Chapter 1

Résumé en français

Tous les modèles sont faux, mais certains sont utiles. George E. P. Box L'art de la modélisation mathématique, c'est un équilibre entre choisir un bon niveau de complexité et garder un certain degré de compréhension. Maximilian Strobl.

Ces deux citations résument parfaitement les difficultés à trouver un bon modèle, qui puisse à la fois décrire précisément la réalité, avoir un pouvoir prédictif, et en même temps être suffisamment simple pour être étudiable. C'est le problème que rencontre actuellement la biologie.

En effet, grâce aux avancées techniques des dernières décennies, la biologie profite de nouvelles données toujours plus nombreuses, permettant une meilleure compréhension des systèmes vivants, et donnant naissance à de nouveaux champs de recherches actifs, comme la multi-omique. Cependant, cette avalanche de données doit être analysée et comprise pour permettre la création de modèles toujours plus performant. Or des modèles aussi détaillés, aussi larges, peuvent admettre des centaines, voir des milliers d'interactions biochimiques, induisant des systèmes dynamiques tout aussi larges. Cela en rend l'analyse difficile, et la vérification expérimentale impossible.

Une stratégie pour contourner ce problème est de réduire le modèle en question, c'està-dire d'obtenir un modèle plus petit (par exemple, contenant moins d'équations, variables et paramètres) qui capture l'information essentielle du modèle d'origine, ou, en d'autres termes, qui décrive avec une précision suffisante le comportement du modèle d'origine. Cependant, la réduction de modèle est un problème difficile, souvent obtenue au cas par cas, avec l'utilisation de diverses méthodes. Le but est aujourd'hui de trouver des méthodes de réductions systématiques et prenant en compte l'un des problèmes les plus important : l'incertitude paramétrique caractérisant les systèmes biologiques.

En effet, le monde du vivant est, pour ainsi dire, vivant, en mouvement perpétuel. Or, pour déterminer les paramètres d'une interaction il faut l'isoler de son contexte, qui en biologie est extrêmement variable, ou il faut avoir accès à suffisament de données pour caractériser quantitativement le système complet d'interactions, contexte inclu. En absence de données précises, des nombreux paramètres sont incertains. En outre, des différences sont souvent observées entre les valeurs d'un paramètre obtenues par des expériences in-vitro et in-vivo [START_REF] Richey | Variability of the intracellular ionic environment of escherichia coli. differences between in vitro and in vivo effects of ion concentrations on protein-dna interactions and gene expression[END_REF],Song et al., 2015]. Cela montre, d'une part, la difficulté d'obtenir un modèle biologique complet, de nombreuses interactions pouvant être manquantes, et d'autre part, la difficulté, de ce fait, à obtenir des paramètres précis pour un modèle permettant de décrire le comportement de la réalité. C'est pourquoi il est important de développer des méthodes mathématiques capables de gérer l'incertitude paramétrique lors de l'analyse des modèles biologiques. En effet, si les résultats d'une analyse de modèle étaient très sensibles aux changements de paramètres, il serait difficile d'en tirer des prédictions valables pour des applications, dans la mesure où deux ensembles de paramètres relativement proches mèneraient à des résultats différents, et donc à des prédictions différentes.

Dans cette thèse, nous appliquons à l'étude des sytèmes biologiques deux classes de méthodes mathématiques capables de gérer l'incertitude paramétrique : l'arithmétique des intervalles et la géométrie tropicale. Nous utilisons la première pour étudier deux propriétés importantes des modèles biologiques, l'homéostasie et la multistationnarité ; et la deuxième pour obtenir des réductions robustes de modèles biologiques.

La première partie de la thèse est consacrée aux méthodes d'arithmétique d'intervalles appliquées à la recherche d'homéostasie et de multistationnarité dans les modèles biologiques.

L'homéostasie est un concept important en biologie, introduit par Claude Bernard au dixneuvième siècle [Bernard, 1879], et considérée comme élément essentiel pour la définition de la vie [START_REF] Bartlett | Defining lyfe in the universe: From three privileged functions to four pillars[END_REF]. Le principe d'homéostasie peut être vu comme une résistance aux changements. L'exemple typique d'homéostasie concerne la température corporelle, qui reste stable malgré des changements importants de température extérieure. En biochimie, les exemples d'homéostasie concernent les concentrations d'espèces chimiques fortement régulées, comme le glucose, le fer, le calcium, etc.

L'homéostasie étant un concept large, il englobe plusieurs définitions plus spéciales et se retrouve couplé à d'autre principes similaires, comme la résilience. Notre approche visant à trouver l'homéostasie dans un modèle d'équations différentielles ordinaires (EDO) s'inspire de [START_REF] Golubitsky | Homeostasis, singularities, and networks[END_REF]. Nous reprenons ainsi son principe de fonction d'entréesortie sur lequel repose sa définition d'homéostasie. Nos deux approches diffèrent cependant sur les outils utilisés. En effet, leur approche est basée sur la théorie des singularités quand la notre repose sur l'arithmétique des intervalles.

Nous considérons en effet qu'il y a homéostasie pour une espèce donnée par rapport à des changements donnés lorsque, à l'état d'équilibre, la concentration de l'espèce chimique est encadrée par un petit intervalle quand les paramètres varient.

Dans cette partie de la thèse on décrit un algorithme capable de trouver les espèces homéostatiques d'un système, basé sur des schémas d'optimisations globales. L'idée derrière est que trouver de l'homéostasie chez une espèce revient en fait à résoudre un couple d'optimisations globales. Ainsi, cet algorithme cherche en principe à trouver une boîte minimale contenant les solutions d'un problème algébrique lorsque des paramètres varient.

Au cours du développement de cet algorithme, on s'est aperçu que l'on pouvait utiliser les mêmes outils pour un autre problème tout aussi important : celui de la multistationarité d'un système. Car en effet, si l'on fixe les paramètres, la mono-stationarité implique comme résultat un point. En revanche, si le système est multistationaire, alors la plus petite boîte contenant toutes les solutions au problème ne peut être réduite à un point.

Il est donc intéressant de noter que les deux problèmes peuvent être vus comme duaux, l'un cherchant une sortie constante lorsque les paramètres varient, l'autre cherchant une sortie variable lorsque les paramètres sont constants. CHAPTER 1. R ÉSUM É EN FRANC ¸AIS On a ensuite fait plusieurs benchmark, basés sur des modèles réalistes, dans le but de tester l'homéostasie et la multistationarité.

La deuxième partie de la thèse concerne la réduction des modèles de réseaux biochimiques. Notre approche pour la réduction de modèle s'appuie, d'une part, sur une mise à l'échelle basée sur des méthodes de géométrie tropicale, et d'autre part, sur des résultats de perturbations singulières. La théorie des perturbations singulières s'intéresse à des problèmes dépendant d'un petit paramètre et pour lesquels le problème non perturbé peut avoir un comportement très différent. En d'autre termes, on s'intéresse à un problème ayant pour solution x(t, ), et si, pour une norme appropriée, la différence x(t, ) -x(t, 0) ne tend pas vers zéro lorsque tend vers zéro uniformément en t, alors nous faisons face à un problème de perturbation singulière [START_REF] Verhulst ; Verhulst | Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics[END_REF]. Cela concerne en particulier les problèmes de couche limite pour lesquels les dérivées d'ordres supérieurs sont multipliées par . Les problèmes qui nous intéressent dans notre cas sont des problèmes de couche limite dans le temps pour des systèmes d'EDOs, qui peuvent se trouver sous la forme ẋ = f (x, y), ẏ = g(x, y).

En effet, les modèles de réseaux biochimiques font régulièrement intervenir plusieurs échelles de temps, certaines réactions biochimiques s'effectuant en quelques secondes lorsque d'autres prennent des heures, voir des jours à s'effectuer. Cela peut être dû à des différences de concentrations importantes entre les espèces, à la présence d'espèces inhibantes ou activantes, à des constantes cinétiques différentes.

Dans le cadre de cette thèse, on travaille majoritairement sur des systèmes d'équations différentielles ordinaires polynomiales représentant la dynamique d'un réseau de réactions chimiques. Chaque monôme, représentant la vitesse d'une réaction, se compose d'une constante cinétique et d'un produit de concentrations d'espèces chimiques. Pour obtenir la mise à l'échelle nécessaire à la réduction des modèles, on représente chaque valeur par une puissance (entière ou rationnelle) d'un unique petit paramètre positif . Ainsi un paramètre k i est représenté par k i γi où k i est très proche de 1. De même, une concentration x i se réécrit y i ai .

Cette façon de procéder permet d'être peu sensible aux incertitudes paramétriques. En effet, si on prend = 1/10, on obtient l'ordre décimal, et il faut globalement multiplier ou diviser par 10 la valeur du paramètre ou de la concentration pour obtenir un ordre de grandeur différent. En outre, cela nous permet d'obtenir une valuation, et donc d'utiliser la géométrie tropicale.

La géométrie tropicale, dénommée ainsi en l'honneur du mathématicien Brésilien Imre Simon qui est un des pionniers de la théorie, est une branche des mathématiques où les opérations considérées sont le minimum et l'addition en lieu et place de l'addition et de la multiplication. En premier lieu fortement étudié en lien avec la géométrie algébrique, depuis les années 2000/2010 les applications du domaine visant le monde réel commencent à émerger [Krivulin, 2014]. En biologie, celle-ci permet de retrouver les conditions de quasi-equilibrium (QE) et de quasi-steady state (QSS) couramment utilisées en réduction de modèle [START_REF] Radulescu | Reduction of dynamical biochemical reactions networks in computational biology[END_REF].

Pour ce faire, nous utilisons le principe d'équilibration tropicale. L'idée derrière est que si on a deux forces opposées d'ordre similaire, toutes deux dominantes (plus importantes que les autres forces), alors l'objet soumis à ces deux forces se déplacera lentement. En fait, le problème d'équilibration tropicale consiste, pour chaque équation, à chercher un monôme négatif et un monôme positif, tout deux du même ordre minimal (pour l'équation). On obtient ainsi deux monômes de signes opposés, représentant deux forces dominantes opposées et similaires.

Dans cette partie de la thèse, on s'intéresse aussi aux équilibrations tropicales partielles, où seules les espèces rapides sont équilibrées. On décrit un algorithme capable d'obtenir les équilibrations totales d'un système et comment les modifier pour obtenir un algorithme capable d'obtenir les équilibrations partielles. On étudie ainsi les équilibrations d'un modèle du cycle cellulaire de Tyson, dans un cadre symbolique et numérique. On trouve que la structure des équilibrations totales pour ce modèle ne peut prendre que trois formes : vide, un point, ou un segment et une demi-droite. Les équilibrations partielles sont quant à elles l'intersection de deux problèmes : un problème d'équilibration pour certaines équations seulement, et un problème de séparation d'échelles de temps. Cela rend plus complexe l'analyse purement symbolique du problème, où il devient plus difficile de réduire le problème par élimination de variables.

On se sert ensuite de la mise à l'échelle produite et des équilibrations partielles pour travailler sur la réduction de modèle. On s'intéresse plus précisément au cas critique où des lois de conservation sont présentes et rendent la matrice jacobienne singulière. Or, l'une des conditions imposée par les théorèmes classiques de perturbation singulière est l'hyperbolicité normale du système rapide, c'est-à-dire que toutes les valeurs propres de la matrice jacobienne pour le système rapide doivent avoir une partie réelle non-nulle. On s'intéresse donc aux lois de conservation approchées du modèle, c'est-à-dire les lois de conservation pour le système rapide, qui ne sont pas nécessairement des lois de conservation pour le système complet.

Nous montrons que ces lois de conservation peuvent être vus comme des espèces plus lentes que toutes les espèces impliquées dans celles-ci et utilisons ce résultat pour éliminer du système rapide les espèces rendant la matrice jacobienne singulière en les remplaçant par les espèces "loi de conservation", plus lentes. Ainsi, la méthode de réduction algorithmique proposée dans [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF], basée sur les résultats de Cardin et Teixeira [START_REF] Cardin | Fenichel theory for multiple time scale singular perturbation problems[END_REF], peut de nouveau être utilisée. Cela nécessite cependant de modifier l'algorithme en question, car cette élimination doit se faire à chaque étape de la réduction (ie. pour chaque échelle de temps).

En effet, on travaille sur un système multi-échelle, et la réduction suit un schéma de réductions imbriquées. En commençant par considérer uniquement l'échelle de temps la plus rapide, on obtient une première réduction, on regarde ensuite l'échelle de temps suivante et ainsi de suite jusqu'à considérer l'échelle de temps la plus lente. En revanche, cela nécessite que l'hypothèse de hyperbolicité normale soit valide pour chaque étape de la réduction, et la vérification des lois de conservation approchées doit alors se faire à chaque étape.

Pour illustrer cette réduction, on présente une réduction du modèle TGFβ, qui possède des lois de conservation exactes et approchées pour des multiples échelles de temps.

Chapter 2

Overview of thesis and models

Introduction

Mathematics has been initially used in biology to describe population growth [START_REF] Malthus | An Essay on the Principle of Population[END_REF], Verhulst, 1838, Lotka, 1925, Volterra, 1926] as a dynamical system (continuous or discrete). The last century, the field of mathematical biology has grown rapidly due to several reasons including:

• the development of mathematics,

• the rapid growth of data due to the genomics revolution,

• the growth of computational power.

In 1990 the human genome project start [START_REF] Collins | The human genome project: lessons from large-scale biology[END_REF], leads to 13 years of data accumulations, and the conclusion that, if it was useful to understand life, it wasn't enough. Then was born the systems biology [START_REF] Westerhoff | The evolution of molecular biology into systems biology[END_REF], a field dedicated to the analysis and modeling of complex biochemical systems. In systems biology, a problem is generally approached with a bottom-up or a top-down approach. The top-down approach begins with a big picture that is a simplified view of reality coming generally from experimental results and try to decompose it in smaller, more detailed, segments. The bottom-up approach is the reversed situation when small detailed systems are assembled together to form more complex systems. But in 2003, Denis Noble proposes a middle-out approach [Noble, 2003], that tries to capture just enough details to render the essence of the overall system organisation. However, if this approach seems to be the more reasonable, it is difficult to apply it today, essentially due to a lack of general mathematical methods adapted to the biological context. In this thesis, we build mathematical tools that are well adapted to middle-out approaches, namely they can be used to capture the "just enough details" of the biochemical systems.

Today, models can have hundreds of variables and their analysis becomes difficult if not impossible. Moreover, these models can have parameters uncertainty and some mechanism could be still missing to understand the reality. Thus, model reduction becomes an important problem in biology. There exist several methods to reduce dynamic systems coming from chemical reaction networks. Methods based on conservation laws, exact lumping [Feret et al., 2.1. INTRODUCTION 2009], or symmetry [START_REF] Rowley | Reconstruction equations and the karhunen-loève expansion for systems with symmetry[END_REF], that use only the formal representation of the system. Methods based on timescale separation, such as computational singular perturbation [START_REF] Lam | The csp method for simplifying kinetics[END_REF], or intrinsic low dimensional manifold [START_REF] Maas | Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space[END_REF]. However, the last two methods, numeric, perform a reduction locally and are based on simulation. So, they are dependant of the parameters and possibly not robust, and they do not provide all the possible reductions.

The most known reduction of systems biology is the Michaelis-Menten model [START_REF] Johnson | [END_REF]Goody, 2011, Briggs andHaldane, 1925], with two different processes depending on the values concentration of the species. These reduction are known as quasi-equilibrium (QE), and quasi-steady state (QSS). Recently, new ways to detect QE reactions and QSS species has been proposed in [START_REF] Radulescu | Reduction of dynamical biochemical reactions networks in computational biology[END_REF], based on singular perturbation or on tropical geometry.

