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Abstract

Nowadays, more and more wind turbines are erected on-shore or off-shore to gen-
erate electrical energy from wind. Since the valuable big-size wind turbines au-
tomatically operate under harsh environment, undesirable downtime occurs as a
consequence of high failure caused by the environment. Therefore, the research
about the reliability of wind turbine attract a lot of attention.

The main component studied in this thesis is the hydraulic pitch system which is a
crucial component for variable-speed wind turbines. Three subjects are addressed
in this thesis: the hydraulic pitch system deteriorating modelling, the remaining
useful life estimation of the hydraulic pitch system, and its maintenance policy.
The methods proposed in the thesis are not only limited to the hydraulic pitch
system, but also can be extended to the dynamic systems that operate under
various environment. The main contribution of the thesis is that the influence of
the environment (wind speed) is always taken into account. A continuous long-
term wind speed model is proposed as a research byproduct in the thesis. A wind
turbine simulator with deteriorating hydraulic pitch system is established to carry
out the numerical simulations.

This thesis can be considered as an application about stochastic processes on the
field of wind energy. Such as the wind speed model based on a two-level Markov
chain embedded diffusion processes, the deterioration process of hydraulic pitch
system modeled by a gamma process and Markov chain. On these basis, the
remaining useful life and the unavailability of wind turbine are discussed.

Key words: Wind turbines, Winds–Speed, Stochastic processes, Service life (En-
gineering), Maintenance
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Résumé

De plus en plus d’éoliennes sont exploitées pour produire de l’énergie électrique.
Les éoliennes de grande taille fonctionnent de manière automatique dans des con-
ditions environnementales souvent difficiles. Il en résulte des dégradations et des
défaillances provoquant des arrêts indésirables. En conséquence, les recherches sur
la fiabilité des éoliennes attirent beaucoup d’attention. Le principal composant
étudié dans cette thèse est un composant crucial pour les éoliennes à vitesse vari-
able : le système hydraulique d’orientation des pales.

Trois sujets sont abordés : la modélisation de la détérioration du système hy-
draulique de contrôle de l’angle de tangage, l’estimation de sa durée de vie utile
restante et une politique de maintenance. La principale contribution de la thèse
est la prise en compte de l’influence de l’environnement caractérisé par la vitesse
du vent. Un modèle continu à long terme d’évolution de la vitesse du vent est pro-
posé. Un simulateur d’éolienne avec système hydraulique de contrôle de tangage
se détériorant est établi pour effectuer les simulations numériques.

Cette thèse illustre l’intérêt des processus stochastiques pour la modélisation dans
le domaine de l’énergie éolienne. Le modèle de vitesse du vent s’appuie sur
une châıne de Markov à deux niveaux avec diffusion intégrée. Le processus de
détérioration du système hydraulique de contrôle est modélisé par un proces-
sus gamma couplé à une châıne de Markov. Sur cette base, la durée de vie et
l’indisponibilité de l’éolienne sont modélisées, évaluées et utilisées pour l’aide à la
décision de maintenance.

Mots-clés : Eoliennes; Vents – Vitesse; Entretien; Processus stochastiques; Durée
de vie (ingénierie)
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General introduction

Since the Paris Agreement has been signed among the 195 members of the United
Nations Framework Convention on Climate Change (UNFCCC), an increasing
number of countries have announced their plans to reduce the emission of CO2

and to develop alternative clean energy like wind energy, solar energy, and tidal
energy, etc. In recent years, due to the ability of its worldwide exploitation and the
rapid technical development of wind turbines, the clean and renewal wind energy
is occupying a large section of the energy market. In Europe, the wind energy pro-
duction in 2016 reached 13489.9 MW and the estimated electricity production from
wind power in the Europe Union (EU) in 2016 is 302.7 TWh [1]. By 2030, wind
energy could cover almost 30% of EU’s electricity demand [2]. However, because of
the inherent randomness of wind speed, the wind power industry faces enormous
challenges in practice that makes the comprehensive and efficient development of
wind power industry being considerably restricted.

One of the main issues to enhance the wind power development is the wind forecast-
ing in short and long-term for different geographical sites. Wind speed modelling
is crucial to study the reliability of the wind turbines, to estimate the remain-
ing useful life (RUL) of their key components, to give an accurate output power
forecasting, control strategy optimization, etc.

As a wind turbine operates in a harsh and varying environment, wind turbines have
higher failure rate compared with other gas/steam turbines used in the energy in-
dustry. The study about the reliability of wind turbine is always attractive, for
wind turbines are expected to service more than decades, even two decades. How-
ever, the operation and maintenance (O&M) costs of wind power which accounts
for 20%-30% of the cost for a wind turbine project, are higher than desirable.
Additionally, with the extension of wind farm to offshore, the influence of environ-
ment (such as the wide wind speed range of operation, the inherent characteristic of
wind speed/wave), brings new challenges to this topic. The continuous changeable
operational environment makes wind turbine withstand constantly changing loads,
leading to gradual changes in the critical components’ performance (blade, pitch
system, bearing, gearbox et etc.). In other words, the deterioration of performance
over time results in failures. Hence, it is necessary to monitor the deterioration
process, estimate the current health status and predict the remaining useful life
(RUL) for critical wind turbine components. Prediction and health management
(PHM) is one of the useful strategies to improve the reliability of system and re-
duce the OM cost. The RUL prediction according to the information provided
by condition monitoring system (CMS) is a key procedure of PHM, due to its
important role in maintenance policy decision and operation optimization. To ap-
propriately organize maintenance schedule in long-term and budget maintenance
cost, it is necessary study the unavailability of wind turbine.

In Chapter 1, a brief review of the literature on the evolutions of wind turbine
is presented. The existing wind speed model, condition monitoring, deteriora-
tion model, maintenance and maintenance policies and stochastic processes are
introduced, respectively
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In Chapter 2, we devotes to realize a wind turbine simulator that combines a
deteriorating hydraulic pitch system. As the 5-MW basline wind turbine developed
by the National Renewable Energy Laboratory (NREL) is the base of the work,
an introduction about it will be given firstly, followed by an introduction about
pitch control system (control strategy and pitch actuator). Then a method about
the deteriorated hydraulic system modelling is arranged. Finally, this chapter
ends with the wind turbine simulator realization method in the environment of
Matlab/simulinkr.

In Chapter 3, a continuous wind speed generation method based on a 2-level
Markov chain and stochastic differential equations (SDEs) is proposed. Two SDEs
are discussed in this model framework. This model is capable of generating wind
speed with different time scales. For example, a one-second step wind speed gen-
eration can be performed during 10 minutes or for a few hours based on SDEs. In
line with the short time generation, a long-term generation for a few months or
years can be generated based on the outer Markov chain. The developed model is
particularly suitable to be merged with the deterioration model of wind turbine’s
key component, like blade-pitch system. Furthermore, this model could be applied
for studies of wind turbine’s power system like the dynamic behavior of generator.
This chapter is a part of a global modeling framework which allows jointly short-
term wind speed generation for closed-loop control of wind turbine and long-term
wind speed prognosis for the estimations about the remaining useful lifetime and
the unavailability.

In Chapter 4, RUL estimation methods for different timescales are proposed.
According to the historical climate data, windy season appears in a certain season
and wind speed has its distribution over a year. Hence, we can consider that the
environment (wind speed) where wind turbines operate have a stationary distribu-
tion. A RUL estimation methods based on the stationary distribution is discussed.
Moreover, we proposed a N-step RUL estimation model by means of matrix, which
is a speed and less computational consumption method.

It should be kept in mind that the operational environment of wind turbine is
various and harsh so that the maintenance can not be carried out whenever we
want. Therefore, a random maintenance delay exists according to the environment
condition. To prevent failure caused by the deterioration during the maintenance
delay, it is necessary to propose an alarm threshold. When the deterioration level
excesses the threshold, maintenance can be prepared and once the environment
condition allows to maintain, it can be carried out immediately. Therefore, in
Chapter 5, we discuss the unavailability model considering the maintenance delay
for wind turbine.

In Chapter 6, the conclusions are made and future perspectives are discussed.

viii
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7.2.2 Procédure de génération de la vitesse du vent . . . . . . . . 110

7.3 Estimation de la durée de vie utile résiduelle . . . . . . . . . . . . . 111

7.3.1 Simplification et description du modèle pour le système en
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7.1 Évolution de la puissance nominale des éoliennes . . . . . . . . . . . 100
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Chapter 1

State-of-the-art

Wind is one of the earliest powers used by man. Wind turbine is developed with
human’s requirements such as grind grain, pump water, cut lumber, etc. Nowa-
days, wind turbine is widely known for its utilisation of power generation. To
ensure a safe operation, and the reliability of wind turbine becomes a challenge
along with the rapid developments of wind turbine.

In this chapter, we will introduce the developments and evolutions of wind turbine,
which lead to the challenges about wind turbine’s reliability. The reliability of wind
turbine is a wide subject that contains different objects, methods and technologies.
However, this thesis mainly focuses on one component that is the hydraulic pitch
system. We studied its deterioration modelling by the means of stochastic process.
Moreover we study its remaining useful life estimation and the unavailability for
wind turbine caused by the maintenance of hydraulic pitch system. As the wind
turbine totally operates under variable environment, in our opinion, the influence of
operational environment (especially the wind speed) should be taken into account
in the study. Therefore, in this chapter, we will give a state-of-the-art about the
evolution of wind turbine, wind speed model, condition monitoring, deterioration
model, maintenance and maintenance policies.

1.1 Main components of wind turbine

Wind turbine with gearbox (structure shown in Figure 1.1) and directive-drive
wind turbine (structure shown in Figure 1.2) share the commercial wind power
market. The latter is also called gearless wind turbine whose rotor is directly
connected with a permanent magnet generator. The main components of wind
turbine are listed as follows:

• Rotor

It is the heart of a wind turbine which contains the blades and the hub.
Blades are used to capture the wind energy and convert it into mechanical
energy to force the rotor to rotate. Hub is used to support the blades and is
connected to other parts of the wind turbine.

1
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Figure 1.1: Structure of wind turbine with gearbox (Source: [3])

Figure 1.2: Structure of directive wind turbine (Source: [4])

• Pitch system

Pitch system turns the blades in/out of the wind to keep the rotor rotating
in a lager wind speed range. It is also an important power adjustment
system for variable speed wind turbine. It limits the power generation at
the rated output power and helps wind turbine to catch as much as possible
wind energy when wind speed is low. It consists of a control system and
actuators.

• Nacelle

Nacelle is installed at the top of tower connecting the rotor and the tower.
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It covers and protects the components inside itself form different weather
conditions.

• Yaw system

Yaw system makes the rotor face into the wind when the wind direction
changes. It consists of a control system and actuators.

• Gearbox (Not for directive-drive wind turbine)

It connects the low-speed shaft (connecting to rotor) to the high-speed shaft
which connected to the generator.

• Generator

It converts the wind energy to electrical power. The most commonly used
generators for wind turbines with gearbox are the synchronous AC generators
or the induction generator.

• Anemometer

It is applied to measure the wind speed and sends it to SCADA.

• Tower

Due to surface aerodynamic dray caused by land or water surface, wind
velocities increase at higher altitudes. The tower helps the nacelle to stand
at a high altitude so that improving the power generation of wind turbine.

1.2 Wind turbine operation

The operation of wind turbine is automatically controlled according to the condi-
tion of wind. A normal wind turbine operation procedure is as follows:

1. System test

The rotor position is checked and changed if necessary, the system is checked for
faults. If no irregularities are detected, the wind turbine is ready for operation.

2. Idling

The wind turbine stands with braked rotor and is turned into the wind inflow
direction by the yaw system. With the wind speed measurement data providing
by the anemometer, the system determines when the starting level wind speed
has been reached.

3. Initiation

The rotor blades are pitched into the wind, and the mechanical rotor brake is
released. The rotor starts to rotate.

4. Powering up

The rotor speed increases until the synchronization speed of the generator is
reached. If the synchronization speed can be maintained constant over a spec-
ified period, the generator is then coupled to the grid.
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5. Power generation

If the generator has successfully started the operation, power is delivered to the
power grid.

6. Power off

If the wind speed is too strong and exceed the cut-out wind speed, the system
is completely stopped by using of the mechanical brake.

1.3 Wind turbine development tendency

The initial wind turbines were passive stall-regulated load control, working in a
narrow wind speed range. Paul La Cour designed the first wind turbine for the
direct current production in 1891 [11]. After the First World War, due to the expe-
rience of propeller design for aircraft, the scientific understanding of wind turbine
design greatly stepped forward in Europe. With the new theoretical background
of wind turbine, many promising methods for the modern wind turbine design
emerged. The wind turbine WIME D-30 with a diameter of 30 m and a power
of 100 kW operated from 1931 to 1942 in Crimea [12] and produced power into
a small 20 MW grid. However, the start of the Second World War ruined these
models. With the reconstruction of Europe after the war, the developments of
wind turbine attracted again the researchers. Some prototypes of wind turbine
were fabricated and provided electricity to the grid. Such as the famous Gedser
wind turbine [5], TVIND wind turbine [6], shown in Figure 1.3 and Figure 1.4,
respectively. After 1980, the renaissance of the wind energy started tremendously
in Europe and the USA. After almost 40 years, wind turbine shares a part of the
electricity market. It is necessary to summarise the evolutions about site, size,
power, and control of wind turbine so that the research background of this thesis
can be unfolded.

• Evolution of site

In order to catch as much as possible wind energy, onshore wind turbines are
being erected in remote locations with abundant wind resource. Nowadays,
offshore wind power has successfully attracted interest in some countries,
such as Denmark, China, UK, Netherlands and Germany, because of its ex-
cellent wind resource and the avoidance of land-use issues. With the develop-
ment of support technologies, wind turbines are being erected from shallow
water (for fixed foundation wind turbine) to deeper water (for floating wind
turbine).

• Evolution of size

If the aircraft Airbus A380 with a 79.75 m wingspan is regarded as a giant,
commercial wind turbines in our days should be called super-giant, as their
rotor’s diameters easily exceed 100 m. Referring to the modern wind turbine
fabricated after the year 2004 shown in Figure 1.5, their total heights are at
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Figure 1.3: Gedser wind turbine, 200 kW, D = 24 m, Denmark 1957 (Source: [5])

least 150 m. The power of wind P that flows through an area A at a velocity
v is

P =
1

2
ρAv3 (1.1)

where ρ is the air density. P is proportional to the cross-sectional area
A, hence, improving the area of rotor is an efficient way to capture much
more energy with the same wind speed v. The rotor diameter of the newest
Siemens offshore wind turbine SG 10.0-193DD is 193 m [13]. Nowadays, the
size limit of a wind turbine is unknown. With the ambition for capturing
enormous energy, larger wind turbine may appear in the future.

• Evolution of rated power

According to Yang et al. [14], wind turbines are becoming larger with higher
rated power, as shown in Table 1.1.

• Evolution of control

In the beginning, wind turbines were passive stall-regulated load control,
fixed-rotational speed, working in a narrow wind speed range. Then, variable-
speed wind turbine with active pitch control appeared. The application of
blade-pitch control has allowed modern wind turbines to be larger and ca-
pable of operating over wider wind speed ranges. However, researchers are
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Figure 1.4: TVIND wind turbine, 2 MW, D = 54 m, Denmark 1977 (Source: [6])

trying to develop intelligent blade that can measure wind speed and auto-
matically adapt itself to wind conditions [15]. It is believed that with the
intelligent blades, the reliability and efficiency of wind turbine can be en-
hanced.

• Evolution of cumulative installed capacity

According to the report of Wind EUROPE [16], the total cumulative installed
capacity in Europe will reach 204 GW in 2020, shown in Figure 1.6.

Therefore, wind turbines are giant machines that automatically operate at remote
places or off-shore under harsh and random environment without a human super-
visor. As a costly power generator and with increasing contribution to grid, the
reliability of wind turbine is an important issue. However, its operation environ-
ment, the location of site and size of wind turbine bring a lot of challenges to
reliability and maintenance of wind turbine:

• Challenges caused by site

The remote site of wind farm may not be accessible all the time. Hence, the
maintenance activities for wind turbine only can be carried out during an
accessible time period. It requires prediction and planning. The deteriorated
components that are likely to fail during the unaccessible time period need
to be repaired / replaced in advance to avoid undesirable downtime.
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Figure 1.5: Evolution of wind turbine size and power (Source: [7])

Table 1.1: Evolution of wind turbine rated power

Manufacturer Wind turbine model Rated power
Repower M104 3.4 MW
GE 4.0-110 4.0MW
Gamesa G-128 4.5MW
Enercon E-126 7MW
Wind Power Ltd Aerogenerator X 10MW (in development)

• Challenges caused by size

To carry out maintenance activities, the increasing size of wind turbine may
need special vehicles or equipments. Besides, the rapid growth in design size
that lacks a practical operational experience may cause unexpected failures.

• Challenges caused by control system

The control systems used for pitch, generator and converter are more and
more sophisticated. However, the electrical and electronic components are
showing that they are less reliable than mechanical components. Further
more, the existing condition monitoring system are not effective for detecting
electrical and electronic failures. The downtime caused by electrical and
electronic components failures are more significant in remote location and
offshore because of the reduced accessibility.

To improve the reliability of wind turbines, several methods can be considered:

1. Improving wind turbine’s design theory and magnification technology.



8 Chapter 1. State-of-the-art

27 Wind energy in Europe: Outlook to 2020

Mid-term wind energy market outlook 

In terms of cumulative installed capacity, Germany will 
remain the country with the most capacity installed with 
between 65.5 to 68.5 GW (66.5 GW in the Central Sce-
nario). Spain will follow with 25 to 27.5 GW (26.5 GW in 
the Central Scenario) and the UK will be the third largest 
country with a total of 7.8 to 23.3 GW (22 GW in the Cen-
tral Scenario), with almost half of that capacity (10 GW) 
being offshore. 

2.3.1 CENTRAL SCENARIO 

WindEurope’s Central Scenario provides a best estimate 
of the installed capacity in Europe in the next four years. 
This scenario takes into account the pipeline of wind ener-
gy projects and the ongoing and future legislation in each 
Member State that could enable the deployment of vol-
umes. In addition, it reflects on a case-by-case basis the 
impact of the 2020 targets. For offshore wind, the Central 
Scenario assumes that all projects are built according to a 
realistic timeline.

In the Central Scenario, the planned tenders in Germany, 
France and Spain provide good visibility on the post-2018 
market development. In addition, in France and the Neth-
erlands, the objectives set respectively for 2023 and 2020 
provide clear guidance on the deployment of wind ca-
pacity. In Poland, the Wind Farm Act remains applicable, 
putting a pipeline of 2.2 GW of onshore projects at risk. 
Also, the UK will decrease its activity in onshore wind from 
1.6 GW in 2016 to almost none in 2020, while shifting the 
government focus to offshore wind.

CUMULATIVE
INSTALLED CAPACITY 
COULD REACH

204 GW 

IN 2020

FIGURE 16
Expected cumulative installed capacity until 2020 

Source: WindEurope
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Figure 1.6: Expected cumulative installed capacity until 2020

2. Developing advanced condition monitoring system for wind turbine.

3. Predicting the remaining useful life of wind turbine, and providing reasonable
and economical maintenance schedules for wind turbines in service.

The work of this thesis can be classified into the last method. But it is also an
essential part for the advanced condition monitoring system, as the latter need to
merge a prognostic module.

1.4 Wind turbine reliability, wind influence and

wind speed model

1.4.1 Wind turbine reliability and wind influence

Many efforts have been made to collect wind turbine reliability data [17, 18, 19,
20, 21, 22, 23].

According to Figure 1.7 and 1.8, blade/pitch, electric and control systems have high
failure rates; failure of gearboxes, blades and generators result in higher downtime.
J.M. Pinar Pérez et al [8] also concluded that larger wind turbines tended to suffer
more failures than smaller ones.

Wind influence on reliability
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control systems yield the highest cumulative failure rate but low
cumulative downtime distribution due to quick repairs and
refurbishments. The main four failures from Ribrant's studies are
similar to those found by Braams and Rademarkers [4].

McMillan and Ault [14] demonstrated with Windstats data from
Germany that the gearbox, generator, rotor (blades, pitch and hub)
and main bearing (drive train) comprise around 67% of downtime
per failure. In similar vein, Spinato et al. [10] analyzedWindstats data
[9] from Denmark (WSDK) and Germany (WSD) over a period of 11
years as well as WT failure statistics data from Schleswig Holstein in
Germany (LWK) [11]. The electrical systems had the highest failure
rates, followed by blades and control systems, but the rates were not
the same in all locations (Denmark having a lower failure rate than
the other two). Gearboxes caused the longest downtimes per failure,

and larger WTs had higher failure frequencies [10] and hence longer
downtimes and higher costs [20].

The average failure rates for WT components from references
[1,7,5,10] is shown in Fig. 9. Considering the cumulative failure rate
of each component, the control system has the highest value,
followed by the blades/pitch and then the electric system. Gears,
yaw system, hydraulic, brake, generator, sensor and others form a
group with medium cumulative failure rate. Hubs, drive trains and
structures all have low rates.

The study by Bussel and Zaaijer [1,13] shows that the blades
present the highest failure rate of 0.72., i.e. one blade on any given
WT will on average fail around three times in four years, this being
excessive. Other references report WT failure rates due to blades of
around 0.2 i.e. once every five years. Bussel and Zaaijer's work
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Fig. 9. Average rate of failure vs. WT components from [1,7,5,10].

Table 3
Review of failure studies in WTs.

Study Source Country Average number of WTs Study Period Top 3 failure rates Top 3 downtime

Bussel and Zaaijer [1] Estimation of expert
judgement in DOWEC project

DEU – – Blades
Control gearbox

Blades
Generator gearbox

Braams and Rademakers [4] CONMOW project DEU Electronic
Control hydraulics

–

Ribrant and Bertling [5,7] Elforsk and Felanalys SWE 625 2000–2004 Electric Gears
Sensors Control
Blades/pitch Electric

VTT FIN 72 2000–2004 Hydraulics Gears
Blades/pitch Blades/pitch
Gears Hydraulics

ISET DEU 865 2003–2005 Electric Generator
Control Gears
Sensors Drive train

McMillan and Ault [8] Windstats DEU – Gears
Generator
Blades/pitch/hub

Spinato et al. [10] Windstats (WSDK) DNK 851–2345 1993–2004 Control(converter) –

Blades/hub
Yaw system

Windstats (WSD) DEU 1291–4285 1993–2004 Electric –

Blades/hub
Control(converter)

LWK DEU 158–643 1993–2004 Electric Gearbox
Blades/pitch/hub Electric
Control(converter) Generator

J.M. Pinar Pérez et al. / Renewable and Sustainable Energy Reviews 23 (2013) 463–472 469

Figure 1.7: Average rate of failure VS wind turbine component (Source [8])

suggested that control systems had 0.66 failures rate per turbine
per year in Germany, whereas the corresponding result found by
Ribrant and Bertling [5] was 0.41. Electric systems fail more
frequently in Germany than in Finland, Denmark or Sweden.
Gearboxes, with a failure rate of 0.3 in Germany [1] present
the maximum rate. The failure rate of the hydraulic system
is higher in Finland than in Germany, and the minimum rate
is found in Sweden [5]. None of these authors could find failure
rates in other main components because either there are no
statistics or they are considered within the components described
above, e.g. Spinato et al. [10] considered rotor failure rate as the
failures rates of blades and hub combined. The components with
the top three failure rates and downtimes are collected in Table 3.
Blades, control and electrics are the components with the highest
failure rates; gearboxes, generator and blades cause the most
downtime.

An alternative way of viewing these studies from Sweden,
Finland and Germany [7]—and indeed the other data from
Germany [11]—is to plot failure rates against hours lost per failure
for each of the different components as shown in Fig. 10. Note that
hours lost per failure were actually calculated from downtime per
turbine per year divided by failures per turbine per year, and that
the two curves superimposed upon the plot are lines of equal
downtime (5 and 25 h lost/turbine per year) so as to separate the
data into three groups as follows.

i. Components which fail frequently or that cause long down-
times per failure and hence cause more than 25 h lost/turbine
per year, i.e. gears, blades and hydraulics in Finland, as well as
gears from Germany (DEU_LKW);

ii. Combinations of failure rate and downtimes per failure that
lead to between 5 and 25 h lost/turbine per year, e.g. all
generators, yaw systems, control systems and electrics;

iii. Infrequent failure and low downtime resulting in less than 5 h
lost/turbine per year e.g. all hubs and sensors except ones from
Germany (DEU).

6. Effect of type and power

Koutoulakos [22] presented a study of WTs in Schleswig
Holstein (LKW) Germany. The WTs were horizontal axis machines,

having three blades, yaw systems and generating 600 kW, those of
type DDE having the largest sum of failure rates followed by A1, B
and A0 (Table 4). Table 5 shows the downtime, where type B has
the longest availability followed by A0, DDE and A1. Some WT
types do not incorporate certain components, i.e. A0 does not have
a pitch system or converter, and DDE does not have a gearbox (the
generator being attached to the rotor) but it has a converter with
sophisticated power electronics and also synchronous multi-pole
generator, so electrical failures in DDEs are more frequent.

Blade failure rate is the same in most of the WTs, but the
downtime in the A1 type is higher due to them having active stall
control systems. Pitch failures arise more in type B and mainly in
DDE (Tables 4 and 5). Type A0 has failures in the aerodynamic
brake due to the passive stall of this configuration. The gearbox
failure rate is similar for A1 and B and higher than for A0; for DDE
it is zero because of the direct drive configuration. A1 has the
longest downtime, double that of type A0.

Tavner et al. [2] studied three types of WT configurations: type
A1 (fixed speed indirect drive with stall control); type B (variable
speed indirect drive with pitch control and WRIG) and; type DDE
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Table 4
Failure rates of components for types A0, A1, DDE and B.

Components Type & model

A0 A1 DDE B
Micon
M1500

Tacke
TW600

Enercon
E40

Vestas
V39/V4x

Blades 0.22 0.38 0.24 0.17
Pitch 0 0 0.3 0.1
Generator 0.18 0.18 0.35 0.09
Electric 0.27 0.28 0.54 0.34
Inverter and electronics 0.2 0.14 0.31 0.27
Shaft/bearings 0.06 0.02 0.08 0
Sensors 0.12 0.07 0.12 0.08
Gearbox 0.1 0.2 0 0.18
Brake 0.05 0.18 0 0.01
Aerodynamic brake 0.1 0 0 0
Hydraulics 0.07 0.18 0.02 0.26
Yaw 0.06 0.18 0.11 0.1
Anemometry 0.02 0.04 0.08 0.06
Other 0.25 0.3 0.24 0.2

J.M. Pinar Pérez et al. / Renewable and Sustainable Energy Reviews 23 (2013) 463–472470

Figure 1.8: Rate of failure VS hours lost per failure:Sweden(SWE), Finland(FIN),
(DEU) and Germany(DEU-LKW) (Source [8])

Different from other gas/steam turbines, this regulation is highly affected by wind,
especially, the wind speed. P.Tavner et al [9] is concerned with the influence of
wind speed on the reliability of wind turbine. This research quantifies the wind
speed data as Wind Energy Index (WEI) which is defined as the ratio

WEI=(Actual monthly energy production from a collection of wind turbines)/
Long term expected monthly energy production from

those turbines in the presence of average weather)

Figure 1.9 shows the relationship between the failure rate and WEI. From this
figure and the research result of [19], it is obvious that weather and wind speed
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datasets of about 44% with periodicities from the lag plot at 12 month intervals, in both the

positive and negative time. 

Figure 12. Cross-Correlogram of Turbine Failure Rate to WEI, 1994-2004

A physical check on the similarities between the Failure Rate and WEI data is given in

Figure 13 where the Failures in a given month throughout the period have been summed and

compared with the summed WEI in that month. Figure 13 shows a Failure Rate peak in Winter

(February), at the same time of year as the peak in WEI, but a secondary Failure Rate peak in

Autumn (October). This confirms the 12 month periodicity of the WEI data in Figure 9, and the

more complex periodogram of the Failure Rate, Figure 11.

Figure 13. Average monthly Failure Rate and WEI for each of the 12 months over the Survey period 1994-2004.
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Figure 1.9: Average monthly Failure Rate and WEI for each of the 12 months over
the Survey period 1994-2004(source: [9])

5.4. Cross-Correlation with Turbine Subassemblies
Failure data from Windstats were also available for subassemblies so the procedure from

Section 5.3 was also applied to individual subassemblies. This is shown in Figure 14, where the

cross-correlation for each Subassembly is plotted on the same graph. The cross-correlation

value of 44% for the whole turbine is shown highlighted. The graph shows that the highest

cross-correlation of failures with the WEI is the generator, with the yaw control close behind,

whereas the blades, hub, main shaft, coupling and gearbox have a very low, even negligible

cross-correlation.

Figure 14. Summary of cross-Correlograms of Subassembly Failure Rates to WEI, 1994-2004

6. DISCUSSION
The results of Figures 8 to 14 reveal certain key facts. A clear annual periodicity has been

identified in the WEI data and a less clear periodicity in the Failure Rate data. Processing the

data requires care, in particular it was essential to ensure the longest record length possible, to

remove aperiodic trends distorting the data, and to consider both periodogram and

correlogram information.

With these points in mind it can be seen that there is a periodicity in the Failure Rate data

of 12, 8.4 and 6 months. The 6 and 12 month periodicities are due to the main seasonal variation

of the weather, however, the 8.4 month periodicity is harder to explain. Perhaps its is due to the

sub-seasonal effects, exhibited in the Failure Rate in Figure 13, where higher failure rates are

experienced in October, probably due to increased gusting in the Autumn. 

