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Foreword

L’étude approfondie de la nature est la source la plus féconde des découvertes mathématiques.

Joseph Fourier - Discours préliminaire à la théorie analytique de la chaleur

This thesis was carried out starting on September 2018 during a three-year PhD program in
Laboratoire Jacques-Louis Lions at Sorbonne Université in Paris and at the Max-Planck-Institut für
Mathematik in den Naturwissenschaften in Leipzig, under the co-supervision of Prof. Antoine Gloria
and Prof. Felix Otto. The present manuscript contains different results in stochastic homogenization
theory of elliptic equations and systems, aiming at a better understanding of the quantitative theory.
Starting from quantitative estimates for linear elliptic systems with strongly correlated coefficient
fields, we then develop a quantitative homogenization theory for nonlinear elliptic equations and
systems with strongly monotone coefficients. In the last part, we analyse the so-called representa-
tive volume element method to compute the homogenized coefficient and we show optimal rate of
convergence with respect to the size of the box. The Chapters 2 and 3 can be read independently
of each others. The Chapter 5 make use of the results proved in Chapter 4.
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12 Chapter 1. Introduction

1.1 Introduction to the homogenization theory

1.1.1 General introduction

The homogenization theory aims at deriving the effective properties of heterogeneous systems, when
heterogeneities are small compared to the characteristic size of the system. Such systems are, at
first sight, very complicated and the general question arising from the homogenization theory is :
"Can we replace the complicated heterogeneous system by a simple equivalent homogeneous model
(meaning that it is efficiently computable) keeping the relevant physical properties of the heteroge-
neous system ?".

Figure 1.1: Left panel: A schematic of a two-phase material with properties a0 and a1. L and
ε represent the macroscopic and the microscopic length-scales, respectively. Right panel: When
L � ε, the heterogeneous system can be replaced as a homogeneous one with effective property a
depending on a0, a1 and the distribution of the two phases.

The challenge of the homogenization theory is to find a suitable formula for the effective property
a, as a function of a0, a1 and of the distribution of the two phases. The understanding and the
determination of effective properties of heterogeneous materials, such as transport, electromagnetic,
heat conduction or mechanical, has a long history. We can cite, for instance, four pioneering works
in that direction, back to the last two centuries. First, Clausius and Mossotti in [125, 126, 46]
investigated the effective dielectric constant for isotropic spherical inclusions in a isotropic reference
medium. Later, James Clerk Maxwell, in his Treatise on Electricity and Magnetism [121] popular-
ized the works of Clausius and Mossotti and worked on the same equations. He investigated the
effective thermal conductivity of composite materials, model as a continuous matrix of constant
conductivity a0 containing multiple spherical inclusions with identical radii of constant conductivity
a1. He derived an expression for the effective thermal conductivity, via far-field perturbations to
solutions of the steady heat equation, that is exact for dilute sphere concentrations. John William
Strutt Rayleigh in [144] developed a formalism to compute the effective conductivity of regular ar-
rays of spheres that is still used to this day. Finally, Einstein, in his PhD thesis [64], determined the
effective viscosity of a dilute suspension of spheres, that is, assuming that the particles are scarce.
It leads to the so-called Einstein’s formula, which reads1 µ = (1 + 5

2Φ)µ0, where µ represents the

1Einstein’s original result contained an error, which was corrected with help of his student and collaborator Ludwig
Hopf in [65].
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effective viscosity of the composite system, µ0 the viscosity of the pure liquid and Φ the volume
concentration of the particles. This formula played an important role in the physic community at
that time and, in particular, it served as a basis for Perrin’s experiment to estimate the Avogadro
number. More recently heterogeneous media have been extensively used in physics and engineering
for their many interesting properties. Examples of manufactured heterogeneous materials include
particulate composites, block copolymers or aligned and chopped fiber composites whereas hetero-
geneous materials in nature include polycrystals, Earth’s crust or cell aggregates and tumors.

Figure 1.2: Example of polycrystals (see [146]): (a) aluminium titanate (b) mixed of titanium,
molybdenum, vanadium, iron and aluminium (c) quartz (d) silesian granite.

The rich variety of examples encouraged the development of methods to characterise the effective
medium and averaged fields, which took the form of the homogenization theory in the mathematical
community. Important mechanical and physical properties include:

• The effective elasticity tensor C, where pioneer works started from the celebrated papers [67]
and [66] about a single ellipsoidal inhomogeneity. The quantity C corresponds to the pro-
portionality constant between the average stress and average strain, commonly referred to
averaged Hooke’s law for the composite material. More general nonlinear models describing
the energy of deformation arise naturally in nonlinear elasticity, see for instance [44]. The elas-
tic nonlinear energy model takes the form of an integral

´
ΩW (∇u(x))dx where ∇u denotes

the deformation gradient and W the effective stored elastic energy function. Computing C
and W for heterogeneous material finds, for instance, its interest in biological material such
as bone or tendon or also in various synthetic materials.

• The fluid permeability tensor κ, describing slow viscous flow through porous media. The
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quantity κ corresponds to the proportionality tensor between the average fluid velocity ~V and
the applied pressure gradient in the porous medium ∇P , commonly referred to Darcy’s law for
the porous medium. In turbulent regimes, a nonlinear model of Darcy’s law is often used and
takes the form ~V = −κ(∇P ) = −κ|∇P |p−2∇P , for some parameter p > 1 (see for instance
[108]). Computing κ for porous media finds, for instance, its interest in extraction of oil or gas
from porous rocks, chromatography or filtration.

• The effective thermal or conductivity tensor σ. The quantity σ corresponds to the propor-
tionality tensor between the average of the local electric current (resp. heat flux ~jh) and the
average of the local electric field (resp. temperature gradient ∇T ) in the composite material,
commonly referred to as averaged Ohm’s law or Fourier’s law in the electrical or thermal prob-
lems, respectively. For certain temperature range, we rather apply to nonlinear laws for heat
transfers of the form ~jh = −σ(T,∇T ) = −σT q|∇T |p−2∇T , for some parameters q > 0 and
p ≥ 2 (see for instance [141, 23]). Computing σ for heterogeneous material finds, for instance,
its interest in electrical components and oil drilling operations, where electric conductivity
measurements of the brine-saturated rock are used to infer information about the permeability
of the pore space. Thermal applications range from composites used for insulation, heat ex-
changers, and heat sinks for electronic cooling to geophysical problems (determination of the
geothermal temperature gradient).

On large scales, microstructures are expected to average out due to a kind of a law of large numbers,
in such a way that the heterogeneous physical properties can be replaced by homogeneous ones.
This procedure is what we call the homogenization process. The homogenization theory can be
applied to many situations and the most simple examples are obtained when the heterogeneities
are periodically or quasi-periodically distributed through the material. However, in many instances,
the microstructures can be characterized only statistically, and therefore are referred to as random
heterogeneous materials, the main focus of this thesis. There is a vast family of random microstruc-
tures that are possible, both natural or synthetic, ranging from porous media, multilayer-structures
(heterogeneous in one dimension) to complex connected multiphase media or perforated materials.
Physical or mechanical phenomenas are usually described via partial differential equations or energy
functionals, depending on the microstructure via a random variable (corresponding to the distri-
bution of the heterogeneities) and the scale separation parameter 0 < ε � 1. For a long time,
homogenization problems for partial differential equations were being mostly considered by special-
ists in physics and mechanics. The general mathematical theory only emerged in the 1970’s with
the pioneer works of Murat and Tartar in [150, 151, 131] (in the periodic setting), Kozlov in [104],
Papanicolaou and Varadhan in [139] (in the random setting) and later in the 1980’s by Braides [35]
and Müller in [130] (in the periodic setting) as well as Dal Maso in [119] (in the random setting)
in the general framework of hyperelasticity, mixing tools from probability, calculus of variation and
partial differential equation theory. Since then, the homogenization theory is a very active domain
of research and a lot of references will be given in the course of this introduction.

In mathematical models of random heterogeneous media, constitutive properties are usually de-
scribed by functions of the form a(xε ), where x denotes the space variable and ε > 0 the characteris-
tic size of the heterogeneities small compared to the characteristic size L of the material-see Figure
1.1.1. In this thesis, we are interested in heterogeneous random media, so that we always assume
that a = a(x) is a realization of a random distribution. The determination of the effective properties
of the random heterogeneous material is a difficult task since the coefficients of the corresponding
differential problem rapidly oscillate as ε ↓ 0. However, by assuming stationarity and ergodicity of
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the random distribution (in form of a law of large number, a precise statement will be given in section
1.1.2), meaning that the distribution of the heterogeneities is statistically invariant by translation
and decorrelates on large scales, we expect an averaging procedure in the limit ε ↓ 0. In general, the
averaging that occurs is more subtle than the simple average 〈a〉 of the coefficients2. We illustrate
this by the following simple example. We consider the case of a one-dimensional heterogeneous
material on the segment [0, 1] with a series of rectangular inclusions of size ε� 1 (that we can see
as resistors in series):

Figure 1.3: One-dimensional heterogeneous material model by resistors in series.

We are interested in the effective conductivity of the material as ε ↓ 0, where for simplicity we impose
that 1

ε ∈ N. The conductivity of the first phase (that is without the heterogeneities) is assumed
to be constant equal to a0 whereas for the second phase (corresponding to the heterogeneities)
the conductivity is assumed to be constant equal to a1. Furthermore, we assume that the resis-
tors are independently and identically distributed via a sequence of Bernouilli’s random variables
(bi)i∈N ⊂ {0, 1}N, with parameter q > 0. More precisely, the conductivity aε of the heterogeneous
material is given by

aε(x) := a(xε ) = a0 + (a1 − a0)
+∞∑
i=1

bi1[i−1,i](
x
ε ). (1.1.1)

We impose a difference of potential (denoted by u) on this configuration of resistors, say
´ 1

0 ∂xu = 1,
and we assume that there is no charge. Thus, the electrical flux is conserved, which reads:

∂x(a(xε )∂xu) = 0.

By integrating once, we learn that the flux Fε = a(xε )∂xu is constant. By averaging ∂xu = aε
a(
x
ε )

on

[0, 1], we obtain that the flux satisfy Fε = (
´ 1

0
1

a(
x
ε )
dx)−1, which turns into the following formula

using (1.1.1),

Fε =

(
ε

1
ε∑
i=1

1

a0 + (a1 − a0)bi

)−1

. (1.1.2)

Since the potential difference is 1, we have Fε = aε×1, where aε represents the effective conductivity
of the system. The formula (1.1.2) converges as ε ↓ 0 by the law of large numbers, and the limit
provides the formula for the effective conductivity a = a(a0, a1) of the homogenized material:

a := lim
ε↓0

aε = E
[

1

a0 + (a1 − a0)b1

]−1

=

(
q

a1
+

1− q
a0

)−1

. (1.1.3)

In particular, a 6= 〈a〉, which shows that the effective conductivity (1.1.3) is obtained by a more
subtle averaging procedure than arithmetic averaging. Actually, the formula (1.1.3) is not surpris-
ing: the effective behaviour of a series of resistors is given by adding the resistivity of each resistor,

2The general notation 〈·〉 is used to either mean the average on the periodic cell
ffl
Q or the expectation E[·] depending

on the context.
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expressed by 1
a1

and 1
a0
, with a probability to contribute equal to q and 1− q respectively (which is

equivalent to (1.1.19) since the resistivity is the inverse of the conductivity).

The rest of the introduction is organized as follows. Section 1.1.2 is devoted to qualitative stochas-
tic homogenization of elliptic systems in divergence form. In Section 1.1.3 we argue by a formal
two-scale expansion on a simple nonlinear model, which allows us to introduce the classical objects
of stochastic homogenization, such as the correctors and the homogenized operator. We then rigor-
ously treat in Section 1.1.4 a nonlinear one-dimensional example and relate this result to the formal
computations of Section 1.1.3. We also compute the homogenized operator as well as the two-scale
expansion in a nonlinear two-dimensional example of a layered material. We then slowly turn to the
contents of this thesis: we present in Section 1.1.5 quantitative assumptions and important tools
that we use in this thesis. We show in particular how those tools can be applied on the simple
one-dimensional example of Section 1.1.4 to get optimal estimates. Finally, in Section 1.2.1 and
then in Section 1.2, we describe the questions and the contributions of this thesis.

1.1.2 Qualitative assumptions for a qualitative homogenization theory

We denote by d ≥ 1 the dimension and we consider an open subset Ω ⊂ Rd. We fix two exponents
m ≥ 1 and p ≥ 2 as well as f ∈ Lp(Ω,Rm×d) and we consider the following system of equations with
solution uε ∈W1,p(Ω,Rm) in Ω:

−∇ · a(xε ,∇uε) = ∇ · f, (1.1.4)

with either Neumann or Dirichlet boundary conditions and where ε � 1 denotes the microscopic
scale3. Systems of type (1.1.4) model physical phenomena such as (nonlinear) conductivity (of
thermal or electrical type) obtained by combining:

• A conservation law: ∇ · (q + f) = 0, where q denotes either the heat flux or the local electric
current and f some exterior forcing.

• A constitutive law (such as Fourier’s or Ohm’s law): q = a(xε ,∇uε), where uε is either the
temperature or the electric potential. The spatial dependence in the constitutive law in form
of x

ε comes from the composite structure of the material, made of different materials with
different conductivities.4

The map a : Rd × Rm×d → Rm×d is assumed to be strongly monotone, that is: there exist two
constants λ ≥ 1 and s ≥ 0 such that for all x ∈ Rd and ξ1, ξ2 ∈ Rm×d, we have

(a(x, ξ1)− a(x, ξ2)) · (ξ1 − ξ2) ≥ 1

λ
(s+ |ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|2, (1.1.5)

and
|a(x, ξ1)− a(x, ξ2)| ≤ λ(s+ |ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|. (1.1.6)

The well-posedness of (1.1.4), under (1.1.5) and (1.1.6), is ensured by the Hartman-Stampacchia’s
theorem (see for instance [98]). We are interested in random distributed microstructures and there-
fore the operators a = a(x, ξ) are realizations of a probability distribution. We use the following

3The divergence form of the right-hand side allows us to consider also the case Ω = Rd. Note that if Ω is bounded,
we can always rewrite the right-hand (provided it has zero mean) in divergence form. We precise that boundary
layers are not discussed in this thesis and we fully focus on the homogenization error. In coordinates the system reads
−
∑d
j=1 ∂j((a( ·

ε
,∇uε))ij) =

∑d
j=1 ∂jfij , for all i ∈ {1, ...,m}.

4Note that we do not assume a dependence of q in uε and in particular our results do not apply to scalar conductivity
models of the form q = A(x

ε
)uqε(s+ |∇uε|p−2)∇uε for some s ≥ 0, q > 0 and p ≥ 2.
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framework: we define the space of all admissible operators

M := {a : Rd × Rm×d → Rm×d measurable |(1.1.5) and (1.1.6) are satisfied}. (1.1.7)

We endowM with the σ-algebra F defined as the smallest σ-algebra that makes the evaluations5a 7→´
a(x, ξ)ψ(x)dx measurable for all ξ ∈ Rm×d and ψ ∈ C∞c (Rd) (which is countably generated since

C∞c (Rd) is separable). We then equip the measurable space (M,F) with a probability measure
P. Two additional important conditions have to be added on the probability measure P for the
homogenization process of the equation (1.1.4) to hold, that we list hereafter.

• The action group (Rd,+) acts onM and associates for all z ∈ Rd and a ∈ M the translated
field Tza : (x, ξ) ∈ Rd×Rm×d 7→ a(x+ z, ξ). We assume that P is stationary with respect to
Rd-translations, that is:

P ◦ Tz = P for every z ∈ Rd. (1.1.8)

• P is ergodic by the action of (Rd,+) in the sense that: for all F ∈ L1
loc(Rd,L1(dP))6 with

the shift-invariant property for all a ∈ M and z ∈ Rd, F (· + z, a) = F (·, a(· + z, ·)), we have
P-almost surely7  

Br
F (x, a)dx →

r↑+∞
E[F ]. (1.1.9)

The stationarity assumption (1.1.8) imposes that the statistics of a(x) does not depend on x. The
ergodic assumption (1.1.9) encodes decorrelation of a at large distances r ↑ +∞, such that statis-
tical averages can be recovered by the spacial averages almost surely. This can be seen as a law of
large numbers (extending the case of discrete i.i.d random variables) and we have already seen its
importance in the homogenization process in the small example of resistors in series in Section 1.1.1.

The simplest way to construct examples satisfying the assumptions (1.1.5), (1.1.6), (1.1.8) and
(1.1.9) is from a "random checkerboard" structure: we pave the space by unit-sized cubes and color
each cube either white or black independently at random, where the origin O ∈ [0, 1]d is randomly
distributed according to the uniform distribution on [0, 1]d. 8Each color is then associated with a
particular value of (for instance) a diffusivity matrix. More precisely, consider a sequence of indepen-
dent and identically distributed Bernouilli’s random variables (b(z))z∈Zd ⊂ {0, 1}Z

d with parameter
q ∈ [0, 1], namely for every z ∈ Zd,

P({b(z) = 0}) = 1− P({b(z) = 1}) = q.

We consider also a random variable O ∈ [0, 1]d distributed according to the uniform distribution on
[0, 1]d. We fix two matrices a0 and a1 belonging to the set

{ã ∈ Rd×d| for all h ∈ Rd , 1
λ |h|

2 ≤ ãh · h ≤ λ|h|2}. (1.1.10)

5We omit the domain of integration when we integrate on the whole space Rd.
6We use the notation L1(dP) := {F measurable |E[|F |] < +∞}.
7 More generally, by density if F ∈ Lqloc(R

d,L1(dP)), F (r·, a) ⇀
r↑+∞

E[F ] in Lqloc(R
d), P-almost surely.

8Without this choice, we only get the stationarity of the probability distribution with respect to Zd translations.
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Figure 1.4: A piece of a sample of a random checkerboard. The conductivity matrix is equal to a0

in the white region and a1 in the black region.

We can define a random map (x, ξ) 7→ a(x, ξ) satisfying (1.1.5) and (1.1.6) with a law satisfying
(1.1.8) and (1.1.9) by setting for all z ∈ Zd and x ∈ z + [0, 1)d +O

a(x, ξ) = ab(z)(s+ |ξ|p−2)ξ. (1.1.11)

Another important class of examples are constructed using point processes. A simple case to illus-
trate this is given by Poisson point processes. We recall that a Poisson point process on a measurable
space (X,A) with (non-atomic, σ-finite) intensity measure µ is a random subset Π ⊂ X such that
the following properties hold:

• For every A ∈ A, the number of points in Π∩A, which is denoted by N(A), follows a Poission
law of mean µ(A), that is: for all k ∈ N

P({N(A) = k}) =
(µ(A))k

k!
e−µ(A).

• For every pairwise disjoint measurable sets (A1, ..., Ak) ∈ Ak, the random variablesN(A1), ..., N(Ak)
are independent.

Let Π be a Poisson point process on Rd with intensity measure µ = γdx, for some γ > 0. We fix
a0, a1 in the set (1.1.10) and we define (x, ξ) 7→ a(x, ξ) by setting for all x ∈ Rd

a(x, ξ) = (s+ |ξ|p−2)ξ ×
{
a0 if dist(x,Π) ≤ 1

2 ,
a1 otherwise. (1.1.12)
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Figure 1.5: A sample of the coefficient field defined in (1.1.12) by the Poisson point cloud. The
conductivity matrix is equal to a1 in the black region and to a0 in the white region.

A third important class of examples is obtained by defining the map (x, ξ) 7→ a(x, ξ) as a local
function of a Gaussian field. We recall that a scalar white noise9 on Rd of variance σ2 ∈ (0,+∞) is
a family of real random variables (W(f), f ∈ L2(Rd)) such that:

• W is a linear form almost surely.

• For all f ∈ L2(Rd), W(f) ∼ 10N (0, σ2‖f‖2L2(Rd)
).

For a rigorous construction of a scalar white noise, we refer to [8, Proposition 5.14]. Now, for a given
scalar white noise W of variance 1, we consider a kernel m satisfying for some C > 0, and β > 0,
|m(x)| ≤ C(1 + |x|)−

1
2

(d+β) as well as a smooth function A from Rd into the set (1.1.10) and we
define

a(x, ξ) = A(m ?W(x))(s+ |ξ|p−2)ξ. (1.1.13)

The convolution g := m ?W corresponds to an infinite dimensional Gaussian field, with covariance
function c(x) = E[g(x)g(0)] = m ? m(x). Thus, we call (1.1.13) a Gaussian model of randomness
with correlation c. Note that the bound on m implies that11 |c(x)| .m,C (1 + |x|)−β . This class
includes for instance log-normal random coefficients of the form

A = b+
e−κ(g−γ)

c+ e−κ(g−γ)
,

where b, c > 0 and κ, γ ∈ R.

The qualitative homogenization of the problem (1.1.4) aims at characterizing the asymptotic be-
haviour of (uε,∇uε) as ε ↓ 0. More precisely, we ask the following questions:

9Similar model can be consider as well using vector valued white noise, see [8, Definition 5.5].
10X ∼ Y means that the random variables X and Y have the same distribution.
11For β = d, a logarithmic correction |m(x)| ≤ c(1 + |x|)−

1
2

(d+β) log−
1
2 (1 + |x|) is needed.
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• Do we have the convergence of the sequence (uε,∇uε) ? In which topology ?

• If (u,∇u) = limε↓0(uε,∇uε) exists, how can we characterize u ?

• Does u solve a problem of the type (1.1.4)? If yes, what is the structure of the operator?

At first sight, the convergence of (uε,∇uε) (at least along a subsequence) is immediate: the mono-
tonicity conditions (1.1.5) and (1.1.6) yield the energy estimate ‖∇uε‖Lp(Ω) .λ,s ‖f‖Lp(Ω), which
in turn implies (together with Rellich–Kondrachov’s theorem) the existence of u ∈W1,p(Ω,Rm) for
which (up to an extraction) uε →

ε↓0
u in Lp(Ω,Rm) and ∇uε ⇀

ε↓0
∇u in Lp(Ω,Rm×d). The charac-

terization of u, however, is more subtle. Rigorous mathematical studies started in the 1970’s, with
contributions of the French, the Italian and the Russian schools, in the linear elliptic setting, that is
for the map a(x, ξ) = a(x)ξ with a periodic or realization of a random distribution. As references,
we cite in particular the works of Murat and Tartar in [131, 151], Bakhvalov in [19, 20], De Giorgi
and Spagnolo in [51], Tartar in [150], Kozlov in [104] and Papanicolaou and Varadhan in [139] as
well as Allaire in [3]. In the general nonlinear setting (1.1.4), we cite in particular the works of Dal
Maso and Modica in [119, 120] (in the variational framework a = ∇ξV , with V convex), Braides
in [35], Braides and Defranceschi in [36] as well as Müller in [130] (in the variational and general
framework of integral functionals with p-growth and periodic integrands), Chiadò Piat, Dal Maso
and Defranceschi in [142], Dal Maso and Defrancesch in [118]. For a nice summary of those results,
we refer to the textbooks [148] of Shen and [100] of Jikov, Kozlov and Olĕınik. In our context, the
homogenization result can be summarized as follows:

Theorem 1 (Qualitative homogenization of (1.1.4)). The sequence (uε)ε>0 converges (strongly in
Lp(Ω,Rm) and weakly in W1,p(Ω,Rm)) to some u ∈ W1,p(Ω,Rm) almost surely. In addition, there
exists a deterministic map a : Rm×d → Rm×d such that we have the weak convergence of the flux
a( ·ε ,∇uε) ⇀ε↓0 a(∇u) in Lp(Ω,Rm) and u solves

−∇ · a(∇u) = ∇ · f, (1.1.14)

with the same boundary conditions than the one applied to (1.1.4). Furthermore, the map a is
monotone and satisfies, a priori, a weaker12 version of (1.1.5), namely there exists a constant C > 0
depending on λ and s such that for all ξ1, ξ2 ∈ Rm×d

(a(ξ1)− a(ξ2)) · (ξ1 − ξ2) ≥ 1

C
(s+ |ξ1 − ξ2|p−2)|ξ1 − ξ2|2, (1.1.15)

and
|a(ξ1)− a(ξ2)| ≤ C(s+ |ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|. (1.1.16)

The convergence of ∇uε in Theorem 1 is only weak in Lp(Ω,Rm×d) and, in fact, cannot be expected
to hold strongly in Lp(Ω,Rm×d) due to the oscillations at scale ε of the variation of uε.

12Indeed, (1.1.5) implies (1.1.15).
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Figure 1.6: A diagram of the homogenization process of (1.1.4).
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Figure 1.7: A one-dimensional illustration of the homogenization Theorem 1, for the equation −u′′ε−
((1 + 0.8 sin(2πx

ε ))(u′ε)
3)′ = −1 with Neumann boundary conditions. The figure on the left is the

plot of the solution uε and on the right the plot of the derivative u′ε.

It tells us that a correction of ∇uε is needed to take into account the oscillations at the microscopic
scale. We explain in the next section how we can formally reconstruct a posteriori the oscillations
of ∇uε given ∇u and some intrinsic quantities, in such a way that it is close to ∇uε in the strong
topology of Lp(Ω,Rm×d). A refinement of Theorem 1 will then be given.

1.1.3 The formal two-scale expansion

In this section, we develop formal arguments to reconstruct the oscillations of ∇uε as ε ↓ 0, given
∇u. For the ease of the reading, we investigate the simple nonlinear model given by a p-Laplacian
(for m = 1) regularized at 0:

a(x, ξ) := A(x)(1 + |ξ|p−2)ξ,

and we will use the short-hand notation a0(x, ξ) = A(x)|ξ|p−2ξ for the p-Laplacian part. In addi-
tion, we use the general notation 〈·〉 to denote either the average on the periodic cell (for periodic
operator) or the expectation in the random setting.

The reconstruction of the behaviour of uε is based on a "two-scale expansion", that we formally
establish hereafter. Based on Figure 1.1.2, we observe that uε varies at a macroscopic and a mi-
croscopic scale (at scale ε, revealed by the oscillations). We translate this observation by formally
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assuming that uε depends on two variables: a slow variable x (macroscopic variable) and a fast-
variable y = x

ε (microscopic variable), that we treat as two independent variables. This dependence
is made explicit through a formal expansion of uε into a power series in ε, where each term of the
sum is a function depending on x and y. The expansion takes the form of the following Ansatz:

uε(x) ∼
+∞∑
n=0

εnun(x, xε ), (1.1.17)

where we do not worry about summability at this stage. The functions un = un(x, y) are the
unknowns that we have to determine. For simplicity, we restrict ourself to identify the first order
expansion in (1.1.17) which, in other words, means that we only identify u0 and u1. For the formal
derivation of higher expansion, we refer to [140].

First of all, we plug the Ansatz (1.1.17) into the equation (1.1.4). To do so, we observe that
the chain rule, for all map F = F (x, y), give us

∇[F (·, ·ε)](x) = ∇xF (x, xε ) + 1
ε∇yF (x, xε ). (1.1.18)

By considering the second-order expansion in (1.1.17) and by computing the gradient of (1.1.17)
using the rule (1.1.18), that in turn we plug into (1.1.32), we obtain

ε−1∇y · a(xε ,
1
ε∇yu0(x, xε ) +∇xu0(x, xε ) +∇yu1(x, xε ) + ε∇xu1(x, xε ) + ε∇yu2(x, xε ) + ε2∇xu2(x, xε ))

+∇x · a(xε ,
1
ε∇yu0(x, xε ) +∇xu0(x, xε ) +∇yu1(x, xε ) + ε∇xu1(x, xε ) + ε∇yu2(x, xε ) + ε2∇xu2(x, xε ))

= ∇ · f. (1.1.19)

Now, the idea is to expand the left-hand side of (1.1.19) in powers of ε and then do a formal
identification. By noticing that ξ 7→ a0(·, ξ) is smooth, our main tool is Taylor expansions. To begin
with, using that a0, Da0 and D2a0 are respectively p− 1, p− 2 and p− 3 homogeneous13, one has
for all X1, X2 ∈ Rm×d

a0(y, 1
εX1 +X2) = ε−p+1a0(y,X1 + εX2)

= ε−p+1a0(y,X1) + ε−p+2Da0(y,X1)X2 +O(ε−p+3). (1.1.20)

By applying (1.1.20) with X1 = ∇yu0(x, y) and X2 = ∇xu0(x, y) + ∇yu1(x, y) + ε∇xu1(x, y) +
ε∇yu2(x, y) + ε2∇xu2(x, y), we observe that the term which appears with a factor ε−p in (1.1.19)
has to vanish, namely

−∇y · a0(y,∇yu0) = 0,

so that the monotonicity of a0 implies∇yu0 = 0 and therefore u0 does not depend on the fast-variable
y. Next, we perform a Taylor expansion in form of, for all X1, X2, X3 ∈ Rm×d

a0(y,X1+εX2+ε2X3) = a0(y,X1)+εDa0(y,X1)X2+ε2(1
2D

2a0(y,X1)X2·X2+Da0(y,X1)X3)+O(ε3),

that we use in (1.1.19) for X1 = ∇xu0(x, xε ) + ∇yu1(x, xε ), X2 = ∇xu1(x, xε ) + ∇yu2(x, xε ) and
X3 = ∇xu2(x, y), to deduce by a formal identification:

• At order ε−1:
−∇y · a(y,∇xu0 +∇yu1) = 0, (1.1.21)

13We denote by D the derivative with respect to ξ.
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• At order ε0:

−∇x · a(y,∇xu0 +∇yu1)−∇y ·Da(∇xu0 +∇yu1)(∇xu1 +∇yu2) = ∇ · f. (1.1.22)

In the equation (1.1.21), x is a parameter so that the equation (1.1.21) identifies u1 and the latter
can be seen as a function of ∇xu0. Indeed, let us slightly reinterpret (1.1.21). We define a new
function φξ, depending on the direction ξ ∈ Rm×d, which solves the equation

−∇ · a(·, ξ +∇φξ) = 0. (1.1.23)

The function φξ is called the corrector in the direction ξ ∈ Rm×d. From (1.1.21), one can see that
u1 can be generated with help of the corrector in the direction ∇xu0, namely

u1(x, y) = φ∇xu0(x)(y). (1.1.24)

The complexity of the well-posedness of the equation (1.1.23) depends on the context. In the T -
periodic setting, it is easy to give a sense to (1.1.23), since the equation is naturally posed on the
torus TT := Rd/TZd. This way, using the monotonicity of a, the equation (1.1.23) has a unique
periodic solution with vanishing mean. In the random setting, the story is different and (1.1.23) has
to be set in Rd. Therefore the well-posedness is more subtle and the stationarity assumption (1.1.8)
on the random distribution plays an important role. Indeed, morally speaking, the stationarity
assumption allows us to set the equation (1.1.23) on the probability space and construct, from the
monotonicity of a, a solution such that ∇φξ is stationary14, of vanishing expectation, anchored by´
B1
φξ = 0 and satisfying

E[|∇φξ|2 + |∇φξ|p] .λ,s |ξ|2 + |ξ|p. (1.1.25)

Hence, in the random setting, (1.1.23) has a distributional sense in Rd (φξ belongs to W1,p
loc(Rd))

and a weak sense in probability. For more precision on the rigorous proof of the well-posedness of
(1.1.23), we refer to [138, Chapter 15] and [80, Lemma 1]. Finally, the corrector φξ is sublinear at
infinity15, as a consequence of the fact that ∇φξ is stationary, E[∇φξ] = 0 and (1.1.25) holds as
well as the ergodicity assumption of the random distribution (1.1.9). For more details, we refer to
[80, Proof of Corollary 1]. The sub-linear property of the correctors plays an important role in the
homogenization theory, since it controls the error between uε and u0 at first order. Indeed, the first
order expansion in (1.1.17) together (1.1.24) gives uε(x) − u0(x) ≈ εφ∇u0(x)(

x
ε ) which vanishes as

ε ↓ 0 by sub-linearity.

It remains to identify u0 and this is done via the equation (1.1.22). To do so, we average the equa-
tion (1.1.22) with respect to the fast-variable y. By noticing that 〈∇y ·Da0(∇xu0 +∇yu1)(∇xu1 +
∇yu2)〉 = 0 (which comes from an integration by parts in the periodic setting or the stationarity in
the random setting16), averaging (1.1.22) has the effect of:

−∇x · 〈a(·,∇xu0 +∇yu1)〉 = ∇ · f.

We slightly rewrite the latter equation, using (1.1.24), by making the homogenized operator a(ξ) =
〈a(·, ξ +∇φξ)〉 appear:

−∇ · a(∇u0) = ∇ · f. (1.1.26)
14We say that F = F (a, x) is stationary if it has the shift-invariance property: for all z ∈ Rd, F (a, · + z) =

F (a(·+ z), ·).
15Meaning that ε2

ffl
B 1
ε

(x)
|φξ|2 →

ε↓0
0.

16Formally: if F = F (a, y) is stationary, E[∂yiF ] = E[limh↓0
F (a,hei)−F (a,0)

h
] = limh↓0 E[F (a,hei)−F (a,0)

h
] = 0, which

is for instance rigorous if F is bounded.
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The equation (1.1.26) (that we call the homogenized equation) combined with suitable boundary
conditions uniquely defines u0, that we justify by showing that the homogenized operator a is
monotone (in the sense of (1.1.15) and (1.1.16)). We fix ξ1, ξ2 ∈ Rm×d. For the lower bound
(1.1.15), we use the corrector equation (1.1.23), the strong monotonicity of a (1.1.5) and the vectorial
inequality

|ξ1 − ξ2|2(1 + |ξ1|p−2 + |ξ2|p−2) &p |ξ1 − ξ2|2(1 + |ξ1 − ξ2|p−2), (1.1.27)

in form of

(a(ξ1)− a(ξ2)) · (ξ1 − ξ2) = 〈(a(·, ξ +∇φξ1)− a(·, ξ2 +∇φξ2)) · (ξ1 − ξ2)〉
(1.1.23)

= 〈(a(·, ξ +∇φξ1)− a(·, ξ2 +∇φξ2)) · (ξ1 +∇φξ1 − (∇φξ2 + ξ2))〉
(1.1.5),(1.1.27)
&p

1

λ
〈(1 + |ξ1 +∇φξ1 − (ξ2 +∇φξ2)|p−2)|ξ1 +∇φξ1 − (ξ2 +∇φξ2)|2〉,

which turns into, by applying Jensen’s inequality and using the fact that 〈∇φξ〉 = 0 for all ξ ∈ Rm×d:

(a(ξ1)− a(ξ2)) · (ξ1 − ξ2) &p
1

λ
(1 + |ξ1 + 〈∇φξ1〉 − (ξ2 + 〈∇φξ2〉)|p−2)|ξ1 + 〈∇φξ1〉 − (ξ2 + 〈∇φξ2〉)|2〉

=
1

λ
(1 + |ξ1 − ξ2|p−2)|ξ1 − ξ2|2.

For the upper bound (1.1.16), we use the following energy estimate

〈|ξ1 +∇φξ1−(ξ2 +∇φξ2)|2(1+ |ξ1 +∇φξ1 |p−2 + |ξ2 +∇φξ2 |p−2)〉 .p,λ,s (s+ |ξ1|p−2 + |ξ2|p−2)|ξ1−ξ2|2,
(1.1.28)

which yields, together with the bound (1.1.6) of a and Cauchy-Schwarz’ inequality as well as (1.1.25)
(which holds in general for 〈·〉)

|a(ξ1)− a(ξ2)|
(1.1.6)
. C〈|ξ1 +∇φξ1 − (ξ2 +∇φξ2)|1 + |ξ1 +∇φξ1 |p−2 + |ξ2 +∇φξ2 |p−2)〉

≤ 〈|ξ1 +∇φξ1 − (ξ2 +∇φξ2)|(1 + |ξ1 +∇φξ1 |p−2 + |ξ2 +∇φξ2 |p−2)〉
1
2

× 〈1 + |ξ1 +∇φξ1 |p−2 + |ξ2 +∇φξ2 |p−2〉
1
2

(1.1.28),(1.1.25)
.p,λ,s (1 + |ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|2.

We briefly argue in favour of (1.1.28). Using the corrector equation (1.1.23), we have −∇ · (a(·, ξ1 +
∇φξ1)− a(·, ξ2 +∇φξ2)) = 0, so that by testing the equation with φξ1 − φξ2 , we arrive at

〈(a(·, ξ+∇φξ1)−a(·, ξ2+∇φξ2))·(ξ1+∇φξ1−(ξ2+∇φξ2))〉 = 〈a(·, ξ+∇φξ1)−a(·, ξ2+∇φξ2))·(ξ1−ξ2)〉,

which, using (1.1.5) and (1.1.6), turns into

1

λ
〈|ξ1 +∇φξ1 − (ξ2 +∇φξ2)|2(1 + |ξ1 +∇φξ1 |p−2 + |ξ2 +∇φξ2 |p−2)〉

≤ λ|ξ1 − ξ2|〈|ξ1 +∇φξ1 − (ξ2 +∇φξ2)|(1 + |ξ1 +∇φξ1 |p−2 + |ξ2 +∇φξ2 |p−2)〉,

which gives (1.1.28) by Young’s inequality in form of |ξ1 − ξ2||ξ1 +∇φξ1 − (ξ2 +∇φξ2)| ≤ λ2

2 |ξ1 −
ξ2|2 + 1

2λ2 |ξ1 + ∇φξ1 − (ξ2 + ∇φξ2)|2 and (1.1.25). Note that, a priori, except for the particular
case of p = 2, the homogenized operator satisfies a weaker monotonicity condition than the original
ones (1.1.5) and (1.1.6), which is enough for existence and uniqueness (under suitable boundary
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conditions). It does also imply a regularity theory for the operator −∇ · a(∇u) in the case of scalar
equations (that is for m = 1) for certain range of p (see for more precisions Section 3.1.1 of Chapter
3). The question of showing that the homogenized operator satisfies also the strong monotonicity
conditions (1.1.5) and (1.1.6) is actually a challenging question, and we refer to Theorem 13 and The-
orem 14 for a partial answer to this question and to Chapter 3 for a short discussion about this issue.

In conclusion, we have totally characterised the first order expansion in (1.1.17), called the (first-
order) two-scale expansion of uε, which reads

uε(x) ≈
ε↓0

u0(x) + εφ∇u0(x)(
x
ε ). (1.1.29)

Formula (1.1.29) give a drastic reduction of complexity since u is the solution of a constant-coefficient
equation and φξ does not depend on f . We have the following refinement of Theorem 1.

Theorem 2 (Qualitative homogenization of (1.1.4)-Refinement). For any ξ ∈ Rm×d, there exists a
unique almost sure distributional solution φξ ∈ W1,p

loc (Rd) of the corrector problem (1.1.23) posed in
Rd, anchored by

´
B1
φξ = 0 and its gradient ∇φξ is stationary, has vanishing expectation E[∇φξ] = 0,

and satisfies (1.1.25).

The homogenized operator a has an explicit formula which can be expressed with help of the cor-
rectors: for all ξ ∈ Rm×d

a(ξ) = E[a(0, ξ +∇φξ)]. (1.1.30)

In addition, in the linear setting, we define the two-scale expansion17:

u2sc
ε := u+ εφ∇u( ·ε), (1.1.31)

where u is given in (1.1.14), and we have that (∇u2sc
ε − ∇uε)ε>0 converges, almost-surely, to 0 in

L2(Ω,Rm×d).

We now illustrate the asymptotic (1.1.29) by a complete one-dimensional example (d = m = 1) and
we compute the homogenized operator (1.1.30) as well as the two-scale expansion (1.1.31) in the
two-dimensional example (d = 2 and m = 1) of a layered material.

1.1.4 Two examples of explicit homogenization

Example 1: A one-dimensional example

We illustrate the asymptotics (1.1.29) with the model a(x, ξ) = ξ + A(x)|ξ|ξ for d = m = 1. More
precisely, we consider A ∈ L∞([0, 1]) such that 0 < c1 ≤ A ≤ c2 (for some fixed constants c1, c2 > 0)
seen as a realization of a random distribution P satisfying (1.1.8) and (1.1.9). Let f ∈ C0([0, 1]) such
that f ≤ f(0) and we consider the sequence (uε)ε>0 ⊂ W1,3([0, 1]) ⊂ C0([0, 1]) where for all ε > 0,
uε is the weak solution of the nonlinear equation{

−u′′ε − (A( ·ε)|u
′
ε|u′ε)′ = f ′ in (0, 1],

uε(0) = u′ε(0) = 0.
(1.1.32)

The equation (1.1.32) can be solved explicitly. Indeed, a first integration and u′ε(0) = 0 give
us −u′ε − A( ·ε)|u

′
ε|u′ε = f − f(0). Therefore, since f ≤ f(0), u′ε is non-negative, which yields

17Because of measurability issues, the definition of the two-scale expansion (only in the nonlinear setting) has to be
slightly modified using a piecewise constant approximation. We refer to Theorem 12 for more details.
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u′ε +A( ·ε)(u
′
ε)

2 = f(0)− f . By solving this equation and by keeping only the relevant solution (that
is the one compatible with u′ε ≥ 0) we obtain: for all x ∈ [0, 1]

uε(x) = −1

2

ˆ x

0

1

A( tε)
dt+

ˆ x

0

√
f(0)− f(t)

A( tε)
+

1

4A2( tε)
dt. (1.1.33)

From the explicit formula (1.1.33), the asymptotics of (uε)ε>0 is clear: using the ergodicity assump-
tion (1.1.9) on the distribution of A18, one has

uε(x) →
ε↓0

u(x),

with

u(x) := −1

2
E
[

1

A

]
x+

ˆ x

0
E
[√

f(0)− f(t)

A
+

1

4A2

]
dt. (1.1.34)

We now identify the nonlinear equation solved by u. Let us slightly rewrite u′ with help of the

function Φ : ξ ∈ R+ 7→ −1
2E[ 1

A ] + E
[√

ξ
A + 1

4A2

]
, namely u′ = Φ(f(0)− f). Now, observe that Φ is

invertible (since Φ′ > 0), such a way that Φ−1(u′) = f(0)− f and thus{
−(a(u′))′ = f ′ in (0, 1],
u(0) = 0 and u′(0) = 0,

(1.1.35)

for a := Φ−1. The structure of the equation (1.1.35) is the same as (1.1.32), namely a : R+ 7→ R+

is strongly monotone in the sense of (1.1.5) and (1.1.6) (for p = 3), that we prove hereafter. Since
a ∈ C1(R+), we first reduce the proof to an estimate on a′: the monotonicity will be inferred by
showing that for all ξ ∈ R+,

a′(ξ) = (Φ−1)′(ξ) ∼ 191 + 2ξ. (1.1.36)

Indeed, knowing (1.1.36) implies the strong monotonicity via the fundamental theorem of calculus
in form of: for all ξ1, ξ2 ∈ R+,

(a(ξ1)− a(ξ2))(ξ1− ξ2) = (ξ1− ξ2)

ˆ ξ1

ξ2

a′(t)dt
(1.1.36)∼ (ξ1− ξ2)

ˆ ξ1

ξ2

1 + 2t dt = (1 + ξ1 + ξ2)(ξ1− ξ2)2.

Also, since (Φ−1)′ = 1
Φ′◦Φ−1 , (1.1.36) will finally be justified by showing that Φ′(Φ−1(ξ)) ∼ (1+2ξ)−1.

For α = (E[ 1
A ]E[ 1√

A
]−1)2, one has

Φ(ξ2 + α) = −1

2
E
[

1

A

]
+ E

[√
ξ2 + α

A
+

1

4A2

]
≥ 1

2
ξE
[

1√
A

]
+

1

2

(√
αE
[

1√
A

]
− E

[
1

A

])
& ξ,

and similarly, Φ(ξ2 + α) . ξ. Therefore, since Φ−1 is non-decreasing (because Φ is), one has
Φ−1(ξ) ∼ ξ2 + α. Finally, since

Φ′(ξ) =
1

2
E
[(
A

√
ξ

A
+

1

4A2

)−1]
∼ (ξ + 1)−

1
2 ,

18We can not directly apply the assumption (1.1.9). However, a standard piecewise constant approximation of f
combined with the assumption (1.1.9) show the convergence. The details are left to the reader.

19The notation A ∼ B means that there exist a constant γ such that 1
γ
B ≤ A ≤ γB.
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we indeed have Φ′(Φ−1(ξ)) ∼ (1 + 2ξ)−1, where the constant in ∼ depends on α, c1 and c2.

Thus, (1.1.36) holds and a : R+ 7→ R+ is strongly monotone in the sense of (1.1.5) and (1.1.6)
(for p = 3). Note that this proof is very specific to the one-dimensional case, and in general we
cannot ensure such a property for d ≥ 2 (see Chapter 3 for a discussion about this issue).

We now investigate the asymptotic behaviour of the derivative u′ε. Differentiating Formula (1.1.33)
yields: for all x ∈ [0, 1]

u′ε(x) = − 1

2A(xε )
+

√
f(0)− f(t)

A(xε )
+

1

4A2(xε )
, (1.1.37)

and thus by the ergodic assumption (1.1.9),

u′ε ⇀ u′ in L3([0, 1]), (1.1.38)

and the convergence is not strong in L3([0, 1]). The structure of the oscillations of u′ε can be made
more precise with help of u′ and an explicit corrector. Indeed, observe that from (1.1.34), one has
f(0)− f = Φ−1(u′) so that we can rewrite u′ε given by (1.1.37) as

u′ε(x) = − 1

2A(xε )
+

√
Φ−1(u′)

A(xε )
+

1

4A2(xε )
,

which can be itself rewritten as:
u′ε(x) = u′(x) + φ′u′(

x
ε ), (1.1.39)

where φξ denotes the corrector20, defined in the direction ξ ∈ R+ by

φξ(x) := −1

2

ˆ x

0

1

A(t)
dt+

ˆ x

0

√
Φ−1(ξ)

A(t)
+

1

4A2(t)
dt− ξx. (1.1.40)

Observe that φξ is indeed the corrector (anchored at the origin via φξ(0) = 0) in the sense of (1.1.23),
since a direct computation shows that for all ξ ∈ R+:

−φ′′ξ − (A|ξ + φ′ξ|(ξ + φ′ξ))
′ = 0 in R,

with, by definition of Φ, E[φ′ξ] = 0. The equation (1.1.39) describes the oscillations of u′ε, and this
is a good hint for reconstructing the oscillations of uε via the two scale expansion:

u2sc
ε := u+ εφu′(

·
ε). (1.1.41)

We now verify that (1.1.41) indeed reconstructs the oscillations of uε, in the sense that the sequence
(u2sc
ε −uε)ε>0 tends to 0 in W1,3([0, 1]). First, the definition (1.1.40) of the corrector combined with

the ergodic assumption (1.1.9) and the definition of Φ show that φξ is sub-linear at infinity in the
form of: for all x ∈ [0, 1] and almost all A

εφξ(
x
ε ) →

ε↓0

ˆ x

0
Φ(Φ−1(ξ))dt− ξx = 0, (1.1.42)

20Note that since u′ ≥ 0, we only need to construct the correctors in the directions ξ ∈ R+ in order to express the
two-scale expansion (1.1.31), that we do for simplicity.
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which in turn can be upgraded to εφξ(xε ) →
ε↓0

0 in L3([0, 1]) and almost surely by dominated conver-

gence. Thus u2sc
ε − uε →

ε↓0
0 in L3([0, 1]) and almost surely. Second, by differentiating (1.1.41) and

using (1.1.39), we have

(u2sc
ε − uε)′ = u+ φ′u( ·ε)− u

′
ε + ε ∂∂ξφξ(

·
ε)|ξ=u′u

′′ (1.1.39)
= ε ∂∂ξφξ(

·
ε)|ξ=u′u

′′.

The quantity ∂
∂ξφξ, that we call the linearized corrector, can be computed explicitly via (1.1.40): for

all x ∈ [0, 1]

∂
∂ξφξ(x) = (Φ−1)′(ξ)

ˆ x

0

1

2A(t)
√

Φ−1(ξ)
A(t) + 1

4A2(t)

dt− x

=
1

Φ′(Φ−1(ξ))

ˆ x

0

1

2A(t)
√

Φ−1(ξ)
A(t) + 1

4A2(t)

dt− x

= E
[(
A

√
Φ−1(ξ)

A
+

1

4A2

)−1]−1 ˆ x

0

1

A(t)
√

Φ−1(ξ)
A(t) + 1

4A2(t)

dt− x,

so that, from the ergodic assumption (1.1.9), the linearized corrector is sub-linear at infinity in form
of: for all x ∈ [0, 1] and almost all A

ε ∂∂ξφξ(
x
ε ) →

ε↓0
E
[(
A

√
Φ−1(ξ)

A
+

1

4A2

)−1]−1 ˆ x

0
E
[(
A

√
Φ−1(ξ)

A
+

1

4A2

)−1]
dx− x = 0, (1.1.43)

and therefore (u2sc
ε (x)−uε(x))′ →

ε↓0
0, which in turn can be upgraded to (u2sc

ε −uε)′ →
ε↓0

0 in L3([0, 1])

by dominated convergence. To conclude, we have shown that

‖u2sc
ε − uε‖W1,3([0,1]) →

ε↓0
0 almost surely. (1.1.44)

Example 2: A two-dimensional example of a layered material

We study the effective conductivity of a material represented by the square Ω = [0, 1]2, for the
nonlinear conductivity model

a((x1, x2), ξ) = (1 + |ξ|2)

(
A1(x1)ξ1

A2(x1)ξ2

)
,

corresponding to the case of a layered material.
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Figure 1.8: A layered material with conductivity matrix
(
a0 0
0 ã0

)
in the white region and

(
a1 0
0 ã1

)
in the black region, given conductivities a0, a1, ã0, ã1 > 0.

We start by computing the effective nonlinear conductivity model given by the formula (1.1.30). To
do so, we solve the corrector equation (1.1.23) which, in our case, reads

∂x1(A1(x1)(ξ1 + ∂x1φξ)(1 + |ξ +∇φξ|2)) +A2(x1)∂x2((ξ2 + ∂x2φξ)(1 + |ξ +∇φξ|2)) = 0. (1.1.45)

Since the material is heterogeneous in one direction, it is natural to seek a correction which depends
only on x1, that is φξ = φξ(x1). Therefore, (1.1.45) turns into

∂x1(A1(x1)(ξ1 + ∂x1φξ)(1 + (ξ1 + ∂x1φξ)
2 + ξ2

2)) = 0,

which give us by integrating once,

A1(x1)(ξ1 + ∂x1φξ)(1 + (ξ1 + ∂x1φξ)
2 + ξ2

2) = a1(ξ), (1.1.46)

with a1(ξ) that we have to determine. To do so, we define Ψξ2 : X ∈ R 7→ X(1 +X2 + ξ2
2). Observe

that Ψξ2 is invertible (since Ψ′ξ2 > 0) and Ψ−1
ξ2

is given by Cardan’s formula:

Ψ−1
ξ2

(X) =

(
X

2
+

1

2

√
X2 +

4(1 + ξ2
2)3

27

) 1
3

+

(
X

2
− 1

2

√
X2 +

4(1 + ξ2
2)3

27

) 1
3

. (1.1.47)

Therefore, by dividing the equation (1.1.46) by A1(x1), applying Ψ−1
ξ2

and using that E[∂x1φξ] = 0,
we deduce that a1(ξ) is characterized by the nonlinear equation21

ξ1 = E[Ψ−1
ξ2

( a1(ξ)
A1(0))].

To conclude, using in addition that from (1.1.46) we have ξ1 + ∂x1φξ = Ψ−1
ξ2

( a1(ξ)
A1(x1)), the effective

conductivity model is given by

a(ξ) = E
[(

A1(0)(ξ1 + ∂x1φξ)(1 + (ξ1 + ∂x1φξ)
2 + ξ2

2)
A2(0)ξ2(1 + (ξ1 + ∂x1φξ)

2 + ξ2
2)

)]
=

(
a1(ξ)
a2(ξ)

)
, (1.1.48)

with a2(ξ) = E[A2(0)ξ2(1 + (Ψ−1
ξ2

( a1(ξ)
A1(0)))2 + ξ2

2)].

21The map Ξ : X 7→ E[Ψ−1
ξ2

( X
A1(0)

)] is invertible since Ξ′ > 0.
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Finally, from (1.1.46), the corrector (anchored at the origin via φξ(0) = 0) can be expressed with
help of a1(ξ):

φξ(x1) =

ˆ x1

0
Ψ−1
ξ2

( a1(ξ)
A1(y))dy − ξ1x1,

so that the two-scale expansion (1.1.31) is explicitly given by

u2sc
ε (x1, x2) = u(x1, x2) + ε

(ˆ x1
ε

0
Ψ−1
ξ2

(a1(∇u(x1,x2))
A1(y) )dy − ξ1

x1

ε

)
.

We see with this example that we have reduced the complexity of the problem, since now we only
have to compute u which solves a nonlinear elliptic equation in divergence form with a monotone
operator given by (1.1.48).

In the next section, we turn to the quantitative theory of stochastic homogenization of (1.1.4)
(the main focus of this works), and we present and explain the assumptions which lead to such a
theory.

1.1.5 Quantitative ergodic assumptions for a quantitative homogenization the-
ory

We present in this section the quantitative assumptions that allow to develop a quantitative theory of
homogenization. First, we illustrate the quantitative theory for the model a(x, ξ) = A(x)(1+|ξ|p−2)ξ
in the setting of the small contrast regime, in the sense that A is of the form A = (1+f(δÃ))Id with
a smooth function f such that f(0) = 0 and for Ã stationary and ergodic (that we will specify to the
Gaussian setting for the ease of the reading) and δ � 1. Second, we present the general framework
of quantitative homogenization.

The small contrast regime

We consider the particular model of the p-laplacian regularized at 0 (for d ≥ 2)22

a(x, ξ) = A(x)(1 + |ξ|p−2)ξ, (1.1.49)

where A takes the specific form23

A(x) = (1 + 1
π arctan(πδg(x)))Id,

where g is a real valued Gaussian random variable with E[|g(0)|2] = 1 and δ � 1. This perturbative
regime allows us to linearise the problem with repsect to δ in the corrector equation (1.1.23). It
leads to a linear elliptic equation with constant coefficient where all the randomness is put in the
right-hand side.

We have already seen that the ergodic assumption (1.1.9) is enough for the qualitative homoge-
nization theory, as summarized in Theorem 1 and 2 and illustrated in Section 1.1.4. Naturally, for
the quantitative homogenization, we need a quantification of ergodicity, which can be understood

22For d = 1, one can make explicit computations (as in Subsection 1.1.4) and show that the convergence rate of the
homogenization error is of order

√
ε.

23The choice f = 1
π

arctanπ· is taken for convenience but any function such that |f | < 1, f(0) = 0 and f ′(0) = 1
would work as well.
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by imposing a convergence rate in (1.1.9). In our particular setting, we quantify the ergodicity, or in
other words the decorrelation over large distances, by imposing an algebraic decay on the covariance
function:

|c(x, y)| = |E[g(x)g(y)]| ∼ (1 + |x− y|)−d−α, (1.1.50)

for some α > 0.24Let us now show that, in the regime δ ↓ 0, this quantitative assumption implies a
convergence rate on the homogenization error u2sc

ε −uε, where we recall that the two-scale expansion
u2sc
ε is defined in (1.1.31). In view of the analysis conducted in Section 1.1.4, the optimal convergence

rate in (1.1.44) will follow from the optimal convergence rate in (1.1.42) and (1.1.43), namely from the
quantification of the sub-linearity of φξ and ∂

∂ξφξ. We start by investigating the growth of x 7→ φξ(x).

By linearizing around δ = 0, we formally expand φξ at first order in δ: φξ = δφξ + o(δ),25 where the
equation for φξ is obtained by differentiating with respect to δ the equation (1.1.23) for the model
(1.1.49), which reads

−∇ ·
(
Id + (p− 2)

|ξ|p−4

(1 + |ξ|)p−2
ξ ⊗ ξ

)
∇φξ = ∇ · (gξ).

Since the above equation is a linear elliptic PDE with constant coefficients, we have an explicit
formula for φ which can be expressed with help of the Green’s function associated to aξ := Id+ (p−
2) |ξ|p−4

(1+|ξ|)p−2 ξ ⊗ ξ: for all x ∈ Rd the Green’s function reads

Gξ(x) =
1√

det(aξ)
×

{
1

4π log(x · a−1
ξ x) for d = 2,

1
d(2−d)|B1|(x · a

−1
ξ x)−

d−2
2 for d ≥ 3,

and we have
φξ(x) = −

ˆ
∇Gξ(x− y) · g(y)ξdy. (1.1.51)

We first briefly justify that Gξ (resp. its derivatives) can be dominated by the standard Green’s
function (resp. its derivatives) of the Laplace operator, uniformly in |ξ|. Indeed, since for all x ∈ Rd,
x · aξx = |x|2 + (p− 2) |ξ|p−4

(1+|ξ|)p−2 (ξ · x)2 ≥ |x|2 and ‖aξ‖ ≤ 1 + (p− 2) |ξ|p−4

(1+|ξ|)p−2 ‖ξ ⊗ ξ‖ . 1, we thus
have x · a−1

ξ x ∼ |x|2 uniformly in |ξ|. Also, it shows that the eigenvalues of aξ are contained in
[1,+∞), and thus det(aξ) ≥ 1 (note that aξ is symmetric). We conclude that for all x, ξ ∈ Rd

|∇Gξ(x)|+ |x||∇2Gξ| . |x|1−d. (1.1.52)

Because of the singularity of the Green’s function at the origin, we have to treat differently the near-
field contribution and the far-field contribution (denoted by φn(x) and φf (x) respectively), that we
express with help of a smooth cut-off χ ∈ C∞c (Rd) for B1 in B2:

φn(x) = −
ˆ
χ(x− y)∇Gξ(x− y) · g(y)ξ dy and φf (x) = −

ˆ
(1− χ(x− y))∇Gξ(x− y) · g(y)ξ dy.

For the near-field contribution, we use the triangle inequality combined with the fact that the
singularity of ∇Gξ is integrable (see (1.1.52)) and E[|g(0)|2] = 1, to obtain: for all x ∈ Rd

E[|φn(x)|2]
1
2 ≤ |ξ|

ˆ
χ|∇Gξ| . |ξ|.

24We also implicitly assume here that the law is isotropic since c is radially symmetric.
25A rigorous analysis of the error term can be conducted by looking at the second order derivative in δ, but for the

ease of the reading we only focus on the first term.
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For the far-field contribution, one has to make use of stochastic cancellations, and this is here that
our quantitative assumption (1.1.50) plays a important role. Using (1.1.50), we may express the
second moment of φf − φf (0) as:26

E[|φf (x)− φf (0)|2]

=

ˆ ˆ
[(((1− χ)∇Gξ)(x− y)− ((1− χ)∇Gξ)(y)) · ξ][(((1− χ)∇Gξ)(x− y′)− ((1− χ)∇Gξ)(y′)) · ξ]

× E[g(y)g(y′)]dy dy′

(1.1.50)
. |ξ|2

ˆ ˆ
|((1− χ)∇Gξ)(x− y)− ((1− χ)∇Gξ)(y))||((1− χ)∇Gξ)(x− y′)− ((1− χ)∇Gξ)(y′))|

× (1 + |y − y′|)−d−αdy dy′.

Now, using Cauchy-Schwarz’ inequality (in the form of
´ ´

f(y)f(y′)h(y−y′)dy dy′ ≤
´ ´
|f(y)|2|h(y−

y′)|dy dy′) and the fact that the covariance function c(x, 0) : x 7→ (1 + |x|)−d−α is integrable, we
arrive at

E[|φf (x)− φf (0)|2] . |ξ|2
ˆ
|((1− χ)∇Gξ)(x− y)− ((1− χ)∇Gξ)(y)|2dy.

Then, the large-scale behaviour |y−x| ≥ 3|x| is treated by the Taylor expansion: |((1−χ)∇Gξ)(x−
y) − ((1 − χ)∇Gξ)(y)| . |x| supt∈[0,1] |∇((1 − χ)∇Gξ)(tx + (1 − t)y)| . |x||y − x|−d and gives the
contribution:

ˆ
Rd\B3|x|(x)

|((1− χ)∇Gξ)(x− y)− ((1− χ)∇Gξ)(y)|2dy . |x|
ˆ
Rd\B3|x|

|y|−2ddy . 1.

The near-scale behaviour |y − x| < 3|x| (where here, without loss of generality, we may assume
that |x| ≥ 1) is treated by the triangle inequality: |((1 − χ)∇Gξ)(x − y) − ((1 − χ)∇Gξ)(y)| .
(1− χ)(x− y)|y − x|−d+1 + (1− χ(y))|y|−d+1 and gives the leading order contribution:
ˆ

B3|x|(x)
|((1−χ)∇Gξ)(x−y)−((1−χ)∇Gξ)(y)|2dy .

ˆ
B4|x|\B1

|y|−2(d−1)dy .
{

log(2 + |x|) for d = 2,
1 for d = 3.

To summarize, one has
φξ = δφξ + o(δ),

with

E[|φξ(x)− φξ(0)|2] . |ξ|2
{

log(2 + |x|) for d = 2,
1 for d > 2.

(1.1.53)

For the linearized corrector ∂
∂ξφξ, similar computations can be done and yield the same conclusion.

The growth (1.1.53) quantifies the sub-linearity of the corrector in the sense of εφξ( ·ε) →ε↓0 0 and

ε ∂∂ξφξ(
·
ε) →ε↓0 0.

Once we have understood the sub-linearity of the correctors, one has to find a suitable equation
for the homogenization error zε = u2sc

ε − uε. For the ease of the reading, we perform the computa-
tions for the linear setting (that is, by taking p = 2 in (1.1.49)), which captures all the ideas. For

26Since φξ is only defined up to an additive constant, we choose to anchor it at the origin by subtracting φξ(0).
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the details in the nonlinear setting we refer to Section 3.6 in Chapter 3. By scaling, we may assume
that ε = 1. We start by computing

∇z1 = ∇u1 − (∇u+ ∂xiu∇φei + φei∇∂xiu),

where we use Einstein’s convention of implicit summation on repeated indices. Then, applying −∇·a
together with equation (1.1.4) and the homogenized equation (1.1.14) has the effect of

−∇ · a∇z1
(1.1.4)

= ∇ · f +∇ · (a(∇φei + ei)∂xiu+ φeia∇∂xiu)

(1.1.14)
= ∇∂xiu · (a(∇φei + ei)− aei) +∇ · (φeia∇∂xiu). (1.1.54)

We now rewrite the first right-hand side term of (1.1.54) with help of a new corrector σ = (σijk)i,j,k
(called the flux corrector), skew-symmetric in the last two-variables (that is σijk = −σikj) and that
satisfies

∇ · σi := ∂kσijk = a(∇φei + ei)− aei. (1.1.55)

The flux corrector σi is a d − 1-form and (1.1.49) only defines σi up to gauge invariance. It is
standard to fix the gauge by requiring σi to satisfy (which indeed yields the skew symmetry)

−∆σijk = ∂xj (a(∇φei + ei) · ek)− ∂xk(a(∇φei + ei) · ej).

With help of the flux corrector and the chain rule, the first right-hand side of (1.1.54) can be
rewritten as

∇∂xiu · (a(∇φei + ei)− aei) = ∂j∂iu∂kσijk = ∂k(∂j∂iuσijk)− ∂k∂j(∂iu)σijk

= −∇ · (σi∇∂iu),

where the last line comes from the fact that from the skew-symmetry of (σijk)j,k and the symmetry
of (∂k∂j(∂iu))j,k one has ∂k∂j(∂iu)σijk = 0. To conclude, one has the following equation for the
homogenization error (after the rescaling x x

ε )

−∇ · a( ·ε)∇zε = ε∇ · ((a( ·ε)φei(
x
ε )− σi( ·ε))∇∂iu).

In the regime of small ellipticity contrast, we get similarly the growth (1.1.53) for σ, where the latter
corresponds to the first order approximation of σ in δ ↓ 0.

By the energy estimate and (1.1.53), we deduce that the homogenization error satisfies (in the
regime δ ↓ 0)

E
[ˆ
|∇zε|2

] 1
2

. εE
[ˆ

(|φ(xε )|2 + |σ(xε )|2)|∇2u(x)|2dx
] 1

2

. ‖(1 + log
1
2 (·)1d=2)∇2u‖L2(Rd) ×

{
ε log

1
2 (ε−1) for d = 2,

ε for d > 2.

The general framework of quantitative homogenization

We now present the tools which lead to a quantitative theory of homogenization. As mentioned in
Subsection 1.1.5, the quantitative homogenization theory requires to quantify the ergodicity assump-
tion (1.1.9). There are several approaches to encode quantitatively the decorrelation on large-scales.



34 Chapter 1. Introduction

To begin with, a fundamental example is given by discrete i.i.d coefficients, which means that the
coordinate projections a ∈M 7→ a(x, ·) ∈M0 (corresponding to the set (1.1.7) with space indepen-
dent operator), for x ∈ Zd, are independent and identically distributed. The associated probability
distribution is given by P = P⊗Z

d

0 , the Zd-fold product of P0, for P0 a probability measure onM0. We
can consider weaker assumptions as standard nonlinear mixing conditions that we define hereafter.
For more details on linear mixing conditions, we refer to [52].

Definition 1 (Linear mixing conditions). For all Borel subsets U ⊂ Rd, we define FU as the
σ-algebra generated by the family {a 7→

´
a(x, ξ)ψ(x)dx|ψ ∈ C∞c (U), ξ ∈ Rd}. We say that the

probability measure P satisfies:

• A α-mixing condition if there exist C > 0 and α > 0 such that for all U ,V ⊂ Rd and (A,B) ∈
FU ×FV , we have27

|P(A ∩B)− P(A)P(B)| ≤ C(1 + dist(U ,V))−α.

• A η-range of dependence (for some distance η > 0), if for all Borel subset U ,V ⊂ Rd, one has

dist(U ,V) ≥ η ⇒ FU and FV are independent. (1.1.56)

In other words, a|U and a|V are independent as soon as dist(U ,V) ≥ η.

The mixing conditions in Definition 1 are known to imply concentration properties and in particular
the finite range of dependence (1.1.56) is satisfied by most examples of Section 1.1.2. More precisely,
the discrete models (1.1.11) and (1.1.12) have by construction a unit range of dependence, that is
they satisfy (1.1.56) for η = 1. The model (1.1.13) has a η-range of dependence provided we choose
the kernel m be compactly supported in Bη. The quantitative homogenization theory of (1.1.4)
within the above linear mixing conditions, either in the linear setting with symmetric coefficients
or in the variational setting with a(x, ξ) = ∇ξW (with W strongly convex) and p = 2, has been
extensively studied by Armstrong, Smart, kuusi, Ferguson, Mourrat in [6, 5, 9, 10, 15, 12] and by
Gloria and Otto in [81]. The strongest results are obtained in the case of finite range of dependence
(1.1.56) where central limit theorem scalings are obtained. Linear mixing conditions require an
involved analysis as they only allow to unravel local cancellations after iteration (see in particular
the renormalization procedure in [12] and the notion of approximate locality in [81]). Importantly,
such iterations lead to (nearly) optimal stochastic integrability. However, the quantitative homoge-
nization of (1.1.4) under mixing conditions is so far restricted to the case p = 2 and the theory for
the full range p ≥ 2 is currently unknown. See the short discussion about this issue in Chapter 6.
We refer to the textbook [8] for a summarize of the quantitative homogenization theory under finite
range of dependence.

An other point of view, which is the one taken in this thesis, is based on functional inequali-
ties in probability like spectral gap or logarithmic Sobolev inequalities which are powerful tools to
prove nonlinear concentration properties and central limit theorem scalings, see for instance [107].
Such inequalities are well known to hold in the simple situation of i.i.d random variables, referred
to as Efron-Stein’ inequality (see [88, Lemma 7]) or also for the Boltzmann-Gibbs distribution
dµ = Z−1

µ e−V dx with V strongly convex (see [38]). In infinite dimension, standard spectral gap and
logarithmic Sobolev inequalities depend on a suitable notion of derivative which applies to random
variable F =M→ Rk (depending on the structure of the randomness). Such standard inequalities
take the following form.

27We use the notation dist(U ,V) = inf(x,y)∈U×V |x− y| for the distance between two sets.
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Definition 2 (Standard functional inequalities). We assume that there exists a suitable notion of
derivative x 7→ ∂x,1F , which applies to random variables F : M→ Rk, depending on the structure
of the randomness. Morally speaking, ∂x,1F "measures" how sensitive F (a) reacts to changes of the
value of a(x, ξ) localized at x, for all ξ ∈ Rm×d.

We say that the probability measure P satisfies a logarithmic Sobolev inequality (LSI) if there ex-
ists ρ > 0 such that for all random variables F : M → Rk (for some k ≥ 1) with Ent(F ) :=
E[F 2 log(F 2)]− E[F 2] log(E[F 2]) < +∞, the following inequality holds

Ent(F ) ≤ 1

ρ
E
[ˆ
|∂x,1F |2dx

]
. (1.1.57)

We say that the probability measure P satisfies a spectral gap inequality (SG) if there exists ρ > 0
such that for all random variables F :M→ Rk with E[|F |2] < +∞, the following inequality holds

E[|F − E[F ]|2]
1
2 ≤ 1

ρ
E
[ˆ
|∂x,1F |2dx

] 1
2

. (1.1.58)

For a discrete distribution a = (a(x, ·))x∈Zd , we say that the probability distribution P satisfies a
spectral gap inequality if

E[|F − E[F ]|2]
1
2 ≤ 1

ρ
E
[ ∑
x∈Zd

|∂xF |2
] 1

2

. (1.1.59)

By post-processing, if the probability measure P satisfies LSI (1.1.57) or SG (1.1.58), we can actually
control higher stochastic moments, see [59, Proposition 1.10]. More precisely:

Proposition 1. Assume that the probability distribution P satisfies SG (1.1.58). Then, there exists
a constant C > 0 such that for all q < +∞ and for all random variables F : M → Rk with
E[|F |q] < +∞, the following inequality holds

E[|F − E[F ]|q]
1
q ≤ Cq2E

[(ˆ
|∂x,1F |2dx

) q
2
] 1
q

,

where the multiplicative factor Cq2 can be upgraded to Cp if LSI (1.1.57) is satisfied.

Functional inequalities of Definition 2 are satisfied by the all instances of Section 1.1.2. More
precisely, the discrete model (1.1.11) satisfies (1.1.59) where the derivative ∂x denotes the vertical
derivative defined as:

∂xF = F − E[F |Fx],

with E[·|Fx] refers the conditional expectation where we condition on the σ-algebra Fx generated by
the family {a(z) := ab(z) : z 6= x}. The derivative ∂xF is precisely the L2(Ω)-orthogonal projection
of F onto the subspace of random variables in L2(M) that do not depend on a(x). In other words,
E[·|Fx] denotes the conditional expectation, where we condition on the event that we know the value
of a(z) for all sites z 6= x.

The Poisson point process based model (1.1.12) satisfies (1.1.57) where the derivative ∂x,1 := ∂osc
x,1
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denotes the oscillation of F = F (A) (taking values in Rd) with respect to the variations of A on
B(x), that is formally28,

∂osc
x,1F = sup

A′:A′|Rd\B1(x)
=A|Rd\B1(x)

F (A′)− inf
A′:A′|Rd\B1(x)

=A|Rd\B1(x)

F (A′). (1.1.60)

The Gaussian based model (1.1.13) satisfies (1.1.62) provided that A is Lipschitz and β > d, where
the derivative ∂x,1 := ∂fct

x,1 denotes the functional derivative, defined as the Gâteaux derivative of
F (A) with respect to A, that is (we use the short-hand notation A := A(m ? ξ))

∂fct
x,1F = sup

δA
lim sup
h↓0

F (A+ hδA)− F (A)

h
, (1.1.61)

where the supremum runs over coefficient fields δA that are compactly supported in B1(x) and
bounded by 1 in L∞(Rd).

Functional inequalities imply a powerful calculus in probability, which is in particular convenient to
unravel probabilistic cancellations. Optimal scaling can then be easily captured, but stochastic inte-
grability often remains suboptimal, since functional analysis cannot be iterated nicely (compared to
the first approach by mixing conditions). As pointed out in [59], standard functional inequalities of
Definition 2 are very restrictive: the randomness essentially has to be either Gaussian with integrable
covariance as in the model (1.1.13) (for β > d) or to display a product structure as for the models
(1.1.11) and (1.1.12). This rules out most models of interest for heterogeneous materials considered
in applied sciences in [152], such as random parking process (see [152, Chapter 3]), Voronoi and De-
launay tessellations of a Poisson point set (see [152, Chapter 8]) or Gaussian fields with long-range
correlations. A way to relax Definition 2 is to introduce multiscale weighted generalizations of such
standard functional inequalities, as introduced by Gloria and Duerinckx in [59, 60].

Definition 3 (Multiscale functional inequalities). We say that the probability measure P satisfies
a multiscale logarithmic Sobolev inequality (MLSI) if there exist ρ > 0 and an integrable weight π
such that for all random variables F :M→ Rk (for some k ≥ 1) with Ent(F ) < +∞, the following
inequality holds

Ent(F ) ≤ 1

ρ
E
[ˆ +∞

1
`−dπ(`)

ˆ
|∂x,`F |2dx d`

]
, (1.1.62)

where now x 7→ ∂x,`F depends on the multiscale parameter ` by looking also on how it depends on
the ball of size ` in where the values of x 7→ a(x, ·) are localized.

We say that the probability measure P satisfies a multiscale spectral gap inequality (MSG) if there
exists an integrable weight π and a constant ρ > 0 for all random variables F :M→ Rk (for some
k ≥ 1) with E[|F |2] < +∞, the following inequality holds

E[|F − E[F ]|2]
1
2 ≤ 1

ρ
E
[ˆ +∞

1
`−dπ(`)

ˆ
|∂x,`F |2dx d`

] 1
2

. (1.1.63)

As for standard functional inequalities, if the probability measure P satisfies MLSI (1.1.62) or MSG
(1.1.63), we can control higher stochastic moments, see [59, Proposition 1.10]. More precisely:

28We may rigorously define ∂osc
x,1F as the measurable envelope of (1.1.60).
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Proposition 2. Assume that the probability distribution P satisfies MSG (1.1.63). Then, there
exists a constant C > 0 such that for all q < +∞ and for all random variables F : M → Rk with
E[|F |q] < +∞, the following inequality holds

E[|F − E[F ]|q]
1
q ≤ Cq2E

[(ˆ +∞

1
`−dπ(`)

ˆ
|∂x,`F |2dx d`

) q
2
] 1
q

,

where the multiplicative factor Cq2 can be upgraded to Cq if MLSI (1.1.62) is satisfied.

Multiscale functional inequalities allow us to consider long-range correlations, compared to standard
functional inequalities of Definition 2. For instance, the Gaussian based model (1.1.13) with β ≤ d
satisfies MLSI (1.1.62) with weight π(`) = `−1−β and where the functional derivative (1.1.61) has to
be replaced by

∂fct
x,`F = sup

δA
lim sup
h↓0

F (A+ hδA)− F (A)

h
, (1.1.64)

where the supremum runs over coefficient fields δA that are compactly supported in B`(x) and
bounded by 1 in L∞(Rd). 29

Voronoi tessellations of a Poisson point set satisfy MLSI (1.1.62) with weight π(`) = Ce−
1
C
`d (for

some C > 0) and with the oscillation derivative (1.1.60) replaced by

∂osc
x,`F = sup

A′:A′|Rd\B`(x)
=A|Rd\B`(x)

F (A′)− inf
A′:A′|Rd\B`(x)

=A|Rd\B`(x)

F (A′).

Random parking process with hardcore radius R = 1 satisfies MLSI (1.1.62) with weight π(`) =

Ce−
1
C
` (for some C > 0) and with the oscillation derivative ∂x,` = ∂osc

x,` . For more precisions on those
examples and for some generalizations, we refer to [60, Section 3]. In particular, all the examples of
the textbook [152] satisfy a MLSI or a MSG. We also point out that since certain random coefficient
fields (as Gaussians) satisfy only one of the assumptions in Definition 1 (mixing conditions) and in
Definition 2 and 3 (functional inequalities), it is important to consider both separately.

We now focus on the application of MLSI/LSI/MSG/SG in stochastic homogenization of systems
(1.1.4). We recall that the interest of MLSI/LSI/MSG/SG inequalities and what it makes them very
powerful is that they entail fluctuations bounds for nonlinear functionals of a. To picture this, it
is instructive to apply (1.1.62) to a simple example given by spatial average of a smooth nonlinear
transformation of the scalar Gaussian model A = A(m ? ξ) ∈ R, for |m(x)| ≤ (1 + |x|)−

1
2

(d+β):
Fr :=

ffl
Br f(A(x))dx with r > 0 and f ∈ C1(Rd) ∩W1,∞(Rd). The functional derivative (1.1.64) is

explicitly given by ∂fct
x,`Fr = |B1|−1

´
B`(x) f

′(A)r−d1Br . We plug the derivatives in (1.1.62) and we use

Jensen’s inequality
( ´

B`(x) f
′(A)1Br

)2

. `d
´
B`(x) |f

′(A)|21Br in the regime ` ≤ r and Minkowski’s

29More generally, if for all x ∈ Rd, |c(x)| . γ(|x|) holds for some non-increasing Lipschitz functions γ : R+ → R+,
then A = A(m ?W) satisfies MLSI/MSG (1.1.62) and (1.1.63) with weight π(`) ∼ |γ′(`)|. See [60, Section 3.1].
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inequality
´ ( ´

B`(x) f
′(A)1Br

)2

. `d
( ´
|f ′(A)|1Br

)2

in the regime ` > r, to obtain

Ent(Fr) ≤
1

ρ
E
[ˆ +∞

1
`−dπ(`)

ˆ (
|B1|−1

ˆ
B`(x)

f ′(A)r−d1Br

)2

dx
]

.d sup |f ′|2
(
r−d

ˆ r

1
`d−β−1d`+

ˆ +∞

r
`−1−βd`

)
.d,β sup |f ′|2(r−β1β<d + r−d log(r)1β=d + r−d1β>d), (1.1.65)

which gives a convergence rate of (1.1.9) in this special case. For more general results on spatial
averages, we refer to [59, Section 1.3]. Such estimates are expected to hold for more complex non-
linear maps of the operator a, as the corrector defined in (1.1.23).

Inequalities of type MLSI/LSI/MSG/SG are very rich of applications in stochastic homogenization of
(1.1.4) and in particular lead to optimal convergence rate of the homogenization error. To illustrate
this, we prove how MSG (1.1.63) give the optimal convergence rate in the one-dimensional example
of Section 1.1.4, in the particular scalar Gaussian case A = A(m? ξ), for |m(x)| ≤ (1 + |x|)−

1
2

(d+β).
In view of the analysis conducted in Section 1.1.4, the optimal convergence rate in (1.1.44) will
follow from the optimal convergence rate in (1.1.42) and (1.1.43), namely the sub-linearity of φξ and
∂
∂ξφξ. Let us show that (1.1.63) indeed quantify this two convergences. For simplicity, we only treat
(1.1.42), (1.1.43) is treated the same way. In the following, we use the short-hand notation

Fε := εφξ(
x
ε ) = −ε

2

ˆ x
ε

0

1

A(t)
dt+ ε

ˆ x
ε

0

√
Φ−1(ξ)

A(t)
+

1

4A2(t)
dt− ξx, (1.1.66)

where we recall that Φ(ξ) = −1
2E[ 1

A ] + E
[√

ξ
A + 1

4A2

]
. We first compute the functional derivative

of Fε in the sense of (1.1.61) and to do so, we fix y ∈ Rd, ` ≥ 1 and a parturbation δA ∈ L∞(Rd)
compactly supported in [y − `, y + `] with ‖δA‖L∞(Rd) ≤ 1. A direct differentiation give

d
dt
Fε(A+ tδA)

∣∣∣∣
t=0

=

ˆ
ε

2
1[0,x

ε
]

(
1

A2
− 2AΦ−1(ξ) + 1

2A3

√
Φ−1(ξ)
A + 1

4A2

)
δA,

which yields, by the definition of the functional derivative (1.1.64),

∂fct
y,`Fε =

ˆ y+`

y−`

ε

2
1[0,x

ε
]

(
1

A2
− 2AΦ−1(ξ) + 1

2A3

√
Φ−1(ξ)
A + 1

4A2

)
.

Therefore, since E[Fε] = 0, applying MSG (1.1.63) yields

E[Fε|2]
1
2 ≤ 1

ρ
E
[ˆ +∞

1
`−2−β

ˆ (ˆ y+`

y−`

ε

2
1[0,x

ε
]

(
1

A2
− 2AΦ−1(ξ) + 1

2A3

√
Φ−1(ξ)
A + 1

4A2

))2

dy d`
] 1

2

. (1.1.67)

We now bound the right-hand side of (1.1.67) as follows. We recall that we have shown in Section
1.1.4 that Φ−1(ξ) ∼ ξ2 + α (for α = (E[ 1

A ]E[ 1√
A

]−1)2), therefore by using in addition the bound
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0 < c1 < A < c2, one has
∣∣∣∣ 1
A2 − 2AΦ−1(ξ)+1

2A3

√
Φ−1(ξ)
A

+ 1
4A2

∣∣∣∣ .c1,c2,α 1 + ξ. We then split the integral

as
´ +∞

1 d` =
´ 1
ε

1 d` +
´ +∞

1
ε

d` and (1.1.67) turns into (using similarly Jensen’s and Minkowski’s
inequality as in (1.1.65))

E[Fε|2]
1
2 .ρ (1 + ξ)ε

(( ˆ 1
ε

1
+

ˆ +∞

1
ε

)
`−2−β

ˆ ( ˆ y+`

y−`
1[0,x

ε
]

)2

dy d`
) 1

2

. (1 + ξ)

(√
ε

ˆ 1
ε

1
`−βd`+

ˆ +∞

1
ε

`−1−βd`
) 1

2

. (1 + ξ)×

 ε
β
2 for β ∈ (0, 1),√
ε log(ε−1) for β = 1,√
ε for β > 1.

Similarly, E[|ε ∂∂ξφξ(
x
ε )|2]

1
2 enjoys the same bound. To conclude, the convergence rate of the homog-

enization error is given by: for all q < +∞

E[‖uε−u−εφu′( ·ε)‖
2
W1,3([0,1])

]
1
2 .ρ,c1,c2,α (1+‖u′‖L∞([0,1]))‖u′′‖L∞([0,1])×

 ε
β
2 for β ∈ (0, 1),√
ε log(ε−1) for β = 1,√
ε for β > 1.

Note that in the case of weak correlations β > 1, we recover the central limit theorem scaling
√
ε.

In higher dimension, the strategy is the same and the whole game is to quantify the sub-linearity of
the correctors (for which we have no explicit formula in general).

The quantitative homogenization theory of (1.1.4) under functional inequalities has been intensively
studied by Otto, Gloria, Neukamm, Fischer and their collaborators, inspired by an unpublished work
by Naddaf and Spencer [132]. The linear model a(x, ξ) = A(x)ξ is by now well understood, started
from the works of Gloria and Otto in [82, 83] and Gloria, Neukamm and Otto in [87, 79] for discrete
equation under the spectral gap inequality (1.1.59). Then, the continuum case has been studied by
Gloria and Otto in [84, 80, 89] for more general coefficient fields which satisfy MLSI/MSG/LSI/SG.
For the general (nonlinear) model (1.1.4), quantitative results were so far restricted to the case
p = 2 and has been studied in the recent work of Fischer and Neukamm in [68] under LSI. The
quantitative homogenization of (1.1.4) under LSI, for the full range p ≥ 2, is studied in Chapter 3,
however, the case of MLSI is currently out of reach. We summarize the results for the linear setting
in the following theorem:

Theorem 3 (Quantitative homogenization of (1.1.4)-Linear case). Assume that a(x, ξ) = A(x)ξ and
that the probability measure P satisfies a MLSI (1.1.62) or a MSG (1.1.63) inequality with weight
π(`) = `−β−1, for some β > 0.

The corrector φ = (φei)i∈J1,dK admits the following growth. There exist a random variable x 7→ C(x)

and a constant C > 0 as well as an exponent α > 0 such that supx∈Rd E[exp( 1
C C

α(x))] < +∞ and

( ˆ
B(x)
|φ|2 + |σ|2

) 1
2

≤
∣∣∣∣ˆ

B
φ

∣∣∣∣+

∣∣∣∣ˆ
B
σ

∣∣∣∣+ C(x)µ(|x|), (1.1.68)
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with

µ(|x|) :=


(|x|+ 1)1−β

2 for β < 2,

log
1
2 (|x|+ 2) for β = 2, d > 2 or β > 2 and d = 2,

log(|x|+ 2) for β = d = 2,
1 for β > 2 and d > 2.

The two-scale expansion u2sc
ε := uε+ε

∑d
i=1 φei(

·
ε)∂iuε (where uε(x) :=

ffl
Bε(x) u) converges quantita-

tively with the following optimal rate: for all ω ⊂ Ω, there exist a random variable Cω,ε,f , a constant
C > 0 as well as an exponent α > 0 such that E[exp( 1

C C
α
ω,ε,f (x))] < +∞ (uniformly in ε and f) and

‖∇u2sc
ε −∇uε‖L2(ω) ≤ Cω,ε,fεµ(ε−1)

( ˆ
µ2|∇f |2

) 1
2

. (1.1.69)

The need of local averages at scale ε of u in Theorem 3 is due to the fact that we assume no regularity
of the coefficients at small-scales which imposes that the growth of the correctors (1.1.68) has a no
pointwise form. However, the standard De Giorgi-Nash-Moser theory (for m = 1) or the Schauder
theory (in the case of systems with A is Hölder continuous), allow us to upgrade (1.1.68) into a
pointwise estimate and therefore there is no need to take local average of u in (1.1.69) in those cases.
We prove similar results in Chapter 3 for the nonlinear setting (1.1.4) in the full range p ≥ 2 (in
dimension 3) under LSI (1.1.57). The quantitative homogenization of (1.1.4) under MLSI is curretly
unknown (see Chapter 6 for a short discussion about this issue). We now present the contributions
of this thesis in the next section.

1.2 Contribution of the thesis

We present in this section the contributions of this thesis.

1.2.1 Questions arising in this thesis

Problem 1. The first part aims for a better understanding of the quantitative homogenization theory
of linear elliptic systems (namely, for the model a(x, ξ) = A(x)ξ in (1.1.4)) under MLSI (1.1.62).
We use a parabolic approach to quantitatively control the correctors defined in (1.1.23) and we deduce
useful estimates in stochastic homogenization in that case (we provide also a different proof of the
results in [89]). This approach give also convenient tools for the study of numerical methods. This
problem is studied in Chapter 2.

Problem 2. The second part aims for a better understanding of the quantitative homogenization
theory of the nonlinear system (1.1.4) in the all range p ≥ 2 under LSI (1.1.10). We prove optimal
stochastic estimates on the correctors and linearized correctors in the non-perturbative regime as well
as an optimal convergence rate of the homogenization error. This work is the result of a collaboration
with Antoine Gloria at the Laboratoire Jacques-Louis lions. This problem is studied in Chapter 3.

Problem 3. The third part aims to study an efficient numerical method to compute the homogenized
operator (1.1.30), in the particular linear model a(x, ξ) = A(x)ξ, which is characterized by the
homogenized matrix, for all e ∈ Rd, ae := E[A(0)(∇φe + e)]. The method that we analyse is the so-
called representative volume element method and we prove optimal convergence rates of the method
with respect to the size of the box for two approaches of periodization, in the particular setting
of Gaussian field. In particular, we extend the so called Price’s formula for infinite dimensional
Gaussian measures. In particular, the main message of this work is: rather periodize the probability
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law than the realizations. This work is the result of a collaboration with Marc Josien, Felix Otto and
Qiang Xu at the Max-Planck-Institut für Mathematik in den Naturwissenschaften in Leipzig. This
problem is studied in Chapter 4 (for Price’s formula) and Chapter 5 (for the representative volume
element method).

1.2.2 List of Preprints

The contributions of this thesis are contained in the two following Preprints and in a work in
preparation.

1. N. Clozeau. Optimal decay of the parabolic semigroup in stochastic homogenization for corre-
lated coefficient fields, Arxiv Preprint, arXiv:2102.07452, 2021.

2. N. Clozeau and A. Gloria. Quantitative nonlinear homogenization: control of oscillations,
Arxiv Preprint, arXiv:2104.04263v2, 2021.

3. N. Clozeau, M. Josien, F. Otto and Q. Xu. Bias in the representative volume element method:
periodize the ensemble instead of its realizations, In preparation, 2021.

1.2.3 Optimal decay of the parabolic semigroup for linear elliptic systems with
for correlated coefficient fields (Chapter 2)

In Chapter 2, we investigate the quantitative homogenization of linear elliptic systems with random
coefficients, that is for p = 2 and when (1.1.4) takes the particular form of30

−∇ · a( ·ε)∇uε = ∇ · f in Rd. (1.2.1)

We derive optimal estimates by following the ideas of the papers [92, 88] and [8, Sec.9] where the
authors considered the semigroup associated with the corrector problem (1.1.23) (which, in the linear
case, takes the form of −∇ · a(e +∇φe) = 0 in Rd, for a given e ∈ Rd), namely the solution ue of
the parabolic system {

∂τue −∇ · a∇ue = 0 in (0,+∞)× Rd,
ue(0) = ∇ · a(·)e. (1.2.2)

The relationship between the semigroup ue and the corrector φe is the following formal integral
formula

φe =

ˆ +∞

0
ue(t, ·)dt. (1.2.3)

Indeed, provided we have lim
t→+∞

ue(t, ·) = 0, integrating the equation (1.2.2) in time yields

−∇ · ae−∇ · a∇
ˆ +∞

0
ue(t, ·)dt = 0,

and implies that
´ +∞

0 ue(t, ·)dt is a solution of the corrector equation (1.1.23) so that (1.2.3) follows
by uniqueness. Formula (1.2.3) will be made rigorous by showing the optimal decay in time of
stochastic moments of ue. This theoretical relationship allow us to transfer optimal estimates on ue
into optimal estimates on the corrector φe. The semigroup ue is also of numerical interest and can be
used as a very convenient tool for the study of numerical method for approximating the correctors
and the homogenized matrix a. As examples, we present three situations where optimal estimates
of ue are used in the context of numerical methods.

30This model corresponds to a stationary linear diffusion, corresponding to the linearization of (1.1.4). We also
make the choice to work in the whole space to avoid boundary layer problems.
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(i) First, the study of the representative volume element method, where the method consists of
replacing the corrector equation (1.1.23) by an equation posed in a large box QL := [−L

2 ,
L
2 )d,

for L� 1,
−∇ · aL(∇φLe + e) = 0 in QL,

with periodic boundary conditions, for a good choice of periodic realization aL. We refer to
[88] for an analysis via a semigroup approach.

(ii) Second, the semigroup ue has been used more recently in [1] for approximating φe via expo-
nential regularization, that is we replace the corrector equation (1.1.23) by{

ue(T )−∇ · a(∇φe,T,R + e) = 0 in QR,
φe,T,R ≡ 0 on ∂QR,

for R� 1 and T � 1. Optimal estimates on ue are used to control the bias (or the systematic
error).

(iii) Third, we can derive optimal convergence rate in the massive term approximation as in [88, 92],
and we propose a proof in Corollary 5 of Chapter 2.

The first result in the vein of this chapter is the optimal decay estimate in time of ue and of its
gradient in the case of discrete elliptic equation satisfying SG (1.1.59) proved by Gloria, Neukamm
and Otto in [88]. In the case of finite range of dependence (1.1.56), similar results are obtained by
Gloria and Otto in [92] and Armstrong, Kuusi and Mourrat in [8]. Their analysis strongly relies on
the fast decay of correlations, and does not treat coefficients with fat tails. The aim of this Chapter
is to provide an extension of those results to more correlated coefficient fields such as Gaussian
coefficient fields with fat tails. Our quantitative analysis is based on functional inequalities of type
MLSI (1.1.62).

The expected optimal time decay of ue can be easily inferred in the small contrast regime, that
is, when the coefficient field is given as a perturbation of the identity: aδ = (1 + 1

π arctan(δa))Id, for
a small δ � 1 and a scalar (as we did in Section 1.1.5). By linearizing around δ ↓ 0, the first order
approximation of ue is given by ue = δu+ o(δ) where{

∂τu−∆u = 0 in (0,+∞)× Rd,
u(0) = 1

π∇ · a(·)e, (1.2.4)

for which we have an explicit formula. Indeed, using the heat kernel Γ : (T, x) ∈ R+ × Rd 7→
1

(4πT )
d
2
e−
|x|2
4T , we have for all (T, x) ∈ R+ × Rd

u(T, x) =
1

π

ˆ
∇Γ(T, x− y) · a(y)edy. (1.2.5)

Using a scalar Gaussian model (that is for g a scalar centered Gaussian) a(x) = g(x) and imposing
algebraic decay of the correlations in form of |E[g(x)g(y)]| ∼ (1 + |x − y|)−β (for some β > 0), we
may express the variance as

E[|u(T, 0)|2] =
1

π2

ˆ ˆ
∇Γ(T, x) · e∇Γ(T, y) · eE[g(x)g(y)]dx dy

.
1

π2

ˆ ˆ
∇Γ(T, x) · e∇Γ(T, y) · e (1 + |x− y|)−βdx dy. (1.2.6)

We then distinguish between the two regimes β > d and β ≤ d.
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• In the regime β > d, the application x 7→ (1 + |x|)−β is integrable, so that we may use the
Cauchy-Schwarz inequality and bound the variance as:

E[|u(T, 0)|2] .
1

π2

ˆ ˆ
∇Γ(T, x) · e (1 + |x− y|)−

β
2∇Γ(T, y) · e (1 + |x− y|)−

β
2 dx dy

≤
ˆ ˆ

|∇Γ(T, x)|2(1 + |x− y|)−βdx dy

.
ˆ
|∇Γ(T, x)|2dx . T−1− d

2 .

This decay is the best that we can expect, since this is the one that we would obtain in the
better situation of i.i.d coefficients (for which E[g(x)g(y)] = δ(x− y)).

• In the regime β ≤ d, the decay becomes worse as soon as β gets smaller, and we show this by
a more careful domination. We first estimate, for all x ∈ Rd,

´
∇Γ(T, y) · e (1 + |x− y|)−βdy,

that we split into two contributions:
ˆ
∇Γ(T, y) · e (1 + |x− y|)−βdy =

ˆ
Rd\B√T (x)

∇Γ(T, y) · e (1 + |x− y|)−βdy

+

ˆ
B√T (x)

∇Γ(T, y) · e (1 + |x− y|)−βdy.

The first contribution is directly of order T−
β
2

´
|∇Γ(T, x)|dx . T−

1
2
−β

2 whereas the second
contribution, using sup |∇Γ(T, ·)| . T−1− d

2 and a polar change of coordinates, is of order of

T−
1
2
− d

2

ˆ √T
0

r−βrd−1dr .

{
T−

1
2
−β

2 if β < d,

log(T )T−
1
2
− d

2 if β = d.

To conclude, using that
´
|∇Γ(T, x)|dx . T−

1
2 , we obtain from (1.2.6)

E[|u(T, 0)|2] .

{
T−1−β

2 if β < d,

log(T )T−1− d
2 if β = d.

Similar computations lead to the same decay for E[|∇u(T, 0)|2] with an additional T−1 factor.

Our goal is to extend the previous bound in the non-perturbative regime. Our approach is more in
the vein of the series of work [80, 88, 89, 92] than in [12, 13, 8, 10, 15] (treating the case of finite
range of dependence (1.1.56)). More precisely, as in [88], we use a sensitivity calculus and functional
inequalities, albeit in the much weaker form of MLSI (1.1.62) introduced in [59, 60], as in [80, 89].
As in [89, 92] however, our starting point is to prove fluctuation bounds on the time dependent flux,
for all t ∈ R+,

qe(t, ·) := a(·)
(ˆ t

0
∇ue(s, ·)ds+ e

)
, (1.2.7)

after averaging at scales r ≤
√
t. Yet, since functional inequalities cannot be easily iterated, one

cannot rely on the same approach as for coefficients with a finite range of dependence. To this aim,
as in [89], we rely on large-scale regularity, this time in the parabolic setting.
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The general idea of large-scale regularity is to make use of the nice regularity theory that enjoy
the homogenized operator ∂τ −∇ · a∇. Indeed, the proximity of the two resolvent of the operators
∂τ −∇·a∇ and ∂τ −∇·a∇ provided by homogenization allows to infer an improvement of regularity
for ∂τ − ∇a∇ on large-scales (say, scale much larger than the correlation length or the period in
the periodic setting). In other words, on large-scales, the heterogeneous linear parabolic operator
∂τ−∇·a∇ "inherits" a suitable version of the regularity theory for the homogenized linear parabolic
operator ∂τ − ∇ · a∇. In the seminal work [16], Avellaneda and Lin observed that such "transfer"
of regularity is true for periodic coefficient field a, and proved intrinsic C1,1−-a priori estimates on
a-harmonic functions, meaning that the estimates are formulated with help of the so-called harmonic
coordinates x 7→ e ·x+φξ(x). Later, such a regularity theory has been extended to the case of linear
elliptic operators −∇ · a∇ with stationary and ergodic coefficients in [80, 8], where the large-scales
are characterized by a random minimal scale (called in the first reference the minimal radius), for
which stretched exponential moments are established under MLSI/MSG (1.1.62) and (1.1.63) in [80]
as well as under a finite range of dependence (1.1.56) in [8]. Finally, the theory has been extended
to the parabolic case in [26, 11] and for completeness we recall the main results and extend them in
Appendix 2.4.2.

We obtain (in the non-perturbative regime) optimal decay estimates in time of the semigroup ue,
in terms of scaling, both for mildly and strongly correlated coefficient fields, with good stochastic
integrability (stretched exponential moments).

Theorem 4 (Main result of Chapter 2). Let T ≥ 1 and e ∈ Rd be a unit vector of Rd. For an
arbitrary map f and r > 0 we denote by f ? gr its convolution with respect to the Gaussian kernel

gr := r−de−
|·|2

r2 .

• For all 1 ≤ r ≤
√
T , the average of the time dependent flux defined in (1.2.7) and the time

dependent corrector φe(T ) :=
´ T

0 ue(s, ·)ds satisfy:

|((qe)r(T ),∇(φe)r(T ))− E[((qe)r(T ),∇(φe)r(T ))]| ≤ C?,d,λ,β(r)r−
d
2µβ(T )(1 + log2(

√
T

r
)),

with

µβ(T ) :=


T
d
4
−β

4 if β < d,

log
1
2 (T ) if β = d,

1 if β > d.

• We define the exponential kernel ηr = r−de−
|·|
R . The semigroup ue defined in (1.2.4) satisfies

the optimal decay estimates: there exists a constant c < +∞ depending on λ and d such that
for all R ≥

√
T( ˆ

ηR(
y

c
)|ue(T, y)|2dy

) 1
2

+
√
T

( ˆ
ηR(

y

c
)|∇ue(T, y)|2dy

) 1
2

≤ C?,d,λ,β(T )ηβ(T ),

with for all T ≥ 1

ηβ(T ) =


T−

1
2
−β

4 if β < d,

log
1
2 (T )T−

1
2
− d

4 if β = d,

T−
1
2
− d

4 if β > d.
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The random variable X ∈ R+
∗ 7→ C?,d,λ,β(X) depends on d, λ, β and satisfies: for all α < 1

1
2

+2 d+1
β∧d

there exists some constant C < +∞ depending on d, λ, β and α such that

sup
X>0

E
[

exp(
1

C
Cα?,d,λ,β(X))

]
≤ 2.

As applications, the decay of the semigroup gives an alternative proof of the bounds on the correctors
recently obtained in [89, Th.1] and yields other results of interest in stochastic homogenization,
extending the results of [88, 92] for this setting.

1.2.4 Quantitative homogenization theory for nonlinear elliptic equations and
systems (Chapter 3)

In Chapter 3, we investigate the quantitative homogenization of monotone elliptic systems with
random coefficients of the general type (1.1.4). The aim is to make Theorem 2 quantitative, in the
all range p ≥ 2, which is so far restricted to the case p = 2.

Whereas for p = 2, the homogenized operator ā (see (1.1.30)) has a good regularity theory pro-
vided it is smooth (which is proved in [10, 5, 6]), this is not clear in general as soon as p > 2.
Indeed, in general, the homogenized monotone map a satisfies the weaker monotonicity condition
(1.1.15) than the original one for the operator a in (1.1.5), and presumably the homogenized opera-
tor ∇ · a(∇) might not possess C1,α-regularity even if the monotone operator ∇ · a(·,∇) does. Since
elliptic regularity plays an important role in quantitative homogenization, this raises interesting
questions and will impose restrictions on the operators we can consider. We refer to Section 3.1.1
for more precisions.

Quantitative estimates on the two-scale expansion (1.1.31) are derived by the optimal quantifi-
cation of the sub-linearity of the corrector φξ but also of the linearized corrector ∂φξ

∂ξ (as we have
already seen in the one-dimensional example in Sections 1.1.4 and 1.1.5). It implies that we have to
linearise at some point the nonlinear operator, essentially for the two following reasons:

• In order to define the linearized corrector ∂φξ
∂ξ , which is formally given by differentiating the

corrector equation (1.1.23):

−∇ ·Da(·, ξ +∇φξ)(Id +
∂φξ
∂ξ ) = 0, (1.2.8)

where we recall that D denotes the derivative of ξ 7→ a(·, ξ).

• In order to control the sub-linearities εφξ( ·ε) →ε↓0 0 and ε∂φξ∂ξ ( ·ε) →ε↓0 0 via functional inequalities

of type LSI (1.1.57), which essentially imposes to linearize the equation of the corrector with
respect to the randomness.

When linearizing the nonlinear problem, one obtains the linear operator −∇ · Da(·, ξ + ∇φξ)∇,
with coefficients that are heterogeneous and depend on the corrector ξ +∇φξ itself. Can we prove
perturbative regularity (typically in form of Meyers’ estimates) for this operator? In the specific case
p = 2 treated in [5, 6, 68], the coefficients of the linearized operator are bounded from above and
below, so that Meyers’ estimates are standard (which allowed Fischer and Neukamm to essentially
follow the linear proof in [68]). This is not the case for p > 2, and this linear equation is hard to
handle for two reasons:
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• The coefficients may be degenerate (for the p-Laplacian e.g.), and despite recent strong contri-
butions on degenerate models, this degeneracy is currently out of reach. Large-scale regularity
has been established for the Laplacian on the percolation cluster by Armstrong and Dario in
[4] (and optimal convergence rates by Dario in [50]) and for linear elliptic systems with degen-
erate and unbounded coefficients under moment bounds assumptions by Bella, Fehrmann and
Otto in [24]. The main new difficulty we face here is that, unlike in [4, 24], the degeneracy
is not prescribed a priori: it is given by the critical set of harmonic coordinates (that is the
set of x ∈ Rd such that ∇φξ(x) + ξ = 0, cf. (3.1.7)). Precise information on this critical set
is however currently unavailable for d > 2 (even for the p-Laplacian, the unique continuation
principle is not known to hold for d > 2 and p > 2, e.g. [111]).

• The coefficients field Da(·, ξ + ∇φξ) is unbounded. Our sole a priori control is given by the
growth exponent p

p−2 (the larger p, the weaker the integrability), which can be seen directly
from (1.1.5) and (1.1.6): there exists C depending on λ and p such that for all h ∈ Rd,

1

C
(s+ |ξ +∇φξ|p−2)|h|2 ≤ h ·Da(·, ξ +∇φξ)h ≤ C(s+ |ξ +∇φξ|p−2)|h|2.

The only a priori bound on the coefficients is deduced from (1.1.25) and implies only

E[|Da(0, ξ +∇φξ)|
p
p−2 ] . 1 + |ξ|p, (1.2.9)

which becomes weaker as p becomes larger.

