0) = 1 and = (1) = 0.
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Remark 2.2.5. Note that ¢ restricts as a non-trivial automorphism of the field F and that, as such, it

yields e.g.
QO(G?;(Z)) =GFi(2). (2.2.24)

—_—

2.2.3 The completions U,(d;) and Uq(d1)®m22

Let, for every n € N,
Q= @D Uglan) - Ug(ar)—r - Uylan) - Uylan)s - Uglan)

r>n
s>n

Proposition 2.2.6. The following hold true:
i. For every n € N, Q, is a two-sided ideal of Uy(ay);
1. For everyn e N, Q, D Qpyq;
iii. Qo = Upeny On = Ug(dn);
. Npen 20 = {0};
v. For every m,n € N, Qp + Qp € Qinimon);
vi. For every m,n € N, Q- Qp C Qpay(mn)-

Proof. Points i. and ii. are obvious. As sets, it is clear that Q9 C Uy(a;). Now, 1 € U,(a;)o and for
every T € Uq(dl), we can write = 1-x -1 thus proving that z € Q. Point 4ii. follows. Point v. is
an easy consequence of point .. Point vi. is obvious given 4.. So let us finally prove point ¢w.. In order
to do so, it suffices to prove that for every = € Uq(dl) — {0}, there exists a largest integer v, € N such
that = € Q,,; for then indeed = ¢ €, 41, whereas obviously 0 € €, for every n € N. Relations ((4.2.5) —
(4.2.9)) respectively imply that, for every 4,5 € I, every m € N and every n € N*,

min(m,n)
—pcij (P _ GPCij ()—P
k+ k— k_ k+ _( Cij __ c”)(c C ) q UC q 1JC kj+
i,m"Vj,— 7,—n"Vi,m E : q_cijC—qciiC—l n+P L,m—p’
p=1
+ £ = T + +ci; ¥c § $p/2 +pe; +
ki,mxj,—n_q Z]x] nkzm (q e N c Z]x] 7’L+PkZm -p’
p=0
n
+ .- :I:c + +eij _ Feij § : Fp/2 :tpc i
xi7mkj7— wk;] -n 2m+(q Y —q ”) c ”k] —ntpLim—p>
p=0
min(m,n)—1
+ + _ +c; + tci; _ Feij +pci; £ +
LimTj—n = 4 ”:UL nTim T (g7 — q7) Z q Z]:EJ —n+pTi;m—p
p=0
_ E(min(m,n)—1)c;; .= + £ min(m,n)c;j .= +
q j,min(m,n)—nxi,m—min(m,n) +q xi,m—min(m,n)xj,min(m,n)—n ’
Cim+"k+ if .
5 im—n irm > n;
+ T T + ij $m+" - . .
LimLj,—n = Lj—nLim q— q_1 —C kzn m if m < n;

CEMREy — CF k| if m=n.

41



Now let

e
B=Sbam= []&apm, :n €N, a=(ar,...,an) €(@U-DUD", m=(my,...,my) €Z" 3,
p€[n]

where, for every (a,m) € (dU—-®UT) x Z,
;thm ifa=40€+d, icl;
fa,m = :I; .
ki, ifa=ieclandmeZ*
If we omit C*1/2 and D*! which are clearly irrelevant for the present discussion, B is obviously a spanning
set for Uq(dl). Making repeated use of the above relations, one then easily shows that, for every n € N,

every a € (® U —® LIT)" and every m € Z",

ba,m — Cam H Sap,mp H gap,mp € QN(m)—l - QN(m) ’

p€E[n] pE[n]
mp<0 mp>0

where cam € F* and

N(m) = min | — Z My, Z my

pEln] pEln]
mp<0 mp>0
As a consequence, v, .. < N(m), which concludes the proof. ]

Similarly, making use of the natural Z-grading of the tensor algebras Uq(d1)®m, m € N*, we let, for every
n €N,

0 = @ U™ - (Uyan)™")

r>n
s>n

@) (Uga)®m) (@)
One easily checks that for every m € N*, {lem) : n € N} has the same properties as the ones established in
proposition 3.3.6 for {Q,, = ol ine N}.

Definition-Proposition 2.2.7. We endow Uq(dl) with the topology 7 whose open sets are either () or
nonempty subsets O C Uq(dl) such that for every x € O, x4+, C O for some n € N. Similarly, we endow
each tensor power U,(d;)®™22 with the topology induced by {Q%m) :n € N}. These turn Uy(d;) into a
(separated) topological algebra. We then let I‘Z(d\l) denote its completion and we extend by continuity to

—

U, (1) all the (anti)-automorphisms defined over U,(a;) in the previous section. We eventually denote by
U

a
) >9
q(01 wm22,

)@)m22 the corresponding completions of U, (d;)
Proof. The addition is automatically continuous in the above defined topology of Uq(dl). The continuity
of the multiplication follows from point wi. of proposition 3.3.6. Point 4v., in turn, implies that Uq(dl),
as a topological space, is Hausdorff. The continuity of the unit map n : F — Uq(dl) is easily checked —
remember that F is given the discrete topology. O

Remark 2.2.8. Tt is worth noting that the above topology is actually ultrametrizable. In the notations of
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the previous proof, let indeed, for every z € U,(ay),

exp(—v,) ifxe Uq(dl) —{0};
ifz=0.

=]l =

Since obviously v, > min(v,, v,) for every z,y € Uq(dl), the ultrametric inequality for the metric defined

by d(z,y) = ||z — y|| follows immediately as a consequence of the inequality ||z + y|| < max(||z|, ||y]])-

2.2.4 Continuous Lusztig automorphisms

Following [ | we make the following

Definition 2.2.9. The affine braid group B of type a; is generated by t and y subject to the relation
ty~ 't =y.

The coweight lattice PV of a; is an abelian group whose generators we shall denote as x, for every A € PV.
In particular, we shall write

TATy = TpTr = Tagp (2.2.25)

assuming that 2o = 1. There exists a unique group homomorphism B — Aut(PV) defined by letting

txa) =25, (), Ylza) =2, (2.2.26)

where s,, denotes the reflection in the simple root aq, i.e. s4,(A) = A — (af, A)ay. This action allows us to

make the following

Definition 2.2.10. We let B := B x PV, i.e. B is isomorphic to the group with generators ¢,y and

(xx)repv obeying the relations
ty it=vy, tept™t = Tso (M) TAY = YTy, (2.2.27)

for every A € PV,

—

We now define an action of B on U,(d;) by bicontinuous algebra automorphisms, i.e. we construct a

group homomorphism B — Aut(U,(a;)). In order to do so, we first describe the image of the latter, following

[DrO0].

Proposition 2.2.11. There ezists a unique bicontinuous algebra automorphism T € Aut(Ug(ay)) such
that

T =CY2 T(D)=D  T(ki() =K CAK () T () =ki(2) " (2228)

1 1
T(xy () = g, £ 1251 [xf(m)y [XT(ZQ),Xg(qu)]G;O(Zz/ZqQ)]G_( e (oo (2.2.29)
’ 11(71/22)G 21/ 2
— 1 11— _ _
T (2)) = G 1es =1 % |56 a5 0l gy X5 2 o e (2230)
T(xi (2)) = —x; (C7'2)kf (C7%2) 7! (2.2.31)
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T(x7(2)) = —k7 (C™V22)7IxF (C12) (2.2.32)

Proof. 1t suffices to check all the relations, which is cumbersome but straightforward. The inverse auto-

morphism is given by

ToHC =C? T D) =D Tk (2) =Ky (20 Dk (ki (z¢7%) TNk (2) = k()

(2.2.33)

T (x5 (2)) = [21](1 Tes 2, oyt [[XJ (2¢7%): %7 (2)] o (2g-2/0) ,xf(zQ)] . (o1 e2) G (22 ) (2.2.34)
T (x;(2)) [21](] Tes 7 1t [X;(zl), [X;(zz)’Xa(zq_Q)]GTo(w/ZQ*QJGjl(zl/zQ)Gfo(n/zq—?) (2.2.35)
T~ Hx] (2) = =k (CY22) 1% (C2) (2.2.36)

T (x7 (2)) = —x{ (C2)ki (CV/22) 7! (2.2.37)

O

Remark 2.2.12. Making use of the defining relations of Uy (1), one easily shows that indeed

Zl) 6 (2T (). (2239)

+ + 42 _
a0, B )35 o oo gy = 20 (o

z
oo _ 214 21 _
[ )t 0l gy 5 )] =0 (2E) 5 (2) T () 229
The following is straightforward but will be useful.
Proposition 2.2.13. We have
i poTpr =Troy;
1. polT =T op;
iii. T-'=noTon.
We have finally,
Theorem 2.2.14. The assignement
t—T y—Y =TT Ty = Ty (2.2.40)
extends to a group homomorphism B — Aut(U/q(cl\l)).
Proof. This is a cumbersome but straightforward exercise that we leave to the reader. O
Remark 2.2.15. In | |, Miki constructed an algebraic action by automorphisms of the ex/‘ccﬂied elliptic

braid group on U,(a;) which should not be confused with the topological action of B on U,(d;) provided
by the above theorem.

44



L —

2.2.5 Topological Hopf algebra structure on U,(a;)

—

Definition 2.2.16. We endow the topological F-algebra U, (d;) with:

—

i. the comultiplication A : Uy(d1) — U, (a1)®U,(d;1) defined by

A(Cil/Z) _ OF1/2 ® Ci1/27 A(Dil) = Dl Di17 (2.2.41)
A(KE(2) = kF (205 ) @ KE (0, (2.2.42)
A(x{(2) = x (2) ® 1+ k; (2C{DEX] (2Cy)) (2.2.43)
A(x; (2)) = %; (2C0) BT (2C47) +1 0% (2), (2.2.44)
where C(ﬂm =C*/2 @1 and 0(3;)1/2 =1®C*t/2;

ii. the counit e : Uy(a1) — T, defined by e(D*!) = e(C*/2) = e(kif(2)) = 1, e(xF(2)) = 0 and;

(]

—_—

iii. the antipode S : Uy(a1) — Uy(d1), defined by S(D*') = DF!, §(C*Y/2) = CF1/2 and

Ski(2) =ki(2)7,  S(x{(2) =k (OIS (20T, S(x;(2)) = —x; (20K (2077

—

With these operations so defined and the topologies defined in section 3.3.2, Uq(dl) is a topological Hopf
algebra.

2.2.6 Non-degenerate Hopf algebra pairing
Define Ug(dl) (resp. Uqg(c'q)) as the subalgebra of U, (a;) generated by {kz__m,a:fn ciel,meNne Z}

(resp. {k+ z, :i€l,meNne Z}) In view of the triangular decompositon of Uq(dl) - see | ] -

i,m? 7 in

and of its defining relations, it is clear that Ug(dl) (resp. Uqg(dl)), as an F-vector space, is spanned by

{‘TZ,H o 'xz—‘i_m,rmkj:,—sl e kj_n,—sn i myn €N, ((ila 7"1)7 ceey (imﬂ"m)) S (I X Z)m
((jlasl)a"'7(jnasn)) S (I X N)n} (2245)
<resp. {xi:,n -~-:ci_mﬂ,mk;’81 . k;-;’sn c myn €N, ((iy,r1),. .., (im,m)) € (I x Z)™,
((151)s- > Gy ) € (Ex N)" }). (2.2.46)

Proposition 2.2.17. There exists a unique non-degenerate Hopf algebra pairing (,) : qu(dl) X Uqg(dl) —
F, defined by setting

(x5 (2). %5 (v)) = - 5’;15 (%) , (2.2.47)
<kZ(Z),kj+(v)> =G5 (%) , (2.2.48)
(k7 (20,35 (0)) = (xF(2). K (v)) = 0. (2.2.49)



By definition, it is such that, for every a,b € qu(dl) and every T,y € Uqg(dl),
(a,zy) Z (aqy, ) (ag2),y)

(ab,z) = (a,2(9)) (bzq))
(a,1) =e>(a) (1, x) = e<(z),
EZ = 8‘

where we have set e< = ¢ ) and we have made use of Sweedler’s notation for the

|UF (1)’ U7 (@

) =) rm@ug).

Proof. A proof can be found in | | O

comultiplication

Before we can establish the continuity of the above defined pairing, we need the following

-+

k) € I and every (i . JE) € 1"+, we

Lemma 2.2.18. For every my,m_,ny,n_ € N, (zf, RPN

have

<X2~;r (u1) -~ 'X:Jg (Um+)kj_1+ (v1) -+ kj_+ (Uny)s Xi_; (w1) - 'X; (wmf)k;l (1) 'kjl (Zn)>

+ ny m_ 1 n_

5+
- - or - (™ “ o) ()
= Omim_ G - <Z> > II ¢ <u> 11 q_q15< ” > (2.2.50)

relny] 0ESm, | 1<r<s<my te[m4]

s€n-] a(r)>o(s)
Proof. One easily proves by recursion the results for ny = n_ = 0 and my = m_ = 0, respectively. The
general case then follows by a straightforward calculation. O

It follows that — remember [ is given the discrete topology —
Corollary 2.2.19. The Hopf algebra pairing {,) is (separately) continuous.

Proof. It suffices to prove that for every x € Ug(dl) there exists an m € N such that, for every n > m

(2,2,005 (@) = {0} .

In order to prove the latter, it suffices to prove it over the spanning sets of (2.2.45) and (2.2.46). Now this
easily follows by inspection, making use of lemma 2.2.18 and of the fact that, for any y € U,(a;) — {0},
there exists v, € N such that y ¢ Q,, 11 — see proof of proposition 3.3.6. 0

—

We can now extend (,) from U?(dl) X U?(dl) to U(IZ(dl) x U (a1) by continuity. Importantly, we have

—

Proposition 2.2.20. The extended pairing {,) : qu(c'q) x US(a) — F is non-degenerate in the sense

that, if for every x € U;(dl), (x,y) =0 for some y € Uqg(dl), then y = 0.

Proof. Let {O,, : n € N} be any neighbourhood basis at 0 € F for the discrete topology on F. Then, let
for every n € N,

A, = (U2 (), —>_1 ) ={ye V@) Vo e UZ@)  (r.) € O,}.
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We clearly have, for every n € N, {0} C A,, C Uqﬁ(dl) and A, O A,11. The non-degeneracy of the pairing
further implies that

() An = {0}.

neN
As a consequence, for every n € N and every y € A, — {0}, there exists an N € N such that for every
m > N,y ¢ Ap. Now, given n1 € N, let u(n1) € N be the largest integer such that A,, C Q,,,). By

the previous discussion, for every point y € A,, — 11, there exists (a smallest) no € N such that for

w(n)
every m > ng, y & A, Hence, for every m > na, Ay C Q)(n,)41 and we conclude that p(n) = p(ny) for
every n € [ni,ng — 1], whereas pu(n2) = p(n1) + 1. By induction, it follows that p : N — N so defined
is increasing and that, as a consequence, lim,,_,;~ p(n) = +00. We have therefore proven that, for every
n €N,

Vo € qu(dl) (,9) €On = Y€ Q- (2.2.51)

If we finally let (yn)nen € Uqg(cll)N be any Cauchy sequence that does not converge to 0, the proposition

is obviously equivalent to claiming that there exists an x € Ug(dl) such that

lim (z,y,) #0.

n—-+o00

Indeed, since (yn)nen does not converge to 0, there exist m € N such that for every N € N, y,, ¢ Q,, for
some n > N. We can therefore extract a subsequence (yn, )ken such that y,, & Q,, for every k € N. The
contrapositive of (2.2.51) then implies that there exists (x)ren € qu(dl)N such that, for every k € N,

<$ka ynk> ¢ Ou(m)

where v(m) = min{n € N : pu(n) = m}. But since (y,)nen is Cauchy, so is (yn, )keny and, upon taking

k,l € N large enough, we can make (zk, yn, — Yn,,) arbitrary small. This eventually concludes the proof. [

2.3 Double quantum affinization in type o

We now define and study the main object of interest in this paper; the double quantum affinization in type
ar, Uy(a1). We let I = {1} be the labeling of the unique node of the type a; Dynkin diagram and we let
QT = Z*a;. We denote by Q = Za; the type a; root lattice.

2.3.1 Definition of U,(a;)

Definition 2.3.1. The double quantum affinization Uq(al) of type a; is defined as the F-algebra generated
by

{D1,D7", Dy, D51, C2 CV2 e K s Ko Kl s KT s X s X s €Ny € N¥ 1,5 € Z}

s -mo 1,n,r n,r Mrs? M r,s

subject to the relations

C*/2 and c*(z) are central (2.3.1)
Lt ()T (w) =
res - C (v)ct(w) =1, (2.3.2)

47



DEIDF'=1  DF'DF'=1 DDy =DsD;
DiKi 4 (2)D1 ' = ¢ Ki 1n(2)  DiX{,(2)D7 " = d" X, (2),

DoKi i ()03 = Kipp(2a7!) DXy, (2)Dy" = Xi,(2q7),

(v = ¢*22) (v — P TFV KT L, (VKT L, (2) = (067 — 2)(vg™ — P )KT L, (2)KE L,

(Cq*™™v —w) (Vo — Cw)KT,, (VK] _, (w) = (Cq*"v — ¢*w)(¢”"v — Cq*w)Ky _, (w)K

('U - qi2z)K:1t,:tm(U)Xit,r(z) = <in,U - Z)Xl r( )Ki‘::l:m( ) ’

(Co = ¢ FUKT L, (0)XT, (2) = (CaTPv = ¢ 2)XT, (2K 4 (0)

(v = 2w)XT, (V)X (w) = (04 = wW)XT (W)X, (v),

_ 1 Cv _ _ “1Dsien(s)— —sign(s)
[Xfr(v)axm(z)] = 749 <q2(r+s)z> HC (C 1/2¢(2p=1)slgn(s) 12) KT

p=1

7|

-1/2, (1—2p)sign(r)—1 sign(r)
( 2(r+s)Z> HC < / PIsign(r) U) Kl,rJrs(Z)

where m,n € N, r;s € Z and we have set

Klio Z Kl Oim ’

and, for every m € N* and r € Z,

+
Kl,:tm Z Kl :I:ms ’
SEL

X:ltr lers .

SEL

In (5.0.6), we further assume that Ki

1.+m(2) = 0 for every m € N*.

Definition 2.3.2. We define Ug(al) as the subalgebra of U,(a;) generated by

{C1/2 c 1/27 Cm>s —m?Kil_On’UKl_O m’Ki_nr’

1,rs *

We define similarly Ui(al) as the subalgebra of U q¢(a1) generated by { NS Z}.

Kl_ﬁn’r:mEN,nENX,TGZ} )

()

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)

Remark 2.3.3. Obviously, Uf]t(al) is graded over Q* whereas U,(a1) is graded over the root lattice @ of
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ar. Uy(ay) is also graded over Z2 = L1y X Lyy;

Uq(al) = Uq(al)(m,ng) 1)

(n1,n2)€Z2

where, for every (ni,ns) € Z2, we let

Uq(al)(n17n2) = {.TL‘ S Uq(al) : Dlfol =q"uz, DQ.TDEl = qnzl‘} .

Remark 2.3.4. Tt is worth emphasizing that, were it not for relation (5.0.6), the above definition of Uq(al)
would be purely algebraic. However, the r.h.s. of (5.0.6) involves two infinite series and we may equip

Ug(a1) with a topology, along the lines of what was done in section 3.3.2 for Uq(dl), making use of the Z)-
grading in order to construct a basis {Qn :neN } of open neighbourhoods of 0. In that case, both series

are convergent in the corresponding completion Uq(al) and we shall further require that the subalgebras
I"Jq_(al), Ug(al) and I"J(']F(al) be defined as closed subalgebras of Uy,(a;). We shall eventually denote with
a hat their respective completions. An alternative point of view on this question, which might actually
prove more useful when it comes to studying representation theory, consists in observing that Uq(al) is

proalgebraic. Indeed, for every N € N, let Uq(al)(N) be the F-algebra generated by

{CV2, 2 e e KT g s Ko s KT s KT —prs Xi s X g m € Ny € [0, N, p € N¥ 1,5 € Z}
subject to relations ((3.3.1) — (5.0.6)), where, this time,
N
F(2) =) e (2.3.17)
m=0

Now clearly, each U,(a;)®¥) is algebraic since the sums on the r.h.s. of (5.0.6) are both finite - whenever
ct(2)7! is involved, just multiply through by c*(2) to get an equivalent algebraic relation. Moreover,
letting Zy be the two-sided ideal of Uy(a;)N) generated by {c},c”y} (resp. {cg —1,c5 — 1}) for every

N > 1 (resp. for N = 0), we obviously have a surjective algebra homomorphism

Uq(al)(N)

Ug(a) ™) — Uy ay) Y 7
N

12

(2.3.18)

and we can define U, (a;) as the inverse limit
Ug(ar) = lim Uy (ar)™Y)

of the system of algebras

N) N-1)

- — Ugla)®™) — Uy(a) VY — o — Uy(a) @ — Uy(a) Y.

We shall refer to the quotient of U,(a;)(™") by the two-sided ideal generated by {C*/? — 1} as the double

quantum loop algebra of type a;.
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Definition 2.3.5. In Ug(al), we define

= 3 bk = K22 I (€ 2g?)

meN
and for every m € N*,
1 —2my—1
=D tHmn? —— K o(za ) KL (2)
neN q q
- - 1 - - —2my—1
tl,—m(z) = Ztl,—m,nzn = Kl,—m(z)K1,0<Zq m) :
neN =49

—

Then, we let U2+ (a1) be the closed subalgebra of Ug(al) generated by
{CY2,CV2 pt b, 1pmt1 —pn MENNEZpeNT}.
Definition 2.3.6. We denote by Uf](al) the subalgebra of U, (a;) generated by

-1 ~1/2 ~=1/2 + _— + - = +
{D27D2 7C/7C / c C—m7K1,07m7K1,07—m7K1nr7Kl—nr7xl,r X1,

) ~m»

:meN,neN rselZ},

1,r,s
i.e. the subalgebra generated by all the generators of Uq(al) except Dy and Dl_l. We shall denote by
J: U;(al) — Uq(al)

the natural injective algebra homomorphism. We extend it by continuity into

7: Up(ar) = Ug(a)

The main result of the present paper is the following

—_—

Theorem 2.3.7. There exists a bicontinuous F-algebra isomorphism W : U,(a1) = U, (a1).

Proof. Relations ((3.3.7)-(3.3.10)) respectively imply

Kfo(v)Kfo(z) = Kfo(z)Kfo(v), (2.3.19)

K{ o (0)Kip(w) = Gy (Co/w)Gry (C o /w)K o (w)K T o(v) (2.3.20)
KT (v)Xi,(2) = Gy (v/2)XT, (2)Ki g (v), (2.3.21)

K ()X, (2) = G (Co/2)XT, (2)Ki, (v), (2.3.22)

since Kfo(z) € U;(al)[[zil]]. It also easily follows from relation (5.0.5) that

[xio(v),x;_l(w)](;m/w) —5 (“f) T+(w), (2.3.23)
[Xil(v),xio(w)]aﬁ(v/w) =4 (f) T (w), (2.3.24)



o —

for some Y*(w) € Ug(al)[[w, w~!]]. Hence, the only possible obstructions to setting
¥(D*!) = DZ! W(CH/?) = cE/2

WG (2)) = —¢*(IKTG(C 20 WK () = —KF(CY%)
U(x§(2) = —c (CY22)K{(2) 'XT1(C2)  W(xg(2)) = —X{_;(C2)et(CV22)K o(2) "

U (x3°(2)) = Xio(2).

o —

and to extending it as an algebra homomorphism ¥ : U,(d;) — I"Jg(al) are Y*(w) and the images
under ¥ of the Lh.s. of the quantum Serre relations (4.2.10). We shall see in section 2.4 that both
obstructions actually vanish. We also postpone until section 2.4 the construction of the continuous algebra

homomorphism ¥~! : U;(al) — Uy(a). O

2.3.2 The subalgebra Ug(al) and the elliptic Hall algebra

Another remarkable feature of U,(a;) and, more particularly of its subalgebra Ug(al), is the existence of an

algebra homomorphism onto it, from the elliptic Hall algebra that we now define.

Definition 2.3.8. Let ¢1, ¢2, g3 be three (dependent) formal variables such that q1gag3 = 1. The elliptic
Hall algebra Eq, 4, .45 15 the Q(q1, g2, g3)-algebra generated by {01/2, C~Y2 it =, et e :meN,ne Z},

with w(jf invertible, subject to the relations

C*1/2 is central , (2.3.25)
P ()Y (w) = P (w)$*(2), (2.3.26)
9(Cz,w)g(Cw, 2)y™ (2)4~ (w) = g(z, Cw)g(w, C2)p~ (w)p™ (2) (2.3.27)
J(CF z )t (2)et (w) = —g(w, C'F 2)et (w)p(2), (2.3.28)
9(w,CF ) (e (w) = —g(C'F 2, whe™ (w)*(2), (2.3.29)
e G (w)] = s |5 (22 ) w5 () w2 (2.3.30)
g(z,w)et (2)e (w) = —g(w, 2)e™ (w)e™(2), (2.3.31)
g(w,z)e” (z)e” (w) = —g(z,w)e” (w)e™ (z2), (2.3.32)
Ulflev?‘z(vwz)m(v + 2)(w? — vz)et(v)er (w)e(z) =0, (2.3.33)
where m € Z and we have introduced

g(z,w) = (z — qw)(z — ew)(z — gzw) , (2.3.34)
PEG) = > i, e (2.3.35)

meN
et(z) = Z et (2.3.36)

meZ
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Remark 2.3.9. The elliptic Hall algebra &;, 4,4, 15 Z-graded and can be equipped with a natural topology
along the lines of what we did for Uq([ll) in section 3.3.2. It then becomes a topological algebra and we

denote by Smg its completion.

Proposition 2.3.10. There ezists a unique continuous F-algebra homomorphism f : 5,]—/47;(]2 — U2+(a1)
such that

f(c'?y =z, (2.3.37)
F@*(2) = (¢* — ¢ 3)? pE(CV22q77), (2:3.38)
fle5(2) = 5 14(2) . (2.3.39)

Proof. We prove that, starting from ((3.3.50) — (2.3.39)), we can extend f as an algebra homomorphism.
For that purpose, it suffices to check the relations in £,-4 observing that, in addition to (2.3.19) and

(2.3.20), we also have

142,q%

Kfo(”)Kfﬂ(z) = G1:F1(U/Z)G{E1(UQQ/Z)Kfﬂ(Z)Kfo(U) ) (2.3.40)
Klo( )K1ii1( ) = Gi(c“/w)Gﬁ(C ' v/w)K 111( )Kfo(v), (2.3.41)

as direct consequences of (3.3.7) and (3.3.8) respectively, since Kfo(z) € U;(al)[[zﬂ]]. One then easily
obtains ((3.3.33) — (3.3.36)) and ((3.3.38) — (3.3.39)). For example, we have

g(v,z)f(e*(v))flet(2) = (q_zl)gg(vvZ)Gfl(Z/U)Gn(ZQ_Q/U)KIO(UQ_2)KIO(Q_2 )Kl (v )Kfl( )
= o A = K K (02K 0K (2)

= 7,1)2@(]2 —2)(vg? - Z)KIO(UQ_Q)KIO(Q_Q )Kl 1(z )K1+1( )

v—z 9

= 7_1)2(061 = 2)(vg? = 2)GTy (vg7? /)Gy (v/2)
<K o(a22)KT 1 (2)K{p(va KT (v)
= —g(z,v)f(e’(2))f(e"(v)).

—

Considering (3.3.37), we observe that (3.3.8) implies that there exist 6% (z) € U{I(al)[[z, z~1] such that

C'U [
K K = = + +
[ 1,1(”)7 17_1(11])} G (Cvg=2/w)G, (C™1vg2 /w) 0 < w ) o (U) 0 <Cw> 07 (w)

and one easily sees that

et @ tem )] =~ ) RO )] L Kl
— ol {5 () 0w 0 () o) f Kiglua )
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Therefore, it suffices to prove that

1 + —ov—1.+ - o (@ —q?)? 1/2_—2
- m"m(cwq )0 (w)K o (wg™) " = Ty P (€5 w) (2.3.43)
2 _9v2
(g —11—1)2 K{o(vq™) 7107 (v)Ko(Cog )" = _(qg(lql))P_(Cl/zq_zv) (2.3.44)

We postpone the proof of ((2.3.43) — (2.3.44)), as well as that of

res (vwz)™ (v + 2)(w? — vz) f(e(v)) f(eF(w))fe*(2)) =0, (2.3.45)

v,z
until section 2.4. ]
We now naturally make the following

Conjecture 2.3.11. f: 8(1_/47(1\2#2 — Ung (a1) is a bicontinuous F-algebra isomorphism.

Remark 2.3.12. 1t is worth mentioning that the above conjecture is supported by the fact that, in view of
((3.3.38) — (3.3.39)), there clearly exists eT,(2) € E;q;g[[z, 271]] such that

+ + QQU + wq2 +
G (aF20/w)GT, (v/w) [ (w), e (”)}G(ﬁ q]FQw/u)Gﬁ(w/v):i[Q]q 0 "W eiy(w) =6 S e1,(v)

and that we can therefore set
—1pt +
[t 1(v) = e35(v).

In order to complete the proof, one would similarly need to construct f _l(ti

1.4m(v)) for any m > 2.

2.3.3 U,(a;) subalgebras of U,(a;)

Interestingly, U,(a;) admits countably many embeddings of the quantum affine algebra Uy (a;). This is the
content of the following

Proposition 2.3.13. For every m € Z, there exists a unique injective algebra homomorphism iy, :

U,(a1) = Uy(ar) such that

L (CFV/?) = CF1/2 tm(DFY) = DF (2.3.46)
| . sign(m)
(i} () = = [T & (g2 =2 T K (1), (2.3.47)
p=1
(X1 (2)) = X (2) - (2.3.48)

)

Proof. Let «(V) : Uy(ar) < U,(a1) be the injective algebra homomorphism mapping Uy (a;) to the Dynkin
diagram subalgebra of Uq(dl) associated with the vertex labeled 1 € I — see section 2.2.1. Tt naturally

o —

extends to an injective algebra homomorphism 71 : Uy (ay) < U,(d1). Then, let for every m € Z, i, be

the composite
—_— —_— —_— ”/\

tm 2 Ug(ar) e U,(a1) Y—:i Ug(a1) = Ul (ay) - Uy(a1).

SN

w

Thus, ¢y, is clearly injective. Moreover, one easily checks ((3.3.71) — (3.3.73)) — see next sectiomn. O
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2.3.4 Automorphisms of U;(al)

o — —

U{l(al) naturally inherits, through W, the automorphisms defined over U, (1) in the previous section.

—_—

Proposition 2.3.14. Conjugation/bﬂ/l\l clearly provides a group isomorphism Aut(Uq(c'tl)) = Aut(U(a1)).

—

In particular, for every f € Aut(Uq(dl)), we let f = Uo fo U-le Aut(Ug(al)),

L ——

2.3.5 Triangular decomposition of U,(a;)

Definition 2.3.15. Let A be a complete topological algebra with closed subalgebras AT and A°. We
shall say that (A=, A%, A1) is a triangular decomposition of A if the multiplication induces a bicontinuous
isomorphism of vector spaces A~ ®A°RAT 5 A.

—

In order to prove the triangular decomposition of U, (a1), we shall make use of the following classic

Lemma 2.3.16. Let A be a complete topological algebra with a triangular decomposition (A=, A°, AT).
Let TF be a closed two-sided ideal of A* such that TtV.A C AZT and AT~ C T~ .A. Then the quotient
algebra B = A/(A.(ZT +I7).A) admits a triangular decomposition (B~, A, BY) where BT is the set of

equivalence classes of AT in B. Moreover, there exists a bicontinuous algebra isomorphism BT = A* T+
Proof. See e.g. | |. O

Recalling the definitions of U;E(al) and Ug(al) from definition 3.3.1, we have

o —

Proposition 2.3.17. (U_(al) Uo(al) U+(a1)) is a triangular decomposition of Uy(a1) and U;t(al) is

bicontinuously isomorphic to the algebra generated by {XE_ _:r s € Z} subject to relation (5.0.5).

1,rs *

Proof. Let A be the F-algebra generated by

X+

n,r’ " ,r,s’

-1 -1 1/2 ~—=1/2 + _— + - + - -
{DlaDl 5D27D2 )C / 7C / ’Cm’c—m’Kl,O,m’Kl,O,fm’Klnr7K17— XlT‘s

meN,neN* rselZ}

subject to the relations ((3.3.2) — (3.3.10)) and (5.0.6), i.e. all the defining relations of Uy, (a;) but relation
(5.0.5). Endow A with a topology along the lines of what was done in section 3.3.2 for U, (d;), making
use of its Zy)-grading. This yields a basis {Qn :neN } of open neighbourhoods of 0. Let furthermore
AY be the closed subalgebra of A generated by

{Dl, Dy ! D, Dy Y, €2, C Y2 e K s Ko s K s Ky i m € Ny € N¥ 1 € Z}
and AT be the closed subalgebra of A generated by {

relations (5.0.1) and (3.3.10) imply that, for every N € N and every m € N, [, r, s € Z,

1rs TS E Z}. An easy recursion proves that

N
+ oK 2+ w+ _ 2p -+ PN + :
XKy = €KY X s — (@*—q Z Klml+p Lrsp T K iy N1 X rsono1 € QVL(N)

Mz

- - 2y~ K- 2_ 2 —2py— - :
ST STl B ST, ST Ul B 1) Y BRSNS, SR p+q Xlrs-i-N-i—lK m,lfolegV;l(N)

1

p

o4



K i X1 s

02X KT 2p(m—1)y— +
- Xl’r‘sK ml+ q —q Zcp Pl Xlrs+pK1mlp

1,m,l

+C DN vt K gy €92 v (N)

+ — - + 2p(1— — +
XlrsKl—ml q K —mlxlrs q —-q ZCP ol mKl—ml—i—lers —p

N+1_2(N+1)(1—m) ¢ — T '
+C q (VH( m)K1 -m z+N+1X1,ns—N—1 < Ql’:,l(N)

where ysil(N) = min(+l, F5) + N +1. It obviously follows that (A=, A%, A*) is a triangular decomposition

of A. Now let ZF be the closed two-sided ideal of AT generated by

+ + +2v+ + :t2 +
{Xlrm+1xlsn - Xlrmxlanrl X

+ +
1,s nxl ,r,m+1 + Xl )8 n+1X

1,rm

r,s,mjnGZ} .

