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Abstract 

With the development of economy, environmental pollution has become 

increasingly serious, especially in developing countries such as China and India. To 

realize the sustainable development of environment and economy, the scientific 

evaluation of environmental efficiency is very important. 

This thesis investigates the environmental efficiency evaluation based on data 

envelopment analysis (DEA). Four environmental efficiency evaluation problems are 

studied. Firstly, an integrated Enhanced Russell measure model is proposed for 

evaluating the environmental efficiency with the presence of undesirable outputs in 

fuzzy circumstance. It is then applied to thermal power firms in China. Then, by 

considering undesirable outputs, a new closest target DEA model based on Range 

Adjusted Measure is established to measure the water environmental efficiency of 

Xiangjiang River Basin in China. In addition, a new two-stage DEA model with shared 

inputs is built to evaluate the total-factor energy efficiency and the overall 

environmental efficiency of China’s industrial sector. Finally, the dynamic 

environmental efficiency evaluation of a parallel transportation network considering 

regional heterogeneity is considered. The Metafrontier Malmquist-Luenberger 

productivity index based on a network DEA model is built and then applied to analyze 

China’s transportation sector. 

All these DEA models are applied to real-life examples and used to measure their 

environmental efficiency and set the benchmark for their performance improvement. 

 

Key words: Data envelopment analysis, Human beings--Effect of environment on, 

Linear programming, Industrial efficiency, Benchmarking 
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Résumé 

Avec le développement de l'économie, la pollution de l'environnement est devenue 

de plus en plus grave, en particulier dans les pays en voie de développement tels que la 

Chine et l'Inde. Pour réaliser le développement durable de l'environnement et de 

l'économie, l'évaluation scientifique de l'efficacité environnementale est très importante. 

Cette thèse examine l'évaluation de l'efficacité environnementale basée sur 

l'analyse d'enveloppement de données (DEA). Quatre problèmes d'évaluation de 

l'efficacité environnementale sont étudiés. Tout d'abord, un modèle de mesure Russell 

renforcé est proposé pour évaluer l'efficacité environnementale des entreprises de 

production d'énergie thermique en Chine. Ensuite, compte tenu de la production 

indésirable, un nouveau modèle DEA plus proche d’une cible basé sur un intervalle de 

mesure ajusté est établi pour mesurer l'efficacité environnementale du bassin de la 

rivière Xiangjiang en Chine. De plus, un nouveau modèle DEA en deux étapes avec 

entrées partagées est construit pour évaluer l’efficacité énergétique du facteur total et 

l’efficacité environnementale globale du secteur industriel de la Chine. Enfin, le modèle 

d’évaluation de l’efficacité environnementale d’un réseau parallèle de transport prenant 

en compte l’hétérogénéité régionale est proposé pour analyser le secteur de transport en 

Chine.  

Tous ces DEA modèles sont appliqués à des exemples réels et utilisés pour mesurer 

leur efficacité environnementale et donner une référence pour l'amélioration de leur 

performance. 

 

Mots clés: DEA, Méthode,  Homme -- Effets de l'environnement, Programmation 

linéaire, Efficience (gestion), Référenciation  
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General introduction 

Nowadays, the continuous exposure of environmental pollution has seriously 

restricted the social development of many countries, especially developing countries. 

With the acceleration of urbanization process, environmental pollution has become 

more and more serious. In the past 40 years, China’s economy has achieved rapid 

development, but the high-speed economic growth mainly depended on huge 

investment and high resource consumption at the cost of high pollution and low 

efficiency. However, this model of development leads to a contradiction between 

economic development and environmental protection. As a result, the deterioration of 

the environment is becoming more and more serious. After the long-term practice, 

people have realized the importance of environmental protection in the sustainable 

development of the economy of a country. Sustainable development cannot be realized 

without effective management of the environment. To achieve effective environmental 

management, we require scientific and objective environmental performance evaluation 

methods. 

In view of the above-mentioned context, this thesis investigates several 

environmental performance evaluation problems based on data envelopment analysis 

and develops relevant evaluation methods that can be used in practice. The problems to 

be addressed in this thesis include: how to evaluate the environmental performance of 

systems with fuzzy numbers, how to measure the environmental performance in order 

to set the closest target for the environmental inefficient system using least effort to 

achieve environmental efficiency, how to measure the overall environmental efficiency 

and total factor energy efficiency of a complex two-stage system, and how to evaluate 

the dynamic change of environmental performance of a parallel transportation network 

with regional heterogeneity. Based on the theoretical investigation of these problems, 

effective environmental performance evaluation methods are developed and applied to 

some practical problems in this thesis. This thesis is organized in seven chapters, and 

the main contents of the seven chapters are given as follows: 

The first chapter is the introduction. We first present the background (context) of 

this thesis and provide a literature review on Data Envelopment Analysis (DEA), the 

basic method for our environmental performance evaluation. The problems studied in 

this thesis are then introduced. Finally, we present the structure and outline the main 
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contributions of this thesis. 

The second chapter introduces the basic theory of DEA, including the basic 

concepts of data envelopment analysis (DEA), the basic DEA models and some basic 

concepts in environmental efficiency evaluation. 

The third chapter is environmental efficiency evaluation for a single-stage system 

with fuzzy numbers and its application. In this chapter, an integrated Enhanced Russell 

measure model is proposed based on data envelopment analysis for evaluating the 

performance of decision making units in the presence of undesirable outputs in fuzzy 

circumstance. Then, the new model is applied to analyze the environmental efficiency 

and provide the benchmarks for the thermal power firms in China, which can guide the 

decision makers to make suitable future production plans for improving their 

performance.  

The fourth chapter is environmental efficiency evaluation for a single-

stage system considering the path for performance improvement and its application. By 

considering undesirable outputs, a new closest target DEA model based on Range 

Adjusted Measure (RAM) is established to measure the environmental performance of 

the system. The proposed model is used to measure the environmental efficiency of the 

regions in Xiangjiang River Basin in China, and the closest target is set for these 

inefficient regions so that they can make the least effort to achieve efficiency. 

The fifth chapter is environmental efficiency evaluation of a two-stage system via 

total-factor energy efficiency and its application. With the rapid development of 

industry, the problems of growing energy consumption and environmental pollution in 

industry are drawing increasing attention of the government and scholars. In this chapter, 

we divide the industrial system into two stages, i.e., an energy utilization stage and a 

pollution treatment stage, for accurately evaluating the total-factor energy efficiency of 

the system as well as its overall environmental efficiency. We build a new two-stage 

data envelopment analysis model with shared inputs to analyze the China’s industry 

that was commonly considered as a “black box” in traditional environmental efficiency 

methods. Based on the theoretical analysis of the model, some policy suggestions are 

given to this industry. 

The sixth chapter is environmental efficiency evaluation of parallel transportation 

network considering regional heterogeneity and its application. In this chapter, we 

examine the China’s transportation sector by dividing it into four main subsystems: 

railway, highway, waterway, and civil aviation, and further build a network data 
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envelopment analysis model for performance measurement of the sector with 

considering undesirable output-CO2 emission. Moreover, considering the heterogeneity 

of transportation sectors in different areas of China, a new metafrontier Malmquist-

Luenberger productivity index is proposed based on the network DEA model, which is 

used to investigate the productivity growth of 30 regions’ transportation sectors during 

2007-2013. Finally, some suggestions are given for guiding the development of China’s 

transportation sector. 

The seventh chapter concludes this thesis with prospective for future research. In 

this chapter, the main works of this thesis are first summarized, and the main 

contributions and possible improvements of this thesis are then outlined. Finally, some 

suggestions for future research directions are provided. 
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1.1 Background for the evaluation of environmental efficiency 

In recent years, the environmental problems, such as water pollution and air 

pollution, have seriously affected the sustainable development of economies of most 

countries, especially some developing countries, such as India and China. With the 

rapid industrialization, the environmental pollution is becoming more and more serious, 

causing direct damage to the ecosystems of these countries. Therefore, the dynamic 

balance between environment and economy has become an important social problem 

(Wu et al., 2014).  Through the analysis of long-term practices, people have recognized 

that sustainable development of the economic and environment is the main way to solve 

this problem, which indicates the development should meet the needs of the present 

generation without compromising the ability of future generations. In order to achieve 

sustainable economic development, environmental protection has become a global 

consensus. In the year of 2015, 196 countries met in Paris for the United Nations 

Climate Change Conference and finally signed the “Paris Agreement” with the 

objective to alleviate environmental and climate change. The Paris Agreement aims at 

governing emission reductions from 2020 through commitments of countries to their 

nationally determined contributions. As an important member, China plays the critical 
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role in the global environmental improvement. Therefore, this thesis is mainly focused 

on the environmental issues in China. 

Recently, China’s economy has achieved rapid development. The GDP grows 

from 367.9 billion RMB in 1978 to 90.03 trillion RMB 2018. But the rapid economic 

growth mainly depends on high consumption of energy and resources at the cost of high 

pollution and low efficiency. In recent years, the contradiction between economic 

development and environmental protection has become increasingly prominent. 

Meanwhile people are facing increasingly serious environmental deterioration 

problems (Wu et al., 2014; An et al., 2017; Song et al., 2012). For example, heavy metal 

pollution in Xiangjiang River Basin of Hunan province, eutrophication pollution in 

Taihu Lake of Jiangsu province, and heavy winter haze of North China. With the 

increasing awareness of environmental protection, more attentions are paid to 

environmental protection (Glucker et al., 2013). The 13th Five-Year Plan clearly 

pointed out that China will increase the environmental supervision and protection to 

realize an overall improvement of the ecological environment (Xinhua News Agency, 

2015). The report of the 19th National Congress of the Communist Party of China 

further clarified the basic strategy of "adhering to the harmonious coexistence of man 

and nature", and proposed to promote green development by focusing on solving 

environmental problems. Besides, this report proposed to strength and reform the 

ecological environment supervision system (Xi, 2017). With the extensive research on 

environmental problems, people have realized the importance of environmental 

protection in the sustainable development of the economy of a country. The sustainable 

development cannot be realized without effective management of the environment. To 

achieve effective environmental management, we require scientific and objective 

environmental performance evaluation methods. (Wu et al., 2014; Song et al., 2012). 

Environmental efficiency evaluation should provide a comprehensive evaluation of the 

performance of an organization in all aspects of resources consumption, economic 

output and environmental output. It should not only show tell us the environmental 

efficiency of the evaluated system on the macroscopic level, but also provides us with 

detailed benchmarking information for the design and implementation of environmental 

management policies (Song et al., 2012). Therefore, environmental efficiency 

evaluation is a key factor in solving environmental problems (Halkos and Tzeremes, 

2013). 
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The environmental efficiency evaluation has attracted much attention of scholars 

and has been deeply investigated and applied in real life (Sueyoshi et al., 2017). Among 

various environmental efficiency evaluation methods, data envelopment analysis (DEA) 

is one of the most popular methods. The book of “2016 Research Fronts” jointly 

published by the Science and Technology Strategy Consulting Institute of the Chinese 

Academy of Sciences, the Literature Information Center of the Chinese Academy of 

Sciences, and Clarivate Analytics (formerly the Intellectual Property and Technology 

Division of Thomson Reuters) stated that environmental and energy efficiency 

evaluation based on data envelopment analysis is one of the two key hotspots in the 

fields of economics, psychology and other social sciences. The book especially 

emphasized that the 35 core papers in the field of environmental and energy efficiency 

evaluation all adopt the data envelopment analysis method*. Data envelopment analysis 

was proposed in 1978 by Charnes et al. (1978).  It is a nonparametric method for 

evaluating the performance of a set of homogeneous decision making units (DMUs) 

based on linear programming models. Besides, it can deal with the performance 

evaluation of multi-input and multi-output systems, and the obtained results can provide 

benchmarking information for performance improvement (Boudreau, 2004). Recently, 

DEA has become one of the important research topics in management science. A large 

number of studies on the DEA methodological developments and applications have 

been conducted, such as Banker et al. (1984), Andersen and Petersen (1993) and Chen 

and Zhu (2019). DEA has been extended and applied to the evaluation of environmental 

efficiency considering environmental factors (undesirable outputs), and has gradually 

become one of the best and most popular environmental efficiency evaluation methods 

(Wang et al., 2013; Wang et al., 2016; Song and Guan, 2014). Thus, DEA is chosen as 

the basic methodology for the evaluation of environmental efficiency and further apply 

it to analyze the real environmental problems. 

1.2 Literature review: DEA-based environmental efficiency evaluation 

According to the theory of joint production, desirable outputs are always 

accompanied by undesirable outputs (Färe et al., 1989; Chen et al., 2016). Usually, the 

performance evaluation considering both economic factors (desirable outputs) and 

                                                           
* “2016 Research Fronts”. https://clarivate.com.cn/research_fronts_2017/2016research.pdf 
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environmental factors (undesirable outputs) is defined as environmental efficiency 

evaluation (see Song et al., 2013; Wu et al., 2014). Environmental factors, such as 

wastewater, carbon dioxide, sulfur dioxide, solid waste, etc. are usually undesirable 

outputs, so one key issue of environmental efficiency evaluation is how to deal with 

undesirable outputs. Due to the increased environmental concerns and government 

environmental policies, more and more attention has been paid to these undesirable 

outputs. Currently, there are two main methods for assessing environmental efficiency: 

stochastic frontier analysis (SFA) and data envelopment analysis (DEA) (Coelli et al., 

2005). SFA is a parametric estimation method which uses the maximum likelihood 

estimation (MLE) to estimate the production function. This method uses a parametric 

modelling approach to measure a “frontier” value and thereby provides a measure to 

evaluate environmental efficiency through the frontier value. However, pre-determined 

production function form may not match the reality. Moreover, SFA will become much 

difficult when dealing with a multi-input and multi-output system. In contrast to SFA, 

DEA is a non-parametric programming technique for measuring the relative efficiency 

of a set of homogenous decision making units. It not only can deal with multiple-output 

multiple-input systems but also has the advantage of having no need to assume any 

particular functional forms relating to the inputs and outputs. Moreover, it has become 

one of the most popular methods for environmental efficiency evaluation. Usually, the 

real-life environmental systems are multi-input and multi-output systems that consider 

both desirable outputs and undesirable outputs, therefore, DEA is chosen as the basic 

method for measuring environmental efficiency in this thesis. 

The research of environmental efficiency evaluation based on DEA has received 

much attention from researchers. Färe et al. (1989) is one of the important theoretical 

foundations of environmental efficiency evaluation. After that, the related theoretical 

methods have been largely developed. According to the addressing ways of undesirable 

outputs, the environmental efficiency evaluation studies can be classified into two 

categories: direct approaches and indirect approaches. Direct approaches can be further 

divided into three categories. The first one is based on Färe et al. (1989), which replaced 

strong disposability assumption of outputs by weakly disposable assumption. This work 

has been extensively developed (Seiford and Zhu, 2005; Zhou et al., 2013; Wang et al., 

2016). The second one is based on slacks-based measure or Russell measure (Zhou et 

al., 2006; Bi et al., 2014; Chen and Jia, 2017; Liu and Wu, 2017). The third one is based 
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on the direction distance function (DDF) (Chung et al., 1997; Boyd et al., 2002; Picazo-

Tadeo et al., 2012; Halkos and Tzeremes, 2013; Sueyoshsi and Goto, 2017). Indirect 

approaches can be further divided into two categories. The first one treats undesirable 

outputs as inputs in performance evaluation (Liu and Sharp, 1999; Dyckhoff and Allen, 

2001; Yang et al., 2015). This approach only needs the information on whether the data 

should be minimized or maximized, but it cannot reflect a real production process 

(Seiford and Zhu, 2002). The second one includes a non-linear monotonic decreasing 

transformation approach (Scheel, 2001) and a linear monotonic decreasing 

transformation approach (Seiford and Zhu, 2002; Wu et al., 2013).  

Most of the above environmental efficiency works by DEA focused on single-

stage system or considered the evaluated system as a “black box” without considering 

its internal structure. However, we cannot find the inefficiency in the internal 

production process of a system through this way, and thus it is hard to improve the 

system’s performance. With the increasing competition and relation among economic 

entities, the systems become more and more complex, it is urgent to propose the 

environmental efficiency evaluation for a network system. In recent years, the network 

DEA method becomes an effective method to measure the performance of multi-stage 

systems, which provides new ideas and breakthroughs for the study of complex 

environmental efficiency evaluation problems. 

As mentioned above, the previous studies about environmental efficiency did not 

consider the internal structure of the system, and treated the system as a “black box” 

which overlooked the transformations to which the inputs are subject within the 

considered system (Ma, 2010; Yang et al., 2013). This simple way has been widely 

applied to environmental management (Song and Wang, 2013; Lin and Liu, 2015; Zhou 

et al., 2006; Halkos and Tzeremes, 2013; Liu and Wu, 2017). However, many evaluated 

systems cannot simply be considered as “black boxes”, otherwise, it may lead to biased 

results on the evaluation (Du and Huo, 2014; An et al., 2017; Färe and Grosskopf, 2000; 

Kao and Hwang, 2008). Kao and Hwang (2008) found that although the performance 

of each subsystem of a decision-making unit is worse than that of the corresponding 

subsystem of another decision-making unit, it is possible that the performance of the 

former is greater than that of the latter in the case of ignoring the internal structure of 

the systems. Wang et al. (1997) proposed that considering the intermediate production 

processes in the evaluation can identify all the sources that cause the inefficiency of the 
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whole system. In order to solve these problems, the network DEA method is proposed 

and widely used in environmental efficiency evaluation to consider the internal 

structure of the system. As the network DEA can measure the inefficiency of internal 

production process of the system, it has been widely concerned by scholars in recent 

years, and has become one of the research hotspots in environmental efficiency 

evaluation. 

According to the types of network structure, the research on environmental 

efficiency evaluation based on network DEA can be classified into three categories. 

The first category is the series network DEA environmental efficiency evaluation which 

evaluates the DMUs with two or more internal subsystems in series which are linked 

with intermediate measures. Most of the existing studies on series network focus on 

two-stage network system. The two-stage network system specifically includes the 

traditional two-stage system and the extended general two-stage system. The former 

refers to the two-stage network system in which the intermediate measures are both the 

whole outputs of the first stage and the whole inputs of the second stage (Chen et al., 

2012; Halkos et al., 2015), and the latter refers to a two-stage network system in which 

the intermediate measures are only partial or whole outputs of the first stage and partial 

or whole inputs of the second stage (Xie et al., 2012; Song et al., 2014; Bian et al., 2015; 

Song et al., 2015; Wu et al., 2015; Chen et al., 2016; Chu et al., 2016; Shi, 2016; Wu et 

al., 2016a; Lozano, 2017; Li et al., 2018; Zhou et al., 2018).The second category is the 

parallel network DEA environmental efficiency evaluation which evaluates the DMUs 

with two or more internal parallel subsystems. In the initial parallel network DEA 

environmental efficiency evaluation studies, each subsystem was operated 

independently. Färe et al. (1997) first studied the performance of such network structure 

systems. Later, this structure was further extended and applied to environmental 

efficiency evaluation (Bi et al., 2011; Gong et al., 2016). Now, the research on parallel 

network DEA environmental efficiency evaluation has been extended to non-

independent parallel systems (Bian et al., 2014; Wu et al., 2016b; Liu et al., 2017; Li et 

al., 2018). The third category is the mixed network DEA environmental efficiency 

evaluation. The mixed network system which studies a kind of system with parallel and 

series sub-systems. Recently, the research on environmental efficiency evaluation 

based on mixed DEA is gradually increasing (Huang et al., 2014). 
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1.3 Research topics

The above literature review shows that environmental efficiency evaluation has 

been widely studied by scholars, but there are still some open problems. For example, 

how to evaluate the environmental efficiency of systems with fuzzy numbers? How to 

measure the environmental efficiency in order to set the closest target for an 

environmental inefficient system using least effort to achieve environmental efficient? 

How to measure the overall environmental efficiency and total factor energy efficiency 

of a complex two-stage system? and how to evaluate the dynamic change of 

environment efficiency of a parallel network system? Based on the theoretical 

investigation of these problems, effective environmental performance evaluation 

methods are developed and applied to some practical problems in this thesis. The main 

contents of this thesis are summarized as follows: 

In chapter 3, an integrated Enhanced Russell measure model is proposed based on 

data envelopment analysis for evaluating the performance of decision making units in 

the presence of undesirable outputs under a fuzzy circumstance. In this chapter, a new 

model is applied to analyze the environmental efficiency and provide the benchmarks 

for thermal power firms in China, which can guide the decision makers of these firms 

to make suitable future production plans to improve their performance.  

Considering the undesirable outputs, a new closest target DEA model based on 

Range Adjusted Measure (RAM) is established to measure the environmental 

efficiency of a single-stage system. The proposed model is used to measure the water 

environmental efficiency of the regions in Xiangjiang River Basin in China. Besides, 

the closest targets are set for these inefficient regions so that they can make the least 

effort to achieve efficient. 

With the rapid development of industry, the problems of growing energy 

consumption and environmental pollution in industry attracted increasing attention of 

the government and scholars. In chapter 5, we divide an industrial system into two 

stages, i.e., an energy utilization stage and a pollution treatment stage, for accurately 

evaluating the total-factor energy efficiency of the system as well as its overall 

environmental efficiency. We build a new two-stage data envelopment analysis model 

with shared inputs to analyze the China’s industry that was commonly considered as a 
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“black box” in traditional environmental efficiency methods. Based on the theoretical 

analysis of the model, some policy suggestions are given. 

In chapter 6, we examine China’s transportation sector by dividing it into four 

main parallel subsystems: railway, highway, waterway, and civil aviation, and further 

build a network DEA model for performance measurement of China’s transportation 

sector with consideration of undesirable output- CO2 emission. Moreover, considering 

regional heterogeneity of transportation sectors in different areas of China, a new 

metafrontier Malmquist-Luenberger productivity index is proposed based on the 

network DEA model, which is used to investigate the productivity growth of 30 regions’ 

transportation sectors during 2007-2013. Finally, some suggestions are given for 

guiding the development of China’s transportation sector. 

1.4 Structure and Contributions of the thesis 

1.4.1 Structure 

This thesis is focused on environmental efficiency evaluation by data envelopment 

analysis and its applications. According to different systems studied, this thesis is 

organized as in figure 1.1. 

 

Figure 1.1 The organization of this thesis 
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This thesis will be divided into two parts according to the structure of the systems 

evaluated. The first part is dedicated to environmental efficiency evaluation methods 

and applications of single-stage systems, which contains two chapters. The second part 

is dedicated to environmental efficiency evaluation methods and applications of 

network systems, which also contains two chapters.  

The environmental efficiency evaluation methods for single-stage systems and 

their applications are presented in Chapter 3 and Chapter 4. Chapter 3 studies the 

environmental efficiency evaluation of single-stage systems considering fuzzy numbers, 

and the proposed model is applied to China’s thermal power firms. Chapter 4 presents 

an environmental efficiency evaluation method for a single-stage system considering 

performance improvement path, and the proposed method is applied to Xiangjiang 

River Basin in China.  

Some environmental efficiency evaluation methods and their applications of 

network systems are described in Chapter 5 and Chapter 6. Chapter 5 investigates the 

environmental efficiency evaluation of a complex two-stage system in terms of total 

factor energy efficiency, and the proposed models are applied to China's industry sector. 

Chapter 6 studies the environmental efficiency evaluation of a parallel network system, 

and the proposed models are applied to China’s transportation sector. 

1.4.2 Contributions 

(1) Considering environmental factors, a Fuzzy Enhanced Russell measure model 

is firstly built based on the Enhanced Russell measure and fuzzy theory. α-cut method 

is used to calculate the upper and lower bound values of environmental efficiencies. 

Finally, 30 thermal power firms in China are analyzed by the proposed method. 

(2) Many previous works on the environmental efficiency evaluation provide 

methods for determining the benchmarks for the evaluated systems. However, the 

benchmarks determined by these methods are usually the furthest target for each 

inefficient system to achieve efficient. In order to make the evaluated system use the 

least effort to achieve environmental efficient, we proposed a closest target DEA model 

based on Range Adjusted Measure (RAM) to measure the water environmental 

efficiency and set the benchmarks for Xiangjiang River Basin in China. 

(3) Most previous studies on environmental and energy efficiency consider an 

evaluated system as a “black box” without considering its internal structure, which 
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often leads to less reliable results. In order to overcome this problem, a two-stage DEA 

model is proposed to measure regional industrial overall environmental efficiency, 

energy utilization efficiency, pollution treatment efficiency, and the total-factor energy 

efficiency in chapter 5. 

(4) Only few studies used a network DEA model to study the internal structure of 

China’s transportation system previously. However, these studies lack a dynamic 

performance evaluation of the system. In chapter 6, China’s transportation sector is 

divided into four parallel subsystems, and a new network DEA model is proposed to 

measure its environmental efficiency. Moreover, a metafrontier Malmquist-Luenberger 

productivity index is used to investigate the green productivity growth of provincial 

transportation sectors by considering the heterogeneity of transportation sectors in 

different regions of China. 

 



CHAPTER 2  

Basic DEA theory 

 

Contents 

2.1 Data envelopment analysis ................................................................................. 11 

2.2 Basic concepts .................................................................................................... 12 

2.3 Basic DEA models ............................................................................................. 15 

2.4 Basic concepts of environmental efficiency evaluation ..................................... 17 

 

This chapter mainly introduces the relevant preliminaries, including the basic 

concepts of data envelopment analysis (DEA), the basic DEA models and some basic 

concepts in environmental efficiency evaluation. 

2.1 Data envelopment analysis  

Data envelopment analysis (DEA) is a non-parametric programming method for 

efficiency evaluation of a set of entities called decision making units (DMUs) which 

convert multiple inputs to multiple outputs. It is a cross-research field of operational 

research, management science and mathematical economics. The seminal DEA model 

was proposed by Charnes, Cooper and Rhodes in 1978. So far, it has been widely 

developed and applied in many areas, such as business firms, hospitals, banks, thermal 

power firms, and others. 

Through DEA method, the relative efficiency of the evaluated DMU can be 

obtained directly from the data without requiring a priori specification of weights and/or 

explicit delineation of assumed functional forms of relations between inputs and outputs. 

Compared with other methods, DEA has an evident advantage in dealing with the 

efficiency assessment of multi-input multi-output DMU. DEA can identify the best 

practice DMUs which form an efficient production frontier. Furthermore, it can provide 

some valuable management implications and useful information for decision makers to 
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improve the performance. For example, through horizontal comparison among DMUs, 

the efficiency performance of each decision-making unit can be measured, and the 

benchmarks can be found to guide the future development directions of the inefficient 

DMUs. The longitudinal comparison among DMUs can be used to derive the 

productivity level, the technological progress of each evaluated DMU. Besides, DEA 

can also be used for allocating resources or fixed-costs, measuring the returns to scale 

of DMU, and others.  

More importantly, compared with another efficiency evaluation method, the 

Stochastic Frontier Analysis (SFA), DEA has evident advantages in dealing with multi-

input and multi-output system while until recently SFA only allowed a single output, 

or multiple outputs with using a cost function if price data are available (Paradi et al., 

2017). 

2.2 Basic concepts 

(1) Decision making unit 

In real-life production and service activities, we often meet such management 

problem that we should evaluate the performance of some homogenous departments 

during a period, in which each department is called a decision making unit (DMU). It 

can be seen that DMU refers to any entity that converts inputs into outputs, such as 

universities, enterprises, hospitals, banks, etc.  For these DMUs, the inputs can be labors, 

capital, fixed cost, the outputs show the effectiveness of the activity. For example, the 

evaluation of the operational efficiency of similar air-conditioning production 

enterprises in a certain area, each enterprise is a DMU, the employees of the enterprise, 

the investment in fixed assets, etc. are input indicators, and the number of air-

conditioners and the quality of air-conditioning are output indicators. 

When applying DEA for the efficiency evaluation of DMUs, we assume the DMUs 

are homogeneous, that is, all DMUs should have same external environment; all DMUs 

have the same input and output indicators; and all DMUs have the same production 

process. If the DMUs do not satisfy the homogeneity, it needs to be processed, please 

refer to related works such as Cook et al. (2013) and Imanirad et al. (2015). 

(2) Performance evaluation
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The performance evaluation of a DMU with single-input and single-output is 

generally based on the ratio of output to input. For the performance evaluation of multi-

input and multi-output DMU, it is defined as the ratio of the weighted value of the 

outputs to the weighted value of the inputs. It should be noted that, without loss of 

generality, performance in this thesis refers to the relative efficiency of the DMU, that 

is, the relative efficiency of the evaluated DMU is obtained by comparing with the other 

DMUs’ multiple inputs and multiple outputs. 

 (3) Production possibility set 

Consider a set of n DMUs, with each,  𝐷𝑀𝑈𝑗(𝑗 = 1,… , 𝑛) , using m inputs𝑋𝑗 =

(𝑥1𝑗, … , 𝑥𝑚𝑗)
𝑇  to produce s outputs 𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗)

𝑇 , where T in the superscript 

indicates transpose. Meanwhile,  𝑋𝑗 ≥ 0，𝑌𝑗 ≥ 0，𝑗 = 1,… , 𝑛, that is, the value of 

each input and output is greater than or equal to 0, and at least the value of one input 

indicator and one output indicator is positive. Besides, 𝑥𝑖𝑗  denotes the ith input of 

 𝐷𝑀𝑈𝑗, and 𝑦𝑟𝑗 denotes the rth output of  𝐷𝑀𝑈𝑗. 

The production possibility set (PPS) is then defined as a set of all feasible 

production points, that is: 

𝑇 = {(𝑋, 𝑌)|𝑋 can produce 𝑌}                                       (2.1) 

Equivalently, technology T can be equivalently represented by its output sets 

𝑃(𝑋) = {𝑌|(𝑋, 𝑌) ∈ 𝑇} or its input sets 𝑃(𝑌) = {𝑋|(𝑋, 𝑌) ∈ 𝑇}. 

For the PPS, based on Wei (2004), the axioms are given as follows. 

Axiom 1. For an observed production activity  (𝑋𝑗, 𝑌𝑗)(𝑗 = 1, … , 𝑛) , the input 

vector and output vector are  𝑋𝑗 = (𝑥1𝑗 , … , 𝑥𝑚𝑗)and  𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗)  respectively. 

Then, this production activity is feasible. 

Axiom 2. For any two production activities in PPS, i.e., (𝑋, 𝑌) ∈ 𝑇 , (�̂�, �̂�) ∈ 𝑇, 

and any 𝛼 ∈ [0,1], then we have 𝛼(𝑋, 𝑌) + (1 − 𝛼)(�̂�, �̂�) = (𝛼𝑋 + (1 − 𝛼)�̂�, 𝛼𝑌 +

(1 − 𝛼)�̂�) ∈ 𝑇. 

Axiom 3. For any real production activity in PPS, i.e., (𝑋, 𝑌) ∈ 𝑇 , if a production 

activity (�̂�, �̂�) satisifies �̂� ≥ 𝑋 and �̂� ≤ 𝑌, then we have (�̂�, �̂�) ∈ 𝑇. 

Axiom 4a. For any real production activity in PPS, i.e., (𝑋, 𝑌) ∈ 𝑇 , we have 

𝛼(𝑋, 𝑌) = (𝛼𝑋, 𝛼𝑌) ∈ 𝑇 for any 𝛼 ∈ [0,+∞). 
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Axiom 4b. For any real production activity in PPS, i.e., (𝑋, 𝑌) ∈ 𝑇 , we have 

𝛼(𝑋, 𝑌) = (𝛼𝑋, 𝛼𝑌) ∈ 𝑇 any 𝛼 ∈ [0, 1]. 

Axiom 4c. If any real production activity in PPS, i.e.,  (𝑋, 𝑌) ∈ 𝑇  , we have 

𝛼(𝑋, 𝑌) = (𝛼𝑋, 𝛼𝑌) ∈ 𝑇 for any  𝛼 ∈ [1,+∞). 

Based on the definition of Wei (2004), axiom 1 is called ordinary axiom, axiom 2 

is called convex axiom, axiom 3 is called invalid axiom, axiom 4a is called cone axiom, 

and axiom 4b is called contraction axiom, axiom 4c is called expansion axiom. The 

axiom 3 means that using more input can always produce less output. The axiom 4a 

indicates that when the input increases (or decreases) by a multiple, the produced output 

can also increase (or decrease) by the same multiple. The axiom 4b shows that when 

the input is reduced by a certain ratio, the output reduced by the same proportion can 

be produced. The axiom 4c indicates that when the input is increased by a certain 

multiple, the output increased by the same multiple can be produced. 

Based on the above axioms 1, 2, 3 and 4a, the production possibility set under 

constant returns to scale (CRS) can be formulated as follows. 

𝑇𝐶𝑅𝑆 = {  (𝑋, 𝑌):   𝑋𝑖 ≥ ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 1,… ,𝑚;   𝑌𝑟 ≤ ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 , 𝑟 =

1, … , 𝑠 }                                                                                                                       (2.2) 

Based on the axioms 1, 2 and 3, the production possibility set under variable 

returns to scale (VRS) can be expressed as 

𝑇𝑉𝑅𝑆 = {(𝑋, 𝑌): 𝑋𝑖 ≥ ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 1,… ,𝑚; 𝑌𝑟 ≤ ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 , 𝑟 =

1, … , 𝑠; ∑ 𝜆𝑗
𝑛
𝑗=1 = 1}                                                                                                         (2.3) 

Based on the axioms1, 2, 3, 4b, the production possibility set under non-increasing 

returns to scale (NRIS) can be formulated as follows. 

𝑇𝑁𝐼𝑅𝑆 = {(𝑋, 𝑌): 𝑋𝑖 ≥ ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 1,… ,𝑚; 𝑌𝑟 ≤ ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 , 𝑟 =

1, … , 𝑠; ∑ 𝜆𝑗
𝑛
𝑗=1 ≤ 1}                                                                                                       (2.4) 

Based on axioms 1, 2, 3 and 4c, the production possibility set under non-decreasing 

returns to scale (NDRS) can be shown as follows. 

𝑇𝑁𝐷𝑅𝑆 = {(𝑋, 𝑌): 𝑋𝑖 ≥ ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 1,… ,𝑚; 𝑌𝑟 ≤ ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 , 𝑟 =

1, … , 𝑠; ∑ 𝜆𝑗
𝑛
𝑗=1 ≥ 1}                                                                                                       (2.5) 
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(4) Production frontier 

The production frontier is a curved surface made of all efficient points in the PPS. 