Using tropical geometry, we are able to detect species order concentration and time scale reactions, based on the tropical equilibration problem, to reduce the system using singular perturbation results. This reduction is robust w.r.t the parameters and the species concentrations, and offer several reduction, each reduction resulting from a branch of the tropical prevariety computed for the tropical equilibration problem.

My PhD is about formal methods for analysing biochemical reaction network models. My focus is on methods coping with parametric uncertainty, whose predictions are valid for parameters contained within intervals or whose orders of magnitudes are known. The thesis splits in two parts: one deals with interval methods, the other is about tropical methods.

In the first part of my thesis, I introduce a new algorithm based on interval arithmetics, constraint methods, and optimization, that allows to test homeostasis, defined as dependence of steady states on the parameters. This concept includes absolute concentration robustness that has been introduced elsewhere. I also show how to use the same kind of methods in order to test if biochemical network models have a single or multiple steady states.

In the second part of my thesis, I present two novel contributions to model reduction methods.

The first contribution concerns the concept of approximated conservation laws. A method for model reduction combining tropical geometry and singular perturbation results have been recently proposed by our team and others, but there are some cases when this method fails. One cause of failure is when the fast subsystem defined by the tropical method has conservation laws, that are not conserved by the full system. This case covers the "quasi-equilibrium" situation, well known in biochemistry. Then, we use these approximated conservation laws to reduce the model. We have proven that approximated conservation laws are slower than species involved in it and can then be used for model reduction. We also provide algorithmic results for finding these approximated conservation laws (linear, monomial or polynomials) and for testing hyperbolicity conditions needed for the application of singular perturbations techniques.

Another direction is to generalise the full tropical equilibrations, previously introduced by our team and others, into partial tropical equilibrations. The concept of partial equilibrations allows to identify reduced models valid in regions of the phase and parameter space where there are no full equilibrations. Heuristically, the concept is justified by the fact that slow species of multiple time scales models don't need to be equilibrated in the model reduction process. I provide algorithmic methods for computing the polyhedral complex of partial equilibrations and discuss how these can be used for rescaling and reducing biochemical CHAPTER 2. OVERVIEW OF THESIS AND MODELS reaction models.

Biochemical models

In this chapter, we introduce the chemical reaction network models used throughout the thesis, as well as and their links with mathematics.

Definition 2.1. A chemical reaction network (CRN) is a triple (X , C, R) of sets such that:

• X = {A 1 , ..., A n } is a set of n species, where A i (i = 1, ..., n) is identified with the ith unit vector. • C = {C 1 , ..., C m } is a set of m complexes, such that C i ∈ N n (i = 1, ..., m) is a non- negative linear combination of species, • R ⊂ C × C is a set of reactions.
Usually, reactions are denoted by C i → C j and the set of reaction is enough to describe a CRN since complexes and species can be extracted from them.

Remark 2.2. Generally, we will denote x 1 , ..., x n the species concentration of A 1 , ..., A n

To a CRN we can associate a dynamical system. For example, we can associate an ordinary differential equations (ODE) system, where the variable are concentrations of the species and each reaction plays a role in the speed of variation of the concentrations. In order to associate a dynamical system to a CRN, one needs a set of rate laws that compute the reaction rates as functions of the concentrations of the reactants. The usual choice is the mass action law, that was formulated in the context of chemical equilibria over the period 1864-79 by the Norwegian scientists Cato M. Guldberg and Peter Waage [Lund, 1965].

Definition 2.3. A CRN follows the mass action law if for each reaction, the reaction rate is proportional to the product of the concentrations of the reactant molecules.

One should keep in mind that the mass action law applies only to elementary reactions, i.e. to reactions that can not be decomposed into simpler ones.

Example 2.4. The following model, designed by Michaelis and Menten in 1913 [START_REF] Johnson | The original michaelis constant: translation of the 1913 michaelis-menten paper[END_REF], is a CRN following the mass action network:

S + E k1 k2 ES k3 -→ E + P ẋ1 = -k 1 x 1 x 3 + k 2 x 2 ẋ2 = k 1 x 1 x 3 -k 2 x 2 -k 3 x 2 ẋ3 = -k 1 x 1 x 3 + k 2 x 2 + k 3 x 2 ẋ4 = k 3 x 2 (2.1) where x 1 = [S], x 2 = [ES], x 3 = [E], x 4 = [P ].
This model describe the kinetics of an enzyme acting on a substrate and is one of the most common model. It is also a simple example of model reduction, as we will see later.

BIOCHEMICAL MODELS

In this thesis, unless specified otherwise, we use a system of polynomial ODEs to describe the dynamics of a CRN with n species A 1 , . . . , A n whose concentrations are x = (x 1 , . . . , x n ), as following:

ẋ1 = f 1 (k, x), . . . , ẋn = f n (k, x) (2.2)
where

f i (k, x) = r j=1 S ij k j x αj ∈ Z[k, x] = Z[k 1 , . . . , k r , x 1 , . . . , x n ],
(2.3)

x αj = x αj1 1 . . . x αj n
n , k j represents a rate constant, and r is the number of reactions (which is also the number of distinct k j x αj ). The variables k = (k 1 , . . . , k r ) take values in R * + and the integer coefficients S ij form a matrix S = (S ij ) ∈ Z n×r which is called the stoichiometric matrix. We denote the vector of right hand sides of (2.2) by

F (k, x) = (f 1 (k, x), f 2 (k, x), . . . , f n (k, x)) T .
One can see that in this system, coefficient are splitted into two parts, the integer coefficients S ij provided by the stoichiometric matrix, and the rate constant k j depending of the reaction implied. In fact, all polynomial systems can be described as in (2.3). Indeed, if the system is given as a symbolic one, it is already in this form. And in the case where polynomial systems are given with numeric values, hiding the values of the stoichoimetric matrix and the parameters, then we can use the following algorithm 1 to describe it as in (2.3). The algorithm exploits that some of these numeric values are dependent over the integers, and can then be interpreted as resulting from the same reaction, but with a different integer stoichiometric coefficient. Then, we can extract from this the stoichiometric matrix S = (S ij ) using algorithm 2.

Theorem 2.5. Any system of polynomial ODEs

ẋ1 = f 1 (k, x), . . . , ẋn = f n (k, x) where f i (k, x) ∈ Z[k, x]
is polynomial in k and x, homogeneous of degree one in k = (k 1 , . . . , k r ), can be written as (2.2) for an appropriate matrix S.

Proof. A constructive proof is given by Algorithm 2.

If the stoichiometric matrix doesn't have full rank, then we can find a conservation law, which is another important property in dynamical systems.

Definition 2.6. A conservation law of an ODE system is a quantity that is constant over time, we call this constant a total amount. More precisely, a function φ

(k, x) is a conservation law if it is a first integral of the system (2.2), i.e. if n i=1 ∂φ ∂x i (k, x)f i (k, x) = 0 for all x.
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Algorithm CompareAndSplitCoefficients( ẋ = m h=1 B h x α h ) for h=1 to m do for i=1 to n do for j=1 to i do if B ih /B jh ∈ Z then s ih := sign(B ih )|B ih /B jh |, k ih := B ih /s ih , s jh := sign(B jh ), k jh := B jh /s jh else if B jh /B ih ∈ Z then s jh := sign(B jh )|B jh /B ih |, k jh := B jh /s jh , s ih := sign(B ih ), k ih := B ih /s ih else s jh := sign(B jh ), k jh := B jh /s jh , s ih := sign(B ih ), k ih := B ih /s ih return ẋ as in (2.2)
Algorithm 1: This algorithm allow to transform a numeric system into a symbolic one as in (2.3). For each x α h , coefficients are compared and split such that the coefficients k ih ∈ R * + of this x α h are equals or independent over the integers. Here, m represents the number of distinct α h , n is the number of equations, B h = (B 1h , ..., B nh ) T , α h = (α h1 , ..., α hn ). One can note that r in (2.3) is greater than m, and s ih are in fact coefficients of S for a suitable index.

It is generally requested that φ does not depend on k, allowing to consider it despite the lack of precision on the model parameters. In most of the cases, conservation laws are linear and can be found as the left kernel of the stoichiometric matrix. Indeed, any vector in the left kernel of S represents a linear conservation law, independent of k.

Example 2.7. The stoichiometric matrix of the Michaelis-Menten model is the following :

    -1 1 0 1 -1 -1 -1 1 1 0 0 1    
This allow us to find two conservation laws:

c 1 = x 2 + x 3 , and c 2 = x 1 + x 2 + x 4 (2.4)
In biochemical systems, linear conservation laws with positive coefficients can be interpreted as cycles of transformations of a molecule, induced for example by multiple phosphorylations and dephosphorylations. When a linear conservation law have both negative and positive coefficients, the species with negative coefficients increase or decrease at the same time as the species with positive coefficients. It could be understand as two cycles of transformations using the same set of reactions as in the following example

∅ → x 1 + x 2 → x 1 + x 3 → ∅
which has one linear conservation laws, x 1 -x 2 -x 3 . However, these conservation laws are often the results of a difference between positive conservation laws as in the following
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Input: An ODE system whose r.h.s. are sums of rational monomials in k and x, homogeneous of degree one in k, with integer coefficients:

ẋi = f i (k, x) = ri j=1 z ij k ij x αij where z ij ∈ Z, α ij ∈ Z n , k ij ∈ {k 1 , . . . , k r }, for 1 ≤ i ≤ n, 1 ≤ j ≤ r i . Output: An integer coefficient matrix S.
1: Compute a list of distinct monomials

{M j = k j x αj , 1 ≤ j ≤ r} = n i=1 ri j=1 {k ij x αij }. Two monomials k ij x αij , k i j x α i j are distinct if α ij = α i j or k ij = k i j . 2: for i := 1 to n do 3:
for j := 1 to r do 4:

S ij = 0 5: for l := 1 to r i do 6: if k il x α il = M j then 7: S ij = S ij + z il 8: end if 9:
end for 10: end for 11: end for Algorithm 2: Smatrix example, which is a modification of the previous one

x 1 → x 2 + x 3 → x 2 + x 4 → x 5
which has two linear conservation laws, x 2 -x 3 -x 4 and 2x 1 + x 2 + x 3 + x 4 + 2x 5 . But the conservation law x 2 -x 3 -x 4 is the difference between the conservation law 2x 1 + x 2 + x 3 + x 4 + 2x 5 and the conservation law 2x 1 + 2x 2 + 2x 5 . Conservation laws play an important role in modelling as they indicate a constraint on the dynamics and have often a interpretation. For example, the Noether's theorem [Noether, 1918] associates conservation laws to symmetries. Also, a model with a linear conservation law doesn't have a Jacobian matrix of full rank, and adding the conservation law to the system completes it. Finally, conservation laws can help to find steady states of a model by reducing the search space.

In order to analyse a model, it is important to know what kind of behavior it has. An angle of attack to do this is to study the steady states of the model. Definition 2.8. A steady state of an ODE system E : ẋ = F (k, x) is a solution of the equation ẋ = 0.

A system is said monostationary if this equation admits only one solution. If this equation admit more than one solution, the system is said multistationary.

One can note that these properties depend on the parameters, as the following example shows [START_REF] Conradi | Identifying parameter regions for multistationarity[END_REF]:

Example 2.9. The following mass action CRN

HK 00 κ1 -→ HK p0 κ2 -→ HK 0p κ3 -→ HK pp HK 0p + RR κ4 -→ HK 00 + RR p HK pp + RR κ5 -→ HK p0 + RR p RR p κ6 -→ RR
is multistationarity when κ 3 > κ 1 and monostationarity when κ 3 ≤ κ 1 .

When κ 3 = κ 1 , we have a bifurcation: the behavior of the system changes. A common bifurcation is the saddle-node bifurcation that the we can found in the hysteresis loop, illustrated by the following figure 2.1. As finding multistationarity is a important problem in mathematical biology, several results exist in this direction, such as the deficiency zero theorem [Feinberg, 1987], deficiency one theorem [Feinberg, 1987,Feinberg, 1988], homotopy continuation methods [START_REF] Sommese | The Numerical solution of systems of polynomials arising in engineering and science[END_REF], and real triangularization and cylindrical algebraic decomposition methods [START_REF] Bradford | Identifying the parametric occurrence of multiple steady states for some biological networks[END_REF].

One can note that some models do not admit any steady state. In this case, we are generally searching for a limit cycle if there is any.

In the chemical reaction networks theory, the deficiency is an important concept, widely used, that made links between dynamic properties of a system and structure of the model. Deficiency is used in the deficiency theorems to prove the existence and uniqueness of steady states, but also to test absolute concentration robustness [START_REF] Shinar | Structural sources of robustness in biochemical reaction networks[END_REF]. So, we give here an overview of the concept.

BIOCHEMICAL MODELS

Definition 2.10. A linkage class is a connected component of the CRN. A strong linkage class is a strongly connected component (ie. there exist a pathway between each couple of complexes in the strong linkage class). A terminal strong linkage class T is a strong linkage class in which there is no reaction starting from a node (i.e. a complex) of T and finishing in a node in another strong linkage class. Nodes belonging to terminal strong linkage classes are called terminal, whereas the other are called non-terminal.

The deficiency of a CRN is δ = m -l -s, where

• m is the number of complexes,

• l is the number linkage classes,

• s is the dimension of the stoichiometric space (s = rank(S)).

Example 2.11. ES and E + P . E + P is terminal.

The deficiency of the model in example 2.9 is 10 -4 -4 = 2. All complexes are a strong linkage class.

It should be noted that an isolated strong linkage class is terminal, so we have a model x 1

x 2 , the whole model is a terminal strong linkage class.

Definition 2.12. We say that two nodes differ only in species S if the differences between the two nodes is a nonzero multiple of a single species S.

The complexes A + B and B differ only in species A.

Definition 2.13. A biological system shows absolute concentration robustness (ACR) for an active molecular species if the concentration of that species is identical in every positive steady state the system might admit.

Theorem 2.14 ( [START_REF] Shinar | Structural sources of robustness in biochemical reaction networks[END_REF]). Consider a mass-action system that admits a positive steady state and suppose that the deficiency of the underlying network is one. If, in the network, there are two non-terminal nodes that differ only in species S, then the system has absolute concentration robustness in S.

Chapter 3

Interval methods for Homeostasis and multistationarity

Introduction

In the 19th century, Claude Bernard introduced the concept of homeostasis that plays a crucial role in understanding the functioning of living organisms. He distinguished the "milieu intérieur" from the "milieu extérieur" [Bernard, 1879] and formulated four conditions that need to be roughly constant in the "milieu intérieur": humidity, aeration, heat, and chemical constitution. One of the most classical example of homeostasis is the body temperature that remains roughly constant despite large changes of external temperature. In chemical reaction networks, constancy of calcium or iron concentrations are other examples of homeostasis.

More recently, Martin Golubitsky and Ian Stewart define in their paper [START_REF] Golubitsky | Homeostasis, singularities, and networks[END_REF] the concept of homeostasis as follows: "Homeostasis occurs in a biological or chemical system when some output variable remains approximately constant as one or several input parameters λ varies over some intervals". Using input-output functions, they propose the definition of infinitesimal homeostasis, based on the singularity theory. In their definition, the zero derivative of the input-output function is a locus of infinitesimal homeostasis and can be used to find homeostasis in gene regulatory networks [START_REF] Antoneli | Homeostasis in a feed forward loop gene regulatory motif[END_REF].

