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Résumé:A toute algèbre de Lie sur le corps des com-

plexes, nous pouvons lui associer le groupe quan-

tique considéré comme généralisation de l'algèbre.

C'est la deformation de l'algèbre enveloppante uni-

verselle U(g). En prenant la limite q tend vers 1,

nous retrouvons l'algèbre enveloppante universelle.

L'algèbre de Lie possède une généralisation naturelle

en dimension in�nie qui est l'algèbre de Lie a�ne.

La déformation de l'algèbre enveloppante d'une al-

gèbre de Lie a�ne non-tordue nous permet de dé�nir

les algebres a�nes quantiques. Due à V.G. Drinfel'd

les algèbres a�nes quantiques possèdent une deux-

ième réalisation en terme de générateurs de Drin-

fel'd. Cet isomorphisme est prouvé Par I. Damiani

et J. Beck. Ceci nous permet de dire qu'on peut ef-

fectuer l'a�nisation avant ou bien après la quanti�-

cation. On a un diagramme commutative. En plus,

on peut de�nir la quanti�cation a�ne qui nous per-

met d'associer à toute algèbre de Lie de type �nie

une algèbre quantique a�ne dans la réalisation de

Drinfel'd. Le procédé de quanti�cation a�ne peut

être e�ectué sur une algèbre a�ne non tordue. Ceci

est la de�nition des algèbres toroidales quantiques.

Le résultat est une algèbre qui est doublement a�ne.

Dans cette thèse nous étudions les algèbres

toroidales quantiques et leurs représentations. La

première partie est consacrée à l'étude de l'algèbre

toroidale quantique de type A1. Par action du

groupe des tresses, nous construisons une nouvelle

presentation de l'algèbre qui nous donne une nou-

velle décomposition triangulaire. Dans la seconde

partie, nous utilisons ce résultat pour dé�nir et classi-

�er les représentations simples de plus hauts t-poids.

Finalement, nous généralisons les résultats de la pre-

mière partie pour obtenir une action du groupe des

tresses sur tout autres systems de racines.
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Abstract: With every irreducible �nitenite root sys-

tem, one can associate the corresponding Drinfel'd-

Jimbo quantum group.This is a Hopf algebra, which

can be thought of as a deformation of the universal

enveloping algebra of the Lie algebra of the same

Cartan type. It naturally comes equipped with a

universal R-matrix, thus providing solutions of the

Yang-Baxter equation which plays a de�nitional role

in the theory of quantum integrable systems and un-

derlies the algebraic Bethe ansatz. In case the ini-

tial root system is a�ne instead of �nite, the re-

sulting Drinfel'd- Jimbo quantum groups are known

as quantum a�ne algebras. Drinfel'd proposed an

alternative presentation of these algebras though,

closer in spirit to their classic current or loop pre-

sentation as Lie algebras. It is now widely referred

to as the Drinfel'd presentation and was rigorously

established by Damiani and Beck, making crucial use

of Lusztig's a�ne braid group symmetries; a quan-

tum analogue of the classical Weyl group symme-

tries of simple Lie algebras. As one expects in view

of the classical current Lie algebra case, Drinfel'd's

presentation only depends on the underlying �nite

root system, i.e. the one with the extra a�ne simple

root removed. Now it turns out that this inherently

a�ne presentation still makes sense if, instead of a

�nite root system, one takes an a�ne root system.

In that case, the doubly a�ne algebra one obtains is

known as a quantum toroidal algebra. Although the

latter are believed to be relevant in various areas of

theoretical physics, ranging from quantum integrable

systems to CFT, not much is presently known about

their representation theory. From a more mathe-

matical perspective, the interest in these algebras

essentially stems form the fact that, in type A, they

are known to be Frobenius-Schur duals of the widely

studied doubly a�ne Hecke algebras or DAHA origi-

nally introduced by Cherednik in order to prove Mac-

Donald's conjectures.

In this thesis we study quantum toroidal algebras

and their representation theory. In the �rst section,

we construct a new presentation of the algebra using

the braid group action on the generators and show

the existence of an isomorphism between both pre-

sentations. This allows us to de�ne a new triangular

decomposition. Using these results, we de�ne and

classify highest-weight representations. Finally, we

generalize the action of the braid group to any root

system.
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0.1 Synthèse en Français

A toute algèbre de Lie de type �ni g, on peut lui associer l'algèbre de Kac-Moody a�ne non-tordue ġ. Les

algèbres de Kac-Moody a�nes sont obtenues en remplaçant les données d'un système de racine �ni par les

données d'un système de racines a�ne. C'est le procédé d'a�nization classique des algèbres de Lie. Un

autre procédé est celui de la quanti�cation de ces algèbres. Dans ce cas, on obtient d'une part les groupes

quantiques Uq(g) qui ont étaient introduits par V.G. Drifel'd et M. Jimbo. Les groupes quantiques sont une

déformation de l'algèbre enveloppente d'une algébre de Lie �nie. D'autre part, quand on applique le procéssus

de quanti�cation sur une algèbre de Kac-Moody a�ne non-tordue, on obtient les algèbres quantiques a�nes.

Les algèbres quantiques a�nes possèdent deux présentations en termes de générateurs et relations d'algèbre.

La première, celle de Dinfel'd et Jimbo, Uq(ġ), est obtenue en remplaçant les données du système de racine

�ni par celles d'un système de racines a�ne. La deuxième, U̇q(g) due à Drinfel'd est en terme de générateurs

de Drinfel'd et depend uniquement d'un système de racines �ni. L'isomorphisme entre ces deux présentations

a été démontré par I. Damiani et J. Beck. Ceci nous permet d'écrire le diagramme commutatif suivant:

g
A�nisation Classique−−−−−−−−−−−−−−→ ġ

A�nisation Quantique

y yQuanti�cation
U̇q(g)

∼−−−−−−−−−−−−−−→
isom. Damiani-Beck

Uq(ġ)

Le fait que la présentation des algèbres a�ne quantiques U̇q(g) dépend d'un système de racines �ni nous

permet de de�nir une troisiéme algèbre, U̇q(ġ) doublement a�ne, en remplaçant encore une fois le système de

racine �ni par un système de racine a�ne. C'est la dé�nition algèbrique des algèbres toroidales quantiques. Les

algèbres quantiques toroidales, introduientt par Ginzburg-Kapranov-Vasserot, apparaissent naturellement dans

certaines constructions géométriques des groupes quantiques reliées aux théories de gauge en physique, plus

précisement les théories de jauge-carquois. Le sujet de cette thèse est de dè�nir une présentation des algèbres

toroidales quantiques à la Drinfel'd en terme de générateurs à lacets doubles. La thèse est divisée en trois

parties:

� Dans la première nous présentons les demarches nécessaires pour obtenir une presentation à la Drinfel'd

de l'algèbre toroidale quantique de type A1.

� Dans la deuxième nous utilisons cette nouvelle présentation pour dé�nir une nouvelle catégorie de module

et nous les classi�ons.

� Dans la troisiéme nous donnons l'outils crucial pour généraliser ces résultats pour couvrir tous système

de racine.

0.1.1 Double A�nisation Quantique

Dans la section "On Double Quantum A�nization" nous suivons les mêmes étapes suivies par I. Damiani et J.

Beck pour de�nir un isomorphisme dans le cas de algèbres toroidales quantiques. Voici les ingrédients principaux

pour construire la nouvelle présentation:
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� Automorphismes de l'algèbre U̇q(ġ)

� Extension du groupe de tresses toroidale

� Dé�nition des générateurs lacets doubles

Pour les automorphismes d'algèbres:

Proposition 0.1.1. i. Pour tout automorphisme de diagramme de Dynkin: π : İ
∼−→ İ, il existe un

unique automorphisme de F-algèbre Tπ ∈ Aut(U̇q(ȧ1)) tel que:

Tπ(x±i (z)) = x±π(i)(z) , Tπ(k±i (z)) = k±π(i)(z) , Tπ(C1/2) = C1/2 , Tπ(D) = D . (0.1.1)

ii. Pour tout i ∈ İ, il existe un unique automorphism de F-algèbre Tω∨i ∈ Aut(U̇q(ȧ1)) tel que

Tω∨i (x±j (z)) = z±δijx±j (z) Tω∨i (k±j (z)) = C∓δijk±j (z) Tω∨i (C1/2) = C1/2 Tω∨i (D) = D

(0.1.2)

iii. Il existe un unique anti-homomorphisme involutive de F-algèbre η ∈ Aut(U̇q(ȧ1)) tel que:

η(x±i (z)) = x±i (1/z) η(k±i (z)) = k∓i (1/z) η(C1/2) = C1/2 η(D) = D (0.1.3)

iv. Il existe un unique anti-homomorphisme involutive de F-algèbre ϕ ∈ Aut(U̇q(ȧ1)) tel que:

ϕ(x±i (z)) = x∓i (1/z) ϕ(k±i (z)) = k∓i (1/z) ϕ(C1/2) = C−1/2 ϕ(D) = D−1 ϕ(q) = q−1

(0.1.4)

Proposition 0.1.2. Il existe un unique automorphisme d'algèbre T ∈ Aut( ˙̂Uq(ȧ1)) tel que:

T (C1/2) = C1/2 T (D) = D T (k±0 (z)) = k±0 (zq2)k±1 (z)k±1 (zq2) T (k±1 (z)) = k±1 (z)−1 (0.1.5)

T (x+
0 (z)) =

1

[2]q
res
z1,z2

z−1
1 z−1

2

[
x+

1 (z1),
[
x+

1 (z2),x+
0 (zq2)

]
G−10(z2/zq2)

]
G−11(z1/z2)G−10(z1/zq2)

(0.1.6)

T (x−0 (z)) =
1

[2]q
res
z1,z2

z−1
1 z−1

2

[[
x−0 (zq2),x−1 (z1)

]
G+

10(zq2/z1)
,x−1 (z2)

]
G+

11(z1/z2)G+
10(zq2/z2)

(0.1.7)

T (x+
1 (z)) = −x−1 (C−1z)k+

1 (C−1/2z)−1 (0.1.8)

T (x−1 (z)) = −k−1 (C−1/2z)−1x+
1 (C−1z) (0.1.9)

Ces automorphismes seront associés aux générateurs du groupe de tresse toroidale pour construire les

générateurs de la nouvelle présentation.

De�nition 0.1.3. Soit Ḃ le groupe de tresses a�ne de type ȧ1. Soit B̈ := Ḃn P∨, i.e. B̈ est isomorphe

au groupe de dont les générateurs sont t, y and (xλ)λ∈P∨ tels que:

ty−1t = y , txλt
−1 = xsα1 (λ) , xλy = yxλ , (0.1.10)

Pour tout λ ∈ P∨.

11



Ceci de�nit l'extension du groupe de tresses toroidale de type ȧ1. Le théorème suivant est la base de la

construction des générateurs double-Drinfel'd:

Theorem 0.1.4.

t 7→ T y 7→ Y := Tπ ◦ T xω∨i 7→ Tω∨i (0.1.11)

s'étend à un homomorphisme de groupe B̈→ Aut( ˙̂Uq(ȧ1)).

En appliquant l'automorphisme Y , nous construisons ψ+
1,m(z):

[
Y m

(
k−1 (z)−1x−1 (C1/2z)

)
,x+

1 (v)
]
G−01(z/C1/2v)

= −δ
(
q2mz

C1/2v

)
ψ+

1,m(v) (0.1.12)

où

G±ij(z1/z2) =

(
z1q
∓cij − z2

z1 − q∓cijz2

)
|z2|�|z1|

. (0.1.13)

les génerateurs de al sous algèbre de Cartan sont de�nis tels que:

K+
1,m(v) := (q − q−1)k−1 (C1/2vq−2m)ψ+

1,m(v),

où m ∈ N× et

X±1,m(z) := Y ∓m(x±1 (z)).

Pour obtenir les relations dans cette nouvelle presentation il faut:

� établir les relations entre ψ+
1,m(z) et les générateurs de la presentation de Drinfel'd,

� établir les relations dans Ü+
q (a1), Ü0

q(a1) et Ü−q (a1),

� établir les relations entre les trois sous-algèbres: Ü+
q (a1), Ü0

q(a1) et Ü−q (a1).

Nous pouvons maintenant fournir la nouvelle presentation:

De�nition 0.1.5. L'algèbre de double a�nization quantique Üq(a1) de type a1 est la F-algèbre dont les
générateurs sont

{D1,D
−1
1 ,D2,D

−1
2 ,C1/2,C−1/2, c+

m, c
−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z}

tels que:

C±1/2 et c±(z) sont les charges centrales (0.1.14)

res
v,w

1

vw
c±(v)c∓(w) = 1 , (0.1.15)

D±1
1 D∓1

1 = 1 D±1
2 D∓1

2 = 1 D1D2 = D2D1 (0.1.16)

D1K
±
1,±m(z)D−1

1 = q±mK±1,±m(z) D1X
±
1,r(z)D

−1
1 = qrX±1,r(z) , (0.1.17)

D2K
±
1,±m(z)D−1

2 = K±1,±m(zq−1) D2X
±
1,r(z)D

−1
2 = X±1,r(zq

−1) , (0.1.18)

res
v,w

1

vw
K±1,0(v)K∓1,0(w) = 1 , (0.1.19)
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(v − q±2z)(v − q2(m−n∓1)z)K±1,±m(v)K±1,±n(z) = (vq±2 − z)(vq∓2 − q2(m−n)z)K±1,±n(z)K±1,±m(v) , (0.1.20)

(Cq2(1−m)v − w)(q2(n−1)v − Cw)K+
1,m(v)K−1,−n(w) = (Cq−2mv − q2w)(q2nv − Cq−2w)K−1,−n(w)K+

1,m(v) ,

(0.1.21)

(v − q±2z)K±1,±m(v)X±1,r(z) = (q±2v − z)X±1,r(z)K
±
1,±m(v) , (0.1.22)

(Cv − q2(m∓1)z)K±1,±m(v)X∓1,r(z) = (Cq∓2v − q2mz)X∓1,r(z)K
±
1,±m(v) , (0.1.23)

(v − q±2w)X±1,r(v)X±1,s(w) = (vq±2 − w)X±1,s(w)X±1,r(v) , (0.1.24)

[X+
1,r(v),X−1,s(z)] =

1

q − q−1

δ
(

Cv

q2(r+s)z

) |s|∏
p=1

c−
(
C−1/2q(2p−1)sign(s)−1z

)−sign(s)
K+

1,r+s(v)

−δ
(

C−1v

q2(r+s)z

) |r|∏
p=1

c+
(
C−1/2q(1−2p)sign(r)−1v

)sign(r)
K−1,r+s(z)

 , (0.1.25)

avec m,n ∈ N, r, s ∈ Z et

c±(z) =
∑
m∈N

c±±mz
∓m , (0.1.26)

K±1,0(z) =
∑
m∈N

K±1,0,±mz
±m , (0.1.27)

et pour tout m ∈ N× et r ∈ Z,
K±1,±m(z) =

∑
s∈Z

K±1,±m,sz
−s , (0.1.28)

X±1,r(z) =
∑
s∈Z

X±1,r,sz
−s . (0.1.29)

In (5.0.6), we further assume that K±1,∓m(z) = 0 pour tout m ∈ N×.

0.1.2 Représentations des Algèbres Toroidales Quantique de Type a1

La nouvelle dé�nition de l'algèbre toroidale quatique nous donne une nouvelle decomposition triangulaire pour

etudier et classi�er les modules de cette algèbre.

De�nition 0.1.6. Soit M un module de Üq(g). On dit queM est un t-poids module s'il existe un ensemble

denombrable {Mα : α ∈ A} indecomposables appelés espaces de t-poids tel que:

M ∼=
⊕
α∈A

Mα (0.1.30)

où chaque Mα est un module de Ü0
q(g).

Nous pouvons ensuite classi�er les modules de plus hauts t-poids.

Theorem 0.1.7. L'unique module simple de plus haut t-poids possède un nombre de poids classique �ni

ssi sont espace de plus haut t-poids est un module de Ü0
q(g) simple t-dominant.
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0.1.3 Action du Groupe de Tresses: Le Cas Général

Dans ce qui suit nous donnons le théorème principale pour généraliser les résultats de cette thèse à toute autre

système de racines.

Theorem 0.1.8. ∀i 6= j ∈ İ, nous dé�nissons Ti tel que:

Ti(C) = C, Ti(D) = D

Ti(x
+
i (z)) = −x−i (zC−1)k+

i (zC−1/2)−1, Ti(x
−
i (z)) = −k−i (zC−1/2)−1x+

i (zC−1)

Ti(k
±
i (z)) = k±i (z)−1, Ti(k

±
j (z)) =

|−aij |∏
p=1

k±i (zq
2−2p−aij
i )k±j (zq2

i )

Ti(x
+
j (z)) =

x+

i−aij j
(zq
−aij
i )

[−aij ]qi
, Ti(x

−
j (z)) =

x−
ji−aij

(zq
−aij
i )

[−aij ]qi
.

en plus, on donne

T−1
i (C) = C, T−1

i (D) = D

T−1
i (x+

i (z)) = −k+
i (zC1/2)−1x−i (zC ), T−1

i (x−i (z)) = −x+
i (zC)k−i (zC1/2)−1

T−1
i (k±i (z)) = k±i (z)−1, T−1

i (k±j (z)) =

|−aij |∏
p=1

k±i (zq
2−2p−aij
i )k±j (zq−2

i )

T−1
i (x+

j (z)) =
x+

ji−aij
(zqaij )

[−aij ]qi
, T−1

i (x−j (z)) =
x−
i−aij j

(zqaij )

[−aij ]qi
.

Ceci nous permet d'avoir une action par automorphismes Ti du groupe de tresse B̈ sur l'algèbre ̂̇Uq(ġ).
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Introduction

Quantum Groups

Quantum groups have been a subject of interest for the past 35 years and interestingly enough, to this day, do

not have an agreed upon satisfactory de�nition. The name was popularized by V.G. Drinfel'd and de�ned by

M. Jimbo and V.G. Drinfel'd [Drin85] [Jim86] as the q-deformation of the universal envoloping algebra U(g).

Quantum groups quickly gained popularity in physics too. Speci�cally, they were �rst used to address

statistical mechanics problems such as inverse scattering methods. Ever since, the �eld exploded in multiple

research directions in both mathematics and physics. On the mathematical side, one can look at multiple results

ranging from geometry and knot theory to representation theory. When the deformation parameter q is not

a root of unity, the representation theory of quantum groups is quite similar to that of complex simple Lie

algebras. However, a remarkable result appears in the case q is a root of unity. In this case, if q is the p-th

root of unity the representation theory becomes closely linked to that of the Lie algebra over a �nite �eld with

p elements.

Whereas for physics [PS90], we can see applications to integrable systems, conformal �eld theories, and

lattice models relevant to statistical mechanics problems. Quantum groups in the case of �nite integrable

systems play a similar role as the Virasoro algebra in the case of conformal theories. In the case of the XXX

open spin chain, there is an su2 symmetry. Its counterpart is a Uq(su2) symmetry for an open XXZ spin chain

with an appropriate boundary condition. We can think of this as deforming the spin chain in one direction so

that the interaction along one of the directions is di�erent. Moreover, Uq(sl2) is the Schur-Weyl dual of the

Temperley-Lieb algebra for 2D lattice systems,such as loop models, or equivalently spin chains that are built

out of the Temperley-Leib algebra.

Quantum A�ne Algebras

For every Lie algebra g we denote by ġ the untwisted a�ne Kac-Moody algebra associated to g. The quantum

a�ne algebra Uq(ġ) is obtained through a Drinfel'd-Jimbo quantisation of ġ. These algebras are still a �eld

of very active research in both physics and mathematics too. Although it is practically impossible to list all of

them, especially on the mathematical side, we will list a few and focus on what was most relevant during the

development of this work. For physicists these algebras are especially interesting because of the trigonometric

R-matrix, solution to the Yang-Baxter equation. Quantum a�ne algebras also arise in the context of integrable

quantum �eld theories. However we will start shifting our interest to the mathematical side here. The quantum

a�ne algebra admits two presentations. One in terms of the Drinfel'd-Jimbo generators and the second, denoted

here as U̇q(g) in terms of Drinfel'd's current generators. The isomorphism between the two presentations is

due to I. Damiani and J. Beck. [Dam93],[Bec94] and the latter depends on the �nite root system data only. In

fact, Drinfel'd's presentation was the key that unlocked the study of the representation theory of quantum a�ne

algberas, an idea that we will come back to in the toroidal setting. Contrary to classical Lie algebras, highest

weight representations of quantum a�ne algebras are in�nite dimensional. However, V. Chari and A. Pressley

[CP95] established that a representation of U̇q(g) is �nite dimensional if and only if there exists a polynomial

called Drinfel'd polynomial with constant coe�cient 1 called `-weight.
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Quantum Toroidal Algebras

Quantum toroidal algebras were �rst introduced by V. Ginzburg, M. Kapranov, and E. Vasserot for type A

in [GKV95] and then generally by H. Nakajima and N. Jing in [Nak01][Jin98]. Then, M. Varagnolo and E.

Vasserot established a Schur-Weyl duality between quantum toroidal algebras and the double a�ne Hecke

algebra (DAHA) [VV96]. Most recently, G. Noshita, and A. Watanabe in [NW21] introduced quiver quantum

toroidal algebras as a q-deformation of the quiver Yangian as the quantum toroidal gl1. One can also de�ne

quantum toroidal algebras in the same fashion as quantum a�ne algebras. By which we mean, if we use

Drinfel'd's quantum a�nization on an untwisted a�ne Kac-Moody algebra, then we obtain quantum toroidal

algebras. The representation theory of quantum toroidal algebras is far from being understood although one

�nds several results such as plane partition representations of quantum toroidal gl1 by B. Feigin, M. Jimbo, T.

Miwa and E. Mukhin [FJMM12] as well as vertex representations by Y. Saito [S98].

The thesis is organized as follows. In chapter 1, we will give a small review on the results that are most

relevant for this work. This review can also be seen as a road map because the results we are presenting in this

thesis are an a�nized version of the review. In chapter 2, we give a double Drinfel'd current presentation for

quantum toroidal sl2 through an a�nized Damiani-Beck isomorphism. In chapter 3, we use this new presentation

to discuss some representation theoretic consequences by de�ning a new notion of �niteness as well as providing

an evaluation homomorphism. As we know, one does not expect to have �nite dimensional representations

for quantum toroidal algebras. Therefore, we introduce the idea of classical weight-�niteness and prove that

it generalizes the classi�cation result of V. Chari and A. Pressley for U̇q(sl2). Then, in chapter 4 we give the

action of the braid group on the quantum toroidal algebras of any rank. This chapter is the stepping stone for

generalizing chapter 2 to higher ranks. Finally, we give possible future directions and conjecture how the double

Drinfel'd presentation Üq(g) should look like for any simple �nite dimensional Lie algebra g.
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Chapter 1

A Brief History

1.1 Quantized Enveloping Algebra

When it comes to quantized enveloping algebras, a lot of its structure carries over from Lie algebras all thanks

to the fact that semisimple complex Lie algebras are at the heart of the quantized enveloping algebra denoted

Uq(g).

We start by a reminder that for a root system with basis Π, a Cartan matrix A, and aij the Cartan matrix

entries, the Lie algebra g in the Chevalley-Serre presentation is generated by the generators e+
i , e

−
i , and hi

satisfying the following relations:

[hi, hj ] = 0, [hi, e
+
i ] = aije

+
i , (1.1.1)

[hi, e
+
i ] = −aije−i , [e+

i , e
−
j ] = δijhi, (1.1.2)

(ad e+
i )1−aije+

j = 0 (1.1.3)

(ad e−i )1−aije−j = 0 (1.1.4)

Then, the enveloping algebra is de�ned as the associative algebra with the same generators and relations where

we quotient by [x, y] = xy − yx. This means that we can rewrite the last relations as:

1−aij∑
i=0

(−1)i

[
1− aij
i

]
(e+
i )1−aij−ie+

j (e+
i )i (1.1.5)

1−aij∑
i=0

(−1)i

[
1− aij
i

]
(e−i )1−aij−ie−j (e−i )i (1.1.6)

Now let q ∈ C such that q 6= 0 and q is not a root of unity. Let qi = q(αi,αi)/2 and de�ne the q-numbers by:

[n]qi =
qni − q

−n
i

qi − q−1
i

(1.1.7)

Then, the quantized enveloping algebra Uq(g) is the algebra with generators E±i and Ki, and K
−1
i satisfying:

KiKj = KjKi (1.1.8)
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KiK
−1
i = K−1

i Ki = 1 (1.1.9)

KiE
+
j K

−1
i = q

(αi,αj)
i E+

j (1.1.10)

KiE
−
j K

−1
i = q

−(αi,αj)
i E−j (1.1.11)

1−aij∑
i=0

(−1)i

[
1− aij
i

]
qi

(E+
i )1−aij−iE+

j (E+
i )i (1.1.12)

1−aij∑
i=0

(−1)i

[
1− aij
i

]
qi

(E−i )1−aij−iE−j (E−i )i (1.1.13)

We can clearly see all the parallels between the two presentations of a Lie algebra and the quantized

enveloping algebra. As it was the case for Lie algebras, we denote by Uq(g)±, and Uq(g)0 the subalgebras

respectively generated by E±i , and Ki together with K
−1
i . We also have the following triangular decomposition:

Uq(g) ∼= Uq(g)+ ⊗Uq(g)0 ⊗Uq(g)− (1.1.14)

which will once again be relevant for the representation theory part of course.

Furthermore, by setting:

∆(E+
i ) = Ei ⊗ 1 +Ki ⊗ E+

i , ε(E+
i ) = 0 (1.1.15)

∆(E+
i ) = Ei ⊗K−1

i + 1⊗ E−i , ε(E−i ) = 0 (1.1.16)

∆(Ki) = Ki ⊗Ki, ε(Ki) = 1 (1.1.17)

S(E+
i ) = −K−1

i E+
i , S−1(E+

i ) = −E+
i K

−1
i (1.1.18)

S(E−i ) = −E−i Ki, S−1(E−i ) = −E−i Ki (1.1.19)

S(Ki) = K−1
i , S−1(Ki) = K−1

i (1.1.20)

for the comultiplication ∆, the counit ε, and the antipode S, we make the quantized enveloping algebra into a

Hopf algebra.

We can now give the two unique automorphisms on Uq(g) denoted ω, and τ given by:

ω(E+
i ) = E−i , ω(E−i ) = E+

i , ω(Ki) = K−1
i (1.1.21)

τ(E+
i ) = E+

i , τ(E−i ) = E−i , τ(Ki) = K−1
i (1.1.22)

The proof is straightforward and all we have to do is check this on the algebra relations.

1.1.1 Representation Theory

As it is the case for Lie algebras, the representation theory of Uq(g) stems mostly from the representation theory

of Uq(sl2). We will start by giving some of the important results of that in the case where q is not a root of

unity and the �eld F is of characteristic zero.

The presentation of Uq(sl2) is the same as the one presented in the previous section where we get rid of

the subscript i because it can only take one value since we only have one simple root.
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If M is a Uq(sl2)-module then set for all λ ∈ F×:

Mλ = {m ∈M |K.m = λ.m} (1.1.23)

This means that Mλ is the eigenspace of K with eigenvalue λ. As we have done for Lie algebras, the λ's will

be called the weights. Taking the algebra relations into account, it is clear that we have:

E+.Mλ ⊂Mq2λ, E−.Mλ ⊂Mq−2λ (1.1.24)

More precisely, we have that the direct sum of any weight spaces of the form Mq2nλ is a submodule. From this

we can conclude that if M is simple, we have M =
⊕

nMq2nλ. We now have the following proposition:

Proposition 1.1.1. Suppose M is a �nite-dimensional Uq(sl2)-module, then M is a direct sum of its

weight spaces with weights of the form ±qa for a ∈ Z.

For each λ ∈ F, there is an in�nite dimensional Uq(sl2)-module with basis m0,m1, ... where the algebra

generators act as:

K.mi = λq−2imi, F.mi = mi+1, (1.1.25)

E.mi = 0, if i = 0, (1.1.26)

E.mi = [i]q
λq1−i − λ−1qi−1

q − q−1
, otherwise (1.1.27)

We now �nish the part about the representation theory of Uq(sl2) with the following two theorems:

Theorem 1.1.2. Let M be a �nite dimensional Uq(sl2)-module that is a direct sum of its weight spaces,

then M is a semisimple module.

Analogously to sl2,

Theorem 1.1.3. For each n ≥ 0 there are two simple Uq(sl2)-modules denoted respectively L(N,+), and

L(N,−) with basis m0,m1, ...,mn, and m
′
0,m

′
1, ...,m

′
n such that:

K.m
(′)
i = qn−2im

(′)
i (1.1.28)

E+.m
(′)
i = 0 if i = 0 (1.1.29)

E+.m
(′)
i = [i]q[n+ 1− i]qm(′)

i−1 otherwise (1.1.30)

E−.m
(′)
i = 0 if i = n (1.1.31)

E−.m
(′)
i = m

(′)
i+1 otherwise (1.1.32)

1.1.2 Representation Theory of Uq(g)

Most of the representation theory results of Uq(g) arise from what we have seen in the case of Uq(sl2). Moreover,

there are a lot of similarities between the representation theory of Uq(g) and that of g. In this section, we will

introduce the category of �nite dimensional Uq(g)-modules and give the classi�cation theorem of its objects.
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Let λ be a weight and µ an element of the root lattice ZΦ. For any Uq(g)-module M , let for all λ and all

σ : ZΦ 7→ {±1} Mλ,σ be the subspace of M given by:

Mλ,σ = {m ∈M |Kµm = σ(µ)q(λ,µ)m}. (1.1.33)

Mλ,σ are the weight spaces of M .

In case M is a �nite dimensional module, then

M =
⊕
σ,λ

Mλ,σ (1.1.34)

since all the Ki's are simultaneously digonalizable. Moreover, we have for all λ, and σ:

E+
i Mλ,σ ⊂Mλ+αi,σ, and E−i Mλ,σ ⊂Mλ−αi,σ (1.1.35)

for all simple roots αi. This is clear from the algebra relations.

Furthermore, the generators E±i act nilpotently. This is because the module M holds Uq(sl2)-submodules

for each αi.

For a module M given by the direct sum as above, we will say that it is of type σ if M = Mλ,σ and of type

1 if in addition to that we have σ(α) = 1 for all α.

The previous results can be summarized as follows: the category of �nite dimensional Uq(g)-modules is the

direct sum of the categories of all �nite dimensional modules of type σ.

However, we can de�ne the involutary automorphism σ̃ by:

σ̃(E±i ) = σ(αi)
1±1
2 E±i , σ̃(Ki) = σ(αi)Ki (1.1.36)

that allows us to twist any module of type σ into a module of type 1. Clearly, this is a functor that allows us

to say that we have an equivalence between the category of �nite dimensional modules of type 1 and that of

type σ.

Now, since Uq(g) has the structure of a Hopf algebra, most of the results of the section on Uq(sl2) generalize

to Uq(g). The coproduct allows us to de�ne the tensor product of modules, and since we have: ∆(Ki) = Ki⊗Ki

then we have:

Mλ,σ ⊗M ′λ′,σ′ ⊂ (M ⊗M ′)λ+λ′,σσ′ (1.1.37)

The fact that the tensor product of two modules of type 1 is of type 1 follows immediately. Once more, we

have a trivial one dimensional module given by the ε and de�ning for each σ : ZΦ→ {±1} such that:

εσ(E±i ) = 0, and εσ(Ki) = σ(αi) (1.1.38)

gives us a one dimensional module denoted L(0, σ).

From now on, since we can twist any module, we will stick to type 1 modules.

Since the set of weights is always �nite, there exists for every module M a weight λ such that Mλ 6= 0

but M ′λ = 0 for any λ′ > λ. This holds true in particular if λ′ is a simple root. This means that if M is

a �nite dimensional module, there exists v ∈ Mλ, v 6= 0, but E+
i v = 0 for all i. In this case, λ is called a

dominant weight. Moreover, we have: (E−i )a+1v = 0 with a = 2 (λ,αi)
(αi,αi)

. This holds because otherwise, the
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Uq(sl2)-submodule corresponding to the simple root αi would be in�nite dimensional.

We will now construct the universal highest weight module (Verma module) of highest weight λ.

Any weight λ de�nes a one dimensional Uq(g)>0-module where we have:

Kim = q(λ,αi)m,E+
i m = 0 (1.1.39)

for all m ∈M . The kernel of this representation is an ideal I>0
λ given by:

I>0
λ =

∑
αi∈Π

Uq(g)>0E+
i +

∑
αi∈Π

Uq(g)>0(Ki − q(λ,αi)). (1.1.40)

Clearly, we have:

Uq(g) = Uq(g)− ⊕ Iλ (1.1.41)

where,

Iλ =
∑
αi∈Π

Uq(g)E+
i +

∑
αi∈Π

Uq(g)(Ki − q(λ,αi)). (1.1.42)

due to Iλ being a left ideal and the triangular decomposition of Uq(g). Taking the quotient: M(λ) = Uq(g)/Iλ,

where it is clear that we have:

E+
i vλ, Kivλ = q(λ,αi)vλ (1.1.43)

makes M(λ) into a universal highest weight module. The existence of such module means that we have a

bijection between elements in Uq(g)µ and M(λ)λ−µ where each Uq(g)µ is �nite dimensional where we get:

M(λ)λ = Fvλ, M(λ)λ−nαi = F(E−i )nvλ. (1.1.44)

for all integers n ≥ 0. We obtain the unique up to isomorphisms submodule of L(λ) by taking the quotient:

L(λ) = M(λ)/N(λ) where N is the unique maximal submodule. This λ is unique therefore it is the largest

weight of the module meaning that it is a dominant weight. In order to complete the classi�cation of simple

�nite dimensional modules we need to show that if λ is dominant, then the module is �nite dimensional.

We can now de�ne a homomorphism of Uq(g)-modules φ:

φ : vλ−(n+1)αi 7→ (E−i )n+1vλ. (1.1.45)

This can be easily proven by using the relation between E+
i and E−j on (E−i )n+1vλ to verify the universal

property of the module.

Another interesting result that will be useful for proving that the modules are �nite dimensional is the fact

E±i act nilpotently on the on the module Uq(g)/I where I is the ideal generated by (E+
i )m(αi) and (E−i )n(αi)

where m(αi), and n(αi) are both positive integers.

Now, for an important result for the classi�cation theorem, let φαi : M(λ− (n(αi) + 1)αi)→M(λ). The

Uq(g)-module L̃(λ) 'M(λ)/
∑

αi
im(φαi) is �nite dimensional.

It is clear that upon identifying M(λ) with Uq(g)−, we identify the image of φαi with

Uq(g)−(E−i )n(αi+1). Then,

L̃(λ) ' Uq(g)/(
∑
αi∈Π

Uq(g)E+
i +

∑
αi∈Π

Uq(g)(E−i )n(αi)+1 +
∑
αi∈Π

Uq(g)(Ki − q(λ,αi)).) (1.1.46)
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which means that E±i act nilpotently on L̃(λ). The approach will be strictly weight oriented. We will show

that the weights are stable under the Weyl group action and the weight space contains �nitely many dominant

weights in the orbits under this action we get a �nite dimensional module. It su�ces to show that for a weight β

the image after a simple re�ection is still a weight of L̃(λ). This relies on the fact that we have Uq(sl2)-modules

for each simple root and that since E±i act nilpotently then that the Uq(sl2)-modules V =
⊕

n Vn are �nite

dimensional and dim Vn = dim V−n. In fact, consider:

V =
⊕
n∈Z

L̃(λ)β+nαi (1.1.47)

We can make the identi�cation Vm = L̃(λ)β+nαi with m = 2 (β,αi)
(αi,αi)

+ 2n. Then by setting r = 2 (β,αi)
(αi,αi)

, we

have:

Vr = L̃(λ)β, V−r = L̃(λ)sαi (β) (1.1.48)

which means that sαi(β) is a weight in L̃(λ).

Finally, the classi�cation theorem follows:

Theorem 1.1.4. For each dominant weight λ the module L(λ) is �nite dimensional and each �nite di-

mensional Uq(g)-module is isomorphic to exactly one L(λ) with λ dominant.

1.2 Quantum A�ne Algebras

After constructing the quantum group Uq(g) for a simple �nite dimensional Lie algebra, an obvious question

is whether we can repeat this process but for an a�ne Lie algebra. Clearly, the answer is yes. Upon replacing

the root system data by that of an a�ne Lie algebra, i.e. instead of using a �nite type Cartan matrix we use a

Cartan matrix of an untwisted a�ne Kac-Moody algebra, we obtain what is called a quantum a�ne Lie algebra

denoted Uq(ġ).

Then, the quantum a�ne algebra Uq(g) is the algebra with generators E±i and Ki, and K
−1
i satisfying:

KiKj = KjKi (1.2.1)

KiK
−1
i = K−1

i Ki = 1 (1.2.2)

KiE
+
j K

−1
i = q

(αi,αj)
i E+

j (1.2.3)

KiE
−
j K

−1
i = q

−(αi,αj)
i E−j (1.2.4)

1−aij∑
i=0

(−1)i

[
1− aij
i

]
qi

(E+
i )1−aij−iE+

j (E+
i )i (1.2.5)

1−aij∑
i=0

(−1)i

[
1− aij
i

]
qi

(E−i )1−aij−iE−j (E−i )i (1.2.6)

where, i ∈ İ with İ = 0, 1, ..., n the set corresponding to the nodes of the Dynkin diagram. We remind you

that each node corresponds to a simple root and the 0th node is the a�ne root. Therefore, we can simply that

22



we have the following diagram:

g
Classical A�nization−−−−−−−−−−−−−−→ ġ

Quantization

y yQuantization
Uq(g) −−−−−−−−−−−−−−→

Classical A�nization
Uq(ġ)

As usual, our goal is to study the representation theory of these algebras. However, it turns out that this

presentation of quantum a�ne algebras isn't the best one for understanding and classifying its representations.

Drinfel'd then proposed another presentation usually also known as Drinfel'd current presentation of quantum

a�ne algebras. The name comes from the fact that this new presentation is in fact very similar in spirit to

that of the central extension of the loop algebras in the case of Kac-Moody algebras. In fact, Drinfel'd gave

the presentation but the proof that the two algebras were actually isomorphic was done by I. Damiani (for the

injectivity part of the isomorphism) and J. Beck (for the surjectivity part of the isomorphism). Therefore, in

the next part we will review the main points that lead to constructing Drinfel'd's presentation which unlocked

the representation theory of quantum a�ne algebras.

1.2.1 Damiani-Beck Isomorphism

We will start this section by stating the isomorphism theorem that gives us the new presentation and then work

our way through de�ning all the relevant material that leads to it.

Theorem 1.2.1. Let U̇q(g) be the associative algebra generated by the generators{
D,D−1, C1/2, C−1/2, k+

i,n, k
−
i,−n, x

+
i,m, x

−
i,m : i ∈ I,m ∈ Z, n ∈ N

}
subject to the following relations

C±1/2 is central C±1/2C∓1/2 = 1 D±1D∓1 = 1 (1.2.7)

Dk±i (z)D−1 = k±i (zq−1) Dx±i (z)D−1 = x±i (zq−1) (1.2.8)

res
z1,z2

1

z1z2
k±i (z1)k∓i (z2) = 1 (1.2.9)

k±i (z1)k±j (z2) = k±j (z2)k±i (z1) (1.2.10)

k−i (z1)k+
j (z2) = G−ij(C

−1z1/z2)G+
ij(Cz1/z2)k+

j (z2)k−i (z1) (1.2.11)

G∓ij(C
∓1/2z2/z1)k+

i (z1)x±j (z2) = x±j (z2)k+
i (z1) (1.2.12)

k−i (z1)x±j (z2) = G∓ij(C
∓1/2z1/z2)x±j (z2)k−i (z1) (1.2.13)

(z1 − q±cijz2)x±i (z1)x±j (z2) = (z1q
±cij − z2)x±j (z2)x±i (z1) (1.2.14)

[x+
i (z1),x−j (z2)] =

δij

qi − q−1
i

[
δ

(
z1

Cz2

)
k+
i (z1C

−1/2)− δ
(
z1C

z2

)
k−i (z2C

−1/2)

]
(1.2.15)

∑
σ∈S1−aij

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qi

x±i (zσ(1)) · · ·x±i (zσ(k))x
±
j (z)x±i (zσ(k+1)) · · ·x±i (zσ(1−aij)) = 0 (1.2.16)
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where, for every i ∈ I, we de�ne the following U̇q(g)[[z, z−1]]-valued formal distributions

x±i (z) :=
∑
m∈Z

x±i,mz
−m ∈ U̇q(g)[[z, z−1]] ; (1.2.17)

k±i (z) :=
∑
n∈N

k±i,±nz
∓n ∈ U̇q(g)[[z∓1]] , (1.2.18)

for every i, j ∈ İ, we de�ne the following F-valued formal power series

G±ij(z) := q
±aij
i + (qi − q−1

i )[±aij ]qi
∑
m∈N×

q
±maij
i zm ∈ F[[z]] (1.2.19)

and

δ(z) :=
∑
m∈Z

zm ∈ F[[z, z−1]] (1.2.20)

is an F-valued formal distribution.

Note that G±ij(z) is invertible in F[[z]] with inverse G∓ij(z), i.e.

G±ij(z)G
∓
ij(z) = 1 , (1.2.21)

and that it can be viewed as the power series expansion of a rational function of (z1, z2) ∈ C2 as |z2| � |z1|,
which we shall denote as follows

G±ij(z1/z2) =

(
z1q
∓aij
i − z2

z1 − q
∓aij
i z2

)
|z2|�|z1|

. (1.2.22)

We will now see how the generators:{
k+
i,n, k

−
i,−n, x

+
i,m, x

−
i,m : i ∈ I,m ∈ Z, n ∈ N

}
are de�ned from the generators of the Drinfel'd-Jimbo presentation. In order to do this, we need to make a

small but necessary detour and talk about the braid group action on Uq(ġ).

1.2.2 Automorphisms and Braid Group Action on Uq(ġ)

We start by introducing the C-algebra automorphisms φ, and Ω which are given by:

φ(E±i ) = E∓i , φ(Ki) = Ki, φ(q) = q−1 (1.2.23)

Ω(E±i ) = E∓i , Ω(Ki) = K−1
i , Ω(q) = q−1 (1.2.24)

The braid group associated to the Weyl group W with generators Ti acts on the generators of the algebra

as follows:

Ti(E
+
i ) = −E−i Ki, Ti(E

−
i ) = −K−1

i E−i (1.2.25)

Ti(E
+
j ) =

−aij∑
n=0

(−1)n−aijq−ni (E+
i )(−n−aij)E+

j (E+
i )(n) (1.2.26)
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Ti(E
−
j ) =

−aij∑
n=0

(−1)n−aijq−ni (E−i )(−n−aij)E−j (E−i )(n) (1.2.27)

Ti(Kα) = Ksi(α) (1.2.28)

Extend that group with Tτ where τ is Dynkin diagram automorphism and denote P the group of auto-

morphisms generated by Tω∨i and their inverses. Note that for w ∈ W such that w = τsi1 ...sin we have

Tw = TτTi1 ...Tin .

We can now de�ne the current generators of U̇q(g) by using the braid group action as follows:

k+
i,+n = (qi − q−1

i )Kiψi,+n (1.2.29)

where n ∈ N×, and
ψi,r = C−k/2(q−2

i E+
i T

k
ωi(K

−1
i E−i )− T kωi(K

−1
i E−i )E+

i ) (1.2.30)

The de�nition of k+
i,+n follows from using the automorphisms above and the fact that we have ΩTi = TiΩ.

We now move to de�ning the generators x±i,k:

x±i,k = T̃∓kωi (E±i ) (1.2.31)

for i ∈ I, k ∈ Z.
The surjectivity part is checked directly on the relations of the algebra, whereas for the injectivity, I. Damiani

shows it by restricting to the case q = 1 and showing that on one side one obtains the central extension of the

loop algebra and on the other side the a�ne Lie algebra.

1.2.3 Representation Theory of Quantum A�ne Algebras

As in the case of Lie algebras and quantum groups, the representation theory of quantum a�ne algebras is

heavily based on that of U̇q(sl2). This section is a review of the classi�cation papers by V. Chari and A. Pressley.

[CP91] Set q ∈ C× not a root of unity.

By looking at the presentation of Uq(sl2) and U̇q(sl2), it is clear that U̇q(sl2) has subalgebras which are

isomorphic to Uq(sl2) given by the map:

E+ 7→ x+
k , E− 7→ C−kx−−k, K 7→ KCk (1.2.32)

for all k ∈ Z. The image of this map is the diagram subalgebras U i, for i = 0, 1 corresponding to the nodes of

the Dynkin diagram of U̇q(sl2).

Since it will be useful down the line we remind you that the two irreducible representions Vn,ε of Uq(sl2)

with basis {v0, ...vn} are given by:

K.vi = εqn−2ivi, E+.vi = ε[n− i+ 1]qvi−1, E−.vi = [i+ 1]qvi+1 (1.2.33)

with ε = ±1. We can also twist one choice of ε into the other. Therefore, one can stick to one value of ε.

Moreover, when it comes to �nite-dimensional irreducible representations of U̇q(sl2), the central charge acts

as 1. We now de�ne the subalgebras U̇q(sl2)±, and U̇q(sl2)0 generated by x±k and {k±n, C} respectively. It
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follows that

U̇q(sl2) = U̇q(sl2)−U̇q(sl2)0U̇q(sl2)+ (1.2.34)

which allows us to say that a vector v in a representation of U̇q(sl2) is a highest weight vector if v is annihilated

by x+
k for all k ∈ Z.
We can now present the �rst result in the following proposition

Proposition 1.2.2. Every �nite-dimensional irreducible representation of U̇q(sl2) is highest weight.

This is easily proven by contradiction. By letting V be as above, assume there are no non-zero vectors

annihilated by any of the x+
k . This means that for an eigenvector v of k+

0 , there exists an in�nite sequence of

vectors given by

v, x+
k1
.v, x+

k2
.v, x+

k3
.v, ... (1.2.35)

all non-zero and eigenvectors of k+
0 with distinct eigenvalues. This makes them linearly independent. Clearly

this contradicts the �nite-dimensional aspect of V.

Furthermore, since C acts as 1 on V and we can always obtain any representation by twisting a type 1

representation, it su�ces to consider representations of Uq(L(sl2)) where we remind you that L(sl2) is the loop

algebra of sl2.

A representation of uqls is highest weight if it is generated by a vector v which is annihilated by x+
k for all

k and such that:

k+
+n.v = d+

n v, k−−n.v = d+
−nv (1.2.36)

for n ∈ N, and d±±n ∈ C. The collection d = {dn} is the highest weight.

As it was the case for Lie algebras, Kac-Moody algebras, and quantum groups, we construct the universal

highest weight module M(d) by taking the quotient of Uq(L(sl2)) by the left ideal generated by

{x+
k , k

+
+n − d+

n .1, k
−
−n − d−−n.1, k ∈ Z, n ∈ N} (1.2.37)

and once more any representation of highest weight d is a quotientofM(d) and there exists a unique irreducible

quotient L(d). Now for the main theorem:

Theorem 1.2.3. The irreducible highest weight representation L(d) is �nite dimensional if and only if

there exists a polynomial P with non-zero constant term such that

∞∑
n=0

d+
n z

n = qdeg(P )

(
P (zq−2)

P (z)

)
|z|�1

, (1.2.38)

∞∑
n=0

d−−nz
−n = qdeg(P )

(
P (zq−2)

P (z)

)
|z−1|�1

, (1.2.39)

The polynomial P , is unique once its constant coe�cient is normalized to 1 and called Drinfel'd's polynomial.

The proof of this theorem depends on two inputs. The "only if" part is proven by using some elements in

the subalgebra U̇q(sl2)0, and the "if" part makes use of the evaluation homomorphism de�ned by Jimbo as

well as some properties of the tensor product of representations. Starting with the only if part, there exists

Pr, Qr ∈ U̇q(sl2)0 given by:

Pr ≡ (−1)rqr
2
(x+

0 )(r)(x−1 )−(r)(k0)−r mod U̇q(sl2)U̇q(sl2)+ (1.2.40)
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Qr ≡ (−1)rq−r
2
(x+
−1)(r)(x−0 )−(r)(k0)r mod U̇q(sl2)U̇q(sl2)+ (1.2.41)

Pr =
q−r

(q − q−1)[r]q

r−1∑
j=0

k+
j+1Pr−j−1K

−1, (1.2.42)

Qr =
−qr

(q − q−1)[r]q

r−1∑
j=0

k−−j−1Qr−j−1K
−1, (1.2.43)

(−1)rqr(r−1)(x+
0 )(r − 1)(x−1 )(r) ≡ −

r−1∑
j=0

x−j+1Pr−j−1K
r−1 mod U̇q(sl2)U̇q(sl2)+ (1.2.44)

(−1)rq−r(r−1)(x+
−1)(r − 1)(x−0 )−(r) ≡ −

r−1∑
j=0

x−−jQr−j−1K
−r+1 mod U̇q(sl2)U̇q(sl2)+). (1.2.45)

where,

X(r) =
Xr

[r]q
(1.2.46)

Then, by de�nig

P(z) =
∞∑
r=0

Prz
r, Q(z) =

∞∑
r=0

Qrz
−r (1.2.47)

we have

k+(z) = K
P(zq−2)

P(z)
, k−(z) = K−1Q(zq2)

Q(z)
(1.2.48)

Assume now that dim L(d) < ∞ with highest weight r ∈ Z+ for the action of the Uq(sl2)-subalgebra of

U̇q(sl2) associated to the 0th-node of the Dynkin diagram. From our previous results we know that for the

highest weight vector v, we have :

K.v = qrv (1.2.49)

and it follows that the subrepresentation generated by this highest weight vector is an (r + 1) dimensional

irreducible representation and in particular we have :

(x−0 )r+1.v = 0 (1.2.50)

which gives

P(z).v = P (z)v (1.2.51)

as an immediate consequence. Then, due to the expression of k±(z) in terms of P(z) the only if part of the

theorem follows.

For the remaining part of the theorem, we have to introduce the evaluation homomorphism eva.

For any a ∈ C×, there is a homomorphism of algebras U̇q(sl2)→ Uq(sl2) such that:

eva(x
+
k ) = q−kakKkE+ (1.2.52)

eva(x
−
k ) = q−kakE−Kk (1.2.53)

which allows us to deduce how the homomorphism maps the rest of the generators by using the algebra rela-

tions. Therefore, we can construct representations by pulling back representations of Uq(sl2) by the evaluation
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homomorphism. Then, we deduce the action of x±k on Ln(a) which is given by:

x+
k .v = akqk(n−2i+1)[n− i+ 1]qvi−1 (1.2.54)

x+
k .v = akqk(n−2i−1)[i+ 1]qvi+1 (1.2.55)

This is a highest weight representation with v0 its highest weight vector and polynomial P given by:

P (z) = (1− qn−1az)(1− qn−3az)...(1− q−n+1az) (1.2.56)

Moreover, we clearly have that:

qn
P (q−2z)

P (z)
= qn

(1− q−n−1az)

(1− aqn−1z)
. (1.2.57)

Finally, as we promised, the �nal part to complete this proof is the properties of the weights corresponding

tensor product of irreducible �nite dimensional representations. For an irreducible tensor product V ⊗W of two

irreducible repressentation of Uq(L(sl2)), we have PV⊗W = PV PW . This is due to the group-like structure of

the comultiplication of k+(z) and the fact that V ⊗W is isomorphic to W ⊗ V when the tensor product is

irreducible. The group-like structure of the coproduct means that a tensor product of highest weight vectors is

a highest weight vector. Now take the tensor product

V = V1(a1)⊗ V1(a2)⊗ ...⊗ V1(ar) (1.2.58)

where the a−1
i are the roots of the Drinfel'd polynomial. Clearly, V contains a vector with weight qr. This is

the tensor product of all the highest weight vectors in each factor. This vector generates a subrepreentation V ′

which contains a maximal subrepresentation N . Then, the �nite dimensional representation V ′/N is irreducible

and has P (z) =
∏r
i=1(1− aiz) as the associated polynomial. This concludes the proof of the theorem.

Clearly, there exists a generalized version if this theorem for U̇q(sl2).

Theorem 1.2.4. Let (di,r) be a pair of I × Z-tuples of complex numbers. Then, the irreducible represen-

tation V (d) of U̇q(sl2) is �nite dimensional if and only if there exists P = (Pi)i∈I such that:

∞∑
r=0

d+
i,rz

r = qdeg (Pi)
Pi(q

−2z)

Pi(z)
=
∞∑
r=0

d−i,−rz
−r (1.2.59)

Proof. Starting with the "if" part of the proof, we clearly have k±i,0 = K±1
i . This means that we can

set λ(i) = deg (Pi) with λ(i) the classical weight of the highest weight vector vP of the highest weight

representation V (P ). We also have that V (P ) = CvP and

V (P ) =
⊕
α∈Q+

V (P )λ−α. (1.2.60)

This part of the proof boils down to the following two statements:

i. V (P )λ−α 6= 0 for �nitely many α ∈ Q.

ii. V (P )λ−α is �nite dimensional for all α ∈ Q.

However, if we have that for a vector v ∈ V (P )µ, Vi = Ui.v, where Ui is the diagram subalgebra Uqi(sl2),
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i. would be a consequence of having the weights stable under the action of the Weyl group of the �nite

dimensional Lie algebra g and that for any µ ∈ P such that V (P )µ 6= 0, w(µ) ∈ W.{α ∈ P+|α ≤ λ}.
Clearly this also follows from the fact that there exists an N > 0 such that for r > N , V (P )λ−rα =

V (P )λ+rα = 0 for r > 3h+ λ(i) where h is the ehight of the λ− µ.
Going one step further, the last statement follows from the fact that V (P )λ−rα is spanned by:

X−1 x
−
i1,k1

X−2 x
−
i2,k2

...X−h x
−
ih,kh

X−h+1vP (1.2.61)

for

λ− µ = αi1 + αi2 + ...+ αih ,

X−p = x−i,l1,px
−
i,l2,p

...x−i,lrp,p
,

and

r1 + r2 + ...+ rh+1 = r.

This is actually straightforward because of the weak PBW theorem giving us U̇q(g) = U̇q(g)
+
.U̇q(g)

0
.U̇q(g)

−

and by making use of the algebra relations between x−i,k and x−i′,k′ .

When it comes to ii. by induction on on the height h of α, we have nothing to prove in case h = 0.