It represents the boundary at which production may be set to obtain the maximum 

output of existing inputs or to obtain minimum inputs from existing outputs. Therefore, 

the combination of input and output of the decision making unit (DMU) on the 

production frontier is optimal. According to Wei (2004), the production frontier is 

defined as: 

Definition 2.1. Assuming 𝜔 ≥ 0，𝜇 ≥ 0，𝐿 = {(𝑋, 𝑌)|𝜔𝑇𝑋 − 𝜇𝑇𝑌 = 0} , 𝑇 ⊂

{(𝑋, 𝑌)|𝜔𝑇𝑋 − 𝜇𝑇𝑌 ≥ 0}  and 𝐿 ∩ 𝑇 ≠ ∅ , then the weakly efficient surface of 

production possibility set 𝑇 is 𝐿, and the corresponding weak production frontier is 𝐿 ∩

𝑇. Especially, if 𝜔 ≥ 0，𝜇 ≥ 0, then 𝐿 is called the efficient surface of 𝑇,   𝐿 ∩ 𝑇 is the 

production frontier of production possibility set 𝑇. 

2.3 Basic DEA models 

In this section, two basic DEA models, i.e., CCR model and BCC model, are 

introduced. The former was proposed by Charnes, Cooper and Rhodes in 1978, is the 

earliest DEA model. According to the initials of the three authors, the model was named 

CCR model. 

Assuming that there are n evaluated DMUs, each DMU uses the same inputs to 

produce the same outputs. 𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗)
𝑇 and 𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗)

𝑇  are the input 

vector and output vector of 𝐷𝑀𝑈𝑗, respectively, where T in the superscript indicates 

transpose. The efficiency of each DMU is the ratio of the weighted outputs to the 

weighted inputs, the evaluated DMU is denoted as 𝐷𝑀𝑈0. The multiplier CCR model 

can be formulated as follows. 

 

max    
∑ 𝑢𝑟𝑦𝑟0
𝑠
𝑟=1

∑ 𝑤𝑖𝑥𝑖0
𝑚
𝑖=1

                               

𝑠. 𝑡.         
∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑤𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1,    𝑗 = 1,… , 𝑛        

𝑢𝑟 ≥ 0, 𝑟 = 1,… , 𝑠,   (2.6) 
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𝑤𝑖 ≥ 0, 𝑖 = 1, … ,𝑚.     

where 𝑢𝑟 and 𝑤𝑖 are the weights of the rth output and ith input, respectively. The first 

constraint means the ratio of weighted outputs to weighted inputs does not exceed 1 for 

each DMU. The objective is to seek a set of most favorable weights to maximize the 

ratio of 𝐷𝑀𝑈0 . Model (2.6) is a fractional linear programming. By applying the 

Charnes-Cooper transformation, let 𝑡 =
∑ 𝑢𝑟𝑦𝑟0
𝑠
𝑟=1

∑ 𝑤𝑖𝑥𝑖0
𝑚
𝑖=1

, 𝜇 = 𝑡𝑢, 𝜔 = 𝑡𝑤, model (2.6) can be 

converted into model (2.7) as follows. 

 

       max  ∑𝜇𝑟𝑦𝑟0

𝑠

𝑟=1

                                 

𝑠. 𝑡.         ∑𝜇𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, 

∑𝜔𝑖𝑥𝑖0

𝑚

𝑖=1

= 1,       

 𝜇𝑟 ≥ 0, 𝑟 = 1,… , 𝑠, (2.7) 

 𝜔𝑖 ≥ 0, 𝑖 = 1, … ,𝑚.  

Definition 2.2. If the optimal value of model (2.7) is 1, the evaluated 𝐷𝑀𝑈0 is efficient; 

if the optimal value of model (2.7) is less than 1, the evaluated 𝐷𝑀𝑈0 is inefficient. 

By duality, model (2.7) is equivalent to model (2.8), which is the envelopment 

form of CCR model. 

 

                                                       min   𝜃 

    𝑠. 𝑡.      ∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑥𝑖0, 𝑖 = 1, … ,𝑚, 

             ∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟0, 𝑟 = 1,… , 𝑠, 

 𝜆𝑗 ≥ 0, 𝑗 = 1,… . , 𝑛.                                            (2.8) 
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Definition 2.3. If the optimal value of model (2.8) is 1, the evaluated 𝐷𝑀𝑈0 is efficient; 

if the optimal value of model (2.8) is less than 1, the evaluated 𝐷𝑀𝑈0 is inefficient. 

According to the basic concepts in section 2.2, we know that CCR model is under 

the assumption of constant returns to scale. Banker, Charnes and Cooper (1984) 

extended the DEA model under the assumption of variable returns to scale, which is 

abbreviated as BCC model. The multiplier BCC model can be formulated as follows. 

                                                      min    𝜃 

𝑠. 𝑡.    ∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑥𝑖0, 𝑖 = 1,… ,𝑚,   

         ∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟0, 𝑟 = 1,… , 𝑠,   

     ∑𝜆𝑗

𝑛

𝑗=1

= 1,                               

       𝜆𝑗 ≥ 0, 𝑗 = 1,… . , 𝑛.    (2.9) 

Similarly, by duality, the envelopment form of BCC model is as follows. 

 

max      ∑𝜇𝑟𝑦𝑟0 − 𝜇0

𝑠

𝑟=1

                                  

𝑠. 𝑡.    ∑𝜇𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

− 𝜇0 ≤ 0, 

∑𝜔𝑖𝑥𝑖0

𝑚

𝑖=1

= 1,                     

      𝜇𝑟 ≥ 0, 𝑟 = 1,… , 𝑠,  (2.10) 

 𝜔𝑖 ≥ 0, 𝑖 = 1, … ,𝑚          

2.4 Basic concepts of environmental efficiency evaluation 

(1) Environmental efficiency 
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The traditional DEA model usually considers labor, capital as inputs and 

production yield, profit as outputs. These outputs that the DMU prefers to produce as 

much as possible in the production process are known as desirable outputs. However, 

according to the theory of joint production, desirable outputs are always accompanied 

by some outputs which are expected to be less in the process of production, such as 

carbon dioxide, sulfur dioxide, waste water, and solid waste. These outputs are defined 

as undesirable outputs. For example, when assessing the efficiency of paper mills, it is 

imperative to consider the paper products, as well as undesirable outputs such as 

wastewater discharge. Such comprehensive efficiency evaluation which consider both 

desirable outputs and undesirable outputs is called environmental efficiency evaluation.  

Due to the existence of undesirable outputs in environmental efficiency evaluation, 

we cannot directly use the traditional DEA model to evaluate the environmental 

efficiency, so new processing method should be proposed. If undesirable outputs are 

considered in the DEA technology framework, the corresponding technology can be 

called the environmental DEA technology. Then, the efficiency obtained from the 

environmental DEA technology is defined by environmental efficiency (Zhou et al., 

2008; Sueyoshi et al., 2017).  

 (2) Strong and weak disposability 

Strong disposability includes strong disposability of inputs and strong 

disposability of outputs. 

Strong disposability of inputs: If (𝑋, 𝑌) ∈ 𝑇 and 𝑋′ ≥ 𝑋, then (𝑋′, Y) ∈ 𝑇. This 

means if the inputs are not reduced, the original output can be produced. 

Strong disposability of outputs: If (𝑋, 𝑌) ∈ 𝑇 and 𝑌′ ≤ 𝑌, then (X, 𝑌′) ∈ 𝑇.  This 

means if the inputs do not change, it is feasible to produce all the reduced existing 

outputs in any directions (that is, some or all of the outputs are reduced). 

Weak disposability includes weak disposability of inputs and weak disposability 

of outputs. 

Weak disposability of inputs: if (𝑋, 𝑌) ∈ 𝑇 and 𝛽 ≥ 1, then (𝛽𝑋, 𝑌) ∈ 𝑇. This 

states if inputs 𝑋 can produce outputs, then it is possible to produce the outputs 𝑌 by 

increasing the inputs by a factor 𝛽. 
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Weak disposability of outputs: If (𝑋, 𝑌) ∈ 𝑇 and 0 ≤ 𝜃 ≤ 1, then  (𝑋, 𝜃𝑌) ∈ 𝑇. 

This represents that if inputs 𝑋 can produce outputs 𝑌, then it is possible to produce the 

reduced outputs 𝜃𝑌 using the original input. 

According to the above definitions, under the assumption strong disposability of 

inputs, the increase of inputs will not cause the decrease of outputs. While under the 

assumption of weak disposability of inputs, the increase of inputs may lead to the 

decrease of outputs. 

(3) Environmental production possibility set 

Assume that both desirable and undesirable outputs are produced in the production 

process, denote  𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗),  𝑈𝑗 = (𝑢1𝑗, … , 𝑢𝑏𝑗),  𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗) as inputs, 

undesirable outputs and desirable outputs of DMU𝑗(𝑗 = 1,… , 𝑛) , respectively. The 

related production possibility set are expressed as follows. 

𝑇 = {(𝑋, 𝑌, 𝑈): 𝑋 can produce (𝑌, 𝑈)}                                                               (2.11) 

Based on the definitions of weak disposability and strong disposability, for 

systems that considering environmental factors, if (𝑋, 𝑌, 𝑈) ∈ 𝑇, 𝑌′ ≤ 𝑌, 𝑈′ ≥ 𝑈 and 

(𝑋, 𝑌′, 𝑈′) ∈ 𝑇, then the outputs are strongly disposable. If (𝑋, 𝑌, 𝑈) ∈ 𝑇, 𝜇 ∈ [0,1] and 

(𝑋, 𝜇𝑌, 𝜇𝑈) ∈ 𝑇, then the outputs are weakly disposable. 

(4) DEA based methods for dealing with undesirable outputs 

How to deal with undesirable outputs in the DEA model is crucial to assess the 

environmental efficiency of DMUs. After that, the model can take into account both 

desirable outputs (such as economic indicators) and undesirable outputs (such as 

pollution indicators). Since Färe et al. (1989) proposed the first DEA model to deal with 

undesirable outputs with the weak disposability, the environmental efficiency 

evaluation considering the undesirable outputs were largely extended. According to the 

existing DEA-related literature, the methods for dealing with undesirable outputs can 

be classified into two categories: direct method and indirect method. 

a. Direct method 

The first one is to treat the undesirable outputs under the weak disposability 

assumption and the desirable outputs under the strong disposability assumption. In this 

method, the PPS is usually assumed to satisfy the following two conditions: 



 

20 CHAPTER 2. Basic DEA theory 

If the production activity (𝑋, 𝑌, 𝑈) ∈ 𝑇 and 0 ≤ 𝜃 ≤ 1, then production activity 

(𝑋, 𝜃𝑌, 𝜃𝑈) ∈ 𝑇 ,       

If the production activity (𝑋, 𝑌, 𝑈) ∈ 𝑇 and 𝑈 = 0, then = 0 ;                      (2.12)                                           

The second direct method is to deal with undesirable outputs based on Russell 

measure which is shown as follows. 

𝐷𝑇(𝑋, 𝑌, 𝑈) = 𝐼𝑛𝑓{𝑓(𝜃𝑖, ∅𝑟 , 𝜙𝑘): (𝜃𝑖𝑥𝑖, ∅𝑟𝑦𝑟 , 𝜙𝑘𝑢𝑘) ∈ 𝑇}                (2.13) 

The third direct method is to treat undesirable outputs based on the slack variables: 

𝐷𝑇(𝑋, 𝑌, 𝑈) = 𝐼𝑛𝑓{𝑓(𝑠−, 𝑠+, 𝑠−−): (𝑋 − 𝑠−, 𝑌 + 𝑠+, 𝑈 − 𝑠−−) ∈ 𝑇}   (2.14) 

The fourth direct method is to treat undesirable outputs based on the directional 

distance function (DDF) which measures the environment efficiency by simultaneously 

increasing desirable outputs and reducing undesirable outputs. The general form of 

DDF with undesirable outputs is defined as follows. 

𝐷𝑇(𝑋, 𝑌, 𝑈, 𝑔) = 𝑠𝑢𝑝{𝛽: (𝑋 − 𝛽𝑔𝑋 , 𝑌 + 𝛽𝑔𝑌, 𝑈 − 𝛽𝑔𝑈) ∈ 𝑇}         (2.15) 

b. Indirect method 

The first indirect method is to treat the undesirable outputs as inputs (Liu and Sharp, 

1999). The main idea behind this method is that the efficient DMU always prefers more 

desirable outputs and less inputs. Because of its simplicity and clarity, this method is 

widely used in the environment efficiency evaluation (Bian and Yang, 2010; Shi et al., 

2010). However, treating undesirable outputs as inputs fails to reflect the true 

production process.  

The second indirect method is conducting data transformation to undesirable 

outputs first, and then evaluating the environmental efficiency by using the traditional 

DEA model based on the transformed data. For example, Scheel (2001) and Seiford 

and Zhu (2002) suggested the linear monotonic decreasing transformation approach to 

transform undesirable output into a new variable like desirable output variable, that is, 

𝑓(𝑈) = −𝑈 + 𝛽. Golany and Roll (1989) and Lovell et al. (1995) used the reciprocals 

of the undesirable output as new output, the new output is modelled as 𝑓(𝑈) = 1/𝑈.  

Each of the above methods has its own pros and cons. Therefore, which method is 

chosen for dealing with undesirable outputs depends on the specific research problem 

and research background. 
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Thermal power has accounted for the major part of the electricity generation over 

recent several decades in China. It plays an important role in supporting China’s 

economic development while it also brings great pressure to the environment protection 

because of a large amount of pollution generated during its production. In order to solve 

or alleviate the environmental problem caused by thermal power firms, efficiency 

evaluation is the first important step. Since thermal power firm is a complex system 

with multiple inputs and multiple outputs, usually including fuzzy numbers and 

undesirable outputs in the production, in this chapter, we build an integrated Enhanced 

Russell measure model based on data envelopment analysis for evaluating the 

performance of decision making units in the presence of the undesirable outputs in 

fuzzy circumstance. Then, this new model is applied to analyze the environmental 

efficiency and provide the benchmarks for the thermal power firms in China which can 
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guide the decision makers to make suitable future production plans for improving their 

performance.  

3.1 Introduction 

In recent years, with the rapid development of China's economy, China is facing 

huge energy consumption and serious environmental pollution problems. In order to 

reduce environmental pollution, the Chinese government has put forward the strategic 

goal of building a resource-conserving and environment-friendly society to achieve 

sustainable economic, energy and environmental development. For example, in 2014, 

China promulgated a new important environmental law, “Environmental Protection 

Law of People's Republic of China”, which gives more punitive powers to 

environmental authorities and also defines geographical “red lines” where the area's 

ecology must require special protection (the NPC Standing Committee, 2014). Besides, 

the Chinese government has recognized the importance of environmental efficiency 

measurement and improvement and has taken a series of measures to deal with this 

issue, such as energy conservation assessment (ECA) and environmental impact 

assessment (EIA) (Hu, 2012). Among all kinds of energy types, electricity is the major 

resource of energy in China for many years. Furthermore, among various ways of 

electricity generation, China relies heavily on thermal power, hydropower  and 

thermoelectricity. In particular, thermal power accounted for about 74.4% of all the 

electricity in 2016. Such a situation will be kept for a long time. As thermal power 

production usually produces a large amount of pollutions but with less treatment, it has 

become the major source resulting in the environmental problems of China. Thus, it is 

essential for us to measure the efficiency of thermal power firms so as to increase their 

productivity and reduce emissions.  

Data envelopment analysis (DEA) is a non-parametric programming technique for 

evaluating the relative efficiency of a set of homogenous decision making units (DMUs) 

with multiple inputs and multiple outputs. It has been popularly applied in schools, 

hospitals, farms, banks and many other areas (Cook and Seiford, 2009; Cooper et al., 

2004). Traditional DEA models aim at producing the maximum quantity of outputs for 

the given amount of inputs or consuming the minimum quantity of inputs for producing 

the given amount of outputs. Besides, all traditional DEA models are radial models, 

http://www.sciencedirect.com/science/article/pii/S0301421513010793#bib20
http://en.wikipedia.org/wiki/Thermal_power
http://en.wikipedia.org/wiki/Hydropower
http://en.wikipedia.org/wiki/Thermoelectricity
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such as CCR, BCC and their extensions, which are either input-oriented or output-

oriented (Charnes et al., 1978; Banker et al., 1984). Comparing with these traditional 

DEA models, non-orientation modelling makes frontier efficiency studies more 

relevant to the production of thermal power firms because non-orientation ensures the 

analysis captures slacks on both input side and output side. Several non-orientation 

approaches have been built, such as the additive model, Russell measure (RM) model, 

slacks-based measure and so on. It should be noted that among these approaches, 

Russell measure (RM) model is a well-known non-orientation measure for evaluating 

DMUs’ performance and has been applied to many areas, such as baseball batting 

performance, Taiwan’s commercial banks (Lozano et al., 2011; Levkoff et al., 2012; 

Hsiao et al., 2011). Thus, in this chapter, we choose Russell measure as a basis for 

performance evaluation.  

As we know, undesirable outputs, such as smoke pollution and waste, are usually 

produced with desirable outputs in the production processes of thermal power firms 

(Rivas and Magadan, 2010). These factors are expected to be as few as possible. Thus, 

the traditional DEA models are not applicable to measure the performance of the DMUs 

with undesirable outputs. Usually, the performance of DMUs with both desirable 

outputs and undesirable outputs is usually defined as environmental efficiency (Song et 

al., 2013; Wu et al., 2014). So far, many DEA models have been proposed to deal with 

undesirable outputs and finally obtain the environmental efficiency (Färe et al., 1989; 

Seiford and Zhu, 2002; Zhou et al., 2008). 

Based on the above analysis, an approach by using the Russell measure 

considering the undesirable outputs is needed to measure the environmental efficiency 

of thermal power firm. However, according to our best knowledge, there are many 

theoretical works in Russell measure and undesirable outputs areas respectively but few 

works integrated them. Moreover, during our investigation on the thermal power firms, 

we found the undesirable output “solid waste” of the thermal power firm is so complex 

as it contains the garbage, refuse, sludge and other discarded materials including solid, 

liquid, semi-solid, or contained gaseous material that the data of undesirable output is 

difficult to be measured precisely. We can obtain a fuzzy description of the “solid 

waste”. This requires us to further extend the above approach to be applicable to the 

fuzzy circumstance. But such kind of DEA work is not available in the previous works. 

In this chapter, we will propose a new enhanced Russell measure model which can well 
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address the fuzzy numbers and undesirable outputs problems simultaneously, and apply 

the new approach to analyze the thermal power firms in Anhui province of China. Our 

model can provide improvements for DMUs in more directions and in more realistic 

situation, and thus it can be flexibly applicable to other similar cases.  

3.2 Review of Russell Measure, Fuzzy DEA, and undesirable outputs 

In the following subsections, four streams of literature relevant to this research are 

briefly summarized. They include Russell measure, Fuzzy DEA methods, undesirable 

outputs and environmental efficiency. Based on the literature review, the research gap 

is pointed out. 

3.2.1 Russell measure 

Russell measure was first introduced by Färe and Lovell (1978). It was named as 

“Russell” because the scholar R.R. Russell subsequently contributed to its further 

development. Due to its non-radial property, it has a wide of applications. Lozano et al. 

(2011) proposed a Russell non-radial eco-efficiency measure to compute eco-efficiency 

scale elasticity bounds. Hsiao et al. (2011) introduced the entropy concept to Russell 

measure DEA model for eliminating the equal-weight effect in order to increase 

evaluation accuracy. Although this original Russell measure accounts for all the 

inefficiencies of an evaluated DMU in both input side and output side, there are some 

evident disadvantages of this measure. One is that RM models are usually non-linear 

programming problems, which makes the computation complicated. Another one is that 

RM models cannot be well interpreted because they are weighted average of arithmetic 

and harmonic means (Pastor et al., 1999).  

In order to avoid the mentioned difficulties, Pastor et al. (1999) proposed a closely 

extended measure based on Russell measure which called Enhanced Russell measure 

(ERM). ERM can be interpreted as the ratio of the average efficiency of inputs and the 

average efficiency of outputs, which is a better interpretation of efficiency than Russell 

measure. Moreover, it can be decomposed into input component of average efficiency 

and an output one to analyze the performance of the evaluated DMUs. Besides, ERM 

has been studied by many other researchers because its advantage in calculation and 

interpretation. For example, Cooper et al. (2007) proposed an aggregate ERM that can 
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be formed with all the desirable properties of an aggregate measure. Ashrafi et al. (2012) 

built an Enhanced Russell measure model considering non-discretionary factors.

Esmaeili (2012) developed a new approach based upon the ERM for dealing with 

interval data in DEA.  

3.2.2 Fuzzy DEA models 

As we know, traditional DEA models assume that all the data for inputs and 

outputs are crisp, so they cannot deal with imprecise data. To solve this uncertain 

situation, fuzzy number theory is introduced in DEA area. The concept of fuzzy set was 

firstly proposed by Zadeh (1965) to deal with imprecise estimates in uncertain 

circumstance. Recent years, numerous DEA models have been developed in the fuzzy 

environments. For example, Kao and Liu (2000a, 2000b) developed a procedure to 

measure the efficiencies of DMUs with fuzzy observations by applying  𝛼-cut approach. 

Leon et al. (2003) built several DEA models in fuzzy form by using some ranking 

methods based on the comparison of 𝛼-cut. Lertworasirikul et al. (2001) developed 

DEA models considering imprecise data represented by fuzzy sets. They indicated that 

fuzzy DEA models taking the form of fuzzy linear programming are usually solved 

with the aid of some methods that can rank the fuzzy sets. Wen et al. (2009) employed 

a fuzzy DEA model based on credibility measure and proposed a method for ranking 

all the DMUs. However, these previous fuzzy DEA models were extended from CCR 

or BCC models, which are radial models and do not account for all the slacks of the 

inputs and outputs simultaneously. In order to solve these deficiencies, Wang and Li 

(2010) proposed a fuzzy DEA model to deal with efficiency evaluation problem with 

imprecise data based on ERM model. Later, Wang and Li (2014) extended it to super 

efficiency form for fully ranking DMUs. Hsiao et al. (2011) proposed a fuzzy super-

efficiency slack-based measure DEA model (Fuzzy Super SBM) and a fuzzy slack-

based measure DEA model (Fuzzy SBM DEA) to analyze the operational performance 

of parameters with fuzzy-numbered.  

3.2.3 Undesirable outputs and Environmental efficiency  

As we know, undesirable outputs are usually produced with desirable outputs in 

the production process, such as smoke pollution and waste (Perez-Calderon et al., 2011).  

These factors are expected to be as few as possible. Now, research on undesirable 
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outputs has become a popular topic in DEA. According to our best knowledge, the 

literature in this area may be classified into two categories: direct approaches and 

indirect approaches. Direct approaches are mainly based on Färe et al. (1989), which 

replaced strong disposability assumption of outputs by weakly disposability assumption. 

This work has been extensively developed (Färe et al., 1993; Seiford and Zhu, 2005; 

Färe et al., 2005; Zhou et al., 2007; Zhou et al., 2008; Tone, 2004). An important branch 

is employing directional distance function for addressing the undesirable outputs 

(Chung et al., 1997; Färe et al., 2005). Indirect approaches are based on extended strong 

disposability assumption of output, which can be further divided into three categories. 

The first one treats undesirable outputs as inputs for processing (Liu and Sharp, 1999; 

Haulu and Veeman, 2001; Dyckhoff and Allen, 2001; Oggioni et al., 2011). This 

approach only needs the information on whether the data has to be minimized or 

maximized, but it cannot reflect a real production process (Seiford and Zhu, 2002). The 

second one includes a non-linear monotonic decreasing transformation approach 

(Scheel, 2001) and a linear monotonic decreasing transformation approach (Seiford and 

Zhu, 2002). Some applications by using the second method can see Oggioni et al. 

(2011), Grubesic and Wei (2012) and Wu et al. (2013). The last one is slacks-based 

measure (SBM) approach, which deals with the undesirable outputs through the slacks 

of undesirable outputs (Tone, 2004).  

Environmental efficiency refers to the efficiency of DMUs which consider both 

desirable outputs and undesirable outputs. A lot of environmental efficiency analysis 

by DEA approach has been taken. Korhonen and Luptacik (2004) proposed two 

different approaches to measuring the environmental efficiency of 24 power plants in a 

European country: one approach is to measure technical efficiency and ecological 

efficiency (the relation of the desirable output to the undesirable outputs) separately, 

the other approach treat the undesirable outputs as inputs. Barba-Gutierrez et al. (2009) 

used DEA model to evaluate the eco-efficiency of different commonplace household 

electric appliances. Bi et al. (2012) proposed a slacks-based environmental efficiency 

index based on data envelopment analysis and were applied to analyze the industry 

sector of China. Huang et al. (2014) built a new DEA model, combining global 

benchmark technology, undesirable output, super efficiency and slacks-based measure, 

for measuring the dynamic change of regional environmental efficiency in China. Li 



 

3.2 Review of Russell Measure, Fuzzy DEA, and undesirable outputs 27 

 

and Shi (2014) applied an improved super-SBM model to measure the environmental 

efficiency of Chinese industrial sectors.  

Even though environmental efficiency has already extensively applied in many 

areas, it is rarely seen in the fuzzy circumstance, including the theoretical and practical 

works. In this chapter, we will consider a more complex but common circumstance in 

thermal power firms where the decision making units have fuzzy numbers and 

undesirable outputs simultaneously. Combining fuzzy numbers and undesirable output, 

a new approach is proposed in this chapter for addressing this environmental scenario 

based on Enhanced Russell measure. This chapter not only inherits the advantages of 

data envelopment analysis, but also extends DEA approach theoretically to solve a more 

real and complex problem.   

3.3 Modelling of a single-stage system with undesirable outputs and 

fuzzy numbers 

3.3.1 Russell DEA model and enhanced Russell DEA model 

Färe and Lovell (1978) introduced a non-radial model, which is called the Russell 

measure model. In order to address the complicated calculation of Russell measure, 

Pastor et al. (1999) extended the Russell measure model and proposed a new measure 

called the Enhanced Russell measure. 

Assume that there are n DMUs in set N to be evaluated, each of which consumes 

the same inputs to produce the same outputs 𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗)
𝑇  and 𝑌𝑗 =

(𝑦1𝑗, … , 𝑦𝑠𝑗)
𝑇are inputs and outputs of 𝐷𝑀𝑈𝑗, respectively. 𝑋𝑗 ≥ 𝟎 and 𝑌𝑗 ≥ 𝟎 , at least 

one element in input vector and output vector is larger than 0. 

Russell measure is a combination of the input and output measures of technical 

efficiency. For a given DMU, DMU0  (𝑋0, 𝑌0) , the technical efficiency of Russell 

measure can be obtained by the following model: 
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   (3.1) 

Where 𝜆𝑗 are intensity variables (also called structure variables). This model is under 

the assumption of constant returns to scale (CRS). By adding the constraint ∑ 𝜆𝑗
𝑛
𝑗=1 =

1 in the above model, we can deal with the variable returns to scale (VRS) case. 

From model (3.1), we can find that 𝑅𝑔 is a weighted average of arithmetic and 

harmonic means which is difficult to interpret and compute. Concerning these 

deficiencies, Pastor et al. (1999) proposed the Enhanced Russell measure which is 

represented in the following model. 
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     (3.2) 

Similarly, the VRS version of ERM can be obtained by adding the constraint 

∑ 𝜆𝑗
𝑛
𝑗=1 = 1 . The objective of model (3.2) is minimizing the ratio of the average 

efficiency of inputs to the average inefficiency of outputs. When the optimal value of 

𝑅𝑒 is equal to 1, the DMU being evaluated is Koopmans-efficient (Koopmans, 1951). 

The above non-linear programming problem can be transformed into a linear one by 

employing the method in Charnes and Cooper (1962). Here, we omit the process of this 

transformation process. More details can be seen in Pastor et al. (1999). 
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3.3.2 Fuzzy enhanced Russell DEA model considering undesirable outputs 

Fuzzy set theory has been proposed as a popular way to quantify imprecise and 

vague data in DEA models. The main types of fuzzy numbers are triangular fuzzy 

number, trapezoidal fuzzy number, rectangular fuzzy number and irregular fuzzy 

number. Among them, triangular fuzzy number is one of important and commonly used 

fuzzy numbers. Except for the triangular fuzzy number itself, the crisp number can also 

be treated as a degenerated interval fuzzy number with only one value in the domain. 

Thus, we can see all the variables of the DMUs as triangular fuzzy numbers.  

Suppose 𝑄  is triangular fuzzy number, 𝑄𝐿 and 𝑄𝑈 are the least and most desirable 

bound values, respectively, 𝑄𝑀  is the center of fuzzy number, the triangular fuzzy 

number can be expressed by Q = (𝑄𝐿 , 𝑄𝑀 , 𝑄𝑈) and the membership function is 
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   (3.3) 

Denote the cut   of the triangular fuzzy number 𝑄 by 𝑄𝛼 which satisfies 𝑄𝛼 =

{𝑞|𝜇
𝑄
(𝑞) ≥ 𝛼}, where (0 ≤ 𝛼 ≤ 1). Then, 𝑄𝛼 = [(𝑄)𝛼

𝐿 , (𝑄)
𝛼
𝑈]. According to this, for any 

triangular fuzzy number, we can transform it into interval. Thus, the 𝛼 −cut of the 

efficiencies of the evaluated DMU can be obtained accordingly. 

In addition, it has been mentioned that there are four methods mentioned in section 

3.2 for dealing with undesirable outputs. In fact, each way has its own strengths and 

weaknesses. All of them can be used to address the undesirable outputs as long as they 

reflect the meaningful economic trade-offs among undesirable outputs, desirable 

outputs and inputs, that is, one cannot reduce undesirable outputs for free. Whether one 

should assume an extended strong disposability or a weak disposability in a DEA model 

will much depend on the nature of the applications that it handles (Liu et al., 2010). As 

the undesirable outputs in the thermal power firms can be increased without reducing 

the amount of total industrial output value, thus the strong disposability of undesirable 

output is selected. Based on the chapter 2, the approach of Zhu and Seiford (2002) in 

extended strong disposability assumption group is used in the development of the new 
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model, that is, adding a big enough positive scalar w to the reciprocal additive 

transformation of the kth undesirable output 𝑢𝑘𝑗. 

Suppose that there are n DMUs in set N to be evaluated. For 𝐷𝑀𝑈𝑗(j = 1,2, … , n) , 

it applies inputs 𝑥𝑖𝑗(𝑖 = 1,… ,𝑚) ≥ 0, to produce desirable outputs 𝑦𝑟𝑗(𝑟 = 1,… , 𝑠) ≥

0 and undesirable outputs 𝑢𝑘𝑗(𝑘 = 1, … , g) ≥ 0. Denote �̃�𝑖𝑗 , �̃�𝑟𝑗 and �̃�𝑘𝑗as the fuzzy 

counterparts of 𝑥𝑖𝑗 , 𝑦𝑟𝑗  and 𝑢𝑘𝑗 , respectively. Fuzzy ERM model for measuring the 

efficiency of 𝐷𝑀𝑈0 with undesirable outputs is as follows: 
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   (3.4) 

The model is clearly a non-linear programming with a fractional structure 

objective function. The variables of this model are 𝜃𝑖 , 𝜑𝑟 , 𝜙𝑘 , 𝜆𝑗 , wherein 𝜆𝑗  is 

intensity variable, m, s, g are the number of inputs, good outputs and undesirable outputs, 

respectively. �̃̅�𝑘𝑗 = − �̃�𝑘𝑗 + 𝑤 , where w is big enough positive value. This is the 

second method in indirect approaches for addressing undesirable outputs. If  �̃�𝑘𝑗 =

[𝑢𝑘𝑗
𝐿 , 𝑢𝑘𝑗

𝑀 , 𝑢𝑘𝑗
𝑈 ] , then the transformed vector is �̃̅�𝑘𝑗 = [−𝑢𝑘𝑗

𝑈 +𝑤,−𝑢𝑘𝑗
𝑀 + 𝑤,−𝑢𝑘𝑗

𝐿 +

𝑤] = [�̅�𝑘𝑗
𝐿 , �̅�𝑘𝑗

𝑀 , �̅�𝑘𝑗
𝑈 ]. As the transformed undesirable output �̃̅�𝑘𝑗  can be smaller than 

zero at its minimum level, thus −𝑢𝑘𝑗 + 𝑤 ≥ 0, that is, 𝑢𝑘𝑗 cannot be larger than 𝑤. So, 

the proportion of kth undesirable output in model (3.4) cannot exceed than  𝑤 �̃̅�𝑘𝑗⁄ . For 

ease of illustration, denote 𝑤 �̃̅�𝑘𝑗⁄  by  ℓ̃ . Then, through the Charnes-Cooper 
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transformation, the nonlinear model (3.4) can be converted into a linear programming 

formulation. Firstly, denote  β = (
∑ 𝜑𝑟
𝑠
𝑟=1 +∑ 𝜙𝑘

𝑔
𝑘=1

𝑠+𝑔
)−1 , 𝑏𝑖 = 𝛽𝜃𝑖 , 𝑎𝑟 = 𝛽𝜑𝑟 , 𝑐𝑘 =

𝛽𝜙𝑘, 𝑡𝑗 = 𝛽𝜆𝑗, model (3.4) is transformed into the following linear program: 
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Then, we use the respective α − cut of 𝑥𝑖𝑗, 𝑦𝑟𝑗 and  �̅�𝑘𝑗 to calculate the efficiency 

of the DMU under evaluated. Firstly, we obtain the fuzzy number of 𝑥𝑖𝑗 , (𝑥𝑖𝑗)𝛼 =

{𝑥𝑖𝑗|𝜇�̃�𝑖𝑗(𝑥𝑖𝑗) ≥ 𝛼} = [(𝑥𝑖𝑗)𝛼
𝐿 , (𝑥𝑖𝑗)𝛼

𝑈] = [𝑥𝑖𝑗
𝐿 + 𝛼(𝑥𝑖𝑗

𝑀 − 𝑥𝑖𝑗
𝐿), 𝑥𝑖𝑗

𝑈 − 𝛼(𝑥𝑖𝑗
𝑈 − 𝑥𝑖𝑗

𝑀)]  . 