The cross-correlation confirms that for the whole turbine there is a 44% cross-correlation

between the WEI and Failure Rate, suggesting that the weather is having an influence on

turbine failure rates.

It is important to remember, at this point, that turbine failures may be caused by many

effects, other than the wind speed, for example low or contaminated oil in the gearbox or

faulty components. Therefore, a high cross-correlation between Failure Rate and WEI is not

necessarily expected. 

The Wind Energy Index (WEI) was used as the variable representing wind speed. This

variable has a complex definition, depending upon a turbine specific averaging process,

Equation 1. It would be possible to repeat the processes in this paper using the variable Wind

Speed directly, which would have yielded results very similar, if not identical, to those

presented here. 
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Figure 1.10: Summary of cross-correlograms of subcomponent failure rates to WEI,
1994-2004 (source: [9])

have significant influence on WT components deterioration and failure. Moreover,
they point out that some WT components are more affected by wind speed than
others, such as hydraulic system, generator, yaw control and mechanical brake
(see Figure 1.9). In the opinion of the author, the reason is that these components
are not designed with the rapidly changing effects of the wind speed variation.
A Chinese report about WT pitch failure affirms that most pitch system failures
occur in windy seasons as a consequence of high wind speed variation[24]. The
research in [25] shows that different wind speed has different effects on fatigue
damage of the gear applied to a wind turbine. This is due to the fact that the gear
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stress range is a function of gear rotational speed, which is fundamentally decided
by the wind speed.

1.4.2 Wind speed model

The literature on wind speed could be classified into three groups: wind charac-
teristics for a specific site, wind speed generation, and wind speed prognosis.

The study of wind characteristics emphases the statistical features (average, max-
imum, minimum and standard deviation) and the probability distribution of wind
speed. The Weibull distribution is the most frequently used to fit hourly average
wind speed [26, 27, 28, 29, 30]; some studies investigate the daily patterns in wind
energy production [31] and the modeling for extreme events [32]. Numerous papers
focused on this aspect can be recalled, for instance, refer to [33].

Wind speed generation and wind speed prognosis are two different subjects. How-
ever, regarding modelling technique, they have similarities. A great deal of work
has been done to model the wind speed. For instance, the accurate but high
computationally demanding physical models considers environmental conditions
(pressure, temperature, humidity etc.) [34, 35]. The following content will focus
on the models/methods based on data that is easy to apply in engineering. And the
continuous-time stochastic processes will be detailed later as they are considered
for the thesis’s work.

1.4.2.1 Time series models

For its simplicity, time series models are commonly used to reproduce wind speed
data for a particular location depending on available historical measured wind
speed data [36, 37, 38]. These models have productive computational capacity but
their linear forms restrict their usage. Moreover, the prediction accuracy of these
models drops fast when the time horizon is increased [39], and they can not model
accurate nonlinear data [40]. Two model are presented more precisely hereafter.

Autoregressive Moving Average (ARMA) model

An autoregressive (AR) model with p autoregressive terms, denoted by AR(p) is
a discrete time stochastic process defined as:

xk = a+

p∑

i=1

αixk−i + εk (1.2)

where a is a constant, αi (i = 1, 2, · · · , p) are the autoregressive parameters, εk
is white noise, and xk is the wind speed at time k. Under the assumption of
stationarity, the parameters can be estimated by likelihood maximization method
or the Yule-Walker method, and p can be decided with selection criteria or with
the autocorrelation function [41].
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AR models assume that the subsequent wind speed is a linear combination of
current and past wind speed observations with a residual which is described as
a white noise. Hence, p is the number of previous wind speed data with which
the subsequent wind speed correlates, αi (i = 1, 2, · · · , p) signifies how strong the
correlations are. As the wind speed has diurnal and seasonal trend, the trend
modelings are necessary. For instance, a square root transformation is applied to
an hourly average wind speed sequence, after fitting and modeling a diurnal trend,
an AR model was used for the residuals [42].

The AR(p) models have been widely applied for short-term wind speed prediction.
An AR (5) model is used to predicate wind speed at an airport and its prediction
results are more precise [43]. Another work points out that the prediction root
mean squared error (RMSE) of an AR model which is used to fit a truncated wind
speed distribution after removing the diurnal trend are reduced by 16% compared
to the accurate model [44].

By adding moving average terms q to AR(p) model, one can get the general form
of ARMA(p, q), which is a special form of the ARMA model:

xk = a+

p∑

i=1

αixk−i + εk +

q∑

j=1

βjεk−j (1.3)

where the βj (j = 1, 2, · · · , q) are the moving average parameters.

A research finds that an ARMA prediction model based on the hourly mean wind
speed can successfully be applied for prediction interval between 1 up to 6 hours
ahead with a confidence interval of 95% [45].

A more general time series model is Autogressive Integrated Moving Average
(ARIMA) model, which is also used for the purpose of wind speed generation
and prediction [46].

Kalman filter

Like AR models, the Kalman filter predict the wind speed as a linear combination
of the past wind speed data and the current. However, instead of using the constant
linear coefficients, the Kalman Filter updates them by minimizing the MSE that
based on the previous historical data and the accuracy of the last prediction.

In the field of wind speed prediction, for instance, 1-step prediction is illustrated
by the following equations:

xk = HkAk + υk (1.4)

Ak+1 = ΦAk + ωk (1.5)

Equation(1.4) is so called the observation equation. It gives a predicted wind speed
value xk at time k as a linear combination of the last N historical wind speed data,
denoted by the N × 1 vector Hk = (xk−1, xk−2, · · · , xk−N)′, where N is the order
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of the filter. The N × 1 vector Ak = (ak1, ak2, · · · , akN)′ contains the regression
coefficients and it varies at each time step.

Equation(1.5) describes the time dependent evolution of Ak. Φ is a known N ×N
transition matrix, which is generally defined as the identity matrix in applications.
υt is considered as noise of historical data, it has a normal distribution υk ∼
N(0,Υk). ωk is the system noise and it is assumed as a normal pdf with mean 0
and covariance matrix Wk(N×N)

: ωk ∼ N(0,Wk).

Literature about the applications of Kalman filter on wind speed prediction can
refer to [47, 48, 49].

1.4.2.2 Artificial Intelligence model

Artificial Intelligence (AI) models include but not limited to artificial neural net-
works (ANN) model, fuzzy logic model and hybrid model. Since their ability to
learn non-linear relationships from experience, they are popular in recent years.
In wind energy field, they are more used for out-put power prediction considering
other influence factors, for instance, wind speed [50, 51, 52, 53, 54, 55].

Different ANN models are applied to the short term wind speed prediction of hourly
time series which are collected during 7 years. After the examination of different
ANNs with different structures, an ANN model with two layers and three neurons
is considered as the best one [56]. This research shows that lacking a criterion for
ANN structure selection makes it difficult to choose the optimal model quickly.

1.5 Prognostics and health management for wind

turbine

The concept and framework about Prognostic and health management (PHM)
have been developed based on diagnostic techniques, maintenance methods and the
requirements of the future condition prediction about a system, such as condition
based maintenance (CBM) and preventive maintenance (PM). The PHM approch
applied on a system attempts to answer the following questions:

• How is the system now? (Condition monitoring)

• What is the fault and why ? (Diagnosis)

• When will the system fail ? (Remaining useful life)

• Which decision should be taken ? Continue to operate or stop to maintain
? When? (Maintenance policy)

The related research topics about PHM contains but do not limit to condition
monitoring, fault diagnosis, deterioration modeling, remaining useful life (RUL)
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prediction and maintenance decision-making. Therefore, a brief state-of-the-art
about condition monitoring, deterioration model, RUL prediction and maintenance
will be given, respectively.

1.5.1 Condition monitoring

The condition monitoring for a component is an essential part of PHM. Accord-
ing to the frequency of inspection, it exists two types of monitoring: continuous
monitoring and discrete monitoring.

Continuous monitoring

This type of monitoring considers that the condition of system provided by the
inspection system is always known at any time. It is applied to the system that
is particularly critical or the most costly. For instance, vibration, temperature,
pressure and rotational speed are continuously inspected for an aero-engine used
in civil aviation. It is related to sensors that can be placed on the system with some
real time pre-processing possibilities to collect information . The term continuous is
to be understood in a broad sense. Even if the collected information is discretized,
it refers to a high sampling frequency in relation to system dynamics.

Discrete monitoring

Discrete monitoring means that specific action(inspection) or significant time delay
are required to collect monitoring information. There are two forms of discrete
monitoring, namely, periodical monitoring and non-periodical monitoring.

• Periodical monitoring means that the time interval between two consecu-
tive monitorings is a constant denoted as ∆T . For instance, in wind energy,
10-mins average wind speed is noted by SCADA as a parameter of wind
turbine operation condition.

• Non-periodical monitoring in this situation, the inspection sequence can-
not be scheduled in advance, because the choice of inspection sequence is
based on the available information about the system. The next date of
monotoring depends on the current system condition.

However, continuously monitoring is costly or not always necessary in reality. Dis-
crete monitoring also has wide application in engineering field.

1.5.1.1 Condition monitoring technology for wind turbine

According to the survey of [57], the monitoring systems applied to commercial
wind turbines are as follows:
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1. High frequency (>500 Hz, continuous) Supervisory Control and Data Acqui-
sition (SCADA) system that is initially designed for operating wind turbine
safely and efficiently.

2. Continuous monitoring and diagnostic system on drive train with a frequency
smaller than 50 Hz.

3. Low frequency (<5 Hz) structural health monitoring system for tower and foun-
dation.

Supervisory Control and Data Acquisition System

The SCADA system saves the information of wind turbine operation, and indicates
the partial condition of wind turbine. Using SCADA data to monitor wind tur-
bines and to optimise maintenance became a high priority in wind power industry.
Additionally, it is costless.

Tautz-Weinert et al. summarized 4 groups of the basic SCADA parameters shown
in Table 1.2, namely, parameters related to environment, electrical characteristics,
control system and temperature of some components [58].

Table 1.2: Basic SCADA parameters

Environmental Control Variables Electrical Temparatures

Wind speed
Pitch angle/rate Active power output Gearbox bearing
Pitch commande Power factor Gearbox bearing lubricant oil

Wind direction
Yaw angle Reactive power Generator bearing
Rotational speed of rotor Generator voltages Main bearing

Nacelle temperature
Generator speed Generator phase current Rotor / Generator shaft
Number of stats / stops Voltage frequency Grid busbar

The SCADA-based condition monitoring system provides the approximate condi-
tion of wind turbine.

Technologies applied to wind turbine condition monitoring

As a part of the state-of-the-art, it is necessary to briefly review the technology
applied to wind turbine condition monitoring.

• Vibration analysis

It is a well-proven and low-cost technology applied to rotational component
monitoring. Vibration analysis is widely used on the inspection of the drive-
train, especially, the gearbox blade and shaft [59, 60].

• Oil analysis

Oil analysis is important for the bearing and hydraulic system. Through oil
clearance analysis, particular failures can be diagnosed, for instance, in the
case of excessive the wear, oil analysis can give an indication of wear [61].
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• Ultrasonic test

Ultrasonic test has been widely used in the crack diagnostic of concrete pillar
in the field of construction. It has potential application on the early blade
or tower defects detection [62].

• Shock pulse method

It can be an alternative online approach applied to bearing failure detection
[63]. However, this subject needs future study.

• Electric effects

Electrical components such as generator, yaw-motor are typically performed
using current and voltage analysis. Discharge measurement are used for
grids. A spectral analysis of the stator current is applied to the isolation
failure detection [64].

• Acoustic emission

When the structure of a metal is changed, the metal releases strain energy
and generates elastic waves, it can be analysed by acoustic emission. As
a kind of non-destructive testing method, the acoustic emission has been
successfully applied to the monitoring of gearbox, bearing and blade of wind
turbine [65].

1.5.2 Deterioration phenomena of wind turbine compo-
nents

Wind turbine components, such as gearbox, blade, generator, foundations, are
exposed to different forms of deterioration processes (corrosion, fatigue cracking,
wear etc). The deterioration of wind turbine is a complex issue, because it de-
pends on both random environmental and physical factors. The prediction of
deterioration level is meaningful for reliability analysis, scheduling inspection and
maintenance for wind turbine. The deterioration of a component can be modeled
by a stochastic process, noted as {D(t), t ≥ 0} that represents the level of deterio-
ration at time t. If no maintenance activity interfered, D(t) will be monotonically
increasing. Stochastic processes are detailed in section 1.6.

A gamma process is applied to the deterioration modeling of wind turbine bearings
[66].

A reliability wind turbine assessment model subject to degradation is presented
in [67]. The purpose of this model is to plan monitoring and maintenance. The
model considered the stochastic nature of the degradation process through the use
of appropriate statistical distributions.

M. Shaifiee et al [68] developed a model to describe the cracks deterioration of
wind turbine blade subject to stress corrosion cracking and environmental shock.
The cracks are initiated on the surface of a blade by point events that modeled
with a non-homogeneous Poisson process, and then the cracks propagate along a
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direction according to a gamma process. The environmental shocks is modeled by
a non-homogenous Poisson process.

1.5.3 Remaining useful life estimation

A huge amount of research has been carried out to propose prognostic models
which aim to be applied to the RUL prediction of engineering assets [69]. Gener-
ally speaking, the methods of RUL prediction in literature can be classified into
two groups, one is based on physical model and another one is based on data.
Physical based model shows the wind turbine failures by means of the physical
law, and it predicts the RUL by solving deterministic equations. The advantage of
physical-based model is its accuracy and preciseness for a particular issue. How-
ever, when the detailed failure mechanism is complicated, it is difficult to obtain
an accurate physical-based model. With the development of condition monitoring
technology, and since the information provided by Condition Monitoring System
(CMS, it provides information on current status of the dynamic system measured
by diagnostic variables and on operational environments.) is highly related to the
health condition of system, the data based RUL prediction methods have become
popular. The RUL prediction method through stochastic process can be consid-
ered as one of the data based methods. The clearly physical interpretation of
stochastic processes makes people pay a lot of attention to them. The Weiner pro-
cess is derived from the description of the Brownian motion; nowadays it is widely
applied to predict the lifetime of LED, laser generator, lithium-ion batteries, etc.
As the gamma process is monotonous increasing, it matches well the wear process
and the growing crack.

The RUL of a system is a random variable. Firstly, it depends on the current
health condition of the system. Intuitively, the RUL at time T of a system can be
given as follows:

RULT = inf{τ ≥ 0 : XT+τ ≥ L} (1.6)

Where, L is the divide between not-failed status and failed status of dynamic
system, and Xt as the current status of this dynamic system at time t.

The meaning of equation (1.6) is that at time T , a period τ is interesting, as at
the end of this period τ , the current status of the dynamic system firstly arriving
at or passing the divide L, from not-failed to failed status. In other words, at the
end of τ , the dynamic system no longer performs its intended purpose. According
to equation (1.6), it seems that the RUL only relates to the status over time and
a threshold. However, how to define the status of the system Xt? In engineering
field, a common way is monitoring the system via CMS.

Secondly, the RUL estimation depends on the monitoring information. Hence,
in industry combining the monitoring information, the issue about RUL becomes
a conditional probability with formula

P(RULT > τ | MT ) = P(XT+τ ∈ F| XT /∈ F ,MT ) (1.7)
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Where, F is the space related to failed dynamic system andMt is the information
up to time t which is provided by CMS.

To predict the RUL at time t, health indicators D(t) that directly indicates the
system deterioration at time t is required, and they can be extracted from the
information provided by the CMS. Finally, for a deteriorating and discrete in-
spected dynamic system, with inspected data {M}t (t = 1, 2, · · · ), the CDF of
RULT is

FRULT (τ) = P(RULT > τ |M1 = m1,M2 = m2, · · · ,MT = mT )
= P(TF > T + τ |M1 = m1,M2 = m2, · · · ,MT = mT )
= P(D(T + τ) < L |M1 = m1,M2 = m2, · · · ,MT = mT )

(1.8)

From the preceding content, the RUL prediction method considered in this thesis
contains the factors as follows [70]:

• an indicator describes health condition of the system

• a stochastic process describes the evolution of the health indicator

• a prediction considers the health condition

Now let’s have a brief review about the RUL prediction for wind turbine compo-
nents. A common way to estimate the RUL of wind turbine component (gearbox,
bearing, etc.) is the load’s calculation [25]. As the aforementioned method of RUL
prediction lacks the consideration about the deterioration over time, the change-
able environment and other uncertainties, this RUL is deterministic that is difficult
to merge to the PHM system for a predictive maintenance decision. Several efforts
about stochastic process based RUL prediction are mentioned in literature. In ref
[71], a methodology to compute the RUL using the available observations is pre-
sented. In ref [72], a Wiener process is used to model the component deterioration
and to estimate the RUL, the engaged data is from the PHM Data Challenge. And
good result is obtained by the proposed approach. A real-time RUL prediction
of wind turbine bearings based on stochastic process is proposed in ref [73]. By
verifying on the temperature data of an actual 1.5 MW wind turbine, it proves
that the proposed RUL prediction method is more effective than the traditional
ones.

1.5.4 Maintenance and maintenance policies

1.5.4.1 Maintenance actions

Maintenance involves planned and unplanned actions carried out to retain a system
or restore it to an acceptable condition [74]. The aim of studying maintenance
policy is to minimize downtime, to provide the most effective use of system at
the lowest possible costs. The general classes of maintenance types are corrective
maintenance and preventive maintenance, shown in Figure 1.11.
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Maintenance Failure

corrective 

maintenance

Preventive
maintenance

palliative maintenance

curative maintenace

systematic maintenance

predictive maintenance

condition based maintenance

YES

NO

Figure 1.11: Maintenance types

The action of corrective maintenance is carried out after the detection of a system
failure. The task of corrective maintenance is usually to make repairs as soon
as possible. Corrective maintenance can be a palliative maintenance or curative
maintenance.

Palliative maintenance comprises the activities that can maintain a part or
all the functions of the system for a short period. It is commonly referred to
as troubleshooting. Palliative maintenance can’t totally correct the system, so it
must be followed by curative maintenance.

Curative maintenance, the objective of curative maintenance is to avoid any
further failure occurrences through identification failures’ essential causes and re-
pair of failed components. In the case of corrective maintenance implementation,
the unavailability of the process is maximum and uncontrolled. The reduction of
downtime due to failures then depends directly on the efficiency of the mainte-
nance.

1.5.4.2 Maintenance policies with corrective policy

Preventive maintenance aims to improve the availability and reliability of a system.
Reducing the operation and maintenance cost is its another purpose. Preventive
maintenance has three types: systematic maintenance, predictive maintenance and
condition-based maintenance.

Systematic maintenance performs periodical replacements. However, the com-
ponent may fail before the critical time predicted by its failure model, or the
replaced component may live longer than the planned service time after the last
replacement. Systematic maintenance applies to the system whose degradation
evolution is generally continuous.

Predictive maintenance, its final aim is to perform maintenance at a scheduled
time point when the maintenance activity is most cost-effective and before the
system loses performance within a threshold.

Condition based maintenance can be considered as a practice within the pre-
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dictive maintenance strategy. However, it is more down to earth. Condition based
maintenance is based on the real-time continuous monitoring information provided
by a monitoring system. It tries to maintain the correct component at the right
time, i.e. maintain when it is actually necessary.

Since the predictive and condition based maintenance policies predict the evolu-
tion of system degradation by analysing the collected data, condition based main-
tenance policy is classified as a subject category of predictive maintenance policy.
Therefore, the thesis will use these two terms without difference. Reliability cri-
teria are necessary to make a maintenance decision with predictive maintenance
policy. Such as failure rate, degradation level of system, or other information that
can indicate the health condition of system.

Maintenance policy with periodical monitoring normally aims to finding optimal
maintenance interval ∆T with a minimum cost. For instance, Le Son et al. es-
timated three maintenance policies that based on the estimated RUL, reliability
function and system condition, respectively [75]. Two types of inspection plan-
ning strategies for a two-unit system with independent stochastically deteriorating
units are proposed in [76].

Bérenguer et al. [77] proposed a maintenance policy for a gradually and stochas-
tically degraded system that is continuously monitored. An aging variable is in-
spected continuously. A breakdown occurs when the aging variable reaches a failure
level L. Once the aging variable exceeds an alarm threshold A which is lower than
L, maintenance is planned. The maintenance is carried out with a time delay, and
its duration relates to the actual condition of the system when the maintenance
begins. As a result of the existence of time delay of the maintenance operation, the
system deteriorates during this period, the choice of A influences the performance
of the maintenance. With this background, the authors proposed a mathematical
model to evaluate the asymptotic unavailability of the system and to optimize the
maintenance parameter i.e. the alarm threshold A. A maintenance policy that
minimized the unavailability based on the previous work is proposed in [78].

Zhou et al. [79] tried to integrate sequential imperfect maintenance policy into a
conditional based maintenance. The system is continuously monitored, and the
hazard rate function is known. Both the scheduled and unscheduled (corrective)
maintenance are considered. The first maintenance is operated whenever the sys-
tem reliability reaches the threshold, while the latter one is performed when the
system fails before the scheduled maintenance.

A maintenance policy that combines corrective, periodic and preventive mainte-
nance for a continuously monitored multi-component system is proposed in [80].
Two thresholds about the degradation level are considered. When the degrada-
tion reaches a first ‘opportunistic’ threshold, the component is repaired as soon as
maintenance operates on the other components; once it exceeds a second ‘inter-
vention’ threshold, additional maintenance is planned to replace the component in
order to avoid system failure.
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1.6 Mathematical tools for wind speed and de-

terioration modelling: stochastic processes

According to [81], a stochastic process {Xt, t ∈ T} is a collection of random vari-
ables. For each t ∈ T , Xt is a random variable. The index t is often interpreted
as time, and Xt as the state of the process at time t. The set T is the index set
of the process. When T is a countable set, the stochastic process is said to be a
discrete-time process. If T is an interval of the real line, the stochastic process is a
continuous-time process. The state space of a stochastic process is defined as the
set of all possible values that the random variable X(t) can assume.

Therefore, a stochastic process is a family of random variables that could be used to
describe the evolution through time of some process or physical process. Stochas-
tic processes are able to model a random phenomena, such as the wind speed [82],
system degradation [83], growth of population [84], cancer evolution [85] etc. This
thesis mainly considered several stochastic processes that can be applied in the
reliability engineering field and that can used to model random environment phe-
nomena. In this section, stochastic processes that are classically considered in the
field of reliability are presented briefly. They will be used in the next chapters when
developing the modeling framework for wind turbine pitch system degradation and
lifetime modeling.

1.6.1 Markov chain

A Markov chain is a stochastic process without memory. Markov chain consists of
discrete-time Markov chain and continuous-time Markov chain.

Defining that S is a finite or has countable number state space, Xti = sj represents
that the system stays in state sj ∈ S at time ti. For i ∈ N and ∀sk0 , sk1 , · · · , ski+1

∈
S, {Xti}i∈N is a Markov chain, if

P(Xti+1
= ski+1

|sk0 = x0, · · · , Xti = ski) = P(Xti+1
= ski+1

|Xti = ski) (1.9)

If and only if the transition between Xti and Xti+1
is independent of ti, it is a

homogeneous Markov chain.

P(Xti+1
= ski+1

|Xti = ski) = P(Xt1 = ski+1
|Xt0 = ski) = PX(ki, ki+1) (1.10)

where function PX : [S× S]→ [0, 1] is the probability transition matrix of Markov
chain, the distribution of Xt0 is denoted λX(0) and is called the initial distribution
of Markov chain.

Hence, the probability distribution of the state at time ti is:

λX(ti) = λX(0)× (PX)i (1.11)



22 Chapter 1. State-of-the-art

The mean sojourn time in each state sm is noted as Tm. It can be calculated as

E(Tm) =
1∑

n6=m PX(m,n)
(1.12)

If and only if at least one of the power of the transition probability matrix PX
has the elements strictly positive, then the limited distribution λX(∞) exists when
t→∞. And it is independent of λX(0).

If the stochastic process {Xt} takes the value from a finite or countable state space,
and the time passed in each state is not negative and is exponential distributed,
this stochastic process can be considered as a continuous-time Markov chain.

Markov chains have various applications, such as in the field of economics, the
algorithms used in optimisation and simulation. As for the deterioration modelling,
both discrete-time and continuous-time Markov chains are concerned. In some
cases, a system is considered to operate under two or more situations where the
deterioration rates are different, or the deterioration levels of system are different.
The Markov chains model all the possibilities that the system deteriorates from a
perfect condition to failure, and are applied to the preventive maintenance [86, 87,
88]. Markov chains are also used to model the stochastic phenomena, especially, the
deterioration. Kharoufeh et al. studied a system whose deterioration rate depends
on the environment, and the environment can be modelled by a continuous-time
Markov chain [89].

1.6.2 Gamma process

Homogenous gamma process

Recall that a gamma-distributed random variable x with shape parameter α and
scale parameter β is denoted x ∼ Γ(α, β). The corresponding probability distri-
bution function (pdf) is

Γ(x|α, β) =
βα

Γ(α)
xβ−1 exp(−βx)I(x) (1.13)

where Γ(a) =
∫ +∞

0
za−1e−zdz is the Gamma function for a > 0, and I(x) is the

indicator function.

A continuous stochastic process {Xt, t > 0} is a homogenous gamma process, if

a. X0 = 0,

b. Xt −Xs ∼ Γ(α(t− s), β), ∀t > s > 0,

c. Xt has independent non-overlapping increments.
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Hence, homogenous gamma process is suitable to model gradual degradation phe-
nomena, such as crack growth, wear, etc. Some homogenous gamma process prop-
erties make it become one of the most accepted degradation models in reliability
engineering field.The trajectory of Xt is monotonic increasing, like most engineer-
ing degradation processes without maintenance.

• The expectation and variance of homogenous gamma process are linear
functions.E(Xt) = α

β
t, var(Xt) = α

β2 t. Hence, homogenous gamma process
can be applied to the degradation process with linear tendency.

• E(Xt)
var(Xt)

is a constant.

• Homogenous gamma process is a Markovian process that Xt only depends on
the last one. This property simplify the situation when one wants to applied
homogenous gamma process to engineering problems.

Non-homogeneous gamma process

Introducing α(t), a non-decreasing, right continuous and real valued function for
t > 0, with α(0) = 0, definition of non-homogeneous gamma process is derived. In
this case:

a. Xt −Xs ∼ Γ(α(t)− α(s)), β), ∀t > s > 0,

b. The expectation and variance of non-homogenous gamma process are all ad-
justable functions. Hence, compared to homogeneous gamma process, non-
homogenous gamma process is more flexible, it can model the degradation pro-
cesses with nonlinear tendency.

M. Abdel-Hameed firstly proposed to model a wear deterioration by gamma pro-
cesses [90] in 1975. Then gamma processes are wildly applied in deterioration
modelling, such as the deterioration of bearing [91], aging structure modelling
[92], and a detail list of gamma process application for preventive maintenance is
presented by Van Noortwijk in [93].

1.6.3 Wiener process

A stochastic process {Wt, t > 0} is denoted as a (standard) Wiener process, if

a. W (0) = 0, with probability 1.

b. For 0 ≤ ti < ti+1 ≤ T , the increment ∆Wi = W (ti+1) − W (ti) is Gaussian
distribution with zero mean and σ = ti+1 − ti, namely, ∆Wi ∼ N(0, σ).

c. For 0 ≤ ti < ti+1 < ti+2 ≤ T , the non-overlapping increments ∆Wi = W (ti+1)−
W (ti) and ∆Wi+1 = W (ti+2)−W (ti+1) are independent.
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Some properties of Wiener process are listed,

a. Wiener process has a zero mean and its variance is a linear function of time.

b. It has independent non-overlapping increments.

c. Its trajectories fluctuate.

d. Different from gamma process, the trajectory of Wiener process is almost surely
continuous without jumps.

A drifted Wiener process can be derived by adding drift term to the standard one,
namely

Xt = x0 + at+ bWt (1.14)

where, x0 ∈ R, a > 0 and b > 0 are the drift parameter and volatility parameter,
respectively. Volatility can be considered as the degree of the process’ fluctuation.

Similar to the standard Wiener process, when x0 = 0 a drifted Wiener process has
independent increments that follow Gaussian distribution:

Xt −Xs ∼ N (a(t− s), b2(t− s)), ∀t > s > 0 (1.15)

1.6.4 Ornstein-Uhlenbeck process

The most famous mean reverting diffusion process is the Ornstein-Uhlenbeck (OU)
process also called Vasicek model. Roughly speaking it describes the velocity of
a massive Brownian particle under the influence of friction. To link with time
series used in the literature for wind modeling, one can recall that the OU process
can also be considered as the continuous-time analog of the discrete-time AR(1)
process.

The OU process is initially proposed to model the velocity of a particle in liquid,
viscous suspension. Presently, this process is widely used to model phenomenon in
biology, medicine, finance, and economy. The OU process is a stochastic process
that satisfies the following stochastic differential equation:

dX(t) = α(ζ −X(t))dt+ βdW (t), t ∈ [0, T ], X(0) = 0 (1.16)

where W (t) is a Wiener process. The meanings of OU process parameters are
listed below:

• α > 0 is the rate of mean reversion, scaling the distance between X(t) and
ζ appropriately to match whatever is being modeled.

• ζ ∈ R is the long-term mean of the process. If X(t) > ζ, so (ζ −X(T ) < 0),
that means the drift of the process is negative and tends towards ζ. The
process will have positive drift when X(t) is smaller than ζ.
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• β > 0 is the volatility or average magnitude, per square-root time, of the ran-
dom fluctuations that are modeled as Brownian motion. As it is representing
the variance it must be strictly positive.

