
HAL Id: tel-03618704
https://theses.hal.science/tel-03618704

Submitted on 24 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

L’histoire du codex(t) juridique : écrire le droit en code
Megan Ma

To cite this version:
Megan Ma. L’histoire du codex(t) juridique : écrire le droit en code. Droit. Institut d’études politiques
de paris - Sciences Po, 2021. Français. �NNT : 2021IEPP0041�. �tel-03618704�

https://theses.hal.science/tel-03618704
https://hal.archives-ouvertes.fr

Institut d'études politiques de Paris

ECOLE DOCTORALE DE SCIENCES PO

Programme doctoral de droit

Le Centre de Recherche de l’École de Droit

Doctorat en Droit

Story of a Legal Codex(t)
Writing Law in Code

Megan Ma

Thesis supervised by Horatia MUIR WATT, Full Professor and Co-Director
of the Global Governance Studies program

defended on 10th December 2021
Jury:

Mireille HILDEBRANDT, Professor, Radboud University

Daniel W. LINNA Jr., Senior Lecturer, Northwestern Law School
(reviewer)

Harry SURDEN, Professor of Law, University of Colorado Law School
(reviewer)

David WINICKOFF, Principal Analyst, OECD
Megan – Ma - «Story of a Legal Codex(t): Writing Law in Code» - Thesis IEP de Paris - 2021

Story of a Legal Codex(t):
Writing Law in Code

Megan Ma
Sciences Po Law School

Supervisors: Horatia Muir Watt (Director), David Winickoff (Minor)

Jury: Mireille Hildebrandt, Daniel W. Linna, Harry Surden

This dissertation is submitted for the degree of

PhD in Law

 M. Ma

2

Foreword and Acknowledgments

This thesis is inspired by a childhood pastime of mine: speaking in a language of my own creation.

I was curious about why words corresponded with specific meanings, questioning whether I could

stretch words beyond their ascribed understanding. Though what I was doing was, in fact, creating

my own dialect –a mutant variant of the English language – the thesis is, in part, drawn from my

fascination towards the unique linguistic vessel of natural language. How we are able to construct and

reconstruct with natural language, its illimitable malleability, continues to be a source and driver of

my scholarly pursuits. And so, as we dive deeper and venture further into the next era of text, my

hope is that we may be able to better understand how code is able to write and create the stories of

tomorrow.

This dissertation would not be possible without the immense support of my community. I am

indebted to so many, notably:

(a) Horatia Muir Watt who is a well of knowledge, source of light, a mentor and role model

that one could only dream about having.

(b) David Winickoff for ensuring that my research was always well-grounded, clear, and

structured. His feedback has always pushed me to new heights.

(c) Adam Nicholas for dedicating hours of his time, sharing his perspective and providing

rich feedback on my work.

(d) Dazza Greenwood and Bryan Wilson for their initial “hack” session on the use of

programming languages in contracts that steered my thesis towards its current direction.

(e) Roland Vogl and Mike Genesereth for their continued encouragement and motivation

to pioneer work in this area of research.

Lastly, I dedicate this thesis to my family. Without them, I would not dare to dream and, certainly,

could not imagine being here today able to complete this thesis. To them, I owe everything.

 M. Ma

3

PROLOG(UE) ... 4

A. STAGING .. 10

From Mythology to Technological Utopia... 11

Systems Alignment and Philosophical Aspirations .. 18

When Law Met AI .. 21

Legal Design and Law/Code Dialectic ... 27

1- THE LINGUISTIC AFFAIR .. 33

THE LANGUAGE OF LAW .. 35

LAW’S LANGUAGE... 43

LAW AS LANGUAGE .. 55

AN ODE TO NATURAL LANGUAGE: CONSTRUCTING (CON)TEXT .. 58

2- LANGUAGE LEGO .. 62

SYNTAX: SENTENCE ARCHITECTURE AND STRUCTURAL INTEGRITY ... 64

SEMANTICS: TO MEAN OR NOT TO MEAN .. 69

PRAGMATICS: IS THAT WHAT IT MEANS? .. 77

PROGRAMMING LANGUAGES: TECHNOLOGICAL TWIN OR DISTANT COUSIN? 82

LEVELLING THE FIELD: RECONCILING COMPUTATION AND LANGUAGE... 89

3- CASE STUDIES ON TRANSLATION .. 92

3A- WRITING IN SIGN (COMPUTABLE CONTRACTS) ... 93

3B- OBJECT-ORIENTED DESIGN OF LEGAL TEXT (JUDICIAL DECISIONS) .. 135

3C- THE LEGISLATIVE RECIPE (MACHINE-READABLE LEGISLATION) .. 174

4- WEAVING THE CODE ... 203

FAUX AMIS AND HYBRID FORMS .. 206

COMPUTATIONAL LEGAL INFERENCES AND TOWARDS A PRAGMATICS OF CODE 212

EPILOG(UE) .. 234

APPENDICES ... 245

BIBLIOGRAPHY ... 249

 M. Ma

4

PROLOG(UE)

 M. Ma

5

How is the law measured? This is perhaps a leading question. For long, it appeared that the law

cannot be measured. While there are standards and processes, the law was not regarded as

quantifiable. Only in the advent of recent technological advancements have there been

considerations for metrics.
1

 The range of technology used in the field of law has been rather vast and

variable. Yet, they have all pointed towards increasing the capacity to measure the law. These

arguments speak towards the legal field’s inherent protectionism, enabled by knowledge possessed

by a privileged “class of individuals.”
2

 This has erected and perpetuated barriers to access owed to

information asymmetries.
3

 Consequently, the rise in ‘legal analytics,’ or a metrics for law, has

stemmed from an access to justice perspective. The assumption is that in making the law more

quantifiable, knowledge that has been historically opaque and inaccessible outside of the legal

community may be revealed.

In unpacking the law, recurring arguments around the integration of computational technology in

legal practice have centered on the incomprehensibility and complexity of the legal language.

Proposed solutions include automating legal documents or using machine learning technology

and/or neural networks to demystify patterns of court behavior. These technologies have all brought

to light new quantitative methods of evaluation. Nevertheless, it appears that they pivot around a

deeper linguistic problem. Beneath the fervor of technological enthusiasm is the desire to better

understand the language of legal processes.

Alternatively, it may be argued that the law has always been measurable. Words, through linguistic

devices, have shaped legal meaning. In effect, the law conceivably has been measured by its words.

Evidently, the use of “the law” is rather vague. It ineptly personifies the discipline and removes its

actors, history, and institutions. It may be clarified here that reference to the law, for the purpose of

this dissertation, is reference to written legal text. While there are other mediums ‘the law’ uses to

communicate, written text is frequently considered the primary site for legal interpretation. In fact,

1

 Consider, for example, recent discussions around quality in legal work. See David Cunningham, “Metrics of the

NewLaw Model,” Legal Evolution (Oct. 18, 2020) https://www.legalevolution.org/2020/10/metrics-of-the-newlaw-

model-206/. See also John Armour and Mari Sako, AI-enabled business models in legal services: from traditional law

firms to next generation law companies?, 7 JOURNAL OF PROFESSIONS AND ORGANIZATIONS 27-46 (2020).

2

 Joshua Browder, “Law as Code: A Legal System Shaped by Software, Future (Jun. 15, 2021)

https://future.a16z.com/law-as-code/.

3

 Daniel W. Linna Jr., The Future of Law and Computational Technologies: Two Sides of the Same Coin, MIT

COMPUTATIONAL LAW REPORT Release 1.0 (2019) available at:

https://law.mit.edu/pub/thefutureoflawandcomputationaltechnologies/release/2.

 M. Ma

6

“law exists as text.”
4

 I further this line of thinking by questioning the vehicle of natural language. That

is, natural language has been the key vessel through which the law has manifested itself. Does the

law then depend on natural language to do its work? Importantly, is the language sufficient at housing

legal norms?

This dissertation, therefore, seeks to tell a narrative. Broadly, it chronicles the story of law’s intimate

relationship with language. But more specifically, the thesis details the law’s recent encounter with

the digital. When law met technology, its relationship with language changed, invoking skepticism

around its fitness for the conveyance of legal concepts. With the introduction of an innovative player

– code – the law had perceivably found its new linguistic match. As a result, code was tested for its

ability to perform and accommodate for the law’s demands. Ultimately, confronted by natural

language and code, the law is asked whether code can be its language.

The dissertation aims to put forth the following thematic discussions. First, the legal language is a

social phenomenon, whereby form and substance are inseparable. The distinct characteristics of the

language are inherent to its formulation. This reaffirms the notion that law is a “relational construct”
5

that belongs to a broader discursive formation. It is a network understanding of both the internal

ordering and relationship to other discourses. In other words, the legal language mediates between

societal expectations and the formal procedure that enacts constraints and rights to parties involved.
6

Further to this thought, the legal language is necessarily rich because it is a “historical artifact.”
7

 The

complexity of its concepts is woven from its contextual environment and is the result of natural

evolution; in effect, “generat[ing] continuity and durability.”
8

 Accordingly, legal concepts cannot

simply be divorced from its linguistic encasing.

This then leads to my next argument. There is a sharp distinction between clarity and simplicity.

That is, simplification does not necessarily lead to clarification. They are false cognates and should

not be treated as equivalents. It shall be demonstrated that attempts at simplifying the language not

only are futile, but also inadvertently reduce legal complexity and muddy the significance of tradition

4

 Mireille Hildebrandt, “Intricate entanglements of law and technology,” in Smart Technologies and the End(s) of Law:

Novel Entanglements of Law and Technology 161 (2015).

5

 Id. at 172.

6

 Id. at 173-174.

7

 Id.

8

 Id. at 177.

 M. Ma

7

in law. Simplification fosters the effect that legal norms exist independently of their environment,

creating the illusion that the language is intended only for communication. Furthermore, the process

of simplification alludes to the gap between the language and the embedded norm. Through

simplification, the belief is that this gap can and should be closed.

Legal fictions, on the other hand, are a linguistic phenomenon that represents the points at which

legal language stops communicating.
9

 Legal fictions are fossilized metaphors, that, though are

consciously counterfactual propositions, remain fundamental to the language. Importantly, legal

fictions are both historically contingent and assertions of ‘fact’ that depend solely on the relations

and powers effectuated by specific legal realities.
10

 This suggests that clarifying legal language is not

merely a matter of simplifying its communicative function. Instead, clarification involves

epistemological deconstruction. I hope to illustrate that conflating simplification with clarification

not only flattens the law, but also, fuels issues of translation in the context of ‘code-ification.’

Third, the characteristics of legal language are, in fact, the characteristics of natural language. This is

perhaps trite, but I consider that, to properly gauge the relationship between law and language, what

must first be understood is the linguistic makeup of natural language itself. This allows for a deeper

investigation into the processes involved in the construction of legal concepts. Linguistic theory,

therefore, provides insight into how “interpretation becomes the hallmark of law.”
11

 Moreover, it

reveals how language can intrinsically embody authority and be made objective and logical.

Developing, then, an understanding of how natural language is built by its linguistic pillars – syntax,

semantics, and pragmatics – the nuances of legal text are revealed. That is, how legal language

formulates fact, creates reference and implicature, and upholds conscious falsities confronts both

the boundaries and requirements to “sustain [the law’s] identity.”
12

This thesis, then, traces the specific linguistic qualities that preserve and “root”
13

 law in natural

language. More importantly, I use these qualities to test against the competencies of computer code

as legal language. The conclusions that may be drawn are paradoxical. On the one hand,

9

 Karen Petroski, Legal fictions and the limits of legal language, 9 INT. J. OF L. IN CONTEXT 485 (2013).

10

 Id. at 497.

11

Hildebrandt, supra 4 at 177.

12

 Id. at 159.

13

 Id. at 174.

 M. Ma

8

programming languages cannot draft legal text, if they are conceived solely for their logical and

functional traits. On the other, in reconceptualizing code as a linguistic medium, and thereby

accounting for its aesthetic dimension, code is perceivably a form of legal writing. Though these

arguments appear to be rather theoretical, the implications are, in fact, significant.

As mentioned, the rapid technological advancements in computation have placed immense pressure

on the legal system to change. Specifically, the law is regarded as ‘trapped’ in an antiquated and

analog form; and that software is the answer. This claim is, of course, laced with technological

solutionism.
14

 Moreover, it falls in line with the aforementioned problems of simplification. While it

is not my intention to suggest that software and computational technologies have no place in the legal

realm, I consider a subtler argument. That is, for the furtherance of computational law, it cannot be

done so from an architectural standpoint. Software code cannot simply conduct legal tasks.

Conceiving code as application-based and task-oriented not only threatens to reconfigure law as

logical reductions, but also has the potential to erase law’s mode of existence.
15

 Should law exist as

text, code must, therefore, be analyzed at a linguistic level. Consequently, the tension to digitize

requires the attention from scholars on how code, as writing, must find methods of reconciling its

own practices and norms with existing legal norms. This dissertation is, thus, a contribution to the

existing body of legal scholarship in two-fold: (1) to see code as interpretable; and (2) to introduce

the hermeneutics of code to the legal space.

To tackle these discussions, the dissertation will unfold as follows. The remainder of the Prolog(ue)

will form the background, situating the existing scholarly discussion. The dissertation will then

transition into its first substantive chapter, The Linguistic Affair, revisiting the seminal conversations

around law and language. The chapter will walk through various perspectives on the unique

behaviors of legal language and reflect on the tensions surrounding interpretation. These include:

(1) the difference between clarity and precision; (2) the paradox of form and substance; and (3) the

myths of the fact-law distinction. Structurally, the chapter follows three key dimensions of the

14

 The definition is one described by Evgeny Morozov, “an endemic ideology that recasts complex social phenomena

as neatly definable problems with definite, computable solutions, or as transparent and self-evident processes that can

be easily optimize.” See Evgeny Morozov, To Save Everything, Click Here: The Folly of Technological Solutionism

(2013).

15

 To clarify, I am considering specifically Hildebrandt’s definition that the law is relational, a co-dependence forming

between information and communication infrastructures and modern positive law. See Hildebrandt, supra 4 at 172.

 M. Ma

9

relationship between law and language: (1) the language of law; (2) law’s language; and (3) law as

language. The chapter culminates in an assessment of natural language as the vehicle for legal writing.

The next chapter, Language Lego, is a disciplinary bridge between linguistics and computer

programming. It provides the grounds for linguistic analysis that moves beyond philosophy. More

importantly, it hopes to debunk the misconceptions and misnomers around syntax and semantics in

linguistics relative to computation. This chapter effectively provides the foundational tools for the

remainder of the dissertation. The following chapter, Case Studies on Translation, is a three-part

series that investigates the translation of law to code. Each case study analyzes how legal text has been

transformed into code. The first case study explores computable contracts, while the third considers

machine-readable legislation. The second case study stands apart from the other two. As opposed

to analyzing translations of text to code, the second case study attempts to translate judicial decisions

into code using a combined linguistic and statistical method.

The penultimate chapter, Weaving the Code, ties together observations from the case studies with

the theoretical discussion. Perhaps as the crux of the dissertation, the chapter will introduce the

problem with inference, then proceed with a thought experiment on code as the next legal language.

More specifically, I draw attention towards potential methods of developing a legal semiotics. I

advance the notion of legal codex(t): a simultaneous jeu de mots on computer code, conceptualizing

code as text, and the term codex, signifying ancestry (ancestor) of text. Importantly, legal codex(t) is

symbolic of the future of computational law for which I am hopeful to see. It is one that is sensitive

to the histories and context inherent in legal norms. More importantly, legal codex(t) seeks to

embody what natural language can do, capturing the linguistic and evolutionary nuances in the

construction of meaning, while also counteracting where natural language has faltered. Finally, the

dissertation will conclude with its Epilog(ue). This chapter will further the ideas put forth in Weaving

the Code to then acknowledge the emerging horizons of code as legal expression.

Prior to delving into the literature review, several ‘terms of art’ must be defined. These are: (1)

context; (2) formal/formalize/formalism; (3) efficiency; and (4) code/ code-ification. To start, context

is defined both in the broadest semiotics and linguistics sense of the term. That is, it refers to the

knowledge, both tacit and explicit, that surrounds a particular text and is informative of its meaning.

Second, I distinguish between the terms, formal and formalize. Formal is used interchangeably with

logical and highly structured (as is found in programming languages). Formalize, though related,

refers specifically to the act of standardizing and incorporating structure. Formalism, on the other

 M. Ma

10

hand, is slightly more complex. I shift between theor(ies) of formalism and the state of being

structured. As will be seen in the first case study, I engage in a play on words. The triad of

formal/formalize/formalism will allude to the role of structure as it intersects across law, linguistics,

and computation. Third, I frequently refer to the notion of efficiency. I define efficiency most

consistently with the law and economics sense of the word, in particular, on the minimization of

transaction costs and economic optimization of the legal system. Finally, code is used broadly with

programming languages as well as the act of programming. Code-ification refers to the act of

translating from law to code. Interestingly, it is a play on codification. As codification is the process

involved with inscribing legal norms, code-ification is a commentary around code’s competence to

write the law. Having established these terms of art, this dissertation will now turn to the scholarly

background in which it is seated.

A. STAGING

The digitization of society has raised the attention of scholars on the future. Whether the future of

employment,
16

 the future of healthcare, or the future of education, etc., the anticipation has mounted

to a dualism of fear and excitement. The advent of AI, in particular, has struck a chord. But, in

recent years, this chord has echoed so loudly that the fervor around the subject matter has led many

to believe that AI is, in fact, “magical fairy dust.”
17

 Moreover, the literature has since become so vast

that conversation on AI has been rendered nearly impenetrable, with experts readily deploying

buzzwords that virtually have lost any meaning.
18

Nevertheless, there is merit in reflecting on the narratives that have been constructed around AI and

the lure of the machine. The remainder of this chapter seeks to survey the scholarly grounds on

which AI has come to be understood and imagined; the stories that have been crafted about

technology for humanity. Delving first into the mythology, the section then advances into the initial

reactions and proposed responses to AI. As the intention of the dissertation is to unpack the notion

16

 Daniel Susskind, A World Without Work (2020). See also Daniel Susskind and Richard Susskind, The Future of

the Professions: How Technology will Transform the Work of Human Experts (2015); and Alex Rosenblat,

Uberland: How Algorithms are Rewriting the Rules of Work (2018).

17

 The suggestion of mentally replacing all mentions of “AI” in an article with the term “magical fairy dust.” See Jeremy

Hsu, “3 Easy Ways to Evaluate AI Claims,” IEEE Spectrum (Aug. 23, 2019) https://spectrum.ieee.org/tech-

talk/artificial-intelligence/machine-learning/learn-the-red-flags-of-overhyped-ai-claims.

18

 Consider the definition of blockchain and smart contracts. See for example, Adrianne Jeffries, “‘Blockchain’ is

Meaningless,” The Verge (Mar. 7, 2018) https://www.theverge.com/2018/3/7/17091766/blockchain-bitcoin-ethereum-

cryptocurrency-meaning.

 M. Ma

11

of computation and law, I consider uniquely the legal space and how AI has been discussed in

relation to it.

The literature review will progress into questions of whether the law is computable and whether there

is an inherent shift in its philosophy in light of technological integration. The section subsequently

pivots, highlighting that existing literature regards the field of AI and law through a fundamentally

macrosystemic lens and fails to account for a micro-level analysis. That is, in reconciling the

computability of law with computational law, I argue that it is perhaps more important to consider

beyond a wholesale regard of the field. Instead, a deeper analysis into the mechanics and language

offer a more critical perspective. The section will then conclude by working through texts from the

emerging discipline of legal analytics and informatics. This chapter is, in effect, one of stage-setting.

Therefore, to better contextualize the analytical background, it is important to start from the

beginning.

From Mythology to Technological Utopia

When asked to visualize AI in the mind’s eye, what does one imagine? Adrienne Mayor argues that

the first images of AI sparked in Greek mythology
19

 with ideas and designs of “artificial life.” She

describes myths as thought experiments on entities that are “made, not born.”
20

 These entities –

automatons, as she calls – were considered products of biotechne, life through craft. They were

designed with intention. In her book, Mayor lists examples found in ancient Greek mythology on

automatons. Though many were described as mindless, there were two exceptional groups described

in Iliad and Odyssey that are ancient variants of AI. The first group were Hephaestus’s helpers,

“fashioned of gold in the image of maidens” and “bustl[ed] around their master like living women.”
21

These golden assistants were not only mechanical servants, but were given human traits of

consciousness, intelligence, learning, reason, and speech.
22

 As a result, these Golden Maidens were

capable of anticipating the needs of their human masters. Mayor argues that these golden assistants

were artifacts of modern-day “augmented intelligence.”
23

19

 Mayor does, however, note that conceptions of artificial life have existed in ancient India and China as well.

20

 Adrienne Mayor, Gods and Robots: Myths, Machines, and Ancient Dreams of Technology 1 (2018).

21

 Id. at 149.

22

 Id. at 150.

23

 Id.

 M. Ma

12

The second group were the Phaeacian ships that did not require “rudders or oars, no human pilots,

navigators, or rowers, but are steered by thought alone.”
24

 Mayor notes that these ships were

controlled by “some sort of centralized system with access to a vast data archive”
25

 of the ancient

world. Evidently, these vessels are clear parallels of current automated navigation systems. More

importantly, Mayor reveals that, even in ancient Greek mythology, devices of artificial life took many

forms. The aforementioned examples are perceived as assistive tools, extending the capabilities of

the Greek gods and humans alike.

Interestingly, Mayor’s text also highlights examples of technology as manifestations of tyrannical

power. Talos, the bronze giant that was programmed to protect the kingdom of Minos, would spot

strangers and hurl boulders to sink foreign vessels.
26

 Talos was also built by Hephaestus, the Greek

god of forge and patron of invention and technology, and commissioned by Zeus, the king of all

Greek gods. In the very code of its being, Talos was made for destruction. Modelled after human

traits, Mayor describes Talos perverting and reconfiguring the warmth of human embrace as a tactic

for ‘roasting’ humans alive.
27

 Talos was not the only device of merciless annihilation. Hephaestus

also built Pandora. In contrast to the narrative most commonly known about ‘her,’ Pandora was, in

fact, neither naïve nor a young woman. That is, Pandora was commissioned by Zeus to be made as

a form of a revenge on humanity.
28

 Her very design was purposefully measured with “gleeful malice

toward the human race.”
29

 She was portrayed as a fabrication of evil disguised as beauty. Like Talos,

she was programmed for the specific task of releasing sorrow and misfortune into the human world.

Beyond representing wickedness, Pandora was stunning. The gods were depicted as marveling at

her human likeness.
30

 Her beauty was captivating. The story of Pandora mirrors Pier Giuseppe

Monateri’s painting of the ‘sublime’ in Dominus Mundi: Political Sublime and the World Order.

The aesthetic of the sublime is discussed as boundless, a dualism of fear and attraction. Though a

24

 Id. at 151

25

 Id.

26

 Id. at 7.

27

 Id.

28

 Id. at 156.

29

 Id. at 157.

30

 Id. at 158.

 M. Ma

13

clear sign of imminent threat, the consciousnesses is submerged by the devilish trance and

magnetism found in fear.

Across ancient Greek mythology, Mayor delineates, with great intention, between laborsaving

devices and others that were “deliberately intended to inflict harm.”
31

 Nevertheless, both variations

stand on the belief that machines are remarkable. These fictions are symptomatic of the pervasive

charm of manufactured realism. Ultimately, Mayor nudges at lessons from ancient myths on the

allure of the machine ushering in an idealization of imagined worlds.

In the Age of Surveillance Capitalism, Shoshana Zuboff describes the “mandate of prediction

imperative,”
32

 a pursuit of certainty that regards complete and total information as ideal. Machine

intelligence becomes the restoration of “humankind to the Garden of Eden, lifting us from toil and

struggle into a new realm of leisure and fulfillment.”
33

 The result: a utopia of certainty.

Zuboff explains that the desire for incontestable certainty and predictive utopia dates back to

eighteenth-century imaginative thought on a rational systemic vision towards scientific techniques of

forecasting.
34

 These imaginations were then furthered in the early twentieth century by German

experimental psychologist, Max Meyer. Meyer’s prescription for modernity articulated a “scientific

objectification of human experience and its reduction to observable measurable behavior.”
35

 Building

on Meyer’s vision, behavioral psychologist B.F. Skinner defined a utopia of technique and scientific

dominion, substantiated in his novel Walden Two. In this text, Skinner outlines a community built

on manipulating contingencies of rewards and punishments. Zuboff argues that these ideas have

since been brought to life through the rhetoric of surveillance capitalism, an expression of Skinner’s

tools and imaginings of instrumentarian power and totality.
36

She raises the sweeping impact of this utopia, falling under the radar of consciousness. She focuses

on how technological practices appear to be theoretically agnostic and, instead, the ‘magic’ of and

31

 Id. at 128.

32

 Shoshana Zuboff, The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power

Chapter Fourteen (2019).

33

 Id.

34

 Id. at 212.

35

 Id. at 349.

36

 Id. at 374.

 M. Ma

14

fascination with machines capture humans in a state of awe.
37

 Interestingly, Zuboff delves into the

surveillance capitalist pursuit towards the collective mind and fantastical dreams of surrendering the

individual for a shared knowledge.
38

 Networks of machines operating in unison are a mirror to

prospective human-machine relations, blurring the line between animate to inanimate and

transforming relationships to objects interacting within the system.
39

 The imposition of measured and

automated rules are seamlessly integrated into societal operations.

The notion of formal indifference strikes a chord. Zuboff describes a “form of observation without

witness,” interpreting the intangible as measurable.
40

 She notes that, in dehumanizing methods of

evaluation, there is a reframing of equality to equivalence.
41

 The seductive hum of the machine

becomes the anthem of the techno-utopia.

A dichotomous process occurs where impenetrable complexity is met with simplification; a new

signature and a “robotized veil of abstraction.”
42

 Undeniably, the integration of law in AI is an appeal

towards the grid; a promise of “enduring and definitive charting of the legal world.”
43

 Legal concepts

are further bound and placed in a distinct time and space. Clarity and consistency are reinforced by

endless records and instructions such that the law may be “gapless, determinate, and

nonoverlapping.”
44

 Furthermore, the migration away from social relations allows the legal actor to be

“removed from responsibility for the worldly consequences of his actions.”
45

In the techno-utopia, “objectified computational behavioral metrics”
46

 swallow human experience

and thrive on ubiquity. Zuboff warns of the aspirational vision of surveillance capitalists for a

complete system; one that is built and contained in a world of total knowledge. Knowledge becomes

37

 Id. at 382.

38

 Id. at 383.

39

 Id. at 384.

40

 Id. at 354.

41

 Id.

42

 Zuboff here is, of course, articulating a new mechanism of society. She describes a form of power derived from a way

of knowing that dehumanizes qualitative means of evaluation and produces instead “equivalence without equality.” She

sees “objectification [as] the moral milieu in which our lives unfold.” See id.

43

 Pierre Schlag, Commentary: The Aesthetics of American Law, 115 HARV. L. REV. 1047, 1055 (2002).

44

 Id. at 1059.

45

 Id. at 1060.

46

 Zuboff, supra 32 at 375.

 M. Ma

15

both the currency and vessel of submission. As opposed to Mayor’s imaginations from Greek

mythology, Zuboff’s text suggests that the surrender of humanity at the foot of the instrumentarian

rule is imminent. In contrast to the willful draw towards the machine, Zuboff’s painting of

surveillance capitalism reflects a silent capture and descent into a vortex of quantifiable instruction.

Julie Cohen unpacks the notion of internet utopianism, reflecting on the burgeoning shifts and

evolution of a society facing informational capitalism. While Zuboff provides a comprehensive

illustration of this utopia, Cohen narrows the scope to the legal realm; how existing legal institutions

must change to ensure rights and human freedoms are protected. She considers the double-edged

sword of the open content model that has enabled the “emergence of new information businesses

whose revenue models are based on harvesting and monetizing the data flows”
47

 The internet and its

“networked virtual spaces,” she states, is perceived as “sites of utopian separation for the life of the

mind.”
48

 Yet, the internet is evidently “embedded in real-world societies” that require real

institutional solutions.
49

What Cohen highlights then is the divorce between the virtual with the real. That is, the utopia is

one that is imagined and not of the existing world. The problem is that there is no separation. The

virtual space is built from the messiness of existing societal constructions. Consequently, the

conceived distinction suggests that the existence of this utopia does not have implications nor effects

on real-world institutions. Evidently, this fosters what Zuboff articulated as the lack of consciousness

around the cooptation of a new methodological and quantitative tyrant.

Cohen, like Zuboff, suggests that the seed towards “control” and the instrumentarian reign has been

long planted.
50

 Automated information systems, that were introduced in the industrial-era, and

constructed global networked supply chains, have circumvented institutional governance. In turn,

transnational corporations with informational competencies have “nearly unlimited authority over

their workers and outsize influence over the surrounding communities.”
51

 The introduction then of

47

 Julie Cohen, Internet Utopianism and the Practical Inevitability of the Law, 18 DUKE L. & TECH. REV. 85 (2019).

48

 Id. at 89.

49

 Id.

50

 Id. at 92.

51

 Id. at 93.

 M. Ma

16

global platform businesses have merely capitalized and exploited the private economic power of an

existent infrastructure.

As a result, data-driven, algorithmic processes only amplify obstacles around accountability.
52

 The

decisions produced by machine learning technologies cater to specificity, concealing reasoning and

offering the impression as standalone end products. That is, they are considered themselves

conclusive and representations of evidentiary analysis. Cohen argues that these technologies “sit in

profound tension with traditional articulations […] and commitment to the rule of law.”
53

 This erects

barriers around judicial oversight, and in effect, unraveling fundamental rights. Evidently, Cohen’s

arguments point towards new modes of institutional governance that could confront networked

informational systems that have long escaped traditional paths of accountability. So, what might these

new modes look like? Frank Pasquale reflects on these questions in the New Laws of Robotics.

In his text, Pasquale explores the various ways in which AI has taken hold. In particular, he shifts

away from the utopia/dystopia duality and, instead, reflects on the immediacy of attaining balance.

Importantly, he stresses the role of AI as largely complementary and the ways in which this should

be maintained as the path forward. In contrast to Cohen and Zuboff’s bleaker, more cautionary tone,

Pasquale offers a glimmer of hope around how humans can and must remain in reign of its machines.

As opposed to a (brave) new world, Pasquale introduces the four “new laws of robotics,” an homage

to science fiction writer Isaac Asimov’s “Handbook of Robotics, 56
th

 edition” in his short story

“Runaround.” These new laws are as follows:
54

1. Robotic systems and AI should complement professionals, not replace them.

2. Robotic systems and AI should not counterfeit humanity.

3. Robotic systems and AI should not intensify zero-sum arms races.

4. Robotic systems and AI must always indicate the identity of their creator(s), controller(s), and

owner(s).

For Pasquale, these four laws (principles) should be applied across all facets of society where AI may

interfere. Fundamentally, the laws project a “humane agenda”
55

 around the “strengthening of existing

52

 Id. at 95.

53

 Id.

54

 Frank Pasquale, New Laws of Robotics: Defending Human Expertise in the Age of AI 3-11 (2020).

55

 Id. at 4.

 M. Ma

17

communities of expertise and the creation of new ones.”
56

 His argument centers around ensuring the

resilience of human intervention; that technology cannot calculate out human beings. He

distinguishes between “humanizing technology and the counterfeiting of distinctively human

characteristics.”
57

 Evidenced in his language are his perceptions of a boundary between proper and

improper integrations of technology. Technology that ‘humanizes’ will make processes more

complex and further intellectual work. Replication, on the other hand, is an extension of

simplification. It has the capacity to reduce and distill perceived messiness and uncertainty to a

‘refined, perfected’ form. Imitating ‘humanity’ and “falsifying features of actual human existence”
58

then dangerously depreciate human value.

Throughout his case studies, Pasquale reaffirms his four laws as the path forward to ensuring that

technology will always be second to human guidance. Importantly, Pasquale further concretizes his

argument but continually drawing examples from existing technological use. As opposed to

descending into prospective dystopic visions, he is focused on the present and near future. This is

particularly powerful statement as he reconciles “science fiction,” media and cultural portrayals of

AI, with actual use. Moving from imagination, Pasquale brings AI to the ground.

Perhaps the most important of his four laws is the last: ensuring a path of responsibility between

human to machine. There again, Pasquale delineates between depictions of AI and their actual

practice. As opposed to having lost control of the robots,
59

 he traces the line of responsibility and

how accountability is transferrable from one person or entity to another.
60

 The significance of this

fourth law is that the human is never lost, and especially in the face of liability. More importantly, he

reaffirms the need for a realignment of values. How the human is to remain in-the-loop is a

reconceptualization of professionalism and expertise. The former, he argues, involves the “recurrent

need to deal with conflicts of values and duties.”
61

 The latter builds on this notion. That is,

professionalism should account for expertise that “cannot simply be reduced to equations of

56

 Id.

57

 Id. at 7.

58

 Id. at 9.

59

 Pasquale alludes to the fantastical imagination of the robots that develop their own conscience (i.e., HAL), and

distinguishes from unforeseen consequences or unintended results. See id. at 12.

60

 He cites how programmers may be held responsible for building in certain constraints, but an entity that then

disables these constraints should be held responsible. See id.

61

 Id. at 19.

 M. Ma

18

efficiency and algorithms of optimization.”
62

 In short, Pasquale argues for the safeguarding of human

values, democratic representation, and social goals. Consequently, the translation of tasks into code

is not purely technical. For Pasquale, it is an “invitation to articulate what really matters in the

process.”
63

 So, what really matters in law?

Systems Alignment and Philosophical Aspirations

Turning to the legal system, Benjamin Alarie contends that technology pushes forward the law by

bridging gaps of indeterminate legal standards with precise rules identified by AI.
64

 He articulates that

a combined increase in “observable phenomena” and heightened accuracy in pattern recognition

technology will lead to the “legal singularity.”
65

 For Alarie, this is the path of the law. The notion of

‘legal singularity’ draws from an association of the law as precise, predictable, and certain in its

function.
66

 The underlying view is that principles of the law, in its present form, lack certainty. AI

aids with the crystallization of the law, clarifying existing principles by reinforcing standards as rules.

AI then would bring certainty out of specificity. In effect, legal indeterminacy is perceived as a threat;

a tell that the law’s current state is one of incompleteness.

Alarie regards the incompleteness of the law as a weakness of the system. He argues that the over-

and under-inclusiveness, as a result of being incomplete, has subsequently led to exploitation of the

system. Fortunately, he notes that the legal singularity will bring about the “elimination of legal

uncertainty and emergence of a seamless legal order, universally accessible in real-time.”
67

 The law

will achieve functional completeness.
68

 The vision of legal singularity is, of course, reminiscent of the

techno-utopia. It is the perception that a gapless grid and quantitative alignment resolves the existing

62

 Id. at 23-24.

63

 Id. at 28.

64

 Benjamin Alarie, The Path of the Law: Towards Legal Singularity, 66 U. TORONTO L.J. 443, 445 (2016); see also

Benjamin Alarie et al., Law in the Future, 66 U. TORONTO L.J. 423, 427-28 (2016).

65

 Id.

66

 See Theories of Adjudication, in particular the discussion on stare decisis as the ‘life blood of legal systems,’

requiring precision in addition to stability and certainty. Michael Freeman, Lloyd’s Introduction to Jurisprudence, (9
th

ed. 2014).

67

 Alarie, supra 64 at 445.

68

 Id.

 M. Ma

19

unpredictability in the legal system. He argues that machine learning technologies allow the removal

of emotion, providing unified classifications through objective and logical operations.
69

Alarie notes that “data and better machine learning inference tools are likely to be complements to

human judgment rather than substitutes.”
70

 He suggests that experts will work with big data and

machine learning technologies to elevate certainty in the performance of legal work. He describes

how reliance on big data and machine learning models to inform decisions will “optimize” the

content of the law. The implication is that machines are capable of identifying “what the law should

be in order to achieve our implicit social objectives.”
71

 Again, for Alarie, the law is incomplete owed

to “limited data and imperfect information.”
72

 As a result, provided that the legal system has yet to

achieve equilibrium, further developments in machine learning tools will eventually shift the role of

machines as complementary to machines as substitutive. Ultimately, arriving at the legal singularity

will be inevitable.

Alarie’s vision of a legal techno-utopia provides a rather one-dimensional perspective in the sphere

of technological integration. In classic law and economics fashion, his arguments stem heavily from

notions of optimization, equilibrium, and efficiency. Moreover, Alarie conflates legal with machine

complexity. In turn, complexity is loosely referred to as the competence to process information and

provide a decision. Consequently, ‘computing power’ appears as a rather suitable substitute with

statistical inference absorbing human reasoning. Law is now perceivably computation.

Perhaps in direct response to Alarie,
73

 Christopher Markou and Simon Deakin ask the question of

whether the law is indeed computable. Their initial reaction speaks to the inherent normativity of

the legal system. In particular, Markou and Deakin raise the perspective that ‘obedience,’ or

compliance, is not guaranteed.
74

 That is, the legal system necessarily depends on an anarchic

component that enables an introspective evaluation. In effect, ‘scrutiny’ allows for checks and

69

 Id. at 450.

70

 Id.

71

 Id. at 453.

72

 Id.

73

 Markou and Deakin specifically cite “the boldest vision” and legal singularity. See Christopher Markou and Simon F.

Deakin, “Is Law Computable? From Rule of Law to Legal Singularity,” University of Cambridge Faculty of Law

Research Paper (Apr. 30, 2020) 5, available at: https://ssrn.com/abstract=3589184.

74

 They cite H.L.A. on “question of obedience” and “its demands must in the end be submitted to a moral scrutiny.”

See H.L.A Hart, The Concept of Law 210 (3
rd

 ed. 2012). See id at 7.

 M. Ma

20

balances that maintain the dynamics of power and legitimacy. Nevertheless, Markou and Deakin

trace the origins of computational fervor as attributable to Gottfried Wilhelm Leibniz and the

realization of his mathematical dream.

Markou and Deakin describe how Leibniz was enveloped in creating a universal language, capable

of reducing all reason to logical calculus.
75

 Accordingly, they suggest that Leibniz’s framework to

“formaliz[e] human thought with logico-mathematical calculations” became the “precursor to the

development of computer science.”
76

 Putting his theory to test, Leibniz chose law. He perceived law

as a rational framework for organizing society. As a result, Leibniz was convinced that his model

would further heighten the precision of legal rules through axiomatic reduction.
77

Advancing through the historical developments of the common law,
78

 Markou and Deakin reflect on

the subtle remnants of Leibniz’s axiomatic method. They argue that the current generation of AI-

assisted Legal Tech rests on Leibniz’s assumptions of a “purified essence to law and legal reasoning”

capable of “mathematization.”
79

 Therefore, the deductive approach “accomplishes little more than

ossifying legal concepts into self-evident computational ‘truths.’”
80

 Perhaps most powerfully stated is

their argument that Leibniz’s method results in a simplification of the “legal ontology that assumes

these concepts are stable referents.”
81

Markou and Deakin then confront Alarie’s vision of legal singularity from the perspective of

complexity. That is, machine complexity is not legal complexity; and an increase of the former

subsequently leads to a decrease in the latter. In short, they argue that the law is not computable, as

the “binary nature of computation means that all legal problems must ultimately be decidable using

binary logic.”
82

 Though Markou and Deakin provide convincing arguments around the

incommensurability of law and Leibnizian binaries, they perhaps ironically treat law and

computation as a binary. The duality they argue against is precisely their perceived approach in

75

 Id. at 11.

76

 Id. at 12.

77

 Id. at 12.

78

 They consider the competing schools of thought between formalism and legal axioms and realism. See id. at 14.
79

 Id. at 18.

80

 Id.

81

 Id.

82

 Id.

 M. Ma

21

interpreting the implicit goals of Legal Tech. Importantly, computer science methodology and legal

reasoning extend far deeper, and in a more nuanced manner, than they describe. That while the law

embodies an open texture and is incomplete, it equally relies on logic and should not be dismissed.

This means that as opposed to a systemic level analysis, understanding the computability of law

requires a more granular approach.

Therefore, I contend that analysis should be conducted at a micro-level, and specifically to the

granularity of linguistic deconstruction. Furthermore, I argue that the particularities of the law have

been captured in its specific technical language. As a result, a shift from natural language to code –

or a migration of mediums – necessarily reveals the impact of computation in law. Moreover, it offers

opportunities to reflect on whether they are, in fact, incommensurable, or that there may be space

for reconciliation. Nonetheless, it may be important to clarify specifically what the definitions and

parameters of AI and law are. To do so, we shall turn to the law’s encounter with AI.

When Law Met AI

When discussing AI and law, to what does it refer? Harry Surden provides an incredibly helpful and

thorough account of the various forms in which AI has taken shape, particularly in the legal space.

Echoing Pasquale, Surden draws attention away from speculative discussion and towards the law and

policy issues raised by AI technology today.
83

 To start, Surden defines AI as the use of technology to

automate tasks that involve human intelligence.
84

 Surden further refines the definition to specify

human intelligence as requiring “cognitive activity.”
85

 He is careful, however, to distinguish cognitive

activity from synthesizing human-level thinking. Surden intentionally focuses on current
86

 AI

technology. This includes systems that rely on heuristics; otherwise, the use of certain computational

approximations that help identify “discernible underlying patterns and structures.”
87

 In effect, these

include machines that appear to do the work that typically requires human cognition. This differs

83

 Harry Surden, Artificial Intelligence and Law: An Overview, 35 GA. ST. U. L. REV. 1305, 1306 (2019).

84

 Id.

85

 Id.

86

 Surden specifies the “near-term time frame” of 5-10 years roughly. See id. at 1308.

87

 Id. at 1309.

 M. Ma

22

from what is known as Artificial General Intelligence (AGI), or “thinking machines with abilities to

meet or surpass human-level cognition.”
88

Surden raises two AI approaches that most commonly are featured in the Legal Tech space: (1)

machine learning; and (2) logical rules and knowledge representation.
89

 Importantly, Surden provides

a clear outline of the type of work these two approaches are capable of and can enable. With machine

learning, Surden is careful in clarifying the meaning of learning. He stresses that ‘learning’ is a “rough

metaphor”
90

 and is effectively a quantitative proxy, or a ‘functional’ understanding of learning.

Machines then ‘learn’ in the guise of ‘progress,’ by examining data and searching for patterns.
91

Subsequently, their performance improves through the introduction of more data and the refining

of these patterns.

To substantiate his definition, Surden applies the helpful example of machine learning systems

identifying “spam” emails. These systems are capable of automatically detecting emails that are

unsolicited through various “signals.”
92

 These signals provide a strong likelihood that the email is

spam. In this case, the signals could include word probabilities (i.e., presence of a particular word,

email origin, etc.).
93

 With increasingly powerful models of machine learning, Surden expresses that

this approach in AI offers incredible insight. Nevertheless, its data-dependence offers limitations

around its current competencies in the legal space.

Alternatively, expert systems, or logic rules and knowledge representation, “model real-world

phenomena or processes in a form that computers can use, typically for the purposes of

automation.”
94

 As revealed in its name, expert systems involve providing computers a set of rules that

“represent the underlying logic and knowledge”
95

 of the activity being modelled. These rules must

88

 Id. at 1308.

89

 Id. at 1310.

90

 Id. at 1311.

91

 Id.

92

 Id. at 1314.

93

 Id. at 1313-1314.

94

 Id. at 1316.

95

 Id.

 M. Ma

23

be written in a computer-understandable form, as they behave as instructions for computers to

process information. How this information is processed typically follows a deductive logic.

In order for knowledge-based AI systems to ‘reason,’ software developers must work in consultation

with experts; in effect, translating the meaning and logic of a specific area of expertise to a “set of

comparable formal rules.”
96

 Rules-based knowledge representation systems must define, in advance,

both operating and decision rules.
97

 However, this is not to suggest they are less complex than

machine learning systems. Instead, computers are capable of manipulating these predefined rules in

“deductive chains to come to nonobvious conclusions about the world.”
98

 Knowledge-based AI

systems, then, can combine facts and apply logical rules to arrive at conclusions that may be difficult

for humans to discern.
99

 Moreover, though they are frequently regarded as two separate approaches,

complex systems could involve hybrids of these systems. This enables the strengths of each approach

to tackle specific tasks.

Surden cautions that AI is effective for tasks that either (1) involve “clear, unambiguous rules,”
100

 or

(2) have rather identifiable “underlying patterns or structure.”
101

 Where there may be abstract

concepts that cannot be meaningfully encoded, AI technologies do not perform well. Equally, tasks

that involve subjective interpretation, or social choices, tend not to be suitable for AI automation.

So, what might be the role for AI in law? He describes AI and law as the “application of computer

and mathematical techniques to make law more understandable, manageable, useful, accessible, or

predictable.”
102

 According to Surden, the use of AI in the legal field impacts three categories of users:

(1) practitioners; (2) administrators; and (3) those governed by the law.

For tasks traditionally performed by lawyers, document review and litigation discovery are common

candidates of automation. He argues that these types of tasks are routine, “mechanical and repetitive”

in nature.
103

 For tasks traditionally involving administrators of the law (i.e., judges and government

96

 Id. at 1317.

97

 Id.

98

 Id. at 1318.

99

 Id.

100

 Id. at 1323.

101

 Id. at 1324.

102

 Id. at 1327.

103

 Id. at 1331.

 M. Ma

24

agencies), Surden considers the use of algorithms for “risk-assessment scores,” particularly on

likelihood of recidivism, and the assessment of government benefits programs.
104

 The former usually

draws on machine learning technologies and past crime data, while the latter is knowledge-based and

involves modelling the rules used to ‘calculate’ benefits. In both scenarios, their outcomes can

influence the decisions of the administrators and can be problematic as there may be biases that are

“encoded” in these technologies. As well, it is important to note that these are not the only types of

technology used, or considered, in these settings.
105

 Finally, the third category involves “users of

law.”
106

 Surden categorizes these technologies as tools that are helpful in providing insight into

various aspects of the legal system. These include computable contracts and “legal self-help

systems.”
107

 The former is defined as legal contracts that may be expressed in a computer-

understandable form. The latter are “simple expert systems” that provide “answers to basic legal

questions.”
108

In short, Surden provides a strong overview of the various approaches to AI, and particularly in the

legal field. Moreover, he offers a concrete discussion, shifting away from idealistic imaginations.

Therefore, it may be worth diving deeper into the types of skills that AI will impact in the legal

industry, provided the continued integration of these technologies.

Mark Fenwick and Erik Vermeulen describe lawyers of the future operating as “transaction

engineers.” They argue that an increase in the uptake of AI-driven legal tools would render

traditional skills of contract drafting, revision, legal risk management, and even dispute resolution

obsolete.
109

 This may be envisioned as the subcontracting of legal ‘grunt work’ to machines while

humans are dealt the important tasks – in a sense, a Siri for law. Rather than a loss of skill, it is a

104

 Id. at 1333.

105

 The advent of ‘online courts’ has introduced the notion of virtual or Zoom courtrooms and asynchronous judging.

These technologies are not quite within the realm of AI, but more in consideration of the significance of courts being

physical. See Richard Susskind, Online Courts and the Future of Justice (2019).

106

 Surden, supra 83 at 1334.

107

 Id. at 1335.

108

 Id.

109

 Fenwick and Vermeulen expand on their idea of lawyers as the “transaction engineer;” effectively facilitators or

‘project managers’ in the deployment of new AI-driven legal technologies. Their argument suggests that lawyers will

increasingly migrate into technology-based roles, working as middlemen between professions, that require

comprehension of data analytics and computer coding. See Mark Fenwick and Erik Vermeulen, “The Lawyer of the

Future as ‘Transaction Engineer:’ Digital Technologies and the Disruption of the Legal Profession,” in Marcelo

Corrales, Mark Fenwick, and Helena Haapio (eds.) in Legal Tech, Smart Contracts and Blockchain 256, 268-270

(2019).

 M. Ma

25

reclassification between analytical and menial work. It is the subordination of certain skills in the

name of efficiency and accuracy.

These ideas have previously been expressed in the literature on the disruption of legal practice and

future of the legal profession.
110

 Interestingly, in AI for Lawyers, Noah Waisberg and Alexander

Hudek explore how AI has ‘amplified’ legal skills and expertise. Waisberg and Hudek provide a

comprehensive overview of the ways in which AI can and should be embraced in legal practice.

Moreover, they consult experts of the legal industry to provide an insider perspective on the concrete

impact AI has had thus far. Not only are multiple chapters written by those who are founders of legal

AI startups, they feature other industry leaders that have chosen to integrate these technologies into

their internal legal departments.

In having a rock star cast, the text behaves as an empowering self-help book, providing a guided and

practical approach on how the legal profession is transforming. The book is heavily case- based, with

testimonials that offer the impression that the legal field indispensably depends on these

technological insights. As Waisberg and Hudek are, themselves, leaders in the Legal Tech

environment – having built one of the most powerful systems of contract review –it is difficult not to

be drawn into the fervor.

Perhaps one of their most striking chapters addresses specifically the shifts in legal skills that Fenwick

and Vermeulen discuss. Applying the Jevons paradox,
111

 Waisberg and Hudek describe an increase

in the efficiency of delivering legal services that will, in turn, expand and grow the legal field. Unlike

Fenwick and Vermeulen, Waisberg and Hudek consider how legal knowledge will take hold and

become “scalable.”
112

 In particular, their argument reflects on the bottling of legal knowledge and

transferring it to technology. This includes the management of legal data (e.g., court-generated data,

patent and other intellectual property data, data from case management systems) and those

110

 See Richard Susskind, The End of Lawyers Rethinking the Nature of Legal Services (2010); Albert H. Yoon, The
Post-Modern Lawyer: Technology and the Democratization of Legal Representation, 66 U Toronto L.J 456 (2016);

Brian Sheppard, Incomplete Innovation and the Premature Disruption of Legal Services, 2015 MICH. STATE L. REV.

1797 (2016).

111

 The notion that “when a resource is delivered more efficiently, the consumption of that resource will actually

increase.” See Noah Waisberg and Dr. Alexander Hudek, AI for Lawyers 22-26, 51-52 (2021).

112

 Waisberg and Hudek consider on how more work can be done with fewer resources (specifically by training

machine learning models to perform legal work). See id. at 30, 71-80.

 M. Ma

26

constructing the models to train systems to reflect the legal work and processes.
113

 This suggests that

while the legal profession may change, it fundamentally will remain a knowledge-driven industry.

The question becomes how the use of legal information and representations of legal knowledge

develop their own standards
114

 of accountability and transparency.

As raised in the aforementioned section, there are a number of philosophical implications in the

integration of computation with law. Even across the legal community, there is disparity in the

underlying regard for the legal system. These disparate visions translate and embed
115

 themselves into

the technology. As a result, legal knowledge may become no less opaque for those seeking access,

as information asymmetries are merely transferred from human to machine. Though the focus of

the text implies how AI impacts specifically the parameters and skills required of legal professionals,

the pending transformation
116

 suggests an expansion of the field to those who may not have legal

training. Consequently, the priority should not rest on efficiency of delivery, but instead, on

determining methods of enabling deeper understandings of legal mechanics for its representation.

In a recent article, Joshua Browder suggests how code can increase the transparency, scalability, and

equity of the legal system.
117

 He reflects on the “lawyerly protectionism”
118

 that has over time shielded

individuals from accessing legal expertise. He argues that a “software-first approach”
119

 can improve

the current barriers that hinder most low-income individuals from legal assistance. Browder uses, as

an example, the application process involved with claiming asylum status. He states that software has

the capacity to embed legal knowledge in the intake form, such that legal information typically

“hidden” from the public may be explicitly understood.
120

 Another example he alludes to is the

hosting of laws on an open platform. He considers how Washington DC’s City Council has their

laws available publicly on the software platform, Github. This allows residents to spot errors and

113

 Id. at 53.

114

 I note that while there are recommendations around how to train AI and who to consider when training, it is of

Waisberg and Hudek’s own advice. Moreover, defining subject matter expertise is an equally complex task that is left

unanswered. For the “three keys to successfully amplifying learning through AI,” see id. at 74.

115

 Waisberg and Hudek state, “capture legal processes in expert systems…embedding legal knowledge into systems and

processes in order to automate aspects of legal work.” See id.

116

 They describe it as “verge of a transformation in how lawyers see themselves and their roles.” See id at 65.

117

 Browder, supra 2.

118

 Id.

119

 Id.

120

 Id.

 M. Ma

27

submit instantaneous requests for change.
121

 In publishing laws publicly and freely, citizens are able

to review legislation and discover any “loopholes and special interests.”
122

 Ultimately, he points to the

potential of software democratizing the law.

Browder provides a convincing case in how code is capable of bridging legal knowledge to the public.

The examples he provides are perceivably “building blocks” towards a broader vision of the legal

system as the operating system of society.
123

 Evidently, these arguments reinvigorate conversations

around the law/code dialectic. The question becomes whether these individual instances

substantially demonstrate that law and code are interchangeable systems. It is then imperative to

revisit Lawrence Lessig and the notion of code as law.

Legal Design and Law/Code Dialectic

For Lawrence Lessig, the conceptualization of code as law is not novel but rather intuitive. He draws

attention to code as a form of control in the ‘cyberspace;’ that “code writers are increasingly

lawmakers.”
124

 The difficulty, of course, is defining the parameters of the cyberspace. Lessig relays

an interesting example of a dispute that unfolds in the virtual and in the real. In the real, it is

perceivably a horrific event, whereby two neighbors, Martha and Dank, engage in a conflict over the

death of Dank’s dog. The dog had mistakenly consumed the poisonous flowers from Martha’s

garden. One of the particularly striking (and even peculiar) responses from Martha was her attempt

to attribute fault to Dank for having a dog that suffered when it died.
125

 This came as a reaction to

Dank, questioning why poisonous flowers were being grown in Martha’s yard in the first place.

In near seamless fashion, Lessig changes gears and paints this same dispute in the virtual. Rules and

norms in the virtual seem to shift in a manner that mitigate the ‘horror’ of this neighborly conflict.

Lessig suggests that through simple adjustments of the code, Dank’s dog could die without suffering;

or the poisonous flowers would become harmless if they were accidently blown off Martha’s

property.
126

 The “‘what happens when’ is a statement of logic; it asserts a relationship that is

121

 Id.

122

 Id.

123

 Id.

124

 Lawrence Lessig, Code 2.0 79 (2
nd

 ed. 2006).

125

 Id. at 13.

126

 Id. at 14.

 M. Ma

28

manifested in code.”
127

 It appears, then, that the events of the virtual do not carry the same

consequences as they do in the real.

Lessig, therefore, raises the problem of how the virtual translates the real. He asks, “what does it

mean to live in a world where problems can be coded away?”
128

 It follows, what is the relationship

between law and code when the boundary between virtual and real is ill-defined? Though Lessig’s

example is rather simplistic, it poses an intriguing thought experiment around the meaning and

implication of constructed laws. In the real, Lessig likens certain elements as definable, with choices

that can be made and controlled.
129

 These norms are understood as “man-made.” In the virtual,

everything is capable of being controlled through design and the construction of code. Can an

analogy be drawn between law and code? What might be the differences, and are they significant?

To answer these questions, Lessig raises another provocative example. He compares computer

“worms” with search warrants.
130

 Provided that the computer worms can stay dormant until they are

“activated” for a specific task, Lessig compares a computer worm with a warrant to search a citizen’s

premises. Search warrants are generally not authorized unless there is sufficient reason to breach a

citizen’s private property. Lessig considers whether a worm that may be designed to search through

a citizen’s computer can be likened to a search warrant. Moreover, he reflects on whether it is

constitutional in accordance with the Fourth Amendment.
131

 What Lessig highlights is, again, the

complexity involved when legal instruments understood in the “real” space are performed in the

“virtual.” In this case, the notion of “search” using computer code introduces ambiguity around its

permissibility. He classifies this form of ambiguity as latent ambiguity; in effect, expressing how code

performs in a manner that reinvigorates questions of the intent and purposes of law.

Returning then to the story of thorny neighbors, Martha and Dank, Lessig argues that the shift from

law to code is, effectively, structural. Regulation is enabled “by the very architecture of the particular

space;” and that “its architecture will affect whether behavior can be controlled.”
132

 Consequently,

127

 Id.

128

 Id. at 15.

129

 Id. at 11.

130

 Id. at 20.

131

 Lessig considers whether the Fourth Amendment is protecting against burdensome ‘invasions’ of privacy, or

generally, “suspicionless governmental invasions.” See id. at 21-22.

132

 Id. at 24.

 M. Ma

29

what Lessig introduces is the notion that certain structures are more conducive to the types of control

enabled by the instrument; and, that it is irrespective of the space. This means that the virtual merely

reopens the definition of existing forms of regulation but should not be treated as different from the

real. In turn, the architectural construction could encourage some forms of control over others.

Unlike Cohen, Lessig does not find that there are complexities of translation when shifting between

the virtual and real. Alternatively, Lessig identifies the problem as whether instruments of control,

traditionally performed via ‘analog’ law, can be performed using computer code. The question

becomes: is control akin to regulation? If so, should code be law?

Interestingly, Alex Pentland reflects on how the law is, itself, an algorithm. He considers how “most

laws and regulations are just algorithms that human organizations execute.”
133

 As a result, laws are

inherently capable of translation given their code-like structures. He describes this as explanatory of

the rising use of computers to assist and automate legal work. Nevertheless, Pentland argues that in

order to harness the potential of ‘legal algorithms,’ there must be oversight and accountability

mechanisms in place.
134

 He suggests this requires, to an extent, modularization. That is, the design

must account for both humans and software working in tandem towards the goals of the system.
135

Modularity ensures that systems may be tested and evaluated continuously to ensure they are

adaptive to the circumstances of its environment. In the case of legal systems, it must continually

reflect legal processes. What Pentland articulates is then a hybrid architecture whereby

computational tools may be integrated with human intervention.

Pentland outlines five components he finds currently missing in order for ‘computational law’ to be

successful. These include: (1) specification of system performance goals; (2) measurement and

evaluation criteria; (3) testing; (4) robust and adaptive system design; and (5) continuous auditing.
136

These five elements suggest that the legal system is not currently equipped to provide for “good

governance.”
137

 These components may be regarded as useful markers. Though, it may be argued

that only the first – the specification of system performance goals – is of concern. The question is

133

 Alex “Sandy” Pentland, A Perspective on Algorithms, MIT Computational Law Report Release 1.0 (2019), available

at: https://law.mit.edu/pub/aperspectiveonlegalalgorithms/release/3.

134

 Id.

135

 Id.

136

 Id.

137

 Id.

 M. Ma

30

whether the objectives of legal systems can be articulated such that measurement criteria would

follow. To answer this question, we must necessarily turn to Mireille Hildebrandt.

In Smart Technologies and the End(s) of Law, Mireille Hildebrandt reflects on the architectural

structure of legal systems and whether they may be reconcilable with technological design. She argues

that applying code as law, or regulation with technology, would lead to the end of law.
138

 Hildebrandt

distinguishes between the idea of ‘legal by design’ (LbD) with Legal Protection by Design (LPbD).

The former is a “subset” of techno-regulation; these technologies have a “de facto regulatory

effect.”
139

 These regulatory effects may be deliberate or the result of unforeseen consequences.

Importantly, LbD requires two specifications: (1) an unambiguous interpretation of the relevant legal

norm; and (2) translation of the interpretation to a programming language.
140

 She argues that the goal

of LbD is compliance, owed to the rigidity of computer code.
141

Pioneering alternatively the notion of LPbD, which she further elaborates in her seminal text, Law

for Computer Scientists and Other Folk, legal norms must be accommodated in the design

requirements to properly align with socio-technical innovation. LPbD is understood as maintaining

the integrity of “legal” in the context of fundamental rights. This means that “the scope of LPbD

should be determined by way of democratic participation;” and the ability to “contest its application

in a court of law.”
142

 Hildebrandt suggests that, unlike other forms of “ethical requirements” that are

integrated in the technological design, the choice architecture, under the requirements of LPbD, is

not subjected to market forces nor the creators’ own ethical predispositions. This ensures that,

structurally, the protections afforded by ‘analog’ (enacted) law are upheld.

Moreover, LPbD applies a method of ‘resistability,’ the capacity to ‘rule out’ deterministic

environments.
143

 Ultimately, LPbD is the assurance that technological norms do not overtake legal

norms. Consequently, the missing component of “system performance goals” articulated by

Pentland is not, in fact, missing. Rather, these performance goals are precisely the goals of “justice,

138

 Mireille Hildebrandt, “The end of law or Legal Protection by Design,” in Smart Technologies and the End(s) of

Law: Novel Entanglements of Law and Technology 214 (2015).

139

 Mireille Hildebrandt, “’Legal by Design’ or ‘Legal Protection by Design’” in Law for Computer Scientists 267(2020).

140

 Id. at 268.

141

 Id. at 268.

142

 Id. at 269.

143

 Hildebrandt, supra 138 at 218.

 M. Ma

31

legal certainty, and purposiveness,”
144

 norms that have always underpinned the legal system.

Hildebrandt reinforces that the other components, including testing and measurement criteria,

should all pivot around compatibility with legal norms. The point of departure, she states, is the task

of bridging legal with computational across all facets.
145

 It follows that the systems’ mechanisms should

become the focus of the study.