For h = 1, x−i,k.vP is in the �nite dimensional space Ũi.vP , where Ũi is the U̇q(g)-subalgebra generated by

{x±i,k, k
±
i,±n} which is �nite dimensional due to the results of Uq(L(sl2)). Assume we have proven all the

cases up to but not the one of height h. The weight space V (P )λ−α for α = αi1 +αi2 + ...+αih is spanned

by vectors of the form:

xi1,k1xi2,k2 ...xih,kh .vP (1.2.62)

We can �x a set {i1, ..., ih} and prove that the vectors above span a �nite dimensional space. Now, by the

induction hypothesis, there exists an M ∈ N such that for all i ∈ {i1, ..., ih}, V (P )λ−α+αi is panned by

vectors

xj2,l2xj2,l2 ...xjh,lh .vP (1.2.63)

with |l1|, |l2|, ..., |lh| ≤M . Thus it su�ces to prove that the space for α = αi1 +αi2 + ...+αih is contained

in:

V =
M∑

k2=−M
x−i2,k2 .V (P )λ−α+αi2

+ x−i1,0.V (P )λ−α+αi1
(1.2.64)

Clearly, any vector of the form xi1,k1xi2,k2 ...xih,kh .vP can be written as a linear combination of

xi2,k2xi1,k1 ...xih,kh .vP (1.2.65)

xi2,k2+1xi1,k1−1...xih,kh .vP (1.2.66)

xi1,k1−1xi2,k2+1...xih,kh .vP (1.2.67)

by using the algebra relations. The �rst two are clearly in V and the last one can be shown to be in V by

an induction on k1. This completes this part of the proof.

For the "only if" part of the proof, it is very similar to that of Uq(L(sl2)) case. In fact, all you have to

do is de�ne Pi,r, and Qi,r for each node i. The elements are in U̇q(g)
0
and are de�ned by: Starting with
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the only if part, there exists Pr, Qr ∈ U̇q(sl2)0 given by:

Pi,r ≡ (−1)rqr
2

i (x+
i,0)(r)(x−i,1)−(r) (1.2.68)

Qi,r ≡ (−1)rq−r
2

i (x+
i,−1)(r)(x−i,0)−(r) (1.2.69)

Pr =
q−ri

(qi − q−1
i )[r]qi

r−1∑
j=0

k+
i,j+1Pi,r−j−1K

−1
i , (1.2.70)

Qr =
−qri

(qi − q−1
i )[r]qi

r−1∑
j=0

k−i,−j−1Qi,r−j−1Ki, (1.2.71)

(−1)rqr(r−1)i(x+
i,0)(r−1)(x−i,1)(r) ≡ −

r−1∑
j=0

x−i,j+1Pi,r−j−1K
r−1
i (1.2.72)

(−1)rq−r(r−1)i(x+
i,−1)(r−1)(x−i,0)−(r) ≡ −

r−1∑
j=0

x−i,−jQi,r−j−1K
−r+1
i . (1.2.73)

The rest of the proof follows the same steps as of that of sl2.

1.2.4 q-Characters

When it comes to characters, the classical notion of characters does not o�er much insight in the case of

the quantum a�ne algebras. This prevents us from trying to understand the Grothendieck ring structure of

�nite dimensional representation. However, E. Frenkel and N. Reshetikhin in [FR98] introduced the idea of

q-characters. Moreover, q-characters were a very useful tool for D. Hernandez and B. Leclerc, to show that

there exists a cluster algebra structure on that Grothendieck ring.

De�nition 1.2.5. Let R be the universal R-matrix satisfying the Yang-Baxter equation and let (V, πV )

be a �nite-dimensional representation of U̇q(g). Then, de�ne the the following operator:

LV = LV (z) = (πV (z)id)(R). (1.2.74)

This allows us to de�ne the transfer matrix tV as:

tV = tV (z) = TrV q
2ρLV (z) (1.2.75)

where,

q2ρ = k̃2
1...k̃

2
n. (1.2.76)

The following proposition is crucial for de�ning χq and showing its properties as a character.

Proposition 1.2.6. The linear map νq sending V inRep(U̇q(g)) to tV (z) ∈ U̇q(b−)[[z]] is a C×-equivariant
ring homomorphism from Rep(U̇q(g)) to U̇q(b−)[[z]].

Now, we de�ne the second map that will play an equally important role in giving us the q-character.

De�nition 1.2.7. Let Ũq(g) be the subalgebra of U̇q(g) generated by x±i,n, ki, hi,n for i ∈ I, n ≤ 0. Now

denote by hq the restriction to Uq(b−) of the projection from Ũq(g) to Ũq(h).

30



Theorem 1.2.8. The map χq : Rep(U̇q(g)) → Ũq(h)[[z]] given by the composition of νq and hq is an

injective ring homomorphism such that χq : Rep(U̇q(g))→ Z[Yi,ai ]i∈I,ai∈C× ⊂ Ũq(h).

1.3 Quantum Toroidal Algebras

1.3.1 Schur-Weyl Duality

In this section we review the main results that led to the Schur-Weyl duality theorem by M. Varagnolo and E.

Vasserot in [VV96].

De�nition 1.3.1. The toroidal Hecke algebra Ḧ′ of type gln is the unital associative algebra over A =

C[x±1,y±1,q±1] with generators:

T±1
i , X±1

j , Y ±1
j , i ∈ Jn− 1K×, j ∈ JnK× (1.3.1)

subject to the following relations:

(Ti − q2)(Ti + 1) = 0 (1.3.2)

TiT
−1
i = Ti

−1Ti = 0 (1.3.3)

TiTi+1Ti = Ti+1TiTi+1 = 1 (1.3.4)

TiTj = TjTi = 1 |i− j| > 1 (1.3.5)

X0Y1 = xY1X0, XiXj = XiXj , YiYj = YiYj , (1.3.6)

XjTi = TiXj , YjTi = TiYj , ifj 6= i, i+ 1 (1.3.7)

TiXiTi = q2Xi+1, T−1
i YiT

−1
i = q−2Yi+1 (1.3.8)

X2Y
−1

1 X−1
2 Y1 = q−2yT 2

1 . (1.3.9)

where, X0 = X1X2...Xn.

Taking x = 1 gives the double a�ne Hecke algebra.

Let Ḣ′
(1)
, Ḣ′

(2) ⊂ Ḧ′ be the subalgebras generated respectively by T±1
i , Y ±1

j , and T±1
i , X±1

j (i ∈
Jn− 1K×, j ∈ JnK×). These two subalgebras are siomorphic to the a�ne Hecke algebra.

Let H′ ⊂ Ḧ′ be the subalgebra generated by T±1
i , (i ∈ Jn− 1K×). This is the subalgebra isomorphic to

the Hecke algebra of type gln.

Now we de�ne:

Ḧ = Ḧ′ ⊗A Cx,y,q, Ḧ = H′ ⊗A Cx,y,q (1.3.10)

Ḣ′
(1)

= Ḣ′ ⊗A Cx,y,q, Ḣ′
(1)

= H′ ⊗A Cx,y,q (1.3.11)

De�nition 1.3.2. Let U̇q(ṡln+1) be the associative F = C[c±1,d±1,q±1]-algebra generated by the gener-

ators {
D,D−1, C1/2, C−1/2, k+

i,n, k
−
i,−n, x

+
i,m, x

−
i,m : i ∈ İ ,m ∈ Z, n ∈ N

}
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subject to the following relations

C±1/2 is central C±1/2C∓1/2 = 1 D±1D∓1 = 1 (1.3.12)

Dk±i (z)D−1 = k±i (zq−1) Dx±i (z)D−1 = x±i (zq−1) (1.3.13)

res
z1,z2

1

z1z2
k±i (z1)k∓i (z2) = 1 (1.3.14)

k±i (z1)k±j (z2) = k±j (z2)k±i (z1) (1.3.15)

k−i (z1)k+
j (z2) = G−ij(C

−1z1/z2)G+
ij(Cz1/z2)k+

j (z2)k−i (z1) (1.3.16)

G∓ij(C
∓1/2z2/z1)k+

i (z1)x±j (z2) = x±j (z2)k+
i (z1) (1.3.17)

k−i (z1)x±j (z2) = G∓ij(C
∓1/2z1/z2)x±j (z2)k−i (z1) (1.3.18)

(z1 − q±cijz2)x±i (z1)x±j (z2) = (z1q
±cij − z2)x±j (z2)x±i (z1) (1.3.19)

[x+
i (z1),x−j (z2)] =

δij

qi − q−1
i

[
δ

(
z1

Cz2

)
k+
i (z1C

−1/2)− δ
(
z1C

z2

)
k−i (z2C

−1/2)

]
(1.3.20)

∑
σ∈S1−aij

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qi

x±i (zσ(1)) · · ·x±i (zσ(k))x
±
j (z)x±i (zσ(k+1)) · · ·x±i (zσ(1−aij)) = 0 (1.3.21)

where, for every i ∈ İ, we de�ne the following U̇q(ṡln+1)[[z, z−1]]-valued formal distributions

x±i (z) :=
∑
m∈Z

x±i,mz
−m ∈ U̇q(ṡln+1)[[z, z−1]] ; (1.3.22)

k±i (z) :=
∑
n∈N

k±i,±nz
∓n ∈ U̇q(ṡln+1)[[z∓1]] , (1.3.23)

for every i, j ∈ İ, we de�ne the following F-valued formal power series

G±ij(z) := q
±aij
i + (qi − q−1

i )[±aij ]qi
∑
m∈N×

q
±maij
i zm ∈ F[[z]] (1.3.24)

and

δ(z) :=
∑
m∈Z

zm ∈ F[[z, z−1]] (1.3.25)

is an F-valued formal distribution.

Similarly to the toroidal Hecke algebra, we de�ne:

i) U̇
′(1)
q , U̇

′(2)
q ⊂ U̇q(ṡln+1) as the subalgebras of U̇q(ṡln+1) respectively generated by: k+

i,n, k
−
i,−n, x

+
i,m, x

−
i,m,

and k+
i,0, k

−
i,0, x

+
i,0, x

−
i,0, i ∈ İ. These subalgebras are isomorphic to the quantum a�ne algebra of sln+1,

one in Drinfel'd's current presentation and the other in the Drinfel'd Jimbo presentation.

ii) U ′q ⊂ U̇q(ṡln+1) be the subalgebra generated by k+
i = k+

i,0, k
−
i = k−i,0, x

+
i = x+

i,0, x
−
i = x−i,0, i ∈ I. This

subalgebra is ismorphic to the quantum group of sln+1.
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Let Cc,d,q = F/Nc,d,q where Nc,d,q is the maximal ideal generated by d− d, c− c,q− q. Then,

Ü = U̇q(ṡln+1)⊗F Cc,d,q, U = U ′q ⊗F Cc,d,q (1.3.26)

U̇ (1) = U̇
′(1)
q ⊗F Cc,d,q, U̇ (2) = U̇

′(2)
q ⊗F Cc,d,q (1.3.27)

De�nition 1.3.3. A module M is integrable if

M =
⊕
λ∈Zn

Mλ, M{λ0,λ1,...λn} = {m ∈M |k+
i,0m = qλim} (1.3.28)

and x+
i,0, x

−
i,0 are locally nilpotent on M .

Let V be the fundamental representation of U and V⊗n the left U-module induced by the coproduct

as de�ned in chapter 1. This action of U on the module commutes with a left H-action given by: Ti =

1⊗i−1 ⊗ T ⊗ 1⊗n−i−1, where T ∈ End(V ⊗2) satis�es the following relations:

T (vr ⊗ vs) = q2vr ⊗ vs ifr = s (1.3.29)

T (vr ⊗ vs) = qvs ⊗ vr ifr < s (1.3.30)

T (vr ⊗ vs) = qvs ⊗ vr + (q2 − 1)vr ⊗ vs ifr > s (1.3.31)

De�nition 1.3.4. We can de�ne T ′i , i ∈ Jn+ 1×K as the automorphism of U̇ by setting:

T ′i (x
+
i ) = −x−i ki, T ′i (x

+
j ) =

−aij∑
s=0

(−1)s−aijq−s(x+
i )(−aij−s)x+

j (x+
i )(s), i 6= j (1.3.32)

T ′i (x
−
i ) = −k−1

i x+
i , T ′i (x

+
j ) =

−aij∑
s=0

(−1)s−aijqs(x−i )(s)x+
j (x+

i )(−aij−s), i 6= j (1.3.33)

T ′i (kj) = ksi(j) (1.3.34)

where si is the transposition (i i+1). Moreover, we can de�ne the braid action on an integrable U̇ -module

M ′ by setting:

T ′′i (m′) =
∑

r−s+t=0

(−1)s+kqs−rt(x+
i )(r)(x+

i )(s)(x+
i )(t)m′. (1.3.35)

and for all m′ ∈M ′, and all u ∈ U̇ ,
T ′′i (um′) = T ′i (u)T ′′i (m′) (1.3.36)

Let M be a right Ḣ-module. By the previous statements, M is also a right H- module. We consider the

dual left U -module M ⊗H V ⊗n. This module has the structure of a left U̇ -module given by:

x+
n+1(m⊗ v) =

n∑
j=1

mY −1
j ⊗ x−θ (v), x−n+1(m⊗ v) =

n∑
j=1

mYj ⊗ x+
θ (v) (1.3.37)

kn+1(m⊗ v) = m⊗ (k−1
θ )⊗n(v). (1.3.38)
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where x±θ , and kθ ∈ EndC(V). Similarly, let M be a right Ḧ-module therefore, M ⊗H V ⊗n has the structure

of a U̇ -module. Moreover, by introducing the map ψ : M ⊗H V ⊗n →M ⊗H V ⊗n given by:

ψ(m⊗ vj) = mX
−δn+1,j1
1 ...X

−δn+1,jn
1 v1+j1 ⊗ v1+j2 ⊗ ...⊗ v1+jn (1.3.39)

with the condition: vn+2 = v1, we can show that:

Proposition 1.3.5. For i ∈ Jn+ 1K×, we have the following:

ψ−1x+
i (z)ψ = x+

i−1(q−1dz), ψ−2x+
1 (xz)ψ2 = x+

n (qn−1d1−nz),

ψ−1x−i (z)ψ = x−i−1(q−1dz), ψ−2x−1 (xz)ψ2 = x−n (qn−1d1−nz),

ψ−1ki(z)ψ = ki−1(q−1dz), ψ−2k1(xz)ψ2 = kn(qn−1d1−nz).

We can now state the theorems that lead to the duality theorem.

Theorem 1.3.6. Suppose that x = d−n−1qn+1, and c = y = 1. Then for any right Ḧ-module, the following

formulas:

x+
0 (m⊗ v) =

n∑
j=1

mXj ⊗ x−θ,j(v), x−0 (m⊗ v) =
n∑
j=1

mX−1
j ⊗ x+

θ,j(v) (1.3.40)

k0(m⊗ v) = m⊗ (kθ
−1)⊗n(v) (1.3.41)

give a left integrable Ü -module.

The proof of this theorem relies on the previous proposition.

Theorem 1.3.7. Let M ′ be an integrable left Ü -module with trivial central charge and level n. There

exists a Ḧ-module M, such that M ′ ∼= M ⊗H V ⊗n as Ü -module.

Finally, we give the duality theorem which stems from the previous two.

Theorem 1.3.8. The functor M →M ×H V⊗n is an equivalence between the category of right Ḧ-modules

and the category of left integrable Ü -modules with trivial central charge and level n.

1.3.2 A word on Quiver Quantum Toroidal Algebras

In their recent paper, G. Noshita and A. Watanabe [NW21] provide a presentation of the quantum toroidal

algebra associated to a quiver Q. However, they do not provide a set of Serre relations as it remains an open

question for that topic. When it comes to the other relations, their presentation is obtained by replacing the

Cartan data by a set of rules on the quiver Q. Speci�cally, it is rules on the set of arrows and loops of the

quiver that would help identify the data replacing the Cartan matrix elements. Moreover, they proceed to show

that there exists a Hopf algebra structure on the quiver quantum toroidal algebra.
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Chapter 2

On Double Quantum A�nization: Type a1

2.1 Introduction

Let g be a simple Lie algebra and denote by ġ the corresponding untwisted a�ne Ka£-Moody algebra. Starting

from g and ġ or from their respective root systems, one can construct two a priori di�erent algebras: on one

hand, the quantum a�ne algebra Uq(ġ) is the standard Drinfel'd-Jimbo algebra associated with ġ; whereas

on the other hand, the quantum a�nization U̇q(g) of g, which we de�ne as Uq(ġ) in its Drinfel'd current

presentation, is associated with the simple �nite root system of g. Now U̇q(g) and Uq(ġ) are isomorphic by

virtue of a theorem established by Damiani and Beck, [Dam93, Bec94], which can be regarded as a quantum

version of the classic result that each a�ne Lie algebra is isomorphic to the corresponding untwisted a�ne

Ka£-Moody Lie algebra. The situation can be summarized by the following diagram

g
Classical A�nization−−−−−−−−−−−−−−→ ġ

Quantum A�nization

y yQuantization
U̇q(g)

∼−−−−−−−−−−−−−−→
Damiani-Beck isom.

Uq(ġ)

It turns out that quantum a�nization still makes sense for the already a�ne Lie algebra ġ, thus yielding a doubly

a�ne quantum algebra known as the quantum toroidal algebra U̇q(ġ). These originally appeared in type an in the

work of Ginzburg, Kapranov and Vasserot, [GKV95]. Quantum toroidal algebras have received a lot of attention

in the past � see [Her09] for a review � and are presently the subject of a renewed interest due to their relevance

for integrable systems � see e.g. [FFJ+11, FJMM12, FJMM15] � and for 5 dimensional supersymmetric Yang-

Mills theory and related AGT like correspondence � see [AKM+17]. From a more mathematical perspective,

it is well known � see [VV96] � that they are the Frobenius-Schur duals of Cherednik's Doubly A�ne Hecke

Algebras (DAHA) � see [Che05, Mac03] for classic references on the latter.

The purpose of the present work is to reconsider quantum toroidal algebras as topological Hopf algebras.

On the one hand, this is only natural since the existence of an algebraic comultiplication for quantum toroidal

algebras is still essentially open to this date � although see [GNW17] for recent results on algebraic comulti-

plications for a�ne Yangians that may suggest the existence of similar results for quantum toroidal algebras

� and only a topological coalgebra structure is provided by the so-called Drinfel'd current coproduct. On the

other hand, the existence of a braid group action by bicontinuous algebra automorphisms, generalizing those in

[DK00], provides us with a topological version of the Lusztig symmetries that prove pivotal in both Damiani's
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and Beck's proofs of Drinfel'd's current presentation. We may therefore expect, in that context, the existence

of an alternative presentation for quantum toroidal algebras, in terms of double current generators. In the same

spirit as Drinfel'd's current presentation, such a presentation could be regarded as de�ning the double quantum

a�nization Üq(g) of g and (a subalgebra Ü′q(a1) of) Üq(g) should be isomorphic to (the completion of) U̇q(ġ)

� see section 2.3. We therefore expect a diagram of the form

g
Classical A�nization−−−−−−−−−−−−−−→ ġ

Double Quantum A�nization

y yQuantum A�nization

Ü′q(g) U̇q(ġ)

Completion

y yCompletion

̂̈U′q(g)
∼−−−−−−−−−−−−−−−−−−→

A�ne Damiani-Beck isom.

̂̇Uq(ġ)

In the present paper we prove such results in the particular case where g is of type a1. It is fairly natural to

conjecture that similar results hold for higher rank root systems, thus yielding

Conjecture 2.1.1. Every simple Lie algebra g admits a (unique up to isomorphisms) double quantum

a�nization Üq(g).

and

Conjecture 2.1.2. Every untwisted a�ne Ka£-Moody Lie algebra ġ admits a (unique up to isomorphisms)

double quantum a�nization Üq(ġ).

Note that the latter would naturally provide a de�nition for the so far elusive triply a�ne quantum algebras.

The latter are believed to play an important role in mathematical physics, as the conformal block side of an

AGT type correspondence with 6-dimensional super Yang-Mills theories, [AKM+17].

In any case, Üq(a1) � and presumably other double quantum a�nizations if any � admits a triangular

decomposition (Ü−q (a1), Ü0
q(a1), Ü+

q (a1)). The latter naturally leads to an alternative notion of weight and

highest weight modules that we shall refer to as t-weight and highest t-weight modules. Natural analogues

of the �nite dimensional modules over quantum a�ne algebras also appear, that we refer to as weight-�nite

modules � see section 2.3 for de�nitions. We actually expect that it will be possible to classify simple weight-

�nite modules over Üq(a1), by essentially classifying those simple Ü0
q(a1)-modules that appear as their highest

t-weight spaces � see section 2.3 for the corresponding discussion. This is the subject of ongoing work.

Quite remarkably, there exists an algebra homomorphism f : Eq−4,q2,q2 → Ü0+
q (a1), where Ü0+

q (a1) is a

closed subalgebra of Ü0
q(a1) and, for every q1, q2, q3 such that q1q2q3 = 1, Eq1,q2,q3 is the corresponding elliptic

Hall algebra � see section 2.3. The latter was �rst de�ned by Miki in [Mik07] as a (q, γ)-analogue of the W1+∞

algebra. It reappeared later in [FFJ+11], as the quantum continuous gl∞ algebra. Schi�mann then identi�ed it

with the Hall algebra of the category of coherent sheaves on some elliptic curve whose Weil numbers are related

to q1, q2, q3, [Sch12]. More recently, it also appeared in [FJMM12] and in subsequent works by Feigin et al. as

the quantum toroidal algebra associated with gl1. As we shall see, it appears natural to make the following

Conjecture 2.1.3. Ü0+
q (a1) is isomorphic to the completion of Eq−4,q2,q2 .

If it held true, the above conjecture would have many interesting implications. On one hand, in view of

Schi�mann's results, it seems reasonable to expect that the double quantum a�nization Üq(a1) admits a K-

theoretic realization, in the spirit of Nakajima's quiver varieties realization of quantum a�ne algebras [Nak01],
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wherein the generators outside of the elliptic Hall algebras would be realized as correspondences. At the level

of representation theory on the other hand, conjecture 2.1.3 would imply that the classi�cation of the simple

Ü0
q(a1)-modules that appear as highest t-weight spaces of simple weight-�nite Üq(a1)-modules would almost

entirely reduce to a classi�cation of the corresponding subclass of simple modules over the elliptic Hall algebra.

Again, we leave these questions for future work.

The paper is organized as follows. In section 2.2, we brie�y review some well known facts about quantum

toroidal algebras, including their de�nition and natural gradings. We endow them with a topology and construct

the corresponding completion. On the latter, we construct a set of automorphisms, including a�nized versions

of Lusztig's symmetry. Analogues of these for simply laced untwisted a�ne ȧn≥2-types appeared in the work

of Ding and Khoroshkin [DK00]. The ȧ1 version we give here plays a crucial role in section 2.4 where we prove

the main result of this paper. In section 2.3, we de�ne the double quantum a�nization of type a1, Üq(a1).

We prove that there exists an algebra homomorphism from the elliptic Hall algebra Eq1,q2,q3 to its subalgebra

Ü0
q(a1). We also ellaborate on the consequences at the level of representation theory and introduce the notions

of (highest) t-weights and of weight-�niteness. Finally, in section 2.4, we prove the a�nized version of the

Damiani-Beck isomorphism. The appendix contains a short review of formal distributions as relevant to the

present work. This is already covered in the literature � see e.g. [Kac98] �, however, since our conventions

slightly di�er from the standard ones, we included it for the sake of clarity.

Notations and conventions

We let N = {0, 1, . . . } be the set of natural integers including 0. We denote by N× the set N−{0}. For every
m ≤ n ∈ N, we denote by Jm,nK = {m,m + 1, . . . , n}. We also let JnK = J1, nK for every n ∈ N. For every

�nite subset Σ ⊂ N with card Σ = N , any n ≤ N and anym1, . . . ,mn ∈ N such thatm1+· · ·+mn = N , we let

P
(m1,...,mn)
Σ denote the set of ordered (m1, . . . ,mn) set n-partitions, i.e. any A = (A(1), . . . , A(n)) ∈ P

(m1,...,mn)
Σ

is such that

i. for every p ∈ JnK, cardA(p) = mp;

ii. for every p ∈ JnK, A(p) = {A(p)
1 , . . . , A

(p)
mp} ⊂ Σ, with A

(p)
1 < · · · < A

(p)
mp ;

iii. A(1) t · · · tA(n) = Σ.

We let sign : Z→ {−1, 0, 1} be de�ned by setting, for any n ∈ Z,

sign(n) =


−1 if n < 0;

0 if n = 0;

1 if n > 0.

We assume throughout that K is a �eld of characteristic 0 and we let F := K(q) denote the �eld of rational

functions over K in the formal variable q. As usual, we let K× = K − {0} and F× = F − {0}. We make F a

topological �eld by endowing it with the discrete topology.

For every m,n ∈ N, we de�ne the following elements of F

[n]q :=
qn − q−n

q − q−1
, [n]!q :=

[n]q[n− 1]q · · · [1]q if n ∈ N×;

1 if n = 0;

(
n

m

)
q

:=
[n]!q

[m]!q[n−m]!q
. (2.1.1)
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We shall let

a [A,B]b = aAB − bBA ,

for any symbols a, b, A and B provided the r.h.s of the above equations makes sense. At some point we may

need the following obvious identities

[[A,B]a, C]b = [[A,C]b, B]a + [A, [B,C]]ab , (2.1.2)

[a[A,B], C]b = a[[A,C]b, B] + a[A, [B,C]]b . (2.1.3)

We refer to the Appendix for conventions and more details on formal distributions.

The Dynkin diagrams and correponding Cartan matrices in type a1 and ȧ1 are reminded in the following

table.

Type Dynkin diagram Simple roots Cartan matrix

a1

1

Φ = {α1} (2)

ȧ1

0 1

Φ̇ = {α0, α1}

(
2 −2

−2 2

)

2.2 The quantum toroidal algebra of type a1 and its comple-

tion

2.2.1 De�nition

Let İ = {0, 1} be the above labeling of the nodes of the Dynkin diagram of type ȧ1 and let Φ̇ = {α0, α1} be a

choice of simple roots for the corresponding root system. We denote by (cij)i,j=0,1 the entries of the associated

Cartan matrix. Let Q̇± = Z±α0 ⊕ Z±α1 and let Q̇ = Zα0 ⊕ Zα1 be the type ȧ1 root lattice.

De�nition 2.2.1. The quantum toroidal algebra U̇q(ȧ1) is the associative F-algebra generated by the

generators {
D,D−1, C1/2, C−1/2, k+

i,n, k
−
i,−n, x

+
i,m, x

−
i,m : i ∈ İ ,m ∈ Z, n ∈ N

}
subject to the following relations

C±1/2 is central C±1/2C∓1/2 = 1 D±1D∓1 = 1 (2.2.1)

Dk±i (z)D−1 = k±i (zq−1) Dx±i (z)D−1 = x±i (zq−1) (2.2.2)

res
z1,z2

1

z1z2
k±i (z1)k∓i (z2) = 1 (2.2.3)

k±i (z1)k±j (z2) = k±j (z2)k±i (z1) (2.2.4)

k−i (z1)k+
j (z2) = G−ij(C

−1z1/z2)G+
ij(Cz1/z2)k+

j (z2)k−i (z1) (2.2.5)
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G∓ij(C
∓1/2z2/z1)k+

i (z1)x±j (z2) = x±j (z2)k+
i (z1) (2.2.6)

k−i (z1)x±j (z2) = G∓ij(C
∓1/2z1/z2)x±j (z2)k−i (z1) (2.2.7)

(z1 − q±cijz2)x±i (z1)x±j (z2) = (z1q
±cij − z2)x±j (z2)x±i (z1) (2.2.8)

[x+
i (z1),x−j (z2)] =

δij
q − q−1

[
δ

(
z1

Cz2

)
k+
i (z1C

−1/2)− δ
(
z1C

z2

)
k−i (z2C

−1/2)

]
(2.2.9)

∑
σ∈S1−cij

1−cij∑
k=0

(−1)k
(

1− cij
k

)
q

x±i (zσ(1)) · · ·x±i (zσ(k))x
±
j (z)x±i (zσ(k+1)) · · ·x±i (zσ(1−cij)) = 0 (2.2.10)

where, for every i ∈ İ, we de�ne the following U̇q(ȧ1)-valued formal distributions

x±i (z) :=
∑
m∈Z

x±i,mz
−m ∈ U̇q(ȧ1)[[z, z−1]] ; (2.2.11)

k±i (z) :=
∑
n∈N

k±i,±nz
∓n ∈ U̇q(ȧ1)[[z∓1]] , (2.2.12)

for every i, j ∈ İ, we de�ne the following F-valued formal power series

G±ij(z) := q±cij + (q − q−1)[±cij ]q
∑
m∈N×

q±mcijzm ∈ F[[z]] (2.2.13)

and

δ(z) :=
∑
m∈Z

zm ∈ F[[z, z−1]] (2.2.14)

is an F-valued formal distribution.

Note that G±ij(z) is invertible in F[[z]] with inverse G∓ij(z), i.e.

G±ij(z)G
∓
ij(z) = 1 , (2.2.15)

and that it can be viewed as the power series expansion of a rational function of (z1, z2) ∈ C2 as |z2| � |z1|,
which we shall denote as follows

G±ij(z1/z2) =

(
z1q
∓cij − z2

z1 − q∓cijz2

)
|z2|�|z1|

. (2.2.16)

Observe furthermore that we have the following useful identity in F[[z, z−1]]

G±ij(z)−G
∓
ij(z

−1)

q − q−1
= [±cij ]qδ

(
zq±cij

)
. (2.2.17)

Remark 2.2.2. In type a1, İ = {0, 1}, cij = 4δij − 2 and we have an additional identity, namely G±10(z) =

G∓11(z). We refer to section 5.1.3 of the Appendix for more identities involving the formal power series

G±ij(z).
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U̇q(ȧ1) is obviously a Z-graded algebra, i.e. we have

U̇q(ȧ1) =
⊕
n∈Z

U̇q(ȧ1)n , where for all n ∈ Z U̇q(ȧ1)n := {x ∈ U̇q(ȧ1) : DxD−1 = qnx} . (2.2.18)

It was proven in [Her05] to admit a triangular decomposition (U̇−q (ȧ1), U̇0
q(ȧ1), U̇+

q (ȧ1)), where U̇±q (ȧ1) and

U̇0
q(ȧ1) are the subalgebras of U̇q(ȧ1) respectively generated by

{
x±i,m : i ∈ İ ,m ∈ Z

}
and

{
C1/2, C−1/2, D,D−1, k+

i,m, k
−
i,m : i ∈ İ ,m ∈ Z

}
.

Observe that U̇±q (ȧ1) admits a natural gradation over Q̇± that we shall denote by

U̇±q (ȧ1) =
⊕
α∈Q̇±

U̇±q (ȧ1)α . (2.2.19)

Of course U̇q(ȧ1) is graded over the root lattice Q̇. We �nally remark that the two Dynkin diagram subalgebras

U̇q(a1)(0) and U̇q(a1)(1) of U̇q(ȧ1) generated by{
D,D−1, C1/2, C−1/2, k+

i,n, k
−
i,−n, x

+
i,m, x

−
i,m : m ∈ Z, n ∈ N

}
,

with i = 0 and i = 1 respectively, are both isomorphic to U̇q(a1), thus yielding two injective algebra homomor-

phisms ι(i) : U̇q(a1) ↪→ U̇q(ȧ1).

2.2.2 Automorphisms of U̇q(ȧ1)

Proposition 2.2.3. i. For every Dynkin diagram automorphism π : İ
∼−→ İ, there exists a unique

F-algebra automorphism Tπ ∈ Aut(U̇q(ȧ1)) such that

Tπ(x±i (z)) = x±π(i)(z) , Tπ(k±i (z)) = k±π(i)(z) , Tπ(C1/2) = C1/2 , Tπ(D) = D . (2.2.20)

ii. For every i ∈ İ, there exists a unique F-algebra automorphism Tω∨i ∈ Aut(U̇q(ȧ1)) such that

Tω∨i (x±j (z)) = z±δijx±j (z) Tω∨i (k±j (z)) = C∓δijk±j (z) Tω∨i (C1/2) = C1/2 Tω∨i (D) = D

(2.2.21)

iii. There exists a unique involutive F-algebra anti-homomorphism η ∈ Aut(U̇q(ȧ1)) such that

η(x±i (z)) = x±i (1/z) η(k±i (z)) = k∓i (1/z) η(C1/2) = C1/2 η(D) = D (2.2.22)

iv. There exists a unique involutive K-algebra anti-homomorphism ϕ such that

ϕ(x±i (z)) = x∓i (1/z) ϕ(k±i (z)) = k∓i (1/z) ϕ(C1/2) = C−1/2 ϕ(D) = D−1 ϕ(q) = q−1

(2.2.23)

Remark 2.2.4. In the present case, the Dynkin diagram being that of type ȧ1, İ = {0, 1} and the only

nontrivial diagram automorphism is de�ned by setting π(0) = 1 and π(1) = 0.
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Remark 2.2.5. Note that ϕ restricts as a non-trivial automorphism of the �eld F and that, as such, it

yields e.g.

ϕ(G±ij(z)) = G∓ij(z) . (2.2.24)

2.2.3 The completions ̂̇Uq(ȧ1) and U̇q(ȧ1)
⊗̂m≥2

Let, for every n ∈ N,
Ωn :=

⊕
r≥n
s≥n

U̇q(ȧ1) · U̇q(ȧ1)−r · U̇q(ȧ1) · U̇q(ȧ1)s · U̇q(ȧ1) .

Proposition 2.2.6. The following hold true:

i. For every n ∈ N, Ωn is a two-sided ideal of U̇q(ȧ1);

ii. For every n ∈ N, Ωn ⊇ Ωn+1;

iii. Ω0 :=
⋃
n∈N Ωn = U̇q(ȧ1);

iv.
⋂
n∈N Ωn = {0};

v. For every m,n ∈ N, Ωm + Ωn ⊆ Ωmin(m,n);

vi. For every m,n ∈ N, Ωm · Ωn ⊆ Ωmax(m,n).

Proof. Points i. and ii. are obvious. As sets, it is clear that Ω0 ⊆ U̇q(ȧ1). Now, 1 ∈ U̇q(ȧ1)0 and for

every x ∈ U̇q(ȧ1), we can write x = 1 · x · 1 thus proving that x ∈ Ω0. Point iii. follows. Point v. is

an easy consequence of point ii.. Point vi. is obvious given i.. So let us �nally prove point iv.. In order

to do so, it su�ces to prove that for every x ∈ U̇q(ȧ1) − {0}, there exists a largest integer νx ∈ N such

that x ∈ Ωνx ; for then indeed x /∈ Ωνx+1, whereas obviously 0 ∈ Ωn, for every n ∈ N. Relations ((4.2.5) �
(4.2.9)) respectively imply that, for every i, j ∈ İ, every m ∈ N and every n ∈ N×,

k+
i,mk

−
j,−n = k−j,−nk

+
i,m − (qcij − q−cij )(C − C−1)

min(m,n)∑
p=1

q−pcijCp − qpcijC−p

q−cijC − qcijC−1
k−j,−n+pk

+
i,m−p ,

k+
i,mx

±
j,−n = q±cijx±j,−nk

+
i,m + (q±cij − q∓cij )

m∑
p=0

C∓p/2q±pcijx±j,−n+pk
+
i,m−p ,

x±i,mk
−
j,−n = q±cijk−j,−nx

±
i,m + (q±cij − q∓cij )

n∑
p=0

C∓p/2q±pcijk−j,−n+px
±
i,m−p ,

x±i,mx
±
j,−n = q±cijx±j,−nx

±
i,m + (q±cij − q∓cij )

min(m,n)−1∑
p=0

q±pcijx±j,−n+px
±
i,m−p

−q±(min(m,n)−1)cijx±j,min(m,n)−nx
±
i,m−min(m,n) + q±min(m,n)cijx±i,m−min(m,n)x

±
j,min(m,n)−n ,

x±i,mx
∓
j,−n = x∓j,−nx

±
i,m ±

δij
q − q−1


C±

m+n
2 k+

i,m−n if m > n;

−C∓
m+n

2 k−i,n−m if m < n;[
C±mk+

i,0 − C∓mk
−
i,0

]
if m = n.
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Now let

B =

ba,m =
−−→∏
p∈JnK

ξap,mp : n ∈ N, a = (a1, . . . , an) ∈ (Φ̇ t −Φ̇ t İ)n, m = (m1, . . . ,mn) ∈ Zn
 ,

where, for every (a,m) ∈ (Φ̇ t −Φ̇ t İ)× Z,

ξa,m =

x
±
i,m if a = ±αi ∈ ±Φ̇, i ∈ İ;

k±i,m if a = i ∈ İ and m ∈ Z±.

If we omit C±1/2 and D±1 which are clearly irrelevant for the present discussion, B is obviously a spanning

set for U̇q(ȧ1). Making repeated use of the above relations, one then easily shows that, for every n ∈ N,
every a ∈ (Φ̇ t −Φ̇ t İ)n and every m ∈ Zn,

ba,m − ca,m
−−→∏
p∈JnK
mp<0

ξap,mp

−−→∏
p∈JnK
mp≥0

ξap,mp ∈ ΩN(m)−1 − ΩN(m) ,

where ca,m ∈ F× and

N(m) = min

− ∑
p∈JnK
mp<0

mp,
∑
p∈JnK
mp≥0

mp

 .

As a consequence, νba,m ≤ N(m), which concludes the proof.

Similarly, making use of the natural Z-grading of the tensor algebras U̇q(ȧ1)⊗m, m ∈ N×, we let, for every

n ∈ N,
Ω(m)
n :=

⊕
r≥n
s≥n

U̇q(ȧ1)⊗m ·
(

U̇q(ȧ1)⊗m
)
−r
· U̇q(ȧ1)⊗m ·

(
U̇q(ȧ1)⊗m

)
s
· U̇q(ȧ1)⊗m .

One easily checks that for every m ∈ N×, {Ω(m)
n : n ∈ N} has the same properties as the ones established in

proposition 3.3.6 for {Ωn = Ω
(1)
n : n ∈ N}.

De�nition-Proposition 2.2.7. We endow U̇q(ȧ1) with the topology τ whose open sets are either ∅ or
nonempty subsets O ⊆ U̇q(ȧ1) such that for every x ∈ O, x+Ωn ⊆ O for some n ∈ N. Similarly, we endow

each tensor power U̇q(ȧ1)⊗m≥2 with the topology induced by {Ω(m)
n : n ∈ N}. These turn U̇q(ȧ1) into a

(separated) topological algebra. We then let ˙̂Uq(ȧ1) denote its completion and we extend by continuity to

˙̂Uq(ȧ1) all the (anti)-automorphisms de�ned over U̇q(ȧ1) in the previous section. We eventually denote by

U̇q(ȧ1)⊗̂m≥2 the corresponding completions of U̇q(ȧ1)⊗m≥2.

Proof. The addition is automatically continuous in the above de�ned topology of U̇q(ȧ1). The continuity

of the multiplication follows from point vi. of proposition 3.3.6. Point iv., in turn, implies that U̇q(ȧ1),

as a topological space, is Hausdor�. The continuity of the unit map η : F → U̇q(ȧ1) is easily checked �

remember that F is given the discrete topology.

Remark 2.2.8. It is worth noting that the above topology is actually ultrametrizable. In the notations of
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the previous proof, let indeed, for every x ∈ U̇q(ȧ1),

‖x‖ =

exp (−νx) if x ∈ U̇q(ȧ1)− {0};

0 if x = 0.

Since obviously νx+y ≥ min(νx, νy) for every x, y ∈ U̇q(ȧ1), the ultrametric inequality for the metric de�ned

by d(x, y) = ‖x− y‖ follows immediately as a consequence of the inequality ‖x+ y‖ ≤ max(‖x‖, ‖y‖).

2.2.4 Continuous Lusztig automorphisms

Following [Mac03] we make the following

De�nition 2.2.9. The a�ne braid group Ḃ of type ȧ1 is generated by t and y subject to the relation

ty−1t = y.

The coweight lattice P∨ of ȧ1 is an abelian group whose generators we shall denote as xλ for every λ ∈ P∨.
In particular, we shall write

xλxµ = xµxλ = xλ+µ , (2.2.25)

assuming that x0 = 1. There exists a unique group homomorphism Ḃ→ Aut(P∨) de�ned by letting

t(xλ) = xsα1 (λ) , y(xλ) = xλ , (2.2.26)

where sα1 denotes the re�ection in the simple root α1, i.e. sα1(λ) = λ− (α∨1 , λ)α1. This action allows us to

make the following

De�nition 2.2.10. We let B̈ := Ḃ n P∨, i.e. B̈ is isomorphic to the group with generators t, y and

(xλ)λ∈P∨ obeying the relations

ty−1t = y , txλt
−1 = xsα1 (λ) , xλy = yxλ , (2.2.27)

for every λ ∈ P∨.

We now de�ne an action of B̈ on ˙̂Uq(ȧ1) by bicontinuous algebra automorphisms, i.e. we construct a

group homomorphism B̈→ Aut( ˙̂Uq(ȧ1)). In order to do so, we �rst describe the image of the latter, following

[DK00].

Proposition 2.2.11. There exists a unique bicontinuous algebra automorphism T ∈ Aut( ˙̂Uq(ȧ1)) such

that

T (C1/2) = C1/2 T (D) = D T (k±0 (z)) = k±0 (zq2)k±1 (z)k±1 (zq2) T (k±1 (z)) = k±1 (z)−1 (2.2.28)

T (x+
0 (z)) =

1

[2]q
res
z1,z2

z−1
1 z−1

2

[
x+

1 (z1),
[
x+

1 (z2),x+
0 (zq2)

]
G−10(z2/zq2)

]
G−11(z1/z2)G−10(z1/zq2)

(2.2.29)

T (x−0 (z)) =
1

[2]q
res
z1,z2

z−1
1 z−1

2

[[
x−0 (zq2),x−1 (z1)

]
G+

10(zq2/z1)
,x−1 (z2)

]
G+

11(z1/z2)G+
10(zq2/z2)

(2.2.30)

T (x+
1 (z)) = −x−1 (C−1z)k+

1 (C−1/2z)−1 (2.2.31)
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T (x−1 (z)) = −k−1 (C−1/2z)−1x+
1 (C−1z) (2.2.32)

Proof. It su�ces to check all the relations, which is cumbersome but straightforward. The inverse auto-

morphism is given by

T−1(C1/2) = C1/2 T−1(D) = D T−1(k±0 (z)) = k±0 (zq−2)k±1 (z)k±1 (zq−2) T−1(k±1 (z)) = k±1 (z)−1

(2.2.33)

T−1(x+
0 (z)) =

1

[2]q
res
z1,z2

z−1
1 z−1

2

[[
x+

0 (zq−2),x+
1 (z1)

]
G−10(zq−2/z1)

,x+
1 (z2)

]
G−11(z1/z2)G−10(zq−2/z2)

(2.2.34)

T−1(x−0 (z)) =
1

[2]q
res
z1,z2

z−1
1 z−1

2

[
x−1 (z1),

[
x−1 (z2),x−0 (zq−2)

]
G+

10(z2/zq−2)

]
G+

11(z1/z2)G+
10(z1/zq−2)

(2.2.35)

T−1(x+
1 (z)) = −k−1 (C1/2z)−1x−1 (Cz) (2.2.36)

T−1(x−1 (z)) = −x+
1 (Cz)k+

1 (C1/2z)−1 (2.2.37)

Remark 2.2.12. Making use of the de�ning relations of U̇q(ȧ1), one easily shows that indeed

[
x+

1 (z1),
[
x+

1 (z2),x+
0 (zq2)

]
G−10(z2/zq2)

]
G−11(z1/z2)G−10(z1/zq2)

= [2]q δ

(
z1

q2z2

)
δ
(z2

z

)
T
(
x+

0 (z)
)
, (2.2.38)

[[
x−0 (zq2),x−1 (z1)

]
G+

10(zq2/z1)
,x−1 (z2)

]
G+

11(z1/z2)G+
10(zq2/z2)

= [2]q δ

(
z1q

2

z2

)
δ
(z1

z

)
T (x−0 (z)) . (2.2.39)

The following is straightforward but will be useful.

Proposition 2.2.13. We have

i. ϕ ◦ Tπ = Tπ ◦ ϕ;

ii. ϕ ◦ T = T ◦ ϕ;

iii. T−1 = η ◦ T ◦ η.

We have �nally,

Theorem 2.2.14. The assignement

t 7→ T y 7→ Y := Tπ ◦ T xω∨i 7→ Tω∨i (2.2.40)

extends to a group homomorphism B̈→ Aut( ˙̂Uq(ȧ1)).

Proof. This is a cumbersome but straightforward exercise that we leave to the reader.

Remark 2.2.15. In [Mik99], Miki constructed an algebraic action by automorphisms of the extended elliptic

braid group on U̇q(ȧ1) which should not be confused with the topological action of B̈ on ˙̂Uq(ȧ1) provided

by the above theorem.

44



2.2.5 Topological Hopf algebra structure on ̂̇Uq(ȧ1)

De�nition 2.2.16. We endow the topological F-algebra ˙̂Uq(ȧ1) with:

i. the comultiplication ∆ : ˙̂Uq(ȧ1)→ U̇q(ȧ1)⊗̂U̇q(ȧ1) de�ned by

∆(C±1/2) = C±1/2 ⊗ C±1/2 , ∆(D±1) = D±1 ⊗D±1 , (2.2.41)

∆(k±i (z)) = k±i (zC
±1/2
(2) )⊗ k±i (zC

∓1/2
(1) ) , (2.2.42)

∆(x+
i (z)) = x+

i (z)⊗ 1 + k−i (zC
1/2
(1) )⊗̂x+

i (zC(1)) , (2.2.43)

∆(x−i (z)) = x−i (zC(2))⊗̂k+
i (zC

1/2
(2) ) + 1⊗ x−i (z) , (2.2.44)

where C
±1/2
(1) = C±1/2 ⊗ 1 and C

±1/2
(2) = 1⊗ C±1/2;

ii. the counit ε : ˙̂Uq(ȧ1)→ F, de�ned by ε(D±1) = ε(C±1/2) = ε(k±i (z)) = 1, ε(x±i (z)) = 0 and;

iii. the antipode S : ˙̂Uq(ȧ1)→ ˙̂Uq(ȧ1), de�ned by S(D±1) = D∓1, S(C±1/2) = C∓1/2 and

S(k±i (z)) = k±i (z)−1 , S(x+
i (z)) = −k−i (zC−1/2)−1x+

i (zC−1) , S(x−i (z)) = −x−i (zC−1)k+
i (zC−1/2)−1 .

With these operations so de�ned and the topologies de�ned in section 3.3.2, ˙̂Uq(ȧ1) is a topological Hopf

algebra.

2.2.6 Non-degenerate Hopf algebra pairing

De�ne U̇≥q (ȧ1) (resp. U̇≤q (ȧ1)) as the subalgebra of U̇q(ȧ1) generated by
{
k−i,−m, x

+
i,n : i ∈ I,m ∈ N, n ∈ Z

}
(resp.

{
k+
i,m, x

−
i,n : i ∈ I,m ∈ N, n ∈ Z

}
). In view of the triangular decompositon of U̇q(ȧ1) � see [Her05] �

and of its de�ning relations, it is clear that U̇≥q (ȧ1) (resp. U̇≤q (ȧ1)), as an F-vector space, is spanned by{
x+
i1,r1
· · ·x+

im,rm
k−j1,−s1 · · · k

−
jn,−sn : m,n ∈ N, ((i1, r1), . . . , (im, rm)) ∈ (İ × Z)m

((j1, s1), . . . , (jn, sn)) ∈ (İ × N)n
}

(2.2.45)

(
resp.

{
x−i1,r1 · · ·x

−
im,rm

k+
j1,s1
· · · k+

jn,sn
: m,n ∈ N, ((i1, r1), . . . , (im, rm)) ∈ (İ × Z)m,

((j1, s1), . . . , (jn, sn)) ∈ (İ × N)n
})

. (2.2.46)

Proposition 2.2.17. There exists a unique non-degenerate Hopf algebra pairing 〈, 〉 : U̇≥q (ȧ1)× U̇≤q (ȧ1)→
F, de�ned by setting 〈

x+
i (z),x−j (v)

〉
=

δij
q − q−1

δ
(z
v

)
, (2.2.47)〈

k−i (z),k+
j (v)

〉
= G−ij

(z
v

)
, (2.2.48)〈

k−i (z),x−j (v)
〉

=
〈
x+
i (z),k+

j (v)
〉

= 0 . (2.2.49)
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By de�nition, it is such that, for every a, b ∈ U̇≥q (ȧ1) and every x, y ∈ U̇≤q (ȧ1),

〈a, xy〉 =
∑〈

a(1), x
〉 〈
a(2), y

〉
,

〈ab, x〉 =
∑〈

a, x(2)

〉 〈
b, x(1)

〉
,

〈a, 1〉 = ε≥(a) 〈1, x〉 = ε≤(x) ,

where we have set ε≤ = ε|U̇≤q (ȧ1)
, ε≥ = ε|U̇≥q (ȧ1)

and we have made use of Sweedler's notation for the

comultiplication

∆(x) =
∑

x(1)⊗̂x(2) .

Proof. A proof can be found in [Neg13].

Before we can establish the continuity of the above de�ned pairing, we need the following

Lemma 2.2.18. For every m+,m−, n+, n− ∈ N, (i±1 , . . . , i
±
m±) ∈ İm± and every (j±1 , . . . , j

±
n±) ∈ İn±, we

have 〈
x+

i+1
(u1) · · ·x+

i+m+

(um+)k−
j+1

(v1) · · ·k−
j+n+

(vn+),x−
i−1

(w1) · · ·x−
i−m−

(wm−)k+

j−1
(z1) · · ·k+

j−n−
(zn−)

〉

= δm+,m−

 ∏
r∈Jn+K
s∈Jn−K

G−
j+r ,j

−
s

(
vr
zs

) ∑
σ∈Sm+

 ∏
1≤r<s≤m+

σ(r)>σ(s)

G−
i+r ,i

+
s

(
ur
us

) ∏
t∈Jm+K

δi+t ,i
−
σ(t)

q − q−1
δ

(
wσ(t)

ut

)
.(2.2.50)

Proof. One easily proves by recursion the results for n+ = n− = 0 and m+ = m− = 0, respectively. The

general case then follows by a straightforward calculation.

It follows that � remember F is given the discrete topology �

Corollary 2.2.19. The Hopf algebra pairing 〈, 〉 is (separately) continuous.

Proof. It su�ces to prove that for every x ∈ U̇≥q (ȧ1) there exists an m ∈ N such that, for every n ≥ m〈
x,Ωn ∩ U̇≤q (ȧ1)

〉
= {0} .

In order to prove the latter, it su�ces to prove it over the spanning sets of (2.2.45) and (2.2.46). Now this

easily follows by inspection, making use of lemma 2.2.18 and of the fact that, for any y ∈ U̇q(ȧ1) − {0},
there exists νy ∈ N such that y /∈ Ωνy+1 � see proof of proposition 3.3.6.

We can now extend 〈, 〉 from U̇≥q (ȧ1)× U̇≤q (ȧ1) to U̇≥q (ȧ1)× ˙̂U≤q (ȧ1) by continuity. Importantly, we have

Proposition 2.2.20. The extended pairing 〈, 〉 : U̇≥q (ȧ1) × ˙̂U≤q (ȧ1) → F is non-degenerate in the sense

that, if for every x ∈ U̇≥q (ȧ1), 〈x, y〉 = 0 for some y ∈ ˙̂U≤q (ȧ1), then y = 0.

Proof. Let {On : n ∈ N} be any neighbourhood basis at 0 ∈ F for the discrete topology on F. Then, let
for every n ∈ N,

An :=
〈

U̇≥q (ȧ1),−
〉−1

(On) =
{
y ∈ U̇≤q (ȧ1) : ∀x ∈ U̇≥q (ȧ1) 〈x, y〉 ∈ On

}
.
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We clearly have, for every n ∈ N, {0} ⊆ An ⊆ U̇≤q (ȧ1) and An ⊇ An+1. The non-degeneracy of the pairing

further implies that ⋂
n∈N

An = {0} .

As a consequence, for every n ∈ N and every y ∈ An − {0}, there exists an N ∈ N such that for every

m ≥ N , y /∈ Am. Now, given n1 ∈ N, let µ(n1) ∈ N be the largest integer such that An1 ⊆ Ωµ(n1). By

the previous discussion, for every point y ∈ An1 −Ωµ(n1)+1, there exists (a smallest) n2 ∈ N such that for

every m ≥ n2, y /∈ Am. Hence, for every m ≥ n2, Am ⊆ Ωµ(n1)+1 and we conclude that µ(n) = µ(n1) for

every n ∈ Jn1, n2 − 1K, whereas µ(n2) = µ(n1) + 1. By induction, it follows that µ : N → N so de�ned

is increasing and that, as a consequence, limn→+∞ µ(n) = +∞. We have therefore proven that, for every

n ∈ N,
∀x ∈ U̇≥q (ȧ1) 〈x, y〉 ∈ On ⇒ y ∈ Ωµ(n) . (2.2.51)

If we �nally let (yn)n∈N ∈ U̇≤q (ȧ1)N be any Cauchy sequence that does not converge to 0, the proposition

is obviously equivalent to claiming that there exists an x ∈ U̇≥q (ȧ1) such that

lim
n→+∞

〈x, yn〉 6= 0 .

Indeed, since (yn)n∈N does not converge to 0, there exist m ∈ N such that for every N ∈ N, yn /∈ Ωm for

some n ≥ N . We can therefore extract a subsequence (ynk)k∈N such that ynk /∈ Ωm for every k ∈ N. The
contrapositive of (2.2.51) then implies that there exists (xk)k∈N ∈ U̇≥q (ȧ1)N such that, for every k ∈ N,

〈xk, ynk〉 /∈ Oν(m)

where ν(m) = min{n ∈ N : µ(n) = m}. But since (yn)n∈N is Cauchy, so is (ynk)k∈N and, upon taking

k, l ∈ N large enough, we can make 〈xk, ynl − ynk〉 arbitrary small. This eventually concludes the proof.

2.3 Double quantum a�nization in type a1

We now de�ne and study the main object of interest in this paper; the double quantum a�nization in type

a1, Üq(a1). We let I = {1} be the labeling of the unique node of the type a1 Dynkin diagram and we let

Q± = Z±α1. We denote by Q = Zα1 the type a1 root lattice.

