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Chapter 1

Introduction

Artificial Intelligence (AI) is one of the most interesting and controversial technologies in the
current world. Developers continue to work on improving machine learning solutions, and
AI becomes increasingly advanced. Despite the evolution, AI still seems to struggle to render
images. Therefore, object detection, classification and recognition are popular topics in the
field of AI. Image recognition is a blend of image detection and classification. It defines
the ability of AI to detect, classify and recognize the object. In this thesis, we propose a
system to detect moving objects from video sequences (pedestrians, vehicles, etc), classify
them and only then decide if the extracted human face belongs to a known faces. Background
Subtraction (BS) plays a significant role in several computer vision applications. However, it
is a challenging task, due to the real world constraints and dynamic weather conditions (e.g
rainy day, high lighting, camera motion). Therefore, our proposed object detection system
should be robust to these challenges. Multiple features have been extracted over the long
history of BS, improved or even suggested to handle BS challenges. Highly discriminant
features are extracted for each pixel, region or cluster in an image sequence. Once the moving
objects have been extracted, the neural network must classify them by element type. Moving
object classification aims to identify the category, called also label, of the detected object
based on two main steps. First, several features are extracted from the detected objects.
Second, they are fed to a learning-based classifier to specify the class of each object. Once
the moving objects are classified, the last step is to recognize the extracted people. Face
recognition is the best example of image recognition solutions and has acquired a significant
position among all biometric systems. First, the system has to detect the face, classify it as
human face and only then decide if it belongs to the target person.

This chapter presents an introduction about the BS, image classification and recognition
tasks. First, we describe the challenges of BS in scene modeling, and then we detail the major
steps in a BS algorithm. Second, we survey the challenges that may occur during object clas-
sification and face recognition processes. Third, we summarize the three main contributions
of this thesis. Finally, we provide the thesis outline.

1
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1.1 Background subtraction

1.1.1 Challenges in scene modeling

Background subtraction is an interesting area of research in computer vision. It covers a set of
methods aimed at distinguishing moving objects, called ”foreground” in the scene, from the
static information, called ”background”. BS has been fed by many academic researchers and
developers in the last 20 years. This is due to its potential applications and the large number
of surveillance cameras installed in security-sensitive areas such as banks, railway stations,
airports, and borders. Background subtraction can be used for surveillance systems in large
spaces (such as football stadiums, and big shopping centers), in traffic surveillance (vehicle
counting, vehicle detection and tracking), industrial applications (robot guidance, inspection
and identification products) and natural environments (rivers) [27] [28]. In order to ensure
a good operation of BS algorithms, three major conditions must be satisfied: the camera is
fixed, the lighting is constant and the background is static, that is, pixels have a unimodal
distribution and no background objects are moved/inserted in the scene. Under these ideal
conditions, BS performs well. Usually, the appearance of an outdoor or indoor environment
can be affected by a variety of changes that can happen over time. In general, it is difficult to
build an excellent background model that can handle all these changes. There are numerous
situations that can affect the appearance of the scene, which can reduce the accuracy of the
BS methods. To our knowledge, the main challenges of background subtraction are [74],
[501], [401]:

• Camera jitter: Generally, the camera jitter occurs in outdoor scenes. A sudden camera
motion or camera jitter reduces the quality of images captured by cameras, resulting
in blurry images. For example, heavy winds can cause a stationary camera to move
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back and forth, causing nominal movement in scenes. This nominal camera motion
is generally indiscernible from the movement caused by moving objects, leading to
unwanted detection of foreground objects.

• Camera automatic adjustments: Automatic exposure (the amount of light falling on a
camera’s sensor) is a parameter available on most digital cameras. The light reflected
by objects with homogeneous features (e.g. intensity, texture) is captured by cameras
making segmentation a challenging task. The foreground aperture occurs when ho-
mogeneously parts of the moving object are part of the background rather than being
classified as foreground pixels.

• Pan-Tilt-Zoom (PTZ): Most background subtraction research has focused on fixed
cameras, while PTZ cameras have become more popular thanks to the wide area cov-
erage. Traditional BS methods fail in the case of moving camera because foreground
objects and background pixels are not stationary.

• Video noise: Generally, a video signal is covered with noise that appears during ac-
quisition, coding, transmission and processing leading to disturbance of the original
information which can result in artifacts, jagged edges, corners and invisible lines af-
fecting the background scenes.

• Intermittent object motion: The intermittent motion occurs when a foreground object
stops moving for long period of time or a background object begins to move, resulting
in ‘ghost’ artifacts in the detected motion. Some videos include objects that suddenly
stop to move, such as abandoned objects (parked vehicles and left-luggage). Handling
this issue depends on the context of each situation. Several applications incorporate
stationary foreground objects and others do not.

• Dynamic backgrounds: In a dynamic environment where the state of domain is chang-
ing continually, the transformation from one temporal stable to another is normally the
result of an external event or a sequence of events (i.e. flowing water, moving leaves
or plants). The background may include some elements which are not totally static
as waving trees or water surface. These elements are considered as part of the back-
ground, even if they are not stationary. This dynamic environment does not provide
a good background model because even some part of the scene that contains moving
elements can be considered as background.

• Presence of shadows: Detecting cast shadows as a moving object is highly common
and produces unwanted results. For example, the shadows are so different from the
background that they can be wrongly considered as foreground.

• Illumination changes: Illumination changes often occur over time in indoor and out-
door environments, resulting in incorrect detections. For example, a wide range of
lighting conditions, particularly those encountered during a typical 24-hour day-night
cycle, cause gradual changes in appearance in outdoor environments. Additionally,
turning on/off the light switch in an indoor scene can produce sudden illuminations. It
is crucial that the background model be invariant or tolerates these kinds of changes.

• Low frame rate: Background changes and illumination changes are not consistently
updated using a low frame rate and these variations seem to be more abrupt.
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(a) Large shadows. (b) Variations lighting. (c) Large reflections.
(tel-01753482)

Figure 1.1: Scenes captured from the same avenue under various conditions.

• Motion parallax: 3D scenes with large variations in depth show parallax in images
captured by a moving cameras, resulting in issues in background modeling and motion
compensation.

• Bootstrapping: In a training video sequence, both background and foreground objects
are present. Initial video data with only stationary objects is not always available, mak-
ing it difficult to produce a representative background model. Thus, an initialization
process is required to correctly model the background over time.

• Camouflage: Some moving objects appear a lot like the background called as camou-
flage impact. Foreground objects might have similar color with the background and
become combined with it, resulting in a wrong discrimination between foreground and
background.

• Foreground aperture: The presence of foreground objects can have the same mo-
tion characteristics. As a result, shadows usually distort the geometric shape of the
foreground objects, and sometimes fuse moving objects. The homogenous part of
foreground object may not be detected, causing false negatives.

• Night scenes: The videos taken at night are always a difficult task. Night scenes
typically lead to high incorrect detections owing to the significant variation in lighting
and the low-contrast between foreground and background.

• Challenging weather: In some situations, the BS algorithm must adapt to challenging
weather conditions such as air turbulence or snow that affects the background scene.

To handle the above challenges, many developers have suggested diverse methods and
its evaluation results have often been accessible by Change Detection website1. Recent eval-
uation results have shown that the greatest challenge is the discrimination between the back-
ground and the foreground in the case of videos taken by PTZ cameras [501] and night videos.
Another major problem would also be encountered if multiple challenges occur in the same
scene. Figure 1.1 illustrates three cases at the same avenue. While Figures 1.1a and 1.1b dis-
play shadows and several variations in light, Figure 1.1c shows large reflections. Although
all of these challenges are managed quietly today [60, 139, 343, 426, 458], they still disturb

1http://wordpress jodoin.dmi.usherb.ca/results2014/

https://tel.archives-ouvertes.fr/tel-01753482


1.1. Background subtraction 5

the background subtraction process. Note that Figure 1.1 illustrates various situations such as
large shadows, large reflections and illumination variations. At the present time, there is no
background subtraction algorithm that can address all these kinds of issues at the same time,
making the background subtraction domain even more difficult.

1.1.2 Background subtraction process

Figure 1.2: An overview of a background subtraction process.

In this section, we briefly remain the different steps related to background subtraction. Figure
1.2 shows an overview of these components. Essentially, background subtraction consists to
initialize and update a model of the static scene, called the background (BG) model, and
compare this model with the input frame to produce binary segmentation mask. Regions or
pixels with a significant difference are assumed to be categorized as moving objects (they
represent the foreground FG). A conventional background subtraction algorithm consists of
four steps:

• Background initialization: (also called background extraction, background gener-
ation and background reconstruction) consists in calculating the initial background
frame (also called reference frame).

• Background modeling: (also called background representation) constructs the model
of a scene background.

• Background maintenance: relies to the mechanism of update used for the model to
adapt itself to the changes occured over time.

• Foreground detection: Foreground detection consists in categorizing pixels as ’back-
ground’ or ’foreground’.

BS is generally an important first step in many computer vision applications as shown in
Figure 1.3. The background maintenance and moving objects detection steps are performed
repeatedly over time. A sub-entity of the reference image is compared with its corresponding
sub-entity in the current image. This sub-entity may represent the size of a pixel, a cluster or a



6 INTRODUCTION

(tel-01753482)

Figure 1.3: Moving object tracking.

region. Additionally, this sub-entity is described by a ”feature” which can be an edge feature,
color feature, stereo feature, texture feature or motion feature [75]. In order to develop a
background subtraction approach, engineers and researchers have to design each step and
select the features based on the challenges they want to overcome in the involved applications.

Background initialization is a crucial step which computes an initial model of the back-
ground. It allows generating, extracting and constructing the background. Background model
initialization has received little attention. This can be justified by the fact that initialization
can be performed by exploiting certain clean frames at the beginning of the video sequence.
Generally, in real scenarios, this assumption is not often satisfied due to the continued pres-
ence of clutter. Typically, the model is initialized using the first background image or an
initial background model computed over a set of training frames, whether or not they con-
tain moving objects. The background modeling (or representation) is the key step of any BS
algorithm. The main idea behind such step is to create a static scene representation which
is able to adapt to environmental changes in the background and to identify all foreground
objects. In recent decades, a number of methodologies have been proposed to model and
subtract the background , e.g. statistical methods [92, 427, 428], multilayer codebook based
methods [179], methods for compressed streaming video [128], etc. The third step aims to
update the background model which depends on the mechanism used to adapt the background
model according to the changes on the scene over time. The background maintenance should
be incremental (an online algorithm), as new data is streamed and so dynamically given. The
flexible models employ robust updating mechanisms to deal with several challenges, such
as noise, automatic camera settings and illumination changes in background. Additionally,
this is where the updating mechanism is used, which determines if the inserted objects are
integrated in the model, and if ghosts are updated or deleted. To handle these problems, sev-
eral methods have been implemented [47, 205, 266, 308]. The final step is the foreground
detection process, which compares the reference frame and the current image to assign fore-
ground or background label to each pixel (or regions). This is a classification task, that can be
performed by crisp [266] [362], statistical [20, 417] or fuzzy [90] classification techniques.

These different steps use methods that have various objectives and constraints. There-
fore, they require algorithms with various features. Background initialization needs ”offline”
algorithms which are ”batch” by using all the data at the same time. In contrast, background
maintenance requires ”online” algorithms which are ”incremental” algorithms by using the
incoming data one by one. Background initialization, representation and maintenance need
reconstructive algorithms while foreground detection requires discriminative algorithms.

https://tel.archives-ouvertes.fr/tel-01753482
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Deep convolutional neural networks (ConvNets) perform well in many computer vision
applications including background subtraction [483] [78]. Additionally, it is generally easy
to work with modern libraries (Caffe [219], Theano [52], Torch [13], etc.) with built-in
architectures. In contrast, ConvNets are generally not appropriate for applications where few
images are available. Training a deep ConvNets generally need a large number of images
for a better generalization of the model. In addition, the computational cost for the training
of ConvNets is high in terms of time and memory consumptions. Consequently, the study
of new background subtraction techniques computationally simple is important in several
real-life applications.

1.2 Object classification

1.2.1 Object classification challenges

Object classification, which is the process of assigning a semantic label to an object, is a core
problem in computer vision and pattern recognition. It can be used as a building block for
numerous other tasks such as localization, detection and full-scene labeling. Object classifica-
tion is a challenging process that can be influenced by many factors. Since the classification
results are the basis for many socio-economic and environmental applications, researchers
and practitioners have made large efforts to develop advanced classification methods and
techniques to improve classification performance. A good classification is very crucial, par-
ticularly in medicine. Thus, improved methods are required in this area. There are several
challenges related to the object classification task as presented in Figure 1.4:

(http://lear.inrialpes.fr)

Figure 1.4: Object classification challenges. Note the high intra-class variations,
significant amount of background clutter and difficult occlusions.

• Intra-Class Variation : Intra-class variation is a common challenge in object clas-
sification. The intra-class variation defines the image variations that occur between
several images of one class. Two objects belong to the same class, but the system
identifies them as a different class. Thus, the object classification system should be
able to address the issue of intra-class variations.

• Scale Variation : Scale variation is a very big problem in object classification. It
consists of having an image of the same object with several sizes. Scale variation
affects the detection process, i.e. the objects of any size should be identified.

• Inter-Class Variation : Inter-class variation means two different objects appear to
belong to the same class, but in reality they are not in the same class. It is easy for

http://lear.inrialpes.fr/pubs/2007/MS07a/MarszalekSchmid-CVPR07-ShapeMasks.pdf
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machine to classify the object from labeled data but if a new object which is not already
known is found then it will be difficult for machine to classify this object.

• View-Point Variation : Viewpoint variation occurs when an object is taken in sev-
eral dimensions of rotation/orientation depending on how the object is captured in the
image. Same object has different views from various viewpoints, therefore the classi-
fication system should consider all viewpoints.

• Deformation : Deformation of an object means the shape of the object is changed due
to elasticity, stretching, etc. The classification system should consider the articulated
object as belonging to the correct class.

• Occlusion : Occlusion of many objects in an image is a big challenge of object clas-
sification. There are many objects that we want to categorize in image can not be
visualized entirely. Thus, large portion of the object is hidden behind another objects.
The objects occluded may be of the same kind or it may be of a diferent kind.

• Illumination : The object classification system must be able to manage the illumina-
tion variation. Considering any image of several levels of brightness (illumination) to
our image classification system, the system must be able to attribute them the same
label.

• Background Clutter : It is defined when there are many objects in the image and
for observers it is very difficult to segment whole objects and then to get the specific
object. These images are very “noisy”.

1.2.2 Object classification process

The general framework of object classification is illustrated in Figure 1.5.

Figure 1.5: A general framework of object classification.

• Feature extraction: Typically comprises two main steps: image patch extraction
which is performed by sampling local areas of images, generally in a sparse or dense
manner and image patch representation which is performed via statistical analysis over
pixels of image patches. The feature vectors of image patches are represented as local
features including: 1) appearance-based features, e.g., scale-invariant feature trans-
form (SIFT) [288], histogram of oriented gradients (HOG) [118]; 2) color-based fea-
tures, e.g., color descriptors [390]; and 3) texture-based features, e.g., local binary
pattern [334] and Gabor filter [269].

• Building feature space: Feature space is a collection of base vectors. There are three
strategies for building the feature space.
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The first one randomly selects patches from images as base vectors. This scheme is
adopted in certain models of biological inspiration [395] [200]. It is fast but does not
sufficiently represent the characteristics of the feature space.

The second one is based on supervised learning, i.e., the generation of dictionaries
via supervised learning on local features. This method builds the relationship between
features and labels, and represents the structure of the feature space well. However, it
is time-consuming because it needs resolving dictionaries in an iterative way.

The third one is based on unsupervised learning, i.e., obtaining the base vectors through
unsupervised learning over local features. This strategy strikes a good balance between
speed and precision, and is widely used in current methods.

• Describing features: Describing features is a key component of object classification,
and significantly influences image classification in terms of speed and accuracy. The
coding strategies can be grouped into five categories:

Voting-based methods [107] [447] describe the distribution of local features with a
histogram, indicating the occurrence information of visual codes.

Fisher coding-based methods [345] [346] calculate the distribution of local features
with the Gaussian Mixture Models. Each Gaussian model reflects one pattern of local
features.

Reconstruction-based methods [459] encode a feature by solving a least-square-based
optimization problem with constraints on the number of codewords for reconstruction.

Local tangent-based methods [509] estimate the manifold of the feature space, based
on which an exact description of local features is obtained.

Saliency-based methods [471] describe a local feature by the degree of salience, for
example, the ratio of the distances from a local feature to the codewords around it.

• Classification: is an important topic in machine learning. Various classifiers are used
in object classification, e.g., Boosting, KNN and SVM. Additionally, kernel tricks,
e.g., intersection kernel are usually used to improve overall performance.

1.3 Face recognition

1.3.1 Face recognition challenges

Face recognition is one of the most important tasks in computer vision and object recognition.
It is pertinent in various fields such as in healthcare system, driving license system, monitor-
ing operation, rail reservation system and passport authentication. In a big data set, face
image identification task is often difficult. There are several biometric features that can be
used to recognize humans like palm print, fingerprint, hand geometry, iris, speech, face, gaits
and signature. However, these features need active intervention of human for authentication,
while face recognition does not need active intervention of human. Thus, face recognition
is much more appropriate than other biometrics. The human face is important for person’
identity recognition and it is the characteristic which best distinguishes a person.
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Face recognition is an issue that is initially very difficult to address with a computer.
The almost unlimited ways that a face can appear in an image make this task very difficult.
This task fails with a traditional computer system due to many challenges, such as, differ-
ent lighting, angles and facial expressions. Face recognition has been the subject of a lot
of research in the past and many solutions to this issue have been suggested. But, the sim-
plest methods from the 2000s failed to address the issue in an unconstrained environment.
Machine learning is a solution to several difficult tasks with traditional computer systems
and in this situation, more precisely deep learning. Over the past few decades, an essential
step in the development of face recognition methods has been the introduction of deep learn-
ing approaches using CNNs like FaceNet [393] and DeepFace [439] that outperform human
accuracy in recognition dataset.

Face recognition is the process to recognize a face that has already been detected. Face
recognition includes two general applications: verification and identification. The verification
step can be presented as one to one match that correlates a face image with an available
face image database whose personality is matched. Face identification is a one to N issue
that matches a query face image against the images available in a database of faces. The
third case is also taken into account when a query face may or may not be in the available
database. In this case, the similarity score is computed and we can find out match based on the
highest similarity score. Face detection and matching is important for face feature extraction
and accuracy calculation. To the best of our knowledge, the challenges of face recognition
process can be assigned to some certain factors such as:

• Illumination : Illumination represents the changes in light. The small variation in
lighting conditions poses an important issue for automatic face recognition and can
have an important effect on its results. If the lighting tends to vary, the same person
is taken with the same sensor and with an almost identical face pose and expression,
the results that emerge can seem quite different. Illumination drastically changes the
appearance of the face. The difference between two same faces captured under various
illumination conditions is greater than two different faces captured under the same
illumination.

• Pose variation: Face recognition systems are easily affected by variations in pose.
The pose of the face changes when the movement of the head and the angle of view of
the person vary. The different points of view of a camera or the head movements can
always cause changes in the appearance of the face and generate intra-class variations
causing a considerably drop in the automated face recognition rates. As the angle
of rotation increases, identifying the actual face becomes difficult. This can result in
incorrect recognition or no recognition if the database only has the frontal view of the
face.

• Feature occlusion : Occlusion indicates blockage, and it happens when one or more
parts of the face are blocked and the entire face is not available as an input image. Oc-
clusion is examined to be one of the most significant issues in face recognition system.
It happens due to moustache, beard and accessories including glasses, cap, mask, etc.
It is widespread in real-world scenes. These components make the issue diverse and
therefore make automatic face recognition process more difficult. Variability can be
introduced by the presence of elements such as sunglasses, beards or hats. Faces can
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also be masked in parts by objects or other faces. Facial features and facial expression
also change due to various facial gestures.

(a) Illumination variations.

(b) Pose variations.

(c) Expression variations.
(https://www.pathpartnertech.com/)

Figure 1.6: Face recognition challenges.

• Expressions : Face is considered as one of the most important biometrics due to the
significant role played by its unique features in human identity and emotions. Vary-
ing situations lead to several humours that can produce variable emotions and possi-
bly changing facial expressions. Human expressions are especially macro-expressions
which are sadness, happiness, disgust, anger, surprise, fear. Micro-expressions are fast
and involuntary facial expressions, which display the fast facial patterns.
Macro and micro expressions appear on person’s face because of changes in his emo-
tional state and as a result of such emotions, effective recognition becomes difficult.

• Low Resolution : Any standard image should have a resolution of at least 16*16. The
image with a resolution lower than 16*16 is called a low-resolution image. These low-
resolution images can be captured by small-scale standalone cameras such as street
video surveillance cameras (called CCTV cameras), supermarket security cameras and
ATM cameras. These cameras may capture a small portion of the face region and since
the distance between the face and the camera is not very close, they can only capture
the area of the face below 16*16. Such a low-resolution image does not provide much
information because most of them are lost. It can be a great problem in the face
recognition process.

 https://www.pathpartnertech.com/challenges-faced-by-facial-recognition-system/
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• Ageing : The texture/appearance of the face changes over time and causes ageing,
which represents another issue in face recognition process. Human facial character-
istics, lines/shapes, and other features change with the increasing age. It is made for
image retrieval and visual observation after a long time. The recognition process de-
pends on extracting features, basic characteristics such as hairstyles, wrinkles, marks,
eyebrows, etc.

• Imaging conditions : Face appearance depends heavily to the quality of an image that
can be affected by different cameras and environmental factors.

Figure 1.6 shows three situations of face recognition challenges. While Figures 1.6a and 1.6b
show different light and pose variations, Figure 1.6c displays large expression variations.

Although all of these situations are handled quietly nowadays, they still disturb the face
recognition process. It is crucial to note that, until now, there is no face recognition algorithm
capable of solving all of these challenges at the same time, which makes the face recognition
field more and more challenging.

1.3.2 Face recognition process

Usually, the face recognition process is divided into three steps: face detection, feature ex-
traction, and face recognition. In Figure 1.7, we show an example of how these three steps
work on an input image.

Figure 1.7: The three steps of face recognition process. (a) The output of face
detection (the bounding box) (b) The extracted face patch (c) The extracted feature
vector (d) Comparing the input feature vector with the vectors stored in the dataset
by classification methods and find the most likely class (the red rectangle). Each face
patch is described as a d-dimensional vector, the vector xm,n as the nth in the mth ,
and Nk represents the number of faces stored in the kth class .

• Face detection : The principal goal of this step is to determine whether or not the
given image/video contains human faces, and to locate these faces. As expected, this
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step produces patches that contain each face in the input image. Face alignment is
performed to justify the orientations and scales of these patches in order to make the
face recognition system more robust and to facilitate its design. In addition to the pre-
processing phase for face recognition, face detection could be used for ROI detection,
image and video classification, retargeting, etc.

• Feature extraction : The face detection step is followed by the extraction of human
face patches from images. There are some drawbacks to using these patches directly
for facial recognition, firstly, each patch generally contains more than 1000 pixels,
which are too large for building a robust face recognition system. Secondly, face
patches can be captured from multiple camera alignments, with multiple face expres-
sions, lighting, and may suffer from clutter and occlusion.
To overcome these disadvantages, feature extraction are carried out to perform tasks
such as information packing, reduction in size, cleaning noise and main feature extrac-
tion. This step consists generally in transforming a face patch into a fixed dimensional
vector or a set of landmarks with their corresponding locations. In some facial recog-
nition literatures, face detection or face recognition includes a feature extraction step.

• Face recognition : After having formulated the representation of each face, the last
step is to recognize the identities of these faces. A database of faces is required to
perform automatic recognition. The features extracted from multiple images captured
for each person are stored in the database. Then, when an input face image arrives, face
detection and feature extraction are performed, and its features are compared to each
face class stored in the database. There are two main applications the face recognition
models perform, face identification and face verification. Face identification means,
given an image of the face, we want the system to say who he/she is or the most likely
identification, while in face verification given a face image and an estimate of the
identification, we want the system to say true or false about the assumption.

1.4 Contributions of this thesis

Given the above importance of background subtraction, object classification and recognition,
we present below the contributions of this thesis. The list of publications concerning this
thesis can be found in Appendix B.

1. A novel deep based detector, namely Deep Detector Classifier (DeepDC). DeepDC
is based on an unsupervised anomaly discovery framework called DeepSphere for
moving objects detection and segmentation in videos (e.g. vehicles, pedestrians, etc).
DeepSphere is more robust against the changing nature of anomalies in the training
data (e.g., anomaly pollution, nested anomaly extent, spatio-temporal locality) or in
the test data (data imbalance) to deal with the challenges enumerated in Section 1.1.1.
DeepDC does not require any clean (outlier-free) or labeled data as input, while pre-
serving consistent and robust performance.

2. A new semi-supervised classification method called DCGAN-SSL, which is an exten-
sion of the regular DCGAN to simultaneously learn a generative model and a semi-
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supervised classifier for the object classification task. Our DeepDC based on DCGAN-
SSL trains a multi-class classifier to categorize objects (pedestrians, vehicles, etc), ex-
tracted from video sequences, while making use of both labeled and unlabeled data,
which is able to perform better than a standalone CNN model. It achieves good accu-
racy when trained with a few amount of labeled samples. Furthermore, DCGAN-SSL
outperforms the baseline in proportion to the reduction in the training set, suggesting
that forcing a weight-sharing between the discriminator and the classifier improves
data efficiency. DCGAN-SSL works better than an isolated classifier on small training
datasets. DCGAN-SSL discriminator can not only learn to distinguish real samples
from fake one, but also to discriminate the class label. The proposed model improves
classification performance on restricted datasets compared to a classifier without a
generator component.

3. A new face recognition approach based on FaceNet model [393] to recognize the ex-
tracted people from video sequences through their faces and then to deal with illumi-
nation variations and dynamic backgrounds. Our method uses a deep convolutional
network trained to directly optimize the embedding itself instead of an intermediate
bottleneck layer as in traditional deep learning approaches. We extend our previ-
ous approach by proposing a novel data augmentation method based on DCGANs
to improve face recognition accuracy. Our approach allows much greater represen-
tational efficiency achieving state-of-the-art face recognition performance using only
128-bytes per face.
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1.5 Thesis outline

The rest of the thesis is organized as follows.

• Chapter 2 provides a discussion defining the solved and unsolved challenges in the
context of background subtraction as well as presenting the different models suggested
to address them. We also provide an overview of the different object classification
methods. Furthermore, we review the main face recognition techniques used to iden-
tify people. The approaches are analyzed based on the facial representations they used.

• Chapter 3 presents a Deep Detector Classifier (DeepDC) for moving object detection,
that allows distinguishing foreground objects from background in video sequences.
DeepDC is based on an unsupervised anomaly discovery framework called Deep-
Sphere. The experiments conducted on real videos from the Background Modeling
Challenge dataset (BMC 2012) [446], the Change Detection dataset (CDnet 2014)
[460] and the VIRAT video dataset [333] show that the proposed DeepDC outper-
forms its competitors for the background subtraction task.

• Chapter 4 describes a novel semi-supervised learning model based on DCGAN dis-
criminator able to classify objects extracted from video sequences (pedestrians, vehi-
cles, etc). The discriminator not only learns false from real images but also classify
each real image to its corresponding category. In addition, our proposal allows to train
the prediction task of the discriminator with almost small numbers of labeled samples
with unlabeled samples to provide the network with further information. Results on
VIRAT video dataset [333] and CDnet 2014 dataset [460] show the pertinence of the
proposed approach.

• Chapter 5 This chapter presents a novel face recognition descriptor based on FaceNet
model [393]. Our proposed approach directly optimizes the embedding itself by train-
ing a deep convolutional network, instead of using an intermediate bottleneck layer
as in conventional deep learning methods. Furthermore, our method allows a much
greater representational efficiency. A high recognition performance is achieved using
only 128-bytes per face. This not only increases the efficiency in terms of time and
memory consumption, but also improves the recognition performance. Additionally,
we extend our previous approach by a new data augmentation method based on DC-
GANs. The experiments conducted on Labeled Faces in the Wild dataset [], VGG face
dataset [85], Youtube face dataset [468] and Chockepoint video dataset [469] show that
the proposed descriptor outperforms other state-of-the-art descriptors. Furthermore,
the application of data augmentation based on DCGANs improves the performance of
face recognition.

• Chapter 6 summarizes the thesis with remarks, advantages, and limitations of the
proposed approaches. It also discusses the open issues and the promising future direc-
tions.
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Figure 1.8 schematically illustrates the organization of this manuscript. In particular, the
chapters in which the contributions of the thesis are presented, are highlighted.

Figure 1.8: Schematic organization of the manuscript and the contributions.



Chapter 2

Literature review

This chapter begins with a brief introduction to the different solved and unsolved challenges
encountered in the context of background subtraction, followed by a review of the traditional
and recent approaches in this domain. Furthermore, we survey the representative studies in
object classification applied once the moving objects are detected. Next, a review of the dif-
ferent algorithms used till now for the holistic-based, local-based, hybrid and deep learning
face recognition methods, is provided.

This chapter corresponds to a concise version of our survey published in the International
Conference on Cognition and Exploratory Learning in Digital Age (CELDA), Portugal, [32]
and our recent survey published in Handbook on ”Towards Smart World: Homes to Cities
using Internet of Things” [30].
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2.1 Background subtraction models

Foreground Segmentation in video streams is a major step in many visual surveillance ap-
plications for which background subtraction provides a suitable solution which offers a good
compromise in terms of computation time and detection quality. The different steps of back-
ground subtraction use methods which have different objectives and limitations. Thus, they
need algorithms with different features as presented in Figure 2.1 . Background initialization
needs ”offline” algorithms which are ”batch” learning algorithms by taking all examples at
one time. However, background maintenance requires ”online” algorithms which are ”in-
cremental” algorithms by processing the data one by one. Background initialization, mod-
eling and maintenance need reconstructive algorithms while foreground detection requires
discriminative algorithms. Moving object detection methods can be divided into three main
categories: the frame differencing method, the optical flow method and the background sub-
traction method. Frame difference algorithms [106] [188] [504] can be simply developed
but they are highly sensitive to the challenges. Optical flow methods are more robust, while
meeting real-time requirements remains a difficult task since it needs a lot of time. Back-
ground subtraction which is the common technique for detecting foreground objects offers
a good compromise between robustness and real-time requirements. In the literature, sev-
eral surveys [64] [68] [69] [75] [76] [307] and books [65] [73] can be found that handle the
problem of moving objects detection by background subtraction.

The background model describes the model used to represent the background. A large
variety of models resulting from signal processing techniques, mathematical concepts and
machine learning methods have been proposed to model the background as presented in Fig-
ure 2.1, including crisp models [175] [265] [382], statistical models [86] [139] [427] [449],
fuzzy models [45] [46] [48], Dempster-Schafer models [328], subspace learning models [146]
[147] [310] [311] [335], robust learning models [84] [215] [216] [419] neural networks mod-
els [363] [364] [392] and filter based models [94] [103] [316] [445]. The main background
modeling methods are shown in Table 2.1 and 2.2.