In order to avoid the degeneracy of the the linearized operator, we impose that s > 0 in (1.1.5)
and (1.1.6), and therefore −∇ · Da(·, ξ + ∇φξ)∇ becomes uniformly elliptic. It rules out the p-
Laplacian, but not the p-Laplacian regularized at 0, and only yields the non-degeneracy of the
linearized operator in a perturbative way (it disappears in the regime when the solution has a large
gradient). Doing so, the remaining difficulty is on the unboundness of the coefficients. By following
the standard strategy for Meyers’ estimates, passing by Caccioppoli’s inequality (in a refined version
obtained by optimizing the cut-off function, following an original idea of Bella and Schäffner in [25])
and a reverse Hölder’s inequality (usually obtained from the Poincaré-Sobolev inequality), we prove
Meyers type estimates for the operator −∇ · Da(·, ξ + ∇φξ)∇ which holds for the all range p ≥ 2

in dimension d = 3 and for p < 2(d−1)
d−3 in higher dimension d ≥ 4 (due the lack of integrability in

(1.2.9) for large p). For more details on the strategy, we refer to Section 3.2. Combining the Meyer’
estimates with functional calculus in form of LSI (1.1.57), we manage to optimally quantify the
sub-linearities of the correctors and the linearized correctors which leads to the optimal estimate of
the convergence of the homogenization error.

Theorem 5 (Main result of Chapter 3-1). Let ξ, e ∈ Rd and ε > 0. There exists two random
variables Cx,ξ and Cε,u such that

• For all x ∈ Rd,

| ∂∂ξσξ(x)|+ |σξ(x)|+ | ∂∂ξφξ(x)|+ |φξ(x)| . Cx,ξ ×


1 +

√
|x| for d = 1,

log
1
2 (2 + |x|) for d = 2,

1 for d > 2.

• The two-scale expansion (1.1.31) converges to u with the following convergence rate:

‖∇uε −∇u2sc
ε ‖L2(Rd) ≤ Cε,u ×


√
ε for d = 1,

ε log
1
2 (ε−1) for d = 2,

ε for d > 2.
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The two random variables Cx,ξ and Cε,u satisfy for some α > 0 and constants cξ (depending on ξ)
and cu (depending on u), the stretched exponential moment bound

sup
x∈Rd

E[cξ(Cx,ξ)α] + sup
ε>0

E[cu(Cε,u)α] ≤ 4.

We also investigate in Chapter 3 whether one can infer more properties on a if we make more
assumptions on a. The answer is more subtle than one would expect and we provide two non trivial
cases where it can be inferred, one in the periodic setting and another in the random setting.

Theorem 6 (Main result of Chapter 3-2). Let A be a Q-periodic Lipschitz matrix field. For all
ξ ∈ Rd, denote by ψξ ∈W 1,p

per(Q) the unique weak solution of

−∇ ·A(x)|∇ψξ + ξ|p−2(∇ψξ + ξ) = 0.

Assume that for all ξ ∈ Rd, there exists r > 0 such that the r-tubular neighborhood Tr(ξ) = {x +
Br |x ∈ C(ξ)} of the critical set C(ξ) = {x ∈ Rd | ξ + ∇ψξ(x) = 0} is such that Rd \ Tr(ξ) is
a connected set. Then there exists c > 0 such that ā satisfies the strong monotonicity conditions
(1.1.5) and (1.1.6) with λ = c.

The assumptions of the previous Theorem are quite strong. They are satisfied in dimension d = 2
by [2] (which shows that C(ξ)∩Q is indeed a finite union of points). For d > 2 this is a widely open
problem (somewhat related to unique continuation). For linear equations, this follows from [41].

Theorem 7 (Main result of Chapter 3-3). Assume that a(x, ξ) = A(x)(s + |ξ|p−2)ξ with A(x) =
b(x)Id for some scalar-valued function b and that for all R ∈ SO(d), b(R·) and b have the same
(joint) distribution (in which case A is statistically isotropic). Then there exists c > 0 such that ā
satisfies the strong monotonicity conditions (1.1.5) and (1.1.6) with λ = c.

The theory that we develop in this chapter unfortunately does not apply to probability measure
which satisfies MLSI (1.2.8) and we refer to Chapter 6 for a short discussion about this issue.

1.2.5 Price’s formula for infinite dimensional Gaussian measures (Chapter 4)

In Chapter 4, we extend the so-called Price’s formula for infinite dimensional Gaussian field. Orig-
inally introduced by Price in [143] (for finite dimensional Gaussian measures), it states, given a
family of Gaussian measures 〈·〉c with covariance c, a general formula for the derivative of 〈F 〉c with
respect to c for any smooth random variable F of the realizations.

In finite dimension, since the work of Price, the formula has been extended by McMahon in [122] and
more recently by Voigtlaender in [154]. The formula, in its most simple version, is stated as follows.
We consider a family of Gaussian measures 〈·〉C in RN (with N ∈ N) characterized by its covariance
matrix (symmetric definite-positive) C ∈ RN×N and F ∈ C2(RN ) with polynomial growth. There
holds for all i, j ∈ J1, NK

∂

∂Cij
〈F 〉C =

1

2
〈∂ijF 〉C . (1.2.10)

Formula (1.2.10) follows by a direct computation. Indeed, since F has polynomial growth, one has

∂

∂Cij
〈F 〉C =

1

(2π)d

ˆ
F (x)

∂

∂Cij

[
exp(−1

2
x · C−1x)

√
det C−1

]
dx. (1.2.11)
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Then, for all x ∈ Rd, we compute

∂

∂Cij

[
exp(−1

2
x · C−1x)

√
det C−1

]
=

1

2

[
x · C−1 C

Cij
C−1x− tr C−1∂C

Cij

]
exp(−1

2
x · C−1x)

√
det C−1

=
1

2
tr (C−1x⊗ C−1x− C−1)

∂C

∂Cij
exp(−1

2
x · C−1x)

√
det C−1

=
1

2
∂ij

[
exp(−1

2
x · C−1x)

√
det C−1

]
.

Therefore, by two integration by parts (which are justified since F is of polynomial growth), (1.2.11)
turns into

∂

∂Cij
〈F 〉C =

1

2

ˆ
∂ijF (x)

1

(2π)d
exp(−1

2
x · C−1x)

√
det C−1dx,

which is exactly (1.2.10).

In the infinite dimensional context, the family of measure 〈·〉c are now Gaussian measures on a
Banach space X. We show that a version of formula (1.2.10) holds if we assume an additional
structure on X (which is classical in the theory, see [33]).

1.2.6 Bias in the Representative Volume Element method: periodize the en-
semble instead of its realizations (Chapter 5)

In Chapter 5, we continue the investigation of the quantitative homogenization of linear elliptic
systems (1.2.1). We analyse the so-called representative volume element method (RVE) that we use
to approximate the homogenized matrix given by, for all e ∈ Rd, ahom = E[a(0)(∇φe(0) + e)].

The RVE method. Suppose that the coefficient field a is L-periodic, meaning that a(x+ Lk) =
a(x) for all x and k ∈ Zd. Given a Cartesian coordinate direction i = 1, · · · , d and denoting by ei
the unit vector in the i-th direction, we consider the corrector (up to additive constants) φ(1)

i as the
L-periodic solution of

−∇ · a(∇φ(1)
i + ei) = 0, (1.2.12)

to which we associate the corresponding homogenized matrix:

āei :=

 
[0,L)d

a(∇φ(1)
i + ei). (1.2.13)

Observe that the notation ā without reference to the period L is legitimate since (1.2.13) is equiv-
alent to āei = limR↑∞

ffl
[0,R)d a(∇φ(1)

i + ei). In the periodic case, (1.2.13) in fact coincides with the
homogenized coefficient ahom. In the random case, we expect that (1.2.13) provides a good approx-
imation of ahom as L ↑ +∞. An important choice in the method is the strategy of periodization
of the coefficients. Two strategies can be employed, whence we quantify the convergence for one of
them.

Two strategies of periodizing. In order to apply the RVE method in form of (1.2.13), consid-
ered as an approximation for ahom, one needs to produce samples a of L-periodic coefficient fields
connected to the given ensemble 〈·〉. The goal of this chapter is to prove that, to procure such
L-periodic samples, the strategy of "periodizing the ensemble" leads to a smaller error than the
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strategy of "periodizing the realizations". The first strategy of "periodizing the realizations” is a
direct periodization procedure: Taking a coefficient field a in Rd, we restrict it to the box [0, L)d

and then periodically extend it. This defines a map a 7→ aL. We then take aL, cf. (1.2.13), as an
approximation for ahom. One unfavorable aspect of this strategy is obvious: The pushforward of 〈·〉
under this map a 7→ aL is no longer stationary – an imagined glance at a typical realization would
reveal d families of parallel artificial hypersurfaces. Suboptimal convergence rates for this strategy
has been establish in [34] and numerical experiments in [145] is in favour of a bias of order O(L−1).
To the best of our knowledge, no formal argument in favour of such a behaviour are established in
the literature and such arguments will be added in the work in preparation [48].

The second strategy of "periodizing the ensemble" is more subtle: Given an ensemble 〈·〉, one
construct a “related” stationary ensemble 〈·〉L of L-periodic fields samples a from 〈·〉L and takes ā
as an approximation. This second strategy was (probably not for the first time) laid out in [79,
Remark 5]; we will give the construction of the map 〈·〉 〈·〉L for a specific but relevant class of 〈·〉
given in Assumption 8. This approach obviously capitalizes on the knowledge of the ensemble 〈·〉
and not just of a single realization (a “snapshot”), in the sense of “known unknowns” as opposed to
“unknown unknowns”. This is in contrast with the numerical analysis on inferring ahom in [127], or
on constructing effective boundary conditions in [114] from a snapshot.

Fluctuations and bias. In this chapter, we are interested in the second strategy and in the study
of its bias (also called systematic error): How much do the expected value 〈ā〉L deviate from ahom,
which by qualitative theory is their common limit for L ↑ ∞. We shall prove that

〈ā〉L − ahom = O(L−d), (1.2.14)

see Theorems 9. Here L should be thought of as the (non-dimensional) ratio between the actual
period L and a suitably defined correlation length of 〈·〉 set to unity. The quantification of the
convergence in L is clearly of practical interest: After a discretization that resolves the correlation
length, the number of unknowns of the linear algebra problem (1.2.12) scales with Ld for L � 1.
Numerical experiments confirm the O(L−d) scaling, see for instance [103].

We note that fluctuations (which are at the origin of the random part of the error), as for instance
measured in terms of the square root of the variance, are in many situations proven to be of the
order (see, e.g., [88, Th. 2])

〈|ā− 〈ā〉L|2〉
1
2
L = O(L−

d
2 ), (1.2.15)

and the same is expected to hold for the other strategy [63, (3.3)]

〈|aL − 〈aL〉|2〉
1
2 = O(L−

d
2 ).

Hence the variance scales like the inverse of the volume Ld of the periodic cell [0, L)d, as if we were
averaging over [0, L)d some field of unit range of dependence instead of the long-range correlated
a(ei+∇φi). In view of this identical fluctuation scaling for both strategies, the different bias scaling
is significant in the most relevant dimension d = 3, which we mostly focus on in this paper: For the
first strategy (by periodization of the realizations), the bias dominates, so that taking the empirical
mean of aL over many realizations a does not substantially reduce the total error. It does so in the
second scenario, which suggests to use variance reduction methods [45, 69].

Theoretical results on the random error in RVE, at least for the second strategy like in (1.2.15),
are by now abundant, starting from [82, Theorem 2.1] for a discrete medium with i. i. d. coefficient,
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over [91, Theorem 1] for a class of continuum media based on the Poisson point process, to the
leading-order identification of the variance in [55, Theorem 2]. The last result arises from the
characterization of leading-order variances in stochastic homogenization in general, starting from
[128, Theorem 2.1] for correctors, and is in the spirit of the general approach laid out in [94].

Theoretical results on the systematic error in RVE, again for the second strategy as in (1.2.14),
seem to have been restricted to the case of a discrete medium with i. i. d. coefficients, see [88,
Proposition 3], where the construction of 〈·〉L is obvious. The argument for [88, Proposition 3] is
based on a (necessarily non-stationary) coupling of 〈·〉 and 〈·〉L, and introduces a massive term into
the corrector equation in order to screen the resulting boundary layer, which leads to a logarith-
mically worse estimate than (1.2.14). Our analysis avoids this coupling and suggests that such a
logarithmic correction is artificial. (Incidentally, the phenomenon that the bias decays to an order
that is twice the order of the fluctuation decay occurs also in the analysis of the homogenization
error (−∇ · a∇)−1f − (−∇ · ahom∇)−1f itself: While the variance can be characterized to order
O(L−d), where L � 1 now is the ratio between the scale of f and the correlation length, see [56,
Theorem 1], the expectation seems to be characterized to order O(L−2d), see [61].)

From a practical point of view, the first strategy seems more appealing since it is less intrusive,
because it only requires snapshots (which could be directly obtained from measures). However, it has
been realized quite early in the numerical literature (see, e.g., [102]) that it is less accurate than the
second strategy, because, as explained above, it suffers from a large bias. Based on experiments on
periodic coefficient fields, oversampling [99] and filtering [32] strategies were first proposed in order
to achieve a better accuracy. Unfortunately, their efficiency is limited for random media (they cannot
perform better than O(L−1)). This motivated an alternative approach that screens the boundary
effects by adding a massive zero-th order term to the equation (1.2.12) defining the correctors [86],
which is nonetheless inspired from theoretical considerations [82]. This was combined with a sort
of domain decomposition in [127] and proved to achieve (almost) the best possible accuracy for a
given computational cost in the case where only snapshots are available [127, Prop. 1.1 & Th. 1.2],
with an error O(δ) at the cost of O(δ−2) elementary operations (up to logarithms).

Assumptions and formulation of rigorous result We now introduce the class of stationary
ensembles 〈·〉 of λ-uniform coefficient fields a considered in this paper. Loosely speaking, it consists
of regular pointwise transformation, see (1.2.17), of a stationary Gaussian field g with integrable
covariance function. The ensemble is determined by the (translation invariant) covariance function
c and the pointwise transformation A. Assumption 8 collects the two quantitative hypotheses on c
and A needed, see (1.2.16) and (1.2.18), respectively.

Assumption 8. Let 〈·〉 be a stationary and centered Gaussian ensemble of scalar31 fields g on Rd,
as determined by the covariance function c(x) := 〈g(x)g(0)〉. We assume that there exists an α > 0
such that

sup
x∈R

(1 + |x|)d+n+2α|∇nc(x)| <∞ for n ∈ {0, · · · , d+ 1}. (1.2.16)

We identify 〈·〉 with its push forward under the map

g 7→ a :=
(
x 7→ A(g(x))

)
, (1.2.17)

31For notational simplicity, we consider scalar Gaussian field, however, the Gaussian field g may take values in any
finite dimensional linear space.
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where A : R→ Rd×d is such that the coefficient field a is λ-uniformly elliptic. We assume that

sup
g∈R
|A′(g)|+ |A′′(g)| <∞. (1.2.18)

The purely technical reason for going beyond first-order derivatives in characterizing a decay of
order d + α in (1.2.16) is that it implies the following property on the level of the (automatically
non-negative) Fourier transform

0 ≤ Fc(k) . (1 + |k|)−d−2α for k ∈ Rd,

which allows us to appeal to [101]. However, the class of ensembles 〈·〉 from Assumption 8 is
mainly chosen because it allows for a straightforward periodization, namely through periodizing the
covariance function. Note that since α > 0, (1.2.16) in particular ensures that the sum in (1.2.19)
converges absolutely.

We periodize the ensemble 〈·〉 by periodizing the covariance function c (see (1.2.19) below). This
periodization is natural because it formally amounts to considering realizations of the ensemble 〈·〉
conditioned on [0, L)d-periodicity. We sketch a formal argument for it.32 We may indeed represent
the Gaussian field g generated from 〈·〉 by g = m ∗ ξ, where ξ is the standard Gaussian white
noise and where m := F−1

(√
Fc
)
is the model associated to c. Assuming that F(c) > 0 (since c

is a covariance function, we already have F(c) ≥ 0), we construct the [0, L)d-periodic realizations
gL = m?ξL, for the [0, L)d-periodic realization of the white noise ξL =

∑
k∈Zd ξ(·−kL)1[0,L)d(·−kL).

Computing the covariance function for such realizations ξ yields (1.2.19).

Definition 1.2.1. For given L < ∞, let 〈·〉L be the stationary and centered Gaussian ensemble of
scalar fields g defined by the covariance function

cL(x) :=
∑
k∈Zd

c(x+ Lk). (1.2.19)

Clearly, the covariance function cL and thus the realizations g are L-periodic. As in Assumption 8
we identify 〈·〉L with its push forward under (1.2.18).

Equipped with the ensemble 〈·〉L, we can state our main result.

Theorem 9. Let d > 2 and A be symmetric. Under the Assumption 8 on 〈·〉, for all L, and with
the Definition 1.2.1 of 〈·〉L we have for the expectation 〈ā〉L of ā defined in (5.1.3)

lim sup
L↑∞

Ld|〈ā〉L − ahom| <∞.

Note that the assumption that A is symmetric in Theorem 9 is only for convenience and allow
us to simplify the use of second order correctors. For more precisions, we refer to Section. 5.2.2. We
also give in Theorem 30 a refinement of Theorem 9 by characterizing the leading-order error term.

32This formal argument can be made rigorous if the ensemble 〈·〉 itself is discrete and periodic with a very large
period with respect to L.
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Chapter 2

Optimal decay of the parabolic
semigroup for linear elliptic systems with
for correlated coefficient fields

We study the large scale behaviour of elliptic systems with stationary random coefficient that have
only slowly decaying correlations. To this aim we analyse the so-called corrector equation, a degen-
erate elliptic equation posed in the probability space. In this chapter, we use a parabolic approach
and optimally quantify the time decay of the semigroup. For the theoretical point of view, we prove
an optimal decay estimate of the gradient and flux of the corrector when spatially averaged over a
scale R ≥ 1. For the numerical point of view, our results provide convenient tools for the analysis
of various numerical methods. This chapter is based on the Preprint [47].

The chapter is organized as follows: In Section 2.1.1 we introduce notations and make the assump-
tions on the coefficient field precise. In Section 2.1.2 we state our main result and its consequences.
Section 2.2 describes the strategy of the proof and list the auxiliary results needed in the proof of
the main theorem. The results are proved in Section 2.3. .
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2.1 Assumptions, notations and main results

We decide in this chapter to use scalar notations but the analysis remains true for systems. Also,
we use the abbreviations "r.h.s" and "l.h.s" for right hand side and left hand side respectively.

2.1.1 Assumptions and notations

We define in this section the assumptions and notations that we use specifically in this chapter.

Assumptions on the coefficient field. We consider a coefficient field a : Rd → Rd×d of the
form, for all x ∈ Rd

a(x) := A(g(x)), (2.1.1)

for a given Lipschitz map A : Rk → Rd×d, for some k ≥ 1, which takes values in the set of uniformly
elliptic and bounded matrices, and a given Gaussian field g. More precisely we assume that there
exists 0 < λ ≤ 1 (fixed once for all) such that for all s ∈ Rk and ξ ∈ Rd

λ|ξ|2 ≤ ξ ·A(s)ξ and |A(s)ξ| ≤ |ξ|, (2.1.2)

and that g : Rd → Rk is a stationary Gaussian field1 on Rd of zero mean on some probability space
(Ω,A, 〈·〉), characterized by its covariance function c : x ∈ Rd 7→ 〈g(0) ⊗ g(x)〉. The ensemble2 〈·〉
satisfies the standard stationarity and ergodicity assumptions. We refer to Section 1.1.2 for preci-
sions on the qualitative assumptions.

We assume that there exists a smooth non-increasing function γ such that for all x ∈ Rd

|c(x)| ≤ γ(|x|). (2.1.3)
1It can be generated via the model g = m ?W, for m ∈ L2(Rd) and W a white noise. See Section 1.1.2.
2We use the symbol 〈·〉 to address both the ensemble and to denote its expectation operator.
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In this context, we recall that 〈·〉 satisfies a multiscale logarithmic Sobolev inequality (see Section
1.1.5 for precisions), that we restate here. For all square integrable functional F of a (see [60,
Th.3.1,(ii)]): there exists ρ > 0 such that

Ent(F (a)) := 〈F 2(a) log(F 2(a))〉 − 〈F 2(a)〉〈log(F 2(a))〉 ≤ 1

ρ

〈ˆ +∞

1
`−dπ(`)

ˆ
|∂fct
x,`F (a)|2dx d`

〉
,

(2.1.4)
where for all x ∈ Rd and ` ∈ [1,+∞)

∂fct
x,`F := sup

{
lim sup
h→0

F (a+ hδa)− F (a)

h
, sup

B`(x)
|δa| ≤ 1, δa = 0 outside B`(x)

}
, (2.1.5)

and where the weight π satisfies
π(`) = |γ′(`)|.

In this contribution, we specialize to algebraic decay and assume that there exists β > 0 such that
for all ` ∈ [1,+∞)

γ(`) = (`+ 1)−β. (2.1.6)

General notation. For U ⊂ Rd open and p ∈ [1,+∞], we denote by Lp(U) the Lebesgue space on
U with exponent p, that is, the set of measurable functions f : U → Rd satisfying

‖f‖Lp(U) :=

( ˆ
U
|f(x)|pdx

) 1
p

< +∞,

and where for p = +∞

‖f‖L∞(U) := inf{C > 0||f(x)| ≤ C for almost all x ∈ U}.

The vector space of functions on Rd which belongs to Lp(U) whenever U is bounded is denoted by
Lploc(R

d). If |U| < +∞ and f ∈ L1(U), then we write
 
U
f(x)dx :=

1

|U|

ˆ
U
f(x)dx.

For all U , we denote by H1(U) the space of all measurable functions f : U → Rd in L2(U) such that
∇f is in L2(U). We also define H1

loc(Rd) the space of functions which belongs to H1(U) whenever U
is bounded.

For all p ∈ [1,+∞), we denote by Lp〈·〉(Ω) the space of random variables X : Ω→ Rd satisfying

〈Xp〉
1
p < +∞.

If B is a Banach space, then for all p ∈ [1,+∞), we denote by Lp(Rd,B) (resp. Lploc(R
d,B)) the

space of measurable functions f : Rd → B such that ‖f(·)‖B ∈ Lp(Rd) (resp. ‖f(·)‖B ∈ Lploc(R
d)).

For all time interval I := [t1, t2) and open subset U ⊂ Rd, we define the function space

H1
par(I× U) := {u ∈ L2(I,H1(U))|∂τu ∈ L2(I,H−1(U)}.
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and we say that u ∈ H1
par(I× U) is a weak solution of{

∂τu−∇ · a∇u = ∇ · f in I× U ,
u(t1) = ∇ · g,

for r.h.s f ∈ L2(I× U)d and initial data g ∈ Lq(U)d (for some q ∈ [1,+∞]) if for all ψ ∈ C∞c (I× U)

−
ˆ
U

ˆ t2

t1

u(t, x)∂τψ(t, x)dt dx+

ˆ
U

ˆ t2

t1

∇u(t, x) · a(x)∇ψ(t, x)dt dx+

ˆ
U
g · ∇ψ(t1, x)dt dx

= −
ˆ
U

ˆ t2

t1

f(t, x)∇ψ(t, x)dt dx.

For all R ≥ 1, we define the exponential kernel ηR by

ηR :=
1

Rd
e−
|·|
R ,

and the Gaussian kernel gR by

gR :=
1

Rd
e−
|·|2

R2 .

For all measurable functions f and all r > 0, we denote by fr the convolution with the Gaussian
kernel gr, namely

fr := f ? gr =

ˆ
f(y)gr(· − y)dy.

We say that a random field X : Ω× Rd → R is stationary if we have for all x ∈ Rd

X(a, ·+ x) = X(a(·+ x), ·) almost surely. (2.1.7)

For all R > 0 and (s, x) ∈ Rd+1, we write BR(x) := {y ∈ Rd||x − y| < R} for the ball of radius R
centered at x and CR(s, x) := (s − R2, s) × BR(x) for the parabolic cylinder centered at (s, x) and
of radius R (for (s, x) = (0, 0), we do not write the dependance on (s, x)). We use the short-hand
notation .α1,...,αn for ≤ C for a constant C which depends only on the parameters (αi)i∈J1,nK.

We write for all (a, b) ∈ R2, a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Homogenization theory. We denote by φe(·, a) ∈ H1
loc(Rd) the corrector, in the direction of

a unit vector e of Rd, as the unique distributional solution of, for almost all realization of a
−∇ · a(∇φe + e) = 0 in Rd,

with lim sup
R→+∞

1

R

( 
BR
|φe(x)|2dx

) 1
2

= 0 and
ˆ

B1

φe(x)dx = 0.
(2.1.8)

For the existence of correctors, we refer to [80, Lem. 1].

For all T ≥ 1, we denote by φe,T the massive corrector, defined as the Lax-Milgram solution in
H1

uloc(Rd) := {ψ ∈ H1
loc(Rd)| supx∈Rd

´
B1(x) |ψ|

2 + |∇ψ|2 < +∞}, to

1

T
φe,T −∇ · a(∇φe,T + e) = 0 in Rd. (2.1.9)



2.1. Assumptions, notations and main results 57

For the existence and uniqueness of the massive correctors, we refer to [84]. Likewise, we denote by
φ∗e and φ∗e,T the solutions of (2.1.8) and (2.1.9) with a replaced by a∗, the transposed field of a. We
denote by ue ∈ H1,par

uloc the semigroup associated with the corrector problem (2.1.8) defined as the
weak solution of {

∂τue −∇ · a∇ue = 0 in (0,+∞)× Rd,
ue(0) = ∇ · a(·)e, (2.1.10)

with

H1,par
uloc :=

{
u ∈ C0(R+

∗ ,H
1
loc(Rd))

∣∣∣∣
sup
T>0

sup
R≥
√
T

 
BR
|(T∇u(T, x),

√
Tu(T, x))|2dx+

∣∣∣∣ ˆ T

0
(∇u(s, x),

1√
T
u(s, x))ds

∣∣∣∣2dx < +∞
}
.

For existence and uniqueness of ue, we refer to [92, Lemma 1].

We also introduce the associated fluxes

qe := a(∇φe + e), (2.1.11)

for all T ≥ 1
qe,T := a(∇φe,T + e), (2.1.12)

and for all t ≥ 0

qe(t, ·) := a(·)
( ˆ t

0
∇ue(s, ·)ds+ e

)
, (2.1.13)

as well as the associated time dependent corrector, for all t ≥ 0

φe(t, ·) :=

ˆ t

0
∇ue(s, ·)ds. (2.1.14)

We introduce the flux corrector σ = (σi,j,k)(i,j,k)∈J1,dK3 as the unique distributional solution of, for
almost all realization of a

∇ · σi = qei ,
−∆σi,j,k = ∂j(ek · qei)− ∂k(ej · qei) in Rd,

with lim sup
R→+∞

1

R

( 
BR
|σi(x)|2dx

) 1
2

= 0 and
ˆ

B1

σi(x)dx = 0,

(2.1.15)

where (∇ · σi)j =
∑d

k=0 ∂kσi,j,k and ∂i denotes the partial derivative with respect to the single
coordinate xi. For existence and uniqueness, we refer to [80, Lem. 1].

Finally, for all T ≥ 1, we denote by σT = (σT,i,j,k)(i,j,k)∈J1,dK3 the massive flux corrector, defined as
the Lax-Milgram solution in H1

uloc(Rd) to

1

T
σT,i,j,k −∆σT,i,j,k = ∂j(ek · qei,T )− ∂k(ej · qei,T ). (2.1.16)

For the existence and uniqueness of the massive flux corrector, we refer to [84].

The quantities ue,∇φe,∇σ, qe, φe,T and qe,T are stationary in the sense of (2.1.7), which implies
that the distribution of their convolution with some smooth function f , under the stationary en-
semble 〈·〉, does not depend on the space variable. In the following, we do not distinguish between
F ? f(0) and F ? f in our notation, for all stationary random fields F .
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2.1.2 Quantitative results

Our first main result is split in two quantitative estimates on averages of the time dependent flux
(2.1.13). First, we show that the fluctuations of (qe)r(T ) on scale r ∈ [1,

√
T ] decays as the central

limit theorem scaling r−
d
2 times some growth in time which depends on the correlation (in particular,

in the case β > d, we get exactly the central limit theorem scaling). Second, we show that the
fluctuations of particular averages qe(r2) ? fr, for all r ≥ 1 and fr which behaves like

´ r2

1 ∇g√sds,
has some growth in r depending on the correlation. The first result is a key estimate to obtain the
optimal decay in time of the semigroup ue, whereas the second is needed to get the optimal growth
of the correctors state in Corollary 3. We prove those estimates for stretched exponential moments.

Theorem 10 (Fluctuations of averages of the time dependent flux). Let T ≥ 1 and e ∈ Rd be a
unit vector of Rd.

• For all 1 ≤ r ≤
√
T , we have

|((qe)r(T ),∇(φe)r(T ))− 〈((qe)r(T ),∇(φe)r(T ))〉| ≤ C?,d,λ,β(r)r−
d
2µβ(T )(1 + log2(

√
T

r
)),

(2.1.17)
with

µβ(T ) :=


T
d
4
−β

4 if β < d,

log
1
2 (T ) if β = d,

1 if β > d.

(2.1.18)

• For all r ≥ 1 and function fr ∈ C1
b(Rd) which satisfies for all x ∈ Rd

|fr(x)| . |x|
ˆ r2

1
s−1g√s(x)ds and |∇fr(x)| . |x|2

ˆ r2

1
s−2g√s(x)ds, (2.1.19)

we have

|(qe(r2),∇(φe)(r
2)) ? fr − 〈(qe(r2),∇(φe)(r

2)) ? fr〉| ≤ C?,d,λ,β(r)χd,β(r), (2.1.20)

with

χd,β(r) :=


(r + 1)1−β

2 for β < 2 and d > 2,

(r + 1)1−β
2 log(r + 2) for β ≤ 2 and d = 2,

log
1
2 (r + 2) for β = 2 and d > 2 or β > 2 and d = 2,

1 for β > 2 and d > 2.

(2.1.21)

The random variable r ∈ R+ 7→ C?,d,λ,β(r) depends on d, λ, β and satisfies: for all α < 1
1
2

+2 d+1
β∧d

there exists some constant C < +∞ depending on d, λ, β and α such that

sup
r≥0

〈
exp(

1

C
Cα?,d,λ(r))

〉
≤ 2. (2.1.22)

Theorem 10 implies the following optimal decay in time of the semigroup ue (defined in (2.1.10))
and of its gradient. This result is in the spirit of [88, Th.1] established in the discrete setting
and extends [92, Cor.4] and [8, Th.9.1] established in the case where the coefficients are randomly
distributed according to a stationary ensemble of finite range of dependence to the Gaussian setting.
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Corollary 1 (Decay of the semigroup). There exists a constant c < +∞ depending on λ and d such
that for all T ≥ 1, R ≥

√
T and unit vector e ∈ Rd(ˆ

ηR(
y

c
)|ue(T, y)|2dy

) 1
2

+
√
T

(ˆ
ηR(

y

c
)|∇ue(T, y)|2dy

) 1
2

≤ C?,d,λ,β(T )ηβ(T ), (2.1.23)

with for all T ≥ 1

ηβ(T ) =


T−

1
2
−β

4 if β < d,

log
1
2 (T )T−

1
2
− d

4 if β = d,

T−
1
2
− d

4 if β > d,

(2.1.24)

and for some random variable T ∈ R+
∗ 7→ C?,d,λ,β(T ) which depends on d, λ, β and satisfies: for all

α < 1
1
2

+2 d+1
β∧d

there exists some constant C < +∞ depending on d, λ, β and α such that

sup
T>0

〈
exp(

1

C
Cα?,d,λ,β(T ))

〉
≤ 2.

In particular for all x ∈ Rd

〈|∇ue(T, x)|2〉
1
2 .d,λ T

− 1
2 ηβ(T ). (2.1.25)

Remark 1. Let us briefly comment on the results of Theorem 10 and Corollary 1.

1. Let us first comment on the scalings. The time decay ηβ(T ) of Corollary 1 is optimal, is the
sense that it is the optimal scaling in the case of the small contrast regime (see the computations
done in Section 1.2.3). We now comment the scalings in Theorem 10. First, the decay r−

d
2µd(T )

in (2.1.17) is also optimal in the sense that it is satisfied in the case of the small contrast regime
(meaning that we consider a scalar model a ∈ R with aδ = (1 + 1

π arctan(πδa))Id, for δ � 1,
using the notations of Section 1.2). Indeed, it may be verified by an explicit computation. We
fix 1 ≤ r ≤

√
T . By linearizing around δ ↓ 0, the first order approximation of the time depend

flux is given by qe ≈ δq where for all T ∈ R+

q(T, ·) :=

ˆ T

0
∇u(s, ·)ds+ e, (2.1.26)

and where we recall that u is defined in (1.2.4). Using the fact that there exists a constant
C depending on d such that Γ(T, ·) = Cg√T and the semigroup property, for all s ∈ [0, T ),
g√s ? gr = g√s+r2 as well as (1.2.5) and (2.1.26), we deduce

qr(T, ·)
(1.2.5),(2.1.26)

= C

ˆ T

0
∇(∇g√s ? a(·)e ? gr)ds+ e ? gr = C

ˆ T

0
∇(∇g√s+r2 ? a(·)e)ds+ e ? gr

(1.2.5)
=

ˆ T

0
∇u(s+ r2, ·)ds+ e ? gr.

(2.1.27)

Consequently, using the moment bounds shown in Section 1.2.3 of ∇u and the fact that
r ≤
√
T , we get (noticing that 〈∇u〉 = 0)

〈|qr(T )− 〈qr(T )〉|2〉
1
2 =

〈∣∣∣∣ ˆ T

0
∇u(s+ r2, 0)ds

∣∣∣∣2〉 1
2

≤
ˆ T

0
〈|∇u(s+ r2, 0)|2〉

1
2ds

.d,β

ˆ T

0
(s+ r2)−

1
2 ηβ(s+ r2)ds

.d,β r
− d

2µβ(T ),
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where µβ(T ) is defined in (2.1.18).

Second, the scaling χd,β(r) in (2.1.20) is optimal, except for β < 2 and d = 2. Indeed, it
may be verified by an explicit computation as previously assuming for simplicity the more
particular form fr =

´ r2

1 ∇g√τdτ (which satisfies (2.1.19)). We may argue as in (2.1.27) to get

q(r2) ? fr − 〈q(r2) ? fr〉 =
´ r2

1

´ r2

0 ∇
2u(s + τ, ·)ds dτ . We then argue differently between the

regimes of β and d.

In the regimes β > 2, d > 2 or β < 2, d ≥ 2, we directly estimate

〈|q(r2) ? fr − 〈q(r2) ? fr〉|2〉
1
2 =

〈∣∣∣∣ ˆ r2

1

ˆ r2

0
∇2u(s+ τ, 0)ds dτ

∣∣∣∣2〉 1
2

≤
ˆ r2

1

ˆ r2

0
〈∇2u(s+ τ, 0)|2〉

1
2ds dτ,

and we then conclude using that 〈|∇2u(s+ τ, 0)|2〉
1
2 .d,β

√
p(s+ τ)−1ηβ(s+ τ) (easily obtain

by following the argument of Section 1.2.3). Note that, for β < 2 and d = 2, we obtain r1−β
2

and thus the logarithmic contribution in (2.1.20) in this case is not optimal.

In the regimes β > 2, d = 2, β = 2, d > 2 and β = d = 2, this is more subtle and we have
to expand the variance in order to capture the right behaviour in r. Assuming that a = g,
c(x − y) := 〈g(x)g(y)〉 = (1 + |x − y|)−β and applying ∇2 to (1.2.5), we may express the
variance as (we implicitly sum on repeated indices)

〈|q(r2) ? fr − 〈q(r2) ? fr〉|2〉 =

ˆ ˆ ˆ r2

1

ˆ r2

0
∂ijkΓ(s+ τ, x)ekds dτ

×
ˆ r2

1

ˆ r2

0
∂ijmΓ(s′ + τ ′, y)emds′ dτ ′(1 + |x− y|)−βdx dy.

(2.1.28)

In what follows, we use the short-hand notation γm :=
´ r2

1

´ r2

0 ∂ijmΓ(s′ + τ ′, ·)emds′ dτ ′ and
note that a direct computation gives

ˆ
|γm| . r and |γm(y)| . r

(|y|+ 1)d
∧ 1

(|y|+ 1)d−1
. (2.1.29)

On the one hand, in the case where β > 2 and d = 2, x 7→ (1 + |x|)−β is integrable and thus
by the Cauchy-Schwarz inequality the variance (2.1.28) is of order of

ˆ ˆ
|γk(y)|2(1 + |x− y|)−βdx dy

(2.1.29)
.

ˆ
Br

1

(|y|+ 1)2
dy + r2

ˆ
Rd\Br

1

(|y|+ 1)4
dy

∼ log(r + 2).

On the other hand, in the case where β = 2 and d ≥ 2, we split the variance into the far-field
contribution

´
Rd\Br dx and the near-field contribution

´
Br dx where, for each contributions, we
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bound x 7→
´
γm(y)(1 + |x− y|)−2dy. For the far-field contribution, we use

ˆ
γm(y)(1 + |x− y|)−2dy =

ˆ
B |x|

2

(x)
γm(y)(1 + |x− y|)−2dy +

ˆ
Rd\B |x|

2

(x)
γm(y)(1 + |x− y|)−2dy

(2.1.29)
.

1

(|x|+ 1)d−1

ˆ
B |x|

2

(|y|+ 1)−2dy + (|x|+ 1)−2

ˆ
|γm|

(2.1.29)
. (|x|+ 1)−1(1 + 1d=2 log( |x|2 )) + r(|x|+ 1)−2, (2.1.30)

such a way that the far-field contribution is of order of, after a polar change of coordinates
and using (2.1.29)

ˆ
Rd\Br

γk(x)

ˆ
γm(y)(1 + |x− y|)−2dy dx . r

ˆ +∞

r
(1 + ρ)−d−1(1 + 1d=2 log(ρ))ρd−1dρ

∼ 1 + 1d=2 log(r + 2).

For the near-field contribution, we proceed the same way as in (2.1.30), expect for the contri-
bution in

´
Rd\B |x|

2

(x) that we estimate by a dyadic decomposition

ˆ
Rd\B |x|

2

(x)
γm(y)(1 + |x− y|)−2dy ≤

+∞∑
n=dlog(

|x|
2

)e

2−2n

ˆ
B2n+1(x)\B2n(x)

|γm|

≤
+∞∑

n=dlog(x
2

)e

2−2n

ˆ
B2n+1+|x|

|γm|

(2.1.29)
.

+∞∑
n=dlog(x

2
)e

2−2n

ˆ
B2n+1+|x|

(|y|+ 1)−d+1dy

. (|x|+ 1)−1,

so that the near-field contribution is of order of, after a polar change of coordinates and using
(2.1.29)

ˆ
Br
γk(x)

ˆ
γm(y)(1 + |x− y|)−2dy dx .

ˆ r

0
(ρ+ 1)−d(1 + 1d=2 log(ρ))ρd−1dρ

∼ log(r + 2)(1 + 1d=2 log(r + 2)).

2. Due to the computations done above, the logarithm correction in (2.1.17) is not optimal. In
fact, this correction is here for technical reasons and mostly a consequence of the logarithm
contribution in (2.2.39). However, in practice, it has no consequences in the proof of the optimal
decay in time of ∇ue and also in the proof to obtain the optimal growth of the correctors and
their gradients (see Corollary 2 and 3) for which only the regime T ∼ r2 is needed.

Theorem 10 and Corollary 1 imply the following four results that are of interest in stochastic ho-
mogenization. The first one yields bounds on the gradient and flux of the extended corrector (φe, σ),
as well as the massive corrector (φe,T , σT ), which gives an alternative proof of [89, Th.1]. Thanks
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to the decay (2.1.23), the idea of the proof is clear: since lim
T→+∞

ue(T, ·) = 0 and
´ +∞

0 ∇ue(t, ·)dt is

well defined in L2
loc(Rd,L2

〈·〉(Ω)), we have by integrating the equation (2.1.10) in time

−∇ · ae−∇ · a
ˆ +∞

0
∇ue(t, ·)dt = 0,

and we then recognize the corrector equation (2.1.8). By uniqueness, we then conclude that

∇φe(·) =

ˆ +∞

0
∇ue(t, ·)dt. (2.1.31)

Formula (2.1.31) combined with (2.1.23) then allow us to prove bounds on the gradient of correctors
as well as on the flux.

Corollary 2 (Bounds on the flux and the gradient of correctors). We have for all r ≥ 1, T ≥ 1 and
unit vector e ∈ Rd

|(qe)r−〈(qe)r〉|+ |(qe,T )r−〈(qe,T )r〉|+ |∇(φe)r|+ |∇σr|+ |∇(σT )r|+ |∇(φe,T )r| ≤ C?,d,λ,β(r)π
− 1

2
? (r),

(2.1.32)
with some random variable r ∈ [1,+∞) 7→ C?,d,λ,β(r) which depends on d, λ, β and satisfies: for all
α < 1

1
2

+
5
2 d+2

β∧d

there exists some constant C < +∞ depending on d, λ, β and α such that

sup
r>0

〈
exp(

1

C
Cα?,d,λ,β(r))

〉
≤ 2,

and for all r ≥ 1

π?(r) =


rβ if β < d,
rd log−1(r) if β = d,
rd if β > d.

In particular, for β > d, the quantities decay as the central limit theorem scaling r−
d
2 .

Corollary 2 combined with Theorem 10 implies the following growth on the extended corrector
(φe, σ).

Corollary 3. We have for all unit vector e ∈ Rd and x ∈ Rd

(|(φe, σ)− (φe, σ)1(0)|2)
1
2
1 (x) ≤ C?,d,λ,β(x)ξd,β(|x|), (2.1.33)

with for all x ∈ Rd

ξd,β(|x|) :=


(|x|+ 1)1−β

2 for β < 2,
log

1
2 (|x|+ 2) for β = 2, d > 2 or β > 2, d = 2,

log(|x|+ 2) for β = d = 2,
1 for β > 2, d > 2,

(2.1.34)

and some random variable x ∈ Rd 7→ C?,d,λ,β(x) which depends on d,λ,β and satisfies: for all
α < 1

1
2

+
5
2 d+2

β∧d

there exists some constant C < +∞ depending on d, λ, β and α such that

sup
x∈Rd

〈
exp(

1

C
Cα?,d,λ,β(x))

〉
≤ 2.
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Remark 2. The choice of the convolution with the Gaussian in (2.1.32) and (2.1.33) is not crucial.
Indeed, for all r ≥ 1 and fr := r−df( ·r ) with f ∈Wα,1(Rd) (for some α > 0), we may deduce from
(2.1.32) and (2.1.33) that ∣∣∣∣ˆ ψ(y)fr(y)dy

∣∣∣∣ ≤ C1,?,d,λ,β(r)π
− 1

2
? (r),

where ψ can be replaced by one of the quantities which appears in (2.1.32), as well as for all x ∈ Rd

(|(φe, σ)− (φe ? f, σ ? f)(0)|2 ? f)
1
2 (x) ≤ C2,?,d,λ,β(x)ξd,β(|x|).

The two random variables C1,?,d,λ,β(r) and C2,?,d,λ,β(x) depend on f and have the same stochastic
integrability as in Corollary 2 and Corollary 3. For more details, we refer to [8, Remark 4.28].

From Corollary 3, we obtain the following quantitative convergence of the two-scale expansion.

Corollary 4 (Convergence rate of the two-scale expansion). Let g ∈ H1(Rd) such that ξd,β(| ·
|)∇g ∈ L2(Rd), and for all ε > 0 let vε and vhom be the Lax-Milgram solutions, in Ḣ1(Rd) := {v ∈
H1

loc(Rd)|∇v ∈ L2(Rd)}/R, of

−∇ · a( ·ε)∇vε = ∇ · g and −∇ · ahom∇v = ∇ · g,

with, for all e ∈ Rd
ahom = 〈a(∇φe + e)〉. (2.1.35)

Consider the two-scale expansion error

zε := vε − (vhom,ε + ε

d∑
i=1

φei(
·
ε

)∂ivhom,ε),

where vhom,ε is a simple moving average of vhom at scale ε, that is vhom,ε = (vhom)ε(0). Then(ˆ
|∇zε(x)|2dx

) 1
2

≤ C?,d,λ,β,g(ε)εξd,β(ε−1)

(ˆ
ξ2
d,β(|x|)|∇g(x)|2dx

) 1
2

,

where ξd,β is defined in (2.1.34) and for some random variable ε ∈ R+
∗ 7→ C?,d,λ,β,g(ε) which depends

on d, λ, β, g and satisfies: for all α < 1

1
2

+
5
2 d+2

β∧d

, there exists some constant C depending on d, λ, β,

g and α such that

sup
ε∈R+

∗

〈
exp(

1

C
Cα?,d,λ,β,g(ε))

〉
≤ 2.

Remark 3. The need for local averages at scale ε of vhom is due to the fact that the corrector estimate
(2.1.34) only holds for average of (φe, σ) under minimal regularity assumption on a. However, from
De Giorgi-Nash-Moser theory in the case of equations and from classical Schauder theory in the case
of systems with Hölder continuous coefficient field a, we may improve the estimate (2.1.34) into a
pointwise estimate. Therefore, in both cases, there is no need to consider local averages of vhom at
scales ε.

For a proof of Corollary 4 based on the results of Corollary 3, we refer the reader to [80]. The
second consequence of Corollary 1 is a new optimal control of the sub-systematic error, extending
the bound obtained in [88, Lem.8] in the case of discrete elliptic equations and the one in [92,
Th.3] for a finite range of dependence. This corollary is of numerical interest for approximating the
homogenized matrix ahom defined in (2.1.35).
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Corollary 5 (Sub-systematic error). Let (φei,T )i∈J1,dK be defined in (2.1.9). For all (i, n) ∈ J1, dK×N,
we define the Richardson extrapolation of φei,T with respect to T by

{
φn+1
ei,T

= 1
2n−1(2nφnei,2T − φ

n
ei,T

) for all n ≥ 1,

φ1
ei,T

= φei,T ,

and likewise for φ∗ei,T . We define the approximation (anT )n∈N of the homogenized coefficients ahom

by: for all (i, j, n) ∈ J1, dK2 × N

ej · anT ei = 〈(∇φ∗,nej ,T + ej) · a(∇φnei,T + ei)〉. (2.1.36)

We have the following estimates of the sub-systematic errors: for all d ≥ 2 and n > β∨d
4

〈|∇φnei,T −∇φei |
2〉

1
2 . T

1
2 ηβ(T ), (2.1.37)

and
|anT − ahom| . Tη2

β(T ), (2.1.38)

where ηβ is as in (2.1.24)

Finally, Corollary 5 implies the following bound on the bottom of the spectrum of −∇ · a∇
projected on∇·a(0)e and extends [92, Corollary 5], [88, Corollary 1] to correlated fields. Let us recall
that stationarity allows us to define a differential calculus in probability through the correspondence
for stationary fields: for all stationary fields ψ : Ω× Rd → R we define for all i ∈ J1, dK:

Diψ(0) = lim
h→0

ψ(a(·+ hei), 0)− ψ(a, 0)

h
= lim

h→0

ψ(a, hei)− ψ(a, 0)

h
= ∇iψ(a, 0),

and we set Dψ := (Diψ(0))i∈J1,dK. We define the Hilbert space H1 := {ψ ∈ L2
〈·〉(Ω)|〈|Dψ|2〉 < +∞}.

In the case when the coefficients a are symmetric, the operator L := −D · a(0)D defines a quadratic
form on H1. We denote by L its Friedrichs extension on L2

〈·〉(Ω). Since L is a self-adjoint non-
negative operator, by the spectral theorem it admits a spectral resolution: for all Θ ∈ L2

〈·〉(Ω), there
exists a unique measure νΘ such that for all g ∈ L∞(R+)

〈g(L)Θ,Θ〉 =

ˆ +∞

0
g(λ)dνΘ(λ). (2.1.39)

Corollary 6 (Spectral resolution). Let assume that the map A defined in (2.1.1) takes values in the
set of symmetric matrices and assume that Θ := D · a(0)e is in L2

〈·〉(Ω) for some unit vector e ∈ Rd.
We denote by νΘ the spectral measure, defined in (2.1.39), of the operator −D · a(0) ·D associated
to the vector Θ. We have for all 0 < µ ≤ 1〈ˆ µ

0
dνΘ(ζ)

〉
. η2

β(µ−1),

where ηβ is as in (2.1.24).
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2.1.3 Extension to other model of coefficient field

The approach we develop here is not limited to the Gaussian setting. For coefficient field a for
which the law satisfies multiscale functional inequalities with oscillation, similar result to the ones
presented in this paper hold. More precisely, assume that there exists ρ > 0 such that for all square
integrable functional F of a, we have

Ent(F (a)) ≤ 1

ρ

〈ˆ +∞

1
`dπ(`)

ˆ
|∂osc
x,`F (a)|2dx d`

〉
, (2.1.40)

with, for some C > 0 and β > 0

π(`) = e−
1
C
`β , (2.1.41)

and for all (x, `) ∈ Rd × [1,+∞)

∂osc
x,`F (a) := sup{F (a′)− F (a′′)|a′ = a′′ = a on Rd\B`(x)}. (2.1.42)

Then, with the notations µβ(T ) = 1, ηβ(T ) = T−
1
2
− d

4 , π?(r) = rd and ξd,β(|x|) = log
1
2 (|x| + 2) if

d = 2 and ξd,β(|x|) = 1 if d ≥ 3, the results of section 2.1.2 hold with a random variable C? (possibly
depending on d, λ, β, g, x, r and T ) with stretched exponential moments for some exponent α
(depending on d and β) uniform in x, r and T when it depends on this parameters.

Multiscale logarithm Sobolev inequality of type (2.1.40) are satisfied, for instance, by random inclu-
sions with random radii and random tessellations of Poisson points or the random parking measure.
For more precise details, we refer to [59, 60] and Section 1.1.5. For completeness and to see the
differences compared to the Gaussian setting, we provide in Appendix 2.4.4, a proof of Theorem
10 under the assumption (2.1.40), when ue is real valued and a satisfy a regularity assumption.
The proofs of the general case may be extended by following the arguments of Appendix 2.4.4 and
Section 2.3.

2.2 Structure of the proof

Let us now describe the strategy of the proof of Theorem 10, together with a flow of auxiliary results.
In the rest of the paper, for notational convenience, we do not write the dependance of all quantities
on the unit vector e, fixed once for all.

2.2.1 Strategy of the proof

General strategy of the proof. The proof uses on two important quantities: for all t ∈ R+
∗

∀r ≥
√
t, Qr1 :=

√
t

( ˆ
η√2r(y)|∇u(t, y)|2dy

) 1
2

, (2.2.1)

and
∀r ≤

√
t, Qr2(t) : y ∈ Rd 7→ qr(t, y)− 〈qr(t, y)〉, (2.2.2)

and their relationship. On the one hand, using the estimate from [92, Lemma 1], we have a deter-
ministic relationship between (2.2.1) and averages in space and in r of (2.2.2), recalled in Lemma 3.
On the other hand, using sensitivity estimates (see Lemma 7 and Proposition 3) and the multiscale
logarithmic Sobolev inequality (2.1.4), we can control moments of (2.2.2) by moments of (2.2.1).
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The main difficulty is that the estimates are coupled in an intricate way, which does not allow to
buckle easily. We handle this difficulty by, first deriving nearly-optimal estimates in scaling in r, t
of moments of (2.2.2) from a sub-optimal deterministic bound in t of (2.2.1), which is itself based
on deterministic energy estimates (see Lemma 1). Second, from the nearly-optimal moment bounds
of (2.2.2), we deduce a better decay in t of moments of (2.2.1) than the one provided by energy
estimates, which allow us to deduce the optimal scaling in r, t of (2.2.2), which leads to Theorem
10. We then finally obtain the optimal decay in time of moments of (2.2.1), which leads to Corollary
1. Our main effort is to derive the sensitivity estimates and the control of moments of (2.2.2). We
focus in the following on the main ideas of the proof of (2.1.17). For (2.1.20), the ideas are very
closed and we only say few words on the differences at the end of this section

Sensitivity estimates. The proof of the sensitivity estimates combined two different types of
arguments.

1. Deterministic arguments. There are two main ingredients. The first ingredient is the
classical L2 theory of parabolic systems in form of localized energy type estimates, see Lemmas
1 and 2. The second ingredient is the large-scale regularity theory for parabolic systems
developed in [26] that we recall and extend in Appendix 2.4.2. It provides, in particular, a
large-scale C0,1 estimate: for all x ∈ Rd, there exists a stationary random variable r∗(x) ≥ 1
such that for all t ∈ R and weak solution v of, for R ≥ r∗(x), ∂τv−∇·a∇v = ∇·g in CR(t, x),
we have 

Cr∗(x)(t,x)
|∇v(s, y)|2ds dy .d,λ

 
CR(t,x)

|∇v(s, y)|2ds dy

+ sup
ρ∈[r∗(x),R]

(
R

ρ

)2α  
Cρ

∣∣∣∣g(s, y)−
 

Cρ(t,x)
g(s′, z)ds′ dz

∣∣∣∣2ds dy.
(2.2.3)

This properties can be used provided r∗ has good moment bounds, which have already been
established in [89] in our context.

2. Stochastic arguments. Moment bounds on qr(T )− 〈qr(T )〉 will be obtained from the mul-
tiscale logarithmic Sobolev inequality (2.1.4), and more precisely in the version of Proposition
4 in order to control high moments: for all p ∈ [1,+∞), T ≥ 1 and r ∈ (0,

√
T ],

〈|qr(T )− 〈qr(T )〉|p〉
1
p .
√
p

〈(ˆ +∞

1
`−dπ(`)

ˆ
|∂fct
x,`qr(T )|2dx d`

) p
2
〉 1
p

. (2.2.4)

To use (2.2.4), we have to estimate the sensitivity of qr(T ) with respect to the coefficient field
a, namely the quantity (x, `) ∈ Rd × [1,+∞) 7→

´
|∂fct
x,`qr(T )|2dx d`. The method used here

is inspired by the series of articles [70, 87, 80, 89] which treats the case of elliptic systems
and proceeds by duality. The results are summarized in Lemma 7 for the computation of
the functional derivative and in Proposition 3 for the sensitivity calculus and the control of
moments.

The localized energy estimates of the deterministic part are classical and rely only on L2 theory
for parabolic systems. The contribution of this paper is more on the stochastic part. Let us now
describe the main ideas of the proof of (2.1.17) in Theorem 10. For simplicity, we do this in a simpler
case with two additional assumptions:
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(i) We assume that u is real-valued and a is symmetric. In that case, we get the uniform bound
of ∇u: for all t > 0

‖∇u(t, ·)‖L∞(Rd) .d,λ t
−1, (2.2.5)

cf Remark 4 below for a proof. The bound (2.2.5) is our starting point to prove the sensitivity
estimate.

(ii) We assume that ∇ · ae ∈ L∞(Rd) and

‖∇ · ae‖L∞(Rd) ≤ 1. (2.2.6)

This assumption allow us to avoid the singularity at t = 0 and to use the localized energy
estimate in the form: for all T ≥ 1, R ≥

√
T and z ∈ Rd

ˆ T

0

 
BR(z)

|∇u(t, x)|2dx dt .d,λ 1, (2.2.7)

see for instance [92, Lemma 3] for a proof.

We proceed in three steps.

I) The first step identifies the functional derivative of each components k ∈ J1, dK, (x, `) ∈
Rd× [1,+∞) 7→ ∂fct

x,`qr(T ) · ek, defined in (2.1.5) for T ≥ 1 and r ≤
√
T . Formally, we have for

all (x, `) ∈ Rd × [1,+∞),

∂fct
x,`qr(T ) · ek =

ˆ
B`(x)

∣∣∣∣ ∂

∂a(y)
qr(T ) · ek

∣∣∣∣dy,
with, for all y ∈ B`(x), using that ∂

∂a(y)a = δy and the chain rule

∂

∂a(y)
qr(T )·ek = gr(y)ek·e+gr(y)ek·

ˆ T

0
∇u(t, y)dt+

ˆ
gr(z)ek·a(z)

( ˆ T

0
∇ ∂

∂a(y)
u(t, z)dt

)
dz,

(2.2.8)
with from (2.1.10){

∂τ
∂

∂a(y)u−∇ · a∇
∂

∂a(y)u = ∇ · δy∇u in (0,+∞)× Rd,
∂

∂a(y)u(0) = ∇ · δye.
(2.2.9)

The first two r.h.s terms of (2.2.8) are directly controlled via (2.2.5) and (2.2.7), whereas the
control of the last term is more technical. The idea is to rewrite this term by duality, in form
of, for all k ∈ J1, dK

ˆ
gr(z)ek · a(z)

(ˆ T

0
∇ ∂

∂a(y)
u(t, z)dt

)
dz = ∇vTk (0, y)⊗ e+

ˆ T

0
∇u(t, y)⊗∇vTk (t, y)dt,

(2.2.10)
where vT = (vTk )k∈J1,dK solves the corresponding dual problem of (2.1.10) with final time T ,
that is the backward parabolic system{

∂τv
T
k +∇ · a∗∇vTk = ∇ · agrek on (−∞, T )× Rd,

vTk (T ) = 0.
(2.2.11)
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Consequently, the crucial terms of ∂fct
x,`qr(T ) · ek are

Mk(T, x, `) :=

ˆ
B`(x)

∣∣∣∣∇vTk (0, y)⊗ e
∣∣∣∣dy +

ˆ
B`(x)

∣∣∣∣ ˆ T

0
∇u(t, y)⊗∇vTk (t, y)dt

∣∣∣∣dy. (2.2.12)

This decomposition is summarized in Lemma 7.

II) In the second step, we deduce the control of moments of qr(T )− 〈qr(T )〉 from the formula of
(x, `) ∈ Rd× [1,+∞) 7→ ∂fct

x,`qr(T ), for T ≥ 1 and 1 ≤ r ≤
√
T , and the estimate (2.2.4). More

precisely, at this stage, we are only able to reach a sub-optimal bound, with a log(T ) correc-
tion in (2.1.17). This additional contribution is due to the, purely deterministic, sub-optimal
uniform bound (2.2.5), as we will clearly see in the computations below. We provide the idea
of the control of the main term (2.2.12), for all ` ≥ 1 and k = 1. In the following, we writeM
and vT forM1 and vT1 respectively. As in Remark 1, we have to distinguish between the two
regimes ` <

√
T and ` ≥

√
T .

Regime ` <
√
T . We start with the first r.h.s term of (2.2.12). We use the plain energy

estimate: for all t ≤ T ˆ
|∇vT (t, y)|2dy .d,λ

ˆ
g2
r (y)dy . r−d, (2.2.13)

applied for t = 0 to get, using in addition the Jensen inequality and the estimate
´ ´

B`(x) dx .d
`d
´
, ˆ ( ˆ

B`(x)
|∇vTk (0, y)⊗ e|dy

)2

dx .d,λ `2dr−d. (2.2.14)

We now turn to the estimate of the second r.h.s term of (2.2.12). We start by splitting the time
integral into the two contributions in (0, 1) and [1, T ]. For the contribution in (0, 1), we make
use of the Cauchy-Schwarz inequality, the energy estimate (2.2.7), the estimate

´ ´
B`(x) dx .d

`d
´

and the plain energy estimate (2.2.13) to obtain
ˆ (ˆ

B`(x)

∣∣∣∣ˆ 1

0
∇u(t, y)⊗∇vT (t, y)dt

∣∣∣∣dy)2

dx ≤
ˆ ˆ 1

0

ˆ
B`(x)

|∇u(t, y)|2dy dt (2.2.15)

×
ˆ 1

0

ˆ
B`(x)

|∇vT (t, y)|2dy dt dx

(2.2.7)
.d,λ `

d

ˆ ˆ 1

0

ˆ
B`(x)

|∇vT (t, y)|2dy dt dx

(2.2.13)
.d,λ `

2dr−d. (2.2.16)

For the contribution in [1, T ], we make use of the Jensen inequality, the estimate
´ ´

B`(x) dx .d
`d
´
, the deterministic uniform bound (2.2.5) and the Minkowski inequality in L2(Rd) as well

as the plain energy estimate (2.2.13) to obtain for all ` ≥ 1
ˆ ( ˆ

B`(x)

∣∣∣∣ˆ T

1
∇u(t, y)⊗∇vT (t, y)dt

∣∣∣∣dy)2

dx
(2.2.5)
.d,λ `

2d

ˆ ( ˆ T

1
t−1|∇vT (t, x)|dt

)2

dx

≤
(ˆ T

1
t−1

( ˆ
|∇vT (t, x)|2dx

) 1
2

dt
)2

.d,λ log2(T )r−d. (2.2.17)
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Therefore, the combination of (2.2.14), (2.2.16) and (2.2.17) yieldsˆ
M2(T, x, `)dx .d,λ `2dr−d(1 + log2(T )), (2.2.18)

and gives the contribution in (2.2.4)
ˆ √T

1
`−dπ(`)

ˆ
M2(T, x, `)dx d`

(2.1.6),(2.2.18)
.d,λ (1 + log2(T ))r−d

ˆ √T
1

`d−1−βd`

.β (1 + log2(T ))r−dµ2
β(T ),

where µβ(T ) is defined in (2.1.18).

Regime ` ≥
√
T . Here, the bound (2.2.18) is of no use since ` 7→ `−dπ(`)

´
M2(T, x, `)dx

needs to be integrable at infinity. This is why we treat this regime a different way. We start
with the first r.h.s term of (2.2.12). This term is more subtle to control in this regime, even
with the two additional assumptions (2.2.5) and (2.2.6). We present here the argument in the
homogeneous case a = Id. In that case, we may express ∇vT in terms of the Duhamel formula:
for all (t, x) ∈ (−∞, T )× Rd

∇vT (t, x) = −
ˆ T−t

0
∇2Γ(s, ·) ? gr(x)ds,

where we recall that Γ denotes the heat kernel. Then, using the Minkowski inequality in L2(Rd)
and noticing that for all s ∈ R+

∗ , Γ(s, ·) = Cg√s for some C > 0 and using the semigroup
property g√s ? gr = g√s+r2

ˆ ( ˆ
B`(x)

|∇vT (0, y)⊗ e|dy
)2

dx .d `d
(ˆ

|∇vT (0, y)|dy
)2

= C`d
(ˆ ∣∣∣∣ ˆ T

0
∇2g√s+r2(y)ds

∣∣∣∣dy)2

.d `
d

(ˆ T

0
(s+ r2)−1ds

)2

.d `
d log2(1 +

T

r2
).

In the heterogeneous case, we replace the use of the Green’s function by appealing to large-
scale regularity, in form of estimate (2.2.3), to get a pointwise bound of local average of ∇vT ,
see Lemma 4, and we get, for all t ∈ (−∞, T ]

ˆ (ˆ
B`(x)

|∇vT (t, y)| dy
)2

dx ≤ C`d log2(1 +
`

r
), (2.2.19)

with for all p ≥ 1, 〈Cp〉
1
p .d p

d+2
β∧d . We refer to the estimate of the first l.h.s term of (2.3.79) for

more precisions. We now turn to the estimate of the second r.h.s term of (2.2.12). As before, we
split the time integral into the two contributions (0, 1) and [1, T ]. For the contribution in (0, 1),
we make use of the Minkowski inequality in L2(Rd) combined the identity

´
=
´ ffl

Br(z) dz, the
Cauchy-Schwarz inequality, (2.2.7) applied with R = r and T = 1 and [92, Lemma 3] applied
to the equation (2.2.11) in form of

ˆ 1

0

 
Br(z)

|∇vT (t, y)|2dy dt .
ˆ
ηr(y − z)g2

r (y)dy, (2.2.20)
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to get
ˆ (ˆ

B`(x)

∣∣∣∣ ˆ 1

0
∇u(t, y)⊗∇vT (t, y)dt

∣∣∣∣dy)2

dx

.d `
d

( ˆ ˆ 1

0
|∇u(t, y)||∇vT (t, y)|dt dy

)2

≤ `d
(ˆ (ˆ 1

0

 
Br(z)

|∇u(t, y)|2dy dt
) 1

2
( ˆ 1

0

 
Br(z)

|∇vT (t, y)|2dy dt
) 1

2

dz
)2

(2.2.7),(2.2.20)
. `d

ˆ (ˆ
ηr(y − z)g2

r (y)dy
) 1

2

dz . `d. (2.2.21)

For the contribution in [1, T ], we once again use the Minkowski inequality in L2(Rd) combined
with (2.2.5) and (2.2.19) to get for all ` ≥ 1

ˆ ( ˆ
B`(x)

∣∣∣∣ ˆ T

1
∇u(t, y)⊗∇vT (t, y)dt

∣∣∣∣dy)2

dx .
(ˆ T

1
s−1

( ˆ ( ˆ
B`(x)

|∇vT (t, y)|dy
)2

dx
) 1

2

ds
)2

(2.2.19)
. C`d log2(T ) log2(1 +

`

r
). (2.2.22)

The combination of (2.2.19) applied with t = 0, (2.2.21) and (2.2.22) yields, using that r ≤
√
T

in the last lineˆ +∞

√
T

`−dπ(`)

ˆ
M2(T, x, `)dx d` . log2(T )

ˆ +∞

√
T

`−1−β(1 + C log2(
`

r
))d`

.β log2(T )T−
β
2 (1 + C log2(

√
T

r
))

.β log2(T )r−dµ2
β(T )(1 + C log2(

√
T

r
)).

Let us now talk about the main difficulties and changes which occur in the general case, that
is when we do not assume (2.2.5) and (2.2.6).

(i) When the assumption (2.2.6) is not satisfied, u is now singular at t = 0 and thus the
second r.h.s term of (2.2.12) is not well defined in the Lebesgue sense. In order to
handle this singular part, we have to treat a different way the contribution in (0, 1) of
the time integral of the third r.h.s term of (2.2.8). This is done by using the localized
energy estimates directly on the equation (2.2.9). As a consequence, we do not obtain an
explicit formula for (x, `) ∈ Rd × [1,+∞) 7→ ∂fct

x,`qr(T ) but rather a bound, see Lemmas
7 and 8. Note that the bound get much simpler in the case of fast decay of correlations,
namely for β > d, where the case ` <

√
T has to be considered (and so the contribution

Gr,` does not appear).
(ii) When u is vector-valued, (2.2.5) fails and has to be replaced by: for all R ≥

√
t

 
BR
|∇u(t, y)|2dy . t−2. (2.2.23)

This estimate is however not sufficient for our propose since we see in (2.2.12) that we
need to bound the average of ∇u over all balls B`, for ` ∈ [1,+∞). We have to appeal to



2.2. Structure of the proof 71

large-scale regularity theory in form of estimate (2.2.3) to obtain the improvement

 
B`(x)

|∇u(t, y)|2dy .
((

r∗(x)

`
∨ 1

)d
1`<
√
t + 1`≥

√
t

)
t−2. (2.2.24)

Equipped with (2.2.24), we may control the second r.h.s term of (2.2.12) as in the scalar
case. The only main change is that we cannot use the plain energy estimate (2.2.13) for
the defining equation (2.2.11) as we did in (2.2.17). Instead, we prove a new lemma
which states a pointwise bound (depending on the form of the r.h.s of (2.2.11)) onffl
Br∗(x)

|∇vT (t, y)|2dy for all x ∈ Rd and
√
T − t ≥ r∗(x), see Lemma 4. The sub-optimal

estimate of moments of qr(T )− 〈qr(T )〉 is summarized in Proposition 3.

III) In the final step, we remove the log(T ) contribution which appears in the previous step. To
this aim, we need a little more decay in time of the averages of ∇u than the one obtained in
(2.2.24), since the log(T ) contribution clearly comes from this sub-optimal bound. The idea
is to use the L2-L1 estimate of Lemma 3 which essentially says, by stationarity, that for all
R ≥

√
t, x ∈ Rd and p ∈ [1,+∞)

〈( 
BR(x)

|∇u(t, y)|2dy
) p

2
〉 1
p

.d,λ t
−1− d

4

 t
2

t
4

 √s
0

r
d
2

〈
|qr(s)− 〈qr(s)〉|p

〉 1
p

dr ds.

It gives, using the sub-optimal moment bounds of qr(T ) − 〈qr(T )〉 of the previous step that,
for all R ≥

√
t  

BR(x)
|∇u(t, y)|2dy . log2(t)t−1η2

β(t)D?(x), (2.2.25)

with ηβ defined in (2.1.24) and where D?(x) is a random variable with stretched exponential
moment. By interpolating (2.2.24) and (2.2.25) we deduce for all ε > 0 and ` ∈ [1,+∞)

 
B`(x)

|∇u(t, y)|2dy .
((

r∗(x)

`
∨ 1

)d
1`<
√
t + 1`≥

√
t

)
t−2(1−ε)η2ε

β (t)D2ε
? (x). (2.2.26)

This improved decay allow us to prove the optimal estimates of Theorem 10. The price to pay
in this step is a little loss of stochastic integrability due to the random variable D2ε

? . Note
that, the exponent α that we get in (2.1.22), is neither optimal for β > d (since [92] indicates
that we expect nearly-Gaussian moments), nor for 0 < β � 1 (since by [70] we can obtain
nearly Gaussian moments).

IV) The proof of (2.1.20) follows the same ideas and is even easier since we do not need to begin
with a sub-optimal estimate as we need for (2.1.17). We use Lemma 8 for the estimate of
(x, `) ∈ Rd × [1,+∞) 7→ ∂fct

x,`q(r
2) ? fr, the pointwise bound (2.2.40) for local average of ∇vr2

and the decay (2.2.26) of averages of ∇u.

We finally mention that in the case of fast decay correlation, that is for β > d, the proof is much
simpler and only the regime ` <

√
T has to be considered.

Remark 4. When u is real-valued and a is symmetric, we can prove (2.2.5) by using the Nash-
Aronson bounds on the parabolic Green function. Indeed, let ψ : (0,+∞) × Rd × Rd 7→ R be
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the Green function of the operator ∂τ − ∇ · a∇. Recall that the parabolic Green function ψ is a
nonnegative function which solves in the distributional sense, for all (x, y) ∈ Rd×Rd, the equations{

∂τψ(·, ·, y)−∇ · a∇ψ(·, ·, y) = 0 in (0,+∞)× Rd,
ψ(0, ·, y) = δy,

(2.2.27)

and {
∂τψ(·, x, ·)−∇ · a∇ψ(·, x, ·) = 0 in (0,+∞)× Rd,
ψ(0, x, ·) = δx.

We have the following estimate (for a reference, see [8, Prop E1]): there exists a constant C > 0
which depends only on d and λ such that for all (x, y) ∈ Rd × Rd and t > 0( 

C 3
2

√
t
(t,x)
|∇zψ(s, y, z)|2ds dz

) 1
2

.d,λ T
− 1

2
− d

2 exp

(
− |x− y|

2

Ct

)
. (2.2.28)

By noticing that from (2.2.27), ζ : y ∈ Rd 7→ ∇yψ(·, ·, y) solves ∂τζ −∇ · a∇ζ = 0 in (0,+∞)× Rd,
we deduce from the Caccioppoli estimate (see Lemma 12) that for all (x, y) ∈ Rd × Rd( 

C√t(t,x)
|∇z∇yψ(s, z, y)|2ds dz

) 1
2

.d,λ t
− 1

2

( 
C 3

2

√
t
(t,x)
|∇yψ(s, z, y)|2ds dz

) 1
2

. (2.2.29)

Since a is symmetric, we have ψ(s, z, y) = ψ(s, y, z) and so ∇yψ(s, z, y) = ∇zψ(s, y, z). Conse-
quently, the combination of (2.2.28), (2.2.29) and Lemma 2 yields for all (x, y) ∈ Rd × Rd(  

B√t(y)
|∇x∇zψ(t, x, z)|2ds dz

) 1
2

.d,λ t
−1− d

2 exp

(
− |x− y|

2

Ct

)
. (2.2.30)

This bound implies, using the explicit formula ∇u(t, x) =

ˆ
∇x∇yψ(t, x, y) · a(y)e dy, that for all

(t, x) ∈ R+
∗ × Rd

|∇u(t, x)| ≤
ˆ
|∇x∇yψ(t, x, y)|dy ≤

ˆ (  
B√t(y)

|∇x∇zψ(t, x, z)|2dz
) 1

2

dy
(2.2.30)
.d,λ t−1,

and thus for all t > 0

‖∇u(t, ·)‖L∞(Rd) .d,λ t
−1. (2.2.31)

We now state the lemmas needed in the proof of Theorem 10. The first section lists the determin-
istic PDE ingredients, the second section the results derived from the large-scale regularity theory,
and finally the third section the sub-optimal control of the fluctuations of the time dependent flux
qr(·, ·).

2.2.2 Deterministic results

This section displays the deterministic PDE ingredients needed in the proof of Theorem 10 and
Corollary 1. We start with two classical results from standard L2 regularity theory of parabolic
system. The first one is the localized energy type estimates for parabolic systems.
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Lemma 1 (Localized energy estimates). Let v be the weak solution of the parabolic system{
∂τv −∇ · a∇v = ∇ · f in (0,+∞)× Rd,
v(0) = ∇ · q,

with q ∈ L2
loc(Rd) and f : R+ × Rd → Rd such that

T ∈ R+ 7→
ˆ T

0
f(s, ·)ds is in L2

loc(Rd)

and for all (x, `) ∈ Rd × [1,+∞),

( ˆ
B`(x)

|f(·, y)|2dy
) 1

2

is in L1
loc(R+).

There exists a universal constant c ∈ (0,+∞) such that the three following estimates hold:

(i) Assume that f ≡ 0. We have for all T > 0, R ≥
√
T and x ∈ Rd

T

(ˆ
ηR(

y − x
c

)|∇v(T, y)|2dy
) 1

2

+

(ˆ
ηR(

y − x
c

)

∣∣∣∣ ˆ T

0
∇v(s, y)ds

∣∣∣∣2dy) 1
2

.d,λ

( ˆ
ηR(

y − x
c

)|q(y)|2dy
) 1

2

. (2.2.32)

(ii) Assume that q ≡ 0. We have for all R ≥ 1 and x ∈ Rd

(ˆ
ηR(

y − x
c

)

∣∣∣∣ˆ 1

0
∇v(s, y)ds

∣∣∣∣2dy) 1
2

.d,λ

(ˆ
ηR(

y − x
c

)

∣∣∣∣ˆ 1

0
f(s, y)ds

∣∣∣∣2dy) 1
2

+

ˆ 1

0

1

1− t

ˆ 1

t

(ˆ
ηR(

y − x
c

)|f(s, y)|2dy
) 1

2

ds dt.

(2.2.33)

(iii) Assume that q and f are supported in B`(x) for some x ∈ Rd and ` ∈ [1,+∞). Then we have

(ˆ
Rd\B`(x)

e
|x−z|
2c`

 
B`(z)

∣∣∣∣ ˆ 1

0
∇v(s, y)ds

∣∣∣∣2dy dz) 1
2

.d,λ

( ˆ
B`(x)

|q(y)|2dy
) 1

2

+

( ˆ
B`(x)

∣∣∣∣ ˆ 1

0
f(s, y)ds

∣∣∣∣2dy) 1
2

+

ˆ 1

0

1

1− t

ˆ 1

t

(ˆ
B`(x)

|f(s, y)|2dy
) 1

2

ds dt.

(2.2.34)

We then state a technical lemma needed in order to obtain pointwise estimates in time.
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Lemma 2. Fix r > 0, (s, x) ∈ Rd+1 and g ∈ L2(Rd)d. Assume that v is a weak solution of

∂τv −∇ · a∇v = ∇ · g in (s− 4r2, s)× B2r(x),

then we have

sup
t∈(s−r2,s)

 
Br(x)

|∇v(t, y)|2dt dy .d,λ
 s

s−4r2

 
B2r(x)

|∇v(s′, y)|2ds′ dy +

 
B2r(x)

|g(y)|2dy. (2.2.35)

The same holds for the operator ∂τ +∇ · a∇ on (s, s+ 4r2)×B2r(x) by a time reflexion t 7→ −t.

We conclude this section by the relationship between spatial averages of u(T, ·) and averages of
qr − 〈qr〉 over scales r ≤

√
T . This lemma allow us to deduce Corollary 1 from Theorem 10. We

refer the reader to [92, Lem. 6] for the original proof of this result.

Lemma 3 (L2-L1 estimate). Let u defined in (2.1.10). There exists a universal constant c > 0 such
that for all T > 0 and R ≥

√
T

√
T

(ˆ
ηR(

y

c
)|∇u(T, y)|2dy

) 1
2

+

( ˆ
ηR(

y

c
)|u(T, y)|2dy

) 1
2

.
1√
T

 T
2

T
4

 √t
0

(
r√
t

) d
2
ˆ
η√2R(

y

c
)|qr(t, y)− 〈qr(t, y)〉|dy dr dt,

where ηR := R−de−
|·|
R and q(·, ·) is defined in (2.1.13).

2.2.3 Large-scale regularity results

We state in this section two estimates, needed in the proof of Theorem 10, which are obtained from
the large-scale regularity theory recalled in the appendix 2.4.2. We start with a lemma which gives
a pointwise bound on a local average of the solution of the dual problem (2.2.11), depending on the
behavior of the r.h.s. It constitutes the parabolic version of Lemmas 2, 3 and 4 of [89] established
for elliptic systems.

Lemma 4 (Pointwise estimates on the dual problem). Let f1 ∈ C1
b (Rd), e a unit vector of Rd and

vr satisfies, in the weak sense for some r ≥ 1, the parabolic backward system{
∂τvr +∇ · a∇vr = ∇ · afre in (−∞, 0)× Rd,
vr(0) = 0,

(2.2.36)

with fr which satisfies one of the two following assumptions:

• fr := r−df1( ·r ) such that for all x ∈ Rd

|f1(x)| . 1

(|x|+ 1)d
and |∇f1(x)| . 1

(|x|+ 1)d+1
. (2.2.37)

• For all x ∈ Rd

|fr(x)| . r

(|x|+ 1)d
∧ 1

(|x|+ 1)d−1
and |∇fr(x)| . r

(|x|+ 1)d+1
∧ 1

(|x|+ 1)d
. (2.2.38)
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We have

1. If (2.2.37) holds, for all x ∈ Rd and
√
−t ≥ 2r∗(x)( 

Br∗(x)(x)
|∇vr(t, y)|2dy dt

) 1
2

.

(
r∗(0)

r
∨ 1

) d
2 log(1 + |x|

r )

(|x|+ r)d
. (2.2.39)

2. If (2.2.38) holds, for all x ∈ Rd and
√
−t ≥ 2r∗(x)( 

Br∗(x)(x)
|∇vr(t, y)|2dy

) 1
2

. r
d
2
∗ (0)

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1
. (2.2.40)

Let us briefly comment on Lemma 4.

1. The bound (2.2.39) is needed to replace the plain energy estimate for the solution vTr of (2.2.11),
as we did in the heuristic argument (2.2.18). In the homogeneous case, i.e a = Id, and in the
case where f1 = g1, the bound (2.2.39) takes the more natural form: for all (t, x) ∈ R− × Rd

|∇vr(t, x)| . (|x|+ r)−d. (2.2.41)

Indeed, (2.2.41) is easy to see using the parabolic Green function Γ of the heat operator ∂τ−∆:
we have for all (t, x) ∈ R− × Rd

∇vr(t, x) = −
ˆ 0

t
∇2Γ(s− t, ·) ? gr(x)ds.

Thus, using the fact that, for all s ≥ t, Γ(s − t, ·) is proportional to g√s−t and using the
semigroup property of Gaussian kernel g√s−t ? gr = g√r2+s−t as well as the estimate, for all

x ∈ Rd, e−
|x|2

r2+s−t . (1 + |x|2
r2+s−t)

− d
2
−2, we have for all (t, x) ∈ R− × Rd

|∇vr(t, x)| .
ˆ 0

t
|∇2g√r2+s−t(x)|ds

. |x|2
ˆ 0

t
(r2 + s− t)−

d
2
−2e
− |x|2

r2+s−tds

. |x|2
ˆ 0

t
(|x|2 + s− t+ r2)−

d
2
−2ds

. (|x|+ r)−d.

Also, if we have the more precise structure fr =
´ r2

1 ∇g√s(·)ds (which satisfies the assumption
(2.2.38)), using the same ideas as before, the bound (2.2.40) takes the more natural form: for
all (t, x) ∈ R− × Rd

|∇vr(t, x)| . r

(|x|+ 1)d
∧ 1

(|x|+ 1)d−1
.

Therefore, since the bounds (2.2.39) and (2.2.40) are natural in the homogeneous case and we
know from homogenization theory that on large-scales the heterogeneous parabolic operator
∂τ −∇ · a∇ inherits (in form on the C0,1 estimate (2.4.5)) the regularity theory of the homog-
enized operator ∂τ − ∇ · ahom∇, it is natural to expect that the two estimates (2.2.39) and
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(2.2.40) hold in the heterogeneous case once we fix the scale (characterized by the minimal
radius r∗). Note that the logarithm contributions in (2.2.39) and (2.2.40) are due to the fact
that we have less structure on the r.h.s of (2.2.36) than the two we took above. We also point
out that the logarithm contribution in (2.2.40) may be removed (see for instance Lemmas 3
and 4 of [89] for elliptic systems). However, we prefer to keep it this way and provide simple
arguments for (2.2.40) rather than going trough additional technical difficulties.

2. We may deduce the result of Lemmas 3 and 4 of [89] from (2.2.39) by sending t ↓ −∞. Indeed,
one may prove, from the localized energy of Lemma 1 that vr(t, ·) →

t→−∞
ṽr in L2

loc(Rd) with

∇ · a∇ṽr = ∇ · afre and then pass to the limit in (2.2.39).

The next lemma allows us to control spatial averages of ∇u at scale R <
√
T . Combined with

the energy estimate (2.2.32), it implies in particular the estimate (2.2.24) needed in the proof of
Theorem 10.

Lemma 5 (Control of averages). Let u be defined in (2.1.10). Assume that there exist two monotone
functions f and g (increasing and decreasing respectively) such that for all T ≥ 1 and for all x ∈ Rd
there exists a constant C(x, T ) < +∞ for which

 
B√T (x)

|∇u(T, y)|2dy ≤ C(x, T )f(T )g(T ). (2.2.42)

Then we have for all T ≥ 1, x ∈ Rd and R <
√
T

 
BR(x)

|∇u(T, y)|2dy .
(
r∗(x)

R
∨ 1

)d
C̃(x, T )f(T )g

(
T

2

)
,

with C̃(x, T ) := max

{
C(x, T ),

 T

T
2

C(x, s)ds
}
.

2.2.4 Suboptimal control of fluctuations of the time dependent flux

In this section, we state the suboptimal moment bounds of qr(T )−〈qr(T )〉. We prove that it displays
the central limit theorem scaling r−

d
2 , a growth in T which depends on the parameter β defined in

(2.1.6) and a log(T ) correction (which makes it suboptimal and will be removed later). We first
state the following bound on qr(·, ·), for r ≤ 1. It is only needed for technical reasons since, in view
of the application of Lemma 3, r is allowed to be arbitrary close to 0.

Lemma 6. Let q(·, ·) be defined in (2.1.13). For all r ∈ (0, 1) and x ∈ Rd, there exists a random
variable C?(r, x) such that for all

√
T ≥ 1

2 we have

|qr(T, x)| ≤ (1 + r−
d
2 log(

√
T

r
))C?(r, x), (2.2.43)

with sup
(r,x)∈R+×Rd

〈
exp

(
1

C
C2β∧d

d
? (r, x)

)〉
≤ 2 for some constant C > 0 depending on d and λ.

The next lemmas give an estimate of the functional derivative of averages of the flux qr(T ) and
q(T ) ? fr for T ≥ 1 and r ≤

√
T . This is the starting point for using our assumption (2.1.4).
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Lemma 7 (Functional derivative). Let q(·, ·) be defined in (2.1.13). There exists a universal constant
c ∈ (0,+∞) such that for all T ≥ 1, r > 0, x ∈ Rd and ` ∈ [1,+∞), we have

|∂fct
x,`qr(T )| .d,λ

ˆ
B`(x)

gr(y)dy +

ˆ
B`(x)

∣∣∣∣ˆ T

0
∇u(s, y)ds

∣∣∣∣gr(y) dy +

ˆ
B`(x)

|∇vT (1, y)|
(

1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy
+ Fr,`(x)1`<

√
T + Gr,`(x)1`≥

√
T +

ˆ
B`(x)

ˆ T

1
|∇u(t, y)||∇vT (t, y)|dtdy, (2.2.44)

where vT = (vTk )k∈J1,dK is a weak solution of the backward parabolic system{
∂τv

T
k +∇ · a∗∇vTk = ∇ · agrek on (−∞, T )× Rd,

vTk (T ) = 0,
(2.2.45)

with

Fr,`(x) = `
d
2

(ˆ
e−
|x−z|
2c`

 
B`(z)

|gr(y)|2dy dz
) 1

2

+`
d
2

(ˆ
e−
|x−z|
2c`

 
B`(z)

|∇vT (1, y)|2dy dz
) 1

2

, (2.2.46)

and

Gr,`(x) =Tx,`(ηr)(0) + 1`≥r∗(0)

(ˆ
Rd\B4`

( 
B`(y)

|∇vT (1, z)|2dz
) 1

2

Tx,`(η`)(y)dy

+

ˆ
B7`

(  
Br∗(y)(y)

|∇vT (1, z)|2dz
) 1

2

Tx,`(ηr∗(y))(y)dy
)

+ 1`<r∗(0)r
d
2
∗ (0)

(ˆ
e−
|x−z|
2c`

 
B`(z)

|∇vT (1, y)|2dy dz
) 1

2

. (2.2.47)

as well as for all y ∈ Rd and ρ > 0

Tx,`(ηρ)(y) =

( ˆ
B`(x)

ηρ(z − y)

(
1 +

∣∣∣∣ ˆ 1

0
∇u(t, z)dt

∣∣∣∣2)dz) 1
2

+

ˆ 1

0

1

1− t

ˆ 1

t

( ˆ
B`(x)

ηρ(z − y)|∇u(s, z)|2dz
) 1

2

ds dt. (2.2.48)

Lemma 8. Let q(·, ·) be defined in (2.1.13) and for all r > 0 we consider fr ∈ C1
b (Rd) satisfying,

for all y ∈ Rd

fr(y) =

ˆ r2

1
f̃r(s, y)ds with |f̃r(s, y)| . |y|s−1g√s(y). (2.2.49)

There exists a universal constant c ∈ (0,+∞) such that for all r ≥ 2, x ∈ Rd and ` ∈ [1,+∞), we
have

|∂fct
x,`q(r

2) ? fr| .
ˆ
B`(x)

|fr(y)|dy +

ˆ
B`(x)

∣∣∣∣ˆ r2

0
∇u(s, y)ds

∣∣∣∣|fr(y)| dy

+

ˆ
B`(x)

|∇vr2
(1, y)|

(
1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy
+Kr,`(x) + Gr,`(x) +

ˆ
B`(x)

ˆ r2

1
|∇u(t, y)||∇vr2

(t, y)|dtdy, (2.2.50)
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where vr2
= (vr

2

k )k∈J1,dK is a weak solution of the backward parabolic problem{
∂τv

r2

k +∇ · a∗∇vr2

k = ∇ · afrek on (−∞, r2)× Rd,
vr

2

k (r2) = 0,
(2.2.51)

with

Kr,`(x) :=1`≥r

ˆ r2

1
s−

1
2Tx,`(η√s)(0)ds

+ 1`<r

(
Tx,`(η1)(0) +

dlog2(3`)e∑
n=0

2nTx,`(η2n+1)(0) +

ˆ
Rd\B2`

( 
B`(y)

|fr(z)|2dz
) 1

2

Tx,`(η`)(y)dy
)
.

(2.2.52)

and Gr,` as well as Tx,` are defined in (2.2.47) (for T = r2) and (2.2.48) respectively.

We finally state the main result of this section, which is the sub-optimal moment bound on the
time dependent flux qr(T, ·) for 1

2 ≤ r ≤
√
T .

Proposition 3 (Sub-optimal fluctuation estimates). Let q(·, ·) defined in (2.1.13). For all T ≥ 1,
1 ≤ r ≤

√
T and p ∈ [1,+∞)

〈|qr(T )− 〈qr(T )〉|p〉
1
p .d,λ,β p

1
2

+ d+2
β∧d r−

d
2 (1 + log(T ) + log2(

√
T

r
))µβ(T ), (2.2.53)

with

µβ(T ) :=


T
d
4
−β

4 if β < d,

log
1
2 (T ) if β = d,

1 if β > d.

2.3 Proofs

We give in the section the all proofs of the results stated in the sections 2.2.2, 2.2.3 and 2.2.4. For
notational convenience, we shall assume that the results of Lemmas 1 and 3 hold for the universal
constant c = 1. In the general case, it suffices to change the kernels gr and ηr from line to line
(by allowing a constant in the exponential). We also drop the dependance on d, λ and β in the
inequalities.

2.3.1 Proof of the deterministic results

Proof of Lemma 1: Localized energy estimates

We only provide the arguments for (2.2.33) and (2.2.34), the proof of (2.2.32) can be found in [92,
Lem.1]. Without loss of generality, we may assume that x = 0.

Step 1. Proof of (2.2.33). We set for all t ∈ [0, 1], w(t, ·) :=
´ t

0 v(s, ·)ds and we note that w
is a weak solution of {

∂τw −∇ · a∇w = ∇ ·
´ τ

0 f(s, ·)ds on (0, 1]× Rd,
w(0) = 0.
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The idea of the proof is to use the estimate (2.2.32) by expressing w with help of the Duhamel
formula. We denote by S the semigroup associated to the operator −∇ · a∇, namely (S(t))t∈R+ is a
family of operators such that for all Schwartz distributions ζ on Rd, z := S(·)ζ is the unique weak
solution of {

∂τz −∇ · a∇z = 0 on (0, 1]× Rd,
z(0) = ζ.

We express ∇w(1, ·) with help of S in form of the Duhamel formula, that is

∇w(1, ·) =

ˆ 1

0
∇
(
S(1− t)∇ ·

ˆ t

0
f(s, ·)ds

)
dt.

Thus, we write for all R ≥ 1, by the triangle inequality and
´ t

0 f(s, ·)ds =
´ 1

0 f(s, ·)ds−
´ 1
t f(s, ·)ds

in the last line(ˆ
ηR(y)|∇w(1, y)|2dy

) 1
2

=

(ˆ
ηR(y)

∣∣∣∣ˆ 1

0
∇
(
S(1− t)∇ ·

ˆ t

0
f(s, y)ds

)
dt
∣∣∣∣2dy) 1

2

≤
(ˆ

ηR(y)

∣∣∣∣ˆ 1

0
∇
(
S(1− t)∇ ·

ˆ 1

0
f(s, y)ds

)
dt
∣∣∣∣2dy) 1

2

+

( ˆ
ηR(y)

∣∣∣∣ˆ 1

0
∇
(
S(1− t)∇ ·

ˆ 1

t
f(s, y)ds

)
dt
∣∣∣∣2dy) 1

2

. (2.3.1)

For the first r.h.s term of (2.3.1), we use (2.2.32) for T = 1 in form of( ˆ
ηR(y)

∣∣∣∣ˆ 1

0
∇
(
S(1− t)∇ ·

ˆ 1

0
f(s, y)ds

)
dt
∣∣∣∣2dy) 1

2

.

( ˆ
ηR(y)

∣∣∣∣ ˆ 1

0
f(s, y)ds

∣∣∣∣2dy) 1
2

,

which gives the first r.h.s term of (2.2.33). For the second r.h.s term of (2.3.1), we use (2.2.32) for
T = 1, this time in the pointwise way, combined with the Minkowski inequality in L2(Rd, ηRdx) to
get( ˆ

ηR(y)

∣∣∣∣ˆ 1

0
∇
(
S(1− t)∇ ·

ˆ 1

t
f(s, y)ds

)
dt
∣∣∣∣2dy) 1

2

≤
ˆ 1

0

(ˆ
ηR(y)

∣∣∣∣∇(S(1− t)∇ ·
ˆ 1

t
f(s, y)ds

)∣∣∣∣2dy) 1
2

dt

(2.2.32)
.

ˆ 1

0

1

1− t

(ˆ
ηR(y)

∣∣∣∣ˆ 1

t
f(s, y)ds

∣∣∣∣2) 1
2

dt

≤
ˆ 1

0

1

1− t

ˆ 1

t

(ˆ
ηR(y)|f(s, y)|2dy

) 1
2

ds dt,

which gives the second r.h.s term of (2.2.33).

Step 2. Poof of (2.2.34). Since, for all (y, z) ∈ B` × Rd\B`, we have e−
|y−z|
c` ≤ e

1
c
− |z|
c` , we deduce

from (2.2.32), (2.2.33) (applied with R = `) and the fact that f and q are compactly supported in
B`:

e
|z|
2c`

ˆ
B`(z)

∣∣∣∣ˆ 1

0
∇v(s, y)ds

∣∣∣∣2dy . e− |z|2c`

(ˆ
B`
|q(y)|2dy +

ˆ
B`

∣∣∣∣ˆ 1

0
f(s, y)ds

∣∣∣∣2dy)

+ e−
|z|
2c`

(ˆ 1

0

1

1− t

ˆ 1

t

(ˆ
B`
|f(s, y)|2dy

) 1
2

ds dt
)2

,

which yields (2.2.34) by integrating over Rd\B`.
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Proof of Lemma 2

The arguments are the same as in [8, Lem 8.2] where a proof is given for g ≡ 0. For reader conve-
nience, we repeat the proof with very small changes in order to consider non-zero r.h.s g. Without
loss of generality, we may assume thay (s, x) = (0, 0).

Since g does not depend on time, ∂τv is also a weak solution of the equation and therefore the
Caccioppoli inequality, see Lemma 12, yields for all ρ ≤ R

 
Cρ
|∇∂τv(s, y)|2dy ds . 1

(R− ρ)2

 
CR
|∂τv(s, y)|2dy ds. (2.3.2)

To be entirely rigorous, we need to justify that ∂τu belongs to H1
par(CR). One may justify it by

considering difference quotients in time, obtaining a version of (2.3.2) by the Caccioppoli inequality
for these difference quotients, which then allows to pass to weak limits in the difference quotient
parameter to obtain that ∂τu does indeed belong to H1

par(CR) and is a solution of the equation.
Next, differentiating gives, for all t ∈ (−r2, 0)

∂τ

 
Br
|∇v(t, y)|2dy = 2

 
Br
∇v(t, y) · ∇∂τv(t, y)dy,

and thus we have, after an integration in time and combined with a Young’s inequality that

sup
t∈(−r2,0)

 
Br
|∇v(t, y)|2dy ≤

 
Cr
|∇v(s, y)|2dy ds+ 2r2

 
Cr
|∇v(s, y) · ∇∂τv(s, y)|dy ds

≤ 2

 
Cr
|∇v(s, y)|2dy ds+ r4

 
Cr
|∇∂τv(s, y)|2dy ds.

Combining this with (2.3.2) applied with ρ = r and R = 2r yields

sup
t∈(−r2,0)

 
Br
|∇v(t, y)|2dy .

 
Cr
|∇v(s, y)|2dy ds+ r2

 
C2r

|∂τv(s, y)|2dy ds. (2.3.3)

It remains to estimate the second r.h.s term of (2.3.3). For this, fix ρ < r, η ∈ C∞c (B 3
2
ρ) such that

η = 1 in Bρ, 0 ≤ η ≤ 1 and |∇η| . 1
ρ . Testing the equation for v with the function η∂τv, we obtain

 
Cρ
|∂τv(s, y)|2dy .1

ρ

 
C 3

2 ρ

|∂τv(s, y)||∇v(s, y)|dy ds+

 
C 3

2 ρ

|∇∂τv(s, y)||∇v(s, y)|dy ds

+
1

ρ

 
C 3

2 ρ

|g(y)||∂τv(s, y)|dy ds+

 
C 3

2 ρ

|g(y)||∇∂τv(s, y)|dy ds. (2.3.4)

Then, using the Cauchy-Schwarz inequality combined with (2.3.2), we have
 

C 3
2 ρ

|∇∂τv(s, y)||∇v(s, y)|dy ds+

 
C 3

2 ρ

|g(y)||∇∂τv(s, y)|dy ds

.
1

ρ

( 
C2ρ

|∂τv(s, y)|2dy ds
) 1

2
((  

B2ρ

|g(y)|2dy
) 1

2

+

(  
C2ρ

|∇v(s, y)|2dyds
) 1

2
)
.
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Therefore, (2.3.4) turns into

 
Cρ
|∂τv(s, y)|2dy . 1

ρ

( 
C2ρ

|∂τv(s, y)|2dy ds
) 1

2
((  

B2ρ

|g(y)|2dy
) 1

2

+

(  
C2ρ

|∇v(s, y)|2dyds
) 1

2
)
.

Choosing now 1
2 ≤ σ′ < σ ≤ 1, we obtain by a covering argument (considering the decomposition

Cσ′4r ⊂
⋃N
i=1(ti − ((σ − σ′) r2)2, ti) × B(σ−σ′) r

2
(xi) for (ti, xi)i∈J1,NK ⊂ Cσ′4r and N ∼ (σ − σ′)−d−2)

that 
Cσ′4r

|∂τv(s, y)|2dy

.
1

(σ − σ′)d+3r

( 
Cσ4r

|∂τv(s, y)|2dy ds
) 1

2
((  

B4r

|g(y)|2dy
) 1

2

+

( 
C4r

|∇v(s, y)|2dyds
) 1

2
)
,

which turns to, by a Young’s inequality, for some constant C depending on d and λ
 

Cσ′4r
|∂τv(s, y)|2dy ≤1

2

 
Cσ4r

|∂τv(s, y)|2dy ds

+
C

(σ − σ′)2(d+3)
r−2

( 
B4r

|g(y)|2dy +

 
C4r

|∇v(s, y)|2dyds
)
.

Lemma 11 applied with ρ : σ 7→
ffl
Cσ4r
|∂τv(s, y)|2dy ds then implies that

 
C2r

|∂τv(s, y)|2dy ds . 1

r2

( 
C4r

|∇v(s, y)|2dy ds+

 
B4r

|g(y)|2dy
)
,

which gives, combining with (2.3.3)

sup
t∈(−r2,0)

 
Br
|∇v(t, y)|2dy .

 
C4r

|∇v(s, y)|2dy ds+

 
B4r

|g(y)|2dy.

We conclude the proof by a covering argument by considering r
4 instead of r.

2.3.2 Proof of the large-scale regularity results

We provide the proofs of Lemmas 4 and 5. Our main tool here in the large-scale regularity theory
for parabolic system recalled in Appendix 2.4.2.

Proof of Lemma 4: Pointwise estimates on the dual problem

We prove Lemma 4 in two steps. The first step is devoted to prove (2.2.39) and we do it in two
times. First, we treat the particular case where fr is compactly supported in the ball Br for some
r ≥ 1. Second, we treat the general case by decomposing Rd into dyadic annuli (Bk)k∈N, defined
by Bk := B2k+1r\B2kr for k ≥ 1 and B0 := Br, and writing fr =

∑+∞
k=0 frχk, where (χk)k∈N is a

partition of unity according to the decomposition (Bk)k∈N. We then apply the result of the compact
supported case for each k ∈ N. The second step is devoted to prove (2.2.40) and this is done by
using the results of the first step. This extends Lemmas 2, 3 and 4 of [89] from the elliptic to the
parabolic setting.
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Step 1. Proof of (2.2.39). We split the proof into two substeps.

Substep 1.1. We prove that under the assumptions

fr is supported in Br and rd sup
x∈Rd

|fr(x)|+ rd+1 sup
x∈Rd

|∇fr(x)| . 1, (2.3.5)

we have for all x ∈ Rd and
√
−t ≥ 2r∗(x)

( 
Br∗(x)(x)

|∇vr(s, y)|2dy ds
) 1

2

.

(
r∗(0)
r ∨ 1

) d
2

(|x|+ r)d
. (2.3.6)

The estimate (2.3.6) will come from the following four relations and estimates:

1. For all (t, x) ∈ R− × Rd

∇vr(t, x) =

ˆ −t
0
∇wr(s, x)ds, (2.3.7)

with wr is the weak solution of{
∂τwr −∇ · a∇wr = 0 in (0,+∞)× Rd,
wr(0) = ∇ · afre.

(2.3.8)

2. The plain energy estimate: for all t ∈ R−
ˆ
Rd
|∇vr(t, x)|2dy . r−d. (2.3.9)

3. The large-scale regularity estimate: for all (t, x) ∈ R− × Rd such that |x| ≥ 4(r∗(x) ∨ r)

 
Br∗(x)(x)

|∇vr(t, y)|2dy .

(
r∗(0)
r ∨ 1

)d
(|x|+ r)2d

. (2.3.10)

4. The large-scale C0,1 estimates: for all x ∈ Rd,
√
−t ≥ 2r∗(x) and r ≥ r∗(x):

• For
√
−t ≤ r,

 
Br∗(x)(x)

|∇vr(t, y)|2dy .
 0

t

 
B√−t(x)

|∇vr(s, y)|2dy ds+ r−2d. (2.3.11)

• For
√
−t ≥ r,

 
Br∗(x)(x)

|∇vr(t, y)|2dy .
 t+r2

t

 
Br(x)

|∇vr(s, y)|2dy ds+ r−2d. (2.3.12)

Argument for (2.3.7). A direct computation shows that (t, x) ∈ R− × Rd 7→
´ −t

0 wr(s, x)ds is the
weak solution of (2.2.36). Thus, by uniqueness, for all t ∈ R−, vr(t, ·) =

´ −t
0 wr(s, ·)ds and (2.3.7)

follows.
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Argument for (2.3.9). We have, by using the formula (2.3.7) combined with the localized en-
ergy estimate (2.2.32) applied to the equation (2.3.8) and the support condition (2.3.5) of fr, for all
(t, x) ∈ R− × Rd

ˆ
η√−t(y − x)|∇vr(t, x)|2dy (2.3.7)

=

ˆ
η√−t(y − x)

∣∣∣∣ ˆ −t
0
∇wr(t, x)

∣∣∣∣2dy
(2.2.32)
.

ˆ
η√−t(y − x)|fr(y)|2dy

(2.3.5)
. r−2d

ˆ
Br
η√−t(y − x)dy, (2.3.13)

which gives (2.3.9) by integrating the estimate over x ∈ Rd.

Argument for (2.3.10). We first prove by a duality argument that for all R ≥ 2(r∗(0) ∨ r)
and t ∈ R− ˆ

Rd\BR
|∇vr(t, y)|2dy .

(
r∗(0)

r
∨ 1

)d
R−d. (2.3.14)

Let h ∈ C∞c (Rd) supported in Rd\BR. Let t ∈ R−, s ∈ [0,−t] and ks be the weak solution of the
backward parabolic system (corresponding to the dual system of (2.2.36) with final time s),{

∂τk
s +∇ · a∗∇ks = 0 on (−∞, s)× Rd,

ks(s) = ∇ · h. (2.3.15)

For all τ ∈ (−∞, s), we have, by testing (2.3.15) with wr
ˆ
Rd
wr(τ, y)∂τk

s(τ, y)dy −
ˆ
Rd
∇ks(τ, y) · a(y)∇wr(τ, y)dy = 0,

and (2.3.8) with ks

ˆ
Rd
ks(τ, y)∂τwr(τ, y)dy +

ˆ
Rd
∇ks(τ, y) · a(y)∇wr(τ, y)dy = 0.

By summing the two identities above, integrating in time over τ ∈ [0, s) and noticing that from the
initial conditions of wr and ks we have

ˆ
Rd

ˆ s

0
wr(τ, y)∂τk

s(τ, y)dτ dy +

ˆ
Rd

ˆ s

0
ks(τ, y)∂τwr(τ, y)dτ dy

=

[ˆ
wr(τ, y)ks(τ, y)dy

]s
0

=

ˆ
∇ks(0, y) · a(y)fr(y)edy −

ˆ
∇wr(s, y) · h(y)dy,

we get ˆ
∇wr(t, y) · h(y)dy =

ˆ
∇ks(0, y) · a(y)fr(y)e dy.
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It follows by integrating over s ∈ [0,−t], using the formula (2.3.7) combined with the Cauchy-Schwarz
inequality and (2.3.5) that∣∣∣∣ ˆ

Rd
h(y) · ∇vr(t, y)dy

∣∣∣∣ ≤ (  
Br

∣∣∣∣ ˆ −t
0
∇ks(0, y)ds

∣∣∣∣2dy) 1
2

. (2.3.16)

The r.h.s of (2.3.16) is then dominated as follows. First, we set ṽ(t, ·) :=
´ −t

0 ks(0, y)ds and by
noticing that for all s ∈ (0,−t), ks(0, ·) = k0(−s, ·), we have{

∂τ ṽ +∇ · a∗∇ṽ = ∇ · h in (−∞, 0)× Rd,
ṽ(0) = 0.