Several other concepts such as robustness, resilience or viability are closely related to homeostasis and sometimes used with overlapping meaning. Robustness refers to the lack of sensitivity of temporal and static properties of systems with respect to parameters and/or initial conditions variation, thus encompassing homeostasis [START_REF] Gorban | Dynamical robustness of biological networks with hierarchical distribution of time scales[END_REF], Rizk et al., 2009, Barr et al., 2019]. Resilience or viability has a more global, dynamical significance, meaning the capacity of systems to recover from perturbations via transient states that stay within bounds [Aubin, 2009].

The absolute concentration robustness (ACR) [START_REF] Shinar | Structural sources of robustness in biochemical reaction networks[END_REF] is another way to study homeostasis. It is defined by the following statement: "A biological system shows ACR for an active molecular species if the concentration of that species is identical in every

SETTINGS AND DEFINITIONS

positive steady state the system might admit." This means that the initial conditions of the system do not impact the studied concentration species when the steady state is reached.

Using input-output function as well, we will define the k hom -homeostasis, an interval point of view of homeostasis that include ACR, and present an algorithm dedicated to this problem. Modern interval arithmetic have been developed by Moore [Moore, 1966] and is used to cope with error analysis and parameter uncertainty [START_REF] Tucker | Estimating parameters for generalized mass action models using constraint propagation[END_REF], Markov, 2010]. Eldon Hansen provided a contribution to global optimisation [START_REF] Hansen | Global optimization using interval analysis: revised and expanded[END_REF], Hansen, 1979, Hansen, 1980] using interval arithmetic. Then, the Branch and Bound algorithm, used for discrete and combinatorial optimisation problems, have been generalised using interval arithmetic to deal with continuous values. Today, there are several efficient solvers and optimizers based on interval arithmetic [Araya et al., 2014, Tawarmalani and[START_REF] Tawarmalani | A polyhedral branch-and-cut approach to global optimization[END_REF].

Another important problem in systems biology is multistationarity, which means that the system has multiple steady states and possible outputs, at constant parameters. Considerable effort has been devoted to its study, with a variety of methods: numerical, such as homotopy continuation [START_REF] Sommese | The Numerical solution of systems of polynomials arising in engineering and science[END_REF], symbolic, such as real triangularization and cylindrical algebraic decomposition [START_REF] Bradford | Identifying the parametric occurrence of multiple steady states for some biological networks[END_REF], or topological [Feinberg, 1987, Feinberg, 1988, Conradi et al., 2017], such as deficiency zero theorem or deficiency one theorem that are more closely related to monostationarity. However, as discussed in [START_REF] Bradford | Identifying the parametric occurrence of multiple steady states for some biological networks[END_REF], numerical errors in homotopy based methods may lead to failure in the identification of the correct number of steady states, whereas symbolic methods have a double exponential complexity in the number of variables and parameters.

Using the same methodology as for homeostasis, we provide a novel method for testing the multistationarity of CRN. Interestingly, our approach emphasizes a duality relationship between homeostasis and multistationarity; the former means constant output at variable input, whereas the latter means multiple output at constant input.

Our interval point point of view of these two problems lead us to find an algorithmic approach using the Ibex library (Interval Based EXplorer), an open source C++ library including a solver IbexSolve and an optimizer IbexOpt. Using this library, we have developed an algorithm to find homeostatic species as well as multistationarity. However, if the same algorithm can solve both of these problems, it is generally more efficient to use directly the solver IbexSolve when testing multistationarity.

Based on the idea that finding k hom -homeostasis is linked to finding the minimal box that contains all the solutions of the constrained problem, our algorithm IbexHomeo applies successive optimization problems and compares the bounds obtained. In parallel, it is the first (portfolio) distributed variant of the IbexOpt Branch and Bound optimizer, where several variants of the solver are run on different threads and exchange information.

As a future improvement to studying homeostasis, a dedicated algorithm that finds the minimal box containing all the solutions of the constrained problem is currently developed.

Settings and definitions

We consider a set of species variables x 1 , ..., x n , representing species concentrations, a set of parameters k 1 , ..., k r , representing kinetic constants, and a set of differential equations :

dx 1 dt = f 1 (x 1 , ..., x n , k 1 , ..., k r ), . . . , dx n dt = f n (x 1 , ..., x n , k 1 , ..., k r ). (3.1) CHAPTER 3.

INTERVAL METHODS FOR HOMEOSTASIS AND MULTISTATIONARITY

We are interested in systems that have steady states, i.e. such that the system f 1 (x 1 , ..., x n , k 1 , ..., k r ) = 0, . . . , f n (x 1 , ..., x n , k 1 , ..., k r ) = 0 (3.2) admits real solutions for fixed parameters k 1 , . . . , k r . For biochemical models, x 1 , ..., x n represent concentrations, and in this case we constrain our study to real positive solutions. Generally, it is possible to have one or several steady states, or no steady state at all. The number of steady states can change at bifurcations. For practically all biochemical models, the functions f 1 , . . . , f n are rational, and at fixed parameters (3.2) defines an algebraic variety. The local dimension of this variety is given by the rank defect of the Jacobian matrix J , of elements J i,j = ∂fi ∂xj , 1 ≤ i, j ≤ n.When J has full rank, then by the implicit function theorem, the steady states are isolated points (zero dimensional variety) and all the species are locally expressible as functions of the parameters:

x 1 = Φ x1 (k), . . . , x n = Φ xn (k).
(3.

3)

The functions Φ y were called input-output functions in [START_REF] Golubitsky | Homeostasis, singularities, and networks[END_REF], where the input is the parameters k i and the output variable y is any of the variables x i , 1 ≤ i ≤ n. Also in the full rank case, a system is called multistationary when, for fixed parameters there are multiple solutions of (3.2), i.e. multiple steady states.

J has not full rank in two cases. The first case is at bifurcations, when the system output changes qualitatively and there is no homeostasis. The second case is when (3.1) has l ≤ n independent first integrals (conservation laws), i.e. functions of x that are constant on any solution of the ODEs (3.1). In this case the Jacobian matrix has rank defect l everywhere and steady states form a l-dimensional variety. For instance, for many biochemical models, there is a full rank constant matrix C such that n j=1 C ij f j (x 1 , ..., x n , k 1 , ..., k r ) = 0, for all x 1 , ..., x n , k 1 , ..., k r , 1 ≤ i ≤ l. In this case there are l linear conservation laws, i.e. n i=1 C ij x j = c i , 1 ≤ i ≤ l are constant on any solution. Here c i depends only on the initial conditions, c i = n i=1 C ij x j (0). In biochemistry, linear conservation laws occur typically when certain molecules are only modified, or complexified, or translocated from one compartment to another one, but neither synthesized, nor degraded. The constant quantities c i correspond to total amounts of such molecules, in various locations, in various complexes or with various modifications.

A biological system is characterized not only by its parameters but also by the initial conditions. For instance, in cellular biology, linear conservation laws represent total amounts of proteins of a given type and of their modifications, that are constant within a cell type, but may vary from one cell type to another. Therefore we are interested in the dependence of steady states on initial conditions,represented as values of linear conservation laws. Because conservation laws can couple many species, steady states are generically very sensitive to their values. ACR represents a remarkable exception when steady states do not depend on conservation laws. In order to compute steady states at fixed initial conditions, we solve the extended system (3.4) where c i are considered as extra parameters, and f 1 , . . . , f n-l are linearly independent functions. In this case, excepting the degenerate steady states with zero concentrations discussed

f 1 (x 1 , ..., x n , k 1 , ..., k r ) = 0, . . . , f n-l (x 1 , ..., x n , k 1 , ..., k r ) = 0, C 11 x 1 + . . . + C 1n x n = c 1 , . . . , C l1 x 1 + . . . + C ln x n = c l ,

CONSTRAINT METHODS FOR INTERVAL ARITHMETIC

at the end of this section, the Jacobian of the extended system has full rank and one can define again input-output functions as unique solutions of (3.4). A system is multistationary if at fixed parameters there are multiple solutions of (3.4). Homeostasis is defined using the input-output functions.

Definition 3.2.1. We say that y is a k hom -homeostatic variable if in the path of steady states given by Φ y we get :

max p∈P (Φ y (p)) min p∈P (Φ y (p)) ≤ k hom ,
where k hom ≥ 1. We take k hom = 2 by default, but we can choose a smaller k hom for small parameter variation. P represents the space of parameters (we take a P compact for our examples), and p is a point inside P . So, we consider homeostasis of a variable y for any change of parameters in a domain P . This is an illustration of homeostasis using interval arithmetic when k hom ≥ 1.163. Parameter variation

Response

We exclude from our definition trivial solutions x i = 0 obtained when

f i (x 1 , ..., x n , k 1 , ..., k r ) = x ni i g i (x 1 , ..., x n , k 1 , ..., k r ),
where n i are strictly positive integers, g i are smooth functions with non-zero derivatives ∂f i /∂x i for x i = 0. These solutions persist for all values of the parameters and are thus trivially robust. In this case we replace the problem f i = 0 by the problem g i = 0 that has only non-trivial solutions x i = 0. 

Constraint methods for interval arithmetic

[x] = max i (w([x i ])) where w([x i ]) = x i -x i .
Interval arithmetic [Moore, 1966] has been defined to extend to IR the usual mathematical operators over R (such as +, •, /, power, sqrt, exp, log, sin). For instance, the interval sum is defined by

[x 1 ] + [x 2 ] = [x 1 + x 2 , x 1 + x 2 ].
When a function f is a composition of elementary functions, an extension of f to intervals must be defined to ensure a conservative image computation.

Definition 3.3.2. (Extension of a function to IR) Consider a function f : R n → R.

[f ] : IR n → IR is said to be an extension of f to intervals iff:

∀[x] ∈ IR n [f ]([x]) ⊇ {f (y), y ∈ [x]} ∀x ∈ R n f (x) = [f ]([x, x])
The natural extension of a real function f corresponds to the mapping of f to intervals using interval arithmetic. More sophisticated interval extensions have been defined, based on interval Taylor forms or exploiting function monotonicity [START_REF] Jaulin | Applied Interval Analysis[END_REF].

Example 3.1. It exists different extensions to function, for example we can think about the extension of the function x 2 . If we define it as the product of the same interval [x] × [x], we will get a large enclosure of the real result if negative numbers are implied, since the result of the product is considered as

[min(a × b), max(a × b)], ∀a, b ∈ [x]
, then the result of this extension for the interval [-2, 2] is [-4, 4]. Then, the arithmetic function [x] 2 currently used, that truncate the result below 0 or consider [min(a × a), max(a × a)], ∀a ∈ [x], and gives as result [0,4] 

differs from [x] × [x].
A typical constraint scheme in combinatorial problems is the backtracking algorithm, the interval version of this algorithm is the bisect and evaluate algorithm. A combinatorial problem can be view as the tree of possibilities, each stage of the tree correspond to a variable, and the nodes of this stage is the possible values of the variable. A leaf of the tree represents a combination that can be proposed to solve the problem. For example, if there is four variables, each having three different possibilities, we obtain 3 4 = 81 leafs. The backtracking algorithm explore the tree, descending the tree and checking if the combination is satisfying the constraints. If not, it back to the previous node, suppress the branch, and check another descent. If yes, it continues.

Example 3.2. Consider the following problem of coloration: France, Spain, Swiss, and Italy have to be colored such that two adjacent countries does not have the same color. The following scheme gives the possible colors.

Blue, Red

Blue, Green

Green, Majenta

Green, Yellow

This lead to the following tree in figure 3.1. The bisect and evaluate algorithm starts from an initial box and splits it before checking the constraints by evaluation. The initial box can be considered as the root of the search tree, and the nodes of the tree correspond to sub-boxes. If an evaluation of a sub-box leads to an impossibility to check the constraints (e.g. if we are searching for the roots of a polynomial and the evaluation is strictly positive like [5,10]) then the box is removed from the search space. It stops the bisection when a precision is reached, and the box is considered as a possible solution. -3.75, 16] 0. As the box is too big to be considered as solution, and as each constraint is satisfied, the box is split into two new boxes. Then one of the box is evaluate with the new values of [x] and [y]. If a constraints is not satisfied, the box is removed from the list of boxes stored, and if the box is small enough it is saved as a solution.

Following the same kind of scheme, constraint algorithms are built to cut branches, involving algorithms that propagate the constraints [Bessiere, 2006], such arc consistency [Bessiere, 1991]. In interval constraint algorithm, these constraint propagators work as contractors [START_REF] Chabert | Contractor programming[END_REF]. The Ibex library [Ninin, 2015, Chabert, 2020] (for Interval Based EXplorer) is a C++ library including a solver IbexSolve and an optimizer IbexOpt. The solver follows a Branch and Contract process that achieve two main operations:

• Bisection: The current box is split into two sub-boxes along one variable interval.

• Contraction: Both sub-boxes are handled by contraction algorithms that can remove sub-intervals without solution at the bounds of the boxes.

At the end of this tree search, the "small" boxes of size less than a user-given precision contain all the solutions to the equation system. The process is combinatorial, but the contraction methods are polynomial-time acceleration algorithms that make generally the approach tractable for small or medium-sized systems. Contraction methods are built upon interval arithmetic and can be divided into constraint programming (CP) [Van Hentenryck et al., 1997, Neveu et al., 2015, Benhamou et al., 1999a] and convexification [Tawarmalani andSahinidis, 2005a, Misener and[START_REF] Misener | [END_REF] algorithms.

We present two contractors, HC4 [START_REF] Benhamou | Revising hull and box consistency[END_REF] and ACID [START_REF] Neveu | Adaptive Constructive Interval Disjunction: Algorithms and Experiments[END_REF].

We say that a box B is hull-consistent for a constraint c if the box-hull of the box B intersected with the set ρ c given by the constraint c is the box

B itself, ie. B is hull-consistent if B = hull (ρ c ∩ B).
The goal of HC4 is to obtain a box hull-consistent from the given box, for each constraint of the system. It is described by algorithms 3 and 4, and the figure 3.3.

ACID means Adaptive Constructive Interval Disjunction, this algorithm is a version of 3BCID that is the state of the art in numerical constraint programming. var3BCID, the main procedure in 3BCID, can be described as the following and is illustrated in figure 3.4:

• var3B: It shaves the box with respect to one variable x i , by taking iteratively sub-boxes of width w(x i )/s 3B on the bounds and contract them, and stop when the sub-boxes (left and right) are not excluded. • varCID: The middle box is then subdivised in s cid boxes by subdivising the interval [x i ] s cid times, then each sub-box is contracted.

I k = I k } B ← B else S ←
• var3BCID: At the end, we take the hull of each remaining boxes.

In experiments, s 3B ∈ {5, ..., 20} and s cid ∈ {1, 2}, meaning that the shaving is more used than the global contraction given the CID procedure, which has an important cost but can contract other variables.

In 3BCID, var3BCID is called in two nested loops. An inner loop that calls var3BCID for each variable x i , and an outer loop that calls the inner loop until we reach a kind of fixed point, meaning that no interval is contracted. The main improvement of ACID is to avoid these expensive loops thanks to a learning phase, avoiding dynamically the contraction of some variables, in a single loop "while", by measuring a contraction ratio.

Returning to a general overview, the optimizer IbexOpt follows a Branch and Bound strategy that generalises the Branch and Contract process. Constrained global optimization consists in finding a vector in the domain that satisfies the constraints while minimizing an objective function.

Definition 3.3.3. Let x = (x 1 , ..., x n ) varying in a box [x], and functions f : R n → R, g : R n → R m , h : R n → R p .

Given the system S = (f, g, h, x, [x]), the constrained global optimization problem consists in finding f * :

f * ≡ min x∈[x]
f (x) subject to g(x) ≤ 0 and h(x) = 0.

f denotes the objective function, f * being the objective function value (or best "cost"), g and h are inequality and equality constraints respectively. x is said to be feasible if it satisfies the constraints.