2.3.1 De�nition of Üq(a1)

De�nition 2.3.1. The double quantum a�nization Üq(a1) of type a1 is de�ned as the F-algebra generated
by

{D1,D
−1
1 ,D2,D

−1
2 ,C1/2,C−1/2, c+

m, c
−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z}

subject to the relations

C±1/2 and c±(z) are central (2.3.1)

res
v,w

1

vw
c±(v)c∓(w) = 1 , (2.3.2)
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D±1
1 D∓1

1 = 1 D±1
2 D∓1

2 = 1 D1D2 = D2D1 (2.3.3)

D1K
±
1,±m(z)D−1

1 = q±mK±1,±m(z) D1X
±
1,r(z)D

−1
1 = qrX±1,r(z) , (2.3.4)

D2K
±
1,±m(z)D−1

2 = K±1,±m(zq−1) D2X
±
1,r(z)D

−1
2 = X±1,r(zq

−1) , (2.3.5)

res
v,w

1

vw
K±1,0(v)K∓1,0(w) = 1 , (2.3.6)

(v − q±2z)(v − q2(m−n∓1)z)K±1,±m(v)K±1,±n(z) = (vq±2 − z)(vq∓2 − q2(m−n)z)K±1,±n(z)K±1,±m(v) , (2.3.7)

(Cq2(1−m)v − w)(q2(n−1)v − Cw)K+
1,m(v)K−1,−n(w) = (Cq−2mv − q2w)(q2nv − Cq−2w)K−1,−n(w)K+

1,m(v) ,

(2.3.8)

(v − q±2z)K±1,±m(v)X±1,r(z) = (q±2v − z)X±1,r(z)K
±
1,±m(v) , (2.3.9)

(Cv − q2(m∓1)z)K±1,±m(v)X∓1,r(z) = (Cq∓2v − q2mz)X∓1,r(z)K
±
1,±m(v) , (2.3.10)

(v − q±2w)X±1,r(v)X±1,s(w) = (vq±2 − w)X±1,s(w)X±1,r(v) , (2.3.11)

[X+
1,r(v),X−1,s(z)] =

1

q − q−1

δ
(

Cv

q2(r+s)z

) |s|∏
p=1

c−
(
C−1/2q(2p−1)sign(s)−1z

)−sign(s)
K+

1,r+s(v)

−δ
(

C−1v

q2(r+s)z

) |r|∏
p=1

c+
(
C−1/2q(1−2p)sign(r)−1v

)sign(r)
K−1,r+s(z)

 , (2.3.12)

where m,n ∈ N, r, s ∈ Z and we have set

c±(z) =
∑
m∈N

c±±mz
∓m , (2.3.13)

K±1,0(z) =
∑
m∈N

K±1,0,±mz
±m , (2.3.14)

and, for every m ∈ N× and r ∈ Z,
K±1,±m(z) =

∑
s∈Z

K±1,±m,sz
−s , (2.3.15)

X±1,r(z) =
∑
s∈Z

X±1,r,sz
−s . (2.3.16)

In (5.0.6), we further assume that K±1,∓m(z) = 0 for every m ∈ N×.

De�nition 2.3.2. We de�ne Ü0
q(a1) as the subalgebra of Üq(a1) generated by{

C1/2,C−1/2, c+
m, c

−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r : m ∈ N, n ∈ N×, r ∈ Z

}
.

We de�ne similarly Ü±q (a1) as the subalgebra of Üq(a1) generated by
{
X±1,r,s : r, s ∈ Z

}
.

Remark 2.3.3. Obviously, Ü±q (a1) is graded over Q± whereas Üq(a1) is graded over the root lattice Q of
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a1. Üq(a1) is also graded over Z2 = Z(1) × Z(2);

Üq(a1) =
⊕

(n1,n2)∈Z2

Üq(a1)(n1,n2) ,

where, for every (n1, n2) ∈ Z2, we let

Üq(a1)(n1,n2) =
{
x ∈ Üq(a1) : D1xD

−1
1 = qn1x, D2xD

−1
2 = qn2x

}
.

Remark 2.3.4. It is worth emphasizing that, were it not for relation (5.0.6), the above de�nition of Üq(a1)

would be purely algebraic. However, the r.h.s. of (5.0.6) involves two in�nite series and we may equip

Üq(a1) with a topology, along the lines of what was done in section 3.3.2 for U̇q(ȧ1), making use of the Z(2)-

grading in order to construct a basis
{

Ω̇n : n ∈ N
}
of open neighbourhoods of 0. In that case, both series

are convergent in the corresponding completion ̂̈Uq(a1) and we shall further require that the subalgebras

Ü−q (a1), Ü0
q(a1) and Ü+

q (a1) be de�ned as closed subalgebras of Üq(a1). We shall eventually denote with

a hat their respective completions. An alternative point of view on this question, which might actually

prove more useful when it comes to studying representation theory, consists in observing that Üq(a1) is

proalgebraic. Indeed, for every N ∈ N, let Üq(a1)(N) be the F-algebra generated by

{C1/2,C−1/2, c+
n , c
−
−n,K

+
1,0,m,K

−
1,0,−m,K

+
1,p,r,K

−
1,−p,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, n ∈ J0, NK, p ∈ N×, r, s ∈ Z}

subject to relations ((3.3.1) � (5.0.6)), where, this time,

c±(z) =

N∑
m=0

c±±mz
∓m . (2.3.17)

Now clearly, each Üq(a1)(N) is algebraic since the sums on the r.h.s. of (5.0.6) are both �nite � whenever

c±(z)−1 is involved, just multiply through by c±(z) to get an equivalent algebraic relation. Moreover,

letting IN be the two-sided ideal of Üq(a1)(N) generated by {c+
N , c

−
−N} (resp. {c

+
0 − 1, c−0 − 1}) for every

N > 1 (resp. for N = 0), we obviously have a surjective algebra homomorphism

Üq(a1)(N) −→ Üq(a1)(N−1) ∼=
Üq(a1)(N)

IN
(2.3.18)

and we can de�ne Üq(a1) as the inverse limit

Üq(a1) = lim
←−

Üq(a1)(N)

of the system of algebras

· · · −→ Üq(a1)(N) −→ Üq(a1)(N−1) −→ · · · −→ Üq(a1)(0) −→ Üq(a1)(−1) .

We shall refer to the quotient of Üq(a1)(−1) by the two-sided ideal generated by {C1/2 − 1} as the double

quantum loop algebra of type a1.
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De�nition 2.3.5. In ¨̂U0
q(a1), we de�ne

p±(z) =
∑
m∈N

p±±mz
∓m = c±(z)K∓1,0(C−1/2z)−1K∓1,0(C−1/2zq2)

and for every m ∈ N×,

t+1,m(z) =
∑
n∈N

t+1,m,nz
−n = − 1

q − q−1
K+

1,0(zq−2m)−1K+
1,m(z) ,

t−1,−m(z) =
∑
n∈N

t−1,−m,nz
n =

1

q − q−1
K−1,−m(z)K−1,0(zq−2m)−1 .

Then, we let Ü0+
q (a1) be the closed subalgebra of ¨̂U0

q(a1) generated by

{C1/2,C−1/2, p+
m, p

−
−m, t

+
1,p,n, t

−
1,−p,n : m ∈ N, n ∈ Z, p ∈ N×} .

De�nition 2.3.6. We denote by Ü′q(a1) the subalgebra of Üq(a1) generated by

{D2,D
−1
2 ,C1/2,C−1/2, c+

m, c
−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z} ,

i.e. the subalgebra generated by all the generators of Üq(a1) except D1 and D−1
1 . We shall denote by

 : Ü′q(a1) ↪→ Üq(a1)

the natural injective algebra homomorphism. We extend it by continuity into

̂ : ̂̈U′q(a1) ↪→ ̂̈Uq(a1) .

The main result of the present paper is the following

Theorem 2.3.7. There exists a bicontinuous F-algebra isomorphism Ψ̂ : ˙̂Uq(ȧ1)
∼−→ ̂̈U′q(a1).

Proof. Relations ((3.3.7)-(3.3.10)) respectively imply

K±1,0(v)K±1,0(z) = K±1,0(z)K±1,0(v) , (2.3.19)

K+
1,0(v)K−1,0(w) = G+

11(Cv/w)G−11(C−1v/w)K−1,0(w)K+
1,0(v) (2.3.20)

K±1,0(v)X±1,r(z) = G∓11(v/z)X±1,r(z)K
±
1,0(v) , (2.3.21)

K±1,0(v)X∓1,r(z) = G±11(Cv/z)X∓1,r(z)K
±
1,0(v) , (2.3.22)

since K±1,0(z) ∈ Ü′q(a1)[[z±1]]. It also easily follows from relation (5.0.5) that

[
X+

1,0(v),X+
1,−1(w)

]
G−11(v/w)

= δ

(
vq−2

w

)
Υ+(w) , (2.3.23)

[
X−1,1(v),X−1,0(w)

]
G+

11(v/w)
= δ

(
vq2

w

)
Υ−(w) , (2.3.24)
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for some Υ±(w) ∈ ̂̈U′q(a1)[[w,w−1]]. Hence, the only possible obstructions to setting

Ψ(D±1) = D±1
2 Ψ(C±1/2) = C±1/2 ,

Ψ(k±0 (z)) = −c±(z)K∓1,0(C−1/2z)−1 Ψ(k±1 (z)) = −K∓1,0(C−1/2z)

Ψ(x+
0 (z)) = −c−(C1/2z)K+

1,0(z)−1X−1,1(Cz) Ψ(x−0 (z)) = −X+
1,−1(Cz)c+(C1/2z)K−1,0(z)−1

Ψ(x±1 (z)) = X±1,0(z) ,

and to extending it as an algebra homomorphism Ψ : U̇q(ȧ1) → ̂̈U′q(a1) are Υ±(w) and the images

under Ψ of the l.h.s. of the quantum Serre relations (4.2.10). We shall see in section 2.4 that both

obstructions actually vanish. We also postpone until section 2.4 the construction of the continuous algebra

homomorphism Ψ−1 : Ü′q(a1) −→ ˙̂Uq(ȧ1).

2.3.2 The subalgebra Ü0
q(a1) and the elliptic Hall algebra

Another remarkable feature of Üq(a1) and, more particularly of its subalgebra Ü0
q(a1), is the existence of an

algebra homomorphism onto it, from the elliptic Hall algebra that we now de�ne.

De�nition 2.3.8. Let q1, q2, q3 be three (dependent) formal variables such that q1q2q3 = 1. The elliptic

Hall algebra Eq1,q2,q3 is theQ(q1, q2, q3)-algebra generated by
{
C1/2, C−1/2, ψ+

m, ψ
−
−m, e

+
n , e

−
n : m ∈ N, n ∈ Z

}
,

with ψ±0 invertible, subject to the relations

C±1/2 is central , (2.3.25)

ψ±(z)ψ±(w) = ψ±(w)ψ±(z) , (2.3.26)

g(Cz,w)g(Cw, z)ψ+(z)ψ−(w) = g(z, Cw)g(w,Cz)ψ−(w)ψ+(z) , (2.3.27)

g(C
1±1
2 z, w)ψ±(z)e+(w) = −g(w,C

1±1
2 z)e+(w)ψ±(z) , (2.3.28)

g(w,C
1∓1
2 z)ψ±(z)e−(w) = −g(C

1∓1
2 z, w)e−(w)ψ±(z) , (2.3.29)

[e+(z), e−(w)] =
1

g(1, 1)

[
δ

(
Cw

z

)
ψ+(w)− δ

( w
Cz

)
ψ−(z)

]
, (2.3.30)

g(z, w)e+(z)e+(w) = −g(w, z)e+(w)e+(z) , (2.3.31)

g(w, z)e−(z)e−(w) = −g(z, w)e−(w)e−(z) , (2.3.32)

res
v,w,z

(vwz)m(v + z)(w2 − vz)e±(v)e±(w)e±(z) = 0 , (2.3.33)

where m ∈ Z and we have introduced

g(z, w) = (z − q1w)(z − q2w)(z − q3w) , (2.3.34)

ψ±(z) =
∑
m∈N

ψ±±mz
∓m , (2.3.35)

e±(z) =
∑
m∈Z

e±mz
−m . (2.3.36)
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Remark 2.3.9. The elliptic Hall algebra Eq1,q2,q3 is Z-graded and can be equipped with a natural topology

along the lines of what we did for U̇q(ȧ1) in section 3.3.2. It then becomes a topological algebra and we

denote by Êq1,q2,q3 its completion.

Proposition 2.3.10. There exists a unique continuous F-algebra homomorphism f : ̂Eq−4,q2,q2 → Ü0+
q (a1)

such that

f(C1/2) = C1/2 , (2.3.37)

f(ψ±(z)) = (q2 − q−2)2 p±(C1/2zq−2) , (2.3.38)

f(e±(z)) = t±1,±1(z) . (2.3.39)

Proof. We prove that, starting from ((3.3.50) � (2.3.39)), we can extend f as an algebra homomorphism.

For that purpose, it su�ces to check the relations in Eq−4,q2,q2 , observing that, in addition to (2.3.19) and

(2.3.20), we also have

K±1,0(v)K±1,±1(z) = G∓11(v/z)G±11(vq2/z)K±1,±1(z)K±1,0(v) , (2.3.40)

K∓1,0(v)K±1,±1(w) = G∓11(Cv/w)G±11(C−1q2v/w)K±1,±1(w)K∓1,0(v) , (2.3.41)

as direct consequences of (3.3.7) and (3.3.8) respectively, since K±1,0(z) ∈ Ü′q(a1)[[z±1]]. One then easily

obtains ((3.3.33) � (3.3.36)) and ((3.3.38) � (3.3.39)). For example, we have

g(v, z)f(e+(v))f(e+(z)) =
1

(q − q−1)2
g(v, z)G+

11(z/v)G−11(zq−2/v)K+
1,0(vq−2)K+

1,0(q−2z)K+
1,1(v)K+

1,1(z)

=
v − z

(q − q−1)2
(v − q2z)(v − q−2z)K+

1,0(vq−2)K+
1,0(q−2z)K+

1,1(v)K+
1,1(z)

(2.3.42)

=
v − z

(q − q−1)2
(vq2 − z)(vq−2 − z)K+

1,0(vq−2)K+
1,0(q−2z)K+

1,1(z)K+
1,1(v)

=
v − z

(q − q−1)2
(vq2 − z)(vq−2 − z)G+

11(vq−2/z)G−11(v/z)

×K+
1,0(q−2z)K+

1,1(z)K+
1,0(vq−2)K+

1,1(v)

= −g(z, v)f(e+(z))f(e+(v)) .

Considering (3.3.37), we observe that (3.3.8) implies that there exist θ±(z) ∈ ̂̈U′q(a1)[[z, z−1]] such that

[
K+

1,1(v),K−1,−1(w)
]
G+

11(Cvq−2/w)G−11(C−1vq2/w)
= δ

(
Cv

w

)
θ−(v) + δ

( v

Cw

)
θ+(w)

and one easily sees that

[
f(e+(v)), f(e−(w))

]
= − 1

(q − q−1)2
K+

1,0(vq−2)−1
[
K+

1,1(v),K−1,−1(w)
]
G+

11(Cvq−2/w)G−11(C−1vq2/w)
K−1,0(wq−2)−1

= − 1

(q − q−1)2
K+

1,0(vq−2)−1

{
δ

(
Cv

w

)
θ−(v) + δ

( v

Cw

)
θ+(w)

}
K−1,0(wq−2)−1 .
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Therefore, it su�ces to prove that

− 1

(q − q−1)2
K+

1,0(Cwq−2)−1θ+(w)K−1,0(wq−2)−1 =
(q2 − q−2)2

g(1, 1)
p+(C1/2q−2w) (2.3.43)

− 1

(q − q−1)2
K+

1,0(vq−2)−1θ−(v)K−1,0(Cvq−2)−1 = −(q2 − q−2)2

g(1, 1)
p−(C1/2q−2v) (2.3.44)

We postpone the proof of ((2.3.43) � (2.3.44)), as well as that of

res
v,w,z

(vwz)m(v + z)(w2 − vz)f(e±(v))f(e±(w))f(e±(z)) = 0 , (2.3.45)

until section 2.4.

We now naturally make the following

Conjecture 2.3.11. f : ̂Eq−4,q2,q2 → Ü0+
q (a1) is a bicontinuous F-algebra isomorphism.

Remark 2.3.12. It is worth mentioning that the above conjecture is supported by the fact that, in view of

((3.3.38) � (3.3.39)), there clearly exists e±±2(z) ∈ Êq1,q2,q3 [[z, z−1]] such that

G∓01(q∓2v/w)G∓11(v/w)

[
e±(w), e±(v)

]
G∓01(q∓2w/v)G∓11(w/v)

= ± [2]q

{
δ

(
q2v

w

)
e±±2(w)− δ

(
wq2

v

)
e±±2(v)

}
and that we can therefore set

f−1(t±1,±2(v)) = e±±2(v) .

In order to complete the proof, one would similarly need to construct f−1(t±1,±m(v)) for any m > 2.

2.3.3 U̇q(a1) subalgebras of Üq(a1)

Interestingly, Üq(a1) admits countably many embeddings of the quantum a�ne algebra U̇q(a1). This is the

content of the following

Proposition 2.3.13. For every m ∈ Z, there exists a unique injective algebra homomorphism ιm :

U̇q(a1) ↪→ ̂̈Uq(a1) such that

ιm(C±1/2) = C±1/2 ιm(D±1) = D±1
2 (2.3.46)

ιm(k±1 (z)) = −
|m|∏
p=1

c±
(
q(1−2p)sign(m)−1z

)sign(m)
K∓1,0(C−1/2z) , (2.3.47)

ιm(x±1 (z)) = X±1,±m(z) . (2.3.48)

Proof. Let ι(1) : U̇q(a1) ↪→ U̇q(ȧ1) be the injective algebra homomorphism mapping U̇q(a1) to the Dynkin

diagram subalgebra of U̇q(ȧ1) associated with the vertex labeled 1 ∈ İ � see section 2.2.1. It naturally

extends to an injective algebra homomorphism ι̂(1) : U̇q(a1) ↪→ ˙̂Uq(ȧ1). Then, let for every m ∈ Z, ιm be

the composite

ιm : U̇q(a1) ↪−→
ι̂(1)

˙̂Uq(ȧ1)
∼−→

Y −m
˙̂Uq(ȧ1)

∼−→
Ψ̂

̂̈U′q(a1) ↪−→
̂

̂̈Uq(a1) .

Thus, ιm is clearly injective. Moreover, one easily checks ((3.3.71) � (3.3.73)) � see next section.
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2.3.4 Automorphisms of ̂̈U′q(a1)

̂̈U′q(a1) naturally inherits, through Ψ̂, the automorphisms de�ned over ˙̂Uq(ȧ1) in the previous section.

Proposition 2.3.14. Conjugation by Ψ̂ clearly provides a group isomorphism Aut( ˙̂Uq(ȧ1)) ∼= Aut( ̂̈U′q(a1)).

In particular, for every f ∈ Aut( ˙̂Uq(ȧ1)), we let ḟ = Ψ̂ ◦ f ◦ Ψ̂−1 ∈ Aut( ̂̈U′q(a1)).

2.3.5 Triangular decomposition of ̂̈Uq(a1)

De�nition 2.3.15. Let A be a complete topological algebra with closed subalgebras A± and A0. We

shall say that (A−, A0, A+) is a triangular decomposition of A if the multiplication induces a bicontinuous

isomorphism of vector spaces A−⊗̂A0⊗̂A+ ∼→ A.

In order to prove the triangular decomposition of ̂̈Uq(a1), we shall make use of the following classic

Lemma 2.3.16. Let A be a complete topological algebra with a triangular decomposition (A−, A0, A+).

Let I± be a closed two-sided ideal of A± such that I+.A ⊆ A.I+ and A.I− ⊆ I−.A. Then the quotient

algebra B = A/(A.(I+ + I−).A) admits a triangular decomposition (B−, A0, B+) where B± is the set of

equivalence classes of A± in B. Moreover, there exists a bicontinuous algebra isomorphism B± ∼= A±/I±.

Proof. See e.g. [Jan96].

Recalling the de�nitions of Ü±q (a1) and Ü0
q(a1) from de�nition 3.3.1, we have

Proposition 2.3.17. (Ü−q (a1), Ü0
q(a1), Ü+

q (a1)) is a triangular decomposition of ̂̈Uq(a1) and Ü±q (a1) is

bicontinuously isomorphic to the algebra generated by {X±1,r,s : r, s ∈ Z} subject to relation (5.0.5).

Proof. Let A be the F-algebra generated by

{D1,D
−1
1 ,D2,D

−1
2 ,C1/2,C−1/2, c+

m, c
−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z}

subject to the relations ((3.3.2) � (3.3.10)) and (5.0.6), i.e. all the de�ning relations of Üq(a1) but relation

(5.0.5). Endow A with a topology along the lines of what was done in section 3.3.2 for U̇q(ȧ1), making

use of its Z(2)-grading. This yields a basis
{

Ω̇n : n ∈ N
}
of open neighbourhoods of 0. Let furthermore

A0 be the closed subalgebra of A generated by{
D1,D

−1
1 ,D2,D

−1
2 ,C1/2,C−1/2, c+

m, c
−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r : m ∈ N, n ∈ N×, r ∈ Z

}
and A± be the closed subalgebra of A generated by

{
X±1,r,s : r, s ∈ Z

}
. An easy recursion proves that

relations (5.0.1) and (3.3.10) imply that, for every N ∈ N and every m ∈ N, l, r, s ∈ Z,

X+
1,r,sK

+
1,m,l − q

2K+
1,m,lX

+
1,r,s − (q2 − q−2)

N∑
p=1

q2pK+
1,m,l+pX

+
1,r,s−p + q2NK+

1,m,l+N+1X
+
1,r,s−N−1 ∈ Ω̇ν+s,l(N)

K−1,−m,lX
−
1,r,s−q

−2X−1,r,sK
−
1,−m,l+(q2−q−2)

N∑
p=1

q−2pX−1,r,s+pK
−
1,−m,l−p+q

2NX−1,r,s+N+1K
−
1,−m,l−N−1 ∈ Ω̇ν−s,l(N)
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K+
1,m,lX

−
1,r,s − q

−2X−1,r,sK
+
1,m,l + (q2 − q−2)

N∑
p=1

C−pq2p(m−1)X−1,r,s+pK
+
1,m,l−p

+C−(N+1)q2(N+1)(m−1)+2X−1,r,s+N+1K
+
1,m,l−N−1 ∈ Ω̇ν−s,l(N)

X+
1,r,sK

−
1,−m,l − q

2K−1,−m,lX
+
1,r,s − (q2 − q−2)

N∑
p=1

Cpq2p(1−m)K−1,−m,l+pX
+
1,r,s−p

+CN+1q2(N+1)(1−m)K−1,−m,l+N+1X
+
1,r,s−N−1 ∈ Ω̇ν+s,l(N)

where ν±s,l(N) = min(±l,∓s)+N+1. It obviously follows that (A−, A0, A+) is a triangular decomposition

of A. Now let I± be the closed two-sided ideal of A± generated by{
X±1,r,m+1X

±
1,s,n − q

±2X±1,r,mX
±
1,s,n+1 − q

±2X±1,s,nX
±
1,r,m+1 + X±1,s,n+1X

±
1,r,m : r, s,m, n ∈ Z

}
.

Clearly Üq(a1) ∼= A/(A.(I+ + I−).A). In view of the above rewritings of (5.0.1) and (3.3.10), it is clear

that I+.A0 ⊆ A0.I+ and A0.I− ⊆ I−.A0. Moreover, relations (5.0.1), (3.3.10) and (5.0.6) are easily

shown to imply that, for every r, s, t ∈ Z,[
(v − q±2w)X±1,r(v)X±1,s(w)− (vq±2 − w)X±1,s(w)X±1,r(v),X∓1,t(u)

]
= 0 ,

hence proving that I+.A− ⊆ A.I+ and A+.I− ⊆ I−.A. The claim eventually follows as a consequence of

lemma 2.3.16

2.3.6 Weight-�nite highest t-weight modules

De�nition 2.3.18. For every N ∈ N×, we shall say that a (topological) module M over Ü′q(a1) is of

type (1, N) if:

i. C±1/2 acts as id on M ;

ii. c±±m acts by multiplication by 0 on M , for every m ≥ N .

We shall say that M is of type (1, 0) if points i. and ii. above hold for every m > 0 and, in addition, c±0
acts as id on M .

Remark 2.3.19. Let N ∈ N×. Then the Ü′q(a1)-modules of type (1, N) are in one-to-one correspondence

with the Üq(a1)(N−1)/(C1/2 − 1)-modules � see remark 3.3.3 for a de�nition of Üq(a1)(N). Similarly,

Ü′q(a1)-modules of type (1, 0) descend to modules over the double quantum loop algebra of type a1,

Üq(a1)(−1)/(C1/2 − 1).

In view of the triangular decomposition (Ü−q (a1), Ü0
q(a1), Ü+

q (a1)) of ̂̈U′q(a1) � see proposition 3.3.11 �,

we naturally expect that a new, adapted notion of highest weight modules exists, in which Ü0
q(a1), although

non-abelian, plays the role usually played by the Cartan subalgebra. Thus, we restrict our attention to modules

over Ü′q(a1) which, regarded as Ü0
q(a1)-modules, split as direct sums of indecomposable modules over Ü0

q(a1).

We refer to those summands as t-weight spaces. Moreover, the injective algebra homomorphism ι0 of propo-

sition 2.3.13 restricts to an injective algebra homomorphism U̇0
q(a1) → Ü0

q(a1) from the quantum Heisenberg
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subalgebra U̇0
q(a1) of U̇q(a1) to Ü0

q(a1). Therefore, considering any ̂̈U′q(a1)-moduleM of type (1, 0), we get an

action of the in�nite-dimensional abelian algebra U̇0
q(a1)/(C1/2−1) on all the t-weight spaces ofM . Whenever

the latter decompose into direct sums of generalized eigenspaces of the commuting family of linear operators

{K+
1,0,m,K

−
1,0,−m : m ∈ N}, we shall say that the t-weight-spaces are `-weight. In the latter case, we let Sp(M)

denote the set of all the eigenvalues of K+
1,0,0 over M .

De�nition 2.3.20. We shall say that a (topological) Ü′q(a1)-moduleM is a t-weight module if there exists

a countable set {Mα : α ∈ A} of indecomposable `-weight Ü0
q(a1)-modules, called the t-weight spaces of

M , such that, as Ü0
q(a1)-modules,

M ∼=
⊕
α∈A

Mα . (2.3.49)

We shall say that M is weight-�nite if, in addition, Sp(M) is �nite. A vector v ∈ M − {0} is a highest

t-weight vector of M if v ∈Mα for some α ∈ A and, for every r, s ∈ Z,

X+
1,r,s.v = 0 . (2.3.50)

We shall say that M is highest t-weight if M ∼= Ü′q(a1).v for some highest t-weight vector v ∈M − {0}.

It is reasonably clear that, owing to the triangular decomposition (Ü−q (a1), Ü0
q(a1), Ü+

q (a1)) of ̂̈U′q(a1), for

every highest t-weight Ü′q(a1)-module M and every highest t-weight vector v ∈M − {0}, we have

M ∼= Ü−q (a1).Ü0
q(a1).v . (2.3.51)

Remark 2.3.21. In view of (2.3.51), simple highest t-weight Ü′q(a1)-modules, including simple weight-�nite

Ü′q(a1)-modules, are entirely determined as M ∼= Ü−q (a1).M0, by the data of their unique highest t-weight

space M0
∼= Ü0

q(a1).v. Classifying simple weight-�nite Üq(a1)-modules therefore amounts to classifying

those simple Ü0
q(a1)-modules that appear as their highest t-weight spaces. We intend to undertake that

classi�cation in a future work.

Remark 2.3.22. (2.3.51) induces a partial ordering of the t-weight spaces through the Q−-grading of

Ü−q (a1).

2.3.7 Topological Hopf algebra structure on ̂̈U′q(a1)

De�nition-Proposition 2.3.23. We de�ne

∆̇ =
(

Ψ̂⊗̂Ψ̂
)
◦∆ ◦ Ψ̂−1 , (2.3.52)

Ṡ = Ψ̂ ◦ S ◦ Ψ̂−1 , (2.3.53)

ε̇ = ε ◦ Ψ̂−1 . (2.3.54)

Equipped with the above comultiplication, antipode and counit, ̂̈U′q(a1) is a topological Hopf algebra. The

latter is easily extended into a topological Hopf algebraic structure on ̂̈Uq(a1) by setting, in addition,

∆̇(D±1
1 ) = D±1

1 ⊗ D±1
1 , Ṡ(D±1

1 ) = D∓1
1 and ε̇(D±1

1 ) = 1 .
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2.4 Doubly A�ne Damiani-Beck isomorphism

In this last section, we complete the proof of theorem 3.3.22 by constructing Ψ−1 : Ü′q(a1) → ˙̂Uq(ȧ1); i.e. by

constructing a realization of the generators of Ü′q(a1) in ˙̂Uq(ȧ1).

2.4.1 Double loop generators

De�nition 2.4.1. For every m ∈ Z, we set X±1,m(z) := Y ∓m(x±1 (z)).

It is clear that

Proposition 2.4.2. For every m ∈ Z, we have

ϕ
(
X±1,m(z)

)
= X∓1,−m (1/z) . (2.4.1)

Proposition 2.4.3. i. There exists a unique ψ+
1,1(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]] such that

[
Y
(
k−1 (w)−1x−1 (C1/2w)

)
,x+

1 (z)
]
G−10(C−1/2w/z)

= −δ

(
C−1/2q2w

z

)
ψ+

1,1(z) . (2.4.2)

ii. Set ψ−1,−1(z) = ϕ
(
ψ+

1,1(1/z)
)
. Then, we have

[
x−1 (z), Y

(
x+

1 (C1/2w)k+
1 (w)−1

)
,
]
G+

10(C1/2z/w)
= −δ

(
C−1/2q2w

z

)
ψ−1,−1(z) . (2.4.3)

Proof. The proof of i. is immediate from the de�nitions. ii. then follows by applying ϕ to (2.4.2).

Remark 2.4.4. It is worth noting that ψ±1,±1(z) /∈ U̇q(ȧ1)[[z, z−1]].

Corollary 2.4.5. For every i ∈ İ, we have

i. k−i (v)ψ±1,±1(z) = G∓i,0(C∓1/2q2v/z)G∓i,1(C∓1/2v/z)ψ±1,±1(z)k−i (v);

ii. ψ±1,±1(z)k+
i (v) = G∓i,0(C∓1/2q−2z/v)G∓i,1(C∓1/2z/v)k+

i (v)ψ±1,±1(z);

Proof. ii. follows by applying ϕ to i. and i. is a direct consequence of (2.4.2) and (2.4.3) on one hand

and of (4.2.6) and (4.2.7) on the other hand.

Let us then de�ne the following U̇q(ȧ1)-valued formal power series

Γ±0 (z) := k±0 (z)k±1 (z) ∈ U̇q(ȧ1)[[z∓1]] . (2.4.4)

Denoting by Z(U̇q(ȧ1)) the center of U̇q(ȧ1), it is straightforward to check that indeed

Proposition 2.4.6. Γ±0 (z) ∈ Z(U̇q(ȧ1))[[z∓1]].
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Similarly, de�ne

℘±(z) := k±0 (z)k±1 (zq2) ∈ U̇q(ȧ1)[[z∓1]] . (2.4.5)

Then we establish an important result.

Proposition 2.4.7. We have the following �xed points of Y ;

Y
(
℘±(z)

)
= ℘±(z) , (2.4.6)

Y
(
ψ±1,±1(z)

)
= ψ±1,±1(z) . (2.4.7)

Moreover

Y
(
Γ±0 (z)

)
= Γ±0 (zq2) , (2.4.8)

Proof. (2.4.6) and (2.4.8) are obvious. We prove (2.4.7) for the upper choice of signs. In order to do so,

we �rst rewrite (2.4.2) as [
x+

0 (w),x+
1 (z)

]
G−10(w/z)

= δ

(
q2w

z

)
ψ+

1,1(z) .

Now, (2.2.38) and the de�nition of Y imply that, on one hand,[[
x+

0 (z1),
[
x+

0 (z2),x+
1 (wq2)

]
G−10(z2/wq2)

]
G−11(z1/z2)G−10(z1/wq2)

,x−0 (C−1z)k+
0 (C−1/2z)−1

]
G−10(w/z)

= − [2]q δ

(
z1

z2q2

)
δ
(z2

w

) [
Y
(
x+

0 (w)
)
, Y
(
x+

1 (z)
)]
G−10(w/z)

= − [2]q δ

(
z1

z2q2

)
δ
(z2

w

)
Y
([

x+
0 (w),x+

1 (z)
]
G−10(w/z)

)
= − [2]q δ

(
z1

z2q2

)
δ
(z2

w

)
δ

(
wq2

z

)
Y
(
ψ+

1,1(z)
)
,

whereas, on the other hand, (2.2.38), (4.2.6), (4.2.7) and (4.2.9), as well as corollary 2.4.5, imply that[[
x+

0 (z1),
[
x+

0 (z2),x+
1 (wq2)

]
G−10(z2/wq2)

]
G−11(z1/z2)G−10(z1/wq2)

,x−0 (C−1z)k+
0 (C−1/2z)−1

]
G−10(w/z)

=

[[
x+

0 (z1),
[
x+

0 (z2),x+
1 (wq2)

]
G−10(z2/wq2)

]
G−11(z1/z2)G−10(z1/wq2)

,x−0 (C−1z)

]
k+

0 (C−1/2z)−1

=
1

q − q−1

{
δ
(z1

z

)
δ
(z2

w

) [
k+

0 (z1C
−1/2),ψ+

1,1(wq2)
]
G−11(z1/z2)G−10(z1/wq2)

+ δ
(z2

z

)[
x+

0 (z1),
[
k+

0 (z2C
−1/2),x+

1 (wq2)
]
G−10(z2/wq2)

]
G−11(z1/z2)G−10(z1/wq2)

}
k+

0 (C−1/2z)−1

= δ
(z1

z

)
δ
(z2

w

) G+
00(w/z1)G+

01(q2w/z1)−G−11(z1/w)G−10(z1/wq
2)

q − q−1
ψ+

1,1(wq2)

+δ
(z2

z

)
δ
(z1

w

) G+
01(q2w/z2)−G−10(z2/wq

2)

q − q−1
ψ+

1,1(wq2) .

58



Making use of (3.3.68) and (5.1.5) � for the latter, see Appendix �, we eventually get[[
x+

0 (z1),
[
x+

0 (z2),x+
1 (wq2)

]
G−10(z2/wq2)

]
G−11(z1/z2)G−10(z1/wq2)

,x−0 (C−1z)k+
0 (C−1/2z)−1

]
G−10(w/z)

= [2]q δ
(z1

z

)
δ
(z2

w

)[
δ

(
w

z1

)
− δ

(
wq2

z1

)]
ψ+

1,1(wq2)− [2]q δ
(z2

z

)
δ
(z1

w

)
δ

(
w

z2

)
ψ+

1,1(wq2)

= − [2]q δ
(z1

z

)
δ
(z2

w

)
δ

(
wq2

z1

)
ψ+

1,1(z) ,

thus proving the result. The case with lower choice of signs follows by applying ϕ.

Proposition 2.4.8. For every m ∈ Z, we have

i.
[
ψ+

1,1(z),X−1,m(v)
]

= −[2]qδ
(
Cz
v

)
℘−(C1/2q−2z)X−1,m+1(Cq−2z);

ii.
[
ψ+

1,1(z),X+
1,m(v)

]
G−10(z/vq2)G−11(z/v)

= [2]qδ
(

z
vq2

)
X+

1,m+1(z).

iii.
[
ψ−1,−1(z),X+

1,−m(v)
]

= [2]qδ
(
Cz
v

)
X+

1,−(m+1)(Cq
−2z)℘+(C1/2q−2z);

iv. G+
10(vq2/z)G+

11(v/z)

[
ψ−1,−1(z),X−1,−m(v)

]
= −[2]qδ

(
z
vq2

)
X−1,−(m+1)(z).

v.
[
ψ+

1,1(z),ψ−1,−1(v)
]

=
[2]q

q−q−1

[
δ
(
z
Cv

)
℘+(C−1/2q−2z)− δ

(
Cz
v

)
℘−(C−1/2q−2v)

]
.

Proof. i. and ii. are readily checked for m = 0. Then, assuming they hold for some m ∈ Z and applying

Y ±1, it follows from propositon 2.4.7 that they also hold for m± 1. iii. and iv. are obtained by applying

ϕ to i. and ii. respectively. Finally v. is obtained by direct calculation from the de�nitions of ψ+
1,1(z) and

ψ−1,−1(v), i.e.

δ

(
C−1/2q2w

z

)
δ

(
C1/2q−2u

v

)[
ψ+

1,1(z),ψ−1,−1(u)
]

=

[[
x+

0 (C−1/2w),x+
1 (z)

]
G−10(C−1/2w/z)

,
[
x−1 (u),x−0 (C−1/2v)

]
G+

10(C1/2u/v)

]
= [2]qδ

(
C−1/2q2v

u

){
δ
( z

Cu

) [
x+

0 (C−1/2w),x−0 (C−1/2v)k+
1 (C−1/2z)

]
G−10(C−1/2w/z)

−δ
(
Cw

v

)[
k−0 (C−1v)x−1 (u),x+

1 (z)
]
G−10(C−1/2w/z)

}
=

[2]q
q − q−1

δ

(
C1/2q−2u

v

)
δ

(
C−1/2q2w

z

){
δ
( z

Cu

)
k+

0 (C−1w)k+
1 (C−1/2z)

−δ
(
Cz

u

)
k−0 (C−1v)k−1 (C−1/2u)

}
.

Compare with (2.4.5) to conclude the proof.

De�nition-Proposition 2.4.9. For every m ∈ N× there exist ψ+
1,m(z),Γ+

m(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]], such

that

Γ+
1 (v) = 0 (2.4.9)
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and, for every m,n ∈ N×,[
Y m

(
k−1 (z)−1x−1 (C1/2z)

)
,x+

1 (v)
]
G−01(z/C1/2v)

= −δ
( z

C1/2v

)
Γ+
m(v)

+(q − q−1)
m−2∑
k=1

δ

(
q2kz

C1/2v

)
ψ+

1,k(v)Γ+
m−k(v)

−δ
(
q2mz

C1/2v

)
ψ+

1,m(v) , (2.4.10)

Y
(
ψ+

1,m(v)
)

= ψ+
1,m(v) , (2.4.11)

Y
(
Γ+
m(v)

)
= Γ+

m(vq2) , (2.4.12)

G−01(q−2mv/w)G−11(q2(1−m)v/w)

[
ψ+

1,1(w),ψ+
1,m(v)

]
G−01(w/vq2)G−11(w/v)

= [2]qδ

(
w

vq2

)
ψ+

1,m+1(q2v)

−[2]qδ

(
q2mw

v

)
ψ+

1,m+1(v) ,(2.4.13)

[ψ+
1,n(w),Γ+

m(v)] = 0 . (2.4.14)

Proof. It su�ces to prove the proposition with n = 1 since the general case follows by an easy recursion

on n once we have (3.3.82). The proof for n = 1 is by recursion on m. For m = 1, (2.4.9) and (2.4.10)

are de�nition-proposition 2.4.3, whereas (2.4.11) is proposition 2.4.7. (2.4.12) and (2.4.14) � with n = 1 �

automatically follow from (2.4.9). Making use of propsition 2.4.8, it is straightforward to prove that, for

every m ∈ N×,

[2]qδ

(
z

uq2

)
Y −1

([
Y m+1

(
k−1 (C−1/2v)−1x−1 (v)

)
,x+

1 (uq2)
]
G−01(C−1q−2v/u)

)
− [2]qδ

(
Cz

v

)[
Y m+1

(
k−1 (C1/2q−2z)−1x−1 (Cq−2z)

)
,x+

1 (u)
]
G−01(z/uq2)

(2.4.15)

= G−10(v/Cz)G−11(vq2/Cz)

[
ψ+

1,1(z),
[
Y m

(
k−1 (C−1/2v)−1x−1 (v)

)
,x+

1 (u)
]
G−01(C−1v/u)

]
G−10(z/uq2)G−11(z/u)

.

If m = 1, (3.3.82) is an easy consequence of the above equation. Now assume that the proposition holds
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up to some m ∈ N×. Then (2.4.15) reads, for that m,

[2]qδ

(
z

uq2

)
Y −1

([
Y m+1

(
k−1 (C−1/2v)−1x−1 (v)

)
,x+

1 (uq2)
]
G−01(C−1q−2v/u)

)
− [2]qδ

(
Cz

v

)[
Y m+1

(
k−1 (C1/2q−2z)−1x−1 (Cq−2z)

)
,x+

1 (u)
]
G−01(z/uq2)

= −δ
( v

Cu

)
G−10(v/Cz)G−11(vq2/Cz)

[
ψ+

1,1(z),Γ+
m(u)

]
G−10(z/uq2)G−11(z/u)

+(q − q−1)
m−2∑
k=1

δ

(
q2kv

Cu

)
G−10(v/Cz)G−11(vq2/Cz)

[
ψ+

1,1(z),ψ+
1,k(u)

]
G−10(z/uq2)G−11(z/u)

Γ+
m−k(u)

−δ
(
q2mv

Cu

)
G−10(v/Cz)G−11(vq2/Cz)

[
ψ+

1,1(z),ψ+
1,m(u)

]
G−10(z/uq2)G−11(z/u)

= −[2]q(q − q−1)δ
( v

Cu

){
δ
( v

Cz

)
− δ

(
vq2

Cz

)}
ψ+

1,1(z)Γ+
m(u)

+[2]q(q − q−1)

m−2∑
k=1

δ

(
q2kv

Cu

){
δ

(
z

uq2

)
ψ+

1,k+1(uq2)− δ
(
zq2k

u

)
ψ+
k+1(u)

}
Γ+
m−k(u)

−[2]qδ

(
q2mv

Cu

){
δ

(
z

uq2

)
ψ+

1,m+1(uq2)− δ
(
zq2m

u

)
ψ+

1,m+1(u)

}
.

It immediately follows that (2.4.10) holds at rank m + 1, for some Γ+
m+1(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]] satisfying

(2.4.12). Considering (2.4.15) at rank m+ 1, and substituting the above results, we get

[2]qδ

(
z

uq2

)
Y −1

([
Y m+2

(
k−1 (C−1/2v)−1x−1 (v)

)
,x+

1 (uq2)
]
G−01(C−1q−2v/u)

)
− [2]qδ

(
Cz

v

)[
Y m+2

(
k−1 (C1/2q−2z)−1x−1 (Cq−2z)

)
,x+

1 (u)
]
G−01(z/uq2)

= −δ
( v

Cu

)
G−10(v/Cz)G−11(vq2/Cz)

[
ψ+

1,1(z),Γ+
m+1(u)

]
G−10(z/uq2)G−11(z/u)

+[2]q(q − q−1)
m−1∑
k=1

δ

(
q2kv

Cu

){
δ

(
z

uq2

)
ψ+

1,k+1(uq2)− δ
(
zq2k

u

)
ψ+
k+1(u)

}
Γ+
m+1−k(u)

−δ

(
q2(m+1)v

Cu

)
G−10(v/Cz)G−11(vq2/Cz)

[
ψ+

1,1(z),ψ+
1,m+1(u)

]
G−10(z/uq2)G−11(z/u)

.

It readily follows that, on one hand, there exists some ψ+
1,m+2(v) ∈ ¨̂Uq(sl2)[[v, v−1]] such that (3.3.82)

holds for m+ 1 and that, on the other hand,

(uq2 − z)(u− z)
[
ψ+

1,1(z),Γ+
m+1(u)

]
= 0 .

Since Y (Γ+
m+1(u)) = Γ+

m+1(uq2), we have that

(uq2(p+1) − z)(uq2p − z)
[
ψ+

1,1(z),Γ+
m+1(u)

]
= 0

for every p ∈ Z and, as a consequence, (2.4.14) holds for m + 1. Finally, (2.4.11) for m + 1 follows from

the corresponding case of (3.3.82), which concludes the proof.

61



Remark 2.4.10. Note that since [ψ+
1,n(z),Γ+

m(v)] = 0 for every m,n ∈ N×, we have that

ψ+
1,n,kΓ

+
m,l = Γ+

m,lψ
+
1,n,k ∈ Ωl−k ∩ Ωk−l , (2.4.16)

guaranteeing the convergence in ˙̂Uq(ȧ1) of each of the terms of the series ψ+
1,k(z)Γ

+
m−k(z) on the the r.h.s

of eq. (2.4.10).

De�nition 2.4.11. For every m ∈ N×, let

Γ−−m(z) = ϕ(Γ+
m(1/z)) and ψ−1,−m(z) = ϕ(ψ+

1,m(1/z)) . (2.4.17)

Then,

Corollary 2.4.12. We have

Γ−−1(v) = 0 (2.4.18)

and, for every m,n ∈ N×,[
x−1 (v), Y m

(
x+

1 (C1/2z)k+
1 (z)−1

)]
G+

01(C1/2v/z)
= −δ

( z

C1/2v

)
Γ−−m(v)

−(q − q−1)
m−2∑
k=1

δ

(
q2kz

C1/2v

)
Γ−−(m−k)(v)ψ−1,−k(v)

−δ
(
q2mz

C1/2v

)
ψ−1,−m(v) , (2.4.19)

Y
(
ψ−1,−m(v)

)
= ψ−1,−m(v) , (2.4.20)

Y
(
Γ−−m(v)

)
= Γ−−m(vq2) , (2.4.21)

G+
01(q2mw/v)G+

11(q2(m−1)w/v)

[
ψ−1,−m(v),ψ−1,−1(w)

]
G+

01(vq2/w)G+
11(v/w)

= [2]qδ

(
w

vq2

)
ψ−1,−(m+1)(q

2v)

−[2]qδ

(
q2mw

v

)
ψ−1,−(m+1)(v) ,(2.4.22)

[ψ−1,−n(w),Γ−−m(v)] = 0 . (2.4.23)

Proof. It su�ce to apply ϕ to the results of the previous proposition.

Proposition 2.4.13. For every i ∈ İ and for every m ∈ N×, we have

i. k−i (v)ψ±1,±m(z) = G∓i,0(C∓1/2q2mv/z)G∓i,1(C∓1/2v/z)ψ±1,±m(z)k−i (v);

ii. ψ±1,±m(z)k+
i (v) = G∓i,0(C∓1/2q−2mz/v)G∓i,1(C∓1/2z/v)k+

i (v)ψ±1,±m(z);

Proof. Clearly ii. follows by applying ϕ to i.. We prove i. by induction on m ∈ N×. The case m = 1 is

corollary 2.4.5i. Now, assuming that i. holds for some m ∈ N×, we can make use of (3.3.82) and (2.4.22)
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to show that

k−i (v)ψ±1,±(m+1)(z) = G∓i,0(C∓1/2q2(m+1)v/z)G∓i,1(C∓1/2q2mv/z)

×G∓i,0(C∓1/2q2mv/z)G∓i,1(C∓1/2z/v)ψ±1,±m(z)k−i (v)

= G∓i,0(C∓1/2q2(m+1)v/z)G∓i,1(C∓1/2z/v)ψ±1,±m(z)k−i (v)

whch completes the recursion.

The above proposition has the obvious

Corollary 2.4.14. For every m ∈ N×, we have

℘−(v)ψ±1,±m(z) = G∓00(C∓1/2q2mv/z)G∓01(C∓1/2v/z)

G∓01(C∓1/2q2(m+1)v/z)G∓11(C∓1/2q2v/z)ψ±1,±m(z)℘−(v) ;(2.4.24)

ψ±1,±m(z)℘+(v) = G∓00(C∓1/2q−2mz/v)G∓01(C∓1/2z/v)

G∓01(C∓1/2q−2(m+1)z/v)G∓11(C∓1/2q−2z/v)℘+(v)ψ±1,±m(z) .(2.4.25)

Proposition 2.4.15. For every m,n ∈ N×, we have

[
ψ+

1,m(v),ψ−1,−n(w)
]

= [2]q (q − q−1)

{
δ

(
Cq2(1−m)v

w

)
℘−(C−1/2q−2mv)ψ−1,−(n−1)(wq

−2)ψ+
1,m−1(v)

−δ

(
q2(n−1)v

Cw

)
ψ−1,−(n−1)(w)ψ+

1,m−1(vq−2)℘+(C1/2q−2v)

}
,

where we assume that

ψ±1,0(z) =
1

q − q−1
. (2.4.26)

Proof. The case m = n = 1 follows immediately by proposition 2.4.8.v. Now, applying a 7→ [a,ψ−1,−n(w)]

and a 7→ [ψ+
1,n(w), a] to (3.3.82) and (2.4.22) respectively and making use of corollary 2.4.14, one easily

completes the recursion.

2.4.2 Exchange relations

Proposition 2.4.16. For every m ∈ N, there exists some ξm(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]] such that, for every

n ∈ Z,

[X−1,m+n+1(w),X−1,n(z)]G−01(w/z) = −[X−1,n+1(w),X−1,m+n(z)]G−01(w/z) = δ

(
wq2

z

)
Y n (ξm(z)) . (2.4.27)

Proof. Assume �rst that n = 0. The case m = 0 then follows immediately from the de�nition of X−1,1(w)

and relations (4.2.7) and (4.2.9), leading to ξ0(z) = 0, as it should. Taking the commutator of the case
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m = 0 with ψ+
1,1(v), we get

0 = [[X−1,1(w),X−1,0(z)]G−01(w/z),ψ
+
1,1(v)]

= [[X−1,1(w),ψ+
1,1(v)],X−1,0(z)]G−01(w/z) + [X−1,1(w), [X−1,0(z),ψ+

1,1(v)]]G−01(w/z)

= [2]q℘
−(v)

{
δ

(
C1/2q2v

w

)
[X−1,2(wq−2),X−1,0(z)]G−01(wq−2/z)

+δ

(
C1/2q2v

z

)
G−01(zq−2/w)G−11(z/w)[X

−
1,1(w),X−1,1(zq−2)]G−01(w/z)

}
.

The latter implies that

[X−1,2(wq−2),X−1,0(z)]G−01(wq−2/z) = δ
(w
z

)
ξ1(z) , (2.4.28)

G−01(zq−2/w)G−11(z/w)[X
−
1,1(w),X−1,1(zq−2)]G−01(w/z) = −δ

(w
z

)
ξ1(z) , (2.4.29)

for some ξ1(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. Multiplying (2.4.29) by (zq−2−w) and subsequently factoring (z−q−2w),

we get that

G−01(zq−2/w)[X
−
1,1(w),X−1,1(zq−2)] = δ

(w
z

)
ξ1(z) + δ

(
w

zq2

)
η0(z) , (2.4.30)

for some η0(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. Multiplying the above equation by q−2(z − w), we get

(zq−4 − w)X−1,1(w)X−1,1(zq−2)− q−2(z − w)X−1,1(zq−2)X−1,1(w) = z(1− q2)δ

(
w

zq2

)
η0(z) . (2.4.31)

But, on the other hand,

(zq−4 − w)X−1,1(w)X−1,1(zq−2)− q−2(z − w)X−1,1(zq−2)X−1,1(w)

= Y
(
(zq−4 − w)x−1 (w)x−1 (zq−2)− q−2(z − w)x−1 (zq−2)x−1 (w)

)
= 0

by relation (4.2.8). Substituting back into (2.4.31) proves that η0(z) = 0 and that (2.4.30) eventually

reads

G−01(zq−2/w)[X
−
1,1(w),X−1,1(zq−2)] = δ

(w
z

)
ξ1(z) . (2.4.32)

Combining (2.4.28) and (2.4.32), we get the case m = 1. Now assume that the result holds for all
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nonnegative integer less than m ∈ N. Taking the commutator of (2.4.27) with ψ+
1,1(v) yields

[2]q℘
−(v)

{
δ

(
C1/2q2v

w

)
[X−1,m+2(wq−2),X−1,0(z)]G−01(wq−2/z)

+δ

(
C1/2q2v

z

)
G−01(zq−2/w)G−11(z/w)[X

−
1,m+1(w),X−1,1(zq−2)]G−01(w/z)

}

= −[2]q℘
−(v)

{
δ

(
C1/2q2v

w

)
[X−1,2(wq−2),X−1,m(z)]G−01(wq−2/z)

+δ

(
C1/2q2v

z

)
G−01(zq−2/w)G−11(z/w)[X

−
1,1(w),X−1,m+1(zq−2)]G−01(w/z)

}

= δ

(
wq2

z

)
[ξm(z),ψ+

1,1(v)]

The latter implies that

[X−1,m+2(wq−2),X−1,0(z)]G−01(wq−2/z) = δ
(w
z

)
ξm+1(z) + δ

(
wq2

z

)
η1(z) , (2.4.33)

G−01(zq−2/w)G−11(z/w)[X
−
1,m+1(w),X−1,1(zq−2)]G−01(w/z) = −δ

(w
z

)
ξm+1(z) + δ

(
wq2

z

)
η1(z) , (2.4.34)

[X−1,2(wq−2),X−1,m(z)]G−01(wq−2/z) = δ
(w
z

)
η3(z)− δ

(
wq2

z

)
η1(z) , (2.4.35)

G−01(zq−2/w)G−11(z/w)[X
−
1,1(w),X−1,m+1(zq−2)]G−01(w/z) = −δ

(w
z

)
η3(z)− δ

(
wq2

z

)
η2(z) , (2.4.36)

for some ξm+1(z), η1(z), η2(z), η3(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. Multiplying (2.4.36) by (z−wq2) and subsequently

factoring (zq2 − w), we get that

[X−1,m+1(z),X−1,1(w)]G−01(z/w) = −δ
(
w

zq2

)
η3(w) + δ

(
w

zq4

)
η4(z) , (2.4.37)

for some η4(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. But, by the recursion hypothesis,

[X−1,m+1(z),X−1,1(w)]G−01(z/w) = Y
(

[X−1,m(z),X−1,0(w)]G−01(z/w)

)
= δ

(
w

zq2

)
Y (ξm−1(w)) .

Comparing with (2.4.37), it follows that

η3(w) = −Y (ξm−1(w)) and η4(z) = 0 .