Clearly Uy(a1) = A/(A.(Zt +Z7).A). In view of the above rewritings of (5.0.1) and (3.3.10), it is clear
that Z+.A% C A°.Z* and A°.Z- C T~.A°. Moreover, relations (5.0.1), (3.3.10) and (5.0.6) are easily
shown to imply that, for every r,s,t € Z,

(v = ¢7w)XT, (V)X (w) = (vg™ = w)XE (W)XT, (v), X[ (w) | =0,

hence proving that ZHv.A~ C A.Z" and A™.Z~ C Z~.A. The claim eventually follows as a consequence of
lemma 2.3.16 0

2.3.6 'Weight-finite highest t-weight modules

Definition 2.3.18. For every N € N*, we shall say that a (topological) module M over U;(al) is of
type (1, N) if:

i. C*1/2 acts as id on M;
ii. cim acts by multiplication by 0 on M, for every m > N.

We shall say that M is of type (1,0) if points i. and ii. above hold for every m > 0 and, in addition, coi

acts as id on M.

Remark 2.3.19. Let N € N*. Then the U;(al)—modules of type (1, N) are in one-to-one correspondence
with the Uy (a;)™=1/(CY2 — 1)-modules — see remark 3.3.3 for a definition of Ug(a;)™). Similarly,

Ug(al)—modules of type (1,0) descend to modules over the double quantum loop algebra of type aj,
Ug(a) =0/ (CH? —1).

—

In view of the triangular decomposition (U;(al),Ug(al),Uf;(al)) of Ug(al) — see proposition 3.3.11 —,
we naturally expect that a new, adapted notion of highest weight modules exists, in which ﬁg(al), although
non-abelian, plays the role usually played by the Cartan subalgebra. Thus, we restrict our attention to modules
over I"J’q(al) which, regarded as Ug(al)—modules, split as direct sums of indecomposable modules over Ug(al).
We refer to those summands as t-weight spaces. Moreover, the injective algebra homomorphism ¢y of propo-

sition 2.3.13 restricts to an injective algebra homomorphism Ug(al) — ﬂg(al) from the quantum Heisenberg
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subalgebra UJ(a1) of Uy(ar) to UY(ay). Therefor.e, considering any U/ (a1)-module M of type (1,0), we get an
action of the infinite-dimensional abelian algebra Ug(al)/(Cl/2 —1) on all the t-weight spaces of M. Whenever
the latter decompose into direct sums of generalized eigenspaces of the commuting family of linear operators
{Kf(]’m, Kio—m : ™ € N}, we shall say that the t-weight-spaces are (-weight. In the latter case, we let Sp(M)

denote the set of all the eigenvalues of K{, , over M.

Definition 2.3.20. We shall say that a (topological) U’;(al)—module M is a t-weight module if there exists
a countable set {M, : @ € A} of indecomposable ¢-weight Ug(al)—modules, called the t-weight spaces of
M, such that, as ﬂg(al)—modules,

M= M, (2.3.49)

a€cA

We shall say that M is weight-finite if, in addition, Sp(M) is finite. A vector v € M — {0} is a highest
t-weight vector of M if v € M, for some o € A and, for every r,s € Z,

X w=0. (2.3.50)

1,r,s

We shall say that M is highest t-weight if M = U;(al).v for some highest t-weight vector v € M — {0}.

o —

It is reasonably clear that, owing to the triangular decomposition (ﬁ;(al),Ug(al),U;(al)) of U{](al), for
every highest t-weight Uy (a1)-module M and every highest t-weight vector v € M — {0}, we have

M = Uy (a1).U)(a1).v. (2.3.51)

Remark 2.3.21. In view of (2.3.51), simple highest ¢-weight Uﬁl(al)—modules, including simple weight-finite
Uﬁl(al)—modules, are entirely determined as M = Uq_(al).Mo, by the data of their unique highest t-weight
space My = Ug(al).v. Classifying simple weight-finite U,(a;)-modules therefore amounts to classifying
those simple Ug(al)—modules that appear as their highest t-weight spaces. We intend to undertake that

classification in a future work.

Remark 2.3.22. (2.3.51) induces a partial ordering of the t-weight spaces through the Q™ -grading of

Uq_(al).

—_—

2.3.7 Topological Hopf algebra structure on Uﬁl(al)

Definition-Proposition 2.3.23. We define

A= (@@@) oAoT!, (2.3.52)

S=ToSol !, (2.3.53)

E=col !, (2.3.54)

Equipped with the above comultiplication, antipode and counit, Ug(al) is/aijpological Hopf algebra. The

latter is easily extended into a topological Hopf algebraic structure on Uq(al) by setting, in addition,

ADHY =D @DF',  S(DF)=DF' and DY) =1.
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2.4 Doubly Affine Damiani-Beck isomorphism

o —

In this last section, we complete the proof of theorem 3.3.22 by constructing U~ : Ug(al) — U,(a1); i.e. by
constructing a realization of the generators of ﬁg(al) in Uy(a1).
2.4.1 Double loop generators
Definition 2.4.1. For every m € Z, we set Xfm(z) = YF7(x(2)).
It is clear that
Proposition 2.4.2. For every m € Z, we have
o (X)) = X7 (1/2) - (2.4.1)
Proposition 2.4.3. i. There exists a unique 1[)'1"71(2) € Uy(a1)[[z, 27 Y]] such that
o C~1/2¢2y
¥ (15 () (CF2w)) ’XT(Z)}G;O(c—I/zw/z) — =5 (Z Wii(2). (2.4.2)
i. Setpy 4(z) =¢ <¢f1(1/z)) Then, we have
C~1/2¢2
— (/2 Vet () —1 _ -
X1 (2).Y (xf (2w (w) 7)) | sy = 0 ( ). (2.4.3)
Proof. The proof of 4. is immediate from the definitions. 7. then follows by applying ¢ to (2.4.2). O

Remark 2.4.4. Tt is worth noting that wfil(z) ¢ U,(a1)[[z, 27 1]).
Corollary 2.4.5. For every i € I, we have
i ki (091 44(2) = G (CTV2¢%0/2) G (CTV20 ) 2)9f 1 (2)k; (v);
ii. P11 (k] (v) = GIo(CT2q 722 /0) G (CFV22 o)k (0)dhi 1y (2);

Proof. . follows by applying ¢ to i. and 4. is a direct consequence of (2.4.2) and (2.4.3) on one hand
and of (4.2.6) and (4.2.7) on the other hand. O

Let us then define the following U, (a;)-valued formal power series
5 (2) = kg (2)ki (2) € Uglan)[[=71]]. (2.4.4)
Denoting by Z(U,(a;)) the center of U,(ay), it is straightforward to check that indeed

Proposition 2.4.6. TZ(2) € Z(U,(a))[[zT]].
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Similarly, define
0" (2) == ki (2)ky (2¢%) € Ug(an)[[=7]]. (2.4.5)

Then we establish an important result.

Proposition 2.4.7. We have the following fixed points of Y';

Y (p5(2) = ™ (2), (2.4.6)
v (vEa() = vin). 247

Moreover
Y (Tg(2)) =T (2¢%) (2.4.8)

Proof. (2.4.6) and (2.4.8) are obvious. We prove (2.4.7) for the upper choice of signs. In order to do so,

we first rewrite (2.4.2) as
¢*w

i () )y =0 (20 9120

Now, (2.2.38) and the definition of Y imply that, on one hand,

+ + + 2 — (-1 +—1/2 -1
|:|:X0 (Z1>, [XO (22)’)(1 (wq )]Gfo('z?/wq%} G11(21/22)G1y(21/waq?) %0 (C z)ko (O Z) :|

- [, (“) 6 () [ (@)Y ()] o gy

29G> w
= 0 <Z;1]2> 5 ()Y (B @) BNy un) = 12,9 (Z;,z) 5(5)9 <qu2> v (#fa2)

whereas, on the other hand, (2.2.38), (4.2.6), (4.2.7) and (4.2.9), as well as corollary 2.4.5, imply that

Gio(w/z)

+ + + (212 — (O~ 1 )Nkt(01/2,)1
|:|:X0 (Zl)’ [XO (ZQ)’Xl (wq )] G1_0(22/w‘12)] G11(21/22)G1y (21 /wq?) %0 (C Z)ko (C Z) :|G1_0(w/z)

_ + + + (02 — (-1 +(0—1/2,)1
= HXO (Zl)v [Xo (2’2)7X1 (wq )}Gl—o(zz/qu)] G (1) 22) Gy (21 ) » Xo (c Z)] kg (c z)

- ) bt vt

z

G11(21/22)Gg(21/wg?)

+ 6 (*) [xa'(zl), {kS—(ZQC_l/Q),XT(qu)] } k(‘)*‘(C_l/2Z)—l

Gl_o("‘?/qu)] G1y(z1/22)Gro(21/wa?)

_ (ﬂ) 5 (%) G(To(w/zl)G&(qu/Z;)_quﬂ(Zl/w)Glo(zl/qu) i’:l(qu)
+3(2)s(2) Goi(g*w/z2) = Gl_O(ZQ/wq2)¢i1(wq2)-

z w qg—q1
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Making use of (3.3.68) and (5.1.5) — for the latter, see Appendix —, we eventually get

+ + + (o1y2 — (O~ k(0121
HXO (1), [ (22,1 (g ”%(zz/wq?)]G;1<Z1/zz>c:;0(zl/wq2>’XO (O (C72) }Gl_o(w/z)

= 2,0 ()5 (2) [ (2) -5 (D) whatwat) - 2,6 (2) 5 (2) 5 (L) i e

- - (2)0(2)s (%) wio,
thus proving the result. The case with lower choice of signs follows by applying . O
Proposition 2.4.8. For every m € 7Z, we have
i (97102, X (0)] = 1210 (%) 7 (CY2q722)X 1,04 (Ca22);

i, :¢il(z), X;m(v)} X g (2)-

= [2],0
Gy (2/va2) G, (2/v) (2l (Uq>

i _¢1_,—1(Z)7Xf—m(0)} = (210 (F) Xif(mﬂ)(Cqﬂz)fﬁ(cl/zqdz);
. GTO(UqQ/z)GILI(U/z) {1,[)1_7_1(2),X1_7_m(”0)} = _[2]115( )Xl__(m+1)( )

v (9112, w1 (0)] = ;B [0 (&) 9T (CYV20722) — 8 () o (C 20 20)].

Proof. 4. and . are readily checked for m = 0. Then, assuming they hold for some m € Z and applying
Y+ it follows from propositon 2.4.7 that they also hold for m + 1. #i. and . are obtained by applying
© to i. and 4. respectively. Finally v. is obtained by direct calculation from the definitions of @bfl(z) and

wl_ﬁl(v), ie.

_ +(—1/2 + - ;(C7Y2
B hxo (© w), Xq (Z)} G1o(C~12w/2) ’ [Xl (), %0 (© U)} GTO(CU%/U)]
C-1/242y e e
_ Cc12¢% z —1/2 — (" —1/2. N1+ ((—1/2
21,6 ( u ) b(a) [Xo (P @ PO

5 <0_1/2q2w> {s (C’u> ki (C~w)kf (C7V/22)

) <Cz) ky (C_lv)kf(C_l/Qu)} :

u

Compare with (2.4.5) to conclude the proof. O

—

Definition-Proposition 2.4.9. For every m € N* there exist wfm(z)J‘:g(z) € Uy(a)[[z,271]], such
that
I (v)=0 (2.4.9)
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and, for every m,n € N*,

m — —1,— / _ 4
Y@ ) @) = 0 () )
. m—2 q%z N N
+(q —dq ) Z 6 <Cl/2 ) ’llbl,k(v)rm*k(v>
k=1
2m
5 <é{1/21> b)) (2.4.10)
Y ($1m(0)) = 97 (). (2.4.11)
Y (T3 (v)) = D (ve?). (2.4.12)
e LA | P ( > Yimn(@)

w( ) 0 (2413

[, (w), Ty (v)] = 0. (2.4.14)

Proof. 1t suffices to prove the proposition with n = 1 since the general case follows by an easy recursion
on n once we have (3.3.82). The proof for n = 1 is by recursion on m. For m = 1, (2.4.9) and (2.4.10)
are definition-proposition 2.4.3, whereas (2.4.11) is proposition 2.4.7. (2.4.12) and (2.4.14) - with n =1 -
automatically follow from (2.4.9). Making use of propsition 2.4.8, it is straightforward to prove that, for

every m € N*

2],0 <u22> y-1 <{Ym+1 (k;(C*1/2y)*1xf(v)) ,XT(qu)]GO_l(Clq%/uJ

— [2]40 <CZ> [Ym'H (kl_(Cl/Qq_Qz)_lxl_(Cq_Qz)) ,Xf(u)} (2.4.15)

v Go1(2/ug?)

_ ——1/2, N1 — +
/O (d/02) [%1( ) [ (e @) (U)}Gm(c_lv/u)]G’l_o(Z/UQQ)Gﬁ(Z/u)‘

If m =1, (3.3.82) is an easy consequence of the above equation. Now assume that the proposition holds
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up to some m € N*. Then (2.4.15) reads, for that m,

2140 () v ([Y’"“ (k5 (C20) x5 (0)) ()|

— (20,6 (GZ> Y (K (CV2722) X (Cg %)) x ()]

v

G01(C‘1Q‘QU/U)>

G(i(z/wf)

(v +
= (&) cnwiencnee/cs (¥ T ()}Gm(z/uqacuu/u)

) m—2 ¢
+(q —a ) Z ’ (&L> G1o(v/C2)GT, (vg?/C2) [¢1 1( )7¢ik(u)} by p FIL_k(u)

— Giol=/ug?)Gr (/)
- <QZZLU> Cro(v/C=)C1, (va?/C2) W“( ) W’”(u)] Gro(=/ua®)GT (/)
- —mq(q—q-l)a(&) ls(2) -5 (%) et
olg—q" 2225( ) { <uz ) L k+1(“q ) — <un2k> wg—i—l(u)} Ty (w)

20 () {3 (5) im0 =5 (220 ) 0}

It immediately follows that (2.4.10) holds at rank m + 1, for some I’} (z) € U,(a1)[[z, 271]] satisfying
(2.4.12). Considering (2.4.15) at rank m + 1, and substituting the above results, we get

12]46 <22> y™! ([ym“ (k7 (C7120) %7 (0)) ] (ug?)]
= () [ (a2 %) xf )

v

Ggl(CquU/u)>

Go1(2/ug?)

B 5<CU> Gro(v/C2)G, (vg?/C2) [wll( ), m+1( ):|G1_0(z/uq2) Gy (z/u)

TR ) ()t

5 2y, .
5| gu ) anerencieasen [$hG )’”’Lmﬂ(“ﬂc;o<z/uq2>aa<z/u>'

—

It readily follows that, on one hand, there exists some ¥ ,(v) € U, (sl2)[[v,v™"]] such that (3.3.82)
holds for m + 1 and that, on the other hand,

(ug? = 2)(u = =) [#1,(2), Ty (w)] = 0.
Since V(T (u)) =T} 1 (ug?), we have that

(ug®@ ) — ) (ug? — )[Il)u( ).TEy (u )] =0

for every p € Z and, as a consequence, (2.4.14) holds for m + 1. Finally, (2.4.11) for m + 1 follows from
the corresponding case of (3.3.82), which concludes the proof. O
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Remark 2.4.10. Note that since [ in(z),I‘f{L(v)] = 0 for every m,n € N*, we have that

kLot = Do 1 n € Qe N Qg (2.4.16)

1,n,k™ m,l m,

—

guaranteeing the convergence in U,(d;) of each of the terms of the series wik(z)I‘;ik(z) on the the r.h.s
of eq. (2.4.10).

Definition 2.4.11. For every m € N*| let
I, (2) =0(Tn(1/2)  and ¥y, (2) = (¥, (1/2)) (2.4.17)
Then,

Corollary 2.4.12. We have

7 (v) =0 (2.4.18)
and, for every m,n € N*,
— m (ot (/2 N+ (N —1 _ Z -
[Xl (v),Y (Xl (C )k (2) )}G&(Cl/?v/z) = (cl/% ()
. m—2 q2kz
—(a—q") ; 5 <Cl/%> ~mry @)% 4 ()
2m
q "z _
—0 (C’l/%) 1/’1,7m(v), (2.4.19)
Y (¢i_m(v)> =Y n(v), (2.4.20)
Y (P2, (v) = T, (vg?) (2.4.21)
. . = 20— ) v 2
GSLI(q2mw/U)Gir1(q2(m—1)w/v) [¢17,m(v),¢1’,1(w)} G(J)rl(vq2/w)G’fr1(v/w) - [ ]q rqg ¢1,_(m+1)(q U)
2m
qw _
8 () e 2)
[¥1 _n(w), T2, (v)] = 0. (2.4.23)
Proof. 1t suffice to apply ¢ to the results of the previous proposition. O

Proposition 2.4.13. For every i € I and for every m € N*, we have

i ki (v) 1,:tm(2) = Gij,Fo(CjFl/Qquv/Z)Gil(CjFl/QU/Z) fim(z)k;(v);

i, YT L (2)k () = G (CT2q72m2/0)GF L (CTY22 fo)kif (0T 1 (2);

Proof. Clearly . follows by applying ¢ to i.. We prove . by induction on m € N*. The case m = 1 is
corollary 2.4.51. Now, assuming that 7. holds for some m € N*, we can make use of (3.3.82) and (2.4.22)
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to show that

ki_(v) 1,:t(m+1)(z) — Gfo(c¥1/2q2(m+1)v/z)(;ifl(C$1/2q2mv/z)
xG;fo(cﬂ/?q?mu/z)cj;(cﬂ/%/v)ﬁim(z)k;(v)
= G;‘»To(Cﬂ”q“m“)v/z)G?E(Cﬂ”z/v)wiim(z)ki (v)

whch completes the recursion. ]
The above proposition has the obvious

Corollary 2.4.14. For every m € N*, we have

p (Wi, (2) = GHCTY2¢™/2)GF (CTV0/z)
G (CTYV2Pm D ) GF (CFY2 0 209t (2~ (v) (2.4.24)

Y (et (v) = Gi(CTY2q ™2 v)GE (CF22 /v)
GG (CTV2q720m D 2 fo) G (CFV2q 722 f0) o™ (0)hi iy (2012.4.25)

Proposition 2.4.15. For every m,n € N*, we have
_ _ Cq2=m)y v 1/2 —2m g — _
Im(v)v wl,—n(w):| = [Q]q (q —4q 1) {5 (UJ @ (C 1/2q ? U)¢1,—(n—1) (wq 2)/wi’—,m—l(v)

Yy - + —2\ 4 1)2 =2
-0 W wL_(n_l)(w)d)Lm—l(vq )@ (C q U) )

where we assume that .

qa—4q

Yio(z) = (2.4.26)

Proof. The case m = n = 1 follows immediately by proposition 2.4.8.v. Now, applying a — [a, wi_n(w)}
and a — [zﬁin(w),a] to (3.3.82) and (2.4.22) respectively and making use of corollary 2.4.14, one easily

completes the recursion. ]

2.4.2 Exchange relations

—

Proposition 2.4.16. For every m € N, there exists some &n,(2) € Ug(an)[[z,27 Y] such that, for every
n €7,

wa?
[ 1_,m+n+1(w)7Xl_,n(z)]cgl(w/z) = _[Xl_,nJrl(w)?Xl_,ern(Z)]Gal(w/z) = <Zq> Y™ (Em(2) . (2.4.27)

Proof. Assume first that n = 0. The case m = 0 then follows immediately from the definition of X7 ;(w)
and relations (4.2.7) and (4.2.9), leading to &y(z) = 0, as it should. Taking the commutator of the case
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0 = [y (). Xy ()l gy 11 (0)]
TI(U)LXI_,O(Z)]G&(M/@ + [ X1 (w), [X54(2), Ipil(v)]]Ggl(w/z)

P
C1/242
= [2yo () {5 q ) X o (wa ), X0y, w22

w
Cl/2q2’l) B - -
" (z) G a2 /)G, (=) K11 (W), X (2 2)]cgl(w/z>} '

The latter implies that

_ _ _ w

[X1,2(wq 2)7 Xl,O(Z)]G’O_l(wq*Q/z) =0 (;) &1(2), (2.4.28)
_ _ w
G, (2472 /w)G1 (2/w) [Xl,l(w)aX171(Zq 2)]G0_1(w/z) ==9 (;) &1(2), (2.4.29)
for some &1(z) € Uq(dl)[[z, 2~1]]. Multiplying (2.4.29) by (2¢~2? —w) and subsequently factoring (z—q~2w),
we get that

Xy (w), Xiy(2q72)] = 6 (= 5 (= 2.4.30
oo/ K01 (0], Xy (ca )] =6 (T) &a(2) +6 (7 ) () (2.4.30)

o —

for some no(z) € Ug(a1)[[z, 27 1]]. Multiplying the above equation by ¢~2(z — w), we get

(o0 = )Xy (00X ) = 72 = )X 20X (0) = 200 - 203 (2 ) mle). (2431)

)

But, on the other hand,
(27" —w) Xy ()X (247%) = ¢7(z — w)Xq, (24X, (w)
= Y ((z¢7" = w)xy (w)x7 (2¢77) = ¢ (2 = w)x7 (247 )x7 (w)) =0

by relation (4.2.8). Substituting back into (2.4.31) proves that 7n9(z) = 0 and that (2.4.30) eventually

reads
Goy(zq72/w) [Xil(w)’ Xil(zq_Q)] =0 (%) fl(z) . (2432)

Combining (2.4.28) and (2.4.32), we get the case m = 1. Now assume that the result holds for all
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nonnegative integer less than m € N. Taking the commutator of (2.4.27) with wfl(v) yields

1/2,,2,
24 (v) {5 (C A ) X m2(wd ™), X106 (wg-22)

z

01/2q2U B B 3
0 ( Gan (a2 ), (=) K1 (0 X (207 )] 65 )

1/2,2,,
= —[Q]q@_(v){5 <C : )[Xl,z(wq_Q)aXLm(Z)]Gol(wqQ/Z)

w

z

Cl/QqZ,U B B -
v ( Gon a2 )i, (=) K10 () K (2076 )
wq2

s () 6n(2), T, ()

The latter implies that

[Xl_,erz(wq*Q), Xl_,O(z)]Ggl (wg—2/z) = 0 (%) Emt1(z) + 0 <w;12> m(z), (2.4.33)

Gy, (2q72/w)GT, (2/w) [Xf’mﬂ(w),Xil(zq—2)]G&(w/z) =4 (%) Emy1(z) +0 <w52> n(2), (2.4.34)
X8 X0 g2 = 8 () i) =8 (2L ) ), (2.435)

G, (a2 )6 () KT () X1 (0] 6 () = —0 (%) m3(2) =0 <qu2> m(2), (2.4.36)

o —

for some Emi1(2), M (2), m2(2), 13(2) € Uy(a1)[[z, 2~ 1. Multiplying (2.4.36) by (2 —wq?) and subsequently
factoring (z¢? — w), we get that

[ 1_7m+1(z),X1_71(w)]Gal(z/w) =9 (qu2> ns(w) + 9 <;;}4> na(z), (2.4.37)

—

for some n4(z) € Ugy(a1)[[z, 271]]. But, by the recursion hypothesis,

[ 1_,m+1(z)7X1_,1(w)]Gal(z/w) =Y ([Xl_,m(z)?Xl_,O(w)]Gal(z/w)> =9 <;;2> Y (§m-1(w)) -
Comparing with (2.4.37), it follows that
n3(w) ==Y (§m-1(w))  and  nu(z) =0.
By the recursion hypothesis, we also have
X2 (0q ™) X0 o gz = Y (Xia (002X Do, wg2/) = =0 (5) ¥ (Ena(2))
= 0 (%) n3(2)

Comparing the above result with (2.4.35), we conclude that 7;(z) = 0. As a consequence, (2.4.33) now
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reads )
_ _ wq
[ 1,m+2(w),X1,o(z)]G51(w/z) =0 <z> Em+1(2) . (2.4.38)

On the other hand, multiplying (2.4.34) by (z — wq?) and subsequently factoring (z¢> — w), we get that

Gy (zg72/w) [Xim+1(w)v Xil(zq_2)] =4 (%) €m+1(z) +9 <ZZ2) 775(2) ) (2439)

—

for some n5(2) € Uy(a1)[[z, 27 1]]. Multiplying the above equation by (2 — w) yields

22

V(72 = 0K 00X 7%) = (2 = )X 020X (w0)) = 0= 26 (25 ) (e). (2440)

But the recursion hypothesis

4
_ _ ., wq
[XLm(w),Xl,O(zq 2)]Ga1(w’12/2) =90 <Z> fm—l(z) (2'4-41)
implies, upon multiplication by (zg=2 — wq?), that
(247 = wa®) X ()X p(207%) = (2 = w)Xi (27 %)X (w) = 0. (24.42)

Substituting back into (2.4.40) proves that 75(z) = 0 and that (2.4.39) eventually reads

wq2

Go(w)2) Km1(2), X1y (w)] = <Z> Emy1(2). (2.4.43)

Combining (2.4.38) and (2.4.43) completes the recursion and the result holds for any m € N, assuming
n = 0. The cases n € Z* are then obtained by applying Y to the case n = 0. O

Corollary 2.4.17. For every m € N and every n € Z, we have

wq2

[Xfm+n+1(z)7an(w)]cgl(z/w) = _[XInJrl(Z)v Xfern(w)]Garl(z/w) =90 <z> oY T (E,(1/2)) .
(2.4.44)

Proof. It suffices to apply ¢ o Y "™ "1 to (2.4.27). O

We now return to the proof of theorem 3.3.22 and to the map ¥ : U,(d;) — Uﬁl(al).
Corollary 2.4.18. We have
i. YE(w) =0;

1. and for every i # j,

3
50 S0 () WO )+ O DO VO )+ o ) = 0.

c€S3 k=0

Proof. The proof of proposition 2.4.16 makes it clear that the relations (4.2.9) with i # j there, both
follow from the relations

Xo(v), X (w =0 2.4.45
X X w)] (2.4.45)
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and

[Xil(v), Xio(w)} &t ojuy — (2.4.46)
11

—

in the completion U, (a;). A tedious but straightforward calculation shows that the quantum Serre relations

(4.2.10) similarly follow from

+ + _
{Xl,—l(v)v Xl,—Q(w):| oy~ (2.4.47)
and
X7 ,(v), X7 (w =0, 2.4.48
Xral) X )] (2.4.45)

which in turn are a consequence of ((2.4.45) — (2.4.46)) — just apply Y there. We can therefore extend
U, (a1) — Ug(al) by continuity ! into W : U,(a) — Uﬁl(al) and it suffices to check point ¢. Since by

construction U, (ar) is dense in U, (d;), there exists a sequence (u, (v, w))nen € Ug(ar)[[v, v, w, w™ N
such that

nEI—&I-loo up (v, w) =0, (2.4.49)
whereas, on the other hand,
lim O (un(v,w)) =6 va ™ T (w) (2.4.50)
n=-+00 n(U, W - w w). 4.

Take for example the partial sum of the series involved on the Lh.s. of equations ((2.4.45) — (2.4.46))
above. The result now follows by the continuity of v O

Remark 2.4.19. We have therefore completed the proof of that part of theorem 3.3.22 that claims the

existence of a continuous algebra homomorphism U Uq(dl) — U{](al). We still have to construct the

—

inverse continuous algebra homomorphism W : Uﬁl(al) — U,(a1). This shall be done at the end of the

present section.

2.4.3 Weight grading relations

The results of the previous subsection have the following
Corollary 2.4.20. For every m € N* and every n € Z, we have:
i[O (u), X, (2)] = 0;

it [ g1 (1), X7 (2)] = =7 (CYPuq ™) i oy 1y KTt (2072), 97 0 (W] (2 pcugaa-my
Cu_ \.
o ()

i [T (u), XT, ()] = 0;

1y “¥n

. 2

. [‘pfmﬂ(v)aan(Z)]Goﬁ(v/z)c{rl(U/zq2(m+1)) = _Gal(z/vq%)[xinﬂ(”)a lpfm(z)]c:gl(v/z) o9 <%>
Proof. Tt suffices to prove the proposition for n = 0 as the general case then follows by applying Y™ for
any n € Z. Assuming that n = 0 in 4. and 4., it then suffices to take the commutator of (2.4.27) — for
n = 1 there — with x7 (2). O

¥ is obviously Z2)-graded, hence continuous.
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Remark 2.4.21. Tt turns out the, for every m € N*, T} (2) € Z(U,(d1))[[2,27]]. Indeed, in the next

section we actually establish that these central elements consistently vanish.

2.4.4 The central elements I'>_,(2)

Before we can actually establish that these central elements vanish, we need to establish a few lemmas. In what
: . _ 1< . 1< . : 0/
follows, we let Uz (a1) = Uz (a1) — Uz (a1) N Uy (ay).

Lemma 2.4.22. For every p € N*|
i Ay _,(v) =1@ ;7 _,(v) mod Us(a1)®Ug(a);
. A(Xf_,p(v)) = H?;ll I‘a'(0*1/2q2€v)*1k8“(0_1/21})_1®Xf_p(v) mod U;(dl)(@Uq(dl).

Proof. First one easily checks that
Ay _1(2)) = 1@ 97 _1(2) + [2], (¢ — ¢ )x7 ()@ (¢ 2)k{ (2) + 91 _1(2)@p " (a7%2)

which proves i. for p = 1. Assuming i. holds for some p € N, the result for p + 1 easily holds making use
of (2.4.22) and of the recursion hypothesis.

Similarly, one easily checks that
AXT_y(0) = X{_1(0) @ 1+ kg (C20) 18X (v),

which proves 4. in the case p = 1. Assuming the result holds for some p € N, the result for p + 1 easily
follows making use of proposition 2.4.8.474. and of the recusrion hypothesis. ]
For every N € N*, we let
Sonv_1:={0€Sn_1 : o(l)=1
Vpe[N—-1] o(2p) <o(2p+1)
oc(2N —4) <o(2N - 1)} (2.4.51)

Define w:7Z — I = {0,1} by setting, for every n € Z,

(n) 0 ifnis even; (2.452)
w(n) = 4.
1 i nisodd.

Lemma 2.4.23. For every r € N and every i1,...,12,—1 € j, there exists (BT,U)JESQ<_1 € FS5r—1 such that

27! g 2oy 0"
<x;(z1)...X;H(z%_l),xj,_r(v)>:—q_iqq_l 3 5r,01‘[15i0(w(n)5 Zomd ) (2.453)

v
UESQ<7‘71
where we have defined 7 : N — I and v, : N — Z by setting, for every n € N,

0 ifn=1;
m(n) = (2.4.54)
w(m) ifn>1
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and

Vo (n) = 21 =) #n=1 (2.4.55)
201 —7r)+n—3w(n) ifn>1.

Proof. The case r = 0 holds by definition of the pairing. Assume that (2.4.53) holds for some r € N.

Then, making use of the previous lemma, one easily shows that, for every iy,... 49,41 € I
(xch() X, (o), [T (20, X, (0)])

ZA(l)q2w(m)
= g m + + +
- q— q_l Z H 5iA(1),1—w(m)5 <Z> <XiA52) (ZA(IQ)) e XiA<2> (ZA(Q) )7 Xl,—'r(v)>

2r—1
(2,2r—1) 2 m 2r—1
AGP[2r+1]] me(2]

X {RZ(ZA) - G;-;(I)’O(C1/22A§1>/U)G;;(1)’0(C1/2ZAg1)/U)RZ(z;1)} 7
2

1

where
< _ - —1/2 .
RA(ZA) - H GiA(Q) ,iA(l) (C ZA%Z) /ZAS,{)) )
me[2] " m
ne[2r—1]
AP <Al

Razxh = [I & (Cl/QZA;p/ZAg))-

@)t )

me[z] 0 Am
ne2r—1]
AP > AL

Making use of proposition 2.4.8.44. on the L.h.s. and of the recursion hypothesis on the r.h.s., we get

Cz _
2], 6 <) <x;;(zl) ot ) X (0 2)>

v
vr(n)
[2]r ZAg)q2W(m) ZA((TQ()n)q
= - (q _ qq,1)2 Z 57“,0 H 62A£711),1—w(m)6 P H 5iA(2) ,7T(TL)6 v
Aepgfll—ﬂl) me[2] nef2r—1] o)
0652<r71
X { ;A(v/z) - GE{O(Cil/qu*Q/v)Gfo(Cil/Qz/v)Q;A(z/v)} ) (2.4.56)
where
;A(U/Z) — H G;(n),lfw(m) (C_l/QUqAT(m’n)/Z) :
me[2]
ne[2r—1]
A, A
and

oal(z/v) = H G;(n)’l_w(m)(Cl/2z/vq)\r(m7n));
me(2]
ne[2r—1]
AR Sl

o(n)

where A\.(m,n) = 2w(m) — vp(n). In view of the 6(Cz/v) factor on the Lh.s of (2.4.56), it is clear that
the relevant factors in Q;A(v/z) and Q;A(z/v) are the ones contributing to a pole at Cz = v, i.e. the

ones for which A\,(m,n) = cr(n)1—w(m) O Ar(M, 1) = —Cr(n) 1—w(m) Tespectively. We thus let
LE = {(m,n) € [2] x [2r — 1] : \p(m,n) = :tcﬂ(n)71_w(m)}
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and determine, by inspection, that, for every r > 3,
L ={(1,2r —2),(2,2r — 3)}, whereas L, = {(2,2r —4)}.

