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Chapter 1

Introduction

Artificial Intelligence (AI) is one of the most interesting and controversial technologies in the current world. Developers continue to work on improving machine learning solutions, and AI becomes increasingly advanced. Despite the evolution, AI still seems to struggle to render images. Therefore, object detection, classification and recognition are popular topics in the field of AI. Image recognition is a blend of image detection and classification. It defines the ability of AI to detect, classify and recognize the object. In this thesis, we propose a system to detect moving objects from video sequences (pedestrians, vehicles, etc), classify them and only then decide if the extracted human face belongs to a known faces. Background Subtraction (BS) plays a significant role in several computer vision applications. However, it is a challenging task, due to the real world constraints and dynamic weather conditions (e.g rainy day, high lighting, camera motion). Therefore, our proposed object detection system should be robust to these challenges. Multiple features have been extracted over the long history of BS, improved or even suggested to handle BS challenges. Highly discriminant features are extracted for each pixel, region or cluster in an image sequence. Once the moving objects have been extracted, the neural network must classify them by element type. Moving object classification aims to identify the category, called also label, of the detected object based on two main steps. First, several features are extracted from the detected objects. Second, they are fed to a learning-based classifier to specify the class of each object. Once the moving objects are classified, the last step is to recognize the extracted people. Face recognition is the best example of image recognition solutions and has acquired a significant position among all biometric systems. First, the system has to detect the face, classify it as human face and only then decide if it belongs to the target person. 
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Challenges in scene modeling

Background subtraction is an interesting area of research in computer vision. It covers a set of methods aimed at distinguishing moving objects, called "foreground" in the scene, from the static information, called "background". BS has been fed by many academic researchers and developers in the last 20 years. This is due to its potential applications and the large number of surveillance cameras installed in security-sensitive areas such as banks, railway stations, airports, and borders. Background subtraction can be used for surveillance systems in large spaces (such as football stadiums, and big shopping centers), in traffic surveillance (vehicle counting, vehicle detection and tracking), industrial applications (robot guidance, inspection and identification products) and natural environments (rivers) [27] [28]. In order to ensure a good operation of BS algorithms, three major conditions must be satisfied: the camera is fixed, the lighting is constant and the background is static, that is, pixels have a unimodal distribution and no background objects are moved/inserted in the scene. Under these ideal conditions, BS performs well. Usually, the appearance of an outdoor or indoor environment can be affected by a variety of changes that can happen over time. In general, it is difficult to build an excellent background model that can handle all these changes. There are numerous situations that can affect the appearance of the scene, which can reduce the accuracy of the BS methods. To our knowledge, the main challenges of background subtraction are [START_REF] Bouwmans | Background modeling and foreground detection for video surveillance[END_REF], [START_REF] Zhangjian | Detect foreground objects via adaptive fusing model in a hybrid feature space[END_REF], [START_REF] Shaikh | Moving Object Detection Using Background Subtraction[END_REF]:

• Camera jitter: Generally, the camera jitter occurs in outdoor scenes. A sudden camera motion or camera jitter reduces the quality of images captured by cameras, resulting in blurry images. For example, heavy winds can cause a stationary camera to move back and forth, causing nominal movement in scenes. This nominal camera motion is generally indiscernible from the movement caused by moving objects, leading to unwanted detection of foreground objects.

• Camera automatic adjustments: Automatic exposure (the amount of light falling on a camera's sensor) is a parameter available on most digital cameras. The light reflected by objects with homogeneous features (e.g. intensity, texture) is captured by cameras making segmentation a challenging task. The foreground aperture occurs when homogeneously parts of the moving object are part of the background rather than being classified as foreground pixels.

• Pan-Tilt-Zoom (PTZ): Most background subtraction research has focused on fixed cameras, while PTZ cameras have become more popular thanks to the wide area coverage. Traditional BS methods fail in the case of moving camera because foreground objects and background pixels are not stationary.

• Video noise: Generally, a video signal is covered with noise that appears during acquisition, coding, transmission and processing leading to disturbance of the original information which can result in artifacts, jagged edges, corners and invisible lines affecting the background scenes.

• Intermittent object motion: The intermittent motion occurs when a foreground object stops moving for long period of time or a background object begins to move, resulting in 'ghost' artifacts in the detected motion. Some videos include objects that suddenly stop to move, such as abandoned objects (parked vehicles and left-luggage). Handling this issue depends on the context of each situation. Several applications incorporate stationary foreground objects and others do not.

• Dynamic backgrounds: In a dynamic environment where the state of domain is changing continually, the transformation from one temporal stable to another is normally the result of an external event or a sequence of events (i.e. flowing water, moving leaves or plants). The background may include some elements which are not totally static as waving trees or water surface. These elements are considered as part of the background, even if they are not stationary. This dynamic environment does not provide a good background model because even some part of the scene that contains moving elements can be considered as background.

• Presence of shadows: Detecting cast shadows as a moving object is highly common and produces unwanted results. For example, the shadows are so different from the background that they can be wrongly considered as foreground.

• Illumination changes: Illumination changes often occur over time in indoor and outdoor environments, resulting in incorrect detections. For example, a wide range of lighting conditions, particularly those encountered during a typical 24-hour day-night cycle, cause gradual changes in appearance in outdoor environments. Additionally, turning on/off the light switch in an indoor scene can produce sudden illuminations. It is crucial that the background model be invariant or tolerates these kinds of changes.

• Low frame rate: Background changes and illumination changes are not consistently updated using a low frame rate and these variations seem to be more abrupt. (tel-01753482)

Figure 1.1: Scenes captured from the same avenue under various conditions.

• Motion parallax: 3D scenes with large variations in depth show parallax in images captured by a moving cameras, resulting in issues in background modeling and motion compensation.

• Bootstrapping: In a training video sequence, both background and foreground objects are present. Initial video data with only stationary objects is not always available, making it difficult to produce a representative background model. Thus, an initialization process is required to correctly model the background over time.

• Camouflage: Some moving objects appear a lot like the background called as camouflage impact. Foreground objects might have similar color with the background and become combined with it, resulting in a wrong discrimination between foreground and background.

• Foreground aperture: The presence of foreground objects can have the same motion characteristics. As a result, shadows usually distort the geometric shape of the foreground objects, and sometimes fuse moving objects. The homogenous part of foreground object may not be detected, causing false negatives.

• Night scenes: The videos taken at night are always a difficult task. Night scenes typically lead to high incorrect detections owing to the significant variation in lighting and the low-contrast between foreground and background.

• Challenging weather: In some situations, the BS algorithm must adapt to challenging weather conditions such as air turbulence or snow that affects the background scene.

To handle the above challenges, many developers have suggested diverse methods and its evaluation results have often been accessible by Change Detection website1 . Recent evaluation results have shown that the greatest challenge is the discrimination between the background and the foreground in the case of videos taken by PTZ cameras [START_REF] Zhangjian | Detect foreground objects via adaptive fusing model in a hybrid feature space[END_REF] and night videos. Another major problem would also be encountered if multiple challenges occur in the same scene. Figure 1.1 illustrates three cases at the same avenue. While Figures 1.1a and 1.1b display shadows and several variations in light, Figure 1.1c shows large reflections. Although all of these challenges are managed quietly today [START_REF] Bianco | How far can you get by combining change detection algorithms? Computing Research Repository[END_REF][START_REF] Elgammal | Non-parametric model for background subtraction[END_REF][START_REF] Paruchuri | Spatially adaptive illumination modeling for background subtraction[END_REF][START_REF] St-Charles | SuBSENSE: A universal change detection method with local adaptive sensitivity[END_REF][START_REF] Vosters | Real-time robust background subtraction under rapidly changing illumination conditions[END_REF], they still disturb the background subtraction process. Note that Figure 1.1 illustrates various situations such as large shadows, large reflections and illumination variations. At the present time, there is no background subtraction algorithm that can address all these kinds of issues at the same time, making the background subtraction domain even more difficult. In this section, we briefly remain the different steps related to background subtraction. Figure 1.2 shows an overview of these components. Essentially, background subtraction consists to initialize and update a model of the static scene, called the background (BG) model, and compare this model with the input frame to produce binary segmentation mask. Regions or pixels with a significant difference are assumed to be categorized as moving objects (they represent the foreground FG). A conventional background subtraction algorithm consists of four steps:

Background subtraction process

• Background initialization: (also called background extraction, background generation and background reconstruction) consists in calculating the initial background frame (also called reference frame).

• Background modeling: (also called background representation) constructs the model of a scene background.

• Background maintenance: relies to the mechanism of update used for the model to adapt itself to the changes occured over time.

• Foreground detection: Foreground detection consists in categorizing pixels as 'background' or 'foreground'.

BS is generally an important first step in many computer vision applications as shown in Figure 1. 3. The background maintenance and moving objects detection steps are performed repeatedly over time. A sub-entity of the reference image is compared with its corresponding sub-entity in the current image. This sub-entity may represent the size of a pixel, a cluster or a INTRODUCTION (tel-01753482) region. Additionally, this sub-entity is described by a "feature" which can be an edge feature, color feature, stereo feature, texture feature or motion feature [START_REF] Bouwmans | On the role and the importance of features for background modeling and foreground detection[END_REF]. In order to develop a background subtraction approach, engineers and researchers have to design each step and select the features based on the challenges they want to overcome in the involved applications.

Background initialization is a crucial step which computes an initial model of the background. It allows generating, extracting and constructing the background. Background model initialization has received little attention. This can be justified by the fact that initialization can be performed by exploiting certain clean frames at the beginning of the video sequence. Generally, in real scenarios, this assumption is not often satisfied due to the continued presence of clutter. Typically, the model is initialized using the first background image or an initial background model computed over a set of training frames, whether or not they contain moving objects. The background modeling (or representation) is the key step of any BS algorithm. The main idea behind such step is to create a static scene representation which is able to adapt to environmental changes in the background and to identify all foreground objects. In recent decades, a number of methodologies have been proposed to model and subtract the background , e.g. statistical methods [START_REF] Chan | Generalized stauffer-grimson background subtraction for dynamic scenes[END_REF][START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF][START_REF] Stauffer | Learning patterns of activity using real-time tracking[END_REF], multilayer codebook based methods [START_REF] Guo | Fast background subtraction based on a multilayer codebook model for moving object detection[END_REF], methods for compressed streaming video [START_REF] Dey | Robust background subtraction for network surveillance in H.264 streaming video[END_REF], etc. The third step aims to update the background model which depends on the mechanism used to adapt the background model according to the changes on the scene over time. The background maintenance should be incremental (an online algorithm), as new data is streamed and so dynamically given. The flexible models employ robust updating mechanisms to deal with several challenges, such as noise, automatic camera settings and illumination changes in background. Additionally, this is where the updating mechanism is used, which determines if the inserted objects are integrated in the model, and if ghosts are updated or deleted. To handle these problems, several methods have been implemented [START_REF] Baf | A fuzzy approach for background subtraction[END_REF][START_REF] Lindstrom | Background and foreground modeling using an online em algorithm[END_REF][START_REF] Lee | Improved adaptive mixture learning for robust video background modeling[END_REF][START_REF] Magee | Tracking multiple vehicles using foreground, background and motion models[END_REF]. The final step is the foreground detection process, which compares the reference frame and the current image to assign foreground or background label to each pixel (or regions). This is a classification task, that can be performed by crisp [START_REF] Lee | Improved adaptive mixture learning for robust video background modeling[END_REF] [START_REF] Radke | Image change detection algorithms: A systematic survey[END_REF], statistical [START_REF] Aach | Bayesian illumination-invariant motion detection[END_REF][START_REF] Singh | Order consistent change detection via fast statistical significance testing[END_REF] or fuzzy [START_REF] Chacon-Murguia | An adaptive neural-fuzzy approach for object detection in dynamic backgrounds for surveillance systems[END_REF] classification techniques.

These different steps use methods that have various objectives and constraints. Therefore, they require algorithms with various features. Background initialization needs "offline" algorithms which are "batch" by using all the data at the same time. In contrast, background maintenance requires "online" algorithms which are "incremental" algorithms by using the incoming data one by one. Background initialization, representation and maintenance need reconstructive algorithms while foreground detection requires discriminative algorithms.

Deep convolutional neural networks (ConvNets) perform well in many computer vision applications including background subtraction [START_REF] Xu | Integrate the original face image and its mirror image for face recognition[END_REF] [START_REF] Braham | Deep background subtraction with scenespecific convolutional neural networks[END_REF]. Additionally, it is generally easy to work with modern libraries (Caffe [START_REF] Jia | Caffe: Convolutional architecture for fast feature embedding[END_REF], Theano [START_REF] Bastien | Theano: new features and speed improvements[END_REF], Torch [START_REF][END_REF], etc.) with built-in architectures. In contrast, ConvNets are generally not appropriate for applications where few images are available. Training a deep ConvNets generally need a large number of images for a better generalization of the model. In addition, the computational cost for the training of ConvNets is high in terms of time and memory consumptions. Consequently, the study of new background subtraction techniques computationally simple is important in several real-life applications.

Object classification 1.2.1 Object classification challenges

Object classification, which is the process of assigning a semantic label to an object, is a core problem in computer vision and pattern recognition. It can be used as a building block for numerous other tasks such as localization, detection and full-scene labeling. Object classification is a challenging process that can be influenced by many factors. Since the classification results are the basis for many socio-economic and environmental applications, researchers and practitioners have made large efforts to develop advanced classification methods and techniques to improve classification performance. A good classification is very crucial, particularly in medicine. Thus, improved methods are required in this area. There are several challenges related to the object classification task as presented in Figure 1.4:

(http://lear.inrialpes.fr) • Intra-Class Variation : Intra-class variation is a common challenge in object classification. The intra-class variation defines the image variations that occur between several images of one class. Two objects belong to the same class, but the system identifies them as a different class. Thus, the object classification system should be able to address the issue of intra-class variations.

• Scale Variation : Scale variation is a very big problem in object classification. It consists of having an image of the same object with several sizes. Scale variation affects the detection process, i.e. the objects of any size should be identified.

• Inter-Class Variation : Inter-class variation means two different objects appear to belong to the same class, but in reality they are not in the same class. It is easy for
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machine to classify the object from labeled data but if a new object which is not already known is found then it will be difficult for machine to classify this object.

• View-Point Variation : Viewpoint variation occurs when an object is taken in several dimensions of rotation/orientation depending on how the object is captured in the image. Same object has different views from various viewpoints, therefore the classification system should consider all viewpoints.

• Deformation : Deformation of an object means the shape of the object is changed due to elasticity, stretching, etc. The classification system should consider the articulated object as belonging to the correct class.

• Occlusion : Occlusion of many objects in an image is a big challenge of object classification. There are many objects that we want to categorize in image can not be visualized entirely. Thus, large portion of the object is hidden behind another objects.

The objects occluded may be of the same kind or it may be of a diferent kind.

• Illumination : The object classification system must be able to manage the illumination variation. Considering any image of several levels of brightness (illumination) to our image classification system, the system must be able to attribute them the same label.

• Background Clutter : It is defined when there are many objects in the image and for observers it is very difficult to segment whole objects and then to get the specific object. These images are very "noisy".

Object classification process

The general framework of object classification is illustrated in Figure 1.5. • Feature extraction: Typically comprises two main steps: image patch extraction which is performed by sampling local areas of images, generally in a sparse or dense manner and image patch representation which is performed via statistical analysis over pixels of image patches. The feature vectors of image patches are represented as local features including: 1) appearance-based features, e.g., scale-invariant feature transform (SIFT) [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], histogram of oriented gradients (HOG) [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]; 2) color-based features, e.g., color descriptors [START_REF] Sande | Evaluation of color descriptors for object and scene recognition[END_REF]; and 3) texture-based features, e.g., local binary pattern [START_REF] Ojala | Performance evaluation of texture measures with classification based on kullback discrimination of distributions[END_REF] and Gabor filter [START_REF] Lee | Image representation using 2D gabor wavelets[END_REF].

• Building feature space: Feature space is a collection of base vectors. There are three strategies for building the feature space.

The first one randomly selects patches from images as base vectors. This scheme is adopted in certain models of biological inspiration [395] [200]. It is fast but does not sufficiently represent the characteristics of the feature space.

The second one is based on supervised learning, i.e., the generation of dictionaries via supervised learning on local features. This method builds the relationship between features and labels, and represents the structure of the feature space well. However, it is time-consuming because it needs resolving dictionaries in an iterative way.

The third one is based on unsupervised learning, i.e., obtaining the base vectors through unsupervised learning over local features. This strategy strikes a good balance between speed and precision, and is widely used in current methods.

• Describing features: Describing features is a key component of object classification, and significantly influences image classification in terms of speed and accuracy. The coding strategies can be grouped into five categories:

Voting-based methods [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF] [447] describe the distribution of local features with a histogram, indicating the occurrence information of visual codes.

Fisher coding-based methods [345] [346] calculate the distribution of local features with the Gaussian Mixture Models. Each Gaussian model reflects one pattern of local features.

Reconstruction-based methods [START_REF] Wang | Locality-constrained linear coding for image classification[END_REF] encode a feature by solving a least-square-based optimization problem with constraints on the number of codewords for reconstruction.

Local tangent-based methods [START_REF] Zhou | Image classification using super-vector coding of local image descriptors[END_REF] estimate the manifold of the feature space, based on which an exact description of local features is obtained.

Saliency-based methods [START_REF] Wu | Group encoding of local features in image classification[END_REF] describe a local feature by the degree of salience, for example, the ratio of the distances from a local feature to the codewords around it.

• Classification: is an important topic in machine learning. Various classifiers are used in object classification, e.g., Boosting, KNN and SVM. Additionally, kernel tricks, e.g., intersection kernel are usually used to improve overall performance.

Face recognition 1.3.1 Face recognition challenges

Face recognition is one of the most important tasks in computer vision and object recognition. It is pertinent in various fields such as in healthcare system, driving license system, monitoring operation, rail reservation system and passport authentication. In a big data set, face image identification task is often difficult. There are several biometric features that can be used to recognize humans like palm print, fingerprint, hand geometry, iris, speech, face, gaits and signature. However, these features need active intervention of human for authentication, while face recognition does not need active intervention of human. Thus, face recognition is much more appropriate than other biometrics. The human face is important for person' identity recognition and it is the characteristic which best distinguishes a person.
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Face recognition is an issue that is initially very difficult to address with a computer. The almost unlimited ways that a face can appear in an image make this task very difficult. This task fails with a traditional computer system due to many challenges, such as, different lighting, angles and facial expressions. Face recognition has been the subject of a lot of research in the past and many solutions to this issue have been suggested. But, the simplest methods from the 2000s failed to address the issue in an unconstrained environment. Machine learning is a solution to several difficult tasks with traditional computer systems and in this situation, more precisely deep learning. Over the past few decades, an essential step in the development of face recognition methods has been the introduction of deep learning approaches using CNNs like FaceNet [START_REF] Schroff | Facenet: a unified embedding for face recognition and clustering[END_REF] and DeepFace [START_REF] Taigman | Deepface: closing the gap to human-level performance in face verification[END_REF] that outperform human accuracy in recognition dataset.

Face recognition is the process to recognize a face that has already been detected. Face recognition includes two general applications: verification and identification. The verification step can be presented as one to one match that correlates a face image with an available face image database whose personality is matched. Face identification is a one to N issue that matches a query face image against the images available in a database of faces. The third case is also taken into account when a query face may or may not be in the available database. In this case, the similarity score is computed and we can find out match based on the highest similarity score. Face detection and matching is important for face feature extraction and accuracy calculation. To the best of our knowledge, the challenges of face recognition process can be assigned to some certain factors such as:

• Illumination : Illumination represents the changes in light. The small variation in lighting conditions poses an important issue for automatic face recognition and can have an important effect on its results. If the lighting tends to vary, the same person is taken with the same sensor and with an almost identical face pose and expression, the results that emerge can seem quite different. Illumination drastically changes the appearance of the face. The difference between two same faces captured under various illumination conditions is greater than two different faces captured under the same illumination.

• Pose variation: Face recognition systems are easily affected by variations in pose.

The pose of the face changes when the movement of the head and the angle of view of the person vary. The different points of view of a camera or the head movements can always cause changes in the appearance of the face and generate intra-class variations causing a considerably drop in the automated face recognition rates. As the angle of rotation increases, identifying the actual face becomes difficult. This can result in incorrect recognition or no recognition if the database only has the frontal view of the face.

• Feature occlusion : Occlusion indicates blockage, and it happens when one or more parts of the face are blocked and the entire face is not available as an input image. Occlusion is examined to be one of the most significant issues in face recognition system. It happens due to moustache, beard and accessories including glasses, cap, mask, etc. It is widespread in real-world scenes. These components make the issue diverse and therefore make automatic face recognition process more difficult. Variability can be introduced by the presence of elements such as sunglasses, beards or hats. Faces can also be masked in parts by objects or other faces. Facial features and facial expression also change due to various facial gestures. • Expressions : Face is considered as one of the most important biometrics due to the significant role played by its unique features in human identity and emotions. Varying situations lead to several humours that can produce variable emotions and possibly changing facial expressions. Human expressions are especially macro-expressions which are sadness, happiness, disgust, anger, surprise, fear. Micro-expressions are fast and involuntary facial expressions, which display the fast facial patterns.

Macro and micro expressions appear on person's face because of changes in his emotional state and as a result of such emotions, effective recognition becomes difficult. 
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• Ageing : The texture/appearance of the face changes over time and causes ageing, which represents another issue in face recognition process. Human facial characteristics, lines/shapes, and other features change with the increasing age. It is made for image retrieval and visual observation after a long time. The recognition process depends on extracting features, basic characteristics such as hairstyles, wrinkles, marks, eyebrows, etc.

• Imaging conditions : Face appearance depends heavily to the quality of an image that can be affected by different cameras and environmental factors. Although all of these situations are handled quietly nowadays, they still disturb the face recognition process. It is crucial to note that, until now, there is no face recognition algorithm capable of solving all of these challenges at the same time, which makes the face recognition field more and more challenging.

Face recognition process

Usually, the face recognition process is divided into three steps: face detection, feature extraction, and face recognition. In Figure 1.7, we show an example of how these three steps work on an input image. • Face detection : The principal goal of this step is to determine whether or not the given image/video contains human faces, and to locate these faces. As expected, this step produces patches that contain each face in the input image. Face alignment is performed to justify the orientations and scales of these patches in order to make the face recognition system more robust and to facilitate its design. In addition to the preprocessing phase for face recognition, face detection could be used for ROI detection, image and video classification, retargeting, etc.

• Feature extraction : The face detection step is followed by the extraction of human face patches from images. There are some drawbacks to using these patches directly for facial recognition, firstly, each patch generally contains more than 1000 pixels, which are too large for building a robust face recognition system. Secondly, face patches can be captured from multiple camera alignments, with multiple face expressions, lighting, and may suffer from clutter and occlusion.

To overcome these disadvantages, feature extraction are carried out to perform tasks such as information packing, reduction in size, cleaning noise and main feature extraction. This step consists generally in transforming a face patch into a fixed dimensional vector or a set of landmarks with their corresponding locations. In some facial recognition literatures, face detection or face recognition includes a feature extraction step.

• Face recognition : After having formulated the representation of each face, the last step is to recognize the identities of these faces. A database of faces is required to perform automatic recognition. The features extracted from multiple images captured for each person are stored in the database. Then, when an input face image arrives, face detection and feature extraction are performed, and its features are compared to each face class stored in the database. There are two main applications the face recognition models perform, face identification and face verification. Face identification means, given an image of the face, we want the system to say who he/she is or the most likely identification, while in face verification given a face image and an estimate of the identification, we want the system to say true or false about the assumption.

Contributions of this thesis

Given the above importance of background subtraction, object classification and recognition, we present below the contributions of this thesis. The list of publications concerning this thesis can be found in Appendix B.

1. A novel deep based detector, namely Deep Detector Classifier (DeepDC). DeepDC is based on an unsupervised anomaly discovery framework called DeepSphere for moving objects detection and segmentation in videos (e.g. vehicles, pedestrians, etc). DeepSphere is more robust against the changing nature of anomalies in the training data (e.g., anomaly pollution, nested anomaly extent, spatio-temporal locality) or in the test data (data imbalance) to deal with the challenges enumerated in Section 1.1.1. DeepDC does not require any clean (outlier-free) or labeled data as input, while preserving consistent and robust performance.

2. A new semi-supervised classification method called DCGAN-SSL, which is an extension of the regular DCGAN to simultaneously learn a generative model and a semi-
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supervised classifier for the object classification task. Our DeepDC based on DCGAN-SSL trains a multi-class classifier to categorize objects (pedestrians, vehicles, etc), extracted from video sequences, while making use of both labeled and unlabeled data, which is able to perform better than a standalone CNN model. It achieves good accuracy when trained with a few amount of labeled samples. Furthermore, DCGAN-SSL outperforms the baseline in proportion to the reduction in the training set, suggesting that forcing a weight-sharing between the discriminator and the classifier improves data efficiency. DCGAN-SSL works better than an isolated classifier on small training datasets. DCGAN-SSL discriminator can not only learn to distinguish real samples from fake one, but also to discriminate the class label. The proposed model improves classification performance on restricted datasets compared to a classifier without a generator component.

3.

A new face recognition approach based on FaceNet model [START_REF] Schroff | Facenet: a unified embedding for face recognition and clustering[END_REF] to recognize the extracted people from video sequences through their faces and then to deal with illumination variations and dynamic backgrounds. Our method uses a deep convolutional network trained to directly optimize the embedding itself instead of an intermediate bottleneck layer as in traditional deep learning approaches. We extend our previous approach by proposing a novel data augmentation method based on DCGANs to improve face recognition accuracy. Our approach allows much greater representational efficiency achieving state-of-the-art face recognition performance using only 128-bytes per face.

Thesis outline

The rest of the thesis is organized as follows.

• Chapter 2 provides a discussion defining the solved and unsolved challenges in the context of background subtraction as well as presenting the different models suggested to address them. We also provide an overview of the different object classification methods. Furthermore, we review the main face recognition techniques used to identify people. The approaches are analyzed based on the facial representations they used.

• Chapter 3 presents a Deep Detector Classifier (DeepDC) for moving object detection, that allows distinguishing foreground objects from background in video sequences.

DeepDC is based on an unsupervised anomaly discovery framework called Deep-Sphere. The experiments conducted on real videos from the Background Modeling Challenge dataset (BMC 2012) [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF], the Change Detection dataset (CDnet 2014) [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] and the VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] show that the proposed DeepDC outperforms its competitors for the background subtraction task.

• Chapter 4 describes a novel semi-supervised learning model based on DCGAN discriminator able to classify objects extracted from video sequences (pedestrians, vehicles, etc). The discriminator not only learns false from real images but also classify each real image to its corresponding category. In addition, our proposal allows to train the prediction task of the discriminator with almost small numbers of labeled samples with unlabeled samples to provide the network with further information. Results on VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] and CDnet 2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] show the pertinence of the proposed approach.

• Chapter 5 This chapter presents a novel face recognition descriptor based on FaceNet model [START_REF] Schroff | Facenet: a unified embedding for face recognition and clustering[END_REF]. Our proposed approach directly optimizes the embedding itself by training a deep convolutional network, instead of using an intermediate bottleneck layer as in conventional deep learning methods. Furthermore, our method allows a much greater representational efficiency. A high recognition performance is achieved using only 128-bytes per face. This not only increases the efficiency in terms of time and memory consumption, but also improves the recognition performance. Additionally, we extend our previous approach by a new data augmentation method based on DC-GANs. The experiments conducted on Labeled Faces in the Wild dataset [], VGG face dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF], Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF] and Chockepoint video dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] show that the proposed descriptor outperforms other state-of-the-art descriptors. Furthermore, the application of data augmentation based on DCGANs improves the performance of face recognition.

• Chapter 6 summarizes the thesis with remarks, advantages, and limitations of the proposed approaches. It also discusses the open issues and the promising future directions.

INTRODUCTION

Figure 1.8 schematically illustrates the organization of this manuscript. In particular, the chapters in which the contributions of the thesis are presented, are highlighted. 

Chapter 2

Literature review

This chapter begins with a brief introduction to the different solved and unsolved challenges encountered in the context of background subtraction, followed by a review of the traditional and recent approaches in this domain. Furthermore, we survey the representative studies in object classification applied once the moving objects are detected. Next, a review of the different algorithms used till now for the holistic-based, local-based, hybrid and deep learning face recognition methods, is provided. This chapter corresponds to a concise version of our survey published in the International Conference on Cognition and Exploratory Learning in Digital Age (CELDA), Portugal, [START_REF] Ammar | A framework for people re-identification in multicamera surveillance systems[END_REF] and our recent survey published in Handbook on "Towards Smart World: Homes to Cities using Internet of Things" [START_REF] Ammar | From moving objects detection to classification and recognition : A review for smart environments[END_REF]. 

Background subtraction models

Foreground Segmentation in video streams is a major step in many visual surveillance applications for which background subtraction provides a suitable solution which offers a good compromise in terms of computation time and detection quality. The different steps of background subtraction use methods which have different objectives and limitations. Thus, they need algorithms with different features as presented in Figure 2.1 . Background initialization needs "offline" algorithms which are "batch" learning algorithms by taking all examples at one time. However, background maintenance requires "online" algorithms which are "incremental" algorithms by processing the data one by one. Background initialization, modeling and maintenance need reconstructive algorithms while foreground detection requires discriminative algorithms. Moving object detection methods can be divided into three main categories: the frame differencing method, the optical flow method and the background subtraction method. Frame difference algorithms [START_REF] Collins | A system for video surveillance and monitoring[END_REF] [188] [START_REF] Zhao | Study on moving-object-detection arithmetic based on w4 theory[END_REF] can be simply developed but they are highly sensitive to the challenges. Optical flow methods are more robust, while meeting real-time requirements remains a difficult task since it needs a lot of time. Background subtraction which is the common technique for detecting foreground objects offers a good compromise between robustness and real-time requirements. In the literature, several surveys [64] [68] [69] [START_REF] Bouwmans | On the role and the importance of features for background modeling and foreground detection[END_REF] [76] [START_REF] Maddalena | Background subtraction for moving object detection in RGB-D data : A survey[END_REF] and books [START_REF] Bouwmans | Handbook on robust low-rank and sparse matrix decomposition : Applications in image and video processing[END_REF] [73] can be found that handle the problem of moving objects detection by background subtraction.

The background model describes the model used to represent the background. A large variety of models resulting from signal processing techniques, mathematical concepts and machine learning methods have been proposed to model the background as presented in Figure 2.1, including crisp models [START_REF] Graszka | Median mixture model for background-foreground segmentation in video sequences[END_REF] [265] [START_REF] Roy | Real-time adaptive histogram min-max bucket (HMMB) model for background subtraction[END_REF], statistical models [START_REF] Caseiro | Background modelling on tensor field for foreground segmentation[END_REF] [139] [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF] [449], fuzzy models [START_REF] Baf | Type-2 Fuzzy Mixture of Gaussians Model : Application to background modeling[END_REF] [46] [START_REF] Baf | Fuzzy integral for moving object detection[END_REF], Dempster-Schafer models [START_REF] Munteanu | The detection of moving objects in video by background subtraction using dempster-shafer theory[END_REF], subspace learning models [START_REF] Farcas | Background modeling via a supervised subspace learning[END_REF] [147] [START_REF] Marghes | Background modeling via incremental maximum margin criterion[END_REF] [311] [START_REF] Oliver | A bayesian computer vision system for modeling human interactions[END_REF], robust learning models [START_REF] Candes | Robust principal component analysis[END_REF] [215] [START_REF] Javed | Spatiotemporal low-rank modeling for complex scene background initialization[END_REF] [419] neural networks models [START_REF] Ramirez-Alonso | Self-adaptive SOM-CNN neural system for dynamic object detection in normal and complex scenarios[END_REF] [364] [START_REF] Schofield | A system for counting people in video images using neural networks to identify the background scene[END_REF] and filter based models [START_REF] Chang | Vision modules for a multi sensory bridge monitoring approach[END_REF] [103] [316] [445]. The main background modeling methods are shown in Table 2.1 and 2.2.