2.1.1 Mathematical models

Depending on mathematical concepts, the easiest way for modeling the background is to cal-
culate the temporal mean [265], the temporal median [175] or the temporal histogram [382]
which are the most popular techniques to generate a background and were extensively applied
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Figure 2.1: An overview of background subtraction models.

in the field of road traffic monitoring in 1990s, while they are very sensitive to the challenges
encountered in video surveillance such as camera jitter, variations in lighting and dynamic
backgrounds. These models are classified as crisp models. To tackle the imprecision, vague-
ness and incompleteness in the observed data (i.e. video), statistical models began to be
implemented in 1999 like Kernel Density Estimation (KDE) [139] [516], single Gaussian
(SG) [470], Gaussian Mixture Model (GMM) [86] [427]. These techniques based on Gaus-
sian distribution models demonstrated their robustness to dynamic backgrounds [157] [353] .
In the literature, more sophisticated statistical models have been implemented and can be cat-
egorized into those based on another distribution that mitigates the strict Gaussian constraint
(i.e. general Gaussian distribution [140], Student’s t-distribution [327] [180], Dirichlet distri-
bution [186] [145], Poisson distribution [150] [514]), models based on co-occurrence [279]
[280], [281] and confidence [378] [379], models with free distribution [50] [424] [425], and
regression models [257] [444]. These methods have improved the robustness to a several
challenges over time. The most successful techniques in the statistical category are sample-
based methods named ViBe [50], SubSENSE [424] and PAWCS [425]. Another theory that
manages inaccuracy, incompleteness and uncertainty is based on the fuzzy concepts. In 2006-
2008, multiple authors used fuzzy models such as Type-2 fuzzy sets [45] [67], Sugeno inte-
gral [497], Crisp models [362] [265] [497] and Choquet integral [44] [48] [101] which are
more robust against dynamic backgrounds [67]. Dempster-Schafer concept has also been
used successfully in moving objects detection [328].
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• Statistical models : It is interesting to take into consideration the improved versions of
the current used models like MOG [427], codebook [239], ViBe [50] and PBAS [196].
Numerous improvements of MOG [151] [244] [293] [314] [381] [499] as well as code-
book [252] [407] [500] [506], ViBe [187] [199] [498] [508] and IPBAS [217] algo-
rithms are extensively used in real-time applications rather than the original versions
of MOG. Six improvements of MOG evaluated by Goyal and Singhai [171] on the CD-
net 2012 dataset showed that Shahet al.’s MOG [399] and Chen et Ellis’MOG [100],
both published in 2014, reach significantly better detection in real applications com-
pared to previously published MOG algorithms, which are MOG in 1999, Adaptive
GMM P1C2-MOG-92 in 2003, Zivkovic–Heijden GMM [515] in 2004, and Effec-
tive GMM [267] in 2005. Additionally, there also exist real-time implementation of
MOG [277] [348] [388] [389] [438], codebook [437], ViBe [248] [250] and PBAS
[158] [249] [251]. Furthermore, robust background generation techniques [357] [440]
as well as robust deep learned features [398] [397] with the MOG model could also be
considered in the most challenging environmental conditions.

• Fuzzy concepts : Critical situations encountered in video surveillance generate un-
certainties and inaccuracies throughout the background subtraction process. As a re-
sult, fuzzy concepts have been introduced in various steps of background subtrac-
tion [119] [120] . Bouwmans [72] presented a study on fuzzy concepts used in back-
ground subtraction. The advantage of background subtraction techniques based on
fuzzy concepts is that they take no time. In 2008, Sigari et al. [410] [411] imple-
mented a Fuzzy Running Average (FRA) method for background subtraction. Actu-
ally, a fuzzy classification based on saturating linear function allows obtaining a fuzzy
membership value and then is used to calculate the learning rate for the background
average model maintenance. Experimental results on road monitoring demonstrate the
relevance of this method in the case of camouflage. In 2008, this method is adapted by
Shakeri et al. [402] [403] in cellular automata for urban traffic applications. Cellular
automata apply certain rules on pixels to model each frame sequence. The calculation
is performed independently in all cells. Experimental results show that the fuzzy cel-
lular running average achieves better performance compared to FRA. In 2011, Yeo et
al. [489] [488] extend FRA for moving vehicle detection using infrared videos. Al-
though these models are often studied as fuzzy background models, they should be
more considered as fuzzy foreground detection models and fuzzy background mainte-
nance because the fuzzy memberships only occur during these two steps. In 2012, Lu
et al. [292] [291] successfully detect foreground vehicles based on Choquet integral.

2.1.2 Subspace models

In 1999, subspace learning methods have been used in an unsupervised way for background
modeling in the idea of representing the content of online data while greatly reducing dimen-
sion. Subspace learning method (either local or global, linear or non linear) like Independent
Component Analysis(ICA) [484], Principal Component Analysis (PCA) [133] [335] [134]
[234] and Non-negative Matrix Factorization (NMF) [79] [80] provide a background subtrac-
tion framework, especially in the presence of illumination variations. These models are more
robust to variations in lighting than statistical models [328]. In other methods, discrimina-
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tive [146], [147], [310] and mixed [311] subspace learning models have been employed to
improve the results of foreground detection. But, these standard techniques are not robust
to outliers, making them very sensitive to the challenges encountered in video surveillance
like camera jitter, noise, dynamic backgrounds and lack of data. To handle these limitations,
since 2009, subspace learning have attracted renewed interest in this field due to the theo-
retical progress of robust PCA, created by Candès et al. [84], by decomposition into L+S
matrices [215] [216] [419] that has been widely employed making them robust not only to
variations in lighting but also to dynamic backgrounds [213] [218] [368] [369] . These tech-
niques are more robust to standard subspace learning methods [183] [211] [212] [213] [214]
, but they are not applicable in real-time applications [70], since they need the implementa-
tion of batch algorithms. To deal with this problem, dynamic RPCA algorithms reviewed by
Vaswani et al. [450] [451] are proposed to provide real time performance of methods based
on RPCA. The incPCP algorithm [373] and its corresponding improvements [97] [341] [372]
[374] [375] [376] [377] [412] as well as the ReProCS algorithm [355] and its multiple vari-
ants [178] [330] [356] are presented as online algorithms, provide both advantages in terms of
detection, real-time and memory consumption. In road traffic monitoring, incPCP [376] was
successfully tested for vehicle counting [358] [442], while an online RPCA algorithm was
used for person and vehicle detection [480]. GRASTA [190], incPCP [376], ReProCS [178]
and MEROP [330] are the most advanced algorithms in this subspace learning category. Nev-
ertheless, methods based on tensor RPCA [135] [210] [289] [420] make it possible to take
into account spatial and temporal constraints allowing more robustness against noise.

2.1.3 Neural network modeling

In 1996, neural networks have been used by Schofield et al. [392] for background representa-
tion and moving objects detection, with a Random Access Memory (RAM) neural network.
This RAM-NN does not need a background maintenance step and requires a good back-
ground model. Information can no longer be changed once RAM-NN is trained with one pass
of background images. Jimenez et al. [164] classify each portion of a video into one of the
following categories: static, noisy and impulsive background categorie. This classification
is made by a multilayer perceptron which requires a training set from specific parts of each
training frame. Subsequently, Tavakkoli [441] design a neural network method on the basis
of the novelty detection theory. In the training phase, the background is divided into blocks
and each block is associated to a Radial Basis Function Neural Network (RBFNN). Each
RBFNN is trained with background data that corresponds to its associated block. RBFNN is
employed as a detector for close boundary generation for the defined category. In RBF-NN
approaches, dynamic object detection can be observed as a single class problem and the dy-
namic background is learned. However, the representation of common background requires
a large amount of data. In Wang et al. [462], a Probabilistic Adaptive Background Neural
Network (ABPNN) model is presented which combines both a winner-take-all (WTA) and
hybrid probabilistic networks. Each pixel is classified as background or foreground based on
a Parzen estimation. The foreground regions are then categorized as a shadow or a motion
region. But, initial threshold values should be defined for each of the considered videos. A
feed-forward neural network based on an adaptive Bayesian model named Background Neu-
ral Network (BNN) is proposed by Culibrk et al. [109], to model the background. BNN is rep-
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resented as a General Regression Neural Network (GRNN) and operates as a Bayesian clas-
sifier. Although the architecture is considered to be supervised, it can be extended as an unsu-
pervised architecture in the background modeling domain. The network is composed of three
subnets: classification, activation and replacement. The background/foreground features of
a pixel are mapped using the classifier subnet based on a probability density function esti-
mation. The network contains two summing neurons, one of them calculates the probability
that the pixel values belong to the background and the other for estimating if it belongs to the
foreground. The principal disadvantages are the high-complexity of the model and the needs
of three nets to specify if a pixel belongs to the background. In a disruptive study, Maddalena
and Petrosino [296] [297] [298] [299] a Self Organizing Background Subtraction (SOBS)
approach allowing to preserve the spatial coherence of the pixel. This approach can be con-
sidered as a pixel-based and non-parametric method that simply address the multi-modality
in background pixel distributions. The network can be automatically modeled through the
network neurons weights and each pixel is represented by a neural map with weight vectors,
that are initialized with pixel values in the HSV color channel. Next, each new pixel value
from each new frame is classified either in the background or in the foreground by comparing
it with its current model. Subsequently, enhanced variants of SOBS has been presented such
as Multivalued SOBS [301], SOBS-CF [295], SC-SOBS [303], 3dSOBS+ [305], Simplified
SOM [88], Neural-Fuzzy SOM [89] and MILSOBS [160]. These improvements allow SOBS
being one of the principal methods on the CDnet 2012 dataset [173] for a long period. SOBS
shows also great efficiency for the detection of stopped objects [300] [302] [304]. However,
these SOBS-based methods require manually parameter adjustment.

2.1.4 Deep neural networks concepts

Since 2016, DNNs have also been successfully employed in background extraction [178]
[357] [478] [479] [480] background subtraction [42] [53] [78] [104] [282], foreground de-
tection improvement [496], ground-truth extraction [461] and deep spatial features learn-
ing [268] [332] [398] [397] [500]. Specifically, Restricted Boltzman Machines (RBMs) have
been employed by Guo and Qi [181] and Xu et al. [478] to construct the background, to
then detect moving objects using background subtraction. Furthermore, deep auto-encoder
networks have been used by Xu et al. [479] [480] to perform similar task while Qu et
al. [357] employed context-encoder to generate the background. Convolutional Neural Net-
works (CNNs) have also been employed by Braham and Droogenbroeck [78], Bautista et
al. [53] and Cinelli [104] for background subtraction. Many improved variants of CNNs
have been used such as cascaded CNNs [461], deep CNNs [42], structured CNNs [282] and
two stage CNNs [505]. Robust spatial features are learned using Stacked Denoising Auto-
Encoder (SDAE) by Zhang et al. [500] and the density analysis is applied to model the back-
ground, whereas Shafiee et al. [398] employ Neural Reponse Mixture (NeREM) to extract
deep features employed in the Gaussian Mixture model [427]. Based on deep learning scene
recognition model, Chan [93] suggested a scene-awareness algorithm for scene change detec-
tion allowing using the suitable background subtraction technique for the corresponding type
of challenges. In 2019, Ammar et al. [29] employed a Deep Detector Classifer (DeepDC) to
detect and classify moving objects in video sequences. An unsupervised anomaly discovery
algorithm called DeepSphere is adapted to detect moving objects. In 2020, Ammar et al. [34]
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suggested to employ and validate DeepSphere to detect and then segment moving objects
in video sequences. DeepSphere uses both hypersphere learning and deep auto-encoders to
reconstruct normal behaviors and remove anomaly pollution. Experimental results show that
DeepSphere achieved higher accuracy compared to Deep Probabilistic Background Model
(DeepPBM) [149] and Robust Principal Component Analysis (RPCA) [84].

All of these approaches were implemented by researchers who have not yet tested them
for real applications. Only Bautista et al. [53] tested the convolutional neural network for
detecting vehicles in low-resolution traffic video sequences. However, even their robustness
in presence of the concerned unresolved challenges, recent deep learning methods still take
too much time and memory to be actually used in real applications. Additionally, these
methods need manually labeled data for the training and are generally scene specific. DNNs-
based background subtraction can only treat a specific type of scene, and must be retrained
for other video sequences [42]. Because the camera is stationary when recording similar
scenes, this fact is often not a challenge. But, this may not be the case for some applications,
as specified by Hu et al. [197]. Currently, methods based on deep learning seem to be only
interesting in a theoretical point and not on a practical point. This current incompatibility [71]
can be mitigated only by advances in online and unsupervised deep learning methods.

2.1.5 Signal processing models

The signal processing models take into account the temporal history of a pixel as one-
dimensional signal. More precisely, many signal processing algorithms can be used: 1) signal
estimation methods (i.e. filters), 2) transform-domain approaches, 3) sparse recovery func-
tions (i.e. compressed sensing), and 4) Graph signal processing (GSP) approaches.

• Estimation filter : In 1990, Karmann et al. [233] proposed to estimate the background
model of a scene using the Kalman filter. Each pixel with an important deviation
from its predicted value is classified as foreground. Many enhancements have been
suggested to make this method more robust to difficult situations such as illumination
variations and varying backgrounds [62] [143] [316]. In 1999, a pixel level algorithm,
called Wallflower, is presented by Toyama et al. [445] to perform probabilistic pre-
dictions of the background pixel values, estimated in the following frame by applying
the Wiener filter. Chang et al. [94] [95] applied a Chebychev filtering to represent the
background. All these filtering methods give important efficiency under slow varia-
tions in illumination but they are inefficient in the presence of complex backgrounds.

• Transform domain models : In 2005, Wren and Porikli [470] proposed a Fast Four-
rier Transform (FFT) based Waviz algorithm for background modeling using spectral
signatures from multi-modal backgrounds. These signatures are then used to detect in-
coherent scene changes over time. They further introduce a Wave-Back method [351]
which involves frequency decompositions of the historical pixel vector to model the
background. For the reference and current frames, the Discrete Cosine Transform
(DCT) coefficients are compared giving a distance maps, which are combined into a
same DCT temporal window to be more robust to noise and a thresholding is applied
to extract foreground objects. This method can address situations such as waving trees.
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• Sparse signal recovery models : In 2008, Cevher et al. [87] were the first authors
to propose a background subtraction method based on a compressed sensing tech-
nique. They learned and adapted a compressed background representation with a
low-dimensionality rather than learning the entire background that is suitable to de-
tect changes. Compressive samples allow foreground objects to be estimated di-
rectly without having to build an intermediate image. However, an auxiliary image is
needed to simultaneously retrieve the appearance of objects using compressive mea-
surements. To handle this limitation, many improvements have been presented in
the literature [122] [325] [464] [465] [475] and important accuracy is reached using
Bayesian compressive sensing methods [253] [254] [255].

• Graph Signal Processing (GSP) models: Graph signal processing is an emerging field
that tries to extend the concepts of classical digital signal processing to graphs. There
is a lot of theoretical progress in recent years, and several applications in domains
including machine learning and computer vision [336] [409]. Recently, Giraldo and
Bouwmans [165] [166] proposed a semi-supervised background subtraction method
called GraphBGS. This algorithm is based on the theory of reconstruction of graph
signals [336] and it is very precise with respect to false positives. Unlike most methods
of the state-of-the-art, GraphBGS shows competitive results on both static and moving
camera sequences. GraphBGS thus lies in between the unsupervised and supervised
techniques, leading to a new branch of background subtraction algorithms.

2.1.6 Semantic concepts

In 2017, Braham et al. [77] take advantage of object level semantics to deal with the
diversity of difficult scenes for background subtraction. Combining the output of a
semantic segmentation algorithm with the output of any background subtraction algo-
rithm allows reducing false positive detections obtained by changes in illumination,
dynamic backgrounds and shadows. Additionally, Braham et al. [77] suggest a fully
semantic background representation to improve the detection of camouflaged moving
objects. In 2019, a background subtraction algorithm is designed by Zeng et al. [495]
with real-time semantic segmentation usable for real applications. While operating in
real-time, this method achieves superior performance than unsupervised background
subtraction algorithms and stills works better than some supervised methods. Seman-
tic concepts have been also employed for background generation [259] [391] allowing
their use in applications like privacy protection and video-impainting.
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Table 2.1: Background modeling methods: An overview (Part 1).
Categories Methods Authors - Dates Database

Crisp models

Temporal average Lee et al. (2002) [265] -
Temporal median Graszka et al. (2004) [175] PETS2001 [1]
Temporal histogram Roy and Ghosh (2017) [382] CDnet2014 [460] [445]

Statistical
models

Single Gaussian (SG) Wren et al. (1997) [470] -
Gaussian Mixture Model Caseiro (2010) [86], Stauffer (1999) [427] -
Kernel Density Estimation
(KDE)

Elgammal et al. (2000) [139], Zivkovic et
al. (2006) [516]

-

General Gaussian distribu-
tion

Elguebaly et al. (2013) [140] OSU Thermal Pedestrian [123],
OSU Color-Thermal [124]

Student’s t-distribution Mukherjee [327], Guo et al. (2012) [180] Caviar [2], Wallflower [445]
Dirichlet distribution Haines et al. (2012) [186], Fan et al.

(2012) [145]
Wallflower [445]

Poisson distribution Faro et al. (2011) [150], Zin et al. [514] PETS2006 [15]
Models based on co-
occurrence

Liang et al. (2015) [279], Liang et al.
(2014) [280] [281]

PETS [1], AIST-INDOOR
[278], Wallflower [445]

Confidence Rosell et al. (2008, 2010) [379] [378] Wallflower [445]
Free-distribution models Barnich et al. (2009) [50], St-Charles et al.

(2014, 2015) [424] [425]
CDnet2012 [173]

Regression models Tombari et al.(2009) [444], Lanza et al.
(2010) [257]

-

ViBe Barnich et al. (2009) [50] -
SubSENSE St-Charles et al. (2014) [426] CDnet2012 [173]
PAWCS St-Charles et al. (2015) [425] CDnet2012 [173]
MOG Stauffer et al. (1999) [427] -
Codebook Kim et al. (2004) [239] -
PBAS Hofmann et al. (2012) [196] CDnet2012 [173]
Improvements of MOG Martins et al. (2017) [314], Lu et al.

(2018) [293], Rout et al. (2017) [381],
Kiran et al. (2017) [244], Farou et al.
(2017) [151] [499], Shahet al.’s MOG
[399], Chen Ellis’MOG [100]

fish4knowledge [3], un-
derwaterchangedetec-
tion [4] Wallflower [445],
UCSD [5], RGB-D Rigid
Multi-Body [429]

Improvements of codebook Zhao et al. (2014) [506], Sharma et al.
(2016) [407], Kusakunniran et al. (2017)
[252], Zhang et al. (2015) [500]

CDnet2012 [173], CD-
net2014 [460]

Improvements of ViBe Huang et al. (2014) [199] Han et al.
(2014) [187], Zhang et al. (2014) [498],
Zhou et al. (2014) [508]

CDnet2012 [173] CD-
net2014 [460] RGB-D
benchmark [421]

Improvements of PBAS Javed et al. (2014) [217] -
Real-time implementation of
MOG

Pham et al. (2010) [348], Li (2012) [277],
Salvadori [388] [389] Tabkhi (2013) [438]

PETS2009 [154] VSSN 2006
[6]

Real-time implementation of
codebook

Szwoch et al. (2011) [437] -

Real-time implementation of
ViBe

Kryjak et al. (2013) [248] [250] CDnet2012 [173]

Real-time implementation of
PBAS

Kryjak et al. (2013, 2014) [251] [249],
Lopez et al. [158]

CDnet2012 [173]

Fuzzy
concepts

Fuzzy Running Average Sigari et al. (2008) [410] [411] -
Fuzzy cellular running Aver-
age

Shakeri et al. (2008) [402] [403] -

Fuzzy foreground detection Yeo et al. (2011) [489] [488] -
Choquet integral Lu et al. (2012, 2014) [292] [291] E. Baf

et al. (2008) [48], [101]
Aquateque [138] PETS2001
[1]

Type-2 FGMM ElBaf et al. (2008) [45], Bouwmans et al.
(2010) [67] Darwich et al. [120] [119]

PETS2006 [15] Ter-
ravic [318] CDnet2014 [460]

Sugeno integral Zhang et al. (2006) [497] PETS2001 [1]
Dempster-Schafer Dempster-Schafer theory Munteanu et al. (2015) [328] Aquateque [138]
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Table 2.2: Background modeling methods: An overview (Part 2).
Categories Methods Authors - Dates Database

Neural
networks
modeling

RAM neural network Schofield et al. (1996) [392] -
Multilayer perceptron Jimenez et al. (2003) [164] -
Radial Basis Function NN Tavakkoli et al. (2005) [441] -
General Regression NN Culibrk et al. (2007) [109] -
SOBS Maddalena et al. [296], [299], [297], [298] -
Multivalued SOBS Maddalena et al.(2009) [301] -
SOBS-CF Maddalena et al. (2010) [295] [7]
SC-SOBS Maddalena et al. (2012) [303] CDnet2012 [173]
3dSOBS+ Maddalena et al. (2014) [305] BMC2012 [446]
Simplified SOM Chacon-Mugui et al. (2009) [88] -
Neural-Fuzzy SOM Chacon-Mugui et al. (2013) [89] -
MILSOBS Gemignani et al. [160] CDnet2012) [173]

Deep Neural
Network
Modeling

Restricted Boltzman Machines Guo (2013) [181], Xu et al. (2015) [478] CDnet2012 [173]
Deep auto-encoder networks Xu et al. (2014) [480], [479] Ocean [503] Watersurface [275]
Context-encoder Qu et al. (2016) [357] -
CNNs Braham [78], Bautista [53] Cinelli [104] CDnet2014 [460]
Cascaded CNNs Wang et al. (2016) [461]
Deep CNNs Babaee et al. (2017) [42] CDnet2014 [460], Wallflower

[445], PETS2009 [154]
Structured CNNs Lim et al. (2017) [282] CDnet2014 [460]
Two stage CNNs Zhao et al. (2017) [505] CDnet2014 [460]
SDAE, density analysis Zhang et al. (2015) [500] CDnet2012 [173]
NeREM Shafiee et al. (2015) [398] CDnet2012 [173]
DeepSphere Ammar et al. (2019, 2020) [29] [34] [91] [333] [460] [446]

Subspace
models

ICA Yamazaki et al. (2006) [484] -
PCA Oliver et al. (2000) [335], Dong et al.

(2011) [134] [133], Kawanishi et al. [234]
PETS2001 [1], VSSN2006
[6]

NMF Bucak et al. (2007, 2008) [80] [79] PETS2001 [1]
Robust PCA Candès et al. (2011) [84] Xu et al. (2014)

[480], Sobral et al.(2015) [419], [215]
[216] [218] [213], [368] [369]

Watersurface [275], Ocean
and Rain [503], UCSD [5],
MarDT [8]

Dynamic RPCA Vaswani et al. (2018) [450] [451] CDnet2012 [173]
IncPCP algorithm [373] [341] [372] [374] [376] [375] [377]

[358] [442], [412], [97]
Lankershim [16], Neovison2
[17]

ReProCS algorithm Qiu et al. [355] [356], Guo [178], [330] MR, SL [330]
Discriminative subspace mod-
els

Farcas et al. [146] [147], Marghes [310] Wallflower [445]

Mixed subspace models Marghes et al. (2012) [311] Wallflower [445] PETS [153]
GRASTA He et al. (2012) [190] [275]
MEROP Narayanamurthy et al. (2018) [330] -
Tensor RPCA Javed et al. (2015) [210], Sobral et al.

[420], Lu et al. [289], Driggs (2019) [135]
CDnet2014 [460], BMC2012
[446]

Signal
Processing

Models

Kalman filtering Karmann et al. (1990) [233] -
Wiener filtering Toyama et al. (1990) [445] -
Chebychev filtering Chang et al. (2004) [94] [95] -
Waviz algorithm, FFT Wren and Porikli (2005) [470] -
Discrete Cosine Transform Porikli (2005) [351] -
Compressive sensing method Cevher et al. (2008) [87] BSDS [312]
Bayesian compressive sensing Kuzin et al. [254], [254], [255], [253] Convoy [463]
Graph-based algorithm Giraldo et al. (2020) [166] [165]

Semantic
concepts

Semantic segmentation Braham et al. (2017) [77] CDnet2014 [460]
Real-time semantic segmen-
tation

Zeng et al. (2019) [495] CDnet2014 [460]

Semantic background initial-
ization

Pierard et al. (2018) [259], Savakis et al.
[391]

SBI [306], SBMnet [223]
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2.2 Object classification

In this Section, we review the representative studies in object image classification and re-
trieval applied once the moving objects are detected as presented in Table 2.3. These objects
can be categorized as humans, vehicles, etc.

2.2.1 Conventional methods

In the study of Zhu et al. [510], color and texture features are combined and fed into an
Adaboost classifier for feature selection and classification. In Golle [168], an accuracy of
82.7 % was reached using an SVM classifier trained using the color and texture information.
In 1999, Transductive SVMs (TSVMs) are proposed by Joachims [220] to classify a text.
TSVMs consider a particular test set and attempt to decrease the misclassifications of these
samples. In Shruti et al. [408], features are extracted using gabor filter coefficients and are fed
into an SVM classifier. In 2011, Zaghden et al. [493] proposed a Fractal dimension method
to differentiate Arabic and Latin ancient documents. In 2013, Zaghden et al. [494] com-
bined a fractal dimension approach with local SIFT descriptors to categorize images. In their
investigation, Ammar et al. [32] reviewed and categorized the representative classification
methods into supervised and unsupervised techniques. In 2018, Ammar et al. [33] modeled
each person by a pentagon built with the most representative skeleton joints. Feature vectors
are extracted based on the distances between a subset of skeleton joints. Five Euclidean dis-
tances are computed using the vertices of two pentagons and SVM is used for classification.
Jabri et al. [209] proposed two solutions for the detection and classification of moving vehi-
cles. The first is a classical Adaboost method based on the extraction of Haar-like features,
while the second manages a Local Binary Pattern descriptor which will be extracted with the
Adaboost classifier. Results show that the Haar-like +Adaboost system is the most important.
However, LBP+Adaboost has lower power consumption. Laopracha et al. (2019) proposed
a method for selecting appropriate patterns of histograms of oriented gradients (HOGs) to
detect vehicules. Indeed, the HOG method produces both ambiguous and redundant, which
can bias the classification process. The selected features are tested using different classifiers
including, SVM, random forest, K-nearest neighbor and deep neural network.

2.2.2 Deep neural network methods

• Supervised deep learning methods: Supervised learning is defined as a learning task
that needs labeled training samples. There exist different methods based on deep learn-
ing for supervised classification. The potential ability of CNNs to classify images has
been demonstrated in 1989 when LeCun et al. [263] classified handwritten zip code
digits with only 5 % test error. In Long et al. [287], Fully connected networks (FCNs)
are converted into convolutional ones to train an end-to-end CNN for image segmen-
tation. In 2018, Babaee et al. [43] modeled the background and extracted the relevant
features from an image-background pair using DCNN, which are then fed into a clas-
sifier for segmentation. In 2014, handcrafted features are computed by Liu et al. [285]
and a bag of words model is built. Both SVMs and Backpropagation Networks are
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used for classification. In 2016, Braham and Droogenbroeck [78] proposed a back-
ground subtraction method based on CNN. The background is initialized by computing
the temporal median on some frames. A patch is extracted around the pixel, transmit-
ted into CNN and classified as background or foreground based on a threshold value.
However, all these approaches perform in a supervised manner which requires a large
amount of labeled data.

• Unsupervised deep learning methods: Unsupervised learning does not need labeled
data and aims to exploit the large number of unlabeled data and define similarities be-
tween objects. In 2016, Li et al. [276] proposed an unsupervised classification method
to process remote sensing images and map African land cover using the Stacked Au-
toencoder (SAE). Results show that SAE outperforms standard classifiers. In 2015,
Zou et al. [517] propose a DBN to categorize remote sensing images. In 2014, an hy-
brid DCNN is used by Chen et al. [99], to detect vehicles in satellite images. In 2017,
a Bidirectional GANs (BiGANs) is proposed by Donahue et al. [131], which adds an
encoder module to the regular GAN that learns to map among latent and data space.

• Semi-supervised deep learning methods: The ever-growing size of current datasets
combined with the problem of acquiring information on labels makes semi-supervised
learning a major challenge of current data analysis. Semi-supervised learning ad-
dresses the problem of classification when only a small number of labeled data is
available. To deal with this limitation, Ammar et al. [34] proposed a semi-supervised
DCGAN (DCGAN-SSL) approach to simultaneously learn a generative model and a
DCGAN discriminator classifier to categorize moving objects (humans/vehicles) ex-
tracted from VIRAT video dataset [333] and CDnet2014 dataset [460]. DGAN-SSL
enhances the classification performance on small data using a standard classifier with-
out generative element. Rosenberg et al. [380] added unlabeled samples to the original
labeled data to train the model in a semi-supervised way which achieves the same re-
sults as a standard model using a large amount of labeled data. In 2011, Diederik
et al. [242] present a semi-supervised method with generative components that gen-
eralizes restricted labeled sets to large unlabeled data. In 2015, categorical GANs
(catGANs) are proposed by Springenberg et al. [423] to combine a discriminative clas-
sifier from an unlabeled or partly labeled data with an adversarial generative model. In
2017, a semi-supervised virtual adversarial training (VAT) method [323] is proposed
that searches for virtually examples to smooth the classifier outputs. Using a small
number of labeled samples allows GANs to perform well [387], providing an efficient
semi-supervised classification and high quality image generation. In 2018, the NLP
language model [116] is used to improve sequence learning with recurrent networks
using unlabeled data. The model results in weights used to train the model in a super-
vised way for data classification. In 2017, a recurrent language Neural Network, called
multiplicative LSTM (mLSTM) [361] is trained in a semi-supervised way to estimate
the subsequent character in the text. This model exceeded the advanced techniques
using only small amount of labeled samples.
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Table 2.3: Comparative study of different object classification methods.
Authors Features/models Classifier Supervised

Un-
supervised

Semi-
supervised Database

Conventional Approaches

Zhu et al. (2013) [510] Color and texture features Adaboost classifier 3 APiS 1.0 [510]

Golle et al. (2008) [168] Color and texture features SVM 3 Asirra [141]

Shruti et al. (2014) [408] Gabor features SVM 3 Yale-B [9]

Joachims et al. (1999) [220] Word stem Transductive SVMs 3 -
Zaghden et al. (2013) [494] Fractal dimensions, SIFT K-means classifier 3 -
Zaghden et al. (2011) [493] Fractal dimensions method K-means classifier 3 -
Ammar et al. (2017) [32] soft-biometric features SVM 3 MUCT [320] VIPeR [176]

Jabri et al. (2018) [209] Haar-like, LBP Adaboost 3 GTI vehicle [10]

Laopracha et al. (2019)
[258]

HOGs SVM, KNN, random forest,
DNN

3 3 GTI vehicle [10] CompCars
[485] KITTI [159]

Deep Neural Network Approaches

LeCun et al. (1989) [263] Back-propagation network CNN 3 -
Long et al. (2015) [287] CNN FCNs 3 PASCAL VOC [142]

Babaee et al. (2018) [43] CNN Multi Layer Perceptron (MLP) 3 CDnet2014 [460]

Liu et al. (2014) [285] Dense-SIFT features, CNN Backpropagation Networks 3 Asirra [141]

Braham (2016) [78] ConvNets Fully connected layer 3 CDnet2014 [460]

Li et al. (2016) [276] NDVI and MNDWI Stacked Autoencoder (SAE) 3 -
Zou et al. (2015) [517] RBMs Deep Belief Network (DBN) 3 RSSCN7 [11]

Chen et al. (2014) [99] Hybrid DCNN MLP 3 -
Donahue et al. (2017) [131] BIGAN BIGAN discriminator 3 ImageNet [384]

Ammar et al. (2020) [34] DCGAN DCGAN discriminator 3 VIRAT [333], CDnet [460]

Rosenberg (2005) [380] Wavelet transform MSE, Mahalanobis distance 3 -
Diederik et al. (2014) [129] Deep Generative models TSVM with RBF 3 MNIST [481]

Springerberg et al. [423] Catgan Discriminative classifiers 3 MNIST [481] CIFAR [246]

Miyato et al. (2017) [323] VAT NN classifier 3 MNIST [481], CIFAR [246]

Salimans et al. (2016) [387] GAN standard classifier 3 MNIST [481], SVHN [331]

Dai et al. (2018) [116] NLP language model LSTMs 3 IMDB [294], DBpedia [270]

Radford et al. (2017) [361] mLSTM RNN logistic regression classifier 3 MR [61]

2.3 Face recognition methods

2.3.1 Holistic approaches

Holistic approaches process the entire face area as a high-dimensional vector that is fed into a
classifier. These approaches do not need to extract face areas or points of interest. However,
they consider all pixels of the image with equal importance, which makes them costly in
computation. In addition, these approaches generally ignore local information, so they are
not very used for face identification. These approaches can be classified into linear and non-
linear techniques according to the method used to represent the subspace in Table 2.4 .