By the recursion hypothesis, we also have

[X−1,2(wq−2),X−1,m(z)]G−01(wq−2/z) = Y
(

[X−1,1(wq−2),X−1,m−1(z)]G−01(wq−2/z)

)
= −δ

(w
z

)
Y (ξm−1(z))

= δ
(w
z

)
η3(z)

Comparing the above result with (2.4.35), we conclude that η1(z) = 0. As a consequence, (2.4.33) now
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reads

[X−1,m+2(w),X−1,0(z)]G−01(w/z) = δ

(
wq2

z

)
ξm+1(z) . (2.4.38)

On the other hand, multiplying (2.4.34) by (z − wq2) and subsequently factoring (zq2 − w), we get that

G−01(zq−2/w)[X
−
1,m+1(w),X−1,1(zq−2)] = δ

(w
z

)
ξm+1(z) + δ

(
w

zq2

)
η5(z) , (2.4.39)

for some η5(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. Multiplying the above equation by (z − w) yields

Y
(

(zq−2 − wq2)X−1,m(w)X−1,0(zq−2)− (z − w)X−1,0(zq−2)X−1,m(w)
)

= z(1− q2)δ

(
zq2

w

)
η5(z) . (2.4.40)

But the recursion hypothesis

[X−1,m(w),X−1,0(zq−2)]G−01(wq2/z) = δ

(
wq4

z

)
ξm−1(z) (2.4.41)

implies, upon multiplication by (zq−2 − wq2), that

(zq−2 − wq2)X−1,m(w)X−1,0(zq−2)− (z − w)X−1,0(zq−2)X−1,m(w) = 0 . (2.4.42)

Substituting back into (2.4.40) proves that η5(z) = 0 and that (2.4.39) eventually reads

G−01(w/z)[X
−
1,m+1(z),X−1,1(w)] = δ

(
wq2

z

)
ξm+1(z) . (2.4.43)

Combining (2.4.38) and (2.4.43) completes the recursion and the result holds for any m ∈ N, assuming

n = 0. The cases n ∈ Z× are then obtained by applying Y n to the case n = 0.

Corollary 2.4.17. For every m ∈ N and every n ∈ Z, we have

[X+
1,m+n+1(z),X+

1,n(w)]G+
01(z/w) = −[X+

1,n+1(z),X+
1,m+n(w)]G+

01(z/w) = δ

(
wq2

z

)
ϕ ◦ Y −m−n−1 (ξm(1/z)) .

(2.4.44)

Proof. It su�ces to apply ϕ ◦ Y −m−n−1 to (2.4.27).

We now return to the proof of theorem 3.3.22 and to the map Ψ : U̇q(ȧ1)→ ̂̈U′q(a1).

Corollary 2.4.18. We have

i. Υ±(w) = 0;

ii. and for every i 6= j,

∑
σ∈S3

3∑
k=0

(−1)k
(

3

k

)
q

Ψ(x±i (zσ(1))) · · ·Ψ(x±i (zσ(k)))Ψ(x±j (z))Ψ(x±i (zσ(k+1))) · · ·Ψ(x±i (zσ(3))) = 0 .

Proof. The proof of proposition 2.4.16 makes it clear that the relations (4.2.9) with i 6= j there, both

follow from the relations [
X+

1,0(v),X+
1,−1(w)

]
G−11(v/w)

= 0 (2.4.45)
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and [
X−1,1(v),X−1,0(w)

]
G+

11(v/w)
= 0 (2.4.46)

in the completion ˙̂Uq(ȧ1). A tedious but straightforward calculation shows that the quantum Serre relations

(4.2.10) similarly follow from [
X+

1,−1(v),X+
1,−2(w)

]
G−11(v/w)

= 0 (2.4.47)

and [
X−1,2(v),X−1,1(w)

]
G+

11(v/w)
= 0 , (2.4.48)

which in turn are a consequence of ((2.4.45) � (2.4.46)) � just apply Y there. We can therefore extend

Ψ : U̇q(ȧ1) → ̂̈U′q(a1) by continuity 1 into Ψ̂ : ˙̂Uq(ȧ1) → ̂̈U′q(a1) and it su�ces to check point i. Since by

construction U̇q(ȧ1) is dense in ˙̂Uq(ȧ1), there exists a sequence (un(v, w))n∈N ∈ U̇q(ȧ1)[[v, v−1, w, w−1]]N

such that

lim
n→+∞

un(v, w) = 0 , (2.4.49)

whereas, on the other hand,

lim
n→+∞

Ψ̂(un(v, w)) = δ

(
vq∓2

w

)
Υ±(w) . (2.4.50)

Take for example the partial sum of the series involved on the l.h.s. of equations ((2.4.45) � (2.4.46))

above. The result now follows by the continuity of Ψ̂.

Remark 2.4.19. We have therefore completed the proof of that part of theorem 3.3.22 that claims the

existence of a continuous algebra homomorphism Ψ̂ : ˙̂Uq(ȧ1) → ̂̈U′q(a1). We still have to construct the

inverse continuous algebra homomorphism Ψ̂−1 : ̂̈U′q(a1) → ˙̂Uq(ȧ1). This shall be done at the end of the

present section.

2.4.3 Weight grading relations

The results of the previous subsection have the following

Corollary 2.4.20. For every m ∈ N× and every n ∈ Z, we have:

i. [Γ+
m+1(u),X−1,n(z)] = 0;

ii. [ψ+
1,m+1(u),X−1,n(z)] = −℘−(C1/2uq−2(m+1))G+

01(Cuq2(1−m)/z)[X
−
1,n+1(zq−2),ψ+

1,m(u)]G−01(z/Cuq2(1−m)) ∝

δ
(

Cu
zq2m

)
;

iii. [Γ+
m+1(u),X+

1,n(z)] = 0;

iv. [ψ+
1,m+1(v),X+

1,n(z)]G+
01(v/z)G+

11(v/zq2(m+1)) = −G−01(z/vq2m)[X
+
1,n+1(v),ψ+

1,m(z)]G+
01(v/z) ∝ δ

(
zq2

v

)
.

Proof. It su�ces to prove the proposition for n = 0 as the general case then follows by applying Y n for

any n ∈ Z. Assuming that n = 0 in i. and ii., it then su�ces to take the commutator of (2.4.27) � for

n = 1 there � with x+
1 (z).

1Ψ is obviously Z(2)-graded, hence continuous.
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Remark 2.4.21. It turns out the, for every m ∈ N×, Γ+
m(z) ∈ Z( ˙̂Uq(ȧ1))[[z, z−1]]. Indeed, in the next

section we actually establish that these central elements consistently vanish.

2.4.4 The central elements Γ±m>2(z)

Before we can actually establish that these central elements vanish, we need to establish a few lemmas. In what

follows, we let U̇<
q (ȧ1) = U̇≤q (ȧ1)− U̇≤q (ȧ1) ∩ U̇0

q(ȧ1).

Lemma 2.4.22. For every p ∈ N×,

i. ∆(ψ−1,−p(v)) = 1⊗ψ−1,−p(v) mod U̇<
q (ȧ1)⊗̂U̇q(ȧ1);

ii. ∆(X+
1,−p(v)) =

∏p−1
`=1 Γ+

0 (C−1/2q2`v)−1k+
0 (C−1/2v)−1⊗̂X+

1,−p(v) mod U̇<
q (ȧ1)⊗̂U̇q(ȧ1).

Proof. First one easily checks that

∆(ψ−1,−1(z)) = 1⊗ψ−1,−1(z) + [2]q (q − q−1)x−1 (z)⊗̂x−0 (q−2z)k+
1 (z) +ψ−1,−1(z)⊗̂℘+(q−2z) ,

which proves i. for p = 1. Assuming i. holds for some p ∈ N, the result for p+ 1 easily holds making use

of (2.4.22) and of the recursion hypothesis.

Similarly, one easily checks that

∆(X+
1,−1(v)) = X+

1,−1(v)⊗ 1 + k+
0 (C−1/2v)−1⊗̂X+

1,−1(v) ,

which proves ii. in the case p = 1. Assuming the result holds for some p ∈ N, the result for p + 1 easily

follows making use of proposition 2.4.8.iii. and of the recusrion hypothesis.

For every N ∈ N×, we let

S<2N−1 := {σ ∈ S2N−1 : σ(1) = 1

∀p ∈ JN − 1K σ(2p) < σ(2p+ 1)

σ(2N − 4) < σ(2N − 1)} (2.4.51)

De�ne $ : Z→ İ = {0, 1} by setting, for every n ∈ Z,

$(n) :=

0 if n is even;

1 if n is odd.
(2.4.52)

Lemma 2.4.23. For every r ∈ N and every i1, . . . , i2r−1 ∈ İ, there exists (βr,σ)σ∈S<2r−1
∈ FS

<
2r−1 such that

〈
x+
i1

(z1) . . .x+
i2r−1

(z2r−1),X+
1,−r(v)

〉
= −

[2]r−1
q

q − q−1

∑
σ∈S<2r−1

βr,σ

2r−1∏
n=1

δiσ(n),π(n)δ

(
zσ(n)q

νr(n)

v

)
(2.4.53)

where we have de�ned π : N→ İ and νr : N→ Z by setting, for every n ∈ N,

π(n) =

0 if n = 1;

$(m) if n > 1
(2.4.54)
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and

νr(n) =

2(1− r) if n = 1;

2(1− r) + n− 3$(n) if n > 1.
(2.4.55)

Proof. The case r = 0 holds by de�nition of the pairing. Assume that (2.4.53) holds for some r ∈ N.
Then, making use of the previous lemma, one easily shows that, for every i1, . . . , i2r+1 ∈ İ〈

x+
i1

(z1) . . .x+
i2r+1

(z2r+1),
[
ψ−1,−1(z),X+

1,−r(v)
]〉

=
[2]q

q − q−1

∑
A∈P(2,2r−1)

J2r+1K

∏
m∈J2K

δi
A
(1)
m
,1−$(m)δ

(
z
A

(1)
m
q2$(m)

z

)〈
x+
i
A
(2)
1

(z
A

(2)
1

) . . .x+
i
A
(2)
2r−1

(z
A

(2)
2r−1

),X+
1,−r(v)

〉

×
{
R<A(zA)−G+

i
A
(1)
1

,0(C−1/2z
A

(1)
1

/v)G+
i
A
(1)
2

,0(C−1/2z
A

(1)
2

/v)R>A(z−1
A )

}
,

where

R<A(zA) =
∏
m∈J2K

n∈J2r−1K
A

(2)
n <A

(1)
m

G−i
A
(2)
n
,i
A
(1)
m

(C−1/2z
A

(2)
n
/z
A

(1)
m

) ;

R>A(z−1
A ) =

∏
m∈J2K

n∈J2r−1K
A

(2)
n >A

(1)
m

G−i
A
(2)
n
,i
A
(1)
m

(C1/2z
A

(1)
m
/z
A

(2)
n

) .

Making use of proposition 2.4.8.iii. on the l.h.s. and of the recursion hypothesis on the r.h.s., we get

[2]q δ

(
Cz

v

)〈
x+
i1

(z1) . . .x+
i2r+1

(z2r+1),X+
1,−(r+1)(vq

−2)
〉

= −
[2]rq

(q − q−1)2

∑
A∈P(2,2r−1)

J2r+1K

σ∈S<2r−1

βr,σ
∏
m∈J2K

δi
A
(1)
m
,1−$(m)δ

(
z
A

(1)
m
q2$(m)

z

) ∏
n∈J2r−1K

δi
A
(2)
σ(n)

,π(n)δ

zA(2)
σ(n)

qνr(n)

v



×
{
Q<σ,A(v/z)−G+

0,0(C−1/2zq−2/v)G+
1,0(C−1/2z/v)Q>σ,A(z/v)

}
, (2.4.56)

where

Q<σ,A(v/z) =
∏
m∈J2K

n∈J2r−1K
A

(2)
σ(n)

<A
(1)
m

G−π(n),1−$(m)(C
−1/2vqλr(m,n)/z) ;

and

Q>σ,A(z/v) =
∏
m∈J2K

n∈J2r−1K
A

(2)
σ(n)

>A
(1)
m

G−π(n),1−$(m)(C
1/2z/vqλr(m,n)) ;

where λr(m,n) = 2$(m) − νr(n). In view of the δ(Cz/v) factor on the l.h.s of (2.4.56), it is clear that

the relevant factors in Q<σ,A(v/z) and Q>σ,A(z/v) are the ones contributing to a pole at Cz = v, i.e. the

ones for which λr(m,n) = cπ(n),1−$(m) or λr(m,n) = −cπ(n),1−$(m) respectively. We thus let

L±r :=
{

(m,n) ∈ J2K× J2r − 1K : λr(m,n) = ±cπ(n),1−$(m)

}
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and determine, by inspection, that, for every r ≥ 3,

L+
r = {(1, 2r − 2), (2, 2r − 3)} , whereas L−r = {(2, 2r − 4)} .

Since we cannot have A
(2)
σ(2r−4) > A

(1)
2 while A

(2)
σ(2r−3) < A

(1)
2 for σ ∈ S<2r−1, we see that the relevant pole is

necessarily a simple pole; as one might have expected, given the absence of a δ′(Cz/v) factor on the l.h.s

of (2.4.56). It easily follows that

{
Q<σ,A(v/z)−G+

0,0(C−1/2zq−2/v)G+
1,0(C−1/2z/v)Q>σ,A(z/v)

}
= [2]q (q − q−1)γσ,Aδ

(
Cz

v

)

for every (σ,A) ∈ S<2r−1 × P
(2,2r−1)
J2r+1K such that A

(2)
σ(2r−2) < A

(1)
1 and either:

� A
(2)
σ(2r−4) > A

(1)
2 (and then necessarily, A

(2)
σ(2r−3) > A

(1)
2 ); or

� A
(2)
σ(2r−4) < A

(1)
2 and A

(2)
σ(2r−3) < A

(1)
2 ;

and, for each such pair (σ,A), γσ,A ∈ F. Note that the above conditions impose that A
(2)
σ(1)=1 < A

(1)
1 and

hence A
(2)
1 = 1. Now, for each pair (σ,A) as above, de�ne

σ′ :=

(
1 2 . . . 2r − 1 2r 2r + 1

1 A
(2)
σ(2) . . . A

(2)
σ(2r−1) A

(1)
1 A

(1)
2

)
.

It is obvious that σ′ ∈ S<2r+1. Actually, setting (σ,A) 7→ σ′ de�nes a map S<2r−1×P
(2,2r−1)
J2r+1K → S<2r+1 which

is easily seen to be a bijection. Observing furthermore that νr − 2 = νr+1 and setting βr+1,σ′ = βr,σγσ,A,

we can rewrite (2.4.56) as

〈
x+
i1

(z1) . . .x+
i2r+1

(z2r+1),X+
1,−(r+1)(v)

〉
= −

[2]rq
q − q−1

∑
σ′∈S<2r+1

βr+1,σ′

2r+1∏
n=1

δiσ′(n),π(n)δ

(
zσ′(n)q

νr+1(n)

v

)
,

which completes the recursion.

Proposition 2.4.24. For every m ∈ N×, we actually have Γ+
m(v) = Γ−−m(v) = 0.

Proof. It su�ces to prove that, say Γ−−m(z) = 0 for every m ∈ N× and to apply ϕ−1 to get the result for

Γ+
m(z). Considering the root space decomposition, it is obvious that having

〈
x+
i1

(z1) · · ·x+
i2m

(z2m),Γ−−m(z)
〉

= 0 ,

for every i1, . . . , i2m ∈ I, is a su�cient condition. Now, making use of the previous lemma, one easily
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shows that 〈
x+
i1

(z1) · · ·x+
i2m

(z2m),
[
X+

1,−m(v),x−1 (z)
]〉

= −
[2]q

(q − q−1)2

∑
A∈P(1,2m−1)

J2mK

σ∈S<2m−1

βm,σδi
A
(1)
1

,1δ

(z
A

(1)
1

z

) ∏
n∈J2m−1K

δi
A
(2)
n
,π(n)δ

zA(2)
σ(n)

qνm(n)

v



×
{
G+
i
A
(1)
1

,0(C1/2z
A

(1)
1

/v)R<A(zA)−R>A(z−1
A )

}
,

where

R<A(zA) =
∏

n∈J2m−1K
A

(2)
n >A

(1)
1

G−i
A
(1)
1

,i
A
(2)
n

(C−1/2z
A

(1)
1

/z
A

(2)
n

) ,

R>A(z−1
A ) =

∏
n∈J2m−1K
A

(2)
n <A

(1)
1

G−i
A
(1)
1

,i
A
(2)
n

(C1/2z
A

(2)
n
/z
A

(1)
1

) .

Hence, upon rewriting, we get〈
x+
i1

(z1) · · ·x+
i2m

(z2m),
[
X+

1,−m(v),x−1 (z)
]〉

= −
[2]q

(q − q−1)2

∑
A∈P(1,2m−1)

J2mK

σ∈S<2m−1

βm,σδi
A
(1)
1

,1δ

(z
A

(1)
1

z

) ∏
n∈J2m−1K

δi
A
(2)
n
,π(n)δ

zA(2)
σ(n)

qνm(n)

v



×
{
G+

1,0(C1/2z/v)Q<σ,A(z/v)−Q>σ,A(v/z)
}
,

where

Q<σ,A(z/v) =
∏

n∈J2m−1K
A

(2)
σ(n)

>A
(1)
1

G−1,π(n)(C
−1/2zqνm(n)/v) ,

Q>σ,A(v/z) =
∏

n∈J2m−1K
A

(2)
σ(n)

<A
(1)
1

G−1,π(n)(C
1/2vq−νm(n)/z) .

In view of (2.4.19), the contributions to
〈
x+
i1

(z1) · · ·x+
i2m

(z2m),Γ−−m(z)
〉
in the above expression must come

from terms with a pole at z = C1/2v. The latter happen for factors in Q<σ,A(z/v) or Q>σ,A(v/z) such that

νm(n) = c1,π(n) or νm(n) = −c1,π(n) respectively. We thus let

M±m = {n ∈ J2m− 1K : νm(n) = ±c1,π(n)} .

Upon inspection, one easily sees that

M+
m = {2m− 4} , whereas M−m = {2m− 1} .

Now, for σ ∈ S<2m−1, we have σ(2m− 4) < σ(2m− 1) and no term has a pole at z = C1/2v. We conclude

that
〈
x+
i1

(z1) · · ·x+
i2m

(z2m),Γ−−m(z)
〉

= 0.
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2.4.5 Relations in Ψ−1(Ü0
q(a1))

De�nition 2.4.25. We set K+
1,0(v) := −k−1 (C1/2v) and, for every m ∈ N×,

K+
1,m(v) := (q − q−1)k−1 (C1/2vq−2m)ψ+

1,m(v) .

We then let

K−1,0(v) := ϕ
(
K+

1,0(1/v)
)

= −k+
1 (C1/2v)

and, for every m ∈ N×,

K−1,−m(v) := ϕ
(
K+

1,m(1/v)
)

= −(q − q−1)ψ−1,−m(v)k+
1 (C1/2vq−2m) .

It is straigthforward to establish that

k−1 (C1/2w)ψ+
1,m(v) = G+

11

(
wq2m

v

)
G−11

(w
v

)
ψ+

1,m(v)k−1 (C1/2w) . (2.4.57)

By making repeated use of the above relation, one readily checks that, in terms of (K+
1,m(v))m∈N× , the relations

(2.4.10) and (3.3.82), as well as the relations in corollary 2.4.20ii. and iv. of the previous subsections respectively

read

[x+
1 (v),X−1,n(z)] =

1

q − q−1
δ

(
zq2n

Cv

)n−1∏
p=0

Γ−0 (C−1/2zq2p)−1

K+
1,n(v) (2.4.58)

[K+
1,1(w),K+

1,m(v)]G−11(w/v)G+
11(wq2(m−1)/v) = [2]q

{
δ

(
wq2m

v

)
K+

1,0(vq−2m)K+
1,m+1(v)

−δ
(
w

vq2

)
K+

1,0(v)K+
1,m+1(vq2)

}
(2.4.59)

[K+
1,m+1(v),X−1,n(z)]G+

11(Cv/zq2(m+1)) = −Γ−0 (C1/2vq−2(m+1))[X−1,n+1(zq−2),K+
1,m(v)]G+

11(zq2(m−1)/Cv)

∝ δ

(
zq2m

Cv

)
(2.4.60)

[K+
1,m+1(v),X+

1,n(z)]G−11(v/z) = −[X+
1,n+1(v),K+

1,m(z)]G−11(v/z) ∝ δ
(
zq2

v

)
(2.4.61)

Proposition 2.4.26. For every m,n ∈ N, we have

(v−q±2z)(v−q2(m−n∓1)z)K±1,±m(v)K±1,±n(z) = (vq±2−z)(vq∓2−q2(m−n)z)K±1,±n(z)K±1,±m(v) , (2.4.62)

Proof. We apply the map a 7→ [a,X−1,n(u)]G+
11(Cv/uq2(m+1)) to the relation (2.4.61) with n = 0 there. Making
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use of identity (2.1.2) on the left hand side, we get

[[K+
1,m+1(v),X−1,n(u)]G+

11(Cq−2(m+1)v/u)︸ ︷︷ ︸
∝δ
(
C−1uq2m

v

)
,x+

1 (z)]G+
10(v/z)

+
[
K+

1,m+1(v),
[
x+

1 (z),X−1,n(u)
]]
G+

10(v/z)G+
11(Cq−2(m+1)v/u)

∝ δ
(
zq2

v

)
Multiplying through by

(
C−1uq2m − v

) (
zq2 − v

)
and making use of (2.4.58), it follows that

0 =
(
C−1uq2m − v

) (
zq2 − v

)
δ

(
uq2n

Cz

)[
K+

1,m+1(v),K+
1,n(z)

]
G+

10(v/z)G+
11(Cq−2(m+1)v/u)

=
(
zq2(m−n) − v

) (
zq2 − v

)
δ

(
uq2n

Cz

)[
K+

1,m+1(v),K+
1,n(z)

]
G+

10(v/z)G+
11(q2(n−m−1)v/z)

Hence the result for the upper choice of signs in (2.4.62). The case with lower choice of signs follows by

applying ϕ to the above equation.

At this point it should be clear that we have obtained Ψ−1. Indeed, it su�ces to let, for every m ∈ N and

every n ∈ Z,
Ψ−1(D±1

2 ) = D±1 (2.4.63)

Ψ−1(C±1/2) = C±1/2 (2.4.64)

Ψ−1(c±(z)) = Γ±0 (z) (2.4.65)

Ψ−1(K±1,±m(z)) = K±1,±m(z) (2.4.66)

Ψ−1(X±1,n(z)) = X±1,n(z) (2.4.67)

The relations in Ü′q(a1) are obviously all the relations we have derived in the present section. Ψ−1 therefore

extends as an algebra homomorphism. This concludes the proof of theorem 3.3.22.

Returning to the proof of proposition 3.3.18, it is also clear that

f(ψ±(z)) = (q2 − q−2)2Ψ(℘±(C1/2zq−2)) (2.4.68)

f(e±(z)) = Ψ(ψ±1,±1(z)) (2.4.69)

Therefore ((2.3.43) � (2.3.44)) follow from proposition 2.4.8.v. In order to complete the proof of proposition

3.3.18, we still have to prove the compatibility of f with the Serre relations (3.3.40) of Eq1,q2,q3 . This is the

purpose of the next section.

2.4.6 The Serre relations of the elliptic Hall algebra

By the compatibility of f with (3.3.40), we actually mean that we should have, for every m ∈ Z,

res
v,w,z

(vwz)m(v + z)(w2 − vz)f(e±(v))f(e±(w))f(e±(z)) = 0 . (2.4.70)
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Now we have already identi�ed f(e±(z)) with Ψ(ψ±1,±1(z)) in (2.4.69) above. The latter means that proving

(2.4.70) is equivalent to proving

Proposition 2.4.27. For every m ∈ Z, we have

res
v1,v2,v3

(v1v2v3)m(v1 + v3)(v2
2 − v1v3)ψ±1,±1(v1)ψ±1,±1(v2)ψ±1,±1(v3) = 0 . (2.4.71)

Proof. The upper choice of signs immediately follows from the lower one upon applying ϕ. Moreover,

considering the root space decomposition, it is clear that having

res
v1,v2,v3

(v1v2v3)m(v1 + v3)(v2
2 − v1v3)

〈
x+
i1

(z1) . . .x+
i6

(z6),ψ−1,−1(v1)ψ−1,−1(v2)ψ−1,−1(v3)
〉

= 0

for every i1, . . . , i6 ∈ İ is a su�cient condition for the result to hold. Now, making use of lemma 2.4.22,

one easily obtains that〈
x+
I1

(z1) . . .x+
i6

(z6),ψ−1,−1(v1)ψ−1,−1(v2)ψ−1,−1(v3)
〉

=

(
[2]q

q − q−1

)3 ∑
A∈P(2,2,2)

J6K

3∏
p=1

∏
m∈A(p+1)t···tA(3)

n∈A(p)

n>m

2∏
k=1

δi
A
(p)
k

,$(k)
δ

zA(p)
k

q$(k)

vk

G−im,in(C−1/2zm/zn) .

There is obviously an action of S3 on P
(2,2,2)
J6K given by setting σ(A) = (A(σ(1)), A(σ(2)), A(σ(3))) for every

σ ∈ S3 and every A ∈ P
(2,2,2)
J6K . It is also quite clear that

P
(2,2,2)
J6K

S3

∼= T
(2,2,2)
J6K ,

where

T
(2,2,2)
J6K :=

{
A ∈ P

(2,2,2)
J6K : A

(1)
1 < A

(2)
1 < A

(3)
1

}
.

For every triple n = {n1, n2, n3} ⊂ J6K, we further let

T
(2,2,2)
J6K (n) :=

{
A ∈ T

(2,2,2)
J6K :

{
A

(p)
2 : p ∈ J3K

}
= n

}
.

With these notations in place, we can now write

res
v1,v2,v3

(v1v2v3)m(v1 + v3)(v2
2 − v1v3)

〈
x+
I1

(z1) . . .x+
i6

(z6),ψ−1,−1(v1)ψ−1,−1(v2)ψ−1,−1(v3)
〉

=

(
[2]q

q − q−1

)3 ∑
n⊂J6K

cardn=3

zmn δiJ6K−n,1δin,0
∑

A∈T(2,2,2)
J6K (n)

3∏
p=1

δ

(
z
A

(p)
1

q2

z
A

(p)
2

)
cA ,

where, by de�nition,

zmn =
3∏
i=1

zmni , δin,0 =
3∏
j=1

δinj ,0 , δiJ6K−n,1 =
∏

m∈J6K−n

δim,1 (2.4.72)
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cA =
∑
σ∈S3

F (z
A

(σ(1))
2

, z
A

(σ(2))
2

, z
A

(σ(3))
2

)
∏

1≤p′<p≤3

HA,σ,p,p′(zA(σ(p))
2

/z
A

(σ(p′))
2

) (2.4.73)

F (x, y, z) = (x+ z)(y2 − xz) (2.4.74)

HA,σ,p,p′(zA(σ(p))
2

/z
A

(σ(p′))
2

) =

2∏
k,k′=1

G−$(k),$(k′)(C
−1/2q2(k−k′)z

A
(σ(p))
2

/z
A

(σ(p′))
2

)ε(A,σ,p,p
′,k,k′) (2.4.75)

ε(A, σ, p, p′, k, k′) =

1 if A
(σ(p))
k < A

(σ(p′))
k′ ;

0 otherwise.
(2.4.76)

Denoting each A ∈ T
(2,2,2)
J6K as the tableau

A
(1)
1 A

(2)
1 A

(3)
1

A
(1)
2 A

(2)
2 A

(3)
2

,

one easily checks that, actually,

T
(2,2,2)
J6K = T

(2,2,2)
J6K ({2, 4, 6}) t T

(2,2,2)
J6K ({2, 5, 6}) t T

(2,2,2)
J6K ({3, 4, 6}) t T

(2,2,2)
J6K ({3, 5, 6}) t T

(2,2,2)
J6K ({4, 5, 6}) ,

with

T
(2,2,2)
J6K ({2, 4, 6}) =

{
1 3 5

2 4 6

}
,

T
(2,2,2)
J6K ({2, 5, 6}) =

{
1 3 4

2 6 5
,
1 3 4

2 5 6

}
,

T
(2,2,2)
J6K ({3, 4, 6}) =

{
1 2 5

4 3 6
,
1 2 5

3 4 6

}
,

T
(2,2,2)
J6K ({3, 5, 6}) =

{
1 2 4

6 3 5
,
1 2 4

3 6 5
,
1 2 4

5 3 6
,
1 2 4

3 5 6

}
,

T
(2,2,2)
J6K ({4, 5, 6}) =

{
1 2 3

6 5 4
,
1 2 3

5 6 4
,
1 2 3

6 4 5
,
1 2 3

4 6 5
,
1 2 3

5 4 6
,
1 2 3

4 5 6

}
.

A tedious but straightforward calculation � see appendix for useful identities � shows that, e.g.

c
1 2 4
6 3 5

= (q2 − q−2)2(1 + q2)(1− q2)z3
3

[
q2δ

(
z3q

2

z6

)
δ

(
z6

z5

)
− δ

(
z3

z6

)
δ

(
z6q

2

z5

)]

+q−2(q2 − q−2)(1 + q2)2(1− q2)6H1(z3/z5)

[
z5δ

(
z6

z5

)
− z3δ

(
z3

z6

)]
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c
1 2 4
3 6 5

= (q2 − q−2)2(1 + q2)(1− q2)z3
3δ

(
z3

z6

)
δ

(
z6q

2

z5

)

+q−2(q2 − q−2)(1 + q2)2(1− q2)6H1(z3/z5)z3δ

(
z3

z6

)
+q−2(q2 − q−2)(1 + q2)2(1− q2)6H2(z3/z5)z5δ

(
z6

z5

)

c
1 2 4
5 3 6

= −q2(q2 − q−2)2(1 + q2)(1− q2)z3
3δ

(
z5

z6

)
δ

(
z3q

2

z5

)

−q−2(q2 − q−2)(1 + q2)(1− q2)6H1(z3/z5)z5δ

(
z5

z6

)
−q−2(q2 − q−2)(1 + q2)(1− q2)6H2(z3/z6)z3δ

(
z3

z5

)

c
1 2 4
3 5 6

= q−2(q2 − q−2)(1 + q2)(1− q2)6H2(z3/z6)

[
z3δ

(
z3

z5

)
− z6δ

(
z5

z6

)]
.

where we have set

H1(z3/z5) =

(
z2

3z
2
5(z3 + z5)3

(z3q2 − z5)(q4z3 − z5)(z3 − q2z5)3

)
|z5|�|z3|

,

H2(z3/z5) =

(
z2

3z
2
5(z3 + z5)3

(z3q4 − z5)(z3 − q2z5)4

)
|z5|�|z3|

.

It easily follows that ∑
A∈T(2,2,2)

J6K ({3,5,6})

3∏
p=1

δ

(
z
A

(p)
1

q2

z
A

(p)
2

)
cA = 0 . (2.4.77)

Similar calculations show that, eventually, for every n ⊂ J6K such that card n = 3 and T
(2,2,2)
J6K (n) 6= ∅, we

have ∑
A∈T(2,2,2)

J6K (n)

3∏
p=1

δ

(
z
A

(p)
1

q2

z
A

(p)
2

)
cA = 0 , (2.4.78)

thus proving the result.
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Chapter 3

Weight-�nite modules over the quantum

a�ne and double quantum a�ne algebras

of type a1

3.1 Introduction

The representation theory of quantum a�ne algebras is a vast and extremely rich theory which is still the

subject of an intense research activity after more than three decades. The recent discovery of its relevance to

the monoidal categori�cation of cluster algebras provides one of the latest and most striking illustrations of it �

see [HL09] for a review on that subject. Probably standing as one of the most signi�cant breakthroughs in the

early days of this research area, the classi�cation of the simple �nite-dimensional modules over the quantum

a�ne algebra of type a1, Uq(ȧ1), is due to Chari and Pressley [CP91]. It relies, on one hand, on a careful

analysis of the `-weight structure of those modules made possible by the existence of Drinfel'd's presentation

U̇q(a1) of Uq(ȧ1) � see [Dam93] for the proof that U̇q(a1) ∼= Uq(ȧ1) � and, on the other hand, on the existence

of evaluation modules, proven earlier by Jimbo, [Jim86]. This seminal work paved the way for a more systematic

study of the representation theory of quantum a�ne algebras of all Cartan types, leading to the development of

powerful tools such as q-characters, (q, t)-characters and, consequently, to a much better understanding of the

categories FinMod of their �nite-dimensional modules that recently culminated with the realization that the

Grothendieck rings of certain subcategories of the categories FinMod actually have the structure of a cluster

algebra, [HL10].

By contrast, it is fair to say that the representation theory of quantum toroidal algebras, which were

initially introduced in type an by Ginzburg, Kapranov and Vasserot [GKV95] and later generalized to higher

rank types, is signi�cantly less well understood and remains, to this date, much more mysterious � although

see [Her09] for a review and references therein. In our previous work, [MZ], we constructed a new (topological)

Hopf algebra Üq(a1), called double quantum a�nization of type a1, and proved that its completion (in an

appropriate topology) is bicontinuously isomorphic to (a corresponding completion) of the quantum toroidal

algebra U̇q(ȧ1). Whereas U̇q(ȧ1) is naturally graded over Z × Q̇, where Q̇ stands for the root lattice of the

untwisted a�ne root system ȧ1 of type A
(1)
1 , Üq(a1) is naturally graded over Z2 ×Q, where Q stands for the

root lattice of the �nite root system a1 of type A1. Thus Üq(a1) turns out to be to U̇q(ȧ1) what U̇q(a1)

is to Uq(ȧ1), i.e. its Drinfel'd presentation. The latter, in the quantum a�ne case, has a natural triangular

77



decomposition which allows one to de�ne an adapted class of highest weight modules, namely highest `-weight

modules, in which �nite-dimensional modules are singled out by the particular form of their highest `-weights.

Therefore, it is only natural to ask the question of whether Üq(a1) plays a similar role for the representation

theory of U̇q(ȧ1), leading, in particular, to a new notion of highest weight modules. We answer positively

that question and introduce the corresponding notion of highest t-weight modules. Schematically, whereas the

transition from the classical Lie theoretic weights to `-weights can be regarded as trading numbers for (rational)

functions, the transition from `-weights to t-weights can be regarded as trading (rational) functions for entire

modules over the non-commutative Ü0
q(a1)-subalgebra of Üq(a1). That substitution can be interpreted from

the perspective of a conjecture in [MZ], stating that Ü0
q(a1) is isomorphic to a split extension of the elliptic Hall

algebra Eq−4,q2,q2 which was initially de�ned by Miki, in [Mik07], as a (q, γ)-analogue of the W1+∞ algebra and

reappeared later on in di�erent guises; the quantum continuous gl∞ algebra in [FFJ+11], the Hall algebra of

the category of coherent sheaves on some elliptic curve in [Sch12], or the quantum toroidal algebra associated

with gl1 in [FJMM12] and in subsequent works by Feigin et al. Our conjecture is actually supported by the

existence of an algebra homomorphism between Eq−4,q2,q2 and Ü0
q(a1) which we promote, in the present paper,

to a (continuous) homomorphism of (topological) Hopf algebras. Intuitively, the weights adapted to our new

triangular decomposition can therefore be regarded as representations of a quantized algebra of functions on a

non-commutative 2-torus.

On the other hand, unless the value of some scalar depending on the deformation parameter is taken to

be a root of unity, the question of the existence of �nite-dimensional modules over quantum toroidal algebras

of type an≥2 was already answered negatively by Varagnolo and Vasserot in [VV96]. However, it is possible

to push further the analogy with the quantum a�ne situation by de�ning another type of �niteness condition,

namely weight-�niteness. It turns out that, in type 1, i.e. when the central charges act trivially, Ü0
q(a1)

admits an in�nite dimensional abelian subalgebra that, itself, admits as a subalgebra the Cartan subalgebra

U0
q(a1) of the Drinfel'd-Jimbo quantum algebra Uq(a1) of type a1. Hence, we can assign classical Lie theoretic

weights to the t-weight spaces of our modules and declare that a Ü′q(a1)-module is weight-�nite whenever

it has only �nitely many classical weights. The same notion is readily de�ned for modules over U̇q(a1) and

we then focus on WFinMod˙ (resp. WFinMod), i.e. the full subcategory of the category Mod˙ (resp.

Mod) of Üq(a1)-modules (resp. U̇q(a1)-modules) whose modules are weight-�nite. Of course, the widely

studied category FinMod of �nite-dimensional U̇q(a1)-modules is a full subcategory of WFinMod. The

main results of the present paper consist in showing that, on one hand, the simple objects in WFinMod

are all �nite-dimensional and therefore coincide with the simple �nite-dimensional U̇q(a1)-modules classi�ed by

Chari and Pressley, and, on the other hand, in classifying the simple objects in WFinMod˙ in terms of their

highest t-weight spaces. These results clearly establish WFinMod˙ as the natural quantum toroidal analogue

of FinMod and suggest studying further its structure and, in particular, the structure of its Grothendieck ring.

Another natural development at this point would be to generalize to the quantum toroidal setting the interesting

classes of U̇q(a1)-modules outside of FinMod, for example by constructing a quantum toroidal analogue of

category O. We leave these questions for future work.

The present paper is organized as follows. In section 3.2, we brie�y review classic results about the quantum

a�ne algebra U̇q(a1) and its �nite-dimensional modules. Then, we prove that simple objects in WFinMod

are actually �nite-dimensional. In section 3.3, we review the main relevant results of [MZ] and establish a few

new results, as relevant for the subsequent sections. We de�ne highest t-weight modules in section 3.4 and, by

thoroughly analyzing their structure, we establish one implication in our classi�cation theorem, namely theorem
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3.4.22. The opposite implication is established in section 3.5 by explicitly constructing a quantum toroidal

analogue of the quantum a�ne evaluation modules. That construction is obtained after proving the existence

of an evaluation homomorphism between Üq(a1) and an evaluation algebra built as a double semi-direct product

of U̇q(a1) with the completions of two Heisenberg algebras. The evaluation modules are then obtained by pulling

back induced modules over the evaluation algebra along the evaluation homomorphism.

Notations and conventions

We let N = {0, 1, . . . } be the set of natural integers including 0. We denote by N× the set N−{0}. For every
m ≤ n ∈ N, we denote by Jm,nK = {m,m + 1, . . . , n}. We also let JnK = J1, nK for every n ∈ N. For every

m,n ∈ N×, we let

Cm(n) :=
{
λ = (λ1, . . . , λm) ∈

(
N×
)m

: λ1 + · · ·+ λm = n
}
,

denote the set of m-compositions of n, i.e. of compositions of n having m summands.

We let sign : Z→ {−1, 0, 1} be de�ned by setting, for any n ∈ Z,

sign(n) =


−1 if n < 0;

0 if n = 0;

1 if n > 0.

We assume throughout that K is an algebraically closed �eld of characteristic 0 and we let F := K(q)

denote the �eld of rational functions over K in the formal variable q. As usual, we let K× = K − {0} and

F× = F − {0}. Whenever we wish to evaluate q to some element of K×, we shall always do so under the

restriction that 1 /∈ qZ× . For every m,n ∈ N, we de�ne the following elements of F

[n]q :=
qn − q−n

q − q−1
, [n]!q :=

[n]q[n− 1]q · · · [1]q if n ∈ N×;

1 if n = 0;

(
n

m

)
q

:=
[n]!q

[m]!q[n−m]!q
. (3.1.1)

Given an F-algebra (A, η) with unit η : F→ A, we shall write the image of any a ∈ A under the canonical

algebra homomorphisms η⊗p−1 ⊗ idA ⊗ η⊗n−p : A → A⊗n, 1 ≤ p ≤ n ∈ N×, as a(p), always assuming that

the value of n should be clear from the context. This is easily extended to A-valued formal distributions in

A[[z, z−1]], essentially by applying the canonical algebra homomorphisms term by term to their coe�cients,

and the corresponding image of a(z) ∈ A[[z, z−1]] can be naturally denoted by a(p)(z) ∈ A⊗n[[z, z−1]]. As is

customary though, in order to avoid the proliferation of unnecessary subscripts, we shall abuse notations and

prefer e.g. to the more rigorous expression a(1)

(
zc(2)

)
b(2)(z

′) ∈ A⊗2[[z, z−1, z′, z′−1]], with a(z) ∈ A[[z, z−1]],

b(z′) ∈ A[[z′, z′−1]] and c ∈ A, the somewhat less rigorous but more transparent a
(
zc(2)

)
⊗ b(z′).

We shall say that a polynomial P (z) ∈ F[z] is monic if P (0) = 1. For every rational function P (z)/Q(z),

where P (z) and Q(z) are relatively prime polynomials, we denote by(
P (z)

Q(z)

)
|z|�1

(resp.

(
P (z)

Q(z)

)
|z|−1�1

)

the Laurent series of P (z)/Q(z) at 0 (resp. at ∞).
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We shall let

a [A,B]b = aAB − bBA ,

for any symbols a, b, A and B provided the r.h.s of the above equations makes sense.

The Dynkin diagrams and correponding Cartan matrices of the root systems a1 and ȧ1 are reminded in the

following table.

Type Dynkin diagram Simple roots Cartan matrix

a1

1

Φ = {α1} (2)

ȧ1

0 1

Φ̇ = {α0, α1}

(
2 −2

−2 2

)

3.2 Weight-�nite modules over the quantum a�ne algebra

U̇q(a1)

3.2.1 The quantum a�ne algebra U̇q(a1)

De�nition 3.2.1. The quantum a�ne algebra U̇q(a1) is the associative K(q)-algebra generated by{
D,D−1, C1/2, C−1/2, k+

1,n, k
−
1,−n, x

+
1,m, x

−
1,m : m ∈ Z, n ∈ N

}
subject to the following relations

C±1/2 is central C±1/2C∓1/2 = 1 D±1D∓1 = 1 (3.2.1)

Dk±1 (z)D−1 = k±1 (zq−1) Dx±1 (z)D−1 = x±1 (zq−1) (3.2.2)

k±1 (z1)k±1 (z2) = k±1 (z2)k±1 (z1) (3.2.3)

k−1 (z1)k+
1 (z2) = G−(C−1z1/z2)G+(Cz1/z2)k+

1 (z2)k−1 (z1) = 1 mod z1/z2 (3.2.4)

G∓(C∓1/2z2/z1)k+
1 (z1)x±1 (z2) = x±1 (z2)k+

1 (z1) (3.2.5)

k−1 (z1)x±1 (z2) = G∓(C∓1/2z1/z2)x±1 (z2)k−1 (z1) (3.2.6)

(z1 − q±2z2)x±1 (z1)x±1 (z2) = (z1q
±2 − z2)x±1 (z2)x±1 (z1) (3.2.7)

[x+
1 (z1),x−1 (z2)] =

1

q − q−1

[
δ

(
z1

Cz2

)
k+

1 (z1C
−1/2)− δ

(
z1C

z2

)
k−1 (z2C

−1/2)

]
(3.2.8)

where we de�ne the following U̇q(a1)-valued formal distributions

x±1 (z) :=
∑
m∈Z

x±1,mz
−m ∈ U̇q(ȧ1)[[z, z−1]] ; (3.2.9)
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k±1 (z) :=
∑
n∈N

k±1,±nz
∓n ∈ U̇q(ȧ1)[[z∓1]] , (3.2.10)

the following F-valued formal power series

G±(z) := q±2 + (q − q−1)[±2]q
∑
m∈N×

q±2mzm ∈ F[[z]] (3.2.11)

and

δ(z) :=
∑
m∈Z

zm ∈ F[[z, z−1]] (3.2.12)

is an F-valued formal distribution. We denote by U̇′q(a1) the subalgebra of U̇q(a1) generated by{
C1/2, C−1/2, k+

1,n, k
−
1,−n, x

+
1,m, x

−
1,m : m ∈ Z, n ∈ N

}
.

We denote by U̇0
q(a1) the subalgebra of U̇′q(a1) generated by{

C1/2, C−1/2, k+
1,n, k

−
1,−n : n ∈ N

}
.

We let U̇≥q (a1) (resp. U̇≤q (a1)) denote the subalgebra of U̇′q(a1) generated by{
C1/2, C−1/2, k+

1,n, k
−
1,−n, x

+
1,m : m ∈ Z, n ∈ N

}
(resp. {

C1/2, C−1/2, k+
1,n, k

−
1,−n, x

−
1,m : m ∈ Z, n ∈ N

}
). We let U̇q(a1)̆ denote the F-algebra generated by the same generators as U̇′q(a1), subject to the relations

(3.2.3 - 3.2.7) � i.e. we omit relation (3.2.8). We de�ne the type a1 quantum loop algebra Uq(La1) as the

quotient of U̇′q(a1) by its two-sided ideal (C1/2 − 1) generated by
{
C1/2 − 1, C−1/2 − 1

}
. Similarly, we

let U≥q (La1) = U̇≥q (a1)/(C1/2 − 1) and U≤q (La1) = U̇≤q (a1)/(C1/2 − 1). We eventually set Ŭq(La1) =

U̇q(a1)̆ /(C1/2 − 1).

Obviously,

Proposition 3.2.2. There exists a surjective F-algebra homomorphism Ŭq(La1)→ Uq(La1).

3.2.2 Finite dimensional U̇′q(a1)-modules

Let Mod be the category of U̇′q(a1)-modules. We denote by FinMod the full subcategory of Mod whose

objects are �nite-dimensional. Following [CP91], we make the following

De�nition 3.2.3. We shall say that a U̇′q(a1)-module M is:

� a weight module if k+
1,0 acts semisimply on M ;

� of type 1 if it is a weight module and C1/2 acts on M as id;

� highest `-weight if it is of type 1 and there exists v ∈M − {0} such that

x+
1 (z).v = 0 , k±1 (z).v = κ±(z)v

81



for some κ±(z) ∈ F[[z∓1]] and M = U̇′q(a1).v. We shall refer to any such v as a highest `-weight

vector and to κ = (κ+(z), κ−(z)) as the corresponding highest `-weight.

Clearly, type 1 U̇′q(a1)-modules coincide with Uq(La1)-modules.

De�nition 3.2.4. For every κ ∈ F[[z−1]]×F[[z]], we construct a one-dimensional U≥q (La1)-module Fκ ∼= F
by setting

x+
1 (z).1 = 0 , and k±1 (z).1 = κ±(z) .

We then de�ne the universal highest `-weight U̇′q(a1)-module with highest `-weight κ by setting

M(κ) := Uq(La1) ⊗
U≥q (La1)

Fκ

as Uq(La1)-modules. Let N(κ) be the maximal Uq(La1)-submodule of M(κ) such that N(κ) ∩ Fκ = {0}
and set

L(κ) := M(κ)/N(κ) .

By construction, L(κ) is a simple highest `-weight Uq(La1)-module with highest `-weight κ. It is unique

up to isomorphisms.

The simple objects in FinMod were classi�ed by Chari and Pressley in [CP91]. The main result is the

following

Theorem 3.2.5 (Chari-Pressley). The following hold:

i. any simple �nite-dimensional U̇′q(a1)-moduleM can be obtained by twisting a simple �nite-dimensional

U̇′q(a1)-module of type 1 with an algebra automorphism of Aut(U̇′q(a1));

ii. every simple �nite dimensional U̇′q(a1)-module of type 1 is highest `-weight;

iii. the simple highest `-weight module L(κ) is �nite-dimensional if and only if

κ±(z) = qdeg(P )

(
P (q−2/z)

P (1/z)

)
|z|∓1�1

,

for some monic polynomial P (1/z) ∈ F[z−1] called Drinfel'd polynomial of L(κ).

Proof. The proof can be found in [CP91].

Up to isomorphisms, the simple objects in FinMod are uniquely parametrized by their Drinfel'd polynomials

and we shall therefore denote by L(P ) the (isomorphism class of the) simple U̇′q(a1)-module with Drinfel'd

polynomial P . Note that the roles of U̇≥q (a1) and U̇≤q (a1) in the above constructions are clearly symmetrical

and we could have equivalently considered lowest `-weight modules. In particular, point iii of the above theorem

immediately translates into

Proposition 3.2.6. The simple lowest `-weight module with lowest `-weight κ = (κ+(z), κ−(z)) ∈ F[[z−1]]×
F[[z]] is �nite-dimensional if and only if

κ±(z) = q− deg(P )

(
P (1/z)

P (q−2/z)

)
|z|∓1�1

,

for some monic polynomial P (1/z) ∈ F[z−1]. In the latter case, we denote it by L̄(P ).
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3.2.3 Weight-�nite simple Uq(La1)-modules

We now wish to consider a slightly broader family of modules over U̇′q(a1). In particular, we want to allow

these modules to be in�nite-dimensional, while retaining some of the nice features of �nite dimensional U̇′q(a1)-

modules such as the fact that they decompose into `-weight spaces. This is achieved by introducing the following

notion.

De�nition 3.2.7. We shall say that a (not necessarily �nite-dimensional) U̇′q(a1)-module M is `-weight

if there exists a countable set {Mα : α ∈ A} of indecomposable locally �nite-dimensional U̇0
q(a1)-modules,

called the `-weight spaces of M , such that, as U̇0
q(a1)-modules,

M ∼=
⊕
α∈A

Mα .

We shall say that M is of type 1 if C1/2 acts on M by id.

De�nition-Proposition 3.2.8. Let M be an `-weight U̇′q(a1)-module. Then:

i. C2 acts as id over M ;

ii. for every `-weight space Mα, α ∈ A, of M , there exists κα,0 ∈ F× and (κ±α,±m)m∈N× ∈ FN× such that

Mα ⊆
{
v ∈M : ∃n ∈ N× , ∀m ∈ N

(
k±1,±m − κ

±
α,±mid

)n
.v = 0

}
,

where we have set κ±α,0 = κ±1
α,0.

We let Sp(M) = {κα,0 : α ∈ A} and refer to the formal power series

κ±α (z) =
∑
m∈N

κ±α,±mz
∓m

as the `-weight of the `-weight space Mα.

Proof. Let Mα be an `-weight space of M and let v ∈ Mα − {0}. By de�nition, there exists a �nite

dimensional U̇0
q(a1)-submodule M̃α ofMα such that v ∈ M̃α. Over M̃α, C must admit an eigenvector and,

since C is central, it follows that C acts over M̃α by a scalar mutliple of id. Assume for a contradiction that

C−C−1 does not act by multiplication by zero. Then, it is possible to pull back M̃α into a �nite-dimensional

module over the Weyl algebra A1(K) = K〈x, y〉/(xy − yx − 1) by the obvious algebra homomorphism

A1(K) ↪→ U̇0
q(a1). But the Weyl algebra is known to admit no �nite-dimensional modules. A contradiction.

It follows that C2 acts as id over M̃α. But this could be repeated for any non-zero vector in any `-weight

space of M . i follows. As for ii, observe that, as a consequence of i and of the de�ning relations (3.2.3)

and (3.2.4),
{
k+

1,m, k
−
1,−m : m ∈ N

}
acts by a family of commuting linear operators overM . Thus ii follows

from the decomposition of locally �nite-dimensional vector spaces into the generalized eigenspaces of a

commuting family of linear operators; the indecomposability ofMα further imposing that it coincides with

a single block in a single generalized eigenspace.

Remark 3.2.9. It is worth emphasizing that de�nition 3.2.7 and de�nition-proposition 3.2.8 straightfor-

wardly generalize to (topological) modules over any (topological) algebra A containing U̇0
q(a1) as a (closed)

subalgebra.
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De�nition 3.2.10. We shall say that an `-weight U̇′q(a1)-module M is weight-�nite if Sp(M) is a �nite

set. We let WFinMod denote the full subcategory of the category Mod of U̇′q(a1)-modules whose objects

are weight-�nite.

Clearly, �nite dimensional U̇′q(a1)-modules are objects in WFinMod, but not every object in WFinMod

is in FinMod. However we have

Theorem 3.2.11. The following hold:

i. every simple `-weight U̇′q(a1)-module can be obtained by twisting a simple `-weight U̇′q(a1)-module of

type 1 with an algebra automorphism of Aut(U̇q(a1));

ii. every weight-�nite simple Uq(La1)-module is highest `-weight;

iii. every weight-�nite simple Uq(La1)-module is �nite dimensional.

Proof. In view of de�nition-proposition 3.2.8, C2 acts as id over M . Since the latter is simple and since

C1/2 is central, it is clear that C acts over M either as id or as −id. In the former case, there is nothing

to do; whereas in the latter, upon twisting as in the �nite-dimensional case � see [CP91] �, we can ensure

that C1/2 acts as id. This proves i. As for ii, the same proof as for part ii of theorem 3.2.5 can be used.

So, we eventually prove iii. Let M be a weight-�nite simple Uq(La1)-module. By ii it is highest `-weight.

Hence, there exists v ∈M − {0} such that M ∼= Uq(La1).v, x+
1 (z).v = 0 and k±1 (z).v = κ±(z)v, for some

κ±(z) ∈ F[[z∓1]] with resz1,z2 z
−1
1 z−1

2 κ+(z1)κ−(z2) = 1 . The triangular decomposition of Uq(La1) implies

that M = U−q (La1).v and, setting for every n ∈ N

v(z1, . . . , zn) = x−1 (z1) · · ·x−1 (zn).v , (3.2.13)

it is clear that{
vm1,...,mn = res

z1,...,zn
z−1−m1

1 · · · z−1−mn
n v(z1, . . . , zn) : n ∈ N,m1, . . . ,mn ∈ Z

}
(3.2.14)

is a spanning set of M . The de�ning relations (3.2.5) and (3.2.6) of Uq(La1) easily imply that, for every

n ∈ N,

k±1 (z).v(z1, . . . , zn) = κ±(z)
n∏
p=1

G∓
(

(zp/z)
±1
)
v(z1, . . . , zn) (3.2.15)

and, in particular,

k±0 .v(z1, . . . , zn) = (κ+
0 )±1q−2nv(z1, . . . , zn) .

Therefore, M being weight-�nite, there must exist an N ∈ N such that

x−1 (z).v(z1, . . . , zN ) = 0 . (3.2.16)

84



Making use of (3.2.8), one easily proves that, for every n ∈ J0, N − 1K,

x+
1 (z).v(z0, . . . , zn) =

1

q − q−1

n∑
p=0

δ
(zp
z

)κ+(z)
n∏

r=p+1

G−(zr/z) (3.2.17)

−κ−(z)
n∏

r=p+1

G+(z/zr)

 v(z0, . . . , ẑp, . . . , zn) ,

where a hat over a variable indicates that it should be omitted. Combining (3.2.16) and (3.2.8), we get

−x−1 (z0)x+
1 (z).v(z1, . . . , zN ) = [x+

1 (z),x−1 (z0)].v(z1, . . . , zN )

=
1

q − q−1
δ
(z0

z

)κ+(z)
N∏
p=1

G−(zp/z)− κ−(z)
N∏
p=1

G+(z/zp)

 v(z1, . . . , zN ) .