Mathematical models

Depending on mathematical concepts, the easiest way for modeling the background is to calculate the temporal mean [START_REF] Lee | Background estimation for video surveillance[END_REF], the temporal median [START_REF] Graszka | Median mixture model for background-foreground segmentation in video sequences[END_REF] or the temporal histogram [START_REF] Roy | Real-time adaptive histogram min-max bucket (HMMB) model for background subtraction[END_REF] which are the most popular techniques to generate a background and were extensively applied in the field of road traffic monitoring in 1990s, while they are very sensitive to the challenges encountered in video surveillance such as camera jitter, variations in lighting and dynamic backgrounds. These models are classified as crisp models. To tackle the imprecision, vagueness and incompleteness in the observed data (i.e. video), statistical models began to be implemented in 1999 like Kernel Density Estimation (KDE) [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF] [516], single Gaussian (SG) [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF], Gaussian Mixture Model (GMM) [START_REF] Caseiro | Background modelling on tensor field for foreground segmentation[END_REF] [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF]. These techniques based on Gaussian distribution models demonstrated their robustness to dynamic backgrounds [START_REF] Garcia-Garcia | A gaussian-median filter for moving objects segmentation applied for static scenarios[END_REF] [START_REF] Pulgarin-Giraldo | GMM background modeling using divergence-based weight updating[END_REF] . In the literature, more sophisticated statistical models have been implemented and can be categorized into those based on another distribution that mitigates the strict Gaussian constraint (i.e. general Gaussian distribution [START_REF] Elguebaly | Finite asymmetric generalized gaussian mixture models learning for infrared object detection[END_REF], Student's t-distribution [START_REF] Mukherjee | Real-time video segmentation using student's t mixture model[END_REF] [180], Dirichlet distribution [START_REF] Haines | Background subtraction with dirichlet processes[END_REF] [145], Poisson distribution [START_REF] Faro | Adaptive background modeling integrated with luminosity sensors and occlusion processing for reliable vehicle detection[END_REF] [514]), models based on co-occurrence [START_REF] Liang | Co-occurrence probability based pixel pairs background model for robust object detection in dynamic scenes[END_REF] [280], [START_REF] Liang | Robust object detection in severe imaging conditions using co-occurrence background model[END_REF] and confidence [START_REF] Rosell-Ortega | Background modeling with motion criterion and multi-modal support[END_REF] [379], models with free distribution [START_REF] Barnich | Vibe: a powerful random technique to estimate the background in video sequences[END_REF] [424] [START_REF] St-Charles | A self-adjusting approach to change detection based on background word consensus[END_REF], and regression models [257] [444]. These methods have improved the robustness to a several challenges over time. The most successful techniques in the statistical category are samplebased methods named ViBe [START_REF] Barnich | Vibe: a powerful random technique to estimate the background in video sequences[END_REF], SubSENSE [START_REF] St-Charles | Flexible background subtraction with self-balanced local sensitivity[END_REF] and PAWCS [START_REF] St-Charles | A self-adjusting approach to change detection based on background word consensus[END_REF]. Another theory that manages inaccuracy, incompleteness and uncertainty is based on the fuzzy concepts. In 2006-2008, multiple authors used fuzzy models such as Type-2 fuzzy sets [START_REF] Baf | Type-2 Fuzzy Mixture of Gaussians Model : Application to background modeling[END_REF] [67], Sugeno integral [START_REF] Zhang | Fusing color and texture features for background model. Fuzzy Systems and Knowledge Discovery[END_REF], Crisp models [START_REF] Radke | Image change detection algorithms: A systematic survey[END_REF] [265] [START_REF] Zhang | Fusing color and texture features for background model. Fuzzy Systems and Knowledge Discovery[END_REF] and Choquet integral [START_REF] Baf | Foreground detection using the choquet integral[END_REF] [48] [START_REF] Chiranjeevi | Interval-valued model level fuzzy aggregation-based background subtraction[END_REF] which are more robust against dynamic backgrounds [67]. Dempster-Schafer concept has also been used successfully in moving objects detection [START_REF] Munteanu | The detection of moving objects in video by background subtraction using dempster-shafer theory[END_REF].

• Statistical models : It is interesting to take into consideration the improved versions of the current used models like MOG [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF], codebook [START_REF] Kim | Background modeling and subtraction by codebook construction[END_REF], ViBe [START_REF] Barnich | Vibe: a powerful random technique to estimate the background in video sequences[END_REF] and PBAS [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF]. Numerous improvements of MOG [START_REF] Farou | Efficient local monitoring approach for the task of background subtraction[END_REF] 

Subspace models

In 1999, subspace learning methods have been used in an unsupervised way for background modeling in the idea of representing the content of online data while greatly reducing dimension. Subspace learning method (either local or global, linear or non linear) like Independent Component Analysis(ICA) [START_REF] Yamazaki | Detection of moving objects by independent component analysis[END_REF], Principal Component Analysis (PCA) [START_REF] Dong | Adaptive learning of multi-subspace for foreground detection under illumination changes[END_REF] [335] [START_REF] Dong | Illumination invariant foreground detection using multi-subspace learning[END_REF] [234] and Non-negative Matrix Factorization (NMF) [START_REF] Bucak | Incremental subspace learning and generating sparse representations via non-negative matrix factorization[END_REF] [80] provide a background subtraction framework, especially in the presence of illumination variations. These models are more robust to variations in lighting than statistical models [START_REF] Munteanu | The detection of moving objects in video by background subtraction using dempster-shafer theory[END_REF]. In other methods, discrimina-tive [START_REF] Farcas | Background modeling via a supervised subspace learning[END_REF], [START_REF] Farcas | Background subtraction via incremental maximum margin criterion : A discriminative approach[END_REF], [START_REF] Marghes | Background modeling via incremental maximum margin criterion[END_REF] and mixed [START_REF] Marghes | Background modeling and foreground detection via a reconstructive and discriminative subspace learning approach[END_REF] [START_REF] Silva | Jitter invariant incremental principal component pursuit for video background modeling on the tk1[END_REF] as well as the ReProCS algorithm [START_REF] Qiu | Real-time robust principal components pursuit[END_REF] and its multiple variants [START_REF] Guo | Practical reprocs for separating sparse and lowdimensional signal sequences from their sum[END_REF] [330] [START_REF] Qiu | Support predicted modified-CS for recursive robust principal components' pursuit[END_REF] are presented as online algorithms, provide both advantages in terms of detection, real-time and memory consumption. In road traffic monitoring, incPCP [START_REF] Rodriguez | Incremental principal component pursuit for video background modeling[END_REF] was successfully tested for vehicle counting [358] [442], while an online RPCA algorithm was used for person and vehicle detection [START_REF] Xu | Motion detection via a couple of auto-encoder networks[END_REF]. GRASTA [START_REF] He | Incremental gradient on the grassmannian for online foreground and background separation in subsampled video[END_REF], incPCP [START_REF] Rodriguez | Incremental principal component pursuit for video background modeling[END_REF], ReProCS [START_REF] Guo | Practical reprocs for separating sparse and lowdimensional signal sequences from their sum[END_REF] and MEROP [START_REF] Narayanamurthy | A fast and memory-efficient algorithm for robust PCA (MEROP)[END_REF] are the most advanced algorithms in this subspace learning category. Nevertheless, methods based on tensor RPCA [START_REF] Driggs | Tensor robust principal component analysis : Better recovery with atomic norm regularization[END_REF] [210] [START_REF] Lu | Tensor robust principal component analysis with a new tensor nuclear norm[END_REF] [420] make it possible to take into account spatial and temporal constraints allowing more robustness against noise.

Neural network modeling

In 1996, neural networks have been used by Schofield et al. [START_REF] Schofield | A system for counting people in video images using neural networks to identify the background scene[END_REF] for background representation and moving objects detection, with a Random Access Memory (RAM) neural network. This RAM-NN does not need a background maintenance step and requires a good background model. Information can no longer be changed once RAM-NN is trained with one pass of background images. Jimenez et al. [START_REF] Gil-Jimenez | Background pixel classification for motion detection in video image sequences[END_REF] classify each portion of a video into one of the following categories: static, noisy and impulsive background categorie. This classification is made by a multilayer perceptron which requires a training set from specific parts of each training frame. Subsequently, Tavakkoli [START_REF] Tavakkoli | Foreground-background segmentation in video sequences using neural networks[END_REF] design a neural network method on the basis of the novelty detection theory. In the training phase, the background is divided into blocks and each block is associated to a Radial Basis Function Neural Network (RBFNN). Each RBFNN is trained with background data that corresponds to its associated block. RBFNN is employed as a detector for close boundary generation for the defined category. In RBF-NN approaches, dynamic object detection can be observed as a single class problem and the dynamic background is learned. However, the representation of common background requires a large amount of data. In Wang et al. [START_REF] Wang | PNN based motion detection with adaptive learning rate[END_REF], a Probabilistic Adaptive Background Neural Network (ABPNN) model is presented which combines both a winner-take-all (WTA) and hybrid probabilistic networks. Each pixel is classified as background or foreground based on a Parzen estimation. The foreground regions are then categorized as a shadow or a motion region. But, initial threshold values should be defined for each of the considered videos. A feed-forward neural network based on an adaptive Bayesian model named Background Neural Network (BNN) is proposed by Culibrk et al. [START_REF] Culibrk | A neural network approach to bayesian background modeling for video object segmentation[END_REF], to model the background. BNN is rep-resented as a General Regression Neural Network (GRNN) and operates as a Bayesian classifier. Although the architecture is considered to be supervised, it can be extended as an unsupervised architecture in the background modeling domain. The network is composed of three subnets: classification, activation and replacement. The background/foreground features of a pixel are mapped using the classifier subnet based on a probability density function estimation. The network contains two summing neurons, one of them calculates the probability that the pixel values belong to the background and the other for estimating if it belongs to the foreground. The principal disadvantages are the high-complexity of the model and the needs of three nets to specify if a pixel belongs to the background. In a disruptive study, Maddalena and Petrosino [START_REF] Maddalena | A self-organizing approach to detection of moving patterns for real-time applications[END_REF] [297] [START_REF] Maddalena | A self organizing approach to background subtraction for visual surveillance applications[END_REF] [299] a Self Organizing Background Subtraction (SOBS) approach allowing to preserve the spatial coherence of the pixel. This approach can be considered as a pixel-based and non-parametric method that simply address the multi-modality in background pixel distributions. The network can be automatically modeled through the network neurons weights and each pixel is represented by a neural map with weight vectors, that are initialized with pixel values in the HSV color channel. Next, each new pixel value from each new frame is classified either in the background or in the foreground by comparing it with its current model. Subsequently, enhanced variants of SOBS has been presented such as Multivalued SOBS [START_REF] Maddalena | Multivalued background/foreground separation for moving object detection[END_REF], SOBS-CF [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF], SC-SOBS [START_REF] Maddalena | The SOBS algorithm : What are the limits ? IEEE Workshop on Change Detection[END_REF], 3dSOBS+ [START_REF] Maddalena | The 3dSOBS+ algorithm for moving object detection[END_REF], Simplified SOM [START_REF] Chacon-Muguia | Simplified SOM-neural model for video segmentation of moving objects[END_REF], Neural-Fuzzy SOM [START_REF] Chacon-Muguia | Improvement of a neural-fuzzy motion detection vision model for complex scenario conditions[END_REF] and MILSOBS [START_REF] Gemignani | A novel background subtraction approach based on multi-layered self organizing maps[END_REF]. These improvements allow SOBS being one of the principal methods on the CDnet 2012 dataset [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] for a long period. SOBS shows also great efficiency for the detection of stopped objects [START_REF] Maddalena | 3D neural model-based stopped object detection[END_REF] [302] [START_REF] Maddalena | Stopped object detection by learning foreground model in videos[END_REF]. However, these SOBS-based methods require manually parameter adjustment.

Deep neural networks concepts

Since 2016, DNNs have also been successfully employed in background extraction [START_REF] Guo | Practical reprocs for separating sparse and lowdimensional signal sequences from their sum[END_REF] [357] [START_REF] Xu | Temporally adaptive restricted boltzmann machine for background modeling[END_REF] [479] [START_REF] Xu | Motion detection via a couple of auto-encoder networks[END_REF] background subtraction [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] [53] [START_REF] Braham | Deep background subtraction with scenespecific convolutional neural networks[END_REF] [104] [START_REF] Lim | Background subtraction using encoder-decoder structured convolutional neural network[END_REF], foreground detection improvement [START_REF] Zeng | Combining background subtraction algorithms with convolutional neural network[END_REF], ground-truth extraction [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF] and deep spatial features learning [START_REF] Lee | Background subtraction using the factored 3-way restricted boltzmann machines[END_REF] [332] [START_REF] Shafiee | Embedded motion detection via neural response mixture background modeling[END_REF] [397] [START_REF] Zhang | Deep learning driven blockwise moving object detection with binary scene modeling[END_REF]. Specifically, Restricted Boltzman Machines (RBMs) have been employed by Guo and Qi [START_REF] Guo | Partially-sparse restricted boltzmann machine for background modeling and subtraction[END_REF] and Xu et al. [START_REF] Xu | Temporally adaptive restricted boltzmann machine for background modeling[END_REF] to construct the background, to then detect moving objects using background subtraction. Furthermore, deep auto-encoder networks have been used by Xu et al. [479] [480] to perform similar task while Qu et al.

[357] employed context-encoder to generate the background. Convolutional Neural Networks (CNNs) have also been employed by Braham and Droogenbroeck [START_REF] Braham | Deep background subtraction with scenespecific convolutional neural networks[END_REF], Bautista et al. [START_REF] Bautista | Convolutional neural network for vehicle detection in low resolution traffic videos[END_REF] and Cinelli [START_REF] Cinelli | Anomaly detection in surveillance videos using deep residual networks[END_REF] for background subtraction. Many improved variants of CNNs have been used such as cascaded CNNs [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF], deep CNNs [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF], structured CNNs [START_REF] Lim | Background subtraction using encoder-decoder structured convolutional neural network[END_REF] and two stage CNNs [START_REF] Zhao | Joint background reconstruction and foreground segmentation via a two-stage convolutional neural network[END_REF]. Robust spatial features are learned using Stacked Denoising Auto-Encoder (SDAE) by Zhang et al. [START_REF] Zhang | Deep learning driven blockwise moving object detection with binary scene modeling[END_REF] and the density analysis is applied to model the background, whereas Shafiee et al. [START_REF] Shafiee | Embedded motion detection via neural response mixture background modeling[END_REF] employ Neural Reponse Mixture (NeREM) to extract deep features employed in the Gaussian Mixture model [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF]. Based on deep learning scene recognition model, Chan [93] suggested a scene-awareness algorithm for scene change detection allowing using the suitable background subtraction technique for the corresponding type of challenges. In 2019, Ammar et al. [START_REF] Ammar | Moving objects segmentation based on DeepSphere in video surveillance[END_REF] employed a Deep Detector Classifer (DeepDC) to detect and classify moving objects in video sequences. An unsupervised anomaly discovery algorithm called DeepSphere is adapted to detect moving objects. In 2020, Ammar et al. [34] suggested to employ and validate DeepSphere to detect and then segment moving objects in video sequences. DeepSphere uses both hypersphere learning and deep auto-encoders to reconstruct normal behaviors and remove anomaly pollution. Experimental results show that DeepSphere achieved higher accuracy compared to Deep Probabilistic Background Model (DeepPBM) [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] and Robust Principal Component Analysis (RPCA) [START_REF] Candes | Robust principal component analysis[END_REF].

All of these approaches were implemented by researchers who have not yet tested them for real applications. Only Bautista et al. [START_REF] Bautista | Convolutional neural network for vehicle detection in low resolution traffic videos[END_REF] tested the convolutional neural network for detecting vehicles in low-resolution traffic video sequences. However, even their robustness in presence of the concerned unresolved challenges, recent deep learning methods still take too much time and memory to be actually used in real applications. Additionally, these methods need manually labeled data for the training and are generally scene specific. DNNsbased background subtraction can only treat a specific type of scene, and must be retrained for other video sequences [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF]. Because the camera is stationary when recording similar scenes, this fact is often not a challenge. But, this may not be the case for some applications, as specified by Hu et al. [START_REF] Hu | 3d atrous convolutional long short-term memory network for background subtraction[END_REF]. Currently, methods based on deep learning seem to be only interesting in a theoretical point and not on a practical point. This current incompatibility [START_REF] Bouwmans | Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[END_REF] can be mitigated only by advances in online and unsupervised deep learning methods.

Signal processing models

The signal processing models take into account the temporal history of a pixel as onedimensional signal. More precisely, many signal processing algorithms can be used: 1) signal estimation methods (i.e. filters), 2) transform-domain approaches, 3) sparse recovery functions (i.e. compressed sensing), and 4) Graph signal processing (GSP) approaches.

• Estimation filter : In 1990, Karmann et al. [START_REF] Karmann | Moving object recognition using an adaptive background memory[END_REF] proposed to estimate the background model of a scene using the Kalman filter. Each pixel with an important deviation from its predicted value is classified as foreground. Many enhancements have been suggested to make this method more robust to difficult situations such as illumination variations and varying backgrounds [START_REF] Boninsegna | A tunable algorithm to update a reference image[END_REF] [143] [START_REF] Messelodi | A kalman filter based background updating algorithm robust to sharp illumination changes[END_REF]. In 1999, a pixel level algorithm, called Wallflower, is presented by Toyama et al. [START_REF] Toyama | Wallflower : Principles and practice of background maintenance[END_REF] to perform probabilistic predictions of the background pixel values, estimated in the following frame by applying the Wiener filter. Chang et al. [START_REF] Chang | Vision modules for a multi sensory bridge monitoring approach[END_REF] [95] applied a Chebychev filtering to represent the background. All these filtering methods give important efficiency under slow variations in illumination but they are inefficient in the presence of complex backgrounds.

• Transform domain models : In 2005, Wren and Porikli [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] proposed a Fast Fourrier Transform (FFT) based Waviz algorithm for background modeling using spectral signatures from multi-modal backgrounds. These signatures are then used to detect incoherent scene changes over time. They further introduce a Wave-Back method [START_REF] Porikli | Change detection by frequency decomposition : Waveback[END_REF] which involves frequency decompositions of the historical pixel vector to model the background. For the reference and current frames, the Discrete Cosine Transform (DCT) coefficients are compared giving a distance maps, which are combined into a same DCT temporal window to be more robust to noise and a thresholding is applied to extract foreground objects. This method can address situations such as waving trees.

• Sparse signal recovery models : In 2008, Cevher et al. [START_REF] Cevher | Compressive sensing for background subtraction[END_REF] were the first authors to propose a background subtraction method based on a compressed sensing technique. They learned and adapted a compressed background representation with a low-dimensionality rather than learning the entire background that is suitable to detect changes. Compressive samples allow foreground objects to be estimated directly without having to build an intermediate image. However, an auxiliary image is needed to simultaneously retrieve the appearance of objects using compressive measurements. To handle this limitation, many improvements have been presented in the literature [START_REF] Davies | The effect of recovery algorithms on compressive sensing background subtraction[END_REF] [325] [START_REF] Warnell | Adaptive-rate compressive sensing via side information[END_REF] [465] [START_REF] Xiao | Fast l1-minimization algorithm for robust background subtraction[END_REF] and important accuracy is reached using Bayesian compressive sensing methods [START_REF] Kuzin | Sparse machine learning methods for autonomous decision making[END_REF] [254] [START_REF] Kuzin | Spatio-temporal structured sparse regression with hierarchical gaussian process priors[END_REF].

• Graph Signal Processing (GSP) models: Graph signal processing is an emerging field that tries to extend the concepts of classical digital signal processing to graphs. There is a lot of theoretical progress in recent years, and several applications in domains including machine learning and computer vision [336] [409]. Recently, Giraldo and Bouwmans [START_REF] Giraldo | GraphBGS: Background subtraction via recovery of graph signals[END_REF] [166] proposed a semi-supervised background subtraction method called GraphBGS. This algorithm is based on the theory of reconstruction of graph signals [START_REF] Ortega | Graph signal processing: Overview, challenges, and applications[END_REF] and it is very precise with respect to false positives. Unlike most methods of the state-of-the-art, GraphBGS shows competitive results on both static and moving camera sequences. GraphBGS thus lies in between the unsupervised and supervised techniques, leading to a new branch of background subtraction algorithms.

Semantic concepts

In 2017, Braham et al. [START_REF] Braham | Semantic background subtraction[END_REF] take advantage of object level semantics to deal with the diversity of difficult scenes for background subtraction. Combining the output of a semantic segmentation algorithm with the output of any background subtraction algorithm allows reducing false positive detections obtained by changes in illumination, dynamic backgrounds and shadows. Additionally, Braham et al. [START_REF] Braham | Semantic background subtraction[END_REF] suggest a fully semantic background representation to improve the detection of camouflaged moving objects. In 2019, a background subtraction algorithm is designed by Zeng et al. [START_REF] Zeng | Background subtraction with real-time semantic segmentation[END_REF] with real-time semantic segmentation usable for real applications. While operating in real-time, this method achieves superior performance than unsupervised background subtraction algorithms and stills works better than some supervised methods. Semantic concepts have been also employed for background generation [START_REF] Laugraud | LaBGen-P-semantic: A first step for leveraging semantic segmentation in background generation[END_REF] [391] allowing their use in applications like privacy protection and video-impainting. [START_REF] Pham | GPU implementation of extended gaussian mixture model for background subtraction[END_REF], [START_REF] Li | Three-level GPU accelerated gaussian mixture model for background subtraction[END_REF] [START_REF] Li | Three-level GPU accelerated gaussian mixture model for background subtraction[END_REF], Salvadori [START_REF] Salvadori | Gaussian mixture background modelling optimisation for micro-controllers[END_REF] [389] Tabkhi (2013) [START_REF] Tabkhi | Algorithm and architecture co-design of mixture of gaussian (mog) background subtraction for embedded vision processor[END_REF] PETS2009 [START_REF] Ferryman | An overview of the pets 2009 challenge[END_REF] [START_REF] Xu | Motion detection via a couple of auto-encoder networks[END_REF], [START_REF] Xu | Dynamic background learning through deep auto-encoder networks[END_REF] Ocean [START_REF] Zhao | Background subtraction via robust dictionary learning[END_REF] Watersurface [START_REF] Li | Statistical modeling of complex background for foreground object detection[END_REF] Context-encoder [START_REF] Tejada | Moving object detection in videos using principal component pursuit and convolutional neural networks[END_REF], [START_REF] Silva | Jitter invariant incremental principal component pursuit for video background modeling on the tk1[END_REF], [97] Lankershim [START_REF]Lankershim boulevard dataset[END_REF], Neovison2 [START_REF]Usc neovision2 project[END_REF] 

ReProCS algorithm

Qiu et al. [355] [356], Guo [START_REF] Guo | Practical reprocs for separating sparse and lowdimensional signal sequences from their sum[END_REF], [START_REF] Narayanamurthy | A fast and memory-efficient algorithm for robust PCA (MEROP)[END_REF] MR, SL [START_REF] Narayanamurthy | A fast and memory-efficient algorithm for robust PCA (MEROP)[END_REF] Discriminative subspace models Farcas et al. [START_REF] Farcas | Background modeling via a supervised subspace learning[END_REF] [147], Marghes [START_REF] Marghes | Background modeling via incremental maximum margin criterion[END_REF] Wallflower [START_REF] Toyama | Wallflower : Principles and practice of background maintenance[END_REF] Mixed subspace models [START_REF] Cevher | Compressive sensing for background subtraction[END_REF] BSDS [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF] Bayesian compressive sensing Kuzin et al. [START_REF] Kuzin | Compressive sensing approaches for autonomous object detection in video sequences[END_REF], [START_REF] Kuzin | Compressive sensing approaches for autonomous object detection in video sequences[END_REF], [START_REF] Kuzin | Spatio-temporal structured sparse regression with hierarchical gaussian process priors[END_REF], [START_REF] Kuzin | Sparse machine learning methods for autonomous decision making[END_REF] Convoy [ [START_REF] Zeng | Background subtraction with real-time semantic segmentation[END_REF] CDnet2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] Semantic background initialization Pierard et al. (2018) [START_REF] Laugraud | LaBGen-P-semantic: A first step for leveraging semantic segmentation in background generation[END_REF], Savakis et al. [START_REF] Savakis | Semantic background estimation in video sequences[END_REF] SBI [START_REF] Maddalena | Towards benchmarking scene background initialization[END_REF], SBMnet [START_REF] Jodoin | Extensive benchmark and survey of modeling methods for scene background initialization[END_REF] 

Object classification

In this Section, we review the representative studies in object image classification and retrieval applied once the moving objects are detected as presented in Table 2.3. These objects can be categorized as humans, vehicles, etc.

Conventional methods

In the study of Zhu et al. [START_REF] Zhu | Pedestrian attribute classification in surveillance : Database and evaluation[END_REF], color and texture features are combined and fed into an Adaboost classifier for feature selection and classification. In Golle [START_REF] Golle | Machine learning attacks against the asirra captcha[END_REF], an accuracy of 82.7 % was reached using an SVM classifier trained using the color and texture information.

In 1999, Transductive SVMs (TSVMs) are proposed by Joachims [START_REF] Joachims | Transductive inference for text classifcation using support vector machines[END_REF] to classify a text. TSVMs consider a particular test set and attempt to decrease the misclassifications of these samples. In Shruti et al. [START_REF] Shruti | Face recognition based on SVM and GABOR filter[END_REF], features are extracted using gabor filter coefficients and are fed into an SVM classifier. In 2011, Zaghden et al. [START_REF] Zaghden | Characterization of ancient document images composed by arabic and latin scripts[END_REF] proposed a Fractal dimension method to differentiate Arabic and Latin ancient documents. In 2013, Zaghden et al. [START_REF] Zaghden | Categorizing ancient documents[END_REF] combined a fractal dimension approach with local SIFT descriptors to categorize images. In their investigation, Ammar et al. [START_REF] Ammar | A framework for people re-identification in multicamera surveillance systems[END_REF] reviewed and categorized the representative classification methods into supervised and unsupervised techniques. In 2018, Ammar et al. [START_REF] Ammar | An effective approach based on a subset of skeleton joints for two-person interaction recognition[END_REF] modeled each person by a pentagon built with the most representative skeleton joints. Feature vectors are extracted based on the distances between a subset of skeleton joints. Five Euclidean distances are computed using the vertices of two pentagons and SVM is used for classification. Jabri et al. [START_REF] Jabri | Moving vehicle detection using haar-like, lbp and a machine learning adaboost algorithm[END_REF] proposed two solutions for the detection and classification of moving vehicles. The first is a classical Adaboost method based on the extraction of Haar-like features, while the second manages a Local Binary Pattern descriptor which will be extracted with the Adaboost classifier. Results show that the Haar-like +Adaboost system is the most important. However, LBP+Adaboost has lower power consumption. Laopracha et al. (2019) proposed a method for selecting appropriate patterns of histograms of oriented gradients (HOGs) to detect vehicules. Indeed, the HOG method produces both ambiguous and redundant, which can bias the classification process. The selected features are tested using different classifiers including, SVM, random forest, K-nearest neighbor and deep neural network.

Deep neural network methods

• Supervised deep learning methods: Supervised learning is defined as a learning task that needs labeled training samples. There exist different methods based on deep learning for supervised classification. The potential ability of CNNs to classify images has been demonstrated in 1989 when LeCun et al. [START_REF] Lecun | Handwritten digit recognition with a back-propagation network[END_REF] classified handwritten zip code digits with only 5 % test error. In Long et al. [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF], Fully connected networks (FCNs) are converted into convolutional ones to train an end-to-end CNN for image segmentation. In 2018, Babaee et al. [START_REF] Babaee | A deep convolutional neural network for video sequence background subtraction[END_REF] modeled the background and extracted the relevant features from an image-background pair using DCNN, which are then fed into a classifier for segmentation. In 2014, handcrafted features are computed by Liu et al. [START_REF] Liu | Image classification for dogs and cats[END_REF] and a bag of words model is built. Both SVMs and Backpropagation Networks are used for classification. In 2016, Braham and Droogenbroeck [START_REF] Braham | Deep background subtraction with scenespecific convolutional neural networks[END_REF] proposed a background subtraction method based on CNN. The background is initialized by computing the temporal median on some frames. A patch is extracted around the pixel, transmitted into CNN and classified as background or foreground based on a threshold value. However, all these approaches perform in a supervised manner which requires a large amount of labeled data.

• Unsupervised deep learning methods: Unsupervised learning does not need labeled data and aims to exploit the large number of unlabeled data and define similarities between objects. In 2016, Li et al. [START_REF] Li | Stacked autoencoderbased deep learning for remote-sensing image classification : a case study of african land-cover mapping[END_REF] proposed an unsupervised classification method to process remote sensing images and map African land cover using the Stacked Autoencoder (SAE). Results show that SAE outperforms standard classifiers. In 2015, Zou et al. [START_REF] Zou | la fois un grand nombre de données non étiquetées et un très petit nombre de données étiquetées pour compenser la limite de manque de données et le coût élevé de collecte des données supplémentaires ou d'étiqueter toutes les données[END_REF] propose a DBN to categorize remote sensing images. In 2014, an hybrid DCNN is used by Chen et al. [START_REF] Chen | Vehicle detection in satellite images by hybrid deep convolutional neural networks[END_REF], to detect vehicles in satellite images. In 2017, a Bidirectional GANs (BiGANs) is proposed by Donahue et al. [START_REF] Donahue | Adversarial feature learning[END_REF], which adds an encoder module to the regular GAN that learns to map among latent and data space.

• Semi-supervised deep learning methods: The ever-growing size of current datasets combined with the problem of acquiring information on labels makes semi-supervised learning a major challenge of current data analysis. Semi-supervised learning addresses the problem of classification when only a small number of labeled data is available. To deal with this limitation, Ammar et al. [34] proposed a semi-supervised DCGAN (DCGAN-SSL) approach to simultaneously learn a generative model and a DCGAN discriminator classifier to categorize moving objects (humans/vehicles) extracted from VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] and CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. DGAN-SSL enhances the classification performance on small data using a standard classifier without generative element. Rosenberg et al. [START_REF] Rosenberg | Semi-supervised self-training of object detection models[END_REF] added unlabeled samples to the original labeled data to train the model in a semi-supervised way which achieves the same results as a standard model using a large amount of labeled data. In 2011, Diederik et al. [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF] present a semi-supervised method with generative components that generalizes restricted labeled sets to large unlabeled data. In 2015, categorical GANs (catGANs) are proposed by Springenberg et al. [START_REF] Springenberg | Unsupervised and semi supervised learning with categorical generative adversarial networks[END_REF] to combine a discriminative classifier from an unlabeled or partly labeled data with an adversarial generative model. In 2017, a semi-supervised virtual adversarial training (VAT) method [START_REF] Miyato | Virtual adversarial training : a regularization method for supervised and semi-supervised learning[END_REF] is proposed that searches for virtually examples to smooth the classifier outputs. Using a small number of labeled samples allows GANs to perform well [START_REF] Salimans | Improved techniques for training gans[END_REF], providing an efficient semi-supervised classification and high quality image generation. In 2018, the NLP language model [START_REF] Dai | Semi-supervised sequence learning[END_REF] is used to improve sequence learning with recurrent networks using unlabeled data. The model results in weights used to train the model in a supervised way for data classification. In 2017, a recurrent language Neural Network, called multiplicative LSTM (mLSTM) [START_REF] Radford | Learning to generate reviews and discovering sentiment[END_REF] is trained in a semi-supervised way to estimate the subsequent character in the text. This model exceeded the advanced techniques using only small amount of labeled samples. 2.3 Face recognition methods

Holistic approaches

Holistic approaches process the entire face area as a high-dimensional vector that is fed into a classifier. These approaches do not need to extract face areas or points of interest. However, they consider all pixels of the image with equal importance, which makes them costly in computation. In addition, these approaches generally ignore local information, so they are not very used for face identification. These approaches can be classified into linear and nonlinear techniques according to the method used to represent the subspace in Table 2.4 .

Linear techniques

• Eigenface and principal component analysis (PCA): In Seo et al. [START_REF] Seo | Face verification using the lark representation[END_REF], Locally Adaptive Regression Kernel (LARK) features are extracted to represent a face. A self-similarity measure is calculated among a center and its neighboring pixels on the basis of a geodesic distance. The size of LARK is reduced using PCA, followed by a logistic function to make LARK features approximately binarized. The one-shot similarity measure is applied on the basis of a linear discriminative analysis (LDA) for the image restricted training. In Ghorbel et al. [START_REF] Ghorbel | A comparative study of GOM, uLBP, VLC and fractional Eigenfaces for face recognition[END_REF], the DoG filter is applied for image processing. The features are extracted using Eigenfaces and VLC techniques from the entire face image and matched using the chisquare distance. In 2012, Abdullah et al. [START_REF] Abdullah | Optimizing face recognition using PCA[END_REF] optimized the time complexity of Eigenfaces without affecting the recognition performance. In 2017, Johannes and Armin [START_REF] Johannes | Face recognition with machine learning in OpenCV fusion of the results with the localization data of an acoustic camera for speaker identification[END_REF] have shown that Haar cascade classifiers exceed LBP classifiers in face detection. For face recognition, they demonstrated that Eigenfaces are better than Fisherfaces and LBP histograms. In 2016, Bhuiyan et al. [START_REF] Bhuiyan | Towards Face Recognition Using Eigenface[END_REF] examined the eigenvectors of the covariance matrix of the key images to recognize a face. The features are extracted using Eigenfaces and identified using KNN.

Lighting issues are surmounted by Root Mean Square (RMS) contrast stretching. The work of Abd Rahman et al. [START_REF] Abd Rahman | Human face recognition : An eigenfaces approach[END_REF] was performed using PCA Eigenfaces approach to recognize a face in a single static, multiple static and dynamic images. The main idea in [START_REF] Saha | Comparison of different face recognition method based on PCA[END_REF] was to use only the best Eigenfaces which represent the major variance in all facial images which leads to efficient calculations and speed.