Since we cannot have AE?()%? 0 > Agl) while A((TQ()QP?)) < Agl) for o € S5, |, we see that the relevant pole is

necessarily a simple pole; as one might have expected, given the absence of a §'(Cz/v) factor on the 1.h.s
of (2.4.56). It easily follows that

{Q5av/2) = GLo(CT22q72 /)Gy (™22 0)QZ A (/0) } = 2], (4 — 470,00 <°;Z)

for every (o,A) € S5, X P21 such that A'%)

[2r+1] o(2r—2) < A&” and either:

. Af()%_ 2> Agl) (and then necessarily, Ag2()2r_3) > Agl)); or
(2) (1) 2 (1),
° AU(QT_ y < As 7 and AU(QT_S) <A

and, for each such pair (o,A), 75a € F. Note that the above conditions impose that A((72()1)=1 < Agl) and

hence A§2) = 1. Now, for each pair (o, A) as above, define

) <1 2 ... 2r—1 2 2r+1>
o= :
(2) (2) (1) (1)
1A% A®) Al A
It is obvious that ¢’ € S5, ;. Actually, setting (¢, A) — ¢’ defines a map S5,_; X P[(éﬁ;]]l) — S5, which

is easily seen to be a bijection. Observing furthermore that v, — 2 = v,11 and setting 3,11 »» = 85704,

we can rewrite (2.4.56) as

q—q! v

< =
o'e€S5 11 n=1

-~ + + 2] EaS Zgr(n) g ™)
(3 (1) oo, (o). KTy (0)) = = Y Brrer [T 0immd | =,

which completes the recursion. ]

Proposition 2.4.24. For every m € N, we actually have T}, (v) =TZ, (v) = 0.

Proof. Tt suffices to prove that, say T'~, (2) = 0 for every m € N* and to apply ¢! to get the result for

T (). Considering the root space decomposition, it is obvious that having
<Xi+1 (Zl) e X;gm(22m)7 F:m(z)> = 07

for every ii,...,i2m € I, is a sufficient condition. Now, making use of the previous lemma, one easily
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shows that

<X+(21) oxt (zom), {Xffm(v), xf(z)} >

2], AW A% >qym(n)
T (g—q )2 Z ﬁm»"‘s@Au)’l‘s ( ) H 5@,(2) 7(n)0 v
Acp(Lm=D ! ne[zm-1] "
UES2<m71

X {G;Z(l)70(01/22A§1)/U)RZ(ZA) — Ri(zgl)} ,
1

where

< _ - —1/2
R3(2a) = H G 1) ,(2) (e NCYENCE
A A 1 n
ne[2m—1] 1 "
AP >aM

-1 — 1/2
Ri(zah = I G 0@ 20/2,0).
ne[2m—1] AT An
A 4D

Hence, upon rewriting, we get

(x(z) -, Gam), [XT (0, %7 (2)])
Vm ()
2], 2,4 2@ 4
T T le—q 02 Z 5m,o‘6iAgl),15( ;) H 5z'A(2),7r(n)5 ———

(2-4q Aepﬁ;zaﬁw nel2m—1] "
0652<m—1

x {GLo(CV22/)Q5 A (/0) — Q7 a(v/2)} |

where

Sae/ =TI Gra(© o™ ),
ne2m—1]

©) 1
Agmy>AL

;A(U/Z) = H Giw(n)(clqu_ym(n)/z) .

ne[2m—1]

A% <A
In view of (2.4.19), the contributions to <XZ (z1)-- -x;';m (22m),T'Z,,,(2)) in the above expression must come
from terms with a pole at z = C*/2v. The latter happen for factors in Q;A(z/v) or O?71A(11/,z) such that
Um(n) = €1 x(n) OF Um(N) = —Cy x(n) respectively. We thus let

ME={nec[2m—1]:vn(n) = teirm))-
Upon inspection, one easily sees that
M} = {2m — 4}, whereas M, = {2m — 1}.

Now, for o € S5, we have o(2m — 4) < ¢(2m — 1) and no term has a pole at z = C/?v. We conclude

that (x; (z1) - x5 (22m),T'7,,(2)) = 0. O

12m
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2.4.5 Relations in \I!_l(Ug(Cu))

Definition 2.4.25. We set Kio(v) := —k; (C'/?v) and, for every m € N*,

Kfm(v) =(q— q_l)kf(C’l/qu_Qm) o(v).

1,m

We then let
Kio(v) i= ¢ (Kio(1/v)) = ~k{ (C*/20)

and, for every m € N*,
K7 (v) = ¢ (K7 (1/0)) = (0 = )1 (0)kE (CY20g72m).
It is straigthforward to establish that

wq2m

k7 (CV2w)pt, (v) = G, ( > 61 () i )k (C2w). (2.4.57)

By making repeated use of the above relation, one readily checks that, in terms of (K, (v)),,enx, the relations

(2.4.10) and (3.3.82), as well as the relations in corollary 2.4.20ii. and iv. of the previous subsections respectively

read
_ 1 2"\ (17 e —1/2, 2p\—1 | 1o+
b (). X)) = =6 (G ) | IITo (€7722¢") 7 | K{ () (2.4.58)
p=0
+ + wg*™ + (0 —2my et
[Kl,l(w)7Kl,m(U)]Gl—l(w/U)Gﬁ(wq%m—l)/v) = [2]g40 y K1,0(U‘1 )Kl,m+1(v)
5 (S ) Ky (0K, (vg?) (2.4.59)
vg? 1,0 1,m+1\Y4 -
[Kimﬂ(l’)aXf,n(Z)]Gﬁ(cv/zq%nwn) = —Fa(01/2U9_2(m+1))[Xim-l(Zq_Q),Kim(U)]G;rl(zqﬂm—l)/cy)
qum
x 5< CU) (2.4.60)
2
zq
K0 X0 Mo 0/ = ~ i (00 KLl ) 6 () (2.461)

Proposition 2.4.26. For every m,n € N, we have
(v—q=22)(v— " " FVKT L, (VKT L, (2) = (vg™2 = 2) (0™ — P )KT L (2)K L, (v), (2.4.62)

Proof. We apply the map a +— [a, Xin(u)]GE(CU/uq2<,,n+1)) to the relation (2.4.61) with n = 0 there. Making
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use of identity (2.1.2) on the left hand side, we get

HKIerl (v), Xin(u)]c;fl (Cq=2(m+1)y /y) X;r (Z)}Gjo(v/z)

o (Eaa2m)

v

+ [Kierl(U)’ [XT(Z)’X;W(U)H .

x 0 <
Gio(w/2)Gf (Cq=2(mt Dy fu) v

Multiplying through by (C‘luq2m — v) (zq2 — v) and making use of (2.4.58), it follows that

0 = (C_luqzm —v) (zq2 —v)4 ug [KJF (v), K (z)}
Cz 1,m+1 [kl 7 GTO
2n

m—n uq
- (qu( - U) (24" —v) 0 ( Cz ) [Kim“(v)’Kf"(z)}GTo(v/z)G{i(qQ(”‘m‘”v/Z)

(v/2)G1(Cq=2(m+ Vv /u)

Hence the result for the upper choice of signs in (2.4.62). The case with lower choice of signs follows by

applying ¢ to the above equation. O

At this point it should be clear that we have obtained ¥~!. Indeed, it suffices to let, for every m € N and

every n € Z,
o1 (DE) = p*! (2.4.63)
Pl(CEY2) = o2 (2.4.64)
U (et (2)) = T(2) (2.4.65)
T (KT 1 (2) = K 1 (2) (2.4.66)
UUXE, () = XE, (2) (2.4.67)

The relations in U;(al) are obviously all the relations we have derived in the present section. W~ therefore
extends as an algebra homomorphism. This concludes the proof of theorem 3.3.22.

Returning to the proof of proposition 3.3.18, it is also clear that
F@*(2) = (¢ — ¢7)*U(p*(C?2q7?)) (2.4.68)

fet(2) = V(¥iL(2)) (2.4.69)

Therefore ((2.3.43) — (2.3.44)) follow from proposition 2.4.8.v. In order to complete the proof of proposition
3.3.18, we still have to prove the compatibility of f with the Serre relations (3.3.40) of &, ,.45- This is the

purpose of the next section.

2.4.6 The Serre relations of the elliptic Hall algebra

By the compatibility of f with (3.3.40), we actually mean that we should have, for every m € Z,

res (vwz)™ (v + 2)(w? — vz) f(e*(v)) fe(w))f(e®(2)) =0. (2.4.70)

V,W,2
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Now we have already identified f(e*(z)) with \I/('z,bfil(z)) in (2.4.69) above. The latter means that proving
(2.4.70) is equivalent to proving

Proposition 2.4.27. For every m € Z, we have

res (v1v203)™ (v + v3) (v — vlvg)tpfﬂ(vl)zbfﬂ(vg)wfil(vg) =0. (2.4.71)

v1,V2,V3

Proof. The upper choice of signs immediately follows from the lower one upon applying ¢. Moreover,

considering the root space decomposition, it is clear that having

res (v1v203)™ (v + v3)(v3 — v1v3) <XZ(2’1) e x;g (z6), wi—l(vl)'ﬁbi—l(U2)¢i—1(v3)> =0

U1,02,V3

for every i1,...,ig € I is a sufficient condition for the result to hold. Now, making use of lemma 2.4.22,

one easily obtains that

(%7, (21) X (26), 7,y (0) 7,y (02) 7y () )
(k)

2], ’ : : “apd - ~1/2
- (Cs) S I I Mo o | G ).

-4 Ac PE[QQQ) p=1 meAP+D..uAB) k=1

6l neA®)
n>m
There is obviously an action of S5 on Pﬁéf’z) given by setting o(A) = (A1) A@@) AEG)) for every

o € S3 and every A € Pf[zf’m. It is also quite clear that

P(2,2,2)
6l ~ 7(222)
S fe1 -

where

(2,2,2) . _ (2,2,2) . (1) (2) (3)
T ™ {AEPM A <AV <A }

For every triple n = {ny,n2,n3} C [6], we further let

e (T et} )

With these notations in place, we can now write

res (u1vavg)™ (v1 + va) (v — v1vs) (X7, (1) 3% (26), YTy (00)9T_y (v2)opy_ (vs) )

v1,V2,V3
2, \’ . A<p)q
- (5) X At X H6 —Jea,
ncC[6] AET(2 2, 2)( ) A P
card n=3 [6]

where, by definition,

zlle—[z;{;, 0in,0 H% 05 Oif) n,l = H iy 1 (2.4.72)

i=1 me[6]—n
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ca =Y F(z,ean 2,000, 2,00) || Haopp! 2yl /2406 (2.4.73)
o€Ss ? ? P 1<pi<p<s
F(z,y,2) = (z+ 2)(y* — z2) (2.4.74)
2
HA’U’p’p/(zAéa(p))/zAg,(p/))) = H G;(k) w(k/)(Cil/QqZ(kikl)ZAg’(P))/zAéG(p’)))E(A’UJ)’p/’k’k/) (2.4.75)
kk'=1
/ / 1 if A( o(p)) . A( o(p' ))
e(A,o,p,p' k, k') = (2.4.76)
0 otherwise.
Denoting each A € T[([Z]]z ) as the tableau
A(11) A§2) A§3) 7
Aél) AgQ) Aég)
one eagsily checks that, actually,
2,2,2 2,2,2 (2,2,2) (2,2,2) (2,2,2) (2,2,2
T =Tt ({2,4,6) U TR ({2,5,6}) U T ({3,4,6}) U TR ({3,5,61) U T ({4,5,6}) |
with
T(222) 1 5
TE22) ((2,4,6)) = {2 s
1222 11341 4
T(22) (12,5,6}) = {2 e ,
L222) 11251
3,4,6 , :
Tief (134,00 = { 403[6/|]34
1124 1124 1124 1124
T (43,5,6}) = , : , ,
6135 31615 513 315]6
11213 11213 11213 11213 11213 213
T[([?if ? ({47 57 6}) = ) ’ ) ) ’ .
6|5|4||5]6|4]|6|4|5][4[6|>5]||5]4[6|[4|5]|6

A tedious but straightforward calculation — see appendix for useful identities — shows that, e.g.

234
Z6

@ - 21+ )1 - )2 [5(

o~

Jo(2) -G

Z5

+a72q® —q ) (1 +¢*)*(1 — ¢*)° Hu(z3/25) [256 <2§> e <zz>]

10}
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¢ramgry = (@ -+ - )30 CZ) 5 <7’6q2>

z5

1 — )+ (1 — ) Hy (23 25) 7 (6)

+07 2> — )1+ 3?1 — ¢*) Ha(z3/25) 250 (1)

‘ = R a0 (2 )6 (B0
1[2]4 39\ %

z5

2P =)+ A1 = > Hy(23/25) 250 (:)
—a72@® — a7 )1+ ¢*)(1 — ¢*)° Ha(23/ 26) 236 (2)

¢ g =06~ P - P ) 200 (2) <200 (2]

where we have set

2.2 3
2525 (23 + 25) >
25|23

Hi(z3/25) =

((2’3(12 — 25)(q23 — 25) (23 — ¢*25)3

23q* — 25) (23 — q%25)4

2222(2 + z 3
Hy(z3/25) = <( 3223 1 2) > :
|25]>>| 23]

It easily follows that

3 Z G
H (A()q> ca=0. (2.4.77)

AT ({3561 P A3

Similar calculations show that, eventually, for every n C [6] such that cardn = 3 and T%’]Q’m (n) # 0, we

have

3 0>
3 Hé(%)q >cA:0, (2.4.78)

= Z 4(p)
N

thus proving the result. O
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Chapter 3

Weight-finite modules over the quantum
affine and double quantum affine algebras

of type ay

3.1 Introduction

The representation theory of quantum affine algebras is a vast and extremely rich theory which is still the
subject of an intense research activity after more than three decades. The recent discovery of its relevance to
the monoidal categorification of cluster algebras provides one of the latest and most striking illustrations of it —
see | ] for a review on that subject. Probably standing as one of the most significant breakthroughs in the
early days of this research area, the classification of the simple finite-dimensional modules over the quantum
affine algebra of type a;, Uy(ay), is due to Chari and Pressley [ ]. It relies, on one hand, on a careful
analysis of the /-weight structure of those modules made possible by the existence of Drinfel'd’'s presentation
U, (ay) of Uy(ar) — see | ] for the proof that U,(a;) = U,(a;) — and, on the other hand, on the existence
of evaluation modules, proven earlier by Jimbo, | ]. This seminal work paved the way for a more systematic
study of the representation theory of quantum affine algebras of all Cartan types, leading to the development of
powerful tools such as g-characters, (g, t)-characters and, consequently, to a much better understanding of the
categories FinMod of their finite-dimensional modules that recently culminated with the realization that the
Grothendieck rings of certain subcategories of the categories FinMod actually have the structure of a cluster
algebra, [ ]

By contrast, it is fair to say that the representation theory of quantum toroidal algebras, which were
initially introduced in type a,, by Ginzburg, Kapranov and Vasserot [ ] and later generalized to higher
rank types, is significantly less well understood and remains, to this date, much more mysterious — although
see [ ] for a review and references therein. In our previous work, [VZ], we constructed a new (topological)
Hopf algebra Uq(al), called double quantum affinization of type a;, and proved that its completion (in an
appropriate topology) is bicontinuously isomorphic to (a corresponding completion) of the quantum toroidal
algebra U, (a1). Whereas U,(a;) is naturally graded over Z x @, where Q stands for the root lattice of the
untwisted affine root system a; of type Agl), Uq(al) is naturally graded over Z? x ), where ) stands for the
root lattice of the finite root system a; of type A;. Thus Uy(ay) turns out to be to Uy(a;) what Ugy(aq)

is to Ug(ay), i.e. its Drinfel'd presentation. The latter, in the quantum affine case, has a natural triangular
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decomposition which allows one to define an adapted class of highest weight modules, namely highest /-weight
modules, in which finite-dimensional modules are singled out by the particular form of their highest /-weights.
Therefore, it is only natural to ask the question of whether Uq(al) plays a similar role for the representation
theory of U,(a;), leading, in particular, to a new notion of highest weight modules. We answer positively
that question and introduce the corresponding notion of highest t-weight modules. Schematically, whereas the
transition from the classical Lie theoretic weights to /-weights can be regarded as trading numbers for (rational)
functions, the transition from f-weights to ¢-weights can be regarded as trading (rational) functions for entire
modules over the non-commutative ﬂg(al)—subalgebra of Uy(a1). That substitution can be interpreted from
the perspective of a conjecture in [V7], stating that Ug(al) is isomorphic to a split extension of the elliptic Hall
algebra £,-4 42 ;> which was initially defined by Miki, in [ ], as a (q,y)-analogue of the Wi, algebra and
reappeared later on in different guises; the quantum continuous gl algebra in | ], the Hall algebra of
the category of coherent sheaves on some elliptic curve in [ ], or the quantum toroidal algebra associated
with gl; in [ ] and in subsequent works by Feigin et al. Our conjecture is actually supported by the

existence of an algebra homomorphism between £,-4 ;2 ,» and Ug(al) which we promote, in the present paper,

1a2,q
to a (continuous) homomorphism of (topological) Hopf algebras. Intuitively, the weights adapted to our new
triangular decomposition can therefore be regarded as representations of a quantized algebra of functions on a
non-commutative 2-torus.

On the other hand, unless the value of some scalar depending on the deformation parameter is taken to
be a root of unity, the question of the existence of finite-dimensional modules over quantum toroidal algebras
of type a,>2 was already answered negatively by Varagnolo and Vasserot in [ ]. However, it is possible
to push further the analogy with the quantum affine situation by defining another type of finiteness condition,
namely weight-finiteness. It turns out that, in type 1, i.e. when the central charges act trivially, [“Jg(al)
admits an infinite dimensional abelian subalgebra that, itself, admits as a subalgebra the Cartan subalgebra
UY(a1) of the Drinfel'd-Jimbo quantum algebra U,(a1) of type a;. Hence, we can assign classical Lie theoretic
weights to the t-weight spaces of our modules and declare that a Uj(a;)-module is weight-finite whenever
it has only finitely many classical weights. The same notion is readily defined for modules over Uy (a;) and
we then focus on WFinMod’ (resp. WFinMod), i.e. the full subcategory of the category Mod" (resp.
Mod) of U,(a1)-modules (resp. U, (a;)-modules) whose modules are weight-finite. Of course, the widely
studied category FinMod of finite-dimensional U,(a;)-modules is a full subcategory of WFinMod. The
main results of the present paper consist in showing that, on one hand, the simple objects in WFinMod
are all finite-dimensional and therefore coincide with the simple finite-dimensional U, (a;)-modules classified by
Chari and Pressley, and, on the other hand, in classifying the simple objects in WFinMod" in terms of their
highest t-weight spaces. These results clearly establish WFinMod' as the natural quantum toroidal analogue
of FinMod and suggest studying further its structure and, in particular, the structure of its Grothendieck ring.
Another natural development at this point would be to generalize to the quantum toroidal setting the interesting
classes of U, (a;)-modules outside of FinMod, for example by constructing a quantum toroidal analogue of
category O. We leave these questions for future work.

The present paper is organized as follows. In section 3.2, we briefly review classic results about the quantum
affine algebra U,(a;) and its finite-dimensional modules. Then, we prove that simple objects in WFinMod
are actually finite-dimensional. In section 3.3, we review the main relevant results of [M7] and establish a few
new results, as relevant for the subsequent sections. We define highest t-weight modules in section 3.4 and, by

thoroughly analyzing their structure, we establish one implication in our classification theorem, namely theorem
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3.4.22. The opposite implication is established in section 3.5 by explicitly constructing a quantum toroidal
analogue of the quantum affine evaluation modules. That construction is obtained after proving the existence
of an evaluation homomorphism between U, (a;) and an evaluation algebra built as a double semi-direct product
of U,(a;) with the completions of two Heisenberg algebras. The evaluation modules are then obtained by pulling

back induced modules over the evaluation algebra along the evaluation homomorphism.

Notations and conventions

We let N = {0, 1, ...} be the set of natural integers including 0. We denote by N* the set N — {0}. For every
m < n € N, we denote by [m,n] = {m,m+1,...,n}. We also let [n] = [1,n] for every n € N. For every
m,n € N*, we let

Cpn(n) := {)xz()q,...,)xm)e (Nx)m:)\1+...+)\m:n}7

denote the set of m-compositions of n, i.e. of compositions of n having m summands.

We let sign : Z — {—1,0,1} be defined by setting, for any n € Z,

-1 fn<O;
sign(n) =q¢0 ifn=0;
1

if n > 0.

We assume throughout that K is an algebraically closed field of characteristic 0 and we let F := K(q)
denote the field of rational functions over K in the formal variable gq. As usual, we let K* = K — {0} and
F* =TF — {0}. Whenever we wish to evaluate ¢ to some element of K*, we shall always do so under the
restriction that 1 ¢ ¢Z”. For every m,n € N, we define the following elements of F

_ " —q" ! [nlgln —1g---[1lg if n € N¥; o [nlg
(g = "— ( )q'_[m}

, nl, =
¢—a e, if n = 0; m
Given an F-algebra (A, n) with unit  : F — A, we shall write the image of any a € A under the canonical

algebra homomorphisms n®P~1 @ id4g @ n®" P : A — A®", 1 <p <n € NX, as ap). always assuming that

p)’
the value of n should be clear from the context. This is easily extended to A-valued formal distributions in
Al[z,271]], essentially by applying the canonical algebra homomorphisms term by term to their coefficients,
and the corresponding image of a(z) € A[[z, 27']] can be naturally denoted by a(,)(z) € A%"[[z,27]]. As is
customary though, in order to avoid the proliferation of unnecessary subscripts, we shall abuse notations and
prefer e.g. to the more rigorous expression a1y (z¢(9)) b2y (2') € A®?[[z, 271, 2/, 271, with a(z) € Al[z, 271]],
b(z') € A[[,2/71]] and ¢ € A, the somewhat less rigorous but more transparent a (zc()) ® b(2').

We shall say that a polynomial P(z) € F[z] is monic if P(0) = 1. For every rational function P(2)/Q(z),

where P(z) and Q(z) are relatively prime polynomials, we denote by

(@) (@),

the Laurent series of P(z)/Q(z) at 0 (resp. at c0).
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We shall let
oA, B, =aAB - bBA,

for any symbols a, b, A and B provided the r.h.s of the above equations makes sense.
The Dynkin diagrams and correponding Cartan matrices of the root systems a; and a; are reminded in the

following table.

Type | Dynkin diagram | Simple roots | Cartan matrix
1
ai ® ® = {1} (2)
0 1
.< >. . 2 =2
C.ll ‘1) = {Oé(),al} ( 2 2 )

3.2 Weight-finite modules over the quantum affine algebra

Ug(m)
3.2.1 The quantum affine algebra U,(a;)

Definition 3.2.1. The quantum affine algebra Uq(al) is the associative K(g)-algebra generated by

{D, D1 CV2 c1/2 gt ki

1n

xim:mGZ,nEN}

+
n’xl,m’

subject to the following relations

C*/2 s central ~ C*TV2CFV2 =1  pEpPFL—1 (3.2.1)

DK (2)D7' =k (2¢7) DxF(2)D7' =x{(2¢7) (3.2.2)

k" (21)k7 (22) = ki (22)kq (21) (3.2.3)

ki (21)k (22) = G (C ™ 21/29)GH(Cz1/20)k] (22)k; (21) =1 mod 21 /2 (3.2.4)
GF(CTV 22 /21)k] (21)%7 (22) = X7 (22)K] (21) (3.2.5)

ki (21)%7 (22) = GT(CT221 [20)x7 (22) K] (21) (3.2.6)

(21— ¢ 20)x7 (21)%7 (22) = (21672 = 22)x7 (22)x7 (21) (32.7)
i (o)l = o [ (G0 )i @) - (2 )i e )| a2

where we define the following U, (a;)-valued formal distributions

X7 (2) ==Y i,z " € Uglan)[[z, 2] (3.2.9)
meZ
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=3 k2T e Ug(an)[=T1], (3.2.10)

neN
the following F-valued formal power series
GH(2) = g™ + (g — g D22, 3 2" € Fll2) (3.2.11)
meNX
and
=> 2" EeF[z,27"] (3.2.12)
meZ

is an F-valued formal distribution. We denote by Ug(al) the subalgebra of Uy (a;) generated by

{01/2 0—1/2 LT Ky

1,n n’xl ,m’

Ty mEZnEN}

We denote by Ug(al) the subalgebra of Uf](al) generated by

1,n

{01/2,0 V2t ok, ine N} .

We let qu(al) (resp. U;(al)) denote the subalgebra of U;(al) generated by

{2, b byl i m € Zn € N
(resp.
{01/2,0 Y2 kR s i i m € Z, neN}

. We let U, (a1)”denote the F-algebra generated by the same generators as U’ (a;), subject to the relations
q q
3.2.3 - 3.2.7) — i.e. we omit relation (3.2.8). We define the type a; quantum loop algebra U,(Lay) as the
q
quotient of U;(al) by its two-sided ideal (C'/2 — 1) generated by {01/2 —1,C07Y2 — 1}. Similarly, we
let UZ(Lay) = qu(al)/(C’l/2 — 1) and US(La;) = U?(cq)/(C’l/2 —1). We eventually set U,(La;) =
Ug(ar)7(C'2 ~1).

Obviously,

Proposition 3.2.2. There exists a surjective F-algebra homomorphism Uy(Lay) — Uy(Lay).

3.2.2 Finite dimensional U;(al)-modules

Let Mod be the category of U;(al)—modules. We denote by FinMod the full subcategory of Mod whose

objects are finite-dimensional. Following | ], we make the following
Definition 3.2.3. We shall say that a U;(al)—module M is:

e a weight module if k:fo acts semisimply on M;

e of type 1 if it is a weight module and CY? acts on M as id;

o highest (-weight if it is of type 1 and there exists v € M — {0} such that

x{(2)w =0, ki(2).w = kT (2)v



for some k*(z) € F[[zF!]] and M = U:I(al).v. We shall refer to any such v as a highest (-weight

vector and to k = (k7 (2), k™ (2)) as the corresponding highest ¢-weight.
Clearly, type 1 U;(al)—modules coincide with Uy(La; )-modules.

Definition 3.2.4. For every & € F[[z!]] xF[[z]], we construct a one-dimensional UZ (La;)-module F,, = F
by setting
x{(2).1=0, and ki(2).1=r%(2).

We then define the universal highest ¢(-weight U;(al)—module with highest ¢-weight Kk by setting

M(k):=Uy(La;) ® Fy
UZ (La1)

as Ug(Lay)-modules. Let N (k) be the maximal Uy(Laj)-submodule of M (k) such that N(k) NF, = {0}
and set
L(k):=M(k)/N(K).

By construction, L(k) is a simple highest f-weight U,(La;)-module with highest ¢-weight . It is unique
up to isomorphisms.

The simple objects in FinMod were classified by Chari and Pressley in [ ]. The main result is the

following
Theorem 3.2.5 (Chari-Pressley). The following hold:

i. any simple finite-dimensional Ué(al)—module M can be obtained by twisting a simple finite-dimensional

U;(al)—module of type 1 with an algebra automorphism of Aut(Ug(al));
1. every simple finite dimensional U;(al)—module of type 1 is highest £-weight;

ii1. the simple highest {-weight module L(K) is finite-dimensional if and only if

() = gdes(P) P(q?/2)
(=0 (G >|H1<<1’

for some monic polynomial P(1/z) € F[z~!] called Drinfel’d polynomial of L(k).
Proof. The proof can be found in | |. O
Up to isomorphisms, the simple objects in FinMod are uniquely parametrized by their Drinfel’d polynomials
and we shall therefore denote by L(P) the (isomorphism class of the) simple U;(al)—module with Drinfel’d
polynomial P. Note that the roles of UZ(a1) and US(ay) in the above constructions are clearly symmetrical

and we could have equivalently considered lowest -weight modules. In particular, point iii of the above theorem

immediately translates into

Proposition 3.2.6. The simple lowest (-weight module with lowest (-weight k = (k1 (2), k™ (2)) € F[[z71]] x
F[[z]] is finite-dimensional if and only if

() = —desp) (_L(1/2)
SR )

for some monic polynomial P(1/z) € F[z71]. In the latter case, we denote it by L(P).
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3.2.3 Weight-finite simple U,(La;)-modules

We now wish to consider a slightly broader family of modules over U;(al). In particular, we want to allow
these modules to be infinite-dimensional, while retaining some of the nice features of finite dimensional U;(al)—
modules such as the fact that they decompose into /-weight spaces. This is achieved by introducing the following

notion.

Definition 3.2.7. We shall say that a (not necessarily finite-dimensional) Uf (a1)-module M is {-weight
if there exists a countable set {M, : a € A} of indecomposable locally finite-dimensional Ug(al)—modules,

called the f-weight spaces of M, such that, as Ug(al)—modules,

M%@Ma.

a€A

We shall say that M is of type 1 if C*/2 acts on M by id.
Definition-Proposition 3.2.8. Let M be an /-weight U;(al)—module. Then:
i. C? acts as id over M;

ii. for every f-weight space M, a € A, of M, there exists koo € F* and (k5 « € FN" such that
y g ) meN

a,+m

a,tm

My C{oeM:IneN vmeN (ki,—nipid) v=0},

+ 41
where we have set Koo = Kao-

We let Sp(M) = {Kka,0 : @ € A} and refer to the formal power series

+ +
Kq (Z) = Z ﬂa,:l:mz:':m
meN

as the l-weight of the l-weight space M,.

Proof. Let M, be an (-weight space of M and let v € M, — {0}. By definition, there exists a finite
dimensional Ug(al)—submodule M, of M, such that v € M,. Over M,, C must admit an eigenvector and,
since C is central, it follows that C' acts over M, by a scalar mutliple of id. Assume for a contradiction that
C—C~1! does not act by multiplication by zero. Then, it is possible to pull back M, into a finite-dimensional
module over the Weyl algebra A;(K) = K(z,y)/(zy — yx — 1) by the obvious algebra homomorphism
A1 (K) — Ug(al). But the Weyl algebra is known to admit no finite-dimensional modules. A contradiction.
It follows that C2 acts as id over M,. But this could be repeated for any non-zero vector in any {-weight
space of M. i follows. As for ii, observe that, as a consequence of i and of the defining relations (3.2.3)
and (3.2.4), {/ﬁ

L By im € N} acts by a family of commuting linear operators over M. Thus ii follows

from the decomposition of locally finite-dimensional vector spaces into the generalized eigenspaces of a
commuting family of linear operators; the indecomposability of M, further imposing that it coincides with

a single block in a single generalized eigenspace. O

Remark 3.2.9. Tt is worth emphasizing that definition 3.2.7 and definition-proposition 3.2.8 straightfor-
wardly generalize to (topological) modules over any (topological) algebra A containing Ug(al) as a (closed)

subalgebra.
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Definition 3.2.10. We shall say that an /-weight U;(al)—module M is weight-finite if Sp(M) is a finite
set. We let WFinMod denote the full subcategory of the category Mod of U;(al)—modules whose objects

are weight-finite.

Clearly, finite dimensional U;(al)—modules are objects in WFinMod, but not every object in WFinMod

is in FinMod. However we have

Theorem 3.2.11. The following hold:

1. every simple (-weight U;(al)—module can be obtained by twisting a simple (-weight Ug(al)—module of

type 1 with an algebra automorphism of Aut(Uq(al));
ii. every weight-finite simple Ug(Lay)-module is highest (-weight;
i every weight-finite simple Uy(Lay)-module is finite dimensional.