Making use of (3.2.17) and (3.2.13), the above equation eventually yields

N∑
p=0

δ
(zp
z

)κ+(zp)
N∏

r=p+1

G−(zr/zp)− κ−(zp)
N∏

r=p+1

G+(zp/zr)

 v(z0, . . . , ẑp, . . . , zN ) = 0 .

Acting on the l.h.s of the above equation with x+
1 (ζN ) · · ·x+

1 (ζ1) and making repeated use of (3.2.17), one

easily shows that

∑
σ∈SN+1

N∏
i=0

δ

(
zi
ζσ(i)

)κ+(zi)

N∏
r=i+1

σ(r)>σ(i)

G−(zr/zi)− κ−(zi)

N∏
r=i+1

σ(r)>σ(i)

G+(zi/zr)

 v = 0 , (3.2.18)

where we have set ζ0 = z. Since v 6= 0, its prefactor in the above equation must vanish. Now, it is

clear that multiplication of the latter by
∏N−1
j=0 (z0 − ζj) annihilates all the summands with σ such that

σ(0) 6= N . Similarly, multiplication by
∏1
i=0

∏N−i−1
j=0 (zi − ζj) annihilates all the summands with σ such

that σ(0) 6= N and σ(1) 6= N − 1. Repeating the argument �nitely many times, we arrive at the fact that

multiplication by
∏N
i=0

∏N−i−1
j=0 (zi− ζj) annihilates all the summands with σ 6= (N,N − 1, . . . , 0), so that,

eventually,

0 =
N∏
i=0

δ

(
zi
ζN−i

)N−i−1∏
j=0

(zi − ζj)
[
κ+(zi)− κ−(zi)

]
=

N∏
i=0

δ

(
zi
ζN−i

)N−i−1∏
j=0

(zi − zN−j)
[
κ+(zi)− κ−(zi)

]
.

Taking the zeroth order term in ζj for j = 0, . . . , N , we get

0 =

N∏
i=0

N∏
j=i+1

(zi − zj)
[
κ+(zi)− κ−(zi)

]

=

∣∣∣∣∣∣∣∣∣∣∣

[κ+(z0)− κ−(z0)] [κ+(z1)− κ−(z1)] . . . [κ+(zN )− κ−(zN )]

z0 [κ+(z0)− κ−(z0)] z1 [κ+(z1)− κ−(z1)] . . . zN [κ+(zN )− κ−(zN )]
...

... . . .
...

zN−1
0 [κ+(z0)− κ−(z0)] zN−1

1 [κ+(z1)− κ−(z1)] . . . zN−1
N [κ+(zN )− κ−(zN )]

∣∣∣∣∣∣∣∣∣∣∣
.
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Hence, the rows of the matrix on the r.h.s. of the above equation are linearly dependent and it follows

that there exists a P (z) ∈ F[z]− {0} of degree at most N − 1, such that

P (z)
[
κ+(z)− κ−(z)

]
= 0 . (3.2.19)

As a consequence, there clearly exists Q(z) ∈ F[z] such that degQ = degP and

κ±(z) =

(
Q(z)

P (z)

)
|z|∓1�1

.

Now considering (3.2.17) with n = 0 and multiplying it by P (z0) obviously yields

x+
1 (z).P (z0)v(z0) = 0 . (3.2.20)

Set for every m ∈ Z,
wm = res

z0
z−1−m

0 P (z0)v(z0) . (3.2.21)

Then, (3.2.20), together with (3.2.15) for n = 1, implies that⊕
m∈Z

U̇q(a1).wm

is a strict submodule of the simple Uq(La1)-module M and it follows that wm = 0 for every m ∈ Z.
Consequently, in view of (3.2.21),

P (z0)v(z0) = 0 . (3.2.22)

On the other hand, all the vectors in {vm : m ∈ Z} � see (3.2.14) � can be expressed as linear combina-

tions of the vectors in, say,
{
v1, . . . , vdeg(P )

}
and the linear span of {vm : m ∈ Z} turns out to be �nite

dimensional.

Similarly, assume we have proven that

∀k ∈ J0, nK ,

 n∏
p=k+1

(zp − q2zk)

P (zk)v(z0, . . . , zn) = 0

for some n ∈ J0, N − 1K, as we did with (3.2.22) above for n = 0. It is clear, in view of (3.2.17), that, for

every k ∈ J0, n+ 1K,

x+
1 (z).

 n+1∏
p=k+1

(zp − q2zk)

P (zk)v(z0, . . . , zn+1)

 = 0

and the same argument as above, making use of the simplicity of M , implies that indeed

∀k ∈ J0, n+ 1K ,

 n+1∏
p=k+1

(zp − q2zk)

P (zk)v(z0, . . . , zn+1) = 0 .

By recursion, the above equation therefore holds for every n ∈ J0, N − 1K and for every k ∈ J0, nK. But this
means that, for every n ∈ J0, N − 1K, the linear span of {vm1,...,mn : m1, . . . ,mn ∈ Z} is �nite dimensional,

which eventually concludes the proof.
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Corollary 3.2.12. Let M be a weight-�nite simple highest (resp. lowest) `-weight Uq(La1)-module. Then

M ∼= L(P ) (resp. M ∼= L̄(P )), for some monic polynomial P .

Proof. In the highest `-weight case, this follows directly by the previous theorem and the classi�cation of

the simple �nite dimensional Uq(La1)-modules, theorem 3.2.5. In the lowest `-weight case, see proposition

3.2.6.

3.3 Double quantum a�nization of type a1

3.3.1 De�nition of Üq(a1)

De�nition 3.3.1. The double quantum a�nization Üq(a1) of type a1 is de�ned as the F-algebra generated
by

{D1,D
−1
1 ,D2,D

−1
2 ,C1/2,C−1/2, c+

m, c
−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z}

subject to the relations

C±1/2 and c±(z) are central (3.3.1)

res
v,w

1

vw
c±(v)c∓(w) = 1 , (3.3.2)

D±1
1 D∓1

1 = 1 D±1
2 D∓1

2 = 1 D1D2 = D2D1 (3.3.3)

D1K
±
1,±m(z)D−1

1 = q±mK±1,±m(z) D1X
±
1,r(z)D

−1
1 = qrX±1,r(z) , (3.3.4)

D2K
±
1,±m(z)D−1

2 = K±1,±m(zq−1) D2X
±
1,r(z)D

−1
2 = X±1,r(zq

−1) , (3.3.5)

res
v,w

1

vw
K±1,0(v)K∓1,0(w) = 1 , (3.3.6)

(v − q±2z)(v − q2(m−n∓1)z)K±1,±m(v)K±1,±n(z) = (vq±2 − z)(vq∓2 − q2(m−n)z)K±1,±n(z)K±1,±m(v) , (3.3.7)

(Cq2(1−m)v − w)(q2(n−1)v − Cw)K+
1,m(v)K−1,−n(w) = (Cq−2mv − q2w)(q2nv − Cq−2w)K−1,−n(w)K+

1,m(v) ,

(3.3.8)

(v − q±2z)K±1,±m(v)X±1,r(z) = (q±2v − z)X±1,r(z)K
±
1,±m(v) , (3.3.9)

(Cv − q2(m∓1)z)K±1,±m(v)X∓1,r(z) = (Cq∓2v − q2mz)X∓1,r(z)K
±
1,±m(v) , (3.3.10)

(v − q±2w)X±1,r(v)X±1,s(w) = (vq±2 − w)X±1,s(w)X±1,r(v) , (3.3.11)

[X+
1,r(v),X−1,s(z)] =

1

q − q−1

δ
(

Cv

q2(r+s)z

) |s|∏
p=1

c−
(
C−1/2q(2p−1)sign(s)−1z

)−sign(s)
K+

1,r+s(v)

−δ
(

C−1v

q2(r+s)z

) |r|∏
p=1

c+
(
C−1/2q(1−2p)sign(r)−1v

)sign(r)
K−1,r+s(z)

 , (3.3.12)
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where m,n ∈ N, r, s ∈ Z and we have set

c±(z) =
∑
m∈N

c±±mz
∓m , (3.3.13)

K±1,0(z) =
∑
m∈N

K±1,0,±mz
±m , (3.3.14)

and, for every m ∈ N× and r ∈ Z,
K±1,±m(z) =

∑
s∈Z

K±1,±m,sz
−s , (3.3.15)

X±1,r(z) =
∑
s∈Z

X±1,r,sz
−s . (3.3.16)

In (5.0.6), we further assume that K±1,∓m(z) = 0 for every m ∈ N×.

De�nition 3.3.2. We denote by Ü′q(a1) the subalgebra of Üq(a1) generated by

{D2,D
−1
2 ,C1/2,C−1/2, c+

m, c
−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z} ,

i.e. the subalgebra generated by all the generators of Üq(a1) except D1 and D−1
1 . We shall denote by

 : Ü′q(a1) ↪→ Üq(a1)

the natural injective algebra homomorphism.

De�nition 3.3.3. We denote by Ü0
q(a1) the subalgebra of Üq(a1) generated by{

C1/2,C−1/2, c+
m, c

−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r : m ∈ N, n ∈ N×, r ∈ Z

}
and by Ü0,0

q (a1) the subalgebra of Ü0
q(a1) generated by{

C1/2,C−1/2, c+
m, c

−
−m,K

+
1,0,m,K

−
1,0,−m : m ∈ N

}
.

Similarly, we denote by Ü±q (a1) the subalgebra of Üq(a1) generated by
{
X±1,r,s : r, s ∈ Z

}
. We eventually

denote by Ü≥q (a1) (resp. Ü≤q (a1)) the subalgebra of Üq(a1) generated by{
C1/2,C−1/2, c+

m, c
−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r,X

+
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z

}
(resp. {

C1/2,C−1/2, c+
m, c

−
−m,K

+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r,X

−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z

}
)

Remark 3.3.4. Obviously, Ü±q (a1) is graded over Q± whereas Üq(a1) is graded over the root lattice Q of

a1. Üq(a1) is also graded over Z2 = Z(1) × Z(2);

Üq(a1) =
⊕

(n1,n2)∈Z2

Üq(a1)(n1,n2) ,
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where, for every (n1, n2) ∈ Z2, we let

Üq(a1)(n1,n2) =
{
x ∈ Üq(a1) : D1xD

−1
1 = qn1x, D2xD

−1
2 = qn2x

}
.

In the coming section, we shall also need the Z(2)-grades

Üq(a1)n =
{
x ∈ Üq(a1) : D2xD

−1
2 = qnx

}
,

for every n ∈ Z.

Proposition 3.3.5. The set
{
C1/2,C−1/2,K+

1,0,m,K
−
1,0,−m : m ∈ N

}
generates a subalgebra of Ü0,0

q (a1) that

is isomorphic to U̇0
q(a1).

Proof. This can be directly checked from the de�ning relations. Otherwise, it su�ces to observe that the

algebra isomorphism Ψ̂ : ̂̇Uq(ȧ1)→ ̂̈U′q(a1) � see theorem 3.3.22 � restricts on that set to

Ψ̂(C±1/2) = C±1/2 and Ψ̂(k±1 (z)) = −K∓1,0(C−1/2z) .

3.3.2 Üq(a1) as a topological algebra

Because of relation (5.0.6), the de�nition of Üq(a1) is not purely algebraic. Indeed, the r.h.s. of (5.0.6) involves

two in�nite series. One way to make sense of that relation is to equip Üq(a1) � and, for later use, its tensor

powers � with a topology, such that both series be convergent in the corresponding completion ̂̈Uq(a1) of

Üq(a1). Making use of the natural Z(2)-grading of the tensor algebras Üq(a1)⊗m, m ∈ N×, we let, for every

n ∈ N,
Ω̇(m)
n :=

⊕
r≥n
s≥n

Üq(a1)⊗m ·
(

Üq(a1)⊗m
)
−r
· Üq(a1)⊗m ·

(
Üq(a1)⊗m

)
s
· Üq(a1)⊗m .

One easily checks that

Proposition 3.3.6. The following hold true for every m ∈ N×:

i. For every n ∈ N, Ω̇
(m)
n is a two-sided ideal of Üq(a1)⊗m;

ii. For every n ∈ N, Ω̇
(m)
n ⊇ Ω̇

(m)
n+1;

iii. Ω̇
(m)
0 =

⋃
n∈N Ω̇

(m)
n = Üq(a1)⊗m;

iv.
⋂
n∈N Ω̇

(m)
n = {0};

v. For every n, p ∈ N, Ω̇
(m)
n + Ω̇

(m)
p ⊆ Ω̇min(n,p);

vi. For every n, p ∈ N, Ω̇
(m)
n · Ω̇(m)

p ⊆ Ω̇max(n,p).

Proof. See [MZ] for a proof in the U̇q(ȧ1) case that can be transposed to the present situation.
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De�nition-Proposition 3.3.7. We endow Üq(a1) with the topology τ whose open sets are either ∅ or
nonempty subsets O ⊆ Üq(a1) such that for every x ∈ O, x + Ω̇

(1)
n ⊆ O for some n ∈ N. Similarly,

we endow each tensor power Üq(a1)⊗m≥2 with the topology induced by {Ω̇(m)
n : n ∈ N}. These turn

Üq(a1) into a (separated) topological algebra. We then let ̂̈Uq(a1) denote its completion and we extend by

continuity to ̂̈Uq(a1) all the (anti)-automorphisms de�ned over Üq(a1) and its subalgebras in the previous

section In particular, we extend  : Ü′q(a1) ↪→ Üq(a1) into

̂ : ̂̈U′q(a1) ↪→ ̂̈Uq(a1) .

Similarly, we denote with a hat the completion of any subalgebra of ̂̈Uq(a1), like e.g. ¨̂U−q (a1), ¨̂U0
q(a1) and

¨̂U+
q (a1). We eventually denote by Üq(a1)⊗̂m≥2 the corresponding completions of Üq(a1)⊗m≥2.

Proof. This was proven in [MZ].

Remark 3.3.8. As was noted in [MZ], the above de�ned topology is actually ultrametrizable.

3.3.3 The double quantum loop algebra

An alternative way to make sense of relations (5.0.6) consists in observing that Üq(a1) is proalgebraic. Indeed,

for every N ∈ N, let Üq(a1)(N) be the F-algebra generated by

{C1/2,C−1/2, c+
n , c
−
−n,K

+
1,0,m,K

−
1,0,−m,K

+
1,p,r,K

−
1,−p,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, n ∈ J0, NK, p ∈ N×, r, s ∈ Z}

subject to relations ((3.3.1) � (5.0.6)), where, this time,

c±(z) =
N∑
m=0

c±±mz
∓m . (3.3.17)

Similarly, de�ne Üq(a1)(−1) as the F-algebra generated by

{C1/2,C−1/2,K+
1,0,m,K

−
1,0,−m,K

+
1,p,r,K

−
1,−p,r,X

+
1,r,s,X

−
1,r,s : m ∈ N, p ∈ N×, r, s ∈ Z}

subject to relations ((3.3.1) � (5.0.6)), where c±(z) = 1.

Now clearly, each Üq(a1)(N), N ∈ N ∪ {−1}, is algebraic since the sums on the r.h.s. of (5.0.6) are both

�nite � whenever c±(z)−1 is involved, just multiply through by c±(z) to get an equivalent algebraic relation.

Moreover, letting IN be the two-sided ideal of Üq(a1)(N) generated by {c+
N , c

−
−N} (resp. {c

+
0 − 1, c−0 − 1}) for

every N > 1 (resp. for N = 0), we obviously have a surjective algebra homomorphism

Üq(a1)(N) −→ Üq(a1)(N−1) ∼=
Üq(a1)(N)

IN
(3.3.18)

and we can de�ne Üq(a1) as the inverse limit

Üq(a1) = lim
←−

Üq(a1)(N)
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of the system of algebras

· · · −→ Üq(a1)(N) −→ Üq(a1)(N−1) −→ · · · −→ Üq(a1)(0) −→ Üq(a1)(−1) .

De�nition 3.3.9. We shall refer to the quotient of Üq(a1)(−1) by the two-sided ideal generated by{
C1/2 − 1

}
as the double quantum loop algebra of type a1 and denote it by L̈q(a1). Correspondingly,

we denote by L̈±q (a1) and L̈0
q(a1), the subalgebras of L̈q(a1) respectively generated by

{
X±1,r,s : r, s ∈ Z

}
and {

K+
1,0,m,K

−
1,0,−m,K

+
1,n,r,K

−
1,−n,r : m ∈ N, n ∈ N×, r ∈ Z

}
.

We denote by L̈0,0
q (a1) the subalgebra of L̈0

q(a1) generated by{
K+

1,0,m,K
−
1,0,−m : m ∈ N

}
.

It is worth emphasizing that L̈0,0
q (a1) is abelian.

3.3.4 Triangular decomposition of ̂̈U′q(a1)

In [MZ], we proved that ̂̈U′q(a1) has a triangular decomposition in the following sense.

De�nition 3.3.10. Let A be a complete topological algebra with closed subalgebras A± and A0. We

shall say that (A−, A0, A+) is a triangular decomposition of A if the multiplication induces a bicontinuous

isomorphism of vector spaces A−⊗̂A0⊗̂A+ ∼→ A.

Recalling the de�nitions of Ü±q (a1) and Ü0
q(a1) from de�nition 3.3.1, we have

Proposition 3.3.11. (Ü−q (a1), Ü0
q(a1), Ü+

q (a1)) is a triangular decomposition of ̂̈U′q(a1) and Ü±q (a1) is

bicontinuously isomorphic to the algebra generated by {X±1,r,s : r, s ∈ Z} subject to relation (5.0.5).

Proof. See [MZ].

3.3.5 The closed subalgebra ̂̈U0
q(a1) as a topological Hopf algebra

De�nition 3.3.12. In ¨̂U0
q(a1), we de�ne

p±(z) =
∑
m∈N

p±±mz
∓m = c±(z)K∓1,0(C−1/2z)−1K∓1,0(C−1/2zq2) (3.3.19)

and for every m ∈ N×,

t+1,m(z) =
∑
n∈N

t+1,m,nz
−n = − 1

q − q−1
K+

1,0(zq−2m)−1K+
1,m(z) , (3.3.20)

t−1,−m(z) =
∑
n∈N

t−1,−m,nz
n =

1

q − q−1
K−1,−m(z)K−1,0(zq−2m)−1 . (3.3.21)
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Then, we let Ü0+
q (a1) be the subalgebra of ¨̂U0

q(a1) generated by

{C1/2,C−1/2, p+
m, p

−
−m, t

+
1,p,n, t

−
1,−p,n : m ∈ N, n ∈ Z, p ∈ N×} .

and we let ̂Ü0+
q (a1) be its completion in the inherited topology.

Clearly, the closed subalgebra ¨̂U0
q(a1) can be presented as in de�nition 3.3.3 or, equivalently, in terms of

the generators in

{C1/2,C−1/2,K+
1,0,m,K

−
1,0,−m, p

+
m, p

−
−m, t

+
1,p,n, t

−
1,−p,n : m ∈ N, n ∈ Z, p ∈ N×} .

In section 3.3.10, we will endow ̂̈U′q(a1) with a topological Hopf algebraic structure. It turns out that, for

that structure, the closed subalgebra ¨̂U0
q(a1) is not a closed Hopf subalgebra of ̂̈Uq(a1) � see lemma 4.22 in

[MZ] or lemma 3.3.30 below. However, it is possible to endow ¨̂U0
q(a1) with its own topological Hopf algebraic

structure as follows.

De�nition-Proposition 3.3.13. We endow ¨̂U0
q(a1) with:

i. the comultiplication ∆0 : ¨̂U0
q(a1)→ Ü0

q(a1)⊗̂Ü0
q(a1) de�ned by

∆0(C±1/2) = C±1/2 ⊗ C±1/2 (3.3.22)

∆0(K±1,0(z)) = −K±1,0(zC
1∓1
2

(2) )⊗K±1,0(zC
1±1
2

(1) ) , (3.3.23)

∆0(p±(z)) = p±(zC
±1/2
(2) )⊗ p±(zC

∓1/2
(1) ) , (3.3.24)

∆0(t+1,m(z)) = t+1,m(z)⊗ 1 +
m∏
k=1

p−(zq−2kC
1/2
(1) )⊗̂t+1,m(zC(1))

−(q − q−1)

m−1∑
k=1

m∏
l=k+1

p−(zq−2lC
1/2
(1) )t+1,k(z)⊗̂t

+
1,m−k(zq

−2kC(1)) , (3.3.25)

∆0(t−1,−m(z)) = t−1,−m(zC(2))⊗̂
m∏
k=1

p+(zq−2kC
1/2
(2) ) + 1⊗ t−1,−m(z)

+(q − q−1)

m−1∑
k=1

t−1,−(m−k)(zq
−2kC(2))⊗̂t−1,−m(z)

m∏
l=+1

p+(zq−2lC
1/2
(2) ) ,(3.3.26)

for every m ∈ N,

ii. the counit ε(C) = ε0(K±1,0(z)) = ε0(p±(z)) = 1, ε0(t±1,±m(z)) = 0, for every m ∈ N,

iii. and the antipode de�ned by

S0(C±1/2) = C∓1/2 , (3.3.27)

S0(K±1,0(z)) = K±1,0(zC−1)−1 , (3.3.28)
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S0(p±(z)) = p±(z)−1 , (3.3.29)

S0(t+1,m(z)) = −
m∏
k=1

p−(zq−2kC−1/2)−1
m∑
n=1

∑
λ∈Cn(m)

(−1)n−1cm,λt
+
1,λ(zC−1) , (3.3.30)

S0(t−1,−m(z)) = −
m∑
n=1

∑
λ∈Cn(m)

cm,λt
−
1,−λ(zC−1)

m∏
k=1

p+(zq−2k)−1 , (3.3.31)

where we have set, for every m ∈ N× and every λ ∈ Cn(m),

cm,λ = (q − q−1)n−1 [m+ 1]q
[m− 1]q

n∏
i=1

[λi − 1]q
[λi + 1]q

and

t+1,λ(zC−1) =
←−−∏
i∈JnK

t+1,λi(zq
−2
∑n
k=i+1 λkC−1) ,

t−1,−λ(zC−1) =
−−→∏
i∈JnK

t−1,−λi(zq
−2
∑n
k=i+1 λkC−1) .

for every m ∈ N.

With these operations, ¨̂U0
q(a1) is a topological Hopf algebra.

Proof. One easily checks that ∆0 as de�ned by (3.3.22 � 3.3.26) is compatible with the de�ning relations

of ¨̂U0
q(a1) and that S0 is compatible with both the multiplication and the comultiplication.

In that presentation, one readily checks that

Proposition 3.3.14.
̂Ü0+
q (a1) is a closed Hopf subalgebra of ¨̂U0

q(a1).

Proof. ̂Ü0+
q (a1) is a closed subalgebra of ¨̂U0

q(a1) and it is clearly stable under ∆0 and S0.

3.3.6 The closed subalgebra ̂̈U0
q(a1) and the elliptic Hall algebra

As emphasized in [MZ], another remarkable feature of ̂̈U′q(a1) and, more particularly of its closed subalgebra

¨̂U0
q(a1), is the existence of an algebra homomorphism onto it, from the elliptic Hall algebra that we now de�ne.

De�nition 3.3.15. Let q1, q2, q3 be three (dependent) formal variables such that q1q2q3 = 1. The elliptic

Hall algebra Eq1,q2,q3 is theQ(q1, q2, q3)-algebra generated by
{
C1/2,C−1/2, ψ+

m, ψ
−
−m, e

+
n , e

−
n : m ∈ N, n ∈ Z

}
,

with ψ±0 invertible, subject to the relations

C±1/2 is central , (3.3.32)

ψ±(z)ψ±(w) = ψ±(w)ψ±(z) , (3.3.33)

g(Cz,w)g(Cw, z)ψ+(z)ψ−(w) = g(z, Cw)g(w,Cz)ψ−(w)ψ+(z) , (3.3.34)

g(C
1±1
2 z, w)ψ±(z)e+(w) = −g(w,C

1±1
2 z)e+(w)ψ±(z) , (3.3.35)

g(w,C
1∓1
2 z)ψ±(z)e−(w) = −g(C

1∓1
2 z, w)e−(w)ψ±(z) , (3.3.36)
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[e+(z), e−(w)] =
1

g(1, 1)

[
δ

(
Cw

z

)
ψ+(w)− δ

( w
Cz

)
ψ−(z)

]
, (3.3.37)

g(z, w)e+(z)e+(w) = −g(w, z)e+(w)e+(z) , (3.3.38)

g(w, z)e−(z)e−(w) = −g(z, w)e−(w)e−(z) , (3.3.39)

res
v,w,z

(vwz)m(v + z)(w2 − vz)e±(v)e±(w)e±(z) = 0 , (3.3.40)

where m ∈ Z and we have introduced

g(z, w) = (z − q1w)(z − q2w)(z − q3w) , (3.3.41)

ψ±(z) =
∑
m∈N

ψ±±mz
∓m , (3.3.42)

e±(z) =
∑
m∈Z

e±mz
−m . (3.3.43)

Remark 3.3.16. The elliptic Hall algebra Eq1,q2,q3 is Z-graded and can be equipped with a natural topology

along the lines of what we did for Üq(a1) in section 3.3.2. It then becomes a topological algebra and we

denote by Êq1,q2,q3 its completion. Similar topologies can be constructed on its tensor powers.

De�nition-Proposition 3.3.17. We endow Êq1,q2,q3 with:

i. the comultiplication ∆E : Êq1,q2,q3 → Eq1,q2,q3⊗̂Eq1,q2,q3 de�ned by

∆E(ψ
±(z)) = ψ±(zC

1±1
2

(2) )⊗ψ±(zC
1∓1
2

(1) ) , (3.3.44)

∆E(e
+(z)) = e+(z)⊗ 1 +ψ−(z)⊗̂e+(zC(1)) , (3.3.45)

∆E(e
−(z)) = e−(zC(2))⊗̂ψ+(z) + 1⊗ e−(z) , (3.3.46)

ii. the counit εE : Êq1,q2,q3 → F de�ned by εE(C
±1/2) = εE(ψ

±(z)) = 1, εE(e
±(z)) = 0,

iii. the antipode SE : Êq1,q2,q3 → Êq1,q2,q3 de�ned by

SE(ψ
±(z)) = ψ±(zC−1)−1 , (3.3.47)

SE(e
+(z)) = −ψ−(zC−1)−1e+(zC−1) , (3.3.48)

SE(e
−(z)) = −e−(zC−1)ψ+(zC−1)−1 . (3.3.49)

With the above de�ned operations, Êq1,q2,q3 is a topological Hopf algebra.

Proposition 3.3.18. There exists a unique continuous Hopf algebra homomorphism f : ̂Eq−4,q2,q2 →
̂Ü0+
q (a1) such that

f(C1/2) = C1/2 , (3.3.50)

f(ψ±(z)) = p±(C1/2zq−2) , (3.3.51)

f(e+(z)) = t+1,1(z) , (3.3.52)

94



f(e−(z)) =
t−1,−1(z)

(q2 − q−2)2
. (3.3.53)

Proof. In [MZ], we proved that the assignment

C1/2 7→ C1/2 ψ±(z) 7→ (q2 − q−2)2 p±(C1/2zq−2) , e±(z) 7→ t±1,±1(z)

de�ned an F-algebra homomorphism. Hence, f , which is obtained from the above assignment by rescaling

the images of p±(z) and e−(z), is obviously an F-algebra homomorphism. Moreover, it su�ces to write

(3.3.24), (3.3.25) and (3.3.26) with m = 1, to get

∆0(p±(z)) = p±(zC
±1/2
(2) )⊗ p±(zC

∓1/2
(1) ) ,

∆0(t+1,1(z)) = t+1,1(z)⊗ 1 + p−(zq−2C
1/2
(1) )⊗̂t+1,1(zC(1)) ,

∆0(t−1,−1(z)) = t−1,−1(zC(2))⊗̂p+(zq−2C
1/2
(2) ) + 1⊗ t−1,−1(z) ,

as well as (3.3.29), (3.3.30) and (3.3.31), with m = 1, to get

S0(p±(z)) = p±(z)−1 ,

S0(t+1,1(z)) = −p−(zq−2C−1/2)−1t+1,1(zC−1) ,

S0(t−1,−1(z)) = −t−1,−1(zC−1)p+(zq−2C−1/2)−1 ,

and thus to prove that (f⊗̂f) ◦∆E = ∆0 ◦ f and f ◦ SE = S0 ◦ f as claimed.

Remark 3.3.19. Note that we have f(ψ+
0 )f(ψ−0 ) = f(ψ−0 )f(ψ+

0 ) = 1, meaning that f descends to the

quotient of Eq−4,q2,q2 by the two-sided ideal generated by {ψ+
0 ψ
−
0 −1, ψ−0 ψ

+
0 −1}. That quotient is actually

Miki's (q, γ)-analogue of the W1+∞ algebra [Mik07].

3.3.7 The quantum toroidal algebra U̇q(ȧ1)

Let İ = {0, 1} be a labeling of the nodes of the Dynkin diagram of type ȧ1 and let Φ̇ = {α0, α1} be a choice

of simple roots for the corresponding root system. Let Q̇± = Z±α0 ⊕ Z±α1 and let Q̇ = Zα0 ⊕ Zα1 be the

type ȧ1 root lattice.

De�nition 3.3.20. The quantum toroidal algebra U̇q(ȧ1) is the associative F-algebra generated by the

generators {
D,D−1, C1/2, C−1/2, k+

i,n, k
−
i,−n, x

+
i,m, x

−
i,m : i ∈ İ ,m ∈ Z, n ∈ N

}
subject to the following relations

C±1/2 is central C±1/2C∓1/2 = 1 D±1D∓1 = 1 (3.3.54)

Dk±i (z)D−1 = k±i (zq−1) Dx±i (z)D−1 = x±i (zq−1) (3.3.55)

k±i (z1)k±j (z2) = k±j (z2)k±i (z1) (3.3.56)

k−i (z1)k+
j (z2) = G−ij(C

−1z1/z2)G+
ij(Cz1/z2)k+

j (z2)k−i (z1) = 1 mod z1/z2 (3.3.57)
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G∓ij(C
∓1/2z2/z1)k+

i (z1)x±j (z2) = x±j (z2)k+
i (z1) (3.3.58)

k−i (z1)x±j (z2) = G∓ij(C
∓1/2z1/z2)x±j (z2)k−i (z1) (3.3.59)

(z1 − q±cijz2)x±i (z1)x±j (z2) = (z1q
±cij − z2)x±j (z2)x±i (z1) (3.3.60)

[x+
i (z1),x−j (z2)] =

δij
q − q−1

[
δ

(
z1

Cz2

)
k+
i (z1C

−1/2)− δ
(
z1C

z2

)
k−i (z2C

−1/2)

]
(3.3.61)

∑
σ∈S1−cij

1−cij∑
k=0

(−1)k
(

1− cij
k

)
q

x±i (zσ(1)) · · ·x±i (zσ(k))x
±
j (z)x±i (zσ(k+1)) · · ·x±i (zσ(1−cij)) = 0 (3.3.62)

where, for every i ∈ İ, we de�ne the following U̇q(ȧ1)-valued formal distributions

x±i (z) :=
∑
m∈Z

x±i,mz
−m ∈ U̇q(ȧ1)[[z, z−1]] ; (3.3.63)

k±i (z) :=
∑
n∈N

k±i,±nz
∓n ∈ U̇q(ȧ1)[[z∓1]] , (3.3.64)

for every i, j ∈ İ, we de�ne the following F-valued formal power series

G±ij(z) := q±cij + (q − q−1)[±cij ]q
∑
m∈N×

q±mcijzm ∈ F[[z]] (3.3.65)

is an F-valued formal distribution,

Note that G±ij(z) is invertible in F[[z]] with inverse G∓ij(z), i.e.

G±ij(z)G
∓
ij(z) = 1 , (3.3.66)

and that it can be viewed as the power series expansion of a rational function of (z1, z2) ∈ C2 as |z2| � |z1|,
which we shall denote as follows

G±ij(z1/z2) =

(
z1q
∓cij − z2

z1 − q∓cijz2

)
|z2|�|z1|

. (3.3.67)

Observe furthermore that we have the following useful identity in F[[z, z−1]]

G±ij(z1/z2)−G∓ij(z2/z1)

q − q−1
= [±cij ]qδ

(
z1q
±cij

z2

)
. (3.3.68)

Remark 3.3.21. In type a1, İ = {0, 1}, cij = 4δij − 2 and we have an additional identity, namely G±10(z) =

G∓11(z).

U̇q(ȧ1) is obviously a Z-graded algebra, i.e. we have

U̇q(ȧ1) =
⊕
n∈Z

U̇q(ȧ1)n , where for all n ∈ Z U̇q(ȧ1)n := {x ∈ U̇q(ȧ1) : DxD−1 = qnx} . (3.3.69)

It was proven in [Her05] to admit a triangular decomposition (U̇−q (ȧ1), U̇0
q(ȧ1), U̇+

q (ȧ1)), where U̇±q (ȧ1) and
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U̇0
q(ȧ1) are the subalgebras of U̇q(ȧ1) respectively generated by

{
x±i,m : i ∈ İ ,m ∈ Z

}
and

{
C1/2, C−1/2, D,D−1, k+

i,m, k
−
i,m : i ∈ İ ,m ∈ Z

}
.

Observe that U̇±q (ȧ1) admits a natural gradation over Q̇± that we shall denote by

U̇±q (ȧ1) =
⊕
α∈Q̇±

U̇±q (ȧ1)α . (3.3.70)

Of course U̇q(ȧ1) is graded over the root lattice Q̇. We �nally remark that the two Dynkin diagram subalgebras

U̇q(a1)(0) and U̇q(a1)(1) of U̇q(ȧ1) generated by{
D,D−1, C1/2, C−1/2, k+

i,n, k
−
i,−n, x

+
i,m, x

−
i,m : m ∈ Z, n ∈ N

}
,

with i = 0 and i = 1 respectively, are both isomorphic to U̇q(a1), thus yielding two injective algebra homo-

morphisms ι(i) : U̇q(a1) ↪→ U̇q(ȧ1). In [MZ], making use of their natural Z-grading, U̇q(ȧ1) and all its tensor

powers were endowed with a topology along the lines of what we did in section 3.3.2 for Üq(a1) and its tensor

powers, and subsequently completed into ˙̂Uq(ȧ1) and U̇q(ȧ1)⊗̂r. The main result in [MZ] � theorem 3.7 there

� is the following

Theorem 3.3.22. There exists a unique bicontinuous F-algebra isomorphism Ψ̂ : ˙̂Uq(ȧ1)
∼−→ ̂̈U′q(a1) such

that

Ψ̂(D±1) = D±1
2 Ψ̂(C±1/2) = C±1/2 ,

Ψ̂(k±0 (z)) = −c±(z)K∓1,0(C−1/2z)−1 Ψ̂(k±1 (z)) = −K∓1,0(C−1/2z)

Ψ̂(x+
0 (z)) = −c−(C1/2z)K+

1,0(z)−1X−1,1(Cz) Ψ̂(x−0 (z)) = −X+
1,−1(Cz)c+(C1/2z)K−1,0(z)−1

Ψ̂(x±1 (z)) = X±1,0(z) .

Proof. See [MZ] for a proof.

3.3.8 U̇q(a1) subalgebras of Üq(a1)

Interestingly, Üq(a1) admits countably many embeddings of the quantum a�ne algebra U̇q(a1). This is the

content of the following

Proposition 3.3.23. For every m ∈ Z, there exists a unique injective algebra homomorphism ιm :

U̇q(a1) ↪→ ̂̈U′q(a1) such that

ιm(C±1/2) = C±1/2 ιm(D±1) = D±1
2 (3.3.71)

ιm(k±1 (z)) = −
|m|∏
p=1

c±
(
q(1−2p)sign(m)−1z

)sign(m)
K∓1,0(C−1/2z) , (3.3.72)

ιm(x±1 (z)) = X±1,±m(z) . (3.3.73)

Proof. See proposition 3.13 in [MZ].
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Remark 3.3.24. The injective algebra homomorphisms ιm, m ∈ Z, de�ned above should not be mistaken

with the injective algebra homomorphisms ι(i), i ∈ {0, 1}, from the Dynkin diagram subalgebras U̇q(a1)(0)

and U̇q(a1)(1) to U̇q(ȧ1) � see discussion before theorem 3.3.22 for a de�nition of the latter.

We also have

Proposition 3.3.25. For every i ∈ İ = {0, 1}, Ψ̂ ◦ ι(i) is an injective algebra homomorphism.

Proof. This is obvious since Ψ̂ is an isomorphism and ι(i) is an injective algebra homomorphism.

3.3.9 (Anti-)Automorphisms of ̂̈U′q(a1)

̂̈U′q(a1) naturally inherits, through Ψ̂, all the continuous (anti-)automorphisms de�ned over ˙̂Uq(ȧ1).

Proposition 3.3.26. Conjugation by Ψ̂ clearly provides a group isomorphism Aut( ˙̂Uq(ȧ1)) ∼= Aut( ̂̈U′q(a1)).

In particular, for every f ∈ Aut( ˙̂Uq(ȧ1)), we let ḟ = Ψ̂ ◦ f ◦ Ψ̂−1 ∈ Aut( ̂̈U′q(a1)).

As an example, consider the Cartan anti-involution ϕ of U̇q(ȧ1) de�ned in proposition 2.3.iv. of [MZ]. It

extends by continuity into an anti-involution ϕ̂ over ˙̂Uq(ȧ1) which eventually yields, upon conjugation by Ψ̂, an

anti-involution ϕ̇ over ̂̈U′q(a1). One can easily check that,

ϕ̇(q) = q−1 , ϕ̇(D±1
2 ) = D∓1

2 , ϕ̇(C±1/2) = C∓1/2 , ϕ̇(c±(z)) = c∓(1/z) ,

ϕ̇(K±1,±m(z)) = K∓1,∓m(1/z) , ϕ̇(X±1,r(z)) = X∓1,−r(1/z) ,

for every m ∈ N and every r ∈ Z.
In addition to the above, ̂̈U′q(a1) also admits the following automorphisms that will prove useful in the study

of its representation theory.

Proposition 3.3.27. i. There exists a unique F-algebra automorphism τ of ̂̈U′q(a1) such that, for every

m ∈ N and every n ∈ Z,

τ(C) = −C , τ(c±(C−1/2z)) = c±(∓C−1/2z) , τ(K±1,±m(z)) = K±1,±m(∓z) , τ(X±1,n(z)) = X±1,n(∓z) .

ii. There exists a unique F-algebra automorphism σ of ̂̈U′q(a1) such that

σ(C1/2) = −C1/2 , σ(c±(z)) = c±(z) , τ(K±1,±m(z)) = K±1,±m(−z) , τ(X±1,n(z)) = X±1,n(−z) .

Proof. It su�ces to check the de�ning relations of ̂̈Uq(a1).

3.3.10 Topological Hopf algebra structure on ̂̈U′q(a1)

De�nition 3.3.28. We endow the topological F-algebra ˙̂Uq(ȧ1) with:

i. the comultiplication ∆ : ˙̂Uq(ȧ1)→ U̇q(ȧ1)⊗̂U̇q(ȧ1) de�ned by

∆(C±1/2) = C±1/2 ⊗ C±1/2 , ∆(D±1) = D±1 ⊗D±1 , (3.3.74)
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∆(k±i (z)) = k±i (zC
±1/2
(2) )⊗ k±i (zC

∓1/2
(1) ) , (3.3.75)

∆(x+
i (z)) = x+

i (z)⊗ 1 + k−i (zC
1/2
(1) )⊗̂x+

i (zC(1)) , (3.3.76)

∆(x−i (z)) = x−i (zC(2))⊗̂k+
i (zC

1/2
(2) ) + 1⊗ x−i (z) , (3.3.77)

ii. the counit ε : ˙̂Uq(ȧ1)→ F, de�ned by ε(D±1) = ε(C±1/2) = ε(k±i (z)) = 1, ε(x±i (z)) = 0 and;

iii. the antipode S : ˙̂Uq(ȧ1)→ ˙̂Uq(ȧ1), de�ned by S(D±1) = D∓1, S(C±1/2) = C∓1/2 and

S(k±i (z)) = k±i (z)−1 , S(x+
i (z)) = −k−i (zC−1/2)−1x+

i (zC−1) , S(x−i (z)) = −x−i (zC−1)k+
i (zC−1/2)−1 .

With the operations so de�ned and the topologies de�ned in section 3.3.7, ˙̂Uq(ȧ1) becomes a topological

Hopf algebra � see de�nition 2.16 in [MZ].

In view of theorem 3.3.22, it is clear that ̂̈Uq(a1) inherits that topological Hopf algebraic structure.

De�nition-Proposition 3.3.29. We de�ne

∆̇ =
(

Ψ̂⊗̂Ψ̂
)
◦∆ ◦ Ψ̂−1 , (3.3.78)

Ṡ = Ψ̂ ◦ S ◦ Ψ̂−1 , (3.3.79)

ε̇ = ε ◦ Ψ̂−1 . (3.3.80)

Equipped with the above comultiplication, antipode and counit, ̂̈U′q(a1) is a topological Hopf algebra.

Before we move on to introducing t-weight Ü′q(a1)-modules, we give the following

Lemma 3.3.30. For every m ∈ N and every r ∈ Z, we have

i. ∆̇(K±1,±m(z)) = ∆0(K±1,±m(z)) mod Ü<
q (a1)⊗̂Ü>

q (a1)[[z, z−1]];

ii. ∆̇(X+
1,r(z)) ∈

(
Ü>
q (a1)⊗̂Ü0

q(a1)⊕ Üq(a1)⊗̂Ü>
q (a1)

)
[[z, z−1]];

where we have set Ü>
q (a1) = Ü≥q (a1)− Ü≥q (a1) ∩ Ü0

q(a1) and Ü<
q (a1) = Ü≤q (a1)− Ü≤q (a1) ∩ Ü0

q(a1).

Proof. We �rst prove i for upper choices of signs. Observe that (3.3.20) equivalently reads

K+
1,m(z) = −(q − q−1)K+

1,0(zq−2m)t+1,m(z) ,

for every m ∈ N×. For every m ∈ N×, let

K±1,±m(z) = Ψ̂−1(K±1,±m(z)) ∈ ˙̂Uq(ȧ1)[[z, z−1]] .

In [MZ] � see proposition-de�nition 4.9, de�nition 4.25 and eq. (4.66) �, we proved that K+
1,0(z) =

−k−1 (C1/2z) and that, for every m ∈ N×,

K+
1,m(z) = (q − q−1)k−1 (C1/2zq−2m)ψ+

1,m(z) ,

99



where ψ+
1,m(z) can be recursively de�ned by setting

[
x+

0 (w),x+
1 (z)

]
G−10(w/z)

= δ

(
q2w

z

)
ψ+

1,1(z) (3.3.81)

and

G−01(q−2mv/w)G−11(q2(1−m)v/w)

[
ψ+

1,1(w),ψ+
1,m(v)

]
G−01(w/vq2)G−11(w/v)

= [2]qδ

(
w

vq2

)
ψ+

1,m+1(q2v)

−[2]qδ

(
q2mw

v

)
ψ+

1,m+1(v) .(3.3.82)

Hence, i for m = 0 is clear. From (3.3.81) and de�nition 3.3.28, and making use of relations (4.2.6) and

(4.2.7) as well as of the identity (3.3.68), we deduce that

∆(ψ+
1,1(z)) = ψ+

1,1(z)⊗ 1 + ℘−(zq−2C
1/2
(1) )⊗̂ψ+

1,1(zC(1))− [2]q(q − q−1)k−1 (zC
1/2
(1) )x+

0 (zq−2)⊗̂x+
1 (zC(1)) ,

where ℘−(v) = k−0 (v)k−1 (vq2). Applying Ψ̂⊗̂Ψ̂ to the �rst two terms obviously yields ∆0(t+1,1(z)). Since,

on the other hand, Ψ̂(x+
0 (z)) ∈ Ü<

q (a1)[[z, z−1]] � see theorem 3.3.22 �, applying Ψ̂⊗̂Ψ̂ to the third term

yields an element of Ü<
q (a1)⊗̂Ü>

q (a1)[[z, z−1]] and it follows that i holds for m = 1 and for upper choices

of signs. Suppose it holds for upper choices of signs and for some m ∈ N×. Then, making use of (3.3.82),

one easily checks that i holds for m+ 1 and for upper choices of signs, which completes the proof of i for

upper choices of signs. Observe that
(
ϕ⊗̂ϕ

)
◦∆cop = ∆ ◦ ϕ and that, as a consequence,

∆̇ ◦ ϕ̇ =
(
ϕ̇⊗̂ϕ̇

)
◦ ∆̇cop .

Similarly, one easily checks that

∆0 ◦ ϕ̇|Ü0
q(a1) =

(
ϕ̇⊗̂ϕ̇

)
|Ü0
q(a1)
◦∆0,cop .

Thus, i for lower choices of signs follows after applying ϕ̇ to i with upper choices of signs.

As for ii, we let, for every r ∈ Z,

X+
1,r(z) = Ψ̂−1(X+

1,r(z)) .

In [MZ] � see de�nition 4.1 and proposition 4.8 �, we proved that X+
1,r(z) could be de�ned recursively by

setting X+
1,0(z) = x+

1 (z) and letting, for every r ∈ N,

[
ψ+

1,1(z),X+
1,r(v)

]
G−10(z/vq2)G−11(z/v)

= [2]qδ

(
z

vq2

)
X+

1,r+1(z) (3.3.83)

and [
ψ−1,−1(z),X+

1,−r(v)
]

= [2]qδ

(
Cz

v

)
X+

1,−(r+1)(Cq
−2z)℘+(C1/2q−2z) , (3.3.84)

where ψ−1,−1(z) = ϕ(ψ+
1,1(1/z)) � see proposition 4.3 in [MZ]. Making use of

(
ϕ⊗̂ϕ

)
◦∆cop = ∆ ◦ ϕ, we

clearly get (
Ψ̂⊗̂Ψ̂

)
◦∆(ψ−1,−1(z)) = ∆0(t−1,−1(z)) mod Ü<

q (a1)⊗̂Ü>
q (a1)[[z, z−1]] .
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Now, applying Ψ̂⊗̂Ψ̂ to (3.3.76) in de�nition 3.3.28 clearly proves ii in the case r = 0. Assuming it holds

for r ∈ N, it su�ces to apply
(

Ψ̂⊗̂Ψ̂
)
◦∆ to (3.3.83) above to prove that it also holds for r+ 1. Similarly,

if ii holds for some r ∈ −N, applying
(

Ψ̂⊗̂Ψ̂
)
◦∆ to (3.3.84) to prove that it also holds for r − 1. This

concludes the proof.

3.4 t-weight Üq(a1)-modules

3.4.1 `-weight modules over Ü0
q(a1)

Remember that Ü0,0
q (a1) contains a subalgebra that is isomorphic to U̇0

q(a1) � see proposition 3.3.5. Hence,

in view of remark 3.2.9, we can repeat for modules over Ü0
q(a1) what we did in section 3.2.3 for modules over

U̇q(a1). We thus make the following

De�nition 3.4.1. We shall say that a (topological) Ü0
q(a1)-moduleM is `-weight if there exists a countable

set {Mα : α ∈ A} of indecomposable locally �nite-dimensional Ü0,0
q (a1)-modules called `-weight spaces of

M , such that, as Ü0,0
q (a1)-modules,

M ∼=
⊕
α∈A

Mα .

For every α ∈ A, we let [−]Mα : M →Mα denote the canonical projection, so that, for every v ∈M , [v]Mα

is the projection of v on Mα. Since for every α ∈ A, Mα is locally �nite-dimensional, it is the colimit of

its �nite-dimensional submodules and we shall refer to the latter as local `-weight spaces.

As in section 3.2.3, it follows that

De�nition-Proposition 3.4.2. Let M be an `-weight Ü0
q(a1)-module. Then:

i. C2 acts on M by id;

ii. for every `-weight space Mα, α ∈ A, of M , there exist κα,0 ∈ F× and sequences (κ±α,±m)m∈N× ∈ FN×

such that

Mα ⊆
{
v ∈M : ∃n ∈ N× ,∀m ∈ N

(
K±1,0,±m − κ

±
α,±mid

)n
.v = 0

}
, (3.4.1)

where we have set κ±α,0 = κ±1
α,0.

We let Sp(M) = {κα,0 : α ∈ A} and we shall refer to

κ±α (z) =
∑
m∈N

κ±α,±mz
±m

as the `-weight of the `-weight space Mα. We shall say that M is

� of type 1 if C1/2 acts by id over M ;

� of type (1, N) for N ∈ N× if it is of type 1 and, for every m ≥ N , c±±m acts by multiplication 0 over

M ;

� of type (1, 0) if it is of type (1, 1) and c±0 acts by id over M .
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Proof. The proof follows the same arguments as the proof of de�nition-proposition 3.2.8.

Proposition 3.4.3. Let M be a type 1 `-weight Ü0
q(a1)-module and let Mα and Mβ be two local `-weight

spaces of M such that, for some m ∈ N× and some n ∈ Z, Mα ∩ K±1,±m,n.Mβ 6= {0}. Then, there exists a

unique a ∈ F× such that:

i. the respective `-weights κεα(z) and κεβ(z) of Mα and Mβ be related by

κεα(z) = κεβ(z)Hε
m,a(z)

±1 ,

where ε ∈ {−,+} and

H±m,a(z) =

(
(1− q−2a/z)(1− q−2(m−1)a/z)

(1− q2a/z)(1− q−2(m+1)a/z)

)
|z|±1�1

; (3.4.2)

ii. (z − a)NMα ∩K±1,±m(z).Mβ = {0} for some N ∈ N×.

Proof. There clearly exist two bases {vi : i = 1, . . . ,dimMα} and {wi : i = 1, . . . ,dimMβ} of Mα and Mβ

respectively, in which

∀i ∈ JdimMαK , K±1,0(z).vi = κ±α (z)

dimMα∑
k=i

η±α,i,k(z)vk ,

∀j ∈ JdimMβK , K±1,0(z).wj = κ±β (z)

dimMβ∑
l=j

η±β,j,l(z)wl ,

for some η±α,i,k(z), η
±
β,j,l(z) ∈ F[[z±1]], with i, k ∈ JdimMαK and j, l ∈ JdimMβK, such that η±α,i,i(z) = 1 for

every i ∈ JdimMαK and η±β,j,j(z) = 1 for every j ∈ JdimMβK. Moreover, for every j ∈ JdimMβK,[
K±1,±m(z).wj

]
Mα

=
∑

i∈JdimMαK

ξ±m,j,i(z)vi ,

for some ξ±m,j,i(z) ∈ F[[z, z−1]] � see de�nition 3.4.1 for the de�nition of [−]Mα .

Now, if Mα ∩K±1,±m,n.Mβ 6= {0}, there must exist a largest nonempty subset J ⊆ JdimMβK such that,

for every j ∈ J ,
[
K±1,±m(z).wj

]
Mα

6= {0}. Let j∗ = maxJ . Obviously, for every j ∈ J , there must exist

a largest nonempty subset I(j) ⊆ JdimMαK such that, for every j ∈ J and every i ∈ I(j), ξ±m,j,i(z) 6= 0.

Consequently, for every j ∈ J , [
K±1,±m(z).wj

]
Mα

=
∑
i∈I(j)

ξ±m,j,i(z)vi ,

where ξ±m,j,i(z) ∈ F[[z, z−1]] − {0}, whereas ξ±m,j,i(z) = 0 for any (j, i) outside of the set of pairs {(j, i) :

j ∈ J, i ∈ I(j)}. For every j ∈ J , we let i∗(j) = min I(j) and, for simplicity, we let i∗ = i∗(j∗). Making

use of the relations in Üq(a1) � namely (3.3.7) and (3.3.8) �, we get, for ε ∈ {−,+},

(z1 − q±2z2)(z1 − q2(m∓1)z2)K±1,±m(z1)Kε1,0(z2).wj = (z1q
±2 − z2)(z1q

∓2 − q2mz2)Kε1,0(z2)K±1,±m(z1).wj .
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The latter easily implies that, for every j ∈ J and every i ∈ I(j),

(z1 − q±2z2)(z1 − q2(m∓1)z2)κεβ(z2)
∑
l∈J
l≥j

ηεβ,j,l(z2)ξ±m,l,i(z1)

= (z1q
±2 − z2)(z1q

∓2 − q2mz2)κ±α (z2)
∑
k∈I(j)
k≤i

ηεα,k,i(z2)ξ±m,j,k(z1) .(3.4.3)

Taking i = i∗ and j = j∗ in the above equation immediately yields[
(z1 − q±2z2)(z1 − q2(m∓1)z2)κεβ(z2)− (z1q

±2 − z2)(z1q
∓2 − q2mz2)κεα(z2)

]
ξ±m,j∗,i∗(z1) = 0 .

The latter is equivalent to the fact that, for every p ∈ Z,(
ξ±m,j∗,i∗,pq

2mz2 + ξ±m,j∗,i∗,p+2

) [
κεβ(z)− κεα(z)

]
= ξ±m,j∗,i∗,p+1z

[
(q2(m∓1) + q±2)κεβ(z)− (q2(m±1) + q∓2)κεα(z)

]
.(3.4.4)

where, as usual, we have set

ξ±m,j∗,i∗,p = res
z
zp−1ξ±m,j∗,i∗(z) .

Since ξ±m,j∗,i∗(z) 6= 0, there must exist a p ∈ Z such that ξ±m,j∗,i∗,p 6= 0. Assuming that ξ±m,j∗,i∗,p+1 = 0, one

easily obtains that, on one hand κεβ(z) = κεα(z) and that, on the other hand,[
(q2(m∓1) + q±2)κεβ(z)− (q2(m±1) + q∓2)κεα(z)

]
= 0 .