• Fisherface and linear discriminative analysis (LDA): Fisher vectors are used by Simonyan et al. [START_REF] Simonyan | Fisher vector faces in the wild[END_REF] to recognize a face. The authors proposed a discriminative reduction in dimensionality due to the high size of Fisher vectors. The Fisherface approach is more effective than the Eigenface method. On this basis, Li et al. [START_REF] Li | Fisherface vs. eigenface in the dual-tree complex wavelet domain[END_REF] compared a dual-tree complex wavelet transform (DT-CWT) approach based on LDA with the DTCWT based PCA method. The face recognition efficiency of the Fisherface and the Eigenface are also compared in the DT-CWT area. In Abidin et al. [START_REF] Abidin | A neural network based facial expression recognition using Fisherface[END_REF], face expressions are recognized on the basis of a neural network using Fisherface. An integral projection method is adopted to segment and locate the face area. Neural network based on the back-propagation algorithm is applied to categorize facial expressions. In Gowda et al. [START_REF] Gowda | Multimodal biometric recognition system based on nonparametric classifiers[END_REF], LPQ features are extracted from the face and iris regions and LDA is used for dimensionality reduction in order to achieve efficient computation.

Both SVM and KNN are used for classification.

• Independent component analysis (ICA) : In Bartlett et al. [START_REF] Bartlett | Face recognition by independent component analysis[END_REF], two architectures are proposed to represent facial images using ICA. The spatially local basis vectors are generated by ICA and are considered as a set of independent facial characteristics. In the second architecture, a factorial code is used to generate statistically independent compressed images. The performance of face recognition was evaluated by the KNN classifier and the cosine similarity measure. The authors reported that ICA-based representations outperformed PCA-based representations to recognize a face in sessions and changes in expression. Kong and Bing [START_REF] Kong | A new face recognition method based on fast least squares support vector machine[END_REF] used both ICA and SVM to recognize a face. Facial features are extracted using Informax algorithm and classified using Fast Least Squares SVM (FLS-SVM).

• Improvements of the PCA, LDA and ICA techniques : In order to deal with the large variations in appearance and the poor quality caused by approximate alignement of face images, Cui et al. [START_REF] Cui | Fusing robust face region descriptors via multiple metric learning for face recognition in the wild[END_REF] proposed a Spatial Face Region Descriptor (SFRD) to recognize a face by partitioning each image into various blocks in spatial domain, then extracting the Token-Frequency characteristics from all regions by sum pooling the reconstructing coefficients over the patches of each block. Whitened Principal Component Analysis (WPCA) is applied to reduce the dimensionality of feature vectors to generate robust face descriptors which are combined using Pairwise-constrained Multiple Metric Learning (PMML). In 2018, Khan et al. [START_REF] Khan | Face recognition under varying expressions and illumination using particle swarm optimization[END_REF] proposed to solve complex variations problem in face images by selecting the appropriate features from wavelet sub-bands based on particle swarm optimization (PSO). The LBP-DFT technique is proposed which used LBP features to deal with illumination and expression variations and Discrete Fourier Transform (DFT) to solve the issue of translational variance of the Discrete Wavelet Transform (DWT). In Dehai et al. [START_REF] Dehai | A PCA-based face recognition method by applying fast fourier transform in pre-processing[END_REF], an ameliorated PCA method is introduced using Fast Fourier Transform (FFT) which fuses the amplitude spectrum of one image with the phase spectrum of another image to improve features, followed by the extraction of eigenvectors. Kernel SVM is used as a classifier. In Riddhi et al. [START_REF] Riddhi | Comparision of PCA and LDA techniques for face recognition feature based extraction with accuracy enhancement[END_REF], a modified PCA method is proposed for face recognition using certain components of the LDA algorithm. Experimental results show that LDA is better than PCA in face recognition. The work presented in Azeem et al. [START_REF] Azeem | A survey : face recognition techniques under partial occlusion[END_REF] aims to address the problem of partial occlusions in face recognition by using methods based on LDA, PCA, ICA, Local Non-Negative Matrix Factorization (LNMF) and Non-negative Matrix Factorization (NMF). Features extracted from eyes, nose or mouth region are used in the recognition phase. In [START_REF] Le | Face recognition based on SVM and 2DPCA[END_REF] , an approach is proposed which combines 2DPCA for face features extraction and SVM for classification.

• Frequency domain analysis : In Huang et al. [START_REF] Huang | Non-uniform patch based face recognition via 2D-DWT[END_REF], a patch strategy is acquired using 2D-DWT and an integral projection technology is used to extract facial features for face recognition. The overlapped patches are chosen to improve stability and maintain all local information. The classification is made by using the nearest neighbor classifier (NNC). In Sufyanu et al. [START_REF] Sufyanu | Enhanced face recognition using Discrete Cosine Transform[END_REF], a method called ASDCT is proposed which combines anisotropic diffusion-based normalization technique (AS) and DCT. AS was used for preprocessing and DCT was adapted for feature extraction to address the issue of lighting variations and to improve the decorrelation ability of DCT to enhance face recognition. Performance measurements were evaluated using NNC. In Abdulrahman et al. [START_REF] Abdulrahman | Face recognition using eigenface and discrete wavelet transform[END_REF], Eigenface and DWT are used for Face recognition. A 3-level DWT decomposition is applied to the images which are then transmitted to the PCA for dimensionality reduction. In Shanbhag et al. [START_REF] Shanbhag | Face recognition using wavelet transforms-based feature extraction and spatial differentiation-based preprocessing[END_REF], the authors applied Spatial Differentiation (SD) technique and Wavelet Transform based Feature Extraction (WTFE) to preprocess the features by eliminating those which are irrelevant. 2D-SWT is applied with 2D-DWT, which, along with Twin Pose Testing Scheme (TPTS) extract pose invariant features which lead to high recognition rates. A Binary Particle Swarm Optimization (BPSO) is used to reduce the number of features.

• Gabor filters : In 2006, Perlibakas and Vytautas [START_REF] Perlibakas | Face recognition using principal component analysis and log-gabor filters[END_REF] proposed to recognize a face based on both Log-Gabor features and PCA. Their algorithm aims to locate Log-Gabor characteristics with maximal magnitudes at only one scale and different orientations. The cosine similarity measure is used to obtain high recognition performance.

In [START_REF] Hafez | 2D face recognition system based on selected gabor filters and linear discriminant analysis lda[END_REF], an approach based on 2D face image features is proposed using a subset of uncorrelated and orthogonal gabor filters. The feature vector is reduced in size using LDA. The face image was enhanced and normalized to tackle variations in illumina-tion. To overcome pose and facial expression changes, Ming et al. [START_REF] Ming | Efficient 3D face recognition with gabor patched spectral regression[END_REF] proposed in 2012 a 3D Gabor Patched Spectral Regression (3D GPSR) method for face recognition which aims to solve least squares issues while using regularization, reduce noise and exploit the efficiency of the discriminant features. The identification of faces relies heavily on the difference among test and gallery images. To cope with this limitation, Cament et al. [START_REF] Cament | Face recognition under pose variation with local gabor features enhanced by active shape and statistical models[END_REF] updated the grid to extract Gabor features using a mesh to model the deformations of the faces. A statistical model is calculated on the basis of the scores using Gabor features to achieve high recognition rates across pose.

Non-linear techniques

• Robust Kernel PCA (RKPCA) : In 2019, Fan et al. [START_REF] Fan | Exactly robust kernel principal component analysis[END_REF] proposed an optimization of Kernel PCA algorithm called robust kernel PCA (RKPCA) based on a cost function that needs the reconstructed data point to be near to the original one and to the principal subspace to prevent the implicitness of the feature space. RKPCA remains the only unsupervised method that is robust to issues such as sparse noises and lack of data. In order to deal with the difficult optimization of RKPCA, ADMM+BTLS and PLM+AdSS methods are presented. To overcome the problem of ORB (Oriented-Fast and Rotated-Brief) [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF] calculation, Vinay et al. [START_REF] Vinay | An efficient ORB based face recognition framework for human-robot interaction[END_REF] proposed in their approach called ORB-KPCA, an algorithm based on both ORB feature descriptor and KPCA [START_REF] Kim | Iterative kernel principal component analysis for image modeling[END_REF]. ORB-KPCA is used for face recognition with Threshold Based Filtering (TBF) to filter out the wrong matches. Lu et al. [START_REF] Lu | Face recognition using kernel direct discriminant analysis algorithms[END_REF] have taken into consideration the problem of the nonlinearity of face models distribution and the "small sample size" (SSS) and have proposed the kernel direct discriminant analysis (KDDA) which generalizes the direct-LDA (D-LDA). D-LDA is based on SVMs, KPCA and generalized discriminant analysis (GDA).

• Gabor-KLDA : In 2015, Vinay et al. [START_REF] Vinay | Performance study of LDA and KFA for gabor based face recognition system[END_REF] compare the Gabor-LDA (linear) and Gabor-KLDA (non-linear) to determine which technique is better adapted for face recognition tasks. Both LDA and Kernel Fisher Analysis KFA are used to reduce the dimensionality of facial features filtered by Gabor.

• Multi-feature shape regression (MSR) : In 2018, Yang et al. [START_REF] Yang | Multi-feature shape regression for face alignment[END_REF] proposed to improve the face recognition performance by adjusting the position of facial parameters using a face alignement algorithm based on multi-feature shape regression (MSR). The MSR uses gradient, color, and local features to improve the accuracy of the estimation of facial landmarks. A subspace projection optimizations (SPO) method is applied to recognize a face.

• FDDL (Fisher Discrimination Dictionary Learning) : To address the lack of training images in each class for a linear representation of the variability of the test, Ouanan et al. [START_REF] Ouanan | Non-linear dictionary representation of deep features for face recognition from a single sample per person[END_REF] proposed to extend the FDDL (Fisher Discrimination Dictionary Learning) model for face recognition based on the dictionary of occlusion variants. This dictionary is generated by calculating the difference of deep features among two face image pairs of the same individual.

• Wavelet transform (WT), radon transform (RT), and cellular neural networks (CNN):

In Vankayalapati et al. [START_REF] Vankayalapati | Nonlinear feature extraction approaches with application to face recognition over large databases[END_REF], the radon and wavelet transform approaches are com-bined to extract non-linear features that are robust to facial expression and illumination changes. CNN is also used to extract non-linear facial features to ameliorate the recognition rate and the calculation speed.

• 2FNN (Two-Feature Neural Network) : In 2010, 2FNN (Two-Feature Neural Network) method is proposed by Devi et al. [START_REF] Devi | A novel face recognition system based on combining eigenfaces with fisher faces using wavelets[END_REF] to recognize a face, which consists of extracting features using PCA and LDA that are merged based on wavelet fusion to enhance the LDA efficiency in case of a small number of images is accessible. Neural networks are used for classification.

• Deep Dense Face Detector (DDFD) : In 2015, Farfade et al. [START_REF] Farfade | Multi-view face detection using deep convolutional neural networks[END_REF] have suggested an approach called Deep Dense Face Detector (DDFD) by refining the AlexNet model in the context of face detection.

Local approaches

Local approaches aim to extract specific features from the face image. These methods are sensitive to issues such as facial expressions, small occlusions, and pose changes. They can be categorized into methods based on local appearance which extract local features from subregions of the face image and methods based on key-points which extract features located on the points of interest detected in the face image as presented in Table 2.5.

Local Appearance-Based Techniques

• Local binary pattern (LBP) and its variant : In 2016, LBP and its extensions, Pyramid of Local Binary Pattern (PLBP) and Rotation Invariant Local Binary Pattern (RILBP) are evaluated by Khoi et al. [START_REF] Khoi | Face retrieval based on local binary pattern and its variants : A comprehensive study[END_REF] for face retrieval. The Grid LBP technique is used to split the face image into small regions and then the LBP feature vectors are concatenated into a histogram of spatially enhanced features. This system can support the increase in the size of the dataset without unexpected fall in Mean average precision (MAP). A local-appearance based method called LBP network (LBPNet) was proposed in [START_REF] Xi | Local binary pattern network : A deep learning approach for face recognition[END_REF]. The main contribution was to effectively extract hierarchical data representations. Results showed that LBPNet yields a higher accuracy compared to other unsupervised methods using FERET [START_REF] Phillips | The FERET evaluation methodology for face-recognition algorithms[END_REF] and LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] datasets. Laure et al.

[260] used robust LBP for face features extraction to cope with large variations in expressions, lighting, and poses. KNN is applied for classification. One of the local approaches was the multi-scale LBP (MLBP) method proposed in Bonnen et al. [START_REF] Bonnen | Component-based representation in automated face recognition[END_REF], an extension of the standard LBP algorithm. Active Shape Models (ASM) are used to extract features and Procrustes Analysis is applied to preprocess MLBP components.

Another variant of LBP is the LTP technique proposed in [367]. The similarities of the face components are fused to encode the differences among the central pixel and its corresponding neighbors into a trinary code using LTP to deal with noise. In Hussain et al. [START_REF] Hussain | Face recognition using local quantized patterns[END_REF], Local pattern features are generalized in the local quantized pattern (LQP), using vector quantization and look-up table, which permits them to have deeper surroundings and additional levels of quantization to cope with difficult variations. LQP acquires a part of the adaptability of visual word features and the calculation efficiency of LBP/LTP. Experimental results on FERET [START_REF] Phillips | The FERET evaluation methodology for face-recognition algorithms[END_REF] and LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] datasets showed that this representation enhances state of the art by about 3 %. Ghorbel et al. [START_REF] Ghorbel | A comparative study of GOM, uLBP, VLC and fractional Eigenfaces for face recognition[END_REF] used the DoG filter for preprocessing and the Uniform Local Binary Pattern (uLBP) to extract local features from face images.

• Histogram of oriented gradients (HOG) : There are lot of works using HOG features for face recognition. In 2015, Karaaba et al. [START_REF] Karaaba | Robust face recognition by computing distances from multiple histograms of oriented gradients[END_REF] selected the similar regions of two face images by using a most similar region selection algorithm (MSRS) to deal with misalignement. A distances vector is constructed using multi-HOG algorithm. A mean of minimum distances (MMD) and a multi-layer perceptron based distance (MLPD) functions are used to recognize a face. Combined with MSRS, these techniques give high performance. In Arigbabu et al. [START_REF] Arigbabu | Soft biometrics: Gender recognition from unconstrained face images using local feature descriptor[END_REF], the face image is preprocessed using a bi-cubic interpolation re-sampling technique and noise removal. The shape of the face image is described locally using both Laplacian edge detector and Pyramid HOG (PHOG) descriptor to recognize human gender. SVM is used for gender classification.

Experiments on LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] describe the effectiveness of this method. The work of Leonard et al. [272] showed the efficiency of the correlation filters for face recognition. The best filter is selected according to its robustness to the scale, noise and rotation changes.

• Correlation filters : Advanced face recognition systems provide sufficient efficiency in controlled environments and they are not very effective in the uncontrolled situations. Correlation filters have proven their effectiveness in pertinent methods under both controlled and uncontrolled settings. On the basis of this architecture, Napoléan and Alfalou [START_REF] Napoléon | Local binary patterns preprocessing for face identification/verification using the vanderlugt correlator[END_REF], proposed to enhance the efficiency of a correlation approach to deal with illumination changes. The LBP-VLC correlator uses a particular Gaussian function for face image filtering to select the edges. A phase-only filters (POF) filter is used to approve the method. Experiments have shown the good efficiency of LBPcorrelation methods under lighting changes. In a similar way, Heflin et al. [START_REF] Heflin | For your eyes only[END_REF] used an UMACE (Unconstrained Minimum Average Correlation Energy) filter based on an eye detection pipeline to decrease face misalignment, improving eye location precision. Experiments conducted on LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] and FDHD [START_REF] Parris | Face and eye detection on hard datasets[END_REF] datasets demonstrated that this algorithm yields a high face recognition accuracy by giving more attention on the eye localization step. Proposed by Zhu et al. [START_REF] Zhu | Feature correlation filter for face recognition[END_REF], a feature correlation filter (FCF) fuses the representations of faces with a correlation method to achieve the correlation on filter instead of pixel values. FCF can effectively decrease the need for storage with only a small number of features and reach significant performance. In 2013, Ouerhani et al. [START_REF] Ouerhani | Optimized pre-processing input plane GPU implementation of an optical face recognition technique using a segmented phase only composite filter[END_REF] proposed a correlation method to recognize a face based on a segmented composite POF filter, to increase the detection accuracy and reduce the correlation time. The target image is pre-processed and reconstructed on the basis of a spectral phase to achieve discriminant correlation and to tackle noise and face rotation. The comparison of the peak-to-correlation energy (PCE) to a specific threshold reduces the wrong alarm rate.

• Gabor features: The complexity of the non-linear relation between the spaces of heterogenous face image is one of the drawbacks of heterogenous face recognition.

To address these limitations, Yi et al. [START_REF] Yi | Shared representation learning for heterogeneous face recognition[END_REF] proposed an unsupervised Deep Learning method based on the extraction of local Gabor features at localized facial points. RBMs are used to learn locally shared representations which are processed by PCA and matched by cosine similarity.

Key Points Based Techiques

• Scale invariant feature transform (SIFT) : In 2015, a face recognition system is proposed in [START_REF] Lenc | Automatic face recognition system based on the sift features[END_REF] using SIFT descriptor combined with Kepenekci method [START_REF] Kepenekci | Face recognition using gabor wavelet transform[END_REF]. The locations of facial landmarks are acquired by Gabor wavelets responses in a dynamic way. A confidence metric based on the posterior probability is presented in a supervised manner to recognize poorly identified faces. The performance of the proposed approach is compared to the Kepenekci method using three pubic benchmarks, the LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF], the AR dataset [START_REF] Martinez | The AR face database[END_REF] and FERET dataset [START_REF] Phillips | The FERET evaluation methodology for face-recognition algorithms[END_REF],

• Speeded-up robust features (SURF) : In 2009, Du et al. [START_REF] Du | Face recognition using SURF features[END_REF] applied SURF detectors and descriptors to extract image features for face recognition. A measure of similarity is used which contains the number of matched points, the mean value of the Euclidean distance, and the mean distance proportion of the total matched pairs. In 2015, Vinay et al. [START_REF] Vinay | Two novel detectordescriptor based approaches for face recognition using sift and surf[END_REF] adopted two variants of detector-descriptor, the SURF detector with SIFT descriptor and the SIFT detector with SURF descriptor, to increase the competence of face recognition systems. The Fast Library for Approximate Nearest Neighbour Search (FLANN) distance measure is used to determine the correspondance/miscorrespondance of the feature descriptors match. In 2016, a face recognition technique is proposed by Shah and Anand in [START_REF] Shah | Face recognition using SURF features and SVM classifier[END_REF] using SURF features and SVM classifier.

• Binary robust independent elementary features (BRIEF) : In 2011, Calonder et al.

[82] adopted a binary descriptor named BRIEF to compare the descriptors extracted from feature points very quickly and with a low memory requirements. BRIEF leads to a similar recognition precision with SURF and SIFT, while performing fastly. KNN is used with the Hamming distance to match faces.

• Fast retina keypoint (FREAK) : To address the problems of insufficient memory and the complexity of the descriptors calculation, Alahi et al. [START_REF] Alahi | Freak : Fast retina keypoint[END_REF] suggested a binary keypoint descriptor called FREAK, based on the distribution of ganglion cells in the retina. FREAK is represented by comparing a setting threshold with the difference in intensity between receptive fields pairs.

Hybrid approaches

Hybrid approaches combine simultaneously local and global features to recognize face images. The hybrid approaches that we presented in this section are summarized in Table 2.6.

• color, texture, shape features and soft-biometric traits:Methods fusing various features have received a lot of attention, such as the work of Ammar et al. [START_REF] Ammar | A framework for people re-identification in multicamera surveillance systems[END_REF] who provided a brief knowledge of the different local and global approaches used for people re-identification. They also proposed an hybrid face identification system that combines color, texture and shape features as well as some soft-biometric traits ( hair color, skin tone, eyes shape, eyes color, etc) to identify humans through their faces.

• Gabor wavelet and linear discriminant analysis (GW-LDA): Fathima et al. [START_REF] Fathima | Hybrid approach for face recognition combining gabor wavelet and linear discriminant analysis[END_REF] proposed an approach called HGWLDA that combines both Gabor wavelet and LDA to recognize a face. The global face image is convolved with a gabor filter bank and different subspace variants of 2D-LDA are used to map the characteristics to a feature space. The KNN classifier is used to recognize a face.

• Over-complete LBP (OCLBP), LDA, and within class covariance normalization (WCCN): Barkan et al. [START_REF] Barkan | Fast high dimensional vector multiplication face recognition[END_REF] used over-complete LBP (OCLBP), which is an adjusted variant of the LBP with multiple scales. The faces are recognized based on a matrix-vector multiplication and the LDA technique is combined with Within Class Covariance Normalization (WCCN) to reduce large representations and recognize faces.

• Advanced correlation filters and Walsh LBP (WLBP): In 2015, Juefei et al. [START_REF] Juefei-Xu | Spartans : Single-sample periocular-based alignment-robust recognition technique applied to non-frontal scenarios[END_REF] presented a Walsh LBP (WLBP) face recognition technique, which uses one example per subject category to produce face images. In the training phase, a non-linear subspace is modeled by learning subject-dependent correlation filters, that is unresistant to pose variations.

• SIFT features, Fisher vectors, and PCA: In 2013, Simonyan et al. [START_REF] Simonyan | Fisher vector faces in the wild[END_REF] combined both SIFT features and Fisher vectors to recognize a face. The dimensionality of the Fisher vectors is reduced using PCA, which are projected linearly into a subspace of low dimension.

• CNNs and stacked auto-encoder (SAE) techniques: One of the most popular hybrid face recognition methods, based on the combination of CNN and stacked auto-encoder (SAE), is presented in Ding and Tao [START_REF] Ding | Robust face recognition via multimodal deep face representation[END_REF], called multimodal deep face representation (MM-DFR). A face feature vector of high dimensionality is extracted using CNNs.

The size of feature is reduced using three-layer SAE. Experiments on LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] and CASIA-Web [START_REF] Yi | Learning face representation from scratch[END_REF] datasets indicate that MM-DFR offers superior performance.

• PCA and ANFIS: In 2015, Sharma et al. [START_REF] Sharma | A new pose invariant face recognition system using pca and anfis[END_REF] presented a method called PCA-ANFIS using both PCA and ANFIS to extract face features under pose variations. The score value obtained by processing face images by PCA, is used by the ANFIS classifier in the recognition process. This neuro-fuzzy method gives a high recognition rate.

• DCT and PCA: Face representation based on the Genetic Algorithm (GA) was known as one of the most successful methods. In 2018, Moussa et al. [START_REF] Moussa | A novel face recognition approach based on genetic algorithm optimization[END_REF] developed a rapid face recognition system based on GA, DCT and PCA techniques. GA is used as a feature selection method and is combined with DCT-PCA to extract the most informative face features, remove irrelevant ones and then reduce the dimensionality.

• PCA, SIFT, and iterative closest point (ICP): In 2007, Mian et al. [START_REF] Mian | An efficient multimodal 2D-3D hybrid approach to automatic face recognition[END_REF] presented a multimodal face recognition algorithm using a 3D spherical face representation in combination with SIFT features. The eyes, forehead and nose parts are used to tackle the impacts of face expressions to improve face recognition. An iterative closest point (ICP) algorithm is applied to match these regions and the matching scores are merged.

• PCA and Gabor: Bellakhdhar et al. [START_REF] Bellakhdhar | Face recognition approach using Gabor Wavelets, PCA and SVM[END_REF] fuse the phase and magnitude of Gabor's representations to extract face features and they apply PCA for dimensionality reduction. • SLBP and HOG: In Annalakshmi et al. [START_REF] Annalakshmi | A hybrid technique for gender classification with slbp and hog features[END_REF], the Spatially enhanced Local Binary Pattern (SLBP) is concatenated with the histogram of oriented gradients (HOG) to allow a robust representation of the face image and then to categorize the human gender with SVM. The choice of hybrid characteristics yields great precision by fusing features.

Deep learning approaches

Despite their decent results, machine learning techniques do not work well in unconstrained environments. This is principally due to the fact that machine learning techniques depend on handcrafted representations chosen by experts that can work well for one scenario and fail in other cases. Currently, a huge amount of research papers have been published based on DNNs in the area of facial biometrics with interesting results. A CNN, one of the most common DNNs, reveals a significant benefit on automatic extraction of visual features. Compared with conventional algorithms [START_REF] Qian | Stocs: An efficient self-tuning multiclass classification approach[END_REF] for face recognition, CNNs are trained in a data-driven way. Additionally, CNN models combine both feature extraction and classification into one framework. Based on its weight-sharing capability, local connectivity and subsampling, CNNs are better able to extract features and make a significant progress in face recognition. Table 2.7 summarizes the main face recognition methods based on Deep Learning.

• DeepFace An approach is proposed, in Taigman et al. [START_REF] Taigman | Deepface: closing the gap to human-level performance in face verification[END_REF], for aligning faces to a 3D general shape model. They trained a multi-class network on about four thousand identities to recognize faces. A siamese network is also used to optimize the L1 distance between two face features. Their high accuracy on LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] comes from an ensemble of three networks using various color channels and alignments. The predicted distances of these networks are combined using a non-linear SVM.

• Convolutional Neural network (CNN) In 2015, Li et al. [START_REF] Li | A convolutional neural network cascade for face detection[END_REF] proposed a cascade of CNN face detectors with multiple resolutions. A calibration network is also proposed to enhance the quality of bounding boxes. CNNs trained on two-dimensional face samples can work successfully for three-dimensional face recognition by refining the CNN with three-dimensional facial scans [START_REF] Liu | Deep 3D face identification[END_REF]. Additionally, the three-dimensional context allows an invariance to lightening/make-up/camouflage situations.

• FaceNet : Schroff et al. [START_REF] Schroff | Facenet: a unified embedding for face recognition and clustering[END_REF] propose the FaceNet model to learn how to map from a face image towards an euclidean space embedding, in which the distances between the embeddings directly correspond to a measure of face similarity.

• DeepID : A DeepID model is developed by Sun et al. [START_REF] Sun | Deep learning face representation from predecting 10,000 classes[END_REF] that contains multiple CNNs rather than a single CNN, by which a strong feature extractor is built. The facial patches are fed into a DeepID which extracts features from various facial positions.

• DeepID2 :Sun et al. [START_REF] Sun | Deep learning face representation by joint identification-verification[END_REF] suggested an extension to DeepID named DeepID2, which employs both identification and verification signals to decrease intra-class variances while extending the inter-class discrepancy.

• DeepID2+ : DeepID2+ [START_REF] Sun | Deeply learned face representations are sparse, selective, and robust[END_REF] is proposed to enhance the DeepID2 performance by adding the supervision signals to all layers and augmenting the size of each layer.

• VGG-16 : Simonyan et al. [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF] present a DCNN model called VGG-16 and reach an accuracy of 98.95% using 2.6 million samples. This model needs less training data compared to DeepFace and FaceNet and employs a simpler network than DeepID2. But, the construction of such a large dataset exceeds the capabilities of academia groups.

• DeepID3 : In 2015, two DNN architectures [START_REF] Liang | Deepid3 : Face recognition with very deep neural networks[END_REF] are proposed, mentioned as DeepID3, for face recognition, which are reconstructed from the stacked convolutions of VGG and the inception layers of GoogLeNet. Supervisory signals are used to decrease the intra-personal face features variations. DeepID3 reached peak performance on both verification and identification tasks.

• SphereFace : Liu et al. [START_REF] Liu | Sphereface: Deep hypersphere embedding for face recognition[END_REF] present an angular margin penalty to simultaneously impose extra intra-class compactness and inter-class separability.

• ArcFace : An additive Angular Margin Loss function is proposed by Deng et al. [START_REF] Deng | Arcface: Additive angular margin loss for deep face recognition[END_REF] which can successfully improve the discriminating power of feature embeddings learned through CNNs for face recognition.

• CNNs and PCA and SVMs : Zhu et al. [START_REF] Zhu | Recover canonical-view faces in the wild with deep neural networks[END_REF] proposed to wrap faces into a canonical frontal view based on a deep network. First, CNN is trained and then, every face is categorized as corresponding to a known identity. A set of SVMs in conjunction with the dimensionality reduction technique PCA on the network output are used to perform face verification.

• Center loss : Wen et al. [START_REF] Wen | A discriminative feature learning approach for deep face recognition[END_REF] were the pioneers of the center loss, which is a supervisory signal to learn a center for deep features of each class and penalizes the distances between each deep feature vector and its corresponding class center. However, it is very complicated to update the actual centers during training because the number of face classes available for training has grown considerably. BoW AR [START_REF] Martinez | The AR face database[END_REF], ORL [START_REF]The database of faces[END_REF], FERET 3D GPSR FRGC [START_REF] Phillips | Overview of the face recognition grand challenge[END_REF], CASIA [START_REF] Yi | Learning face representation from scratch[END_REF] Nearest LBPNet FERET [START_REF] Phillips | The FERET evaluation methodology for face-recognition algorithms[END_REF],

LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] Cosine similarity (2012) [START_REF] Hussain | Face recognition using local quantized patterns[END_REF] LPQ FERET [START_REF] Phillips | The FERET evaluation methodology for face-recognition algorithms[END_REF], LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] Cosine Similarity Lot of discriminative information Robust to illumination variations [START_REF] Karaaba | Robust face recognition by computing distances from multiple histograms of oriented gradients[END_REF] [230] SIFT FERET [START_REF] Phillips | The FERET evaluation methodology for face-recognition algorithms[END_REF], AR [START_REF] Martinez | The AR face database[END_REF], LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] [START_REF] Ammar | A framework for people re-identification in multicamera surveillance systems[END_REF] color, texture and shape, soft-biometric features MUCT [START_REF] Milborrow | The MUCT landmarked face database[END_REF],

Complexities of CNN

VIPeR [START_REF] Gray | Evaluating appearance models for recongnition, reacquisition and tracking[END_REF] SVM Robustness, High accuracy ICA and LDA LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] Bayesian classifier Sensitivity

Good accuracy

Annalakshmi et al. (2019) [START_REF] Annalakshmi | A hybrid technique for gender classification with slbp and hog features[END_REF] PCA and LDA LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] Bayesian classifier Sensitivity Specificity Sphereface LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] YFD [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF] Megaface [START_REF] Miller | Megaface: A million faces for recognition at scale[END_REF] Nearest DeepFace LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] YFD [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF] fully In order to adequately evaluate and compare videos, the challenges presented in CDnet 2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], which is a part of the Change Detection Workshop (CDW 2014), are taken into consideration. This database includes all the CDnet 2012 [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] videos plus 22 additional ones taken by cameras covering five various categories that include supplementary challenges that were not solved in the CDnet 2012 database [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF]. The categories are called as follows: "dynamic backgrounds", "baseline", "shadows", "camera jitter", "thermal", "intermittent object motion", "low frame-rate", "challenging Weather", "PTZ", "turbulence" and "night videos". Additionally, while ground truths for all frames of the CDnet 2012 dataset [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] were made available publicly for test and evaluation purposes, ground truths of only the first half of each video sequence in the five additional categories from the CDnet 2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], are made available publicly for test. However, the assessment will cover all frames for all the video sequences in CDnet 2012 [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF]. All challenges presented in these different categories have several temporal and spatial characteristics. Therefore, it is crucial to identify both the solved and unsolved challenges. The CDnet 2012 [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] and CDnet 2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] datasets help to highlight when it is difficult to provide robust moving objects detection for current BS methods. A very important observations are provided by Jodoin [START_REF] Jodoin | Motion detection : Unsolved issues and [potential] solutions[END_REF], in 2015, regarding both the solved and unsolved challenges based on the experimental results conducted on the CDnet 2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. Challenges encountered in ''baseline"and "bad weather" videos can be effectively addressed by current background subtraction algorithms. The "camera jitter", "thermal" and "dynamic backgrounds" categories are an available challenge for the best background subtraction methods. The ''low frame-rate", ''Night videos" and ''PTZ" sequences are highly difficult. In a valuable study, Bouwmans et al. [START_REF] Bouwmans | Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[END_REF] provide a survey about the progression made over the recent years from the MOG model [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF] designed in 1999 to the current DNNs models developed in 2019. This study reveals that the big difference was reached by DNNs algorithms compared to SuBSENSE with 32.92% and 24.31% using respectively FgSegNet-V2 and Cascaded CNN. The gap of 1.55% that persists between FgSegNet-V2 and the best algorithm is lower than the difference of 6.93% between Cascaded CNN and FgSegNet-V2. However, the large gap obtained by FgSegNet-V2 and Cascaded CNN is usually due to their supervised appearance, and a necessary limitation of training using labelled data.