Proof. In view of definition-proposition 3.2.8, C? acts as id over M. Since the latter is simple and since
C'/? is central, it is clear that C acts over M either as id or as —id. In the former case, there is nothing
to do; whereas in the latter, upon twisting as in the finite-dimensional case — see | | =, we can ensure
that C/2 acts as id. This proves i. As for ii, the same proof as for part ii of theorem 3.2.5 can be used.
So, we eventually prove iii. Let M be a weight-finite simple U,(La;)-module. By ii it is highest (-weight.
Hence, there exists v € M — {0} such that M = U,(Lay).v, x{ (2).v = 0 and ki (2).v = k¥ (2)v, for some
KT (2) € F[[27Y] with res,, ., 21 *25 'kT(21)5 (22) = 1. The triangular decomposition of U,(La;) implies
that M = U_ (Lay).v and, setting for every n € N

(21, 2n) = X1 (21) X (2n).0, (3.2.13)
it is clear that

{vml,,,.7mn = res zl_l_m1 ez (2, zn) in€NJmy, L my, € Z} (3.2.14)

n
215920

is a spanning set of M. The defining relations (3.2.5) and (3.2.6) of Uy(Lay) easily imply that, for every
n €N,

K (2)0(z1, - 2a) = 55 (2) [[ GF ((zp/z)ﬂ) vz, 2n) (3.2.15)
p=1
and, in particular,
kEw(za, . zm) = (k) a2™0(21, - -5 2n) -

Therefore, M being weight-finite, there must exist an NV € N such that

x; (2).v(z1,...,28) =0. (3.2.16)
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Making use of (3.2.8), one easily proves that, for every n € [0, N — 1],

n

xf (2wl m) = =35 (2) |7) T ¢ (a/2) (3.2.17)

p=0 r=p+1

“(2) [I 67 (z/2) | v(z00- - 5o 7)),

r=p+1

where a hat over a variable indicates that it should be omitted. Combining (3.2.16) and (3.2.8), we get

—x7 (20)x] (2).0(21,...,2n) = [x](2),%x] (20)]-v(21,- .., 2N)
1 N N
= p— ( ) U “(2p/2) — K~ U (z/2zp)| v(z1,...,2N) -

Making use of (3.2.17) and (3.2.13), the above equation eventually yields

N ~ N N
Za(;f’) wH(z) [ G r/zn) =5 (z) [ G (ap/20) | 0(200eees 5y 2n) = 0.
p=0 r=p+1 r=p+1

Acting on the Lh.s of the above equation with x| ((y)---x] (¢1) and making repeated use of (3.2.17), one

easily shows that

Z H5<C0'z) H G (zr/z) — K (%) H G (zi/z)| v=0, (3.2.18)

oESN 1= o’(r)gc_rl(i) o)
where we have set (9 = z. Since v # 0, its prefactor in the above equation must vanish. Now, it is
clear that multiplication of the latter by HN_ _01(2[) ¢;) annihilates all the summands with o such that
o(0) # N. Similarly, multiplication by [],_, HN "“!(2; — ¢;) annihilates all the summands with o such
that 0(0) # N and o(1) # N — 1. Repeating the argument finitely many times, we arrive at the fact that
multiplication by ]_[Z 0 HN "~1(2; — ¢;) annihilates all the summands with o # (N, N —1,...,0), so that,

eventually,

0—H5<<N )Nﬁ_l(%—@) [H+<Zi>—ﬁ<zi>]‘ﬁ <cN > ﬁ zi—an—y) [F(z) = r (2] -

=0 i=0 =0

Taking the zeroth order term in (j for j =0,..., N, we get

N N
0 = IT II Gi—2) [x"(z0) = v (2]
i=0 j=it1
(K% (20) — £ (20)] [ (z1) = (2)] .. [8T(ew) — K7 (2n)]
_ 20 [k1(20) — K™ (20)] 21 [k (z1) =k (21)] ... an[kT(2n) — K (2n)]
2 T (z0) — k7 (20)] 2 () =T ()] o2y R (ew) — 5 ()
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Hence, the rows of the matrix on the r.h.s. of the above equation are linearly dependent and it follows
that there exists a P(z) € F[z] — {0} of degree at most N — 1, such that

P(z) [T(2) = k™ ()] = 0. (3.2.19)

As a consequence, there clearly exists Q(z) € F[z] such that deg @ = deg P and

KE(2) = <g23>|z|11<<1 .

Now considering (3.2.17) with n = 0 and multiplying it by P(zp) obviously yields

x7(2).P(20)v(20) = 0. (3.2.20)

Set for every m € Z,
Wy, = res z5 P (20)v(20) - (3.2.21)

20

Then, (3.2.20), together with (3.2.15) for n = 1, implies that

P Uy(a1) wnm

meZ

is a strict submodule of the simple Uy(La;)-module M and it follows that w, = 0 for every m € Z.

Consequently, in view of (3.2.21),

P(zp)v(z0) =0. (3.2.22)
On the other hand, all the vectors in {v,, : m € Z} — see (3.2.14) — can be expressed as linear combina-
tions of the vectors in, say, {vl, e ,'Udeg(P)} and the linear span of {vy, : m € Z} turns out to be finite
dimensional.

Similarly, assume we have proven that

n

Vk € [0,n], H (zp — ¢*z1) | P(zr)v(20,---,20) =0
p=k+1

for some n € [0, N — 1], as we did with (3.2.22) above for n = 0. It is clear, in view of (3.2.17), that, for

every k € [0,n + 1],
n+1

x1(2). H (zp — @2x) | P(zi)v(205 -y 2041) | =0
p=k+1

and the same argument as above, making use of the simplicity of M, implies that indeed

n+1
Vk e [0,n +1], IT (2 — =) | P(z)v(20,- .-, 2041) = 0.
p=k+1

By recursion, the above equation therefore holds for every n € [0, N — 1] and for every k € [0, n]. But this

means that, for every n € [0, N — 1], the linear span of {vy,, ._m

yMin

i Mmq,...,my € Z} is finite dimensional,

which eventually concludes the proof. O
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Corollary 3.2.12. Let M be a weight-finite simple highest (resp. lowest) {-weight Uy(Lay)-module. Then
M = L(P) (resp. M = L(P)), for some monic polynomial P.

Proof. In the highest ¢-weight case, this follows directly by the previous theorem and the classification of
the simple finite dimensional U,(Lay)-modules, theorem 3.2.5. In the lowest {-weight case, see proposition
3.2.6. 0

3.3 Double quantum affinization of type a4

3.3.1 Definition of U,(a;)

Definition 3.3.1. The double quantum affinization Uq(al) of type a; is defined as the F-algebra generated
by
{D1,Dy ", Dy, D51, C2 CV2 e K s Ko Kl s KT g X s X s €Ny € N¥ 1,5 € Z}

) emo

subject to the relations

C*/2 and c*(z) are central (3.3.1)
1 .o

— =1 3.3.2
res ¢ (v)ct(w) =1, (3.3.2)
DF'Df' =1  Di'Df'=1 DDy =DyD4 (3.3.3)
DiKY 1, (2)D7" = ¢*"Ki 4, (2)  DiXi,(2)D7! = ¢'X{,(2), (3.3.4)
DoKi i (2)D5 " =Kiy(2¢7")  DaXi,(2)Dy' = X{,(2¢7"), (3.3.5)
res K= (0)KF, (w) = 1 (3.3.6)

v VW 1,0 1,0 ’ -

(v— qﬂz)(v - q2(m7n$1)Z)Kli,im(U)Kfin(z) = (”qﬂ — 2)(vg™* — q2(m7n)Z)K1i¢n(Z)K1i,im(”) , (3.3.7)

(C* ™y — w)(¢* " Vv — Cw)K{, (v)K] _, (w) = (Cq~*™v — ¢*w)(¢*™v — Cq2w)Ky _, (w)K{,, (v),

(3.3.8)
(U - qizz)K:lt,:tm(v)XfT(z) = <q:i:2,U - Z)XfT(Z)Kfim(v) ’ (339)
(Co = P TIKE L, (0)XT, (2) = (C720 = ¢ XT, (2)K 4, (0). (33.10)
(v = ¢Pw)X{, (X () = (002 = w)XF (W)X, (0), (3811

/5| ~

- 1 Cv B _ —1)sien(s)— —sign(s)
[Xir(v),XLs(z)] il ) <q2(r+s)z> ch (c 1/2 4(2p=1)sign(s) 12) KT s ()
o
—1 \7‘| .
. sign(r)

s (M) I <C71/2q(172p)81gn(r)*1v) KL . (33.12)

p=1
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where m,n € N, r, s € Z and we have set

ct(z) = 2, (3.3.13)

meN
Kfo(z) = Z K1i,07im2im7 (3.3.14)

meN
and, for every m € N* and r € Z,

Kiin(2)=> Kii,.2 ", (3.3.15)

SEZL
Xi(2) =) X2 (3.3.16)

SEZ

In (5.0.6), we further assume that Kf:Fm(z) = 0 for every m € N*.

Definition 3.3.2. We denote by U;(al) the subalgebra of U, (a;) generated by

{Da, D51, CY2, C2 f e K Ko —ns KT s KT s X s X i m € Nyn € N 1, s € Z}

s ~mo 1,n,r n,r Mr,s?

i.e. the subalgebra generated by all the generators of Uq(al) except Dy and Dfl. We shall denote by
J: U;(al) — Uq(al)

the natural injective algebra homomorphism.

Definition 3.3.3. We denote by Ug(al) the subalgebra of U,(a;) generated by

) ~m>

{C1/2, Y2t o, K 0 Kl Kl Kl - m €N;n e N r € Z}
and by U0°(a;) the subalgebra of Ug(al) generated by

1/2 —1/2 — —
{c /2 C2 et K s Ko 2 0 eN} .

Similarly, we denote by qu(al) the subalgebra of U,(a;) generated by {an s SE Z}. We eventually
denote by qu(al) (resp. Ug (a1)) the subalgebra of U,(a;) generated by

{C1/2, C—1/2 cr s KiO,m’ Kl_,O,—mv K+ Kl—,— X+

’ ~m> 1,n,r n,r Nrs

:mEN,neNX,r,SEZ}

(resp.
{Cl/Qa C_1/27 C;,i_—n C:m> K—li_,O,m? KI_,O,—m7 K+

1,n,r

Ki_ X7

n,r Nrs

:mEN,nENX,r,SEZ}
)

Remark 3.3.4. Obviously, qu(al) is graded over Q* whereas Uq(al) is graded over the root lattice Q of
ar. Uylay) is also graded over Z2 = Z1y X Ly

UQ(al) = @ Uq(al)(m,ng) )

(n1,m2)€Z?
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where, for every (ny,ns) € Z2, we let
Uq(al)(nhm) = {x € Uy(ar) : D1aDy! = g™z, DoaDy! = q”%‘} .
In the coming section, we shall also need the Z,)-grades
Uy(a1)n = {x € Uy(ay) : DoaDy ! = q”x} ,

for every n € Z.

Proposition 3.3.5. The set {CI/Q, C_I/Q7 Kfom, Klio—m:mE N} generates a subalgebra of ﬂg’o(al) that

is isomorphic to Ug(al).

Proof. This can be directly checked from the defining relations. Otherwise, it suffices to observe that the

algebra isomorphism U : U,(a1) — Ug(al) — see theorem 3.3.22 — restricts on that set to

T(CHY/2) =2 and  U(k{(2)) = —KT,(C%2).

3.3.2 U,(a;) as a topological algebra

Because of relation (5.0.6), the definition of U,(ay) is not purely algebraic. Indeed, the r.h.s. of (5.0.6) involves

two infinite series. One way to make sense of that relation is to equip Uq(al) - and, for later use, its tensor

—

powers — with a topology, such that both series be convergent in the corresponding completion Uq(al) of

Ug(a1). Making use of the natural Zy)-grading of the tensor algebras U,(a1)®™, m € N*, we let, for every
n e N,

Ug(a)®™ - (Uy(a)®)

. Uq(01)®m .

O = P Uylar)® - (Ug(ar) )

r>n
s>n

-r S

One easily checks that
Proposition 3.3.6. The following hold true for every m € N*:

i. For everyn € N, ng) 15 a two-sided ideal of Uq(a1)®m,'
i1. For everyn € N, ngm) 2 Qgﬂ;
s (m) 3(m) 1 @m.
iy = Upen O = Ug(ar)®™;
1. ﬂneN Q%m) = {0}7
v. For every n,p € N, o™ + Qz(;m) - Qmin(n,p) ;

vi. For every n,p € N, Q7(’Lm) . Qz(um) - Qmax(n,p)-

Proof. See [\7] for a proof in the U, (d;) case that can be transposed to the present situation. O]
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Definition-Proposition 3.3.7. We endow Uq(al) with the topology 7 whose open sets are either () or
nonempty subsets O C Uq(al) such that for every x € O, = + QS) C O for some n € N. Similarly,
we endow each tensor power U,(a;)®">2 with the topology induced by {lem) : n € N}. These turn

U,(a1) into a (separated) topological algebra. We then let U,(a;) denote its completion and we extend by

continuity to Uy (a;) all the (anti)-automorphisms defined over U,(a;) and its subalgebras in the previous

section In particular, we extend j : U;(al) < U, (ay) into

7: U(a1) = Uy(ar)
Similarly, we denote with a hat the completion of any subalgebra, of [“Jq(al), like e.g. Uy (a1), Ug(al) and

—

U7 (a1). We eventually denote by Uq(a1)®m22 the corresponding completions of U,(a;)®">2.
Proof. This was proven in [MZ]. O

Remark 3.3.8. As was noted in [M7], the above defined topology is actually ultrametrizable.

3.3.3 The double quantum loop algebra

An alternative way to make sense of relations (5.0.6) consists in observing that U,(a;) is proalgebraic. Indeed,
for every N € N, let U,(a;)™) be the F-algebra generated by

{CV2, V2 ke K 0> K0, K pas KT ps Xi s X1 i m € Nym € [0, N],p € N¥,r,s € Z}
subject to relations ((3.3.1) — (5.0.6)), where, this time,
N
cF(z) =D i, (3.3.17)
m=0
Similarly, define U, (a;)("") as the F-algebra generated by
{CY2,CY2 KT g s Ko s KT s KT s Xipoos X 1 m € N,p € N 1,5 € Z}

subject to relations ((3.3.1) - (5.0.6)), where c*(2) = 1.

Now clearly, each Uy, (a;)™), N € NU {—1}, is algebraic since the sums on the r.h.s. of (5.0.6) are both
finite — whenever c*(z)~! is involved, just multiply through by c®(z) to get an equivalent algebraic relation.
Moreover, letting Zy be the two-sided ideal of U,(a;)V) generated by {c},c”y} (resp. {cf —1,c; —1}) for

every N > 1 (resp. for N = 0), we obviously have a surjective algebra homomorphism

Uq(al)(N)
In

1

Uyla) ™) — U, (ay) ™Y (3.3.18)

and we can define U,(a;) as the inverse limit

Ug(ar) = lim Uy (ar)™Y)
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of the system of algebras
o= Ug(a)®™) — Uga) VY — s — Ug(a)© — Uyla)) Y.

Definition 3.3.9. We shall refer to the quotient of I"Jq(al)(*l) by the two-sided ideal generated by
{C1/2 — 1} as the double quantum loop algebra of type a; and denote it by ﬂq(al). Correspondingly,
we denote by ﬂf]t(al) and ﬂg(al), the subalgebras of ﬁq(al) respectively generated by {XjE 17,8 € Z}

1,7,s

and
{KE 0 K50 s Kl s Ko i m € Non € N¥, 7 € 2}

We denote by ig’o(al) the subalgebra of ig(al) generated by
{KE o Ko :m €N} .

It is worth emphasizing that Lg(a;) is abelian.

—_—

3.3.4 Triangular decomposition of U;(al)

—

In [MZ], we proved that Ug(al) has a triangular decomposition in the following sense.

Definition 3.3.10. Let A be a complete topological algebra with closed subalgebras AT and A°. We
shall say that (A=, A°, A") is a triangular decomposition of A if the multiplication induces a bicontinuous

isomorphism of vector spaces A~RA'QAT 5 A.

Recalling the definitions of U;E(al) and Ug(al) from definition 3.3.1, we have

o —

Proposition 3.3.11. (Uq_(al),Ug(al),U(‘;(al)) is a triangular decomposition of Ug(al) and Uf]t(al) is
bicontinuously isomorphic to the algebra generated by {XE _:r s € Z} subject to relation (5.0.5).

1,r,s
Proof. See [M7]. O

—_—

3.3.5 The closed subalgebra Ug(al) as a topological Hopf algebra

o —

Definition 3.3.12. In Ug(al), we define

pE(2) = 3 ph s = (KT (CT22) KT (C22g?) (3.3.19)
meN

and for every m € N*|

_ 1 o —
() = 2t " = =i Klo(za ™) K (), (3.3.20)
neN
_ _ 1 _ _ o —
t . (2) = Ztl,—m,n’zn = —q! Ky (2)Ko(2q 2yt (3.3.21)
neN
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—

Then, we let ["J2+ (a1) be the subalgebra of ﬁg(a1) generated by

{C1/2,C12 pt p:m,tipvn,ti_pyn :meNneZ,peN}.

o —

and we let U2+(a1) be its completion in the inherited topology.

o —

Clearly, the closed subalgebra Ug(al) can be presented as in definition 3.3.3 or, equivalently, in terms of

the generators in

1/2 ~—1/2 - - -
{CV2, 2 KT s Ko P P ot p cm €Ny € Z,p € N¥}
In section 3.3.10, we will endow Uﬁl(al) with a topological Hopf algebraic structure. It turns out that, for

that structure, the closed subalgebra Ug(al) is not a closed Hopf subalgebra of U,(a;) — see lemma 4.22 in

—

[MZ] or lemma 3.3.30 below. However, it is possible to endow Ug(al) with its own topological Hopf algebraic

structure as follows.
—_—

Definition-Proposition 3.3.13. We endow Ug(al) with:

—

i. the comultiplication AV : Ug(al) — ﬁg(m)@ﬁg(m) defined by

AO(Cil/Q) — C:I:l/? ® C:l:l/? (3322)
1F1 1%1
A (Kio(2)) = —ng(zc(; ) ® ng(zc(f) ), (3.3.23)
A%(pt(2)) = p*(2Cpy*) @ pH(2CT)), (3.3.24)
At (2) = t,() @1+ [[p(2a DB, (2Cpr))
k=1
m—1 m
_ — — 1/2 oy _
—(g—qh IT p (za QZC({) ()8 (2 Cy),  (3.3.25)
k=1 I=k+1

Aty (2) = t_,(:Ce)® [[ P (e Cy) +10t . (2)
k=1
m—1 m
_ _ _ -~ _ _ 1/2
Ha— a0 Yt (G C)E L (2) ] Pt (2a72C40) 1(3.3.26)
k=1 I=+1

for every m € N,
ii. the counit £(C) = ao(Kfo(z)) =(p*t(2)) =1, ao(tfim(z)) =0, for every m € N,

iii. and the antipode defined by
SO(CH/2y = 71/, (3.3.27)

SO(KT(2)) = Kip(zCH) ™, (3.3.28)

)
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S (p=(2)) = pE(2) ", (3.3.29)

SOt (2) = — H “(2q72kCT?) 12 > D) emat{,(2C7Y), (3.3.30)
k=1 n=1 AeCp(m)
SOty (2) Z > ematy L CH) ] Pt (za )" (3.3.31)
n=1\eCyr(m) k=1

where we have set, for every m € N* and every A € C,,(m),

“1yn—1lm+ 1] - [Xi — 1
) 1[m_1]qi11[>‘i+1]q

and )
= [[ th, (za 2 =k=ma 7Y,

1€[n]

% n
tl_ﬁ)\(zC_l) = H t1_77)\2,(,zq_2 2k=i41 /\kC_l) .
i€[n]

for every m € N.

—

With these operations, Ug(al) is a topological Hopf algebra.

Proof. One easily checks that A" as defined by (3.3.22 — 3.3.26) is compatible with the defining relations
of Ug(al) and that S° is compatible with both the multiplication and the comultiplication. O

In that presentation, one readily checks that

o — o —

Proposition 3.3.14. ﬂ8+(a1) is a closed Hopf subalgebra of Ug(al).

— —

Proof. U2+(a1) is a closed subalgebra of Ug(al) and it is clearly stable under A? and S°. O
3.3.6 The closed subalgebra Ug(al) and the elliptic Hall algebra

—

As emphasized in [MZ], another remarkable feature of Ug(al) and, more particularly of its closed subalgebra

—

Gg(al), is the existence of an algebra homomorphism onto it, from the elliptic Hall algebra that we now define.

Definition 3.3.15. Let ¢1, g2, g3 be three (dependent) formal variables such that g1g2gs = 1. The elliptic

Hall algebra Eq, g, .45 1s the Q(q1, g2, g3)-algebra generated by {01/2 c-1/2 St = etier imeN,n € Z}
with 1/10 invertible, subject to the relations

C*1/2 is central , (3.3.32)

P ()™ (w) = F (W)™ (2), (3.3.33)

9(C2,w)g(Cw, 2™ ()%~ (1) = g2, Cw)gl(w, C2)p~ (w)ep* (=), (3.3.34)

g(C'5 2, wipt (2)et (w) = —g(w, O 2)et (W)™ (2), (3.3.35)

9(w,CTF ) (e (w) = —g(CF 2, whe™ (w)*(2), (3.3.36)
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b ] = 6 (T ) v -8 () ) (3:3.37)

g(1,1) z
g(z, wet (2)et (w) = —g(w, 2)e" (w)e (2), (3.3.38)
9w, 2)e” (2)e” (w) = —g(zw)e (w)e ™ (2), (3.3.39)
res (vwz)" (v + 2)(w? — vz)e* w)eH(w)e*(z) = 0, (3.3.40)

where m € Z and we have introduced

9(z,w) = (2 — qw)(z — w)(z — gsw), (3.3.41)
YE(z) = ) YL, T, (3.3.42)

meN
et(z) = Z etm, (3.3.43)

MmEZ

Remark 3.3.16. The elliptic Hall algebra &£y, 4,45 is Z-graded and can be equipped with a natural topology
along the lines of what we did for Uq(al) in section 3.3.2. It then becomes a topological algebra and we

denote by 5;11273 its completion. Similar topologies can be constructed on its tensor powers.
Definition-Proposition 3.3.17. We endow 5;[1;3 with:

i. the comultiplication Ag : 8;@:3 — Eg1.42.059E 140,45 defined by

Ne(w* () = ¥ (0.0 ) @ (O ), (3.3.44)
Ag(ef(z)) = e (2) @ 1+~ (2)Be™ (2C()), (3.3.45)
Ag(e™(2) = e (202)@% T (2) + 1®e (2), (3.3.46)

ii. the counit e¢ : 8®3 — F defined by e¢(CFY/2) = eg(vp*(2)) = 1, eg(e®(2)) =0,

iii. the antipode S¢ : E;;Q\,% — 5;;2\7% defined by

Se(p™(2)) == (2C7H) 7, (3.3.47)
Se(et(2)) = -y~ (zC H et (2C™), (3.3.48)
Se(e™(2)) = —e~ (2C " HypT (20717, (3.3.49)

With the above defined operations, 5;@73 is a topological Hopf algebra.

Proposition 3.3.18. There exists a unique continuous Hopf algebra homomorphism f : 5(1_/47(1\272 —

q
—

U2+ (a1) such that

f(c?y =z, (3.3.50)
F@p*(2)) = pH(CV22q7?), (3.3.51)
flet(2) = £,(2), (3.3.52)
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fle7(2) = 75— (3.3.53)

Proof. In |M7], we proved that the assignment
Cl/2 N C1/2 ¢:t(z) s (q2 _ q—2)2 p:I:(Cl/QZ,q—2) , e:t(z) s tli,il(z)

defined an F-algebra homomorphism. Hence, f, which is obtained from the above assignment by rescaling
the images of p*(z) and e (2), is obviously an F-algebra homomorphism. Moreover, it suffices to write
(3.3.24), (3.3.25) and (3.3.26) with m =1, to get

A% (p*(2)) = PH(=C,) ") @ PH(CTY ).

At} (2)) = tf1(2) @1+ p~(2q72C({ ), (2Cqr))
A%t 4(2) =t 4(2C2)@p (24 2C) + 10 4(2),
as well as (3.3.29), (3.3.30) and (3.3.31), with m = 1, to get
S (pH(2)) =P (2) 7,
SOt (2) = —p (2 2CV2) ] (2C7Y),
So(tifl(z)) = _tiq(ZC_I)P+(Z‘]_2C_1/2)_1,
and thus to prove that (f®@f)oAg = A%0 f and fo Se = S%0 f as claimed. O

Remark 3.3.19. Note that we have f(yg)f(1g) = f(¢y)f(¥g) = 1, meaning that f descends to the
quotient of &4 ;2 .2 by the two-sided ideal generated by {d ¥y — 1,5 g —1}. That quotient is actually
Miki’s (g,y)-analogue of the Wi algebra | |

3.3.7 The quantum toroidal algebra U,(a;)

Let I = {0,1} be a labeling of the nodes of the Dynkin diagram of type a; and let & = {ag, a1} be a choice
of simple roots for the corresponding root system. Let QF = Z*ag @ Z+ay and let Q = Zagy ® Za; be the

type a1 root lattice.

Definition 3.3.20. The quantum toroidal algebra Uq(dl) is the associative F-algebra generated by the
generators

{D,D_I,C’l/2,(§’_1/2 Er ok atx :ief,mEZ,nEN}

»Vino Vi, —no imo Yim

subject to the following relations

CE/2 s central ~ CEY2CT/2 =1  DFDFl =1 (3.3.54)
DkF(z)D7' =k (2q7")  Dxf(2)D7' =xF(2q7) (3.3.55)
k; (21)k; (22) = k; (22)k; (21) (3.3.56)

k»_(zl)k;(zg) = G'_-(0_121/2’2)ij(CZl/ZQ)k;_(ZQ)ki_(Zl) =1 mod z1/2 (3.3.57)

) i
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GECT 22 )20 )kf (21)xF (20) = X (22)] (21) (3.3.58)

k; (21)xF (22) = GE(CT221 /2)xF (22)K; (21) (3.3.59)
(21 — ¢ 20) %5 (21)x jE(Zz) (21479 — 2z9)x jE(zz) E(21) (3.3.60)
— 5¢j le _ —
X (21),%; (22)] = - {5 (Cz )k+(z c? —s <z2> k; (22C 1/2)] (3.3.61)

1—cyj

S S 0 (1) K o) X o R o)X o) =0 (3362

oceS1— cij k=0

where, for every i € I, we define the following Uq(dl)—valued formal distributions

= > af, e e Uglan) [z, 271 (3.3.63)
meZ
=D ki, 2" € Ug(an)[[271], (3.3.64)
neN

for every 4,5 € I, we define the following F-valued formal power series

Gi(z) = qF 4 (q — ¢ Y [*eis]q Z g™ ™ € F[[2]] (3.3.65)
meNX

is an F-valued formal distribution,

Note that Giij(z) is invertible in F[[z]] with inverse Gj;(z) ie.
GH(2)GE(2) =1, (3.3.66)

and that it can be viewed as the power series expansion of a rational function of (z1,22) € C2? as |23] > |2],

which we shall denote as follows

2147 — 29
Gi(21 /%) = <> . (3.3.67)
! 21— q:F 22 |z2]>]21|

Observe furthermore that we have the following useful identity in F[[z, 27 1]]

(3.3.68)

GiE(21/22) — GE(22/2) .y (Zlqi%)

q—qt 29

Remark 3.3.21. In type a1, I = {0,1}, ¢;j = 46;5 — 2 and we have an additional identity, namely Gﬁ)(z) =
Ghi(2).

U, (1) is obviously a Z-graded algebra, i.e. we have

) =EPUg(a1)n, whereforallne€Z  Uyar)n = {z € Ug(dy) : DaD" = ¢"z}. (3.3.69)
ne”z

It was proven in | ] to admit a triangular decomposition (Uq_(éll),Ug(éu),U;(dﬁ), where Uf]t(dl) and
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Uo(al) are the subalgebras of U, (d;) respectively generated by { ciel,me Z} and

{01/2,0 V2 D DYkt kT ief,meZ}.

» e,mY Tr,m

Observe that Uj(dl) admits a natural gradation over Q% that we shall denote by

UF(a1) = @B Uf(a)a- (3.3.70)

Of course U, () is graded over the root lattice Q). We finally remark that the two Dynkin diagram subalgebras
Uy(a1)© and U,(ar)™ of Uy(a;) generated by

> ,n? T, —n) zm’ ,m

{D,D’l,Cl/Q,C 2 pt g e imeZ, neN}

with ¢ = 0 and ¢ = 1 respectively, are both isomorphic to Uq(al), thus yielding two injective algebra homo-
morphisms +) : U,(a;) < Ugy(ay). In [MZ], making use of their natural Z-grading, U,(a;) and all its tensor
powers were endowed with a topology along the lines of what we did in section 3.3.2 for U,(a;) and its tensor
powers, and subsequently completed into ti(;) and Uq(d1)®T. The main result in [MZ] — theorem 3.7 there

— is the following

—_—

Theorem 3.3.22. There exists a unique bicontinuous F-algebra isomorphism U Uq(dl) S Ug(al) such
that
\/I\,(Dil) _ Dg:l (I}(Cil/Q) _ Ci1/27

(I () = ~c“()KT(C22) ™ Wi (2) = —KT,(C /%)

V(xi (2) = —¢ (CP2)K () X1 (C2) W (2) = =X{_1(C2)e™ (CV22) Ko=)

Proof. See [\MZ] for a proof. O

3.3.8 U,(a;) subalgebras of U,(a;)

Interestingly, ["Jq(al) admits countably many embeddings of the quantum affine algebra Uy, (a;). This is the

content of the following

Proposition 3.3.23. For every m € Z, there exists a unique injective algebra homomorphism ty, :

—

Uy(a) = Ug(al) such that

b (CEY2) = V2 (DFY) = DE! (3.3.71)
|m| .
ign(m)
b (K (2 H ¢t ( (1-2p)sign(m) 1z)sg KFo(C122), (3.3.72)
b (%7 (2)) = X (2) - (3.3.73)
Proof. See proposition 3.13 in [MZ]. O
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Remark 3.3.24. The injective algebra homomorphisms ¢,,,, m € Z, defined above should not be mistaken
with the injective algebra homomorphisms +), i € {0,1}, from the Dynkin diagram subalgebras Uy (a;)(©
and U,(a;)® to Uy(a;) — see discussion before theorem 3.3.22 for a definition of the latter.

We also have

Proposition 3.3.25. For everyi € I = {0,1}, Vo9 is an injective algebra homomorphism.

Proof. This is obvious since T is an isomorphism and ¢ is an injective algebra homomorphism. O
../\
3.3.9 (Anti-) Automorphisms of U/ (a;)

U/

n(a1) naturally inherits, through U, all the continuous (anti-)automorphisms defined over U, ().

—_—

Proposition 3.3.26. Conjugation by T clearly provides a group isomorphism Aut(Uq(c'tl)) = Aut(Up(a1)).

In particular, for every f € Aut(U,(a1)), we let f = Vofolle Aut(U{I(al)).
As an example, consider the Cartan anti-involution ¢ of U, (a;) defined in proposition 2.3.iv. of [MZ]. It
extends by continuity into an anti-involution ¢ over Uq(c'tl) which eventually yields, upon conjugation by U, an

—

anti-involution ¢ over Ug(al). One can easily check that,
pla)=a"', @Dy =DF',  H(CH=CT2 . pct(z) =cT(1/2),

DK (2) = Ki 2 (1/2), (X3, (2)) = X{ . (1/2),

for every m € N and every r € Z.
In addition to the above, Ug(al) also admits the following automorphisms that will prove useful in the study

of its representation theory.

o —

Proposition 3.3.27. 1. There exists a unique F-algebra automorphism T of Ug(cq) such that, for every

m € N and everyn € Z,

T(Q)=—C, 7(c*(C %)) = (FC %), T(K{1,(2) = Kigm(F2), 7(X(,(2) = Xi,.(F2).

) )

1. There exists a unique F-algebra automorphism o of U{I(al) such that
o(C?) = =C2 o(c™(2)) = €™ (2), T(K{1n(2) = Kiin(=2), T(X(,(2)) = X{,(=2).

Proof. Tt suffices to check the defining relations of Uq(al). O

—_—

3.3.10 Topological Hopf algebra structure on Ug(al)

—

Definition 3.3.28. We endow the topological F-algebra Uq(cll) with:

—

i. the comultiplication A : Uy(a1) — U, (a1)®@U,(d1) defined by
A(c«il/Q) _ Cil/2 ® Cvil/Q7 A(Dil) — Dl ® Dil, (3374)
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A(kf(2)) = KF (05 ) @ kF (207, (3.3.75)

Ax{(2) = x/ (2) ® 1+ k; (2C{DEx] (2Cy)) (3.3.76)
A(x; (2) = x; (2C)8k{ (2C3)) +1@%; (2), (3.3.77)
ii. the counit e : Uy(a1) — F, defined by e(D*!) = e(CF/2) = e(kif(2)) = 1, e(xF(2)) = 0 and;

iii. the antipode S : Uy(a1) — Uy(d1), defined by S(D*') = DF!, S(C*/2) = CF1/2 and

SkE(2)) =kf(2)7!, S(x(2) = —k; 207V IxF(z07Y), S(x;(2) = —x; (:C7 Yk (207/2)7L,

)

—

With the operations so defined and the topologies defined in section 3.3.7, Uq(dl) becomes a topological
Hopf algebra — see definition 2.16 in [MZ].

o —

In view of theorem 3.3.22, it is clear that U, (a;) inherits that topological Hopf algebraic structure.

Definition-Proposition 3.3.29. We define

A= (@@@) N (3.3.78)
S=ToSol !, (3.3.79)
E=coW !, (3.3.80)

Equipped with the above comultiplication, antipode and counit, ﬂg(al) is a topological Hopf algebra.
Before we move on to introducing t-weight Ug(al)—modules, we give the following
Lemma 3.3.30. For every m € N and every r € 7Z, we have
i AKY 1y (2)) = AYKT 4 (7)) mod U (a)®U7 (an)[[z, 27 1]);
ii. A, (2)) € (U7 (a)@09(a1) © Ug(a) @07 (@) [[2 7]}

where we have set U;(al) = qu(al) - qu(al) N Ug(al) and U;(al) = U;(al) - U;(al) N Ug(al).