A contradiction. By similar arguments, one eventually proves that ξ±m,j∗,i∗,p 6= 0 for every p ∈ Z. But

then, dividing (3.4.4) by ξ±m,j∗,i∗,p+1, we get(
a−1
p q2mz2 + ap+1

) [
κεβ(z)− κεα(z)

]
= z

[
(q2(m∓1) + q±2)κεβ(z)− (q2(m±1) + q∓2)κεα(z)

]
,

for every p ∈ Z, where ap = ξ±m,j∗,i∗,p+1/ξ
±
m,j∗,i∗,p

∈ F× . Since the r.h.s. of the above equation is obviously

independent of p, so is its l.h.s. and it easily follows that, for every p ∈ Z, ap = a for some a ∈ F×, so
that, eventually,

(
q2mz2 + a2

) [
κεβ(z)− κεα(z)

]
− az

[
(q2(m∓1) + q±2)κεβ(z)− (q2(m±1) + q∓2)κεα(z)

]
= 0 .

i follows. Moreover, we clearly have

ξ±m,j∗,i∗(z) = A±m,j∗,i∗δ(z/a) ,

for some A±m,j∗,i∗ ∈ F×. More generally, we claim that,

∀j ∈ J ,∀i ∈ I(j) , ξ±m,j,i(z) =

N(i,j)∑
p=0

A±m,j,i,pδ
(p)(z/a) , (3.4.5)

for some A±m,j,i,p ∈ F and some N(i, j) ∈ N. This is proven by a �nite induction on j and i. Indeed,
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making use of (3.4.2), we can rewrite (3.4.3) as

(z1 − q±2z2)(z1 − q2(m∓1)z2)(z2 − q±2a)(z2 − q−2(m±1)a)
∑
l∈J
l≥j

ηεβ,j,l(z2)ξ±m,l,i(z1)

= (z1q
±2 − z2)(z1q

∓2 − q2mz2)(z2 − q∓2a)(z2 − q−2(m∓1)a)
∑
k∈I(j)
k≤i

ηεα,k,i(z2)ξ±m,j,k(z1) ,(3.4.6)

for every j ∈ J and every i ∈ I(j). Now, assume that (3.4.5) holds for every pair in

{(j, i) : j ∈ J, i ∈ I(j), j > j0} ∪ {(j0, i) : i ∈ I(j0), i ≤ i0} ,

for some j0 ∈ J and some i0 ∈ I(j0) such that i0 < max I(j0). Let i′0 be the smallest element of I(j0) such

that i0 < i′0. It su�ces to write (3.4.6) for j = j0 and i = i′0, to get

(z1 − a)z2(z1a− q2mz2
2)(q∓2 + q−2(m∓1) − q±2 − q−2(m±1))ξ±

m,j0,i′0
(z1)

= −(z1 − q±2z2)(z1 − q2(m∓1)z2)(z2 − q±2a)(z2 − q−2(m±1)a)
∑
l∈J
l>j0

ηεβ,j0,l(z2)ξ±
m,l,i′0

(z1)

+(z1q
±2 − z2)(z1q

∓2 − q2mz2)(z2 − q∓2a)(z2 − q−2(m∓1)a)
∑

k∈I(j0)
k≤i0

ηεα,k,i′0
(z2)ξ±m,j0,k(z1) .(3.4.7)

Combining the recursion hypothesis and lemma 5.1.8 from the appendix, one easily concludes that (3.4.5)

holds for the pair (j0, i
′
0). Repeating the argument �nitely many times, we get that it actually holds for

all the pairs in {(j, i) : j ∈ J, i ∈ I(j), j ≥ j0}. Now, either j0 = min J and we are done; or j0 > min J

and there exists a largest j′0 ∈ J such that j0 > j′0. Writing (3.4.6) for j = j′0 and i = i∗(j
′
0), we get

(z1 − a)z2(z1a− q2mz2
2)(q∓2 + q−2(m∓1) − q±2 − q−2(m±1))ξ±

m,j′0,i∗(j
′
0)

(z1)

= −(z1 − q±2z2)(z1 − q2(m∓1)z2)(z2 − q±2a)(z2 − q−2(m±1)a)
∑
l∈J
l≥j′0

ηεβ,j′0,l
(z2)ξ±

m,l,i∗(j′0)
(z1) .

Combining again the recursion hypothesis and lemma 5.1.8, we easily get that (3.4.19) holds for (j′0, i∗(j
′
0)).

It is now clear that the claim holds for every j ∈ J and every i ∈ I(j). Letting

N = 1 + max{N(i, j) : j ∈ J, i ∈ I(j)} ,

ii follows. Furthermore, for every b ∈ F − {a} and every n ∈ N, we obviously have (z − b)nMα ∩
K±1,±m(z).Mβ 6= {0}, thus making a the only element of F satisfying ii. This concludes the proof.

Remark 3.4.4. It is worth emphasizing that proposition 3.4.3.i holds for arbitrary pairs of (possibly non-

local) `-weight spaces since it must hold for at least one pair of local `-weight spaces therein.

We let ω1 denote the fundamental weight of a1 and we let P = Zω1 be the corresponding weight lattice. In

view of proposition 3.4.3, it is natural to make the following

De�nition 3.4.5. Let M be a type (1, 0) `-weight Ü0
q(a1)-module and let {Mα : α ∈ A} be the countable

set of its `-weight spaces. We shall say that M is rational if, for every α ∈ A, there exist relatively prime

104



monic polynomials Pα(1/z), Qα(1/z) ∈ F[z−1], called Drinfel'd polynomials of M , such that the `-weight

κ±α (z) of Mα be given by

κ±α (z) = −qdeg(Pα)−deg(Qα)

(
Pα(q−2/z)Qα(1/z)

Pα(1/z)Qα(q−2/z)

)
|z|±1�1

.

With each rational `-weight κ±α (z) of a rational Ü0
q(a1)-moduleM , we associate an integral weight λα ∈ P ,

by setting

λα = [deg(Pα)− deg(Qα)]ω1 .

We shall say that M is `-dominant (resp. `-anti-dominant) if it is rational and there exists N ∈ N× such

that, for every α ∈ A, deg(Pα) = N and deg(Qα) = 0 (resp. deg(Pα) = 0 and deg(Qα) = N).

Remark 3.4.6. The classical weight Nω1 (resp. −Nω1) associated with any `-dominant (resp. `-anti-

dominant) type 1 `-weight rational Ü0
q(a1)-moduleM is a dominant (resp. anti-dominant) integral weight.

Note that the converse need not be true.

Remark 3.4.7. The data of the `-weights of a rational Ü0
q(a1)-module is equivalent to the data of its

Drinfel'd polynomials {(Pα, Qα) : α ∈ A} which, in turn, is equivalent to the data of their �nite multisets

of roots {(ν+
α , ν

−
α ) : α ∈ A}. The latter are �nitely supported maps ν±α : F× → N such that, for every

α ∈ A,
Pα(1/z) =

∏
x∈F×

(1− x/z)ν
+
α (x) and Qα(1/z) =

∏
x∈F×

(1− x/z)ν
−
α (x) .

Note that, in the above formulae, since ν±α is �nitely supported, the products only run through the �nitely

many numbers in the support supp(ν±α ) of ν±α . Moreover, since Pα and Qα are relatively prime for every

α ∈ A, we have supp(ν+
α ) ∩ supp(ν−α ) = ∅. We denote by NF×

f , the set of �nitely supported N-valued
maps over F×. As is customary in the theory of q-characters, we associate with every `-weight given

by a pair (Pα, Qα) of Drinfel'd polynomials or, equivalently, by a pair (ν+
α , ν

−
α ) with ν+

α , ν
−
α ∈ NF×

f and

supp(ν+
α ) ∩ supp(ν−α ) = ∅, a monomial

mα = Y ν+−ν− =
∏
x∈F×

Y ν+α (x)−ν−α (x)
x ∈ Z[Ya, Y

−1
a ]a∈F× .

De�nition 3.4.8. Let M be an `-dominant Ü0
q(a1)-module and let Mα and Mβ be any two `-weight

spaces of M with respective `-weights

κ±α (z) = −qdeg(Pα)

(
Pα(q−2/z)

Pα(1/z)

)
|z|±1�1

and κ±β (z) = −qdeg(Pβ)

(
Pβ(q−2/z)

Pβ(1/z)

)
|z|±1�1

,

where Pα(1/z), Pβ(1/z) ∈ F[z−1] are two monic polynomials. By proposition 3.4.3.i., ifMα∩K±1,±m(z).Mβ 6=
{0} for some m ∈ N×, then there exists a unique a ∈ F× such that

κεα(z) = κεβ(z)Hε
m,a(z)

±1 ,

where ε ∈ {−,+}. We shall say that M is t-dominant if, for any pair of `-weight spaces satisfying the
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above assumptions, we have, in addition, that

Pβ(1/aq−(m±m)) = Pβ(1/aq2−(m±m)) = 0 .

For every a ∈ F×, we let δa ∈ NF×
f be de�ned by

δa(x) =

1 if x = a;

0 otherwise.

For every a ∈ F×, we let NF×
a =

{
ν ∈ NF×

f : {a, aq2} ⊆ supp(ν)
}
and we de�ne, for every m ∈ Z, an operator

Γm,a : NF×
aq−2m → NF×

a by letting 1, for every ν ∈ NF×
aq−2m ,

Γm,a(ν) = ν − δaq−2m − δaq2−2m + δa + δaq2 .

Γm,a is obviously invertible, with inverse Γ−1
m,a : NF×

a → NF×
aq−2m given by Γ−1

m,a = Γ−m,aq−2m . Note that, for

every a ∈ F×, Γ0,a = id over NF×
a . Given two �nite multisets ν, ν ′ ∈ NF×

f , we we shall say that they are

equivalent and write ν ∼ ν ′ i�
ν = Γm1,a1 ◦ · · · ◦ Γmn,an(ν ′) , (3.4.8)

for some n ∈ N, m1, . . . ,mn ∈ Zn and some a1, . . . , an ∈ F×. In writing (3.4.8), it is assumed that, for every

p = 2, . . . , n, Γmp,ap ◦ · · · ◦ Γmn,an(ν ′) ∈ NF×
ap−1q

−2mp−1
. It is clear that ∼ is an equivalence relation and we

denote by [ν] ∈ NF×
f / ∼ the equivalence class of ν in NF×

f . Following remark 3.4.7, we naturally extend the

action of Γm,a to Z[Yb, Y
−1
b ]b∈F× , by setting

Γm,a(Y
ν) = Y Γm,a(ν) .

The equivalence relation ∼ similarly extends from NF×
f to Z[Yb, Y

−1
b ]b∈F× . Note that, setting

Hm,a = Y −1
aq−2mY

−1
aq2−2mYaYaq2 ∈ Z[Yb, Y

−1
b ]b∈F× ,

for every a ∈ F× and every m ∈ Z, we have, for every ν ∈ NF×
a

Γm,a(Y
ν) = Hm,aY

ν .

Corollary 3.4.9. Let M be a simple t-dominant Ü0
q(a1)-module. Then there exists a multiset ν ∈ NF×

f

such that all the monomials associated with the `-weights of M be in the equivalence class of Y ν .

Proof. By proposition 3.4.3, for any two `-weight spaces, Mα and Mβ , of an `-dominant Ü0
q(a1)-module

M , with respective `-weights

κ±α (z) = −qdeg(Pα)

(
Pα(q−2/z)

Pα(1/z)

)
|z|±1�1

and κ±β (z) = −qdeg(Pβ)

(
Pβ(q−2/z)

Pβ(1/z)

)
|z|±1�1

,

1Although the de�nition of Γ±1±1,a easily extends to
{
ν ∈ NF×

f : aq−(1±1) ∈ supp(ν)
}
, we will not make use of

that extension and exclusively regard Γ±1±1,a as a map NF×

aq−2(1±1) → NF×

aq2(1∓1) .
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if Mα ∩ K±1,±m,n.Mβ 6= {0} for some m ∈ N× and some n ∈ Z, then we must have

Pα(q−2/z)

Pα(1/z)
=
Pβ(q−2/z)

Pβ(1/z)

(
(1− q−2a/z)(1− a/z)
(1− a/z)(1− q2a/z)

(1− q−2ma/z)(1− q−2(m−1)a/z)

(1− q−2(m+1)a/z)(1− q−2ma/z)

)±1

, (3.4.9)

for some a ∈ F×. Now, denote by να (resp. νβ) the multiset of roots of Pα(1/z) (resp. Pβ(1/z)) and

assume m > 1, it is clear that:

- for the upper choice of sign on the right hand side of the above equation, we get

(1− q−2ma/z)(1− q−2(m−1)a/z)Pα(1/z) = (1− a/z)(1− q2a/z)Pβ(1/z) ,

implying that να + δaq−2m + δaq−2(m−1) = νβ + δa + δaq2 ;

- for the lower choice of sign,

(1− a/z)(1− q2a/z)Pα(1/z) = (1− q−2ma/z)(1− q−2(m−1)a/z)Pβ(1/z) ,

implying that να + δa + δaq2 = νβ + δaq−2m + δaq−2(m−1) .

If on the other hand m = 1, since M is t-dominant, we have, by de�nition, that aq∓2 is a root of Pβ(1/z).

In any case, it is clear that να ∼ νβ and hence Y να ∼ Y νβ . Since M is simple, there can be no non-zero

`-weight space Mβ of M such that Mα ∩ K±1,±m,n.Mβ = {0} for every `-weight space Mα of M , every

m ∈ N× and every n ∈ Z.

In view of de�nition-proposition 3.4.2, we can make the following

De�nition 3.4.10. For every monic polynomial P (1/z) ∈ F[z−1], denote by FP the one-dimensional

Ü0,0
q (a1)-module such that

K±1,0(z).v = −qdeg(P )

(
P (q−2/z)

P (1/z)

)
|z|±1�1

v ,

for every v ∈ FP . There exists a universal Ü0
q(a1)-module M0(P ) ∼= Ü0

q(a1) ⊗̂
Ü0,0
q (a1)

FP that admits the `-

weight associated with P . Denoting byN0(P ) the maximal Ü0
q(a1)-submodule ofM0(P ) such thatN0(P )∩

FP = {0}, we de�ne the unique � up to isomorphisms � simple Ü0
q(a1)-module L0(P ) = M0(P )/N0(P ).

Proposition 3.4.11. For every simple `-dominant Ü0
q(a1)-module M , there exists a monic polynomial

P (1/z) ∈ F[z−1] such that M ∼= L0(P ).

Proof. Obviously, for every v ∈ M − {0}, we have M ∼= Ü0
q(a1).v. Now since M is `-dominant, v can be

chosen as an `-weight vector, i.e.

K±1,0(z).v = −qdeg(P )

(
P (q−2/z)

P (1/z)

)
|z|±1�1

v

for some monic polynomial P (1/z) ∈ F[z−1].
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Remark 3.4.12. The above proof makes it clear that if {Pα : α ∈ A} is the set of Drinfel'd polynomials of

a simple `-dominant Ü0
q(a1)-module M , then, for every α ∈ A, M ∼= L0(Pα).

Theorem 3.4.13. For every monic polynomial P (1/z) ∈ F[z−1], L0(P ) is t-dominant.

Proof. We postpone the proof of this theorem until section 3.5, where we construct L0(P ) for every P and

directly check that it is indeed t-dominant.

Proposition 3.4.14. Any topological ¨̂U0
q(a1)-module pulls back to a module over the elliptic Hall algebra

Eq−4,q2,q2.

Proof. It su�ces to make use of the Hopf algebra homomorphism

Eq−4,q2,q2
f−→ Ü0+

q (a1) ↪→ ¨̂U0
q(a1) ,

where f is de�ned in proposition 3.3.18 and the second arrow is the canonical injection into ¨̂U0
q(a1) of its

Hopf subalgebra Ü0+
q (a1) � see proposition 3.3.12.

Remark 3.4.15. It is worth mentioning that, as an example of the above proposition, `-anti-dominant

Ü0
q(a1)-modules pullback to a family of Eq−4,q2,q2-modules that were recently introduced in [DK19]. It

might be interesting to investigate further the class of Eq−4,q2,q2-modules obtained by pulling back other

(rational) Ü0
q(a1)-modules.

We conclude the present subsection by proving the following

Lemma 3.4.16. Let M be an `-dominant Ü0
q(a1)-module. Suppose that, for any two local `-weight spaces

Mα and Mβ of M , with respective `-weights κ±α (z) and κ±β (z), such that Mα ∩ K±1,±1(z).Mβ 6= {0}, the
unique a ∈ F× such that κεα(z) = κεβ(z)Hε

1,a(z)
±1, for every ε ∈ {−,+}, and (z−a)NMα ∩K±1,±1(z).Mβ =

{0} for some N ∈ N× � see proposition 3.4.3 � also satis�es Pβ(1/a) = 0. Then M is t-dominant.

Proof. LetM be as above and letMα andMβ be two local `-weight spaces ofM with respective `-weights

κ±α (z) = −qdeg(Pα)

(
Pα(q−2/z)

Pα(1/z)

)
|z|±1�1

and κ±β (z) = −qdeg(Pβ)

(
Pβ(q−2/z)

Pβ(1/z)

)
|z|±1�1

.

Suppose thatMα∩K±1,±m(z).Mβ 6= {0} for somem ∈ N×. Ifm > 1, writing down κεα(z) = κεβ(z)Hε
m,a(z)

±1,

we obtain equation (3.4.9) as in the proof of corollary 3.4.9. By the same discussion as the one following

equation (3.4.9), we conclude that Pβ(1/aq−(m±m)) = Pβ(1/aq2−(m±m)) = 0, as needed � see de�nition

3.4.8. Finally, if m = 1, writing down κεα(z) = κεβ(z)Hε
1,a(z)

±1, we obtain

Pα(q−2/z)

Pα(1/z)
=
Pβ(q−2/z)

Pβ(1/z)

(
(1− a/z)

(1− q2a/z)

(1− q−2a/z)

(1− q−4a/z)

)±1

.

Then, it is clear that:

- for the upper choice of sign on the right hand side of the above equation, we get

(1− q−2a/z)Pα(1/z) = (1− q2a/z)Pβ(1/z) ;
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- for the lower choice of sign on the right hand side of the above equation, we get

(1− q2a/z)Pα(1/z) = (1− q−2a/z)Pβ(1/z) .

In any case, it follows that Pβ(1/aq∓2) = 0. But by our assumptions onM , we also have that Pβ(1/a) = 0

and the t-dominance of M follows � see de�nition 3.4.8.

3.4.2 t-weight Üq(a1)-modules

De�nition 3.4.17. For every N ∈ N×, we shall say that a (topological) module M over Ü′q(a1) is of

type (1, N) if:

i. C±1/2 acts as id on M ;

ii. c±±m acts by multiplication by 0 on M , for every m ≥ N .

We shall say that M is of type (1, 0) if points i. and ii. above hold for every m > 0 and, in addition, c±0
acts as id on M .

Remark 3.4.18. Let N ∈ N. Then the Ü′q(a1)-modules of type (1, N) are in one-to-one correspondence

with the Üq(a1)(N)/(C1/2− 1)-modules � see section 3.3.3 for a de�nition of Üq(a1)(N). Obviously Üq(a1)-

modules of type (1, 0) descend to modules over the double quantum loop algebra of type a1, L̈q(a1).

De�nition 3.4.19. We shall say that a (topological) Üq(a1)-moduleM is a t-weight module if there exists

a countable set {Mα : α ∈ A} of indecomposable `-weight Ü0
q(a1)-modules, called t-weight spaces of M ,

such that, as (topological) Ü0
q(a1)-modules,

M ∼=
⊕
α∈A

Mα . (3.4.10)

We shall say that M is weight-�nite if, regarding it as a completely decomposable Ü0
q(a1)-module, its

Sp(M) is �nite � see de�nition-proposition 3.4.2 for the de�nition of Sp. A vector v ∈M −{0} is a highest

t-weight vector of M if v ∈Mα for some α ∈ A and, for every r, s ∈ Z,

X+
1,r,s.v = 0 . (3.4.11)

We shall say that M is highest t-weight if M ∼= Üq(a1).v for some highest t-weight vector v ∈M − {0}.

De�nition-Proposition 3.4.20. Let M be a t-weight Üq(a1)-module that admits a highest t-weight

vector v ∈ M − {0}. Denote by M0 the t-weight space of M containing v. Then M0 = Ü0
q(a1).v and, for

every r, s ∈ Z,
X+

1,r,s.M0 = {0} . (3.4.12)

We shall say that M0 is a highest t-weight space of M . If in addition M is simple, then it admits a unique

� up to isomorphisms of Ü0
q(a1)-modules � highest t-weight space M0.

Proof. It is an easy consequence of the triangular decomposition of Üq(a1) � see proposition 3.3.11 � and

of the root grading of Üq(a1) that, indeed, X+
1,r,s.

(
Ü0
q(a1).v

)
= {0}, for every r, s ∈ Z. Now since M
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is highest t-weight, we have M ∼= Üq(a1).v. By proposition 3.3.11, M0 ⊂ M ∼= Ü−q (a1)Ü0
q(a1).v and it

follows that M0
∼= Ü0

q(a1).v. Now, assuming that M is simple and that it admits highest t-weight spaces

M0 and M ′0, we have that Ü−q (a1).M0
∼= M ∼= Ü−q (a1).M ′0 as Üq(a1)-modules. In particular, M0

∼= M ′0 as

Ü0
q(a1)-modules.

In view of the triangular decomposition of Üq(a1) � see proposition 3.3.11 �, the above proposition implies

that any highest t-weight Üq(a1)-modules M is entirely determined as M ∼= Ü−q (a1).M0, by the data of its

highest t-weight space M0, a cyclic `-weight Ü0
q(a1)-module. Now for any v ∈ M0 − {0} such that M0

∼=
Ü0
q(a1).v, let N0 be the maximal Ü0

q(a1)-submodule of M0 not containing v and set L0 = M0/N0
2. Then, by

construction, L0 is a simple Ü0
q(a1)-module such that, as Üq(a1)-modules, M ∼= Ü−q (a1).L0 mod Ü−q (a1).N0.

We therefore make the following

De�nition 3.4.21. We extend every simple (topological) `-weight Ü0
q(a1)-module M0 into a Ü≥q (a1)-

module by setting X+
1,r,s.M0 = {0} for every r, s ∈ Z. This being understood, we de�ne the universal

highest t-weight Ü′q(a1)-module with highest t-weight space M0 by setting

M(M0) = ̂̈U′q(a1) ⊗̂
Ü≥q (a1)

M0

as Ü′q(a1)-modules. Denoting by N (M0) the maximal (closed) Üq(a1)-submodule of M(M0) such that

M0 ∩ N (M0) = {0}, we de�ne the simple highest t-weight Üq(a1)-module L(M0) with highest t-weight

space M0 by setting L(M0) ∼=M(M0)/N (M0). It is unique up to isomorphisms.

Classifying simple highest t-weight Üq(a1)-modules therefore amounts to classifying those simple `-weight

Ü0
q(a1)-modules M0 that appear as their highest t-weight spaces. In the case of weight-�nite Üq(a1)-modules,

this is achieved by the following

Theorem 3.4.22. The following hold:

i. Every weight-�nite simple Ü′q(a1)-module M is highest t-weight and can be obtained by twisting a

type (1,0) weight-�nite simple Üq(a1)-module with an algebra automorphism from the subgroup of

Aut(Ü′q(a1)) generated by the algebra automorphisms τ and σ of proposition 3.3.27.

ii. The type (1,0) simple highest t-weight Ü′q(a1)-module L(M0) is weight-�nite if and only if its highest

t-weight space M0 is a simple t-dominant Ü0
q(a1)-module � see proposition-de�nition 3.4.5.

Proof. We shall prove ii in section 3.5. We now prove i. Let M be a weight-�nite simple t-weight Üq(a1)-

module and assume for a contradiction that, for every w ∈ M − {0}, there exist r, s ∈ Z such that

X+
1,r,s.w 6= 0. Then, there must exist two sequences (rn)n∈N, (sn)n∈N ∈ ZN, such that

0 /∈
{
wn = X+

r1,s1 . . .X
+
rn,sn .w : n ∈ N

}
.

Choosing w ∈ M − {0} to be an eigenvector of K+
1,0,0 with eigenvalue λ ∈ F× � see de�nition-proposition

3.4.2 for the existence of such a vector �, one easily sees from the relations that, for every n ∈ N,
K+

1,0,0.wn = λq2nwn. It follows � see de�nition-proposition 3.4.2 � that {λq2n : n ∈ N} ⊆ Sp(M). A

2N0 clearly does not depend on the chosen generator v. Indeed, if N0 contained a generator v′ of M0, it would

contain all the others, including v. It follows that N0 and hence L0 are both independent of v.
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contradiction with the weight-�niteness of M . Thus, we conclude that there exists a highest t-weight

vector v0 ∈ M − {0} such that K±1,0,0.v0 = κ±1
0 v0 for some κ0 ∈ F×. Obviously, M ∼= Üq(a1).v0, for

Üq(a1).v0 6= {0} is a submodule of the simple Üq(a1)-module M . Thus M is highest t-weight. Denote

by M0 = Ü0
q(a1).v0 its highest t-weight space. The latter is an `-weight Ü0

q(a1)-module. As such, it

completely decomposes into countably many locally �nite-dimensional indecomposable Ü0,0
q (a1)-modules

that constitute its `-weight spaces. Over any of these, C1/2 must admit an eigenvector. But since M is

simple and C1/2 is central, the latter acts over M by a scalar multiple of id. It follows from de�nition-

proposition 3.4.2 that C acts over M by id or −id. In the former case, there is nothing to do; whereas

in the latter, it is quite clear from proposition 3.3.27 that, twisting the Üq(a1) action on M by τ , we can

ensure that C acts by id. It follows that C1/2 acts by id or −id. Again, in the former case, there is nothing

to do; whereas in the latter, twisting by σ, we can ensure that C1/2 acts by id. Similarly, for every m ∈ N,
c±±m must admit an eigenvector over any locally �nite-dimensional `-weight space of M0. But again, since

M is simple and c±±m is central, the latter must act over M by a scalar multiple of id.

In any case, in view of (3.3.7) and (3.3.8), K±1,0,0 commutes with all the other generators of Ü0
q(a1) and,

since M0 = Ü0
q(a1).v0, we have K±1,0,0.w = κ±1

0 w for every w ∈ M0. Moreover, M0 turns out to be a type

1 `-weight Ü0
q(a1)-module and, by de�nition-proposition 3.4.2,

M0 ⊆
⊕
α∈A

{
v ∈M : K±1,0,0.v = κ±1

0 v and ∃n ∈ N×,∀m ∈ N×
(
K±1,0,±m − κ

±
α,±mid

)n
.v = 0

}

for some countable set of sequences
{

(κ±α,±m)m∈N× ∈ FN× : α ∈ A
}
. By proposition 3.4.20,

X+
1,r,s.M0 = {0} , (3.4.13)

for every r, s ∈ Z. Pulling back with ι(0) and ι(1) respectively, we can simultaneously regard M as a

Uq(La1)-module for both of its Dynkin diagram subalgebras Uq(La1)(0) and Uq(La1)(1) � see discussion

before theorem 3.3.22 in section 3.3 for de�nitions. Let v ∈ M0 − {0} be a simultaneous eigenvector of

the pairwise commuting linear operators in
{
K±1,0,±m : m ∈ N

}
. Equation (3.4.13) implies that x+

1 (z).v =

x−0 (z).v = 0. Thus v is a highest (resp. lowest) `-weight vector of U̇q(a1)(1).v (resp. U̇q(a1)(0).v). The

weight �niteness ofM now allows us to apply corollary 3.2.12 to prove that the respective simple quotients

of Uq(La1)(0).v and Uq(La1)(1).v containing v are both �nite-dimensional and isomorphic to a unique simple

highest (resp. lowest) `-weight module L(P1) (resp. L̄(P0)). As a consequence of theorem 3.2.5 and of

proposition 3.2.6, we conclude that

k±0 (z).v = q− deg(P0)

(
P0(1/z)

P0(q−2/z)

)
|z|∓1�1

v and k±1 (z).v = qdeg(P1)

(
P1(q−2/z)

P1(1/z)

)
|z|∓1�1

v ,

for some monic polynomials P0 and P1. On the other hand, pulling back with ιm for every m ∈ Z � see

proposition 3.3.23 for a de�nition �, we can regardM as a Uq(La1)-module in in�nitely many independent

ways. Again, for every m ∈ Z, v turns out to be a highest `-weight vector for a unique simple weight

�nite, hence �nite dimensional Uq(La1)-module. As such, it satis�es

ιm(k±1 (z)).v = qdeg(Qm)

(
Qm(q−2/z)

Qm(1/z)

)
|z|∓1�1

v ,
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for some monic polynomial Qm. Now since

ιm(k±1 (z)) = −
|m|∏
p=1

c±
(
q(1−2p)sign(m)−1z

)sign(m)
K∓1,0(C−1/2z)

and Ψ̂(k±0 (z)k±1 (z)) = c±(z), we must have

qdeg(Qm)

(
Qm(q−2/z)

Qm(1/z)

)
|z|∓1�1

= qdeg(P1)+m(deg(P1)−deg(P0))

(
P1(q−2/z)

P1(1/z)

)
|z|∓1�1

×
|m|∏
p=1

(
P1(q(2p−1)sign(m)−1/z)P0(q(2p−1)sign(m)+1/z)

P1(q(2p−1)sign(m)+1/z)P0(q(2p−1)sign(m)−1/z)

)sign(m)

|z|∓1�1

(3.4.14)

for every m ∈ Z×. In the limit as z−1 → 0, this implies qdeg(Qm) = qdeg(P1)+m(deg(P1)−deg(P0)) for every

m ∈ Z and, consequently, deg(P0) = deg(P1) = deg(Qm). After obvious simpli�cations, (3.4.14) becomes

(
Qm(q−2/z)

Qm(1/z)

)
|z|∓1�1

=

(
P1(q−1−sign(m)/z)

P0(qsign(m)−1/z)

P0(q2m+1−sign(m)/z)

P1(q2m+1−sign(m)/z)

)sign(m)

|z|∓1�1

(3.4.15)

for every m ∈ Z×. Now, z−1 = 0 is not a root of P (1/z) for any monic polynomial P . Moreover, q being a

formal parameter � in case q is regarded as a complex number, we shall assume that 1 /∈ qZ× �, it follows

that the map z−1 7→ qmz−1 has no �xed points over the set of roots of a monic polynomial. Thus, for

|m| large enough, the respective sets of roots of P1(q−1−sign(m)/z) and P1(q2m+1−sign(m)/z) are disjoint.

Similarly, for |m| large enough, the respective sets of roots of P0(qsign(m)−1/z) and P0(q2m+1−sign(m)/z) are

disjoint. It follows that, for |m| large enough, on the r.h.s. of (3.4.15), cancellations can only occur between
factors on opposite sides of the same fraction line. Now, either P0 = P1, which obviously solves (3.4.15);

or P0 6= P1. Assume for a contradiction that P0 6= P1. In that case, there exist a monic polynomial P with

deg(P ) < deg(P0) = deg(P1), an integer n ∈ N× with n ≤ deg(P0) = deg(P1) and two n-tuples (αp)p∈JnK,

(βp)p∈JnK ∈ Fn with

{αp : p ∈ JnK} ∩ {βp : p ∈ JnK} = ∅ ,

such that

P0(1/z) = P (1/z)

n∏
p=1

(1− βp/z) and P1(1/z) = P (1/z)

n∏
p=1

(1− αp/z) .

Thus, in that case, (3.4.15) yields

(
Qm(q−2/z)

Qm(1/z)

)
|z|∓1�1

=

P (q−2/z)

P (1/z)

 n∏
p=1

1− αpq−sign(m)−1/z

1− βpqsign(m)−1/z

sign(m)

|z|∓1�1

×

 n∏
p=1

1− βpq2m+1−sign(m)/z

1− αpq2m+1−sign(m)/z

sign(m)

|z|∓1�1

,

where, for |m| large enough, cancellations on the r.h.s. can only involve factors in the numerators and
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denominators of the leftmost two fraction lines. The third fraction must therefore be a factor in the l.h.s.

But this leads to a contradiction since we cannot have simultaneously

{βp : p ∈ JnK} ⊂
⋃
p∈JnK

αpq
−2N× ,

as required when m > 0, and

{βp : p ∈ JnK} ⊂
⋃
p∈JnK

αpq
2N× ,

as required when m < 0. Hence P0 = P1 and i follows.

Although we must postpone the proof of part ii of theorem 3.4.22, the proof above still makes it clear that

Proposition 3.4.23. If a type (1,0) simple highest t-weight Üq(a1)-module L(M0) is weight-�nite, then

its highest t-weight space M0 is a simple `-dominant Ü0
q(a1)-module.

Proposition 3.4.24. Let M be a t-weight Üq(a1)-module and let Mα and Mβ be two local `-weight spaces

of M such that, for some m,n ∈ Z, Mα ∩X±1,m,n.Mβ 6= {0}. Then, there exists a unique a ∈ F× such that:

i. the respective `-weights κεα(z) and κεβ(z) of Mα and Mβ be related by

κεα(z) = κεβ(z)Aεa(z)
±1 , (3.4.16)

where ε ∈ {−,+} and

A±a (z) = q2

(
1− q−2a/z

1− q2a/z

)
|z|±1�1

;

ii. (z − a)NMα ∩ X±1,m(z).Mβ = {0} for some N ∈ N×.

Proof. We keep the same notations as in the proof of proposition 3.4.3. More speci�cally, we have two

bases {vi : i = 1, . . . ,dim(Mα)} and {wj : j = 1, . . . ,dim(Mβ)} of Mα and Mβ respectively, in which

∀i ∈ JdimMαK , K±1,0(z).vi = κ±α (z)

dimMα∑
k=i

η±α,i,k(z)vk ,

∀j ∈ JdimMβK , K±1,0(z).wj = κ±β (z)

dimMβ∑
l=j

η±β,j,l(z)wl ,

for some η±α,i,k(z), η
±
β,j,l(z) ∈ F[[z±1]], with i, k ∈ JdimMαK and j, l ∈ JdimMβK, such that η±α,i,i(z) = 1 for

every i ∈ JdimMαK and η±β,j,j(z) = 1 for every j ∈ JdimMβK. Moreover, for every j ∈ JdimMβK,[
X±1,m(z).wj

]
Mα

=
∑

i∈JdimMαK

ξ±m,j,i(z)vi ,

for some ξ±m,j,i(z) ∈ F[[z, z−1]] � see de�nition 3.4.1 for the de�nition of [−]Mα .

Now, if Mα ∩ X±1,m,n.Mβ 6= {0}, there must exist a largest nonempty subset J ⊆ JdimMβK such that,

for every j ∈ J ,
[
X±1,m(z).wj

]
Mα

6= {0}. Let j∗ = max J . Obviously, for every j ∈ J , there must exist

113



a largest nonempty subset I(j) ⊆ JdimMαK such that, for every j ∈ J and every i ∈ I(j), ξ±m,j,i(z) 6= 0.

Consequently, for every j ∈ J , [
X±1,m(z).wj

]
Mα

=
∑
i∈I(j)

ξ±m,j,i(z)vi ,

where ξ±m,j,i(z) ∈ F[[z, z−1]]−{0}, whereas ξ±m,j,i(z) = 0 for any (j, i) outside of the set of pairs {(j, i) : j ∈
J, i ∈ I(j)}. For every j ∈ J , we let i∗(j) = min I(j) and, for simplicity, we let i∗ = i∗(j∗). Making use of

the relations in Üq(a1) � namely (5.0.1) and (3.3.10) �, we get, for every j ∈ J and every ε ∈ {−,+},

(z1 − q±2z2)X±1,m(z1)Kε1,0(z2).wj = (z1q
±2 − z2)Kε1,0(z2)X±1,m(z1).wj .

The latter easily implies that, for every j ∈ J and every i ∈ I(j),

(z1 − q±2z2)κεβ(z2)
∑
l∈J
l≥j

ηεβ,j,l(z2)ξ±m,l,i(z1) = (z1q
±2 − z2)κ±α (z2)

∑
k∈I(j)
k≤i

ηεα,k,i(z2)ξ±m,j,k(z1) . (3.4.17)

Taking i = i∗ and j = j∗ in the above equation immediately yields

[
(z1 − q±2z2)κεβ(z2)− (z1q

±2 − z2)κεα(z2)
]
ξ±m,j∗,i∗(z1) = 0 .

The latter is equivalent to the fact that, for every p ∈ Z,

ξ±m,j∗,i∗,pz
(
q±2κεβ(z)− κεα(z)

)
= ξ±m,j∗,i∗,p+1

(
κεβ(z)− q±2κεα(z)

)
, (3.4.18)

where, as usual, we have set

ξ±m,j∗,i∗,p = res
z
zp−1ξ±m,j∗,i∗(z) .

Since ξ±m,j∗,i∗(z) 6= 0, there exists at least one p ∈ Z such that ξ±m,j∗,i∗,p 6= 0. Assuming that ξ±m,j∗,i∗,p+1 = 0,

one easily derives a contradiction from (3.4.18) and, repeating the argument, one proves that ξ±m,j∗,i∗,p 6= 0

for every p ∈ Z. Dividing (3.4.18) by ξ±m,j∗,i∗,p, one gets

z
(
q±2κεβ(z)− κεα(z)

)
= ap

(
κεβ(z)− q±2κεα(z)

)
,

where we have set, for every p ∈ Z, ap = ξ±m,j∗,i∗,p+1/ξ
±
m,j∗,i∗,p

∈ F×. Since the l.h.s. of the above equation
is independent of p, so it its r.h.s. and there must therefore exist an a ∈ F× such that ap = a for every

p ∈ Z, eventually yielding

z
(
q±2κεβ(z)− κεα(z)

)
= a

(
κεβ(z)− q±2κεα(z)

)
.

i. now follows. Moreover, we clearly have

ξ±m,j∗,i∗(z) = A±m,j∗,i∗δ(z/a) ,
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for some A±m,j∗,i∗ ∈ F×. More generally, we claim that,

∀j ∈ J ,∀i ∈ I(j) , ξ±m,j,i(z) =

N(i,j)∑
p=0

A±m,j,i,pδ
(p)(z/a) , (3.4.19)

for some A±m,j,i,p ∈ F and some N(i, j) ∈ N. This is proven by a �nite induction on j and i. Indeed,

making use of (3.4.16), we can rewrite (3.4.17) as

(z1− q±2z2)(z2− q±2a)
∑
l∈J
l≥j

ηεβ,j,l(z2)ξ±m,l,i(z1) = (z1q
±2− z2)(q±2z2−a)

∑
k∈I(j)
k≤i

ηεα,k,i(z2)ξ±m,j,k(z1) , (3.4.20)

for every j ∈ J and every i ∈ I(j). Now, assume that (3.4.19) holds for every pair in

{(j, i) : j ∈ J, i ∈ I(j), j > j0} ∪ {(j0, i) : i ∈ I(j0), i ≤ i0} ,

for some j0 ∈ J and some i0 ∈ I(j0) such that i0 < max I(j0). Let i′0 be the smallest element of I(j0) such

that i0 < i′0. It su�ces to write (3.4.20) for j = j0 and i = i′0, to get

(z1 − a)z2(1− q±4)ξ±
m,j0,i′0

(z1) = −(z1 − q±2z2)(z2 − q±2a)
∑
l∈J
l>j0

ηεβ,j0,l(z2)ξ±
m,l,i′0

(z1)

+(z1q
±2 − z2)(q±2z2 − a)

∑
k∈I(j0)
k≤i0

ηεα,k,i′0
(z2)ξ±m,j0,k(z1) . (3.4.21)

Combining the recursion hypothesis and lemma 5.1.8 from the appendix, one easily concludes that (3.4.19)

holds for the pair (j0, i
′
0). Repeating the argument �nitely many times, we get that it actually holds for

all the pairs in {(j, i) : j ∈ J, i ∈ I(j), j ≥ j0}. Now, either j0 = min J and we are done; or j0 > min J

and there exists a largest j′0 ∈ J such that j0 > j′0. Writing (3.4.20) for j = j′0 and i = i∗(j
′
0), we get

(z1 − a)z2(1− q±4)ξ±
m,j′0,i∗(j

′
0)

(z1) = −(z1 − q±2z2)(z2 − q±2a)
∑
l∈J
l≥j′0

ηεβ,j′0,l
(z2)ξ±

m,l,i∗(j′0)
(z1) .

Combining again the recursion hypothesis and lemma 5.1.8, we easily get that (3.4.19) holds for (j′0, i∗(j
′
0)).

It is now clear that the claim holds for every j ∈ J and every i ∈ I(j). Letting

N = 1 + max{N(i, j) : j ∈ J, i ∈ I(j)} ,

ii. follows. Furthermore, for every b ∈ F − {a} and every n ∈ N, we obviously have (z − b)nMα ∩
X±1,m(z).Mβ 6= {0}, thus making a the unique element of F satisfying ii..

Remark 3.4.25. Obviously, proposition 3.4.24.i holds for arbitrary pairs of (possibly non-local) `-weight

spaces since it must hold for at least one pair of local `-weight spaces therein.

Corollary 3.4.26. The `-weights of any type (1, 0) weight-�nite simple Üq(a1)-module are all rational �

see de�nition 3.4.5.

Proof. Let M be a type (1, 0) weight-�nite simple Üq(a1)-module. By proposition 3.4.23, its highest t-
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weight space M0 is an `-dominant simple Ü0
q(a1)-module. Hence, M ∼= L(M0) ∼= Ü−q (a1).M0 and it easily

follows by proposition 3.4.24 that all the `-weights of L(M0) are of the form

κ±α (z)
N∏
p=1

A±ap(z)
−1 ,

for some N ∈ N, some a1, . . . , aN ∈ F× and

κ±α (z) = −qdegPα

(
Pα(q−2/z)

Pα(1/z)

)
|z|±1�1

,

for some monic polynomial Pα(1/z) ∈ F[z−1]. Now, observe that

A±a (z)−1 = q−2

(
1− q2a/z

1− q−2a/z

)
|z|±1�1

= q−1

(
1− q2a/z

1− a/z

)
|z|±1�1

q−1

(
1− a/z

1− q−2a/z

)
|z|±1�1

.

Hence, all the `-weights of L(M0) are of the form

κ±β (z) = −qdeg(Pβ)−deg(Qβ)

(
Pβ(q−2/z)Qβ(1/z)

Pβ(1/z)Qβ(q−2/z)

)
|z|±1�1

, (3.4.22)

for some relatively prime monic polynomials Pβ(1/z), Qβ(1/z) ∈ F[z−1], which concludes the proof.

In view of remark 3.4.7, we can therefore associate with any weight-�nite simple Üq(a1)-module a q-character

de�ned as the (formal) sum of the monomials corresponding to all its rational `-weights.

Proposition 3.4.27. Let M0 and N0 be two t-dominant simple Ü0
q(a1)-modules such that M0⊗̂N0 be

simple. Then:

i. M0⊗̂N0 is a simple t-dominant Ü0
q(a1)-module of type (1, 0);

ii. there exists a short exact sequence of Üq(a1)-modules

{0} → N → L(M0)⊗̂L(N0)→ L(M0⊗̂N0)→ {0} ;

iii. if, in addition, L(M0)⊗̂L(N0) is simple, then

L(M0)⊗̂L(N0) ∼= L(M0⊗̂N0) .

Proof. Combining eqs. (3.3.19), (3.3.20), (3.3.21), (3.3.23), (3.3.24), (3.3.25) and (3.3.26), we easily prove

that

∆0(c±(z)) = c±(zC
±1/2
(2) )⊗ c±(zC

∓1/2
(1) ) , (3.4.23)

∆0(K+
1,m(z)) = −

m∑
k=0

m∏
l=k+1

c−(zq−2lC
1/2
(1) )K+

1,k(z)⊗̂K
+
1,m−k(zq

−2kC(1)) , (3.4.24)

∆0(K−1,−m(z)) = −
m∑
k=0

K−1,−(m−k)(zq
−2kC(2))⊗̂K−1,−k(z)

m∏
l=k+1

c+(zq−2lC
1/2
(2) ) , (3.4.25)
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for every m ∈ N � the case m = 0 being just (3.3.23). Now M0 and N0 are both of type (1, 0) and

(3.3.22) and (3.4.23) respectively imply that so is M0⊗̂N0. Similarly, they are both `-weight and `-

dominant. It follows that, if {M0,α : α ∈ A} and {N0,β : β ∈ B} are the countable sets of `-weights of

M0 and N0 respectively, with respective Drinfel'd polynomials {Pα : α ∈ A} and {Pβ : β ∈ B}, then
{M0,α ⊗N0,β : α ∈ A , β ∈ B} is the countable set of `-weight spaces of M0⊗̂N0. Moreover, the latter is

obviously `-dominant since its Drinfel'd polynomials are in {PαPβ : α ∈ A β ∈ B}. Now let α, α′ ∈ A,
β, β′ ∈ B and let Pα, Pα′ , Pβ and Pβ′ be the Drinfel'd polynomials of M0,α, M0,α′ , N0,β and N0,β′

respectively and assume that

(M0,α ⊗N0,β) ∩∆0(K±1,±1(z)).
(
M0,α′ ⊗N0,β′

)
6= {0} . (3.4.26)

Then, writing (3.4.24) and (3.4.25) above with m = 1, we get

∆0(K+
1,1(z)) = −c−(zq−2C

1/2
(1) )K+

1,0(z)⊗̂K+
1,1(zC(1))−K+

1,1(z)⊗̂K+
1,0(zq−2C(1)) ,

∆0(K−1,−1(z)) = −K−1,−1(zC(2))⊗̂K−1,0(z)c+(zq−2C
1/2
(2) )−K−1,0(zq−2C(2))⊗̂K−1,−1(z) .

Since both M0,α′ and N0,β′ are `-weight spaces, it follows that

∆0(K±1,±1(z)).
(
M0,α′ ⊗N0,β′

)
⊆
(
K±1,±1(z).M0,α′ ⊗N0,β′

)
⊕
(
M0,α′ ⊗K±1,±1(z).N0,β′

)
,

Therefore, condition (3.4.26) holds only if the direct sum on the r.h.s. above has a non-vanishing in-

tersection with M0,α ⊗ N0,β . But since the latter is an `-weight space, this happens only if either

M0,α ∩ K±1,±1(z).M0,α′ 6= {0} or N0,β ∩ K±1,±1(z).N0,β′ 6= {0}. The t-dominance of M0 and N0 implies

that, for the only a ∈ F× such that (z− a)mM0,α ∩K±1,±1(z).M0,α′ = {0} for some m ∈ N×, Pα′(1/a) = 0;

or, for the only b ∈ F× such that (z−b)nN0,β∩K±1,±1(z).N0,β′ = {0} for some n ∈ N×, Pβ′(1/b) = 0. In any

case, Pα′(1/a)Pβ′(1/a) = 0 or Pα′(1/b)Pβ′(1/b) = 0 andM0⊗̂N0 is t-dominant. i follows. By lemma 3.3.30,

it is clear that ∆̇(X+
1,r(z)).

(
M0⊗̂N0

)
= {0}. Hence M0⊗̂N0 is a highest t-weight space in L(M0)⊗̂L(N0).

Let N denote the largest closed ̂̈U′q(a1)-submodule of L(M0)⊗̂L(N0) such that N ∩
(
M0⊗̂N0

)
= {0}. ii

obviously follows. iii is clear.

3.5 An evaluation homomorphism and evaluation modules

In this section, we construct an evaluation algebra Ât and an F -algebra homomorphism ev : Üq(a1) → Ât,
that we shall refer to as the evaluation homomorphism.

3.5.1 The quantum Heisenberg algebras H+
t and H−t

De�nition 3.5.1. The quantum Heisenberg algebra H±t is the Hopf algebra generated over K(t) by{
γ1/2, γ−1/2, α±, α

−1
± , α±,m : m ∈ Z×

}
,

subject to the relations,

γ1/2, γ−1/2, α±, α
−1
± are central,
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[α±,−m, α±,n] = −δm,n
m

[2m]t
γm − γ−m

t− t−1
,

for every m,n ∈ Z×, with comultiplication ∆ de�ned by setting

∆(γ1/2) = γ1/2 ⊗ γ1/2 , ∆(γ−1/2) = γ−1/2 ⊗ γ−1/2 ,

∆(α±) = α± ⊗ α± , ∆(α−1
± ) = α−1

± ⊗ α−1
± ,

∆(α±,m) = α±,m ⊗ γ|m|/2 + γ−|m|/2 ⊗ α±,m ,

for every m,n ∈ Z×, antipode S de�ned by setting

S(γ1/2) = γ−1/2 , S(γ−1/2) = γ1/2 ,

S(α±) = α−1
± , S(α−1

± ) = α±

S(α±,m) = −α±,m ,

and counit ε de�ned by setting

ε(γ1/2) = ε(γ−1/2) = ε(α±) = ε(α−1
± ) = ε(1) = 1 ,

ε(α±,m) = 0 .

De�nition 3.5.2. In H+
t , we let

L+(z) = 1 +
∑
m∈N×

L+
−mz

m = exp

−(t− t−1)
∑
m∈N×

α+,−m(t2z)m

 ,

R+(z) = α+

1 +
∑
m∈N×

R+
mz
−m

 = α+ exp

(t− t−1)
∑
m∈N×

α+,m(t−2z)−m

 .
Similarly, in H−t , we let

L−(z) = α−

1 +
∑
m∈N×

L−−mz
m

 = α− exp

−(t− t−1)
∑
m∈N×

α−,−m(t−2z)m

 ,

R−(z) = 1 +
∑
m∈N×

R−mz
−m = exp

(t− t−1)
∑
m∈N×

α−,m(t2z)−m

 .
Then, we have the following equivalent presentation of H±t .

Proposition 3.5.3. H±t is the Hopf algebra generated over K(t) by

{γ1/2, γ−1/2, L±−m, R
±
m : m ∈ N}

subject to the relations

[L±(v),L±(z)] = [R±(v),R±(z)] = 0 ,
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R±(v)L±(z) = θ±(z/v)L±(z)R±(v) ,

where we have de�ned θ±(z) ∈ Z(Ht)[[z]], by setting

θ±(z) =

(
(1− t2±4γz)(1− t±4−2γ−1z)

(1− t±4−2γz)(1− t2±4γ−1z)

)
|z|�1

.

Furthermore, we have

∆(L±(z)) = L±(zγ
1/2
(2) )⊗ L±(zγ

−1/2
(1) ) ,

∆(R±(z)) = R±(zγ
−1/2
(2) )⊗R±(zγ

1/2
(1) ) ,

where, by de�nition,

γ
1/2
(1) = γ1/2 ⊗ 1 , γ

−1/2
(1) = γ−1/2 ⊗ 1 , γ

1/2
(2) = 1⊗ γ1/2 , γ

−1/2
(2) = 1⊗ γ−1/2

and

S(L±(z)) = L±(z)−1 , S(R±(z)) = R±(z)−1 .

Finally, ε(L±(z)) = ε(R±(z)) = 1.

Proof. This is an easy consequence of the de�nition of H±t .

Remark 3.5.4. Observe that θ+(z) and θ−(z) are not independent and that we actually have θ−(z) =

θ+(t−8z).

3.5.2 A PBW basis for H±t
For every n ∈ N×, we let Λn := {λ = (λ1, . . . , λn) ∈ (N×)n : λ1 ≥ · · · ≥ λn} denote the set of n-partitions.

We adopt the convention that Λ0 = {∅} reduces to the empty partition and we let Λ =
⋃
n∈N Λn be the set of

all partitions.

Proposition 3.5.5. De�ne, for every λ ∈ Λ,

L±λ = L±−λ1 · · ·L
±
−λn , (3.5.1)

R±λ = R±λ1 · · ·R
±
λn
, (3.5.2)

with the convention that L±∅ = R±∅ = 1. Then,{
Φ±λ,µ = L±λR

±
µ : λ, µ ∈ Λ

}
(3.5.3)

is a K(t)[γ1/2, γ−1/2]-basis for H±t .

Proof. The relations in H±t read, for every m,n ∈ N,

[L±−m, L
±
−n] = [R±m, R

±
n ] = 0 ,

R±mL
±
−n = L±−nR

±
m +

min(m,n)∑
p=1

θ±p L
±
p−nR

±
m−p ,
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where, for every p ∈ N, θ±p ∈ K(t)[γ1/2, γ−1/2] can be obtained from

θ±(z) = 1 +
∑
p∈N×

θ±p z
p .

It is clear that any monomial in {L±−m, R±m : m ∈ N} can therefore be rewritten as a linear combination

with coe�cients in K(t)[γ1/2, γ−1/2] of elements in {φ±λ,µ : λ, µ ∈ Λ}. The independence of the latter is

clear.

A convenient way to encode the above basis elements is through H±t -valued symmetric formal distributions.

Let indeed, for every n+, n−,m+,m− ∈ N, every n±-tuple z± = (z±1 , . . . , z
±
n±) and every m±-tuple ζ± =

(ζ±1 , . . . , ζ
±
m±) of formal variables,

Φ±(z±, ζ±) = L±(z±)R±(ζ±) ,

where we have set

L±(z±) =
n±∏
p=1

L±(z±p ) ,

R±(ζ±) =
m±∏
p=1

R±(ζ±p ) ,

with the convention that if n± (resp. m± = 0), then L±(∅) = 1 (resp. R±(∅) = 1). It turns out that

Φ±(z±, ζ±) ∈ H±t [[z±, (ζ±)−1]]Sn±×Sm± .

Indeed, owing to the commutation relations in H±t , the formal distribution Φ±(z±, ζ±) is symmetric in each of

its argument tuples, z± and ζ± respectively; i.e. it is invariant under the natural action of Sn± × Sm± on its

arguments. It is also clear that, for every λ± ∈ Λn± and µ± ∈ Λm± ,

Φ±
λ±,µ± = res

z±,ζ±
(z±)−1−λ±(ζ±)−1+µ±Φ±(z±, ζ±) ,

where we have set

(z±)−1−λ± =
n±∏
p=1

(z±p )−1−λ±p and (ζ±)−1+µ± =
m±∏
p=1

(ζ±p )−1+µ±p .

3.5.3 The dressing factors L±m(z) and R±m(z)

De�nition 3.5.6. For every m ∈ Z×, we let

L±m(z) =

|m|∏
p=1

L±(zt±2(1−2p)sign(m)+2)±sign(m) (3.5.4)

R±m(z) =

|m|∏
p=1

R±(zt±2(1−2p)sign(m)+2)±sign(m) (3.5.5)
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It easily follows that

Proposition 3.5.7. In H±t , for every m,n ∈ Z×, we have

[L±m(v),L±n (z)] = [R±m(v),R±n (z)] = 0 ,

R±m(v)L±n (z) = θ±m,n(z/v)L±n (z)R±m(v) ,

where we have set

θ±m,n(z) =

|m|∏
r=1

|n|∏
s=1

θ±(zt±2(1−2s)sign(n)∓2(1−2r)sign(m))sign(mn) .