However, when no labeled samples are available, considerable attention should be focused on unsupervised approaches as well as unsupervised GAN, robust subspace tracking [START_REF] Narayanamurthy | A fast and memory-efficient algorithm for robust PCA (MEROP)[END_REF] [352] [START_REF] Rodriguez | Translational and rotational jitter invariant incremental principal component pursuit for video background modeling[END_REF] [376] [START_REF] Vaswani | Robust subspace learning: Robust pca, robust subspace tracking and robust subspace recovery[END_REF] and semantic background subtraction [START_REF] Braham | Semantic background subtraction[END_REF] [495] that are often fascinating in the background subtraction domain. In addition, deep learning methods effectively identify the changed areas in images with fixed backgrounds but still suffer from multiple challenges such as varying backgrounds and camera jitter, even if they offer a higher efficiency than conventional approaches [START_REF] Karadag | Evaluation of the robustness of deep features on the change detection problem[END_REF]. Generally, experiments conducted on the "IOM" and the "PTZ" categories are prevented. Additionally, these categories usually give low F-measure. As a result, it appears that the recently evaluated DNNs have problems in these categories, possibly due to the difficulties of dealing with changes occured at moving cameras and learning the sleep period of moving objects. Finally, despite the progress of background subtraction models developed for stationary cameras, camera jitter and PTZ cameras, with many RPCA [97] [191] [192] [374] [START_REF] Silva | Jitter invariant incremental principal component pursuit for video background modeling on the tk1[END_REF] [467] and deep learning models [283] [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] they can only handle small jitter issues or rotation and translation motions. Thus, more particular algorithms and models are required for moving objects detection. Once the objects are detected, their classification can be performed for subsequent processing modules such as tracking and recognition.

Object classification

Object classification is an active area of research in computer vision [START_REF] Andreopoulos | 50 years of object recognition: Directions forward[END_REF]. However, we still do not have a computer vision system that can achieve human-level classification ability for images. Object classification is still a challenge due to the tremendous variations in images such as translation, rotation and changes in scale and illumination. CNN is the current state-of-the-art object classification method [START_REF] He | Deep residual learning for image recognition[END_REF] [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. It has been used in many object classification competitions [START_REF] Cire¸san | Multi-column deep neural networks for image classification[END_REF] [247] [START_REF] Szegedy | Going deeper with convolutions[END_REF]. It has been proven that CNN can even outperform humans in recognizing 1000 objects [START_REF] Szegedy | Going deeper with convolutions[END_REF]. However, CNN presents a serious problem: it requires a large amount of labeled samples. The lack of labeled training examples is the most challenging problem of the image classification tasks. Additionally, the acquisition of labeled data is very expensive and time-consuming. In order to reduce the dependence of CNN on labeled data, the field of unlabeled data should be considered. Unlike labeled data, unlabeled samples are numerous and can be obtained inexpensively. Learning from unlabeled samples is an unsupervised learning task. The pursuit of unsupervised learning for image classification began in 2006 [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF]. Although intensive research has been carried out on this topic, recent state-of-the-art image classification method, CNN, is a purely supervised learning method. The present success of supervised learning techniques is mainly due to the current large datasets and the existing labels [START_REF] Gregor | Learning fast approximations of sparse coding[END_REF]. However, unsupervised learning methods will become the main considered solution with a quick rise in data complexity and size [START_REF] Ranzato | Modeling natural images using gated MRFs[END_REF]. Unsupervised learning methods such as sparse coding and pre-training are unnecessary for obtaining high-performance image classification [START_REF] Cire¸san | Multi-column deep neural networks for image classification[END_REF] [247] [START_REF] Szegedy | Going deeper with convolutions[END_REF]. Labeling large amount of images is unrealistic and time consuming for many image classification applications. The need to develop semi-supervised techniques, which allow training a system with only a few labeled samples together with large amounts of unlabeled samples increase faster. The latter being widely available and inexpensive, this could considerably help the classification of objects. Once objects detection and classification (humans, vehicles, etc) is done, a face recognition step is needed in order to identify extracted people.

Face recognition

LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] was published in 2007 and contains 13,233 face images of 5749 people. As the most famous benchmark used for evaluating the performance of the deep learning techniques under unconstrained conditions, its accuracy has reached almost 100% [START_REF] Ranjan | L2-constrained softmax loss for discriminative face verification[END_REF]. However, the faces in LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] are mostly frontal without extreme pose or severe illumination, while there are no difficult situations. VGG-Face2 [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF] includes 3.32M from 9131 identities. Compared with LFW [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF], this dataset is not publicly available and it contains faces with pose variations. Most of the global face recognition techniques such as PCA [START_REF] Dong | Adaptive learning of multi-subspace for foreground detection under illumination changes[END_REF] [134] [234] [335] and LDA [START_REF] Yamazaki | Detection of moving objects by independent component analysis[END_REF] are used to reduce the dimensions and to select the useful information. However, these approaches are not effective in the unconstrained environments where pose, illumination and occlusion are uncontrolled. Local approaches are considered as a robust approaches in the unconstrained cases compared with global approaches. Recently, CNNs have shown excellent performance in various face recognition tasks [START_REF] Liang | Deepid3 : Face recognition with very deep neural networks[END_REF] [189] , e.g., Rajeev et al. [START_REF] Ranjan | L2-constrained softmax loss for discriminative face verification[END_REF] and Schroff et al. [START_REF] Schroff | Facenet: a unified embedding for face recognition and clustering[END_REF] presented that their proposed method achieved the accuracy of 99.78% and 99.63% on the QLFW dataset [START_REF] Karam | Quality labeled faces in the wild (QLFW): a database for studying face recognition in real-world environments[END_REF], respectively. However, it remains difficult for them to obtain sufficient precision on faces under uncontrolled environment with variations in illumination, pose and occlusion, among which occlusion has been considered the most difficult. On the one hand, data imbalance in face datasets should be one possible reason for this phenomenon. Although most facial recognition datasets contain a huge amount of identities, they still suffer from the lack of occluded facial images. It seems that, without training with a large number of occluded face images, DCNNs cannot perform well due to the higher inter-class similarity and the larger intra-class variation caused by occlusions [START_REF] Ghazi | A comprehensive analysis of deep learning based representation for face recognition[END_REF]. To solve this problem, more occluded face images should be involved into the CNN training process. On the other hand, the loss function could also have great impact on the training of CNN for face verification and results in poor performance as it could be biased to the data distribution. For example, softmax loss, which was not specifically designed for complex samples, would neglect occluded faces by increasing the conditional probability of all samples. To deal with this problem, numerous loss functions and constraints on the traditional loss functions have been presented [START_REF] Ranjan | L2-constrained softmax loss for discriminative face verification[END_REF] [203] [START_REF] Deng | Marginal loss for deep face recognition[END_REF]. A straightforward way to get better CNN model performance under partial occlusion is to train the network with occluded faces. Challenges caused by unconstrained illumination and environmental degradation such as blurring and problems resulting from large standoffs and poor image quality can be effectively resolved by incorporating a sensitivity term into a DCNN cost function [START_REF] Jalali | Sensitive deep convolutional neural network for face recognition at large standoffs with small dataset[END_REF]. This method has been shown to be effective in day and night time images and at different stand-off distances on the Long Distance Heterogeneous Face dataset [START_REF] Kang | Nighttime face recognition at large standoff: Cross-distance and crossspectral matching[END_REF], however it has only been tested on a small, augmented dataset. Another methodology which achieved competitive results without the benefit of large-scale annotated datasets was presented by [START_REF] Huang | Learning hierarchical representations for face verification with convolutional deep belief networks[END_REF] which used deep convolutional belief networks based on local convolutional restricted Boltzmann machines. Unsupervised representations were learned from unlabeled samples and then transferred to a classification model like SVM and metric learning algorithms for recognition task. The performance of the facial recognition system depends mostly on image acquisition conditions, mainly when the posture changes and because the acquisition techniques themselves may include artifacts. In this case, the challenge of face recognition systems is to distinguish individuals from images captured using cameras, presenting low-resolution, block artifacts, or faces with variable poses. This challenge remains unsolved and requires further research. What's worse, most methods aimed at treating just one aspect of unconstrained facial changes only, such as pose, lighting or expression. There was no any technique to deal with these unconstrained challenges in an integral way. Therefore, "shallow" methods only improved the accuracy of the LFW dataset to approximately 95% [START_REF] Cao | Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification[END_REF] and are insufficient to extract stable identity feature invariant to real-world changes. Due to the insufficiency of this technique, facial recognition systems were often resulted in unstable performance in real-world applications. The single sample face recognition (SSFR) [START_REF] Zhang | A survey on deep learning based face recognition[END_REF] represents one of the most difficult face recognition problems, where there is only one face representation per individual for training. Approaches based on deep learning require large training data to function properly [START_REF] Zhang | A survey on deep learning based face recognition[END_REF]. SSFR remains an unresolved issue and is among the most common topics in industry or academia. While there are several risks with facial recognition, it also offers numerous solutions for future and upcoming technologies.

Conclusion

As discussed in this chapter, numerous approaches of background subtraction, object classification and recognition have been proposed until the present date. However, there still exist open research questions to be investigated, as for example no traditional algorithm today still seem to be able to simultaneously address all the key challenges of illumination variation, dynamic camera motion, cluttered background and occlusion. We believe that one way to solve this issue is by the systematic investigation regarding the role and importance of features within foreground detection, object classification and recognition. In the following chapters of this thesis, we tackle the problem by beginning proposing a new deep detector classifier based on an unsupervised anomaly discovery framework, that unlike the general foregroundbackground separation task, detects moving objects (vehicules/pedestrians...) without any additional image processing or background learning. Furthermore, we present an object classification approach to categorize the extracted objects in a semi-supervised way using the discriminator network of DCGANs as a classifier. In addition, we propose a new face recognition approach to identify the extracted faces based on FaceNet model [START_REF] Schroff | Facenet: a unified embedding for face recognition and clustering[END_REF] with DCGANs data augmentation to achieve high recognition accuracy.

Chapter 3 A novel deep detector classifier (DeepDC) for background subtraction in videos

In this chapter, we propose a Deep Detector Classifier (DeepDC) for moving objects detection and segmentation in videos. Our proposal consists of adapting an anomaly discovery framework called "DeepSphere" to the foreground-background separation task. By combining the strengths of hypersphere learning and deep auto-encoders, DeepSphere appears to be robust in dealing with the changing nature of anomalies in the training data (e.g., pollution of anomalies, spatiotemporal locality, extent of nested anomalies) or in the test data (data imbalance). Experiments conducted on VIRAT dataset 1 [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF], real videos from BMC2012 dataset 2 [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF] of outdoor scenes and the Change Detection 2014 dataset 3 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] under several conditions show that the proposed DeepDC outperforms its competitors for the background subtraction task. Results show that DeepDC is less sensitive to noise and to the dynamic nature of the background and produces a good segmentation masks, while preserving robustness to illumination changes. Results also indicate that DeepDC is able to detect foreground objects without additional image processing.

The work presented here was published at the International Symposium on Visual Computing (ISVC), Nevada, USA (oral presentation) [START_REF] Ammar | Moving objects segmentation based on DeepSphere in video surveillance[END_REF] and the IET image processing journal [34]. The reader can found the related source code on Python 

Motivation

Moving objects detection plays a significant role in many computer vision applications that allow to monitor the traffic, recognize actions and count people. Background subtraction is a common approach to this problem. There are three main steps in a background subtraction method: Background initialization which aims to model the background using a certain number of video frames and can be represented in different ways. The background model is used as a reference to be compared with the current video frames. The next step is feature extraction which involves selecting the appropriate features representing the relevant information to compare the reference frame with the following frames. Once the features are extracted over pixels or block of pixels of the background and the current frames, a similarity measure is calculated. Each pixel is classified as belonging to the 'background' or the 'foreground' based on this similarity threshold value. All these steps make it possible to build an entire segmentation system. Recently, due to the availability of big labeled data, it is important to maintain the performance of videos to only retrieve relevant information. Unwanted information embedded in video sequences comes at a high cost in terms of the big amount of data stored. They also contain several inter-dependent and time-varying components. Thus, it is important to select only the pertinent information, such as cars or people, to exploit those resources with a better performance. Additionally, it is important to understand the normal schemes of systems and to automatically identify abnormal behaviours in videos in order to intervene as soon as possible to ensure system stability. Recently, the video surveillance domain has received a lot of attention, but it still covers several issues, like the occlusion of objects in videos, the noise resulting from light variations, the background and the current frames are usually with different illumination, resulting in misclassification. In outdoor environments, these issues increase significantly. Videos are generally of poor quality due to the large distance between the objects and the camera, resulting in high sensitivity to variations in illumination. Therefore, the background is usually dynamic. As a result, some background parts of the current frame do not overlap with the corresponding sections of the reference frame, resulting in no pixel-by-pixel correspondence between the input and the background images. Additionally, if the background image and the foreground object are with the same color, the detected object is misclassified. Therefore, it is important to deal with these issues by developing high performance algorithms to implement a powerful video surveillance system. To overcome the previous limitations, in this thesis, we exploit the power of an unsupervised anomaly discovery framework called DeepSphere proposed by Teng et al. [START_REF] Teng | Deep into hypersphere: robust and unsupervised anomaly discovery in dynamic networks[END_REF] and adapt it to perform moving objects detection task.

The rest of this chapter is organized as follows. The DeepSphere architecture is presented in Section 3.2. The new descriptor that we propose is described in Section 3.3. Comparative results obtained on both synthetic and real videos are given in Section 3.4. Finally, the conclusion drawn at the last section closed the Chapter 3. (https://www.ijcai.org)

DeepSphere architecture

In recent years, deep learning based anomaly detection techniques are more widely adopted and have been applied to different types of tasks. DeepSphere proposed by Teng et al. [START_REF] Teng | Deep into hypersphere: robust and unsupervised anomaly discovery in dynamic networks[END_REF] is an unsupervised, unified and end-to-end algorithm that can detect anomalies in dynamic networked systems. It can perform two goals: (i) the detection of anomalies at the case level, i.e. to determine if the network is abnormal, (ii) the discovery of anomalies at the nested level, i.e. the exploration of the abnormal structure of localized cases in spatial and temporal context, when anomalies take place and how they deviate from the normal situation. DeepSphere does not need any labeled data or clean data (outlier-free) as input, it is still able to reconstruct normal behaviors. In this thesis, we propose to adapt and validate DeepSphere to perform foreground objects segmentation in video surveillance applications.

DeepSphere [START_REF] Teng | Deep into hypersphere: robust and unsupervised anomaly discovery in dynamic networks[END_REF] aims to both identify anomalous cases and explore the abnormal structure in dynamic networks located in spatial and temporal context. DeepSphere exploits deep autoencoders and hypersphere learning to exclude pollution from anomalies and reconstruct normal behaviors. It allows to capture the spatio temporal dependencies among components and across time steps, to flexibly learn non-linear entity representation, and reconstruct normal behaviors from anomalous incoming data. The high-quality representations learned by auto-encoder allow hypersphere to better differentiate abnormal cases.

A deep autoencoder is a neural network that is composed of two components: the encoder α θ and the decoder β φ , which are highly nonlinear mapping functions developed via neural networks with parameters θ and φ, respectively. The encoder which maps an input image into a compact representation stored in the low dimensional internal layer z = α θ (X), while the decoder maps from the internal layer into the output layer to reconstruct the original data Xk = β φ (z). The hypersphere can be characterized by two elements, a centroid a and a radius r and the group of data points is represented as {z k , k = 1, .., m} . Figure 3.1(a) shows the whole DeepSphere architecture. In DeepSphere, a sample case χ is divided into a sequence of matrices {X t ,t = 1, ..., T } corresponding to a series of graphs [START_REF] Teng | Deep into hypersphere: robust and unsupervised anomaly discovery in dynamic networks[END_REF]. They are transmitted into an LSTM encoder [START_REF] Baytas | Patient subtyping via time-aware LSTM networks[END_REF] and a sequence of internal states {h t ,t = 1, ..., T } can be produced. LSTM autoencoder is used for better capturing the structural relationships and the potential temporal dependencies in dynamic graphs. The h t allows capturing the source sequence information X t , comprising long and short term dependencies. The attention mechanism is employed to assign several attention to different h t , i.e., z = P t w t h t , where z represents the embedded representation, and wt is the attention weight at timestep t. In the hidden space, an hypersphere learning layer is considered which learns a spherically shaped boundary around the encodings z k to separate anomaly pollution (Figure3.1(b)). The hypersphere learning layer internal structure is shown in Figure 3.1(c). The input of the hypersphere learning layer is z k , the two parameters r and a are considered as nodes, the distance d and the outlier penalty ξ are calculated by functions which are considered as two non-linear neurons. To reduce the risk of accepting abnormal cases, the objective function is defined as:

Φ = r 2 + γ m ∑ k=1 ξ k + 1 m m ∑ k=1 z k -a 2 (3.1)
All normal tensors must be mapped to the centroid a of the hypersphere. The 3rd element is added to minimize the average distance between z k and a. Finally, the hypersphere learning layer generates φ, d and r. The latent representations z outside the hypersphere over long distances are processed as anomalous, while those located inside the hypersphere at short distances tend to be normal. The reconstruction error for the LSTM autoencoder is adapted as follows :

Ψ = m ∑ k=1 η k χ k -χk 2 (3.2)
where χ k is reconstructed via the LSTM decoder, and η k represents the case-wise weights calculated using a heuristic function η {d k , r}. It is recommended to create latent representations z located close to a, while penalizing anomalous cases outside the hypersphere.

The overall objective function is the combination of the hypersphere component φ and the penalized reconstruction difference Ψ:

min Θ = min Θ {Φ + λΨ} (3.3)
where λ is the compromise parameter between these two elements, and Θ = {a, r, w, θ, φ} is the set of parameters containing the centroid of the hypersphere a, the radius r, the attention parameter w, and the neural network parameters θ , Φ for the LSTM encoder and decoder.

Adam Optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] is selected to train the DeepSphere model. Since DeepDC has been trained and has a new unseen sample χ k (k > m), the detection of anomalies at the case level can be done according to its distance from a and making a decision accordingly. Additionally, DeepDC is able to reconstruct its normal behavior χk even if χ k is an anomalous entry. By calculating the reconstruction difference ∆(χ k ) = χ k -χk , we can find nested anomalies located in temporal and spatial dimensions.

Our proposed Deep Detector Classifier (DeepDC) uses DeepSphere framework to detect and then extract moving objects from videos. Once DeepSphere algorithm is applied, foreground activities are detected and moving objects are segmented according to a global image threshold. (https://www.ijcai.org)

Proposed DeepDC descriptor

The standard DeepSphere algorithm proposed by Teng et al. [START_REF] Teng | Deep into hypersphere: robust and unsupervised anomaly discovery in dynamic networks[END_REF] has proven to be a powerful and robust anomaly discovery framework that simultaneously would satisfy these two conditions, identifying abnormal cases and further exploring the anomalous structure of cases localized in spatial and temporal context. DeepSphere exploits the strengths of hypersphere learning and deep auto-encoders, to exclude anomaly pollution and reconstruct normal behaviors. DeepSphere is not based on manually labeled data and can generalize to unseen data. First, the goal is of two-level, the model can satisfy both transparency and warning requirements. Second, the model must be inductive, it can be generalized to test data. Figure 3.2 shows the main concept: For a dynamic graph, considering a group of observation samples, each characterized as a tensor representing the inner spatio-temporal structure, Figure 3.2 (a), the model allows inductively identifying the anomalous sample cases and discovering the nested anomalies located in the anomalous tensors, Figure 3.2 (b). A dynamic graph is described as G(t) = {V, E, x(t)}. where V indicates the vertex set, E represents the edge set and x(t) denotes the function mapping every edge e i j with a time serie x i j (t),t = 1, ..., T . Figure 3.2 shows that one observation case of G(t) can be represented by a third-order tensor χ ∈ N×N×T , and the slices along the time dimension are the adjacency matrices of the graph at several time steps, designed as {X t ,t = 1, ..., T }. A set of cases can be characterized as {χ k , k = 1, 2, ...}. The dynamic graph contains a group of observation sam- The issue is of two levels (Figure 3.2 (b)): Case level anomaly detection which aims to identify the anomalous observation cases (i.e., tensors) in the test data, defined as {χ u , u > k} ⊂{χ k , k > m}. This task deals with the warning requirement by computing an anomaly score s(χ k ) for each case χ k transmitting a signal predicting if the system is normal or not and nested anomaly discovery to discover the abnormal cells nested within the abnormal tensors in the test data and evaluating the deviation from the expected normal behaviours. This task aims to provide certain transparency, a difference ∆(χ k ) would be calculated, demonstrating how the abnormal tensor deviate from the expected normal tensor.

In this chapter, we propose to adapt DeepSphere to the foreground-background separation task. In our framework, the data (video) are transformed into a tensor. First, a model is trained based on the training data (normal situation) and then the trained model is inductively applied to the test data (anomalous situation). DeepDC aims to identify which tensors (observation cases) in the test data are anomalous, in our case, referred to the moving people or vehicles that appear along with the video and then to discover the anomalous cells nested within the anomalous tensors in test data. As DeepSphere has been trained, given a new test frame, we can perform case-level anomaly detection by examining its distance towards the center of the hypersphere and make decision accordingly. By computing the reconstruction difference between the original input frame and the reconstructed image, we can detect and then segment foreground objects. A global image threshold is applied using Otsu's method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] to perform automatic thresholding. By combining the strengths of deep autoencoders and hypersphere learning, our approach based on DeepSphere appears to be robust to illumunation changes, dynamic background, and produces a good segmentation results. Without additional image processing steps, the foreground activities are well captured by DeepSphere. Deep autoencoders have proven a strong ability to learn nonlinear representations, which allows capturing the patterns in input data [START_REF] Lecun | Deep learning[END_REF]; But, unlabelled input samples are not strictly free from anomalies, that means, they could be polluted by certain anomalous samples, called "anomaly pollution". The learning process can be affected by anomaly pollution, which can significantly decrease the quality of neural network. To solve this issue, hypersphere learning is proposed which learns a compact limit to separate normal and abnormal samples to exclude anomaly pollution.

Our proposed approach is achieved by incorporating autoencoders with hypersphere learning in a mutually supportive way. DeepSphere does not only inherit the ability of hypersphere learning to separate anomalies, which improves the quality of autoencoders; but also it presents the benefits of autoencoders to be able to capture spatio-temporal dependencies between components and through timesteps, for flexible learning of nonlinear feature representation, and to rebuild normal behaviors from possibly anomalous input data. Outliers can be detected and excluded by learning a compact hypersphere. The hypersphere can be characterized by its centroid a, its radius r, and the group of data points represented as {z k , k = 1, ..., m} as shown in Figure 3.1 (b). The error function must be minimized:

Φ(a, r) = r 2 + γ ∑ k ξ k (3.4)
with the constraints,

z k -a 2 ≤ r 2 + ξ k , ξ k ≥ 0, ∀i, (3.5) 
where ξ k are slack variables allowing the probability of anomalies in the samples. The distance from z k to a is not necessarily less than r 2 but greater distance must be penalized (the samples outside the limit are considered as anomaly pollution). Furthermore, the parameter γ controls the compromise between penalization and sphere volume. The radius r and the centroid a can be obtained by minimizing Eq. 3.4. Our proposed DeepDC model contains an hypersphere learning element which allows separating normal and anomlaous representations, excluding and penalizing anomaly pollution included in the input data to detect moving objects in video sequences.

An autoencoder learns high quality non-linear representations, which allows a good distinction of anomalous cases by hypersphere learning. Our approach consists of detecting and then segmenting foreground objects from video sequences using DeepSphere. DeepSphere is an unified and unsupervised learning process that does not need outliers or labeled training data. It aims to detect anomalies in dynamic graphs and to identify anomalous sample cases and nested anomalies in the abnormal tensor. We leverage DeepSphere and adapt it to detect and then segment moving objects in video sequences. Our proposed approach consists on two steps as presented in Figure 3.3: First, moving objects are detected based on Deep-Sphere without additional image processing steps. Then, foreground objects are segmented by simply thresholding the difference between the original input frame and the reconstructed image. Second, deep features are extracted from the segmented objects to classify them using a semi-supervised classifier, which consists of a DCGAN discriminator network as mentioned in chapter 4.

Experimental results and discussions

Several experiments were conducted to illustrate both the qualitative and quantitative results of the proposed DeepDC descriptor. We evaluated the performance of DeepDC in four widely used datasets including restaurant video dataset [START_REF] Chalapathy | Robust, deep and inductive anomaly detection[END_REF], CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] and BMC2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF] which includes both real and synthetic videos of outdoor environments acquired with a fixed camera, under different weather conditions like wind, real or sun [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF].

Description of the datasets

We give a brief introduction of these datasets as follows:

• Restaurant video dataset: The restaurant video dataset [START_REF] Chalapathy | Robust, deep and inductive anomaly detection[END_REF] is a set of frames taken in a restaurant. This dataset includes video background representation and activity detection consisting of snapshots of restaurant activities.

• VIRAT video dataset: The VIRAT video dataset is proposed by Oh et al. [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF], which presents a greater variety of events and contains events involving interactions between several individuals, vehicles, and facilities. The VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] includes two large categories of activities (one-object and two-objects) that implicate both vehicles and humans. There are three types of interactions that are presented:

1. person events: standing, walking, throwing, running, carrying, gesturing, loitering and picking up. 2. Events concerning people and vehicles: getting in or out of the vehicle, opening or closing the trunk, bicycling, dropping off, loading, unloading. 3. Person and facility events: entering or leaving the facility.

The VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] contains a rich set of actions between multiple objects and includes several types of person-vehicle interactions, labeled in detail with numerous examples per category.

• Change detection (CDnet2014) dataset: To test the proposal, we chose also the CDnet2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] dataset considered the largest dataset for foreground segmentation and background modeling. This dataset is made up of 53 videos divided into eleven categories. Each category represents a different challenge for the segmentation algorithms, such as dynamic backgrounds, illumination changes, shadows, camera instability, night scenes, camouflage, etc, This dataset contains 10 videos which mainly contain pedestrians.

• Background Models Challenge (BMC2012) dataset: BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF] is created for the Background Models Challenge of the ACCV 2012 conference. It is composed of 29 outdoor videos, some of which are synthetic. Ten synthetic videos are available representing two scenes: a roundabout and a street and their associated ground truth. These videos show different challenging situations, mainly related to the different lighting conditions. Despite only a small subset of images have been labeled, ground truth of real images is available.

Quantitative and qualitative evaluation

• Restaurant video dataset: Our proposed approach is evaluated on several datasets to assess the performance of DeepDC. The restaurant video dataset [START_REF] Chalapathy | Robust, deep and inductive anomaly detection[END_REF] is a collection of images recorded in a restaurant. In chalapathy et al. [START_REF] Chalapathy | Robust, deep and inductive anomaly detection[END_REF], background modeling, as well as activity detection are assessed using the restaurant video dataset [START_REF] Chalapathy | Robust, deep and inductive anomaly detection[END_REF]. Background represents the relatively stationary scenes, while foreground activity incorporates snapshots of restaurant activities, can be guests who come, talk at the reception and exit. Deep-Sphere algorithm detects foreground activities without the need of additional image processing, unlike the standard foreground-background separation task. Figure 3.4 shows the results of activity detection in the restaurant dataset [START_REF] Chalapathy | Robust, deep and inductive anomaly detection[END_REF]. Two cases of activities are planned for people coming and leaving. The top, middle and bottom rows represent the normal situation, the anomalous situation and the results detected separately. The foreground activities are well captured by DeepSphere without additional image processing. The results suggest that DeepSphere has an extended application with tasks similar to discover anomalies in video surveillance applications.

• VIRAT video dataset:

We also present the results of background subtraction using the proposed DeepDC to well capture moving objects in VIRAT video sequences [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF]. Once the foreground objects are detected, a good segmentation results are obtained. Figure 3.5 shows that foreground activities are well captured in VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] by using Deep-Sphere technique without additional image processing steps. This results in a good segmentation of foreground objects used as input in GAN classification in Chapter 4.

Additionally, we compare our proposed DeepDC with the 29 algorithms implemented in the Background Subtraction Library, BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF]. BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF] provides a simple C++ framework for performing background subtraction. The library includes 29 background subtraction algorithms. The OpenCV2 library must be installed for using the BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF]. We evaluate the proposed detector on five real outdoor video sequences from VIRAT dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF].

This process is carried our using the metrics Recall, Precision and F-measure. These metrics are based on the numbers of true positive T P pixels (correctly detected foreground pixels), false positive FP pixels (background pixels detected as foreground ones), false negative pixels FN (foreground pixels detected as background ones), and true negative pixels (correctly detected background pixels). Recall represents the percentage of foreground pixels detected correctly in relation to the total pixels in the foreground of the groundtruth. Precision represents the percentage of foreground pixels detected correctly in relation with to the total number of pixels detected as foreground and F-measure represents a balance between the metrics Recall and Precision.

-Recall = T P T P + FN -Precision = T P T P + FP and

-F -measure = 2 × Recall × Precision Recall + Precision
The F-measures obtained using the proposed DeepDC based on DeepSphere, compared to the large range of BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF] are given in Table 3.1. The average F-measure results across the algorithms show that our DeepDC based on DeepSphere outperforms the 29 algorithms of BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF]. Finally, the desired object areas are extracted (vehicles, pedestrians, etc), which are represented by rectangles. If the size of the detected object is less than 5× 5 pixels, it is considered as noise and is removed. Figure 3.6 illustrates some examples of the extracted objects. Figure 3.6a corresponds to the first class objects which represents 'person'. Figure 3.6b represents the second class, 'vehicle'. Figure 3.6c and Figure 3.6d show a partially detected vehicle and people. In many cases, although the whole body is visible, it is partially detected due to the same color as the background frame or static regions of the body. In some cases, our method detects only certain regions of the object (vehicle/person) when it is partially masked or in case of movement in the blind spots of the camera. These objects are unwanted and are removed using a semi-supervised DCGAN classification as presented in Chapter 4.

Table 3.2 illustrates the number of images taken from five different cameras from the VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF], which are used for training and testing. Three categories of objects are defined: 'person', 'car' and 'etc'. The class 'person' represents the full body. The class 'car' represents the entire cars and the 'etc' class indicates images that are difficult to classify. This class contains only partially detected objects such as cars or people when the background includes the image. The most extracted regions of interest (ROIs) are people or cars and the other images captured by background subtraction represent objects that are incorrectly selected. We have used five cameras from VIRAT dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] to build the training and testing datasets. Once the background subtraction based on DeepSphere is achieved, we have obtained 2275 images of objects extracted from VIRAT video sequences (Table 3.2). In Chapter 4, we aim to categorize the extracted objects into three classes, 'person', 'car' and 'etc' based on a semi-supervised classifier, which consists of the DCGAN discriminator.

• Change detection (CDnet2014) dataset: Traffic (frame #1247) Traffic (frame #1546) Pedestrians (frame #566)

Figure 3.7: Network input and output in CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] : The first row is the background frame, the second row is the image test, the third row is the ground truth, the fourth row is the output of DeepSphere. The fifth row is the foreground mask of the proposed method.

Our proposed DeepDC based on DeepSphere clearly appears to be robust and less sensitive to the background subtraction method and shows greater performance in CD-net2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] scenes.

Table 3.3 shows the average F-measure values of the different BGSLibrary algorithms [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF] and the proposed DeepDC detector based on DeepSphere on 53 videos of CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. Best F-measures are underlined. The proposed DeepDC algorithm gives the highest value compared to the large range of BGSLibrary algorithms [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF].

We have extracted the six best methods, according to the results obtained using video sequences provided by VIRAT [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] and CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], that clearly overcome the other ones. These methods cover a long period of time in the literature, the GMM improvement proposed by Kaewtrakulpong and Bowden [228], LBFuzzy AdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] and T2FGMM UV [67] are very good BS methods. PFinder (DPWrenGABGS) [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] and PBAS [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] have showed an interesting robustness since it has been possible to find a good compromise between the increase of true positive (TP) pixels and the increase of false positive (FP). DeepDC outperforms these algorithms implemented in BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF] with 92.91% and 96.39%, in VIRAT [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] and CDnet2014 datasets [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], respectively.

The top six ranking algorithms can be confirmed through the visual analysis as presented in Figure 3.8. Without using additional image processing, we can observe that our approach based on DeepSphere shows consistently better performance in different scenarios.

Figure 3.8 illustrates sample results of applying DeepDC and the best five BGSLibrary algorithms on videos from CDnet2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] and VIRAT [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] datasets. In this Figure, the test frames are displayed in the first row, the ground truth are shown in the second row, and the results obtained with the proposed method are displayed in the third row.

The results obtained with the other methods are shown in the fourth to eighth rows of Figure 3.8. As observed, DeepDC is enough successful in detecting foreground objects in these scenes and outputs acceptable foreground masks. DeepDC clearly appears less sensitive to the background subtraction challenges, whereas the five others fall in detecting moving objects, unless applying a strong post-processing step.