I have previously discussed that, as opposed to systems-level alignment, a turn to a more granular

investigation is necessary. In recent years, the fields of legal analytics and legal informatics
146

 became

of particular interest. Kevin Ashley reflected on how the ‘open texture approach’ of early argument

retrieval and cognitive computing systems laid the foundations for computational models of legal

reasoning.
147

 Though he argues that law is composed of rules, Ashley states that features of vagueness

and the open texture of statutory provisions need to be addressed. Therefore, he reflects on the

significance of legal text. In particular, he analyzes how the methods of legal reasoning are centered

around complexities associated with semantic and syntactic ambiguity. As a result, issues of

translation emerge when using computational tools to model legal reasoning.

His proposition, alternatively, is to further the cognitive computing paradigm by heightening

practices of legal information retrieval. Like Surden, Ashley clarifies that cognitive computing does

not involve building intelligent systems to ‘think’ nor to provide a solution to the user’s problem.
148

The intention is for the human to tailor the information relevant for a specific task. This means that

the human must indicate in advance the specific knowledge and concepts they would like the

machine to identify. Unlike expert systems, cognitive computing does not depend on the

specification of rules. Rather, it is the gathering of rules from relevant knowledge. In this case,

cognitive computing systems regard legal knowledge as “embodied in the corpus of texts from which

the program extracts candidate solutions or solution elements and ranks them in terms of their

relevance to the problem.”
149

 What may be gathered is that legal knowledge is preserved and found

144

 Id.

145

 Id.

146

 Broadly understood as the use of information technologies and data to drive insights in the legal field. For further

detail, see Dan Martin Katz, Ron Dolin, and Michael J. Bommarito (eds), Legal Informatics (2021).

147

 Kevin Ashley, Artificial Intelligence and Legal Analytics: New Tools for Law Practice in the Digital Age 11-13

(2017).

148

 Id. at 12.

149

 Id. at 13.

 M. Ma

32

within the words of legal texts. In effect, in developing methods of analyzing legal language, we may

be able to reconcile law with computation. Furthermore, it suggests that understanding the linguistic

patterns of legal language provide stronger tests around the limits of legal computability.

Accordingly, we return to Hildebrandt who provides an astute account around law as driven by text.

In her recent article, “The adaptive nature of text-driven law,” she identifies how normativity is

enabled by the semantic ambiguity inherent in natural language. This suggests that the adaptive

nature of legal norms is afforded by the flexibility of meaning. Legal norms then necessarily require

the “open texture of natural language.”
150

 In contrast, “code-driven law” resists contestability and

exchanges legality
151

 with legalism. This is owed to mistaken assumptions around disambiguation as

a proxy for legal certainty. Instead, she argues that existing mechanisms of the legal system already

account for multi-interpretability. This means that legal certainty is not an issue that demands

resolving. Therefore, the “over- and under-inclusiveness” associated with “disambiguated computer

code”
152

 actively removes legality from the law. Consequently, priority should remain with text-driven

law and computational technologies that “challenge unwarranted legalism.”
153

Hildebrandt, then, puts forward a test: is natural language the only vessel in which legal norms may

be housed? It is, thus, on this premise that I conduct the remainder of my dissertation. In the

following chapter, I reflect on the long-standing and intimate relationship between law and language.

It is there where I shall reopen the inquiry around the characteristics and uniqueness of the legal

language.

150

 Mireille Hildebrandt, The adaptive nature of text-driven law, J. OF CROSS-DISCIPLINARY RESEARCH IN

COMPUTATIONAL LAW (CRCL) 1,10 (2020).

151

 Legality she describes as the combination of justice, purposiveness, and legal certainty together. Legalism is the

prioritization of legal certainty over justice and purposiveness. See id.

152

 Id.

153

 Id.

 M. Ma

33

1- The Linguistic Affair

 M. Ma

34

Understanding the “Law of Interpretation,” or better, how to reason with legal texts is one of the

most fundamental and oldest questions in legal practice. Some legal scholars consider a theory of

legal interpretation as one founded on the premise that legal norms exist within the words of the

page.
154

 That is, the limits of the text are the limits of the law.
155

 This suggests that legal interpretation

is necessarily a linguistic matter.

Since the 1960s, the structures of written legal language had been analyzed in depth.
156

 However, an

exploration of the symbiotic relationship between law and language did not appear until the 1970s.

For it was Brenda Danet, in “Language in the Legal Process,” who reflected precisely on legal

language and its role in the ordering of social relationships. She argued that language is the medium

through which the law does its work.
157

 Language is the law’s functionary.

The relationship between law and language has always been one born of necessity. Language is often

conceived as the vehicle in which legal norms could embed itself, the house but not the home.

Consequently, language is important to the law, but only as a tool through which the law is realized.

The underlying assumption is that law and its language exist in a state of universality and is logically

reducible. Most fascinating, though, is the belief that description is distinct from interpretation; that

in describing the law, the language is seen as quantitative and objectifiable. Yet, the law hinges on

social and political metaphors that require latent understanding of temporally specific societal

constructs. These complex relations and interactions are then encased and deployed in a technical

grammar. This begs the question: is the medium the message?

As may be inferred, this chapter revisits the seminal conversations around law and language, walking

through the perspectives of leading scholars that have highlighted the unique behaviors of legal

language.
158

 Through the voices of these scholars, I will attempt to weave the undercurrents of law

and language as presented in the realms of legal, linguistic, and literary theory, as well as the

154

 See for example, Vittorio Villa, A Pragmatically Oriented Theory of Legal Interpretation, 12 REVUS: J. FOR

CONSTITUTIONAL THEORY AND PHILOSOPHY OF LAW 89 (2010) available at:

https://journals.openedition.org/revus/146.

155

 A. Barak, Purposive Interpretation in Law 6-7 (2005).

156

 David Mellinkoff’s text investigates the specific usage of written legal language, analyzing the structures of various

origins including Latin, French, and Anglo-Saxon. See David Mellinkoff, The Language of the Law (1963).

157

 Brenda Danet, Language in Legal Process, 14 L. & SOC. REV. 445 (1980).

158

 This chapter recognizes there are limits to the comprehensiveness of the arguments, that there may be far more to

add to the conversation. Nevertheless, the chapter is a best-effort and serves to be introductory.

 M. Ma

35

philosophy of language. This chapter serves as a break from the digital encounter to return to the

roots of language as a frame of analysis. Methodologically, the section follows existing tensions

surrounding legal interpretation. Namely, three key debates will be considered: (1) the difference

between clarity and precision; (2) the paradox of form and substance; and (3) the myths of the fact-

law distinction. In observing these debates, the aim is to provide insight into the mysteries of legal

writing. More importantly, they help uncover the role of legal language in law’s interpretative

exercise.

The Language of Law

There is then no better place to start than the work of David Mellinkoff. In the preface of

Mellinkoff’s pioneering text, The Language of the Law, he highlights a quote by legal historians on

the significance of language. That is, language is “no mere instrument which we can control at will;

it controls us.”
159

 This sets the tone of his work, noting that law has been a subject of its tool. His text

is a first of its kind, a systematic examination of language in legal text. Language, he states, is not only

intended to express, but also to convey thought. This distinction between expression and conveyance

is particularly fascinating. He suggests that communication necessarily requires both components. Is

expression merely stylistic and is the function of legal language purely communicative?

In his text, Mellinkoff advances a veiled historical account on the development of legal language;

ultimately, culminating to his conclusion that the language of the law should not differ from common

speech. He introduces his argument by defining the boundaries and characteristics of language in

law. His text is subsequently divided into two parts: (1) how the language has come to be; and (2)

how it is being used. Though interesting, I shall focus on his arguments on the latter for the intentions

of this chapter. Mellinkoff states that this “customary language” used by lawyers and legal scholars

includes a distinctive vocabulary, “certain mannerisms of compositions,”
160

 and legalistic jargon, and

words imported from other languages such as Latin and French. He argues that the combination of

these factors has led to the divergence between the language of the law and ordinary language. More

specifically, he outlines nine characteristics that have made legal language a “specialized tongue.”
161

159

 Mellinkoff cites a number of works, see specifically 1 Pollock and Maitland, The History of English Law 87 (2d ed.

1898), Oliver Wendell Holmes, The Common Law 382 (1881), and 2 Bacon, Works 192-193 (Montagu ed. 1825).

160

 Mellinkoff, supra 156 at 3.

161

 Id. at 11.

 M. Ma

36

Amongst these characteristics, the majority draw attention to the vocabulary. For Mellinkoff, the

words of the language are problematic; a recurrent theme that these terms of art are a significant

source of confusion. Consider the first characteristic he discusses: the frequent use of common words

with uncommon meanings. He highlights that words understood by the lawyer are

“incomprehensible” to those outside the community, as specific words often have an associated legal

meaning.
162

 Coupled with the continued use of arcane Latin words and phrases, understanding the

legal language requires regular visits to a specialized reference text: Black’s Law Dictionary.

Importantly, what Mellinkoff points to is an existent conversion process between legal and ordinary

language. Despite the language of the law being housed within the same linguistic vehicle (i.e., natural

language) as common speech, the differences in the lexicon are sufficiently vast such that translation

is required.

However, Mellinkoff’s discussion around the seemingly esoteric vocabulary of the law serves the

purpose of an incisive commentary. He notes that the historical reasons for their existence are often

justified as reasons for their current use. The bridge between the vocabulary and arguments for their

continued practice center around the discussion on precision. Mellinkoff underlines the law’s play

on, and perhaps obsession with, being precise. He considers the law’s characterization as both one

of “extraordinary precision” and full of “weasel words.”
163

 Precision is a deliberate choice, whereby

flexibility is deployed intentionally. In effect, Mellinkoff delineates the boundaries, in the

interpretative space, between clarity and precision.

He describes the legal language as a “viscous sea of verbiage,”
164

 leading to a ‘muddiness’ in

understanding. For Mellinkoff, “if there is any meaning, it is hard to find.”
165

 Interestingly, he defines

this lack of clarity on the basis of several structural peculiarities: (1) long sentences;
166

 (2) awkward

162

 Id. at 12.

163

 Mellinkoff cites H. Cairns in “Language of Jurisprudence” 232, 259 (1957) and Stuart Chase, The Tyranny of

Words 324 (1938). See id. at 21.

164

 Mellinkoff cites Stuart Chase, The Tyranny of Words 327 (1938). See id. at 24.

165

 Id. at 25.

166

 Mellinkoff suggests an average of one hundred seventy-six words in a sentence is not anything out of the ordinary.

Id. at 26

 M. Ma

37

sentences;
167

 and (3) “tortured metaphors.”
168

 These three factors contribute to the inability and failure

of the language to communicate. Clarity is then associated with the capacity to communicate, whereas

precision is related to the choice of vocabulary. As a result, clarity is directly correlative with meaning-

making. Precision is merely stylistic, an aesthetic decision.

So why then is Mellinkoff concerned with precision? He argues that precision is often referenced as

the virtue and response to any criticism against the language. The characteristic of being precise is

fundamental to its existence. Moreover, precision fosters accuracy; the language of the law is exact.

Consequently, even if the language is obscure, it is necessarily so.
169

 Evidently, Mellinkoff alludes to

the irony of the legal language; that form precedes substance. Precision is intimately linked with

certainty and the ancestry of its use. For these reasons, precision reigns over clarity. Other defects of

the language are a small sacrifice in exchange for precision.

While Mellinkoff interprets clarity as a substantive trait, he concedes that the argument for precision

often traverses into the territory of clarity. That is, those familiar with the language consider that

precision enables clarity because the vocabulary is already understood.
170

 This suggests that

Mellinkoff is posing an argument not to the legal community, but more broadly, to the public with

the subtext of breaking down the barrier to legal literacy.

Oddly, he brings to light two variations of precision: (1) exact; and (2) “exactly-the-same-way.” The

former implies well-defined limits. The latter is an appeal towards tradition and the tool of precedent,

laced with ‘magic words’ and birthed from religious ritual.
171

 Mellinkoff’s subsequent discussion of

the two, interestingly, raises the issue around their interchangeability. He suggests that the two kinds

of precision are often treated as if there is no distinction. Precision is often conflated with tradition

because sufficient repetition of the ritual words produces the effect of being exact. As a result, precise

language applies the strengths of the first variant, but, in fact, justifies the practice of the second.

Furthermore, he argues that the meaning is indifferent, “for all language is arbitrary.”
172

 Again,

167

 Mellinkoff suggests even shorter sentences, with innumerable dependent clauses make sentences unclear. See id.

168

 Here, Mellinkoff points to imagery and artful use of literary devices that do not provide any useful information. See

id.

169

 Mellinkoff considers the argument raised by Sir Ernest Gowers on legal language. See id. at 291.

170

 Id. at 292.

171

 Id. at 296.

172

 Id. at 299.

 M. Ma

38

Mellinkoff refers to the distinction between clarity and precision. For it does not matter whether the

language is clear, what matters is that its practice is upheld. Mellinkoff, therefore, regards the legal

language as divorced from its substance; it is a product of mindless linguistic formulae.

Perhaps again with an ironic touch, he reflects on definite meaning and whether the language of the

law has ever had any. He concludes that the “only reason for [the language’s] existence” is what he

labels as “flexibles.”
173

 Mellinkoff points to the classic example of the word: reasonable. There has

never been a ‘real definition’ around the term.
174

 Yet, legal text is riddled with this word. What

Mellinkoff suggests is evident; the arguments for precision, often grounded in certainty, bury the

language’s heavy dependence on flexible words. While reasonable is an obvious instance, he

considers other words that are not observably vague. He references Old and Middle English words,

such as aforesaid, heretofore, forthwith, and hereafter. The most infamous is whereas, the “most

persistently typical and most consistently vague words in the language of the law.”
175

 Mellinkoff notes

that the word takes on innumerable meanings, often with immense polarity. Whereas became a term

of art when English legal forms were hardened in the eighteenth century, borrowed from the “loose

usage” in Middle English common speech.
176

Many of the Old and Middle English words used in legal language were taken from common speech.

While their meanings have changed, their spelling has not. This pattern of borrowing, coupled with

an insistence on tradition and repetition of practice, has subverted a cognitive recognition of change.

That is, the changes in meaning were effectively a translation process that has been forgotten with

time. Words that may have once been precise, have lost their cut and “sucked dry of reason.”
177

 This

is reminiscent of Stanley Fish on the use of canonical texts. Fish regards the significance of language

as characterized solely by the “realm of value and intention but begins and ends with that realm.”
178

Language carries obligations and commitments that were once undertaken but eventually assumed;

thereby rendering inseparable its original intentions at its core.
179

 As a result, inherent philosophical

173

 Id. at 301.

174

 Mellinkoff cites Chief Justice Goddard in his opinion in R. v. Summers, [1952] 1 All E.R. 1059, 1060. See id. at

303.

175

 Id. at 321.

176

 Id. at 323.

177

 Id. at 326.

178

 Stanley Fish, Is There a Text in This Class? The Authority of Interpretative Communities 107 (1980).

179

 Id. at 108.

 M. Ma

39

and moral concepts are ‘built into’
180

 the language such that over time its interpretative exercise is

forgotten and accepted as fact.

The problem is that canonical materials “carry their authority…seeming to have acquired it by natural

right…not to encourage thought but to stop it.”
181

 For example, the process of making language

‘ordinary’ allows for the repurposing of words and grammar without the need to reintroduce the

politics. Therefore, the illusion of language being transcendent, logical, and independent of meaning

is merely a product of perverse procedure. This suggests that at the core, the mechanism of ordinary

language that builds abstraction and principle is able to invent and reconstruct without truly breaking

from its original form. Linguistic practices that have emerged through sociopolitical contexts are

understood as the legitimate language with its normativity buried deep within its practice.

Mellinkoff’s discussion on the persistent use of Old and Middle English in legal language reflects a

disjunct relationship between concept and structure. His solution is to then discard the complexities

(peculiarities) of the language and use, in its place, everyday common speech. Though the intention

of Mellinkoff is to argue that these antiquated and archaic practices should be removed, his

argument, in fact, points to a deeper problem of translation. If “legal terms of art” were borrowed

from once common speech, would removing these practices, in the name of aligning with current

plain language, not reinforce the exact problem Mellinkoff is hoping to resolve? That is, how often

must a realignment process occur in order to ensure that legal language is sufficiently communicative

and consistent with ordinary language? What are the temporal limits to common speech?

There are parallels found in Giorgio Agamben’s work and his regard of language as a reliquary

signature to an analogical and immaterial model.
182

 Signatures operate as archaeological traces that

represent how nondescript objects connect to events and/or subjects. Signatures characterize and

specify, while signs provide its conditions.
183

 Though the signature itself is void of content, they enable

the efficacious existence of the sign. Without the signature, the concept will remain inert.
184

 Is the

legal language, the juridical formula, an artifact of another time? Or, is the legal language a

180

 Id. at 107.

181

 Stanley Fish, The Trouble with Principle 47 (1999).

182

 Giorgio Agamben, The Signature of All Things 36 (2009).

183

 Id. at 79-80.

184

 Id. at 76.

 M. Ma

40

transcendental signature? Therefore, Mellinkoff questions the necessity of having a unique and

distinct legal language. More importantly, he raises the argument of whether the language is

sufficiently serving its role to convey legal knowledge.

In unpacking Mellinkoff, it is unavoidably evocative of George Orwell and his distaste for written

English in political texts. In 1946, Orwell wrote in his essay “Politics and the English Language:”

…the abuse of language is a sentimental archaism, like preferring candles to

electric light or hansom cabs to aeroplanes. Under this lies the half-conscious

belief that language is a natural growth and not an instrument which we shape for

our purposes.
185

Orwell discusses the “bad habits” of writing that are spread by “imitation.”
186

 The lack of precision

characterizes English prose, marked by vagueness and indifference to word choice. That is, words

are not chosen for their meaning, but “phrases [are] tacked together like the sections of a

prefabricated hen-house.”
187

 Perhaps with the same indignance, Orwell points to the “worn-out

metaphors which have lost all evocative power,”
188

 complex verb constructions and use of the passive

voice, and pretentious diction that “give an air of scientific impartiality to biased judgments.”
189

 It is

exactly these qualities that, Mellinkoff suggests, color and corrupt the legal language. Yet, these traits

described by Orwell are found in political writing. Like Mellinkoff, Orwell argues that words that

have outworn their usefulness should be discarded. As well, all “prefabricated phrases, needless

repetitions”
190

 should be cut. But, where Orwell and Mellinkoff diverge is their respective views on

simplification of language. While Mellinkoff merely alludes to simplifying the language, Orwell

tackles simplification and its relationship with meaning.

To Mellinkoff, simplifying the vocabulary and syntax appears to be a quick fix for the murkiness of

the legal language. To reiterate, he argues that legal language should align with ordinary language.

Orwell interestingly ventures further. Specifically, he highlights the notion of “fake simplicity and the

185

 George Orwell, “Politics and the English Language,” in Why I Write 102 (2004)

186

 Id. at 103.

187

 Id. at 105.

188

 Id. at 106.

189

 Id. at 107.

190

 Id. at 119.

 M. Ma

41

attempt to make written English colloquial.”
191

 As opposed to “setting up a ‘standard English’ which

must never be departed from,”
192

 Orwell focuses on concreteness and meaning first. He describes

this as a conscious effort to predicate meaning over word choice. Though Mellinkoff and Orwell

both argue that language expresses thought, Orwell raises the question of how thought can dictate

language. Inadvertently, he reaffirms that form and substance are indeed distinct. However, clarity

and precision are one and the same: they define meaning.

This may be revealed through the six rules Orwell believes would enable better communication of

thought:

(1) Never use a metaphor, simile or other figure of speech which you are used to

seeing in print.

(2) Never use a long word where a short one will do

(3) If it is possible to cut a word out, always cut it out.

(4) Never use the passive where you can use the active.

(5) Never use a foreign phrase, a scientific word or a jargon word if you can think

of an everyday English equivalent.

(6) Break any of these rules sooner than say anything outright barbarous.
193

Perhaps an exact reflection of Mellinkoff’s arguments, traces of Orwell’s rules have equally been

found in descendants
194

 of Mellinkoff’s work. Peter Tiersma, in Legal Language, reflects on how

well the language of the law operates as a means of communication. Tiersma suggests that other uses

and goals, including the “desire to appear objective and authoritative” and the use of the language as

“a marker of prestige and badge of membership,” take precedence over communicability.
195

 Tiersma

then answers Mellinkoff’s question: the legal language does not serve a communicative function.

Tiersma’s text acts as a counterpart to Mellinkoff’s work. Similar to Mellinkoff, he begins with a

walk through the ancestry of the legal language. However, Tiersma considers the retention of Latin

and other legal archaisms as the consequence of natural evolution. For Tiersma, the legal language

is representative not only of the influence of diverse culture, but also a reflection of the growing

191

 Id. at 118.

192

 Id.

193

 Id. at 119.

194

 Richard C. Wydick wrote an entire book titled, Plain English for Lawyers, that is an exact mirror to the Orwell’s

rules. See Appendix A for how chapter titles are a reformulation of Orwell’s rules.

195

 Peter M. Tiersma, Legal Language (1999), available at:

http://languageandlaw.org/LEGALLANG/LEGALLANG.HTM.

 M. Ma

42

complexity of the legal system.
196

 Nevertheless, Tiersma concludes that the legal language has enabled

lawyers to retain monopoly on the provision of legal services and, in effect, maintain the legal

fraternity.
197

Like Mellinkoff, Tiersma raises parallel arguments on the strategic use of precision as well as the

unique legal lexicon that is representative of the language. Tiersma, though, extends Mellinkoff’s

observations. Building on Mellinkoff’s discussion of “uncommon meanings,”
198

 Tiersma highlights

the frequent application of “legal homonyms.”
199

 That is, legal terms either wear two or more

meanings; or that they have a divergent legal from ordinary meaning. As well, Tiersma discusses

other markedly legal traits. First, legal sentences appear to pivot around modal verbs like shall.

Though shall tends to serve a temporal function in ordinary language, in legal language, shall

frequently signals obligation. Moreover, legal language is significantly dependent on reference.

Tiersma notes the linguistic difference between referential and attributive descriptions. Attributive

refers to a general entity that fulfils a particular description, whereas referential denotes a specific

entity.
200

 Certain legal texts (e.g., wills, contracts, etc.) intentionally play on referential and attributive

descriptions. Legislative documents, however, almost always use attributive references. This, in turn,

enables multiple interpretations and referential ambiguity.

While Mellinkoff is largely concerned with lexical complexity, Tiersma alludes to Mellinkoff’s note

on structural and syntactic complexities of legal language. In particular, he continually refers to the

“unusual sentence structures” of the language, including conjoined phrases, impersonal

constructions, “an inordinate amount of negation,” and the “separating of subject from the verb, or

splitting the verb complex.”
201

 These ‘quirks,’ as Mellinkoff suggested, do not have any

communicative purpose, and could easily be removed. Yet, Tiersma argues that these stylistic

features reveal that the legal language follows its own set of linguistic rules. That is, the distinct

‘characteristics’ of the legal language are, in fact, inherent to its formulation. The legal language

contains syntactic and semantic constraints, along with a unique grammar. The language of the law

196

 Id.

197

 Id.

198

 Recall Mellinkoff’s discussion on common words with uncommon meanings.

199

 Id.

200

 Id.

201

 Id.

 M. Ma

43

is its own separate language. In short, Tiersma’s analysis brings to light how unpacking linguistic

constructions not only muddies the divide between form and substance, but may also be crucial to

understanding the language’s unique code.

Law’s Language

In the aforementioned section, Mellinkoff chronicled how the language of the law is a product of

historical legacy and tradition, explanatory of its archaisms and structural form. That is, the language

is a mere consequence of ritual and ecological inheritance. He notes that its specific and unique

characteristics are matters of form and not substance. This means that law and its language are

suggestively distinguishable. Conceivably, then, the language is not married to the discipline and

transforming legal to plain language is possible. This suggests that legal concepts are capable of being

extracted from their current arrangement and transposed into an ordinary, everyday linguistic form.

The technical language is simply embellishment. This view, however, is not shared by Tiersma.

Rather, he raises the argument that the relationship is less distinct; that the language is, in fact, integral

to its function. The question becomes: does the performance of the legal language affect its

existence?

In Legal Discourse, Peter Goodrich provides a careful account on the perceptions of language in

legal contexts. In particular, Goodrich highlights the science of legal language, placing emphasis on

its regard as an independent, technical language as opposed to a specific category embedded within

an “existent language system.”
202

 In prior literature, language has been described as a neutral

instrument used to justify the application of formalistic legal methods. Goodrich provides a critique

of this notion, putting forth arguments for the social and political dimensions of legal semantics.

Interestingly, Goodrich alludes to linguistics and jurisprudence as parallel operations, both relying

on the ‘codes’ that govern. Across both disciplines, the attention has largely dwelled on the “abstract

imperatives,” captured as an objective study without regard for its subjective context.
203

 Instead,

Goodrich argues that to understand linguistic and semantic inclusion is, in effect, to bring to light the

relationship of law and power. Law as a genre of linguistics tackles meaning at its heart. Therefore,

Goodrich appeals to the interrelations of form and substance, and the privileging of structuralist over

historical account.

202

 Peter Goodrich, Legal Discourse: Studies in Linguistics, Rhetoric and Legal Analysis 2 (1985).

203

 Id.

 M. Ma

44

Goodrich raises a fascinating objection to structural linguistics in law. Structural linguistics perceives

language as a medium reducible to scientific form, creating the illusion of conceptual universality. In

the same manner, the use of language in legal practice implies consistent rules of internal governance

according to a static, positivist grammar. In other words, Goodrich considers that the dominant

paradigm of language analysis is a justification for legal formalism and treatment of text as “predicated

upon its unity as the expression of a precedent intention or will.”
204

 This suggests that the process of

determining meaning has largely followed an “analytic reconstruction of its source.”
205

To paint this picture, Goodrich turns to the jurisprudential work of Hans Kelsen and the “pure

science of law.”
206

 Kelsen’s logical analysis of law reduces the chaos of perception to a “multitude of

general and individual norms.”
207

 These norms fulfil logical conditions for an objective interpretation

of law.
208

 Like Kelsen’s norms, Ferdinand de Saussure’s conception of linguistics rests on the

principles of formal validity and order. Saussure’s articulation of a general linguistics draws attention

to the semiotics of legal argument.

Saussure, perceived as a close ancestor to modern linguistics, regarded language as a system: an

institution of the present, but also a product of the past.
209

 In the nomenclature developed by

Saussure, the words of a language are understood as a “two-sided psychological entity”
210

 – the

signified (concept) and the signifier (sound pattern). The former builds the connection to the latter

and is institutionalized in the language. Therefore, the linguistic sign is considered whole when both

constituent elements are present. The connection between both elements is arbitrary; there is no

internal association between the signified and the signifier.
211

As there is a disconnect between the signified and the signifier, Saussure’s linguistic system is

predicated on a method of reference and classification. Meaning is not anchored in reality but only

understood through conceptual relations. Meaning is determined by the relational contrasts of words

204

 Id. at 3.

205

 Id.

206

 Hans Kelsen, Pure Theory of Law (first published in 1934, Max Knight trans., 1967).

207

 Id. at 72.

208

 Id. See also Goodrich, supra 202 at 38.

209

 Ferdinand de Saussure, Course in General Linguistics 10 (Bloomsbury Revelations ed. 2013).

210

 Id. at 77.

211

 Id. at 78.

 M. Ma

45

within the system, otherwise perceived as associative representations of reality. Similarly, the

grammar of legal language reflects the “scientificity of the normative order and the necessary

interrelation of its elements, the status of the system itself as a series of necessary (analytic)

entailments.”
212

Evidently, this is reminiscent of systems theory. Systems theory conceives law as a social system that

generates its own realities and languages with processes and modes of classification.
213

 As in structural

linguistics, the law is ordered, consistent, and internally coherent. Niklas Luhmann understood law

as ‘semantic closure’ such that its high degree of internal complexity, self-reference, and self-

modification is indicative of how the law evolves.
214

 The law is a “structure of symbolically generalized

expectations;”
215

 with no concrete fixed definition but a “surplus of references.”
216

 The legal system

draws its boundaries through language. Jürgen Habermas, on the other hand, viewed the law as a

mode of interconnectivity – “an integrating factor that links the lifeworld to these systems.”
217

Habermas suggests that law is itself a translator, allowing different spheres to communicate

meaningfully. Law institutionalizes the rational will of the lifeworld through language and is amoral.
218

The law is made objective through its language.

While their views of the legal ‘system’ diverge, both Habermas and Luhmann could agree that the

purpose of language is to perform “… to a high degree of accuracy and transparency, the task which

law sets for it,”
 219

 reflecting an impartial distance between law and language. Language then is distinct

from the law, functioning merely as law’s surrogate for stability and predictability. This suggests that

the demands of the legal language are relatively simple: language must operate independent of

212

 Goodrich, supra 202 at 39.

213

 Chris Hutton, Language, Meaning, and the Law 24 (2009).

214

 Id. at 25.

215

 Niklas Luhmann, Law as a Social System 146 (2004).

216

 Id., at 144.

217

 The ‘lifeworld’ is defined as the general ‘private’ sphere; the everyday world of family, social practice and beliefs that

sustain the ‘public’ sphere. They form the horizon for speech and the source of interpretation and is reproduced only

through ongoing communication. See Jürgen Habermas, Between Facts and Norms: Contributions to a Discourse

Theory of Law and Democracy 354 (1996).

218

 Chris Hutton, supra 213 at 28.

219

 Id., at 29.

 M. Ma

46

meaning. Returning to Saussure, an analogy appears whereby the legal language may be seen as the

signifier, while legal substance is the signified.

Duncan Kennedy pioneers the structural linguistic analogy to legal argument by deconstructing the

language as a system of ‘argument-bites.’ Argument-bites form the basic unit. Operations then

performed on argument-bites constitute and build legal arguments. Such operations diagnose and

assume the circumstances, or relationships, in which the argument-bite is to be manipulated and

‘deployed.’
220

 Such import of structural linguistics conceptualizes law and argument as systematically

formulaic; “a product of the logic of operations.”
221

 Perhaps most interesting about Kennedy’s theory

is his idea of ‘nesting.’ Kennedy describes nesting as the act of ‘reproduction’ or the “reappearance

of [argument-bites] when we have to resolve gaps, conflicts or ambiguities that emerge [from]…our

initial solution to the doctrinal problem.”
222

 In reality, nesting arrives when courts are asked to rule

on inherently subjective standards of reasonableness.
223

 Therefore, the conundrum surfaces where

language may be applied to law in a mechanical fashion but the process of reducing legal argument

to a system of operations raises considerations on the act of labelling and the power in its

performativity. That is – and as Kennedy rightfully notes – “language seems to be ‘speaking the

subject,’ rather than the reverse.”
224

Within the concept of meaning, there is then an objective and subjective variant. The objective legal

meaning represents the product of the “presupposition of the basic norm as the principle of origin

and the criterion of validity for legal norms.”
225

 Referring to Kelsen, these norms intend only to

describe the system, but its actual practice is considered unimportant. Description is “an abstraction

away from a social practice embedded in the multidimensional normativity of the social world.”
226

220

 Kennedy describes relating argument-bites to one another by such operations as a means of confronting legal

problems. See Duncan Kennedy, A Semiotics of Legal Argument, 3 Collected Courses of the Academy of European

Law 317, 351 (1994).

221

 Id. at 343.

222

 Id. at 346.

223

 Kennedy suggests nesting arises out of its association with objectivity; judges “prefer it because it harmonizes with the

stereotypically judicial pole in the judge/legislator dichotomy.” See id. at 348.

224

 Id. at 350.

225

 Goodrich, supra 202 at 40.

226

 Id., at 34.

 M. Ma

47

This enables the distancing between the substantive production and scientific maneuvering of legal

norms.

This separation between form and substance fosters an “agnostic semantic subjectivism,” such that

it is “futile or fictitious even to attempt to specify any single, correct, interpretation or application of

a general norm.”
227

 He then highlights other legal philosophers, in comparison to Kelsen, in an

attempt to reinforce the formalist paradigm of language analysis. Goodrich cites H.L.A. Hart, for

example. He argues that Hart’s rule of recognition is a mere reformulation of a formalistic analysis

of law, but as a mutually reinforcing system of rules. Hart’s contribution is only a minor revision to

a fundamentally structural account on legal validity.
228

In this regard, Goodrich bridges Hart with Ludwig Wittgenstein. Accordingly, the actions derived

from the word are effectively married to its meaning. Language is a form of life.
229

 Linguistic

expression is, therefore, constructive of its being. It is conceivable then that language could be no

more than a list of orders and classifications. It follows that in abiding by the rules of association –

or, to play the game – is to accept the inherent authority of its practice. Meaning is found in the

performance of the word, and not in the understanding of it. The ‘language-game’ clarifies the

context which binds its use and, in effect, its meaning. What Goodrich emphasizes is that there

remains a distinction between the internal character of the law,
230

 and the external usage.

The problem with Goodrich’s argument is that he conflates traditional linguistics with the philosophy

of language. In particular, he defines language study as one limited to objective idealism and the

ghost of semiotics; that regard for language in law has continually focused on rough reconstructions

of Saussure’s principles. He sees that the dominant framework disregards the politics of legal

interpretation and focuses on asserting logic to legal language. In effect, the law is scientifically

captured within a structural grid of analytical conditions and constraints. So, what is Goodrich’s

response to the “evil hand of formalism”
231

?

227

 Id. at 43.

228

 Id. at 48.

229

 Ludwig Wittgenstein, Philosophical Investigations 19 (2
nd

 ed. 1958).

230

 The consideration that the character of the law is a social fact. Goodrich suggests this is merely ‘descriptive sociology’

of legal substance. See Goodrich, supra 202 at 48.

231

 Id. at 55.

 M. Ma

48

A decisive turn from logic, Goodrich, therefore, proposes the integration of sociolinguistics to legal

analysis. He argues that the role of linguistics should account for law as social action.
232

 That is, it

should consider the inequalities of power that are syntactically embedded within the system. Texts

are a “complex combination of linguistic constructions, functions and codes correlated to variable

socio-political and ideological contexts.”
233

 As opposed to linguistic structure, the focus should be on

linguistic effects, and specifically the effects of discursive processes. Consequently, Goodrich suggests

that rhetoric should instead be the focus of language study, encapsulating the existence of “legal

fictions and legalistic abstractions”
234

 and logical fallacies inherent in legal text. Moreover, rhetoric

studies the forms of discourse, particularly those of literary genres including metaphor and

metonymy.
235

This particular strain of understanding draws flavors of Lon Fuller and his essays on legal fictions.

Fuller describes the status of legal fictions as linguistic phenomenon. More importantly, legal fictions

vis-à-vis legal and scientific facts were of particular concern to him. Fuller considered legal fictions as

a litmus test on the boundaries of the language. Defined as “consciously counterfactual

propositions,”
236

 he referenced legal fictions as a specialized form of linguistic abstraction. Fictions

have the constructive function to “keep the form of the law persuasive.”
237

 In effect, legal fictions are

rhetorical devices, representative of the linguistic mechanisms that enable legal processes.

Similarly, Goodrich suggests that legal language must turn to its communicative function and its

capacity as the discourse of power.
238

 In contrast with the “determinate logic of legal signification,”
239

often framed as instruction, rhetoric stresses argumentation. Rhetoric is concerned with the use of

language to enable a given result. Though Goodrich focuses on the significance of speech, he does

not perceive it in the same light as J.L. Austin. For Goodrich, Austin’s reflections on speech acts and

performativity remain in the realm of structure. Again, Goodrich regards Austin as a distant ancestor

232

 Id. at 76.

233

 Id. at 79.

234

 Id. at 86.

235

 Id. at 87.

236

 Lon Fuller, Legal Fictions, 25 ILLINOIS L. REV. 363, 369 (1930a).

237

 Id. at 387.

238

 Goodrich supra 202 at 88.

239

 Id. at 88.

 M. Ma

49

to Saussure and semiotics. Austin’s speech acts describe how legal obligations are relative to public

specification; utterances necessarily correspond to particular procedures situated within social

contexts. Their mis-performance leads to a nullification or voidance of the act.
240

 Utterances are akin

to directives for ‘appropriate’ social behavior. Language has a definite sense and reference. For words

to have meaning, their reporting must necessarily ascribe to these attributes.

In contrast, Goodrich aligns with the arguments of Stanley Fish on text and the role of the audience.

Fish draws the connection between assumptions and argumentation. He suggests that questions

formed against the linguistic problems are mere projections of the readers themselves. As a result,

the interpretation of arguments changes with the reader such that meaning reflects not the capacity

of expression, “but the ability of a reader to confer it.”
241

 Therefore, it is naturally contradictory to

conceive of language as neutral constructs. The consideration of language as one that simply mirrors

facts independent of purpose or perspective, is a fiction.
242

 Perhaps, as Michel Foucault states, rather

than ‘an arbitrary system,’ language forms are interwoven with the world. They are an “enigma

renewed in every interval…and offer[ed]…as things to be deciphered.”
243

How language constructs reality is an important question. Goodrich suggests that, against

determinacy, rhetoric focuses on persuasion as a relative concept and is subject to probability.
244

 The

content of a word is both conventional and temporal, storing references of the time. It is a normative

scheme that does not offer formal proof but is indicative of the context and power that underpins

and guarantees its authority. Goodrich then is preoccupied with institutional determination of

meaning: to develop an understanding of the “frequently obscured persuasive, argumentative and

coercive levels inherent in the writing of legal texts.”
245

He considers that the use of linguistic mechanisms enables the law to appear as if there is a consensus

on social values and justice. The legitimacy of the law is presumed but requires explaining.
246

Goodrich, therefore, reconceptualizes from ‘how to do things with legal words’ to ‘how do legal

240

 John L. Austin, How to Do Things with Words 16 (2
nd

 ed. 1975).

241

 Id. at 9.

242

 Fish, supra 178 at 106.

243

 Michel Foucault, The Order of Things: An Archaeology of the Human Sciences 35 (1970).

244

 Goodrich supra 202 at 102.

245

 Id. at 97.

246

 Id. at 117.

 M. Ma

50

words do things.’ His argument reflects on the manipulation of linguistic practices that produce

divergent meanings. As opposed to denoting a legal meaning, Goodrich points to the way in which

meaning that already exists in a particular social context is intentionally used in a legal environment.

Importantly, meaning must be understood as a consequence of institutional appropriation, its

discursive formation as a network understanding of both the internal ordering and relationship to

other discourses.
247

 In short, language becomes a social phenomenon whereby form and substance

are inseparable.

For linguists, there is a distinction between philosophy from the practice of core linguistics. While

Goodrich has identified structural linguistics as having removed semantics, and thereby diluting

methods of realizing meaning, his proposal equally diminishes semantics and other linguistic

practices of deriving meaning. This is because Goodrich mistakenly construes syntax as

interchangeable with semiotics and semantics; in effect, conflating several linguistic fields under a

single umbrella. His proposition is conceivably a pairing exercise between legal and linguistic theory,

rather than a substantive legal analysis through a linguistic lens. Goodrich’s text appears then to

juxtapose somewhat antiquated notions of structural linguistics against highly contextualized

discourse analysis. This produces a sharper distinction and builds a stronger justification for his

argument but fails to accurately capture the role of linguistics in law. Nevertheless, where Goodrich

succeeds is precisely the consideration of discourse and context as essential to language study.

In an earlier account to Goodrich, Brenda Danet provides a thorough linguistic analysis of the

interrelations of law and language. She pioneers research on the use of language to perform law’s

core functions. She describes these functions as (1) the ordering of human relations; and (2)

restoration of social order.
248

 Importantly, Danet offers an initial framework for the study of language

in law, with specific concerns from the perspective of sociolinguistics. Goodrich and Danet appear

to be two sides of the same coin. Goodrich, however, is a legal scholar; Danet is a communications

and sociolinguistics expert. It follows that her contribution delivers a necessary counterbalance to

the aforementioned discussion. It must be noted that Danet’s arguments extend beyond written texts

and into the realm of dispute and trial analysis. For this reason, sociolinguistics equally factors

247

 Goodrich coins the terms intradiscourse and interdiscourse to describe the system of discursive formations. See id.

at 144-151.

248

 Danet, supra 157 at 449.

 M. Ma

51

behaviors of individuals within the courtroom setting. These considerations fall outside the scope of

this thesis.

In her text, Danet begins with an introduction to the notions of competence and performance drawn

from renowned linguist, Noam Chomsky. Chomsky separates the capacity to produce with the actual

use. For Chomsky, linguistic knowledge is independent of its environment. Chomsky’s model

obsesses over a strict adherence to systems theory. That is, language is an entirely internal system,

with inherited forms of organization that are agnostic to features of the environment.
249

 As linguistics

is divorced from its speakers and societal embedding, Chomsky’s language system is outside of

evolution. Its rules remain constant in spite of external changes. Danet considers Chomsky’s theory

as the separation of internal language rules from outward engagement.

Like Goodrich, she raises hesitations around this perception and argues for the consideration of

context in deriving meaning. In comparison with Goodrich’s logical divide, Danet draws a distinction

between semantics and pragmatics on the premise of context. The next chapter will dive deeper into

these linguistic fields. But, for the intentions of clarifying her argument, semantics alludes to sentence

meaning that is context-independent and pragmatics is context-dependent, drawn entirely from

interpretative acts. As will be seen, Goodrich fails to detail the various ways in which pragmatics

manifests itself in legal language. His discussion on rhetoric only articulates one area of pragmatics:

discourse. Danet, on the other hand, captures holistically the variable field of pragmatics as the layer

on which the functions of the law are revealed.

Danet argues that the significance of pragmatics is particularly noticeable when distinguishing

between meaning as an object and meaning as an act.
250

 Meaning as an object returns to discussions

of objectivity and “correct” characterizations of reality. Meaning as an act, on the other hand, is

constructivist and a result of knowledge that extends beyond the information given in a particular

text.
251

 The dichotomy is further accentuated when reflecting on literal as opposed to metaphorical

uses of language. In the constructivist perspective, metaphor is not a form of embellishment, but a

feature of the game. Contrary to Goodrich, Danet finds that Wittgenstein’s language games view

language precisely in context. To Danet, the referential correspondence between the word and use

249

 Hutton, supra 213 at 38.

250

 Danet, supra 157 at 455.

251

 Id.

 M. Ma

52

can be regarded as tools in a toolkit.
252

 In contrast, Goodrich’s interpretation of Wittgenstein

conceives of legal language as a single closed system. Alternatively, Danet considers legal language

as a simultaneous engagement of multiple language games, deployed and played differently in

accordance with circumstance.

Moreover, meaning as an act highlights a difference between sentences and their empirical use.

Though Goodrich alludes to performativity, his rejection of Austin demonstrates a regard for

utterances from a one-dimensional lens. To Goodrich, Austin’s performatives are mere instructions.

Danet, instead, suggests that Austin’s work captures the institutional authority of the law and, in fact,

are the foundation on which legal relationships have come to be expressed. Scholars like John Searle

later developed typologies
253

 that build from Austinian performatives. Several categories of speech

acts are of particular importance: (1) representatives; (2) directives; (3) commissives; and (4)

declarations. Representatives are utterances that assert the truth of propositions. They set the reality

in which the utterance occurs. Commissives are utterances that behave as future commitments.
254

Danet draws the analogy between commissives with promises and contracts.

Directives and declarations are perhaps the most intuitive connection. Directives are utterances

found largely in legislative documents and considered, by default, obligations. Directives are a

marriage of form and substance as the context of its use is implicit of its authority. Declarations are

utterances that, when successfully performed, “bring about a correspondence between their

propositional content and reality.”
255

 That is, there is a change in state predicated upon both linguistic

competence and the extra-linguistic institutional authority of the speaker. Within Searle’s categories,

the subgroup of representative declarations is striking. Coupled with the notion of representatives,

Danet points to the mythical fact-law divide. The successful performance of legal utterances does

not require the ascertainment of facts. Instead, they define what are the facts; and thereby assert a

legal reality. This parallels Geoffrey Samuel’s discussion of legal reasoning as the manipulation or

252

 Danet, supra 157 at 456.

253

 John Searle, A Classification of Illocutionary Acts, 5 Language in Society 1 (1976).

254

 Danet, supra 157 at 459.

255

 Id.

 M. Ma

53

construction of ‘virtual’ against perceived ‘actual’ factual situations.
256

 Facts of a case do not exist until

they are constructed through argument.

In short, Danet reveals that speech acts are a pragmatic dimension that express the law’s institutional

power and construct binding relationships between parties. Interestingly, Danet reflects on discourse

analysis. She describes this development as a subfield of pragmatics concerned with “how the parts

are linked to the whole.”
257

 This means that discourse describes the cohesion of the language or the

coherence of a series of utterances; in other words, fractals. Discourse analysis serves as a test of

interoperability and consistency across the legal system, expressed through the language. Counter to

Goodrich’s argument, discourse analysis alone insufficiently articulates the dynamics of power

embedded within the language. Alternatively, Goodrich provides a strong basis of how rhetoric

enables constructions of truth; perhaps suggesting a misinterpretation of discourse analysis as

interchangeable with rhetoric.

After laying the theoretical foundation, Danet considers the linguistic status of legal language. Is legal

language a technical dialect? She considers legal language as a form of diglossia – a variant of higher

prestige “superposed” on to the native practice.
258

 Interestingly, she notes that the complexities of

legal language are the complexities of natural language. In effect, “the indeterminacy of the law is in

part the indeterminacy of the language itself.”
259

 In this manner, the attempts at clarifying legal

language stipulated by Mellinkoff are rather futile. Evidently, shifts away from specific legal jargon

would not have a substantive impact on the clarification of legal meaning.

Danet points to an exploratory study
260

 on the conceptual and linguistic complexity of legal language.

She explains that despite linguistic reform,
261

 comprehension did not improve. Moreover, she

unpacks the argument frequented by the legal community that “legal concepts are inherently difficult

and cannot be simplified.” In another study,
262

 she observed that, contrary to the perceived outcome,

greater conceptual difficulty did not lead to reduced comprehension. There is then a gap between

256

 Geoffrey Samuel, Is legal reasoning like medical reasoning?, 35 LEGAL STUDIES 323 (2014).

257

 Danet, supra 157 at 463.

258

 Id. at 473.

259

 Id.

260

 Id. at 488.

261

 By linguistic reform, Danet specifies syntactic and lexical simplification. See id.

262

 Id.

 M. Ma

54

comprehension and simplification. Danet argues that this is because linguists do not treat clarity and

simplicity as equivalents; “language has important functions beyond referential.”
263

 She states that “no

amount of simplification of language…can guarantee that its [legal] conditions are fair. Fairness is a

substantive issue, not just a formal one.”
264

 As a result, the issues of clarifying legal language are not

easily resolved through syntactic or semantic simplification. Instead, there must be consideration of

both substance and form. The subsequent case studies in the following chapter will further explore

the distinction between clarification and simplification.

The central proposition of Danet’s text is her discussion on the “thickening” of legal language. She

argues that while law appears to deal with fact, the preoccupation with a highly elaborate and esoteric

language suggests that the function is not referential, but poetic.
265

 Recalling Fuller, the active use of

legal fictions, a consciousness of falsity, is both a distinctive and embedded function of the language.

Written legal documents perform in a manner opposite of its claims towards precision, transparency,

and truth. Text is a source of symbolic significance, birthed from ritual and bears the aesthetics of

mystery. It is akin to religious discourse, sufficiently cryptic to be unquestionably true.
266

 Though

Danet offers several explanations, perhaps the most convincing is that legal language maintains an

illusion of certainty amidst “a world of uncertainty.”
267

 Perhaps it is as Orwell suggested, the legal

language is designed to “give an appearance of solidity to pure wind.”
268

 The language is meant to be

experienced and not understood.

Evidently, several crucial lessons may be drawn from Danet. First, applying the philosophy of

language as a lens of legal analysis produces distinct discussions from core linguistic analysis. Second,

to undergo a linguistic analysis of legal texts is to necessarily consider pragmatics. Accepting the

premise that legal language is constructivist, ambiguity is then inherent to language. As well,

conceptual complexity does not need to be reduced to increase comprehension. Simplification does

not necessarily lead to clarification. Equally, rhetoric plays a critical role in legal language, such that

it reveals the mechanics of legal reasoning and the myth of “fact-finding.” Danet points to the

263

 Id. at 490.

264

 Id. at 489.

265

 Id. at 540.

266

 Id. at 545.

267

 Id.

268

 Orwell, supra 185 at 120.

 M. Ma

55

poeticization of legal language. Intrinsic to the language is the veil of mystery reinforced by literary

device. As opposed to the language used in legal contexts, what Danet reveals is the instrument of

language in legal processes. All in all, Danet’s text may be perceived as a response to Mellinkoff and,

arguably, provides a better account of how the law is a medium of communication. Her lessons are

located within an existing body of legal theory, perhaps indicative of core linguistic analysis as an

effective frame of legal analysis.

Law as Language

Thus far, the chapter has explored the intricacies of legal language, reflecting on the uniqueness of

its personality. Danet questioned the linguistic status of legal language, whether it is a technical dialect

or a variant. More importantly, it has been regarded that embedded in the language are the dynamics

of institutional power. That is, legal language wears a cloak of authority that can be distinguished

from ordinary language. The following section builds on this notion to uncover perceptions of law

as a linguistic vessel.

James Boyd White instructs his readers of the contours of legal language and the lawyer as a writer

in The Legal Imagination. This work has been renowned to introduce how identities and meanings

are constituted in legal text. More importantly, Boyd White introduces the genre of regarding law as

literature. Just as other literary works, legal texts behave similarly. However, he suggests that legal

language is a specialized form, derived from its capacity for precision. Mellinkoff has, of course,

attempted to debunk this myth. Nevertheless, Boyd White offers an alternative view. Namely, he is

preoccupied with the reputation of precision around the language. In turn, he is focused on the

conditions of the mind, and how language “demonstrates the condition of the imagination.”
269

 Rather

than language as a tool of communication, the legal language is indicative of perceptual difference, a

particular visualization of fact. Simply put, it is how the law sees the world.
270

Consequently, Boyd White regards legal language less as a matter of expression, but, more so, as a

relationship. Boyd White communicates this argument through his discussion of control. He argues

269

 James Boyd White, The Legal Imagination 6 (1973).

270

 There is overlap on the law’s visualization of fact and the notion of law as “local knowledge” put forth by Clifford

Geertz. He notes, “the vernacular characterizations of what happens connected to vernacular imaginings of what can. It

is this complex of characterizations and imaginings, stories about events cast in imagery about principles, that I have

been calling a legal sensibility…” See Clifford Geertz, Local Knowledge: Further Essays in Interpretative Anthropology

215 (1983).

 M. Ma

56

that the legal language is inherited; a formal language that is imposed and has the quality of “defining

the habitual expectations, the cast of mind, of the audience with which you will deal”.
271

 As opposed

to choosing amongst questions of linguistic construction, the language has inherent limitations that

require its adopters to master control in order for meaning to exist. He considers first metaphor as

a form of control,
272

 representative of depth and depiction of the inexpressible. He reflects on Joseph

Conrad’s Mirror of the Sea, an autobiography of Conrad’s life written through the world of the sailor.

In a similar light, he asks what may be the “world” of law and how is it written? Legal language can

then be conceived as a metaphor. Language is not simply the law’s functionary, but, in fact, a

thumbprint of its social identity.

Equally, Boyd White points to ambiguity as a necessary counterpart to metaphor. That is, the use of

metaphor requires accepting that there may be more than one meaning. Boyd White refers to Moby

Dick as an informative example. The fixation on the whale and the inconsistency and variety of its

depiction represents the pursuit for meaning, whereby “inherited systems of thought and language

that give meaning to events no longer work.”
273

 Ambiguity enables the space for the uncontrolled, as

no one meaning is settled. Moreover, Boyd White argues that giving meaning is not equivalent to

explaining.
274

 Rather, it is the opposite; language cannot explain, but can only afford particular

significance to an experience. The legal language cannot articulate fact but can only read it.

The question becomes: how is the legal experience signified through its language? Marianne

Constable returns to Austin and extends his theory to consider “legal speech acts.”
275

 Constable

delves into the legal grammar, focusing on its “strange retrospective temporality.”
276

 She notes that

law is “neither strictly causal nor chronological.”
277

 Written in the future perfect tense, the grammar

indicates a commitment made in the present that refers to the future reflecting on a recent past.

Retrospection and anticipation are inseparable. Equally, Constable points to the imperfect tense that

271

 Boyd White, supra 269 at 72.

272

 Id at 47.

273

 Id. at 58.

274

 Id.

275

 Marianne Constable, Law as Language, 1 CRITICAL ANALYSIS OF LAW 63 (2014).

276

 Id. at 68.

277

 Id.

 M. Ma

57

is notable in legal utterances. She suggests that this is representative of the incompleteness of the law,

knowledge that is interruptible and incapable of total attainment.

Constable’s arguments are fascinating. She exposes the character of law as traceable in its grammar.

This differs from prior discussions, as it appeared that the analysis was focused on the peculiarities

of the vocabulary and sentence structure. These peculiarities were then assessed against

interpretability and readability. Instead, the crux of her analysis centers on tense and construction of

verbs in law’s communicative function. Constable demonstrates that the legal grammar is an implicit

representation of the law’s behavior. Interestingly, her arguments are not persuasive in understanding

how law is a language. Merely, she has reframed how the legal language is distinct in its form.

In contrast and reminiscent of Boyd White, Richard Posner refers to law as a literary medium. While

both Constable and Posner reflect on the element of temporality, the intention is entirely opposite.

Posner focuses on the temporal remoteness
278

 as an explanation for issues of interpretation, whereas

Constable sees it as a form of fingerprinting. Moreover, Constable does not reflect on meaning-

making. Subsequently, Constable and Posner are a mirror to language and text as conversations of

form and substance.

For Posner, reading legal text as literature reveals the law’s intimate relationship with fiction.

Throughout this chapter, legal fiction has been discussed on multiple occasions.
279

 Posner, however,

is not concerned with legal fiction as a feature of the legal language. In contrast, he considers that the

law is fiction; and in effect, the legal language is figurative. Posner is not suggesting that there is no

‘truth’ to the text, but simply that tools, commonly found in literature, help generate fact in legal

writing. Perhaps echoing Danet, the legal language is poetic and capable of painting the dissimilar as

similar.
280

 It is an imagination
281

 built on metaphor, “an inescapable method by which we give structure

to experience.”
282

 To substantiate his argument, Posner uses a seminal case on privacy, Melvin v.

Reid.
283

 Posner argues that as this case was initially tried on the merits, the factual recital, “as far as

278

 Richard A. Posner, Law and Literature: A Misunderstood Relation 15, 210 (1988).

279

 Recall in the discussion of Goodrich, Fuller, and Danet.

280

 Id. at 3.

281

 Posner frequently refers to Boyd White’s text. See id. at 12.

282

 Id. at 4.

283

 112. Cal. App. 285, 297 Pac. 91 (131). See also Posner’s description of the “facts” of the case. Id at 4-5.

 M. Ma

58

anyone knows,” could have been fictitious.
284

 Though the case was originally dismissed, the appellate

court had requested it be tried again to determine whether the facts were as alleged. Interestingly,

the tracks stopped there and there was no further trace of this case. Posner’s example is

representative of the body of judicial decisions that do not require verification of ‘fact.’ Rather, no

one has ever known whether there was indeed an infamous snail in the ginger beer.
285

 Still, these

cases are “woven into the fabric of the law.”
286

 It follows that judicial decisions substantiate these

narratives as truths.

Though the remainder of Posner’s text is devoted to reconciling the lessons that may be learned

between law and literature, he has offered a perspective on law as a linguistic conduit of reality. The

law is a literary narrator and is, by design, built on fiction. It is like a ventriloquist; a performative

experience that is false and consciously staged, nonetheless accepted on the basis of a circumstantial

realism.
287

 In consideration of law as language, how important is the use of natural language towards

the success of the ventriloquist act? In other words, accepting the premise of law as communicating

a reality, are these literary constructions (i.e., metaphor) wedded to its current form? The concluding

section of this chapter strives to extend past the various conversations of law and language,

confronting instead the intentions of expression and communication vis-à-vis thought.

An Ode to Natural Language: Constructing (Con)text

In analyzing the ways in which the relationship of law and language have been described, I identify

two common aesthetics: (1) contour; and (2) shape. Contour represents the unique markers of the

legal language; how each bend and curve distinguish it from another. Shape, on the other hand,

represents legal language as a unique entity. It manifests itself and its surroundings bend to it. More

importantly, contour and shape work in tandem. It may even be argued that these aesthetics are

multiple sides of the same prism. Yet, the aforementioned scholars appear to be divided over

underlying philosophical, linguistic, and literary reflections on the legal language. What is notable is

the continued gap in literature on the role of natural language vis-à-vis legal language. Natural

284

 Id. at 5.

285

 Donaghue v. Stevenson, [1932] AC 562.

286

 Posner, supra 278 at 5.

287

 Francois Cooren, “In the Name of Law: Ventriloquism and Juridical Matters” in Kyle McGee (ed.), Latour and the

Passage of Law 249 (2015).

 M. Ma

59

language is perceivably accepted as a default tool for legal writing and a mere passing thought to their

respective commentary.

Accordingly, the scholars fail to completely articulate the distinctiveness of natural language as the

legal vessel. Together, however, they evidence that legal concepts have relied on the language for

their expression and communication. That is, natural language has been the exclusive instrument for

the law to conduct its work. What may be gathered are convincing arguments that justify the richness

of the law’s interpretative exercise. Directionality, however, has never been considered an issue. The

closest critique may be found in Goodrich’s discussion. To recall, Goodrich attempted to argue

against the semiotics of legal argument. Though not his intention, Goodrich alludes to notions of

conceptual transfer and intersubjectivity; language transports legal concepts that exist independently

and merely find expression through its linguistic vessel. This suggests that regardless of the

communicative tool, the legal concept could adapt accordingly. But, does natural language impact

the construction of the concept? That is, would the legal concept exist if it was to be expressed in an

alternative form?

Some scholars have argued that it could. Since the 1950s, Layman E. Allen had fervently argued for

the use of symbolic logic in the expression of legal concepts.
288

 Allen’s specific arguments will be

revisited in subsequent chapters. In short, he demonstrated symbolic logic was helpful to the extent

of unpacking complex sentence structure. Nevertheless, there remained hesitations around the

usefulness of symbolic logic for drafting.
289

 These arguments largely center around the limits of

symbolic logic in resolving legal complexity; that it was beyond a question of increasing precision,

but simply that most ambiguity is unknown.
290

 In other words, the law has an open texture and is

inherently incomplete. Danet argued that the indeterminacy of the law is reflective of the

indeterminacy of the language. Reframing her argument, could the indeterminacy of the language

be, in part, the indeterminacy of thought, and specifically legal thought?

288

 See for example Allen’s papers: Layman E. Allen, Symbolic Logic: A Razor-Edged Tool for Drafting and

Interpreting Legal Documents, 66 YALE L. J. 833 (1957) and Some Uses of Symbolic Logic in Law Practice, 3

MODERN USES OF LOGIC IN LAW (1962).

289

 Consider the response from Robert S. Summers, A Note on Symbolic Logic and Law, 13 J. OF LEGAL ED. 486, 490-

491 (1961).

290

 Id. at 492.

 M. Ma

60

Accordingly, there must be a reflection on communication and the purpose behind its mechanics.

Inevitably, Jacques Derrida comes to mind. Derrida considered the means of communication, and

specifically the mode of writing.
291

 He questions whether there is a “homogenous space of

communication” that writing is capable of extending.
292

 He retraces the origins of writing, noting that

“thought” was regarded as preceded and governed communication.
293

 Writing, then, is perceivably a

means of transmitting thought; the transmitter is independent of what is being transmitted. Derrida

suggests that the structural characterization of writing as representation– and thereby its mechanical

character – offers the impression that the relation between idea and sign (words) could never be

“either annulled or transformed.”
294

The problem, Derrida argues, is the notion of absence. Unlike other forms of communication, the

“speaker” is absent. Writing is “the mark that he abandons, and which cuts itself off from him and

continues to produce effects independently of his presence and of the present actuality of his

intentions.”
295

 Written communication, then, has the quality of permanence. Its structure inherently

enables outliving its author and the original linguistic and cultural context. Derrida describes this as

the “breaking force” that ruptures context.
296

 Interestingly, this ‘removal’ of context does not preclude

the readability of the sign. Instead, it marks the ability for writing to be grafted. Derrida states, “no

context can entirely enclose it. Nor any code […]”
297

The possibility of disengagement and grafting is further demonstrated in citation. Derrida highlights

that if placed between quotation marks, there enables an infinity of new contexts in a manner which

is absolutely illimitable.”
298

 So what does this mean? The capacity for the unlimited carving of text,

and subsequent mutability to other text, describes the directionality of language impacting thought.

In turn, concepts cannot be extracted from natural language as they are not encased by it. Derrida

suggests that written communication then is not a vehicle for the “transference of meaning;” meaning

291

 Jacques Derrida, “Signature Event Context” in Limited Inc. 2 (1977).

292

 Id. at 3.

293

 Id. at 4.

294

 Id. at 5.

295

 Id.

296

 Id. at 9.

297

 Id.

298

 Id. at 12.