If we ignore the fluctuations due to W (t), then X(t) has an overall drift towards
a mean ζ. The process X(t) reverts to this mean exponentially, at rate α, with a
magnitude proportional to the distance between the current value of X(t) and ζ.
The mean and the variance of X(t) are defined as follows [94]:

E(X(t)|X(0) = x0) = e−αtx0 + ζ(1− e−αt)

var(X(t)) =
β2

2α
(1− e−2αt). (1.17)

The first-passage time of the OU process to a given horizontal barrier, L, is a ran-
dom variable which has tractable expressions for the PDF only in the special case
L = ζ, refer to [95]. Phillips in [96] proposed an approximation of the transition
density for the OU process defined in equation (1.16) as follows:

X((i+ 1)h)|X(ih) ∼ N
(
ζ(1− e−αh) + e−αhX(ih) ,

β2

2α
(1− e−2αt)

)
(1.18)

Y. Deng et al. used an OU process to model a deterioration process with fluc-
tuations around its average behaviour [97]. Because the OU processes stabilises
around some equilibrium point, O. Aalen et al. proposed a survival model based
on OU processes [98].

1.6.5 Regenerative process

According to M. Ross [81], a regenerative process is a stochastic process {Xt, t ≥ 0}
with state space N+, having the property that there exist time points at which
the process (probabilistically) restates itself. A repairable system starts to work
at T0 and fails at time T1. It is restored to an as-good-as-new condition with a
maintenance action. Then it may fail again at T1 +T2 and be restored as previous.
Let the same procedure continue and record T1, T2, · · · . Without considering the
time duration for the maintenance after failure, the basic concept of regenerative
process is presented.

1.7 Conclusions

In this chapter, firstly, we reviewed the developments of wind turbine, the chal-
lenges for its safety and its life extension. As wind is the energy resource for wind
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turbine, then we introduced the existing wind speed models. The work of this the-
sis is a part of wind turbine’s Prognostics and health management, which contains
condition monitoring, deterioration model, remaining useful life and maintenance
policies. Therefore, we illustrated them respectively. In the domains of the wind
speed model and deterioration model, stochastic processes are widely used, hence,
several stochastic processes are illustrated.

The state-of-the-art provides initial ideas and elements for the work of the thesis.
Since the wind turbine is our object of study, the work in the thesis have some
novelties compared with the state-of-the-art. Firstly, we propose a more flexible
wind speed model which meets the requirement of long-term high-frequency wind
speed. Secondly, RUL estimation methods are studied for the system like a wind
turbine that operates under various environment. Thirdly, an unavailability model
caused by random maintenance delays are proposed for wind turbine. A wind tur-
bine simulator with deteriorating hydraulic pitch system is established to provide
the deterioration data for the study. Next chapter will focus on the wind turbine
simulator.



Chapter 2

Wind turbine simulator

2.1 Introduction

The aim of the thesis is to propose a modelling framework composed of (1) a
model of pitch system deterioration (2) an indicator which allows to estimate the
deterioration level from monitoring data (3) a numerical simulator which allows to
simulate the estimated deterioration behavior and to characterize the remaining
useful lifetime. Therefore, to provide simulation data for the research and to
evaluate the research result, a wind turbine simulator related to our research issue
is required.

This chapter is devoted to the realisation of a wind turbine simulator combined
with a deteriorating hydraulic pitch system. The 5-MW baseline wind turbine
developed by the National Renewable Energy Laboratory (NREL) is the base of
the work. First, an introduction about it will be given. Afterward the pitch
control system (control strategy and pitch actuator) will be introduced. Then
the hydraulic system deterioration modelling is addressed. Finally, this chapter
ends with the wind turbine simulator realization method in the environment of
Matlab/simulinkr.

2.2 NREL 5-MW baseline wind turbine and its

pitch control system

2.2.1 NREL 5-MW baseline wind turbine properties

NREL 5-MW baseline wind turbine is developed for conceptual studies aimed at
assessing offshore wind technology for the U.S supported by the National Wind
Technology Centre. For the development of the NREL 5-MW baseline wind tur-
bine, the researchers gathered a large deal of available information on wind tur-
bines, such as:

27
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• the wind turbine project of the Dutch Offshore Wind Energy Converter
(DOWEC) [99, 100, 101],

• the project of the Recommendations for Design of Offshore Wind Turbine
(RECOFF), the series studies of the land-bade Wind Partnerships for Ad-
vanced Component Technology (WindPACT) [102, 103],

• the REpower 5M prototype wind turbine [104],

• the Multibrid M5000 prototype wind turbine [105].

Hence, the NREL 5-MW baseline wind turbine can be considered as a numerical
large wind turbine that is representative of typical utility-scale-land and sea-based
multi-megawatt turbines. This section gives a brief introduction about the NREL
5-MW baseline wind turbine abstracted from its technical report [106]. Its general
properties are shown in Table 2.1.

Table 2.1: General properties of the NREL 5-MW baseline wind turbine

Rotor Orientation, Configuration Upwind, 3 blades
Control Variable Speed, Collective Pitch
Rotor Diameter 126m
Hub Height 90 m
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25m/s
Rated Tip Speed 80 m/s
Rating Power 5 MW

Blade structural and aerodynamic properties

The blade structure design of 5-MW baseline wind turbine is based on the glasfiber
blade applied to the DOWEC study. The blade root is located 1.5m along the
pitch axis from the rotor center, namely, half the hub diameter. The researchers
set the blade aerodynamic properties based on the DOWEC blades but made some
corrections according to their results. Table 2.2 shows the properties of the blade.

Table 2.2: Blade structural properties

Length 61.5 m
Mass scaling factor 4.536%
Overall mass 17,740 kg
First mass moment of inertia with respect to the blade root 363,231 kg ·m2

Second mass moment of inertia with respect to the blade root 11,776,047 kg ·m
Structural damping ratio 0.4775 %

Hub and nacelle properties
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Table 2.3: Hub and nacelle properties

Hub Mass 56,780 kg
Hub inertia about low-speed shaft 115,926 kg ·m2

Nacelle mass 240,000 kg
Elevation of yaw bearing above ground 87.6 m
Nominal nacelle-yaw rate 0.3◦/s

This part of work merged the properties of DOWEC and REpower 5M turbines.
Table 2.3 shows the main properties.

Drivetrain properties

The NREL 5-MW baseline wind turbine has the same rated generator speed, rated
rotor speed and gearbox ratio as the REpower 5M wind turbine. The natural
frequency of the driveshaft is the same as the RECOFF turbine model. The
high-speed shaft took the same properties of the DOWEC’s. Table 2.4 shows the
drivetrain properties.

Table 2.4: Drivetrain properties

Rated rotor speed 12.1 rpm
Rated generator speed 1173.7 rpm
Gearbox ratio 97:1
Electrical generator efficiency 94.4%

Tower properties

The properties of tower for a wind turbine depend on the type support structure
used to carry the rotor and the nacelle. However, the type support structure
depends on the wind farm site (onshore, offshore, soil type, water depth etc). The
NERL 5-MW baseline wind turbine tower is based on the tower used in DOWEC
study. Table 2.5 shows the properties of the tower.

Table 2.5: Drivetrain properties

Height above ground 87.6 m
Overall mass 347,460 kg

With the above content, we have a general idea about the NREL 5-MW baseline
wind turbine. Based on its representative information of real large wind turbines,
even though it is a numerical simulator, it provides credible simulation data for
our study.
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2.2.2 Pitch control system

To capture as much as possible wind energy, the variable speed wind turbine is
developed. The application of pitch system to the wind turbine makes the rotor
rotate with a variable speed and makes the wind turbine be able to generate energy
for a large scale of wind speed. Figure 2.1 shows a typical power control principle
of variable speed wind turbine with respect to the wind speed. And from a point
of view of the wind turbine’s power control aim, Table 2.6 gives the definitions of
Region 1, Region 2, Region 3 and Region 4, respectively.

100

80

60

40

20

0

90

60

30

0

5 10 15 20

5 10 15 20 25

P
it

ch
 a

n
gl

e
(°

 )

Pitch actuator
mainly working space 

Wind speed(m/s)

R
e

la
ti

ve
 o

u
tp

u
t 

p
o

w
e

r(
%

)

Parking

Cut in wind 
speed

Cut out wind 
speed

Idling

Take 
off

Pitching 

Region1 Region2 Region3 Region4

25

Figure 2.1: Operation ranges and control of a variable speed wind turbine with a
power control by pitch system

From the control point of view, variable speed wind turbine operates in two regions:
partial load region (from cut-in wind speed to rated wind speed, i.e., Region 2
shown in Figure 2.1) and full load region (wind speed varies from rated speed to
cut-out speed, i.e., Region 3 shown in Figure 2.1) . In partial load region, control
aims to catch as much wind energy as possible. And the one in full load region
is to reduce load and to limit the output power of wind turbine by regulating the
rotor’s rotational speed around the rated rotational speed of a wind turbine.

The system used to implement rotor’s regulation is the pitch control system which
works during the full load region. This latter also performs the aerodynamic brake
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Table 2.6: Wind turbine control aims with respect to wind speed

Region Wind Speed Range (m/s) Control Aims and Actions
Region 1 0 ∼ cut-in A control region before cut-in wind

speed. Rotor is idling and no power
is captured from wind. The pitch
angle keeps at 90 ◦.

Region 2 cut-in ∼ rated A control region for optimizing wind
energy. The pitch angle is set to the
optimization angle, no pitch action,
rotor’s speed varies over the wind
speed.

Region 3 rated ∼ cut-out Pitch is active to limit input wind
energy and output power of genera-
tor, which is regulated around rated
power.

Region 4 > cut-out Wind turbine shuts down, shafts
are braked, in order to protect the
wind turbine against the heavy load
caused by strong wind.

in an urgent situation and regulates blades to the optimal position in the partial
load region. During the period that the wind speed is between the rated wind speed
and the cut-out wind speed, the pitch system operates continuously according to
the wind speed.

Beside the adjustment of power, the other contributions of pitch control are ex-
pressed as follows [107]:

• Above the rated wind speed, pitching the blade provides an effective method
of regulating the aerodynamic power and loads produced by rotor, hence,
prevents the mechanical power to go beyond the design limit.

• Minimizing fatigue loads of the turbine components.

In engineering reality, pitch control is a part of the power control applied to rotor,
another part is the torque control for generator (the thesis just mentions this point
without further discussion).

A pitch system consists of a control strategy, controller for the control strategy
realization and actuators for the implementation of control command. Basically, a
Proportional and Integral (PI) pitch controller is enough, and it is widely applied
in engineering field of wind energy.
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2.2.2.1 Pitch control strategy

A baseline control pitch system is proposed by engineers, shown in Figure 2.2. In
Region 3, pitch angle commands are computed using PI control on the speed error
between the rated generator speed and the filtered generator speed.
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Figure 2.2: Flowchart of the baseline control pitch system for NREL 5-MW wind
turbine

2.3 Hydraulic pitch system: principle and fail-

ures

2.3.1 Principle of hydraulic pitch system

The hydraulic and electric pitch system share the commercial wind power market.
Both of them have advantages and disadvantages so that it is difficult to say which
one is the best. With the development of multi-megawatt wind turbines, choosing
hydraulic pitch system is a tendency, even though one can encounter the failure
of leaking hydraulic fluid and oil contamination problems. The advantages of the
hydraulic pitch system are as follows:

• quick response, higher power density and reliable,

• no electrical power (batteries) is required for emergence stop and when wind
turbine is cut-off,

• simple structure requires less space inside the hub than the electric pitch
actuator,

• easy diagnostic and maintenance.

Figure 2.3 shows a schematic diagram of the hydraulic pitch system. Briefly, the
mechanism of a hydraulic pitch system is rotating the blade root by adjusting the
piston’s displacement inside the hydraulic cylinder. The displacement is propor-
tional to the change of pitch angle.
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Figure 2.3: Diagram for a hydraulic pitch actuator

2.3.2 Failures of hydraulic pitch system

Failures of hydraulic pitch system may damage the wind turbine. Incorrect pitch
angle of a single blade causes an imbalance to rotor that leads to high periodical
loads to drive-train. Inefficient performance of pitch system will cause undesir-
able downtime of wind turbine. The common hydraulic pitch system failures are
leakage, wear and excessive high air/oil ratio.

1 Leakage:

A hydraulic system suffers two kinds of leakage: internal leakage (appearing
at the piston inside the cylinder) and external leakage (appearing at the
shaft seal for pipe connection). Leakage will cause inefficient operation of
a hydraulic system. With leakage, the system will eventually break down.
Even worse, a sudden leakage can trigger serious consequences when the wind
turbine is working with load. Leakage is always one of the major threats to
wind turbine’s hydraulic system.

The internal leakage, difficult to measure directly, is a typical failure of hy-
draulic system. It decreases the loop gain and increases the effective damp-
ing, leading to the degradation of performance. The effect of internal leakage
is to increase the damping characteristic of the actuator.

2 Wear:

Wear between a piston and the cylinder may be divided into two parts:
abrasive wear caused by hard pollutants in hydraulic oil; adhesive wear inside
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the piston. Wear of the seals used for the separation of actuator rod from the
cylinder results in a hydraulic fluid leakage to the environment, and it leads
to a sluggish response of hydraulic system. Wear occurring to pump leads
low pump pressure. Besides, wear leads to a contamination of hydraulic oil.

3 Excessive air/oil ratio:

There will always be some air in the hydraulic oil, and the content of air
is hard to control. For the hydraulic system in service, air/oil ratio has an
increasing tendency. Excessive air/oil ratio which leads to bulk modulus
reduction, spongy operation and poor control system response is a typical
deterioration of the hydraulic system. As air is much more compressible than
oil, it changes the dynamics of the hydraulic system causing slow movement
of hydraulic actuator.

The three main failures of hydraulic pitch system are related to sudden or gradual
deteriorations with effects on the dynamic of actuator. More details are explained
in the following section, and a deterioration model is proposed to model the phe-
nomena.

2.4 Deteriorating hydraulic pitch system mod-

elling

2.4.1 Fault-free hydraulic pitch system model

In principle, the fault-free hydraulic pitch system is a piston servo system which
can be modeled by a second-order dynamic equation [108] as follows:

β̈ + 2ζωnβ̇ + ω2
nβ = ω2

nβr (2.1)

where β is the blade-pitch angle measurement, βr is the reference blade-pitch angle
from pitch control system, ωn is the natural frequency, and ζ is the damping ratio.
In the case of no failure, the following parameters are used: ζ = 0.6, ωn = 11.11
rad/s [109].

2.4.2 Parameters for deteriorated hydraulic pitch system

In order to model the failures mentioned in Section 2.3 with equation (2.1), pa-
rameters for the pitch system under different conditions are defined as below:

1 Leakage

Hydraulic leakage failure leading to low pressure can induce an abrupt change
in the pitch system model parameters ωn and ζ [110].



2.4. Deteriorating hydraulic pitch system modelling 35

2 Wear

Wear failure causes the increase of the damping ratio, at the same time the
natural frequency decreases.

3 Excessive air/oil ratio

This failure will manifests itself with slower actuator response over time,
this failure is modeled as a slow, time varying change in system parameters
ζ and ωn. It can reduce the natural frequency ωn [108][111]. Besides, this
deterioration process doesn’t noticeably affect the damping ratio [111]. In the
literature, when ωn decreases to 3.42 rad/s, they consider the pitch system
is failed, and at this moment, the failure can be detected.

From now on, the thesis mainly considers the excessive air/oil ratio failure.

2.4.3 Response of deteriorated hydraulic pitch system

Step response with different ωn for equation (2.1) is given in Fig 2.4. A simulation
of wind turbine simulator’s reaction with different ωn is shown in Fig 2.5. Com-
pared with the healthy system (ωn = 11.11rad/s), the deteriorated pitch system
leads to unsatisfied control results.
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Figure 2.4: Wind turbine behavior according to the wind speed

Technically, reaching the failure level of excessive air/oil ratio in the hydraulic
system is not an abrupt change, but a gradual process. This process is considered
as the deterioration of pitch system in the thesis. It relates to the pitch system
operation/usage driven by the wind speed variation. Quickly and stochastically
wind speed changing are the main difficulty associated with hydraulic pitch system
deterioration study. This phenomenon leads to random pitch operations, causing
a random deterioration process.
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Figure 2.5: Transition among the operational states of variable-speed wind turbine

2.4.4 Deteriorated hydraulic pitch system model consider-
ing wind speed influence

The available operation data from SCADA relating to pitch system are pitch angle
and pitch rate. To quickly adjust the generator rotational speed and the rotor’s
rotational speed over the variable wind speed, current pitch rate can reflect the
current wind speed turbulence. In order to model the actuator deterioration over
time, we consider that the deterioration rate depends on its usage, which is directly
related to wind speed fluctuations. Hence, the Accumulate Pitch Rate (APR) is
introduced as a parameter used to represent the wind influence. Let APR(t, s)
denote the accumulate pitch rate from time t to time s with s > t ≥ 0. It is
defined as

APR(t, s) =

∫ s

t

Budu (2.2)

where, Bt is the pitch rate at time t and is expressed in rad/s. Due to the intrinsic
randomness of wind, the operation of pitch system is stochastic. Hence, for a given
time period δt, APR(t, t+δt) is a random positive real value. An example is shown
in Figure 2.6. It shows the evolution of APR(ti, ti+1) with ti = 60 i.e. a timescale
of one minute.

The usage of pitch system, which is quantified as APRi, slowly increases the air/oil
ratio of hydraulic pitch system. The latter is assumed as monotonous increasing
in the absence of maintenance. The air content at time ti + s only depends on the
one at time ti.

The increment of deterioration during a time interval δt is modelled as a random
variable which depends on δt and on the usage. It is proposed as an example
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Figure 2.6: A sample for APR value

to consider gamma distributed random variables with deterioration increments
every minute. A different random variable could be considered but such a choice
requires an in-depth analysis of deterioration phenomenon from data and it is not
the objective of this work.

Therefore, we consider that the shape parameter of gamma distribution is a linear
product of APR and time, the deterioration increment distribution at time t could
be defined as follows:

f(x|g(APR)t, b) =
1

bg(APR)tΓ(g(APR)t)
xg(APR)t−1e−

1
b
x (2.3)

where g(APR) is a function related to APR, b is constant.

x(t) is the deterioration increment at time t, therefore the value of degraded natural
frequency of hydraulic pitch system ωnD at time t is

ωnD(t) = 11.11−
t∑

i=0

x(i) (2.4)

Substituting ωnD(t) for ωn in equation (2.1), the deteriorated hydraulic pitch sys-
tem is modelled. It is used to simulate the deteriorating hydraulic pitch system
hereafter, as the input data for pitch system RUL and maintenance.

2.5 Realization with Matlab/simulink

Figure 2.7 shows how the different parts of the model are put together in the
overall integrated wind turbine simulator with a deteriorated hydraulic pitch sys-
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tem. The Fatigue, Aerodynamics, Structures and Turbulence (FAST) software is
a wind turbine simulator designed by the US National Renewable Energy Labo-
ratory(NREL). Several real and composite wind turbine models are available in
FAST software, including the NREL-5MW baseline wind turbine [106]. FAST
provides interfaces for the customized pitch system and wind speed sequence, and
it can be embedded in the Simulink environment. In this thesis, the wind speed
sequence is simulated by Matlab. While the PI controller and deteriorating actu-
ator are implemented and are connected with FAST in the Simulink environment,
as well as the wind speed data. The input wind speed sequence is used to drive
the FAST wind simulator.

Wind turbine simulator with a deteriorating hydraulic pitch system

Deteriorating actuator

PI Controller Actuator
FAST wind turbine

simulator

Wind

Deterioration model
Accumulated pitch

rate (APR)

βref βmes

Figure 2.7: Wind turbine simulator with a deteriorating hydraulic pitch system

2.6 Deterioration indicator for hydraulic pitch

system

The global model has been described previously and it includes pitch actuator
deterioration. It can be considered as a digital twin of a real deteriorating wind
turbine. But from a practical point of view the deterioration level cannot be
measured easily. Then a process is proposed to estimate the degradation indicator
from the data available from SCADA without any additional sensor or device.

Since reference pitch angle (βref ) and measured pitch angle (βmes) can be eas-
ily achieved from SCADA, they are used to estimate the parameters of transfer
function, the estimated value of natural frequency (ω̂n) is the indicator for the
hydraulic pitch system deterioration.

Taking into account of the SCADA data acquisition frequency and the actual long-
term deterioration process, ω̂n is estimated for every ten minutes using the tfest
Matlab function. Hence, the estimated natural frequencies constitute a time series
ω̂n{Ti} (i = 1, 2, · · · , n). Compared with its service time and, the pitch system
can be considered as continuously monitored. If ω̂n is smaller than 3.42 rad/s, the
hydraulic pitch system is considered as failed.
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2.7 Conclusion

The contribution of this chapter is the proposition of a wind turbine simulator
incorporating with a deteriorating hydraulic pitch system. A method is proposed
where the deterioration of hydraulic pitch system is related to wind speed which
is a random phenomenon. The deterioration directly affects the natural frequency
of the pitch system actuator. This parameter is then gradually decreasing with
time and usage. Hence, the deterioration process is stochastic.

A wind turbine is driven by wind, similarly, to run the numerical wind turbine
simulator, it needs wind data (wind speed and wind direction). The thesis assumes
that due to the yaw system, the nacelle always faces the inflows of wind. Therefore,
for the simulator, it only needs the wind speed with a high stamping frequency
when compared to the slow deterioration phenomenon. The next chapter will focus
on wind speed modelling.



Chapter 3

Wind speed model

Problem statement

For degradation analysis, precise numerical results are necessary only when the
wind speed is in full load region. Short-term continuous sequences of wind speed
are required to characterize the degradation increments in different configurations.
Furthermore, the dynamics of deterioration are very slow and require long-term
trend analysis and simulation capabilities to know how the degradation leads to
failure. Hence, for the study relating to a pitch system deterioration, a long-term
wind speed model with embedded continuous parts is necessary.

3.1 Introduction

In order to take into account the possible non-linearity in wind speed data and
to take advantage of the wind speed randomness, a general and flexible modeling
framework is required. Since future wind speed trend does not depend on its past,
Markov Chain is a good candidate to model mean wind speed data behaviour.
Despite the simplicity of first-order Markov chain, it can reproduce an artificial
wind speed series with faithful statistical characteristics to the measured data
[112, 113, 114, 115]. However, as the autocorrelation of generated data is dropping
off faster than the one of real data, Markov chain is not suitable for small timescale
wind speed generation. The research done by [116] shows the unsuitability of
Markov chain for time step smaller than fifteen minutes. Authors in [117] put
emphasis on second-order Markov chain and semi-Markov chain and applied them
for wind speed modelling in order to improve the accuracy of more sophisticated
calculation demanding cases.

Another common stochastic modelling framework is derived from Stochastic Dif-
ferential Equations (SDEs), refer to [118]. Differential Equations are standard
models for deterministic dynamics. However, natural phenomena are exposed to
factors that are neither entirely known nor easy to model explicitly. Hence, ex-
tended models considering more complicated changes in the dynamics are required.

40
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SDEs can be considered as extensions of deterministic differential equations, where
parameters are evolving randomly or where stochastic processes are added to the
main dynamics. SDEs are especially suitable for modeling wind speed fluctuation
and can be used to simulate wind speed at any timescales. However, considering
e.g., diurnal and seasonal influences, the wind speed generation length of SDEs
with constant parameters is limited to a few hours.

The existing wind speed models focus on either short-term modeling or long-term
modeling with a large timescale. Therefore, the analysis of the wind turbine per-
formance and operation relating to wind speed is limited. Short-term modeling
results limit the analysis to a current short period; long-term modeling results
can not provide sufficient and qualitative data for analysis. Especially consider
the situation where continuous closed-loop control interacts with a long-term ac-
tuator degradation as described in previous chapter. The actuator degradation is
affected by its usage, hence, closely connected to wind speed characteristics. This
issue is related to problems of RUL assessment and to output power estimation of
wind turbine. It falls into the field of prognosis and health management (PHM)
and is a key input for condition-based maintenance. Both RUL and output power
are affected by wind turbulence intensity which is defined as variance divided by
mean wind speed. Researchers figure out that turbulence intensity is one of the
critical influences on wind turbine lifetime [28]. Some studies indicate that wind
speed has a significant impact on degradation of wind turbine components. For
instance, the rapid variation of wind speed leads to frequent and sudden actions
of the blade-pitch system, which has a high failure rate compared to other com-
ponents. Moreover, it has been indicated that turbulence intensity affects the
turbines power production [119, 120, 121, 122, 123, 124]. For RUL estimation,
hourly average wind speed data is less satisfactory. They reflect the general trend
of wind speed at the cost of loss of detailed information, namely the turbulence
of wind speed. Besides, degradation occurring to wind turbine components is a
long-term process, and the RUL of wind turbine component changes dynamically
according to its working condition.

A method proposing continuous wind speed generation during long time horizon
seems missing in the literature. In the meantime, wind speed at different timescales
are applied in different ways. For example, long-term wind speed data is used to
estimate wind energy for a future wind farm; various wind speed sequences are used
to test a new control strategy; annual wind sequences with detailed information
are considered in reliability study of wind turbine. The importance of a fulsome
wind speed model in reliability, production and prognosis and the shortfall in
the literature encourage us to propose a wind speed model which satisfies the
requirements as follows:

• can reflect the trend of wind in long-term

• can contain turbulence information at small timescale

• can fit the real wind speed data’s probability distribution

• can quickly generate data
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In other words, this chapter proposes a mathematical model which permits to
generate satisfiable wind speed sequences for wind turbine components RUL study
and for accurate output power estimation.

The main contribution of this chapter could be summarized as follows:

• A new wind speed generation model benefiting the advantages of Markov
chain and SDEs is proposed.

• Two kinds of SDEs are applied to different wind profiles generation.

• An application related to the operation of wind turbine is presented.

3.2 Wind Model description

3.2.1 General description

In wind power industry, the Reynolds decomposition needs to be considered for
analyzing turbulence effects [125]. As shown in Figure 3.1, the wind speed time
series U(t) can be decomposed into its mean value Ū(t) and the fluctuation u(t).

U(t) = Ū(t) + u(t) (3.1)

0 500 1000 1500 2000 2500 3000
0

10

20

S
p

e
e

d
 (

m
/s

)

Wind speed

0 500 1000 1500 2000 2500 3000
12

12.5

13

A
v
e

ra
g

e
 s

p
e

e
d

(m
/s

) Average wind speed over 10 minutes

0 500 1000 1500 2000 2500 3000
−10

0

10

Time (s)

T
u

rb
u

le
n

c
e

(m
/s

)

Wind Speed turbulence

Figure 3.1: Wind speed series
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This decomposition gives us an idea to model the mean wind speed and wind
speed fluctuation separately. As it is mentioned in [10], Ū(t) can be considered as
a low-pass filter corresponding to the hourly, daily, monthly, seasonal or annual
effects; turbulence u(t), which has a zero mean value, can be seen as a high-pass
filter corresponding to the turbulent impacts.

S1

S2S3

S4

----   SDE models

----  Markov chain state

----  Markov chain for
   SDE selection

Figure 3.2: Wind speed generation model — 2-level Markov chain model embedded
with SDE

Depending on research emphasis, wind speed can be modeled in different ways
at different timescales. Since studies show that wind turbulence intensity has a
significant impact on energy production and failures of wind turbine, continuous
wind speed is more appropriate when one studies the operation of wind turbine.
Hourly average wind speed is a good choice when one wants to estimate the wind
resource of a site. And SCADA system records 10 minutes’ average wind speed in
wind turbine operation log file.

In this chapter, we propose a 2-level Markov chain model embedded with SDEs.
Figure 3.2 shows the overall model with the Markov chain and the SDE model.
This model is very flexible due to the following properties:

• Outer Markov chain (blue ones shown in Figure 3.2) is used to model macro-
scopical (general) wind speed trend. It can have several meanings, such as
average wind speed for a specific timescale (hourly or daily average wind
speed) or different wind speed classes (breeze, strong wind, storm, etc.).

• The embedded SDEs are mainly used to model continuous wind speed se-
quences depending on the states’ environment which is set by the outer
Markov chain. Different parameter settings and different SDEs give a large
variety of continuous wind speed models.

• An inner Markov chain (Orange ones shown in Figure 3.2) is considered
inside each state of the outer Markov chain to In order to randomly toggle
between the two classes.
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• For different conditions of simulations such as gust or extreme weather, other
SDEs can be supplemented. For these reasons, this model is easily modified
according to the user’s requirement.

Here two example of wind speed data that can be generated by this proposed
model. They are given as follows,

• One day’s (24 hours) wind speed generation

Each state of outer Markov chain represents hourly average wind speed. In
this case, 23 transitions between states are generated to represent the average
wind speed time series for one day. In each state, SDE is used to generate
wind sequences data at small timescale like one second or continuous. The
SDE considered for 10 minutes is driven by the inner Markov chain.

• Different wind class generation

Refer to IEC standards [126], wind condition contains normal, extreme and
gust which could be generated by Markov chain. Inside the state of Markov
chain, SDEs are used to simulate wind speed associated with considered wind
condition.