One of the most famous statistical-based approaches to model the reference frame is the Gaussian Mixture Model (GMM), which is originally proposed by Stauffer and Grimson [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF]. On the basis of GMM, Kim et al. [START_REF] Kim | A hybrid framework combining background subtraction and deep neural networks for rapid person detection[END_REF] proposed a background subtraction algorithm to extract moving object areas from each video frame based on Gaussian Mixture Model (GMM). We demonstrate that DeepDC achieves better results compared to the work of Kim et al. [START_REF] Kim | A hybrid framework combining background subtraction and deep neural networks for rapid person detection[END_REF]. From the first to last row: input frame, region of interest, DeepSphere (ours), PBAS [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF], DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF], MixtureOfGaussianV1BGS [228], LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] and T2FGMM UV [67].

We compare DeepDC with the best five algorithms of the BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF]. Moreover, two unsupervised foreground detection methods, which both estimate a deterministic low dimensional representation of the background in videos, the Robust PCA (RPCA) model [START_REF] Candes | Robust principal component analysis[END_REF] and the Deep Probabilistic Background Model (DeepPBM) [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF], and two supervised foreground segmentation methods based on Deep Learning, Deep-CNN [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] and DPDL [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF], were chosen to compare the segmentation results of our proposal. The average quantitative results for each category are reported in Tables 3.4 and 3.5. It can be seen that in most of the challenges, the highest F-measure values across the eleven categories of CDnet2014 dataset (highlighted in bold) are obtained using our proposal. As representative example, that demonstrate the robustness of this research work, we have the "Dynamic-B" and "B-Weather" categories where despite the highly dynamic background regions due to partial obstruction of objects of interest and snow fall, we obtained the best segmentation results. Another representative example corresponds to the "thermal/ Corridor" scenario, where despite the camouflage caused by the nature of thermal images combined with the morphology of the human body where the limbs represent small objects with fine details, a large proportion of the human silhouette is successfully segmented. In both challenges, there is a noticeable difference between the average F-measure values obtained compared to the other algorithms, even against Deep Learning based methods such as Deep CNN [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF], DPDL [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF]. Moreover, in categories with less dynamic backgrounds or less camouflage problem (for example turbulence, IO-Motion), the performance of our proposal continues to be superior in the segmentation of small-sized foreground objects. However, the combination of several challenges (severe camouflage, highly dynamic background, the reduced dimension of the object of interest, shadow, jitter, etc), can compromise the performance of the proposed method. For example, in the "shadow / Cubicle" scenario, in which the shadows of the foreground objects is considered as foreground, the proposed algorithm DeepDC was superseded by the Deep CNN [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] method. A similar situation occured in the "Night" videos, our proposal was slightly surpassed the DeepPBM algorithm [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] because the camouflage caused by the night condition and the illumination changes due to the very strong headlights, complicated the segmentation of the cars. Furthermore, in the "PTZ" category, DPDL [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] was exceeded DeepSphere in F-measure because of the small-sized moving objects presented in the scenes.

Our proposal outperforms the previous methods, with the highest average F-measure values on almost all categories, except for "PTZ" scenes, for which DPDL has achieved the best value and "Shadow" category, for which Deep CNN [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] has obtained the best segmentation results. Note that both DPWrenGABGS and RPCA give lower Fmeasure than MoG, T2FGMM UV, PBAS, LBFuzzyAdaptiveSOM, DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF],

Deep CNN and DPDL for some videos. To quantify the results, the output binary masks generated by the background subtraction methods are compared with the ground truth images taken from CDnet2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] dataset.

Table 3.6 shows the qualitative segmentation results across the eleven CDnet2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] categories. Graphical results demonstrate that our proposal is more robust than other methods to the background subtraction challenges. DeepDC is tolerant to lighting changes as RPCA [START_REF] Candes | Robust principal component analysis[END_REF] is whereas DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] is not, and robust to noise and the dynamic nature of the background as DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] is whereas RPCA [START_REF] Candes | Robust principal component analysis[END_REF] is not. Figure 3.9 demonstrates that our approach outperforms all other methods in almost all the CDnet 2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] categories. [228] 0.7929 0.8402 0.8159 T2FGMM UV [67] 0.5877 0.8809 0.7051 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.5698 0.9351 0.7081 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.3163 0.9123 0.4697 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.2927 0.7334 0.4185 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.7953 0.8638 0.8281 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] [228] 0.4189 0.7691 0.5424 T2FGMM UV [67] 0.5279 0.8663 0.6560 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.8718 0.7144 0.7853 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.4090 0.8921 0.5609 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.2532 0.3783 0.3033 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.5570 0.8476 0.6722 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] 0.852 0.782 0.8142 DPDL (CNN) (Temporal-wise) [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] 0.732 0.845 0.7860 DeepSphere (ours) 0.8543 0.9083 0.8761 IO-Motion DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] 0.3290 0.8027 0.4667 MixtureOfGaussianV1BGS [228] 0.3064 0.9851 0.4674 T2FGMM UV [67] 0.3473 0.8111 0.4864 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.2982 0.7043 0.4190 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.5295 0.9839 0.6885 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.3518 0.8415 0.4961 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.5135 0.8032 0.6265 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] 0.5735 0.8251 0.6098 DPDL (CNN) (Temporal-wise) [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] 0.7870 0.9935 0.8783 DeepSphere (ours) 0.7896 0.9975 0.8815 Low-F DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] 0.2137 0.8250 0.3394 MixtureOfGaussianV1BGS [228] 0.1927 0.8099 0.3113 T2FGMM UV [67] 0.3060 0.8583 0.4511 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.3701 0.8797 0.5210 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.2019 0.7539 0.3185 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.2880 0.4788 0.3597 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.6108 0.3406 0.4374 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] 0.5924 0.9675 0.6002 DPDL (CNN) (Temporal-wise) [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] 0.711 0.9200 0.8050 DeepSphere (ours) 0.7292 0.9677 0.8295 Night videos DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] 0.6271 0.9336 0.7503 MixtureOfGaussianV1BGS [228] 0.3235 0.7204 0.4465 T2FGMM UV [67] 0.4627 0.9319 0.6184 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.4015 0.8377 0.5428 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.5254 0.9691 0.6814 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.8457 0.8522 0.8489 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.7742 0.9497 0.8530 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] [228] 0.3828 0.5305 0.4447 T2FGMM UV [67] 0.4369 0.8564 0.5786 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.3610 0.9056 0.5162 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.4439 0.7800 0.5658 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.3430 0.7326 0.4673 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.751 0.780 0.765 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] [228] 0.3254 0.8552 0.4714 T2FGMM UV [67] 0.5218 0.9572 0.6754 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.3846 0.9347 0.5450 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.5120 0.9044 0.6538 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.3178 0.7022 0.4376 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.3083 0.9769 0.4687 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] [228] 0.3946 0.9143 0.5513 T2FGMM UV [67] 0.608 0.556 0.5808 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.691 0.566 0.6223 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.5382 0.9489 0.6868 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.767 0.781 0.7747 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.3716 0.8810 0.5227 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] 0.6637 0.9257 0.7583 DPDL (CNN) (Temporal-wise) [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] 0.8172 0.7946 0.8075 DeepSphere (ours) 0.720 0.966 0.8201 Turbulence DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] 0.8180 0.8275 0.8226 MixtureOfGaussianV1BGS [228] 0.4118 0.8864 0.5623 T2FGMM UV [67] 0.4706 0.8099 0.5953 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.8028 0.9375 0.8650 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.8033 0.9305 0.8618 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.5366 0.7085 0.6107 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.7378 0.9293 0.6643 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] 0.8226 0.8430 0.8330 DPDL (CNN) (Temporal-wise) [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] 0.7979 0.9082 0.8455 DeepSphere (ours) 0.829 0.951 0.8857 Average DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] 0.4063 0.8582 0.5274 MixtureOfGaussianV1BGS [228] 0.4977 0.8371 0.5301 T2FGMM UV [67] 0.4870 0.8399 0.6059 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.5340 0.8477 0.6303 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.4443 0.8689 0.5764 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.4379 0.6981 0.5240 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.6236 0.7988 0.6422 Deep CNN (DeepBS) (Pixel-wise) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] Table 3.7 shows the results of background subtraction for five frames from the CD-net2014 "shadow"/Cubicle video (frame #1186, frame #5529, frame #5544, frame #5566, frame #7065) and two frames from the "dynamic-Background" category (Fall frame #2533, Overpass frame #2467). Our proposal clearly appears to be more tolerant to the background subtraction method, whereas RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] are very useless in detecting moving objects. Table 3.7 illustrates the effectiveness of the proposed descriptor in dealing with changing lighting and dynamic backgrounds conditions. Our model achieves a more accurate foreground segmentation. Compared to RPCA [START_REF] Candes | Robust principal component analysis[END_REF], DeepSphere can better deal with noise and dynamic backgrounds. Compared to DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF], DeepSphere achieves better foreground segmentation because it can cope with illumination changes. Figure 3.10 shows the training and validation loss of DeepSphere using CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. It reveals that the train and validation loss decreases to a point of stability with a minimal difference between the two final loss values, proof of a good fit.

Model loss is almost lower on the training dataset than the validation dataset.

Figure 3.11(a), Figure 3.11(b) and Figure 3.11(c) display graphics of the F-measures for various methods, from MOG to our proposed model, DeepSphere. In these figures, the closer the method curve is to a circle with radius 1, the more the method is robust over the 11 categories of CDnet 2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. By looking at Figure 3.11(a), we can first see that the fuzzy gaussian model, namely, Type-2 Fuzzy Gaussian Mixture Model (T2FGMM UV) [67] slightly outperforms the MOG [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF] basic statistical model, implemented in 1999 except on the "Bad Weather" category. However, the average F-measure did not exceed 0.7 %, which is relatively low. Only for the "baseline" and "B-Weather" categories, the F-measure exceeded 0.7 %, which makes these methods usable in applications with not too complex environments. Second, we can see that the proposed DeepDC neural network based on DeepSphere significantly increases the F-measure under "baseline", "camera jitter", "intermittent object motion", and "turbulence" categories.

In Figure 3.11(b), we can see that the unsupervised DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] model which allows a deterministic low dimensional representation of the background in videos achieves higher performance than RPCA [START_REF] Candes | Robust principal component analysis[END_REF], known as one of the standard and wellperformed subspace learning methods, except in the "Thermal" category. Second, we can see that the proposed DeepSphere algorithm achieves better performance than RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] in almost all the categories of CDnet 2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], except in the "PTZ" category, where DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] outperforms DeepSphere.

Figure 3.11(c) compares DeepSphere with two supervised CNNs based methods. The DPDL [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] (Temporal-wise) model provides a better performance than the Deep CNN (DeepBS) (Pixel-wise) model [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] in almost all categories, except in the "Dynamic-B" and "Shadow" categories. This can be explained by the fact that the DPDL [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] is a temporal-wise algorithm which imposes temporal coherence by modeling the dependencies between adjacent temporal pixels, while the Deep CNN [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] is a pixel-wise method that does not take into account temporal or spatial restrictions. In addition, in Figure 3.11(c), we can also see an increase in performance between DeepSphere and DPDL model [START_REF] Zhao | Background subtraction based on deep pixel distribution learning[END_REF] which was designed in 2018, thereby showing the important improvement made by our proposed method. DeepSphere significantly increase the F-measure under "Baseline", "Camera jitter", "Intermittent object motion" and "Turbulence" categories. The gain in F-measure was approximately 10 %. This good performance of DeepSphere based methods is due to their ability to take into account both spatial and temporal constraints, which are extremely important in this field. Deep-Sphere enforces both spatial and temporal coherence by modeling the dependencies between adjacent temporal and spatial pixels, resulting in better performance.

Table 3.8 illustrates the number of images extracted from 53 cameras from CDnet 2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], which are used for training and testing in Chapter 4. In total, 7630 images are extracted belonging to three categories: 'person', 'vehicle' and 'etc'. [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF], T2FGMM UV [67] and DeepSphere [34] for the CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. (b) Gain in performance between DeepSphere [34] and unsupervised models, RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] for the CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. (c) Gain in performance between DeepSphere [34] and CNNs (supervised models) [START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] [502] for the CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. • Background Models Challenge (BMC2012) dataset: In BMC2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF], we compare our proposal on 9 real-world videos including challenges, such as cast shadows, the presence of dynamic backgrounds, the presence of a continuous flow of cars, intermittent object motion, general climatic conditions (sunny, rainy and snowy conditions), color saturation, lighting conditions and the presence of big objects. The average F-measure obtained using our proposal compared to the five best algorithms of BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF] and the two unsupervised foreground detection algorithms, RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] are reported in Table 3.9. We highlighted in bold the best F-measure values in each category. Our algorithm achieved the highest F-measure on almost all the categories, except in the "Train in the tunnel" category, where PBAS algorithm [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] obtained the best results, These results are attributed to the small-size of the foreground objects, which prevented DeepDC from effectively distinguishing these pixels. Results show that the average F-measure values across the 9 categories of the BMC2012 dataset are more stable in our proposal (DeepDC) respect to the rest of the methodologies. RPCA [START_REF] Candes | Robust principal component analysis[END_REF] is less performant than DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF]. Our method outperforms RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] on BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF] with 28% and 15% in average in F-measure score, respectively. Numerous experiments were carried out to illustrate both the qualitative and quantitative performances of the proposed DeepDC. First, we present results of background subtraction on individual frames from nine video sequences: Parking (frame #1563), Big trucks (frame #64), Wandering students (frame #250), Rabbit in the night (frame #215), Snowy christmas (frame #17097), Beware of the trains (frame #699), Train in the tunnel (frame #1454), Traffic during windy day (frame #140) and one rainy hour (frame #15555). Table 3.10 shows the visual results obtained using DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF], RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and our proposed method on 9 real videos from BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF].

Results confirm that our proposed DeepDC based on DeepSphere algorithm clearly improves the foreground mask by reducing false positives and negative detections.

We can remark that DeepSphere outperforms both DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] and RPCA [START_REF] Candes | Robust principal component analysis[END_REF] on almost all categories of BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF], except in the "Train in the tunnel" category. Our method is more successful in detecting foreground objects in these videos, and provides acceptable results, while RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] both fail to detect efficient foreground masks. Our descriptor clearly appears to be more robust to noise and to the dynamic nature of the background as DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] is whereas RPCA [START_REF] Candes | Robust principal component analysis[END_REF] is not, and robust to illumination changes as RPCA [START_REF] Candes | Robust principal component analysis[END_REF] is whereas DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] is not.

It can be observed in Tables 3.9 and 3.10, that, in the case of real video sequences, DeepDC generally achieves the highest accuracy, in terms of recall, precision and Fmeasure metrics. Specifically, DeepDC well handles typical background maintenance challenges, such as waving trees in "Boring parking" and "Traffic during windy day" categories and gradual light changes in "Boring parking" category, despite the tiny size of moving objects such as those in "Rabbit in the night", "Beware of the trains" and "One rainy hour" and the large moving objects, such as those in "Big trucks" category. However, the combination of several challenges can compromise the performance of the proposed method. For example, in the "train in the tunnel" category, the presence of strong reflections combined with the small-sized foreground objects, the proposed algorithm DeepDC was superseded by the PBAS method [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF].

Figure 3.12 compares the performance of the five best algorithms of BGSLibrary [START_REF]BGSLibrary: an OpenCV C++ background subtraction library. IX Workshop de Viso Computacional[END_REF], DPWrenGABGS, MixtureOfGaussianV1BGS, T2FGMM UV, LBFuzzyAdap-tiveSOM and PBAS as well as RPCA [START_REF] Candes | Robust principal component analysis[END_REF], DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] and the proposed descriptor. Graphical values of our proposed method are enough successful than other methods as illustrated in Figure 3.12. Our proposal attains the highest quantitative values such as the F-measure exceeds 68 % in the majority of the categories.

By analyzing Figure 3.13(a), we can see that the fuzzy Gaussian model, T2FGMM UV slightly outperforms the statistical model, MOG in almost all the categories of BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF], except in the "snowy christmas" category. However, the F-measure did not exceed 0.75 on average, which is relatively low. Second, we can also see in Figure 3.13(a) that the proposed DeepSphere neural network model achieves better performance than T2FGMM UV and MOG in all the categories. The gain in F-measure score was approximately 15%.

By looking at Figure 3.13(b), we can first see that DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] achieves better performance than RPCA [START_REF] Candes | Robust principal component analysis[END_REF]. We also remark that the proposed model based on DeepSphere outperforms both RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] algorithms in almost all the categories of BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF], except in the "Train in the tunnel" category, where the proposed algorithm DeepSphere was superseded by the DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] method. The gain in F-measure score was approximately 10%. The average Fmeasure of DeepSphere was roughly 0.78, which becomes more acceptable in terms of reliable use in real conditions. [228] 0.563 0.504 0.5306 T2FGMM UV [67] 0.4356 0.8640 0.5792 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.659 0.756 0.7051 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.4056 0.7682 0.5351 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.7169 0.370 0.4854 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.5587 0.8907 0.6867 DeepSphere (ours) 0.6290 0.9318 0.7510 Big trucks DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] 0.5527 0.7368 0.6316 MixtureOfGaussianV1BGS [228] 0.538 0.405 0.4631 T2FGMM UV [67] 0.4553 0.7793 0.5741 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] [228] 0.4651 0.6530 0.4718 T2FGMM UV [67] 0.800 0.747 0.662 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.51 0.82 0.59 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.3475 0.8963 0.5008 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.3179 0.8339 0.4603 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.3579 0.9820 0.5246 DeepSphere (ours) 0.5267 0.9827 0.6858 Snowy christmas DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] 0.6700 0.7045 0.5745 MixtureOfGaussianV1BGS [228] 0.6955 0.8326 0.6829 T2FGMM UV [67] 0.6964 0.7079 0.6596 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.8824 0.5969 0.7122 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.7108 0.7012 0.6623 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.1538 0.6850 0.2513 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.5385 0.9255 0.6808 DeepSphere (ours) 0.7840 0.8160 0.7532 Beware of the trains DPWrenGABGS [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF] 0.716 0.503 0.5750 MixtureOfGaussianV1BGS [228] 0.7373 0.7586 0.7220 T2FGMM UV [67] 0.7283 0.8922 0.7556 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.7882 0.7179 0.7159 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.4485 0.9677 0.6129 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.6151 0.7820 0.6814 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0 [228] 0.5414 0.6107 0.515 T2FGMM UV [67] 0.6183 0.677 0.6069 PixelBasedAdaptiveSegmenter [START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF] 0.6599 0.7264 0.6417 LBFuzzyAdaptiveSOM [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] 0.4257 0.6447 0.4823 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 0.5082 0.6252 0.529 DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 0.6602 0.8096 0.7299 DeepSphere (ours) 0.7449 0.8640 0.7845 Table 3.10: Visual results on real-world videos of the BMC2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF]: From left to right: Original images, Ground-Truth images, RPCA [START_REF] Candes | Robust principal component analysis[END_REF], DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF], DeepSphere (ours). [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF], T2FGMM UV [67] and DeepSphere [34] for the BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF]. (b) Gain in performance between DeepSphere [34] and unsupervised models, RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] for the BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF].

The final results we give is about the computational time which is an important factor for some applications. We collected the computational times needed to detect and segment the foregrounds using RPCA [START_REF] Candes | Robust principal component analysis[END_REF], DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] and the proposed model based on Deep-Sphere on the six short real videos of BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF] as well as the average computational time (in minutes). We used 3.5 GHZ Intel Core i7. Results are summarized in Table 3.11. Our DeepDC model based on DeepSphere shows better time performance than both RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF]. According to the reported results, background subtraction using the trained model based on DeepSphere can be done in more than 8 times and 3 times faster than RPCA [START_REF] Candes | Robust principal component analysis[END_REF] known as one of the standard and well-performed subspace learning methods and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF], respectively. Table 3.11: Computational time for the BS task of our DeepSphere compared to RPCA [START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] evaluated on the 6 short videos of BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF]. For the fair comparison we ran the trained model using Intel Core i7 Hardware.

Algorithm Run Time

Big trucks -1498 frames RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 38 min DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 15. 4 RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 25 min DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 8.4 min DeepSphere (ours)

min

Average over all the videos RPCA [START_REF] Candes | Robust principal component analysis[END_REF] 42.09 min DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] 15.04 min DeepSphere (ours) 5.8 min

Conclusion

In this chapter, a new deep detector classifier called DeepDC for moving objects detection and segmentation is proposed. DeepDC is based on an anomaly discovery framework called DeepSphere, which combines the strengths of deep autoencoders and hypersphere learning to detect anomalies in dynamic networked systems. We propose to adapt and validate Deep-Sphere to perform foreground objects segmentation. DeepDC generates good segmentation results without additional image processing. It is also tolerant to illumination changes as RPCA is whereas DeepPBM is not and robust to noise and the dynamic nature of the background as DeepPBM is whereas RPCA is not. We compared the proposed DeepDC model to the 29 algorithms implemented in the BGSLibrary as well as to RPCA and DeepPBM on real videos from VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF], CDnet 2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] and BMC 2012 dataset [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF]. Experimental results show that the proposed model qualitatively and quantitatively outperforms the mentioned methods in both time efficiency and accuracy, making it a serious candidate for the background substation task. In the next chapter, we will describe our semi-supervised approach for moving objects classification to deal with the lack of labeled data. The proposed approach classify the extracted objects using the discriminator network of DCGANs in a semi-supervised manner.

Chapter 4 A novel semi-supervised DCGAN model for object classification

This chapter presents a novel semi-supervised learning approach based on deep convolutional generative adversarial networks, DCGANs, able to extract suitable features to classify objects. Our proposal called DCGAN-based semi-supervised learning (DCGAN-SSL) is an extension of the DCGAN architecture for training a classifier while making use of labeled and unlabeled data. In addition, it allows to learn a generative model and a classifier simultaneously. A DCGAN is originally intended for unsupervised learning, we adapt it for semi-supervised learning classification task. Results on VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] et CDnet 2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] show the relevance of the proposed approach. DCGAN-SSL classifier outperforms not only three standard models (TSVM, CatGAN, VAT, etc) as expected but also its recent competitor, the CNN model, which was especially designed for the object classification task.

The work presented here was published in the IET Image Processing Journal [34]. 

Motivation

Nowadays, digital image processing techniques have evolved rapidly with the development of image classification and recognition technologies. Due to the high non-linear approximation capacity of these image classification technologies, CNN have proved to be the efficient way, attracting more and more attention and obtaining various applications in image classification. However, the large application of CNNs to high-resolution images is still been prohibitively expensive, despite the relative efficiency of their local architecture and their appealing qualities. In addition, CNN requires a large amount of labeled data to process and train the neural network which, while acquiring additional data or labeling all the data, remains expensive or even impossible. To overcome these problems, most image classification approaches have applied GANs because of the benefits that GANs can work well with the lack of data and its super-resolution. In this chapter, due to the good performance of the convolutional operation, we propose to apply an extension to GAN, called DCGANs on unlabeled samples to enhance the accuracy of object classification using a small number of labeled samples. Compared to GAN, DCGAN focuses on using Deep Convolutional networks in place of fullyconnected networks. DCGAN is more suitable for handling multimedia and image data, as two-dimensional convolution and deconvolution operations can be performed. Convolutional networks generally search for spatial correlations in an image. This means that a DCGAN would likely be more suitable for image/video data than a conventional GAN. In addition, when it comes to categorizing images, fully connected layers need a lot of weights in the first hidden layer. Networks with a big amount of parameters encounter numerous problems, for example, chances of overfitting, slower training time, etc.

Various imaging-based applications, including object detection, object segmentation, image classification and image recognition take advantage from deep learning networks. One of the reasons for the success of deep learning applications is that the model can learn from a huge amount of labeled training samples. Supervised learning has been at the center of deep research. It involves learning from labeled training samples, where each individual sample consists of the instance problem with its label. For example, in a classification task, the data element to be categorized is represented as a feature vector and the class is assigned as a categorical label. The set of samples, also known as a training set or a labeled set, is used to create the classifier which can be used to categorize any new given sample. However, all supervised object classification methods based their approaches on the assumption of availability of large labeled dataset. For many areas of interest, data collection is relatively easy while labelling it by human experts is expensive and time-consuming. However, it can be argued that the most widespread framework is where a big number of unlabeled data exists, but we want to train some supervised predictor. Generally, labeling all the data is extremely expensive, therefore the labeled dataset is usually several orders of magnitude smaller. Researchers are interested in minimizing the cost of obtaining labeled training examples, and there are several studies are underway with unsupervised and semi-supervised deep learning. In many real world applications such as text processing and image processing, where there is an abundant amount of unlabeled samples, requiring people to label unlabeled data, is an expensive task. In these applications, labeled data is sparse. Supervised learning is a cost effective and time consuming process, since it needs a big number of labeled training samples. In contrast, unsupervised learning does not need any labeled data and groups the data depending on the similarity of data points by using either maximum likelihood or clustering approach. However, this approach can not accurately cluster an unknown data. Unsupervised learning is more complicated than supervised learning, because we lack the ground truth to assess the results. To solve these problems, Semi-supervised learning (SSL) has been suggested by researchers, which can learn with a few number of training data, can label the training data and treats the remaining samples as test data. Semi-supervised image classification leverages both labeled and unlabeled data to increase classification performance. It is an intermediate between supervised and unsupervised learning that incorporates the ability to use partially labeled dataset. According to different learning tasks, many semi-supervised classification methods and semi-supervised clustering methods are available in the literature [34] [START_REF] Zhu | Semi-supervised learning literature survey[END_REF]. Existing GAN-based image classification methods are still unsupervised, as these methods do not employ label information and the images produced by the generator which are used to train GAN are also unlabeled. The classification accuracy could be increased. The need to create models that can learn from less data is increasing faster. Consequently, in this chapter, we present a DCGAN based semi-supervised learning model, called DCGAN-SSL to classify objects extracted from video sequences from VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] and CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] using a very small labeled training set. Semi-supervised learning is a technique in which both labeled and unlabeled samples are employed to train a classifier.

[96] [98] [220] [242] [309] [323] [380] [423] [387]
Until recently, to our best knowledge, there have been no previous methods which processed altogether semi-supervised learning and DCGAN networks for multi-class object classification problem. State-of-the-art object classification approaches operate on an unsupervised way, ignoring the supervised learning. Goodfellow et al. [169] proposed a novel framework to estimate generative models via a contradictory learning. The GAN generator can be used to learn the actual distribution of unsupervised data. Radford et al. [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] demonstrate that DCGANs are an excellent candidate for unsupervised learning. A hierarchy of representations from object regions to scenes is learned by a deep convolutional adversarial pair in both the generator and discriminator. In addition, the learned features are employed for further tasks, proving that they are applicable as common representations of images. The supervised and unsupervised learning are two significant techniques used for object classification. Using generative models for semi-supervised learning is not a new idea. Kingma et al. [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF] expand work on variational generative models [START_REF] Kingma | Auto-encoding variational bayes[END_REF] [START_REF] Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF] to do just that. Here, we are trying to do something similar with GANs. We are not the first to apply GANs in a semi-supervised context. GANs have been widely used and have obtained competitive results for semi-supervised learning [START_REF] Salimans | Improved techniques for training gans[END_REF] [START_REF] Xie | Unsupervised data augmentation for consistency training[END_REF]. The Cat-GAN [START_REF] Springenberg | Unsupervised and semi supervised learning with categorical generative adversarial networks[END_REF] modifies the objective function to take into account mutual information between observed examples and their predicted class distribution. Salimans et al. [START_REF] Salimans | Improved techniques for training gans[END_REF] report a way to utilize GANs for a classification task with K classes. More precisely, they propose to extend the vanilla GAN where the labeled data is increased with examples generated from the generator. The discriminator learns to predict the original classes and one fake class of the generated data. This assists the discriminative model by increasing a small amount of labeled data with a large amount of unlabeled data of real and generated samples. Their work presents various new architectural features and training processes, such as feature matching and minibatch discrimination functions, to help the convergence of GANs. In this way, GAN not only produces a large amount of samples and expands the training dataset, but also improves the ability of the networks to extract features and the generalization accuracy of the classifier via the adversarial training method. In Salimans et al. [START_REF] Salimans | Improved techniques for training gans[END_REF], a fully connected generator network was employed. In our work, we replace it with a DCGAN and achieve a superior performance. As one of the previous works, Diederik [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] uses the deep generative model in a semi-supervised learning way through the maximization of the variational lower bound of the unlabeled data likelihood and assumes an additional latent variable in the directed generative model, which is corresponding to the classification label. In Donahue et al. [START_REF] Donahue | Adversarial feature learning[END_REF], an adversarial formulation with a third element is described, called the "encoder". The encoder tries to encode real data to some latent space, while the generator allows mapping a simple distribution in latent space to data space. They demonstrated that this encoder learns for inverting the generator, and can be employed as a featurizer for a supervised training. On the autoregressive side, Dai and Le [START_REF] Dai | Semi-supervised sequence learning[END_REF] explored the idea of first "pretraining" a sequence model to perform a task on unlabeled text data. Then, they employed these pretrained weights for training supervised models for text classification. Their results show improved learning stability and model generalization. In 2017, Radford et al. [START_REF] Radford | Learning to generate reviews and discovering sentiment[END_REF] learned a language model by training an mLSTM RNN on Amazon reviews and then employed its internal cell state from the last time step as features for the following supervised task of sentiment analysis of Amazon reviews. This allowed the authors to match the state-of-the-art in their sentiment analysis dataset with far fewer labeled samples and to outperform it with the full training set.

[423] [117] [262] [132] [256] [243] [58]
In this chapter, we introduce DCGANs to learn useful representations during the adversarial training process and the learned features are used to classify images with relatively small number of training samples, so as to use both the labeled training data and the unlabeled generated samples to train DCGAN for object classification task. We exploit the power of an unsupervised representation learning using DCGANs to build an image classifier which can be trained with relatively small amount of labeled training samples as compared to a fully supervised process. Our DCGAN-SSL classification model aims to improve the feature extraction ability of the discriminator and the classification performance. We believe the combination of semi-supervised learning with DCGANs networks may provide useful information for object classification. By fusing semi-supervised learning and DCGANs, the derived DCGAN-SSL extracts more detailed information from the objects to be classified. Our contributions can be summarized as follows • A robust combination of DCGANs and semi-supervised learning that allows us to be more robust on feature extraction and object classification task. We extend DCGANs to the semi-supervised learning context by forcing the discriminator network to output class labels. DCGAN-SSL allows to learn a generative model and a classifier simultaneously and shows that it can be used to create a more data-efficient classifier.

• A detailed comparative evaluation of our proposed DCGAN-SSL model against other four state-of-the art models on two large scale datasets that are CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] and VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF]. We show that DCGAN-SSL improves classification performance on restricted data sets over a baseline classifier with no generative component. DCGANs can significantly improve the quality of the generated samples.

The rest of this chapter is organized as follows. The GAN architecture is illustrated in Section 4.2. In Section 4.3, we describe the DCGANs architecture. Our proposed DCGAN-SSL model which trains DCGANs in a semi-supervised way is presented in Section 4.4. Comparative results on real world videos are given in Section 4.5, Finally, the conclusion is drawn at the last section closed the Chapter 4.

Generative Adversarial Networks

GAN is a class of artificial neural networks newly developed by GoodFellow et al. [169], which trains two adversarial neural networks as presented in Figure 4.1. The first neural network consists of the generator, which takes as input a random noise and produces new data samples. The second network, named the discriminator, obtains input from both the generator and the original training data. The discriminator examines samples, and determines whether the data belongs to the actual training dataset or comes from the generator. A point will be achieved when the generator captures the whole distribution of training samples. Thus, the discriminator is not able to distinguish whether the inputs come from the generator or not. It is said, at this time, that the GAN is fully trained. Specifically, the generator (G) takes as input a random noise vector z and produces a sample X f ake = G(z). The discriminator D input consists of samples produced by the generator and original samples and it outputs a probability distribution of the data possible sources. Equation 4.1 illustrates the complete GAN training process. The discriminator D focuses on maximizing the log-likelihood of assigning the correct label, while the generator (G) is trained to maximize the probability that D makes an error (second term in the equation). (https://jglobal.jst.go.jp)

L = E[logP(Y = real|X real )] + E[1 -logP(Y = f ake|X f ake )] (4.1)
GANs are known to be hard in train and unstable. This causes the generator in many cases to output poor samples. As a result, many researchers have focused on improving the stability of training. DCGAN [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] is one of the common GAN extensions, which generates peak performance. We used the DCGAN architecture and its improvement by Salimans et al. [START_REF] Salimans | Improved techniques for training gans[END_REF], which is based on the feature matching concept. Feature matching is a technique to deal with GAN instability by identifying a new generator goal. In the feature matching process, the generator is trained to match the expected value of the features on an intermediate layer of the discriminator, unlike the conventional GAN, where the generator is trained to directly maximize the discriminator output. This results in an improved stability in situations where the conventional GAN is unstable. Let f(x) indicate activations on an intermediate layer of the discriminator, the new objective for the generator is described in Equation 4.2.