Linear techniques

• Eigenface and principal component analysis (PCA): In Seo et al. [394], Locally
Adaptive Regression Kernel (LARK) features are extracted to represent a face. A
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self-similarity measure is calculated among a center and its neighboring pixels on the
basis of a geodesic distance. The size of LARK is reduced using PCA, followed by a
logistic function to make LARK features approximately binarized. The one-shot simi-
larity measure is applied on the basis of a linear discriminative analysis (LDA) for the
image restricted training. In Ghorbel et al. [163], the DoG filter is applied for image
processing. The features are extracted using Eigenfaces and VLC techniques from
the entire face image and matched using the chisquare distance. In 2012, Abdullah et
al. [22] optimized the time complexity of Eigenfaces without affecting the recognition
performance. In 2017, Johannes and Armin [224] have shown that Haar cascade classi-
fiers exceed LBP classifiers in face detection. For face recognition, they demonstrated
that Eigenfaces are better than Fisherfaces and LBP histograms. In 2016, Bhuiyan et
al. [59] examined the eigenvectors of the covariance matrix of the key images to rec-
ognize a face. The features are extracted using Eigenfaces and identified using KNN.
Lighting issues are surmounted by Root Mean Square (RMS) contrast stretching. The
work of Abd Rahman et al. [21] was performed using PCA Eigenfaces approach to
recognize a face in a single static, multiple static and dynamic images. The main idea
in [386] was to use only the best Eigenfaces which represent the major variance in all
facial images which leads to efficient calculations and speed.

• Fisherface and linear discriminative analysis (LDA): Fisher vectors are used by Si-
monyan et al. [414] to recognize a face. The authors proposed a discriminative reduc-
tion in dimensionality due to the high size of Fisher vectors. The Fisherface approach
is more effective than the Eigenface method. On this basis, Li et al. [273] compared
a dual-tree complex wavelet transform (DT-CWT) approach based on LDA with the
DTCWT based PCA method. The face recognition efficiency of the Fisherface and the
Eigenface are also compared in the DT-CWT area. In Abidin et al. [24], face expres-
sions are recognized on the basis of a neural network using Fisherface. An integral
projection method is adopted to segment and locate the face area. Neural network
based on the back-propagation algorithm is applied to categorize facial expressions.
In Gowda et al. [170], LPQ features are extracted from the face and iris regions and
LDA is used for dimensionality reduction in order to achieve efficient computation.
Both SVM and KNN are used for classification.

• Independent component analysis (ICA) : In Bartlett et al. [51], two architectures are
proposed to represent facial images using ICA. The spatially local basis vectors are
generated by ICA and are considered as a set of independent facial characteristics. In
the second architecture, a factorial code is used to generate statistically independent
compressed images. The performance of face recognition was evaluated by the KNN
classifier and the cosine similarity measure. The authors reported that ICA-based rep-
resentations outperformed PCA-based representations to recognize a face in sessions
and changes in expression. Kong and Bing [245] used both ICA and SVM to recog-
nize a face. Facial features are extracted using Informax algorithm and classified using
Fast Least Squares SVM (FLS-SVM).

• Improvements of the PCA, LDA and ICA techniques : In order to deal with the large
variations in appearance and the poor quality caused by approximate alignement of
face images, Cui et al. [108] proposed a Spatial Face Region Descriptor (SFRD) to
recognize a face by partitioning each image into various blocks in spatial domain, then
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extracting the Token-Frequency characteristics from all regions by sum pooling the
reconstructing coefficients over the patches of each block. Whitened Principal Com-
ponent Analysis (WPCA) is applied to reduce the dimensionality of feature vectors to
generate robust face descriptors which are combined using Pairwise-constrained Mul-
tiple Metric Learning (PMML). In 2018, Khan et al. [236] proposed to solve complex
variations problem in face images by selecting the appropriate features from wavelet
sub-bands based on particle swarm optimization (PSO). The LBP-DFT technique is
proposed which used LBP features to deal with illumination and expression variations
and Discrete Fourier Transform (DFT) to solve the issue of translational variance of
the Discrete Wavelet Transform (DWT). In Dehai et al. [125], an ameliorated PCA
method is introduced using Fast Fourier Transform (FFT) which fuses the amplitude
spectrum of one image with the phase spectrum of another image to improve features,
followed by the extraction of eigenvectors. Kernel SVM is used as a classifier. In Rid-
dhi et al. [371], a modified PCA method is proposed for face recognition using certain
components of the LDA algorithm. Experimental results show that LDA is better than
PCA in face recognition. The work presented in Azeem et al. [38] aims to address
the problem of partial occlusions in face recognition by using methods based on LDA,
PCA, ICA, Local Non-Negative Matrix Factorization (LNMF) and Non-negative Ma-
trix Factorization (NMF). Features extracted from eyes, nose or mouth region are used
in the recognition phase. In [261] , an approach is proposed which combines 2DPCA
for face features extraction and SVM for classification.

• Frequency domain analysis : In Huang et al. [201], a patch strategy is acquired using
2D-DWT and an integral projection technology is used to extract facial features for
face recognition. The overlapped patches are chosen to improve stability and main-
tain all local information. The classification is made by using the nearest neighbor
classifier (NNC). In Sufyanu et al. [430], a method called ASDCT is proposed which
combines anisotropic diffusion-based normalization technique (AS) and DCT. AS was
used for preprocessing and DCT was adapted for feature extraction to address the is-
sue of lighting variations and to improve the decorrelation ability of DCT to enhance
face recognition. Performance measurements were evaluated using NNC. In Abdul-
rahman et al. [23], Eigenface and DWT are used for Face recognition. A 3-level DWT
decomposition is applied to the images which are then transmitted to the PCA for
dimensionality reduction. In Shanbhag et al. [405], the authors applied Spatial Dif-
ferentiation (SD) technique and Wavelet Transform based Feature Extraction (WTFE)
to preprocess the features by eliminating those which are irrelevant. 2D-SWT is ap-
plied with 2D-DWT, which, along with Twin Pose Testing Scheme (TPTS) extract
pose invariant features which lead to high recognition rates. A Binary Particle Swarm
Optimization (BPSO) is used to reduce the number of features.

• Gabor filters : In 2006, Perlibakas and Vytautas [344] proposed to recognize a face
based on both Log-Gabor features and PCA. Their algorithm aims to locate Log-
Gabor characteristics with maximal magnitudes at only one scale and different orien-
tations. The cosine similarity measure is used to obtain high recognition performance.
In [185], an approach based on 2D face image features is proposed using a subset of
uncorrelated and orthogonal gabor filters. The feature vector is reduced in size using
LDA. The face image was enhanced and normalized to tackle variations in illumina-
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tion. To overcome pose and facial expression changes, Ming et al. [322] proposed in
2012 a 3D Gabor Patched Spectral Regression (3D GPSR) method for face recognition
which aims to solve least squares issues while using regularization, reduce noise and
exploit the efficiency of the discriminant features. The identification of faces relies
heavily on the difference among test and gallery images. To cope with this limitation,
Cament et al. [83] updated the grid to extract Gabor features using a mesh to model the
deformations of the faces. A statistical model is calculated on the basis of the scores
using Gabor features to achieve high recognition rates across pose.

Non-linear techniques

• Robust Kernel PCA (RKPCA) : In 2019, Fan et al. [144] proposed an optimization
of Kernel PCA algorithm called robust kernel PCA (RKPCA) based on a cost func-
tion that needs the reconstructed data point to be near to the original one and to the
principal subspace to prevent the implicitness of the feature space. RKPCA remains
the only unsupervised method that is robust to issues such as sparse noises and lack
of data. In order to deal with the difficult optimization of RKPCA, ADMM+BTLS
and PLM+AdSS methods are presented. To overcome the problem of ORB (Oriented-
Fast and Rotated-Brief) [383] calculation, Vinay et al. [453] proposed in their ap-
proach called ORB-KPCA, an algorithm based on both ORB feature descriptor and
KPCA [240]. ORB-KPCA is used for face recognition with Threshold Based Filtering
(TBF) to filter out the wrong matches. Lu et al. [290] have taken into consideration
the problem of the nonlinearity of face models distribution and the ”small sample size”
(SSS) and have proposed the kernel direct discriminant analysis (KDDA) which gen-
eralizes the direct-LDA (D-LDA). D-LDA is based on SVMs, KPCA and generalized
discriminant analysis (GDA).

• Gabor-KLDA : In 2015, Vinay et al. [455] compare the Gabor-LDA (linear) and
Gabor-KLDA (non-linear) to determine which technique is better adapted for face
recognition tasks. Both LDA and Kernel Fisher Analysis KFA are used to reduce the
dimensionality of facial features filtered by Gabor.

• Multi-feature shape regression (MSR) : In 2018, Yang et al. [486] proposed to im-
prove the face recognition performance by adjusting the position of facial parameters
using a face alignement algorithm based on multi-feature shape regression (MSR). The
MSR uses gradient, color, and local features to improve the accuracy of the estimation
of facial landmarks. A subspace projection optimizations (SPO) method is applied to
recognize a face.

• FDDL (Fisher Discrimination Dictionary Learning) : To address the lack of training
images in each class for a linear representation of the variability of the test, Ouanan et
al. [338] proposed to extend the FDDL (Fisher Discrimination Dictionary Learning)
model for face recognition based on the dictionary of occlusion variants. This dictio-
nary is generated by calculating the difference of deep features among two face image
pairs of the same individual.

• Wavelet transform (WT), radon transform (RT), and cellular neural networks (CNN):
In Vankayalapati et al. [448], the radon and wavelet transform approaches are com-
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bined to extract non-linear features that are robust to facial expression and illumina-
tion changes. CNN is also used to extract non-linear facial features to ameliorate the
recognition rate and the calculation speed.

• 2FNN (Two-Feature Neural Network) : In 2010, 2FNN (Two-Feature Neural Net-
work) method is proposed by Devi et al. [127] to recognize a face, which consists of
extracting features using PCA and LDA that are merged based on wavelet fusion to
enhance the LDA efficiency in case of a small number of images is accessible. Neural
networks are used for classification.

• Deep Dense Face Detector (DDFD) : In 2015, Farfade et al. [148] have suggested an
approach called Deep Dense Face Detector (DDFD) by refining the AlexNet model in
the context of face detection.

2.3.2 Local approaches

Local approaches aim to extract specific features from the face image. These methods are
sensitive to issues such as facial expressions, small occlusions, and pose changes. They can
be categorized into methods based on local appearance which extract local features from sub-
regions of the face image and methods based on key-points which extract features located on
the points of interest detected in the face image as presented in Table 2.5.

Local Appearance-Based Techniques

• Local binary pattern (LBP) and its variant : In 2016, LBP and its extensions, Pyramid
of Local Binary Pattern (PLBP) and Rotation Invariant Local Binary Pattern (RILBP)
are evaluated by Khoi et al. [237] for face retrieval. The Grid LBP technique is used
to split the face image into small regions and then the LBP feature vectors are con-
catenated into a histogram of spatially enhanced features. This system can support
the increase in the size of the dataset without unexpected fall in Mean average pre-
cision (MAP). A local-appearance based method called LBP network (LBPNet) was
proposed in [474]. The main contribution was to effectively extract hierarchical data
representations. Results showed that LBPNet yields a higher accuracy compared to
other unsupervised methods using FERET [349] and LFW [198] datasets. Laure et
al. [260] used robust LBP for face features extraction to cope with large variations in
expressions, lighting, and poses. KNN is applied for classification. One of the local
approaches was the multi-scale LBP (MLBP) method proposed in Bonnen et al. [63],
an extension of the standard LBP algorithm. Active Shape Models (ASM) are used to
extract features and Procrustes Analysis is applied to preprocess MLBP components.
Another variant of LBP is the LTP technique proposed in [367]. The similarities of the
face components are fused to encode the differences among the central pixel and its
corresponding neighbors into a trinary code using LTP to deal with noise. In Hussain
et al. [202], Local pattern features are generalized in the local quantized pattern (LQP),
using vector quantization and look-up table, which permits them to have deeper sur-
roundings and additional levels of quantization to cope with difficult variations. LQP
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acquires a part of the adaptability of visual word features and the calculation efficiency
of LBP/LTP. Experimental results on FERET [349] and LFW [198] datasets showed
that this representation enhances state of the art by about 3 %. Ghorbel et al. [163]
used the DoG filter for preprocessing and the Uniform Local Binary Pattern (uLBP) to
extract local features from face images.

• Histogram of oriented gradients (HOG) : There are lot of works using HOG features
for face recognition. In 2015, Karaaba et al. [230] selected the similar regions of two
face images by using a most similar region selection algorithm (MSRS) to deal with
misalignement. A distances vector is constructed using multi-HOG algorithm. A mean
of minimum distances (MMD) and a multi-layer perceptron based distance (MLPD)
functions are used to recognize a face. Combined with MSRS, these techniques give
high performance. In Arigbabu et al. [37], the face image is preprocessed using a
bi-cubic interpolation re-sampling technique and noise removal. The shape of the
face image is described locally using both Laplacian edge detector and Pyramid HOG
(PHOG) descriptor to recognize human gender. SVM is used for gender classification.
Experiments on LFW dataset [198] describe the effectiveness of this method. The
work of Leonard et al. [272] showed the efficiency of the correlation filters for face
recognition. The best filter is selected according to its robustness to the scale, noise
and rotation changes.

• Correlation filters : Advanced face recognition systems provide sufficient efficiency
in controlled environments and they are not very effective in the uncontrolled situa-
tions. Correlation filters have proven their effectiveness in pertinent methods under
both controlled and uncontrolled settings. On the basis of this architecture, Napoléan
and Alfalou [329], proposed to enhance the efficiency of a correlation approach to
deal with illumination changes. The LBP-VLC correlator uses a particular Gaussian
function for face image filtering to select the edges. A phase-only filters (POF) filter
is used to approve the method. Experiments have shown the good efficiency of LBP-
correlation methods under lighting changes. In a similar way, Heflin et al. [194] used
an UMACE (Unconstrained Minimum Average Correlation Energy) filter based on an
eye detection pipeline to decrease face misalignment, improving eye location preci-
sion. Experiments conducted on LFW [198] and FDHD [342] datasets demonstrated
that this algorithm yields a high face recognition accuracy by giving more attention
on the eye localization step. Proposed by Zhu et al. [512], a feature correlation fil-
ter (FCF) fuses the representations of faces with a correlation method to achieve the
correlation on filter instead of pixel values. FCF can effectively decrease the need for
storage with only a small number of features and reach significant performance. In
2013, Ouerhani et al. [339] proposed a correlation method to recognize a face based
on a segmented composite POF filter, to increase the detection accuracy and reduce
the correlation time. The target image is pre-processed and reconstructed on the basis
of a spectral phase to achieve discriminant correlation and to tackle noise and face ro-
tation. The comparison of the peak-to-correlation energy (PCE) to a specific threshold
reduces the wrong alarm rate.

• Gabor features: The complexity of the non-linear relation between the spaces of
heterogenous face image is one of the drawbacks of heterogenous face recognition.
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To address these limitations, Yi et al. [490] proposed an unsupervised Deep Learn-
ing method based on the extraction of local Gabor features at localized facial points.
RBMs are used to learn locally shared representations which are processed by PCA
and matched by cosine similarity.

Key Points Based Techiques

• Scale invariant feature transform (SIFT) : In 2015, a face recognition system is pro-
posed in [271] using SIFT descriptor combined with Kepenekci method [235]. The
locations of facial landmarks are acquired by Gabor wavelets responses in a dynamic
way. A confidence metric based on the posterior probability is presented in a super-
vised manner to recognize poorly identified faces. The performance of the proposed
approach is compared to the Kepenekci method using three pubic benchmarks, the
LFW dataset [198], the AR dataset [313] and FERET dataset [349],

• Speeded-up robust features (SURF) : In 2009, Du et al. [136] applied SURF detectors
and descriptors to extract image features for face recognition. A measure of similarity
is used which contains the number of matched points, the mean value of the Euclidean
distance, and the mean distance proportion of the total matched pairs. In 2015, Vinay
et al. [454] adopted two variants of detector-descriptor, the SURF detector with SIFT
descriptor and the SIFT detector with SURF descriptor, to increase the competence
of face recognition systems. The Fast Library for Approximate Nearest Neighbour
Search (FLANN) distance measure is used to determine the correspondance/miscor-
respondance of the feature descriptors match. In 2016, a face recognition technique is
proposed by Shah and Anand in [400] using SURF features and SVM classifier.

• Binary robust independent elementary features (BRIEF) : In 2011, Calonder et al.
[82] adopted a binary descriptor named BRIEF to compare the descriptors extracted
from feature points very quickly and with a low memory requirements. BRIEF leads
to a similar recognition precision with SURF and SIFT, while performing fastly. KNN
is used with the Hamming distance to match faces.

• Fast retina keypoint (FREAK) : To address the problems of insufficient memory and
the complexity of the descriptors calculation, Alahi et al. [26] suggested a binary key-
point descriptor called FREAK, based on the distribution of ganglion cells in the retina.
FREAK is represented by comparing a setting threshold with the difference in intensity
between receptive fields pairs.

2.3.3 Hybrid approaches

Hybrid approaches combine simultaneously local and global features to recognize face im-
ages. The hybrid approaches that we presented in this section are summarized in Table 2.6.

• color, texture, shape features and soft-biometric traits:Methods fusing various fea-
tures have received a lot of attention, such as the work of Ammar et al. [32] who
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provided a brief knowledge of the different local and global approaches used for peo-
ple re-identification. They also proposed an hybrid face identification system that
combines color, texture and shape features as well as some soft-biometric traits ( hair
color, skin tone, eyes shape, eyes color, etc) to identify humans through their faces.

• Gabor wavelet and linear discriminant analysis (GW-LDA): Fathima et al. [152] pro-
posed an approach called HGWLDA that combines both Gabor wavelet and LDA to
recognize a face. The global face image is convolved with a gabor filter bank and
different subspace variants of 2D-LDA are used to map the characteristics to a feature
space. The KNN classifier is used to recognize a face.

• Over-complete LBP (OCLBP), LDA, and within class covariance normalization (WCCN):
Barkan et al. [49] used over-complete LBP (OCLBP), which is an adjusted variant of
the LBP with multiple scales. The faces are recognized based on a matrix-vector mul-
tiplication and the LDA technique is combined with Within Class Covariance Normal-
ization (WCCN) to reduce large representations and recognize faces.

• Advanced correlation filters and Walsh LBP (WLBP): In 2015, Juefei et al. [225]
presented a Walsh LBP (WLBP) face recognition technique, which uses one example
per subject category to produce face images. In the training phase, a non-linear sub-
space is modeled by learning subject-dependent correlation filters, that is unresistant
to pose variations.

• SIFT features, Fisher vectors, and PCA: In 2013, Simonyan et al. [414] combined
both SIFT features and Fisher vectors to recognize a face. The dimensionality of the
Fisher vectors is reduced using PCA, which are projected linearly into a subspace of
low dimension.

• CNNs and stacked auto-encoder (SAE) techniques: One of the most popular hybrid
face recognition methods, based on the combination of CNN and stacked auto-encoder
(SAE), is presented in Ding and Tao [130], called multimodal deep face representation
(MM-DFR). A face feature vector of high dimensionality is extracted using CNNs.
The size of feature is reduced using three-layer SAE. Experiments on LFW [198] and
CASIA-Web [114] datasets indicate that MM-DFR offers superior performance.

• PCA and ANFIS: In 2015, Sharma et al. [406] presented a method called PCA-ANFIS
using both PCA and ANFIS to extract face features under pose variations. The score
value obtained by processing face images by PCA, is used by the ANFIS classifier in
the recognition process. This neuro-fuzzy method gives a high recognition rate.

• DCT and PCA: Face representation based on the Genetic Algorithm (GA) was known
as one of the most successful methods. In 2018, Moussa et al. [326] developed a
rapid face recognition system based on GA, DCT and PCA techniques. GA is used
as a feature selection method and is combined with DCT–PCA to extract the most
informative face features, remove irrelevant ones and then reduce the dimensionality.

• PCA, SIFT, and iterative closest point (ICP): In 2007, Mian et al. [317] presented
a multimodal face recognition algorithm using a 3D spherical face representation in
combination with SIFT features. The eyes, forehead and nose parts are used to tackle
the impacts of face expressions to improve face recognition. An iterative closest point
(ICP) algorithm is applied to match these regions and the matching scores are merged.
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• PCA and Gabor: Bellakhdhar et al. [56] fuse the phase and magnitude of Gabor’s rep-
resentations to extract face features and they apply PCA for dimensionality reduction.

• PCA, local Gabor binary pattern histogram sequence (LGBPHS), and GABOR wavelets:
In 2014, Cho et al. [102] suggested a face recognition algorithm, represented with
the Local Gabor Binary Pattern Histogram Sequence (LGBPHS) and Gabor wavelets.
PCA is used to reduce the dimensionality.

• PCA and Fisher linear discriminant (FLD): In 2012, Sing et al. [416] extracted local
discriminant features from the face image sub-regions and global features from the
entire image. PCA and Fisher linear discriminant (FLD) are applied to reduce the
dimensionality of the combined feature vector.

• SPCA–KNN: In 2013, Kamencay et al. [229] introduced a face recognition approach
called SIFT-PCAKNN. Face images are preprocessed using a graph-based technique.
Harris-Laplace and SPCA (SIFT-PCA) local features are extracted to construct the
face descriptors. KNN is applied for classification.

• Convolution operations, LSTM recurrent units, and ELM classifier: In 2012, Sun et
al. [431] presented a CNN–LSTM–ELM approach to achieve activity recognition with
sequential algorithm. It is based on CNNs, Long-Short Term Memory (LSTM) layers
and Extreme Learning Machine (ELM) classifier. This method is more convenient for
classifying the extracted features and decreases the excecution time.

• SLBP and HOG: In Annalakshmi et al. [36], the Spatially enhanced Local Binary Pat-
tern (SLBP) is concatenated with the histogram of oriented gradients (HOG) to allow
a robust representation of the face image and then to categorize the human gender with
SVM. The choice of hybrid characteristics yields great precision by fusing features.

2.3.4 Deep learning approaches

Despite their decent results, machine learning techniques do not work well in unconstrained
environments. This is principally due to the fact that machine learning techniques depend on
handcrafted representations chosen by experts that can work well for one scenario and fail in
other cases. Currently, a huge amount of research papers have been published based on DNNs
in the area of facial biometrics with interesting results. A CNN, one of the most common
DNNs, reveals a significant benefit on automatic extraction of visual features. Compared with
conventional algorithms [482] for face recognition, CNNs are trained in a data-driven way.
Additionally, CNN models combine both feature extraction and classification into one frame-
work. Based on its weight-sharing capability, local connectivity and subsampling, CNNs are
better able to extract features and make a significant progress in face recognition. Table 2.7
summarizes the main face recognition methods based on Deep Learning.

• DeepFace An approach is proposed, in Taigman et al. [439], for aligning faces to a 3D
general shape model. They trained a multi-class network on about four thousand iden-
tities to recognize faces. A siamese network is also used to optimize the L1 distance
between two face features. Their high accuracy on LFW [198] comes from an en-
semble of three networks using various color channels and alignments. The predicted
distances of these networks are combined using a non-linear SVM.
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• Convolutional Neural network (CNN) In 2015, Li et al. [274] proposed a cascade of
CNN face detectors with multiple resolutions. A calibration network is also proposed
to enhance the quality of bounding boxes. CNNs trained on two-dimensional face
samples can work successfully for three-dimensional face recognition by refining the
CNN with three-dimensional facial scans [472]. Additionally, the three-dimensional
context allows an invariance to lightening/make-up/camouflage situations.

• FaceNet : Schroff et al. [393] propose the FaceNet model to learn how to map from
a face image towards an euclidean space embedding, in which the distances between
the embeddings directly correspond to a measure of face similarity.

• DeepID : A DeepID model is developed by Sun et al. [432] that contains multiple
CNNs rather than a single CNN, by which a strong feature extractor is built. The facial
patches are fed into a DeepID which extracts features from various facial positions.

• DeepID2 :Sun et al. [434] suggested an extension to DeepID named DeepID2, which
employs both identification and verification signals to decrease intra-class variances
while extending the inter-class discrepancy.

• DeepID2+ : DeepID2+ [433] is proposed to enhance the DeepID2 performance by
adding the supervision signals to all layers and augmenting the size of each layer.

• VGG-16 : Simonyan et al. [415] present a DCNN model called VGG-16 and reach
an accuracy of 98.95% using 2.6 million samples. This model needs less training data
compared to DeepFace and FaceNet and employs a simpler network than DeepID2.
But, the construction of such a large dataset exceeds the capabilities of academia
groups.

• DeepID3 : In 2015, two DNN architectures [113] are proposed, mentioned as DeepID3,
for face recognition, which are reconstructed from the stacked convolutions of VGG
and the inception layers of GoogLeNet. Supervisory signals are used to decrease the
intra-personal face features variations. DeepID3 reached peak performance on both
verification and identification tasks.

• SphereFace : Liu et al. [286] present an angular margin penalty to simultaneously
impose extra intra-class compactness and inter-class separability.

• ArcFace : An additive Angular Margin Loss function is proposed by Deng et al.
[203] which can successfully improve the discriminating power of feature embeddings
learned through CNNs for face recognition.

• CNNs and PCA and SVMs : Zhu et al. [513] proposed to wrap faces into a canonical
frontal view based on a deep network. First, CNN is trained and then, every face
is categorized as corresponding to a known identity. A set of SVMs in conjunction
with the dimensionality reduction technique PCA on the network output are used to
perform face verification.

• Center loss : Wen et al. [466] were the pioneers of the center loss, which is a supervi-
sory signal to learn a center for deep features of each class and penalizes the distances
between each deep feature vector and its corresponding class center. However, it is
very complicated to update the actual centers during training because the number of
face classes available for training has grown considerably.
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2.4 Solved and unsolved challenges

2.4.1 Background subtraction

In order to adequately evaluate and compare videos, the challenges presented in CDnet
2014 [460], which is a part of the Change Detection Workshop (CDW 2014), are taken into
consideration. This database includes all the CDnet 2012 [173] videos plus 22 additional ones
taken by cameras covering five various categories that include supplementary challenges that
were not solved in the CDnet 2012 database [173]. The categories are called as follows: “dy-
namic backgrounds”, “baseline”, “shadows”, “camera jitter”, “thermal”, “intermittent object
motion”, “low frame-rate”, “challenging Weather”, “PTZ”, “turbulence” and “night videos”.
Additionally, while ground truths for all frames of the CDnet 2012 dataset [173] were made
available publicly for test and evaluation purposes, ground truths of only the first half of
each video sequence in the five additional categories from the CDnet 2014 dataset [460], are
made available publicly for test. However, the assessment will cover all frames for all the
video sequences in CDnet 2012 [173]. All challenges presented in these different categories
have several temporal and spatial characteristics. Therefore, it is crucial to identify both the
solved and unsolved challenges. The CDnet 2012 [173] and CDnet 2014 [460] datasets help
to highlight when it is difficult to provide robust moving objects detection for current BS
methods. A very important observations are provided by Jodoin [222], in 2015, regarding
both the solved and unsolved challenges based on the experimental results conducted on the
CDnet 2014 dataset [460]. Challenges encountered in ‘’baseline”and “bad weather” videos
can be effectively addressed by current background subtraction algorithms. The “camera
jitter”, “thermal” and “dynamic backgrounds” categories are an available challenge for the
best background subtraction methods. The ‘’low frame-rate”, ‘’Night videos” and ‘’PTZ”
sequences are highly difficult. In a valuable study, Bouwmans et al. [71] provide a survey
about the progression made over the recent years from the MOG model [427] designed in
1999 to the current DNNs models developed in 2019. This study reveals that the big differ-
ence was reached by DNNs algorithms compared to SuBSENSE with 32.92% and 24.31%
using respectively FgSegNet-V2 and Cascaded CNN. The gap of 1.55% that persists be-
tween FgSegNet-V2 and the best algorithm is lower than the difference of 6.93% between
Cascaded CNN and FgSegNet-V2. However, the large gap obtained by FgSegNet-V2 and
Cascaded CNN is usually due to their supervised appearance, and a necessary limitation of
training using labelled data.

However, when no labeled samples are available, considerable attention should be fo-
cused on unsupervised approaches as well as unsupervised GAN, robust subspace track-
ing [330] [352] [374] [376] [450] and semantic background subtraction [77] [495] that are
often fascinating in the background subtraction domain. In addition, deep learning meth-
ods effectively identify the changed areas in images with fixed backgrounds but still suffer
from multiple challenges such as varying backgrounds and camera jitter, even if they offer a
higher efficiency than conventional approaches [231]. Generally, experiments conducted on
the “IOM” and the “PTZ” categories are prevented. Additionally, these categories usually
give low F-measure. As a result, it appears that the recently evaluated DNNs have prob-
lems in these categories, possibly due to the difficulties of dealing with changes occured
at moving cameras and learning the sleep period of moving objects. Finally, despite the
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progress of background subtraction models developed for stationary cameras, camera jitter
and PTZ cameras, with many RPCA [97] [191] [192] [374] [412] [467] and deep learn-
ing models [283] [284] they can only handle small jitter issues or rotation and translation
motions. Thus, more particular algorithms and models are required for moving objects de-
tection. Once the objects are detected, their classification can be performed for subsequent
processing modules such as tracking and recognition.

2.4.2 Object classification

Object classification is an active area of research in computer vision [35]. However, we
still do not have a computer vision system that can achieve human-level classification abil-
ity for images. Object classification is still a challenge due to the tremendous variations in
images such as translation, rotation and changes in scale and illumination. CNN is the cur-
rent state-of-the-art object classification method [193] [247]. It has been used in many object
classification competitions [105] [247] [436]. It has been proven that CNN can even outper-
form humans in recognizing 1000 objects [436]. However, CNN presents a serious problem:
it requires a large amount of labeled samples. The lack of labeled training examples is the
most challenging problem of the image classification tasks. Additionally, the acquisition of
labeled data is very expensive and time-consuming. In order to reduce the dependence of
CNN on labeled data, the field of unlabeled data should be considered. Unlike labeled data,
unlabeled samples are numerous and can be obtained inexpensively. Learning from unla-
beled samples is an unsupervised learning task. The pursuit of unsupervised learning for
image classification began in 2006 [195]. Although intensive research has been carried out
on this topic, recent state-of-the-art image classification method, CNN, is a purely supervised
learning method. The present success of supervised learning techniques is mainly due to the
current large datasets and the existing labels [177]. However, unsupervised learning methods
will become the main considered solution with a quick rise in data complexity and size [366].
Unsupervised learning methods such as sparse coding and pre-training are unnecessary for
obtaining high-performance image classification [105] [247] [436]. Labeling large amount
of images is unrealistic and time consuming for many image classification applications. The
need to develop semi-supervised techniques, which allow training a system with only a few
labeled samples together with large amounts of unlabeled samples increase faster. The lat-
ter being widely available and inexpensive, this could considerably help the classification
of objects. Once objects detection and classification (humans, vehicles, etc) is done, a face
recognition step is needed in order to identify extracted people.

2.4.3 Face recognition

LFW dataset [198] was published in 2007 and contains 13,233 face images of 5749 people.
As the most famous benchmark used for evaluating the performance of the deep learning
techniques under unconstrained conditions, its accuracy has reached almost 100% [365].
However, the faces in LFW dataset [198] are mostly frontal without extreme pose or se-
vere illumination, while there are no difficult situations. VGG-Face2 [85] includes 3.32M
from 9131 identities. Compared with LFW [198], this dataset is not publicly available and it
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contains faces with pose variations. Most of the global face recognition techniques such as
PCA [133] [134] [234] [335] and LDA [484] are used to reduce the dimensions and to se-
lect the useful information. However, these approaches are not effective in the unconstrained
environments where pose, illumination and occlusion are uncontrolled. Local approaches
are considered as a robust approaches in the unconstrained cases compared with global ap-
proaches. Recently, CNNs have shown excellent performance in various face recognition
tasks [113] [189] , e.g., Rajeev et al. [365] and Schroff et al. [393] presented that their pro-
posed method achieved the accuracy of 99.78% and 99.63% on the QLFW dataset [232],
respectively. However, it remains difficult for them to obtain sufficient precision on faces
under uncontrolled environment with variations in illumination, pose and occlusion, among
which occlusion has been considered the most difficult. On the one hand, data imbalance in
face datasets should be one possible reason for this phenomenon. Although most facial recog-
nition datasets contain a huge amount of identities, they still suffer from the lack of occluded
facial images. It seems that, without training with a large number of occluded face images,
DCNNs cannot perform well due to the higher inter-class similarity and the larger intra-class
variation caused by occlusions [162]. To solve this problem, more occluded face images
should be involved into the CNN training process. On the other hand, the loss function could
also have great impact on the training of CNN for face verification and results in poor perfor-
mance as it could be biased to the data distribution. For example, softmax loss, which was
not specifically designed for complex samples, would neglect occluded faces by increasing
the conditional probability of all samples. To deal with this problem, numerous loss func-
tions and constraints on the traditional loss functions have been presented [365] [203] [204].
A straightforward way to get better CNN model performance under partial occlusion is to
train the network with occluded faces. Challenges caused by unconstrained illumination
and environmental degradation such as blurring and problems resulting from large stand-
offs and poor image quality can be effectively resolved by incorporating a sensitivity term
into a DCNN cost function [19]. This method has been shown to be effective in day and
night time images and at different stand-off distances on the Long Distance Heterogeneous
Face dataset [112], however it has only been tested on a small, augmented dataset. Another
methodology which achieved competitive results without the benefit of large-scale annotated
datasets was presented by [40] which used deep convolutional belief networks based on lo-
cal convolutional restricted Boltzmann machines. Unsupervised representations were learned
from unlabeled samples and then transferred to a classification model like SVM and metric
learning algorithms for recognition task. The performance of the facial recognition system
depends mostly on image acquisition conditions, mainly when the posture changes and be-
cause the acquisition techniques themselves may include artifacts. In this case, the challenge
of face recognition systems is to distinguish individuals from images captured using cam-
eras, presenting low-resolution, block artifacts, or faces with variable poses. This challenge
remains unsolved and requires further research. What’s worse, most methods aimed at treat-
ing just one aspect of unconstrained facial changes only, such as pose, lighting or expression.
There was no any technique to deal with these unconstrained challenges in an integral way.
Therefore, “shallow” methods only improved the accuracy of the LFW dataset to approxi-
mately 95% [110] and are insufficient to extract stable identity feature invariant to real-world
changes. Due to the insufficiency of this technique, facial recognition systems were often re-
sulted in unstable performance in real-world applications. The single sample face recognition
(SSFR) [155] represents one of the most difficult face recognition problems, where there is
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only one face representation per individual for training. Approaches based on deep learning
require large training data to function properly [155]. SSFR remains an unresolved issue and
is among the most common topics in industry or academia. While there are several risks with
facial recognition, it also offers numerous solutions for future and upcoming technologies.