Second, we denote by v the weak solution of{
∂τv +∇ · a∗∇v = ∇ · h1(−∞,0) in Rd+1,

v(0) = 0 in R+ × Rd. (2.3.17)

v is an extension of ṽ in the sense that ∇ṽ(s, ·) = ∇v(s, ·) as long as s ≤ 0. Now, since h = 0 in
BR, we have by using the estimate

ffl
Br . ( r∗(0)

r ∨ 1)
d
2

ffl
Br∗(0)∨r

, Lemma 2 and the large-scale C0,1

estimate (2.4.6)( 
Br

∣∣∣∣ ˆ −t
0
∇ks(0, y)ds

∣∣∣∣2dy) 1
2

=

(  
Br
|∇v(t, y)|2dy

) 1
2

.

(
r∗(0)

r
∨ 1

) d
2
( 

Br∗(0)∨r

|∇v(t, y)|2dy
) 1

2

.

(
r∗(0)

r
∨ 1

) d
2
( t+4(r∗(0)∨r)2

t

 
B2(r∗(0)∨r)

|∇vr(s, y)|2dy ds
) 1

2

(2.4.6)
.

(
r∗(0)

r
∨ 1

) d
2
( t+R2

t

 
BR
|∇v(s, y)|2dy ds

) 1
2

. (2.3.18)

Now, since v ≡ 0 in R+×Rd, we have using the plain energy estimate (for which the proof is identical
as (2.3.9)): for all s ∈ R− ˆ

|∇ṽ(s, y)|2dy .
ˆ
|h(y)|2dy,

(i) for
√
−t ≥ R

 t+R2

t

 
BR
|∇v(s, y)|2dy ds =

 t+R2

t

 
BR
|∇ṽ(s, y)|2dy ds . R−d

ˆ
|h(y)|2dy. (2.3.19)

(ii) for R ≥
√
−t

 t+R2

t

 
BR
|∇v(s, y)|2dy ds = R−2

ˆ 0

t

 
BR
|∇ṽ(s, y)dy ds .

(√
−t
R

)2

R−d
ˆ
|h(y)|2dy

. R−d
ˆ
|h(y)|2dy. (2.3.20)



2.3. Proofs 85

The combination of (2.3.16), (2.3.18), (2.3.19) and (2.3.20) yields∣∣∣∣ ˆ
Rd
h(y) · ∇vr(t, y)dy

∣∣∣∣ . (r∗(0)

r
∨ 1

) d
2

R−
d
2

(ˆ
|h(y)|2dy

) 1
2

,

which gives (2.3.14) by the arbitrariness of h.

We now prove (2.3.10). Let R := 1
2 |x| and assume that R ≥ 2(r∗(x)∨ r). Without loss of generality,

we may assume that R ≥ 2r∗(0). Indeed, otherwise, we deduce from the 1
8 -Lipschitz property of

r∗(x) in form of

r∗(0) ≤ r∗(x) +
|x|
8
→ r∗(x) ≥ |x|

4
,

and
r∗(0) ≥ r∗(x)− |x|

8
→ 3

2
r∗(0) ≥ r∗(x),

as well as (2.3.9) that
 

Br∗(x)(x)
|∇vr(t, y)|2dy . r−d∗ (x)

ˆ
|∇vr(t, y)|2dy . rd∗(0)

(|x|+ r)d
.

We have BR(x) ⊂ Rd\BR. Indeed for all y ∈ BR(x), the triangle inequality yields

|y| ≥
∣∣∣∣|y − x| − |x|∣∣∣∣ ≥ 2R−R = R,

so that y /∈ BR. We then argue once again by extension and we consider vr the weak solution of{
∂τvr +∇ · a∇vr = ∇ · afre1(−∞,0) in Rd+1,

vr = 0 in R+ × Rd, (2.3.21)

for which vr(s, ·) = vr(s, ·) as long as s ≤ 0. It then follows from Lemma 2 applied to the equation
(2.3.21) and the large-scale C0,1 estimate (2.4.6) (since from the inclusion BR(x) ⊂ Rd\BR and the
assuption (2.3.5), fr ≡ 0 on BR(x)) that for all t ∈ R− 

Br∗(x)(x)
|∇vr(t, y)|2dy =

 
Br∗(x)(x)

|∇vr(t, y)|2dy

.
 t+4r2

∗(x)

t

 
B2r∗(x)(x)

|∇vr(s, y)|2ds dy

(2.4.6)
.

 t+R2

t

 
BR(x)

|∇vr(s, y)|2ds dy. (2.3.22)

Now, since vr ≡ 0 in R+ × Rd, we have from (2.3.14):

(i) For
√
−t ≥ R,

 t+R2

t

 
BR(x)

|∇vr(s, y)|2ds dy =

 t+R2

t

 
BR(x)

|∇vr(s, y)|2ds dy

≤ R−d
 t+R2

t

ˆ
Rd\BR

|∇vr(s, y)|2ds dy

(2.3.14)
.

(
r∗(0)

r
∨ 1

)d
R−2d. (2.3.23)
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(ii) For R ≥
√
−t,

 t+R2

t

 
BR(x)

|∇vr(s, y)|2ds dy = R−2

ˆ 0

t

 
BR(x)

|∇vr(s, y)|2ds dy

≤ R−d
(√
−t
R

)2  0

t

ˆ
Rd\BR

|∇vr(s, y)|2ds dy

(2.3.14)
.

(
r∗(0)

r
∨ 1

)d
R−2d. (2.3.24)

The combination of (2.3.22), (2.3.23) and (2.3.24) concludes the argument for (2.3.10) since |x| ≥ 2r
implies that R = 1

2 |x| ≥
1
2(1

2 |x|+ r).

Argument for (2.3.11) and (2.3.12). It follows directly from the combination of Lemma 2, the
large-scale C0,1 estimate (2.4.5), the Poincaré inequality in Bρ(x) and the assumption (2.3.5): for
r ≥ r∗(x)

(i) if
√
−t ≤ r, we use (2.4.5) up to the scale

√
−t in form of

 
Br∗(x)(x)

|∇vr(t, y)|2dy .
 t+4r2

∗(x)

t

 
B2r∗(x)(x)

|∇vr(s, y)|2ds dy +

 
B2r∗(x)(x)

|fr(y)|2dy

(2.4.5),(2.3.5)
.

 0

t

 
B√−t(x)

|∇vr(s, y)|2ds dy

+ sup
r∗(x)≤ρ≤

√
−t

(√
−t
ρ

)2  
Bρ(x)

∣∣∣∣fr(y)e−
 

Bρ(x)
fr(z)e dz

∣∣∣∣2dy + r−2d

(2.3.5)
.

 0

t

 
B√−t(x)

|∇vr(s, y)|2ds dy + r−2d

(√
−t
r

)2

+ r−2d

.
 0

t

 
B√−t(x)

|∇vr(s, y)|2ds dy + r−2d,

which gives (2.3.11).

(ii) If
√
−t ≥ r, we use (2.4.5) up to the scale r and we obtain the same way (2.3.12).

Argument for (2.3.6) from (2.3.9), (2.3.10), (2.3.11) and (2.3.12). The case |x| ≥ 4(r∗(x)∨ r) is
done via (2.3.10). It remains to treat the case |x| ≤ 4(r∗(x) ∨ r) and we distinguish two sub-cases:

(1) Assume that r∗(x) ≥ r, which means that |x| ≤ 4r∗(x). We have by the 1
8 -Lipschitz continuity

property of r∗
r∗(x) & r∗(0), (2.3.25)

and

r∗(0) ≥ r∗(x)− 1

8
|x| ≥ r

2
+
r∗(x)

2
− 1

8
|x| & r + |x|. (2.3.26)
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Thus, from (2.3.9) we deduce that for all t ∈ R−

 
Br∗(x)(x)

|∇vr(t, y)|2dy . r−d∗ (x)

ˆ
Rd
|∇vr(t, y)|2dy

(2.3.25)
. r−d∗ (0)

ˆ
Rd
|∇vr(t, y)|2dy

(2.3.9),(2.3.26)
.

rd∗(0)

(|x|+ r)2d
.

(2) Assume that r∗(x) ≤ r which means that |x| ≤ 4r. For all
√
−t ≥ 2r∗(x), we have

(i) If
√
−t ≤ r, we use (2.3.11) and the plain energy estimate (2.3.13) to obtain

 
Br∗(x)(x)

|∇vr(t, y)|2dy
(2.3.11)
.

 0

t

 
B√−t(x)

|vr(s, y)|2dy ds+ r−2d

(2.3.13)
. r−2d

ˆ
Br
η√−t(y − x)dy + r−2d

≤ r−2d .
rd∗(0)

(|x|+ r)d
.

(ii) If
√
−t ≥ r, we use (2.3.12) and the plain energy estimate (2.3.9) to get

 
Br∗(x)(x)

|∇vr(t, y)|2dy
(2.3.12)
.

 t+r2

t

 
Br(x)

|∇vr(s, y)|2dy ds+r−2d
(2.3.9)
. r−2d .

rd∗(0)

(|x|+ r)d
.

This concludes the proof of (2.3.6).

Substep 1.2. We prove (2.2.39) without the support condition (2.3.5) on fr. We decompose
the r.h.s of (2.2.36) according to a family of dyadic annuli (Bk)k∈N, defined by Bk := B2k+1r\B2kr for
all k ≥ 1 and B0 := Br. Namely, we set for all k ∈ N, fr,k := frχk, where (χk)k∈N is a partition of
unity according to the decomposition (Bk)k∈N, and we denote by vr,k the weak solution of (2.2.36)
with r.h.s ∇ · afr,ke. By uniqueness, we have ∇vr =

∑+∞
k=0∇vr,k. Hence, we get by the triangle

inequality (  
Br∗(x)(x)

|∇vr(t, y)|2dy
) 1

2

≤
+∞∑
k=0

( 
Br∗(x)(x)

|∇vr,k(t, y)|2dy
) 1

2

.

Thanks to (2.2.37), fr,k satisfies (2.3.5) with radius 2kr, thus, by (2.3.6), we have for all k ≥ 0 and√
−t ≥ 2r∗(x)

( 
Br∗(x)(x)

|∇vr,k(t, y)|2dy
) 1

2

.

(
r∗(0)
2kr
∨ 1

) d
2

(|x|+ 2kr)d
.
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We deduce, setting Nr := dlog2

(
1 + |x|

r

)
e

(  
Br∗(x)(x)

|∇vr(t, y)|2dy
) 1

2

.
+∞∑
k=0

(
r∗(0)
2kr
∨ 1

) d
2

(|x|+ 2kr)d

.

(
r∗(0)

r
∨ 1

) d
2
(

(|x|+ r)−dNr + r−d
+∞∑

k=Nr+1

2−kd
)
,

which gives (2.2.39).

Step 2. Proof of (2.2.40). We use the same type of decomposition as in Substep 1.2 : we
have ∇vr =

∑+∞
k=0∇vr,k where this time, for all k ≥ 1, Bk := B2k+1\B2k and B0 := B1. We then

split the proof into two steps.

Substep 2.1. We argue in favor of the first alternative in (2.2.40), that is when the r.h.s is equal to
r
d
2
∗ (0)r log(1+|x|)

(|x|+1)d
. From the assumption (2.2.38) used in form of |fr(x)|+ (|x|+ 1)|∇fr(x)| . r

(|x|+1)d
,

we note that 1
rfr,k satisfies (2.3.5) with radius 2k. Thus by (2.3.6), we have for all k ≥ 0 and√

−t ≥ 2r∗(x)

(  
Br∗(x)(x)

|∇vr,k(t, y)|2dy
) 1

2

.
r

(
r∗(0)

2k
∨ 1

) d
2

(|x|+ 2k)d
.

We then conclude exactly as in Substep 1.2.

Substep 2.2. We argue in favor of the second alternative in (2.2.40), that is when the r.h.s is equal

to r
d
2
∗ (0)

(|x|+1)d−1 . From the assumption (2.2.38) used in form of |fr(x)|+ (|x|+ 1)|∇fr(x)| . 1
(|x|+1)d−1 ,

we note that 1
2k
fr,k satisfies (2.3.5) with radius 2k. Thus by (2.3.6), we have for all k ≥ 0 and√

−t ≥ 2r∗(x)

( 
Br∗(x)(x)

|∇vr,k(t, y)|2dy
) 1

2

.
2k
(
r∗(0)

2k
∨ 1

) d
2

(|x|+ 2k)d
.

We then conclude by the same decomposition as in Substep 1.2 : setting N := dlog2(1 + |x|)e

(  
Br∗(x)(x)

|∇vr(t, y)|2dy
) 1

2

.
+∞∑
k=0

2k
(
r∗(0)

2k
∨ 1

) d
2

(|x|+ 2k)d

. r
d
2
∗ (0)

(
(|x|+ 1)−d

N∑
k=0

2k +
+∞∑

k=N+1

2(1−d)k

)
,

which concludes the proof since
N∑
k=0

2k . |x|+ 1,
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and
+∞∑

k=N+1

2(1−d)k .
1

(|x|+ 1)d−1
.

Proof of Lemma 5: Control of averages

We consider the two regimes: the non-generic case R ≤ r∗(x) and the generic case R ≥ r∗(x).

1. Let us start with the non-generic case R ≤ r∗(x). We distinguish two sub-cases.

(i) In the case where
√

T
2 ≤ 2r∗(x), we have, using (2.2.42) and R <

√
T

 
BR(x)

|∇u(T, y)|2dy .
(√

T

R

)d  
B√T (x)

|∇u(T, y)|2dy
(2.2.42)
.

(
r∗(x)

R

)d
C(x, T )f(T )g(T ).

(ii) In the case where
√

T
2 ≥ 2r∗(x), we have by noticing that ∂τu − ∇ · a∇u = 0 on

(T2 , T )×B√
T
2

(x) and from Lemma 2 combined with the large-scale C0,1 estimate (2.4.6)

 
BR(x)

|∇u(T, y)|2dy .
(
r∗(x)

R

)d  
Br∗(x)(x)

|∇u(T, y)|2dy

.

(
r∗(x)

R

)d  
C2r∗(x)(T,x)

|∇u(s, y)|2ds dy

(2.4.6)
.

(
r∗(x)

R

)d  T

T
2

 
B√

T
2

(x)
|∇u(s, y)|2ds dy

.

(
r∗(x)

R

)d  T

T
2

 
B√s(x)

|∇u(s, y)|2ds dy

(2.2.42)
.

(
r∗(x)

R

)d
f(T )g

(
T

2

)  T

T
2

C(x, s)ds.

2. Let us now consider the generic case R ≥ r∗(x) and without loss of generality we may assume
that

√
T > 2

√
2R since otherwise

ffl
BR
.

ffl
B√T

and the conclusion follows from (2.2.42). We

have ∂τu −∇ · a∇u = 0 on (0, T ) × B√T and r∗(x) ≤ 2R <
√

T
2 so that from Lemma 2 and

the large-scale C0,1estimate (2.4.6) we deduce that

 
BR(x)

|∇u(T, y)|2dy .
 T

T−4R2

 
B2R

|∇u(s, y)|2dy ds .
 T

T
2

 
B√T (x)

|∇u(s, y)|2dy ds

. C(x, T )f(T )g

(
T

2

)
.

2.3.3 Proof of the suboptimal control of fluctuations of the time dependent flux

We provide in this section the proofs of Lemmas 6, 7, 8 and Proposition 3 of Section 2.2.4.
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Proof of Lemma 6

We prove the lemma in two steps. In the first step we prove a deterministic bound on qr(T, x), using
the energy estimates of Lemma 1 and the control of averages of ∇u deduced from Lemma 5. The
deterministic bound will depend on a random variable built from an average of r∗. In the second
step, we prove that the random constant has stretched exponential moments, using the moment
bound (2.4.3) of r∗.

Step 1. Proof that for all r ≤ min{1,
√
T} and x ∈ Rd

|qr(T, x)| . 1 + r−
d
2 log(

√
T

r
)

(
1 + r

d
2
∗ (0) +

ˆ
Rd\B1(x)

η1(y)r
d
2
∗ (ry + x)dy

)
. (2.3.27)

Without loss of generality, we may assume that x = 0. We have from the definition (2.1.13) of
qr(T ) followed by the triangle inequality

´ T
0 =

´ r2

0 +
´ T
r2 , the continuous embedding L2(Rd, ηrdx) ↪→

L1(Rd, ηrdx) and the domination of the Gaussian kernel by the exponential kernel

|qr(T )|
(2.1.13)
.

ˆ
gr(y)dy +

ˆ
gr(y)

∣∣∣∣ ˆ T

0
∇u(s, y)ds

∣∣∣∣dy
. 1 +

ˆ
ηr(y)

∣∣∣∣ˆ r2

0
∇u(s, y)ds

∣∣∣∣dy +

ˆ
ηr(y)

∣∣∣∣ ˆ T

r2

∇u(s, y)ds
∣∣∣∣dy

. 1 +

( ˆ
ηr(y)

∣∣∣∣ ˆ r2

0
∇u(s, y)ds

∣∣∣∣2dy) 1
2

+

ˆ
ηr(y)

∣∣∣∣ˆ T

r2

∇u(s, y)ds
∣∣∣∣dy. (2.3.28)

For the first r.h.s term of (2.3.28), we use the energy estimate (2.2.32) in form of(ˆ
ηr(y)

∣∣∣∣ˆ r2

0
∇u(s, y)ds

∣∣∣∣2dy) 1
2

. 1.

For the second r.h.s term of (2.3.28), we write with
´

=
´ ffl

Br(x) and the Cauchy-Schwarz inequality

ˆ
ηr(y)

∣∣∣∣ˆ T

r2

∇u(s, y)ds
∣∣∣∣dy . ˆ ( 

Br(x)
η2
r (y)dy

) 1
2
( 

Br(x)

∣∣∣∣ ˆ T

r2

∇u(s, y)ds
∣∣∣∣2dy) 1

2

dx. (2.3.29)

Using the energy estimate (2.2.32) applied to the equation (2.1.10) in form of, for all T > 0(  
B√T (x)

|∇u(T, y)|2dy
) 1

2

. T−1,

we deduce from the Minkowski inequality in L2(Br(x)) and Lemma 5 applied with R = 1, f ≡ 1
and g : T ∈ R+ 7→ T−1, that, since r ≤ 1(  

Br(x)

∣∣∣∣ˆ T

r2

∇u(s, y)ds
∣∣∣∣2dy) 1

2

. r−
d
2

ˆ T

r2

( ˆ
B1(x)

|∇u(s, y)|2dy
) 1

2

ds . r−
d
2 r

d
2
∗ (x) log(

√
T

r
).

Consequently (2.3.29) turns into

ˆ
ηr(y)

∣∣∣∣ˆ T

r2

∇u(s, y)ds
∣∣∣∣dy . r− d2 log(

√
T

r
)

ˆ
r
d
2
∗ (x)

( 
Br(x)

η2
r (y)dy

) 1
2

dx.
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It remains to show that
ˆ
r
d
2
∗ (x)

( 
Br(x)

η2
r (y)dy

) 1
2

dx . 1 + r
d
2
∗ (0) +

ˆ
Rd\B1

η1(x)r
d
2
∗ (rx)dx. (2.3.30)

For this, we decompose Rd into Br and Rd\Br to the effect of

ˆ
r
d
2
∗ (x)

( 
Br(x)

η2
r (y)dy

) 1
2

dx =

ˆ
Br
r
d
2
∗ (x)

(  
Br(x)

η2
r (y)dy

) 1
2

dx+

ˆ
Rd\Br

r
d
2
∗ (x)

(  
Br(x)

η2
r (y)dy

) 1
2

dx.

(2.3.31)
The first r.h.s term of (2.3.31) is controlled by, using the 1

8 -Lipschitz regularity of r∗ in form of
supx∈Br r∗(x) . r∗(0) + r . r∗(0) + 1 and the Cauchy-Schwarz inequality

ˆ
Br
r
d
2
∗ (x)

( 
Br(x)

η2
r (y)dy

) 1
2

dx . (r
d
2
∗ (0) + 1)r

d
2

(ˆ
η2
r (y)dy

) 1
2

. r
d
2
∗ (0) + 1.

For the second r.h.s term of (2.3.31), we note that for all x ∈ Rd\Br and y ∈ Br(x) we have
ηr(y) . ηr(x), so that

ˆ
Rd\Br

r
d
2
∗ (x)

( 
Br(x)

η2
r (y)dy

) 1
2

dx .
ˆ
Rd\Br

r
d
2
∗ (x)ηr(x)dx =

ˆ
Rd\B1

r
d
2
∗ (rx)η1(x)dx.

This concludes the proof of (2.3.30) and the argument for (2.3.27).

Step 2. We prove (2.2.43). It remains to show that C?(r, x) := 1+r
d
2
∗ (0)+

´
Rd\B1(x) η1(y)r

d
2
∗ (ry+x)dy

has the desired stretched exponential moment. From the moment bound (2.4.3) of r∗ and the
equivalence between algebraic moments and exponential moments (see Lemma 9), we have for all
p ∈ [1,+∞) and all y ∈ Rd 〈

rdp∗ (y)

〉 1
p

. p
d
β∧d . (2.3.32)

Therefore for all p ∈ [1,+∞) and x ∈ Rd〈(
1 + r

d
2
∗ (0) +

ˆ
Rd\B1(x)

η1(y)r
d
2
∗ (ry + x)dy

)p〉 1
p

. 1 +

〈
r
dp
2
∗ (0)

〉 1
p

+

ˆ
Rd\B1(x)

η1(y)

〈
r
dp
2
∗ (ry + x)

〉 1
p

dy

(2.3.32)
. 1 + p

1
2

d
β∧d

(
1 +

ˆ
η1(y)dy

)
,

which gives (2.2.43) by applying once again Lemma 9.

Proof of Lemmas 7 and 8: Control of the functional derivatives

We prove Lemma 7 and Lemma 8 independently.

Proof of lemma 7. It is enough to prove (2.2.44) for the quantities qr(T ) ·ek, for all r > 0, T ≥ 1 and
k ∈ J1, dK. In particular, we only treat the case k = 1, since the other contributions are controlled
the same way. For notational convenience, we write vT for vT1 .
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Let x ∈ Rd, h ∈ (0, 1), T ≥ 1, r > 0, ` ∈ [1,+∞) and δa be compactly supported in B`(x)
such that supy∈B`(x) |δa(y)| ≤ 1. We compute the finite difference

δhqr(T ) · e1 :=
qr(a+ hδa, T ) · e1 − qr(a, T ) · e1

h

=

ˆ
gr(y)e1 · δa(y)e dy +

ˆ
gr(y)e1 · δa(y)

( ˆ T

0
∇u(a+ hδa, t, y)dt

)
dy

+

ˆ T

0

ˆ
gr(y)e1 · a(y)∇δhu(t, y)dy dt, (2.3.33)

where δhu(t, ·) := u(a+hδa,t,·)−u(a,t,·)
h is the weak solution of{

∂τδ
hu−∇ · a∇δhu = ∇ · δa∇u(a+ hδa, ·, ·) on (0,+∞)× Rd,

δhu(0, ·) = ∇ · δa(·)e. (2.3.34)

The first r.h.s term of (2.3.33) give directly the first r.h.s terms of (2.2.44). For the second r.h.s
term of (2.3.33), we easily derive from the localized energy estimates (2.2.33) and (2.2.34) applied
to the equation (2.3.34) combined with (2.2.32) with a replaced by a+hδa (which control the norm
of the r.h.s of (2.3.34)) that

ˆ
gr(y)e1 · δa(y)

(ˆ T

0
∇u(a+ hδa, t, y)dt

)
dy →

h↓0

ˆ
gr(y)e1 · δa(y)

(ˆ T

0
∇u(t, y)dt

)
dy.

We thus obtain the second second r.h.s of (2.2.44). We now focus on the third r.h.s term of (2.3.33).
We split the time integral into the singular part t ≤ 1 and the regular part t ≥ 1ˆ T

0

ˆ
gr(y)e1 · a(y)∇δhu(t, y)dy dt =

ˆ
gr(y)e1 · a(y)

( ˆ 1

0
∇δhu(t, y)dt

)
dy

+

ˆ T

1

ˆ
gr(y)e1 · a(y)∇δhu(t, y)dy dt. (2.3.35)

We now split the rest of the proof into two steps, and treat the two r.h.s terms of (2.3.35) separately.

Step 1. First r.h.s term of (2.3.35). We prove that

lim sup
h→0

∣∣∣∣ˆ gr(y)e1 · a(y)

(ˆ 1

0
∇δhu(t, y)dt

)
dy
∣∣∣∣ .1`<√T ` d2( ˆ

e−
|x−z|
2c`

 
B`(z)

|gr(y)|2dy dz
) 1

2

+ 1`≥
√
TTx,`(ηr)(0), (2.3.36)

where Tx,`(ηr) is defined in (2.2.48).

Regime ` <
√
T . Using that

´
=

´ ffl
B`(z)

and by splitting Rd into B`(x) and Rd\B`(x) we
have∣∣∣∣ˆ gr(y)e1 · a(y)

(ˆ 1

0
∇δhu(t, y)dt

)
dy
∣∣∣∣ .ˆ  

B`(z)

∣∣∣∣ ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣gr(y)dy dz

=

ˆ
B`(x)

 
B`(z)

∣∣∣∣ ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣gr(y)dy dz (=: I`1)

+

ˆ
Rd\B`(x)

 
B`(z)

∣∣∣∣ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣gr(y)dy dz. (=: I`2)

(2.3.37)
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We will prove that

I`1 + I`2 . `
d
2

(ˆ
e−
|x−z|
2c`

 
B`(z)

|gr(y)|2dy dz
) 1

2

. (2.3.38)

Since the arguments are similar we only give the details for I`2. By the Cauchy-Schwarz inequality,
we have

I`2 ≤
(ˆ

Rd\B`(x)
e
|x−z|
2c`

 
B`(z)

∣∣∣∣ˆ 1

0
∇δhu(s, y)ds

∣∣∣∣2dy dz) 1
2
(ˆ

Rd\B`(x)
e−
|x−z|
2c`

 
B`(z)

|gr(y)|2dy dz
) 1

2

.

(2.3.39)
It remains to estimate the first r.h.s factor of (2.3.39). First, by the localized energy estimate (2.2.34)

applied to the equation (2.3.34) and
( ´

B`(x) |δa(y)e|2dy
) 1

2

. `
d
2 , we obtain

( ˆ
Rd\B`(x)

e
|x−z|
2c`

 
B`(z)

∣∣∣∣ ˆ 1

0
∇δhu(s, y)ds

∣∣∣∣2dy dz) 1
2

. `
d
2 +

( ˆ
B`(x)

∣∣∣∣ ˆ 1

0
δa(y)∇u(a+ hδa, s, y)ds

∣∣∣∣2dy) 1
2

+

ˆ 1

0

1

1− t

ˆ 1

t

( ˆ
B`(x)

|δa(y)∇u(a+ hδa, s, y)|2dy
) 1

2

ds dt.

(2.3.40)

Second, by the localized energy estimate (2.2.32) applied to the equation (2.1.10) with a replaced
by a+ hδa and for R = ` ≥ 1, we obtain( ˆ

η`(y − x)

∣∣∣∣ ˆ 1

0
∇u(a+ hδa, t, y)dt

∣∣∣∣2dy) 1
2

. `
d
2 , (2.3.41)

and
ˆ 1

0

1

1− t

ˆ 1

t

(ˆ
η`(y−x)|∇u(a+hδa, s, y)|2dy

) 1
2

ds dt . `
d
2

ˆ 1

0

1

1− t

ˆ 1

t
s−1ds dt = `

d
2

ˆ 1

0

− log(t)

1− t
dt . `

d
2 .

(2.3.42)
Finally the combination of (2.3.39), (2.3.40), (2.3.41) and (2.3.42) yields (2.3.38). It then follows
from (2.3.37) that∣∣∣∣ ˆ gr(y)e1 · a(y)

(ˆ 1

0
∇δhu(t, y)dt

)
dy
∣∣∣∣ . ` d2(ˆ

e−
|x−z|
2c`

 
B`(z)

|gr(y)|2dy dz
) 1

2

. (2.3.43)

Regime ` ≥
√
T . Using the Cauchy-Schwarz inequality and by dominating the Gaussian kernel by

the exponential kernel, we have∣∣∣∣ ˆ gr(y)e1 · a(y)

( ˆ 1

0
∇δhu(t, y)dt

)
dy
∣∣∣∣ ≤( ˆ

ηr(y)

∣∣∣∣ ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣2dy) 1
2

, (2.3.44)

with, by applying the localized energy estimates (2.2.32) and (2.2.33) to (2.3.34) for R = r( ˆ
ηr(y)

∣∣∣∣ ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣2dy) 1
2

.

( ˆ
ηr(y)|δa(y)|2dy

) 1
2

+

(ˆ
ηr(y)|δa(y)|2

∣∣∣∣ ˆ 1

0
∇u(a+ hδa, t, y)dt

∣∣∣∣2dy) 1
2

+

ˆ 1

0

1

1− t

ˆ 1

t

(ˆ
ηr(y)|δa(y)|2|∇u(a+ hδa, s, y)|2dy

) 1
2

ds dt
)
.

(2.3.45)
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Now, since δa is supported in B`(x), the localized energy estimates (2.2.33) and (2.2.34) applied to
the equation (2.3.34) with R = ` combined with (2.3.41) and (2.3.42) yield
 

B`(x)

∣∣∣∣ˆ 1

0
∇u(a+hδa, t, y)−∇u(a, t, y)dt

∣∣∣∣2dy+t2(

√
t

`
∨1)−d

 
B`(x)

|∇u(a+hδa, t, y)−∇u(a, t, y)|2dy . h2`d,

(2.3.46)
which allow us to pass to the limit when h ↓ 0 in (2.3.44) and (2.3.45), and obtain

lim sup
h→0

∣∣∣∣ ˆ gr(y)e1 · a(y)

(ˆ 1

0
∇δhu(t, y)dt

)
dy
∣∣∣∣ . Tx,`(ηr)(0).

It concludes the argument for (2.3.36).

Step 2. Second r.h.s term of (2.3.35). We prove that

lim sup
h→0

∣∣∣∣ ˆ T

1

ˆ
gr(y)e1 · a(y)∇δhu(t, y)dy dt

∣∣∣∣
.
ˆ

B`(x)

ˆ T

1
|∇u(t, y)||∇vT (t, y)|dt dy +

ˆ
B`(x)

|∇vT (1, y)|
(

1 +

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy
+ Gr,`(x)1`≥

√
T + 1`<

√
T `

d
2

(ˆ
e−
|x−z|
2c`

 
B`(z)

|∇vT (1, y)|2dy dz
) 1

2

. (2.3.47)

Recall that vT denotes the weak solution of the dual system associated with (2.3.34), which reads{
∂τv

T +∇ · a∗∇vT = ∇ · agre1 on (−∞, T )× Rd,
vT (T ) = 0.

(2.3.48)

We reformulate the l.h.s of (2.3.47) with help of the dual system (2.3.48). We have by testing the
equation (2.3.48) with δhu and integrating in time
ˆ T

1

ˆ
δhu(t, y)∂tv

T (t, y)dy dt−
ˆ T

1

ˆ
∇δhu(t, y)·a∗(y)∇vT (t, y)dy dt = −

ˆ T

1

ˆ
gr(y)e1·a(y)∇δhu(t, y)dy dt,

(2.3.49)
and also, by testing (2.3.34) with vT

ˆ T

1

ˆ
vT (t, y)∂tδ

hu(t, y)dy dt+

ˆ T

1

ˆ
∇vT (t, y) · a(y)∇δhu(t, y)dy dt

= −
ˆ T

1

ˆ
∇vT (t, y) · δa(y)∇u(a+ hδa, t, y)dy dt. (2.3.50)

Consequently, by summing (2.3.49) and (2.3.50), using an integration by part in time and the fact
that vT (T, ·) ≡ 0, we get
ˆ T

1

ˆ
gr(y)e1·a(y)∇δhu(t, y)dy dt =

ˆ
δhu(1, y)vT (1, y)dy−

ˆ T

1

ˆ
∇vT (t, y)·δa(y)∇u(a+hδa, t, y)dy dt.

(2.3.51)
Moreover, from (2.3.46) we can pass to the limit when h ↓ 0 in the second r.h.s term of (2.3.51),
namely

lim
h→0

ˆ T

1

ˆ
∇vT (t, y) · δa(y)∇u(a+ hδa, t, y)dy dt =

ˆ T

1

ˆ
∇vT (t, y) · δa(y)∇u(t, y)dy dt,
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and obtain the first r.h.s term of (2.3.47). It remains to control the first r.h.s term of (2.3.51). To
this aim, we integrate in time the equation (2.3.34) between 0 and 1:

δhu(1, ·)−∇ · a
ˆ 1

0
∇δhu(t, ·)dt = ∇ · δa

ˆ 1

0
∇u(a+ hδ, t, ·)dt+∇ · δae,

which provides by testing with vT (1, ·)
ˆ
δhu(1, y)vT (1, y)dy =

ˆ
∇vT (1, y) · δa(y)

(ˆ 1

0
∇u(a+ hδa, t, y)dt

)
dy

−
ˆ
∇vT (1, y) · a(y)

(ˆ 1

0
∇δhu(t, y)dt

)
dy −

ˆ
∇vT (1, y) · δa(y) e dy.

(2.3.52)

The first r.h.s term of (2.3.52) combined with the third one and (2.3.46) give the second r.h.s term
of (2.3.47). The second r.h.s term of (2.3.52) is then dominated in two ways.

Regime ` ≥
√
T . For the generic case ` ≥ r∗(0), we use the identity

´
=

´ ffl
B`(y) and we

split the integral into the two contributions
´
Rd\B4`

and
´
B4`

in form of∣∣∣∣ ˆ ∇vT (1, y) · a(y)

( ˆ 1

0
∇δhu(t, y)dt

)
dy
∣∣∣∣ ≤ ˆ  

B`(y)
|∇vT (1, z)|

∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz dy
=

( ˆ
Rd\B4`

+

ˆ
B4`

)  
B`(y)

|∇vT (1, z)|
∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz dy.
For the far-field contribution |x| ≥ 4`, we make use of the Cauchy-Schwarz inequality and the
computations did in (2.3.45) as well as (2.3.46) to get

lim sup
h→0

ˆ
Rd\B4`

 
B`(y)

|∇vT (1, z)|
∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz dy . ˆ
Rd\B4`

(  
B`(y)

|∇vT (1, z)|2dz
) 1

2

Tx,`(η`)(y)dy.

For the near-field contribution |x| < 4`, we first note that from the assumption ` > r∗(0) we have
for all y ∈ Rd

Br∗(y)(y) ∩ B5` 6= ∅ ⇒ y ∈ B7`. (2.3.53)

Indeed, from the 1
8 -Lipschitz regularity property of r∗, if there exists z ∈ Br∗(y)(y) ∩ B5` then

|y| ≤ |y− z|+ |z| ≤ r∗(y) + 5` ≤ r∗(0) + |y|
8 + 5` ≤ 6`+ |y|

8 and thus |y| ≤ 16
3 ` ≤ 7`. Therefore, using

the property (2.4.20) combined with the Cauchy-Schwarz inequality, we get
ˆ

B4`

 
B`(y)

|∇vT (1, z)|
∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz dy ≤ˆ
B5`

|∇vT (1, z)|
∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz
(2.4.20)
.

ˆ  
Br∗(y)(y)

|∇vT (1, z)|
∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣1B5`
(z)dz dy

(2.3.53)
≤

ˆ
B7`

( 
Br∗(y)(y)

|∇vT (1, z)|2dz
) 1

2

×
( 

Br∗(y)(y)

∣∣∣∣ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣2dz) 1
2

dy,
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and we finally end up with, using (2.3.45) as well as (2.3.46)

lim sup
h→0

ˆ
B4`

 
B`(y)

|∇vT (1, z)|
∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz dy . ˆ
B7`

( 
Br∗(y)(y)

|∇vT (1, z)|2dz
) 1

2

Tx,`(ηr∗(y))(y)dy.

For the non-generic regime ` < r∗(0), we use the estimate (2.3.43) which clearly holds by replacing

gr with vT (1, ·) and we bound `
d
2 by r

d
2
∗ (0).

Regime ` <
√
T . We use the estimate (2.3.43) which clearly holds by replacing gr with vT (1, ·).

Proof of Lemma 8. We keep the notations of the previous proof and we give only the argument for
q(r2) ? fr · e1. First, equality (2.3.33) holds and take the form

δhq(r2) ? fr · e1 =

ˆ
fr(y)e1 · δa(y)edy +

ˆ
fr(y)e1 · δa(y)

(ˆ r2

0
∇u(t, y)dt

)
dy

+

ˆ r2

0

ˆ
fr(y)e1 · a(y)∇δhu(t, y)dy dt. (2.3.54)

The two first r.h.s terms of (2.3.54) give directly the two first r.h.s terms of (2.2.50), respectively.
As in (2.3.35), we make the decomposition

ˆ r2

0

ˆ
fr(y)e1 · a(y)∇δhu(t, y)dy dt =

ˆ
fr(y)e1 · a(y)

( ˆ 1

0
∇δhu(t, y)dt

)
dy

+

ˆ r2

1

ˆ
fr(y)e1 · a(y)∇δhu(t, y)dy dt. (2.3.55)

Control of the second r.h.s term of (2.3.55). This term is controlled the same way as we did
in Step 2 of the proof of Lemma 7 and provides the third, the fifth and the sixth r.h.s term of (2.2.50).

Control of the first r.h.s term of (2.3.55). It remains to argue that the first r.h.s term of
(2.3.55) is dominated by the fourth r.h.s term of (2.2.50). We distinguish the two regimes ` ≥ r and
` ≤ r.

Regime ` ≥ r. We use the assumption (2.2.49) in form of, for all y ∈ Rd, |fr(y)| .
´ r2

1 s−
1
2 g√s(y)ds

and (2.3.45) applied with r =
√
s to get

lim sup
h→0

∣∣∣∣ ˆ fr(y)e1 · a(y)

( ˆ 1

0
∇δhu(t, y)dt

)
dy
∣∣∣∣ . lim sup

h→0

ˆ r2

1
s−

1
2

ˆ
g√s(y)

∣∣∣∣ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣dy
.
ˆ r2

1
s−

1
2Tx,`(η√s)(0)ds.

Regime ` < r. We first note that from the assumption (2.2.49) we have, for all y ∈ Rd

|fr(y)| . |y|
ˆ r2

1
s−1− d

2 (1 +
|y|2

s
)−

d
2
− 3

2 ∧ (1 +
|y|2

s
)−

d
2
−1ds .

r

(|y|+ 1)d
∧ 1

(|y|+ 1)d−1
, (2.3.56)

We first make use of the identity
´

=
´ ffl

B`(y) to get∣∣∣∣ ˆ fr(y)e1 · a(y)

( ˆ 1

0
∇δhu(t, y)dt

)
dy
∣∣∣∣ . ˆ  

B`(y)
|fr(z)|

∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz dy.
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We then split the integral into the far-field contribution |x| ≥ 2` and the near-field contribution
|x| < 2`. For the near-field contribution, we make use of a dyadic decomposition and (2.3.56) in
form of |fr(y)| . (|y|+ 1)−d+1 to get

ˆ
B2`

 
B`(y)

|fr(z)|
∣∣∣∣ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz dy .ˆ
B3`

|fr(y)|
∣∣∣∣ ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣dy
.
ˆ

B1

∣∣∣∣ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣dy
+

dlog2(3`)e∑
n=0

ˆ
B2n+1\B2n

|fr(y)|
∣∣∣∣ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣dy
(2.3.56)
.

ˆ
B1

∣∣∣∣ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣dy
+

dlog2(3`)e∑
n=0

2n
( 

B2n+1

∣∣∣∣ˆ 1

0
∇δhu(t, y)dt

∣∣∣∣2dy) 1
2

which gives the first term in the second r.h.s term of (2.2.52) by passing to the lim sup and using
(2.3.45) applied both with R = 1 and R = 2n+1 as well as (2.3.46). For the far-field contribution,
we make use of the Cauchy-Schwarz inequality in form of

ˆ
Rd\B2`

 
B`(y)

|fr(z)|
∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣dz dy .ˆ
Rd\B2`

(  
B`(y)

|fr(z)|2dz
) 1

2

×
(  

B`(y)

∣∣∣∣ ˆ 1

0
∇δhu(t, z)dt

∣∣∣∣2dz) 1
2

dy,

and we get the second term in the second r.h.s term of (2.2.52) by passing to the lim sup and using
(2.3.45) applied with R = ` as well as (2.3.46).

Proof of Proposition 3: Suboptimal fluctuation estimates.

We split the proof into three steps. In the first two steps we control
´
|∂fct
x,`qr(T )|2dx, using the bound

of ∂fct
x,`qr(T ) proved in Lemma 7. More precisely, in the first step we treat the regime ` <

√
T and in

the second step the regime ` ≥
√
T . In the last step we deduce the desired moment bound (2.2.53)

from the multiscale logarithmic Sobolev inequality, in form of (2.4.1), and the moment bound (2.4.3)
on r∗. We start with preliminary estimates.

Step 0. Preliminary. First, we will use several times the following sub-optimal deterministic
decay in time of averages of ∇u: for all t ∈ (0, T ]

ˆ
B`(x)

|∇u(t, y)|2dy . `d
((

r∗(x)

`
∨ 1

)d
1`<
√
t + 1`≥

√
t

)
t−2. (2.3.57)

This estimate is a direct consequence of the combination of the localized energy estimate (2.2.32)
applied to (2.1.10) with R =

√
t and Lemma 5 applied with f ≡ 1, g : t ∈ R+ 7→ t−2 and R = `.
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Second, we will use several times the following large-scale regularity result: for all t ∈ (−∞, T ] and
x ∈ Rd

 
Br∗(x)(x)

|∇vT (t, y)|2dy . rd∗(0)
log2(1 + |x|

r )

(|x|+ r)2d
+ r−dη4r∗(x)(x) + g2

2r(x), (2.3.58)

where we recall that vT is defined in (2.2.45). This estimate is a consequence of the localized
energy estimate (2.2.32) and the large-scale regularity estimate (2.2.39). Indeed, we first notice that
vT = (ṽk(· −T, ·))k∈J1,dK with ṽk is the weak solution of (2.2.36) for e = ek and fr = gr. In addition,
from the identity (2.3.7) we get for all (t, x) ∈ (−∞, T ]× Rd

∇vT (t, x) =

ˆ T−t

0
∇w(s, x)ds, (2.3.59)

with w = (wk)k∈J1,dK and wk solves (2.3.8) with fr = gr and e = ek. Therefore, in the regime
√
T − t ≥ 2r∗(x), we use (2.2.39) (where we bound ( r∗(0)

r ∨ 1)d ≤ 2r∗(0) since r ≥ 1) in form of

 
Br∗(x)(x)

|∇vT (t, y)|2dy =

d∑
k=1

 
Br∗(x)(x)

|∇ṽk(t− T, y)|2dy . rd∗(0)
log2(1 + |x|

r )

(|x|+ r)d
.

In the regime 2r∗(x) ≥
√
T − t, we use the formula (2.3.59) combined with the localized energy

estimate (2.2.32) applied with R = 2r∗(x) in form of
 

Br∗(x)(x)
|∇vT (t, y)|2dy .

 
B2r∗(x)(x)

∣∣∣∣ ˆ T−t

0
∇w(s, y)ds

∣∣∣∣2dy . ˆ
η2r∗(x)(x− y)g2

r (y)dy.

Finally the r.h.s is dominated via
ˆ
η2r∗(x)(x− y)g2

r (y)dy =

ˆ
B |x|

2

(x)
η2r∗(x)(x− y)g2

r (y)dy +

ˆ
Rd\B |x|

2

(x)
η2r∗(x)(x− y)g2

r (y)dy,

with ˆ
B |x|

2

(x)
η2r∗(x)(x− y)g2

r (y)dy . g2
2r(x)

ˆ
η2r∗(x)(y)dy . g2

2r(x),

and ˆ
Rd\B |x|

2

(x)
η2r∗(x)(x− y)g2

r (y)dy . r−dη4r∗(x)(x)

ˆ
g 1√

2
r(y)dy . r−dη4r∗(x)(x).

We now turn to the proof of (2.2.53).

Step 1. Regime ` <
√
T . Proof that for all ` ∈ [1,

√
T )

ˆ
|∂fct
x,`qr(T )|2dx . `2dr−d(1 + log2(T ) + log2(

√
T

r
))C?(r, `), (2.3.60)

with

C?(r, `) :=

(
rd∗(0)

ˆ
rd∗(rx)

log2(|x|+ 1)

(|x|+ 1)2d
dx+

ˆ
r2d
∗ (x)

(|x|+ 1)2d
dx+

ˆ
rd∗(rx)g2

2(x)dx
) 1

2

. (2.3.61)
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We split this step into two parts. The first part is devoted to the control of the first fourth r.h.s
terms of (2.2.44) and the second part is devoted to the control of the fifth term.

Substep 1.1. Proof that for all ` ∈ [1,
√
T )( ˆ (ˆ

B`(x)

∣∣∣∣ ˆ T

0
∇u(t, y)dt

∣∣∣∣gr(y)dy
)2

dx
) 1

2

. `dr−
d
2

(
1 + log(

√
T

r
)

(ˆ
rd∗(rx)g2

1(x)dx
) 1

2
)
,

(2.3.62)
and

`−d
ˆ (ˆ

B`(x)
gr(y)dy

)2

+ `−d
(ˆ

B`(x)
|∇vT (1, y)|

(
1 +

ˆ 1

0
∇u(s, y)ds

)
dy
)2

dx

+

ˆ ˆ
e−
|x−z|
2c`

 
B`(z)

|gr(y)|2 + |∇vT (1, y)|2dy dz dx . `dr−d. (2.3.63)

Argument for (2.3.62). Since r ≤
√
T , we split

´ T
0 into

´ r2

0 +
´ T
r2 and we apply the triangle

inequality followed by the Jensen inequality, the identity
´ ffl

B`(x) =
´
as well as the Cauchy-Schwarz

inequality to the effect of( ˆ (ˆ
B`(x)

∣∣∣∣ ˆ T

0
∇u(t, y)dt

∣∣∣∣gr(y)dy
)2

dx
) 1

2

.`d
(ˆ ∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2g2
r (y)dy

) 1
2

+

(ˆ ˆ
B`(x)

∣∣∣∣ ˆ T

r2

∇u(t, y)dt
∣∣∣∣2dy ˆ

B`(x)
g2
r (y)dy dx

) 1
2

.

(2.3.64)

For the first r.h.s term of (2.3.64), we dominate the Gaussian kernel by the exponential kernel and
we use the localized energy estimate (2.2.32) applied to (2.1.10) in form of(ˆ ∣∣∣∣ˆ r2

0
∇u(t, y)dt

∣∣∣∣2g2
r (y)dy

) 1
2

. r−
d
2

(ˆ
ηr(y)

∣∣∣∣ˆ r2

0
∇u(t, y)dt

∣∣∣∣2dy) 1
2 (2.2.32)
. r−

d
2 . (2.3.65)

For the second r.h.s term of (2.3.64), since ` <
√
T , we have by the Minkowski inequality in L2(B`(x))

and the decay estimate (2.3.57)

ˆ
B`(x)

∣∣∣∣ˆ T

r2

∇u(t, y)dt
∣∣∣∣2dy ≤ ( ˆ T

r2

(ˆ
B`(x)

|∇u(t, y)|2dy
) 1

2

dt
)2 (2.3.57)

. (r∗(x) ∨ `)d log2(

√
T

r
),

so that we finally get, using in the last line the Lipschitz property of r∗ in form of supy∈B`(x)

(
r∗(y)
` ∨

1

)d
.

(
r∗(x)
` ∨ 1

)d
combined with the identity

´ ffl
B`(x) dx =

´
and change of variables x 7→ x

r

( ˆ ˆ
B`(x)

∣∣∣∣ˆ T

r2

∇u(t, y)dt
∣∣∣∣2dy ˆ

B`(x)
g2
r (y)dy dx

) 1
2

. log(

√
T

r
)

(ˆ
(r∗(x) ∨ `)d

ˆ
B`(x)

g2
r (y)dy dx

) 1
2

. `dr−
d
2 log(

√
T

r
)

(ˆ (
r∗(rx)

`
∨ 1

)d
g2

1(x)dx
) 1

2

,
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Estimate (2.3.62) then follows in combination with the previous estimate, (2.3.64) and (2.3.65) as
well as the estimate r∗(rx)

` ∨ 1 . r∗(rx).

Argument for (2.3.63). On the one hand, we have from the Jensen inequality, the identity´ ffl
B`(x) =

´
and the Cauchy-Schwarz inequality as well as

´
g2
r (y)dy . r−d

ˆ ( ˆ
B`(x)

gr(y)dy
)2

+

(ˆ
B`(x)

|∇vT (1, y)|
(

1 +

ˆ 1

0
∇u(s, y)ds

)
dy
)2

dx

. `2dr−d +

ˆ ˆ
B`(x)

|∇vT (1, y)|2dy
ˆ

B`(x)
1 +

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣2dx. (2.3.66)

Then, using the localized energy estimate (2.2.32) applied to (2.1.10) with R = ` and the plain
energy estimate

´
|∇vT (1, y)|2dy . r−d (the proof is identical as for (2.3.9)) we get

ˆ ˆ
B`(x)

|∇vT (1, y)|2dy
ˆ

B`(x)
1+

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣2dx (2.2.32)
. `d

ˆ ˆ
B`(x)

|∇vT (1, y)|2dy dx . `2dr−d.

(2.3.67)
On the other hand, by noticing that from the Fubini-Tonelli theorem, we have for all measurable
functions f : Rd → R+

ˆ ˆ
e−
|x−z|
2c`

 
B`(z)

f(y)dy dz dx =

ˆ
f(y)

ˆ
`−d1B`(y)(z)

ˆ
e−
|x−z|
2c` dx dz dy . `d

ˆ
f(y)dy,

we get

ˆ ˆ
e−
|x−z|
2c`

 
B`(z)

g2
r (y) + |∇vT (1, y)|2dy dz dx . `d

ˆ
g2
r (y) + |∇vT (1, y)|2dy . `dr−d. (2.3.68)

The combination of (2.3.66), (2.3.67) and (2.3.68) give the desired (2.3.63).

Substep 1.2. Proof that for all ` ∈ [1,
√
T )

( ˆ (ˆ T

1

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
) 1

2

. `dr−
d
2 log(T )

(
rd∗(0)

ˆ
rd∗(rx)

log2(|x|+ 1)

(|x|+ 1)2d
dx+

ˆ
r2d
∗ (x)

(|x|+ 1)2d
dx+

ˆ
rd∗(rx)g2

2(x)dx
) 1

2

.

(2.3.69)

Let N := dlog2(T )e. We start by decomposing the time interval [1, T ] into dyadic intervals [2j , 2j+1]
for j ∈ J1, N −1K. By the triangle inequality, the Cauchy-Schwarz inequality and the decay estimate
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(2.3.57)( ˆ (ˆ T

1

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
) 1

2

≤
N−1∑
j=0

(ˆ ( ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (T, y)|dy dt
)2

dx
) 1

2

≤
N−1∑
j=0

(ˆ ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)|2dy dt
ˆ 2j+1

2j

ˆ
B`(x)

|∇vT (t, y)|2dy dt dx
) 1

2

(2.3.70)

(2.3.57)
.

N−1∑
j=0

2−
j
2

( ˆ
(r∗(x) ∨ `)d

ˆ 2j+1

2j

ˆ
B`(x)

|∇vT (t, y)|2dy dt
) 1

2

. (2.3.71)

In addition, by the 1
8 -Lipschitz property of r∗ in form of r∗(x) ∨ ` . infy∈B`(x) r∗(y) ∨ ` and

supy∈Br∗(x)(x) r∗(y) ∨ ` . r∗(x) ∨ ` as well as the identity
´ ffl

B`(x) dx =
´

and the property (2.4.20),
we have for all j ∈ J0, N − 1K(ˆ

(r∗(x) ∨ `)d
ˆ 2j+1

2j

ˆ
B`(x)

|∇vT (t, y)|2dy dt dx
) 1

2

. `
d
2

(ˆ ˆ 2j+1

2j
(r∗(x) ∨ `)d|∇vT (t, x)|2dt dx

) 1
2

(2.4.20)
. `

d
2

( ˆ ˆ 2j+1

2j

 
Br∗(x)(x)

(r∗(y) ∨ `)d|∇vT (t, y)|2dy dt dx
) 1

2

. `
d
2

(ˆ
(r∗(x) ∨ `)d

ˆ 2j+1

2j

 
Br∗(x)(x)

|∇vT (t, y)|2dy dt dx
) 1

2

. (2.3.72)

Then, using the large-scale estimate (2.3.58) we have
ˆ 2j+1

2j

 
Br∗(x)(x)

|∇vT (s, y)|2dy ds . 2j
(
rd∗(0)

log2(1 + |x|
r )

(|x|+ r)2d
+ r−dη4r∗(x)(x) + g2

2r(x)

)
. (2.3.73)

Therefore, from (2.3.72), (2.3.73) and the change of variables x 7→ x
r , we get( ˆ

(r∗(x) ∨ `)d
ˆ 2j+1

2j

ˆ
B`(x)

|∇vT (t, y)|2dy dt dx
) 1

2

. 2
j
2 `

d
2 r−

d
2

(
rd∗(0)

ˆ
(r∗(rx) ∨ `)d log2(|x|+ 1)

(|x|+ 1)2d
dx+

ˆ
(r∗(x) ∨ `)dη4r∗(x)(x)dx+

ˆ
(r∗(rx) ∨ `)dg2

2(x)dx
) 1

2

,

(2.3.74)

which gives the estimate (2.3.69) by plugging (2.3.74) into (2.3.71) and using η4r∗(x)(x) . rd∗(x)(|x|+
1)−2d as well as r∗(x)

` ∨ 1 . r∗(x). This concludes the argument for (2.3.60).

Step 2. Regime ` ≥
√
T . Proof that for all ` ∈ [

√
T ,+∞)

ˆ
|∂fct
x,`qr(T )|2dx . `d log2(T )(r2d

∗ (0) +D?,1(r, `) +D?,2(r) log2(

√
T

r
)), (2.3.75)
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with

D?,1(r, `) =rd∗(0)`d
ˆ
Rd\B`

log2(1 + |x|
r )

(|x|+ r)2d
dx+ `d

ˆ
Rd\B`

rd∗(x)|x|−2ddx

+ rd∗(0)

(ˆ
B7`

log(1 + |x|
r )

(|x|+ r)d
dx
)2

+

(ˆ
B7`

r
d
2

+1
∗ (x)(|x|+ 1)−d−1dx

)2

+ rd∗(0)

ˆ
rd∗(x)

(|x|+ 1)2d
dx,

(2.3.76)

and
D?,2(r) =

 
Br
rd∗(x)dx+

ˆ
Rd\B1

rd∗(rx)g1(x)dx. (2.3.77)

We split this step into two parts. The first one is devoted to the control of the first fourth r.h.s
terms of (2.2.44) and the second one is devoted to the control of the fifth r.h.s term.

Substep 2.1. Proof that for all ` ∈ [
√
T ,+∞)

ˆ (ˆ
B`(x)

∣∣∣∣ˆ T

0
∇u(t, y)dt

∣∣∣∣gr(y)dy
)2

dx . `dD?,2(r) log2(

√
T

r
), (2.3.78)

and
ˆ ( ˆ

B`(x)
|∇vT (1, y)|

(
1 +

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy)2

dx+

ˆ
G2
r,`(x)dx . `dD?,1(r, `), (2.3.79)

where we recall that Gr,` is defined in (2.2.47).

Argument for (2.3.78). Since for all x ∈ Rd,
´
B`(x) gr(y)dy ≤

´
gr(y)dy . 1, we have by the

Jensen inequality applied with the measure grdy and the identity
´ ffl

B`(x) =
´

ˆ ( ˆ
B`(x)

∣∣∣∣ ˆ T

0
∇u(t, y)dt

∣∣∣∣gr(y)dy
)2

dx .
ˆ ˆ

B`(x)

∣∣∣∣ˆ T

0
∇u(t, y)dt

∣∣∣∣2gr(y)dy dx

. `d
ˆ ∣∣∣∣ ˆ T

0
∇u(t, y)dt

∣∣∣∣2gr(y)dy.

Since r ≤
√
T , we split the integral

´ T
0 into

´ r2

0 +
´ T
r2 and we use the localized energy estimate

(2.2.32) applied to (2.1.10) in form of
´ ∣∣∣∣ ´ r2

0 ∇u(t, y)dt
∣∣∣∣2gr(y)dy . 1, to obtain

ˆ ∣∣∣∣ˆ T

0
∇u(t, y)dt

∣∣∣∣2gr(y)dy .
ˆ ∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2gr(y)dy +

ˆ ∣∣∣∣ ˆ T

r2

∇u(t, y)dt
∣∣∣∣2gr(y)dy

(2.2.32)
. 1 +

ˆ ∣∣∣∣ˆ T

r2

∇u(t, y)dt
∣∣∣∣2gr(y)dy. (2.3.80)

Finally, using that
´

=
´ ffl

Br(x) dx and for all x ∈ Rd\Br, supy∈Br(x) gr(y) . gr(x), in form of

ˆ ∣∣∣∣ ˆ T

r2

∇u(t, y)dt
∣∣∣∣2gr(y)dy .

 
Br

 
Br(x)

∣∣∣∣ ˆ T

r2

∇u(t, y)dt
∣∣∣∣2dy dx+

ˆ
Rd\Br

gr(x)

 
Br(x)

∣∣∣∣ˆ T

r2

∇u(t, y)dt
∣∣∣∣2dy dx,
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and the Minkowski inequality in L2(Br(x)) as well as the decay estimate (2.3.57) (where we use that,
since r ≥ 1, r∗(x)

r ∨ 1 ≤ 2r∗(0)), we have
ˆ ∣∣∣∣ˆ T

r2

∇u(t, y)dt
∣∣∣∣2gr(y)dy .

 
Br

(ˆ T

r2

( 
Br(x)

|∇u(t, y)|2dy
) 1

2

dt
)2

dx

+

ˆ
Rd\Br

gr(x)

(ˆ T

r2

( 
Br(x)

|∇u(t, y)|2dy
) 1

2

dt
)2

dx

(2.3.57)
.

( 
Br
rd∗(x)dx+

ˆ
Rd\B1

rd∗(rx)g1(x)dx
)

log2(

√
T

r
). (2.3.81)

Argument for (2.3.79). We start with the first l.h.s term. We distinguish between the generic
case ` ≥ r∗(0) and the non-generic case ` < r∗(0).

Regime ` ≥ r∗(0). We split the integral into the far-field contribution |x| ≥ 4` and the near-field
contribution |x| < 4`. For the far-field contribution, we write using the Cauchy-Schwarz inequal-
ity, the localized energy estimate (2.2.32) applied to (2.1.10) with R = ` and T = 1, the identity´
Rd\B4`

´
B`(x) . `

d
´
Rd\B3`

as well as the property (2.4.20)
ˆ
Rd\B4`

( ˆ
B`(x)

|∇vT (1, y)|
∣∣∣∣1 +

ˆ 1

0
∇u(s, y)ds

∣∣∣∣dy)2

dx ≤
ˆ
Rd\B4`

ˆ
B`(x)

|∇vT (1, y)|2dy

×
ˆ

B`(x)
1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)dy

∣∣∣∣2dx
(2.2.32)
. `d

ˆ
Rd\B4`

ˆ
B`(x)

|∇vT (1, y)|2dy (2.3.82)

.`2d
ˆ
Rd\B3`

|∇vT (1, y)|2dy

(2.4.20)
. `2d

ˆ  
Br∗(x)(x)

|∇vT (1, y)|21Rd\B3`
(y)dy dx.

(2.3.83)

By the 1
8 -Lipschitz continuity property of r∗ and the assumption r∗(0) ≤ ` one has Br∗(x)(x) ∩

Rd\B3` 6= ∅ → x ∈ Rd\B`. Indeed, by contradiction, if x ∈ B`, then r∗(x) ≤ r∗(0) + |x|
8 ≤

15
16` so

that Br∗(x)(x) ⊂ B`+ 15
16
` ⊂ B2` and consequently Br∗(x)(x) ∩ Rd\B3` = ∅. Hence,

ˆ  
Br∗(x)(x)

|∇vT (1, y)|21Rd\B3`
(y)dy dx ≤

ˆ
Rd\B`

 
Br∗(x)(x)

|∇vT (1, y)|2dy dx, (2.3.84)

and the above inequality, with help of (2.3.58) reduces to
ˆ
Rd\B4`

( ˆ
B`(x)

|∇vT (1, y)|
∣∣∣∣1 +

ˆ 1

0
∇u(s, y)ds

∣∣∣∣dy)2

dx

. `2d
ˆ
Rd\B`

 
Br∗(x)(x)

|∇vT (1, y)|2dy dx (2.3.85)

(2.3.58)
. `2d

(
rd∗(0)

ˆ
Rd\B`

log2(1 + |x|
r )

(|x|+ r)2d
dx+

ˆ
Rd\B`

η4r∗(x)(x)dx+

ˆ
Rd\B`

g2
2r(x)dx

)
, (2.3.86)
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which concludes since
´
Rd\B` g

2
2r(x)dx . `−d and η4r∗(x)(x) . rd∗(x)|x|−2d. For the near-field contri-

bution |x| < 4` we write, using the Minkowski inequality in L2(B4`), the Fubini-Tonnelli theorem,
the property (2.4.20) and the assumption ` ≥ r∗(0) in form of (2.3.53)

( ˆ
B4`

(ˆ
B`(x)

|∇vT (1, y)

(
1 +

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy)2

dx
) 1

2

≤
ˆ (ˆ

B4`

|∇vT (1, y)|2
(

1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)ds

∣∣∣∣2)1B`(x)(y)dx
) 1

2

dy

. `
d
2

ˆ
B5`

|∇vT (1, y)|
(

1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy
(2.4.20)
. `

d
2

ˆ  
Br∗(x)(x)

|∇vT (1, y)|
(

1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)ds

∣∣∣∣)1B5`
(y)dy dx

(2.3.53)
. `

d
2

ˆ
B7`

 
Br∗(x)(x)

|∇vT (1, y)|
(

1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy dx. (2.3.87)

Then, from the localized energy estimate (2.2.32) applied to (2.1.10) with R = r∗(x) and T = 1, we
have ( 

Br∗(x)(x)
1 +

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣2dy) 1
2

. 1,

consequently, by the Cauchy-Schwarz inequality and (2.3.58), (2.3.87) turns into

( ˆ
B4`

(ˆ
B`(x)

|∇vT (1, y)

(
1 +

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy)2

dx
) 1

2

.`
d
2

ˆ
B7`

( 
Br∗(x)(x)

|∇vT (1, y)|2dy
) 1

2

dx

(2.3.88)

.`
d
2

(
r
d
2
∗ (0)

ˆ
B7`

log(1 + |x|
r )

(|x|+ r)d
dx

+

ˆ
B7`

η
1
2

4r∗(x)(x)dx+

ˆ
B7`

gr(y)dy
)
,

which concludes since
´
B7`

gr(y)dy . 1 and η
1
2

4r∗(x)(x) . r
d
2

+1
∗ (x)(|x|+ 1)−d−1.

Regime ` < r∗(0). We use the estimate (2.3.63) and we bound one `d by rd∗(0) and r−d by
1.

We now turn to the second l.h.s term of (2.3.79). The first term in the definition (2.2.47) of
Gr,` is bounded as follows. By definition of Tx,`(ηr)(0), that we recall here

Tx,`(ηr)(0) =

( ˆ
B`(x)

ηr(z)

(
1+

∣∣∣∣ˆ 1

0
∇u(t, z)dt

∣∣∣∣2)dz) 1
2

+

ˆ 1

0

1

1− t

ˆ 1

t

( ˆ
B`(x)

ηr(z)|∇u(s, z)|2dz
) 1

2

ds dt,
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and the localized energy estimates (2.2.32) as well as (2.2.33) applied to (2.1.10), the Minkowski
inequality in L2(Rd) and the estimate

´ ´
B`(x) . `

d
´
, we have

ˆ
T 2
x,`(ηr)(0)dx . `d

(
1 +

ˆ
ηr(y)

∣∣∣∣ˆ 1

0
∇u(t, y)dt

∣∣∣∣2dy +

( ˆ 1

0

1

1− t

ˆ 1

t

( ˆ
ηr(y)|∇u(s, y)|2dy

) 1
2

ds dt
)2)

(2.2.32),(2.2.33)
. `d

(
1 +

( ˆ 1

0

− log(t)

1− t
dt
)2)

. `d. (2.3.89)

For the other term in (2.2.47), we can use previous estimates. To this aim, we need preliminary
inequalities and we distinguish between the two regimes ` ≥ r∗(0) and ` < r∗(0).

Regime ` ≥ r∗(0). For the far-field contribution |x| ≥ 4`, we make use of the Jensen inequal-
ity with the measure Tx,`(η`)(y)dy in form of, for all x ∈ Rd

(ˆ
Rd\B4`

(  
B`(y)

|∇vT (1, z)|2dz
) 1

2

Tx,`(η`)(y)dy
)2

≤
ˆ
Rd\B4`

Tx,`(η`)(y)dy

×
ˆ
Rd\B4`

 
B`(y)

|∇vT (1, z)|2dz Tx,`(η`)(y)dy.

(2.3.90)

Next, we have ˆ
Tx,`(η`)(y)dy . `d. (2.3.91)

Indeed, we first split the integral into two contributions
ˆ
Tx,`(η`)(y)dy =

ˆ
B2`(x)

Tx,`(η`)(y)dy +

ˆ
Rd\B2`(x)

Tx,`(η`)(y)dy.

On the one hand, since from the localized energy estimate (2.2.32) applied to (2.1.10) with R = ` we
have supy∈Rd Tx,`(η`)(y) . 1 +

´ 1
0
− log(t)

1−t dt . 1 (we bound the integral
´
B`(x) by

´
in the definition

(2.2.48) of Tx,`(η`)(y)), we get ˆ
B2`(x)

Tx,`(η`)(y)dy . `d.

On the other hand, for all y ∈ Rd\B2`(x) and z ∈ B`(x) we have |z − y| ≥ |y − x| − ` ≥ |y−x|2 and
thus η`(z − y) . η2`(y − x). Therefore, the localized energy estimate (2.2.32) applied to (2.1.10)
with R = ` yields

Tx,`(η`)(y) . η
1
2
2`(y − x)

((ˆ
B`(x)

1 +

∣∣∣∣ˆ 1

0
∇u(s, z)ds

∣∣∣∣2dz) 1
2

+

ˆ 1

0

1

1− t

ˆ 1

t

( ˆ
B`(x)

|∇u(s, z)|2dz
) 1

2

dt
)

. `
d
2 η

1
2
2`(y − x).

Consequently, ˆ
Rd\B2`(x)

Tx,`(η`)(y)dy . `
d
2

ˆ
Rd\B2`(x)

η
1
2
2`(y − x)dy . `d,
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and it concludes the argument for (2.3.91). The combination of (2.3.90), (2.3.91) and the esti-
mate supy∈Rd

´
Tx,`(η`)(y)dx . `d (which can be proved with the same computation as (2.3.91) by

exchanging the role of x and y) leads to
ˆ (ˆ

Rd\B4`

(  
B`(y)

|∇vT (1, z)|2dz
) 1

2

Tx,`(η`)(y)dy
)2

dx

(2.3.90),(2.3.91)
. `d

ˆ ˆ
Rd\B4`

 
B`(y)

|∇vT (1, z)|2dz Tx,`(η`)(y)dy dx

. `2d
ˆ
Rd\B4`

 
B`(y)

|∇vT (1, z)|2dz dy dx,

and we then proceed as we did from (2.3.82) to conclude. For the near-field contribution, we make use
of the Minkowski inequality in L2(Rd) and the estimate supy∈Rd

´
T 2
x,`(ηr∗(y))(y)dx . `d (obtained

the same way as (2.3.89)) to obtain
ˆ (ˆ

B7`

( 
Br∗(y)(y)

|∇vT (1, z)|2dz
) 1

2

Tx,`(ηr∗(y))(y)dy
)2

dx

≤
(ˆ

B7`

(  
Br∗(y)(y)

|∇vT (1, z)|2dz
) 1

2
(ˆ

T 2
x,`(ηr∗(y))(y)dx

) 1
2

dy
)2

. `d
(ˆ

B7`

(  
Br∗(y)(y)

|∇vT (1, z)|2dz
) 1

2

dy
)2

, (2.3.92)

and we then proceed as we did from (2.3.88).

Regime ` < r∗(0). In this regime, we use the estimate (2.3.68).

Substep 2.2. Proof that for ` ∈ [
√
T ,+∞)

ˆ ( ˆ T

1

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dt dy
)2

dx . `d log2(T )

(
`d
ˆ
Rd\B`

log2(1 + |x|
r )

(|x|+ r)2d
dx+ `d

ˆ
Rd\B`

rd∗(x)|x|−2ddx

+ rd∗(0)

(ˆ
B7`

log(1 + |x|
r )

(|x|+ r)d
dx
)2

+

( ˆ
B7`

r
d
2

+1
∗ (x)(|x|+ 1)−d−1dx

)2

+ r2d
∗ (0) + rd∗(0)

ˆ
rd∗(x)

(|x|+ 1)2d
dx
)
. (2.3.93)

For the proof of (2.3.93), we argue as previously and we distinguish between the generic case ` ≥ r∗(0)
and the non-generic case ` < r∗(0). We mainly make use of previous ideas and estimates.

Regime ` ≥ r∗(0). As in Substep 1.2, we decompose the time interval [1, T ] into dyadic inter-
vals [2j , 2j+1] for j ∈ J1, N − 1K and N := dlog2(T )e and we write by the triangle inequality
ˆ ( ˆ T

1

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dt dy
)2

dx ≤
(N−1∑

j=0

(ˆ (ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
) 1

2
)2

.

(2.3.94)
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We split the integral in the r.h.s of (2.3.94) into the far-field contribution |x| ≥ 4` and the near-field
contribution |x| < 4`. For the far-field contribution, we write for all j ∈ J1, N − 1K, using the
Cauchy-Schwarz inequality, the decay estimate (2.3.57) applied for ` ≥

√
T ,

ˆ
Rd\B4`

( ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
(2.3.57)
≤ `d2−j

ˆ 2j+1

2j

ˆ
Rd\B4`

ˆ
B`(x)

|∇vT (t, y)|2dy dx dt.

We then argue as from (2.3.82) to (2.3.83), (2.3.84), (2.3.85) and (2.3.86) (noticing that the evaluation
at time 1 plays no role in the estimates) and finally obtain

ˆ
Rd\B4`

( ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx .`2d
(
rd∗(0)

ˆ
Rd\B`

log2(1 + |x|
r )

(|x|+ r)2d
dx

+

ˆ
Rd\B`

rd∗(x)|x|−2ddx+ `−d
)
,

and we conclude by summing over j ∈ J1, N − 1K, which give the two first r.h.s terms of (2.3.93).
For the near-field contribution |x| ≤ 4` we write, using the Minkowski inequality in L2(B4`), the
Fubini-Tonnelli theorem, the property (2.4.20) and the assumption ` ≥ r∗(0) in form of (2.3.53)( ˆ

B4`

(ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
) 1

2

≤
ˆ 2j+1

2j

ˆ ( ˆ
B4`

|∇u(t, y)|2|∇vT (t, y)|21B`(x)(y)dx
) 1

2

dy dt

. `
d
2

ˆ
B5`

ˆ 2j+1

2j
|∇u(t, y)||∇vT (t, y)|dt dy

(2.4.20)
. `

d
2

ˆ  
Br∗(x)(x)

ˆ 2j+1

2j
|∇u(t, y)||∇vT (t, y)|1B5`

(y)dt dy dx

(2.3.53)
≤ `

d
2

ˆ
B7`

 
Br∗(x)(x)

ˆ 2j+1

2j
|∇u(t, y)||∇vT (t, y)|dt dy dx. (2.3.95)

Then, from the decay (2.3.57), we have(ˆ 2j+1

2j

 
Br∗(x)(x)

|∇u(t, y)|2dy dt
) 1

2

. 2−
j
2 , (2.3.96)

consequently, by the Cauchy-Schwarz inequality and (2.3.73), (2.3.95) turns into( ˆ
B4`

(ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
) 1

2

. 2−
j
2 `

d
2

ˆ
B7`

(ˆ 2j+1

2j

 
Br∗(x)(x)

|∇vT (t, y)|2dy dt
) 1

2

dx

(2.3.73)
. `

d
2

(
r
d
2
∗ (0)

ˆ
B7`

log(1 + |x|
r )

(|x|+ r)d
dx+

ˆ
B7`

η
1
2

4r∗(x)(x)dx+

ˆ
B7`

g2r(x)dx
)
,
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and we conclude since
´
B7`

g2r(x)dx . 1, η
1
2

4r∗(x)(x) . r
d
2

+1
∗ (x)(|x| + 1)−d−1 and summing over

j ∈ J0, N − 1K.

Regime ` < r∗(0). We use the estimate (2.3.69) which holds for ` ≥
√
T by removing rd∗(rx)

and rd∗(x) in each integral in the r.h.s (by using (2.3.57) for ` ≥
√
T ) and we estimate `d by rd∗(0) as

well as r−
d
2 by 1.

Step 3. Proof of (2.2.53). We have from the multiscale logarithmic Sobolev inequality in form of
(2.4.1): for all p ∈ [1,+∞)

〈|qr(T )− 〈qr(T )〉|p〉
1
p . p

1
2

〈(ˆ +∞

1
`−dπ(`)

ˆ
|∂fct
x,`qr(T )|2dx d`

) p
2
〉 1
p

. (2.3.97)

We split the integral over ` into two parts.

(i) In the regime ` <
√
T we use (2.3.60):〈(ˆ √T

1
`−dπ(`)

ˆ
|∂fct
x,`qr(T )|2dx d`

) p
2
〉 1
p

(2.3.60)
. r−

d
2 (1 + log(T ) + log(

√
T

r
))

〈(ˆ √T
1

`dπ(`)C?(r, `)d`
) p

2
〉 1
p

(2.1.6)
≤ r−

d
2 (1 + log(T ) + log(

√
T

r
))

(ˆ √T
1

`d−1−β〈Cp?(r, `)〉
1
pd`
) 1

2

. r−
d
2 (1 + log(T ) + log(

√
T

r
))µβ(T ) sup

`≥1
〈Cp?(r, `)〉

1
2p , (2.3.98)

by the definition (2.1.18) of µβ .

(ii) In the regime ` ≥
√
T we use (2.3.75), the change of variables ` 7→ √̀

T
and the fact that

r ≤
√
T in the last line:〈( ˆ +∞

√
T

`−dπ(`)

ˆ
|∂fct
x,`qr(T )|2dx d`

) p
2
〉 1
p

(2.3.75),(2.1.6)
. log(T )

(〈( ˆ +∞

√
T

`−1−β(rd∗(0) +D?,1(r, `))d`
) p

2
〉 1
p

+ log(

√
T

r
)

〈
D

p
2
?,2(r)

〉 1
p
( ˆ +∞

√
T

`−1−βd`
) 1

2
)

.T−β log(T )

(( ˆ +∞

1
`−1−β〈(rd∗(0) +D?,1(r, `

√
T ))p〉

1
pd`
) 1

2

+ log(

√
T

r
)〈D

p
2
?,2(r)〉

1
p

)
.r−

d
2 log(T )µβ(T )

(( ˆ +∞

1
`−1−β〈(rd∗(0) +D?,1(r, `

√
T ))p〉

1
pd`
) 1

2

+ log(

√
T

r
)〈D

p
2
?,2(r)〉

1
p

)
. (2.3.99)
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It remains to show that
sup
r≥1
〈D

p
2
?,2(r)〉

1
p + sup

`≥1
〈Cp?(r, `)〉

1
2p . p

d
β∧d , (2.3.100)

and ( ˆ +∞

1
`−1−β〈Dp?,1(r, `

√
T )〉

1
pd`
) 1

2

. p
d+2
β∧d (1 + log2(

√
T

r
)). (2.3.101)

We only provide the argument for (2.3.101), (2.3.100) is proved the same way. From the moment
bound (2.4.3) on r∗ and the equivalence between algebraic moments and exponential moments (see
Lemma 9), we have for all p ≥ 1

〈rdp∗ (0)〉
1
p . p

d
β∧d . (2.3.102)

We treat separately the bound of the two lines in the definition (2.3.76) of D?,1. First, we have by
the Minkowski inequality in Lp〈·〉(Ω), the stationarity property of r∗ and (2.3.102)

( ˆ +∞

1
`−1−β

〈(
rd∗(0)(`

√
T )d

ˆ
Rd\B`√T

log2(1 + |x|
r )

(|x|+ r)2d
dx+ (`

√
T )d

ˆ
Rd\B`√T

rd∗(x)|x|−2ddx
)p〉 1

p

d`
) 1

2

. 〈rdp∗ (0)〉
1
2pT

d
4

( ˆ +∞

1
`d−1−β

ˆ
Rd\B`√T

log2(1 + |x|
r )

(|x|+ r)2d
dx+

ˆ
Rd\B`√T

|x|−2ddx d`
) 1

2

(2.3.102)
. p

1
2

d
β∧d

( ˆ +∞

1
`−1−β(1 + log2(`

√
T

r
))d`

) 1
2

. p
1
2

d
β∧d (1 + log(

√
T

r
)). (2.3.103)

Second, we have by (2.3.102), a polar change of coordinates and the change of variables ρ 7→ ρ
r(ˆ +∞

1
`−1−β

〈(
rd∗(0)

( ˆ
B7`
√
T

log(1 + |x|
r )

(|x|+ r)d
dx
)2

+

(ˆ
B7`
√
T

r
d
2

+1
∗ (x)(|x|+ 1)−d−1dx

)2

+ rd∗(0)

ˆ
rd∗(x)

(|x|+ 1)2d
dx
)p〉 1

p

d`
) 1

2

(2.3.102)
. p

d+2
β∧d

(ˆ +∞

1
`−1−β

(ˆ 7`
√
T

0

log(1 + ρ
r )

(ρ+ r)d
ρd−1dρ+ 1

)2

d`
) 1

2

≤ p
d+2
β∧d

(ˆ +∞

1
`−1−β log2(1 + 7

`
√
T

r
)

(ˆ 7 `
√
T
r

0
(ρ+ 1)−dρd−1dρ+ 1

)2

d`
) 1

2

,

(2.3.104)

and we estimate the integral in the integrand of the r.h.s of (2.3.104) by, for all ` ≥ 1

ˆ 7 `
√
T
r

0
(ρ+ 1)−dρd−1dρ .

ˆ 1

0
(1 + log(1 +

T

r2
ρ−2))ρd−1dρ+

ˆ 7 `
√
T
r

1
ρ−1dρ

. 1 + log(7
`
√
T

r
). (2.3.105)

The combination of (2.3.103), (2.3.104) and (2.3.105) gives (2.3.101). To conclude, the estimates
(2.3.97), (2.3.98), (2.3.99), (2.3.100) and (2.3.101) give the desired bound (2.2.53).
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2.3.4 Proof of the main results

Proof of Theorem 10: Fluctuations of the time dependent flux

We only gives the argument for the flux q(T ), the computations for φ(T ) are equivalent and are done
by a straightforward adaptation of the argument of this proof and the ones to prove Lemmas 7 and 8.

Our first goal is to remove the log(T ) correction in the r.h.s of (2.2.53), which will lead to (2.1.17).
To this aim, we use the L2-L1 type estimate of Lemma 3, which allow us to make the link between
the r−

d
2 decay of the fluctuations of qr(T, ·), for r ≤

√
T , proved in Proposition 3 and the decay in

T of moments of averages of ∇u(T, ·). It yields a better decay estimate in time T of spatial averages
of ∇u(T, ·) than the one obtained in (2.3.57) (from which the log(T ) contribution in (2.2.53) comes
from). With this new decay in hand, we are able to obtain optimal estimate in scaling. The price
to pay in this step is a little loss of stochastic integrability. Our second goal is to prove estimate
(2.1.20). It does not require new ideas and this is done by dominating carefully the terms in the
derivative (2.2.50) and by using some estimates already done in the proof of (2.1.17).

Proof of (2.1.17). We split the proof into three steps.

Step 1. Improvement of (2.3.57). Proof that for all x ∈ Rd, T ≥ 1 and ε ∈ (0, 1)ˆ
B`(x)

|∇u(T, y)|2dy ≤ `d
(
rd∗(x)1`<

√
T + 1`≥

√
T

)
D2ε
? (T, `, x)η2

ε,β(T ), (2.3.106)

with

ηε,β(T ) =


(1 + logε(T ))T−1−εβ

4 if β < d,

(1 + log
3
2
ε(T ))T−1−ε d

4 if β = d,

(1 + logε(T ))T−1−ε d
4 if β > d,

(2.3.107)

and for some stationary random field D?(T, `, ·) that satisfies for all p ∈ [1,+∞)

sup
(T,`,x)∈R+×[1,+∞)×Rd

〈
Dp?(T, `, x)

〉 1
p

. p
1
2

+ d+2
β∧d . (2.3.108)

We have from Lemma 3, the Minkowski inequality in Lp〈·〉(Ω) and the stationarity of qr: for all
p ∈ [1,+∞), T ≥ 4 and R ≥

√
T〈(ˆ

η√2R(y)|∇u(T, y)|2dy
) p

2
〉 1
p

.
1

T

〈( T
2

T
4

 √t
0

(
r√
t

) d
2
ˆ
η2R(y)|qr(t, y)− 〈qr(t, y)〉|dy dr dt

)p〉 1
p

.
1

T

 T
2

T
4

 √t
0

(
r√
t

) d
2

〈|qr(t)− 〈qr(t)〉|p〉
1
pdr dt. (2.3.109)

Then, we split the integral over [0,
√
t] into the two contributions r ≤ 1 and 1 ≤ r ≤

√
t:

(i) For r ≤ 1 we use (2.2.43) and the change of variable r 7→
√
t
r :

1

T

 T
2

T
4

1√
t

ˆ 1

0

(
r√
t

) d
2

〈|qr(t)− 〈qr(t)〉|p〉
1
pdr dt

(2.2.43)
. p

1
2

d
β∧dT−1− d

4

 T
2

T
4

1√
t

ˆ 1

0

(
r
d
2 + log(

√
t

r
)

)
dr dt

. p
1
2

d
β∧dT−1− d

4

(ˆ +∞

√
T

r−2(1 + log(r))dr +
1√
T

)
. p

1
2

d
β∧dT−

3
2
− d

4 log(T ). (2.3.110)
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(ii) For 1 ≤ r ≤
√
t we use (2.2.53) and the change of variable r 7→

√
t
r :

1

T

 T
2

T
4

1√
t

ˆ √t
1
4

(
r√
t

) d
2

〈|qr(t)− 〈qr(t)〉|p〉
1
pdr dt

(2.2.53)
. p

1
2

+ d+2
β∧dT−1− d

4µβ(T )

 T
2

T
4

1√
t

ˆ √t
1

(
1 + log(T ) + log2(

√
t

r
)

)
dr dt

≤ p
1
2

+ d+2
β∧d ηβ(T )

(
log(T ) +

ˆ √
T
2

1
r−2(1 + log2(r))dr

)
. p

1
2

+ d+2
β∧d (1 + log(T ))ηβ(T ), (2.3.111)

where ηβ is defined in (2.1.24).

The combination of (2.3.109), (2.3.110) and (2.3.111) yields that for all x ∈ Rd and R ≥
√
T

 
BR(x)

|∇u(T, y)|2dy . D̃2
?(T,R, x)(1 + log2(T ))η2

β(T ), (2.3.112)

where D̃?(T,R, ·) :=

ffl
BR(·) |∇u(T,y)|2dy

log2(T )η2
β(T )

has the moment bound (2.3.108). It implies, from Lemma 5

applied with f : t ∈ R+
∗ 7→ 1 + log2(t) and g : t ∈ R+

∗ 7→ t−2− d
2 that, for all ` <

√
T

ˆ
B`(x)

|∇u(T, y)|2dy . (r∗(x) ∨ `)d
(
D̃2
?(T,
√
T , x) ∨

 T

T
2

D̃2
?(s,
√
s, x)ds

)
(1 + log2(T ))η2

β(T ).

(2.3.113)
By interpolating between (2.3.57) and the combination of (2.3.112) and (2.3.113) as well as using
that r∗(x)

` ∨ 1 ≤ 2r∗(x) in the last line, we then obtain for all ε ∈ (0, 1)

ˆ
B`(x)

|∇u(T, y)|2dy =

( ˆ
B`(x)

|∇u(T, y)|2dy
)1−ε(ˆ

B`(x)
|∇u(T, y)|2dy

)ε
(2.3.57),(2.3.113)

. `d
((

r∗(x)

`
∨ 1

)d
1`<
√
T + 1`≥

√
T

)
T−2(1−ε)D2ε

? (T, `, x)(1 + log2ε(T ))η2ε
β (T )

≤ 2`d
(
rd∗(x)1`<

√
T + 1`≥

√
T

)
D2ε
? (T, `, x)η2

ε,β(T ),

with ηε,β defined in (2.3.107) and D?(T, `, x) := max

{
D̃?(T, `, x), D̃2

?(T,
√
T , x)∨

ffl T
T
2
D̃2
?(s,
√
s, x)ds

}
which satisfies the moment bound (2.3.108). Equipped with the new decay (2.3.106), we improve
the estimates (2.3.60) and (2.3.75) for the control of (x, `) 7→

´
|∂fct
x,`qr(T )|2dx (corresponding to the

substeps 1 and 2 of the proof of Lemma 3).

Step 2. We split this step into two parts, one for the improvement of (2.3.60) and an other
for (2.3.75), treating separately the two regimes ` <

√
T and ` ≥

√
T .

Substep 2.1. Improvement of (2.3.60). Proof that for all ε > 0 and ` <
√
T

ˆ
|∂fct
x,`qr(T )|2dx ≤ `2dr−d

(
1 + E?,ε(r, `) +

( +∞∑
j=0

2
j
2 ηε,β(2j)Fj,?,ε(r, `)

)2)
, (2.3.114)
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where

E?,ε(r, `) :=

ˆ
rd∗(rx)

(ˆ +∞

1
16

Dε?(t, `, rx)ηε,β(t)dt
)2  

B `
r

(x)
g2

1(y)dy dx, (2.3.115)

and

Fj,?,ε(r, `) :=

(ˆ
rd∗(x)

( ˆ 2j+1

2j
D2ε
? (t, `, x)dt

)(  
B`(x)

rd∗(0)rd
log2(1 + |y|

r )

(|y|+ r)2d
dy +

rd∗(y)

(|y|+ 1)2d
+ rdg2

2r(y)dy

+ rd+ε
∗ (x)`ε

ˆ
Rd\B`(x)

|y − x|−d−ε
(
rd∗(0)rd

log2(1 + |y|
r )

(|y|+ r)2d
dy +

rd∗(y)

(|y|+ 1)2d
+ rdg2

2r(y)

)
dy
)
dx
) 1

2

.

(2.3.116)

The estimate (2.3.63) is unchanged and gives the first contribution in (2.3.114). We improve the
estimates (2.3.62) and (2.3.69). On the one hand, noticing that from the Minkwoski inequality in
L2(Rd) and (2.3.106) as well as r ≥ 1

2 , we have for all x ∈ Rd

ˆ
B`(x)

∣∣∣∣ˆ T

r2

∇u(t, y)dt
∣∣∣∣2dy ≤ ( ˆ T

r2

(ˆ
B`(x)

|∇u(t, y)|2dy
) 1

2

dt
)2 (2.3.106)

. `drd∗(x)

( ˆ +∞

1
16

Dε?(t, `, x)ηε,β(t)dt
)2

,

thus we deduce from (2.3.64) and (2.3.65) that(ˆ (ˆ
B`(x)

∣∣∣∣ˆ T

0
∇u(t, y)dt

∣∣∣∣gr(y)dy
)2

dx
) 1

2

(2.3.64),(2.3.65)
≤ `dr−

d
2 +

( ˆ (ˆ
B`(x)

∣∣∣∣ˆ T

r2

∇u(t, y)dt
∣∣∣∣2dy ˆ

B`(x)
g2
r (y)dy

)
dx
) 1

2

(2.3.106)
. r−

d
2 + `

d
2

( ˆ
rd∗(x)J?,ε(x)

ˆ
B`(x)

g2
r (y)dy dx

) 1
2

, (2.3.117)

where

J?,ε(x) :=

(ˆ +∞

1
16

Dε?(t, `, x)ηε,β(t)dt
)2

.

Using the change of variables x 7→ x
r in the last r.h.s term of (2.3.117), it gives the term E?,ε(r, `)

defined in (2.3.115). On the other hand, noticing that, by monotonicity of t ∈ R+
∗ 7→ ηε,β(t), for all

j ∈ N, we have ˆ 2j+1

2j
D2ε
? (t, `, x)η2

ε,β(t)dt . η2
ε,β(2j)

ˆ 2j+1

2j
D2ε
? (t, `, x)dt, (2.3.118)

we deduce from (2.3.70) and (2.3.106)( ˆ ( ˆ T

1

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
) 1

2

. `
d
2

+∞∑
j=0

ηε,β(2j)

( ˆ
rd∗(x)

(ˆ 2j+1

2j
D2ε
? (t, `, x)dt

) ˆ 2j+1

2j

ˆ
B`(x)

|∇vT (t, y)|2dy dt dx
) 1

2

. (2.3.119)

It remains to control the r.h.s integral of (2.3.119) by 2jr−dFj,?,ε(r, `), where Fj,?,ε(r, `) is defined in
(2.3.116). To this aim, we note that, by the 1

8 -Lipschitz property of r∗, we have for all (x, y) ∈ R2d

B`(x) ∩ Br∗(y)(y) 6= ∅ → |y − x| ≤ 3(r∗(x) ∨ `). (2.3.120)
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Indeed if there exists z ∈ B`(x) ∩ Br∗(y)(y), we have by the triangle inequality

|y − x| ≤ |y − z|+ |z − x| ≤ r∗(y) + ` ≤ r∗(x) +
1

8
|y − x|+ `,

and thus (2.3.120) holds. Then, we use the property (2.4.20) and the decomposition, for all x ∈ Rd,´
=
´
B`(x) +

´
Rd\B`(x) to obtain

ˆ 2j+1

2j

ˆ
B`(x)

|∇vT (t, y)|2dy dt
(2.4.20)
.

ˆ 2j+1

2j

ˆ  
Br∗(y)(y)

1B`(x)(z)|∇vT (t, z)|2dz dy dt

≤
ˆ 2j+1

2j

ˆ
B`(x)

 
Br∗(y)(y)

|∇vT (t, z)|2dz dy dt

+

ˆ 2j+1

2j

ˆ
Rd\B`(x)

 
Br∗(y)(y)

1B`(x)(z)|∇vT (t, z)|2dz dy dt.

(2.3.121)

Next, we make use of (2.3.120) to bound the second r.h.s term of (2.3.121) with

ˆ 2j+1

2j

ˆ
Rd\B`(x)

 
Br∗(y)(y)

1B`(x)(z)|∇vT (t, z)|2dz dy dt

. (r∗(x) ∨ `)d+ε

ˆ 2j+1

2j

ˆ
Rd\B`(x)

|y − x|−d−ε
 

Br∗(y)(y)
|∇vT (t, z)|2dz dy dt. (2.3.122)

The combination of (2.3.121) and (2.3.122) (where we bound (r∗(x) ∨ `)d+ε . `d+εrd+ε
∗ (x)) as well

as (2.3.73) (where we bound η4r∗(x)(x) . rd∗(x)(|x|+1)−2d) proves that the r.h.s integral of (2.3.119)
is indeed bounded by 2jr−dFj,?,ε(r, `) and concludes the argument for (2.3.114).

Substep 2.2. Improvement of (2.3.75). Proof that for all ε > 0 and ` ≥
√
T

ˆ
|∂fct
x,`qr(T )|2dx . `d

(
D?,1(r, `) +D?,2(r) log2(

√
T

r
) +

( +∞∑
j=0

2
j
2 ηε,β(2j)Hj,?,ε(r, `)

)2)
, (2.3.123)

with D?,1(r, `) and D?,2(r) defined respectively in (2.3.77) and (2.3.76),

Hj,?,ε(r, `) =`dHj,?,ε(r, `,Rd\B4`) + rd∗(0)Hj,?,ε(r, `,Rd)

+

ˆ
B7`

(ˆ 2j+1

2j
D2ε
? (t, `, x)dt

) 1
2
(
r
d
2
∗ (0)

log(1 + |x|
r )

(|x|+ r)d
+

r
d
2

+1
∗ (x)

(|x|+ 1)d+1
+ g2r(x)

)
dx,

(2.3.124)

as well as for all open subsets U of Rd

Hj,?,ε(r, `,U) =

(ˆ
U

( ˆ 2j+1

2j
D2ε
? (t, `, x)dt

)(  
B`(x)

rd∗(0)rd
log2(1 + |y|

r )

(|y|+ r)2d
dy +

rd∗(y)

(|y|+ 1)2d
+ rdg2

2r(y)dy

+ rd+ε
∗ (x)`ε

ˆ
Rd\B`(x)

|y − x|−d−ε
(
rd∗(0)rd

log2(1 + |y|
r )

(|y|+ r)2d
dy +

rd∗(y)

(|y|+ 1)2d
+ rdg2

2r(y)

)
dy
)
dx
) 1

2

.
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The estimates (2.3.78) and (2.3.79) are unchanged and give respectively the `dD?,2(r) log2(
√
T
r ) and

`dD?,1(r, `) contributions in the r.h.s of (2.3.123). We improve the estimate (2.3.93). We argue
differently with the generic case ` ≥ r∗(0) and the non-generic case ` < r∗(0).

Regime ` ≥ r∗(0). We have from (2.3.94)
ˆ ( ˆ T

1

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx ≤
( +∞∑
j=0

( ˆ (ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
) 1

2
)2

.

We then split the argument into the far-field regime |x| ≥ 4` and the near-field regime |x| ≤ 4`. For
the far-field regime, we use directly the Cauchy-Schwarz inequality combined with (2.3.106) (applied
for ` ≥

√
T ) and (2.3.118) to the effect of

ˆ
Rd\B4`

(ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx

≤
ˆ ( ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)|2dy dt
ˆ 2j+1

2j

ˆ
B`(x)

|∇vT (t, y)|2dy dt
)
dx

(2.3.106),(2.3.118)
. `dη2

ε,β(2j)

ˆ
Rd\B4`

( ˆ 2j+1

2j
D2ε
? (t, `, x)dt

)ˆ 2j+1

2j

ˆ
B`(x)

|∇vT (t, y)|2dy dt dx.

(2.3.125)

It then gives the first term of (2.3.124) by dominating
´ 2j+1

2j

´
B`(x) |∇v

T (t, y)|2dy dt using the argu-
ments in (2.3.121) and (2.3.122). For the near-field regime, we use (2.3.106) and (2.3.118) in form
of ( ˆ 2j+1

2j

 
Br∗(x)(x)

|∇u(t, y)|2dy dt
) 1

2 (2.3.106),(2.3.118)
. ηε,β(2j)

(ˆ 2j+1

2j
D2ε
? (t, `, x)dt

) 1
2

, (2.3.126)

which has the effect of, combined with (2.3.95) and the Cauchy-Schwarz inequality(ˆ
B4`

( ˆ 2j+1

2j

ˆ
B`(x)

|∇u(t, y)||∇vT (t, y)|dy dt
)2

dx
) 1

2

(2.3.95)
. `

d
2

ˆ
B7`

 
Br∗(x)(x)

ˆ 2j+1

2j
|∇u(t, y)||∇vT (t, y)|dt dy dx

(2.3.126)
. `

d
2 ηε,β(2j)

ˆ
B7`

(ˆ 2j+1

2j
D2ε
? (t, `, x)dt

) 1
2
( 

Br∗(x)(x)

ˆ 2j+1

2j
|∇vT (t, y)|dt dy

) 1
2

dx, (2.3.127)

and yields the third term of (2.3.124) by using (2.3.73) (where we use η4r∗(x)(x) . rd∗(x)(|x|+1)−2d).

Regime ` < r∗(0). For the non-generic case ` < r∗(0), we use (2.3.119), (2.3.121), (2.3.122)
and we bound one `d by rd∗(0) which gives the second term of (2.3.124).

Step 3. Proof of (2.1.22). We have from the logarithm Sobolev inequality in form of (2.4.1), for
all p ∈ [1,+∞)

〈|qr(T )−〈qr(T )〉|p〉
1
p . p

1
2

〈(ˆ +∞

1
`−dπ(`)

ˆ
|∂fct
x,`qr(T )|2dx d`

) p
2
〉 1
p

≤ p
1
2 (I1√

T
+I2√

T
), (2.3.128)
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with

I1√
T

:=

〈( ˆ √T
1

`−dπ(`)

ˆ
|∂fct
x,`qr(T )|2dx d`

) p
2
〉 1
p

,

and

I2√
T

:=

〈( ˆ +∞

√
T

`−dπ(`)

ˆ
|∂fct
x,`qr(T )|2dx d`

) p
2
〉 1
p

.

We then treat separately the two terms above.

(i) In the regime ` <
√
T we use (2.3.114) combined with the Minkowski inequality in Lp〈·〉(Ω):

I1√
T

(2.3.114)
. r−

d
2

〈( ˆ √T
1

`dπ(`)

(
1 + E?,ε(r, `) +

( +∞∑
j=0

2
j
2 ηε,β(2j)Fj,?,ε(r, `)

)2)
d`
) p

2
〉 1
p

(2.1.6)
≤ r−

d
2

( ˆ √T
1

`d−1−β
(

1 + 〈Ep?,ε(r, `)〉
1
p +

( +∞∑
j=0

2
j
2 ηε,β(2j)〈F2p

j,?,ε(r, `)〉
1
2p

)2)
d`
) 1

2

. r−
d
2µβ(T )

(
1 + sup

`≥1
〈Ep?,ε(r, `)〉

1
2p + sup

`≥1

+∞∑
j=0

2
j
2 ηε,β(2j)〈F2p

j,?,ε(r, `)〉
1
2p

)
, (2.3.129)

by the definition (2.1.18) of µβ .

(ii) In the regime ` ≥
√
T we use (2.3.123), the Minkowski inequality in Lp〈·〉(Ω) and the fact that

r ≤
√
T in the last line:

I2√
T
.

〈(ˆ +∞

√
T

π(`)

(
D?,1(r, `) +D?,2(r) log2(

√
T

r
) +

( +∞∑
j=0

2
j
2 ηε,β(2j)Hj,?,ε(r, `)

)2)
d`
) p

2
〉 1
p

(2.1.6)
.

(ˆ +∞

√
T

`−1−β
(
〈Dp?,1(r, `)〉

1
p + 〈Dp?,2(r)〉

1
p log2(

√
T

r
) +

( +∞∑
j=0

2
j
2 ηε,β(2j)〈H2p

j,?,ε(r, `)〉
1
2p

)2)
d`
) 1

2

.r−
d
2µβ(T )

(( ˆ +∞

1
`−1−β〈Dp?,1(r, `

√
T ))〉

1
pd`
) 1

2

+ log(

√
T

r
) sup
r≥1
〈Dp?,2(r)〉

1
2p

+ sup
`≥1

+∞∑
j=0

2
j
2 ηε,β(2j)〈H2p

j,?,ε(r, `)〉
1
2p

)
. (2.3.130)

It remains to show that, for all ε ∈ (0, 1)

sup
`≥1
〈Ep?,ε(r, `)〉

1
2p + sup

`≥1

+∞∑
j=0

2
j
2 ηε,β(2j)〈F2p

j,?,ε(r, `)〉
1
2p . p2 d+1

β∧d+ε
(1 + log(

√
T

r
)), (2.3.131)

and( ˆ +∞

1
`−1−β〈Dp?,1(r, `

√
T ))〉

1
pd`
) 1

2

+ log(

√
T

r
) sup
r≥1
〈Dp?,2(r)〉

1
2p + sup

`≥1

+∞∑
j=0

2
j
2 ηε,β(2j)〈H2p

j,?,ε(r, `)〉
1
2p

. p2 d+1
β∧d+ε

(1 + log2(

√
T

r
)). (2.3.132)

This is done the same way as for (2.3.100) and (2.3.101) using in addition (2.3.108) and
∑+∞

j=0 2jηε,β(2j) .ε
1.
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Proof of (2.1.20). We use the same notations as in the previous proof. We split the proof into two
parts, treating separately the two regimes ` < r and ` ≥ r. We start with preliminary estimates.

Step 0. Preliminary. First, we will use several times the assumption (2.1.19) in form of (2.3.56),
that we restate here: for all y ∈ Rd

|fr(y)| . r

(|y|+ 1)d
∧ 1

(|y|+ 1)d−1
. (2.3.133)

Second, we note that from (2.3.133), we have

ˆ
|fr(y)|2dy .

ˆ
Br

1

(|y|+ 1)2(d−1)
dy + r2

ˆ
Rd\Br

1

(|y|+ 1)2d
dy .

{
1 for d ≥ 3,
log(r + 1) for d = 2,

(2.3.134)
and

ˆ
B`
|fr(y)|dy . 1`<r

ˆ
B`

1

(|y|+ 1)d−1
dy + 1`≥r

( ˆ
Br

1

(|y|+ 1)d−1
dy + r

ˆ
B`\Br

1

(|y|+ 1)d
dy
)

(2.3.135)

. `1`<r + r(1 + log(
`

r
+ 1))1`≥r. (2.3.136)

Therefore, by arguing the same way as for (2.3.58), using the system (2.2.51) and the estimate
(2.2.40) instead of (2.2.39) (since from (2.3.133), (2.2.38) holds) as well as the estimate (2.3.134),
we have the following large-scale regularity estimate: for all t ∈ (−∞, r2) and x ∈ Rd

 
Br∗(x)(x)

|∇vr2
(t, x)|2dy . rd∗(0)

r2 log2(1 + |x|)
(|x|+ 1)2d

∧ 1

(|x|+ 1)2(d−1)
+(1+log(r+1)1d=2)η4r∗(x)(x)+f2

2r(x).

(2.3.137)
Step 1. Regime ` < r. Proof that for all ε > 0 and ` < r

ˆ
|∂fct
x,`q(r

2) ? fr|2dx ≤`d
(
rd∗(0)(1 + log(r + 1)1d=2) + `2(1 + log(

r

`
+ 1)1d=2) +M?,1(r, `) +M?,2(r, `)

+

( +∞∑
j=0

2
j
2 ηε,β(2j)Kj,?,ε(r, `)

)2)
, (2.3.138)

with

M?,1(r, `) :=1 +N?,ε(r, `, 1) +

( dlog2(3`)e∑
n=0

2nN
1
2
?,ε(r, `, 2

n+1)

)2

+ `d
dlog2(r)e∑

n=blog2(`)c

2−n(d−2)N?,ε(r, `, 2n+1)

+ r2`d
+∞∑

n=blog2(r)c

2−ndN?,ε(r, `, 2n+1) (2.3.139)

where for all ρ > 0, N?,ε(r, `, ρ) = rd∗(0)

( ´ r2

1 D
ε
?(t, ρ, 0)ηε,β(t)dt

)2

(we recall that D? is defined in
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(2.3.108)) and

M?,2(r, `) :=rd∗(0)`d
ˆ
Rd\B`

r2 log2(1 + |x|)
(|x|+ 1)2d

∧ 1

(|x|+ 1)2(d−1)
dx

+ (1 + log(r)1d=2)`d
ˆ
Rd\B`

rd∗(x)

(|x|+ 1)2d
dx+ `d

ˆ
Rd\B`

f2
2r(x)dx

+ rd∗(0)

( ˆ
B7`

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1
dx
)2

+ (1 + log(r)1d=2)

(ˆ
B7`

r
d
2

+1
∗ (x)

(|x|+ 1)d+1
dx
)2

+

( ˆ
B7`

f2r(x)dx
)2

. (2.3.140)

as well as

Kj,?,ε(r, `) := Kj,?,ε(r, `,Rd\B4`) + r
d
2
∗ (0)Kj,?,ε(r, `,Rd)

+

ˆ
B7`

(ˆ 2j+1

2j
D2ε
? (t, `, x)dt

) 1
2
(
r
d
2 (0)

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1

+ (1 + log
1
2 (r)1d=2)

r
d
2

+1
∗ (x)

(|x|+ 1)d
+ f2r(x)

)
dx, (2.3.141)

with for all open set U of Rd

Kj,?,ε(r, `,U)

:=

(ˆ
U

( ˆ 2j+1

2j
D2ε
? (t, `, x)dt

) 1
2
(  

B`(x)
rd∗(0)

r2 log2(1 + |y|)
(|y|+ 1)2d

∧ 1

(|y|+ 1)2(d−1)

+ (1 + log(r)1d=2)
rd∗(y)

(|y|+ 1)2d
+ f2

2r(y)

+ rd+ε
∗ (x)`ε

ˆ
Rd\B`(x)

|y − x|−d−ε
(
rd∗(0)

r2 log2(1 + |y|)
(|y|+ 1)2d

∧ 1

(|y|+ 1)2(d−1)

+ (1 + log(r)1d=2)
rd∗(y)

(|y|+ 1)2d
+ f2

2r(y)

)
dy
)
dx
) 1

2

.