3.2.2 Markov chain embedded with SDE

Markov chain as a macroscopic wind speed model

A Markov chain is uniquely defined by its state space, transition matrix and initial
distribution. Markov chain wind speed modeling consists of four main steps: state
definition, transition matrix estimation, state simulation and wind speed simula-
tion. The state definition is related to a classification problem and depends on the
purpose. It corresponds to the choice of interval over the wind speed range, which
may depend on the occurrence frequency of speed values. Let S = [s1, s2, · · · , sN ]
be the state space for the outer Markov chain corresponding to different possible
states of the wind speed. Let {Xt}t≥0 represents the wind speed time series. The
event “X0 = s5” means that at time t = 0, the meanwind speed fluctuation wind
speed is in state s5. Table 3.1 shows an example of state assignment.

State s1 s2 s3 s4

Wind speed (m/s) [4,8] (8,9.4] (9.4,10.2] (10.2,10.7]

State s5 s6 s7 s8

Wind speed (m/s) (10.7,11.2] (11.2,12] (12,12.8] (12.8,25)

Table 3.1: Example for Markov chain state space

The initial distribution is estimated by dividing the dataset into bins according to
the states. The obtained vectors of occurrences can then be normalized in each
bin. Let p0

i = P{X0 = si} denote the probability that the first element of the wind
time series is in the interval si. To estimate it, count the number of times that
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there is a value belonging to the state si in the entire recorded time series and
divide it by the total number of recorded values.

Let’s denote the transition probability as follows:

pij = P(Xn+1 = sj|Xn = si) (3.2)

where si, sj ∈ S. The probability pij can be estimated by counting the number
of times a value in the state si followed by one in the state sj in the wind time
series, normalized by the total number of occurrences of values in state si. The
transition matrix of the Markov chain is defined as follows:

π =




p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

...
. . .

...
pm,1 pm,2 · · · pm,n


 .

SDEs for continuous short-term wind speed modeling

After studying 1 million wind speed fluctuation distributions, author of [10] con-
cludes that broadly speaking there are three classes of wind speed fluctuation
distributions. The analysis points out that 90% of wind speed fluctuation follows
a kind of symmetrical mono-modal probability distribution function (PDF) which
is well fitted by a Gaussian PDF (line with circle shown in Figure 3.3. 9% of wind
speed fluctuation follows a kind of dissymmetrical mono-modal PDF which can
be described by Gram-Charler series (dash line with square shown in Figure 3.3).
And the rest 1% follows a kind of bimodal PDF which is fitted with a mixture of
Gaussian PDF (dotted line with star shown in Figure 3.3). Figure 3.3 shows the
mean PDF of wind speed fluctuation for each class.

Consider the first two classes pointed out by [10] which represent 99% of all the
turbulence distributions. The aim is to associate an SDE with each class. In
order to consider that wind speed dynamic is impacted by a Gaussian noise, one
considers a diffusion process which is a particular stochastic differential equation
whose general form is as follows:

dZ(t) = a (Z(t), t) dt+ b (Z(t), t) dW (t), t ∈ [0, T ] (3.3)

where Z(t) denotes here the wind speed at time t, a (Z(t), t) and b (Z(t), t) are the
drift and diffusion terms, respectively. W (t) is the standard Wiener process.

In other words, the Wiener process (or standard Brownian motion) is a continuous
process whose increments are normally distributed. A large number of stochastic
processes defined by equation (3.3) are available. Some of them are good candi-
dates to fit the wind speed data.

Figure 3.4 to 3.6 show the histograms of real wind speed fluctuation. Three se-
quences of real wind speed that resemble the PDFs shown in Figure 3.3 are de-



46 Chapter 3. Wind speed model

−5 −4 −3 −2 2 3 4 5
0

2

4

6

8

10

12

14

16

18

−1 0 1
wind speed fluctuation (m/s)

class 1
class 2
class 3

Figure 3.3: Three classes of wind speed fluctuation PDF (Source: [10] )

picted. These data record the wind speed during one hour at the site San Gorgonio,
USA, downloaded from the website www.winddata.com.
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The common scenario is that wind speed fluctuation u(t) follows a symmetrical
mono-modal PDF. From equation (3.1) the mean value is always around zero (Fig-
ure 3.4). Combining with the research results of [10], a mean-reverting diffusion
process seems to be a suitable candidate. For such diffusion processes, fluctua-
tions in degradation records from an overall degrading trend are auto-correlated
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Figure 3.6: bimodal PDF

and the expectation of Z(t) tends to drift toward its long-term mean over time.
The mean-reverting property ensures that volatility is not “exploding”. The class
of “Ornstein Uhlenbeck” processes is particularly suitable to fulfil the previous
requirements. It is presented more precisely in the next section.

3.2.3 OU process for wind generation

OU processes are used to model the first two classes about wind speed fluctuation
presented by [10]. In other words, for each short-term wind speed class, an OU
process is used. This model enables generation of continuous wind speed during a
short period, such as several seconds or 10 minutes in our case.
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General OU process has been present in section 1.6.4 of Chapter 1. Now two
specific cases of OU process are presented for modeling the class 1 and class two
wind speed fluctuations, and their parameters estimation methods are also given.

3.2.3.1 OU process for class 1

For equation (1.17), let ζ = 0, a = −α, b = β. In order to avoid confusion with
the general case (equation (3.3)), Y (t) is used instead of Z(t). The OU process
chosen to describe the increment of wind speed sequence when turbulence is well
fitted by Gaussian PDF is as follows:

dY (t) = aY (t)dt+ bdW (t), t ∈ [0, T ], Y (0) = 0 (3.4)

where a is a strictly negative constant for all Y (t) and b is constant. Y (t) is the
wind speed fluctuation at time t and it is a stationary autocorrelated diffusion
process. W (t) is a standard Brownian motion.

According to equation (1.18) the log-likelihood approximation based on transition
probability is defined as follows:

logL(a, b) = log
N∏

i=1

P(Y (ti+1)|Y (ti), tI , a, b)

= −n
2

(log(b2) + log(v(a)) +
1

2b2v(a)

n−1∑

i=0

(Yti+1
− exp(a∆)Yti))

2 (3.5)

where, P is the conditional pdf of Y (ti+1) to Y (tI), ti, a, b, ∆ = ti+1 − ti, ti =

i∆, (i = 1, · · ·n) and v(a) = exp(2a∆)−1
2a

.

Hence, the parameter estimators of a and b are as follows:

â =
1

∆
log(

∑n
i=1 Yti−1

Yti∑n
i=1 Y

2
ti−1

) (3.6)

b̂2 =
1

nv(â)

n∑

i=1

(Yti − exp(â∆)Yti−1
)2 (3.7)

3.2.3.2 OU process for class 2

For class 2, wind speed fluctuation has the form of dissymmetrical mono-modal
PDF. The OU process chosen to describe wind speed is as follows:

dY (t) = −(Y (t)− µ)dt+ σdW (t), Y (0) = 0 (3.8)
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where Y (t) is the wind speed at time t, µ and σ are constant parameters and W (t)
is the standard Brownian motion. With ∆t = ti − ti−1, according to equation
(1.18) and [97] the density function is as follows:

P(Y (ti)|Y (ti−1), ti−1, µ, σ)

=
e∆t

√
π · σ2(e2∆t − 1)

exp(−(Y (ti) · e∆t + µ(1− e∆t)− Y (ti−1))2

σ2(e2∆t − 1)
) (3.9)

Hence, by numerically minimizing the following log-likelihood function, the esti-
mated values of µ̂ and σ̂ can be obtained.

logL(µ, σ) = log
N∏

i=1

P (Y (ti)|Y (ti−1), ti−1), µ, σ) (3.10)

3.2.3.3 Markov chain model for two switching wind class

The inner Markov chain is designated as an SDE-Selection model (SSM). Accord-
ing to the statistics given by [10] and with respectively 90% and 10% of wind
speed fluctuation for class 1 and 2, the transition probability shown in Table 3.2
is assigned to SSM.

class Class1 Class2

Class1 0.9 0.1
Class2 0.9 0.1

Table 3.2: Transition probability for SSM

3.3 Wind speed generation procedure

3.3.1 Experimental dataset

Long-term (one year sequences) hourly average wind speed data can be easily ac-
cessed. For instance, websites like www.ncdc.noaa.gov/cdo-web and www.winddata.com
provide free time series of wind characteristics measured under different conditions
during 10 minutes or 1 hour. The real data used in this chapter is downloaded
from the two websites.

3.3.2 Wind speed generation

There are two difficulties to estimate the transition probability matrix of the
Markov chain model from real wind speed data:
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• Markov chain with plenty of states could be constructed resulting in a huge
transition matrix that might cause additional difficulties in estimation;

• The number of data in certain states could be much smaller than others,
resulting in a lot of probabilities close to 0 in the transition probability
matrix.

In order to avoid the above phenomena, the number of states should be deter-
mined relatively smal. It could be determined by users or based on some criterion.
Authors in [127] recommend determining the interval with the empirical quantiles.
Supposing that the wind speed time series is stationary and ergodic. Hence, the
empirical cumulative distribution function is a consistent estimator of the cumu-
lative distribution of the invariant measure of this time series. The boundaries
are taken to be F̂−1

N (j/k), j = 1, 2, . . . , k, where k ∈ N is the number of state,

N is the number of outer Markov chain state, and F̂N is the empirical cumulative
distribution function.
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Figure 3.7: Steps for wind speed generation

The principal artificial wind speed data generation steps (shown in Figure 3.7) are
as follows:

Step 1 Choose wind speed data for Markov chain and SDEs estimation separately

Step 2 • Determine the outer Markov chain states

• Estimate the transition probability matrix of Markov chain from real
wind speed data

• Estimate the parameters of SDEs from real wind speed data

Step 3 Generate hourly average wind speed

Step 4 Use SSM to select SDE and generate continuous wind speed data with
respect to the condition of outer Markov chain state. If the outer state is
not the last one, go back to Step 3, otherwise, finish.
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Figure 3.8: Hourly average wind speed generation (m/s)

We would like to give an example of one month’s wind speed data at secondly
timescale generation. Hence, the states of outer Markov chain represent the hourly
average wind speed.

3.3.2.1 Generation of macroscopic wind speed using Markov chain
model

The macroscopic wind speed represents hourly average wind speed in this the-
sis. A sequence of hourly average wind speed during one year is used to esti-
mate the transition probability matrix of the Markov chain model. As a result
of data acquisition reason, the available number of data is 6180 instead of 8760
(24 hours/day × 365 days). The number of states is determined as 8, according
to the states shown in Table 3.1. We can obtain the transition probability ma-
trix of Markov chain shown in Table 3.3. A sample of hourly average wind speed
generation during one month is shown in Figure 3.8.

State Num s1 s2 s3 s4 s5 s6 s7 s8

s1 0.81383 0.179521 0.006649 0 0 0 0 0
s2 0.200573 0.530086 0.219198 0.035817 0.014327 0 0 0
s3 0 0.211043 0.541104 0.141104 0.045399 0.051534 0.008589 0.001227
s4 0 0.026250 0.197500 0.450000 0.255000 0.063750 0.007500 0
s5 0 0 0.068273 0.269076 0.398929 0.195448 0.068273 0
s6 0 0 0.009576 0.135431 0.228454 0.385773 0.184679 0.056088
s7 0 0 0 0 0.037783 0.248111 0.578086 0.13602
s8 0 0 0 0 0 0.015421 0.161329 0.82325

Table 3.3: Estimation of Transition Probability Matrix

3.3.2.2 Continuous generation of wind speed using SDE

The aim of using SDE is to generate continuous wind speed data whose mean
value is in accord with the hourly average wind speed set by the outer Markov
chain state. Taking into account the common data collection frequency of SCADA
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(an average wind speed value noted down per 10 minutes), an outer Markov chain
state contains six successive sequences of 10 minutes. Each sequence is generated
with one SDE model which represents the continuous wind speed for 10 minutes.
The five switches from one SDE to the other during one hour depend on the
state background set by Markov chain and are driven by SSM. Real wind speed
sequences are classified according to their average value which refers to the states
determined in Table 3.1. The estimated values are shown in Table 3.4.

State â b̂ µ̂ σ̂
s1 -0.1619 0.2878 7.5988 0.4337
s2 -0.0855 0.1700 8.0542 0.4310
s3 -0.0314 0.2573 10.0245 0.6459
s4 -0.1049 0.3137 10.2984 0.6373
s5 -0.0459 0.5118 10.6661 1.2831
s6 -0.0196 0.2901 11.2078 0.8246
s7 -0.0683 0.4051 12.4011 0.9461
s8 -0.0957 0.3008 12.9833 0.5577

Table 3.4: Estimated value for SDE

To illustrate the performance of SDE wind speed model, the parameters of s3 are
chosen to build the two OU processes. Class 1 model is expressed by equation
(3.11); class 2 model is expressed by equation (3.12).

dy(t) = −0.0314 ∗ y(t)dt+ 0.2517 ∗ dW (t) (3.11)

dy(t) = −(y(t)− 10.0245)dt+ 0.6459 ∗ dW (t) (3.12)
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Figure 3.9: 10 sec. wind speed generation of class 1

SDEs have the ability to generate continuous wind speed, Figure 3.9 and Figure
3.11 show examples of wind speed simulation results for two different SDE classes
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Figure 3.10: 10 minutes speed generation of class 1
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Figure 3.11: 10 sec. wind speed generation of class 2

and with two different timescales. Figure ?? shows a wind speed evolution during
10 sec, while Figure 3.11 shows a wind speed evolution during 10 minutes.

Figure 3.10 and Figure 3.12 show examples of wind speed simulation results by
solving equation (3.11) and equation (3.12), respectively. They correspond to two
different patterns of wind speed sequence both with 10 minutes average speeds
belonging to the range (9.4, 10.2]. With different SDEs, various wind profiles can
be generated. This latter helps us to simulate different wind conditions such as
stable wind speed or wind speed with high turbulence intensity. This achievement
is significant for wind turbine reliability engineering. Steady wind speed is good for
the operation of wind turbine as it causes less vibration compared to the case with
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Figure 3.12: 10 minutes speed generation of class 2

the same average but high turbulence intensity wind speed. The latter may cause
sudden overloads to wind turbine leading to its degradation. The real effect on
the degradation may also depend on the wind turbine automatic control system.
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Figure 3.13: Probability density function of real data and simulated data

In Figure 3.13, the bold red line shows the probability density of a real wind
speed sequence, the thin blue lines show the probability density of 500 samples
of simulated data which are generated by solving Equation (3.12). The PDFs of
the simulated wind speed fit to real data. But there still is a slight difference
in the average values. Due to the limitation of available free real wind data, the
model parameters are estimated from a reduce number of wind sequences which
have similar statistical characteristics. Hence, with limited amount of real wind
speed samples, the accuracy of estimated parameters may be weak leading to a
biais between the real data and the simulated data.

Figure 3.14 shows an example of 30 days wind speed generation with Markov
chain embedded with diffusion processes at secondly scale. The 10 minutes average
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Figure 3.14: Wind speed simulation with Markov chain embedded with diffusion
processes

wind speed of this sequence is calculated and plotted in Figure 3.15, to illustrate
the graphical representation of a SCADA record. Comparing Figure 3.14 and
Figure 3.15, it is not difficult to figure out that continuous wind speed data has
higher fluctuation than 10 minutes average wind speed data. Moreover, in daily
scale, the speed variation is much smaller as shown in Figure 3.15. It is the same
in reality. However, once the wind condition is suitable, wind turbine operates
continuously and rapidly adjust itself to the variation of wind speed. Therefore,
if one wants to study the wind turbine operation, component degradation process
and control strategy closely related to wind speed, the data provided by SCADA
cannot meet the requirements. An application is considered in next section for
further discussion.

3.4 Application and comparison

As mentioned in the motivation, the proposed wind speed generation model is
able to generate long-term wind speed with continuous sequences when necessary.
Hence, in this section, an application about the pitch angle evolution corresponding
to wind speed is presented to illustrate this priority.

3.4.1 Wind turbine simulator

To illustrate the pitch system behavior, a wind speed sequence of 10-minutes is
generated; the time step is set to 1 sec. The results of the pitch angle and the
output power relating to this wind speed data are simulated by the health wind
turbine simulator model is shown in Figure 3.16.

The simulation result (Figure 3.17) shows the phenomena as follows:
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Figure 3.15: 10 minutes average wind speed data during 30 days

Table 2: Properties of the blade-pitch baseline control system
Proportional gain at minimum blade-pitch setting 0.01882681s
Integral gain at minimum blade-pitch setting 0.008068634
Minimum blade-pitch setting 0◦

Maximum blade-pitch setting 90◦

Maximum absolute blade pitch rate 8◦/s

Jonkman et al. (2009) define a baseline blade-pitch
controller for the NREL-5MW baseline wind turbine.
In this baled-pitch controller the blade-pitch angle
commands are computed by using a PI control. Table2
lists its properties.

B. Blade-pitch actuator model
Because of limitations of FAST, it doesn’t include

any blade-pitch actuator. Hence, the hydraulic pitch
actuator is considered in this paper. In principle, the
fault-free hydraulic pitch system is a piston servo sys-
tem which can be modeled by a seconde order dy-
namic equation (Merritt 1967) as follow

β̈ + 2ζωnβ̇ + ω2
nβ = ω2

nβr (4)

whereβ is the blade-pitch angle measurement,βr is
the reference blade-pitch angle from pitch control sys-
tem,ωn is the natural frequency andζ is the damping
ratio. In the case of no degradation occurring to the
actuator, the following parameters are used:ζ = 0.6,
ωn = 11.11rad/s (Odgaard & Johnson 2013).

In this paper, the blade-pitch actuator and
blade-pitch controller are implemented within Mat-
lab/Simulink environment.

3 DETERIORATION PROCESS AND STATE
INDICATOR

3.1 Deterioration process of actuator

Deterioration in the blade-pitch system is considered
in the hydraulic actuator. We consider that the air con-
tent(air/oil ratio) in actuator is increasing. As air is
much more compressible than oil, it changes actua-
tor’s dynamic and results in slow control actions. Mer-
ritt (1967) and Rakoto et al. (2015) mentioned that ex-
cessive air/oil ratio can reduce the nature frequency of
pitch actuator. Rakoto et al. (2015) added that this de-
terioration process don’t noticeably affect the damp-
ing ratio of blade-pitch actuator. In this paper, we con-
sider that increasing air/oil ratio leads to the decreas-
ing of actuator’s nature frequencyωn. Note that this is
a slow deterioration process (Odgaard et al. 2013).

We assume that the degradation ofωn can be mod-
elled by a Compound Poisson Process. If a stochastic
process{X(t), t ≥ 0} can be represented by

X(t) =
N(t)∑

i=0

Yi, t ≥ 0 (5)

where {N(t), t ≥ 0} is a Poisson process andY1,
Y2,· · · are independent, identically distributed ran-
dom variables that also independent of{N(t), t ≥ 0}.

Figure 1: FAST/Simulink-based WT simulator coupled blade-
pitch actuator deterioration model

{X(t), t ≥ 0} is called a Compound Poisson Process.
We assume thatYi, i= 1,2, · · · respects a uniform dis-
tribution.X(t) represents the accumulatedωn degra-
dation at timet.

3.2 State indicator

WT works within wide range in varying operation
conditions. Further more, in full load region, with
same mean wind speed, pitch actuators act more fre-
quently with more fluctuant wind turbulence. By con-
sidering the operational conditions of variable wind
speed and uncertainty, we propose a dynamic state in-
dicator based on real time operational data. Turbine’s
rotational speeds reflect wether blade-pitch actuator
implements adequately, from this point, the state in-
dicator is shown as follow,

PitInd =

∑T
t=0

∣∣∣Ωt −ΩtRef

∣∣∣/ΩtRef

T
(6)

where Ωt is turbine’s rotational speed at timet,
ΩtRef

is the fault-free turbine’s rotational speed at
time t. According to the rate of SCADA system, if
blade-pitch actuator continuously working more than
10min, the indicatorPitInd should be calculated per
10min (T = 10min); otherwise, if the total working
time of blade-pitch actuator or the last interval is less
than10min, setT as the value of actual working time.

The next section we will discuss how to usePitInd
estimate the deterioration of blade-pitch actuator.

4 CASE STUDY

As mentioned above, the work of this paper is im-
plemented in a Matlab/Simulink wind turbine simu-
lator based on the FAST software. Figure1 shows the
overview of WT simulator coupled blade-pitch actua-
tor deterioration model.

4.1 Wind speed sequence simulation

Estimated from the measured wind speed fluctuations,
Calif (2012) setsΛ = 12s in equation (3); assuming
that the mean value of wind speed sequence is13m/s,
when turbulence intensity,Iu = σ/ū, is 5%, the value
of σ can be decided as 0.65. Figure2 show a length of
600s simulation wind speed sequence example.

Figure 3.16: wind turbine simulator model

• The pitch system operates when wind speed is higher than the rated wind
speed aiming to limit the output power of generator around the rated power.
For the NREL 5 MW wind turbine, 11.4 m/s is its rated wind speed.

• Wind turbulence influences the output power and the pitch angle, even
though wind speed variation is not significant. It is apparent that small
variations in wind speed can cause significant changes in pitch angle.

• Wind speed fluctuations around the rated wind speed and fluctuations above
rated wind speed lead to frequent and random pitch actions.

Hence, the pitch system operation and output power are closely connected with the
wind speed, whose turbulence can’t be neglected. However, the deterioration of
pitch system is a long-term process. From this point of view, wind speed estimation
for several hours even several days is required at the same time.
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Figure 3.17: Output power and pitch angle of NREL 5MW wind turbine

3.4.2 Comparative Discussion

The key contribution of this chapter is the idea of global continuous wind speed
generation, which is required by the RUL study of wind turbine. A flexible wind
speed generation model is compatible with other proposed short-term wind speed
models. To meet different demands, the SDE models can be replaced by differ-
ent short-term wind speed models, for instance, the wind speed models based on
Kaimal spectrum of IEC 61400-1 standard [126, 128].

Kaimal spectrum represents a relationship between three parameters relevant to
the wind (the mean wind speed U , the friction velocity u∗ and the height above
ground z ) and the spectrum amplitude [128]. Its form is as follow:

Suu(f) = u2
∗

52.5z/U

(1 + 33n)5/3
with n = fz/U (3.13)

If one has wind speed probability distributions of a specific site, and wants to
generate wind speed following the statistical characteristics, a short-term model
based on the probability distribution is suitable [118, 129].

Figure 3.18 shows the wind speed generation results of the proposed wind speed
generation model, a long-term Markov chain wind speed generation model, a con-
tinuous wind speed model based on Gaussian PDF and a continuous wind speed
model based on the Kaimal spectrum, respectively.

• Figure 3.18 - (a) shows a 24-hours continuous wind speed sequence, which
is generated by the proposed model. Benefiting from the flexibility of the
model, several wind profiles are presented in this picture. For instance, in the
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Figure 3.18: Comparison example

beginning, wind speed varies quickly. And some part shows a relatively stable
wind, like the values between 4th and 6th hours. Besides, this wind sequence
covers the operation wind speed range of wind turbine; it can provide a “vivid
scene” for wind turbine simulator.

• According to reference [115], Markov chain model is used to generate long-
term average wind speed. A 10-minutes average wind speed sequence over 24
hours which is generated by the Markov chain model is presented in Figure
3.18 - (b). Even though this sequence covers the wind turbine operation wind
speed range, with a 10-minutes average value, it is very difficult to know the
exact operation of the pitch system during this 10 minutes. That’s why the
discrete long-term wind speed sequences with average value are not suitable
for the deterioration and RUL study considered in this thesis.

• Figure 3.18 - (c) shows a 24-hours continuous wind speed sequences generated
by equation (1), and the fluctuation u(t) is generated by a Gaussian PDF
model proposed in [10].

The fluctuation model is as follow:

du(t) = −(u/Λ) ∗ dt+ (2σ2/Λ)1/2 ∗ dW (3.14)

where u is wind speed fluctuation, σ is the standard deviation , Λ is an
integral time scale equals 12s and dW is a normally distributed random
increment. For the simulation, σ = 0.7 and Ū = 10m/s.

• Figure 3.18 - (d) shows a 24-hours continuous wind speed sequence generated
by the Kaimal spectrum. The parameters for the simulation are z = 70m,
U = 15m/s and u∗ = 1m/s.

Theoretically, there is no timescale limitation to generate wind speed sequence with
the Gaussian PDF based model and the Kaimal spectrum. But the disadvantage
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is obvious that it can not present the diurnal and seasonal influences with fixed
parameters. Since outer Markov chain can provide different parameters settings,
these model can replace the OU processes.

As this work requires the ability to predict the wind speed evolution on a long-term
timescale and to be able to associate the wind characteristics to the degradation
behavior by analyzing and simulating the response of the system on a short-term
basis, a modular wind speed generation process has to be available. It is the one
proposed in the chapter.

In next chapter, we will study the RUL estimation of the pitch control system tak-
ing account of wind speed fluctuation. It is then necessary to focus more precisely
on the deterioration of the pitch angle control system over time. The degradation
depends on the usage which is strongly related to the actual wind speed. In order
to model the long-term deterioration process, the degradation characteristics asso-
ciated with each outer Markov chain state have to be determined. The failure time
probability law will be obtained directly from the stationary behavior of the outer
Markov chain. For each outer state, the distribution of short time tiny degrada-
tion increments need to be characterized. In order to perform the characterization,
the pitch angle evolution needs to be simulated from continuous short-term wind
speed generation, i.e., using related SDE.

3.5 Conclusion

In this chapter, a continuous wind speed generation method based on a 2-level
Markov chain and SDE is proposed. Two SDEs are discussed in this model frame-
work and other could be added in the future. This model is capable of generating
wind speed with different time scales. For example, a one-second step wind speed
generation can be performed during 10 minutes or for a few hours based on SDE.
In line with the short time generation, a long-term generation for a few months
or years can be based on the outer Markov chain. The developed model is par-
ticularly suitable to be merged with the deterioration model of wind turbine’s key
component, like blade-pitch system. Furthermore, this model could be applied
for studies of wind turbine’s power system like the dynamic behavior of genera-
tor. This chapter is a part of a global modeling framework which allows jointly
short-term wind speed generation for closed-loop control of wind turbine and long-
term wind speed prognosis for remaining useful lifetime estimation in the case of
degradation analysis.

Now we can input the wind speed to the wind turbine simulator proposed, and it
give us information about wind turbine operation. We will have an idea about the
behavior of wind turbine pitch system deterioration. Next chapter we will discuss
the estimation of the hydraulic pitch system remaining useful life based on the
operation information.



Chapter 4

Hydraulic pitch system remaining
useful life estimation

Problem statement

As mentioned in the previous chapters, the deteriorations of wind turbine’s com-
ponents are affected not only by their intrinsic deteriorations but also by the
operational environment where the wind turbine operates. Due to the higher
and higher electricity market share occupied by wind turbine, its priceless cost
of manufacture, its remote and not easily accessible installation location, and the
constraints for carrying out maintenance actions, wind turbines are required to
run safely and efficiently for their design lifetime. Since wind turbines have to
operate under harsh environment and age over time, the deteriorations of wind
turbine are inevitable. The deterioration leads to undesired failure and downtime
leading to lost of revenues for wind farm owners. In order to keep the wind tur-
bines in good conditions and to schedule the efficient maintenance, the PHM is
becoming important and it has a tendency to be an essential module for the wind
turbine monitoring system. The RUL prediction of wind turbine is a way to avoid
catastrophic failures and decide efficiently on the maintenance. The

A typical operational range and blade-pitch power control with respect to the wind
speed is recalled in Figure 4.1. Due to the inherent random characteristic of wind
speed, wind turbine operates randomly among these regions. During a period
of time, the mean wind speed can be continuously increasing. An example of
three possible real cases concerning wind turbine operation related to wind speed
evolution are shown as follows:

• Since the mean wind speed continuously increases, the operational case is:

If the wind speed allows the idling wind turbine to start, and the wind speed
is gradually increasing, the wind turbine will operate in Region 2, Region 3
and Region 4, consecutively, with respect to the gradually increasing wind
speed.
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Figure 4.1: Operation ranges and control of a variable speed wind turbine with a
power control by pitch system

• Since the wind speed is unstable and fluctuating in nature, an operational
case is as follows.

As a consequence of unstable wind speed that oscillates around rated wind
speed, to adjust the wind turbine itself according to the actual wind speed,
a working wind turbine may oscillate between the operational Region 2 and
Region 3.

• Since emergent environment events appear randomly, a possible operational
case is as follows.

In the case of anti-typhoon, a wind turbine that operates in Region 3 may
directly turn to idling when typhoon arrives.

For the RUL estimation of wind turbine, the following facts should be highlighted:

• the operational environment of wind turbine is harsh and various;

• maintenance preparation for wind turbine takes time;

• instead of immediately carrying out the maintenance, sometime the repair
technicians need to wait a suitable time window for the implementation of
maintenance.
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Hence, when addressing the RUL prediction for wind turbine, two points should
be considered. They are listed as follow:

• influence of various operational environment

Obviously, deterioration varies over different environments, it is appropriate
to take into account the influence of environment for RUL estimation.

• timescale of prediction

As the various environment brings time constraints for carrying out main-
tenance, a long-term RUL prediction is more useful than a short-term pre-
diction (for instance, one-hour ahead prediction). However, there is no clear
definition about the limit between short and long-term prediction. To choose
a reasonable timescale of RUL prediction is one of the research interests.

In this thesis, we define the environment of wind turbine as the wind speed evolu-
tion which has been modeled in Chapter 3. A finite number of wind speed classes
will be considered and referred as “operational environment” which will be defined
more precisely later.