2.5 Conclusion

As discussed in this chapter, numerous approaches of background subtraction, object classi-
fication and recognition have been proposed until the present date. However, there still exist
open research questions to be investigated, as for example no traditional algorithm today still
seem to be able to simultaneously address all the key challenges of illumination variation, dy-
namic camera motion, cluttered background and occlusion. We believe that one way to solve
this issue is by the systematic investigation regarding the role and importance of features
within foreground detection, object classification and recognition. In the following chapters
of this thesis, we tackle the problem by beginning proposing a new deep detector classifier
based on an unsupervised anomaly discovery framework, that unlike the general foreground-
background separation task, detects moving objects (vehicules/pedestrians...) without any
additional image processing or background learning. Furthermore, we present an object clas-
sification approach to categorize the extracted objects in a semi-supervised way using the
discriminator network of DCGANs as a classifier. In addition, we propose a new face recog-
nition approach to identify the extracted faces based on FaceNet model [393] with DCGANs
data augmentation to achieve high recognition accuracy.



Chapter 3

A novel deep detector classifier (DeepDC)
for background subtraction in videos

In this chapter, we propose a Deep Detector Classifier (DeepDC) for moving objects detec-
tion and segmentation in videos. Our proposal consists of adapting an anomaly discovery
framework called ”DeepSphere” to the foreground-background separation task. By combin-
ing the strengths of hypersphere learning and deep auto-encoders, DeepSphere appears to be
robust in dealing with the changing nature of anomalies in the training data (e.g., pollution
of anomalies, spatiotemporal locality, extent of nested anomalies) or in the test data (data
imbalance). Experiments conducted on VIRAT dataset 1 [333], real videos from BMC2012
dataset 2 [446] of outdoor scenes and the Change Detection 2014 dataset 3 [460] under
several conditions show that the proposed DeepDC outperforms its competitors for the back-
ground subtraction task. Results show that DeepDC is less sensitive to noise and to the
dynamic nature of the background and produces a good segmentation masks, while preserv-
ing robustness to illumination changes. Results also indicate that DeepDC is able to detect
foreground objects without additional image processing.

The work presented here was published at the International Symposium on Visual Com-
puting (ISVC), Nevada, USA (oral presentation) [29] and the IET image processing jour-
nal [34]. The reader can found the related source code on Python 4.

Contents
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 DeepSphere architecture . . . . . . . . . . . . . . . . . . . . 49
3.3 Proposed DeepDC descriptor . . . . . . . . . . . . . . . . . . 51
3.4 Experimental results and discussions . . . . . . . . . . . . . 54

1https://viratdata.org/
2https://pgram.com/dataset/background-models-challenge-bmc/
3http://changedetection.net/
4https://github.com/ammarsirine/BS DeepSphere
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3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1 Motivation

Moving objects detection plays a significant role in many computer vision applications that
allow to monitor the traffic, recognize actions and count people. Background subtraction is
a common approach to this problem. There are three main steps in a background subtraction
method: Background initialization which aims to model the background using a certain num-
ber of video frames and can be represented in different ways. The background model is used
as a reference to be compared with the current video frames. The next step is feature extrac-
tion which involves selecting the appropriate features representing the relevant information
to compare the reference frame with the following frames. Once the features are extracted
over pixels or block of pixels of the background and the current frames, a similarity measure
is calculated. Each pixel is classified as belonging to the ’background’ or the ’foreground’
based on this similarity threshold value. All these steps make it possible to build an entire
segmentation system. Recently, due to the availability of big labeled data, it is important to
maintain the performance of videos to only retrieve relevant information. Unwanted infor-
mation embedded in video sequences comes at a high cost in terms of the big amount of data
stored. They also contain several inter-dependent and time-varying components. Thus, it is
important to select only the pertinent information, such as cars or people, to exploit those
resources with a better performance. Additionally, it is important to understand the normal
schemes of systems and to automatically identify abnormal behaviours in videos in order
to intervene as soon as possible to ensure system stability. Recently, the video surveillance
domain has received a lot of attention, but it still covers several issues, like the occlusion of
objects in videos, the noise resulting from light variations, the background and the current
frames are usually with different illumination, resulting in misclassification. In outdoor envi-
ronments, these issues increase significantly. Videos are generally of poor quality due to the
large distance between the objects and the camera, resulting in high sensitivity to variations
in illumination. Therefore, the background is usually dynamic. As a result, some background
parts of the current frame do not overlap with the corresponding sections of the reference
frame, resulting in no pixel-by-pixel correspondence between the input and the background
images. Additionally, if the background image and the foreground object are with the same
color, the detected object is misclassified. Therefore, it is important to deal with these is-
sues by developing high performance algorithms to implement a powerful video surveillance
system. To overcome the previous limitations, in this thesis, we exploit the power of an un-
supervised anomaly discovery framework called DeepSphere proposed by Teng et al. [443]
and adapt it to perform moving objects detection task.

The rest of this chapter is organized as follows. The DeepSphere architecture is presented
in Section 3.2. The new descriptor that we propose is described in Section 3.3. Compara-
tive results obtained on both synthetic and real videos are given in Section 3.4. Finally, the
conclusion drawn at the last section closed the Chapter 3.
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3.2 DeepSphere architecture

Figure 3.1: DeepSphere architecture.
(https://www.ijcai.org)

In recent years, deep learning based anomaly detection techniques are more widely
adopted and have been applied to different types of tasks. DeepSphere proposed by Teng
et al. [443] is an unsupervised, unified and end-to-end algorithm that can detect anomalies in
dynamic networked systems. It can perform two goals: (i) the detection of anomalies at the
case level, i.e. to determine if the network is abnormal, (ii) the discovery of anomalies at the
nested level, i.e. the exploration of the abnormal structure of localized cases in spatial and
temporal context, when anomalies take place and how they deviate from the normal situation.
DeepSphere does not need any labeled data or clean data (outlier-free) as input, it is still able
to reconstruct normal behaviors. In this thesis, we propose to adapt and validate DeepSphere
to perform foreground objects segmentation in video surveillance applications.

DeepSphere [443] aims to both identify anomalous cases and explore the abnormal struc-
ture in dynamic networks located in spatial and temporal context. DeepSphere exploits deep
autoencoders and hypersphere learning to exclude pollution from anomalies and reconstruct
normal behaviors. It allows to capture the spatio temporal dependencies among components
and across time steps, to flexibly learn non-linear entity representation, and reconstruct nor-
mal behaviors from anomalous incoming data. The high-quality representations learned by
auto-encoder allow hypersphere to better differentiate abnormal cases.

A deep autoencoder is a neural network that is composed of two components: the encoder
αθ and the decoder βφ, which are highly nonlinear mapping functions developed via neural

https://www.ijcai.org/Proceedings/2018/0378.pdf
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networks with parameters θ and φ, respectively. The encoder which maps an input image into
a compact representation stored in the low dimensional internal layer z = αθ(X), while the
decoder maps from the internal layer into the output layer to reconstruct the original data X̂k=
βφ(z). The hypersphere can be characterized by two elements, a centroid a and a radius r and
the group of data points is represented as {zk,k = 1, ..,m} .

Figure 3.1(a) shows the whole DeepSphere architecture. In DeepSphere, a sample case
χ is divided into a sequence of matrices {Xt , t = 1, ...,T} corresponding to a series of graphs
[443]. They are transmitted into an LSTM encoder [54] and a sequence of internal states
{ht , t = 1, ...,T} can be produced. LSTM autoencoder is used for better capturing the struc-
tural relationships and the potential temporal dependencies in dynamic graphs. The ht allows
capturing the source sequence information Xt , comprising long and short term dependencies.
The attention mechanism is employed to assign several attention to different ht , i.e., z = Pt wt
ht , where z represents the embedded representation, and wt is the attention weight at timestep
t. In the hidden space, an hypersphere learning layer is considered which learns a spherically
shaped boundary around the encodings zk to separate anomaly pollution (Figure3.1(b)). The
hypersphere learning layer internal structure is shown in Figure 3.1(c). The input of the hy-
persphere learning layer is zk, the two parameters r and a are considered as nodes, the distance
d and the outlier penalty ξ are calculated by functions which are considered as two non-linear
neurons. To reduce the risk of accepting abnormal cases, the objective function is defined as:

Φ = r2 + γ

m

∑
k=1

ξk +
1
m

m

∑
k=1
‖ zk−a‖2 (3.1)

All normal tensors must be mapped to the centroid a of the hypersphere. The 3rd element is
added to minimize the average distance between zk and a. Finally, the hypersphere learning
layer generates φ, d and r. The latent representations z outside the hypersphere over long
distances are processed as anomalous, while those located inside the hypersphere at short
distances tend to be normal. The reconstruction error for the LSTM autoencoder is adapted
as follows :

Ψ =
m

∑
k=1

ηk‖ χk− χ̂k‖2 (3.2)

where χk is reconstructed via the LSTM decoder, and ηk represents the case-wise weights
calculated using a heuristic function η {dk,r}. It is recommended to create latent representa-
tions z located close to a, while penalizing anomalous cases outside the hypersphere.

The overall objective function is the combination of the hypersphere component φ and
the penalized reconstruction difference Ψ:

min
Θ

z= min
Θ
{Φ+λΨ} (3.3)

where λ is the compromise parameter between these two elements, and Θ = {a,r,w,θ,φ} is
the set of parameters containing the centroid of the hypersphere a, the radius r, the attention
parameter w, and the neural network parameters θ , Φ for the LSTM encoder and decoder.
Adam Optimizer [129] is selected to train the DeepSphere model. Since DeepDC has been
trained and has a new unseen sample χk (k > m), the detection of anomalies at the case level
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can be done according to its distance from a and making a decision accordingly. Addition-
ally, DeepDC is able to reconstruct its normal behavior χ̂k even if χk is an anomalous entry.
By calculating the reconstruction difference ∆(χk) = χk− χ̂k, we can find nested anomalies
located in temporal and spatial dimensions.

Our proposed Deep Detector Classifier (DeepDC) uses DeepSphere framework to detect
and then extract moving objects from videos. Once DeepSphere algorithm is applied, fore-
ground activities are detected and moving objects are segmented according to a global image
threshold.

3.3 Proposed DeepDC descriptor

Figure 3.2: Illustration of the two-level anomaly discovery task.
(https://www.ijcai.org)

The standard DeepSphere algorithm proposed by Teng et al. [443] has proven to be a pow-
erful and robust anomaly discovery framework that simultaneously would satisfy these two
conditions, identifying abnormal cases and further exploring the anomalous structure of cases
localized in spatial and temporal context. DeepSphere exploits the strengths of hypersphere
learning and deep auto-encoders, to exclude anomaly pollution and reconstruct normal be-
haviors. DeepSphere is not based on manually labeled data and can generalize to unseen
data. First, the goal is of two-level, the model can satisfy both transparency and warning
requirements. Second, the model must be inductive, it can be generalized to test data.

Figure 3.2 shows the main concept: For a dynamic graph, considering a group of observa-
tion samples, each characterized as a tensor representing the inner spatio-temporal structure,
Figure 3.2 (a), the model allows inductively identifying the anomalous sample cases and dis-
covering the nested anomalies located in the anomalous tensors, Figure 3.2 (b).
A dynamic graph is described as G(t) = {V,E,x(t)}. where V indicates the vertex set, E rep-
resents the edge set and x(t) denotes the function mapping every edge ei j with a time serie{

xi j(t), t = 1, ...,T
}

. Figure 3.2 shows that one observation case of G(t) can be represented
by a third-order tensor χ ∈N×N×T , and the slices along the time dimension are the adjacency
matrices of the graph at several time steps, designed as {Xt , t = 1, ...,T}. A set of cases can be
characterized as {χk,k = 1,2, ...}. The dynamic graph contains a group of observation sam-

https://www.ijcai.org/Proceedings/2018/0378.pdf
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Figure 3.3: The proposed architecture (Deep Detector Classifier). Step 1: back-
ground subtraction. Step 2: Object classification (chapter 4).

ples (i.e., the training data) {χk,k = 1, ..,m}. A model is trained based on the training data,
and then inductively the trained model is applied to unseen data (i.e., test data) {χk,k > m}.
The issue is of two levels (Figure 3.2 (b)): Case level anomaly detection which aims to iden-
tify the anomalous observation cases (i.e., tensors) in the test data, defined as {χu,u > k}
⊂{χk,k > m}. This task deals with the warning requirement by computing an anomaly score
s(χk) for each case χk transmitting a signal predicting if the system is normal or not and
nested anomaly discovery to discover the abnormal cells nested within the abnormal tensors
in the test data and evaluating the deviation from the expected normal behaviours. This task
aims to provide certain transparency, a difference ∆(χk) would be calculated, demonstrating
how the abnormal tensor deviate from the expected normal tensor.

In this chapter, we propose to adapt DeepSphere to the foreground-background separa-
tion task. In our framework, the data (video) are transformed into a tensor. First, a model
is trained based on the training data (normal situation) and then the trained model is induc-
tively applied to the test data (anomalous situation). DeepDC aims to identify which tensors
(observation cases) in the test data are anomalous, in our case, referred to the moving peo-
ple or vehicles that appear along with the video and then to discover the anomalous cells
nested within the anomalous tensors in test data. As DeepSphere has been trained, given
a new test frame, we can perform case-level anomaly detection by examining its distance
towards the center of the hypersphere and make decision accordingly. By computing the
reconstruction difference between the original input frame and the reconstructed image, we
can detect and then segment foreground objects. A global image threshold is applied us-
ing Otsu’s method [337] to perform automatic thresholding. By combining the strengths of
deep autoencoders and hypersphere learning, our approach based on DeepSphere appears
to be robust to illumunation changes, dynamic background, and produces a good segmen-
tation results. Without additional image processing steps, the foreground activities are well
captured by DeepSphere. Deep autoencoders have proven a strong ability to learn nonlinear
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representations, which allows capturing the patterns in input data [264]; But, unlabelled input
samples are not strictly free from anomalies, that means, they could be polluted by certain
anomalous samples, called “anomaly pollution”. The learning process can be affected by
anomaly pollution, which can significantly decrease the quality of neural network. To solve
this issue, hypersphere learning is proposed which learns a compact limit to separate normal
and abnormal samples to exclude anomaly pollution.

Our proposed approach is achieved by incorporating autoencoders with hypersphere
learning in a mutually supportive way. DeepSphere does not only inherit the ability of hy-
persphere learning to separate anomalies, which improves the quality of autoencoders; but
also it presents the benefits of autoencoders to be able to capture spatio-temporal dependen-
cies between components and through timesteps, for flexible learning of nonlinear feature
representation, and to rebuild normal behaviors from possibly anomalous input data. Out-
liers can be detected and excluded by learning a compact hypersphere. The hypersphere can
be characterized by its centroid a, its radius r, and the group of data points represented as
{zk,k = 1, ...,m} as shown in Figure 3.1 (b). The error function must be minimized:

Φ(a,r) = r2 + γ∑
k

ξk (3.4)

with the constraints,

‖ zk−a‖2≤ r2 +ξk,ξk ≥ 0,∀i, (3.5)

where ξk are slack variables allowing the probability of anomalies in the samples. The
distance from zk to a is not necessarily less than r2 but greater distance must be penalized (the
samples outside the limit are considered as anomaly pollution). Furthermore, the parameter
γ controls the compromise between penalization and sphere volume. The radius r and the
centroid a can be obtained by minimizing Eq. 3.4. Our proposed DeepDC model contains
an hypersphere learning element which allows separating normal and anomlaous representa-
tions, excluding and penalizing anomaly pollution included in the input data to detect moving
objects in video sequences.

An autoencoder learns high quality non-linear representations, which allows a good dis-
tinction of anomalous cases by hypersphere learning. Our approach consists of detecting and
then segmenting foreground objects from video sequences using DeepSphere. DeepSphere
is an unified and unsupervised learning process that does not need outliers or labeled train-
ing data. It aims to detect anomalies in dynamic graphs and to identify anomalous sample
cases and nested anomalies in the abnormal tensor. We leverage DeepSphere and adapt it to
detect and then segment moving objects in video sequences. Our proposed approach consists
on two steps as presented in Figure 3.3: First, moving objects are detected based on Deep-
Sphere without additional image processing steps. Then, foreground objects are segmented
by simply thresholding the difference between the original input frame and the reconstructed
image. Second, deep features are extracted from the segmented objects to classify them using
a semi-supervised classifier, which consists of a DCGAN discriminator network as mentioned
in chapter 4.
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3.4 Experimental results and discussions

Several experiments were conducted to illustrate both the qualitative and quantitative results
of the proposed DeepDC descriptor. We evaluated the performance of DeepDC in four widely
used datasets including restaurant video dataset [91], CDnet2014 dataset [460], VIRAT video
dataset [333] and BMC2012 dataset [446] which includes both real and synthetic videos of
outdoor environments acquired with a fixed camera, under different weather conditions like
wind, real or sun [446].

3.4.1 Description of the datasets

We give a brief introduction of these datasets as follows:

• Restaurant video dataset: The restaurant video dataset [91] is a set of frames taken
in a restaurant. This dataset includes video background representation and activity
detection consisting of snapshots of restaurant activities.

• VIRAT video dataset: The VIRAT video dataset is proposed by Oh et al. [333],
which presents a greater variety of events and contains events involving interactions
between several individuals, vehicles, and facilities. The VIRAT video dataset [333]
includes two large categories of activities (one-object and two-objects) that implicate
both vehicles and humans. There are three types of interactions that are presented:

1. person events: standing, walking, throwing, running, carrying, gesturing, loiter-
ing and picking up.

2. Events concerning people and vehicles: getting in or out of the vehicle, opening
or closing the trunk, bicycling, dropping off, loading, unloading.

3. Person and facility events: entering or leaving the facility.

The VIRAT video dataset [333] contains a rich set of actions between multiple ob-
jects and includes several types of person-vehicle interactions, labeled in detail with
numerous examples per category.

• Change detection (CDnet2014) dataset: To test the proposal, we chose also the
CDnet2014 [460] dataset considered the largest dataset for foreground segmentation
and background modeling. This dataset is made up of 53 videos divided into eleven
categories. Each category represents a different challenge for the segmentation algo-
rithms, such as dynamic backgrounds, illumination changes, shadows, camera insta-
bility, night scenes, camouflage, etc, This dataset contains 10 videos which mainly
contain pedestrians.

• Background Models Challenge (BMC2012) dataset: BMC 2012 dataset [446] is
created for the Background Models Challenge of the ACCV 2012 conference. It is
composed of 29 outdoor videos, some of which are synthetic. Ten synthetic videos
are available representing two scenes: a roundabout and a street and their associated
ground truth. These videos show different challenging situations, mainly related to the
different lighting conditions. Despite only a small subset of images have been labeled,
ground truth of real images is available.
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3.4.2 Quantitative and qualitative evaluation

• Restaurant video dataset:
Our proposed approach is evaluated on several datasets to assess the performance of
DeepDC. The restaurant video dataset [91] is a collection of images recorded in a
restaurant. In chalapathy et al. [91], background modeling, as well as activity de-
tection are assessed using the restaurant video dataset [91]. Background represents
the relatively stationary scenes, while foreground activity incorporates snapshots of
restaurant activities, can be guests who come, talk at the reception and exit. Deep-
Sphere algorithm detects foreground activities without the need of additional image
processing, unlike the standard foreground-background separation task.

Figure 3.4: Examples of foreground activity detection in restaurant video dataset
[91] :The top, middle and bottom rows represent normal situation, anomalous situa-
tion and detected results, respectively.

Figure 3.4 shows the results of activity detection in the restaurant dataset [91]. Two
cases of activities are planned for people coming and leaving. The top, middle and
bottom rows represent the normal situation, the anomalous situation and the results
detected separately. The foreground activities are well captured by DeepSphere with-
out additional image processing. The results suggest that DeepSphere has an extended
application with tasks similar to discover anomalies in video surveillance applications.

• VIRAT video dataset:
We also present the results of background subtraction using the proposed DeepDC to
well capture moving objects in VIRAT video sequences [333]. Once the foreground
objects are detected, a good segmentation results are obtained. Figure 3.5 shows that
foreground activities are well captured in VIRAT video dataset [333] by using Deep-
Sphere technique without additional image processing steps. This results in a good
segmentation of foreground objects used as input in GAN classification in Chapter 4.

Additionally, we compare our proposed DeepDC with the 29 algorithms implemented
in the Background Subtraction Library, BGSLibrary [418]. BGSLibrary [418] pro-
vides a simple C++ framework for performing background subtraction. The library
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Figure 3.5: Network input and output in VIRAT video dataset [333] : (a) Back-
ground frame, (b) test frame, (c) output of DeepSphere, (d) segmentation mask of
the proposed method.

includes 29 background subtraction algorithms. The OpenCV2 library must be in-
stalled for using the BGSLibrary [418]. We evaluate the proposed detector on five real
outdoor video sequences from VIRAT dataset [333].

This process is carried our using the metrics Recall, Precision and F-measure. These
metrics are based on the numbers of true positive T P pixels (correctly detected fore-
ground pixels), false positive FP pixels (background pixels detected as foreground
ones), false negative pixels FN (foreground pixels detected as background ones), and
true negative pixels (correctly detected background pixels). Recall represents the per-
centage of foreground pixels detected correctly in relation to the total pixels in the fore-
ground of the groundtruth. Precision represents the percentage of foreground pixels
detected correctly in relation with to the total number of pixels detected as foreground
and F-measure represents a balance between the metrics Recall and Precision.

– Recall =
T P

T P+FN

– Precision =
T P

T P+FP
and

– F−measure = 2× Recall×Precision
Recall +Precision

The F-measures obtained using the proposed DeepDC based on DeepSphere, com-
pared to the large range of BGSLibrary [418] are given in Table 3.1. The average
F-measure results across the algorithms show that our DeepDC based on DeepSphere
outperforms the 29 algorithms of BGSLibrary [418].
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Table 3.1: FM of BS algorithms evaluated on five real videos of the VIRAT dataset
[333]. The six best methods are underlined. The best methods in each category are
in italic.

ID Method Recall Precision F-Measure

Basic methods, mean and variance over time

StaticFrameDifferenceBGS 0.6903 0.8661 0.7682

FrameDifferenceBGS 0.6028 0.7956 0.6860

WeightedMovingMeanBGS 0.6829 0.8060 0.7393

WeightedMovingVarianceBGS 0.7289 0.8237 0.7734

AdaptiveBackgroundLearning 0.7632 0.8963 0.8244

DPMeanBGS 0.7056 0.8718 0.7800

DPAdaptiveMedianBGS [315] 0.6734 0.8870 0.7656

DPPratiMediodBGS [81] 0.6901 0.8370 0.7904

Fuzzy-based methods

FuzzySugenoIntegral [497] 0.8067 0.9229 0.8509

FuzzyChoquetIntegral [45] 0.7899 0.8901 0.8370

LBFuzzyGaussian 0.7312 0.9105 0.8110

Statistical methods using one Gaussian

DPWrenGABGS [470] 0.8347 0.9249 0.8775

LBSimpleGaussian [57] 0.6321 0.9107 0.7462

statistical methods using multiple Gaussians

DPGrimsonGMMBGS [427] 0.7226 0.8873 0.7965

MixtureOfGaussianV1BGS [228] 0.8188 0.9285 0.8702

MixtureOfGaussianV2BGS [516] 0.8110 0.8500 0.8301

DPZivkovicOfGaussians [516] 0.7937 0.9120 0.8475

LBMixtureOfGaussians [66] 0.8750 0.8340 0.8480

Type-2-fuzzy-based methods

T2FGMM UM [67] 0.6611 0.9350 0.7745

T2FGMM UV [67] 0.8362 0.9751 0.8548

T2FMRF UM [507] 0.6100 0.8821 0.7212

T2FMRF UV [507] 0.8692 0.6788 0.7623

Statistical methods using colour and texture features

MultiLayerBGS [487] 0.7159 0.8657 0.7837

Non-parametric methods

PixelBasedAdaptiveSegmenter [196] 0.852 0.923 0.885

GMG [167] 0.9470 0.7030 0.8031

VuMeter [172] 0.7195 0.9055 0.8019

Methods based on eigenvalues and eigenvectors

DPEigenbackgroundBGS [335] 0.8790 0.6584 0.7475

Neural and neuro-fuzzy methods

LBAdaptiveSOM [347] 0.8056 0.9017 0.8509

LBFuzzyAdaptiveSOM [295] 0.8064 0.9273 0.8626

Proposed approach: DeepSphere 0.8880 0.9742 0.9291
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Figure 3.6: Extracted images from our proposed background subtraction approach:
(a) person, (b) car, (c) car but not the whole feature :etc, (d) Individual but not the
whole body : etc

Table 3.2: Number of extracted images for each class from five cameras of VI-
RAT Video dataset [333].

Class no. of images
person 856
vehicle 870
etc 549

Finally, the desired object areas are extracted (vehicles, pedestrians, etc), which are
represented by rectangles. If the size of the detected object is less than 5× 5 pixels,
it is considered as noise and is removed. Figure 3.6 illustrates some examples of the
extracted objects. Figure 3.6a corresponds to the first class objects which represents
’person’. Figure 3.6b represents the second class, ’vehicle’. Figure 3.6c and Figure
3.6d show a partially detected vehicle and people. In many cases, although the whole
body is visible, it is partially detected due to the same color as the background frame
or static regions of the body. In some cases, our method detects only certain regions
of the object (vehicle/person) when it is partially masked or in case of movement in
the blind spots of the camera. These objects are unwanted and are removed using a
semi-supervised DCGAN classification as presented in Chapter 4.

Table 3.2 illustrates the number of images taken from five different cameras from the
VIRAT video dataset [333], which are used for training and testing. Three categories
of objects are defined: ’person’, ’car’ and ’etc’. The class ’person’ represents the full
body. The class ’car’ represents the entire cars and the ’etc’ class indicates images
that are difficult to classify. This class contains only partially detected objects such as
cars or people when the background includes the image. The most extracted regions
of interest (ROIs) are people or cars and the other images captured by background
subtraction represent objects that are incorrectly selected. We have used five cameras
from VIRAT dataset [333] to build the training and testing datasets. Once the back-
ground subtraction based on DeepSphere is achieved, we have obtained 2275 images
of objects extracted from VIRAT video sequences (Table 3.2). In Chapter 4, we aim
to categorize the extracted objects into three classes, ’person’, ’car’ and ’etc’ based on
a semi-supervised classifier, which consists of the DCGAN discriminator.
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• Change detection (CDnet2014) dataset:
Figure 3.7 shows the foreground detection results using our proposed DeepDC on indi-
vidual frames from two video sequences of CDnet2014 dataset [460]: CameraJitter/-
Traffic (frame #1247), CameraJitter/Traffic (frame #1546) and Baseline/Pedestrians
(frame #566).

Traffic (frame #1247) Traffic (frame #1546) Pedestrians (frame #566)

Figure 3.7: Network input and output in CDnet2014 dataset [460] : The first row is
the background frame, the second row is the image test, the third row is the ground
truth, the fourth row is the output of DeepSphere. The fifth row is the foreground
mask of the proposed method.
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Our proposed DeepDC based on DeepSphere clearly appears to be robust and less
sensitive to the background subtraction method and shows greater performance in CD-
net2014 [460] scenes.

Table 3.3 shows the average F-measure values of the different BGSLibrary algo-
rithms [418] and the proposed DeepDC detector based on DeepSphere on 53 videos
of CDnet2014 dataset [460]. Best F-measures are underlined. The proposed DeepDC
algorithm gives the highest value compared to the large range of BGSLibrary algo-
rithms [418].

We have extracted the six best methods, according to the results obtained using video
sequences provided by VIRAT [333] and CDnet2014 dataset [460], that clearly over-
come the other ones. These methods cover a long period of time in the literature,
the GMM improvement proposed by Kaewtrakulpong and Bowden [228], LBFuzzy
AdaptiveSOM [295] and T2FGMM UV [67] are very good BS methods. PFinder
(DPWrenGABGS) [470] and PBAS [196] have showed an interesting robustness since
it has been possible to find a good compromise between the increase of true positive
(TP) pixels and the increase of false positive (FP). DeepDC outperforms these algo-
rithms implemented in BGSLibrary [418] with 92.91% and 96.39%, in VIRAT [333]
and CDnet2014 datasets [460], respectively.

The top six ranking algorithms can be confirmed through the visual analysis as pre-
sented in Figure 3.8. Without using additional image processing, we can observe that
our approach based on DeepSphere shows consistently better performance in different
scenarios.

Figure 3.8 illustrates sample results of applying DeepDC and the best five BGSLibrary
algorithms on videos from CDnet2014 [460] and VIRAT [333] datasets. In this Figure,
the test frames are displayed in the first row, the ground truth are shown in the second
row, and the results obtained with the proposed method are displayed in the third row.
The results obtained with the other methods are shown in the fourth to eighth rows of
Figure 3.8. As observed, DeepDC is enough successful in detecting foreground objects
in these scenes and outputs acceptable foreground masks. DeepDC clearly appears
less sensitive to the background subtraction challenges, whereas the five others fall in
detecting moving objects, unless applying a strong post-processing step.

One of the most famous statistical-based approaches to model the reference frame is
the Gaussian Mixture Model (GMM), which is originally proposed by Stauffer and
Grimson [427]. On the basis of GMM, Kim et al. [238] proposed a background sub-
traction algorithm to extract moving object areas from each video frame based on
Gaussian Mixture Model (GMM). We demonstrate that DeepDC achieves better re-
sults compared to the work of Kim et al. [238].
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Table 3.3: FM of BS algorithms evaluated on 53 videos of the CDnet2014 dataset
[460]. The six best methods are underlined. The best methods in each category are
in italic.