L G = ||E x∼p data f (x) -E z∼p z (z) f (G(z))|| 2 2 (4.2)

DCGANs architecture

DCGAN is an improved version of the original GAN architecture with deep convolutional networks (CNNs). Compared to the original GAN, DCGAN almost entirely uses the convolutional layer rather than the fully connected layer. In this thesis, we exploit the ability of DCGAN's discriminator [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] to classify the extracted objects from video sequences. The idea is to simultaneously train two adversarial networks. The first network is a discriminator that learns to determine if the sample comes from the data distribution. The second is a generative model that aims to generate "fake" images that attempts to fool the discriminator. After several stages of training, the optimization will achieve a stable point where the discriminator will difficult to discern whether the data was "fake" or not. Mathematically, the training process of DCGANs can be seen as a minimax game. The generator G(z) takes an input z from an uniform distribution. The discriminator D(.) takes x as input, being either images, from selected database or output of generator G(z). During training, the discriminator tries to distinguish between selected database and G(z), i.e. attempts to maximize, log(D(x))+log(1-D(G(z))). Simultaneously, the generator attempts to fool the discriminator by minimizing log(1-D(G(z)). The optimization will achieve a point of equilibrium where the discriminator is unable to distinguish between x and G(z), after multiple steps of training. DCGANs were the first major advancement on the original GAN architecture. The architecture of DCGAN can be summarized as follows:

• Replace all max pooling layers with strided convolutions for both the discriminator and the generator networks

• Use transposed convolution for upsampling

• Remove fully connected (FC) hidden layers

• Use Batch normalization (BN) for both the discriminator and generator networks.

• Use Rectified linear unit (ReLU) activation in the generator except for the output which uses tanh

• Use LeakyReLU on all layers for the discriminator The ordinary DCGAN descriptor introduced by Radford et al. [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] has proved to be a powerful candidate for unsupervised learning. The practically unrestricted number of unlabeled images and videos can be employed in order to learn a strong intermediate data representations, which can be then used on various supervised learning tasks like image classification.

Proposed approach

We propose that one way to create powerful image representations is to train DCGANs [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF], and later to reuse parts of the generator and discriminator nets as supervised feature extractors. In a conventional supervised learning environment, a standard classifier model is usually needed to categorize an input x into one of the possible N classes. The classifier outputs class probabilities P model (y |x), and is then trained to reduce the cross-entropy between the labels and the predictive probability distribution of the classifier. Deep neural networks are typically trained on vast quantities of labelled data and it has been difficult to apply deep models to datasets with limited labels.

In this thesis, owing to the need to create models that can take advantage of fewer data, we propose a DCGAN-SSL model to classify the objects extracted from video sequences (Chapter 3), which include vehicles, people, small objects and images containing some small parts of the body, etc. Our DCGAN-SSL classification model is applied on unlabeled samples to achieve better accuracy in supervised object classification using only a few quantities of labeled training samples. A shared discriminator/classifier is applied that distinguishes real samples from false ones and predicts the class label. We adapt and extend DCGANs to a semisupervised classification of the extracted objects, by replacing the traditional discriminator with a multi-class classifier, which, instead, of predicting whether a sample belongs to the data distribution (it is real or not), it affects at each pixel of the input image a label from the K real classes or mark it as a fake sample (additional K + 1 class). Therefore, P model (y = K + 1 |x) is used to denote the probability that the given input x is fake. This allows the model to learn from unlabeled samples, as it can be deduced that the model input falls into one of the K original dataset classes by maximizing logP model (y ∈ {1, ..., K}|x ). The generator functions as a source of diverse information from which the discriminator obtains unlabelled training samples. In our approach, the intuition is utilizing the samples generated by DCGAN generators to improve the classification tasks. These samples are added to the dataset, thereby, increasing the class labels of the original dataset. The images obtained by background subtraction are of low resolution, as shown in Figure 4.3. Therefore, it is crucial to define the convenient size of entered images to train a performant DCGAN network. Our goal is to categorize the selected ROIs. We assume that the use of DCGAN discriminator network can easily handle the object classification task, as we have eliminated a large number of undesired images in Chapter 3. We use feature matching for the generator loss [START_REF] Springenberg | Unsupervised and semi supervised learning with categorical generative adversarial networks[END_REF].

A brief overview of the proposed framework is presented in Figure 4.2. The RGB color input images are 32 × 32 pixels belong to three categories: 'person', 'cars' and 'etc'. The last class 'etc' includes all badly detected objects (non-vehicles/ non-person). An artificial "fake" class is added, corresponding to the class K + 1. The discriminator has two functions. It acts as a supervised classifier and it distinguishes real and fake images simultaneously. We used the DCGAN discriminator as a K + 1 (in our case = 4) class classifier. It recognized the K different classes of labelled data, as well as the (K + 1) th fake class that represents the output of the generator.

There are three different sources of training data for our DCGAN-SSL discriminator:

• Real images with labels x : These are pairs of image label as in any conventional supervised classification issue.

• Real images without labels x : The classifier only learns them as real.

• Images from the generator G(z): The discriminator learns to classify them as fake.

Combining these different data sources will allow the classifier to learn from a wider perspective, allowing the model to make inferences much more accurately than it would be when using only the labeled samples for training. Let p data denotes the data distribution and p z be the model distribution implicitly defined by G(z) when z ∼ p z . Therefore, the discriminator losses consist of the following components:

• Supervised loss: calculates the individual real class probabilities using a softmax cross entropy function from the estimated distribution on K = 3 object categories, which represents 'person', 'vehicles' and 'etc'.

L supervised = -E x,y∼p data( x,y) [logP model (y| x, y < K + 1)] (4.2) 
• Unsupervised loss: the discriminator must distinguish between real training images and fake images produced by the generator. It represents the loss resulting from the classification of unlabelled samples as real, and the loss from categorizing generated images as fake.

-The loss from classifying inputs as real:

-E x∼p data( x) [log(1 -P model (y = K + 1| x))] (4.3) 
-The loss from classifying produced samples as fake:

-E z∼p z (z) P model (y = K + 1|G(z)) (4.4)
The discriminator loss is the sum of both the supervised loss and the unsupervised loss.

The individual real class probabilities are calculated by the supervised loss. As this is a multi-class classification problem, it is optimized using a softmax cross entropy function.

Unsupervised loss is computed using sigmoid cross entropy. On the other hand, generator loss is obtained by using feature matching techniques. To do that, features are taken after the GAP layer, when real data is processed by the discriminator. A moment is calculated when the discriminator analyzes generated fake samples from the generator. The average absolute difference between the two moments represents the loss of the generator. The loss function for training the generator network G is defined as:

L(G) = ||E x∼p data ( x) f ( x) -E z∼p z (z) f (G(z))|| 2 2 (4.5) 
where f(.) represents the output of the feature layer. The losses are adjusted in a way that the discriminator can help the generator learning how to generate realistic samples, therefore, the discriminator must distinguish between real and fake samples and to use the generator's images, as well as the labeled and unlabeled training samples, to help categorize the dataset.

Algorithm 1 illustrates our proposed DCGAN-SSL approach. Sample mini-batch of m noise samples {z (1) ,....,z (m) } from noise prior p z (z)

3:
Sample mini-batch of m labeled examples {( x(1) ,y (1) ),....,( x(m) ,y (m) )} from data generating distribution p data ( x, y).

4:

Sample mini-batch of m unlabeled examples { x(1) ,...., x(m) } from data generating distribution p data ( x).

5:

Update the discriminator by descending its stochastic gradient:

∇ θ d 1 m ∑ m i=1 (-logP model (y (i) | x(i) , y (i) < K + 1) -[log(1 -P model (y = K + 1| x(i) )) + logP model (y = K + 1|z (i) )
] 6: Sample mini-batch of m noise samples {z (1) ,....,z (m) } from noise prior p z (z) 7: Update the generator by descending its stochastic gradient: Dense [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF], Dense [START_REF] He | Iterative grassmannian optimization for robust image alignment[END_REF], dropout (rate = 0.5), Dense layer, output: 4, softmax activation

∇ θ g 1 m ∑ m i=1 || f ( x(i) ) -f (G(z (i) ))|| 2 2 8: end for
The first layer of the generator is a dense layer, which takes in a seed of random noise, and reshapes it into a 4-D tensor. This layer is then preceded by a sequence of transpose convolutions, batch normalization and LeakyReLU functions. The sequence of operations upsamples the size of the input until the desired size is achieved. In our case, the desired image size is 32 × 32, which is squeeze between values -1 and 1 through the hyperbolic tangent function. The discriminator works like a normal CNN classifier, it contains a sequence of convolution layers with batch normalization. However, rather than applying fully connected layer on top of convolution stack for the last layer, a global average pooling (GAP) operation, which is a regularisation technique, is applied. We apply GAP thanks to some advantages over traditional fully connected layers, which include greater robustness for spatial translation and fewer over-fitting problems as presented in Figure 4.7. In GAP, the average over the spatial dimensions of a feature map is computed which gives one value. Afterwards, a fully connected layer is applied to output the final logits, which represents the number of classes we want to predict. The logits are transmitted to a softmax function, which outputs the probabilities of classification. However, for modeling the binary classification value (the probability of an input being real or fake), a LogSumExp function is employed. The final logits are transformed into a sigmoid logits. This implementation ends with a softmax output layer with one unit for each of the classes. The discriminator could also output four units corresponding to (class-1, class-2, class-3, fake). Each input image is categorised based on the semi-supervised model.

Our baseline is a CNN. In order to reach an accurate comparison of classification efficiency, we adopt the same implementation for the discriminator of DCGAN experiments. For the baseline model, we use the architecture proposed in Kim et al. [START_REF] Kim | A hybrid framework combining background subtraction and deep neural networks for rapid person detection[END_REF]. The number of labelled data points needed to achieve a level of performance similar to that of the baseline model is a powerful indicator that we benefit from unlabelled data.

Our baseline CNN classifier contains two convolutional layers, two pooling layers, two fully connected layers, and finally an output layer. Each convolutional layer is followed by a ReLU function and a pooling layer and contains 64 and 128 feature maps, respectively and the stride is fixed to 1. A max pool with 2 × 2 filters with stride 2 is used. The activation function ReLU and dropout are both employed at each fully connected layer. The two fully connected layers have 384 and 192 nodes, respectively. We used batches of size 50 and the learning rate is fixed to 0.001 for Adam optimiser. We use the architecture and parameters presented in Table 4.2 as the baseline model.

Let D = {X, Y, X 0 } be a dataset where (X, Y) are the labeled points, and X 0 is the rest of the unlabeled data, which is often orders of magnitude larger than X. Our DCGAN-SSL model requires a generative model and a discriminator being trained simultaneously using all of { X, Y, X 0 }. The discriminator attempts to compute both the adversarial loss and the classification loss. Our proposed approach combines the DCGAN model and the work of Salimans et al. [START_REF] Salimans | Improved techniques for training gans[END_REF] to create a semi-supervised DCGAN network. The baseline model is trained only on the available labeled data S 0 (X,Y ). The models are evaluated in their accuracy and the amount of labeled data required to converge to good results. We used a DCGAN discriminator to classify moving objects extracted from VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] and CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] using a very small labeled training set. Both the generator and the discriminator are trained at the same time when building a DCGAN for generating images. After training, the discriminator can be discarded because it is used only to train the generator. The generator is only employed to assist the discriminator during training. It behaves like a varied source of information including the unlabeled training samples used by the discriminator. These unlabeled data are essential to increase the performance of the discriminator. In addition, by turning the discriminator into a semi-supervised classifier, it has not only to compute the probability of whether its inputs are real or not as in regular image generation GAN, but also it has to learn the probabilities of each of the original dataset classes. For each input image, the discriminator has to learn the probabilities to determine its class. The discriminator returns a signal to the generator as a function of this probability, to adjust its parameters during training, which improves its ability to create realistic images. We have converted the discriminator of a regular GAN into a 4 class classifier. To do that, we turn its sigmoid output into a softmax with 4 class outputs. The first 3 for the original class probabilities of the VIRAT dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] and the CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] (person/vehicle/etc), and the 4 th class for all the fake images that come from the generator.

The discriminator acts in part as any other conventional classifier. For this reason, it can suffer from the same issues as any classifier if it is not properly constructed. One of the most likely disadvantages that can be encountered when a big classifier is trained on a very restricted dataset, is the huge of over-fitting. Overtrained classifiers generally show a significant difference between the smaller training error and the higher test error. This situation demonstrates that the model succeeded in capturing the structure of the training data. But, because it believed too much in the training data, it could not generalize for test samples. To avoid that, a large use of regularization is made through GAP and dropout, which allows reducing over-fitting in DCGAN-SSL as presented in Figure 4.8.

Experiments

Datasets

The performance of our proposed descriptor was evaluated on two public large datasets, the CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] and the VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] dedicated to the evaluation of change and motion detection. We assess the performance of our method on moving objects extracted from these two datasets as presented in Chapter 3.

Experimental results and discussions

In this chapter, we propose a semi-supervised learning approach using DCGAN to categorize our image dataset. The main idea is to use the samples produced by DCGAN generators together with the unlabeled data to increase the performance of a classifier trained on a small number of labeled samples. Therefore, mitigating the challenges associated with collecting and labeling large dataset. The proposed descriptor can build a more efficient classifier and it generates higher quality samples compared to a regular GAN. Due to the need to create models that can take advantage from fewer data, we tried to use semi-supervised DCGANs to classify extracted objects in Chapter 3 (people, car, certain parts of the body, etc). In our DCGAN-SSL classification method, we use the DCGAN discriminator to categorize objects extracted from VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] using a very small labeled training set. A GAN with a classification discriminator exploits both the unlabeled and labeled data. The unlabeled data allow to simply distinguish fake from real. The labeled data allow for the optimization of the classification accuracy. We adapt and extend DCGANs, by replacing the conventional discriminator with a multi-class classifier, which, instead of, predicting whether a sample belongs to the data distribution (it is real or not), it assigns to each pixel of the input image a label from the K original classes or considered it as a fake sample (K + 1 class). We try to simultaneously solve a semi-supervised classification problem and learn a generative model. We performed semi-supervised experiments on ROIs extracted from Chapter 3 to see whether 4.3 summarizes our results. The use of unlabeled data allows us to obtain good accuracy especially with much fewer labeled samples. The images produced by GAN generator do not look visually appealing and are completely indistinguishable from dataset images. DCGAN-SSL can enhance their visual quality and outputs images clearly distinguished from images coming from VIRAT dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] as presented in Figure 4.4.

We focus on evaluating the effectiveness of our DCGAN-SSL method using varying amounts of labeled samples vs baseline CNN [START_REF] Kim | A hybrid framework combining background subtraction and deep neural networks for rapid person detection[END_REF]. To achieve the highest accuracy, we performed a random search on the value of learning rate. It can be seen that the use of a semi-supervised classification allows a highly better use of few quantities of labeled samples. At the lowest amount, using only 25 training examples, the semi-supervised model gives a high test accuracy of 0.76 vs 0.7 using only the supervised objective. This represents 6 % rise in efficiency when training with only 25 samples. DCGAN-SSL exceeds the baseline in proportion to shrinkage of the training set, suggesting that forcing the discriminator and the classifier to share weights improves the efficiency of the data. We extend the CNN classification presented in [START_REF] Kim | A hybrid framework combining background subtraction and deep neural networks for rapid person detection[END_REF] to categorize extracted ROIs from the video and propose a method exploiting DCGAN discriminator as a multi-class classifier for semi-supervised classification purposes. Our proposed method outperforms the work of Kim et al. [START_REF] Kim | A hybrid framework combining background subtraction and deep neural networks for rapid person detection[END_REF] which is based on supervised classification using CNN and demonstrates the effectiveness of semi-supervised classification learning applied on objects extracted from VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF]. This implementation reaches train accuracy of 0.95 and a test accuracy of roughly 0.93 using only 120 labeled examples.

In Figure 4.5, we can see that using a semi-supervised objective which mainly multi-tasks between the supervised CNN objective and the standard DCGAN objective allows much better use of smaller amounts of labels. Results show that the use of a semi-supervised classifier is useful for object classification, because of the large quantity of richer information that it can extract from the video. It is because our method uses a small amount of labeled samples. DCGAN-SSL performs much greater than CNN. CNN considers only supervised classification. For a fair comparison on the accuracy of the classification, the same architecture for the discriminator for CNN experiments is used. Next, we show that the proposed approach allows to improve the performance of a supervised object classification method, as compared to CNN and other existing models in the filed of object classification.

We have compared our proposed method with other models, namely TSVM [START_REF] Joachims | Transductive inference for text classifcation using support vector machines[END_REF], Cat-GAN [START_REF] Springenberg | Unsupervised and semi supervised learning with categorical generative adversarial networks[END_REF], VAT [START_REF] Miyato | Virtual adversarial training : a regularization method for supervised and semi-supervised learning[END_REF], CNN [START_REF] Kim | A hybrid framework combining background subtraction and deep neural networks for rapid person detection[END_REF] and calculate the average error rate on VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] over 3 random splits of labeled samples. Results summarized in Table 4. 4 show that our method based on DCGAN-SSL achieved its superior performance when there are only a few labeled examples. We train the DCGAN-SSL model on CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], on sets of labeled samples of size 100, 500 and 1000. Table 4.5 summarizes the results using CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. We observe that with the different amount of labeled data, VAT [START_REF] Miyato | Virtual adversarial training : a regularization method for supervised and semi-supervised learning[END_REF] performs better than CatGAN [START_REF] Springenberg | Unsupervised and semi supervised learning with categorical generative adversarial networks[END_REF] and TSVM [START_REF] Joachims | Transductive inference for text classifcation using support vector machines[END_REF]. Using 1000 labeled samples, DCGAN-SSL achieved the best performance compared to the state-of-the-art methods on CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], with the error rate of 1.04%. [START_REF] Miyato | Virtual adversarial training : a regularization method for supervised and semi-supervised learning[END_REF] 1.45 ± 0.2 1.60 ± 0.80 2.23 ± 0.05 CNN [START_REF] Kim | A hybrid framework combining background subtraction and deep neural networks for rapid person detection[END_REF] 1.26 ± 0.7 1.5 ± 0.11 1.8 ± 0.82 DCGAN-SSL 1.04 ± 0.41 1.15 ± 0.07 1.52 ± 0.33 It can be observed from Figure 4.8 that the replacement of FC layers in classical CNNs with GAP in DCGAN-SSL can boost performance with a smaller labeled training size. The training accuracy of the standard CNN achieves high values but it overfits regarding the validation dataset. These results illustrate that by adding GAP instead of a stack of FC layers on top of the feature maps of DCGAN-SSL, the performance of CNN is increased without requiring additional training data. One advantage of GAP compared to the FC layers is that it enforces correspondences between feature maps and categories, which makes it more native to the convolution structure. Additionally, there is no parameter to optimize in the GAP, so overfitting is prevented at this layer. As can be seen from the graphs above, the DCGAN-SSL model has a higher validation accuracy than the CNN and a lower training accuracy, but this is obviously due to over-fitting being reduced in the DCGAN-SSL model.

Conclusion

In this chapter, a new DCGAN-SSL approach for classifying moving objects extracted from video sequences is proposed. It combines the strengths of the generative models and the semi-supervised learning framework and trains jointly supervised and unsupervised models. Motivated by the ability of the DCGAN discriminator to classify data well, we have suggested to use DCGAN discriminator to extract deep features and then categorize extracted images. Then, we compared the DCGAN-SSL classifier with CNN as well as some existing models on real videos of CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] and VIRAT video dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF]. Combining the supervised loss with the unsupervised loss of DCGAN permitted us to achieve a test accuracy of 0.93 with only 120 samples. The experimental results show that our DeepDC based on DCGAN-SSL outperforms the CNN model and other three traditional methods. In addition, our model is easy to use and it enables us to apply it into various applications including facial expression, activity recognition, etc. As a future work, we suggest improving generative models and applying large amounts of unlabeled samples to reach high efficiency on supervised methods and to contribute to the efficient use of very small amounts of labeled samples. These semi-supervised methods are successful and thus allow creating an accurate supervised learning model that requires the collection of a sufficient amount of labeled samples, which is relatively expensive.

Chapter 5 DCGAN-based data augmentation for face identification in images and video applications

This chapter presents a Deep Convolutional Generative Adversarial Net (DCGAN) able to increase training data for better face recognition performance. Our proposal is based on FaceNet model to extract high-quality features from faces, called embeddings, that can be used to train our face identification system. Additionally, a DCGAN-based data augmentation method is used to reduce overfitting while maintaining the robustness of a classifier and then improving the accuracy of face recognition. Results on two datasets show the pertinence of the proposed approach. This chapter is based on the paper presented in the International Symposium on Visual Computing (ISVC 2020) [START_REF] Ammar | Towards an effective approach for face recognition with DCGANs data augmentation[END_REF].

Motivation

In recent years, face recognition has been an important area of research in the field of computer vision and pattern recognition. Compared to conventional machine learning methods, deep learning algorithms have shown promising performances in terms of image recognition accuracy and processing speed. In particular, Convolutional Neural Network (CNN) shows the highest performance in image recognition field [247] [435]. Compared to conventional algorithms for face recognition, CNNs are trained in a data-driven way. Additionally, CNNs models combine both feature extraction and classification into one framework. A CNN model incorporates mainly convolutional layers, pooling layers, fully-connected layers, as well as an input and an output layer. Based on its weight-sharing capability, local connectivity and sub-sampling, CNNs are better able to extract features and make a significant progress in face recognition. CNN's performance is affected by the network structure, its parameters, and the number of training images. However, in these approaches, a classification layer [START_REF] Sun | Deeply learned face representations are sparse, selective, and robust[END_REF] [439] is trained on a set of known face identities. Then, an intermediate bottleneck layer is used to represent the input as a signature vector with reduced dimensionality in order to generalize recognition over all identities used in training. But, these approaches have many downsides, such as their indirect nature and their inefficiency. Typically, a face representation is very large (thousands of dimensions) with the use of the bottleneck layer and cannot generalize well to new identities. To reduce the dimensionality, Sun et al. [START_REF] Sun | Deeply learned face representations are sparse, selective, and robust[END_REF] applied PCA to achieve only a linear transformation that can simply be learned in a network layer. Unlike these methods FaceNet directly trains a 128-D compact embeddings using a loss function based on an online triplet mining method based on LMNN [227].

Despite the exceptional efficiency of CNNs in image recognition, it still faces difficult challenges, such as the difficulty of getting enough training images, because CNN requires a large amount of data for learning. Generally, a large volume of training samples is useful to achieve high recognition accuracy. Because a CNN has a powerful learning ability, it needs different facial views for each subject. However, it is sometimes difficult to provide sufficient number of images for CNN training. Obtaining such a dataset for one class is not only time consuming, but also impractical. Moreover, it is often necessary to train samples of faces in different lighting, poses, and occlusion situations. To deal with the issue of lack of samples, an efficient method is suggested is the data augmentation technique. The principal purpose of data augmentation is to increase the size of the training dataset in order to achieve high accuracy [START_REF] Cire¸san | Multi-column deep neural networks for image classification[END_REF], robustness of a classifier and decrease over-fitting. The increase in data size is achieved by applying label-preserving transformations to transform the accessible images. Generally, the advanced approaches used to increase the number of images in the database are affine transformation (cropping, inversion, rotation, translation....), the brightness changes of the image, adding Gaussian noise and the application of various filtering operations. A small number of samples in the dataset may not be appropriate in a complex scenes because the most discriminant features of each elements are probably different.

In this chapter, we propose a face recognition approach based on FaceNet model with DC-GANs data augmentation, that can mitigate the issues discussed above. Like other recent works that use deep networks [START_REF] Sun | Deep learning face representation from predecting 10,000 classes[END_REF] [439], our method is a completely data-driven approach which allows to learn the representation directly from face pixels. Instead of using engi-neering features, we get an extended dataset of labelled faces using DCGANs to achieve the convenient in variances to illumination, pose and other variational situations. FaceNet contains two different deep network architectures that have been recently used with great success in the field of computer vision. Both are deep convolutional networks [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] [START_REF] Rumelhart | Learning representations by backpropagating errors[END_REF]. The first architecture is based on the Zeiler & Fergus [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF] model which contains several interleaved convolutional layers, max-pooling layers, non-linear activations and local response normalisations. The second deep network architecture used the Inception model of Szegedy et al. [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] which was recently used as the winning approach for ImageNet 2014 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF]. These networks employ mixed layers that run various convolutional and pooling layers in parallel and combine their responses. The proposed face recognition model uses a complex system of multiple steps based on FaceNet model, that combines the output of a deep convolutional network and an SVM for classification. We evaluate our approach based on DCGANs using images from CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF], LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF], VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF], Choke-Point dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF] . In addition, we investigate the effect of generated images quality on face identification. In the field of automatic image generation, DCGAN is known to generate high quality images [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. Convolution between generator and discriminator leads to obtain the high-performance image generator. Relatively little approach based on feature extraction has been proposed for face recognition task.

Our contributions can be summarized as follows:

1. A robust combination of FaceNet model for feature extraction and DCGANs for data augmentation that allows us to be more robust on face recognition task. The proposed approach aims to identify people extracted from video sequences through their faces and to increase face image dataset by generating synthetic human faces which efficiently expand the training data, handling the effects of misalignment, lighting variations, partial occlusions, variations in pose and to avoid over-fitting during training.

2. We evaluate the impact of the combination of these two methods in face recognition performance on two image face datasets that are the LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] and the VG-GFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF] as well as two video face datasets, the ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and the Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF].

The rest of this chapter is as follows. In Section 5.2, we give a review of the different face detection methods. Section 5.3 provides a brief review of data augmentation techniques. Section 5.5 discusses the architecture of FaceNet model based on Triplet loss. The construction of the new face recognition method which combines FaceNet model and DCGAN data augmentation is described in Section 5.6. Comparative results obtained on both static and video face datasets are given in Section 5.7. Finally, the conclusion is shown in Section 5.8.

Face detection

In recent years, human detection beings in a video-surveillance sequence has attracted more and more attention because of its large area of applications. In the literature, many methods are presented for detecting humans. To recognize a human being, it is crucial to detect his face as the most representative part of the human body. Face detection and alignment are crucial for numerous applications, such as the recognition of faces and the analysis of facial expressions. Nevertheless, these tasks are challenging due to the wide visual variations of faces, such as various occlusions, poses and extreme illumination variations. In 2004, Viola and Jones [START_REF] Viola | Robust real-time face detection[END_REF] suggested a cascade face detector using Haar-Like features and AdaBoost to train cascaded classifiers which are more performent and effective in real time applications. However, some subsequent studies, [START_REF] Yang | Aggregate channel features for multi-view face detection[END_REF] [348] [START_REF] Zhu | Fast human detection using a cascade of histograms of oriented gradients[END_REF], show that it cannot maintain a continuous competitiveness in real word applications with greater visual variations of human faces that influence the visual coherence of faces. In addition to the cascading structure, the deformable part models (DPM) presented in [START_REF] Yan | The fastest deformable part model for object detection[END_REF] [324] [START_REF] Zhu | Face detection, pose estimation, and landmark localization in the wild[END_REF] for face detection can reach outstanding performance. However, they require high computation cost and may generally need costly annotation in the training step. Face detection has been enhanced with the development of robust feature extraction techniques such as HOG (histogram of oriented gradients) [START_REF] Albiol | Face recognition using HOG-EBGM[END_REF] and LBP (local binary patterns) [221] and their variants. Subsequently, deep CNNs are used for face detection. Yang et al. [START_REF] Yang | From facial parts responses to face detection: A deep learning approach[END_REF] presented deep neural networks (DNNs) for face detection. But, this algorihm is consumely in time under real conditions. In 2015, Li et al. [START_REF] Li | A convolutional neural network cascade for face detection[END_REF] proposed a CNN cascade face detectors with several resolutions. The authors also tried to improve the quality of bounding boxes through a calibration network. An OpenCV-based deep learning face detector was used in [START_REF] Gupta | Face detection opencv, dlib and deep learning[END_REF] to locate faces in images using a pre-trained OpenCV and Dlib models based on the Single-Shot-Detector (SSD) with a ResNet-10 network. However, the Dlib face detector lacks some of the difficult examples (partial occlusions, silhouettes, etc.). This makes the model less efficient on other benchmarks. To deal with these limitations, in this chapter, we propose to apply a cascaded face landmark detector called Multi-task CNN in the preprocessing module [START_REF] Zhang | Joint face detection and alignment using multitask cascaded convolutional networks[END_REF], which consists of three layers of deep convolutional networks, to detect and align the sample set.

The main face detection works, including our proposal are shown in Table 5.1. 

Image data augmentation techniques

A number of data augmentation techniques have been suggested to enlarge the image data artificially. The main data augmentation works are summarized in Table 5.2. This section reviews the existing works that analyzed the conventional and in-depth data augmentation techniques. Vincent et al. [START_REF] Vincent | Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[END_REF] added Gaussian noise, Masking noise and Salt-and-pepper noise to obtain more noisy images to train Stacked Denoising Autoencoders. Howard et al. [START_REF] Howard | Some improvements on deep convolutional neural network based image classification[END_REF] applied cropping and flipping to extend the training dataset, which is broadly used in the subsequent studies [START_REF] Yi | Learning face representation from scratch[END_REF] [115] [START_REF] Xu | Integrate the original face image and its mirror image for face recognition[END_REF] even combined the original face image and its mirror to improve the performance of face recognition based representation. To synthesize a great number of corrupted images, Xie et al. [START_REF] Xie | Image denoising and inpainting with deep neural networks[END_REF] added Gaussian noise to images. Wu et al. [START_REF] Wu | Deep image: scaling up image recognition[END_REF] introduced a number of techniques, such as color casting that modifies the intensities of the RGB channels, the vignetting which decreases the image's brightness towards the periphery compared to the image center and the distortion of the lens which is a deviation from rectilinear projection caused by the camera lens.

Data increasing methods specific to face images were also presented. Jiang et al. [START_REF] Jiang | Efficient 3D reconstruction for face recognition[END_REF] suggested an effective 3-D reconstruction method for generating face images with various poses, expressions and illuminations. Mohammadzade and Hatzinakos [START_REF] Mohammadzade | Projection into expression subspaces for face recognition from single sample per person[END_REF] suggested an expression subspace projection method that by projecting an image with an arbitrary expression into the expression subspace, new expression images are generated for each person. A more accurate estimation of the within-subject variability was achieved. Seyyedsalehi et al. [START_REF] Seyyedsalehi | Simultaneous learning of nonlinear manifolds based on the bottleneck neural network[END_REF] use a nonlinear manifold separator neural network (NMSNN) to extract identity and expression manifolds for face images. However, most of them are complex and attached to constrained environments. As shown in last studies [START_REF] Ahonen | Recognition of blurred faces using local phase quantization[END_REF] [247] [START_REF] Wu | Deep image: scaling up image recognition[END_REF], data increasing methods assist the trained Deep CNN model implemented with a robust generalization capability to detect invisible but similar noise patterns in the training data. A landmark perturbation technique is suggested by Shan et al. [START_REF] Shan | Curse of mis-alignment in face recognition: problem and a novel mis-alignment learning solution[END_REF] to extend the training dataset to solve the problem of misalignment. However, they only disturbed the eye coordinates of each face image with eight neighbors. O'Donnell and Bruce [START_REF] Donnell | Familiarisation with faces selectively enhances sensitivity to changes made to the eyes[END_REF] have demonstrated that hairstyle is an extremely significant feature to recognize faces. But, criminals generally use various hairstyle masks to hide their hairs or other disguises when they commit crimes. Many people, particularly woman change their hair styles regularly. Additionally, because of different hair styles with different fringes occlude the forehead or even part of eyes, which would influence the performance of face recognition. Lv et al. [START_REF] Lv | Data augmentation for face recognition[END_REF] proposed five data augmentation techniques devoted for face recognition, covering landmark perturbation and four synthesis methods (hairstyles, poses, glasses, illuminations).

The traditional data augmentation methods, such as rotation, flip and translation, are severely limited, which cannot achieve good generalization results. To improve the recognition accuracy of facial images, in this chapter, a new method of data augmentation based on DCGANs is proposed for face recognition. By using images generated by DCGANs and images in the original dataset as input, this model can achieve the top average identification accuracy.

Experiments on face identification show that DCGAN can generate data that approximate to real images, which can be used to (1) provide a larger data set for the training of large neural networks, and improve the performance of the recognition model through highly discriminating image generation technology; (2) reduce the cost of data collection; (3) enhance the diversity of data and the generalization ability of the recognition models. Generated faces by DCGANs extend the training dataset, which mitigates the effects of misalignment, illu-mination variations, changes in pose and partial occlusions, as well as the overfitting during training. 

DCGANs

In this thesis, we exploit the ability of DCGAN's generator [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] to artificially generate more facial images similar to the original faces in the training dataset. The idea is to simultaneously train two adversarial neural networks. The first network is a discriminator that learns to determine weather the sample comes from the data distribution. The other is a generative model that aims to generate "fake" images that attempts to fool the discriminator. After several stages of training, the optimization will achieve a stable point where the discriminator will difficult to discern whether the data was "fake" or not.