Analogously, we can obtain (𝑦𝑟𝑗)𝛼 and (�̅�𝑘𝑗)𝛼. By setting various values of 𝛼 ∈ [0,1], 

the membership function of �̃�𝑒 is obtained correspondingly. 

When evaluating 𝐷𝑀𝑈0 , we can use the smallest input values (𝑥𝑖0)𝛼
𝐿  and the 

largest output values (𝑦𝑟0)𝛼
𝑈 , (�̅�𝑘0)𝛼

𝑈 of 𝐷𝑀𝑈0 , while use the largest input values 

(𝑥𝑖𝑗)𝛼
𝑈  and the smallest output values (𝑦𝑟𝑗)𝛼

𝐿 , (�̅�𝑘𝑗)𝛼
𝐿  of 𝐷𝑀𝑈𝑗(𝑗 = 1,… , 𝑛, 𝑗 ≠ 0) in 

the evaluation to get the upper bound of 𝐷𝑀𝑈0’s efficiency (𝑅𝑒)𝛼
𝑈. In this situation, ℓ̃ 

is set the value of 𝑤 (�̅�𝑘0)𝛼
𝑈⁄ , denote ℓ̃ 𝛼

𝑈. The model is as follow: 
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 (3.6) 

Analogously, we use the largest input values (𝑥𝑖0)𝛼
𝑈 and the smallest output values 

(𝑦𝑟0)𝛼
𝐿 ,  (�̅�𝑘0)𝛼

𝐿  of 𝐷𝑀𝑈0 , and use the smallest input values (𝑥𝑖𝑗)𝛼
𝐿  and the largest 

output values (𝑦𝑟𝑗)𝛼
𝑈, (�̅�𝑘𝑗)𝛼

𝑈 of 𝐷𝑀𝑈𝑗(𝑗 = 1,… , 𝑛, 𝑗 ≠ 0)  in the evaluation to get the 

lower bound of 𝐷𝑀𝑈0 ’s efficiency (𝑅𝑒)𝛼
𝐿 . In this situation, ℓ̃  is set the value 

of 𝑤 (�̅�𝑘0)𝛼
𝐿⁄ , denote ℓ̃ 𝛼

𝐿 . The corresponding model is shown as below: 
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  (3.7) 

The optimal values of model (3.6) and model (3.7) constitute the α-cut of the 

highest and lowest efficiency of 𝐷𝑀𝑈0. We treat our model as a parametric program 

related to the possible value of α-cut over the interval [0, 1]. Since the interval contains 

an infinite number of real values between 0 and 1, we cannot consider all the values. 

Instead, we discretize the interval by only considering a finite number of values= 𝑘 ×

𝛥, 𝑘 = 0,1, … , 𝐾. ,where K is the largest integer equal to 1 Δ⁄ , Δ is a step size, in this 

chapter, we set it 0.1. For each 𝛼, we can solve model (3.6) and (3.7) to obtain their 

corresponding objective values. In this way, we can obtain the lower bound efficiency 

and upper bound efficiency of the DMUs in each scenario. Then, the DMUs can be 

ranked through these interval efficiencies in different scenarios. Moreover, the possible 

rules of the efficiencies when 𝛼 is located in some intervals can be found to guide the 

decision maker to make more suitable policy when the real 𝛼 is unknown. 

 



 

34 CHAPTER 3. Environmental efficiency evaluation of a single-stage system with fuzzy 

numbers 

3.4 Application to the environmental efficiency evaluation of thermal 

power firms in China 

In this section, we apply our approach to evaluate the environmental efficiencies 

of 30 thermal power firms in China in the year of 2010, which contain fuzzy number 

and undesirable output. According to the properties of this kind of firms, we select 

“production time” and “coal consumption” as inputs, “total industrial output value” as 

desirable output, and “solid waste” as undesirable output. The factor of “production 

time” chosen as an input is mainly because it can well reflect the workloads of workers 

and the cost of the firms’ machines. This indicator was also used in Song et al. (2014) 

for evaluating the thermoelectric firms which is very similar with the thermal power 

firms. “Solid waste” contains the garbage, refuse, sludge and other discarded materials 

including solid, liquid, semi-solid, or contained gaseous material, from the thermal 

power firms. Because of the complexity of solid wastes, a fuzzy description of the solid 

waste is obtained. Except “Solid waste”, the other indexes are precisely obtained. The 

units of these indexes are “hours”, “tons”, “10 thousand RMB” and “tons” respectively.  

Denote “production time”, “coal consumption”, “total industrial output value” by 

𝑥1,𝑥2, 𝑦 respectively, and the lower, middle and upper level of “solid waste” by 𝑢𝐿, 𝑢𝑀, 

𝑢𝑈 respectively. The statistical descriptions of these data are shown in Table 3.1. 

Table 3.1 Statistical description 

 𝑥1 𝑥2 𝑦 𝑢𝐿 𝑢𝑀 𝑢𝑈 

Mean 6344.067 1311113 92971.06 918822.3 1020914 1123005 

Standard. 

Deviation 
1878.096 1230200 90928.34 2481782 2757536 3033289 

Min 2000 24245 350 4470.3 4967 5463.7 

Max 8760 3189931 243990.9 14096088 15662320 17228552 

 

It can be seen from Table 3.1 that “coal consumption” had the largest mean value 

(expectation) while “production time” had the lowest mean value (expectation). Besides, 

all the data of these indexes had a large of variance, which can be indicated by the 

standard deviation of these indexes. Among them, “production time” data had the 

largest concentration, which can be calculated by the ratio of standard deviation and 
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mean. Moreover, the maximum and minimum values of each index had a large 

deviation.  

Before applying our new model, we first transform the undesirable outputs into 

“desirable outputs” by �̃̅�𝑘𝑗 = −�̃�𝑘𝑗 + 𝑤, and let w=17228652. By using model (3.6) 

and model (3.7), the upper and lower bounds of the 𝛼 − cut fuzzy efficiency of the 

DMUs under evaluated are obtained. Table 3.2 shows the upper and lower bounds of 

the fuzzy efficiency when 𝛼 is set 0 to 1 with a step 0.1 respectively. 

Table 3.2 The lower and upper bounds of the environmental efficiency 

DMU  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 
L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2 
L 0.9278 0.9278 0.9278 0.9279 0.9279 0.9279 0.9279 0.9280 0.9280 0.9280 0.9280 

U 0.9282 0.9282 0.9282 0.9282 0.9281 0.9281 0.9281 0.9281 0.9281 0.9280 0.9280 

3 
L 0.8654 0.8657 0.8661 0.8665 0.8668 0.8672 0.8676 0.8679 0.8683 0.8687 0.8691 

U 0.8727 0.8724 0.8720 0.8716 0.8713 0.8709 0.8705 0.8702 0.8698 0.8694 0.8691 

4 
L 0.4014 0.4014 0.4014 0.4014 0.4014 0.4015 0.4015 0.4015 0.4015 0.4015 0.4015 

U 0.4016 0.4016 0.4016 0.4016 0.4016 0.4016 0.4016 0.4016 0.4015 0.4015 0.4015 

5 
L 0.9641 0.9641 0.9642 0.9642 0.9642 0.9643 0.9643 0.9643 0.9643 0.9644 0.9644 

U 0.9647 0.9647 0.9647 0.9646 0.9646 0.9646 0.9645 0.9645 0.9645 0.9644 0.9644 

6 
L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

7 
L 0.7644 0.7646 0.7647 0.7649 0.7650 0.7652 0.7653 0.7655 0.7656 0.7658 0.7659 

U 0.7674 0.7672 0.7671 0.7669 0.7668 0.7666 0.9721 0.7663 0.7662 0.7660 0.7659 

8 
L 0.7828 0.7829 0.7829 0.7829 0.7829 0.7830 0.7830 0.7830 0.7830 0.7831 0.7831 

U 0.7833 0.7833 0.7833 0.7833 0.7832 0.7832 0.7832 0.7832 0.7831 0.7831 0.7831 

9 
L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

10 
L 0.8077 0.8081 0.8085 0.8089 0.8093 0.8097 0.8101 0.8105 0.8110 0.8114 0.8118 

U 0.8158 0.8154 0.8150 0.8146 0.8142 0.8138 0.8134 0.8130 0.8126 0.8122 0.8118 

11 
L 0.6726 0.6726 0.6727 0.6727 0.6728 0.6728 0.6729 0.6729 0.9880 0.6730 0.6730 

U 0.6735 0.6734 0.6734 0.9884 0.6733 0.6733 0.6732 0.6732 0.6731 0.6731 0.6730 

12 
L 0.8794 0.8799 0.8803 0.8808 0.8812 0.8816 0.8821 0.8825 0.8830 0.8834 0.8838 

U 0.8883 0.8878 0.8874 0.8869 0.8865 0.8861 0.8856 0.8852 0.8847 0.8843 0.8838 

13 
L 0.4466 0.4466 0.4466 0.4466 0.4466 0.4466 0.4466 0.4466 0.4467 0.4467 0.4467 

U 0.4468 0.4468 0.4468 0.4467 0.4467 0.4467 0.4467 0.4467 0.4467 0.4467 0.4467 

14 L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

 

Table 3.2  (continued) 

DMU  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

15 
L 0.7709 0.7712 0.7715 0.7718 0.7720 0.7723 0.7726 0.7729 0.7732 0.7735 0.7738 

U 0.7766 0.7763 0.7760 0.7758 0.7755 0.7752 0.7749 0.7746 0.7743 0.7740 0.7738 

16 
L 0.6608 0.6608 0.6608 0.6608 0.6609 0.6609 0.6609 0.6609 0.7716 0.6609 0.7714 

U 0.6611 0.6611 0.6611 0.6610 0.6610 0.6610 0.7645 0.6610 0.6610 0.6610 0.7714 

17 
L 0.6424 0.6425 0.6427 0.6428 0.6429 0.6431 0.6432 0.6434 0.6435 0.6436 0.6438 

U 0.6451 0.6450 0.6449 0.6447 0.6446 0.6445 0.6443 0.6442 0.6440 0.6439 0.6438 

18 
L 0.6838 0.6841 0.6844 0.6847 0.6850 0.6852 0.6855 0.6858 0.6861 0.6864 0.6866 

U 0.6894 0.6892 0.6889 0.6886 0.6883 0.6880 0.6878 0.6875 0.6872 0.6869 0.6866 

19 
L 0.6805 0.6809 0.6812 0.6815 0.6819 0.6822 0.6826 0.6829 0.6832 0.6836 0.6839 

U 0.6873 0.6870 0.6866 0.6863 0.6859 0.6856 0.6853 0.6849 0.6846 0.6843 0.6839 

20 
L 0.7786 0.7789 0.7792 0.7795 0.7798 0.7800 0.7803 0.7806 0.7809 0.7812 0.7815 

U 0.7845 0.7842 0.7839 0.7836 0.7833 0.7830 0.7827 0.7824 0.7821 0.7818 0.7815 

21 
L 0.6680 0.6682 0.6684 0.6686 0.6688 0.6690 0.6692 0.6694 0.6696 0.6698 0.6700 

U 0.6719 0.6717 0.6715 0.6713 0.7035 0.6710 0.6708 0.6706 0.6704 0.6702 0.6700 

22 
L 0.5172 0.5173 0.5173 0.5174 0.5174 0.5175 0.5176 0.5176 0.5177 0.5177 0.5178 

U 0.5183 0.5183 0.5182 0.5182 0.5181 0.5180 0.5180 0.5179 0.5179 0.5178 0.5178 

23 
L 0.7458 0.7461 0.7464 0.7468 0.7471 0.7474 0.7477 0.7480 0.7484 0.7487 0.7490 

U 0.7522 0.7519 0.7516 0.7512 0.7509 0.7506 0.7503 0.7500 0.7496 0.7493 0.7490 

24 
L 0.4638 0.4639 0.4639 0.4640 0.4640 0.4641 0.4642 0.4642 0.4643 0.4644 0.4644 

U 0.4651 0.4650 0.4649 0.4649 0.4648 0.4647 0.4647 0.4646 0.4646 0.4645 0.4644 

25 
L 0.5601 0.5601 0.5602 0.5602 0.5602 0.5602 0.5603 0.5603 0.5603 0.5603 0.5604 

U 0.5606 0.5606 0.5606 0.5605 0.5605 0.5605 0.5605 0.5604 0.5604 0.5604 0.5604 

26 
L 0.6313 0.6314 0.6315 0.6316 0.6317 0.6318 0.6319 0.6320 0.6320 0.6321 0.6322 

U 0.6332 0.6331 0.6330 0.6329 0.6328 0.8951 0.6326 0.6325 0.6324 0.6323 0.6322 

27 
L 0.7147 0.7151 0.7154 0.7158 0.7162 0.7165 0.7169 0.7172 0.7176 0.7179 0.7183 

U 0.7218 0.7215 0.7211 0.7208 0.7204 0.7201 0.7197 0.7193 0.7190 0.7186 0.7183 

28 
L 0.0000 0.0059 0.0117 0.0174 0.0230 0.0285 0.0339 0.0393 0.0445 0.0496 0.0547 

U 0.1010 0.0967 0.0923 0.0878 0.0833 0.0787 0.0741 0.0694 0.0645 0.0597 0.0547 

29 
L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

30 
L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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From Table 3.2, we can find that 6 of 30 thermal power firms were fully efficient 

whose upper and lower bound were all equal to 1 for any α, and the remaining 24 firms 

became inefficient when the value of α varies from 0 to 1. Moreover, when α increases, 

the upper bound efficiency of the evaluated DMU decreased and the lower bound 

increased. For example, for DMU5, when α varies from 0.1 to 0.9, the upper bound of 

the efficiency decreased from 0.9647 to 0.9644, while the lower bound efficiency 

increased from 0.9641 to 0.9644. There are two special cases, 𝛼 = 1 and 0, that should 

be mentioned. When α is equal to 1, there is only one value in the α -cut for the 

undesirable output of every DMU. In this case, the efficiency of the evaluated value is 

a crisp value. When 𝛼 =0, the efficiency scores of a specific DMU has the largest 

interval between the upper and lower bounds. For instance, the efficiency of 𝐷𝑀𝑈12 

was always 0.8828 when 𝛼 = 1, and the efficiency value varied between 0.8794 and 

0.8883 when 𝛼 = 0. 

Through the internal efficiencies in Table 3.2, we can rank the DMUs in each 

scenario by their geometric mean. For the sake of conciseness, we will not give the 

geometric average efficiency but just show the ranking of DMUs directly. 

The first six DMUs were always efficient in all scenarios, they all rank No 1. A 

super efficiency method by Wang and Li (2014) may be used to further rank these 

efficient DMUs. Then, DMU 5, 2, 12, 3, 10, 8 followed one by one after the above 

efficient DMUs, which had the same ranking in all scenarios. DMU 20, 15, 7, 23, 27, 

18, 19, 11, 21, 16, 17, 26 ranked differently in each scenario. Finally, DMU 25, 22, 24, 

13, 4, 28 followed in the same order after the above DMUs in all scenarios. 

It can be seen from Table 3.2 and Table 3.3 that DMU 13 and 24 had the worst 

performance among the enterprises, whose efficiencies were below 0.5, while all other 

enterprises’ efficiencies were larger than 0.5. This means that DMU 13 and 24 had a 

large space for improvement in the future and they should take measures to solve the 

current inefficiencies. Through the results in Table 3.2, the average efficiencies of 

thermal power firms can be calculated. The average lower bound and upper bound 

efficiencies are around 0.73 to 0.74, which indicates that the average efficiencies of 

these firms are at a high level. This is probably because China (including Anhui 

province) has paid more attention to the environmental protection. Chinese government 

has introduced a series of laws for investigating and controlling the environment, such 
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as the Environmental Impact Assessment Law of the People's Republic of China, 

Electricity Law of the People's Republic of China, Circular Economy Promotion Law 

of the People’s Republic of China. Also, many thermal power firms in Anhui province 

have opened training classes to improve their workers’ consciousness of controlling the 

pollutions in the production. All these measures promoted these firms to have a good 

average environmental efficiency. 

Table 3.3 Ranking of the firms 

Rank 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 

1 1 1 1 1 1 1 1 1 1 1 

6 6 6 6 6 6 6 6 6 6 6 

9 9 9 9 9 9 9 9 9 9 9 

14 14 14 14 14 14 14 14 14 14 14 

29 29 29 29 29 29 29 29 29 29 29 

30 30 30 30 30 30 30 30 30 30 30 

7 5 5 5 5 5 5 5 5 5 5 5 

8 2 2 2 2 2 2 2 2 2 2 2 

9 12 12 12 12 12 12 12 12 12 12 12 

10 3 3 3 3 3 3 3 3 3 3 3 

11 10 10 10 11 10 10 7 10 11 10 10 

12 8 8 8 10 8 8 10 8 10 8 8 

13 20 20 20 8 20 20 8 20 8 20 20 

14 15 15 15 20 15 15 20 15 20 15 15 

15 7 7 7 15 7 7 15 7 15 7 16 

16 23 23 23 7 23 26 23 23 7 23 7 

17 27 27 27 23 27 23 27 27 23 27 23 

18 18 18 18 27 18 27 16 18 27 18 27 

19 19 19 19 18 21 18 18 19 16 19 18 

20 11 11 11 19 19 19 19 11 18 11 19 

21 21 21 21 21 11 11 11 21 19 21 11 

22 16 16 16 16 16 21 21 16 21 16 21 

23 17 17 17 17 17 16 17 17 17 17 17 

24 26 26 26 26 26 17 26 26 26 26 26 

25 25 25 25 25 25 25 25 25 25 25 25 

26 22 22 22 22 22 22 22 22 22 22 22 

27 24 24 24 24 24 24 24 24 24 24 24 

28 13 13 13 13 13 13 13 13 13 13 13 
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29 4 4 4 4 4 4 4 4 4 4 4 

30 28 28 28 28 28 28 28 28 28 28 28 

 

 

Table 3.4 Proportion for firms to be efficient in the fuzzy circumstance when 𝛼 = 0.5 

DMU Production Time 
Coal 

Consumption 

Total industrial output 

value 
Solid waste 

1 1.0000  1.0000  1.0000  1.0000  

2 0.9740  0.8838  1.0000  1.0017  

3 0.8666  0.9269  1.0000  1.0594  

4 0.4635  1.0000  2.6442  1.0000  

5 0.9291  1.0000  1.0000  1.0000  

6 1.0000  1.0000  1.0000  1.0000  

7 0.6020  0.9505  1.0000  1.0252  

8 0.7152  1.0000  1.1899  1.0000  

9 1.0000  1.0000  1.0000  1.0000  

10 0.8086  0.8784  1.0000  1.0731  

11 0.4331  0.9187  1.0000  1.0078  

12 0.8727  0.9650  1.0000  1.0740  

13 0.6430  1.0000  2.6779  1.0000  

14 1.0000  1.0000  1.0000  1.0000  

15 0.6433  0.9461  1.0000  1.0503  

16 0.5614  0.7618  1.0000  1.0018  

17 0.4450  0.8624  1.0000  1.0287  

18 0.5431  0.8718  1.0000  1.0565  

19 0.4682  0.9570  1.0000  1.0788  

20 0.6070  1.0000  1.0000  1.0524  

21 0.4737  0.8958  1.0000  1.0412  

22 0.3190  0.7244  1.0000  1.0141  

23 0.5705  0.9764  1.0000  1.0609  

24 0.2978  0.6410  1.0000  1.0200  

25 0.2605  0.8638  1.0000  1.0059  

26 0.8363  0.9733  1.0000  1.0218  

27 0.5407  0.9516  1.0000  1.0725  

28 0.2358  0.4205  1.0000  7.3331  

29 1.0000  1.0000  1.0000  1.0000  
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30 1.0000  1.0000  1.0000  1.0000  

 

Moreover, our approach can provide benchmarks for the evaluated firms to 

improve their efficiencies. In order to illustrate this, we take the scenario α = 0.5 as an 

example. Denote the indexes of “Production time”, “Coal consumption”, “Total 

industrial output value”, “Solid waste” in model (3.6) by 𝑎, 𝑏1, 𝑏2 and 𝑐 respectively, 

and transform variables by 𝛽. Applying model (3.6), we can obtain their optimal value 

𝑎∗, 𝑏1
∗, 𝑏2

∗, 𝑐∗, 𝛽∗ respectively. Then the proportions of these indexes of evaluate DMUs 

for becoming efficient are 𝜃∗ = 𝑎∗/𝛽∗ ,  𝜑1
∗ = 𝑏1

∗/𝛽∗  𝜑2
∗ = 𝑏2

∗/𝛽∗ , and 𝜙∗ = 𝑐∗/𝛽∗ . 

The results are shown as follows.   

Based on the benchmarks in Table 3.4, we find that most of the improvements 

should be taken on the inputs. The total industrial output value and solid waste only 

need increase a small value at the current level. This indicates that if the firm wants to 

be environmental efficient, it should focus on its attention to its utilization of inputs. By 

these proportions of indexes, we can easily obtain the benchmarks (or targets) for 

evaluated DMUs when using the upper value of transformed “solid waste” under the 

best fuzzy circumstance. Similarly, through model (3.7), we can obtain the benchmarks 

(or targets) for evaluated DMUs when they obtain the lower value under the worst fuzzy 

circumstance. Because the limitation of contents, we omit this part to save space. 

3.5 Conclusions 

In this chapter, in order to measure the environmental efficiency of thermal power 

firms, we propose a fuzzy Enhanced Russell measure approach in the present of 

undesirable output. Firstly, the Fuzzy Enhanced Russell measure model is built based 

on the previous Enhanced Russell measure and fuzzy DEA models. Then, α-cut method 

is used to calculate the upper and lower bound environmental efficiencies. Finally, 30 

thermal power firms in China are analyzed by our approach. Six efficient firms are 

determined, which coincides with the common sense about the situation of these firms. 

The average environmental efficiency of 30 firms is good. We believe that with “the 

environmental law abiding guideline for thermal power firms” published by the 

Ministry of Environmental Protection of China in March 2013, these firms will have a 

better environmental efficiency because they are forced to enhance the pollution 



3.4 Application to the environmental efficiency evaluation of thermal power firms in 

China 41 

 

prevention and increase the environmental management level under this law. 

Furthermore, the benchmarks for DMUs under a certain fuzzy circumstance are given.  

It should be noted that 𝛼 -cut based method is chosen to solve the fuzzy 

programming problem in this chapter. Actually, there are several other methods, such 

as tolerance approach (Sengupta, 1992), possibility approach (Lertworasirikul et al., 

2003), that can be used to address this problem. In the future, we will compare these 

methods in solving the problem. Moreover, how to apply our approach to more 

applications, such as real example with the ordinal data, is also an interesting research 

topic. 
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In recent decades, with the rapid economic development of Xiangjiang River Basin 

in China, the discharge of industrial waste gas, wastewater and domestic waste gas, 

wastewater also increased significantly, which caused great damage to the ecological 

environment of Xiangjiang River Basin and violated the sustainable development of 

economy.  In order to solve the environmental pollution problem, many scholars have 

adopted data envelopment analysis (DEA) to measure and improve the environmental 

efficiency of various industries and entities in China. However, as the target 

(benchmark) set by these works is usually the furthest one for a decision making unit 

(DMU) to be efficient, thus it may be hardly accepted by the DMU. In this chapter, 

considering the undesirable outputs, a new closest target DEA model based on range 

adjusted measure (RAM) is proposed. Finally, the proposed model is applied to the 

water environmental efficiency evaluation of Xiangjiang River basin in China. The 

results show that the environmental efficiency of Xiangjiang River basin has an 

increasing trend during the year of 2008-2014, but the deviations among the areas are 

still at a larger value. Compared to the “furthest” target methods, the targets by our 
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approach are more acceptable for DMUs to improve the performance on their economy 

and environment. 

4.1 Introduction  

Xiangjiang River, as the largest river in Hunan Province in China, is the mother 

river of Hunan province. Xiangjiang River Basin is the most densely populated region 

with the highest level of urbanization and the most developed economy in Hunan 

Province. However, the large population and rapid economic development have 

resulted in the greatest pressure on resources and environment. Recently, with the 

gradual acceleration of the modernization process, many environmental pollution 

problems, such as haze, water resources shortage, water and atmospheric pollution, 

heavy metal pollution, have seriously threatened the ecological environment of 

Xiangjiang River Basin. Environmental pollution seriously restricts the sustainable 

development of economy and society.  The Chinese government and the local 

government of Hunan Province issued many related environmental laws and 

regulations to promote the implementation of cleaner production technology and 

pollution reduction, so as to achieve sustainable economic and environmental 

development (Li and Lin, 2016). While scientific evaluation of environmental 

efficiency can provide reasonable basis for enterprises or local governments to 

implement specific solutions for performance improvement. 

   However, due to the lack of professional environmental efficiency evaluation 

and scientific targets for efficiency improvement, Xiangjiang River Basin is still facing 

water resources shortage, water and atmospheric pollution and heavy metal pollution. 

Therefore, it is urgent to measure the water environmental efficiency and set the 

benchmarks for Xiangjiang River Basin. Environmental efficiency can 

comprehensively reflect the ecological situation because it considers both the economic 

factors and environmental factors in the efficiency evaluation (Song et al., 2012; Fang 

et al., 2013). In this chapter, data envelopment analysis (DEA) approach with the closest 

target is applied to measure the environmental efficiency and set the closest targets for 

Xiangjiang River Basin. 

DEA, as a non-parametric programming technique, has become more and more 

popular in evaluating the performance of a set of homogenous decision making units 

(DMUs) (An et al., 2016; Li and Lin, 2016). So far, it has been widely applied in 
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evaluating the environmental efficiency or ecological efficiency (Färe et al., 1989; Tone, 

2004; Leleu, 2013; Zhou et al., 2012). Song et al. (2012) reviewed the DEA models for 

environmental efficiency when considering a system as a “black box”. In that review, 

environmental efficiency evaluation methods are classified into three categories 

according to their ways for addressing the undesirable outputs. In fact, several other 

methods should be added now. One is slacks-based measure (SBM) approach by Tone 

(2004) which deals with the undesirable outputs through the slacks of undesirable 

outputs. This method can simultaneously measure the inefficiencies in the inputs and 

outputs while the traditional method only can radial measure the efficiency 

improvement. Among the previous methods, an important and popular method is on 

weakly disposability assumption which is based on Färe et al. (1989) where undesirable 

outputs are treated as their original forms. Several works have been developed in this 

direction (Leleu, 2013; Zhou et al., 2012; Miao et al., 2016). Another important 

category of approaches treat pollution as a free disposable input (Hailu and Veeman, 

2001; An et al., 2017). Each method has its own strengths and weaknesses. All of them 

can be used to address the undesirable outputs as long as they reflect the meaningful 

economic trade-offs among undesirable outputs, desirable outputs and inputs, that is, 

one cannot reduce undesirable outputs for free (Liu et al., 2010). Whether one should 

assume a strong disposability or a weakly disposability in a DEA model is mainly 

depend on the nature of the applications that it handles.  

However, the previous studies almost set the “furthest” target for a DMU to reach 

efficient while measuring the environmental efficiency. Thus, the benchmark (target) 

may be not easily acceptable by the DMU. Recently, some developments focus on 

finding the “closest” target so that the DMU under evaluation can achieve efficient with 

the “least” effort. The idea behind the closest target is that the closer target suggests 

directions of improvement for the inputs and outputs of the inefficient unit that will lead 

the DMU to be efficient with least effort. There are two ways for finding the closest 

target. One is minimizing the selected distance. Frei and Harker (1999) gave the closest 

targets by minimizing the Euclidean distance or weighted Euclidean distance to the 

efficient frontier, more extensions in this direction see Baek and Lee (2009), 

Amirteimoori and Kordrostami (2010), Aparicio and Pastor (2014a). Gonzalez and 

Alvarez (2001) gained the relative targets by minimizing the sum of input contractions 

required to reach the frontier of the technology. Portela et al. (2004) applied directional 
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distance function approach to determine the targets for the DMUs. Jahanshahloo et al. 

(2012) conducted a DEA method to obtain the minimum distance of DMUs to the 

frontier by ||•||1. Briec and Lemaire (1999), and Briec and Leleu (2003) used Hölder 

distance functions to obtain the evaluated DMU’ minimum distance to the frontier. 

Ando et al. (2012) pointed out that least distance measures based on Hölder norms meet 

neither weak nor strong monotonicity on the strongly efficient frontier and provided a 

method to guarantee the function is weak monotonicity. To realize the strong 

monotonicity, Aparicio and Pastor (2014b) provided a solution for output-oriented 

models based on an extended production possibility set which is strongly monotonic; 

Fukuyama et al. (2014) employed least distance p-norm inefficiency measures that 

satisfy strong monotonicity over the strongly efficient frontier to obtain the targets for 

the DMUs. The other category is minimizing (or maximizing) the efficiency measure. 

Portela et al. (2003) maximized the BRWZ measure proposed by Brockett et al. (1997) 

to obtain the closest targets. Aparicio et al. (2007, 2013) proposed several mathematical 

programming problems to find the closest targets where some efficiency measures, such 

as range adjusted measured, Russell measure, slacks-based measure, are chosen as 

criterion of similarity. These programming problems can be easily solved, and the 

results guarantee the evaluated DMU can reach the closest projection point on the 

Pareto-efficient frontier.  

To measure the environmental efficiency of the water system in Xiangjiang River 

Basin and set the closest target for the evaluated DMU to be efficient, in this chapter, 

considering the undesirable outputs, we propose a new closest target model based on 

Range Adjusted Measure (RAM). The RAM is chosen as the basic model because it is 

not only a non-radial DEA model, but also can deal with non-positive data in the input 

and output indicators (Ding et al., 2018). Then, the new closest target model is applied 

to environmental efficiency evaluation of the water system in Xiangjiang River Basin. 

4.2 Traditional RAM model and the closest target 

In this section, we firstly introduce the approach of RAM, and then show Aparicio 

et al.’s (2007) approach which finds the closest targets. As two representative 

approaches in DEA for measuring efficiency and finding the closest targets, these two 

approaches have been largely studied and extended respectively (Sueyoshi and Sekitani, 

2007; Tavassoli et al., 2016; Aparicio and Pastor, 2014b; Wu et al., 2018).  
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       Consider we have 𝑛  DMUs, and each DMU𝑗(𝑗 = 1,… , 𝑛)  uses 𝑚  inputs to 

produce 𝑠 outputs which are denoted by (𝑋𝑗, 𝑌𝑗), 𝑗 = 1, … , 𝑛. It is assumed that 𝑋𝑗 =

(𝑥1𝑗 , … , 𝑥𝑚𝑗) ≥ 0 , 𝑋𝑗 ≠ 0 , 𝑗 = 1,… , 𝑛 , and 𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗) ≥ 0 , 𝑌𝑗 ≠ 0 , 𝑗 =

1, … , 𝑛. The range adjusted measure (RAM) model (Cooper et al., 1999) under constant 

returns to scale is shown as follows. 
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       (4.1) 

where 
j  represents unknown variable (often referred to as “structural” or “intensity” 

variables) for connecting the input and output vectors by a convex combination. 𝑅𝑖
− =

𝑚𝑎𝑥𝑗{𝑥𝑖𝑗} − 𝑚𝑖𝑛𝑗{𝑥𝑖𝑗} is the range of ith input and 𝑅𝑟
− = 𝑚𝑎𝑥𝑗{𝑦𝑟𝑗} − 𝑚𝑖𝑛𝑗{𝑦𝑟𝑗} is 

the range of rth output; 𝑠𝑖0
−  and 𝑠𝑟0

+  are the slacks of the ith input and the rth output of 

𝐷𝑀𝑈0 , respectively. Denote (𝜆𝑗
∗, 𝑠𝑖0

−∗, 𝑠𝑟0
+∗)be an optimal solution of the model (4.1), 

when the optimal value of the model (4.1) is 1, then 𝐷𝑀𝑈0  is efficient; otherwise, 

𝐷𝑀𝑈0 is inefficient. It should be noted that this model is different from the SBM model 

whose objective function is 
0 0

1 10 0

1 1
 (1 ) / (1+ )

m s
i r

i ri r

s s
Min

m x s y

 

 

    (Tone, 2001). 

Compared with the SBM model, the RAM model is not only a non-radial model that 

can simultaneously measure the inefficiency of inputs and outputs, but also can deal 

with also non-positive data in the input and output indicators. Thus, RAM is more 

suitable for the general environmental efficiency evaluation problem. 

Definition 4.1. Denote (𝑋𝑗, 𝑌𝑗)(𝑗 = 1,… , 𝑛) by the production activities of all DMUs, 

the production possibility set 𝑇 is   

1 1

( , ) | , , 0
n n

j ij j rj j

j j

T x y x x y y  
 

 
    
 

 
. 

By Definition 4.1, we can character the efficient frontier of the PPS, 𝜕(𝑇), which 

consists of the non-dominated points of 𝑇, as 
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∂(𝑇) = {(𝑋, 𝑌) ∈ 𝑃|𝑋′ ≤ 𝑋, 𝑌′ ≥ 𝑌 ⟹ (𝑋′, 𝑌′) = (𝑋, 𝑌)}              (4.2) 

or 

𝜕(𝑇) = {(𝑋, 𝑌)| − 𝑣𝑋 + 𝑤𝑌 = 0,−𝑣𝑋𝑗 +𝑤𝑌𝑗 ≤ 0, 𝑗 = 1,… , 𝑛, 𝑣 > 0𝑚, 𝑤 > 0𝑚}      (4.3) 

in the multiplier form with input and output weights (Ruiz et al., 2014). 

Denote the set of extreme efficient points in the PPS by 𝐸. The following theorem 

from Aparicio et al. (2007) provides a useful characterization of 𝜕(𝑇), which will be 

used in the formulation of the closest target setting model: 

 

Theorem 4.1  

𝜕(𝑇) =

{
  
 

  
 

(𝑋, 𝑌) ∈ ℝ+
𝑚+𝑠

|

|

𝑋 = ∑ 𝜆𝑗𝑋𝑗𝑗∈𝐸 , 𝑌 = ∑ 𝜆𝑗𝑌𝑗𝑗∈𝐸 ,

−𝑣𝑋𝑗 + 𝑤𝑌𝑗 + 𝑑𝑗 = 0, 𝑗 ∈ 𝐸

𝑣 > 1𝑚, 𝑤 > 1𝑠
𝑑𝑗 ≤ 𝑀𝑏𝑗 , 𝑗 ∈ 𝐸

𝜆𝑗 ≤ 𝑀(1 − 𝑏𝑗), 𝑗 ∈ 𝐸

𝑑𝑗 , 𝜆𝑗 ≥ 0, 𝑏𝑗 ∈ {0,1}, 𝑗 ∈ 𝐸 }
  
 

  
 

 

where M is a big positive quantity. 