Example 3.4. In the case of homeostasis, the box corresponds to [k, c, x], the constraints correspond to h 1 (k, c, x) = ẋ = 0 to which we add the conservation laws h 2 (k, c, x) = (c j -φ j (k, x)) j = 0, then h(k, c, x) = (h 1 (k, c, x), h 2 (k, c, x)) and g(k, c, x) = 0. The objective function is to minimize x i or -x i . Then we compare the two objective functions to get the result.

USING INTERVAL METHODS TO FIND HOMEOSTASIS

The Branch and Bound solver maintains two bounds lb and ub of f * . The upper bound ub of f * is the best (lowest) value of f (x) satisfying the constraints found so far, and the lower bound lb of f * is the highest value under which it does not exist any solution (feasible point). The strategy terminates when ub -lb (or a relative distance) reaches a user-defined precision f . To do so, a variable x obj representing the objective function value and a constraint x obj = f (x) are first added to the system. Then a tree search is run that calls at each node a bisection procedure, a contraction procedure, but also an additional bounding procedure that aims at decreasing ub and increasing lb. Improving lb can be performed by the contraction procedure: it is given by the minimum value of x obj over all the nodes in the search tree. Improving the upper bound is generally achieved by local numerical methods. Like any other Branch and Bound method, improving the upper bound ub allows the strategy to eliminate nodes of the tree for which ub < x obj .

Remark 3.5. Interval Branch and Bound codes can solve the optimization problem defined in Def. 3.3.3, but they sometimes require a significant CPU time because of the guarantee on the equality constraints. A way to better tackle the problem in practice is to relax equalities h(k, c, x) = 0 by pairs of inequalitiesh ≤ h(k, c, x) and h(k, c, x) ≤ + h , where h is a user-defined positive parameter. Therefore, in practice, interval Branch and Bound codes generally compute a feasible vector v = (k c x) satisfying the constraints g(k, c, x) ≤ 0 and

-h ≤ h(k, c, x) ≤ + h such that |f * -f (k, c, x)| ≤ f .

Using interval methods to find homeostasis

Using the definition 3.2.1, we can think of the homeostasis problem as to finding the minimal box containing all the steady-states of the system, or in constraint language, all the feasible solutions of the constrained system. Now, we can easily think of three ways to solve the problem.

The first one is to use the solver IbexSolve, get all the steady-states and make the hull of these solutions. However, this solution have two main problems. The first one is that we need to find, and store, each solution, that can easily lead to a grow in memory. The second one is that the solver doesn't cope very well with high complexity since there is no major cut in the searching tree. It will not be developed furthermore here.

The second solution is to use the optimizer IbexOpt to find each bound of the box. This solution has been tested with some modifications and seems to be useful for small and medium size models.

The third solution is to make a dedicated algorithm for this problem, which has several advantages. First, an algorithm dedicated to the problem of finding a minimal box containing all the solutions of a problem has a broader interest and can be used for for others problems than homeostasis. Second, such an algorithm will probably be more performing than the previous solutions, at least if we use the same kind of modifications.

IbexHomeo, a multiple bi-optimization process

Since we want to compute the minimum and the maximum value of x i = Φ xi (p), the homeostasis detection amounts to two optimization problems, one minimizing the simple objective function x i , and one maximizing x i , i.e. minimizing -x i . The two values returned are finally compared to decide the x i homeostasis. It is useful to consider that minimizing and maximizing x i are somehow symmetric, allowing the strategy to transmit bounds of x i from one optimization process to the dual one. These bounds can also be compared during optimization to stop both optimizations if they give enough information about homeostasis. Indeed, an optimizer minimizing x i computes [ln, un] min(x i ), where ln and un are lb and ub of the objective function x i . An optimizer maximizing x i computes [ux, lx] max(x i ), where ux and lx are -ub and -lb of the objective function -x i . As lx and ln are bounds for which there is no solution above and below respectively, lx/ln is an overestimate of the "distance" between any two feasible values of x i , and a small value states that the species is homeostatic (see Def. 3.2.1). Conversely, ux/un is an underestimate of any two feasible values distance, and ux/un > k hom asserts that the species is not homeostatic. This TestHom decision procedure is implemented by Algorithm 5. The bi-optimization described above runs on the system S corresponding to the system (3.4), where the equations f j (k, c, x) = 0 are relaxed by inequalitiesh ≤ f j (k, c, x) ≤ + h ; the parameters k and c can vary in a box [p] and are added to the set of processed variables. In our problem, it is important to notice that a steady state is expected for every parameter vector p ∈ [p] (this is not valid, for instance, in the neighborhood of a saddle-node bifurcation, which should be avoided by re-defining [p]). We exploit this key point by also running minimization and maximization of x i on a system S , corresponding to the system S where the parameters have been fixed to a random value p ∈ [p], with the hope that reducing the parameter space allows a faster optimization. Indeed, if the size of a problem is often considered by the number of variables, but the number of parameters is generally more important, and our problem need to cope with this dimensional explosion, and the computed values for fixed parameters constitute feasible points for the initial problem (i.e., with parameters that can vary) and can fasten the bi-optimization algorithm described above. Recall indeed that finding feasible points enables to improve the upper bound ub of f * and to remove from the search tree the nodes with a greater cost.

Overall, homeostasis detection of species x i is performed by Algorithm 6.

All the optimization processes are run in parallel and exchange newly found feasible points stored in F P . Every call to Minimize on S can start with an initial upper bound initialized with the best feasible point found so far (min xi (F P ) or max xi (F P )).

The minimization processes on S are generally fast so that several ones can be called in a loop (with different parameters fixed to random values) until the end of the main minimization processes on S.

It is important to understand that IbexSolve and IbexOpt are generic strategies. That

IBEXHOMEO, A MULTIPLE BI-OPTIMIZATION PROCESS

Algorithm Bi-Optimize(x i , t, S = (x × p, [x] × [p], system (3.4), h ), P = ( f , t),F P )
Execute in parallel until timeout t: (un, ln, F P ) ← Minimize(x i , S, min xi (F P ), P ) (ux, lx, F P ) ← Minimize(-x i , S, max xi (F P ), P ) while true do S ← FixRandomParameters(S) F P ← Minimize(x i , S , +∞, P ) return (un, ln, ux, lx, F P ) Algorithm 6: The double optimization process on a given species x i . P is the set of solver parameters: f is the user-defined precision on the objective function value, t is the timeout required. is, different procedures can be selected for carrying out the choice of the next variable interval to bisect (called branching heuristic) or for selecting the next node to handle in the search tree. It is known that some heuristics in general useful can be sometimes bad for some specific problems, and it was observed in our preliminaries experiments that it was regularly the case in our tested models. Therefore we propose a portfolio parallelization strategy where different processes (threads) run Branch and Bound algorithms using different branching heuristics (called cutters hereafter) or node selection heuristics (called nodeSel). This choice is probably not CPU efficient, but can lead to a human gain time, when some problems are locked for hours in a set of heuristics and only a couple of second for another one. These threads can communicate their bounds to each other, reducing the risks of an ineffective strategy.

The branching heuristics used in the different threads are all the variants of the smear branching strategy described in [Trombettoni et al., 2011a] and [START_REF] Araya | lsmear: a variable selection strategy for interval branch and bound solvers[END_REF]. As explained before, the natural extension of a function f corresponds to the mapping of f to intervals. We can define the smear function, that reflects an impact of x i on f j as:

smear(x i , f j ) = ∂f j ∂x i N ([x]) w([x i ]).
Then, we can define:

smearSum(x i ) = fj smear(x i , f j ), smearM ax(x i ) = max fj (smear(x i , f j )).
To get a relative impact, a variant of smear is used, called smearRel:

smearRel(x i , f j ) = smear(x i , f j ) x k ∈x smear(x k , f j )
.

Then, we can define:

smearSumRel(x i ) = fj smearRel(x i , f j ), CHAPTER 3. INTERVAL METHODS FOR HOMEOSTASIS AND MULTISTATIONARITY smearM axRel(x i ) = max fj (smearRel(x i , f j )).
The lsmear [START_REF] Araya | lsmear: a variable selection strategy for interval branch and bound solvers[END_REF]] is a more complex strategy that use the Lagrangian of the linearized constraints if an optimum (for the linearized constraints) is found using a simplex method, else it use the smearSum strategy.

Strategies used to select the next node to be handled are described in [START_REF] Neveu | Node selection strategies in interval branch and bound algorithms[END_REF]. The cutting strategy lsmear is generally more efficient than the others, and will be more often used.

In practice, we should modify a call to Minimize as follows:

Minimize(x i , S, P, cutters, nodeSel)

where cutters denotes a set of branching heuristics and nodeSel denotes a set of node selection heuristics. This routine calls |cutters| × |nodeSel| threads, each of them corresponding to one Branch and Bound using one branching heuristic in cutters and one node selection heuristic in nodeSel. These threads work in the same time on the same problem, but they build different search trees. Therefore one optimizer can compute an lb value better (greater) than the others. In this case, it sends it to the other threads.

Finally, because we want to determine all the homeostatic species, we run the double optimization n times, for every species x i , as shown in Algorithm 7. After a first call to a FirstContraction procedure that contracts the domain [x] × [p], IbexHomeo calls two successive similar loops of different performance. The first loop iterates on every species x i and calls on it the double optimization function Bi-Optimize. The optimization threads are all run using the lsmear branching heuristic and have a "short" timeout in order to not be blocked by a given species computation. If a bi-Optimization call on x i reaches the timeout t without enough information about homeostasis, x i is stored in L and the computation on subsequent species continues and can learn (and store in F P ) new feasible points than can be exploited by other optimization processes. Indeed, the feasible region defined by S is the same for each optimization. Therefore the second loop is similar to the first one, but with a greater timeout and more threads in parallel running the optimization with more various branching heuristics.

To summarize, the IbexHomeo algorithm creates communicating threads for:

• exploiting the duality min/max of the bi-optimization related to a given species homeostasis detection,

• finding feasible points more easily using the existence of a solution for all parameters,

• running a portfolio of similar Branch and Bound algorithms using different heuristics.

Multistationarity

IbexSolve can find all the solutions of (3.4) with fixed parameters in a straightforward way. This method is useful for small and medium systems, and sometimes for large systems, depending on the nature of the constraints and the efficiency of the contractors. Also, it provides as output each solution box. This output is easy to read, because (3.4) has always a finite set of solutions.

MULTISTATIONARITY Algorithm

IbexHomeo(S = (x × p, [x] × [p], system (3.4), h ), P = ( f , t, k hom )) cutters ← {lsmear} nodeSel ← {double heap, cell beam search} [x] ← F irstContraction([x], S) F P ← ∅, L ← ∅ foreach x i ∈ x do (un, ln, ux, lx, F P ) ← Bi-Optimize(x i , t, S, P, F P, cutters, nodeSel) [x i ] ← [un, ux] if timeout(t) and TestHom(un, ln, ux, lx, k hom )=0 then L ← L ∪ x i t ← 10 t cutters ← {lsmear, smearSum, smearSumRel, smearM ax, smearM axRel} foreach x i ∈ L do (un, ln, ux, lx, F P ) ← Bi-Optimize(x i , t, S, P, F P, cutters, nodeSel) [x i ] ← [un, ux] return HomeostaticSpecies([x],x,k hom ) Algorithm 7: Main frame of IbexHomeo. k hom ∈ [1, 2] is defined in Def. 3.2.1.
Via the procedure HomeostaticSpecies, the algorithm returns the set of homeostatic variables.

In the case of large systems, it can be easier to answer the question: do we have zero, one, or several steady states? In this case, we can use the strategy used for homeostasis, with fixed parameters, where the problem is reformulated in terms of 2n constrained global optimization problems: for every variable x i , we call twice an optimization code that searches for the minimum and the maximum value of x i while respecting the system (3.4).

• If the system admits at least two distinct solutions, the criterion used in Definition 3.2.1 (using k hom close to 1) will fail for at least one species, i.e. we will find a species x i whose minimum and maximum values are not close to each other.

• If the system admits no solution, the first call to the optimizer (i.e., minimizing x 1 ) will assert it.

• And if we have only one solution, every species will respect the criterion.

Let us give a simple example given by the model 233 in the Biomodels database [Le Novere et al., 2006]. In this model we have two species x and y together with seven parameters (one for the volume of the compartment, four for kinetic rates, and two for assumed fixed species). The system of ODEs is given by:

dx dt = 2k 2 k 6 y -k 3 x 2 -k 4 xy -k 5 x k 1 , dy dt = -k 2 k 6 y + k 3 x 2 k 1 . (3.5)
After replacing the symbolic parameters by their given values, the steady state equations read:

16y -x 2 -xy - 3 2 x = 0, -8y + x 2 = 0. (3.6)
The system (3.6) has two non-zero solutions, given by (6,4.5) and (2,0.5). When the system (3.6) is tested by IbexHomeo (the dedicated strategy for homeostasis) on a strictly positive box (to avoid the trivial solution (0,0)), we find x ∈ [2, 6] andy ∈ [0.5, 4.5]. The homeostasy criterion fails at fixed parameters and we know that we have multistationarity.

Experimental Results

Multistationarity

For benchmarking the multistationarity test we have used DOCSS (Database of Chemical Stability Space, http://docss.ncbs.res.in), a repository of multistationary biochemical circuits. DOCSS contains biochemical circuits with up to four species and up to five catalytic reactions. The catalytic reactions are decomposed into several mass action laws, elementary steps. In DOCSS, the models are specified as short strings of symbols coding for the catalytic reactions and as lists of numeric parameters. These specifications were first parsed to SBML files, then to systems of differential equations and conservation laws using tools developed in [START_REF] Lüders | Computational algebra oriented crn collection of models[END_REF], and transformed into an input file for our algorithms. For the benchmarking we have selected all the 210 DOCSS circuits with 3 species (denoted a,b,c) and 3 catalytic reactions. They correspond to 13 different symbolic systems of equations (the remaining differences concern numerical parameters). The mass action models have up to 6 variables (i.e., the species a,b,c, and several complexes resulting from the decomposition of catalytic reactions into mass action steps). The steady states of all models in DOCSS were numerically computed in [START_REF] Ramakrishnan | Memory switches in chemical reaction space[END_REF]] using a homotopy continuation method [START_REF] Sommese | The Numerical solution of systems of polynomials arising in engineering and science[END_REF]. For all the 3 × 3 models both homotopy and interval IbexSolve methods find 3 or 4 steady states. Although the positions of most of the solutions are almost identical using the two methods (see Figure 3.5), there are a few exceptions where the two solutions diverge. We have investigated each of these exceptions. The result is presented in Table 3.1.

The main reason of discrepancy is a different number of solutions computed by the two methods. Then we have also computed symbolic steady state solutions using the Symbolic Math Toolbox of Matlab R2013b (MathWorks, Natick, USA). The symbolic solver did not find explicit solutions for 1 of these symbolic systems, reduced 3 other models to 4 th degree equations in 3.5 to 47 s, and solved the 9 others in times from 2 to 20 s. The comparison to IbexSolve and homotopy solutions shows that IbexSolve always finds the right number of solutions in a fraction of a second and computes their positions with better precision than the homotopy method. We conclude that discrepancies result from the failure of the homotopy method to identify the right number of solutions.

We have also tested multistationarity on the database Biomodel (https://www.ebi. ac.uk/biomodels/), a repository of mathematical models of biological and biomedical systems, with IbexSolve. Parsed from SBML files to systems of differential equations and conservation laws using tools developed in [START_REF] Lüders | Computational algebra oriented crn collection of models[END_REF], and transformed into a minibex file for our algorithms. On 491 models tested with a timeout on 3600 seconds, 225 passed the test (with 199 models in less than 1 second), 191 have a timeout, and the 75 other models have syntax problems that need to be fixed or are piece-wise systems.