ID Method Recall Precision F-Measure

Basic methods, mean and variance over time

StaticFrameDifferenceBGS 0.8452 0.6007 0.7023

FrameDifferenceBGS 0.6736 0.9252 0.7796

WeightedMovingMeanBGS 0.2744 0.7346 0.3996

WeightedMovingVarianceBGS 0.8103 0.8641 0.8363

AdaptiveBackgroundLearning 0.8742 0.7548 0.8102

DPMeanBGS 0.7605 0.5930 0.6664

DPAdaptiveMedianBGS [315] 0.6611 0.9350 0.7745

DPPratiMediodBGS [81] 0.6128 0.9269 0.7378

Fuzzy-based methods

FuzzySugenoIntegral [497] 0.5488 0.8817 0.6766

FuzzyChoquetIntegral [45] 0.7621 0.9160 0.8370

LBFuzzyGaussian 0.7372 0.5778 0.6479

Statistical methods using one Gaussian

DPWrenGABGS [470] 0.7946 0.9445 0.8631

LBSimpleGaussian [57] 0.8354 0.6038 0.7010

statistical methods using multiple Gaussians

DPGrimsonGMMBGS [427] 0.8793 0.7647 0.8180

MixtureOfGaussianV1BGS [228] 0.8779 0.9572 0.8546

MixtureOfGaussianV2BGS [516] 0.6295 0.9368 0.7530

DPZivkovicOfGaussians [516] 0.6547 0.9385 0.7714

LBMixtureOfGaussians [66] 0.8750 0.8076 0.8402

Type-2-fuzzy-based methods

T2FGMM UM [67] 0.5306 0.6021 0.5641

T2FGMM UV [67] 0.7729 0.9463 0.8509

T2FMRF UM [507] 0.6100 0.8821 0.7212

T2FMRF UV [507] 0.6787 0.7723 0.7225

Statistical methods using colour and texture features

MultiLayerBGS [487] 0.7552 0.7878 0.7712

Non-parametric methods

PixelBasedAdaptiveSegmenter
[196]

0.8429 0.9193 0.8794

GMG [167] 0.8793 0.7647 0.8180

VuMeter [172] 0.8258 0.8621 0.8436

Methods based on eigenvalues and eigenvectors

DPEigenbackgroundBGS [335] 0.8880 0.7691 0.8244

Neural and neuro-fuzzy methods

LBAdaptiveSOM [347] 0.6460 0.8272 0.7254

LBFuzzyAdaptiveSOM [295] 0.8304 0.8804 0.8568

Proposed approach: DeepSphere 0.9440 0.9847 0.9639
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Figure 3.8: Background subtraction obtained with the proposed scheme and the
best five BS algorithms using the VIRAT scenes and CDnet2014 dataset. From the
first to last row: input frame, region of interest, DeepSphere (ours), PBAS [196],
DPWrenGABGS [470], MixtureOfGaussianV1BGS [228], LBFuzzyAdaptiveSOM
[295] and T2FGMM UV [67].

We compare DeepDC with the best five algorithms of the BGSLibrary [418]. More-
over, two unsupervised foreground detection methods, which both estimate a deter-
ministic low dimensional representation of the background in videos, the Robust PCA
(RPCA) model [84] and the Deep Probabilistic Background Model (DeepPBM) [149],
and two supervised foreground segmentation methods based on Deep Learning, Deep-
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CNN [42] and DPDL [502], were chosen to compare the segmentation results of our
proposal. The average quantitative results for each category are reported in Tables 3.4
and 3.5. It can be seen that in most of the challenges, the highest F-measure values
across the eleven categories of CDnet2014 dataset (highlighted in bold) are obtained
using our proposal. As representative example, that demonstrate the robustness of this
research work, we have the ”Dynamic-B” and ”B-Weather” categories where despite
the highly dynamic background regions due to partial obstruction of objects of inter-
est and snow fall, we obtained the best segmentation results. Another representative
example corresponds to the ”thermal/ Corridor” scenario, where despite the camou-
flage caused by the nature of thermal images combined with the morphology of the
human body where the limbs represent small objects with fine details, a large propor-
tion of the human silhouette is successfully segmented. In both challenges, there is a
noticeable difference between the average F-measure values obtained compared to the
other algorithms, even against Deep Learning based methods such as Deep CNN [42],
DPDL [502] and DeepPBM [149]. Moreover, in categories with less dynamic back-
grounds or less camouflage problem (for example turbulence, IO-Motion), the per-
formance of our proposal continues to be superior in the segmentation of small-sized
foreground objects. However, the combination of several challenges (severe camou-
flage, highly dynamic background, the reduced dimension of the object of interest,
shadow, jitter, etc), can compromise the performance of the proposed method. For
example, in the ”shadow / Cubicle” scenario, in which the shadows of the foreground
objects is considered as foreground, the proposed algorithm DeepDC was superseded
by the Deep CNN [42] method. A similar situation occured in the ”Night” videos, our
proposal was slightly surpassed the DeepPBM algorithm [149] because the camou-
flage caused by the night condition and the illumination changes due to the very strong
headlights, complicated the segmentation of the cars. Furthermore, in the ”PTZ” cate-
gory, DPDL [502] was exceeded DeepSphere in F-measure because of the small-sized
moving objects presented in the scenes.
Our proposal outperforms the previous methods, with the highest average F-measure
values on almost all categories, except for ”PTZ” scenes, for which DPDL has achieved
the best value and ”Shadow” category, for which Deep CNN [42] has obtained the
best segmentation results. Note that both DPWrenGABGS and RPCA give lower F-
measure than MoG, T2FGMM UV, PBAS, LBFuzzyAdaptiveSOM, DeepPBM [149],
Deep CNN and DPDL for some videos. To quantify the results, the output binary
masks generated by the background subtraction methods are compared with the ground
truth images taken from CDnet2014 [460] dataset.
Table 3.6 shows the qualitative segmentation results across the eleven CDnet2014
[460] categories. Graphical results demonstrate that our proposal is more robust than
other methods to the background subtraction challenges. DeepDC is tolerant to light-
ing changes as RPCA [84] is whereas DeepPBM [149] is not, and robust to noise
and the dynamic nature of the background as DeepPBM [149] is whereas RPCA [84]
is not. Figure 3.9 demonstrates that our approach outperforms all other methods in
almost all the CDnet 2014 [460] categories.
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Table 3.4: Performance values of the proposed method compared to the other meth-
ods on eleven categories from CDnet2014 Dataset [460] (Part 1).

Videos Method Recall Precision F-measure
B-Weather DPWrenGABGS [470] 0.4554 0.5631 0.5022

MixtureOfGaussianV1BGS [228] 0.7929 0.8402 0.8159
T2FGMM UV [67] 0.5877 0.8809 0.7051
PixelBasedAdaptiveSegmenter [196] 0.5698 0.9351 0.7081
LBFuzzyAdaptiveSOM [295] 0.3163 0.9123 0.4697
RPCA [84] 0.2927 0.7334 0.4185
DeepPBM [149] 0.7953 0.8638 0.8281
Deep CNN (DeepBS) (Pixel-wise) [42] 0.7517 0.9494 0.8301
DPDL (CNN) (Temporal-wise) [502] 0.7614 0.9244 0.8350
DeepSphere (ours) 0.8066 0.9518 0.8726

Baseline DPWrenGABGS [470] 0.4230 0.8864 0.5727
MixtureOfGaussianV1BGS [228] 0.4896 0.9382 0.6434
T2FGMM UV [67] 0.637 0.838 0.723
PixelBasedAdaptiveSegmenter [196] 0.6859 0.9250 0.7877
LBFuzzyAdaptiveSOM [295] 0.2282 0.7318 0.3479
RPCA [84] 0.4382 0.9073 0.5910
DeepPBM [149] 0.4842 0.7890 0.6001
Deep CNN (DeepBS) (Pixel-wise) [42] 0.8063 0.6515 0.7207
DPDL (CNN) (Temporal-wise) [502] 0.8577 0.8863 0.8718
DeepSphere (ours) 0.8625 0.9271 0.8918

C-Jitter DPWrenGABGS [470] 0.3399 0.9096 0.4949
MixtureOfGaussianV1BGS [228] 0.4407 0.8256 0.5747
T2FGMM UV [67] 0.4512 0.8736 0.5951
PixelBasedAdaptiveSegmenter [196] 0.4624 0.9489 0.6218
LBFuzzyAdaptiveSOM [295] 0.3806 0.7516 0.5053
RPCA [84] 0.3839 0.5638 0.4568
DeepPBM [149] 0.5759 0.6866 0.6264
Deep CNN (DeepBS) (Pixel-wise) [42] 0.9131 0.8348 0.8722
DPDL (CNN) (Temporal-wise) [502] 0.8788 0.9319 0.8990
DeepSphere (ours) 0.8905 0.9867 0.9361

Dynamic-B DPWrenGABGS [470] 0.2140 0.6914 0.3268
MixtureOfGaussianV1BGS [228] 0.4189 0.7691 0.5424
T2FGMM UV [67] 0.5279 0.8663 0.6560
PixelBasedAdaptiveSegmenter [196] 0.8718 0.7144 0.7853
LBFuzzyAdaptiveSOM [295] 0.4090 0.8921 0.5609
RPCA [84] 0.2532 0.3783 0.3033
DeepPBM [149] 0.5570 0.8476 0.6722
Deep CNN (DeepBS) (Pixel-wise) [42] 0.852 0.782 0.8142
DPDL (CNN) (Temporal-wise) [502] 0.732 0.845 0.7860
DeepSphere (ours) 0.8543 0.9083 0.8761

IO-Motion DPWrenGABGS [470] 0.3290 0.8027 0.4667
MixtureOfGaussianV1BGS [228] 0.3064 0.9851 0.4674
T2FGMM UV [67] 0.3473 0.8111 0.4864
PixelBasedAdaptiveSegmenter [196] 0.2982 0.7043 0.4190
LBFuzzyAdaptiveSOM [295] 0.5295 0.9839 0.6885
RPCA [84] 0.3518 0.8415 0.4961
DeepPBM [149] 0.5135 0.8032 0.6265
Deep CNN (DeepBS) (Pixel-wise) [42] 0.5735 0.8251 0.6098
DPDL (CNN) (Temporal-wise) [502] 0.7870 0.9935 0.8783
DeepSphere (ours) 0.7896 0.9975 0.8815

Low-F DPWrenGABGS [470] 0.2137 0.8250 0.3394
MixtureOfGaussianV1BGS [228] 0.1927 0.8099 0.3113
T2FGMM UV [67] 0.3060 0.8583 0.4511
PixelBasedAdaptiveSegmenter [196] 0.3701 0.8797 0.5210
LBFuzzyAdaptiveSOM [295] 0.2019 0.7539 0.3185
RPCA [84] 0.2880 0.4788 0.3597
DeepPBM [149] 0.6108 0.3406 0.4374
Deep CNN (DeepBS) (Pixel-wise) [42] 0.5924 0.9675 0.6002
DPDL (CNN) (Temporal-wise) [502] 0.711 0.9200 0.8050
DeepSphere (ours) 0.7292 0.9677 0.8295

Night videos DPWrenGABGS [470] 0.6271 0.9336 0.7503
MixtureOfGaussianV1BGS [228] 0.3235 0.7204 0.4465
T2FGMM UV [67] 0.4627 0.9319 0.6184
PixelBasedAdaptiveSegmenter [196] 0.4015 0.8377 0.5428
LBFuzzyAdaptiveSOM [295] 0.5254 0.9691 0.6814
RPCA [84] 0.8457 0.8522 0.8489
DeepPBM [149] 0.7742 0.9497 0.8530
Deep CNN (DeepBS) (Pixel-wise) [42] 0.5315 0.8366 0.5835
DPDL (CNN) (Temporal-wise) [502] 0.659 0.792 0.7191
DeepSphere (ours) 0.7796 0.9711 0.8649
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Table 3.5: Performance values of the proposed method compared to the other meth-
ods on eleven categories from CDnet2014 Dataset [460] (Part 2).

Videos Method Recall Precision F-measure
PTZ DPWrenGABGS [470] 0.4067 0.9408 0.5679

MixtureOfGaussianV1BGS [228] 0.3828 0.5305 0.4447
T2FGMM UV [67] 0.4369 0.8564 0.5786
PixelBasedAdaptiveSegmenter [196] 0.3610 0.9056 0.5162
LBFuzzyAdaptiveSOM [295] 0.4439 0.7800 0.5658
RPCA [84] 0.3430 0.7326 0.4673
DeepPBM [149] 0.751 0.780 0.765
Deep CNN (DeepBS) (Pixel-wise) [42] 0.4630 0.9610 0.6249
DPDL (CNN) (Temporal-wise) [502] 0.8905 0.7205 0.7965
DeepSphere (ours) 0.6076 0.9977 0.7553

Shadow DPWrenGABGS [470] 0.3317 0.9652 0.4938
MixtureOfGaussianV1BGS [228] 0.3254 0.8552 0.4714
T2FGMM UV [67] 0.5218 0.9572 0.6754
PixelBasedAdaptiveSegmenter [196] 0.3846 0.9347 0.5450
LBFuzzyAdaptiveSOM [295] 0.5120 0.9044 0.6538
RPCA [84] 0.3178 0.7022 0.4376
DeepPBM [149] 0.3083 0.9769 0.4687
Deep CNN (DeepBS) (Pixel-wise) [42] 0.901 0.962 0.9304
DPDL (CNN) (Temporal-wise) [502] 0.8023 0.9575 0.8730
DeepSphere (ours) 0.9590 0.8938 0.9252

Thermal DPWrenGABGS [470] 0.3056 0.9652 0.4642
MixtureOfGaussianV1BGS [228] 0.3946 0.9143 0.5513
T2FGMM UV [67] 0.608 0.556 0.5808
PixelBasedAdaptiveSegmenter [196] 0.691 0.566 0.6223
LBFuzzyAdaptiveSOM [295] 0.5382 0.9489 0.6868
RPCA [84] 0.767 0.781 0.7747
DeepPBM [149] 0.3716 0.8810 0.5227
Deep CNN (DeepBS) (Pixel-wise) [42] 0.6637 0.9257 0.7583
DPDL (CNN) (Temporal-wise) [502] 0.8172 0.7946 0.8075
DeepSphere (ours) 0.720 0.966 0.8201

Turbulence DPWrenGABGS [470] 0.8180 0.8275 0.8226
MixtureOfGaussianV1BGS [228] 0.4118 0.8864 0.5623
T2FGMM UV [67] 0.4706 0.8099 0.5953
PixelBasedAdaptiveSegmenter [196] 0.8028 0.9375 0.8650
LBFuzzyAdaptiveSOM [295] 0.8033 0.9305 0.8618
RPCA [84] 0.5366 0.7085 0.6107
DeepPBM [149] 0.7378 0.9293 0.6643
Deep CNN (DeepBS) (Pixel-wise) [42] 0.8226 0.8430 0.8330
DPDL (CNN) (Temporal-wise) [502] 0.7979 0.9082 0.8455
DeepSphere (ours) 0.829 0.951 0.8857

Average DPWrenGABGS [470] 0.4063 0.8582 0.5274
MixtureOfGaussianV1BGS [228] 0.4977 0.8371 0.5301
T2FGMM UV [67] 0.4870 0.8399 0.6059
PixelBasedAdaptiveSegmenter [196] 0.5340 0.8477 0.6303
LBFuzzyAdaptiveSOM [295] 0.4443 0.8689 0.5764
RPCA [84] 0.4379 0.6981 0.5240
DeepPBM [149] 0.6236 0.7988 0.6422
Deep CNN (DeepBS) (Pixel-wise) [42] 0.6933 0.8958 0.7433
DPDL (CNN) (Temporal-wise) [502] 0.7975 0.8705 0.8287
DeepSphere (ours) 0.8016 0.9568 0.8671
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Table 3.6: Visual results on CDnet 2014 dataset: From left to right: Original images,
Ground-Truth images, RPCA [84], DeepPBM [149], DeepSphere (ours).

Categories Original Ground
Truth RPCA DeepPBM DeepSphere

(ours)

B-Weather
Skating
(Frame
#1866)

Baseline
Highway
(Frame
#1370)

C-Jitter
Traffic
(Frame
#1538)

Dynamic-B
Fall (Frame
#2533)

I-O-Motion
Sofa
(Frame
#625)

lowFramerate
turnpike
(Frame
#1075)

NightVideos
tramstation
(Frame
#1006)

PTZ
TwoPosition
(Frame
#1024)

Shadow
Cubicle
(Frame
#5529)

Thermal
Corridor
(Frame
#5013)

Turbulence
T-3 (Frame
#939)
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Table 3.7: Background subtraction results on seven frames from three video se-
quences of CDnet2014 dataset affected by illumination changes and dynamic back-
grounds. Our algorithm successfully segments out the objects (person/vehicle) in all
seven input frames.

Categories Original Ground Truth RPCA DeepPBM DeepSphere
(ours)

Shadow
Cubicle
(Frame
#1186)

Shadow
Cubicle
(Frame
#5529)

Shadow
Cubicle
(Frame
#5544)

Shadow
Cubicle
(Frame
#5566)

Shadow
Cubicle
(Frame
#7065)

Dynamic-B
Fall (Frame
#2533)

Dynamic-B
Overpass
(Frame
#2467)

Table 3.7 shows the results of background subtraction for five frames from the CD-
net2014 ”shadow”/Cubicle video (frame #1186, frame #5529, frame #5544, frame
#5566, frame #7065) and two frames from the ”dynamic-Background” category (Fall
frame #2533, Overpass frame #2467). Our proposal clearly appears to be more tolerant
to the background subtraction method, whereas RPCA [84] and DeepPBM [149] are
very useless in detecting moving objects. Table 3.7 illustrates the effectiveness of the
proposed descriptor in dealing with changing lighting and dynamic backgrounds con-
ditions. Our model achieves a more accurate foreground segmentation. Compared to
RPCA [84], DeepSphere can better deal with noise and dynamic backgrounds. Com-
pared to DeepPBM [149], DeepSphere achieves better foreground segmentation be-
cause it can cope with illumination changes.
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Figure 3.10 shows the training and validation loss of DeepSphere using CDnet2014
dataset [460]. It reveals that the train and validation loss decreases to a point of sta-
bility with a minimal difference between the two final loss values, proof of a good fit.
Model loss is almost lower on the training dataset than the validation dataset.

Figure 3.11(a), Figure 3.11(b) and Figure 3.11(c) display graphics of the F-measures
for various methods, from MOG to our proposed model, DeepSphere. In these figures,
the closer the method curve is to a circle with radius 1, the more the method is robust
over the 11 categories of CDnet 2014 dataset [460]. By looking at Figure 3.11(a),
we can first see that the fuzzy gaussian model, namely, Type-2 Fuzzy Gaussian Mix-
ture Model (T2FGMM UV) [67] slightly outperforms the MOG [427] basic statistical
model, implemented in 1999 except on the ”Bad Weather” category. However, the
average F-measure did not exceed 0.7 %, which is relatively low. Only for the ”base-
line” and ”B-Weather” categories, the F-measure exceeded 0.7 %, which makes these
methods usable in applications with not too complex environments. Second, we can
see that the proposed DeepDC neural network based on DeepSphere significantly in-
creases the F-measure under ”baseline”, ”camera jitter”, ”intermittent object motion”,
and ”turbulence” categories.

In Figure 3.11(b), we can see that the unsupervised DeepPBM [149] model which
allows a deterministic low dimensional representation of the background in videos
achieves higher performance than RPCA [84], known as one of the standard and well-
performed subspace learning methods, except in the ”Thermal” category. Second,
we can see that the proposed DeepSphere algorithm achieves better performance than
RPCA [84] and DeepPBM [149] in almost all the categories of CDnet 2014 dataset
[460], except in the ”PTZ” category, where DeepPBM [149] outperforms DeepSphere.

Figure 3.11(c) compares DeepSphere with two supervised CNNs based methods. The
DPDL [502] (Temporal-wise) model provides a better performance than the Deep
CNN (DeepBS) (Pixel-wise) model [42] in almost all categories, except in the ”Dynamic-
B” and ”Shadow” categories. This can be explained by the fact that the DPDL [502] is
a temporal-wise algorithm which imposes temporal coherence by modeling the depen-
dencies between adjacent temporal pixels, while the Deep CNN [42] is a pixel-wise
method that does not take into account temporal or spatial restrictions. In addition,
in Figure 3.11(c), we can also see an increase in performance between DeepSphere
and DPDL model [502] which was designed in 2018, thereby showing the important
improvement made by our proposed method. DeepSphere significantly increase the
F-measure under ”Baseline”, ”Camera jitter”, ”Intermittent object motion” and ”Tur-
bulence” categories. The gain in F-measure was approximately 10 %. This good per-
formance of DeepSphere based methods is due to their ability to take into account both
spatial and temporal constraints, which are extremely important in this field. Deep-
Sphere enforces both spatial and temporal coherence by modeling the dependencies
between adjacent temporal and spatial pixels, resulting in better performance.

Table 3.8 illustrates the number of images extracted from 53 cameras from CDnet
2014 dataset [460], which are used for training and testing in Chapter 4. In total, 7630
images are extracted belonging to three categories: ’person’, ’vehicle’ and ’etc’.
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Figure 3.10: Train and validation learning curves of DeepSphere using CDnet2014
dataset [460].

Figure 3.11: (a) Gain in performance between MOG [427], T2FGMM UV [67] and
DeepSphere [34] for the CDnet2014 dataset [460]. (b) Gain in performance between
DeepSphere [34] and unsupervised models, RPCA [84] and DeepPBM [149] for the
CDnet2014 dataset [460]. (c) Gain in performance between DeepSphere [34] and
CNNs (supervised models) [42] [502] for the CDnet2014 dataset [460].
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Table 3.8: Number of extracted images for each class from 53 cameras of CD-
net2014 Video dataset [460].

Class no. of images
person 3200
vehicle 2780
etc 1650

• Background Models Challenge (BMC2012) dataset: In BMC2012 dataset [446],
we compare our proposal on 9 real-world videos including challenges, such as cast
shadows, the presence of dynamic backgrounds, the presence of a continuous flow of
cars, intermittent object motion, general climatic conditions (sunny, rainy and snowy
conditions), color saturation, lighting conditions and the presence of big objects. The
average F-measure obtained using our proposal compared to the five best algorithms of
BGSLibrary [418] and the two unsupervised foreground detection algorithms, RPCA
[84] and DeepPBM [149] are reported in Table 3.9. We highlighted in bold the best
F-measure values in each category. Our algorithm achieved the highest F-measure on
almost all the categories, except in the ”Train in the tunnel” category, where PBAS al-
gorithm [196] obtained the best results, These results are attributed to the small-size of
the foreground objects, which prevented DeepDC from effectively distinguishing these
pixels. Results show that the average F-measure values across the 9 categories of the
BMC2012 dataset are more stable in our proposal (DeepDC) respect to the rest of the
methodologies. RPCA [84] is less performant than DeepPBM [149]. Our method out-
performs RPCA [84] and DeepPBM [149] on BMC 2012 dataset [446] with 28% and
15% in average in F-measure score, respectively.
Numerous experiments were carried out to illustrate both the qualitative and quanti-
tative performances of the proposed DeepDC. First, we present results of background
subtraction on individual frames from nine video sequences: Parking (frame #1563),
Big trucks (frame #64), Wandering students (frame #250), Rabbit in the night (frame
#215), Snowy christmas (frame #17097), Beware of the trains (frame #699), Train in
the tunnel (frame #1454), Traffic during windy day (frame #140) and one rainy hour
(frame #15555). Table 3.10 shows the visual results obtained using DeepPBM [149],
RPCA [84] and our proposed method on 9 real videos from BMC 2012 dataset [446].
Results confirm that our proposed DeepDC based on DeepSphere algorithm clearly
improves the foreground mask by reducing false positives and negative detections.

We can remark that DeepSphere outperforms both DeepPBM [149] and RPCA [84]
on almost all categories of BMC 2012 dataset [446], except in the ”Train in the tun-
nel” category. Our method is more successful in detecting foreground objects in these
videos, and provides acceptable results, while RPCA [84] and DeepPBM [149] both
fail to detect efficient foreground masks. Our descriptor clearly appears to be more
robust to noise and to the dynamic nature of the background as DeepPBM [149]
is whereas RPCA [84] is not, and robust to illumination changes as RPCA [84] is
whereas DeepPBM [149] is not.
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It can be observed in Tables 3.9 and 3.10, that, in the case of real video sequences,
DeepDC generally achieves the highest accuracy, in terms of recall, precision and F-
measure metrics. Specifically, DeepDC well handles typical background maintenance
challenges, such as waving trees in ”Boring parking” and ”Traffic during windy day”
categories and gradual light changes in ”Boring parking” category, despite the tiny size
of moving objects such as those in ”Rabbit in the night”, ”Beware of the trains” and
”One rainy hour” and the large moving objects, such as those in ”Big trucks” category.
However, the combination of several challenges can compromise the performance of
the proposed method. For example, in the ”train in the tunnel” category, the presence
of strong reflections combined with the small-sized foreground objects, the proposed
algorithm DeepDC was superseded by the PBAS method [196].
Figure 3.12 compares the performance of the five best algorithms of BGSLibrary
[418], DPWrenGABGS, MixtureOfGaussianV1BGS, T2FGMM UV, LBFuzzyAdap-
tiveSOM and PBAS as well as RPCA [84], DeepPBM [149] and the proposed de-
scriptor. Graphical values of our proposed method are enough successful than other
methods as illustrated in Figure 3.12. Our proposal attains the highest quantitative
values such as the F-measure exceeds 68 % in the majority of the categories.
By analyzing Figure 3.13(a), we can see that the fuzzy Gaussian model, T2FGMM UV
slightly outperforms the statistical model, MOG in almost all the categories of BMC
2012 dataset [446], except in the ”snowy christmas” category. However, the F-measure
did not exceed 0.75 on average, which is relatively low. Second, we can also see in Fig-
ure 3.13(a) that the proposed DeepSphere neural network model achieves better per-
formance than T2FGMM UV and MOG in all the categories. The gain in F-measure
score was approximately 15%.
By looking at Figure 3.13(b), we can first see that DeepPBM [149] achieves better
performance than RPCA [84]. We also remark that the proposed model based on
DeepSphere outperforms both RPCA [84] and DeepPBM [149] algorithms in almost
all the categories of BMC 2012 dataset [446], except in the ”Train in the tunnel”
category, where the proposed algorithm DeepSphere was superseded by the DeepPBM
[149] method. The gain in F-measure score was approximately 10%. The average F-
measure of DeepSphere was roughly 0.78, which becomes more acceptable in terms
of reliable use in real conditions.
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Table 3.9: Performance values of the proposed method compared to the other meth-
ods on 9 real videos from BMC 2012 Dataset [446]

Videos Method Recall Precision F-measure
Boring parking, active bkbg DPWrenGABGS [470] 0.536 0.508 0.5196

MixtureOfGaussianV1BGS [228] 0.563 0.504 0.5306
T2FGMM UV [67] 0.4356 0.8640 0.5792
PixelBasedAdaptiveSegmenter [196] 0.659 0.756 0.7051
LBFuzzyAdaptiveSOM [295] 0.4056 0.7682 0.5351
RPCA [84] 0.7169 0.370 0.4854
DeepPBM [149] 0.5587 0.8907 0.6867
DeepSphere (ours) 0.6290 0.9318 0.7510

Big trucks DPWrenGABGS [470] 0.5527 0.7368 0.6316
MixtureOfGaussianV1BGS [228] 0.538 0.405 0.4631
T2FGMM UV [67] 0.4553 0.7793 0.5741
PixelBasedAdaptiveSegmenter [196] 0.5079 0.7090 0.5918
LBFuzzyAdaptiveSOM [295] 0.488 0.535 0.511
RPCA [84] 0.630 0.8010 0.6834
DeepPBM [149] 0.852 0.881 0.8602
DeepSphere (ours) 0.8578 0.8918 0.8735

Wandering students DPWrenGABGS [470] 0.6866 0.3764 0.4075
MixtureOfGaussianV1BGS [228] 0.3855 0.6119 0.4105
T2FGMM UV [67] 0.6226 0.4986 0.4760
PixelBasedAdaptiveSegmenter [196] 0.5603 0.6342 0.5389
LBFuzzyAdaptiveSOM [295] 0.2351 0.7014 0.3522
RPCA [84] 0.8403 0.90 0.8723
DeepPBM [149] 0.9287 0.851 0.9432
DeepSphere (ours) 0.929 0.9890 0.9590

Rabbit in the night DPWrenGABGS [470] 0.6011 0.6666 0.5640
MixtureOfGaussianV1BGS [228] 0.4651 0.6530 0.4718
T2FGMM UV [67] 0.800 0.747 0.662
PixelBasedAdaptiveSegmenter [196] 0.51 0.82 0.59
LBFuzzyAdaptiveSOM [295] 0.3475 0.8963 0.5008
RPCA [84] 0.3179 0.8339 0.4603
DeepPBM [149] 0.3579 0.9820 0.5246
DeepSphere (ours) 0.5267 0.9827 0.6858

Snowy christmas DPWrenGABGS [470] 0.6700 0.7045 0.5745
MixtureOfGaussianV1BGS [228] 0.6955 0.8326 0.6829
T2FGMM UV [67] 0.6964 0.7079 0.6596
PixelBasedAdaptiveSegmenter [196] 0.8824 0.5969 0.7122
LBFuzzyAdaptiveSOM [295] 0.7108 0.7012 0.6623
RPCA [84] 0.1538 0.6850 0.2513
DeepPBM [149] 0.5385 0.9255 0.6808
DeepSphere (ours) 0.7840 0.8160 0.7532

Beware of the trains DPWrenGABGS [470] 0.716 0.503 0.5750
MixtureOfGaussianV1BGS [228] 0.7373 0.7586 0.7220
T2FGMM UV [67] 0.7283 0.8922 0.7556
PixelBasedAdaptiveSegmenter [196] 0.7882 0.7179 0.7159
LBFuzzyAdaptiveSOM [295] 0.4485 0.9677 0.6129
RPCA [84] 0.6151 0.7820 0.6814
DeepPBM [149] 0.877 0.811 0.836
DeepSphere (ours) 0.9133 0.8143 0.8597

Train in the tunnel DPWrenGABGS [470] 0.55 0.38 0.40
MixtureOfGaussianV1BGS [228] 0.3064 0.7583 0.4364
T2FGMM UV [67] 0.4465 0.4482 0.4480
PixelBasedAdaptiveSegmenter [196] 0.72 0.62 0.64
LBFuzzyAdaptiveSOM [295] 0.5553 0.4544 0.5037
RPCA [84] 0.2321 0.2321 0.3038
DeepPBM [149] 0.5714 0.6184 0.5945
DeepSphere (ours) 0.573 0.495 0.5376

Traffic during windy day DPWrenGABGS [470] 0.4673 0.4724 0.4444
MixtureOfGaussianV1BGS [228] 0.3323 0.3232 0.3277
T2FGMM UV [67] 0.629 0.544 0.5837
PixelBasedAdaptiveSegmenter [196] 0.6485 0.8413 0.7330
LBFuzzyAdaptiveSOM [295] 0.2408 0.4083 0.3029
RPCA [84] 0.3914 0.5202 0.4482
DeepPBM [149] 0.79 0.74 0.7638
DeepSphere (ours) 0.6535 0.9490 0.7740

One rainy hour DPWrenGABGS [470] 0.71 0.63 0.65
MixtureOfGaussianV1BGS [228] 0.85 0.65 0.59
T2FGMM UV [67] 0.751 0.619 0.679
PixelBasedAdaptiveSegmenter [196] 0.663 0.6927 0.5902
LBFuzzyAdaptiveSOM [295] 0.40 0.37 0.39
RPCA [84] 0.677 0.503 0.5769
DeepPBM [149] 0.671 0.837 0.74
DeepSphere (ours) 0.838 0.907 0.867

Average DPWrenGABGS [470] 0.6099 0.5536 0.5297
MixtureOfGaussianV1BGS [228] 0.5414 0.6107 0.515
T2FGMM UV [67] 0.6183 0.677 0.6069
PixelBasedAdaptiveSegmenter [196] 0.6599 0.7264 0.6417
LBFuzzyAdaptiveSOM [295] 0.4257 0.6447 0.4823
RPCA [84] 0.5082 0.6252 0.529
DeepPBM [149] 0.6602 0.8096 0.7299
DeepSphere (ours) 0.7449 0.8640 0.7845
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Table 3.10: Visual results on real-world videos of the BMC2012 dataset [446]: From
left to right: Original images, Ground-Truth images, RPCA [84], DeepPBM [149],
DeepSphere (ours).

Categories Background
image Input image ground truth RPCA DeepPBM DeepSphere

(ours)

Boring
parking,
active bkbg
(Frame
#1563)

Big trucks
(Frame
#64)

Wandering
students
(Frame
#250)

Rabbit in
the night
(Frame
#215)

Snowy
christmas
(Frame
#17097)

Beware of
the trains
(Frame
#699)

Train in
the tunnel
(Frame
#1454)

Traffic dur-
ing windy
day (Frame
#140)

One rainy
hour
(Frame
#15555)
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Figure 3.13: (a) Gain in performance between MOG [427], T2FGMM UV [67] and
DeepSphere [34] for the BMC 2012 dataset [446]. (b) Gain in performance between
DeepSphere [34] and unsupervised models, RPCA [84] and DeepPBM [149] for the
BMC 2012 dataset [446].