We split this step into two parts. The first part is devoted to the control of the first fifth r.h.s terms
of (2.2.50).

Substep 1.1. Proof that for all ` ∈ [1, r)
ˆ (ˆ

B`(x)
|fr(y)|dy

)2

dx+

ˆ ( ˆ
B`(x)

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣|fr(y)|dy
)2

dx . `dM?,1(r, `), (2.3.142)

and
ˆ
T 2
x,`(η1)(0)dx+

ˆ ( dlog2(3`)e∑
n=0

2nTx,`(η2n+1)(0)

)2

dx

+

ˆ (ˆ
Rd\B2`

( 
B`(y)

|fr(z)|2dz
) 1

2

Tx,`(η`)(y)dy
)2

dx . `d(1 + `2(1 + log(
r

`
+ 1)1d=2)),

(2.3.143)
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as well as
ˆ (ˆ

B`(x)
|∇vr2

(1, y)|
(

1+

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy)2

dx+

ˆ
G2
r,`(x)dx . `d(rd∗(0)(1+log(r+1)1d=2)+M?,2(r, `)).

(2.3.144)
Proof of (2.3.142). We only give the argument for the second l.h.s term, the first one is dominated
the same way. We split the argument into the far-field regime |x| ≥ 4` and the near-field regime
|x| < 4`. For the near-field regime, we make use of a dyadic decomposition and the estimate (2.3.133)
in form of |fr(y)| . (|y|+ 1)−d+1 to get
ˆ

B2`

( ˆ
B`(x)

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣|fr(y)|dy
)2

dx .`d
( ˆ

B3`

∣∣∣∣ˆ r2

0
∇u(t, y)dt

∣∣∣∣|fr(y)|dy
)2

.`d
(( ˆ

B1

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣dy)2

+

( dlog2(3`)e∑
n=0

ˆ
B2n+1\B2n

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣|fr(y)|dy
)2)

(2.3.133)
. `d

(( ˆ
B1

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣dy)2

+

( dlog2(3`)e∑
n=0

2n
 

B2n+1

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣dy)2)
,

which gives the second and third r.h.s terms of (2.3.139) by applying the localized energy estimate
(2.2.32) to the equation (2.1.10) and the estimate (2.3.106) (applied for both ` = 1 and ` = 2n+1)
in form of(ˆ

B1

∣∣∣∣ˆ r2

0
∇u(t, y)dt

∣∣∣∣dy)2

.

( ˆ
B1

∣∣∣∣ ˆ 1

0
∇u(t, y)dt

∣∣∣∣dy)2

+

(ˆ
B1

∣∣∣∣ ˆ r2

1
∇u(t, y)dt

∣∣∣∣dy)2

. 1 + rd∗(0)

(ˆ r2

1
Dε?(t, 1, 0)ηε,β(t)dt

)2

,

and for all n ∈ N
 

B2n+1

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2dy ≤ 1 + rd(0)

(ˆ r2

1
Dε?(t, 2n+1, 0)ηε,β(t)dt

)2

. (2.3.145)

For the far-field contribution, we first make use of the Jensen inequality combined with the inequality´
Rd\B2`

´
B`(x) dx . `

d
´
Rd\B` and the decomposition

´
Rd\B` =

´
Br\B` +

´
Rd\Br to write

ˆ
Rd\B2`

(ˆ
B`(x)

∣∣∣∣ˆ r2

0
∇u(t, y)dt

∣∣∣∣|fr(y)|dy
)2

dx .`2d
ˆ
Rd\B`

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2|fr(y)|2dy

=`2d
(ˆ

Br\B`

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2|fr(y)|2dy

+

ˆ
Rd\Br

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2|fr(y)|2dy
)
.

(2.3.146)
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For the first r.h.s term of (2.3.146), we make use of a dyadic decomposition and the estimate (2.3.133)
in form of |fr(y)| . (|y|+ 1)−d+1 to obtain

ˆ
Br\B`

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2|fr(y)|2dy =

dlog2(r)e∑
blog2(`)c

ˆ
B2n+1\B2n

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2|fr(y)|2dy

(2.3.133)
.

dlog2(r)e∑
blog2(`)c

2−n(d−2)

 
B2n+1

∣∣∣∣ˆ r2

0
∇u(t, y)dt

∣∣∣∣2dy,
which gives the fourth r.h.s term of (2.3.139) using (2.3.145). For the second r.h.s term of (2.3.146),
we make use of a dyadic decomposition and (2.3.133) in form of |fr(y)| . r(|y|+ 1)−d to get

ˆ
Rd\Br

∣∣∣∣ˆ r2

0
∇u(t, y)dt

∣∣∣∣2|fr(y)|2dy =

+∞∑
n=blog2(r)c

ˆ
B2n+1\B2n

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2|fr(y)|2dy

(2.3.133)
. r2

+∞∑
n=blog2(r)c

2−nd
 

B2n+1

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣2dy,
which finally gives fifth r.h.s of (2.3.139) using once more (2.3.145).

Proof of (2.3.143). The estimate of the two first l.h.s terms is an immediate consequence of
the Minkowski inequality in L2(Rd) and the estimate (2.3.89) applied with r =

√
s, which pro-

vides the first r.h.s contribution in (2.3.143). For the third l.h.s term, we can use previous esti-
mates. To this aim, we use the Jensen inequality with measure Tx,`(η`)(y)dy and (2.3.91) as well
as

´
Tx,`(η`)(y)dx . `d (which may be obtained by changing the role of x and y in the proof of

(2.3.91)) combined with the inequality
´
Rd\B2`

ffl
B`(y) dy .

´
Rd\B` to obtain

ˆ ( ˆ
Rd\B2`

( 
B`(y)

|fr(z)|2dz
) 1

2

Tx,`(η`)(y)dy
)2

dx
(2.3.91)
. `d

ˆ ˆ
Rd\B2`

 
B`(y)

|fr(z)|2dz Tx,`(η`)(y)dy dx

. `2d
ˆ
Rd\B2`

 
B`(y)

|fr(z)|2dz dy

. `2d
ˆ
Rd\B`

|fr(y)|2dy.

We then get (2.3.143) using (2.3.133) in form of
ˆ
Rd\B`

|fr(y)|2dy .
ˆ

Br\B`
(|y|+ 1)−2(d−1)dy + r2

ˆ
Rd\Br

(|y|+ 1)−2ddy

. `2−d(1 + log(
r

`
+ 1)1d=2), (2.3.147)

Proof of (2.3.144). We start with the first l.h.s term. We distinguish between the generic case
` ≥ r∗(0) and the non-generic case ` < r∗(0).

Regime ` ≥ r∗(0). We split the integral into the far-field contribution |x| ≥ 4` and the near-
field contribution |x| < 4`. For the far-field contribution, we make use of the estimates (2.3.85)
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(applied with T = r2) combined with (2.3.137) to obtain
ˆ
Rd\B4`

(ˆ
B`(x)

|∇vr2
(1, y)|

(
1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy)2

dx

. `2d
(
rd∗(0)

ˆ
Rd\B`

r2 log2(1 + |x|)
(|x|+ 1)2d

∧ 1

(|x|+ 1)2(d−1)
dx

+ (1 + log(r + 1)1d=2)

ˆ
Rd\B`

η4r∗(x)(x)dx+

ˆ
Rd\B`

f2
2r(x)dx

)
,

which gives the first term in (2.3.140) using that η4r∗(x)(x) . rd∗(x)(|x| + 1)−2d. For the near-field
contribution, we make use of the estimate (2.3.88) combined with (2.3.137) to obtain(ˆ

B4`

( ˆ
B`(x)

|∇vr2
(1, y)|

(
1 +

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy)2

dx
) 1

2

. `
d
2

(
r
d
2
∗ (0)

ˆ
B7`

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1
dx

+ (1 + log
1
2 (r + 1)1d=2)

ˆ
B7`

η
1
2

4r∗(x)(x)dx+

ˆ
B7`

f2r(x)dx
)
,

which gives the second term of (2.3.140) using that η
1
2

4r∗(x)(x) . r
d
2

+1
∗ (x)(|x|+ 1)−d−1.

Regime ` < r∗(0). We use the Cauchy-Schwarz inequality, the identity
´ ffl

B`(x) =
´

and the
localized energy estimate (2.2.32) to get

ˆ ( ˆ
B`(x)

|∇vr2
(1, y)|

(
1 +

∣∣∣∣ˆ 1

0
∇u(s, y)ds

∣∣∣∣)dy)2

dx

.
ˆ ˆ

B`(x)
|∇vr2

(1, y)|2dy
ˆ

B`(x)

(
1 +

∣∣∣∣ ˆ 1

0
∇u(s, y)ds

∣∣∣∣2)dy dx
. `2d

ˆ
|∇vr2

(1, y)|2dy . `drd∗(0)

ˆ
|∇vr2

(1, y)|2dy,

and we conclude with the plain energy estimate in the equation (2.2.51) (for which a proof is identical
as the one for (2.3.9)) combined with (2.3.139)

ˆ
|∇vr2

(1, y)|2dy .
ˆ
|fr(y)|2dy . 1 + log(r + 1)1d=2,

which gives the first contribution in (2.3.138). For the second l.h.s term of (2.3.144), we argue as in
(2.3.90) and (2.3.92).

Substep 1.2. Proof that for all ` ∈ [1, r)

ˆ (ˆ
B`(x)

ˆ r2

1
|∇u(t, y)||∇vr2

(t, y)|dt dy
)2

dx . `d
( +∞∑
j=0

2
j
2 ηε,β(2j)Kj,?,ε(r, `)

)2

. (2.3.148)

We argue differently with the generic case ` ≥ r∗(0) and the non-generic case ` < r∗(0) and we use
several previous estimates.
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Regime ` ≥ r∗(0). We split the argument between the far-field regime |x| ≥ 4` and the near-
field regime |x| < 4`. For the far-field contribution, we make use of (2.3.94), (2.3.125) and (2.3.121)
as well as (2.3.122) combined with (2.3.137) to obtain

ˆ
Rd\B4`

( ˆ
B`(x)

ˆ r2

1
|∇u(t, y)||∇vr2

(t, y)|dt dy
)2

dx .
( +∞∑
j=0

2
j
2 ηε,β(2j)Kj,?,ε(r, `,Rd\B4`)

)2

.

For the near-field contribution, we make use of (2.3.127) combined with (2.3.137) which leads to

ˆ
B4`

(ˆ
B`(x)

ˆ r2

1
|∇u(t, y)||∇vr2

(t, y)|dt dy
)2

dx

.

(ˆ
B7`

( ˆ 2j+1

2j
D2ε
? (t, `, x)dt

) 1
2
(
r
d
2
∗ (0)

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1

+ (1 + log
1
2 (r + 1)1d=2)

r
d
2

+1
∗ (x)

(|x|+ 1)d
+ f2r(x)

)
dx
)2

,

where we used that
∑+∞

j=0 2
j
2 ηε,β(2j) < +∞.

Regime ` < r∗(0). We make use of (2.3.119), (2.3.121) and (2.3.122) combined with (2.3.137)
as well as we bound one `d by rd∗(0) to obtain

ˆ (ˆ
B`(x)

ˆ r2

1
|∇u(t, y)||∇vr2

(t, y)|dt dy
)2

dx . rd∗(0)

( +∞∑
j=0

2
j
2 ηε,β(2j)Kj,?,ε(r, `,Rd)

)2

.

Step 2. Regime ` ≥ r. Proof that for all ε > 0 and ` ≥ r

ˆ
|∂fct
x,`q(r

2) ? fr|2dx ≤ `d
(
r2 +M?,3(r) +M?,2(r, `) +

( +∞∑
j=0

2
j
2 ηε,β(2j)Kj,?,ε(r, `)

)2)
, (2.3.149)

with

M?,3(r) =

(ˆ r2

1
s−

1
2 (1 + log(

r√
s

))

(  
B√s

rd∗(y)dy +

ˆ
Rd\B1

rd∗(y)(
√
sy)g√2(y)dy

) 1
2

ds
)2

.

The estimates (2.3.144) and (2.3.148) are unchanged. We provide the arguments for the two first
and the fourth r.h.s terms of (2.2.50) and prove that

ˆ (ˆ r2

1
s−

1
2Tx,`(η√s)(0)ds

)2

dx . `dr2. (2.3.150)

and

ˆ (ˆ
B`(x)

|fr(y)|dy
)2

dx+

ˆ ( ˆ
B`(x)

∣∣∣∣ˆ r2

0
∇u(s, y)ds

∣∣∣∣|fr(y)|dy
)2

dx .M?,3(r). (2.3.151)
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First, (2.3.150) follows from the Minkowski inequality in L2(Rd) and (2.3.89) applied with r =
√
s

(noticing that the evaluation at 0 plays no role in the estimate). Secondly, using the Minkowski
inequality in L2(Rd) and the assumption (2.1.19), we have

ˆ ( ˆ
B`(x)

|fr(y)|dy
)2

dx+

ˆ (ˆ
B`(x)

∣∣∣∣ ˆ r2

0
∇u(s, y)ds

∣∣∣∣|fr(y)|dy
)2

dx

. `d
( ˆ r2

1
s−1

ˆ
|y|g√s(y)

(
1 +

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣)dy)2

,

which gives (2.3.151) using that |y|g√s(y) . s
1
2 g√2s(y), the estimates (2.3.80) and (2.3.81) with

(T, r) replaced by (r2, s) to get

ˆ r2

1
s−1

ˆ
|y|g√s(y)

∣∣∣∣ˆ r2

0
∇u(t, y)dt

∣∣∣∣dy .ˆ r2

1
s−

1
2

ˆ
g√2s(y)

∣∣∣∣ ˆ r2

0
∇u(t, y)dt

∣∣∣∣dy
.
ˆ r2

1
s−

1
2 (1 + log(

r√
s

))

( 
B√s

rd∗(y)dy

+

ˆ
Rd\B1

rd∗(y)(
√
sy)g√2(y)dy

) 1
2

ds. (2.3.152)

.

Step 3. Proof of (2.1.20). We have from the logarithm Sobolev inequality in form of (2.4.1), for
all p ∈ [1,+∞)

〈|q(r2) ? fr − 〈q(r2) ? fr〉|p〉
1
p . p

1
2

〈( ˆ +∞

1
`−dπ(`)

ˆ
|∂fct
x,`qr(r

2) ? fr|2dx d`
) p

2
〉 1
p

≤ p
1
2 (I1

r + I2
r ),

(2.3.153)
with

I1
r :=

〈(ˆ r

1
`−dπ(`)

ˆ
|∂fct
x,`qr(r

2) ? fr|2dx d`
) p

2
〉 1
p

,

and

I2
r :=

〈(ˆ +∞

r
`−dπ(`)

ˆ
|∂fct
x,`qr(r

2) ? fr|2dx d`
) p

2
〉 1
p

.

We then treat separately the two terms above.

(i) In the regime ` < r we use (2.3.138) combined with the Minkowski inequality in Lp〈·〉(Ω) and

the moment bound (2.3.102) of r∗ as well as
( ´ r

1 `
1−β(1 + log( r` + 1)1d=2)d`

) 1
2

. χd,β(r) and
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1 + log(r + 1)1d=2 ≤ χd,β(r) (where we recall that χd,β(r) is defined in (2.1.21)):

I1
r ≤
〈(ˆ r

1
`−1−β

(
rd∗(0)(1 + log2(r + 1)1d=2) + `2(1 + log(

r

`
+ 1)1d=2)

+M?,1(r, `) +M?,2(r, `) +

( +∞∑
j=0

2
j
2 ηε,β(2j)Kj,?,ε(r, `)

)2)) p
2
〉 1
p

. p
d
β∧d

(
1 + χd,β(r)) +

( ˆ r

1
`−1−β(〈Mp

?,1(r, `)〉
1
p + 〈Mp

?,2(r, `)〉
1
p

+
+∞∑
j=0

2
j
2 ηε,β(2j)〈Kpj,?,ε(r, `)〉

1
p

)
d`
) 1

2

.

(ii) In the regime ` ≥ r we use (2.3.149) combined with the Minkowski inequality Lp〈·〉(Ω):

I2
r ≤

〈(ˆ +∞

r
`−1−β

(
r2 +M?,3(r) +M?,2(r, `) +

( +∞∑
j=0

2
j
2 ηε,β(2j)Kj,?,ε(r, `)

)2)
d`
) p

2
〉 1
p

. r1−β
2 +

(ˆ +∞

r
`−1−β

(
〈Mp

?,3(r, `)〉
1
p + 〈Mp

?,2(r, `)〉
1
p +

+∞∑
j=0

2
j
2 ηε,β(2j)〈Kpj,?,ε(r, `)〉

1
p

)
d`
) 1

2

.

It remains to prove that for all ε ∈ (0, 1)

ˆ r

1
`−1−β

(
〈Mp

?,1(r, `)〉
1
p + 〈Mp

?,2(r, `)〉
1
p +

+∞∑
j=0

2
j
2 ηε,β(2j)〈Kpj,?,ε(r, `)〉

1
p

)
d` . p

d+2
β∧d+ε

χ2
d,β(r),

(2.3.154)
and

ˆ +∞

r
`−1−β

(
〈Mp

?,3(r, `)〉
1
p + 〈Mp

?,2(r, `)〉
1
p +

+∞∑
j=0

2
j
2 ηε,β(2j)〈Kpj,?,ε(r, `)〉

1
p

)
d` . p

d+2
β∧d+ε

χ2
d,β(r).

(2.3.155)

We start with (2.3.154). First, using the moment bound (2.3.108) of D? and the definition of ηε,β
in (2.3.107) as well as (2.3.102), we have for all ρ > 0, 〈N p

?,ε(r, `, ρ)〉
1
p . p

d
β∧d+ε(1+2 d+2

β∧d ). Therefore,
by making use of the triangle inequality, we get

ˆ r

1
`−1−β〈Mp

?,1(r, `)〉
1
pd` . 1 + p

d
β∧d+ε(1+2 d+2

β∧d )
ˆ r

1
`−1−β(1 + `2(1 + log(

r

`
+ 1)1d=2) + `dr2−d)d`

. p
d
β∧d+ε(1+2 d+2

β∧d )
χ2
d,β(r).

Secondly, from the triangle inequality, the moment bounds (2.3.102) on r∗ and by splitting the first
integral in the r.h.s of (2.3.140) in form of

´
Rd\B` =

´
Br\B` +

´
Rd\Br as well as (2.3.147) and (2.3.136),



124
Chapter 2. Optimal decay of the parabolic semigroup for linear elliptic systems with

for correlated coefficient fields

we have for all ` < r

〈Mp
?,2(r, `)〉

1
p .p

d
β∧d

(
`d
ˆ

Br\B`

1

(|x|+ 1)2(d−1)
dx+ `d

ˆ
Rd\Br

r2 log2(1 + |x|)
(|x|+ 1)2d

∧ 1

(|x|+ 1)2(d−1)
dx
)

+ (1 + log2(r + 1)1d=2)`d
ˆ
Rd\B`

1

(|x|+ 1)2d
dx+ `d

ˆ
Rd\B`

|f2r(y)|2dx+

(ˆ
B7`

1

(|x|+ 1)d−1
dx
)2

+ (1 + log2(r + 1)1d=2)p
2
β∧d

( ˆ
B7`

1

(|x|+ 1)d+1
dx
)2

+

(ˆ
B7`

f2r(x)dx
)2

(2.3.136),(2.3.147)
. p

d
β∧d

(
`2(1 + log(

r

`
+ 1)1d=2) + (1 + `dr2−d + p

2
β∧d )(1 + log2(r + 1)1d=2)

)
,

which provides ˆ r

1
〈Mp

?,2(r, `)〉
1
pd` . p

d+2
β∧dχ2

d,β(r).

Finally, using the same decomposition as before and in addition the moment bound (2.3.108) of D?
we get ˆ r

1

+∞∑
j=0

2
j
2 ηε,β(2j)〈Kpj,?,ε(r, `)〉

1
pd` . p

d+2
β∧d+ε(1+2 d

β∧d )
χ2
d,β(r),

which concludes the proof of (2.3.154) by replacing ε(1 + 2 d
β∧d) by ε. We now turn to the proof of

(2.3.155). First, using the moment bound (2.3.102) on r∗ we have

ˆ +∞

r
`−1−β〈Mp

?,3(r, `)〉
1
pd` . p

d
β∧d r2−β . p

d
β∧dχ2

d,β(r).

Secondly, using the triangle inequality

〈Mp
?,2(r, `)〉

1
p

.p
d
β∧d

(
`d
ˆ
Rd\B`

r2 log2(1 + |x|)
(|x|+ 1)2d

∧ 1

(|x|+ 1)2(d−1)
dx+ (1 + log(r + 1)1d=2)`d

ˆ
Rd\B`

1

(|x|+ 1)2d
dx

+ `d
ˆ
Rd\B`

|f2r(x)|2dx

+

(ˆ
B7`

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1
dx
)2

+ (1 + log(r + 1)1d=2)p
2
β∧d

( ˆ
B7`

1

(|x|+ 1)d+1
dx
)2

+

(ˆ
B7`

|f2r(x)|dx
)2)

. p
d+2
β∧d

(ˆ
Rd\B`

r2 log2(1 + |x|)
(|x|+ 1)2d

∧ 1

(|x|+ 1)2(d−1)
dx+

( ˆ
B7`

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1
dx
)2

+ 1 + log(r + 1)1d=2 + r2

)
. (2.3.156)

We then argue differently, depending on the regime of β and d:
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(i) For β > 2, we use

ˆ
Rd\B`

r2 log2(1 + |x|)
(|x|+ 1)2d

∧ 1

(|x|+ 1)2(d−1)
dx+

( ˆ
B7`

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1
dx
)2

≤ r2

ˆ
Rd\B`

log2(1 + |x|)
(|x|+ 1)2d

dx+ r2

( ˆ
B7`

log(1 + |x|)
(|x|+ 1)d

dx
)2

. r2(1 + log2(`)), (2.3.157)

to deduce, combined with (2.3.156)
ˆ +∞

r
`−1−β〈Mp

?,2(r, `)〉
1
pd` .

ˆ +∞

r
`−1−β(r2 log2(`) + 1 + r2 + log(r + 1)1d=2)d`

. r−β(r2 + 1 + log(r + 1)1d=2 + log2(r + 1)) (2.3.158)

. 1,

where we used in the last line that β > 2.

(ii) For β ≤ 2 and d > 2, we use

ˆ
Rd\B`

r2 log2(1 + |x|)
(|x|+ 1)2d

∧ 1

(|x|+ 1)2(d−1)
dx+

(ˆ
B7`

r log(1 + |x|)
(|x|+ 1)d

∧ 1

(|x|+ 1)d−1
dx
)2

. r2 log2(`)∧`2,

which yields combined with (2.3.156) and a dyadic decomposition

ˆ +∞

r
`−1−β〈Mp

?,2(r, `)〉
1
pd` .

dlog2(r)e∑
n=0

ˆ 2n+1r

2nr
`−1−β(`2 + 1 + r2 + log(r + 1)1d=2)d`

+
+∞∑

n=dlog2(r)e

ˆ 2n+1r

2nr
`−1−β(r2 log2(`) + 1 + r2 + log(r + 1)1d=2)d`

.
dlog2(r)e∑
n=0

(
(2nr)2−β1β<2 + 1β=2 + r−β2−nβ(r2 + log(r + 1)1d=2)

)

+
+∞∑

n=dlog2(r)e

2−nβ(r2−β log2(2n+1r) + 1 + r2−β + log(r + 1)1d=2)

.χβ,d(r).

(iii) Finally, for β ≤ 2 and d = 2, we combine (2.3.156), (2.3.157) and (2.3.158) to obtain
ˆ +∞

r
`−1−β〈Mp

?,2(r, `)〉
1
pd` . r2−β(1 + log2(r + 1)) + 1 + log(r + 1).

To conclude, using the same decomposition as before and in addition the moment bound (2.3.108)
of D? we get ˆ +∞

r

+∞∑
j=0

2
j
2 ηε,β(2j)〈Kpj,?,ε(r, `)〉

1
p . p

d+2
β∧d+ε(1+2 d

β∧d )
χ2
d,β(r).
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Proof of Corollary 1: Decay of the semigroup.

We provide the argument for ∇u, the decay of u is proved the same way. We apply Lemma 3 and
we make use of the Minkowski inequality in Lp〈·〉(Ω) and the stationarity of qr(T, ·) to the effect of:
for all p ∈ [1,+∞), T ≥ 4 and R ≥

√
T〈(ˆ

η√2R(
y

c
)|∇u(T, y)|2dy

) p
2
〉 1
p

.
1

T

〈( T
2

T
4

 √t
0

(
r√
t

) d
2
ˆ
η2R(

y

c
)|qr(t, y)− 〈qr(t, y)〉|dy dr dt

)p〉 1
p

.
1

T

 T
2

T
4

 √t
0

(
r√
t

) d
2

〈|qr(t)− 〈qr(t)〉|p
〉 1
p

dr dt.

Then, we split the integral over [0,
√
t] into the contributions r ≤ 1 and 1 ≤ r ≤

√
t:

(i) For r ≤ 1 we use (2.2.43):

1

T

 T
2

T
4

1√
t

ˆ 1
2

0

(
r√
t

) d
2

〈|qr(t)− 〈qr(t)〉|p
〉 1
p

dr dt
(2.2.43)
. p

1
2

d
β∧dT−1− d

4

 T
2

T
4

1√
t

ˆ 1

0

(
r
d
2 + log(

√
t

r
)

)
dr dt

. p
1
2

d
β∧dT−

3
2
− d

4 log(T ).

(ii) For 1 ≤ r ≤
√
t we use Theorem 10 and the change of variable r 7→

√
t
r : for all α < 1

1
2

+2 d+1
β∨d

1

T

 T
2

T
4

1√
t

ˆ √t
1

(
r√
t

) d
2

〈|qr(t)− 〈qr(t)〉|p
〉 1
p

dr dt
(2.1.17)
. p

1
αT−1− d

4µβ(T )

 T
2

T
4

1√
t

ˆ √t
1

(
1 + log2(

√
t

r
)

)
dr dt

≤ p
1
α ηβ(T )

ˆ √
T
2

1
r−2(1 + log2(r))dr

. p
1
α ηβ(T ),

where ηβ is defined in (2.1.24). It concludes the argument for (2.1.23).

The estimate (2.1.25) is a direct consequence of (2.1.23) and the stationarity of ∇u: for all x ∈ Rd
and T ≥ 1

〈|∇u(T, x)|2
〉

=

〈ˆ
η√2R(

y

c
)|∇u(T, y)|2dy

〉 (2.1.23)
. T−1η2

β(T )〈C2
?,d,λ,β〉 . T−1η2

β(T ).

Proof of Corollary 2 : Bounds on the flux and gradient of correctors.

We split the proof into two steps. The first one gives a rigorous proof of the formula (2.1.31). The
second step prove (2.1.32).

Step 1. We prove the two following integral formulas

∇φ(·) =

ˆ +∞

0
∇u(t, ·)dt, (2.3.159)

and for all T ≥ 1

∇φT (·) =

ˆ +∞

0
e−

t
T∇u(t, ·)dt. (2.3.160)
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We first note that the r.h.s of (2.3.159) is well defined as a random variable in L2
〈·〉(Ω), since from

(2.1.25) and (2.2.32) we have for all x ∈ Rd〈∣∣∣∣ ˆ +∞

0
∇u(t, x)dt

∣∣∣∣2〉 1
2

≤
〈∣∣∣∣ ˆ 1

0
∇u(t, x)dt

∣∣∣∣2〉 1
2

+

ˆ +∞

1

〈
|∇u(t, x)|2

〉 1
2

dt . 1.

We only provide the argument for (2.3.159), (2.3.160) follows the same way. To this aim, we prove
that there exists a potential ζ ∈ L2(Ω × Rd), sub-linear at infinity, such that

´ +∞
0 ∇u(t, ·)dt = ∇ζ

and solving −∇ · a(∇ζ + e) = 0 in Rd in the distributional sense. By uniqueness of ∇φ defined by
(2.1.8), it shall imply (2.3.159).

Let ψ ∈ C∞c (Rd) be supported in BR for some R > 0 and let
√
T > R. We have by testing

(2.1.10) with ψ and integrating in time from 0 to T

ˆ
u(T, y)ψ(y)dy +

ˆ
∇ψ(y) · a(y)e dy +

ˆ
∇ψ(y) · a(y)

ˆ T

0
∇u(s, y)ds dy = 0. (2.3.161)

We now check that each term of (2.3.161) pass to the limit, almost surely, as T ↑ +∞. For the first
l.h.s term of (2.3.161), we use the triangle inequality followed by the Poincaré inequality, (2.1.23)
and (2.1.25):〈 

BR
|u(T, y)|2dy

〉 1
2

≤
〈 

BR

∣∣∣∣u(T, y)−
 

BR
u(T, z)dz

∣∣∣∣2dy〉 1
2

+

〈∣∣∣∣  
B√T

u(T, y)dy
∣∣∣∣2〉 1

2

+

〈∣∣∣∣  
BR

u(T, y)dy −
 

B√T

u(T, y)dy
∣∣∣∣2〉 1

2

. R

〈 
BR
|∇u(T, y)|2dy

〉 1
2

+

〈 
B√T

|u(T, y)|2dy
〉 1

2

+

〈∣∣∣∣  
BR

u(T, y)dy −
 

B√T

u(T, y)dy
∣∣∣∣2〉 1

2

(2.1.23),(2.1.25)
. (

R√
T

+ 1)ηβ(T ) +

〈∣∣∣∣  
BR

u(T, y)dy −
 

B√T

u(T, y)dy
∣∣∣∣2〉 1

2

. (2.3.162)

From the fundamental calculus theorem, the stationarity of ∇u and the application of (2.1.25), we
also have 〈∣∣∣∣ 

BR
u(t, y)dy −

 
B√T

u(t, y)dy
∣∣∣∣2〉 1

2

=

〈∣∣∣∣ˆ
√
T

R

 
B1

∇u(t, τz) · zdz dτ
∣∣∣∣2〉 1

2

(2.1.25)
. (1− R√

T
)ηβ(T ) ≤ ηβ(T ).

Hence, since R <
√
T , (2.3.162) turns into〈 

BR
|u(T, y)|2dy

〉 1
2

. ηβ(T ),
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and yields 〈∣∣∣∣ ˆ u(T, y)ψ(y)dy
∣∣∣∣2〉 1

2

≤ R
d
2 ‖ψ‖L∞(Rd)

〈 
BR
|u(T, y)|2dy

〉 1
2

(2.3.162)
. R

d
2 ‖ψ‖L∞(Rd)ηβ(T ).

Consequently, we have in particular, almost surely

lim
T→+∞

ˆ
u(T, y)ψ(y)dy = 0.

For the second l.h.s term of (2.3.161), we have directly using (2.1.25):〈∣∣∣∣ ˆ ∇ψ(y) · a(y)

ˆ +∞

T
∇u(s, y)ds dy

∣∣∣∣2〉 1
2

≤ ‖∇ψ‖L∞(Rd)

ˆ
BR

ˆ +∞

T
〈|∇u(s, y)|2

〉 1
2

ds dy

(2.1.25)
. Rd‖∇ψ‖L∞(Rd)T

1
2 ηβ(T ),

with lim
T→+∞

T
1
2 ηβ(T ) = 0, which yields almost surely

lim
T→+∞

ˆ
∇ψ(y) · a

ˆ T

0
∇u(s, y)ds dy =

ˆ
∇ψ(y) · a

ˆ +∞

0
∇u(s, y)ds dy.

To conclude, we can pass to the limit as T ↑ +∞ in (2.3.161) and obtain almost surely
ˆ
∇ψ(y) · a(y)e dy +

ˆ
∇ψ(y) · a(y)

ˆ +∞

0
∇u(s, y)ds dy = 0. (2.3.163)

Since
´ +∞

0 ∇u(t, ·)dt is curl free and belongs to L2(Ω×Rd), there exists a potential ζ ∈ L2(Ω×Rd)
such that

´ +∞
0 ∇u(t, ·)dt = ∇ζ and (2.3.163) takes the form

ˆ
∇ψ(y) · a(y) edy +

ˆ
∇ψ(y) · a(y)∇ζ = 0,

which means that −∇ · a(∇ζ + e) = 0 in the distributional sense in Rd. Since
´ +∞

0 ∇u(t, ·)dt has
finite second moment, it is well known that ζ own the sub-linear property. By the uniqueness of ∇φ
defined by (2.1.8), this concludes the argument for (2.3.159).

Step 2. We prove (2.1.32) and we split the proof into three steps. For the rest of the proof,
we fix α < 1

1
2

+2 d+1
β∨d

.

Substep 2.1. We start with the control of the flux and we only treat the control of |qr − 〈qr〉|, the
control of |(qT )r − 〈(qT )r〉| will be obtained the same way, using (2.3.160) instead of (2.3.159). We
have directly by using the triangle inequality and Theorem 10 with T = r2, for all p ∈ [1,+∞)

〈|qr − 〈qr〉|p〉
1
p ≤ 〈|qr − (q(r2))r|p〉

1
p + 〈|(q(r2))r − 〈(q(r2))r〉|p〉

1
p + |〈qr − (q(r2))r〉|

(2.1.17)
. 〈|qr − (q(r2))r|p〉

1
p + π

− 1
2
∗ (r)p

1
α .
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It remains to control the first r.h.s term of the above inequality. To this aim, we write by dominating
the Gaussian kernel by the exponential kernel and using the Minkowski inequality in Lp〈·〉(Ω) as well
as the Jensen inequality

〈|qr − (q(r2))r|p〉
1
p ≤

〈(ˆ
gr(x)

∣∣∣∣ˆ +∞

r2

∇u(t, x)dt
∣∣∣∣)p〉 1

p

≤
ˆ +∞

r2

〈(ˆ
gr(x)|∇u(t, y)|dy

)p〉 1
p

dt

≤
ˆ +∞

r2

〈(ˆ
ηr(x)|∇u(t, x)|2dx

) p
2
〉 1
p

dt. (2.3.164)

It remains to control the space integral of the above inequality. We apply Lemma 5 using (2.1.23),
f ≡ 1 and g : t ∈ R+ 7→ ηβ(t) as well as the moment bound (2.4.3) of r∗ to obtain, for all r ≥ 1〈( 

Br
|∇u(t, x)|2dx

) p
2
〉 1
p

. p
1
2

d
β∧d+ 1

α t−
1
2 ηβ(t). (2.3.165)

Consequently, for all t ≥ r2

〈(ˆ
ηr(x)|∇u(t, x)|2dx

) p
2
〉 1
p

≤
〈(  

Br
|∇u(t, x)|2dx

) p
2
〉 1
p

+

〈(ˆ
Rd\Br

ηr(x)|∇u(t, x)|2dx
) p

2
〉 1
p

(2.3.165)
. p

1
2

d
β∧d+ 1

α t−
1
2 ηβ(t) +

〈( ˆ
Rd\Br

ηr(x)|∇u(t, x)|2dx
) p

2
〉 1
p

.

(2.3.166)

For the second r.h.s term of the previous estimate, we decompose Rd\Br into the family of annuli
(B(n+1)r\Bnr)n≥1 to obtain, with (2.3.165)

〈(ˆ
Rd\Br

ηr(x)|∇u(t, x)|2dx
) p

2
〉 1
p

≤
( +∞∑
n=1

〈(ˆ
B(n+1)r\Bnr

ηr(x)|∇u(t, x)|2dx
) p

2
〉 2
p
) 1

2

≤
( +∞∑
n=1

e−nnd
〈( 

B(n+1)r

|∇u(t, x)|2dx
) p

2
〉 2
p
) 1

2

(2.3.165)
. p

1
2

d
β∧d+ 1

α t−
1
2 ηβ(t). (2.3.167)

We conclude by plugging the two above inequalities into (2.3.164) and the fact
´ +∞
r2 t−

1
2 ηβ(t)dt .

π
− 1

2
? (r). The bound on (qT )r is obtained the same way since from (2.3.160) we have

(qT )r =

ˆ +∞

0
e−

t
T qr(t, ·)dt.

Substep 2.2. We prove the control of |∇φr|. We first notice that by integrating the equation
(2.1.10) in time and using that, by stationarity, ∇ · 〈q〉 = 0, we have for all t ≥ 0

u(t, ·) = ∇ · (q(t, ·)− 〈q(t, ·)〉).
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From the definition (2.1.14), we deduce that

(∇φ(r2))r =

(
∇
(
∇ ·

ˆ r2

0
(q(s, ·)− 〈q(s, ·)〉)ds

))
r

. (2.3.168)

By noticing that, from the semigroup property gr = g 1√
2
r ? g 1√

2
r we have for all f ∈ H2

loc(Rd)

|(∇2f)r| = |(∇2f 1√
2
r) 1√

2
r| .

1

r2
|f 1√

2
r| 1√

2
r, (2.3.169)

we deduce, from (2.3.168), the stationarity of qr, (2.1.17) and (2.4.2) that, for all p ≥ 1

〈|(∇φ(r2))r|p〉
1
p =

〈∣∣∣∣(∇(∇ · ˆ r2

0
(q(s, ·)− 〈q(s, ·)〉)ds

))
r

∣∣∣∣p〉 1
p

(2.3.169)
.

1

r2

ˆ r2

0
〈|q 1√

2
r(s)− 〈q 1√

2
r(s)〉|

p〉
1
pds

(2.1.17),(2.4.2)
. p

1
α r−

d
2

ˆ r2

0
µβ(s)(1 + log2(

√
s

r
))ds

. π
− 1

2
∗ (r)p

1
α . (2.3.170)

We finally deduce, from (2.3.159), (2.3.164), (2.3.166), (2.3.167) and (2.3.170), that for all p ≥ 1

〈|∇φr|p〉
1
p ≤ 〈|∇φr − (∇φ(r2))r|p〉

1
p + 〈|(∇φ(r2))r|p〉

1
p

(2.3.159),(2.3.170)
≤

ˆ +∞

r2

〈( ˆ
ηr(x)|∇u(t, x)|2dx

) p
2

〉
1
pdt+ π

− 1
2
∗ (r)p

1
α

(2.3.164),(2.3.166),(2.3.167)
. π

− 1
2
∗ (r)(p

1
2

d
β∨d+ 1

α + p
1
α ).

Substep 2.3. We prove the control of |∇(σT )r| and |∇σr|. Let i, j, k ∈ J1, dK. Using the equation
(2.1.16), we note that (σT,i,j,k)r solves

1

T
(σT,i,j,k)r −∆(σT,i,j,k)r = (ek · qei,T − ej · qei,T ) ? (∂jgr − ∂kgr).

Therefore, we may express ∇(σT,i,j,k)r with help of the Green function GT of the massive Laplace
operator 1

T −∆ in Rd

∇(σT,i,j,k)r = ∇GT ? ((ek · qei,T − ej · qei,T ) ? (∂jgr − ∂kgr)).

Then, using that there exists a constant C which depends on d such that

GT = C

ˆ +∞

0
e−

s
T g√s ds,

and by noticing that from the stationarity of (ek · qei,T − ej · qei,T ) we have〈ˆ +∞

0

ˆ ˆ
e−

s
T |∇g√s(x)||ek · qei,T (x− y)− ej · qei,T (x− y)||∂jgr(y)− ∂kgr(y)|dy dx ds

〉
. 〈|ek · qei,T − ej · qei,T |〉‖∂jgr − ∂kgr‖L1(Rd)

ˆ +∞

0
e−

s
T ‖∇g√s‖L1(Rd)ds

. 〈|ek · qei,T − ej · qei,T |〉‖∂jgr − ∂kgr‖L1(Rd)

ˆ +∞

0
s−

1
2 e−

s
T ds < +∞,
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we deduce from the Fubini theorem combined with the semigroup property gr ? g√s = g√s+r2 that,
almost surely

∇(σT,i,j,k)r =

ˆ +∞

0
e−

s
T (ek · qei,T − ej · qei,T ) ? (∇(∂jg√s+r2 − ∂kg√s+r2))ds

=

ˆ +∞

0
e−

s
T (∇(∂j(ek · qei,T )− ∂k(ej · qei,T )))√s+r2 ds.

Consequently, by making once again use of the stationarity of qei,T as well as (2.3.169) and (2.1.32)
proved for (qei,T )r in substep 2.1, we obtain for all p ≥ 1

〈|∇(σT,i,j,k)r|p〉
1
p = C

〈∣∣∣∣ ˆ +∞

0
e−

s
T (∇(∂j(ek · qei,T )− ∂k(ej · qei,T )))√s+r2 ds

∣∣∣∣p〉 1
p

(2.3.169)
.

ˆ +∞

0

1

s+ r2
〈|(qei,T ) 1√

2

√
s+r2 − 〈(qei,T ) 1√

2

√
s+r2〉|p〉

1
pds

. p
1
2

+ 1
α

ˆ +∞

0

1

s+ r2
π
− 1

2
∗ (

√
s+ r2)ds

. p
1
2

+ 1
απ
− 1

2
∗ (r). (2.3.171)

which concludes (2.1.32) for |∇(σT )r| using Lemma 9. The bound on |∇σr| then follows from the
fact that ∇σT tends to ∇σ in L2

〈·〉(Ω) as T ↑ +∞ (see for instance [80, Proof of Proposition 2]), and
thus also almost surely up to a subsequence, combined with (2.3.171) and Fatou’s lemma.

Proof of Corollary 3 : Growth of the extended corrector (φ, σ)

We only give the arguments for φ. For the bound on σ, we may rewrite averages
´
∇σi,j,k(x) ·g(x)dx

where g is assumed to be a gradient field; i.e., g = ∇θ for some potential θ, using the second line of
(2.1.15) to obtain ˆ

∇σi,j,k(x) · g(x)dx =

ˆ
q(x) · Sg(x)dx,

with S =: ej ⊗ ek − ek ⊗ ej and q = ((qei)j)i,j . Since the averaging field Sg inherits the decay
properties of g, we then conclude using Theorem 10 for q and the arguments for φ.

Let α < 1

1
2

+
5
2 d+2

β∨d

and p ∈ [1,+∞). On the one hand, by the triangle inequality combined with

the Poincaré inequality in the space L2(Rd, g1dx) and the stationarity property of ∇φ, we have for
all x ∈ Rd

〈(|φ− φ1(0)|2)
p
2
1 (x)〉

1
p . 〈|φ1(x)− φ1(0)|p〉

1
p + 〈(|∇φ|2)

p
2
1 〉

1
p . (2.3.172)

Then, using the formula (2.3.159), the energy estimate (2.2.32) applied to the equation (2.1.10) in

form of
´ ∣∣∣∣ ´ 1

0 ∇u(t, x)dt
∣∣∣∣2g1(x)dx . 1, the Minkowski inequality in Lp(Ω,L2(Rd, g1dx)) and the

estimates (2.3.166) as well as (2.3.167) applied with r = 1 (after dominating the Gaussian kernel g1
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by the exponential kernel η1), we have

〈(|∇φ|2)
p
2
1 〉

1
p

(2.3.159)
=

〈(ˆ ∣∣∣∣ ˆ +∞

0
∇u(t, x)dt

∣∣∣∣2g1(x)dx
) p

2
〉 1
p

≤
〈(ˆ ∣∣∣∣ˆ 1

0
∇u(t, x)dt

∣∣∣∣2g1(x)dx
) p

2
〉 1
p

+

ˆ +∞

1

〈(ˆ
|∇u(t, x)|2g1(x)dx

) p
2
〉 1
p

dt

(2.3.166),(2.3.167)
. 1 + p

1
α .

Therefore, the estimate (2.3.172) turns into

〈(|φ− φ1(0)|2)
p
2
1 (x)〉

1
p . 〈|φ1(x)− φ1(0)|p〉

1
p + p

1
α + 1. (2.3.173)

On the other hand, setting R = |x| ≥ 1, we have by the triangle inequality

〈|φ1(x)− φ1(0)|p〉
1
p ≤ 〈|φR(x)− φ1(x)|p〉

1
p + 〈|φR(x)− φR(0)|p〉

1
p + 〈|φR(0)− φ1(0)|p〉

1
p . (2.3.174)

The second r.h.s term of (2.3.174) is estimated via the fundamental calculus theorem combined with
the Minkowski inequality in Lp〈·〉(Ω), the stationary property of ∇φ and (2.1.32)

〈|φR(x)− φR(0)|p〉
1
p = |x|

〈( ˆ 1

0

x

|x|
·
( ˆ

∇φ(y + τx)gR(y)dy
)
dx
)p〉 1

p (2.1.32)
. p

1
α |x|π−

1
2

? (R).

(2.3.175)
By stationarity, the first and the third r.h.s term of (2.3.174) are estimated the same way and we
bound the third term in two different ways, depending on the regimes of β and d:

(i) We consider the regimes β < 2, β = d = 2 and β > 2, d > 2. Our main tool here are the
moment bounds on the gradients of correctors (2.1.32). We write by the fundamental calculus
theorem

φR(0)− φ1(0) =

ˆ R

1

∂

∂τ
φτ (0)dτ =

ˆ R

1

ˆ
∇φ(x) · gτ (x)

x

τ
dx dτ. (2.3.176)

Then, by noticing that from the semigroup property of Gaussian field in form of gτ = g τ√
2
?g τ√

2
,

writing x
τ = y

τ + x−y
τ and applying the Fubini theorem, we have for all τ ∈ [1, R]ˆ

∇φ(x) · gτ (x)
x

τ
dx =

ˆ ˆ
∇φ(x) · x

τ
g τ√

2
(y)g τ√

2
(x− y)dy dx

=

ˆ ˆ
∇φ(x) · y

τ
g τ√

2
(y)g τ√

2
(x− y)dy dx

+

ˆ ˆ
∇φ(x) · x− y

τ
g τ√

2
(y)g τ√

2
(x− y)dy dx

=2

ˆ
y

τ
g τ√

2
(y) ·

ˆ
∇φ(x)g τ√

2
(x− y)dx dy

=2

ˆ
y

τ
g τ√

2
(y) · ∇φ τ√

2
(−y)dy,

we deduce from the Minkowski inequality in Lp〈·〉(Ω), the stationarity property of ∇φ, (2.3.176)
and (2.1.32)

〈|φR(0)− φ1(0)|p〉
1
p .

ˆ R

1
〈|∇φ τ√

2
|p〉

1
pdτ

(2.1.32)
. p

1
α

ˆ R

1
π
− 1

2
? (

τ√
2

)dτ . p
1
α ξd,β(R), (2.3.177)
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where we recall that ξd,β is defined in (2.1.34). The combination of (2.3.173), (2.3.174),
(2.3.175), (2.3.177) and Lemma 9 gives the desired estimate (2.1.33).

(ii) We consider the regimes β = 2, d > 2 and β > 2, d = 2. Our main tools here are the
fluctuation estimate (2.1.20) and the decay (2.1.23) of ∇u. We claim that

φR(0)− φ1(0) = −
ˆ
∇H(x) · ∇φ(x)dx, (2.3.178)

with

H :=

ˆ R2

1
g√τ (·)dτ.

Indeed, using that for all τ > 0, ∂τg√τ = ∆g√τ , we have

φR(0)−φ1(0) =

ˆ
(gR(x)−g1(x))φ(x)dx =

ˆ ˆ R2

1
∂τg√τ (x)dτ φ(x)dx =

ˆ ˆ R2

1
∆g√τ (x)dτ φ(x)dx,

and thus (2.3.178) follows from an integration by parts (which is justified by the sub-linearity
property of the corrector φ). Now, using the formula (2.3.159), we get

φR(0)− φ1(0) = −
ˆ
∇H(x) ·

ˆ +∞

0
∇u(s, x)ds dx

= −
ˆ
∇H(x) · ∇φ(R2, x)dx−

ˆ
∇H(x) ·

ˆ +∞

R2

∇u(s, x)ds dx, (2.3.179)

where we recall that the time dependant corrector φ(·, ·) is defined in (2.1.14). For the first
r.h.s term of (2.3.179), we note that ∇H satisfies the assumption (2.1.19), therefore from
Theorem 10 we have for all p ∈ [1,+∞)

〈∣∣∣∣ˆ ∇H(x) · ∇φ(R2, x)dx
∣∣∣∣p〉 1

p

. p
1
α log

1
2 (R+ 2).

For the second r.h.s term of (2.3.179), we make use of the combination of (2.3.165), (2.3.166)
and (2.3.167) as well as the following bound on ∇H: for all x ∈ Rd

|∇H(x)| .
ˆ R2

1
|x|τ−

d
2
−1e−

|x|
τ dτ ≤ |x|e−

|x|2

2R2

ˆ R2

1
τ−

d
2
−1e−

|x|2
2τ dτ

. (|x|+ 1)1−de−
|x|2

2R2 . Rg2R(x),

to obtain for all p ∈ [1,+∞)

〈∣∣∣∣ˆ ∇H(x) ·
ˆ +∞

R2

∇u(s, x)ds dx
∣∣∣∣p〉 1

p

≤R
ˆ +∞

R2

〈∣∣∣∣ ˆ g2R(x)|∇u(s, y)|2
∣∣∣∣ p2〉 1

p

. p
1
αR

ˆ +∞

R2

s−
1
2 ηβ(s)ds . 1.
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Proof of Corollary 5: Sub-systematic error

We split the proof into two steps.

Step 1. Proof of (2.1.37). Using the two representation formulas (2.3.159) and (2.3.160), we
have for all n > β∧d

4

〈|∇φnei,T −∇φei |
2〉

1
2 =

〈∣∣∣∣ˆ +∞

0
(1− expn(τ, T ))∇u(τ)dτ

∣∣∣∣2〉 1
2

, (2.3.180)

where (expn(·, T ))n∈N is the Richardson extrapolation of exp1(·, T ) := e−
·
T . Note that the extrapo-

lation has the effect that for all τ ≥ 0

|1− expn(τ, T )| .n
(
τ

T

)n
∧ 1 and

∣∣∣∣ ∂∂τ expn(τ, T )

∣∣∣∣ .n 1

T

(
τ

T

)n−1

. (2.3.181)

We then split the integral (2.3.180) into three contributions. We start by the contribution on the
interval (0, 1). We write by an integration by parts
ˆ 1

0
(1− expn(τ, T ))∇u(τ)dτ =

ˆ 1

0

∂

∂τ
expn(τ, T )

ˆ τ

0
∇u(t)dt dτ + (1− expn(1, T ))

ˆ 1

0
∇u(τ)dτ.

Thus, by the Minkowski inequality in L2
〈·〉(Ω) and the stationarity of ∇u, we get〈∣∣∣∣ˆ 1

0
(1− expn(τ, T ))∇u(τ)dτ

∣∣∣∣2〉 1
2

.
ˆ 1

0

∣∣∣∣ ∂∂τ expn(τ, T )

∣∣∣∣2dτ ˆ 1

0

〈ˆ
η√τ (x)

∣∣∣∣ ˆ τ

0
∇u(t, x)dt

∣∣∣∣2dx〉 1
2

dτ

+ |1− expn(1, T )|2
〈ˆ

η1(x)

∣∣∣∣ ˆ 1

0
∇u(t, x)dt

∣∣∣∣2dx〉 1
2

.

Hence, using the localized energy estimate (2.2.32) combined with (2.3.181), we arrive at〈∣∣∣∣ˆ 1

0
(1− expn(τ, T ))∇u(τ)dτ

∣∣∣∣2〉 1
2

.n T
−n,

which is of higher order than the r.h.s of (2.1.37). We turn now to the contributions on the intervals
(1, T ) and (T,+∞), for which the estimate of the decay of the semigroup (2.1.25) and (2.3.181) yield〈∣∣∣∣ ˆ +∞

1
(1− expn(τ, T ))∇u(τ)dτ

∣∣∣∣2〉 1
2

.
ˆ T

1

(
τ

T

)n
τ−1− d

4dτ +

ˆ +∞

T
τ−1− d

4dτ

. T
1
2 ηβ(T ).

It concludes the proof of (2.1.37).

Step 2. Proof of (2.1.38). This estimate is a direct consequence of (2.1.37). Indeed by the
definition (2.1.36) of anT , we have

ej · (anT − ahom)ei = 〈(∇φ∗,nej ,T −∇φ
∗
ej ) · a(∇φnei,T + ei)〉 − 〈(∇φ∗ei + ej) · a(∇φei −∇φnei,T )〉.

Since we have

〈(∇φ∗e,j + ej) · a(∇φei −∇φnei,T )〉 = 〈(∇φei −∇φnei,T ) · a∗(∇φ∗ej + ej)〉,
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the weak formulation of the corrector equation (2.1.8) for both φ∗ei and φei yields

〈(∇φei −∇φnei,T ) · a∗(∇φ∗ej + ej)〉 = 〈(∇φ∗ej −∇φ
∗,n
ej ,T

) · a(∇φei + ei)〉,

and we conclude that

|ej ·(anT−ahom)ei| = |〈(∇φ∗,nej ,T−∇φ
∗
ej )·a(∇φnei,T−∇φei)〉| ≤ 〈|∇φ

∗,n
ej ,T
−∇φ∗ej |

2〉
1
2 〈|∇φnei,T−∇φei |

2〉
1
2 ,

so that the claim follows from (2.1.37), used for both a∗ and a.

Proof of Corollary 6: Spectral resolution

Let 0 < µ ≤ 1. The starting point is the use of the spectral theorem which allows one to rewrite the
definition of (φne,µ−1)n∈N, defined in Corollary 5, in the form, for all n ∈ N

φne,T = gn(L, µ−1)Θ,

where g0 : ζ ∈ (0,+∞) 7→ 1
ζ , g1 : ζ ∈ (0,+∞) 7→ (ζ + µ)−1, and (gn)n∈N is the Richardson

extrapolation of g1 with respect to µ−1. Then, by the spectral theorem, we have for all n ∈ N

〈∇(φne,µ−1 − φe) · a∇(φne,µ−1 − φe)〉 = 〈(φne,µ−1 − φe)L(φne,µ−1 − φe)〉

=

〈ˆ +∞

0
ζ(gn(ζ, µ−1)− g0(ζ))2dνΘ(ζ)

〉
. (2.3.182)

On the one hand, for n > β∧d
4 , Corollary 5 yields

〈∇(φne,µ−1 − φe) · a∇(φne,µ−1 − φe)〉 . µ−1η2
β(µ−1). (2.3.183)

On the other hand, by induction on n (see for instance [90, Proof of Lemma 2.5]) we have for all
n ∈ N and ζ ∈ (0,+∞)

|gn(ζ, µ−1)− g0(ζ)| & µn

ζ(ζ + µ)n
,

which we use in the form, for all ζ ≤ µ

ζ(gn(ζ, µ−1)− g0(ζ))2 &
µ2n

ζ(ζ + µ)2n
. (2.3.184)

The combination of (2.3.182), (2.3.183) and (2.3.184) applied for some n > β∧d
4 gives〈ˆ µ

0
dνΘ(ζ)

〉
. µ

〈ˆ µ

0

µ2n

ζ(ζ + µ)2n
dνΘ(ζ)

〉
(2.3.184)
. µ

〈ˆ µ

0
ζ(gn(ζ, µ−1)− g0(ζ))2dνΘ(ζ)

〉
(2.3.182),(2.3.183)

. η2
β(µ−1).



136
Chapter 2. Optimal decay of the parabolic semigroup for linear elliptic systems with

for correlated coefficient fields

2.4 Appendix

2.4.1 Probabilistic tools

The following proposition shows that the multiscale logarithmic Sobolev inequality (2.1.4) gives a
control of moments. For a reference, see [60, Prop 3.1].

Proposition 4. Assume that the ensemble 〈·〉 satisfies the multi-scale logarithm Sobolev inequality
(2.1.4). For all p ∈ [1,+∞) and F ∈ Lp〈·〉(Ω)

〈|F − 〈F 〉|p〉
1
p .d

√
p

〈(ˆ +∞

1
`−dπ(`)

ˆ
|∂fct
x,`F |

2dx d`
) p

2
〉 1
p

. (2.4.1)

The following standard lemma gives the link between algebraic moment and exponential moment
for non-negative random variables. The short proof is included for completeness.

Lemma 9. Let X : Ω→ R+ a non-negative random variable. We have the following equivalence:

∃C1 > 0 such that
〈

exp

(
1

C1
X

)〉
≤ 2⇔ ∃C2 > 0 such that ∀q ≥ 1, 〈Xq〉

1
q ≤ qC2. (2.4.2)

Proof. Let us suppose that there exists C2 > 0 such that for all q ≥ 1, 〈Xq〉
1
q ≤ qC2. We have, for

all C1 > 0 〈
exp

(
1

C1
X

)〉
=

〈 +∞∑
n=0

Xn

n!Cn1

〉
≤

+∞∑
n=0

(C2
C1
n)n

n!
,

we then choose C1 such that
∑+∞

n=0

(
C2
C1
n)n

n! ≤ 2. Let us now suppose that there exists C1 > 0 such

that
〈

exp

(
1
C1
X

)〉
≤ 2. This implies that for all q ≥ 1, 〈Xq〉 ≤ Cq1q!. Since, from the Stirling

formula, q! ≤ Cqq for some C > 0, we have for all q ∈ N, 〈Xq〉
1
q ≤ CC1q.

2.4.2 Large-scale regularity theory for parabolic system

In this section we recall the regularity theory for random parabolic operator of the form ∂τ −∇· a∇
developed in the papers [26, 11] and draw some useful consequences. Here, we assume that a does
not depend on time. However, the theory also holds with time dependent coefficients, using a time
dependent minimal radius r∗ different from the one defined in Theorem 11 but this is not needed
in this paper. We start by recalling the excess decay property, which can be found in [26, Prop.4]
and the moment bound on r∗ which can be found in [80]. We then prove large-scale C0,1 estimates,
following the arguments of [80].

Theorem 11 (Excess decay). There exists a 1
8 -Lipschitz stationary random field r∗ : Ω×Rd → R+

for which there exists a constant C < +∞ such that for all x ∈ Rd〈
exp

(
1

C
π∗(r∗(x))

)〉
≤ 2, (2.4.3)

with for all r ≥ 1

π∗(r) =


rβ if β < d,
rd log−1(r) if β = d,
rd if β > d.
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In addition, for all distributional solution of

∂τu−∇ · a∇u = 0 in CR for R ≥ r∗,

we have for all r ∈ [r∗, R] and α ∈ (0, 1)

Exc(∇u, r) .d,λ,α
(
r

R

)2α

Exc(∇u,R), (2.4.4)

with Exc(∇u, r) := infξ∈Rd
ffl
Cr
|∇u(t, y)− ξ −∇φξ(y)|2dy.

A direct consequence of the excess decay property of Theorem 11 is the following large-scale C0,1

estimates, in the spirit of [80], state in the parabolic setting.

Corollary 7 (Large-scale C0,1 estimates). For the random field r∗ defined in Theorem 11, we have
for all (s, x) ∈ Rd+1 and weak solution u of

∂τu−∇ · (a(∇u+ g)) = ∇ · h in CR(s, x) for R ≥ r∗,

with (g, h) ∈ L2
loc(Rd), for all r ∈ [r∗(x), R] and α > 0

 
Cr(s,x)

|∇u(t, y)|2dt dy .d,λ,α
 
CR(s,x)

|∇u(t, y)|2dt dy

+ sup
ρ∈[r∗,R]

(
R

ρ

)2α  
Cρ(s,x)

(∣∣∣∣h−  
Cρ(s,x)

h

∣∣∣∣2 +

∣∣∣∣g −  
Cρ(s,x)

g

∣∣∣∣2).
(2.4.5)

In particular, if g ≡ h ≡ 0, we have the following mean value property for a-caloric functions: for
all r ∈ [r∗(x), R]  

Cr(s,x)
|∇u(t, y)|2dt dy .d,λ

 
CR(s,x)

|∇u(t, y)|2dt dy. (2.4.6)

Proof. Without loss of generality, we may assume that (s, x) = (0, 0). We split the proof into two
steps.

Step 1. Proof of

sup
r∈[r∗,R]

1

r2α
Exc(∇u+ g, r) .d,λ,α

1

R2α
Exc(∇u+ g,R) + sup

r∈[r∗,R]

1

r2α

 
Cr

(
|h−

 
Cr
h|2 + |g−

 
Cr
g|2
)
,

(2.4.7)
and if R = +∞

sup
r≥r∗

1

r2α
Exc(∇u+ g, r) .d,λ,α sup

r≥r∗

1

r2α

 
Cρ

(
|h−

 
Cρ
h|2 + |g −

 
Cρ
g|2
)
. (2.4.8)

Let α′ = 1+α
2 and r∗ ≤ r ≤ ρ ≤ R. We prove that

Exc(∇u+ g, r) ≤ C1

((
r

ρ

)2α′

Exc(∇u+ g, ρ) +

(
ρ

r

)d+2  
Cρ

(
|h−

 
Cρ
h|2 + |g−

 
Cρ
g|2
))

, (2.4.9)
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with some constant C1 which depends on λ and d.

Set ξ :=
ffl
Cρ g and let w ∈ L2((−ρ2, ρ2),H1

0(Bρ)) ∩ H1((−ρ2, ρ2),H−1(Bρ)) be the weak solution
of {

∂tw +∇ · a∇w = ∇ · (a(g − ξ) + h) in Cρ,
w = 0 on ∂pCρ,

(2.4.10)

where ∂pCρ = (∂Bρ × (−ρ2, 0)) ∪ Bρ × {0}. Then, because (t, x) ∈ Rd+1 7→ u(t, x)− w(t, x) + ξ · x
is a a-caloric function in Cρ, we have by the Theorem 11 for the exponent α′

Exc(∇u−∇w + ξ, r) .

(
r

ρ

)2α′

Exc(∇u−∇w + ξ, ρ). (2.4.11)

In addition, we have the following energy estimate

ˆ
Cρ
|∇w|2 .

ˆ
Cρ

∣∣∣∣h−  
Cρ
h

∣∣∣∣2 +

ˆ
Cρ

∣∣∣∣g −  
Cρ
g

∣∣∣∣2. (2.4.12)

Indeed, by testing (2.4.10) by w itself, we get

−
ˆ

Cρ
w∂τw +

ˆ
Cρ
∇w · a∇w =

ˆ
Cρ

(
h−

 
Cρ
h+∇w · a(g − ξ)

)
.

Since

−
ˆ

Cρ
w∂τw = −

ˆ 0

−ρ2

d

dt
‖w(t, ·)‖2L2(Bρ)

dt = ‖w(−ρ2, ·)‖2L2(Bρ)
≥ 0,

this yields ˆ
Cρ
∇w · a∇w ≤

ˆ
Cρ
∇w ·

(
h−

 
Cρ
h+ a(g − ξ)

)
.

By uniform ellipticity assumption (2.1.2) on a, (2.4.12) follows. The combination of (2.4.11), (2.4.12)
and the triangle inequality yields (2.4.9). Now, we conclude by a Campanato iteration. Setting
0 < θ = r

ρ ≤ 1, we rewrite (2.4.9) as

Exc(∇u+ g, θρ) ≤ C1

(
θ2α′Exc(∇u+ g, ρ) + θ−d−2

 
Cρ

(
|h−

 
Cρ
h|2 + |g −

 
Cρ
g|2
))

.

We divide by (θρ)2α and take the supremum over ρ ∈ [ r∗θ , R] :

sup
r∈[r∗,θR]

1

r2α
Exc(∇u+ g, r) ≤C1

(
θ2(α′−α) sup

r∈[r∗,R]

1

r2α
Exc(∇u+ g, r)

+ θ−d−2−2α sup
r∈[r∗,R]

1

r2α

 
Cr

(
|h−

 
Cr
h|2 + |g −

 
Cr
g|2
))

.

(2.4.13)

We now choose θ = θ(d, λ, α) ≤ 1 so small that C1θ
2(α′−α) ≤ 1

2 . By using

sup
r∈[r∗,R]

1

r2α
Exc(∇u+ g, r) ≤ sup

r∈[θR,R]

1

r2α
Exc(∇u+ g, r) + sup

r∈[r∗,θR]

1

r2α
Exc(∇u+ g, r),
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we may absorb the second r.h.s term of the previous inequality into the l.h.s of (2.4.13), which yields

sup
r∈[r∗,θR]

1

r2α
Exc(∇u+g, r) . sup

r∈[θR,R]

1

r2α
Exc(∇u+g, r)+ sup

r∈[r∗,R]

1

r2α

 
Cr

(
|h−

 
Cr
h|2+|g−

 
Cr
g|2
)
.

Since

sup
r∈[θR,R]

1

r2α
Exc(∇u+ g, r) .

1

R2α
sup

r∈[θR,R]

Rd+2

rd+2
Exc(∇u+ g,R) .

1

R2α
Exc(∇u+ g,R),

this yields (2.4.7) in the case R < +∞. In the case R =∞ we obtain (2.4.8) in the limit R→ +∞
by the square integrability of ∇u+ g on Rd+1, in form of

lim sup
R→+∞

Exc(∇u+ g,R) ≤ lim sup
R→+∞

 
CR
|∇u+ g|2 = 0.

Step 2. Proof of (2.4.5). We split this step into two parts.

Substep 2.1. Proof that for all ρ > 0 there exists a unique ξρ ∈ Rd such that

Exc(∇u+ g, ρ) =

 
Cρ
|∇u+ g − (ξρ +∇φξρ)|2, (2.4.14)

and for all r∗ ≤ r ≤ R

|ξr−ξR|2 . sup
ρ∈[r,R]

(
R

ρ

)2α

Exc(∇u+g, ρ)+ sup
ρ∈[r∗,R]

(
R

ρ

)2α  
Cρ

(∣∣∣∣h− 
Cρ
h

∣∣∣∣2+

∣∣∣∣g− 
Cρ
g

∣∣∣∣2). (2.4.15)
We start by proving (2.4.14). Fix ρ > 0 and define

f : ξ ∈ Rd 7−→
 

Cρ
|∇u+ g − (ξ +∇φξ)|2.

f is a continuous function and the mean value property of φ, namely for all R ≥ r∗: 
BR
|∇φξ + ξ|2 ≥ 1

2
|ξ|2, (2.4.16)

shows that f is coercive. Consequently, ξρ in (2.4.14) exists. On the other hand, ξρ is unique.
Indeed, suppose that (2.4.14) is verified for two vectors ξ1 and ξ2. We have

Exc(∇u+ g, ρ) =

 
Cρ
|∇u+ g − (ξ1 +∇φξ1)|2 =

 
Cρ
|∇u+ g − (ξ2 +∇φξ2)|2,

and in particular

2Exc(∇u+ g, ρ) =

 
Cρ

(
|∇u+ g − (ξ1 +∇φξ1)|2 + |∇u+ g − (ξ2 +∇φξ2)|2

)
.

The parallelogram identity yields

2Exc(∇u+ g, ρ) =

 
Cρ

1

2
|ξ1 − ξ2 +∇φξ1−ξ2 |2 + 2|∇u+ g − (

ξ1 + ξ2

2
+∇φ ξ1+ξ2

2

)|2.



140
Chapter 2. Optimal decay of the parabolic semigroup for linear elliptic systems with

for correlated coefficient fields

We infer that
Exc(∇u+ g, ρ) ≥

 
Cρ

1

4
|ξ1 − ξ2 +∇φξ1−ξ2 |2 + Exc(∇u+ g, ρ),

and so  
Cρ
|ξ1 − ξ2 +∇φξ1−ξ2 |2 = 0,

which gives ξ1 = ξ2 using the estimate (2.4.16).

We turn to the proof of (2.4.15). It is enough to prove that

∀r ≤ R ≤ 2r, |ξr − ξR|2 . Exc(∇u+ g,R). (2.4.17)

Indeed, we argue by a dyadic argument. Let N ∈ N such that 2−(N+1)R < r < 2−NR. By (2.4.17),
we have for all n ∈ {0..., N − 1}

|ξr − ξ2−NR|2 . Exc(∇u+ g, 2−NR) and |ξ2−(n+1)R − ξ2−nR|2 . Exc(∇u+ g, 2−nR).

Thus, by the triangle inequality followed by the excess decay (2.4.4) and the fact that
∑+∞

n=0 2−nα <
+∞, we have

|ξr − ξR|2 .
( N∑
n=0

√
Exc(∇u+ g, 2−nR)

)2

(2.4.7)
.

( N∑
n=0

2−nα
(√

Exc(∇u+ g,R) +

(
sup

ρ∈[r∗,R]

(
R

ρ

)2α  
Cρ

∣∣∣∣h−  
Cρ
h

∣∣∣∣2 +

∣∣∣∣g −  
Cρ
g

∣∣∣∣2) 1
2
))2

. Exc(∇u+ g,R) + sup
ρ∈[r∗,R]

(
R

ρ

)2α  
Cρ

(∣∣∣∣h−  
Cρ
h

∣∣∣∣2 +

∣∣∣∣g −  
Cρ
g

∣∣∣∣2)
. sup

ρ∈[r,R]
(
R

ρ
)2αExc(∇u+ g, ρ) + sup

ρ∈[r∗,R]

(
R

ρ

)2α  
Cρ

(∣∣∣∣h−  
Cρ
h

∣∣∣∣2 +

∣∣∣∣g −  
Cρ
g

∣∣∣∣2).
We now turn to the argument for (2.4.17). By (2.4.16) we have

|ξr − ξR|2 .
 

Cr
|(ξρ − ξR) +∇φξr−ξR |

2,

which, by linearity of ξ 7→ φξ, we may rewrite as

|ξr − ξR|2 .
 

Cr
|(ξρ +∇φξr)− (ξR +∇φξR)|2,

so that, by the triangle inequality in L2(Cρ) and using that r ≤ R ≤ 2r, we obtain

|ξr − ξR|2 .
 

Cr
|∇u− (ξr +∇φξr)|2 +

 
CR
|∇u− (ξR +∇φR)|2.

By definition of Exc and using once more that r ≤ R ≤ 2r, this turns as desired into

|ξr − ξR|2 . Exc(∇u+ g, r) + Exc(∇u+ g,R) . Exc(∇u+ g,R).
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Substep 2.2. We prove (2.4.5). The starting point is (2.4.7) in the more general form : for all
r ≥ r∗

sup
ρ∈[r,R]

(
R

ρ
)2αExc(∇u+ g, ρ) .Exc(∇u+ g,R)

+ sup
ρ∈[r,R]

(
R

ρ
)2α

 
Cρ

(
|g −

 
Cρ
g|2 + |h−

 
Cρ
h|2
)
. (2.4.18)

The estimates (2.4.15) and (2.4.18) combined with the triangle inequality yield

|ξr|2 + Exc(∇u+ g, r) .|ξR|2 + Exc(∇u+ g,R)

+ sup
ρ∈[r∗,R]

(
R

ρ
)2α

 
Cρ

(
|g −

 
Cρ
g|2 + |h−

 
Cρ
h|2
)
. (2.4.19)

Using the triangle inequality in L2(Cr) and the definition of the excess in the form of
 

Cr
|∇u+ g|2 . |ξr|2 + Exc(∇u+ g, r),

and
|ξR|2 + Exc(∇u+ g,R) .

 
CR
|∇u+ g|2,

we may finally pass from (2.4.19) to (2.4.5).

We finally recall the following property of average of r∗. The proof can be found in [80, Esti.
(139)].

Lemma 10. For all measurable function f : Rd → R+ there exists two constants c and C which
depends only on the dimension d such that

c

ˆ  
Br∗(x)(x)

f(y)dy dx ≤
ˆ
f(x)dx ≤ C

ˆ  
Br∗(x)(x)

f(y)dy dx. (2.4.20)

2.4.3 Technical lemmas

We state here two technical lemmas. The first one is needed in the proof of Lemma 2. For a proof,
see [8, Lem. C.6].

Lemma 11. Suppose that there exist A, ξ ≥ 0 and ρ : [1
2 , 1)→ R+ which satisfies

sup
t∈[ 1

2
,1)

(1− t)ξρ(t) < +∞,

and for all 1
2 ≤ s < t < 1,

ρ(s) ≤ 1

2
ρ(t) + (t− s)−ξA.

Then, there exists a constant C depending on ξ such that ρ(1
2) ≤ CA.

The second one is the Caccioppoli inequality for parabolic system. For a proof, see for instance
[26, Lemma 5].
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Lemma 12 (Caccioppoli estimate). There exists a constant C depending on λ such that for every
ρ ≤ R and weak solution u of

∂τu−∇ · a∇u = 0 in CR,

we have ˆ
Cρ
|∇u(x)|2dx ≤ C

(R− ρ)2

ˆ
CR\Cρ

∣∣∣∣u(x)−
 
CR

u(y)dy
∣∣∣∣2dx.

2.4.4 Proof of Theorem 10 under a functional inequality with oscillation

We fix T ≥ 1, 1 ≤ r ≤
√
T and the unit vector e ∈ Rd. We only give the argument for (2.1.17),

(2.1.20) is obtained combining the ideas of this section and the proof of Section 2.3.4. We make for
simplicity the two additional assumptions:

(i) ue is real-valued and a is symmetric. We recall that it implies

‖∇u(t, ·)‖L∞(Rd) . t
−1, (2.4.21)

see Remark 4.

(ii) The coefficient field a takes the form, for some χ ∈ C∞c (Rd) supported in B1,

a := χ ? ã,

with a field ã : Rd → Rd×d which takes value into the set of uniformly elliptic and bounded
matrices and with a probability law which satisfies the logarithm Sobolev inequality with
oscillation (2.1.40). In this setting, ∇ · ae ∈ L∞(Rd) and

‖∇ · ae‖L∞(Rd) .χ 1.

We recall that it implies the following energy estimate: for all R ≥ 1 and z ∈ Rd

ˆ 1

0

 
BR(z)

|∇u(t, x)|2dx dt .χ 1, (2.4.22)

where a proof can be found in [92, Lemma 3]. The first step is to estimate the derivative (x, `) ∈
Rd × [1,+∞) 7→ ∂osc

x,` qr(T ). We claim that for all (x, `) ∈ Rd × [1,+∞)

|∂osc
x,` qr(T )|2 .χ(`+ 1)2d

(
(1 + log2(T ))

 
B`+1(x)

g2
r (y)dy +

 
B`+1(x)

|∇vT (0, y)|2dy

+ log(T )

ˆ T

1
t−1

 
B`+1(x)

|∇vT (t, y)|2dy dt
)
, (2.4.23)

with vT defined in (2.2.11).

We fix (x, `) ∈ Rd × [1,+∞) and we consider ã′ and ã′′ such that ã′ = ã′′ = ã on Rd\B`(x).
We then set a′ := χ ? ã′, a′′ := χ ? ã′′ and note that since χ is supported in B1

a′ = a′′ = a on Rd\B`+1(x). (2.4.24)
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Using the notation δu := u(a′, ·)− u(a′′, ·), we have

qr(a
′, T )− qr(a′′, T ) =

ˆ
gr(y)(a′(y)− a′′(y))e dy +

ˆ
gr(y)a′(y)

ˆ T

0
∇u(a′, t, y)dt dy

−
ˆ
gr(y)a′′(y)

ˆ T

0
∇u(a′′, t, y)dt dy

=

ˆ
gr(y)(a′(y)− a′′(y))e dy +

ˆ
gr(y)(a′(y)− a(y))

ˆ T

0
∇u(a′, t, y)dt dy

+

ˆ
gr(y)(a′′(y)− a(y))

ˆ T

0
∇u(a′′, t, y)dt dy +

ˆ
gr(y)a(y)

ˆ T

0
∇δu(t, y)dt dy.

(2.4.25)

On the one hand, using (2.4.24) and the Jensen inequality, the first r.h.s term of (2.4.25) is dominated
by

∣∣∣∣ˆ gr(y)(a′(y)−a′′(y))e dy
∣∣∣∣2 (2.4.25)

=

∣∣∣∣ˆ
B`+1(x)

gr(y)(a′(y)−a′′(y))e dy
∣∣∣∣2 .χ (`+1)2d

 
B`+1(x)

g2
r (y)dy,

which contributes to the first r.h.s term of (2.4.23). On the other hand, the second and third r.h.s
term of (2.4.25) are treated the same way (we estimate below the term with a′) using (2.4.24),
(2.4.22) (with a replaced by a′), (2.4.21), the Cauchy-Schwarz and Jensen’s inequality

∣∣∣∣ˆ gr(y)(a′(y)− a(y))

ˆ T

0
∇u(a′, t, y)dt dy

∣∣∣∣2 (2.4.24)
.χ

(ˆ
B`+1(x)

gr(y)

∣∣∣∣ˆ T

0
∇u(a′, t, y)dt

∣∣∣∣dy)2

.

(ˆ
B`+1(x)

gr(y)

∣∣∣∣ˆ 1

0
∇u(a′, t, y)dt

∣∣∣∣dy)2

+

(ˆ
B`+1(x)

gr(y)

∣∣∣∣ˆ T

1
∇u(a′, t, y)dt

∣∣∣∣dy)2

(2.4.21)
. (`+ 1)2d

ˆ 1

0

 
B`+1(x)

|∇u(a′, t, y)|2dy dt
 

B`+1(x)
g2
r (y)dy

+ log2(T )(`+ 1)d
 

B`+1(x)
g2
r (y)dy

(2.4.22)
.χ (`+ 1)2d(1 + log2(T ))

 
B`+1(x)

g2
r (y)dy,

which contributes to the first r.h.s term of (2.4.23). It remains to control the fourth r.h.s term of
(2.4.25). To do this, we first write the equation solved by δu, which we deduce from (2.1.10)

{
∂τδu−∇ · a∇δu = ∇ · (a− a′′)∇u(a′′, ·)−∇ · (a− a′)∇u(a′, ·) in (0,+∞)× Rd,
δu(0) = ∇ · (a′ − a′′)e. (2.4.26)
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Thus, by testing δu into (2.2.11) and vT into (2.4.26), we deduce that
ˆ
gr(y)a(y)

ˆ T

0
∇δu(t, y)dt dy =

ˆ
∇vT (0, y) · (a′(y)− a′′(y))e dy

+

ˆ ˆ T

0
(a(y)− a′′(y))∇u(a′′, t, y) · ∇vT (t, y)dt dy

−
ˆ ˆ T

0
(a(y)− a′(y))∇u(a′, t, y) · ∇vT (t, y)dt dy. (2.4.27)

The first r.h.s term of (2.4.27) is dominated with (2.4.24) and gives the second r.h.s term of (2.4.23).
The second and third r.h.s term of (2.4.27) are dominated the same way (we estimate below the
term with a′) using (2.4.21), (2.4.22), (2.4.24), (2.2.20) (applied with r = ` and z = x), the Cauchy-
Schwarz and Jensen’s inequality∣∣∣∣ˆ ˆ T

0
(a(y)− a′(y))∇u(a′, t, y) · ∇vT (t, y)dt dy

∣∣∣∣2
(2.4.24)
.χ

(ˆ
B`+1(x)

ˆ T

0
|∇u(a′, t, y)||∇vT (t, y)|dt dy

)2

(2.4.21)
. (`+ 1)2d

ˆ 1

0

 
B`+1(x)

|∇u(a′, t, y)|2dy dt
ˆ 1

0

 
B`+1(x)

|∇vT (t, y)|2dy dt

+

(ˆ T

1
t−1

ˆ
B`+1(x)

|∇vT (t, y)|dy dt
)2

(2.4.22),(2.2.20)
.χ (`+ 1)2d

(  
B`+1(x)

g2
r (y)dy + log(T )

ˆ T

1
t−1

 
B`+1(x)

|∇vT (t, y)|2dy dt
)
,

which contributes to the first and third r.h.s term of (2.4.23) and concludes the proof.

We now control the entropy of qr(T ) by applying (2.1.40), using (2.4.23), the identity
´ ffl

B`+1(x) dx =´
,
´
g2
r (y)dy . r−d and the plain energy estimate

´
|∇vT (t, y)|2dy .

´
g2
r (y)dy,

Ent(qr(T )) .χ

ˆ +∞

1
`−de−

1
C
`β (`+ 1)d(1 + log2(T ))

ˆ  
B`+1(x)

g2
r (y)dy dx d`

+

ˆ +∞

1
`−de−

1
C
`β (`+ 1)d

ˆ  
B`+1(x)

|∇vT (0, y)|2dy dx d`

+ log(T )

ˆ +∞

1
`−de−

1
C
`β (`+ 1)d

ˆ T

1
t−1

ˆ  
B`+1(x)

|∇vT (t, y)|2dy dx dt d`

. r−d(1 + log2(T ))

ˆ +∞

1
`de−

1
C
`βd` .β,C r−d(1 + log2(T )).

To conclude, the log2(T ) correction may be removed following the argument of subsection 2.3.4,
and the control of the entropy yields control of higher moments and provide stretched exponential
moments.



Chapter 3

Quantitative homogenization theory for
nonlinear elliptic equations and systems

Quantitative stochastic homogenization of linear elliptic operators is by now well-understood. In
this chapter we move forward to the nonlinear setting of monotone operators with p-growth. This
first work is dedicated to a quantitative two-scale expansion result. Fluctuations will be addressed in
companion articles. By treating the range of exponents 2 ≤ p <∞ in dimensions d ≤ 3, we are able
to consider genuinely nonlinear elliptic equations and systems such as −∇·A(x)(1+ |∇u|p−2)∇u = f
(with A random, non-necessarily symmetric) for the first time. When going from p = 2 to p > 2,
the main difficulty is to analyze the associated linearized operator, whose coefficients are degenerate,
unbounded, and depend on the random input A via the solution of a nonlinear equation. One of our
main achievements is the control of this intricate nonlinear dependence, leading to annealed Meyers’
estimates for the linearized operator, which are key to the quantitative two-scale expansion result.
This Chapter is based on the Preprint [49] jointly write with Antoine Gloria.

The chapter is organized as follows: In Section 3.1 we present the main results. In Section 3.3,
we describe and prove the perturbative regularity theory for the linearized operator. Sections 3.4,
3.5 and 3.6 are devoted to the proof of the quantitative estimates on the correctors and the quanti-
tative two-scale expansion.
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3.2 Strategy of the proof, extensions, and limitations . . . . . . . . . . . . . 152
3.2.1 General strategy and auxiliary results . . . . . . . . . . . . . . . . . . . . . 152
3.2.2 Towards large-scale regularity and a nonlinear theory of fluctuations . . . . 157
3.2.3 Extensions and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Probability laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Form of the monotone map . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Local regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Non-convex energy functionals? . . . . . . . . . . . . . . . . . . . . . . . . . 162
Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

145



146
Chapter 3. Quantitative homogenization theory for nonlinear elliptic equations and

systems

3.3 Perturbative regularity theory for the linearized operator . . . . . . . . 162
3.3.1 The Meyers minimal radius . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.3.2 Quenched perturbative regularity in the large . . . . . . . . . . . . . . . . . 165

Quenched Meyers’ estimate in the large . . . . . . . . . . . . . . . . . . . . 165
Quenched weighted Meyers’ estimate in the large . . . . . . . . . . . . . . . 168

3.3.3 Control of the Meyers minimal radius: sensitivity estimate and buckling . . 173
3.3.4 Annealed Meyers’ estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.4 Control of correctors: Proof of Theorem 15 . . . . . . . . . . . . . . . . 182
3.5 Control of corrector differences: Proof of Theorem 17 . . . . . . . . . . 186

3.5.1 Reduction argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
3.5.2 CLT-scaling: Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . 188
3.5.3 Control of level sets: Proof of Proposition 7 . . . . . . . . . . . . . . . . . . 193

3.6 Quantitative two-scale expansion: Proof of Theorem 12 . . . . . . . . . 197
3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

3.7.1 Deterministic PDE estimates and consequences . . . . . . . . . . . . . . . . 200
3.7.2 Nonlinear systems: Caccioppoli, hole-filling, and Schauder . . . . . . . . . . 200
3.7.3 Linear elliptic systems: Caccioppoli and Lemma 17 . . . . . . . . . . . . . . 201
3.7.4 Qualitative differentiability of correctors on bounded domains . . . . . . . . 202
3.7.5 Periodic setting: Proof of Theorem 13 . . . . . . . . . . . . . . . . . . . . . 204
3.7.6 Statistically isotropic random setting: Proof of Theorem 14 . . . . . . . . . 206
3.7.7 Periodization in law and functional inequalities . . . . . . . . . . . . . . . . 211

Periodization in law of a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Functional calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Convergence of the periodization in law of the correctors . . . . . . . . . . . 213

3.7.8 Large-scale averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

3.1 Main results

In all the chapter, we decide to use scalar notations but the results also hold for sytem. For
convenience, let us precisely recall the class of maps â : Rd → Rd that we consider in this chapter.
We assume that â satisfies the following three properties: â(0) = 0 and there exist p ≥ 2 and C > 0
such that for all ξ1, ξ2 ∈ Rd,

|â(ξ1)− â(ξ2)| ≤ C(1 + |ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|, (3.1.1)

(â(ξ1)− â(ξ2)) · (ξ1 − ξ2) ≥ 1

C
|ξ1 − ξ2|p. (3.1.2)

Estimate (3.1.1) is a continuity or boundedness property, whereas estimate (3.1.2) is a monotonicity
or coercivity property. With a map â we associate the monotone differential operator C2(Rd) →
C0(Rd), v 7→ ∇ · â(∇v). Such operators do not necessarily possess (as far as anyone can prove) the
structural conditions sufficient for C1,α-regularity, which is why we also consider two strengthenings
of (3.1.2), which read for all ξ1, ξ2 ∈ Rd

(â(ξ1)− â(ξ2)) · (ξ1 − ξ2) ≥ 1

C
(|ξ1 − ξ2|2 + |ξ1 − ξ2|p), (3.1.3)

(â(ξ1)− â(ξ2)) · (ξ1 − ξ2) ≥ 1

C
(|ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|2. (3.1.4)
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We consider a map a : Rd × Rd → Rd satisfying the strong monotonicity (3.1.1) and (3.1.4). For
later references, we recall the equation for1 uε ∈ Ẇ 1,p(Rd)/R

−∇ · a(xε ,∇uε(x)) = ∇ · f(x). (3.1.5)

We also recall the homogenized equation with solution ū ∈ Ẇ 1,p(Rd)/R,

−∇ · ā(∇ū(x)) = ∇ · f(x) (3.1.6)

as well as the formula for the homogenized operator ā characterized in direction ξ ∈ Rd by ā(ξ) =
E[a(0,∇φξ(0) + ξ)], where φξ is the corrector, defined as the unique almost sure distributional
solution in W 1,p

loc (Rd) of
−∇ · a(x,∇φξ(x) + ξ) = 0, (3.1.7)

anchored at the origin via
´
B φξ = 0, and the gradient ∇φξ is stationary, has vanishing expectation

E[∇φξ] = 0, and satisfies

E
[
|∇φξ|2 + |∇φξ|p

]
. |ξ|2 + |ξ|p. (3.1.8)

For more precisions on the homogenization theory, we refer to Section 1.1.2 of the introduction of
the thesis.

3.1.1 Growth conditions and classical regularity

In this section we recall what regularity theory one can expect for elliptic operators of the form
∇·â(∇) depending on properties of â, which we then apply both to the random and the homogenized
operator. There are essentially two classes of results:

• Standard growth conditions: If ξ 7→ â(ξ) is smooth, and â is strongly monotone (that is, it
satisfies (3.1.1) and (3.1.4)), then ∇ · â(∇) possesses Ck,α-regularity and nonlinear Calderón-
Zygmund theory, cf. [105];

• Non-standard growth conditions: If ξ 7→ â(ξ) is smooth, and â is monotone and non-degenerate
(that is, it satisfies (3.1.1) and (3.1.3)), then one expects that ∇·â(∇) possesses Ck,α-regularity
and nonlinear Calderón-Zygmund theory provided 2 ≤ p < 2(d−1)

d−3 (only active for d ≥ 4),
cf. [30]2.

On the one hand, strongly monotone operators are nicer since they possess regularity without re-
striction on the exponent p, but strong monotonicity is not stable by homogenization (in the sense
that the homogenized operator might not be strongly monotone). On the other hand, although
non-degenerate operators do only possess regularity if p is close enough to 2 in high dimensions
(there is no restriction for d ≤ 3), this property is stable by homogenization.

As we shall see below, to establish quantitative homogenization results,

• The non-degeneracy condition (3.1.3) is needed for reasons that are independent of the regu-
larity theory;

1We recall that Ẇ 1,p(Rd) := {u ∈ Lp(Rd)|∇u ∈ Lp(Rd)}.
2The new feature in [30], which establishes Ck,α-regularity for local solutions of ∇· a(∇u) = 0, is the largest range

of exponents 2 ≤ p < 2(d−1)
d−3

compared to previous contributions – more general results with right-hand sides and
nonlinear Calderón-Zygmund theory, which are expected to hold true as well, have not been established yet.
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• We need local regularity theory for the random operator, which (provided x 7→ a(x, ξ) is
smooth enough) is automatic for 2 ≤ p < 2(d−1)

d−3 in view of the assumption (3.1.3), and follows
from any p ≥ 2 if we further assume (3.1.4);

• In the random setting, it turns out that the condition 2 ≤ p < 2(d−1)
d−3 is also needed in the

proof of (large-scale) Meyers’ estimates for the linearized operator.

For random operators, the assumptions we need in this paper to establish Meyers estimates for
the linearized operator also imply regularity theory for the homogenized operator, and we refer the
reader to Section 3.2.2 for a further discussion of this observation This is however not the case for
periodic operators, and regularity theory for the homogenized operator might be an issue.

3.1.2 Quantitative assumptions and quantitative two-scale expansion

In view of the discussion above, to fix ideas and keep results and proofs readable, we consider the
explicit class of p-Laplacians regularized at zero (see Section 3.2.3 for more general conditions).

Hypothesis 3.1.1. Let p ≥ 2, and consider the strongly monotone and non-degenerate operator

a(x, ξ) := A(x)(1 + |ξ|p−2)ξ, (3.1.9)

where A is a uniformly elliptic (non-necessarily symmetric) stationary ergodic matrix field. More
precisely, we assume that A is smooth (uniformly wrt to the randomness) and satisfies the ellipticity
conditions for some 0 < λ ≤ 1

∀x, ξ ∈ Rd : ξ ·A(x)ξ ≥ λ|ξ|2 and |A(x)ξ| ≤ |ξ|.

Under Hypothesis 3.1.1, the monotone map a almost surely satisfies a(·, 0) ≡ 0, (3.1.1), and
(3.1.3) (and, incidently, also (3.1.4)) for some C depending only on p and λ, so that the qualitative
homogenization result of Theorem 2 applies.

Let us now be more precise on the stochastic setting. It is convenient to define the probability
space via Ω = {A : Rd → Md(λ)}, endowed with some probability measure P. In this setting, a
random variable Y can be seen as a (measurable) function of A 7→ Y (A). We say that the measure
P is ergodic if we have the implication: Y (A(· + z)) = Y (A) for all z ∈ Rd =⇒ Y = E[Y ] almost
surely. We say that a random field X : Rd × Ω→ Rk (for k ∈ N) is stationary if for all z ∈ Rd and
almost all x ∈ Rd we have X(x+ z,A) = X(x,A(·+ z)), where A(·+ z) : x 7→ A(x+ z). (Note that
the expectation E[X(x)] of a stationary random field X does not depend on x ∈ Rd and we simply
write E[X].) We use the notation Lq(dP) for the space of q-integrable random variables.

In order to prove quantitative results, we need to quantify the ergodicity assumption, which we
do by assuming Gaussianity of P and the integrability of the covariance function in the following
sense.

Hypothesis 3.1.2. On top Hypothesis 3.1.1, assume that

A(y) = χ ∗B(G(y)), (3.1.10)

where B : R→ Md is a Lipschitz map and G is a stationary centered random Gaussian field on Rd
(that is, E[G] = 0) characterized by its covariance function C : Rd → R, x 7→ C(x) := E[G(x)G(0)],
which we assume to be integrable on Rd, and χ : Rd → [0, 1] is a smooth compactly supported
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convolution kernel. In particular, A is smooth (uniformly wrt to the randomness). We further
require 2 ≤ p < 2(d−1)

d−3 in dimensions d ≥ 4.3

Our main achievement is an optimal quantitative corrector result, which extends the results of
[68] to the genuinely nonlinear setting of p > 2. Following Dal Maso and Defranceschi [118], we
start with the suitable definition of the two-scale expansion. To this aim, we introduce a scale δ > 0
(which we should think of as being ε in the upcoming result), set Kδ := δZd and for all k ∈ Kδ, we
define the cube Qδ(k) = k+[−δ, δ)d centered at k and of sidelength 2δ. We also consider a partition
(ηk)k∈Kδ of unity on Rd with the following properties: 0 ≤ ηk ≤ 1, ηk ≡ 1 on Q δ

2d
(k), ηk ≥ c on

Q(1− 1
3d

)δ, supp ηk ⊂ Qδ(k), and |∇ηk| ≤ Cδ−1 (for some suitable c, C > 0 independent of δ). Given
the solution ū of (3.1.6), we introduce local averages associated with the partition of unity in form
for all k ∈ Kδ of

(∇ū)k,δ :=

´
Rd ηk∇ū´
Rd ηk

,

and define the two-scale expansion ū2s
ε,δ associated with ū via

ū2s
ε,δ := ū+ ε

∑
k∈Kδ

ηkφ(∇ū)k,δ(
·
ε), (3.1.11)

where φξ denotes the corrector in direction ξ ∈ Rd (cf. (3.1.7)). This constitutes a convenient
variant (introduced in [118] to deal with monotone operators) of the classical two-scale expansion
x 7→ ū(x) + εφ∇ū(x)(

x
ε ), which may raise measurability issues. Based on this two-scale expansion,

we have the following optimal convergence result.

Theorem 12. Assume Hypothesis 3.1.2 and let f ∈ Lp(Rd)d. Let the weight µd : Rk → R+ (for
k = 1 and d) be given by

µd(z) =


d = 1 : 1 +

√
|z|,

d = 2 : log(2 + |z|)
1
2 ,

d > 2 : 1.

(3.1.12)

For all ε > 0 we denote by uε ∈ Ẇ 1,p(Rd)/R the unique weak solution of (3.1.5), by ū ∈ Ẇ 1,p(Rd)/R
the unique weak solution of the homogenized equation (3.1.6), and by ū2s

ε the two-scale expansion
(3.1.11) for the choice δ = ε. If the homogenized solution ū satisfies ∇ū ∈ L∞(Rd) and µd∇2ū ∈
L2(Rd), then we have

‖∇uε −∇ū2s
ε ‖L2(Rd) ≤ Cε,ū εµd(

1
ε ), (3.1.13)

where Cε,ū denotes a random variable that satisfies

E
[

exp(cCαε,ū)
]
≤ 2, (3.1.14)

for some exponent α > 0 depending on d, p, λ, and ‖∇ū‖L∞(Rd), and some constant c further
depending on ‖µd∇2ū‖L2(Rd), but not on ε.

Some comments are in order:

• This result also holds for nonlinear systems with Uhlenbeck structure under the same assump-
tions on p.

3This condition, which comes from an argument of [25] and is used in the main part of this paper dedicated to
large-scale Meyers estimates, is also crucially used in [30].
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• In the periodic setting, Theorem 12 holds without restrictions on p ≥ 2 and with µd ≡ 1 in
any dimension. This result is sharper than [42], which contains the first quantitative two-scale
expansion estimate for monotone periodic operators with p > 2 (there, one needs to know that
ā satisfies (3.1.4) to construct a second-order two-scale expansion, which gives (3.1.13) after
truncation and with a dependence of the constant on stronger norms of ū).

• The choice to work on the whole space with a right-hand side in divergence form allows one to
avoid boundary layers (and therefore to truly focus on the homogenization error, in line with
[89]) and to treat all dimensions at once. In particular one could state and prove a similar
result on a bounded domain with Dirichlet boundary conditions, in which case the bound
would be of the order of the square root of that in (3.1.13).

• This result takes the same form (with the same optimal rates) as for the linear case [89, 81, 9]
and for the nonlinear case [68] with p = 2. As opposed to the latter, the stretched exponential
exponent α in Theorem 12 depends on ‖∇ū‖L∞(Rd) itself. This intricate dependence could
be made explicit (provided we make the exponent and constants explicit in Gehring’s lemma)
and is reminiscent of the way we treat the non-degeneracy of the linearized equation (that is,
perturbatively).

• This result makes the a priori assumption that ∇ū ∈ L∞(Rd) and µd∇2ū ∈ L2(Rd):

– In the scalar setting, under Hypothesis 3.1.2, since ā ∈ C1,1
loc (cf. Corollary 16 below),

the conditions ∇ū ∈ L∞(Rd) and µd∇2ū ∈ L2(Rd) are not restrictive and hold under
suitable assumptions on the right-hand side f , capitalizing on the results [30] by Bella
and Schäffner.

– Since the above result is local in nature, this estimate holds on domains of Rd on which
ū has the required regularity. In any case, if ∇ū develops some singularity somewhere,
one does not expect the two-scale expansion to be accurate in that region. This applies
in particular to systems and to the periodic setting if p > 2(d−1)

d−3 .

• The restriction 2 ≤ p < 2(d−1)
d−3 on the exponent p in Hypothesis 3.1.2 (which is only active

in high dimensions d ≥ 4) is related to the perturbative regularity theory in the large that
we develop for the linearized operator in Section 3.3. Indeed, the coefficient aξ := Da(·, ξ +
∇φξ) of the operator a linearized at ξ +∇φξ scales like 1 + |ξ +∇φξ|p−2 and therefore only
satisfies E[|aξ|

p
p−2 ] <∞ a priori: as p increases, the stochastic integrability of the coefficients

decreases. At some threshold (depending on dimension), this poor stochastic integrability
cannot be compensated any longer by the Sobolev embedding — whence our restriction (even
in dimension 3, the argument to get all the exponents 2 ≤ p <∞ is not straightforward – see
Sections 3.2 and 3.3).

3.1.3 Remarks on the strong monotonicity of ā

In this section we further investigate under which additional assumptions one could prove that ā
satisfies (3.1.4) next to (3.1.2) and (3.1.3), which would ensure regularity theory for the homogenized
operator (provided ā is smooth enough) independently of p and d. Let us first explain why this
question is subtle, and assume for simplicity that A is symmetric. In what follows we denote by Di

the derivative with respect to the i-th entry of the vector ξ ∈ Rd (so that Dia(x, ξ) := ∇ξia(x, ξ)).
Informal computations (that are made rigorous in this paper) suggest that Dā(ξ) = āξ, where āξ is
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the homogenized matrix associated with the random coefficient field

aξ := Da(·, ξ +∇φξ) = (1 + |ξ +∇φξ|p−2)A+ (p− 2)A
(ξ +∇φξ)⊗ (ξ +∇φξ)

|ξ +∇φξ|2
|ξ +∇φξ|p−2.

As a first attempt to control āξ from below, we appeal to the Voigt-Reiss bounds (see [100, Sec-
tion 1.6]), which yields after neglecting the second contribution to aξ

āξ ≥ E
[
a−1
ξ

]−1
≥ AE

[
(1 + |ξ +∇φξ|p−2)−1

]−1
,

and amounts to controlling the harmonic average of 1 + |ξ +∇φξ|p−2 from below (and therefore to
have information on the critical set of the harmonic coordinate x 7→ ξ ·x+φξ(x)). A second attempt
is to consider the specific direction ξ · āξξ. Starting point is the (informal) minimization problem

ξ · āξξ = inf
suitable ∇ψ

E
[
(ξ +∇ψ) · aξ(ξ +∇ψ)

]
≥ inf

suitable ∇ψ
E
[
(ξ +∇ψ) ·A(1 + |ξ +∇φξ|p−2)(ξ +∇ψ)

]
.

Call ∇ψ∗ a minimizer. By minimality of ∇ψ∗, the definition (3.1.9) of the monotone map a, and
the corrector equation (3.1.7), we then have

ξ · āξξ ≥ E
[
(ξ +∇ψ∗) ·A(1 + |ξ +∇φξ|p−2)(ξ +∇ψ∗)

]
= E

[
(ξ +∇φξ) ·A(1 + |ξ +∇φξ|p−2)(ξ +∇ψ∗)

]
= E

[
(ξ +∇ψ∗) · a(ξ +∇φξ)

]
(3.1.7)

= E
[
(ξ +∇φξ) ·A(1 + |ξ +∇φξ|p−2)(ξ +∇φξ)

]
& |ξ|2 + |ξ|p.

In dimension d = 1, one directly has Dā(ξ) & 1 + |ξ|p−2, which yields (3.1.4). For d > 1 this is
different since from the a priori estimate ξ ·Dā(ξ)ξ & |ξ|2(1 + |ξ|p−2) we cannot deduce e ·Dā(ξ)e &
|e|2(1 + |ξ|p−2) for general e ∈ Rd, unless combined with some isotropy arguments (which would
ensure that controlling one direction is enough to control all).

The upcoming results follow both paths. First we show that ā satisfies (3.1.4) provided we have
a quantitative version of unique continuation, at least for periodic coefficients (as essentially noticed
by Cherednichenko and Smyshlyaev in [42]).

Theorem 13. Let A be a Q-periodic Lipschitz matrix field. For all ξ ∈ Rd, denote by ψξ ∈W 1,p
per(Q)

the unique weak solution of

−∇ ·A(x)|∇ψξ + ξ|p−2(∇ψξ + ξ) = 0.

Assume that for all ξ ∈ Rd, there exists r > 0 such that the r-tubular neighborhood Tr(ξ) = {x +
Br |x ∈ C(ξ)} of the critical set C(ξ) = {x ∈ Rd | ξ + ∇ψξ(x) = 0} is such that Rd \ Tr(ξ) is a
connected set. Then there exists C > 0 such that ā satisfies (3.1.3) and (3.1.4).

Remark 3.1.1. The assumptions of Theorem 13 are quite strong. They are satisfied in dimension
d = 2 by [2] (which shows that C(ξ) ∩ Q is indeed a finite union of points) – but, in this setting,
regularity for the homogenized operator also holds because ā is non-degenerate, cf. [115]. For d > 2
this is a widely open problem. For linear equations, this follows from [41].
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In the random setting, we have a positive result assuming the statistical isotropy of A, which is
new and holds in any dimension.

Theorem 14. On top of Hypothesis 3.1.1, assume that A(x) = b(x)Id for some scalar-valued func-
tion b and that for all R ∈ SO(d), b(R·) and b have the same (joint) distribution (in which case A
is statistically isotropic). Then there exists C > 0 such that ā satisfies (3.1.3) and (3.1.4).

These results are proved in Appendices 3.7.5 and 3.7.6. We suspect that Theorems 13 and 14 hold
under weaker assumptions but we are currently unable to establish this (even using the quantitative
estimates proved in this paper).

3.2 Strategy of the proof, extensions, and limitations

3.2.1 General strategy and auxiliary results

In this section, we motivate our general strategy by comparison to the linear setting. To be more
precise, we also consider the linear homogenization problem on Rd

−∇ ·A(xε )∇vε(x) = ∇ · f(x), (3.2.1)

with the same assumptions on A as in Hypothesis 3.1.2.

We start by defining the notion of (nonlinear) flux corrector.