Proof. The proof is similar with Aparicio et al. (2007). We omit it here.  

Theorem 4.1 shows the points on a Pareto-efficient face of the technology, which 

are dominating the evaluated 𝐷𝑀𝑈0 (𝑋𝑜, 𝑌𝑜), can be expressed as a combination of 

extreme efficient units lying on the same efficient face of the production possibility set. 

More importantly, the set of infeasible points in which the minimum distance to the 

Pareto-efficient frontier is attained can be represented by a set of linear constraints. 

Then, by applying it to the closest target model, we can find the closest target for 

inefficient DMU𝑜, such as Aparicio et al.’s (2007) mADD model.  

4.3 Closest target RAM model considering undesirable outputs  

  Assume that n DMUs will be evaluated. Each of them 𝐷𝑀𝑈𝑗(𝑗 = 1,… , 𝑛)uses m 

inputs to produce s desirable outputs while generating q undesirable outputs. The 

notations are given as follows. 𝑥𝑖𝑗(𝑖 = 1, . . , 𝑚) is the ith input of 𝐷𝑀𝑈𝑗 , 𝑦𝑟𝑗(𝑟 =

1, . . , 𝑠)is the rth desirable output of 𝐷𝑀𝑈𝑗and 𝑧𝑝𝑗(𝑝 = 1, . . , 𝑞) is the pth undesirable 
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output of 𝐷𝑀𝑈𝑗. Based on the notations, the related definition of production possibility 

set is given. 

 

Definition 4.2. The production possibility set considering undesirable outputs is 

defined as follows. 

𝑇𝑒𝑛𝑣 = {(𝑥, 𝑦, 𝑧)|𝑥 ≥∑𝑥𝑖𝑗𝜆𝑗

𝑛

𝑗=1

, 𝑦 ≤∑𝑦𝑖𝑗𝜆𝑗

𝑛

𝑗=1

, 𝑧 ≥∑𝑧𝑖𝑗𝜆𝑗

𝑛

𝑗=1

, 𝜆𝑗 ≥ 0} 

where 𝜆𝑗 stands for unknown variables (often referred to as “structural” or “intensity” 

variables) for connecting the input and output vectors by a convex combination. This 

production possibility set is under the constant variables to scale, by adding ∑ 𝜆𝑗
𝑛
𝑗=1 =

1, the production possibility set will become under the variable returns to scale. In 

Definition 4.2, undesirable outputs are treated as inputs, which is similar to the way in 

Liu and Sharp (1999). The efficient DMUs always wish to minimize desirable inputs 

and undesirable outputs, and to maximize desirable outputs and undesirable inputs. As 

Liu et al. (2010) pointed out that if one only wishes to investigate operational efficiency 

from this point of view, there is no need to distinguish between inputs and outputs, but 

only minimum and maximum. 

Based on the RAM model, we firstly construct the RAM model considering 

undesirable outputs, and then measure the environmental efficiency of the evaluated 

𝐷𝑀𝑈0. The model is expressed as follows. 
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(4.4) 

where 𝑅𝑖
− = 𝑚𝑎𝑥𝑗{𝑥𝑖𝑗} − 𝑚𝑖𝑛𝑗{𝑥𝑖𝑗} , 𝑅𝑝

−− = 𝑚𝑎𝑥𝑗{𝑧𝑝𝑗} − 𝑚𝑖𝑛𝑗{𝑧𝑝𝑗} and 𝑅𝑟
− =

𝑚𝑎𝑥𝑗{𝑦𝑟𝑗} − 𝑚𝑖𝑛𝑗{𝑦𝑟𝑗} are the range of ith input, the range of pth undesirable output 
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and the range of rth desirable output, respectively. 𝑠𝑖0
− , 𝑠𝑟0

+ , and 𝑠𝑝0
−− are the slacks of 

the ith input, the rth desirable output and the pth undesirable output of 𝐷𝑀𝑈0. It can be 

seen that model (4.4) can measure the distance between the evaluated DMU and the 

benchmark (reference point) from the perspective of input and output. Assume 

(𝜆𝑗
∗, 𝑠𝑖0

−∗,𝑠𝑟0
+∗, 𝑠𝑝0

−−∗)  is an optimal solution of the model (4.4), based on the results of the 

model (4.4), we can obtain the classical environmental efficiency for 𝐷𝑀𝑈0, which can 

then be computed through formula (4.5). 
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         (4.5) 

When the optimal value of model (4.4) is equal to one, DMU0  is classical 

environmental efficient, otherwise, it is classical environmental inefficient. It is clear 

that classical environmental efficiency of a DMU calculated from model (4.4) is based 

on the furthest targets (maximum input and output slacks) for the DMU to be efficient.  

Denote the set of all extreme classical environmental efficient points by Set H. By 

Definition 4.2, we can similarly character the efficient frontier ∂(Tenv) of the PPS, 

which consists of the non-dominated points, as 

𝜕(𝑇𝑒𝑛𝑣) = {(𝑋, 𝑌, 𝑍) ∈ 𝑃|𝑋
′ ≤ 𝑋, 𝑌′ ≥ 𝑌, 𝑍′ ≤ 𝑍 ⟹ (𝑋′, 𝑌′, 𝑍′) = (𝑋, 𝑌, 𝑍)}      (4.6) 

Or 

𝜕(𝑇𝑒𝑛𝑣) = {(𝑋, 𝑌, 𝑍)| − 𝑣𝑋 + 𝑤𝑌 − 𝜋𝑍 = 0,−𝑣𝑋𝑗 +𝑤𝑌𝑗 − 𝜋𝑍𝑗 ≤ 0, 𝑗 = 1,… , 𝑛, 𝑣 >

0𝑚, 𝑤 > 0𝑚, 𝜋 > 0𝑚}                                                                                                          (4.7) 

in multiplier form with input and output weights.  

Different from the model (4.4), based on the set H, we build the following closest 

target model for measuring the environmental efficiency of the evaluated 𝐷𝑀𝑈, i.e., 

𝐷𝑀𝑈0, and meanwhile set the closest target for it to be efficient. 
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where 𝑠𝑖0
− , 𝑠𝑟0

+ and 𝑠𝑝0
−− are the slacks of the ith input, the rth desirable output and the pth 

undesirable output of 𝐷𝑀𝑈𝑜 . M is a big enough positive quantity. The first three 

constraints are used to calculate the slacks to the linear combination of extreme efficient 

units and dominate 𝐷𝑀𝑈𝑜 . The fourth to seventh constraints are the constraints 

corresponding to the multiplier formulation of RAM DEA model, but it only considered 

the extreme efficient DMUs in H, which can ensure that we consider all the possible 

points in 𝑇𝑒𝑛𝑣 lie on or below these the hyperplanes. The eighth to tenth constraints are 

the key conditions that determine which DMU is active as a peer for the evaluation of 

𝐷𝑀𝑈𝑜 . If 𝜆𝑗 > 0, then 𝑏𝑗 = 0, 𝑑𝑗 = 0. Thus, if 𝐷𝑀𝑈𝑗  participates actively as a peer 

then it necessarily belongs to the hyperplane
1 1 1

0
qm s

i ij p ij r rj j

i p r

v x z w y d
  

       . If 

𝜆𝑗 = 0，then  𝑑𝑗 ≥ 0, which indicates 𝐷𝑀𝑈𝑗is not a peer for evaluating 𝐷𝑀𝑈0. 

Considering the constraints of the model (4.4) and model (4.8), the following theorem 

can be easily derived. We state Theorem 4.2 without proof.  
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Theorem 4.2. The optimal value of model (4.8) must not be larger than that of the 

model (4.4). 

Assume (𝜆𝑗
∗, 𝑠𝑖0

−∗,𝑠𝑟0
+∗,𝑠𝑝0

−−∗,𝑣𝑖
∗,𝜋𝑝

∗ ,𝑤𝑟
∗,𝑑𝑗

∗,𝑏𝑗
∗) is an optimal solution of the closest target 

model (4.8). Then, the closest target for the evaluated 𝐷𝑀𝑈𝑜 can be expressed as: 

 (�̂�𝑖0 = 𝑥𝑖0 − 𝑠𝑖0
−∗, �̂�𝑟0 = 𝑦𝑟0 + 𝑠𝑖0

+∗, �̂�𝑝0 = 𝑧𝑝0 − 𝑠𝑝0
−−∗)     (4.9) 

The environmental efficiency for the evaluated 𝐷𝑀𝑈𝑜 based on the closest target can 

be obtained by computing the following formula. 
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Without the specific illustration, the environmental efficiency in the later part of this 

chapter are all refer to the environmental efficiency based on the closest target model, 

model (4.8), and the classical environmental inefficient refers to the efficiency based 

on the model (4.4). It should be noted that 𝐷𝑀𝑈𝑜is environmental efficient if and only 

if all slacks 𝑠𝑖0
−∗, 𝑠𝑟0

+∗ and 𝑠𝑝0
−−∗in model (4.8) are zero, that is 𝜌𝑒𝑛𝑣 = 1. Based on the 

model (4.4) and model (4.8), we have the following theorem. 

Theorem 4.3. If the evaluated 𝐷𝑀𝑈0  is classical environmental efficient, the 𝐷𝑀𝑈0 

must be environmental efficient. 

Proof. According to the definition of classical environmental efficient, an optimal slack 

vector (𝑠𝑖0
−∗, 𝑠𝑟0

+∗, 𝑠𝑝0
−−∗) in model (4.4) for a classical environmental efficient 𝐷𝑀𝑈0 must 

be zero. From the constraints of model (4.4) and (4.8), we can find slacks (𝑠𝑖0
−∗ =

0, 𝑠𝑟0
+∗ = 0, 𝑠𝑝0

−−∗ = 0)  for the classical environmental efficient 𝐷𝑀𝑈0  in model (4.4) 

must be a feasible solution of model (4.8). As the constraints 𝑠𝑖0
−∗ ≥ 0, 𝑠𝑟0

+∗ ≥

0 and 𝑠𝑝0
−−∗ ≥ 0, the optimal slacks in model (4.8) must be equal to zero too. Thus, the 

𝐷𝑀𝑈0 must be environmental efficient.    

4.4 Application to the water environmental efficiency evaluation of 

Xiangjiang River Basin in China 

In this section, we apply the proposed model to evaluate the environmental 

efficiency of water system in Xiangjiang River Basin in China. The results show that 

the water environmental efficiency obtained from model (4.8) is higher than the 
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classical water environmental efficiency obtained from model (4.4) and the target set 

by the closest target model is easily realized. 

4.4.1 Data and variables 

Based on the research purpose and the validity of the data, we investigate the water 

environmental efficiency of 15 monitoring areas in seven cities of Xiangjiang River 

basin in China from 2008-2014. In this chapter, labor force, capital stock, and energy 

consumption of each monitoring area are selected as input variables. The indexes of 

water pollution generally include dissolved oxygen, total phosphorus, ammonia 

nitrogen, PH, permanganate and other indicators. As DEA requires the number of 

decision making units to be more than twice of the number of indicators, and there is 

also a strong correlation between the above indexes. In order to achieve the distinction 

and validity of the assessment results, dissolved oxygen (DO) and total phosphorus (TP) 

are selected as water pollution indexes. Since the environmental factors are usually 

undesirable, here, we use the reciprocal of dissolved oxygen (DO) denoted by DO’ as 

the undesirable output. Besides, gross domestic product (GDP) of each area is selected 

as desirable output. All the data are collected from the “China Statistical Yearbook”, 

“Hunan Statistical Yearbook”, and “Water Quality Monitoring Station” covering the 

years of 2009-2015. The descriptive statistics of inputs and outputs are shown in Table 

4.1.  
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Table 4.1 Descriptive statistics of inputs and outputs during 2008-2014 

 Labor Capital Energy  DO TP  GDP 

  
(10 

thousands 

person) 

(100 million 

RMB) 

(10 

thousands 

of TCE) 

 (mg/L) (mg/L)  (100 million 

RMB) 

2008         

Mean 325.084 443.3067 532.8767  7.752 0.0583  1105.261 

Variance 9570.854 263485.7 31145.79  1.4982 0.0013  622951.1 

Max 422.84 1702.3 888.24  11.14 0.139  3000.98 

Min 159.63 174.55 184.26  6.1 0.01  528.4 

2009         

Mean 334.9227 637.028 557.576  7.9013 0.0639  1303.315 

Variance 407564.7 10825.21 32527.86  1.5125 0.0012  1031122 

Max 440.03 2200.62 891.75  11.18 0.138  3744.76 

Min 175.66 242.05 196.76  5.89 0.007  568.31 

2010         

Mean 344.5127 833.5107 592.6167  7.6727 0.0794  1588.619 

Variance 12402.9 638096.8 37822.98  0.5239 0.0016  1517310 

Max 458.31 2785.99 969.25  9.16 0.146  4547.06 

Min 172.72 305.1 219.62  6.15 0.007  678.71 

2011         

Mean 341.3636 1100.734 498.0357  7.7936 0.0683  1974.079 

Variance 13321.07 990766.4 27342.7  0.8571 0.0014  2489730 

Max 466.39 3433.33 804.04  9.93 0.141  5619.33 

Min 169.33 425.25 168.43  6.82 0.005  847.26 

2012         

Mean 354.9207 1373.709 570.002  7.6893 0.0715  2220.991 

Variance 13447.33 1123715 39811.78  0.3275 0.0019  3009651 

Max 470.18 3956.06 1052.41  8.47 0.161  6399.91 

Min 175.46 581.91 225.09  6.27 0.005  1002.65 

2013         

Mean 360.392 1741.072 532.8767  7.5767 0.0653  2472.869 

Variance 13443.71 1332636 31145.79  0.3448 0.0013  3768624 

Max 475.44 4539.39 888.24  8.75 0.143  7153.13 

Min 184.48 787.57 184.26  6.5 0.008  1118.17 

2014         

Mean 361.268 2116.535 557.576  7.4107 0.0653  2718.79 

Variance 13709.77 1882373 32527.86  0.3259 0.002  4494915 

Max 476.45 5435.75 891.75  8.54 0.172  7824.81 

Min 180.3 938.94 196.76  6.68 0.005  1210.86 
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From Table 4.1, it can be observed that the mean values of labor force, capital, and 

energy consumption increased year by year, which means that the investments of each 

area increased year by year. Meanwhile, the overall downward trend of the average 

dissolved oxygen and the overall growth trend of the average total phosphorus indicated 

the overall water quality had deteriorated during this period. Although GDP of all areas 

increased greatly, but from the large variance of GDP, we can know economic 

development among different areas were largely different. 

4.4.2 Results analysis 

In this section, we evaluate the water environmental efficiency of 15 monitoring 

areas in 7 cities. In order to assess the annual water environmental efficiency of each 

area, each area of each year is treated as a DMU. The classical water environmental 

efficiency of each area can be derived by using model (4.4) and formula (4.5). The 

results are shown in table 4.2. 

Table 4.2 Classical water environmental efficiencies of 15 monitoring areas in Xiangjiang 

river basin 

City Area 2008 2009 2010 2011 2012 2013 2014 Mean 

Yongzhou 

 

Xiaoshui 1.0000  0.6755  0.6754  0.6952  0.6952  0.6704  0.6771  0.7270  

Trunk 0.9941  0.6695  0.6634  0.6894  0.6894  0.6718  0.6593  0.7196  

Hengyang 

 

Chunlingshui 0.9674  1.0000  0.9965  1.0000  1.0000  0.5784  0.5606  0.8719  

Zhengshui 0.9666  0.9391  1.0000  0.9752  0.9752  0.5306  0.5676  0.8506  

Leishui 0.9560  0.8722  0.9359  0.9615  0.9615  0.5711  0.5663  0.8321  

Mishui 1.0000  0.9456  1.0000  \ \ 0.5610  0.5659  0.8145  

Trunk 0.9836  0.9521  0.9864  0.9800  0.9800  0.5590  0.5567  0.8568  

Zhuzhou 

 

Lushui 0.8982  0.7253  0.6245  0.7205  0.7205  0.6548  0.6567  0.7144  

Trunk 1.0000  0.7586  0.7150  0.8424  0.8424  0.6713  0.7125  0.7917  

Xiangtan 

 

Lianshui 0.7409  0.7129  0.6545  0.7098  0.7098  0.6717  0.6483  0.6926  

Trunk 0.7094  0.6209  0.5922  0.6513  0.6513  0.6559  0.6641  0.6493  

Changsha 

 

Liuyanghe 0.8693  0.9060  0.7856  1.0000  1.0000  0.9459  0.8951  0.9146  

Trunk 0.8860  0.8713  0.8367  1.0000  1.0000  1.0000  1.0000  0.9420  

Chenzhou Leishui 1.0000  0.7939  0.7799  1.0000  1.0000  0.8781  1.0000  0.9217  

Loudi Lianshui 0.6062  0.5503  0.5284  0.5596  0.5596  0.5126  0.4563  0.5390  
 

Mean 0.9052  0.7996  0.7850  0.8418  0.8418  0.6755  0.6791    

 

In Table 4.2, the areas with the efficiency value of 1 are classical water 

environmental efficient. Due to the data of Mishui area of Hengyang in 2011 and 2012 
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is unavailable, the classical water environmental efficiency of this area could not be 

obtained. From table 4.2, it can be found that the overall classical water environmental 

efficiency of Xiangjiang River Basin was decreasing year by year. Liuyanghe area of 

Changsha, Trunk area of Changsha, and Leishui area of Chenzhou performed well, and 

their water environmental efficiencies were all greater than 0.9. Lianshui area of Loudi 

performs the worst. According to the locations of the 15 monitoring areas, we can get 

the classical water environmental efficiencies of the seven cities in Xiangjiang River 

Basin, which were shown in table 4.3. 

Table 4.3 Average classical water environmental efficiencies of seven cities in Xiangjiang 

river basin 

 
2008 2009 2010 2011 2012 2013 2014 Mean 

Yongzhou 0.9971  0.6725  0.6694  0.6923  0.6923  0.6711  0.6682  0.7233  

Hengyang 0.9747  0.9418  0.9838  0.9792  0.9792  0.5600  0.5634  0.8546  

Zhuzhou 0.9491  0.7420  0.6698  0.7814  0.7814  0.6631  0.6846  0.7530  

Xiangtan 0.7252  0.6669  0.6234  0.6805  0.6805  0.6638  0.6562  0.6709  

Changsha 0.8776  0.8886  0.8112  1.0000  1.0000  0.9730  0.9475  0.9283  

Chenzhou 1.0000  0.7939  0.7799  1.0000  1.0000  0.8781  1.0000  0.9217  

Loudi 0.6062  0.5503  0.5284  0.5596  0.5596  0.5126  0.4563  0.5390  

 

 It can be seen from table 4.3, the overall classical water environmental efficiencies 

of Xiangjiang River Basin had become worse and worse from 2008 to 2014. Changsha 

performed the best, followed by Chenzhou and Loudi performs the worst. As the capital 

city of Hunan province, Changsha has the largest economy and pays more attention to 

environmental protection than other cities. For the worst performance city Loudi, the 

local government needs to coordinate the development of economy and the 

environment. Besides, the classic water environmental efficient areas in table 4.2 forms 

the efficient set H of model (4.8), by model (4.8), the water environmental efficiency 

and the closest target of each area of each year can be obtained. 
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Table 4.4 Water environmental efficiencies of the 15 monitoring areas from 2008 to 2014 

City Area 2008 2009 2010 2011 2012 2013 2014 Mean 

Yongzhou 

 

Xiaoshui 1.0000  0.9857  0.9943  0.9086  0.9086  0.9142  0.8631  0.9392  

Trunk 0.9941  0.9806  0.9836  0.9000  0.9000  0.9171  0.8692  0.9349  

Hengyang 

 

Chunlingshui 0.9674  1.0000  0.9987  1.0000  1.0000  0.9916  0.9751  0.9904  

Zhengshui 0.9666  0.9996  1.0000  0.9814  0.9814  0.9896  0.9642  0.9833  

Leishui 0.9560  0.9839  0.9925  0.9771  0.9771  0.9969  0.9969  0.9829  

Mishui 1.0000  0.9805  1.0000  \ \ 0.9898  0.9962  0.9933  

Trunk 0.9836  0.9996  1.0000  0.9929  0.9929  0.9855  0.9778  0.9903  

Zhuzhou 

 

Lushui 0.8982  0.9548  0.8768  0.9038  0.9038  0.9111  0.8718  0.9029  

Trunk 1.0000  0.9751  0.9340  0.9291  0.9291  0.9143  0.8693  0.9358  

Xiangtan 

 

Lianshui 0.7433  0.7339  0.7729  0.7695  0.7695  0.7814  0.7787  0.7642  

Trunk 0.8682  0.8300  0.7759  0.7898  0.7898  0.7588  0.7515  0.7948  

Changsha 

 

Liuyanghe 1.0000  1.0000  0.9845  1.0000  1.0000  0.9459  0.8951  0.9751  

Trunk 0.9875  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9982  

Chenzhou Leishui 1.0000  0.9634  0.9531  1.0000  1.0000  0.9951  1.0000  0.9874  

Loudi Lianshui 0.6267  0.6558  0.7080  0.8678  0.8678  0.8610  0.8616  0.7784  

 Mean 0.9328  0.9362  0.9316  0.9300  0.9300  0.9302  0.9114   

 

The water efficiencies of the 15 monitoring areas are shown in table 4.4. The areas 

in a certain year having the efficiency of 1 are water environmental efficient. It can be 

seen from table 4.4 that the average water environmental efficiencies of these areas 

tended to be the same, with an efficiency value of about 0.93, which was obviously 

different from the classical water efficiency. During this period, the best performing 

year is 2009, and the worst year is 2014, while the efficiency difference is small and 

can be ignored. Comparing the efficiencies of the 15 areas, we find the Trunk area of 

Changsha, the Mishui area of Hengyang, the Trunk area of Hengyang, and the Chuling 

area of Hengyang performed well, and the efficiencies were all higher than 0.99. From 

the average efficiency of each area listed in the last column of table 4.4, except the 

Lianshui area of Xiangtan, the Trunk area of Xiangtan and the Lianshui area of Loudi, 

other 12 areas’ average efficiencies were above 0.9 which indicated that the overall 

ecological environment level of water system in Xiangjiang River Basin were all at a 

higher level. The results indicated that Hunan Province had made some achievements 

in the control of water quality pollution in Xiangjiang River.  
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Comparing the results in tables 4.2 and 4.4, it is found the average water 

environmental efficiency of each area based on the closest target model (4.8) was higher 

than the average classical water environmental efficiency. Compared with the classical 

environmental efficiency evaluation model (4.4), the water environmental inefficient 

areas can achieve efficient with the “least” effort through our proposed model (4.8), 

besides, the closest target for each water environmental inefficient area can be obtained. 

Furthermore, the water environmental efficiencies of seven cities in Xiangjiang river 

basin from 2008-2014 were listed in table 4.5. 

Table 4.5 Water environmental efficiencies of seven cities in Xiangjiang river basin 

 
2008 2009 2010 2011 2012 2013 2014 Mean 

Yongzhou 1.0000  1.0000  0.9803  1.0000  1.0000  1.0000  0.9455  0.9894  

Hengyang 1.0000  0.8609  1.0000  1.0000  0.6969  0.7604  0.6946  0.8590  

Zhuzhou 1.0000  0.9858  0.9436  1.0000  1.0000  1.0000  0.9591  0.9841  

Xiangtan 1.0000  0.9546  0.9363  1.0000  0.9811  0.9287  1.0000  0.9715  

Changsha 0.8884  0.9207  0.9044  0.9752  1.0000  1.0000  1.0000  0.9555  

Chenzhou 1.0000  1.0000  0.9244  0.9911  0.8847  0.9203  0.8915  0.9446  

Loudi 1.0000  0.9093  0.8789  0.8639  0.8803  0.9016  0.8623  0.8995  

 

It can be clearly seen that the average water environmental efficiency was very 

high during this period. Compared with the classical water environment efficiency, we 

find that the water environment efficiency was more stable and the difference between 

cities was much smaller. The results showed that the closest target of each inefficient 

city was stable and more easily achieved. 

   Since the benchmarking analysis of the 15 monitoring areas of each year was 

similar, we only analyze the closest targets of the areas in 2014 to illustrate the proposed 

model. 

The benchmarks in Table 4.6 provided the closest targets for the 15 monitoring 

areas to balance the development of economic growth with water environmental 

protection so as to achieve water environmental efficient. The areas marked in bold 

were water environmental efficient in 2014, that is the Trunk area of Changsha, and the 

Leishui area of Chenzhou. Except these areas, the other areas were water environment 

inefficient that needed to reduce inputs (labour, capital stock and energy consumption) 

or increase GDP and dissolved oxygen or reduce total phosphorus in order to be 

efficient. Taking Lianshui area of Loudi as an example, in order to achieve efficient, 
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we should reduce the labor force of 406.68 units and the energy consumption of 374.551 

units, besides, the dissolved oxygen should be increased by 0.140 units and the total 

phosphorus should be decreased by 0.043 units, while maintaining the gross domestic 

product (GDP) and capital stock. It is noted that through the proposed method, we can 

not only measure the water environmental efficiency of each area but also provide the 

closest target for each inefficient area. Therefore, the proposed method has a strong 

appeal for guiding local government to formulate relevant economic and environmental 

policies. For example, if the environmental efficiency of an area performs badly, the 

government should issue policies to stimulate companies to use high-tech to reduce 

pollution, or shut down heavily polluted enterprises to reduce environmental pollution. 

Table 4.6 Benchmarking analysis of the 15 monitoring areas in 2014 

City  Area Labor Capital Energy DO TP GDP 

Yongzhou 

 

Xiaoshui 550.068  41.792  0.000  1.903  0.030  0.000  

Trunk 550.068  41.792  0.000  1.445  0.037  0.000  

Hengyang 

 

Chunlingshui 184.384  35.211  0.000  0.000  0.000  0.000  

Zhengshui 424.333  41.332  0.000  0.000  0.000  0.000  

Leishui 0.000  0.000  0.000  0.000  0.000  135.443  

Mishui 0.000  0.000  0.000  0.000  0.000  168.212  

Trunk 281.390  24.594  0.000  0.000  0.000  0.000  

Zhuzhou 

 

Lushui 540.097  0.000  46.880  2.883  0.011  0.000  

Trunk 174.354  0.000  89.065  3.583  0.000  0.000  

Xiangtan 

 

Lianshui 532.808  0.000  380.547  4.686  0.000  0.000  

Trunk 562.859  0.000  377.081  6.703  0.001  0.000  

Changsha 

 

Liuyanghe 0.000  0.000  0.000  0.433  0.091  0.000  

Trunk 0.000  0.000  0.000  0.000  0.000  0.000  

Chenzhou Leishui 0.000  0.000  0.000  0.000  0.000  0.000  

Loudi Lianshui 406.680  0.000  374.551  0.140  0.043  0.000  

 



 CHAPTER 4. Environmental efficiency evaluation of a single-stage  

60 system considering performance improvement path 

4.5 Conclusions 

The previous studies almost set the “furthest” target for a DMU to reach the 

environmental efficient while measuring the environmental efficiency. In this chapter, 

in order to make the evaluated DMU to achieve environmental efficiency with least 

effort, we construct a closest target environmental efficiency evaluation method based 

on RAM. Besides, the proposed method is applied to investigate the water 

environmental efficiency of Xiangjiang River Basin in China.  

 The results show that the average water environmental efficiency of the water 

system in Xiangjiang River Basin remained at a higher level from 2008-2014. This 

indicates that Hunan Province had made certain achievements in building a harmonious 

society with coordinated development of economy and environment. Compared with 

the classical environmental efficiency method, the water environmental efficiency 

obtained by the proposed method was higher than the classical method. Moreover, the 

proposed method can provide the closest target for the inefficient DMU to achieve 

efficient. 

In addition, we find that most water environmental efficient areas are economically 

developed cities, such as Changsha and Zhuzhou. Therefore, the other inefficient areas 

can learn from these efficient areas and formulate corresponding policies according to 

their economic level and environmental conditions to improve the environmental 

efficiency. 
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With the rapid development of China’s industry, the problems of growing energy 

consumption and environmental pollution are drawing increasing attention from 

government managers and scholars. In this chapter, we divide the industrial system into 

two stages, i.e., an energy utilization stage and a pollution treatment stage, for 

accurately evaluating the total-factor energy efficiency as well as the overall 

environmental efficiency. Based on the two-stage structure of the industrial system, we 

build a new two-stage data envelopment analysis (DEA) model with shared inputs and 

apply this model to China’s industry. 

5.1 Introduction 

China has achieved tremendous success in economic development during the past 

several decades, meanwhile, the government is coping with current internal challenges 

of energy shortage and environmental degradation. The degradation includes, for 

example, a shortage of water resources in the western area and desertification in the 

northwest of the country. China is also facing an urgent problem of environmental 
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degradation caused by waste gas emissions, such as the heavy haze environmental 

problem in most of China’s provinces (Wang et al., 2014). In order to realize sustainable 

development, China has to consider how to reduce energy consumption and pollutant 

emissions while maintaining rapid economic growth. China’s 12th Five-Year Plan 

announced several new energy and CO2 emission targets to be reached by 2015, 

reducing China’s energy usage by 16%, SO2 emissions and Chemical Oxygen Demand 

(COD) by 8%, and CO2 emissions per unit of GDP by 17%. Targets for each China’s 

provinces have also been announced. One of the critical tools to reduce final energy 

consumption, improve industrial competitiveness, and reduce pollutant emission is to 

measure and improve energy and environmental efficiency (Oikonomou et al., 2009). 

In order to realize the goals of China’s 12th Five-Year Plan, it is necessary to analyze 

the implementation situation of China’s 11th Five-Year Plan, so the policymakers can 

take better measures to improve performance based on the analysis of previous energy 

and environmental efficiencies. 

The literature mainly contains two methods for evaluating energy and 

environmental efficiency. One is the parametric method stochastic frontier approach 

(SFA) and the other is non-parametric method data envelopment analysis (DEA). SFA 

is a parametric estimation method making use of maximum likelihood estimation 

(MLE). This method uses a parametric modelling approach to measure a “frontier” 

value and thereby provide a measure to evaluate energy efficiency through the frontier 

value. Boyd (2005) and Boyd et al. (2008) used SFA method in the American Energy 

Star Program to calculate an energy performance indicator. Lin and Wang (2014) used 

the excessive energy-input SFA to analyze the total factor energy efficiency and the 

corresponding energy conservation potential of China’s iron and steel industry. 

However, pre-determined production functions may not match the reality, and SFA 

faces challenges when dealing with a multi-output problem. In contrast to SFA, DEA 

is a non-parametric programming technique for measuring the relative efficiency of a 

set of homogenous decision making units (DMUs). It was first proposed by Charnes, 

Cooper and Rhodes in 1978, and not only can deal with multiple outputs and multiple 

inputs but also has the advantage of having no need to assume any particular functional 

forms relating to input and output (Charnes et al., 1978; Yang et al., 2011; Johnson and 

Ruggiero, 2014). A great number and variety of DEA applications and research projects 
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have led to many new developments related to DEA efficiency. As a result, DEA is a 

capable method to evaluate energy efficiency and environmental efficiency. 

Recently, a growing number of studies have employed conventional DEA models 

(Hu and Wang, 2006), non-radial DEA models (Fukuyama and Weber, 2009; Zhou et 

al., 2012; Zhang and Choi, 2013), range-adjusted measure-based DEA (RAM-DEA) 

models (Wang et al., 2013), and directional distance function (DDF) models (Wang et 

al., 2013; Zhou et al., 2012) to evaluate energy and environmental efficiency. It is well 

accepted that the conventional energy efficiency index is actually the partial-factor 

energy productivity (partial-factor energy efficiency) in which energy is the single input, 

while non-energy inputs (e.g., labor and capital stock) are neglected and undesirable 

outputs are not considered. Patterson (1996) gave a detailed discussion of this concept. 

However, all real-life industrial economic production activities are joint-production 

processes where both energy resources (e.g., coal, oil, natural gas) and other resources 

(e.g., labor, capital) are used simultaneously to produce desirable outputs (e.g., GDP) 

and undesirable outputs such as the emission of pollutants (e.g., solid waste, SO2, waste 

water). Therefore, when applied to real-life examples, the methods which only use 

partial-factor energy productivity to evaluate energy consumption may obtain 

implausible results (Han et al., 2007; Hu and Wang, 2006). Therefore, it is necessary to 

take into account total-factor inputs instead of a single energy input while also 

considering undesirable outputs so as to more exactly evaluate the energy and 

environmental efficiency. This issue can be well addressed by DEA technique because 

DEA is applicable to multiple inputs and multiple outputs problems. Based on this idea, 

some total-factor energy efficiency (TFEE) approaches have been proposed recently. 

Hu and Wang (2006) used total-factor energy efficiency to evaluate the energy 

efficiencies of 29 administrative regions in China for the period 1995-2002 and found 

a U-shape relation between TFEE and per capita income in these regions of China. 

Zhang et al. (2011) used DEA window analysis to investigate the dynamic trends in the 

total-factor energy efficiency of a sample of developing countries. Zhao et al. (2014) 

applied a total-factor energy efficiency index to evaluate the changes of TFEE at the 

sector and provincial levels. They found that technology progress, energy price and 

economic development have a positive influence on TFEE based on Tobit regression. 