Proof. We first prove i for upper choices of signs. Observe that (3.3.20) equivalently reads

Ki‘rm(z) = _(q - q_l)KiO(zq_Qm)ti":m<z) ’

)

for every m € N*. For every m € N*| let

Kiy,,(2) = UKL, (2) € Uglan)([z, 27 1))

In [M7] — see proposition-definition 4.9, definition 4.25 and eq. (4.66) —, we proved that Kfo(z) =
-k (C'/2%) and that, for every m € N,

K{,.(2) = (q—q )k (C 227>yt (2) |
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where 1,bl+7m(z) can be recursively defined by setting

+ + A
[xg (w), x} (Z)]G;O(w/z) =0 <z> 11(2) (3.3.81)
and
w
Gy (g7 v/w)Gyy (g2 =™ v/w) [%1( )’,l)bim(U)}Gal(w/qu)Gfl(w/v) = Pl (vq >¢1m+1(q v)

28 () 3352

Hence, i for m = 0 is clear. From (3.3.81) and definition 3.3.28, and making use of relations (4.2.6) and
(4.2.7) as well as of the identity (3.3.68), we deduce that

A@WT1(2) = ¥11(2) @ 1+ 9~ (2q 2CDEBT 1 (:C)) — [2gla — a7k (2C{7)xG (2a72)@x] (2C))

where p~(v) = ky (v)k; (vg?). Applying TRV to the first two terms obviously yields Ao(tf’l(z)). Since,
on the other hand, \Tl(xar(z)) € U;(al)[[z, 21| - see theorem 3.3.22 —, applying &V to the third term
yields an element of U;(al)(@U;(al)[[z, z71]] and it follows that i holds for m = 1 and for upper choices
of signs. Suppose it holds for upper choices of signs and for some m € N*. Then, making use of (3.3.82),
one easily checks that i holds for m + 1 and for upper choices of signs, which completes the proof of i for

upper choices of signs. Observe that (@@cp) o A°P = A o and that, as a consequence,
Aoy = (Sb@iﬁ) o AP
Similarly, one easily checks that
05 5. — (H25) - 0,cop
A0 Do (ay) = (‘P®‘P)|Ug(a1) o AT

Thus, i for lower choices of signs follows after applying ¢ to i with upper choices of signs.

As for ii, we let, for every r € Z,

X[, (2) = THXT,(2).

In [MZ] - see definition 4.1 and proposition 4.8 —, we proved that Xfr(z) could be defined recursively by
setting Xio(z) = x; (2) and letting, for every 7 € N,

[ 11(2), X7, (v )}G, (2/oa?)G (/) [2]40 <UCZ]2> X 1(2) (3.3.83)
and
[1/)1_,—1( ), X, (v )} = [2]46 (C;Z> XT_ i (Ca22)pt (C2q%2), (3.3.84)

where ] _(2) = ¢(¢f1(1/z)) — see proposition 4.3 in [MZ]. Making use of ((,0@90) 0 AP = Ao, we
clearly get
(P8¥) 0 AWy (2) = A%t (2)) mod Uy (an)BU7 (a)l[z, 271
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Now, applying TRV to (3.3.76) in definition 3.3.28 clearly proves ii in the case r = 0. Assuming it holds
for r € N, it suffices to apply (@@@) o A to (3.3.83) above to prove that it also holds for r + 1. Similarly,

if ii holds for some r € —N| applying (@@@) o A to (3.3.84) to prove that it also holds for » — 1. This
concludes the proof. ]

3.4 t-weight Uq(al)-modules

3.4.1 (-weight modules over Ug(al)

Remember that Uo(a;) contains a subalgebra that is isomorphic to Ug(al) — see proposition 3.3.5. Hence,
in view of remark 3.2.9, we can repeat for modules over Ug(al) what we did in section 3.2.3 for modules over

U,(a1). We thus make the following

Definition 3.4.1. We shall say that a (topological) ﬂg(al)—module M is £-weight if there exists a countable
set {M, : o € A} of indecomposable locally finite-dimensional UJ%(a;)-modules called f-weight spaces of

M, such that, as Ug°(a;)-modules,
M = EB M,,.

acA
For every a € A, we let [—|ar, : M — M, denote the canonical projection, so that, for every v € M, [v]y,
is the projection of v on M,. Since for every a € A, M, is locally finite-dimensional, it is the colimit of

its finite-dimensional submodules and we shall refer to the latter as local £-weight spaces.
As in section 3.2.3, it follows that
Definition-Proposition 3.4.2. Let M be an {-weight Ug(al)—module. Then:
i. C% acts on M by id;

ii. for every ¢-weight space M,, o € A, of M, there exist kq,0 € F* and sequences (”éiim)meNX e FNV*
such that
n
M, C {v €M:3neN*,YmeN (Kfoyim - /ﬁiimid) = o} , (3.4.1)

+ 41
where we have set Koo = Koo

We let Sp(M) = {Kkqa,0 : @ € A} and we shall refer to

+ + +
Ka (2) = E ’{a,imz "

meN
as the l-weight of the ¢-weight space M,. We shall say that M is
e of type 1 if CY/2? acts by id over M;

e of type (1, N) for N € N* if it is of type 1 and, for every m > N, cim acts by multiplication 0 over
M.

7

e of type (1,0) if it is of type (1,1) and c% acts by id over M.
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Proof. The proof follows the same arguments as the proof of definition-proposition 3.2.8. O

Proposition 3.4.3. Let M be a type 1 C-weight Uo(al) module and let M, and Mg be two local £-weight
spaces of M such that, for some m € N* and some n € Z, My N Kl mn-Mp # {0}. Then, there exists a
unique a € F* such that:

i. the respective (-weights 17, (z) and k5(z) of Mo and Mg be related by
Ro(2) = K5(2) Hyp o (2)*1

where € € {—,+} and

(1—q~%a/2)(1 =g~ Va/z) ,
Hni@a(fz) = ( (1—q2a/z)(1 — ¢~2(m+1g/2) )l i ; (3.4.2)

ii. (z—a)N My N Kfim(z).Mg = {0} for some N € N*.

Proof. There clearly exist two bases {v; : i =1,...,dim M,} and {w; : i =1,...,dim Mg} of M, and My

respectively, in which

dlmMO,

Vi € [dim M,], Kli’o( v = K Z naﬂ’k )k
dim Mg

Vj € [dim Mg], Kfo(z).wj = H:E(Z) Z niﬂ(z)wl,

for some nmk( ),ngﬂ(z) € Fl[z*!]], with 4,k € [dim M,] and 4,1 € [dim Mgz], such that nf“(z) =1 for
every i € [dim M,] and ngjj(z) =1 for every j € [dim Mg]. Moreover, for every j € [dim Mpg],

[Kfim(z).wj} v = Z §$7j7i(z)vi )

“ ie[dim M ]

for some §mJ (2) € F[[z,27 1] - see definition 3.4.1 for the definition of [—] .
Now, if M, N Kfim n-Mp # {0}, there must exist a largest nonempty subset J C [dim Mg] such that,
for every j € J, |Kj :I:m( ). jLM # {0}. Let j, = maxJ. Obviously, for every j € J, there must exist

a largest nonempty subset I(j) C [dim M,] such that, for every j € J and every i € I(j), §m]1( z) # 0.
Consequently, for every j € J,

[Kliim } Z §i7” 2)v;

i€l ()

where fmﬂ( z) € F[z,271]] — {0}, whereas §mﬂ( z) = 0 for any (j,) outside of the set of pairs {(j,1) :
j € Jyie€I(j)}. Forevery j € J, we let i,(j) = min I(j) and, for simplicity, we let i, = i.(j.). Making
use of the relations in Ugy(a;) — namely (3.3.7) and (3.3.8) —, we get, for £ € {—, +},

(21 — ¢ 222) (21 — P TV ) KE L, (21)KS o (22) wj = (21672 — 22) (21072 — ¢*™22)KS o (22) KT 1, (21) w5 -
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The latter easily implies that, for every j € J and every i € I(j),

(21— 2) (21 — TV 2)k5(22) Y 152260k (1)

1eJ
1>
= (2147 = 22) (147" — " 22)r5 (22) Y Wai(22)60 5 4 (2113:4.3)
kel(j)

Taking ¢ = ¢, and j = j, in the above equation immediately yields

2(m¥F1)

[(21 —qz)(n1 — ¢ 2)K5(2) — (21077 — 2) (2147 — ¢* " 2) G (22) | s i (21) = 0.

The latter is equivalent to the fact that, for every p € Z,

=+ =+
(Emvj*vi*:qum ? +£ :.7*71*7p+2) [H%(Z) N ,{3(2)]

= & i | (@7 + 5 (2) = (@D 4 T (2)] (344)

where, as usual, we have set

+ let
5 7.7*77'*717 - reS Zp § ,]*,Z* (Z) :

Since & (z) # 0, there must exist a p € Z such that fm] G
easily obtains that, on one hand 3(z) = £7,(2) and that, on the other hand,

# 0. Assuming that &= iopr1 = 0, one

m] 7/ UOVERED

<q2(m:|:1) + qi2)ﬁ%(z> _ (qQ(mil) + q:’:2>/€3(2’) =0.

A contradiction. By similar arguments, one eventually proves that ¢t # 0 for every p € Z. But

then, dividing (3.4.4) by &=

M, 5T5,P

Msjesinptls WE get

(™22 + apen) [15() = ma(2)] = = [ (@D + E2mi(2) — (7D + g (2)]

for every p € Z, where a, = 5;].*71.*@“/5,;—“1,].*7”@ € F* . Since the r.h.s. of the above equation is obviously
independent of p, so is its Lh.s. and it easily follows that, for every p € Z, a, = a for some a € F*, so

that, eventually,
(722 + a?) [k5(2) - K5.(2)] — 0z (2D + ¢F)r5 (=) — (™D + g7 (2)] = 0.
i follows. Moreover, we clearly have

+ E-
ST () = Am,j*,i*(s(z/a) ;

for some Am i € F*. More generally, we claim that,
N (i,5)
vj e J,Viel(j), Enii2) = D An 0P (2/a), (3.4.5)
p=0
for some Amﬂp € F and some N(i,j) € N. This is proven by a finite induction on j and . Indeed,
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making use of (3.4.2), we can rewrite (3.4.3) as

(21 = ¢%22) (21 = " TV 22) (22 — ¢*2a) (22 — ¢ 20" Va) Y ju(22)8 (1)

l
g
= (Zlqu - ZQ)(Zlq:FQ - q2m22)(22 - q:':Qa)(z? m:Fl Z na k z mj k(zl)(346)
kel(j
k<z

for every j € J and every ¢ € I(j). Now, assume that (3.4.5) holds for every pair in
{(],Z)]GJ,ZEI(j), ]>JO}U{(]07Z)Z€[(]0)7 Z§20}7

for some jo € J and some ig € I(jo) such that iy < maxI(jo). Let i be the smallest element of I(jy) such
that ig < 4. It suffices to write (3.4.6) for j = jo and i = i(, to get

(21 — a)za(z10 — ¢*™25) (¢F% + g 2MFY — gF2 g AmE e o, (1)
(21 — ¢%229) (21 — 2TV 20) (22 — ¢F2a) (22 — ¢ 2 ME g Z 77?37%,1(22)5517%(21)
leJ
1>jo
(21 — 22) (21072 — ¢¥"22) (22 — ¢7%a) (22 — ¢ 2" FVa) Z 773,1“‘3(22)§$,j0,k(2’1)(-3-4-7)
ke(jo)
k<io

Combining the recursion hypothesis and lemma 5.1.8 from the appendix, one easily concludes that (3.4.5)
holds for the pair (jo, ;). Repeating the argument finitely many times, we get that it actually holds for
all the pairs in {(j,7) : j € J,i € I(j), j > jo}. Now, either jo = minJ and we are done; or jp > minJ
and there exists a largest jj € J such that jo > ji. Writing (3.4.6) for j = j{ and ¢ = 4.(j(), we get
(21 = a)z2(z1a = ") (¢ + ¢ 20T — g2 — g (1)
sJQrv*\JQ
—(21 — ¢ 2) (21 — "V 29) (20 — ¢*%a) (22 — ¢ 2" a) IZ; M550 (226 1. i) (1) -
€

>34

Combining again the recursion hypothesis and lemma 5.1.8, we easily get that (3.4.19) holds for (j, ix(jg))-
It is now clear that the claim holds for every j € J and every i € I(j). Letting

N =1+max{N(i,j):jeJ,iecl(j},
ii follows. Furthermore, for every b € F — {a} and every n € N, we obviously have (z — b)"M, N
Kfim(z).M/g # {0}, thus making a the only element of F satisfying ii. This concludes the proof. O

Remark 3.4.4. Tt is worth emphasizing that proposition 3.4.3.i holds for arbitrary pairs of (possibly non-
local) ¢-weight spaces since it must hold for at least one pair of local ¢-weight spaces therein.
We let w; denote the fundamental weight of a; and we let P = Zw; be the corresponding weight lattice. In

view of proposition 3.4.3, it is natural to make the following

Definition 3.4.5. Let M be a type (1,0) ¢-weight Ug(al)—module and let {M, : o € A} be the countable

set of its f-weight spaces. We shall say that M is rational if, for every a € A, there exist relatively prime
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monic polynomials P,(1/2), Qa(1/2) € F[z71], called Drinfel’d polynomials of M, such that the (-weight
kZ(z) of M, be given by

oE () = _ gdea(Pa)—deg(Qa) Pu(q7/2)Qa(1/2)
a( ) q g g (Pa(l/Z>Qa(q2/Z)>z|:t1<<1 .

With each rational f-weight 2 (z) of a rational Ug(al)—module M, we associate an integral weight A\, € P,
by setting
Aa = [deg(Pu) — deg(Qa)] w1 -

We shall say that M is ¢-dominant (resp. (-anti-dominant) if it is rational and there exists N € N* such
that, for every a € A, deg(P,) = N and deg(Qq) = 0 (resp. deg(P,) = 0 and deg(Qq) = N).

Remark 3.4.6. The classical weight Nw; (resp. —Nwi) associated with any ¢-dominant (resp. f(-anti-
dominant) type 1 ¢-weight rational Ug(al)—module M is a dominant (resp. anti-dominant) integral weight.

Note that the converse need not be true.

Remark 3.4.7. The data of the (-weights of a rational ﬂg(al)—module is equivalent to the data of its
Drinfel’d polynomials {(P,, Qq) : @ € A} which, in turn, is equivalent to the data of their finite multisets
of roots {(v+,v;):a € A}. The latter are finitely supported maps v : FX — N such that, for every
o€ A,
P.(1/2) =[] 1-2/2)"@  and  Qa(l/2) = I =zt
z€F* 2eFx

Note that, in the above formulae, since 1/§ is finitely supported, the products only run through the finitely
many numbers in the support supp(v¥) of vX. Moreover, since P, and Q, are relatively prime for every
a € A, we have supp(v) Nsupp(v,) = 0. We denote by NE™ the set of finitely supported N-valued
maps over F*. As is customary in the theory of g-characters, we associate with every f-weight given
by a pair (P,, Q) of Drinfel’d polynomials or, equivalently, by a pair (vI,v;) with vT,v, € NEX and

supp(v.f) Nsupp(v,, ) = 0, a monomial

me =Y = [[ v2e @@ e zV,, ¥V, yewr -
zelFx

Definition 3.4.8. Let M be an {-dominant Ug(al)—module and let M, and Mg be any two /(-weight

spaces of M with respective {-weights

Rar(2) = —q s M an kE(2) = —gdea(Ps) M
o2 " < Py (1/2) >Z|:t1<<1 d 6( ) qeeEes ( Ps(1/2) )|Zil<<1,

where P, (1/z), Ps(1/z) € F[z~!] are two monic polynomials. By proposition 3.4.3.i., if MaﬂKfim(z).Mg #
{0} for some m € N*, then there exists a unique a € F* such that
Fa(2) = KG(2) Hy o (2)*

[0}

where ¢ € {—,4+}. We shall say that M is t-dominant if, for any pair of (-weight spaces satisfying the
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above assumptions, we have, in addition, that
Ps(1/aq~""*™) = Ps(1/ag®~"=™) = 0.
For every a € F*, we let §, € N]]ch be defined by

1 fz=a;
0q(x) =
0 otherwise.

For every a € F*, we let N = {V € N?X {a,aq?} C supp(y)} and we define, for every m € Z, an operator

. NF
Lot NE

X

am — NE™ by letting I, for every v € NE;_Q,,,L,
Fm@(l/) =V — 6aq72m — 5aq272m + 94 + (5aq2 .

Iy is obviously invertible, with inverse F;ﬁa CNFY Ngqx,m given by F%}a =T'_,, qg-2m. Note that, for
every a € F*, Ty, = id over NI Given two finite multisets v,/ € NE*, we we shall say that they are

equivalent and write v ~ o/ iff

v="Lma 0 0lm, ., (V/) ) (3-4~8)

for some n € N, my,...,m, € Z" and some ay,...,a, € F*. In writing (3.4.8), it is assumed that, for every

p=2,...,0 Iy, 000, q4,() € NEX Y It is clear that ~ is an equivalence relation and we
p—1

denote by [v] € N?X/ ~ the equivalence class of v in Nﬁx. Following remark 3.4.7, we naturally extend the

action of T, 4 to Z[Yy, Yy perx, by setting
Lppa(YVY) = YTmel?)
The equivalence relation ~ similarly extends from NI;X to Z[Yb,y};l]bew- Note that, setting
Hypo =Y, L0n Y300 YaYag € Z[Y5, Yy Mpers
for every a € F* and every m € Z, we have, for every v € N{EX
Ta(Y?) = HpoVV

Corollary 3.4.9. Let M be a simple t-dominant Ug(al)—module, Then there exists a multiset v € N?X

such that all the monomials associated with the f-weights of M be in the equivalence class of Y.

Proof. By proposition 3.4.3, for any two f-weight spaces, M, and Mg, of an /-dominant Ug(al)—module
M, with respective f-weights

) = ) () i k(o) = gt (PACL)
@ o < Pu(1/z) >Z|i1<<1 d 5(2) qeEey ( Ps(1/2) >|Zi1<<17

! Although the definition of Fﬂ’a easily extends to {V € N?X caqg~FD € supp(u)}, we will not make use of

. . +1 X FX
that extension and exclusively regard I';; , as a map Naq_mﬂ) — Naq2<1¢1>-
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it My N Kfim’n.MB # {0} for some m € N* and some n € Z, then we must have

Pa(g?/2) _ Ps(a™®/2) ((1—q"%a/2)(1 —a/2) (1 - q*"a/2)(1 — ¢ > Va/z) - (3.4.9)
Po(1/z)  Pp(1/z) \ (1—-a/2)(1=¢%a/z) (1-q 2" Da/z)(1~q2ma/z) ) h

for some a € F*. Now, denote by v, (resp. vg) the multiset of roots of P,(1/z) (resp. Pg(1/z)) and

assume m > 1, it is clear that:

- for the upper choice of sign on the right hand side of the above equation, we get
(1—q*"a/2)(1 = ¢ " Va/z)Pa(1/2) = (1 - a/2)(1 - ¢*a/2) Ps(1/z),

implying that ve + 044-2m + 0g4-20m-1) = Vg + 0 + 04425

- for the lower choice of sign,
(1—a/2)(1 = ¢*a/2)Pa(1/2) = (1 — ¢~ "a/2)(1 — ¢ " Va/z)P5(1/2),

implying that vy + 04 + dgg2 = Vg + dgg-2m + (Saq—Z(m—l).

If on the other hand m = 1, since M is t-dominant, we have, by definition, that ag¥ is a root of P5(1/z).
In any case, it is clear that v, ~ vg and hence Y"* ~ Y5, Since M is simple, there can be no non-zero
(-weight space Mg of M such that M, N Kit,im,n'Mﬁ = {0} for every ¢-weight space M, of M, every
m € N* and every n € Z. O

In view of definition-proposition 3.4.2, we can make the following

Definition 3.4.10. For every monic polynomial P(1/z) € F[z~!], denote by Fp the one-dimensional
U9 (a1)-module such that

+ N — — deg(P) M v
Kio(2). g < P(1/z) >|zi1<<1 ’

for every v € Fp. There exists a universal Ug(al)—module MO(P) = Ug(al) ® TFp that admits the /-
U9%(ar)

weight associated with P. Denoting by N°(P) the maximal Ug(al)—submodule of M°(P) such that N°(P)n

Fp = {0}, we define the unique — up to isomorphisms — simple Ug(al)—module L°(P) = M°(P)/N°(P).

Proposition 3.4.11. For every simple ¢-dominant Ug(al)—module M, there exists a monic polynomial
P(1/2) € F[z~Y] such that M = LO(P).

Proof. Obviously, for every v € M — {0}, we have M = ["J(q)(al).v. Now since M is f-dominant, v can be

chosen as an f-weight vector, i.e.

+ o= — deg(P) M v
Kio(2)- q-® < P(1/z) >|zil<<1

for some monic polynomial P(1/2) € F[z~1]. O

107



Remark 3.4.12. The above proof makes it clear that if {P, : « € A} is the set of Drinfel’d polynomials of
a simple ¢-dominant Ug(al)—module M, then, for every a € A, M = L°(P,).

Theorem 3.4.13. For every monic polynomial P(1/z) € F[z71], LY(P) is t-dominant.

Proof. We postpone the proof of this theorem until section 3.5, where we construct L(P) for every P and

directly check that it is indeed t-dominant. O
Proposition 3.4.14. Any topological Ug(al)—module pulls back to a module over the elliptic Hall algebra
Eqtq2,q-

Proof. Tt suffices to make use of the Hopf algebra homomorphism

o —

& —4 g2 2 i) 62+(a1) — Ug(al) )

q

—

where f is defined in proposition 3.3.18 and the second arrow is the canonical injection into Ug(al) of its

Hopf subalgebra U2+(a1) — see proposition 3.3.12. O

Remark 3.4.15. It is worth mentioning that, as an example of the above proposition, f-anti-dominant

I"Jg(al)—modules pullback to a family of £ -4 ;2 ,2-modules that were recently introduced in | |. It

a%,q
might be interesting to investigate further the class of ;-4 42 ;2-modules obtained by pulling back other

(rational) Ug(m)—modules.

We conclude the present subsection by proving the following

Lemma 3.4.16. Let M be an f-dominant Ug(al)—module. Suppose that, for any two local £-weight spaces
M, and Mg of M, with respective (-weights k= (2) and K%E(z), such that My N Kfil(z).Mg # {0}, the
unique a € F* such that k&, (z) = K%(Z)Hia(z)ﬂ, for every e € {—,+}, and (z —a)N My Kfil(z).Mﬁ =
{0} for some N € N* — see proposition 3.4.3 — also satisfies Pg(1/a) = 0. Then M is t-dominant.

Proof. Let M be as above and let M,, and Mg be two local {-weight spaces of M with respective /-weights

o () = —q ") M an kE(z) = —gdee(Ps) M
" o~ < Pa(1/2) >ZIi1<<1 ‘ ﬁ( ) " ( P3(1/z) )|Z:i:1<<1.

Suppose that MaﬁKfim(z’).Mg # {0} for some m € N*. If m > 1, writing down 5 (2) = /f%(z)Hﬁw(z)ﬂ,
we obtain equation (3.4.9) as in the proof of corollary 3.4.9. By the same discussion as the one following

equation (3.4.9), we conclude that Pg(1/ag™("*™) = Ps(1/ag> (m*™)) = 0, as needed — see definition
3.4.8. Finally, if m = 1, writing down &, (z) = ﬁ%(z)Hia(z)il, we obtain

Paa2/2) _ Psla?/2) ( (1-a/2) (1- q—Qa/z>>ﬂ
Pa(i/z) — P(1/2) \O—a/o)(1—q ajz))

Then, it is clear that:

- for the upper choice of sign on the right hand side of the above equation, we get

(1—q a/2)Pa(1/2) = (1 — ¢°a/2)P5(1/2);
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- for the lower choice of sign on the right hand side of the above equation, we get
(1-4¢%a/2)Pa(l/z) = (1 — ¢ *a/2)P5(1/z).

In any case, it follows that Pg(1/ag™?) = 0. But by our assumptions on M, we also have that P3(1/a) =0
and the t-dominance of M follows — see definition 3.4.8. O

3.4.2 t-weight U,(a;)-modules

Definition 3.4.17. For every N € N* we shall say that a (topological) module M over Ufl(al) is of
type (1, N) if:

i. CTY/2 acts as id on M;

ii. cim acts by multiplication by 0 on M, for every m > N.

We shall say that M is of type (1,0) if points i. and ii. above hold for every m > 0 and, in addition, cojE

acts as id on M.

Remark 3.4.18. Let N € N. Then the U;(al)—modules of type (1, N) are in one-to-one correspondence
with the Uq(al)(N)/(C1/2 — 1)-modules — see section 3.3.3 for a definition of Uy (a;)N). Obviously U, (a1)-

modules of type (1,0) descend to modules over the double quantum loop algebra of type a1, Lg(a1).

Definition 3.4.19. We shall say that a (topological) U,(a;)-module M is a t-weight module if there exists
a countable set {M, : o € A} of indecomposable (-weight Ug(al)—modules, called t-weight spaces of M,
such that, as (topological) Ug(al)—modules,

M= M,. (3.4.10)
a€A

We shall say that M is weight-finite if, regarding it as a completely decomposable Ug(al)—module, its
Sp(M) is finite — see definition-proposition 3.4.2 for the definition of Sp. A vector v € M — {0} is a highest
t-weight vector of M if v € M, for some o € A and, for every r,s € Z,

X ,v=0. (3.4.11)

1,r,s
We shall say that M is highest t-weight if M = Uq(al).v for some highest t-weight vector v € M — {0}.

Definition-Proposition 3.4.20. Let M be a t-weight U,(a;)-module that admits a highest t-weight
vector v € M — {0}. Denote by My the t-weight space of M containing v. Then My = Ug(al).v and, for
every r, s € Z,

X+

1,rs"

My = {0} . (3.4.12)

We shall say that My is a highest t-weight space of M. If in addition M is simple, then it admits a unique
— up to isomorphisms of Ug(al)—modules — highest t-weight space Mj.

Proof. 1t is an easy consequence of the triangular decomposition of Uq(al) — see proposition 3.3.11 — and
of the root grading of U,(a;) that, indeed, X; (Ug(al).v> = {0}, for every r,s € Z. Now since M

1,rs"
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is highest t-weight, we have M = U,(a;).v. By proposition 3.3.11, My € M = Uq_(al)Ug(al).v and it
follows that My = Ug(al).v. Now, assuming that M is simple and that it admits highest t-weight spaces
My and M), we have that ﬁ;(al).Mo ~ M U;(al).Mé as Ug(ap)-modules. In particular, Mo = M} as
Ug(al)—modules. O

In view of the triangular decomposition of Uq(al) — see proposition 3.3.11 —, the above proposition implies
that any highest t-weight U, (a;)-modules M is entirely determined as M = U(;(al).Mo, by the data of its
highest t-weight space My, a cyclic (-weight Ug(al)—module. Now for any v € My — {0} such that M, =
Ug(al).v, let Ny be the maximal Ug(al)—submodule of My not containing v and set Lo = Mq/Ng 2. Then, by
construction, Lg is a simple Ug(al)—module such that, as U,(a;)-modules, M = U;(al).Lo mod U;(al).No.

We therefore make the following

Definition 3.4.21. We extend every simple (topological) ¢-weight Ug(al)—module My into a qu(al)—

+
1,r,s

module by setting X{ . ..My = {0} for every r,s € Z. This being understood, we define the universal

highest t-weight U;(al)—module with highest t-weight space My by setting

o —

M(Mp) = Up(a1) ® Mo

U7 (1)

as U;(al)—modules. Denoting by N(Mp) the maximal (closed) Ug(a;)-submodule of M(Mp) such that
My N N(My) = {0}, we define the simple highest t-weight U,(a;)-module £(Mp) with highest t-weight
space My by setting £(My) = M(My) /N (Mp). Tt is unique up to isomorphisms.

Classifying simple highest t-weight U,(a;)-modules therefore amounts to classifying those simple (-weight
[“Jg(al)—modules M, that appear as their highest t-weight spaces. In the case of weight-finite Uq(al)—modules,
this is achieved by the following

Theorem 3.4.22. The following hold:

i. Every weight-finite simple U;(al)—module M is highest t-weight and can be obtained by twisting a
type (1,0) weight-finite simple ﬂq(al)—module with an algebra automorphism from the subgroup of
Aut(Ul’](al)) generated by the algebra automorphisms T and o of proposition 3.5.27.

i1. The type (1,0) simple highest t-weight Ug(al)—module L(My) is weight-finite if and only if its highest

t-weight space My is a simple t-dominant Ug(al)—module - see proposition-definition 3.4.5.

Proof. We shall prove ii in section 3.5. We now prove i. Let M be a weight-finite simple t-weight Uq(al)—
module and assume for a contradiction that, for every w € M — {0}, there exist r,s € Z such that
X+

1rs-w # 0. Then, there must exist two sequences (ry)nen, (Sn)nen € ZN, such that

0¢ {w,=X! , ...X}

71,81 Tn,S

n.w:nEN}.

Choosing w € M — {0} to be an eigenvector of KiO,O with eigenvalue A € F* — see definition-proposition
3.4.2 for the existence of such a vector —, one easily sees from the relations that, for every n € N,
KIO,O'w” = A¢*"w,,. Tt follows — see definition-proposition 3.4.2 — that {\¢*" : n € N} C Sp(M). A

2Ny clearly does not depend on the chosen generator v. Indeed, if Ny contained a generator v’ of My, it would
contain all the others, including v. It follows that Ny and hence L( are both independent of v.
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contradiction with the weight-finiteness of M. Thus, we conclude that there exists a highest t-weight
vector vg € M — {0} such that Kfo’o.vo = ﬁa—leo for some ko € F*. Obviously, M = Uq(al).vo, for
U,(a1).v9 # {0} is a submodule of the simple U,(a;)-module M. Thus M is highest t-weight. Denote
by My = Ug(al).vo its highest t-weight space. The latter is an f-weight Ug(al)—module. As such, it
completely decomposes into countably many locally finite-dimensional indecomposable Ug’o(al)—modules
that constitute its £-weight spaces. Over any of these, C'/2 must admit an eigenvector. But since M is
simple and C'/? is central, the latter acts over M by a scalar multiple of id. It follows from definition-
proposition 3.4.2 that C acts over M by id or —id. In the former case, there is nothing to do; whereas
in the latter, it is quite clear from proposition 3.3.27 that, twisting the Uq(al) action on M by 7, we can
ensure that C acts by id. It follows that C'/? acts by id or —id. Again, in the former case, there is nothing
to do; whereas in the latter, twisting by o, we can ensure that C'/? acts by id. Similarly, for every m € N,
cim must admit an eigenvector over any locally finite-dimensional ¢-weight space of My. But again, since
M is simple and cim is central, the latter must act over M by a scalar multiple of id.