Definition 3.2.1. For all ξ ∈ Rd, there exists a unique skew-symmetric random matrix field
(σξ,ij)1≤i,j≤d, which solves almost surely in the distributional sense in Rd the flux corrector equation

−4σξ,ij = ∂i(a(·, ξ +∇φξ) · ej)− ∂j(a(·, ξ +∇φξ) · ei), (3.2.2)

which is anchored at the origin via
´
B σξ = 0, and whose gradient ∇σξ is stationary, has vanishing

expectation E[∇σξ] = 0, and is bounded in the sense

E
[
|∇σξ|

p
p−1

]
. |ξ|2 + |ξ|p.

In addition we have
∇ · σξ = a(·, ξ +∇φξ)− ā(ξ), (3.2.3)

where the divergence of a matrix field σ is understood as (∇ · σξ)i =
∑d

j=1 ∂jσξ,ij.

The proof of existence and uniqueness of σξ is essentially the same as in the linear setting in [80]
when p = 2, provided the adaptations of [24, Lemma 1] for p > 2.

Note that in the linear case (3.2.1), we have the scaling relation (φtξ, σtξ) = t(φξ, σξ) (in the
nonlinear setting, the homogeneities of φξ and of σξ with respect to ξ are different, and not explicit
since a has no homogeneity due to the regularization at 0, cf. (3.1.9)).

The interest of the flux corrector is that it allows to put the remainder in the equation satisfied
by the two-scale expansion error in conservative form (which is convenient to use energy estimates).
More precisely, in the linear setting, the two-scale expansion of vε takes the simpler form

v̄2s
ε := v̄ + εφi(

·
ε)∂iv̄, (3.2.4)

where v̄ solves the homogenized equation −∇·Ā∇v̄ = ∇·f , φi denotes the corrector in the canonical
direction ei, and where we use implicit summation on the repeated index i. Since φi(xε )∂iv̄(x) =
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φ∇v̄(x)(
x
ε ), (3.2.4) is indeed an elementary version of (3.1.11). In this case, one can prove (making a

crucial use of the skew-symmetry of σ – see the proof of Theorem 12 in our nonlinear setting) that
vε − v̄2s

ε satisfies the equation

−∇ ·A( ·ε)∇(vε − v̄2s
ε ) = ε∇ · ((Aφi − σi)( ·ε)∇∂iv̄) (3.2.5)

(the factor ε comes by scaling since there are two gradients on v̄ on the right-hand side). This yields
the bound (3.1.13) by an energy estimate provided we control the growth of (φ, σ). In the nonlinear
setting, we rather expect a term of the form aξφξ−σξ in the right-hand side of (3.2.5) (see the proof

of Theorem 12 for the precise statement). Note that aξφξ and σξ both scale like (|ξ|2 + |ξ|p)
p−1
p

(which has to be compared to the difference of scalings of φξ and σξ themselves, cf. Definition 3.2.1).
The main result on the extended nonlinear corrector (φξ, σξ) is as follows. (Despite the above

discussion, we do not make a difference in the scalings of φξ and σξ wrt ξ. This dependence is indeed
not explicit as one could have expected, due to the nonlinear nature of the problem.)

Theorem 15. Under Hypothesis 3.1.2, for all ξ ∈ Rd, the stationary extended corrector gradient
∇(φξ, σξ) satisfies for some exponent α > 0 depending on λ, p, and d, and some constant cξ > 0
depending further on |ξ|,

E
[

exp(cξ|∇(φξ, σξ)|α)
]
≤ 2. (3.2.6)

For all g ∈ L2(Rd), averages of (∇φξ,∇σξ,ij) display the CLT scaling4 in the form∣∣∣ˆ g(∇φξ,∇σξ)
∣∣∣ ≤ Cξ,g

(ˆ
|g|2
) 1

2
, (3.2.7)

where Cξ,g is a random variable with finite stretched exponential moment

E
[

exp(cξC
α
ξ,g)
]
≤ 2,

for some exponent α > 0 depending on p, λ, and d, and some constant cξ > 0 further depending on
|ξ| (but all independent of g). This directly implies the following bounds on the growth of (φξ, σξ):
For all x ∈ Rd,

|(φξ, σξ)(x)| ≤ Cx,ξµd(x), (3.2.8)

where µd is defined in (3.1.12) and Cx,ξ is a random variable with the same stochastic integrability
as Cξ,g.

Remark 3.2.1. Under Hypothesis 3.1.1, for Q-periodic matrix fields A, the nonlinear correctors are
bounded in C1,α(Q) (no restriction on p ≥ 2).

As pointed out in [5, 6] and used in [68] for p = 2, controlling the growth of correctors is not
enough in the nonlinear setting. This should not come as a surprise when comparing (3.2.4) to
(3.1.11). The additional gradient on ∇v̄ in the right-hand side of (3.2.5) (at the origin of the factor
ε) indeed comes for local differences

φ∇v̄(x1) − φ∇v̄(x2) = |x1 − x2|φ∇v̄(x1)−∇v̄(x2)
|x1−x2|

,

when reformulated by taking advantage of the linearity of the corrector. In the nonlinear setting,
this identity does not hold any longer for φξ (and even less for σξ by homogeneity). It is however
replaced by the following Lipschitz-continuity results.

4Indeed, for g = |BR|−11BR , the right-gand side of (3.2.7) scales like R−
d
2 .



154
Chapter 3. Quantitative homogenization theory for nonlinear elliptic equations and

systems

Corollary 16 (Control of nonlinear corrector differences). Under Hypothesis 3.1.2, for all K > 0
and all ξ1, ξ2 ∈ Rd with |ξ1|, |ξ2| ≤ K, we have for all x ∈ Rd,

|∇(φξ1 − φξ2 , σξ1 − σξ2)(x)| ≤ Cx,K |ξ1 − ξ2|, |(φξ1 − φξ2 , σξ1 − σξ2)(x)| ≤ Cx,K |ξ1 − ξ2|µd(x),

where Cx,K is a random variable with finite stretched exponential moment depending only on d, p,
λ, and K. In particular, ξ 7→ ā(ξ) is locally C1,1.

Remark 3.2.2. Under Hypothesis 3.1.1, for Q-periodic matrix fields A, corrector differences are
controlled by |ξ1 − ξ2| in C1,α(Q) (no restriction on p ≥ 2), and ā is C1,1 as well.

To prove such a result, we have to analyze the dependence of correctors with respect to the
direction ξ, which leads us to the notion of linearized correctors. The control of (nonlinear) corrector
differences is obtained as a corollary of bounds on these linearized correctors.

The following lemma (which is only used in an approximation argument) defines these linearized
correctors. It is a consequence of [43, Section 4] and [24, Lemma 1] (which is devoted to the
existence and uniqueness for linear corrector equations with prescribed in advance unbounded and
degenerate coefficients). In the actual proofs, we shall only consider linearized correctors on bounded
domains (see the discussion on periodization below), and the definition and control of the whole-space
linearized corrector is given for completeness.

Lemma 13. Under Hypothesis 3.1.2, for all ξ ∈ Rd set aξ := Da(·, ξ + ∇φξ). For all e ∈ Rd
there exists a unique random field φ̃ξ,e that solves almost surely in the distributional sense in Rd the
linearized corrector equation

−∇ · aξ(e+∇φ̃ξ,e) = 0, (3.2.9)

anchored at the origin via
´
B φ̃ξ,e = 0, and whose gradient ∇φ̃ξ,e is stationary, has vanishing expec-

tation E[∇φ̃ξ,e] = 0, and is bounded in the sense of

E
[
|∇φ̃ξ,e|2(1 + |ξ +∇φξ|)p−2

]
. (1 + |ξ|p−2)|e|2.

In addition, there exists a skew-symmetric random matrix field (σξ,e,ij)1≤i,j≤d, which solves almost
surely in the distributional sense in Rd the linearized flux corrector equation

−4σ̃ξ,e,ij = ∂i(aξ(e+∇φ̃ξ,e) · ej)− ∂j(aξ(e+∇φ̃ξ,e) · ei), (3.2.10)

which is anchored via
´
B σ̃ξ,e = 0 almost surely, whose gradient ∇σ̃ξ,e is stationary and is bounded

in the sense
E
[
|∇σ̃ξ,e|

p
p−1

]
. (1 + |ξ|p−2)

p
p−1 |e|

p
p−1 ,

and which satisfies the property

∇ · σ̃ξ,e = aξ(e+∇φ̃ξ,e)− āξe,

where āξe = E
[
aξ(e+∇φ̃ξ,e)

]
.

The upcoming theorem gives further information on the linearized correctors, in line with The-
orem 15 for the nonlinear correctors.
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Theorem 17. Under Hypothesis 3.1.2, for all ξ, e ∈ Rd with |e| = 1, the stationary extended
linearized corrector gradient ∇(φ̃ξ,e, σ̃ξ,e) satisfies for some exponent αξ > 0 and some constant
cξ > 0 depending on λ, p, d, and |ξ|,

E
[

exp(cξ|∇(φ̃ξ,e, σ̃ξ,e)|αξ)
]
≤ 2. (3.2.11)

For all g ∈ L2(Rd), averages of (∇φ̃ξ,e,∇σ̃ξ,e) display the CLT scaling in the form∣∣∣ˆ g(∇φ̃ξ,e,∇σ̃ξ,e)
∣∣∣ ≤ Cξ,g

( ˆ
|g|2
) 1

2
, (3.2.12)

where Cξ,g is a random variable with stretched exponential moments E
[

exp(cξC
αξ
ξ,g)
]
≤ 2, for some

exponent αξ > 0 and some constant cξ > 0 depending on p, λ, d, and |ξ|. This directly implies that
for all x ∈ Rd, we have |(φ̃ξ,e, σ̃ξ,e)(x)| ≤ Cx,ξµd(x), where Cx,ξ is a random variable with the same
moment bounds as Cξ,g.

Remark 3.2.3. Under Hypothesis 3.1.1, for Q-periodic matrix fields A, the linearized correctors
exist and are bounded in C1,α(Q) (no restriction on p ≥ 2).

The general strategy we described above is essentially the same as in [68] for p = 2, itself very close
to the strategy in the linear setting [89]. In line with [82, 83, 84, 79, 137, 101], we are after Meyers’
type estimates for the linearized operator −∇ · aξ∇ (defined in Lemma 13) . The main difference
between this work and [5, 6, 68] is the way we obtain these estimates – that is, in the annealed version
of Theorem 22. For p = 2, annealed Meyers estimates (even without loss of stochastic integrability)
follow rather directly from the boundedness of aξ from above and below. In our genuinely nonlinear
setting, these estimates are difficult to establish since aξ may be degenerate and unbounded (recall
that the original proof of Meyers’ estimates argues by perturbation and requires that inf aξ

sup aξ
> 0,

whereas we have inf aξ
sup aξ

= 0 almost surely). There are two reasons why inf aξ
sup aξ

= 0: the degeneracy
of aξ and the unboundedness of aξ. The upcoming technical discussion points out the difficulties in
the analysis, give hints on how to treat them, and explains how it leads to the above results.

First, in view of the difficulty to control the critical set of harmonic coordinates, we have imposed
a non-degeneracy condition from the very beginning and assumed that a(x, ·) satisfies (3.1.4) for
κ = 1 (which rules out the p-Laplacian, but not the p-Laplacian regularized at 0). Let us emphasize
that this only yields the non-degeneracy of the linearized operator in a perturbative way (it disappears
in the regime when the solution has a large gradient). Doing so, the main remaining (and most
important) difficulty is the unboundedness of the coefficients of the linearized operator.

Meyers estimates are the object of Section 3.3. We start with Subsections 3.3.1 & 3.3.2 and the
quenched Meyers estimates in the large. The starting point is the energy estimate (3.1.8) in form
of E

[
|aξ|

p
p−2

]
. 1 + |ξ|p, which yields two challenges: it is stochastically-averaged and gives a poor

integrability for large p. We begin with the stochastically-averaged part. The idea is to relax the

condition inf aξ
sup aξ

> 0 into the milder requirement
inf

ffl
Br(x) aξ

sup
ffl
Br(x) aξ

> 0 for some r > 0, which, in turn,

yields the weaker (yet sufficient) Meyers’ estimate at scale r > 0 in form of: For u, g related via
−∇ · aξ∇u = ∇ · g, we have for some Meyers’ exponent m > 2

ˆ
Rd

( 
Br(x)

|∇u|2
)m

2 dx .
(ˆ

Rd

( 
Br(x)

|∇u|2
)
dx
)m

2
+

ˆ
Rd

( 
Br(x)

|g|2
)m

2 dx. (3.2.13)
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Such a weakening of Meyers’ estimates still does not hold in our setting because estimate (3.1.8)
cannot be turned into an almost sure bound (with a uniform choice of r). A further weakening
consists in letting the radius of the ball Br(x) in (3.2.13) be random and depend on the point
x ∈ Rd. We thus introduce in Definition 3.3.1 the Meyers minimal radius r?, a random field on

Rd which essentially ensures that, with the notation B?(x) := Br?(x)(x),
infx

ffl
B?(x) aξ

supx
ffl
B?(x) aξ

> 0 (with a

deterministic positive lower bound). Such a form of the Meyers’ estimates with a random scale r?
was first used by Armstrong and Dario in [4] to deal with homogenization in percolation. To obtain
an estimate in the spirit of (3.2.13) (with Br(x) replaced by B?(x)), we rely on the standard proof
of Meyers’ estimates going through a reverse Hölder inequality and Gehring’s lemma. For uniformly
elliptic equations, the reverse Hölder inequality is a consequence of Caccioppoli’s inequality and of
the Sobolev embedding. Caccioppoli’s inequality for aξ-harmonic functions u (say, −∇ · aξ∇u = 0
in the ball B2R centered at 0) typically takes the form

ˆ
BR

∇u · aξ∇u .
1

R2

ˆ
B2R

|u|2|aξ|.

Assuming that
´
B2R

u = 0, the next step is to appeal to the Poincaré-Sobolev inequality
ffl
B2R
|u|2 .

R2
( ffl

B2R
|∇u|

2d
d+2

) d+2
d . The random unbounded coefficient |aξ| ∼ 1 + |∇φξ + ξ|p−2 is however in

the way (and not of the Muckenhoupt class), and the estimate (3.1.8) only yields
ffl
B2R
|aξ|

p
p−2 ∼ffl

B2R
1 + |∇φξ + ξ|p . 1 + |ξ|p provided 2R ≥ r?(0) (as a consequence of the definition of r?). We

thus need to first appeal to Hölder’s inequality with exponents ( p
p−2 ,

p
2) to upgrade the Caccioppoli

inequality into  
BR

∇u · aξ∇u .
1

R2

( 
B2R

|u|p
) 2
p
.

Then, assuming that p < 2d
d−2 , the Poincaré-Sobolev inequality yields the desired reverse Hölder’s

inequality
ffl
BR
∇u · aξ∇u .

( ffl
B2R
|∇u|p∗

) 2
p∗ with exponent p∗ = d+p

dp < 2. In dimension d = 3,
the condition on p reads p < 6. To reach the larger range of exponents of Theorem 12, the main
observation is that one can improve Caccioppoli’s inequality by choosing wisely the cut-off function
– following an idea by Bella and Schäffner [25] (see Lemma 17). Doing so, we are able to use the
Sobolev embedding in dimension d− 1 rather than d, and therefore treat all exponents p ≥ 2 in the
physically-relevant dimension d = 3. This yields the large scale Meyers’ estimates of Theorem 18
(with a condition on p in dimensions d > 3).

In the form of Theorem 18, the Meyers estimates are only useful if we have a good control of
the Meyers minimal radius r? (the larger r?, the weaker the estimate), which we obtain in Subsec-
tion 3.3.3. Since r? is a stationary random field, by control we mean moment bounds in probability.
This is where our contribution further differs from other contributions of the literature on degenerate
or unbounded coefficients: the statistics of aξ (which drives the moments of r?) are not given a priori
(as opposed to the percolation cluster in [4], or to the moment bounds on aξ in [24]) but part of the
problem – estimate (3.2.6), which is essentially equivalent to the control of r? in Theorem 21, is the
very output of the analysis. Indeed, the coefficients aξ are a function of ∇φξ, which depends itself
on the random input A as the solution of the nonlinear corrector equation (3.1.7) (and therefore far
from explicit).

Here comes the second ingredient to our approach: sensitivity calculus and concentration of
measures (see Appendix 3.7.7). On the one hand, using the Meyers estimate in the large (in its
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improved weighted form of Theorem 19 based on the hole-filling estimate) and sensitivity calculus,
we control the stochastic moments of averages of ∇φξ by the CLT scaling and moments of r? – see
Proposition 5. On the other hand, by Caccioppoli’s inequality for the nonlinear corrector equation,
we control super level sets of r? by moments of averages of ∇φξ. The desired control of the moments
of r? of Theorem 21 follows by combining these two nonlinear estimates and taking advantage of the
CLT scaling and the small room given by the hole-filling to buckle and single out r?.

Once we have good control of r?, the quenched large scale Meyers estimates of Theorem 18 can
finally be upgraded to the annealed Meyers estimates of Theorem 22 (as introduced by Duerinckx
and Otto in [56], using Shen’s lemma [147]), cf. Subsection 3.3.4.

Having these estimates at hand, Theorem 15 follows from another application of sensitivity
calculus, cf. Section 3.4. The proof of Theorem 17 is similar, cf. Section 3.5. Although we have
Theorem 22, we cannot use the elegant and efficient buckling argument of [137] for the linearized
corrector either (due to unboundedness), and we have to pass again via the super level sets of another
minimal radius. We then conclude with the routine proof of Theorem 12 in Section 3.6.

In order to establish these estimates on nonlinear and linearized correctors, we first use an ap-
proximation argument which allows us to discard the long-range correlations induced by the elliptic
character of the equation, and actually define the associated approximations of the nonlinear flux cor-
rector and of the linearized correctors by elementary deterministic arguments. In this contribution,
we proceed by periodization in law, which has the advantage to keep differential relations neat in the
approximation (in particular the identity (3.2.3)). For all L > 0, we introduce in Definition 3.7.2 (see
Appendix 3.7.7) a probability measure PL taking values in QL = [−L

2 ,
L
2 )d-periodic functions. The

associated maps x 7→ a(x, ξ) are therefore QL-periodic PL-almost surely, and the corrector equations
are posed on the bounded domain QL. The coupling between P and PL given in Lemma 29 then
allows us to infer results on P from corresponding results on PL, see in particular Proposition 10.
The choice of periodization in law is convenient but not essential. In the linear setting one often
adds a massive term to the equation (which yields an exponential cut-off for long-range interactions)
[82, 83, 84, 80, 89] or disintegrates scales via a semi-group approach [89, 81, 47]. All our estimates
are proved for fixed periodization and the above results follow by letting the periodization parameter
go to infinity.

3.2.2 Towards large-scale regularity and a nonlinear theory of fluctuations

As discussed in Chapter 1 and in Subsection 6.2.1 in Chapter 6 (see the paragraph on fluctuations),
there are three main types of results in (quantitative) stochastic homogenization of the linear elliptic
equation (3.2.1):

• Control of oscillations of the solution via a quantitative two-scale expansion (here in form of
Theorem 12 in the nonlinear setting);

• Large-scale regularity for the operator −∇ ·A(xε )∇;

• Control of the fluctuations of observables of the form
´
g · ∇uε and

´
g · A( ·ε)∇uε (using the

so-called homogenization commutator).

Let us start with large-scale regularity. The general principle [16, 17, 10, 80] is that the heterogeneous
equation should possess the same regularity properties as the homogenized operator at the scale at
which homogenization kicks in (characterized by the size of the corrector). In our range 2 ≤ p <
2(d−1)
d−3 of exponents (for which we already control the growth of correctors) and if we restrict ourselves
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to scalar equations, the results [30] by Bella and Schäffner (combined with the C1,1
loc regularity

of ξ 7→ ā(ξ)) should ensure that −∇ · ā(∇) does possess nice regularity theory (both in terms
C1,α regularity and nonlinear Calderón-Zygmund theory), so that there is no obstruction to large-
scale regularity in this setting. Such large-scale regularity would typically allow to upgrade the
quantitative two-scale expansion of (3.1.13) stated in L2(Rd) to any Lq(Rd) with 1 < q <∞ (with
the same convergence rate in ε), and in particular cover the natural Lp(Rd)-norm.

Next to the large-scale regularity for the nonlinear operator−∇·a(·,∇), one may wish to establish
large-scale regularity for the linearized operator −∇ · aξ∇. In Section 3.3 below, large-scale Meyers
estimates are proved (in their convenient annealed form of Theorem 22). Although this perturbative
result is enough to prove the quantitative two-scale expansion of Theorem 12, Theorem 22 should
hold for all exponents 1 < q <∞ by adapting the arguments of [80] to mildly unbounded coefficients
(aξ indeed has finite stretched exponential moments by Lemma 21 and Theorem 21) and using the
bounds of Theorem 17 on the linearized correctors (to control the scale at which homogenization
kicks in).

We now turn fluctuations, the second main topic of stochastic homogenization. In the linear
setting, the theory of fluctuations relies on the quantity Ξε := (A( ·ε) − Ā)∇uε, called the homog-
enization commutator in [55] (this object first appeared in a slightly different form in [10] in the
context of large-scale regularity). The homogenization commutator is a natural object to consider
since observables of Ξε can be post-processed into observables of the field and flux (the two corner-
stones of homogenization), that is,

´
g · ∇uε and

´
g ·A( ·ε)∇uε – see below for the argument in the

nonlinear setting. The theory splits into two parts. On the one hand, fluctuations of the homoge-
nization commutator Ξε can be accurately described by the fluctuations of its two-scale expansion
based on the standard commutator Ξ := (A− Ā)(∇φ+ Id), cf. [55, 62, 56]. On the other hand, the
standard commutator Ξ behaves (in law) on large scales as a Gaussian random field, cf. [55, 56, 57].
The proofs of these results in the linear setting make heavy use of large-scale regularity. In order to
extend this theory to the nonlinear setting, one mainly needs large-scale regularity for the linearized
operator and a suitable notion of nonlinear homogenization commutator. A naïve guess would be
to define the nonlinear commutator as aε(∇uε) − ā(∇uε). This quantity however does not weakly
converge to zero since ā is nonlinear. We have to devise a quantity that is compatible with weak
convergence and still encapsulates the diagram of Figure 1.1.2. To this aim we reformulate the
constitutive law by linearizing (assuming that ā is differentiable): Since aε(0) = ā(0) = 0, we then
have

a( ·ε , ξ) = a( ·ε , ξ)− a( ·ε , 0) =
(ˆ 1

0
Da( ·ε , tξ)dt

)
ξ, ā(ξ) = ā(ξ)− ā(0) =

(ˆ 1

0
Dā(tξ)dt

)
ξ,

so that the diagram of Figure 1.1.2 takes the equivalent form of Figure 3.1.

Gradient field Constitutive law Flux Conservation law

∇uε
multiply by

´ 1
0 Da( ·

ε
,t∇uε)dt−→ qε = (

´ 1
0 Da( ·ε , t∇uε)dt)∇uε −∇ · qε = ∇ · f

↓ ↓ ↓

∇ū
multiply by

´ 1
0 Dā(t∇ū)dt
−→ q̄ = (

´ 1
0 Dā(t∇ū)dt)∇ū −∇ · q̄ = ∇ · f

Figure 3.1: Reformulation of the commutative diagram
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In this way, homogenization can be concisely reduced to the single condition (
´ 1

0 Da( ·ε , t∇uε)dt)∇uε−
(
´ 1

0 Dā(t∇ū)dt)∇uε ⇀ 0, and we define the nonlinear homogenization commutator of uε as

Ξε(f) :=
( ˆ 1

0
Da( ·ε , t∇uε)dt

)
∇uε −

( ˆ 1

0
Dā(t∇ū)dt

)
∇uε. (3.2.14)

Let us argue that, as in the linear setting, the homogenization commutator contains both the fluc-
tuations of the field ∇uε and of the flux a( ·ε ,∇uε). We start with ∇uε and consider fluctuations of
the observable

´
g · ∇uε. We introduce the auxiliary map v̄ solution of the linear equation

∇ ·
(ˆ 1

0
Dā(t∇ū)dt

)∗
∇v̄ = ∇ · g, (3.2.15)

(which we assume to be well-posed in this discussion – the notation ∗ is used for the transposition).
Then we have

ˆ
g · ∇uε

(3.2.15)
= −

ˆ ( ˆ 1

0
Dā(t∇ū)dt

)∗
∇v̄ · ∇uε

(3.2.14)
= −

ˆ
∇v̄ · (Ξε(f)− a( ·ε ,∇uε))

(3.1.5)
= −

ˆ
∇v̄ · Ξε(f)−

ˆ
∇v̄ · f,

so that the fluctuations of
´
g · ∇uε are given by those of −

´
∇v̄ · Ξε(f) (since the additional term

−
´
∇v̄ · f is deterministic). Likewise, for the flux we introduce the solution w̄ of

∇ ·
( ˆ 1

0
Dā(t∇ū)dt

)∗
∇w̄ = ∇ ·

(ˆ 1

0
Dā(t∇ū)dt

)∗
g, (3.2.16)

and obtainˆ
g · a( ·ε ,∇uε)

(3.1.5)
=

ˆ
(g −∇w̄) · a( ·ε ,∇uε)−

ˆ
∇w̄ · f

(3.2.14)
=

ˆ
(g −∇w̄) · Ξε(f) +

ˆ
(g −∇w̄) ·

( ˆ 1

0
Dā(t∇ū)dt

)
∇uε −

ˆ
∇w̄ · f

(3.2.16)
=

ˆ
(g −∇w̄) · Ξε(f)−

ˆ
∇w̄ · f,

so that the fluctuations of
´
g · a( ·ε ,∇uε) are given by those of −

´
(g − ∇w̄) · Ξε(f) (since the

additional term −
´
∇w̄ · f is deterministic).

Next to the homogenization commutator of the solution, we introduce the standard homogeniza-
tion commutator, associated with the corrector. For all ξ ∈ Rd, we define

Ξξ :=
( ˆ 1

0
Da(·, t(ξ +∇φξ))dt

)
(ξ +∇φξ)−

( ˆ 1

0
Dā(tξ)dt

)
(ξ +∇φξ). (3.2.17)

The pathwise structure of fluctuations (in the form of a quantitative two-scale expansion of commu-
tators in the spirit of (3.1.11) and accurate in the fluctuation scaling – see [55, 62, 56] in the linear
setting) and the scaling limit of the standard commutator (see [55, 56, 57] in the linear setting) will
be the object of companion articles.
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3.2.3 Extensions and limitations

Hypothesis 3.1.2 makes several assumptions on the monotone operator and the randomness:

• The underlying probability law is Gaussian with integrable correlations;

• The monotone map a(x, ξ) is a multiple of (1 + |ξ|p−2)ξ, the randomness is multiplicative (in
form a random matrix field), and the admissible range of p depends on d;

• The spatial dependence x 7→ a(x, ξ) is smooth on a deterministic level;

• If it admits a variational form, the operator is associated with a convex energy functional.

Several of these assumptions can be slightly relaxed, while others are crucial. They are discussed in
the following paragraphs.

Probability laws

Consider our multiplicative model. Our approach is based on a sensitivity calculus which allows us
to linearize quantities with respect to the randomness (say, wrt A) and on functional inequalities
which allow us to control variances using this sensitivity calculus. In Hypothesis 3.1.2 we consider
a Gaussian random field with integrable covariance function, and one might wonder to what extent
Gaussianity and the integrability of the covariance functions are necessary. Our argument strongly
relies on the CLT scaling r−

d
2 of spatial averages

ffl
Br
∇φξ of the corrector gradient, which essentially

follow from the same property for a(x, ξ) − E
[
a(x, ξ)

]
. On the one hand, sensitivity calculus,

functional inequalities, and CLT scaling are not limited to Gaussian fields: they can be developed
as soon as the stationary field A is constructed via a “hidden” product structure. In particular, the
random checkerboard and various Poisson-based processes also enjoy such tools, and we refer the
reader to [60, 59] for a systematic study of sensitivity calculus and (multiscale) functional inequalities
for random fields commonly used in the mechanics of composite materials [152]. Such models could
be considered here as well. On the other hand, the CLT scaling indeed requires the integrability
of the covariance function. (Since there is some little room in the argument, one could consider
a covariance function such that

´
Rd |c(x)|(1 + |x|)−βdx < ∞ provided 0 < β � 1, but this is

detail.) In order to address Gaussian coefficients with heavier tail, one would first need to establish
(nonlinear and linear) large-scale regularity for the random operator (and its linearized version), as in
[80, 89, 47]. By [30] and (3.1.3), there is no obstruction to this approach in the range 2 ≤ p < 2(d−1)

d−3
for scalar equations.

Another setting would ensure that spatial averages of a(x, ξ) − E
[
a(x, ξ)

]
decay at the CLT

scaling: if A has finite range of dependence – as addressed in [10, 5, 6] for p = 2. The quenched
Meyers estimates of Theorem 18 (and its weighted version of Theorem 19) proved below do hold for
general stationary ergodic coefficients – and therefore in the setting of finite range of dependence.
They are however of little use without a good control of the Meyers minimal radius (provided by
Theorem 21 for Gaussian coefficients with integrable covariance). In [10, 5, 6] for p = 2, estimates
of moments of the corrector gradient (which would control the Meyers minimal radius) are obtained
by combining a rate of convergence (any would do) for the Dirichlet problem with a Campanato
argument based on C1,α-regularity for the homogenized operator. In particular, one would have to
adapt the duality arguments of [10, 5, 6] to p > 2 to prove convergence rates. Since the natural
object considered in [10, 5, 6] is close to the homogenization commutator for p = 2, the nonlinear
commutators we introduced in (3.2.14) and (3.2.17) might be good objects to start with for p > 2.
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Form of the monotone map

There are three different assumptions when considering a monotone map of the form (x, ξ) 7→
a(x, ξ) = A(x)(1 + |ξ|p−2)ξ: coercivity conditions, regularity with respect to ξ, and multiplicative
character of the randomness. To start with, we must assume that ξ 7→ a(x, ξ) is twice-differentiable
(for all x) in order to apply sensitivity calculus to the linearized corrector.

Multiplicative models. The form of a is such that one can easily differentiate a with respect
to the randomness. This is not strictly necessary but quite convenient. Any model having such
a property would do, and we can consider coefficients of the form a(x, ξ) = ρ(A(x), ξ)ξ provided
M 7→ ρ(M, ·) satisfies |DMρ(M, ξ)| . 1 + |ξ|p−1 and |DM∂ξρ(M, ξ)| . 1 + |ξ|p−2. This holds for
instance for

a(x, ξ) = χ(x)a1(ξ) + (1− χ(x))a2(ξ), (3.2.18)

where χ : Rd → [0, 1] is a smooth random field (with a sensitivity calculus and a suitable functional
inequality) and a1 and a2 are two given (suitable) monotone maps. This model is more in line with
composite materials.

Coercivity conditions. What is crucial is the strong monotonicity and non-degeneracy (3.1.4)
for some κ > 0 (which we take to be 1 without loss of generality). Whereas local regularity would hold
with κ = 0, the choice κ > 0 is forced upon us to rule out the degeneracy of the linearized operator
(cf. the critical set of ∇φξ). In particular, this condition does not hold for the p-Laplacian, to which
our results do not apply. To our opinion, relaxing this condition constitutes a very challenging
problem.

Restriction on p. Our assumptions (3.1.1) and (3.1.4) make the the operator have p-growth
from above and below. In dimensions d > 3, we further impose the condition 2 ≤ p < 2(d−1)

d−3 . Doing
so allows us to prove a quenched Meyers estimate in the large with an almost surely finite radius r?.
In order to relax this condition, a possible starting point could be to introduce (yet another) minimal
radius, say ρ?, which would be defined such that

ffl
Br
r?(x)qdx . 1 for some suitable q depending on

d, p and all r ≥ ρ?. The additional difficulty is that one would have to deal with the three quantities
r?, ρ?,∇φξ together rather than the two quantities r?,∇φξ. Since there is only little room in the
exponents for the buckling argument (see proof of Theorem 21), it is not clear to us whether this
might indeed work.

Local regularity

It is quite tempting to assert that quantitative homogenization is a matter of large scales (or say,
low frequencies), and that local regularity assumptions might be convenient but are not necessary.
This is indeed quite relevant provided small scales do not interact with large scales. A convincing
counterexample of that is the quasiperiodic (and almost periodic) setting, where small and large
scales indeed interact via a weak Poincaré inequality in a high-dimensional torus, cf. [7]. In our
nonlinear setting, local regularity is not so much needed for the nonlinear correctors, but it seems
unavoidable for the linearization part. This regularity requirement could be weakened in several
directions:

• Only a local Cα-control of the spatial dependence is needed for some α > 0, and the control
of this local norm can be random itself provided the latter has good moment bounds. In
particular, with the same notation as in Hypothesis 3.1.2, this is the case for coefficients of
the form A(y) = B(G(y)) provided the (non-negative) Fourier transform ĉ of the covariance
function satisfies ĉ(k) ≤ (1+ |k|)−d−2α′ (for some α′ > α). Then x 7→ ‖A‖Cα(B(x)) is stationary
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and has finite Gaussian moments (as a slight quantification of [101, Appendix A.3] shows). All
our arguments can be adapted to this setting.

• In the proofs we use local regularity to control pointwise values of the (nonlinear and linear)
corrector gradient by its local averages, and therefore control a local supremum by a local
Cα-norm. Such a control would also follow from a local broken Cα-norm, so that one could in
principle be able to deal with some A (or χ in (3.2.18)) that would be piecewise smooth (and a
fortiori piecewise constant with smooth boundaries, covering the case of smooth inclusions in
a background material). This constitutes a question of classical regularity theory. For linear
equations and systems, this is proved in [110, 109] and for monotone operators and p = 2 in
[134]. The case p > 2 constitutes an interesting independent problem.

• The state of the art of local regularity is as follows. For scalar equations, the structure can be
quite general, and only requires the Hölder continuity of the map x 7→ a(x, ·) in the sense (see
[105, Theorem 13])

sup
r>0

ˆ r

0

(ω(ρ))
2
p

ρα
dρ
ρ
< +∞, (3.2.19)

for

ω : r ∈ (0,+∞) 7→
(

sup
z∈Rd,Br(x)⊂Rd

 
Br(x)

(
a(y, z)− (a)x,r(z)

(|z|+ 1)p−1

)2

dy
) 1

2
,

for some α > 0 and (a)x,r(z) :=
ffl
Br(x) a(y, z)dy. For systems however, we are restricted to

quasi-diagonal structures of the form a(x, ξ) = ρ(x, |ξ|)ξ, for some ρ : Rd × Rd → R (the
so-called Uhlenbeck structure, see [153]).

Non-convex energy functionals?

It would be natural to try to extend these results to the setting of nonlinear elasticity, for which
a large part of the qualitative theory has been established (cf. [130, 35, 123], and [58] for the
most general results in this context). Besides the much more delicate regularity theory (cf. [124]),
non-convexity essentially prevents us from using the corrector equation efficiently (cf. the counter-
examples to the cell formula in the periodic setting by Müller [130], see also [22]), and may cause
loss of ellipticity upon linearization (see [75] at the nonlinear level, and [95, 39, 71, 85] at the linear
level) – except in the vicinity of the identity (cf. [129, 78], and the further use of rigidity [72] to
establish quantitative results in this regime [133]). Hence, quantitative results in homogenization of
nonlinear nonconvex models of elasticity remain widely out of reach today.

Perspectives

We refer to Section 6 for some possible other extension and open questions about this work.

3.3 Perturbative regularity theory for the linearized operator

In this section we consider periodized random operators aL distributed according to the law PL
given in Definition 3.7.2. In particular, for all L ≥ 1, aL is almost surely QL-periodic in its space
variable, and remains random and stationary (this owes to the fact that we use periodization in law
rather than naive periodization, cf. Appendix 3.7.7). This implies that φξ and σξ are necessarily
QL-periodic fields almost surely, so that the equations (3.1.7) and (3.2.2) can be posed on QL rather
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than Rd – and likewise for the linearized correctors. For all L ≥ 1 we use the notation H1
per(QL)

(resp. W 1,p
per(QL)) for QL-periodic fields of H1

loc(Rd) (resp. W 1,p
loc (Rd)) with vanishing average. Our

aim is to prove regularity statements and bounds that are uniform in the periodization parameter
L ≥ 1.

3.3.1 The Meyers minimal radius

In this paragraph we introduce the notion of Meyers minimal radius, a stationary random field which
quantifies the scale at which Meyers’ estimates hold for the linearized operator. We start with a
definition.

Definition 3.3.1 (Meyers minimal radius). Let ξ ∈ Rd, L ≥ 1 and c > 0. If it exists, the (QL-
periodic) minimal radius r?,ξ,L(·, c) is defined for all x ∈ Rd via

r?,ξ,L(·, c) : x ∈ Rd 7→ inf
y∈Rd

(
r?,ξ,L(y, c) + `|x− y|

)
, (3.3.1)

where ` = 1
9C
√
d
∧ 1

16 (with C defined in Lemma 34) and for all y ∈ Rd

r?,ξ,L(y, c) := inf
r=2N ,N∈N

{
∀R ≥ r,

 
BR(y)

|∇φξ|p ≤ c(1 + |ξ|p)
}
. (3.3.2)

We now argue that r?,ξ,L(·, c) is a well-defined bounded random field if c is chosen large enough.

Lemma 14 (Well posedness of r?,ξ,L). Let (x, ξ) ∈ Rd × Rd and L ≥ 1. There exist two constants
c1, c2 > 0 depending on p and d such that, PL-almost surely, r?,ξ,L satisfies

r?,ξ,L(x, c2) ≤ r?,ξ,L(x, c1) ≤ r?,ξ,L(x, c1), (3.3.3)

and
r?,ξ,L(x, c1) ≤ L. (3.3.4)

Proof. Without loss of generality, we may assume that x = 0. We start with the proof of (3.3.4),
and then turn to the proof of (3.3.3). We let c denote a constant depending only on d, λ, and p,
that may change from line to line.

Step 1. Proof of (3.3.4).
From the defining equation (3.1.7) for φξ, we have

−∇ · (a(·, ξ +∇φξ)− a(·, ξ)) = ∇ · a(·, ξ) in QL,

so that by testing the equation with φξ and using the monotonicity (3.1.4) and boundedness (3.1.1),
we obtain for some constant c depending on λ and d

 
QL

|∇φξ(x)|2(1 + |ξ|p−2 + |ξ +∇φξ(x)|p−2)dx ≤ c
 
QL

|ξ|(1 + |ξ|p−2)|∇φξ|.

By absorbing part of the right-hand side into the left-hand side, this yields
 
QL

|∇φξ(x)|2(1 + |ξ|p−2 + |ξ +∇φξ(x)|p−2)dx ≤ c
 
QL

|ξ|2(1 + |ξ|p−2).
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By the triangle inequality in form of |ξ +∇φξ(x)|p−2 & |∇φξ(x)|p−2 − |ξ|p−2, and using the above
twice, we obtain

 
QL

|∇φξ(x)|2(1 + |∇φξ(x)|p−2)dx ≤ c
 
QL

|ξ|2(1 + |ξ|p−2) ≤ c(1 + |ξ|p).

Assume that L is dyadic. Given now R ≥ L, we cover BR by NL,R ≤ cd(
R
L )d translations of QL

(where cd only depends on dimension), which we denote by QjL for 1 ≤ j ≤ NR,L. This yields

 
BR(y)

|∇φξ|2 + |∇φξ|p ≤
Ld

|BR|

NR,L∑
j=1

 
QjL

|∇φξ|2 + |∇φξ|p

≤ cd
Rd

Ld
Ld

|BR|
c(1 + |ξ|p) = c1(1 + |ξ|p)

for the choice c1 := cd|B|−1, which only depends on d and λ. This yields (3.3.4). If L is not dyadic,
we cover BR by cubes of sidelength 2l with l such that 2l ≤ L < 2l+1, and obtain the result at the
price of increasing c1.

Step 2. Proof of (3.3.3).
By definition (3.3.1) of r?,ξ,L, we have r?,ξ,L(0) ≤ r?,ξ,L(0) by testing the infimum problem with
y = 0. Let us now prove that there exists c2 such that for all R ≥ 1 we have the implication
r?,ξ,L(0, c1) ≤ R =⇒ r?,ξ,L(0, c2) ≤ R, from which we deduce (3.3.3). By definition (3.3.1) of r?,ξ,L,
if r?,ξ,L(0, c1) ≤ R, there exists y ∈ Rd such that |y| ≤ R

` and r?,ξ,L(y, c1) ≤ R. This implies that
BR ⊂ BR̄(y) with R̄ := (1

` + 1)R so that
 
BR

|∇φξ|p ≤ ( R̄R)d
 
BR̄

|∇φξ|p ≤ (1
` + 1)dc1.

Hence, with c2 := (1
` + 1)dc1, this yields r?,ξ,L(y, c2) ≤ R, and therefore (3.3.3).

In the rest of the paper, the notation r?,ξ,L refers to the minimal scales r?,ξ,L(·, c1) for which
Lemma 14 holds. When no confusion occurs, we simply write r? for r?,ξ,L, and use the short-hand
notation B?(x) for Br?,ξ,L(x)(x).

We conclude this paragraph by showing that the Meyers minimal radius controls local averages
of the nonlinear corrector.

Lemma 15 (Control of averages of the nonlinear correctors). There exists a nonlinear hole-filling
exponent 0 < δ ≤ d depending on d, p, and λ such that for all (x, ξ) ∈ Rd×Rd, we have for all r > 0

 
Br(x)

|ξ +∇φξ|2 + |ξ +∇φξ|p .d,λ,p (1 + |ξ|p)
(r?(x) ∨ r

r

)d−δ
. (3.3.5)

Proof. Without loss of generality, we may assume that x = 0. We use the short-hand notation
ρ := r? ∨ r ≥ r?. By the hole-filling estimate (3.7.3) applied to the defining equation (3.1.7) for φξ,
there exists δ > 0 depending on d and λ such that
 
Br

|ξ +∇φξ|2 + |ξ +∇φξ|p .
(ρ
r

)d−δ  
Bρ

|ξ+∇φξ|2+|ξ+∇φξ|p .
(ρ
r

)d−δ  
Bρ

|ξ|2+|ξ|p+|∇φξ|2+|∇φξ|p.
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Using then (3.3.3) in form of ρ ≥ r?(0) ≥ r?,ξ,L(0, c2), the definition (3.3.2), and Jensen’s inequality,
this yields the reformulation of (3.3.5)

 
Br

|ξ +∇φξ|2 + |ξ +∇φξ|p .
(ρ
r

)d−δ
(c2 + 1)(1 + |ξ|p).

3.3.2 Quenched perturbative regularity in the large

Quenched Meyers’ estimate in the large

Recall that aξ := Da(·, ξ+∇φξ). The elliptic operator −∇ · aξ∇ has unbounded coefficients, whose
growth depends on the nonlinear corrector ∇φξ: There exists (c, C) ∈ R+ × R+, depending on λ
and p, such that for all h ∈ Rd

c|h|2µξ ≤ h · aξh ≤ C|h|2µξ, (3.3.6)

where
µξ := 1 + |ξ +∇φξ|p−2. (3.3.7)

In addition, by (3.3.5) in Lemma 15 we have for all r ≥ r?

‖µξ‖
p
p−2

L
p
p−2 (Br)

.d,λ,p r
d(1 + |ξ|p). (3.3.8)

The main result of this section is the following quenched Meyers estimate in the large.

Theorem 18 (Quenched Meyers’ estimate in the large). Under Hypothesis 3.1.2, for all ξ ∈ Rd,
there exists m̄ > 2 depending on d, p and |ξ|, such that for all exponents 2 ≤ m ≤ m̄, and all
QL-periodic functions g and u related via

−∇ · aξ∇u = ∇ · (g√µξ), (3.3.9)

and all r > 0 we have 
Br

( 
B?(x)

|∇u|2µξ
)m

2
dx .|ξ|

( 
B2r

( 
B?(x)

|∇u|2µξ
)
dx
)m

2
+

 
B2r

( 
B?(x)

|g|2
)m

2 dx. (3.3.10)

In particular, ˆ
QL

(  
B?(x)

|∇u|2µξ
)m

2 dx .|ξ|
ˆ
QL

(  
B?(x)

|g|2
)m

2 dx. (3.3.11)

The same result holds with aξ replaced by a∗ξ (the pointwise transpose field).

We follow the standard strategy based on a reverse Hölder inequality and Gehring’s lemma to
prove this Meyers estimate. We start with the reverse Hölder inequality:

Lemma 16 (Reverse Hölder inequality). Let Hypothesis 3.1.2 hold. Set q = p
p−2 . For all x ∈ Rd,

r ≥ r?(x), and all g and u related via

−∇ · aξ∇u = ∇ · (g√µξ) in B 17
12
r(x), (3.3.12)

we have(  
B 67

48 r
(x)
|∇u|2µξ

) 1
2
. (1 + |ξ|p)

p−2
2p

( 
B 17

12 r
(x)
|∇u|q∗

) 1
q∗ +

(  
B 17

12 r
(x)
|g|2
) 1

2
, (3.3.13)
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with 1 ≤ q∗ < 2 given by
1

q∗
=

{
1 for d = 2,
1
2 −

1
2q + 1

d−1 for d ≥ 3.
(3.3.14)

(The choice of 67
48 and 17

12 is convenient for the sequel, but obviously not essential.) The same result
holds with aξ replaced by a∗ξ (the pointwise transpose field).

Not surprisingly, this estimate follows from the Caccioppoli and the Poincaré-Sobolev inequal-
ities. As opposed to the case of uniformly bounded coefficients, the weight µξ is in the way (and
cannot be treated as a Muckenhoupt weight, which it is not). In order to get the entire range of
exponents 2 ≤ p < ∞ in dimension d = 3, we have to be careful in the Caccioppoli inequality.
Inspired by [25, Lemma 1], we optimize with respect to the cut-off in Caccioppoli’s inequality, which
allows us to appeal to Poincaré-Sobolev in dimension d−1 rather than d (and therefore improve the
integrability).

Lemma 17. Let q ∈ [1,+∞), assume that q > d−1
2 if d ≥ 3, and let q∗ be given by (3.3.14). For

0 < ρ < σ < +∞, v ∈W 1,q∗(Bσ) and µ ∈ Lqloc(Rd), the quantity

J (ρ, σ, µ, v) := inf
{ˆ

Bσ

µv2|∇η|2
∣∣∣η ∈ C1

c (Bσ), 0 ≤ η ≤ 1, η ≡ 1 in Bρ
}

(3.3.15)

satisfies

J (ρ, σ, µ, v) . (σ − ρ)−
2d
d−1 ‖µ‖Lq(Bσ\Bρ)

(
‖∇v‖2Lq∗ (Bσ\Bρ) + ρ−2‖v‖2Lq∗ (Bσ\Bρ)

)
. (3.3.16)

The proof of Lemma 17, which closely follows the proof of [25, Lemma 1], is postponed to
Appendix 3.7.1. We now prove Lemma 16.

Proof of Lemma 16. Without loss of generality, we may assume x = 0 and
´
B 17

12 r
\B 67

48 r
u = 0. We

first apply the Caccioppoli inequality (3.7.6) with µ = µξ and c1 = 67
48 <

17
12 = c2, and obtain with

the notation (3.3.15) ˆ
B 67

48 r

|∇u|2µξ . J (67
48r,

17
12r, µξ, u) +

ˆ
B 17

12 r

|g|2. (3.3.17)

We then apply Lemma 17 with exponent q = p
p−2 for d ≥ 3 and q = 1 for d = 2, to the effect that

J (67
48r,

17
12r, µξ, u) . r−

2d
d−1 ‖µξ‖Lq(B 17

12 r
\B 67

48 r
)

(
‖∇u‖2Lq∗ (B 17

12 r
\B 67

48 r
) + r−2‖u‖2Lq∗ (B 17

12 r
\B 67

48 r
)

)
.

(3.3.18)
Since r ≥ r?(0), (3.3.8) yields ‖µξ‖Lq(B 17

12 r
\B 67

48 r
) . (1 + |ξ|p)

p−2
p r

d
q , whereas Poincaré’s inequality in

Lq∗(B2r\Br) yields r−2‖u‖2Lq∗ (B 17
12 r
\B 67

48 r
) . ‖∇u‖

2
Lq∗ (B 17

12 r
\B 67

48 r
). Hence, (3.3.18) turns into

J (67
48r,

17
12r, µξ, u) . r−

2d
d−1

+ d
q (1 + |ξ|p)

p−2
p ‖∇u‖2Lq∗ (B 17

12 r
\B 67

48 r
).

Combined with (3.3.17), this entails
 
B 67

48 r

|∇u|2µξ . r
− 2d
d−1

+ d
q
−d+ 2d

q∗ (1 + |ξ|p)
p−2
p

( 
B 17

12 r

|∇u|q∗
) 2
q∗ +

 
B 17

12 r

|g|2,

which concludes the proof since, by definition (3.3.14) of q∗, − 2d
d−1 + d

q − d+ 2d
q∗

= 0.
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Theorem 18 relies on the combination of Lemma 16 with Gehring’s inequality in form of

Lemma 18 (Gehring’s lemma). Let s > 1, and let f and h be two non-negative measurable functions
in Lqloc(R

d) such that there exists C > 0 for which for all r > 0 and x ∈ Rd( 
Br(x)

fs
) 1
s ≤ C

( 
B2r(x)

f +
( 

B2r(x)
hs
) 1
s
)
.

Then, there exists s̄ > s depending on q and C such that for all r > 0 and x ∈ Rd, we have( 
Br(x)

f s̄
) 1
s̄
.
 
B2r(x)

f +
(  

B2r(x)
hs̄
) 1
s̄
.

We are now in the position to prove Theorem 18.

Proof of Theorem 18. Let 1 ≤ q∗ < 2 be given by (3.3.14). We first prove that for all r > 0

 
Br

(  
B?(x)

|∇u|2µξ
)
dx .

( 
B2r

(  
B?(x)

|∇u|2µξ
) q∗

2 dx
) 2
q∗ +

 
B2r

( 
B?(x)

|g|2
)
dx. (3.3.19)

If r ≤ 3r?(0) this estimate follows from Lemma 33, and it remains to treat the case r ≥ 3r?(0). We
first use (3.7.62) with f = |∇u|2µξ to the effect of

ˆ
Br

( 
B?(x)

|∇u|2µξ
)
dx .

 
B 67

48 r

|∇u|2µξ. (3.3.20)

Then, by the reverse Hölder inequality (3.3.13) followed by (3.7.63), we obtain
 
B 67

48 r

|∇u|2µξ
(3.3.13)
. (1 + |ξ|p)

p
p−2

( 
B 17

12 r

|∇u|q∗
) 2
q∗ +

 
B 17

12 r

|g|2

(3.7.63)
. (1 + |ξ|p)

p
p−2

( 
B2r

(  
B?(x)

|∇u|q∗
)
dx
) 2
q∗ +

 
B2r

( 
B?(x)

|g|2
)
dx.(3.3.21)

We then slightly reformulate the first right-hand side term using Jensen’s inequality in the inner
integral (since q∗ < 2) and the lower bound µξ ≥ 1, so that( 

B2r

 
B?(x)

|∇u|q∗ dx
) 2
q∗ ≤

( 
B2r

(  
B?(x)

|∇u|2
) q∗

2 dx
) 2
q∗

≤
( 

B2r

(  
B?(x)

|∇u|2µξ
) q∗

2 dx
) 2
q∗ . (3.3.22)

The combination of (3.3.20), (3.3.21), (3.3.22) yields the claimed estimate (3.3.19). To conclude, we
apply Lemma 18 with

f : x 7→
( 

B?(x)
|∇u|2µξ

) q∗
2
, h : x 7→

( 
B?(x)

|g|2
) q∗

2
, s = 2

q∗
> 1.

This yields (3.3.10), whereas (3.3.11) follows by applying (3.3.10) for Br with r =
√
d

2 L and using
the periodicity of the quantities involved together with the plain energy estimate

´
QL
|∇u|2µξ .´

QL
|g|2.
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Quenched weighted Meyers’ estimate in the large

The main result of this paragraph is the following upgrade of Theorem 18.

Theorem 19 (Quenched weighted Meyers estimates in the large). Under Hypothesis 3.1.2, for all
ξ ∈ Rd, there exists β > 0 depending only on |ξ| and d such that for all 2 ≤ m ≤ m̄ (cf. Theorem 18),
0 ≤ 2ε ≤ β and all QL-periodic fields g and u related via (3.3.9), we have

ˆ
QL

ωε,r(x)
( 

B?(x)
|∇u|2µξ

)m
2
dx .|ξ|

ˆ
QL

ω2ε,r(x)
( 

B?(x)
|g|2
)m

2
dx, (3.3.23)

where for all x ∈ QL
ωε,r(x) :=

(
1 +
|x|+ r?(0)

r

)ε
. (3.3.24)

The same result holds with aξ replaced by a∗ξ (the pointwise transpose field).

We proceed in two steps: From Theorem 18 we first prove a suitable hole-filling estimate which
we use in turn to upgrade Theorem 18.

Corollary 20 (Linear hole-filling estimate in the large). Under Hypothesis 3.1.2, for all ξ ∈ Rd there
exist an exponent β > 0, depending only on d, p and |ξ|, and a constant cd ≥ 1 with the following
properties. Let u be a QL-periodic function which is aξ-harmonic in QR(x) for some x ∈ Rd and
L ≥ R ≥ cdr?(x), that is

−∇ · aξ∇u = 0 in QR(x).

Then for all r?(x) ≤ r ≤ R,
ˆ
Qr(x)

|∇u|2µξ .|ξ| ( rR)β
ˆ
QR(x)

|∇u|2µξ. (3.3.25)

The same result holds with aξ replaced by a∗ξ (the pointwise transpose field).

Proof of Corollary 20 . Without loss of generality, we may assume that x = 0, r ≥ r?(0), and that
2cr ≤ R

4 with c = 3∨
√
d

2 . By (3.7.62), (3.7.63), the Hölder inequality with exponents (m̄, m̄
m̄−1) (with

m̄ as in Theorem 18) and the unweighted Meyers estimate (3.3.10), we have with β := d(1− 1
m̄)

ˆ
Qr

|∇u|2µξ ≤
ˆ
Bcr

|∇u|2µξ

(3.7.63)
. rd

 
B2cr

( 
B?(x)

|∇u|2µξ
)
dx

≤ rd
( 

B2cr

(  
B?(x)

|∇u|2µξ
)m̄

dx
) 1
m̄

≤ rd(Rr )
d
m̄

( 
BR

4

( 
B?(x)

|∇u|2µξ
)m̄

dx
) 1
m̄

(3.3.10)
. rd(Rr )

d
m̄

 
BR

4

(  
B?(x)

|∇u|2µξ
)
dx

(3.7.62)
. ( rR)β

ˆ
BR

2

|∇u|2µξ ≤ ( rR)β
ˆ
QR

|∇u|2µξ.



3.3. Perturbative regularity theory for the linearized operator 169

We now prove Theorem 19.

Proof of Theorem 19. We split the proof into four steps. In the first step, we show that for compactly
supported right-hand sides g the solution gradient decays algebraically away from the source in L2,
based on hole-filling. We then upgrade this L2 estimate into an Lm estimate for some m > 2
using Meyers’ estimate (3.3.10). In the third step, we remove the assumption that g be compactly
supported by using a dyadic decomposition of scales. In the last step we exploit the algebraic
decay to add the desired weight. Since the proof relies on a dyadic decomposition of the torus, it
is convenient to work with cubes rather than balls when taking averages (which makes constants
slightly cumbersome).

Step 1. L2 algebraic decay rate.
We prove that there exists δ > 0, depending on d, p and |ξ|, such that for all L ≥ R ≥ r ≥ cdr?(0)
and all g compactly supported in Qr we have

ˆ
QL\QR

|∇u|2µξ . ( rR)β
ˆ
Qr

|g|2. (3.3.26)

We proceed by duality in form of
ˆ
QL\QR

|∇u|2µξ = sup
h

ˆ
QL\QR

h · ∇u√µξ, (3.3.27)

where the supremum runs over functions h ∈ L2(QL\QR)d with ‖h‖L2(QL\QR)d = 1. Consider such
a test function h (implicitly extended by zero on QR) and denote by v the unique weak solution in
H1

per(QL) of
−∇ · a∗ξ∇v = ∇ · (h√µξ), (3.3.28)

which is well-posed since µξ is bounded on QL almost surely by Lemma 25. By testing (3.3.28) with
u and (3.3.9) with v, we obtain by Cauchy-Schwarz’ inequality and the support condition on g∣∣∣ ˆ

QL

h · ∇u√µξ
∣∣∣ =

∣∣∣ ˆ
QL

g · ∇v√µξ
∣∣∣ ≤ ( ˆ

Qr

|g|2
) 1

2
(ˆ

Qr

|∇v|2µξ
) 1

2
. (3.3.29)

Since h vanishes on QR, v is a∗ξ-harmonic in QR, and the hole filling estimate (3.3.25) with expo-
nent δ > 0 yields in combination with the plain energy estimate

´
QL
|∇v|2µξ .

´
QL
|h|2 and the

assumption
´
QL
|h|2 = 1

ˆ
Qr

|∇v|2µξ . ( rR)β
ˆ
QR

|∇v|2µξ . ( rR)β
ˆ
QL

|h|2 = ( rR)β. (3.3.30)

The claim (3.3.26) now follows from (3.3.27), (3.3.29) and (3.3.30).

Step 2. Lm algebraic decay rate for 2 ≤ m ≤ m̄.
In this step, we prove that, with Cd = 4C ∨ cd ∨ 16 (with C ≥ 1 as in (3.7.64)), for all L > R ≥ 2r
with r ≥ Cdr?(0), and all g compactly supported in Qr, we may upgrade (3.3.26) to

ˆ
QL\QR

( 
B?(x)

|∇u|2µξ
)m

2 dx . Rd(1−m
2

)( rR)δ
m
2

(ˆ
Qr

|g|2
)m

2
. (3.3.31)

for all 2 ≤ m ≤ m̄, where m̄ is the Meyers exponent of Theorem 18.
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Let J ∈ N be such that 2JR < L ≤ 2J+1R. By writing QL \QR = (QL \Q2JR) ∪ ∪Jj=1(Q2jR \
Q2j−1R) (with the convention that the second union is empty if J = 0), it is enough to prove that
for all 1 ≤ j ≤ J + 1, we have

ˆ
Q

(2jR)∧L\Q2j−1R

(  
B?(x)

|∇u|2µξ
)m

2 dx . (2jR)d(1−m
2

)( r
2jR

)β
m
2

(ˆ
Qr

|g|2
)m

2
. (3.3.32)

Indeed, for all m ≥ 2, d(1− m
2 )− δm2 ≤ −δ, so that the dyadic terms sum to (3.3.31).

To start with, reverting from balls to cubes, one may reformulate Theorem 18 with cubes in-
stead of balls, and replace Br and B2r by Qr and QC1r, respectively (for some C1 depending only
dimension). Let 1 ≤ j ≤ J be fixed (the case j = J + 1 can be treated similarly). We partition
Q2jR \ Q2j−1R into the union of cubes {Qk}k=1,...,N of side-length 1

C2
2jR for some C2 to be fixed

later (the number N of such cubes then depends on d and C2, but not on j or R), to the effect that
for all m > 2 we have

ˆ
Q

2jR
\Q

2j−1R

( 
B?(x)

|∇u|2µξ
)m

2 dx =

N∑
k=1

ˆ
Qk

(  
B?(x)

|∇u|2µξ
)m

2 dx. (3.3.33)

By Theorem 18, for all 2 ≤ m ≤ m̄ and 1 ≤ k ≤ N ,
 
Qk

( 
B?(x)

|∇u|2µξ
)m

2 dx .
( 

Q̄k

( 
B?(x)

|∇u|2µξ
)
dx
)m

2
+

 
Q̄k

( 
B?(x)

|g|2
)m

2 dx, (3.3.34)

where Q̄k ⊃ Qk denotes the cube of side-length C1
C2

2jR centered at the center xk ∈ Q2jR \Q2j−1R of
Qk. We now control the two right-hand side terms of (3.3.34). On the one hand, by the `-Lipschitz
property of r? and the assumption R ≥ 2Cdr?(0), for all x ∈ Q̄k, we have |x| ≤ |xk| +

√
d

2
C1
C2

2jR ≤
√
d

2 (1 + C1
C2

)2jR, and therefore

r?(x) ≤ r?(0) + `|x| ≤ R( 1
2Cd

+ `
√
d

2 2j(1 + C1
C2

)). (3.3.35)

Recall the constant C in (3.7.64) and that C1 only depends on dimension. We now choose C2 := 8C1.
For our choice Cd = 4C ∨ cd ∨ 16 and R ≥ 2Cdr?(0), and since 0 < ` = 1

9C
√
d
∧ 1

16 , we have
C1
C2

2jR = 2j−3R and

C(
1

2Cd
+
`
√
d

2
2j(1 +

C1

C2
) ≤ C(

1

8C
+

1

18C
2j(1 +

1

8
)) ≤ 2j−3,

which, by (3.3.35), entails C1
C2

2jR ≥ Cr?(x), condition under which (3.7.64) yields

ˆ
Q̄k

(  
B?(x)

|∇u|2µξ
)
dx .

ˆ
Q̃k
|∇u|2µξ,

where Q̃k denotes the cube of side-length C1
C2

2j+1R = 2j−2R centered at the xk, so that Q̃k

mod LZd ⊂ Q2j+1R∧L\Q2j−2R. Hence, by (3.3.26),
ˆ
Q̄k

(  
B?(x)

|∇u|2µξ
)
dx .

ˆ
Q

2j+1R∧L\Q2j−2R

|∇u|2µξ . ( r
2jR

)β
ˆ
Qr

|g|2. (3.3.36)



3.3. Perturbative regularity theory for the linearized operator 171

On the other hand, the same argument implies
ˆ
Q̄k

( 
B?(x)

|g|2
)
dx .

ˆ
Q

2j+1R∧L\Q2j−2R

|g|2 = 0, (3.3.37)

where we used that g is supported in Qr and r ≤ R
2 . The claim (3.3.32) then follows from (3.3.33),

(3.3.34), (3.3.36), and (3.3.37), and the identity |Qk| = (2j−3R)d.

Step 3. Extension to general g.
In this step, we relax the support assumption on g in (3.3.31), and claim that for all L ≥ R ≥
2Cdr?(0) and all 2 ≤ m ≤ m̄,

(ˆ
QL\QR

( 
B?(x)

|∇u|2µξ
)m

2 dx
) 1
m
.
(ˆ

QL\QR
4

( 
B?(x)

|g|2
)m

2 dx
) 1
m

+
(ˆ

QR

( |x|+r?(0)
R )

βm
4

( 
B?(x)

|g|2
)m

2 dx
) 1
m
. (3.3.38)

Let N ∈ N be such that 2NCdr?(0) ≤ R < 2N+1Cdr?(0) (note that N ≥ 0 since R ≥ 2Cdr?(0)). We
decompose g as g =

∑N
i=0 gi with g0 := g1QCdr?(0)

, gi := g1Q2iCdr?(0)\Q2i−1Cdr?(0)
for all 1 ≤ i ≤ N−1,

and gN := g1QL\Q2N−1Cdr?(0)
. By linearity (and uniqueness of the solution) of the equation, we have

u =
∑N

i=0 ui where ui denotes the (unique) weak solution in H1
per(QL) of

−∇ · aξ∇ui = ∇ · (gi
√
µξ).

By the triangle inequality, we then have for 2 ≤ m ≤ m̄,

(ˆ
QL\QR

(  
B?(x)

|∇u|2µξ
)m

2 dx
) 1
m ≤

N∑
i=0

(ˆ
QL\QR

( 
B?(x)

|∇ui(y)|2µξ
)m

2 dx
) 1
m
. (3.3.39)

We start by estimating the term for i = N , for which we use the Meyers estimate (3.3.11) to the
effect that (ˆ

QL

( 
B?(x)

|∇uN |2µξ
)m

2 dx
) 1
m

(3.3.11)
.

( ˆ
QL

( 
B?(x)

|gN |2
)m

2 dx
) 1
m
.

We then reformulate the right-hand side using the support condition on gN . For x ∈ Q2N−2Cdr?(0),
since ` = 1

9C
√
d
∧ 1

16 , C ≥ 1, N ≥ 0, and Cd ≥ 16, we have

r?(x) ≤ r?(0) + `|x| ≤ r?(0)(1 + `
√
d

2 2N−2Cd) ≤ 2N−2Cdr?(0)(1
4 + 1

9) ≤ 2N−3Cdr?(0),

so that we have the implication

y ∈ B?(x) =⇒ y ∈ Q2N−2Cdr?(0)(x) =⇒ y ∈ Q2N−1Cdr?(0)(0) =⇒ gN (y) = 0.

Since R < 2N+1Cdr?(0) = 4 2N−1Cdr?(0), QR
4
⊂ Q2N−1Cdr?(0), and the above implies

(ˆ
QL

( 
B?(x)

|∇uN |2µξ
)m

2 dx
) 1
m
.
(ˆ

QL\QR
4

( 
B?(x)

|g|2
)m

2 dx
) 1
m
. (3.3.40)
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We then turn to the contributions for 0 ≤ i ≤ N − 1, for which we appeal to (3.3.31) with r =
2iCdr?(0) ≥ Cdr?(0) and R ≥ 2NCdr?(0) ≥ 2r, and obtain

ˆ
QL\QR

( 
B?(x)

|∇ui|2µξ
)m

2 dx
(3.3.31)
. Rd(1−m

2
)( rR)β

m
2

( ˆ
Qr\Qr/2

|g|2
)m

2

. Rd(1−m
2

)( rR)β
m
4

( ˆ
Qr\Qr/2

( |y|+r?(0)
R )

β
2 |g(y)|2dy

)m
2
.

We then appeal to (3.7.65) (which holds for r since r = 2iCdr?(0) ≥ 2iCr?(0) by definition of Cd),
to Jensen’s inequality, and to the Lipschitz regularity of r? in form of r?(x) ≤ r?(0) + |x|, and get(ˆ

QL\QR

( 
B?(x)

|∇ui|2µξ
)m

2 dx
) 1
m

(3.7.65)
. Rd

2−m
2m ( rR)

β
4

(ˆ
Q2r

 
B?(x)

( |y|+r?(0)
R )

β
2 |g(y)|2dydx

) 1
2

≤ Rd
2−m
2m ( rR)

β
4 (2r)d( 1

2
− 1
m

)
( ˆ

Q2r

( 
B?(x)

( |y|+r?(0)
R )

β
2 |g(y)|2dy

)m
2 dx

) 1
m

. ( rR)
β
4

+dm−2
2m

(ˆ
QR

( |x|+r?(0)
R )

βm
4

( 
B?(x)

|g|2
)m

2 dx
) 1
m

≤ (2
β
4

+dm−2
2m )i−N

(ˆ
QR

( |x|+r?(0)
R )

βm
4

( 
B?(x)

|g|2
)m

2 dx
) 1
m
. (3.3.41)

The claimed estimate (3.3.38) then follows from (3.3.39), (3.3.40), and (3.3.41).

Step 4. Proof of (3.3.23).
If L ≤ 2Cdr?(0) ≤ 2CdL, then the weight is essentially constant, for all x ∈ QL, ωr,ε(x) ' (1 + L

r )ε,
and the conclusion (3.3.23) is obviously satisfied. In the rest of this step we thus assume that
L > 2Cdr?(0). Let 2Cdr?(0) < r ≤ L (the case 0 < r ≤ 2Cdr?(0) reduces to the case r = 2Cdr?(0)
by homogeneity). Let N ∈ N be such that 2NCdr?(0) ≤ L < 2N+1Cdr?(0) and let N0 ≤ N be such
that 2N0Cdr?(0) ≤ r < 2N0+1Cdr?(0). We then have
ˆ
QL

ω ε
2
,r(x)

(  
B?(x)

|∇u|2µξ
)m

2 dx =

ˆ
Q

2N0Cdr?(0)

ω ε
2
,r(x)

( 
B?(x)

|∇u|2µξ
)m

2 dx

+
N−1∑
i=N0

ˆ
Q2i+1Cdr?(0)\Q2iCdr?(0)

ω ε
2
,r(x)

( 
B?(x)

|∇u|2µξ
)m

2 dx

+

ˆ
QL\Q2NCdr?(0)

ω ε
2
,r(x)

( 
B?(x)

|∇u|2µξ
)m

2 dx. (3.3.42)

We then control each right-hand side term separately. For the first term, we have

sup
Q2N0Cdr?(0)

ω ε
2
,r . ω ε

2
,r(0) . ω ε

2
,r(x) ∀x ∈ QL,

so that by Theorem 18ˆ
Q2N0Cdr?(0)

ω ε
2
,r(x)

( 
B?(x)

|∇u|2µξ
)m

2 dx . ω ε
2
,r(0)

ˆ
QL

(  
B?(x)

|g|2
)m

2 dx

.
ˆ
QL

ω ε
2
,r(x)

(  
B?(x)

|g|2
)m

2 dx. (3.3.43)
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For all N0 ≤ i ≤ N − 1, we combine the bound ω ε
2
,r|Q2i+1Cdr?(0)\Q2iCdr?(0)

' 2
ε
2

(i−N0) with (3.3.38)
to the effect that (using that 2ε ≤ β)(ˆ

Q2i+1Cdr?(0)\Q2iCdr?(0)

ω ε
2
,r(x)

( 
B?(x)

|∇u|2µξ
)m

2 dx
) 1
m

. 2
ε

2m
(i−N0)

( ˆ
QL\Q2iCdr?(0)

( 
B?(x)

|∇u|2µξ
)m

2 dx
) 1
m

(3.3.38),2ε≤δ
. 2

ε
2m

(i−N0)
( ˆ

QL\Q2i−2Cdr?(0)

( 
B?(x)

|g|2
)m

2 dx
) 1
m

+2
ε

2m
(i−N0)

(ˆ
Q2iCdr?(0)

( |x|+r?(0)
2iCdr?(0)

)
εm
2

( 
B?(x)

|g|2
)m

2 dx
) 1
m
. (3.3.44)

For the first right-hand side term, we use that for all x ∈ QL \ Q2i−2Cdr?(0) we have 2
ε
2

(i−N0) .

2−
ε
2

(i−N0)ωε,r(x), so that

2
ε

2m
(i−N0)

( ˆ
QL\Q2i−2Cdr?(0)

( 
B?(x)

|g|2
)m

2 dx
) 1
m
. 2−

ε
2m

(i−N0)
(ˆ

QL

ωε,r

( 
B?(x)

|g|2
)m

2 dx
) 1
m
.

(3.3.45)
For the second term, we rather use that for all x ∈ Q2iCdr?(0) we have by definition of N0 and since
m ≥ 2

2
ε
2

(i−N0)( |x|+r?(0)
2iCdr?(0)

)
εm
2 . 2

ε
2

(i−N0)( |x|+r?(0)
2iCdr?(0)

)ε

. 2
ε
2

(i−N0)2−ε(i−N0)( |x|+r?(0)
r )ε . 2−

ε
2

(i−N0)ωε,r(x),

so that

2
ε

2m
(i−N0)

( ˆ
Q2iCdr?(0)

( |x|+r?(0)
2iCdr?(0)

)
εm
2

(  
B?(x)

|g|2
)m

2 dx
) 1
m
. 2−

ε
2m

(i−N0)
( ˆ

QL

ωε,r

( 
B?(x)

|g|2
)m

2 dx
) 1
m
.

(3.3.46)
Summing (3.3.44)–(3.3.46) over i form N0 to N − 1 we then obtain

N−1∑
i=N0

ˆ
Q2i+1Cdr?(0)\Q2iCdr?(0)

ω ε
2
,r(x)

( 
B?(x)

|∇u|2µξ
)m

2 dx .
ˆ
QL

ωε,r

(  
B?(x)

|g|2
)m

2 dx. (3.3.47)

Controlling the last right-hand side of (3.3.42) the same way, (3.3.23) follows from (3.3.43) and
(3.3.47).

3.3.3 Control of the Meyers minimal radius: sensitivity estimate and buckling

The main result of this section is the following control of the Meyers minimal radius.

Theorem 21. Under Hypothesis 3.1.2, for all ξ ∈ Rd, there exist an exponent γ > 0 depending on
d, λ, and p, and a constant cξ depending additionally on |ξ| (and all independent of L ≥ 1) such
that

EL
[

exp(cξr
γ
?,ξ,L)

]
≤ 2. (3.3.48)
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The proof of Theorem 21 relies on the combination of the following sensitivity estimate (based
on the quenched weighted Meyers estimate of Theorem 19) with the Caccioppoli inequality via a
buckling argument.

Proposition 5. Under Hypothesis 3.1.2, for all ξ ∈ Rd, denote by m̄ > 2, δ > 0, and β > 0 the
Meyers and nonlinear and linear hole-filling exponents, respectively (cf. Lemma 15 and Theorem 19).
Then, for all r ≥ 1 and 0 < τ < 1, the random variable F :=

ffl
Br
∇φξ satisfies

EL
[
|F|2q

] 1
q
.|ξ| qr

−dEL
[
r
d−δ
1−τ q

?,ξ,L

] 1− τ2
q (3.3.49)

for all q ≥ 1 + d+1
ε , where

ε := (β2 ) ∧ ( (d+1)(m̄−2)
2 ) ∧ ( τ(d−δ)

4(1−τ)). (3.3.50)

We start with the proof of Theorem 21, and then turn to the proof of Proposition 5.

Proof of Theorem 21. We use the short-hand notation r? := r?,ξ,L(0, c1) (cf. (3.3.2) and Lemma 14).
We split the proof into two steps. In the first step, we control the probability of the level set {r? = R}
for all dyadic R ∈ [1, L] using averages of ∇φξ, which we combine with Proposition 5 and the bound
r? ≤ r? to buckle on moments of r?, and therefore on r? in the second step.

Step 1. We claim that there exist θ ∈ (0, 1) and c > 0, depending on p, d and λ such that for all
dyadic R ∈ [1, L] and all exponents q ≥ 1,

PL[r? = R] ≤ cq(1 + |ξ|p)−qEL
[∣∣∣  

BθR

∇φξ
∣∣∣pq]. (3.3.51)

Assume that r? = R. By the definition (3.3.2) of r?, we then have

c2(1 + |ξ|p) ≥
 
B2R

|∇φξ|p, (3.3.52)
 
BR

2

|∇φξ|p > c2(1 + |ξ|p). (3.3.53)

By the Caccioppoli inequality (3.7.2), (3.3.53) turns into

inf
η∈R

 
BR

1
R2 |φξ(x)− η|2 + 1

Rp |φξ(x)− η|p & 1 + |ξ|p, (3.3.54)

which we shall use in the stronger form

inf
η∈R

 
BR

1
Rp |φξ(x)− η|p & 1 + |ξ|p. (3.3.55)

Indeed, by Jensen’s inequality, with the short-hand notation α := infη∈R
ffl
BR

1
Rp |φξ(x)−η|p, (3.3.54)

yields α
2
p + α & 1 + |ξ|p so that α & 1, which implies α & α

2
p , whence the reformulation (3.3.55).

Let θ ∈ (0, 1) (the value of which we shall choose below), and set cR :=
ffl
BR

ffl
BθR(x) φξ(y)dy dx.

By the triangle inequality and Poincaré’s inequality in Lp(BR), we obtain

inf
η∈R

 
BR

1
Rp |φξ − η|

p .
 
BR

1
Rp

∣∣∣φξ(x)−
 
BθR(x)

φξ

∣∣∣pdx+

 
BR

1
Rp

∣∣∣ 
BθR(x)

φξ − cR
∣∣∣pdx

. θp
 
B2R

|∇φξ(x)|pdx+

 
BR

∣∣∣  
BθR(x)

∇φξ
∣∣∣pdx. (3.3.56)
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Combined with (3.3.56), (3.3.55) turns into

1 + |ξ|p . θp
 
B2R

|∇φξ|p +

 
BR

∣∣∣  
BθR(x)

∇φξ
∣∣∣pdx. (3.3.57)

Using now (3.3.52), we may absorb the first right-hand side term into the left-hand side for θ small
enough (independent of R), and therefore conclude that for some c > 0 (depending only on d, p, λ)

{r? = R} ⊂

{ 
BR

∣∣∣ 
BθR(x)

∇φξ
∣∣∣pdx ≥ 1

c
(1 + |ξ|p)

}
,

which yields (3.3.51) by Markov’s inequality and the stationarity of ∇φξ.

Step 2. Buckling argument.
Fix τ := 1− d−δ

d− δ
2

= δ
2d−δ > 0, to the effect that

d− δ
1− τ

= d− δ

2
, 1− τ

2
= 1− δ

2(2d− δ)
, ε := ( (d+1)(m̄−2)

2 ) ∧ ( δ8).

For all dyadic 1 ≤ R ≤ L, by (3.3.51) and by Proposition 5 with this choice of τ and r = θR, we
obtain for all q with q p2 ≥ 1 + d+1

ε ,

PL[r? = R] ≤ cqξq
p
2
qR−d

p
2
qEL

[
r

(d− δ
2

) p
2
q

?

]1− δ
2(2d−δ) (3.3.3)

≤ cqξq
p
2
qR−d

p
2
qEL

[
r?

(d− δ
2

) p
2
q
]1− δ

2(2d−δ)
.

(3.3.58)
Therefore, using a dyadic decomposition (the sum is actually finite since r? ≤ L), we deduce that
(up to changing the value of cξ)

EL
[
r?

(d− δ
2

) p
2
q
]

≤ 1 +
+∞∑
n=1

(2n)(d− δ
2

) p
2
qP[r? = 2n]

(3.3.58)
≤ 1 + cqξq

q p
2EL

[
r?

(d− δ
2

) p
2
q
]1− δ

2(2d−δ)
+∞∑
n=1

2(d− δ
2

)q p
2
n2−dq

p
2
n

≤ 1 + cqξq
q p

2EL
[
r?

(d− δ
2

) p
2
q
]1− δ

2(2d−δ)
.

Since both terms of this inequality are finite, this gives by Young’s inequality provided q p2 ≥ 1+ d+1
ε

EL
[
r?

(d− δ
2

) p
2
q
] 1
q
. cξq

p 2d−δ
δ ,

from which the stretched exponential moment bound (3.3.48) follows with γ := δ
8 (cf. Lemma 31),

which is not expected to be sharp.

We conclude this section with the proof of Proposition 5.

Proof of Proposition 5. We split the proof into three steps. In the first step, we compute the func-
tional derivative of F , in the sense of (3.7.43), and apply the logarithmic-Sobolev inequality in the
second step to control moments of F . In the third step, we then control these moments by suitable
moments of r? using the quenched weighted Meyers estimate in the large of Theorem 19.
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Step 1. Sensitivity calculus.
In this step, we take a slightly more general version of F (this will be further used in the proof of
Theorem 15), which we define, for some given g ∈ L2(QL)d (extended by periodicity on Rd), by

F :=

ˆ
QL

∇φξ · g.

We then argue that for all x ∈ QL,

∂xF =

ˆ
B(x)
|a◦(ξ +∇φξ)⊗∇u|, (3.3.59)

with the short-hand notation a◦(ζ) := (1 + |ζ|p−2)ζ and where u is the unique weak QL-periodic
solution (with zero average) of

−∇ · a∗ξ∇u = ∇ · g, (3.3.60)

we recall that a∗ξ is bounded from above and below, since a is assumed to be smooth, and satisfies
(3.3.6), cf. Lemma 25. Let denote by h a sequence that goes to zero and by δA a coefficient field
supported in B(x) (and extended by QL-periodicity) such that ‖δA‖L∞(Rd) ≤ 1. We let h be small
enough so that A+ hδA is uniformly elliptic, and define

δhF :=
F(A+ hδA)−F(A)

h
,

δhφξ :=
φξ(A+ hδA)− φξ(A)

h
, (3.3.61)

ahξ :=

ˆ 1

0
Da(·, ξ + t∇φξ(A+ hδA) + (1− t)∇φξ(A))dt. (3.3.62)

By the definition of F , we have δhF =
´
QL
∇δhφξ · g, and we need to characterize δhφξ. By the

defining equation (3.1.7), we obtain

−∇ ·
(
a(·, ξ +∇φξ + h∇δhφ)− a(·, ξ +∇φξ)

)
= h∇ · δAa◦(ξ +∇φξ(A+ hδA)), (3.3.63)

which we rewrite, by the fundamental theorem of calculus and the definition of ahξ , as

−∇ · ahξ∇δhφξ = ∇ · δAa◦(ξ +∇φξ(A+ hδA)). (3.3.64)

Assume that δhφξ converges weakly in H1
per(QL) to the solution δφξ ∈ H1

per(QL) of

−∇ · aξ∇δφξ = ∇ · δAa◦(ξ +∇φξ). (3.3.65)

Then limh↓0 δ
hF = δF =

´
g · ∇δφξ, which we now rewrite by duality. Testing (3.3.60) with δφξ

and then (3.3.65) with u, we obtain

δF =

ˆ
∇u · δAa◦(ξ +∇φξ),

and the claim (3.3.59) follows by taking the supremum over δA. It remains to argue in favor of the
convergence of δhφξ to δφξ, which actually holds in C1,α(QL). First, recall that {φξ(A+hδA)}h is a
bounded set in C1,α(QL) by Lemma 25. By testing (3.3.63) with hδhφξ, we obtain by monotonicity

ˆ
QL

|∇φξ(A+ hδA)−∇φξ(A)|2 + |∇φξ(A+ hδA)−∇φξ(A)|p . h2,
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so that ∇φξ(A + hδA) → ∇φξ(A) in Lp(QL), and therefore φξ(A + hδA) → φξ(A) in C1,α(QL) by
Arzela-Ascoli’s theorem as claimed.

Step 2. Application of the logarithmic-Sobolev inequality: For all q ≥ 1,

EL
[
F2q

] 1
q
. q(1 + |ξ|p)EL

[( ˆ
QL

r?(x)d−δ
(ˆ

B(x)
|∇u|2µξ

)
dx
)q] 1

q
. (3.3.66)

Since EL[∇φξ] = 0, by (3.7.44) and (3.3.59), we have for all q ≥ 1

EL
[
F2q

] 1
q
. qEL

[( ˆ
QL

(ˆ
B(x)
|a◦(ξ +∇φξ)||∇u|

)2
dx
)q] 1

q
. (3.3.67)

By Cauchy-Schwarz’ inequality, the definition (3.3.7) of µξ, and (3.3.5), we have for all x ∈ QL(ˆ
B(x)
|a◦(ξ +∇φξ)||∇u|

)2

.
ˆ
B(x)
|ξ +∇φξ|2(1 + |ξ +∇φξ|p−2)

ˆ
B(x)
|∇u|2µξ

(3.3.5)
. (1 + |ξ|p)r?(x)d−δ

ˆ
B(x)
|∇u|2µξ.

The claim (3.3.66) then follows in combination with (3.3.67).

Step 3. Proof of (3.3.49).
For 0 < τ < 1 given, we define ε as in (3.3.50), and set m := 2 + 2ε

d+1 , to the effect that m ≤ m̄ and
2ε
m−2 = d+ 1. Since r? is 1

16 -Lipschitz and r? ≥ 1, we have
ˆ
QL

r?(x)d−δ
( 

B(x)
|∇u|2µξ

)
dx .

ˆ
QL

( 
B(x)

rd−δ? |∇u|2µξ
)
dx,

so that by (3.7.65) combined with the estimate r? ≤ L, with periodicity, and using again the
Lipschitz-continuity of r?, we obtainˆ

QL

r?(x)d−δ
(  

B(x)
|∇u|2µξ

)
dx .

ˆ
QL

r?(x)d−δ
( 

B?(x)
|∇u|2µξ

)
dx.

Inserting the weight (1 + |x|
r )

2ε
m (1 + |x|

r )−
2ε
m , and using Hölder’s inequality in space with exponents

(m2 ,
m
m−2) followed by Hölder’s inequality in probability with exponents ( 1

1−τ ,
1
τ ), (3.3.66) turns into

1

q(1 + |ξ|p)
EL
[
F2q

] 1
q (3.3.68)

.EL
[( ˆ

QL

(1 + |x|
r )−d−1r?(x)

m
m−2

(d−δ) dx
)qm−2

m
( ˆ

QL

(1 + |x|
r )ε
( 

B?(x)
|∇u|2µξ

)qm
2 dx

) 2
m
] 1
q

≤EL
[( ˆ

QL

(1 + |x|
r )−d−1r?(x)

m
m−2

(d−δ) dx
)q m−2

m(1−τ)
] 1−τ

q EL
[( ˆ

QL

(1 + |x|
r )ε
(  

B?(x)
|∇u|2µξ

)m
2 dx

)q 2
mτ
] τ
q
.

By the change of variables x
r  x, Jensen’s inequality in space provided q ≥ m

m−2 = 1 + d+1
ε , and

the stationarity of r?, we control the first right-hand side term of (3.3.68) by

EL
[( ˆ

QL

(1 + |x|
r )−d−1r?(x)

m
m−2

(d−δ) dx
)q m−2

m(1−τ)
] 1−τ

q
. rd

m−2
m EL

[
r
q d−δ

1−τ
?

] 1−τ
q
. (3.3.69)
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For the second right-hand side term of (3.3.68), we appeal to the quenched weighted Meyers esti-
mate (3.3.23), which we may apply to equation (3.3.60) (rewriting the right-hand side as 1√

µξ
g
√
µξ)

with weight ωε,r since ε ≤ β
2 . By stationarity of r?, this yields

EL
[( ˆ

QL

(1 + |x|
r )ε
( 

B?(x)
|∇u|2µξ

)m
2 dx

) 2
mτ

q] τ
q
.|ξ| EL

[( ˆ
QL

ω2ε,r(x)
( 

B?(x)
|g|2 1

µξ

)m
2 dx

) 2
mτ

q] τ
q

. r−2d+ 2
m
dEL

[
r

4ε
mτ

q
?

] τ
q
, (3.3.70)

where we used that g = |Br|−11Br , that µξ ≥ 1, and (3.7.65). By (3.3.50) and our choicem = 2+ 2ε
d+1 ,

4ε
mτ ≤

d−δ
1−τ , to the effect that EL

[
r

4ε
mτ

q
?

] τ
q ≤ EL

[
r
q d−δ

1−τ
?

] 4ε(1−τ)
qm(d−δ) by Hölder’s inequality. Using (3.3.50)

again, this time in form of 4ε(1−τ)
m(d−δ) ≤

τ
2 , and the lower bound r? ≥ 1, (3.3.70) turns into

EL
[( ˆ

QL

(1 + |x|
r )ε
( 

B?(x)
|∇u|2µξ

)m
2 dx

) 2
mτ

q] τ
q
.|ξ| r

−2d+ 2
m
dEL

[
r
q d−δ

1−τ
?

] τ
2q
. (3.3.71)

The claim (3.3.49) then follows from (3.3.68), (3.3.69) and (3.3.71).

3.3.4 Annealed Meyers’ estimate

The annealed Meyers (or perturbative Calderón-Zygmund) estimates recently introduced by Duer-
inckx and Otto in [56] (see also [101]) constitute a very versatile upgrade of their quenched coun-
terpart in stochastic homogenization. In the present setting the annealed Meyers estimates take the
following form.

Theorem 22 (Annealed Meyers’ estimate). Under Hypothesis 3.1.2, for all ξ ∈ Rd, with κ :=
(m̄−2)∧1

8 > 0 (where m̄ is the Meyers exponent of Theorem 18), for all QL-periodic random fields g
and u related via (3.3.9), we have for all exponents 2− κ ≤ q,m ≤ 2 + κ and 0 < δ ≤ 1

2 ,
ˆ
QL

EL
[(  

B(x)
|∇u|2µξ

) q
2
]m
q
dx .|ξ| δ

− 1
4 | log δ|

1
2

ˆ
QL

EL
[(  

B(x)
|g|2
) q(1+δ)

2
] m
q(1+δ)

dx. (3.3.72)

The same result holds with aξ replaced by a∗ξ (the pointwise transpose field).

The proof is based on the quenched Meyers estimate in the large of Theorem 18, on the moment
bounds of Theorem 21 on the Meyers minimal radius (which allows us to use duality at the price
of a loss of stochastic integrability), real interpolation, and the following refined dual version of
the Calderón-Zygmund lemma due to Shen [147, Theorem 3.2], based on ideas by Caffarelli and
Peral [40].

Lemma 19 ([40, 147]). Given 1 ≤ q < m ≤ ∞, let F,G ∈ Lq ∩Lm(QL) be nonnegative QL-periodic
functions and let C0 > 0. Assume that for all balls D (of radius . L) there exist measurable functions
FD,1 and FD,2 such that F ≤ FD,1 + FD,2 and FD,2 ≤ F + FD,1 on D, and such that( 

D
F qD,1

) 1
q ≤ C0

(  
C0D

Gq
) 1
q
,
(  

1
C0
D
FmD,2

) 1
m ≤ C0

( 
D
F qD,2

) 1
q
.

Then, for all q < s < m, (ˆ
QL

F s
) 1
s
.C0,q,s,m

(ˆ
QL

Gs
) 1
s
.
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Before we prove Theorem 22, let us note that Theorem 21 allows one to pass from averages on
B?(x) to averages on B(x) using [56, Lemma 6.7] in the (slightly more general) form of

Lemma 20. Let r? be a stationary random field satisfying EL
[

exp(crα? )
]
≤ 2 for some α > 0 and

c ' 1. Set B?(x) := Br?(x)(x) for all x ∈ QL. For all f ∈ C∞per(QL;L∞(Ω)) and 1 ≤ q1 ≤ q2 < ∞,
we have

(i) for all r > q1,(ˆ
QL

EL
[( 

B?(x)
|f |2

) q1
2
] q2
q1 dx

) 1
q2 . ( 1

q1
−1
r )
−( 1

q1
− 1

2
)+ζ( 1

q1
−1
r )

1
q1
− 1
q2

(ˆ
QL

EL
[(  

B(x)
|f |2

) r
2
] q2
r
) 1
q2 ;

(ii) for all r < q1,(ˆ
QL

EL
[( 

B?(x)
|f |2

) q1
2
] q2
q1 dx

) 1
q2 & (1

r−
1
q1

)
( 1

2
− 1
q2

)+ζ(1
r−

1
q1

)
−( 1

q1
− 1
q2

)
(ˆ

QL

EL
[(  

B(x)
|f |2

) r
2
] q2
r
) 1
q2 ;

where we have set ζ(t) := log(2 + 1
t ), and the multiplicative constants depend on q1, q2, α.

The proof of this result is identical to that of [56, Lemma 6.7], noting that the assumption
EL
[

exp( 1
C r

d
?)
]
≤ 2 can be weakened to EL

[
exp( 1

C r
α
? )
]
≤ 2 for any α > 0 at the price of adding a

dependence on α in the multiplicative factors in the estimates, and Rd can be replaced by QL.

Proof of Theorem 22. We split the proof into three steps. In the first step, we upgrade Theorem 18
by adding expectations using Lemma 19 in a suitable way. At the price of a loss of stochastic
integrability we then remove the local averages at scale r? in Step 2 by using Lemma 20. The
formulation with local averages at unit scale allows us to conclude using a standard duality argument,
and real interpolation.

Step 1. Proof that for all 2 ≤ q < m < m̄, we have
ˆ
QL

EL
[(  

B?(x)
|∇u|2µξ

) q
2
]m
q
dx .|ξ|

ˆ
QL

EL
[(  

B5?(x)
|g|2
) q

2
]m
q
dx (3.3.73)

with the short hand notation B5?(x) := B5r?(x)(x).
Let 2 ≤ q1 ≤ m1 ≤ m̄. Let D be a ball centered at x ∈ QL and of radius 0 < rD . L, we define
D? := BrD∨(2r?(x))(x), and let N be the smallest integer so that D? ⊂ QNL. We then decompose u
as u = uD,1 + uD,2, where uD,1 is the QNL-periodic solution of −∇ · aξ∇uD,1 = ∇ · g√µξ1D? . Note
that uD,2 is aξ-harmonic on D?. We start with the control of uD,1 and claim that

ˆ
D
EL
[(  

B?(y)
|∇uD,1|2µξ

) q1
2
]
dy . EL

[ˆ
8D

( 
B5?(y)

|g|2
) q1

2 dy
]
. (3.3.74)

Assume first that rD ≥ 2r?(x), so that D? = D. By taking the expectation in Theorem 18, we have
ˆ
D
EL
[(  

B?(y)
|∇uD,1|2µξ

) q1
2
]
dy ≤ EL

[ ˆ
QNL

(  
B?(y)

|∇uD,1|2µξ
) q1

2 dy
]

(3.3.11)
. EL

[ ˆ
QNL

( 
B?(y)

|g|21D
) q1

2 dy
]
.
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By the 1
16 -Lipschitz property of r?, we have the implication for all z ∈ B?(y)

|y − x| ≥ 2rD =⇒ |z − x| ≥ |y − x| − r?(y) ≥ |y − x| − (r?(x) + 1
16 |y − x|)

≥ 15

16
|y − x| − r?(x) ≥ (15

8 −
1
2)rD ≥ rD =⇒ 1D(z) = 0,

so that (3.3.74) follows for rD ≥ 2r?(x) in the stronger form
ˆ
D
EL
[(  

B?(y)
|∇uD,1|2µξ

) q1
2
]
dy . EL

[ ˆ
2D

( 
B?(y)

|g|2
) q1

2 dy
]
.

If rD ≤ 2r?(x), then supD r? . infD r?, D? = B2r?(x)(x) =: B2?(x), and a plain energy estimate
yields
ˆ
D
EL
[(  

B?(y)
|∇uD,1|2µξ

) q1
2
]
dy . EL

[
|D|r?(x)−d

q1
2

(ˆ
QNL

|∇uD,1|2µξ
) q1

2
]

. EL
[
|D|r?(x)−d

q1
2

(ˆ
D?

|g|2
) q1

2
]
. EL

[
|D|
( 

B2?(x)
|g|2
) q1

2
]
,

and it remains to turn the right-hand side into an integral over D. For all y ∈ D, we have r?(y) ≥
r?(x)− 1

16rD ≥
7
8r?(x), and therefore for all z ∈ B2?(x), |z−y| ≤ |z−x|+ |x−y| ≤ 4r?(x) ≤ 5r?(y),

to the effect that B2?(x) ⊂ B5?(y). Recalling that supD r? . infD r?, this implies the following
stronger form of (3.3.74)

ˆ
D
EL
[(  

B?(y)
|∇uD,1|2µξ

) q1
2
]
dy . EL

[ˆ
D

( 
B5?(y)

|g|2
) q1

2 dy
]
.

We now turn to the control of uD,2, and claim that( 
1
8
D
EL
[(  

B?(y)
|∇uD,2|2µξ

) q1
2
]m1
q1 dy

) 1
m1 .

( 
D
EL
[( 

B?(y)
|∇uD,2|2µξ

) q1
2
]
dy
) 1
q1 . (3.3.75)

The starting point is the Minkowski inequality: Since m1
q1
≥ 1,(  

1
8
D
EL
[(  

B?(y)
|∇uD,2|2µξ

) q1
2
]m1
q1 dy

) 1
m1 ≤ EL

[( 
1
8
D

( 
B?(y)

|∇uD,2|2µξ
)m1

2 dy
) q1
m1

] 1
q1 .

(3.3.76)
We then appeal to the local Meyers estimate (3.3.10) to bound the right-hand side
 

1
8
D

( 
B?(y)

|∇uD,2|2µξ
)m1

2 dy .|ξ|
(  

1
4
D

( 
B?(y)

|∇uD,2|2µξ
)
dy
)m1

2
+

 
1
4
D

( 
B?(y)

|g|2(1−1D?)
)m1

2 dy.

Since for all y ∈ 1
4D, one has r?(y) ≤ r?(x) + 1

16
1
4rD ≤

3
4(rD ∨ (2r?(x))), B?(y) ⊂ D? and the second

right hand side term vanishes identically. Combined with (3.3.76) and Jensen’s inequality in space
(using that q1

2 ≥ 1), this entails( 
1
8
D
EL
[(  

B?(y)
|∇uD,2|2µξ

) q1
2
]m1
q1 dy

) 1
m1 ≤ EL

[(  
1
4
D

( 
B?(y)

|∇uD,2|2µξ
)
dy
) q1

2
] 1
q1

≤ EL
[  

1
4
D

(  
B?(y)

|∇uD,2|2µξ
) q1

2 dy
] 1
q1 ,
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from which (3.3.75) follows.

We are in the position to conclude. Setting F : x 7→ EL
[( ffl

B?(x) |∇u|
2µξ

) q1
2
] 1
q1 , G : x 7→

EL
[( ffl

B5?(x) |g|
2
) q1

2
] 1
q1 , FD,1 : x 7→ EL

[( ffl
B?(x) |∇uD,1|

2µξ

) q1
2
] 1
q1 , and FD,2 : x 7→ EL

[( ffl
B?(x) |∇uD,2|

2µξ

) q1
2
] 1
q1 ,

the assumptions of Lemma 19, and the claimed estimate (3.3.73) follows.

Step 2. Reformulation of (3.3.73).
Since both r? and 5r? satisfy stretched exponential moment bounds, Lemma 20 allows us to refor-
mulate (3.3.73) as: For all 2 ≤ q < m < m̄ and 0 < r ≤ 1

2 ,

ˆ
QL

EL
[(  

B(x)
|∇u|2µξ

) q
2
]m
q dx .|ξ|,r r−

m−2
2m | log r|

2(m−q)
qm

ˆ
QL

EL
[(  

B(x)
|g|2
) q+r

2
] m
q+r dx. (3.3.77)

Step 3. Proof of (3.3.72).
First, we show that for all m̄′ < m < q ≤ 2 and 0 < r � 1,
ˆ
QL

EL
[( 

B(x)
|∇u|2µξ

) q
2
]m
q dx .|ξ| r−

2−m
2m | log r|

2(q−m)
qm

ˆ
QL

EL
[(  

B(x)
|g|2
) q−r

2
] m
q−r dx. (3.3.78)

Indeed, by duality we have( ˆ
QL

EL
[(  

B(x)
|∇u|2µξ

) q
2
]m
q dx

) 1
m

= sup
h

{
EL
[ ˆ

QL

∇u · h√µξ
]}
,

where the supremum runs over maps h ∈ C∞per(QL, L
∞(dPL))d such that

´
QL

EL
[( ffl

B(x) |h|
2
) q′

2
]m′
q′ dx =

1. For such h, denote by vh the unique QL-periodic solution of −∇ · a∗ξ∇vh = ∇ · (h√µξ). Testing
this equation with u and the defining equation (3.3.9) for u by vh, we obtain (using periodicity in
the last equality)

ˆ
QL

∇u · h√µξ =

ˆ
QL

∇vh · g
√
µξ =

ˆ
QL

( 
B(x)
∇vh · g

√
µξ

)
dx.

By Cauchy-Schwarz’ inequality on B(x), followed by Hölder’s inequality with exponents (q−r, q−r
q−r−1)

on QL and with exponent (m,m′) in probability, this yields

∣∣∣EL[ ˆ
QL

∇vh · g
√
µξ

]∣∣∣ ≤ ( ˆ
QL

EL
[(  

B(x)
|g|2
) q−r

2
] m
q−r dx

) 1
m
(ˆ

QL

EL
[(  

B(x)
|∇vh|2µξ

) (q−r)′
2
] m′

(q−r)′ dx
) 1
m′
.

Since (q − r)′ − q′ = r
(q−1)(q−1−r) , we may apply (3.3.77) to ∇vh to the effect that∣∣∣EL[ ˆ

QL

∇vh · g
√
µξ

]∣∣∣
. r−

m′−2
2m′ | log r|

2(m′−q′)
q′m′

( ˆ
QL

EL
[(  

B(x)
|g|2
) q−r

2
] m
q−r dx

) 1
m
(ˆ

QL

EL
[(  

B(x)
|h|2
) q′

2
]m′
q′ dx

) 1
m′
,

from which (3.3.78) follows by the arbitrariness of h and the identities m′−2
2m′ = 2−m

2m and 2(m′−q′)
q′m′ =

2(q−m)
qm .
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Replacing r by qr in (3.3.77) and (3.3.78), and using the bounds m−2
2m ≤ 1

4 and 2(m−q)
qm ≤ 1

2 for

2 ≤ q ≤ m ≤ 3 and 2−m
2m ≤

1
4 and 2(q−m)

qm ≤ 1
2 for 3

2 ≤ m ≤ q ≤ 2, we have thus proved that (3.3.72)

holds for all 2 ≤ q < m < m̄ ∧ 3 and for all m̄′ ∨ 3
2 < m < q ≤ 2. By choosing κ = (m̄−2)∧1

8 ,
the validity of (3.3.72) in the full range of exponents 2 − κ ≤ m, q ≤ 2 + κ then follows by real
interpolation.

We conclude this subsection by the annealed version of the maximal regularity for the Laplacian.

Theorem 23. Let L ≥ 1. For all QL-periodic random fields g and u related via

−4u = ∇ · g,

we have for all exponents 1 < m, q <∞,(ˆ
QL

EL
[(  

B(x)
|∇u|2

) q
2
]m
q dx

) 1
m
.m,q

(ˆ
QL

EL
[( 

B(x)
|g|2
) q

2
]m
q dx

) 1
m
. (3.3.79)

A proof of this result can be found in [101, Section 7.1]. A simpler argument (based on CZ
estimates for Hilbert-valued operators and interpolation) would show that the multiplicative constant
in (3.3.79) is of the order m+m′ + q + q′ (this finer result will not be used here).

3.4 Control of correctors: Proof of Theorem 15

The proof relies on the following upgrade of Proposition 5 based on Theorem 21 and on Theorem 22.

Corollary 24. Under Hypothesis 3.1.2, there exists γ > 0 such that for all ξ ∈ Rd, L ≥ 1, and
all g ∈ L2(Rd) compactly supported in QL, the random field F :=

´
QL

g(∇φξ,∇σξ) satisfies for all
q ≥ 1

EL
[
|F|2q

] 1
q
.|ξ| q

γ

ˆ
QL

|g|2. (3.4.1)

For future reference, we state the following consequence of local regularity and of the hole-filling
estimate.

Lemma 21. Under Hypothesis 3.1.2, with 0 < δ ≤ d the nonlinear hole-filling exponent of Lemma 15,
we have for all ξ ∈ Rd and x ∈ Rd

‖ξ +∇φξ‖Cα(B(x)) . (1 + |ξ|)(r?(x))
d−δ
p . (3.4.2)

Proof. By the deterministic regularity theory of Lemma 25 applied to the equation (3.1.7) combined
with the estimate (3.3.5), we indeed have

‖ξ +∇φξ‖Cα(B(x)) .‖A‖
C0,α(Rd)

( 
B2(x)

|ξ +∇φξ|p
) 1
p

(3.3.5)
≤ ‖A‖

C0,α(Rd)
(1 + |ξ|)(r?(x))

d−δ
p .

Before we turn to the proof of Corollary 24, let us quickly argue that it yields Theorem 15.
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Proof of Theorem 15. By (3.4.2) and Theorem 21, assumption (3.7.49) in Proposition 10 is satisfied
for ∇φξ. Let us show that this also yields assumption (3.7.49) for ∇σξ. Indeed, by maximal

regularity for the Laplacian applied to equation (3.2.2) we have for all q > 1,
( ´

QL
|∇σξ|q

) 1
q
.

q
( ´

QL
|ξ+∇φξ|q

) 1
q
, so that assumption (3.7.49) for ∇σξ follows from taking the expectation of the

q-th power of this estimate and using the stationarity of the extended corrector gradient together
with the moment bound on ∇φξ. By (3.7.50), we can then pass to the limit L ↑ +∞ in the moment
bounds on the extended corrector gradient for the periodized ensemble, and obtain (3.2.6). Likewise,
the claimed estimate (3.2.7) follows from Corollary 24 for g compactly supported by passing to the
limit L ↑ ∞ using (3.7.50). The result for general g ∈ L2(Rd) is then obtained by approximation.
The control (3.2.8) of the growth of the extended corrector is a direct consequence of (3.2.7) by
“integration” (see for instance [54, Proof of Theorem 4.2, Step 3] – the argument is also displayed in
the proof of Corollary 16).

It remains to prove Corollary 24.

Proof of Corollary 24. We split the proof into two steps, first treat averages of ∇φξ and then turn
to averages of ∇σξ.