Notation and abbreviation

E the set of operational environment states
ei the ith operational environment state, ei ∈ E (i ∈ N∗)
OE the abbreviation of Operational Environment in formula
OEi (i ∈ N) random variable that takes value in E
D(t) deterioration level at time t
∆D(t,τ) deterioration increment between time point t and t+ τ , τ > 0
Γ(α, β) gamma distribution with shape parameter α and scale parameter

β
∆Di(t,τ) deterioration increment between time t and t+ τ in state ei.
αi, βi shape and scale parameter for gamma process with respect to the

operational environment ei

4.1 Introduction

As mentioned before, the wind turbine suffers harsh and random various environ-
ment. Wind turbine continuously adjusts itself according to this latter, meaning
that the operation of wind turbine is stochastic and is related to the environment
under which wind turbine operates. In wind power industry, according to the en-
vironment, wind turbine has five operational status which consists of idling, start,
operation in Region 2, operation in Region3 and stop. On the basis of real wind
turbine operation, Table 4.1 summarizes the possible switches among different
operational status for a wind turbine.
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Table 4.1: Switches among different operational status for a wind turbine (
√

means
that the switch between the two status is possible, while × means not possible )

From To Idling Start Region 2 Region 3 Stop
Idling

√ √ × × √
Start

√ √ √ × √
Region 2 × × √ √ √
Region 3

√ × √ √ √
Stop

√ √ × × √

According to the research done by A.R. Nejad et al. [25], wind turbine withstands
different loads associated to wind speed. In fact, higher loads usually generate
higher vibrations for the drive-train of wind turbine. Excessive high vibration is
a known cause that leads to deterioration for rotational components. Moreover,
vibration can transmit to other components via the connection structure, hence,
excessive high vibration makes other components’ condition deteriorate. It also
mentions in [24] that in windy season, pitch systems have higher rate of failure.
Therefore, what can be concluded is listed as follows:

(1) operational environment of wind turbine changes randomly;

(2) operational environment affects the health condition of wind turbine and in-
duces deterioration;

(3) the deterioration rate varies with the operational environments.

An appropriate deterioration model is essential for RUL prediction. In literature,
lots of deterioration models assume that operational environments are temporally
invariant, or they don’t affect the deterioration process of systems. However,
referring the previous content of this thesis, it is more appropriate to take the
influences from operational environment into account for deterioration modelling,
especially for wind turbines. There are examples [130, 131] in real engineering fields
that the deterioration of system can be affected by the operational environment
of the system.

This chapter focuses on the deterioration modelling and RUL prediction for wind
turbine subject to various operational conditions. This topic can be also extended
to any dynamic system that operates under a dynamic operational environment,
such as aero-engine and vehicle motor. This work will focus on the case where
the environment can be described through a finite number of classes and the effect
of environment is constant in each class. RUL prediction about hydraulic pitch
system will be considered as a case used to analyse the method proposed in this
chapter.

Compared with the whole wind turbine, hydraulic pitch system only operates in
Region 3. Hence, it only deteriorates in this region. Therefore, the deterioration
rates of pitch system are 0 in other regions. However, the Region 3 where the
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wind speed randomly varies from the rated wind speed to the cut-out wind speed
contains a large wind speed range. It means in this region that hydraulic pitch
systems suffer various loads from wind leading to various deterioration rates corre-
spond to the wind speed. Although wind speed appears inscrutably, the measured
wind speed for a specific site follows frequency distributions, see [10]. From the
statistical point of view, wind speed can be characterized by mean speed value and
turbulence intensity. Assuming that the deterioration of hydraulic pitch system is
only related to the wind speed, the regulations about the deterioration caused by
environment for the hydraulic pitch system exist. And these regulations can be
decided by different parameters of the deterioration models.

We consider that the inspection data which are relevant to describe the deterio-
ration process can be frequently collected from the SCADA system. These data
will be used to estimate the indicator of the wind turbine’s deterioration and the
parameters of deterioration models.

Compared with wind turbine operation timescale and the time for maintenance
preparation, the inspection interval is short. Therefore, the timescale limitation
of prediction is worth to be discussed. We provide two RUL prediction methods:
one mainly considers the long-run average deterioration, another one estimates
the RUL from the current operational states, and deduces an N-step forward RUL
prediction formula. A discussion about these two methods timescale limitation
will be given.

The contributions of this chapter are summarized as follows:

• A model is proposed to describe the deterioration phenomenon related to
various operational environment,

• RUL prediction methods for a deteriorating system which operates under
various operational environment are proposed,

• According to the numerical results applied on the wind turbine simulator,
the limitations of prediction timescale are discussed.

4.2 Simplification and model description for the

deteriorating system

The deteriorating system concerned in this chapter is the hydraulic pitch system.
However, the proposed modelling method and RUL estimation can be applied
to the dynamic systems similar to the hydraulic pitch system. Mainly this case
study is an example of losed-loop controled system with possible compensation
of degradation effects by the control system. The deterioration caused by the
operational environment concerns physical component as actuators. It influences
the control system leading to low control efficiency. The condition monitoring
system provides data that can be used to describe the deterioration process. In



4.2. Simplification and model description for the deteriorating system 65

D
et
er
io
ra
tio
n 
D
(t
)

OE 0

OE 1

OE 2

OE 3

OE 4

0

start / end point of an OE 

state

Deterioration increment 
during a period at the 

same OE state

an operation state

(a)
(b)

(c)

(d)

(e)

t0 t1 t3 t4 t8 t

Time

t2 t5 t6 t7 t9 t10

t0 t1 t3 t4 t8 tt2 t6 t7 t9 t10t5

(f)

Figure 4.2: Diagram for the explanation about a deteriorating system operating
under various operational environment

harsh operational environment, the system is much more seriously deteriorating
than in a mild operational environment.

Figure 4.2 shows an explanation about a deteriorating system operating under
various operational environment. The figure at the top represents a trajectory of
the random switch between different operational environments over time. Higher
value of operational environment means harsher operation condition. The figure
at the bottom shows a trajectory of system deterioration corresponding to the
operational environments. The deterioration process (a) - (f) can be modeled by a
stochastic processes with different parameters related to the different deterioration
rates.

In order to simplify the real engineering problem and to propose mathematical
models, make the following assumptions:

(1) The operational environment is classifiable according to a parameter, and it
can be classified into a finite number of different operational states. Namely the
operational environment of wind turbine can be classified based on wind speed
characteristics, or the operational environment of vehicles can be classified by
the rotational speed of motor.

(2) The change to next operational environment state depends only on the present
operational environment state.
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(3) Assume that only the operational environment affects the deterioration, ex-
cluding the inherent deterioration phenomenon. It is true that a dynamic
system degrades more severely in harsh operational environments compared
with the one in stable operational environments. Hence, the deterioration rate
is correlated to the operational environment. Therefore, the deterioration of
the system can be considered as a stochastic process whose parameters are
piecewise constant.

(4) The deterioration indicator is an information which can be estimated from the
monitoring system.

4.2.1 Model for operational environment states

Markov chains usually describe the movements of a system among various states
[132]. A discrete-time Markov chain is very suitable for the modelling of opera-
tional environment considered in this chapter. At each step the operational envi-
ronment can either stay in the state where it is or change to another operational
environment state.

Let E = {e1, e2, · · · , en}, n ∈ N be the set of operational environment states.
Define P = [pij] (1 ≤ i ≤ n, 1 ≤ j ≤ n) as the transition probability matrix, i.e.,
pij is the probability of moving from ei to ej during a time interval δt. This time
interval can be related to the sampling frequency of SCADA. For sake of simplicity,
it will be hereafter considered as a unit of time (δt = 1). Random variables OEn

of the sequence (OEn)n∈N represent the value of operational environment at time
tn = n · δt = n and take values in E.

(OEn)0≤n≤N is a discrete time discrete state Markov chain if and only if:

• P(OE0 = ei0) = λi0

• P(OEn+1 = ein+1 | OE0 = ei0 , · · · ,OEn = ein) = P(OEn+1 = ein+1 | OEn =
ein) = pinin+1

where λi0 , i0 ∈ N+ describes the probability distribution of initial state (at time
0).

4.2.2 Model for the deterioration indicator under various
operational environment state

Let {D(t); t ≥ 0} be a continuous-time, monotonic increasing, stochastic process
that represents the deterioration process of a dynamic system. If the process is
Markovian then the deterioration increment ∆D(t,δt) between time point t and
t+ δt,

∆D(t,δt) = D(t+ δt)−D(t) (t > 0, δt > 0)
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depends only on the present and not on the past. Especially, ∆D(t,δt) depends on
the current time t and on δt.

Gamma process is an example of Markovian process. Non-homogenous gamma
process is a stochastic process whose increments are independent, non-negative
and following a gamma distribution. It is suitable to model the gradual monoton-
ically accumulating deterioration over time, such as fatigue, wear, corrosion, crack
growing, etc..

To model different deterioration rates according to the various operational envi-
ronment, the deterioration of system can be considered as a gamma process whose
parameters are piecewise constant and related to the operational environments,
see Table 4.2.

Table 4.2: Parameters of gamma process that are piecewise constant and related
to the operational environments

Operational environment e1 e2 · · · ei · · · en
Parameters of gamma process α1, β1 α2, β2 · · · αi, βi · · · αn, βn

4.3 Remaining useful life prediction

The deterioration value D(t+τ) at time t+τ is the sum of the known deterioration
value D(t) at time t and the deterioration increment ∆D(t,τ) between time t and
t+ τ :

D(t+ τ) = D(t) + ∆D(t,τ)

RUL prediction requires estimating the deterioration value D(t+ τ) at time t+ τ ,
with the known deterioration value (or its estimated value from the monitoring
data) at time t. Therefore, the solution is to estimate the increment of deterioration
between time t and t+ τ . Considering the uncertainties, it turns to an issue about
the probability distribution of the increment ∆D(t,τ).

The calculation of ∆D(t,τ) is concerned with timescale, i.e. the length of τ . A RUL
estimation focuses on the influence caused by the current condition to the nearly
future. On a long period τ , the influence of the current state vanishes and can
be neglected. Therefore, two different calculation methods are developed for the
RUL estimation hereafter.

4.3.1 Case 1: RUL estimation for a long period τ

If τ is enough long, the wind turbine experiences all the operational environment
during τ . Equivalently, the model of operational environment is based on an
ergodic Markov chain, which means that every environment can be reached from
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every one according to the transition matrix. For such a Markov chain, there
exists a unique steady state distribution (so-called stationary distribution) π∞ =
{π1, π2, · · · , πn} (where n is the number of states) which is independent of the
initial state, and satisfies:

π∞P = π∞,
∑

π∞i = 1.

For a finite state Markov chain, the stationary distribution can be considered
as the proportion of time spent in each state in long-run case [133]. Studying
the Markov chains model along with the analysis of its stationary distribution
have been proved to be useful in applications such as the analysis about queuing
networks [134], the study about compartmental ecological models [135] or research
about least-squares adjustment of geodetic networks [136].

If τ is enough long, it can include all of the operational environment states different
times. In this case, the RUL estimation is based on the expected average value of
deterioration in long period. Hence, according to the stationary distribution, an
average sojourn time in each operational environment state can be estimated.

The average sojourn time τi spent in state ei over time duration τ is:

τi = πi × τ (4.1)

For a given value of i, the distribution of the accumulated deterioration increment
in state ei between t and t+ τ is:

∆Di(t,τ) ∼ Γ(αi · τi, βi) (4.2)

Therefore, the asymptotic expectation of deterioration increment of state ei be-
tween t and t+ τ is:

E(∆Di(t,τ)) = αi · τi βi (4.3)

The total mean deterioration increment of the dynamic system between time t and
t+ τ is:

E(∆D(t,τ)) '
n∑

i

E(∆Di(t,τ)) (4.4)

From the prediction point of view, the PDF/CDF of deterioration increment
∆D(t,τ) is also interesting and gives more information than the mean value. With
the properties of gamma process [137, 138], we can obtain the probability distribu-
tion of the average deterioration increment ∆D(t,τ) for a dynamic system. Denote
α the average shape parameter of gamma process, defined with formula:

α =

∑n
i αi · τi
τ

(4.5)

As a consequence, when τ → ∞, it is possible to have tractable analytical cal-
culations with the additional hypothesis “βi = β, ∀i ∈ {1, . . . , n}”. Under this
hypothesis, the probability law of ∆D(t,τ) and the approximation of RUL cumula-
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tive distribution function are as follow:

∆D(t,τ) ∼ Γ(ᾱ.τ, β) (4.6)

FRUL(t)(τ) ' Γ(ᾱ.τ, (d−D(t))β)

Γ(α.τ)
(4.7)

where Γ(m,n) =
∫∞
z=n

zm−1e−zdz is the incomplete gamma function and α is given
by equation (4.5).

4.3.2 Case 2: RUL estimation considering the current op-
erational environment state

This case is related to a short-term prediction. As a consequence of the limited
time horizon, the RUL estimation closely depends on the last operational environ-
ment state and the prediction timescale. In this section, a one-step and two-step
prediction are given firstly. Then the general expression about N-step prediction
is derived and an approximation method is introduced.

At the beginning, let consider the notations as follows:

• t is the present time when the prediction is calculated and the last informa-
tion about degradation level is available;

• To simplify the notation, t+k stands for t+kδt. Hence t+1, t+2, · · · , t+N
represents one-step, two-step, · · · , N-step forward from time t, respectively;

• between time t−1 and t, the operational state doesn’t change and is denoted
by eit .

In the case of an operational environment without degradation, the degradation
increment during a time step is 0. In this section, to simplify the expressions it is
considered that if the operational environment after time t is such that αit+1 = 0,
then:

P(∆D(t,1) < u |OEt+1 = eit+1) = Fαit+1
,β(u) =

∫ u

0

fαit+1
,β(x)dx = 1
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4.3.2.1 One-step forward RUL prediction

Assuming the current time is t, let T be the time of next failure. The probability
of the system surviving until t+ 1 given the information up to time t is

P(T > t+ 1|D(t) = dt, OEt = eit) (4.8)

= P(D(t+ 1) < d|D(t) = dt, OEt = eit)

= P(∆D(t,1) < d− dt|OEt = eit)

=
n∑

it+1=1

P(∆D(t,1) < d− dt |OEt = eit , OEt+1 = eit+1)

P(OEt+1 = eit+1|OEi = ei)

=
n∑

it+1=1

pitit+1

∫ d−dt

0

fαit+1
,β(x)dx

where n is the total number of operational environment’s states, and fαit+1
,β(x) is

the PDF of a gamma distribution with shape parameter αit+1 and scale parameter
β given by:

fαit+1
,β(x) =

(x/β)αit+1
−1

βΓ(αit+1)
exp−

x
β .

t0

eit eit+1

t t −1 t +1

Figure 4.3: Illustration of one-step forward prediction

4.3.2.2 Two-step forward RUL prediction

Assuming the current time is t, the probability of the system surviving until t+ 2
given the information up to time t is developed hereafter. In these expressions, the

notation ∆D
(ej)

(u,1) refers to an increment of degradation between time u and u + 1

under the operational environment ej i.e. which follows a gamma distribution with



4.3. Remaining useful life prediction 71

parameters αj and β. It comes:

P(T > t+ 2|Dt = dt, OEt = eit) (4.9)

= P(D(t+ 2) < d|Dt = dt, OEt = eit)

= P(∆D(t,1) + ∆D(t+1,1) < d− dt| OEt = eit)

=

∫ d−dt

0

n∑

it+1=1

P(x+ ∆D(t+1,1) < d− dt| OEt+1 = eit+1 , OEt = eit , ∆D
(eit+1

)

(t,1) = x)

f
∆D

(eit+1
)

(t,1)

(x)dx× P(OEt+1 = eit+1 |OEt = eit)

=

∫ d−dt

0

n∑

it+1=1

P(∆D(t+1,1) < d− dt − x|∆D
(eit+1

)

(t,1) = x,OEt = eit)pitit+1f
∆D

(eit+1
)

(t,1)

(x)dx

=
n∑

it+1=1

n∑

it+2=1

pitit+1pit+1it+2

∫ d−dt

0
Fαit+2

,β(d− dt − x)f
∆D

(eit+1
)

(t,1)

(x)dx

where n is the total number of operational environment’s states. Fαit+2
,β is the

CDF of a gamma distribution with shape parameter αit+2 and scale parameter β.
f

∆D
(eit+1

)

(t,1)

is the PDF of a gamma distribution with shape parameter αit+1 and scale

parameter β.

eit eit+1 eit+2

t t − 1 t + 1t0 t + 2

Figure 4.4: Illustration of two-step forward prediction

4.3.2.3 Approximation of the N-step forward RUL prediction: alge-
braic expression

Let now consider the same process as described in sections 4.3.2.1 and 4.3.2.2.
Assuming the current time is t, the probability of the system surviving until t+N
is

P(T > t+N |Dt = dt, OEt = eit) (4.10)

= P(D(t+N) < d|Dt = dt, OEt = eit)

= P(∆D(t,1) + ∆D(t+1,1) + · · ·+ ∆D(t+(N−1),1) < d− dt| OEt = eit)

=

n∑

it+1

· · ·
n∑

it+N︸ ︷︷ ︸
N times

pitit+1 · · · pit+N−1it+N

∫ d−dt

0
· · ·
∫ d−

∑N−1
i=0 dt+i

0
F∆D(t,t+N−1)

(d−
N−1∑

i=1

dt+i)

N−1∏

i=1

f
∆D

(eit+i+1
)

(t+i,1)

(dt+i)d(dt+i)
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Equation (4.10) is difficult to calculate while N increases. Successive convolutions
lead to multiple sums and integrals. In this section we consider an approximation
which allows to use matrix calculations and which is tractable even with high values
of N. If the independent increments of deterioration follow gamma distributions
with the same scale parameter β in all the operational environments, the sum of
the increment follows a gamma distribution with a shape parameter that is the
sum of the different shape parameters and the scale parameter, namely,

M∑

m=1

∆Xm ∼ Γ(
M∑

m=1

αm, β).

This property is very convenient for the computational purpose. Even if a single
value of β for all the operational environments reduces the number of parameters
and modeling capabilities, it allows to derive simpler expressions. Considering
that the deterioration increment of each step is independent from each other, the
N-step forward RUL prediction can be expressed as follow:

P(T > t+N |Dt = dt, OEt = eit) (4.11)

= P(D(t+N) < d|Dt = dt, OEt = eit)

'
∫ d−dt

0

fαs,β(x|eit)dx

where fαs,β(x|eit) is the pdf of a gamma distribution with shape parameter αs
and scale parameter β given that the initial operational environment is eit . As a
consequence:

fαs,β(x|eit) =
(x/β)αs−1

βΓ(αs)
exp−

x
β

and αs has the following expression,

αs = (0 · · · 1t · · · 0)1×n(
N∑

m=1

Pm)AIn×1 (4.12)

where N is the prediction step; (0 · · · 1t · · · 0)1×n represents the initial state of
operational environment at time t; P is the probability transition matrix of oper-
ational environment; A is a diagonal matrix of shape parameter for the different
operational environments as shown below,

A =




α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn




and In×1 with value 1. To illustrate the expression of αs, an example is given as
follows.

Example Assuming that a dynamic system operates under an operational en-
vironment which has 4 states, i.e, n = 4; the shape parameters of deterioration
process for each state are α1, α2, α3 and α4, respectively; at time t, the system
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stays in the 3rd state, hence the initial state is the third; a 5-step forward RUL
prediction is wanted. Therefore, the expression of αs is as follows:

αs = (0 0 1 0)(
5∑

m=1

Pm)AI4×1

where

A =




α1 0 0 0
0 α2 0 0
0 0 α3 0
0 0 0 α4


 , P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


.

�

Discussion:

Different from the ideas applied to calculate one-step and two-step forward RUL
prediction (equation (4.8) and equation (4.9)), the method of the N-step forward
RUL prediction can be considered as a stationary probabilities of deterioration.

For instance, N = 1, equation (4.11) is

P(T > t+ 1|Dt = dt, OEt = eit) =

∫ d−dt

0

fαs,β(x)dx (4.13)

where,

αs = (0 · · · 1 · · · 0)1×nPAIn×1 =
n∑

it+1=1

pitit+1αit+1

Comparing equation (4.13) with equation (4.8), they are not the same probabil-
ity distribution. But the expected deterioration levels are the same for the two
cases i.e. E(Dt+1) =

∑n
it+1=1 pitit+1αit+1β. The RUL prediction by the algebraic

expression is based on an approximation of the probability law of future degra-
dation levels. The mixture of probability laws in equation (4.8) is replaced by a
single probability law with combined shape parameters. Hence it gives a tractable
approximation of RUL’s pdf which can be assessed numerically for the considered
parameters.

Figure 4.5 shows the difference between the result of equation (4.8) and equation
(4.13) known OEt = 7 and Dt = 0. The probability that ∆D(t, 1) < x is plotted.
The picture shows that the difference is small except for small values of x, because
of the cases αi = 0 which are not taken into account in the same way. But the
approximation is overestimating the failure so it is better that underestimation.

4.4 Numerical results and analysis

In this section, we are going to apply the proposed RUL prediction method to
the hydraulic pitch system. As the work is based on a numerical wind turbine
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Figure 4.5: Comparison of the CDFs of deterioration increment

and data simulation, the data about the life of hydraulic pitch system is lacking.
Therefore, it is necessary to add a subsection about the prediction of indicators
to evaluate the proposed method before the numerical results of RUL. Parameters
estimation is given at the beginning of the section followed by the numerical results
of indicators prediction and RUL prediction.

4.4.1 Parameters estimation

Parameter estimation when considering the influence .....

To avoid any confusions, recall the extraction of deterioration indicator for hy-
draulic pitch system is necessary. See Figure 2.7, the details are as follows:

Step 1. Generate a wind speed sequence

Step 2. Input the wind speed to the wind turbine simulator to get SCADA data

Step 3. Save the data sequence of blade-pitch angle measurement βmes, and the
reference blade-pitch angle βref from SCADA

Step 4. Calculate the APR, and the real-time ωnD(t), simultaneously

Step 5. Replace the ωnD(t) of the deteriorating pitch system

Estimate ω̂n with the saved sequences of βmes, βref via an estimation of the sys-
tem second order transfer function. Numerically, Matlab function tfest1 is used.

1f= tfest(βr,βm) finds a transfer function estimate f, given an input signal βr, and an output
signal βm.
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Therefore, ω̂n is the indicator for the deterioration process of pitch system. Figure
4.6 shows the difference between ωnD and ω̂n. The trajectories of ωnD simulated
in the 8th state of wind speed are shown in Figure 4.6 (a). While Figure 4.6 (b)
shows the results of estimated ω̂n according to the measurement blade-pitch angel
βmes and the reference blade-pitch angle βref provided by the output information
of wind turbine simulator.
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Figure 4.6: (a)Ten trajectories of the deterioration of ωnD (b)Estimated natural
frequency ω̂n in e8

Table 4.3: The states of operational environment

Operational environment e1 e2 e3 e4

Wind speed (m/s) [4,8] (8,9.4] (9.4,10.2] (10.2,10.7]

Operational environment e5 e6 e7 e8

Wind speed (m/s) (10.7,11.2] (11.2,12] (12,12.8] (12.8,25)

The data sequences of ω̂n in different operational environment are used to estimate
the parameters of deterioration model. The number of trajectories of ωnD in each
state is 500. The operational environments have been determined as 8 states shown
in Table 4.3. However, refer to the property of the NREL-5MW wind turbine, only
the operational Region 3 is closely related to the deterioration of hydraulic pitch
system. As the rated wind speed is 11.4 m/s, the hydraulic pitch system mainly
works in e6, e7 and e8. It is not active in states e1 to e5, which means that the
pitch system doesn’t deteriorate in these operational environments. Namely, the
shape parameters αi (i = 1, · · · , 5) are equal to zero. Therefore, parameters α6,
α7, α8 and β need to be estimated with the sequences of ω̂n, and they are globally
estimated by the maximum likelihood method in order to have the same β. Table
4.4 shows the estimation results of parameter estimation.

Parameter estimation when

From Table 3.3 and section 4.3.1, the proportion of time spent in each operational
state ei can be calculated and they are shown in Table 4.5. Therefore, according
to equation (4.5), the parameters for case 1 is obtained, as shown in Table 4.6.
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Table 4.4: Parameters for deterioration model related to different operational en-
vrionments

parameters α1 −−α5 α6 α7 α8 β
value 0 1.2019 1.2199 1.2897 0.0946

Table 4.5: Proportion time in each operational state

Operational environment e1 e2 e3 e4 e5 e6 e7 e8

Time proportion 0.1213 0.1126 0.1315 0.1291 0.1205 0.1183 0.1289 0.1378

Table 4.6: Parameters for case 1

α β
0.4771 0.0946

4.4.2 Numerical results for indictors prediction

Hereafter, the estimated natural frequency at time t is defined as Dt, and the N-
step forward prediction for Dt is defined as D(t+N). Because of the computational
limit set by the NERL-5MW wind turbine, the deterioration of hydraulic pitch
system is accelerated in the thesis. Figure 4.7 shows a sequence of estimated
deterioration indicator applied to the followed numerical experiments as well as
the numerical experiments of RUL prediction.
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Figure 4.7: Simulated deterioration indicator Dt
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4.4.2.1 N-step prediction when N is small

Prediction is an issue about probability, and its result is a confidence interval.
However, this point is difficult to accept by some engineers, in their opinion, the
result should be an exact value. As a way to verify the method proposed in this
chapter, we compare the actual value with the median value and the mean value
from probability distribution of prediction, respectively.

Define εMed as the relative error between the actual value of indicator Dt and the
median from predicted distribution MedDt , denoted by

εMed =
|Dt −MedDt|

Dt

× 100%.

Define εM as the relative error between the actual value of indicator Dt and the
mean from predicted distribution MDt , denoted by

εM =
|Dt −MDt|

Dt

× 100%.

Considering the computational facility, we use the approximation of the N-step
forward RUL prediction by the algebraic expression.

The subfigures of Figure 4.8 show the median, mean and the probability distribu-
tion of 1-step prediction for the D0, D10, D20, D30 and D40, respectively. Table 4.7
summaries the results. And the subfigures of Figure 4.9 show the median, mean
and the probability distribution of 1-step, 3-step and 5-step prediction results for
the deterioration indicator D0, given the current operational environment OE = 7.

Table 4.7: 1-step prediction results for Dt, (t=0,10,20,30,40,50)

Time t Observed information
Median from

predicted probability
density distribution

εMed Mean εM

0 D0 = 11.11, OE0 = 7 No data
10 D10 = 10.63, OE10 = 7 MedD0+10 = 10.0262 5.72% MD0+10 = 9.9948 6.02%
20 D20 = 9.477, OE20 = 7 MedD10+10 = 9.5510 0.79% MD10+10 = 9.5196 0.45%
30 D30 = 8.962, OE30 = 8 MedD20+10 = 8.2999 7.39% MD20+10 = 8.2685 7.74%
40 D40 = 8.133, OE40 = 8 MedD30+10 = 7.7854 4.27% MD30+10 = 7.7540 4.66%
50 D50 = 7.412, OE50 = 6 MedD40+10 = 7.4438 0.43% MD40+10 = 7.4125 0.01%
60 D60 = 7.412, OE60 = 5 MedD50+10 = 7.1420 3.64% MD0+10 = 7.1111 4.06%

From Figure 4.8 and Table 4.7, we can find that the median value from probabil-
ity distribution of predicted deterioration indicator and the mean are little smaller
than the actual value. From Figure 4.9 and Table 4.8, as a consequence of lack-
ing the update of present operational environment, when N > 1, the results of
N-step turns to be not accurate over N. For instance, in the case of 5-step for-
ward prediction for indicator D0, the errors εMe and εM are 39.15% and 39.45%,
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Figure 4.8: 1-step forward prediction for deterioration indicator Probability density
of 1-step prediction for deterioration indicator D0, D10, D20, D30, D40 and D50,
respectively

respectively. Therefore, for system operating under various operational environ-
ment, the influence of environment should be taken into account for prediction.
Moreover, 1-step forward prediction is recommended for the predictions requiring
higher prices results. Since the prediction method of algebraic expression consid-
ers all the possible deterioration cases, most results overestimate the deterioration,
which means that the predicted results are severe than actual ones. However, for
1-step prediction, the errors are within 10%, which is quite good and acceptable
for engineering application.
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Table 4.8: 1-step, 3-step and 5-step prediction results according to D0

Observed information D0 =11.11, OE0 = 7
Actual value D10 = 10.63 D30 = 8.962 D50 = 7.412

Median from
predicted probability
density distribution

MedD0+10 = 10.0262 MedD0+30 = 8.1197 MedD0+50 = 6.4709

εMed 5.73% 23.67% 39.15%

Mean MD0+10 = 9.9948 MD0+30 = 8.0864 MD0+50 = 6.4393
εM 6.02% 23.96% 39.45%
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Figure 4.9: 1-step, 3-step and 5-step prediction results for the deterioration indi-
cator D0

4.4.3 Numerical results for remaining useful life prediction

The computable timescale of wind turbine simulator is a little bigger than one
hour2. Hence, this section presents the results of RUL prediction with figures.

2The timescale here is different from the one of prediction. The timescale of wind turbine
simulator depends on the length of wind speed. Time is an obligatory parameter for the wind
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The resulting predicted probabilities of system surviving at time T according to
indicators Dt are shown in Figure 4.10. The predicted cumulative probability of
system surviving at time T according to indicators Dt are shown in Figure 4.11.
In other words in these figures PDF and CDF of the RUL are depicted. The
results prove that the RUL is a random variable depends on the current condition
of system and the operational environment.
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Figure 4.10: Predicted probability of system surviving at time T P(t = T ) accord-
ing to indicators D0, D10, D20, D30, D40 and D50, respectively

sequence inputted into the wind turbine simulator. The wind turbine simulator can only give
results when wind speed length is a little bigger than one hour.
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Figure 4.11: Predicted cumulative probability of system surviving at time T P(t =
T ) according to indicators D0, D10, D20, D30, D40 and D50, respectively

4.4.4 Discussions

• According to the results shown in Figure 4.8, Table 4.7, Figure 4.9 and Table
4.8, we can conclude as expected that the initial state i.e. the state of the
system at prediction time has a significant impact on the future behaviour of
the system. It has significant influence on the prediction results. Therefore,
it is necessary to estimate accurately current environment information from
the CMS.