In any case, in view of (3.3.7) and (3.3.8), KfO,O commutes with all the other generators of Ug(al) and,
since My = Ug(al).vo, we have Kli,o,o-w = nglw for every w € My. Moreover, My turns out to be a type

1 l-weight Ug(al)—module and, by definition-proposition 3.4.2,

n
M, C @ {v eM: Kli,o,o-v =rg'v and TIn € N*,¥m € N~ <K1i,0,im — /{iimid> v = 0}
acA

for some countable set of sequences {(Ki:l:m)mENX eV e A}. By proposition 3.4.20,

x+

1,rs"

My = {0}, (3.4.13)

for every r,s € Z. Pulling back with ¢(9 and (™) respectively, we can simultaneously regard M as a
U, (La;)-module for both of its Dynkin diagram subalgebras U,(La;)® and U,(La;)™®) — see discussion
before theorem 3.3.22 in section 3.3 for definitions. Let v € My — {0} be a simultaneous eigenvector of
the pairwise commuting linear operators in {K:lt,O,:I:m im e N}. Equation (3.4.13) implies that xf(z).v =
Xy (2).v = 0. Thus v is a highest (resp. lowest) f-weight vector of Ug(a;)M.v (resp. Uy(ar)®.v). The
weight finiteness of M now allows us to apply corollary 3.2.12 to prove that the respective simple quotients
of Uy(Lap)©.v and U,(La; )M v containing v are both finite-dimensional and isomorphic to a unique simple
highest (resp. lowest) f-weight module L(Py) (resp. L(Pp)). As a consequence of theorem 3.2.5 and of

proposition 3.2.6, we conclude that

kg (2).v = g sl <0> v and k(). = ¢le®) ( v,
0 ( ) Po(q_Q/Z) ‘Z‘¥1<<1 1 ( ) Pl(]./Z) |Z‘I1<<1

for some monic polynomials Py and P;. On the other hand, pulling back with ¢, for every m € Z — see
proposition 3.3.23 for a definition —, we can regard M as a Uy(La;)-module in infinitely many independent
ways. Again, for every m € Z, v turns out to be a highest f-weight vector for a unique simple weight
finite, hence finite dimensional Uy (La;)-module. As such, it satisfies

Qm(q?/2)

tm (ki (2))v =q Om(1/2) |z\¥1<<1v
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for some monic polynomial @),,. Now since

Im|

HC ( (1—2p)sign(m)—1 )Sign(m) KZIFO(C—l/QZ>

and \Tl(k(jf(z)kf(z)) = c*(z), we must have

(@) <Qm(q_2/ Z)> _ des(P)bm(deg(Py) ~deg(Fo)) <P 1(q7%/ Z)>
Qm(1/2) |z|Fll Pi(1/2) 2| Fl<1

|m| (2p—1)sign(m)—1 (2p—1)sign(m)+1 sign(m)
x H ( i /)Pla /Z)> (3.4.14)

q (2p—1)sign m)—i—l/z) (q(2p 1)sign(m) 1/

2|Fikl

for every m € Z*. In the limit as =% — 0, this implies qd8(@m) = gdeg(P1)+m(deg(P1)—deg()) for every

m € Z and, consequently, deg(Py) = deg(P;) = deg(Q.,). After obvious simplifications, (3.4.14) becomes

—2 —1—sign(m) 2m+1—sign(m) sign(m)
<W> e (Pl(q - /) Pola . /z>> (3.4.15)
z|Flk1

-1 2m+1—
Qn(1/2) (@@ 1/2) Py ) )
for every m € Z*. Now, 2~ = 0 is not a root of P(1/z) for any monic polynomial P. Moreover, g being a
formal parameter — in case ¢ is regarded as a complex number, we shall assume that 1 ¢ ¢%* —, it follows

1'++ ¢™2z7! has no fixed points over the set of roots of a monic polynomial. Thus, for

that the map 2z~
Im| large enough, the respective sets of roots of Py(q~ '8 /2) and Py(g®™+1-5182(") /2) are disjoint.
Similarly, for |m/| large enough, the respective sets of roots of Py(g*8""™)~1/%) and Py(g*>™+158(™) /%) are
disjoint. It follows that, for |m| large enough, on the r.h.s. of (3.4.15), cancellations can only occur between
factors on opposite sides of the same fraction line. Now, either Py = Py, which obviously solves (3.4.15);
or Py # P;. Assume for a contradiction that Py # P;. In that case, there exist a monic polynomial P with
deg(P) < deg(Py) = deg(P1), an integer n € N* with n < deg(Fy) = deg(P1) and two n-tuples (ay)pefn]
(Bp)pen) € F" with
{ap:penl}n{By:pe[n]} =0,

such that

n

Py(1/2) =P(1/2) [[(1 = Bp/2)  and  Pi(1/2) = P(1/2) [J(1 = ap/2).
p=1 p=1

Thus, in that case, (3.4.15) yields

sign(m)

Qmla~%/2) _ [P/ [y L apa el
< > [Flk1 H

Qm(1/2) P(1/z) \ 5 1= Bpgier(m=1/z
<
) sign(m)
y ﬁ 1— 5pq2m+1—51gn(m)/z
1—a« q2m+1—sign(m)/z ’
p=1 p
lz|Flk1

where, for |m| large enough, cancellations on the r.h.s. can only involve factors in the numerators and
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denominators of the leftmost two fraction lines. The third fraction must therefore be a factor in the l.h.s.

But this leads to a contradiction since we cannot have simultaneously

Bpivellyc | apa™™",

p€(n]

as required when m > 0, and

{Bpivellyc |J apd®™,

pen]

as required when m < 0. Hence Py = P; and i follows. O

Although we must postpone the proof of part ii of theorem 3.4.22, the proof above still makes it clear that

Proposition 3.4.23. If a type (1,0) simple highest t-weight Uq(al)—module L(My) is weight-finite, then
its highest t-weight space My is a simple £-dominant Ug(al)—module.

Proposition 3.4.24. Let M be a t-weight Uq(al)—module and let My, and Mg be two local £-weight spaces
of M such that, for some m,n € Z, M, NXE Mg # {0}. Then, there exists a unique a € F* such that:

1mmn:

i. the respective (-weights kg (z) and k3(2) of Mo and Mg be related by

kg (z) = ﬁ%(z)AZ(z)ﬂ , (3.4.16)

«

where € € {—,+} and ,
1—-qg“a/z
Ay (z)=¢* <1 _quQ//Z >Z|ﬂ<<1 ;
i (2 —a)N My N X{Em(z)M/g = {0} for some N € N*.
Proof. We keep the same notations as in the proof of proposition 3.4.3. More specifically, we have two
bases {v; 11 =1,...,dim(M,)} and {w; : j =1,...,dim(Mps)} of M, and Mg respectively, in which

dim M,
Vi € [dim M,], Kfo(z).vi = kI (2) Z 77:,1‘,1@(@“1“
k=i

dim Mg
Vj € [dim Mpg], Kio(2)wj = r5(2) D ngj(=)w,
l=j

for some nii7k(z), nﬁi’ﬂ(z) € F[[z*!]], with 4,k € [dim M,] and 7,1 € [dim Mg], such that ni[”(z) =1 for
every ¢ € [dim M,] and nﬁijj(z) =1 for every j € [dim Mg]. Moreover, for every j € [dim Mg],

SO D D AR [0
ie[dim Mo ]
for some 5111_:”(2) € F[[z,271]] — see definition 3.4.1 for the definition of [~]ay,
Now, if M, NXE Mg # {0}, there must exist a largest nonempty subset J C [dim Mg] such that,

1,m,n

for every j € J, [Xfm(z).wj]M # {0}. Let j. = maxJ. Obviously, for every j € J, there must exist
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a largest nonempty subset I(j) C [dim M,] such that, for every j € J and every i € I(j), gni”-i(z) £ 0.

[HET D SPavan

1€1(y)

Consequently, for every j € J,

where fm] A(2) €F[[z, 2] — {0}, whereas & . .(2) = 0 for any (j, ) outside of the set of pairs {(j,4) : j €

Jyi € I(j)}. For every j € J, we let i.(j) = min I(j) and, for simplicity, we let i, = i.(j,). Making use of

m,j,i
the relations in U, (a;) — namely (5.0.1) and (3.3.10) —, we get, for every j € J and every € € {—,+},
(21 = 2 22) XY, (21)KS o (22) w5 = (21077 — 22)KS o(22) X7, (21) w0y -

The latter easily implies that, for every j € J and every i € I(j),

(21— 2 2)k5(22) D15 u(22)60m 11 (21) = (210™2 = 22)% (22) D mips(22)6m 5 4(21) - (3.4.17)
e kel(j)
1> k<i

Taking ¢ = i, and j = j, in the above equation immediately yields

(21 — ¢ 22) k5 (22) — (2107 — 22)K5(22)] & i (21) = 0.

The latter is equivalent to the fact that, for every p € Z,

grjr:L,j*,i*,p (qﬂ’f%( ) — ni(z)) :grjr:z,j*,i*,p+l (’f%( )‘qﬂ’fa( )) ) (3.4.18)

where, as usual, we have set

+ p—1¢+t
g :J*ﬂ*ap_resz 5 ,]*,Z*(’z)'

Since §mj i.(2) # 0, there exists at least one p € Z such that fij i.p 7 0. Assuming that & =0,
one easily derives a contradiction from (3.4.18) and, repeating the argument, one proves that §m urin D #0

for every p € Z. Dividing (3.4.18) by =

m ]* is,p+1 T

i, p OTIE gets

2 (q72K5(2) — Ko (2)) = ap (K53(2) — ¢*2K5(2))

where we have set, for every p € Z, a), = fi,j*,i*,p+1/§$,j*,i*,p € F*. Since the Lh.s. of the above equation
is independent of p, so it its r.h.s. and there must therefore exist an a € F* such that a, = a for every

p € Z, eventually yielding
2 (a2 kG(2) — Ke(2)) = a (k3(2) — 2K5(2)) -
1. now follows. Moreover, we clearly have

51:7‘:1,]'*,1'* (Z) = mj* Tx (Z/a)
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for some Ai Jaein € F*. More generally, we claim that,

N (i,)
VjeJ,vielj), i)=Y A% 60V (z/a), (3.4.19)
p=0
for some Amﬂp € F and some N(i,j) € N. This is proven by a finite induction on j and . Indeed,

making use of (3.4.16), we can rewrite (3.4.17) as

(21 — ¢ 220) (20 — ¢2a) Z 77%7]471(22)5%7171»(21) = (2142 — 22)(¢T% 20— a) Z e ki mj L(21), (3.4.20)

leJ kel(y
1> k:<z

for every j € J and every i € I(j). Now, assume that (3.4.19) holds for every pair in
{(]71)]€J7Z€I(])7 j>j0}U{(j0,’L)Z€I(]0), ZSZO}a

for some jo € J and some ig € I(jo) such that iy < maxI(jo). Let i be the smallest element of I(jy) such
that o < 4. It suffices to write (3.4.20) for j = jo and ¢ = (), to get

+ + + + +
(21 —a)ze(l—q 4)€m,j0,i6(21) = —(a1-¢®n) (22— ¢"a) > 3,00 (22)&0 1.1 (1)

leJ
1>jo

+(z1qi2 - 22 ZQ - a Z 77(1 k,zo m]g k( ) (3421)

kel(jo)
k<ig

Combining the recursion hypothesis and lemma 5.1.8 from the appendix, one easily concludes that (3.4.19)
holds for the pair (jo, ;). Repeating the argument finitely many times, we get that it actually holds for
all the pairs in {(j,7) : j € J,i € I(j), j > jo}. Now, either jo = minJ and we are done; or jp > minJ
and there exists a largest jj € J such that jo > jj,. Writing (3.4.20) for j = j and ¢ = i.(j(), we get

(21 —a)z2(1 = 8 s oy (21) = = (21 = ¢7222) (22 — ) lZ; M30(32) 0 10, iy (1) -
€
>3

Combining again the recursion hypothesis and lemma 5.1.8, we easily get that (3.4.19) holds for (j, i+ (j§))-
It is now clear that the claim holds for every j € J and every i € I(j). Letting

N =1+max{N(i,j):jeJ icl(j)},

ii. follows. Furthermore, for every b € F — {a} and every n € N, we obviously have (z — b)"M, N
Xfm(z).Mg # {0}, thus making a the unique element of I satisfying ii.. O

Remark 3.4.25. Obviously, proposition 3.4.24.i holds for arbitrary pairs of (possibly non-local) (-weight

spaces since it must hold for at least one pair of local ¢-weight spaces therein.

Corollary 3.4.26. The (-weights of any type (1,0) weight-finite simple U,(ay)-module are all rational —
see definition 3.4.5.

Proof. Let M be a type (1,0) weight-finite simple Uq(al)—module. By proposition 3.4.23, its highest t-
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weight space M is an ¢-dominant simple Ug(al)—module. Hence, M = L(M,) = U;(al).MO and it easily
follows by proposition 3.4.24 that all the ¢-weights of £L(Mj) are of the form

N
+ Z)HA:E
p=1
for some N € N, some aq,...,ay € F* and
/{i(z) — _qdegPa Pa(q72/z)
@ Pa(l/Z) |z|F1<1 ’

for some monic polynomial P, (1/2) € F[z~!]. Now, observe that

T T Ry T i
¢ 1 - q_2a/z |2|F1<1 1— a/z lz|F1<k1 1— q_2a/z || ¥l

Hence, all the ¢-weights of L(Mj) are of the form

ot (y) = _ gdes(Ps)—dex(Qp) 5(q7%/2)Qs(1/2)
B() g8t 8(p <PB(1/2)Q5 2/z)>|zlil<<17 (3.4.22)

for some relatively prime monic polynomials P3(1/z),Qs(1/2) € F[z~1], which concludes the proof. [

In view of remark 3.4.7, we can therefore associate with any weight-finite simple Uq(al)—module a g-character

defined as the (formal) sum of the monomials corresponding to all its rational ¢-weights.

Proposition 3.4.27. Let My and Ngy be two t-dominant simple Ug(al)—modules such that My®Ny be
simple. Then:

i. My®Ny is a simple t-dominant Ug(al)—module of type (1,0);

1. there exists a short exact sequence of Uq(al)—modules
{0} = N — L(Mo)®L(No) = L(Mo®No) — {0} ;
ii. if, in addition, L(My)®L(Ny) is simple, then
L(Mo)®L(No) = L(MoRNp) .

Proof. Combining egs. (3.3.19), (3.3.20), (3.3.21), (3.3.23), (3.3.24), (3.3.25) and (3.3.26), we easily prove
that

A%(c*(2) = ¢*(2Cp) ") @ (), (3.4.23)
AV KT, () == T e a2 K L ()BKT,, (27 *Cy), (3.4.24)
k=01=k+1
A(KT 0 (2)) = = 3 KT 0y (267 Ca))BKT H (272 Cy) (3.4.25)
k=0 l k+1
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for every m € N — the case m = 0 being just (3.3.23). Now My and Ny are both of type (1,0) and
(3.3.22) and (3.4.23) respectively imply that so is Mo®Np. Similarly, they are both f-weight and (-
dominant. It follows that, if {My.: € A} and {Nyg: 3 € B} are the countable sets of (-weights of
My and Ny respectively, with respective Drinfel’d polynomials {P, : o € A} and {Pg : f € B}, then
{Moo ® Nog:a€ A, [ € B}isthe countable set of ¢-weight spaces of Mo®Ny. Moreover, the latter is
obviously ¢-dominant since its Drinfel’d polynomials are in {P,Ps: o€ A [ € B}. Now let a, o € A,
B,6" € B and let P,, Py, P3 and Pz be the Drinfel’d polynomials of My, My, Nog and Ny g

respectively and assume that
(Moo ® Nog) N A (KT 11 (2)). (Mo, ® Nogr) # {0} (3.4.26)
Then, writing (3.4.24) and (3.4.25) above with m = 1, we get

MK (2)) = —¢ (20 2ClK o (2)BKT (2Cry) — Ki 3 (2)BK T o (2072Cay)

MKy (2) = —K; 4 (2Ca)BKy o(2)eH (20 Cl%) — Kig (20 Ca) KT (2).

Since both My and Ny g are {-weight spaces, it follows that
A(KE: 41 (2)). (Mo @ Nor) € (K (2)-Mow ® Nogr) & (Mo © Ky ()N )

Therefore, condition (3.4.26) holds only if the direct sum on the r.h.s. above has a non-vanishing in-
tersection with Mg, ® Ngg. But since the latter is an f-weight space, this happens only if either
Moo N Kfil(z)-MO,a’ # {0} or Nogn Kfﬂ(z)-NO,ﬁ/ # {0}. The t-dominance of My and Ny implies
that, for the only a € F* such that (z —a)"™ My N Kfil(z)-Mo,a' = {0} for some m € N*, Py(1/a) = 0;
or, for the only b € F* such that (z—b)”NoﬁﬂKfil(z).NO,g/ = {0} for some n € N*, Pg/(1/b) = 0. In any
case, Py (1/a)Pg(1/a) = 0 or Py (1/b)Pg/(1/b) = 0 and My@Nj is t-dominant. i follows. By lemma 3.3.30,
it is clear that A(Xi"r(z)) (Mo®Np) = {0}. Hence My®Ny is a highest t-weight space in £(Mo)L(Np).

Let N denote the largest closed Ug(al)—submodule of L(Mo)®L(Ny) such that NN (Mo@No) = {0}. ii

obviously follows. iii is clear. O

3.5 An evaluation homomorphism and evaluation modules

~

In this section, we construct an evaluation algebra A; and an F-algebra homomorphism ev : Uq(al) — Ay,

that we shall refer to as the evaluation homomorphism.

3.5.1 The quantum Heisenberg algebras H,” and H,

Definition 3.5.1. The quantum Heisenberg algebra H,;JE is the Hopf algebra generated over K(t) by
{ 1/2 . —1/2 -1 ) ><}
vy L, O, L, Qg M € 7 ,

subject to the relations,

71/27 7_1/2, O, Oz;l are central,
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dm,n gl
)
m 2

[a:t,—mv ai,n] = -

for every m,n € Z*, with comultiplication A defined by setting
AWV =402 A(TV2) =472y,
Alag) =ar @ ax, Alezh) =ai' ® al',
Alasm) = Qpm @ ,y|m|/2 + ,y*|m|/2 ® Ot
for every m,n € Z*, antipode S defined by setting

SH =2, SR =AM,

Definition 3.5.2. In H;", we let

Lf(z)=1+ ) LT,2"=exp |—(t—t7") > ap_m(t?2)™]| ,

meNX meNX

Rt(z)=ay [1+ Z Riz"™ | =ayexp [(t—t7) Z e m(t22)™™

meNX meNX

Similarly, in H; , we let

L (z)=a_ |1+ Z L=,2" | =a_exp |—(t—t71) Z a_ _m(t22)™

meNX meNX

R (z)=1+ Z R,z™=exp |(t—t}) Z a_m(t?2)™™

meNX meNX

Then, we have the following equivalent presentation of ch.

Proposition 3.5.3. ’Hti is the Hopf algebra generated over K(t) by

{71/27771/27 L:t Ri tme N}

—m>

subject to the relations
[L*(v), L¥(2)] = [R¥(v), R¥(2)] = 0,
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R¥(0)L¥(2) = 6% (2/v)L* (2)R*(v) ,

where we have defined 0F(2) € Z(Hy)[[2]], by setting

e T e AU
(1 _ t:l:4—2,.yz)(1 _ t2:i:4,.y—1z) <1

Furthermore, we have
AL (2)) = L¥(274)) @ LE (29,
—-1/2 1/2
A(Ri(z)) = Ri(z'y(g)/ ) ® Ri(Z'Y(l/) )

where, by definition,

7(11/)2271/26917 7(5/2:7*1/2@17 v(l/)2—1®7/ 7(2;/2:1@7*1/2

and
SLE(2) =L ()", SR (2)) =R*(z)~".
Finally, e(L*(2)) = e(R*(2)) = 1.
Proof. This is an easy consequence of the definition of Hf O

Remark 3.5.4. Observe that 07 (z) and 6~ (z) are not independent and that we actually have 6~ (z) =
o+ (t82).

3.5.2 A PBW basis for H;

For every n € N*, we let A, :={A = (A1,..., \n) € (N*)": Ay > .-+ > A\, } denote the set of n-partitions.
We adopt the convention that Ag = {(} reduces to the empty partition and we let A = J,,cjy An be the set of

all partitions.

Proposition 3.5.5. Define, for every A € A,

Li\t —L:E)\l ”L:EAn’ (351)
Ry =Ry - Ry , (3.5.2)

with the convention that Li R(Z) = 1. Then,
{qﬁ# — LR\ e A} (3.5.3)

is a K(t)[y'/2,y~'/?]-basis for H.

Proof. The relations in Hfﬁ read, for every m,n € N,

(L%, L5,) = [Ry, Ry =0

“m
min(m,n)

RELE =L* RE + Z o LE

p—p—n mp7
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where, for every p € N, 9;': e K(t)[y"/2,4~Y?] can be obtained from

It is clear that any monomial in {Lj_tm, R . m € N} can therefore be rewritten as a linear combination
with coefficients in K(t)[y'/2,7~1/?] of elements in {¢>fﬂ : A\, i € A}. The independence of the latter is

clear. O

A convenient way to encode the above basis elements is through H?E—valued symmetric formal distributions.

Let indeed, for every nT,n~,mT,m~ € N, every n*-tuple z* = (zf,...,zfi) and every m*-tuple ¢* =

(Cfc, e, C,j,ii) of formal variables,
= (2%, ¢F) = L¥(z5)R¥(¢H)

where we have set

nt
L (z%) = [[ 1%,
p=1

mE
R*(¢H) = [[R¥(&).
p=1
with the convention that if n* (resp. m* = 0), then L=(0) = 1 (resp. R*(()) = 1). It turns out that
(2%, ¢%) € M2, ()5 St

Indeed, owing to the commutation relations in Hti, the formal distribution ®* (2%, ¢¥*) is symmetric in each of
its argument tuples, 2+ and ¢T respectively; i.e. it is invariant under the natural action of S+ x S, + on its

arguments. It is also clear that, for every A* € A+ and u* € A+,

_1_)\*E _ +
q)fi’ui - :rteCS:l:(Zi) 1-X (Cﬁ:) 14u (I)ﬁ:(zj:7<-ﬁ:)’
zE,
where we have set

ni mi
_1_)\* _1_)\* _ + _ +
()7 =TIED " and @ = TG e

p=1 p=1

3.5.3 The dressing factors L (z) and R (2)
Definition 3.5.6. For every m € Z*, we let

Im|

L,:%(Z) _ H L:I:(Zt:tQ(l—2p)sign(m)+2):|:sign(m) (3.5.4)
p=1
Im|

Rrin(z) — H Ri(ZtiZ(172p)sign(m)+2)isign(m) (355)
p=1
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It easily follows that

Proposition 3.5.7. In ch, for every m,n € 2>, we have
Lo (v), Ly (2)] = R (v), Ry ()] = 0,

R (V)L (2) = 05, (2/0) Ly (2) R (v)

where we have set
[m| |n|

Q;tn,n(z) _ H H H:I:(Zt:l:?(1—25)sign(n)q:2(1—2r)sign(m))sign(mn) ]

r=1s=1

Furthermore, we have, for every m € 2,
1/2 -1/2
ALE(2) = L (=) @ L (7)),

—-1/2

ARE(2) = RE(27,)") @ RE ().

It is worth emphasizing that the Lt (z) are not indepedent for all values of m € Z* and that neither are

the R (2). Indeed, we have

Lemma 3.5.8. For every m,n € 7%,
+ - +
LE,,(2) 7 = Ly (2t

RE, ()" = Rk (15")

LE (2™ LE(2) = LE L, (stF1™)
RE(25™RE(2) = R, (2t™™)

3.5.4 The algebra B;

(3.5.6)

(3.5.7)
(3.5.8)

(3.5.9)

Remember the Hopf algebra Iqu(Lal) from definition 3.2.1. It is naturally Z-graded and we can endow it

—

with a topology following what was done for Uq(al) in section 3.3.2. Let Ijq(Lal) denote the corresponding

completion. Then, we have

—

Definition 3.5.9. We endow the topological F-algebra ﬁq(Lal) with:

o —

i. the comultiplication A : U,(La;) — Uy(Lay)&U,(La;) defined by
Akt (2) = ki (=) @ ki (2) |

A(xf (2)) = x{ (2) ® 1 + ky (2)@x] (2),

A(x) (2)) = %1 (2)@K] (2) + 1@ (2),

—

ii. the counit ¢ : ﬁq(Lal) — T, defined by e(kif(2)) = 1, e(x5°(2)) = 0 and;
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e

9}

iii. the antipode S : Uy(La;) — U,(Lay), defined by

[ay

SAT(2) =ki(2)7h, SO (2) = ~ky (2)7'x{ (2), S(x7(2) = —x7 (2)k{ ()

With the operations so defined, IUJq(Lal) becomes a topological Hopf algebra that we shall denote simply
U,(La;). Tt has an invertible antipode and we denote by U, (La;)P its coopposite topological Hopf
algebra.

Proposition 3.5.10. The quantum Heisenberg algebra H;™ (resp. H; ) is a left U,z (Lay)-module algebra
(resp. a left Uy2(Lay)®P-module algebra) with

Ki(0) 72 = K5 (0) by V2 =0,

ki(v) > L¥(2) = A5 (v, 2)L(2),  ki(v) > R¥(2) = p™F (v, 2)R¥(2),,
xi (v) >7"? = x§(0) 772 = x{(0) > L*(2) = i (0) b R*(2) = 0,

for e € {—,+} and where we have set

t2:F2 _ t—2i22 ti4,U —
AE (v, 2) = ( and o (v, 2) = :
v — ti4z IZ/U‘51<<1 tQiQU - tf(Ziz)Z |Z/U|61<<1

Proof. One readily checks the compatibility with the defining relations of ”Hti and ﬁtz (Lay). O

Proposition 3.5.11. For every m € Z* and every € € {—,+}, we have
K5 (0) > Lo (2) = A" (0, 2) L (2), - ki (v) > Ryp(2) = 05" (v, 2) Ry (2)

xi(v) > Liy (2) = xi(v) > Ry (2) = 0,

A (0,) — —20F)my, _ yE4-2(1+D)m
m U 2) = v—ttdz
|z/v]etkl

’ B tFy — 2
Pm (?), Z) - ti4—2(1¢1)mv _ t—2(1:|:1)mz

where we have set

and

>|z/v51<<1 .
Proof. This is readily checked making use of definition 3.5.6, of the Hopf algebraic structures of ﬁtz(Lal)

and U (La; )P, of the Uz (Laj )-module algebra structures of 7, and of the U,z (La;)°P-module algebra
structure of H, . ]

Definition-Proposition 3.5.12. We denote by #;" x U2 (La;) ® H, the associative F-algebra obtained
by endowing H;” ® U2 (Lay) ® H; with the multiplication given by setting, for every h.., B, € H, every
h_,h' € H; and every z,z’ € Up(Lay),

(hy@zeh ). (W, @ @h )= hy(zq>h))@zgr’ @b (zEohl),

— see proposition 3.5.11 for the definition of the U (Lay)-module algebra structure of ;" and of the

1/2

ﬁtz (Lap )°°P-module algebra structure of 7, . In that algebra, {y'/* —t, 42— t=1} generates a left ideal.
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+1/2

The latter is actually a two-sided ideal since ~y is central and, denoting it by (71/2 — ), we can set

Bt = 'H;r b Ut2(La1) C[(:(p H;/(’YUQ — t).

Proof. Making use of the coassociativity of the comultiplication A, it is very easy to prove that, with the

o cop
above defined multiplication, H;” x Uz (La;) x H; is actually an associative F-algebra. O

Proposition 3.5.13. Setting & — 1® z ® 1, for every & € Up(Lay), defines a unique injective K(t)-
algebra homomorphism Ijtg (Lay) — B,. Sitmilarly, h — h®11 and h = 1®1® h define unique injective
K(t)-algebra homomorphisms H; < B and H, — B; respectively.

Remark 3.5.14. We shall subsequently identify U,z (La1), H; and H; with their respective images in B;

under the injective algebra homomorphisms of the above proposition.

Proposition 3.5.15. In ét, for every m € Z* and every ¢ € {—,+}, we have the following relations

(v — tH2) (v — AT ARE (VLE(2) = (v — 0 2) (0 — AP )LE)RE (0),  (3.5.13)
(245 — V) (0)LE (2) = (atF1720EDm 205D (ks (0), (3.5.14)

(2t — v)xi (V)L (2) = (a7 20EDm = 20F0m LE ()3 (v), (3.5.15)

xi ()L, (2) = L, (2)x7 (v) (3.5.16)

(s~ 20E0m _ 2205 )m ke (RE (2) = (2 — vt RE (2)K5 (v), (3.5.17)

(2 20EDm _ B A20FDm )k (VRE (2) = (2 — vtFYRE (2)xF (v) (3.5.18)

X1 (V)R (2) = R (2)x7 (v), (3.5.19)

Proof. In order to prove (3.5.13), it suffices to check that

0% (2) = (1-2)(1 =32 mod (~1/2 —
(=) < >| (V2 1)

(1 —t+42)2

and that subsequently, for every m,n € Z*,

N B (1 . t:l:4(1—n)z)(1 o t:i:4(1+m)z) 2
Omn(2) = < (1 — t%42)(1 — ¢FA0+m—n) ) o mod (7 t).

As for the equations (3.5.14 — 3.5.19), they immediately follow from the definitions of ;" % U,z (Lay) ®

‘H, and of the actions > of Ijtz (Lay) on H;” and H; - see proposition 3.5.11. E.g., we have, by definition,

Xt (LL(z) = (loxf)el) (Li)elel) =Y (x(v)q)>Li(2) X (0)e @ (X (v)E>1)
(xf () > L (2) ®@1@ 1+ (ki (v)>LE(2)) @ xf (v) ® 1

+ (ky (v) > L (2) @ Ky (v) @ e(x] (v))1

= (v, 2)Ly (2)x] (v)
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xi ()L (z) = (1oxf()el)(1e01eL,(z) = (x{(©)q>1) @xf(v)e @ (x{(0)E > Ly(2)
= e(xjf()I®1® (1pL,(2) +1ox{(v)® (1>L,,(2) + 1 ® (x{ (v)>L,,(2)) @ ki (v)
= L, (2)x{ (v),

as claimed. O

Remark 3.5.16. In addition to the above, we obviously have in l’;'t, all the relations of its subalgebra
U,2(La;) and all the relations of its subalgebras #;" and H; modulo (y/2 — ¢).

Definition-Proposition 3.5.17. Let 7 be the left ideal of By generated by

{res szt (1 Cahoxs a0 = gt (2) )~y ()] ) e 2

21,22 Z9
Then Z.B; C T and Z is a two-sided ideal of B;. Set B; = l;’t/I.

Proof. In order to prove that I.B; C Z, it suffices to prove that, for any x € l’;’t,

<1

(1 e e = 0 (2) D ) — i ()] ) e € 7

22

The latter easily follows by inspection, making use of the relevant relations in B, and ﬁtz(Lal), namely
(3.5.14 - 3.5.19) and (3.2.3 - 3.2.7). O

Remark 3.5.18. Thus, in addition to the relations in lét, we have, in By,

(o o)l = g () [ (o) — b))

t2—t2 Z9

3.5.5 The completion l§t of B;

Making use of its natural Z-grading, we endow B; with a topology, in the same way as we endowed Uq(al) with
its topology in section 3.3. We denote by gt the corresponding completion. Consequently, its subalgebra ’Hfﬁ

inherits a topology and we denote by ﬁfﬁ its corresponding completion in that topology.

3.5.6 The shift factors

Definition 3.5.19. In ﬁf, we define,
HE(2) = L (»)R*(2).
Similarly, for every m € Z*, we let

— . |
HE(:) = [ HE(stF20-20)sienm) 2 ydsinn)

pe[lm|]
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Lemma 3.5.20. For every m,n € Z*,

HE (2)7! = HE (2tH7) (3.5.20)
HE (5™ HE (2) = HE, (2t5'™) (3.5.21)
Proof. Follows directly from the definition in the same way as lemma 3.5.8. O

Proposition 3.5.21. In 7’_2;:} we have, for every m,n € Z*,
H,, (2)H;; (0) = 65, (2, 0)H (0)Hy ()

where
(U _ ti4z)(v _ t:l:4(1+n—m)z)(t:t4(1—n)v _ Z)(t:t4(1+m)v _ Z)

(2: _ t:l:4v>(z _ t:t4(l+m—n)v)(t:t4(1—m)z _ U)(t:t4(1+n)z _ 'U) )

@itn,n(zv 1}) -

Proof. In view of definition 3.5.19 and of the relations in proposition 3.5.7, it is clear that commuting
H (2) and H} (v) amounts to commuting, on one hand L (2) and R} (v) and, on the other hand, R ()
and L (v). The result follows. O

Proposition 3.5.22. For every m € Z* and every € € {—,+}, we have
ki(v)>H,, (2) = Hy, . (0) ' HE,, (2) (3.5.22)
x5(v)>HE(2) =0. (3.5.23)

Proof. The left U,2(La; )-module algebra (resp. a left U2 (La;)®P-module algebra) structure of #;" (resp.
H; ) — see proposition 3.5.10 — is extended by continuity to 7/-22“ (resp. ﬁt_) Then, it suffices to check that,
for every m € Z* and every € € {—, +},

KS(v) > HE, (2) = A7 (v, 2)pTn (v, 2)HE,,(2)

and that
€ +1 _ \&,=E e, =+
Hm,z(v) - )‘im(vﬁz)pim(vﬁz) .

Corollary 3.5.23. For every m € Z, every p € N and every ¢ € {—,+}, we have
p+1
I [5(n) — Hy, . (0p)*id] » 0PHE,, (2) =0,
k=1

Proof. 1t suffices to differentiate (3.5.22) p times with respect to z to obtain

p—1 k+1
5 € s p 0 € —k—
[kl(v) - Hm,z(v)il ld] > apHim(z) = Z <k + 1> 8zk+1 [Hm,z(v)il] ap k lHim(Z) .
k=0

The claim immediately follows. O
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Proposition 3.5.24. In gt, we have, for every m,n € 2>,
H,, (2)H, (v) = H, (v)H;, (),

(ztizl o U)(thQ(lil)m o Uti472(1q:1)m)ki (v)Hi(z) _ (Z o Uti4)(zti472(lil)m - ,Ut72(1:|:1)m)H7in(z>ki (1)) 7
(Zt:I:4 _ ,U)(Zt—Q(I:tl)m o Ut:l:4—2(1:|:1)m)xic(v)H7:i7:1(z) — (Z _ Ut:l:4)(zt:|:4—2(1:|:1)m o Ut_2(1:':1) )H:t( ) x3 ( )
xi (v)HF (2) = H (2)x7 (v) -

Proof. This follows immediately from [L*(z), LT (v)] = [L¥(2), RT(v)] = [R*(z), RT(v)] = 0. O

3.5.7 The evaluation algebra th

Definition-Proposition 3.5.25. Let J denote the closed left ideal of gt generated by

{res 2 [H(2) (K (2t%) — Ky (2t74) — HT (2) 7L (K () — Ky (2))] 1 € z} . (3.5.24)

z

Then, J. Bt C J, making J a closed two-sided ideal of Bt, and we let At Bt /J.