Step 1. Averages of ∇φξ.
In this step we set F :=

´
QL

g ·∇φξ for some g ∈ L2(Rd)d compactly supported in QL. The starting
point is the estimate (3.3.66) in the proof of Proposition 5, which takes the form for all q ≥ 1 of

EL
[
F2q

] 1
q
. q(1 + |ξ|p)EL

[( ˆ
QL

r?(x)d−δ
(ˆ

B(x)
|∇u|2µξ

)
dx
)q] 1

q
,

where u is the unique weak QL-periodic solution (with zero average) of (3.3.60), that is, −∇·a∗ξ∇u =
∇ · g. By duality, we may reformulate the right-hand side as

EL
[( ˆ

QL

r?(x)d−δ
( ˆ

B(x)
|∇u|2µξ

)
dx
)q] 1

q
= sup

EL[|X|2q′ ]=1

EL
[ˆ

QL

r?(x)d−δ
(ˆ

B(x)
|∇Xu|2µξ

)
dx
]
,

where the supremum runs over random variables X ∈ L2q′(dPL) which are independent of the space
variable. Let 0 < η < 1 be some exponent (to be fixed later) small enough so that q′

1+η > 1. We

then appeal to Hölder’s inequality with exponents ( q′

q′−1−η ,
q′

1+η ) and to the stationarity of r? to the
effect that

EL
[ ˆ

QL

r?(x)d−δ
(ˆ

B(x)
|∇Xu|2µξ

)
dx
]
≤ E

[
r

q′
q′−1−η (d−δ)
?

] q′−1−η
q′

ˆ
QL

EL
[(  

B(x)
|∇Xu|2µξ

) q′
1+η
] 1+η

q′ dx.

Provided 2q′ ≤ 2 + κ, we may appeal to Theorem 22 on the second right-hand side factor, which
yields (recall that X does not depend on the space variable, that EL[|X|2q′ ] = 1 and that µξ ≥ 1)

ˆ
QL

EL
[(  

B(x)
|∇Xu|2µξ

) q′
1+η
] 1+η

q′ dx

. η−
1
4 | log(η)|

1
2

ˆ
QL

EL
[
|X|2q′

( 
B(x)
|g|2 1

µξ

)q′] 1
q′ dx . η−

1
4 | log(η)|

1
2

ˆ
|g|2.
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The choice η = 1
2(q′ − 1) = 1

2(q−1) is legitimate provided q � 1, in which case the above combined
with the moment bound on r? of Theorem 21 yields

EL
[
F2q

] 1
q
. qν(1 + |ξ|p)

ˆ
|g|2.

for some exponent ν > 0 independent of q. This entails (3.4.1) for ∇φξ for a suitable exponent γ > 0
(depending only on ν).

Step 2. Averages of ∇σξ.
Fix 1 ≤ i, j ≤ d. We proceed as for ∇φξ: We first derive a representation formula for the sensitivity
of F :=

´
QL

g·∇σξ,ij with respect to changes of the coefficient A, and then use the annealed estimates
of Theorems 22 and 23, and the moment bounds on r? to conclude.

Substep 2.1. Sensitivity calculus.
Recall the defining equation for σξ,ij

−4σξ,ij = ∂i(a(·, ξ +∇φξ) · ej)− ∂j(a(·, ξ +∇φξ) · ei).

As in Step 1 of the proof of Proposition 5, we proceed by duality. This time we introduce two
auxiliary functions u1 and u2 as QL-periodic solutions of

−4u1 = ∇ · g, −∇ · a∗ξ∇u2 = ∇ · a∗ξ(∂iu1ej − ∂ju1ei),

and claim that
δxF =

ˆ
B(x)
|a◦(ξ +∇φξ)⊗ (∇u2 + ∂iu1ej − ∂ju1ei)|. (3.4.3)

Let us quickly argue in favor of (3.4.3). With the notation of Step 1 of the proof of Proposition 5,
and δA an increment of A localized in B(x), we have by the defining equations for σξ,ij and u1

δhF :=
F(A+ hδA)−F(A)

h
=

ˆ
(∂iu1ej − ∂ju1ei) · δh

(
a(ξ +∇φξ)

)
,

where

δh
(
a(ξ +∇φξ)

)
=

(A+ hδA)a◦(ξ +∇φξ(A+ hδA))−Aa◦(ξ +∇φξ)
h

= δAa◦(ξ +∇φξ(A+ hδA)) + ahξ∇δhφξ.

Passing to the limit h ↓ 0, and testing the equation for u2 with δφξ and equation (3.3.65) with u2,
we obtain

δF = lim
h↓0

δhF =

ˆ
(∂iu1ej − ∂ju1ei) ·

(
δAa◦(ξ +∇φξ) + aξ∇δφξ

)
=

ˆ
(∇u2 + ∂iu1ej − ∂ju1ei) · δAa◦(ξ +∇φξ),

and the claim follows by taking the supremum over δA.

Substep 2.2. Proof of (3.4.1).
Combining (3.4.3) with the logarithmic-Sobolev inequality, we obtain for all q ≥ 1

EL
[
|F|2q

] 1
q
. qEL

[( ˆ
QL

( 
B(x)
|a◦(ξ +∇φξ)||∇u2 + ∂iu1ej − ∂ju1ei|

)2
dx
)q] 1

q
.
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We treat differently the terms involving u1 and u2. For u2 we proceed as in Step 3 of the proof of
Proposition 5 (using the definition (3.3.7) of µξ and (3.3.5)), whereas for u1 we directly use (3.4.2).
This yields

EL
[
|F|2q

] 1
q
.|ξ| qEL

[( ˆ
QL

r?(x)d−δ
(ˆ

B(x)
|∇u2|2µξ

)
dx
)q] 1

q

+ qEL
[( ˆ

QL

r?(x)
2(p−1)
p

(d−δ)
( ˆ

B(x)
|∇u1|2

)
dx
)q] 1

q
.

As in Step 1, this entails

EL
[
|F|2q

] 1
q
.|ξ| q sup

EL[|X|2q′ ]=1

EL
[ ˆ

QL

r?(x)d−δ
(ˆ

B(x)
|∇Xu2|2µξ

)
dx
]

+ q sup
EL[|X|2q′ ]=1

EL
[ ˆ

QL

r?(x)
2(p−1)
p

(d−δ)
(ˆ

B(x)
|∇Xu1|2

)
dx
]
.

For the second right-hand side term, we proceed as in Step 1 (using Theorem 23 in place of The-
orem 22), and it remains to treat the first right-hand side term. We then use Hölder’s inequality
with exponents ( q′

q′−(1+η)2 ,
q′

(1+η)2 ) for some 0 < η < 1 (so that q′ > (1 + η)2) to be chosen below to
the effect that

EL
[ˆ

QL

r?(x)d−δ
(ˆ

B(x)
|∇Xu2|2µξ

)
dx
]

≤ E
[
r

q′

q′−(1+η)2
(d−δ)

?

] q′−(1+η)2

q′
ˆ
QL

EL
[(  

B(x)
|∇Xu2|2µξ

) q′

(1+η)2
] (1+η)2

q′ dx.

We then appeal to the annealed Meyers estimate of Theorem 22 under the condition that 2 ≤
2q′

(1+η)2 ≤ 2 + κ, and obtain

ˆ
QL

EL
[(  

B(x)
|∇Xu2|2µξ

) q′

(1+η)2
] (1+η)2

q′ dx . η
1
4 | log η|

1
2

ˆ
QL

EL
[(  

B(x)
|µξ∇Xu1|2 1

µξ

) q′
1+η
] 1+η

q′ dx

since under the assumption 0 < η < 1
2 , we have (1 + η)2 − 1 . η. Bounding µξ by r

p−2
p

(d−δ)
?

(cf. Lemma 15) and using Hölder’s inequality with exponents (1+η
η , 1 + η), the integral in the right-

hand side is controlled by

ˆ
QL

EL
[(  

B(x)
|µξ∇Xu1|2 1

µξ

) q′
1+η
] 1+η

q′ . EL
[
r
q′
η
p−2
p

(d−δ)
?

] η
q′
ˆ
QL

EL
[(  

B(x)
|∇Xu1|2

)q′] 1
q′
.

We finally estimate the integral term by Theorem 23, which yields (since there is no loss in the
stochastic exponent, g is deterministic, and 1 ≤ q′ ≤ 2)

ˆ
QL

EL
[(  

B(x)
|∇Xu1|2

)q′] 1
q′ . EL

[
|X|2q′

] ˆ
QL

|g|2 =

ˆ
QL

|g|2.

The conclusion follows by choosing η = 1
4(q′ − 1) and q � 1, and using the moment bound on r? of

Theorem 21.



186
Chapter 3. Quantitative homogenization theory for nonlinear elliptic equations and

systems

3.5 Control of corrector differences: Proof of Theorem 17

3.5.1 Reduction argument

As for nonlinear correctors, by Proposition 10 it is enough to prove estimates for L-periodic ensembles
that are uniform with respect to L. We split the version of Corollary 24 for the linearized corrector
into two statements: Proposition 6 below shows that averages of the gradient of the extended
linearized corrector decay at the CLT scaling provided we have good control of moments of ∇φ̃ξ,e,
whereas Proposition 7 provides the latter.

Proposition 6. Under Hypothesis 3.1.2, for all ξ ∈ Rd and all 0 < θ < 1 there exists γ > 0
(depending on |ξ| and θ) such that for all L ≥ 1, all g ∈ L2(Rd) compactly supported in QL, and
all unit vectors e ∈ Rd, the random field F :=

´
QL

g(∇φ̃ξ,e,∇σ̃ξ,e) satisfies for all q ≥ 1 such that
2q′ ≤ 2 + κ (where κ > 0 is as in Theorem 22)

EL
[
|F|2q

] 1
q
.|ξ|,θ q

γEL
[(

sup
B
|∇φ̃ξ,e + e|2µξ

)q(1+θ)] 1
q(1+θ)

(ˆ
QL

|g|2
)

(3.5.1)

The proof of Proposition 6 relies on a sensitivity estimate by duality combined with the annealed
Meyers estimate of Theorem 22.

Proposition 7 (Control of moments). Under Hypothesis 3.1.2, for all ξ ∈ Rd, there exists γ > 0
(depending on |ξ|) such that for all L ≥ 1 and all unit vectors e ∈ Rd we have

EL
[(

sup
B
|∇φ̃ξ,e + e|2µξ

)q] 1
q
. qγ . (3.5.2)

The proof of Proposition 7 is based on Proposition 6 and a buckling argument. Because the
linearized corrector equation has unbounded coefficients, we cannot use the elegant approach of
[137] (see also [54, Proposition 4.5]) to buckle on moments of ∇φ̃ξ,e themselves. Instead, as we did
for r?,ξ,L, we have to go through the super levelsets of some minimal radius controlling the growth
of averages of |∇φ̃ξ,e|2µξ.

Before we turn to the proofs, let us show how bounds on linearized correctors allow us to derive
bounds on nonlinear corrector differences in form of Corollary 16.

Proof of Corollary 16. For simplicity, we only treat φξ.

Step 1. Statement for differences of corrector gradients.
By (3.7.50) in Proposition 10 in form of (note the difference of expectations)

E
[
|∇(φξ − φξ′)|q

] 1
q

= lim
L↑+∞

EL
[
|∇(φξ − φξ′)|q

] 1
q
,

it suffices to prove the statement for the periodized ensemble. By Lemma 27, PL-almost surely,
ξ 7→ ∇φξ is differentiable and we have by the fundamental theorem of calculus for all e ∈ Rd

e · (∇φξ −∇φξ′) =

ˆ 1

0
∇φ̃ξ+t(ξ′−ξ),e · (ξ′ − ξ)dt, (3.5.3)

so that by taking the q-th moment and using Proposition 7, one obtains

EL
[
|∇φξ −∇φξ′ |q

] 1
q ≤ |ξ − ξ′|

∑
i

ˆ 1

0
EL
[
|∇φξ+t(ξ′−ξ),ei |

q
] 1
q
. qγ |ξ − ξ′|, (3.5.4)
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which yields the claim by taking the limit L ↑ ∞.

Step 2. Statement for corrector differences.
By (3.7.51), since

´
B φξ = 0, for all x ∈ Rd we have for all q ≥ 1

E
[( ˆ

B(x)
|φξ − φξ′ |2

) q
2
] 1
q

= lim
L↑∞

EL
[( ˆ

B(x)

∣∣∣φξ − φξ′ −  
B
φξ − φξ′

∣∣∣2) q2 ] 1
q
. (3.5.5)

To control the right-hand side, we shall bound moments of periodic random fields ζ by moments of
averages of their gradients ∇ζ. Indeed, by Poincaré’s inequality on B(x) for x ∈ QL, we have for
c =

ffl
B ζ

EL
[(ˆ

B(x)
(ζ − c)2

) q
2
] 1
q
. EL

[
|∇ζ|q

] 1
q

+ EL
[∣∣∣  

B(x)
ζ − c

∣∣∣q] 1
q
, (3.5.6)

and it remains to estimate the second right-hand side term. For that purpose, we write 
B(x)

ζ −
 
B
ζ =

ˆ
QL

∇ζ · ∇hx,

where hx denotes the unique weak periodic solution in QL of −4hx = 1
|B|(1B(x) − 1B). We apply

this to ζ = φξ − φξ′ and rewrite the gradient as e · ∇ζ =
´ 1

0 ∇φξ+t(ξ′−ξ),e · (ξ
′ − ξ)dt, to the effect

that (with implicit sum on the repeated index i)
 
B(x)

(φξ − φξ′)−
 
B

(φξ − φξ′) = (ξ′ − ξ) ·
ˆ 1

0

ˆ
QL

∇φξ+t(ξ′−ξ),ei∇ihx.

Using Propositions 6 and 7, this yields

EL
[∣∣∣ 

B(x)
(φξ − φξ′)−

 
B

(φξ − φξ′)
∣∣∣q] 1

q ≤|ξ|,|ξ′| |ξ − ξ′|qγ
(ˆ

QL

|∇hx|2
) 1

2
.

A direct computation with Green’s kernel gives ‖∇hx‖L2(QL) . µd(x), and thus

EL
[∣∣∣  

B(x)
(φξ − φξ′)−

 
B

(φξ − φξ′)
∣∣∣q] 1

q ≤|ξ|,|ξ′| |ξ − ξ′|qγµd(x).

Combined with (3.5.6), (3.5.5), and (3.5.4), this entails E
[( ´

B(x) |φξ −φξ′ |
2
) q

2
] 1
q
. |ξ− ξ′|qγµd(x),

from which the claim follows using local regularity in form of Lemma 25 and (3.5.4) in the limit
L ↑ +∞.

Step 3. Regularity of ξ 7→ ā(ξ).
The starting point is the definition ā(ξ) := E

[
a(ξ + ∇φξ)

]
= E

[
A(0)a◦(ξ + ∇φξ(0))

]
and of its

approximation by periodization āL(ξ) := EL
[
A(0)a◦(ξ+∇φξ(0))

]
for all L ≥ 1. Since āL(ξ)→ ā(ξ)

as L ↑ +∞, it is enough to prove that DāL is Lipschitz-continuous uniformly with respect to L and
given for all ξ, e ∈ Rd by

DāL(ξ)e := āL,ξe = EL
[
A(0)Da◦(ξ +∇φξ(0))(e+∇φ̃ξ,e(0))

]
.

The differentiability of ξ 7→ āL(ξ) and the formula for DāL(ξ) follow from (3.5.3), the continuity of
ξ 7→ ∇φ̃ξ,e, and the moment bounds on ∇φ̃ξ,e. It remains to argue that ξ 7→ DāL(ξ) is Lipschitz-
continuous. Since ξ 7→ ∇φξ is continuously differentiable with stretched exponential moment bounds,
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it is enough to prove that ξ 7→ ∇φ̃ξ,e is itself Lipschitz-continuous in L2(dP). This is a direct
consequence of the defining equation (3.2.9) in the form for all ξ, ξ′ ∈ Rd of

−∇ ·Da(·, ξ +∇φξ)∇(φ̃ξ,e − φ̃ξ′,e) = ∇ · (Da(·, ξ +∇φξ)−Da(·, ξ′ +∇φξ′))(e+∇φ̃ξ′,e)

combined with the differentiability of ξ 7→ ∇φξ, uniform moment bounds on ∇φ̃ξ′,e and ∇φξ, and
an energy estimate.

3.5.2 CLT-scaling: Proof of Proposition 6

In this paragraph, we fix e and ξ, and use the short-hand notation r? for r?,ξ,L, φ for φξ, µ for µξ, φ̃
for φ̃ξ,e, σ̃ for σ̃ξ,e. We split the proof into three steps. In the first two steps, we derive sensitivity
estimates for averages of ∇φ̃ and of ∇σ̃, respectively, and then conclude in the third step using
Theorems 22 and 23.

Step 1. Sensivity formula for ∇φ̃: The random variable F1 :=
´
QL

g ·∇φ̃ (where g abusively denotes
ge′ for some unit vector e′ ∈ Rd) satisfies for all x ∈ QL

δxF1 =

ˆ
B(x)
|Da◦(ξ +∇φ)(e+∇φ̃)⊗∇u1 + a◦(ξ +∇φ)⊗∇u2|, (3.5.7)

where we recall that a◦ : ξ ∈ Rd 7→ (1 + |ξ|p−2)ξ, and where u1, u2 ∈ H1
per(QL) are the unique weak

solutions of
−∇ · a∗ξ∇u1 = ∇ · g (3.5.8)

and (with an implicit sum over the repeated index k)

−∇ · a∗ξ∇u2 = ∂k(D
2a(ξ +∇φ)(e+∇φ̃)ek · ∇u1). (3.5.9)

(These equations are well-posed since the QL-periodic maps ∇φ and a∗ξ are bounded almost surely.)

Let us give the quick argument. Following Step 1 of the proof of Proposition 5, we let δA be an
increment of A localized in B(x) and consider for h small enough

δhF1 :=
F1(A+ hδA)−F1(A)

h
=

ˆ
QL

g · ∇δhφ̃, δhφ̃ :=
φ̃(A+ hδA)− φ̃(A)

h
,

bhξ := A

ˆ 1

0
D2a◦(ξ + t∇φ(A+ hδA) + (1− t)∇φ(A))dt,

and recall the notation (3.3.61) and (3.3.62). By the defining equation (3.2.9) for the linearized
corrector, we obtain

−∇ · aξ∇δhφ̃ =∇ · δADa◦(ξ +∇φ(A+ hδA))(e+∇φ̃(A+ hδA))

+
1

h
∇ ·A(Da◦(ξ +∇φ(A+ hδA))−Da◦(ξ +∇φ(A))(e+∇φ̃(A+ hδA)),

which we rewrite, by the fundamental theorem of calculus and the definition of bhξ , as

−∇ · aξ∇δhφ̃ = ∇ · δADa◦(ξ +∇φ(A+ hδA))(e+∇φ̃(A+ hδA)) +∇ · bhξ∇δhφ(e+∇φ̃(A+ hδA)).

As in Step 1 of the proof of Proposition 5, we can pass to the limit as h ↓ 0 and obtain that δhφ̃
converges in C1,α(QL) to the solution δφ̃ ∈ H1

per(QL) of

−∇ · aξ∇δφ̃ = ∇ · δADa◦(ξ +∇φ)(e+∇φ̃) +∇ · bξ∇δφ(e+∇φ̃), (3.5.10)
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with bξ := D2a(ξ +∇φ).
We now proceed by duality. First, we test (3.5.10) with u1 and (3.5.8) with δφ̃ to obtain

δF1 = lim
h↓0

δhF1 =

ˆ
QL

∇u1 · δADa◦(ξ +∇φ)(e+∇φ̃) +

ˆ
QL

∇u1 · bξ∇δφ(e+∇φ̃). (3.5.11)

Second, we test (3.3.65) with u2 and (3.5.9) with δφ to get
ˆ
QL

∇u1 · bξ∇δφ(e+∇φ̃) =

ˆ
QL

∇u2 · δAa◦(ξ +∇φ). (3.5.12)

The combination of (3.5.11) and (3.5.12) then entails the claim (3.5.7) by taking the supremum over
δA.

Step 2. Sensitivity formula for ∇σ̃ij (for i, j fixed): The random variable F2 :=
´
QL

g ·∇σ̃ij satisfies
for all x ∈ QL

δxF2 =

ˆ
B(x)
|Da◦(ξ +∇φ)(e+∇φ̃)⊗ (∇w1 + ∂ivej − ∂jvei) + a◦(ξ +∇φ)⊗∇w2|, (3.5.13)

where the functions v, w1, w2 ∈ H1
per(QL) solve (with an implicit sum over the repeated index k)

−4v = ∇ · g, (3.5.14)
−∇ · a∗ξ∇w1 = ∇ · a∗ξ(∂ivej − ∂jvei), (3.5.15)

−∇ · a∗ξ∇w2 = ∂k
(
D2a(ξ +∇φ)(e+∇φ̃)ek · (∇w1 + ∂ivej − ∂jvej)

)
. (3.5.16)

We only display the algebra of the argument (passing already to the limit h ↓ 0, which entails
that δ = limh↓0 δ

h satisfies the Leibniz rule). Recall the defining equation for σ̃ij with the notation
aξ = Da(ξ +∇φ)

−4σ̃ij = ∂i(aξ(e+∇φ̃) · ej)− ∂j(aξ(e+∇φ̃) · ei).

First, by (3.5.14),

δF2 =

ˆ
(∂ivej − ∂jvei) · δ

(
Da(ξ +∇φ)(e+∇φ̃)

)
.

Since δ satisfies the Leibniz rule, we have

δ
(
Da(ξ +∇φ)(e+∇φ̃)

)
= δADa◦(ξ +∇φ)(e+∇φ̃) +D2a(ξ +∇φ)∇δφ(e+∇φ̃) + aξ∇δφ̃.

The first right-hand term directly gives the right-hand side contribution of (3.5.13) involving ∇v.
For the second term, we introduce the solutions w2,1 and w2,2 of −∇·a∗ξ∇w2,1 = ∂k

(
D2a(ξ+∇φ)(e+

∇φ̃)ek · (∂ivej − ∂jvej)
)
and −∇ · a∗ξ∇w2,2 = ∂k

(
D2a(ξ +∇φ)(e+∇φ̃)ek · ∇w1

)
to the effect that

w2 = w2,1 + w2,2. By using (3.3.65), we obatin
ˆ

(∂iuej − ∂juei) ·D2a(ξ +∇φ)∇δφ(e+∇φ̃) =

ˆ
∇w2,1 · δAa◦(ξ +∇φ).

This yields part of the right-hand side contribution of (3.5.13) involving ∇w2. We conclude with
the third term. Using first (3.5.15) we obtain

ˆ
(∂iuej − ∂juei) · aξ∇δφ̃ = −

ˆ
∇w1 · aξ∇δφ̃,
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and therefore using (3.5.10)
ˆ

(∂iuej − ∂juei) · aξ∇δφ̃ =

ˆ
∇w1 ·

(
δADa◦(ξ +∇φ)(e+∇φ̃) +D2a(ξ +∇φ)∇δφ(e+∇φ̃)

)
.

The first right-hand side term yields the right-hand side contribution of (3.5.13) involving ∇w1. For
the second term, we use w2,2, and conclude using (3.3.65) that

ˆ
∇w1 ·D2a(ξ +∇φ)∇δφ(e+∇φ̃) =

ˆ
∇w2,2 · δAa◦(ξ +∇φ).

This gives the second part of the right-hand side contribution of (3.5.13) involving ∇w2, recalling
that ∇w2 = ∇w2,1 +∇w2,2.

Step 3. Proof of (3.5.1).
From the logarithmic-Sobolev inequality, and Steps 1 and 2, we deduce by the triangle inequality
that for all q ≥ 1,

EL
[
|F|2q

] 1
q
. qEL

[( ˆ
QL

(ˆ
B(x)
|Da◦(ξ +∇φ)||e+∇φ̃|(|∇u1|+ |∇v|+ |∇w1|)

)2
dx
)q] 1

q

︸ ︷︷ ︸
=: I1

+ qEL
[( ˆ

QL

( ˆ
B(x)
|a◦(ξ +∇φ)|(|∇u2|+ |∇w2|)

)2
dx
)q] 1

q

︸ ︷︷ ︸
=: I2

.

To control these terms we proceed as in the proof of Corollary 24: using duality in probability and
Theorems 22 and 23. We treat the two right-hand sides separately. (In what follows, γ denotes
finite positive exponents independent of q, the precise value of which we are not interested in.)

Substep 3.1. Proof of

I1 . qγEL
[( ˆ

B(x)
|e+∇φ̃|2µξ

)q(1+θ)] 1
q(1+θ)

ˆ
QL

|g|2. (3.5.17)

The most technical term to treat is the one involving w1 (which is defined by solving two equations
successively, whereas u1 and v are defined by solving one equation only). By Cauchy-Schwarz’
inequality, and the definitions of a◦ and µξ,

EL
[( ˆ

QL

(ˆ
B(x)
|Da◦(ξ +∇φ)||e+∇φ̃||∇w1|

)2
dx
)q] 1

q

. EL
[(ˆ

QL

(ˆ
B(x)
|e+∇φ̃|2µξ

)( ˆ
B(x)
|∇w1|2µξ

)
dx
)q] 1

q
.

By duality (in probability), this entails

EL
[( ˆ

QL

( ˆ
B(x)
|Da◦(ξ +∇φ)||e+∇φ̃||∇w1|

)2
dx
)q] 1

q

. sup
X

EL
[ˆ

QL

(ˆ
B(x)
|e+∇φ̃|2µξ

)( ˆ
B(x)
|∇Xw1|2µξ

)
dx
]
,
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where the supremum runs over random variables X (independent of the space variable) such that
E
[
|X|2q′

]
= 1. To obtain the claimed dependence on the moments of

´
B(x) |e + ∇φ̃|2µξ, we set

η◦ := θ
(1+θ)(q−1) , to the effect that q′ > 1 + η◦ and q′

q′−(1+η◦)
= q(1 + θ), and use Hölder’s inequality

with exponents ( q′

q′−(1+η◦)
, q′

1+η◦
), so that the above turns into

EL
[( ˆ

QL

(ˆ
B(x)
|Da◦(ξ +∇φ)||e+∇φ̃||∇w1|

)2
dx
)q] 1

q

. EL
[( ˆ

B(x)
|e+∇φ̃|2µξ

)q(1+θ)] 1
q(1+θ)

sup
X

ˆ
QL

EL
[( ˆ

B(x)
|∇Xw1|2µξ

) q′
1+η◦

] 1+η◦
q′ dx.

For convenience, we rewrite 1 + η◦ as (1 + η)2, and apply Theorem 22 to (3.5.15), which yields
provided 2q′ ≤ 2 + κ,

ˆ
QL

EL
[(ˆ

B(x)
|∇Xw1|2µξ

) q′

(1+η)2
] (1+η)2

q′ dx . ζ(η◦)

ˆ
QL

EL
[(ˆ

B(x)
|∇Xv|2µξ

) q′
1+η
] 1+η

q′ dx,

where ζ : t 7→ t−
1
4 | log t|

1
2 (since for 0 < η◦ <

1
2 , ζ(η) = ζ(

√
1 + η◦ − 1) . ζ(η◦)). By the bound

µξ . r
(d−δ) p−2

p
? and Hölder’s inequality with exponents (1+η

η , 1 + η), followed by Theorem 23 applied
to (3.5.14) (with exponent q′ . 1) we further have

ˆ
QL

EL
[( ˆ

B(x)
|∇Xv|2µξ

) q′
1+η
] 1+η

q′ dx . EL
[
r
q′
η

(d−δ) p−2
p

?

] η
q′
ˆ
QL

EL
[(ˆ

B(x)
|∇Xv|2

)q′] 1
q′ dx

. EL
[
r
q′
η

(d−δ) p−2
p

?

] η
q′ EL

[
|X|2q′

] 1
q′
ˆ
QL

|g|2

= EL
[
r
q′
η

(d−δ) p−2
p

?

] η
q′
ˆ
QL

|g|2,

where we used that g is deterministic and E
[
|X|2q′

]
= 1. We have thus proved that

EL
[( ˆ

QL

(ˆ
B(x)
|Da◦(ξ +∇φ)||e+∇φ̃||∇w1|

)2
dx
)q] 1

q

. EL
[( ˆ

B(x)
|e+∇φ̃|2µξ

)q(1+θ)] 1
q(1+θ)

ζ(η◦)EL
[
r

q′√
1+η◦−1

p−2
p

(d−δ)
?

]√1+η◦−1
q′

ˆ
QL

|g|2.

Since η◦ = θ
(1+θ)(q−1) , by definition of ζ and by the moment bound on r? of Theorem 21,

qζ(η◦)EL
[
r

q′√
1+η◦−1

p−2
p

(d−δ)
?

]√1+η◦−1
q′ . qγ

for some exponent γ > 0 independent of q. This entails the claimed estimate (3.5.17).

Substep 3.2. Proof of

I2 . qγEL
[

sup
B
{|e+∇φ̃|2µξ}q(1+θ)

] 1
q(1+θ)

ˆ
QL

|g|2. (3.5.18)
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We only display the argument for the term involving∇w2, which is defined by solving three equations
successively (which will compel us to appeal to Theorem 22 twice in a row, and then to Theorem 23).
By Cauchy-Schwarz’ inequality, and the definition of a◦ and µξ,

EL
[( ˆ

QL

(ˆ
B(x)
|a◦(ξ +∇φ)||∇w2|

)2
dx
)q] 1

q
. EL

[( ˆ
QL

(ˆ
B(x)

µξ

)(ˆ
B(x)

µξ|∇w2|2
)
dx
)q] 1

q
.

By duality and the bound µξ . r
(d−δ) p−2

p
? , we have

EL
[( ˆ

QL

(ˆ
B(x)
|a◦(ξ +∇φ)||∇w2|

)2
dx
)q] 1

q
. sup

X
EL
[ˆ

QL

r
(d−δ) p−2

p
?

(ˆ
B(x)

µξ|∇Xw2|2
)
dx
]
,

where the supremum runs over random variables X (thus independent of the space variable) such
that E

[
|X|2q′

]
= 1. We now introduce exponents: η2 := 1

q−1
θ

8(1+θ) and η1 := 1
(q−1)(1+η2)2(1+θ)

which

are chosen so that q′

(1+η2)2η1
= q(1 + θ) and q′

(1+η2)3(1+η1)
> 1. Let us quickly check the second

property:

(1+η2)3(1+η1) = (1+η2)3+
1 + η2

(q − 1)(1 + θ)
≤ 1+(7+

1

(q − 1)(1 + θ)
)η2+

1

(q − 1)(1 + θ)
< 1+

1

q − 1
= q′.

With these exponents at hands, we first use Hölder’s inequality with exponents ( q′

q′−(1+η2)3(1+η1)
, q′

(1+η2)3(1+η1)
)

together with the stationarity of r?, and obtain

EL
[ˆ

QL

r
(d−δ) p−2)

p
?

(ˆ
B(x)

µξ|∇Xw2|2
)
dx
]

. EL
[
r

q′

q′−(1+η2)3(1+η1)
(d−δ) p−2

p

?

] q′−(1+η2)3(1+η1)

q′
ˆ
QL

E
[(  

B(x)
µξ|∇Xw2|2

) q′

(1+η2)3(1+η1)
] (1+η2)3(1+η1)

q′ dx.

Provided 2q′ ≤ 2 + κ, Theorem 22 applied to (3.5.16) yields

ˆ
QL

E
[(  

B(x)
µξ|∇Xw2|2

) q′

(1+η2)3(1+η1)
] (1+η2)3(1+η1)

q′ dx

. ζ(η2)

ˆ
QL

EL
[(  

B(x)
µ−1
ξ |D

2a(ξ+∇φ)|2|e+∇φ̃|2(|∇Xw1|2+|∇Xv|2)
) q′

(1+η2)2(1+η1)
] (1+η2)2(1+η1)

q′ dx.

Since µξ ≥ 1 and |D2a(ξ +∇φ)| ≤ µξ, this yields

ˆ
QL

E
[(  

B(x)
µξ|∇Xw2|2

) q′

(1+η2)3(1+η1)
] (1+η2)3(1+η1)

q′ dx

. ζ(η2)

ˆ
QL

EL
[

sup
B(x)
{|e+∇φ̃|2µξ}

q′

(1+η2)2(1+η1)

( 
B(x)

(|∇Xw1|2+|∇Xv|2)
) q′

(1+η2)2(1+η1)
] (1+η2)2(1+η1)

q′ dx.

We only treat the term involving w1, which is the most subtle of the two. We then apply Hölder’s
inequality with exponents (1+η1

η1
, 1 + η1), and use the stationarity of x 7→ supB(x){|e+∇φ̃|2µξ} and
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the definition of η1 and η2 to the effect that

ˆ
QL

EL
[

sup
B(x)
{|e+∇φ̃|2µξ}

q′

(1+η2)2(1+η1)

( 
B(x)

(|∇Xw1|2 + |∇Xv|2)
) q′

(1+η2)2(1+η1)
] (1+η2)2(1+η1)

q′ dx

≤ EL
[

sup
B
{|e+∇φ̃|2µξ}q(1+θ)

] 1
q(1+θ)

ˆ
QL

EL
[(  

B(x)
|∇Xw1|2

) q′

(1+η2)2
] (1+η2)2

q′ dx.

In view of equation (3.5.15), one may appeal to Theorem 22, and obtain
ˆ
QL

EL
[(  

B(x)
|∇Xw1|2

) q′

(1+η2)2
] (1+η2)2

q′ dx . ζ(η2)

ˆ
QL

EL
[(  

B(x)
µξ|∇Xv|2

) q′
1+η2

] 1+η2
q′ dx.

We finally bound µξ using r?, use Hölder’s inequality with exponents (1+η2

η2
, 1 + η2) and we apply

Theorem 23 to equation (3.5.14)
ˆ
QL

EL
[(  

B(x)
µξ|∇Xv|2

) q′
1+η2

] 1+η2
q′ dx

≤ EL
[
r
q′
η2

(d−δ) p−2
p

?

] η
q′
ˆ
QL

EL
[(  

B(x)
|∇Xv|2

)q′] 1
q′ dx

. EL
[
r
q′
η

(d−δ) p−2
p

?

] η2
q′ EL

[
|X ′|2q′

] ˆ
QL

|g|2 = EL
[
r
q′
η2

(d−δ) p−2
p

?

] η2
q′
ˆ
QL

|g|2.

As in Substep 3.1, the above estimates combine to (3.5.18) using Theorem 21 and our choice of η2.

3.5.3 Control of level sets: Proof of Proposition 7

As mentioned above, we do not buckle on moments of ∇φ̃ξ,e but rather on a minimal scale that
controls the growth of R 7→

ffl
BR
|∇φ̃ξ,e|2µξ by the growth of

ffl
B2R

µξ.

Definition 3.5.1 (Linear minimal scale). Let ξ ∈ Rd, L ≥ 1, |e| = 1 and C > 0. For all x ∈ QL,
we define the linear minimal scale r̃?,ξ,e,L(x,C) via

r̃?,ξ,e,L(x,C) := inf
r=2N ,N∈N

{
∀R ≥ r :

 
BR

|∇φ̃ξ,e|2µξ ≤ C
 
B2R

µξ

}
. (3.5.19)

As for the Meyers minimal radius, r̃?,ξ,e,L(·, C) is bounded by L as soon as C is large enough, due
to periodicity and to the plain energy estimates for φ̃ξ,e in form of

´
QL
|∇φ̃ξ,e|2µξ .

´
QL

µξ. In what
follows we fix such a constant C, fix e and ξ, and use the short-hand notation r̃? for r̃?,ξ,e,L(·, C),
r? for r?,ξ,L, φ for φξ, and φ̃ for φ̃ξ,e. The upcoming lemma uses local regularity and hole-filling to
control supB |∇φ̃+ e|2µξ by r̃? and r?.

Lemma 22 (Quenched bounds on the linearized correctors). For all ξ ∈ Rd, there exist two ex-
ponents 0 < β ≤ d (the linear hole-filling exponent of Lemma 15) and γ > 0 and a non-negative
stationary random field χ (depending on r?, ‖A‖C0,α(Rd) and |ξ|) with the following properties: For
all x ∈ Rd

sup
B(x)
|e+∇φ̃|2µξ ≤ χ(x)(r̃?(x))d−β, (3.5.20)

and all q ≥ 1

EL[χq]
1
q .|ξ| q

γ . (3.5.21)
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Proof. We split the proof into two steps. In the first step, we control the Cα-norm of aξ that we
use in the second step to control the linearized corrector via classical Schauder theory for elliptic
systems. W.l.o.g we may assume that x = 0.

Step 1. Proof that

‖aξ‖Cα(B) ≤ Cr
(d−δ) p−2

p
? , (3.5.22)

for some constant C > 0 depending on d, p, ‖A‖C0,α(Rd), and |ξ|, where 0 < δ ≤ d is the nonlinear
hole-filling exponent of Lemma 15. (We recall that ‖X‖Cα(B) = ‖X‖L∞(B) + ‖X‖C0,α(B).)

On the one hand, by Lemma 25 applied to the equation (3.1.7) combined with the estimate
(3.3.5), we have

‖ξ +∇φ‖Cα(B) .‖A‖
C0,α(Rd)

( 
B2

|ξ +∇φ|p
) 1
p

(3.3.5)
≤ ‖A‖

C0,α(Rd)
(1 + |ξ|)r

d−δ
p

? . (3.5.23)

On the other hand, recall that aξ = ADa◦(ξ +∇φ) with a◦ : ζ ∈ Rd 7→ (1 + |ζ|p−2)ζ, and thus for
all ζ ∈ Rd

|Da◦(ζ)| . 1 + |ζ|p−2 and |D2a◦(ζ)| . 1 + |ζ|p−3. (3.5.24)

Therefore, by (3.5.23) and (3.5.24),

‖Da◦(ξ +∇φ)‖Cα(B) ≤ ‖Da◦(ξ +∇φ)‖L∞(B) + ‖D2a◦(ξ +∇φ)‖L∞(B)‖ξ +∇φ‖C0,α(B)

(3.5.24)
. 1 + ‖ξ +∇φ‖p−2

Cα(B)

(3.4.2)
. ‖A‖

C0,α(Rd)
(1 + |ξ|)p−2r

(d−δ) p−2
p

? , (3.5.25)

from which the claim (3.5.22) follows since ‖aξ‖Cα(B) ≤ ‖A‖Cα(B)‖Da◦(ξ +∇φ)‖Cα(B).

Step 2. Proof of (3.5.20).
We first argue that ˆ

B
|e+∇φ̃|2µξ . r̃d−β? r

p−2
p

(d−δ)+β
? . (3.5.26)

If r̃? < r?, the claim follows from the defining property (3.5.19) in form ofˆ
B
|e+∇φ̃|2µξ . 2r̃d?

 
Br̃?

(1 + |∇φ̃|2)µξ ≤ 2(C + 1)

If r̃? ≥ r?, we appeal to the hole filling estimate (3.3.25), to the defining property (3.5.19), and use
(3.3.2) & (3.3.3), to the effect that
ˆ
B
|e+∇φ̃|2µξ . rd?

 
Br?

|e+∇φ̃|2µξ
(3.3.25)
. r̃d−β? rβ?

 
Br̃?

|e+∇φ̃|2µ . r̃d−β? rβ?

 
Br̃?

µξ . r̃d−β? rβ? .

We now argue that (3.5.26) entails (3.5.20). By the Schauder estimate [76, Theorem 5.19] applied
to (3.2.9) (for which the constant depends algebraically on the ellipticity ratio and the C0,α-seminorm
of the coefficients, which we may encapsulate in the Cα-norm since µξ ≥ 1), and the bound (3.5.22)
on the coefficient and (3.5.26), there is some γ > 0 (depending on α and d) such that

‖e+∇φ̃‖L∞(B) . ‖aξ‖
γ
Cα(B)

( 
B2

|e+∇φ̃|2
) 1

2
(3.5.22),(3.5.26)

. r
γ(d−δ) p−2

p
? r̃

1
2

(d−β)
? r

1
2

((d−δ) p−2
p

+β)
? ,

which yields (3.5.20) for χ := Cr
2(γ+1)(d−δ) p−2

p
+β

? (for some constant C > 0 depending on d, p,
|ξ| and ‖A‖C0,α(Rd)). The claimed moment bounds on χ follow from Theorem 21 (for a suitable
γ > 0).
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The main result of this section is the following control of r̃?, which implies Proposition 7 in
combination with Lemma 22.

Proposition 8. There exists an exponent γ > 0 depending on |ξ| such that for all q ≥ 1, EL[r̃q?]
1
q .

qγ .

Proof. We split the proof into three steps. In the first step, we control the level set {r̃? = R} for all
dyadic R using averages of the corrector gradient. In Step 2, we use Proposition 6 to reformulate
the right-hand side using moments of r̃? itself, and then buckle in Step 3 by exploiting the gain of
integrability provided by the hole-filling exponent β > 0.

Step 1. Control of level sets of r̃?.
We claim that there exists a constant c > 0 (depending on ξ, d, p) such that for all dyadic R ∈ [1, L],
and all 0 < κ, ε < 1 and q ≥ 1

PL[r̃? = R] ≤ cqR−(d−β+2(1−κ)−ε)qEL
[
Cq?,Rr̃

(d−β)q
?

]
+ cqRεqEL

[
Cq?,R

( 
BR

∣∣  
BRκ (x)

∇φ̃
∣∣2dx)q],

(3.5.27)
where C?,R := R−ε‖µξ‖2L∞(B4R). By the defining property (3.5.19) of r̃? (with a constant C to be
chosen below), we have

 
B2R

|∇φ̃|2µξ ≤ C

 
B4R

µξ, (3.5.28)
 
BR/2

|∇φ̃|2µξ ≥ C

 
BR

µξ. (3.5.29)

By the Caccioppoli inequality of Lemma 26, (3.5.29) yields

inf
c∈Rd

1

R2

 
BR

|φ̃− c|2µξ +

 
BR

µξ & C

 
BR

µξ,

so that, provided C is chosen large enough in (3.5.19), we have

inf
c∈Rd

1

R2

 
BR

|φ̃− c|2µξ &
 
BR

µξ & 1.

Set cR :=
ffl
BR

ffl
BRκ (x) φ̃(y)dy dx. By the triangle inequality, Poincaré’s inequality in L2(BR), and

the definition of C?,R, the above turns into

1 . inf
c∈Rd

1

R2

 
BR

|φ̃− c|2µξ ≤
√
C?,RR

ε
2

1

R2

 
BR

|φ̃− cR|2

.
√
C?,RR

ε
2

( 1

R2

 
BR

∣∣φ̃(x)−
 
BRκ (x)

φ̃
∣∣2dx+

1

R2

 
BR

∣∣ 
BRκ (x)

φ̃− cR
∣∣2dx)

.
√
C?,RR

ε
2

(
R2(κ−1)

 
B2R

|∇φ̃|2 +

 
BR

∣∣  
BRκ (x)

∇φ̃
∣∣2dx)

(3.5.28)
.

√
C?,RR

ε
2

(
R2(κ−1)

√
C?,RR

ε
2 +

 
BR

∣∣ 
BRκ (x)

∇φ̃
∣∣2dx)

r̃?=R
= C?,RRε

(
R2(κ−1)R−d+β r̃d−β? +

 
BR

∣∣ 
BRκ (x)

∇φ̃
∣∣2dx) .
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The claim now follows from Markov’ inequality.

Step 2. Control of the right-hand side of (3.5.27): For all 0 < ε, κ, θ < 1, and all dyadic R and
exponents q ≥ 1

PL[r̃? = R] ≤ cqqγ(R−(d−β+2(1−κ)−ε)q +R−(dκ−ε)q)EL
[
r̃

(d−β)(1+θ)3q
?

] 1
(1+θ)3 , (3.5.30)

for some constant c > 0 depending on |ξ|, p, d, ε, κ, θ, but not on R and q.
Since r̃? ≤ L, it suffices to establish the statement for dyadic R ≤ L. By Lemma 32 and

Theorem 21, there exists γ > 0 such that for all q ≥ d
ε and R ≥ 1, we have

EL[Cq?,R]
1
q . qγ , (3.5.31)

where the multiplicative constant does not depend onR and ε. By Hölder’s inequality with exponents
(1+θ
θ , 1 + θ), we then get for the first right hand side term of (3.5.27)

EL
[
Cq?,Rr̃

(d−β)q
?

] 1
q ≤ EL

[
Cq

1+θ
θ

?,R

] θ
1+θEL

[
r̃

(d−β)(1+θ)q
?

] 1
q(1+θ)

.θ q
γEL

[
r̃

(d−β)(1+θ)q
?

] 1
q(1+θ)

. (3.5.32)

We turn to the second right hand side term of (3.5.27). By Hölder’s inequality with exponents
(1+θ
θ , 1 + θ), stationarity of ∇φ̃, and (3.5.31), we first have

EL
[
Cq?,R

( 
BR

∣∣ 
BRκ (x)

∇φ̃
∣∣2dx)q] 1

q ≤ EL
[
Cq

1+θ
θ

?,R

] θ
q(1+θ)EL

[(  
BR

∣∣ 
BRκ (x)

∇φ̃
∣∣2dx)q(1+θ)] 1

q(1+θ)

.θ qγEL
[∣∣  

BRκ
∇φ̃
∣∣2q(1+θ)

] 1
q(1+θ)

.

Then, by Proposition 6 applied to g = |BRκ |−11BRκ , followed by Lemma 22, by Hölder’s inequality
with exponent (1+θ

θ , 1 + θ), and (3.5.21), we have

EL
[∣∣  

BRκ
∇φ̃
∣∣2q(1+θ)

] 1
q(1+θ)

.|ξ|,θ qγEL
[(

sup
B
|∇φ̃ξ,e + e|2µξ

)q(1+θ)2] 1
q(1+θ)2

(ˆ
QL

|g|2
)

. qγEL
[
χq(1+θ)2

r̃
(d−β)q(1+θ)2

?

] 1
q(1+θ)2R−dκ

. qγR−dκEL
[
r̃

(d−β)q(1+θ)3

?

] 1
q(1+θ)3

(where we changed the value of γ from one line to the other). Combined with (3.5.32), this entails
(3.5.30) by redefining γ once more.

Step 3. Buckling argument.
Recall that all the quantities we consider are finite since r̃? ≤ L. We now express moments of r̃?
using its level sets and obtain by (3.5.30) for some K > 1 to be fixed below and all q ≥ 1

EL
[
r̃
q(d− β

K
)

?

]
≤ 1 +

∞∑
n=1

2nq(d−
β
K

)PL[r̃? = 2n]

(3.5.30)
≤ 1 +

∞∑
n=1

2nq(d−
β
K

)cqqγ(2−nq(d−β+2(1−κ)−ε) + 2−nq(dκ−ε))EL
[
r̃
q(d−β)(1+θ)3

?

] 1
(1+θ)3

≤ 1 + EL
[
r̃
q(d−β)(1+θ)3

?

] 1
(1+θ)3 cqqγ

∞∑
n=1

(2nq(−
β
K

+β−2(1−κ)+ε) + 2nq(d(1−κ)+ε− β
K

)).
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We now choose the exponents. We first fix 0 ≤ κ < 1 so that d(1 − κ) = β
2 , and then set ε := β

5d
and 1

K := 1− 1
5d , to the effect that

1

2
(2nq(−

β
K

+β−2(1−κ)+ε) + 2nq(d(1−κ)+ε− β
K

)) ≤ 2−nq
β
5d .

With this choice, the series is summable and the above turns into

E
[
r̃
q(d− β

K
)

?

]
≤ 1 + cqqγEL

[
r̃
q(d−β)(1+θ)3

?

] 1
(1+θ)3

for some redefined constant c. We may then absorb part of the right-hand side into the left-hand
side by Young’s inequality upon choosing 0 < θ < 1 so small that (d− β)(1 + θ)3 < d− β

K (which is
possible since K > 1), and the claimed moment bound follows for some suitable choice of γ > 0.

3.6 Quantitative two-scale expansion: Proof of Theorem 12

We assume δ ≤ 1, and split the proof into four steps. In the first step, we show that the two-scale
expansion error satisfies a nonlinear PDE in conservative form (crucially using the flux corrector).
In the second step we give a bound for the H−1(Rd)-norm of the right-hand side, the moments of
which we control in the third step. We then conclude in the fourth step by using the monotonicity
of the heterogeneous operator aε. In the following, we use the short-hand notation ξk := (∇ū)k,δ.

Step 1. Equation for the two-scale expansion error:

−∇ · (a(xε ,∇ū
2s
ε,δ(x))− a(xε ,∇uε(x))) = ∇ ·Rε,δ(x), (3.6.1)

where

Rε,δ(x) =
( ∑
k∈δZd

ηk(x)(ā(ξk)− ā(∇ū(x))
)
−
( ∑
k∈δZd

εσξk(xε )∇ηk(x)
)

+
( ∑
k∈δZd

ηk(x)(a(xε ,∇ū(x) +∇φξk(xε ))− a(xε , ξk +∇φξk(xε )))
)

+
(
a
(
x
ε ,∇ū(x) +

∑
k∈δZd

∇φξk(xε )ηk(x)
)
−
∑
k∈δZd

ηk(x)a(xε ,∇ū(x) +∇φξk(xε ))
)

+
(
a
(
x
ε ,∇ū(x) +

∑
k∈δZd

∇φξk(xε )ηk(x) + εφξk(xε )∇ηk(x)
)
− a
(
x
ε ,∇ū(x) +

∑
k∈δZd

∇φξk(xε )ηk(x)
))
.

To start with, we expand ∇ū2s
ε,δ as

∇ · a(xε ,∇ū
2s
ε,δ) = ∇ · a

(
x
ε ,∇ū(x) +

∑
k∈δZd

εφξk(xε )∇ηk(x) +∇φξk(xε )ηk(x)
)
,
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which we rewrite in the form of the telescopic sum (using that
∑

k∈δZd ηk ≡ 1)

∇ · a(xε ,∇ū
2s
ε,δ(x))−∇ · ā(∇ū(x))

= ∇ ·
( ∑
k∈δZd

ηk(x)(ā(ξk)− ā(∇ū(x))
)

+∇ ·
( ∑
k∈δZd

ηk(x)(a(xε , ξk +∇φξk(xε ))− ā(ξk))
)

+∇ ·
( ∑
k∈δZd

ηk(x)(a(xε ,∇ū(x) +∇φξk(xε ))− a(xε , ξk +∇φξk(xε )))
)

+∇ ·
(
a
(
x
ε ,∇ū(x) +

∑
k∈δZd

∇φξk(xε )ηk(x)
)
−
∑
k∈δZd

ηk(x)a(xε ,∇ū(x) +∇φξk(xε ))
)

+∇ ·
(
a
(
x
ε ,∇ū(x) +

∑
k∈δZd

∇φξk(xε )ηk(x) + εφξk(xε )∇ηk(x)
)
− a
(
x
ε ,∇ū(x) +

∑
k∈δZd

∇φξk(xε )ηk(x)
))
.

First, using (3.1.5) and (3.1.6) we may replace −∇ · ā(∇ū(x)) by −∇ · a(xε ,∇uε(x)) in the left-hand
side. In the right-hand side, all the terms obviously converge strongly to zero in H−1(Rd) (and
are present in the definition of Rε,δ) except the second term, which we need to reformulate. More
precisely, using the flux corrector σ (see Definition 3.2.1) in form of the property (3.2.3), we have
for all k ∈ δZd (implicitly summing on the repeated indices ij)

∇ · ηk(x)(a(xε , ξk +∇φξk(xε ))− ā(ξk)) = ∇ · (ηk(x)∇ · σξk(xε )) = ∂j(ηk(x)∂iσξk,ji)

= ε∂i(∂jηk(x)σξk,ji(
x
ε ))− ∂i∂j(ηk(x))σξk,ji(

x
ε ), (3.6.2)

where the last term vanishes thanks to the skew-symmetry of (σξk,ji)j,i and the symmetry of
(∂i∂jηk)j,i. By the skew-symmetry of σξ, one has ε∂i(∂jηk(x)σξk,ji(

x
ε )) = −ε∇ · (σξk(xε )∇ηk(x)),

and we thus deduce

∇ ·
∑
k∈δZd

ηk(x)(a(xε , ξk +∇φξk(xε ))− ā(ξk)) = −ε∇ ·
( ∑
k∈δZd

σξk(xε )∇ηk(x)
)
.

This yields (3.6.1).

Step 2. Control by continuity of the operators: The remainder Rε,δ satisfiesˆ
Rd
|Rε,δ|2 .

∑
k

ˆ
Rd
ηk|ξk −∇ū|2(1 + |ξk|+ |∇ū|+ |∇φξk( ·ε)|)

2(p−2)

+

ˆ
Rd

∑
k

ηk

∣∣∣∑
k′

ε(φξ′k − φξk , σξ′k − σξk)( ·ε)∇ηk′
∣∣∣2(1 + |∇ū|+

∣∣∣∑
k′′

∇φξk′′ (
·
ε)ηk′′

∣∣∣)2(p−2)

+

ˆ
Rd

∑
k

ηk

∣∣∣∑
k′

ε(φξ′k − φξk)( ·ε)∇ηk′
∣∣∣2(p−1)

+
∑
k

ˆ
Rd
ηk

∣∣∣∑
k′

∇(φξk − φξk′ )(
·
ε)ηk′

∣∣∣2(1 + |∇ū|)2(p−2)

+
∑
k∈δZd

ˆ
Rd
ηk

∣∣∣ ∑
k′∈δZd

∇(φξk − φξk′ )(
·
ε)ηk′

∣∣∣2(p−1)
. (3.6.3)

This estimate directly follows from the definition of Rε,δ together with the continuity of the operator
in form of

|ã(ξ1)− ã(ξ2)| . C|ξ1 − ξ2|(1 + |ξ1|+ |ξ1 − ξ2|)p−2

for ã = aε and ã = ā, and with the observation that
∑

k′ ∇ηk′ = 0 so that for all maps (ζk)k one has∑
k′

ζk′∇ηk′ =
∑
k′

(ζk′ − ζk)∇ηk′ ,
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which we applied to ζk = ε(φξk , σξk)( ·ε).

Step 3. Control of moments of
´
Rd |Rε,δ|

2: For all q ≥ 1,

E
[( ˆ

Rd
|Rε,δ|2

) q
2
] 1
q ≤ C qγ(ε+ δ)µd(

1
ε )‖µd∇2ū‖L2(Rd), (3.6.4)

for some constant C and an exponent γ > 0 depending on ‖∇u‖L∞(Rd). We treat the second right-
hand side term of (3.6.3) (that we denote by R̃ε,δ) – the other terms are easier and can be treated
similarly. Since for all k′, |∇ηk′ | . δ−11Qδ(k′), we have∑

k

ηk

∣∣∣∑
k′

ε(φξ′k − φξk , σξ′k − σξk)( ·ε)∇ηk′
∣∣∣2 . ( εδ )2

∑
k

ηk
∑
k′

1Qδ(k′)|(φξ′k − φξk , σξ′k − σξk)( ·ε)|
2.

Inserting this estimate in R̃ε,δ, and using the assumption ∇ū ∈ L∞(Rd), we obtain for all q ≥ 1 by
Cauchy-Schwarz’ inequality followed by Minkowski’s inequality in probability, the support condition
Qδ(k) ∩Qδ(k′) 6= ∅ ⇒ |k − k′| < 2δ, and the stationarity of ∇φk′′ ,

E
[( ˆ

Rd
|R̃ε,δ|2

) q
2
] 1
q

.
ε

δ

(∑
k

∑
k′∈Q2δ(k)

ˆ
Qδ(k)

E[|(φξ′k−φξk , σξ′k−σξk)( ·ε)|
2q]

1
q

(
1+‖∇ū‖2(p−2)

L∞(Rd)
+

∑
k′′∈Q2δ(k)

E[|∇φξk′′ |
2q(p−2)]

1
q

)) 1
2
.

By Theorem 15 and Corollary 16, and using that µd satisfies µd(t1t2) . µd(t1)µd(t2) and supQ4δ(k) µd .
infQ4δ(k) µd, this turns into

E
[( ˆ

Rd
|R̃ε,δ|2

) q
2
] 1
q ≤ Cqγ( εδ )µd(

1
ε )
(∑

k

( inf
Q4δ(k)

µd)
∑

k′∈Q2δ(k)

|ξk′ − ξk|2|Qδ|
) 1

2
, (3.6.5)

for some constant C and an exponent γ > 0 depending on ‖∇u‖L∞(Rd). It remains to reformulate
the right-hand side sum. By Poincaré’s inequality on Q4δ(k), we have∑

k′∈Q2δ(k)

|ξk − ξk′ |2|Qδ| . δ2

ˆ
Q4δ(k)

|∇2ū|2,

so that (3.6.4) follows from (3.6.5).

Step 4. Conclusion by monotonicity.
We test (3.6.1) with uε − ū2s

ε,δ, and deduce by monotonicity of aε that
ˆ
Rd
|∇(uε − ū2s

ε,δ)|2 + |∇(uε − ū2s
ε,δ)|p .

ˆ
Rd
Rε,δ · ∇(uε − ū2s

ε,δ).

By Young’s inequality, we may absorb part of the right-hand side into the left-hand side, and obtain
after taking the q-th moment of this inequality

E
[( ˆ

Rd
|∇(uε − ū2s

ε,δ)|2 + |∇(uε − ū2s
ε,δ)|p

)q] 1
q
. E

[( ˆ
Rd
|Rε,δ|2

)q] 1
q
.

This entails the claim in combination with (3.6.4) and the choice δ = ε.
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3.7 Appendix

3.7.1 Deterministic PDE estimates and consequences

In this appendix, we recall mostly standard inequalities for nonlinear operators −∇ · a(·,∇) and
linear operators −∇ · a∇ (with unbounded coefficients) needed in the proofs of the paper. Based on
these results we also prove the qualitative differentiability of correctors (with respect to ξ) when the
equation is posed on a bounded domain, and we prove part of Theorem 14 for statistically isotropic
operators.

3.7.2 Nonlinear systems: Caccioppoli, hole-filling, and Schauder

We start with Caccioppoli’s inequality for nonlinear elliptic systems.

Lemma 23 (Caccioppoli’s inequality). Let r > 0, c2 > 0, x ∈ Rd and u ∈ W 1,p
loc (Rd) be a weak

solution of
−∇ · a(·,∇u) = 0 in Bc2r(x). (3.7.1)

Then for all 0 < c1 < c2, 
Bc1r(x)

|∇u|2(1 + |∇u|p−2) .c1,c2 inf
c∈Rd

 
Bc2r(x)\Bc1r(x)

( |u− c|
r

)2
+
( |u− c|

r

)p
. (3.7.2)

Proof. Without loss of generality, we may assume that x = 0. Let η ∈ C∞c (Rd) be a standard cut-off
for Bc1r in Bc2r and set ζ2 = ηp to the effect that 2ζ∇ζ = pηp−1∇η. By testing the equation (3.7.1)
with ζ2(u − c) and by making use of the monotonicity (3.1.4) of a and the property a(·, 0) = 0 in
form of

´
ζ2∇u · a(·,∇u) &

´
ζ2|∇u|2(1 + |∇u|p−2), we haveˆ

ζ2|∇u|2(1 + |∇u|p−2) .
ˆ
|ζ||∇ζ||u− c||∇u|+

ˆ
|ζ||∇ζ||u− c||∇u|p−1.

This implies the desired estimate (3.7.2) by Young’s inequality, with exponents (2, 2) and (p, p
p−1) for

the first and second right-hand side terms, respectively, together with the identity 2ζ∇ζ = pηp−1∇η,
and absorbing part of the right-hand side into the left-hand side.

The Widman hole-filling estimate for nonlinear systems follows from Lemma 23 by simple iter-
ation (see e.g. [76, Section 4.4]).

Lemma 24 (Hole-filling estimate). There exists 0 < δ ≤ d such that if u ∈ W 1,p
loc (BR) is a weak

solution of −∇ · a(·,∇u) = 0 in the ball BR for some R > 0, then for all 0 < r ≤ R we have 
Br

|∇u|2(1 + |∇u|p−2) .
(R
r

)d−δ  
BR

|∇u|2(1 + |∇u|p−2). (3.7.3)

We finally state regularity results for nonlinear equations, which are direct consequences of [153]
and [106, Theorem 4] (for the uniform bound on the gradient).

Lemma 25. Let a be a monotone operator which has the form (3.1.9) and assume that A ∈ Cα(B4R),
for some R > 0 and α ∈ (0, 1). Let u ∈W 1,p(B4R) be a distributional solution of

−∇ · a(·,∇u) = 0.

Then, u ∈ C1,α(BR) and there exists a constant c depending on R and ‖A‖Cα(B4R) such that

‖∇u‖Cα(BR) ≤ c
( 

B4R

|∇u|p
) 1
p
,

where we recall that ‖X‖Cα = ‖X‖L∞ + ‖X‖C0,α.
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3.7.3 Linear elliptic systems: Caccioppoli and Lemma 17

We state and prove Caccioppoli’s inequality for linear elliptic systems with unbounded coefficients,
from which we deduce Lemma 17 by optimizing the cut-off.

Lemma 26 (Caccioppoli’s inequality for linear elliptic systems with unbounded coefficients). Let
R > 0, a : BR 7→ Rd×d, and µ ∈ L1(BR) be such that there exists a constant κ > 0 for which we
have for all x ∈ BR and all h ∈ Rd

h · a(x)h ≤ |h|2µ(x) ≤ κh · a(x)h. (3.7.4)

For all functions g and u related (in the weak sense) in BR via

−∇ · a∇u = ∇ · (g√µ), (3.7.5)

we have for all 0 < ρ < σ ≤ R,
ˆ
Bρ

|∇u|2µ .κ J (ρ, σ, µ, u) +

ˆ
Bσ

|g|2, (3.7.6)

where

J (ρ, σ, µ, u, g) := inf
{ˆ

Bσ

µ
∣∣∣u−  

Bσ

u
∣∣∣2|∇η|2 ∣∣∣ η ∈ C1

c (Bσ), 0 ≤ η ≤ 1, η ≡ 1 in Bρ
}
. (3.7.7)

Proof. Without loss of generality, we may assume that
ffl
Bσ
u = 0. Let η ∈ C1

c (Bσ) be such that
η ≡ 1 in Bρ and 0 ≤ η ≤ 1. Testing the equation (3.7.5) with η2u and using the condition (3.7.4)
yield

ˆ
η2|∇u|2µ .κ

ˆ
η2|∇u|√µ|g|+

ˆ
|η||∇η||u||∇u|µ+

ˆ
|η||∇η||u|√µ|g|. (3.7.8)

By Young’s inequality with exponents (2, 2), after absorbing part of the right-hand side into the
left-hand side, and using in addition the support condition on η, (3.7.8) turns into

ˆ
Bρ

|∇u|2µ .κ
ˆ
Bσ

µ|u|2|∇η|2 +

ˆ
Bσ

|g|2,

which yields (3.7.6) by optimizing over η.

We then turn to the proof of Lemma 17.

Proof of Lemma 17. We split the proof into two steps.

Step 1. Proof that for all γ > 0

J (ρ, σ, µ, v) ≤ (σ − ρ)
−1− 1

γ

(ˆ σ

ρ

(ˆ
Sr

µ|v|2
)γ

dr
) 1
γ

, (3.7.9)

where Sr := ∂Br. By scaling we may assume without loss of generality that ρ = 1 and σ =
2. Estimate (3.7.9) essentially follows by minimizing among radially symmetric cut-off functions.
Indeed, for all ε > 0 we have

J (1, 2, µ, v) ≤ inf
{ˆ 2

1
η′(r)2

(ˆ
Sr

µ|v|2 + ε
)
dr
∣∣∣η ∈ C1(1, 2), 0 ≤ η ≤ 1, η(1) = 1, η(2) = 0

}
.
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This one-dimensional minimization problem can be solved explicitly. Set f(r) :=
´
Sr
µ|v|2 +ε. Using

the competitor η(r) := 1−
´ r
1 f
−1´ 2

1 f
−1

yields a control of this minimum by the harmonic average of f ,

J (1, 2, µ, v) ≤
(  2

1

(ˆ
Sr

µ|v|2 + ε
)−1

dr
)−1

.

By standard relations between quasi-arithmetic means, since γ > −1,( 2

1

(ˆ
Sr

µ|v|2 + ε
)−1

dr
)−1
≤
( 2

1

(ˆ
Sr

µ|v|2 + ε
)γ

dr
) 1
γ
,

and the claim (3.7.9) follows by letting ε ↓ 0.

Step 2. Proof of (3.3.16).
Let us first assume d ≥ 3 and note that q > d−1

2 implies q∗ ∈ [1, 2). Recall that for all s ∈ [1, d− 1),
r > 0 and φ ∈W 1,s(Sr), Poincaré-Sobolev’ inequality yields for s∗ = (d−1)s

d−1−s( 
Sr

|φ|s∗
) 1
s∗ . r

(  
Sr

|∇φ|s
) 1
s

+
( 

Sr

|φ|s
) 1
s
. (3.7.10)

By Hölder’s inequality with exponents (q, q
q−1), followed by (3.7.10) with s = q∗ and s∗ = 2q

q−1 ,
(3.7.9) turns into

J (ρ, σ, µ, v) ≤ 1

(σ − ρ)
1+ 1

γ

(ˆ σ

ρ

(ˆ
Sr

µq
) γ
q
(ˆ

Sr

|v|
2q
q−1

) (q−1)γ
q dr

) 1
γ

(3.7.10)
.q

1

(σ − ρ)
1+ 1

γ

( ˆ σ

ρ

( ˆ
Sr

µq
) γ
q
((ˆ

Sr

|∇v|q∗
) 2γ
q∗ + r−2γ

( ˆ
Sr

|v|q∗
) 2γ
q∗
)
dr
) 1
γ
.

We then choose γ = d−1
d+1 to the effect that γ

q + 2γ
q∗

= 1, so that by Hölder’s inequality with exponents
(γq ,

2γ
q∗

) we obtain

J (ρ, σ, µ, v) .q
1

(σ − ρ)
2d
d−1

(ˆ
Bσ\Bρ

µq
) 1
q
(( ˆ

Bσ\Bρ
|∇v|q∗

) 1
q∗ +

1

ρ2

(ˆ
Bσ\Bρ

|v|q∗
) 2
q∗
)
,

which is the desired estimate (3.3.16). For d = 2, in which case q∗ = 1, we use the one-dimensional
Sobolev inequality ‖φ‖L∞(Sr) . r

ffl
Sr
|∇φ| +

ffl
Sr
|φ| instead of (3.7.10), and (3.3.16) follows from

(3.7.9). The case d = 1 is similar.

3.7.4 Qualitative differentiability of correctors on bounded domains

In this section, we consider the approximation of correctors on bounded domains, both with Dirichlet
and periodic boundary conditions. More precisely, let D be a smooth bounded domain of Rd (resp.
a cube QL, L > 0), let A : D → Md(λ) be of class Cα (resp. Cαper(QL)), and set a : D × Rd →
Rd, (x, ξ) 7→ A(x)(1 + |ξ|p−2)ξ for some p ≥ 2. We show that the periodic corrector gradients
ξ 7→ (∇φξ,∇σξ), where (φξ, σξ) are solutions of (3.1.7) and (3.2.2) onD with homogeneous boundary
conditions (resp. QL-periodic with vanishing average), are Fréchet-differentiable and that their
derivatives are given by the linearized corrector gradients. More precisely:
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Lemma 27 (Differentiability of correctors). For all D the corrector gradients ξ 7→ (∇σξ,∇φξ) are
Fréchet-differentiable in C0(D) and for all directions e ∈ Rd we have

(∂ξ∇φξ · e, ∂ξ∇σξ · e) = (∇φ̃ξ,e,∇σ̃ξ,e),

where (φ̃ξ,e, σ̃ξ,e) solve (3.2.9) and (3.2.10) with homogeneous Dirichlet boundary conditions (resp.
QL-periodic with vanishing average).

Proof. We only give the arguments for ξ 7→ ∇φξ. The differentiability of ξ 7→ ∇σξ can be proved
similarly. Let ξ, e ∈ Rd, h ⊂ (0, 1) be a sequence that goes to 0, and set δhφξ :=

φξ+he−φξ
h . We

first show that we can extract a converging subsequence of (∇δhφξ) by local regularity and Arzela-
Ascoli’s theorem. Then, we show that this limit coincides with ∇φ̃ξ,e. The starting point is the
corrector equation (3.1.7) in the form

−∇ · (a(x, ξ+∇φξ+he)− a(x, ξ+∇φξ)) = ∇· (a(x, ξ+∇φξ+he)− a(x, ξ+he+∇φξ+he)), (3.7.11)

that we rewrite, using the smoothness of ξ 7→ a(·, ξ), as

−∇ · a(1)
h ∇δ

hφξ = ∇ · a(2)
h e, (3.7.12)

where

a
(1)
h :=

ˆ 1

0
Da(·, ξ +∇φξ + t(∇φξ+he −∇φξ))dt and a

(2)
h :=

ˆ 1

0
Da(·, ξ +∇φξ+he + (1− t)he)dt.

Next, for all ξ̃ ∈ Rd, using local regularity (this time up to the boundary) in form of Lemma 25
(applied to the equation (3.1.7)) and an energy estimate on D, we have

‖ξ̃ +∇φξ̃‖Cα(D) .D,‖A‖Cα(D)

(ˆ
D
|ξ̃ +∇φξ̃|

p
) 1
p
.D 1 + |ξ̃|p. (3.7.13)

Therefore, a(1)
h ∈ Cα(QL) and by using (3.7.13) for both ξ̃ = ξ and ξ̃ = ξ + he and arguing as in

(3.5.25), there exists a constant c depending on |ξ|, D , ‖A‖Cα(D) such that

‖a(1)
h ‖Cα(D) + ‖a(2)

h ‖Cα(D) ≤ c1. (3.7.14)

On the one hand, by testing the equation (3.7.12) with δhφξ and using that a(1)
h is uniformly elliptic,

we deduce ˆ
D
|∇δhφξ|2 .

ˆ
D
|a(2)
h |

2
(3.7.14)
. c1. (3.7.15)

On the other hand, by the Schauder estimate [76, Theorem 5.19] applied to (3.7.12), and the bounds
(3.7.14) and (3.7.15), there exists some γ > 0 (depending on α and d) such that

‖∇δhφξ‖Cα(D) . ‖a
(1)
h ‖

γ
Cα(D)

((ˆ
D
|∇δhφξ|2

) 1
2

+ ‖a(2)
h ‖Cα(D)

) (3.7.14),(3.7.15)
≤ c2, (3.7.16)

for a constant c2 depending on c1, d and D. By (3.7.16) and Arzela-Ascoli’s theorem, there exists
ψ̃ ∈ C1,α

0 (D) (resp. C1,α
per (QL)) such that (up to a subsequence that we do not relabel)

∇δhφξ
h↓0→ ∇ψ̃ in C0(D). (3.7.17)



204
Chapter 3. Quantitative homogenization theory for nonlinear elliptic equations and

systems

It remains to show that ∇ψ̃ = ∇φ̃ξ,e, which directly follows from the weak formulation of (3.7.12).
For all w ∈ H1

0 (D) (resp. H1
per(QL))

ˆ
D
∇w · a(1)

h ∇δ
hφξ = −

ˆ
D
∇w · a(2)

h e. (3.7.18)

Using the convergence of the gradient (3.7.17), we can pass to the limit as h ↓ 0 in (3.7.18), which
implies that ψ̃ solves (3.2.9). By uniqueness, ψ̃ = φ̃ξ,e, and (3.7.17) holds without extracting a
subsequence.

3.7.5 Periodic setting: Proof of Theorem 13

In this paragraph, we show that if we have a good control of the critical set of the corrector of the
leading order operator (an anisotropic p-Laplacian), then the homogenized operator ā belongs to
M(p, 1, 2, c) for some c > 0. In what follows we set b : (x, ξ) 7→ A(x)|ξ|p−2ξ and c : (x, ξ) 7→ A(x)ξ.

Since ā ∈M(p, 1, p, c) by construction, it suffices to prove the improved monotonicity property:
For all ξ1, ξ2 ∈ Rd,

(ā(ξ1)− ā(ξ2), ξ1 − ξ2) ≥ c|ξ1 − ξ2|2(|ξ1|p−2 + |ξ2|p−2). (3.7.19)

We first introduce b̄ : Rd → Rd, ξ 7→
ffl
Q b(x, ξ+∇ψξ(x))dx, where ψξ ∈W 1,p

per(Q) solves the corrector
equation

−∇ · b(x, ξ +∇ψξ(x)) = 0.

By homogeneity, for all t > 0 and all ξ ∈ Rd we have b̄(tξ) = tp−1b̄(ξ).

Step 1. Proof of (3.7.19) for |ξ1|, |ξ2| � 1.

Substep 1.1. Reformulation.
By Lemma 27, correctors are differentiable and we thus have for all ξ, e ∈ Rd

e ·Dā(ξ)e =

 
Q

(e+∇φ̃ξ,e) · aξ(e+∇φ̃ξ,e),

where φ̃ξ,e ∈ H1
per(Q) solves −∇ · aξ(e+∇φ̃ξ,e) = 0 and aξ : x 7→ Da(x, ξ +∇φξ(x)). Hence, for all

ξ1, ξ2 ∈ Rd we have

(ā(ξ1)− ā(ξ2), ξ1 − ξ2) =

ˆ 1

0
(ξ1 − ξ2) ·Dā(ξ1 + t(ξ2 − ξ1)) · (ξ1 − ξ2)dt. (3.7.20)

Since Dā is non-negative, the claim (3.7.19) follows for |ξ1|, |ξ2| � 1 provided we prove that e ·
Dā(ξ)e ≥ c|ξ|p−2 for all |ξ| � 1 and all e ∈ Rd with |e| = 1.

Fix such a direction e. For all s > 0 let ξs ∈ Rd be such that |ξs| = 1 and e · Dā(sξs)e =
inf |ξ|=1 e · Dā(ξ)e, which exists since ξ 7→ Dā(ξ) is continuous. In the following two substeps we
prove the needed estimate in form of

lim inf
s↑∞

e · 1
sp−2Dā(sξs)e > 0. (3.7.21)

Substep 1.2. Proof of
lim
s↑∞
‖ 1
sp−2asξs − bξs‖Cα(Q) = 0, (3.7.22)
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where bξ : x 7→ Db(x, ξ +∇ψξ(x)).
On the one hand, by the corrector equations for φξ and ψξ we have

−∇ · (a(ξ +∇φξ)− a(ξ +∇ψξ)) = ∇ · c(x, ξ +∇ψξ),

so that, testing with ψξ − φξ and using the monotonicity of a, we obtain

ˆ
Q
|∇(ψξ − φξ)|2(1 + |ξ +∇ψξ|p−2 + |ξ +∇φξ|p−2) .

ˆ
Q
|∇(ψξ − φξ)||ξ +∇ψξ|

.
ˆ
Q
|∇(ψξ − φξ)|(1 + |ξ +∇ψξ|)

p−2
2 (1 + |ξ +∇ψξ|)2− p

2

and thereforeˆ
Q
|∇(ψξ − φξ)|2(1 + |ξ +∇ψξ|p−2 + |ξ +∇φξ|p−2) .

ˆ
Q

(1 + |ξ +∇ψξ|)4−p.

Applied to ξ = sξs this yields using that ψsξs = sψξs

ˆ
Q
|∇(1

sφsξs − ψξs)|
p . s2(2−p)

ˆ
Q

(1 + |ξs +∇ψξs |p)
|ξs|=1

. s2(2−p). (3.7.23)

Next we argue that {1
sφsξs}s≥1 is a bounded sequence in Cα(Q), in which case (3.7.22) follows from

(3.7.23) by Arzela-Ascoli’s theorem. To this end we rewrite the corrector equation for χs := 1
sφsξs

as
−∇ · ãs(x, ξs +∇χs) = 0

with ãs(x, ξ) := b(x, ξ) + 1
sp−1 c(x, sξ). Since by assumption, ãs satisfies (3.2.19) for some ω indepen-

dent of s ≥ 1, {χs}s≥1 is indeed bounded in C1,α(Q) by [105, Theorem 13]. The conclusion then
follows using that 1

sp−2asξs = Dãs(x, ξs +∇χs) and that ξ 7→ Dãs(x, ξ) is continuous (uniformly wrt
s, x).

Substep 1.3. Proof of (3.7.21).
We assume without loss of generality that ξs → ξ∞. Since ξ 7→ ∇ψξ is Lipschitz from Rd to Cα(Q),
(3.7.22) can be upgraded to (along the subsequence giving the liminf)

lim
s↑+∞

‖ 1
sp−2asξs − bξ∞‖Cα(Q) = 0. (3.7.24)

By definition we have

e · 1
sp−2Dā(sξs)e =

 
Q

(e+∇φ̃sξs,e) · 1
sp−2a

sym
sξs

(e+∇φ̃sξs,e),

where asym
sξs

is the symmetric part of asξs . By assumption, there exists r > 0 such that Rd \ Tr(ξ∞)

is connected (where Tr(ξ∞) := {x + Br |x ∈ Rd, |ξ∞ +∇ψξ∞(x)| = 0}). Since [0, 1]d ∩ Rd \ Tr(ξ∞)
is closed and ∇ψξ∞ is continuous, there exists κ > 0 such that the symmetric part bsym

ξ∞
of bξ∞

satisfies bsym
ξ∞
|Q\Tr(ξ∞) ≥ κId. Hence, by (3.7.24), there exists s? < ∞ such that, for all s ≥ s?,

asym
sξs
|Q\Tr(ξ∞) ≥ 1

2κId. For all s ≥ s? we thus have

e · 1
sp−2Dā(sξs)e ≥

κ

2

ˆ
Q\Tr(ξ∞)

|e+∇φ̃sξs,e|2 ≥
κ

2
inf

φ̃∈H1
per(Q)

ˆ
Q\Tr(ξ∞)

|e+∇φ̃|2,
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which is positive since Rd \ Tr(ξ∞) is connected in Rd. This proves (3.7.21).

Step 2. Proof of (3.7.19) in the remaining range: |ξ1|, |ξ2| . 1 and |ξ2| � 1, |ξ1| . 1.
On the one hand, since c(x, ξ)ξ ≥ 1

C |ξ|
2, we have for all ξ1, ξ2 ∈ Rd

(ā(ξ1)− ā(ξ2), ξ1 − ξ2) ≥ c|ξ1 − ξ2|2,

from which (3.7.19) follows for |ξ1|, |ξ2| . 1. On the other, since ā ∈M(p, 1, p, C), for all ξ1, ξ2 ∈ Rd,

(ā(ξ1)− ā(ξ2), ξ1 − ξ2) ≥ c|ξ1 − ξ2|p,

from which (3.7.19) follows for |ξ2| � 1, |ξ1| . 1 using |ξ1 − ξ2|p & |ξ1 − ξ2|2(|ξ2|p−2 − |ξ1|p−2) &
|ξ1 − ξ2|2(1 + |ξ2|p−2 + |ξ1|p−2).

Remark 5. The strong assumption on the critical set of ψξ is solely used to ensure that

lim inf
s↑+∞

ˆ
Q

(e+∇φ̃sξs,e) · 1
sp−2a

sym
sξs

(e+∇φ̃sξs,e) ≥ inf
φ̃∈H1

per(Q)

ˆ
Q

(e+∇φ̃) · bsym
ξ∞

(e+∇φ̃),

which might not hold true in general due to the Lavrentieff phenomenon – see e.g. [155] in a similar
context.

3.7.6 Statistically isotropic random setting: Proof of Theorem 14

In this subsection, we exhibit a class of random monotone operators a whose homogenized operator
ā belongs toM(p, 1, 2, c) for some c > 0. If a is a p-Laplacian then ā is homogeneous of degree p−1.
The upcoming result relies on a perturbation of this property. To define this class we make both
structural assumptions on (x, ξ) 7→ a(x, ξ) and on the probability law P. We emphasize that our
arguments are purely qualitative and do not require Hypothesis 3.1.2. We start with the structural
assumption on the operator (which quantifies what we mean by perturbation of a p-Laplacian)

Definition 3.7.1. We define a class A of nonlinear maps â : [λ, 1]× Rd → Rd with quasi-diagonal
structure, that is, such that for all (α, ξ) ∈ [λ, 1]× Rd

â(α, ξ) = ρ(α, |ξ|)ξ, (3.7.25)

where ρ : [λ, 1] × R+ → R+ is continuously differentiable, and such that the map ξ 7→ â(α, ξ) is
asymptotically of p-Laplacian type. More precisely, we assume that infα ρ(α, t) ≥ λ(1 + tp−2) and
that there exist two differentiable functions ρ1 : [λ, 1] → R+ and ρ2 : [λ, 1] × R+ → R such that for
all (α, t) ∈ [λ, 1]× R+

ρ(α, t) = ρ1(α)tp−2 + ρ2(α, t),

and that there exist a constant C and an exponent 0 ≤ β < p− 2 such that

|ρ2(α, t)|+ t|∂tρ2(α, t)| ≤ C(1 + tβ).

As a consequence, â is variational in the sense that â(α, ξ) = DŴ (α, ξ), where Ŵ is given by
Ŵ (α, ξ) :=

´ |ξ|
0 sρ(α, s)ds ≥ λ(1

2 |ξ|
2 + 1

p |ξ|
p).

As the following examples show, A is not empty.

Example 3.7.1. The following nonlinear maps belong to A:
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1. The non-degenerate p-Laplacian operator â : [λ, 1]×Rd 3 (α, ξ) 7→ α(1+ |ξ|p−2)ξ, with ρ1(α) =
α and ρ2(α, t) = α (and therefore C = 1

2 and β = 0).

2. The operator â : [λ, 1]× Rd 3 (α, ξ) 7→
(

1+|ξ|p+q−2

1+α|ξ|q + 1
)
ξ, for any q ≥ 0, and with ρ1(α) := 1

α ,

ρ2(α, t) := α−tp−2

α(1+αtq) + 1, C = and β = (p− 2− q) ∨ 0.

We are in position to state the main result of this section.

Theorem 25. Let â ∈ A and let A : Rd → [λ, 1] be a stationary and ergodic random field (which
is locally Cα – this is convenient but not necessary) which is statistically isotropic in the sense that
for all rotations R ∈ SO(d), A and A(R·) have the same (joint) distribution. Consider the random
monotone operator a : Rd × Rd 3 (x, ξ) 7→ â(A(x), ξ). Then, the associated homogenized map ā
belongs toM(p, 1, 2, c) for some c depending on λ, p and â. In particular, for all ξ1, ξ2 ∈ Rd

(ā(ξ1)− ā(ξ2), ξ1 − ξ2) ≥ 1

c
(1 + |ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|2, (3.7.26)

and
|ā(ξ1)− ā(ξ2)| ≤ c(1 + |ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|. (3.7.27)

Note that the example of Theorem 14 satisfies the assumptions of Theorem 25. The proof of
Theorem 25 relies on an approximation argument, an ODE argument, and the following property.

Lemma 28. Let a◦ : Rd → Rd be such that for all ξ ∈ Rd

a◦(ξ) = ρ(|ξ|)ξ, (3.7.28)

where ρ : R+ → R+ is a differentiable function that satisfies for some constant constant c > 0 and
for all t > 0

d
dt

(tρ(t)) ≥ c(1 + tp)
p−2
p . (3.7.29)

Then, there exists a constant c̃ > 0 depending on c and p such that for all ξ1, ξ2 ∈ Rd

(a(ξ1)− a(ξ2), ξ1 − ξ2) ≥ c̃(1 + |ξ1|p−2 + |ξ2|p−2)|ξ1 − ξ2|2.

Proof. W.l.o.g we may assume that |ξ1| > |ξ2| > 0. We fix s > 0 and we define f : [s,+∞)→ R as

f : t 7→ tρ(t)− sρ(s)− c̃(1 + tp + sp)
p−2
p (t− s),

where c̃ will be fixed later. Differentiating f and using the assumption (3.7.29), we obtain

f ′(t) =
d
dt

(tρ(t))− c̃((p− 2)(1 + tp + sp)
− 2
p tp−1(t− s) + (1 + tp + sp)

p−2
p )

≥ c(1 + tp)
p−2
p − c̃((p− 2)(1 + tp + sp)

− 2
p tp−1(t− s) + (1 + tp + sp)

p−2
p ).

Since (t− s)tp−1 ≤ tp and 1 + tp + sp ≤ 2(1 + tp), this yields f ′(t) ≥ (c− 2c̃(p− 1))(1 + tp)
p−2
p . With

the choice c̃ = c
2(p−1) , this entails f

′(t) ≥ 0, and thus f(t) ≥ f(s), which takes the form

tρ(t)− sρ(s) ≥ c̃(1 + tp + sp)
p−2
p (t− s). (3.7.30)
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Used with s = 0, this implies the lower bound for all t1 > 0

ρ(t1) ≥ c̃(1 + tp1)
p−2
p . (3.7.31)

By the definition (3.7.28) of a◦, we have with the notation t1 = |ξ1| > t2 = |ξ2|,

(a◦(ξ1)− a◦(ξ2), ξ1 − ξ2) = t21ρ(t1) + t22ρ(t2)− (ξ1, ξ2)(ρ(t1) + ρ(t2))

= (t1ρ(t1)− t2ρ(t2))(t1 − t2) + (t1t2 − (ξ1, ξ2))(ρ(t1) + ρ(t2))

(3.7.30),(3.7.31)
≥ c̃(1 + tp1)

p−2
p (t1 − t2)2 + c̃(t1t2 − (ξ1, ξ2))(1 + tp1)

p−2
p

≥ c̃

2
(1 + tp1)

p−2
p |ξ1 − ξ2|2,

and the claim follows by redefining c̃.

We now prove Theorem 25.

Proof of Theorem 25. Since (3.7.27) is a direct consequence of the monotonicity of a and the bound
(3.1.8) on the corrector gradient, the subtle part is the proof of (3.7.26). We split the proof into
two steps. In the first step we argue that it suffices to prove a version of (3.7.26) obtained by an
approximation of the corrector on bounded domains, which we prove in the second step.

Step 1. Approximation.
By assumption there exists W : Rd × Rd → R such that a(x, ξ) = DW (x, ξ). Likewise, there exists
W̄ : Rd → R such that ā(ξ) = DW̄ (ξ). For all L ≥ 1, we denote by φLξ the unique weak solution in
W 1,p

0 (BL) of (3.1.7), and define

aL(ξ) :=

 
BL

a(x, ξ +∇φLξ (x))dx, WL(ξ) :=

 
BL

W (x, ξ +∇φLξ (x))dx,

which satisfy aL(ξ) = DWL(ξ). As a direct consequence of the homogenization result we have
almost-surely

lim
L↑+∞

(aL(ξ),WL(ξ)) = (ā(ξ), W̄ (ξ)).

Set āL(ξ) := E
[
aL(ξ)

]
and W̄L(ξ) := E

[
WL(ξ)

]
. Since we have the uniform almost sure bound

|aL(ξ)|+ |WL(ξ)| ≤ C(1 + |ξ|p), we obtain on the one hand that āL(ξ) = DW̄L(ξ) and on the other
hand (by dominated convergence) that

lim
L↑+∞

(āL(ξ), W̄L(ξ)) = (ā(ξ), W̄ (ξ)).

Hence, (3.7.26) follows if we prove that there exists a constant C > 0 independent of L such that
for all ξ1, ξ2 ∈ Rd we have

(āL(ξ1)− āL(ξ2), ξ1 − ξ2) ≥ 1

C
(1 + |ξ1|+ |ξ2|)p−2|ξ1 − ξ2|2. (3.7.32)

The advantage of (3.7.32) over (3.7.26) is that it involves correctors on a bounded domain rather
than on the whole space, for which differentiability with respect to ξ can be easily established
(cf. Lemma 27). The advantage of W̄L over WL (which motivates the choice of the ball BL for the
domain) is that, as W̄ , ξ 7→ W̄L is isotropic in the sense that there exists ζL : R+ → R such that
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W̄L(ξ) = ζL(|ξ|). In particular, we necessarily have āL(ξ) = (ζL)′(|ξ|) ξ
|ξ| , so that, by Lemma 28,

(3.7.32) will follow provided we show that t 7→ (ζL)′(t) is differentiable and satisfies for some c > 0
independent of L for all t > 0

(ζL)′′(t) ≥ c(1 + tp)
p−2
p . (3.7.33)

Fix a unit vector e ∈ Rd. By definition, we have

(ζL)′(t) = āL(te) · e = E
[  

BL

a(x, te+∇φLte(x)) · edx
]
.

By Lemma 27, correctors are differentiable, and differentiating the above yields using (3.2.9) (posed
on BL with Dirichlet boundary conditions)

(ζL)′′(t) = E
[  

BL

Da(x, te+∇φLte(x))(e+∇φ̃Lte,e(x)) · edx
]

= E
[  

BL

Da(x, te+∇φLte(x))(e+∇φ̃Lte,e(x)) · (e+∇φ̃Lte,e(x))dx
]
.

Since a(x, ξ) = â(A(x), ξ), ξ 7→ a(x, ξ) is differentiable and satisfies for some c > 0 and for all
ξ, h ∈ Rd

Da(x, ξ) : h⊗ h ≥ c(1 + |ξ|p−2)|h|2.

Hence (using that
´
BL
∇φ̃Lte,e = 0), (ζL)′′(t) ≥ cE

[ ffl
BL
|e + ∇φ̃Lte,e|2

]
≥ c, which yields (3.7.33)

provided t . 1. It remains to treat the case t� 1.

Step 2. Proof of (3.7.33).
If āL were the p-Laplacian, ζL would satisfy (ζL)′(t) = p

t ζ
L(t). The idea is to derive a similar

ODE in our setting based on the identity āL(ξ) = DW̄L(ξ), from which we shall prove (3.7.33) by
differentiating and using our structural assumptions on a.

Substep 2.1. Formula for ζL via an ODE argument.
On the one hand, by the weak formulation of (3.1.7) tested with φLte, we have

(ζL)′(t) =
1

t
E
[  

BL

a(x, te+∇φLte(x)) · (te+∇φLte(x))dx
]
,

which, in combination with the form of a, yields

t(ζL)′(t) = E
[ 

BL

ρ(A(x), |te+∇φLte(x)|)|te+∇φLte(x)|2dx
]

= E
[  

BL

ρ1(A(x))|te+∇φLte(x)|pdx
]

+ E
[  

BL

ρ2(A(x), |te+∇φLte(x)|)|te+∇φLte(x)|2dx
]
.

(3.7.34)

On the other hand, using thatW (x, ξ) =
´ |ξ|

0 sρ(A(x), s)ds and the decomposition of ρ, we also have

ζL(t) = W̄L(te) = E
[  

BL

ˆ |te+∇φLte(x)|

0
sρ(A(x), s)dsdx

]
=

1

p
E
[  

BL

ρ1(A(x))|te+∇φLte(x)|pdx
]

+ E
[  

BL

ˆ |te+∇φLte(x)|

0
sρ2(A(x), s)dsdx

]
. (3.7.35)
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From (3.7.34) and (3.7.35) we infer that ζL satisfies the differential relation

t(ζL)′(t)−pζL(t) = E
[ 

BL

ρ2(A(x), |te+∇φLte(x)|)|te+∇φLte(x)|2dx−p
 
BL

ˆ |te+∇φLte(x)|

0
sρ2(A(x), s)dsdx

]
,

which we rewrite as (ζL)′(t)− p
t ζ
L(t) = 1

th(t) with

h(t) := E
[  

BL

ρ2(A(x), |te+∇φLte(x)|)|te+∇φLte(x)|2dx− p
 
BL

ˆ |te+∇φLte(x)|

0
sρ2(A(x), s)dsdx

]
.

Let t? ≥ 1 to be fixed later. The solution of this ODE is explicitly given for all t ≥ t? by ζL(t) =
ζL(t?)
tp?

tp++tp
´ t
t?
s−1−ph(s)ds. Differentiating twice (which we can since t 7→ ∇φLte(x) is differentiable

for all x ∈ BL) , this yields

(ζL)′′(t)

= p(p−1)
(ζL(t?)

tp?
+

ˆ t

t?

s−1−ph(s)ds
)

︸ ︷︷ ︸
=: γL(t)

tp−2+
d2

dt2
(
tp
ˆ t

t?

s−1−ph(s)ds
)
− p(p− 1)tp−2

ˆ t

t?

s−1−ph(s)ds
)

︸ ︷︷ ︸
=: RL(t)

(3.7.36)

In the following two substeps we provide a bound from below for γL(t) and a bound from above for
RL(t).

Substep 2.2. Choice of t0? and lower bound on γL(t).
On the one hand, recall that ζL(t) = W̄L(te) and that W (x, ξ) =

´ |ξ|
0 sρ(A(x), s)ds ≥ λ(1

2 |ξ|
2 +

1
p |ξ|

p), so that

ζL(t) = W̄L(te) = EL
[

inf
v∈W 1,p

0 (BL)

 
BL

W (x, te+∇v)dx
]
≥ λ

p
EL
[

inf
v∈W 1,p

0 (BL)

 
BL

|te+∇v|p
]

=
λ

p
tp.

On the other hand, the assumption on ρ2 implies that there exists a constant c > 0 such that for all
t ≥ 1 and α ∈ [λ, 1],

|ρ2(α, t)|+ t|∂tρ2(α, t)| ≤ c(1 + tβ). (3.7.37)

(The constant c will change from line to line, but remains independent of t and L.) Hence, by the
(deterministic) energy estimate

ffl
BL
|∇φLξ |p ≤ c(1 + |ξ|p), (3.7.37) yields for all t ≥ 1

|h(t)| ≤ ctβ+2, (3.7.38)

so that ∣∣∣ ˆ ∞
t

s−1−ph(s)ds
∣∣∣ ≤ ctβ−(p−2).

Since β < p − 2, we deduce that for t0? ∼ 1 large enough (and independent of L) we have for all
t ≥ t? ≥ t0?

γL(t) ≥ λ

2p
. (3.7.39)

Substep 2.3. Choice of t1? and upper bound on RL(t).
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Since RL(t) = (p − 1)t−2h(t) + t−1h′(t), it remains to estimate h′(t). By differentiating h, using
(3.7.37), and rearranging the terms, Cauchy-Schwarz’ inequality yields

|h′(t)| ≤ cEL
[  

BL

(1 + |te+∇φLte|β)|te+∇φLte||e+∇φ̃Lte,e|
]

≤ cEL
[  

BL

(1 + |te+∇φLte|)β+1− p−2
2 (1 + |te+∇φLte|p−2)

1
2 |e+∇φ̃Lte,e|

]
≤ cEL

[  
BL

(1 + |te+∇φLte|p−2)|e+∇φ̃Lte,e|2
] 1

2EL
[  

BL

(1 + |te+∇φLte|)p−2(p−2−β)
] 1

2
.

For the second right-hand side factor, we use the (deterministic) energy estimate on ∇φLξ , which
yields for t ≥ 1

EL
[ 

BL

(1 + |te+∇φLte|)p−2(p−2−β)
] 1

2 ≤ ct
p
2
−(p−2−β),

whereas for the first right-hand side factor we use the (deterministic) energy estimate on ∇φLξ,e (in
favor of which we shall argue below), which yields for t ≥ 1

EL
[  

BL

(1 + |te+∇φLte|p−2)|e+∇φ̃Lte,e|2
] 1

2 ≤ ct
p−2

2 . (3.7.40)

These last three estimates then combine to |h′(t)| ≤ ctp−1−(p−2−β). With (3.7.38) and the formula
for RL(t), this entails for all t ≥ 1 the control |RL(t)| ≤ ctβ . In particular, since β < p − 2, there
exists t1? ≥ 1 such that for all t ≥ t1?, we have |RL(t)| ≤ λ(p−1)

4 tp−2.
We conclude with the argument in favor of (3.7.40). By testing (3.2.9) with φ̃Lte,e ∈ H1

0 (BL) we
obtain ˆ

BL

∇φ̃Lte,e ·Da(x, te+∇φLte)∇φ̃Lte,e =

ˆ
BL

∇φ̃Lte,e ·Da(x, te+∇φLte)e,

which, by our assumptions on a, entails
ˆ
BL

|∇φ̃Lte,e|2(1 + |te+∇φLte|p−2) .
ˆ
BL

|∇φ̃Lte,e|(1 + |te+∇φLte|p−2),

and therefore (3.7.40) by Cauchy-Schwarz’ inequality and the energy estimate on ∇φLte.

Substep 2.4. Definition of t? and proof of (3.7.33).
Set t? = t0? ∨ t1?, which is independent of L. Step 1 yields (3.7.33) in the regime t ≤ t?, whereas in
the regime t ≥ t?, (3.7.33) follows from (3.7.36) in combination with Substeps 2.2 and 2.3.

3.7.7 Periodization in law and functional inequalities

Periodization in law of a

We start with the definition of the periodized ensemble PL.

Definition 3.7.2. Let L ≥ 1. The probability PL is the stationary and centered Gaussian ensemble
of scalar fields G defined by the covariance function cL : x ∈ Rd 7→

∑
k∈Zd c(x + Lk). Clearly, the

covariance function cL and thus the realizations G are QL-periodic. We identify PL with its push
forward under the map G 7→ A := (x 7→ B(G(x))), where B is defined in Hypothesis 3.1.2.

We now recall the qualitative convergence as L ↑ +∞ (see Lemma 42 of Chapter 5 for a proof).
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Lemma 29. There exists a family of coupling probabilities PΩL indexed by L ≥ 1 between the
probabilities PL and P, that generate Gaussian fields GL and G of covariance functions cL and c,
respectively, and such that A := χ ? B(G) and AL := χ ? B(GL) satisfy for all R > 0 and q ≥ 1

EΩL

[
sup
QR

|A−AL|q
]
−→
L↑+∞

0. (3.7.41)

Functional calculus

The ensemble PL satisfies the following logarithmic-Sobolev inequality (see for instance [59, 48]).

Proposition 9. There exists ρ > 0 such that for all functional F of A with EL[|F |2] < +∞

EL[F 2 log(F )]− EL[F 2]EL[log(F )] ≤ 1

ρ
EL
[ ˆ

QL

|∂xF |2dx
]
, (3.7.42)

where for all x ∈ QL

∂xF (A) := sup
δA

lim sup
h↓0

F (A+ hδA)− F (A)

h
, (3.7.43)

and where the supremum runs over coefficient fields δA that are supported in B(x) and bounded by
1 in Cα(B(x)).5

The logarithmic Sobolev inequality (3.7.42) yields control of moments (see e.g. [60]).

Lemma 30. For all q ≥ 1 and all random variables F we have

EL
[
|F − E[F ]|q

] 1
q
.
√
q EL

[( ˆ
QL

|∂xF |2dx
) q

2
] 1
q
. (3.7.44)

The following standard result gives the link between algebraic moments and stretched exponential
moments for non-negative random variables.

Lemma 31. Let X be a non-negative random variable. We have the following equivalence:

∃C1 > 0 such that EL[exp( 1
C1
X)] ≤ 2 ⇔ ∃C2 > 0 such that ∀q ≥ 1,EL[Xq]

1
q ≤ qC2. (3.7.45)

The last result of this subsection allows us to exchange supremum and expectation.

Lemma 32. Let X be a stationary random field. If there exists an exponent γ > 0 such that for all
q ≥ 1

EL
[
‖X‖qL∞(B)

] 1
q ≤ qγ , (3.7.46)

then we have for all ε > 0, R ≥ 1, and q ≥ 1

EL
[
(R−ε‖X‖L∞(BR))

q
] 1
q
.d,ε q

γ . (3.7.47)

5The fact one can assume ‖δA‖Cα(B(x)) ≤ 1 comes from the convolution in (3.1.10).
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Proof. Let R ≥ 1 and ε > 0. Consider N(R, d) . Rd points (xi)i∈J1,NK ⊂ BR such that BR ⊂⋃N
i=1B(xi). We then have

‖X‖L∞(BR) ≤ max
i∈J1,NK

‖X‖L∞(B(xi)). (3.7.48)

By the discrete `q − `∞ estimate for all q ≥ 1, (3.7.48) turns into

‖X‖L∞(BR(x)) ≤
( N∑
i=1

‖X‖L∞(B(xi))

) 1
q
.

Therefore, by taking the the q-th moment, using the triangle inequality, the stationarity of X and
the assumption (3.7.46), we get

EL
[
‖X‖qL∞(BR)

] 1
q ≤ max

i∈J1,NK
EL
[
‖X‖qL∞(B(xi))

] 1
q
N

1
q

(3.7.46)
. qγR

d
q ,

which yields the desired estimate (3.7.47) provided q ≥ d
ε (and therefore in the whole range of

exponents by Hölder’s inequality).

Convergence of the periodization in law of the correctors

In this subsection (and here only), we denote by (∇φξ,∇σξ) the nonlinear corrector gradients asso-
ciated with the ensemble P, and by (∇φLξ ,∇σLξ ) the nonlinear corrector gradients associated with
the periodized ensemble PL.

Proposition 10. For all L ≥ 1, we consider the coupling ensemble EΩL [·] defined in Lemma 29.
Let ξ ∈ Rd. If (∇φLξ ,∇σLξ ) satisfies for all q ≥ 1

EL
[
|(∇φLξ ,∇σLξ )|q

] 1
q
.q 1 (3.7.49)

(where the multiplicative constant does not depend on L), then for all R ≥ 1 and q ≥ 1, we have

sup
QR

EΩL

[
|(∇φξ,∇σξ)− (∇φLξ ,∇σLξ )|q

] 1
q −→
L↑+∞

0. (3.7.50)

As a consequence, for all x ∈ Rd, we have

EΩL

[( ˆ
B(x)

∣∣∣(φξ, σξ)− (φLξ , σ
L
ξ ) +

 
B

(φLξ , σ
L
ξ )
∣∣∣2) q2 ] 1

q −→
L↑+∞

0. (3.7.51)

In addition, for all unit vectors e ∈ Rd, the linearized correctors (∇φ̃ξ,e,∇σ̃ξ,e) are well-defined, and
if for all q ≥ 1

EL
[
|(∇φLξ ,∇σLξ )|q

] 1
q
.q 1 (3.7.52)

then we have for all R ≥ 1 and q ≥ 1,

sup
QR

EΩL

[
|(∇φ̃ξ,e,∇σ̃ξ,e)− (∇φ̃Lξ,e,∇σ̃Lξ,e)|q

] 1
q −→
L↑+∞

0. (3.7.53)
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Proof. We first iteratively use Lemma 29 to construct the coupling ensemble EΩ[·] between the
ensembles E[·] and ELn [·], for n ∈ N (and a sequence Ln ↑ +∞) in such a way that it generates
Gaussian fields G and GLn , and that the joint law of (G,GLn) is the same under EΩ[·] and ELn [·]. In
particular, we first generate G (with a law determined by E[·]), and then we successively build the
Gaussian fields GLn in such a way that the conditional probabilities PΩ(GLn |G) are independent of
one another. Hereafter, for simplicity, we abusely use L instead of Ln, and replace the limit n ↑ +∞
by L ↑ +∞. We split the proof into three steps.

Step 1. Proof of (3.7.50).
We start with the argument for ∇φLξ , and first show that we can extract a converging subsequence
as L ↑ +∞. By Lemma 25 applied to (3.1.7) (with A replaced by AL) combined with (3.7.49), we
get for all R ≥ 1 and q ≥ 1

sup
L≥1

EΩ

[
‖ξ +∇φLξ ‖

q

Cα(QR)

] 1
q
.R sup

L≥1
EΩ

[( 
Q2R

|ξ +∇φLξ |p
) q
p
] 1
q
.R,|ξ|,q 1. (3.7.54)

By (3.7.54) and Arzela-Ascoli’s theorem, there exists ψ ∈ C1,α(QR, L
q(dPΩ)) such that (up to a

subsequence that we do not relabel)

sup
QR

EΩ

[
|∇φLξ −∇ψ|q

] 1
q →
L↑+∞

0. (3.7.55)

It remains to argue that ∇ψ = ∇φξ. Since, by construction, ∇ψ is stationary and has finite second
moment, it suffices to show that ψ solves (3.1.7). Let X ∈ L

p
p−1 (dPΩ), χ ∈ C∞c (Rd) and define

aL(x, ζ) = AL(x)(1 + |ζ|p−2)ζ. By equation (3.1.7) (with the ensemble PL) for φLξ , we have

EΩ

[
X

ˆ
Rd
∇χ(x) · aL(x, ξ +∇φLξ (x))dx

]
= 0.