Among the models with a timeout, we can observe that some of them have unused variable, rendering the test inefficient. Indeed, in these models, solutions box are multiplied 

EXPERIMENTAL RESULTS

Homeostasis

The homeostasis tests were benchmarked using the database Biomodels (https://www.eb i.ac.uk/biomodels/). Of the 297 models initially considered (available at this moment), 72 were selected. These models have a unique steady state where every species has a non null concentration. To select them we have considered several tests described in Table 3.2.

The selected models were partitioned into three categories depending on the possible tests: kinetics rates, conservation laws, and volume compartments. We also tested for ACR the three models described in [START_REF] Shinar | Structural sources of robustness in biochemical reaction networks[END_REF] in which the parameters have been fixed to random values. These three models were previously tested for ACR by the Shinar/Feinberg topological criterion, therefore should remain so for any parameter set. As expected, the three models respect the ACR condition.

The initial boxes/domains for the conservation laws and parameters values were determined from the nominal initial conditions and parameter values found in the SBML files. The initial intervals bounds were obtained by dividing and multiplying these nominal values by a factor 10 for total amount of conservation laws and for volume compartments, and by a factor 100 for kinetics parameters, respectively. Homeostasis was tested using Definition 3.2.1. ACR was tested using Definition 3.2.1 with k → 1, i.e. almost zero width intervals, and where the varying input parameters are the conservation laws values (i.e. kinetic rates and volume compartment fixed). The execution time statistics are given in Table 3.3. Table 3.2: The methodology applied to select models to be tested for homeostasis from the initial set of models. A test using IbexSolve guarantees the existence and position of all steady states. Then, each model with a unique steady state having a non zero concentration is selected. Then a COPASI [START_REF] Hoops | Copasi-a complex pathway simulator[END_REF] In homeostasis studies, interval methods perform well for small and medium size models in the Biomodels database. When the size of compartments change, 3 models have homeostasis, with 2 of them presenting species independent from parameter changes. For the kinetical parameters change, 4 models present homeostasis and two of them are of small 3.8. SOME MODELS PRESENTING HOMEOSTASIS Table 3.3: Statistics on the homeostasis test using IbexHomeo. Selected biomodels have been classified for three tests. All of them have been tested w.r.t. the kinetics rates, and each model presenting at least one conservation law has been tested for ACR. Moreover, models with several compartments have been tested w.r.t. their volume. As we have many timeout (computed as 360s per species, with an average dimension of 51.92 (15.48 for species, and 36.4 for parameters)), the time columns consider only models that passed the test. The last two columns indicate the models with ACR in the first test, or with a 2-homeostatic species in other cases (because we get data during computation it may occur that a timeout model gives us a homeostasis). For the initial conditions change, 3 models presents ACR, and two others (BIOMD041 and BIOMD622) homeostasis. Among them, BIOMD413 verifies the conditions of the Shinar-Feinberg theorem [START_REF] Shinar | Structural sources of robustness in biochemical reaction networks[END_REF], but the other two models (BIOMD489 and BIOMD738) do not since the deficiency of their reaction network is different from 1. This confirms that these conditions are sufficient, but not necessary. Our new examples could be the starting point of research on more general conditions for ACR. The low proportion of homeostasis could be explained by the possible incompleteness of the biochemical pathways models. Not only these models are not representing full cells or organisms, but they may also miss regulatory mechanisms required for homeostasis. Negative feed-back interaction is known to be the main cause of homeostasis (although feed-forward loops can also produce homeostasis) [Cooper, 2008]. As well known in machine learning, it is notoriously difficult to infer feed-back interaction. For this reason, many of the models in the Biomodels database were built with interactions that are predominantly forward and have only few feed-back interactions. It is therefore not a surprise that models that were on purpose reinforced in negative feed-back to convey biological homeostasis, such as BIOMD041, a model of ATP homeostasis in the cardiac muscle, or BIOMD433, a model of MAPK signalling robustness, or BIOMD355, a model of calcium homeostasis, were tested positively for homeostatic species.

Some models presenting homeostasis

Biomd614 BIOMD614 is a one species model, with equation:

ẋ = k 1 + k 2 k 3 x -k 1 x -k 2 k 3 x 2 (3.7) MULTISTATIONARITY
At steady state, this leads to:

k 1 + k 2 k 3 x = (k 1 + k 2 k 3 x)x (3.8)
If k 1 = 0, the only solution to (3.8) is x = 1, which is the answer given by IbexHomeo.

The model describes the irreversible reaction kinetics of the conformational transition of a human hormone, where x is the fraction of molecules having undergone the transition, which is inevitably equal to one at the steady state [START_REF] Kamihira | Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13 c nmr[END_REF].

Biomd629

BIOMD629 has 2 reactions and 5 species, provides a 2-homeostasis for kinetics parameters with conserved total amounts fixed, provided by the SBML file. This model does not provide ACR, and the homeostasis found can be explained by the conserved total amounts, that lock species to a small interval. But if we change these total amounts and try again an homeostasis test, it should fail. Indeed this model is given by the equations :

ẋ1 = -k 2 x 1 x 3 + k 3 x 2 ẋ2 = k 2 x 1 x 3 -k 3 x 2 -k 4 x 2 x 4 + k 5 x 5 ẋ3 = -k 2 x 1 x 3 + k 3 x 2 ẋ4 = -k 4 x 2 x 4 + k 5 x 5 ẋ5 = k 4 x 2 x 4 -k 5 x 5 x 4 + x 5 = k 6 x 2 + x 5 + x 3 = k 7 x 2 + x 5 + x 1 = k 8 (3.9)
Here x 3 (receptor), and x 4 (coactivator) have been found homeostatic w.r. , k 8 were closer to each other, there would be no reason for homeostasis. This example corresponds to the homeostasis mechanism known in biochemistry as buffering: a buffer is a molecule in much larger amounts than its interactors and whose concentration is practically constant.

Biomd413

BIOMD413 is a five species model given by equations:

ẋ1 = -k 2 x 1 x 2 + k 1 x 3 + k 10 -k 3 x 1 ẋ2 = -k 2 x 1 x 2 + k 1 x 3 ẋ3 = k 2 x 1 x 2 -k 1 x 3 -k 6 x 3 x 5 + k 4 x 4 + k 5 x 4 ẋ4 = k 6 x 3 x 5 -k 4 x 4 -k 5 x 4 ẋ5 = -k 6 x 3 x 5 + k 4 x 4 + k 7 -k 8 x 5 x 2 + x 3 + x 4 = k 12 (3.10)
which have the following CRN: 3.8. SOME MODELS PRESENTING HOMEOSTASIS

x 1 + x 2 x 3 ← x 4 x 3 + x 5 x 1 ∅ x 5
Computing the deficiency of the network, we obtain 7 -2 -4 = 1. However, there is no non-terminal nodes that differs in a species S. So, the Shinar-Feinberg criterion doesn't apply. We found that the species x 1 have ACR where the others have not.

Biomd489

The biomodel 489 have 35 species and 59 reactions, with 4 conservation laws. The computation of the homeostasis is under a time out, but we found 4 ACR species, when the others seems to be out of homeostasis when we check the solutions found in the first loop (when the constraints are a little more relaxed, see remark 3.5). The deficiency of the model is 20 and can not therefore respect the Shinar-Feinberg criterion.

Biomd738

This model presents homeostasis with respect to the size of the different compartments, and also ACR for 7 of the 11 species involved in the system. The deficiency of the system is 8, and doesn't follow the mass action law. The models is given by the following equations: MULTISTATIONARITY

ẋ1 = k 31 k 25 - k 9 k 31 x 1 (k 6 + x 1 )(1 + x6 k7 ) -k 13 k 31 x 1 + k 2 k 35 (2x 7 + x 8 ) /k 31 ẋ2 = k 4 k 37 x 2 -k 14 k 32 x 2 /k 32 ẋ3 = k 14 k 32 x 2 - k 11 k 33 x 3 (k 6 + x 3 )(1 + x6 k7 ) + k 20 k 37 x 12 /k 33 ẋ4 = - k 10 k 34 x 4 (k 6 + x 4 )(1 + x6 k7 ) + k 3 k 35 (2x 7 + x 8 ) k 34 ẋ5 = k 19 k 35 (x 7 + x 8 ) -k 1 k 35 x 9 x 5 + k 3 k 35 (x 7 + x 8 ) + k 5 k 35 (x 7 + x 8 ) + k 2 k 35 (x 7 + x 8 ) /k 35 ẋ6 = k 35 k 38 -k 35 k 39 x 6 /k 35 ẋ7 = k 8 k 35 x 8 x 9 -(k 19 + k 2 + k 3 + k 5 )k 35 x 7 /k 3 5 ẋ8 = k 1 k 35 x 5 x 9 -k 8 k 35 x 8 x 9 -(k 19 + k 2 + k 3 + k 5 )k 35 x 8 /k 35 ẋ9 = k 9 k 31 x 1 (k 6 + x 1 )(1 + x6 k7 ) + k 11 k 33 x 3 (k 6 + x 3 )(1 + x6 k7 ) + k 10 k 34 x 4 (k 6 + x 4 )(1 + x6 k7 ) + k 12 k 36 x 10 (k 6 + x 10 )(1 + x6 k7 ) -k 1 k 35 x 5 x 9 -k 8 k 35 x 8 x 9 /k 35 ẋ10 = k 5 k 35 (2x 7 + x 8 ) -k 15 k 36 x 10 - k 12 k 36 x 10 (k 6 + x 10 )(1 + x6 k7 ) /k 36 ẋ11 = 0 ẋ12 = k 19 k 35 (2x 7 + x 8 ) -(k 4 + k 20 )k 37 x 12 /k 37 k 41 = k 35 x 5 + k 35 x 7 + k 35 x 8 (3.11)
In this model, x 6 is quite robust to volume compartment and initial concentrations. This is in fact explained by the equation ẋ6 = 0 = k 38 -k 39 x 6 which have for only solution

x 6 = k 38 /k 39 .
Except x 6 , we found that, x 1 , x 2 , x 3 , x 4 , x 10 and x 12 present ACR. All these species are outside the compartment indicated by the volume k 35 , but the process leading to this ACR is not clear. However, there is a structure that could be relevant, x 9 play probably an important role, when x 7 and x 8 play together outside the cycle.

IbexBoxHull, firsts experimentation

As explained before, searching k hom -homeostasis is based on the idea that we are searching for the minimal box containing all the steady-states. Then, it was natural to develop an algorithm dedicated to this problem, that can be used for more general problems.

The scheme of the new algorithm is the following. We begin with an initial box that is immediately contracted and becomes the root of our tree of search. Then we consider two 3.9. IBEXBOXHULL, FIRSTS EXPERIMENTATION boxes: the outer box and the inner box. The outer box begins as the initial box and will decrease over time, the inner box begins as an empty box and will grow over time. Outside the outer box, there is no solution. The inner box grows only when new feasible points are found, and is then the smallest box found that contains solutions. When the inner and outer boxes are equal, then we have found the smallest box containing all the feasible points of the system that are contained in the initial box. It should be noted that we consider two kinds of variables: the species and the parameters. We are searching for a convergence of the two boxes for the species only.

The algorithm follows a Branch and Bound scheme w.r.t the two boxes. The outer box is split (w.r.t species or parameters, currently using a largest first criterion), and then we follow a breadth first search in the sense that we contract each boxes in the bound (w.r.t species) of the outer box (that represent the hull of all boxes in the tree), before continuing.

We are testing a new contractor, based on 3BCID. In this contractor, the shaving occurs for each species on the bounds, and only to shave the bounds. Then, if a box B shares a bound with the outer box, and this bound is given by x i , then the shaving will be done for the species x i , and only in the direction that can decrease x i (in figure 3.4 left, the procedure var3B is called only for the right side of the box). The rest remains the same.

After contraction of the current box

B = ([x 1 ], ..., [x n ], [p 1 ], ..., [p r ]
), we search for feasible points in this box. To do this, we fix the parameter variables to a random value (p 1 , ..., p r ) ∈ [p 1 ] × ... × [p r ], and make a call to ibexsolve with, for initial box, B = ([x 1 ], ..., [x n ], p 1 , ..., p r ). If solutions are found, we double-check the solution with the loupfinder procedure of ibexopt (described in [START_REF] Araya | Upper bounding in inner regions for global optimization under inequality constraints[END_REF][START_REF] Trombettoni | Régions intérieures et linéarisations par intervalles en optimisation globale[END_REF], and then we grow the inner box IB by taking the hull of IB and the new solutions.

Remark 3.6. It can be noted that, as our models come from ODE, we could use a simulation (for fixed parameters) to rapidly find a box where feasible points could be found. The difficulty comes from the fact that the simulation should be interfaced with the rest of the code. But, more importantly, if a model has a long time scale, the simulation should be adapted to this timescale. For example, if a model stabilizes after days, the simulation should cover theses days and not stop after some minutes.

Chapter 4

Tropical geometry for chemical reaction networks

Introduction

In 1920, Niels Bohr introduce the correspondence principle [Bohr, 1920], which states that the behavior of systems described by the theory of quantum mechanics can be reduced to a behavior of classical physics when the quantum numbers are very large or when the quantity of action represented by Planck's constant can be neglected in front of the action implemented in the system.

On another side, George M. Bergman study the limit of the logarithmic deformation of algebraic varieties [Bergman, 1971] and can be today considered as the first work about tropical geometry in our knowledge. These logarithmic deformations are referred as amoebas and Oleg Viro discover that, in the limit, they tend to a piece-wise linear set [Viro, 2001]. In fact, they consider deformations of the classical arithmetic given by

x ⊕ h y = h log exp x h + exp y h and x h y = x + y.
When is not zero, these spaces are isomorphic to the classical R space, but when h tends to 0, we refer to the Maslov dequantization [START_REF] Litvinov | The correspondence principle for idempotent calculus and some computer applications[END_REF]] and the space obtained at the limit is not isomorphic to R, it is the tropical semi-ring. This introduce an analogue of the Bohr's correspondence principle, when h corresponds to the Plank's constant, called the idempotent correspondence principle.

In the tropical arithmetic, we replace addition by minimum (which is idempotent), and multiplication by addition [START_REF] Akian | Max-plus algebra[END_REF]. Then, in tropical arithmetic, 1 ⊕ 1 = 1 and 1 2 = 3. This gives an interesting arithmetic that is strongly connected to the polyhedral geometry. Indeed, polynomials in tropical arithmetic corresponds to piece-wise linear convex functions with rational slopes. And we can link the classical algebraic geometry to the tropical algebraic geometry using the concept of valuation, which is the pillar of the idempotent correspondence principle.

Indeed, the valuation is the algebraic tool necessary to understand tropical geometry. With this, we retrieve in the tropical geometry the deformation of the algebraic variety.

BACKGROUND

The Kapranov theorem, and then the fundamental theorem of tropical algebraic geometry [START_REF] Maclagan | Introduction to tropical geometry[END_REF] make links between classical varieties and tropical varieties. And as in classical geometry the Gröbner basis plays an important role, there is an analogous tropical basis that plays an important role as the tropicalization is not commutative with the intersection as it is shown in example 4.7.

Whenever the quantities measured in experimental sciences are widely distributed, in other words they span several orders of magnitude, the use of a logarithmic scale is appropriate. This remark is particularly important for the understanding of our application of tropical geometry to biology. Tropical geometry has also a direct relation with models of reaction networks as it can be used to approximate steady-states. The useful concept here is the Puiseux series [START_REF] Maclagan | Introduction to tropical geometry[END_REF]. Indeed, by viewing each kinetic parameter as a power of , we can build a Puiseux series that represent the species concentrations at the steady state. Furthermore, tropical geometry can be applied in order to define and compute dominant terms in these series. To do this, it is useful to view the tropical geometry as the result of a valuation, rendering the justification of the theory easier and more general than using amoebas. Indeed, a tropical space is the result of a valuation on a field. In the case of Puiseux series, the valuation of a Puiseux series c(t) is the minimal power of t. In our context, valuations can be interpreted as orders of magnitude.