• Comparing the results between Figure 4.8 and Figure 4.9, without surprise
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1-step prediction result is more accurate. As the N of N-step becomes bigger,
the uncertainty increases in the prediction results due to the variability of
the environment. Hence, the prediction results are the less accurate.

• The N-step forward RUL prediction by means of matrix calculation is not
suitable for long-term predictions, instead of it, the method of the RUL
estimation for a long period τ can be applied for long-term predictions when
we know the minimum timescale for long-term prediction.

4.5 Conclusions

This chapter proposes RUL prediction methods for hydraulic pitch system which
operates under multivariate environment, and the proposed method can be ap-
plied to other dynamic system operating under various environment. The research
work also responses the question related to prediction timescale, i.e., how long is
long-term prediction and how short is short-term prediction. According to the
numerical results, 1-step forward prediction is more precise than N-step prediction
when N > 1. The environment state where the prediction is carried out has a
significant influence. Hence, in order to obtain convincing prediction result for
the deterioration of dynamic system, it demands that the CMS provides accurate
information about the current environment. The future research work will focus
on the proposition of maintenance policies based on the prediction results.

The operational environment not only affects the deterioration of wind turbine,
but also has influences on the maintenance decision-making. To ensure the main-
tenance can be implemented efficiently and safely, a safe and low-speed wind speed
range is required for carrying out the maintenance action. Hence, next chapter
will model the unavailability of wind turbine coming from random maintenance
delay which is caused by the unfavourable operational environment.



Chapter 5

Unavailability model

Notation and abbreviation

E set of operational environments E = {e1, e2, e3, e4, e5, e6, e7, e8}
EM set of operational environments that allow to repair EM = {e1, e2, e3, e4}
EM set of operational environment that don’t allow to repair EM =

{e5, e6, e7, e8}
Dt deterioration value of wind turbine at time t
LF threshold of failure
LA threshold of alarm
σA the time when deterioration across the alarm threshold LA
σF the time when deterioration across the failure threshold LF
eit the operational environment state at time t; eit ∈ E
α,β shape and scale parameter of a gamma distribution, respectively
τ the delay for carrying out the maintenance
ρ the duration of carrying out the maintenance
U(t) unavailability of system
IA identity function. It equals to 1 when A is true, otherwise 0.
1d a d× 1 matrix valued 1.

5.1 Motivation

As mentioned previously, wind turbine automatically operates under various envi-
ronment, then, it is meaningful to find a method to measure its reliability. More-
over, having information on its reliability is helpful for maintenance scheduling
which plays an important role in assuring the operation and energy production.
Considering the operational environment of wind turbine and carrying out main-
tenance actions, it is necessary to find an alarm threshold for the deterioration
indicator to schedule the maintenances appropriately. This chapter focuses on the
study of the unavailability of wind turbine. The definition of alarm threshold de-
pends on the maintenance policy, the estimation of the unavailability caused by
failures, maintenance is also studied in this chapter.

83
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5.2 Simplifications, assumptions and maintenance

policy

5.2.1 Operational environment simplification

The security average wind speed for maintenance is below 11 m/s. And the opera-
tional environment is considered to evolve as a discrete stat space and time Markov
chain. Hence, to simplify the issue concerned in this chapter, we classify the oper-
ational environment set E into two subsets: a subset EM in which the mean wind
speed is less than 11 m/s, another one EM in which the mean wind speed is higher
than 11 m/s. Denote them as EM = {e1, e2, e3, e4}, EM = {e5, e6, e7, e8},
respectively.

 
 

1 

3 2 

4 

5 

7 6 

8 

𝐸" 
 

𝐸" 

𝐸 
 

Figure 5.1: Two subsets of the operational environment

5.2.2 Maintenance policy

We consider the wind turbine as a repairable system, and the proposed mainte-
nance action is according to the following scheme:

• If the deterioration indicator Dt is higher than the failure threshold LF , the
system fails. The time when the deterioration indicator arrives or crosses LF
is denoted by σF .

σF = inf{t > 0, Dt ≥ LF} (5.1)

• When the deterioration indicator Dt becomes bigger or equal to the alarm
threshold LA, a preventive maintenance is planned. The time when D(t)
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arrives or crosses LA is denoted by σA.

σA = inf{t > 0, Dt ≥ LA} (5.2)

• Only the operational environments e1, e2, e3, e4 allow to implement the
maintenance. Hence, the maintenance operation has a random delay time τ
when the operational environment belongs to EM . The length of τ depends
on the time duration to reach a states of EM from a state of EM .

• We assume that the maintenance can be carried out immediately when the
environment allows. The maintenance operation has a fixed duration ρ, and
the system is unavailable during this period.

• Between σA and σA + τ , the wind turbine deteriorates and a failure may
appear before the maintenance. Depending on the appearance of a failure,
a preventive or a corrective maintenance action has to be performed.

a. If a failure does not occur in the time interval, namely, σF ≥ σA+τ , the
wind turbine is unavailable from the time σA+τ when the maintenance
is carried out until the end of the maintenance operation σA + τ + ρ, as
shown in Figure 5.2.

b. If a failure occurs in the time interval, namely, σF ≤ σA + τ , the wind
turbine is unavailable from the failure time until the time of the end of
the maintenance operation σA + τ + ρ, as shown in Figure 5.3.

• At the end of the maintenance, the wind turbine is assumed to be“as-good-as
new”.
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Figure 5.2: Description of the mainte-
nance policy in case of σF ≥ σA + τ
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Figure 5.3: Description of the mainte-
nance policy in case of σF ≤ σA + τ

5.2.3 Stationary assumption

According to the above 2-subset operational environment assumption and the
maintenance scheme, from a long-run point of view, the maintained deteriora-
tion process of wind turbine can be considered as a regenerative process. In other
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words, the wind turbine is put into operation and is functioning at time T0. When
it fails, at time T1, it will be restored to the ”as-good-as-new” condition. When
the wind turbine fails again at time T1 + T2, it is again restored, and so on. The
restored time T1, T2, · · · are independent from each other. For simplification, the
unavailability is considered in one life cycle, for instance, the life cycle from time
T0 = 0 to time T1. The asymptotic unavailability model for wind turbine is based
on the stationary distribution of operational environment states.

5.3 Asymptotic unavailability model for wind tur-

bine

There are two causes of unavailability: one is the unavailability caused by a de-
terioration or a failure leading to a downtime; another one is caused by improper
wind speed, for instance, low speed wind can’t drive the turbine to work. This
chapter only treats in the unavailability caused by deteriorations and failures.

Denote T1 = σA + τ + ρ as the first renewal time (first time of repair). Let U∞
be the asymptotic unavailability of the wind turbine, U(t) be the unavailability
duration before time t. If a maintenance starting at the hitting time σA and not
finished until time t, let it be t− σA. We have U∞, U(t) respectively as following,

U∞ = lim
t→∞

U(t)

t
=

E(U(T1))

E(T1)
.

For t ≥ σA + τ + ρ,
U(t) = (t−min(σA + τ, σL))+

where, (x)+ is the positive part of x (0 if x < 0, x otherwise).

Hence, for the first life cycle, the unavailability duration U(T1) of wind turbine is

U(T1) = ρI{σF≥σA+τ} + ((σA + τ + ρ)− σF )I{σF≤σA+τ} (5.3)

where, I{A} = 1 if A is true and 0 otherwise.

Considering the average performance of wind turbine, we have

U∞ =
E(ρI{σF≥σA+τ} + ((σA + τ + ρ)− σF )I{σF≤σA+τ})

E(σA + τ + ρ)
(5.4)

=
E(ρ) + E((σA + τ − σF )I{σF≤σA+τ})

E(σA) + E(τ) + E(ρ)

As we assume that the maintenance duration is a constant ρ, there are three
interest terms to derive in equation (5.4):

• the average maintenance delay time E(τ),
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• the average time when deterioration level equals to (or is firstly higher than)
the alarm threshold E(σA),

• the unavailability period caused by failure or maintenance E((σA + τ −
σF )I{σF≤σA+τ}).

Therefore, the unavailability model is,

U∞ =
ρ+ E((σA + τ − σF )I{σF≤σA+τ})

E(σA) + E(τ) + ρ
(5.5)

5.3.1 Hitting time in the alarm threshold E(σA)

This term can be obtained from the deterioration model proposed in chapter 4.
There are three ways to estimate the deterioration increment hitting the alarm
threshold LA.

1. Considering that the deterioration increment is the sum of the increments de-
teriorating in each operational state.

Dt =
8∑

i=1

PiDt,i

where Pi = P(OE = ei)

Therefore,

P(σA < t) = P(Dt > LA)

=
8∑

i=1

P(Dt > LA|OE = ei)P(OE = ei)

=

∫ +∞

LA

8∑

i=1

P(OE = ei)fαit,β(x)dx

Hence,

E(σA) =

∫ ∞

0

(
8∑

i=1

P(OEi = ei)

∫ LA

0

fαit,β(x)dx

)
dt

Where fαit,β is a gamma pdf function, with shape parameter αit and scale
parameter β.

2. According to the assumption that τ is enough long, consider the approximation

∆D(t,τ) ∼ Γ(ᾱ.τ, β) with α =
∑n
i αi.τi
τ

.

3. Via the N-step forward prediction (equation (4.10)). This method is difficult
to deal with, hence, using way 2 to instead.
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Hence, in this chapter, we calculate the expectation of the hitting time σA by the
followed formula.

E(σA) =

∫ ∞

0

(∫ LA

0

fᾱt,β(x)dx

)
dt (5.6)

=

∫ ∞

0

Fᾱt,β(LA)dt

5.3.2 Maintenance delay E(τ)

Maintenance delay occurs only when deterioration D(t) firstly arrives or excesses
the alarm threshold LA, but the current operational environment is not favorable
for carrying out the maintenance, i.e., it belongs to the subset EM . Therefore, the
engineering meaning of τ is a time delay from σA necessary to enter an operational
environment favorable for maintenance. Namely, the time consecutively spent in
the operational environment subset EM after σA until the operational environment
is no longer unfavorable for a maintenance. Since the operational environment
model is modelled as a discrete-time Markov chain, we assume the step length of
the Markov chain is δt, we are looking for a kth operational environment state
OEk that firstly belongs to EM .

For a discrete Markov chain, the maintenance delay τ actually is the sojourn time
spent in the operational environment EM , or the first hitting time of EM from EM .
Let T be the hitting time in an operational environment state of the subset EM ,
when the operational environment state is initially in a state of EM . We have,

T = inf{k > 0; OEk ∈ EM |OE0 ∈ EM} (5.7)

The only assumption is that the subset EM must be transient at all time t ≥ σA.
The subset EM will be considered as the terminal class. This is not difficult to
understand. Since the wind speed randomly changes and it can include all the
wind speed ranges of the subset EM , realistically, the subset EM is transient.
The maintenance will be carried out as soon as the operational environment state
belongs to the subset EM , and the wind turbine is restored to ”as-good-as-new”
condition after the maintenance. In this sense, the subset EM is an absorbent
state for a Markov chain, and it can be considered as terminal for a life cycle of
the regenerative process.

Now, we are going to give the explicit expression about the expectation of mainte-
nance delay E(τ). The transition matrix P of the Markov chain representing the
operational environment is partitioned as follows:

P =

[
pEM pEMEM

pEMEM pEM

]

Where, pEM is the probability that operational environment stays in subset EM
itself; pEMEM is the probability from subset EM to EM ; pEMEM is the probability
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from subset EM to EM , and pEM is the probability staying in EM itself.

Define another Markov chain Y whose states space is EY = EM ∪ EM∆
, where

EM∆
contains the states of EM that are directly reached by an operational state

of EM , namely, EM∆
⊂ EM . The illustrative figures are shown in Figure 5.4 and

in Figure 5.5. The transition matrix of Markov chain Y is given by

Q =

[
pEM pEMEM∆

0 I

]
(5.8)
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Figure 5.4: Original Markov chain
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Figure 5.5: Markov chain Y

Therefore, the hitting time in EM of the original operational environment Markov
chain is as same as the hitting time in EM∆

of the Markov chain Y , by doing this,
the computation is easier. According to the research done by A. Platis et al. [139],
the distribution of the hitting time of the subset EM at time k is

P(T > k|OE0 ∈ EM) = P(∀i, i ≤ k, OEi ∈ EM) = αEM (pEM )k1d (5.9)

Where, αEM is the initial distribution given that the system starts with operational

environment in EM , and the value of d equals the dimension of EM .

And the expected hitting time is given by

E(T ) =
∑

k≥0

k × P(T = k) =
∑

k≥0

P(T > k) (5.10)

= αEM (I +
∑

k≥1

(pEM )k)1d

Hence, the expected maintenance delay E(τ) is

E(τ) (5.11)

= E(τ |OEσA ∈ EM)P(OEσA ∈ EM) + E(τ |OEσA ∈ EM)P(OEσA ∈ EM)

= E(τ |OEσA ∈ EM)P(OEσA ∈ EM)
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Since P(OEσA ∈ EM) is approximated by stationary distribution, i.e.
∑8

i=5 P(ei ∈
EM), we have,

E(τ) ≈ αEM (I +
∑

k≥1

(pEM )k)1d

(
8∑

i=5

P(ei ∈ EM)

)
(5.12)

5.3.3 Unavailable period caused by maintenance or failure
E((σA + τ − σF )I{σF≤σA+τ})

The meaning of the term E((σA + τ − σF )I{σF≤σA+τ}) is an average unavailable
period in the case of failure coming earlier than maintenance. However, the pa-
rameters σA, σF and τ are random variables. In fact, the three random variables
represent two independent stochastic phenomena but the unavailability of wind
turbine is affected by them. In others words, the unavailable period is constrained
by the deterioration process of system and the operational environment. There-
fore, a new probability law should be produced aiming to express the probability
distribution of the unavailable period with the two constraints.

Let’s define the survival function G(s) of σF − σA. The corresponding pdf is
gσA−σF and gτ is the pdf of hitting time in EM from EM . Let random variable
X = τ − (σF − σA) represents the unavailable period, fX is its pdf. Actually, the
function fX is the convolution of gσF−σA and gτ .

fX = gσF−σA ∗ gτ (5.13)

The distribution of hitting time in EM (equation (5.9)), we have

gτ (k) = P(T = k) = −P(T > k) + P(T > k − 1) (5.14)

= −αEM (pEM )k1d + αEM (pEM )k−11d

According to the work of C. Bérenguer et al. [77], the survival function G(s) of
σF − σA is,

G(s) = P(σF − σA > s) (5.15)

=

∫∫

{LA<x<LF , 0<x+y<LF ,0<y}

(
8∑

i=5

P(OEi = ei)

∫ ∞

0

fαiu,β(x)du

)

(
8∑

i=5

P(OEi = ei)
∂fαis,β(y)

∂s

)
dxdy
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Under regularity conditions,

gσF−σA(s) =
∂

∂s
G(s) (5.16)

=

∫∫

{LA<x<LF , 0<x+y<LF ,0<y}

(
8∑

i=5

P(OEi = ei)

∫ ∞

0

fαiu,β(x)du

)

(
8∑

i=5

P(OEi = ei)
∂2fαis,β(y)

∂s2

)
dxdy

We have gσA−σF (x) = gσF−σA(−x), so,

fX(x) = gτ ∗ gσA−σF (x) (5.17)

=
∑

gτ (k)gσA−σF (x− k)

=
∑

k∈N

gτ (k)gσF−σA(k − x)

According to the definition of expectation, the average unavailable period E(X) is
denoted

E(X) =

∫ ∞

0

xfX(x)dx (5.18)

=

∫ ∞

0

x

(∑

k∈N

gτ (k)gσF−σA(k − x)

)
dx

=
∑

k∈N

(∫ ∞

0

xgτ (k)gσF−σA(k − x)

)
dx.

Finally, with equations (5.6), (5.11), (5.18) and equations (5.5), the expression of
U∞ is obtained.

5.4 Approximation of the asymptotic unavailabil-

ity

For calculating the equation (5.18), there are two difficulties as follows.

• The deterioration process of hydraulic pitch system is modelled as a continuous-
time gamma process, while the operational environment is modelled by a
discrete-time Markov chain.

• It is not easy to calculate equation (5.16) directly. The asymptotic unavail-
ability is calculated based on a heuristic approximation of the difference
between the hitting times, σF − σA. If the trajectories of the deterioration
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process (Dt)t≥0 were continuous, then σF−σA would have the same probabil-
ity law as σF−A [77]. Therefore, we consider the σF−A as the approximation
of σF − σA.

Hence,

G1(s) = P(σF − σA > s) ' P(σF−A > s) (5.19)

= P(Ds < LF − LA)

=

∫ LF−LA

0

8∑

i=1

P(OEt = ei)fαis,β(x)dx

gσF−A(s) ' P(σF−A = s) (5.20)

' −P(σF−A > s) + P(σF−A > s− 1)

According to the deterioration model proposed in chapter 4, equation (5.20) turns
to

gσF−A(s) '
∫ LF−LA

0

(
−

8∑

i=1

P(OEs = ei)fαi(s),β(x) +
8∑

i=1

P(OEs−1 = ei)fαi(s−1),β(x)

)
dx

(5.21)
The approximated expectation of X ' τ − (σF − σA) is

E1(X) =
∞∑

x=0

xfX(x) (5.22)

=
∞∑

x=0

x

(
x∑

k=0

gτ (k)gσF−A(k − x)

)

The approximation of the asymptotic unavailability U1
∞ is

U1
∞ =

ρ+
∑∞

x=0 x
(∑x

k=0 gτ (k)gσF−A(k − x)
)

ρ+ E(σA) + E(τ)
(5.23)

5.5 Numerical experiment

Recall the parameters of deterioration process estimated in Chapter 4 and the
probability of system stays in each operational environment state, as shown in
Table 5.1 and Table 5.2, respectively.

According to the transition probability of wind speed (Tabel 3.3), the transition
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Table 5.1: Parameters for deterioration model related to different operational en-
vironments

parameters α1 −−α5 α6 α7 α8 β
value 0 1.2019 1.2199 1.2897 0.0946

Table 5.2: Probability of system stays in each operational environment state

Operational environment P(OEi = e1) P(OEi = e2) P(OEi = e3) P(OEi = e4)
Probability 0.1213 0.1126 0.1315 0.1291

Operational environment P(OEi = e5) P(OEi = e6) P(OEi = e7) P(OEi = e8)
Probability 0.1205 0.1183 0.1289 0.1378

probability of operational states in EM is shown below,

pEM =




0.3989 0.1954 0.0683 0
0.2285 0.3858 0.1847 0.0561
0.0378 0.2481 0.5781 0.1360

0 0.0154 0.1613 0.8233




Recall that as mentioned in section 3.2.2, the initial distribution is estimated by
dividing the dataset into bins according to the states. The obtained vectors of
occurrences can then be normalized in each bin. Then, according to the real
average wind speed data used to estimated the parameters of outer Markov chain
of wind speed model, the initial distribution of αEM is shown as below.

αEM = [0.1209 0.1183 0.1285 0.1364]

The initial value of deterioration is 11.11 rad/s and the failure threshold LF of dete-
rioration is 3.42 rad/s. Let ρ = 1, Table 5.3 shows the results of the approximation
of the asymptotic unavailability of system U1

∞, E(σA) and E1(X) corresponding to
different alarm threshold LA calculated by the proposed approximation method.
Figure 5.6 shows the relationship between alarm threshold LA and unavailability
of wind turbine.
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Table 5.3: Unavailability of system corresponding to different alarm threshold LA

LA 10 9.5 9 8.5 8 7.5 7
U1
∞ 0.0298774 0.0225259 0.0181417 0.0152803 0.0133429 0.0120678 0.0113739

E1(X) 0.0032444 0.006064 0.011334 0.0211841 0.0395947 0.0740055 0.1383221
E(σA) 25.154697 36.238533 47.322355 58.406163 69.489958 80.573739 91.657507
E(τ) 7.4240088

LA 6.5 6 5.5 5 4.5 4 3.5
U1
∞ 0.0113213 0.0121328 0.0142739 0.0186138 0.0267239 0.0414085 0.0552794

E1(X) 0.258535 0.4832227 0.9031838 1.688143 3.1555673 5.8979837 8.8213537
E(σA) 102.74126 113.825 124.90873 135.99244 147.07614 158.15983 169.2435
E(τ) 7.4240088
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Figure 5.6: Numerical experiment results of the unavailability according to differ-
ent alarm threshold LA

From Table 5.3 and Figure 5.6, we can find that the optimal alarm threshold is
LA = 6.5 rad/s for the wind turbine considered in this chapter.

5.6 Conclusion

In this chapter, an unavailability model of wind turbine caused by random mainte-
nance delay is proposed. Based on the work of C. Bérenguer et al. [77] approxima-
tions are proposed to asses numerically the system unavailability. The results of
numerical experiment shows that an optimal alarm threshold LA can be proposed
for a deteriorating system operated under various operational environment. This
chapter proposes an initial numerical experiment. Additional work still has to be
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done especially to evaluate the effects of successive approximations. The first part
will be to put efforts on a numerical algorithm to calculate exact formulas when
available. The second part will be to compare with Monte Carlo simulation.



Chapter 6

Conclusion and perspective

6.1 Conclusions

Wind turbines extract energy from wind, at the same time, wind can cause de-
teriorations, failures to the wind turbines. Therefore, it is crucial to study the
influences of operational environment (wind speed in this thesis) on the reliability
of wind turbine.

In this thesis, we have focused about the RUL estimation and the unavailability
influenced by operational environment of a wind turbine. We have established
a wind turbine simulator with a deteriorating hydraulic pitch system for data
simulation. We have proposed a long-term continuous wind speed model for the
environment simulation. Then, we have proposed RUL estimation methods for
different timescales and studied the unavailability caused by the maintenance delay
and failure of a wind turbine.

In Chapter 2, a wind turbine simulator embedded with a deteriorating hydraulic
pitch system is proposed. The deterioration of hydraulic pitch system is related
to wind speed which is a random phenomenon. This randomness lead us to model
the deterioration by stochastic process.

In Chapter 3, a continuous wind speed generation method based on a 2-level
Markov chain and stochastic differential equations is proposed. Two stochastic
differential equations are discussed in this model framework This model is capable
of generating wind speed with different time scales. For example, a one-second
step wind speed generation can be performed during 10 minutes or for a few hours
based on SDE. In line with the short time generation, a long-term generation for
a few months or years can be based on the outer Markov chain. The developed
model is particularly suitable to be merged with a deterioration model of wind
turbine’s key component, like blade-pitch system.

In Chapter 4, a RUL prediction method for a dynamic system which operates
under changing environment are proposed, cases about wind turbine are studied.
The research work also responses the question about RUL prediction timescale.
According to the numerical results, the environment state where the prediction is
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carried out has significant influence on the prediction results. Hence, in order to
obtain convincible prediction results on the deterioration of dynamic system, it
demands that the CMS provides accurate information about the current environ-
ment.

In Chapter 5, an unavailability model based on maintenance delay and deteriora-
tion is discussed.

6.2 Perspective

Normally, the designed service life of a wind turbine is 20 years. However, it is a
challenge to ensure that wind turbine operates safely and reliability under harsh
operational environment for a long period. Hence, providing efficient maintenance
planning is an efficient way to keep wind turbines in good conditions.

Besides, the maintenance policy based on RUL estimation is helpful for grid dis-
patch. The commercial market share occupied by wind energy grows rapidly. For
instance, renewable energy will provide 45% power that 23% of them is transformed
from wind energy for France in the year of 2030 [140]. Because of the inherent ran-
dom characteristic of renewable energies, the growth of renewable energies brings
a challenge for the dispatch of grid. However, an annual production of a wind
farm can be estimated as a selection of the wind farm is based on statistical wind
resource information. With accurate weather forecasts, the future wind condition
can be known, hence, the production of the wind farm can be estimated. More
accurate production can be estimated if the health conditions of wind turbine are
well known, this point can be achieved with the help of the RUL estimation and
maintenance policy.

The final aim of a wind farm is to obtain profit for its owner. Ensuring the safe
operation of wind turbines, transferring as much as possible generated wind energy
to the grid, and minimizing the operation and maintenance (O&M) cost of wind
farm are the methods to increase owner’s profit. Scheduling maintenance keeps
the wind turbine in good condition. However, when an RUL is estimated for wind
turbines, the owner has several choices for making a maintenance decision:

• perform a preventive maintenance at the first opportunity

• let the wind turbines deteriorates, and making a balance between the expense
and revenue, then choose a time to carry out a maintenance

• do nothing, let the wind turbine fail and then carry out a corrective mainte-
nance

Maintenance itself has costs, such as the cost of labor, the cost for renting special
vehicles, the cost of replacement pieces and the profit loss of shutting down wind
turbine caused by maintenance. Moreover, once the warranties provided by the
manufacture lapse, the cost of wind farm’s operation and maintenance significantly
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goes up. According to a RUL estimation value, the scheduled maintenance time
directly influences the revenue for the wind farm.

Hence, the future work can focus on the points following:

1. Improvement about the deterioration model

As components of wind turbine have different structure designs, different move-
ments and made by different materials, it is very difficult to describe their
deterioration processes through the same stochastic process. In our opinions,
a convincible RUL estimation will require a probabilistic deterioration model
based on wind conditions, loads of component, and material-degradation, and
it can reflect the inspection report. In the future, one shall try to merge loads
of component and material degradation to the deterioration model.

2. Maintenance policy and its optimization for wind farm

For a wind farm consisting of several wind turbines, similar failures or deterio-
rations may occur to wind turbines at the same moment, and due to the quality
individual deviation of each wind turbine, some wind turbines may deteriorate
more quickly than others. Considering the constraints caused by environment,
wind turbine location on the farm, special vehicles etc, it is not possible any-
time we require. Therefore, some wind turbine should be prioritized. However,
the priorities depends on the concerned profit plan, maintenance cost, demand
of electric grid and etc. Form this point of view, the maintenance policy for
a wind farm is interesting and one can address, for instance, the maintenance
itinerary optimization.

3. Warranty

Wind turbine is valuable and vulnerable. Warranty policy is important for the
wind farm owner and also important for the provider. In the future, warranty
policy for wind turbine will be studied.



Chapter 7

Résumé de Thèse en Français

7.1 Introduction

Les éoliennes étaient des éoliennes à régulation passive de la charge par décrochage,
fonctionnant dans une plage de vitesse du vent étroite. Paul La Cour a conçu la
première éolienne pour la production de courant continu en 1891 [11]. Après la
Première Guerre mondiale, grâce à l’expérience de la conception d’hélices d’avions,
la compréhension scientifique de la conception des éoliennes a fait un grand pas en
avant en Europe. Avec le nouveau contexte théorique des éoliennes, de nombreuses
méthodes prometteuses pour la conception moderne des éoliennes ont émergé.
L’éolienne WIME D-30 d’un diamètre de 30 m et d’une puissance de 100 kW a
fonctionné de 1931 à 1942 en Crimée [12] et a produit de l’électricité dans un petit
réseau de 20 MW. Cependant, le début de la Seconde Guerre mondiale a ruiné
ces modèles. Avec la reconstruction de l’Europe après la guerre, le développement
des éoliennes a de nouveau attiré l’intérêt des chercheurs. Certains prototypes
d’éoliennes ont été fabriqués et ont fourni de l’électricité au réseau. Après 1980, la
renaissance de l’énergie éolienne a commencé énormément en Europe et aux Etats-
Unis. Après près de 40 ans, l’éolienne se partage une grande partie du marché de
l’électricité. Il est nécessaire de résumer les évolutions concernant le site, la taille,
la puissance et le contrôle de l’éolienne pour que le contexte de recherche de cette
thèse puisse être développé.

• Evolution du site

Afin de capter d’énergie éolienne que possible, des éoliennes terrestres sont
érigées dans des endroits éloignés où les ressources éoliennes sont abon-
dantes. Aujourd’hui, l’énergie éolienne en mer suscite l’intérêt de pays
populaires comme le Danemark, la Chine, le Royaume-Uni, les Pays-Bas et
l’Allemagne, en raison de ses excellentes ressources éoliennes et de l’évitement
des problèmes d’utilisation des terres. Avec le développement des technolo-
gies de soutien, les éoliennes sont construites en eau peu profonde (pour
les éoliennes à fondation fixe) et en eau plus profonde (pour les éoliennes
flottantes).
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• Evolution de la taille

Si l’Airbus A380 de 79,75 m d’envergure est considéré comme un avion géant,
les éoliennes commerciales d’aujourd’hui devraient être qualifiées de super
géantes, car le diamètre de leur rotor dépasse facilement 100 m. La puissance
du vent P qui traverse une zone A à une vitesse v est

P =
1

2
ρAv3 (7.1)

où ρ est la densité de l’air. L’amélioration de la surface du rotor est donc un
moyen efficace de capter beaucoup plus d’énergie à la même vitesse du vent
(v). Le diamètre du rotor de la toute nouvelle éolienne offshore SG 10.0-193D
de Simens est de 193 m [13]. De nos jours, la taille limite d’une éolienne est
inconnue. Avec l’ambition de capter une énorme quantité d’énergie, de plus
grandes éoliennes pourraient voir le jour.