 M. Ma

61

is a mere effect of writing.
299

 Perhaps the legal historians Mellinkoff references were right: law has

indeed been subjected to its writing. Derrida concludes, “deconstruction does not consist in moving

from one concept to another, but in reversing and displacing a conceptual order as well as the

nonconceptual order with which it is articulated.”
300

 Paradoxically, the simultaneous inability to

anchor context and ability to graft text destroys the separation between the casing and encased.

I, therefore, draw two possible conclusions: (1) natural language is the only vessel in which legal

concepts may be housed; or (2) an alternative vehicle may be able to house legal concepts, on the

premise that it must inherit natural language’s traits. The former may be framed in the guise of

Agamben’s arguments. That is, natural language is the law’s signature. The perspective of the latter

is less absolutist, and more nuanced. It suggests that, even in accepting the deconstructionist view,

there must necessarily be a mirroring, and at minimum, mapping of the ways in which the concepts

have taken shape through writing. More importantly, it is a test against the limits of written legal

expression. Regardless, both conclusions arrive at an inherent need to unpack the linguistic

construction of natural language to better understand the law’s embedded code. The following

chapter applies the considerations of this chapter and explores in depth the various pillars of

linguistics.

299

 Id. at 20.

300

 Id. at 21.

 M. Ma

62

2- Language Lego

 M. Ma

63

Irrefutably, there is a bond between law and language. In the prior chapter, there had been discussion

at length on the role and significance of language in legal text. Regardless of how the relationship

between law and language is perceived, the traditional understanding of their relationship has not

considered in depth the analytical weight of linguistics. However, several legal scholars have provided

grounds for further linguistic investigation. Peter Tiersma alluded to the uniqueness of the legal

language, an entirely separate language with its own linguistic constraints. Along a similar path,

Marianne Constable reflected on the specific grammar choices in legal language. Notably, Constable

described the choice of verb tense as characteristic of law’s open texture. Brenda Danet, on the other

hand, introduced a more nuanced practice. That is, in order to recognize how language interacts

with law, there must necessarily be a venture into the linguistic makeup. I describe here core linguistic

practice, often referred to as the “science of language.”

Putting forth the argument that methods of core linguistics must be examined to better understand

its legal impact, this chapter intends to walk through three essential pillars of natural language: (1)

syntax; (2) semantics; and (3) pragmatics.
301

 The mechanics of how natural language is shaped and

deconstructed provide an insightful commentary on existing understandings of meaning.

Furthermore, this section is an exploration of the known “subfield” of linguistics: computational

linguistics. These methods are frequently used to translate natural language to computer code. More

specifically, computational linguistics is understood as mirrors to linguistic methods of treating

natural language. But, as opposed to allowing natural language to be understood by humans, these

techniques allow natural language to be understood by machines. It is then another intention of the

chapter to investigate whether they are, in fact, functional equivalents.

This section will unfold as follows. Starting with syntax, the chapter will introduce core tenets of

sentence structure, diving into generative grammars, constituents, and dependency trees. The

chapter will then advance into meaning, specifically how meaning is formed. Semantics views the

meaning of sentences as sets of worlds that share the same truth conditions. Pragmatics, on the other

hand, factors the context inferred and the accounts of “additional meaning.” While the former is

built on propositional calculus and predicate logic, the latter is built on implicature, reference, and

301

 It is important to note that these are not the only subfields of linguistics. There are several others, but for the

intentions of the dissertation, they will not be discussed.

 M. Ma

64

presupposition. In short, semantics is predominantly context-independent while pragmatics is

context-dependent.

Alternatively, their counterparts in programming will be considered; beginning with regular

expressions and context-free grammars designed for syntax. The section will subsequently progress

into attribute grammars. These tools are often used to provide context-sensitivity when defining the

semantics of a programming language. Perhaps the most exciting discussion will turn to abstraction

and logic programming used to classify and conceptualize worlds. From the fundamentals, the

chapter will turn to knowledge representation and complexity.

The aim of this chapter is to garner a deeper understanding of linguistic tools and to engage with

notions of computation through an unconventional framing. I hope to redirect the focus from

computational linguistics to computation and language. More importantly, the section will act as a

primer, helping to bridge disciplines and engage in more complex investigations around the

translation of law to code. I must provide the disclaimer that I am neither a linguist nor a computer

scientist. I lean on texts that have been described as foundational to these disciplines. As well, the

chapter certainly does not and cannot claim to be exhaustive. Its intention is merely to introduce and

provide the foundation and lens for analysis. Consequently, I thank immensely fellow colleagues

who have helped educate, inform, and verify the material I present.

Syntax: Sentence Architecture and Structural Integrity

Syntax studies form, and more specifically, the organization of words to sentences. Syntax is

frequently conceived as embodying a cognitive component, as its theories consider how words are

generated from abstract thought to sentences. It follows that the leading syntactic theory
302

 is known

as Generative Grammar, developed by Noam Chomsky in the 1950s. The underlying thesis is that

sentences are produced through a subconscious set of procedures
303

 and that syntax is simply a model

of this process. Syntax is preoccupied with the formal properties of language and observes them

through a scientific method. It involves gathering mass empirical data and building generalizations,

302

 I, importantly, acknowledge that Chomsky has received over the years criticism in his work on Generative Grammar,

specifically his notion of innate models. See for example, Paul Ibbotson and Michael Tomasello, “Evidence Rebuts

Chomsky’s Theory of Language Learning,” Scientific American (Sept. 7, 2016) available at:

https://www.scientificamerican.com/article/evidence-rebuts-chomsky-s-theory-of-language-learning/. I maintain that, for

the purposes of providing a foundational, introductory perspective on syntax, it is nevertheless an informative starting

point.

303

 Andrew Carnie, Syntax: A Generative Introduction (3
rd

 ed. 2013).

https://www.scientificamerican.com/article/evidence-rebuts-chomsky-s-theory-of-language-learning/

 M. Ma

65

then drawing hypotheses accordingly. A syntactic hypothesis is defined as a rule and a group of

hypotheses is understood as a grammar.
304

 Syntactic models then carry a set of grammatical rules that

inform of acceptable word order. As a result, this ordering generates sentences. Again, these steps

are procedural. As syntax is perceivably a model of producing language, these rules are also

descriptive.

Grammaticality investigates the acceptability of a sentence on the basis of a competence-performance

distinction.
305

 Competence considers whether a sentence is interpretable in a language; effectively,

whether the sentence is well-formed. In contrast, performance refers to the act of executing a

language, the real-world behaviors that are a result of language knowledge. Therefore, acceptability

from a syntactic perspective focuses on competence. Acceptability is entirely structural and

associated with the “mental ability to break apart sentences.”
306

 Parsing sentences – deconstructing

phrases into bits – has certain limits, and these limits affect whether sentences may be interpretable.

For Chomsky, the parsing exercise is innate to human language generation. Chomsky raised a

distinction between Language (with a capital L) and language (with a lower-case l). Language (with a

capital L) is the cognitive capacity to create language (with a lower-case l). On the other hand,

language is an instantiation of this ability.
307

 Language is instinctual and built into the human brain.

This facility is known as Universal Grammar (UG).
308

 UG is described as a “flexible blueprint” for

constructing the knowledge of language.
309

 It constrains the processes that “map between situations

and utterances.”
310

 UG also enables recursion; an ability to embed structures iteratively and produce

infinite possibilities of sentences, even if they have never been generated before.
311

 Equally, human

language shares certain properties, the same basic innate materials for building a language’s grammar.

This ‘built-in’ system has core, atomic components for generating sentences. The acquisition of

304

 Id. at 8.

305

 Id. at 17.

306

 Id.

307

 Id. at 5.

308

 Id. at 19.

309

 Id. at 23.

310

 Id.

311

 Id. at 33.

 M. Ma

66

language can then be reduced to the “setting of certain innate parameters.”
312

 For instance, the setting

of the subject-verb-object (SVO) order. Though there are variations in how they are to be ordered,

this is one common arrangement. Fundamentally, the treatment of the parameters and how they are

set belong to the broader approach to syntax. Furthermore, it relies on the assumption that certain

grammars are inherent to the human brain and the rest is acquired.

In short, syntax is the study of sentence structure. While syntax considers, in part, the intrinsic

competence to generate acceptable sentences, syntax also reflects on sentential architecture. Words

in a sentence may be grouped into units called “constituents” that function together.
313

 These

constituents then are embedded into one another to form larger constituents, described as

“hierarchical structure.”
314

 These larger constituents eventually form sentences. It is perceivably an

assembly line for words and parts of words. Syntax considers the “purely intuitive level” of how words

appear to be related to one another. These intuitions are captured by the notions of constituency

and hierarchical structure. Sentences in generative syntax are represented in the form of a

hierarchical tree structure, illustrating the relationships between constituents.

In generative grammar, structure is represented by rules. The basic set of rules is known as phrase

structure rules (PSRs). These rules are one method of breaking down sentences to consider their

component parts. They reveal the manner in which phrases embed themselves and the structures

that allow for grammaticality. Below is a generalized list of PSRs:
315

312

 Id. at 28.

313

 Id. at 72.

314

 Id. at 73.

315

 Id. at 89.

 M. Ma

67

An initial observation is the mathematical nature of PSRs. The variables in PSRs all represent various

parts of speech (e.g., nouns, verbs, prepositions, etc.), with arrows representing how and when these

variables combine to become phrases. As an early Chomskyan approach, PSRs operate such that

application of these rules account for the formation of any English sentence. While PSRs are a

typical starting point in understanding syntax, PSRs, as a method, were soon overtaken by

constituency grammars like X-bar theory and Minimalism. Nevertheless, their fundamental ideas

remain inherently unchanged. Below is an example of how a sentence would be rendered into a tree

structure:
316

Syntactic trees also play an important role in unpacking ambiguous sentences. Consider the phrase:

 Elaine ate the pasta in the kitchen.

This sentence is structurally ambiguous as it could mean either (a) Elaine ate the pasta that was sitting

in the kitchen; or (b) Elaine ate the pasta and did so in the kitchen. Both meanings of these sentences

are equally possible, owed to the principle of modification.
317

 The first meaning has the prepositional

phrase (PP) in the kitchen modifying the noun pasta. The PP describes which pasta. It modifies the

316

 Example taken directly from Carnie. See id. at 90.

317

 Id. at 96.

 M. Ma

68

noun and is considered part of the noun phrase (NP). In the latter case, the PP in the kitchen

modifies the verb ate. The PP describes where the pasta was eaten. It modifies the verb and is

considered part of the verb phrase (VP). In short, the notion of modification is one example of how

structural relations between words alter its meaning. However, it does not indicate how to determine

meaning, but simply that there is more than one.

As mentioned, the rules that guide phrase structure composition depicts the mathematical properties

of syntax. The internal structural relations are generalizable and support how sentences are pieced

together. Just as syntax informs how sentences are assembled, it equally informs of the constraints of

assembly. For instance, a locality constraint is the rule that two syntactic entities must be near one

another. Two important notions must be discussed: (1) coindexation; and (2) binding. Coindexation

refers to the structural relationship between nouns in a sentence. An NP that gives meaning to

another NP is described as the relationship between antecedent and anaphor.
318

 For example,

consider the sentence:

 The woman (antecedent) was proud of herself (anaphor).

A personal pronoun, on the other hand, is an NP that may derive meaning from another word in

the sentence, or from context and previous sentences in a given text.
319

 Coindexation refers to the

notion of marking when two NPs refer to the same entity. See for example:

 [Adam]i claimed [he]i went to the library yesterday.

Two NPs that are coindexed are also described to corefer. Coindexation, or coreference, reveals

that, within syntactic hierarchical structures, anaphors or pronouns must accord with certain

conditions vis-à-vis the antecedent. This is known as binding. Consider the below sentences:

 Hannah wrote herself a letter.

 Hannah’s mother wrote herself a letter.

Both sentences have NPs that are coindexed. The difference, however, is the coindexing of the

anaphor herself. It is clear that herself refers to Hannah in the first sentence and Hannah’s mother

318

 Id. at 150.

319

 Id. at 149.

 M. Ma

69

in the second. But, how do speakers know the distinction? Why is it ungrammatical for herself to

mean Hannah in the second? Consider alternatively the sentence:

 Hannah’s mother admires her.

In this case, the pronoun her is coindexed with Hannah. Binding theory sets out to specify the

acceptable options relating to antecedents and their coreferents. A simple set of binding principles

govern coindexing. In accordance with Binding Principle A,
320

 anaphors must be bound in their

binding domain. On the other hand, Binding Principle B applies to personal pronouns; that personal

pronouns must not be bound in their binding domain.
321

 Any other type of noun generally is

"unbound" by nature. Binding domain is generally understood as the boundary between constituents

that contain the antecedent, loosely interpretable as the clause in question.

The notion of coindexation, though intuitive to native speakers, is, in fact, incredibly complex to

describe syntactically. Nevertheless, these concepts become important in the consideration of how

legal texts are written. In particular, legal concepts are often referenced in a manner that muddies

the structural hierarchies and relationships within sentences.
322

 Ultimately, the discussion on syntax,

and in effect, generative grammars, centers on structure and form, embodying innate mechanisms.

In contrast, there is little to no discussion on content. Meaning is broadly presumed as separate from

syntax, with the exception of clarifying constituent relationships. The next section will advance past

structural to substantive investigations.

Semantics: To Mean or Not to Mean

In the prior chapter, meaning was a recurring motif across the analysis of law and language. This is,

of course, no surprise as legal analysis centers on the interpretation of words. As discussed, meaning

is rather elusive. There is often a devotion to definition, wholehearted attempts to secure parameters

and pin down words. Dictionaries are considered as sources of references but could only provide

hints and not conclusive meaning. For linguists, “defining the meaning of a word is an enterprise of

320

 Id. at 157.

321

 Id.

322

 See for example the statement, “The phrase ‘carries a firearm’ applies to a person who knowingly possesses and

conveys firearms in a vehicle, including in the locked glove compartment or trunk of a car, which the person

accompanies.” It is not clear what the relative pronoun which is referencing. See Muscarello v. United States, 524 U.S.

125 (1998).

 M. Ma

70

almost inconceivable complexity.”
323

 More importantly, definitions are only a microcosm of meaning.

The process of uncovering meaning is far more arduous. So, what does it mean to mean?

There are broadly two categories of meaning: (1) intention-free indication, or natural meaning; and

(2) indication-free intention, or non-natural meaning. The former is a state of existence. The

relationship “just is.”
324

 The latter is more interesting. Non-natural meaning builds a connection that

is intentional; it was decided that one thing will stand for another. It is neither automatic nor intuitive.

This is frequently described as the relationship between form and content and where language exists.

Interestingly, within non-natural meaning, there are two variants: (1) non-linguistic; and (2) linguistic

meaning. While this section will largely discuss linguistic meaning, it becomes clear that non-linguistic

meaning plays a heavy role in the advent of computation.

Linguistic meaning describes the arbitrary relationship between most words and what they

represent.
325

 As well, meaning is composable. That is, there are various units, each embodying their

own meaning, that may be pieced together to create another meaning. Described here is the concept

of stringing words to construct sentences. There is seemingly overlap between syntax and semantics;

and to a certain extent, syntax already articulates how form and substance are perceivably distinct.

Consider the sentence famously used by Chomsky:

Colorless green ideas sleep furiously.

The sentence bears no content, but its structure is entirely correct. This sentence continues to stand

as a fantastic example of how syntax and semantics play different roles in natural language

understanding. Namely, a clear distinction between semantics and syntax is the preoccupation with

compositional creation of meaning, as opposed to the interaction between structural arrangement

and substance. That is, semantics reflects on how the form of the sentence informs how meaning of

words may be “built up into the meanings of sentences.”
326

 In accordance with sets of rules, larger

meanings are made possible by smaller meanings. It is an investigation on how the literal meaning

323

 Paul Elbourne, Meaning: A slim guide to semantics 1 (2011).

324

 Betty Birner, Language and Meaning 3 (2018).

325

 Id. at 4.

326

 Id. at 9.

 M. Ma

71

of a sentence depends on the semantic meaning of its component words and how those words may

be woven together.
327

Referencing Chomsky’s sentence, a syntactic perspective would note that the structure is

unambiguous and, therefore, the sentence is clear. From a semantic perspective, understanding the

evident paradox between colorless and green would immediately signal that this sentence is non-

sensical. Coupled with the understanding that ideas cannot sleep, nor in a manner that is furious,

this sentence becomes utterly meaningless. Through this example, it follows that semantics is focused

on the study of conditions and the relations with which meaning may be established.

A dominant theory
328

 within semantics is truth-conditional semantics. The notion is that the meaning

of a sentence is the set(s) of worlds in which it is true. Otherwise, the meaning of a sentence is “the

proposition it expresses;”
329

 whereby propositions are considered sentences that can either be true

or false. Truth-conditional semantics articulates the procedure for determining meaning and

categorizing when it does or does not apply. Referring again to Chomsky’s sentence, the word idea

represents a particular set of individual objects and carries certain traits. These traits distinguish ideas

from other objects, such as chairs. Consequently, what is an idea is, in fact, what are the conditions

for a given object to be an idea.

This logic extends from words to sentences. The conditions under which a word or sentence are

true are known as truth-conditions. The truth-value of a word or sentence is simply whether the

sentence is true or false. These two terms are important as truth-conditions are absolute in all worlds,

whereas truth-values are relative to the world. Importantly, semantics borrows from the study of

logic, effectively representing meaning in terms of truth.
330

 The meaning of words can then be

regarded as how they affect the truth-conditions of a sentence.

Consider a simple example: what constitutes as a sandwich? Though this appears straightforward,

what may be its truth-conditions? Interestingly, this discussion was brought before the Massachusetts

Superior Court (“Court”), seeking to determine whether a burrito was a sandwich. In 2006, White

City Shopping Center (“White City”) sought a declaratory judgment that it was not in violation against

327

 Id. at 12.

328

 Here I am using the word “theory” as akin to method(s) as opposed philosophy.

329

 Birner, supra 324 at 39.

330

 Id. at 40.

 M. Ma

72

the commercial lease signed with PR Restaurants (“Panera”), a company that operates Panera Bread

restaurants.
331

 For context, Chair 5 restaurants, operator of Qdoba restaurants, wanted to open an

outlet in White City. Qdoba is a Mexican restaurant chain that sells burritos. However, the

commercial lease between White City and Panera contained an exclusivity clause preventing White

City from engaging in agreements with restaurants that would directly compete with Panera’s

sandwich sales.

So, is a burrito a sandwich? Panera had argued that any food product with bread and a filling is a

sandwich. According to the Court, it is not. From a semantic perspective, what set of objects does

the word sandwich denote? Again, the traits are important in the classification of an object.

Componential semantics regards the “set of primitive features that an object either must have or

must not have in order to count as an instance of that term.”
332

 A simple example would be the word

child.
333

 The deconstruction would look as follows:

 +human

 – adult

This denotation is to represent that a child is a human that is not an adult. Using this methodology,

a sandwich may be broken down into the following:

+bread

This is problematic as a further assessment requires understanding the primitive features of bread.

Returning to the construction of a burrito, would tortilla be considered bread?
334

 Is the primitive

feature of bread +flour? These questions reflect the lack of clarity involved in componential

semantics and the vicious circle involved in breaking down seemingly basic words. To resolve this

conundrum, linguists often turn to prototypes, the archetypal example of a particular word, as a

331

 White City v. PR Restaurants, No. 2006196313 (Mass. Cmmw. Oct. 31, 2006).

332

 Birner, supra 324 at 52.

333

 Example directly taken from Birner, id.

334

 Panera put forward the argument that tortilla qualifies as bread. However, the Court ruled that this argument was

misplaced, as the ordinary meaning applies when interpreting unambiguous contractual terms. The Court argued that

Panera did not provide evidence that the term “sandwiches” intended to include burritos. See White City v. PR

Restaurants, supra 331.

 M. Ma

73

reference point. The more similar the object is to the prototype, the “more properly” the word

applies to it.
335

Prototype theory relies on a core and periphery analysis in the assessment of meaning. The prototype

lies at the center and decreasing similarity borders into the territory of it not being the object.

Evidently, the application of prototype theory suggests that truth values may not be a clear true/false

binary. More importantly, this also suggests that truth conditions may be blurry. Linguists often

discuss the parallel between prototype theory and the notion of fuzzy logic.
336

 The idea is that

meaning is captured on a spectrum and a matter of degree. The understanding of the word is

dependent on a process of continual refinement and a statistical calculation of likelihood. This

discussion will resurface in a later chapter.

Beyond complexities in establishing individual word meaning, semantics equally considers the

relationships between words and sentences. First, there are a number of a ways that words can relate

to one another, and each correspond to a particular aspect of meaning. A few key relationships will

be discussed here: synonymy, homonymy, polysemy, and metonymy. I have elected to select these

concepts as they most reflect the linguistic issues in legal texts. To start, synonymy is the relationship

between two different forms with the same meaning. Again, the form and content divide resurfaces.

Synonyms also reflect similar, but not identical functions. Slight differences persist and reinforce the

aforementioned issues discussed on classification. On the other hand, homonyms are two identical

forms with different meaning. Homonyms introduce ambiguity, defined by linguists as having “more

than one distinct meaning.”
337

 It is important here that ambiguity is discussed separately from

vagueness. A word is vague if it has a meaning “that does not distinguish between two or more

different kinds of things.”
338

 While they often appear in tandem, they are not, in fact, the same

semantic property.

As a result, an associated concept is polysemy. Polysemy may be considered as homonyms on a

gradient scale. That is, polysemous pairs are also two identical forms with different meaning, but that

these meanings are related. Consider the word glass. Between a glass of water and the material glass,

335

 Birner, supra 324 at 53.

336

 Id. at 54.

337

 Id. at 59.

338

 Elbourne, supra 323 at 34.

 M. Ma

74

they both share a common makeup but reflect two different meanings. Whereas homonyms have

entirely distinct meanings, polysemous pairs have relatively different meanings. Finally, metonymy

is perhaps the most complex. It borders on metaphor but is a word that represents a closely related

concept. For example, the Crown is often used to represent Queen Elizabeth II or, more broadly,

sovereign power, in comparison to a crown describing an ornamental headdress.

These relationships suggest that no two words are truly alike, neither in form nor substance. Should

there be exact duplicates in meaning or function, linguists suggest that one “would die out, since the

need to learn and remember two words for the same thing puts an unnecessary burden on the

language user.”
339

 This is fascinating, as it implies that inherent to natural language is an evolutionary

Darwinism such that, in spite of similarity, there cannot be singularity for the very reason that exact

variations would simply not survive.

Just as relationships between words help ascertain meaning, relationships between sentences are

likewise significant. Hyponymy is the notion of subcategories and belonging to the same ‘family’ of

concepts. Consider the words rose and flower. A rose is a flower but is a specific type of flower.

Hyponymy then demonstrates a taxonomy
340

 between words and a hierarchy of understanding. At

the sentential level, hyponymy parallels entailment; for one sentence to be true, the other must

necessarily be true.

Consider the following:

Megan is shorter than William, and William is shorter than Ryan.

Megan is shorter than Ryan.

These two sentences entail one another, as the truth-conditions of the former necessitate the truth-

conditions of the latter. In other words, Megan must be shorter than Ryan as she is already shorter

than William. Though not explicit, the meaning of the first sentence is inclusive of the second. More

importantly, entailment may be regarded as the central notion in truth-conditional semantics.

As discussed, sentence meanings are drawn from word meanings.
341

 This is particularly noticeable

with ambiguity. That is, lexical ambiguity gives rise to sentential ambiguity. Should a word within a

339

 Id. at 56.

340

 Id. at 58.

341

 Birner, supra 324 at 62.

 M. Ma

75

sentence be ambiguous, the entire sentence is potentially ambiguous. This is understood as the

notion of compositionality. First introduced through homonyms, semantic ambiguity describes the

possibility of a single form with multiple meanings. Semantic ambiguity, however, also includes

structural ambiguity at the sentential level. Linguists often refer to this example to represent both

types of semantic ambiguity occurring simultaneously:

 Time flies like an arrow; fruit flies like a banana.

This sentence is a play on both lexical and structural ambiguity. First, the words flies and like are

lexically ambiguous. Flies is used as a verb in the former and noun in the latter. Like bears the

meaning of “similar to” in the former and “fond of” in the latter. Structurally, the former phrase

splits between time and flies, whereas in the latter, the clause splits at fruit flies and like. The

difference in structure renders the second phrase initially ambiguous. Notably, both syntactic and

semantic ambiguity contain structural ambiguity. This again plays a role further in the chapter.

As will be seen, programming languages draws inspiration from numerous concepts in both

semantics and syntax. In order to better understand these parallels, it is important to build a

foundation on the semantics metalanguage – how linguists symbolically represent semantic meaning.

The claim is that the metalanguage not only allows linguists to circumvent “the ambiguities of natural

language,” but also enable the “representation of each meaning of an ambiguous sentence.”
342

 This

is perceivably a “one-to-one representation” between the notation and meaning. Working through

the basics of both syntax and semantics, logic is an evident undercurrent of the discipline. While the

chapter will not delve into the specifics of the semantic metalanguage, there will be discussion on its

most important concepts.

For linguists, verbs are the hearts of sentences.
343

 As a result, sentences typically pivot around the

verb. Semanticists use the term predicate
344

 to describe the verbs. Predicates are then considered

functions that operate on sets of objects. These sets are known as a domain. The function informs

of the objects within the domain. Its performance determines the truth value of the resulting

proposition. These terms and understandings are evidently drawn from formal logic.

342

 Id. at 75.

343

 Id. at 69.

344

 Note that this term is not to be equated with those in grammar or syntax.

 M. Ma

76

Consider the following metalanguage translation of an ambiguous restaurant menu option:
345

 Natural language: Customers may have soup and side salad or salad bar.

 Metalanguage:

While this is a simplistic representation, it describes how sentences may be broken down into the

potential variants of their meaning. The and are evidently symbolic shortcuts for “and” and “or”

respectively. Other examples of metalanguage notation include for “all” and for “there is at least

one” or “there exists.” Together, they act as a universal set of symbolic representations to interpret

natural language sentences.

A sample sentence may be denoted as:
346

The sentence expresses that ‘For all of x, there’s a y such that x loves y.’ This representation is a

translation of the natural language version, ‘Each person loves another person;’ otherwise, one

possible meaning of ‘Everyone loves someone.’

The metalanguage is observably composed of logical operators. Its intent is to both identify and

represent variable strains of meaning. This suggests that not only is semantics derived from

mathematics, but that it remains a core basis of its analysis. More importantly, semantics relies on

propositional truths. Once a particular world is established, meaning rests within the specific realm

of truth in this world. Semantic meaning is then a mathematical manipulation of truth conditions,

which do not extend beyond the relations of its words and sentences. The problem is that there may

be more to meaning than what a simple true/false binary could convey. This may be particularly

important in the consideration of legal texts, as the law frequently traverses past factual to account

for normative constructions.

345

 Example taken directly from Birner, supra 324 at 76.

346

 Example taken directly from Birner, id. at 77.

 M. Ma

77

Consider the following sentence:

 Elizabeth thinks that the tax policy is unjust.

From a purely semantic perspective, meaning predicates on the truth of Elizabeth’s claim and not

on the content of it. This means that the truth-value of the sentence solely depends on the facticity

of the belief. That is, does Elizabeth actually think the tax policy is unjust? Whether or not the tax

policy is, in fact, unjust is irrelevant. Interestingly, equating meaning as sentence truth suggests a

subversion of an embedded truth. This is referred to, in linguistics, as “opaque contexts.”
347

 How

then does one transcend past sentential meaning to meaning that is inclusive of and sufficiently

captures context? Pragmatics, therefore, becomes fundamental in linguistic analysis as it brings to

light questions of interpretation and intention.

Pragmatics: Is that what it means?

Semantic meaning struggles to establish the logical meaning of connectives. Conjunctions, such as

and, have the potential of revealing meaning beyond lexical and sentential truths. As discussed,

natural language often contains meanings that are subtextual, or express more than what is stated.

H.P. Grice’s seminal paper, “Logic and Conversation,” articulates a theory to bridge between

semantic and additional meaning.
348

 In fact, his paper became the foundation for pragmatics: the

study of language in context.

Grice argues that natural language embodies both elements of convention and intention. Convention

is, broadly, the semantic focus; a deduction of what the word or sentence typically means. Notably,

convention suggests context independence and that the logic to formulate meaning is rather

universal. On the other hand, pragmatics is context specific, prioritizing intention and the role of the

speaker. To reconcile convention with intention, Grice puts forward the “Cooperative Principle.”
349

The Cooperative Principle stipulates four categories of maxims that describe the relationship

347

 Id. at 91.

348

 H.P. Grice, “Logic and Conversation” in Cole et al (eds.), Syntax and semantics 3: Speech Arts 41-58 (1975).

349

 Id. at 45.

 M. Ma

78

between convention and intention: (1) Quantity; (2) Quality; (3) Relation; and (4) Manner.
350

 The

maxims are as follows:
351

Effectively, these maxims imply that cooperation is the key ingredient that bridges between what is

stated to what is meant. Language operates as a mutual and recursive form of understanding,

premised on latent shared conventions and expectations around interpretation.
352

 Equally, this

suggests a duality in the formation of meaning; that expression necessitates communication. More

importantly, fulfilment of these maxims illustrates how meaning traverses past sentential to

additional. This is predominantly done through implicature. For linguists, implicature is similar to

entailments. They are logically valid conclusions that are not stated outright but can be inferred from

what has been stated.
353

 Returning to the notion of logical connectives, consider the below sentences:
354

 Brenda had charcuterie and cheese.

 Brenda had charcuterie or cheese.

350

 Id. at 45-46.

351

 Grice’s Cooperative Principle maxims captured from Birner’s summary. See Birner supra 324 at 97.

352

 Id. at 134.

353

 Id. at 99.

354

 Drawn from Birner’s example. See id.

 M. Ma

79

Hypothetically, this may have been a situation whereby a dinner host asks what Brenda had eaten.

From a logical and semantic perspective, the word or appears to be inclusive. That is, both statements

are necessarily true because it is known that Brenda had at least one of these foods. However, the

second sentence used in natural language, in fact, implies exclusivity. That is, it suggests that while

Brenda did consume these items, it is unknown which of the two. A response of the former, in

compliance with the maxims of Quantity and Quality, would indicate a sense of certainty that Brenda

had consumed both items. Consequently, the use of or would otherwise be unnecessary unless the

speaker was not certain. As a result, Grice demonstrates that connectives can exhibit both their

logical meaning and their potentially polar use in natural language; in effect, how intention may be

conveyed in text.

Interestingly, flouting these maxims also reveals a divergence from logical meaning. Consider the use

of a literary device, such as irony or metaphor. In accordance with the maxim of Quality, a violation

would occur through statements that are blatant falsities and that stray from literal truths.

Nevertheless, the intended meaning remains true. Therefore, despite literal meaning being false,

context guides its interpretation and enables its communication. As discussed in the prior chapter,

legal texts frequently depart from literal meaning. The language is often laced with metaphor and

other literary devices. This will become important, particularly in the context of how legal text is

translated from natural to programming language.

In short, implicature highlights what is not explicitly uttered. Moreover, it further demonstrates that

utterances serve a purpose that extends beyond their logical expression. There is presumably a

motivation behind their formulation. As well, implicature articulates one of the reasons for multiple

interpretations of meaning (note the distinction with multiple meanings). Because meaning is

inferred from performance, there is an inevitable gap between intention and interpretation.

In addition to implicature, pragmatics also considers the notion of reference. That is, descriptions

often fail to accurately make reference to objects. Consider the following example:

 She is a renowned Supreme Court Justice.

 M. Ma

80

The referent she is a noun that, semantically, could be used in many cases. However, only through

context could an “obvious target for the reference”
355

 be revealed. Occasionally, clarifications of the

referent she introduces further ambiguity.

Sonia Sotomayor is speaking with Natalie Leung.

She is a renowned Supreme Court Justice.

Unless one has the active knowledge of who Sonia Sotomayor is, the referent she remains

semantically unclear. Suppose that one does not possess this particular piece of information, she

could then be referring to either Sonia or Natalie. This subsequently leads to an issue with regards

to meaning making. It is often presumed that the truth-conditional semantic meaning of a sentence

is determined prior to applying context clues (i.e., Grice’s Cooperative Principle).
356

 That is, semantic

precedes pragmatic analysis. In the above example, the order of this process does not work. This is

because the sentences are only true in one case and not the other. As a result, there is a necessary

determination of the referent she – the context and intended meaning – in advance of establishing

the truth-value of the sentences. This again reasserts that pragmatics is not a separate pillar of

meaning, but conversely, interwoven to it.

Perhaps the most fascinating discussion on reference centers around the definite article the. Linguists

often describe the use of the as “remarkably complicated,” as it reveals the difference between

implicit and explicit knowledge.
357

 Unlike most words, the use of the definite article is entirely

dependent on context. Often, the is a marker for precision, as is typically found in legal documents.

Linguists find that the most common theories on definiteness appeal to the properties of familiarity

and uniqueness.
358

 Should a referent be both familiar and uniquely identifiable, the definite article

will likely be used. Oddly, though familiarity and uniqueness are reasons for the use of the, it is

neither necessary nor sufficient in explaining why the definite was chosen over the indefinite article.

Simply, the definite is more appropriate than the indefinite. Consider this example:
359

 The fastest way to get downtown is to take the train.

355

 Id. at 108.

356

 Id.

357

 Id. at 109.

358

 Id. at 110.

359

 Example taken directly from Birner. See id. at 112.

 M. Ma

81

There is no intention to specify any particular train. Instead, it alludes to a “complete irrelevance of

the identifiability of the particular referent.”
360

 It matters more the category, as opposed to the

particular member of the category.
361

 Therefore, the definite article is a linguistic enigma that poses

challenges not only on rules of its usage, but more broadly, its purpose.

This complexity with defining rules around definiteness bleeds into another concept within

pragmatics: presupposition. Presupposition is interesting, as it muddies the boundary between

semantics and pragmatics. Presupposition is understood as implicit information that is often taken

for granted.
362

 Consider the following sentence:

 Jonny’s brother is a legal engineer.

A presupposition is as simple as the implicit assumption that Jonny has a brother. Two related

concepts emerge: (1) semantic presupposition; and (2) conventional implicature. A sentence

presupposes a proposition if the proposition must be true in order for the sentence to have a truth-

value. Semantic presuppositions follow a “three-valued logic.”
363

 As opposed to only having two

values (true or false), there is third possibility of being neither. That is, a proposition enables the

sentence to be either true or false. Consider the below example:

 If Alex has a car, he will not mind working far away from home.

 Alex works far away from home.

The proposition that Alex works far away from home must be true in order for the sentence to have

a truth-value. Conventional implicature, on the other hand, is considered as “species of entailments,”

which arise from the particular choice of words or syntax.
364

 Often equated with semantic

presupposition, the information conveyed in the expression sufficiently provides the context

inferred. Consider the example:

 She has not arrived yet.

360

 Id. at 112.

361

 Id.

362

 Id. at 113

363

 For further detail on three-valued logic, see Ruth M. Kempson, Semantic Theory 139 (1977).

364

 Christopher Potts, The Logic of Conventional Implicatures (2005).

 M. Ma

82

From this sentence, it may be inferred that the referent she is expected to arrive. This knowledge is

associated with the semantic meaning of the word yet that enables the additional conveyed meaning.

Conventional implicature is not dependent on context for its interpretation. This suggests that the

problem with presupposition is that it distorts the distinction between semantic from pragmatics. A

suggestion that has been raised by linguists is to differentiate instead between assertions and non-

assertions, with non-assertions defined as the implicit knowledge or meaning that presupposed.
365

This arguably is a shift in nomenclature but does not tackle the issues at heart. That is, meaning is

formed through a symbiosis of semantics and pragmatics. Ultimately, the discussion with pragmatics

alludes to the indispensability of the subfield, particularly in maintaining the function of natural

language. More importantly, the problems inherent to presupposition, and largely pragmatics,

expose a fascinating parallel to the fact-law distinction. The next section transitions to computational

linguistics and revisits the pillars of syntax and semantics.

Programming Languages: Technological Twin or Distant Cousin?

Discussions on linguistics frequently draw the analogy with computer programming. In particular,

generative grammar and syntactic rules often are imagined as “command lines in a computer

program.”
366

 Moreover, Chomsky’s work was a fundamental source of inspiration for numerous

theories in computer science.
367

 Programming languages, as well, borrow linguistic terminology,

expressing the construction and methods of interpretation through the lens of syntax and semantics.

The following section aims to reflect on the similarities between programming and natural languages.

Importantly, it tests whether key concepts
368

 in programming are indeed functional equivalents to

their linguistics siblings.

Programming languages generally evolved as a means of allowing machines to understand tasks.

These languages, however, are not limited to the task of interpreting natural language. This suggests

365

 Birner, supra 324 at 120. See also Barbara Abbott, Presuppositions and common ground, 31 LINGUISTICS AND

PHILOSOPHY 523 (2008).

366

 Carnie, supra 303 at 6.

367

 It is said that much of his early theory on formal languages became the basis of computational linguistics (such as the

Chomsky Hierarchy). See Michael L. Scott, Programming Language Pragmatics, §2.4 (4
th

 ed. 2016). See also the

influence of Chomsky’s Cartesian linguistics.

368

I concede that I have cherrypicked some of the concepts for a more focused comparison with core linguistics.

Namely, I highlight predominantly the perspective of language design and generation. While analysis is discussed, I do

so in relation to the design. As well, I do not discuss the implementation of programming languages. Therefore, there

are evident omissions in programming concepts. Again, it must be noted that the discussion is not intended to be

exhaustive.

 M. Ma

83

that while there may be programming languages for computational linguistics, the use of

programming languages is not limited to processing language. As a result, computational linguistics

may be a misnomer. The use of programming languages in the context of language may be applied

more broadly. This will be discussed further in the section. It is important first to consider the

fundamental building blocks of these languages. Just like natural language, programming languages

follow constraints in expression and have an impact on how programmers can think.
369

 Mirroring the

order of this chapter, the section will start with syntax. Just as syntax in linguistics predicates on form,

syntax in programming also bears a comparable connotation.
370

Scanning and parsing are syntactic tasks in computer programming “to recognize the structure of a

program without regard to its meaning.”
371

 A scanner reads a string of characters (i.e., consecutive

series of natural language letters or numbers) and groups them into units (known as tokens).

Interestingly, scanning is understood as a lexical analysis, with the primary purpose of simplifying the

parsing exercise. Parsing, on the other hand, organizes the tokens into a parse tree. This assembly

becomes a representation of the “higher-level constructs (statements, expressions, … and so on),”
372

known as sequences. The overall structure then relies on a set of rules known as context-free

grammar.
373

 Context-free grammars are, therefore, considered the syntax of a programming language;

the task of parsing belongs to the syntactic analysis. Consequently, any malformed tokens or

unacceptable sequencing of them produces errors and syntactically invalid sequences.

Syntax centers on how structural rules are specified in a given programming language. It relies on

regular expressions and context-free grammars. While syntax also enables those implementing

programming languages to understand its structure, the intentions of the broader thesis focus on

writing and analysis. As a result, how syntax is specified will be the primary point of discussion. The

formal specification of syntax requires a set of rules.
374

 There are four types of formal rules: (1)

concatenation; (2) alternation; (3) “Kleene closure”; and (4) recursion. Concatenation is the joining

of two or more-character strings. Alternation is the choice among a finite set of character strings.

369

 Scott, supra 367 at §1.2.

370

 Id. at §1.3.

371

 Id. at § 1.6.1.

372

 Id.

373

 Id.

374

 Id. at §2.1

 M. Ma

84

Kleene closure is the repetition of character strings. Finally, recursion is the “creation of a construct

from simpler instances of the same construct.”
375

 In other words, it is process of nesting.

A set of strings defined
376

 using any of the first three rules becomes a regular language.
377

 Regular

languages are generated by regular expressions. Context-free languages (CFL), alternatively, are any

sets of strings that are a combination of all four rules. CFLs are generated by context-free grammars.

Regular expressions and context-free grammars are then language generators, specifying how to

construct valid tokens or strings of characters. While regular expressions are able to define most

tokens, they are unable to specify nested constructs.
378

 It follows that the more complex the definition,

the stronger the preference for context-free grammars. CFLs are then considered a superset of

regular languages.

As discussed, syntactic structure may be revealed through parsing. Parsing deconstructs the grammar

of a programming language and can be represented in a tree structure. When more than one parse

(or syntax) tree can be constructed from a set of tokens, this is understood as ambiguous.

Consequently, ambiguity falls under a similar understanding as the linguistic definition of “more than

one.” When ambiguity occurs, it signals that an additional mechanism must exist to “drive a choice

between equally acceptable alternatives.”
379

 Some computer programmers work around ambiguity by

including additional operators to eliminate multiple parses. This form of disambiguation is analogous

with arithmetic calculations:

 (1+2) * 5
380

Relative to ambiguity is the notion of nondeterminacy. A nondeterministic construct, like ambiguity,

is understood as having a choice between alternatives.
381

 The difference, however, is that

nondeterministic constructs are deliberately unspecified. That is, the particular options available are

375

 Id.

376

 As a clarification, the use of “defined” in a programming language is equivalent to the act of “writing” or “drafting” in

natural language.

377

 Language is understood here not in the form of communication, but simply as a set of strings generated from the

grammar. See id.

378

 Id. at §2.1.2.

379

 Id. at §2.1.3.

380

 For example, consistent with the arithmetic rules, the bracket signals that one must add first prior to multiplying.

381

 Scott, supra 367 at §6.7.

 M. Ma

85

left to the decision of the user. This is fascinating as it implies that the choice among nondeterministic

alternatives must be ‘fair.’

Preliminary observations suggest that there is incredible overlap between syntax in core linguistics

and syntax in programming. Both are highly rules-based and concerned with the structural

construction of the language. More importantly, they consider the ‘validity’ of the grammar,

specifying the points at which errors may be found in their expression. Likewise, syntactic

considerations reflect on the structural relationships between entities. That is, both forms of syntax

reflect on its potential for ambiguity. However, unlike syntax in core linguistics, the syntax of

programming languages is not preoccupied with referencing and qualifying the identities of its

components. Syntax analysis for programming languages is ‘purely’ structural.

Semantic analysis, on the other hand, is “the discovery of meaning in a program.”
382

 A semantic

function can recognize when multiple occurrences of the same token are intended to refer to the

same entity. Equally, semantic analysis also identifies the types of expressions to ensure consistent

usage and annotates them, such as verifying that entities are not used in an inappropriate context.
383

These annotations are known as attributes. Attributes are then described to ‘decorate’ syntax trees.

It follows that attribute grammars provide a framework for the ‘decoration.’
384

 Below is an example

of a syntax tree for (1 + 3) * 2:
385

382

 Id. at §1.6.2.

383

 Id.

384

 Id. at §4.

385

 Figure 4.2. See id. at §4.2.

 M. Ma

86

Simply, the attributes explain the structural interactions of the context-free grammar. Attribute

grammars have two kinds of permissible rules: (1) copy rules; and (2) semantic functions. The former

specifies that one attribute is a copy of another.
386

 The latter specifies that one attribute is a product

of an arithmetic operation. Below is an example of context-free grammar with its associated attribute

grammar:
387

386

 Id. at §4.2.

387

 Figure 4.1. See id. at §4.2.

 M. Ma

87

Interestingly, the attribute grammar discussed appears to be akin to the notions of coindexing,
388

 or

more broadly, the labelling of structural relationships between constituents. In core linguistics, these

are syntactic concepts. The semantic analysis of programming languages then seemingly embodies

syntactic behaviors. Moreover, the terminology of “context” and “meaning” is used rather differently.

Context and meaning in programming describe the act of qualifying an entity, as opposed to the

process of deriving its substantive content. The syntax of programming languages is then analogous

with defining the steps of a recipe; the semantics is equivalent to articulating the function of the

ingredients. Both, however, do not express what the ingredients are and what would be achieved.

a. A Logical Intervention

The aforementioned descriptions of programming language syntax and semantics are broadly

categorized as traditional imperative or prescriptive approaches. Herein enters the declarative or

descriptive approach. Logic Programming is a style of declarative programming that applies the

language of Symbolic Logic.
389

 That is, logic programming relies on predicate and propositional logic

in its operations. Logic programming is focused on defining “what is true and what is wanted.”
390

 It

models sets of facts (known as datasets) and rules to define the “views of the facts in datasets.”
391

Changes to facts are described as primitive updates.

Interestingly, logic programming is preoccupied with the conceptualization of worlds. It is concerned

with defining in terms of objects and the relationship between objects. Objects are loosely

understood as things, and relationships are the properties of the objects or relations among them.

Objects are referred to as symbols and relations are predicates. A description of the relationship

between symbols is understood as facts. Facts are frequently represented in a sentential form,

consisting of the name of a relationship and the objects involved. See for example:
392

 parent (alex, megan)

388

 To recall, coindexing is the structural understanding of relationships between nouns or noun phrases.

389

 Michael Genesereth and Vinay K. Chaudhri, Introduction to Logic Programming 3 (2020).

390

 Id.

391

 Id. at 6.

392

 Derivative of example from Genesereth and Chaudhri, see id at 10.

 M. Ma

88

Again, a set of facts form a dataset. Importantly, datasets are assumed to be true.
393

 If a fact is not

included in a dataset, it is presumably false. Logic programming acknowledges that more than one

conceptualization is possible and suggests that “any conceptualization of the world is

accommodated.”
394

 In short, what matters is utility and that within the world created, objects and their

relations are expressed formally.

Rulesets, known as view relations, are interactions with the dataset. Applying the above example,

with the knowledge of the relationship between Alex and Megan, can the grandparent relationship

be “computed”? One method is to add facts to the dataset. This, however, is regarded as tedious.

Alternatively, view relations can be established. See for example:
395

 grandparent (X, Z) :– parent (X, Y) & parent (Y, Z)

The above rule is indicative of the potential taxonomy and the establishment of hierarchies on the

basis of facts and rules. While the syntax is less stringent
396

 in logic programming, the semantics are

rather important. The semantics of logic programming languages are the result of applying a set of

view relations to a dataset, such that all conclusions rendered are true. This creates what is known as

a closed logic program.
397

 In effect, the semantics in programming languages are interpretable as

logical entailment: conclusions must be true provided that all facts are true, and all facts required by

the rules are true.
398

Undoubtedly, concepts found in logic programming languages are reminiscent of those in core

semantics. Namely, logic programming focuses on the creation of worlds and establishing the

conditions of truth within these sets of worlds. More importantly, semantic meaning and logic

programming are both fundamentally underpinned by predicate logic. Both ‘linguistic’ systems lean

on logical operators. Therefore, it is perhaps owed to the similarities, between the semantics and

393

 Id. at 11.

394

 Id. at 18.

395

 Id. at 60.

396

 Syntactic restrictions do not raise errors or generate invalid formulation, only issues of compatibility. That is,

ordering and structural interactions matter less than consistent use of the same symbols and predicates. See id. at 61.

397

 Id

398

 Id. at 63.

 M. Ma

89

syntax of programming and natural language, that the application of computational linguistics to legal

text appears as a logical next step.

Nevertheless, the ‘linguistic’ characteristics of programming languages are not exact parallels to

natural language. There are subtle but substantive differences in their expression. Specifically,

programming languages can either accord more closely with syntactic or semantic concepts in core

linguistics, but not necessarily both (c.f. imperative with declarative programming). Moreover, there

is no uniformity in the choice of programming language for computational linguistics. This suggests

that there is potential variability in both the understanding and breakdown of text.

This is foreseeably problematic, as programming languages are fundamentally task-based. The

intentions of their design are not to capture the nuances of natural language and meaning. Instead,

they are built for versatility and are multifunctional. Consequently, the similarities between the

semantics and syntax of programming and natural language are illusory. Even if the ‘task’ for the

programming language, as in computational linguistics, is to understand language, it cannot

completely to do so at this stage. It is my hypothesis that programming languages fail to account for

a key pillar of natural language: pragmatics. Pragmatics has revealed that the communication of

information relies, in part, on implicit knowledge. Currently, only explicit knowledge can be

conveyed in programming.

Levelling the field: Reconciling Computation and Language

Equally, there must be a clarification between computational linguistics and computation and

language. Computational linguistics uses programming languages to ‘read’ and ‘interpret’ existing

texts written in natural language. It does not, however, contribute to the drafting of texts in code.

This is misleading, as computational linguistics appear to be the standard for language treatment and

is frequently referred to as the method of interpreting text. As a result, computational linguistics often

falls within the field of natural language processing (NLP). This type of technology primarily relies

on statistical probability and machine learning. In short, computational linguistics uses programming

languages to approximate meaning.

Alternatively, computation and language use programming languages to create text and model

linguistic behavior. Computation and language align with notions of knowledge representation. This

is a far more complicated exercise that involves translating expert knowledge into a series of formal

 M. Ma

90

structures understandable to machines.
399

 Interestingly, the impression of similarity between the

‘linguistic composition’ of programming and natural language misconstrues the two forms of

computationalism as two sides of the same coin. Computational linguistics has been helpful to the

extent of performing high volume rapid review of texts. As computational linguistics rests on

efficiency, it is largely preoccupied with rough approximations of word and sentence meaning.

Accordingly, deeper analyses regarding the role of language and its relationship with meaning are

not within the scope of its technological competence. I suggest that computation and language should

be the path forward, particularly in the context of exploring the limits of legal expression.

Michael Reddy describes the metaphor that language is a conduit and words are containers.
400

 Reddy

suggests that content is considered as synonymous with thought, “ideas,” and “meaning.”
401

 The

words have “insides,” such that thoughts may be inserted into them.
402

 Consequently, communication

is done by placing meaning into word containers, packaged neatly and transferred to the recipient to

be unboxed. Consider the following sentences:
403

 His words were hollow – he didn’t mean them.

 Derrida’s texts are rather deep.

Communication appears then to be a process of extraction. From the Conduit Metaphor, it may be

inferred that words are merely one form of container for thought. So long as there is a place for

meaning to reside, communication is possible. This could perhaps imply a “1-to-1 conversion”

between natural and programming language. Could code be an alternative container?

However, as discussed in the prior chapter, the use of a particular language and the tools the language

affords, impact and constrain thought. In linguistics, the infamous Sapir-Whorf Hypothesis stipulates

that language affects conceptions of reality.
404

 While there has been debate about the limits of this

399

 Harry Surden, Artificial Intelligence and Law, 35 GEORGIA STATE UNIVERSITY L. REV. 1316 (2019).

400

 Michael J. Reddy, “A case of frame conflict in our language” in A. Ortony (ed.) Metaphor and Thought 166-167 (2
nd

ed. 1993).

401

 Id. at 168.

402

 Id.

403

 Example derived from Reddy. See id.

404

 Benjamin Lee Whorf, Language, Thought, and Reality 134 (1956).

 M. Ma

91

theory,
405

 linguists generally acknowledge that language has an influence on thought. In accordance

with this premise, would it not suggest that legal conceptions are already framed in natural language?

Perhaps echoing Derrida, legal concepts cannot inherently be removed from its natural language

encasing. The following chapter, thus, investigates the translation of legal texts from natural language

to computer code. Through a series of case studies, I aim to question how programming languages

have raised challenges around the computability of legal text and whether the law is indeed married

to its language.

405

 There is spectrum around the ‘strength’ of this view: from linguistic determinism to linguistic relativity. The former

suggests that reality is filtered by language. The latter is that thought is merely affected by language.

 M. Ma

92

3- Case Studies on Translation*

*

 Earlier iterations of the case studies have either been published or are forthcoming in law journals and books alike,

including notably the MIT Computational Law Report and the Northwestern Journal of Technology and Intellectual

Property. Moreover, the second case study is drawn from an ongoing interdisciplinary research project of which I

am an active member. The case studies presented here have been adapted to account for new findings and potential

next steps.

 M. Ma

93

3A- Writing in Sign (Computable Contracts)

 M. Ma

94

Since the twelfth century, mathematical logicians allegedly used logical paradoxes to spot ‘false’

arguments in courts of law.
406

 It was not, however, until the seventeenth century when Gottfried

Leibniz proposed a mental alphabet;
407

 whereby thoughts could be represented as combinations of

symbols, and reasoning could be performed using statistical analysis. From Leibniz, George Boole’s

infamous treatise, The Laws of Thought, argued that algebra was a symbolic language capable of

expression and construction of argument.
408

 By the end of the twentieth century, mathematical

equations were conceivably dialogic; a form of discourse.

This was perceivably owed to Boole’s system; that complex thought could be reducible to the

solution of equations. Nevertheless, the most fundamental contribution of Boole’s work was the

capacity to isolate notation from meaning.
409

 That is, ‘complexities’ of the world would fall into the

background as pure abstraction was brought to center stage. Eventually, Boole’s work would form

the basis of the modern-day algorithm and expression in formal language.

ASCII, the acronym for the American Standard Code for Information Interchange, is an exemplary

case. Computers are only capable of understanding numbers. For a computer to interpret natural

language, ASCII was developed to translate characters to numbers. Using a binary numeral system,

ASCII assigns a numerical value – 32– to a letter. In brief, by performing the mathematical

calculation, a binary code of 0s and 1s could be computed from a letter. Early conceptual computing

devices, such as the Turing machine, were borne into existence as a direct product of Boolean

algebra.

Christopher Markou and Simon Deakin point to the breakthroughs in natural language processing

(NLP) as specifically contributing to the emergence of ‘Legal Technology (Legal Tech).’
410

 Markou

and Deakin cite Noam Chomsky as inspiring early researchers of AI to design “hard-coded rules for

capturing human knowledge.”
411

 Chomsky’s work eventually contributed to powering advances in

406

 Keith Devlin, Goodbye Descartes: The End of Logic and The Search for a New Cosmology of the Mind 54 (1997).

407

 Id at 62.

408

 George Boole, The Laws of Thought Chapter 1 (1854).

409

 Devlin, supra 406 at 77.

410

 Christopher Markou and Simon Deakin, Ex Machina Lex: The Limits of Legal Computability, Working Paper

(2019), available at SSRN: https://ssrn.com/abstract=3407856.

411

 Id. See also cited reference, E Brill and RJ Mooney, Empirical Natural Language Processing, 18 AI Magazine 4

(1997).

https://ssrn.com/abstract=3407856

 M. Ma

95

machine translation and language mapping. Known as expert systems, NLP applications “relied

upon symbolic rules and templates using various grammatical and ontological constructs.”
412

 These

achievements were then further enabled by Deep Learning
413

 models, able to abstract and build

representations of human language.

Computable contracts are making a powerful return. Contracts may be represented as computer

data with terms made ‘machine-readable’ through a process of conversion: from descriptive natural

language to consonant computer instruction. Conditions of agreements are not explained but listed

as structured data records. Despite the capacity to express contracts in an alternative computable

form, there is no means for interpretation. Instead, interpretation is perceived as irrelevant. Should

digital data inscription and processing be considered a form of legal writing? If so, would it change

the character of law?

The case study, therefore, follows the conundrum: what is the significance of the language in contract

drafting? The project seeks to unpack several programming languages used in computable contracts.

In identifying the logic of these languages, the project tackles methods of legal writing. The

hypothesis is that, by analyzing the components of both legal and programming languages, a richer

dialogue on the sociological implications of translating law to algorithmic form may be formed.

Furthermore, it would be interesting to consider what contextual understanding may need to exist to

‘interpret’ contractual language.

The case study will unfold as follows. Part I will open with the current challenges and state of Legal

Tech. Part II embarks on a brief investigation of programming languages, analyzing sample

translations of contracts from natural language to computer code. Part III will gather early

observations. Part IV will suggest implications for contract law and further considerations. Finally, I

will conclude with a few remarks and possible next steps.

I. AS IT STANDS

412

 Id. at 11-15.

413

 Deep Learning is a subset of machine learning that involves artificial neural networks and the assigning of numerical

weights on input variables. For further explanation, see id at 10-12.

 M. Ma

96

Kingsley Martin spoke of the two greatest barriers to legal technology: (1) adjudication; and (2)

language.
414

 He teased at the subtlety and nuances of human communication. Meaning, he notes,

could be changed with even the slightest adjustments to context. But beyond context, simple

negations, “polysemy, synonymy, hyponymy and hypernymy”
415

 are all functions of natural language

that are obstacles for machines. He argues then that the general trend towards the simplification of

language is rendering written legal documents, naturally, more machine-readable.
416

Stephen Wolfram suggests that simplification could occur through the formulation of a symbolic

discourse language. That is, if the “poetry” of natural language could be “crushed” out, one could

arrive at a language that is entirely precise.
417

 As opposed to translating meaning from natural

language, the symbolic discourse language would be an alternative framing of the world. Could a

distinct, symbolic representation of contractual language exist? What then are its implications?

Currently, expert systems and machine learning technology used for the revision of contracts seek

to reduce the risk of human error. Eventually, contract analysis would manage, record, and

standardize provisions that are ‘proven favorable;’
418

 in effect, perfecting contractual boilerplate.

Boilerplate contracts are often regarded as a trade-off between tailoring and portability; that with

broad standardization, the ‘burden’ of interpretation is lifted.
419

 Contractual boilerplate, therefore,

relies heavily on formalistic drafting, whereby form presides over meaning. For computable

contracts, the migration of mediums – from descriptive natural language to mathematical form –

generates data that identifies and signals the specific version of contracts that should be used in future

cases.

414

 Kingsley Martin, “Legal Technology Barriers – Understanding Language and Exercising Judgment,” Legal Executive

Institute (September 24, 2015), https://www.legalexecutiveinstitute.com/legal-technology-barriers-understanding-

language-and-exercising-judgement/.

415

 Id.

416 Id.

417

 Stephen Wolfram, “Computational Law, Symbolic Discourse, and the AI Constitution,” in Ed Walters (ed.), Data-

Driven Law: Data Analytics and New Legal Services 152 (2019).

418

 Beverly Rich, “How AI is Changing Contracts,” Harvard Business Review (February 12, 2018),

https://hbr.org/2018/02/how-ai-is-changing-contracts. See also white paper “How Professional Services Are Using

Kira,” Kira Machine Learning Contract Analysis (accessed February 2019) available at:

https://cdn2.hubspot.net/hubfs/465399/04-resources/whitepapers/KiraSystemsWhitePaper-

HowProfessionalServicesFirmsAreUsingKira.pdf.

419

 Henry E. Smith, Modularity in Contracts: Boilerplate and Information Flow, 10 Mich. L. Rev. 1175, 1176 (2006).

https://www.legalexecutiveinstitute.com/legal-technology-barriers-understanding-language-and-exercising-judgement/
https://www.legalexecutiveinstitute.com/legal-technology-barriers-understanding-language-and-exercising-judgement/
https://hbr.org/2018/02/how-ai-is-changing-contracts
https://cdn2.hubspot.net/hubfs/465399/04-resources/whitepapers/KiraSystemsWhitePaper-HowProfessionalServicesFirmsAreUsingKira.pdf
https://cdn2.hubspot.net/hubfs/465399/04-resources/whitepapers/KiraSystemsWhitePaper-HowProfessionalServicesFirmsAreUsingKira.pdf

 M. Ma

97

A. Market Environment

Edilex, a Canadian Legal Tech start-up, is automating contract drafting by offering both AI-driven

applications and downloadable legal document templates. Edilex’s mission statement? The

simplification of legal transactions and democratizing access to legal services. Genie AI is another

fascinating Legal Tech start-up that offers AI-powered contract drafting. Using machine learning, the

software recommends clauses to help legal practitioners “draft contracts faster.”
420

 Moreover, the

technology marketed is focused on legal language, and one that is “suitable for lawyers.”
421

Evidently, the target demographic for each of the start-ups is rather different. The former is focused

on the democratization of legal services; while the latter on enhancing the legal profession. Yet, both

start-ups thrive on the notion of formalization; that there is a ‘perfect’ form achievable. By integrating

AI in contract drafting, there is a push away from static mediums of writing. These include Microsoft

Word (MS Word) and Adobe PDF; the original technological artifacts that evolved from pen and

paper. In either case, the technology is never described as a replacement.
422

 The purpose of these

inventions is merely assistive.

B. Shifting Climates

Interestingly, the legal community is beginning to explore the problems associated with the use of

static platforms like MS Word. Juro, for example, is a Legal Tech start-up that promotes contract

management on a dynamic platform.
423

 In a recent paper, Michael Jeffrey interrogates the use of MS

Word as the dominant and default form for writing and editing legal documents. He considers the

inefficiencies of manual updating, drafting, and reviewing. MS Word has been a prized product for

legal drafting, Jeffrey notes. Though interpreted as a static platform, MS Word, in actuality, “can be

420

 “Super Drafter,” Genie AI (accessed February 2020) https://genieai.co/home.

421

 See id. Genie equally advertises smart filters and an automatic knowledge base.

422

 Follows the existing literature that technology could only work complementary to the law. See Frank Pasquale, A

Rule of Persons, Not Machines: The Limits of Legal Automation, 87 Geo. Wash. L. Rev. 2, 6 (2019). See also Neil

M. Richards and William D. Smart, “How should the law think about robots?” in Ryan Calo et al, eds, Robot Law 16-

18 (2018). Their chapter argues how law hinges on social and political relationships and metaphors that require a

latent understanding of temporal social constructs (emphasis added).

423

 Based in London, Juro works platform translates contracts drafted in natural language to machine-readable form.