Thus, using Lemma 29 and the convergence (3.7.55), we can pass to the limit when L ↑ +∞ to
obtain

EΩ

[
X

ˆ
Rd
∇χ(x) · a(x, ξ +∇φξ(x))dx

]
= 0,

which shows that ψ solves (3.1.7), and therefore that ∇ψ = ∇φξ and that (3.7.55) holds without
taking a subsequence. We proceed the same way to prove the convergence (3.7.50) for (∇σLξ ),
combining the equations (3.2.2) and (3.2.3) with the strong convergence

sup
QR

EΩL

[
|a(·, ξ +∇φLξ )− a(·, ξ +∇φξ)|q

]
→

L↑+∞
0,

which follows from (3.7.50) for (∇φLξ ).

Step 2. Proof of (3.7.51).
First we claim that for all R ≥ 1 and all functions ζ on QR we have the Poincaré inequality

ˆ
QR

∣∣∣ζ −  
B
ζ
∣∣∣2 . R2

 d = 1 :
√
R

d = 2 : log(R+ 1)
d > 2 : 1


ˆ
QR

|∇ζ|2. (3.7.56)

This simply follows by summation over dyadic scales of the following standard estimates for all
0 ≤ i ≤ logRˆ

Q2i+1

∣∣∣ζ −  
Q2i

ζ
∣∣∣2 . (2i)2

ˆ
Q2i+1

|∇ζ|2,
∣∣∣  

Q2i

ζ −
 
Q2i−1

ζ
∣∣∣2 . (2i)2

 
Q2i

|∇ζ|2.
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Applying (3.7.56) to ζ = (φξ, σξ) − (φLξ , σ
L
ξ ) and using the anchoring condition

ffl
B(φξ, σξ) = 0, for

all x ∈ Rd we have with R = 2(|x|+ 1)

ˆ
B(x)

∣∣∣(φξ, σξ)−(φLξ , σ
L
ξ )+

 
B

(φLξ , σ
L
ξ )
∣∣∣2 . R2

 d = 1 :
√
R

d = 2 : log(R+ 1)
d > 2 : 1


ˆ
QR

|∇(φξ, σξ)−∇(φLξ , σ
L
ξ )|2,

so that (3.7.51) follows from (3.7.50).

Step 3. Proof of (3.7.53).
The argument is essentially the same as for (3.7.50), and we only argue for ∇φ̃ξ,e. First, by (3.7.50)
and Lemma 13, the linearized extended corrector (φ̃ξ,e, σ̃ξ,e) is well-defined. By the Schauder theory
in form of [76, Theorem 5.19] applied to the equation (3.2.9) (the Hölder norm of the coefficients is
controlled by Lemma 25 and (3.7.54)) and assumption (3.7.52), supL≥1 E[‖e+∇φ̃Lξ,e‖

q

Cα(QR)
] .R,|ξ| 1

for all q ≥ 1. We then extract a converging subsequence as before and identify the limit using the
weak formulation of (3.2.9) together with the convergence DaL(·, ξ +∇φLξ ) →

L↑+∞
Da(·, ξ +∇φξ) in

C0(QR, L
q(dPΩ)) (which follows from (3.7.50)).

3.7.8 Large-scale averages

We prove in this section estimates used to control large-scale averages, which are variations around
[101]. We fix L ≥ 1 and ξ ∈ Rd, and use the short-hand notation r? for r?,ξ,L.

Lemma 33. Let m ∈ (0, 1), r ≤ 3r?(0) and f : Rd → R+ a measurable function. We have
 
Br

( 
B?(x)

f
)
dx .

( 
B 3

2 r

( 
B?(x)

f
)m

dx
) 1
m
. (3.7.57)

Proof. The estimate (3.7.57) follows from

sup
x0∈Br

 
B?(x0)

f .
( 

B 3
2 r

(  
B?(x)

f
)m

dx
) 1
m
. (3.7.58)

Let x0 ∈ Br be fixed. Since r?,ξ,L is 1
16 -Lipschitz, we have for all x ∈ B r

8

B?(x0) ⊂ Br?(x0)+ 9
8
r(x). (3.7.59)

Indeed, if y ∈ B?(x0) and x ∈ B r
8
, we have

|y − x| ≤ |y − x0|+ |x0 − x| ≤ r?,ξ,L(x0) + r +
r

8
= r?(x0) +

9

8
r.

By the 1
16 -Lipschitz property of r?, we have r?(0) − 1

16r ≤ r?(x0) ≤ r?(0) + 1
16r. Together with

the assumption r ≤ 2r?(0), this entails 13
16r?(0) ≤ r?(x0) and r?(x0) + 9

8r ≤
35
8 r?(0) so that for all

x ∈ B r
8
,

|B?(x0)| ∼ |Br?(x0)+ 9
8
r(x)|.

Combined with (3.7.59) this yields( 
B?(x0)

f
)m
.
 
B r

8

( 
B
r?(x0)+ 9

8 r
(x)
f
)m

dx.
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Now let N ∈ N depending only on d and (xi)i∈J1,NK ⊂ B 11
8
r be such that

B 11
8
r ⊂

N⋃
i=1

B 1
16
r(xi). (3.7.60)

We claim that

Br?(x0)+ 9
8
r ⊂

N⋃
i=1

Br?(x0)− 3
16
r(xi). (3.7.61)

Indeed, let y ∈ Br?(x0)+ 9
8
r and set z =

11
8
r

r?(x0)+ 9
8
r
y. Since |z| ≤ 11

8 r, there exists i ∈ J1, NK such that

|z − xi| ≤ 1
16r. Thus by the triangle inequality

|y − xi| ≤ |y − z|+ |z − xi| ≤ |y|

∣∣∣∣∣1− 11
8 r

r?(x0) + 9
8r

∣∣∣∣∣+
1

16
r.

Since y ∈ Br?(x0)+ 9
8
r and since the 1

16 -Lipschitz property of r? entails r?(x0) ≥ r?(0) − 1
16 |x0| ≥

r
3 −

r
16 = 13

48r ≥
1
4r, we have

|y|

∣∣∣∣∣1− 11
8 r

r?,ξ,L(x0) + 9
8r

∣∣∣∣∣ ≤ r?(x0)− 1

4
r,

and consequently

|y − xi| ≤
1

16
r + r?(x0)− 1

4
r = r?(x0)− 3

16
r,

which concludes the proof of (3.7.61). We deduce from the sub-additive property of x ∈ R+ 7→ xm

and the fact that for all i ∈ J1, NK, xi +B 1
8
r ⊂ B 3

2
r

 
B r

8

( 
B
r?(x0)+ 9

8 r
(x)
f
)m

dx .
N∑
i=1

 
B r

8

( 
B
r?(x0)− 3

16 r
(x+xi)

f
)m

dx .
 
B 3

2 r

( 
B
r?(x0)− 3

16 r
(x)
f
)m

dx,

which concludes the proof of (3.7.58) since the 1
16 -Lipschitz property of r? entails for all x0 ∈ Br

and x ∈ B 3
2
r

r?(x0)− 3

16
r ≤ r?(x) +

1

16
|x− x0| −

3

16
r ≤ r?(x) +

1

16
(
3

2
r + r)− 3

16
r ≤ r?(x).

Lemma 34. Let x0 ∈ Rd and r ≥ 3r?(x0), f : Rd → R+ a measurable function. We have
ˆ
Br(x0)

( 
B?(x)

f
)
dx .

ˆ
B 67

48 r
(x0)

f, (3.7.62)

and ˆ
B 17

12 r
(x0)

f .
ˆ
B2r(x0)

( 
B?(x)

f
)
dx. (3.7.63)
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By reverting from balls to cubes, this implies that there exists C ≥ 1 depending only on d such that
for all r ≥ Cr?(x0) ˆ

Qr(x0)

( 
B?(x)

f
)
dx .

ˆ
Q2r(x0)

f, (3.7.64)

and ˆ
Qr(x0)

f .
ˆ
Q2r(x0)

( 
B?(x)

f
)
dx. (3.7.65)

This constant C (which only depends on d and our upper bound 1
16 on the Lipschitz constant of r?)

will be used to define the best Lipschitz constant for r? (cf. Definition 3.3.1).

Proof. Without loss of generality, we may assume that x0 = 0. Since r? is 1
16 -Lipschitz, we have for

all integrable non-negative functions g
ˆ
Rd

( 
B?(x)

g
)
dx ∼

ˆ
Rd
g, (3.7.66)

cf. [80, (140)] (which relies on the construction of a Calderón-Zygmund partition of Rd based on
r?). We start with the proof of (3.7.62). Since r? is 1

16 -Lipschitz and 3r?(0) ≤ r, for all x ∈ Br,
r?(x) ≤ r?(0) + r

16 ≤
19
48r so that B?(x) ⊂ B 67

48
r. This yields (3.7.62) in form of

ˆ
Br

(  
B?(x)

f
)
dx =

ˆ
Br

(  
B?(x)

f1B 67
48 r

)
dx ≤

ˆ
Rd

( 
B?(x)

f1B 67
48 r

)
dx

(3.7.66)∼
ˆ
Rd
f1B 67

48 r
.

We now turn to (3.7.63). By (3.7.66),
ˆ
B 17

12 r

f ∼
ˆ
Rd

( 
B?(x)

f1B 17
12 r

)
dx.

Since r? is 1
16 -Lipschitz and 3r?(0) ≤ r, if |x| ≥ 2r, r?(x) ≤ r?(0) + 2

16r ≤
11
24r ≤

11
48 |x|, so that

B?(x) ⊂ Rd \B 85
48
r ⊂ Rd \B 17

12
r. Hence, exploiting the indicator function 1B 17

12 r
, the above turns into

ˆ
B 17

12 r

f ∼
ˆ
B2r

(  
B?(x)

f1B 17
12 r

)
dx ≤

ˆ
B2r

( 
B?(x)

f
)
dx,

that is, (3.7.63).
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Chapter 4

Price’s formula for infinite dimensional
Gaussian measure
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We extend the so-called Price’s formula (well known in finite dimension) to the case infinite dimen-
sional Gaussian field. It gives a general formula for the derivative of a functional with respect to
the covariance function, which is one of the main tool of Chapter 5. This Chapter is based on joint
work in preparation with Felix Otto.

The Chapter is organized as follows: In Section 4.1 we recall the framework of infinite dimensional
Gaussian field. In Section 4.2 we state and prove the extension of the Price’s formula to the infinite
dimensional Gaussian setting of Section 4.1. In Section 4.3, we discuss about the paring between
two bilinear forms and we prove that under additional assumptions, the paring can be rewriting in
a natural way that will be used in the next chapter.

4.1 Reminder on infinite dimensional Gaussian measures

We recall in this section the framework of infinite dimensional Gaussian field that we will use in this
chapter and in Chapter 5. For more details, we refer to the general book of Gaussian measures of
Bogachev [33].

We consider a centred Gaussian measure1 〈·〉 on a Banach space X, which is defined by impos-
ing that the push-forward under any bounded linear form ` ∈ X∗ is a centred one-dimensional
Gaussian. By the Cauchy-Schwarz inequality in L2

〈·〉, such a measure 〈·〉 defines a symmetric positive
semidefinite bilinear form c on X∗ via

c(`, `′) := 〈``′〉 for `, `′ ∈ X∗. (4.1.1)
1We use the symbol 〈·〉 to address both the ensemble and to denote its expectation operator.
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This bilinear form c determines the centred Gaussian measure 〈·〉, see [116, Proposition 3.9]. We
will assume that there exists an Hilbert space H densely embedded in X and that c is continuous as
a bilinear form in H∗. More precisely, since by the inclusion H ⊂ X we also mean that the topology
of H is finer than that of X, an element ` ∈ X∗ can be identified with a bounded linear form on H
and thus, by Riesz’s representation theorem, with an element of H itself. Hence we have

X∗ ⊂ H∗ ∼= H ⊂ X

with also the first embedding being dense. What we mean by the domination of c is

c(`, `) ≤ |`|2H for all ` ∈ X∗, (4.1.2)

where the norm on H ∼= H∗ is denoted by | · |H and the inner product by (·, ·)H .

It is well-known that such a Gaussian measure only exists provided the embedding H ⊂ X is
compact in a quantitative way. A simple sufficient criterion, see [33, Example 3.9.7.] serves as a
convenient assumption for our application:

‖h‖X ≤ |Ah|H , (4.1.3)

for a symmetric Hilbert-Schmidt operator A on H, 2where ‖ · ‖X denotes the norm of X. In view
of [33, Proposition A.2.6.(iii)], the assumption of symmetry is just for convenience. A quick way to
see the connection between (4.1.3) and the existence of a Gaussian measure 〈·〉 goes as follows: By
compactness and symmetric property of the Hilbert-Schmidt operator A, there exists an orthonormal
basis (hn)n∈N of H formed by eigenvectors of A with eigenvalues (µn)n∈N. Hence we obtain from
(4.1.3) that ‖h‖2X ≤

∑
n µ

2
n(hn, h)2

H and thus from (4.1.1) and (4.1.2) that 〈‖h‖2X〉 ≤
∑

n µ
2
n, which

is finite by the characterization of the Hilbert-Schmidt property. Note that by Fernique’s theorem
[33, Theorem 2.8.5] we have

〈‖g‖pX〉 ≤ Cp <∞ for all p <∞. (4.1.4)

We now discuss about the paring of two bilinear forms in this context, necessary to formulate the
extension of Price’s formula of the next section. We recall that under the assumption (4.1.3), the
trace provides a pairing between a bounded symmetric bilinear form ċ on H ⊃ X∗ and a bounded
symmetric bilinear form b on X ⊃ H. More precisely, the trace provides a pairing between the Riesz
representations Ċ and B as bounded symmetric linear operators on H. Even more precisely, the
pairing is given by the trace of the product ĊB, which requires ĊB to be of trace class3, see [33,
Proposition A.2.9.]. In view of [33, Proposition A.2.10. (ii)], it suffices to argue that B is of trace
class, which we will do now. By boundedness of b on X, B is bounded from X to H. Since as a
consequence of (4.1.3), H ⊂ X is compact, B is compact (with respect to H). Hence there exists
an orthonormal basis (hn)n∈N of H formed by eigenvectors of B. In order to show that B is trace
class, we need to show summability of the modulus of eigenvalues

+∞∑
n=0

|(hn, Bhn)H | <∞,

2We recall that it means that A is compact and for any orthonormal basis (hn)n∈N,
∑
n |Ahn|

2
H < +∞. Equiva-

lently, if A is symmetric,
∑
n µ

2
n < +∞ where (µn)n∈N denotes the eigenvalues of A.

3Recall that tr(ĊB) :=
∑+∞
n=0(hn, ĊBhn)H , for an arbitrary orthonormal basis (hn)n∈N of H. We say that ĊB is

of trace class if tr(ĊB) < +∞ (and then, it is independent of the choice of the orthonormal basis).
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see [33, Proposition A.2.9.(iii)]. The summability of |hn.Bhn| = |b(hn, hn)| in turn follows via the
boundedness of b (with respect to X) and the assumption (4.1.3) in form of

|b(hn, hn)| ≤ ‖b‖‖hn‖X‖hn‖X
(4.1.3)
≤ ‖b‖|Ahn|H |Ahn|H ,

(where ‖b‖ denotes the norm of the bilinear form b with respect to X) combined with the charac-
terizing property |A|2HS :=

∑
n |Ahn|2 <∞ of a Hilbert-Schmidt operator4 A.

It follows from the definition of the trace of ĊB that the pairing can be recovered by

b.ċ =
+∞∑
n=0

ċ(hn, Bhn) (4.1.5)

for an arbitrary orthonormal basis (hn)n∈N of H. By the symmetry of Ċ and B, which implies that
the traces of ĊB and BĊ are equal, we also have

b.ċ =
+∞∑
n=0

b(hn, Ċhn). (4.1.6)

We now recall the boundedness property of this pairing. For later use, we note that by (4.1.3), the
summands in (4.1.6) are estimated as

|b(hn, Ċhn)| ≤ ‖b‖|Ahn|H |AĊhn|H . (4.1.7)

Using the fact that, since Ċ is a continuous operator in H, AĊ is an Hilbert-Schmidt operator in H
with |AĊ|HS ≤ |A|HS |Ċ| (where |Ċ| denotes the operator norm on H), see [33, Proposition A.2.10.],
we learn by Cauchy-Schwarz’ inequality that the dominating series in (4.1.7) is summable

+∞∑
n=0

|Ahn||AĊhn| ≤ |A|2HS |ċ|, (4.1.8)

where |ċ| denotes the norm of the bilinear form ċ with respect to H. Inserting (4.1.7) into (4.1.6)
we obtain from (4.1.8) the boundedness of the pairing:

|b.ċ| ≤ |A|2HS‖b‖|ċ|. (4.1.9)

The paring defined in (4.1.5) is canonical in the finite dimensional case, as a paring between a form
b on X and a form ċ on X∗ (where in that case, we can obviously take X = H and A = Id). Suppose
that X is a space of dimension N < +∞ and set (ei)i∈J1,NK its canonical basis. Then, b admits the
representation

b =

N∑
n=1

N∑
m=1

µnme
∗
m ⊗ e∗n, (4.1.10)

where (e∗n)n∈J1,NK denotes the canonical dual basis of X∗ and µnm = b(en, em). We claim that in
this case, the paring (4.1.5) specifies to

b.ċ =
N∑
n=1

N∑
m=1

µnmċ(e
∗
m, e

∗
n). (4.1.11)

4This definition of the Hilbert-Schmidt norm is independent of the choice of orthonormal basis of H, see [33,
Proposition A.2.6.].
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Indeed, we fix an orthonormal basis (hk)k∈J1,NK of X, and we observe that by definition of B (that
is the Riesz representation of b in X), we have Bhk =

∑N
n=1

∑N
m=1 µnme

∗
n(hk)e

∗
m. Consequently,

since the sums commutes with the bilinear form ċ, we obtain

b.ċ =

N∑
k=1

ċ(hk, Bhk) =

N∑
k=1

N∑
n=1

N∑
m=1

µnme
∗
n(hk)ċ(hk, e

∗
m) =

N∑
n=1

N∑
m=1

µmnċ

( N∑
k=1

e∗n(hk)hk, e
∗
m

)
,

which gives (4.1.11). We will show in Section 4.3 that Formula (4.1.11) also holds in the infinite
dimensional setting if we assume that b is compact and admits a decomposition of the form (4.1.10)
(that we will specify when X has an Hilbert structure for simplicity).

4.2 Statement and proof of the extension of Price’s formula

Equipped with the pairing (4.1.5), we are now ready to formulate a functional, i. e. coordinate-free,
version of Price’s formula in our abstract infinite dimensional context of Section 4.1.

Theorem 26. Let the norm ‖ · ‖X of the Banach space X and the norm | · |H of a Hilbert space
H ⊂ X be related by (4.1.3). Given a family of centered Gaussian measures 〈·〉L on X depending
on a parameter L ∈ (0,∞), we suppose that the covariance cL satisfies (4.1.2) and is continuously
differentiable in L with values in the space of bounded bilinear forms on H. Let F be a twice
continuously Fréchet differentiable (but possibly unbounded) function on X with for all g, h ∈ X

|d2F (g).(h, h)| ≤ (‖g‖X + 1)p‖h‖2X , (4.2.1)

for some exponent p <∞. Then L 7→ 〈F 〉L is continuously differentiable with

d

dL
〈F 〉L =

1

2
〈d2F.

dcL
dL
〉L. (4.2.2)

Proof. First of all, since (4.2.1) implies

|F (g)| ≤ C(‖g‖X + 1)p+2, (4.2.3)

we learn from (4.1.4) that 〈F 〉L is well-defined. We then split the proof into two steps. We first
prove by an approximation argument that it is enough to establish (4.2.2) when d2F has a finite
rank, that we prove in the second step.

Step 1. Finite rank approximation. We will establish (4.2.2) by making use of an finite
rank approximation, which reduces to prove the classical Price formula in finite dimension. The
finite rank approximation is established with help of the inclusion X∗ ⊂ H and projection. Indeed,
since X∗ is dense in H, there exists an orthonormal basis (hn)n∈N ⊂ X∗ of H. We use it to define
for every N ∈ N the linear (projection) map, for all g ∈ X

PNg =
N∑
n=0

(hn, g)Hhn, (4.2.4)

and recall that when restricted to H, by definition of (hn)n∈N, we have for all h ∈ H

lim
N↑∞

|PNh− h|2H = 0. (4.2.5)
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We claim that this survives on X in form of

lim
N↑∞
〈‖PNg − g‖2X〉L = 0 (4.2.6)

uniformly in L, where we made explicit the variable g ∈ X that 〈·〉L integrates over. Indeed, we
obtain from (4.1.3) that

‖PNg − g‖2X ≤
∑
n>N

∑
m>N

(hn, g)H(hm, g)H(Ahn, Ahm)H ,

and thus by definition5 (4.1.1)

〈‖PNg − g‖2X〉L ≤
∑
n>N

∑
m>N

cL(hn, hm)(Ahn ·Ahm)H . (4.2.7)

We now argue as for (4.1.9). Let CL be the Riesz representation of cL in H and observe that for
all n,m ∈ N cL(hn, hm) = (hm, CLhn)H . Thus, we deduce from the definition (4.2.4) of PN and the
fact that PN is symmetric that, for all n > N (writing A∗ the adjoint operator of A)∑

m>N

cL(hn, hm)(Ahn, Ahm)H =

( ∑
m>N

(Ahn, Ahm)Hhm, CLhn

)
H

= ((1− PN )A∗Ahn, CLhn)H

= (Ahn, A(1− PN )CLhn)H .

Hence, (4.2.6) follows by inserting the above identity in (4.2.7) and by using the fact that A(1 −
PN )CL is Hilbert-Schmidt (as a product of continuous maps and an Hilbert-Schmidt operator) with
|A(1− PN )CL|HS ≤ |A|HS (using (4.1.2)):

〈‖PNg − g‖2X〉L ≤
∑
n>N

(Ahn, A(1− PN )CLhn)H ≤
( ∑
n>N

|Ahn|2H
) 1

2
( ∑
n>N

|A(1− PN )CLhn|2H
) 1

2

≤ |A|HS
( ∑
n>N

|Ahn|2H
) 1

2

,

which vanishes as N ↑ +∞ since A is Hilbert-Schmidt. In addition, by the same argument as for
(4.2.6) it follows that 〈‖PNg‖2X〉L is uniformly bounded in N and L so that by Fernique’s theorem
[33, Theorem 2.8.5], for all q < +∞ and uniformly in N and L

〈‖PNg‖pX〉L . 1. (4.2.8)

We now define our approximation FN via pull-back under PN :

FN (g) = F (PNg). (4.2.9)

Since F is continuous on X and of algebraic growth, see (4.2.3), it follows from (4.2.8) and (4.2.6)
that

lim
N↑∞
〈FN 〉L = 〈F 〉L, (4.2.10)

5We identify here the Riesz representation of a linear form and the linear form itself via H∗ ∼= H.
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uniformly in L. We now claim that also the right-hand side term of (4.2.2) converges, that is

lim
N↑∞
〈d2FN (g).

dcL
dL
〉L = 〈d2F (g).

dcL
dL
〉L, (4.2.11)

uniformly in L. Indeed, on the level of the second Fréchet derivative, the linear transformation
(4.2.9) translates into

d2FN (g)(h, h′) = d2F (PNg)(PNh, PNh
′).

From this we obtain as for (4.1.6) (where ĊL denotes the Riesz representation of the bilinear form
dcL
dL in H)

d2FN (g).
dcL
dL

=
+∞∑
n=0

d2F (PNg)(PNhn, PN ĊLhn)

=
+∞∑
n=0

d2F (PNg)(hn, PN ĊLPNhn), (4.2.12)

d2F (g).
dcL
dL

=
+∞∑
n=0

d2F (g)(hn, ĊLhn), (4.2.13)

Since by assumption (4.2.1), d2F is a continuous mapping of algebraic growth from X into the
bounded bilinear forms onX and a fortiori onH, it follows from (4.2.5) in form of limN↑∞ |PN ĊLPNhn−
ĊLhn|H = 0 combined with (4.2.6) and (4.2.8) that for fixed n ∈ N

lim
N↑∞
〈d2F (PNg)(hn, PN ĊLPNhn)〉L = 〈d2F (g)(hn, ĊLhn)〉L, (4.2.14)

uniformly in L. In addition, using (4.2.1) and (4.1.3), one has

|d2F (PNg)(hn, PN ĊLPNhn)| ≤ (1 + ‖PNg‖X)p|Ahn|H |APN ĊLPNhn|H ,

which gives with (4.2.8)

|〈d2F (PNg)(hn, PN ĊLPNhn)〉L| ≤ C|Ahn||APN ĊLPNhn|H

for some generic constant C independent of L and N . Hence by Cauchy-Schwarz and the fact that
APN ĊLPN is Hilbert-Schmidt, ∑

n>M

|〈d2F (PNg)(hn, PN ĊLPNhn)〉L|

≤ C
( ∑
n>M

|Ahn|2
) 1

2 |APN ĊLPN |HS .

Then, as for (4.1.9), we use |APN ĊLPN |HS ≤ |A|HS |PN ĊLPN | ≤ |A|HS |ĊL| ≤ C (for some generic
constant C independent of L), so that∑

n>M

|〈d2F (PNg)(hn, PN ĊLPNhn)〉L| ≤ C
( ∑
n>M

|Ahn|2
) 1

2 ,
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vanishes as M ↑ ∞ uniformly in N and L. By the identities (4.2.12) and (4.2.13) together with
(4.2.14) this establishes (4.2.11).

Step 2. Proof of (4.2.2) for finite rank functional. From (4.2.10) and (4.2.11) we learn
that it is enough to establish (4.2.2) for F that are of the form (4.2.9), that is, of the form

F (g) = f(`1(g), · · · , `N (g)) (4.2.15)

for (`n)n∈J1,NK ⊂ X∗ and f is twice continuously differentiable of at most algebraic growth in its
variables xn, · · · , xN , which we assemble in x ∈ RN . We first rewrite the paring d2F.dcLdL in this
context. By the chain rule we obtain from (4.2.15)

d2F (g) =
N∑
n=1

N∑
m=1

(∂nmf)(x) `n ⊗ `m. (4.2.16)

We consider the centered Gaussian measure 〈·〉LN on RN defined by the push-forward of 〈·〉L under
(4.2.4), that is,

〈F (g)〉L =: 〈f(x)〉LN , (4.2.17)

where we made the variable of integration explicit. With the standard identification (RN )∗ ∼= RN ,
the covariance of 〈·〉LN is given by

cL,nm := cL(`n, `m), (4.2.18)

where a difficulty arises from the fact that the so defined symmetric N × N -matrix may not be
definite but only semi-definite. Hence we obtain from (4.2.16) and (4.2.18) as well as via the paring
in finite dimension (4.1.11) that

d2F (g).
dc

dL
=

N∑
n=1

N∑
m=1

(∂nmf)(x)
dcL,nm
dL

. (4.2.19)

We now check that Price’s formula (4.2.2) holds with (4.2.19) and we essentially follow the com-
putations done to prove (1.2.10). The crucial ingredient is the following identity for a symmetric
positive definite N ×N -matrix L 7→ CL differentiable

d

dL
exp(−1

2
x · C−1

L x)
√

detC−1
L

=
1

2

(
x · C−1

L

dCL
dL

C−1
L x− trC−1

L

dCL
dL

)
exp(−1

2
x · C−1

L x)
√

detC−1
L

=
1

2
tr
(
C−1
L x⊗ C−1

L x− C−1
L

)dCL
dL

exp(−1

2
x · C−1

L x)
√

detC−1
L

=
1

2

N∑
n=1

N∑
m=1

∂nm[exp(−1

2
x · C−1

L x)]
√

det C−1
L

dcL,nm
dL

,

Testing this identity with f we obtain, by two integration by parts (which are justified since f has
polynomial growth)

d

dL

ˆ
RN

dx f(x) exp(−1

2
x · C−1

L x)
√

detC−1

=
1

2

N∑
n=1

N∑
m=1

ˆ
RN

dx (∂nmf)(x)
dcL,nm
dL

exp(−1

2
x · C−1

L x)
√

detC−1
L .
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Approximating our symmetric semi-positive matrix (cL,nm)n,m by a definite one via CL,ε,nm :=
cL,nm + εδnm and letting ε go to zero, we obtain

d

dL
〈f〉LN =

1

2

N∑
n=1

N∑
m=1

〈(∂nmf)
dcL,nm
dL

〉LN .

Appealing (4.2.16) and (4.2.19) we learn from (4.2.17) that this assumes the form of the desired
(4.2.2).

4.3 About the paring of bilinear forms and application

We discuss in this section about the paring (4.1.6). We first show that under the additional as-
sumption that b in compact6, we can rewrite (4.1.6) in a more canonical way as we did for the finite
dimensional case in (4.1.11). Then, in view of an application to the next chapter, we will specify
the spaces X in H as L2-based spaces and show that if b is in addition Hilbert-Schmidt in X, the
paring can be rewritten with help of a kernel for b.

4.3.1 Simplification of the paring (4.1.6)

For simplicity, we assume that X has an Hilbert structure and we strengthen the assumption (4.1.3)
by assuming that

(·, ·)X = (A·, A·)H , (4.3.1)

where (·, ·)X denotes the inner product in X. We consider a bounded symmetric bilinear form b on
X (and we denote by B its Riesz representation in X) and a bounded symmetric bilinear form ċ on
H ⊃ X∗ (where we denote by Ċ its Riesz representation in H). We have the following lemma.

Lemma 35. Assume that b is compact7 on X. There exist a bounded sequence (λn)n∈N ⊂ R and an
orthonormal basis (fn)n∈N of X such that

b.ċ =
+∞∑
n=0

λnċ(`n, `n), (4.3.2)

with for all n ∈ N,
`n : g ∈ X 7→ (g, fn)X . (4.3.3)

Proof. Since B is compact and symmetric on X (because b is), there exist a bounded sequence
(λn)n∈N ⊂ R and an orthonormal basis (fn)n∈N of X such that

B =
+∞∑
n=0

λn`n.

Therefore, we have the following decomposition of b

b =
+∞∑
n=0

λn`n ⊗ `n. (4.3.4)

6Meaning that b is continuous with respect to the weak topology in X.
7Since X has an Hilbert structure, it is equivalent to say that B is a compact operator on X.
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The goal is now to show that the computations done in the finite dimensional case to go from (4.1.6)
to (4.1.11) hold here. To do so, we fix an orthonormal basis (hk)k∈N of H. By definition (4.1.6),

b.ċ =
+∞∑
k=0

b(hk, Ċhk),

which turns into, using (4.3.4),

b.ċ =

+∞∑
k=0

+∞∑
n=0

λn`n(hk)`n(Ċhk). (4.3.5)

We now show that we can exchange the two summations in (4.3.5). To do so, we check the summa-
bility of the summands: using that (λn)n∈N is bounded, the Cauchy-Schwarz’ inequality and the
fact that (fn)n∈N is an orthonormal basis in X as well as (4.3.1), one obtains

+∞∑
k=0

+∞∑
n=0

|λn`n(hk)`n(Ċhk)| ≤ sup
n∈N
|λn|

+∞∑
k=0

( +∞∑
n=0

|`n(hk)|2
) 1

2
( +∞∑
n=0

|`n(Ċhk)|2
) 1

2

= sup
n∈N
|λn|

+∞∑
k=0

‖hk‖X‖Ċhk‖X

(4.3.1)
= sup

n∈N
|λn|

+∞∑
k=0

|Ahk|H |AĊhk|H ,

which is finite since both A and AĊ are Hilbert-Schmidt in H. Therefore, we can exchange the
summations in (4.3.5) to obtain (using also the definition of `n in (4.3.3))

b.ċ =

+∞∑
n=0

λn

+∞∑
k=0

`n(hk)`n(Ċhk)

(4.3.3)
=

+∞∑
n=0

λn

+∞∑
k=0

(hk, fn)X(Ċhk, fn)X

(4.3.1)
=

+∞∑
n=0

λn

+∞∑
k=0

(hk, A
∗Afn)H(Ċhk, A

∗Afn)H

=

+∞∑
n=0

λn

(
Ċ

+∞∑
k=0

(hk, A
∗Afn)Hhk, A

∗Afn

)
H

=
+∞∑
n=0

λnċ(A
∗Afn, A

∗Afn),

which gives (4.3.2) by noticing that A∗Afn is the Riesz representation of `n in H by the assumption
(4.3.1).

4.3.2 Application for the Chapter 5

We now specify the spaces X and H that we will use for our application in the next chapter and we
rewrite (4.3.2) in a very specific form that we will use in the next chapter.
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In Chapter 5, the family of covariance function L 7→ cL will be constructed by a periodization
procedure from c. The purpose of our application of Formula (4.2.2) is to vary the period L. We
identify a random variable g on the torus [0, L)d with an L-periodic random variable g on the whole
space Rd. Thus, we build X and H as weighted L2(Rd)-based spaces. We consider an exponent
k > d

4 and a weight µ : x ∈ Rd 7→ (1 + |x|2)−4k as well as the corresponding measure dµ = µ(x)dx.
We define the spaces

X :=

{
g : Rd → R measurable

∣∣∣∣ ˆ |g(x)|2dµ(x) <∞
}
, (4.3.6)

and
H :=

{
g : Rd → R measurable

∣∣∣∣ˆ |(1−∆)kg(x)|2
√
µ(x)dx < +∞

}
, (4.3.7)

that we endow with the two inner products, for all g, g′ ∈ X and g̃, g̃′ ∈ H

(g, g′)X =

ˆ
g(x)g′(x)dµ(x),

as well as
(g̃, g̃′)H =

ˆ
(1−∆)kg̃(x)(1−∆)kg̃′(x)

√
µ(x)dx. (4.3.8)

Obviously, (4.3.1) holds with

A : g ∈ H 7→ (1−∆)−k[(1 + | · |2)−kg].

We claim that A is an Hilbert-Schmidt operator inH. In view of the definition (4.3.8), it is equivalent
to prove that the conjugate operator Ã of A given by: for all g ∈ H

Ãg = (x 7→ (1 + |x|2)−k(1−∆)kA(1−∆)−k(1 + |x|2)kg(x))

= (x 7→ (1 + |x|2)−2k(1−∆)−k(1 + |x|2)kg(x)),

is Hilbert-Schmidt in L2(Rd). The operator Ã is the product of the multiplication operator g ∈
L2(Rd) 7→ (1 + | · |2)−2kg and g ∈ L2(Rd) 7→ (1 − ∆)−k[(1 + | · |2)kg], which can be seen as a
convolution operator with a kernel k : (x, y) ∈ Rd×Rd 7→ K(x− y)(1 + |y|2)k where K is the kernel
of (1 − ∆)−k defined via its Fourier transform F : ξ 7→ (1 + |ξ|2)−2k. Therefore, Ã is an integral
operator where its kernel is given by

k̃ : (x, y) 7→ (1 + |x|2)−2kK(x− y)(1 + |y|2)k.

In order to show that Ã is Hilbert-Schmidt in L2(Rd), we thus have to check that k̃ is square
integrable in L2(Rd × Rd). Using the inequality (1 + |y|2)k . (1 + |x− y|2)k + (1 + |x|2)k, we have
ˆ ˆ

|k̃(x, y)|2dx dy =

ˆ ˆ
(1 + |x|2)−4k|K(x− y)|2(1 + |y|2)2kdx dy

.
ˆ

(1 + |x|2)−4kdx

ˆ
|K(z)|2(1 + |z|2)2kdz +

ˆ
(1 + |x|2)−2kdx

ˆ
|K(z)|2dz,

which is finite by the smoothness of K and the decay of its Fourier transform.

The assumptions of Subsection 4.3.1 are thus satisfied. We now rewrite the Formula (4.3.2) for
the specific X and H defined above.
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Lemma 36. We keep the notations of Subsection 4.3.1 and Lemma 35. We consider the spaces X
and H as in (4.3.6) and (4.3.7). Assume that B is an Hilbert-Schmidt operator in X. Then, b
admits a (unique) kernel k ∈ L2

dµ⊗dµ(Rd × Rd), that is for all g, g′ ∈ X

b(g, g′) =

ˆ ˆ
k(x, y)g(x)g(y)dµ(x)dµ(y). (4.3.9)

Moreover, for all x ∈ Rd, δx : g ∈ H 7→ g(x) is a continuous linear form on H and Formula (4.3.2)
specifies to

b.ċ =

ˆ ˆ
k(x, y)ċ(δx, δy)dµ(x)dµ(y). (4.3.10)

Proof. We use the notations of the proof of Lemma 35. Recall that from (4.3.4), we have the
decomposition

b =

+∞∑
n=0

λn`n ⊗ `n, (4.3.11)

where `n is defined in (4.3.8) and the sequence (λn)n∈N ⊂ Rd is now squared summable. In addition,
using the L2(Rd)-based structure of X, we have for all g ∈ X

`n(g) =

ˆ
hn(x)g(x)dµ(x). (4.3.12)

We now prove that b admits a kernel in the sense of (4.3.9). For all g, g′ ∈ X, we have from (4.3.11)
and (4.3.12)

b(g, g′) =
+∞∑
n=0

λn

ˆ ˆ
hn(x)hn(y)g(x)g(y)dµ(x)dµ(y). (4.3.13)

In addition, the function

k : (x, y) 7→
+∞∑
n=0

λnhn(x)hn(y) (4.3.14)

is well defined in L2
dµ⊗dµ(Rd × Rd). Indeed, using the fact that (hn)n∈N is orthonormal in X, we

have for all n ≥ 0 and p ≥ 0

ˆ ˆ ∣∣∣∣ n+p∑
k=n

λkhn(x)hn(y)

∣∣∣∣2dµ(x)dµ(y) =

n+p∑
k=n

λ2
k ≤

+∞∑
k=n

λ2
k,

which vanishes as n ↑ +∞ since (λn)n∈N is squared integrable. Therefore k ∈ L2
dµ⊗dµ(Rd ×Rd) and

(4.3.13) turns into

b(g, g′) =

ˆ ˆ
k(x, y)g(x)g(y)dµ(x)dµ(y),

and thus k is the8 kernel of b in the sense of (4.3.9).

We now prove (4.3.10). We first reinterpret, for all n ∈ N, the linear form `n given by (4.3.12)
as the Bochner integral

`n =

ˆ
δx hn(x)dµ(x), (4.3.15)

8The uniqueness is deduced by density of the family {(x, y) 7→
∑N
n=1 gn(x)gn(y)|(gn)n ⊂ L2(Rd), N ≥ 1} in L2(Rd).
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where δx : g ∈ H 7→ g(x). This integral makes sense since, by definition9 of | · |H , |δx| . (1 + |x|2)k

so that since hn ∈ X,
´

(1 + |x|2)khn(x)dµ(x) < +∞. Consequently, using Formula (4.3.2) from
Lemma 35 combined with (4.3.9), we obtain

b.ċ
(4.3.2)

=
+∞∑
n=0

λnċ(`n, `n)

(4.3.15)
=

+∞∑
n=0

λn

ˆ ˆ
hn(x)hn(y)ċ(δx, δy)dµ(x)dµ(y). (4.3.16)

Finally, by continuity of ċ in H (see (4.1.2)) one has |ċ(δx, δy)| ≤ |δx|H |δy|H . (1 + |x|2)k(1 + |y|2)k

so that (x, y) 7→ ċ(δx, δy) belongs to L2
dµ⊗dµ(Rd×Rd). To conclude, (4.3.16) simplifies to (4.3.10) by

exchanging the sum and the integrals as well as the definition of the kernel k in (4.3.14).

We end this chapter by the following corollary, which is a direct consequence of Price’s formula of
Theorem 26 and the paring (4.3.10). It states the version of Price’s formula that we use in Chapter
5.

Corollary 27. We assume that the assumptions of Theorem 26 are satisfied and consider X and H
as in (4.3.6) and (4.3.7). We assume in addition that d2F is Hilbert-Schmidt in X and we denote
by ∂2F ∈ L2

dµ⊗dµ(Rd × Rd) its kernel. We have the following version of Price’s formula

d

dL
〈F 〉L =

1

2

ˆ ˆ
〈∂2F (x, y)〉L

dcL
dL

(δx, δy)dµ(x) dµ(y). (4.3.17)

9We can see it via the inequality (which follows by the chain rule) |(1 + | · |2)k(1 − ∆)kg|L2 & |(1 + | ·
|2)k(g,∇g, ...,∇2kg)|L2 and the Sobolev embedding |g(x)| . |(g,∇g, ...,∇2kg)|L2(B1(x)).



Chapter 5

Bias in the Representative Volume
Element method: periodize the ensemble
instead of its realizations

We study the Representative Volume Element (RVE) method, which is a method to approximately
infer the effective behavior ahom of a stationary random medium. The latter is described by a coef-
ficient field a(x) generated from a given ensemble 〈·〉 and the corresponding linear elliptic operator
−∇ · a∇. In line with the theory of homogenization, the method proceeds by computing d = 3
correctors (d denoting the space dimension). To be numerically tractable, this computation has to
be done on a finite domain: the so-called “representative” volume element, i. e. a large box with, say,
periodic boundary conditions. The main message of this chapter is: Periodize the ensemble instead
of its realizations.

By this we mean that it is better to sample from a suitably periodized ensemble than to periodically
extend the restriction of a realization a(x) from the whole-space ensemble 〈·〉. We make this point
by investigating the bias (or systematic error), i. e. the difference between ahom and the expected
value of the RVE method, in terms of its scaling w. r. t. the lateral size L of the box. In case of a
suitable periodization of 〈·〉, we rigorously show that it is O(L−d). In fact, we give a characterization
of the leading-order error term for the strategy of periodizing 〈·〉. For the strategy of periodizing
the realizations, the behaviour is expected to be O(L−1) (see the numerical experiments [103]) and
formal argument will be added in the work in preparation in [48])

We carry out the rigorous analysis in the convenient setting of ensembles 〈·〉 of Gaussian type, which
allow for a straightforward periodization, passing via the (integrable) covariance function. This
setting has also the advantage of making the Price’s theorem (see Chapter 4) and the Malliavin
calculus available for optimal stochastic estimates of correctors. We actually need control of second-
order correctors to capture the leading-order error term. This is due to inversion symmetry when
applying the two-scale expansion to the Green’s function. As a bonus, we present a stream-lined
strategy to estimate the error in a higher-order two-scale expansion of the Green’s function.

This Chapter is based on joint work in preparation with Felix Otto, Marc Josien and Qiang Xu.

The Chapter is organized as follows. In Section 5.1, we recall the assumptions of the chapter
as well as our main result. In Section 5.2, we present a refinement of our main theorem and the
main ideas. In Section 5.3 we present the structure of the proof as well as the auxiliary results.
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Finally, in Section 5.4, we provide the proofs of the auxiliary results.
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5.1 Assumption and statement of rigorous result

We restate in this section the assumption of the chapter as well as our main result. For an intro-
duction to this result, we refer to Section 1.2.6. We start by recalling the important quantities. Let
L ≥ 1 and a : Rd → Rd×d be λ-uniformly elliptic (for some λ > 0): for all x, ξ ∈ Rd

λ|ξ|2 ≤ ξ · a(x)ξ ≤ |ξ|2 (5.1.1)

Suppose that the coefficient field a is L-periodic, meaning that a(x+Lk) = a(x) for all x and k ∈ Zd.
Given a Cartesian coordinate direction i = 1, · · · , d and denoting by ei the unit vector in the i-th
direction, we consider the corrector (up to additive constants) φ(1)

i as the L-periodic solution of

−∇ · a(∇φ(1)
i + ei) = 0, (5.1.2)

to which we associate the corresponding homogenized matrix:

āei :=

 
[0,L)d

a(∇φ(1)
i + ei). (5.1.3)

We then recall the general assumptions.
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Assumption 28. Let 〈·〉 be a stationary and centered Gaussian ensemble of scalar1 fields g on Rd,
as determined by the covariance function c(x) := 〈g(x)g(0)〉. We assume that there exists an α > 0
such that

sup
x∈R

(1 + |x|)d+n+2α|∇nc(x)| <∞ for n ∈ {0, · · · , d+ 1}. (5.1.4)

We identify 〈·〉 with its push forward under the map

g 7→ a :=
(
x 7→ A(g(x))

)
, (5.1.5)

where A : R→ Rd×d is such that the coefficient field a is λ-uniformly elliptic, see (5.1.1). We assume
that

sup
g∈R
|A′(g)|+ |A′′(g)| <∞. (5.1.6)

We then recall the definition of the periodize ensemble 〈·〉L.

Definition 5.1.1. For given L < ∞, let 〈·〉L be the stationary and centered Gaussian ensemble of
scalar fields g defined by the covariance function

cL(x) :=
∑
k∈Zd

c(x+ Lk). (5.1.7)

Clearly, the covariance function cL and thus the realizations g are L-periodic. As in Assumption 28
we identify 〈·〉L with its push forward under (5.1.6).

The purpose of the chapter is to prove the following.

Theorem 29. Let d > 2 and A be symmetric. Under the Assumption 28 on 〈·〉, for all L, and with
the Definition 5.1.1 of 〈·〉L we have for the expectation 〈ā〉L of ā defined in (5.1.3)

lim sup
L↑∞

Ld|〈ā〉L − ahom| <∞.

More precisely, we prove the refinement version of Theorem 30.

5.2 Theorem 29: refinement and main ideas

The two ingredients for Theorem 29 are a suitable representation formula for 〈ā〉L, see Subsection
5.2.1, and its asymptotics through stochastic homogenization, here on the level of the mixed deriva-
tives of the Green’s function, see Subsection 5.2.2. We need the second-order version of stochastic
homogenization because of an inversion symmetry. We refine Theorem 29 in Subsection 5.2.3 by
identifying the leading-order error term, see Theorem 30. In Subsection 5.2.4 we will argue that the
leading-order error typically does not vanish, by exploring the regime of small ellipticity contrast.

1For notational simplicity, we consider scalar Gaussian field, however, the Gaussian field g may take values in any
finite dimensional linear space.
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5.2.1 Representation formula

We start with an informal, but detailed, derivation of the representation formula, see (5.2.9), which
might be the most conceptual piece of our work.

Let us fix two vectors ξ and ξ∗ and focus on the component ξ∗ · āξ; we denote by φ the solution
of (5.1.2) with ei replaced by ξ.2 By stationarity3 of ∇φ and of 〈·〉L, we have

〈ξ∗ · āξ〉L = 〈F 〉L where F := (ξ∗ · a(∇φ+ ξ))(0). (5.2.1)

Instead of directly estimating 〈ξ∗ · āξ〉L − ξ∗ · ahomξ, we will estimate its derivative with respect to
L, that is d

dL〈ξ
∗ · āξ〉L. The reason is that by general Gaussian calculus (in form of Price’s formula

of Chapter 4 applied to the ensemble 〈·〉L of (periodic) fields g that depends on a parameter L, we
have for any F = F (g)

d

dL
〈F 〉L =

1

2

ˆ
Rd
dx

ˆ
Rd
dy
〈 ∂2F

∂g(−x)∂g(−y)

〉
L

∂cL
∂L

(x− y), (5.2.2)

where the two minus signs in the denominator are for later convenience.4 Here ∂2F
∂g(x)∂g(y) denotes

the kernel representing the second Fréchet derivative of F , seen as a bilinear form on the space of
functions on Rd. As a derivative w. r. t. the noise g, it can be seen as a Malliavin derivative.

We define F by (5.2.1). By the change of variables z  x−y, which capitalizes on the translation
invariance of the covariance, and (more directly) by the stationarity of 〈·〉L in conjunction with the
stationarity of ∇φ that leads to 〈 ∂2F

∂g(−x)∂g(z−x)〉L = 〈∂
2[ξ∗·(a(∇φ(1)+ξ)(x)]

∂g(0)∂g(z) 〉L, we obtain

d

dL
〈ξ∗ · āξ〉L =

1

2

ˆ
Rd
dz
〈 ˆ

Rd
ξ∗ · ∂

2[a(∇φ(1) + ξ)]

∂g(0)∂g(z)

〉
L

∂cL
∂L

(z). (5.2.3)

With help of the corrector for the (pointwise) dual5 coefficient field a∗ in direction ξ∗, i. e. the
periodic solution φ∗(1) of

∇ · a∗(∇φ∗(1) + ξ∗) = 0, (5.2.4)

the inner integral can be rewritten more symmetrically as

ˆ
Rd
ξ∗ · ∂

2[a(∇φ(1) + ξ)]

∂g(0)∂g(z)

=

ˆ
Rd

(∇φ∗(1) + ξ∗) · ∂
2[a(∇φ(1) + ξ)]

∂g(0)∂g(z)

=

ˆ
Rd

(∇φ∗(1) + ξ∗) · [ ∂2

∂g(0)∂g(z)
, a](∇φ(1) + ξ);

2By uniqueness (up to additive constants), we have φ =
∑
i ξiφi.

3Stationarity is understood here in the sense of shift covariance ∇φ(a(·+ h), x) = ∇φ(a, x+ h), for any h ∈ Rd.
4We use here formula (4.3.17) formally, where the kernel is formally given by the formal derivatives ∂2F (x, y) =
∂2F

∂g(−x)∂g(−y)
.

5While we work with the assumption A∗ = A and thus have a∗ = a, keeping primal and dual medium apart reveals
more of the structure.
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indeed, the first identity (formally) follows from applying ∂2

∂g(0)∂g(z) to (5.1.2) and then testing

with φ∗(1), whereas the second identify follows from testing (5.2.4) with ∂2φ(1)

∂g(0)∂g(z) . Resolving the

commutator [ ∂2

∂g(0)∂g(z) , a] by Leibniz’ rule we obtain

ˆ
Rd
ξ∗ · ∂

2[a(∇φ(1) + ξ)]

∂g(0)∂g(z)

=

ˆ
Rd

(∇φ∗(1) + ξ∗) · ∂2a

∂g(0)∂g(z)
(∇φ(1) + ξ)

+

ˆ
Rd

(∇φ∗(1) + ξ∗) · ∂a

∂g(0)
∇ ∂φ

(1)

∂g(z)
+ term with z, 0 exchanged.

Denoting a′ := A′(g) and a′′ := A′′(g), we remark that by (5.1.5) we have ∂a(x)
∂g(z) = a′(z)δ(x − z).

Applying operator ∂
∂g(z) on (5.1.2), we thus obtain the representation

∂∇φ(1)(x)

∂g(z)
= −∇∇G(x, z)a′(z)(∇φ+ e)(z) (5.2.5)

in terms of the mixed derivatives of the non-periodic Green function6 G = G(a, x, y) associated with
the operator −∇ · a∇. Hence the above turns into

ˆ
Rd
ξ∗ · ∂

2a(∇φ(1) + ξ)

∂g(0)∂g(z)

= δ(z)
(
(∇φ∗(1) + ξ∗) · a′′(∇φ(1) + ξ)

)
(0)

−
(
(∇φ∗(1) + ξ∗) · a′

)
(0) · ∇∇G(0, z)

(
a′(∇φ(1) + ξ)

)
(z)

−
(
(∇φ∗(1) + ξ∗) · a′

)
(z) · ∇∇G(z, 0)

(
a′(∇φ(1) + ξ)

)
(0).

Applying 〈·〉L we obtain by stationarity〈 ˆ
Rd
ξ∗ · ∂

2a(∇φ(1) + ξ)

∂g(0)∂g(z)

〉
L

= δ(z)
〈
(∇φ∗(1) + ξ∗) · a′′(∇φ(1) + ξ)

〉
L

−
〈(

(∇φ∗(1) + ξ∗) · a′
)
(0) · ∇∇G(0, z)

(
a′(∇φ(1) + ξ)

)
(z)
〉
L

−
〈(

(∇φ∗(1) + ξ∗) · a′
)
(0) · ∇∇G(0,−z)

(
a′(∇φ(1) + ξ)

)
(−z)

〉
L
.

(5.2.6)

Inserting this into (5.2.3), and noting that since ∂cL
∂L , as derivative of a covariance function is even,

the two last terms have the same contribution, we obtain

d

dL
〈ξ∗ · āξ〉L = −

ˆ
Rd
dz
〈(

(∇φ∗(1) + ξ∗) · a′
)
(0)

· ∇∇G(0, z)
(
a′(∇φ(1) + ξ)

)
(z)
〉
L

∂cL
∂L

(z)

+
1

2

〈
(∇φ∗(1) + ξ∗) · a′′(∇φ(1) + ξ)

〉
L

∂cL
∂L

(0).

(5.2.7)

6Since we are only interested in the mixed gradient of the Green function, the dimension d = 2 poses no problems
here.
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We now insert (5.1.7) in form of

∂cL
∂L

(z)
(5.1.7)

=
∑
k∈Zd

k · ∇c(z + Lk). (5.2.8)

This relation highlights that the z-integral in (5.2.7) is not absolutely convergent for |z| ↑ ∞, not
even borderline: While ∇∇G(0, z) decays as |z|−d, a glance at (5.2.8) reveals that ∂cL

∂L (z) grows as
|z|. Part of the rigorous work is devoted to emulate this formal derivation of (5.2.7) by replacing
the operator −∇ · a∇ by 1

T −∇ · a∇, see Proposition 11.

In order to access the cancellations, we will perform a re-summation. Assuming for simplicity
for this exposition that 〈·〉 has unit range of dependence, so that c is supported in the unit ball, we
have that cL(z = 0) does not depend on L ≥ 2. Hence the second r. h. s. term in (5.2.7) does not
contribute. By L-periodicity of the correctors, (5.2.7) can be re-summed to

d

dL
〈ξ∗ · āξ〉L =

ˆ
Rd
dz
〈(

(∇φ∗(1) + ξ∗) · a′
)
(0)

·
( ∑
k∈Zd

kn∇∇G(0, z + Lk)
)(
a′(∇φ(1) + ξ)

)
(z)
〉
L
∂nc(z),

(5.2.9)

where from now on we use Einstein’s convention of summation over repeated spatial indices, here n ∈
{1, · · · , d}. Formula (5.2.9) is our final representation. Clearly, the sum over k is still not absolutely
convergent. However, as we shall see in the next subsection, it converges after homogenization.

5.2.2 Approximation by second-order homogenization

In this subsection, we turn to the asymptotics of the representation (5.2.9) for L ↑ ∞. In particular,
we shall argue why first-order homogenization is not sufficient and give an efficient introduction into
second-order correctors.

As there is no contribution from k = 0, and since by our finite range assumption (for the sake
of this discussion), z is constrained to the unit ball, the argument z + Lk of the Green’s function
satisfies |z + Lk| & L. Hence we may appeal to homogenization to replace G(x, y) by G(x − y),
where Ḡ denotes the fundamental solution of −∇ · ā∇. This appears like periodic homogenization
as long as L is fixed, but in fact amounts to stochastic homogenization since we are interested in
L ↑ ∞. Since we are interested in its gradient, we need to replace G by the two-scale expansion of
G. (See below for more details on the two-scale expansion.) Since we are interested in the mixed
gradient, the two-scale expansion acts on both variables. Hence in a first Ansatz, we approximate

∇∇G(0, x) ≈ −∂ijG(x)(ei +∇φ(1)
i )(0)⊗ (ej +∇φ∗j

(1))(x), (5.2.10)

where φ∗j
(1) denotes the solution of (5.2.4) with ξ∗ replaced by ej . To leading order, this yields by

the periodicity of correctors

∇∇G(0, z + Lk)

≈ −∂ijG(Lk) (ei +∇φ(1)
i )(0)⊗ (ej +∇φ∗j

(1))(z). (5.2.11)

Applying
∑

k∈Zd kl to the r. h. s., we see that it vanishes by parity w. r. t. inversion k  −k. This
is an indication that the first order two-scale expansion (5.2.10) is not sufficient and that we have
to go to a second-order expansion, which we shall describe now.
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We need to replace the first-order version of the two-scale expansion of G by its second-order
version. We recall the two-scale expansion in its first-order version: Given an ā-harmonic function
ū, one considers u = (1 + φ

(1)
i ∂i)ū as a good approximation to an a-harmonic function. Indeed,

it follows from (5.1.2) that when ū is a first-order polynomial, u is exactly a-harmonic. In fact,
this is a characterization of the first-order correctors φ(1)

i . Second-order correctors φ(2)
ij can be

characterized in a similar way: For every ā-harmonic second-order polynomial ū, we postulate that
u = (1 + φ

(1)
i ∂i + φ

(2)
ij ∂ij)ū is a-harmonic7. It is clear from this characterization that φ(2)

ij depends

on the choice of the additive constant in φ(1)
i , which we now fix through
 

[0,L)d
φ

(1)
i = 0. (5.2.12)

Since for our second-order polynomial ū we have

∇u = ∂iū(ei +∇φ(1)
i ) + ∂ij ū(φ

(1)
i ej +∇φ(2)

ij ), (5.2.13)

so that ∇ · a∇u = 0 turns into ∇∂iū · a(ei +∇φ(1)
i ) +∂ij ū∇ · a(φ

(1)
i ej +∇φ(2)

ij ) = 0, and using that

∇ · ā∇ū = 0, we obtain the following standard PDE characterization of φ(2)
ij :

−∇ · a(∇φ(2)
ij + φ

(1)
i ej) = ej · (a(∇φ(1)

i + ei)− āei). (5.2.14)

Note that (5.2.14) is uniquely solvable (up to additive constants) for a periodic φ(2)
ij because the

r. h. s. of (5.2.14) has vanishing average in view of (5.1.3). The definition of φ∗ij
(2) for the dual

medium a∗ is analogous.

In view of (5.2.13), we thus replace (5.2.10) by

∇∇G(0, x) ≈− ∂ijG(x)(ei +∇φ(1)
i )(0)⊗ (ej +∇φ∗j

(1))(x)

−∂ijmG(x)(φ
(1)
i em +∇φ(2)

im)(0)⊗ (ej +∇φ∗j
(1))(x)

+∂ijmG(x)(ei +∇φ(1)
i )(0)⊗ (φ∗j

(1)em +∇φ∗(2)
jm )(x).

(5.2.15)

It is here that the assumption of symmetry of A is convenient: Otherwise, the instance of G in
the first r. h. s. term of (5.2.15) would have to be replaced by G + G

(2) where G(2) is the (1 − d)-
homogeneous solution of ∇ · (ā∇G(2)

+ ā
(2)
m ∇∂mG) = 0, where ā(2) is the second-order homogenized

coefficient, see (5.3.20). Since G(2), as a dipole, is odd w. r. t. point inversion, its contribution does
not vanish as for G, c. f. (5.2.11). For the analogue of (5.2.11) we now turn to the first-order Taylor
expansion (recall k 6= 0)

∇∇G(0, z + Lk)

≈ −
(
∂ijG(Lk) + zm∂ijmG(Lk)

)
(ei +∇φ(1)

i )(0)⊗ (ej +∇φ∗j
(1))(z)

−∂ijmG(Lk)(φ
(1)
i em +∇φ(2)

im)(0)⊗ (ej +∇φ∗j
(1))(z)

+∂ijmG(Lk)(ei +∇φ(1)
i )(0)⊗ (φ∗j

(1)em +∇φ∗(2)
jm )(z).

7This does not characterize all components φ(2)
ij separately but only the trace-free and symmetric part of this

tensor, where the trace is defined w. r. t. ā. Since we apply the two scale expansion only to ā-harmonic functions like
G, this is not an issue.
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By the inversion symmetry of G and its homogeneity, this implies∑
k∈Zd

kn∇∇G(0, z + Lk) ≈ L−d−1
∑
k∈Zd

kn∂ijmG(k)

×
(
− zm(ei +∇φ(1)

i )(0)⊗ (ej +∇φ∗j
(1))(z)

−(φ
(1)
i em +∇φ(2)

im)(0)⊗ (ej +∇φ∗j
(1))(z)

+(ei +∇φ(1)
i )(0)⊗ (φ∗j

(1)em +∇φ∗(2)
jm )(z)

)
.

(5.2.16)

In view of ā ≈ ahom we finally replace G, which is still random, by the deterministic Ghom that may
be pulled out of 〈·〉L when inserting (5.2.16) into (5.2.9). Hence we obtain the approximation

d

dL
〈ξ∗ · āξ〉L ≈ L−d−1Γhom,ijmn

ˆ
Rd
dz ξ∗ · QLijm(z)ξ ∂nc(z), (5.2.17)

where the five-tensor field QL is defined through a combination of three covariances of quadratic
expressions in correctors, see Definition 5.2.1, and where the four-tensor Γhom is formally given by
the (borderline) divergent lattice sum

∑
k∈Zd kn∂ijmGT,hom(k), which in line with the remark at the

end of Subsection 5.2.1 we replace by

Γhom = lim
T↑∞

Γhom,T where Γhom,T ijmn :=
∑
k∈Zd

kn∂ijmGT,hom(k), (5.2.18)

with GT,hom denoting the fundamental solution of 1
T −∇ · ahom∇.

5.2.3 Refinement of rigorous result

We start with the full definition of the tensor field QL appearing in (5.2.17).

Definition 5.2.1. Recall the definitions (5.1.2) & (5.2.14) of first and second-order correctors φ(1)
i

and φ(2)
ij , and their versions φ∗i

(1) and φ∗(2)
ij with a replaced by a∗. For given vectors ξ and ξ∗ we

continue to write φ(1) = ξiφi and φ∗(1) = ξiφ
∗(1)
i . Consider the random tensor fields

ξ∗ ·Q(1)
ij (z)ξ :=

(
(ξ∗ +∇φ∗(1)) · a′(ei +∇φ(1)

i )
)
(0)

×
(
(ej +∇φ∗j

(1)) · a′(ξ +∇φ(1))
)
(z),

(5.2.19)

ξ∗ ·Q(2)
ijm(z)ξ := −

(
(ξ∗ +∇φ∗(1)) · a′(φ(1)

i em +∇φ(2)
im)
)
(0)

×
(
(ej +∇φ∗j

(1)) · a′(ξ +∇φ(1))
)
(z)

+
(
(ξ∗ +∇φ∗(1)) · a′(ei +∇φ(1)

i )
)
(0)

×
(
(φ
∗(1)
j em +∇φ∗(2)

jm ) · a′(ξ +∇φ(1))
)
(z).

(5.2.20)

For any L we consider the ensemble 〈·〉L from Definition 5.1.1 and define

QLijm(z) := −zm〈Q(1)
ij (z)〉L + 〈Q(2)

ijm(z)〉L. (5.2.21)

Here comes the more precise version of Theorem 29, which consists in making (5.2.17) rigorous:
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Theorem 30. Let d > 2 and A be symmetric. Suppose 〈·〉 satisfies Assumption 28 and let ahom

denote the homogenized coefficient . For all L, let 〈·〉L be as in Definition 5.1.1, ā be defined by
(5.1.3), Γhom,T defined by (5.2.18), and QL be as in Definition 5.2.1. Then the following limits
exist:

Γhom,ijmn := lim
T↑∞

Γhom,T ijmn, (5.2.22)

Qijm(z) := lim
L↑∞
QLijm(z) pointwise, uniformly bounded in z, (5.2.23)

and the latter only depends on 〈·〉 (and not the lattice). Moreover, we have

lim
L↑∞

Ld+1d〈ā〉L
dL

= Γhom,ijmn

ˆ
Rd
dzQijm(z)∂nc(z). (5.2.24)

With the tools of this paper, the asymptotics of d〈ā〉L
dL could be characterized up to order

O(L−d−
d
2 ). Let us comment on the representation of the leading error term arising from (5.2.24),

namely

d lim
L↑0

Ld
(
ahom − 〈ā〉L

)
= Γhom,ijmn

ˆ
Rd
dzQijm(z)∂nc(z). (5.2.25)

This representation separates a first factor Γhom, which only depends on the type of the periodic
lattice (here cubic) and the homogenized coefficient ahom, from a second factor that only depends
on the whole-space ensemble 〈·〉, via its covariance function c and covariances involving its first- and
second-order correctors.

5.2.4 Small contrast regime and non-degeneracy

In this subsection, we (formally) identify the leading order (5.2.26) of the r. h. s. of (5.2.25) in the
small-contrast regime. We then argue that this leading-order error term typically does not vanish,
even in the high-symmetry case of an isotropic ensemble.

We start with the derivation of (5.2.26): To leading order in a small ellipticity contrast 1 − λ,
the quantity ∇φ(1)

i may be neglected w. r. t. ei; likewise φ
(1)
i em +∇φ(2)

im may be neglected w. r. t.
ei. Hence to leading order, (5.2.21) reduces to

ξ∗ · Qijm(z)ξ ≈ −zm
〈
ξ∗ · a′(0)ei ej · a′(z)ξ

〉
.

Restricting to the case of scalar A for convenience, the expression further simplifies to

Qijm(z) ≈ −zm 〈a′(0)a′(z)〉 ei ⊗ ej .

Restricting ourselves w. l. o. g. to ensembles 〈·〉 with c(0) = 〈g2(0)〉 = 〈g2(z)〉 = 1, we see that
〈a′(0)a′(z)〉 depends on the Gaussian ensemble 〈·〉 only through c(z). We thus write 〈a′(0)a′(z)〉
= A′(c(z)) for some function A, so that by the chain rule

Qijm(z)∂nc(z) ≈ −zm ∂nA(c(z)) ei ⊗ ej .

Normalizing A such that A(0) = 0, we obtain by integration by parts
ˆ
Rd
dzQijm(z)∂nc(z) ≈ δmn

ˆ
Rd
dzA(c(z)) ei ⊗ ej .
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Hence the r. h. s. of (5.2.25) is given by(
lim
T↑∞

∑
k∈Zd

km∂m∇2GT,hom(k)
)ˆ

Rd
dzA(c(z)) (5.2.26)

to leading order in the contrast.

It remains to argue that the two factors in (5.2.26) typically do not vanish. The second factor
in (5.2.26) does not vanish in the typical case of A′ > 0 and c ≥ 0. Indeed, by definition of A, we
then have A′ > 0 and thus A(c) > 0 for c > 0, so that

´
Rd dzA(c(z)) > 0 because of c(0) = 1.

For the first factor in (5.2.26), we restrict ourselves to an isotropic ensemble, namely the case
where c is radially symmetric, in addition to A being scalar. In line with this, we show that the
trace of the first factor in (5.2.26) does not vanish:

lim
T↑∞

∑
k∈Zd

km∂m4GT,hom(k) 6= 0. (5.2.27)

For our isotropic ensemble, the contravariant two-form a is invariant in law under orthogonal trans-
formations, and so is ahom, which thus is a multiple of the identity, so that 4 is a multiple of
∇ · ahom∇. Hence by definition of GT,hom, (5.2.27) follows from

lim
T↑∞

1

T

∑
k∈Zd

km∂mGT,hom(k) 6= 0. (5.2.28)

By scaling, we have GT,hom(k) = 1√
T
d−2G1,hom( k√

T
). Hence we see that the sum in (5.2.28) can be

interpreted as a Riemann sum that in the limit T ↑ ∞ converges to the integral
ˆ
Rd
dkkm∂mG1,hom(k) = −d

ˆ
Rd
dkG1,hom(k),

which indeed does not vanish.

5.3 Structure of the proof of Theorem 30

In this section, we formulate the main intermediate results that lead to Theorem 30: In Subsection
5.3.1, we introduce the massive approximation in order to rigorously derive the analogue of the
representation formula (5.2.28) from Subsection 5.2.1, see Proposition 11. In Subsection 5.3.2 we
argue, following Subsection 5.2.1, that a re-summation allows for removing the massive approxima-
tion in the representation formula, see Proposition 12. It relies on second-order homogenization, as
introduced in Subsection 5.2.2. In Subsection 5.3.3 we sketch how to pass from the representation
given by Proposition 12 to the asymptotics stated in Theorem 30. This essentially relies on cor-
rector estimates and the estimate of the homogenization error, see Subsections 5.3.4 and 5.3.5. In
Subsection 5.3.4, we formulate the uniform stochastic estimates on first and second-order correctors
needed to capture the asymptotics L ↑ ∞, see Proposition 13. In Subsection 5.3.5, we formulate the
stochastic second-order estimate of the homogenization error, applied to the Green’s function, see
Proposition 14.
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5.3.1 Massive approximation

As became apparent in Subsection 5.2.1, there is divergence in the sum over the periodic cells, see
(5.2.7). We avoid it by replacing the operator −∇ · a∇ by 1

T −∇ · a∇ where T <∞ will eventually
tend to infinity. This has the desired effect that the corresponding Green’s function GT (a, x, y) and
its derivatives now decay exponentially in |y−x|√

T
, more precisely:

|GT (a, x, y)|+ |x− y||GT (a, x, y)|+ |x− y|2|∇∇GT (a, x, y)| ≤ C(a)|x− y|−d+2e
− |x−y|√

T , (5.3.1)

where the constant C depends at most polynomially on the Hölder constant [a]α′,B1(x) (next to
depending on d and λ). In view of Assumption 28 (and Definition 5.1.1), which for α′ < α ensures
Hölder continuous realizations g and thus a, any stochastic moment of [a]α′,B1(x) is finite, that is for
all p < +∞

〈[a]pα′,B1(x)〉L . 1, (5.3.2)

and thus C in (5.3.1) is well controlled. We refer to Appendix 5.5.1 for a proof. The language of
“massive” approximation arises from field theory where such a zero-order term is often introduced to
suppress an infrared divergence, like here. Assimilating m2 to the inverse of a time scale T however
makes the connection to stochastic processes, since 1

T − ∇ · a∇ is the generator of a diffusion-
desorption process where T is the time scale of desorption, and ultimately to parabolic intuition. As
a collateral of the massive approximation, we have to replace the definitions (5.1.2) and (5.1.3) by

1

T
φ

(1)
T i −∇ · a(∇φ(1)

T i + ei) = 0, āT ei :=

 
[0,L)d

a(∇φ(1)
T i + ei); (5.3.3)

with analogous definitions for the transposed medium a∗. From Schauder’s theory and (5.3.2),
(φ

(1)
T ,∇φ(1)

T ) is Hölder continuous, more precisely: for any p < +∞ and α′ < α

〈‖φ(1)
T ,∇φ(1)

T )‖p
C0,α′ ([0,L)d)

〉L .p,L 1, (5.3.4)

where ‖ · ‖C0,α′ ([0,L)d) = ‖ · ‖L∞([0,L)d) + [·]α′,[0,L)d . We now can rigorously establish the massive
version of formula (5.2.7):

Proposition 11. It holds

d

dL
〈ξ∗ · āT ξ〉L =

ˆ
Rd
dz
〈
(∇φ∗(1)

T + ξ∗)(0) · a′(0)

×∇∇GT (0, z)a′(z)(∇φ(1)
T + ξ)(z)

〉
L

∂cL
∂L

(z)

+
1

2

〈
(∇φ∗(1)

T + ξ∗) · a′′(∇φ(1)
T + ξ)

〉
L

∂cL
∂L

(0), (5.3.5)

where we recall that φ(1)
T =

∑
i ξiφ

(1)
T i .

The z-integral on the r. h. s. of (5.3.5) converges absolutely for |z| ↑ ∞ since the exponential
decay of ∇∇GT (0, z) dominates the linear growth of ∂cL∂L (z), cf. (5.2.8). The singularity at z = 0 is
to be interpreted by duality, using that the other factors are locally smooth in z.
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5.3.2 Re-summation

Following Subsection 5.2.2, we now appeal to second-order homogenization, which allows for a re-
summation. As a by-product of the re-summation, we may pass to the limit T ↑ ∞ in (5.3.5). The
difficulty with passing to the limit T ↑ ∞ lies in the {|z| ≥ L}-part of the integral in (5.3.5). We
thus fix a smooth cut-off function η for B 1

2
in B1, rescale according to

ηL(z) = η( zL),

and to split the z-integral into the benign near-field part
´
Rd dzηL(z) and the delicate far-field part´

Rd dz(1 − ηL)(z). On the far-field part, we appeal to the two-scale expansion (5.2.15). Hence we
have to monitor the homogenization error

E(x, y)

:= ∇∇G(x, y) + ∂ijG(x− y)(ei +∇φ(1)
i )(x)⊗ (ej +∇φ∗j

(1))(y)

+ ∂ijmG(x− y)(φ
(1)
i em +∇φ(2)

im)(x)⊗ (ej +∇φ∗j
(1))(y)

− ∂ijmG(x− y)(ei +∇φ(1)
i )(x)⊗ (φ∗j

(1)em +∇φ∗(2)
jm )(y), (5.3.6)

where as before G denotes the fundamental solution for the constant-coefficient operator −∇ · ā∇.

The translation invariance of G together with the periodicity of φ(1) and φ(2) allows for a re-
summation. As in Subsection 5.2.2, we feed in a zeroth- and first-order Taylor expansion of G. This
gives rise to the analogue of (5.2.18), namely

Γijmn = lim
T↑∞

ΓT ijmn where ΓT ijmn :=
∑
k∈Zd

kn∂ijmGT (k), (5.3.7)

where GT denotes the fundamental solution of 1
T − ∇ · ā∇. The existence of this limit follows by

the same arguments given for (5.2.27). The Taylor expansion generates the additional error terms

ε
(1)
Lijn(z) :=

∑
k∈Zd

kn
(
((1− ηL)∂ijG)(z + Lk)− ∂ijG(Lk)− zm∂ijmG(Lk)

)
, (5.3.8)

ε
(2)
Lijmn(z) :=

∑
k∈Zd

kn
(
((1− ηL)∂ijmG)(z + Lk)− ∂ijmG(Lk)

)
. (5.3.9)

Thanks to this re-summation, the subtlety of the T ↑ ∞ is limited to the not absolutely convergent
sum in (5.3.7). The sums in (5.3.8) and (5.3.9) are absolutely convergent since both summands decay
as |k|−(d+1) for |k| � |z|

L , see (5.3.13) and (5.3.14) for a more quantitative discussion. Equipped
with these definitions, we are now able to express the limit T ↑ ∞ of (5.3.5):

Proposition 12. Let Γ̄ be as in (5.3.7), ε(1) and ε(2) as in (5.3.8) & (5.3.9), and E as in (5.3.6).
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Let Q(1) and Q(2) be defined as in (5.2.19) and (5.2.20). Then we have

d

dL
〈ξ∗ · āξ〉L

= L−(d+1)

ˆ
Rd
dz
〈
Γijmn

(
ξ∗ ·Q(2)

ijm(z)ξ − zmξ∗ ·Q(1)
ij (z)ξ

)〉
L
∂nc(z)

+

ˆ
Rd
dz
〈
ε
(2)
Lijmn(z)ξ∗ ·Q(2)

ijm(z)ξ + ε
(1)
Lijn(z)ξ∗ ·Q(1)

ij (z)ξ
)〉
L
∂nc(z)

+

ˆ
Rd
dz(1− ηL)(z)

〈
(∇φ∗(1) + ξ∗)(0) · a′(0)

× E(0, z)a′(z)(∇φ(1) + ξ)(z)
〉
L

∂cL
∂L

(z)

+

ˆ
Rd
dzηL(z)

〈
(∇φ∗(1) + ξ∗)(0) · a′(0)

×∇∇G(0, z)a′(z)(∇φ(1) + ξ)(z)
〉
L

∂cL
∂L

(z)

+
1

2

〈
(∇φ∗(1) + ξ∗) · a′′(∇φ(1) + ξ)

〉
L

∂cL
∂L

(0). (5.3.10)

Periodic homogenization theory suffices to establish Proposition 12 and in particular to ensure
that all five expressions on the r. h. s. of (5.3.10) are well-defined, including the third one. Indeed, it
helps to momentarily think of having rescaled length by the fixed L. This puts us into the context
of a 1-periodic coefficient field a, which in addition is Hölder continuous. By and rescaling back, we
obtain

|E(x, y)| ≤ C(a)L2|y − x|−d−2,

where the constant C depends at most polynomially on the non-dimensionalized Hölder constant
Lα
′
[a]α′ (next to depending on d and λ). In particular we have, form (5.3.2)

sup
x,y
|y − x|d+2〈|E(x, y)|〉L <∞. (5.3.11)

This estimate yields the absolute convergence of the third term on the r. h. s. of (5.3.10), since
the decay (5.3.11) over-compensates the linear growth of ∂cL∂L . Finally, periodic homogenization and
(5.3.2) ensure the following convergences of the massive quantities: for any p < +∞ and any x, y,
the following convergences holds in Lp〈·〉

(φ
(1)
T ,∇φ(1)

T ) →
T↑+∞

(φ(1),∇φ(1)) and ∇∇GT (x, y) →
T↑+∞

∇∇G(x, y)

as well as (∇3GT (x),∇2GT (x)) →
T↑+∞

(∇3G(x),∇2G(x)). (5.3.12)

We refer to Appendix 5.5.2 for a proof of (5.3.12).

5.3.3 From representation to asymptotics

In order to pass from the representation in Proposition 12 to the asymptotics in Theorem 30, we have
to show that the first r. h. s. term of (5.3.10), up to the factor Ld+1, converges to the r. h. s. term
of (5.2.24), and that the remaining terms are o(L−(d+1)). Note that from (5.1.4), the fifth term of
(5.3.10) is immediately of order L−d−1−2α. Below, we discuss the first fourth terms.
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We start with the second term and estimate ε(1), see (5.3.8): In the range |k| ≥ |z|L , we obtain from
Taylor applied to (1−ηL)∂ijḠ that the summand is estimated by |z|2(L|k|)−(d+2) ≤ |z|(L|k|)−(d+1).
Hence the contribution to the sum from this range is dominated by min{|z|2L−(d+2), |z|L−(d+1)}. In
the other range |k| ≤ |z|L , the contribution from the middle term vanishes by parity, the contribution
from the last term is estimated by |z|L−(d+1) (by the same argument that shows that the limit
(5.3.7) exists), and the first term in the summand is estimated by |k|L−d so that its contribution
to the sum is also dominated by |z|L−(d+1). Since this second range is only present for |z| ≥ L, we
obtain in conclusion

|ε(1)
Lijn(z)| . min{|z|2L−(d+2), |z|L−(d+1)}. (5.3.13)

For the estimate of ε(2), see (5.3.9), we proceed in a similar way and obtain the stronger estimate

|ε(2)
Lijmn(z)| . |z|L−(d+2). (5.3.14)

We combine (5.3.13) and (5.3.14) with the corrector estimates of Proposition 13 i), which by defini-
tions (5.3.22) and (5.2.20) yield

〈|Q(1)
ij (z)|〉L + 〈|Q(2)

ijm(z)|〉L . 1. (5.3.15)

We now see that Assumption 28 is just what we need: By (5.1.4) with n = 1 (and w. l. o. g. α ≤ 1
2)

we obtain for the second term in (5.3.10)∣∣ ˆ
Rd
dz
〈
ε
(2)
Lijmn(z)Q

(2)
ijm(z) + ε

(1)
Lijn(z)Q

(1)
ij (z)

)〉
L
∂nc(z)

∣∣ . L−(d+1+2α),

which as desired is o(L−(d+1)). Here and in the sequel . means ≤ up to a multiplicative constant
that only depends on d, λ, and the constants implicit in (5.1.4) and (5.1.6) of Assumption 28.

We now turn to the third term on the r. h. s. of (5.3.10). It follows from Proposition 13 i) and
Proposition 14, together with (5.1.6) in Assumption 28, that∣∣〈(∇φ∗(1) + ξ∗)(0)

· a′(0)E(0, z)a′(z)(∇φ(1) + ξ)(z)
〉
L

∣∣ . |z|−(d+ 3
2

).

Inserting (5.2.8) we obtain the following estimate∣∣ ˆ
Rd
dz(1− ηL(z))

〈
(∇φ∗(1) + ξ∗)(0)

· a′(0)E(0, z)a′(z)(∇φ(1) + ξ)(z)
〉
L

∂cL
∂L

(z)
∣∣

.
∑
k

|k|
ˆ
Rd
dz(1− ηL)(z)|z|−(d+ 3

2
)|∇c(z + Lk)|.

Since by integrability of |∇c|, which is ensured by (5.1.4), the z-integral is estimated by (L|k|)−(d+ 3
2

),
the sum converges and is estimated by L−(d+ 3

2
), which as desired is o(L−(d+1)).

We finally turn to the first term in (5.3.10). On the one hand, from the qualitative result (which
can be seen as a consequence of Corollary 43)

lim
L↑∞
〈|ā− ahom|〉L = 0
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we obtain, by the explicit dependance of GT and thus Γ̄ on ā,

lim
L↑∞
〈|Γ̄− Γhom|〉L = 0.

Since on the other hand, Γ̄ is uniformly bounded (recall that ā is confined to the set (5.1.1)), and
by (5.3.15), it is enough to show that the limits

lim
L↑∞
〈Q(1)

ij (z)〉L and lim
L↑∞
〈Q(2)

ijm(z)〉L

not only exist but can be characterized in terms of 〈·〉. This is the content of Corollary 31 iii) in the
following subsection.

We finally turn to the fourth term on the r. h. s of (5.3.10). We split the term into the near-zero
contribution

´
[0,1)d dz and the far-zero contribution

´
Rd\[0,1)d dzηL. On the near-zero contribution,

we decompose as
ˆ

[0,1)d
dz
〈
(∇φ∗(1) + ξ∗)(0) · a′(0)∇∇G(0, z)a′(0)(∇φ(1) + ξ)(0)

〉
L

∂cL
∂L

(0)

=

ˆ
[0,1)d

dz
〈
(∇φ∗(1) + ξ∗)(0) · a′(0)∇∇G(0, z)a′(0)(∇φ(1) + ξ)(0)

〉
L

∂cL
∂L

(0)

+

ˆ
[0,1)d

dz
〈
(∇φ∗(1) + ξ∗)(0) · a′(0)∇∇G(0, z)a′(z)(∇φ(1) + ξ)(z)

∂cL
∂L

(z)− a′(0)(∇φ(1) + ξ)(0)
∂cL
∂L

(0)
〉
L
.

(5.3.16)
On the one hand, the first r. h. s term of (5.3.16), thanks to our assumption (5.1.4), is of order
L−d−1−2α. On the other hand, by Hölder continuity of a, φ(1) and ∂cL

∂L as well as the decay of
∇∇G(0, z), the integrand of the second r. h. s term of (5.3.16) is dominated by |z|−d+γL−d−1−2α (for
some γ > 0 depending on α) and thus this term is of order L−d−1−2α. On the far-zero contribution,
from the decay of ∇∇G(0, z) and (5.1.4), the integrand is dominated by |z|−dL−d−1−2α and thus
this term is also of order L−d−1−2α.

5.3.4 Stochastic corrector estimates up to second order

As just discussed, the proof of Theorem 30 will rely on estimates of not only the first-order corrector
φ

(1)
i , but also its second-order version φ(2)

ij , see part i) of Proposition 13. Since the period L of the
ensemble 〈·〉L tends to infinity, these have to be of stochastic nature. This is the reason for the
restriction to d > 2 (which is just a more telling way of saying d ≥ 3 since it is rather d = 2 that is
borderline): For d = 2, the first-order corrector in the whole-space ensemble 〈·〉 is not stationary, so
that one looses (pointwise) control even of a centered second-order corrector. Only for d > 2 one has
the middle item in (5.3.23) (see for instance Theorem 15 of Chapter 3). For the (limiting) whole-
space ensemble 〈·〉, such higher-order corrector estimates have first been establishes in [94] (however
sub-optimal in odd dimensions) and [27, Theorem 3.1] (see [56, Proposition 2.2] for a treatment of
any order). These works, like ours, rely on Malliavin calculus and a suitable spectral gap estimate,
as is available under Assumption 28 (see Proposition 9 of Chapter 3). Unfortunately, we cannot
simply quote [27] since we need the estimate for the periodized ensembles 〈·〉L (uniform for L ↑ ∞,
of course).

For Proposition 14, we need to also estimate the flux correctors, both first and second-order,
which we shall recall now. (We also refer to [56, Section 2] for a compact introduction into all
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higher-order correctors). It follows from (5.1.2) and (5.1.3) that a(∇φ(1)
i + ei) − āei is divergence-

free, periodic, and of zero average. Hence it allows for, in the language of d = 2, a periodic stream
function, or in the language of d = 3, a periodic vector potential. For general d, it can be represented
in terms of a periodic tensor field σi with

a(∇φ(1)
i + ei) = āei +∇ · σ(1)

i and σ
(1)
imn = −σ(1)

inm, (5.3.17)

where for a (skew symmetric) tensor field σ, we write (∇·σ)m := ∂nσmn, as an instance of an exterior
derivative. Observe that (5.3.17) does not determine σ(1)

i . Indeed, σ(1)
i , which can be interpreted as

an alternating (d−2)-form, is only determined up to a (d−3)-form. For estimates like in Proposition
13, we choose a suitable (and simple) gauge, that is

−∆σ
(1)
imn = ∂j(en · a(ei +∇φ(1)

i ))− ∂n(em · a(ei +∇φ(1)
i )). (5.3.18)

Note also that (5.2.14) can be reformulated in divergence form

∇ · a(∇φ(2)
ij + φ

(1)
i ej) = ∇ · σ(1)

i ej . (5.3.19)

This shows that there is a second-order analogue of (5.3.17): For every coordinate direction i, let
the matrix ā(2) be defined through

ā
(2)
i ej :=

 
[0,L)d

a(∇φ(2)
ij + φ

(1)
i ej) (5.3.20)

for any j = 1, · · · , d, and the periodic tensor field σ(2)
ij through

a(∇φ(2)
ij + φ

(1)
i ej) = ā

(2)
i ej + σ

(1)
i ej +∇ · σ(2)

ij

and σ
(2)
ijmn = −σ(2)

ijnm.
(5.3.21)

The merits of the flux correctors σ(1)
i and σ(2)

ij will become clear in Subsection 5.3.5. In fact, in that
context it will be convenient to have yet one more object, namely the periodic solution ωi of

−4ωi = φ
(1)
i . (5.3.22)

Proposition 13. Let d > 2 and 〈·〉 satisfy Assumptions 28; let 〈·〉L be defined as in Definition 5.1.1.
Let p <∞ be arbitrary.

i) We have

〈|∇φ(1)
i |

p〉
1
p

L + 〈|φ(1)
i |

p〉
1
p

L + 〈|∇φ(2)
ij |

p〉
1
p

L .p 1. (5.3.23)

ii) The random tensor fields σ(1)
i and σ(2)

ij can be constructed such that

〈|σ(1)
i |

p〉
1
p

L + 〈|∇σ(2)
ij |

p〉
1
p

L .p 1.

iii) We have for any periodic deterministic vector field g

〈|
ˆ

[0,L)d
g · ∇φ(1)

i |
p〉

1
p

L .p
( ˆ

[0,L)d
|g|2
) 1

2 . (5.3.24)
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iv) We have for all z

〈|φ(2)
ij (z)− φ(2)

ij (0)|p〉
1
p

L + 〈|σ(2)
ij (z)− σ(2)

ij (0)|p〉
1
p

L .p µ
(2)
d (|z|), (5.3.25)

where

µ
(2)
d (r) :=


r for 2 > r

r
1
2 for 2 ≤ r and d = 3

ln
1
2 r for 2 ≤ r and d = 4
1 for 2 ≤ r and d > 4

 . (5.3.26)

v) We have for all z

〈|∇ωi(z)−∇ωi(0)|p〉
1
p

L .p µ
(2)
d (|z|). (5.3.27)

Here . means ≤ up to a multiplicative constant that only depends on d, λ, and the constants
implicit in (5.1.4) and (5.1.6) of Assumption 28. The subscript p indicates an additional dependance.

While part i) of Proposition 13 is explicitly used in Section 5.3.3, the usage of the other parts more
indirect: Part ii) is used in Corollary 31, part iii) is used to estimate the second-order homogenization
error in Lemma 39; and part iv) is used to apply this to the Green’s function, see Proposition 14.

The proof of Proposition 13 essentially follows the strategy of [101, Section 4] and extends it
from first-order to second-order correctors; the passage from 〈·〉 to 〈·〉L is only a minor change. In
this paper, we will only establish the most important ingredient for Proposition 13, namely the
characterization of stochastic cancellations of the gradient of the correctors in Lemma 37. While
(5.3.28) reproduces [101, Proposition 4.1], the new element is its second-order counterpart (5.3.29).
The first item of (5.3.25) is a consequence of (5.3.29), adapting [101, Proposition 4.1, Part 1, Step
5]. The second item of (5.3.25) follows from the analogue of (5.3.29) on the level of the second-order
flux (5.3.21), adapting [101, Proposition 4.1, Part 2].

Lemma 37. Let d > 2 and 〈·〉 satisfy Assumptions 28; let 〈·〉L be defined as in Definition 5.1.1.
For any deterministic periodic vector field f and any p <∞ we have〈∣∣ ˆ

[0,L)d
f · ∇φ(1)

i

∣∣p〉 1
p

L .p
( ˆ

[0,L)d
|f |2

) 1
2 , (5.3.28)

〈∣∣ ˆ
[0,L)d

f · ∇φ(2)
ij

∣∣p〉 1
p

L .p
( ˆ

[0,L)d
|x|2L|f |2

) 1
2 , (5.3.29)

where we denote by | · |L the periodic distance on TL. We note that (5.3.29) also holds with
the weighted L2-norm

( ´
[0,L)d |x|

2
L|f |2

) 1
2 replaced by the Lq-norm of the same scaling, namely( ´

[0,L)d |f |
q
) 1
q with q = 2d

d+2 . However when passing from (5.3.29) to (5.3.25), we essentially choose
f = ∇Ḡ(· − z) −∇Ḡ, and in the critical dimension d = 4, we thus would have |f |q = O(|x|−4) for
1� |x| � |z| and thus would obtain a power 3

4 on the logarithm ln |z| instead of the optimal power
1
2 .

In establishing (5.3.29), we use the same approach as [101, Proposition 4.1] for (5.3.28), namely
we identify and estimate the Malliavin derivative of the l. h. s. and then appeal to the spectral
gap estimate. However, while for the first-order result (5.3.28), a buckling is required, it is not
necessary for its second-order counterpart (5.3.29). One can avoid it by appealing to the quenched
Calderon-Zygmund estimate, see [56] and [101, Proposition 7.1 ii)], albeit in the weighted form of
Lemma 38:
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Lemma 38. Let d > 2 and let 〈·〉L be an ensemble of λ-uniformly elliptic coefficient fields that are
L-periodic. Let the random periodic fields f and u be related by

∇ · (a∇u+ f) = 0.

For all p ≥ 1 and γ ∈ (−d, d(p− 1)), we have for µ : x ∈ Rd 7→ |x|γL(ˆ
[0,L)d

µ〈|∇u|2p〉
1
p

) 1
p

.p

( ˆ
[0,L)d

µ〈|f |2p〉
1
p

) 1
p

, (5.3.30)

where we recall that |x|L := infk∈Zd |x+ kL|.

An inspection of the proof of [101, Proposition 7.1 ii)] shows that the argument extends to the
case with a weight in the corresponding Muckenhoupt class. Indeed, the only essential new ingredient
is that this weighted annealed estimate holds for the constant coefficient operator, i. e. the analogue
of [101, Lemma 7.4]. This in turn follows from [113, Theorem 7.1]. Alternatively, one can derive the
weighted estimate from the unweighted one and the dualized Lipschitz estimate Lemma 41, following
the strategy of [80, Corollary 5]. Precisions will be added in the future version [48].

The limit L ↑ ∞ for the first r. h. s. term in (5.3.10) relies on the following purely qualitative
consequence of Proposition 13.

Corollary 31. Let d > 2 and 〈·〉 satisfy Assumptions 28; let 〈·〉L be defined as in Definition 5.1.1.
i) For i = 1, · · · , d there exists a unique stationary random field φ(1)

i with 〈(φ(1)
i )2+|∇φ(1)

i |2〉 <∞
and 〈φ(1)

i 〉 = 0 such that

∇ · a(∇φ(1)
i + ei) = 0 a. s..

ii) For i, j = 1, · · · , d there exists a unique stationary random field ∇φ(2)
ij with 〈|∇φ(2)

ij |2〉 < ∞ and

〈∇φ(2)
ij 〉 = 0 such that

−∇ · a(∇φ(2)
ij + φ

(1)
i ej) = ej · (a(∇φ(1)

i + ei)− āei) a. s.. (5.3.31)

iii) We have 〈|φ(1)
i |p + |∇φ(1)

i |p + |∇φ(2)
ij |p〉 <∞ for all p <∞ and for all z

lim
L↑∞
〈Q(1)

ij (z)〉L = 〈Q(1)
ij (z)〉 and lim

L↑∞
〈Q(2)

ijm(z)〉L = 〈Q(2)
ijm(z)〉, (5.3.32)

where also the r. h. s. integrands are defined by the formulas (5.3.22) and (5.2.20).

The important element of part i) of Corollary 31 is the stationarity of φ(1)
i itself, not just of

∇φ(1)
i . Such a result was first established in [82, Proposition 2.1] in the case of a discrete medium,

see [91, Proposition 1] for the first result for a continuum medium. Part ii) is an easy consequence
of the divergence-form reformulation (5.3.19) of (5.3.31) and the fact that σ(1)

i , see (5.3.17), has the
same properties as φ(1)

i , see part ii) of Proposition 14. Part iii) is new and relies on a soft argument
based on a suitable coupling of 〈·〉L with 〈·〉, next to the uniform bounds of Proposition 13.
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5.3.5 Estimate of homogenization error to second order, application to the
Green function

A second main role of the corrector estimates of Proposition 13, in particular the estimate of the
flux correctors, is to provide an estimate of the homogenization error. On our second-order level,
this connection relies on identity (5.3.35) involving the two-scale expansion (5.3.34), which we recall
now. Suppose that u and ū are related via

∇ · a∇u = ∇ · ā∇ū

and that ū(2) is related to ū via

∇ · (ā∇ū(2) + a
(2)
i ∇∂iū) = 0. (5.3.33)

Consider the error in the second-order two-scale expansion

w := u− (1 + φ
(1)
i ∂i + φ

(2)
ij ∂ij)(ū+ ū(2)). (5.3.34)

Then σ(2)
ij allows to write the residuum in divergence form:

−∇ · a∇w = ∇ ·
(
(φ

(2)
ij a− σ

(2)
ij )∇∂ij ū+ ā

(2)
i ∇∂iū

(2)
)
. (5.3.35)

Now the advantage of A and thus a being symmetric becomes apparent: It implies that the symmetric
part of the three-tensor with entries ā(2)

imn vanishes (see e. g. [56, Lemma 2.4]). Since (5.3.33) may be
rewritten as −∇ · ā∇ū(2) = a

(2)
imn∂imnū, we may assume ū(2) = 0 under our symmetry assumption.

Hence (5.3.34) simplifies to

w := u−
(
1 + φ

(1)
i ∂i + (φ

(2)
ij − φ

(2)
ij (0))∂ij

)
ū (5.3.36)

and (5.3.35) may be rewritten as

−∇ · a∇w = ∇ ·
(
(φ

(2)
ij − φ

(2)
ij (0))a− (σ

(2)
ij − σ

(2)
ij (0))

)
∇∂ij ū. (5.3.37)

We are allowed to pass to the centered versions of the second order (flux) corrector, by which we
mean that (φ

(2)
ij , σ

(2)
ij ) is replaced by (φ

(2)
ij −φ

(2)
ij (0), σ

(2)
ij −σ

(2)
ij (0)), which we do with (5.3.25) in mind,

since a change by an additive constant does not affect anything stated so far, and in particular not
formula (5.3.21), on which (5.3.35) solely relies.

Lemma 39. Let d > 2 and 〈·〉 satisfy Assumptions 28 with symmetric A; let 〈·〉L be defined as in
Definition 5.1.1. Given a deterministic and smooth vector field g supported in BR(y) with y ∈ Rd
and some R <∞, let u and ū be the decaying solutions of

∇ · a∇u = ∇ · g = ∇ · ā∇ū. (5.3.38)

Then w defined in (5.3.36) satisfies for all p <∞

〈|∇w(0)|p〉
1
p

L .p µ
(2)
3 (R) sup |∇2g|. (5.3.39)

Here .p has the same meaning as in Proposition 13.
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This pointwise estimate (5.3.39) relies on a decomposition of the r. h. s. of (5.3.37) into pieces
supported on dyadic annuli. For each piece, we first apply the energy estimate, into which we feed
(5.3.25) and the energy estimate for ∇2ū, see (5.3.38), and then apply Lemma 41. For simplicity,
we have taken the worst case in (5.3.26), namely d = 3; the finer estimates would come with an
additional logarithm.

The main goal of this subsection is to estimate the homogenization error on the level of the
Green’s function, see Proposition 14. This type of homogenization result with singular r. h. s. has
been worked out on the level of the first-order approximation in [28, Corollary 3] and extended to
second-order in [29, Theorem 1], where these estimates are derived from estimates on (φ

(1)
i , σ

(1)
i ) and

(φ
(2)
ij , σ

(2)
ij ) of the type of Proposition 13, however in a pathwise way, see [29, Proposition 1]. While

equipped with Proposition 13, we could post-process [29, Theorem 1] to obtain Proposition 14, we
take a different, and shorter, route in this paper. Note that [29, Theorem 1] is not formulated in
terms of the Green’s function G, but in terms of decaying a-harmonic functions in exterior domains.
Recovering a statement on the Green’s function would require [28, Lemma 4], which we restate as
Lemma 40 below for the convenience of the reader.

In this paper, we use Lemma 40, or rather Corollary 32, in a more substantial way than it is
used in [28, Corollary 3]. Here comes an outline of the argument for Proposition 14: We apply
Lemma 39 with the origin replaced by a general point x0. Writing u(x) =

´
Rd dy g(y) · ∇yG(x, y)

and ū(x) =
´
Rd dy g(y) · ∇yG(x, y), this provides control of
ˆ
Rd

dy(∇ · g)(y)
(
∇xG(x0, y)− ∂iG(x0 − y)(ei +∇φ(1)

i (x0))

− ∂ijG(x0 − y)(φ
(1)
i (x0)ej +∇φ(2)

ij (x0))
)
,

in terms of µ(2)
3 (R) sup |∇2g| with 2R the diameter of suppg; here we used the centering of φ(2)

ij in
x0. We now fix a point y0 with |y0 − x0| ≥ 4 and replace both instances of G(x0 − y) by what we
obtain from applying the two-scale expansion operator in the y-variable

1 + φ∗(1)
m (y)

∂

∂ym
+ (φ∗(2)

mn (y)− φ∗(2)
mn (y0))

∂2

∂ym∂yn
.

Provided g is supported in BR(y0) with R := 1
2 |y0 − x0| ≥ 2, this preserves the estimate: While for

three out of the four extra terms, this follows directly from parts i) through iii) of Proposition 13, we
need part iv) and an integration by parts in y for the contribution coming from φ

∗(1)
i (y)∂imG(x0−y)

(ei +∇φ(1)
i (x0)). Keeping only first and second-order terms and recalling the definition (5.3.6), this

yields

〈∣∣ˆ
Rd
dy g(y) · Em(x0, y)

∣∣p〉 1
p

L . µ
(2)
3 (R) sup |∇2g| (5.3.40)

for any g supported in BR(y0). By construction, up to third-order terms, Rd−{x0} 3 y 7→ Em(x0, y)
is a linear combination of a gradient of an a∗-harmonic function, namely ∂G

∂xm
(x0, y), and gradients

of two-scale expansions of ā∗-harmonic functions, namely of ū(y) = ∂iG(x0 − y)(δim + ∂mφ
(1)
i (x0))

and of ū(y) = ∂ijG(x0− y) (φ
(1)
i (x0)δjm +∂mφ

(2)
ij (x0)). Hence we may appeal once more to (5.3.37),

this time in the y-variable and thus for the dual medium, and with the origin replaced by y0.
We decompose the r. h. s. of (5.3.37) into a far-field supported on Rd − BR(y0) and a near-field
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supported on dyadic annuli centered at y0 of radii R, R2 ,
R
4 , · · · . For the near-field contributions, we

appeal to the energy estimate followed by Lemma 41. For the far-field contribution, we use (5.3.40)
(in conjunction with the estimate of the near-field part) by appealing to Corollary 32, both with the
origin replaced by y0. It is thus Corollary 32 that converts the weak control (5.3.40) into pointwise
control (5.3.41).

Proposition 14. . Let d > 2 and 〈·〉 satisfy Assumptions 28 with symmetric A; let 〈·〉L be defined
as in Definition 5.1.1. Then we have for E defined in (5.3.6)

|y − x|d+2〈|E(x, y)|p〉
1
p

L . µ
(2)
3 (|y − x|) (5.3.41)

provided |y − x| <∞ and for all p <∞. Here .p has the same meaning as in Proposition 13.

Here comes the crucial Lemma that converts weak into strong control.

Lemma 40. Let 〈·〉 be an ensemble of λ-uniformly elliptic coefficient fields8. Let the random function
u be a-harmonic in the ball BR of radius R. Then we have for all p <∞

〈(  
BR

2

|∇u|2
) p

2
〉 1
p .d,λ sup

g∈C∞0 (BR)

〈
|
ffl
BR

g · ∇u|p
〉 1
p

R2 sup |∇2g|
. (5.3.42)

Lemma 40 amounts to an inner regularity estimate for a-harmonic functions u, in terms of the
norms Lp〈·〉L

2
x and W−2,1

x Lp〈·〉 on the level of the gradient ∇u. As [28, Lemma 4], estimate (5.3.42)
is a consequence of an inner regularity estimate, uniform in a, with respect to norms L2

x and H−nx
(the case W−2,1

x of (5.3.42) is obtained for n > d
2 + 2). However, it strengthens [28, Lemma 4] by

restricting the r. h. s. functional to smooth functions g with compact support, i.e., functions that
vanish to appropriate order at the boundary.
Nevertheless, it requires only a minor modification of the proof. It is obtained as a combination
of two ingredients. First, by the Caccioppoli estimate and by an L2

x interpolation estimate, we
may estimate the l. h. s. of (5.3.42) by the L2

x norm of w for ∆2nw = u. Second, appealing to
the fact that the Dirichlet operator ∆2n has finite trace for 2n > d, we may obtain (5.3.42). This
second step differs from [28, Lemma 4], where the Fourier decomposition was explicitly used to solve
∆2nw = u (thus, losing the property of compact support). This argument also shows that the second
derivative on g, that we need here for our second-order homogenization, could be replaced by any
order (properly non-dimensionalized).

We use Lemma 40 only in combination with a second inner regularity estimate, Lemma 41, which
amounts to a Lipschitz estimate. Lipschitz estimates are central in the large-scale regularity theory
in homogenization as initiated by Avellaneda and Lin in the periodic context, and as introduced by
Armstrong and Smart [10] to the random context.

Lemma 41. Let d > 2 and 〈·〉 satisfy Assumptions 28; let 〈·〉L be defined as in Definition 5.1.1. Let
the random function u be a-harmonic in the ball BR of radius R. Then we have for all p′, p <∞

〈|∇u(0)|p′〉
1
p′
L .p′,p

〈(  
BR

|∇u|2
) p

2
〉 1
p

L provided p′ < p. (5.3.43)

Here .p,p′ has the same meaning as in Proposition 13.
8We will apply it to 〈·〉L
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Lemma 41 is an easy consequence of the pathwise Lipschitz estimate [80, Theorem 1]. More
precisely, we refer to [80, (16)], which takes the form of(  

B1

|∇u|2
) 1

2 .d,λ r
d
2
∗
(  

BR

|∇u|2
) 1

2 ,

with the random radius r∗ defined in [80, (12)]. It easily follows from the estimates on (φ
(1)
i , σ

(1)
i )

in Proposition 13 that 〈rp∗〉
1
p

L .p 1 for all p < ∞. On the other hand, by standard Schauder theory
in Cα′ we have

|∇u(0)| ≤ C(a)
(  

B1

|∇u|2
) 1

2 ,

where C depends at most polynomially on the local Hölder norm [a]α′,B1 . Since α′ < α, we obtain

from Assumption 28 that 〈[a]pα′,B1
〉

1
p

L <∞ for all p <∞. Noe (5.3.43) follows from combining both
estimates; note that the loss in stochastic integrability is unavoidable, since it compensates the fact
that both r∗ and [a]α′ are not uniformly bounded.