The final results we give is about the computational time which is an important factor
for some applications. We collected the computational times needed to detect and segment
the foregrounds using RPCA [84], DeepPBM [149] and the proposed model based on Deep-
Sphere on the six short real videos of BMC 2012 dataset [446] as well as the average compu-
tational time (in minutes). We used 3.5 GHZ Intel Core i7. Results are summarized in Table
3.11. Our DeepDC model based on DeepSphere shows better time performance than both
RPCA [84] and DeepPBM [149]. According to the reported results, background subtraction
using the trained model based on DeepSphere can be done in more than 8 times and 3 times
faster than RPCA [84] known as one of the standard and well-performed subspace learning
methods and DeepPBM [149], respectively.
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Table 3.11: Computational time for the BS task of our DeepSphere compared to
RPCA [84] and DeepPBM [149] evaluated on the 6 short videos of BMC 2012
dataset [446]. For the fair comparison we ran the trained model using Intel Core
i7 Hardware.

Algorithm Run Time
Big trucks - 1498 frames

RPCA [84] 38 min
DeepPBM [149] 15.4 min
DeepSphere (ours) 6.26 min

Wandering students – 795 frames

RPCA [84] 30 min
DeepPBM [149] 9.2 min
DeepSphere (ours) 3.36 min

Rabbit in the night – 1896 frames

RPCA [84] 45 min
DeepPBM [149] 23.6 min
DeepSphere (ours) 8 min

Beware of the trains – 1065 frames

RPCA [84] 35.5 min
DeepPBM [149] 13.5 min
DeepSphere (ours) 7.43 min

Train in the tunnel – 1726 frames

RPCA [84] 43 min
DeepPBM [149] 20.2 min
DeepSphere (ours) 7.3 min

Traffic during windy day – 793 frames

RPCA [84] 25 min
DeepPBM [149] 8.4 min
DeepSphere (ours) 3.26 min

Average over all the videos

RPCA [84] 42.09 min
DeepPBM [149] 15.04 min
DeepSphere (ours) 5.8 min
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3.5 Conclusion

In this chapter, a new deep detector classifier called DeepDC for moving objects detection
and segmentation is proposed. DeepDC is based on an anomaly discovery framework called
DeepSphere, which combines the strengths of deep autoencoders and hypersphere learning
to detect anomalies in dynamic networked systems. We propose to adapt and validate Deep-
Sphere to perform foreground objects segmentation. DeepDC generates good segmentation
results without additional image processing. It is also tolerant to illumination changes as
RPCA is whereas DeepPBM is not and robust to noise and the dynamic nature of the back-
ground as DeepPBM is whereas RPCA is not. We compared the proposed DeepDC model
to the 29 algorithms implemented in the BGSLibrary as well as to RPCA and DeepPBM
on real videos from VIRAT video dataset [333], CDnet 2014 dataset [460] and BMC 2012
dataset [446]. Experimental results show that the proposed model qualitatively and quantita-
tively outperforms the mentioned methods in both time efficiency and accuracy, making it a
serious candidate for the background substation task. In the next chapter, we will describe our
semi-supervised approach for moving objects classification to deal with the lack of labeled
data. The proposed approach classify the extracted objects using the discriminator network
of DCGANs in a semi-supervised manner.



Chapter 4

A novel semi-supervised DCGAN model
for object classification

This chapter presents a novel semi-supervised learning approach based on deep convolu-
tional generative adversarial networks, DCGANs, able to extract suitable features to classify
objects. Our proposal called DCGAN-based semi-supervised learning (DCGAN-SSL) is an
extension of the DCGAN architecture for training a classifier while making use of labeled
and unlabeled data. In addition, it allows to learn a generative model and a classifier si-
multaneously. A DCGAN is originally intended for unsupervised learning, we adapt it for
semi-supervised learning classification task. Results on VIRAT video dataset [333] et CDnet
2014 dataset [460] show the relevance of the proposed approach. DCGAN-SSL classifier out-
performs not only three standard models (TSVM, CatGAN, VAT, etc) as expected but also its
recent competitor, the CNN model, which was especially designed for the object classification
task.

The work presented here was published in the IET Image Processing Journal [34].
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4.1 Motivation

Nowadays, digital image processing techniques have evolved rapidly with the development of
image classification and recognition technologies. Due to the high non-linear approximation
capacity of these image classification technologies, CNN have proved to be the efficient way,
attracting more and more attention and obtaining various applications in image classification.
However, the large application of CNNs to high-resolution images is still been prohibitively
expensive, despite the relative efficiency of their local architecture and their appealing quali-
ties. In addition, CNN requires a large amount of labeled data to process and train the neural
network which, while acquiring additional data or labeling all the data, remains expensive
or even impossible. To overcome these problems, most image classification approaches have
applied GANs because of the benefits that GANs can work well with the lack of data and
its super-resolution. In this chapter, due to the good performance of the convolutional oper-
ation, we propose to apply an extension to GAN, called DCGANs on unlabeled samples to
enhance the accuracy of object classification using a small number of labeled samples. Com-
pared to GAN, DCGAN focuses on using Deep Convolutional networks in place of fully-
connected networks. DCGAN is more suitable for handling multimedia and image data, as
two-dimensional convolution and deconvolution operations can be performed. Convolutional
networks generally search for spatial correlations in an image. This means that a DCGAN
would likely be more suitable for image/video data than a conventional GAN. In addition,
when it comes to categorizing images, fully connected layers need a lot of weights in the first
hidden layer. Networks with a big amount of parameters encounter numerous problems, for
example, chances of overfitting, slower training time, etc.

Various imaging-based applications, including object detection, object segmentation, im-
age classification and image recognition take advantage from deep learning networks. One
of the reasons for the success of deep learning applications is that the model can learn from a
huge amount of labeled training samples. Supervised learning has been at the center of deep
research. It involves learning from labeled training samples, where each individual sample
consists of the instance problem with its label. For example, in a classification task, the data
element to be categorized is represented as a feature vector and the class is assigned as a
categorical label. The set of samples, also known as a training set or a labeled set, is used
to create the classifier which can be used to categorize any new given sample. However, all
supervised object classification methods based their approaches on the assumption of avail-
ability of large labeled dataset. For many areas of interest, data collection is relatively easy
while labelling it by human experts is expensive and time-consuming. However, it can be
argued that the most widespread framework is where a big number of unlabeled data exists,
but we want to train some supervised predictor. Generally, labeling all the data is extremely
expensive, therefore the labeled dataset is usually several orders of magnitude smaller. Re-
searchers are interested in minimizing the cost of obtaining labeled training examples, and
there are several studies are underway with unsupervised and semi-supervised deep learning.
In many real world applications such as text processing and image processing, where there
is an abundant amount of unlabeled samples, requiring people to label unlabeled data, is an
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expensive task. In these applications, labeled data is sparse. Supervised learning is a cost
effective and time consuming process, since it needs a big number of labeled training sam-
ples. In contrast, unsupervised learning does not need any labeled data and groups the data
depending on the similarity of data points by using either maximum likelihood or clustering
approach. However, this approach can not accurately cluster an unknown data. Unsuper-
vised learning is more complicated than supervised learning, because we lack the ground
truth to assess the results. To solve these problems, Semi-supervised learning (SSL) has been
suggested by researchers, which can learn with a few number of training data, can label the
training data and treats the remaining samples as test data. Semi-supervised image classifi-
cation leverages both labeled and unlabeled data to increase classification performance. It is
an intermediate between supervised and unsupervised learning that incorporates the ability
to use partially labeled dataset. According to different learning tasks, many semi-supervised
classification methods and semi-supervised clustering methods are available in the litera-
ture [34] [96] [98] [220] [242] [309] [323] [380] [423] [387] [511]. Existing GAN-based
image classification methods are still unsupervised, as these methods do not employ label
information and the images produced by the generator which are used to train GAN are also
unlabeled. The classification accuracy could be increased. The need to create models that
can learn from less data is increasing faster. Consequently, in this chapter, we present a
DCGAN based semi-supervised learning model, called DCGAN-SSL to classify objects ex-
tracted from video sequences from VIRAT video dataset [333] and CDnet2014 dataset [460]
using a very small labeled training set. Semi-supervised learning is a technique in which both
labeled and unlabeled samples are employed to train a classifier.

Until recently, to our best knowledge, there have been no previous methods which pro-
cessed altogether semi-supervised learning and DCGAN networks for multi-class object clas-
sification problem. State-of-the-art object classification approaches operate on an unsuper-
vised way, ignoring the supervised learning. Goodfellow et al. [169] proposed a novel frame-
work to estimate generative models via a contradictory learning. The GAN generator can be
used to learn the actual distribution of unsupervised data. Radford et al. [360] demonstrate
that DCGANs are an excellent candidate for unsupervised learning. A hierarchy of repre-
sentations from object regions to scenes is learned by a deep convolutional adversarial pair
in both the generator and discriminator. In addition, the learned features are employed for
further tasks, proving that they are applicable as common representations of images. The
supervised and unsupervised learning are two significant techniques used for object classi-
fication. Using generative models for semi-supervised learning is not a new idea. Kingma
et al. [242] expand work on variational generative models [241] [370] to do just that. Here,
we are trying to do something similar with GANs. We are not the first to apply GANs in a
semi-supervised context. GANs have been widely used and have obtained competitive results
for semi-supervised learning [387] [423] [117] [262] [132] [256] [243] [58] [477]. The Cat-
GAN [423] modifies the objective function to take into account mutual information between
observed examples and their predicted class distribution. Salimans et al. [387] report a way
to utilize GANs for a classification task with K classes. More precisely, they propose to ex-
tend the vanilla GAN where the labeled data is increased with examples generated from the
generator. The discriminator learns to predict the original classes and one fake class of the
generated data. This assists the discriminative model by increasing a small amount of labeled
data with a large amount of unlabeled data of real and generated samples. Their work presents
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various new architectural features and training processes, such as feature matching and mini-
batch discrimination functions, to help the convergence of GANs. In this way, GAN not only
produces a large amount of samples and expands the training dataset, but also improves the
ability of the networks to extract features and the generalization accuracy of the classifier
via the adversarial training method. In Salimans et al. [387], a fully connected generator
network was employed. In our work, we replace it with a DCGAN and achieve a superior
performance. As one of the previous works, Diederik [129] uses the deep generative model
in a semi-supervised learning way through the maximization of the variational lower bound
of the unlabeled data likelihood and assumes an additional latent variable in the directed gen-
erative model, which is corresponding to the classification label. In Donahue et al. [131],
an adversarial formulation with a third element is described, called the “encoder”. The en-
coder tries to encode real data to some latent space, while the generator allows mapping a
simple distribution in latent space to data space. They demonstrated that this encoder learns
for inverting the generator, and can be employed as a featurizer for a supervised training. On
the autoregressive side, Dai and Le [116] explored the idea of first “pretraining” a sequence
model to perform a task on unlabeled text data. Then, they employed these pretrained weights
for training supervised models for text classification. Their results show improved learning
stability and model generalization. In 2017, Radford et al. [361] learned a language model
by training an mLSTM RNN on Amazon reviews and then employed its internal cell state
from the last time step as features for the following supervised task of sentiment analysis of
Amazon reviews. This allowed the authors to match the state-of-the-art in their sentiment
analysis dataset with far fewer labeled samples and to outperform it with the full training set.

In this chapter, we introduce DCGANs to learn useful representations during the adver-
sarial training process and the learned features are used to classify images with relatively
small number of training samples, so as to use both the labeled training data and the un-
labeled generated samples to train DCGAN for object classification task. We exploit the
power of an unsupervised representation learning using DCGANs to build an image classifier
which can be trained with relatively small amount of labeled training samples as compared
to a fully supervised process. Our DCGAN-SSL classification model aims to improve the
feature extraction ability of the discriminator and the classification performance. We believe
the combination of semi-supervised learning with DCGANs networks may provide useful
information for object classification. By fusing semi-supervised learning and DCGANs, the
derived DCGAN-SSL extracts more detailed information from the objects to be classified.
Our contributions can be summarized as follows

• A robust combination of DCGANs and semi-supervised learning that allows us to be
more robust on feature extraction and object classification task. We extend DCGANs
to the semi-supervised learning context by forcing the discriminator network to output
class labels. DCGAN-SSL allows to learn a generative model and a classifier simulta-
neously and shows that it can be used to create a more data-efficient classifier.

• A detailed comparative evaluation of our proposed DCGAN-SSL model against other
four state-of-the art models on two large scale datasets that are CDnet2014 dataset
[460] and VIRAT video dataset [333]. We show that DCGAN-SSL improves classifi-
cation performance on restricted data sets over a baseline classifier with no generative
component. DCGANs can significantly improve the quality of the generated samples.
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The rest of this chapter is organized as follows. The GAN architecture is illustrated in
Section 4.2. In Section 4.3, we describe the DCGANs architecture. Our proposed DCGAN-
SSL model which trains DCGANs in a semi-supervised way is presented in Section 4.4.
Comparative results on real world videos are given in Section 4.5, Finally, the conclusion is
drawn at the last section closed the Chapter 4.

4.2 Generative Adversarial Networks

GAN is a class of artificial neural networks newly developed by GoodFellow et al. [169],
which trains two adversarial neural networks as presented in Figure 4.1. The first neural
network consists of the generator, which takes as input a random noise and produces new data
samples. The second network, named the discriminator, obtains input from both the generator
and the original training data. The discriminator examines samples, and determines whether
the data belongs to the actual training dataset or comes from the generator. A point will be
achieved when the generator captures the whole distribution of training samples. Thus, the
discriminator is not able to distinguish whether the inputs come from the generator or not. It
is said, at this time, that the GAN is fully trained.

Specifically, the generator (G) takes as input a random noise vector z and produces a
sample X f ake = G(z). The discriminator D input consists of samples produced by the genera-
tor and original samples and it outputs a probability distribution of the data possible sources.
Equation 4.1 illustrates the complete GAN training process. The discriminator D focuses
on maximizing the log-likelihood of assigning the correct label, while the generator (G) is
trained to maximize the probability that D makes an error (second term in the equation).

Figure 4.1: GAN high-level architecture.
(https://jglobal.jst.go.jp)

L = E[logP(Y = real|Xreal)]+E[1− logP(Y = f ake|X f ake)] (4.1)

GANs are known to be hard in train and unstable. This causes the generator in many
cases to output poor samples. As a result, many researchers have focused on improving the

https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002266367756129
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stability of training. DCGAN [360] is one of the common GAN extensions, which generates
peak performance. We used the DCGAN architecture and its improvement by Salimans et
al. [387], which is based on the feature matching concept. Feature matching is a technique
to deal with GAN instability by identifying a new generator goal. In the feature matching
process, the generator is trained to match the expected value of the features on an intermediate
layer of the discriminator, unlike the conventional GAN, where the generator is trained to
directly maximize the discriminator output. This results in an improved stability in situations
where the conventional GAN is unstable. Let f(x) indicate activations on an intermediate
layer of the discriminator, the new objective for the generator is described in Equation 4.2.

LG = ||Ex∼pdata f (x)−Ez∼pz(z) f (G(z))||22 (4.2)

4.3 DCGANs architecture

DCGAN is an improved version of the original GAN architecture with deep convolutional
networks (CNNs). Compared to the original GAN, DCGAN almost entirely uses the convo-
lutional layer rather than the fully connected layer. In this thesis, we exploit the ability of
DCGAN’s discriminator [360] to classify the extracted objects from video sequences. The
idea is to simultaneously train two adversarial networks. The first network is a discriminator
that learns to determine if the sample comes from the data distribution. The second is a gener-
ative model that aims to generate ”fake” images that attempts to fool the discriminator. After
several stages of training, the optimization will achieve a stable point where the discrimina-
tor will difficult to discern whether the data was ”fake” or not. Mathematically, the training
process of DCGANs can be seen as a minimax game. The generator G(z) takes an input z
from an uniform distribution. The discriminator D(.) takes x as input, being either images,
from selected database or output of generator G(z). During training, the discriminator tries to
distinguish between selected database and G(z), i.e. attempts to maximize, log(D(x))+log(1-
D(G(z))). Simultaneously, the generator attempts to fool the discriminator by minimizing
log(1-D(G(z)). The optimization will achieve a point of equilibrium where the discriminator
is unable to distinguish between x and G(z), after multiple steps of training.

DCGANs were the first major advancement on the original GAN architecture. The ar-
chitecture of DCGAN can be summarized as follows:

• Replace all max pooling layers with strided convolutions for both the discriminator
and the generator networks

• Use transposed convolution for upsampling

• Remove fully connected (FC) hidden layers

• Use Batch normalization (BN) for both the discriminator and generator networks.

• Use Rectified linear unit (ReLU) activation in the generator except for the output which
uses tanh

• Use LeakyReLU on all layers for the discriminator
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4.4 Proposed approach

Figure 4.2: The proposed Semi-supervised learning DCGAN (DCGAN-SSL) archi-
tecture for a 4 class classification problem.

The ordinary DCGAN descriptor introduced by Radford et al. [360] has proved to be a pow-
erful candidate for unsupervised learning. The practically unrestricted number of unlabeled
images and videos can be employed in order to learn a strong intermediate data representa-
tions, which can be then used on various supervised learning tasks like image classification.
We propose that one way to create powerful image representations is to train DCGANs [360],
and later to reuse parts of the generator and discriminator nets as supervised feature extrac-
tors. In a conventional supervised learning environment, a standard classifier model is usually
needed to categorize an input x into one of the possible N classes. The classifier outputs class
probabilities Pmodel (y |x), and is then trained to reduce the cross-entropy between the labels
and the predictive probability distribution of the classifier. Deep neural networks are typically
trained on vast quantities of labelled data and it has been difficult to apply deep models to
datasets with limited labels.

In this thesis, owing to the need to create models that can take advantage of fewer data,
we propose a DCGAN-SSL model to classify the objects extracted from video sequences
(Chapter 3), which include vehicles, people, small objects and images containing some small
parts of the body, etc. Our DCGAN-SSL classification model is applied on unlabeled samples
to achieve better accuracy in supervised object classification using only a few quantities of
labeled training samples. A shared discriminator/classifier is applied that distinguishes real
samples from false ones and predicts the class label. We adapt and extend DCGANs to a semi-
supervised classification of the extracted objects, by replacing the traditional discriminator
with a multi-class classifier, which, instead, of predicting whether a sample belongs to the
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data distribution (it is real or not), it affects at each pixel of the input image a label from
the K real classes or mark it as a fake sample (additional K + 1 class). Therefore, Pmodel
(y = K + 1 |x) is used to denote the probability that the given input x is fake. This allows
the model to learn from unlabeled samples, as it can be deduced that the model input falls
into one of the K original dataset classes by maximizing logPmodel (y ∈ {1, ...,K}|x ). The
generator functions as a source of diverse information from which the discriminator obtains
unlabelled training samples. In our approach, the intuition is utilizing the samples generated
by DCGAN generators to improve the classification tasks. These samples are added to the
dataset, thereby, increasing the class labels of the original dataset. The images obtained by
background subtraction are of low resolution, as shown in Figure 4.3. Therefore, it is crucial
to define the convenient size of entered images to train a performant DCGAN network. Our
goal is to categorize the selected ROIs. We assume that the use of DCGAN discriminator
network can easily handle the object classification task, as we have eliminated a large number
of undesired images in Chapter 3. We use feature matching for the generator loss [423].

A brief overview of the proposed framework is presented in Figure 4.2. The RGB color
input images are 32×32 pixels belong to three categories: ’person’, ’cars’ and ’etc’. The last
class ’etc’ includes all badly detected objects (non-vehicles/ non-person). An artificial “fake”
class is added, corresponding to the class K + 1. The discriminator has two functions. It acts
as a supervised classifier and it distinguishes real and fake images simultaneously. We used
the DCGAN discriminator as a K + 1 (in our case = 4) class classifier. It recognized the K
different classes of labelled data, as well as the (K+1)th fake class that represents the output
of the generator.

There are three different sources of training data for our DCGAN-SSL discriminator:

• Real images with labels x̂ : These are pairs of image label as in any conventional
supervised classification issue.

• Real images without labels x̃ : The classifier only learns them as real.

• Images from the generator G(z): The discriminator learns to classify them as fake.

Combining these different data sources will allow the classifier to learn from a wider
perspective, allowing the model to make inferences much more accurately than it would be
when using only the labeled samples for training. Let pdata denotes the data distribution and
pz be the model distribution implicitly defined by G(z) when z∼ pz.

Therefore, the discriminator losses consist of the following components:

• Supervised loss: calculates the individual real class probabilities using a softmax cross
entropy function from the estimated distribution on K = 3 object categories, which
represents ’person’, ’vehicles’ and ’etc’.

Lsupervised =−Ex̂,y∼pdata(x̂,y) [logPmodel(y|x̂,y < K +1)] (4.2)

• Unsupervised loss: the discriminator must distinguish between real training images
and fake images produced by the generator. It represents the loss resulting from the
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classification of unlabelled samples as real, and the loss from categorizing generated
images as fake.

– The loss from classifying inputs as real:

−Ex̃∼pdata(x̃) [log(1−Pmodel(y = K +1|x̃))] (4.3)

– The loss from classifying produced samples as fake:

−Ez∼pz(z)Pmodel(y = K +1|G(z)) (4.4)

The discriminator loss is the sum of both the supervised loss and the unsupervised loss.
The individual real class probabilities are calculated by the supervised loss. As this is a
multi-class classification problem, it is optimized using a softmax cross entropy function.
Unsupervised loss is computed using sigmoid cross entropy. On the other hand, generator
loss is obtained by using feature matching techniques. To do that, features are taken after the
GAP layer, when real data is processed by the discriminator. A moment is calculated when
the discriminator analyzes generated fake samples from the generator. The average absolute
difference between the two moments represents the loss of the generator. The loss function
for training the generator network G is defined as:

L(G) = ||Ex̃∼pdata(x̃) f (x̃)−Ez∼pz(z) f (G(z))||22 (4.5)

where f(.) represents the output of the feature layer. The losses are adjusted in a way that
the discriminator can help the generator learning how to generate realistic samples, therefore,
the discriminator must distinguish between real and fake samples and to use the generator’s
images, as well as the labeled and unlabeled training samples, to help categorize the dataset.

Algorithm 1 illustrates our proposed DCGAN-SSL approach.

Algorithm 1 Minibatch Stochastic Gradient Descent (SGD) Training of DCGAN-SSL

1: for number of training iterations do
2: Sample mini-batch of m noise samples {z(1),....,z(m)} from noise prior pz(z)
3: Sample mini-batch of m labeled examples {(x̂(1),y(1)),....,(x̂(m),y(m))} from

data generating distribution pdata(x̂,y).
4: Sample mini-batch of m unlabeled examples {x̃(1),....,x̃(m)} from data gener-

ating distribution pdata(x̃).
5: Update the discriminator by descending its stochastic gradient:

∇θd
1
m ∑

m
i=1 (- logPmodel(y(i)|x̂(i),y(i) < K +1)

−[log(1−Pmodel(y = K +1|x̃(i)))+ logPmodel(y = K +1|z(i))]
6: Sample mini-batch of m noise samples {z(1),....,z(m)} from noise prior pz(z)
7: Update the generator by descending its stochastic gradient:

∇θg
1
m ∑

m
i=1|| f (x̃(i))− f (G(z(i)))||22

8: end for
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Table 4.1 represents the architecture and parameters used to build our DCGAN-SSL
model. Our implementation closely mirrored the conventional implementation presented in
the DCGAN paper by Salimans et al. [387].

Table 4.1: DCGAN-SSL model architecture
Model Architecture details
Generator
Layer1 Dense, output: 8192, batch normalization, activation:

LeakyReLU
Layer2 Reshape layer, output shape: (32,32,3)
Layer3 2D transpose convolution layer, 256 (5× 5) filters, unit strides,

same padding, batch normalization, LeakyReLU activation
Layer4 2D transpose convolution layer, 128 (5× 5) filters, unit strides,

same padding, batch normalization, LeakyReLU activation
Layer5 2D transpose convolution layer, 64 (5× 5) filters, unit strides,

same padding, tanh activation

Discriminator

Layer1 2-dimensional (2D) convolutional layer, 64 (5× 5) filters, unit
strides, same padding, LeakyReLU activation.

Layer2 2D convolutional layer, 128 (5× 5) filters, unit strides, same
padding, batch normalization, dropout (rate = 0.5), LeakyReLU
activation

Layer3 2D convolutional layer, 256 (5× 5) filters, unit strides, same
padding, LeakyReLU activation

Layer4 Global average pooling 2 D
Layer5 Dense layer, output: 4, softmax activation.

Table 4.2: Baseline model architecture
Model Architecture details
CNN
Layer1 2D convolutional layer 64 (5 × 5) filters, unit strides, same

padding, relu activation, maxPooling (2×2)
Layer2 2D convolutional layer 128 (5× 5) filters, unit strides, same

padding, relu activation, maxPooling (2×2)
Layer3 Dense (384), Dense (192), dropout (rate = 0.5), Dense layer, out-

put: 4, softmax activation



4.4. Proposed approach 89

The first layer of the generator is a dense layer, which takes in a seed of random noise,
and reshapes it into a 4-D tensor. This layer is then preceded by a sequence of transpose
convolutions, batch normalization and LeakyReLU functions. The sequence of operations
upsamples the size of the input until the desired size is achieved. In our case, the desired im-
age size is 32 × 32, which is squeeze between values -1 and 1 through the hyperbolic tangent
function. The discriminator works like a normal CNN classifier, it contains a sequence of
convolution layers with batch normalization. However, rather than applying fully connected
layer on top of convolution stack for the last layer, a global average pooling (GAP) operation,
which is a regularisation technique, is applied. We apply GAP thanks to some advantages
over traditional fully connected layers, which include greater robustness for spatial transla-
tion and fewer over-fitting problems as presented in Figure 4.7. In GAP, the average over
the spatial dimensions of a feature map is computed which gives one value. Afterwards, a
fully connected layer is applied to output the final logits, which represents the number of
classes we want to predict. The logits are transmitted to a softmax function, which outputs
the probabilities of classification. However, for modeling the binary classification value (the
probability of an input being real or fake), a LogSumExp function is employed. The final
logits are transformed into a sigmoid logits. This implementation ends with a softmax output
layer with one unit for each of the classes. The discriminator could also output four units
corresponding to (class-1, class-2, class-3, fake). Each input image is categorised based on
the semi-supervised model.

Our baseline is a CNN. In order to reach an accurate comparison of classification ef-
ficiency, we adopt the same implementation for the discriminator of DCGAN experiments.
For the baseline model, we use the architecture proposed in Kim et al. [238]. The number of
labelled data points needed to achieve a level of performance similar to that of the baseline
model is a powerful indicator that we benefit from unlabelled data.

Our baseline CNN classifier contains two convolutional layers, two pooling layers, two fully
connected layers, and finally an output layer. Each convolutional layer is followed by a ReLU
function and a pooling layer and contains 64 and 128 feature maps, respectively and the stride
is fixed to 1. A max pool with 2 × 2 filters with stride 2 is used. The activation function ReLU
and dropout are both employed at each fully connected layer. The two fully connected layers
have 384 and 192 nodes, respectively. We used batches of size 50 and the learning rate is
fixed to 0.001 for Adam optimiser. We use the architecture and parameters presented in Table
4.2 as the baseline model.

Let D = {X, Y, X0} be a dataset where (X, Y) are the labeled points, and X0 is the rest
of the unlabeled data, which is often orders of magnitude larger than X. Our DCGAN-SSL
model requires a generative model and a discriminator being trained simultaneously using all
of {X, Y, X0}. The discriminator attempts to compute both the adversarial loss and the classi-
fication loss. Our proposed approach combines the DCGAN model and the work of Salimans
et al. [387] to create a semi-supervised DCGAN network. The baseline model is trained only
on the available labeled data S0(X ,Y ). The models are evaluated in their accuracy and the
amount of labeled data required to converge to good results. We used a DCGAN discrimi-
nator to classify moving objects extracted from VIRAT video dataset [333] and CDnet2014
dataset [460] using a very small labeled training set. Both the generator and the discriminator
are trained at the same time when building a DCGAN for generating images. After training,
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the discriminator can be discarded because it is used only to train the generator. The generator
is only employed to assist the discriminator during training. It behaves like a varied source
of information including the unlabeled training samples used by the discriminator. These
unlabeled data are essential to increase the performance of the discriminator. In addition,
by turning the discriminator into a semi-supervised classifier, it has not only to compute the
probability of whether its inputs are real or not as in regular image generation GAN, but also
it has to learn the probabilities of each of the original dataset classes. For each input image,
the discriminator has to learn the probabilities to determine its class. The discriminator re-
turns a signal to the generator as a function of this probability, to adjust its parameters during
training, which improves its ability to create realistic images. We have converted the discrim-
inator of a regular GAN into a 4 class classifier. To do that, we turn its sigmoid output into
a softmax with 4 class outputs. The first 3 for the original class probabilities of the VIRAT
dataset [333] and the CDnet2014 dataset [460] (person/vehicle/etc), and the 4th class for all
the fake images that come from the generator.

The discriminator acts in part as any other conventional classifier. For this reason, it
can suffer from the same issues as any classifier if it is not properly constructed. One of
the most likely disadvantages that can be encountered when a big classifier is trained on
a very restricted dataset, is the huge of over-fitting. Overtrained classifiers generally show
a significant difference between the smaller training error and the higher test error. This
situation demonstrates that the model succeeded in capturing the structure of the training
data. But, because it believed too much in the training data, it could not generalize for test
samples. To avoid that, a large use of regularization is made through GAP and dropout, which
allows reducing over-fitting in DCGAN-SSL as presented in Figure 4.8.

4.5 Experiments

4.5.1 Datasets

The performance of our proposed descriptor was evaluated on two public large datasets, the
CDnet2014 dataset [460] and the VIRAT video dataset [333] dedicated to the evaluation of
change and motion detection. We assess the performance of our method on moving objects
extracted from these two datasets as presented in Chapter 3.

4.5.2 Experimental results and discussions

In this chapter, we propose a semi-supervised learning approach using DCGAN to categorize
our image dataset. The main idea is to use the samples produced by DCGAN generators
together with the unlabeled data to increase the performance of a classifier trained on a small
number of labeled samples. Therefore, mitigating the challenges associated with collecting
and labeling large dataset. The proposed descriptor can build a more efficient classifier and
it generates higher quality samples compared to a regular GAN. Due to the need to create
models that can take advantage from fewer data, we tried to use semi-supervised DCGANs
to classify extracted objects in Chapter 3 (people, car, certain parts of the body, etc). In our



4.5. Experiments 91

DCGAN-SSL classification method, we use the DCGAN discriminator to categorize objects
extracted from VIRAT video dataset [333] using a very small labeled training set. A GAN
with a classification discriminator exploits both the unlabeled and labeled data. The unlabeled
data allow to simply distinguish fake from real. The labeled data allow for the optimization
of the classification accuracy. We adapt and extend DCGANs, by replacing the conventional
discriminator with a multi-class classifier, which, instead of, predicting whether a sample
belongs to the data distribution (it is real or not), it assigns to each pixel of the input image
a label from the K original classes or considered it as a fake sample (K + 1 class). We try to
simultaneously solve a semi-supervised classification problem and learn a generative model.
We performed semi-supervised experiments on ROIs extracted from Chapter 3 to see whether

Figure 4.3: VIRAT training dataset

the classifier component of the DCGAN-SSL would perform better than an isolated classifier
on restricted training sets. Figure 4.3 shows some examples of the extracted ROIs from
VIRAT video dataset [333]. We train semi supervised DCGAN without ever updating the
Generator. We used different quantities of training data as labeled examples to test our semi-
supervised DCGAN method, considering setups with 20, 50, 100, and 120 labeled samples
per class. Results are averaged over 3 random subsets of labeled data, each chosen to have a
balanced number of examples from each class. The remaining training images are provided
without labels. Table 4.3 summarizes our results. The use of unlabeled data allows us to
obtain good accuracy especially with much fewer labeled samples. The images produced
by GAN generator do not look visually appealing and are completely indistinguishable from
dataset images. DCGAN-SSL can enhance their visual quality and outputs images clearly
distinguished from images coming from VIRAT dataset [333] as presented in Figure 4.4.