Their platform allows contracts to be built in a text-based format that is also language independent (i.e. JSON). The

contracts, thereby, exist in code. See Juro’s whitepaper, Richard Mabey and Pavel Kovalevich, “Machine-readable

contracts: a new paradigm for legal documentation,” Juro Resources (accessed February 2020), available at:

https://info.juro.com/machine-learning?hsCtaTracking=60e75e06-22bb-4980-a584-186124e645b3%7C6a7d3770-

289d-4c97-bcfb-c9f47afec77f.

https://genieai.co/home
https://info.juro.com/machine-learning?hsCtaTracking=60e75e06-22bb-4980-a584-186124e645b3%7C6a7d3770-289d-4c97-bcfb-c9f47afec77f
https://info.juro.com/machine-learning?hsCtaTracking=60e75e06-22bb-4980-a584-186124e645b3%7C6a7d3770-289d-4c97-bcfb-c9f47afec77f

 M. Ma

98

controlled through code.”
424

 In fact, MS Word has embedded in its software a number of templates

modelled specifically for drafting legal documents. These templates contain automatic text entry,

macros, and special formatting.
425

 More recently, the startup Clause Logic, has developed an add-in

that enhances MS Word’s existing platform by automating clause creation and document assembly.
426

Nevertheless, for long and complicated legal documents, Jeffrey argues that an integrated

development environment (IDE) could “facilitate the authoring, compiling, and debugging” of

contracts.
427

 For programmers, the use of IDE provides several key features that are amenable to

legal drafting. He notes the options for increased readability owed to color-coded syntax highlighting,

automatic error detection, and predictive auto-complete features to provide suggestions while

drafting. These features, he claims, could improve the drafting process by reducing the risk of human

error and increasing efficiency.

Yet, the most interesting perspective he offers is the subtle equation of linguistic concepts as

inherently mathematical.
428

 Jeffrey draws programming concepts and applies them specifically to

elements of legal drafting. The syntax, he notes, is “designed for drafting and document generation”

and that the process would be “quite natural.”
429

 The underlying assumption is that the platforms of

MS Word and an IDE have the same functional purpose. The differences lie in the added features

for real-time changes. This speaks to a greater assertion: programming languages serve the same uses

as natural language. But, the shift from pen and paper to MS Word did not fundamentally change

the use of natural language for legal drafting. The use of IDEs, on the other hand, alters not only the

platform, but also the method of execution.

Ultimately, the aforementioned start-ups, either Edilex or Genie AI, are only a few of the growing

number of Legal Tech start-ups committed to the ‘betterment’ of contract drafting. These contracts

424

 Michael Jeffrey, What Would an Integrated Development Environment for Law look like?, MIT Computational

Law Report Release 1.1 (2020), available at:

https://law.mit.edu/pub/whatwouldanintegrateddevelopmentenvironmentforlawlooklike.

425

 “MS Word for Lawyers: Document Templates,” Tech for Lawyering Competencies: Research & Writing (accessed

May 2020), https://law-hawaii.libguides.com/TLC_Research_Writing/WordTemplates.

426

 “Our Technology,” Clause Logic (accessed May 2020), https://www.clauselogic.com/.

427

 Jeffrey, supra 424.

428

 Jeffrey notes, “For legal drafting…the focus is linguistic – rather than mathematical – but the core concepts are the

same.” See id.

429

 Id.

https://law.mit.edu/pub/whatwouldanintegrateddevelopmentenvironmentforlawlooklike
https://law-hawaii.libguides.com/TLC_Research_Writing/WordTemplates
https://www.clauselogic.com/

 M. Ma

99

are classified as more efficient, precise; otherwise, ‘smarter.’ There is, nonetheless, a dearth of

literature on the use of formal languages for legal writing. Albeit, formal programming languages for

contract drafting not only exist but have proliferated in the past few years. Their ancestors sprung

from logic programming in the 1970s.

II. SO, CAN YOU CODE IT?

Even before the days of logic programming, contract drafting has seen symptoms of logic-based

strategies in the literature since the 1950s. In “Symbolic Logic: A Razor-Edged Tool for Drafting

and Interpreting Legal Documents,” Layman E. Allen proposes the use of mathematical notation

for the expression of contracts. He argues that its application will improve clarity, precision, and

efficiency of analysis. He introduces six elementary logical connectives: implication, conjunction, co-

implication, exclusive disjunction, inclusive disjunction and negation.
430

 The most interesting

connectives are implication and co-implication. These logical connectives are associated with the

representation of causal relations; otherwise, “if X then Y” statements. Allen labels this form of

expression as “systematically-pulverized”
431

 and the process of transforming a statement to this form

requires two primary actions: (1) divide statement into constituent elements; (2) and rearrange

elements to approximate a ‘systematically pulverized’ form. Co-implication enhances the equation

by including logical equivalencies. In sum, Allen teases at the age-old use of syllogisms in legal writing

and provides an excellent backdrop to the study. In effect, how are programming languages applying

logic to legal drafting?

Two of the most broadly used programming languages, Python and Prolog, use opposing methods

of operation; the former is procedural, while the latter is declarative. Procedural programs often

specify how the problem is to be solved. That is, with procedural programs, there are clear

instructions for the program to follow. Akin to baking, all terms are defined explicitly, and all rules

must be laid out. Should a program, such as Python, find that it cannot proceed with the task, this is

typically because the program is unable to recognize the syntax. Equally, Python is incredibly

sensitive to changes in the code; even a misplaced comma or indent in the spacing could affect the

overall outcome of the specified task. Procedural programs often include functions; self-contained

430

 Layman E. Allen, Symbolic Logic: A Razor-Edged Tool for Drafting and Interpreting Legal Documents, 66 Yale L.

J. 833 (1957).

431

 Id at 836.

 M. Ma

100

modules of code capable of being manipulated and reused for innumerable tasks. Perhaps its most

powerful operation, Python is able to examine and decide actions on the basis of conditions.

Moreover, Python simplifies work by being able to loop through the same tasks in a given list. Rather

than the manual repetition of a given task, Python is able to do so in a matter of seconds.

On the other hand, declarative programs specify what the problem is and ask the system, instead, to

solve it. Declarative languages are founded on either the relationships (1) between objects; or (2)

between objects and their properties. These relationships may be defined implicitly through rules or

explicitly through facts. Facts describe relationships, while rules qualify them. The purpose of Prolog,

therefore, is to form a fixed dataset that would derive answers to future queries about a relationship

or set of relationships based on the inputted information. In contrast, the purpose of Python is to

complete a particular task. While it can certainly account for prospective changes to the data, every

step is explicitly expressed.
432

Advancing forward several decades, Python and Prolog have become inspirations for a new era of

programming languages used for drafting computable contracts. The project will explore a number

of formal languages currently being prototyped. These include Ergo, Sophia, Solidity, Lexon, Blawx,

and OpenLaw. While they certainly do not account for all the languages that are being

workshopped, they are among the most broadly discussed in the Legal Tech sphere. Each language

is built from different models. Ergo is a programming language modelled on execution logic for legal

writing. It belongs to the suite of resources offered by The Accord Project.
433

 Sophia and Solidity

were both influenced by the Python syntax; created specifically for smart contract implementation.
434

Lexon and Blawx, on the other hand, are non-coding options with the former developed on

declarative logic and the latter derived from linguistic modelling.
435

432

 I acknowledge that Python is able to work in adaptive environments and does not have a fixed data set. The

comment is directed at the explicit expression of a given task.

433

 The Accord Project also offers Cicero and Concerto. The former is a contract template generator that helps build

agreements embedded with machine executable components. The latter is a program that enables the data of

computable contracts to be manipulated and modelled. The Accord Project also offers a trial template editor to build

and test out smart agreements. For more information, see “What is the Accord Project,” Accord Project (accessed

February 2020), https://www.accordproject.org/about.

434

 “The Sophia Language,” Github Aeternity Docs (accessed April 2020)

https://github.com/aeternity/aesophia/blob/lima/docs/sophia.md#stateful-functions. See also “Solidity,” Solidity

(accessed April 2020) https://solidity.readthedocs.io/en/v0.6.6/.

435

 Lexon qualifies its model as designed with the intention of reasoning in natural language and uses formal linguistic

structure. See Henning Diedrich, Lexon: Digital Contracts (2020).

https://www.accordproject.org/about
https://github.com/aeternity/aesophia/blob/lima/docs/sophia.md#stateful-functions
https://solidity.readthedocs.io/en/v0.6.6/

 M. Ma

101

Finally, OpenLaw is more complicated to characterize. OpenLaw neither stems from Python nor

Prolog. OpenLaw instead runs on Javascript
436

 and uses a markup language to “transform natural

language agreements into machine-readable objects with relevant variables and logic defined within

in a given document.”
437

 These documents are then compiled together to act as contracts.

Interestingly, the markup language allows for legal agreements to be enabled on the blockchain, but

with natural language qualifiers.
438

Prior to delving into the mechanics, there are a few disclaimers. First, I do not distinguish between

machine-readable and machine-executable contracts. Rather than bifurcating the two architectural

forms, the analysis focuses broadly on Smart Legal Contracts.
439

 Next, to understand how formal

languages may be used to draft contracts, I refer to extracts of legal documents translated from natural

language to code. These translations are originals of each programming language, unedited and taken

directly from their technical documentation. They were included as examples of how contracts may

be drafted in the select language. The translations are, therefore, presumed to be manually done by

each language’s programmers; and thereby implicitly represent their design choices. As well, the

formal languages analyzed are understandably evolving in their capacities. Consequently, the

observations are only current to the time of this analysis. Finally, as there are, to date, no quantitative

metrics to evaluate the existing pitfalls of contracts drafted in natural language. The study can only

offer qualitative perspective on formal languages as a medium for legal drafting.

A. Ergo

To begin, Ergo follows a more traditional form of procedural programming and is largely function-

based. This means that its language is predicated on the performance of the contract. However, Ergo

is unique. It cannot be divorced from the overarching contract implementation mechanism, known

as Cicero. Cicero consists of three ‘layers’: (1) text; (2) model; and (3) logic. Ergo is the logic

436

 Defined as a programming language with a code structure to build commands that perform actions. “Code

Structure,” The JavaScript Language (accessed April 2020), https://javascript.info/.

437

 “Markup Language,” OpenLaw (accessed April 2020), https://docs.openlaw.io/markup-language/#variables.

438

 Id.

439

 I rely on the definition of Smart Legal Contracts as legal agreements that include digital components. These

components allow the document to be interpreted and executed by computers. Both machine-readable and machine-

executable contracts tie legal text to code.

https://javascript.info/
https://docs.openlaw.io/markup-language/#variables

 M. Ma

102

component.
440

 It is perhaps considered the ‘end’ process of a continuous flow of translation from

human-readable to machine-executable.
441

The Cicero architecture, therefore, is an interdependent network of resources that start with natural

language text and end with compartmentalized data packages. That is, natural language contracts

may be deconstructed into reproducible modules that can be interchangeably used between various

types of contracts. How does this work?

Contractual clauses are sorted and categorized into qualitative and quantitative components.

Descriptive terms of the contract remain at the text layer.
442

 Variables that are quantifiable, on the

other hand, are extracted from the natural language and captured in the model layer. These variables

are notably bits of information that are reusable, iterative, and computable. This layer bounds natural

language to data, as variables map conditions and relationships of the contract. Arriving at the logic

layer, what remains are functional requirements of these variables. In other words, what are the

specific operations necessary in order for these variables to perform the demands and terms of the

contract?

Consequently, Ergo is intentionally limited with its expressiveness.
443

 Consider the following

contractual clause translated from descriptive natural language to Ergo.

The original provision, in prose, states:

Additionally, the Equipment should have proper devices on it to record any shock during

transportation as any instance of acceleration outside the bounds of -0.5g and 0.5g. Each shock

shall reduce the Contract Price by $5.00.

The clause, in code, reads:

440

 “Key Concepts,” Accord Project (accessed October 2020), https://docs.accordproject.org/docs/accordproject-

concepts.

441

 Id.

442

 Id.

443

 The goal is for conditional and bounded iteration. This is presumably contributive to the reusability of contractual

clauses. See “Ergo overview,” Accord Project (accessed February 2020), https://docs.accordproject.org/docs/logic-

ergo.html.

https://docs.accordproject.org/docs/logic-ergo.html
https://docs.accordproject.org/docs/logic-ergo.html

 M. Ma

103

Figure A Extracted from Ergo’s ‘Fragile Goods Logic,’ (Cicero Template Library, Github)

<https://github.com/accordproject/cicero-template-library/blob/master/src/fragile-goods/logic/logic.ergo> accessed

October 2020.

At first glance, the translation is rather striking. There are evidently several omissions from the

natural language text to the Ergo language. First, mention of recording devices that determine the

weight changes are excluded from the code. Moreover, fluctuations in the Contract Price are equally

excluded. Instead, only variables remain, such as DeliveryUpdate, PaymentObligation,

accelerometerReadings, accelerationMin and etc.

Upon closer reading, it becomes clear that the contractual clause has undergone a decoupling

process. That is, a conversion from the original unified contractual language to independent,

actionable constituents has taken place. These variables are quantitative reconfigurations of the

‘performative’ elements of the contract. For example, the model layer reconstructs the weight

changes and fluctuations in the Contract Price to:

Figure B Extracted from ‘Fragile Goods,’ (Accord Project) <https://templates.accordproject.org/fragile-

goods@0.14.0.html> accessed October 2020.

 M. Ma

104

As noted, Ergo applies these variables and signals their operations. The Ergo language requests for

the acceleration readings from the recording devices, then dependent on the parameter changes,

computes whether the Contract Price would alter. This method of distilling the quantifiable from

the qualifiable suggests that contracts are necessarily unambiguous and, in effect, are simply a matter

of structuring.

B. Sophia and Solidity

Sophia is a language customized for smart contracts
444

 on the Aeternity Blockchain.
445

 The main unit

of the code is focused on the performance of the contract. As the code is limited to contract

implementation, the syntax of the language is again purely functional.
446

 Prior to delving into the

translation, it may be important to define a few key terms. First, the state is understood as the objects

of the contract. The entrypoints are the actions pursuant to the contract. If the contract stipulates

modifying the state, entrypoints are annotated with the ‘stateful’ keyword.
447

 The inclusion of stateful

is the dividing line between transactions and calls in smart contracts. The former requires

modification; the latter does not. For example, a procurement contract requests a notice upon

delivery. As the notice does not require modifying the state, a simple entrypoint would suffice. The

actual delivery, on the other hand, would require the stateful qualifier. All in all, Sophia applies a

Python-style syntactic structure with minor changes to the notation.

Consider the sample purchase agreement written in Sophia:

444

 Smart contracts are defined in the paper as contracts limited to the enforcement of relationships through

cryptographic code. See “How do Ethereum Smart Contracts Work?,” Coindesk (March 30, 2017),

https://www.coindesk.com/learn/ethereum-101/ethereum-smart-contracts-work.

445

 Defined as a scalable platform for executing smart contracts. See “Why aeternity is so innovative?,” Aeternity

(accessed April 2020), https://aeternity.com/.

446

 “The Sophia Language,” supra 434.

447

 Id.

https://www.coindesk.com/learn/ethereum-101/ethereum-smart-contracts-work
https://aeternity.com/

 M. Ma

105

The purchase agreement is remarkably direct. In the above contract, the terms of the agreement

have been reduced to a mere 19 lines of code. The remainder of the agreement serves to notify

delivery and updates on courier status. Notably, the contracts apply existing functions that have been

pre-programmed; thereby, rendering performance automatic. Most purchase agreements are

templates easily found with a quick search on the Internet. The programmed functions mirror the

use of templates. Placeholders on templates are instead dynamic variables. Clauses that indicate

qualitative expectations of the product for purchase (i.e. the condition of the good) remain as

annotations outside of the contract.

Similarly, Solidity is another language used for the implementation of smart contracts. Solidity draws

influence from Python and is an object-oriented language.
448

 As opposed to the Aeternity Blockchain,

Solidity is, instead, a language customized for the Ethereum Blockchain.
449

 As opposed to states and

448

 “Solidity,” supra 434.

449

 I have elected not to delve into the specifics of blockchain. This is simply to clarify that these languages, while

similar, operate on different smart contracts platforms.

 M. Ma

106

entrypoints, Solidity uses the syntax of variables and functions akin to ‘Python-ese’. For example:

rather than using ‘stateful’ as the performative, Solidity uses ‘modifier.’ Simply put, their uses parallel

those of Sophia. Solidity, however, offers more options in qualifying contracting parties. Structs and

Enums are syntactical operations that better classify the types of users engaged in the contract.
450

Consider the sample purchase agreement written in Solidity.

450

 “Structure of a Contract,” Solidity (accessed April 2020), https://solidity.readthedocs.io/en/v0.6.7/structure-of-a-

contract.html.

https://solidity.readthedocs.io/en/v0.6.7/structure-of-a-contract.html
https://solidity.readthedocs.io/en/v0.6.7/structure-of-a-contract.html

 M. Ma

107

Again, the drafting of the purchase agreement is highly procedural and direct. There are no terms

and conditions qualifying the object for purchase. Instead, there are only ‘code-ified’ limitations;

measures to verify the identities of the contracting parties and confirm the purchase. All operations

facilitate performance of the contract.

In both Sophia and Solidity, there are no translations of agreements from natural language to code.

Rather, there are merely examples of contracts drafted in the formal language. That is, these

contracts are reimagined in code at their creation. The translation process is internalized and

configured to the parameters of the programming language. The purchase agreements ‘speak the

language’
451

 of smart contracts. Certainly, for smart contracts, its uses extend beyond purchase

agreements. Currently, the use cases for smart contracts are narrow and typically do not require

qualitative accounts.
452

 The issue perhaps is the conflation of other use cases with contracts in

451

 Recall Mireille Hildebrandt noting the shift to computation as one from reason to statistics. See Mireille

Hildebrandt, “Law as computation in the era of artificial intelligence: Speaking law to the power of statistics,” Draft for

Special Issue U. Toronto L.J., 13 (2019).

452

 Smart contracts have been used for blockchain use cases such as the trading of cryptocurrencies, voting, or even

blind auctions. See “Solidity by Example,” Solidity (accessed April 2020),

https://solidity.readthedocs.io/en/v0.6.7/solidity-by-example.html. See also Gideon Greenspan, “Why Many Smart

https://solidity.readthedocs.io/en/v0.6.7/solidity-by-example.html

 M. Ma

108

particular. For programmers well-versed in Solidity or Sophia, the identifiable problem is

determining whether the purchased item had arrived at the buyer’s address. How the good arrived

is never the matter. By eliminating the how, there runs the risk of reducing contracts to a Boolean

binary.

C. Lexon

Alternatively, Lexon is a peculiar mix to the programming languages studied. Unlike others, Lexon

is founded on linguistic structure and designed to reason in natural language. Lexon reduces

vocabulary and grammar to rule sets. Lexon’s base vocabulary consists of definable ‘names’ used to

designate objects and clauses. Just as one would draft sentences in natural language with a subject

and predicate, Lexon operates in a similar fashion. There is, however, an important difference:

articles are considered superfluous, ‘filler,’ words.

Below is a sample contract drafted in Lexon:

For an agreement at this level of simplicity, articles may not seem necessary to clarify the meaning

of contractual terms. Nevertheless, party obligations do occasionally hinge on articles; potentially

affecting the performance of the contract. It is not inconceivable that specifying a particular object as

opposed to a general one matters, especially in certain procurement and sales contracts. Lexon

Contract Use Cases Are Simply Impossible,” Coindesk (April 17, 2016), https://www.coindesk.com/three-smart-

contract-misconceptions.

https://www.coindesk.com/three-smart-contract-misconceptions
https://www.coindesk.com/three-smart-contract-misconceptions

 M. Ma

109

argues that the primary role of articles is to improve text readability. Yet, Lexon concedes that articles

can “fundamentally change the meaning of a contract” and that this may be an area ripe for abuse.
453

Further complicating the narrative, Lexon is not concerned about semantics altogether. The startup’s

creator, Henning Diedrich, acknowledges the inherent ambiguity of natural language that renders

interpretation to be challenging; but argues that the Lexon language is not to clarify nor create

complete contracts. Instead, Lexon is bridging the gap between formal programming and natural

languages. Like other formal languages, Lexon cannot understand the ‘meaning’ of its terms. Its

structural design only accounts for functionality. Lexon uses Context Free Grammars (CFG). First

theorized by Chomsky, CFG do not depend on context; rules operate independent of the objects in

question. Chomsky had originally developed CFG in an effort to formalize natural language. While

this was largely unsuccessful in linguistics, it has since been popularized in computer science.

Consequently, Lexon applies the model to create a programming language that is both expressible

in natural language and readable by machines.

Diedrich contends that meaning could never be attained. Meaning is regarded as something that,

though cannot be extracted, could be pointed to or described.
454

 The Lexon language is structured

in a manner reflective of these underlying assumptions. That is, rather than dwelling on the

interpretation of the specific word or phrase in natural language, Lexon limits meaning to function.

Diedrich states, “the actual functionality of the contract is the better description of …the list of the

actual rights and obligations of that person without relying on the original meaning of the word.”
455

By framing functionality as a proxy for party obligations, Lexon inadvertently reframes the basis of

contract theory from party autonomy to contract performance.

D. Blawx
456

Blawx, on the other hand, uses a declarative logic. Perhaps the most interesting element of this

language is its user interface. The code visually appears as puzzle pieces –or, Lego blocks – searching

for its missing piece. Blawx was inspired by the program, Scratch, created in MIT as an educational

453

 Lexon has noted that future tools would account for the possibility such abuse. See Diedrich supra 435 at 33.

454

 Id at 107.

455

 Id at 106.

456

 It must be acknowledged that Blawx is currently in alpha version and at the early stages of a prototype. It has,

however, been recognized for its potential as a legal reasoning and drafting tool.

 M. Ma

110

assistant for children learning how to code. As the ‘blocks’ literally connect with one another, they

visually capture the relationships between objects and their properties. Moreover, there is limited

room for error; since the ‘pieces’ would physically not fit together should the code be written

incorrectly.

Much like Prolog, Blawx operates on sets of facts and rules. Facts represent objects, or things, known

to be true in the code. Rules are coded statements composed of both conditions and conclusions.

Both elements are required in order for a rule to exist. Unlike other programming languages, Blawx

works on the premise of declarative rules such that “conclusions are true if conditions are true.” This

may seem no different than traditional ‘if, then’ statements. This is surprisingly false. In

programming, the ‘if conditions then conclusions’ framework operates temporally. For machines,

this means that conditions only apply to the specific task at hand and do not apply globally to the

program.
457

 In the case of Blawx, rules are encoded in a declarative manner to help form the

particular program’s ‘universe of knowledge.’ Once the ‘universe’ of facts and rules have been

established, the program will be able to answer to queries. Queries are fact-based and binary.

Blawx aims to transform legal documents to queryable databases. In practice, this would suggest that

contracts may be encoded using the aforementioned logic of the program. Ultimately, the goal is

for parties to be able to reason by simply asking binary questions to the application. The encoding

of facts and rules allows parties to move from legal reasoning to legal information extraction.

Interpretation, then, is no longer required since the solutions are presumed to be directly retrievable.

Consider the sample translation of a legislative act from descriptive natural language to Blawx. The

article states:

5(1): A personal directive must

(a) Be in writing,

(b) Be dated

(c) Be signed at the end

i. By the maker in the presence of a witness, or

457

 This is described as “if right now the conditions are true, then next the computer should do conclusions.” See

“Facts, Rules, and Queries,” Blawx.com (accessed February 2020), https://www.blawx.com/2019/09/facts-rules-and-

queries/#page-content.

https://www.blawx.com/2019/09/facts-rules-and-queries/#page-content
https://www.blawx.com/2019/09/facts-rules-and-queries/#page-content

 M. Ma

111

ii. If the maker is physically unable to sign the directive, by another person on

behalf of the maker, at the maker’s direction and in the presence of both the

maker and a witness,

and

(d) Be signed by the witness referred to in clause (c) in the presence of the maker.

The provision, in Blawx, reads:

 M. Ma

112

 M. Ma

113

This translation is an especially difficult read. First, the ‘block’ appearance of the language may be

troubling for those who are not tactile learners. The programming language forces the reader to

focus instead on the conceptual components of the rules as opposed to the clause. The logic of the

program necessitates a substantive breakdown of the legislation to its ontological elements. Simply

put, it reduces the law to the relevant actors and their obligations. In this case, these elements are (1)

the roles (actors); and (2) the signatures (obligations).

More importantly, the process of converting natural language to Blawx faced significant challenges

with interpretation.
458

 Coding the legislation required reframing the meaning of “personal directive”
459

into a binary; either as an object or an action. Fundamentally, it is a reconfiguration of the law to its

function. Rather than, “what are the requirements of a personal directive,” the question becomes

“what actions must be taken in order for the personal directive to have legal effect?” The questions

asked de facto bear the same meaning. The difference, while subtle, crucially points to an implicit

recognition of the legal effect of the document in natural language. Notably, a personal directive

could only exist should the requirements be met. Otherwise, it would simply be a piece of paper.

This was raised as a note on the translation. Blawx introduced the concept of “validity” as a new

condition
460

 because there was no form of classification for a document that was not a personal

directive. In the context of computable contracts, the Blawx language – like Ergo – would perhaps

work best for contracts with clear objectives and unidirectional relationships.

E. OpenLaw

The last programming language perhaps poses as a stark contrast to the other formal languages

studied.
461

 For OpenLaw, the aim is not to translate the natural language agreements in their entirety.

Instead, the language acts as a hybrid; an integration of machine-readable code with clauses drafted

458

 There is repeated commentary on the difficulty of interpretation when converting to a binary. “Example: Using

Blawx for Rules as Code,” Blawx.com (accessed February 2020), https://www.blawx.com/2020/01/example-using-

blawx-for-rules-as-code/#page-content.

459

 Here, the personal directive is understood to be a ‘living will.’

460

 Following the formula of a declarative rule, this would suggest “this is a personal directive (conclusion) if it is valid

(condition).” Blawx, supra 457.

461

 I make the clarification here that the Accord Project also seeks to develop legal templates with associated computing

logic. Nevertheless, while the Accord Project offers a similar form, the study focuses on the independent application of

the Ergo language. See “Overview,” Accord Project (accessed February 2020),

https://docs.accordproject.org/docs/accordproject.html#what-is-a-smart-legal-contract.

https://docs.accordproject.org/docs/accordproject.html#what-is-a-smart-legal-contract

 M. Ma

114

in natural language.
462

 The intention is to generate variables and logic to be imported and

incorporated into forthcoming contracts of a specified type. For example, a non-disclosure

agreement (NDA) typically would take the names of contractual parties and transform them as

dynamic variables. If the variable requires further description, additional string
463

 text could be used

to qualify the term. Boolean logic is a feature of OpenLaw’s programming language. The function,

“conditionals,” embeds logic in a legal agreement; reconstructing contractual terms into binary

questions. Clauses are interpreted as “embedded template[s].”
464

 The goal is to reduce drafting work

by storing boilerplate clauses as data that may be added to contracts.

Below is an excerpt of an advisor agreement written in OpenLaw:

462

 See “Markup Language,” supra 437.

463

 In computer programming, a string is defined as a sequence of characters and is representative of text. See “String,”

TechTerms (accessed February 2020), https://techterms.com/definition/string.

464

 “Markup Language,” supra 437

https://techterms.com/definition/string

 M. Ma

115

The excerpt of the agreement is presented in two forms: (1) in code; and (2) in OpenLaw’s drafting

editor. In either arrangement, the natural and formal language are woven together seamlessly. At

first glance, it may be difficult to determine whether a translation exists. The enduring presence of

the natural language and the structural consistency of the contract suggest the integrity of the

agreement remains intact. Yet, the incorporation of code with natural language offers a dynamic

interpretation of legal agreements. It mirrors the notion that select contractual elements are

reproducible and calculable, while others require human intervention. The drafting process,

however, is left rather unchanged. The hybrid approach is regarded as a method of simplification;

identifying portions of the agreement that are quantifiable. The question becomes: what are the risks

of simplification? Is ‘hybridization’ also translation?

In examining the programming languages, the technology is observably limited. Namely, contracts

drafted in these languages are governing simple transactions. Nonetheless, they expose conflicting

interpretations of contract theory. More specifically, a commonality across all formal languages is the

interpretation of contracts as predicated on performance. Consequently, all languages are largely

function-based. The principle of party autonomy, expressed often as details in contract terms, is only

secondary to the actual completion of the transaction. Rather than what parties have agreed to and

how the parties have fulfilled their obligations, it becomes solely dependent on whether the

obligation has been completed. Negotiated contracts represent a ‘meeting of the minds.’ With

 M. Ma

116

program languages, there runs the risk of reconfiguring basic contracts doctrines; conflating the

principles of consideration as offer and acceptance as obligation. The exception, of course, is

OpenLaw. Its hybrid approach raises provocative questions on the use of embedded code in legal

drafting.

III. OBSERVATIONS AND ANALYSIS

With the increasing normalization of smart contracts, computer code could foreseeably become a

vehicle in which contracts are drafted. The question remains: should programming languages be

recognized as a form of legal language? The following section will analyze the observations taken

from the study against existing literature. As discussed, function becomes paramount to computable

contracts. Formal programming languages reveal that because natural language is indeterminate, a

migration away from semantics to syntax could resolve the challenges relevant to interpretation.

This was the impetus behind the innovative start-up – also, cleverly named – Legalese. L4, their

marketed programming language, is a domain-specific language (DSL) designed to “capture the

particularities of law, its semantics, deontics, and logic.”
465

 Unlike other formal languages, their ‘logic’

draws influence from Prolog, but has been developed for the sole intention of expressing law.
466

 The

purpose of L4 extends beyond the general application of programming languages to legal language.

Rather, L4 produces formally verified ‘smart’ contracts that equally could be transformed into PDFs

written in natural language. The idea is that the ‘legalese’ of contractual terms is a seamless translation

between code and natural language. Legalese co-founder, Alexis Chun, states, “legal as a utility, not

a consultation.”
467

 This may well be the mission statements of the other programming languages.

The idea of L4 sprung from a programmer seeking to ‘decipher’ an investment contract written in

‘legalese.’
468

465

 “What is Legalese?,” About our Company (accessed April 2020), https://legalese.com/aboutus.html#innovation-

premise.

466

 Id.

467

 “AL Interview: Software is Eating Law – Legalese.com,” Artificial Lawyer (July 29, 2016),

https://www.artificiallawyer.com/2016/07/29/al-interview-software-is-eating-law-legalese-com/.

468

 “Why Computational Law?,” Legalese (accessed April 2020), https://legalese.com/computational-law.html.

https://legalese.com/aboutus.html#innovation-premise
https://legalese.com/aboutus.html#innovation-premise
https://www.artificiallawyer.com/2016/07/29/al-interview-software-is-eating-law-legalese-com/
https://legalese.com/computational-law.html

 M. Ma

117

The programmer then drafted a translation of the investment contract. It read as follows:

Evidently, the translation takes from a specific excerpt of the contract; in particular, one that is

markedly quantifiable. Nevertheless, what the translation highlights is the monotony of certain

contractual clauses. Every provision follows a similar phrasal structure. In effect, the programmer is

pointing to the innate formalism that exists in select legal language. Though drafted in natural

language, the repetition of noun phrases in the aforementioned excerpt divorces context knowledge

from interpretation. The result? The ability to distil and transform natural language to clear

computable form.

A. Early Inspirations

In another fascinating analysis, Layman E. Allen reflects on ambiguity in legal writing owed to

syntactic uncertainties. Allen considers alternative structural constructions to manage issues of

 M. Ma

118

‘between sentence’ logic found in legal drafting.
469

 He first engages in an exercise to deconstruct an

American patent statute and notices immediately a difficulty with the word ‘unless.’ He asks whether

the inclusion of ‘unless’ asserts a unidirectional condition or a bidirectional condition.
470

 That is, does

the clause mean (a) if not x then y; or (b) if not x then y and if x then not y?

Though nuanced, Allen exposes an ambiguity that muddies the legal force of the statute. An

interpretation of ‘unless’ as a bidirectional condition raises the question of what “not y” would mean.

In this particular case, this could affect whether exceptions are possible in determining eligibility for

a patent. He later acknowledges that the sections of the statute immediately preceding and following

provide sufficient context. Nevertheless, he maintains that language must have a clear structure.

Though conceding that semantic uncertainties are often deliberate, structural uncertainties are often

inadvertent.
471

 Drawing inspiration from computer science, Allen argues that drafting requires

replacing the use of imprecise terms (i.e. ‘unless’) and, instead, constructing sentences that use

“lowest common denominators of structural discourse.”
472

 These include ‘and,’ ‘or,’ ‘not,’ ‘if…then,’

and ‘if and only if…then.’ The similarities with formal language are stark, begging the question: how

does reducing language to its ‘lowest common denominators’ affect the complexity and richness of

legal language?

In “Self-Driving Contracts,” Casey and Niblett consider the gaps in contract theory owed to the

ambiguity of natural language. They argue that, currently, natural language as a medium of legal

expression allows contracts to be both intentionally and unintentionally incomplete.
473

 Intentional

incompleteness is interesting because it implies that general language circumvents the ex ante costs

of decision-making and creates a space for changes in conditions. This, however, often leads to issues

of enforceability; such as disputes about the definitions of “reasonable” and “material.”
474

Consequently, ‘self-driving contracts’ would use machine learning algorithms and expert systems to

remove questions of enforceability.

469

 Layman E. Allen, “Language, Law, and Logic: Plain Legal Drafting for the Electronic Age,” B. Niblett (ed.)

Computer Science and Law 76 (1980).

470

 Id at 77.

471

 Id at 96.

472

 Id. at 99.

473

 Anthony J. Casey and Anthony Niblett, Self-Driving Contracts, 43 J. OF CORP. LAW. 101, 112-117 (2017).

474

 Id at 113.

 M. Ma

119

Much like ‘self-driving’ contracts, the aforementioned programming languages help automate the

processes of contract creation and interpretation. As observed in the study, interpretation is

internalized by the technical bounds of the programming language, as contractual clauses are

constructed to reason purposively.

B. Ergo

For Ergo, the question remains whether contractual ambiguities are a mere consequence of

improper structural representation. Notably, the migration from text-to-model layer implies the

potential for mathematical precision from inception. Duncan Kennedy argues that, whether Hart or

Kelsen, determinacy is a matter of degree.
475

 Though legal drafting may be simplified through the act

of sorting, assessing whether a clause is sufficiently amenable to reusability is a difficult ask. The

underlying assumption for the Cicero architecture is that the simplification process will not eventually

alter the method of drafting. Perhaps a better question: is there value to qualitative descriptive clauses

in legal writing? That is, would the ‘text’ layer remain relevant going forward; and what is the

significance of retaining the natural language component of contract drafting?

As discussed by Casey and Niblett, contracts are deliberately incomplete. Again, this is because

contracts are manifestations of party intent.
476

 In effect, how contracts are written frame the behavior

of parties, and thereby influence its performance. Contracts that are negotiated tend to be less

specific and have more room for interpretation. Performance is less likely to be exact. Yet,

performance is not compromised despite the ‘incompleteness’ of the contract. Instead, the contract’s

incompleteness signals trust between parties.
477

For Sophia and Solidity,
478

 the translated clause removes specifications. Solidity and Sophia

reconceptualizes the clause by broadening the scope of the obligation; reclassifying specifications

from conditions to warranties. Effectively, Sophia and Solidity fixes the meaning of contractual terms

and renders interpretation irrelevant. In the ordinary negotiations of a contract drafted in natural

475

 Duncan Kennedy, Legal Reasoning: Collected Essays 154 (Davies Group Publishers, 2008).

476

 Zev J. Eigen, Empirical Studies of Contract, Faculty Working Paper 204 (2012), available at:

https://scholarlycommons.law.northwestern.edu/cgi/viewcontent.cgi?article=1203&context=facultyworkingpapers.

477

 Id at 17. Eigen references the study by Chou, Halevy and Murninghan. See Eileen Y. Chou et. al, (2011) The

Relational Costs of Complete Contracts, IACM 24
th

 Annual Conference Paper, available at

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1872569.

478

 As Solidity and Sophia all raise similar challenges, the observations found are discussed collectively.

https://scholarlycommons.law.northwestern.edu/cgi/viewcontent.cgi?article=1203&context=facultyworkingpapers
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1872569

 M. Ma

120

language, a dispute may arise over mutual assent and performance; perhaps whether parties have

agreed to the finer details of the contract.
479

 With these programming languages, mutual assent is

automatic and indisputable. Perhaps illustrative of the design, Solidity or Sophia contracts only

address “consideration, mutuality of obligation, competency and capacity.”
480

 Offer and acceptance

are assumed. What becomes problematic is, again, the reconceptualization of consideration.

Contracts, then, call for ambiguity, and specifically semantic ambiguity. In isolation, programming

languages like Ergo create the illusion that mutual assent is automatic and indisputable. Semantic

ambiguities no longer exist, as contractual negotiations are limited to operations with little care for

parties’ preferences. This could potentially invoke a behavioral change since contracts would

become primarily functional in nature. Equally, this could conceivably lead to a simplification of

contracts and a convergence towards contractual boilerplate. But, just as Cicero operates through

the trifecta of text-model-data, natural language is indispensable from contract drafting. The role of

natural language becomes monumental, ensuring that the elements of trust and party autonomy are

not compromised and, rather, maintain the heart of contracts doctrine.

C. Lexon

Lexon’s language poses a similar puzzle. Readable in natural language, Lexon’s verbs are coded such

that they coincide with the performance of the transaction. Diedrich’s formulation of meaning finds

parallels with Ludwig Wittgenstein’s writings. Wittgenstein argues that language, as used presently,

extends beyond names and “dry dictionary entries with their definitions.”
481

 The actions derived from

words are effectively married to their meanings. It is conceivable then that language could be no

more than a list of orders and classifications. It follows that in abiding by the rules of association is

479

 One could consider Chartbrook Ltd. v. Persimmon Homes Ltd. [2009] UKHL 38, the infamous English contracts

case on the interpretation of contractual terms. The dispute concerned the sum Persimmon Homes was contractually

obliged to pay Chartbrook. The Court of Appeals ruled that the natural meaning of the language fell closer in line with

Chartbrook’s interpretation. This case is a fascinating example regarding the express intention of parties. Upon appeal,

the House of Lords unanimously ruled in favor of Persimmon Homes, citing that Chartbrook’s interpretation of the

clause did not make sense in a commercial sense. Although the Court ruled on the basis of meaning, there was

nevertheless comment on negotiations preceding contract formation could be cited as evidence of meaning.

480

 “Declarations,” Accord Project (accessed February 2020), https://docs.accordproject.org/docs/logic-decl.html.

481

 Sheila Jasanoff, Can Science Make Sense of Life? 117 (2019). Wittgenstein considered language as a form of life;

and thereby, linguistic expression is constructive of its being. See also Ludwig Wittgenstein, Philosophical

Investigations 19 (1958).

https://docs.accordproject.org/docs/logic-decl.html

 M. Ma

121

to accept the inherent authority of its practice. Meaning is found in the performance of the word,

and not in the understanding of it.

Lexon claims that it neither translates nor transforms thought.
482

 Instead, Lexon preserves the natural

language construction of ‘meaning,’ by placing a constraint on its rules. That is, Lexon uses a subset

of natural language grammar as the programming language of the legal contract.
483

 This approach is

known as “controlled natural language.” Rather than processing all of natural language, a machine

need only to process an assigned vocabulary and grammar. The assigned set becomes the operatives

of the language game. Equally, Lexon wears the legacy of Chomskyan formal semantics; whereby

the syntactic structure is both a projection and vessel of its function. Interpretation is again

internalized by “mapping…symbols to a reference structure.”
484

D. Blawx

Blawx, alternatively, required defining in advance the actions of contractual parties. Again, the code

internalizes interpretation as a preliminary step. Using a declarative logic, Blawx must first set the

parameters of its dataset. On several occasions,
485

 the code required defining new categories and

forming different classifications in order to be amenable to translation. This involved making explicit

the relationship between legal objects and their properties. Interestingly, legal questions, particularly

those assumed to be accommodating to mathematical configuration, were found to be challenging

in the Blawx language. For example, the determination of a personal directive could easily be

structured as a binary question. Still, it was necessary to define the object that did not fulfil the

requirements of a personal directive. This subsequently provoked a deeper question on the implicit

recognition of legal documents.

Simply put, Blawx exposed the tacit force of law. Reflecting on H.L.A. Hart, the underlying

assumption of “power-conferring rules […] exist not in virtue of some further law-making act, but in

virtue of a fundamental rule of recognition implicit in the practice of law-applying officials.”
486

482

 Diedrich, supra 435 at 104.

483

 Id.

484

 Giosuè Baggio, Meaning in the Brain 62 (2018).

485

 Blawx had encountered difficulty with interpreting the natural language of the legislation. Blawx recognized that it

took ‘creative liberties’ in converting the statute to Blawx language. See Blawx, supra 458.

486

 H.L.A. Hart, The Concept of Law Chapters 4, 6 (1961).

 M. Ma

122

Similarly, J.L. Austin contemplated the performative effect of ‘utterances.’ Austin uses the act of

marriage to demonstrate how the utterance of a certain few words puts into effect its meaning.
487

Austin suggests that legal and moral obligations are relative to public specification; that utterances

necessarily correspond with particular procedures situated within social contexts. Their mis-

performance leads to a nullification or voidance of the act.
488

In the case of Blawx, the meaninglessness and inability to articulate the ‘inverse’ of a legal document

(i.e. missing the signature of a witness but would otherwise be a personal directive) points to the

implicit dimension of the law.
489

 The dividing line between a document having legal force, or not,

speaks to the inherent authority of legal rules. Just as marriage could only be recognized within a

specific circumstance, it was necessary for Blawx to acknowledge the deeper context; that is, “how is

legal recognition being defined?” Blawx then applied a purposive interpretation, classifying legal

recognition as validity. While the translation is rather sound – and validity is often a proxy for

determining legal effect – the questions asked are distinct. From “is it legal” to “is it valid” is

necessarily distinguishable in contract law. A contract may be valid but legally unenforceable.

Therefore, interpreting legal force as validity subverts existing contract theory and, again, narrows

interpretation to seemingly functional equivalents. Casey and Niblett are correct in noting that there

will be an attempt to “pigeonhole [computable contracts] into existing frameworks of thought.”
490

 For

Blawx, its uptake would likely require changes to existing contracts doctrines.

The challenge of using programming languages centers on interpretation. Drafting contracts in

formal programming languages highlights the ambiguity of the original source. The task of translating

contracts from descriptive natural language to code brings to light underlying assumptions of legal

authority and re-evaluates party autonomy in contract theory. In nearly all the cases, the interpretative

487

 John L. Austin, How to Do Things with Words 7 (1975).

488

 Id at 16.

489

 Gerald J. Postema, Implicit Law,13 Law and Philosophy 361 (1994). Recall also, Allen and the difficulty of

interpreting what is “not y” See Allen, supra 469. There is an alternative argument that Blawx may not be the right

choice in programming language for particular types of law (i.e., legislation). That is, procedural languages could

perceivably be a better option. Python, a procedural language, could construct a personal directive on the basis that the

requirements are fundamentally conditional. There may be merit to a deeper investigation as to whether certain

programming languages are more conducive to specific types of contracts.

490

 Casey and Niblett, supra 473.

 M. Ma

123

exercise was done ex ante; that the contract’s legal effect was established in direct parallel to

performance.

IV. IMPLICATIONS AND FURTHER CONSIDERATIONS

As mentioned, formal programming languages have the impact of unifying legal concepts such as

mutual assent with performance; effectively, reinvigorating arguments associated with contractual

boilerplate.
491

 Alternatively, it raises an argument for increased granularity by breaking down and

identifying the conceptual components of contracts to specific executable tasks programmable in the

language. In either case, there is a definite reframing of contracts doctrines. Derrida comes to mind:

is the use of computer code for legal writing beyond ‘convenient abbreviation’?
492

 Hofstadter would

argue for the case that computer code cannot be devoid of meaning and would indeed imprint its

effect to the system. Hofstadter states, “[w]hen a system of ‘meaningless’ symbols has patterns in it

that accurately track, or mirror, various phenomena in the world, then that tracking, or mirroring

imbues the symbols with some degree of meaning…”
493

 Structure cannot be divorced from meaning.

Recall Duncan Kennedy tested the relationship between structure, or symbols, and meaning by

deconstructing argument into a system of ‘argument-bites.’ Argument-bites form the basic unit and

such bites often appear in opposed pairs. Operations then performed on argument-bites constitute

and build legal arguments. Such operations diagnose and assume the circumstances, or relationships,

in which the argument-bite is to be manipulated and ‘deployed.’
494

 Such import of structural

linguistics conceptualizes law and argument as systematically formulaic; “a product of the logic of

operations.”
495

 Perhaps most interesting about Kennedy’s theory is his idea of ‘nesting.’ Kennedy

describes nesting as the act of ‘reproduction’ or the “reappearance of [argument-bites] when we have

491

 Boilerplate contracts as lifting the burden of interpretation and ensuring enforcement. Computable law borrows and

extends the characteristics of contractual boilerplate in the name of increased precision, efficiency, and certainty.

Recall Smith, supra 419.

492

 Jacques Derrida questioned natural language and the medium of writing as the accepted form of communication.

His argument strikes an interesting parallel to the use of written and descriptive language in law. Derrida considers how

writing is perceived as the original form of technology; that “the history of writing will conform to a law of mechanical

economy.” Writing was a means to conserve time and space and was independent of structure and meaning. See

Jacques Derrida, Limited Inc. 4 (1988).

493

 Douglas Hofstadter, Gödel, Escher, Bach preface-3 (Twentieth-anniversary ed. 1999).

494

 Kennedy describes relating argument-bites to one another by such operations as a means of confronting legal

problems. See Duncan Kennedy, A Semiotics of Legal Argument, 3 Collected Courses of the Academy of European

Law 317, 351 (1994).

495

 Id at 343.

 M. Ma

124

to resolve gaps, conflicts or ambiguities that emerge [from]…our initial solution to the doctrinal

problem.”
496

 Therefore, the conundrum surfaces where language may be applied to law in a

mechanical fashion but the process of reducing legal argument to a system of operations raises

considerations on the act of labelling and the power in its performativity. That is – and as Kennedy

rightfully notes – “language seems to be ‘speaking the subject,’ rather than the reverse.”
497

Kennedy’s thought exercise is precisely analogous to the use of formal programming languages for

legal drafting. Perhaps the question asked is not whether programming languages should be a legal

language, but how they could be amenable to the demands of contract law. Are these demands to

create more complete contracts, or to limit ambiguity and ensure contract enforcement? Thus far,

the paper has sought to raise a number of concerns relevant to the use of programming languages,

particularly in the translation of contracts from natural language to code. These concerns speak to

whether the effort to complete contracts or disambiguate contractual terms could resolve inherent

tensions of contract interpretation and enforceability.

A. The Spectrum

Modularity theory for the design of contracts has made a triumphant return in recent scholarship.
498

Recalling Smith, “natural language comes in varieties that are more or less formal.”
499

 As seen in

Legalese’s example of the investment contract, there are undeniably contractual clauses that are

more formalistic than others. The trade-off, Smith claims, between context-dependence and

formalism relies on the “amount of information conveyed”
500

 within a particular provision. The

amenability of the clause to reach a larger audience and wider variety of situations – thereby, more

information-intensive – determines the degree of formalism applicable.
501

 In other words, genericism

mirrors formalism.

496

 Id at 346.

497

 Id at 350.

498

 See Smith, supra 419. See also George Triantis, Improving Contract Quality: Modularity, Technology, and

Innovation in Contract Design, Stanford Law and Economics Olin Working Paper No. 450 (2013); and Matthew

Jennejohn, The Architecture of Contract Innovation, 59 B.C.L. Rev 71 (2018).

499

 Smith, id at 1204.

500

 Id.

501

 Id. at 1206.

 M. Ma

125

This appears to be the approach taken by OpenLaw. The method of integrating code with natural

language suggests that a latent assessment of formalism should be applied to contracts. In the sample

advisor agreement, the Choice of Law and Venue clause was determined to be highly reproducible.

Leaning on Smith, the provision was likely to be rather broad and contained language generic to

most advisor agreements. The clause would, therefore, satisfy the test; that it is amenable to

translation. The OpenLaw method has seen adoption by the legal industry. Perhaps acknowledging

the limitations of contracts drafted entirely in a programming language,
502

 King and Wood Mallesons

(KWM) have piloted a hybrid ‘architecture’ that combines “computational code and human

discretion to produce a single contract[…]”
503

 In the “ordinary lifecycle of [a] contract” where there is

“nothing unpredictable,”
504

 performance reigns supreme and that such performance could be easily

automated. Yet, complexity in the market renders prediction impossible; that human judgment is

required to assess the “extraordinary range of possibilities…facts which are far beyond the scope of

any contract.”
505

 The solution, KWM recommends, is a ‘seamless bond’ between terms drafted in

computational and natural language. The contract should be designed together to avoid the risk of

“complicating the legal framework through inconsistent terms.”
506

KWM’s project is remarkable and touches on the significance of legal design. The question then

becomes one of operation. Using programming languages to draft contracts could pose challenges

akin to incorporating contractual boilerplate to new contracts. As Richard Posner argues, clauses

“transposed to a new context may make an imperfect fit with the other clauses in the contract […]”
507

KWM seeks to overcome Posner’s objection by actively acknowledging the significance of the legal

relationship at the heart of contract law. But, drafting in tandem contractual clauses in code and

natural language is a difficult ask. The underlying purpose of code is efficiency by reducing

redundancy. Recalling Jeffrey, IDEs are conducive to contract ‘reusability;’ fostering an increase in

‘base documents’ and import of boilerplate clauses.
508

 It may be unavoidable that clauses drafted in

502

 The firm comments on the uniqueness of the project from other ‘code-fication’ ventures. The project avoids mere

replication and enforcement of existing legal agreements. See “DnA Contracts,” Github King and Wood Mallesons

(accessed May 2020), https://github.com/KingandWoodMallesonsAU/Project-DnA.

503

 Id.

504

 Id.

505

 Id.

506

 Id.

507

 Richard A. Posner, The Law and Economics of Contract Interpretation, 83 Texas L. Rev. 1581, 1587 (2005).

508

 Jeffrey, supra 424.

https://github.com/KingandWoodMallesonsAU/Project-DnA

 M. Ma

126

formal language become standard boilerplate; easily reusable in a number of agreements.

Consequently, there remains the risk of a conceptual mismatch.

Drafting contracts both in natural language and code at inception is perhaps optimistic. To preserve

the integrity and consistency of their contracts, KWM would be obligated to determine whether (a)

the clause should be importable to other agreements; or (b) hybrid contracts should act as unique

templates of their own. A workaround may be to create standards for contractual clauses conducive

for ‘code-ification;’ as opposed to drafting in a combinatory manner. Regardless, the possibility of

reframing contracts doctrine altogether is foreseeable.

B. The Code is Mightier than the Pen?

Though efficient, standardizing legal language has the potential of shifting the dynamics of contract

negotiation and clause re-drafting. Consider Legalese’s L4. The difficulty with the customized

language – as one intended for legal writing – is that its default function has already translated legal

language to code. It embodies specific assumptions of the law in its descriptive state. Parties using

the L4 language then inherit such assumptions, changing their interpretation of contractual

obligations and post-agreement behavior.

Perhaps Stanley Fish described it best, “language carries obligations and commitments that were

once undertaken but eventually assumed; thereby rendering inseparable its original intentions at its

core.”
509

 As a result, inherent philosophical and moral concepts are ‘built into’
510

 the language such

that overtime its interpretative exercise is forgotten and accepted as fact. Similarly, Smith states,

“…there are many [contractual] phrases requiring the assignment of an interpretation and the

interpretations can interact in ways that are sometimes hard to foresee.”
511

 With the use of

programming languages to draft contracts, the forthcoming challenges would be to ensure that the

interpretative exercise is not forgotten; that meaning remains a continuum. Interpretation should

allow for responsiveness to changing environments.

509

 Stanley Fish, Is there a text in this class? The Authority of Interpretive Communities 108 (1980).

510

 Id at 107.

511

 Smith, supra 419 at 1206.

 M. Ma

127

Frank Pasquale reflects on interpretation by drawing on the “elective affinities between poets and

lawyers.”
512

 He argues, “[t]he law is a rich source of metaphor for poetry”
513

 that extends beyond

technical expertise in its drafting. Pasquale warns of the “reductive demands of technology,”
514

whereby its competencies are limited to sets of commands and series of directives. Rather, the poetic

construction of legal rules embodies a sensibility and sensitivity to circumstance that is necessary in

legal writing.
515

 As a result, the space for quantification and simplification of language stands in

opposition to the inherent art of legal drafting. If polysemy is an integral feature of natural language

that cannot be rid, how then could programming languages find its place in legal language?

C. Party Reactions

Understanding party behavior may be helpful. Zev Eigen reflects on contracts “in action.”
516

 Contracts

hold the impression of legal constraints,
517

 thereby specificity in language matters at the formation of

the contract. In an empirical study, Eigen identifies two key propositions on questions of behavior

around contracts. He states, contracts are a product of how drafters and signers interpret the law.
518

This reiterates the notion that how contracts are written frame the behavior of parties; drafting

influences performance. As discussed, contract incompleteness signals trust between parties.
519

 In

contrast, standardized legal language is authoritative in character. It is the drafters’ interpretation of

the law; not the signers. In this case, programming languages risk eliminating the signers’ altogether,

and ‘the drafters’ are the code itself.
520

512

 Frank Pasquale, The Substance of Poetic Procedure: Law & Humanity in the Work of Lawrence Joseph, 32 Law &

Literature 1, 7 (2020). See also Pasquale’s references to the similarities between lawyers and poets found in David

Kader and Michael Stanford, Poetry of the Law: From Chaucer to the Present (2010).

513

 Id.

514

 Id. at 33.

515

 Id. at 34.

516

 Eigen, supra 476.

517

 Id. at 16.

518

 Id. at 7.

519

 Eigen et. al, supra 477

520

 Recall Lawrence Lessig and the conceptualization of code as law. Lessig draws attention to code as a form of control;

that “code writers are increasingly lawmakers.” See Lawrence Lessig, Code 2.0 79 (2006).

 M. Ma

128

Online form-contracts
521

 may be a revealing ancestor. In another study, Eigen tests the extent of party

compliance with online form-contracts. The paper empirically examines contract enforcement on

individuals relative to the framing of obligations and participation in drafting.
522

 His findings note that

the option to modify the terms and conditions positively impacts the eventual fulfilment of

contractual obligations. To participate in the formation of the contract importantly distinguishes an

individual’s interpretation of contractual obligations. Participation transforms meaningless

instructions to promises. Eigen states, “[p]romise creates obligation, whereas consent tolerates limits

on what is being passively imposed or, […] on rights surrendered.”
523

 The outcome of Eigen’s

experiment reveals that even the slightest effect into the contractual process is sufficient to

demonstrate the heart of contracts doctrine: the will of contractual parties.

EMERGING FRONTIERS: NEXT STEPS

For programming languages to act as a legal language, party autonomy cannot be compromised.

While the intention of program languages is not presumably to place limitations on contract

formation, “law has language at its core.”
524

 Consequently, the functional nature of most programming

languages has an inadvertently transformative impact on legal writing and the character of contract

law. Next steps would require an untangling of performance from mutual assent.

a. New Encasings

For programming languages such as Solidity and Sophia, an easy fix may be to add legal effect to the

annotations.
525

 This would immediately reaffirm the weight of details in the contract; ensuring the

role is understandably prescriptive as opposed to descriptive. Moreover, unintended transformations

of contractual terms from conditions to warranties would be avoidable.

521

 Zev Eigen defines as online form-contracts as “contracts unilaterally drafted.” See Zev J. Eigen, When and Why

Individuals Obey Contracts: Experimental Evidence of Consent, Compliance, Promise, and Performance, 41 J. OF

LEGAL STUDIES 67 (2012).

522

 Id. at 68.

523

 Id. at 90.

524

 Markou and Deakin, supra 410 at 3; and “…the central place of language in law” described in Pasquale, supra 512 at

31. See also Frank E. Cooper, Effective Legal Writing (1953) and his introduction with Law is Language.

525

 This, however, depends on the technical competency of lawyers to verify that annotations have been performed. Such

an approach has been suggested by Shaanan Cohney and David Hoffman; the layering of the scripting and natural

language to form a ‘contract stack’ whereby promises are ‘legally-operative.’ See Shaanan Cohney and David Hoffman,

Transactional Scripts in Contract Stacks, U of Penn Inst for Law & Econ Research Paper No. 20-08, 40-60.

 M. Ma

129

In the case of Blawx and Lexon, the question is more complex as rules, categories, and framing are

intentionally reconfigured. Blawx and Lexon predicate on a shift in the performance of the law;

bringing to light the translation of legal concepts. The adage, “the medium is the message,” is

particularly relevant for these languages. Both Blawx and Lexon express their own conceptual

framework, redefining and asserting the meaning of existing legal interpretations. This further speaks

to the limits of the law
526

 and the difficulty with demarcating legal concepts.

Lessons of methodological transplant may be insightful. Katja Langenbucher engages with a theory

of knowledge transfer that occurs between fields; subsequently, creating an import and inheritance

between concepts. Langenbucher notes that the integration of economics, for example, in ‘legalese’

offers promises of (1) ‘tested predictions;’ (2) clear questions and precise methodology; and (3) a

common language.
527

 But, the difficulty of transplant, she suggests, is the superficiality of the import.

This is typically owed to a misalignment between assumptions about the discipline and the method

itself.

Similarly, programming languages such as Blawx and Lexon seek to offer comparable promises of

clarity and precision. Their current state, however, could risk undercutting contracts doctrine as

clauses are forcibly fit to what is permissible of the language as opposed to legal principles. For

Blawx, the conflation of validity with enforceability is problematic. Lexon, on the other hand,

constructs barriers for contracting parties by limiting the vocabulary and grammars available. Again,

the language must be sufficiently agile to accommodate for the possibility of unpredictable

circumstances. Ultimately, contracts are about regulating the future through transactions.
528

 Contracts

allow performance “to unfold over time without either party being at the mercy of the other […]”
529

By confining the operational space, the ‘medium’ inadvertently ties the hands of its parties.

b. Recycled Structures

For languages like OpenLaw, the challenge is two-fold: (1) achieving balance between natural and

symbolic (numeric) language; and (2) the simplification of legal writing. A hybrid language raises the

526

 As described by Joseph Raz as the exercise of distinguishing the principles and standards that should be included or

excluded from the legal system. See Joseph Raz, Legal Principles and the Limits of Law, 81 Yale L. J. 823 (1972).

527

 Katja Langenbucher, Economic Transplants: On Lawmaking for Corporations and Capital Markets 8-9 (2017).

528

 Geoffrey Samuel, The Reality of Contract in English Law, 13 Tulsa L. J. 508, 523 (2013).

529

 Posner, supra 507 at 1582.

 M. Ma

130

potential for parallel drafting. An initial assessment of clauses that may be ‘code-ified,’ thereby,

become paramount to maintaining the integrity of the contract. This could foreseeably demand

defining working guidelines on articles and provisions that are (1) invariant to context; and (2) for

varying types of contracts. Smith’s ‘modular boilerplate’ could be an excellent start; specifically, the

combined assessment on the remoteness of the audience and risk of the transaction.
530

Still, contracts must be “tailored to the parties’ needs;”
531

 and integrating standard ‘reusable’ code

could occasionally lead to an improper fit. To have equal effect between natural language clauses

and code, execution must mirror the qualitative description. Ron Dolin reflects on particular

elements of contracts that are already “tagged, labeled, identified, or otherwise ‘marked up’…[and]

amenable to complex search and integration.”
532

 Existing tools, such as the Extensible Markup

Language (XML), predefine rules for encoding documents to allow for both human and machine-

readability. Even in cases where rules are not predefined, definition languages
533

 outline permissible

tags with attributes that are readily usable.

Dolin argues that the tradeoffs of using XML are largely between increased accuracy and reduced

ambiguity against significant “upfront costs.”
534

 He suggests then that the difficulty of integrating XML

in legal documents is unpacking the “intimate relationship between information needed to be

exchanged […] and the shared, controlled vocabulary used to express details.”
535

 He cites the example

of medical informatics that thrived on XML integration. Their success, Dolin suggests, is owed to a

standardized method of information exchange and “well-defined descriptions.”
536

 The question

becomes: are there well-defined descriptions and a shared, controlled vocabulary in contract law?

Two examples are informative: (1) the OASIS LegalXML eContracts schema; and (2) the Y

Combinator Series Term Sheet Template. OASIS, the Organization for the Advancement of

Structured Information Standards, is a nonprofit consortium that works on the development of

530

 Smith, supra 419 at 1209 -1210.

531

 Id at 1210.

532

 Ron Dolin, “XML in Law: An Example of the Role of Standards in Legal Informatics,” forthcoming paper, 2.

533

 See for example, Document Type Definition (DTD), XML Schema Definition (XSD) and Relax NG

534

 Dolin, supra 532 at 7.

535

 Id.

536

 Id. at 8.

 M. Ma

131

standards across a wide technical agenda.
537

 In 2007, a technical committee on contracts created an

XML language to describe a generic structure for a wide range of contract documents. This became

the OASIS LegalXML eContracts Schema (eContracts Schema). The intention of the eContracts

Schema is to “facilitate the maintenance of precedent or template contract documents and contract

terms by persons who wish to use them to create new contract documents with automated tools.”
538

That is, the eContracts Schema focuses on reproducibility, reusability, and recursion.