In this category of research, not only energy inputs but also non-energy inputs (e.g., 

labor, capital) are considered when analyzing the desirable outputs. Considering 
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undesirable outputs, Zhou and Ang (2008) proposed several DEA-type linear 

programming models which consider both desirable and undesirable outputs in 

measuring economy-wide total-factor energy efficiency performance. Shi et al. (2010) 

developed an extended DEA model by treating undesirable outputs as inputs to evaluate 

the industrial energy efficiency and investigated the maximum energy-saving potential 

in 28 administrative regions in China. After that, Bai et al. (2012) used a super 

efficiency DEA method to measure the energy efficiency of 11 provinces in western 

China from 1989 to 2009, under the framework of total-factor energy efficiency where 

both desirable outputs and undesirable outputs are considered. Wang et al. (2013) 

applied the Range-Adjusted Measure (RAM)-based nonparametric approach to 

evaluate the regional energy and environmental efficiency of China over the period 

2006-2010. In their efficiency evaluation models, the energy and non-energy inputs, as 

well as the desirable and undesirable outputs, are considered to characterize the energy 

consumption and economic production of several Chinese regions. 

Most of the above-mentioned studies investigated the sector or regional total-

factor energy efficiency, while rare work has focused on the industrial total-factor 

energy efficiency and industrial environmental efficiency in China. Industry plays a 

vital role in the development of the economy in China, as evidenced by the fact that the 

gross industrial output value (GIOV) accounted for about 38.5% of China’s gross 

domestic product (GDP) in 2012. More importantly, the industrial sector is an energy 

intensive sector which accounted for 70% of total final energy consumption in 2012 

(NBSC, 2013, 2014). Industrial pollution is also the main source of Chinese pollution. 

Thus, it is urgent and meaningful to study the industrial total-factor energy efficiency 

and industrial environmental efficiency in China. In addition, the industrial system not 

only creates economic outputs, but also produces industrial pollution, such as industrial 

solid waste, industrial waste water, and industrial waste gas. Therefore, the 

environmental efficiency evaluation of the industrial system can not only evaluate the 

operation of the industrial system, but also obtain specific measures to improve the 

environmental efficiency so as to realize the sustainable development of the economy 

and the environment. However, almost all previously published works considered the 

industrial system as a “black box” when they measured the environmental efficiency of 

industrial system, which probably has resulted in ignorance of some deficiencies in the 

system. In this chapter, we divide the process of energy consumption and utilization in 
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China’s industry into two stages: the industrial energy utilization stage and the 

industrial pollution treatment stage. In the energy utilization stage, the main work is to 

produce the industrial products, while in industrial pollution treatment stage, the main 

work is to dispose of the pollution produced in the first stage. Accordingly, the 

provincial industrial overall environmental efficiency is decomposed into two parts, 

industrial energy utilization efficiency and industrial pollution treatment efficiency. 

Through analyzing the two-stage structure of China’s industry’s energy consumption 

process, we can effectively investigate the inefficiencies of the internal structure of the 

system and provide valuable managerial insights when assessing the dual impacts of 

operating and business strategies for China’s industrial sector.  

So far, many published works have studied two-stage structure systems. Hampf 

(2014) proposed a model that described a two-stage process to measure the 

environmental efficiency and applied the model to an analysis of US power plants. 

Cook et al. (2010) reviewed related DEA publications on two-stage systems, i.e., two-

stage DEA models, where the outputs from the first stage are intermediate measures 

and taken as the inputs for the second stage. Halkos et al. (2014) reviewed the DEA 

works for an extensive two-stage systems which allow “exogenous” inputs as 

intermediate measures. Based on these two reviews, we briefly overview the works on 

two-stage systems as follows. i) The standard two-stage DEA approach proposed by 

Wang et al. (1997) and Seiford and Zhu (1999). ii) The network DEA approach 

proposed by Färe and Grosskopf (1996). iii) The relational two-stage DEA approach 

proposed by Kao and Hwang (2008) and Chen et al. (2009), which assumes a 

multiplicative or additive relationship between overall efficiency and divisional 

efficiencies. iv) The game-theoretic two-stage DEA approach proposed by Liang et al. 

(2008), which considers the two stages as two players in a game. Because we want to 

obtain benchmarks of the evaluated DMUs while measuring their environmental 

efficiencies, we chose the network DEA approach. Based on this approach, a new two-

stage DEA model is built to firstly obtain the overall environmental efficiency and the 

benchmark for each province’s industry. Then, according to the benchmarks, we can 

further obtain the industrial total factor energy efficiency by the ratio of the excepted 

energy consumption and the actual energy consumption. 
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5.2 Modeling of environmental efficiency evaluation of the two-stage 

system of China’s industry 

Currently, most studies on environmental efficiency have considered the evaluated 

system as a single stage without considering its internal structure. As a result, there is 

no clear evidence of the transformations to which the inputs are subject within the 

considered units (Castelli et al., 2010). In contrast to the single-stage DEA model, two-

stage DEA models show the performance of the individual stages and thus are more 

informative for decision-makers. For our study of the industrial environmental 

efficiency evaluation in China, we divide the industrial production process into two 

sub-processes: the energy utilization process and the pollution treatment process. The 

former sub-process focuses on using energy and non-energy inputs to produce the 

desirable outputs and undesirable outputs, while the latter sub-process focuses on the 

recycling and disposing of the pollution and wastes which are produced in the former.  

In keeping with previous works for measuring energy and environmental 

efficiency and the characteristics of China’s industry, for the first stage we select the 

indices of industrial labor force (ILF), industrial capital (IC), and industrial energy 

consumption (IEC) as the inputs, and choose the indices of gross industrial output value 

(GIOV), industrial solid wastes generated (ISWG), industrial waste water discharged 

(IWWD), and industrial waste gas emitted (IWGE) as the outputs (Wu et al., 2014; Shi 

et al., 2010). Here, we employ “the net value of fixed assets” to reflect the “capital” 

which is the same as in the previous work of Wang and Wei (2014). It is clear that other 

than GIOV, all outputs are undesirable outputs. In addition, we consider industrial 

capital (IC) and industrial labor force (ILF) as non-energy inputs and the industrial 

energy consumption (IEC) as the energy input in the first stage. For the second stage, 

we select industrial labor force (ILF), industrial capital (IC), investment in industrial 

pollution treatment (IIPT), and the undesirable outputs from the first stage as its inputs, 

and product output value by disposing of and utilizing solid waste, waste water, and 

waste gas (POVW) as its outputs. The structure can be seen in Figure 5.1.  
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Figure 5.1 Two-stage structure system of China’s industry 

 

It is evident that in the industrial system, industrial labor force and industrial 

capital are used in both the energy utilization stage and the pollution treatment stage. 

For example, some labors work in both stages by repairing equipment such as lights 

and machines. Thus, these resources are shared inputs for both sub-processes. In regard 

to shared inputs, so far there are several approaches, such as weighted restrictions 

(Beasley, 1995; Cook et al., 2000) and an additive objective function (Cook and 

Hababou, 2001). Notably, these works did not consider the internal structure of the 

processes. In dealing with shared inputs in the network production, Yu and Lin (2008) 

evaluated the railway performances in a multi-activity network framework with shared 

inputs. Zha and Liang (2010) developed an approach to measure the performance of a 

two-stage production process in series, where the shared inputs could be freely allocated 

among different stages.  

As we have mentioned, the industrial energy consumption in China can be divided 

into an energy utilization process and a pollution treatment process, in which the 

undesirable outputs in the energy utilization process are part of the inputs of the 

pollution treatment process. Assume there are n DMUs, each of which represents the 

industry of an administrative region of China (𝐷𝑀𝑈𝑗 , j = 1, … , n). Denote the shared 

inputs by 𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑀𝑗) and energy inputs by 𝑍𝑗 = (𝑧1𝑗, … , 𝑧𝐾𝑗) in the first stage. 

The desirable outputs of the first stage are denoted by 𝐷𝑗 = (𝑑1𝑗, … , 𝑑𝑆𝑗), and the 

undesirable outputs of the first stage by 𝑈𝑗 = (𝑢1𝑗, … , 𝑢𝐹𝑗) which are also the inputs of 

the second stage, the new inputs of the second stage by 𝐼𝑗 = (𝑖1𝑗, … , 𝑖G𝑗) and the outputs 

of the second stage by 𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝐻𝑗). Denote the DMU being evaluated by 𝐷𝑀𝑈0. 
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In our study of industrial environmental efficiency, the undesirable outputs 

(pollutants) are mainly generated by energy inputs in the production process and should 

be reduced if energy consumption is reduced. Therefore, we apply the weak 

disposability assumption to deal with undesirable outputs. As expressed in Färe and 

Grosskopf (2004), weak disposability indicates that a Null-Joint relationship exists 

between desirable outputs and undesirable outputs in the production process, which 

means desirable outputs and undesirable outputs should be reduced in a proportional 

way (see more details about this assumption in Färe et al., 1989; Tone, 2004; Zhou et 

al., 2008). The assumption of weak disposability is important because it enables us to 

model undesirable outputs in DEA models, considering the possible tradeoffs between 

the desirable outputs and the undesirable outputs. Analogous to Kuosmanen (2005)’s 

way of defining production technology under the variable return to scale that satisfies 

weak-disposability assumption, the related production possibility set (PPS) of the 

industrial two-stage system shown in Figure 5.1 is given as follows.  
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  (5.1) 

In this formula, 𝛼𝑗(0 < 𝛼𝑗 < 1) is the portion of shared inputs used by the first 

stage of 𝐷𝑀𝑈𝑗, while 1 − 𝛼𝑗 is the portion of shared inputs consumed by the second 

stage of 𝐷𝑀𝑈𝑗. This system is expressed in terms of the unknown parameters 𝜌𝑗 , 𝜇𝑗. 

∑ 𝜌𝑗𝑢𝑓
𝑗𝑛

𝑗=1 = 𝑢𝑓  represents the weak disposability assumption about the undesirable 

outputs. ∑ (𝜌𝑗 + 𝜇𝑗) = 1𝑛
𝑗=1  models our requirement of the variable returns to scale 

assumption. It should be noted that the production possibility set uses the same intensity 

variables 𝜌𝑗 , 𝜇𝑗 in the two stages. That is because we want the two sub-processes of the 

industry to cooperate to achieve the overall environmental efficiency of the system, 

with the two stages working under the control of a centralized decision-maker. Thus, 

the two stages jointly determine one optimal plan to maximize the overall 

environmental efficiency of the system. This way of addressing the intensity vector in 

PPS can be also found in Maghbouli et al. (2014). Based on this production possibility 



 CHAPTER 5. Environmental efficiency evaluation of a two-stage  

70 system via total-factor energy efficiency 

set, we can build the following centralized model, which integrates the two stages under 

the control of a centralized decision-maker, for measuring the overall environmental 

efficiency of the two-stage system. 
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(5.2) 

In this formula, we treat the two stages as equally important, and the constraints 

0 ≤ 𝛽𝑚, 𝛿𝑘, 𝜃𝑓 , 𝜙𝑔, 𝜑𝑚 ≤ 1  are the limitation for improvement. Constraint 𝐿𝑊𝑗 ≤

𝛼𝑗 ≤ 𝑈𝑃𝑗  is used to avoid extreme and unrealistic values being chosen. The optimal 

value 𝑒0
∗ is defined as the overall environmental efficiency of 𝐷𝑀𝑈0. When 𝑒0

∗  is 1, the 

whole system is environmental efficient; otherwise, it is environmental inefficient. The 

overall environmental efficiency can be decomposed into two terms: the first term 
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energy utilization efficiency; the second one 
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is the efficiency of the second stage, i.e., pollution treatment efficiency. If the optimal 

value of the first term 𝑒10
∗ = 1, the first stage is efficient; If the optimal value of the 

second term 𝑒20
∗ = 1, the second stage is efficient. It can be easily known that the 

system is overall environmental efficient if and only if the two stages are both efficient.  

This model is a non-linear programming model. Let 𝜌𝑗𝛼𝑗 = 𝑎𝑗, 𝜇𝑗𝛼𝑗 = 𝑏𝑗, we 

can transform the model as follows: 
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Model (5.3) is still non-linear since 𝛽𝑚𝛼
0 and 𝜑𝑚𝛼

0 exist in some constraints. If 

we fix the value of variable 𝛼0, model (5.3) becomes a parametric linear program which 

can be efficiently solved by the following algorithm.  

 

a. In computation, the initial value for 𝛼0 will be set as the value 𝐿𝑊0, and then its 

corresponding linear program can be solved. If it is feasible, its corresponding 

objective optimal value can be obtained.  

b. Increase 𝛼0 by a very small positive number 휀 (=0.00001 for example) for each step 

t, resulting in 𝛼𝑡
0 = 𝐿𝑊0 + 𝑡 × 휀, 𝑡 = 1,…, until the upper bound of 𝑈𝑃0is reached. 

For each 𝛼𝑡
0 , we can obtain a corresponding objective optimal value 𝑒𝑑0

𝑡  if its 

corresponding model is feasible. 

c. Comparing all the optimal objective values, 𝑒𝑑0
𝑡 , 𝑡 = 1,2, …,  , we can obtain the 

smallest value, denoted by 𝑒0
∗. Then 𝑒0

∗ is just the optimal objective value of model 

(5.3). At the same time, we can obtain the efficiency of the first stage by 𝑒10
∗  and the 

second stage by 𝑒20
∗ . 

 

By using the above algorithm, the non-linear model can be solved and the optimal 

values 𝜌𝑗∗, 𝜇𝑗∗, 𝑎𝑗∗, 𝑏𝑗∗, 𝛽
𝑚
∗ , 𝛿𝑘

∗ , 𝜃𝑓
∗ , 𝜙

𝑔
∗ , 𝜑

𝑚
∗ , the overall environmental efficiency of the 

system 𝑒0
∗ and the efficiency of the first stage by 𝑒10

∗  and the second stage by 𝑒20
∗  are 

obtained. Besides, according to Hu and Wang (2006), the total-factor energy efficiency 

(TFEE) index is defined as the ratio of the expected energy consumption to the actual 

energy consumption in a multi-factor production progress. Based on this, we can derive 

the TFEE index of 𝐷𝑀𝑈0 by the proposed model in this chapter as follows:  
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5.3 Application to the environmental efficiency evaluation of China’s 

industry 

In this section, we will use the proposed two-stage DEA model to evaluate the 

industrial energy efficiency, industrial overall environmental efficiency, industrial 

energy utilization efficiency, and industrial pollution treatment efficiency of 30 

provinces in China. The corresponding strategy and policy implications are discussed 

in order to propose guidelines for the improvement of the industrial performance of 

different provinces. 

5.3.1 Data and variables 

This study uses the data of 30 provinces in China to estimate their energy and 

environmental efficiencies during the 11th Five-Year plan period (2006-2010). It 

should be noted that after the year of 2011, indicators of statistical system, method of 

survey and related technologies were revised by the Ministry of Environmental 

Protection, so the data in these years are not included for our analysis. As mentioned in 

Section 5.2, the input and output variables employed in this study include industrial 

labor force (ILF), industrial capital (IC), industrial energy consumption (IEC), 

investment on industrial pollution treatment (IIPT), gross industrial output value 

(GIOV), industrial solid wastes generated (ISWG), industrial waste water discharged 

(IWWD), industrial waste gas emitted (IWGE), and product output value by disposing 

of and utilizing solid waste, waste water, and waste gas (POVW). The dimension of 

these variables are in Ten thousand employees, Billion RMB, Ten thousand tons of 

standard coal, Billion RMB, Million tons, Tons, Million tons, Million RMB, and Billion 

RMB, respectively. The data are collected from the China Statistical Yearbook, China 

Energy Statistical Yearbook, and China Statistical Yearbook on Environment for each 

of the years 2007-2011. Because many data of Tibet are not available in the statistics, 

Tibet is not considered in our analysis. Descriptive statistical analysis on these variables 

are shown in Table 5.1. 
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Table 5.1 Descriptive statistical analysis of inputs and outputs 

 
Variables ILF IC IEC GLOV ISWG IWGE IWWD IIPT POVW 

2006 Mean 172.3 1690.9 6779.2 3418.4 5051.1 74.4 80038.5 161311.9 342258.6 

 

Std.dev. 124.8 1543.9 4391 3296.7 3759.6 44.7 70312.9 142217.9 377342.1 

 

Max 496.4 6894.8 18731.3 12500.2 14229 168.7 287181 596643.1 1497950.1 

 
Min 13 134.8 644 217.6 147 2.3 7168 7773.2 10369.2 

2007 Mean 178.4 2021.7 7442.7 4110.4 5854.2 71.3 82187.9 184123 450404.5 

 

Std.dev. 130.3 1734.1 4816 3872.2 4503.9 42 72683.2 159263.5 523786 

 

Max 505.9 7177.8 20423.9 14910 18688 158.3 268762 673420 2240597.9 

 
Min 14.1 83.3 739.9 278.4 158 2.5 5960 3889 20431.2 

2008 Mean 178.4 2541.7 7879.7 4965.1 6337.3 66.4 80519.6 180880 540441.2 

 

Std.dev. 132.5 2053.4 5032.7 4517 4857.2 38.9 71152.9 168893.4 592634.8 

 

Max 498 8342.4 21399 17254 19769 146.6 259999 844159 2409843 

 
Min 14.7 119.5 794.5 321.2 220 2.1 5991 3774 41309 

2009 Mean 184.3 3176.9 8335.6 5248.8 6797.7 62.2 78097.2 147540.3 536073.5 

 

Std.dev. 139.6 2502.9 5293.6 4750.7 5160.8 36.3 67539.6 108913 581425.5 

 

Max 528.5 10304.6 22694 18091.6 21975.8 136.6 256160 515832 2513210 

 
Min 16 144 863.1 300.6 200.9 2.1 7031 3563 24440 

2010 Mean 192.5 3903.5 9088.6 6442.6 8031 62.1 79133.2 132325.7 592826.5 

 

Std.dev. 150 2978 5720.7 5475.8 6635.8 36.1 70357.6 105065.6 650121.4 

 

Max 563.2 12463.1 24365.6 21462.7 31688 138.3 263760 456759 2863867.2 

 
Min 17.1 191.6 951.3 385.2 212 2.8 5782 4354 31623.2 

 

From Table 5.1, it can be observed that the mean values of labor force, capital, and 

industrial energy consumption increase year by year, which means that the industrial 

investments of each province increased these years. The standard deviations of all the 

nine variables are high, which implies that there may be uneven economic and social 

development across different provinces. 

5.3.2 Results analysis 

Through our models (5.3) and (5.4) in Section 5.3, we can obtain the overall 

environmental efficiency, the efficiency of two stages, and the total factor energy 

efficiency of the industrial system in each Chinese province when setting the lower 

bound and upper bounds of 𝛼𝑗 to 3% and 97% respectively. The results are shown in 

Table 5.2. 
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Table 5.2 Four kinds of efficiencies of industry in 30 regions of China from 2006-2010 

 

Total factor energy efficiency 

  

Overall environmental efficiency 

2006 2007 2008 2009 2010 

 

2006 2007 2008 2009 2010 

Beijing 0.934 0.957 1.000 1.000 1.000  0.737 0.759 1.000 1.000 1.000 

Tianjin 0.606 0.680 1.000 0.933 1.000  0.662 0.663 1.000 0.947 1.000 

Hebei 0.578 0.955 1.000 0.822 1.000  0.416 0.516 1.000 0.634 1.000 

Shanxi 0.701 0.715 0.895 0.500 0.732  0.312 0.415 0.458 0.394 0.453 

Inner 

Mongolia 
0.604 0.665 0.921 0.932 1.000  0.296 0.451 0.646 0.807 1.000 

Liaoning 0.424 0.662 0.643 0.669 0.635  0.313 0.404 0.458 0.471 0.579 

Jilin 0.264 0.484 0.626 0.625 1.000  0.413 0.445 0.524 0.567 1.000 

Heilongjiang 0.347 0.390 0.967 0.603 0.800  0.485 0.489 0.662 0.500 0.843 

Shanghai 0.975 0.734 0.850 1.000 1.000  0.814 0.735 0.842 1.000 1.000 

Jiangsu 0.835 1.000 1.000 1.000 1.000  0.646 0.759 1.000 0.912 1.000 

Zhejiang 0.904 1.000 1.000 0.923 1.000  0.683 1.000 0.938 0.876 1.000 

Anhui 0.735 0.675 0.660 0.674 0.758  0.360 0.398 0.514 0.503 0.666 

Fujian 0.478 0.319 0.499 0.612 0.338  0.396 0.423 0.455 0.505 0.550 

Jiangxi 0.751 0.567 0.649 0.665 0.705  0.376 0.416 0.477 0.549 0.642 

Shandong 0.579 0.729 1.000 1.000 1.000  0.520 0.596 0.797 0.931 1.000 

Henan 0.485 0.712 0.657 0.599 0.829  0.403 0.436 0.554 0.563 0.740 

Hubei 0.546 0.549 0.636 0.800 0.754  0.431 0.475 0.516 0.541 0.609 

Hunan 0.937 0.938 0.863 0.758 0.785  0.394 0.445 0.515 0.529 0.655 

Guangdong 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000 

Guangxi 0.439 0.834 0.789 0.786 0.871  0.362 0.408 0.455 0.443 0.543 

Hainan 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000 

Chongqing 0.279 0.653 0.571 0.759 0.736  0.312 0.327 0.388 0.491 0.579 

Sichuan 0.667 0.834 0.545 0.563 0.745  0.345 0.354 0.400 0.464 0.640 

Guizhou 0.575 0.804 0.836 0.752 0.808  0.371 0.408 0.457 0.402 0.436 

Yunnan 0.908 0.990 1.000 0.975 1.000  0.507 0.585 1.000 0.634 1.000 

Shaanxi 0.840 0.594 0.599 0.613 0.707  0.359 0.383 0.415 0.432 0.520 

Gansu 0.889 0.719 0.884 0.762 0.725  0.349 0.436 0.484 0.495 0.527 

Qinghai 1.000 0.921 1.000 0.972 1.000  1.000 0.896 1.000 0.771 1.000 

Ningxia 0.278 0.592 0.702 0.628 0.862  0.320 0.331 0.375 0.373 0.557 

Xinjiang 0.671 0.398 0.744 0.582 0.721  0.391 0.399 0.457 0.407 0.559 

Average 0.674 0.736 0.818 0.784 0.850  0.499 0.545 0.660 0.638 0.770 
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Table 5.2 (continued) 

 

Efficiency of the first stage   Efficiency of the second stage 

2006 2007 2008 2009 2010  2006 2007 2008 2009 2010 

Beijing 0.771 0.811 1.000 1.000 1.000  0.702 0.707 1.000 1.000 1.000 

Tianjin 0.672 0.732 1.000 0.975 1.000  0.652 0.593 1.000 0.920 1.000 

Hebei 0.383 0.556 1.000 0.600 1.000  0.448 0.477 1.000 0.667 1.000 

Shanxi 0.398 0.422 0.517 0.368 0.469  0.227 0.408 0.399 0.420 0.438 

Inner 

Mongolia 
0.353 0.464 0.638 0.806 1.000  0.239 0.437 0.654 0.809 1.000 

Liaoning 0.329 0.452 0.491 0.514 0.562  0.296 0.356 0.424 0.429 0.595 

Jilin 0.341 0.439 0.545 0.583 1.000  0.485 0.451 0.504 0.550 1.000 

Heilongjiang 0.403 0.432 0.720 0.505 0.816  0.566 0.546 0.603 0.495 0.870 

Shanghai 0.807 0.745 0.843 1.000 1.000  0.822 0.725 0.841 1.000 1.000 

Jiangsu 0.661 0.809 1.000 0.939 1.000  0.631 0.709 1.000 0.885 1.000 

Zhejiang 0.744 1.000 0.948 0.900 1.000  0.621 1.000 0.927 0.852 1.000 

Anhui 0.454 0.471 0.536 0.545 0.670  0.266 0.325 0.492 0.461 0.662 

Fujian 0.432 0.406 0.499 0.554 0.513  0.359 0.439 0.411 0.457 0.588 

Jiangxi 0.470 0.438 0.508 0.549 0.657  0.282 0.394 0.446 0.548 0.626 

Shandong 0.542 0.628 0.840 0.948 1.000  0.498 0.564 0.753 0.914 1.000 

Henan 0.404 0.512 0.562 0.539 0.723  0.402 0.359 0.547 0.586 0.757 

Hubei 0.415 0.442 0.511 0.604 0.650  0.447 0.507 0.520 0.478 0.569 

Hunan 0.514 0.545 0.581 0.565 0.660  0.275 0.346 0.449 0.493 0.650 

Guangdong 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000 

Guangxi 0.309 0.454 0.462 0.473 0.553  0.416 0.361 0.448 0.414 0.532 

Hainan 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000 

Chongqing 0.263 0.414 0.427 0.555 0.619  0.362 0.240 0.350 0.427 0.540 

Sichuan 0.400 0.472 0.415 0.455 0.602  0.291 0.237 0.386 0.473 0.679 

Guizhou 0.343 0.442 0.490 0.439 0.478  0.399 0.375 0.424 0.364 0.394 

Yunnan 0.536 0.606 1.000 0.664 1.000  0.479 0.563 1.000 0.605 1.000 

Shaanxi 0.499 0.435 0.467 0.492 0.592  0.219 0.331 0.362 0.371 0.449 

Gansu 0.489 0.448 0.528 0.531 0.565  0.210 0.424 0.441 0.460 0.488 

Qinghai 1.000 0.873 1.000 0.849 1.000  1.000 0.919 1.000 0.693 1.000 

Ningxia 0.258 0.363 0.423 0.395 0.617  0.381 0.299 0.327 0.351 0.497 

Xinjiang 0.430 0.346 0.495 0.410 0.555  0.352 0.451 0.419 0.403 0.564 

Average 0.521 0.572 0.682 0.659 0.777  0.478 0.518 0.638 0.617 0.763 
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Firstly, we focus on the total factor energy efficiencies of China’s industrial sector. 

It can be seen from Table 5.2 that average total factor energy efficiency of industry 

increased from 0.674 in 2006 to 0.850 in 2010. Guangdong and Hainan province were 

energy efficient during this period. In addition to these total factor energy efficient 

regions, Beijing city and Jiangsu province had high total factor energy efficiencies. This 

indicates that the performance in terms of energy utilization in these regions was 

relatively good. Analyzing these regions, we find that Guangdong, Beijing, Jiangsu are 

well-developed regions. Maybe the good local economy encouraged these regions to 

introduce more new high technology and incorporate advanced machinery in 

production, with the result that the energy was used more effectively. In the future, the 

low-energy-efficiency regions could investigate the techniques in these high-energy-

efficiency regions and learn from others’ experience to improve their own performance 

in energy utilization.  

Returning to Table 5.2, we can also see that the overall environmental efficiency 

as well as the efficiency of stage 1 and the efficiency of stage 2 improved significantly 

from 2006 to 2010 for the most provinces. It should be noted that using our approach, 

the three kinds of efficiencies of any region in Table 5.2 are relative efficiencies which 

are obtained by comparison with other regions’ performances. In this chapter, the 

overall environmental efficiency measures the efficiency of a whole industrial 

production process, considering both the first and second stages. The overall 

environmental efficiency of a region’s industry is calculated as the average of the 

efficiencies of its two stages. The overall environmental efficiencies listed from column 

7 to 11 show four kinds of scenarios. 13 regions’ overall environmental efficiencies of 

industry increased year by year, namely Inner Mongolia, Liaoning, Jilin, Fujian, Jiangxi, 

Shandong, Henan, Hubei, Hunan, Chongqing, Sichuan, Shaanxi, and Gansu. Two other 

regions improved their industrial overall environmental efficiencies to be efficient and 

then maintained that efficiency, namely Beijing and Shanghai. Two other provinces, 

namely Guangdong and Hainan, were efficient for the whole study period. All the other 

regions’ industrial overall environmental efficiencies fluctuated during these years.  

The average value of overall environmental efficiencies of all regions increased 

year by year from 0.499 in 2006 to 0.770 in 2010, which shows that China’s industrial 

performance became better during the “11th Five-Year Plan”. Similar phenomena can 

also be seen in the divisional efficiencies in Table 5.2. Comparing the efficiencies of 
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two stages, we find that the first stage efficiencies were better than the second stage, 

but the gap decreased. At the end of 2010, the average efficiencies of two stages were 

at almost the same level. the statistical 0This phenomenon was because Chinese 

government paid more and more attention to environmental pollution. During this 

period, the government enacted many policies for environment protection which 

encouraged green industry and punished polluting enterprises. Examples of such 

policies are the “China National Environmental Protection Plan in the Eleventh Five-

Years (2006-2010)” and the “Measures for the Administrative Penalties for 

Environmental Protection (2010)”. 

 In order to analyze the efficiency trends of provinces from a larger scale viewpoint, 

we classify these 30 regions into six administrative areas: North China, Northeast China, 

East China, South Central China, Southwest China, and Northwest China, according to 

the administrative area division of China. The provinces of each area are shown in Table 

5.3. 

Table 5.3 Six administrative areas 

Area Provinces 

North China Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia 

Northeast China Liaoning, Jilin, Heilongjiang 

East China Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong 

South Central China Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan 

Southwest China Chongqing, Sichuan, Guizhou, Yunnan 

Northwest China Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang 

 

Based on the area division, we can obtain the total factor energy efficiencies, 

overall environmental efficiencies, efficiencies of stage 1, and efficiencies of stage 2 of 

the six areas during 2006-2010 by averaging all corresponding provincial efficiencies. 

The results are shown in Figure 5.2.  

http://www.lawinfochina.com/law/display.asp?ID=3267&DB=1
http://www.lawinfochina.com/law/display.asp?ID=3267&DB=1
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(a)                                                                        (b) 

 

(c)                                                          (d) 

Figure 5.2  The industrial efficiencies of different areas in China 

To analyze the differences among the four kinds of efficiencies in the six areas, 

we average all the values of the same kind of efficiency during the period. The results 

are shown in Table 5.4.  

Table 5.4 Average efficiency of six administrative areas during 2006-2010 

 
Total factor energy 

efficiency 

Overall 

environmental 

efficiency 

Efficiency 

of stage 1 

Efficiency of 

stage 2 

North China 0.8452 0.7026 0.7174 0.6879 

Northeast China 0.6094 0.5435 0.5422 0.5448 

East China 0.7889 0.6936 0.7159 0.6714 

South Central China 0.8189 0.6673 0.6826 0.6519 

Southwest China 0.7500 0.5051 0.5310 0.4792 

Northwest China 0.7362 0.5294 0.5624 0.4964 
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Through Figure 5.2 (a), we know that Northeast China’s total factor energy 

efficiencies increased the most, being only 0.345 in 2006 but 0.812 in 2010. The other 

areas’ total factor energy efficiencies were fluctuant with an increasing trend. North 

China had the largest total factor energy efficiency starting in 2008. Combining the data 

in Table 5.4, we see that North China also had the largest average total factor energy 

efficiency, followed by South Central China, East China, Southwest China, Northwest 

China and Northeast China. North China had the best performance because many 

industrial enterprises there, such as enterprises in Beijing and Tianjin, employed high 

technology instead of the traditional technology for production. As for the Northwest 

area, although it has a large amount of natural resources, its average total factor energy 

efficiency was the lowest, which may be because the local government did not pay 

enough attention to the technology of energy utilization.  

From Figure 5.2 (b), we can also see that the overall environmental efficiencies of 

the six areas all had an increasing trend during those years. In addition, the overall 

environmental efficiencies of North China, East China, and South Central China were 

higher than other areas on average. North China, Southwest China, and Northwest 

China had a significant decline in 2009, which may have been caused by the global 

economic crisis in 2008. Different from these three areas, East China maintained 

steadily growth during 2006-2010, which showed that their industry had strong ability 

to resist economic difficulties. This is consistent with the real situation of industry in 

East China and reflects the validity of our approach. Looking at the two stages’ 

efficiencies shown in (c) and (d) of Figure 5.2, we find that they had the same situation 

as the overall environmental efficiencies. Besides, most of the first stage efficiencies 

were larger than the second stage efficiencies in the same year for these six areas. This 

indicates that the main inefficiencies of the industrial system were caused by the second 

stage, i.e., the pollution treatment stage. In 2010, however, these two stages’ 

efficiencies were nearly at the same level which indicated that the work of pollution 

treatment had made great progress in those years.  

To sum up, four kinds of efficiencies of the six areas all had an increasing trend. 

North China, East China, and South Central China had relatively better performances 

than the other areas. This phenomenon indicates that the efficiency in China has a 

regional character. Compared with the areas of Northeast, Southwest, and Northwest 

China, the areas of North China, East China, and South Central China are more 
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attractive for skilled laborers and qualified enterprises. Many skilled laborers in 

Northwest China migrate to other regions seeking employment in places such as Beijing 

in North China, Shanghai in East China, and Guangzhou in South Central China. 

Moreover, the natural resources in the Northeast and Southwest were limited, which 

can be seen from the China Energy Statistical Yearbook 2007-2011. With the 

development of China’s domestic transportation system, the disadvantages of location 

for Northeast and Southwest areas becomes weaker since they can get resources more 

easily. Based on these results, we suggest that the Chinese government should pay 

attention to the differences among areas to balance the development of China’s industry. 

5.3.3 Benchmarking analysis 

Through our models, we can also obtain benchmarks for these industries to 

become overall environmental efficient. In other words, we can set the targets of inputs 

and outputs so that achieving those goals would make the industry overall efficient. 