As mentioned, we use Lemma 40 only in its form combined with Lemma 41

Corollary 32. Let d > 2 and 〈·〉 satisfy Assumptions 28; let 〈·〉L be defined as in Definition 5.1.1.
Let the random function u be a-harmonic in the ball BR of radius R. Then we have for all p′, p <∞

〈|∇u(0)|p′〉
1
p′
L .p′,p sup

g∈C∞0 (BR)

〈
|
ffl
BR

g · ∇u|p
〉 1
p

L

R2 sup |∇2g|
provided p′ < p. (5.3.44)

Here .p,p′ has the same meaning as in Proposition 13.

Corollary 32 amounts to an inner regularity estimate for a-harmonic functions u, in terms of the
norms L∞x L

p
〈·〉 and W

−2,1
x Lp〈·〉 on the level of the gradient ∇u. We call this estimate an annealed9

estimate, since now on both sides of (5.3.44), the probabilistic norm is inside.

5.4 Proofs

5.4.1 Proof of Proposition 11: Derivative in L

We prove (5.3.5) by an approximation argument on the flux a(∇φT + e) to which we apply the
version of Price’s formula (4.3.17) of Corollary 27 of Chapter 4. We finally let the approximation
parameter goes to +∞.

Fix z ∈ Rd and define
F̂ (·, z) : a ∈ X̂ 7→ ξ∗ · (a(∇φ(1)

T + ξ))(z), (5.4.1)

where we recall that the massive corrector φ(1)
T is defined in (5.3.3) and where

X̂ :=

{
a

∣∣∣∣[a]γ,α := sup
x∈Rd

(1 + |x|2)−γ
(

sup
y:|y−x|≤1

|a(y)− a(x)|
|y − x|α

+ |a(x)|
)
< +∞

}
,

9The language of quenched and annealed arises from metallurgy estimate and made its to model with disorder in
statistical mechanics
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for some fixed γ > 0. The derivative (5.3.5) is reinterpreted by d
dL〈F̂ (0)〉L (where the dependence

on a is made implicit). Let (ηn)n∈N be a mollifying sequence and define the approximation of the
coefficient field a by, for all n ∈ N

an : g ∈ X 7→ ηn ? A(ηn ? g). (5.4.2)

Now define the approximation Fn(·, z) of F̂ (·, z) via

Fn(·, z) := F̂ (an(·), z). (5.4.3)

We now show that we can apply the version of Price’s formula of Corollary 27 to Fn, for all n ∈ N.
To do so, we check that Fn is twice Fréchet differentiable in the space10 X defined in (4.3.6), that
g ∈ X 7→ d2Fn(g) is bounded (as a function taking value into the set of continuous bilinear form on
X) and that d2F (g) is Hilbert-Schmidt for all g ∈ X. We argue in the two following substeps.

Twice Fréchet differentiability and boundedness of g 7→ d2F (g). We prove that Fn is twice
Fréchet differentiable in X and that g ∈ X 7→ d2Fn(g) is bounded. From (5.4.1) and (5.4.3), the
second variation of Fn is given by (we use the notations a′n := ηn ?A

′(ηn ?g) and a′′n = ηn ?A
′′(ηn ?g)

and skip the dependence in n for the massive corrector φ(1)
T depending on an): for all g, δg, δg′ ∈ X

d2Fn(g, z)(δg, δg′) =ξ∗ · (a′′n(∇φ(1)
T + ξ))(z)(ηn ? δg(z))(ηn ? δg

′(z))

+ ξ∗ · (a′n∇δφ
(1)
T (δg′, ·))(z)(ηn ? δg(z)) + ξ∗ · (a′n∇δφ

(1)
T (δg, ·))(z)(ηn ? δg′(z))

+ ξ∗ · (an∇δ2φ
(1)
T (δg, δg′, ·))(z), (5.4.4)

where
1

T
δφ

(1)
T (δg)−∇ · an∇δφ(1)

T (δg) = ∇ · a′n(∇φ(1)
T + ξ)(ηn ? δg), (5.4.5)

and

1

T
δ2φT (δg, δg′)−∇ · an∇δ2φ

(1)
T (δg, δg′) =∇ · a′n∇δφ

(1)
T (δg)(ηn ? δg

′) +∇ · a′n(∇δφ(1)
T (δg′))(ηn ? δg)

+∇ · a′′n(∇φ(1)
T + ξ)(ηn ? δg)(ηn ? δg

′). (5.4.6)

We now verify that for all g ∈ X, d2Fn(g) is a continuous bilinear form on X. Fix g ∈ X. First of
all, thanks to the outer convolution in (5.4.2), one has

[an]0,α .ηn 1.

In addition, using local Schauder’s theory to the equation (5.3.3) and the exponentially localized
energy estimates (see Proposition 15) one has

[∇φ(1)
T ]0,α .α,[a]0,α,T 1. (5.4.7)

Then, using the exponentially localized energy estimate (see Proposition 15) followed by the local
Schauder’s theory to the equation (5.4.5), we obtain

|∇δφ(1)
T (z, δg)|γ,z ≤ [∇δφ(1)

T (·, δg)]γ,α .T,α,γ,[an]0,α [ηn ? δg]γ,α .T,α,γ,n ‖δg‖X , (5.4.8)

10We recall that X =

{
g

∣∣∣∣ ´ |g|2dµ < +∞
}
, where µ : x ∈ Rd 7→ (1 + |x|2)−4k.
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By the same ingredients, it follows from (5.4.6) that

|∇δ2φ
(1)
T (δg, δg′, z)| .T,α,γ,[an]0,α [∇δφ(1)

T (δg)]γ,α[ηn ? δg
′]γ,α + [∇δφ(1)

T (δg′)]γ,α[ηn ? δg]γ,α

+ [ηn ? δg]γ,α[ηn ? δg
′]γ,α

(5.4.8)
.T,α,γ,n ‖δg‖X‖δg′‖X . (5.4.9)

From the estimates11 (5.4.7), (5.4.8), (5.4.9) and (5.4.5), we deduce that Fn is twice Fréchet differ-
entiable in X with for all g, δg, δg′ ∈ X

|d2Fn(g, z)(δg, δg′)| .z,T,α,γ,n ‖δg‖X‖δg′‖X .

Hilbert-Schmidt property. We now prove that for all g ∈ X, d2Fn(g, z) in Hilbert-Schmidt. Fix
g ∈ X. We prove that d2Fn(g, z) is an integral operator in L2(Rd×Rd) where its kernel ∂2Fn(z, ·, ·)
belongs to12 L2

µ−1dx⊗µ−1dy(R
d × Rd) and is given by, for all x, y ∈ Rd × Rd

∂2Fn(z, x, y) =ξ∗ · (a′′n(∇φ(1)
T + ξ))(z)ηn(z − x)ηn(z − y)

+ ξ∗ · (a′n∇δφ
(1)
T (δy, ·))(z)ηn(z − x) + ξ∗ · (a′n∇δφ

(1)
T (δx, ·))(z)ηn(z − y)

+ ξ∗ · (an∇δ2φ
(1)
T (δx, δy, ·))(z), (5.4.10)

Note that (5.4.10) is formally obtained by evaluating (5.4.4) for δg = δx and δg′ = δy (where we
recall that δx : η ∈ C∞c (Rd) 7→ η(x)). For notational convenience, we evaluate δφ(1)

T and δ2φ
(1)
T on

Dirac distributions, which makes sense in (5.4.5) and (5.4.6) thanks to the convolution with ηn. The
fact that ∂2Fn(z, ·, ·) is the kernel of d2Fn(g) in L2(Rd ×Rd) can be easily check by computing, for
all δg, δg ∈ L2(Rd),

´ ´
dx dy∂2Fn(z, x, y)δg(x)δg(y) and noticing that

´
dx∇δφ(1)

T (δx, z)δg(x) as
well as

´
dx dy∇δ2φ

(1)
T (δx, δy, z)δg(x)δg(y) are the solution of (5.4.5) and (5.4.6) respectively. We

now check that ∂2Fn(z, ·, ·) ∈ L2
µ−1dx⊗µ−1dy(R

d×Rd). We only treat the last right-hand side term of
(5.4.10), the others are treated the same way. From the same ingredients as for (5.4.8) and (5.4.9),
one has |∇δ2φ

(1)
T (δx, δy, z)| .z,T,α,γ,n [ηn(· − x)]γ,α[ηn(· − y)]γ,α which implies that

ˆ ˆ
dx dyµ−1(x)µ−1(y)|∇δ2φ

(1)
T (δx, δy, z)|2 < +∞, (5.4.11)

since ηn is compactly supported.

We are now in position to apply the version of Price’s formula of Corollary 27:

d

dL
〈Fn(z)〉L =

1

2

ˆ ˆ
dx dy〈∂2Fn(z, x, y)〉L

dcL
dL

(x, y), (5.4.12)

where by definition cL(δx, δy) = cL(x, y) (see Assumption 28). We now slightly rewrite (5.4.12) by
using stationarity. Clearly, F̂ has the shift invariance property F̂ (a, z+h) = F̂ (a(·+h), z) (from the
uniqueness of the solution of (5.3.3)). Combined with the trivial shift invariance of an, it translates
to the shift invariance of Fn which in turn translates to d2Fn in form of

d2Fn(g, z + h)(δg, δg′) = d2Fn(g(·+ z), z)(δg(·+ h), δg′(·+ h)),

11And a purely qualitative bit more which amounts to estimating the third derivatives.
12Note that if k is a kernel in L2(Rd×Rd) with integrability in L2

µ−1dx⊗µ−1dy(Rd×Rd) then (x, y) 7→ µ(x)µ(y)k(x, y)

is the kernel in L2
µdx⊗µdy(Rd × Rd) in the sense of (4.3.9).
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for all h ∈ Rd and g, δg, δg′ ∈ X. At the level of the kernel, it reads (where we make explicit the
dependance in g ∈ X)

∂2Fn(g, z + h, x+ h, y + h) = ∂2Fn(g(·+ h), z, x, y).

Consequently, using the stationarity of 〈·〉L, one deduces that

〈F (z + h)〉L = 〈F (z)〉L and 〈∂2Fn(z + h, x+ h, y + h)〉L = 〈∂2Fn(z, x, y)〉L. (5.4.13)

With the identity (5.4.13) together with the fact that by stationarity of 〈·〉 one has cL(x, y) =
cL(x− y), we arrive at (using the change x− y  z and the fact that the argument for (5.4.11) also
show that ∂2Fn(z, ·, ·) is integrable.)

d

dL
〈Fn(0)〉L =

1

2

ˆ
dz
dcL
dL

(z)

〈ˆ
dx∂2Fn(x, z, 0)

〉
L

. (5.4.14)

We now compute I := 〈
´
dx ∂2Fn(x, z, 0)〉L for a fixed z ∈ Rd. We denote by ∂2F̃n the function

such that ∂2Fn = ξ∗ · ∂2F̃n (see (5.4.10). We proceed as in Subsection (5.2.1). We note that

I =

〈ˆ
dx (ξ∗ +∇φ∗(1)

T ) · (∂2F̃n(z, x, 0)− an∇δ2φ
(1)
T (δx, δ0, z))

〉
. (5.4.15)

Ideed, from (5.4.5) and (5.4.6) we have for u : x 7→ ∂2F̃n(x, z, 0)

1

T
δ2φT (δx, δ0)−∇ · u = 0.

Thus, by testing the above equation with φ
∗(1)
T and by testing δ2φ(δx, δ0, ·) in (5.3.3) (with an

replaced by a∗n)13, we obtain

1

T

ˆ
φ
∗(1)
T δ2φT (δx, δ0, ·) +

ˆ
∇φ∗(1)

T · ∂2F̃n(x, ·, 0) = 0,

and
1

T

ˆ
φ
∗(1)
T δ2φT (δx, δ0, ·) +

ˆ
(ξ∗ +∇φ∗(1)

T ) · an∇δ2φT (δx, δ0, ·).

Taking the difference of the two identities above yields (5.4.15). Finally, using the definition of ∂2F̃n
and (5.4.10), (5.4.15) turns into

I =

〈ˆ
dx (ξ∗ +∇φ∗(1)

T ) · (a′n∇δφ
(1)
T (δ0, ·))(x)ηn(x− z) + (ξ∗ +∇φ∗(1)

T ) · (a′n∇δφ
(1)
T (δz, ·))(x)ηn(x)

〉
L

+

〈ˆ
dx (ξ∗ +∇φ∗(1)

T · (a′′n(∇φ(1)
T + ξ))(x)ηn(x− z)ηn(x)

〉
. (5.4.16)

By plugging (5.4.16) into (5.4.14), using the stationarity of 〈·〉L (together with the shift invariance
of ∇φ∗(1)

T ) as well as the fact that cL is even (which implies that the two contributions in the first
right-hand side of (5.4.16) are identical), we arrive at

d

dL
〈Fn(0)〉L =

ˆ
dcL
dL

? ηn〈(ξ∗ +∇φ∗(1)
T ) · (a′n∇δφ

(1)
T (δ0, ·))

+
1

2

ˆ
〈(∇φ∗(1)

T + ξ∗) ·
(
dcL
dL

? ηn

)
a′′nηn(∇φ(1)

T + ξ)〉L.

13Which are both admissible since they decay exponentially by Schauder theory and the exponentially localized
energy estimates, see Proposition 15
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We conclude by rewriting the first term of the above equation by duality, using the solution of

1

T
un −∇ · an∇un = ∇ · a′n

(
ηn ?

dcL
dL

)
(∇φ∗(1)

T + ξ∗),

and equation (5.4.5), such a way that finally

d

dL
〈Fn(0)〉L =

ˆ
(∇φT + ξ) · (a′nη)∇un

+
1

2

ˆ
〈(∇φ∗(1)

T + ξ∗) ·
(
dcL
dL

? ηn

)
a′′nηn(∇φ(1)

T + ξ)〉L.

We then obtain (5.3.5) by letting n ↑ +∞, which easily follow from Schauder’s theory (which gives
compactness) and continuity of all the functions.

5.4.2 Proof of Proposition 12: Limit T ↑ ∞

The strategy of proof is simple. First, we reorder the terms of the derivative of d
dL〈ξ

∗ · aT ξ〉L in
order to make appear the “massive” analogue (that is, involving the massive operator 1

T −∇ · a∇)
of the r. h. s. of (5.3.10). For this first step, we essentially make precise the computations done in
Section 5.2.2. Second, we systematically make use of the dominated convergence theorem to obtain
the convergence of each term to its massless counterpart.

Reordering the derivative of 〈ξ∗ · aT ξ〉L. We shall first establish that, under Assumptions
28, formula (5.3.10) holds on the level of the massive equation, that is

d

dL
〈ξ∗ · aT ξ〉L

= L−(d+1)

ˆ
dz
〈
ΓT/L2ijmn

(
ξ∗ ·Q(2)

T ijm(z)ξ − zmξ∗ ·Q(1)
T ij(z)ξ

)〉
L
∂nc(z)

+

ˆ
dz
〈
ε
(2)
TLijmn(z)ξ∗ ·Q(2)

T ijm(z)ξ + ε
(1)
TLijn(z)ξ∗ ·Q(1)

T ij(z)ξ
)〉
L
∂nc(z)

+

ˆ
dz(1− ηL)(z)

〈
(∇φ∗(1)

T + ξ∗)(0) · a′(0)

× ET (0, z)a′(z)(∇φ(1)
T + ξ)(z)

〉
L

∂cL
∂L

(z)

+

ˆ
dzηL(z)

〈
(∇φ∗(1)

T + ξ∗)(0) · a′(0)

×∇∇GT (0, z)a′(z)(∇φ(1)
T + ξ)(z)

〉
L

∂cL
∂L

(z)

+
1

2

〈
(∇φ∗(1)

T + ξ∗) · a′′(∇φ(1)
T + ξ)

〉
L

∂cL
∂L

(0),

(5.4.17)

where the objects ET , ε(1)
TLijn, ε

(2)
TLijlm, Q

(1)
T ij and Q

(2)
T ijm are defined by the "massive" analogue

of (5.3.6), (5.3.8), (5.3.9), (5.2.19) and (5.2.20) respectively (where
(
G,G

)
shall be replaced by(

GT , GT
)
). Moreover, ΓT ijmn is defined by (5.3.7).

The proof of (5.4.17) follows from straightforward computations on (5.3.5), which are all le-
gitimate on account of the exponential decay of the massive Green’s function, see (5.3.1). Recall
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Formula (5.3.5) established in Proposition 11, which directly provides the fifth term of (5.4.17).
Thus, we only have to study the r. h. s. integral in (5.3.5). As explained in Section 5.3.2, we split the
integral into the near-field contribution

´
dzηL(z) (which gives the fourth r. h. s term of (5.4.17))

and the far-field contribution
´
dz(1 − ηL)(z) (that we denote by ΠL,T ). On the far-field part, we

appeal to the two-scale expansion of ∇∇GT and, by the definition of the homogenization error ET ,
the tensors Q(1)

T and Q(2)
T naturally appear in

(∇φ∗(1)
T + ξ∗)(0) · a′(0)∇∇GT (0, z)a′(z)(∇φ(1)

T + ξ)(z) =∂ijGT (z)ξ∗ ·Q(1)
T ij(z)ξ

+ ∂ijmGT (z)ξ∗ ·Q(2)
T ijm(z)ξ

+ (∇φ∗(1)
T + ξ∗)(0) · a′(0)ET (0, z)a′(z)(∇φ(1)

T + ξ)(z),

(5.4.18)

which we may insert in ΠL,T to the effect of

ΠL,T =−
ˆ

dz(1− ηL(z))
〈
∂ijGT (z)ξ∗ ·Q(1)

T ij(z)ξ
〉
L

∂cL
∂L

(z)
(

=: Π
(1)
L,T

)
+

ˆ
dz(1− ηL(z))

〈
∂ijmGT (z)ξ∗ ·Q(2)

T ijm(z)ξ
〉
L

∂cL
∂L

(z)
(

=: Π
(2)
L,T

)
+

ˆ
(1− ηL(z))

〈
(∇φ∗(1)

T + ξ∗)(0) · ET (0, z)(∇φ(1)
T + ξ)(0)

〉
L

∂cL
∂L

(z)dz,

(5.4.19)
where we identify the third above r. h. s. term as the third r. h. s. term of (5.4.17). Then, we shall
treat separately Π

(1)
L,T and Π

(2)
L,T .

On the one hand, using (5.2.8), we may expand ∂cL
∂L as in (5.4.19), in such a way that the sum

on k 6= 0 may be transfered to the Green function. Namely, we obtain

Π
(1)
L,T =

∑
k 6=0

ˆ
dz(1− ηL(z))

〈
∂ijG(z)ξ∗ ·Q(1)

T ij(z)ξ
〉
L
kn∂nc(z − kL)

=

ˆ
dz
〈
ξ∗ ·Q(1)

T ij(z)ξ
(∑
k 6=0

((1− ηL)∂ijGT )(z + kL)kn

)〉
L
∂nc(z),

(5.4.20)

where we used the change of variables z  z+ kL and the fact that Q(1)
T is L-periodic. Since ∂ijGT

is an even function, the following identity holds:∑
k 6=0

∂ijGT (kL)kn = 0.

Therefore, we deduce from (5.4.20) that

Π
(1)
L,T =

ˆ
dz
〈
ξ∗ ·Q(1)

T ij(z)ξ
(∑
k 6=0

(((1− ηL)∂ijGT )(z + kL)− ∂ijGT (kL))kn

)〉
L
∂nc(z). (5.4.21)

Next, we reorganize the above r. h. s. term into brackets by means of a Taylor-like expansion∑
k 6=0

(((1− ηL)∂ijGT )(z + kL)− ∂ijGT (kL))kn = zm
∑
k 6=0

∂ijmGT (kL)kn + ε
(1)
TLijmn(z),
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(which defines ε(1)
TLijmn) so that (5.4.21) reads

Π
(1)
L,T =

ˆ
dz
〈
ξ∗ ·Q(1)

T ij(z)ξ
(
zm
∑
k 6=0

∂ijmGT (kL)kn + ε
(1)
TLijmn(z)

)〉
L
∂nc(z). (5.4.22)

On the other hand, by (5.2.8) and by a change of variables, we similarly rewrite Π
(2)
L,T as

Π
(2)
L,T = −

ˆ
dz
〈
ξ ·Q(2)

T ijm(z)ξ
∑
k 6=0

((1− ηL)∂ijmGT )(z + kL)kn

〉
L
∂nc(z)

= −
ˆ

dz
〈
ξ∗ ·Q(2)

T ijm(z)ξ
(∑
k 6=0

∂ijmGT (kL)kn + ε
(2)
TLijmn

)〉
L
∂nc(z).

(5.4.23)

We finally remark that, in (5.4.22) and (5.4.23), we may use a scaling argument and replace

∂ijmGT (kL) = L−d−1∂ijmGT/L2(k). (5.4.24)

As a conclusion, combining (5.3.5), (5.4.19), (5.4.22), (5.4.23) and (5.4.24), yields the far-field
contribution and therefore (5.4.17).

Asymptotic analysis as T ↑ ∞. We now show that each term in (5.4.17) pass to the limit
as T ↑ ∞ and converge to their massless counterpart. Thus, we need to establish that this limit
makes sense for each of the five r. h. s. terms of (5.4.17); in this task, the dominated convergence
theorem is our main tool. Note that the estimates (5.3.11), (5.3.13) and (5.3.14) hold, uniformly
in T , at the level of the massive quantities ET , ε(2)

TLijmn and ε
(1)
TLijn (thanks to (5.3.1) for the two

latters). Therefore, combined with the convergences of the massive quantities (5.3.12), the second,
third, fourth and fifth r. h. s term of (5.4.17) converge to their massive less counterpart as T ↑ +∞.
Therefore, the subtle part is in the first r. h. s term of (5.4.17), that we treat in details.

In the sequel, L ≥ 1 is fixed. We prove that

lim
T↑∞

ˆ
dz
〈
ΓT/L2ijmn

(
ξ∗ ·Q(2)

T ijm(z)ξ − zmξ∗ ·Q(1)
T ij(z)ξ

)〉
L
∂nc(z)

=

ˆ
dz
〈
Γijmn

(
ξ∗ ·Q(2)

ijm(z)ξ − zmξ∗ ·Q(1)
ij (z)ξ

)〉
L
∂nc(z).

(5.4.25)

We claim that the only additional needed ingradient is the well-posedeness of Γijmn given by defini-
tion (5.3.7) and (〈·〉L-almost-surely)∣∣Γijmn∣∣ ≤ sup

T≥1
|ΓT ijmn| . 1. (5.4.26)

Indeed, thanks to the assumption (5.1.4) on c, (5.3.4) and (5.4.26), the integrand is bounded (uni-
formly in T ) by (1 + |z|)−d−2α. We conclude using the convergences (5.3.12) and the Lebesgue
convergence theorem.

Here comes the argument for (5.4.26). We fix a smooth compactly supported η with η = 1 on the
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unit cube (−1
2 ,

1
2)d; we use it to split the lattice, which we interpret as a Riemann sum, as follows:∑
k 6=0

kn∂ijmGT (k)

=

ˆ
Rd\(− 1

2
, 1
2

)d
dxη(x)xn∂ijmGT (x) +

ˆ
dx(1− η)(x)xn∂ijmGT (x)

+
∑
k 6=0

(
kn∂ijmGT (k)−

ˆ
k+(− 1

2
, 1
2

)d
dxxn∂ijmGT (x)

)
. (5.4.27)

The first r. h. s. integral effectively extends over a compact subset of Rd\{0} and thus obviously
converges for T ↑ ∞, thanks to (5.3.12). On the second r. h. s. integral in (5.4.27) we perform two
integrations by parts: ˆ

dx(1− η)(x)xn∂ijmGT (x)

=

ˆ
dx
(
− ∂jη(x)δmn∂iGT (x) + ∂mη(x)xn∂ijGT (x)

)
.

Again, the r. h. s. integral effectively extends over a compact subset of Rd\{0} and converges for
T ↑ ∞, thanks to (5.3.12). We finally turn to the last contribution in (5.4.27); clearly each summand
has a limit T ↑ ∞. This extends to the sum because of dominated convergence: Each summand is
dominated, in absolute value, by the Lipschitz norm of x 7→ xn∂ijmGT (x) on the translated cube
k + (−1

2 ,
1
2)d, which by the uniform-in-T decay of GT is . |k|−d−1, an expression that is summable

in k ∈ Zd\{0}.

5.4.3 Proof of Lemma 37: Fluctuation estimates

As announced above, we show only (5.3.29) by closely following [101]. The only difference is that we
appeal not only to the annealed Calderón-Zygmund estimates as in [101], but also to the annealed
weighted estimates contained in Lemma 38.
For a deterministic and periodic vector field f , we consider the random variable of zero average

F :=

ˆ
[0,L)d

f · ∇φ(2)
ij .

We employ on it the spectral gap inequality (cf. [101, Lem. 3.1]), which, combined with the Bochner
estimate (assuming that p ≥ 2), reads

〈|F |p〉
1
p .

( ˆ
[0,L)d

〈∣∣∂F
∂g

∣∣p〉 2
p

) 1
2
. (5.4.28)

We split the proof into three steps. First, we establish that the Fréchet derivative of F is given by
∂F

∂g
= ∇v · a′(∇φ(2)

ij + φ
(1)
i ej)− (∇wj + vej) · a′(∇φ(1)

i + ei), (5.4.29)

where v and wj are defined through (5.4.34) and (5.4.36) below. Next, we show that the annealed
estimates of Lemma 38 imply( ˆ

[0,L)d
〈|∇v|2p〉

1
p

L

) 1
2 .

( ˆ
[0,L)d

|f |2
) 1

2 , (5.4.30)

( ˆ
[0,L)d

〈|∇wj + vej |2p〉
1
p

L

) 1
2 .

( ˆ
[0,L)d

|x|2L|f |2
) 1

2 , (5.4.31)
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where we recall that |x|L = infk∈Zd |x+ kL|. Last, we insert (5.4.29) into (5.4.28) and we appeal to
the Cauchy-Schwarz inequality (we also employ (5.1.6)), to the effect of

〈|F |p〉
1
p .

(ˆ
[0,L)d

(
〈|∇v2p|〉

1
p 〈|∇φ(2)

ij + φ
(1)
i ej |2p〉

1
p

+ 〈|∇wj + vej |2p〉
1
p 〈|∇φ(1)

i + ei|2p〉
1
p
)) 1

2
.

Invoking (5.3.23) and recalling (5.4.30) and (5.4.31) finally yields the desired estimate (5.3.29).

Argument for (5.4.29) We give ourselves infinitesimal (periodic) perturbation δg of g. In view
of (5.1.2) and (5.2.12), it generates a perturbation δφ(1)

i characterized by

∇ ·
(
a∇δφ(1)

i + δga′(∇φ(1)
i + ei)

)
= 0 and

 
[0,L)d

δφ
(1)
i = 0. (5.4.32)

In view of (5.2.14), this in turn generates the perturbation δφ(2)
ij characterized by

−∇ ·
(
a(∇δφ(2)

ij + δφ
(1)
i ej) + δga′(∇φ(2)

ij + φ
(1)
i ej)

)
= Pej ·

(
a∇δφ(1)

i + δga′(∇φ(1)
i + ei)

)
,

(5.4.33)

where P denotes the (L2-orthogonal) projection onto functions of vanishing spatial mean, i. e. Pf =
f −

ffl
[0,L)d f . The form of (5.4.33) motivates the introduction of the periodic function v defined

through

∇ · (a∗∇v + f) = 0 and
 

[0,L)d
v = 0, (5.4.34)

so that, by testing (5.4.34) with δφ(2)
ij and (5.4.33) with v , we obtain the representation (for δF :=´

[0,L)d f · ∇δφ
(2)
ij ):

δF =

ˆ
[0,L)d

(
∇v ·

(
aδφ

(1)
i ej + δga′(∇φ(2)

ij + φ
(1)
i ej)

)
− vej ·

(
a∇δφ(1)

i + δga′(∇φ(1)
i + ei)

))
.

(5.4.35)

This in turn prompts the introduction of a second auxiliary periodic function wj of zero mean

−∇ · a∗(∇wj + vej) = Pej · a∗∇v, (5.4.36)

so that by testing (5.4.32) with wj and (5.4.36) with δφ(1)
i , we may eliminate δφ(1)

i in (5.4.35):

δF =

ˆ
[0,L)d

δg
(
∇v · a′(∇φ(2)

ij + φ
(1)
i ej)− (vej +∇wj) · a′(∇φ(1)

i + ei)
)
.

By definition of the Fréchet derivative, this amounts to (5.4.29).
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Argument for (5.4.30) and (5.4.31) Notice first that (5.4.30) is a direct consequence of Lemma
38 applied to v, which satisfies (5.4.34), with weight 1. Therefore, it remains to establish (5.4.31). In
this perspective, we introduce the (gradient) field hj such that the r. h. s. of (5.4.36) reads Pej ·a∗∇v
= ∇·hj . As a consequence of annealed unweighted estimates on ∇(−∇·a∗∇)−1∇· (namely, Lemma
38 with weight µ = 1), we get

( ˆ
[0,L)d

〈|∇wj |2p〉
1
p

L

) 1
2 .

( ˆ
[0,L)d

〈|hj |2p + |v|2p〉
1
p

L

) 1
2 . (5.4.37)

We now claim the following annealed Hardy inequality:

( ˆ
[0,L)d

〈|v|2p〉
1
p

L

) 1
2 .

( ˆ
[0,L)d

|x|2L〈|∇v|2p〉
1
p

L

) 1
2 . (5.4.38)

As a consequence of annealed weighted estimates on ∇(−∇ · a∗∇)−1∇· (namely, Lemma 38 with
weight µ = | · |2L) applied to (5.4.34), we have

( ˆ
[0,L)d

|x|2L〈|∇v|2p〉
1
p

L

) 1
2 .

( ˆ
[0,L)d

|x|2L|f |2
) 1

2 , (5.4.39)

and therefore, by (5.4.38), there holds

( ˆ
[0,L)d

〈|v|2p〉
1
p

L

) 1
2 .

( ˆ
[0,L)d

|x|2L|f |2
) 1

2 . (5.4.40)

Moreover, by the annealed weighted estimates on ∇2(−4)−1 [113, Theorem 7.1], we obtain

( ˆ
[0,L)d

|x|2L〈|∇hj |2p〉
1
p

L

) 1
2 .

( ˆ
[0,L)d

|x|2L〈|∇v|2p〉
1
p

L

) 1
2 .

Combining it with the Hardy inequality (5.4.38) for hj and with (5.4.39) yields

( ˆ
[0,L)d

〈|hj |2p〉
1
p

L

) 1
2 .

( ˆ
[0,L)d

|x|2L|f |2
) 1

2

Inserting this and (5.4.40) into (5.4.37), and employing once more (5.4.40) in the triangle inequality
gives (5.4.31).

Argument for (5.4.38) W. l. o. g. we may assume that L = 1, and we consider random periodic
functions of vanishing average u. The annealed Hardy inequality (5.4.38) relies on three ingredients.
First, if 〈|v|2p〉

1
p is compactly supported, we have

ˆ
〈|v|2p〉

1
p .

ˆ
|x|2〈|∇v|2p〉

1
p . (5.4.41)

Next, for Ω := [−1
2 ,

1
2)d\[−1

4 ,
1
4)d, the following annealed Poincaré estimate holds:

(ˆ
Ω
〈|u|2p〉

1
p

) 1
2
.
(ˆ

Ω
〈|∇u|2p〉

1
p

) 1
2

+

ˆ
Ω
〈|u|2p〉

1
2p . (5.4.42)
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Last, we make use of an annealed Poincaré-Wirtinger estimate
ˆ

[− 1
2
, 1
2

)d
〈|u|2p〉

1
2p .

ˆ
[− 1

2
, 1
2

)d
〈|∇u|2p〉

1
2p . (5.4.43)

Using (5.4.41) for v := ηu where η is a cut-off function of [−1
2 ,

1
2)d into [−3

4 ,
3
4)d, we have by

periodicity of u
ˆ

[− 1
2
, 1
2

)d
〈|u|2p〉

1
p .

ˆ
[− 1

2
, 1
2

)d
|x|21〈|∇u|2p〉

1
p +

ˆ
Ω
〈|u|2p〉

1
p ,

Inserting (5.4.42) and then (5.4.43) into the above estimate yields
ˆ

[− 1
2
, 1
2

)d
〈|u|2p〉

1
p .

ˆ
[− 1

2
, 1
2

)d
|x|21〈|∇u|2p〉

1
p +

( ˆ
[− 1

2
, 1
2

)d
〈|∇u|2p〉

1
2p

)2
. (5.4.44)

Since d > 2, we may employ the Cauchy-Schwarz inequality to get(ˆ
[− 1

2
, 1
2

)d
〈|∇u|2p〉

1
2p

)2
≤
ˆ

[− 1
2
, 1
2

)d
|x|21〈|∇u|2p〉

1
p

ˆ
[− 1

2
, 1
2

)d
|x|−2

1

.
ˆ

[− 1
2
, 1
2

)d
|x|21〈|∇u|2p〉

1
p .

Inserting this into (5.4.44) yields the desired (5.4.38) (noting that by periodicity, we can replace
[−1

2 ,
1
2) by [0, 1)d).

We now establish successively (5.4.41), (5.4.42), and (5.4.43). First, (5.4.41) comes by applying
the following Hardy inequality for compactly supported functions v:

ˆ
Rd
|v|2 .

ˆ
Rd
|x|2|∇v|2,

to v  〈|u|2p〉
1
2p , and noticing that by the Hölder inequality with exponents ( 2p

2p−1 , 2p)

|∇〈|v|2p〉
1
2p | = |〈|v|2p〉

1
2p
−1〈|v|2p−1∇|v|〉| ≤ 〈|∇v|2p〉

1
2p .

Similarly, we get (5.4.42) from the usual Poincaré inequality applied to the function 〈|u|2p〉
1
2p . Last,

we get (5.4.43) by recalling that u is periodic of vanishing average in [−1
2 ,

1
2)d, so that

ˆ
[− 1

2
, 1
2

)d
〈|u|2p〉

1
2p =

ˆ
[− 1

2
, 1
2

)d

〈∣∣u− ˆ
[− 1

2
, 1
2

)d
u
∣∣2p〉 1

2p

≤
ˆ

[− 1
2
, 1
2

)d
dx

ˆ
[− 1

2
, 1
2

)d
dy〈|u(x)− u(x+ y)|2p〉

1
2p

≤
ˆ

[− 1
2
, 1
2

)d
dx

ˆ
[− 1

2
, 1
2

)d
dy
〈(
|y|

ˆ 1

0
ds|∇u(x+ sy)|

)2p〉 1
2p

.
ˆ

[− 1
2
, 1
2

)d
dx

ˆ
[− 1

2
, 1
2

)d
dz〈|∇u(z)|2p〉

1
2p =

ˆ
[− 1

2
, 1
2

)d
〈|∇u|2p〉

1
2p .
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5.4.4 Proof of Corollary 31: Limit L ↑ ∞

The proof of Corollary 31 rest on a coupling procedure, which jointly builds Gaussian fields of
covariance functions c and cL that become closer when L ↑ ∞. More precisely:

Lemma 42. Under the assumption 28, there exists a family of coupling ensembles 〈·〉ΩL indexed
by L ∈ [1,+∞) between the ensembles 〈·〉 and 〈·〉L, that generate Gaussian fields gL and g of
covariance functions cL and c, respectively, and such that the following convergence holds, for any
R ≥ 1, p < +∞ 〈

sup
BR

|g − gL|p
〉

ΩL
→
L↑∞

0. (5.4.45)

Proof. Let R ≥ 1 and p < +∞. We also set L � 1 and a discretization parameter N ∈ N∗, the
value of which will be fixed at the end of the proof. By (5.3.2) (which also holds for g), there holds
for a fixed α′ 〈

‖g‖p
C0,α′ (BR)

〉 1
p +

〈
‖g‖p

C0,α′ (BR)

〉 1
p

L .R,p 1, (5.4.46)

where we recall that ‖ · ‖C0,α′ = sup| · |+ [·]α′ . We introduce the discretization points xi := i/
√
N for

i ∈ Zd, the Gaussian vectors GN , and the Gaussian field gN built from interpolating linearly w. r. t.
the points xi with14

GNi := g(xi) fori ∈ {−N, · · · , N}d and gN (xi) :=

{
GNi for i ∈ {−N, · · · , N}d,
0 fori ∈ Zd\{−N, · · · , N}d.

(5.4.47)

It is sufficient to build the coupling on the level of the Gaussian vectors GN for N sufficiently large,
since (5.4.46) implies that, if

√
N ≥ R

〈
sup
BR

|g − gN |
〉 1
p +

〈
sup
BR

|g − gN |
〉 1
p

L .R N
−α
′

2 . (5.4.48)

We denote by C and CL the covariance matrices associated with GN under 〈·〉 and 〈·〉L defined
by: Cij := c (xi − xj) and (CL)ij := cL (xi − xj) for i, j ∈ {−N, · · · , N}d. Now, by [53, Th.], there
exists an ensemble 〈·〉Ω̃L generating two Gaussian vectors GN and GNL of covariance matrices C and
CL, respectively, such that the euclidean distance ‖GN −GNL ‖2 is minimal in the following sense:〈

‖GN −GNL ‖22
〉

Ω̃L
= trace

((√
C −

√
CL
)2)

. (5.4.49)

Using the operator norm ‖ · ‖ and the fact that the function
√
· is 1/2-Hölder continuous, we easily

get the following string of inequalities

trace
((√

C −
√
CL
)2) ≤ (2N + 1)d

∥∥∥(√C −√CL)2∥∥∥ . Nd
∥∥∥√C −√CL∥∥∥2

. Nd ‖C − CL‖

. N2d sup
i,j{−N,··· ,N}d

∣∣Cij − (CL)ij
∣∣. (5.4.50)

14Notice that the set of discretization points {xi, i ∈ {−N, · · · , N}d} becomes denser and spreader in Rd when
N ↑ ∞.
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Therefore, inserting (5.4.50) into (5.4.49) and using the injection `2 ⊂ `∞, we get〈
sup

i∈{−N,··· ,N}d

∣∣GNi − (GNL )i ∣∣2〉Ω̃L
.d N

2d sup
[0,
√
N)d
|c− cL|. (5.4.51)

Next, assuming that L ≥ 2
√
N , from (5.1.7) and (5.1.4), we have for all x ∈ [0,

√
N)d

|c(x)− cL(x)| ≤
∑
|k|≥1

1

(1 + |x+ kL|)d+α
. L−d−α, (5.4.52)

which we may insert into (5.4.51), to the effect of〈
sup

i∈{−N,··· ,N}d

∣∣GNi − (GNL )i ∣∣2〉Ω̃L
.γ N

2dL−d−α. (5.4.53)

Next, we enrich the ensemble 〈·〉Ω̃L into 〈·〉ΩL in such a way that the latter generates Gaussian
fields g and gL of respective covariance c and cL that are coherent with GN and GNL , respectively,
in the sense of the first equality of (5.4.47) (and in such a way that g conditioned by (GN , GNL ) is
independent of gL conditioned by (GN , GNL )). By a triangle inequality, this coupling 〈·〉ΩL between
〈·〉 and 〈·〉L satisfies〈

sup
BR

|g − gL|2
〉 1

2
ΩL
≤
〈

sup
BR

|g − gN |2
〉 1

2
ΩL

+
〈

sup
BR

|gL − gN |2
〉 1

2
ΩL

+
〈

sup
BR

|gN − gNL |2
〉 1

2
ΩL

≤
〈

sup
BR

|g − gN |2
〉 1

2 +
〈

sup
BR

|g − gN |2
〉 1

2
L

+
〈

sup
BR

|GN −GNL |2
〉 1

2
ΩL
.

Hence, we may now use (5.4.48) to cope with the first two r. h. s. term, whereas we appeal to (5.4.53)
to estimate the third r. h. s. term, obtaining〈

sup
BR

|g − gL|2
〉 1

2
ΩL
.γ,R N

−α
′

2 +NdL−
d
2
−α

2

(where we assumed that
√
N ≥ R and L ≥ 2

√
N). We now optimize the latter inequality by setting

N :=
⌈
L

d+α
2d+α′

⌉
for L�R 1, which gives

〈
sup
BR

|g − gL|2
〉 1

2
ΩL
.γ,R L

−α
′

2
d+α

2d+α′ −→
L↑∞

0.

Interpolating this result with (5.4.46) concludes the proof.

Capitalizing on Lemma 42, we show that, under the coupling 〈·〉ΩL , the correctors φ(1) and φ(2)

are as well close to their counterparts φ(1)
L and φ(2)

L . More precisely:

Lemma 43. For any R ≥ 1 and p < +∞ we have the following convergence:〈∣∣(a,∇φ(1), φ(1),∇σ(1), σ(1),∇φ(2)
)
−
(
aL,∇φ(1)

L , φ
(1)
L ,∇σ(1)

L , σ
(1)
L ,∇φ(2)

L )
∣∣p〉

ΩL
−→
L↑∞

0, (5.4.54)

where the functions with subscript L and with no subscript refer to the functions previously associated
with 〈·〉L and 〈·〉, respectively.
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The proof of (5.4.54) relies on a more general and abstract result (that we then apply succesively
to all quantities in (5.4.54)). We now prove the following general result:

Lemma 44. Under Assumptions 28, suppose that, for all the ensembles 〈·〉L with L ∈ [1,+∞), we
are given two square-integrable stationary random fields on TL, namely f and ∇u, that are related
through the equation

−∇ · a∇u = ∇ · f, (5.4.55)

and that satisfy the following bounds

sup
L≥1
〈|(∇u, f)|2〉L ≤ C, sup

L≥1
sup
R≥1

〈
R−d−1‖u‖2L2(BR)

〉
L
≤ C, (5.4.56)

for a fixed constant C. In addition, suppose that we have two stationary fields f and ∇u on Rd
associated with 〈·〉 that are related through the equation (5.4.55) and satisfy

〈|(∇u, f)|2〉 ≤ C, (5.4.57)

along the sublinear growth property

lim sup
R↑∞

1

R

( 
BR

|u|2
) 1

2
= 0, 〈·〉 -almost-surely. (5.4.58)

Let 〈·〉ΩL denote the coupling ensembles between 〈·〉 and 〈·〉L that are built in Lemma 42. (We
denote with a subscript L and without a subscript the coupled random variables previously associated
with 〈·〉L and 〈·〉, respectively.) If, given a sequence Ln ↑ ∞, we have the convergence〈

‖fLn − f‖
2
L2(BR)

〉
ΩLn
−→
n↑∞

0 for all R ≥ 0, (5.4.59)

then there holds 〈
‖∇uLn −∇u‖

2
L2(BR)

〉
ΩLn
−→
n↑∞

0 for all R ≥ 0. (5.4.60)

Proof of Lemma 44. The proof relies on classical mechanisms of weak convergence and elliptic the-
ory. It falls in three steps. First, we build a global coupling ensemble 〈·〉Ω between all the ensembles
〈·〉 and 〈·〉Ln , and we denote by Ω an associated probability space. Second, we extract a weak limit
u∞ of uLn in L2

(
Ω,H1

loc

(
Rd
))
, and show it solves (5.4.55) along with (5.4.58); thus, by a Liouville

theorem u∞ − u is constant. Last, we establish the strong local L2 convergence of ∇uLn to ∇u,
namely (5.4.60).

Step 1: We may iteratively use the construction of Lemma 42 to build the coupling ensemble
〈·〉Ω between the ensembles 〈·〉 and 〈·〉

Ln
for n ∈ N in such a way that it generates Gaussian fields

g and gLn , and where the joint law of (g, gLn) is the same under 〈·〉Ω as under 〈·〉ΩLn (defined in
Lemma 42). That is, we first generate g of law determined by 〈·〉 and then we successively build the
Gaussian fields gLn in such a way that the conditional probabilities PΩ (gLn |g) are all independent
of each others.

Note that, since A is Lipschitz regular (see (5.1.6)), then (5.4.45) can be turned into〈
‖a− aLn‖

p
L∞(BR)

〉
Ω
−→
n↑∞

0 for all R ≥ 1andp ∈ [1,+∞). (5.4.61)
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Step 2: On account of (5.4.56), there exists a subsequence of (uLn)n (that we do not relabel) and
a function u∞ ∈ L2(Ω;H1

loc(Rd)) such that, for any R ≥ 1, the following weak convergences hold

uLn ⇀
n↑∞

u∞ weakly in L2(Ω×BR),

∇uLn ⇀
n↑∞
∇u∞ weakly in L2(Ω×BR).

(5.4.62)

We show that ∇u∞ = ∇u, almost-surely. Hereafter, for simplicity, we replace Ln by the lighter
notation L and the limit n ↑ ∞ by L ↑ ∞.

We verify that u∞ solves the equation (5.4.55) in the sense of distributions. To do so, let
X ∈ Lq(Ω) for q > 2 be a random variable and ζ ∈ C∞c (Rd) be a smooth function. By (5.4.55),
there holds 〈

X

ˆ
∇ζ ·

(
aL∇uL + fL

)〉
Ω

= 0. (5.4.63)

Thus, it follows from (5.4.61), (5.4.62) and (5.4.59) that, in the limit L ↑ ∞, we have〈
X

ˆ
∇ζ ·

(
a∇u∞ + f

)〉
Ω

= 0,

which shows that u∞ satisfies (5.4.55) in the sense of distributions, 〈·〉Ω-almost-surely.
Also, by means of the weak lower semi-continuity of the L2 norm, we obtain〈  

BR

|u∞|2
〉 1

2

Ω
≤ lim inf

L↑∞

〈  
BR

|uL|2
〉 1

2

Ω
. R

1
2 for all R ≥ 1.

This together with the Markov inequality gives

〈 1

2m

(  
B2m

|u∞|2
) 1

2
> ν

〉
Ω
≤

〈( ffl
B2m
|u∞|2

) 1
2

〉
Ω

2mν
.

1

2
m
2 ν
,

which is summable in m ∈ N. Hence, it follows from the Borel-Cantelli lemma that〈
lim sup
m↑∞

1

2m

( 
B2m

|u∞|2
) 1

2
> ν

〉
Ω

= 0,

for any ν > 0, so that u∞ satisfies (5.4.58).
Recall that the solution to (5.4.55) with the condition (5.4.59) is unique up to the addition of a

(random) constant (see the Liouville theorem [80, Cor. 1]). Whence ∇u∞ = ∇u.

Step 3: Since we already know that ∇uL ⇀ ∇u in L2(Ω×BR), then by ellipticity of a, it suffices
to show the conservation of the norm

lim sup
L↑∞

ˆ
BR

〈
∇uL · a∇uL

〉
Ω
≤
ˆ
BR

〈
∇u · a∇u

〉
Ω

(5.4.64)

to get the strong convergence ∇uL → ∇u in L2(Ω×BR). By the strong convergence (5.4.61) of aL
and by (5.4.56), we first obtain that

lim sup
L↑∞

ˆ
BR

〈
∇uL · a∇uL

〉
Ω
≤ lim sup

L↑∞

ˆ
BR

〈
∇uL · aL∇uL

〉
Ω
.
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Then, making use of the coupling properties 〈·〉Ω and (5.4.55) yields〈
∇uL · aL∇uL

〉
Ω

=
〈
∇u · a∇u

〉
L

(5.4.55)
= −

〈
∇u · f

〉
L

= −
〈
∇uL · fL

〉
Ω
.

(The third above equality is due to the stationarity of f and u under 〈·〉L.) Whence

lim sup
L↑∞

ˆ
BR

〈
∇uL · a∇uL

〉
Ω
≤ lim sup

L↑∞
−
ˆ
BR

〈
∇uL · fL

〉
Ω

= −
ˆ
BR

〈
∇u · f

〉
Ω
,

where we appealed to the strong convergence of fL given by (5.4.59) and the weak convergence of
∇uL. Using once more the coupling properties of 〈·〉Ω and (5.4.55) yields

−
〈
∇u · f

〉
Ω

= −
〈
∇u · f

〉
=
〈
∇u · a∇u

〉
=
〈
∇u · a∇u

〉
Ω
.

As a consequence, we obtain (5.4.64), which establishes the strong convergence (5.4.60).

Equipped with Lemma 44, we proceed with the:

Proof of Lemma 43. Let 〈·〉ΩL be the coupling ensembles between 〈·〉 and 〈·〉L that are built in
Lemma 42. Notice that we have already established in (5.4.61) that a and aL satisfy (5.4.54). The
proof falls in four steps. First, we show that is sufficient to establish a version of (5.4.54) where
p = 2 and where the spatial L∞ norm is replaced by the L2 norm. Then in Step 2, Step 3 and Step
4, we successively show that

(
φ(1),∇φ(1)

)
,
(
σ(1),∇σ(1)

)
and ∇φ(2) satisfy the convergence (5.4.54)

by appealing to Lemma 44.
Step 1. From Proposition 13, (5.3.2) and Schauder theory applied to (5.1.2), (5.3.18) and (5.3.19),
one has for any p < +∞ and α′ < α〈∥∥(∇φ(1)

L , φ
(1)
L ,∇σ(1)

L , σ
(1)
L ,∇φ(2)

L

)∥∥p
C0,α′ (BR)

〉
ΩL
.p,α′,R 1, (5.4.65)

Hence, by Arzela-Ascolie’s theorem, it is sufficient to establish〈∥∥(∇φ(1), φ(1),∇σ(1), σ(1),∇φ(2)
)
−
(
∇φ(1)

L , φ
(1)
L ,∇σ(1)

L , σ
(1)
L ,∇φ(2)

L

)∥∥2

L2(BR)

〉
ΩL
−→
L↑∞

0. (5.4.66)

Step 2. We first consider f := a and u := φ(1). Indeed, by Proposition 13, u and f satisfy
(5.4.56) ((5.4.57) and (5.4.58) being consequences of the homogenization theory). Moreover, by
Lemma 42 and 5.1.6, the condition (5.4.59) is also satisfied. As a consequence of (5.4.60) there
holds 〈∥∥∇φ(1) −∇φ(1)

L

∥∥2

L2(BR)

〉
ΩL
−→
L↑∞

0, (5.4.67)

for any R ≥ 0. Interpolating as described in Step 1, this implies that ∇φ(1)−∇φ(1)
L satisfies (5.4.54).

Next, by (5.3.24) in Proposition 13 (where a similar estimate holds for 〈·〉) applied with g = ∇v
and −∆v = R−d1BR , there holds〈∣∣∣  

BR

φ(1)
∣∣∣2〉 1

2

L
+
〈 ∣∣∣∣ 

BR

φ(1)

∣∣∣∣2 〉 1
2
.
( ˆ
|∇v|2

) 1
2 .

( ˆ
(R−d1BR)

2d
d+2
) d+2

2d . R1− d
2 , (5.4.68)

for L ≥ R. Since, by a Poincaré inequality combined with a triangle inequality, there holds〈
‖φ(1) − φ(1)

L ‖
2
L2(BR)

〉
L
.d R

2
〈
‖∇φ(1) −∇φ(1)

L ‖
2
L2(BR)

〉
ΩL

+
〈∣∣∣  

BR

φ(1)
∣∣∣2〉

L
+
〈∣∣∣  

BR

φ(1)
∣∣∣2〉,
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we deduce from the fact that ∇φ(1) −∇φ(1)
L satisfies (5.4.54) and from (5.4.68) that

lim sup
L↑∞

〈
‖φ(1) − φ(1)

L ‖
2
L2(BR)

〉
L
. R2−d, (5.4.69)

and get the desired convergence

lim sup
L↑∞

〈
‖φ(1) − φ(1)

L ‖
2
L2(BR)

〉
L
. lim sup

R′↑∞
lim sup
L↑∞

〈
‖φ(1) − φ(1)

L ‖
2
L2(B′R)

〉
L

= 0. (5.4.70)

Step 3. We justify that we may apply Lemma 44 (with the slight modification that a is
replaced by the identity matrix in (5.4.55)) for f := ∂j(en · a(ei +∇φ(1)

i )) − ∂n(em · a(ei +∇φ(1)
i ))

and u := σ
(1)
imn. By Step 2 above, we know that f satisfies (5.4.59). Therefore, we can apply Lemma

44 and, by a similar reasoning than in Step 2, we obtain successively the two convergences〈∥∥∇σ(1) −∇σ(1)
L

∥∥2

L2(BR)

〉
ΩL
−→
L↑∞

0and
〈∥∥σ(1) − σ(1)

L

∥∥2

L2(BR)

〉
ΩL
−→
L↑∞

0. (5.4.71)

Step 4. Finally, we set f := aφ
(1)
i ej − σ(1)

i ej and u := φ
(2)
ij − φ

(2)
ij (0). We check that (5.4.55),

(5.4.56), (5.4.57) and are satisfied by appealing to Proposition 13. Also, we deduce (5.4.59) from
(5.4.70) and (5.4.71). Therefore, as in Step 2, we may apply Lemma 44, to the effect of〈∥∥∇φ(2) −∇φ(2)

L

∥∥2

L2(BR)

〉
ΩL
−→
L↑∞

0. (5.4.72)

We conclude by gathering the estimates (5.4.67), (5.4.70), (5.4.71), and (5.4.72), which yields (5.4.66)
and, thanks to Step 1, finally establish (5.4.54).

Equipped with Lemma 43, we finally turn to the proof of:

Proof of Corollary 31. Since the proof is the same for Q(1)
ij and Q

(2)
ijm, we only show that for all z

and ξ

lim
L↑∞
〈ξ∗ ·Q(1)

ij (z)ξ〉L = 〈ξ∗ ·Q(1)
ij (z)ξ〉. (5.4.73)

In this perspective, we introduce the coupling ensembles 〈·〉ΩL of Lemma 42 as well as the notations
ψ := ξ +∇φ(1), ζ(1)i := ei +∇φ(1)

i and we compute∣∣〈ξ∗ · (QL,(1)
ij (x)− ·Q(1)

ij (x))ξ
〉

ΩL

∣∣
≤
〈∣∣ψ∗L(0) · a′ζ(1)i

L (0)(ζ(1)i(z))∗L · a′ψL(z)− ψ∗(0) · a′ζ(1)i(0)(ζ(1)i(z))∗ · a′ψ(z)
∣∣〉

ΩL
.

Thanks to Lemma 43, we have the following convergences: for all z and p < +∞〈
|ψL(z)− ψ(z)|p

〉
ΩL
−→
L↑∞

0and
〈
|ζ(1)i
L (z)− ζ(1)i(z)|p

〉
ΩL
−→
L↑∞

0.

Moreover, by (5.4.65), all the components of Q(1)
ij have finite p-moments; namely for all z〈

|ψ(z)|p
〉
L

+
〈
|ψ(z)|p

〉
+
〈
|ζ(1)i(z)|p

〉
L

+
〈
|ζ(1)i(z)|p

〉
.p 1.

Therefore, the Hölder inequality entails

lim
L↑∞

〈∣∣ξ∗ · (QL,(1)
ij (z)−Q(1)

ij (z))ξ
∣∣〉

ΩL
= 0,

which implies in turn (5.4.73). This concludes the proof of Corollary 31.
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5.4.5 Proof of Lemma 40: Improved Caccioppoli inequality

By scaling, it is enough to consider R = 1;
we fix a smooth cut-off function η for B1 in B2. Starting point is the following localized version

of a standard L2-based interpolation estimate, with n ∈ N to be fixed later, which we take from the
proof of [29, Lemma 4]:

ˆ
(η4n42nw)2 .

( ˆ
|η4n+1∇42nw|2

) 4n
4n+1

( ˆ
w2
) 1

4n+1 +

ˆ
w2. (5.4.74)

We apply it to w ∈ H2n
0 (B2) (as usual, H2n

0 (B2) denotes the closure of C∞0 (B2) w. r. t. to the
H2n(B2)-norm) that (weakly) solves

42nw = u in B2. (5.4.75)

We construct w with help of the Riesz representation theorem, so that we automatically have
ˆ
uw =

ˆ
(4nw)2 ∼

ˆ
|∇2nw|2 &

ˆ
w2, (5.4.76)

where we used higher-order L2-regularity and a higher-order Poincaré estimate. We obtain from
inserting (5.4.75) into (5.4.74)

ˆ
(η4nu)2 .

( ˆ
|η4n+1∇u|2

) 4n
4n+1

( ˆ
w2
) 1

4n+1 +

ˆ
w2.

Combining this with Caccioppoli’s estimate
´
|η4n+1∇u|2 .

´
(η4nu)2 and Young’s inequality, we

obtain by the choice of η
ˆ
B1

|∇u|2 ≤
ˆ
|η4n+1∇u|2 .

ˆ
w2. (5.4.77)

It remains to post-process this inner regularity estimate for an a-harmonic function u.

In route to an annealed estimate, we express the r. h. s. of (5.4.77) in terms of u, which is con-
veniently done in terms of the complete orthonormal system of eigenfunctions {wk}k∈N ⊂ H2n

0 (B2)
and eigenvalues {λk}k ⊂ (0,∞) of the Dirichlet-42n, which is a positive operator with compact
inverse: ˆ

w2=
∑
k

1

λ2
k

( ˆ
uwk

)2
=
∑
k

1

λk

( ´
uwk

)2
´

(4nwk)2

(5.4.76)

.
∑
k

1

λk

( ´
uwk

)2
´
|∇2nwk|2

.

We insert this into (5.4.77)

ˆ
B1

|∇u|2 .
∑
k

1

λk

( ´
uwk

)2
´
|∇2nwk|2

and apply 〈(·)
p
2 〉. By Hölder’s inequality in k we obtain

〈( ˆ
B1

|∇u|2
) p

2
〉
.
(∑

k′

1

λk′

) p
2
−1∑

k

1

λk

〈∣∣ ´ uwk∣∣p〉( ´
|∇2nwk|2

) p
2

.
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In order to proceed, we need
∑

k
1
λk

< ∞, which means that the inverse of the Dirichlet-42n has
finite trace, which in turn follows from the finiteness of the corresponding Green’s function along
the diagonal, which means that Dirac distributions are in H−2n(B2), which amounts to the Sobolev
embedding H2n

0 (B2) ⊂ C0
0 (B2), and thus holds provided 2n > d, which we henceforth assume.

Hence by the density of C∞0 (B2) in H2m
0 (B2) 3 wk we obtain the annealed inner regularity estimate

〈(ˆ
B1

|∇u|2
) p

2
〉
. sup

w∈C∞0 (B2)

〈∣∣ ´ uw∣∣p〉( ´
|∇2nw|2

) p
2

. (5.4.78)

It remains to post-process (5.4.78). Provided 2n > d
2 + 2 we may appeal to Sobolev’s embedding

applied to ∇2w in order to upgrade (5.4.78) to

〈( ˆ
B1

|∇u|2
) p

2
〉 1
p . sup

w∈C∞0 (B2)

〈∣∣ ´ uw∣∣p〉 1
p

sup |∇2w|2
. (5.4.79)

Since we may w. l. o. g. assume
´
B2
u = 0, we may restrict to w with

´
w = 0. A standard argument

in the theory of distributions yields the existence of a vector field g ∈ C∞0 ((−2, 2)d) ⊂ C∞0 (B2
√
d)

such that

∇ · g = w and sup |∇2g| . sup |∇2w|.

Hence (5.4.79) may be upgraded to the desired

〈(ˆ
B1

|∇u|2
) p

2
〉 1
p . sup

g∈C∞0 (B2
√
d)

〈∣∣ ´ g · ∇u∣∣p〉 1
p

sup |∇2g|
. (5.4.80)

5.4.6 Proof of Lemma 39

We decompose the r. h. s. of (5.3.37) according to a family of dyadic annuli. Namely, we set

gk := 1B
2k
\B

2k−1

(
(φ

(2)
ij − φ

(2)
ij (0))a− (σ

(2)
ij − σ

(2)
ij (0))

)
∇∂ij ū,

so that we can also decompose ∇w =
∑∞

k=−∞∇wk, where ∇wk is the square-integrable solution to

−∇ · a∇wk = ∇ · gk.

Noting that for any k there holds −∇ · a∇wk = 0 in B2k−1 , we mainly applied stochastic correc-
tor estimates (see Proposition 13) together with annealed estimates (see Lemma 41, and annealed
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Calderón-Zygmund estimates [101, Proposition 7.1]) to the following computations.

〈
|∇wk(0)|p′

〉 1
p′

L
.(5.3.43)

〈(  
B

2k−1 (0)
|∇wk|2

) p′′
2
〉 1
p′′

L
≤
(  

B
2k−1 (0)

〈
|∇wk|p

′′〉 2
p′′
L

) 1
2

.
(  

B
2k

(0)

〈
|gk|p

′′′〉 2
p′′′
L

) 1
2

.(5.3.25) µ
(2)
3 (2k)

(  
B

2k
(0)

〈
|∇3ū|p′′′

〉 2
p′′′
L

) 1
2 ≤ µ(2)

3 (2k)
( 

B
2k

(0)

〈
|∇3ū|p′′′

〉 q
p′′′
L

) 1
q

. µ(2)
3 (2k)2

− dk
q

( ˆ 〈
|∇2g|p′′′′

〉 q
p′′′′
L

) 1
q

. µ(2)
3 (2k)2

− dk
q R

d
q sup |∇2g|,

(5.4.81)
where q ≥ 2 and p′ < p′′ < p′′′ < p′′′′ < ∞. We mention that the second line is due to [101,
Proposition 7.1], while the fourth line follows from a (random) coordinate transformation15 coupled
with [101, Lemma 7.4]. We distinguish the later proof into large-scale cases R ≥ 2 and small-
scale cases R < 2. Firstly, we handle the large scale case, and set k0 to be an integer such that
2k0−1 < R ≤ 2k0 ,〈

|∇w(0)|p′
〉 1
p′

L
.

∞∑
k=−∞

〈
|∇wk(0)|p′

〉 1
p′

L

(5.4.81)
.

(
R

d
q1

k0−1∑
k=−∞

2
k( 1

2
− d
q1

)
+R

d
q2

∞∑
k=k0

2
k( 1

2
− d
q2

)
)

sup |∇2g| . µ(2)
3 (R) sup |∇2g|,

(5.4.82)
provided q1 > 2d and 2 ≤ q2 < 2d. We can similarly address the small-scale case,

〈
|∇w(0)|p′

〉 1
p′

L

(5.4.81)
.

(
R

d
q3

k0−1∑
k=−∞

2
k(1− d

q3
)

+R
d
q4

∞∑
k=k0

2
k(1− d

q4
)
)

sup |∇2g| . µ(2)
3 (R) sup |∇2g|,

whenever q3 > d and 2 ≤ q4 < d. This completes the proof.

5.4.7 Proof of Proposition 14: Homogenization error

We fix any x0, y0 ∈ Rd, such that 2R := |x0 − y0| and R ≥ 1. Let g ∈ C∞0 (BR(y0)), and x, y ∈ Rd
with x 6= y. Let the error Vx0,y0(x, y) be (fully) the two-scale expansion of the Green function,
defined by

Vx0,y0(x, y) := G(x, y)−
(
1 + φ

(1)
i (x)∂i + (φ

(2)
im(x)− φ(2)

im(x0))∂im
)

×
(
1 + φ

∗(1)
j (y)∂j + (φ

∗(2)
jn (y)− φ∗(2)

jn (y0))∂jn
)
G(x− y),

(5.4.83)

15The ideas is to transform the coefficient ā to ∆ and then appeal to annealed Calderón-Zygmund estimates on
−∆. Consequently, the loss of stochastic integrability caused by the random transformations of the coordinate.
Concretely, it relies on the following computations. Let y = Qx such that Q−1ā(Q∗)−1 = Id, and then there holds
∇y = (Q−1)∗∇x. Let ˜̄u(x) = u(Qx) with g̃(x) = Q−1g(Qx). Thus, the equation −∇ · ā∇ū = 0 can be formulated by

∆˜̄u = ∇ · g̃.

Then, one may apply [101, Lemma 7.4] to the above equation to have the desired estimate.
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where we follow the similar rule of the notations in (5.2.15), and this leads to

∇∇Vx0,y0(x, y) = ∇∇G(x, y)

−
[
(ei +∇φ(1)

i (x))∂i + (∇φ(2)
im(x) + φ

(1)
i em)∂im + (φ

(2)
im(x)− φ(2)

im(x0))ek∂imk
]

×
[
(ej +∇φ∗(1)

j (y))∂j + (∇φ∗(2)
jn (y) + φ

∗(1)
j en)∂jn + (φ

∗(2)
jn (y)− φ∗(2)

jn (y0))el∂jnl
]
G(x− y).

(5.4.84)
Thus, recalling the definition of E(x, y) in (5.3.6), we have

∇∇Vx0,y0(x, y)− E(x, y) = ∂ijnlG(x− y)
(
∇φ(1)

i + ei
)
(x)⊗

(
(φ
∗(2)
jn − φ

∗(2)
jn (y0))el

)
(y)

+ ∂imkjG(x− y)
(
(φ

(2)
im − φ

(2)
im(x0))ek

)
(x)⊗

(
∇φ∗(1)

j + ej
)
(y)

− ∂imjnG(x− y)
(
φ

(1)
i em +∇φ(2)

im

)
(x)⊗

(
φ
∗(1)
j en +∇φ∗(2)

jn

)
(y)

+ ∂imjnlG(x− y)
(
φ

(1)
i em +∇φ(2)

im

)
(x)⊗

(
(φ
∗(2)
jn − φ

∗(2)
jn (y0))el

)
(y)

− ∂imkjnG(x− y)
(
(φ

(2)
im − φ

(2)
im(x0))ek

)
(x)⊗

(
φ
∗(1)
j en +∇φ(2)

jn

)
(y)

+ ∂imkjnlG(x− y)
(
(φ

(2)
im − φ

(2)
im(x0))ek

)
(x)⊗

(
(φ
∗(2)
jn − φ

∗(2)
jn (y0))el

)
(y).

We additionally mention that since the symmetry assumption on a, it is not very necessary to use
the superscript “∗” to indicate the adjoint objects. However, it is convenient to distinguish the
variables in later computations. Then, taking x = x0 and y = y0, it follows from the above equality
and Proposition 13 that

〈|∇∇Vx0,y0(x0, y0)− E(x0, y0)|p〉
1
p

L . µ
(2)
d (R)R−d−2 for all p <∞. (5.4.85)

Obviously, to obtain the desire estimate (5.3.41) it suffices to show〈
|∇∇Vx0,y0(x0, y0)|p

〉 1
p

L
. µ(2)

3 (R)R−d−2. (5.4.86)

Consequently, the stated estimate (5.3.41) simply follows from replacing x0, y0 with x, y, respectively.

Arguments for (5.4.86). We first consider the gradient of Vx0,y0(x, y) in (5.4.83) with respect
to the variable x, and then fix x = x0. Hence, ∇Vx0,y0(x0, ·) is expanded as follows:

∇Vx0,y0(x0, ·) =∇G(x0, ·)−
(
1 + φ

∗(1)
j (·)∂j + (φ

∗(2)
jn (·)− φ∗(2)

jn (y0))∂jn
)
ūx0(x0, ·), (5.4.87)

where ūx0(·, ·) is defined by

ūx0(x, ·) :=
(
(ei +∇φ(1)

i (x))∂i + (φ
(1)
i (x)em +∇φ(2)

im(x))∂im + (φ
(2)
im(x)− φ(2)

im(x0))ek∂imk
)
G(x− ·).
(5.4.88)

Moreover, we observe that

−∇ · a∗∇∇G(x0, ·) = 0 = ∇ · ā∗∇ūx0(x0, ·) in Rd \ {x0}.

By the two-scale expansion arguments introduced in Subsection 5.3.5, we arrive at

−∇ · a∗∇∇Vx0,y0(x0, ·) = ∇ · h in Rd \ {x0}, (5.4.89)
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in which, the matrices h is given by

h :=
(
(φ
∗(2)
jn − φ

∗(2)
jn (y0))a∗ − (σ

∗(2)
jn − σ

∗(2)
jn (y0))

)
∇∂jnūx0(x0, ·). (5.4.90)

Let k0 be such that 2k0−1 < R ≤ 2k0 , and it suffices to study the equation (5.4.89) in a ball with
the radius 2k0 centered at y0 (since we are then interesting in evaluating at y = y0). To estimate it,
we decompose its right-hand side according to a family of dyadic annuli, which are

−∇ · a∗∇Zk = ∇ · hk in Rd forhk := 1B
2k

(y0)\B
2k−1 (y0)h with k ≤ k0. (5.4.91)

Then we set W = ∇Vx0,y0(x0, ·) −
∑k0

k=−∞ Zk, and it satisfies a∗-harmonic condition on B2k0 (y0),
i.e.,

−∇ · a∗∇W = 0 in B2k0 (y0). (5.4.92)

We will handle the equations (5.4.91) and (5.4.92), separately.
As a preparation, recalling the definition of (5.4.88), for all positive integer j and p < ∞, we

derive from Proposition 13 and decay estimates of G that

sup
y∈BR(y0)

〈 ∣∣∇j ūx0(x0, y)
∣∣p 〉 1

p

L . R
−j−d+1

(
1 +

〈∣∣(∇φ(1)(x0),
φ(1)(x0)

R
,
∇φ(2)(x0)

R

)∣∣p〉 1
p

L

)
. R−j−d+1,

(5.4.93)
where we require R ≥ 1 in the last inequality.

Let p′′′ > p′′ > p′ > p. Appealing to Lemma 41, the energy estimate yields

k0∑
k=−∞

〈
|∇Zk(y0)|p′

〉 1
p′

L

(5.3.43)
.

k0∑
k=−∞

〈(  
B

2k−1 (y0)
|∇Zk|2

) p′′
2
〉 1
p′′

L

.
k0∑

k=−∞

〈(  
B

2k
(y0)
|h|2
) p′′

2
〉 1
p′′

L

(5.4.95)
. µ

(2)
3 (R)R−d−2.

(5.4.94)

For the last inequality above, in order to use Minkowski’s inequality and Jensen’s inequality, we will
obtain the second line of the following computations (5.4.95), and then on account of Proposition
13, a similar calculation as given for (5.4.82) leads to the last line of (5.4.95).

k0∑
k=−∞

〈(  
B

2k
(y0)
|h|2
) p′′

2
〉 1
p′′

L
≤

k0∑
k=−∞

(  
B

2k
(y0)

〈
|h|p′′

〉 2
p′′
L

) 1
2

≤
k0∑

k=−∞

( 
B

2k
(y0)

〈∣∣(φ∗(2)
jn − φ

∗(2)
jn (y0), σ

∗(2)
jn − σ

∗(2)
jn (y0)

)∣∣2p′′〉 1
p′′

L

) 1
2
( 

B
2k

(y0)

〈
|∇∂jnūx0(x0, ·)|2p

′′〉 1
p′′
L

) 1
2

(5.3.25),(5.3.26),(5.4.93)
.

k0∑
k=−∞

µ
(2)
3 (2k)R−2−d . µ(2)

3 (R)R−2−d,

(5.4.95)
in which we also ask for the condition 2 ≤ p′′ < ∞ in first inequality, and recall the relationship
2k0−1 < R ≤ 2k0 for the last one. Beyond the pointwise estimate (5.4.94), we still require some
weak norm estimate later on, and now establish it as follows. In fact, the argument is quite similar
to that given (5.4.95), and the main difference is to employ annealed Calderón-Zygmund estimates
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[101, Proposition 7.1] for the second line below.

k0∑
k=−∞

〈(  
BR

|∇Zk|
)p′〉 1

p′

L
≤

k0∑
k=−∞

 
BR

〈
|∇Zk|p

′〉 1
p′
L ≤

k0∑
k=−∞

( 
BR

〈
|∇Zk|p

′〉 qp′
L

) 1
q

. R−
d
q

k0∑
k=−∞

( ˆ 〈
|hk|p

′′〉 q
p′′
L

) 1
q

. R−
d
q

k0∑
k=−∞

(2k)
1
2
− d
q sup
y∈BR(y0)

〈
|∇3ūx0(y)|p′′′

〉 1
p′′′
L

(5.4.93)
. µ

(2)
3 (R)R−2−d,

provided q ≥ 2d, and the third line is due to the same ideas given for (5.4.82). In the sequel, the
above estimate implies the weak norm estimate, i.e., for any g ∈ C∞0 (BR(y0)),

〈∣∣ k0∑
k=−∞

ˆ
g · ∇Zk

∣∣p′〉 1
p′ ≤ sup

y∈BR(y0)
|g(y)|

k0∑
k=−∞

〈( ˆ
BR(y0)

|∇Zk|
)p′〉 1

p′ . µ(2)
3 (R) sup

y∈BR(y0)
|∇2g(y)|,

(5.4.96)
where we also employ Poincaré’s inequality in the last step.

We now turn to address the estimate on ∇W in the equation (5.4.92). In view of Lemmas 40
and 41, there holds

〈
|∇W (y0)|p

〉 1
p

L

(5.3.43)
.

〈(  
BR

2
(y0)
|∇W |2

)p′〉 1
2p′

L

(5.3.42)
. sup

g∈C∞0 (BR(y0))

〈∣∣ ffl
BR(y0) g · ∇W

∣∣p′〉 1
p′
L

R2 sup |∇2g|

≤ sup
g∈C∞0 (BR(y0))

〈∣∣ ´ g · ∇∇Vx0,y0(x0, ·)
∣∣p′〉 1

p′
L

Rd+2 sup |∇2g|
+ sup
g∈C∞0 (BR(y0))

〈∣∣∑k0
k=−∞

´
g · ∇Zk

∣∣p′〉 1
p′
L

Rd+2 sup |∇2g|
(5.4.98),(5.4.96)

. µ
(2)
3 (R)R−d−2,

(5.4.97)
where the last step relies on the following estimate〈∣∣∣ ˆ dy∇∇Vx0,y0(x0, y) · g(y)

∣∣∣p〉 1
p

L
.γ,p µ

(2)
3 (R) sup |∇2g| (5.4.98)

for any p < ∞. As a consequence, the estimates (5.4.94) and (5.4.97) lead to the desired estimate
(5.4.86) by the triangle inequality.

Arguments for (5.4.98). Let u with ū and g ∈ C∞0 (BR(y0)) be associated by the equation
(5.3.38). Recalling the expansion (5.3.36), we may define wx0 as follows.

wx0(x) := u(x)−
(

1 + φ
(1)
i (x)∂i +

(
φ

(2)
im(x)− φ(2)

im(x0)
)
∂im

)
ū(x)

(5.3.38)
=

ˆ
dy
(
G(x, y)−

(
1 + φ

(1)
i (x)∂i + (φ

(2)
im(x)− φ(2)

im(x0))∂im)G(x− y)
)

(∇ · g)(y),

and then by differentiating in both sides w. r. t. the x-variable combined with an integration by
parts, we arrive at

∇wx0(x)
(5.4.88)

= −
ˆ
dy
(
∇∇G(x, y)−∇xūx0(x, y)

)
g(y). (5.4.99)
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By the formula (5.4.88), we rewrite (5.4.84) as

∇∇Vx0,y0(x, y) = ∇∇G(x, y)

−
[
(ej +∇φ∗(1)

j (y))∂j + (∇φ∗(2)
jn (y) + φ

∗(1)
j en)∂jn + (φ

∗(2)
jn (y)− φ∗(2)

jn (y0))el∂jnl
]
ūx0(x, y).

(5.4.100)
Thus, we split the integral in the l. h. s. of (5.4.98) as follows (where in the last line we use an

integration by parts):
ˆ
dy∇∇Vx0,y0(x0, y) · g(y)

(5.4.100)
=

ˆ
dy
(
∇∇G(x0, y)−∇ūx0(x0, y)

)
· g(y)

−
ˆ
dy∇

(
φ
∗(1)
j (y)∂j + (φ

∗(2)
jn (y)− φ∗(2)

jn (y0))∂jn
)
ūx0(x0, y)g(y)

(5.4.99)
= −∇wx0(x0)−

ˆ
dy
(
φ
∗(1)
j (y)∂j + (φ

∗(2)
jn (y)− φ∗(2)

jn (y0))∂jn
)
ūx0(x0, y)(∇ · g)(y).

(5.4.101)
It follows from Lemma 39 that16,〈∣∣∇wx0(x0)

∣∣p〉 1
p . µ(2)

3 (R) sup |∇2g|, (5.4.102)

We rewrite the second term of the right-hand side of (5.4.101) by means of ω∗j defined by (5.3.22),
so that an integration by parts yields

ˆ
dy
(
φ
∗(1)
j ∂j + (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂jn

)
ūx0(x0, ·)(∇ · g)

(5.3.22)
=

ˆ
dy
(
−∆ω∗j∂j + (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂jn

)
ūx0(x0, ·)(∇ · g)

=

ˆ
dy
(
∂nω

∗
j − ∂nω∗j (y0) + φ

∗(2)
jn − φ

∗(2)
jn (y0)

)
∂jnūx0(x0, ·)(∇ · g)

+

ˆ
dy
(
(∇ω∗j −∇ω∗j (y0))∂j ūx0(x0, ·)

)
· ∇(∇ · g).

Therefore, there holds〈∣∣∣ˆ dy
(
φ
∗(1)
j ∂j + (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂jn

)
ūx0(x0, ·)(∇ · g)

∣∣∣p〉 1
p

L

≤
ˆ
dy
〈∣∣(∂nω∗j − ∂nω∗j (y0), φ

∗(2)
jn − φ

∗(2)
jn (y0)

)∣∣2p〉 1
p

L

〈
|∂jnūx0(x0, ·)|2p

〉 1
p

L |∇g|

+

ˆ
dy
〈
|∇ω∗j −∇ω∗j (y0)|2p

〉 1
2p

L

〈
|∂j ūx0(x, ·)|2p

〉 1
2p

L |∇
2g|

(5.3.27),(5.4.93)
. µ

(2)
d (R)R−1 sup |∇g|+ µ

(2)
d (R) sup |∇2g| . µ(2)

d (R) sup |∇2g|.
(5.4.103)

Inserting the estimates (5.4.102) and (5.4.103) into (5.4.101) entails (5.4.98).

16Observe that if we anchor the second correctors as in (5.3.36), we have to do the same procedure in Lemma 39 to
obtain a similar estimate as (5.3.39) (where note that the location of the support of g is not important).
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5.5 Appendix

5.5.1 Regularity of the coefficients

We give in this section the argument for (5.3.2). Without loss of generality, we may assume that
x = 0.

By the stationary of the ensemble 〈·〉 and the inequality (5.1.4), we have

〈|g(x)− g(0)|2〉L = 2(cL(0)− cL(x)) ≤ 2|∇cL(0)|+ ‖∇2cL‖L∞(Rd)|x|2 . |x|2, (5.5.1)

since ∇cL(0) = 0 (as cL is an even function). High moments of Gaussian variables are estimated by
their second moments. Therefore, we have 〈|g|p〉L . c

p
2
L(0) . 1 and we deduce from (5.5.1) that, by

stationarity of g, there holds〈 ˆ
B2

ˆ
B2

( |g(x+ h)− g(x)|
|h|

)p
dh dx+

ˆ
B2

|g|p
〉
L
. 1 for all p ∈ [1,+∞).

By [18, Th. 2.36 p. 74], this implies that g is bounded in the Besov spaces Bs
p,p for any s ∈ (0, 1) in

the sense of 〈
‖ηg‖p

Bsp,p(Rd)

〉 1
p

L . 1, (5.5.2)

where η is a smooth cut-off with support inside B2. By a Besov embedding [18, Prop. 2.71 p. 99],
we can replace the Besov space Bs

p,p(Rd) in (5.5.2) by the Besov space Bβ
∞,∞ for all β ∈ (0, 1) which

coincides with the Hölder space C0,β(Rd) (see [18, p. 99, Examples]). Hence, g satisfies (5.3.2).
Last, the relation a = A(g) along with (5.1.6) implies that a also satisfies (5.3.2).

5.5.2 Convergence of the massive quantities

We give in this section the argument for (5.3.12).

We only prove the convergence of ∇GT , the other convergences will follow by the same type of
arguments. Let β ∈ (0, 1), x 6= y ∈ Rd and r := |x − y|/2. In the following proof, the symbol .
implicitly depends on γ, β, r and ‖a‖C0,β(TL) but not on T . Thanks to the Arzelà-Ascoli theorem
and the dominated convergence theorem, it is enough to prove the two following statements:

∀x ∈ Rd, ∇x∇yGT (x, ·) ⇀
T↑∞

∇x∇yGT (x, ·) in the distributional sense in Br(y), (5.5.3)

and
lim sup
T↑∞

‖∇x∇yGT (x, ·)‖C0,β(Br(y)) . 1. (5.5.4)

We first give arguments for (5.5.3). Let f ∈ C∞c (Br(y)), and the square-integrable functions uT and
∇u satisfying {

1
T uT −∇ · a∇uT = ∇ · f,
−∇ · a∇u = ∇ · f.

(5.5.5)

Using the energy estimates, there holds∥∥( uT√
T
,∇uT

)∥∥
L2(Rd)

. ‖f‖L2(Rd) and ‖∇u‖L2(Rd) . ‖f‖L2(Rd). (5.5.6)
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The difference uT − u solves

−∇ · a∇(uT − u) = − 1

T
uT . (5.5.7)

Hence, by the interior Schauder estimate (see, e.g., [77, Cor. 8.36 p. 212]) applied to the equation
(5.5.7) we have

‖∇uT −∇u‖C0,β(Br(x)) . ‖∇uT −∇u‖L2(B2r(x)) +
1

T
‖uT ‖L2(B2r(x))

. ‖f‖L2(Rd).
(5.5.8)

Moreover, Since ∇uT is uniformly bounded in L2(Rd), we may extract a weak limit ∇u∞ ∈ L2(Rd)
when T ↑ ∞. By (5.5.5) and using the above estimates, we deduce that −∇ · a∇u∞ = ∇· f . By the
Liouville principle associated with the operator −∇ · a∇ (recall that a is TL-periodic), we finally
obtain that ∇u∞ = ∇u. Therefore, we deduce that

∇uT ⇀
T↑∞

∇u in L2(Rd).

Combining this with (5.5.8), we get that

‖∇(uT − u)‖
C0,

β
2 (Br(x))

−→
T↑∞

0.

From the pointwise convergence in x and the formula

∇uT (x)−∇u(x) =

ˆ
(∇x∇yGT (x, y′)−∇x∇yG(x, y′))f(y′)dy′,

we obtain the convergence (5.5.3).
We now give the arguments for (5.5.4). We have from the definition of the Green function GT

(since a is symmetric)

−∇y · a(y)∇y∇xGT (x, ·) = − 1

T
∇xGT (x, ·) in Rd\Br/5(x).

Therefore, using interior Schauder estimate combined with the Caccioppoli inequality we obtain

|∇x∇yGT (x, y)| . ‖GT ‖L∞(Br/4(x)×Br/4(y)). (5.5.9)

Moreover, we already know from [93] (with the very slight difference that there is here an extra
massive term, which is of no harm for the result) that, for all x′ 6= y′ and for all T ≥ 1, there holds
|GT (x′, y′)| . |x′ − y′|2−d. Therefore, (5.5.4) follows from inserting the above estimate into (5.5.9).

5.5.3 Localized energy estimates

We recall the exponential localization for the massive operator 1
T −∇ · a∇. For a proof, we refer to

[68, Lemma 36].

Proposition 15. Let T > 0 and L ≥
√
T . Let u ∈ H1

loc(Rd) and f ∈ H1
loc(Rd) be related to

1

T
u−∇ · a∇u = ∇ · f,
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in the distributional sense in Rd. Suppose that there exists a k > 0 such that

lim sup
R→+∞

R−k
(  

BR

(|u|+ |∇u|+ |f |)2

) 1
2

= 0.

Then, there exists a γ > 0 depending on and λ such that
ˆ
dx (|∇u|2 +

1

T
|u|2)e−

γ|x|
L .d,λ

ˆ
dx |f |2e−

γ|x|
L .



Chapter 6

Perspectives and remaining open
questions

Contents
6.1 On linear elliptic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

6.1.1 Second order parabolic semigroup . . . . . . . . . . . . . . . . . . . . . . . 279
6.1.2 Representative volume element method: beyond the Gaussian setting with

short-range correlations and linear equations . . . . . . . . . . . . . . . . . 282
6.2 On nonlinear elliptic systems . . . . . . . . . . . . . . . . . . . . . . . . . 282

6.2.1 Nonlinear systems with monotone coefficients . . . . . . . . . . . . . . . . . 282
6.2.2 Non-convex variational models: beyond nonlinear systems with monotone

coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

6.1 On linear elliptic systems

6.1.1 Second order parabolic semigroup

In Chapter 2, we prove optimal time decay estimates for the first order semigroup defined in (1.2.2)
related to the first order correctors. A natural extension would be to go one order further and to
consider the second order semigroup u(2) = (u

(2)
ij )ij defined by:{

∂τu
(2)
ij −∇ · a∇u

(2)
ij = 0 in Rd × (0,+∞),

u(2)(0) = ∇ · ((aφei − σi)ej).

The second order semigroup is related to the second order correctors (φ
(2)
ij )ij ∈ H1

loc(Rd), which are
the distributional and sub-quadratic1 (up to an additive constant) solutions in Rd of

−∇ · a∇φ(2)
ij = ∇ · ((aφei − σi)ej). (6.1.1)

The second order correctors provide an improvement of the convergence of the homogenization error
whence the two-scale expansion is truncated at second order, see [27]. The second order approxima-
tion finds also its interest in the study of numerical methods, as in [114] where the authors mentioned

1In the sense that 1
R2 (

ffl
BR
|φ(2)
ij |

2)
1
2 →
R↑+∞

0.

279
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that the use of the second order correctors would allow to deal with artificial boundary conditions
for approximating the homogenized matrix in dimension 3. In the latter application, we have to
appeal to massive term approximation, defined by adding a massive term 1

T φ
(2)
ij in (6.1.1). Optimal

estimates on the massive term correctors are then necessary and they can be easily deduced from
the optimal time decay estimates on u(2) (as we did in Chapter 2, see Corollary 5).

At first sight, in dimension 3 and under the assumption MSG (1.1.63), the gradient of second
order correctors can be constructed with help of u(2) only for β > 2, which corresponds to the
regime where φ can be constructed stationary itself (see Corollary 3). Indeed, this is easily inferred
in the small contrast regime, that we perform hereafter. We assume that aδ = (1 + δA)Id, for a
small δ � 1 and for the scalar Gaussian model A = A(m? ξ) ∈ R for |m(x)| ≤ (1 + |x|)−

1
2

(d+β). By
linearizing around δ ↓ 0, the first order approximation of u(2) is given by u(2)

ij = δu(2) + o(δ) where{
∂τu

(2) −∇ · a∇u(2) = 0 in Rd × (0,+∞),

u(2)(0) = ∇ · (φei − σi)ej),

with
−∆φei = ∇ ·Aei and −∆σijk = ∂j(ek · ∇φei)− ∂k(ej · ∇φei).

In the following, we only consider the part of u(2) corresponding to the initial value ∇ · (φeiej) (the
flux part is treated the same way) and for the ease of the reading we keep the notation u(2). Recall
that since d = 3 and β > 2, φei can be expressed with help of the first order semigroup uei (see
(1.2.4) with e = ei):

φei =

ˆ +∞

0
uei(s, ·)ds = −

ˆ +∞

0

ˆ
∇Γ(s, · − y) ·A(y)eidy ds,

where Γ(s, x) = (4πs)−
d
2 e−

|x|2
4s . Therefore, u(2) is explicitly given by: for all (T, x) ∈ (0,+∞)× Rd

u(2)(T, x) = −
ˆ
∇Γ(T, x− y) · φeiej dy

= −
ˆ +∞

0

ˆ ˆ
∂jΓ(T, x− y)∂iΓ(s, y − y′)A(z)dy′ dy ds.

By differentiating with respect to the randomness (in the sense of (1.1.61)) and using the semigroup
property of Gaussian kernels in form of Γ(T, ·) ? Γ(s, ·) = 1

π
d
2

Γ(T + s, ·), we have for all (z, `) ∈
Rd × (1,+∞)

∂fct
z,`u

(2)(T, x) =

ˆ
B`(z)

∣∣∣∣ ˆ +∞

0
∂i∂jΓ(T, ·) ? Γ(s, ·)(x− y)ds

∣∣∣∣dy
=

1

π
d
2

ˆ
B`(z)

∣∣∣∣ˆ +∞

0
∂i∂jΓ(T + s, x− y)ds

∣∣∣∣dy.
We now apply MSG (1.1.63) to the effect of: for all q < +∞

E[(u(2))q]
1
q .

( ˆ +∞

1
`−d−1−β

ˆ ( ˆ
B`(z)

∣∣∣∣ ˆ +∞

0
∂i∂jΓ(T + s, x− y)ds

∣∣∣∣dy)2

dz d`
) 1

2

. (6.1.2)

We now consider two regimes in `.



6.1. On linear elliptic systems 281

• Regime ` ≤
√
T : Here, we use L2-estimates in form of Jensen’s inequality (

´
B`(z)

f(y)dy)2 .

`d
´
B`(z)

|f(y)|2dy, to the effect of
ˆ (ˆ

B`(z)

∣∣∣∣ˆ +∞

0
∂i∂jΓ(T + s, x− y)ds

∣∣∣∣dy)2

dz . `2d
ˆ ∣∣∣∣ ˆ +∞

0
∂i∂jΓ(T + s, x− y)ds

∣∣∣∣2dy
≤
(ˆ ∞

0

( ˆ
(∂i∂jΓ(T + s, y)2dy

) 1
2

ds
)2

.
ˆ +∞

0
(T + s)−1− d

2ds . T−
d
2 .

Therefore, the contribution of the right-hand side of (6.1.2) in the regime ` ≤
√
T is given by(ˆ √T

1
`−d−1−β

ˆ ( ˆ
B`(z)

∣∣∣∣ ˆ +∞

0
∂i∂jΓ(T + s, x− y)ds

∣∣∣∣dy)2

dz d`
) 1

2

. T−
d
2

(ˆ √T
1

`d−1−βd`
) 1

2

.


T−

β
4 if β < d,

log
1
2 (T )T−

d
4 if β = d,

T−
d
4 if β > d.

(6.1.3)

• Regime ` >
√
T : Here, we use L1-estimates in form of Minkowski’s inequality

´
(
´
B`(z)

f)2 .

`d
´
|f |:

ˆ (ˆ
B`(z)

∣∣∣∣ˆ +∞

0
∂i∂jΓ(T + s, x− y)ds

∣∣∣∣dy)2

dz . `d
ˆ ∣∣∣∣ˆ +∞

0
∂i∂jΓ(T + s, y)ds

∣∣∣∣dy . 2`d.

Therefore, the contribution of the right-hand side of (6.1.2) in the regime ` >
√
T is given by:( ˆ +∞

√
T

`−d−1−β
ˆ ( ˆ

B`(z)

∣∣∣∣ˆ +∞

0
∂i∂jΓ(T + s, x− y)ds

∣∣∣∣dy)2

dz d`
) 1

2

.

( ˆ +∞

√
T

`−1−βd`
) 1

2

. T−
β
4 . (6.1.4)

The combination of (6.1.3) and (6.1.4) finally gives

E[(u(2))q]
1
q .


T−

β
4 if β < d,

log
1
2 (T )T−

d
4 if β = d,

T−
d
4 if β > d.

Similarly, we can obtain

E[|∇u(2)|q]
1
q .


T−

1
2
−β

4 if β < d,

log
1
2 (T )T−

1
2
− d

4 if β = d,

T−
1
2
− d

4 if β > d.

We see that for β < d, ∇u(2) is integrable only if β > 2. The extension in the non-perturbative
regime as well as its application to artificial boundary conditions is left for future investigation.

2Where we use the bounds
∣∣∣∣ ´ +∞

0
∂i∂jΓ(T+s, y)ds

∣∣∣∣ . T− d2 for |y| ≤
√
T and

∣∣∣∣ ´ +∞
0

∂i∂jΓ(T+s, y)ds
∣∣∣∣ . |x|−de− |x|2T

for |y| ≥
√
T .
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6.1.2 Representative volume element method: beyond the Gaussian setting
with short-range correlations and linear equations

In Chapter 5, we prove optimal estimates for the representative volume element method for approx-
imating the homogenized coefficient. The present work is however limited to Gaussian distributions
with integrable covariance, essentially for two reasons:

• Because of the way we compute the derivative d
dL〈a〉L, using Price’s formula of Chapter 4,

which is restricted to Gaussian fields.

• Because of the way we periodize the law: we strongly use the integrability of the covariance
function allowing for a straightforward periodization (see (5.1.7)).

A natural extension consists of considering other type of random distributions, based for instance
on point processes or Gaussian distributions with slowly decaying correlations. A first step would
be to understand the periodization in law. Such a periodization in law is immediate, for instance, in
the case of Poisson point processes or i.i.d coefficients (see [88]), whereas the case of slowly decaying
correlations does not allow a straightforward periodization. Once we have define the periodization
in law 〈·〉L, a second step would be to understand the derivative with respect to L. An alternative
of the Price’s formula of Chapter 4 has to be found in the non Gaussian setting.

An other possible work is to extend the results of Chapter 5 in the nonlinear setting (with the
same Gaussianity of the coefficient). Such work in this direction has been done recently in [68] for
quadratic nonlinearity (that is for the model (1.1.4) with p = 2). In [68], however, the proof is more
in the vein of the work of Gloria, Neukamm and Otto in [88] where the authors introduce a massive
term into the corrector equation in order to screen the resulting boundary layer, which leads to a
logarithmically worse estimate. A possible way to avoid this loss is to adapt the strategy of Chapter
5. This would require several results, where one of them are already established in Chapter 3. More
precisely:

• One needs stochastic estimates on the correctors for the periodized ensemble 〈·〉L. The stochas-
tic estimates for the first order correctors has been already established in Chapter 3, but we
will also need stochastic estimates on the second order correctors (also for the linearized ones).
Such estimates may be established with help of the perturbative large-scale regularity devel-
oped in Chapter 3.

• One needs to define the Green’s function of the linearized operator −∇ · Da(·, ξ + ∇φ)∇
and to prove its second order two-scale expansion. To do so, the perturbative large-scale
regularity theory of Chapter 3 will not be enough. However, since we prove good control
of the correctors in Chapter 3, we have access to the non-perturbative regularity theory for
the linearized operator, using the result in [24], but in the regime p < 2d

d−2 in dimension 3.
This may allow to prove the existence of the Green’s function as well as (by combining the
regularity theory for the linearized operator and the stochastic control of the first and second
order correctors) its second order two-scale expansion.

6.2 On nonlinear elliptic systems

6.2.1 Nonlinear systems with monotone coefficients

In Chapter 3, we developed a quantitative homogenization theory for the nonlinear system (1.1.4)
in the full range p ≥ 2 for d = 3 and under LSI (1.1.57). Some questions and extensions, that we
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list hereafter, are still open.

• Does such a quantitative homogenization theory hold with other mixing conditions as finite
range of dependence (1.1.56) (as addressed in [10, 5, 6] for p = 2) or MLSI (1.1.62)? The
quenched Meyers’ estimates of Theorem 18 (and its weighted version of Theorem 19) do hold
for general stationary ergodic coefficients – and therefore in the setting of finite range of
dependence or MLSI. They are however useless without a good control of the Meyers minimal
radius (provided by Theorem 21 for Gaussian coefficients with integrable correlation). As a
direct consequence of the control of the Meyers minimal radius, we obtain a control of moments
of the corrector gradient (cf. Lemma 15). For finite range of dependence [6, 10], such estimates
are obtained by combining a rate of convergence (any would do) for the Dirichlet problem with
a Campanato argument based on C1,α-regularity for the homogenized operator. On the one
hand, it is not completely clear how to adapt the duality arguments (the Fenchel transform
of a map with p-growth has p

p−1 -growth – which we can also seen to some extent at the level
of the stochastic integrability of ∇σξ in Definition 3.2.1) to prove convergence rates. On the
other hand, without the a priori knowledge that ā satisfies the strong monotonicity (1.1.5),
one cannot easily turn this convergence rate into a moment bound on the corrector gradient.
For MLSI, the difficulty is that it does not provide the CLT scaling (see for instance (1.1.65)
for β < d), which was crucial to buckle in the proof of Theorem 21. A way would be to use the
powerful approach developed in the linear setting based on large-scale regularity, this time for
the nonlinear equation (1.1.4). A possible first investigation may be to consider the example
of Theorem 14. A possible second investigation is to consider the case of scalar equations with
2 ≤ p < 2(d−1)

d−3 for which we now a C1,α regularity theory for the homogenized operator (see
the discussion in Section 3.1.1).

• In Chapter 3, we investigate the oscillations of ∇uε that we reconstruct with help of ∇u in
form of the two-scale expansion (1.1.31). An other natural question is to understand the
random fluctuations of the macroscopic observables

´
g · ∇uε that qualitatively converges to´

g ·∇u. In the linear setting, this question has been successfully studied by Gloria, Duerinckx,
Otto, Mourrat and Gu in [55, 56, 94, 57] where they proved that under LSI or finite range of
dependence (more general results for the Gaussian setting with non-integrable covariance has
been established in [57]) the centred rescaled observables ε−

d
2

´
g · (∇uε−E[∇uε]) converge in

law to a Gaussian. We can even look for a finer descriptions of this convergence by means of a
two-scale expansion. It was observed in [94] that the naive two-scale expansion which constits
to replace ε−

d
2

´
g · ∇uε by ε−

d
2

´
g · (1 + εφei∂xi)u does not work. The two-scale expansion

has to be done in the level of the so-called homogenization commutator. The homogenization
commutator, defined by

Ξε = (a( ·ε)− a)∇uε, (6.2.1)

is a key quantity to understand the fluctuations, since it encodes the convergence of ∇uε and
a( ·ε)∇uε in the sense that

Ξε ⇀ 0 if and only if ∇uε ⇀ ∇u and a( ·ε)∇uε ⇀ a∇u.

Now, by defining the standard homogenization commutator Ξ = (Ξi)i∈J1,dK by

Ξi := a(∇φei + ei)− a(∇φei + ei),
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the two-scale expansion of the homogenization commutator is accurate in the sense that

E
[∣∣∣∣ε− d2 ˆ g · (Ξε − E[Ξε])− ε−

d
2

ˆ
g · Ξi( ·ε)∂xiu

∣∣∣∣2] 1
2

.


ε

1
2 for d = 1,

ε log
1
2 (ε−1) for d = 2,

ε for d > 2,

Those results are so far restricted to the linear setting. The investigation of the fluctuations in
the nonlinear setting is left for future investigation (for ideas and details, we refer to Section
3.2.2 of Chapter 3).

• The convergence of the two-scale expansion that we prove in Chapter 3 (see Theorem 12) is
stated in the whole space and therefore we truly focused on the homogenization error and we
avoid the question of boundary layers. One could state and prove a similar result on a bounded
domain with Dirichlet boundary conditions in which case the bound would be of the order of
the square root of what we have in Theorem 12. A way to refine this result is to construct a
correction up to the boundary and introduce a new "boundary" corrector uε,bl:{

−∇ · a( ·ε ,∇uε,bl) = 0 in Ω,
uε,bl(x) = −φ∇u(xε ) on ∂Ω.

(6.2.2)

One expect that the "modified" two-scale expansion:

u2sc
ε = u+ ε(φ∇u( ·ε) + uε,bl),

reconstruct correctly the oscillations on the boundary of Ω, where the advantage is now that
φ∇u( ·ε) + uε,bl satisfies a Dirichlet boundary condition. In addition, since the boundary layer
uε,bl is not explicit with respect to ε, one has to capture the asymptotic behaviour of uε,bl
by homogenizing the system (6.2.2). The homogenization of (6.2.2) started in the linear
and periodic case with the works of Bakhvalov, Panasenko, Bensoussan, Lions, Papanicolaou,
Oleinik, Shamaev and Yosifian in [21, 31, 112, 135] for very specific domains, and was then
extended for instance by Allaire, Gérard-Varet, Masmoudi, Shen, Zhuge, Armstrong, Kuusi,
Mourrat and Prange [73, 74, 149, 14] for more general domains. In the random setting,
the homogenization error up to the boundary has been addressed in [8, Section 6.4] however
similar results in the nonlinear setting or the homogenization of (6.2.2) has been solved. An
interesting work could be to investigate this question and it would provide a good complement
to the quantitative theory developed in Chapter 3.

6.2.2 Non-convex variational models: beyond nonlinear systems with monotone
coefficients

In the variational context, that is when a = ∇ξW and m = d in (1.1.4), as it appears in the context
of nonlinear elasticity, we essentially dealt with uniformly convex W in Chapter 3 and the system
(1.1.4) can be seen as the Euler-Lagrange equation of the minimization of the functional (we consider
Dirichlet boundary conditions for the discussion)

Fε : u ∈W1,p
0 (Ω) =

ˆ
Ω
W (xε ,∇u)dx. (6.2.3)

A natural question is to investigate the case of non-convex integrand in (6.2.3). Such model of
nonlinear elasticity are physically relevant if in addition the energy integrand W satisfy the two
basic facts of hyperelasticity, namely:
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• The necessity of an infinite amount of energy to compress a finite volume into zero volume:

lim
det ξ↓0

W (x, ξ) = +∞. (6.2.4)

• The noninterpenetration of the matter:

W (x, ξ) =∞ if det ξ < 0. (6.2.5)

The standard example of such integrand potential is given by

W (x, ξ) = V (x, ξ) +A(x)h(detξ), (6.2.6)

with ξ 7→ V (·, ξ) a convex stationary ergodic integrand, A ∈ L∞(Ω) an ergodic and stationary
random field and h : R → [0,+∞] is a continuous convex function with h(t) = +∞ for t ≤ 0 and
h(t) < +∞ for t > 0.

In this model, we are interested by minimizing the value of the energy and we understand the
homogenization process by finding a suitable limit to (inf Fε)ε. The natural notion of convergence
in this variational context is the De Giorgi Γ-convergence (see for instance [117]). More precisely,
the aim is to find a functional Fhom such that (Fε)ε Γ-converge to Fhom (for the Lp(Ω)-topology),
meaning that:

• For all (uε)ε ⊂W1,p
0 (Ω) and u ∈W1,p

0 (Ω) such that uε →
ε↓0

u in Lp(Ω) and

Fhom(u) ≤ lim inf
ε↓0

Fε(uε).

• For all (uε)ε ⊂W1,p
0 (Ω) there exists u ∈W1,p

0 (Ω) such that uε →
ε↓0

u in Lp(Ω) and

Fhom(u) ≥ lim sup
ε↓0

Fε(uε).

The qualitative homogenization of (Fε)ε has been intensively studied since the 1980′, starting from
the works of Braides and Müller in [35, 130] for integrand W with p-growth (that is for all x ∈ Ω,
|W (x, ξ)| ∼ 1 + |ξ|p), and then extended in a lot of works by, for instance, Braides, Defranceshi,
Garroni, Messaoudi, Michaille, Jikov, Kozlov, Oleinik, Anza Hafsa, Mandallena, Gloria and Duer-
inckx in [36, 37, 123, 100, 97, 58]. However, those results do not take into account the two conditions
(6.2.4) and (6.2.5), and it constitutes a very challenging and open question to prove an homoge-
nization result which is compatible. Some works in this direction has been proved in [136, 96] in
the periodic case, for model of type (6.2.6) for V with p-growth, the periodic functions x 7→ V (x, ·)
and x 7→ A(x) are continuous almost-everywhere and there exists T > 0 such that h : R→ [0,+∞]
is continuous and convex on (−T,+∞), h(t) = +∞ for t ∈ [−T, 0] and h(t) = T for t < −T . It
would be interesting to extend this result to the stochastic setting. However, this result will not be
physically relevant since the assumptions on h are only compatible with (6.2.4) and not with (6.2.5)
(but only in the weaker form of W (x, ξ) = +∞, if det ξ ∈ [−T, 0] for some T possibly very large).

Concerning the quantitative homogenization theory of (Fε)ε, it is currently unknown in the all
situations above and constitute a difficult open question. The main reason is that the non-convexity
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of W does not imply the existence of a single corrector, which constitutes a strong obstruction to
proving quantitative homogenization based on two-scale expansion (as we did in Chapter 3). Even
some relaxation of convexity (as, for instance, polyconvexity) does not allow to prove the existence
of a corrector (see for instance the counterexample of Müller in [130], see also [22]). However, some
works in this direction has been done in [133, 134] for small deformations, in the periodic setting.
The authors have observed that for small deformations, one can construct a single corrector (bound
on the extensive use of null Lagrangians) and reconstruct the oscillations of a minimizer of Fε via
a two-scale expansion. An interesting extension would be to understand this work in the stochastic
setting of Chapter 3 and get quantitative estimates in the case of small deformations.
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