We focus on evaluating the effectiveness of our DCGAN-SSL method using varying
amounts of labeled samples vs baseline CNN [238]. Figure 4.5 illustrates the effect of varying
the number of labeled samples on the test accuracy when applying DCGAN-SSL vs CNN.
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Figure 4.4: Samples generated by DCGAN-SSL and GAN from the VIRAT video
dataset [333]. DCGAN-SSL is on the left and GAN is on the right. The results are
obtained after 200 epochs of training the models.

Table 4.3: Classifier accuracy in VIRAT video dataset [333].

Examples CNN [238] DCGAN-SSL (Proposed method)

120 0.8912 0.9382
100 0.8616 0.8917
50 0.7833 0.8129
25 0.7013 0.7645

Figure 4.5: The test accuracy of the DCGAN-SSL over CNN for various amounts
of labeled samples from the VIRAT video dataset [333].
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To achieve the highest accuracy, we performed a random search on the value of learning
rate. It can be seen that the use of a semi-supervised classification allows a highly better use
of few quantities of labeled samples. At the lowest amount, using only 25 training examples,
the semi-supervised model gives a high test accuracy of 0.76 vs 0.7 using only the super-
vised objective. This represents 6 % rise in efficiency when training with only 25 samples.
DCGAN-SSL exceeds the baseline in proportion to shrinkage of the training set, suggesting
that forcing the discriminator and the classifier to share weights improves the efficiency of the
data. We extend the CNN classification presented in [238] to categorize extracted ROIs from
the video and propose a method exploiting DCGAN discriminator as a multi-class classifier
for semi-supervised classification purposes. Our proposed method outperforms the work of
Kim et al. [238] which is based on supervised classification using CNN and demonstrates
the effectiveness of semi-supervised classification learning applied on objects extracted from
VIRAT video dataset [333]. This implementation reaches train accuracy of 0.95 and a test
accuracy of roughly 0.93 using only 120 labeled examples.

In Figure 4.5, we can see that using a semi-supervised objective which mainly multi-tasks
between the supervised CNN objective and the standard DCGAN objective allows much bet-
ter use of smaller amounts of labels. Results show that the use of a semi-supervised classifier
is useful for object classification, because of the large quantity of richer information that it
can extract from the video. It is because our method uses a small amount of labeled samples.
DCGAN-SSL performs much greater than CNN. CNN considers only supervised classifica-
tion. For a fair comparison on the accuracy of the classification, the same architecture for
the discriminator for CNN experiments is used. Next, we show that the proposed approach
allows to improve the performance of a supervised object classification method, as compared
to CNN and other existing models in the filed of object classification.

We have compared our proposed method with other models, namely TSVM [220], Cat-
GAN [423], VAT [323], CNN [238] and calculate the average error rate on VIRAT video
dataset [333] over 3 random splits of labeled samples. Results summarized in Table 4.4 show
that our method based on DCGAN-SSL achieved its superior performance when there are
only a few labeled examples. We train the DCGAN-SSL model on CDnet2014 dataset [460],
on sets of labeled samples of size 100, 500 and 1000. Table 4.5 summarizes the results us-
ing CDnet2014 dataset [460]. We observe that with the different amount of labeled data,
VAT [323] performs better than CatGAN [423] and TSVM [220]. Using 1000 labeled sam-
ples, DCGAN-SSL achieved the best performance compared to the state-of-the-art methods
on CDnet2014 dataset [460], with the error rate of 1.04%.
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Table 4.4: Performance comparison (error rate, %) on VIRAT video dataset [333]
of other models to DCGAN-SSL for different numbers of labeled subsets per class

Examples 120 100 50 25
TSVM [220] 3.83 ±0.77 3.864 ±6.66 4.940 ±0.36 5.62 ±4.02

CatGAN [423] 2.70±0.84 2.80 ±4.2 3.87 ±0.36 5.6 ±3.92
VAT [323] 2.684 ±1.2 2.77 ±4.87 3.819 ±0.6 4.50 ±0.9
CNN [238] 2.27 ±0.62 2.34 ±1.23 3.79 ±0.56 4.25 ±0.85

DCGAN-SSL 1.80 ±0.41 1.92 ±0.22 3.38 ±0.50 4.10 ± 0.65

Table 4.5: Performance comparison (error rate, %) on CDnet2014 video dataset
[460] of other models to DCGAN-SSL for different numbers of labeled subsets per
class

Examples 1000 500 100

TSVM [220] 10.78 ± 6.6 12.08 ± 0.19 12.96 ± 0.67
CatGAN [423] 1.73 ± 0.82 2.32 ± 0.16 2.4 ± 0.86

VAT [323] 1.45 ± 0.2 1.60 ± 0.80 2.23 ± 0.05
CNN [238] 1.26 ± 0.7 1.5 ± 0.11 1.8 ± 0.82

DCGAN-SSL 1.04 ± 0.41 1.15 ± 0.07 1.52 ± 0.33

Figure 4.6: Discriminator and generator losses using CDnet2014 dataset [460].

Figure 4.6 presents the DCGAN-SSL discriminator and generator losses using CDnet2014
dataset [460]. It can be seen that the generator loss increases. This means that the DCGAN-
SSL model successfully generates images that the discriminator fails to discriminate.
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Figure 4.7: (a) Training and testing loss of Fully Connected (FC) classifier using
CDnet2014 [460] (b) Training and testing loss of GAP using CDnet2014 [460].

Figure 4.8: (a) Standard CNN model accuracy using CDnet2014 dataset [460] (b)
DCGAN-SSL accuracy using CDnet2014 dataset [460].

As can be observed in Figure 4.7 (a), with a standard FC classifier, the training loss con-
tinue to decrease and the validation loss decreases to a point and begins to increase in Epoch
50, a sure sign of overfitting. There’s a big gap between the training and the validation curves.
The model strongly overfits. In Figure 4.7 (b) the training and validation loss decreases to a
point of stability with a small gap between the two final loss values. The validation loss of
GAP stagnates around 0.3. The model doesn’t overfit as much as in the previous case. The
GAP has a lower validation test by the 40th epoch than the FC model. More specifically,
GAP demonstrated a decrease in validation loss over the FC classifier by around 3%.

It can be observed from Figure 4.8 that the replacement of FC layers in classical CNNs
with GAP in DCGAN-SSL can boost performance with a smaller labeled training size. The
training accuracy of the standard CNN achieves high values but it overfits regarding the val-
idation dataset. These results illustrate that by adding GAP instead of a stack of FC layers
on top of the feature maps of DCGAN-SSL, the performance of CNN is increased without
requiring additional training data. One advantage of GAP compared to the FC layers is that it
enforces correspondences between feature maps and categories, which makes it more native
to the convolution structure. Additionally, there is no parameter to optimize in the GAP, so
overfitting is prevented at this layer. As can be seen from the graphs above, the DCGAN-SSL
model has a higher validation accuracy than the CNN and a lower training accuracy, but this
is obviously due to over-fitting being reduced in the DCGAN-SSL model.
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4.6 Conclusion

In this chapter, a new DCGAN-SSL approach for classifying moving objects extracted from
video sequences is proposed. It combines the strengths of the generative models and the
semi-supervised learning framework and trains jointly supervised and unsupervised models.
Motivated by the ability of the DCGAN discriminator to classify data well, we have sug-
gested to use DCGAN discriminator to extract deep features and then categorize extracted
images. Then, we compared the DCGAN-SSL classifier with CNN as well as some existing
models on real videos of CDnet2014 dataset [460] and VIRAT video dataset [333]. Combin-
ing the supervised loss with the unsupervised loss of DCGAN permitted us to achieve a test
accuracy of 0.93 with only 120 samples. The experimental results show that our DeepDC
based on DCGAN-SSL outperforms the CNN model and other three traditional methods. In
addition, our model is easy to use and it enables us to apply it into various applications in-
cluding facial expression, activity recognition, etc. As a future work, we suggest improving
generative models and applying large amounts of unlabeled samples to reach high efficiency
on supervised methods and to contribute to the efficient use of very small amounts of labeled
samples. These semi-supervised methods are successful and thus allow creating an accu-
rate supervised learning model that requires the collection of a sufficient amount of labeled
samples, which is relatively expensive.



Chapter 5

DCGAN-based data augmentation for
face identification in images and video
applications

This chapter presents a Deep Convolutional Generative Adversarial Net (DCGAN) able to
increase training data for better face recognition performance. Our proposal is based on
FaceNet model to extract high-quality features from faces, called embeddings, that can be
used to train our face identification system. Additionally, a DCGAN-based data augmentation
method is used to reduce overfitting while maintaining the robustness of a classifier and then
improving the accuracy of face recognition. Results on two datasets show the pertinence of
the proposed approach. This chapter is based on the paper presented in the International
Symposium on Visual Computing (ISVC 2020) [31].
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5.1 Motivation

In recent years, face recognition has been an important area of research in the field of com-
puter vision and pattern recognition. Compared to conventional machine learning methods,
deep learning algorithms have shown promising performances in terms of image recognition
accuracy and processing speed. In particular, Convolutional Neural Network (CNN) shows
the highest performance in image recognition field [247] [435]. Compared to conventional
algorithms for face recognition, CNNs are trained in a data-driven way. Additionally, CNNs
models combine both feature extraction and classification into one framework. A CNN model
incorporates mainly convolutional layers, pooling layers, fully-connected layers, as well as
an input and an output layer. Based on its weight-sharing capability, local connectivity and
sub-sampling, CNNs are better able to extract features and make a significant progress in face
recognition. CNN’s performance is affected by the network structure, its parameters, and the
number of training images. However, in these approaches, a classification layer [433] [439]
is trained on a set of known face identities. Then, an intermediate bottleneck layer is used to
represent the input as a signature vector with reduced dimensionality in order to generalize
recognition over all identities used in training. But, these approaches have many downsides,
such as their indirect nature and their inefficiency. Typically, a face representation is very
large (thousands of dimensions) with the use of the bottleneck layer and cannot generalize
well to new identities. To reduce the dimensionality, Sun et al. [433] applied PCA to achieve
only a linear transformation that can simply be learned in a network layer. Unlike these meth-
ods FaceNet directly trains a 128-D compact embeddings using a loss function based on an
online triplet mining method based on LMNN [227].

Despite the exceptional efficiency of CNNs in image recognition, it still faces difficult
challenges, such as the difficulty of getting enough training images, because CNN requires a
large amount of data for learning. Generally, a large volume of training samples is useful to
achieve high recognition accuracy. Because a CNN has a powerful learning ability, it needs
different facial views for each subject. However, it is sometimes difficult to provide sufficient
number of images for CNN training. Obtaining such a dataset for one class is not only time
consuming, but also impractical. Moreover, it is often necessary to train samples of faces in
different lighting, poses, and occlusion situations. To deal with the issue of lack of samples,
an efficient method is suggested is the data augmentation technique. The principal purpose
of data augmentation is to increase the size of the training dataset in order to achieve high
accuracy [105], robustness of a classifier and decrease over-fitting. The increase in data size
is achieved by applying label-preserving transformations to transform the accessible images.
Generally, the advanced approaches used to increase the number of images in the database are
affine transformation (cropping, inversion, rotation, translation....), the brightness changes of
the image, adding Gaussian noise and the application of various filtering operations. A small
number of samples in the dataset may not be appropriate in a complex scenes because the
most discriminant features of each elements are probably different.

In this chapter, we propose a face recognition approach based on FaceNet model with DC-
GANs data augmentation, that can mitigate the issues discussed above. Like other recent
works that use deep networks [432] [439], our method is a completely data-driven approach
which allows to learn the representation directly from face pixels. Instead of using engi-
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neering features, we get an extended dataset of labelled faces using DCGANs to achieve
the convenient in variances to illumination, pose and other variational situations. FaceNet
contains two different deep network architectures that have been recently used with great
success in the field of computer vision. Both are deep convolutional networks [481] [137].
The first architecture is based on the Zeiler & Fergus [115] model which contains several in-
terleaved convolutional layers, max-pooling layers, non-linear activations and local response
normalisations. The second deep network architecture used the Inception model of Szegedy
et al. [435] which was recently used as the winning approach for ImageNet 2014 [435]. These
networks employ mixed layers that run various convolutional and pooling layers in parallel
and combine their responses. The proposed face recognition model uses a complex system
of multiple steps based on FaceNet model, that combines the output of a deep convolutional
network and an SVM for classification. We evaluate our approach based on DCGANs using
images from CDnet2014 dataset [460], LFW dataset [198], VGGFace2 dataset [85], Choke-
Point dataset [469] and Youtube face dataset [468] . In addition, we investigate the effect of
generated images quality on face identification. In the field of automatic image generation,
DCGAN is known to generate high quality images [360]. Convolution between generator
and discriminator leads to obtain the high-performance image generator. Relatively little
approach based on feature extraction has been proposed for face recognition task.

Our contributions can be summarized as follows:

1. A robust combination of FaceNet model for feature extraction and DCGANs for data
augmentation that allows us to be more robust on face recognition task. The pro-
posed approach aims to identify people extracted from video sequences through their
faces and to increase face image dataset by generating synthetic human faces which
efficiently expand the training data, handling the effects of misalignment, lighting vari-
ations, partial occlusions, variations in pose and to avoid over-fitting during training.

2. We evaluate the impact of the combination of these two methods in face recognition
performance on two image face datasets that are the LFW dataset [198] and the VG-
GFace2 dataset [85] as well as two video face datasets, the ChokePoint dataset [469]
and the Youtube face dataset [468].

The rest of this chapter is as follows. In Section 5.2, we give a review of the different
face detection methods. Section 5.3 provides a brief review of data augmentation techniques.
Section 5.5 discusses the architecture of FaceNet model based on Triplet loss. The construc-
tion of the new face recognition method which combines FaceNet model and DCGAN data
augmentation is described in Section 5.6. Comparative results obtained on both static and
video face datasets are given in Section 5.7. Finally, the conclusion is shown in Section 5.8.

5.2 Face detection

In recent years, human detection beings in a video-surveillance sequence has attracted more
and more attention because of its large area of applications. In the literature, many methods
are presented for detecting humans. To recognize a human being, it is crucial to detect his
face as the most representative part of the human body. Face detection and alignment are
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crucial for numerous applications, such as the recognition of faces and the analysis of facial
expressions. Nevertheless, these tasks are challenging due to the wide visual variations of
faces, such as various occlusions, poses and extreme illumination variations. In 2004, Viola
and Jones [457] suggested a cascade face detector using Haar-Like features and AdaBoost
to train cascaded classifiers which are more performent and effective in real time applica-
tions. However, some subsequent studies, [41] [348] [354], show that it cannot maintain a
continuous competitiveness in real word applications with greater visual variations of human
faces that influence the visual coherence of faces. In addition to the cascading structure,
the deformable part models (DPM) presented in [208] [324] [473] for face detection can
reach outstanding performance. However, they require high computation cost and may gen-
erally need costly annotation in the training step. Face detection has been enhanced with
the development of robust feature extraction techniques such as HOG (histogram of oriented
gradients) [18] and LBP (local binary patterns) [221] and their variants. Subsequently, deep
CNNs are used for face detection. Yang et al. [385] presented deep neural networks (DNNs)
for face detection. But, this algorihm is consumely in time under real conditions. In 2015,
Li et al. [274] proposed a CNN cascade face detectors with several resolutions. The au-
thors also tried to improve the quality of bounding boxes through a calibration network. An
OpenCV-based deep learning face detector was used in [182] to locate faces in images us-
ing a pre-trained OpenCV and Dlib models based on the Single-Shot-Detector (SSD) with
a ResNet-10 network. However, the Dlib face detector lacks some of the difficult examples
(partial occlusions, silhouettes, etc.). This makes the model less efficient on other bench-
marks. To deal with these limitations, in this chapter, we propose to apply a cascaded face
landmark detector called Multi-task CNN in the preprocessing module [226], which consists
of three layers of deep convolutional networks, to detect and align the sample set.

The main face detection works, including our proposal are shown in Table 5.1.

Table 5.1: The main face detection works
Authors/Date Features

Conventional methods

Viola and Jones (2004) [457] cascade face detector using Haar-Like features and AdaBoost

Mathias et al. (2014) [324], Yan et al.
(2014) [208], Zhu et al. (2012) [473]

deformable part models (DPM)

Albiol et al. (2008) [18] HOG (Histogram of Oriented Gradients)

JoChang-yeon (2008) [221] LBP (Local Binary Patterns)

Deep Learning methods

Yang et al. (2015) [385] Deep CNNs

Li et al. (2015) [274] CNN cascade face detectors

Vikas Gupta (2018) [182] OpenCV-based deep learning face detector, Dlib models based on SSD, ResNet-10

Proposed approach Multi-task CNN (MTCNN) [226]

5.3 Image data augmentation techniques

A number of data augmentation techniques have been suggested to enlarge the image data
artificially. The main data augmentation works are summarized in Table 5.2. This section
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reviews the existing works that analyzed the conventional and in-depth data augmentation
techniques. Vincent et al. [456] added Gaussian noise, Masking noise and Salt-and-pepper
noise to obtain more noisy images to train Stacked Denoising Autoencoders. Howard et
al. [156] applied cropping and flipping to extend the training dataset, which is broadly used
in the subsequent studies [114] [115] [483] even combined the original face image and its
mirror to improve the performance of face recognition based representation. To synthesize a
great number of corrupted images, Xie et al. [207] added Gaussian noise to images. Wu et
al. [359] introduced a number of techniques, such as color casting that modifies the intensities
of the RGB channels, the vignetting which decreases the image’s brightness towards the
periphery compared to the image center and the distortion of the lens which is a deviation
from rectilinear projection caused by the camera lens.

Data increasing methods specific to face images were also presented. Jiang et al. [111]
suggested an effective 3-D reconstruction method for generating face images with various
poses, expressions and illuminations. Mohammadzade and Hatzinakos [184] suggested an
expression subspace projection method that by projecting an image with an arbitrary expres-
sion into the expression subspace, new expression images are generated for each person.
A more accurate estimation of the within-subject variability was achieved. Seyyedsalehi et
al. [396] use a nonlinear manifold separator neural network (NMSNN) to extract identity and
expression manifolds for face images. However, most of them are complex and attached to
constrained environments. As shown in last studies [25] [247] [359], data increasing meth-
ods assist the trained Deep CNN model implemented with a robust generalization capability
to detect invisible but similar noise patterns in the training data. A landmark perturbation
technique is suggested by Shan et al. [404] to extend the training dataset to solve the problem
of misalignment. However, they only disturbed the eye coordinates of each face image with
eight neighbors. O’Donnell and Bruce [340] have demonstrated that hairstyle is an extremely
significant feature to recognize faces. But, criminals generally use various hairstyle masks
to hide their hairs or other disguises when they commit crimes. Many people, particularly
woman change their hair styles regularly. Additionally, because of different hair styles with
different fringes occlude the forehead or even part of eyes, which would influence the per-
formance of face recognition. Lv et al. [206] proposed five data augmentation techniques
devoted for face recognition, covering landmark perturbation and four synthesis methods
(hairstyles, poses, glasses, illuminations).

The traditional data augmentation methods, such as rotation, flip and translation, are
severely limited, which cannot achieve good generalization results. To improve the recog-
nition accuracy of facial images, in this chapter, a new method of data augmentation based
on DCGANs is proposed for face recognition. By using images generated by DCGANs and
images in the original dataset as input, this model can achieve the top average identification
accuracy.

Experiments on face identification show that DCGAN can generate data that approxi-
mate to real images, which can be used to (1) provide a larger data set for the training of large
neural networks, and improve the performance of the recognition model through highly dis-
criminating image generation technology; (2) reduce the cost of data collection; (3) enhance
the diversity of data and the generalization ability of the recognition models. Generated faces
by DCGANs extend the training dataset, which mitigates the effects of misalignment, illu-
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mination variations, changes in pose and partial occlusions, as well as the overfitting during
training.

Table 5.2: The main data augmentation works
Authors/Date Methods

Vincent et al. (2010) [456] Gaussian noise, Masking noise and Salt-and-pepper noise

Howard et al. (2013) [156] cropping and flipping

Xie et al. (2012) [207] Gaussian noise

Wu et al. (2015) [359] color casting, vignetting, the distortion of the lens

Jiang et al. (2005) [111] 3-D reconstruction method

Mohammadzade (2013) [184] expression subspace projection method

Seyyedsalehi et al. (2014) [396] nonlinear manifold separator neural network (NMSNN)

Lv et al. (2017) [206] A landmark perturbation and four synthesis methods (hairstyles, poses, glasses, illuminations)

Proposed approach DCGANs

5.4 DCGANs

In this thesis, we exploit the ability of DCGAN’s generator [360] to artificially generate more
facial images similar to the original faces in the training dataset. The idea is to simultaneously
train two adversarial neural networks. The first network is a discriminator that learns to
determine weather the sample comes from the data distribution. The other is a generative
model that aims to generate ”fake” images that attempts to fool the discriminator. After
several stages of training, the optimization will achieve a stable point where the discriminator
will difficult to discern whether the data was ”fake” or not.

Mathematically, the training process of DCGANs can be seen as a minimax game. The
generator G(z) takes a sampled input z from a uniform distribution. The discriminator D(.)
takes x as input, being either images, from the database or output of generator G(z). Dur-
ing training, the discriminator tries to distinguish between selected database and G(z), i.e.
attempts to maximize, log(D(x))+log(1-D(G(z))). Simultaneously, the generator attempts to
deceive the discriminator by minimizing log(1-D(G(z))). The optimization will achieve a
point of equilibrium where the discriminator is unable to distinguish between x and G(z),
after multiple steps of training. The generator takes a noise vector as input, followed by a
fully connected layer containing 8192 neurons and resized to the dimension of 4× 4× 1024.
Next, 4 transposed convolutional layers are used with stride of 2 and padding resulting in
a reduction of the channels and an up-sampling of the features by factor of 2. The output
image’s size is of 64 × 64 × 3. The input image with dimension 64 × 64 × 3 is transmitted
through 4 consecutive convolutional layers with the final output of dimension 4 × 4 × 512.
The last fully connected layer produces final output classes by a softmax activation function.
It generates the probability that x is sampled from the true distribution. The final classification
is done by attributing the class with the highest probability to a given image.
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5.5 FaceNet

5.5.1 FaceNet model

Figure 5.1: FaceNet model architecture, which consists of two modules : prepro-
cessing and extraction of low-dimensional representation. The preprocessing module
uses the Multi-task Cascaded CNN (MTCNN) [226] for the detection and aligne-
ment of samples. The low-dimensional representation extraction module consists
of a batch input layer and a deep CNN which is followed by L2 normalization that
provides the embedding of face. Next, the triplet loss is applied during training.

FaceNet is a deep CNN implemented since 2015 by Google researchers to successfully deal
with the difficulties in face detection and verification. Figure 5.1 presents the structure of the
FaceNet architecture. The FaceNet network transforms the face image into 128-D Euclidean
space. Therefore, FaceNet model aims to identify the similarities and differences on the
image data set when is trained for triplet loss. The encodings with 128-D are used to cluster
faces in an efficient way. FaceNet encodings are used as feature vectors for face recognition
and verification, after creating the vector space. The distances for the ”same” images would
be much closer than the non similar random images. FaceNet [393] generally consists of two
different basic architectures based on CNNs. The first category adds 1× 1× d convolutional
layers between the standard convolutional layers of the Zeiler & Fergus [115] architecture,
then gets a 22 layers NN1 model. The second category consists of Inception models based
on GoogLeNet [435]. Figure 5.2 represents the network structure of an Inception module. It
contains 4 branches from the left to right. It employs convolution with 1× 1 filters as well as
3 × 3 and 5 × 5 filters and a 3 × 3 max pooling layer. Each branch uses a 1 × 1 convolution
to achieve time complexity reduction. FaceNet model is a deep CNN trained via a triplet loss
technique that allows vectors for the same identity to become more similar (smaller distance),
while vectors for different identities should become less similar (larger distance). The key
advantage of this model is that it uses DCNN trained to directly optimize the embedding
itself rather than extracting them from an intermediate bottleneck layer in other deep learning
approaches. The most important part of FaceNet model is the end-to-end learning of the
entire system.
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https://www.cs.toronto.edu

Figure 5.2: Inception module.

Therefore, the triplet loss is applied to directly reflect what we want to achieve in face
verification, recognition and classification. The triplet loss [434] assists to project all faces
with a similar identity onto a single point in the embedding space. But, the triplet loss at-
tempts to impose a margin between every pair of faces from one identity to all others, which
enables the faces for one subject to live on a manifold, whereas still imposing a distance and
therefore discrimination to other subjects. The subsequent section describes this triplet loss
and how it can be learned effectively on a large scale.

In this chapter, the same pre-processing is performed for all training and testing samples.
First, face detection is carried out using MTCNN algorithm [226], then five key points are
located for each sample. A similar transformation is made depending to the position of the
keypoints that are located. Finally, all faces are cropped into images of a certain dimensions.
After applying face alignment and cropping, the input face is passed through the deep neu-
ral network. The FaceNet deep learning model is applied to extract the 128-d feature vector
called embeddings that quantify each face in an image. The computation of the face embed-
ding lies in the training process, including the input data into the network and the triplet loss
technique. The neural network calculates the encoding vector of size 128 for each face.Then,
adjusts the network weights through the triplet loss function. The objectif of the triplet loss
is to push the 128-d encodings of two images of the ”same” identity (Anchor and Positive)
closer to each other. At the same time, it tries to pull the encodings of the negative image far-
ther apart. In this way, the network learns to quantify faces and output highly discriminating
and robust embeddings adapted to face recognition. The model allows computing encodings
for each face and finally an SVM classifier is trained on top of the face embeddings.

https://www.cs.toronto.edu/~guerzhoy/321/lec/W06/convnets.pdf
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5.5.2 Triplet Loss

https://www.computer.org/csdl

Figure 5.3: The triplet Loss.

To train a face recognition model, each input batch of data contains three images : the anchor,
the positive image and the negative image.

Triplet loss process is applied to minimize the distance between the anchor and the sam-
ple if the sample is positive and signifies the same person; also, to maximize the distance
between the encodings of images (the anchor and the negative sample), which signifies a dif-
ferent identity. Thus, triplet loss is one of the best ways to learn a good 128-D encoding for
each face. The anchor image represents the reference image that we took from that dataset to
calculate the triplet loss.

Let’s f (x) ∈ Rd , where f (x) represents the embedding which maps an image x into a
d-dimensional Euclidean space. This encoding is restrained to live on the d-dimensional hy-
persphere, i.e. ‖ f (x)‖2= 1. This loss is motivated in [227] in the context of the nearest
neighbor clustering. An anchor image xa

i of a one person must be closer to all other images
xp

i of the ”same” person (positive) than to any image xn
i of a different person (negative). This

is visualized in Figure 5.3.

Thus, this equation must be satisfied

‖ f (xa
i )− f (xp

i )‖
2
2+α < ‖ f (xa

i )− f (xn
i )‖2

2 (5.1)

∀( f (xa
i ), f (xp

i ), f (xn
i )) ∈ τ (5.2)

where α is a margin that is imposed between positive and negative examples. Let N be the
cardinality of τ, the set of all possible triplets in the training set. The generation of all possible
triplets results in numerous triplets that are satisfied in a easy way (i.e. reach the restriction
in Eq. 5.1). The process minimizes a loss on triplets that measures triplet satisfaction. These
triplets, as they would still be transmitted across the network, they would lead to a slower
convergence and they would not contribute to the training. It is important to choose hard
triplets, that are active and can thus improve the model.

https://www.computer.org/csdl/proceedings-article/cvpr/2015/07298682/12OmNA14A4k
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5.6 Proposed approach

Figure 5.4: An overview of the proposed face recognition pipeline. The CNN fea-
ture extractor generates 128-dimensional facial embeddings.

Our proposed approach is based on DCGANs for data augmentation and FaceNet model for
face classification. Sometimes, we have to use a small number of dataset for CNN. With
more images, CNN would perform better. In this chapter, we propose a data augmentation
technique based on the application of DCGANs to tackle the problem of samples collec-
tion difficulties. Therefore, we add similar images which are produced by DCGANs to the
original training face dataset to increase the data. The images generated by the generator
of DCGANs cannot be distinguished by the discriminator of CNN if they are real or not.
Thus, we assume that generated images by DCGANs have similar CNN features, function
like similar images and help a small number of dataset. The proposed approach is carried
out in the following steps: 1) DCGANs are trained for each class. 2) Images are generated
by trained DCGAN models. And 3) Generated images are added to the original dataset.
We compare our proposed data augmentation method based on DCGANs to add generated
images for human identification through their faces with the work of Pei et al. [492] who
use standard data augmentation methods (rotation, translation, Gaussian noise addition and
brightness change). Additionally, we present an approach based on both OpenCv and deep
learning for face verification (is this the claimed person?), identification (who is this person?)
and clustering (finding common people between these faces). Our system includes several
important steps, fast and accurate face detection, face processing and cropping by comput-
ing facial landmarks using MTCNN face detector and 128-d face encodings extraction by
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applying FaceNet deep learning model, training a face recognition model on the embeddings
and finally applying SVM to classify and recognize faces in images and video streams. Our
face recognition pipeline is presented in Figure 5.4. Firstly, the proposed face identification
system takes an input image or video frame, detects the location of a face in the image using a
cascaded face landmark detector called Multi-task CNN in the pre-processing module [226],
which contains three layers of deep convolutional networks to detect and align the sample
set. Multi-task CNN is used for joint face detection and alignment, which combines these
two tasks based on an unified cascaded CNNs by multi-task learning. It consists of the fol-
lowing three steps. In the first step, a candidate windows is quickly obtained thanks to a
shallow CNN. The windows are refined allowing the rejection of a great amount of non-faces
windows through a more complex CNN. Then, a more effective CNN is trained to refine the
result and estimate the positions of facial landmarks. This multi-task learning can signifi-
cantly enhance the performance of the algorithm. The face is pre-processed and aligned by
computing facial landmarks based on MTCNN as presented in Figure 5.5. Face alignment is
the process of identifying the geometric structure of the faces and tries to perform a canon-
ical face alignment based on rotation, translation and scale. It has been shown that the face
alignment increases the precision of face recognition. The principal goal of MTCNN is to
re-scale the corresponding face image to a range of different sizes called an image pyramid.
The Proposal Network (P-Net) is a fully convolutional network used to get the candidate
windows and their corresponding bounding box regression vectors. The non-maximum sup-
pression (NMS) is applied to merge highly overlapped regions and refine the output. This can
be considered as a two-class classification problem that can be solved by the cross-entropy
loss.

Ldet
i =−(ydet log(pi)+(1− ydet

i )(1− log(pi))) (5.3)

ydet
i ∈ {0,1} (5.4)

In Eq 5.3, yi is the input image, pi is the probability produced by the network yi that repre-
sents a sample being a face. Eq 5.4 indicates the label of ground-truth.
The Refine Network (R-Net) aims to filter the bounding boxes to eliminate a large number
of rough facial windows. This objective can be considered as a problem of bounding box
regression, also overcomed by the Euclidean loss.

Lbox
i = ‖ŷbox

i − ybox
i ‖2

2 (5.5)

In Eq 5.5, ŷbox
i and ybox

i represent the regression target calculated by the network and the
corresponding real coordinate, respectively.

The Output Network (O-Net) identifies face areas with more supervision. It outputs five
facial features’ coordinates. The positions of the faces are obtained to realize face detec-
tion and alignment. The detection of facial features belongs to the regression problem that
minimizes the defined Euclidean loss:

Llandmark
i = ‖ŷlandmark

i − ylandmark
i ‖2

2 (5.6)

In Eq.5.6, ŷlandmark
i and ylandmark

i are the coordinates of the predicted facial landmarks
with the trained network and the actual condition for the i-th input image, respectively. The
facial landmarks correspond to five feature points on the face, which cover the left mouth,



108 DCGAN DATA AUGMENTATION FOR FACE IDENTIFICATION

Figure 5.5: Face alignment using Multi-Task CNN, Facial Landmarks detection.

right mouth, nose, left eye as well as the right eye.