Because our model is a two-stage input-oriented model, if the evaluated DMU intends 

to achieve efficiency, the DMU can reduce its two sub-processes’ inputs and 

undesirable outputs simultaneously. For ease of illustration, we take only the year 2010 

as an example. The benchmarks of provinces are shown in Table 5.5. 
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Table 5.5 Benchmarks for China’s industry 

 ILF IC IEC ISWG IWGE IWWD ILF IC IIPT 

Beijing 58.382 200.886 6954 1269 5.684 8198 92.866 319.543 19340 

Tianjin 25.217 733.129 6818 1862 21.762 19680 72.523 2108.457 164684 

Hebei 64.432 2093.505 27531 31688 99.418 114232 139.467 4531.512 108588 

Shanxi 82.572 742.873 9941.777 1744.545 15.783 26151.07 89.597 797.413 80172.53 

Inner 

Mongolia 
59.409 3299.688 16820 16996 119.298 39536 20.015 1111.660 132400 

Liaoning 113.473 1025.251 13544.2 2922.899 34.153 63624.26 113.714 1028.993 124530.2 

Jilin 56.150 2608.266 8297 4642 30.064 38656 41.843 1943.682 63366 

Heilongjiang 75.186 863.894 9853.724 4714.134 22.853 38921 75.186 1155.685 49494 

Shanghai 147.556 1306.324 11201 2448 22.148 36696 10.596 93.809 94107 

Jiangsu 243.422 7340.785 25774 9064 100.245 263760 169.858 5122.347 185995 

Zhejiang 143.657 1318.511 16865 4268 65.389 217426 402.567 3694.840 119568 

Anhui 79.927 1384.349 8542.741 2265.759 24.257 61897.79 79.927 940.203 58895 

Fujian 53.963 496.542 9809 2135.6 26.334 55004.01 125.710 1129.996 87267.1 

Jiangxi 59.730 1032.312 6291.003 1929.706 22.432 62606.46 59.730 1391.847 42065.72 

Shandong 48.808 1043.426 34808 16038 138.287 208257 464.957 9940.008 456759 

Henan 163.112 2712.498 17475.43 4734.086 59.950 136763 163.112 2782.342 125120 

Hubei 116.360 1050.719 10545.13 2400.085 28.466 74670.56 110.001 995.362 81824.4 

Hunan 104.675 1171.939 9390.738 2416.616 29.579 82909.01 104.675 1325.357 69105.21 

Guangdong 77.158 719.879 26908 5456 98.909 187031 486.040 4534.710 310584 

Guangxi 53.176 950.303 5782.762 1744.672 19.985 54994.36 53.176 1190.213 38642.68 

Hainan 2.489 27.017 1359 212 2.817 5782 15.161 164.593 4354 

Chongqing 62.960 563.021 6570.865 1352.422 14.078 30830.37 50.484 447.059 50810.5 

Sichuan 122.602 1350.966 12295.81 3107.189 33.172 74944.66 115.704 1852.948 71627 

Guizhou 39.470 349.880 4072.245 568.1118 5.140 8516.107 29.028 253.859 29163.46 

Yunnan 77.827 1148.954 8674 9392 43.955 30926 42.276 624.123 106272 

Shaanxi 69.215 618.611 7918.749 1677.669 16.866 34821.22 61.630 546.276 63052.76 

Gansu 33.281 345.834 3773.662 585.1506 6.618 15352 33.281 314.605 31768.91 

Qinghai 7.249 197.721 2568 1783 13.315 9031 9.807 267.504 9747 

Ningxia 11.527 262.327 2501.79 1253.212 8.693 10575.18 11.527 114.641 14924.62 

Xinjiang 32.282 367.586 3779.761 931.4257 10.001 25375.37 32.282 476.851 25419.72 

 

These benchmarks provide the targets for China’s local governments to balance 

the development of the industrial economic growth with environmental protection so as 

to achieve overall environmental efficient. For example, if Shanxi province intends to 
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be efficient, it should reduce its industrial labor force to 82.572 ten thousand employees, 

its net value of fixed assets to 742.873 billion RMB, and its industrial energy 

consumption to 9941.777 ten thousand tons of standard coal in the first stage. In 

addition, it should reduce industrial solid wastes generated, industrial waste gas emitted, 

industrial waste water discharged to 1744.545 million tons, 15.783 tons, and 26151.07 

million tons respectively. In the second stage, it should reduce the industrial labor force 

to 89.597 ten thousand employees, the net value of fixed assets to 797.413 billion RMB, 

and its investments in industrial pollution treatment to 80172.528 million RMB. By 

analyzing the change proportion of each variable, we can find that the main cause of 

inefficiencies in China’s industry are the industrial solid wastes generated and the 

industrial waste water discharged. Thus, the government policy makers should take 

more and better measures to control these pollutants.  

5.4 Conclusions 

Efficiency improvement is one of the most cost-effective ways to achieve the goals 

of energy saving and environment protection. Most of the previous analysis approaches 

for energy efficiency and environmental efficiency consider the evaluated system as a 

black box system without considering the internal structure, which often results in less 

reliable and more imprecise results. In order to overcome this problem, this chapter 

proposes a two-stage DEA model to measure regional industrial overall environmental 

efficiency, energy utilization efficiency, pollution treatment efficiency, and the total-

factor energy efficiency. We apply this model to the statistics for 30 Chinese provinces 

for the years 2006-2010. In addition, we group the 30 provinces into six areas (North 

China, Northeast China, East China, South Central China, Southwest China, and 

Northwest China) to analyze the efficiencies of larger scale areas. The results indicate 

that China’s industrial performance was greatly improved during the study period but 

the six areas had a notable degree of distinct differences. According to these results, we 

give the following policy recommendations for improving industrial performance, 

especially overall environmental efficiency and total factor energy efficiency.  

Firstly, fully utilize the industrial energy resources such as coal and crude oil. In 

terms of the average industrial energy efficiency in areas, North China performs the 

best while Northeast China performs the worst. These relatively low efficiency areas 

can be improved by (a) introducing new technology to reduce industrial energy intensity 
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(i.e., industrial energy consumption for per unit gross industrial output value); and (b) 

retiring backward technology and equipment, adopting new high-technology equipment 

with lower pollution, and saving electricity to achieve continuous and efficient progress. 

Applied well, these will allow industries to realize comprehensive utilization of all 

kinds of energy. 

Secondly, the best way to improve overall environmental efficiency in the studied 

regions and areas is to enhance the industrial pollution treatment. Compared with the 

first stage industrial energy utilization efficiency, the second stage industrial pollution 

treatment efficiency is lower. Furthermore, according to our results, we found most of 

the inefficiency of the second stage came from the poor treatment of the solid waste 

and waste water. Thus, the government should take more measures to control these 

pollutants to improve the overall environmental efficiency of industry, which will 

simultaneously improve the industrial energy and environmental efficiency. 
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Environmental efficiency measurement of the transportation sector is crucial for 

guiding central or local governments to realize green transportation without sacrificing 

too much its economic value. In this chapter, we examine the China’s transportation 

sector by dividing it into four main subsystems: railway, highway, waterway, and civil 

aviation, and further build a parallel network data envelopment analysis model for 

environmental efficiency measurement of the sector with an undesirable factor-CO2 

emission. Moreover, considering the heterogeneity of transportation sectors in different 

areas of China, a new metafrontier Malmquist-Luenberger productivity index (MMPLI) 

is proposed for considering the undesirable outputs and network structure of 

transportation sector so as to investigate the dynamic changes in environmental 

efficiencies of 30 regions’ transportation sectors during 2007-2013. The results indicate 

that Eastern China had the strongest catching-up effect, Western China had the largest 

innovation effect, and Central China had the strongest technology leading effect during 

these years.  
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6.1 Introduction 

As an important part of human social and economic activities, transportation is to 

realize the physical location movement of people and goods by organizing various 

resources such as tools, staff, funds, etc.  According to the means of transport, 

transportation services are mainly carried railway transportation, highway 

transportation, waterway transportation, civil aviation transportation and pipeline 

transportation. As pipeline transportation is only suitable for liquid transportation, and 

its application range is limited. We will not study it in this chapter. In 2016, the number 

of civil aviation airports reached 218 and the passenger volume reached 1016.357 

million journeys; the railway mileage (i.e. distance traveled on railway lines) had 

reached about 124 thousand kilometers, which ranked the second place in the world, as 

did the electrified railway mileage. Besides, the operational mileage (i.e. total length of 

railway lines) of high-speed rail reached 22 thousand kilometers, which ranked first 

over the world, and the scale under construction exceeded 10,000 kilometers.  

Meanwhile, the number of high-speed railways under construction exceeds 10000 km; 

the total national highway mileage is 4.6963 million km, with an increase of 119000 

km over the previous year; and the length of navigation of inland waterways nationwide 

is 127,100 km, with an increase of 100 km over the previous year. National ports have 

30,388 berths for production and 2,317 berths of 10, 000 tonnage or above (MTPRC, 

2017).  

Although China’s transportation sector has developed rapidly, this progress has 

been accompanied by problems. a) In China, the transportation sector accounted for 8% 

of total energy consumption and 10% of total carbon emission in 2013, according to 

China Statistical Yearbook 2015. b) The overall scale of China’s transportation 

infrastructure is large now, but the construction mainly leans towards Eastern China, 

and the disparity between Eastern China, Central China, and Western China is enlarging. 

Thus, lowering energy consumption and carbon emissions of the transportation sector 

in these three different areas is crucial for long-term sustainable development of 

transportation, resources, and environment. In order to establish a green transportation 

sector, when we evaluate the evolution of the performance of the transportation sector, 

we should consider green factors so as to find its inefficiency and its efficiency changes 

in terms of both productivity growth and emission reduction. 
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Many single indicators, such as transportation intensity effect (TIE), and energy 

use per turnover (EUT), are used to evaluate the performance of transportation (Wang 

et al., 2011; Chung et al., 2013) without taking into consideration other factors involved 

in the transportation process. To deal with this problem, data envelopment analysis 

(DEA) has been employed to evaluate the transportation performance by considering 

more factors, which is more appropriate than any single-factor indicators. DEA as a 

non-parametric approach can well evaluate a system with multiple inputs and multiple 

outputs and does not need a functional form assumption of the production (Charnes et 

al., 1978), so it has been widely used for measuring the performance of transportation 

(Wu et al., 2016; Viton 1997; Adler et al., 2013).  

So far, many DEA research works have focused on the transportation sector. These 

works can be classified into two categories: one is the static performance evaluation 

which measures the efficiency of a transportation system in a year or a period; and the 

other is the dynamic performance evaluation, which usually uses the Malmquist 

productivity index and its extensions to investigate the efficiency changes or 

productivity growth over multiple periods. In the first category, the research usually 

applied DEA models, such as conventional DEA models, slacks-based measure models, 

and network DEA models, to evaluate the performance of transportation in a year or a 

period without analyzing the technical process and efficiency changes involved in the 

development of the transportation sector (Adler et al., 2013; Zhou et al., 2013; Song et 

al., 2015). Zhou et al. (2013) employed output-oriented DEA models with different 

returns to scale assumptions to study the carbon emissions performance of China’s 

transport sector from 2003 to 2009; the results indicated that the number of efficient 

regions decreased starting in 2004, bottomed out in 2006, and improved slightly 

afterwards. Chang et al. (2013) measured the carbon emissions and potential reductions 

of these in the regional transport sector in 2009 by using the SBM-DEA model; the 

results showed that the transportation sector in most provinces of China were not eco-

efficient. Zhou et al. (2014) presented an application of DEA approach with 

consideration of undesirable outputs to analyze energy efficiency and potential energy 

savings for the Chinese transport industry during 2003-2009. Adler et al. (2013) 

proposed a new DEA approach named the directional economic-environmental distance 

function (DEED) approach to compute the relative efficiency of aircraft–engine 

combinations which accounted for the production of both desirable and undesirable 
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outputs such as noise and air pollutant emissions. Song, Hao, and Zhu (2015) used an 

undesirable-output-oriented data envelopment analysis (DEA) model with slacks-based 

measure (SBM) to evaluate the changes in the environmental efficiency of the 

transportation sector in 30 Chinese administrative regions between 2003 and 2012. 

Since ignoring the internal structure of a system probably overestimates the system’s 

efficiency, recently, some scholars have built or applied network DEA models to 

recognize the internal inefficiency of transportation sectors. Wanke (2013) analyzed the 

efficiency in Brazilian ports by using a two-stage network-DEA approach to 

simultaneously optimize physical infrastructure and shipment consolidation efficiency 

levels through considering shipment frequency per year as the critical intermediate 

output. Tavassoli et al. (2014) developed a two-stage network SBM model with shared 

inputs to assess the performance of 11 domestic airlines in Iran by introducing linking 

activities between components. In that paper, the first stage evaluated airline technical 

efficiency and the second stage measured the service effectiveness. Lu et al. (2012) 

examined the production efficiency and marketing efficiency of 30 US airline 

companies by a two-stage DEA model. In addition, they conducted a regression analysis 

of the effect of corporate governance mechanisms on airlines performance. Yu et al. 

(2015) proposed a multi-activity network data envelopment analysis model to assess 

the performance in terms of individual activities, individual processes, individual 

periods, and overall operation. Wu et al. (2016) divided the transportation into 

passenger transportation and freight transportation, and then used a parallel network 

DEA model for measuring the energy and environmental efficiency of Chinese 

provincial transportation sectors in 2012. Liu et al. (2017) analyzed the land 

transportation sector of China (including railway transportation and road transportation) 

during 2009-2012 by using a parallel slack-based measure data envelopment analysis 

model. 

In the second category, the performance of transportation sectors was dynamically 

analyzed using the Malmquist productivity index or its extended forms, which can 

measure the productivity growth and the growth’s determinants in the transportation 

sector over multiple periods. Besides this, the index is capable of reflecting progress or 

regress in efficiency along with progress or regress of the frontier technology over time 

under the multiple inputs and multiple outputs framework. The Malmquist productivity 

index was first introduced by Malmquist (1953), and Caves et al. (1982) extended it by 

http://www.sciencedirect.com/science/article/pii/S1366554515301678#b0180
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applying the ratio of two distances. After Färe and Grosskopf (1992) introduced the 

non-parametric technique DEA to the Malmquist productivity index measurement, the 

index began to receive much attention from scholars. Nicola et al. (2013) measured the 

productivity of 20 Italian airport management companies during 2006-2008 using a 

DEA Malmquist index that included a quality component. Scotti and Volta (2015) used 

a Biennial Malmquist-Luenberger (BML) index to measure the productivity of 

European airlines during 2000-2010. They compared the BML index with the 

traditional index and found the environment-sensitive productivity growth was lower 

than that given by the traditional index. Zhang et al. (2015) employed a non-radial 

Malmquist carbon dioxide (CO2) emission performance index (NMCPI) to analyze the 

changes in the total-factor CO2 emission performance of the regional transportation 

sector in China for the period 2002 to 2010. Gitto and Mancuso (2012) evaluated the 

productivity evolution, from 2000 through 2006, of Italian airports by applying the 

Malmquist index to a sample of 28 airports covering about 96%, 99%, and 99% 

respectively of the total number of passengers, movement, and cargo. Zhang and Wei 

(2015) measured the dynamic changes in carbon emission performance within regional 

transportation sectors by incorporating regional heterogeneity and arithmetic measure 

into the non-radial Malmquist carbon emissions index.   

Based on this literature review, we can see that most works treat the transportation 

sector as a “black box”, considering only the initial inputs and final outputs. Few works 

investigate the internal structure by using network DEA models, but the main limitation 

of these works is that they do not analyze the performance dynamically, thus 

information about productivity growth and its decompositions is missed even though it 

is very important for guiding local government investments (see more details in Chen 

and Yu, 2014; Wang and Feng, 2015). In this chapter, we will build a new framework 

for measuring the performance evolution of transportation sectors taking the internal 

structure into consideration. According to the means of transport, we classify the whole 

transportation sector into four parallel subsystems: railway transportation, highway 

transportation, waterway transportation, and civil aviation transportation. So far, few 

papers have considered the transportation efficiency evaluation of this network 

structure. Moreover, considering the heterogeneity of Chinese provincial transportation 

sectors, we classify them into three regions according to their location: Eastern China, 

Central China, and Western China. To consider green factors in the performance 
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evaluation, we firstly build a new parallel DEA model for measuring the environmental 

efficiency of transportation sectors considering the undesirable output carbon dioxide. 

Then, a new metafrontier Malmquist-Luenberger productivity index (MMLPI) based 

on our network DEA model is derived to investigate the productivity growth.  

6.2 Environmental efficiency evaluation of a parallel transportation 

network system considering regional heterogeneity 

In this section, we first look at the conventional DEA model and then develop a 

new network DEA model for a transportation sector. Further, we define the metafrontier 

Malmquist-Luenberger productivity index for the transportation sector. Since the 

transportation sector (system) in China is mainly composed of four subsystems: railway 

transportation, highway transportation, waterway transportation, and civil aviation 

transportation, we formulate the system using a parallel network DEA model.  

6.2.1 Network DEA model 

At the beginning, we assume each administrative region’s transportation sector is 

a “black box”, ignoring the internal structure, so conventional DEA model can be 

applied to measure the performance of transportation. Using the traditional denotations 

in DEA, we assume that there is a set of n DMUs (which are provincial transportation 

sectors here), and each 𝐷𝑀𝑈𝑗(𝑗 = 1,2, … , 𝑛)  produces b different outputs using m 

different inputs which are denoted as 𝑦𝑟𝑗(𝑟 = 1,2, … , 𝑏)  and 𝑥𝑖𝑗(𝑖 = 1,2, … ,𝑚) , 

respectively. Charnes et al. (1978) presented the output-oriented CCR model for 

measuring the efficiency of 𝐷𝑀𝑈0  as follows. (By convention, “𝐷𝑀𝑈0” is used to 

denote the DMU currently under consideration.) 
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where 𝑢𝑟 , 𝜔𝑖 are the prices and multipliers associated with the rth output and the 

ith input respectively. When 𝜙  is equal to 1, the 𝐷𝑀𝑈0  is efficient, otherwise, the 

𝐷𝑀𝑈0 is inefficient. The dual problem of model (6.1) is 
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     (6.2) 

It can be seen that model (6.2) seeks the maximal increase of outputs for a DMU 

by using its inputs. Thus, the reciprocal of the optimal values of models (6.1) and (6.2), 

1 𝜙⁄ , defines an output distance (also called efficiency) to the production frontier 

formed by the best-performing (efficient) DMUs, and is widely used for Malmquist 

productivity index measurement (Pastor and Lovell, 2005; Oh and Lee, 2010).Since 

ignoring the internal structure of a system will result in the overestimation of the 

performance, we should delve further into the transportation sector. According to the 

means of transport, we divide the transportation sector into four main subsystems: 

railway transportation, highway transportation, waterway transportation, and civil 

aviation transportation. Following previous works (Chang et al., 2013; Halkos and 

Tzeremes, 2009; Lv et al., 2012; Song et al., 2016) for analyzing the transportation 

sector, we select energy consumption and capital stock as the inputs of the four 

subsystems. Because these inputs for the overall transportation system are difficultly 

distributed to each subsystem of each province, according to the same analysis in Chen 

(2017), we also consider the variables as shared inputs since they are variables for the 

local transportation government for general purposes, and also, their exact data for each 

subsystem in Chinese provinces are not available from statistical yearbooks. As there 

are no statistics in China about the capital stock of each transportation industry, the 

amount of fixed capital investment is used to represent capital stock, as other authors 

have done (e.g., Lee, 2005; Bian and Yang, 2010; Chang et al., 2013). We choose the 

number of employees in railway, highway, waterway, civil aviation, the emissions of 

carbon dioxide and the gross product as outputs. Among them, the number of 
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employees in railway, highway, waterway, civil aviation can be obtained from the 

statistical year books so that it is defined as the individual inputs of these subsystems, 

while the values of the gross product and the emissions of carbon dioxide of the whole 

transportation system are available but the detail value in each subsystem are not known 

as the values cannot be easily split into each subsystem. For example, the transportation 

tasks for generating the gross products of transportation are usually attributed to the 

integration of several or all the transportation subsystems not just an individual 

subsystem, thus the values cannot be easily decomposed into each subsystem. Therefore, 

analogous to Chen et al. (2010), the emissions of carbon dioxide and the gross product 

are considered as the shared undesirable output and shared desirable output of these 

four subsystems. For these shared outputs, we only know their total values of the whole 

system but do not know that of each subsystem. Different from these shared outputs 

measures, the passenger volume and freight volume transported by each transportation 

subsystem are the individual outputs whose values can be obtained from the statistical 

yearbook. The corresponding structure for the transportation sector is given in Figure 

6.1 as follows.  

 

 

Figure 6.1 The network structure of China’s transportation sector 

Consider a provincial transportation sector in one year as a decision making unit 

(DMU). For ease of illustration in building the network model, the notations are defined 

as the follows. 
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Table 6.1 Variables and descriptions 

Notation Description 

Indexes  

j Index of the jth DMU 

p Index of the pth SubDMU 

l Index of the lth individual input 

r Index of the rth individual desirable output 

i Index of the ith shared input 

g Index of the gth shared desirable output 

h Index of hth shared undesirable output 

Inputs/outputs  

jX  The shared input vector of DMUj 

p

jX  The individual input vector of SubDMUp within DMUj 

jY  The shared desirable output vector of DMUj 

p

jY  The individual desirable output vector of SubDMUp within DMUj 

jZ  The shared undesirable output vector of DMUj 

p

ljx  The lth individual input of subDMUp of DMUj within DMUj 

p

rjy  The rth individual desirable output of subDMUp within DMUj 

ijx  The ith shared input of DMUj for its four subsystems 

gjy  The gth shared desirable output of DMUj for its four subsystem 

hjz  The hth shared undesirable output of DMUj for its four subsystems 

Variables  

p

i  The proportion of ith shared input of subDMUp of DMUj to 
ijx  

p

h  The proportion of hth shared undesirable output of subDMUp of DMUj to 
hjz  

p

g
 The proportion of gth shared desirable output of subDMUp of DMUj to 

gjy  

 

To evaluate the performance of the above structure system, we must deal with the 

shared inputs and shared outputs. So far, there have been several approaches proposed 

for solving shared inputs, such as weighted restrictions (Beasley, 1995; Cook et al., 

2000) and additive objective functions (Cook and Hababou, 2001). Note that these 

works neither specified the sharing proportions of shared inputs nor considered the 

inner structure of the system. Recently, some researchers have dealt with shared inputs 

in the network system. Yu and Lin (2008) evaluated railway performances in a multi-

activity network framework with shared inputs. Zha and Liang (2010) developed an 

approach to measure the performance of a two-stage production process in series, where 
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the shared inputs could be freely allocated among different stages. Chen et al. (2010) 

used a multiple DEA model to evaluate the performance of a two-stage network process 

with non-splittable shared inputs to both stages. Yu et al. (2015) estimated the 

production efficiency, service efficiency, and operational efficiency of multimode 

transit firms with shared technicians and ticket agents by using a dynamic network DEA 

model. Similarly, shared outputs could be addressed although such works are rare. 

Jahanshahloo et al. (2004) measured the efficiency of thirty-nine branches of a 

commercial Iranian bank with shared inputs and shared outputs. Recently, Kao (2016) 

built a network DEA model to reanalyze these bank branches. However, all these 

previous works did not consider shared undesirable outputs and shared inputs 

simultaneously in the measurement of the total factor productivity, thus they cannot be 

applied to measure the transportation sector as modeled in Figure 6.1. In this section, 

we proposed a new network DEA model for measuring the transportation sector with 

the structure in Figure 6.1, which has not only shared inputs, shared desirable outputs, 

and shared undesirable outputs, but also individual inputs and individual outputs. The 

model is as follows: 

 

 

0 0 0

1 1 1

0 0

1 1

1 =1 1 1 1 =1 1

1 1

 ( )

  1,  

      ( ( )) ( ( )) 0, ,

      

qm d k
p

i i l l h h

i l p h

fb

r r g g

r g

q f qb m d k
p p

r rj g gj i ij l lj h hj

r p g i l p h

fb
p p

r rj g g gj

r g

min x x v z

s.t. y y

y y x x v z j PPS

y y

  

 

   

  

  

 

    

 

  

 

     



   

 

      

 
1 1 1

1

1

1

g

0, 1,.., , ,

      1, 1,..., ,

      1, 1,..., ,

      1, 1,..., ,

       , , , , , , , 0,

       1,2,..., ; 1,.

m d k
p p p

i i ij l lj h h hj

i l h

q
p

i

p

q
p

h

p

q
p

g

p

p p p

i r h l i h g

x x v z p q j PPS

i m

h k

g f

v

i m r

  







      

  







     

 

 

 



 

  







.., ; 1,..., ; 1,..., ; 1,..., ; 1,..., .b h k l d g f p q   

(6.3) 

In model (6.3), 𝜔𝑖, 𝑣ℎand𝜗𝑙 denote the multipliers corresponding to shared input, 

individual input and shared undesirable output, respectively. 𝜇𝑟 and 𝜉𝑔 are the 
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multipliers of individual desirable output and shared desirable output, respectively. This 

model can be seen as an extension of Chen et al. (2010) for the network system shown 

in Fig.6.1 which considering the parallel network, undesirable output, shared input and 

shared output. The second constraint in this model requires the aggregate output to be 

less than or equal to the aggregate input which implies the efficiency of the whole 

system no more than 1, and the second constraint implies the efficiency of the 

𝑆𝑢𝑏𝐷𝑀𝑈𝑝(𝑝 = 1,… , 𝑞)  no more than 1. The constraints ∑ 𝛼𝑖
𝑝𝑞

𝑝=1 = 1 ,∑ 𝛽ℎ
𝑝𝑞

𝑝=1 =

1and ∑ 𝛾𝑔
𝑝𝑞

𝑝=1 = 1represent the total values of shared inputs and shared undesirable 

output and shared desirable output are fully divided into four subsystems. 𝑗 ∈ 𝑃𝑃𝑆 

refers to all the DMUs which operate in the production possibility set (or technology 

set) 𝑃𝑃𝑆.  

Model (6.3) is a non-linear programming model. By substituting 𝜉𝑔𝛾𝑔
𝑝

,𝜔𝑖𝛼𝑖
𝑝

, 

and 𝑣ℎ𝛽ℎ
𝑝
 by 휁𝑔

𝑝
,𝑤𝑖

𝑝
, and 𝑢ℎ

𝑝
 respectively, it can be transformed into the following linear 

model. 
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(6.4) 

By solving model (6.4), the output distance 1 𝜙⁄  (or environmental efficiency) of 

𝐷𝑀𝑈0under the technology set 𝑃𝑃𝑆 can be obtained for computing productivity index. 

6.2.2 Metafrontier Malmquist-Luenberger productivity index 
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It is well known that the ratio of the efficiencies of a DMU in two different periods 

can be viewed as a measure of performance change. Because using different periods as 

the base period may yield inconsistent results, researchers such as Kao (2010) and Färe 

et al. (1994) have suggested using the geometric mean of the performance changes 

calculated from the two base periods as the Malmquist Productivity Index (MPI). Since 

this seminal work of Färe et al. (1994), MPI has been used in many empirical studies. 

However, this productivity index did not consider the undesirable outputs and the 

heterogeneity among the DMUs, that is, it assumed all DMUs operate under the same 

production technology and produced all good outputs. In fact, a DMU under a given 

production technology cannot be directly compared with those operating under 

different technologies. This is because DMUs in one specific technology group have 

different production possibilities from those in other groups. Within China’s 

transportation sector, there is much more high-speed railway in Eastern China than that 

in Western China. Thus, the productivity analysis with the conventional MPI approach 

may not be directly applicable to China’s transportation sector for measuring 

performance changes. Oh and Lee (2010) proposed a metafrontier Malmquist-

Luenberger productivity index (MMLPI) which introduces a metaproduction function 

to the nonparametric analysis of productivity growth in order to compare productivity 

changes and the decomposed components for economic agents under different 

technologies. Based on Oh and Lee (2010), a new metafrontier Malmquist-Luenberger 

productivity index (MMLPI) which considers the undesirable output is proposed. For 

analyze the productivity, in the context of China’s transportation sector divided into 

three regions (Eastern China, Central China, and Western China), we illustrate the 

MMLPI as follows. 
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Figure 6.2 Metafrontier in a Malmquist-Luenberger productivity index framework for 

Transportation sector 

It should be noted that only one input and one desirable output are included in 

Figure 6.2 to introduce the concept intuitively in two-dimension figure without loss of 

generality. 

Definition 6.1. (a) The contemporaneous technology set of DMUs within Group 𝑅 in 

time s is defined by 𝑃𝑃𝑆𝑅
𝑠 . When 𝑃𝑃𝑆 = 𝑃𝑃𝑆𝑅

𝑠  in model (6.4), the output distance 

1 𝜙⁄ of (𝑥, 𝑦)is denoted by 𝐷𝑠(𝑥, 𝑦). 

(b) The intertemporal technology set which is formed by all the DMUs in Group 

𝑅 at all the production time t, t+1, etc. is defined by 𝑃𝑃𝑆𝑅
𝐼 . When 𝑃𝑃𝑆 = 𝑃𝑃𝑆𝑅

𝐼  in model 

(6.4), the output distance 1 𝜙⁄  of (𝑥, 𝑦) is denoted by 𝐷𝐼(𝑥, 𝑦). 

(c) The global technology set of DMUs in all groups through all time is denoted 

𝑃𝑃𝑆𝐺 . When 𝑃𝑃𝑆 = 𝑃𝑃𝑆𝐺 in model (6.4), the output distance 1 𝜙⁄  of (𝑥, 𝑦)is denoted 

by 𝐷𝐺(𝑥, 𝑦). 

The metafrontier Malmquist-Luenberger productivity index (MMLPI) is 

decomposed into three individual measures: within-group efficiency change (the 

catching-up effect), best-practice gap change (the innovation effect), and technology 

leadership change (the technology leading effect) as follows.  
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(6.5) 

where 𝑇𝐸𝑡 , 𝐵𝑃𝐺𝑡 , and 𝑇𝐺𝑅𝑡  are respectively the level of technical efficiency of a 

DMU (such as a provincial transportation sector) within Group R, the best practice gap 

of the observation within Group R, and the technology gap of the observations for the 

DMU in Group R to the global technology, all at time t (Battese et al. 2004; Oh and Lee 

2010).  

(i) The within-group efficiency change is E C =

1 1 1 1 1 1( , , , , )

( , , , , )

t t t t t t
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. 

𝐸𝐶 > 1 (𝐸𝐶 < 1)  represents the efficiency improvement (deterioration) of the 

transportation sector from time t to time t+1. 

(ii) The best-practice gap change  
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BPC provides a measure of technical change within a group from time t to time t+1, 

which reflects the within-group technical change (Pastor and Lovell 2005).  𝐵𝑃𝐶 >

1 (𝐵𝑃𝐶 < 1)represents the technical progress (regress) of the transportation sector. 

(iii) The technology gap change  
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 𝑇𝐺𝐶 > 1 (𝑇𝐺𝐶 < 1) represents the change of a group becoming more (less) of a 

technical leader in the transportation sector. This concept is also called technology 

leadership change. 

(iv) The metafrontier Malmquist-Luenberger productivity index

1 1 1 1 1( , , , , , , , , , ) 1t t t t t t t t t tMMLPI x x y y z x x y y z      represents the increase of the 

productivity of the transportation sector from time t to time t+1.   
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6.3 Application to the environmental efficiency evaluation of China’s 

transportation sector considering regional heterogeneity 

In this section, we will present the transportation database and descriptive statistics 

in Section 6.3.1. In Section 6.3.2 we will evaluate the performance of transportation 

and discuss the main features of the China’s transportation in each region. 

6.3.1 Data and variables 

The data used in this study comes from the National Bureau of Statistics of the 

People’s Republic of China. It includes databases from the China Statistical Yearbook 

for Regional Economy 2008-2014, China Statistical Yearbook 2008-2014, China 

Energy Statistical Yearbook 2008-2014, China City Statistical Yearbook 2008-2014, 

and Yearbook of China Transportation and Communications 2008-2014. Since much 

data is unavailable for Tibet, only the 30 regions which are shown in Table 6.4 were 

used in this analysis. 

Based on Figure 6.1, we explain the input and output selection in detail as follows. 

With respect to inputs, the individual inputs of the four subsystems are the number of 

employed persons in each of the four modes of transportation. Energy consumption and 

capital stock of the transportation sector are the shared inputs. In this chapter, the total 

fixed assets in the transportation sector are used for estimating the capital stock. 

Regarding the outputs, the gross product, CO2 emission, the number of passengers and 

amount of freight are selected. Among them, the gross product made by the 

transportation sector is the desirable output, and CO2 emission of the transportation 

sector is the undesirable output. We assume that these two outputs are shared outputs 

since they can be split out in the subsystems exactly and the real values of them for each 

subsystem are not available from the statistical yearbooks, which is similar to the 

assumption on banks in the work of Chen et al. (2010). In addition, the individual 

desirable outputs for the four subsystems are the number of passengers and amount of 

freight for each of the four subsystems. Except for the data of energy consumption by 

the transportation sector and CO2 emissions of the transportation sector, all the other 

data can be obtained from the China City Statistical Yearbook, China Statistical 

Yearbook, and some reports of the transportation sector.  
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The data for provincial CO2 emissions from the transportation sector and the data 

for provincial energy consumption by the transportation sector are not available for 

China. Following Chang et al. (2013), we thus use the fuel-based carbon calculation 

model based on the conversion factor to estimate provincial transportation CO2 

emissions. Based on the Intergovernmental Panel on Climate Change guidelines for 

National Greenhouse Gas Inventories (IPCC, 2006), CO2 emissions can be estimated 

using the following equation. 

2

1

44

12

n

i i i

i

CO A CCF HE COF


                                     (6.6) 

Through formula (6.6), CO2 emissions are related to the amount of all 

carbonaceous fuel combusted (A), the carbon content factor (CCF), the heat equivalent 

(HE), and the carbon oxidation factor (COF) of carbonaceous fuel. The constant (44/12) 

represents the ratio of the molecular weight of CO2 (44) to the molecular weight of 

carbon (12). Thus, 𝐶𝐶𝐹𝑖 × 𝐻𝐸𝑖 × 𝐶𝑂𝐹𝑖 ×
44

12
 is the CO2 emission factor of a fuel. 

Following the method of Chang et al. (2013), we use the domestic report from the 

Energy Research Institute (ERI) of the National Development and Reform Commission 

(NDRC) (2007) in China to represent the true carbon emission factors. The CO2 

emission factors shown in Table 6.2 reflect several major types of carbonaceous fuels 

in China. 

Table 6.2 CO2 emission factors by major carbonaceous fuel types in China 

Fuel Coal Petrol Kerosene Diesel Fuel Oil Natural gas 

CCF 27.28 18.9 19.6 20.17 21.09 15.32 

HE 192.14 448 447.5 433.3 401.9 0.384 

COF(%) 92.3 98 98.6 98.2 98.5 99 

 

Besides, the energy consumption of transportation in the form of standard coal 

cannot be obtained from statistics directly, so we use the consumption of types of fuels 

to estimate the total energy consumption of transportation. The transformation 

coefficient of each fuel to the standard coal is given in Table 6.3.  
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Table 6.3 Transformation coefficient to standard coal 

Fuel Coal Coke Petrol Kerosene Diesel Fuel Oil 
Natural 

gas 
Electricity 

Rate 0.7143 0.9714 1.4714 1.4714 1.4571 1.4286 12.143 1.229 

 

There are significant differences among the different regions of China. By 

adopting geographical closeness as the criteria to decide the groups and using Chinese 

regional classifications, the regions were classified into three areas: Eastern China, 

Western China, and Central China. The classification of the 30 administrative regions 

(i.e., provinces, autonomous regions, and municipalities) is shown in Table 6.4.  