Interestingly, the most striking feature of the eContracts Schema is their metadata component. Their

model allows its users to add metadata at the contract and clause level for specific legal subject matter

or categorization of distinct content. In this case, eContracts Schema provides an opportunity for

clauses to cater to the specific requirements of contractual parties.

The Y Combinator Series A Term Sheet Template (Term Sheet)
539

 is a standard form of terms to

seek Series A funding.
540

 The term sheet was drafted by Y Combinator, a venture investor that

supplies earliest stage venture funding for startups.
541

 The Term Sheet was created to inform founders

of startups on terms most frequently negotiated, particularly when seeking funding for this next stage.

The Term Sheet was drafted based on the experiences of venture investors. Not only does it provide

a baseline for founders, but more importantly, it increases transparency about investors’ perceived

risks.
542

Unlike the eContracts Schema, the Term Sheet is not ‘technologically-driven.’ Nevertheless, it

illustrates that well-defined descriptions and a shared, controlled vocabulary exist in contracts. To a

large extent, the Term Sheet is no different than any existing contract template. Yet, the most unique

characteristic of the Term Sheet is the tone of the contract. Unlike other templates, the intention is

537

 “About Us,” OASIS Open Standards. Open Source. (accessed August 2020), https://www.oasis-open.org/org.

538

 See Abstract section. “eContracts version 1.0,” OASIS (accessed August 2020), http://docs.oasis-open.org/legalxml-

econtracts/CS01/legalxml-econtracts-specification-1.0.html.

539

 See Appendix for Term Sheet.

540

 Series A funding is defined as funding to further refine the product and monetize the business, once a startup has

established a user base with consistent performance. See Nathan Reiff, “Series A, B, C, Funding: How It Works,”

Investopedia (March 5, 2020), https://www.investopedia.com/articles/personal-finance/102015/series-b-c-funding-what-

it-all-means-and-how-it-works.asp.

541

 “About Y Combinator,” Y Combinator (accessed August 2020), https://www.ycombinator.com/about/

542

 “Series A Term Sheet Template,” Y Combinator (accessed August 2020),

https://www.ycombinator.com/series_a_term_sheet/

https://www.oasis-open.org/org
http://docs.oasis-open.org/legalxml-econtracts/CS01/legalxml-econtracts-specification-1.0.html
http://docs.oasis-open.org/legalxml-econtracts/CS01/legalxml-econtracts-specification-1.0.html
https://www.investopedia.com/articles/personal-finance/102015/series-b-c-funding-what-it-all-means-and-how-it-works.asp
https://www.investopedia.com/articles/personal-finance/102015/series-b-c-funding-what-it-all-means-and-how-it-works.asp
https://www.ycombinator.com/about/
https://www.ycombinator.com/series_a_term_sheet/

 M. Ma

132

not to blindly assert ‘boilerplate’ contractual terms to drafters. Instead, the Term Sheet offers

recommendations to support the positions of both contractual parties.

Recent Legal Tech startup, Lawgood, mirror the exact intentions of the Term Sheet: contract

drafting based on verified expertise. Lawgood’s drafting tool, the Contract Workbench, heightens

the quality of the drafting process by developing a precedent language that tailors to the positions of

the parties.
543

Consider the sample indemnification clause drafted on Lawgood.

There are a number of fascinating features
544

 to the software. Notably, Lawgood offers several drafting

options depending on the needs of the contractual parties. The familiarity of MS Word is coupled

with a toggle switch that highlights the most common positions negotiated when drafting indemnity

clauses. Below the toggle, a ‘simplified’ version of the term explains the meaning of the various

543

 Lawgood (accessed August 2020), https://lawgood.io/product

544

 It should be noted that features of Lawgood extend beyond the toggle. There are also text buttons and embedded

code. See id.

https://lawgood.io/product

 M. Ma

133

positions, distilling and translating the legalese to plain English. Unlike the examples of the

programming languages studied in the paper, the translations are intended to be instructive rather

than binding.

There are indubitably caveats to the software. The precedent language, created by Lawgood, draws

primarily from the experiences of its developers. That is, it gathers the collective legal knowledge of

contractual precedents specific to the expertise of its founders. The product is, therefore, limited to

the frameworks as stipulated by its creators. Nonetheless, Lawgood illustrates that a marriage of the

old and new is possible – in particular, the prospect of a shared lexicon in contract law.

All in all, hybrid programming languages, like OpenLaw, represent the recurring theme that there

are distinct metaphorical spaces between determinacy and indeterminacy. Legal drafting is simplified

through the act of sorting, assessing whether a clause is sufficiently amenable to reusability. From

XML to Lawgood, the open secret is that contractual language will always remain a dialogic process

between its parties.

To conclude, the purpose of the study is not to suggest that programming languages are not a

possibility for legal writing. In fact, formal languages could provoke a more transparent discussion

of obligations and expectations involved within the dynamics of contractual negotiation.
545

 Yet, the

mechanics of current programming languages illuminate that there is still work required for code to

become a legal language. Geoffrey Samuel states, the “true meaning of a legal text is hidden within

the language employed.”
546

 Reflecting on programming languages as a medium for contract drafting

has revealed that language indeed could alter the function of contract law. Further discussion is

required on how programming languages could better navigate and shape the legal landscape. For

now, perhaps it can be understood that the tool is an extension of the craft, and not simply a means

for its effectuation.

545

 Recall the discussion on modularity.

546

 Geoffrey Samuel, Is Legal Reasoning like Medical Reasoning?, 35 LEGAL STUDIES 323, 334 (2015).

 M. Ma

134

 M. Ma

135

3B- Object-Oriented Design of Legal Text (Judicial Decisions)

 M. Ma

136

Rules are pervasive in the law. In the context of computer engineering, the translation of legal text to

algorithmic form is seemingly direct. In large part, law may be a ripe field for expert systems and

machine learning. For engineers, existing law appears formulaic and logically reducible to ‘if, then’

statements. The underlying assumption is that the legal language is both self-referential and universal.

Moreover, description is considered distinct from interpretation; that in describing the law, the

language is seen as quantitative and objectifiable. Nevertheless, is descriptive formal language purely

dissociative? From the logic machine of the 1970s to the modern fervor for artificial intelligence

(AI), governance by numbers is making a persuasive return. Could translation be possible?

Most recently, Douglas Hofstadter commented on the “Shallowness of Google Translate.”
547

 He

referred largely to the Chinese Room Argument;
548

 that machine translation, while comprehensive,

lacked understanding. Perhaps he probed at a more important question: does translation require

understanding? Hofstadter’s experiments indeed seemed to prove it so. He argued that the purpose

of language was not about the processing of texts. Instead, translation required imagining and

remembering; “a lifetime of experience and […] of using words in a meaningful way, to realize how

devoid of content all the words thrown onto the screen by Google translate are.”
549

 Hofstadter

describes the appearance of understanding language; that the software was merely ‘bypassing or

circumventing’ the act.
550

Yulia Frumer, a historian of science, notes that translation not only requires producing the adequate

language of foreign ideas, but also the “situating of those ideas in a different conceptual world.”
551

That is, with languages that belong to the same semantic field, the conceptual transfer in the

translation process is assumed. However, with languages that do not share similar intellectual

legacies, the meaning of words must be articulated through the conceptual world in which the

language is seated.

547

 Douglas Hofstadter, The Shallowness of Google Translate, The Atlantic (January 30, 2018),

https://www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-google-translate/551570/.

548

 A thought-experiment first published by John Searle in 1980 arguing that syntactic rule-following is not equivalent to

understanding.

549

 Hofstadter, supra 547.

550

 Id.

551

 Yulia Frumer, Translating Worlds, Building Worlds: Meteorology in Japanese, Dutch, and Chinese, 109 ISIS 326

(2018).

https://www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-google-translate/551570/

 M. Ma

137

Frumer uses the example of 18
th

 century Japanese translations of Dutch scientific texts. The process

by which translation occurred involved first analogizing from Western to Chinese natural

philosophy; effectively reconfiguring the foreign to local through experiential learning. This is

particularly fascinating, provided that scientific knowledge inherits the reputation of universality. Yet,

Frumer notes, “…if we attach meanings to statements by abstracting previous experience, we must

acquire new experiences in order to make space for new interpretations.”
552

Mireille Hildebrandt teases this premise by addressing the inherent challenge of translation in the

computer ‘code-ification’ process. Pairing speech-act theory with the mathematical theory of

information, she investigates the performativity of the law when applied to computing systems. In

her analytical synthesis of these theories, she dwells on meaning. “Meaning,” she states, “…depends

on the curious entanglement of self-reflection, rational discourse and emotional awareness that

hinges on the opacity of our dynamic and large inaccessible unconscious. Data, code…do not

attribute meaning.”
553

 The inability of computing systems to process meaning raises challenges for

legal practitioners and scholars. Hildebrandt suggests that the shift to computation necessitates a shift

from reason to statistics. Learning to “speak the language” of statistics and machine learning

algorithms would become important in the reasoning and understanding of biases inherent in legal

technologies.
554

More importantly, the migration from descriptive natural language to numerical representation runs

the risk of slippage as ideas are (literally) ‘lost in translation.’ Legal concepts must necessarily be

reconceptualized for meaning to exist in the mathematical sense. The closest in semantic ancestry

would be legal formalism. Legal formalists thrive on interpreting law as rationally determinate.

Judgments are deduced from logical premises; meaning is assigned. While, arguably, the

formalization of law occurs ‘naturally’ – as cases with like factual circumstances often form rules,

principles, and axioms for treatment – the act of conceptualizing the law as binary and static is

puzzling. Could the law behave like mathematics; and thereby the rule of law be understood as

numeric?

552

 Id. at 327.

553

 Mireille Hildebrandt, Law as computation in the era of artificial intelligence: Speaking law to the power of statistics,

Draft for SPECIAL ISSUE U. TORONTO L.J. 10 (2019).

554

Advances in natural language processing (NLP), for example, have opened the possibility of ‘performing’ calculations

on words. This technology has been increasingly applied in the legal realm. See id. at 13.

 M. Ma

138

Technology not only requires rules to be defined from the start, but that such rules are derived from

specified outcomes. Currently, even with rules that define end-states, particularized judgments

remain accessible. Machines, on the other hand, are built on logic and fixed such that the execution

of tasks becomes automatic. Outcomes are characterized by their reproductive accuracy. Judgments,

on the other hand, are rarely defined by accuracy. Instead, they are weighed against social consensus.

To translate the rule of law in a mathematical sense would require a reconfiguration of legal concepts.

Interestingly, the use of statistics and so-called ‘mathematisation’ of law is not novel. Oliver Wendell

Holmes Jr. most famously stated in the Path of Law that “[f]or the rational study of the law, the

blackletter man may be the man of the present, but the man of the future is the man of statistics and

the master of economics.”
555

 Governance by numbers then realizes the desire for determinacy; the

optimization of law to its final state of stability, predictability, and accuracy. The use of formal logic

for governance has a rich ancestry. The common denominator was that mathematical precision

should be applied across all disciplines.

Legal texts, then, may arguably be represented as computational data with terms made ‘machine-

readable’ through a process of conversion. Despite the capacity to express legal language in an

alternative computable form, the notion of interpretation appears to have changed. How would

digital data inscription and processing alter methods of legal reasoning?

a. Outline of Approach

The case study follows a fundamentally semantic conundrum: what is the significance of ‘meaning’

in legal language? From a statistics standpoint, meaning can be approximated. Applying word

analogies as the ‘mathematical’ basis, meaning is gauged by the statistical probability of the response.

In recognizing the context and relationship between words, meaning hinges on the frequency of its

appearance in a particular setup. That is, what do its neighbors reveal about the word in question?

Reflecting on Hildebrandt and Frumer, meaning is associated with experience; thereby finding

meaning to legal concepts would require abstracting from experience. Should experience be built

from conceptual worlds, to move across these worlds would be to translate. Translating legal language

555

 Oliver Wendell Holmes Jr., The Path of Law, 10 HARV. L. REV. 457, 469 (1897).

 M. Ma

139

then requires a reframing of legal concepts; perhaps an expression of the law based on statistical

experience as opposed to natural language.

The project will proceed in two phases: (1) the proof of concept (POC);
556

 and (2) application to

broader legal corpora. In the first phase, the POC will analyze three United States Supreme Court

cases. The selection was chosen on the basis of a similar factual premise and time frame. That is, all

three cases involve defining the use of firearms and were ruled in rapid succession. These cases are

Smith v. United States (1993), Bailey v. United States (1995), and Muscarello v. United States (1998).

While there are evidently a number of caveats
557

 to this selection, it nonetheless has merit as an

interesting starting point. Notably, the POC wrestles with the existence of legal concepts. The goals

of the POC are two-fold: (1) to analyze the processes involved with legal interpretation and reasoning;

and (2) critically assess them against the function of law.

Methodologically, the POC tests translation by deconstructing sentences from existing legal

judgments to their constituent factors. Definitions are then extracted in accordance with the

interpretations of the judges. The intent is to build an expert system predicated on alleged rules of

legal reasoning. I intend to apply both linguistic modelling and natural language processing (NLP)

technology to parse the legal judgments. The preliminary hypothesis is that, by analyzing the

components of legal language with a variety of techniques, we can begin to translate law to numerical

form. Furthermore, it would be interesting to consider what contextual understanding may need to

exist to understand the language of various legal documents.

Following the POC, I will extend the test to a larger corpora of case law. This stage of the research

will consider the feasibility of expanding the approach to similar legal texts. For the purposes of the

current case study, I focus on the observations and findings from the POC. Though microscopic in

the landscape of United States jurisprudence, initial observations appear to suffice in contributing to

a more fruitful dialogue on the integration of computational technology in law.

The POC falls in line with existing literature on Law2Vec and legal word embeddings. Equally, the

project extends beyond prior research in the area, combining a broadly statistical model of context

556

 As mentioned, the second case study is seated with an ongoing interdisciplinary project. Therefore, the second case

study and my observations are, in fact, largely drawn from the POC.

557

 Some of these caveats include selection bias, sample size, and perhaps more importantly, an amendment has since

been made to the legislation in question.

 M. Ma

140

with the relative precision of syntactic structure. In effect, the POC intends to generate building

blocks to determine “context” explained in the text; thereby, able to define the use of firearms

through a framework of extraction.

The case study will proceed as follows. Part I will begin with a literature review of texts that have

fueled the project’s inquiries and formed the environment which it intends to resolve. As the nature

of the cases study is fundamentally interdisciplinary, it draws reference from law, linguistics, and

computer science. Part II discusses the methodology we have taken; highlighting both elements of

inspiration and strategies considered. Part III teases at preliminary observations and notes of interest

during the project’s progression. Part IV details the technological implementation and the actual

steps towards translation. Part V reflects on early achievements and areas of further advancement. I

will then conclude with a few final remarks.

It must also be noted that, throughout the case study, I frequently move between the use of “I” and

“we.” This is because the case study relies on methods that were a result of the broader

interdisciplinary collaboration. I stress that, without the insight and contribution of the data scientist,

mathematician, and linguist in our project team, the perspectives and observations from this case

study would not have been possible.

I. LITERATURE REVIEW

a. Jurisprudential Heritage

AI adjudication is an evidently polarized subject. Questions around the prospect of “robot judges”

typically center on morality and equitable justice;
558

 on issues of explanability and Black Box machine

learning.
559

 In common law systems, the art of drafting legal opinions begins with mastering legal

argumentation. To ground the argument within the sphere of existing legal texts is the linchpin of

judicial decisions.

558

 Richard M. Re and Alicia Solow-Niederman, Developing Artificially Intelligent Justice, 22 STAN. TECH. L. REV. 242

(2019).

559

 See Yavar Bathaee, The Artificial intelligence Black Box and the Failure of Intent and Causation, 31 HARV. J OF L.

& TECH 890; and also, Frank Pasquale, Black Box Society: The Secret Algorithms that Control Money and

Information (2015).

 M. Ma

141

Legal theory becomes a referencing point when courts are asked to interpret legal documents.

Textualism, for example, “narrow[s] the range of acceptable judicial decision-making and acceptable

argumentation”
 560

by turning to dictionary definitions and rejecting judicial speculation. Yet, what is

the purpose of ‘narrowing the range’? To that question, Antonin Scalia answers, “…textualism will

provide greater certainty in the law, and hence greater predictability…”
561

 So, what are its assumptions

and implications? Eric Posner suggests, there may be aspirational intentions “to keep the law pure”;
562

or otherwise, to ensure that the legal system is consistent. Textualism also reinforces the role of

judges. That is, judges are to interpret passively, and that legal interpretations are to be semantic.
563

Consider the infamous example of a municipal legislation stating that “no person may bring a vehicle

into the park.”
564

 Would an ambulance be permitted to enter the park in the event of an accident?

For textualists, they may argue that – according to the dictionary definition – an ambulance is a

vehicle; and thereby, cannot enter the park. Should the legislators have thought an ambulance was

an exception, they would have included it in the text. Accepting the premise of that argument, what

about a police car or a firetruck? Perhaps the legislation should be amended to include all emergency

vehicles. What happens then if an ambulance is merely parked inside the park with no foreseeable

emergency?

The example illustrates that the problem with textualism becomes rapidly cyclical, as interpretations

rendered must either become increasingly narrow or increasingly broad to accommodate a “myriad

[of] hypothetical scenarios and provide for all of them explicitly.”
565

 Textualism, therefore, falls down

the slippery slope of literalism. Words of legal texts are assumed to embody intrinsic meaning and

are waiting to be extracted.

560

 Antonin Scalia and Bryan A. Garner, Reading Law: The Interpretation of Legal Texts xxvii-xxix (2012).

561

 Id.

562

 Eric Posner and Adrien Vermeule, Inside or Outside the System?, 80 U. CHI. L. REV. 1743, 1775 (2013).

563

 Richard A. Posner, The Incoherence of Antonin Scalia, New Republic (August 24, 2012),

http://www.newrepublic.com/node/106441/print.

564

 Taken originally from H.L.A. Hart where he posed the hypothetical of “no vehicles in the park.” See H.L.A. Hart,

Positivism and the Separation of Law and Morals, 71 HARV. L. REV. 593, 607 (1958). This has often been referenced

in legal literature. See for example, Pierre Schlag, No vehicles in the Park, 23 SEATTLE U. L. REV. 381, 382 (1999);

and more recently, Michael Genesereth, Computational Law: The Cop in the Backseat, White Paper, CodeX: The

Center for Legal Informatics (2015), available at: http://logic.stanford.edu/publications/genesereth/complaw.pdf.

565

 Posner, supra 563.

http://logic.stanford.edu/publications/genesereth/complaw.pdf

 M. Ma

142

Moreover, the impact of mere ‘extraction’ is its precedential value. The approach, taken most

prominently in common law systems, is to follow past decisions. Adopting the decisions of the past

to guide future conduct parallels this exact act of extraction. That is, applying past precedents

provides the scope for a “gradual moulding of the rules to meet fresh situations as they arise.”
566

Decisions have binding legal force. Interpretations of the past should carry the definitions to be used

moving forward. The role of the judge is that of an archaeologist; excavating legal truths from judicial

past.

This is seemingly straightforward. Yet, the challenge encountered is identifying within the decision

the kernel of precedent. Holmes describes the challenge as a paradox of form and substance in the

development of the law. The form is logical, as “each new decision follows syllogistically from existing

precedents.”
567

 Still, its substance is legislative and draws on views of public policy. Holmes argues

that the law is driven by the “unconscious result of instinctive preferences and inarticulate

convictions;” and therefore, “the law [is] always approaching, and never reaching, consistency.”
568

The ostracized conclusion would be that judicial decisions have an element of inexplicability, and

are, in fact, a ‘Black Box.’
569

 Recalling Hildebrandt, “meaning” becomes a metaphor and the heart

of the juridical process.

The significance of the paper is, in part, to unpack the paradox articulated by Holmes. The selected

cases aim to paint a picture on the use of precedent as a legal tool; and whether the law

subconsciously follows a logic. To create the painting, I again draw inspiration from the field of

linguistics.

b. Linguistic Influence

A grasp on the underlying hierarchical structure of language is key to breaking down sentences in a

meaningful manner. To recall, analyses of sentence structure fall primarily into two schools of

566

 See chapter on Theories of Adjudication, in particular the discussion on stare decisis as the ‘life blood of legal

systems,’ requiring precision in addition to stability and certainty. Michael Freeman, Lloyd’s Introduction to

Jurisprudence (9
th

 ed., 2014).

567

 Oliver Wendell Holmes, The Common Law Lecture I: Early Forms of Liability (Project Gutenberg eBook, 2000),

available at: https://www.gutenberg.org/files/2449/2449-h/2449-h.htm#link2H_4_0001.

568

 Id.

569

 See for example, Dan Simon, A Third View of the Black Box: Cognitive Coherence in Legal Decision Making, 71

U. CHI. L. REV. 511 (2004).

https://www.gutenberg.org/files/2449/2449-h/2449-h.htm#link2H_4_0001

 M. Ma

143

thought: (1) dependency; and (2) phrase structure. The former, commonly represented as

dependency trees, begins with the root verb of the superordinate clause and branches out from there,

with subordinate verbs arranging substructures. Dependency trees map one node to each word

without projecting constituent phrases: each word simply depends on another. For example, in most

English sentences, the subject typically falls to the left of the verb, while its other dependencies (e.g.

its objects) fall to the right. Since each word in a dependency syntax is represented by precisely one

node, structural redundancy is arguably decreased. This system has been characterized as well-suited

for algorithmic translation from natural language, owing to the node conservatism and predictability

of anchoring sentences through its verbs.

Alternatively, phrase-structure representations, notably spearheaded by Noam Chomsky,
570

 use

constituency relations. In contrast with dependency trees, each ‘constituent’ (or, individual element)

in a sentence is headed by its own phrasal node. Subsequently, purely binary branching can occur.

The elegance of these representations is that they work generatively. That is, even a small selection

of rules can produce a wide variety of structures found across natural language. Furthermore,

constituency embraces analysis of underlying structure and transformations, accounting for

numerous phenomena such as subject-verb inversion in interrogatives.
571

 Phrase structure also

permits a powerful structured analysis of syntactic relationships.
572

Semantic form traditionally involves the classical theory of concepts, otherwise known as

definitionism or componential analysis. Here, semantic meaning is encapsulated as a combinatorial

set of true/false statements, akin to a checklist of conditions. For example, apple might be composed

of +fruit, +green, +round. Classical theory, therefore, considers the componential elements from

which semantic meaning is formed, allowing for a systematic view on word-to-word relationships and

validity.
573

570

 Noam Chomsky, “Remarks on Nominalization,” in R.A. Jacobs and P.S. Rosenbaum (eds.), Readings in English

Transformational Grammar 184-221 (1970).

571

 Subject-verb inversion is the phenomenon whereby the verb is raised to a position in front of its subject, signalling an

interrogative: "Have you seen my dog?". This raising is seen as a transformation.

572

 For example, the c-command relationship is easily identified, which is particularly useful when managing anaphora

resolution through Government and Binding Theory (GBD). See Andrew Carnie, Syntax: A Generative Introduction

(3
rd

 ed. 2012).; and also Ray Jackendoff, X Syntax: A Study of Phrase Structure (1977).

573

 For further details: the classical theory of concepts presents a deconstructive view of meaning (semantics). By

breaking words down into sets of necessary and sufficient conditions from a set of meta-concepts, we view their ‘true’

definition and form comparisons. For example, bachelor and husband suggest a commonality of +male but a

 M. Ma

144

However, classical theory is often criticized for its failure to account for phenomena such as the

subjectivity or typicality of definitions.
574

 Ludwig Wittgenstein posited, through his analogy with

‘family resemblance,’ an underlying prototype theory of concepts; as opposed to a fixed set of

composite definitions. The claim is that some concepts are regarded more ‘typical’ of a category than

others. For example, a robin is a more prototypical bird than an emu or a penguin. Consequently,

these observations must be factored into the linguistic system.
575

What further complicates the matter is the incongruence between semantics and pragmatics: the

former concerns language independent of real-world context, whereas the latter is hinged upon

situational context. Essentially, pragmatics is the application of semantics within context.
576

 Consider

the phrase, “it’s rather chilly in here.” Semantically, the meaning of the phrase is perhaps that,

according to the speaker, “there is a place X in which the temperature is lower than is comfortable.”

Given the knowledge that the phrase was taken from a dialogue between two individuals, the phrase

pragmatically could mean “please close the window for me;”
577

 the reason for the choice of phrasing

is likely owed to courtesy. More importantly, this form of expression is indicative of the flexibility of

language and its inseparability from context: context contributes to meaning.

While semantics concerns the inherent and invariant properties of words and their combinations,

pragmatics progresses into the realm of context and implicatures. Consequently, pragmatics in the

context of NLP is seen as problematic: expert systems do not have the ability to infer extended

meaning from context. Interestingly, legal texts are often regarded as rather structural, and perhaps

even devoid of pragmatic content. Given the aforementioned premise, is legal language anchored

exclusively in semantics? If so, how amenable is legal language to NLP analysis?

c. Technological Staging: AI and Law

distinction in the condition of ±married (-married in the former and +married in the latter). See Eric Margolis and

Stephen Laurence, The Blackwell Guide to Philosophy of Mind Concepts 190-213 (2003).

574

 See Ludwig Wittgenstein, Philosophical Investigations (2nd

 ed. 1953).

575

 Eleanor Rosch and Carolyn B. Mervis, Family resemblances: Studies in the internal structure of categories, 7

COGNITIVE PSYCHOLOGY 573 (1975).

576

 Keith Allan and Kasia M. Jaszczolt (eds.), The Cambridge Handbook of Pragmatics (2012). See also, Kasia

Jaszczolt, Semantics and pragmatics: Meaning in language and discourse (2002).

577

 This is largely in line with discussions on conversational implicatures. See for example Henry E. Smith, Modularity

in Contracts: Boilerplate and Information Flow, 104 MICH. L. REV. 1175, 1205 (2006).

 M. Ma

145

Evidently, inspiration from linguistics is not novel as “law has language at its core.”
578

 As mentioned

in the first case study, Markou and Deakin point to NLP as a powerful driver towards the emergence

of Legal Tech. They identify the pressure points at which computability falls short; and where the

legal system is incompatible with computer science.

To recall, they cleverly evoke Chomskyan and rationalist approaches to designing “hard-coded rules

for capturing human knowledge.”
579

 Chomsky’s work stirred further developments in NLP,

eventually powering advances in machine translation and speech recognition. These advances,

undoubtedly, were enabled by Deep Learning
580

 models that were able to abstract and build

representations of human language. Albeit the significant leaps brought on by such technologies, the

threat discussed by Markou and Deakin stems from an underlying anxiety against “the epistemic and

practical viability of using AI and Big Data to replicate core aspects and processes of the legal

system.”
581

Subsequently, their reimagining of a legal system – one predicated on a hyper-formalized method of

reasoning
582

 – warns of the conceivable incongruence with the current normative legal structure.

Using employment status as a test case, their paper explores first similarities between legal processes

and machine learning technology. They note two key parallels: (1) abstraction to conceptual

categories; and (2) error correction and dynamic adjustment.

Nevertheless, their thesis, or claim of divergent paths, is the quality of reflexivity
583

 in legal knowledge.

That is, legal categories both shape and are shaped by the “social forms to which they relate.”
584

 In

578

 Christopher Markou and Simon Deakin, Ex Machina Lex: The Limits of Legal Computability, Working Paper

(2019), available at SSRN: https://ssrn.com/abstract=3407856. See also Frank E. Cooper, Effective Legal Writing

(1953) and his introduction with Law is Language; and “…the central place of language in law” described in Frank

Pasquale, The Substance of Poetic Procedure: Law & Humanity in the Work of Lawrence Joseph, 32 LAW &

LITERATURE 1, 31 (2020).

579

 Id. See also cited reference, E Brill and RJ Mooney, Empirical Natural Language Processing, 18 AI MAGAZINE 4

(1997).

580

 Deep Learning is a subset of machine learning that involves artificial neural networks and the assigning of numerical

weights on input variables. See a further explanation in Markou and Deakin, supra 578 at 10-12.

581

 Id. at 16.

582

 Id.

583

 Markou and Deakin reference Geoffrey Samuel’s discussion of the perception, construction and deconstruction of

fact. See id. at 29. See also Geoffrey Samuel, Epistemology and Method in Law (2003).

584

 Id.

https://ssrn.com/abstract=3407856

 M. Ma

146

other words, the existence of such categories is dependent on the force of law;
585

 that there is continual

reference between the law and its socially complex environment. The law cannot be divorced from

its societal embedding. As a result, the law could never be descriptive, but rather ‘naturally’

prescriptive. Markou and Deakin, therefore, identify a fundamental philosophical mismatch as

opposed to a structural, process-oriented incongruity. Their conclusions underline legal reasoning

as beyond the straightforward application of rules to facts. Adjudication is a means of “resolving

political issues.”
586

 For Markou and Deakin, there is no exact science to judicial decisions “because

of the unavoidable incompleteness of rules in the face of social complexity.”
587

 Judgments could only

‘approximate’ from historical precedent. Translation of legal categories into mathematical function

is, thus, not possible since the flexibility and contestability of natural language cannot be completely

captured by algorithm.
588

Holmes’s paradox resurfaces. Holmes notes, to “attempt to deduce the corpus from a priori

postulates, or fall into the humbler error of supposing the science of the law reside[s] in the elegantia

juris, or logical cohesion of part with part”
589

 mistakenly interprets law as systemically formalistic.

While the issues identified by Markou and Deakin are undeniably significant, their arguments rely

on the premise of a systems replication. That is, they warn of the project to replace entirely juridical

reasoning with machine learning. Accordingly, there are sweeping inferences on the incompatibility

of AI and law, bringing to light only one side of Holmes’s paradox: the law is syllogistic in form.

Yet, there may be merit to an analysis at a micro-level. Programming languages may be able to

perform the demands called upon for the functioning of society. Acknowledging that language is

both constitutive of law and capable of realizing foundational rule of law principles, we again reassess

the translation of natural language to computer code. The law hinges on complicated social and

political relationships;
590

 and more importantly, metaphors that require latent understanding of

585

 The ‘force of law’ refers to HLA Hart’s argument that the power of legal institutions and the laws created by such

institutions exist in virtue of a rule of recognition implicit in the practice of judges. See Gerald J. Postema, Implicit

Law, 13 LAW AND PHILOSOPHY 361 (1994).

586

 Markou and Deakin, supra 578 at 30.

587

 Id. For further discussion on the ‘incompleteness’ and indeterminacy of the law, see Katherina Pistor and

Chenggang Xu, Incomplete Law, 35 NYU J. INT’L L. & POL. 931 (2003).

588

 Id. at 33.

589

 Holmes, supra 567.

590

 Frank Pasquale, A Rule of Persons, Not Machines: The Limits of Legal Automation, 87 GEO. WASH. L. REV. 2, 6

(2019).

 M. Ma

147

temporal societal constructs.
591

 This suggests there may be a space to regard AI as complementary,
592

rather than substitutive, of legal actors. The key is to employ the proper language game.
593

To return to Markou and Deakin, their arguments repeatedly point to the model of ‘legal

singularity.’
594

 ‘Legal singularity’ draws from an association of the law as precise, predictable, and

certain in its function.
595

 The complexity of developments in machine learning for law suggests that

legal singularity could be achievable.

In a vibrant thought experiment, Casey and Niblett suggest that existing legal forms will become

irrelevant as machines enable the development of a new type of law: the micro-directive. The micro-

directive is conceptually a new linguistic form, offering “clear instruction to a citizen on how to

comply with the law.”
596

 In this futuristic construct, lawmakers would only be required to set general

policy objectives. Machines would bear the responsibility to examine its application in all possible

contexts, creating a depository of legal rules that best achieve such an objective. The legal rules

generated would then be converted into micro-directives that subsequently regulate how actors

should comply with the law.

Imagining the legal order as a system of micro-directives, the law finds itself drawn to a linguistic

structuralist framework; carrying forth the jurisprudential work of Kelsen and the “pure science of

law.”
597

 Just as a norm expresses not what is, but what ought to be – given certain conditions – the

micro-directive draws attention to the semiotics of legal argument. Like Kelsen’s norms, the micro-

directive rests on the principle of effectiveness. The legal order relies on the assumption of being

efficacious, such that its citizens conduct themselves in pure conformity with it.
598

 But, on what

591

 Neil M. Richards and William D. Smart, “How should the law think about robots?” in Ryan Calo et al, eds, Robot

Law 16-18 (2016).

592

 See for example Pasquale, supra 590.

593

 This is interpreted under the framework put forward by Wittgenstein. Wittgenstein regarded language as a form of

life, and linguistic expression as constructive of its being. Conceivably, language could be no more than a list of orders

and classifications. In abiding by the rules of association—or, to play the game—is to accept the inherent authority of its

practice. See Wittgenstein, supra 574 at 11.

594

 Benjamin Alarie, The Path of the Law: Towards Legal Singularity, 66 U. TORONTO L.J. 443, 445 (2016).

595

 See Freeman, supra 566.

596

 Anthony J. Casey & Anthony Niblett, The Death of Rules and Standards, Coase-Sandor Working Paper Series in

Law and Economics No. 738 (2015).

597

 See for general theory on ‘science’ of law, Hans Kelsen, Pure Theory of Law (1967).

598

 Hans Kelsen, What is Justice? 268 (1957).

 M. Ma

148

principle? The micro-directive rests on a ‘law and economics’
599

 framework of effectiveness. Seated

within the technical authority of AI,
600

 the micro-directive distorts the realities of legal reasoning by

removing value judgments from the adjudication process. The presumption that machines are able

to generate neutral sets of information, then translate such information into perfectly

comprehensible instruction, is evidently misinformed. It stands on the premise that translation

operates without interpretation. More importantly, it strategically excludes the actors involved in the

translation; inadvertently, conferring the rule of law to code. The process of transforming a general

standard to a micro-directive is, therefore, a process of subverting politics in its linguistic casing.

So, how then could code become the vehicle that shapes the law? In practice, the most obvious

example is traffic laws and speed regulation. Traffic lights “communicate the content of a law to

drivers at little cost and with great effect.”
601

 The traffic light is regarded as translating legal complexity

to a simple command. Traffic lights are increasingly being equipped with algorithmic technology to

reflect real-time traffic flow and, accordingly, adjust the timing of light changes.
602

 Moreover, traffic

lights may soon include sensors that could appropriately identify patterns of distress and types of

vehicles to allow for expedited changes in the event of emergency.

For Casey and Niblett, predictive models provide the content of the law. Micro-directives would

then communicate the legal treatment of the particular conundrum.
603

 Legal actors would equally rely

on such models to assess the acceptable plans of action for a particular diagnosis or factual

circumstance. The micro-directive then reinvents the legal system, as legal language is eradicated and

bears a different linguistic form.

Though at polar ends of the spectrum, both Markou and Deakin and Casey and Niblett depend on

the same underlying assumption of a wholesale replacement of legal reasoning. This approach

certainly raises significant metaphorical eyebrows on the broad impacts of AI in law. It, however,

599

 Consider the argument for efficiency in common law rules (i.e. emergence of the economic loss ‘rule’) in Anthony

Niblett et. al, The Evolution of a Legal Rule, 39 J. OF LEGAL STUDIES 325, 328-331 (2010).

600

 See discussion on algorithms as providing a convenient source of authority; trusting tasks to be controlled by

technology and the delegation of responsibility. See Hannah Fry, Hello World: Being Human in the Age of

Algorithms 16 (2018).

601

 Casey and Niblett, supra 596 at 18. See also, Sheila Jasanoff, The Ethics of Invention: Technology and the Human

Future (2016).

602

 Id. at 19.

603

 Casey and Niblett, supra 596 at 16.

 M. Ma

149

also avoids the nuances of the law that demand further analysis, in particular, the act of translation.

Holmes described the “single germ multiplying and branching into products as different from each

other as the flower from the root.”
604

 Thus, to make sense of the consequences of computational

technology in law necessitates not an evaluation of the flower or the root, but the single germ.

Precision has often been argued as an essential component of legal language. Nonetheless, new

factual circumstances create room for interpretation. How then could code-ification occur to account

for an ever-adaptive, and evolutionary, system? In the following section, I will outline the

computational tools used in the translation process. More importantly, I peel back the curtain behind

translation, specifically, the decisions taken in the parsing of the legal judgments.

II. METHODOLOGY

Prior literature on Deep Learning in legal text analytics traditionally discussed crafting knowledge

bases to capture legal concepts and terminology.
605

 Ilias Chalkidis and Dimitrios Kampas reflect on

existing techniques, but push the envelope by building word embeddings
606

 trained over a large body

of legal documents; a corpora composed of legislation from the UK, EU, Canada, Australia, USA,

and others.
607

 Applying the Word2Vec model,
608

 Chalkidis and Kampas’s own model – aptly named

Law2Vec – offer a pre-trained set of legal word embeddings. Broadly, the process involves translating

legal text to numeric form in order to calculate the relationships between legal terms. The calculation

represents the probabilistic likelihood of one term appearing synonymous in the presence of the

other. The main assumption is that “similar words tend to co-occur in similar contexts.”
609

604

 Holmes, supra 567.

605

 See for example Phong-Khac Do et al., Legal Question Answering using Ranking SVM and Deep Convolutional
Neural Network, TENTH INTERNATIONAL WORKSHOP ON JURIS-INFORMATICS (2017), available at:

https://arxiv.org/abs/1703.05320.

606

 Defined as a numeric representation of words whereby words with similar meanings would have similar

representations. See Jason Brownlee, What are Word Embeddings for Text?, Deep Learning for Natural Language

Processing (October 11, 2017), available at: https://machinelearningmastery.com/what-are-word-embeddings/.

607

 Ilias Chalkidis and Dimitrios Kampas, Deep Learning in law: early adaptation and legal word embeddings trained on

large corpora, 27 ARTIFICIAL INTELLIGENCE AND LAW 171 (2018).

608

 A statistical model first introduced in 2013 that described two different algorithms used to process text into vectors.

It is an example of the transformation of words to numeric form. See Mikolov et al., Distributed representations of

words and phrases and their compositionality, PROCEEDINGS OF THE 26
TH

 INTERNATIONAL CONFERENCE ON NEURAL

INFORMATION PROCESSING SYSTEMS (2013).

609

 Chalkidis and Kampas, supra 607 at 173.

https://arxiv.org/abs/1703.05320
https://machinelearningmastery.com/what-are-word-embeddings/

 M. Ma

150

Below is a table of a selected 20 words and their associated terms identified by the model:

Table 1 Sample Legal Word Embeddings (Chalkidis and Kampas, supra 607 at 176)

This is undoubtedly remarkable. The associations made between the identified legal terms are

indicative of the competence of machine learning algorithms for the analysis of complicated legal

texts. Most fascinating perhaps are the terms associated with the word ‘immigrant’ found by the

algorithm. Beyond locating synonyms, the terms deemed as similar reveal the latent politics of

labelling that have classified immigrants as akin to aliens. Nevertheless, Chalkidis and Kampas offer

only a limited perspective on legal concepts. The terms marked as ‘legal’ provide a scope of the law

that does not consider the inherent interpretative exercise performed in adjudication. The act of

legal reasoning is not represented. While Chalkidis and Kampas tease at the possibility of translation,

the issue rather is arriving at the association. Chalkidis and Kampas could only bring to light the

calculated similarities between legal terms; but they do not unpack how the similarity came about.

In other words, the underlying process of deriving meaning is never exposed.

Moreover, the selection of terms deemed ‘legal’ are rather shallow. They are suggestive of a legal

vocabulary, but do not probe at the function of these words. Taking again inspiration from literature

outside of the legal realm, I focus on the mechanics of linguistic reasoning and the adjudicative

process.

a. Technical Inspiration

 M. Ma

151

As an introductory note on method, Markou and Deakin have helpfully outlined NLP technologies

that have set the sail on current applications of AI-based innovations.
610

 NLP is a combined scientific

and engineering exercise, applying “cognitive dimensions of…natural language” to “practical

applications…[of] interactions between computer and human languages.”
611

 For the intentions of the

paper, the focus will be on natural language in written form; otherwise, text. Not only is it the form

in which law most typically resides, text is also the observable component of language that exists in

symbolic form.
612

 Interestingly, mathematics– or to recall, the mental alphabets of Leibniz and Boole

– is described as the symbolic language.
613

 It follows that translation is most feasibly comparable where

both ‘languages’ are in a similar state.

In order for natural language text to be ‘primed’ for translation, we applied an approach first

introduced in the sphere of bioinformatics. In 2006, Fundel et. al. developed RelEx, or the relation

extraction of free text, to better understand the interactions between genes and proteins marked by

existing biomedical publications. RelEx relies on natural language preprocessing, “producing

dependency parse trees and applying a small number of simple rules to these trees.”
614

 RelEx extracts

qualified relations from natural language text by first breaking down sentences into component words

(tokens), then uses a parser
615

 to create syntactic dependency trees. These dependency trees are then

leveraged from group tokens into ‘noun-phrase’ chunks.
616

 Qualified relations are observed based on

rules applied to dependency trees and their original sentences; which are then subjected to

‘filtering.’
617

 These rules would draw paths that connect known proteins that interact with one

another.

610

 Markou and Deakin, supra 578 at 11.

611

 Id.

612

 Id. at 12.

613

 See literature: Ladislav Rieger, Algebraic Methods in Mathematical Logic The Language of Mathematics and its

Symbolization 25-37 (1967); Uttam Kharde, The Symbolic Language of Mathematics, 1 THE EXPLORER: A

MULTIDISCIPLINARY JOURNAL OF RESEARCH 117-118 (2016); and Daniel Silver, The New Language of Mathematics,
105 AMERICAN SCIENTIST 364 (2017), available online: https://www.americanscientist.org/article/the-new-language-of-

mathematics.

614

 Katrin Fundel, Robert Küffner, and Ralf Zimmer, RelEx – Relation extraction using dependency parse trees, 23

BIOINFORMATICS 365 (2006).

615

 Defined as a software that transforms data into structures.

616

 Defined as one or more nouns and their subordinate adjectives. See Fundel et. al, supra 614.

617

 Id. at 366.

https://www.americanscientist.org/article/the-new-language-of-mathematics
https://www.americanscientist.org/article/the-new-language-of-mathematics

 M. Ma

152

Analogously, the approach used in the RelEx paper will be applied to the current analysis of legal

judgments. In addition to noun-phrases, sentences are deconstructed into the basic semantic building

blocks of the English language;
618

 otherwise, subject-verb-object (SVO) triplets. Sentences selected

from each judgment are chosen based on their significance to the outcome of the judicial decision.

These sentences are subsequently scanned for the presence of SVO triplets. Markers are then

assigned to each individual sentence based on equivalency, in order to then form connections

between phrases.

Referring back to the aforementioned linguistic models, applying the RelEx method necessarily

depends on a preference to dependency syntax and the classical theory of concepts (definitionism).

Nevertheless, we argue that the mapping of each SVO component in reference to its neighboring

components helps compensate the pitfalls involved with the multiplex nuances of word usage. By

working with context, the analysis will extend beyond the realm of prototype theory,
619

 which struggles

to explain properties arising from context and pragmatic inference.
620

 The graphing of the SVO

triplets acknowledges context,
621

 thereby becoming an integral part of the overall analysis. This

method overlaps with ideas addressed in cognitive linguistics, such as the theory-theory of concepts,

that heavily relies on role and context. Furthermore, employing sets of meta-concepts, along with

graphed contextual relations, provides an analogy of traversing the semantic and pragmatic layers of

language.

The case study is, therefore, guided by three key tools: (1) Python; (2) spaCy; and (3) Neo4j. The

first is the formal scripting language used to write the translation algorithm. Python was chosen for

its known flexibility and general use.
622

 Python also adapts in a number of design spaces, namely for

tasks that are structural and reflective. spaCy is the chosen open source
623

 library for NLP. spaCy is

618

 In other languages, a finite verb can occur without an overt pronominal subject. This is known as the null-subject, or

pro-drop, parameter. The English language lends itself especially well to this approach due to the absence of this

parameter. Furthermore, English generally does not allow zero copula forms (cf. Russian "я свободен" ("I [am] free"));

this is also conducive to verb anchored SVO triplets in the dependency framework.

619

 Rosch and Mervis, supra 575.

620

 Jerry Fodor and Ernest Lepore, The red herring and the pet fish: Why concepts still can’t be prototypes, 58

COGNITION 253 (1996).

621

 Defined here as other surrounding SVO elements.

622

 For further information on Python and developer knowledge, see Python, https://www.python.org/doc/.

623

 Open source is defined as software that is available for anyone to inspect, modify, and enhance. spaCy operates

under a MIT license. This form of license is a permissive software license with the sole restriction that the original

copyright and license notice be included in any future copies of the software. See What is open source?,

https://www.python.org/doc/

 M. Ma

153

the primary software used to help parse sentences from legal texts to dependency trees; then to

organize the components into categories.

The decision to use spaCy, as opposed to other NLP packages available in Python, is its ease of use,

configurability, speed, and existing models pre-trained on a generalized data (e.g. articles, comments,

blogs, etc.).
624

 While intuitively NLP programs, such as LexNLP, were considered, the current test

case poses a different challenge. LexNLP, for example, works with legal texts that are rather

structured (i.e. contracts).
625

 Therefore, LexNLP is trained at the document and clause level; thereby

capable of extracting and classifying clauses as opposed to semantic content. I acknowledge that there

are certainly merits to LexNLP. The greatest advantage being its models are pre-trained on U.S.

legal texts. Nevertheless, spaCy offers much more functionality and flexibility given the breadth of

subject matter found in the training data. By way of analogy, the choice may be akin to choosing

between an oyster knife and a Swiss army knife when asked to descale a bass. The oyster knife is

specialized but has its practical limits. In contrast, the Swiss army knife – emblematic of versatility –

may offer more options and space for creativity when handling intricate tasks.

Finally, Neo4j is a graph database management system designed to store and process data in the

form of nodes and relations.
626

 The system helps classify the entities and the semantically relevant

connections between such entities. Graph databases are commonly used for intermediate

representation (IR). Known as the “steppingstone from what the programmer wrote to what the

machine understands,”
627

 IR is an object-oriented structure that, in its final form, stores all

information required to execute a specified program.
628

 IRs facilitate translations from natural

language to machine code, bridging semantic gaps and behaving as the ‘middleman’ between

syntactic forms. The graph database is also ideal for modelling dependency trees and object-oriented

opensource.com, https://opensource.com/resources/what-open-source. See also The MIT License, Open Source

Initiative, https://opensource.org/licenses/MIT.

624

 For further details, see spaCy’s technical documentation, available at: https://github.com/explosion/spacy-

models/releases//tag/en_core_web_lg-2.2.5.

625

 About LexNLP, LexNLP, https://lexpredict-lexnlp.readthedocs.io/en/latest/about.html.

626

 For further information, What is a Graph Database?, Neo4j, https://neo4j.com/developer/graph-database/.

627

 Cliff Click and Michael Paleczny, A Simple Graph-Based Intermediate Representation, 1995 ACM SIGPLAN

WORKSHOP ON INTERMEDIATE REPRESENTATIONS 35 (1995).

628

 Id.

https://opensource.com/resources/what-open-source
https://opensource.org/licenses/MIT
https://github.com/explosion/spacy-models/releases/tag/en_core_web_lg-2.2.5
https://github.com/explosion/spacy-models/releases/tag/en_core_web_lg-2.2.5
https://lexpredict-lexnlp.readthedocs.io/en/latest/about.html
https://neo4j.com/developer/graph-database/

 M. Ma

154

phenomena, such as inheritance. Put together, we attempt to advance the techniques inspired by

RelEx for the translation of legal language to numeric form.

b. Risky Business: Case Selection

The initial test cases selected for the POC are not arbitrary. I have strategically chosen cases that all

follow a similar premise: what is the meaning of “use” applied to a firearm? Importantly, the cases

belong to an alleged lineage, the application of precedent and consistency in legal adjudication.

In 1993, the Supreme Court of the United States (Court) was asked to rule on the definition of “use”

in Smith v. United States. The petitioner, John Angus Smith, had offered to trade his gun in exchange

for cocaine. He was subsequently charged with numerous firearm and drug trafficking offenses. This

included using a firearm “during and in relation to” a drug trafficking crime, as stipulated under

statute 18 U.S.C.§924(c)(1).
629

 The Court held that the trading of a firearm constitutes “use” within

the meaning of the statute. There are two remarkable notes to this case. First, the Court interprets

the meaning of use rather broadly, particularly applying emphasis on the “everyday meaning and

dictionary definitions” of use. Second, the interpretation is placed in the limited context of drug

trafficking. The Court shifts away from a dictionary definition and, instead, emphasizes the

furtherance of a crime as influential to the use.

In 1995, the Court was again asked to rule on the definition of use in Bailey v. United States.

Similarly, the petitioners, Bailey and Robinson, were each convicted of drug offenses and of violating,

none other than, 18 U.S.C.§924(c)(1).
630

 The factual difference is the state of the firearm “during and

in relation to” the drug-related offense. The Court was, therefore, asked to determine whether

accessibility and proximity to the firearm was indicative of use. The Court held that the statute

required “evidence sufficient to show an active employment of the firearm by the defendant, a use

that makes the firearm an operative factor in relation to the predicate offense.”
631

 In Bailey, the Court

then narrows the definition of use by including the element of “active employment.” The Court

provides a justification for its decision by referring to Smith and noting the ordinary definition of

629

 Smith v. United States, 508 U.S. 223 (1993).

630

 Bailey v. United States, 516 U.S. 137 (1995).

631

 Id.

 M. Ma

155

“use” in the active sense is “to avail oneself of.”
632

 Strikingly, the act of bartering falls within active

employment, even though the gun was exchanged passively.

Coincidentally, a third case – three years later – had arisen, requesting the Court to rule on the

definition of use under statute 18 U.S.C.§924(c)(1). However, Muscarello v. United States stretched

beyond use and, instead, focused on “carries.”
633

 In Muscarello, enforcement officers had found guns

in the petitioners’ vehicles stored in a locked glove compartment and trunk respectively. The Court

was, therefore, asked to determine whether that sufficiently fell within the definition of “carries.”

The Court ruled that carrying a firearm, in accordance with 18 U.S.C.§924(c)(1), “applies to a person

who knowingly possesses and conveys firearms in a vehicle.”
634

 The Court again invokes “ordinary

English,” otherwise, basic meaning in dictionaries, to argue that carry is synonymous with conveys.

Moreover, the Court again refers to Smith, but unlike Bailey, directs its reasoning to the purpose of

the statute.
635

 Notably, in all three cases, ordinary meaning was put forth as a dominant line of

argumentation. Yet, the argument was always supplanted by intentions of Congress and the statute;

that the purpose is to combat the “dangerous combination” of “drugs and guns.”
636

Funnily – perhaps to avoid a fourth case – Congress amended statute 18 U.S.C.§924(c)(1) to include

“possess” in tandem with the phrase “in furtherance of any such crime;” thereby, accommodating

the outcomes rendered in Smith, Bailey, and Muscarello. This then limited subsequent cases from

arriving at the hands of the Court.
637

 These cases were, therefore, carefully selected to illustrate that

judicial decisions could bear the epistemic flavors of textualism with an underlying subtext of policy.

Moreover, their similarity in factual circumstances allow for a stronger test of the underlying

mechanisms of judicial reasoning and legal argumentation.

Again, the cases selected are not without limitations. In fact, they were cherry-picked to better

demonstrate the subtleties of language and linguistics in law. Equally, I acknowledge that there are

632

 Id.

633

 As a clarification, 18 U.S.C.§924(c)(1) involves both use and carries a firearm during and in relation to a drug

trafficking crime.

634

 Muscarello v. United States, 524 U.S. 125 (1998).

635

 Id.

636

 Smith, supra 629 at 240. Also cited in Muscarello, supra 634.

637

 This is not to say no further cases were brought to courts involving the “use of a firearm” in a drug trafficking crime.

This is only applicable to cases before the Supreme Court.

 M. Ma

156

shortcomings to the project: namely, the importance of fact in law. Geoffrey Samuel states, “law

arises out of fact.”
638

 That is, the legal effect of precedent extends so long as the material facts of the

case are analogous. The project, however, does not currently account for the facts of the cases.

Instead, they focus on the Court’s specific arguments on the meaning of “use,” accepting the facts as

only peripheral to the exercise. The exclusion of facts may be problematic, given their significance

to the nature of the common law system.
639

 Still, the intentions of the paper are not to replicate judicial

reasoning in common law. Fundamentally, the focus of the POC is translation, specifically an

experiment to operationalize the migration of legal texts in natural language to algorithmic form.

III. PRELIMINARY OBSERVATIONS

The inherent nature of interdisciplinary projects exposes the gaps between untraversed worlds.

Between a data scientist, mathematician, linguist, and jurist, there are primarily two spheres of

operation. One is derived from logic, and the other in humanities. Moreover, the disciplines speak

different technical languages. Indubitably, there are clashes. Yet, the unifying mission to uncover

‘meaning’ has raised interesting perspectives on method and interpretation.

Consider the conversation between the linguist and computer scientist. The linguist struggles with a

possible SVO markup for open clausal complements. The computer scientist suggests that it would

fit ‘cleanly’ in the code if this were marked in the same manner as a clausal subject. The linguist is

bewildered. In dependency linguistics, an open clausal complement is a clause without a subject. A

clausal subject, on the other hand, is when a whole clause is itself a subject. What might be

problematic with this type of equivalency?

This particular concern was contemplated within the framework of ‘nested SVOs.’ Complex

sentences are composed of several clauses that carry condition and inherence. For example:

adverbial phrases or subordinate clauses, that are themselves SVOs, act as modifiers to an

overarching (superordinate) SVO. This became problematic when resolving the SVOs with one

another; threatening a possible misalignment between their semantic and syntactic representation.

638

 Geoffrey Samuel, A Short Introduction to the Common Law 87 (2013).

639

 Early origins of common law regarded it as a customary system of law, a body of practices observed by its players.

See Vicki C. Jackson, Constitutions as “Living Trees”? Comparative Constitutional Law and Interpretive Metaphors,

75 FORDHAM L. REV. 921 (2006).

 M. Ma

157

Another fascinating example came about when assessing the difference between the following two

sentences:
640

 “He shot the man with a gun.”

 “He shot the man with a telescope.”

For the human mind, the role of the object evidently differs between the sentences. In the former,

the gun is indicative of the weapon used by the perpetrator. In the latter, the telescope is a qualifier

of the victim, drawing a sharper image for the reader. This is owed to the cognitive association
641

between the object to the verb “shoot.” But, what happens should the gun qualify “the man” in the

first sentence? If so, not only does it change the meaning of the sentence, but, more importantly, it

could affect the ultimate charge against the perpetrator. That is, the crime could be a difference

between murder, manslaughter, or self-defense. The sentence alone cannot provide this depth of

information required. Context and factual circumstances of the event are needed to determine how

the sentence should be interpreted.

Interestingly, the data scientist and/or mathematician would approach the question by calculating the

cosine similarity between the vector representations (word embeddings) of the verb and the object.

Similar to the cognitive association performed in the human mind, the calculation determines the

statistical probability
642

 of the object appearing with the verb. The higher the frequency of both words

co-occurring in the training corpus, the more likely the object is qualifying the verb. The cosine

similarity can, therefore, be used as a numeric interpretation of how the object is employed given

the verb in the sentence.

A third puzzle came in the form of homographs. Homographs, though identical orthographically,

vary in meaning (though often distinguished in pronunciation). How then could a computer

distinguish between record as a noun or record as a verb? The computer scientist notes that a

distinction in the meta-concepts would resolve the problem. Meta-concepts, or metadata, are the

elements outside of the SVO that describe the information being conveyed. This includes in what

640

 It is important to note that the sentences are not taken from the judicial decisions but were conjectured in the

process of completing the SVO markup.

641

 More specifically, the realm of psycholinguistics describes this association as top-down processing: the process

through which knowledge and experience subconsciously influences interpretation of language. See Paul Warren,

Introducing Psycholinguistics 137 (2013).

642

 This is to reference the Word2Vec approach and transformer-based architectures that actively employ the

surrounded words to mathematically derive context.

 M. Ma

158

manner and how the sentence is being expressed. How important then is meta-data to the meaning

of sentences?

This was again proposed as a possible resolution when encountering deictic expressions. Deictic

words – such as ‘this,’ ‘that,’ ‘here,’ or ‘there’ – rely almost exclusively on context. Consider the

sentence: “At issue here is not ‘carries’ at large, but ‘carries a firearm’ (emphasis added).”
643

 What

could ‘here’ mean? To the jurist, ‘here’ represented the material facts of the case, but to the linguist,

it is a limited reference to the preceding sentences. To the mathematician or computer scientist, the

word here represents a subjective concept for which a frame of reference and context serve to anchor

it in reality.

These observations culminate to a greater question: what exactly constitutes as context? Meaning

hinges on the knowledge of a “word by the company it keeps.”
644

 Should there be multiple

interpretations of context, there are seemingly differing methods of arriving at ‘meaning.’

At a glance, the SVO markups are products of conversations around these patterns of dependencies

within sentences. Decisions were taken on how the sentences should be deconstructed to better

articulate the interaction between subjects and objects with their verbs. Equally, an evaluation was

made to separate meta-data from the basic SVO structures. Once the SVO markup was complete,

it would form part of the training data for a decoder algorithm. The algorithm not only draws out

the rules from the markup, but also other rules that the machine has gathered. This theoretically

mirrors the concept of “reading between the lines.” Finally, these rules are encoded for future

documents in the graph created. The idea is that the markups identify only the more pertinent

information in each sentence, while the algorithm detects any surrounding information.

The purpose is then to illustrate the connections and changes in the states of sentences found in the

judicial decisions. In other words, it is the reconfiguration of sentences that are ostensibly void of

structure, to their structurally dependent forms. In the following section, I articulate in detail the

technical implementation of the project. I hope to demonstrate that the translation of legal text to

numeric form unravels the ‘Black Box’ of instinct
645

 and disciplinary bounds. In the process of

643

 Muscarello (Ginsburg, J., dissenting), supra 634 at 145.

644

 John Rupert Firth, The Technique of Semantics, 34 TRANS. PHILOS. SOC. 36 (1935).

645

 Recall Simon, supra 569. See also R. George Wright, The Role of Intuition in Judicial Decision making, 42 HOUS.

L. REV. 1381 (2005); and Chris Guthrie et. al, Blinking on the Bench: How Judges Decide Cases, Cornell Law Faculty

 M. Ma

159

reducing sentences to SVO triplets, what is colloquially understood as intuition and knowledge-based

expertise is revealed in a systematic form.

IV. TECHNICAL IMPLEMENTATION

As discussed, there have been attempts at translating natural language to numeric form using various

types of algorithms. To this day, success has primarily been achieved with the use of advanced

statistical modelling techniques that depend on vast amounts of data. Leaning into these methods,

we attempt to develop a new paradigm for natural language understanding, namely, one based on

the core principles of Object-Oriented Design (OOD). The objective is to develop a preliminary

model capable of ingesting a large amount of the data accurately, leaving the handling of outlier cases

for a later stage of analysis.

Building on the ideas of Walter Daelemans and Koenraad De Smedt,
646

 we refer to their work to

bridge concepts of OOD and linguistics. As the intention is not to be exhaustive, the table below

broadly defines the analogies between OOD and linguistics that permit the translation of text into

this form:

Object-Oriented Design Concepts from Linguistics

Classes

Blueprints (or prototypes) defining the

characteristics and behaviors of Objects

belonging to them

Hyponymy,
647

 items contained in a set. Defining the prototype entities

which allow objects to inherit any combination of single or multiple

parent characteristics.

Objects

Singular manifestations of a Class

Noun-phrases and lexemes corresponding to singular entities and

qualities (akin to individual definitions) represented by their lemma-form.

Methods

A defined interaction event between

Abstractions in the program. Methods

must be invoked in order for them to

have a role.

Clauses (narrowed down to possible permutations of (S)V(O)) –

interactions between semantic entities within the text.

The syntactic subject (semantic agent) is seen as the triggering entity, the

(direct) object is the target of the interaction, and any additional objects
behave as necessary inputs concerned in triggering the said interaction.

The verb describes what happens during the interaction.

Variables

Placeholders for discrete information:

values, Objects

Meronomy (declaring/assigning a placeholder for a part of the whole),

meronymy (defining the content in the placeholder) – assigning parts of a

whole.

Publications Paper 917 (2007), available at:

https://scholarship.law.cornell.edu/cgi/viewcontent.cgi?article=1707&context=facpub.

646

 Walter Daelemans and Koenraad De Smelt, Default Inheritance in an Object-Oriented Representation of Linguistic

Categories, 41 INT’L J. OF HUMAN COMPUTER STUDIES 149 (1994).

647

 To clarify, hyponymy describes the relationship of ‘kind’: if A is a type/kind of B, then A is a hyponym. In turn,

meronymy is the relationship of ‘parts’ (also known as partonomy): if A is part of B, it is a meronym. For example,

table and chair are hyponyms of furniture, whereas wheels and doors are meronyms of car. See Kate Kearns,

Semantics (2000).

https://scholarship.law.cornell.edu/cgi/viewcontent.cgi?article=1707&context=facpub

 M. Ma

160

Abstraction

The definition of Classes, Objects,

Methods and Variables based on the

task a program will solve.