Furthermore, we have, for every m ∈ Z×,

∆(L±m(z)) = L±m(zγ
1/2
(2) )⊗ L±m(zγ

−1/2
(1) ) ,

∆(R±m(z)) = R±m(zγ
−1/2
(2) )⊗R±m(zγ

1/2
(1) ) .

It is worth emphasizing that the L±m(z) are not indepedent for all values of m ∈ Z× and that neither are

the R±m(z). Indeed, we have

Lemma 3.5.8. For every m,n ∈ Z×,

L±−m(z)−1 = L±m(zt±4m) (3.5.6)

R±−m(z)−1 = R±m(zt±4m) (3.5.7)

L±m(zt±4m)L±n (z) = L±m+n(zt±4m) (3.5.8)

R±m(zt±4m)R±n (z) = R±m+n(zt±4m) (3.5.9)

3.5.4 The algebra Bt
Remember the Hopf algebra Ŭq(La1) from de�nition 3.2.1. It is naturally Z-graded and we can endow it

with a topology following what was done for Üq(a1) in section 3.3.2. Let ̂Ŭq(La1) denote the corresponding

completion. Then, we have

De�nition 3.5.9. We endow the topological F-algebra ̂Ŭq(La1) with:

i. the comultiplication ∆ : ̂Ŭq(La1)→ Ŭq(La1)⊗̂Ŭq(La1) de�ned by

∆(k±1 (z)) = k±1 (z)⊗ k±1 (z) , (3.5.10)

∆(x+
1 (z)) = x+

1 (z)⊗ 1 + k−1 (z)⊗̂x+
1 (z) , (3.5.11)

∆(x−1 (z)) = x−1 (z)⊗̂k+
1 (z) + 1⊗ x−1 (z) , (3.5.12)

ii. the counit ε : ̂Ŭq(La1)→ F, de�ned by ε(k±1 (z)) = 1, ε(x±1 (z)) = 0 and;
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iii. the antipode S : ̂Ŭq(La1)→ ̂Ŭq(La1), de�ned by

S(k±1 (z)) = k±1 (z)−1 , S(x+
1 (z)) = −k−1 (z)−1x+

1 (z) , S(x−1 (z)) = −x−1 (z)k+
1 (z)−1 .

With the operations so de�ned, ̂Ŭq(La1) becomes a topological Hopf algebra that we shall denote simply

Ŭq(La1). It has an invertible antipode and we denote by Ŭq(La1)cop its coopposite topological Hopf

algebra.

Proposition 3.5.10. The quantum Heisenberg algebra H+
t (resp. H−t ) is a left Ŭt2(La1)-module algebra

(resp. a left Ŭt2(La1)cop-module algebra) with

kε1(v) . γ1/2 = kε1(v) . γ−1/2 = 0 ,

kε1(v) . L±(z) = λε,±(v, z)L±(z) , kε1(v) .R±(z) = ρε,±(v, z)R±(z) ,

xε1(v) . γ1/2 = xε1(v) . γ−1/2 = xε1(v) . L±(z) = xε1(v) .R±(z) = 0 ,

for ε ∈ {−,+} and where we have set

λε,±(v, z) =

(
t2∓2v − t−2±2z

v − t±4z

)
|z/v|ε1�1

and ρε,±(v, z) =

(
t±4v − z

t2±2v − t−(2±2)z

)
|z/v|ε1�1

.

Proof. One readily checks the compatibility with the de�ning relations of H±t and Ŭt2(La1).

Proposition 3.5.11. For every m ∈ Z× and every ε ∈ {−,+}, we have

kε1(v) . L±m(z) = λε,±m (v, z)L±m(z) , kε1(v) .R±m(z) = ρε,±m (v, z)R±m(z) ,

xε1(v) . L±m(z) = xε1(v) .R±m(z) = 0 ,

where we have set

λε,±m (v, z) =

(
t−2(1∓1)mv − t±4−2(1±1)mz

v − t±4z

)
|z/v|ε1�1

and

ρε,±m (v, z) =

(
t±4v − z

t±4−2(1∓1)mv − t−2(1±1)mz

)
|z/v|ε1�1

.

Proof. This is readily checked making use of de�nition 3.5.6, of the Hopf algebraic structures of Ŭt2(La1)

and Ŭt2(La1)cop, of the Ŭt2(La1)-module algebra structures of H+
t and of the Ŭt2(La1)cop-module algebra

structure of H−t .

De�nition-Proposition 3.5.12. We denote by H+
t oŬt2(La1)

cop
n H−t the associative F-algebra obtained

by endowing H+
t ⊗ Ŭt2(La1)⊗H−t with the multiplication given by setting, for every h+, h

′
+ ∈ H+

t , every

h−, h
′
− ∈ H−t and every x, x′ ∈ Ŭt2(La1),

(h+ ⊗ x⊗ h−) .
(
h′+ ⊗ x′ ⊗ h′−

)
=
∑

h+

(
x(1) . h

′
+

)
⊗ x(2)x

′ ⊗ h−
(
x(3) . h

′
−
)
,

� see proposition 3.5.11 for the de�nition of the Ŭt2(La1)-module algebra structure of H+
t and of the

Ŭt2(La1)cop-module algebra structure of H−t . In that algebra, {γ1/2− t, γ−1/2− t−1} generates a left ideal.
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The latter is actually a two-sided ideal since γ±1/2 is central and, denoting it by (γ1/2 − t), we can set

B̆t = H+
t o Ŭt2(La1)

cop
n H−t /(γ1/2 − t).

Proof. Making use of the coassociativity of the comultiplication ∆, it is very easy to prove that, with the

above de�ned multiplication, H+
t o Ŭt2(La1)

cop
n H−t is actually an associative F-algebra.

Proposition 3.5.13. Setting x 7→ 1 ⊗ x ⊗ 1, for every x ∈ Ŭt2(La1), de�nes a unique injective K(t)-

algebra homomorphism Ŭt2(La1) ↪→ B̆t. Similarly, h 7→ h⊗1⊗1 and h 7→ 1⊗1⊗h de�ne unique injective

K(t)-algebra homomorphisms H+
t ↪→ B̆t and H

−
t ↪→ B̆t respectively.

Remark 3.5.14. We shall subsequently identify Ŭt2(La1), H+
t and H−t with their respective images in B̆t

under the injective algebra homomorphisms of the above proposition.

Proposition 3.5.15. In B̆t, for every m ∈ Z× and every ε ∈ {−,+}, we have the following relations

(v − t±4z)(v − t±4(1+m−n)z)R±m(v)L±n (z) = (v − t±4(1−n)z)(v − t±4(1+m)z)L±n (z)R±m(v) , (3.5.13)

(zt±4 − v)kε1(v)L±m(z) = (zt±4−2(1±1)m − vt−2(1∓1)m)L±m(z)kε1(v) , (3.5.14)

(zt±4 − v)x±1 (v)L±m(z) = (zt±4−2(1±1)m − vt−2(1∓1)m)L±m(z)x±1 (v) , (3.5.15)

x±1 (v)L∓m(z) = L∓m(z)x±1 (v) , (3.5.16)

(zt−2(1±1)m − vt±4−2(1∓1)m)kε1(v)R±m(z) = (z − vt±4)R±m(z)kε1(v) , (3.5.17)

(zt−2(1±1)m − vt±4−2(1∓1)m)x±1 (v)R±m(z) = (z − vt±4)R±m(z)x±1 (v) , (3.5.18)

x±1 (v)R∓m(z) = R∓m(z)x±1 (v) , (3.5.19)

Proof. In order to prove (3.5.13), it su�ces to check that

θ±(z) =

(
(1− z)(1− t±8z)

(1− t±4z)2

)
|z|�1

mod (γ1/2 − t)

and that subsequently, for every m,n ∈ Z×,

θ±m,n(z) =

(
(1− t±4(1−n)z)(1− t±4(1+m)z)

(1− t±4z)(1− t±4(1+m−n)z)

)
|z|�1

mod (γ1/2 − t) .

As for the equations (3.5.14 � 3.5.19), they immediately follow from the de�nitions ofH+
t oŬt2(La1)

cop
n

H−t and of the actions . of Ŭt2(La1) on H+
t and H−t � see proposition 3.5.11. E.g., we have, by de�nition,

x+
1 (v)L+

m(z) =
(
1⊗ x+

1 (v)⊗ 1
) (

L+
m(z)⊗ 1⊗ 1

)
=
∑(

x+
1 (v)(1) . L+

m(z)
)
⊗ x+

1 (v)(2) ⊗
(
x+

1 (v)(3) . 1
)

=
(
x+

1 (v) . L+
m(z)

)
⊗ 1⊗ 1 +

(
k−1 (v) . L+

m(z)
)
⊗ x+

1 (v)⊗ 1

+
(
k−1 (v) . L+

m(z)
)
⊗ k−1 (v)⊗ ε(x+

1 (v))1

= λ+
m(v, z)L+

m(z)x+
1 (v) ,
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and

x+
1 (v)L−m(z) =

(
1⊗ x+

1 (v)⊗ 1
) (

1⊗ 1⊗ L−m(z)
)

=
∑(

x+
1 (v)(1) . 1

)
⊗ x+

1 (v)(2) ⊗
(
x+

1 (v)(3) . L−m(z)
)

= ε(x+
1 (v))1⊗ 1⊗

(
1 . L−m(z)

)
+ 1⊗ x+

1 (v)⊗
(
1 . L−m(z)

)
+ 1⊗

(
x+

1 (v) . L−m(z)
)
⊗ k−1 (v)

= L−m(z)x+
1 (v) ,

as claimed.

Remark 3.5.16. In addition to the above, we obviously have in B̆t, all the relations of its subalgebra

Ŭt2(La1) and all the relations of its subalgebras H+
t and H−t modulo (γ1/2 − t).

De�nition-Proposition 3.5.17. Let I be the left ideal of B̆t generated by{
res
z1,z2

z−1+m
1 z−1+n

2

(
[x+

1 (z1),x−1 (z2)]− 1

t2 − t−2
δ

(
z1

z2

)[
k+

1 (z1)− k−1 (z1)
])

: m,n ∈ Z
}
.

Then I.B̆t ⊆ I and I is a two-sided ideal of B̆t. Set Bt = B̆t/I.

Proof. In order to prove that I.B̆t ⊆ I, it su�ces to prove that, for any x ∈ B̆t,(
[x+

1 (z1),x−1 (z2)]− 1

t2 − t−2
δ

(
z1

z2

)[
k+

1 (z1)− k−1 (z1)
])

x ∈ I .

The latter easily follows by inspection, making use of the relevant relations in B̆t and Ŭt2(La1), namely

(3.5.14 - 3.5.19) and (3.2.3 - 3.2.7).

Remark 3.5.18. Thus, in addition to the relations in B̆t, we have, in Bt,

[x+
1 (z1),x−1 (z2)] =

1

t2 − t−2
δ

(
z1

z2

)[
k+

1 (z1)− k−1 (z1)
]
.

3.5.5 The completion B̂t of Bt
Making use of its natural Z-grading, we endow Bt with a topology, in the same way as we endowed Üq(a1) with

its topology in section 3.3. We denote by B̂t the corresponding completion. Consequently, its subalgebra H±t
inherits a topology and we denote by Ĥ±t its corresponding completion in that topology.

3.5.6 The shift factors

De�nition 3.5.19. In Ĥ±t , we de�ne,

H±(z) = L±(z)R±(z) .

Similarly, for every m ∈ Z×, we let

H±m(z) =
−→∏

p∈J|m|K

H±(zt±2(1−2p)sign(m)+2)±sign(m) .
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Lemma 3.5.20. For every m,n ∈ Z×,

H±−m(z)−1 = H±m(zt±4m) (3.5.20)

H±m(zt±4m)H±n (z) = H±m+n(zt±4m) (3.5.21)

Proof. Follows directly from the de�nition in the same way as lemma 3.5.8.

Proposition 3.5.21. In Ĥ±t , we have, for every m,n ∈ Z×,

H±m(z)H±n (v) = Θ±m,n(z, v)H±n (v)H±m(z) ,

where

Θ±m,n(z, v) =
(v − t±4z)(v − t±4(1+n−m)z)(t±4(1−n)v − z)(t±4(1+m)v − z)
(z − t±4v)(z − t±4(1+m−n)v)(t±4(1−m)z − v)(t±4(1+n)z − v)

.

Proof. In view of de�nition 3.5.19 and of the relations in proposition 3.5.7, it is clear that commuting

H±m(z) and H±n (v) amounts to commuting, on one hand L±m(z) and R±n (v) and, on the other hand, R±m(z)

and L±n (v). The result follows.

Proposition 3.5.22. For every m ∈ Z× and every ε ∈ {−,+}, we have

kε1(v) .H±±m(z) = Hε
m,z(v)±1H±±m(z) , (3.5.22)

xε1(v) .H±m(z) = 0 . (3.5.23)

Proof. The left Ŭt2(La1)-module algebra (resp. a left Ŭt2(La1)cop-module algebra) structure of H+
t (resp.

H−t ) � see proposition 3.5.10 � is extended by continuity to Ĥ+
t (resp. Ĥ−t ) Then, it su�ces to check that,

for every m ∈ Z× and every ε ∈ {−,+},

kε1(v) .H±±m(z) = λε,±±m(v, z)ρε,±±m(v, z)H±±m(z) ,

and that

Hε
m,z(v)±1 = λε,±±m(v, z)ρε,±±m(v, z) .

Corollary 3.5.23. For every m ∈ Z, every p ∈ N and every ε ∈ {−,+}, we have

p+1∏
k=1

[
kε1(vk)−Hε

m,z(vk)
±1id

]
. ∂pH±±m(z) = 0 ,

Proof. It su�ces to di�erentiate (3.5.22) p times with respect to z to obtain

[
kε1(v)−Hε

m,z(v)±1 id
]
. ∂pH±±m(z) =

p−1∑
k=0

(
p

k + 1

)
∂k+1

∂zk+1

[
Hε
m,z(v)±1

]
∂p−k−1H±±m(z) .

The claim immediately follows.
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Proposition 3.5.24. In B̂t, we have, for every m,n ∈ Z×,

H+
m(z)H−n (v) = H−n (v)H+

m(z) ,

(zt±4 − v)(zt−2(1±1)m − vt±4−2(1∓1)m)kε1(v)H±m(z) = (z − vt±4)(zt±4−2(1±1)m − vt−2(1∓1)m)H±m(z)kε1(v) ,

(zt±4 − v)(zt−2(1±1)m − vt±4−2(1∓1)m)x±1 (v)H±m(z) = (z − vt±4)(zt±4−2(1±1)m − vt−2(1∓1)m)H±m(z)x±1 (v) ,

x±1 (v)H∓m(z) = H∓m(z)x±1 (v) .

Proof. This follows immediately from [L±(z),L∓(v)] = [L±(z),R∓(v)] = [R±(z),R∓(v)] = 0.

3.5.7 The evaluation algebra Ât
De�nition-Proposition 3.5.25. Let J denote the closed left ideal of B̂t generated by{

res
z
zm
[
H−(z)

(
k+

1 (zt−4)− k−1 (zt−4)
)
−H+(z)−1

(
k+

1 (z)− k−1 (z)
)]

: m ∈ Z
}
. (3.5.24)

Then, J .B̂t ⊆ J , making J a closed two-sided ideal of B̂t, and we let Ât = B̂t/J .

Proof. In order to prove that J .B̂t ⊆ J , it su�ces to check that, for every x ∈ B̂t,[
H−(z)

(
k+

1 (zt−4)− k−1 (zt−4)
)
−H+(z)−1

(
k+

1 (z)− k−1 (z)
)]
x ∈ J .

The latter easily follows by inspection, making use of the relevant relations in B̂t, namely (3.5.13�3.5.19)

in proposition 3.5.15.

Proposition 3.5.26. For every m ∈ Z, the following relation holds in Ât,

H−−m(z)
[
k+

1 (zt−4m)− k−1 (zt−4m)
]

= H+
m(z)−1

[
k+

1 (z)− k−1 (z)
]
. (3.5.25)

Proof. We prove (3.5.25) for m ∈ N× by induction. The case m = 1 corresponds to the vanishing of the

generators of the ideal J , see (3.5.24). Assuming the result holds for some m ∈ N×, we have

H−−(m+1)(z)
[
k+

1 (zt−4(m+1))− k−1 (zt−4(m+1))
]

= H−(z)H−−m(zt−4)
[
k+

1 (zt−4(m+1))− k−1 (zt−4(m+1))
]

= H−(z)H+
m(zt−4)−1

[
k+

1 (zt−4)− k−1 (zt−4)
]

= H+
m(zt−4)−1H−(z)

[
k+

1 (zt−4)− k−1 (zt−4)
]

= H+
m(zt−4)−1H+(z)−1

[
k+

1 (z)− k−1 (z)
]

= H+
m+1(z)−1

[
k+

1 (z)− k−1 (z)
]

The cases with m ∈ −N× follow by rewriting the above equation for m ∈ N× as

H+
m(z)

[
k+

1 (zt−4m)− k−1 (zt−4m)
]

= H−−m(z)−1
[
k+

1 (z)− k−1 (z)
]

and making use of lemma 3.5.8.

Remark 3.5.27. In addition to the above relation, Ât obviously inherits the relations in B̂t modulo J . In
particular, all the relations in proposition 3.5.15 hold in Ât.
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3.5.8 The evaluation homomorphism

Remember Üq(a1)(−1) from section 3.3.3 and ι0 from section 3.3.8, proposition 3.3.23.

Proposition 3.5.28. There exists a unique continuous K-algebra homomorphism ev : Üq(a1)(−1) → Ât
such that, for every m ∈ N× and every n ∈ Z,

ev(q) = t2 , (3.5.26)

ev(K±1,0(z)) = −k∓1 (z) , (3.5.27)

ev(K±1,±m(z)) = H±±m(z)
[
k±1 (zt−4m)− k∓1 (zt−4m)

]
, (3.5.28)

ev(X±1,n(z)) = H±n (z)x±1 (zt∓4n) . (3.5.29)

We shall refer to ev as the evaluation homomorphism. It is such that ev ◦ ι0 = id over Ut2(La1).

Proof. It su�ces to check all the de�ning relations of Üq(a1). E.g. we have, for every m,n ∈ Z,[
ev(X+

1,m(v)), ev(X−1,n(z))
]

=
1

t2 − t−2
δ
( v

zt4(m+n)

)
H+
m(v)H−n (z)

[
k+

1 (vt−4m)− k−1 (zt4n)
]
. (3.5.30)

If m + n = 0, making use of (3.5.25), we are done. Assuming that m + n > 0, lemma 3.5.8 allows us to

write

H+
m(zt4(m+n))H−n (z)

[
k+

1 (zt4n)− k−1 (zt4n)
]

= H+
m(zt4(m+n))H+

−n(z)−1
[
k+

1 (z)− k−1 (z)
]

= H+
m(zt4(m+n))H+

n (zt4n)
[
k+

1 (z)− k−1 (z)
]

= H+
m+n(zt4(m+n))

[
k+

1 (z)− k−1 (z)
]

so that, eventually,[
ev(X+

1,m(v)), ev(X−1,n(z))
]

=
1

t2 − t−2
δ
( v

zt4(m+n)

)
ev(K+

m+n(zt4(m+n))) .

A similar argument proves the case m+ n < 0.

The following is obvious.

Corollary 3.5.29. For every N ∈ N there exists an algebra homomorphism ev(N) : Üq(a1)(N) → Ât
making the following diagram commutative.

· · · Üq(a1)(N) Üq(a1)(N−1) · · · Üq(a1)(−1)

Ât
ev(N)

ev(N−1)
ev

We can furthermore de�ne the algebra homomorphism ev(∞) : Üq(a1)→ Ât by

ev(∞) = lim
←−

ev(N) .
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3.5.9 Evaluation modules

Remember the surjective algebra homomorphism Ŭq(La1) → Uq(La1) from proposition 3.2.2. It allows us to

pull back any simple Uq(La1)-module M into a simple Ŭq(La1)-module. With that construction in mind, we

have

Proposition 3.5.30. Let M be a simple �nite dimensional Uq(La1)-module. Then,

i. Ĥ+
t ⊗ M ⊗ Ĥ−t is a H+

t o Ŭt2(La1)
cop
n H−t -module with the action de�ned by setting, for every

h+, h
′
+ ∈ H+

t , every h−, h
′
− ∈ H−t , every x ∈ Ŭt2(La1) and every v ∈M ,

(h+ ⊗ x⊗ h−).(h′+ ⊗ v ⊗ h′−) =
∑

h+

(
x(1) . h

′
+

)
⊗ x(2).v ⊗ h−

(
x(3) . h

′
−
)

and extending by continuity.

ii. Ĥ+
t ⊗M ⊗ Ĥ

−
t descends to a Bt-module.

iii.
(
Ĥ+
t ⊗M ⊗ Ĥ

−
t

)
/J .

(
Ĥ+
t ⊗M ⊗ Ĥ

−
t

)
is an Ât-module. It pulls back along ev to a Ü′q(a1)-module

that we denote by ev∗(M).

iv. As a Ü′q(a1)-module, ev∗(M) is weight-�nite.

v. For any highest `-weight vector v ∈M − {0}, the Ü0
q(a1)-module

M̃0
∼=
(
Ĥ+
t ⊗ Fv ⊗ Ĥ−t

)
/J .

(
Ĥ+
t ⊗ Fv ⊗ Ĥ−t

)
,

is a highest t-weight space of ev(M). We denote by M0 the simple quotient of M̃0 containing v and

we let ev∗(M0) = Ü′q(a1).M0.

vi. M0 is t-dominant.

Proof. i is readily checked. As for ii, it su�ces to check that I.
(
Ĥ+
t ⊗M ⊗ Ĥ

−
t

)
= {0}. But the latter

is clear when M is obtained by pulling back a Uq(La1)-module over which the relation generating I is

automatically satis�ed. iii is obvious. It easily follows from proposition 3.5.24 that, for every m ∈ Z×,
[kε1,0,H

±
m(z)] = 0. Hence, Sp(ev∗(M)) = Sp(M) and the weight �niteness of ev∗(M) follows from that of

M , which proves iv. It is clear that, for every r ∈ Z, we have

ev(X+
1,r(z)).

(
H+
t ⊗ v ⊗H

−
t

)
= H+

r (z)x+
1 (zt−4r).

(
Ĥ+
t ⊗ v ⊗ Ĥ

−
t

)
=

∑
H+
r (z)

(
x+

1 (zt−4r)(1) . Ĥ+
t

)
⊗ x+

1 (zt−4r)(2).v ⊗
(
x+

1 (zt−4r)(3) . Ĥ−t
)

= 0 .

v follows. Denote by P (1/z) ∈ F[z−1] the Drinfel'd polynomial associated with v and let ν ∈ NF×
f denote

the multiset of its roots. Then,

k±1 (z).v = −κ∓0 (z)v , where κ∓0 (z) = −t2 deg(P )

(
P (t−4/z)

P (1/z)

)
|z|∓1�1

. (3.5.31)
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Moreover, the partial fraction decomposition

P (t−4/z)

P (1/z)
=
∏
a∈F×

1

(1− a/z)ν(a)−ν(at4)
= C0 +

∑
a∈F×

ν(a)−ν(at4)∑
p=1

Cp(a)

(1− a/z)p
,

in which C0, Cp(a) ∈ F and the product and sum over a ∈ F× are always �nite since P only has �nitely

many roots, allows us to write

[
k+

1 (z)− k−1 (z)
]
.v = t2 deg(P )

∑
a∈F×

ν(a)−ν(at4)−1∑
p=0

(−1)p+1Cp+1(a)

p! ap+1
δ(p)

(z
a

)
v .

Letting C̃p(a) = (−1)p+1t2 deg(P )Cp+1(a)a−p−1/p! for every a ∈ F× and every p ∈ J0, ν(a)− ν(at4)− 1K, it
follows that, for every m ∈ N×,

ev(K+
1,m(z)). (1⊗ v ⊗ 1) = t2 deg(P )

∑
a∈F×

ν(at−4m)−ν(at4(1−m))−1∑
p=0

C̃p(at
−4m)δ(p)

(z
a

) (
H+
m(z)⊗ v ⊗ 1

)
,

(3.5.32)

ev(K−1,−m(z)). (1⊗ v ⊗ 1) = −t2 deg(P )
∑
a∈F×

ν(at−4m)−ν(at4(1−m))−1∑
p=0

C̃p(at
−4m)δ(p)

(z
a

) (
1⊗ v ⊗H−−m(z)

)
.

(3.5.33)

Now, making use of (3.5.27), (3.5.31) and of corollary 3.5.23, one easily shows that, for every p ∈ N and

every a ∈ F×,
p+1∏
k=1

[
ev(K±1,0(zk))−H∓m,a(zk)κ±0 (zk) id

]
.
(
∂pH+

m(a)⊗ v ⊗ 1
)

= 0 ,

p+1∏
k=1

[
ev(K±1,0(zk))−H∓m,a(zk)−1κ±0 (zk) id

]
.
(
1⊗ v ⊗ ∂pH−−m(a)

)
= 0 ,

thus proving that ∂pH+
m(a) ⊗ v ⊗ 1 (resp. 1 ⊗ v ⊗ ∂pH−−m(a)) is an `-weight vector in the `-weight

space ev∗(M)κ(+,m,a) (resp. ev∗(M)κ(−,m,a)) of ev∗(M) with `-weight κ±(+,m,a)(z) = κ±0 (z)H∓m,a(z) (resp.

κ±(−,m,a)(z) = κ±0 (z)H∓m,a(z)
−1), as expected from proposition 3.4.3.

On the other hand,

{
H−(z)

[
k+

1 (zt−4)− k−1 (zt−4)
]
−H+(z)−1

[
k+

1 (z)− k−1 (z)
]}
. (1⊗ v ⊗ 1)

=
∑
a∈F×


ν(at−4)−ν(a)−1∑

p=0

C̃p(at
−4)δ(p)

(z
a

) (
1⊗ v ⊗H−(z)

)

−
ν(a)−ν(at4)−1∑

p=0

C̃p(a)δ(p)
(z
a

) (
H+(z)−1 ⊗ v ⊗ 1

) .

Thus, modulo J , we have, for every a ∈ F×,

ν(at−4)−ν(a)−1∑
p=0

C̃p(at
−4)δ(p)

(z
a

) (
1⊗ v ⊗H−(z)

)
=

ν(a)−ν(at4)−1∑
p=0

C̃p(a)δ(p)
(z
a

) (
H+(z)−1 ⊗ v ⊗ 1

)
.
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The above equation makes it clear that every a ∈ F× such that ν(at−4) > ν(a) is a zero of order at least

ν(at−4)−2ν(a)+ν(at4) of 1⊗v⊗H−(z), unless ν(at−4)−ν(a) ≤ ν(a)−ν(at4). Hence, in view of (3.5.33), we

have
[
ev(K−1,−1(z)).(1⊗ v ⊗ 1)

]
ev∗(M)κ(−,1,a)

= 0 unless a ∈ D1(ν) = {x ∈ F× : ν(xt−4) > ν(x) > ν(xt4)}.

But the latter implies that P (1/a) = 0. A similar reasoning applies to any `-weight vector in M̃0 and M̃0

is t-dominant by lemma 3.4.16. Taking the quotient of M̃0 to M0 clearly preserves t-dominance and vi

follows.

By the universality of M(M0) � see de�nition 3.4.21 � and the above proposition, there must exist a

surjective Ü′q(a1)-module homomorphism π : M(M0) � ev∗(M0). Restricting the latter to the (closed)

Ü′q(a1)-submodule N (M0) of M(M0), we get the surjective Ü′q(a1)-module homomorphism π|N (M0), whose

image naturally injects as a Ü′q(a1)-submodule in ev∗(M0). The canonical short exact sequence involving

N (M0), M(M0) and the simple quotient L(M0) � see de�nition 3.4.21 � allows us to de�ne a surjective

Ü′q(a1)-module homomorphism π̃ to get the following commutative diagram,

{0} N (M0) M(M0) L(M0) {0}

{0} π(N (M0)) ev∗(M0) ev∗(M0)/π(N (M0)) {0}

{0} {0} {0}

π|N (M0) π π̃

where columns and rows are exact. It is obvious that π̃ is not identically zero and, by the simplicity of L(M0),

we must have ker(π̃) = {0}. Hence, π̃ is a Ü′q(a1)-module isomorphism and we have constructed the simple

weight-�nite Ü′q(a1)-modules L(M0) as a quotient of the evaluation module ev∗(M0). To see that all the simple

weight-�nite Ü′q(a1)-modules L(M0) can be obtained in this way, it su�ces to observe that, by proposition

3.4.11, all the simple `-dominant Ü0
q(a1)-modules are of the form L0(P ) for some monic polynomial P and

that, in the construction above, one can choose any P , simply by choosing the corresponding simple �nite-

dimensional Uq(La1)-module M . Therefore, as a consequence of the above proposition, the highest t-weight

space of any simple weight-�nite Ü′q(a1)-modules L(M0) is t-dominant. This concludes the proof of part ii of

theorem 3.4.22 as well as that of theorem 3.4.13.
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Chapter 4

Topological Braid Group Action on U̇q(ġ)

4.1 Introduction

Let ġ be an untwisted a�ne Kac-Moody algebra. By using Drinfel'd's quantum a�nization we de�ne U̇q(ġ) to

be the quantum toroidal algebra associated to ġ and ̂̇Uq(ġ) its completion.

As in the case of the work of I. Damiani and J.Beck, the purpose of this chapter is to establish a (topological)

braid group action on quantum toroidal algebras. This can be seen as a generalization of the work of J. Ding

and S. Khoroshkin in [DK00] to all Dynkin diagrams and provides the building blocks for de�ning an a�nized

version of the Damiani-Beck isomorphism for U̇q(ġ) thus allowing us to de�ne Üq(g) as the double Drinfel'd

current presentation. We provide a proof by checking the algebra relations except for the Serre relation when

aij = aji = −2, aij = −3,−4 and aij = −1. This is work still in progress at this stage but we conjecture that

it will hold as for the proved cases. The proof of the Serre relation relies on de�ning r̃±k (v) which is an a�ne

version of what Lusztig de�ned as ir
± � see [Lusztig].

This chapter is organized as follows. First we start by giving several automorphisms of U̇q(ġ), crucial to

many of the proofs. We then build our way to de�ning the braid group action of Ti on the generators of the

algebra in order to provide the main theorem. Then, in the remaining part of the chapter we construct the

necessary machinery in order to to prove this theorem.

4.2 De�nition of U̇q(ġ)

De�nition 4.2.1. The quantum toroidal algebra U̇q(ġ) is the associative F-algebra generated by the

generators {
D,D−1, C1/2, C−1/2, k+

i,n, k
−
i,−n, x

+
i,m, x

−
i,m : i ∈ İ ,m ∈ Z, n ∈ N

}
subject to the following relations

C±1/2 is central C±1/2C∓1/2 = 1 D±1D∓1 = 1 (4.2.1)

Dk±i (z)D−1 = k±i (zq−1) Dx±i (z)D−1 = x±i (zq−1) (4.2.2)

res
z1,z2

1

z1z2
k±i (z1)k∓i (z2) = 1 (4.2.3)
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k±i (z1)k±j (z2) = k±j (z2)k±i (z1) (4.2.4)

k−i (z1)k+
j (z2) = G−ij(C

−1z1/z2)G+
ij(Cz1/z2)k+

j (z2)k−i (z1) (4.2.5)

G∓ij(C
∓1/2z2/z1)k+

i (z1)x±j (z2) = x±j (z2)k+
i (z1) (4.2.6)

k−i (z1)x±j (z2) = G∓ij(C
∓1/2z1/z2)x±j (z2)k−i (z1) (4.2.7)

(z1 − q±cijz2)x±i (z1)x±j (z2) = (z1q
±cij − z2)x±j (z2)x±i (z1) (4.2.8)

[x+
i (z1),x−j (z2)] =

δij

qi − q−1
i

[
δ

(
z1

Cz2

)
k+
i (z1C

−1/2)− δ
(
z1C

z2

)
k−i (z2C

−1/2)

]
(4.2.9)

∑
σ∈S1−cij

1−cij∑
k=0

(−1)k
(

1− cij
k

)
q

x±i (zσ(1)) · · ·x±i (zσ(k))x
±
j (z)x±i (zσ(k+1)) · · ·x±i (zσ(1−cij)) = 0 (4.2.10)

where, for every i ∈ İ, we de�ne the following U̇q(ġ)-valued formal distributions

x±i (z) :=
∑
m∈Z

x±i,mz
−m ∈ U̇q(ġ)[[z, z−1]] ; (4.2.11)

k±i (z) :=
∑
n∈N

k±i,±nz
∓n ∈ U̇q(ġ)[[z∓1]] , (4.2.12)

for every i, j ∈ İ, we de�ne the following F-valued formal power series

G±ij(z) := q
±aij
i + (qi − q−1

i )[±aij ]qi
∑
m∈N×

q
±maij
i zm ∈ F[[z]] (4.2.13)

and

δ(z) :=
∑
m∈Z

zm ∈ F[[z, z−1]] (4.2.14)

is an F-valued formal distribution.

4.3 Automorphisms of U̇q(ġ)

Proposition 4.3.1. i. For every Dynkin diagram automorphism π : İ
∼−→ İ, there exists a unique

F-algebra automorphism Tπ ∈ Aut(U̇q(ġ)) such that

Tπ(x±i (z)) = x±π(i)(z) , Tπ(k±i (z)) = k±π(i)(z) , Tπ(C) = C , Tπ(D) = D . (4.3.1)

ii. For every i ∈ İ, there exists a unique F-algebra automorphism Tω∨i ∈ Aut(U̇q(ġ)) such that

Tω∨i (x±j (z)) = z±δijx±j (z) Tω∨i (k±j (z)) = C∓δijk±j (z) Tω∨i (C) = C Tω∨i (D) = D (4.3.2)

iii. There exists a unique involutive F-algebra anti-homomorphism η ∈ Aut(U̇q(ġ)) such that

η(x±i (z)) = x±i (1/z) η(k±i (z)) = k∓i (1/z) η(C) = C η(D) = D (4.3.3)
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iv. There exists a unique involutive K-algebra anti-homomorphism ϕ such that

ϕ(x±i (z)) = x∓i (1/z) ϕ(k±i (z)) = k∓i (1/z) ϕ(C) = C−1 ϕ(D) = D−1 ϕ(q) = q−1

(4.3.4)

4.4 Braid group action

De�nition 4.4.1. For all i 6= j ∈ İ, we let x+
i1j

(z) ∈̂̇Uq(ġ)[[z, z−1]] be de�ned by:

[
x+
i (z1); x+

j (z2)
]
G−ij(z1/z2)

= δ

(
z1

z2q
aij
i

)
x+
i1j

(z1). (4.4.1)

Proposition 4.4.2. For all i 6= j ∈ İ, we have:

(
z1 − q2

i z2

)
x+
i (z1)x+

i1j
(z2) =

(
z1q

2
i − z2

)
G−ij(z1q

2
i /z2)x+

i1j
(z2)x+

i (z1) (4.4.2)

Proof. Making use of the previous de�nition, we can write:

(
z1 − q2

i z2

)
x+
i (z1)

[
x+
i (z2)x+

j (z3)−G−ij(z2/z3)x+
j (z3)x+

i (z2)
]

=
(
z1q

2
i − z2

)
x+
i (z1)x+

i (z2)x+
j (z3)−

(
z1 − q2

i z2

)
G−ij(z2/z3)G−ij(z1/z3)x+

j (z3)x+
i (z1)x+

i (z2)

+
(
z1 − q2

i z2

)
G−ij(z2/z3)δ

(
z2

z3q
aij
i

)
x+
i1j

(z1)x+
i (z2)

=
(
z1q

2
i − z2

)
G−ij(z1/z3)x+

i (z2)x+
j (z3)x+

i (z1) +
(
z1q

2
i − z2

)
δ

(
z1

z3q
aij
i

)
x+
i (z2)x+

i1j
(z1)

−
(
z1q

2
i − z2

)
G−ij(z1/z3)G−ij(z2/z3)x+

j (z3)x+
i (z2)x+

i (z1)−
(
z1 − z2q

2
i

)
G−ij(z2/z3)x+

i1j
(z1)x+

i (z2)

=
(
z1q

2
i − z2

)
G−ij(z1/z3)G−ij(z2/z3)x+

j (z3)x+
i (z2)x+

i (z1)

+
(
z1q

2
i − z2

)
G−ij(z1/z3)δ

(
z2

q
aij
i z3

)
x+
i1j

(z2)x+
i (z1)

−
(
z1q

2
i − z2

)
G−ij(z1/z3)G−ij(z2/z3)x+

j (z3)x+
i (z2)x+

i (z1)

+
(
z1q

2
i − z2

)
δ

(
z1

q
aij
i z3

)
x+
i (z2)x+

i1j
(z1)−

(
z1 − z2q

2
i

)
G−ij(z2/z3)δ

(
z1

q
aij
i z3

)
x+
i1j

(z1)x+
i (z2).

Thus, we can conclude that:

δ

(
z1

q
aij
i z3

)((
z1 − z2q

2
i

)
x+
i (z1)x+

i1j
(z2)−

(
z1q

2
i − z2

)
G−ij(z1/z3)x+

i1j
(z2)x+

i (z1)
)

= 0

δ

(
z1

q
aij
i z3

)((
z2 − z1q

2
i

)
x+
i (z2)x+

i1j
(z1)−

(
z2q

2
i − z1

)
G−ij(z2/z3)x+

i1j
(z1)x+

i (z2)
)

= 0.

and the result follows.

Lemma 4.4.3. Let i 6= j ∈ İ, then x+
i1j

(z1) = x+
ij1

(z1q
−aij
i ).
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Proof. By de�nition 4.4.1, take m = 1, we get:

[x+
i (z1),x+

i0j
(z2)]G−ij(z1/z2) = δ

(
z1

z2q
aij
i

)
x+
i1j

(z1).

On the other hand, proposition 4.4.2 for m = 1 gives,

[x+
j0i

(z1); x+
j (z2)]G−

i,i0j
(z1/z2) = δ

(
z1

z2q
aij
j

)
x+
j1i

(z2).

Upon exchanging i and j in the previous equation, we get:

[x+
ij0

(z1); x+
j (z2)]G−

j,j0i
(z1/z2) = δ

(
z1

z2q
aij
j

)
x+
ij1

(z2).

But

G−
j,j0i

(z1/z2) = G−ji(z1/z2) = G−ij(z1/z2) = G−
i,i0j

(z1/z2).

Moreover,

qajij = qdjaji = qcji = qcij = qcji = qdiaij = q
aij
i .

Therefore, we conclude that

[x+
ij0

(z1),x+
j (z2)]G−ij(z1/z2) = δ

(
z1

z2q
aij
j

)
x+
ij1

(z2) = δ

(
z1

z2q
aij
j

)
x+
ij1

(q
−aij
i z1).

Generalizing the above result, we can de�ne the following:

Proposition 4.4.4. For all i 6= j ∈ İ and for all n ∈ N×, we let x+
inj(z) ∈

̂̇Uq(ġ)[[z, z−1]] be de�ned by:

[
x+
i (z1); x+

in−1j
(z2)

]
G−
i,in−1j

(z1/z2)
= δ

(
z1

z2q
an−1

i

)
x+
inj(z2) (4.4.3)

where, an = aij if n = 0 and an = 2 otherwise, whereas G−
i,in−1j

(z1/z2) = G−ii (z1/z2)G−
i,in−2j

(z1/z2q
an−2).

Proof. It su�ces to show that

(
z1 − q2

i z2

)
x+
i (z1)x+

in−1j
(z2) =

(
z1q

2
i − z2

)
G−
i,in−2j

(z1/z2q
an−1

i )x+
in−1j

(z2)x+
i (z1) (4.4.4)

The proof is straightforward and follows the same steps as for the previous proposition.

Proposition 4.4.5. For all i 6= j ∈ İ,

ad(x+
i (z1))x+

j (z2) = δ

(
z1

q
aij
i z2

)
x+
i1j

(z1)
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Proof. By de�nition, we have:

ad(x+
i (z1))x+

j (z2) =
∑
i

x+
i (z1)(1)x

+
j (z2)S(x+

i (z1)(2))

= x+
i (z1)x+

j (z2)− k−i (z1)x+
j (z2)k−i (z1)−1x+

i (z1)

=
[
x+
i (z1); x+

j (z2)
]
G−ij(z1/z2)

= δ

(
z1

q
aij
i z2

)
x+
i1j

(z1).

Therefore, and more generally,

Proposition 4.4.6. For all i 6= j ∈ İ,

ad(x+
i (z1)...x+

i (zm))x+
j (v) = δ

(
z1

q2
i z2

)
...δ

(
zm−1

q2
i zm

)
δ

(
z1

q
aij
i v

)
x+
imj(z1)

Proof. We prove this proposition by induction on m. The case m = 1 is the previous proposition. Now

assume the result holds for some m ∈ N×. Then,

ad(x+
i (z0)x+

i (z1)...x+
i (zm))x+

j (v) = ad(x+
i (z0))ad(x+

i (z1)...x+
i (zm))x+

j (v)

= x+
i (z0)ad(x+

i (z1)...x+
i (zm))x+

j (v)− k−i (z0)ad(x+
i (z1)...x+

i (zm))x+
j (v)k−i (z0)−1x+

i (z0)

=
[
x+
i (z0); ad(x+

i (z1)...x+
i (zm))x+

j (v)
]
G−ii(z0/z1)...G−ii(z0/zm)G−ij(z0/v)

= δ

(
z1

q2
i z2

)
...δ

(
zm−1

q2
i zm

)
δ

(
z1

q
aij
i v

)[
x+
i (z0); x+

imj(z1)
]
G−ii(z0/z1)G−i,imj(z0q

am−1
i /z1)

and the result follows.

Lemma 4.4.7. Let i 6= j. Then,

[x+
i1j

(z1); x−j (z2)] = −[aji]qjδ

(
z1q
−aijC

z2

)
k−j (z1q

−aij
i C1/2)x+

i (z1). (4.4.5)

Proof. By de�nition 4.4.1, we have

δ

(
z1

z2q
aij
i

)
[x+
i1j

(z1); x−j (v)] =
[
[x+
i (z1); x+

j (z2)]G−ij(z1/z2); x
−
j (v)

]
=

1

qj − q−1
j

[
x+
i (z1);

(
δ
( z2

Cv

)
k+
j (z2C

−1/2)− δ
(
z2C

v

)
k−j (vC−1/2)

)]
G−ij(z1/z2)

= − 1

qj − q−1
j

δ

(
z2C

v

)(
G+
ji(z2/z1)−G−ij(z1/z2)

)
k−j (vC−1/2)x+

i (z1)

= −[aji]qjδ

(
z1q
−aijC

v

)
δ

(
z1

z2q
aij
i

)
k−j (z1q

−aij
i C1/2)x+

i (z1).

The result follows after taking the residue with respect to z2.

135



Corollary 4.4.8. i 6= j. Then,

[
x+
ji1

(z1); x−i (v)
]

= −[aji]qiδ

(
z1q
−aji
j C

v

)
k−i (z1C

1/2)x+
j (z1q

aij
i ). (4.4.6)

Proof. This result follows immediately from the previous lemma upon interchanging i and j.

Lemma 4.4.9. Let i 6= j ∈ İ. Then ∀n ∈ N

i) [
x+
inj(z); x

−
i (v)

]
= δ

( z

Cv

)
Anx

+
in−1j

(zq
−an−1

i )k+
i (zC−1/2) (4.4.7)

where,

An = [n]qi [aij + n− 1]qi (4.4.8)

ii) [
x−i (v); x+

jin(z)
]

= δ
( v

Cz

)
Ank

−
i (zC−1/2)x+

jin−1(zq
an−1

i ). (4.4.9)

Proof. The case n = 0 holds since it is one of the algebra de�ning relations. Now assume the result holds

for some n ∈ N, therefore, by the de�nition of x+
inj(z), we can write:[[

x+
i (z1); x+

inj(z2)
]
G−
i,i
−aij j

(v/zqni )
; x−i (v)

]
= δ

(
z1

z2q
an
i

)[
x+
in+1j

(z1); x−i (v)
]

=
1

qi − q−1
i

[
δ
( z1

Cv

)
k+
i (z1C

−1/2)− δ
(

v

Cz1

)
k−i (vC−1/2); x+

inj(z2)

]
G−i,inj(z1/z2)

+
[
x+
i (z1);

[
x+
inj(z2); x−i (v)

]]
G−i,inj(z1/z2)

=
1

qi − q−1
i

δ
( z1

Cv

) [
G+
i,inj(z2/z1)−G−i,inj(z1/z2)

]
x+
inj(z2)k+

i (z1C
−1/2)

+ δ
( z2

Cv

)
An

[
x+
i (z1); x+

in−1j
(z2q

an−1

i )k+
i (z2C

−1/2)
]
G−i,inj(z1/z2)

=
1

qi − q−1
i

δ
( z1

Cv

) [
G+
i,inj(z2/z1)−G−i,inj(z1/z2)

]
x+
inj(z2)k+

i (z1C
−1/2)

+ δ
( z2

Cv

)
An

[
x+
i (z1); x+

in−1j
(z2q

an−1

i )
]
G−
i,in−1j

(z1/z2)
k+
i (z2C

−1/2)

= −δ
( z1

Cv

)
δ

(
z1

z2

)
Anx

+
inj(z2)k+

i (z2C
−1/2)

+An+1δ
( z1

Cv

)
δ

(
z1

z2q2
i

)
x+
inj(z2)k+

i (z1C
−1/2) + δ

( z1

Cv

)
δ

(
z1

z2

)
Anx

+
inj(z2)k+

i (z2C
−1/2).

and the result follows. Finally, it su�ces to apply η to i) to get ii).

Lemma 4.4.10. For all n ∈ N, we have:

i.
[
x+
in+1j

(z1); x−jin(z2)
]

= αnδ

(
Cz1q

δn
i

z2

)
k−j (z1C

1/2qγni )
∏n
p=1 k−i (z1C

1/2q
γn,p
i )x+

j (z1q
εn
i )

ii.
[
x+
inj(z1); x−

jin+1(z2)
]

= φ(αn)δ

(
Cz2q

δn
i

z2

)
x−i (z2q

εn
i )k+

j (z2C
1/2qγni )

∏n
p=1 k+

i (z2C
1/2q

γn,p
i )
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iii.

[
x+
inj(z1); x−jin(z2)

]
= βn

δ( z1

Cz2

) n∏
p=1

k+
i (z1C

1/2q
γ̃n,p
i )k+

j (z1C
1/2qγni )

−
n∏
p=1

k−i (z2C
−1/2q

γ̃n,p
i )k−j (z2C

−1/2qγni )

 (4.4.10)

Proof. It is clear that ∀n ∈ N, ii. is a consequence of i. - upon applying φ. Therefore, it su�ces to prove

the �rst and last equation. This is done by recursion. Both points hold for n = 0; i. boils down to the

previous lemma if we set α0 = −[aji]qj , δ0 = γ0 = −aij , and ε0 = 0.

Now let us assume that both i. and iii. hold for the same n ∈ N we have:

[
x+
in+2j

(z1); x−
jin+1(v)

]
δ

(
z1

z2qan+1

)
=

[[
x+
i (z1); x+

in+1j
(z2)

]
G−
i,in+1j

(
z1
z2

) ; x−
jin+1(v)

]
=
[[

x+
i (z1); x−

jin+1(v)
]

; x+
in+1j

(z2)
]
G−
i,in+1j

(
z1
z2

)
+
[
x+
i (z1);

[
x+
in+1j

(z2); x−
jin+1(v)

]]
G−
i,in+1j

(
z1
z2

)
= δ

(
z1C

v

)
An+1

[
k−i (vC−1/2)x−

jin+1(vq−an); x+
in+1j

(z2)
]
G−
i,in+1j

(
z1
z2

)
+
[
x+
i (z1);

[
x+
in+1j

(z2); x−
jin+1(v)

]]
G−
i,in+1j

(
z1
z2

)
Now we focus on the last term, we can write:

[
x+
in+1j

(z2); x−
jin+1(v)

]
δ

(
z1

z2qan

)
=

[[
x+
i (z1); x+

inj(z2)
]
G−i,inj

(
z1
z2

) ; x−
jin+1(v)

]
=
[[

x+
i (z1); x−

jin+1(v)
]

; x+
inj(z2)

]
G−i,inj

(
z1
z2

)
+
[
x+
i (z1);

[
x+
inj(z2); x−

jin+1(v)
]]
G−i,inj

(
z1
z2

)
= δ

(
z1C

v

)
An

[
k−i (vC−1/2)x−jin(vq−an−1); x+

inj(z2)
]
G−i,inj

(
z1
z2

)
+
[
x+
i (z1);

[
x+
inj(z2); x−

jin+1(v)
]]
G−i,inj

(
z1
z2

) .
We can now make use of ii. and iii. and the result follows.

Proving iii. follows in the exact similar steps, making use of i. and ii.

De�nition 4.4.11. ∀i 6= j ∈ İ

Ti(x
+
j (z)) =

x+

i−aij j
(zq
−aij
i )

[−aij ]qi
(4.4.11)

where we recursiely de�ne x+
inj(z) by setting:

[
x+
i (z1); x+

in−1j
(z2)

]
G−
i,in−1j

(z1/z2)
= δ

(
z1

q
am−1

i z2

)
x+
inj(z2). (4.4.12)
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Main theorem

Theorem 4.4.12. ∀i 6= j ∈ İ, setting Ti as:

Ti(C) = C, Ti(D) = D

Ti(x
+
i (z)) = −x−i (zC−1)k+

i (zC−1/2)−1, Ti(x
−
i (z)) = −k−i (zC−1/2)−1x+

i (zC−1)

Ti(k
±
i (z)) = k±i (z)−1, Ti(k

±
j (z)) =

|−aij |∏
p=1

k±i (zq
2−2p−aij
i )k±j (zq2

i )

Ti(x
+
j (z)) =

x+

i−aij j
(zq
−aij
i )

[−aij ]qi
, Ti(x

−
j (z)) =

x−
ji−aij

(zq
−aij
i )

[−aij ]qi
.

makes Ti into an algebra homomorphism on ̂̇Uq(ġ).

Moreover, by setting:

T−1
i (C) = C, T−1

i (D) = D

T−1
i (x+

i (z)) = −k+
i (zC1/2)−1x−i (zC ), T−1

i (x−i (z)) = −x+
i (zC)k−i (zC1/2)−1

T−1
i (k±i (z)) = k±i (z)−1, T−1

i (k±j (z)) =

|−aij |∏
p=1

k±i (zq
2−2p−aij
i )k±j (zq−2

i )

T−1
i (x+

j (z)) =
x+

ji−aij
(zqaij )

[−aij ]qi
, T−1

i (x−j (z)) =
x−
i−aij j

(zqaij )

[−aij ]qi
.

we get an action of B̈ on ̂̇Uq(ġ).

Proof. It su�ces to check this on the algebra relations. Equations 4.2.1 - 4.2.7 are straightforward and left

to the reader. The remaining part of this chapter will be dedicated to developing the needed machinery for

proving this theorem on the rest of the algebra relations. Then, we can check T−1
i on the generators.

4.5 Proof of the main theorem

Proposition 4.5.1. We have

i. ϕ ◦ Tπ = Tπ ◦ ϕ;

ii. ϕ ◦ Ti = Ti ◦ ϕ;

iii. T−1
i = η ◦ Ti ◦ η.

Proposition 4.5.2. For all i, j ∈ İ and aij ∈ {−1,−2,−3,−4} the q-Serre relation is equivalent to

x+

i1−aij j
(z) = 0 (4.5.1)

Proof. The proof is cumbersome but straightforward. However, we will highlight the main steps below for

the case aij = −3 and all the other cases are similar.
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The q-Serre relations is given by:

∑
σ∈S1−aij

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qi

x±i (zσ(1)) · · ·x±i (zσ(k))x
±
j (z)x±i (zσ(k+1)) · · ·x±i (zσ(1−aij)) = 0 (4.5.2)

We start by expanding the sum over k. Then, we pick a speci�c ordering and by which we mean that

we decide to move all the x+
j (z) to the leftmost side of each term by using equation 4.4.12. Clearly, this

will create terms in x+
i1j

(z) which we decide to move to the leftmost side of every term too. After repeating

this process for x+
i2j

(z), and x+
i3j

(z) we now move to canceling all the terms except the ones with x+
i3j

(z).

Obviously, the terms in x+
inj(z) for n = 0, 1, 2 can only be canceled with other terms of the same value of

n. In order to do that, we factorize the coe�cients of each term so that we can make use of the algebra

relation given by equation 4.2.8. Finally, the only reamining terms will combine to give us the result of

the proposition.

Lemma 4.5.3. For all i 6= j ∈ İ,

[
Ti(x

+
j (z));Ti(x

−
j (v))

]
=

1

qj − q−1
j

(
δ
( z

Cv

)
Ti

(
k+
j (zC−1/2

)
− δ

(
zC

v

)
Ti

(
k−j (vC−1/2)

))
(4.5.3)

where,

Ti

(
k±j (z)

)
=

|−aij |∏
p=1

k±i (zq
2−2p−aij
i )k±j (zq2

i ) (4.5.4)

Proof. It su�ces to use the de�nition of Ti on the generators as well as lemma 4.4.10 to get:[
Ti(x

+
j (z));Ti(x

−
j (v))

]
=

1

[−aij ]2qi

[
x+

i−aij j
(zq
−aij
i ); x−

ji−aij
(vq
−aij
i )

]
=

β−aij
[−aij ]2qi

(
δ
( z

Cv

) |−aij |∏
p=1

k+
i (zq

γ̃−aij ,p−aij
i C−1/2)k+

j (zq
γ̃−aij
i C−1/2)

− δ
(
Cz

v

) |−aij |∏
p=1

k−i (vq
γ̃−aij ,p−aij
i C−1/2)k−j (vq

γ̃−aij
i C−1/2)

)

and the result follows provided we have:

β−aij
[−aij ]2qi

=
1

qj − q−1
j

. (4.5.5)

Lemma 4.5.4. ∀i 6= j ∈ İ, [
Ti(x

+
j (z));Ti(x

−
i (v))

]
= 0. (4.5.6)

Proof. By de�nition, the latter is equivalent to

−
[
x+

i−aij j
(zq
−aij
i ); k−i (vC−1/2)−1x+

i (vC−1)
]

= k−i (vC−1/2)−1
[
x+

i−aij j
(zq
−aij
i ); x+

i (vC−1)
]
G−
i,i
−aij j

(v/zq
−aij
i )

= δ

(
C−1v

zq
2−aij
i

)
k−i (vC−1/2)−1x+

i1−aij j
(zq
−aij
i ) = 0
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by virtue of the q-Serre relation.