The next step introduces the encoding process using FaceNet [393], as presented in Sec-
tion 5.5. An OpenCV Deep learning Torch embedding model is used to extract the encodings.
Each face is represented by a DNN on a 128-d unit hypersphere. Our method uses deep CNN
to learn the mapping from face images to an Euclidean space where the distances correspond
to the face similarity measures. This model encodes a face image into a vector of 128-D.
Compared to other face representations, this embedding has the benefit that a larger distance
between two face embeddings signifies that the faces are probably of different people. Train-
ing of the network requires a face triplets, the face image of the target person, the test face
image of the target person and the face image of a different person. This advantage facilitates
similarity detection and classification compared to other face recognition methods where Eu-
clidean distance between features is not important. OpenFace library [39] was used with
pre-trained FaceNet model to train this DCNN. In this chapter, we propose to use FaceNet
model, which can increase the accuracy of the CNN (VGG-16) model, almost halve the exe-
cution time, decrease the deep neural network training time and also improve the alignment
process by removing a redundant face detection. Furthermore, we propose to train our model
with a small version of the original FaceNet network nn4, called nn4.small2 as it reduces
the number of parameters, has an input size of only 96x96 which considerably reduces the
CPU requirements (285M FLOPS vs 1.6B for NN2). The nn4.small2 version not only re-
duces the input size, but also it does not use 5x5 convolutions in the higher layers because the
receptive field is already too small. This version contains a structure similar to the FaceNet
architecture, but with the removal of layers 4b, 4c and 4d and with smaller 5a and 5b layers.
It consists of a mixture of regular pooling layers, convolutional layers and inception layers.

The final step of our face recognition model is to train a classifier on top of the embed-
dings previously generated from face dataset by using deep CNN. An Euclidean embedding
is learned per image using a deep convolutional network. The network is trained in such a
manner that the squared L2 distances between the embeddings corresponds to face similar-
ity. Faces of the ”same” person have close distances and faces of different people have great
distances. Once this encoding has been generated, the distance between the two encodings
is thresholded for face verification. Finally, we use Support Vector Machine (SVM) for face
classification task.
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5.7 Experimental results

The experiments were carried out on faces taken from the ’person’ category of the CDnet2014
dataset [460] obtained in Chapter 4, LFW dataset [198] and VGGFace2 dataset [85] as well
as two video face datasets, ChokePoint dataset [469] and Youtube face dataset [468].

5.7.1 Description of the datasets

Figure 5.6: In each row some examples of representative images/frames of datasets
used in this chapter: (a) Faces extracted from CDnet2014 dataset [460] (b) LFW
dataset [198] (b) VGGFace2 dataset [85] (c) ChokePoint dataset [469] (d) and
YouTube faces [468].
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• Faces extracted from CDnet2014 dataset
We collected 1000 facial ROIs from the ’person’ class obtained from CDnet2014 [460]
images of Chapter 4, corresponding to 10 identities with different illumination, pose
and facial expressions, to train the proposed face recognition approach. There are
approximately 100 faces captured for each identity belonging to subjects whose faces
appear clearly.

• Labeled Faces in the Wild (LFW) dataset
The LFW dataset [198] is the standard benchmark for face verification and recognition.
This dataset includes 13,233 facial images of 5,749 subjects. These images present
several challenges related to face pose, expression, illumination, and partial occlusion.
This dataset has a limitation is that only 1,680 identities out of a total of 5,749 subjects
have more than one face image. A subset of the dataset consisting of 3137 images
belonging to 62 subjects was used during the experiments, by selecting the subjects
with 20 or more images.

• VGGFace2 dataset
The VGGFace2 dataset [85] includes 9000 identites. The distribution of faces for
different subjects is varied, from 87 to 843, with a mean of 362 images for each subject.
Because of time reason, we did not manage to run experiments on the whole dataset.
In our experiments, we choose a subset from VGGFace2 dataset [85] by randomly
selecting 20 subjects to evaluate the performance of our method. The selected subset
includes 12 mens and 8 women. The constructed VGG-based image set contains 7746
images.

• ChokePoint dataset
The ChokePoint video dataset [469] is designed for verification/identification experi-
ments of people in real world surveillance situations using current techniques. Faces
have variations in terms of pose, lighting, sharpness, as well as mis-alignment owing
to the automatic localization/detection of faces. The ChokePoint video dataset con-
sists of 25 identities (19 men and 6 women) in portal 1 and 29 identities (23 men and
6 women) in portal 2. We used portal 1 for our experiments.

• Youtube face dataset
YouTube Faces Database (YFD) [468] consists of 3425 videos of 1595 different people
with an average of 2.15 videos per subject, with video clips ranging from 48 to 6070
frames. This dataset provides a set of videos and labels for subject recognition from
videos. We evaluate our approach with 40 identities from Youtube face dataset [468].

5.7.2 Qualitative and quantitative evaluation

In our experiments, we start with recognizing faces in images and then move on to recog-
nizing faces in video streams. We also use a label encoder which contains the name for the
people our model can recognize. We filter weak detections and extract the face ROI to recog-
nize faces in the image. The results of our experiments are carried out on different datasets.
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• Faces extracted from Change Detection dataset (CDnet2014) To augment the di-
versity of the original images and reduce overfitting, we expand the original dataset
through our proposed data augmentation technique based on DCGANs. We add 100,
250 and 500 generated images per one class of the CDnet2014 dataset [460]. Results
summarized in Table 5.3 show that when adding 100 images per class, the accuracy
can achieve 94.5%. In addition, after a period of collecting more data, the accuracy
improves to 96.11%. We also compare our proposed face recognition approach based

Table 5.3: Face recognition accuracy with DCGAN data augmentation using the
proposed method.

Number of augmented samples per class
+0 +100 +250 +500

CDnet2014 dataset [460] 0.91 0.945 0.951 0.9611
LFW dataset [198] 0.64 0.781 0.895 0.9212
VGGFace2 dataset [85] 0.65 0.678 0.88 0.9583

on DCGAN data augmentation with standard data augmentation methods. Results re-
ported in Table 5.4 demonstrate the superiority of DCGAN based data augmentation.
Our proposed face recognition approach showed higher performance when applying
DCGAN data augmentation over traditional data augmentation techniques. While
standard data augmentation techniques result in accuracy above 92%, DCGAN data
augmentation achieves an accuracy of 96.11%. Filter operations have relatively bet-
ter performance compared to geometric transformations and brightness augmentation
methods, but still are inferior to DCGAN-based data augmentation. Table 5.4 provides
also evidence that FaceNet model results in improved accuracy than VGG-16 model.
The combination of FaceNet for face recognition with DCGAN data augmentation out-
performs the work of Pei et al. [492] based on VGG-16 network for face recognition
and standard data augmentation methods (see Table 5.4). To prove the effectiveness of
our method, which is based on the augmented training images, our approach is com-
pared with traditional face recognition techniques such as PCA and LBPH. Compared
with PCA and LBPH, our face recognition approach based on FaceNet model with
DCGAN data augmentation can achieve 96.11%.

• Labeled Faces in the Wild (LFW) dataset In our experiments, we use DCGANs as
data augmentation technique. Figure 5.7 and 5.8 show that by using DCGANs as data
augmentation method, several quality images were produced. Various unrealistic im-
ages that could not be seen faces were generated. This emergence of many unrealistic
images is caused by the lack of training images for DCGANs. Realistic and unrealistic
images are picked up through our subjective assessment. The criterion was whether
we could see them as human faces or not. As it can be seen, DCGANs are able to
produce images that are similar to the original faces with a small modifications. Then,
we add realistic images per one class on both datasets. We add 100, 250 and 500 gen-
erated images per one class for both LFW dataset [198] and VGGFace2 dataset [85].
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Table 5.4: Recognition performance with different methods using 10 classes from
CDnet2014 dataset [460].

PCA method 33.3%
LBPH method 42%
Geometric transformation and brightness augmentation method (CNN) [492] 76.67%
Filter operation augmentation method (CNN) [492] 91.37%
DCGANs augmentation method (CNN) 95.7%
Geometric transformation and brightness augmentation method (ours) 78.17%
Filter operation augmentation method (ours) 92.69%
DCGANs augmentation method (ours) 96.11.%

Figure 5.7: Generated Images using DCGANs on LFW dataset [198].

Results reported in Table 5.3 show that the more training samples are used for fine-
tuning, the higher the accuracy and performance of the model are. Results show that
our method based on DCGANs data augmentation achieves an accuracy of 78.1% and
67.8% with LFW dataset [198] and VGGFace2 dataset [85], respectively, when adding
100 samples per class. Furthermore, with adding 500 samples per class, the accuracy
can achieve 92.12% in LFW dataset [198] and 95.83% in VGGFace2 dataset [85]. Our
proposal is compared with two typical face recognition algorithms, namely, Principal
Component Analysis (PCA) and Local Binary Patterns Histograms (LBPH). PCA is
generally employed to reduce the dimensionality of datasets while maintaining the val-
ues which contribute most to variance. The covariance matrix is decomposed to obtain
the main components of the data (i.e., eigenvector) and their corresponding eigenval-
ues. The LBPH face recognition method is based on the Local Binary Patterns (LBP),
which is an efficient texture description method. The occurrences of the LBP codes
are represented in a histogram for texture classification. The classification is then car-
ried out by calculating the similarity between histograms. Additionally, we compare
our proposed face recognition method based on FaceNet model and DCGANs data
augmentation with the work of Pei et al. [492] based on standard data augmentation
techniques (Translation, rotation, inversion, brightness change, and Gaussian noise
addition) and VGG-16 model for face identification. Our method is also compared
with the combination of CNN for face recognition and DCGANs model for data aug-
mentation. The recognition results of the tested methods using 62 classes from LFW
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dataset [198] are reported in Table 5.5. As it can be seen, the proposed approach
achieves better performance than traditional face recognition methods (PCA/LBPH)
using only a small amount of samples. Furthermore, with DCGANs data augmenta-
tion, our face recognition approach based on FaceNet model outperforms all others
standard techniques used in the work of Pei et al. [492] for data augmentation. DC-
GANs data augmentation is used to enlarge the number of original training samples
for fine-tuning the proposed model. DCGANs allow generating human faces that are
similar to the faces in the original dataset with small modifications. In addition, the
generated faces appear fairly like realistic images with small noise. DCGANs has the
ability to complete the details of the face and generate human faces that appear au-
thentic and similar to the original face, with very low resolution human face images
as input. The proposed approach efficiently expands the training data, mitigating the
effects of misalignment, pose variations, lighting changes and over-fitting. Table 5.5
shows also that FaceNet model is more effective than CNNs.

Table 5.5: Recognition performance with different methods using 62 classes from
LFW dataset [198].

PCA method 50%
LBPH method 37%
Geometric transformation and brightness augmentation method (CNN) [492] 69.21%
Filter operation augmentation method (CNN) [492] 81.94%
DCGANs augmentation method (CNN) 84.26%
Geometric transformation and brightness augmentation method (ours) 70.94%
Filter operation augmentation method (ours) 86.57%
DCGANs augmentation method (ours) 92.12%

• VGGFace2 dataset
Table 5.6 summarizes the results of the comparison of the proposed approach with
PCA, LBPH and the use of CNNs models for face recognition. To prove the efficiency
of FaceNet model in the face recognition task, we compare it with the work of Pei
et al. [492] based on CNN for face recognition with data augmentation through geo-
metric transformation, image brightness change, and the application of different filter
operations. These methods are evaluated on 20 classes from VGGFace2 dataset [85].
The best accuracy is on bold. Once again, our face recognition model achieved the
best accuracy compared to all the methods, even when using the CNN model which
extracts highly robust and discriminant features.

Experimental results show that our approach based on DCGANs data augmentation
and face classification using FaceNet gives better results than conventional data aug-
mentation methods proposed in the work of Pei et al. [492] and face classification using
VGG-16 model. Results also demonstrate that our face recognition approach based on
FaceNet model outperforms both PCA and LBPH as well as the use of CNNs for face
classification. FaceNet model quantitatively outperforms the mentioned techniques,
making it a serious candidate for the face recognition task in computer vision applica-
tions. The proposed method based on FaceNet model gives more accuracy than using
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Figure 5.8: Generated Images using DCGANs on VGGFace2 dataset [85].

VGG-16 model with a difference of 7.86 % using LFW dataset [198] and 8.93% using
VGGFace2 dataset [85]. Table 5.6 also show that the application of filter operations
as data augmentation methods gives higher performance than using geometric trans-
formation and brightness augmentation methods (cropping, rotation, translation,.....).

• ChokePoint dataset & Youtube face dataset To evaluate the impact of data augmen-
tation based on DCGANs in face recognition, we add 100 images for each class of the
ChokePoint video dataset [469] and Youtube face dataset [468]. Results are summa-
rized in Table 5.7. As It can be seen, the face recognition accuracy is higher with a
difference of 0.47% and 0.12 %, respectively, when adding only 100 images per class.
Table 5.8 and 5.9 show the recognition accuracies of the proposed approach, PCA,
LBPH, the use of CNN for face classification and the methods described in Pei et
al. [492] using ChokePoint video dataset [469] and Youtube face dataset [468], respec-
tively. Results are summarized in Figure 5.9. Experimental results have shown that the
proposed method, which combines FaceNet model for face recognition and DCGANs
for data augmentation outperforms the other techniques with 95.18 % and 99.65 %,
respectively. Data augmentation using DCGANs gives higher accuracy than the use
of standard data augmentation methods (geometric transformation and brightness aug-
mentation method, filter operation method..) in the work of Pei et al. [492]. We
also compare the proposed approach with CNN for face recognition and we conclude
that our method based on FaceNet model achieves higher accuracy with a difference
of 12.11% and 0.52%, respectively. In addition, our proposed approach outperforms
both PCA and LBPH standard techniques.



5.7. Experimental results 115

Table 5.6: Recognition performance with different methods using 20 classes from
VGGFace2 dataset [85].

PCA method 40%
LBPH method 32%
Geometric transformation and brightness augmentation method [492] (CNN) 81.85%
Filter operation augmentation method (CNN) [492] 85.23%
DCGANs augmentation method (CNN) 86.90%
Geometric transformation and brightness augmentation method (ours) 82.39%
Filter operation augmentation method (ours) 87.20%
DCGANs augmentation method (ours) 95.83%

Table 5.7: Face recognition accuracy with DCGAN data augmentation using the
proposed method in video datasets.

Number of augmented samples per class
+0 +100

ChokePoint dataset [469] 94.71% 95.18%
Youtube face dataset [468] 99.53% 99.65%

Table 5.8: Recognition performance with different methods using portal 1 from
ChokePoint dataset [469].

PCA method 50.4%
LBPH method 34.09%
Geometric transformation and brightness augmentation method (CNN) [492] 72.66%
Filter operation augmentation method (CNN) [492] 70.83%
DCGANs augmentation method (CNN) 83.07%
Geometric transformation and brightness augmentation method (ours) 75.26%
Filter operation augmentation method (ours) 82.18%
DCGANs augmentation method (ours) 95.18%

Table 5.9: Recognition performance with different methods using Youtube face
dataset [468] (40 classes).

PCA method 60.2%
LBPH method 50.6%
Geometric transformation and brightness augmentation method (CNN) [492] 81.16%
Filter operation augmentation method (CNN) [492] 97.7%
DCGANs augmentation method (CNN) 99.08%
Geometric transformation and brightness augmentation method (ours) 86.62%
Filter operation augmentation method (ours) 98.64%
DCGANs augmentation method (ours) 99.65%
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Figure 5.10 shows that the face of Andre Agassi from LFW dataset [198] is recog-
nized with 72.32%. However, the confidence is higher with data augmentation based
on DCGANs achieving 77.08%. In Figure 5.11 (a), we can see that the face predic-
tion has only 50.71% confidence when using the ChokePoint dataset [469]; however,
this confidence is higher when applying data augmentation with DCGANs achieving
91.63% as shown in Figure 5.11 (b). It is the same in Figure 5.11 (c) & Figure 5.11 (d)
with an increase of 1.8% adding only 100 images per class. The experimental results
on LFW database [198], VGGFace2 database [85], ChokePoint face database [469]
and Youtube face database [468] show that the proposed approach has improved the
face recognition performance with better recognition results.

The running time of an algorithm depends on the size of the input images. One of
the ways for obtaining a fixed-dimensional input image is to resize the face in the
bounding box to 96x96 pixels. A potential problem is that faces can look in different
directions. To handle this, we propose to reduce the size of the input space by pre-
processing the faces with alignment. We align faces by finding the locations of the
eyes and nose with a cascaded face landmark detector called Multi-task CNN, then we
perform an affine transformation to make the eyes and nose appear in roughly the same
place. Additionnally, to further improve the computational time, we propose to train
our model with a small version of Facenet called nn4.small2 as it reduces the number
of parameters. This improvement allows for negligible alignment time and reduced
neural network execution time. The almost halved execution time is the result of using
a neural network that is smaller than the original FaceNet’s nn4 network with the idea
that a small model will perform better.

To evaluate the classification execution time of CNN and our proposed face recog-
nition method based on FaceNet model, we use the CPU Intel Core i7 7500u. We
collected the elapsed CPU time for training and classifying. Table 5.10 and Table
5.11 show the results using ChokePoint dataset [469] and Youtube face dataset [468],
respectively. As shown in Figure 5.12, for the same sample image, we tried both
CNN and the proposed method based on FaceNet using CPU. Using ChokePoint video
dataset [469], CNN takes about 8 mins for training, when FaceNet takes only 6 mins.
For testing, CNN takes about 0.280 ms while FaceNet takes only 0.16 ms. Using
the Youtube face dataset [468], CNN takes about 21 mins while FaceNet takes only
8 mins. For testing, CNN takes about 0.280 ms while FaceNet takes only 0.22318
ms. The proposed method based on FaceNet using nn4.small2 was able to run 2 times
faster.

Table 5.10: Training and classifying execution time using Intel Core i7 Hardware
using ChokePoint dataset [469].

Method Training Classifying an image (64*64)

CNN (VGG-16) 10 minutes 0.50 ms
Proposed approach based on FaceNet 6 minutes 0.16 ms
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Figure 5.10: Face confidence using LFW dataset [198].

(a) Without data augmentation (b) With data augmentation

(c) Without data augmentation (d) With data augmentation

Figure 5.11: Face confidence using ChokePoint dataset [469].
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Table 5.11: Training and classifying execution time using Intel Core i7 Hardware
using Youtube face dataset [468].

Method Training Classifying an image (64*64)

CNN (VGG-16) 21 minutes 0.28 ms
Proposed approach based on FaceNet 8 minutes 0.22318 ms

Figure 5.12: (a) Training time using ChokePoint dataset [469] and Youtube face
dataset [468]. (b) Classification time using ChokePoint dataset [469] and Youtube
face dataset [468].
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5.8 Conclusion

In summary, a new face recognition approach based on FaceNet model with DCGAN data
augmentation is proposed. It combines the strengths of deep neural networks for image gen-
eration and recognition. Then, we compared the proposed method with CNN on LFW and
VGGFace2 datasets as well as on videos from ChokePoint and Youtube face datasets. The ex-
perimental results have shown that DCGAN data augmentation for FaceNet face recognition
outperforms CNN and that DCGAN data augmentation produces faces similar to the origi-
nal ones in the training dataset which improves the recognition performance. The proposed
approach described in this chapter only reaches the highest accuracy when the number of
training images is huge. Moreover, the use of alignment for pre-processing and smaller neu-
ral network models reduces the FaceNet execution time. Compared with CNN, our proposal
allows reducing the execution time while maintaining a high recognition accuracy.



Chapter 6

Conclusions

In this thesis, we set out to improve background subtraction by focusing on detecting fore-
ground objects without using additional image processing or background learning. Back-
ground subtraction is a crucial task in many computer vision applications including surveil-
lance devices in public spaces, traffic monitoring and industrial machine vision. We focused
on developing robust descriptor to deal with illumination changes, noise, and produces a
good segmentation masks. In addition, we present an efficient approach able to classify the
extracted objects in a semi-supervised way. Both labeled and unlabeled data are used to train
a classifier. This type of classifier takes a tiny portion of labeled data and a much larger
amount of unlabeled data. The goal is to combine these sources of data to train a Deep Con-
volutional Neural Network (DCNN) to learn an inferred function capable of mapping a new
image to its desirable outcome. Finally, we propose a face recognition approach to identify
the extracted people. We combine both data augmentation using DCGANs and face recogni-
tion using FaceNet model to improve the recognition accuracy, robustness of a classifier and
decrease overfitting. The key contributions of the thesis are as follows.

• A Deep Detector Classifier (DeepDC). A DeepDC is introduced in this thesis. It
exploits the strength of an anomaly discovery framework called DeepSphere, which
leverages both deep autoencoders and hypersphere learning methods, having the ca-
pability of isolating anomaly pollution and reconstructing normal behaviors, to detect
foreground objects. We adapt DeepSphere to the context of foreground-background
separation. The new DeepDC produces a good segmentation results without additional
image processsing and background learning. It is also tolerant to illumination changes
as RPCA [84] is whereas DeepPBM [149] is not and robust to noise and the dynamic
nature of the background as DeepPBM [149] is whereas RPCA [84] is not. Exper-
imental results show that DeepSphere is robust under scenes ranging from dynamic
background to changing illuminations.

• A Semi-supervised classification approach. DeepDC also allows to classify the ex-
tracted images. We propose a semi-supervised learning method called DCGAN-SSL
to classify the extracted objects based on the discriminator of DCGAN. The discrimi-
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nator is transformed into a multi-class classifier, which takes a tiny portion of labeled
data and a much larger amount of unlabeled data. The experiments carried out on
videos show that our classification approach which uses a generative model is more
efficient in terms of accuracy than CNNs.

• A face recognition method based on FaceNet model. The last contribution of the
thesis is the proposed face recognition approach for people identification. Our pro-
posal is able to extract 128-dimensional face embedding to represent the face, to handle
the large face representation which cannot generalize well to new identities. It trains a
model to create embeddings directly, rather than extracting them from an intermediate
layer. Our method uses FaceNet model that not only increases the efficiency in terms
of time and memory consumption, but also can improve the recognition accuracy. Ex-
periments conducted on challenging image and video datasets show that this approach
is more efficient in terms of time and recognition accuracy than previous methods.
We extend our previous approach by proposing a DCGANs data augmentation tech-
nique for increasing the size of the dataset by generating more realistic images similar
to the original faces. By fusing DCGANs data augmentation and FaceNet model for
face recognition, the derived method allows improving the face recognition accuracy
compared to standard data augmentation methods.

6.1 Limitations

• Our proposed DeepDC model is designed to detect moving objects in videos. The
drawback of our DeepSphere-based algorithm is that the potential interactions among
spatial and temporal dimensions are neglected. Furthermore, DeepSphere does not
take into account the structural information of the graph, since it mainly allows ex-
tracting information in the time dimension. Therefore, it is only applicable to dynamic
graphs. In addition, considering the adjacency matrices as input signifies that its input
dimension is equal to the square of the number of vertices. This limits the scalability
of the proposed approach.

• Our proposed DCGAN used for objects classification and data augmentation demon-
strates that adversarial networks learn good image representations. The major draw-
back is that there are still some forms of model instabilities. We have observed that
these models need a long time to train. Further work is required to address this insta-
bility.

• In this thesis, we use FaceNet model to handle deep metric learning issues and generate
feature embeddings. FaceNet is based on a triplet model to minimize the distance
between samples of the same class and maximize the distance between samples of
various classes. However, the triplet network contains a large number of parameters,
which requires sampling a large number of triplets from the training data in order to
learn a robust model. However, sampling all possible triplets from the training data
can quickly become difficult, where most of those samples may generate small costs
that result in slow convergence. The vast majority of the training samples will produce
gradients with magnitudes that are close to zero which can compromise the training
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convergence of the triplet model. For example, suppose that a training set contains N
samples, therefore the set of triplets has complexity size O(N3), as a result its training
is impractical even for data sets of limited sizes.

6.2 Future works

• We plan to extend our DeepDC framework based on DeepSphere to exploit multiple
data sources. We propose to investigate the possibility to process large scale and dy-
namic streaming data to detect foreground objects, to allow a more robust background
subtraction task. We also intend to extend DeepDC to include the potential interac-
tions among spatial and temporal dimensions as well as the structural information of
the graph to further improve the detection results.

• In this thesis, we propose to use DCGANs for data augmentation and object classi-
fication. However, DCGANs are trained with long time. We intend to reduce the
model size and the computational requirements to reduce the time of DCGANs. The
long-training time can be also improved by varying curriculum learning and mining
offline.

• As future work, we will try to better understand the error cases, further improve the
model, and also more reduce the model size. We propose to extend our face recog-
nition approach based on FaceNet model by developing a sampling technique that
stochastically sub-samples the set of triplets and allows using sufficient samples to
ensure that a some fraction of the hard negatives and positives are available for train-
ing. Moreover, taking into account the great complexity involved in the search of
hard positive and negative examples, we propose to implement a training procedure
to train samples with high gradient magnitudes: the loss functions that consider the
overall structure of the embedding space will be incorporated. We propose to extend
our approach by exploring the overall embedding structure and the hard negative/pos-
itive mining. We will extend the triplet loss used in our approach with a global loss
that supposes that the distribution of distances between anchor and negative samples
and anchor and positive samples is based on a Gaussian distribution. Additionally, we
propose to compare our proposal with recent models like RetinaFace [126] and on a
more extensive database such as WiderFace [12].
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Appendix A

Notations and Symbols

αθ encoder
βφ decoder
X input data
z internal layer, random noise vector
X̂k original data
a centroid of a hypersphere
r radius of a hypersphere
{χk,k = 1, ..,m} historical observation samples; training data
{χk,k > m} unseen test data
χ sample case, tensor
Xt series of matrices; series of graphs
ht internal states
wt weight at timestep t
zk encodings, embedded representations, data points
ξ outlier penalty, slack variables
Φ objective function, error function
Ψ reconstruction error
χk output of LSTM decoder
ηk case-wise weights
η {dk,r} heuristic function
z overall objective function
λ compromise parameter
Θ set of parameters
∆(χk) reconstruction difference
G(t) dynamic graph
V vertex set
E edge set
x(t) mapping function
ei j edge
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xi j(t) time series
T P true positive
FP false positive
FN false negative
FN false negative
G generator network
D discriminator network
X f ake,G(z) output of the generator
f (x) activations of an intermediate layer, embedding
x input of the discriminator
FC Fully Connected
BN Batch Normalization
ReLU Rectified Linear Unit
Pmodel class probability
N number of classes, cardinality of τ

K number of real classes
K +1 additional class
Lsupervised supervised loss
(X ,Y ) labeled points
X0 rest of the unlabeled data
I number of total iterations
pg(z) noise prior
pd(x) data generating distribution
xa

i anchor image
xp

i positive exemplar
xn

i negative exemplar
α margin
τ set of all possible triplets in the training set
xdet

i cross-entropy loss
pi probability produced by the network
yi a sample being a face
ydet

i label of ground-truth
Lbox

i bounding box regression objective
ŷbox

i regression target
ybox

i real coordinate
Llandmark

i regression problem
ŷlandmark

i coordiantes of the predicted facial landmarks
ylandmark

i actual condition of the i-th input image
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List of Publications

This dissertation has led to the following communications:

Journal Papers

• Ammar S., Bouwmans T., Zaghden N. and Neji M.“Deep Detector Classifier (DeepDC)
for moving objects segmentation and classification in video surveillance”. IET Image
Processing, 2020 (published).

Book chapters

• Ammar S., Bouwmans T., Zaghden N. and Neji M. “From Moving Objects Detection
to Classification and Recognition : A Review for Smart Environments”. Chapter on
the handbook “Towards Smart World: Homes to Cities using Internet of Things”, 2020
(published)

Conferences

• Ammar S., Zaghden N. and Neji M. “A Framework for People Re-Identification in
Multi-Camera Surveillance Systems”. In the Proceedings of the 14th International
Conference on Cognition and Exploratory Learning in Digital Age (CELDA), Vilam-
oura, Portugal, October, 2017. (published)

• Ammar S., Zaghden N. and Neji M. “An Effective Approach Based on a Subset of
Skeleton Joints for Two-Person Interaction Recognition”. In the Proceedings of the
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23rd Iberoamerican Congress on Pattern Recognition (CIARP), Madrid, Spain, De-
cember, 2018. (published)

• Ammar S. and Bouwmans T., Zaghden N. and Neji M. “Moving Objects Segmentation
Based on DeepSphere in Video Surveillance”. In the Proceedings of the International
Symposium on Visual Computing (ISVC), California, USA (oral presentation), Octo-
ber, 2019. (published)

• Ammar S., Bouwmans T., Zaghden N. and Neji M. “Towards an Effective Approach
for Face Recognition with DCGANs Data Augmentation”. In the Proceedings of the
International Symposium on Visual Computing (ISVC), California, USA, (oral pre-
sentation) October, 2020.(published)
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Un système de récupération et de classification d’images extraites des caméras de
vidéo-surveillance.

Résumé :

Dans cette thèse, nous présentons un descripteur robuste pour la soustraction d’arriére-plan fondé sur un algo-
rithme de détection d’anomalies non-supervisé, appelé DeepSphere, capable de détecter les objets en mouvement
dans les séquences vidéos. Contrairement aux algorithmes de séparation arrière-avant plan conventionnels, ce des-
cripteur est tolèrant aux variations d’illumination, robuste face aux bruits et aux régions d’arrière-plan dynamiques
et détecte les objets de premier-plan sans utiliser de traitement d’image supplémentaire. En outre, ce descripteur
exploite à la fois les autoencodeurs profonds et les méthodes d’apprentissage en hypersphère, ayant la capacité de
capturer les dépendances spatio-temporelles entre les composants et à travers les pas de temps, d’apprendre de ma-
nière flexible une représentation non-linéaire des caractéristiques et de reconstruire les comportements normaux à
partir des données d’entrée potentiellement anormales. Les représentations non linéaires de haute qualité apprises
par l’autoencodeur aident l’hypersphère à mieux distinguer les cas anormaux en apprenant une frontière compacte
séparant les données normaux et anormaux. En adaptant cet algorithme à la tâche de soustraction d’arrière plan,
les objets de premier plan sont bien capturés par DeepSphere et la qualité de la détection de ces objets est amé-
liorée. Une fois que ces objets sont détectés (personnes/voitures...), une approche est proposée pour les classer en
utilisant le réseau discriminateur du DCGAN de maniére semi-supervisée. Le discriminateur est transformé en un
classificateur multi-classes qui utilise à la fois un grand nombre de données non étiquetées et un très petit nombre
de données étiquetées pour compenser la limite de manque de données et le coût élevé de collecte des données
supplémentaires ou d’étiqueter toutes les données. Enfin, nous avons adopté une approche basée sur le model Fa-
ceNet pour la reconnaissance faciale des personnes extraites. De plus, nous avons étendu notre proposition par une
méthode d’augmentation des données basée sur DCGANs au lieu d’utiliser les méthodes standard d’augmentation
des données. Cela augmente non seulement la précision du modéle, mais réduit aussi de prés de moitié le temps
d’exécution et le temps d’apprentissage du réseau neuronal profond.
Mots clés : détection d’objects mobiles, soustraction d’arrière-plan, détection d’anomalies, DeepSphere, classifi-
cation semi-supervisée, DCGANs, reconnaissance faciale.

A System For Retrieving and Classifying Images Extracted From Video
Surveillance Cameras.

Summary:
In this thesis, we present a robust descriptor for background subtraction based on an unsupervised anomaly detec-
tion algorithm, called DeepSphere which is able to detect moving objects from video sequences. Unlike conventio-
nal background-foreground separation algorithms, this descriptor is less sensitive to noise and detects foreground
objects without additional image processing. In addition, our proposal exploits both deep autoencoders and hy-
persphere learning methods, having the ability to capture spatio-temporal dependencies between components and
through "timesteps", to flexibly learn a non-linear feature representation and reconstruct normal behaviors from
potentially anomalous input data. The high quality non-linear representations learned by the autoencoder helps the
hypersphere to better distinguish anomalous cases by learning a compact boundary separating normal and ano-
malous data. By adapting this algorithm to the background subtraction task, foreground objects are well captured
by DeepSphere and the quality of detection of these objects is improved. Once these objects are detected (people
/ cars ...), an approach is proposed to classify them using a DCGAN discriminator network in a semi-supervised
manner. The discriminator is transformed into a multi-class classifier that uses both a large number of unlabeled
data and a very small number of labeled data to compensate the lack of data and the high cost of collecting ad-
ditional data or labeling all the data. Finally, we have adopted an approach based on FaceNet model to recognize
the extracted people through their faces. In addition, we extended our proposal with a data augmentation method
based on DCGANs instead of using standard data augmentation methods. This not only increases the accuracy of
the model, but also reduces the execution time and the deep neural network learning time by almost half.
Keywords: moving objects detection, background/foreground separation, anomaly detection, DeepSphere, semi-
supervised classification, DCGANs, face recognition.
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