Decoupling the signifier from the signified,
648

 allowing for the open system

nature of language and knowledge in general.

Inheritance

The passing on of characteristics and

behaviors of a parent Abstraction onto

its child

A multi-purpose mechanism allowing the modelling of linguistic

phenomena, such as hyponymy, conducive to definitionism.

Encapsulation

The localization of characteristics and

behaviors to a Class or Object

The phenomenon that allows for semantic parsing – localization of

characteristics and behaviors to specific logical elements (entities) within a

frame of reference.

Polymorphism

The ability to change any inherited

characteristics and behaviors

Corresponding to the phenomena of polysemy and homographs, among

others. Specifically, it allows any two entities within the same class to

have different characteristics and behaviors represented by the same root

word.

Composition

Arranging the interactions of Objects

and Classes with one another; one of

the aims of composition is to reduce

code redundancy

Corresponding broadly to semantics – the arrangement, hierarchy and

definition of communicative rules between the logical/semantic elements

(perhaps equivalent to semes or sememes) in a text. This can allow for

abstraction, improving efficiency in contextual assignment.

As such, the grammatical structure of natural language is seminal to extracting its informational

content. This would, in effect, permit a translation of ‘meaning’ to a form readily encodable in a

programming language.

The complexity of legal concepts (i.e., the potential for multiplicity of meaning; or polysemy) called

for technology that could cater to non-singularity. Consequently, the project attempts to strike a

balance between definitionism and determinism by minimizing the pitfalls of both; the inefficiency

and redundancy of definitionism against the brittleness of determinism. Ultimately, the goal is to

secure efficient machine readability while upholding fundamental legal principles. The danger of

leaning towards either the former or the latter is its adverse impact on the requirement for human

intervention in the exercise of judicial reasoning. Should priority turn to definitionism, we risk

creating a system that is far too complex and cumbersome to create any additional value for legal

practitioners. Should priority turn to determinism, we risk creating a system that does not leave

sufficient flexibility for ever-changing circumstances;
649

 undermining existing legal structures.

648

 Referencing Ferdinand de Saussure and Jacques Derrida on semiotics. See Ferdinand de Saussure, Course in

General Linguistics (Bloomsbury Revelations Ed. 2013); and Jacques Derrida, Limited Inc. (1988).

649

 Against the dismay of determinate expert systems, I am cognizant of judgments as temporally specific reflections of

society; often, subject to influence by its sociopolitical environment. Notably, disruptions and shifts in society could

(and often do) lead to reversal of judicial decisions. See for example the commentary by Kiel Brennan-Marquez and

Stephen Henderson, Artificial Intelligence and Role-Reversible Judgment, 109 J. CRIM. L. & CRIMINOLOGY 137

(2019).

 M. Ma

161

Graph databases are amenable to generating highly interconnected webs of knowledge (knowledge-

maps), optimizing analysis of relations between individual data points. Moreover, it accounts for

issues of object composition, polymorphism, encapsulation, and inheritance; and enables the use of

graph theory for creative analytical approaches on a larger scale. These ideas will return in the

subsequent sections. Importantly, the graph works as the intermediary interface. It stores the input

and analyzes the output of abstractions drawn from the developed algorithm.

In the normal reading of texts, humans typically abstract in a sequential pattern; forming a ‘world’

within our own consciousness. Each subsequent phrase that speaks to the same topic enriches the

details of this ‘world,’ reinforcing it with logical constraints and other abstractions.
650

 This parallels a

compiler reading a piece of high-level code, such as a Python script. The input works through layers

of translation before arriving to a form comprehensible to the machine. Each stage serves to

‘decompress’ the knowledge built into the language by its designers. Eventually, the language is

distilled down to its most granular level: a collection of binary code.
651

 Phrases become a series of

commands; either establishing a fact or describing an event or action.

The legal language is no different. It can be regarded as the sum effort of numerous iterations of

layered abstractions rooted in social reality.
652

 A legal document is the written manifestation of this

process; conveying abstract legal concepts in a manner that is both syntactically sound and

semantically meaningful in natural language.

One of the notable pitfalls of natural language is the underlying difference in contextual knowledge,

whether it be prior experience or preconditioning. The existence of these differences manifests as

“biases,” which are then inherited in physical repositories, or artifacts.
653

 Consequently, exposing

context is often helpful in clarifying such ‘repositories of legal knowledge.’ For programmers, what

is interpretable as context is the workings of reality outside the scope of a particular program. This

could mean additional software may be used by developers when putting together a system (e.g. the

importing of packages in Python). The addition of these packages extends the functionality of a

650

 Warren, supra 641.

651

 To recall, this is an array of 0s or 1s to control transistors. It is the smallest unit of measure and often regarded in the

logic form of an if-then statement.

652

 See for example Joseph Raz, The Institutional Nature of Law, 38 MODERN L. REV. 489 (1975); also, the difficulty of

demarcating legal concepts in Joseph Raz, Legal Principles and the Limits of Law, 81 YALE L. J. 823 (1972).

653

 Langdon Winner, Do Artifacts Have Politics?, 109 DAEDALUS 121 (1980).

 M. Ma

162

program beyond its defined code. For the POC, we used a combination of pre-defined (i.e. spaCy’s

neural network models for recognizing dependencies and part-of-speech tags as well as Word2Vec

converters) and newly trained estimators (i.e. detecting SVO triplets) to strengthen the model with

metadata relevant to statements encountered in the dataset.

Below is a pictographic interpretation of the process:

a. Defining Entities (Encapsulation)

In building reference models of reality, entities are discrete units of existence. They act as mental

placeholders to facilitate explanations of interactions within the model. Encapsulation is used to

localize the characteristics and behavioral characteristic of each of these entities. The entities can be

grouped into categories (classes), nested and (re-)arranged in an infinite number of ways. The

importance is the architecture and its rules of performance; in other words, the process of defining

entities of reference, their relations to one other, as well as their methods of interaction.

Consider the following sentence from Bailey as an informative example:

“I use a gun to protect my house, but I’ve never had to use it.”
654

654

 Bailey, supra 630 at 143.

 M. Ma

163

Disregarding first context, the sentence can be deconstructed into entities or methods. The entities,

such as “I”, “gun”, “house,” are encoded as nouns. The methods, such as “protect” and “use,” are

encoded as verbs.

Observably, the clause “I use a gun…” involves an actor (“I”) that invokes an action (“use”) on an

object (“gun”).

Applying the Object-Oriented approach of structuring code into classes and methods, the first phrase

can be translated into the following schema:

The components of the sentence become identifiable SVO triplets:

(1) the Subjects (invoking entity);

(2) the Objects (entity being acted on);

(3) the Verbs (method); and occasionally,

(4) the Prepositional Objects (additional entities describing the premise of the event/action).

The breakdown illustrates the framework on which the algorithm is built.

 M. Ma

164

By extension of the example, subsequent phrases follow a similar breakdown, drawing connections

between classes and their corresponding methods. This form of deconstruction also permits the

nesting of concepts and additional logic tests along connections established.

b. Scaling Up (Composition)

The process is akin to the first layer of translation, developing a pseudo-code script that represents

a concept but expressible in a machine-readable language. The connections trace which class

invoked the method “protect” on the class “house;” thereby deducing what “I” “use” to “protect”

“house.” As a result, such encoding does not require vast amounts of training data. Text is

immediately translated to pseudo-code, without the need for external context.

The peripheral terms present in the sentence serve to indicate higher order concepts such as

enumeration, negation, time, possession and pronoun assignment: “a”, “never”, “had to”, “my”, “it”.

Their presence exists to modify the fundamental building blocks of the sentence - the nouns and

verbs.

c. Creating the Knowledge Map (Natural Language Processing)

Whereas the task of defining individual entities and methods is relatively straight-forward, creating a

knowledge-map correspondent of the above schema requires the extraction of the semantic

connections between them. By leveraging existing NLP tools,
655

 such as spaCy, in conjunction with

655

 I do take note that even the most advanced language parsers are incapable of 100% accuracy. In analyzing the

preliminary results, I have encountered a number of deficiencies owed to the dependency trees used. However, at this

 M. Ma

165

our own SVO markups,
656

 we were able to create a corpus to train a classifier capable of detecting

SVO triplets and importing them to the graph.

Figure C Sample Input to spaCy

The core strategy behind extracting SVO triplets lies in its linguistic deconstruction. The root of

every sentence centers on the verb. Subjects (“nsubj”) and objects (predicate, “dobj”) are subordinate

to verbs within the syntactic hierarchy. Therefore, in identifying the verbs of every sentence, the

semantic connections are naturally found.

This method of text analysis has gained popularity with the advent of machine learning based models

of NLP; trained on a sizable corpus of different expressions to perform the following tasks:

(a) Separating words from a string;

(b) Grouping the words into sentences;

(c) Assigning each word with a part-of-speech tag (Noun, Verb, Adverb, etc.); and

(d) Estimating each word’s syntactic parent; thereby build a syntactic tree

This approach differs against other methods of semantic notation that rely solely on syntax; and less

on the underlying pragmatics.
657

Between entity–method and SVO extraction, the data generated is sufficient to begin assembling

together the knowledge-map. More importantly, the aforementioned process is derived entirely from

stage, the aim is again to capture a significant portion of the information within the text and leave outlier situations for

the next stage of the project.

656

 Recall the RelEx method described in Section III. See Fundel et. al, supra 614.

657

 Recall subsection on Linguistic Influences and differences between dependency and constituency-based

representations.

 M. Ma

166

the text itself. As a result, a defined cause-and-effect type algorithm is built, executable in full or in

part, tested and queried. Additional metadata such as word embeddings, sentiment analysis and

recognized named entities can provide supplementary information helpful for optimizing the

knowledge-map and achieving a stronger understanding of the semantic content.

d. Building Character; Adding Context (Inheritance and Polymorphism)

The case study considers the transformation of legal texts to an Object-Oriented-like script;

effectively using ‘pseudo-code’ to depict concepts embedded within the text. In natural language,

multiplicity of meaning could occur when a single concept applies to several circumstances. Different

conclusions can be drawn depending on the characteristics inheritable from a parent class. To clarify,

this would include determining whether a “firearm” is within the same class as “gun.” Similarly, other

characteristics may include the methods or actions (verbs) invoked by a particular class. In object-

oriented design, this phenomenon is known as polymorphism.

A core aspect of the translation to object-oriented form, as described in Daelemans and De Smedt’s

paper, is the assumption that subclasses ‘inherit’ the characteristics of the parent class by default;

unless they are hard-coded otherwise.
658

 In this case, characteristics and their behaviors are explicitly

stated in the legal text. Consequently, if necessary and provided sufficient examples in the source

text, as well as a threshold occurrence ratio, it will be possible to migrate certain characteristics up

the inheritance hierarchy. Any such event can be signaled with a flag that the presence of this

characteristic is an assumption with X percentage occurrence rate among child objects.

658

 Daelemans and De Smedt, supra 646.

 M. Ma

167

Figure D Illustrating Parent and Child Classes

When SVOs have an explicit subject and object, they can be loosely chained. However, the presence

of subordinate clauses in the text necessitates nesting SVOs within one another. This exists in the

pseudo-code as implicit causality. To then define the chain of causality, yet maintain the

independence of each SVO, the root of a sentence must be identified. Drawing from the example,

“I” must first “use a gun” in order to then “protect” “house”. This suggests that “use” is the primary

connection between the SVOs as one cannot exist without the other.

 M. Ma

168

Figure E Illustrating causality between SVOs

Further classifications and qualifying characteristics may be important in a legal analysis. This

information parallels the referencing of statutes and case law for prior interpretations of meaning.

Various sources of law often create an environment for conflicting readings of a particular text. To

tackle this problem, it is possible to assign an authority metric to each source; thereby establishing

hierarchical structuring of the corpus. The structure behaves as a type of input when conducting an

analysis, mirroring the hierarchy of legal sources.

V. EARLY ACHIEVEMENTS AND FURTHER CONSIDERATIONS

a. By the word of the law

Once the data was loaded into the graph, so began the stage of analysis. The primary way of

interacting with the knowledge graph is the query function. Each query attempts to build one or

 M. Ma

169

more paths between two entities, with specific constraints along its path. This is the programming

equivalent to writing tests for a piece of code. The knowledge graph is asked a question and returns

a response that follows the reasoning of human observers. Once the knowledge graph has acquired

sufficient data, the intention is to develop a user interface able to answer ‘legal’ questions posed by

its users.

An invaluable tool used in this task is the Cypher query language. This language permits the

formulation of queries based on the paths present within the data. The choice of constraints for each

query will initially be hard-coded. Nevertheless, it is possible to then transfer the process to machine

learning should sufficient data be gathered.

The idea behind this approach is to shift out of the standard statistically driven paradigm and allow

the inference of logical conclusions from the text.

Consider a user query: “Describe the interactions involving a firearm.”

 M. Ma

170

Figure F Sample Output from Neo4j Graph

With a user interface, we envisage that any question will be deconstructed in the same way as the

training dataset. In this case, the algorithm should return the associations of entities and methods

affiliated with “use” and “firearm.” The interface will attempt to: (1) link the entities in the question,

using the data in the graph; (2) gather any conditions and constraints along the way; and (3) return

the relevant information as a series of possible paths taken within the graph, resulting in a list of

phrases sorted by relevance (e.g. “use is active employment”).
659

 In effect, legal judgments are

reconfigured into machine readable form to identify the meaning of the text. The graph acts to

signpost legal actors towards definitions found in judicial decisions; thereby augmenting legal

reasoning by leveraging the efficiency and power of computational analysis.

659

 Bailey, supra 630 at 137.

 M. Ma

171

b. By the sixth sense

On the other hand, there has been a latent understanding that intuition plays a role in the rendering

of judicial decisions.
660

 The techniques used in our approach, in fact, account for instinct. The parsing

of legal texts requires two types of algorithmic methods: (1) analytical; (2) and numerical.

The former serves to build a rigid structure from text and establish a hierarchy of semantic content

on the basis of clearly defined criteria. This was demonstrable in the use of the graph database. The

latter leverages the statistical modelling principles of neural networks. Similar to impulses attributable

to intuition, the weight of each neuron in a neural network can be viewed as an abstract meta-concept;

too complex to express tangibly. A parallel can be drawn between the phenomenon of a “gut feeling”

to the internals of a neural network, as trends embedded within a dataset are sorted into an array of

codependent activation values. This means that any data present on the graph can be fed to

customized machine learning algorithms to approximate human ‘intuition.’ Together, we could

factor several forms of legal reasoning that often underlie judicial decisions.

c. Between implementation and effect

To come full circle, the impact of translation has inadvertently exposed the logic of legal reasoning.

Whether it is judicial intuition or syllogistic application, Holmes’s paradox remains relevant. Words

of legal text do, in fact, intrinsically embody meaning. The sphere of legal knowledge exists well

within the sentences of judicial decisions. This is owed to the interpretation and conceptualization

of precedent. The POC has observed that the use of precedent is not a procedural legal tool but a

substantive one. Its application is to uphold the appearance of methodological consistency within

the body of law. Yet, fundamentally, its use is to substantiate the authority of legal texts.

More importantly, precedent recognizably functions in an asymmetrical, as opposed to syllogistic,

manner.
661

 To recall, Bailey does not apply the plain meaning of ‘active employment,’ but constructs

instead an alternative legal meaning to equate ‘active’ as “operative factor.”
662

 In other words, in

accordance with Smith and Bailey, the use of a firearm includes bartering; and as such, the trading

660

 Recall discussion on intuition in judicial decision making; see Wright and Guthrie, supra 645.

661

 Countering Holmes’s description of the law as following syllogistically from existing precedents. See Holmes, supra

567.

662

 Bailey, supra 630 at 143.

 M. Ma

172

of a firearm is an ‘operative’ component to a drug-trafficking crime. These definitions are not

logically deduced. Instead, they seek to reinforce a specific legal framing. Arguably, then, the use of

precedent is not to follow past decisions, but to determine how to align with them. This was integral

to incorporate in the graph, as the semantic content drew from legal taxonomy.

The result of translating legal text in the manner described in Part IV corroborates that legal language

is self-referential and consistent. The law pushes outward by looking inward. In deconstructing legal

judgments to its constituent components, the process of applying precedent evidently evolves: from

syllogistic application to a framework of extraction.

CONCLUDING REMARKS AND NEXT STEPS

The fundamental question asked by the project is whether meaning draws association from the

language in which it is seated; that in changing the language, meaning will naturally be

reconceptualized. The test to translate natural language to numeric form is not novel. In fact, it

follows an ancestry of applying mathematical precision to legal expression. This case study has sought

to experiment with the conversion of legal texts into algorithmic form. More importantly, I attempted

to capture legal concepts and processes involved in legal reasoning. The deconstruction of natural

language phrases to SVOs atomized sentences to their bare structures; forcibly exposing connections

integral to the formation of concepts. As I aimed to reconcile syntax with semantics, structure

became indistinguishable from content.

Inadvertently, the POC has demonstrated that, though form is seminal to the adjudicative exercise,

the logic embedded within legal texts does not necessarily behave syllogistically. Instead, legal

concepts appear to evolve sporadically. This sporadicity, however, is not synonymous to

randomness. Rather, the development of the law draws from introspection and uses precedent to

substantiate its authority. Teasing at Holmes’s paradox, the law approaches consistency not in form,

but in substance. As opposed to syllogistic application, meaning is found through a process of

extraction.

Beyond the case study, the next phase of the project intends to bring forth a deeper breakdown of

legal texts, focusing on higher levels of abstraction (i.e., trends latent in meta-concepts) and more

complex grammatical resolutions found in natural language. From a broader perspective, the case

study has inspired us to consider advancing towards a ‘White Box’ solution. The aim is to strengthen

 M. Ma

173

the understanding of legal texts, providing richer roadmaps and signposting users towards more

consistent interpretations of judicial decisions. It is an evolution of legal reasoning that heightens

transparency by unpacking juridical truths and structuring intangible legal narratives. The result?

Improving the quality of legal analysis and elevating accessibility to society.

As opposed to “grafting new technology onto old working practices,”
663

 it is a new embodiment of

precedent. It is a harnessing of the future through a preservation of the past. The integration of

computational technology in law disrupts conventional legal mechanics, while maintaining the

function of law. I anticipate then a Bilbao effect, that the thoughtful marriage of old and new

architecture sparks transformation.

663

 Referencing the distinction Susskind makes between automation and transformation. See Richard Susskind, Online
Courts and the Future of Justice 34 (2019).

 M. Ma

174

3C- The Legislative Recipe (Machine-Readable Legislation)

 M. Ma

175

I have noted (and perhaps stressed) that legal interpretation is, in part, a linguistic venture. As notable

in judicial opinions, courts are often asked to interpret the text of statutes and legislation. The

question becomes: what if there was a method of extracting the meaning of statutes consistently?

This is the fundamental basis of the Rules as Code initiative. That is, encoding legislation in a

mathematically precise form would permit clearer responses to legal questions.

To recall, Layman E. Allen lamented about ambiguity in legal drafting owed to syntactic

uncertainties.
664

 In his fascinating study, he deconstructs an American patent statute and notices

immediately the complexity with the word ‘unless.’ He asks whether the inclusion of ‘unless’ asserts

a unidirectional or a bidirectional condition.
665

 That is, does the clause mean (a) if not x then y; or

(b) if not x then y and if x then not y?

Though nuanced, Allen exposes an ambiguity that muddies the legal force of the statute. An

interpretation of ‘unless’ as a bidirectional condition raises the question of what ‘not y’ would mean.

In this particular case, this could affect whether exceptions are possible in determining patent

eligibility. In short, for Allen, legislative language must have a clear structure.

This case study attempts to unpack the notion of machine-readability, providing an overview of both

its historical and recent developments. The case study will reflect on logical syntax and symbolic

language to assess the capacity and limits of representing legal knowledge. In doing so, the paper

seeks to move beyond existing literature to discuss the implications of various approaches to

machine-readable legislation. Importantly, this study hopes to highlight the challenges encountered

in this burgeoning ecosystem of machine-readable legislation against existing human-readable

counterparts.

A. Historical Roots: Symbolic Logic

The code of Hammurabi
666

 is frequently used as an example of how the law has changed in form in

order to improve access to the legal system, lead to more predictable legal outcomes, and to promote

transparency. Through the adoption of form, law can be understood as a body of knowledge that

664

 Layman E. Allen, “Language, Law, and Logic: Plain Legal Drafting for the Electronic Age,” B. Niblett (ed.)

Computer Science and Law 76 (1980).

665

 Id. at 77.

666

 Michael Genesereth, “The Legacy of Hammurabi” (Mar. 17, 2021), available at:

https://law.stanford.edu/2021/03/17/the-legacy-of-hammurabi/.

 M. Ma

176

over time has come to inform behavior through the production, dissemination, and evaluation of

the rules. Lawrence Lessig and Alex “Sandy” Pentland each have highlighted this with the notions

that code is law, and law is an algorithm.

These ideas are not new. As discussed in prior case studies, this ancestry dates back to twelfth century

logicians reflecting on the use mathematically precise forms of writing. In the mid-1930s, German

philosopher, Rudolf Carnap, reflected on a logical syntax for language.
667

 His argument is that logic

may be revealed through the syntactic structure of sentences. He suggests that the imperfections of

natural language point instead to an artificially constructed symbolic language to enable increased

precision. Simply put, it is treating language as a calculus.
668

In this perspective, there is no consideration of language for the intentions of meaning and

interpretation. Merely, logical syntax is concerned with structure and is void of content.
669

 Though

Carnap concedes that syntax belongs to the scientific study of language that enables mathematical

calculation, this approach must be distinguished from semantics, or semasiology. For Carnap, syntax

importantly builds a system of reference. In an analogy with the “complicated configurations of

mountain chains, rivers, frontiers, and the like,” geographical coordinates are mathematical

constructions that act as informative measurements of comparison to reveal and analyze the

behaviors of its ‘natural’ existence.
670

 Symbolic language, therefore, acts to investigate and identify

consistencies and contradictions in language for the purpose of clarifying its logical properties.

Since the 1950s, Allen had argued for the inclusion of symbolic logic to develop a systematic method

of drafting. The transformation of an ordinary statement to a “systematically pulverized form”
671

would lead to specific and unambiguous legal expressions. Allen’s technique is suggestive of two key

thoughts: all statements are (1) composed of constituent elements; and (2) built on logical

relationships.

667

 Rudolf Carnap, Logical Syntax of Language 2 (Routledge English ed. reprint, 2014).

668

 Id. at 4.

669

 Id. at 7.

670

 Id. at 8.

671

 Layman E. Allen, Symbolic Logic: A Razor-Edged Tool for Drafting and Interpreting Legal Documents, 66 Yale L.

J. 833, 835 (1957).

 M. Ma

177

He uses implication/co-implication ambiguity
672

 to illustrate how symbolic logic could clarify legal

imprecision. He considers the conditions for when a seller may rescind a contract or sale as an

informative example. Breaking down section 65 of the Uniform Sales Act into six constituent

components,
673

 Allen argues that even a “relatively simple and straightforward statutory

passage…often [has] a wide variety of possible interpretations.”
674

 For the specific case of section 65,

he found that there are eight interpretations a court could take.
675

 Yet, of the eight, only one

interpretation tends to be adopted by courts, owed to the contextual support of other sections of the

statute.

Allen suggests, by systematically pulverizing statements of the statute, clearer intentions may be

revealed. This method acts as a tool to counter drafting in a “broad and ambiguous form.”
676

 To

recall, Stephen Wolfram made a similar argument. Simplification, he states, occurs through the

formulation of a symbolic discourse language. If the “poetry” of natural language could be “crushed”

out, one could arrive at legal language that is entirely precise.
677

Machine-readability
678

 appears then to bridge the desire for precision with the inherent logic and

ruleness
679

 of certain aspects of the law. Machine-consumable legislation may, therefore, be regarded

as a product that evolved out of the relationship between syntax, structure, and interpretation. In

other words, a potential recipe to resolve the complexity of legalese. What Allen intentionally evades,

and is rather significant, is the difference between semantic and syntactic uncertainty. While syntactic

uncertainties are often inadvertent, semantic uncertainties are often deliberate. The distinction

between syntactic with semantic uncertainty is a mirror to unintentional and intentional ambiguity.

672

 Defined as whether the connection between two elements of a statement is conditional or biconditional. See id. at

855.

673

 Id.

674

 Id. at 857.

675

 Allen conducts a simple mathematical calculation around the number of interpretations. He notes that where the

number of antecedents (otherwise, conditional statements) in the statement is equivalent to N, the number of possible

interpretations is equivalent to 2
N

. See id.

676

 Id.

677

 Stephen Wolfram, “Computational Law, Symbolic Discourse, and the AI Constitution,” Ed Walters (ed.), Data-

Driven Law: Data Analytics and New Legal Services 109 (2019).

678

 While there are distinctions in literature between machine-readable and machine-consumable, I use them

interchangeably and treats them as synonymous.

679

 Alluding to the quality described in Frederick Schauer, “Ruleness,” Dupret Baudouin et al. (eds.) Legal Rules in

Practice (2021 Forthcoming).

 M. Ma

178

This act of categorization implies the capacity to delineate within natural language core tenets of

ambiguity.

Therefore, the correlative association between unintentional ambiguity and syntactic uncertainty is

an audacious claim that innately reduces the challenges of legislative drafting to a symbolic fix. For

now, it appears there may be a stronger argument that symbolic logic is better suited as a metric to

assess clarity and precision in legal drafting.

B. Plain English Legalese

Symptoms of simplification – efforts to make text more digestible – frequently emerge and re-

emerge, working through cycles of fashion in the legal industry. To recall, in the 1960s, David

Mellinkoff described the absurdity of the legal language bearing characteristics distinct from common

speech. Mellinkoff argues that while there is overlap between the two, the language of the law

frequently includes common words with uncommon meanings, use of words and expressions with

flexible meanings, and “attempts at extreme precision of expression.”
680

 Perhaps the most interesting

is Mellinkoff’s sly remarks at the legal language’s valiant yet unsuccessful efforts with precision. He

notes the contrast between the plays on meaning against the sharp boundaries around the vocabulary.

In defense of precision, the arguments often invoked by lawyers is of clarity; that the wording is

justified in making the meaning clearer.
681

 The cult around precision in law’s language has built a

fortress around change, projecting a fear that use of plain language would disrupt the clarity

associated with legal language.

Therefore, Mellinkoff seeks to debunk this myth of precision; the elusive “exact meaning,” desired

by lawyers, that keeps the technical language afloat. Alternatively, he finds that the tools used in the

legal community do not reflect precision. First, agreement on what is necessarily precise has never

been reached.
682

 Precision is occasionally defined as being exact or “exactly-the-same-way.” The

former alludes to a definite term, whereas the latter points at the mechanism of analogy and

application of precedent. In either scenario, Mellinkoff finds issue with the understanding of

precision. A focus on definite meaning is misleading as legal language often includes vocabulary such

680

 David Mellinkoff, The Language of the Law 11 (1963).

681

 Id. at 292.

682

 Mellinkoff describes this as “the choice of ‘precise’ language goes by default – without notice that any problem

exists.” See id. at 297.

 M. Ma

179

as “reasonable,” or “substantial” that are fundamentally imprecise. From the perspective of

precedent and argument for tradition, Mellinkoff suggests that precision is merely an effect produced

by law’s formulas. That is, “an inflexible primitive insistence on word-for-word repetition could make

the traditional the precise.”
683

 Embedded into the legal language is an attachment to form as opposed

to meaning. Consequently, the arguments towards precision are, in fact, structural and not linguistic.

Peter Tiersma, decades later, discussed the extent to which legal language was effective as a means

of communication. His conclusion was that the goals of the language did not serve the intentions of

the law. That is, the desire to appear objective and authoritative conflicted with the use of language

in law. Tiersma suggests that legal language has come to be understood as a method of exclusion, an

indicator that one belongs to a “legal fraternity.”
684

 This incongruency enables a continued

dependence on the legal community to decipher and translate legal texts.

Tiersma highlights two elements that have worked against the use of plain English in law: (1) the

“quest for precision” in law; and (2) the legal lexicon. The former acts as a shield against ordinary

English, and the latter is to distinguish law from other disciplines. Perhaps ironically, Tiersma

observes that the arguments for legal language – clarity, conciseness, and precision – are also the

causes of imprecision and lack of clarity. Like Mellinkoff, he argues that the legal language

strategically plays on imprecision, flexibility, and generality of use, as well as a specific vocabulary

that is largely arcane and jargon.
685

 Moreover, interpretation plays a different function in legal than in

ordinary language. Tiersma suggests that in ordinary English, interpretation is focused on the

speaker’s meaning. In legal interpretation, it is fundamentally a semantic exercise reinforced by the

aforementioned lexicon. The differences in the practice of language and the reasons behind their

use, in effect, lead to complications surrounding the inclusion of plain English in law. Consequently,

decades of effort in converting complex legal language to plain English have been met with minimal

success.
686

683

 Id. at 299.

684

 Peter Tiersma, Legal Language (1999), available at:

http://languageandlaw.org/LEGALLANG/LEGALLANG.HTM

685

 Id.

686

 In addition to the ongoing dialogue towards a ‘plain legal English,’ it is perhaps best summarized by William Pitt on

the elusiveness and illusion of achieving this conversion. See William Pitt, “Fighting Legalese with Digital, Personalized

Contracts,” Harvard Business Review (February 27, 2019), https://hbr.org/2019/02/fighting-legalese-with-digital-

personalized-contracts.

 M. Ma

180

Nevertheless, there have been strong efforts of developing a plain English for the legal community.

Richard C. Wydick, inspired by Mellinkoff, addresses the design problem raised by Tiersma. The

underlying argument is that “good legal writing is plain English.”
687

 Wydick suggests that

distinguishing a legal from ordinary language hinders, rather than promotes, legal work.

Furthermore, he contends that there are several quick fixes to translating existing legal to plain

language. In his text, Wydick identifies issues of legal language as semantic ones of choice and

arrangement. The central discussion is on word use and how to manipulate them “with care.”
688

Grammar is equally relevant; to consider foremost the active voice and punctuation.

There have been examples of Wydick’s suggestions in practice. The Plain English Movement
689

reflected an eager intent to increase the accessibility of legal knowledge to those outside of the legal

community. This was owed to the rising demand for important consumer documents to be made

understandable to the general population.
690

 Similarly, this has permeated into calls for plain English

legislation. Guidelines of ‘good faith’ were written for legislation to use active verbs and short

sentences and be capable of passing the Flesch test.
691

Despite the vast improvements to the language of consumer documents, most legal documents

continued to be written in legalese. If the shift from legal to plain English is as simple and intuitive

as described by Wydick, the question becomes: why have the peculiarities of legal language and

drafting, persisted? In line with Tiersma’s suggestion, perhaps it may be a result of exclusivity. That

is, the complexity of the language fosters a continual reliance on the legal community, reinforcing

the need for a knowledge translator. On the other hand, there may be a more subtle reason for the

preservation of legalese. This argument draws from Mellinkoff’s discussion of tradition. Provided

that legal language has always been housed in a particular form, there rests an underlying hesitation

that legal concepts cannot be expressed in another way. Though Mellinkoff ascribes this to the

illusion of precision, it may in fact be an inability to reconceptualize the law. This would again imply

687

 Richard C. Wydick, Plain English for Lawyers (2005).

688

 Id., see importantly chapters 6 and 7.

689

 This began with revisions around promissory notes introduced by Citibank in the 1970s. See Tiersma, supra 684.

690

 Id.

691

 This was considered a “readability” assessment, as it measures the average length of sentences and words. It was

suggested that this acted as an objective and quantifiable measurement for comprehensibility. See id.

 M. Ma

181

a marriage to the form. In this case, enabling machine-readability would demand perpetuating

existing forms of legal expression.

C. Why don’t we layer it? XML in Law

From plain English, there took a technical turn. In hopes of developing a better understanding of

legislative documents, LegalXML and LegalDocumentXML, products of OASIS Open,
692

 were

created to provide a common legal document standard “for their interchange between institutions

anywhere in the world and for the creation of a common data and metadata model that allows

experience, expertise, and tools to be shared and extended.”
693

 This standard-based approach

focuses on assessing the ways in which machine-readable information may be integrated into the

official text of legislative documents.
694

For a document to be made machine-readable, a descriptive markup meta-language,
695

 like

eXtensible Markup Language (XML), must be embedded into the text in order for a computer to

understand it. That is, the document must be deconstructed and sorted into components based on

structure and semantics. Structure is defined as the organization and categorization of various parts

of the document on the basis of functionality.
696

 Semantics, on the other hand, is defined as the

meaning, or what the information within the document represents. The intention, then, of

decomposing documents into respective structural and semantic framings enables developing a

taxonomy and ontology around organizing legislative information.

In effect, standardization is an argument for drawing out and weaving similarities between legislative

documents across various jurisdictions. The aim is to increase accessibility and fortify interoperability

within the legal ecosystem.
697

 As opposed to the existing ad-hoc, or piecemeal, method, the

692

 OASIS Open (accessed Jun. 12, 2021), https://www.oasis-open.org/.

693

 OASIS LegalDocumentML (accessed Jun. 12, 2021), https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=legaldocml

694

 Fabio Vitali, “A Standard-Based Approach for the Management of Legislative Documents,” Giovanni Sartor et. al

(eds), Legislative XML for the Semantic Web (2011).

695

 A form of language used in web programming to allow users to identify individual elements of a document. See

lecture slides, “Web Programming,” https://home.adelphi.edu/~siegfried/cs390/390l6.pdf.

696

 Vitali, supra 694 at 39.

697

 Id. at 38-42.

 M. Ma

182

application of a standard technique would encourage transparency in the production and

dissemination of legislative information.

As an initial response to a United Nations project to strengthen information systems in legislatures

in Africa, a set of standards and guidelines for digital Parliament services, known as the Architecture

for Knowledge-Oriented Management of Any Normative Texts using Open Standards and

Ontologies (Akoma-Ntoso), was developed.
698

 This framework sought to manage information and

recommend technical policies and specifications for building Parliament information systems.
699

 The

results of Akoma-Ntoso led to the three key achievements: (1) the Akoma-Ntoso XML schema; (2)

a labelling convention for legal resources (URI); and (3) Legislative Drafting Guidelines.
700

 These

achievements reflect the broader vision on the use of XML to provide a stronger structural and

semantic framework around organizing parliamentary and legislative information. The Akoma-

Ntoso XML schema (Akoma-Ntoso), in particular, enables the inclusion of descriptive structure to

the content of legislative documents; and, thereby, providing context to legislative information.
701

The Akoma-Ntoso architecture has been revered as the bedrock on which LegalXML is built.
702

There are two key principles that are fundamental to the schema: (1) descriptiveness; and (2)

prescriptiveness. The former emphasizes the preservation of the original “descriptiveness” of the

document. This suggests that there is no loss in the integrity of the legislative document, specifically

qualitative components that provide important legal or regulatory context. The latter focuses on the

implementation of rules, “directly drawn from the legal domain.”
703

 Together, these principles imply

and, perhaps, reaffirm the notion that it may be possible to sort within legal documents elements

that are inherently executable and structured; and others that require the detail and particularity.

More importantly, Akoma-Ntoso places a focus on the representation and validity of legal

documents.
704

 The design purports to place at the forefront a proper reflection of legal concepts.

698

 Monica Palmirani and Fabio Vitali, “Akoma-Ntoso for Legal Documents,” Giovanni Sartor et. al (eds.), Legislative

XML for the Semantic Web (2011).

699

 Id. at 75.

700

 Id.

701

 Id. at 76.

702

 Id.

703

 Id. at 77.

704

 Id.

 M. Ma

183

Monica Palmirani and Fabio Vitali describe four generations of LegalXML, with Akoma-Ntoso

understood as the third generation.
705

 Though the differences between generations is primarily based

on nuances of structuring, the third generation onward relies on a thorough understanding of object-

oriented design.
706

 That is, an assessment of patterns and classifications are coupled with an analysis

of the relationships between text, structure, and metadata. This process is central to the schema and

translation of legal concepts.

In effect, the third generation establishes the “complex multilayered information architecture”
707

 that

decomposes the legal document from pure text to structured analysis. This multilevel construction

is described as a semantic web layer cake.
708

 Modelling the document into layers, text and structure,

metadata and ontology, aligns again with the implied argument that the content of legislative

documents are innately categorical. That is, as opposed to a reconfiguration, or a reframing, of the

document, it is instead a question of rearrangement and extraction of these structured elements.

How then does LegalXML work? Below are examples
709

 of how the layers are drafted in Akoma-

Ntoso XML schema and how the relationships between these layers operate. Beginning with the text

and structure layers, both layers take from the original natural language and annotate each element

semantically. As notable in the examples, the text and structural markup (denoted by these

705

 Id. at 78.

706

 See for example in second case study.

707

 Palmirani and Vitali, supra 698 at 78.

708

 Id. 79.

709

 All examples are taken directly from Palmirani and Vitali’s demonstration in their article.

 M. Ma

184

parameters </>), indicate to the machine how the document is organized. Textually, it highlights

between paragraphs and references. Structurally, it highlights headers, sections, and subsections.

At the metadata layer, annotations become more complex. As opposed to indicating a legislative

document’s logical connectors and organization, metadata represents the interpretation and context

of the document. In the example below, the left panel of the screen represents a textual markup of

a particular section of legislation. The right panel reveals the underlying possibility for multiple

interpretations of this section. Therefore, the <mod id=mod1> denotes that for this specific case,

there may be two equally valid interpretations: (1) authentic; or (2) exception.
710

710

 Id. at 82.

 M. Ma

185

Moreover, metadata annotations clarify the “local” meaning.
711

 For reasons of simplification and

uniformity across categorization, Akoma-Ntoso intentionally uses a single convention for all

documents. This enables a “shared conceptual architecture”
712

 across the legal ecosystem. Therefore,

to avoid confusion, the metadata annotates the specific meaning at hand. Below, the docProponent

refers to the source of authority. In the left panel, the legislation indicates the legal authority draws

from the Ministry of Local Government. The right panel indicates the source draws from the

Supreme Court of Appeal.

711

 Id.

712

 Id.

 M. Ma

186

Equally, this shared vocabulary behaves as a legal ontology. It indicates how components of legislative

documents belong to broader categories within a legal ecosystem. In the aforementioned, the

metadata annotations reveal how a particular piece of legislation connects with other legal

documents. More importantly, it localizes where specific interpretations are drawn. This

substantiates a more explicit approach on the gathering and understanding of legal knowledge.

Akoma-Ntoso then fulfills the desires of logicians for a legal language that is sufficiently precise.

Returning to Allen, if legislation should have a clear structure, Akoma-Ntoso appears as an ideal

option. Yet, the rate of its adoption has been strikingly low.
713

 This is perhaps owed to the two-fold

complexity of migrating legislative documents from text to XML and the requirement of XML

competency in the translation process. First, converting legislation from natural language to an XML

schema is described as an eight-step recipe.
714

 Importantly, it requires first a legal analysis that is

typically done on paper. As described by Palmirani and Vitali, the legal expert must meticulously

and manually conduct the process – sorting within legal documents the text, structure, metadata, and

ontology. As well, the legal expert must be fluent in Akoma-Ntoso, correctly annotating the elements

and identifying the legal relationships latent in the documents.

713

 “Use Cases,” Akoma Ntoso, available at: http://www.akomantoso.org/?page_id=275.

714

 Palmirani and Vitali describe in further detail the process of taking text and structuring. See Palmirani and Vitali,

supra 698 at 94-98.

 M. Ma

187

In effect, though Akoma-Ntoso offers benefits of making legal language machine-readable and

preserves the richness of legal concepts, its use requires significant costs. The process is rather

laborious, and few legal experts
715

 currently have the technical skills to draft in XML schema.

Consequently, this has contributed to rather lackluster enthusiasm for its adoption.

D. Old Wine in New Bottles: Rules as Code

Still, machine-readable legislation has received renewed popularity. This is perhaps owed to the

release of the recent OECD Observatory of Public Sector Innovation Report titled, “Cracking the

Code: Rulemaking for Humans and Machines” (OECD Report). The OECD Report articulates

how machine-consumable, defined as machines understanding and actioning rules consistently,

reduces the need for individual interpretation and translation
716

 and “helps ensure the

implementation better matches the original intent.”
717

 This methodology enables the government to

produce logic expressed as a conceptual model – in effect, a blueprint of the legislation.

These ideas are reminiscent of Anthony Casey and Anthony Niblett’s thought experiment on the

micro-directive.
718

 Interestingly, one of the underlying fascinations with Rules as Code lies in the types

of statutes subject to digital transformation. Rules as Code applies two general practices of code-

ification: (1) programming tasks; and (2) knowledge-based systems. The former is more direct, while

the latter poses epistemic challenges. Programming tasks may be defined as a legislative calculator;

the legal questions asked are already known and understood in advance. Typically, these tools are

designed to assess eligibility, particularly in the fields of taxation and benefits law. OpenFisca, the

most widely known example, is an open-source platform that writes rules as code. The available code

focuses on legislation that “can be expressed as an arithmetic operation.”
719

715

 It must be noted that the XML vocabulary and schemas are open-source and publicly available. This suggests that

while the documentation is available, it continues to remain limited amongst those willing to adopt the practice. See for

example, OASIS LegalDocumentML, supra 693.

716

 OECD Observatory of Public Sector Innovation, Cracking the Code: Rulemaking for Humans and Machines 19

(2020).

717

 Id. at 22.

718

 To recall, in this futuristic construct, lawmakers would only be required to set general policy objectives. Machines

would bear the responsibility to examine its application in all possible contexts, creating a depository of legal rules that

best achieve such an objective. The legal rules generated would then be converted into micro-directives that

subsequently regulate how actors should comply with the law. Anthony J. Casey & Anthony Niblett, The Death of

Rules and Standards, Coase-Sandor Working Paper Series in Law and Economics No. 738 (2015).

719

 “Before You Start”, Open Fisca Documentation (accessed January 2021) https://openfisca.org/doc/. For further

details on how to ‘translate’ from law to code, see: https://openfisca.org/doc/coding-the-legislation/index.html.

https://openfisca.org/doc/

 M. Ma

188

Knowledge-based systems, on the other hand, encode rules required to arrive at a specific legal

question. That is, these tools consist of logical algorithms that help identify the legal knowledge to

be gathered from a particular statute. They come from the lineage of expert systems and logic

programming. DataLex Knowledge-Base Development Tools (DataLex), for instance, is a rules-

based legal inferencing platform that draws, from legislative texts, conclusions based on antecedents.

In effect, the DataLex software is powered on propositional logic.
720

Despite differences between practices of code-ification, the types of legislation amenable to a Rules

as Code approach predicate on an inherently mathematical structure. This suggests that for

legislation with clear formulaic rules, expression in symbolic logic is intrinsically available. Ruleness

becomes the essential ingredient. The OECD Report, however, does not distinguish between types

of legislation and, rather, conflates legislation under a seemingly uniform banner.

Though the OECD Report succeeded in providing a comprehensive overview of Rules as Code,

there remains a gap around the practical implementation and the form machine-readable legislation

should take. The OECD Report anticipates three approaches to building machine-consumable

legislation: (1) a manual coding of the legislation across a multidisciplinary team; (2) the use of

semantic technologies; and (3) a domain model-based regulation, whereby the government would

create an official model of rules to then convert to software languages.
721

 These approaches drew

inspiration from a deeper analysis on the levels of digitization.
722

 Unlike Meng Weng Wong’s

aspirational vision for machine-readability, the OECD Report is agnostic to these possible methods.

Recent implementations of Rules as Code have surfaced globally. Currently, the most prominent

example is found in Australia. In the summer of 2020, the New South Wales (NSW) Government

released its first Rules as Code legislation to reduce ambiguity and simplify interpretation.
723

 Built on

the OpenFisca platform,
724

 the Community Gaming Regulation 2020 (Gaming Regulation) identifies

720

 “Legal Inferencing Systems: Supporting provision of free legal advisory services,” DataLex (accessed January 2021)

http://austlii.community/foswiki/pub/DataLex/WebHome/DataLex_intro.pdf.

721

 OECD Observatory of Public Sector Innovation, supra 716 at 63-66.

722

 Meng Weng Wong, Rules as Code – Seven Levels of Digitisation, Research Collection School of Law (2020).

723

 “In an Australian first, NSW is translating rules as code to make compliance easy,” NSW government digital.nsw

(accessed Jun. 12, 2021), https://www.digital.nsw.gov.au/success-stories/australian-first-nsw-translating-rules-code-make-

compliance-easy.

724

 To see the regulation housed on the OpenFisca platform, see Openfisca-Nsw-Base Web API (accessed Jun. 12, 2021)

http://nsw-rules-dev.herokuapp.com/swagger.

 M. Ma

189

“the conditions for running community games by different charities, not-for-profits and businesses

in NSW.”
725

 The Gaming Regulation is drafted in several forms: machine-readable, human readable,

and on a computing interface. Perhaps its most incredible achievement is the publicly available digital

version of the Gaming Regulation. The NSW Fair Trading website enables those engaging with the

regulation to determine whether their activity is permissible and if an authority is required to conduct

the activity.
726

 This website is considered a “single source of truth” that will increase transparency and

efficiency, by reducing time spent understanding the regulation, and providing easily digestible

responses to particular situations of concern.
727

 The website offers information on various sections

of the legislation in plain language. The prize jewel, however, is its questionnaire.

In experimenting with the website’s questionnaire, the “Community Gaming Check,”
728

 the key

content behind the legislation appears to be logically reducible and fundamentally arithmetic. Below

are two sample snapshots of completed questionnaires:

Presumably, for the purposes of simplification, the questions are either drafted in binary or are

numerically driven. As a result, the Community Game Check (CGC) will compute a response in the

affirmative or negative. The underlying assumption of the CGC is that the legislation raises one of

725

 Id.

726

 Id.

727

 Id.

728

 For further detail and/or to experiment with the questionnaire, see “Community gaming check,” NSW Government

Fair Trading (accessed Jun. 12, 2021), https://www.fairtrading.nsw.gov.au/community-gaming/community-gaming-

regulation-check. For the machine-readable version of the legislation, see Openfisca-NSW (accessed May 10, 2021)

https://github.com/Openfisca-NSW/openfisca_nsw_community_gaming.

https://www.fairtrading.nsw.gov.au/community-gaming/community-gaming-regulation-check
https://www.fairtrading.nsw.gov.au/community-gaming/community-gaming-regulation-check
https://github.com/Openfisca-NSW/openfisca_nsw_community_gaming

 M. Ma

190

two questions: (1) determining whether a community game is admissible; or (2) if authority is

required. Again, it may be reaffirmed that Rules as Code focuses on prescription and rules;

description continues to fall within the jurisdiction of the original natural language version.

Underlying this focus is the assumption that legislation is largely mathematical and that legislative

questions may be solved through predicate logic.

Alternatively, the Rules as Code initiative sparked more granular innovations, including formal

languages compatible for its drafting and expression. Catala, “a new programming language created

by lawyers and computer scientists for quantitative statute formalization,”
729

 is a proposed solution

for computing tax and benefits legislation. In their article, Denis Merigoux and Liane Huttner

explore the issues of existing expert systems used for tax and benefits law. They first outline that the

use of antiquated code – programming languages that “exceeded the tenure of its original

programmers”
730

 – risks the inability of adapting to new functional demands. This has evident

ramifications provided the evolving nature of legislation. Equally, they explore the pitfalls of using

existing algorithmic tools for tax collection that has led to both miscalculations and barriers with

revision.
731

Their recommendation is to use formal methods coupled with literate pair programming in order

to tackle the aforementioned issues. First, literate pair programming is a hybridized understanding

of literate and pair programming in software development.
732

 Merigoux and Huttner suggest that a

combination of these methods, and between a lawyer and computer scientist, enable quality

assurance in the translation of law to code. The line-by-line annotation of statutory texts allows for a

“local discussion” on the “lawful interpretations of the statutes.”
733

 Evidently, this recommendation

aligns closely with one of the OECD Report’s anticipated approaches to building machine-

consumable legislation: a manual coding of the legislation across a multidisciplinary team. However,

the more pressing question is the use of formal methods.

729

 Denis Merigoux and Liane Huttner, Catala: Moving Towards the Future of Legal Expert Systems, HAL ARCHIVES-

OUVERTES (2020).

730

 Id. at 2.

731

 Id. at 3.

732

 Literate programming is described as line-by-line annotations, while pair programming is pairing two programmers

in the production of code. For further detail, see id. at 7.

733

 Id.

 M. Ma

191

Formal methods are a restructuring of abstract concepts to “mathematical objects.”
734

 Formal

methods act as mathematical proofs, determining functional equivalence.
735

 Effectively, it is

reminiscent of Carnap’s logical syntax and treatment of language as a calculus. As a result, this

practice depends on the existing and inherent formal structure of the legislation.
736

 This again

reinforces the requirement of ruleness in Rules as Code. Consequently, while Merigoux and

Huttner’s recommendations ensure that legal quality is maintained, Catala’s benefits remain within

the limited scope of intrinsically quantifiable legislation.

E. Legislative Tinkering

These recent implementations of Rules as Code fortify the argument that, currently, machine-

consumable legislation is limited to highly structured legislation. Nevertheless, these examples leave

one question fundamentally unanswered: what should be the role of machine-readable legislation?

Is it simply a ‘coded’ version of the legislation; or is it a parallel alternative, one that is legally

authoritative? Or is it a domain model of regulation from which third parties derive their own

versions, akin to an open-source code? These three scenarios have their own sets of implications.

Only in clarifying the role of machine-readable legislation would a fruitful assessment of how logic

syntax and symbolic language are capable of representing legal knowledge.

i. Authoritative Conundrum

New Zealand released in March 2021 its own version of the OECD Report, “Legislation as Code

for New Zealand: Opportunities, Risks, and Recommendations” (Legislation as Code Report). One

of the key conclusions of the report calls for a distinction between competence and desire. That is,

even if legislation may be drafted in code, it should not be. Unlike the OECD Report, the Legislation

as Code Report takes a strong stance on the role of machine-consumable legislation. The report

argues that rules drafted in code “should remain subordinate to legislation,” stating that “enacting

code creates serious constitutional confusion and risks undermining the separation of powers.”
737

734

 Id. at 6.

735

 Id.

736

 Merigoux and Huttner state explicitly the assumption of expression in mathematical terms as well as the “formal

specification” of statutes. See id.

737

 New Zealand Law Foundation Law and Information Policy Project, Legislation as Code for New Zealand:

Opportunities, Risks, and Recommendations 3 (2021).

 M. Ma

192

This is owed to the law’s “technological use of written natural language;” whereby the use and

interpretation of words keeps in balance the structure of the law with its institutions.
 738

 As code does

not have the same interpretive space as natural language, this runs the risk of the judiciary being

unable to perform its constitutional role relative to statutory interpretation.
739

 Accordingly, the

inability to invalidate legislation for inconsistency, given interpretative barriers with code, would

“degrade the rule of law.”
740

ii. Language Shopping

The Legislation as Code Report further contrasts the OECD Report by concluding that parallel

drafting is not a solution, but simply a mitigator to issues of interpretation.
741

 Provided that perfect

translation does not exist, there is inevitably potential for meaning to diverge even if a common intent

is established. Therefore, while an encoded version arguably reflects an interpretation of the law,
742

machine-consumable legislation that has legal authority raises, equally, issues analogous to both

legislative bilingualism and bijuralism.
743

 This could foreseeably create statutes with multiple

personalities, having dissonance between linguistic variants and heightening ambiguity in

interpretation.

In this regard, Canada is an informative example. In 1995, the formal adoption of legislative

bijuralism led to an acknowledgment of four legal audiences in Canada; that there is a “right to read

federal legislation in the official language of their choice and to find that legislation terminology and

wording [to be] consistent with the system of private law in effect in their province or territory.”
744

 As

such, the constitutional requirement for all legislation to be written bilingually forcibly produced

makeshift equivalents in legislation, devised without standard nor appropriate concern for the

problems of interpretation.

738

 Id. at 9.

739

 Id. at 58.

740

 Id.

741

 Id. at 4.

742

 In fact, the Legislation as Code Report suggests that it may be useful to focus on the opportunities for approaches of

non-authoritative implementations of Rules as Code. See id. at 9.

743

 Lionel A. Levert, “Harmonization and Dissonance: Language and Law in Canada and Europe,” Department of

Justice Canada, Bijuralism and Harmonization: Genesis (May 7, 1999) https://www.justice.gc.ca/eng/rp-pr/csj-

sjc/harmonization/hfl-hlf/b1-f1/bf1e.html.

744

 Id.

https://www.justice.gc.ca/eng/rp-pr/csj-sjc/harmonization/hfl-hlf/b1-f1/bf1e.html
https://www.justice.gc.ca/eng/rp-pr/csj-sjc/harmonization/hfl-hlf/b1-f1/bf1e.html

 M. Ma

193

There are two models of producing bilingual legislation: translation and co-drafting. While they are

perceived as distinct, the process around crafting bilingual legislation often involves a hybridization

of both. This typically results in a conceptual mismatch between one language to the other. Michael

J. B. Wood provides a fascinating illustration through the word ‘any.’
745

In the English language, ‘any,’ in the affirmative, describes ‘one’ out of a specific list. In the above

example, the intention of the drafter may be to indicate that, should there be documents specified

in the schedule, they should be included. However, to the reader, it may suggest that any one of the

documents specified in the schedule should be included. Consequently, in the French language

example, there produces two variants. This lack of equivalence in the word ‘any’ produces ambiguity

between versions of the legislation. Both of which have equal authority under Canadian law. Wood

discusses other examples including pronominal phrases such as ‘thereof’ and chains of qualifiers.
746

In the former, phrases of this type often foster confusion, particularly in co-referencing.
747

 As well,

there are no direct equivalents in French. In the latter, the Germanic origins of the English language

allow nouns and adjectives to be chained together. This use of grammar does not exist in French.

Instead, the French language applies a series of modifying phrases. Consequently, if meaning is

unclear and ambiguous in English, there is potential for further complication in French.
748

Likewise, the presence of both civil and common law systems within Canada has led to complications

with the translatability of legal concepts. Bijuralism stipulates the requirement to have proper

terminology and notions present across both systems of private law in Canada. To achieve this

requirement, the most frequent methods used are the “neutrality technique” and the “doublet.”
749

The former is simply the use of ‘neutral’ terms or phrases in defining concepts without particular

745

 Michael J.B. Wood, Drafting Bilingual Legislation in Canada: Examples of Beneficial Cross-Pollination between

Two Language Versions, 17 Statute. L. Rev 66, 70 (1996).

746

 Id. at 70-72.

747

 See example on “a part thereof.” Id. at 70.

748

 Id. at 71-72.

749

 Levert, supra 743.

 M. Ma

194

connection to either one of the systems. The latter is to enable the co-existence of legal concepts

when there is no functional equivalence. In cases of the doublet, both versions of the legislation

“retain their separate identities.”
750

 This means that paragraphs within the same legislation may have

intentional signposts to direct how the rule of law is to be applied depending on the system.
751

Typically, both expressions of the legal concept appear one after the other in each language version.

Evidently, problems of interpretation arise as “civil law terms are juxtaposed with common law

expressions.”
752

 Within the country, there were issues symptomatic of conflict of laws; whereby courts

applied common law definitions to jurisdictions that followed civil law systems. This led to

inconsistencies in precedent, as civil and common law terminology were used interchangeably

without proper regard for the nuances of legality between each system’s interpretations.

Canada has since made remarkable strides in legislative bilingualism and bijuralism. This was owed

to a reframing of federal requirements as a strain of comparative law, as well as the subsequent

emergence of jurilinguists; otherwise, experts trained in both systems.
753

 Returning to machine-

readability and authoritative code, what are some lessons that can be drawn from the Canadian

experience? First, there has been a rise in interdisciplinary training between law and computer

science. Mireille Hildebrandt’s recent textbook is a prime example. Law for Computer Scientists

and Other Folk, as she describes, is an endeavor to “bridge the disciplinary gaps” and “present a

reasonably coherent picture of the vocabulary and grammar of modern positivist law.”
754

 As well, law

schools are beginning to offer technology and innovation courses including training in computer

750

 Id.

751

 Id.

752

 Id.

753

 Universities of Ottawa and departments of jurilinguistics produced both common law terminology in French and

civil law terminology in English. This pioneering work offered the potential to better capture the necessary distinctions

and comparisons between the two systems of law. See id.

754

 Mireille Hildebrandt, Law for Computer Scientists and Other Folk (forthcoming OUP, 2020). A web version is

currently accessible on the open-source platform: https://lawforcomputerscientists.pubpub.org/ .

https://lawforcomputerscientists.pubpub.org/

 M. Ma

195

programming.
755

 This is facilitating a growth and demand in experts fluent in both disciplines.
756

Moreover, as evidenced, co-drafting can be seen in the recommendations and development of

machine-readable languages like Catala.

There remains, however, a significant gap in both reconciling and harmonizing legal concepts

between code and natural language. Perhaps the deeper question is whether and how that may be

possible. In Canada, common and civil law terminology come from existing traditions of private law.

Their respective expressions are rooted in legal history. However, there is neither a comparable legal

system nor a comparative field of law for code. That is, code could only potentially extend as an

alternative language, but not as a system of norms. The functional limitations of code could only be

interpreted as linguistic limits, whereas normative principles of programming and computer science

could never be perceived as parallel legal principles. As a result, the discussion raised in the

Legislation as Code Report, on the risk of authoritative code degrading the rule of law, is a critique

of code as a legal mechanism. The complexity lies in the extent to which the linguistic medium has

the capacity to alter the integrity and character of the law, even if the intention of its use is simply

expression.

iii. The Alchemy of Legal Architecture

Perhaps the most understated challenge with Rules as Code hinges on the legal infrastructure. Across

several possible approaches to machine-readable legislation, there remains unresolved questions of

design and interoperability between legal documents. That is, if a new symbolic language, like code,

effectively enforces a controlled grammar, what are its implications as it moves across the legal

ecosystem; in particular, its interactions with various legal sources?

Reflecting back on the Legislation as Code Report, one important argument raised is the

acknowledgment of legislation as “one component among many that comprise the wider system of

755

 Law schools are beginning to offer courses in technical development, including computer programming. Moreover,

classes that apply design-thinking to legal studies and were developed with the intention of acknowledging technology

as a powerful driving force in law. Consider Harvard Law School and Georgetown Law School’s Computer

Programming for Lawyers classes, or Innovation Labs at Northwestern Law School or The Design Lab at Stanford

Law School. See for example Harvard Law School, Computer Programming for Lawyers (accessed February 2020),

https://hls.harvard.edu/academics/curriculum/catalog/default.aspx?o=75487.

756

 “Embedded technical expertise may be necessary to design, develop, and maintain useful and useable tools,” also

“development of the tool resulted from a multi-year strategic plan to hire lawyers with coding skills…” See David

Freeman Engstrom and Daniel E. Ho, “Artificially Intelligent Government: A Review and Agenda” in Roland Vogl

(ed.), Big Data Law (2020).

https://hls.harvard.edu/academics/curriculum/catalog/default.aspx?o=75487

 M. Ma

196

laws and rules.”
757

 Statutes frequently reference one another, highlighting a “process of synthesizing

multiple inputs into a contextually dependent output.”
758

 Provided that legislation are not perceivably

independent texts, it is then important to consider how machine-readable legislation works in tandem

with other legal documents.

In the OECD Report, the discussed approach for a domain model-based regulation is one that raises

persistent queries on interoperability. Should there be a government-endorsed model from which

legislation will be converted into third-party machine-readable versions, this could create inconsistent

interpretations; thereby, testing the legal limits of the model. Currently, there is no standard for how

the model translates to individual policies. More importantly, what might be issues of fit between

various machine-readable documents, such as between machine-readable legislation to machine-

readable contracts?

In late December 2020, the University of Cambridge announced the launch of the Regulatory

Genome Project.
759

 As opposed to legislation, the focus of the project is on regulation, and specifically

financial regulation. The Regulatory Genome Project intentionally steers away from regulation as

code and considers the notion of “sequencing.”
760

 Rather than translation, regulatory information will

be extracted and placed in a data repository. The regulatory data will then be organized into a

taxonomy. In accordance with the taxonomy, experts will annotate key information and build a

training set. This model will then be used to subsequently generate machine-readable regulatory

documents. In effect, it is a process of retrieving the contents of regulation from an openly accessible

platform that bears a specific framework of capturing the regulatory data. This permits a single source

of ‘truth’ and a common standard for accessing machine-readable regulatory information.

The significance of this approach is its departure from language design. That is, as opposed to

dwelling on the semantic conversion of natural language to code, the project turns its attention to the

information contained in regulation. It is simply a complete rewrite, or paradigm shift, of digesting

regulation. Beyond an interdisciplinary collaboration, the Regulatory Genome Project has received

757

 Legislation as Code Report, supra 737 at 48

758

 Id., at 50.

759

 “The University of Cambridge announces the launch of the Regulatory Genome Project to sequence the world’s

regulatory text through machine learning,” The Regulatory Genome, https://regulatorygenome.com/news/university-

cambridge-regulatory-genome-project/.
760

 The Regulatory Genome Project, The Regulatory Genome (accessed March 10, 2021)

https://regulatorygenome.com/about-us/.