Proof. In order to prove that J .Bt C J, it suffices to check that, for every x € Bt,
[H(2) (ki (zt™) —ky (2t7h) —HY(2) ' (kf (2) — ki (2))]z € T.
The latter easily follows by inspection, making use of the relevant relations in Et, namely (3.5.13-3.5.19)

in proposition 3.5.15. O

Proposition 3.5.26. For every m € 7Z, the following relation holds in .Zt,
H-, (2) [k (zt4) — ki (2t7*™)] = B (2) 7 [k (2) — k; (2)] - (3.5.25)

Proof. We prove (3.5.25) for m € N* by induction. The case m = 1 corresponds to the vanishing of the

generators of the ideal 7, see (3.5.24). Assuming the result holds for some m € N*| we have

H-

) Ky (7400 |

) -
H (247! kT(zt 4) ky (2t™)]
—ky (2t™h)]
= H (2t 7H (2) 7! [k (2) — k; (2)]

() [1ef (27400 — ke (2474070

The cases with m € —N* follow by rewriting the above equation for m € N* as

(=) [k (2t747) = (2t 7)) = HD, (2) 7 [k (2) = K (2)]

—m

and making use of lemma 3.5.8. O

Remark 3.5.27. In addition to the above relation, .Zt obviously inherits the relations in gt modulo J. In

particular, all the relations in proposition 3.5.15 hold in .Zt.
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3.5.8 The evaluation homomorphism

Remember U, (a;)(~ from section 3.3.3 and 1o from section 3.3.8, proposition 3.3.23.

Proposition 3.5.28. There exists a unique continuous K-algebra homomorphism ev : Uq(al)(_l) — A

such that, for every m € N* and every n € Z,

ev(q) = 1%, (3.5.26)

ev(Kio(2)) = —kf (2), (3.5.27)

ev(Ky 1 (2)) = Hi, (2) [l (2t74) — K (2t7*™)] (3.5.28)
ev(XT, (2)) = HE (2)xF (24T (3.5.29)

We shall refer to ev as the evaluation homomorphism. It is such that ev o 19 = id over Uz (Lay).

Proof. 1t suffices to check all the defining relations of Uq(al)_ E.g. we have, for every m,n € Z,

ev(XF,, (v)), ev(Xpn(2)] = tQ_1t72(5(Zt4(:}n+n))H$(v)H;(z) [k (ut™4m) — ky (24*")] . (3.5.30)

If m +n = 0, making use of (3.5.25), we are done. Assuming that m + n > 0, lemma 3.5.8 allows us to

write

HY (/") H, (2) [k (o) — Ky (7)) = H (' )HE (2)7 K (2) — ki (2)]
= Hy (" H (1) [k (2) — Ky (2)]
= H (=) [k (2) — Ky (2)]

m—+n

so that, eventually,

1 v

e <2t4(m+n N

ev(X{, (v),ev(Xy,(2)| =

m+n

)> ev(K

A similar argument proves the case m +n < 0. O

The following is obvious.

Corollary 3.5.29. For every N € N there exists an algebra homomorphism ev(ny : Uq(al)(N) — .:lt

making the following diagram commutative.

RSN Uq(al)(N) SN Uq(al)(N‘l) Uq(al)(‘l)
w lev
ev(N) b
Ay

We can furthermore define the algebra homomorphism ev(qo) : Ug(a) — .,Zt by

ev(oo) = {iﬂlEV(N) .
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3.5.9 Evaluation modules

Remember the surjective algebra homomorphism fIq(Lal) — Ug(Lay) from proposition 3.2.2. It allows us to
pull back any simple U, (Laj)-module M into a simple U,(La;)-module. With that construction in mind, we

have
Proposition 3.5.30. Let M be a simple finite dimensional Uy(Lay)-module. Then,

—~ —~ o cop
i H @ M ® H; is a Hf x Up(Lay) x H; -module with the action defined by setting, for every
hy, b, € H,, every h_ b € H; , every x € Upe (Lay) and every v € M,

(hy @z @h ).(hy @v@h)=> hy (zq> ) @zoweh_ (2 >h)
and extending by continuity.

0. ﬁf ®@ M ®7—A[t_ descends to a Bi-module.

7. <7:l\t+ QM@ ﬁ;) /T (ﬁf QM@ ﬁ;) is an Ay-module. It pulls back along ev to a U;(al)—module
that we denote by ev*(M).

. As a ﬁg(al)—module, ev*(M) is weight-finite.
v. For any highest (-weight vector v € M — {0}, the Ug(al)—module
My = (ﬁj@l?v@ﬁ{) /J. (ﬁj ®Fv®ﬁ;> :
is a highest t-weight space of ev(M). We denote by My the simple quotient of My containing v and
we let ev* (M) = U;(al).Mo.
vi. My is t-dominant.

Proof. 1 is readily checked. As for ii, it suffices to check that Z. (ﬁf QM ® ﬁ;) = {0}. But the latter
is clear when M is obtained by pulling back a U,(La;)-module over which the relation generating 7 is
automatically satisfied. iii is obvious. It easily follows from proposition 3.5.24 that, for every m € Z*,
%5 0 H (2)] = 0. Hence, Sp(ev*(M)) = Sp(M) and the weight finiteness of ev*(M) follows from that of

M, which proves iv. It is clear that, for every r € Z, we have

V(X[ (). (M7 @ve M) = B X (). (Af @ved;)

_ ZH+ ) (% ) e ) @ xf (o) g0 @ (x7 () g 0 Ay

v follows. Denote by P(1/z) € F[z7!] the Drinfel’d polynomial associated with v and let v € N?X denote

the multiset of its roots. Then,

F2)w = —kT (2)v where kT (2) = —2dea(P) 7P(t_4/z)
ki (2). o (2)v, h o (2) =—t79% ( v >| . (3.5.31)
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Moreover, the partial fraction decomposition

—v(at?)

Pt/z) 1 @ Cp(a)
(/) _1;[ (1 — a/z) @=+(at) C“Z Z (1—a/z)p’

acFX

in which Cy, Cp(a) € F and the product and sum over a € F* are always finite since P only has finitely

many roots, allows us to write

[kf(z) — kl_(z)] v = $2deg(P) Z v(a - (_1)p+1Cp+1(a)6(p) (f) -

p' aPbt1

Letting Cp(a) = (—1)P+1#24e8(P)C 1 (a)a=P~" /p! for every a € F* and every p € [0,v(a) — v(at?) — 1], it

follows that, for every m € N*,

v(at=4m)—p(attl-m)) 1

e ~ —4m z
V(K] (). A @v@1) = de) 3 2 Colat ) (2) (B wve1)
a€cFX p=0
(3.5.32)
(at—4m) u(at4<1 m )
ev(Ki_,(2). (1@v@1) = —29) } ép(at*“m)é(l’) (5) (leoveHZ,,(2) .
acFX* p=0 a
(3.5.33)

Now, making use of (3.5.27), (3.5.31) and of corollary 3.5.23, one easily shows that, for every p € N and

every a € F*,

-
H[ K o(21)) — Hif o (51 (20) | (0P (@) 90 @ 1) = 0,
k=1

i1
H[ Kio(zk) — Hy, oz )1H(j)[(zk)id]-(1®U®3pH:m(a)):0,

thus proving that OPH; (a) ® v ® 1 (resp. 1 ® v ® OPH_, (a)) is an f-weight vector in the f-weight
space ev*(M) (resp. ev*(M) ) of ev*(M) with ¢-weight /<a(+ma)( z) = /ﬁa:(z)H;Ea(z) (resp.
/ﬁz—i’m’a)(z) = k(2 JH, .(2)71), as expected from proposition 3.4.3.

On the other hand,

H(+ m,a) R(—m,a)

[H(2) [l (27— by (o] B ()7 [k (2) — K ()]} (L@ )

v(at=*)—v(a)—1
-y { S Gylaths® (2) (1oveH (2))

acFXx p=0

- C()5(”)<a>(H+() 1®v®1)}.

p=0
Thus, modulo J, we have, for every a € F*,
v(at=*)—v(a)—1 R . v(a)—v(at*)—1 3 .
> Gla™? (2) (1eveH () = (@i (2) (B ) ve )
p=0 p=0
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The above equation makes it clear that every a € F* such that v(at=*) > v(a) is a zero of order at least

v(at=")—2v(a)+v(at?) of 1©v@H™(2), unless v(at™*)—v(a) < v(a)—v(at*). Hence, in view of (3.5.33), we

have [eV(Kl_ 1(2).1®ve 1)] o =0 unless a € Dy(v) = {x € F* : v(at™) > v(x) > v(zt)}.
ev*

®(=La)

But the latter implies that P(1/a) = 0. A similar reasoning applies to any ¢-weight vector in My and My
is t-dominant by lemma 3.4.16. Taking the quotient of My to My clearly preserves t-dominance and vi
follows. -

By the universality of M(Mj) — see definition 3.4.21 — and the above proposition, there must exist a
surjective U;(al)—module homomorphism 7 : M(My) — ev*(Mp). Restricting the latter to the (closed)
U;(al)—submodule N (My) of”/\/l(Mo), we get the surjective U;(al)—module homomorphism 7xr(rzy), whose
image naturally injects as a Uj(aj)-submodule in ev*(Mp). The canonical short exact sequence involving
N (My), M(My) and the simple quotient L£(My) — see definition 3.4.21 — allows us to define a surjective

Ufl(al)—module homomorphism 7 to get the following commutative diagram,

lﬂ'IN(Mo) lﬂ' lfr

{0} —— 7(N(My)) —— ev*(My) —— ev*(Mp)/m(N(My)) —— {0}

| | |

{0} {0} {0}

where columns and rows are exact. It is obvious that 7 is not identically zero and, by the simplicity of £(Mp),
we must have ker(7) = {0}. Hence, 7 is a U;(al)—module isomorphism and we have constructed the simple
weight-finite ﬁ;(al)—modules L(My) as a quotient of the evaluation module ev*(Mj). To see that all the simple
weight-finite U;(al)—modules L(My) can be obtained in this way, it suffices to observe that, by proposition
3.4.11, all the simple ¢/-dominant Ug(al)—modules are of the form L°(P) for some monic polynomial P and
that, in the construction above, one can choose any P, simply by choosing the corresponding simple finite-
dimensional U, (La;)-module M. Therefore, as a consequence of the above proposition, the highest t-weight
space of any simple weight-finite Ug(al)—modules L(My) is t-dominant. This concludes the proof of part ii of
theorem 3.4.22 as well as that of theorem 3.4.13.
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Chapter 4

Topological Braid Group Action on Uq(g)

4.1 Introduction

Let g be an untwisted affine Kac-Moody algebra. By using Drinfel'd’s quantum affinization we define Uq(g) to
be the quantum toroidal algebra associated to g and IZ(Q\) its completion.

As in the case of the work of I. Damiani and J.Beck, the purpose of this chapter is to establish a (topological)
braid group action on quantum toroidal algebras. This can be seen as a generalization of the work of J. Ding
and S. Khoroshkin in | ] to all Dynkin diagrams and provides the building blocks for defining an affinized
version of the Damiani-Beck isomorphism for Uq(g) thus allowing us to define Uq(g) as the double Drinfel'd
current presentation. We provide a proof by checking the algebra relations except for the Serre relation when
a;j = aj; = —2, a;5 = —3,—4 and a;; = —1. This is work still in progress at this stage but we conjecture that
it will hold as for the proved cases. The proof of the Serre relation relies on defining 7 (v) which is an affine

* —see [ ]

version of what Lusztig defined as ;r

This chapter is organized as follows. First we start by giving several automorphisms of Uq(g) crucial to
many of the proofs. We then build our way to defining the braid group action of T; on the generators of the
algebra in order to provide the main theorem. Then, in the remaining part of the chapter we construct the

necessary machinery in order to to prove this theorem.

4.2 Definition of U,(g)

Definition 4.2.1. The quantum toroidal algebra Uq(g) is the associative F-algebra generated by the

generators

»Vimo Vi, —no Yimo Yim

{D,Dil,C’l/z,C’fl/2 ko kT aloar :iej,mGZ,nEN}

subject to the following relations

CE/2 s central ~ C*V/2CT/2 =1 DT DTl =1 (4.2.1)
Dk (2)D7' =k (2¢7")  DxFf(2)D7' =xF(2¢7") (4.2.2)
1
res —— ki (21)kF(29) =1 (4.2.3)
21,22 Z1R9
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ki (21)k (22) = kT (22)ki(21) (4.2.4)

kz-_(zl)k;'_(ZQ) = Gi_j(Cilzl/ZQ)G;;(021/22)1{;—(22)1{1-_(2’1) (4.2.5)
GT(CTV22 )2k (21)xT (22) = xT (22)k] (21) (4.2.6)
k; (21)% (22) = GL(CTY221 /20)x (20)K; (21) (4.2.7)
(21 = ¢ U 22)x (21)% (22) = (2147 — 22)%] (22)x;(21) (4.2.8)

x; (21),%x; (22)] = i “l F(z 012y — ZICATIS 2O 1/2
%" (21), %5 (22)] p—— [5(022>kj( 1C712) 5( > >kz (22C )} (4.2.9)

1—cyj

l—Ci‘
S S 0 (1) K o) o R o)X o) =0 (420
q

0’6517%], k=0

where, for every i € I, we define the following Uq(g)—valued formal distributions

X (2) =) 25,2 " € U@z, 27 (4.2.11)
meEZ

ki (2) == ) ki, € Ug(0)[[=7]], (4.2.12)
neN

for every 4,5 € I, we define the following F-valued formal power series

GE(2) =™ + (i — g7 D[Eayly Y, ¢ 2™ € F[2]] (4.2.13)
meNX
and
8(z) =Y 2" €F[lz,2"]] (4.2.14)
mEZL

is an F-valued formal distribution.

4.3 Automorphisms of Uq(g)

Proposition 4.3.1. i. For every Dynkin diagram automorphism m : I = I, there exists a unique

F-algebra automorphism T € Aut(Uy(g)) such that

Tr(xf(2) =x(2), Tk (2) =ky,(2), T(C)=C, Tu(D)=D. (43.1)

i. For every i € I, there exists a unique F-algebra automorphism T,y € Aut(U,(§)) such that

T, (x5 (2)) = 2%

7

ixF(z)  Ty(ki(2)=CFuki(z) Tw(C)=C Tyw(D)=D (432)

iti. There ezists a unique involutive F-algebra anti-homomorphism n € Aut(Uy(g)) such that

n(x; (2) =x7(1/z) 0k (2) =kj(1/z) 9(C)=C  nD)=D (4.3.3)
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1. There exists a unique involutive K-algebra anti-homomorphism ¢ such that

p(xi(2) =x7(1/2) ok (2)=kj(1/2) C)=C"" oD)=D" oq=q"

(4.3.4)
4.4 Braid group action
Definition 4.4.1. For all i # j € I, we let x:{j(z) € Uy (@)[[z,271]] be defined by:
[X+(21);X+(22)1| =0 ( Zla > xh (21). (4.4.1)
! J G (21/22) 224, K ©J
Proposition 4.4.2. For all i # j € I, we have:
(21 — ¢l z2) X (21)x; j(22) = (2167 — 22) G;;(214} [ 22)x :r (22)x; (21) (4.4.2)

Proof. Making use of the previous definition, we can write:

(21— ¢?=2) x+<zl> [xm x} (25) = G0/ 2 )] (29)x] (22)]

= (z1q] — 22) x; 2)x[ (23) — (21 — 4f 22) Gy (22/23) Gy (21/23)x] (23)x,) (21)%, (22)
+ (21— a22) Gy (22 20)0 <3q) s (e (22)

(s = 22) G 20)x! el Gt (o) + (nd? = 20) 8 () f Gt 1)

- Gr -

= (2167 — 22) G (21/23) Gy (22) z3)x] (23)x] (22)%7 (21) — (21 — 2207) Gy (22/23)%1 (1) (22)
2

= \#714; — G

(=

— zZ
b (a1 — ) Gy /28)0 ( ) it )
q; " =3
— (216} — 22) Gi(21/23) Gy (22 23)x ] (23)%] (20)x] (21)
z _ z
+ (214} — 22) 6 <q%.123> x} (2255 (21) = (21 — 2267) G (22/23)0 <q%,1z3) xh(20)x] (22).

Thus, we can conclude that:

5 (o) (o1 52 S o)~ (on = 2) G s el o) =0

—
q; Y23

z
g <qajlz) ((2’2 — 217) X[ (22)x71,(21) — (2207 — 21) Gij(22/23)x5,(21)x +(Z2)> =0.
i 3
and the result follows. O

Lemma 4.4.3. Leti# j € I, then x;gj(zl) - X$1(21q;m)-
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Proof. By definition 4.4.1, take m = 1, we get:

z
(o), 2y = 8 (o ) X620

On the other hand, proposition 4.4.2 for m = 1 gives,
s (1) ] (22) =5 | = | % (=2)
404 1), &5 (<2 G;in(zl/ZQ) - quqz‘j 514 2).
’ J
Upon exchanging ¢ and j in the previous equation, we get:

z
[X;;o(zlﬁXj(z2>]G;j0i(zl/zQ) =0 (%) X;;1(2’2)~

224

But
G 0.(21/22) = G]_Z(Zl/ZQ) = Gz_j(zl/zg) = G;ioj(zl/ZQ).

3,3%
Moreover,

q;l]l — qdjaji — chi — qcij — ch"’ — qdiai]' — q:hg

Therefore, we conclude that

z z —ai;
[X;;()(Zl),Xj(zz)]gi—j(zl/,@) =9 <1aU> ng(ZZ) =0 ( laij> Xj]q(qi T21).

224, 224,

Generalizing the above result, we can define the following:

—

Proposition 4.4.4. For all i # j € I and for all n € N*, we let X;Zj(z) € Uy (@)[[z,27"]] be defined by:

[xj(zl);x;_lj(@)} ) < it 1> X (22) (4.4.3)

G e (21/22) 224,
where, ap, = a;j if n =0 and a, = 2 otherwise, whereas G;Z.n,lj(zl/zz) = G;(Zl/ZQ)G;inf2j(Zl/ZQQGn—Q)‘

Proof. Tt suffices to show that

(21 = @ z2) X (21)x 1 (22) = (216F = 22) G o (21 220" )X (22)% (21) (4.4.4)
The proof is straightforward and follows the same steps as for the previous proposition. O

Proposition 4.4.5. For alli # j € I,

wd(xf (2))xf s2) = 6 (ot ) (a)
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Proof. By definition, we have:

ad(x; (21 ZX (21)( T(22)S(x +(Zl)(2))

= X;r(zl)xf(zz) —k; (20)x] (z2)k; (21) 7% (21)

= |x(21);x (»
)]

_ 1 +

Therefore, and more generally,

Proposition 4.4.6. For alli# j €I,

ad(x; (21)--x (zm) )% (0) = 6 (qz 22) ) (';g;—;) 5 <qzlv> X (21)

Proof. We prove this proposition by induction on m. The case m = 1 is the previous proposition. Now

assume the result holds for some m € N*. Then,

ad(x; (z0)x] (21)..% (2m))x] (v) = ad(x; (20))ad (3 (21)..x]" (2m))x] (v)
T (z0)ad (xf (21)..x (2m) )] (v) = kg (20)ad (x (21)--.x (2m)xf (0)k7 (20) '] (20)

= X ]
= [ Gopadi! () ol 0]
i (20/21)...G; (20/2m )G (20 /v

Zm—1 21
—5 i 5 (<2 [t (z0): xhn
<ql Z2> <q222m> <ql l],U> |: (ZO) Z (Zl)i| G; (ZO/Zl)G;,LmJ(ZOqu71/Z1)

and the result follows. O

Lemma 4.4.7. Let i # j. Then,

z1q " C
22

[ (1% (22)] = [aﬁ]qﬁ( > k; (210, 7 CY)x] (1), (4.4.5)

Proof. By definition 4.4.1, we have

6( ) i ()% (0)] = [[xﬂzl);x;(zz)]gﬁ(m /ZQ);X;@)}

224,
- b (@ -6 o)
qj —q] v Gi;(21/22)

- (ZQC> T (22/21) G;j(21/22)> S (wCP)xt(z)

qj
z1q" % C z ai
- _[aji]‘Ij5 ( 1 ) g < 1[111) k (Zlqz ]01/2) (Zl)

v Zqz

The result follows after taking the residue with respect to zs.
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Corollary 4.4.8. i # j. Then,

21q; ' C
;1(7:1) x; (v)| = —[ajilg0 <1qjv) k., (2101/) T(z1g,). (4.4.6)

Proof. This result follows immediately from the previous lemma upon interchanging ¢ and j. O

Lemma 4.4.9. Let i # j € I. ThenVn e N

i)
Xy ()% (0)] =0 (52 ) Awx (20, K (:072) (4.4.7)
Cv
where,
Ap = [n](h [aij +n— 1]611' (4'4'8)
i)
X; (V);X [ (2)| =6 Ande (207t (2. (4.4.9)
[ J=(z)

Proof. The case n = 0 holds since it is one of the algebra defining relations. Now assume the result holds

for some n € N, therefore, by the definition of X;Zj(z), we can write:

[[xﬂzl),x; ) PG >]—5<% ) [ty tenixs 0]

v.fa" .
i, k%)

- q_lq [5 (&) K (0™ =5 <CUZl> k;(vC”Z);x;’%j(m)]

k3

Giinj (Z1 /22)

+ {x;r(m); [Xﬁj("’?);xi(v)ﬂ(;“n (21/22)

_ 1 1 + — + + ~1/2
= i — q;l(s <a) [Gi,i”j(z2/zl) - Gi,i7lj(z1/22>:| Xi"j (ZQ)k,L (ZIC / )

+0 <%) Ay [xi*(zl);Xﬁflj(mf"_l)kT(ZQC_l/Q)]

_ 1 1 + - + + ~1/2
- .—15 <a) [Gi,i"j('Z?/Zl) - Gi,inj(zl/ZQ)} Xi"j('z?)ki (21C / )

272 + -y an—1 + —1/2
+9 <CU> An [Xz (Zl)’ Xinflj(22ql )} G;in—lj(zl/ZZ) kz (220 )

_ 21 + + ~1/2
— 5 (CU) 5 ( ) Anxh (z2)k] (220712

G (21/22)

22
AL 1 + + -1/2 AL 21 + + -1/2
+ Ani1d (CU) ) <Z2qi2> X,Ln](ZQ)kl (1C )+0 (C’v) ) <22> Anxlnj(zg)kZ (22C ).
and the result follows. Finally, it suffices to apply 7 to i) to get ii). O

Lemma 4.4.10. For oll n € N, we have:

on
7. [X;_‘_lj(zl);x;n(zQ)} = ap0 <0Z22qt> k (2101/2 )Hp 1k, (2101/2 Wnp) j(mqf")

z L-;n — € n n n
i [t 200 2] = )3 (2 ) g i (2 €2 Ty K (a €27
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(4.4.10)

(A
p=1

— [1 &5 (220124 7)k; (20072 2g07)

Proof. 1t is clear that Vn € N, ii. is a consequence of i. - upon applying ¢. Therefore, it suffices to prove
the first and last equation. This is done by recursion. Both points hold for n = 0; i. boils down to the
previous lemma if we set ag = —[ajilq;, o = 70 = —a;j, and € = 0.

Now let us assume that both i. and iii. hold for the same n € N we have:

X:;H (21) ﬂn+1 (U)} ) <2«2qztlln+1) = [[X;r(zl)§ t+1 (22)} o <ﬂ> ;X;inﬂ (U)]

i,int1j\ 2z
= ij(zl);x;in_,_l(v)} ;Xjn-u (22)} B o

Gm'"ﬂj(g)
G;i"“j (%)

z1C —a
=5 (29 v [i6 002 0 i 2]

21
Gz‘,inﬂj (22 )

+ e o) [ (2)03650 )]

+ [ )t [ (22):550 0]

Now we focus on the last term, we can write:

xhin; (22) X (0)] 6 (q) = [[xnzl);xzjw)}a (@) ;x;inH(v)]
=[] @)
+ [ s [t ()i )]
=5 (Zlvc> An [k;(uc**l/?)x];n (vg™ "1 ); x5 (22)
[ s [ 22) X0 )]

We can now make use of ii. and iii. and the result follows.
Proving iii. follows in the exact similar steps, making use of i. and ii. O
Definition 4.4.11. Vi £ j € I

Ti(x] (2)) = ———~Lt——— (4.4.11)

where we recursiely define x, in;(2) by setting:

+ (1) xF =5 =21 ) xt (2). 4.4.12
X (215 %1y (ZQ)} ~ (1)) (q“m‘lm) Xing(22) (4.4.12)

i,in—1j 7
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Main theorem
Theorem 4.4.12. Vi # j € I, setting Tj as:

Ti(C)=C, Ti(D)=D
Ti(xf (2)) = =x; (:C K (0737 Ti(x; (2)) = —k; (2C72) 7 Ixf (2071

(3
—aij|

|
Tikf(2)) =kE(x) 7", Tk (2) = [] kF(zq, " ")k (207)
p=1

%

- th“ijj(zqz‘i ) - X imai; (205 %)
Ti(x; (2)) = BET Ti(x; (2)) = e

—

makes T; into an algebra homomorphism on Uy(g).

Moreover, by setting:

we get an action of B on Uq(g)

Proof. Tt suffices to check this on the algebra relations. Equations 4.2.1 - 4.2.7 are straightforward and left
to the reader. The remaining part of this chapter will be dedicated to developing the needed machinery for

proving this theorem on the rest of the algebra relations. Then, we can check Ti_1 on the generators. [J

4.5 Proof of the main theorem

Proposition 4.5.1. We have
1. ool =T o0,
ii. poT; =T;0p;
iii. T, P =noT;on.

Proposition 4.5.2. For alli,j € I and a;j € {—1,—2,—-3,—4} the ¢-Serre relation is equivalent to

2

x,ﬁ_aijj(z) =0 (4.5.1)

Proof. The proof is cumbersome but straightforward. However, we will highlight the main steps below for

the case a;; = —3 and all the other cases are similar.
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The g-Serre relations is given by:

1—a;;

Z Z (—l)k (1 _kaij>q xii(zg(l)) . -X;t(zg(k))xji(z)xii(za(k+1)) .- -xfc(za(l_aij)) =0 (4.5.2)

065'1—%-]. k=0

i

We start by expanding the sum over k. Then, we pick a specific ordering and by which we mean that
we decide to move all the x;r(z) to the leftmost side of each term by using equation 4.4.12. Clearly, this
will create terms in x;j(z) which we decide to move to the leftmost side of every term too. After repeating
this process for ngj(z), and x;j(z) we now move to canceling all the terms except the ones with X:gj(z)
Obviously, the terms in X;rn j(z) for n =0,1,2 can only be canceled with other terms of the same value of
n. In order to do that, we factorize the coefficients of each term so that we can make use of the algebra
relation given by equation 4.2.8. Finally, the only reamining terms will combine to give us the result of

the proposition. O

Lemma 4.5.3. Foralli+# jc I,

[T )i )] = (6(5) 7 (k50 7) =0 (55) 1 (i 0e ) ) 4

q; —

|—aij]

T (kf (z>) o S E ) € (4.5.4)
p=1

Proof. Tt suffices to use the definition of T; on the generators as well as lemma 4.4.10 to get:

Ty(x

(Z)LT;(X]_(U))} ~ = 1. 2 [X;aijj(*z‘]i_aij>;x]'—i*aij (qu_aij)

]

|—a4j] - 3 -
— (5 (&) T & (e 0" V2 (2, " C7112)

)

—ayj| . N -
~5 (C ki (vg, " Ok (v, 01/2)>

and the result follows provided we have:

B-a,; 1
y : 455
[—ails, ¢ —q; (4.5.5)
O
Lemma 4.5.4. Vi # j € I,
T3 (2)): Ti(x; (0)] = 0. (45.6)

Proof. By definition, the latter is equivalent to

et =iy = (=12 =Lt (0 =1\ ] k= (0 =1/2y =1 [+ —ijy. (=1
P00 00 e s,
ii g

Clo . i —aij
=0 (»%!3(”) ki (vC ) I (20, ") = 0
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by virtue of the g-Serre relation. O

Lemma 4.5.5. Vi€ I,

10 T )] =~ (3( &) 7 (k60 2) =6 (29) 73 (ic o) ) sy

—1
qi — 4q;

Proof. The proof is similar to that of the previous two lemmas and follows immediately from the definition

of T; and the algebra relations. O

Definition 4.5.6. For every n € N and every i # j € I, we recursively define xjt-n(z) by setting:

xt(2) = (i, (1/2) (458)
Proposition 4.5.7. Vi # j e I, VYn e N
X (21)i %] (21) i) 5 <jllz2> xtu (22). (4.5.9)
Definition 4.5.8. Vi € I we denote by U;(g)[z] the closed subalgebra ofU/Zf(\g) generated by {res, z~!*™ X;-" (2) :

meZ, neN, jeI-{i}}, and by U;IIr (§)[i]" the closed subalgebra of Uy () generated by {res, z~!*™ x;;j(z) :
meZ, neN, jel—/{i}}. Clearly, U;“(g)[z]77 = n(U;(g)[z])

Lemma 4.5.9. Vi € I, we have

i)

U5 (8) = D =iy, Ug (@)[i; mr, ccymy € Z (4.5.10)
peN
i)
U7 (8) = P U @), 2, U (@), my € Z (4.5.11)
peEN

Proof. Any product of elements in {res, z717Px; (2); res, z_l“'mxjin (2): pmeZneN,jel—{i}

can be rewritten with modes of x:r(z) on the left by repeatedly making use of the identity

z

xj’im,l(zl)xf(@) =G m-1; (%) x;r(zQ)x;;m,l(zl). (4.5.12)

It is therefore an element of the r.h.s. of 7). Moreover, since xj(z) = X;.O (z), any word over {res, 2~ T™"x;(2) :

m € Z,k € I} is a product of elements in the set {res, z~'™Px}(2); res, z‘”mxjin (2) : pm € Z,n €
N,j € I —{i}} and the lemma follows. Part ii) follows by applying 7 on 7). O
Lemma 4.5.10. Let i € I. T} restricts to an algebra isomorphism:

Ti|UjIr(g)[i] : UZ}_(G)M — U;(g)[z]" (4.5.13)

. . -1
whose inverse is T ‘U;(g)[i]'
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Proof. Tt suffices to prove that for every j € I — {i} and for every n € [0,1 — aij]

an

R C

S i e [0, 1 — ay]
+ _ ) xt(zq, Y
Ti(xjin(2)) = § 22 ](VZ_(’;] )7 if n = —ay; (4.5.14)
0 ifn=1- Qjj.
We do this recursively on n. The case n = 0 is just the definition and allows us to set No = [—a;;lq,. Now

suppose that 4.5.14 holds for some n € [0, —1 — a;;] then it clearly holds for n > 1 — a;; provided we set

Xfpj(z) = 0 since X:{,aijj(z) = 0. Then, we have:

1) ( ail > Tz’(x;:-nﬂ(@) =T <[X;;n+1 (ZQ)vXT(Zl)] o _(21/Z2)>
= [Tt (), T (20)]

G in;(21/22)

Xta.__n A(Zlq;a”)

- | ]<7 ,xi_(zQC*l)kj(zszl/Q)fl

I " G (21 /22)

X g
_ | D ,x.—@c—l) kf (z0C /%)~

(3
inj(71/22)G Cimaii (z1/22)
J

L G,

Hence, we get:

X e ()
s Y e ] )
Tz(xﬁ.n+1 (29) = Not (4.5.15)
This completes the proof provided we set N1 = —4 No ]
aij—
Definition 4.5.11. Let i # j € I. For every p € [0; my; — 1], we define:
—1p—1p—1
Tijp = - LT;T;, Tz’jp W (4.5.16)
N—— N———
p-factors p-factors
where (mij)ijei is the Coxeter matrix of the affine Weyl group of g.
Lemma 4.5.12. Let i #j € I and let p € [0;m;; — 1]. Then,
i) Tijp(x] (2)), Tjip(x (2)) € Uggllz, 2],
i) T} (%] (2)), T (X (2)) € Uiz, 271,
where we denote by U;; the closed Uq(g) subalgebra generated by
{res 27 "™xf(2), res z_1+mxj+(z); m,n € N} (4.5.17)
z z

Proof. We consider all the values of m;; in {2,3,4,6,00}. It is important to mention that there is no loss
of generality in fixing <ozi,ajv> = {(aj,a)) = 0, or {aj,a)) = —1, and <al, > € {-1,-2,-3,-4}, or
finally that <a2, ]V> = (aj,a)) = —2.
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i)

ii)

iii)

iv)

v)

Case m;; = 2, and <ai,a}/> = (aj, ) = 0. The case p =0 is trivial, and for p = 1, we have
Ti(x} () = x}() € Uyllz, =] (4.5.18)

and similarly for the remaining claims.

Case m;; = 3, and (o, Y ) = (aj, ) = —1. The case p = 0 is obvious.
J 7 70
Tl(xj(z)) = X;j(zqi) € Uz, 27 M. (4.5.19)

Now, apply T} to get

x; (2¢74;) -
Ty o Tl (2) = Ty (20)) = === € Uyllz,=7']) (4.5.20)
Similar arguments apply for Ti/,j,p-
Case m;; = 4, and <ai,ajv> = —2,(wj, ) = —1. The case p = 0 is obvious.
x5, (247)
Ti(xf () = =5 € Uy[lz,=7]]

2l4:

By the previous lemma, we have on one hand

xf(zqizq‘)
Tio Tyt (2)) = == € Uyllz, 2] and
x; (2¢2q?)
,Ijj 01—1@‘ O]}(XT(Z)) = TJ S Uij[[z,z 1”
1

and on the other hand,

() omi ey =

vg; qug 2],
= B @ T,
iij
— [xt (sa:) xF(va
= [t ]
F (202
i z le'2 (qu 4; ) 1
=6 <vqf> N € Uijllz, 2]
Eventually,
x/ (2q}a?)
T,0T;o Tz(xj(z)) = W € Uijllz, 271 (4.5.21)
ai

Case m;; = 6. The steps are very similar to the previous cases where we make a repeated use of the

previous lemma. Finally, we can move to the last case.