Mathematically, the training process of DCGANs can be seen as a minimax game. The generator G(z) takes a sampled input z from a uniform distribution. The discriminator D(.) takes x as input, being either images, from the database or output of generator G(z). During training, the discriminator tries to distinguish between selected database and G(z), i.e. attempts to maximize, log(D(x))+log(1-D(G(z))). Simultaneously, the generator attempts to deceive the discriminator by minimizing log(1-D(G(z))). The optimization will achieve a point of equilibrium where the discriminator is unable to distinguish between x and G(z), after multiple steps of training. The generator takes a noise vector as input, followed by a fully connected layer containing 8192 neurons and resized to the dimension of 4 × 4 × 1024. Next, 4 transposed convolutional layers are used with stride of 2 and padding resulting in a reduction of the channels and an up-sampling of the features by factor of 2. The output image's size is of 64 × 64 × 3. The input image with dimension 64 × 64 × 3 is transmitted through 4 consecutive convolutional layers with the final output of dimension 4 × 4 × 512. The last fully connected layer produces final output classes by a softmax activation function. It generates the probability that x is sampled from the true distribution. The final classification is done by attributing the class with the highest probability to a given image. FaceNet is a deep CNN implemented since 2015 by Google researchers to successfully deal with the difficulties in face detection and verification. Figure 5.1 presents the structure of the FaceNet architecture. The FaceNet network transforms the face image into 128-D Euclidean space. Therefore, FaceNet model aims to identify the similarities and differences on the image data set when is trained for triplet loss. The encodings with 128-D are used to cluster faces in an efficient way. FaceNet encodings are used as feature vectors for face recognition and verification, after creating the vector space. The distances for the "same" images would be much closer than the non similar random images. FaceNet [START_REF] Schroff | Facenet: a unified embedding for face recognition and clustering[END_REF] generally consists of two different basic architectures based on CNNs. The first category adds 1 × 1 × d convolutional layers between the standard convolutional layers of the Zeiler & Fergus [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF] architecture, then gets a 22 layers NN1 model. The second category consists of Inception models based on GoogLeNet [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF]. Figure 5.2 represents the network structure of an Inception module. It contains 4 branches from the left to right. It employs convolution with 1 × 1 filters as well as 3 × 3 and 5 × 5 filters and a 3 × 3 max pooling layer. Each branch uses a 1 × 1 convolution to achieve time complexity reduction. FaceNet model is a deep CNN trained via a triplet loss technique that allows vectors for the same identity to become more similar (smaller distance), while vectors for different identities should become less similar (larger distance). The key advantage of this model is that it uses DCNN trained to directly optimize the embedding itself rather than extracting them from an intermediate bottleneck layer in other deep learning approaches. The most important part of FaceNet model is the end-to-end learning of the entire system. https://www.cs.toronto.edu Therefore, the triplet loss is applied to directly reflect what we want to achieve in face verification, recognition and classification. The triplet loss [START_REF] Sun | Deep learning face representation by joint identification-verification[END_REF] assists to project all faces with a similar identity onto a single point in the embedding space. But, the triplet loss attempts to impose a margin between every pair of faces from one identity to all others, which enables the faces for one subject to live on a manifold, whereas still imposing a distance and therefore discrimination to other subjects. The subsequent section describes this triplet loss and how it can be learned effectively on a large scale.

In this chapter, the same pre-processing is performed for all training and testing samples. First, face detection is carried out using MTCNN algorithm [START_REF] Zhang | Joint face detection and alignment using multitask cascaded convolutional networks[END_REF], then five key points are located for each sample. A similar transformation is made depending to the position of the keypoints that are located. Finally, all faces are cropped into images of a certain dimensions. After applying face alignment and cropping, the input face is passed through the deep neural network. The FaceNet deep learning model is applied to extract the 128-d feature vector called embeddings that quantify each face in an image. The computation of the face embedding lies in the training process, including the input data into the network and the triplet loss technique. The neural network calculates the encoding vector of size 128 for each face.Then, adjusts the network weights through the triplet loss function. The objectif of the triplet loss is to push the 128-d encodings of two images of the "same" identity (Anchor and Positive) closer to each other. At the same time, it tries to pull the encodings of the negative image farther apart. In this way, the network learns to quantify faces and output highly discriminating and robust embeddings adapted to face recognition. The model allows computing encodings for each face and finally an SVM classifier is trained on top of the face embeddings.

Triplet Loss

https://www.computer.org/csdl To train a face recognition model, each input batch of data contains three images : the anchor, the positive image and the negative image.

Triplet loss process is applied to minimize the distance between the anchor and the sample if the sample is positive and signifies the same person; also, to maximize the distance between the encodings of images (the anchor and the negative sample), which signifies a different identity. Thus, triplet loss is one of the best ways to learn a good 128-D encoding for each face. The anchor image represents the reference image that we took from that dataset to calculate the triplet loss.

Let's f (x) ∈ R d , where f (x) represents the embedding which maps an image x into a d-dimensional Euclidean space. This encoding is restrained to live on the d-dimensional hypersphere, i.e. f (x) 2 = 1. This loss is motivated in [227] in the context of the nearest neighbor clustering. An anchor image x a i of a one person must be closer to all other images x p i of the "same" person (positive) than to any image x n i of a different person (negative). This is visualized in Figure 5.3. Thus, this equation must be satisfied

f (x a i ) -f (x p i ) 2 2 +α < f (x a i ) -f (x n i ) 2 2 (5.1) ∀( f (x a i ), f (x p i ), f (x n i )) ∈ τ (5.2)
where α is a margin that is imposed between positive and negative examples. Let N be the cardinality of τ, the set of all possible triplets in the training set. The generation of all possible triplets results in numerous triplets that are satisfied in a easy way (i.e. reach the restriction in Eq. 5.1). The process minimizes a loss on triplets that measures triplet satisfaction. These triplets, as they would still be transmitted across the network, they would lead to a slower convergence and they would not contribute to the training. It is important to choose hard triplets, that are active and can thus improve the model. Firstly, the proposed face identification system takes an input image or video frame, detects the location of a face in the image using a cascaded face landmark detector called Multi-task CNN in the pre-processing module [START_REF] Zhang | Joint face detection and alignment using multitask cascaded convolutional networks[END_REF], which contains three layers of deep convolutional networks to detect and align the sample set. Multi-task CNN is used for joint face detection and alignment, which combines these two tasks based on an unified cascaded CNNs by multi-task learning. It consists of the following three steps. In the first step, a candidate windows is quickly obtained thanks to a shallow CNN. The windows are refined allowing the rejection of a great amount of non-faces windows through a more complex CNN. Then, a more effective CNN is trained to refine the result and estimate the positions of facial landmarks. This multi-task learning can significantly enhance the performance of the algorithm. The face is pre-processed and aligned by computing facial landmarks based on MTCNN as presented in Figure 5.5. Face alignment is the process of identifying the geometric structure of the faces and tries to perform a canonical face alignment based on rotation, translation and scale. It has been shown that the face alignment increases the precision of face recognition. The principal goal of MTCNN is to re-scale the corresponding face image to a range of different sizes called an image pyramid.

Proposed approach

The Proposal Network (P-Net) is a fully convolutional network used to get the candidate windows and their corresponding bounding box regression vectors. The non-maximum suppression (NMS) is applied to merge highly overlapped regions and refine the output. This can be considered as a two-class classification problem that can be solved by the cross-entropy loss.

L det i = -(y det log(p i ) + (1 -y det i )(1 -log(p i ))) (5.3) 
y det i ∈ {0, 1} (5.4) 
In Eq 5.3, y i is the input image, p i is the probability produced by the network y i that represents a sample being a face. Eq 5.4 indicates the label of ground-truth. The Refine Network (R-Net) aims to filter the bounding boxes to eliminate a large number of rough facial windows. This objective can be considered as a problem of bounding box regression, also overcomed by the Euclidean loss.

L box i = ŷbox i -y box i 2 2
(5.5)

In Eq 5.5, ŷbox 

L landmark i = ŷlandmark i -y landmark i 2 2
(5.6)

In Eq.5.6, ŷlandmark i and y landmark i are the coordinates of the predicted facial landmarks with the trained network and the actual condition for the i-th input image, respectively. The facial landmarks correspond to five feature points on the face, which cover the left mouth, ). The nn4.small2 version not only reduces the input size, but also it does not use 5x5 convolutions in the higher layers because the receptive field is already too small. This version contains a structure similar to the FaceNet architecture, but with the removal of layers 4b, 4c and 4d and with smaller 5a and 5b layers. It consists of a mixture of regular pooling layers, convolutional layers and inception layers.

The final step of our face recognition model is to train a classifier on top of the embeddings previously generated from face dataset by using deep CNN. An Euclidean embedding is learned per image using a deep convolutional network. The network is trained in such a manner that the squared L2 distances between the embeddings corresponds to face similarity. Faces of the "same" person have close distances and faces of different people have great distances. Once this encoding has been generated, the distance between the two encodings is thresholded for face verification. Finally, we use Support Vector Machine (SVM) for face classification task.

Experimental results

The experiments were carried out on faces taken from the 'person' category of the CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] obtained in Chapter 4, LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] and VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF] as well as two video face datasets, ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF]. 

Description of the datasets

• Faces extracted from CDnet2014 dataset

We collected 1000 facial ROIs from the 'person' class obtained from CDnet2014 [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] images of Chapter 4, corresponding to 10 identities with different illumination, pose and facial expressions, to train the proposed face recognition approach. There are approximately 100 faces captured for each identity belonging to subjects whose faces appear clearly.

• Labeled Faces in the Wild (LFW) dataset

The LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] is the standard benchmark for face verification and recognition. This dataset includes 13,233 facial images of 5,749 subjects. These images present several challenges related to face pose, expression, illumination, and partial occlusion. This dataset has a limitation is that only 1,680 identities out of a total of 5,749 subjects have more than one face image. A subset of the dataset consisting of 3137 images belonging to 62 subjects was used during the experiments, by selecting the subjects with 20 or more images.

• VGGFace2 dataset

The VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF] includes 9000 identites. The distribution of faces for different subjects is varied, from 87 to 843, with a mean of 362 images for each subject. Because of time reason, we did not manage to run experiments on the whole dataset.

In our experiments, we choose a subset from VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF] by randomly selecting 20 subjects to evaluate the performance of our method. The selected subset includes 12 mens and 8 women. The constructed VGG-based image set contains 7746 images.

• ChokePoint dataset

The ChokePoint video dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] is designed for verification/identification experiments of people in real world surveillance situations using current techniques. Faces have variations in terms of pose, lighting, sharpness, as well as mis-alignment owing to the automatic localization/detection of faces. The ChokePoint video dataset consists of 25 identities (19 men and 6 women) in portal 1 and 29 identities (23 men and 6 women) in portal 2. We used portal 1 for our experiments.

• Youtube face dataset YouTube Faces Database (YFD) [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF] consists of 3425 videos of 1595 different people with an average of 2.15 videos per subject, with video clips ranging from 48 to 6070 frames. This dataset provides a set of videos and labels for subject recognition from videos. We evaluate our approach with 40 identities from Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF].

Qualitative and quantitative evaluation

In our experiments, we start with recognizing faces in images and then move on to recognizing faces in video streams. We also use a label encoder which contains the name for the people our model can recognize. We filter weak detections and extract the face ROI to recognize faces in the image. The results of our experiments are carried out on different datasets.

• Faces extracted from Change Detection dataset (CDnet2014) To augment the diversity of the original images and reduce overfitting, we expand the original dataset through our proposed data augmentation technique based on DCGANs. We add 100, 250 and 500 generated images per one class of the CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. Results summarized in Table 5.3 show that when adding 100 images per class, the accuracy can achieve 94.5%. In addition, after a period of collecting more data, the accuracy improves to 96.11%. We also compare our proposed face recognition approach based Table 5.3: Face recognition accuracy with DCGAN data augmentation using the proposed method.

Number of augmented samples per class +0 +100 +250 +500 CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] 0.91 0.945 0.951 0.9611 LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] 0.64 0.781 0.895 0.9212 VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF] 0.65 0.678 0.88 0.9583 on DCGAN data augmentation with standard data augmentation methods. Results reported in Table 5.4 demonstrate the superiority of DCGAN based data augmentation. Our proposed face recognition approach showed higher performance when applying DCGAN data augmentation over traditional data augmentation techniques. While standard data augmentation techniques result in accuracy above 92%, DCGAN data augmentation achieves an accuracy of 96.11%. Filter operations have relatively better performance compared to geometric transformations and brightness augmentation methods, but still are inferior to DCGAN-based data augmentation. Table 5.4 provides also evidence that FaceNet model results in improved accuracy than VGG-16 model. The combination of FaceNet for face recognition with DCGAN data augmentation outperforms the work of Pei et al. [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] based on VGG-16 network for face recognition and standard data augmentation methods (see Table 5.4). To prove the effectiveness of our method, which is based on the augmented training images, our approach is compared with traditional face recognition techniques such as PCA and LBPH. Compared with PCA and LBPH, our face recognition approach based on FaceNet model with DCGAN data augmentation can achieve 96.11%.

• Labeled Faces in the Wild (LFW) dataset In our experiments, we use DCGANs as data augmentation technique. Figure 5.7 and 5.8 show that by using DCGANs as data augmentation method, several quality images were produced. Various unrealistic images that could not be seen faces were generated. This emergence of many unrealistic images is caused by the lack of training images for DCGANs. Realistic and unrealistic images are picked up through our subjective assessment. The criterion was whether we could see them as human faces or not. As it can be seen, DCGANs are able to produce images that are similar to the original faces with a small modifications. Then, we add realistic images per one class on both datasets. We add 100, 250 and 500 generated images per one class for both LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] and VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF].

Table 5.4: Recognition performance with different methods using 10 classes from CDnet2014 dataset [START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. PCA method 33.3% LBPH method 42% Geometric transformation and brightness augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 76.67% Filter operation augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 91.37% DCGANs augmentation method (CNN) 95.7% Geometric transformation and brightness augmentation method (ours) 78.17% Filter operation augmentation method (ours) 92.69% DCGANs augmentation method (ours) 96.11.% Figure 5.7: Generated Images using DCGANs on LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF].

Results reported in Table 5.3 show that the more training samples are used for finetuning, the higher the accuracy and performance of the model are. Results show that our method based on DCGANs data augmentation achieves an accuracy of 78.1% and 67.8% with LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] and VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF], respectively, when adding 100 samples per class. Furthermore, with adding 500 samples per class, the accuracy can achieve 92.12% in LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] are reported in Table 5.5. As it can be seen, the proposed approach achieves better performance than traditional face recognition methods (PCA/LBPH) using only a small amount of samples. Furthermore, with DCGANs data augmentation, our face recognition approach based on FaceNet model outperforms all others standard techniques used in the work of Pei et al. [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] for data augmentation. DC-GANs data augmentation is used to enlarge the number of original training samples for fine-tuning the proposed model. DCGANs allow generating human faces that are similar to the faces in the original dataset with small modifications. In addition, the generated faces appear fairly like realistic images with small noise. DCGANs has the ability to complete the details of the face and generate human faces that appear authentic and similar to the original face, with very low resolution human face images as input. The proposed approach efficiently expands the training data, mitigating the effects of misalignment, pose variations, lighting changes and over-fitting. Table 5.5

shows also that FaceNet model is more effective than CNNs.

Table 5.5: Recognition performance with different methods using 62 classes from LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF]. PCA method 50% LBPH method 37% Geometric transformation and brightness augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 69.21% Filter operation augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 81.94% DCGANs augmentation method (CNN) 84.26% Geometric transformation and brightness augmentation method (ours) 70.94% Filter operation augmentation method (ours) 86.57% DCGANs augmentation method (ours) 92.12%

• VGGFace2 dataset Table 5.6 summarizes the results of the comparison of the proposed approach with PCA, LBPH and the use of CNNs models for face recognition. To prove the efficiency of FaceNet model in the face recognition task, we compare it with the work of Pei et al. [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] based on CNN for face recognition with data augmentation through geometric transformation, image brightness change, and the application of different filter operations. These methods are evaluated on 20 classes from VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF]. The best accuracy is on bold. Once again, our face recognition model achieved the best accuracy compared to all the methods, even when using the CNN model which extracts highly robust and discriminant features.

Experimental results show that our approach based on DCGANs data augmentation and face classification using FaceNet gives better results than conventional data augmentation methods proposed in the work of Pei et al. [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] and face classification using VGG-16 model. Results also demonstrate that our face recognition approach based on FaceNet model outperforms both PCA and LBPH as well as the use of CNNs for face classification. FaceNet model quantitatively outperforms the mentioned techniques, making it a serious candidate for the face recognition task in computer vision applications. The proposed method based on FaceNet model gives more accuracy than using VGG-16 model with a difference of 7.86 % using LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] and 8.93% using VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF]. Table 5.6 also show that the application of filter operations as data augmentation methods gives higher performance than using geometric transformation and brightness augmentation methods (cropping, rotation, translation,.....).

• ChokePoint dataset & Youtube face dataset To evaluate the impact of data augmentation based on DCGANs in face recognition, we add 100 images for each class of the ChokePoint video dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF]. Results are summarized in Table 5.7. As It can be seen, the face recognition accuracy is higher with a difference of 0.47% and 0.12 %, respectively, when adding only 100 images per class.

Table 5.8 and 5.9 show the recognition accuracies of the proposed approach, PCA, LBPH, the use of CNN for face classification and the methods described in Pei et al. [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] using ChokePoint video dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF], respectively. Results are summarized in Figure 5.9. Experimental results have shown that the proposed method, which combines FaceNet model for face recognition and DCGANs for data augmentation outperforms the other techniques with 95.18 % and 99.65 %, respectively. Data augmentation using DCGANs gives higher accuracy than the use of standard data augmentation methods (geometric transformation and brightness augmentation method, filter operation method..) in the work of Pei et al. [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF]. We also compare the proposed approach with CNN for face recognition and we conclude that our method based on FaceNet model achieves higher accuracy with a difference of 12.11% and 0.52%, respectively. In addition, our proposed approach outperforms both PCA and LBPH standard techniques.

Table 5.6: Recognition performance with different methods using 20 classes from VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF].

PCA method 40% LBPH method 32% Geometric transformation and brightness augmentation method [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] (CNN) 81.85% Filter operation augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 85.23% DCGANs augmentation method (CNN) 86.90% Geometric transformation and brightness augmentation method (ours) 82.39% Filter operation augmentation method (ours) 87.20% DCGANs augmentation method (ours) 95.83% Table 5.7: Face recognition accuracy with DCGAN data augmentation using the proposed method in video datasets.

Number of augmented samples per class +0 +100 ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] 94.71% 95.18% Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF] 99.53% 99.65% Table 5.8: Recognition performance with different methods using portal 1 from ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF]. PCA method 50.4% LBPH method 34.09% Geometric transformation and brightness augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 72.66% Filter operation augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 70.83% DCGANs augmentation method (CNN) 83.07% Geometric transformation and brightness augmentation method (ours) 75.26% Filter operation augmentation method (ours) 82.18% DCGANs augmentation method (ours) 95.18% Table 5.9: Recognition performance with different methods using Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF] (40 classes). PCA method 60.2% LBPH method 50.6% Geometric transformation and brightness augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 81.16% Filter operation augmentation method (CNN) [START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] 97.7% DCGANs augmentation method (CNN) 99.08% Geometric transformation and brightness augmentation method (ours) 86.62% Filter operation augmentation method (ours) 98.64% DCGANs augmentation method (ours) 99.65% Figure 5.9: Recognition accuracy using LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF], VGGFace2 dataset [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF],

ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF].

Figure 5.10 shows that the face of Andre Agassi from LFW dataset [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] is recognized with 72.32%. However, the confidence is higher with data augmentation based on DCGANs achieving 77.08%. In Figure 5.11 (a), we can see that the face prediction has only 50.71% confidence when using the ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF]; however, this confidence is higher when applying data augmentation with DCGANs achieving 91.63% as shown in Figure 5.11 (b). It is the same in Figure 5.11 (c) & Figure 5.11 (d) with an increase of 1.8% adding only 100 images per class. The experimental results on LFW database [START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF], VGGFace2 database [START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF], ChokePoint face database [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face database [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF] show that the proposed approach has improved the face recognition performance with better recognition results.

The running time of an algorithm depends on the size of the input images. One of the ways for obtaining a fixed-dimensional input image is to resize the face in the bounding box to 96x96 pixels. A potential problem is that faces can look in different directions. To handle this, we propose to reduce the size of the input space by preprocessing the faces with alignment. We align faces by finding the locations of the eyes and nose with a cascaded face landmark detector called Multi-task CNN, then we perform an affine transformation to make the eyes and nose appear in roughly the same place. Additionnally, to further improve the computational time, we propose to train our model with a small version of Facenet called nn4.small2 as it reduces the number of parameters. This improvement allows for negligible alignment time and reduced neural network execution time. The almost halved execution time is the result of using a neural network that is smaller than the original FaceNet's nn4 network with the idea that a small model will perform better.

To evaluate the classification execution time of CNN and our proposed face recognition method based on FaceNet model, we use the CPU Intel Core i7 7500u. We collected the elapsed CPU time for training and classifying. Table 5.10 and Table 5.11 show the results using ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF], respectively. As shown in Figure 5.12, for the same sample image, we tried both CNN and the proposed method based on FaceNet using CPU. Using ChokePoint video dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF], CNN takes about 8 mins for training, when FaceNet takes only 6 mins. For testing, CNN takes about 0.280 ms while FaceNet takes only 0.16 ms. Using the Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF], CNN takes about 21 mins while FaceNet takes only 8 mins. For testing, CNN takes about 0.280 ms while FaceNet takes only 0.22318 ms. The proposed method based on FaceNet using nn4.small2 was able to run 2 times faster.

Table 5.10: Training and classifying execution time using Intel Core i7 Hardware using ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF].

Method

Training Classifying an image (64*64)

CNN (VGG-16) 10 minutes 0.50 ms Proposed approach based on FaceNet 6 minutes 0.16 ms Table 5.11: Training and classifying execution time using Intel Core i7 Hardware using Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF].

Method

Training Classifying an image (64*64)

CNN (VGG-16) 21 minutes 0.28 ms Proposed approach based on FaceNet 8 minutes 0.22318 ms Figure 5.12: (a) Training time using ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF]. (b) Classification time using ChokePoint dataset [START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] and Youtube face dataset [START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF].

Conclusion

In summary, a new face recognition approach based on FaceNet model with DCGAN data augmentation is proposed. It combines the strengths of deep neural networks for image generation and recognition. Then, we compared the proposed method with CNN on LFW and VGGFace2 datasets as well as on videos from ChokePoint and Youtube face datasets. The experimental results have shown that DCGAN data augmentation for FaceNet face recognition outperforms CNN and that DCGAN data augmentation produces faces similar to the original ones in the training dataset which improves the recognition performance. The proposed approach described in this chapter only reaches the highest accuracy when the number of training images is huge. Moreover, the use of alignment for pre-processing and smaller neural network models reduces the FaceNet execution time. Compared with CNN, our proposal allows reducing the execution time while maintaining a high recognition accuracy.

Chapter 6 Conclusions

In this thesis, we set out to improve background subtraction by focusing on detecting foreground objects without using additional image processing or background learning. Background subtraction is a crucial task in many computer vision applications including surveillance devices in public spaces, traffic monitoring and industrial machine vision. We focused on developing robust descriptor to deal with illumination changes, noise, and produces a good segmentation masks. In addition, we present an efficient approach able to classify the extracted objects in a semi-supervised way. Both labeled and unlabeled data are used to train a classifier. This type of classifier takes a tiny portion of labeled data and a much larger amount of unlabeled data. The goal is to combine these sources of data to train a Deep Convolutional Neural Network (DCNN) to learn an inferred function capable of mapping a new image to its desirable outcome. Finally, we propose a face recognition approach to identify the extracted people. We combine both data augmentation using DCGANs and face recognition using FaceNet model to improve the recognition accuracy, robustness of a classifier and decrease overfitting. The key contributions of the thesis are as follows.

• A Deep Detector Classifier (DeepDC). A DeepDC is introduced in this thesis. It exploits the strength of an anomaly discovery framework called DeepSphere, which leverages both deep autoencoders and hypersphere learning methods, having the capability of isolating anomaly pollution and reconstructing normal behaviors, to detect foreground objects. We adapt DeepSphere to the context of foreground-background separation. The new DeepDC produces a good segmentation results without additional image processsing and background learning. It is also tolerant to illumination changes as RPCA [START_REF] Candes | Robust principal component analysis[END_REF] is whereas DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] is not and robust to noise and the dynamic nature of the background as DeepPBM [START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] is whereas RPCA [START_REF] Candes | Robust principal component analysis[END_REF] is not. Experimental results show that DeepSphere is robust under scenes ranging from dynamic background to changing illuminations.

• A Semi-supervised classification approach. DeepDC also allows to classify the extracted images. We propose a semi-supervised learning method called DCGAN-SSL to classify the extracted objects based on the discriminator of DCGAN. The discrimi-121 nator is transformed into a multi-class classifier, which takes a tiny portion of labeled data and a much larger amount of unlabeled data. The experiments carried out on videos show that our classification approach which uses a generative model is more efficient in terms of accuracy than CNNs.

• A face recognition method based on FaceNet model. The last contribution of the thesis is the proposed face recognition approach for people identification. Our proposal is able to extract 128-dimensional face embedding to represent the face, to handle the large face representation which cannot generalize well to new identities. It trains a model to create embeddings directly, rather than extracting them from an intermediate layer.

Our method uses FaceNet model that not only increases the efficiency in terms of time and memory consumption, but also can improve the recognition accuracy. Experiments conducted on challenging image and video datasets show that this approach is more efficient in terms of time and recognition accuracy than previous methods. We extend our previous approach by proposing a DCGANs data augmentation technique for increasing the size of the dataset by generating more realistic images similar to the original faces. By fusing DCGANs data augmentation and FaceNet model for face recognition, the derived method allows improving the face recognition accuracy compared to standard data augmentation methods.

Limitations

• Our proposed DeepDC model is designed to detect moving objects in videos. The drawback of our DeepSphere-based algorithm is that the potential interactions among spatial and temporal dimensions are neglected. Furthermore, DeepSphere does not take into account the structural information of the graph, since it mainly allows extracting information in the time dimension. Therefore, it is only applicable to dynamic graphs. In addition, considering the adjacency matrices as input signifies that its input dimension is equal to the square of the number of vertices. This limits the scalability of the proposed approach.

• Our proposed DCGAN used for objects classification and data augmentation demonstrates that adversarial networks learn good image representations. The major drawback is that there are still some forms of model instabilities. We have observed that these models need a long time to train. Further work is required to address this instability.

• In this thesis, we use FaceNet model to handle deep metric learning issues and generate feature embeddings. FaceNet is based on a triplet model to minimize the distance between samples of the same class and maximize the distance between samples of various classes. However, the triplet network contains a large number of parameters, which requires sampling a large number of triplets from the training data in order to learn a robust model. However, sampling all possible triplets from the training data can quickly become difficult, where most of those samples may generate small costs that result in slow convergence. The vast majority of the training samples will produce gradients with magnitudes that are close to zero which can compromise the training convergence of the triplet model. For example, suppose that a training set contains N samples, therefore the set of triplets has complexity size O(N 3 ), as a result its training is impractical even for data sets of limited sizes.

Future works

• We plan to extend our DeepDC framework based on DeepSphere to exploit multiple data sources. We propose to investigate the possibility to process large scale and dynamic streaming data to detect foreground objects, to allow a more robust background subtraction task. We also intend to extend DeepDC to include the potential interactions among spatial and temporal dimensions as well as the structural information of the graph to further improve the detection results.

• In this thesis, we propose to use DCGANs for data augmentation and object classification. However, DCGANs are trained with long time. We intend to reduce the model size and the computational requirements to reduce the time of DCGANs. The long-training time can be also improved by varying curriculum learning and mining offline.

• As future work, we will try to better understand the error cases, further improve the model, and also more reduce the model size. We propose to extend our face recognition approach based on FaceNet model by developing a sampling technique that stochastically sub-samples the set of triplets and allows using sufficient samples to ensure that a some fraction of the hard negatives and positives are available for training. Moreover, taking into account the great complexity involved in the search of hard positive and negative examples, we propose to implement a training procedure to train samples with high gradient magnitudes: the loss functions that consider the overall structure of the embedding space will be incorporated. We propose to extend our approach by exploring the overall embedding structure and the hard negative/positive mining. We will extend the triplet loss used in our approach with a global loss that supposes that the distribution of distances between anchor and negative samples and anchor and positive samples is based on a Gaussian distribution. Additionally, we propose to compare our proposal with recent models like RetinaFace [START_REF] Deng | Retinaface: Single-stage dense face localisation in the wild[END_REF] 
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 12 Figure 1.2: An overview of a background subtraction process.
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 13 Figure 1.3: Moving object tracking.
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 14 Figure 1.4: Object classification challenges. Note the high intra-class variations, significant amount of background clutter and difficult occlusions.
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 15 Figure 1.5: A general framework of object classification.
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 16 Figure 1.6: Face recognition challenges.

Figure 1 .

 1 Figure 1.6 shows three situations of face recognition challenges. While Figures 1.6a and 1.6b show different light and pose variations, Figure 1.6c displays large expression variations.
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 17 Figure 1.7: The three steps of face recognition process. (a) The output of face detection (the bounding box) (b) The extracted face patch (c) The extracted feature vector (d) Comparing the input feature vector with the vectors stored in the dataset by classification methods and find the most likely class (the red rectangle). Each face patch is described as a d-dimensional vector, the vector x m,n as the n th in the m th , and N k represents the number of faces stored in the k th class .
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 18 Figure 1.8: Schematic organization of the manuscript and the contributions.
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 21 Figure 2.1: An overview of background subtraction models.
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 31 Figure 3.1: DeepSphere architecture.

Figure 3 . 2 :

 32 Figure 3.2: Illustration of the two-level anomaly discovery task.

Figure 3 . 3 :

 33 Figure 3.3: The proposed architecture (Deep Detector Classifier). Step 1: background subtraction. Step 2: Object classification (chapter 4).
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 34 Figure 3.4: Examples of foreground activity detection in restaurant video dataset [91] :The top, middle and bottom rows represent normal situation, anomalous situation and detected results, respectively.
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 35 Figure 3.5: Network input and output in VIRAT video dataset [333] : (a) Background frame, (b) test frame, (c) output of DeepSphere, (d) segmentation mask of the proposed method.
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 36 Figure 3.6: Extracted images from our proposed background subtraction approach: (a) person, (b) car, (c) car but not the whole feature :etc, (d) Individual but not the whole body : etc

Figure 3 .

 3 7 shows the foreground detection results using our proposed DeepDC on individual frames from two video sequences of CDnet2014 dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]: CameraJitter/-Traffic (frame #1247), CameraJitter/Traffic (frame #1546) and Baseline/Pedestrians (frame #566).

Figure 3 . 8 :

 38 Figure3.8: Background subtraction obtained with the proposed scheme and the best five BS algorithms using the VIRAT scenes and CDnet2014 dataset. From the first to last row: input frame, region of interest, DeepSphere (ours), PBAS[START_REF] Hofmann | Background segmentation with feedback: The Pixel-Based Adaptive Segmenter[END_REF], DPWrenGABGS[START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF], MixtureOfGaussianV1BGS[228], LBFuzzyAdaptiveSOM[START_REF] Maddalena | A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[END_REF] and T2FGMM UV[67].
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 39 Figure 3.9: F measures obtained with the proposed scheme and other methods for the CDnet 2014 dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] 

Figure 3 .

 3 Figure 3.10: Train and validation learning curves of DeepSphere using CDnet2014 dataset [460].

Figure 3 .

 3 Figure 3.11: (a) Gain in performance between MOG[START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF], T2FGMM UV[67] and DeepSphere[34] for the CDnet2014 dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. (b) Gain in performance between DeepSphere[34] and unsupervised models, RPCA[START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM[START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] for the CDnet2014 dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. (c) Gain in performance between DeepSphere[34] and CNNs (supervised models)[START_REF] Babaee | A deep convolutional neural network for background subtraction[END_REF] [502] for the CDnet2014 dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF].

Figure 3 .

 3 Figure 3.12: F measures obtained with the proposed scheme and other methods on 9 real-world videos of the BMC 2012 dataset[START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF].

Figure 3 . 13 :

 313 Figure 3.13: (a) Gain in performance between MOG[START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF], T2FGMM UV[67] and DeepSphere[34] for the BMC 2012 dataset[START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF]. (b) Gain in performance between DeepSphere[34] and unsupervised models, RPCA[START_REF] Candes | Robust principal component analysis[END_REF] and DeepPBM[START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF] for the BMC 2012 dataset[START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF].
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Figure 4 . 1 :

 41 Figure 4.1: GAN high-level architecture.

Figure 4 . 2 :

 42 Figure 4.2: The proposed Semi-supervised learning DCGAN (DCGAN-SSL) architecture for a 4 class classification problem.