Table 6.4 Distribution of 30 administrative regions in three areas of China 

Area Administrative regions 

Eastern China Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, 

 Zhejiang, Fujian, Shandong, Guangdong, Hainan 

Central China Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan 

Western China Sichuan, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, 

  Qinghai, Ningxia, Xinjiang, Guangxi, Inner Mongolia 

 

The three areas are characterized as follows: (1) the Eastern area is well developed 

in transportation and it has larger gross domestic products (GDP) than the other two 

areas; (2) the Central area is an underdeveloped area in transportation but has achieved 

rapid development in recent years; and (3) the Western area has the largest land area 

with comparatively low population density and is the least developed area in terms of 

the transportation density. The administrative regions in the same area are similar 

(homogenous) but in the different areas are largely different (heterogeneous).  

6.3.2 Results Analysis 

(1) Average Metafrontier Malmquist-Luenberger index and its decompositions  

Through our approach, the MMLPI and its decomposition across the different 

areas’ transportation sectors during 2007-2013 are calculated. To assess changes in 

China’s transportation sector performance incorporating regional heterogeneity, the 

average MMLPI and the parts in its decomposition during the period 2007 to 2013 are 

calculated for each region. 



   

102 CHAPTER 6. Environmental efficiency evaluation of a parallel network system 

considering regional heterogeneity 

Table 6.5 The average metafrontier Malmquist-Luenberger index and its decompositions for 

each region 2007-2013 

 EC BPC TGC MMLPI 

Beijing(E) 0.9840 0.8964 1.0443 0.9211 

Tianjin(E) 1.2496 1.1604 0.9843 1.4272 

Hebei(E) 1.0623 1.1521 1.0050 1.2300 

Liaoning(E) 1.4145 1.0779 1.0008 1.5260 

Shanghai(E) 1.0036 0.8924 1.0497 0.9402 

Jiangsu(E) 1.3125 1.1791 0.9949 1.5396 

Zhejiang(E) 1.1464 0.9188 1.0049 1.0585 

Fujian(E) 0.9991 1.0455 0.9969 1.0413 

Shandong(E) 1.5063 1.2533 0.9692 1.8296 

Guangdong(E) 1.0338 0.8352 1.0241 0.8842 

Hainan(E) 0.9587 0.8037 0.9943 0.7661 

Shanxi(C) 1.0060 0.8522 1.2343 1.0582 

Jilin(C) 1.0200 1.0026 1.1286 1.1540 

Heilongjiang(C) 1.1068 1.0744 1.1240 1.3365 

Anhui(C) 1.0021 1.1054 1.0247 1.1351 

Jiangxi(C) 1.0470 0.9850 1.1017 1.1362 

Henan(C) 1.0534 0.9561 1.0770 1.0847 

Hubei(C) 0.9675 0.8731 1.3248 1.1191 

Hunan(C) 1.0000 0.9106 1.4583 1.3280 

Guangxi(W) 1.0331 1.0280 1.0311 1.0951 

Chongqing(W) 1.0499 0.9677 1.0117 1.0279 

Sichuan(W) 1.0492 0.9642 0.9996 1.0112 

Guizhou(W) 1.0540 1.1693 0.9970 1.2287 

Yunnan(W) 1.0255 1.2486 0.9062 1.1603 

Shaanxi(W) 1.0352 1.0864 1.0140 1.1404 

Gansu(W) 0.9765 0.9805 1.0071 0.9643 

Qinghai(W) 0.9463 1.2816 0.9861 1.1960 

Ningxia(W) 1.1872 1.0624 1.1349 1.4314 

Xinjiang(W) 1.0272 0.9998 0.9659 0.9920 

Inner Mongolia(W) 1.2423 1.0615 0.9640 1.2712 

Note: E, C, and W in parentheses refer to the Eastern, Central, and Western areas 

respectively. 
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It should be noted that the average MMLPI of each region is not obtained by the 

product of the region’s average EC, BPC, TGC in column 2, 3 and 4, i.e., 

average(MMLPI)=average(EC) * average(BPC) * average(TGC), but by the mean of 

the MMLPIs of the regions during 2007-2013, i.e., average(MMLPI)= average(EC * 

BPC * TGC). We think this way is more reasonable because it is the average of the real 

MMLPI of a region during 2007-2013. 

With the results shown in Table 6.5, among the 30 regions, only 6 regions showed 

a downward trend in the MMLPI. Considering specific regions, Shangdong showed the 

largest increase in the average MMLPI, while Hainan showed the largest decrease. For 

the EC index, 6 regions lagged further behind from the frontiers, one region kept 

unchanged, and the other regions showed increases in the average EC. Considering the 

three different areas, in Eastern China, Shandong had the highest EC (1.5063), while 

Hainan had the lowest (0.9587). In Central China, Heilongjiang had the highest EC 

(1.1068) and Hubei had the lowest (0.9675). In Western China, Inner Mongolia had the 

highest EC (1.2423) and Qinghai had the lowest (0.9463). This indicates that Shandong, 

Heilongjiang, and Inner Mongolia had a high catching-up effect in the transportation 

sector during 2007-2013, which may have been caused by the Chinese government 

strongly stimulating infrastructure development and the steel industry for purposes of 

economic recovery. Note that higher EC does not mean the higher performance but 

means high-efficiency improvement during these years. These results clearly point out 

which regions can be used as benchmarks within the same group because their 

experience may benefit other regions to improve performance or to avoid transportation 

sector setbacks. Analogously, BPC and TGC can help sector managers determine the 

effect of innovation and technology leading in the productivity increase of each region’s 

transportation sector. To save space, this paper does not give further details about these 

indexes.  

 (2) Metafrontier Malmquist-Luenberger index and its decompositions for each area 

In order to analyze the transportation development trends of regions from a larger 

scale viewpoint, we use the group classification of the 30 regions in Table 6.4 and 

determine the MMLPI and its decompositions for Eastern China, Central China, 

Western China, and all of China.  

As Figure 6.3 shows, the MMLPI of China’s transportation sector presents a 

positive trend over the 2007-2013 period. The MMLPI increased by 0.0744 units on 
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average from 2007 to 2013, which means the productivity of China’s transportation 

sector increased 7.44%. Western China and Central China showed the highest 

transportation productivity growth value over the period, with 0.1576 and 0.1104, 

respectively, while Eastern China showed an average decrease of 0.0350. In the 

longitudinal aspect, the average MMLPI changed greatly in 2007-2008 and 2008-2009 

in China and then maintained a stable level with minor changes thereafter. The average 

MMLPI of the Central China decreased in 2008-2009 while that of Eastern and Western 

China increased in 2008-2009. 

 

Figure 6.3 Metafrontier Malmquist-Luenberger index change of China and its three areas 

In order to investigate the sources of these changes in China’s transportation 

performance, the MMLPI is decomposed into three individual measures: within-group 

efficiency change (EC), best-practice gap change (BPC) and technology gap change 

(TGC). From Table 6.6, we can find the increase of China’s transportation MMLPI 

mainly came from BPC and TGC, but different areas performed differently. 

Table 6.6 Changes in MMPI and its decompositions of China’s transportation sector 2007-

2013 

Year 
Eastern China  Central China  

EC BPC TGC MMLPI  EC BPC TGC MMLPI 

2007-2008 0.5538 1.6147 0.9612 0.7303  0.8775 1.5444 1.2657 1.7631 

2008-2009 2.3527 0.6114 1.0231 1.1887  1.2500 0.6687 0.9547 0.8961 

2009-2010 0.9845 1.1202 1.0191 1.1214  1.0110 0.9797 0.9687 0.9764 

2010-2011 1.0524 0.9390 0.9748 0.9540  0.9567 0.5998 1.9292 0.9880 

2011-2012 0.9662 1.0173 0.9962 0.9724  0.9980 1.0808 0.9912 1.0640 

2012-2013 1.0017 0.8146 1.0627 0.8232  1.0590 0.9462 0.9956 0.9746 
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Mean 1.1519 1.0195 1.0062 0.9650  1.0254 0.9699 1.1842 1.1104 

 

Table 6.6 (Continued) 

Year 
Western China  China 

 EC BPC TGC MMLPI  EC BPC TGC MMLPI 

2007-2008  0.7432 1.2888 1.0667 1.1183  0.7096 1.4764 1.0811 1.1480 

2008-2009  1.4137 0.9783 1.0544 1.7396  1.7143 0.7612 1.0164 1.3127 

2009-2010  1.1447 0.9813 1.0060 1.0655  1.0503 1.0318 1.0008 1.0622 

2010-2011  1.0501 1.0469 0.8302 0.9243  1.0260 0.8881 1.1763 0.9521 

2011-2012  0.8525 1.3888 0.9880 1.1354  0.9330 1.1705 0.9919 1.0566 

2012-2013  1.1376 0.7795 1.0642 0.9625  1.0668 0.8368 1.0454 0.9146 

Mean  1.0570 1.0773 1.0016 1.1576  1.0833 1.0275 1.0520 1.0744 

 

The average efficiency change (EC) measure of transportation performance from 

2007 to 2013 under the MMLPI framework was 1.0833, which indicates that the 

transportation sector moved toward the technology frontier over the study period, which 

can be regarded as a catching-up effect. Considering the three geographic areas, the 

average efficiency change of Eastern China fluctuated largely from 2007 to 2010, then 

remained at a similar level around 1 from 2010 to 2013. Central China and Western 

China performances had the same trend as Eastern China. This phenomenon can be 

clearly seen in Figure 6.4, and was probably caused by the global financial crisis which 

occurred in 2008. China began the “4 Trillion Plan” in the second half of 2008 to 

stimulate the development of the economy, including infrastructure development, 

energy saving, and emission reduction. In particular, investments in the highway system 

and high-speed railways accounted for more than half of the total capital. Thus, the 

MMLPI saw a large increase in 2008-2009. After 2009, however, the effect became 

weak and the average efficiency changes were approximately 1 which means there was 

almost no change in the efficiency. 

javascript:void(0);
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Figure 6.4 Efficiency change of China and its three areas 

The BPC is the best-practice gap change, it indicates the innovation effect within 

a group. The average BPC measure of China’s transportation performance was 1.0275 

during 2007-2013 which meant slight technical progress was observed for the study 

period. Considering the different areas, as Figure 6.5 shows, the average BPC measure 

of the three areas fluctuated greatly from 2007 to 2009 but later increased on average. 

BPC provides a measure of technical change within a group during a period. From the 

results in Table 6.6, we can find that the technical progress (regress) of the 

transportation sector in all areas during 2007-2008 was larger than 1. Then, the 

technical progress decreased greatly during 2008-2009 because of the global financial 

crisis. During 2009-2010, the technical progress increased which may be caused by the 

structural adjustment of Chinese transportation to face the financial crisis of 2008. The 

strong policy support for the development of high-speed railway which requires many 

high technologies undoubtedly increased the technical process of the entire 

transportation system. This effect decreased during 2010-2011 in Eastern and Central 

China. The Central China increased the most in 2011-2012 which probably is because 

of the large investments in the transportation infrastructure in Central China based on 

the “Planning implementation opinions for promoting the rise of the central area” 

published by the National Development and Reform Commission (NDRC). It can be 

seen from Table 6.6 and Figure 6.5 that in of all these areas, BPC decreased from 2012 

to 2013 at a similar rate. This indicates that the deviation of technical process between 

the three Chinese areas decreased, which was probably caused by the new technology 

adoption and diffusion of transportation in China such as high-speed railway, highway, 

and aviation transportation. 
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Figure 6.5 Best-practice gap change of China and its three areas 

The TGC represents the change in technology gap, measuring the gap between the 

global production possibility frontier and the intertemporal production frontier. As 

observed in Table 6.6, the average TGC of China’s transportation performance was 

1.0520, which means that that the gap between the global frontier and intertemporal 

frontier was reduced. This suggests that the average Chinese region had a technical 

leadership effect during the sample period. 

 

 

Figure 6.6 Technology gap change of China and its three areas 

From Figure 6.6, we can find the TGC of China’s transportation stayed smooth 

around 1 in 2007-2013, as did the Eastern and Western China areas. From 2007 to 2013, 

the TGC of the three areas stayed almost the same, except for 2010-2011. During 2010-

2011, Western China decreased its TGC value and Eastern China kept its TGC value 

almost the same, while Central China increased its TGC value by a large amount. 

Central China had the largest global frontier technology gap change in that year, which 
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indicates that Central China had an evident technical leadership effect during 2010-

2011. 

6.4 Conclusions  

China’s transportation sector has developed greatly in recent years. In this chapter, 

we go inside the transportation sector and divide it into four parallel subsystems: 

railway, highway, waterway, and civil aviation. Firstly, a new network DEA model is 

built for measuring the performance of transportation sectors with four subsystems in 

consideration of the “green” factor of CO2 emission. Since the regions in different areas 

of China have large differences, a metafrontier Malmquist-Luenberger productivity 

index is used to investigate the productivity growth of provincial transportation sectors 

so as to consider the heterogeneity of transportation sectors in different regions of China. 

This approach is then applied to analyze the transportation sector of 30 Chinese regions 

in the period 2007-2013.  

Using the decompositions of the metafrontier Malmquist-Luenberger productivity 

index, we found that Eastern China had the largest within-group efficiency change, 

Western China had the largest best-practice gap change, and Central China had the 

largest technology leadership change. By calculating these three factors for driving 

productivity growth, each region can find its weakness directly and arrange its resources 

for its transportation sector accordingly. Specifically, MMLPI can be improved by the 

following measures. 

Firstly, adjust the energy structure of the transportation industry and encourage the 

use of new energy transportation vehicles. It can be seen from Table 6.2 that the 

corresponding carbon dioxide emission coefficients of crude oil, diesel oil, fuel oil, 

gasoline, etc. are very high, while the emission factors of natural gas and electric energy 

are very low. Therefore, in order to reduce the undesirable output-carbon dioxide 

emissions in the transportation industry to increase MMLPI, the Chinese government 

should optimize the energy structure of the transportation sector. 

Secondly, rational planning and strengthening cooperation between regions. It can 

be seen from the analysis results of 6.3.3 that the development of China's transportation 

sector is regional. Among them, the catch-up effect (EC) is the largest in the eastern 

China, the innovation effect (BPC) is the largest in the western China, and the 
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technology leading effect (TGC) is the largest in the central China. Therefore, 

cooperation and exchanges between regions should be strengthened to gradually narrow 

the gap in the regional transportation sector. 
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CHAPTER 7  

Conclusions and perspectives 
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In this chapter, we conclude the works of this thesis and give some directions for 

further study. 

7.1 Conclusions 

In recent years, environmental problems have seriously blocked sustainable 

development of many countries, especially in developing countries. The contradiction 

between environment protection and economic development is becoming more and 

more obvious. In order to realize the sustainable development of environment and 

economy, China has formulated a series of development plans, environmental 

protection policies and so on. Among them, scientific environmental efficiency 

evaluation is particularly important, which is a comprehensive assessment of the 

economic outputs and environmental outputs. It not only provides a macroscopic 

understanding of the environmental efficiency of the system, but also provides detailed 

benchmarking information for the environmental efficiency improvement. Therefore, 

environmental efficiency evaluation is one of important keys to solve environmental 

issues. So far, this topic has attracted extensive attention from scholars. Among the 

related research, data envelopment analysis (DEA) is one of the most popular methods. 

Based on the DEA method, the main works of this paper are summarized as follows: 

(1) This thesis studies the environmental efficiency evaluation of a single-stage 

system considering fuzzy numbers and its application. Even though environmental 

efficiency has already extensively applied in many areas, it is rarely seen in the fuzzy 
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circumstance. In this thesis, we propose an enhanced Russell measure DEA model to 

analyze the environmental performance of thermal power firms with fuzzy undesirable 

outputs. The result shows that six of the 30 thermal power firms are efficient, and the 

inefficient thermal power firms should focus on the consumption of inputs to improve 

environmental performance.  

(2) We study environmental efficiency evaluation of a single-stage system 

considering the performance improvement path and its application to Xiangjiang River. 

Since the target (benchmark) set by the previous environmental performance studies is 

usually the furthest one for a DMU to be efficient, it may be hardly accepted by the 

DMUs. In order to make the evaluated DMU achieve the environmental efficient with 

the least effort (cost), this paper proposes a closest target DEA model based on range 

adjusted measure to evaluate the water environmental efficiency of 15 monitoring areas 

in seven cities in Xiangjiang River basin of China. The results show that the average 

closest target environmental efficiencies of Xiangjiang River basin in 2008-2014 are 

steady around 0.93. Comparing the efficiencies of the 15 areas, we find the Trunk area 

of Changsha, the Mishui area of Hengyang, the Trunk area of Hengyang, and the 

Chuling area of Hengyang perform well, and the efficiencies are all higher than 0.99. 

The results indicate that Hunan Province has made some achievements in the control of 

water quality pollution in Xiangjiang River.  

(3) This thesis studies the environmental efficiency evaluation of a two-stage 

system. With the rapid development of the industry, the problems of energy 

consumption and environmental pollution have attracted more and more attention from 

government and scholars, while improving the industrial environmental efficiency and 

identifying the key factors affecting efficiency are of great significance for achieving 

coordinated development of industry and environmental protection. However, almost 

all previous works considered the internal structure as a “black box” when they 

measured the environmental efficiency of industrial system, which probably resulted in 

ignorance of some deficiencies in the system. To solve this problem, we divide the 

process of China’s industry into two stages: the industrial energy utilization stage and 

the industrial pollution treatment stage. Accordingly, the industrial overall 

environmental efficiency is decomposed into two parts, i.e., industrial energy utilization 

efficiency and industrial pollution treatment efficiency. The results show that all the 

four kinds of efficiencies of the six areas had an increasing trend. North China, East 



 

7.1 Conclusions 113 

 

China, and South Central China had relatively better performance than the other areas. 

This indicates that the efficiency in China has the regional characteristics. Compared 

with the areas of Northeast, Southwest, and Northwest China, the areas of North China, 

East China, and South Central China are more attractive for skilled laborers and 

qualified enterprises. Many skilled laborers in Northwest China migrate to other places 

such as Beijing in North China, Shanghai in East China, and Guangzhou in South 

Central China for seeking better job opportunity. Besides, through the China Energy 

Statistical Yearbook 2007-2011, the natural resources in the Northeast and Southwest 

were relatively fewer. Therefore, the Chinese government should pay attention to the 

differences among areas so as to balance the development of Chinese industry. 

(4) This thesis studies the environmental efficiency evaluation of a parallel network 

system considering heterogeneity, and further applies to China’s transportation sector. 

Firstly, based on the parallel network structure, we establish a parallel network DEA 

model considering undesirable output. Second, according to the difference of 

transportation development in different areas of China, we use the Metafrontier 

Malmquist-Luenberger productivity index (MMLPI) based on the proposed DEA 

model to dynamically analyze the environmental efficiency of China’s transportation 

sector. Finally, we analyze the transportation sector of 30 administrative regions in 

China from 2007 to 2013 based on the network DEA model and MMLPI. we found that 

Eastern China had the largest within-group efficiency change, Western China had the 

largest best-practice gap change, and Central China had the largest technology 

leadership change. By calculating these three factors for driving productivity growth, 

each region can find its weakness directly and arrange its resources for its transportation 

sector accordingly.

7.2 Perspectives 

Several environmental efficiency evaluation models have been proposed and 

studied for the environmental efficiency evaluation for the single-stage system and the 

network system. However, there are still some future directions that can further extend 

our works. 

(1) The first direction is to consider the stochastic data in the environmental 

efficiency evaluation. In addition to the existence of fuzzy numbers in the 

environmental efficiency evaluation of the single-stage system in Chapter 3, the multi-
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input and multi-output data may have a certain degree of uncertainty, such as just the 

distribution function, which commonly exists in the environmental issues. Therefore, 

we will study the environmental performance evaluation with stochastic data by 

stochastic DEA method and its applications to some real problems.

(2) With the development of internet technology, artificial intelligence, high 

precision sensors and other technologies, the amount of data in the field of environment 

greatly increases. These fast-updated, massive environmental big data will bring the 

new challenge and opportunity to the environmental efficiency evaluation. Currently, 

the research of environmental management under big data has been widely concerned 

by scholars. However, in the field of environmental efficiency evaluation, the 

theoretical research on environmental management under the background of big data is 

rare. Big data in the field of environmental management provides important information 

for in-depth analysis of the interaction within the network system, which can be used 

to solve complex environmental problems. Meanwhile, the internal relationship of the 

system revealed by the environmental big data puts forward new requirements for the 

existing performance evaluation methods, thus it is necessary to construct the 

corresponding interactive network system environment evaluation 

model. Environmental big data will also greatly increase the complexity of dealing with 

the corresponding problems. The traditional performance evaluation methods are often 

inefficient in solving these environmental efficiency evaluation problems because of 

the large number of DMUs. The future research will study the environmental efficiency 

evaluation under the circumstance of big data and establish the adaptive environmental 

efficiency evaluation method in order to solve the more complicated environmental 

efficiency evaluation problem  

(2) The second direction is to consider the stochastic data in the environmental 

efficiency evaluation. In addition to the existence of fuzzy numbers in the 

environmental efficiency evaluation of the single-stage system in Chapter 3, the multi-

input and multi-output data may have a certain degree of uncertainty, such as just the 

distribution function, which commonly exists in the environmental issues. Therefore, 

we will study the environmental performance evaluation with stochastic data by 

stochastic DEA method and its applications to some real problems.
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A.1 Introduction 
 

1.1 Contexte pour l'évaluation de l’efficacité environnementale 

Ces dernières années, les problèmes environnementaux persistants, tels que la pollution 

de l’eau et la pollution de l’air, ont gravement nui le développement durable des 

économies de la plupart des pays, en particulier de certains pays en développement, tels 

que l’Inde et la Chine. Par conséquent, l'équilibre dynamique entre l'environnement et 

l'économie est devenu un problème social important (Wu et al., 2014). Après l’analyse 

des pratiques à long terme, on reconnait que le développement durable de l’économie 

et de l’environnement est la principale méthode pour résoudre ce problème, ce qui 

indique que le développement doit répondre aux besoins de la génération présente sans 

compromettre le développement des générations futures. Afin de parvenir à un 
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développement économique durable, la protection de l’environnement est devenue un 

consensus mondial. En tant que membre important, la Chine joue un rôle essentiel dans 

l'amélioration de l'environnement mondial. Par conséquent, cette thèse se concentre 

principalement sur les problèmes environnementaux en Chine. 

Après la recherche intensive sur les problèmes environnementaux, nous réalisons 

progressivement que la réalisation du développement durable ne peut être réalisée sans 

une gestion efficace de l’environnement, laquelle dépend d’une évaluation scientifique 

et objective de l’efficacité environnementale (Wu et al., 2014; Song et al., 2012). 

L'évaluation de l'efficacité environnementale est une évaluation complète des 

performances d’une organisation dans tous les aspects de la consommation de 

ressources, des résultats économiques et des résultats environnementaux. Elle ne peut 

pas seulement montrer l'efficacité environnementale d’un système évalué au niveau 

macroscopique, mais doit fournit également des informations de référence détaillées 

pour l'élaboration et la mise en œuvre de politiques de gestion environnementale (Song 

et al., 2012). Par conséquent, l'évaluation de l'efficacité environnementale est un facteur 

clé dans la résolution des problèmes environnementaux (Halkos et Tzeremes, 2013). 

 

1.2 Revue de la littérature: évaluation de l'efficacité environnementale basée sur la 

DEA 

L’évaluation de l’efficacité environnementale a attiré une attention soutenue de la 

part des chercheurs et a été profondément explorée et appliquée dans la vie réelle 

(Sueyoshi et al., 2017). Parmi les différentes méthodes d'évaluation de l'efficacité 

environnementale, l'analyse par enveloppement de données (DEA) est l'une des 

méthodes les plus populaires. La recherche d’évaluation de l’efficacité 

environnementale basée sur la DEA a retenu l’attention des chercheurs (Färe et al., 1989; 

Seiford and Zhu 2005; Kao and Hwang, 2008; Halkos and Tzeremes, 2013; Sueyoshsi 

and Goto, 2017). Selon les méthodes utilisées pour traiter les extrants indésirables, les 

études d’évaluation de l’efficacité environnementale peuvent être classées en deux 

catégories: approches directes (Färe et al., 1989; Seiford and Zhu, 2005; Zhou et al., 

2013; Wang et al., 2016) et approches indirectes (Liu and Sharp, 1999; Wu et al., 2013; 

Yang et al., 2015).   

La plupart des travaux sur l'efficacité environnementale réalisés par la DEA étaient 

axés sur un système à une étape ou considéraient un système évalué comme une «boîte 

noire» sans tenir compte de sa structure interne. Cependant, nous ne pouvons pas 
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trouver l’inefficacité dans le processus de production interne d’un système de cette 

manière et il est donc difficile d’améliorer les performances du système. Avec la 

concurrence croissante et les relations entre les entités économiques, les systèmes 

deviennent de plus en plus complexes, il est important de proposer des méthodes pour 

l'évaluation de l'efficacité environnementale d'un système de réseau. Au cours des 

dernières années, la méthode DEA en réseau est devenue une méthode efficace pour 

mesurer la performance de systèmes multi-étapes. Elle fournit de nouvelles idées et de 

nouvelles percées pour l’étude de problèmes complexes d’évaluation de l’efficacité 

environnementale. (Song and Wang, 2013; Lin and Liu, 2015; An et al., 2017; Kao and 

Hwang, 2008).  

 

1.3 Sujets de recherche 

La littérature citée ci-dessus montre que l’évaluation de l’efficacité 

environnementale a été largement prise en compte par les spécialistes, mais il reste 

quelques lacunes à combler. Par exemple, comment évaluer l'efficacité 

environnementale des systèmes flous avec des nombres flous? Comment mesurer 

l'efficacité environnementale afin de définir l'objectif le plus proche pour un système 

inefficace en matière d'environnement en utilisant le moins d'effort possible pour 

atteindre l'efficacité environnementale? Comment mesurer l'efficacité 

environnementale globale et l'efficacité énergétique de facteur totale d’un système 

complexe à deux étages? Et comment évaluer l'évolution dynamique de l'efficacité 

environnementale d'un système de réseau parallèle? Cette thèse vise à étudier ces 

problèmes théoriques et à appliquer les résultats théoriques à des problèmes 

environnementaux dans la vie réelle. 

 

1.4 Structure de la thèse 

Cette thèse porte sur l'évaluation de l'efficacité environnementale par l'analyse 

d'enveloppement de données et ses applications.  

Cette thèse sera divisée en deux parties selon la structure du système évalué. La 

première partie concerne les méthodes d'évaluation de l'efficacité environnementale 

pour les systèmes à une étape et leurs applications, qui comprend deux chapitres. La 

deuxième partie concerne les méthodes d'évaluation de l'efficacité environnementale 

pour les systèmes en réseau et leurs applications, qui contient deux chapitres.  
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A.2 Théorie DEA de base 
 

2.1 Analyse d'enveloppement des données  

L'analyse d'enveloppement des données est une méthode de programmation non 

paramétrique permettant d'évaluer l'efficacité d'un ensemble d'entités appelées unités 

de prise de décision (DMU) qui convertissent plusieurs entrées en plusieurs sorties. Il 

s’agit d’un domaine de recherche mixte entre la recherche opérationnelle, les sciences 

de la gestion et l’économie mathématique. Le modèle séminal DEA a été proposé par 

Charnes, Cooper et Rhodes en 1978. Jusqu'à présent, il a été largement développé et 

appliqué dans de nombreux domaines, tels que les entreprises, les hôpitaux, les banques, 

les centrales thermiques et autres. 

(1) Unité de prise de décision 

Dans les activités réelles de production et de services, nous rencontrons souvent un 

problème de gestion qui nous oblige à évaluer la performance de certains départements 

homogènes au cours d’une période dans laquelle chaque département est appelé unité 

de prise de décision. On peut voir que DMU désigne toute entité qui convertit des 

intrants en extrants, tels que des universités, des entreprises, des hôpitaux, des banques, 

etc. 

(2) Évaluation des performances 

L'évaluation des performances d'une unité DMU avec une entrée et une sortie est 

généralement basée sur le rapport entre la sortie et l'entrée. Pour l’évaluation des 

performances d’une unité DMU à entrées multiples et à sorties multiples, elle est définie 

comme le rapport entre la valeur pondérée des sorties et la valeur pondérée des entrées. 

Il convient de noter que, sans perte de généralité, les performances dans cette thèse se 

réfèrent à l’efficacité relative de la DMU, c’est-à-dire que l’efficacité relative de la 

DMU évaluée est obtenue en comparant avec les entrées et sorties multiples des autres 

DMU. 

(3) L'ensemble de possibilités de production 

Considé rons un ensemble de n DMU, avec chacun,   𝐷𝑀𝑈𝑗(𝑗 = 1, … , 𝑛) , en 

utilisant m entrées 𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗)
𝑇 pour produire s sorties 𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗)

𝑇, où 
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T en exposant indique une transposition. Pendant ce temps,   𝑋𝑗 ≥ 0，𝑌𝑗 ≥ 0，𝑗 =

1, … , 𝑛, c'est-à-dire que la valeur de chaque entrée et sortie est supérieure ou égale à 

sur 0, et au moins la valeur d’un indicateur d’entrée et d’un indicateur de sortie est 

positive. De plus, 𝑥𝑖𝑗 indique la ième entrée de  𝐷𝑀𝑈𝑗, et 𝑦𝑟𝑗 indique la ième sortie de 

 𝐷𝑀𝑈𝑗. 

L'ensemble de possibilités de production est ensuite défini comme un ensemble de 

tous les points de production réalisables, à savoir: 

𝑇 = {(𝑋, 𝑌)|𝑋 peuvent produire 𝑌}                                       (A.2.1) 

De manière équivalente, la technologie T peut être représentée de manière 

équivalente par ses ensembles de sortie 𝑃(𝑋) = {𝑌|(𝑋, 𝑌) ∈ 𝑇}  ou ses ensembles 

d'entrée 𝑃(𝑌) = {𝑋|(𝑋, 𝑌) ∈ 𝑇}. 

(4) Frontière de production 

La frontière de production est une surface incurvée constituée de tous les points 

efficaces du PPS. Il représente la limite à laquelle la production peut être définie pour 

obtenir le rendement maximal des intrants existants ou pour obtenir les intrants 

minimums des produits existants. Selon Wei (2004), la frontière de production est 

définie comme suit: 

Définition 2.1. En supposant que 𝜔 ≥ 0，𝜇 ≥ 0，𝐿 = {(𝑋, 𝑌)|𝜔𝑇𝑋 − 𝜇𝑇𝑌 = 0},𝑇 ⊂

{(𝑋, 𝑌)|𝜔𝑇𝑋 − 𝜇𝑇𝑌 ≥ 0} et 𝐿 ∩ 𝑇 ≠ ∅, le jeu de possibilités de production faiblement 

efficace défini sur T est L, et la frontière de production faible correspondante est 𝐿 ∩ 𝑇. 

En particulier, si 𝜔 ≥ 0，𝜇 ≥ 0, alors L est appelée la surface efficace de T, 𝐿 ∩ 𝑇 est 

la frontière de production de l'ensemble de possibilités de production T. 

 

2.2 Modèles DEA de base 

Dans cette section, deux modèles DEA de base, à savoir le modèle CCR et le 

modèle BCC, sont introduits. 

En supposant qu'il y ait n DMU évaluées, chaque DMU utilise les mêmes entrées 

pour produire les mêmes sorties. 𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗)
𝑇  et 𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗)

𝑇  sont le 

vecteur d'entrée et le vecteur de sortie de 𝐷𝑀𝑈𝑗 , respectivement, où  T dans le 

superscript indique Transpos L'efficacité de chaque DMU est le rapport des sorties 
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pondérées aux entrées pondérées, la DMU évaluée est notée 𝐷𝑀𝑈0. Le modèle CCR 

peut être formulé comme suit. 

                                                  min   𝜃 

    𝑠. 𝑡.  ∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑥𝑖0, 𝑖 = 1,… ,𝑚,            

∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟0, 𝑟 = 1,… , 𝑠, 

 𝜆𝑗 ≥ 0, 𝑗 = 1,… . , 𝑛.                                                (A.2.2) 

On peut voir que le modèle CCR repose sur l'hypothèse de rendements d'échelle 

constants. Banker, Charnes et Cooper (1984) ont étendu le modèle DEA en utilisant 

l'hypothèse de rendements d'échelle variables, qui est abrégée en modèle BCC. Le 

modèle BCC multiplicateur peut être formulé comme suit. 

                                                      min    𝜃 

𝑠. 𝑡.    ∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑥𝑖0, 𝑖 = 1,… ,𝑚,   

          ∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟0, 𝑟 = 1,… , 𝑠,   

      ∑𝜆𝑗

𝑛

𝑗=1

= 1,                               

        𝜆𝑗 ≥ 0, 𝑗 = 1, … . , 𝑛.    (A.2.3) 

 

2.3 Concepts de base de l'évaluation de l'efficacité environnementale  

(1) Efficacité environnementale 

Selon la théorie de la production en commun, les rendements souhaitables sont 

toujours accompagnés de certains rendements qui devraient être moins importants en 

cours de production, tels que le dioxyde de carbone, le dioxyde de soufre, les eaux usées 

et les déchets solides. Si des résultats indésirables sont pris en compte dans le cadre 
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technologique DEA, la technologie correspondante peut être appelée technologie DEA 

environnementale. Ensuite, l'efficacité obtenue à partir de la technologie 

environnementale DEA est définie par l'efficacité environnementale (Zhou et al., 2008; 

Sueyoshi et al., 2017).  

 

(2) Ensemble de possibilités de production environnementale 

Supposons que les résultats souhaités et indésirables soient produits dans le 

processus de production, notons  𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) ,  𝑈𝑗 = (𝑢1𝑗 , … , 𝑢𝑏𝑗) ,  𝑌𝑗 =

(𝑦1𝑗, … , 𝑦𝑠𝑗) comme entrées, sorties indésirables et sorties souhaitables de  DMU𝑗(𝑗 =

1, … , 𝑛), respectivement. L'ensemble de possibilités de production associé est exprimé 

comme suit. 