• Evolution de la puissance nominale

Selon Yang et al. [14], les éoliennes deviennent de plus en plus grandes en
puissance nominale, comme le montre le tableau 7.1.

Table 7.1: Évolution de la puissance nominale des éoliennes

Fabricant Modèle d’éolienne Puissance nominale
Repower M104 3.4 MW
GE 4.0-110 4.0MW
Gamesa G-128 4.5MW
Enercon E-126 7MW
Wind Power Ltd Aerogenerator X 10MW (in development)

• Evolution du contrôle

Au début, les éoliennes étaient des éoliennes passives à régulation de charge
par décrochage, à vitesse de rotation fixe, fonctionnant dans une plage de
vitesse du vent étroite. C’est alors qu’est apparue l’éolienne à vitesse variable
avec contrôle actif de la pale. L’application de la commande de la pale des
pales a permis aux éoliennes modernes d’être plus grandes et de fonctionner
sur de plus grandes plages de vitesse du vent. Cependant, les chercheurs
essaient de mettre au point une pale intelligente qui peut mesurer la vitesse
du vent et s’adapter automatiquement aux conditions du vent. On croit
qu’avec une pale intelligente, la fiabilité et l’efficacité de l’éolienne peuvent
être améliorées.

• Evolution de la capacité installée cumulative

Selon le rapport de Wind EUROPE [16], la capacité installée totale cumulée
en Europe atteindra 204 GW en 2020, comme le montre la figure 7.1.
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27 Wind energy in Europe: Outlook to 2020

Mid-term wind energy market outlook 

In terms of cumulative installed capacity, Germany will 
remain the country with the most capacity installed with 
between 65.5 to 68.5 GW (66.5 GW in the Central Sce-
nario). Spain will follow with 25 to 27.5 GW (26.5 GW in 
the Central Scenario) and the UK will be the third largest 
country with a total of 7.8 to 23.3 GW (22 GW in the Cen-
tral Scenario), with almost half of that capacity (10 GW) 
being offshore. 

2.3.1 CENTRAL SCENARIO 

WindEurope’s Central Scenario provides a best estimate 
of the installed capacity in Europe in the next four years. 
This scenario takes into account the pipeline of wind ener-
gy projects and the ongoing and future legislation in each 
Member State that could enable the deployment of vol-
umes. In addition, it reflects on a case-by-case basis the 
impact of the 2020 targets. For offshore wind, the Central 
Scenario assumes that all projects are built according to a 
realistic timeline.

In the Central Scenario, the planned tenders in Germany, 
France and Spain provide good visibility on the post-2018 
market development. In addition, in France and the Neth-
erlands, the objectives set respectively for 2023 and 2020 
provide clear guidance on the deployment of wind ca-
pacity. In Poland, the Wind Farm Act remains applicable, 
putting a pipeline of 2.2 GW of onshore projects at risk. 
Also, the UK will decrease its activity in onshore wind from 
1.6 GW in 2016 to almost none in 2020, while shifting the 
government focus to offshore wind.

CUMULATIVE
INSTALLED CAPACITY 
COULD REACH

204 GW 

IN 2020

FIGURE 16
Expected cumulative installed capacity until 2020 

Source: WindEurope
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Par conséquent, il peut conclure que les éoliennes sont des machines géantes qui
fonctionnent automatiquement à des endroits éloignés ou en mer dans un envi-
ronnement hostile et aléatoire sans la superviser humain. En tant que produc-
teur d’électricité coûteux et sa contribution croissante au réseau, la fiabilité de
l’éolienne est un enjeu important. Cependant, son environnement d’exploitation,
l’emplacement du site et la taille de l’éolienne posent de nombreux défis à la fia-
bilité de l’éolienne et à sa maintenance :

• Défis causés par le site

Le site éloigné du parc éolien peut ne pas être accessible à tout moment. Par
conséquent, les activités d’entretien des éoliennes ne peuvent être effectuées
que pendant une période de temps accessible. Il faut donc prévoir et planifier.
Les composants détériorés qui sont susceptibles de tomber en panne pendant
la période de temps non accessible doivent être réparés / remplacés à l’avance
pour éviter des temps d’arrêt indésiralle.

• Défis causés par la taille

Pour effectuer les activités de maintenance, la taille croissante des éoliennes
peut nécessiter des véhicules ou des équipements spéciaux. De plus, la
croissance rapide de la taille de la conception, qui manque d’expérience
opérationnelle pratique, peut entrâıner des défaillances inattendues.

• Défis causés par le système de contrôle

Les systèmes de contrôle utilisés pour le pitch, le générateur et le con-
vertisseur sont de plus en plus sophistiqués. Cependant, les composants
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électriques et électroniques montrent qu’ils sont moins fiables que les com-
posants mécaniques. De plus, le système de surveillance de l’état actuel n’est
pas efficace pour détecter les pannes électriques et électroniques. Les temps
d’arrêt causés par les pannes de composants électriques et électroniques sont
plus importants dans les régions éloignées et en mer en raison de l’accessibilité
réduite.

Pour améliorer la fiabilité des éoliennes, plusieurs méthodes peuvent être envisagées
:

1. Amélioration de la théorie de conception et de la technologie d’agrandissement
des éoliennes.

2. Développement d’un système avancé de surveillance de l’état des éoliennes.

3. Article prévoir la durée de vie utile restante des éoliennes et établir un calen-
drier de maintenance raisonnable et économique pour les éoliennes en service.

Les travaux de cette thèse peuvent être classés dans la dernière méthode. Mais
c’est aussi un élément critique pour les systèmes modernes de surveillances, car ce
dernier doit fusionner un module pronostic.

7.1.1 Fiabilité des éoliennes et influence du vent

De nombreux efforts ont été déployés pour recueillir des données sur la fiabilité
des éoliennes [17, 18, 19, 20, 21, 22, 23].

control systems yield the highest cumulative failure rate but low
cumulative downtime distribution due to quick repairs and
refurbishments. The main four failures from Ribrant's studies are
similar to those found by Braams and Rademarkers [4].

McMillan and Ault [14] demonstrated with Windstats data from
Germany that the gearbox, generator, rotor (blades, pitch and hub)
and main bearing (drive train) comprise around 67% of downtime
per failure. In similar vein, Spinato et al. [10] analyzedWindstats data
[9] from Denmark (WSDK) and Germany (WSD) over a period of 11
years as well as WT failure statistics data from Schleswig Holstein in
Germany (LWK) [11]. The electrical systems had the highest failure
rates, followed by blades and control systems, but the rates were not
the same in all locations (Denmark having a lower failure rate than
the other two). Gearboxes caused the longest downtimes per failure,

and larger WTs had higher failure frequencies [10] and hence longer
downtimes and higher costs [20].

The average failure rates for WT components from references
[1,7,5,10] is shown in Fig. 9. Considering the cumulative failure rate
of each component, the control system has the highest value,
followed by the blades/pitch and then the electric system. Gears,
yaw system, hydraulic, brake, generator, sensor and others form a
group with medium cumulative failure rate. Hubs, drive trains and
structures all have low rates.

The study by Bussel and Zaaijer [1,13] shows that the blades
present the highest failure rate of 0.72., i.e. one blade on any given
WT will on average fail around three times in four years, this being
excessive. Other references report WT failure rates due to blades of
around 0.2 i.e. once every five years. Bussel and Zaaijer's work
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Fig. 9. Average rate of failure vs. WT components from [1,7,5,10].

Table 3
Review of failure studies in WTs.

Study Source Country Average number of WTs Study Period Top 3 failure rates Top 3 downtime

Bussel and Zaaijer [1] Estimation of expert
judgement in DOWEC project

DEU – – Blades
Control gearbox

Blades
Generator gearbox

Braams and Rademakers [4] CONMOW project DEU Electronic
Control hydraulics

–

Ribrant and Bertling [5,7] Elforsk and Felanalys SWE 625 2000–2004 Electric Gears
Sensors Control
Blades/pitch Electric

VTT FIN 72 2000–2004 Hydraulics Gears
Blades/pitch Blades/pitch
Gears Hydraulics

ISET DEU 865 2003–2005 Electric Generator
Control Gears
Sensors Drive train

McMillan and Ault [8] Windstats DEU – Gears
Generator
Blades/pitch/hub

Spinato et al. [10] Windstats (WSDK) DNK 851–2345 1993–2004 Control(converter) –

Blades/hub
Yaw system

Windstats (WSD) DEU 1291–4285 1993–2004 Electric –

Blades/hub
Control(converter)

LWK DEU 158–643 1993–2004 Electric Gearbox
Blades/pitch/hub Electric
Control(converter) Generator

J.M. Pinar Pérez et al. / Renewable and Sustainable Energy Reviews 23 (2013) 463–472 469

Figure 7.1: Taux de défaillance moyen des composants d’éolienne VS (Source [8])
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suggested that control systems had 0.66 failures rate per turbine
per year in Germany, whereas the corresponding result found by
Ribrant and Bertling [5] was 0.41. Electric systems fail more
frequently in Germany than in Finland, Denmark or Sweden.
Gearboxes, with a failure rate of 0.3 in Germany [1] present
the maximum rate. The failure rate of the hydraulic system
is higher in Finland than in Germany, and the minimum rate
is found in Sweden [5]. None of these authors could find failure
rates in other main components because either there are no
statistics or they are considered within the components described
above, e.g. Spinato et al. [10] considered rotor failure rate as the
failures rates of blades and hub combined. The components with
the top three failure rates and downtimes are collected in Table 3.
Blades, control and electrics are the components with the highest
failure rates; gearboxes, generator and blades cause the most
downtime.

An alternative way of viewing these studies from Sweden,
Finland and Germany [7]—and indeed the other data from
Germany [11]—is to plot failure rates against hours lost per failure
for each of the different components as shown in Fig. 10. Note that
hours lost per failure were actually calculated from downtime per
turbine per year divided by failures per turbine per year, and that
the two curves superimposed upon the plot are lines of equal
downtime (5 and 25 h lost/turbine per year) so as to separate the
data into three groups as follows.

i. Components which fail frequently or that cause long down-
times per failure and hence cause more than 25 h lost/turbine
per year, i.e. gears, blades and hydraulics in Finland, as well as
gears from Germany (DEU_LKW);

ii. Combinations of failure rate and downtimes per failure that
lead to between 5 and 25 h lost/turbine per year, e.g. all
generators, yaw systems, control systems and electrics;

iii. Infrequent failure and low downtime resulting in less than 5 h
lost/turbine per year e.g. all hubs and sensors except ones from
Germany (DEU).

6. Effect of type and power

Koutoulakos [22] presented a study of WTs in Schleswig
Holstein (LKW) Germany. The WTs were horizontal axis machines,

having three blades, yaw systems and generating 600 kW, those of
type DDE having the largest sum of failure rates followed by A1, B
and A0 (Table 4). Table 5 shows the downtime, where type B has
the longest availability followed by A0, DDE and A1. Some WT
types do not incorporate certain components, i.e. A0 does not have
a pitch system or converter, and DDE does not have a gearbox (the
generator being attached to the rotor) but it has a converter with
sophisticated power electronics and also synchronous multi-pole
generator, so electrical failures in DDEs are more frequent.

Blade failure rate is the same in most of the WTs, but the
downtime in the A1 type is higher due to them having active stall
control systems. Pitch failures arise more in type B and mainly in
DDE (Tables 4 and 5). Type A0 has failures in the aerodynamic
brake due to the passive stall of this configuration. The gearbox
failure rate is similar for A1 and B and higher than for A0; for DDE
it is zero because of the direct drive configuration. A1 has the
longest downtime, double that of type A0.

Tavner et al. [2] studied three types of WT configurations: type
A1 (fixed speed indirect drive with stall control); type B (variable
speed indirect drive with pitch control and WRIG) and; type DDE
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Fig. 10. Rate of failure vs. hours lost per failure: Sweden (SWE), Finland (FIN) and Germany (DEU) from Ribrant et al. and Germany (DEU_LKW) from Spinato et al.

Table 4
Failure rates of components for types A0, A1, DDE and B.

Components Type & model

A0 A1 DDE B
Micon
M1500

Tacke
TW600

Enercon
E40

Vestas
V39/V4x

Blades 0.22 0.38 0.24 0.17
Pitch 0 0 0.3 0.1
Generator 0.18 0.18 0.35 0.09
Electric 0.27 0.28 0.54 0.34
Inverter and electronics 0.2 0.14 0.31 0.27
Shaft/bearings 0.06 0.02 0.08 0
Sensors 0.12 0.07 0.12 0.08
Gearbox 0.1 0.2 0 0.18
Brake 0.05 0.18 0 0.01
Aerodynamic brake 0.1 0 0 0
Hydraulics 0.07 0.18 0.02 0.26
Yaw 0.06 0.18 0.11 0.1
Anemometry 0.02 0.04 0.08 0.06
Other 0.25 0.3 0.24 0.2

J.M. Pinar Pérez et al. / Renewable and Sustainable Energy Reviews 23 (2013) 463–472470

Figure 7.2: Taux d’échec VS heures perdues par échec : Suède(SWE), Fin-
lande(FIN), (DEU) et Allemagne(DEU LKW) (Source [8]))

Selon la Figure 7.1 et 7.2, les systèmes de commande, électriques et de contrôle
ont des taux de défaillance élevés ; la défaillance des bôıtes de vitesses, des pales
et des générateurs entrâınent des temps d’arrêt plus longs. J.M. Pinar Pérez et al
[8] ont également conclu que les grandes éoliennes avaient tendance à subir plus
de pannes que les petites.

L’influence du vent sur la fiabilité des éoliennes

datasets of about 44% with periodicities from the lag plot at 12 month intervals, in both the

positive and negative time. 

Figure 12. Cross-Correlogram of Turbine Failure Rate to WEI, 1994-2004

A physical check on the similarities between the Failure Rate and WEI data is given in

Figure 13 where the Failures in a given month throughout the period have been summed and

compared with the summed WEI in that month. Figure 13 shows a Failure Rate peak in Winter

(February), at the same time of year as the peak in WEI, but a secondary Failure Rate peak in

Autumn (October). This confirms the 12 month periodicity of the WEI data in Figure 9, and the

more complex periodogram of the Failure Rate, Figure 11.

Figure 13. Average monthly Failure Rate and WEI for each of the 12 months over the Survey period 1994-2004.
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Figure 7.3: Taux d’échec mensuel moyen et IFE pour chacun des 12 mois de la
période de l’enquête 1994-2004(source: [9])

Contrairement aux autres turbines à gaz/vapeur, les éoliennes sont fortement in-
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fluencée par le vent, en particulier la vitesse du vent. P.Tavner et al [9] s’intéresse à
l’influence de la vitesse du vent sur la fiabilité d’éolienne. Cette recherche quantifie
les données sur la vitesse du vent sous forme d’indice de l’énergie éolienne (WEI)
qui est défini comme suit

WEI=(Actual monthly energy production from a collection of wind turbines)/
(Long term expected monthly energy production from

those turbines in the presence of average weather)

5.4. Cross-Correlation with Turbine Subassemblies
Failure data from Windstats were also available for subassemblies so the procedure from

Section 5.3 was also applied to individual subassemblies. This is shown in Figure 14, where the

cross-correlation for each Subassembly is plotted on the same graph. The cross-correlation

value of 44% for the whole turbine is shown highlighted. The graph shows that the highest

cross-correlation of failures with the WEI is the generator, with the yaw control close behind,

whereas the blades, hub, main shaft, coupling and gearbox have a very low, even negligible

cross-correlation.

Figure 14. Summary of cross-Correlograms of Subassembly Failure Rates to WEI, 1994-2004

6. DISCUSSION
The results of Figures 8 to 14 reveal certain key facts. A clear annual periodicity has been

identified in the WEI data and a less clear periodicity in the Failure Rate data. Processing the

data requires care, in particular it was essential to ensure the longest record length possible, to

remove aperiodic trends distorting the data, and to consider both periodogram and

correlogram information.

With these points in mind it can be seen that there is a periodicity in the Failure Rate data

of 12, 8.4 and 6 months. The 6 and 12 month periodicities are due to the main seasonal variation

of the weather, however, the 8.4 month periodicity is harder to explain. Perhaps its is due to the

sub-seasonal effects, exhibited in the Failure Rate in Figure 13, where higher failure rates are

experienced in October, probably due to increased gusting in the Autumn. 

The cross-correlation confirms that for the whole turbine there is a 44% cross-correlation

between the WEI and Failure Rate, suggesting that the weather is having an influence on

turbine failure rates.

It is important to remember, at this point, that turbine failures may be caused by many

effects, other than the wind speed, for example low or contaminated oil in the gearbox or

faulty components. Therefore, a high cross-correlation between Failure Rate and WEI is not

necessarily expected. 

The Wind Energy Index (WEI) was used as the variable representing wind speed. This

variable has a complex definition, depending upon a turbine specific averaging process,

Equation 1. It would be possible to repeat the processes in this paper using the variable Wind

Speed directly, which would have yielded results very similar, if not identical, to those

presented here. 
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Figure 7.4: Résumé des corrélogrammes croisés des taux de défaillance des sous-
composantes de l’IFE, 1994-2004 (source: [9])

La figure 7.3 montre la relation entre le taux d’échec et l’IFE. D’après ce chiffre
et les résultats de l’étude de [19], il est évident que les conditions météorologiques
et la vitesse du vent ont une influence significative sur la détérioration et la
défaillance des composants d’éolienne. De plus, ils soulignent que certains com-
posantes d’éolienne sont plus affectés par la vitesse du vent que d’autres, comme
le système hydraulique, la génératrice, la commande de lacet et le frein mécanique
(voir Figure 7.3). D’après l’auteur, ces composants ne sont pas conçues avec les
effets changeants les changeants rapides de la variation de la vitesse du vent. Un
rapport chinois sur la défaillance du système de tangage WT affirme que la plupart
des défaillances du système de tangage surviennent pendant les saisons venteuses
en raison d’une variation importante de la vitesse du vent, etc. Les recherches
menées à [25] montrent que des vitesses de vent différentes ont des effets différents
sur les dommages de fatigue de l’engrenage appliqué à une éolienne. Ceci est dû
au fait que la plage de contrainte du pignon est fonction de la vitesse de rotation
du pignon, qui est fondamentalement déterminée par la vitesse du vent.
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7.2 Modèle de génération de la vitesse du vent

Ce chapitre propose un modèle mathématique qui permet de générer des séquences
de vitesse du vent satisfaisantes pour l’étude RUL des composants d’éoliennes et
pour une estimation précise de la puissance de sortie, la vitesse du vent générée
par ce modèle a les propriétés suivantes :

• peut refléter la tendance du vent à long terme

• peut contenir des informations de turbulence à petite échelle de temps

• peut correspondre à la distribution de probabilité des données de la vitesse
réelle du vent

• peut rapidement générer les données

7.2.1 Description du modèle de vent

7.2.1.1 Description générale

Reynolds doit être prise en compte pour analyser les effets de la turbulence [125].
La série temporelle de la vitesse du vent U(t) peut être décomposée en sa valeur
moyenne Ū(t) et la fluctuation u(t).

U(t) = Ū(t) + u(t) (7.2)

Cette décomposition nous donne une idée pour modéliser séparément la vitesse
moyenne du vent et la fluctuation de la vitesse du vent. Comme il est mentionné
dans [10], Ū(t) peut être considéré comme un filtre passe-bas correspondant aux
effets horaires, quotidiens, mensuels, saisonniers ou annuels ; turbulence u(t), qui
a une valeur moyenne nulle, peut être considéré comme un filtre passe-haut corre-
spondant aux impacts turbulents.

Dans cet article, nous proposons un modèle de châıne de Markov à deux niveaux
incorporant des SDE. La figure 7.5 montre le modèle global avec la châıne de
Markov et le modèle SDE. Ce modèle est très flexible grâce aux propriétés suivantes
:

• La châıne de Markov extérieur est utilisée pour modéliser la tendance macro-
scopique (générale) de la vitesse du vent. Il peut avoir plusieurs significations,
telles que la vitesse moyenne du vent pour une échelle de temps spécifique
ou différentes classes de vitesse du vent.

• Les SDE embarqués sont principalement utilisés pour modéliser des séquences
continues de vitesse du vent à court terme (comme une seconde) en fonction
de l’environnement des états qui est défini par la châıne de Markov externe.
Différents réglages de paramètres et différents SDEs donnent une grande
variété de modèles de vitesse du vent en continu.
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S1

S2S3

S4

----   SDE models

----  Markov chain state

----  Markov chain for
   SDE selection

Figure 7.5: Wind speed generation model — 2-level Markov chain model embedded
with SDE

• Pour différentes conditions de simulations telles que rafales ou conditions
météorologiques extrêmes, d’autres SDEs peuvent être complétées. Pour
ces raisons, ce modèle est facilement modifiable en fonction des besoins de
l’utilisateur.

7.2.1.2 Châıne de Markov intégrée avec SDE

La châıne de Markov comme modèle macroscopique de vitesse du vent

Une châıne de Markov est définie de façon unique par son espace d’état, sa matrice
de transition et sa distribution initiale. La modélisation de la vitesse du vent
en châıne de Markov comprend quatre étapes principales : définition de l’état,
estimation de la matrice de transition, simulation de l’état et simulation de la
vitesse du vent. La définition de l’état est liée à un problème de classification et
dépend de l’objectif. Il correspond au choix de l’intervalle sur la plage de vitesse du
vent, qui peut dépendre de la fréquence d’occurrence des valeurs de vitesse. Soit
S = [s1, s2, · · · , sN ] l’espace d’état de la châıne de Markov externe correspondant
aux différents états possibles de la vitesse du vent. Soit {Xt}t≥0 représente la
série temporelle de la vitesse du vent. L’événement “X0 = s5” signifie qu’au
temps t = 0, la vitesse du vent est en état s5. Le tableau 3.1 montre un exemple
d’affectation d’état. La distribution initiale est estimée en divisant l’ensemble de
données en cellules selon les états. Les vecteurs d’occurrences obtenus peuvent
alors être normalisés dans chaque bin. Soit p0

i = P{X0 = si} indique la probabilité
que le premier élément de la série temporelle du vent soit dans l’intervalle si. Pour
l’estimer, comptez le nombre de fois qu’il y a une valeur appartenant à l’état si
dans toute la série chronologique enregistrée et divisez-la par le nombre total de
valeurs enregistrées.
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Soit la probabilité de transition comme suit :

pij = P(Xn+1 = sj|Xn = si, Xn−1 = sin−1 , · · · , X0 = si0)

= P(Xn+1 = sj|Xn = si) (7.3)

où si, sj ∈ S. La probabilité pij peut être estimée en comptant le nombre de fois
qu’une valeur dans l’état si suivi d’une fois dans l’état sj dans la série temporelle
du vent, normalisée par le nombre total d’occurrences des valeurs dans l’état si.
La matrice de transition de la châıne de Markov est définie comme suit :

π =




p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

...
. . .

...
pm,1 pm,2 · · · pm,n


 .

SDEs for continuous short-term wind speed modeling

L’auteur de [10] conclut qu’en gros, il existe trois classes de distributions de tur-
bulence de la vitesse du vent. L’analyse montre que 90 à 10 % de la turbulence
de la vitesse du vent suit une sorte de fonction de distribution de probabilités
monomodale symétrique (PDF) qui est bien ajustée par une PDF gaussienne. 9%
de la turbulence de la vitesse du vent suit une sorte de PDF mono-modal dis-
symétrique qui peut être décrite par la série Gram-Charler. Et le reste 1% suit
une sorte de PDF bimodal qui est équipé d’un mélange de PDF gaussiens. Con-
sidérons les deux premières classes indiquées par [10] qui représentent 99% de
toutes les distributions de turbulences. L’objectif est d’associer un SDE à chaque
classe. Pour considérer que la dynamique de la vitesse du vent est influencée par
un bruit gaussien, on considère un processus de diffusion qui est une équation
différentielle stochastique particulière comme suit :

dZ(t) = a (Z(t), t) dt+ b (Z(t), t) dW (t), t ∈ [0, T ] (7.4)

où a (Z(t), t) et b (Z(t), t) sont les termes dérive et diffusion, respectivement.

W (t) est le processus standard de Wiener défini comme suit :

• W (0) = 0, avec probabilité 1.

• Pour 0 ≤ ti < ti+1 ≤ T , l’incrément ∆Wi = W (ti+1) − W (ti) est une
distribution gaussienne avec zéro moyenne et σ = ti+1 − ti, soit, ∆Wi ∼
N(0, σ).

• Pour 0 ≤ ti < ti+1 < ti+1 < ti+2 ≤ T , les incréments non chevauchants
∆Wi = W (ti+1)−W (ti) et ∆Wi+1 = W (ti+2)−W (ti+1) sont indépendants.

En d’autres termes, le processus de Wiener (ou mouvement brownien standard) est
un processus continu dont les incréments sont normalement distribués. Un grand
nombre de processus stochastiques définis par l’équation (7.4) sont disponibles.
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Certains d’entre eux sont de bons candidats pour s’adapter aux données de vitesse
du vent.

Combiné aux résultats de recherche de [10], un procédé de diffusion à inversion
de moyenne semble être un candidat approprié. Pour de tels processus de diffu-
sion, les fluctuations des enregistrements de dégradation d’une tendance générale
à la dégradation sont auto-corrélées et l’espérance de Z(t) tend à dériver vers sa
moyenne à long terme avec le temps. La propriété de retour à la moyenne fait en
sorte que la volatilité n’est pas ”explosive”.

7.2.1.3 Processus d’OU pour la production d’énergie éolienne

Les processus OU sont utilisés pour modéliser les deux premières classes sur la
turbulence de la vitesse du vent présentées par [10]. En d’autres termes, pour
chaque classe de vitesse du vent à court terme, un processus OU est utilisé. Ce
modèle permet de générer une vitesse de vent continue pendant une courte période,
par exemple

Processus OU pour la classe 1

Pour l’équation (1.17), Soit ζ = 0, a = −α, b = β. Afin d’éviter toute confusion
avec le cas général, Y (t) est utilisé au lieu de Z(t). Le processus OU choisi pour
décrire l’incrément de la séquence de vitesse du vent lorsque la turbulence est bien
ajustée par PDF gaussien est le suivant :

dY (t) = aY (t)dt+ bdW (t), t ∈ [0, T ] Y (0) = 0 (7.5)

où a est une constante strictement négative pour tous les Y (t) et b est constante.Y (t)
est la turbulence de la vitesse du vent au temps t et c’est un processus de diffusion
autocorrélé stationnaire. W (t) est un mouvement brownien standard.

Selon l’équation (1.18), l’approximation de la log-vraisemblance basée sur la prob-
abilité de transition est définie comme suit :

logL(a, b) = log
N∏

i=1

P(Y (ti+1), ti+1|Y (ti), ti;a, b)

= −n
2

(log(b2) + log(v(a)) +
1

2b2v(a)

n−1∑

i=0

(Yti+1
− exp(a∆)Yti))

2 (7.6)

où ∆ = ti+1 − ti, ti = i∆, (i = 1, · · ·n) et v(a) = exp(2a∆)−1
2a

.

Par conséquent, les estimateurs de paramètres de a et b sont les suivants :
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â =
1

∆
log(

∑n
i=1 Yti−1

Yti∑n
i=1 Y

2
ti−1

) (7.7)

b̂2 =
1

nv(â)

n∑

i=1

(Yti − exp(â∆)Yti−1
)2 (7.8)

Processus OU pour la classe 2

Pour la classe 2, la turbulence de la vitesse du vent se présente sous la forme d’un
PDF mono-modal dissymétrique. Le processus OU choisi pour décrire la vitesse
du vent est le suivant : un autre modèle de SDE proposé par Antoine

dY (t) = −(Y (t)− µ)dt+ σdW (t), ;Y (0) = 0 (7.9)

où Y (t) est la vitesse du vent au temps t, µ et σ sont des paramètres constants et
W (t) est le mouvement brownien standard. Avec ∆t = ti − ti−1 selon l’équation
(1.18) et [97] la fonction densité est la suivante :

P(Y (ti), ti|Y (ti−1), ti−1;µ,σ)

=
e∆t

√
π · σ2(e2∆t − 1)

exp(−(Y (ti) · e∆t + µ(1− e∆t)− Y (ti−1))2

σ2(e2∆t − 1)
) (7.10)

Ainsi, en minimisant numériquement la fonction de log-vraisemblance suivante, les
valeurs estimées de µ̂ et σ̂ peuvent être obtenues.

logL(µ,σ) = log
N∏

i=1

P(Y (ti), ti|Y (ti−1), ti−1);µ,σ) (7.11)

7.2.1.4 Modèle de châıne de Markov pour deux classes de vent de
commutation

Afin de basculer aléatoirement entre les deux classes, une châıne de Markov interne
est considérée à l’intérieur de chaque état de la châıne de Markov externe. Pour
éviter toute confusion entre la châıne de Markov externe et la châıne de Markov
interne, cette dernière est désignée ci-après comme un modèle de sélection SDE
(SSM). Selon les statistiques fournies par [10] et avec respectivement 90% et 10%
de turbulence de vitesse du vent pour les classes 1 et 2, la probabilité de transition
indiquée dans le tableau 7.2 est attribuée au SSM.
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class Class1 Class2

Class1 0.9 0.1
Class2 0.9 0.1

Table 7.2: Probabilité de transition pour SSM

7.2.2 Procédure de génération de la vitesse du vent

Il y a deux difficultés à estimer la matrice de probabilité de transition du modèle
de la châıne de Markov à partir des données sur la vitesse réelle du vent :

• Markov châıne avec beaucoup d’états pourrait être construite résultant en
une matrice de transition énorme qui pourrait causer des difficultés supplémentaires
dans l’estimation ;

• Le nombre d’éléments dans certains états pourrait être beaucoup plus faible
que dans d’autres, ce qui donnerait un grand nombre de probabilités proches
de 0 dans la matrice des probabilités de transition.