 M. Ma

197

the support of regulators, authoritative figures of the community, “to validate and refine the

taxonomies to enable effective benchmarking across jurisdictions globally.”
761

 Interestingly, this

parallels an amalgam of the Rules as Code domain-model with the Legislation as Code argument

that the variability of interpretations would be limited if authoritative interpretations are made

available.
762

As a result, the Regulatory Genome Project offers an unconventional method for machine-

readability. Evidently, this may be simpler with regulation than it is with legislation. Namely, legal

authority operates differently than regulatory authority. In considering this approach, the challenge

would be systemic and one that requires convincing a complex network of legislative and judicial

power to construct laws on an entirely separate paradigm. Nonetheless, it offers a perspective on

mediums of communication and computational modelling that extends beyond language to a level

of further granularity: data.

Existing literature has focused on the promise of Rules as Code as the magical formula for increased

clarity and precision in legislative drafting. Undeniably, machine-readable legislation has deep-seated

roots in logical syntax and symbolic language. The Legislation as Code Report, however, highlights

that further discussion is required in better defining both the legal function and status of machine-

consumable legislation. Fundamentally, machine-readable legislation requires a space for judicial

and legal contest; effectively, an appeal process in the event of dispute.
763

This is not to say there is no place for machine-readable legislation. In fact, the Legislation as Code

Report argues that computational models can be commendable if the model is (1) “legally correct,”

and (2) there is infrastructure in place “to assess how the law has been interpreted and modelled.”
764

For example, the Legislation as Code Report cites the Auckland District Law Society’s Standard

Form Agreement for Sale and Purchase of Real Estate (ADLS Standard Form). The ADLS Standard

Form is described as an instrument that “embod[ies] a reliable interpretation of multiple primary

legal sources” and “indicate[s] the value that similar interpretation might have if they are coded and

761

 Id.

762

 Legislation as Code Report, supra 737 at 82.

763

 This is reminiscent of the argument raised in Kiel Brennan-Marquez and Stephen Henderson’s article on concept of

role-reversibility integral to the legal system. See Kiel Brennan-Marquez and Stephen Henderson, Artificial

Intelligence and Role-Reversible Judgment, 109 J. CRIM. L. & CRIMINOLOGY 137 (2019).

764

 Legislation as Code Report, supra 737 at 5.

 M. Ma

198

modelled reliably, while retaining the ability to scrutinize them through legal argument.”
765

 Provided

that this agreement has been drafted and revised within a dependable legal environment, the ADLS

Standard Form has demonstrated the potential for reproducibility while maintaining certainty. This

suggests that finding existing natural language documents with an accepted standard and structure

may be appropriate for computational modelling.
766

 Again, this reinforces that Rules as Code is

available only in narrow-use cases, specifically, legislation with inherent logical structures.

At a broader epistemological level, there remains limitations from the perspective of knowledge

representation; in turn, forcibly demanding a reflection on the intentions and purpose of laws. The

Regulatory Genome Project has revealed that there may be an alternate option of consuming

information. As law has language at its core, interpretation has centered on the linguistic exercise.

This has led to a heavy reliance on translation when reconciling human with machine-readability.

However, lessons from core linguistics suggest that natural language is composed of three underlying

components: syntax, semantics, and pragmatics. Curiously, the enduring focus on the syntax and

semantics in computational models has led to a subsequent neglect of pragmatics, an arguably

essential pillar in meaning-making. Consequently, this impedes the capacity to appropriately

understand and contextualize legal concepts.

To recall, pragmatics is the field of linguistics that reflects on intention using tools of implicature and

inference. Implicature, in linguistics, is defined as entailment, logically valid conclusions drawn

between sentences.
767

 Its counterpart, inference, is more complex. This is where discrepancies may

exist, as what is being implied may differ from what is inferred. In accordance with Grice’s

Cooperative Principle,
768

 the divergence between intended implicature and inference suggests non-

conventional meaning. In effect, this supports the possibility of multiple interpretations on the basis

of variations in context.

Consider the phrase: “There is an elephant in the tree.” Semantics is helpful, to the extent, that it

could raise what may be a prototype example of an elephant. As elephants are not typically found in

765

 Id. at 83.

766

 The discussion by Sarah Lawsky furthers the support for form as a ripe area of formalization. See Sarah Lawsky,

Form as Formalization, Ohio State Tech. L. J. (forthcoming 2020), available at:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3587576.

767

 Betty J. Birner, Language and Meaning 102 (2018).

768

 Id. at 96.

 M. Ma

199

trees, this is immediately a sign that this sentence may have a different meaning. Could this be a

metaphorical idiom (i.e. elephant in the room) or perhaps there is some implicit understanding that

the elephant in question is a paper elephant? Pragmatics also raises the issue of reference. Consider

the following sentences: “Jane is speaking with Joanne. She is a legal scholar.”
769

 The referent of “she”

is not clear. Without context, semantics alone cannot usefully provide information as to the meaning

of these sentences.

There are parallels to the shortcomings of semantics revealed in propositional logic. Systems that

use propositional logic, similar to Rules as Code structures, reflect the limitations presented in

semantics. This is because propositional logic can enable the validation of some statements but

cannot in itself establish the truth of all statements. So, why must there be consideration for

pragmatics in machine-readable legislation?

Joseph A. Grundfest and A.C. Pritchard discuss the “technology of ambiguity” as a legislative strategy

for compromise.
770

 Their article reaffirms the notion of intentional, conscious, ambiguity. As

opposed to ambiguity as a ‘bug,’ Grundfest and Pritchard argue that it is feature of legislative drafting.

That is, ambiguity in the drafting process is intended to work in tandem with the judiciary’s

interpretative methods. Ambiguity then works to ensure that the casuistic approach, characteristic of

common law systems, is upheld.

Contrary to the rhetoric on clarity and precision, ambiguity is revered as an inherent property of

statutory construction. While this is not necessarily a novel argument, Grundfest and Pritchard

reassert the interoperability of the legal system; legal documents are not independent artifacts and

instead belong to a broader ecosystem. The aforementioned issues of pragmatics in natural language

are integrated into the fabric of law and legal text and powered by literary tools of metaphor and

analogy that outline context.

Interestingly, code is not quite as transparent or reducible as assumed. Mark C. Marino argues that

code, like other systems of signification, cannot be removed from context. Code is not the result of

mathematical certainty but “of collected cultural knowledge and convention (cultures of code and

coding languages), haste and insight, inspirations and observations, evolutions and adaptations,

769

 Drawn from Birner’s example. Id. at 109.

770

 Joseph A. Grundfest and A.C. Pritchard, Statutes with Multiple Personality Disorders: The Value of Ambiguity in

Statutory Design and Interpretation, 54 STAN. L. REV. 627 (2002).

 M. Ma

200

rhetoric and reasons, paradigms of language, breakthroughs in approach, and failures to

conceptualize.”
771

 While code appears to be ‘solving’ the woes of imprecision and lack of clarity in

legal drafting, the use of code is, in fact, capturing meaning from a different paradigm. Rather, code

is “frequently recontextualized” and meaning is “contingent upon and subject to the rhetorical triad

of the speaker, audience (both human and machine), and message.”
772

 It follows that code is not a

context-independent form of writing. The questions become whether there could be a pragmatics

of code, and if so, how could code effectively communicate legal concepts?

Marino articulates the “need to learn to read code critically.”
773

 Having understood the complexities

and pitfalls of natural language, there is now a rising demand to understand the ways code acquires

meaning and how shifting contexts shape and reshape this meaning. Currently, few scholars have

addressed code beyond its operative capacity. This mirrors the focus on syntax and semantics as

primary drivers of using code for legal drafting. Yet, learning how meaning is signified in code enables

a deeper analysis of how the relationships, contexts, and requirements of law may be rightfully

represented. From the science of (natural) language arises the science of code.

Increasingly, there has been emerging literature on the application of network analysis and graph

theory to account for legal complexity. In a recent article on the growth of the law, representations

of legislative materials were modelled using methods from network science and natural language

processing.
774

 Katz et. al argue that quantifying law in a static manner fails to represent the diverse

relationships and the interconnectivity of rules. They suggest that statutory materials should instead

be represented using multidimensional, time-evolving document networks. As legal documents are

interlinked, networks better reflect the dynamics of their language and the “deliberate design

decisions made.”
775

 Moreover, it enables “circumvent[ing] some of the ambiguity problems that

natural language-based approaches inherently face.”
776

 Most fascinating is the authors’ capacity to

isolate, through graph clustering techniques, legal topics that have fostered the most “complex bodies

771

 Mark C. Marino, Critical Code Studies 8 (2020).

772

 Id. at 4.

773

 Id. at 5.

774

 Daniel Martin Katz et. al., Complex societies and the growth of the law, Sci Rep 10, 18737 (2020), available at:

https://doi.org/10.1038/s41598-020-73623-x.

775

 Id.

776

 Id.

 M. Ma

201

of legal rules.”
777

 This enabled a deeper understanding of the evolution of legal concepts and specific

points of inflection where their perceptions have shifted.
778

What is particularly striking about this paper is the introduction of quantitative approaches that stress

content representation as opposed to structural miming. This model considers importantly context

that shapes legal documents. How then could machine-readability be reconciled with graphical

representation of legal documents? Statutory and legislative materials necessarily are situated at the

heart of the legal ecosystem. That is, legislative documents provide the foundation on which other

legal documents could gather concepts. This suggests that as opposed to an emphasis on semantic

translation to machine-readable legislation, a consideration of the role of legislation from an

information extraction perspective may be a promising alternative.

CONCLUDING REMARKS

In analyzing the ‘coming-of-age’ of machine-readability, it becomes striking clear that, even with

current advancements, there remains a gap around its role vis-à-vis ‘human-readable’ legislation. The

complexity of translating legislation from natural language to code stems from a persistent

conceptualization of legal documents as independent entities. Rather, legal information must be

understood at a systemic level; to factor the interaction of legal documents with one another across

a temporally sensitive frame. Therefore, legal texts should be perceived as objects with code as the

semiotic vessel. How these objects interact, how references are made, and how their histories

interrelate must be accounted. It appears then that a dual-pronged method of semiotic analysis

coupled with pragmatics contribute to a more fruitful engagement of legal knowledge representation.

As opposed to applying an arithmetic lens in the name of clarity and precision, language design for

machine-readability requires a multi-layered approach that extends beyond syntactic structure and

ensures temporal management and formal ontological reference. Without these considerations,

machine-readable legislation could only remain in the realm of a computable iteration.

In the remainder of the thesis, I reconcile prior literature and thematic discussions with observations

from the case studies. It is in these chapters that I consider the future of computational law. I do so

777

 Id.

778

 Consider the discussion by the authors on the regulation of natural resources from exploitation to conservation. See

id.

 M. Ma

202

by clarifying whether natural language is indeed the only linguistic medium for legal conveyance, or,

whether we may be at the frontiers of a new linguistic medium.

 M. Ma

203

4- Weaving the Code

 M. Ma

204

Recall in The Linguistic Affair the discussion on the notions of conceptual transfer and

intersubjectivity. That is, can concepts be transported and migrated from one vehicle to another?

Evidently, the deconstructionist perspective suggests that this is not possible. Nevertheless, the

various case studies demonstrated that, in certain respects, a hybrid or layering approach may be an

opportunity as an intermediary (or, transitory) step. Simply put, certain tasks may be code-ified, while

others must continue to rely on natural language construction. The process will be one of sorting

and authoritative assessment.

Alternatively, the advent of computational contracts and machine-readability has accelerated the

pressure for a new form of legal expression, particularly one of heightened precision and accuracy.

While I believe that natural language would continue to be the dominant form of legal conveyance,

this section attempts to put forward a working hypothesis around reconciling code as the next legal

language.

The second case study had attempted to experiment with the deconstruction of legal text; how

breaking down natural language into its core components fosters translation into code. Notably, this

was an immense interdisciplinary effort. It required the joining of several disciplines, including

mathematics, data science, and linguistics to carefully unpack the complexity of judicial texts. The

result, of course, had led to fascinating discoveries around the jurisprudential patterns and

mechanisms of legal language. Nevertheless, it revealed two key elements: (1) linguistic fingerprints;

and (2) a multi-computational strategy. The former points to the syntactic and semantic markers that

provide the building blocks around legal grammar. More importantly, it reinforces the indispensable

need for linguistic analysis in legal writing. The latter alludes to the misconception of computation

as one-dimensional, instead highlighting that the complexity of language necessarily requires more

than one computational tool in the work of translation.

As opposed to a 1-to-1 mapping, or broad analogies
779

 around computation and law, the relationship

between law and technology is far more nuanced. That is, for the furtherance of computational law,

there must be a more granular practice in place. Consequently, for law to be expressible in a

computable form, there requires a better representation of pragmatics. Currently, programming

779

 Predictive analytics is similar to analogical reasoning. Expert systems are like syllogisms. Natural language processing

is like contract redlining.

 M. Ma

205

languages fail to include context, and in effect, are unable to infer beyond sentential understanding.
780

This is incredibly problematic as the legal language is notably riddled with reference beyond the text.

Moreover, the inability to account for pragmatics equally reflects the incapacity to apply figurative

and metaphorical language. This results in current computable forms of “law” that are reduced to

logic and structure. This fosters an incongruency and enables “bad translations” of legal text to code.

Programming languages are built on syntax and semantics. While there are evident differences

between syntax and semantics in core linguistics and programming, both predicate on context

independence, logic, and universality. In effect, this has led to reformulations of legal norms as

“objective” truths. The problem is that the law is built on both facts and norms. Setting aside the

added complexity of law’s fictional character, prioritizing syntax and semantics dangerously asserts

that all law is fact. As a result, the law shapeshifts away from a bidirectional relationship between

framing and restoring order to a unidirectional relationship of compliance. Therefore, it is my

assertion that legal concepts have been housed well in natural language because of the significant role

played by pragmatics.

To then attempt an exercise of conceptual transfer, and appropriately reflect on the limits of legal

expression, there must necessarily be consideration for how pragmatics may be reflected

computationally. Translation and the authoring of legal text must first evaluate how (1) inference and

embedded knowledge revealed in natural language can be modelled; and (2) how code as a non-

natural and non-linguistic vehicle conveys context. I will rely on the texts, The Myth of Artificial

Intelligence by Erik J. Larson and Critical Code Studies by Mark Marino as references. The former

will assist with debunking the puzzle of pragmatics and inference, and the latter for introducing a

semiotic understanding of code and programming.

The remainder of the chapter will proceed as follows. First, observations from the case studies will

be discussed in further detail. Reflections on congruencies between human- and machine-readable

text, their respective assumptions, and current treatment will be highlighted. Considerations for the

future of contracts and legislative drafting, as well as the persistence, and perhaps resilience, of

780

 Consider for example literature from Emily M. Bender on the distinction between form and meaning. Specifically,

the capacity to map structural patterns should be distinguished from the ability to understand. This has parallels with

my observations on the existing arguments around form and substance in law and its language. See Emily M. Bender

and Alexander Koller, “Climbing Towards NLU: On Meaning, Form, and Understanding in the Age of Data,”

Proceedings of the 58th Annual Meeting of the Association of Computational Linguistics (July 2020) available at:

https://aclanthology.org/2020.acl-main.463/.

https://aclanthology.org/2020.acl-main.463/

 M. Ma

206

natural language will also be analyzed. Next, the chapter will introduce the problem with inference,

then proceed with a thought experiment on code as the new medium of legal language. In other

words, how can we formulate a pragmatics of code? While I certainly cannot and do not intend to

claim that this could be the working model, I nevertheless seek to draw attention beyond the gaps

and towards potential methods of developing a legal semiotics.

Faux Amis and Hybrid Forms

In learning French as a second language, native English speakers are quickly alerted to the risks of

faux amis. “Faux amis,” or false cognates, describe words that look similar in both languages, but, in

fact, have different meanings. For example, the attendre in French is not the same as attend in

English. Attendre means to wait, while attend has multiple meanings, such as “to care for,” “to deal

with,” or “to participate in.” Likewise, the notion of machine-readability has introduced the issues of

false cognates to legal drafting.

As presented in Language Lego, a pairing exercise has emerged whereby syntax and semantics in

core and computational linguistics are treated as functionally interchangeable. Moreover, the

implications have permeated across how computational technologies manifest in the legal realm.

Consider the programming language, Lexon, from the first case study. In short, Lexon appears to

draft contracts in a manner that is human-readable. That is, Lexon uses natural language

constructions as their programming syntax. Their claim is that, just as in natural language, certain

words are operative. In this case, the programming language is executable with their constrained

grammar acting as triggers for contractual performance. However, Lexon “code and non-functional

text are freely mixed.”
781

 This means that the programming language is syntactically significant and

semantically void. Its ‘readability’ is derived from the surrounding contractual clauses and not the

Lexon code itself. Divorcing the contractual “components” on the premise of utility reinforces the

notion that code is task-oriented. As well, the functional/non-functional divide further implies that

priority rests in the performance of the contract, reframing other language as ‘noise.’ This results in

a conceptual rupture in contracts doctrine caused by forcibly ‘translating’ law to code.

This problem resurfaced in discussions on computable legislation, in particular Rules as Code. Rules

as Code reinvigorated the enthusiasm around drafting legislation in code. The goal is to increase the

781

 “Lexon: Natural Language Programming,” http://lexon.tech/ (accessed Jun 22, 2021).

http://lexon.tech/

 M. Ma

207

transparency, clarity, and precision of legislative documents. The subtext, however, is that

interpretative flexibility is a deficiency. That is, the fluidity of natural language has made it difficult

to take stock of legal interpretation. Consider the example of Canada and the difficulty associated

with interpreting legislation that is both bilingual and bijural. The incongruency of linguistic

expressions, coupled with differing legal systems, have subsequently led to an internal conflict of

laws. For example, Canadian courts have raised questions as to whether civil law concepts, drafted

in the French language, are even translatable to English. Similarly, though Rules as Code purports

to increase certainty, drafting in a programming language is akin to converting legal concepts

simultaneously into a different language and system of norms. This appeared as a rather forthright

exercise, provided that Rules as Code predicated on legislative documents that were inherently

mathematical in structure. Consequently, this resulted in reframing legislative clauses to

propositional calculus. Validity would indeed become synonymous with legality; in effect, closing the

interpretative space through logical reduction.

Laurence Diver brings forth the concept of computational legalism, a digital twin to the tyrannical

“acquiescence to rules as they are written.”
782

 Diver describes how computational legalism is fueled

by both temporal and spatial decompression; a collapsing of the “hermeneutic gap” owed to the

speed of code’s execution.
783

 He argues that the “ruleishness that is paradigmatic of code’s character

makes it immune to context.”
784

 Code, therefore, is an abolition of the normative space. In contrast,

the delay enabled by text creates a gap for contestability and argument.
785

 Text allows meaning to be

indeterminate. The de-spatialization that Diver describes is effectively a regard of code as complete.

It follows that code is perceivably incompatible with text, as they are artifacts of fundamentally

conflicting systems. Therefore, as code cannot view legal concepts in the way that text (or natural

language) can, translation is not possible.

However, Diver offers an alternative. He suggests that the use of code is possible to the extent that

the architectural design compartmentalizes the technical and the human.
786

 This is consistent with

782

 Laurence Diver, Computational legalism and the affordance of delay in law, J. OF CROSS-DISCIPLINARY RESEARCH

IN COMPUTATIONAL LAW [CRCL] 6 (December 2020).

783

 Id.

784

 Id.

785

 Diver describes as “inviting dissent”. See id. at 10.

786

 Id. at 9.

 M. Ma

208

the notion of sorting or layering gathered from the case studies. With machine-readable legislation,

LegalXML exemplified the opportunity to rearrange legislative documents into layers. Text is

organized such that context and references are not lost. Instead, they are sorted into the ‘metadata’

layer. This enables interpretations of legislative clauses to be connected with their sources of legal

authority, representing them as parts to the whole [legal ecosystem]. The challenge, of course, is the

expertise required. This practice of ‘layering’ necessitates both legal and XML knowledge. As a

result, with few experts that possess the skills required, current costs of LegalXML are rather

significant.

Examples of sorting are also found in contract drafting technology. In the first case study, hybrid-

programming languages, like OpenLaw, drew attention to the existing homogeneity in certain

contractual clauses. Certain provisions are categorized as sufficiently standard (i.e., boilerplate) and

with such little variance that, frequently, they are simply ‘inserted’ into the documents. OpenLaw

uses genericism as a benchmark. The more generic the language, the more likely the clause may be

code-ified. Unlike Lexon, embedding machine-readable code with natural language clauses is not

necessarily translation. Instead, the code is perceived as an existing object that already belongs to the

legal document. Rather than a rupture, there is conceptual continuity.

Startups like WeAgree have capitalized on hybrid forms by developing ‘clause libraries:’
787

WeAgree conceives of contractual clauses as reusable building blocks. Their idea is to foster party

autonomy by extending outside of the document to the clause level. This allows ‘boilerplate

provisions’ to be included in contracts that typically do not specify that type of clause (e.g., an

787

 Taken from WeAgree Wizard contract automation platform. See “Clause library integrated in contract automation,”

WeAgree: Accelerated Contract Flow, https://weagree.com/contract-automation/clause-library-integrated/ (Jun. 22,

2021).

https://weagree.com/contract-automation/clause-library-integrated/

 M. Ma

209

intellectual property licensing clause in a confidentiality agreement). As a result, the treatment of

code as an object maintains text at the forefront. This design choice prioritizes human centricity and

maintains the integrity of the contractual process as a negotiated one.

What may be gathered is that the integration of code and text reflects an epistemological stance on

legal interpretation. Fundamentally, machine-readability and the desire to translate text to code

reinvigorates the notion that the law, in its current state, is uncertain and imperfect. The existence of

the machine-readable variant then implies that code can resolve these defects. In short, law should

be code. In contrast, hybrid forms consider machine-readable code as only secondary to natural

language. Importantly, it suggests that, while code can offer benefits of efficiency, it does not regard

efficiency as the goal. As a result, the layering approach then maintains the normative gap. As well,

it circumvents problems associated with a code-driven law.
788

Jeffrey M. Lipshaw considered the persistence of ‘dumb’ contracts,
789

 or more simply, contracts

drafted in natural language as opposed to code. Lipshaw clarifies that the intuition to restate

contractual ‘logic’ into code is misleading. In his paper, Lipshaw experiments with translating Article

2 of the Uniform Commercial Code (UCC) to formal logic. Interestingly, he was able to formally

prove that a buyer can be compensated for damages.
790

 Moreover, Lipshaw notes that Article 2

includes fuzzy standards (e.g., “to sell goods that are fit for ordinary purpose”).
791

 Still, fuzzy logic was

able to account for seemingly subjective criteria. This suggests that legal documents that involve

complex future contingencies, albeit written in natural language, are already reducible to simpler

more logical structures.
792

 However, Lipshaw argues that imminency leads to risk-hedging behavior.

In effect, vagueness, or ‘elasticity,’
793

 are pragmatic functions of natural language that create the

strategic space for mitigation. Formal logic, on the other hand, is complete and unambiguous. There

is no elasticity available.

788

 As discussed by Mireille Hildebrandt, “Code Driven Law Scaling the Past and Freezing the Future,” Christopher

Markou and Simon Deakin (eds.) in Critical Perspectives in Law and Artificial Intelligence (2020).

789

 Jeffrey M. Lipshaw, The Persistence of “Dumb” Contracts, 2 STAN. J. BLOCKCHAIN L. & POL’Y 1 (2019), available

at: https://stanford-jblp.pubpub.org/pub/persistence-dumb-contracts/release/1.

790

 Id.

791

 UCC §2-315. See id.

792

 Id.

793

 Lipshaw cites linguist Grace Q. Zhang on strategic uses of elastic language. See Grace Q. Zhang, Elastic Language:

How and Why We Stretch Our Words (2015). See also id.

 M. Ma

210

Consider Relevance Theory
794

 in linguistics. According to Relevance Theory, there are identifiably

three levels of meaning: (1) logical form; (2) explicature; and (3) implicature. Meaning is derived

from accessing all three levels. Below is an informative example:
795

 “You are not going to die.”

 Logical form: The receiver is immortal.

 Explicature: You are not going to die from this paper cut.

 Implicature: You are being dramatic and should stop making a fuss.

Notably, explicature and implicature are both pragmatic developments of the sentence’s logical

form. Explicature provides further detail that contextualizes the original sentence. This suggests that

what is said cannot solely be derived from lexical meaning and syntactic combinations. Returning to

Lipshaw, the assumption is that code, unlike natural language, is unable to ‘enrich’ propositions

expressed, since formal logic has no pragmatic dimension. As a result, there will be a persistence of

legal documents drafted in natural language. Though logic is evidently a core component to legal

structure, logic lacks the elasticity that is currently only available in the natural language realm. More

importantly, this perhaps justifies the compromise arrived at by the hybrid or layering approach.

While logic is present, natural language text must persist to clarify meaning. Nevertheless, I will

consider, further in the chapter, whether pragmatics can be represented computationally. For now,

an unconventional paradigm will be explored to reflect on whether questions of natural language and

code are, instead, an ontological problem.

A) Alternative paradigms: Semantic Interoperability and IEML

In 2020, Pierre Lévy introduced the Information Economy MetaLanguage (IEML). IEML is a

computable semantics, capable of ‘bridging’ code with natural language. Lévy suggests that the

incongruency between programming and natural language results from a lack of semantic

interoperability. He states that while meaning is shared between languages, the expression of it

differs.
796

 Drawing from Chomsky’s syntactic theory of Universal Grammar, Lévy imagines a

794

 See originally Dan Sperber and Deirdre Wilson, Relevance: Communication and Cognition (1986).

795

 Adapted from example in Carston. See for further detail, Robyn Carston and Seiji Uchida (eds.), Relevance Theory

(1998).

796

 “IEML’s Comparative Advantages,” INTLEKT Metadata, https://intlekt.io/iemls-comparative-advantages/ (accessed

Jun 22, 2021).

https://intlekt.io/iemls-comparative-advantages/

 M. Ma

211

universal semantics. Inspired then by Chomskyan regular languages,
797

 Lévy proposes that semantics

should be reformulated to be calculable. He proposes a representation of semantic relationships

through sets of composable constants and variables.
798

 Constants, or semantic primitives, represent

the “semantic features shared by all concepts in this semantic domain.”
799

 Variables, or the IEML

Alphabet, are the “range of semantic differences between concepts.”
800

 Together, these constants and

variables can be combined and recombined to formulate meaning.

To then apply the IEML, its building blocks must be further explained. Semantic primitives are the

six semantic elements, represented by capital letters, that provide the foundation for the

‘metalanguage.’ These are: S (sign), B (being), T (thing), U (virtual), A (actual), and E (emptiness).

These six elements represent concepts that “empower collective intelligence”
801

 and the capacity to

make meaning.

The S/B/T operate as a triad. Sign is an entity or event that is relevant to knowledge. Being is a

subject or interpreter and is relevant to the ability to conceive relationships and values. Thing is an

object or referent capable of categorizing the content. Next, U/A is dialectic. Virtual represents the

potential or abstract, while actual is a “spatiotemporal reality”
802

 and represents the tangible or

concrete. Finally, E or emptiness operates independently and denotes absence, silence, or nothing.

In addition to these semantic primitives, Lévy had created the IEML Alphabet. This Alphabet

consists of 25 lower-case letters that when ‘multiplied’ build various “metaphysical, epistemological,

anthropological and existential points.”
803

 These points, in turn, are understood as “paradigms,” or

shared semantic relations.

797

 The lowest level of the Chomsky Hierarchy, regular languages describe a formal set of grammars that is

deterministic. See for example “The Chomsky Hierarchy,”

https://condor.depaul.edu/ichu/csc415/notes/notes10/grammar.html (accessed Jun 22, 2021).

798

 Id.

799

 Id.

800

 Id.

801

 “Semantic Primitives,” INTLEKT Metadata, https://intlekt.io/semantic-primitives/.

802

 Id.

803

 “IEML Alphabet,” INTLEKT Metadata, https://intlekt.io/25-basic-categories/.

https://condor.depaul.edu/ichu/csc415/notes/notes10/grammar.html

 M. Ma

212

Below is a sample of the IEML:
804

It may be understood, without venturing further, that representation at a new level of abstraction

requires defining concepts to a state that is near untenable. Beyond issues of basing its semantic

primitives on a constrained set of philosophical traditions,
805

 IEML is unintuitive and difficult to

grasp. Rather, its competence as a ‘universal’ semantics
806

 can barely capture the nuances of human

expression. Consequently, the IEML does little to bridge code with natural language. To unpack

semantics to this particular level of abstraction is analogous to using Lego blocks to form a tree.

Instead, the exercise should be to reflect on the organic components that allow a tree to grow. In the

same way, reconciling code with legal text requires mapping the relations in natural language that

have enabled the legal system to persist. This is explored, as we turn to the second half of the chapter.

Computational Legal Inferences and Towards a Pragmatics of Code

In the aforementioned section, it is notable that the problem with using syntax and semantics is akin

to the notion of faux amis. That is, they do not mean the same things from a linguistic, natural

804

 Captured from the INTLEKT IEML Editor, which allows users to freely experiment with the various computable

elements of semantics. See “Intlekt IEML Editor,” https://dev.intlekt.io/usl/E:/table/I:.

805

 Lévy relies in a rather piecemeal fashion on loosely Greek philosophy, John Locke, and Cartesianism. Oddly, he

draws in some ancient Chinese philosophy, but is not specific about it. See section on “Historical and philosophical

context for the semantic primitives” within “Semantic Primitives,” supra 801.

806

 Lévy, furthermore, falls victim to perceptions of a common metalanguage, intercultural language, or an “in-between”

language, as capable of working around issues of universal and linguistic grammar. See Lin Ma and Jaap van Brakel,

Fundamentals of Comparative and Intercultural Philosophy 133-139 (2016).

https://dev.intlekt.io/usl/E:/table/I

 M. Ma

213

language perspective as opposed to the computable, programming perspective. Their continued

treatment as functional equivalents has indeed led to translations that evidently fail to properly

capture meaning. However, the insistence of integrating computational technologies in legal drafting

suggests that there is, to a certain extent, an inevitability of using programming languages for legal

code-ification. So, how could bad translations be avoided, and meaning be reconciled in light of a

new medium? To echo Frank Pasquale, “another story is possible.”
807

 This section aims to uncover

the other story by considering first the problem with inference.

In the Myth of Artificial Intelligence, Erik J. Larson distinguishes between analysis and formulaic

calculation. The former he defines as “making sense of the dots, making a leap or guess that explains

them;” the latter he defines as “connecting known dots; applying the rules of algebra.”
808

 He suggests

that “rule-following isn’t enough, but it is unclear what exactly else is involved.”
809

 Larson draws the

analogy with murder mysteries and infamous fictional detectives revered for their brilliance in solving

seemingly impossible puzzles. He notes that, perceivably, inference from facts is a practice of

guessing. Larson references the American logician and philosopher Charles Sanders Peirce, who

attempted to map the “mental gymnastics” of Edgar Allan Poe’s protagonist, August Dupin, in logical

symbols.
810

 On method and logic alone, there remains a gap in human reasoning. What may be

concluded is that human thought also requires guesswork. The question becomes: how can

guesswork be represented?

Larson points to the near forgotten work of Peirce’s framework of abductive inference. He suggests

that Peirce’s thoughts on abductive reasoning remain the missing component to mathematics and

logic.
811

 More importantly, it persists as one of the reasons that confronts the limits of AI. Peirce

distinguishes inference from other forms of thought. Inference is a “leap of sorts, deemed

reasonable.”
812

 Inference depends on some form of prior knowledge and exists in a provisional state.

This suggests that the act of inferring encompasses two qualities: (1) context; and (2) incompleteness.

807

 Frank Pasquale, New Laws of Robotics: Defending Human Expertise in the Age of AI 2 (2020).

808

 Erik J. Larson, The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do 93-94 (2021).

809

 Id. at 94.

810

 Id.

811

 Id. at 99.

812

 Id. at 100.

 M. Ma

214

As is the issue with notions of syntax and semantics, inference has frequently been conceived in a

broadly singular manner. In conversations about computation and AI, Larson suggests that

applications of inference draw largely from a statistical perspective. In effect, he alludes to data-

centric approaches and machine learning as analogical representations of inference. There is,

however, a distinction between probabilistic inference and inference at an epistemological level. That

is, the use of knowledge in context is difficult to capture.
813

 This is owed to the exercise of defining

relevance. Larson argues that “the ability to determine which bits of knowledge are relevant is not a

computational skill.”
814

To then refine the puzzle: if the capacity to infer is uniquely human, what may be the limits of

signifying inference computationally? Interestingly, Larson’s arguments draw from a systemic

perspective of AI.
815

 His reflections address how AI systems fail to replicate human thinking.

Moreover, he reinforces the point that leaps of faith, paradoxically seminal to scientific advances,

were “outside the formalities”
816

 and mechanical accounts of practice. Perhaps the most important

kernel Larson reveals is that understanding natural language necessitates “commonsense inferences,

which are neither logically certain nor (often) highly probable. It requires, in other words, lots of

abductions.”
817

Returning to Peirce and guesswork, abduction then involves reasoning that falls outside of logic and

leans towards “instinct.” While induction draws from facts to build generalizations, abduction is

predicated on the observation and speculation of sets of facts.
818

 This suggests that explanations and

working hypotheses are taken not from facts themselves, but from how they are regarded. Again,

information is necessarily partial, contextualized, and incomplete. Aligning inference with

conjecture, abduction then regards “an observed fact as a sign that points to a feature of the world.”
819

Induction perceives observations as facts, but abduction perceives them as norms. Abductions are

813

 Id. at 102.

814

 Id.

815

 To a certain extent, Larson refers to artificial general intelligence, which is outside the scope of the thesis.

816

 Id. at 103.

817

 Id. at 105.

818

 Id. at 160.

819

 Id. at 163. We consider for example a mirror to Boyd White and the “legal imagination” – how the law sees the

world. See Boyd White, supra 269.

 M. Ma

215

defeasible. Observed facts are clues that operate within a realm of logical possibilities, intentionally

including and excluding those on the premise of a specific query.

On the other hand, deduction is “monotonic inference;”
820

 conclusions are finite. That is, deductions

require that conclusions must be true and that all their premises are true. If even just one of the

premises is false, then all the premises are false. Deductive-based approaches are, therefore,

dependent on “its truth-preserving constraint –everything must be certain.”
821

 This means that for

deduction to work, the premises must be certain. Consider propositional logic. Truths are derived

from propositions.

But what if it is not certain whether the premises are true? Could the conclusion still be true? The

below set of sentences is an informative example:
822

When it rains, the grass gets wet.

It rained.

Therefore, the grass got wet.

Though the reasoning here is valid, the premises, and subsequently the conclusion, are not

necessarily true. For example, there may have been the illusion of rain. A cleaning agency may have

been washing the windows of a skyscraper and there was the assumption that the water droplets are

indeed precipitation. Or, it rained, but what if the grass is conveniently covered by an awning? This

means that even if the conclusion is true, it is not entirely logic; some “luck” is at play. We shall see

that, in natural language, it is “impossible to give all necessary and sufficient conditions for the

knowledge or application of a concept.”
823

 The intentional context of natural language, the premises

on which inferences are made, can never be completely certain. As a result, though the “basis of

correct reasoning is logical deduction,”
824

 a theory of meaning is more fundamental and extends

beyond logic alone.
825

 Monotonic inferences cannot account fully for premises built on presumed

820

 Id. at 167.

821

 Id. at 168.

822

 Reconfiguring Larson’s example to a logically valid one. See id. at 170.

823

 Ma and Brakel use the informative example of defining “bachelor.” While we may be able to specify the necessary

characteristics, conditions, such as “unmarried’ and “man,” there lacks to ability to provide a precise meaning to each

of these conditions. That is, we would not consider the Pope to be a bachelor. However, by the conditions alone, he

does fit the definition. See Lin Ma and Jaap van Brakel, supra 806 at 125.

824

 Larson, supra 808 at 171.

825

 Id. at 170.

 M. Ma

216

certainty. Abductive reasoning, by contrast, introduces possibility, whereby conclusions are not

definite. They offer probable conclusions, ones that are the best explanation given a set of premises.

Frequently, modal verbs (i.e., may, should, could) act as linguistic clues. Using the above example:

when it rains, the grass may get wet.

What perhaps is most striking is that models of legal reasoning employ methods of deductive and

inductive logic. In a similar manner, computational technologies equally draw from traditions of

inductive and deductive modelling.
826

 In both scenarios, there has been little reference to the

significance of abduction. Yet, conjectural inference is a feature, not a bug, of legal reasoning.

Inductive and deductive models, without abduction, is akin to claiming that all law is fact.
827

 In

contrast, abduction enables the building of analogies; it provides grounds to claim that a horse, or

bike, is indeed a vehicle.
828

 “Induction requires abduction as a first step”
829

 in order to make sense

and develop a conceptual framework. Equally, abduction is not an extended form of deduction. As

a result, AI systems that reflect either inductive or deductive logic are incapable of wholly reflecting

legal practice. Technological advances would only be able to approach, but never replicate legal

reasoning.

Peirce’s theory of abduction may be extended to the work of John W. Tukey and his argument

against the mechanization of inferential knowledge. Tukey was regarded as an atypical member of

his scientific cohort. He opposed “rule-bound rationality” and “rigorous objectivity.”
830

 Instead, he

regarded statistical methods as providing clues to “‘get a feel’ for the data.”
831

 Often, Tukey described

826

 Consider again, for example, data-driven versus expert systems.

827

 The idea put forward by Klaus Guenter that for law to exist, there requires the opportunity for civil disobedience.

Normativity is integral to legal systems and the “anarchist feature” is a necessary component. Legal norms depend on

social facts, whereas technical rules are mathematical facts. These are two different types of facts with the former akin

to custom. Guenter’s argument is that ‘smart orders’ conflate social with mathematical fact, creating systems that are

crystallized and incapable of disobedience. See Klaus Guenter, Normative to Smart Orders, Globinar draft paper

(2021). In many ways, this is also a parallel to Latour’s discussion on the availability of choice and rules “built-in” to

technological systems, effectively forcing compliance. See Bruno Latour, “Where are the Missing Masses? The

Sociology of a Few Mundane Artifacts,” in Bijker and Law (eds.), Shaping Technology/Building Society: Studies in

Sociotechnical Change 225-258 (1992).

828

 There again, I am alluding to the 1958 H.L.A. Hart “No Vehicles in the Park” hypothetical. There is, in fact, the

1986 case from the Supreme Court of Utah that asked whether a horse was a vehicle under the premise of drunk

driving laws at the time. For further detail on the case, see State v. Blowers, 717 P.2d 1321 (1986).

829

 Larson supra 808 at 161.

830

 Alexander Campolo, “Thinking, Judging, Noticing, Feeling”: John W. Tukey against the Mechanization of

Inferential Knowledge, 5 KNOW: A JOURNAL ON THE FORMATION OF KNOWLEDGE 83, 85 (2021).

831

 Id. at 87.

 M. Ma

217

his work with emotive language to refrain from the scientific hardlines and ‘complete truths’ that

surrounded him. Tukey prioritized observation and was guided by “judgment, experience, and even

pluralism.”
832

 His use of quantitative and computational techniques may be considered as methods

of abductive reasoning. Complementary in their arguments, it appears then that Peirce and Tukey

illuminate varying strengths in computable analysis, a potentially “weak” form of objectivity.
833

Interestingly, a parallel may be found in legal theory on the two conceptions of objectivity. George

Pavlakos considered the contrast between interpretivism and a discourse theory of law relative to

objectivity.
834

 He notes that a strong form of objectivity relies on “rigid determinants of truth and

correctness.”
835

 Alternatively, regarding objectivity as a “modest variant” enables an internal reflection

on the structures that drive legal propositions. In short, Pavlakos alludes to the type of objectivity

found in the discursive legal grammar. That is, discursive grammar embodies “rules that extend over

multiple levels of abstraction, as a result of which it can account graphically for the depth of legal

practice.”
836

An initial analysis of Pavlakos’ arguments reinforces my hypothesis that discussions around

computational law must extend beyond the systemic to the micro-level, and specifically to the

linguistic space. Therefore, the next step is to reconcile abductive reasoning with the notion of

discursive grammar. Abduction is central to understanding the granularity found in natural language,

as interpretation necessarily requires both conjecture and defeasibility. This is because natural

language is indicative, as opposed to definitive. How natural language signposts meaning is through

its grammar. Pavlakos notes that a grammar identifies “‘objective’ logico-syntactic structure of

sentences on the basis of which it is possible to reconstruct the world.”
837

 The problem, he argues, is

one that has been discussed on various occasions in this thesis: the danger of mechanically reducing

law to rules. In this case, the rules of grammar replace ‘legal rules’ that define how law is accurately

832

 Id.

833

 Larson notes that Peirce regarded “abduction as a weak form of inference,” while Tukey strayed away from an

“intense form of objectivity” or mechanical variant. See Larson, supra 808 at 163 and Campolos, id. at 85-86.

834

 George Pavlakos, “Two Concepts of Objectivity,” in George Pavlakos (ed.), Law, Rights, and Discourse: The Legal

Philosophy of Robert Alexy 84 (2007).

835

 Id.

836

 Id. at 85.

837

 Id. at 102.

 M. Ma

218

applied.
838

 This has been seen time and time again in computational models, as “grammar” is equated

with the likes of syntax and semantics. Consistently, there remains a missing piece: pragmatics.

To recall, pragmatics is concerned with language in use and the contexts of its use. Pragmatics is then

primarily focused on implicature and inference: to read between the lines. Interestingly, pragmatics

is a subfield of both linguistics and semiotics. Its relevance to the latter will be discussed further in

this chapter. For now, it may be notable that Pavlakos’ discursive grammar is an excellent starting

point. His work actively acknowledges the seminal role of pragmatics. He describes this as the third

category of rules that runs alongside the rules of logic and rules of rationality.
839

 While semantics

reveal sentential logic, pragmatics exposes the normative relations between subjects. In effect, it

“opens a gap between the rules of grammar and the criteria for their application, a gap that invites

skepticism and indeterminacy.”
840

Consider for example the discussion on implicature and reference in Language Lego. Frequently,

the use of the pronoun it generates confusion around the object of reference. In linguistics, these are

pragmatic issues associated either with pronominal anaphora (i.e., pronouns that ‘reach back’
841

) or

with dummy subjects. Only through context can it be identified. Yet, these pragmatic issues remain

unsolved computationally. In 2012, Hector Levesque devised Winograd schemas; sets of multiple-

choice questions about the meaning of sentences to test for natural language understanding.
842

Winograd schemas demonstrated that machines were incapable of gathering context that extended

beyond parameters of syntactic and sentential logic. Below is an infamous example:
843

838

 N.B. is as opposed to should.

839

 Id. at 101.

840

 Id. at 102.

841

 Larson, supra 808 at 166.

842

 Id. at 195.

843

 Taken from id. at 196.

 M. Ma

219

Intuitively, it may be gathered from context clues that the pronoun they refers to the councilors. For

machines, however, the plural pronoun is ambiguous. They could refer to either councilors or

demonstrators. In this case, the rules of grammar alone cannot resolve pronoun reference.
844

 Neither

semantic nor syntactic rules can assist with the interpretation of this sentence. On the other hand,

pragmatics rules help to signpost meaning. Consequently, the ‘grammar gap’ Pavlakos describes is

akin to Larson’s abductive signage. Pragmatics, the linguistic key to abductive reasoning, is integral

to knowledge representation, and especially, legal knowledge representation.

So, how can pragmatics be represented computationally? I put forth two potential trajectories: (1)

using linguistic modelling to blueprint computational models; and (2) programmatically (i.e., the

semiotic conveyance of meaning). The first method considers applying core linguistics, specifically

pragmatics, as a framework to guide computational strategy. The other draws from critical code

studies, an emerging interdisciplinary field concerned with the “extrafunctional significance of

code.”
845

 This is a shift away from interpretation in natural language and towards interpretation in

computer code. I make the disclaimer that the methods discussed are not necessarily novel nor can

claim to be a comprehensive account. As well, they have been explored in other disciplines (e.g.,

cultural, media and communication studies). Nevertheless, the significance of the inquiry centers

around whether legal text can exist in a form outside of natural language. That is, can computation

and code account for the particularities of legal language?

A) Computational Legal Understanding

While advances in machine learning have provided illusions of natural language understanding, there

remains an inability to process words with embedded context.
846

 Knowledge representation, on the

other hand, has largely predicated on logic. As a result, sentence ambiguity (e.g., pronoun reference,

polysemy) cannot be completely captured. Attempts at disambiguation have led, instead, to reductive

definitions and/or a reframing of concepts.
847

 The first and third case studies alluded to the drawbacks

844

 Though Binding Principles in syntax may be informative, they do not provide an explanation when the sentence is

already grammatical; only how to generate a sentence that is grammatical.

845

 Mark C. Marino, Critical Code Studies 40 (2021).

846

 Recall the discussion in the second case study on translation. See Douglas Hofstadter, “The Shallowness of Google

Translate,” The Atlantic (Jan. 30, 2018), https://www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-

google-translate/551570/. See also Bender and Koller, supra 780.

847

 Consider the lessons gathered from the first case study on pigeonholing contractual concepts.

 M. Ma

220

of these computational methods in their current state. Moreover, the aforementioned arguments for

abduction further reaffirmed the case study observations. What may be inferred is that, without

models of abductive reasoning, there remains limitations in computational representations of law.

Alternatively, the second case study has introduced how legal text may be deconstructed using a

combined approach of core linguistic and statistical modelling. Not only has this approach confirmed

the significance of interdisciplinary research but has also revealed the need for a multidimensional
848

strategy for computational legal understanding. Furthermore, the outcomes of the case study

corroborated prior philosophical interventions that natural language drives legal processes.

Consequently, a faithful representation of natural language behaviors is essential to assessing the

limits of legal computability. Along this line of thought, a deeper exploration of abductive inference

will be conducted.

Though abduction has not held its place in current AI research, this was not always the case. Work

on abduction in AI began in the 1970s under the limited context of medical diagnosis.
849

 It remained

in the realm of medicine until linguists began to conduct research on abduction within informational

systems. Their research revealed that, unlike medical knowledge, abductive reasoning for

informational systems (i.e., natural language) are, in fact, implicational.
850

 In the 1993 seminal paper,

“Interpretation as abduction,” Jerry R. Hobbs et al. advance a model of abductive reasoning to

resolve issues of pragmatics, such as reference resolution. They develop a framework on

interpretation that broadly requires two key steps: (1) prove the logical form of the sentence; and (2)

make assumptions where necessary.
851

 The first step is consistent with existing methods of syntactic

and semantic analysis. The second step represents modelling the implicit relations in the sentence;

otherwise, the guesswork involved. Hobbs et al. consider that references must be anchored in mutual

belief, and that this may be represented in the form of a knowledge base. Consequently, this forms

a “referential anchor”
852

 that provides information that is presupposed. This is akin to establishing a

semantic world and the conditions that make its propositions truths. On the other hand, the second

848

 I define multidimensional as the use of several computational and noncomputational techniques in tandem.

849

 Jerry Hobbs et al., Interpretation as Abduction, 63 ARTIFICIAL INTELLIGENCE 69, 117 (1993).

850

 Cf. abductive reasoning in medical knowledge as largely causal. See id.

851

 Id. at 70.

852

 Id.

 M. Ma

221

step involves deriving references from the knowledge base to provide the best guess. This is

understood as the speaker’s private beliefs.

Consider the following sentence:
853

 The Boston office called.

In this example, there are three pragmatic issues: (1) the reference “the Boston office; (2) the

metonymy
854

“the Boston office”; and (3) the implicit relation between “Boston” and “the office.”

These three pragmatic problems indicate information that is not defined but inferred from the truth

conditions that (a) there exists an office; and (b) there was a call from that office to the speaker. Using

a knowledge base approach consistent with their model, the assumption taken is that there is an

office, and it is in Boston. As well, the speaker liaises with someone that works in the Boston office.

This suggests that this person is referred to as “the Boston office.” Moreover, they presumably work

in the same office. This is represented, using the linguistic metalanguage, as follows:
855

The metalanguage is then situated in a graph shown below:
856

853

 Hobbs et al. use this as an informative example of their model. See id.

854

 To recall, metonymy is defined as the thing that is a substitute for the name of a closely related concept. For

example, Crown as interchangeable with sovereign or the Queen of England.

855

 Id. at 72.

856

 Id. at 73.

 M. Ma

222

The combined linguistic and graphical representations, put forward by Hobbs et al., are an early,

non-computational model of abductive reasoning. This model then formed the basis of The

Abductive Commonsense Inference Text Understanding System (TACITUS), a computational

system for interpreting text. TACITUS was constructed on the three pillars of linguistics: syntax,

semantics, and, importantly, pragmatics. Accordingly, the system’s architecture consists of three

components that each correspond with a linguistic pillar. The syntactic and semantic components

work through a single system; using a parser to break down the sentence’s syntactic structures, then

producing a logical form based on “first-order predicate calculus.”
857

 The logical form then passes

through the pragmatics component, “a general abductive reasoning mechanism to uncover implicit

assumptions necessary to explain the coherence of the explicit text.”
858

 In other words, TACITUS

reveals the inferences and assumptions required for interpreting text and the coreference relations

significant to their interpretation.

TACITUS interprets text by relating the sentence’s logical components with the assumptions that

can be made. TACITUS tackles several notable pragmatic issues including (1) determining implicit

857

 Id. at 75. TACITUS includes a comprehensive grammar of English, enabling predicate-argument relations to be

associated with syntactic structures. See also Jerry R. Hobbs et. al, “The TACITUS System,” in Robust Processing of

Real-World Natural-Language Texts, https://www.isi.edu/~hobbs/robust/node2.html (Feb. 24, 2004).

858

 Id.

https://www.isi.edu/~hobbs/robust/node2.html

 M. Ma

223

entities and relationships referred metonymically in text; (2) resolving anaphoric references; and (3)

expressing relationships underlying compound nominals (noun-phrases).
859

 The pragmatic function

of the system regards text as “an instance [emphasis added] of a schema that makes its various parts

coherent.”
860

 That is, the interpretations of texts require embracing incomplete knowledge. Rather

than the interpretation, the system highlights a best interpretation, and at the very least, some

interpretation.

TACITUS applies a process known as the “incremental refinement of minimal information

proofs.”
861

 “Minimal information proofs” are regarded as the baseline, whereby a sentence may be

understood without context. As domain knowledge grows (through the expansion of the knowledge

base), abstract entities and objects in the text are continually “minimized.” This means, for example,

that objects that share properties are assumed to be identical. This enables possible coreferences for

anaphora resolution.
862

 Propositions expressed in the text are then related to the other objects known

in the knowledge base; in effect, forming an assumption. The intention is to consider interpretation

as instances of a number of possible explanations. Assumptions that fit into particular explanations

are “preferred to assumptions that do not.”
863

 As a result, the process is not understood to be

definitive. Instead, it is intentionally implicative.

At face value, this may be considered rather similar to inductive reasoning. The difference, however,

is particularly highlighted in the representation of et cetera in sentences.

Hobbs et al. deliberately include et cetera propositions in their knowledge base. Et cetera

propositions behave as placeholders that associate concepts in sentences.
864

 They signal that, to an

extent, an implicative relation exists, but is imprecise. While et cetera propositions intend to build

associations between concepts, they also enable the opportunity to distinguish between objects within

859

 “Robust Pragmatic Interpretation,” https://www.isi.edu/~hobbs/robust/node10.html (Feb. 24, 2004).

860

 Id.

861

 Id.

862

 Id.

863

 Id.

864

 Hobbs et al., supra 849 at 87.

https://www.isi.edu/~hobbs/robust/node10.html

 M. Ma

224

concepts. That is, they liberate implicative relations, allowing an escape valve from absolute

definitions.

In relation to legal texts, consider the implications of et cetera in legal language. Sandra Fredman

describes the “‘et cetera’ problem,” whereby “categories and kinds of subjects can multiply and

reconfigure, and how the law can manage such proliferation.”
865

 Though her argument is a pointed

statement around the misuse of et cetera in legal interpretation, she brings to light the malleability

and potential for growth enabled by such linguistic imprecision. Interestingly, computational systems

like TACITUS, preserve indeterminacy, while also allowing implicit references and relationships

between concepts to be made more explicit. Consequently, the model put forth by Hobbs et al. is

illustrative of the ways in which abductive reasoning can be included in computational law.

Since TACITUS, there has not been a comparable program that has centered on pragmatic

processing and abductive inference. As well, the rise of deep-learning and neural networks began to

subsume abductive with statistical inference.
866

 Syntactic parsers,
867

 on the other hand, have since

become increasingly powerful owed to advances in deep-learning. Some are even capable of

annotating at an incredible level of sophistication.
868

 While syntactic parsers have made immense

strides in sentential understanding that far exceed TACITUS’ logical forms, resolving reference and

implicature remain an obstacle. Interestingly, knowledge graph databases
869

 have begun to introduce

better mappings between conceptual relations. Therefore, further investigation is required in the

combined approach of using syntactic parsers and knowledge graphs for the linguistic deconstruction

of texts. In this manner, a strong foundation may be laid for an abductive reasoning mechanism.

Lessons from TACITUS, as well as the second case study, demonstrate the benefits of using

linguistic frameworks as a guide for building computational models. More importantly, developing

a computable model of pragmatics will significantly enable a deeper understanding of legal

865

 Sandra Fredman, Intersectional Discrimination in EU Gender Equality and Non-Discrimination Law 31 (2016),

available at http://ohrh.law.ox.ac.uk/wordpress/wpcontent/up.

866

 Larson, supra 808 at 76.

867

 See, for example, Stanford CoreNLP. See “Core NLP,” https://stanfordnlp.github.io/CoreNLP/ (accessed Jun 22,

2021). Consider, as well spaCy, “Industrial-Strength Natural Language Processing,” https://spacy.io/ (accessed Jun 22,

2021).

868

 CoreNLP and spaCy are both capable of managing coreferences, dependency, and other named entity recognition.

See id. See also “Trained Models & Pipelines,” https://spacy.io/models (accessed Jun 22, 2021).

869

 See, for example, “Vaticle,” https://vaticle.com/ (accessed Jun 22, 2021), as well as “Neo4j,” https://neo4j.com/

(accessed Jun 22, 2021).

https://stanfordnlp.github.io/CoreNLP/
https://spacy.io/
https://spacy.io/models
https://vaticle.com/
https://neo4j.com/

 M. Ma

225

mechanics. Accordingly, the furtherance of computational law requires infrastructure capable of

unpacking the embedded contexts and inherent richness of legal text. Only then can we begin to

approach a computational legal understanding.

B) Critical Legal Coding

Stepping outside the realm of natural language, Mark C. Marino proposed that code be read in a

manner that extends beyond functionality and the “aesthetic of efficiency.”
870

 Recall in the third case

study on machine-readable legislation, critical code studies (CCS) was introduced as a significant

departure from the current understanding of code. Unlike the aforementioned treatment of

computation as tools to translate concepts within a natural language paradigm, CCS consider the

ways in which code is a system of discourse with its own rhetoric and grammar. Marino suggests that

code should not be regarded simply for its reusability and modularity. Instead, this new approach

must interrogate the contexts and connotations of the code. He states, “the meaning of code is

ambiguous because it is social, even while it is unambiguous because it is technological.”
871

 Again,

this falls outside the typical practices of programming.

The intention of CCS is to be able to read and express code the way “we might explicate a work of

literature.”
872

 It follows that in the process of developing critical hermeneutics, drafting in computer

code would allow for a “thickening”
 873

 of symbolic expressions. Shifting away from its purely

functional regard, a turn to the relationships of the code and the choices in programming paradigms

could develop “rich methods of reading code.”
874

 Marino clarifies that he is not echoing the

sentiments of literate programming.
875

 Alternatively, he is offering the possibility of seeing code as a

form of writing that exists beyond operational demands and accuracy.

The case studies have demonstrated the persistent image of code as an emblem of function and

practicality. As a result, programming languages were used in a manner that would operate strictly

870

 Marino, supra 845 at 39.

871

 Id. at 40.

872

 Id. at 39.

873

 Recall in the idea of thickening as the inclusion of metaphorical and fictional language. See Brenda Danet, Language

in the Legal Process, 14 L. & SOC. REV. 445 (1980).

874

 Id. at 41.

875

 Marino references Donald Knuth and his work on “literate programming” and code as communication. See id.

 M. Ma

226

on efficiency. This is perhaps owed to a limited regard of the language as strictly syntactic and/or

semantic; a focus on structure and outcomes as opposed to content and means. Analogous with

learning a foreign language for the first time, code has only been acknowledged in a functional,

mechanical sense. Metaphor, irony, fiction, and other complex uses of language have not been

considered because code has yet to be perceived as worthy of interpretation. In defining, then,

techniques of critical analysis, the potential of code, as a non-natural
876

 but linguistic medium, will be

tested against the requirements of legal language. In doing so, I aim to make a preliminary assessment

on the prospect of legal codex(t).

Marino raises Douglas Hofstadter’s notion of meaningful isomorphisms, the “relationships drawn

between one system and another.”
877

 Marino’s discussion of isomorphisms significantly points to the

misnomers and faux amis between computer science and law. Under Hofstadter’s definition,

isomorphisms fall closely in line with “transliterating;” otherwise, matching the concepts of one

language directly to the other.
878

 This notably has been problematic, as according to Hofstadter,

meaningful isomorphisms necessitate that the systems in question be completely interchangeable.

Evidently, this is not the case between legal and computational systems, nor between natural and

programming languages. The truths of one system are not necessarily the truths of the other.
879

 I

consider that the ‘isomorphic technique’ and practice of matching has been the predominant

approach used in Legal Tech. More importantly, this matching presupposes that natural and

programming languages operate on the same semiotic paradigm. Marino, therefore, recommends a

relational method: to identify connections between the sign and their referents, and the forces that

shape their meaning.
880

 In this manner, Marino suggests that code must be interpreted for its gestures

and performance. In other words, a pragmatics of code must be considered.

Marino sets out several practices for CCS and interpretation using this relational method. First, the

use of code must be perceived only as an “entry point to an investigation.”
881

 He argues that every

876

 To recall, this is to note that between signified and signifier, it is not an obvious connection. See Betty J. Birner,

Language and Meaning (2018).

877

 See discussion id. at 42. For full detail on isomorphisms, see Douglas Hofstadter, Gödel, Escher, Bach: An Eternal

Braid (1979).

878

 Id.

879

 Id.

880

 Id.

881

 Id. at 48.

 M. Ma

227

piece of code is incomplete. The existing task-based understanding of code has led to a misguided

assumption around the context-independence and determinacy of lines of code. Though code is

frequently removed from its development environment and transposed across systems, platforms

have emerged to enable users to import code that identifies their source code repositories.
882

 This

allows the code to remain “connected to their context” with comments on the code possibly made

“in situ.”
883

 An analogy may be drawn to quotations or citing in natural language, enabling a form of

textual grafting. Though the sentence may be displaced from its original text,
884

 and in effect, foster a

new meaning, there remains the option to trace back its history and social origins. This suggests that

code is not context-independent nor determinate, but, rather, capable of effecting meaning in

illimitable contexts.

Second, the choices around the specific combinations of code must be analyzed. As opposed to

assessing whether they are valid lines of code, its purposeful arrangement must be accounted.

Indeed, code can present “signs of ‘humor, innovation, irony, double meanings, and a concentration

on the play of language.’”
885

 The arrangements of code can be aesthetic. Consider the following

excerpt of code:
886

Both are capable of executing the same output. However, in the latter, the use of ‘eq,’ rather than

‘=,’ is a subtle play on meaning. Though functional equivalents, the former is used to compare

882

 Marino uses the example of the ANVC Scalar software platform that allows the importing code as text from source

code repositories. Id. at 49. See also in discussion on Scalar features: “not only can any piece of Scalar content become

a path or tag (or both), but it can also reference any other piece of content.” See “Flexible Structure,” About Scalar,

https://scalar.me/anvc/features/flexible-structure/ (accessed Jun. 20, 2021).

883

 Id.

884

 Consider the reflection from Derrida and deconstruction.

885

 Id. at 49. Marino cites Loss Pequeño Glazier, “Code as Language,” Leonardo Electronic Almanac (2006).

886

 Example from Marino. See id. at 50.

https://scalar.me/anvc/features/flexible-structure/

 M. Ma

228

strings, while the latter numbers. It follows that the valid/invalid binary parallels only grammaticality

judgments in natural language. It does not factor stylistic intention. Moreover, how the code attempts

to perform has imprints of its epistemologies, cultural, and political paradigms.
887

 Code

communicates through its symbols and whitespace.

In the “Aesthetics of Generative Code,” Geoffrey Cox et al. advance the notion of a “poetics of

generative code.”
888

 That is, the value of code is only revealed at the time of execution. They note

that the code, frequently ‘read’ and referenced, is only its written form. This mistakenly reduces

code to mere machine-readable notation and implies that code is limited to expressions of logic. In

effect, this falsely conflates form with function. Alternatively, they argue that to build proper

criticisms of code, one must also understand the code’s actions. Code does not operate in a single

moment in time and space, but as a series of consecutive actions that are repeatable.
889

 Outcomes

then are capable of imagination in different contexts.