Case m;; = oo. In that case we must distinguish two subcases:
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a) aij = (i, o) = =2 = (aj,o) = aj;

b) aij = <Oél',04}/> = *4, CL]'Z‘ = <Otj,Oé;/> =—1.

In subcase a), we have:

 (202) T (0g—2
z X1, (2¢5) x5, (vg; ")
S =) T o Ti(xt(2)) = | L2, 1 T 4.5.22
<,Uql2> 3° (X] (Z)) [ [2]% ’ Nl - ( )
Gi,ij(z/v)
an induction as in | | 40.1.1 shows that: Tli,j,p(xj_(z)) € Uijl[z,271]]. In subcase b) we have:
x5 (245477
Tia(x}(2)) = — = (4.5.23)
Ny
Now,
z 1.
3 (22 ) 1080 = [T (DT 6 500
z
Similarly,
T](X:;j(z)) = [){ﬁ,zc]j-,)(;;2 (vqjqi_2)} ~ (4.5.24)
Gi’in(z/v)
Tj(xy () =[xz T (xS ()] (4.5.25)
G, (2/0)
making it clear that Vm =1, ..., 4
Ti(x{n;(2)) € Uyjllz, 2] (4.5.26)
where Z is the subalgebra of U,(§) generated by:
{res szmxﬁ(z), res Z*me;’;z(z); m,n € Z}. (4.5.27)
Clearly Z C Ujj, and T;(Z2) C U;; thus concluding the proof. O
Lemma 4.5.13. Vi, j, k € I we have:
T (51 = =0 2a)xE (210 (22)) = T (2105 — 2) ()% (1)) (4:5.28)

Proof. The case i # j # k follows from the fact that T} is an adjoint action.
The remaining cases are proved by using the definition of T} on the generators and then comparing

both sides of the equation after using equation 4.2.7 to move all the ki (z;) to the left. O

Definition 4.5.14. For every i € I, and every m € 7, there exists a unique F-linear homomorphism
ri  Uu(g)1t — Ug(@)* such that:

i) rE (1) =0
i n m,m - z Fl
) (0 (20X (22)0x] (20) = S0y 83, i CFm2m [I02) G, (7) [iepa xi (=1)
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Clearly, for all 7 € I,

Fw) =3 0™ € Homg (U, (3) ) [0, 0] (4.5.29)
mEZL
and we have:
F1\ P1 L\ FL
mi(v)(xj(zl) +(22 Z ip,i ( > UG“k <le;> H le(zl). (4.5.30)

le[n]

o —

We extend r;t(v) by continuity to Uy(g).

Proposition 4.5.15. For all X € Uq(g)+, and all i € I, we have:

ki (00" 2)ri(v)(X) — K (vC™)ry (v)(X) (4.5.31)

[X, % (v)] =

Proof. Tt suffices to prove this claim for X = XZ (zl)x;g (ZQ)X:n (zm). Obviously,

[, (203, (22) . (2m), %7 (v)]

= ? X} (21)x (22) % (2p-1) (5 <z,;c> I (vC™?) - 5<Zp01> k;(UC_1/2)>

v

T i oF1N P2l ¥l
3 (20 e, (2) ke T s

Rk

14— 4 k=1 le[n]—{p}
C 12\ 1/2
< > HGZ ik < p> k;(vci / ) H X;lr(zl)}'
l€[n]—{r}
O
——t .
Lemma 4.5.16. Let X € Uy(g) andletic .
—t
i) If T;(X) € Uy(g) then rif(v)(X)=0.
—
i) If T, 1 (X) € Uy(g) then ry (v)(X) = 0.
Proof. Let X € Uy(g)*t. Tt is a linear combination of
{zl,zrge,?.zn P ...ngm”XZ (z1)x; (22)..x] (2n)}- (4.5.32)
—t
Without loss of generality we can restrict to cases where X is homogeneous. Assume that T;(X) € Uy(g) .
By the previous proposition
kK (0CY ) (v)(X) — k7 (vC~ Y2 (0) (X
X (o] = K0~ O™ ()(X) 1533
qi — g,
and lemma 4.5.9,
rf()(X) =" res 2tz x ] (2)x] (2)YE (0, 21, 02p) (4.5.34)
Z1,---%p
peN
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for some Y (v, 21, ...2p) € Ug(@)*[[v, v )((21 ey Zy 1)), We apply T; to [X,x; (v)] and we get:

[Ti(X) ki (G772 )X*(C’lv)]

= — Z Tes —1)Pz H X7 (C7 ) ky (O™ 22) " HkH(CY20) I T(Y H (v, 21, --.2p))
%% pen™ kel(p)
—k; (CY20) (Y~ (v, 21, -2p)) }-

—_—

The left-hand side is in U ¢(§)Z then so is the right-hand side. Now by the triangular decomposition and
the fact that T} restricts to the subalgebras U,(§)T[i], we have

Vp >0, Ti(Y*(v,21,..2p)) =0 (4.5.35)

Since T} is an automorphism, we have Y*(v, 21, ...z,) = 0. The proof of ii) is similar. O
Lemma 4.5.17. VX € Uy(§)", Vi € I, we have:

i) (X, Y%7 (2)) = res, v (ki (O7V20)ry (0)(X)@x] (v);Y @ x5 (2))

i) (X,x; (2)Vx; (2)) = ves, v (x (Co)@r] (v)(X)@x (v);x; () @ V)

Proof. Tt suffices to prove i) and ii) for any

X =x; (21)-%; (2m) (4.5.36)
X =x; (v1)..x;  (vm-1) (4.5.37)
We have
z _ .
> 11 Gjmk< ’> [k, zCc) T =i)@ [[x/(20) (4538
MC[m] ke[m]—M,leM leM ke[m]—M leM
Hence
— 5ip7
(X5 () = = ( ) 3 H () K (50 [ xi(a):Y)  (4539)
i Y pe[m] k=1 ke[m]—{p}

On the other hand,
<k5(0_1/20)7“{ (0)(X)&x] (v);Y @x; (2))

B <>Z5“p5<zp >HG <> ko™ [T xiy)

%~ 1e[m]—{p}

and i) follows. The proof of ii) is very similar. O
Proposition 4.5.18. Let a € Qt — {0} and let X € Uy(§)F. If rE(v)(X) =0, then X = 0.

Proof. Let X be as above. Either X =0, or X # 0. In the latter case, the non-degeneracy of the pairing
implies that there must exist ¥ € Uy(g)~ such that, (X;Y) # 0. In particular, since X € U,(§)a, we
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must have (X;Yx; (2)) # 0. We also see that r; (v)(X) = 0 implies (X;Yx; (2)) = 0 which proves the

claim for lower choices of signs. The proof for the upper choices of signs is similar.

Lemma 4.5.19. Letic I, let Y € U;r(g) and let X (z) € U;(g)[[z,z_lﬂ be such that:
+t1/2,y _ gt (VN o k1/2
X(2)k; (C v) = GX,i > k- (C v) X (2)

for some 9;1 (2) € Fy[[zTY]. Then,

v

X EY) = XY + 6%,

Proof. We have:

— 1 WC (i )X E)Y + 0%, (2) XErm )]
and the result follows.

Lemma 4.5.20. Let i € I and let X(2),Y(2) € U;r(g)[[z,zfl]] be such that:

i (070X (2)

X(2)k; (C7V%0) = 0%, (g) k

Y(2)ki (C™V/%0) = 0y, (g) k; (C20)Y (2)

)

O]

(4.5.40)

(4.5.41)

(4.5.42)

(4.5.43)

for some O ; (2) .0y, (z) € Fy[[2]]. Then, VYa,b for which we can write o[X(21),Y (22)]p-

) X )Y G2)l) = ol @)Y Callye (b () KT OO0 G (2,

Proof.

= [ @Y )+, (L) X 0 )]

- b ) X + 07, (L) Ve (X

and the result follows.
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Lemma 4.5.21. Let i # j € I. Then, Vk € I, Vn € N*,

v

i ) 0fn (2)) = dalnly sy + 1 = Vo (= 078 () %2 (20, (4.5.45)

Proof. The case k = i follows from lemma 4.4.9 and prop. 4.5.15 .Moreover, it is clear that for k € I—{i, j},
we have:

[xin (2), %, (v)] = 0. (4.5.46)

We now move to the case k = j.

5 () B ) 3 0] = [ () e

q;, %2

v 'nilv@)aX}(v)]

= (-1 (1), %5 (0)] -

ign—1lj

(a)aXf(@)]-

22

In particular, the case n = 1 gives:

aji
_ 21 224 ; _
[ (1), %7 (zz)]Gl__j%),xj (v)] = [aji]qja(cv)a( Zf >xi (z2)k (vC'/?). (4.5.47)
An easy recursion shows that for every n € N* this is always a multiple of k;r (vC’l/ 2). Therefore, by
comparing the result with prop. 4.5.15 we get that ri_(v)(x;n(z) =0. O

Remark 4.5.22. Clearly the case n = 0 is nothing but the algebra relation.

4.5.1 Proof of the Serre relations
Definition 4.5.23. For every i € I define 77 (v) € HomF(U;'(g))[[v, v~1]] by setting

VX U@, FE0)(X) =0 (F(1/0)(X) (4.5.48)
Proposition 4.5.24. VX € U/ (g), Vil

(v (v 1/2 — 7 (v (v -1/2
o )] = PSR =R DI () (4.5.49)

Proof. The proof follows from applying n to prop. 4.5.15. O
Proposition 4.5.25. Let a € QT — {0} and let X € U;r(g)a Ifviel, 7 (v)(X) =0, then X = 0.
Proof. The proof is straightforward and follows from the previous definition. O

Lemma 4.5.26. Let i € I and let X(2),Y (z) € U;r(g)[[z,zfl]] be such that:

K3 K3

X(2)k; (C7V0) = 6y, (g) k; (C~1/20) X (2) (4.5.50)

Y (2)k; (CV20) = 6y, (g) k; (C20)Y (2) (4.5.51)

)
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Then,

) WX (), Y (2)) = ol X (20, 77 @)Y () (2) F gy (2) 7 ()X (), Y ()]

Proof. The proof is similar to that of lemma 4.5.20.
Lemma 4.5.27. Vl,i,7 € I and Vn € N*:

z

ki (vCY2)xh, (2) = G (@

Xjin Jur

) X (2K (0C12).

Proof. From the definition of x;.l (z), we have:

z
() xha ) = I ) Gl

224;

(o ) € 2t 20) = K C )b o) X el

(4.5.52)

(4.5.53)

(4.5.54)

_ Y- (2N + + (e v1/2
=G5 (Z5) Gi(5) X @o ks 0CY)

Qi -1
_ [ 2q;" (2T A
=9 <Z q?”> Glj < Cv ) Gli (CU) le (ZQ)k ( C )

Now assuming the result holds for n € N* | we have:

5<Z2Z}ij) (v 01/2) n+1(2’2) ( 01/2)[ n(21),x +(Z2)]Gun (21/22)

Qi —1
_ ZQQi Y _ 29 —1 n n 1/2
B 5 (Z qZ ) Gld‘in (Gl)) Glz (a) in7z+1 (Zz)kl (UC )

which completes the recursion.

Definition 4.5.28. Vn € N*, we define x ... (21) € U;(g)[[z, 2~ 1] recursively by setting :

x5 (21) = %] (1)

Z1
0 (223 ) s o) = b () Gl o
qul- i,
Lemma 4.5.29. Leti# j € I. Then, Vk € I, ¥n € N*;

() (2)) = 0340 ( ) B in (2)

z
C/Uq;)/z]n

where,

B - aij—Q(n—l), if n € N*
Yidin 0 otherwise

n—1
1T [Pt ai]
A = 157
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Proof. By induction on n € N. The case n = 0 is from the defining relations. Now suppose the lemma

holds for some n € N*.

5 (1) )0 (22)) = 7 ()5 (205 GOl /2n)

a
22q; "

_ [t <+ +
= [inn (Zl)7 T (U)(Xi (zl)>]G7:in]‘(ZI/ZQ)G];Z'TL]*(ZI/C'U)71

+ G}, i(z2/Cv) [F:(U)(X;_i" (1)), Xj(zl)]Giii"j(zl/zz)

g “1 + +
+ 5jk52,],n5 <qu7”n> G;,i(zg/Cv)[Xm'"(Zl)’ X, (22)]Gginj(zl/22).

After multiplying through by —¢;” (20 — ¢;""" ““21) we get:
Z1 2a;;+2(n—1) 21 4
0ikfBijind | —=— o —29)0 [ —— - 4.5.60
g oot ) (e )i (25 ) s (e0) (1560

The result follows and thus completing the recursion provided that:

n+ aijlg
Bijmt+1 = ﬁi,j,ni[ [n]q_]]q (4.5.61)
and
Yijn+l = Yigmn = 2 (4.5.62)
O
Lemma 4.5.30. Vi # j € I, Vk € I and Vn € N:
S+ + —1ys (C2) o+ —an
P (0)(%)a;(2)) = Orjlnlg, lagi + = g, (g5 = a57)0 (== ) %oy (2¢5™) (4.5.63)
Proof.
i (0) (%0 (2)) = o (1/0) (0(xn;(2))
= (1/0) (x5 (1/2))]
_ Cz a
= gl o+ 1= Uy 05— 09 (2 ) sy o)
O
Definition 4.5.31. Vi € I, Vn € N* let
X(2) = n(xta(2)) (4.5.64)
Proposition 4.5.32. Vn € NX, Vi e I let
z
(223 ) honalen) = b 1) xfcla) (4.5.65)
Proof. Apply 1 to definition 4.5.28. O
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Lemma 4.5.33. Vl,i,j € I, Vn € N*
1/2 clo\ 7! 1/2
Xhi(2)k (WO = G, () k; (vC ™ 2)xh(2) (4.5.66)

Proof. The proof is similar to that of lemma 4.5.27. O

Lemma 4.5.34. Vi # j € I such that a;j = —2 and a;; = —1, there exists a unique &;(z) € Ug (@)[[2, 2~ 1]
such that:

G oa2 /o0 K5 (2060) X (D)l (o) (4.5.67)
[inl(zo),X; (Zlqi_z)}Gf,ij(Zoq?/zl)G;ﬂj(ZO/Zl) (4.5.68)

Proof.

2
0=0 <22q > g <02> X;—ii”('zQ) =[x ;;1(20) +(Zl)]G ey (20/21)" % j(ZZ)]G 2, (21/22)

Zl ql z,

=[x (20), [x ZL(z1),x;r(@)]Gijizl/ZQ]G;ilj(ZQ/Z1)G;i1j(z0/ZQ)

e o) (53 (20055 (2N | ozay X ()]G, oy

7,,1 7,2

21 20

=9 <2> [X;ril (ZO)a ;;2 (Z2)]G, (zo/zl)G By (z0/22) +9 < 2

+ +
220, By ) Giter/20) 52 (22): 35 (@D, o)

1,17

multiplying the above equation by (zp — qi222), (21— q?zg) respectively and taking the residue with respect

to z9, we get:

(20 — Zl)[xjil(zo)vXE-;Q(Zlqi_Q)}G;ili(zo/n)G;ilj(zoqu/zl) =0 (4.5.69)
(21 — ZO) e /Zo)[ ﬁz(ZOQ_Q), :r(Z1)]Gi, (20/21) — 0 (4.5.70)
the latter imply that:
. 20
[ ;;1 (ZO) X;_DZZ(zl)]G;ilj(zo/zﬂG;ilj(Zoqu/zl) =9 <Z1> 5ij(ZO) (4~5-71)
_ 20\ =
G;i(ﬂqg/zo)[xjﬂ (Zoq 2)7Xi+(zl)]6’i_i1j(zo/zl) =0 <21> fij(Zo) (45-72)
by substituting the last two equations, we get:
Z
5 <0> 5 ( > [€ij(20) + &i(20)] = O (4.5.73)
21 22(1%
the result follows. 0
Lemma 4.5.35. Vi # j € [ and a;; = —2, aj; = —1,
i (210) %52 (2200 e, (24 = 0 (4.5.74)

—

Proof. Clearly, the left-hand side of this equation is in U[]F (8)5 it20;° Therefore, it suffices to prove that
vk € It
Tl:_( )([inl(Z1Q?)7X;2 (ZQQZQQJZ')]G;in(ZI/ZQ)) =0 (4.5.75)
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Then,

P ) (5 (214) X (220, (o1 o)
1,147

s 2\ =+ + =22
= [ijl (Zlqj ), ’f'k (’U)(X]ZQ (ZZqZ' QJ ))]Gi_¢2j(zl/z2)Gi_i2j(zl Jz9)—1
~ + 2 + -2 2
+ Gy 2 (2207 %43 /C) [ () (%1 (2145)), XGia (2265 qj)]Gi_,ﬂj(zl/ZZ)

S1.:0 Z2qi_2qJ2 B [ + ( 2) + ( —2 2)]
= ; — i 192|1X..4|Z S )X 52920 : —1
& CUQZZ’J’Z S T E (2) i a2 (2)

1,147 1,197

2
#14; +i0 2\ ot -2 2
+ 519]5 (qui%',j,k> IB’L',J‘:QGI;]V%_2 (zgq;2q]2-/0v)[xi (Zlq]')a in2 (ZQQi Qj)]G;2j(z1/z2)'

Observe that:

2\ 7! 2 _ 02 2 _ g2 2
G <Zl> G, ('Zlql) _ (ag 22%)(21(1; 26 ) _ g (zl> G\ (’Zl%) (4.5.76)
17\ 29 7,3 Z9 (Zl — 22) 50\ 29 i,41g 29

Similarly,
2
G (Zl> _ G <Zlqi ) (4.5.77)
1,19] 29 1,1 29
Finally,
-1
_ z2 e Z1
e (2) " = (2) -
Then, we get:
~ + 2 + —2 9 —1 22(]1'2 z2 2
@) (216D (207N o) = Bl = 0000 | =8 (22 ) (2 56
! 4.5.
45 220} s &ii(m1g3)| =0 )
Cv 2 )Y 19
O
Corollary 4.5.36. Vi # j € I such that a;; = —2, aj; = —1, we have:
Tj(x;j(z)) =0. (4.5.80)

Proof. By using the definitions of Tj and Xzfgj(z), observe that Tj(xjgj (z)) is proportional to [X;;.l (2143), x;riz (qui_QqJQ-)]G;

Then, by the previous lemma, the result follows. ]

Lemma 4.5.37. Vi # j € I such that a;; = —1, aj; = —1, we have:

Tj(x;j(z)) =0. (4.5.81)
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Proof. Using the definition of x;gj(z), the definition of T;, and 4.5.12, we get that:

305,613 (25 ) = [T 6F (). T 2)]

G;Z.j(zl/z)

_ [+ N et
= _lei(zlqj)7xz (Z)}G;ij(»’%l/z)
=[x ()% (2)]

Ggij(n/z)

z
(Zlqu) % (%)

O
Proposition 4.5.38. Vi # j € I such that m;j < 00, we have the following braid group relation:
TTT;... =TT .. (4.5.82)
—_—— N
m;;jtimes m;jtimes
Proof. Consider the case m;; = 4, and <ai, oz]V> = -2, (0y,0)) = —1.
We will show that
LI (xf (2) = T T (k] (2)). (4.5.89)

The right-hand side is already given in the proof of lemma 4.5.12. Therefore, we apply T} to x;r(z) and,by

making use of the definition of 7); on the algebra generators, we get:
o /o1
Tj(x} (2)) = —x (2C" k] (2C71/?) (4.5.84)

Then,
Ty o Tj(x}(2) = ~Tilx; (:C ) Ti(k} (:C72) 7). (4.5.85)
Clearly, we can seperate the proof between the part regarding Ti(xj_(zC'_l)) and Ti(k;“(zC’_l/Q)_l) and

1/2)—1

multiply again both results at the end. The part concerning the k;r(zC_ is straightforward and

follows immediately from the definition of T; on the generators for all ¢ € I. We focus our attention on
Ti(x;(zC_l)). Observe that

Tl (2071) = Th o p(x} (C/2)) = 9 o Ti(x (C/2)) = (s, (0 C/2) (45.56)
Now apply T} to the previous result:
Ty o p(xh, (417 C/2)) = ¢ o Ty (s, (60 C/2)). (45.87)
This allows us to use results from lemma 4.5.12 again. Therefore, we have:
o Tj(xh (67C/2)) = p(x) (407 /) (4.5.88)

Finally, we apply 7; one last time and use equation 4.5.14 to get our answer. We then multiply by the
result we get from following the same steps on k;r(szl/ 2)_1 making us ready to compare with the right-

hand side obtained from the proof of lemma 4.5.12 and the result follows. The remaining cases are proven
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the exact same way.

153



Chapter 5
Further Directions

In this brief chapter, we will give some possible directions in which one might decide to venture in light of the

results presented in chapter 2-4.
Conjecture 5.0.1. Every weight-finite simple Uy(Lg)-module is finite dimensional.

An obvious direction is also generalizing to higher rank root systems. We will also conjecture that the

Drinfel’d presentation of a quantum toroidal algebra associated to a Lie algebra g has the following relations:

Conjecture 5.0.2.

{Cl/2 c 1/27 Cm> —m?Kii—Orsz_O m?Kj—nr’ K’an,T”X’LTS’Xl_TS m e N,TL € Nxﬂn’s € Z7Z € I}
(v — U 2)KS, (V)X (2) = (650 — 2) X5, (2)KS, 4 (v) (5.0.1)
+2(r al +2(r+t)+aq;
(Cq "o — I 2)KT, ()X (2) = (@770 — )X (KT, (0). (5.0.2)
—a;; —2(s+t)w 2r+a;; —a; —2(s —
(C? =g} w)(2—Cq; g5 " )KT (2)K T, 4 (w) = (Cl ™ z—w) (zq; "7 —Cq; T )T, (w)KG,(2)
(5.0.3)
a;j s —a;j - - 2r+a;; s —a;j _
(Ca¥z — Cqi ¢ w) (2 — 4 )KL (D)Ko (w) = (Cgf T 2 = C2 M w) (20" — w)K T, (w)K (2)
(5.0.4)
(v— qﬁw)Xfr(v)st(w) = (vg™? — w)st(w)XfT(v) , (5.0.5)
[X+( ) X*( )} _ 6ij H ( 1/2 (2p—1)sign(s)—1 )fsign(s) K+ ( )
7,7 v)s 7,8 z - g — qi—l r+s ket z 1,7+s v
_ 7| .
C o ~1/2 (1—2p)sign(r)—1..) &2
—0 (M) 1_‘[1C+ (C / q( p)sign(r) 'U) Kj77,+8(2) s (506)
p:

where m,n € N, r, s € Z and we have set

=3 i, (5.0.7)
meN
Kio(2) = Kioam? ™ (5.0.8)
meN



and, for every m € N* and r € Z,

Ki:im(z) = Z K?,:im,sz_s ) (509)
SEZL

X5 (2) =Y X270 (5.0.10)
SEL

At this moment we do not have anything regarding the Serre relations.

Conjecture 5.0.3. The quiver quantum toroidal algebra admits a similar braid group action.
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Appendix

5.1 Formal distributions

5.1.1 Definitions and main properties

Let K be a field of characteristic 0. For any K-vector space V, we let V [z, 27!] denote the ring of V-valued

v(z) = Z 2",

where the sum runs over finitely many terms, for any v(z) € V[z, z7!], we can define

Laurent polynomials. Writing

supp(v(z)) ={n € Z : v, # 0} ,
and set
Vilz, 271 = {v(2) € V2,27 "] : supp(v(2)) C [-n,n]} .

It is clear that, for every n € N, V, [z, 271] = V27 +1 as K-vector spaces. Now, if in addition V is a topological
vector space with topology 71, making use of that isomorphism, we can endow V,,[z, 27 !] with the box topology
of V2"+1 for every n € N. Denote by 7, that topology.

The obvious inclusions V;,[z, 27 1] < Vj,41[z, 271] are clearly continuous and we define a topology 7 on
V[z,271] as the inductive limit

7:=limT,.
—
We now assume that K is a topological field.

Definition 5.1.1. The space V[, 27]] of V-valued formal distributions is the K-vector space of contin-
uous V-valued linear functions over the ring of K-valued Laurent polynomials K[z, 271], the latter being

endowed with the final topology induced as above from the topology of K.

Proposition 5.1.2. Any V-valued formal distribution v(z) € V|[[z, 27| reads

v(z) = Z vp 2",

ne’l

for some (vp)nez € VZ and the action of v(z) on any Laurent polynomial f(2) € K[z, 271] is given by

(v(2), f(2)) = res (v(2) f(2)271)

z
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where we let

for any a(z) € V[[z,27Y]. V([[z,271]] is given the weak x-topology. It is actually a module over the ring

K[z, 27!] of K-valued Laurent polynomials.

Proof. It is clear that, due to its linearity, any v(z) € V/[[z,271]] is entirely characterized by the data, for

every n € N, of
vp = (v(2),z7 ") €V.

Now, writing v(z) = >, c7 vn2", we also have

vp = (v(z),27") = res v(z)z "L,

for every n € N and the claim follows. O

Let A be a topological K-algebra. Then A[[z, 27 !]] is the space of A-valued formal distributions, i.e. of
A-valued linear functions over Az, z7!]. In that case, the action of a(z) € A[[z,271]] on b(2) € A[z, 27 1] is
given by

(a(2),b(2)) = resa(z)b(z)z !, (5.1.1)

z
Clearly, A[[z,271]] is a module over the ring A[z, 27!] of A-valued Laurent polynomials. It is generally impos-
sible to consistently extend that structure into a full-fledged product over A[[z,271]]. However, since A is a
topological algebra, we can set

a(z)b(z) = Z (Z ambpm> 2P,

PEZ \mEZL

whenever the series

Z Ambp—m

meZ
is convergent for every p € Z. If A is complete as a topological algebra, it suffices that the above series be
Cauchy.

-1

—']] denote the space of V-valued formal distributions in n € N

.. -1
We let similarly V[[z1,27",...,2n,2

variables, so that any V-valued formal distribution v(z1,...,2,) in n variable reads

— Y I %
V(21,005 2) = E Upy,....pn?1 Zn"

P1yesPn€Z
n . .
for some (Vp,. p )py...pnez € VE". For every i = 1,...,n, we define

res : V[[zl,zl_l,...zn,zgl]] — V[[zl,zl_l,...,é\i,zi_l...,zn,zgl]],
3

where a hat over a variable indicates omission of that variable, by setting

—

. _ pl..'pn_ pl... 71..-p”
rgbv(zl,...,zn) = res E Upy,..spn A1 Zpt = E Upt,eeesPi1,=1,Dit 1505Pn 21 Z “n -
1 1 ~
P1yeePn€Z D1s-,Diy-,Pn€L
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-1

) = Ve, 205 oo 2, 27 Y]] by setting

For every i = 1,...,n, we define 9; : V[[zl,zfl, ey 2, 2,

. — . pr . pi=l  _p
Ov(z1, ... 2n) = E DiUp,... pn 21 2 2P

P1ye-sPn €L

If Ais a topological K-algebra, then the multiplication in A naturally extends to bilinear maps

Allz, zfl, ey Zm, Z,;LIH X Al[zm+1, Z;L}H, ey Zmny Z;L}m“ — Al[z1, zfl, ey Zmdn, z;ﬁ_n]]
by setting
a(z1, -, 2m)b(Zm+1, - - Zmtn) = Z Ao o Opm s 15D in 1 -zﬁ:’f,{" .

P1,--sPm+n€Z

Let a(z1,...,2n) € A[[z1,27 ", ..., 2n, 2, ]| be an A-valued formal distribution in n variables. Since A is a
topological K-agebra, we can define the localization a,, . (z1,...,2,-1) € A[[zl,zl_l, ... ,Zn—l,Z;,ll]] of
a(z1,...,2p) at z,—1 = 2z, by setting

_ p1 Pn—1
a\znflzzn('zla s 7271*1) - E § :ap17~"7p7L727p7p’7L*17p 2l et Fp—1 o

PlyesPn—1€ZL \PEZL

whenever

E :ap17---7pn_z,p,pn_1—p

PEZL

is convergent. If A is complete as a topological algebra, it suffices that the above series be Cauchy.

5.1.2 Laurent expansion and the Dirac formal distribution

One way to obtain formal power series is to take the Laurent expansion of some holomorphic function f : C — C.
We shall usually write f(z).«1 to denote the Laurent expansion around 0. Similarly, we shall denote by
f(2)|z>1 the Laurent expansion around oo.

Let

i(z) = Zz”.

ne’

Lemma 5.1.3. For every n € N* | we have

() ()
1—2/ <1 L=2/ 51 (n—1)!"

Proof. 1t is straightforward to check that the result holds for n = 1. Assuming it holds for some n, it

follows, upon differentiation, that

< 1 )7L+1 ( 1 )TL-‘rl 5(n) (Z)
n — = 0,

which completes te recursion. O
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Lemma 5.1.4. For any n € N and any A-valued Laurent polynomial f(z) € Alz, 271, we have

1) = -1 (M) f P a0,
_ p
p=0
Proof. The case n = 1 is straightforward. Assuming the results holds for some n € N, we have, upon
differentiation,
FEIE) + £ () = -1 () 1P s o),
p
p=0
which completes the recursion. O

Example 5.1.5. In particular, for any A-valued formal distribution f(z1,29) € A[[z1, 2]}, 22, 25 ']] with

a well-defined localization f|, _.,(21) — see previous subsection for a definition —, we have

fuh@w<2):fmzxaw(2>,

Assuming that K is an algebraically closed field, we have

Lemma 5.1.6. Let P(z) € K[z] be a polynomial of degree N, with roots {\; : i € [n]} and respective
multiplicities {m; : i € [n])}. If a(z) € K[z, 27 Y]] is a K-valued formal distribution, then

n m;—1
Nz
P(2)a(z) =0 & a(z) = Z Z ai7p5(pz) ()\Z> 7
i=1 p;=0
for some a; p € K.

Proof. The if part is easily checked making use of the previous lemma. The only if part follows by an easy
recursion, after writing that P(z) = [,y (2 — A)™. O

Lemma 5.1.7. Let P(z),Q(z) € K[z] be two coprime polynomials. Let {X\; : i € [n]} be the set of roots
of Q(2) and let {m; : i € [n]} be their respective multiplicities. Then, in K[[z, z71]],

(ggz;)M@ - (gg)m = anmf (_Zj;/\l;i’iiJrl5(pi) (;) , (5.1.2)

i=1 p;=0

where, for every i € [n] and every p; € [my], iy, is obtained from the partial fraction decomposition

P(Z) = z e _ %ipi
Q(Z) B A( ) + Z Z (z — )\Z»)pvz ) (5.1.3)

in which A(z) € K[z] is a polynomial of degree deg(P) — deg(Q).
Proof. Given the partial fraction decomposition (5.1.3), we can write

(6o (@), = EZ (55~ ()

=1 pl_l

Oy _ z
_ ZZ _1';;1 5 1><Ai>

= 1p*1
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where we have used lemma 5.1.3 to derive the last equality. The claim obviously follows. O

Lemma 5.1.8. Let m € {0,1} and n € N, let A(v) € F[[v]] — {0} be a non-zero formal power series and
let F(z2) € F[[z,271]] be a formal distribution such that

n

(z—a)(z—v)"AW)F(z) + Z B,(v)8¥)(z/a) =0, (5.1.4)
p=0
for some non-zero scalar a € F* and some formal power series By(v),..., Bp(v) € F[[v]]. Then,
n+1
F(z) =) f,0"(z/a),
p=0
for some scalars fo,..., fnr1 € F.

)n—i—l

Proof. Consider first the case where m = 0. Then, multiplying (5.1.4) by (z —a , we get

(z—a)"?A(W)F(z) =0.

Since A(v) # 0, there must exist k € N such that res, v ™' "*A(v) # 0 and, specializing the above equation

to its v* term, it follows that
n+1

F(z) =) f,0"(/a)
p=0

for some scalars fo, ..., fnr1 € F. Now consider the case where m = 1. It follows from (5.1.4) that

n

1

- ) By(v)0®)(2/a) = C(2)8(2/v),
lv/2l<1 5=

(z—a)A(v)F(z) + <

for some formal distribution C(z) € F[[z, z~!]]. But specializing the above equation to any negative power

of v, v™P with p € N*| we immediately get that C'(z) = 0. We are thus back to the previous case. O

5.1.3 The structure power series Gf;(z)

In this last subsection, we derive identities involving the structure power series G?;(z) by applying lemma 5.1.7.

Remember — see remark 3.3.21 — that in type d;, we have GT;(2) = GF,(2).
Proposition 5.1.9. The following hold true in F[[z, 27 1]].

i. For every p € Z — {2},

Gl(z")Gl (27" — Gz ¢ PG (z'¢")  [2qlply 202 P) — § (20”2
= —[p_Q]q[é(q ) =0 (2¢"7%)] . (5.1.5)
In particular, when p =1, we have
GTO(Z(])GE(Zqil) — GI_O(Zilqil)Gl_l(zilq) —_ [2}(] [5 (Zq—l) _ 6(2(])] ) (516)

q—q!
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If p = 2, we have instead

— _ 2 Z—/Z ) 1.
(q—q )2 = [2]; [5() 5 ( )] (5.1.7)

1. Similarly,
Gi(2q7%)? - G (= '¢*)? _ 2¢7%[2
(g—q1)? q—q

16 (2) + 226 (2) (5.1.8)

Proof. In each case, it suffices to determine the partial fraction decomposition of the L.h.s and to apply

lemma 5.1.7 to get the desired result. O
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