𝑇 = {(𝑋, 𝑌, 𝑈): 𝑋 peuvent produire (𝑌, 𝑈)}                                                               (A.2.4) 

Sur la base des définitions de jetabilité faible et forte, pour les systèmes tenant 

compte de facteurs environnementaux, si (𝑋, 𝑌, 𝑈) ∈ 𝑇 ,  𝑌′ ≤ 𝑌 , 𝑈′ ≥ 𝑈  et 

(𝑋, 𝑌′, 𝑈′) ∈ 𝑇, alors les sorties sont fortement jetables. Si (𝑋, 𝑌, 𝑈) ∈ 𝑇, 𝜇 ∈ [0,1] 

et (𝑋, 𝜇𝑌, 𝜇𝑈) ∈ 𝑇, les sorties sont faiblement disponibles. 
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A.3 Evaluation de l'efficacité environnementale d'un système à une seule 

étape avec paramètres flous 
 

3.1 Introduction 

Ces dernières années, avec le développement rapide de l'économie chinoise, la 

Chine est confrontée à une consommation d'énergie énorme et à de graves problèmes 

de pollution de l'environnement. Parmi tous les types d'énergie, l'électricité est la 

principale source d'énergie en Chine depuis de nombreuses années. 

En outre, parmi les divers modes de production d'électricité, la Chine s'appuie 

fortement sur l'énergie thermique, l'énergie hydraulique et la thermoélectricité. En 

particulier, l'énergie thermique représentait environ 74,4% de toute l'électricité en 2016. 

Cette situation sera maintenue pendant longtemps. Étant donné que la production 

d’énergie thermique génère généralement un grand nombre de pollutions (rendements 

indésirables), mais avec moins de traitement, elle est devenue la principale source de 

problèmes environnementaux en Chine. Il est donc essentiel pour nous de mesurer 

l'efficacité des entreprises thermiques afin d'accroître leur productivité et de réduire 

leurs émissions. 

Jusqu'à présent, de nombreux modèles DEA ont été proposés pour traiter les 

résultats indésirables et finalement obtenir l'efficacité environnementale (Färe et al., 

1989; Seiford et Zhu, 2002; Zhou et al., 2008). Dans ce chapitre, une nouvelle approche 

utilisant la mesure Russell prenant en compte les extrants indésirables est proposée pour 

mesurer l'efficacité environnementale d'une entreprise de production d'énergie 

thermique. 

 

3.2 Examen de Russell Measure, de DEA floue et de résultats indésirables 

(1) Mesure Russell 

La mesure Russell a été introduite pour la première fois par Färe et Lovell (1978). 

Il a été nommé «Russell» parce que le spécialiste R.R. Russell a par la suite contribué 

à son développement ultérieur. En raison de sa propriété non radiale, il a de nombreuses 

applications (Lozano et al., 2011; Hsiao et al., 2011). 

 

(2) Fuzzy DEA models 
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Comme nous le savons, les modèles DEA traditionnels supposent que toutes les 

données pour les entrées et les sorties sont précises, ils ne peuvent donc pas traiter de 

données imprécises. Pour résoudre cette situation incertaine, la théorie des nombres 

flous est introduite dans la zone DEA. Le concept d'ensemble flou a été proposé par 

Zadeh (1965) pour traiter des estimations imprécises dans des circonstances incertaines. 

Ces dernières années, de nombreux modèles DEA ont été développés dans les 

environments flours (Kao et Liu 2000a; Kao et Liu 2000b; Leon et al., 2003; 

Lertworasirikul et al., 2001; Wang et Li 2014). 

 

(3) Sorties indésirables et efficacité environnementale 

La littérature dans ce domaine peut être classée en deux catégories: les approches 

directes et les approches indirectes. Les approches directes sont principalement basées 

sur Färe et al. (1989), qui a remplacé l'hypothèse forte des résultats en termes de 

disponibilité par des hypothèses faiblement disponibles. Ce travail a été largement 

développé (Färe et al., 1993; Seiford et Zhu, 2005; Färe et al., 2005; Zhou et al., 2007; 

Zhou et al., 2008; Tone, 2004). Les approches indirectes sont basées sur une hypothèse 

de résultats forte et jetable (Liu et Sharp, 1999; Dyckhoff et Allen, 2001; Seiford et Zhu, 

2002; Tone, 2004). L’efficacité environnementale désigne l’efficacité des UDM qui 

tiennent compte à la fois des résultats souhaitables et des résultats indésirables. Jusqu'à 

présent, de nombreuses analyses d'efficacité environnementale par approche DEA ont 

été effectuées (Korhonen et Luptacik, 2004; Bi et al., 2012; Huang et al., 2014). 

Bien que l’efficacité environnementale ait déjà été largement appliquée dans de 

nombreux domaines, elle n’est que rarement visible dans les circonstances floues, y 

compris les travaux théoriques et pratiques. Dans ce chapitre, un modèle de mesure 

Russell amélioré intégré est proposé pour évaluer l'efficacité environnementale avec la 

présence de sorties indésirables dans des circonstances floues. Il est ensuite appliqué 

aux entreprises thermiques en Chine. 

 

3.3 Modélisation d'un système à une étape avec des sorties indésirables et des 

nombres flous 

Supposons qu'il y a n DMU dans l'ensemble N à évaluer. Pour 𝐷𝑀𝑈𝑗(j =

1,2, … , n) , il applique les entrées 𝑥𝑖𝑗(𝑖 = 1,… ,𝑚) ≥ 0 , pour produire les sorties 
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souhaitables 𝑦𝑟𝑗(𝑟 = 1, … , 𝑠) ≥ 0  et sorties indésirables 𝑢𝑘𝑗(𝑘 = 1, … , g) ≥ 0 . 

Notons �̃�𝑖𝑗, �̃�𝑟𝑗 et �̃�𝑘𝑗 sont les équivalents flous de  𝑥𝑖𝑗, 𝑦𝑟𝑗 et 𝑢𝑘𝑗, respectivement. Le 

modèle ERM flou permettant de mesurer l'efficacité de 𝐷𝑀𝑈0  avec des sorties 

indésirables est le suivant: 
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   (A.3.1) 

Le modèle est clairement une programmation non linéaire avec une fonction 

d’objectif à structure fractionnaire. Par la transformation de Charnes-Cooper, le modèle 

non linéaire (A.3.1) peut être converti en une formulation de programmation linéaire. 
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       (A.3.2) 

Sur la base du modèle (A.3.2), nous pouvons utiliser la méthode α-cut pour 

calculer les efficacités environnementales des bornes supérieure et inférieure des 

𝐷𝑀𝑈0. 

 

3.4 Application à l'évaluation de l'efficacité environnementale des entreprises 

thermiques 

Dans cette section, nous appliquons notre approche pour évaluer l’efficacité 

environnementale de 30 entreprises d’énergie thermique en Chine en 2010, laquelle 

contient un nombre flou et une production indésirable. 

Sur la base du modèle proposé, les limites supérieures et inférieures de l'efficacité 

floue coupée en α des DMU sous-évaluées sont obtenues. Nous pouvons constater que 

6 des 30 entreprises d’énergie thermique étaient pleinement efficaces et que leurs 

bornes supérieure et inférieure étaient toutes égales à 1 pour tout α et que les 24 

entreprises restantes devenaient inefficaces lorsque la valeur de α variait de 0 à 1. De 

plus, lorsque α augmente, l'efficacité de la borne supérieure de la DMU évaluée diminue 

et celle de la borne inférieure augmente. De plus, notre approche peut fournir des points 

de repère aux entreprises évaluées pour améliorer leur efficacité. Nous trouvons que la 

plupart des améliorations devraient être prises sur les intrants. La valeur totale de la 
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production industrielle et les déchets solides n’ont besoin que d’augmenter une petite 

valeur au niveau actuel. Cela indique que si l'entreprise veut être écologiquement 

efficace, elle doit se concentrer sur l'utilisation d'intrants. 
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A.4 Évaluation de l'efficacité environnementale d'un système à une seule 

étape tenant compte de l'amélioration de performances 
 

4.1 Introduction  

La rivière Xiangjiang, la plus grande rivière de la province du Hunan en Chine, est 

la «rivière mère» de la province du Hunan. Le bassin de la rivière Xiangjiang est la 

région la plus densément peuplée avec le plus haut niveau d'urbanisation et l'économie 

la plus développée de la province du Hunan. Cependant, la population nombreuse et le 

développement économique rapide ont entraîné la plus grande pression sur les 

ressources et l'environnement. Toutefois, en raison du manque d'évaluation de 

l'efficacité environnementale par les professionnels et d'objectifs scientifiques 

d'amélioration de l'efficacité, le bassin de la rivière Xiangjiang est toujours confronté à 

une pénurie de ressources en eau, à la pollution de l'eau et de la pollution atmosphérique 

et aux métaux lourds. Par conséquent, il est urgent de mesurer l'efficacité 

environnementale de l'eau et de définir les critères de référence pour le bassin de la 

rivière Xiangjiang. Dans ce chapitre, une approche d'analyse d'enveloppement de 

données (DEA) avec la cible la plus proche est appliquée pour mesurer l'efficacité 

environnementale et définir les cibles les plus proches pour le bassin de la rivière 

Xiangjiang. 

La DEA, en tant que technique de programmation non paramétrique, est de plus 

en plus utilisée pour évaluer les performances d'un ensemble d'unités de prise de 

décision homogènes (Li and Lin, 2016). Jusqu'à présent, il a été largement appliqué 

dans l'évaluation de l'efficacité environnementale ou de l'efficacité écologique (Färe et 

al., 1989; Leleu, 2013). Cependant, les études précédentes fixaient presque l'objectif "le 

plus éloigné" qu'une unité de gestion soit à même d'atteindre l'efficacité tout en 

mesurant l'efficacité environnementale. Ainsi, la référence (cible) peut ne pas être 

facilement acceptable par la DMU. Récemment, certains développements se 

concentrent sur la recherche de la cible «la plus proche», de sorte que la DMU en cours 

d'évaluation puisse être efficace avec le «moindre» effort. L’idée sous-jacente de la 

cible la plus proche est que la cible la plus proche suggère des axes d’amélioration pour 

les entrées et les sorties de l’unité inefficace qui amènera la DMU à être efficace avec 

moins d’effort (Aparicio and Pastor 2014a). 
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Pour mesurer l'efficacité environnementale du système d'alimentation en eau dans 

le bassin de la rivière Xiangjiang et définir la cible d'efficacité la plus proche pour la 

DMU évaluée, nous proposons dans ce chapitre un nouveau modèle de cible la plus 

proche basé sur la mesure de distance ajustée (RAM). La RAM est choisie comme 

modèle de base, car il ne s'agit pas uniquement d'un modèle DEA non radial, elle peut 

également traiter des données non positives dans les indicateurs d'entrée et de sortie 

(Ding et al., 2018). 

 

4.2 Modèle de RAM cible le plus proche prenant en compte les sorties indésirables 

  Supposons que n DMU soient évalués. 𝐷𝑀𝑈𝑗(𝑗 = 1,… , 𝑛) utilisent chacun m 

entrées pour produire s sorties souhaitables tout en générant q sorties indésirables. Les 

notations sont données comme suit. 𝑥𝑖𝑗(𝑖 = 1, . . , 𝑚) est la ième entrée de 𝐷𝑀𝑈𝑗 , 

𝑦𝑟𝑗(𝑟 = 1, . . , 𝑠) est la troisième sortie souhaitable de 𝐷𝑀𝑈𝑗 et 𝑧𝑝𝑗(𝑝 = 1, . . , 𝑞) est la 

pth sortie indésirable de 𝐷𝑀𝑈𝑗 . Sur la base du modèle RAM, nous construisons le 

modèle cible suivant le plus proche pour mesurer l'efficacité environnementale de la 

𝐷𝑀𝑈𝑜 évaluée. 
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Supposer que (𝜆𝑗
∗, 𝑠𝑖0

−∗,𝑠𝑟0
+∗,𝑠𝑝0

−−∗,𝑣𝑖
∗,𝜋𝑝

∗ ,𝑤𝑟
∗,𝑑𝑗

∗,𝑏𝑗
∗) est un solution optimale du modèle 

cible le plus proche (A.4.1). Ensuite, la cible la plus proche pour le 𝐷𝑀𝑈𝑜 évalué peut 

être exprimée par: 

 (�̂�𝑖0 = 𝑥𝑖0 − 𝑠𝑖0
−∗, �̂�𝑟0 = 𝑦𝑟0 + 𝑠𝑖0

+∗, �̂�𝑝0 = 𝑧𝑝0 − 𝑠𝑝0
−−∗)     (A.4.2) 

L'efficacité environnementale pour la 𝐷𝑀𝑈𝑜 évaluée basée sur la cible la plus proche 

peut être obtenue en calculant la formule suivante. 
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4.3 Application à l'évaluation de l'efficacité environnementale de l'eau du bassin de la 

rivière Xiangjiang 

Nous appliquons le modèle proposé pour évaluer l'efficacité environnementale du 

système d'alimentation en eau dans le bassin de la rivière Xiangjiang en Chine. Les 
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résultats montrent que l'efficacité environnementale moyenne de l'eau est très élevée 

pendant cette période. Comparé à l'efficacité classique de l'environnement aquatique, 

nous constatons que l'efficacité de l'environnement aquatique est plus stable et que la 

différence entre les villes est beaucoup plus petite. Les résultats montrent que la cible 

la plus proche de chaque ville inefficace est stable et plus facilement atteinte. En outre, 

nous constatons que la plupart des zones économiquement rationnelles en eau sont des 

villes développées sur le plan économique, telles que Changsha et Zhuzhou. Par 

conséquent, les autres zones inefficaces peuvent apprendre de ces zones efficaces et 

formuler les politiques correspondantes en fonction de leur niveau économique et des 

conditions environnementales afin d'améliorer l'efficacité environnementale. 
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A.5 Evaluation de l'efficacité environnementale d'un système à deux 

étapes via l'efficacité énergétique de facteur total 
 

5.1 Introduction 

Alors que la Chine connaît un succès considérable en matière de développement 

économique au cours des dernières décennies, le gouvernement fait face aux défis 

internes actuels de la pénurie d’énergie et de la dégradation de l’environnement. Afin 

de réaliser les objectifs du douzième plan quinquennal chinois, il est nécessaire 

d'analyser la situation de mise en œuvre du onzième plan quinquennal chinois pour la 

période 2006-2010 afin analyse des rendements énergétiques et environnementaux 

antérieurs. 

En raison des avantages de la méthode DEA, la DEA est choisie comme méthode 

de base pour évaluer l'efficacité énergétique et l'efficacité environnementale. 

Récemment, un nombre croissant d'études ont utilisé des modèles DEA conventionnels 

(Hu and Wang, 2006), des modèles DEA non radiaux (Fukuyama and Weber, 2009; 

Zhou et al., 2012; Zhang and Choi, 2013), mesure ajustée en fonction de la plage. 

modèles basés sur la DEA (RAM-DEA) (Wang et al., 2013) et modèles de fonction de 

distance directionnelle (DDF) (Wang et al., 2013; Zhou et al., 2012) pour évaluer 

l'efficacité énergétique et environnementale, bien que rarement axé sur l'efficacité 

énergétique industrielle totale et l'efficacité environnementale industrielle en Chine. 

L’industrie joue un rôle essentiel dans le développement de l’économie en Chine, 

comme en témoigne le fait que la valeur de la production industrielle brute représentait 

environ 38,5% du produit intérieur brut (GDP) de la Chine en 2012. Plus important 

encore, le secteur industriel est un secteur à forte intensité énergétique qui représentait 

70% de la consommation totale d'énergie finale en 2012 (NBSC, 2013, 2014). La 

pollution industrielle est également la principale source de pollution en Chine. Il est 

donc urgent et utile d’étudier l’efficacité énergétique industrielle totale et industrielle 

en Chine. 

Au meilleur de nos connaissances, presque tous les ouvrages publiés 

antérieurement considéraient le système industriel comme une «boîte noire» lorsqu'ils 

mesuraient l'efficacité environnementale du système industriel, ce qui a probablement 

conduit à la méconnaissance de certaines défaillances du système. Dans ce chapitre, 

nous divisons le processus de consommation et d’utilisation de l’énergie dans 



   

132 ANNEXE A. Appendix of French Abstract 

l’industrie chinoise en deux phases: la phase d’utilisation industrielle de l’énergie et la 

phase de traitement de la pollution industrielle. En analysant la structure en deux étapes 

du processus de consommation d’énergie de l’industrie chinoise, nous pouvons étudier 

efficacement les inefficacités de la structure interne du système et fournir des 

indications précieuses pour la gestion lors de l’évaluation du double impact des 

stratégies opérationnelles et commerciales du secteur industriel chinois.  

 

5.2 Modélisation de l’évaluation de l’efficacité environnementale du système 

industriel chinois 

Pour notre étude de l'évaluation de l'efficacité environnementale industrielle en 

Chine, nous divisons le processus de production industrielle en deux sous-processus: le 

processus d'utilisation de l'énergie et le processus de traitement de la pollution. Le 

premier sous-processus est axé sur l'utilisation d'intrants énergétiques et non 

énergétiques pour produire les extrants souhaitables et indésirables, tandis que le 

dernier sous-processus est axé sur le recyclage et l'élimination de la pollution et des 

déchets produits dans le premier. La structure est visible à la figure 5.1. 

 

 

  

 

   

 

 

 

Figure 5.1 Système de structure en deux étapes de l’industrie chinoise 

Supposons qu'il y a n DMU, chacun repr é sentant l'industrie d'une r é gion 

administrative de la Chine (𝐷𝑀𝑈𝑗 , 𝑗 = 1,… , 𝑛). Indiquez les entrées partagées par 

𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑀𝑗) et les entrées d'énergie par 𝑍𝑗 = (𝑧1𝑗, … , 𝑧𝐾𝑗) au premier stade. Les 

sorties souhaitables du premier étage sont notées 𝐷𝑗 = (𝑑1𝑗, … , 𝑑𝑆𝑗)  et les sorties 

indésirables du premier étage par 𝑈𝑗 = (𝑢1𝑗 , … , 𝑢𝐹𝑗), qui sont également les entrées du 

deuxième étage. Notons les nouvelles entrées du deuxième étage par 𝐼𝑗 = (𝑖1𝑗, … , 𝑖G𝑗) 
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et les sorties du deuxième étage par 𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝐻𝑗). Indique la DMU en cours d'é

valuation par 𝐷𝑀𝑈0. 

Nous construisons le modèle centralisé suivant, qui intègre les deux étapes sous le 

contrôle d'un décideur centralisé, pour mesurer l'efficacité environnementale globale du 

système à deux étapes. 
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En résolvant le modèle (A.5.1), l'efficacité environnementale globale du système 

𝑒0
∗  et l'efficacité de la première étape de 𝑒10

∗  et de la deuxième étape by 𝑒20
∗  sont 

obtenues. De plus, selon Hu et Wang (2006), l'indice TFEE de 𝐷𝑀𝑈0  du modèle 

proposé peut être obtenu. 

 

5.3 Application à l’évaluation de l’efficacité environnementale de l’industrie chinoise 

Nous utilisons le modèle DEA en deux étapes proposé pour évaluer l'efficacité 

énergétique industrielle, l'efficacité environnementale globale, l'efficacité d'utilisation 

de l'énergie industrielle et l'efficacité du traitement de la pollution industrielle de 30 

provinces en Chine. 

Les résultats ont montré que l'efficacité énergétique moyenne totale de l'industrie 

était passée de 0,674 en 2006 à 0,850 en 2010. Les provinces du Guangdong et de 

Hainan étaient éconergétiques au cours de cette période. Outre ces régions d'efficacité 

énergétique totale des facteurs, la ville de Beijing et la province de Jiangsu affichaient 

une efficacité énergétique totale élevée. Cela indique que les performances en termes 

d'utilisation de l'énergie dans ces régions ont été relativement bonnes. En outre, les 

résultats montrent que l'efficacité environnementale globale ainsi que l'efficacité de la 

phase 1 et l'efficacité de la phase 2 se sont considérablement améliorées de 2006 à 2010 

pour la plupart des provinces. La valeur moyenne de l'efficacité environnementale 

globale de toutes les régions a augmenté d'année en année, passant de 0,499 en 2006 à 

0,770 en 2010. En comparant l'efficacité de deux étapes, nous avons constaté que 

l'efficacité de la première étape était supérieure à celle de la deuxième étape, mais que 

l'écart a été réduit. 

Afin d'analyser les tendances d'efficacité des provinces d'un point de vue plus large, 

nous avons classé ces 30 régions en six zones administratives: la Chine du Nord, la 

Chine du Nord-Est, la Chine de l'Est, la Chine du Centre-Sud, la Chine du Sud-Ouest 

et la Chine du Nord-Ouest division de la Chine. On peut constater que les quatre types 

d’efficacité des six domaines ont tous eu une tendance à la hausse. La Chine du Nord, 

la Chine de l’Est et la Chine du Centre-Sud ont eu des performances relativement 

meilleures que les autres régions. Comparées aux régions du nord-est, du sud-ouest et 

du nord-ouest de la Chine, les régions du nord, de l'est et du sud de la Chine sont plus 

attractives pour les travailleurs qualifiés et les entreprises qualifiées. De plus, les 

ressources naturelles du Nord-Est et du Sud-Ouest étaient limitées, comme le montre 
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l'Annuaire statistique de l'énergie de Chine 2007-2011. Avec le développement du 

système de transport intérieur de la Chine, les inconvénients de l’emplacement pour les 

zones du nord-est et du sud-ouest s’atténuent, puisqu’elles peuvent obtenir plus 

facilement des ressources d’ailleurs. Sur la base de ces résultats, nous suggérons au 

gouvernement chinois de prêter attention aux différences entre les zones afin 

d’équilibrer le développement de l’industrie chinoise. De plus, grâce à nos modèles, 

nous pouvons également obtenir des points de repère permettant à l’une quelconque de 

ces industries de devenir écologiquement efficace. 
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A.6 Evaluation de l'efficacité environnementale d'un système de réseau 

parallèle prenant en compte l'hétérogénéité régionale 
 

6.1 Introduction 

En tant que partie importante des activités sociales et économiques humaines, le 

transport consiste à réaliser le déplacement physique des personnes et des biens en 

organisant diverses ressources telles que des outils, du personnel, des fonds, etc. Selon 

les moyens de transport, les services de transport comprennent principalement le 

transport ferroviaire, transport routier, voie navigable et transport de l'aviation civile. 

Bien que le secteur des transports en Chine se soit développé rapidement, ces progrès 

se sont accompagnés de problèmes. a) En Chine, le secteur des transports représentait 

8% de la consommation totale d'énergie et 10% des émissions totales de carbone en 

2013, selon le China Statistical Yearbook 2015. b) La structure globale des 

infrastructures de transport de la Chine est importante à présent, mais la construction 

s’intéresse principalement à la Chine orientale et la disparité entre la Chine orientale, 

la Chine centrale et la Chine occidentale s’élargit. La réduction de la consommation 

d'énergie et des émissions de carbone du secteur des transports dans ces trois domaines 

est donc cruciale pour le développement durable à long terme des transports, des 

ressources et de l'environnement. 

Dans ce chapitre, nous construirons un nouveau cadre de mesure de l’évolution de 

la performance des secteurs du transport sur la base d’une analyse de l’enveloppement 

des données prenant en compte la structure interne. En outre, compte tenu de 

l'hétérogénéité des secteurs de transport des provinces chinoises, un nouvel indice de 

productivité métafrontier Malmquist-Luenberger (MMLPI) basé sur notre modèle de 

réseau DEA est dérivé pour étudier la croissance de la productivité. 

 

6.2 Evaluation de l'efficacité environnementale d'un réseau de transport parallèle 

Dans cette section, nous examinons d’abord le modèle DEA classique, puis 

développons un nouveau modèle DEA en réseau pour un secteur des transports. En 

outre, nous définissons l’indice de productivité du méta-frontalier Malmquist-

Luenberger pour le secteur des transports. Le secteur des transports en Chine étant 

principalement composé de quatre sous-systèmes: le transport ferroviaire, le transport 

routier, le transport fluvial et le transport aérien, nous formulons le système à l'aide d'un 
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modèle DEA à réseau parallèle. La structure correspondante pour le secteur des 

transports est donnée à la figure 6.1 comme suit. 

 

Figure 6.1 La structure du réseau du secteur des transports en Chine 

Sur la base de la structure du secteur des transports illustrée à la figure 6.1, nous 

avons proposé un nouveau modèle d'DEA de réseau qui partage non seulement les 

intrants, les extrants souhaitables partagés et les extrants indésirables, mais également 

les intrants individuels et les extrants individuels. Le modèle est le suivant: 
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De plus, compte tenu de l'hétérogénéité des secteurs des transports dans différentes 

régions de la Chine, un nouvel indice de productivité métafrontier Malmquist-
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Luenberger est proposé, basé sur le modèle de réseau DEA. L'indice de productivité du 

métafrontier Malmquist-Luenberger (MMLPI) est décomposé en trois mesures 

individuelles: le changement d'efficacité au sein du groupe (l'effet de rattrapage), le 

changement de meilleure pratique (l'effet d'innovation) et le changement de leadership 

technologique) comme suit. 

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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(A.6.2) 

 𝑇𝐸𝑡, 𝐵𝑃𝐺𝑡, et 𝑇𝐺𝑅𝑡 sont respectivement le niveau d'efficacité technique d'un DMU 

(comme un secteur de transport provincial) dans le groupe R, le fossé des meilleures 

pratiques en matière d’observation au sein du groupe R et le fossé technologique des 

observations pour le DMU du groupe R par rapport à la technologie globale, le tout à 

l'heure t (Battese et al. 2004; Oh et Lee 2010). 

 

6.3 Application à l’évaluation de l’efficacité environnementale du secteur des 

transports  

(1) Indice Metafrontier Malmquist-Luenberger moyen et ses décompositions 

Parmi les 30 régions, seules 6 régions ont affiché une tendance à la baisse du 

MMLPI. Shangdong a enregistré la plus forte augmentation du MMLPI moyen, tandis 

que Hainan a enregistré la plus forte baisse. En ce qui concerne l'indice CE, six régions 

sont plus éloignées des frontières, une région est restée inchangée et les autres régions 

ont enregistré une augmentation de la CE moyenne. Notez qu'une CE plus élevée ne 

signifie pas une performance supérieure, mais une amélioration à haut rendement au 

cours de ces années. Ces résultats indiquent clairement quelles régions peuvent être 

utilisées comme références dans le même groupe, car leur expérience peut être 

bénéfique à d’autres régions pour améliorer leurs performances ou éviter les revers du 

secteur des transports. De manière analogue, BPC et TGC peuvent aider les 
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gestionnaires de secteur à déterminer l’effet de l’innovation et de la technologie en vue 

d’accroître la productivité du secteur des transports de chaque région. 

 

(2) Indice Metafrontier Malmquist-Luenberger et ses décompositions pour chaque zone 

Afin d'analyser les tendances du développement des transports des régions d'un 

point de vue plus large, les régions ont été classées en trois zones: la Chine orientale, la 

Chine occidentale et la Chine centrale. Les résultats montrent que la Chine occidentale 

et la Chine centrale ont affiché la plus forte croissance en termes de croissance de la 

productivité des transports au cours de la période, avec 0,1576 et 0,1104, 

respectivement, tandis que l'est de la Chine a enregistré une baisse moyenne de 0,0350. 

Afin d’enquêter sur les sources de ces changements dans les performances du secteur 

des transports en Chine, le MMLPI est décomposé en trois mesures distinctes: le 

changement d’efficacité au sein du groupe, le changement de meilleure pratique (BPC) 

et le changement de déficit technologique (TGC). Nous pouvons constater que 

l’augmentation du MMLPI des transports en Chine provient principalement de BPC et 

de TGC, mais les résultats ont été différents selon les régions.  
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A.7 Conclusions et perspectives 
 

Dans cette thèse, plusieurs modèles d'évaluation de l'efficacité environnementale 

sont proposés et étudiés pour l'évaluation de l'efficacité environnementale du système 

à une étape et du système de réseau. Les principaux travaux de cette thèse se résument 

comme suit: 

Tout d'abord, un modèle de mesure de Russell amélioré amélioré est proposé sur 

la base d'une analyse d'enveloppement de données pour évaluer la performance des 

unités de prise de décision en présence de sorties indésirables dans des circonstances 

floues. Ensuite, le nouveau modèle est appliqué pour analyser l’efficacité 

environnementale et fournir des repères aux entreprises d’énergie thermique en Chine, 

ce qui peut guider les décideurs dans l’élaboration de plans de production appropriés 

pour améliorer leurs performances. Ensuite, en prenant en compte les résultats 

indésirables, un nouveau modèle DEA cible plus proche basé sur une mesure de 

distance ajustée (RAM) est établi pour mesurer la performance environnementale d'un 

système à une étape. Le modèle proposé est utilisé pour mesurer l'efficacité 

environnementale des régions du bassin de la rivière Xiangjiang en Chine, et l'objectif 

le plus proche est défini pour ces régions inefficaces afin qu'elles puissent faire le 

minimum d'efforts pour atteindre l'efficacité. 

En outre, nous construisons un nouveau modèle d’analyse de l’enveloppement des 

données en deux étapes avec des entrées partagées pour analyser l’industrie chinoise, 

communément considérée comme une «boîte noire» dans les méthodes traditionnelles 

d’efficacité environnementale. Sur la base de l'analyse théorique du modèle, certaines 

suggestions de politiques sont données à cette industrie. Enfin, nous examinons le 

secteur des transports en Chine en le divisant en quatre sous-systèmes principaux: les 

chemins de fer, les autoroutes, les voies navigables et l’aviation civile, puis nous 

construisons un modèle d’analyse de l’enveloppement des données de réseau 

permettant de mesurer les performances du secteur en tenant compte des émissions 

indésirables de CO2. En outre, compte tenu de l’hétérogénéité des secteurs des 

transports dans différentes régions de Chine, un nouvel indice de productivité 

métafrontier Malmquist-Luenberger est proposé, fondé sur le modèle de réseau DEA, 

qui permet d’enquêter sur la croissance de la productivité des secteurs des transports de 

30 régions en 2007-2013. Enfin, quelques suggestions sont données pour guider le 
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développement du secteur des transports en Chine. 

Bien que des résultats de recherche intéressants aient été obtenus, certaines 

directions intéressantes pour cette thèse peuvent être approfondies à l’avenir. Avec le 

développement de la technologie Internet, de l'intelligence artificielle, des capteurs de 

haute précision et d'autres technologies, la quantité de données dans le domaine de 

l'environnement augmente considérablement. Ces données massives sur 

l’environnement, volumineuses, imprécises et de grande valeur, apporteront une 

nouvelle dimension à l’évaluation de l’efficacité environnementale. Il est urgent de 

mettre au point la méthode d'évaluation de l'efficacité environnementale du système de 

réseau interactif dans le cas des données volumineuses liées à l'environnement. 
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Färe, R., Grosskopf, S., & Whittaker, G. (2007). Network dea. In Modeling data 

Irregularities and Structural Complexities in Data Envelopment Analysis (pp. 

209-240). Springer, Boston, MA.  
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Évaluation  de  l'efficacité  environne-
mentale par l'analyse d'enveloppement 
de données  et  ses  applications 
 
 
Avec le développement de l'économie, la pollution 
de l'environnement est devenue de plus en plus 
grave, en particulier dans les pays en voie de 
développement tels que la Chine et l'Inde. Pour 
réaliser le développement durable de 
l'environnement et de l'économie, l'évaluation 
scientifique de l'efficacité environnementale est très 
importante. 
Cette thèse examine l'évaluation de l'efficacité 
environnementale basée sur l'analyse 
d'enveloppement de données (DEA). Quatre 
problèmes d'évaluation de l'efficacité 
environnementale sont étudiés. Tout d'abord, un 
modèle de mesure Russell renforcé est proposé pour 
évaluer l'efficacité environnementale des 
entreprises de production d'énergie thermique en 
Chine. Ensuite, compte tenu de la production 
indésirable, un nouveau modèle DEA plus proche 
d’un cible basé sur un intervalle de mesure ajusté 
est établi pour mesurer l'efficacité environnementale 
du bassin de la rivière Xiangjiang en Chine. De plus, 
un nouveau modèle DEA en deux étapes avec 
entrées partagées est construit pour évaluer 
l’efficacité énergétique du facteur total et l’efficacité 
environnementale globale du secteur industriel de la 
Chine. Enfin, le modèle d’évaluation de l’efficacité 
environnementale d’un réseau parallèle prenant en 
compte l’hétérogénéité est proposé pour analyser le 
secteur de transport en Chine. Tous ces modèles 
sont appliqués à des exemples réels et utilisés pour 
mesurer leur efficacité environnementale et donner 
une référence pour l'amélioration de leur 
performance. 
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l'environnement – programmation linéaire – 
efficience (gestion) – référenciation. 
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Environmental Efficiency Evaluation by 
Data  Envelopment  Analysis  and  its 
Applications 
 
 
With the development of economy, environmental 
pollution has become increasingly serious, 
especially in developing countries such as China and 
India. To realize the sustainable development of 
environment and economy, the scientific evaluation 
of environmental efficiency is very important. 
This thesis investigates the environmental efficiency 
evaluation based on data envelopment analysis 
(DEA). Four environmental efficiency evaluation 
problems are studied. Firstly, an integrated 
Enhanced Russell measure model is proposed for 
evaluating the environmental efficiency with the 
presence of undesirable outputs. It is then applied to 
thermal power firms in China. Then, by considering 
undesirable outputs, a new closest target DEA model 
based on Range Adjusted Measure is established to 
measure the water environmental efficiency of the 
Xiangjiang River Basin in China. In addition, a new 
two-stage DEA model with shared inputs is built to 
evaluate the total-factor energy efficiency and the 
overall environmental efficiency of China’s industrial 
sector. Finally, the dynamic environmental efficiency 
evaluation of a parallel network considering 
heterogeneity is considered. The Metafrontier 
Malmquist-Luenberger productivity index based on a 
network DEA model is built and then applied to 
analyze China’s transportation sector. All these 
models are applied to real-life examples and used to 
measure their environmental efficiency and set the 
benchmark for their performance improvement. 
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