Importantly, the effects of the written code are not known until its execution. A comprehensive

literacy of code enables plays on its structure; to use distinctive syntactic operators to produce a

specific arrangement.
890

 Yet, the code’s execution is its chronotope.
891

 It materializes the abstract

elements and particular design choices in the arrangements. It is where meaning and narrative of the

code is bridged with its makeup. Its reality then is remade and redescribed, a suspension of the direct

description to the metaphorical one.
892

 Code is shaped by its performance. Subsequently, the analysis

of code should consider its constant shifts in state. As discussed by Cox et al., code has an interesting

temporal relationship. The written expression of code – or it’s static form – “represents a form of its

887

 Id. at 50.

888

 Geoffrey Cox, Alex McLean, and Adrian Ward, “The Aesthetics of Generative Code,” International Conference on

Generative Art (2000).

889

 Id. at 8.

890

 Id. at 6-7.

891

 To use Bakhtin’s term, chronotope, defined as “the points at which the knots of the narrative are tied and untied […]

and emerges as a center for concretizing representation. See Mikhail Bakhtin, Dialogic Imagination: Four Essays

(1981).

892

 In reference to Paul Ricoeur as he describes narrative as the “world of the text that intervenes in the world of action

in order to give it a new configuration or, as we might say, in order to transfigure it.” See Paul Ricoeur, From Text to

Action 10-11 (1991).

 M. Ma

229

existence before it is processed by the machine.”
893

 The reading of code, then, requires moving past

its static form to understand the effects caused by symbols during its dynamic engagement.
894

Code must be understood in action; only then are design choices situated and contextual references

revealed. To interpret and develop critical hermeneutics, code must be understood holistically:

beyond programmatic syntax and semantics to pragmatics. Marino argues, code “yield[s] meaning

to the extent to which we interrogate their material and sociohistorical context, […] and read their

signs and systems against this backdrop.”
895

 Consequently, code must be read against the backdrop

of its own context vis-à-vis its transposed one.

In applying the practices of CCS, code is undeniably a form of writing.
896

 More importantly, its

interpretative practices illustrate that while code is not isomorphic to natural language, code as text

is not inconceivably different from natural language text. Some overlap exists. The test, however, is

not whether text generally is inclusive of code. Rather, the test is whether legal text could be code; in

effect, a legal codex(t). In The Linguistic Affair, the literature has revealed that the legal language is

rather distinct. Moreover, legal concepts have relied on natural language for their expression. Yet, it

remains unclear whether natural language may be the only form of legal writing. That is, can legal

writing exist outside of natural language construction?

Reflecting on the distinctiveness of legal language, the initial task is to determine whether code could

fulfil the demands of the language. Recall the unique behaviors that distinguish legal language from

others. Peter Tiersma acknowledged the oft-arcane qualities of the technical language, but,

nevertheless, asserts that both the lexical and structural complexities are intentional. Rather, the

language is not merely communicative. Its stylistic form is not embellishment, but in fact, integral to

its function. That said, what Tiersma alludes to is the law’s conceptual complexity traceable through

its linguistic patterns. Other scholars, such as Brenda Danet and James Boyd White, have noted that

these stylistic choices represent the symbolic significance and ritualistic behavior of the language.

893

 Marino, supra 845 at 51,

894

 Id. This is ever the more apparent in Ricoeur that between understanding and explanation is observed in the

domain of poetics. He describes how the act of understanding requires “grasping the semantic dynamism by virtue of

which, in a metaphorical statement, a new semantic relevance emerges from the ruins of the semantic nonrelevance as

this appears in a literal reading of the sentence.” See Ricoeur, supra 892 at 9.

895

 Id. at 53.

896

 Conceivably, we may be able to draw parallels with Latour on text and artifacts as organizing the “relation between

what is inscribed in them and what can/could/should be pre-inscribed in the users.” See Latour, supra 827 at 237.

 M. Ma

230

The poeticism of legal language, reinforced by literary devices of metaphor and fiction, is

instrumental to its existence. The legal language is perceivably figurative and requires it to be

experienced. It is a specific imagination of fact and configures narratives as truths. As well, the legal

grammar reveals the law’s “strange retrospective temporality.”
897

 Neither causal nor chronological,

legal language establishes commitments made in the present, for the future, by referring to the past.

This non-linear interpretation of time is an implicit representation of the incompleteness of law, its

knowledge is interruptible and incapable of total attainment.

Broadly, the legal language may be categorized by three distinct markers: (1) conceptual complexity;

(2) poeticism; and (3) temporal specificity. Conceptual complexity describes the innate use of specific

vocabulary and peculiar sentence constructions for the communication of legal concepts. Poeticism

reflects the use of literary device and the heavily figurative quality of the language; and, finally,

temporal specificity articulates the law’s particular relationship with time. Again, applying the

aforementioned CCS practices as a framework for code’s ‘textual’ competence, preliminary

observations suggest that code appears to conform with the demands of the legal language.

The CCS practices reveal that code is conceivably (1) incomplete; (2) poetic; and (3) temporally

driven. The second and third traits seem rather self-evident. That is, there are demonstrably artful

manipulations of syntactic operators that enable duality of meaning and metaphorical representation.

As well, the portability of code to different platforms can equally be situated with their original

contexts. This fosters a better understanding of their “sources.” Code is also sensitive to its dynamic

engagement, highly mutable and susceptible to change. Together, these two traits pair well with the

second and third characteristics of legal language.

The first trait, however, is more complicated and perhaps the crux of this investigation. It places at

the forefront whether the lexical and syntactic complexity is inherent to the law’s performative

character. Recall the lessons drawn from Danet’s study
898

 on conceptual and linguistic complexity in

legal language. Her observations reveal that increased conceptual difficulty does not necessarily lead

to reduced comprehension. But, neither does lexical nor syntactic simplification. Again, this means

that clarity and simplicity are not synonymous. Furthermore, this runs into the problem

deconstructivism presents and, more broadly, the Sapir-Whorf Hypothesis. That is, language affects

897

 Referencing Marianne Constable, Law as Language, 1 CRITICAL ANALYSIS OF LAW 68 (2014).

898

 See in The Linguistic Affair; Danet, supra 873 at 488.

 M. Ma

231

conceptions of reality. In this case, natural language affects —and has affected—conceptions of law.

Legal complexity is intrinsic and cannot simply be resolved. So, is this the end of the path? How

then could code be reconciled as legal writing?

The current difficulty with ‘code-ification’ may be described as forcing square pegs in round holes.

It is an attempt to draft computational legal expressions by extracting the underlying logic of legal

processes. This, in turn, flattens and compresses the richness of law. Moreover, it assumes that legal

norms may be ‘transferred’ from one container to another. In contrast, accepting that natural

language has already impacted the construction of legal concepts, only one criteria of evaluation is

relevant. That is, code should only be assessed for its ability to inherit natural language’s traits. The

most fundamental being indeterminacy. Should the indeterminacy of the law reflect the

indeterminacy of the language, then code should simply be tested for its inherent incompleteness.

In that regard, code is indeed indeterminate. Code is ambiguous. Code is partial.

Nevertheless, the inquiry becomes: what is the benefit of drafting in code as opposed to natural

language? Why should code even be considered legal text? The literature review and case studies

have shown that arguments for legal code-ification typically fall in line with simplification and

efficiency. In fact, the argument should be one of clarity and accessibility. David Mellinkoff was

perhaps first to conflate clarification with simplification. This has dangerously implied that legal

complexity should be reduced. Evidently, attempts at simplification have accomplished what has

been akin to reckless extraction and bad translations (i.e., transliterating or decoding). A hurdle

experienced most presently in discussions around a domain-specific language for law. On the other

hand, it has been demonstrated that, overriding paradigmatic shifts, or reconceptualizing entirely

away from natural language, runs into problems of overcomplexity.
899

 How then could natural

language maintain its signature
900

 in code?

Interestingly, CCS has provided a fascinating illustration of how code can inherit and retain its natural

language ancestry. Consider the command PRINT. Marino describes the various evolutions of the

term. Historically, printing began as the notion of putting words on paper (or, parchment).

899

 Recall IEML and the complexity with “semantic interoperability.” See Lévy, supra 796.

900

 As a reference to Giorgio Agamben of signatures as “archaeological traces.” Recall Giorgio Agamben, The Signature

of All Things 36 (2009).

 M. Ma

232

Importantly, print has come to signify a “system of inscription.”
901

 The word print itself “bears no

automatic relationship to what [it] stands for.”
902

 It is arbitrary. In programming languages, PRINT is

understood as the display of data on the screen. Just as most linguistic meaning, programming

commands and variables may be represented using any select combination of characters. PRINT

could just as easily be TNIRP. The intentional choice of PRINT represents a continuity in

humanistic tradition, history, and sociopolitical origins.

Likewise, inherent to the legal language is a preservation of tradition. Though Mellinkoff may regard

it as “weasel words,”
903

 the persistent use of archaisms (i.e., Middle and Old English, Latin and

French) reflects the same form of continuity. Therefore, legal codex(t) is conceivable to the extent

that it inherits its natural language roots and embodies existing complexity. Moreover, there must be

mechanisms in place for the legal language to refer between the analog (natural language) and the

digital (code). The legal language must continue to be seated within a network of its history,

relationships, and evolving contexts. In this way, the integrity of legal norms is maintained, and

human-centricity is upheld. It follows that an associative code for legal writing is premised on

establishing first computational legal understanding – in effect, an infrastructure for clarifying legal

knowledge.

Importantly, there is a significant difference between translation and drafting. To imagine a legal

codex(t) is not to frame it as a question of translation. Instead, it is a reflection of whether code has

the capacity to draft going forward. Interestingly, Lexon had provided a pioneering effort on the use

of natural language constructions as executable code. However, this ran into issues of

reconceptualization, asserting of their own framework to existing legal interpretations. This suggests

that, rather than re-writing existing legal texts in code, the exercise should be one of reference.
904

 It

requires applying knowledge attained from computational legal understanding to develop this

associative code for legal writing. It is the formation of a computational legal network.

901

 Marino, supra 845 at 42-43.

902

 Birner, supra 876 at 4.

903

 David Mellinkoff as he references Stuart Chase, The Tyranny of Words 324 (1958) in The Language of Law (1963).

904

 I define reference here as belonging to relational knowledge, a mirror to the relational conception of law. I refer

again to Hildebrandt on the law’s existence as dependent on the “performative nature of the social fabric it constitutes

and by which it is constituted.” This is specified in the relationship between information and communication

infrastructures and law. See Hildebrandt, supra 4 at 172.

 M. Ma

233

Concluding Remarks

Undoubtedly, the ideas put forth require further examination. For now, it may be important simply

to acknowledge that pragmatics has been, and continues to be, a missing piece to the Legal Tech

puzzle. Current uses of programming languages and computational technology have made strides in

‘clarifying’ the law through simplification. This method, however, treats complexity as a defect and

is revealed in the persistent focus on syntactic and semantic techniques of legal knowledge

representation. Again, this is not to suggest that logic and structure is not part of the equation, but

that it is not the entire solution. Instead, the richness of the law should be preserved through methods

of representing pragmatics computationally. This extends into perceptions of code. That is, code

should be critically analyzed for its interpretative potential beyond function. In doing so, can benefits

of quantitative method be bridged with normativity; thereby reintroducing the space for argument

and indeterminacy. Nonetheless, the limitation persists in how a code’s own ancestry and system of

norms may be reconciled with legal norms.

 M. Ma

234

EPILOG(UE)

 M. Ma

235

Twenty years since “Aesthetics of Code,” Geoffrey Cox et al. had continued on the trajectory of

defining a new paradigm of code work. In 2004, Cox et al. had written a response to their original

paper, further arguing for a framework to produce code that encapsulates a critical practice.
905

 In

2012, Cox, along with Alex McLean, published this framework in their book, Speaking Code. Most

recently, Cox collaborated with fellow software studies and computational practices scholar, Winnie

Soon, on Aesthetic Programming. I will briefly summarize the aforementioned texts to offer

perspective on the emerging horizons of code as critical and literary scholarship. I consider, as well,

how these methods may be relevant for legal codex(t). Furthermore, I hope to illustrate that, beyond

aesthetics, code as legal expression is not merely speculative but may, in fact, be on the rise.

Cox et al. state “the formal qualities of code cannot be separated from its broader discursive

framework.”
906

 In the prior chapter, this has been clearly described in the misperceptions of code as

merely its notation of logic. Code, however, is only understandable within the context of its overall

structure.
907

 That is, though the components may be predetermined, “the combinations of

interactions combined with the dynamism of unpredictability”
908

 result in its incompleteness. Coding

requires human intervention; code is speculative. Moreover, code is imperfect, as it is subject to

mistakes that could alter the course of its performance. Code is in a continuous state of ‘becoming.’
909

Interestingly, Cox et al. describe how programming follows closely with abductive reasoning.

Programmers frequently take “leaps of faith” in their process.
910

 This is owed to code being capable

of self-modification. This means that there is an extent to which programmers can only anticipate

how code can function, as the code itself can modify its own behavior. Self-modifying code then

“breaks the determinism of code and makes it explicit.”
911

 Therefore, to understand code necessarily

involves unpacking its embedded theory applied to practice. The theory, of course, reveals the

intrinsic nature of code as a linguistic practice.

905

 Geoffrey Cox, Alex McLean, and Adrian Ward, “Coding Praxis: Reconsidering the Aesthetics of Code,” in Olga

Goriunova and Alexei Shulgin (eds.), read_me, Software Art and Cultures 172 (2004).

906

 Id. at 162.

907

 Id. at 164.

908

 Id.

909

 Id. at 167.

910

 Id. at 171.

911

 Id.

 M. Ma

236

In the foreword to Speaking Code, Franco Berardi articulates that code has the power to “inscribe

the future, by formatting linguistic relations and the pragmatic development of algorithmic signs.”
912

What he describes is, in effect, advancing towards a pragmatics of code. Having confounded code

as “syntactic exactness of linguistic signs,” Berardi suggests that through “excess,” or poetry, are the

limits of the signified reopened.
913

 In short, we are encouraged to redefine the limits of code: to

interpret code as writing. With great intention, text and code are interplayed throughout the book to

underscore that code is indeed text. Moreover, Cox and McLean shift away from the “reductive

tendencies” in machine reading to acknowledge that code is an “active agent” in the process of

meaning production.
914

 They argue that once code is likened to speech, then natural and artificial

languages may be combined to develop new meaningful speech acts. Coding is “a mode of action,”

in which “ideas are stated and then reflected upon and restated.”
915

 But, code differs from other

forms of writing; in the sense that it must follow quite literally its script. As a result, its

predeterminations are paradoxically also its “sense of excess.”
916

 The poetry is inherent to its practice.

Accordingly, coding practices follow a few core principles that are beyond “simply the demonstration

of formal logic.”
917

 The most important is the notion of double coding. They argue that “codework,”

or what is occasionally referred to as pseudocode, introduces meaning that is seemingly prescriptive

but is non-executable.
918

 Pseudocode is a design tool for the description of the code and uses the

structural conventions of the programming language. It is intended for the human to read, and not

the machine. Pseudocode does not have any formal impact on the executable code but is significant

in defining how the code may be implemented. Moreover, it is a representation of the code.

Consequently, double coding suggests that pseudocode puts forth a “double sense of

interpretation.”
919

 In effect, it acknowledges the ambiguity that may arise owed to the potential divorce

between design (intended meaning) and implementation (actual meaning).

912

 Geoffrey Cox and Alex McLean, Speaking Code: Coding as Aesthetic and Political Expression ix (2012).

913

 Id. at xii.

914

 Id. at xiii.

915

 Id. at 14.

916

 Id. at 11.

917

 Id. at 8.

918

 Id.

919

 Id. at 9.

 M. Ma

237

Equally, Cox and McLean consider “secondary notation” as a core principle. Secondary notation is

inclusive of coding practices, such as “commenting out” or the choice of variable names and/or

identifiers.
920

 In the former, placing a “#” denotes that what follows is not part of the source code.

These comments are then excluded from the actual execution. As we’ve seen with the latter, naming

variables in code also does not have an impact on execution.
921

 To the computer, variable names

have no meaning. Interestingly, secondary notation pejoratively suggests that ‘reading’ done by

machines is the code’s primary practice. In contrast, Cox and McLean argue that secondary notation

maintains the human aspects of the code.
922

 In fact, it plays an important role of integrating the

author’s voice to the code. Secondary notation then fosters the intentionality and purpose behind

the code.

Consider the “codework” written in the Perl programming language that interplays secondary

notation with executable code:
923

Notably, the programmer, Graham Harwood, provides a commentary on social and economic

stratification. The term “class”
924

 is double coded to “stress the material conditions of working with

920

 Id. at 23.

921

 Id. Recall as well the discussion by Marino on the evolution and use of the PRINT command. See Mark C. Marino,

Critical Code Studies 42-43 (2020).

922

 Id.

923

 Cox and McLean take the extract from Harwood’s codework Class Library (2008). See id. at 40.

924

 To recall, this is a term used in object-oriented programming to describe one or more objects in the code.

 M. Ma

238

code against labor conditions and class struggle.”
925

 This interplay between the secondary notation

and the executable code, together, reflects how code practice could extend normative perceptions

on socioeconomic conditions. More importantly, in recognizing that code can account for the

“dynamic character of social processes,”
926

 and can embody both linguistic and communicative

mannerisms, deterministic conceptions of code are broken down. This has particularly significant

implications as secondary notation had been considered in the guise of computational contracts. I

will return to this later in the section.

Further ambiguities that arise in coding practices include the use of syntactic operators like “or,”

“and,” “not,” as well as infinite loops.
927

 Similar to logical connectives in core linguistics,
928

 certain

syntactic operators extend beyond its ‘grammatical’ use. In contrast to perceptions on context-free

grammars, structural elements in code provide context clues and is discursive.
929

 Consider for an

example a loop. In programming languages, loops provide instructions and conditions for when

certain actions are to be repeated. As well, loops may be nested within loops, signified via parameters

“{}”. The placement of loops establishes the points at which sentences should be subclauses. This

is analogous with the strategic use of logical connectives. Its meaning is only conveyed when reading

the text as a whole. Moreover, loops challenge the “conventional structures of linear time.”
930

 The

inclusion of certain loops “mirrors the complexity of lived time” and represent the experience of it.
931

Again, the arrangement of the code, how it is organized, is deliberate and serves not function, but

stylistic intention.

However, meaning in natural language can draw from the subconscious, while systems of meaning

in code are primarily conscious. This is not to be confused with the act of making code more explicit.

For Cox and McLean, this means that code ‘augments’ existing relationships by compiling various

925

 Id.

926

 Id.

927

 Infinite loops are coding instructions to repeat an action indefinitely. They often structure the program, but the use

of infinite loops paradoxically comes with the possibility of threatening the logical structure. See id. at 10.

928

 Recall discussion in Language Lego on logical connectives and pragmatics.

929

 Cox and McLean, supra 912 at 20.

930

 Winnie Soon and Geoff Cox, Aesthetic Programming: A Handbook of Software Studies 91(2020)

931

 Id. at 92.

 M. Ma

239

models of human perception. This is furthered by the composability of code
932

 and is comparable to

compositional meaning in semantics.
933

 That is, how components are woven together and built up

have an impact on the overall meaning of the text. As discussed previously, code is capable of

behaving like building blocks that can be displaced and reassembled in different environments.

Consequently, entire code systems may be embedded with one another, producing meanings that

are deeply interwoven. Code, therefore, exists as “part of wider social relations”
934

 that already

embody systems of societal norms. While this should be distinguished from the grammar associated

with foundations of coding,
935

 the question remains how code’s own system of norms can be

reconciled with legal norms.

In Aesthetic Programming, Soon and Cox experiment with code literacy by weaving together “the

words and actions of human and computer languages.”
936

 While it is considered a handbook, its

intention is to address the “more complex and deeply entangled set of relations between writing,

coding and thinking.”
937

 That is, they consider the practice of building and making worlds by relating

fundamental programming concepts with political paradigms and their power relations. Soon and

Cox describe this as “expanded literacy,” an “enhanced understanding of the relationship between

what words mean and do in terms of wider culture.”
938

 Though they are sensitive that code is not a

natural language and is not conceivably equivalent, they stress the significance of code as a linguistic

medium, capable of providing expression through its own form of semantic ambiguity.
939

 As a result,

they expand on the analysis of secondary notation, particularly in the naming of computational

objects and functions.

Two sections, in particular, will be highlighted: (1) object abstraction; and (2) vocable code. I have

elected to consider these sections, as they best capture the qualities significant to legal language and

932

 See for example Linda Xie, “Composability is Innovation,” Future (Jun. 15, 2021) https://future.a16z.com/how-

composability-unlocks-crypto-and-everything-else/.

933

 Recall in Language Lego in semantics.

934

 Cox and Mclean, supra 912 at 27.

935

 To clarify, I am referring to the various practices associated with programming basics as opposed to the embodied

social paradigms.

936

 Soon and Cox, supra 930 at 45.

937

 Id. at 13.

938

 Id. at 44.

939

 Id. at 45.

 M. Ma

240

legal knowledge representation. Introduced in the second case study, object-oriented programming

(OOP) finds striking intersections with legal reasoning. To recall, OOP is the structuring of code as

objects, rather than logic.
940

 This means that OOP is a form of managing complexity through

abstraction, and in effect, concretizing it. Therefore, it speaks heavily about representation. Soon

and Cox note that, in the practice of object abstraction, attention must be turned to the subjectivity

involved in the movement between abstract and concrete reality. It requires understanding the

“hidden layers of operation and meaning.”
941

 This process of reducing complexity is likened to

“desktop metaphors.”
942

 Though they are capable of increasing accessibility, there must also be an

acknowledgment that simplification is not a neutral exercise.

Computational objects are constructed by selecting properties and behaviors that are perceivably

important in their representation.
943

 Others are ignored, fostering the “suppression of a lot of other

aspects of the world.”
944

 Crutzen and Kotkamp note that abstractions create “illusions of objectivity”
945

when representing the complexity of processes and its relations. This is because the design reflects

highly organized imaginations of the world, specifically as independent objects that operate and

interact with one another.

OOP can then be understood as a “configurative system of discrete, interlocking units of meaning.”
946

Not only is this reminiscent of the aforementioned notion of composability, but also alludes to

ancestry, the inheritability of traits, and the network of “interlinking agencies.”
947

 Put differently, OOP

draws attention to relationships between entities and analog understandings of them from abstract

grouping and categorization. More importantly, it suggests that there is little difference to the

processes of relaying abstract concepts in “analog” practices. Akin then to placing deleted files in

‘trash bins,’ the significance of OOP stems from its ability to reflect complex processes with

940

 Id. at 145.

941

 Id. at 146.

942

 Soon and Cox allude to the analogy of deleting a file as throwing it in the trash bin. See id. at 145.

943

 Id. at 147.

944

 Soon and Cox cite Cecile Crutzen and Erna Kotkamp, “Object Orientation” in Matthew Fuller (ed.) Software

Studies 202-203 (2008). See id. at 147.

945

 Id.

946

 Id. at 160.

947

 Id. at 161. See also the notion of “actants” from Bruno Latour, “On actor-network theory. A few clarifications plus

more than a few complications,” available at: http://www.bruno-latour.fr/sites/default/files/P-67%20ACTOR-

NETWORK.pdf.

 M. Ma

241

familiarity. OOP, therefore, reinforces the argument that for a legal codex(t), there must first be a

continuity of conceptualization. This is continuity must be informed by legal constructions in natural

language. Subsequently, vocable code may be informative of the manner in which text and code are

interwoven.

Vocable code is a play on secondary notation and considers the performativity of code. It emphasizes

how code “mirrors the instability inherent in human language in terms of how it expresses itself, and

is interpreted.”
948

 In understanding the instability of code, it is then possible to recognize how

particular meanings may be “open to misinterpretation and reinvention.”
949

 Importantly, vocable

code does not regard the prospect of misinterpretation as a flaw, but simply as an attribute. Vocable

code is an elaboration on the existing framework put forth by Cox and McLean in prior literature

(i.e., Speaking Code), transformed into a programming method. This framework highlights

Derrida’s notion of writing as marked by absence.
950

 It wrestles with the gap left by the ‘voice’ of the

author for the ‘voice’ of the prospective reader. The interest of the source code is to “blend form

with function.”
951

 The source code sends instructions to machines, while also communicates with

humans. One of the key practices to vocable code is “constraint-based writing.”
952

 This is understood

quite simply as writing program code with certain rules.
953

 However, these are stylistic rules, intended

to ‘undo’ the usual way of writing code, “such as not using the single x and y, one and zeros as

integers, true and false Boolean, or the single operator of > or <. The source code does not prioritize

efficiency […]”
954

 Therefore, this practice represents the duality of combining formal logic with poetic

expression; that even syntactic constraints can be intentionally normative and discursive.
955

A few conclusions may be drawn from aesthetic programming. First, the imagining of code as writing

reaffirms a fundamental argument of this dissertation. Namely, that code, like legal language, is a

948

 Id. at 167.

949

 Id.

950

 Recall again Jacques Derrida and deconstruction in The Linguistic Affair.

951

 Soon and Cox, supra 930 at 168.

952

 Id. at 169.

953

 For further detail on constraint-based writing, see Eva Heisler, “Winnie Soon, Time, Code, and Poetry,” Asymptote

Journal (Jan. 2020) https://www.asymptotejournal.com/visual/winnie-soon-time-code-and-poetry/.

954

 Id.

955

 The core method for structuring vocable code is to use very specific constraints on its structure. Yet, they may be

equally discernible for its meaning. See id.

 M. Ma

242

social phenomenon that inherits meaning through historical and institutional legacy.
956

 As a result,

legal codex(t) necessitates preserving a network understanding of both the internal order and

relationship to other discourses. This is demonstrably possible through OOP as well as code’s

inherent composability. Second, for there to be a successful “grafting,” code as legal expression must

be able to uphold its conceptual continuity. To do so, there must be a reevaluation of object

abstraction and secondary notation.

Interestingly, there are emerging prospects in this regard. AuthoritySpoke, developed by Matt Carey,

is both a platform and set of tools that work with three forms of legal data: (1) court opinions; (2)

legislative enactments; and (3) legal procedural rules.
957

 Using Python classes, AuthoritySpoke

employs an OOP to represent various aspects of legal reasoning. Importantly, AuthoritySpoke does

not intend to ‘translate’
958

 legal language. Instead, its goal is to provide computational annotations of

existing text.
959

 These annotations overlay legal documents and are designed to help clarify legal

concepts. Moreover, it preserves both the technical and legal ancestry by using (1) existing Python

programming patterns; and (2) the same natural language phrasing to articulate legal concepts. This

offers a method of reconciling technical with legal norms.

Consider the excerpt from AuthoritySpoke’s technical documentation:
960

956

 Refer to Peter Goodrich, Legal Discourse: Studies in Linguistics, Rhetoric and Legal Analysis 144-151 (1985).

957

 “An Introduction to AuthoritySpoke,” AuthoritySpoke

https://authorityspoke.readthedocs.io/en/latest/guides/introduction.html (accessed Jun. 22, 2021).

958

 In the meaning consistent with Weaving the Code.

959

 AuthoritySpoke explicitly does not intend to turn Python into logic programming nor designed as a deep-learning

model. See “Using Python Template Strings to Represent Legal Explanations,” Python for Law (Jan. 22, 2021)

https://pythonforlaw.com/2021/01/25/python-template-strings.html#h-higher-order-predicates. See also “Using Python

Template Strings to Represent Legal Explanations,” AuthoritySpoke

https://authorityspoke.readthedocs.io/en/latest/guides/template_strings.html (accessed Jun. 22, 2021).

960

 Id.

https://authorityspoke.readthedocs.io/en/latest/guides/introduction.html
https://pythonforlaw.com/2021/01/25/python-template-strings.html#h-higher-order-predicates
https://authorityspoke.readthedocs.io/en/latest/guides/template_strings.html

 M. Ma

243

Observably, Carey applies a form of “constraint-based writing,” as previously described by Soon and

Cox. This is revealed in the explanation on the use of “means” rather than “==.” The added

method, as opposed to the syntactic operator, is exemplary of critical coding. The choice to use a

“means” function highlights that the code is sensitive to the possibility of multiple meanings.

Furthermore, the function does not ascertain a particular meaning, but rather highlights a relational

connection between one or more entities. Also, it is notable that these functions are based in

predicate logic. What may be gathered, again, is the marriage of logic and poetic expression. Though

code operates within logical structures, it is, nonetheless, discursive. The AuthoritySpoke

documentation offers many other examples (i.e., implicature,
961

 temporal reference
962

) worthy of

further exploration. It must be disclaimed that they are currently in their infancy and are continuously

adding new functions to their platform. Still, a preliminary look into their code work illustrates the

rising potential of legal codex(t). An area that remains outstanding is how AuthoritySpoke may be

able to capture legal fictions.

Another fascinating prospect may be a re-evaluation of programming languages for contracts. To

recall, I reflected on the legal effect of annotations in certain formal languages (e.g., Solidity, Sophia,

or Lexon). A ‘quick fix’ that was proposed was to give legal authority to these annotations. This

approach was suggested by Shaanan Cohney and David Hoffman in their article, “Transactional

Scripts in Contract Stacks.” They noted that layering the script with natural language could form a

‘contract stack,’ whereby promises are ‘legally-operative.’
963

 In effect, Cohney and Hoffman describe

the practice of secondary notation, and specifically the act of “commenting out.” They argue that in

the context of contractual disputes, courts should read code “with its natural language comments and

commit logs” as they have “communicative meaning” that should be ascertained and enforced.
964

Fundamentally, they point to the need of ‘reading’ contracts holistically with code.

961

 “Enactments and Implicature,” AuthoritySpoke
https://authorityspoke.readthedocs.io/en/latest/guides/introduction.html#enactment-objects-and-implication (accessed

Jun. 22, 2021).

962

 Consider the use of tense and legal analysis as occasionally “backward-looking.” See for example “Using Python

Template Strings to Represent Legal Explanations,” supra 959.

963

 See Shaanan Cohney and David Hoffman, Transactional Scripts in Contract Stacks, 105 MINNESOTA L. REV. 319,

362-363 (2020).

964

 Id. at 360.

https://authorityspoke.readthedocs.io/en/latest/guides/introduction.html#enactment-objects-and-implication

 M. Ma

244

Their argument becomes particularly significant in light of using secondary notation in an aesthetic

manner. That is, legal agreements would be drafted either by (1) interplaying secondary notation

with executable code, or (2) writing constraint-based source code that it is both expressive and

executable. Again, this has been seen in the examples of vocable code and Harwood’s Class Library.

Rather than stacking, legal codex(t) is a package. It does not compartmentalize between natural

language and code but, instead, interlaces them. In this way, code not only performs, but is

performative.

Reflecting on aesthetic programming confirms that there may be merit in finding deeper methods of

writing code. In continuing to equate code as binary, and as products solely of formal logic, we lose

the richness of its expressive potential. More importantly, it maintains the notion that law and

computation are incommensurable systems. By experimenting with code as writing, characteristics

of code were revealed to be characteristics of natural language. In turn, this demonstrated that the

linguistic competence of code has largely been left unexplored. Therefore, the next step is to evaluate

the extent to which natural language will continue to be the default tool for legal writing; or whether

legal concepts will begin to think through code.

 M. Ma

245

APPENDICES

 M. Ma

246

Appendix B: Series A Term Sheet

TERM SHEET

Company: [__________], a Delaware corporation.

Securities: Series A Preferred Stock of the Company (“Series A”).

Investment

Amounts:

$[_] million from [__________] (“Lead Investor”)

$[_] million from other investors

Convertible notes and safes (“Convertibles”) convert on their terms into

shadow series of preferred stock (together with the Series A, the “Preferred

Stock”).

Valuation: $[_] million post-money valuation, including an available option pool equal

to [__]% of the post-Closing fully-diluted capitalization.

Liquidation

Preference:

1x non-participating preference. A sale of all or substantially all of the Company’s

assets, or a merger (collectively, a “Company Sale”), will be treated as a liquidation.

Dividends: 6% noncumulative, payable if and when declared by the Board of Directors.

Conversion to

Common Stock:

At holder’s option and automatically on (i) IPO or (ii) approval of a majority

of Preferred Stock (on an as-converted basis) (the “Preferred Majority”).

Conversion ratio initially 1-to-1, subject to standard adjustments.

Voting Rights: Approval of the Preferred Majority required to (i) change rights, preferences

or privileges of the Preferred Stock; (ii) change the authorized number of

shares; (iii) create securities senior or pari passu to the existing Preferred

Stock; (iv) redeem or repurchase any shares (except for purchases at cost

upon termination of services or exercises of contractual rights of first refusal);

(v) declare or pay any dividend; (vi) change the authorized number of

directors; or (vii) liquidate or dissolve, including a Company Sale. Otherwise

votes with Common Stock on an as-converted basis.

Drag-Along: Founders, investors and 1% stockholders required to vote for a Company Sale

approved by (i) the Board, (ii) the Preferred Majority and (iii) a majority of

Common Stock [(excluding shares of Common Stock issuable or issued upon

conversion of the Preferred Stock)] (the “Common Majority”), subject to

standard exceptions.

Other Rights &

Matters:

The Preferred Stock will have standard broad-based weighted average anti-

dilution rights, first refusal and co-sale rights over founder stock transfers,

registration rights, pro rata rights and information rights. Company counsel

drafts documents. Company pays Lead Investor’s legal fees, capped at

$30,000.

Appendix A

 M. Ma

247

Board: [Lead Investor designates 1 director. Common Majority designates 2

directors.]

Founder and

Employee Vesting:

Founders: [_______________].

Employees: 4-year monthly vesting with 1-year cliff.

No Shop: For 30 days, the Company will not solicit, encourage or accept any offers for

the acquisition of Company capital stock (other than equity compensation for

service providers), or of all or any substantial portion of Company assets.

 M. Ma

 248

The “No Shop” is legally binding between the parties. Everything else in this term sheet is non-binding

and only intended to be a summary of the proposed terms of this financing.

[COMPANY]

 By:

 Name:

Title:

Date:

[LEAD INVESTOR]

 By:

 Name:

Title:

Date:

 M. Ma

 249

BIBLIOGRAPHY

 M. Ma

 250

Prolog(ue)

Benjamin Alarie, The Path of the Law: Towards Legal Singularity, 66 U. TORONTO L.J. 443(2016)

Kevin Ashley, Artificial Intelligence and Legal Analytics: New Tools for Law Practice in the Digital

Age (2017).

Joshua Browder, “Law as Code: A Legal System Shaped by Software, Future (Jun. 15, 2021)

https://future.a16z.com/law-as-code/.

Julie Cohen, Internet Utopianism and the Practical Inevitability of the Law, 18 DUKE L. & TECH.

REV. 85 (2019).

Mark Fenwick and Erik Vermeulen, “The Lawyer of the Future as ‘Transaction Engineer:’ Digital

Technologies and the Disruption of the Legal Profession,” in Marcelo Corrales, Mark Fenwick,

and Helena Haapio (eds.) in Legal Tech, Smart Contracts and Blockchain (2019).

Mireille Hildebrandt, “Intricate entanglements of law and technology,” in Smart Technologies and

the End(s) of Law: Novel Entanglements of Law and Technology (2015).

Mireille Hildebrandt, “The end of law or Legal Protection by Design,” in Smart Technologies and

the End(s) of Law: Novel Entanglements of Law and Technology (2015).

Mireille Hildebrandt, “‘Legal by Design’ or ‘Legal Protection by Design’” in Law for Computer

Scientists (2020).

Mireille Hildebrandt, The adaptive nature of text-driven law, J. OF CROSS-DISCIPLINARY

RESEARCH IN COMPUTATIONAL LAW (CRCL) 1 (2020).

Lawrence Lessig, Code 2.0 (2
nd

 ed. 2006).

Daniel W. Linna Jr., The Future of Law and Computational Technologies: Two Sides of the

Same Coin, MIT COMPUTATIONAL LAW REPORT Release 1.0 (2019) available at:

https://law.mit.edu/pub/thefutureoflawandcomputationaltechnologies/release/2.

Christopher Markou and Simon F. Deakin, “Is Law Computable? From Rule of Law to Legal

Singularity,” University of Cambridge Faculty of Law Research Paper (Apr. 30, 2020) available at:

https://ssrn.com/abstract=3589184.

Adrienne Mayor, Gods and Robots: Myths, Machines, and Ancient Dreams of Technology

(2018).

Evgeny Morozov, To Save Everything, Click Here: The Folly of Technological Solutionism

(2013).

Karen Petroski, Legal fictions and the limits of legal language, 9 INT. J. OF L. IN CONTEXT 485

(2013).

Frank Pasquale, New Laws of Robotics: Defending Human Expertise in the Age of AI (2020).

https://future.a16z.com/law-as-code/
https://law.mit.edu/pub/thefutureoflawandcomputationaltechnologies/release/2
https://ssrn.com/abstract=3589184

 M. Ma

 251

Alex “Sandy” Pentland, A Perspective on Algorithms, MIT COMPUTATIONAL LAW REPORT

Release 1.0 (2019), available at: https://law.mit.edu/pub/aperspectiveonlegalalgorithms/release/3.

Harry Surden, Artificial Intelligence and Law: An Overview, 35 GA. ST. U. L. REV. 1305 (2019).

Pierre Schlag, Commentary: The Aesthetics of American Law, 115 HARV. L. REV. 1047 (2002)

Noah Waisberg and Dr. Alexander Hudek, AI for Lawyers (2021).

Shoshana Zuboff, The Age of Surveillance Capitalism: The Fight for a Human Future at the New

Frontier of Power (2019).

The Linguistic Affair

Giorgio Agamben, The Signature of All Things (2009).

John L. Austin, How to Do Things with Words 16 (2
nd

 ed. 1975).

Francois Cooren, “In the Name of Law: Ventriloquism and Juridical Matters” in Kyle McGee

(ed.), Latour and the Passage of Law 249 (2015).

Marianne Constable, Law as Language, 1 CRITICAL ANALYSIS OF LAW 68 (2014)

Brenda Danet, Language in the Legal Process, 14 L. & SOC. REV. 445 (1980)

Jacques Derrida, “Signature Event Context” in Limited Inc. (1977).

Stanley Fish, Is There a Text in This Class? The Authority of Interpretative Communities (1980).

Stanley Fish, The Trouble with Principle (1999).

Lon Fuller, Legal Fictions, 25 ILLINOIS L. REV. 363 (1930a).

Michel Foucault, The Order of Things: An Archaeology of the Human Sciences (1970).

Peter Goodrich, Legal Discourse: Studies in Linguistics, Rhetoric and Legal Analysis (1985).

Clifford Geertz, Local Knowledge: Further Essays in Interpretative Anthropology (1983).

Jürgen Habermas, Between Facts and Norms: Contributions to a Discourse Theory of Law and

Democracy (1996).

Chris Hutton, Language, Meaning, and the Law (2009).

Hans Kelsen, Pure Theory of Law (first published in 1934, Max Knight trans., 1967).

Duncan Kennedy, A Semiotics of Legal Argument, 3 Collected Courses of the Academy of

European Law 317, 351 (1994).

https://law.mit.edu/pub/aperspectiveonlegalalgorithms/release/3

 M. Ma

 252

Niklas Luhmann, Law as a Social System 146 (2004).

David Mellinkoff, The Language of Law (1963).

George Orwell, “Politics and the English Language,” in Why I Write (2004)

Richard A. Posner, Law and Literature: A Misunderstood Relation (1988).

Peter M. Tiersma, Legal Language (1999), available at:

http://languageandlaw.org/LEGALLANG/LEGALLANG.HTM.

Geoffrey Samuel, Is legal reasoning like medical reasoning?, 35 LEGAL STUDIES 323 (2014).

Ferdinand de Saussure, Course in General Linguistics (Bloomsbury Revelations ed. 2013).

John Searle, A Classification of Illocutionary Acts, 5 Language in Society 1 (1976).

James Boyd White, The Legal Imagination (1973).

Ludwig Wittgenstein, Philosophical Investigations (2
nd

 ed. 1958).

Language Lego

Barbara Abbott, Presuppositions and common ground, 31 LINGUISTICS AND PHILOSOPHY 523

(2008).

Betty J. Birner, Language and Meaning (2018).

Andrew Carnie, Syntax: A Generative Introduction (3
rd

 ed. 2013).

Paul Elbourne, Meaning: A slim guide to semantics (2011).

Michael Genesereth and Vinay K. Chaudhri, Introduction to Logic Programming (2020).

H.P. Grice, “Logic and Conversation” in Cole et al. (eds.), Syntax and semantics 3: Speech Arts

(1975).

Christopher Potts, The Logic of Conventional Implicatures (2005).

White City v. PR Restaurants, No. 2006196313 (Mass. Cmmw. Oct. 31, 2006).

Michael J. Reddy, “A case of frame conflict in our language” in A. Ortony (ed.) Metaphor and

Thought (2
nd

 ed. 1993).

Michael L. Scott, Programming Language Pragmatics (4
th

 ed. 2016).

Benjamin Lee Whorf, Language, Thought, and Reality (1956).

http://languageandlaw.org/LEGALLANG/LEGALLANG.HTM

 M. Ma

 253

Case Studies on Translation

Layman E. Allen, Symbolic Logic: A Razor-Edged Tool for Drafting and Interpreting Legal

Documents, 66 YALE L. J. 833 (1957)

Layman E. Allen, “Language, Law, and Logic: Plain Legal Drafting for the Electronic Age,” B.

Niblett (ed.) Computer Science and Law 76 (1980).

Giosuè Baggio, Meaning in the Brain 62 (2018).

Bailey v. United States, 516 U.S. 137 (1995).

George Boole, The Laws of Thought (1854).

Anthony J. Casey & Anthony Niblett, The Death of Rules and Standards, Coase-Sandor Working

Paper Series in Law and Economics No. 738 (2015).

Anthony J. Casey and Anthony Niblett, Self-Driving Contracts, 43 J. OF CORP. LAW. 101 (2017).

Rudolf Carnap, Logical Syntax of Language (Routledge English ed. reprint, 2014).

Ilias Chalkidis and Dimitrios Kampas, Deep Learning in law: early adaptation and legal word

embeddings trained on large corpora, 27 ARTIFICIAL INTELLIGENCE AND LAW 171 (2018).

Noam Chomsky, “Remarks on Nominalization,” in R.A. Jacobs and P.S. Rosenbaum (eds.),

Readings in English Transformational Grammar (1970).

Walter Daelemans and Koenraad De Smelt, Default Inheritance in an Object-Oriented

Representation of Linguistic Categories, 41 INT’L J. OF HUMAN COMPUTER STUDIES 149 (1994).

Keith Devlin, Goodbye Descartes: The End of Logic and The Search for a New Cosmology of the

Mind (1997).

Henning Diedrich, Lexon: Digital Contracts (2020).

Phong-Khac Do et al., Legal Question Answering using Ranking SVM and Deep Convolutional

Neural Network, TENTH INTERNATIONAL WORKSHOP ON JURIS-INFORMATICS (2017), available

at: https://arxiv.org/abs/1703.05320.

Ron Dolin, “XML in Law: An Example of the Role of Standards in Legal Informatics”

(forthcoming 2021).

Zev J. Eigen, Empirical Studies of Contract, Faculty Working Paper 204 (2012), available at:

https://scholarlycommons.law.northwestern.edu/cgi/viewcontent.cgi?article=1203&context=facultyw

orkingpapers.

Zev J. Eigen, When and Why Individuals Obey Contracts: Experimental Evidence of Consent,

Compliance, Promise, and Performance, 41 J. OF LEGAL STUDIES 67 (2012).

https://arxiv.org/abs/1703.05320
https://scholarlycommons.law.northwestern.edu/cgi/viewcontent.cgi?article=1203&context=facultyworkingpapers
https://scholarlycommons.law.northwestern.edu/cgi/viewcontent.cgi?article=1203&context=facultyworkingpapers

 M. Ma

 254

David Freeman Engstrom and Daniel E. Ho, “Artificially Intelligent Government: A Review and

Agenda” in Roland Vogl (ed.), Big Data Law (2020).

John Rupert Firth, The Technique of Semantics, 34 TRANS. PHILOS. SOC. 36 (1935).

Jerry Fodor and Ernest Lepore, The red herring and the pet fish: Why concepts still can’t be

prototypes, 58 COGNITION 253 (1996).

Yulia Frumer, Translating Worlds, Building Worlds: Meteorology in Japanese, Dutch, and

Chinese, 109 ISIS 326 (2018).

Katrin Fundel, Robert Küffner, and Ralf Zimmer, RelEx – Relation extraction using dependency

parse trees, 23 BIOINFORMATICS 365 (2006).

Michael Genesereth, “The Legacy of Hammurabi” (Mar. 17, 2021), available at:

https://law.stanford.edu/2021/03/17/the-legacy-of-hammurabi/.

Joseph A. Grundfest and A.C. Pritchard, Statutes with Multiple Personality Disorders: The Value

of Ambiguity in Statutory Design and Interpretation, 54 STAN. L. REV. 627 (2002).

H.L.A. Hart, The Concept of Law 1961).

Mireille Hildebrandt, “Law as computation in the era of artificial intelligence: Speaking law to the

power of statistics,” Draft for SPECIAL ISSUE U. TORONTO L.J., 13 (2019).

Douglas Hofstadter, Gödel, Escher, Bach preface-3 (Twentieth-anniversary ed. 1999).

Douglas Hofstadter, The Shallowness of Google Translate, The Atlantic (January 30, 2018),

https://www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-google-

translate/551570/.

Oliver Wendell Holmes Jr., The Path of Law, 10 HARV. L. REV. 457 (1897).

Oliver Wendell Holmes Jr., The Common Law Lecture I: Early Forms of Liability (Project

Gutenberg eBook, 2000), available at: https://www.gutenberg.org/files/2449/2449-h/2449-

h.htm#link2H_4_0001.

Sheila Jasanoff, Can Science Make Sense of Life? (2019).

Michael Jeffrey, What Would an Integrated Development Environment for Law look like?, MIT

COMPUTATIONAL LAW REPORT Release 1.1 (2020), available at:

https://law.mit.edu/pub/whatwouldanintegrateddevelopmentenvironmentforlawlooklike.

Daniel Martin Katz et. al., Complex societies and the growth of the law, Sci Rep 10, 18737 (2020),

available at: https://doi.org/10.1038/s41598-020-73623-x.

Duncan Kennedy, Legal Reasoning: Collected Essays (Davies Group Publishers, 2008).

https://www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-google-translate/551570/
https://www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-google-translate/551570/
https://www.gutenberg.org/files/2449/2449-h/2449-h.htm#link2H_4_0001
https://www.gutenberg.org/files/2449/2449-h/2449-h.htm#link2H_4_0001
https://law.mit.edu/pub/whatwouldanintegrateddevelopmentenvironmentforlawlooklike
https://doi.org/10.1038/s41598-020-73623-x

 M. Ma

 255

Katja Langenbucher, Economic Transplants: On Lawmaking for Corporations and Capital

Markets 8-9 (2017).

Lionel A. Levert, “Harmonization and Dissonance: Language and Law in Canada and Europe,”

Department of Justice Canada, Bijuralism and Harmonization: Genesis (May 7, 1999)

https://www.justice.gc.ca/eng/rp-pr/csj-sjc/harmonization/hfl-hlf/b1-f1/bf1e.html.

Kingsley Martin, “Legal Technology Barriers – Understanding Language and Exercising

Judgment,” Legal Executive Institute (September 24, 2015),

https://www.legalexecutiveinstitute.com/legal-technology-barriers-understanding-language-and-

exercising-judgement/.

Christopher Markou and Simon Deakin, Ex Machina Lex: The Limits of Legal Computability,

Working Paper (2019), available at SSRN: https://ssrn.com/abstract=3407856.

Denis Merigoux and Liane Huttner, Catala: Moving Towards the Future of Legal Expert Systems,

HAL ARCHIVES-OUVERTES (2020).

Muscarello v. United States, 524 U.S. 125 (1998).

New Zealand Law Foundation Law and Information Policy Project, Legislation as Code for New

Zealand: Opportunities, Risks, and Recommendations 3 (2021).

OECD Observatory of Public Sector Innovation, Cracking the Code: Rulemaking for Humans

and Machines (2020).

Monica Palmirani and Fabio Vitali, “Akoma-Ntoso for Legal Documents,” Giovanni Sartor et. al

(eds.), Legislative XML for the Semantic Web (2011).

Frank Pasquale, A Rule of Persons, Not Machines: The Limits of Legal Automation, 87 GEO.

WASH. L. REV. 2 (2019)

Frank Pasquale, The Substance of Poetic Procedure: Law & Humanity in the Work of Lawrence

Joseph, 32 LAW & LITERATURE 1 (2020).

Katherina Pistor and Chenggang Xu, Incomplete Law, 35 NYU J. INT’L L. & POL. 931 (2003).

Eric Posner and Adrien Vermeule, Inside or Outside the System?, 80 U. CHI. L. REV. 1743

(2013).

Richard A. Posner, The Incoherence of Antonin Scalia, New Republic (August 24, 2012),

http://www.newrepublic.com/node/106441/print.

Richard A. Posner, The Law and Economics of Contract Interpretation, 83 TEXAS L. REV.

1581(2005).

Gerald J. Postema, Implicit Law,13 LAW AND PHILOSOPHY 361 (1994).

Joseph Raz, Legal Principles and the Limits of Law, 81 YALE L. J. 823 (1972).

https://www.justice.gc.ca/eng/rp-pr/csj-sjc/harmonization/hfl-hlf/b1-f1/bf1e.html
https://www.legalexecutiveinstitute.com/legal-technology-barriers-understanding-language-and-exercising-judgement/
https://www.legalexecutiveinstitute.com/legal-technology-barriers-understanding-language-and-exercising-judgement/
https://ssrn.com/abstract=3407856

 M. Ma

 256

Richard M. Re and Alicia Solow-Niederman, Developing Artificially Intelligent Justice, 22 STAN.

TECH. L. REV. 242 (2019).

Neil M. Richards and William D. Smart, “How should the law think about robots?” in Ryan Calo

et al, eds, Robot Law (2018).

Eleanor Rosch and Carolyn B. Mervis, Family resemblances: Studies in the internal structure of

categories, 7 COGNITIVE PSYCHOLOGY 573 (1975).

Geoffrey Samuel, The Reality of Contract in English Law, 13 TULSA L. J. 508, 523 (2013).

Antonin Scalia and Bryan A. Garner, Reading Law: The Interpretation of Legal Texts xxvii-xxix

(2012).

Frederick Schauer, “Ruleness,” Dupret Baudouin et al. (eds.) Legal Rules in Practice (2021

Forthcoming).

Smith v. United States, 508 U.S. 223 (1993).

Henry E. Smith, Modularity in Contracts: Boilerplate and Information Flow, 10 MICH. L. REV.

1175 (2006).

Fabio Vitali, “A Standard-Based Approach for the Management of Legislative Documents,”

Giovanni Sartor et. al (eds), Legislative XML for the Semantic Web (2011).

Langdon Winner, Do Artifacts Have Politics?, 109 DAEDALUS 121 (1980).

Meng Weng Wong, Rules as Code – Seven Levels of Digitisation, RESEARCH COLLECTION

SCHOOL OF LAW (2020).

Michael J.B. Wood, Drafting Bilingual Legislation in Canada: Examples of Beneficial Cross-

Pollination between Two Language Versions, 17 STATUTE. L. REV 66 (1996).

Stephen Wolfram, “Computational Law, Symbolic Discourse, and the AI Constitution,” in Ed

Walters (ed.), Data-Driven Law: Data Analytics and New Legal Services (2019).

Richard C. Wydick, Plain English for Lawyers (2005).

Weaving the Code

Mikhail Bakhtin, Dialogic Imagination: Four Essays (1981).

Emily M. Bender and Alexander Koller, “Climbing Towards NLU: On Meaning, Form, and

Understanding in the Age of Data,” Proceedings of the 58
th
 Annual Meeting of the Association of

Computational Linguistics (July 2020) available at: https://aclanthology.org/2020.acl-main.463/.

Alexander Campolo, “Thinking, Judging, Noticing, Feeling”: John W. Tukey against the

Mechanization of Inferential Knowledge, 5 KNOW: A JOURNAL ON THE FORMATION OF

KNOWLEDGE 83 (2021).

https://aclanthology.org/2020.acl-main.463/

 M. Ma

 257

Geoffrey Cox, Alex McLean, and Adrian Ward, “The Aesthetics of Generative Code,”

International Conference on Generative Art (2000).

Laurence Diver, Computational legalism and the affordance of delay in law, J. OF CROSS-

DISCIPLINARY RESEARCH IN COMPUTATIONAL LAW [CRCL] 6 (December 2020).

Sandra Fredman, Intersectional Discrimination in EU Gender Equality and Non-Discrimination

Law 31 (2016), available at http://ohrh.law.ox.ac.uk/wordpress/wpcontent/up.

Mireille Hildebrandt, “Code Driven Law Scaling the Past and Freezing the Future,” Christopher

Markou and Simon Deakin (eds.) in Critical Perspectives in Law and Artificial Intelligence (2020).

Jerry Hobbs et al., Interpretation as Abduction, 63 ARTIFICIAL INTELLIGENCE 69 (1993).

Jerry R. Hobbs et. al, “The TACITUS System,” in Robust Processing of Real-World Natural-

Language Texts, https://www.isi.edu/~hobbs/robust/node2.html (Feb. 24, 2004).

Erik J. Larson, The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do

(2021).

Bruno Latour, “Where are the Missing Masses? The Sociology of a Few Mundane Artifacts,” in

Bijker and Law (eds.), Shaping Technology/Building Society: Studies in Sociotechnical Change

(1992).

Jeffrey M. Lipshaw, The Persistence of “Dumb” Contracts, 2 STAN. J. BLOCKCHAIN L. & POL’Y 1

(2019), available at: https://stanford-jblp.pubpub.org/pub/persistence-dumb-contracts/release/1.

Lin Ma and Jaap van Brakel, Fundamentals of Comparative and Intercultural Philosophy (2016).

Mark C. Marino, Critical Code Studies (2020)

George Pavlakos, “Two Concepts of Objectivity,” in George Pavlakos (ed.), Law, Rights, and

Discourse: The Legal Philosophy of Robert Alexy (2007).

Loss Pequeño Glazier, “Code as Language,” Leonardo Electronic Almanac (2006)

Paul Ricoeur, From Text to Action (1991).

Dan Sperber and Deirdre Wilson, Relevance: Communication and Cognition (1986).

Epilog(ue)

Shaanan Cohney and David Hoffman, Transactional Scripts in Contract Stacks, 105 MINNESOTA

L. REV. 319 (2020).

Geoffrey Cox and Alex McLean, Speaking Code: Coding as Aesthetic and Political Expression

(2012).

http://ohrh.law.ox.ac.uk/wordpress/wpcontent/up
https://www.isi.edu/~hobbs/robust/node2.html
https://stanford-jblp.pubpub.org/pub/persistence-dumb-contracts/release/1

 M. Ma

 258

Geoffrey Cox, Alex McLean, and Adrian Ward, “Coding Praxis: Reconsidering the Aesthetics of

Code,” in Olga Goriunova and Alexei Shulgin (eds.), read_me, Software Art and Cultures (2004).

Cecile Crutzen and Erna Kotkamp, “Object Orientation” in Matthew Fuller (ed.) Software Studies

(2008).

Eva Heisler, “Winnie Soon, Time, Code, and Poetry,” Asymptote Journal (Jan. 2020)

https://www.asymptotejournal.com/visual/winnie-soon-time-code-and-poetry/.

Bruno Latour, “On actor-network theory. A few clarifications plus more than a few complications,”

available at: http://www.bruno-latour.fr/sites/default/files/P-67%20ACTOR-NETWORK.pdf.

Winnie Soon and Geoff Cox, Aesthetic Programming: A Handbook of Software Studies (2020)

Linda Xie, “Composability is Innovation,” Future (Jun. 15, 2021) https://future.a16z.com/how-

composability-unlocks-crypto-and-everything-else/.

https://www.asymptotejournal.com/visual/winnie-soon-time-code-and-poetry/
http://www.bruno-latour.fr/sites/default/files/P-67%20ACTOR-NETWORK.pdf

Resumés de la Thèse

NOM: Ma

Prenom: Megan

L’intitulé de la these: Story of a Legal Codex(t): Writing Law in Code

Nom de votre directrice de thèse: MUIR WATT, Horatia

Resumè en anglais:

How is the law measured? For long, it appeared that the law cannot be measured. While there are

standards and processes, the law was not regarded as quantifiable. Only in the advent of recent

technological advancements in law have there been considerations for metrics. These technologies

sought to tackle the legal field’s inherent protectionism fueled by deep asymmetries in information.

Consequently, the rise in legal ‘metrics’ stems from an access to justice perspective. The assumption

is that in making the law more quantifiable, knowledge that has been historically opaque and

inaccessible outside of the legal community may be revealed.

Alternatively, it may be argued that the law has always been measurable. Words, through linguistic

devices, have shaped legal meaning. In effect, the law conceivably has been measured by its words.

In fact, “law exists as text” (Hildebrandt, 2015). I further this line of thinking by investigating natural

language as the key vessel through which the law has manifested itself. Does the law depend on

natural language to do its work? Importantly, is the language sufficient at housing legal norms?

This dissertation seeks to tell a narrative. Broadly, it chronicles the story of law’s intimate

relationship with language. But more specifically, the thesis details the law’s recent encounter with

the digital. When law met technology, its relationship with language changed, invoking skepticism

around its fitness for the conveyance of legal concepts. With the introduction of an innovative

player – code – the law had perceivably found its new linguistic match. As a result, code was tested

for its ability to perform and accommodate for the law’s demands. Ultimately, confronted by

natural language and code, the law is asked whether code can be its language.

Resumé en français

Comment mesure-t-on le droit ? Longtemps, le droit semblait résister à la mesure. Bien qu'il existe

des normes et des processus, le droit n'était pas considéré comme quantifiable. Ce n'est qu'avec

l'avènement des récentes avancées technologiques dans le domaine du droit que l'on a commencé

à envisager une telle quantification. Ces technologies ont cherché à s'attaquer au protectionnisme

inhérent au domaine juridique, alimenté par de profondes asymétries d'information. Par

conséquent, l'essor de la "métrique" juridique découle d'une perspective d'accès à la justice.

L'hypothèse est qu'en rendant le droit plus quantifiable, des connaissances historiquement opaques

et inaccessibles en dehors de la communauté juridique peuvent être révélées.

On peut également faire valoir que le droit a toujours été mesurable. Les mots, par le biais de

dispositifs linguistiques, ont façonné la signification juridique. En effet, il est concevable que le

droit ait été mesuré par ses mots. En effet, "le droit existe en tant que texte" (Hildebrandt, 2015).

J'approfondis cette ligne de pensée en examinant le langage naturel en tant que vecteur clé à travers

lequel le droit s'est manifesté. La loi dépend-elle du langage naturel pour faire son travail ? Plus

important encore, le langage est-il suffisant pour abriter les normes juridiques ?

Cette thèse cherche à raconter une histoire. De manière générale, elle relate l'histoire de la relation

intime du droit avec le langage. Mais plus spécifiquement, la thèse détaille la rencontre récente du

droit avec le numérique. Lorsque le droit a rencontré la technologie, sa relation avec le langage a

changé, suscitant le scepticisme quant à son aptitude à transmettre des concepts juridiques. Avec

l'introduction d'un acteur innovant - le code - le droit a visiblement trouvé sa nouvelle adéquation

linguistique. En conséquence, le code a été mis à l'épreuve quant à sa capacité à fonctionner et à

répondre aux exigences du droit. Finalement, confronté au langage naturel et au code, le droit se

demande si le code peut être son langage.

	PhD in Law Updated Cover Page_MA Megan
	PhD in Law Full_MA Megan.pdf
	PhD in Law complete_MA Megan.pdf
	PhD in Law with Resumes_MA Megan.pdf
	PhD in Law Final_MA Megan.pdf
	PhD in Law Doctoral Thesis Final_MA Megan
	PROLOG(UE)
	A. STAGING
	From Mythology to Technological Utopia
	Systems Alignment and Philosophical Aspirations
	When Law Met AI
	Legal Design and Law/Code Dialectic

	1- The Linguistic Affair
	The Language of Law
	Law’s Language
	Law as Language
	An Ode to Natural Language: Constructing (Con)text

	2- Language Lego
	Syntax: Sentence Architecture and Structural Integrity
	Semantics: To Mean or Not to Mean
	Pragmatics: Is that what it means?
	Programming Languages: Technological Twin or Distant Cousin?
	Levelling the field: Reconciling Computation and Language
	3A- Writing in Sign (Computable Contracts)
	3B- Object-Oriented Design of Legal Text (Judicial Decisions)
	3C- The Legislative Recipe (Machine-Readable Legislation)

	4- Weaving the Code
	Faux Amis and Hybrid Forms
	Computational Legal Inferences and Towards a Pragmatics of Code

	EPILOG(UE)
	APPENDICES
	BIBLIOGRAPHY
	Prolog(ue)
	The Linguistic Affair
	Language Lego
	Case Studies on Translation
	Weaving the Code
	Epilog(ue)

	Pages from R_Wydick_Plain_English_for_Lawyers (1)-2

	Resumés de la Thèse_MA Megan