Lemma 4.5.5. ∀i ∈ İ,

[
Ti(x

+
i (z));Ti(x

−
i (v))

]
=

1

qi − q−1
i

(
δ
( z

Cv

)
Ti

(
k+
i (zC−1/2

)
− δ

(
zC

v

)
Ti

(
k−i (vC−1/2)

))
. (4.5.7)

Proof. The proof is similar to that of the previous two lemmas and follows immediately from the de�nition

of Ti and the algebra relations.

De�nition 4.5.6. For every n ∈ N and every i 6= j ∈ İ, we recursively de�ne x+
jin(z) by setting:

x+
jin(z) = η(x+

inj(1/z) (4.5.8)

Proposition 4.5.7. ∀i 6= j ∈ İ, ∀n ∈ N

[
x+
jin−1(z1); x+

i (z1)
]
G−
i,in−1j

(z1/z2)
= δ

(
z1

q
am−1

i z2

)
x+
jin(z2). (4.5.9)

De�nition 4.5.8. ∀i ∈ İ we denote by U̇+
q (ġ)[i] the closed subalgebra of ̂̇U+

q (ġ) generated by {resz z
−1+m x+

jin(z) :

m ∈ Z, n ∈ N, j ∈ İ−{i}}, and by U̇+
q (ġ)[i]η the closed subalgebra of ̂̇U+

q (ġ) generated by {resz z
−1+m x+

inj(z) :

m ∈ Z, n ∈ N, j ∈ İ − {i}}. Clearly, U̇+
q (ġ)[i]η = η(U̇+

q (ġ)[i]).

Lemma 4.5.9. ∀i ∈ İ, we have

i)

̂̇U+
q (ġ) =

⊕̂
p∈N

x+
i,m1

...x+
i,mp

U̇+
q (ġ)[i];m1, ...,mp ∈ Z (4.5.10)

ii)

̂̇U+
q (ġ) =

⊕̂
p∈N

U̇+
q (ġ)[i]ηx+

i,m1
...x+

i,mp
U̇+
q (ġ)[i];m1, ...,mp ∈ Z. (4.5.11)

Proof. Any product of elements in {resz z
−1+px+

i (z); resz z
−1+mx+

jin(z) : p,m ∈ Z, n ∈ N, j ∈ İ − {i}}
can be rewritten with modes of x+

i (z) on the left by repeatedly making use of the identity

x+
jim−1(z1)x+

i (z2) = Gi,im−1j

(
z1

z2

)
x+
i (z2)x+

jim−1(z1). (4.5.12)

It is therefore an element of the r.h.s. of i). Moreover, since x+
j (z) = x+

ji0
(z), any word over {resz z

−1+mx+
k (z) :

m ∈ Z, k ∈ I} is a product of elements in the set {resz z
−1+px+

i (z); resz z
−1+mx+

jin(z) : p,m ∈ Z, n ∈
N, j ∈ İ − {i}} and the lemma follows. Part ii) follows by applying η on i).

Lemma 4.5.10. Let i ∈ İ. Ti restricts to an algebra isomorphism:

Ti|U̇+
q (ġ)[i] : U̇+

q (ġ)[i]→ U̇+
q (ġ)[i]η (4.5.13)

whose inverse is T−1
i |U̇+

q (ġ)[i].
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Proof. It su�ces to prove that for every j ∈ İ − {i} and for every n ∈ J0, 1− aijK

Ti(x
+
jin(z)) =


x+

i
−aij−nj

(zqani )

Nn
, if n ∈ J0,−1− aijK

x+
j (zq

−aij
i )

N−aij
, if n = −aij

0 if n = 1− aij .

(4.5.14)

We do this recursively on n. The case n = 0 is just the de�nition and allows us to set N0 = [−aij ]qi . Now
suppose that 4.5.14 holds for some n ∈ J0,−1− aijK then it clearly holds for n ≥ 1− aij provided we set

x+
ipj(z) = 0 since x+

i1−aij j
(z) = 0. Then, we have:

δ

(
z1

qani z2

)
Ti(x

+
jin+1(z2) = Ti

([
x+
jin+1(z2),x+

i (z1)
]
G−i,inj(z1/z2)

)
=
[
Ti(x

+
jin+1(z2)), Ti(x

+
i (z1))

]
G−i,inj(z1/z2)

= −

x+

i−aij−nj
(z1q

−an
i )

Nn
,x−i (z2C

−1)k+
i (z2C

−1/2)−1


G−i,inj(z1/z2)

= −

x+

i−aij−nj
(z1q

−an
i )

Nn
,x−i (z2C

−1)


G−i,inj(z1/z2)G̃−

i,i
−aij−nj

(z1/z2)

k+
i (z2C

−1/2)−1

Hence, we get:

Ti(x
+
jin+1(z2) =

x+

iaij−(n+1)j (zq
an+1

i )

Nn+1
(4.5.15)

This completes the proof provided we set Nn+1 = − Nn
A−aij−n

.

De�nition 4.5.11. Let i 6= j ∈ İ. For every p ∈ J0;mij − 1K, we de�ne:

Ti,j,p = ...TiTjTi︸ ︷︷ ︸
p-factors

, T ′i,j,p = ...T−1
i T−1

j T−1
i︸ ︷︷ ︸

p-factors

(4.5.16)

where (mij)i,j∈İ is the Coxeter matrix of the a�ne Weyl group of ġ.

Lemma 4.5.12. Let i 6= j ∈ İ and let p ∈ J0;mij − 1K. Then,

i) Ti,j,p(x
+
j (z)), Tj,i,p(x

+
i (z)) ∈ Uij [[z, z−1]],

ii) T ′i,j,p(x
+
j (z)), T ′j,i,p(x

+
i (z)) ∈ Uij [[z, z−1]],

where we denote by Uij the closed ̂̇Uq(ġ) subalgebra generated by

{res
z
z−1+mx+

i (z), res
z
z−1+mx+

j (z); m,n ∈ N} (4.5.17)

Proof. We consider all the values of mij in {2, 3, 4, 6,∞}. It is important to mention that there is no loss

of generality in �xing
〈
αi, α

∨
j

〉
= 〈αj , α∨i 〉 = 0, or 〈αj , α∨i 〉 = −1, and

〈
αi, α

∨
j

〉
∈ {−1,−2,−3,−4}, or

�nally that
〈
αi, α

∨
j

〉
= 〈αj , α∨i 〉 = −2.
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i) Case mij = 2, and
〈
αi, α

∨
j

〉
= 〈αj , α∨i 〉 = 0. The case p = 0 is trivial, and for p = 1, we have

Ti(x
+
j (z)) = x+

j (z) ∈ Uij [[z, z−1]] (4.5.18)

and similarly for the remaining claims.

ii) Case mij = 3, and
〈
αi, α

∨
j

〉
= 〈αj , α∨i 〉 = −1. The case p = 0 is obvious.

Ti(x
+
j (z)) = x+

i1j
(zqi) ∈ Uij [[z, z−1]]. (4.5.19)

Now, apply Tj to get

Tj ◦ Ti(x+
j (z)) = Tj(x

+
i1j

(zqi)) =
x+
i (zq2

i qj)

N1
∈ Uij [[z, z−1]]. (4.5.20)

Similar arguments apply for T ′i,j,p.

iii) Case mij = 4, and
〈
αi, α

∨
j

〉
= −2, 〈αj , α∨i 〉 = −1. The case p = 0 is obvious.

Ti(x
+
j (z)) =

x+
i2j

(zq2
i )

[2]qi
∈ Uij [[z, z−1]]

Tj(x
+
i (z)) = x+

j1i
(zqj) ∈ Uij [[z, z−1]].

By the previous lemma, we have on one hand

Ti ◦ Tj(x+
i (z)) =

x+
i1j

(zq2
i qj)

N1
∈ Uij [[z, z−1]], and

Tj ◦ Ti ◦ Tj(x+
i (z)) =

x+
i (zq2

i q
2
j )

N2
1

∈ Uij [[z, z−1]]

and on the other hand,

δ

(
z

vq2
i

)
Tj ◦ Ti(x+

j (z)) = δ

(
z

vq2
i

)
Tj(x

+
i2j

(zq2
i ))

[2]qi

=
[
Tj(x

+
i (z), Tj(x

+
ij(v))

]
G−i,ij(z/v)

=
[
x+
ji1

(zqj),x
+
i (vqj)

]
G−i,ij(z/v)

= δ

(
z

vq2
i

)
x+
ji2

(zq2
j q
−2
i )

N1
∈ Uij [[z, z−1]].

Eventually,

Ti ◦ Tj ◦ Ti(x+
j (z)) =

x+
j (zq2

j q
2
i )

N1N2[2]qi
∈ Uij [[z, z−1]]. (4.5.21)

iv) Case mij = 6. The steps are very similar to the previous cases where we make a repeated use of the

previous lemma. Finally, we can move to the last case.

v) Case mij =∞. In that case we must distinguish two subcases:
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a) aij = 〈αi, α∨j 〉 = −2 = 〈αj , α∨i 〉 = aji

b) aij = 〈αi, α∨j 〉 = −4, aji = 〈αj , α∨i 〉 = −1.

In subcase a), we have:

δ

(
z

vq2
i

)
Tj ◦ Ti(x+

j (z)) =

[
x+
j2i

(zq2
j )

[2]qi
,
x+
j2i

(vq−2
j )

N1

]
G−i,ij(z/v)

(4.5.22)

an induction as in [Lusztig] 40.1.1 shows that: Ti,j,p(x
+
j (z)) ∈ Uij [[z, z−1]]. In subcase b) we have:

Tj,i,2(x+
i (z)) =

x+
i3j

(zqjq
−2
i )

N1
(4.5.23)

Now,

δ

(
z

vq2
i

)
Tj(x

+
i2j

(z)) =
[
Tj(x

+
i (z)), Tj(x

+i1j(v))
]
G−i,ij(z/v)

= δ

(
z

vq2
i

)
x+
ji2

(vqj).

Similarly,

Tj(x
+
i3j

(z)) =
[
x+
jizqj ,x

+
ji2

(vqjq
−2
i )
]
G−
i,i2j

(z/v)
(4.5.24)

Tj(x
+
i4j

(z)) =
[
x+
jizqj , Tj(x

+
ji2

(v)
]
G−
i,i2j

(z/v)
(4.5.25)

making it clear that ∀m = 1, ..., 4

Ti(x
+
imj(z)) ∈ Uij [[z, z

−1]] (4.5.26)

where Z is the subalgebra of ̂̇Uq(ġ) generated by:

{res
z
z−1+mx+

ji(z), res
z
z−1+mx+

ji2
(z); m,n ∈ Z}. (4.5.27)

Clearly Z ⊂ Uij , and Ti(Z) ⊂ Uij thus concluding the proof.

Lemma 4.5.13. ∀i, j, k ∈ İ we have:

Tk

(
(z1 − q±cijz2)x±i (z1)x±j (z2)

)
= Tk

(
(z1q

±cij − z2)x±j (z2)x±i (z1)
)

(4.5.28)

Proof. The case i 6= j 6= k follows from the fact that Tk is an adjoint action.

The remaining cases are proved by using the de�nition of Tk on the generators and then comparing

both sides of the equation after using equation 4.2.7 to move all the k±i (zl) to the left.

De�nition 4.5.14. For every i ∈ İ, and every m ∈ Z, there exists a unique F-linear homomorphism

r±i,m : U̇q(ġ)+ → U̇q(ġ)+ such that:

i) r±i,m(1) = 0.

ii) r±i,m(x+
i (z1)x+

i (z2)...x+
i (zn)) =

∑n
p=1 δip,iC

∓mzmp
∏p−1
k=1Gi,ik

(
zp
zk

)∓1∏
l∈JnK x+

il
(z1)
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Clearly, for all i ∈ İ,
r±i (v) =

∑
m∈Z

r±i,mv
−m ∈ HomF(U̇q(ġ)+)[[v, v−1]] (4.5.29)

and we have:

r±i (v)(x+
i (z1)x+

i (z2)...x+
i (zn)) =

n∑
p=1

δip,iδ

(
zpC

∓1

v

) p−1∏
k=1

Gi,ik

(
zp
zk

)∓1 ∏
l∈JnK

x+
il

(z1). (4.5.30)

We extend r±i (v) by continuity to ̂̇Uq(ġ).

Proposition 4.5.15. For all X ∈ U̇q(ġ)+, and all i ∈ İ, we have:

[X,x−i (v)] =
k+
i (vC1/2)ri(v)(X)− k−i (vC−1/2)r−i (v)(X)

qi − q−1
i

(4.5.31)

Proof. It su�ces to prove this claim for X = x+
i1

(z1)x+
i2

(z2)...x+
im

(zm). Obviously,

[x+
i1

(z1)x+
i2

(z2)...x+
im

(zm),x−i (v)]

=
m∑
p=1

δip,i

qi − q−1
i

x+
i1

(z1)x+
i2

(z2)...x+
ip−1

(zp−1)

(
δ

(
zpC

v

)
k+
i (vC−1/2)− δ

(
zpC

−1

v

)
k−i (vC−1/2)

)
× x+

ip+1
(zp+1)...x+

im
(zm)

=

m∑
p=1

δip,i

qi − q−1
i

[
δ

(
zpC

∓1

v

) p−1∏
k=1

G−i,ik

(
zp
zk

)∓1

k+
i (vC−1/2)

∏
l∈JnK−{p}

x+
il

(z1)

− δ
(
zpC

∓1

v

) p−1∏
k=1

G+
i,ik

(
C−1zp
zk

)∓1

k−i (vC−1/2)
∏

l∈JnK−{p}

x+
il

(z1)
]
.

Lemma 4.5.16. Let X ∈̂̇Uq(ġ)
+

and let i ∈ İ.

i) If Ti(X) ∈̂̇Uq(ġ)
+

then r+
i (v)(X) = 0.

ii) If T−1
i (X) ∈̂̇Uq(ġ)

+

then r−i (v)(X) = 0.

Proof. Let X ∈ U̇q(ġ)+. It is a linear combination of

{ res
z1,z2,...zn

z−1+m1
1 ...z−1+mn

n x+
i1

(z1)x+
i2

(z2)...x+
im

(zn)}. (4.5.32)

Without loss of generality we can restrict to cases where X is homogeneous. Assume that Ti(X) ∈̂̇Uq(ġ)
+

.

By the previous proposition

[X,x−i (v)] =
k+
i (vC1/2)ri(v)(X)− k−i (vC−1/2)r−i (v)(X)

qi − q−1
i

(4.5.33)

and lemma 4.5.9,

r+
i (v)(X) =

∑
p∈N

res
z1,...zp

z−1
1 ...z−1

p x+
i (z1)...x+

i (zp)Y
±(v, z1, ...zp) (4.5.34)
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for some Y ±(v, z1, ...zp) ∈ U̇q(ġ)+[[v, v−1]]((z−1
1 , ..., z−1

p )). We apply Ti to [X,x−i (v)] and we get:

[Ti(X),k−i (C−1/2v)x+
i (C−1v)]

=
1

qi − q−1
i

∑
p∈N

res
z1,...zp

(−1)pz−1
1 ...z−1

p

∏
k∈J(Kp)

x−i (C−1zk)k
−
i (C−1/2zk)

−1{k+
i (C1/2v)−1Ti(Y

+(v, z1, ...zp))

− k−i (C−1/2v)−1Ti(Y
−(v, z1, ...zp))}.

The left-hand side is in ˙̂Uq(ġ)≥ then so is the right-hand side. Now by the triangular decomposition and

the fact that Ti restricts to the subalgebras U̇q(ġ)+[i], we have

∀p ≥ 0, Ti(Y
±(v, z1, ...zp)) = 0 (4.5.35)

Since Ti is an automorphism, we have Y ±(v, z1, ...zp) = 0. The proof of ii) is similar.

Lemma 4.5.17. ∀X ∈ U̇q(ġ)+, ∀i ∈ İ, we have:

i) 〈X,Y x−i (z)〉 = resv v
−1〈k−i (C−1/2v)r−i (v)(X)⊗̂x+

i (v);Y ⊗ x−i (z)〉

ii) 〈X,x−i (z)Y x−i (z)〉 = resv v
−1〈x+

i (Cv)⊗̂r+
i (v)(X)⊗̂x+

i (v); x−i (z)⊗ Y 〉

Proof. It su�ces to prove i) and ii) for any

X = x−i1(z1)...x−im(zm) (4.5.36)

X = x−j1(v1)...x−jm−1
(vm−1) (4.5.37)

We have

∆(X) =
∑

M⊆JmK

∏
k∈JmK−M,l∈M

G+
il,ik

(
zl
zk

) ∏
l∈M

k−il (zlC
−1/2)

∏
k∈JmK−M

x+
ik

(zk)⊗̂
∏
l∈M

x+
il

(zlC) (4.5.38)

Hence,

〈X,Y x−i (z)〉 =
δip,i

qi − q−1
i

δ

(
zpC

z

) ∑
p∈JmK

p−1∏
k=1

G+
ip,ik

(
zp
zk

)
〈k−ip(zpC

1/2)
∏

k∈JmK−{p}

x+
ik

(zk);Y 〉 (4.5.39)

On the other hand,

〈k−i (C−1/2v)r−i (v)(X)⊗̂x+
i (v);Y ⊗ x−i (z)〉

=
−1

qi − q−1
i

δ
(z
v

) m∑
p=1

δi,ipδ

(
zpC

v

) p−1∏
k=1

G+
i,ik

(
zp
zk

)
〈k−i (vC−1/2)

∏
l∈JmK−{p}

x+
il

(zl);Y 〉

and i) follows. The proof of ii) is very similar.

Proposition 4.5.18. Let α ∈ Q̇+ − {0} and let X ∈ U̇q(ġ)+
α . If r

±
i (v)(X) = 0, then X = 0.

Proof. Let X be as above. Either X = 0, or X 6= 0. In the latter case, the non-degeneracy of the pairing

implies that there must exist Y ∈ U̇q(ġ)− such that, 〈X;Y 〉 6= 0. In particular, since X ∈ U̇q(ġ)α, we
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must have 〈X; Ỹ x−i (z)〉 6= 0. We also see that r−i (v)(X) = 0 implies 〈X; Ỹ x−i (z)〉 = 0 which proves the

claim for lower choices of signs. The proof for the upper choices of signs is similar.

Lemma 4.5.19. Let i ∈ İ, let Y ∈ U̇+
q (ġ) and let X(z) ∈ U̇+

q (ġ)[[z, z−1]] be such that:

X(z)k±i (C±1/2v) = θ±X,i

(v
z

)
k±i (C±1/2v)X(z) (4.5.40)

for some θ±X,i (z) ∈ Fq[[z∓1]]. Then,

r±i (v)(X(z)Y ) = r±i (v)(X(z))Y + θ±X,i

(v
z

)
X(z)r±i (v)(Y ) (4.5.41)

Proof. We have:

k+
i (vC1/2)r+

i (v)(X(z)Y )− k−i (vC−1/2)r−i (v)(X(z)Y )

qi − q−1
i

=
[
X(z)Y,x−i (v)

]
=
[
X(z),x−i (v)

]
Y +X(z)

[
Y,x−i (v)

]
=

1

qi − q−1
i

[
(
k+
i (vC1/2)r+

i (v)(X(z))− k−i (vC−1/2)r−i (v)(X(z))
)
Y

+X(z)
(
k+
i (vC1/2)r+

i (v)(Y )− k−i (vC−1/2)r−i (v)(Y )
)

]

=
1

qi − q−1
i

k+
i (vC1/2)[

(
r+
i (v)(X(z))Y + θ+

X,i

(z
v

)
X(z)r−i (v)(Y )

)
− k−i (vC−1/2)[

(
r+
i (v)(X(z))Y + θ−X,i

(z
v

)
X(z)r−i (v)(Y )

)
].

and the result follows.

Lemma 4.5.20. Let i ∈ İ and let X(z), Y (z) ∈ U̇+
q (ġ)[[z, z−1]] be such that:

X(z)k−i (C−1/2v) = θ−X,i

(v
z

)
k−i (C−1/2v)X(z) (4.5.42)

Y (z)k−i (C−1/2v) = θ−Y,i

(v
z

)
k−i (C−1/2v)Y (z) (4.5.43)

for some θ−X,i (z) , θ−Y,i (z) ∈ Fq[[z]]. Then, ∀a, b for which we can write a[X(z1), Y (z2)]b.

r−i (v) (a[X(z1), Y (z2)]b) = a[r
−
i (v)(X(z1)), Y (z2)]

θ−X,i

(
v
z2

)
b

+
aθ−Y,i

(
v
z1

) [X(z1), r−i (v)(Y (z2))]
θ−X,i

(
v
z2

)
b

(4.5.44)

Proof.

r−i (v) (a[X(z1), Y (z2)]b) = r−i (v) (aX(z1)Y (z2)− bY (z2)X(z1))

= a

[
r−i (v)(X(z1))Y (z2) + θ−X,i

(
v

z1

)
X(z1)r−i (v)(Y (z2))

]
− b

[
r−i (v)(Y (z2))X(z1) + θ−Y,i

(
v

z2

)
Y (z2)r−i (v)(X(z1))

]
and the result follows.
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Lemma 4.5.21. Let i 6= j ∈ İ. Then, ∀k ∈ İ, ∀n ∈ N×,

r+
k (v)(x+

jin(z)) = δki[n]qi ![aij + n− 1]qi(qi − q−1
i )δ

( v

Cz

)
x+
jin−1(zq

an−1

i ). (4.5.45)

Proof. The case k = i follows from lemma 4.4.9 and prop. 4.5.15 .Moreover, it is clear that for k ∈ İ−{i, j},
we have:

[x+
jin(z),x−k (v)] = 0. (4.5.46)

We now move to the case k = j.

δ

(
z1

q
an−1

i z2

)
[x+
jin(z2),x−j (v)] = [[x+

jin−1(z1),x+
i (z2)]

G−
i,in−1j

(
z1
z2

),x−j (v)]

= [[x+
jin−1(z1),x−j (v)]

G−
i,in−1j

(
z1
z2

),x+
i (z2)].

In particular, the case n = 1 gives:

[[x+
ji1

(z1),x+
i (z2)]

G−ij

(
z1
z2

),x−j (v)] = [aji]qjδ
( z1

Cv

)
δ

(
z2q

aji
j

z1

)
x−i (z2)k+

j (vC1/2). (4.5.47)

An easy recursion shows that for every n ∈ N× this is always a multiple of k+
j (vC1/2). Therefore, by

comparing the result with prop. 4.5.15 we get that r−i (v)(x+
jin(z) = 0.

Remark 4.5.22. Clearly the case n = 0 is nothing but the algebra relation.

4.5.1 Proof of the Serre relations

De�nition 4.5.23. For every i ∈ İ de�ne r̃±i (v) ∈ HomF(U̇+
q (ġ))[[v, v−1]] by setting

∀X ∈ U̇+
q (ġ), r̃±i (v)(X) = η

(
r∓i (1/v)(X)

)
(4.5.48)

Proposition 4.5.24. ∀X ∈ U̇+
q (ġ), ∀iİ

[X,x−i (v)] =
r̃+
i (v)(X)k+

i (vC1/2)− r̃−i (v)(X)k−i (vC−1/2)

qi − q−1
i

(4.5.49)

Proof. The proof follows from applying η to prop. 4.5.15.

Proposition 4.5.25. Let α ∈ Q̇+ − {0} and let X ∈ U̇+
q (ġ)α. If ∀i ∈ İ, r̃±i (v)(X) = 0, then X = 0.

Proof. The proof is straightforward and follows from the previous de�nition.

Lemma 4.5.26. Let i ∈ İ and let X(z), Y (z) ∈ U̇+
q (ġ)[[z, z−1]] be such that:

X(z)k−i (C−1/2v) = θ−X,i

(v
z

)
k−i (C−1/2v)X(z) (4.5.50)

Y (z)k−i (C−1/2v) = θ−Y,i

(v
z

)
k−i (C−1/2v)Y (z) (4.5.51)
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Then,

r̃+
i (v) (a[X(z1), Y (z2)]b) = a[X(z1), r̃+

i (v)(Y (z2))]bθX,i(
z1
v ) + aθy,i(

z2
v )[r̃+

i (v)(X(z1)), Y (z2)]b (4.5.52)

Proof. The proof is similar to that of lemma 4.5.20.

Lemma 4.5.27. ∀l, i, j ∈ İ and ∀n ∈ N×:

k+
l (vC1/2)x+

jin(z) = G−l,jin
( z

Cv

)
x+
jin(z)k+

l (vC1/2). (4.5.53)

Proof. From the de�nition of x+
ji1

(z), we have:

δ

(
z1

z2q
aij
i

)
x+
ji1

(z2) = [x+
j (z1),x+

i (z2)]G−ij(z1/z2). (4.5.54)

Then,

δ

(
z1

z2q
aij
i

)
k+
l (vC1/2)x+

ji1
(z2) = k+

l (vC1/2)[x+
j (z1),x+

i (z2)]G−ij(z1/z2)

= G−lj

( z1

Cv

)−1
G−li

( z2

Cv

)−1
x+
j (z1),x+

i (z2)]G−ij(z1/z2)k
+
l (vC1/2)

= δ

(
z1

z2q
aij
i

)
G−lj

(
z2q

aij
i

Cv

)−1

G−li

( z2

Cv

)−1
x+
ji1

(z2)k+
l (vC1/2)

Now assuming the result holds for n ∈ N×, we have:

δ

(
z1

z2q
aij
i

)
k+
l (vC1/2)x+

jin+1(z2) = k+
l (vC1/2)[x+

jin(z1),x+
i (z2)]G−i,inj(z1/z2)

= δ

(
z1

z2q
aij
i

)
G−l,jin

(
z2q

aij
i

Cv

)−1

G−li

( z2

Cv

)−1
x+
jin+1(z2)k+

l (vC1/2)

which completes the recursion.

De�nition 4.5.28. ∀n ∈ N×, we de�ne x+
in(z1) ∈ U̇+

q (ġ)[[z, z−1]] recursively by setting :

x+
i(z1) = x+

i (z1) (4.5.55)

δ

(
z1

z2q2
i

)
x+
in+1(z1) = [x+

in(z1),x+
i (z2)]G−i,in (z1/z2) (4.5.56)

Lemma 4.5.29. Let i 6= j ∈ İ. Then, ∀k ∈ İ, ∀n ∈ N×:

r̃+
k (v)(x+

jin(z)) = δjkδ

(
z

Cvq
γi,j,n
i

)
βi,j,nx

+
in(z) (4.5.57)

where,

γi,j,n =

{
− aij − 2(n− 1), if n ∈ N×

0 otherwise
(4.5.58)

βi,j,n =
n−1∏
p=1

[p+ aij ]

[p]qi
. (4.5.59)
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Proof. By induction on n ∈ N. The case n = 0 is from the de�ning relations. Now suppose the lemma

holds for some n ∈ N×.

δ

(
z1

z2q
an
i

)
r̃+
k (v)(x+

jin+1(z2)) = r̃+
k (v)([x+

jin(z1),x+
i (z1)]G−i,inj(z1/z2))

= [x+
jin(z1), r̃+

k (v)(x+
i (z1))]G−i,inj(z1/z2)G−k,inj(z1/Cv)−1

+ G−k,i(z2/Cv)[r̃
+
k (v)(x+

jin(z1)),x+
i (z1)]G−i,inj(z1/z2)

+ δjkβi,j,nδ

(
z1

Cvq
γi,j,n
i

)
G−k,i(z2/Cv)[x

+
in(z1),x+

i (z2)]G−i,inj(z1/z2).

After multiplying through by −qaiji (z2 − q
γi,j,n−aij
i z1) we get:

δjkβi,j,nδ

(
z1

Cvq
γi,j,n
i

)
(z1q

2aij+2(n−1)
i − z2)δ

(
z1

q2
i z2

)
x+
in(z1) (4.5.60)

The result follows and thus completing the recursion provided that:

βi,j,n+1 = βi,j,n
[n+ aij ]qi

[n]qi
(4.5.61)

and

γi,j,n+1 = γi,j,n − 2 (4.5.62)

Lemma 4.5.30. ∀i 6= j ∈ İ, ∀k ∈ İ and ∀n ∈ N:

r̃+
k (v)(x+

jni(z)) = δkj [n]qj [aji + n− 1]qj (qj − q−1
j )δ

(
Cz

v

)
x+
jn−1i

(zq−anj ) (4.5.63)

Proof.

r̃+
k (v)(x+

jni(z)) = η ◦ r−k (1/v)(η(x+
jni(z))

= η[r−k (1/v)(x+
ijn(1/z))]

= δkj [n]qj [aji + n− 1]qj (qj − q−1
j )δ

(
Cz

v

)
x+
jn−1i

(zq−anj )

De�nition 4.5.31. ∀i ∈ İ, ∀n ∈ N× let

x+
in (z) = η(x+

in(z)) (4.5.64)

Proposition 4.5.32. ∀n ∈ N×, ∀i ∈ İ let

δ

(
z1

z2q2
i

)
x+
in+1 (z1) = [x+

i (z1),x+
in (z2)] (4.5.65)

Proof. Apply η to de�nition 4.5.28.
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Lemma 4.5.33. ∀l, i, j ∈ İ, ∀n ∈ N×

x+
jni(z)k

−
l (vC−1/2) = G−l,jni

(
C−1v

z

)−1

k−l (vC−1/2)x+
jni(z) (4.5.66)

Proof. The proof is similar to that of lemma 4.5.27.

Lemma 4.5.34. ∀i 6= j ∈ İ such that aij = −2 and aji = −1, there exists a unique ξij(z) ∈ ̂̇U+
q (ġ)[[z, z−1]]

such that:

G−i,i(z0q
2
i /z1)[x

+
ji2

(z0q
2
i ),x

+
i (z1)]G−

i,i1j
(z0/z1) (4.5.67)

[x+
ji1

(z0),x+
i2

(z1q
−2
i )]G−i,ij(z0q2i /z1)G−

i,i1j
(z0/z1) (4.5.68)

Proof.

0 = δ

(
z1

z2q2
i

)
δ

(
z0

z1q2
i

)
x+
ji3

(z2) = [[x+
ji1

(z0),x+
i (z1)]G−

i,i1j
(z0/z1),x

+
i (z2)]G−

i,i2j
(z1/z2)

= [x+
ji1

(z0), [x+
i (z1),x+

i (z2)]G−i,iz1/z2
]G−
i,i1j

(z2/z1)G−
i,i1j

(z0/z2)

+ G−i,i(z1/z2)[[x
+
ji1

(z0),x+
i (z2)]G−

i,i1j
(z0/z2),x

+
i (z1)]G−

i,i1j
(z0/z1)

= δ

(
z1

z2q2
i

)
[x+
ji1

(z0),x+
i2

(z2)]G−
i,i1j

(z0/z1)G−
i,i1j

(z0/z2) + δ

(
z0

z2q2
i

)
G−i,i(z1/z2)[x

+
ji2

(z2),x+
i (z1)]G−

i,i1j
(z0/z1)

multiplying the above equation by (z0− q2
i z2), (z1− q2

i z2) respectively and taking the residue with respect

to z2, we get:

(z0 − z1)[x+
ji1

(z0),x+
i2

(z1q
−2
i )]G−

i,i1j
(z0/z1)G−

i,i1j
(z0q2i /z1) = 0 (4.5.69)

(z1 − z0)G−i,i(z1q2i /z0)[x
+
ji2

(z0q
−2),x+

i (z1)]G−
i,i1j

(z0/z1) = 0 (4.5.70)

the latter imply that:

[x+
ji1

(z0),x+
i i2(z1)]G−

i,i1j
(z0/z1)G−

i,i1j
(z0q2i /z1) = δ

(
z0

z1

)
ξij(z0) (4.5.71)

G−i,i(z1q
2
i /z0)[x

+
ji2

(z0q
−2),x+

i (z1)]G−
i,i1j

(z0/z1) = δ

(
z0

z1

)
ξ̃ij(z0) (4.5.72)

by substituting the last two equations, we get:

δ

(
z0

z1

)
δ

(
z1

z2q2
i

)
[ξ̃ij(z0) + ξij(z0)] = 0 (4.5.73)

the result follows.

Lemma 4.5.35. ∀i 6= j ∈ İ and aij = −2, aji = −1,

[x+
ji1

(z1q
2
j ),x

+
ji2

(z2q
−2
i q2

j )]G−
i,i2j

(z1/z2) = 0 (4.5.74)

Proof. Clearly, the left-hand side of this equation is in ̂̇U+
q (ġ)3αi+2αj

. Therefore, it su�ces to prove that

∀k ∈ İ:
r̃+
k (v)([x+

ji1
(z1q

2
j ),x

+
ji2

(z2q
−2
i q2

j )]G−
i,i2j

(z1/z2)) = 0 (4.5.75)
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Then,

r̃+
k (v)([x+

ji1
(z1q

2
j ),x

+
ji2

(z2q
−2
i q2

j )]G−
i,i2j

(z1/z2))

= [x+
ji1

(z1q
2
j ), r̃

+
k (v)(x+

ji2
(z2q

−2
i q2

j ))]G−
i,i2j

(z1/z2)G−
i,i2j(z1/z2)

−1

+ G−
k,ji2

(z2q
−2
i q2j /Cv)[r̃

+
k (v)(x+

ji1
(z1q

2
j )),x

+
ji2

(z2q
−2
i q2

j )]G−
i,i2j

(z1/z2)

= δkjδ

(
z2q
−2
i q2

j

Cvq
γi,j,2
i

)
βi,j,2[x+

ji1
(z1q

2
j ),x

+
i2

(z2q
−2
i q2

j )]
G−
i,i2j

(
z1
z2

)
G−
i,i2j

(
z1
z2

)−1

+ δkjδ

(
z1q

2
j

Cvq
γi,j,k
i

)
βi,j,2G−

k,ji2
(z2q

−2
i q2j /Cv)[x

+
i (z1q

2
j ),x

+
ji2

(z2q
−2
i q2

j )]G−
i,i2j

(z1/z2).

Observe that:

G−
i,i2j

(
z1

z2

)
G−
j,ji1

(
z1q

2
i

z2

)−1

=
(z1q

−2
i − z2q

2
i )(z1q

2
i − z2q

−2
i )

(z1 − z2)2
= G−

i,i1j

(
z1

z2

)
G−
i,i1j

(
z1q

2
i

z2

)
(4.5.76)

Similarly,

G−
i,i2j

(
z1

z2

)
= G−i,i

(
z1q

2
i

z2

)
(4.5.77)

Finally,

G−
j,ji2

(
z2

z1

)−1

= G−
i,i1j

(
z1

z2

)
(4.5.78)

Then, we get:

r̃+
k (v)([x+

ji1
(z1q

2
j ),x

+
ji2

(z2q
−2
i q2

j )]G−
i,i2j

(z1/z2)) = [2]qi(qi − q−1
i )δjk

[
−δ
(
z2q

2
i

Cv

)
δ

(
z2

z1

)
ξij(z1q

2
j )

+δ

(
z2q

2
i

Cv

)
δ

(
z2

z1

)
ξij(z1q

2
j )

]
= 0

(4.5.79)

Corollary 4.5.36. ∀i 6= j ∈ İ such that aij = −2, aji = −1, we have:

Tj(x
+
i3j

(z)) = 0. (4.5.80)

Proof. By using the de�nitions of Tj and x+
i3j

(z), observe that Tj(x
+
i3j

(z)) is proportional to [x+
ji1

(z1q
2
j ),x

+
ji2

(z2q
−2
i q2

j )]G−
i,i2j

(z1/z2).

Then, by the previous lemma, the result follows.

Lemma 4.5.37. ∀i 6= j ∈ İ such that aij = −1, aji = −1, we have:

Tj(x
+
i2j

(z)) = 0. (4.5.81)
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Proof. Using the de�nition of x+
i2j

(z), the de�nition of Ti, and 4.5.12, we get that:

Tj(x
+
i2j

(z))δ

(
z

z1q2
i

)
=
[
Tj(x

+
i (z1)), Tj(x

+
i1j

(z))
]
G−i,ij(z1/z)

=
[
x+
j1i

(z1qj),x
+
i (z)

]
G−i,ij(z1/z)

=
[
x+
ji1

(z1),x+
i (z)

]
G−i,ij(z1/z)

= δ

(
z

z1q2
i

)
x+
ji2

(z) = 0.

Proposition 4.5.38. ∀i 6= j ∈ İ such that mij <∞, we have the following braid group relation:

TiTjTi...︸ ︷︷ ︸
mijtimes

= TjTiTj ...︸ ︷︷ ︸
mijtimes

(4.5.82)

Proof. Consider the case mij = 4, and
〈
αi, α

∨
j

〉
= −2, 〈αj , α∨i 〉 = −1.

We will show that

TiTjTiTj(x
+
j (z)) = TjTiTjTi(x

+
j (z)). (4.5.83)

The right-hand side is already given in the proof of lemma 4.5.12. Therefore, we apply Tj to x+
j (z) and,by

making use of the de�nition of Tj on the algebra generators, we get:

Tj(x
+
j (z)) = −x−j (zC−1)k+

j (zC−1/2)
−1

(4.5.84)

Then,

Ti ◦ Tj(x+
j (z)) = −Ti(x−j (zC−1))Ti(k

+
j (zC−1/2)

−1
). (4.5.85)

Clearly, we can seperate the proof between the part regarding Ti(x
−
j (zC−1)) and Ti(k

+
j (zC−1/2)

−1
) and

multiply again both results at the end. The part concerning the k+
j (zC−1/2)

−1
is straightforward and

follows immediately from the de�nition of Ti on the generators for all i ∈ İ. We focus our attention on

Ti(x
−
j (zC−1)). Observe that

Ti(x
−
j (zC−1)) = Ti ◦ ϕ(x+

j (C/z)) = ϕ ◦ Ti(x+
j (C/z)) = ϕ(x+

i2j
(q
aij
i C/z)) (4.5.86)

Now apply Tj to the previous result:

Tj ◦ ϕ(x+
i2j

(q
aij
i C/z)) = ϕ ◦ Tj(x+

i2j
(q
aij
i C/z)). (4.5.87)

This allows us to use results from lemma 4.5.12 again. Therefore, we have:

ϕ ◦ Tj(x+
i2j

(q2
iC/z)) = ϕ(x+

ji2
(qjq

2
i /z)) (4.5.88)

Finally, we apply Ti one last time and use equation 4.5.14 to get our answer. We then multiply by the

result we get from following the same steps on k+
j (zC−1/2)

−1
making us ready to compare with the right-

hand side obtained from the proof of lemma 4.5.12 and the result follows. The remaining cases are proven
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the exact same way.
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Chapter 5

Further Directions

In this brief chapter, we will give some possible directions in which one might decide to venture in light of the

results presented in chapter 2-4.

Conjecture 5.0.1. Every weight-�nite simple Uq(Lg)-module is �nite dimensional.

An obvious direction is also generalizing to higher rank root systems. We will also conjecture that the

Drinfel'd presentation of a quantum toroidal algebra associated to a Lie algebra g has the following relations:

Conjecture 5.0.2.

{C1/2,C−1/2, c+
m, c

−
−m,K

+
1,0,m,K

−
i,0,−m,K

+
i,n,r,K

−
i,−n,r,X

+
i,r,s,X

−
i,r,s : m ∈ N, n ∈ N×, r, s ∈ Z, i ∈ I}

(v − q±cijz)K±i,r+t(v)X±j,s(z) = (q±cijv − z)X±j,s(z)K
±
i,r+t(v) , (5.0.1)

(Cq
±2(r+t)
i v − qaiji z)K∓i,r+t(v)X±j,s(z) = (q

±2(r+t)+aij
i v − z)X±j,s(z)K

∓
i,r+t(v) , (5.0.2)

(Cq2r
i z−q

aij
i w)(z−Cq−aiji q

−2(s+t)w
j )K−i,r(z)K

+
j,s+t(w) = (Cq

2r+aij
i z−w)(zq

−aij
i −Cq−2(s+t)w

j )K+
j,s+t(w)K−i,r(z)

(5.0.3)

(Cq2r
i z − Cq

aij
i q

2(s+t)
j w)(z − q−aiji )K−i,r(z)K

−
j,s+t(w) = (Cq

2r+aij
i z − Cq

2(s+t)
j w)(zq

−aij
i −w)K+

j,s+t(w)K−i,r(z)

(5.0.4)

(v − q±2w)X±1,r(v)X±1,s(w) = (vq±2 − w)X±1,s(w)X±1,r(v) , (5.0.5)

[X+
i,r(v),X−j,s(z)] =

δij

qi − q−1
i

δ
(

Cv

q2(r+s)z

) |s|∏
p=1

c−
(
C−1/2q(2p−1)sign(s)−1z

)−sign(s)
K+
i,r+s(v)

−δ
(

C−1v

q2(r+s)z

) |r|∏
p=1

c+
(
C−1/2q(1−2p)sign(r)−1v

)sign(r)
K−j,r+s(z)

 , (5.0.6)

where m,n ∈ N, r, s ∈ Z and we have set

c±(z) =
∑
m∈N

c±±mz
∓m , (5.0.7)

K±i,0(z) =
∑
m∈N

K±i,0,±mz
±m , (5.0.8)
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and, for every m ∈ N× and r ∈ Z,
K±i,±m(z) =

∑
s∈Z

K±i,±m,sz
−s , (5.0.9)

X±i,r(z) =
∑
s∈Z

X±i,r,sz
−s . (5.0.10)

At this moment we do not have anything regarding the Serre relations.

Conjecture 5.0.3. The quiver quantum toroidal algebra admits a similar braid group action.
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Appendix

5.1 Formal distributions

5.1.1 De�nitions and main properties

Let K be a �eld of characteristic 0. For any K-vector space V , we let V [z, z−1] denote the ring of V -valued

Laurent polynomials. Writing

v(z) =
∑
n∈Z

vnz
n ,

where the sum runs over �nitely many terms, for any v(z) ∈ V [z, z−1], we can de�ne

supp(v(z)) = {n ∈ Z : vn 6= 0} ,

and set

Vn[z, z−1] :=
{
v(z) ∈ V [z, z−1] : supp(v(z)) ⊆ J−n, nK

}
.

It is clear that, for every n ∈ N, Vn[z, z−1] ∼= V 2n+1 as K-vector spaces. Now, if in addition V is a topological

vector space with topology τ1, making use of that isomorphism, we can endow Vn[z, z−1] with the box topology

of V 2n+1, for every n ∈ N. Denote by τn that topology.

The obvious inclusions Vn[z, z−1] ↪→ Vn+1[z, z−1] are clearly continuous and we de�ne a topology τ on

V [z, z−1] as the inductive limit

τ := lim
−→

τn .

We now assume that K is a topological �eld.

De�nition 5.1.1. The space V [[z, z−1]] of V -valued formal distributions is the K-vector space of contin-
uous V -valued linear functions over the ring of K-valued Laurent polynomials K[z, z−1], the latter being

endowed with the �nal topology induced as above from the topology of K.

Proposition 5.1.2. Any V -valued formal distribution v(z) ∈ V [[z, z−1]] reads

v(z) =
∑
n∈Z

vnz
n ,

for some (vn)n∈Z ∈ V Z and the action of v(z) on any Laurent polynomial f(z) ∈ K[z, z−1] is given by

〈v(z), f(z)〉 = res
z

(
v(z)f(z)z−1

)
,
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where we let

res
z
a(z) = res

z

(∑
n∈Z

anz
n

)
= a−1 ,

for any a(z) ∈ V [[z, z−1]]. V [[z, z−1]] is given the weak ∗-topology. It is actually a module over the ring

K[z, z−1] of K-valued Laurent polynomials.

Proof. It is clear that, due to its linearity, any v(z) ∈ V [[z, z−1]] is entirely characterized by the data, for

every n ∈ N, of
vn =

〈
v(z), z−n

〉
∈ V .

Now, writing v(z) =
∑

n∈Z vnz
n, we also have

vn =
〈
v(z), z−n

〉
= res

z
v(z)z−n−1 ,

for every n ∈ N and the claim follows.

Let A be a topological K-algebra. Then A[[z, z−1]] is the space of A-valued formal distributions, i.e. of

A-valued linear functions over A[z, z−1]. In that case, the action of a(z) ∈ A[[z, z−1]] on b(z) ∈ A[z, z−1] is

given by

〈a(z), b(z)〉 = res
z
a(z)b(z)z−1 . (5.1.1)

Clearly, A[[z, z−1]] is a module over the ring A[z, z−1] of A-valued Laurent polynomials. It is generally impos-

sible to consistently extend that structure into a full-�edged product over A[[z, z−1]]. However, since A is a

topological algebra, we can set

a(z)b(z) =
∑
p∈Z

(∑
m∈Z

ambp−m

)
zp ,

whenever the series ∑
m∈Z

ambp−m

is convergent for every p ∈ Z. If A is complete as a topological algebra, it su�ces that the above series be

Cauchy.

We let similarly V [[z1, z
−1
1 , . . . , zn, z

−1
n ]] denote the space of V -valued formal distributions in n ∈ N

variables, so that any V -valued formal distribution v(z1, . . . , zn) in n variable reads

v(z1, . . . , zn) =
∑

p1,...,pn∈Z
vp1,...,pnz

p1
1 · · · z

pn
n ,

for some (vp1...,pn)p1,...,pn∈Z ∈ V Zn . For every i = 1, . . . , n, we de�ne

res
zi

: V [[z1, z
−1
1 , . . . zn, z

−1
n ]]→ V [[z1, z

−1
1 , . . . , ẑi, ẑ

−1
i . . . , zn, z

−1
n ]] ,

where a hat over a variable indicates omission of that variable, by setting

res
zi
v(z1, . . . , zn) = res

zi

∑
p1,...,pn∈Z

vp1,...,pnz
p1
1 · · · z

pn
n =

∑
p1,...,p̂i,...,pn∈Z

vp1,...,pi−1,−1,pi+1,...,pnz
p1
1 · · · ẑ

−1
i · · · z

pn
n .
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For every i = 1, . . . , n, we de�ne ∂i : V [[z1, z
−1
1 , . . . , zn, z

−1
n ]]→ V [[z1, z

−1
1 , . . . , zn, z

−1
n ]] by setting

∂iv(z1, . . . , zn) =
∑

p1,...,pn∈Z
pivp1,...,pnz

p1
1 · · · z

pi−1
i · · · zpnn .

If A is a topological K-algebra, then the multiplication in A naturally extends to bilinear maps

A[[z1, z
−1
1 , . . . , zm, z

−1
m ]]×A[[zm+1, z

−1
m+1, . . . , zm+n, z

−1
m+n]]→ A[[z1, z

−1
1 , . . . , zm+n, z

−1
m+n]]

by setting

a(z1, . . . , zm)b(zm+1, . . . , zm+n) =
∑

p1,...,pm+n∈Z
ap1,...,pmbpm+1,...,pm+nz

p1
1 · · · z

pm+n
m+n .

Let a(z1, . . . , zn) ∈ A[[z1, z
−1
1 , . . . , zn, z

−1
n ]] be an A-valued formal distribution in n variables. Since A is a

topological K-agebra, we can de�ne the localization a|zn−1=zn(z1, . . . , zn−1) ∈ A[[z1, z
−1
1 , . . . , zn−1, z

−1
n−1]] of

a(z1, . . . , zn) at zn−1 = zn, by setting

a|zn−1=zn(z1, . . . , zn−1) =
∑

p1,...,pn−1∈Z

∑
p∈Z

ap1,...,pn−2,p,pn−1−p

 zp11 . . . z
pn−1

n−1 ,

whenever ∑
p∈Z

ap1,...,pn−2,p,pn−1−p

is convergent. If A is complete as a topological algebra, it su�ces that the above series be Cauchy.

5.1.2 Laurent expansion and the Dirac formal distribution

One way to obtain formal power series is to take the Laurent expansion of some holomorphic function f : C→ C.
We shall usually write f(z)|z|�1 to denote the Laurent expansion around 0. Similarly, we shall denote by

f(z)|z|�1 the Laurent expansion around ∞.

Let

δ(z) =
∑
n∈Z

zn .

Lemma 5.1.3. For every n ∈ N×, we have(
1

1− z

)n
|z|�1

−
(

1

1− z

)n
|z|�1

=
δ(n−1)(z)

(n− 1)!
.

Proof. It is straightforward to check that the result holds for n = 1. Assuming it holds for some n, it

follows, upon di�erentiation, that

n

[(
1

1− z

)n+1

|z|�1

−
(

1

1− z

)n+1

|z|�1

]
=

δ(n)(z)

(n− 1)!
,

which completes te recursion.
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Lemma 5.1.4. For any n ∈ N and any A-valued Laurent polynomial f(z) ∈ A[z, z−1], we have

f(z)δ(n)(z) =
n∑
p=0

(−1)n−p
(
n

p

)
f (n−p)(1)δ(p)(z) .

Proof. The case n = 1 is straightforward. Assuming the results holds for some n ∈ N, we have, upon

di�erentiation,

f ′(z)δ(n)(z) + f(z)δ(n+1)(z) =
n∑
p=0

(−1)n−p
(
n

p

)
f (n−p)(1)δ(p+1)(z) ,

which completes the recursion.

Example 5.1.5. In particular, for any A-valued formal distribution f(z1, z2) ∈ A[[z1, z
−1
1 , z2, z

−1
2 ]] with

a well-de�ned localization f|z1=z2(z1) � see previous subsection for a de�nition �, we have

f(z1, z2)δ

(
z1

z2

)
= f|z1=z2(z1)δ

(
z1

z2

)
,

Assuming that K is an algebraically closed �eld, we have

Lemma 5.1.6. Let P (z) ∈ K[z] be a polynomial of degree N , with roots {λi : i ∈ JnK} and respective

multiplicities {mi : i ∈ JnK}. If a(z) ∈ K[[z, z−1]] is a K-valued formal distribution, then

P (z)a(z) = 0 ⇔ a(z) =
n∑
i=1

mi−1∑
pi=0

αi,pδ
(pi)

(
z

λi

)
,

for some αi,p ∈ K.

Proof. The if part is easily checked making use of the previous lemma. The only if part follows by an easy

recursion, after writing that P (z) =
∏
i∈JnK(z − λi)mi .

Lemma 5.1.7. Let P (z), Q(z) ∈ K[z] be two coprime polynomials. Let {λi : i ∈ JnK} be the set of roots

of Q(z) and let {mi : i ∈ JnK} be their respective multiplicities. Then, in K[[z, z−1]],

(
P (z)

Q(z)

)
|z|�1

−
(
P (z)

Q(z)

)
|z|�1

=

n∑
i=1

mi−1∑
pi=0

(−1)pi+1αi,pi+1

(pi)!λ
pi+1
i

δ(pi)

(
z

λi

)
, (5.1.2)

where, for every i ∈ JnK and every pi ∈ JmiK, αi,pi is obtained from the partial fraction decomposition

P (z)

Q(z)
= A(z) +

n∑
i=1

mi∑
pi=1

αi,pi
(z − λi)pi

, (5.1.3)

in which A(z) ∈ K[z] is a polynomial of degree deg(P )− deg(Q).

Proof. Given the partial fraction decomposition (5.1.3), we can write

(
P (z)

Q(z)

)
|z|�1

−
(
P (z)

Q(z)

)
|z|�1

=

n∑
i=1

mi∑
pi=1

αi,pi

[(
1

(z − λi)pi

)
|z|�1

−
(

1

(z − λi)pi

)
|z|�1

]

=
n∑
i=1

mi∑
pi=1

(−1)piαi,pi
(pi − 1)!λpii

δ(pi−1)

(
z

λi

)
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where we have used lemma 5.1.3 to derive the last equality. The claim obviously follows.

Lemma 5.1.8. Let m ∈ {0, 1} and n ∈ N, let A(v) ∈ F[[v]]− {0} be a non-zero formal power series and

let F (z) ∈ F[[z, z−1]] be a formal distribution such that

(z − a)(z − v)mA(v)F (z) +
n∑
p=0

Bp(v)δ(p)(z/a) = 0 , (5.1.4)

for some non-zero scalar a ∈ F× and some formal power series B0(v), . . . , Bn(v) ∈ F[[v]]. Then,

F (z) =

n+1∑
p=0

fpδ
(p)(z/a) ,

for some scalars f0, . . . , fn+1 ∈ F.

Proof. Consider �rst the case where m = 0. Then, multiplying (5.1.4) by (z − a)n+1, we get

(z − a)n+2A(v)F (z) = 0 .

Since A(v) 6= 0, there must exist k ∈ N such that resv v
−1−kA(v) 6= 0 and, specializing the above equation

to its vk term, it follows that

F (z) =
n+1∑
p=0

fpδ
(p)(z/a)

for some scalars f0, . . . , fn+1 ∈ F. Now consider the case where m = 1. It follows from (5.1.4) that

(z − a)A(v)F (z) +

(
1

z − v

)
|v/z|�1

n∑
p=0

Bp(v)δ(p)(z/a) = C(z)δ(z/v) ,

for some formal distribution C(z) ∈ F[[z, z−1]]. But specializing the above equation to any negative power

of v, v−p with p ∈ N×, we immediately get that C(z) = 0. We are thus back to the previous case.

5.1.3 The structure power series G±ij(z)

In this last subsection, we derive identities involving the structure power series G±ij(z) by applying lemma 5.1.7.

Remember � see remark 3.3.21 � that in type ȧ1, we have G±10(z) = G∓11(z).

Proposition 5.1.9. The following hold true in F[[z, z−1]].

i. For every p ∈ Z− {2},

G+
10(zqp)G+

11(zq−p)−G−10(z−1q−p)G−11(z−1qp)

q − q−1
=

[2]q[p]q
[p− 2]q

[
δ
(
zq2−p)− δ (zqp−2

)]
. (5.1.5)

In particular, when p = 1, we have

G+
10(zq)G+

11(zq−1)−G−10(z−1q−1)G−11(z−1q)

q − q−1
= [2]q

[
δ
(
zq−1

)
− δ (zq)

]
. (5.1.6)
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If p = 2, we have instead

G+
10(zq2)G+

11(zq−2)−G−10(z−1q−2)G−11(z−1q2)

(q − q−1)2
= [2]2q

[
δ (z)− δ′ (z)

]
. (5.1.7)

ii. Similarly,
G+

11(zq−2)2 −G−11(z−1q2)2

(q − q−1)2
=

2q−2[2]q
q − q−1

δ (z) + [2]2qδ
′ (z) . (5.1.8)

Proof. In each case, it su�ces to determine the partial fraction decomposition of the l.h.s and to apply

lemma 5.1.7 to get the desired result.
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