Background

This section introduces the elements of tropical geometry needed in our study. The proofs can be found in [START_REF] Maclagan | Introduction to tropical geometry[END_REF]. Definition 4.1. Let K be a field, and K * the non-zero elements of K. A valuation on K is a function v : K → R ∪ {∞} satisfying the following three axioms :

• v(a) = ∞ IFF a = 0, • ∀a, b ∈ K, v(ab) = v(a) + v(b), • ∀a, b ∈ K * , v(a + b) ≥ min(v(a), v(b)). Moreover, if v(a) = v(b) then v(a + b) = min(v(a), v(b)).
The image of the valuation is denoted Γ v .

Example 4.2. Let C{{t}} be the field of Puiseux series with coefficiens in C. The scalars in this field are of the formal power series c(t) = c 1 t a1 + c 2 t a2 + ..., where the c i are non-zero complex numbers for all i, and a 1 < a 2 < ... are rational numbers that have a common denominator. The field of Puiseux series can be viewed as the union of the fields of Laurent series:

C{{t}} = n≥1 C((t 1/n )).
This field has the natural valuation v : C{{t}} → R. For a given c(t) ∈ C{{t}} * , the valuation v(c(t)) is the lowest exponent a 1 appearing in the series expansion of c(t).

Our strategy is to use scaling (see section 5.3) in order to transform each polynomial of an ODE system associated to the chemical reaction network into a Puiseux series in a scaling parameter . That allows then to use the valuation on them. Definition 4.3. Let f = u∈Z n c u x u a Laurent Polynomial, we define its tropicalization trop(f ) as: trop(f )(w) = min u∈Z n (v(c u )+ < w, u >) where w ∈ R n , and < ., . > denote the scalar product.

We define the tropical hypersurface trop(V (f )) by the set {w ∈ R n s.t. the minimum in trop(f ) is achieved at least twice}.

We note V (f ) = {y ∈ R n , f (y) = 0}, and, if F is a tropical polynomial, we note

V (F ) = {w ∈ R n s.t. the minimum in F is achieved at least twice}. With these notations we have, trop(V (f )) = V (trop(f )).
Definition 4.4. We say that the valuation splits if there is a group homomorphism φ : Γ v → K * s.t. v(φ(w)) = w. This is always the case if the field K is algebraically closed. We will denote the splitting φ(w) = t w . If Γ v is also dense in R, we can then define the initial form of f with respect to w by:

in w (f ) = t -trop(f )(w) f (t w x) = u∈Z n ,v(cu)+<w,u>=trop(f )(w) c u t -v(cu) x u The initial form is a element of k[x ± ], where k is the residue field of K, ie. k = {c ∈ K, v(c) ≥ 0}/{c ∈ K, v(c) > 0},
and a is the image of a in the residue field.

The initial form represents a way to get only the dominant terms of the polynomial considered, but ignoring the coefficient in a certain way (as we are in k). For example, if we consider

f = (t + t 2 )x 0 + 2t 2 x 1 + 3t 4 x 2 ∈ C{{t}}[x ±1 0 , x ±1 1 , x ±1 2 ]
, and w = (0, 0, 0), then trop(f )(w) = 1 and in w (f ) = x 0 . If w = (4, 2, 0), then trop(f )(w) = 4 and in w (f ) = 2x 1 + 3x 2 . In our application we use slightly different notion to capture the dominant monomials, since we want to conserve the dynamic. Indeed, when we consider the truncated system of a system E, we consider the whole dominant monomial. In the previous example, for w = 1, we consider (t + t 2 )x 0 instead of x 0 . However, it is easy to pass from our consideration to the initial form.

Theorem 4.5 (Kapranov's Theorem). Fix a Laurent polynomial f = u∈Z n c u x u ∈ K[x ±1 1 , ..., x ±1 n ],
with K an algebraic closed field with a non-trivial valuation. The following three sets coincide:

• the tropical hypersurface trop(V (f )) in K n , • the closure in K n of the set {w ∈ Γ n v s.t. in w (f ) is not a monomial}, • the closure in K n of {(v(y 1 ), ..., v(y n )), (y 1 , ..., y n ) ∈ V (f )}. In addition, if w = v(y) for y ∈ (K * ) n with f (y) = 0 and n > 1 then U w = {y ∈ V (f ), v(y ) = w} is an infinite subset of the hypersurface V (f ).
This means that for a given polynomial, the set of non-linearity of the associated tropical polynomial corresponds to the valuation of the zero of the polynomial. However, tropicalization does not commute with intersection, rendering this theorem more complex in the case of several polynomials. This can be illustrated by the following example.

BACKGROUND

Definition 4.6. Let I be an ideal in the Laurent polynomial ring K

[x ± ] = K[x ±1
1 , ..., x ±n n ] and let X = V (I) be its variety in the algebraic torus T n = (K * ) n . The tropicalization trop(X) of the variety X is the intersection of all tropical hypersurfaces defined by Laurent polynomials in the ideal I:

trop(X) = f ∈I trop(V (f )) ⊂ R n . (4.1)
Example 4.7. Let n = 2, K = C{{t}}, and I =< x + y + 1, x + 2y >. Then X = V (I) = {(-2, 1)} and hence trop(X) = {(0, 0)}. However, the intersection of the two tropical lines given by the ideal generators equals

trop(V (x + y + z)) ∩ trop(V (x + 2y)) = {(w 1 , w 2 ) ∈ R 2 , w 1 = w 2 ≤ 0}.
Definition 4.8. A tropical variety is the tropicalization of a variety X. A finite intersection of tropical hypersurfaces is called a tropical prevariety.

Despite this fact, we have some interesting results:

Definition 4.9. We define the initial form of an ideal I as:

in w (I) =< {in w (f ), f ∈ I} > .
Definition 4.10. Let I be an ideal in the Laurent polynomial ring K[x ± ] over an algebraic closed field K with a non-trivial valuation. We call a unit an element

f of K[x ± ] such that x = 1 in k[x ± ].
A finite generating set T of I is said to be a tropical basis if, for all weight vectors w ∈ Γ n v , the initial ideal in w (I) contains a unit if and only if in w (T ) = {in w (f ), f ∈ T } contains a unit.

Theorem 4.11. Every ideal I in K[x ± ] has a finite tropical basis T . Proposition 4.12. Every tropical variety is a finite intersection of tropical hypersurfaces. More precisely, if T is a tropical basis of the ideal I then trop(X) = f ∈T trop(V (f )).

Corollary 4.13. If X is a subvariety of (K * ) n , then its tropicalization trop(X) is the support of a Γ v -rational polyhedral complex.

Theorem 4.14. Let I be an ideal in K[x ± ] and X = V (I) its variety in (K * ) n . Then the following three subsets of R n coincide:

• the tropical variety trop(X) as defined in equation (4.1)

• the closure in R n of the set of all vectors w ∈ Γ n v with in w (I) =< 1 > • the closure of the set of coordinatewise valuations of points in X:

v(X) = {(v(u 1 ), ..., v(u n )), (u 1 , ..., u n ) ∈ X}.
Using this theorem, if the steady states of a model form a discrete set of n points, the tropicalization of this variety (the n points) is at most n points in R n . But, as mentioned in example 4.7, if we consider only the intersection of the tropicalization of the zero of the polynomials involved in the system, we can have more points. This can happen when the polynomials in the system don't form a tropical basis after tropicalization.

The next section introduces the concept of tropical equilibration. In a tropical equilibration we consider two polynomials, one positive and one negative, that get the same valuation. This can interpreted as two forces that cancel each other out.

Tropical equilibration

To a polynomial, one can associate a polynomial in the Puiseux series using a scaling procedure. For example, the polynomial

k 1 x 3 -k 2 x 1 + k 3 x 2 is associated to f := t γ1 x 3 -t γ2 x 1 + t γ3 x 2 ∈ C{{t}}[x ±1 1 , x ±1 2 , x ±1 
3 ], when the γ i values depend on the scaling chosen depending of , if we take k i = k i γi with k i near to 1. Then, we can compute the tropicalization of this new polynomial as in Defintion 4.3: trop(f )(w) = min(γ 1 + w 3 , γ 2 + w 1 , γ 3 + w 2 ).

In practical applications, one can choose γ i = round(log (|k i |) if we are searching for integer exponents, and γ i = round(d log (|k i |)/d if we are searching for rational exponents. The values of w i correspond to the same formula applied to the species concentration x i .

With 0 < < 1, the scaling can be considered as defining orders of magnitude and if = 1/10, we have the common (reversed) decimal order. Then the notion of tropicalization of the associated polynomial can be viewed as taking only the dominant monomial of the original system. Definition 4.15. Let S be an ODE system as in (2.2). We split

f i (k, x) = f + i (k, x) + f - i (k, x)
, where f + i is the sum of monomial with positive S ij and f - i the sum of monomial wih negative S ij . A full tropical equilibration is a subset of the tropical prevariety defined by the following set of equations:

trop(f + i )(w) = trop(f - i )(w), ∀i ∈ {1, ..., n}. (4.2)
Moreover, if the system admits linear conservation laws

g i = n j=1 C ij x j = k i , 1 ≤ i ≤ n c , (4.3) 
where C ij ≥ 0, k i > 0, n c the number of conservation laws, we add the following equations:

trop(g i )(w) = γ i (4.4)
where

k i = k i γ i .
The full tropical equilibration problem comes from the idea that if we have two similar forces of opposite directions, then the object does move slowly, depending on the other forces and the slight differences between the two opposite forces. This corresponds in biology to a metastable state (a region of very slow dynamic in the phase space), or to a steady state.

As C is algebraically closed, this is the case for the field of Puiseux series C{{t}}. Then each polynomial in the Puiseux series has solutions in the Puiseux series. Suppose now, that we have a Polynomial in the Puiseux series C{{ }} in the form P (x, ) = j S j γj x αj with solution x(

) = c 1 a1 + c 2 a 2 + ... = c 1 a1 (1 + x 1 ( ))
. Then, by replacing the solution in the polynomial, we get P (x, ) = j S j c αj 1 γj +a1αj + r 1 ( ) = 0. A necessary condition for P (x, ) = 0 read at lowest order j,γj +a1αj =m with m = min j (γ j + a 1 α j ). It is then necessary for the minimum m to be attained at least twice. Moreover, if one looks for real solutions, then we retrieve the tropical equilibration problem. Then the tropical equilibration can be viewed as a first approximation to an attractive slow manifold.

About the conservation laws in the tropical equilibration, the idea is that if we move slowly, we should stay around the same concentrations for each species, in particular in a cycle of reactions. Moreover, adding the conservation law constraints on the tropical equilibration problem allow to simplify the problem, rendering the tropical equilibration easier to understand.

We note that the tropical equilibrations depend on the value since we use a rounding. Without the rounding, we have = α , and the minimums for correspond to the minimums of plus α and we obtain a translation of the solutions in the R n space. But with the rounding, some equilibrations disappear or appear when we change the value of . When stays around one, the rounding doesn't have a real influence, but as tends to 0, the rounding will crush everything, meaning that all values will tend to be a zero order of , rendering the multiscaleness of the system unusable.

The tropical equilibration problem is important for the model reduction part. Indeed, using the scaling, we are able to get a multiscale system, but this scaling depends on the species concentrations, and the tropical equilibration offers different regions of interest, since, as explained in [Radulescu et al., 2015a], the tropical equilibration is necessary to obtain the zero of a real polynomial (considering nonzero concentration of species), which is a condition on a the fast species in the reduced model. However, a same branch (ie. a maximal polyhedron of the polyhedral complex that represents solutions of the tropical equilibration problem) of tropical equilibrations can lead to several reductions. Indeed, a species time scale can change on a branch, as it will be illustrated with the Tyson cell cycle model.

However, it can happen that some models can not satisfy the tropical equilibration problem, or that the condition is too strong. For example, the original Michaelis-Menten system has a term with only one monomial and then can not satisfy the tropical equilibration problem. Fortunately, this term is involved in conservation laws and can then be replaced formally, leading to work with a simplified systems that no longer has this problem. But this is not always the case, and as the slow species do not need to be equilibrated in the theorems justifying the model reduction (see section 5.2), it leads to the formulation of a weaker problem: the partial tropical equilibration problem.

The partial equilibration problem can be decomposed in two parts, the first part is a choice of slow species, and the second part acts as the full tropical equilibration problem for the other species. The space given by the partial equilibration is then an over-space of the full equilibration truncated by the slow/fast decomposition.

Let us reformulate the full tropical equilibration problem and compare it with the partial equilibration problem. Definition 4.16.

• (Full equilibration) Let S be a polynomial ODE system as in equation (2.3) with eventually some conservation laws as in (4.3). Then the full tropical equilibration is expressed as finding a vector a such that:

min j,Sij >0 (γ ij + a, α j ) = min j,Sij <0 (γ ij + a, α j ), 1 ≤ i ≤ n min j,C lj =0 (a j ) = γ l , 1 ≤ l ≤ n c .
• (Partial equilibration) Let S be a polynomial ODE system as in equation (2.3) with eventually some conservations laws as in (4.3). Let T ⊂ {1, ..., n} be a set representing the fast species. Then the partial equilibration for T consists in finding a vector a such that: min

j,Sij >0 (γ ij + a, α j ) = min j,Sij <0 (γ ij + a, α j ), i ∈ T CHAPTER 4. TROPICAL GEOMETRY FOR CHEMICAL REACTION NETWORKS min j,C lj =0 (a j ) = γ l , 1 ≤ l ≤ n c min j (γ ij + a, α j ) -a i < min j (γ i j + a, α j ) -a i , i ∈ T, i ∈ {1, ..., n}\T.
The idea of considering partial equilibrations has been first mentioned in [START_REF] Soliman | A constraint solving approach to model reduction by tropical equilibration[END_REF] without a criterion on which variables to equilibrate and which not. Timescale criteria have been proposed for the first time in [START_REF] Samal | Geometric analysis of pathways dynamics: Application to versatility of tgf-β receptors[END_REF].

As an example to illustrate the differences between these two similar concepts and how they works, we show the tropical equilibrations for the Tyson cell cycle model.

Tropical equilibration of the Tyson cell cycle model

The following model is stored in the Biomodels database [Le Novere et al., 2006] as the BIOMD0000000005. The original model has 9 species and 9 chemical reactions. However, three species are on boundary and among those one satisfies an assignment rule. We have used a Matlab parser to generate the ODE system. Because the Matlab parser doesn't cope with rules, the model has been modified to take this into account. We call this new model biomd005c.

ẋ1 = k 1 x 3 -k 2 x 1 + k 3 x 2 , ẋ2 = k 2 x 1 -k 3 x 2 -k 4 x 2 x 5 , ẋ3 = k 10 x 4 -k 1 x 3 + k 9 x 2 3 x 4 , ẋ4 = k 4 x 2 x 5 -k 10 x 4 -k 9 x 2 3 x 4 , ẋ5 = k 6 -k 4 x 2 x 5 , ẋ6 = k 1 x 3 -k 8 x 6 , k 14 = x 1 + x 2 + x 3 + x 4 . (4.5)
The values of the parameters are k 1 = 1, k 2 = 1000000, k 3 = 1000, k 4 = 200, k 6 = 3/200, k 8 = 3/5, k 9 = 180, k 10 = 9/500, k 14 = 1.