Algorithm 1

 1 Minibatch Stochastic Gradient Descent (SGD) Training of DCGAN-SSL 1: for number of training iterations do 2:

Figure 4 . 3 :

 43 Figure 4.3: VIRAT training dataset

Figure 4 .

 4 3 shows some examples of the extracted ROIs from VIRAT video dataset [333]. We train semi supervised DCGAN without ever updating the Generator. We used different quantities of training data as labeled examples to test our semisupervised DCGAN method, considering setups with 20, 50, 100, and 120 labeled samples per class. Results are averaged over 3 random subsets of labeled data, each chosen to have a balanced number of examples from each class. The remaining training images are provided without labels. Table

Figure 4 .

 4 5 illustrates the effect of varying the number of labeled samples on the test accuracy when applying DCGAN-SSL vs CNN.

Figure 4 . 4 :

 44 Figure 4.4: Samples generated by DCGAN-SSL and GAN from the VIRAT video dataset [333]. DCGAN-SSL is on the left and GAN is on the right. The results are obtained after 200 epochs of training the models.

Figure 4 . 5 :

 45 Figure 4.5: The test accuracy of the DCGAN-SSL over CNN for various amounts of labeled samples from the VIRAT video dataset [333].

Figure 4 . 6 :

 46 Figure 4.6: Discriminator and generator losses using CDnet2014 dataset [460].

Figure 4 .

 4 Figure 4.6 presents the DCGAN-SSL discriminator and generator losses using CDnet2014 dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. It can be seen that the generator loss increases. This means that the DCGAN-SSL model successfully generates images that the discriminator fails to discriminate.

Figure 4 .

 4 Figure 4.7: (a) Training and testing loss of Fully Connected (FC) classifier using CDnet2014 [460] (b) Training and testing loss of GAP using CDnet2014 [460].

Figure 4 .

 4 Figure 4.8: (a) Standard CNN model accuracy using CDnet2014 dataset [460] (b) DCGAN-SSL accuracy using CDnet2014 dataset [460].

Figure 5 . 1 :

 51 Figure 5.1: FaceNet model architecture, which consists of two modules : preprocessing and extraction of low-dimensional representation. The preprocessing module uses the Multi-task Cascaded CNN (MTCNN) [226] for the detection and alignement of samples. The low-dimensional representation extraction module consists of a batch input layer and a deep CNN which is followed by L2 normalization that provides the embedding of face. Next, the triplet loss is applied during training.

Figure 5 . 2 :

 52 Figure 5.2: Inception module.

Figure 5 . 3 :

 53 Figure 5.3: The triplet Loss.

Figure 5 . 4 :

 54 Figure 5.4: An overview of the proposed face recognition pipeline. The CNN feature extractor generates 128-dimensional facial embeddings.

i and y box i represent the regression

  target calculated by the network and the corresponding real coordinate, respectively.The Output Network (O-Net) identifies face areas with more supervision. It outputs five facial features' coordinates. The positions of the faces are obtained to realize face detection and alignment. The detection of facial features belongs to the regression problem that minimizes the defined Euclidean loss:

Figure 5 . 5 :

 55 Figure 5.5: Face alignment using Multi-Task CNN, Facial Landmarks detection.

Figure 5 . 6 :

 56 Figure 5.6: In each row some examples of representative images/frames of datasets used in this chapter: (a) Faces extracted from CDnet2014 dataset [460] (b) LFW dataset[START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF] (b) VGGFace2 dataset[START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF] (c) ChokePoint dataset[START_REF] Wong | Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition[END_REF] (d) and YouTube faces[START_REF] Wolf | Face recognition in unconstrained videos with matched background similarity[END_REF].

  and 95.83% in VGGFace2 dataset[START_REF] Cao | VGGFace2: A dataset for recognising face across pose and age[END_REF]. Our proposal is compared with two typical face recognition algorithms, namely, Principal Component Analysis (PCA) and Local Binary Patterns Histograms (LBPH). PCA is generally employed to reduce the dimensionality of datasets while maintaining the values which contribute most to variance. The covariance matrix is decomposed to obtain the main components of the data (i.e., eigenvector) and their corresponding eigenvalues. The LBPH face recognition method is based on the Local Binary Patterns (LBP), which is an efficient texture description method. The occurrences of the LBP codes are represented in a histogram for texture classification. The classification is then carried out by calculating the similarity between histograms. Additionally, we compare our proposed face recognition method based on FaceNet model and DCGANs data augmentation with the work of Pei et al.[START_REF] Pei | Face recognition via deep learning using data augmentation based on orthogonal experiments[END_REF] based on standard data augmentation techniques (Translation, rotation, inversion, brightness change, and Gaussian noise addition) and VGG-16 model for face identification. Our method is also compared with the combination of CNN for face recognition and DCGANs model for data augmentation. The recognition results of the tested methods using 62 classes from LFW
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 58 Figure 5.8: Generated Images using DCGANs on VGGFace2 dataset [85].

Figure 5 .

 5 Figure5.10: Face confidence using LFW dataset[START_REF] Huang | Labeled faces in the wild: A database for studying face recognition in unconstrained environments[END_REF].

Figure 5 .

 5 Figure 5.11: Face confidence using ChokePoint dataset [469].
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  subspace learning models have been employed to improve the results of foreground detection. But, these standard techniques are not robust to outliers, making them very sensitive to the challenges encountered in video surveillance like camera jitter, noise, dynamic backgrounds and lack of data. To handle these limitations,

	since 2009, subspace learning have attracted renewed interest in this field due to the theo-retical progress of robust PCA, created by Candès et al. [84], by decomposition into L+S matrices [215] [216] [419] that has been widely employed making them robust not only to variations in lighting but also to dynamic backgrounds [213] [218] [368] [369] . These tech-niques are more robust to standard subspace learning methods [183] [211] [212] [213] [214] , but they are not applicable in real-time applications [70], since they need the implementa-tion of batch algorithms. To deal with this problem, dynamic RPCA algorithms reviewed by Vaswani et al. [450] [451] are proposed to provide real time performance of methods based on RPCA. The incPCP algorithm [373] and its corresponding improvements [97] [341] [372] [374] [375] [376] [377]

Table 2 .

 2 1: Background modeling methods: An overview (Part 1).

	Categories	Methods	Authors -Dates	Database	
		Temporal average	Lee et al. (2002) [265]	-	
	Crisp models	Temporal median Temporal histogram	Graszka et al. (2004) [175] Roy and Ghosh (2017) [382]	PETS2001 [1] CDnet2014 [460] [445]
		Single Gaussian (SG)	Wren et al. (1997) [470]	-	
		Gaussian Mixture Model	Caseiro (2010) [86], Stauffer (1999) [427] -	
		Kernel Density Estimation	Elgammal et al. (2000) [139], Zivkovic et	-	
		(KDE)	al. (2006) [516]		
	Statistical	General Gaussian distribu-tion	Elguebaly et al. (2013) [140]	OSU Thermal Pedestrian [123], OSU Color-Thermal [124]
	models	Student's t-distribution	Mukherjee [327], Guo et al. (2012) [180] Caviar [2], Wallflower [445]
		Dirichlet distribution	Haines et al. (2012) [186], Fan et al.	Wallflower [445]
			(2012) [145]		
		Poisson distribution	Faro et al. (2011) [150], Zin et al. [514]	PETS2006 [15]
		Models based on co-	Liang et al. (2015) [279], Liang et al.	PETS [1], AIST-INDOOR
		occurrence	(2014) [280] [281]	[278], Wallflower [445]
		Confidence	Rosell et al. (2008, 2010) [379] [378]	Wallflower [445]
		Free-distribution models	Barnich et al. (2009) [50], St-Charles et al.	CDnet2012 [173]
			(2014, 2015) [424] [425]		
		Regression models	Tombari et al.(2009) [444], Lanza et al.	-	
			(2010) [257]		
		ViBe	Barnich et al. (2009) [50]	-	
		SubSENSE	St-Charles et al. (2014) [426]	CDnet2012 [173]
		PAWCS	St-Charles et al. (2015) [425]	CDnet2012 [173]
		MOG	Stauffer et al. (1999) [427]	-	
		Codebook	Kim et al. (2004) [239]	-	
		PBAS	Hofmann et al. (2012) [196]	CDnet2012 [173]
		Improvements of MOG	Martins et al. (2017) [314], Lu et al.	fish4knowledge [3], un-
			(2018) [293], Rout et al. (2017) [381],	derwaterchangedetec-
			Kiran et al. (2017) [244], Farou et al.	tion [4] Wallflower [445],
			(2017) [151] [499], Shahet al.'s MOG	UCSD [5], RGB-D Rigid
			[399], Chen Ellis'MOG [100]	Multi-Body [429]
		Improvements of codebook	Zhao et al. (2014) [506], Sharma et al.	CDnet2012 [173],	CD-
			(2016) [407], Kusakunniran et al. (2017)	net2014 [460]
			[252], Zhang et al. (2015) [500]		
		Improvements of ViBe	Huang et al. (2014) [199] Han et al.	CDnet2012	[173]	CD-
			(2014) [187], Zhang et al. (2014) [498],	net2014	[460]	RGB-D
			Zhou et al. (2014) [508]	benchmark [421]
		Improvements of PBAS	Javed et al. (2014) [217]	-	
		Real-time implementation of	Pham et al. (2010)		
		MOG			

Table 2 .

 2 2: Background modeling methods: An overview (Part 2).

	Categories	Methods	Authors -Dates	Database
		RAM neural network	Schofield et al. (1996) [392]	-
		Multilayer perceptron	Jimenez et al. (2003) [164]	-
		Radial Basis Function NN	Tavakkoli et al. (2005) [441]	-
		General Regression NN	Culibrk et al. (2007) [109]	-
	Neural networks modeling	SOBS Multivalued SOBS SOBS-CF SC-SOBS	Maddalena et al. [296], [299], [297], [298] -Maddalena et al.(2009) [301] -Maddalena et al. (2010) [295] [7] Maddalena et al. (2012) [303] CDnet2012 [173]
		3dSOBS+	Maddalena et al. (2014) [305]	BMC2012 [446]
		Simplified SOM	Chacon-Mugui et al. (2009) [88]	-
		Neural-Fuzzy SOM	Chacon-Mugui et al. (2013) [89]	-
		MILSOBS	Gemignani et al. [160]	CDnet2012) [173]
		Restricted Boltzman Machines	Guo (2013) [181], Xu et al. (2015) [478]	CDnet2012 [173]
		Deep auto-encoder networks Xu et al. (2014)	
	Deep Neural Network Modeling			

Table 2 . 3 :

 23 Comparative study of different object classification methods.

						Un-	Semi-
	Authors		Features/models	Classifier	Supervised	supervised	supervised Database
			Conventional Approaches		
	Zhu et al. (2013) [510]	Color and texture features	Adaboost classifier			APiS 1.0 [510]
	Golle et al. (2008) [168]	Color and texture features	SVM			Asirra [141]
	Shruti et al. (2014) [408]	Gabor features	SVM			Yale-B [9]
	Joachims et al. (1999) [220]	Word stem	Transductive SVMs			-
	Zaghden et al. (2013) [494]	Fractal dimensions, SIFT	K-means classifier			-
	Zaghden et al. (2011) [493]	Fractal dimensions method	K-means classifier			-
	Ammar et al. (2017) [32]	soft-biometric features	SVM			MUCT [320] VIPeR [176]
	Jabri et al. (2018) [209]	Haar-like, LBP	Adaboost			GTI vehicle [10]
	Laopracha et al. [258]	(2019)	HOGs	SVM, KNN, random forest, DNN			GTI vehicle [10] CompCars [485] KITTI [159]
			Deep Neural Network Approaches		
	LeCun et al. (1989) [263]	Back-propagation network	CNN			-
	Long et al. (2015) [287]	CNN	FCNs			PASCAL VOC [142]
	Babaee et al. (2018) [43]	CNN	Multi Layer Perceptron (MLP)			CDnet2014 [460]
	Liu et al. (2014) [285]	Dense-SIFT features, CNN	Backpropagation Networks			Asirra [141]
	Braham (2016) [78]		ConvNets	Fully connected layer			CDnet2014 [460]
	Li et al. (2016) [276]		NDVI and MNDWI	Stacked Autoencoder (SAE)			-
	Zou et al. (2015) [517]	RBMs	Deep Belief Network (DBN)			RSSCN7 [11]
	Chen et al. (2014) [99]	Hybrid DCNN	MLP			-
	Donahue et al. (2017) [131]	BIGAN	BIGAN discriminator			ImageNet [384]
	Ammar et al. (2020) [34]	DCGAN	DCGAN discriminator			VIRAT [333], CDnet [460]
	Rosenberg (2005) [380]	Wavelet transform	MSE, Mahalanobis distance			-
	Diederik et al. (2014) [129]	Deep Generative models	TSVM with RBF			MNIST [481]
	Springerberg et al. [423]	Catgan	Discriminative classifiers			MNIST [481] CIFAR [246]
	Miyato et al. (2017) [323]	VAT	NN classifier			MNIST [481], CIFAR [246]
	Salimans et al. (2016) [387]	GAN	standard classifier			MNIST [481], SVHN [331]
	Dai et al. (2018) [116]	NLP language model	LSTMs			IMDB [294], DBpedia [270]
	Radford et al. (2017) [361]	mLSTM RNN	logistic regression classifier			MR [61]

•

  PCA, local Gabor binary pattern histogram sequence (LGBPHS), and GABOR wavelets: In 2014, Cho et al. [102] suggested a face recognition algorithm, represented with the Local Gabor Binary Pattern Histogram Sequence (LGBPHS) and Gabor wavelets.PCA is used to reduce the dimensionality.• PCA and Fisher linear discriminant (FLD): In 2012, Sing et al.[START_REF] Sing | An improved hybrid approach to face recognition by fusing local and global discriminant features[END_REF] extracted local discriminant features from the face image sub-regions and global features from the entire image. PCA and Fisher linear discriminant (FLD) are applied to reduce the dimensionality of the combined feature vector.• SPCA-KNN: In 2013, Kamencay et al.[START_REF] Kamencay | A novel approach to face recognition using image segmentation based on spca knnn method[END_REF] introduced a face recognition approach called SIFT-PCAKNN. Face images are preprocessed using a graph-based technique.Harris-Laplace and SPCA (SIFT-PCA) local features are extracted to construct the face descriptors. KNN is applied for classification.

• Convolution operations, LSTM recurrent units, and ELM classifier: In 2012,

Sun et 

al.

[START_REF] Sun | Sequential human activity recognition based on deep convolutional network and extreme learning machine using wearable sensors[END_REF] 

presented a CNN-LSTM-ELM approach to achieve activity recognition with sequential algorithm. It is based on CNNs, Long-Short Term Memory (LSTM) layers and Extreme Learning Machine (ELM) classifier. This method is more convenient for classifying the extracted features and decreases the excecution time.

Table 2 . 4 :

 24 Face recognition using holistic approaches: An overview.

	Advantage	
	Limitation	
	Linear Techniques	
	Matching	
	Database	
	Techniques	
	Authors	Seo et al. (2011) [394]

Table 2 . 5 :

 25 Face recognition using local approaches: An overview.

	Registration errors, bad expression variations High recognition rate
	Neighbor (NN)

Table 2

 2 

	Sufficiently robust on lower quality real data		Robustness and distinctiveness	Robust in unconstrained scenarios		High recognition rate, Fast computational	speed	Low processing time		Reduces computational cost and memory	Robustness
	A posterior proba-Still far to be perfect	bility	FLANN distance Processing time	FLANN distance Processing time		SVM pre-processing		KNN Low recognition rate		Hamming distance Overlapping between receptive fields	Least Square SVM High recognition, Fast computational	speed
		]	LFW [198]	LFW [198], Face94	[121]	UMIST [174], Yale	faces [55]			[319]	ORL [14]
			SURF	SURF+SIFT		SURF		BRIEF		FREAK	curvelet transform
			Du et al. (2009) [136]	Vinay et al. (2015) [454]		Shah et al. (2016) [400]		Calonder et al. (2011)	[82]	Alahi et al. (2012) [26]	Xie et al. (2009) [476]

.6: Face recognition using hybrid approaches: An overview.

Table 2

 2 

	Limitation Advantage	Small training data High accuracy rate	Complexity Low error rate, Much faster detection	Big-sized network Recduce error rate, High accuracy	
	Matching	-	CNNs	SVM	
	Database	LFW [198]	AFLW	LFW [198] YFD	[468]
	Features/Techniques	DeepID3	CNN cascade	FaceNet model	
	Authors	Sun et al. (2015) [113]	Li et al. (2015) [274]	Schroff et al. (2015) [393]	Liu et al. (2017) [286]

.7: Face recognition using deep-learning approaches: An overview.

Table 3 .

 3 1: FM of BS algorithms evaluated on five real videos of the VIRAT dataset[START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF]. The six best methods are underlined. The best methods in each category are in italic.

	ID Method	Recall	Precision	F-Measure
	Basic methods, mean and variance over time	
	StaticFrameDifferenceBGS	0.6903	0.8661	0.7682
	FrameDifferenceBGS	0.6028	0.7956	0.6860
	WeightedMovingMeanBGS	0.6829	0.8060	0.7393
	WeightedMovingVarianceBGS	0.7289	0.8237	0.7734
	AdaptiveBackgroundLearning	0.7632	0.8963	0.8244
	DPMeanBGS	0.7056	0.8718	0.7800
	DPAdaptiveMedianBGS [315]	0.6734	0.8870	0.7656
	DPPratiMediodBGS [81]	0.6901	0.8370	0.7904
		Fuzzy-based methods		
	FuzzySugenoIntegral [497]	0.8067	0.9229	0.8509
	FuzzyChoquetIntegral [45]	0.7899	0.8901	0.8370
	LBFuzzyGaussian	0.7312	0.9105	0.8110
	Statistical methods using one Gaussian	
	DPWrenGABGS [470]	0.8347	0.9249	0.8775
	LBSimpleGaussian [57]	0.6321	0.9107	0.7462
	statistical methods using multiple Gaussians	
	DPGrimsonGMMBGS [427]	0.7226	0.8873	0.7965
	MixtureOfGaussianV1BGS [228]	0.8188	0.9285	0.8702
	MixtureOfGaussianV2BGS [516]	0.8110	0.8500	0.8301
	DPZivkovicOfGaussians [516]	0.7937	0.9120	0.8475
	LBMixtureOfGaussians [66]	0.8750	0.8340	0.8480
		Type-2-fuzzy-based methods	
	T2FGMM UM [67]	0.6611	0.9350	0.7745
	T2FGMM UV [67]	0.8362	0.9751	0.8548
	T2FMRF UM [507]	0.6100	0.8821	0.7212
	T2FMRF UV [507]	0.8692	0.6788	0.7623
	Statistical methods using colour and texture features	
	MultiLayerBGS [487]	0.7159	0.8657	0.7837
		Non-parametric methods		
	PixelBasedAdaptiveSegmenter [196]	0.852	0.923	0.885
	GMG [167]	0.9470	0.7030	0.8031
	VuMeter [172]	0.7195	0.9055	0.8019
	Methods based on eigenvalues and eigenvectors	
	DPEigenbackgroundBGS [335]	0.8790	0.6584	0.7475
	Neural and neuro-fuzzy methods	
	LBAdaptiveSOM [347]	0.8056	0.9017	0.8509
	LBFuzzyAdaptiveSOM [295]	0.8064	0.9273	0.8626
	Proposed approach: DeepSphere	0.8880	0.9742	0.9291

Table 3 . 2 :

 32 Number of extracted images for each class from five cameras of VI-RAT Video dataset[START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF].

	Class	no. of images
	person	856
	vehicle	870
	etc	549

Table 3 . 3 :

 33 FM of BS algorithms evaluated on 53 videos of the CDnet2014 dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF]. The six best methods are underlined. The best methods in each category are in italic.

	ID Method	Recall	Precision	F-Measure
	Basic methods, mean and variance over time	
	StaticFrameDifferenceBGS	0.8452	0.6007	0.7023
	FrameDifferenceBGS	0.6736	0.9252	0.7796
	WeightedMovingMeanBGS	0.2744	0.7346	0.3996
	WeightedMovingVarianceBGS	0.8103	0.8641	0.8363
	AdaptiveBackgroundLearning	0.8742	0.7548	0.8102
	DPMeanBGS	0.7605	0.5930	0.6664
	DPAdaptiveMedianBGS [315]	0.6611	0.9350	0.7745
	DPPratiMediodBGS [81]	0.6128	0.9269	0.7378
		Fuzzy-based methods	
	FuzzySugenoIntegral [497]	0.5488	0.8817	0.6766
	FuzzyChoquetIntegral [45]	0.7621	0.9160	0.8370
	LBFuzzyGaussian	0.7372	0.5778	0.6479
	Statistical methods using one Gaussian	
	DPWrenGABGS [470]	0.7946	0.9445	0.8631
	LBSimpleGaussian [57]	0.8354	0.6038	0.7010
	statistical methods using multiple Gaussians	
	DPGrimsonGMMBGS [427]	0.8793	0.7647	0.8180
	MixtureOfGaussianV1BGS [228]	0.8779	0.9572	0.8546
	MixtureOfGaussianV2BGS [516]	0.6295	0.9368	0.7530
	DPZivkovicOfGaussians [516]	0.6547	0.9385	0.7714
	LBMixtureOfGaussians [66]	0.8750	0.8076	0.8402
		Type-2-fuzzy-based methods	
	T2FGMM UM [67]	0.5306	0.6021	0.5641
	T2FGMM UV [67]	0.7729	0.9463	0.8509
	T2FMRF UM [507]	0.6100	0.8821	0.7212
	T2FMRF UV [507]	0.6787	0.7723	0.7225
	Statistical methods using colour and texture features	
	MultiLayerBGS [487]	0.7552	0.7878	0.7712
		Non-parametric methods	
	PixelBasedAdaptiveSegmenter	0.8429	0.9193	0.8794
	[196]			
	GMG [167]	0.8793	0.7647	0.8180
	VuMeter [172]	0.8258	0.8621	0.8436
	Methods based on eigenvalues and eigenvectors	
	DPEigenbackgroundBGS [335]	0.8880	0.7691	0.8244
	Neural and neuro-fuzzy methods	
	LBAdaptiveSOM [347]	0.6460	0.8272	0.7254
	LBFuzzyAdaptiveSOM [295]	0.8304	0.8804	0.8568
	Proposed approach: DeepSphere	0.9440	0.9847	0.9639

Table 3 . 4 :

 34 Performance values of the proposed method compared to the other methods on eleven categories from CDnet2014 Dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] (Part 1).

	Videos	Method	Recall	Precision	F-measure
	B-Weather	DPWrenGABGS [470]	0.4554	0.5631	0.5022
		MixtureOfGaussianV1BGS			

Table 3 . 5 :

 35 Performance values of the proposed method compared to the other methods on eleven categories from CDnet2014 Dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] (Part 2).

	Videos	Method	Recall	Precision	F-measure
	PTZ	DPWrenGABGS [470]	0.4067	0.9408	0.5679
		MixtureOfGaussianV1BGS			

Table 3 .

 3 

		0.6933	0.8958	0.7433
	DPDL (CNN) (Temporal-wise) [502]	0.7975	0.8705	0.8287
	DeepSphere (ours)	0.8016	0.9568	0.8671

6: Visual results on CDnet 2014 dataset: From left to right: Original images, Ground-Truth images, RPCA

[START_REF] Candes | Robust principal component analysis[END_REF]

, DeepPBM

[START_REF] Farnoosh | DeepPBM : deep probabilistic background model estimation from video sequences[END_REF]

, DeepSphere (ours).

Table 3 . 7 :

 37 Background subtraction results on seven frames from three video sequences of CDnet2014 dataset affected by illumination changes and dynamic backgrounds. Our algorithm successfully segments out the objects (person/vehicle) in all seven input frames.

	Categories	Original	Ground Truth	RPCA	DeepPBM	DeepSphere (ours)
	Shadow Cubicle (Frame #1186)					
	Shadow Cubicle (Frame #5529)					
	Shadow Cubicle (Frame #5544)					
	Shadow Cubicle (Frame #5566)					
	Shadow Cubicle (Frame #7065)					
	Dynamic-B Fall (Frame #2533)					
	Dynamic-B Overpass (Frame #2467)					

Table 3 .

 3 8: Number of extracted images for each class from 53 cameras of CD-net2014 Video dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF].

	Class	no. of images
	person	3200
	vehicle	2780
	etc	1650

Table 3 .

 3 9: Performance values of the proposed method compared to the other methods on 9 real videos from BMC 2012 Dataset[START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF] 

	Videos	Method	Recall	Precision	F-measure
	Boring parking, active bkbg DPWrenGABGS [470]	0.536	0.508	0.5196
		MixtureOfGaussianV1BGS			

Table 4 .

 4 1 represents the architecture and parameters used to build our DCGAN-SSL model. Our implementation closely mirrored the conventional implementation presented in the DCGAN paper by Salimans et al.[START_REF] Salimans | Improved techniques for training gans[END_REF].

	Model	Table 4.1: DCGAN-SSL model architecture Architecture details
	Generator		
	Layer1	Dense, output:	8192, batch normalization, activation:
		LeakyReLU	
	Layer2	Reshape layer, output shape: (32,32,3)
	Layer3	2D transpose convolution layer, 256 (5 × 5) filters, unit strides,
		same padding, batch normalization, LeakyReLU activation
	Layer4	2D transpose convolution layer, 128 (5 × 5) filters, unit strides,
		same padding, batch normalization, LeakyReLU activation
	Layer5	2D transpose convolution layer, 64 (5 × 5) filters, unit strides,
		same padding, tanh activation
	Discriminator		
	Layer1	2-dimensional (2D) convolutional layer, 64 (5 × 5) filters, unit
		strides, same padding, LeakyReLU activation.
	Layer2	2D convolutional layer, 128 (5 × 5) filters, unit strides, same
		padding, batch normalization, dropout (rate = 0.5), LeakyReLU
		activation	
	Layer3	2D convolutional layer, 256 (5 × 5) filters, unit strides, same
		padding, LeakyReLU activation
	Layer4	Global average pooling 2 D
	Layer5	Dense layer, output: 4, softmax activation.

Table 4

 4 

	Model	.2: Baseline model architecture Architecture details
	CNN	
	Layer1	2D convolutional layer 64 (5 × 5) filters, unit strides, same
		padding, relu activation, maxPooling (2 × 2)
	Layer2	2D convolutional layer 128 (5 × 5) filters, unit strides, same
		padding, relu activation, maxPooling (2 × 2)
	Layer3	

Table 4 . 3 :

 43 Classifier accuracy in VIRAT video dataset[START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF].

	Examples CNN [238] DCGAN-SSL (Proposed method)
	120 100 50 25	0.8912 0.8616 0.7833 0.7013	0.9382 0.8917 0.8129 0.7645

Table 4 . 4 :

 44 Performance comparison (error rate, %) on VIRAT video dataset[START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] of other models to DCGAN-SSL for different numbers of labeled subsets per class

	Examples	120	100	50	25
	TSVM [220] 3.83 ±0.77 3.864 ±6.66 4.940 ±0.36 5.62 ±4.02
	CatGAN [423] 2.70±0.84	2.80 ±4.2	3.87 ±0.36	5.6 ±3.92
	VAT [323]	2.684 ±1.2 2.77 ±4.87 3.819 ±0.6	4.50 ±0.9
	CNN [238]	2.27 ±0.62 2.34 ±1.23 3.79 ±0.56 4.25 ±0.85
	DCGAN-SSL 1.80 ±0.41 1.92 ±0.22 3.38 ±0.50 4.10 ± 0.65

Table 4 . 5 :

 45 Performance comparison (error rate, %) on CDnet2014 video dataset[START_REF] Wang | Cdnet2014: An expanded change detection benchmark dataset[END_REF] of other models to DCGAN-SSL for different numbers of labeled subsets per class

	Examples	1000	500	100
	TSVM [220] 10.78 ± 6.6 12.08 ± 0.19 12.96 ± 0.67
	CatGAN [423] 1.73 ± 0.82 2.32 ± 0.16	2.4 ± 0.86
	VAT			

Table 5 . 1 :

 51 The main face detection works

	Authors/Date	Features
		Conventional methods
	Viola and Jones (2004) [457]	cascade face detector using Haar-Like features and AdaBoost
	Mathias et al. (2014) [324], Yan et al. (2014) [208], Zhu et al. (2012) [473]	deformable part models (DPM)
	Albiol et al. (2008) [18]	HOG (Histogram of Oriented Gradients)
	JoChang-yeon (2008) [221]	LBP (Local Binary Patterns)
		Deep Learning methods
	Yang et al. (2015) [385]	Deep CNNs
	Li et al. (2015) [274]	CNN cascade face detectors
	Vikas Gupta (2018) [182]	OpenCV-based deep learning face detector, Dlib models based on SSD, ResNet-10
	Proposed approach	Multi-task CNN (MTCNN) [226]

Table 5 .

 5 2:The main data augmentation works

	Authors/Date	Methods
	Vincent et al. (2010) [456]	Gaussian noise, Masking noise and Salt-and-pepper noise
	Howard et al. (2013) [156]	cropping and flipping
	Xie et al. (2012) [207]	Gaussian noise
	Wu et al. (2015) [359]	color casting, vignetting, the distortion of the lens
	Jiang et al. (2005) [111]	3-D reconstruction method
	Mohammadzade (2013) [184]	expression subspace projection method
	Seyyedsalehi et al. (2014) [396]	nonlinear manifold separator neural network (NMSNN)
	Lv et al. (2017) [206]	A landmark perturbation and four synthesis methods (hairstyles, poses, glasses, illuminations)
	Proposed approach	DCGANs

  and on a more extensive database such as WiderFace[12].

	Appendix A Notations and Symbols α θ encoder β φ decoder X input data z internal layer, random noise vector Xk original data a centroid of a hypersphere r radius of a hypersphere {χ k , k = 1, .., m} historical observation samples; training data {χ k , k > m} unseen test data χ sample case, tensor X t series of matrices; series of graphs h t x i j (t) time series T P true positive FP false positive FN false negative FN false negative G generator network D discriminator network X f ake , G(z) output of the generator f (x) activations of an intermediate layer, embedding x input of the discriminator FC Fully Connected BN Batch Normalization ReLU Rectified Linear Unit P model class probability N number of classes, cardinality of τ K number of real classes K + 1 additional class L supervised supervised loss (X,Y ) labeled points X 0 rest of the unlabeled data I number of total iterations p g (z) noise prior p d (x) data generating distribution x a i anchor image x p i positive exemplar x n i negative exemplar α margin τ set of all possible triplets in the training set internal states w t weight at timestep t z k encodings, embedded representations, data points ξ x det i cross-entropy loss p i probability produced by the network y i a sample being a face outlier penalty, slack variables Φ objective function, error function Ψ reconstruction error χ k output of LSTM decoder η k case-wise weights η {d k , r} heuristic function overall objective function λ Θ ∆(χ k ) G(t) V E x(t) e i j edge mapping function edge set vertex set dynamic graph reconstruction difference set of parameters compromise parameter y det label of ground-truth i L box bounding box regression objective i ŷbox regression target i y box real coordinate i L landmark regression problem i ŷlandmark coordiantes of the predicted facial landmarks i y landmark i actual condition of the i-th input image
	125

This chapter presents an introduction about the BS, image classification and recognition tasks. First, we describe the challenges of BS in scene modeling, and then we detail the major steps in a BS algorithm. Second, we survey the challenges that may occur during object classification and face recognition processes. Third, we summarize the three main contributions of this thesis. Finally, we provide the thesis outline.
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Summary:

In this thesis, we present a robust descriptor for background subtraction based on an unsupervised anomaly detection algorithm, called DeepSphere which is able to detect moving objects from video sequences. Unlike conventional background-foreground separation algorithms, this descriptor is less sensitive to noise and detects foreground objects without additional image processing. In addition, our proposal exploits both deep autoencoders and hypersphere learning methods, having the ability to capture spatio-temporal dependencies between components and through "timesteps", to flexibly learn a non-linear feature representation and reconstruct normal behaviors from potentially anomalous input data. The high quality non-linear representations learned by the autoencoder helps the hypersphere to better distinguish anomalous cases by learning a compact boundary separating normal and anomalous data. By adapting this algorithm to the background subtraction task, foreground objects are well captured by DeepSphere and the quality of detection of these objects is improved. Once these objects are detected (people / cars ...), an approach is proposed to classify them using a DCGAN discriminator network in a semi-supervised manner. The discriminator is transformed into a multi-class classifier that uses both a large number of unlabeled data and a very small number of labeled data to compensate the lack of data and the high cost of collecting additional data or labeling all the data. Finally, we have adopted an approach based on FaceNet model to recognize the extracted people through their faces. In addition, we extended our proposal with a data augmentation method based on DCGANs instead of using standard data augmentation methods.