Afin d’éviter les phénomènes ci-dessus, le nombre d’États devrait être déterminé
relativement plus petit. Elle pourrait être déterminée par les utilisateurs ou en
fonction d’un critère. Les auteurs de [127] recommandent de déterminer l’intervalle
avec les quantiles empiriques. Supposons que la série chronologique de la vitesse
du vent soit stationnaire et ergodique. Par conséquent, la fonction de distribution
cumulative empirique est un estimateur cohérent de la distribution cumulative de
la mesure invariante de cette série chronologique. Les limites sont prises pour être
F̂−1
N (j/k), j = 1, 2, . . . , k, où k ∈ N est le nombre d’états, N est le nombre d’états

de la châıne Markov externe, et F̂N est la fonction de distribution cumulative
empirique.

Detail wind speed 
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data
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Figure 7.6: Etapes pour la génération de la vitesse du vent

Les principales étapes de production de données artificielles sur la vitesse du vent
(illustrées à la figure 7.6) sont les suivantes :
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step 1 Choisir les données de vitesse du vent pour l’estimation de la châıne de
Markov et des SDEs séparément

step 2 • Déterminer les états de la châıne de Markov externe

• Estimer la matrice de probabilité de transition de la châıne de Markov
à partir des données de vitesse du vent réel

• Estimer les paramètres des SDE à partir des données de vitesse du
vent réel

step 3 Générer la vitesse moyenne horaire du vent

step 4 Utilisez SSM pour sélectionner SDE et générer des données continues de
vitesse du vent par rapport à l’état de la châıne de Markov externe. Si
l’état extérieur n’est pas le dernier, revenir à l’étape 3, sinon, terminer.

7.3 Estimation de la durée de vie utile résiduelle

Selon les recherches effectuées par A.R. Nejad et al. [25], l’éolienne résiste à
différentes charges associées à la vitesse du vent. En fait, des charges plus élevées
génèrent généralement des vibrations plus élevées pour le groupe motopropulseur
de l’éolienne. Les vibrations excessives sont une cause connue de détérioration des
composants en rotation. De plus, les vibrations peuvent être transmises à d’autres
composants par l’intermédiaire de la structure de connexion, ce qui a pour effet
de détériorer l’état de fonctionnement des autres composants en cas de vibrations
trop importantes. Il mentionne également qu’en saison venteuse, les systèmes à
poix ont un taux d’échec plus élevé dans [24]. Par conséquent, ce que l’on peut
conclure est énuméré comme suit :

(1) L’environnement opérationnel de l’éolienne change de façon aléatoire.

(2) L’environnement opérationnel de l’élément a une incidence sur l’état de santé
de l’éolienne et la détérioration de celle-ci.

(3) Le taux de détérioration varie selon les environnements opérationnels.

7.3.1 Simplification et description du modèle pour le système
en détérioration

Afin de simplifier le problème d’ingénierie réel et de proposer des modèles mathématiques,
faire les hypothèses suivantes :

(1) Article L’environnement opérationnel peut être classé en fonction d’un paramètre
et peut être classé dans un nombre fini d’états opérationnels différents. Par
exemple, l’environnement opérationnel d’une éolienne peut être classé en fonc-
tion de la vitesse du vent ; l’environnement opérationnel des véhicules peut
être classé en fonction de la vitesse de rotation du moteur.
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(2) Le passage à l’état d’environnement opérationnel suivant dépend uniquement
de l’état actuel de l’environnement opérationnel.

(3) Supposons que seul l’environnement opérationnel influe sur la détérioration.
Il est vrai qu’un système dynamique se dégrade plus sévèrement dans les envi-
ronnements opérationnels difficiles que dans les environnements opérationnels
stables. Par conséquent, le taux de détérioration est corrélé à l’environnement
opérationnel. Par conséquent, la détérioration du système peut être con-
sidérée comme un processus stochastique dont les paramètres sont constants
par morceaux.

(4) L’indicateur de détérioration est l’information provenant du système de surveil-
lance.

Modèle pour les états de l’environnement opérationnel

Les châınes de Markov décrivent généralement les mouvements d’un système entre
différents états [132], une châıne de Markov à temps discret est très appropriée
pour la modélisation de l’environnement opérationnel considérée dans ce chapitre.
A chaque étape, l’environnement opérationnel peut soit rester dans l’état où il se
trouve, soit passer à un autre état d’environnement opérationnel.

Soit E = {e1, e2, ; · · · , en} l’ensemble des états d’environnement opérationnel.
Définissez P = [pij] ; (1 ≤ i ≤ n, 1 ≤ j ≤ n) comme matrice de transition, c’est-à-
dire, pij est la probabilité de passer de l’état opérationnel actuel ei au suivant ej.
Les variables aléatoires de la séquence (OEn) prennent des valeurs en E.

(OEn)0≤n≤n≤N est une châıne de Markov spatiale d’état discrète à temps discret
si et seulement si,

• P(OE0 = ei0) = λi0

• P(OEn+1 = ein+1 | OE0 = ei0 , · · · ,OEn = ein) = P(OEn+1 = ein+1 | OEn =
ein) = pinin+1

Où λi0 , i0 ∈ N+ est la distribution initiale de l’état initial ei0 .

Modèle pour l’indicateur de détérioration dans divers états d’environnement
opérationnel.

Soit {D(t); t ≥ 0} un processus stochastique continu, monotone et croissant qui
représente le processus de détérioration d’un système dynamique. Si la détérioration
augmente

∆D(t,δt) = D(t+ δt)−D(t) (t > 0, δt > 0)

dépend seulement du présent et non du passé, le processus est markovien. En
particulier, ∆D(t,δt) dépend de l’heure actuelle t et de δt, un modèle généralement
accepté pour la modélisation de la dégradation est le processus gamma non ho-
mogène.
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En d’autres termes, le processus gamma non-homogène est un processus stochas-
tique dont l’incrément est indépendant, non négatif et suivant une distribution
gamma, il convient de modéliser la détérioration monotone progressive s’accumulant
dans le temps, telle que fatigue, usure, corrosion, formation de fissures, etc.

Rappeler les propriétés d’un processus gamma non homogène D(t)t≥0 comme suit.

• D(0) = 0 avec probabilité 1.

• D(t) a des incréments indépendants.

• ∆D(t,δt) = D(t+ δt)−D(t), pour tous les δt > 0 , t ≥ 0, suit une distribution
Gamma avec le paramètre forme α(t,δt) = a(t + δt) − a(t) et la paramètre
échelle β > 0 donné par

f∆Dt,δt
(x|α(t,δt), β) =

(x
β
)α(t,δt)

−1

βΓ(α(t,δt))
e−

x
β (7.12)

où, Γ(a) =
∫∞
z=0

za−1e−zdz est la fonction gamma.

Pour modéliser différents taux de détérioration en fonction des différents environ-
nements opérationnels, la détérioration du système peut être considérée comme
un processus gamma dont les paramètres sont constants par morceaux et liés aux
environnements opérationnels, comme le tableau 7.3.

Table 7.3: Paramètres du procédé gamma qui sont constants par morceaux et en
relation avec les environnements opérationnels

Environnement opérationnel e1 e2 · · · ei · · · en
Paramètres du procédé gamma α1, β1 α2, β2 · · · αi, βi · · · αn, βn

7.3.2 Prévision de la durée de vie utile restante

La valeur de détérioration D(t + τ) au temps t + τ est la somme de la valeur de
détérioration connue D(t) au temps t et de l’incrément de détérioration ∆D(t,τ)

entre temps t et τ :
∆D(t+ τ) = D(t) + ∆D(t,τ)

Apparemment, connâıtre la valeur de détérioration D(t + τ) au temps t + τ est
le principal problème à résoudre pour la prédiction RUL (voir équation (1.8)).
Puisque la valeur de détériorationD(t) est connue, estimer l’incrément de détérioration
entre temps t et t + τ est la solution. Compte tenu des incertitudes, il aborde la
question de la distribution de probabilité de l’incrément ∆D(t,τ), illustrée à la
Figure ??.

Le calcul d’environ D(t+τ) concerne l’échelle de temps, c’est-à-dire la longueur de
τ . Un intérêt d’estimation RUL se concentre sur l’influence causée par la condition
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actuelle pour le futur proche. Un autre se concentre sur un τ suffisamment long
pour que l’influence actuelle puisse être négligée. Par conséquent, deux méthodes
de calcul différentes sont mises au point pour l’estimation du RUL ci-après.

7.3.2.1 Cas1 : Estimation RUL pour une étiquette assez longue τ

Si le τ est assez long, l’éolienne subit tout l’environnement opérationnel pendant
le τ . Pour dire simplement, si une châıne de Markov peut se manifester dans la
matrice de transition, elle est ergodique.

Pour une telle châıne de Markov, il existe une distribution stable unique π =
{π1, π2, · · · , πn (n est le nombre d’états) qui est indépendante de l’état initial, et
satisfait

π∞P = π∞
∑

π∞i = 1.

Dans ce cas, l’estimation du RUL est basée sur la valeur moyenne attendue de
la détérioration sur une longue période. Comme τ est assez long, il peut in-
clure tous les états de l’environnement opérationnel. Ainsi, selon la distribu-
tion stationnaire, on peut estimer un temps de séjour moyen dans chaque état
de l’environnement opérationnel. De plus, il est possible d’estimer un incrément
de détérioration moyen E(∆Di(t,τ)) dans chaque état d’environnement opérationnel
ei. Par conséquent, l’incrément de détérioration du système dynamique entre le
temps t et τ est le suivant

E(∆D(t,τ)) ≈
∑

i

E(∆Di(t,τi)) (
∑

τi = τ) (7.13)

où, E(∆Di(t,τi)) est l’incrément moyen de détérioration de l’état d’environnement
opérationnel ei entre temps t et τ .

Indiquez πi comme la proportion du temps passé dans l’environnement opérationnel
indique ei. De ei, l’environnement opérationnel passe à l’état ej avec la probabilité
pij.

πj =
∑

i

πipij (7.14)

Évidemment, il est vrai que ∑

j

πj = 1 (7.15)

Le temps moyen passé par τidépensé dans l’état ei sur la durée τ est

τi = πi × τ (7.16)

La distribution de l’incrément de détérioration accumulé dans l’état ei entre t et
t+ τ est la suivante

∆Di(t,τ) ∼ Γ(αei(τi), βei) (7.17)

Par conséquent, l’espérance asymptotique de l’incrément de détérioration de l’état
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ei entre t et t+ τ est la suivante

E(∆Di(t,τ)) = αei × τi (7.18)

Du point de vue de la prédiction, le PDF/CDF de l’incrément de détérioration
∆D(t,τ) au temps t+τ est également intéressant. Selon la propriété additive du pro-
cessus gamma, il est simple d’obtenir la distribution de probabilité de l’incrément
de détérioration moyen ∆D(t,τ) pour un système dynamique. Représente α comme
paramètre de forme moyenne du procédé gamma avec formule

α =
∑

i

αei(τi) (7.19)

En conséquence, pour ττ →∞, let β = βei , le pdf de ∆∆D(t,τ) et le rapprochement
du RUL CDF sont comme suit,

∆D(t,τ) ∼ Γ(ᾱ(τ), β) (7.20)

FRUL(t)(τ) ' Γ(ᾱ(τ), (L−D(t))β)

Γ(α(τ))
(7.21)

où, Γ(m,n) =
∫∞
z=n

zm−1e−zdz est la fonction gamma incomplète.

7.3.2.2 Cas 2 : Estimation RUL tenant compte de l’état actuel de
l’environnement opérationnel

Dans ce cas, l’estimation RUL dépend étroitement du dernier état de l’environnement
opérationnel et de l’échelle de temps de prévision. Dans cette section, la prédiction
en une seule étape est donnée au début, et à la fin, une méthode générale de
prédiction en N étapes sera présentée.

Tout d’abord, donnez les illustrations comme suit :

• l’échelle de temps d’une étape est de la même longueur que l. Pour simplifier
la notation, t+ 1, t+ 2, · · · , t+N représente un pas, tow-step, · · · , N-step
forward from time t, respectivement.

• entre temps t− 1 et t, l’état de fonctionnement est indiqué par ei.

Prédiction RUL d’un pas en avant En supposant que l’heure actuelle est t,

P(D(t+ 1) < d|D(t) = dt, OEt = eit) (7.22)

= P(∆D(t,1) < d− dt|D(t) = dt, OEt = eit)

=
n∑

it+1=1

P(∆D(t,1) < d− dt |OEt = eit)P(OEt+1 = eit+1)

=
n∑

it+1=1

pitit+1

∫ d−dt

0

fαit+1
,β(x)dx
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où, fαit+1
,β(x) est le PDF d’une distribution gamma avec le paramètre de forme

αit+1 et le paramètre d’échelle β, n est le nombre total des états des environnements
opérationnels.

7.3.2.3 Prédiction RUL en deux étapes

P(D(t+ 2) < d|Dt = dt, OEt = eit) (7.23)

= P(∆D(t,1) + ∆D(t+1,2) < d− dt| OEt = eit)

=

∫ d−dt

0
P(∆D(t,1) + ∆D(t+1,2) < d− dt| OEt+1 = eit+1 , OEt = eit , ∆D(t,1) = x)f∆D(t,1)

(x)dx

×P(OEt+1|OEt)

=

∫ d−dt

0

n∑

it+1=1

P(∆D(t+1,2) < d− dt − x|∆D(t,1) = x,OEt = eit)pitit+1f∆D(t,1)
(x)dx

=

∫ d−dt

0
P(∆D(t+1,2) < d− dt − x)

n∑

it+1=1

pitit+1f∆D(t,1)
(x)dx

=
n∑

it+1=1

n∑

it+2=1

pitit+1pit+1it+2

∫ d−dt

0
Fαit+2

,β(d− dt − x)f∆D(t,1)
(x)dx

où, n est le nombre total d’états de l’environnement opérationnel. Fαit+2
,β est le

CDF d’une distribution gamma avec le paramètre de forme αit+2 et le paramètre
d’échelle β. f∆D(t,1)

est le PDF d’une distribution gamma avec le paramètre de
forme αiit+1

et le paramètre d’échelle β.

Approximation de la prédiction RUL à N pas en avant par matrices de
calcul.

P(D(t+N) < d|Dt = dt, OEt = eit) (7.24)

= P(∆D(t,1) + ∆D(t+1,2) + · · ·+ ∆D(t+(N−1),N) < d− dt| OEt = eit)

L’équation (7.24) est difficile à calculer alors que N devient grand. Si les incréments
indépendants de détérioration suivent les distributions gamma avec le même paramètre
d’échelle β mais des paramètres de forme différents, la somme de l’incrément suit
une distribution gamma avec un paramètre de forme qui est la somme des différents
paramètres de forme et du paramètre d’échelle, soit

N∑

m=1

.∆Xm ∼ Γ(
N∑

m=1

αm, β)

Cette propriété est très pratique pour le calcul. Pour une prédiction RUL à
N pas en avant, considérant que l’incrément de détérioration de chaque pas est
indépendant l’un de l’autre, la prédiction RUL à N pas en avant peut être ex-
primée comme suit :
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P(D(t+N) < d|Dt = dt, OEt = eit) (7.25)

=

∫ d−dt

0

fαs,β(x)dx

où,

αs = (0 · · · 1 · · · 0)1×n(
N∑

m=1

Pm)AIn×1 (7.26)

fαs,β est le PDF d’une distribution gamma avec le paramètre de forme αs et le
paramètre d’échelle β; N est l’étape de prédiction; (0 · · · 1 · · · 0)1×n représente
l’état initial du fonctionnement; P est la matrice de transition de probabilité de
l’environnement opérationnel; A est une matrice diagonale de α pour différents
environnements opérationnels, et In×1 avec la valeur 1.

7.4 Modèle d’indisponibilité pour éolienne

Comme mentionné précédemment, l’éolienne fonctionne automatiquement dans
divers environnements, il est important de trouver une méthode pour mesurer sa
fiabilité. De plus, la connaissance de ses informations de fiabilité est utile pour
la planification de la maintenance qui joue un rôle important dans l’exploitation du
parc éolien et la production d’énergie. Compte tenu de l’environnement opérationnel
de l’éolienne et du délai d’exécution des travaux de maintenance, il est nécessaire de
trouver un seuil d’alarme de détérioration pour les éoliennes afin de programmer
correctement les travaux de maintenance. Ce chapitre se concentre sur l’étude
de l’indisponibilité des éoliennes. Une méthode pour proposer le seuil d’alarme
dépend de la politique de maintenance et l’estimation de l’indisponibilité de l’éolienne
causée par les pannes et la maintenance est également étudiée dans cette section.

7.4.1 Simplifications, hypothèses et politique de mainte-
nance

7.4.1.1 Simplification de l’environnement opérationnel

La vitesse moyenne du vent pour l’entretien est inférieure à 11m/s. Et l’environnement
opérationnel est considéré comme une châıne de Markov discrète. Par conséquent,
pour simplifier la question traitée dans ce chapitre, classez l’environnement opérationnel
E en deux sous-ensembles : un sous-ensemble EM dans lequel la vitesse moyenne
du vent est inférieure à 11 m/s, un autre EM dans lequel la vitesse moyenne
du vent est supérieure à 11 m/s. Indiquez-les par EM = {e1, ; e2, e3, e4},
EM = {e5, ; e6, e7, e8}, respectivement.
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7.4.1.1.a Maintenance policy

Nous considérons l’éolienne comme un système réparable, et l’action de mainte-
nance proposée est conforme au schéma suivant :

• Si l’indicateur de détérioration Dt est supérieur au seuil de défaillance LF ,
le système échoue. Le moment où l’indicateur de détérioration arrive ou
traverse LF est donné par σF .

σF = inf(t|Dt ≥ LF ) (7.27)

• Lorsque l’indicateur de détérioration Dt devient supérieur ou égal au seuil
d’alarme LA, un entretien est prévu. Le moment où D(t) arrive ou traverse
LA est donné par σA.

σA = inf(t|Dt ≥ LA) (7.28)

• Seuls les environnements opérationnels e1, ; e2, e3, ; e4 permettent de mettre
en œuvre la maintenance. Ainsi, l’opération de maintenance a un temps de
retard radôme τ lorsque l’environnement opérationnel appartient à EM .

• Nous supposons que l’entretien peut être effectué immédiatement lorsque
l’environnement le permet. L’opération de maintenance a une durée ρ.

• Entre σA et σA + τ , l’éolienne se détériore et une panne peut apparâıtre
avant la maintenance. En fonction de l’apparition d’une panne, une action
de maintenance préventive ou corrective doit être effectuée.

– Si une panne survient dans l’intervalle de temps, à savoir, σF ≤ σA + τ ,
l’éolienne est indisponible du moment de la panne jusqu’au moment de
la fin de l’opération de maintenance σA + τ + ρ

– Si une panne ne survient pas dans l’intervalle de temps, à savoir, σA+τ ,
l’éolienne est indisponible à partir du moment où σA+τ est indisponible
jusqu’à la fin de l’opération de maintenance σA + τ + ρ.

• A la fin de l’entretien, l’éolienne est supposée être ” comme neuve ” (as-
good-as new).

7.4.1.2 Hypothèse stationnaire

Selon l’hypothèse d’environnement opérationnel à deux sous-ensembles ci-dessus et
le schéma de maintenance, à long terme, le processus de détérioration de l’éolienne
peut être considéré comme un processus régénératif. En d’autres termes, l’éolienne
est mise en service et fonctionne au temps T0. Lorsqu’il échoue, au moment T1,
il sera restauré à l’état ”comme neuf”. Lorsque l’éolienne tombe de nouveau en
panne au moment T1 + T2, elle est de nouveau restaurée, et ainsi de suite. Les
temps restaurés T1, T2, · · · sont indépendants les uns des autres. Pour simplifier,
l’indisponibilité est considérée dans un cycle de vie, par exemple, le cycle de vie
de temps en temps T0 à temps T1. Le modèle d’indisponibilité asymptotique des
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éoliennes est basé sur la distribution stationnaire des états de l’environnement
opérationnel.

7.4.2 Modèle d’indisponibilité asympotique pour les éoliennes

L’indisponibilité d’une éolienne a deux significations : l’une est l’indisponibilité
causée par une détérioration ou une panne entrâınant un temps d’arrêt ; l’autre
signifie que l’éolienne est en état d’arrêt, qui n’est causée que par une vitesse de vent
inappropriée, par exemple, un vent à basse vitesse ne peut entrâıner l’éolienne au
travail. Ce chapitre ne s’intéresse qu’à l’indisponibilité causée par les détériorations
et les pannes. Indiquez T1 = σA + τ + ρ comme premier temps de renouvellement
(première réparation). Soit U∞ l’indisponibilité asymptotique de l’éolienne, U(t)
la durée d’indisponibilité avant temps t. Nous avons U∞, U(t) respectivement
comme suit,

U∞ =
E(U(T1))

E(T1)
(7.29)

U(t) =





0 (t ∈ [T0, σA))

ρ (t ∈ [σA, T1) and σF ≥ σA + τ)

(σA + τ + ρ)− σF (t ∈ [σA, T1] and σF < σA + τ)

(7.30)

Ainsi, pour le premier cycle de vie, la durée d’indisponibilité U(T1) de l’éolienne
est

U(T1) = ρI{σF≥σA+τ} + ((σA + τ + ρ)− σF )I{σF≤σA+τ} (7.31)

où, I{{A} = 1 si A est vrai et 0 sinon.

L’éolienne peut être considérée comme le système à long terme, compte tenu de
sa performance moyenne, nous avons

U∞ =
E(ρI{σF≥σA+τ} + ((σA + τ + ρ)− σF )I{σF≤σA+τ})

E(σA + τ + ρ)
(7.32)

=
E(ρ) + E(τI{σF−σA>τ}) + E((σF − σA)I{σF−σA≤τ})

E(σA) + E(τ) + E(ρ)

Par conséquent, le modèle d’indisponibilité est,

U∞ =
ρ+ E(τI{σF−σA>τ}) + E((σF − σA)I{σF−σA≤τ})

E(σA) + E(τ) + ρ
(7.33)



120 Chapter 7. Résumé de Thèse en Français

7.4.3 Temps d’activation dans le seuil d’alarme E(σA)

Ce terme peut être facilement obtenu à partir du modèle de détérioration proposé
au chapitre 4.

E(σA) =

∫ ∞

0

(
8∑

i=1

P(OEi = ei)

∫ LA

0

fαit,β(x)dx

)
dt (7.34)

Où, fαit,β est une fonction gamma pdf, avec le paramètre de forme αit et le
paramètre de gamme β.

7.4.4 Maintenance attente E(τ)

Pour une châıne Markov discrète, l’attente de maintenance τ est en fait le temps
de séjour passé dans l’environnement opérationnel EM , ou le premier temps de
frappe dans EM depuis un état EM . Soit T le temps de frappe dans un état
d’environnement opérationnel du sous-ensembleEM , lorsque l’état d’environnement
opérationnel est initialement dans un état EM . Nous l’avons fait,

T = inf{k > [
σA
δt

]; OEk = ei, ei ∈ EM} (7.35)

La seule hypothèse est que le sous-ensemble EM doit être transitoire à tout mo-
ment t ≥ σA. Le sous-ensemble EM sera considéré comme la classe de terminal.
Maintenant, nous allons donner l’expression explicite de l’attente de retard de
maintenance E(τ). La matrice de transition P de la châıne de Markov représentant
l’environnement opérationnel est divisée comme suit :

P =

[
pEM pEMEM

pEMEM pEM

]

Où, pEM est la probabilité que l’environnement opérationnel reste dans le sous-
ensemble EM lui-même ; pEMEM est la probabilité du sous-ensemble EM à EM ;
pEMEM est la probabilité du sous-ensemble EM à EM , et pEM est la probabilité
restant dans EM lui-même.

Définir une autre châıne de Markov Y dont l’espace d’états est EY = EM∪EM∆
, où

EM∆
contient les états de EM qui sont directement atteints par un état opérationnel

de EM , à savoir EM∆
⊂ EM . La matrice de transition de la châıne de Markov Y

est donnée par

Q =

[
pEM pEMEM∆

0 I

]
(7.36)

Par conséquent, le temps de frappe en EM de l’environnement opérationnel original
de la châıne de Markov est le même que le temps de frappe en EM∆

de la châıne
de Markov Y , en faisant cela, le calcul est plus facile. Selon la recherche effectuée
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par A. Platis et al. [139], la distribution du temps de frappe dans le sous-ensemble
EM au temps k est de

P(T > k) = P(∀i, i ≤ n, OEi ∈ EM) = αEM (pEM )k−11d (7.37)

Où, αEM est la distribution initiale. Et le temps de frappe attendu est donné par

E(T ) =
∑

k≥0

k × P(T = k) =
∑

k≥0

P(T > k) (7.38)

= αEM (I +
∑

k≥1

(pEM )k−1)1d

Par conséquent, l’attente de maintenance attendu E(τ) est le suivant

E(τ) (7.39)

= E(τ |OEσA ∈ EM)P(OEσA ∈ EM) + E(τ |OEσA ∈ EM)P(OEσA ∈ EM)

= αEM (I +
∑

k≥1

(pEM )k−1)1d

(
8∑

i=5

P(ei ∈ EM)

)

7.4.5 Temps indisponible dû à un entretien ou à une panne

E(τI{σF−σA>τ} + (σF − σA)I{σF−σA≤τ}) (7.40)

= E(τI{σF−σA>τ}) + E((σF − σA)I{σF−σA≤τ})

Remplacer σF−A par σF−E(DσA ), et notez la durée σF−σA comme tAL, Premièrement,
regardez l’expression E((σF − σA)IσF−σA≤τ})

E((σF − σA)I{σF−σA≤τ}) (7.41)

= E(σF − σA)

≈ E(σF−E(DσA ))

=

∫ +∞

0

8∑

i=1

P(OEi = ei)fαit, β(LF − E(DσA))dt
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Modélisation pour le pronostic et la 
maintenance des éoliennes 
 
 
De plus en plus d'éoliennes sont exploitées pour 
produire de l'énergie électrique. Les éoliennes de 
grande taille fonctionnent de manière automatique 
dans des conditions environnementales souvent 
difficiles. Il en résulte des dégradations et des 
défaillances provoquant des arrêts indésirables. En 
conséquence, les recherches sur la fiabilité des 
éoliennes attirent beaucoup d'attention. Le principal 
composant étudié dans cette thèse est un 
composant crucial pour les éoliennes à vitesse 
variable : le système hydraulique d’orientation des 
pales. Trois sujets sont abordés : la modélisation de 
la détérioration du système hydraulique de contrôle 
de l’angle de tangage, l'estimation de sa durée de 
vie utile restante et une politique de maintenance. La 
principale contribution de la thèse est la prise en 
compte de l'influence de l’environnement 
caractérisé par la vitesse du vent. Un modèle 
continu à long terme d’évolution de la vitesse du 
vent est proposé. Un simulateur d'éolienne avec 
système hydraulique de contrôle de tangage se 
détériorant est établi pour effectuer les simulations 
numériques. Cette thèse illustre l’intérêt des 
processus stochastiques pour la modélisation dans 
le domaine de l'énergie éolienne. Le modèle de 
vitesse du vent s’appuie sur une chaîne de Markov à 
deux niveaux avec diffusion intégrée. Le processus 
de détérioration du système hydraulique de contrôle 
est modélisé par un processus gamma couplé à une 
chaîne de Markov. Sur cette base, la durée de vie et 
l'indisponibilité de l'éolienne sont modélisées, 
évaluées et utilisées pour l’aide à la décision de 
maintenance. 
 
 
Mots clés : éoliennes – vents, vitesse – entretien – 
processus stochastiques – durée de vie (ingénierie). 
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Prognosis and Maintenance Modelling 
for Wind Turbines 
 
 
Nowadays, more and more wind turbines are erected 
on-shore or off-shore to generate electric energy 
from wind. Since the valuable big-size wind turbines 
automatically operate under harsh environment, 
undesirable downtime occurs from degradations and 
failures caused by the environment. Therefore, the 
research about the reliability of wind turbine attract 
a lot of attention. 
The main component studied in this thesis is the 
hydraulic pitch system. It is a crucial component for 
variable-speed wind turbines. Three subjects are 
addressed: the hydraulic pitch system deteriorating 
modelling, its remaining useful lifetime estimation, 
and its maintenance. The methods proposed are not 
only limited to the hydraulic pitch system, but also 
can be extended to the dynamic systems that 
operate under various environment. 
The main contribution of the thesis is that the 
influence of the environment (wind speed) is always 
taken into account. A continuous long-term wind 
speed model is proposed as a research by product. A 
wind turbine simulator is established to carry out 
the numerical simulations. It specifically includes a 
deteriorating model for hydraulic pitch system. 
This thesis highlights the relevance of stochastic 
processes in the field of wind energy modelling. The 
wind speed model is based on a two-level Markov 
chain with embedded diffusion processes. The 
deterioration process of hydraulic pitch system is 
modelled by a gamma process driven by a Markov 
chain. On these bases, the remaining useful life and 
the unavailability of wind turbine are discussed and 
used for maintenance decision-making. 
 
 
Keywords: wind turbines – winds, speed – mainte-
nance – stochastic processes – service life (engi-
neering). 
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