Using that k i = k i γi and x i = x i ai , we obtain the following full tropical equilibration problem:

min(a 3 + γ 1 , a 2 + γ 3 ) = a 1 + γ 2 , a 1 + γ 2 = min(a 2 + γ 3 , a 2 + a 5 + γ 4 ), min(a 4 + γ 10 , 2a 3 + a 4 + γ 9 ) = a 3 + γ 1 , a 2 + a 5 + γ 4 = min(a 4 + γ 10 , 2a 3 + a 4 + γ 9 ), γ 6 = a 2 + a 5 + γ 4 , a 3 + γ 1 = a 6 + γ 8 , min(a 1 , a 2 , a 3 , a 4 ) = γ 14 . (4.6)
We will solve the problem parametrically, i.e. the parameter valuations will be treated as symbols, rather than use numerical instances.

TROPICAL EQUILIBRATION OF THE TYSON CELL CYCLE MODEL

We can easily eliminate a 3 and a 5 to get the system: min(a 6 + γ 8 , a 2 + γ 3 ) = a 1 + γ 2 , a 1 + γ 2 = min(a 2 + γ 3 , γ 6 ), min(a 4 + γ 10 , 2(a 6 + γ 8 -γ 1 ) + a 4 + γ 9 ) = a 6 + γ 8 , γ 6 = min(a 4 + γ 10 , 2(a 6 + γ 8 -γ 1 ) + a 4 + γ 9 ),

a 5 = γ 6 -γ 4 -a 2 , a 3 = a 6 + γ 8 -γ 1 , min(a 1 , a 2 , a 3 , a 4 ) = γ 14 . (4.7)
Using lines 3 and 4, we can also eliminate a 6 to get:

min(γ 6 , a 2 + γ 3 ) = a 1 + γ 2 , a 1 + γ 2 = min(a 2 + γ 3 , γ 6 ), a 6 = γ 6 -γ 8 γ 6 = a 4 + min(γ 10 , 2(γ 6 -γ 1 ) + γ 9 ), a 5 = γ 6 -γ 4 -a 2 , a 3 = γ 6 -γ 1 , min(a 1 , a 2 , a 3 , a 4 ) = γ 14 . (4.8)
Then, we can make a less conventional elimination of a 1 and a 4 :

a 1 = min(a 2 + γ 3 , γ 6 ) -γ 2 , a 6 = γ 6 -γ 8 a 4 = γ 6 -min(γ 10 , 2(γ 6 -γ 1 ) + γ 9 ), a 5 = γ 6 -γ 4 -a 2 , a 3 = γ 6 -γ 1 , min(a 1 , a 2 , a 3 , a 4 ) = γ 14 .
(4.9) Then, we can rewrite the system in the following manner:

γ 14 = min(a 1 , a 2 , a 3 , a 4 ), a 1 = min(a 2 + γ 3 -γ 2 , γ 6 -γ 2 ), a 3 = γ 6 -γ 1 , a 4 = γ 6 -min(γ 10 , 2γ 6 -2γ 1 + γ 9 ), a 5 = γ 6 -γ 4 -a 2 , a 6 = γ 6 -γ 8 , (4.10)
Now, consider that the parameter k 14 = 1, then γ 14 = 0 (whatever is). In this case we can define Γ = min(γ 6 -γ 2 , a 3 , a 4 ) = min(γ 6 -γ 2 , γ 6 -γ 1 , γ 6 -min(γ 10 , 2γ 6 -2γ 1 + γ 9 )), Γ = γ 3 -γ 2 , Γ = γ 6 -γ 3 , Θ = 2γ 6 -2γ 1 + γ 9 , and the system rewrite:

a 1 = min(a 2 , Γ ) + Γ , a 3 = γ 6 -γ 1 , a 4 = γ 6 -min(γ 10 , Θ), a 5 = γ 6 -γ 4 -a 2 , a 6 = γ 6 -γ 8 , (4.11)
The signs of Γ, Γ , Γ determine the dimension and the number of tropical branches.

1. Γ < 0(= γ 14 ). There is no solution.

2. Γ > 0. Then the equation is equivalent to min(a 2 + Γ , a 2 ) = 0, which has a unique solution (one point)

(a) If Γ ≥ 0, then a 2 = 0. Then, if Γ ≥ 0, a 1 = Γ , else a 1 = γ 6 -γ 2 , and if Θ ≥ γ 10 , a 4 = γ 6 -γ 10 , else a 4 = 2γ 1 -γ 6 -γ 9 . (b) If Γ ≤ 0, then a 2 + Γ = 0. Then, if Γ ≥ 0, a 1 = 0, else a 1 = γ 6 -γ 2 , and if Θ ≥ γ 10 , a 4 = γ 6 -γ 10 , else a 4 = 2γ 1 -γ 6 -γ 9 .
3. Γ = 0. Then the equation is equivalent to min(a 2 + Γ , a 2 ) ≥ 0, which has one or two one dimensional branches: a half line and possibly an interval.

(a) If Γ ≥ 0, then the two branches are

• Γ ≥ a 2 ≥ 0, a 1 = a 2 + Γ (the interval). One can note that this branch exists only if Γ ≥ 0; • a 2 ≥ Γ , a 1 = γ 6 -γ 2 . If Γ ≤ 0, this branch turns into a 2 ≥ 0, a 1 = γ 6 -γ 2 . (b) If Γ ≤ 0, then the two branches are • Γ ≥ a 2 ≥ -Γ , a 1 = a 2 + Γ (the interval). One can note that this branch exist only if Γ ≥ -Γ ; • a 2 ≥ Γ , a 1 = γ 6 -γ 2 . If Γ ≤ -Γ , this branch turns into a 2 ≥ -Γ , a 1 = γ 6 -γ 2 .
For both of these case, the comparison between Θ and γ 10 will determine the value of a 4 , but does not have an impact on the topology of the set of solutions.

Using equations (4.5), (4.6) and (4.11), we can compute the timescale orders of the species in the full tropical equilibration:

b 1 = γ 2 b 2 = min(γ 3 , γ 6 -a 2 ) = γ 3 + min(0, Γ -a 2 ), b 3 = γ 1 , b 4 = min(γ 10 , 2γ 6 -2γ 1 + γ 9 ), b 5 = γ 4 + a 2 , b 6 = γ 8 . (4.12)
We can see that, for fixed parameters, each timescale is fixed, except b 2 and b 5 , that both depend on a 2 . Now, consider that x 4 is a slow species. This is possible with our numerical parameters, so we will consider a formal partial equilibration as above, and then turn out to numerical computation for both total and partial equilibrations.

We consider x 4 as the slowest species, so we need to add in the constraints that b 4 > b i for i ∈ {1, 2, 3, 5, 6} = T , but we don't need that x 4 is equilibrated, so we get the following system:

min(a 3 + γ 1 , a 2 + γ 3 ) = a 1 + γ 2 , a 1 + γ 2 = min(a 2 + γ 3 , a 2 + a 5 + γ 4 ), min(a 4 + γ 10 , 2a 3 + a 4 + γ 9 ) = a 3 + γ 1 , γ 6 = a 2 + a 5 + γ 4 , a 3 + γ 1 = a 6 + γ 8 , min(a 1 , a 2 , a 3 , a 4 ) = γ 14 , γ 2 < min(a 2 + a 5 -a 4 + γ 4 , γ 10 , 2a 3 + γ 9 ), min(γ 3 , γ 6 -a 2 ) < min(a 2 + a 5 -a 4 + γ 4 , γ 10 , 2a 3 + γ 9 ), γ 1 < min(a 2 + a 5 -a 4 + γ 4 , γ 10 , 2a 3 + γ 9 ), a 2 + γ 4 < min(a 2 + a 5 -a 4 + γ 4 , γ 10 , 2a 3 + γ 9 ), γ 8 < min(a 2 + a 5 -a 4 + γ 4 , γ 10 , 2a 3 + γ 9 ), (4.13)
As for the full equilibration, we can eliminate some species, here they are a 6 and a 5 , then a 1 and a 4 . min(a 3 + γ 1 , a 2 + γ 3 ) = min(a 2 + γ 3 , γ 6 ),

a 1 = min(a 2 + γ 3 , γ 6 ) -γ 2 , a 4 = a 3 + γ 1 -min(γ 10 , 2a 3 + γ 9 ), a 5 = -a 2 + γ 6 -γ 4 , a 6 = a 3 + γ 1 -γ 8 , min(a 1 , a 2 , a 3 , a 4 ) = γ 14 , γ 2 < min(-a 3 -γ 1 + min(γ 10 , 2a 3 + γ 9 ) + γ 6 , γ 10 , 2a 3 + γ 9 ), min(γ 3 , γ 6 -a 2 ) < min(-a 3 -γ 1 + min(γ 10 , 2a 3 + γ 9 ) + γ 6 , γ 10 , 2a 3 + γ 9 ),
γ 1 < min(-a 3 -γ 1 + min(γ 10 , 2a 3 + γ 9 ) + γ 6 , γ 10 , 2a 3 + γ 9 ), a 2 + γ 4 < min(-a 3 -γ 1 + min(γ 10 , 2a 3 + γ 9 ) + γ 6 , γ 10 , 2a 3 + γ 9 ), γ 8 < min(-a 3 -γ 1 + min(γ 10 , 2a 3 + γ 9 ) + γ 6 , γ 10 , 2a 3 + γ 9 ), (4.14) At this stage, by just considering equalities, we obtain 32 cases, and adding inequalities, we have 128 cases (they can lead to the same polyhedron). With this example, we can see that the partial equilibration can be more complex to compute than the total one. But lets check the numerical values.

First of all, we can see that the values of Γ, Γ , Γ can depends on the value. Indeed, computed for = 1/11, we get γ 1 = 0, γ 2 = -6, γ 3 = -3, γ 4 = -2, γ 6 = 2, γ 8 = 0, γ 9 = -2, γ 10 = 2, γ 14 = 0, and lead to Γ = 0, Γ = 3, and Γ = 5. However, computed for 1/29, we get Γ = 1, Γ = 2, and Γ = 3. This show that the value of is important, and also that the convergence to zero (we remember that when → 0, γ i → 0 for all i) is not monotonic for these critical orders, since they involve several γ i . For the rest of the comparison, we will consider = 1/11. For this experience, the full tropical equilibration solutions correspond to one segment and one half line. We have compared the tropical equilibration with some trajectory of the system to obtain that, if we begin a trajectory inside the tropical equilibration, the trajectory can leave the tropical equilibration but remains close to it and finishes around the limit point of the tropical equilibration. This is shown in figure 4.1. This shows that, even if the idea of compensated terms bears semblance to the idea of attractive region, mathematically there is no complete equivalence of the two notions. Indeed, outside the tropical equilibration, uncompensated terms will lead the trajectory to the tropical equilibration. On the tropical equilibration the equality of orders is not a sufficient condition for compensation: two polynomials term of same order can have a ratio different from one, and the other monomials, which are not dominant, can have a small impact on the trajectory. As a matter of fact, tropical geometry ideas must be combined with the geometric singular perturbations theory in order to justify existence and stability of the compensation. As discussed in the chapter 7, this implies several other conditions, such as the hyperbolicity of the equilibration.

Considering, x 4 as the slowest spacies again, we obtain, with the numeric values, the following system. 
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a 1 = min(a 2 -3, 2) + 6 a 4 = a 3 -min(2, 2a 3 -2),
a 5 = -a 2 + 4, a 6 = a 3 , 0 = min(min(a 2 -3, 2) + 6, a 2 , a 3 , a 3 -min(2, 2a 3 -2)), -6 < min(-a 3 + 2 + min(2, 2a 3 -2), 2, 2a 3 -2), min(-3, 2 -a 2 ) < min(-a 3 + 2 + min(2, 2a 3 -2), 2, 2a 3 -2), 0 < min(-a 3 + 2 + min(2, 2a 3 -2), 2, 2a 3 -2), a 2 -2 < min(-a 3 + 2 + min(2, 2a 3 -2), 2, 2a 3 -2), 0 < min(-a 3 + 2 + min(2, 2a 3 -2), 2, 2a 3 -2).

(4.15) This lead to the following system min(a 3 , a 2 -3) = min(a 2 -3, 2),

a 1 = min(a 2 -3, 2) + 6 a 4 = a 3 -min(2, 2a 3 -2), a 5 = -a 2 + 4, a 6 = a 3 , 0 = min(min(a 2 -3, 2) + 6, a 2 , a 3 , a 3 -min(2, 2a 3 -2)), max(0, a 2 -2,
( ( ( ( ( ( ( ( min(-3, 2 -a 2 )) < min(-a 3 + 2 + min(2, 2a 3 -2), 2, 2a 3 -2), (4.16)

Forgetting the last line, coming from the time scale inequalities, we obtain 10 different cases leading to the following polyhedra (in blue the total equilibration):

a 1 = 8 a 1 = 6 a 1 = 8 a 1 = 8 a 2 = 5 a 2 = 3 a 2 = 0 a 2 = 5 a 3 = 2 a 3 = 0 a 3 = 2 a 3 = 0 a 4 = 0 a 4 = 2 a 4 = 0 a 4 = 2 a 5 = -1 a 5 = 1 a 5 = 4 a 5 = -1 a 6 = 2 a 6 = 0 a 6 = 2 a 6 = 0 a 1 = 8 a 1 = 8 3 < a 1 = a 2 + 3 < 6 a 2 > 5 a 2 > 5 0 < a 2 < 3 a 3 = 2 a 3 = 0 a 3 = 0 a 4 = 0 a 4 = 0 a 4 = 2 a 5 = -a 2 + 4 < -1 a 5 = -a 2 + 4 < -1 1 < a 5 = -a 2 + 4 < 4 a 6 = 2 a 6 = 0 a 6 = 0 a 1 = 3 3 < a 1 = a 2 + 3 < 8 a 1 = 3 a 2 = 0 0 < a 2 < 5 a 2 = 0 a 3 > 2 a 3 = 2 0 < a 3 < 2 a 4 = a 3 -2 > 0 a 4 = 0 0 < a 4 = -a 3 + 2 < 2 a 5 = 4 -1 < a 5 = -a 2 + 4 < 4 a 5 = 4 a 6 = a 3 > 2 a 6 = 2 0 < a 6 = a 3 < 2
Adding the time scale constraint and projecting the polyhedral complex on the space (a 2 , a 3 ), we obtain the following figure 4.2.

If we consider also x 3 as slow with x 4 , we get two two-dimensional branches that extend the partial equilibration for x 4 slow, and one one-dimensional branch that is a truncation of the branch for x 4 slow coming from the total equilibration. This is illustrated in figure 4.3

Algorithms for tropical equilibration

Several methods were used to computing tropical equilibration, starting with constraint programming [START_REF] Soliman | A constraint solving approach to model reduction by tropical equilibration[END_REF] and Newton polytopes [START_REF] Samal | A geometric method for model reduction of biochemical networks with polynomial rate functions[END_REF]. In this section we present the method combining polyhedral geometry and Satisfiability Modulo Theories (SMT) introduced in [Lüders, 2020].

A polyhedron is defined as finite intersection of half-spaces. The full tropical equilibration is defined by an intersection of union of polyhedra.

In definition 4.16, let ρ i = argmin j,Sij >0 (γ ij + a, α j ), η i = argmin j,Sij <0 (γ ij + a, α j ), and σ l = argmin j,C lj =0 (a j ). For each 1 ≤ i ≤ n, by fixing ρ i and η i , we get a polyhedron consisting in the equation and inequations when r i denote the number of distinct monomials in f i (k, x). We have also a polyhedron for each 1 ≤ l ≤ n c by fixing σ l , given by the equation and inequations

γ iρi + a, α ρi = γ iηi + a, α ηi γ iρi + a, α ρi ≤ γ ij + a, α j , 1 ≤ j ≤ r i (4.17
a σ l = γ l a σ l ≤ a j , 1 ≤ j ≤ n, C lj = 0. (4.18)
By rolling the choices, for each equation, we get a union of polyhedra, called bag. The tropical equilibration problem consists to take the intersection of these bags. This is encoded in SMTcut [Lüders, 2020] and follow the algorithm 8.

Algorithm smtcut((2.3),(4.3)) bb ← makePolyhedraForFTE((2.3), (4.3)) rr ← computePolyhedronDnf(bb) return rr
Algorithm 8: The algorithm used to compute the full tropical equilibration of a system.

In definition 4.16, let ζ i = argmin j (γ ij + a, α j -a i ), ω i = argmin j (γ i j + a, α j -a i ), and σ l = argmin j,C lj =0 (a j ). For each 1 ≤ i, i ≤ n, by fixing ζ i and ω i , we get a polyhedron Figure 4.3: Left: the total equilibration. Right: the partial equilibration for T = {1, 2, 3, 5, 6} (x 4 slow). Bottom: the partial equilibration for T = {1, 2, 5, 6} (x 3 , x 4 slows). All pictures are a projection in the space generated by a 2 , a 3 , a 4 .

ALGORITHMS FOR TROPICAL EQUILIBRATION

Algorithm makePolyhedraForFTE((2.3),(4.3)) bb ← ∅ foreach 1 ≤ i ≤ n do bb ← bb ∪ equilibrate( ẋi ) return bb
Algorithm 9: This algorithm makes the list of bags, each bag representing a list of polyhedra, such that each polyhedron is linked to an equilibration for a species or a conservation law.

Algorithm equilibrate( ẋi ) pp, np, b ← ∅ foreach 1 ≤ j ≤ r i do t = trop(k j x αj ) if S ij < 0 then np ← np ∪ t else pp ← pp ∪ t foreach (a, c) ∈ pp × np do p =makePolyhedron(a, c, pp, np) b ← b ∪ p return b
Algorithm 10: This algorithm computes the bag b linked to an equation of the system, that represent each possible equilibration. It splits negative and positive monomials, computes their tropicalization and makes the bag. consisting in the equation and inequations

γ iζi + a, α ζi -a i ≤ γ i ω i + a, α η i -a i γ iζi + a, α ζi -a i ≤ γ ij + a, α j , 1 ≤ j ≤ r i γ i ω i + a, α ω i -a i ≤ γ i j + a, α j -a i , 1 ≤ j ≤ r i (4.19)
when r i denote the number of distinct monomials in f i (k, x). We have also a polyhedron for each 1 ≤ l ≤ n c by fixing σ l , given by the equation and inequations as in the full tropical equilibration:

a σ l = γ l a σ l ≤ a j , 1 ≤ j ≤ n, C lj = 0. (4.20)
To find the partial equilibration for T , a modified version of the algorithms used to find the full tropical equilibration has been developed. The idea behind is that we just need to modify the sets of polyhedra we use, this is encoded by the algorithm13.

Algorithm makePolyhedron (a, c, pp, np) eq ← a = c ieq ← ∅ foreach i ∈ pp ∪ np do ieq ← ieq ∪ a ≤ i p ← make(eq, ieq) return p Algorithm 11: p is a polyhedron defined by equation (4.17) or (4.18).

Algorithm computePolyhedronDnf(bb)

solver ← getSolveur(incremental = true) f ← convertToSMTFormula(bb) rr ← ∅, bool ← true while bool do solver.addAssertion(f ) (x, bool) = solver.solve(f ) /*x is a point that satisfy the constraints, bool is

f alse if no x*/ if N ot(bool) then Break else R = ∅ foreach b ∈ bb do foreach P ∈ b do if x ∈ P then R ← R ∪ P.constraints() Break f ← N ot(R) rr ← rr ∪ R return rr
Algorithm 12: This algorithm computes the intersection of a set of bags bb. Each polyhedron is transformed to a logical constraint. x represents a point that satisfy the set of constraints, then, if a such x is found, it is contained by a polyhedron P common to each equilibration. We remove this polyhedron from search by adding a constraint and continue the search until there is no feasible point. At the end we get a list of polyhedra rr, that is the full tropical equilibration. Algorithm 14: This algorithm makes the list of bags, each bag representing a list of polyhedra, such that each polyhedron is linked to an equilibration for a fast species or a conservation law, or a slow fast decomposition.

Algorithm slowFastPol( ẋi , ẋj ) sp, f p, b ← ∅ foreach 1 ≤ m ≤ r i do t = trop(k m x αm-ai ) f p ← f p ∪ t foreach 1 ≤ m ≤ r j do t = trop(k m x αm-aj ) sp ← sp ∪ t foreach (a, c) ∈ sp × f p do p =makePolyhedronSF(a, c, sp, f p) b ← b ∪ p return b
Algorithm 15: This algorithm computes the bag b linked to a slow fast decomposition between two species x i (fast) and x j (slow). As the order the species has an impact on the slow fast decomposition, we multiply each monomial in ẋq by 1

xq . Then we split each monomials, compute their tropicalization and make the bag.

Algorithm makePolyhedronSF(a, c, sp, f p) eq ← ∅ ieq ← a ≥ c foreach i ∈ sp do ieq ← ieq ∪ a ≤ i foreach i ∈ f p do ieq ← ieq ∪ c ≤ i p ← make(eq, ieq) return p
Algorithm 16: p is a polyhedron defined by equation (4.19).

Chapter 5

Model reduction

Introduction

Two methods are traditionally used to reduce non-linear chemical reaction network models with multiple timescales: the quasi-equilibrium (QE) [START_REF] Gorban | Corrections and enhancements of quasi-equilibrium states[END_REF] and the quasisteady state (QSS) approximations [START_REF] Segel | The quasi-steady-state assumption: A case study in perturbation[END_REF], Boulier et al., 2011, Radulescu et al., 2012].

In order to introduce these methods let us consider again the Michaelis-Menten model introduced in the Section 2.2.

For the QSS approximation, we consider that the total concentration of enzyme c 1 = x 2 + x 3 = [E] + [ES] is much lower than the total concentration of substrate x 1 + x 2 . Then, the complex ES is a low concentration, fast species. Its concentration is slaved by the concentration of S, meaning that the value of [ES] almost instantly relaxes to a value depending on S. The simplified mechanism corresponds to pooling the two reactions of the mechanism into a unique irreversible reaction S R(x1,c1) -----→ P , which means that ẋ4 = -ẋ1 = k 3 x 2(QSS) . The QSS value of x 2 results from the equation k 1

x 1 (c 1 -x 2(QSS) ) = (k 2 + k 3 )x 2(QSS) . From this it follows that R(x 1 , c 1 ) = k 3 c 1 x 1 k2+k3 k1 + x 1 .
We note here that the equation inducing the QSS value of x 2 is a polynomial equation for the fast species concentration, akin to the one leading to tropical equilibration.

For the QE approximation, we consider that the first reaction of the mechanism is a fast, reversible reaction. The simplified mechanism corresponds to a pooling of species. The total concentration of enzymes, c 1 , and the total concentration of substrate, S tot = x 1 + x 2 , are conserved by the fast reversible reaction, but only one, c 1 , is conserved by the two reaction of the mechanism. The total concentration of substrate is slowly consumed by the second reaction and represent the slow variable of the system. The single step approximation reads S tot R(Stot,c1) ------→ P and we have ẋ4 = -Ṡtot = k 3 x 2(QE) . The QE value of x 2 is the unique positive solution of the quadratic equation k 1 (S tot -x 2(QE) (c 1 -x 2(QE) ) = k 2 x 2(QE) , representing the compensation of forward and backward fluxes of the fast reaction. From 57 5.2. SINGULAR PERTURBATION this it follows that

R(S tot , c 1 ) = 2k 3 c 1 S tot c 1 + S tot + k2 k1 1 1 + 1 - 4c1Stot (c1+Stot+ k 2 k 1 ) 2 .
When the concentration of enzyme is small, c 1 << S tot , we obtain the original equation of Michaelis and Menten, R(S tot , c 1 ) ≈ k 3

c1Stot k 2 k 1 +Stot .
The main problem of these reductions is that the QE reaction and QSS species should be detected. This is possible by rescaling parameters and variables. The rescaling can be found by intuition for simple models such as the Michaelis-Menten mechanism, but this does not work for large models. Like in [START_REF] Radulescu | Reduction of dynamical biochemical reactions networks in computational biology[END_REF],Kruff et al., 2021], we propose to use a general scaling algorithm based on tropical geometry before applying singular perturbation results that reduce the model.

Singular perturbation

In 1952, Tikhonov is interested in the asymptotic analysis for differential equations containing small parameters in the derivatives and predicts the behavior of a such systems supposing several conditions [Tikhonov, 1952a]. Hoppensteadt then corrects the proof, adding some more conditions [START_REF] Hoppensteadt | Stability in systems with parameter[END_REF], Hoppensteadt, 1969a]. The actual formulation of the Tikhonov theorem have the following form [Verhulst, 2005a]:

Theorem 5.1. Consider the initial value problem ẋ = f (x, y, t) + ..., x(0) = x 0 , x ∈ D ⊂ R n , t ≥ 0 ẏ = g(x, y, t) + ..., y(0) = y 0 , y ∈ G ⊂ R m .
(5.1)

For f and g, we take sufficiently smooth vector functions in x, y and t; the dots represents (smooth) high-order terms in .

a) We assume that a unique solution of the initial value problem exists and suppose this holds also for the reduced problem ẋ = f (x, y, t), x(0) = x 0 , 0 = g(x, y, t), (5.2)

with solutions x(t), ȳ(t).

b) Suppose that 0 = g(x, y, t) is solved by ȳ = φ(x, t), where φ(x, t) is a continuous function and an isolated root. Also suppose that ȳ = φ(x, t) is an asymptotically stable solution of the equation dy dτ = g(x, y, t) (5.3) that is uniform in the parameters x ∈ D and t ∈ R + , where τ = t . c) y(0) is contained in an interior subset of the domain of attraction of ȳ = φ(x, t) in the case of the parameter values x = x(0), t = 0.

Then we have

lim →0 x (t) = x(t), 0 ≤ t ≤ L, lim →0 y (t) = ȳ(t), 0 < d ≤ t ≤ L (5.4)
with d and L constants independent of .

It can be noted that Hoppensteadt has given a version of the theorem for infinite time interval [START_REF] Hoppensteadt | Singular perturbations on the infinite interval[END_REF].

Later, in 1979, Fenichel approached the problem with a geometric point of view [Fenichel, 1979]. Then Cardin and Teixeira [START_REF] Cardin | Fenichel theory for multiple time scale singular perturbation problems[END_REF] extended the Fenichel theory for multiple time scales. Combining tropical geometry and the the results of Cardin and Teixera, a model reduction method, using tropical geometry ideas to detect concentration time scales and singular perturbations to justify the reduction, has been proposed very recently [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF].

The methods proposed in these papers rely on a hyperbolicity condition: the eigenvalues of the Jacobian matrix of the fast subsystem should be non-zero. However, in applications, it happens that some eigenvalues are zero. These critical cases were studied by Vasil'eva in [START_REF] Vasil'eva | Singularly perturbed equations in the critical case[END_REF] to construct regular and boundary layer series for the asymptotic expansions of the solutions. This is also the goal of this chapter, when the these critical cases result from conservation laws.

We give here the principal results of the geometric singular perturbations theory as they are a the starting point for our model reduction method based on approximate conservation laws exposed in the next chapters. The two following sections are mainly derived from [START_REF] Cardin | Fenichel theory for multiple time scale singular perturbation problems[END_REF].

Fenichel theorems

We consider the system ż1 = f 1 (z, ), żi = j-1 i=1 i f j (z, ), j ∈ {2, ..., n} (5.5) where z = (z 1 , ..., z i ) ∈ U ⊂ R m1 × ... × R mn , U is open with compact closure, (0, ..., 0) < = ( 1 , ..., n ) << (1, ..., 1), and f j is supposed sufficiently smooth.

If n = 2 we obtain the fast system ż1 = f (z, 1 ), ż2 = 1 f 2 (z, 1 ) (5.6)

After time rescaling we obtain the slow system

1 ż1 = f (z, 1 ), ż2 = f 2 (z, 1 ) (5.7)
One can note that these two systems are equivalent for 1 = 0. But at the limit 1 → 0, they give two different systems. The layer problem ż1 = f 1 (z, 0), ż2 = 0, (5.8)

SINGULAR PERTURBATION

and the reduced problem 0 = f 1 (z, 0), ż2 = f 2 (z, 0).

(5.9)

We note S = {z : f 1 (z, 0) = 0} the critical manifold.

Definition 5.2. We say that S 0 ⊂ S is normally hyperbolic if ∀z ∈ S 0 , ∀λ eigenvalue of the jacobian matrix D z1 f 1 (z, 0), Re(λ) = 0.

We recall that the Hausdorff distance between two non empty and compact subsets X and Y of a metric space (E, d) is given by: Theorem 5.3. Consider a C ∞ family like (5.6). Let S 0 ⊂ S be a normally hyperbolic compact manifold, possibly with a boundary. Then, for 1 sufficiently small, there exists a manifold S 1 locally invariant under the flow of system (5.6). The manifold S 1 has a Hausdorff distance O( 1 ) (as 1 → 0) from S 0 , and it is diffeomorphic to S 0 . Moreover, S 1 is C r smooth for any r < ∞, and the flow on S 1 converges to the slow flow as 1 → 0.

d H (X, Y ) = max{sup
S 1 is called a slow manifold. Now, suppose that S 0 = {(z 1 , z 2 ) : z 1 = h 0 (z 2 )} and S 1 = {(z 1 , z 2 ) : z 1 = h 1 (z 2 )}, then we have ż2 = f 2 (h 1 (z 2 ), z 2 , 1 ) → ż2 = f 2 (h 0 (z 2 ), z 2 , 0). If S 0 ⊂ S is
normally hyperbolic, then each point z 0 ∈ S 0 is a hyperbolic equilibrium of the layer problem (5.8), so that z 0 possesses local stable and unstable manifolds W s (z 0 ) and W u (z 0 ), respectively. We define the local stable and unstable manifolds of S 0 by

W s (S 0 ) = z0∈S0 W s (z 0 ) and W u (S 0 ) = z0∈S0 W u (z 0 )
(5.10)

Theorem 5.4. Under the hypotheses of Theorem 5.3, for 1 sufficiently small, there exist local stable and unstable manifolds W s (S 1 ) and W u (S 1 ) diffeomorphic to W s (S 0 ) and W u (S 0 ), respectively. They lie within O( 1 ) of W s (S 0 and W u (S 0 ), respectively. Moreover, they are C r smooth for any r < ∞ and locally invariant under the flow of the system (5.6).

We note p.t the trajectory through p evolved after time t, and V.t the application of the flow after time t.

Theorem 5.5. Under the hypotheses of theorem 5.3, for every z 1 ∈ S 1 with 1 sufficiently small, there are manifolds W s (z 1 ) ⊂ W s (S 1 ) and W u (z 1 ) ⊂ W u (S 1 ) diffeomorphic to W s (z 0 ) and W u (z 0 ), respectively. They lie within O( 1 ) of W s (z 0 ) and W u (z 0 ), respectively. Moreover, They are C r smooth for any r < ∞, and the families {W s (z 1 ) :

z 1 ∈ S 1 } and {W u (z 1 ) : z 1 ∈ S 1 } are invariant in the sense that W s (z 1 ).t ⊂ W s (z 1 .t) and W u (z 1 ).t ⊂ W u (z 1 .t)
for all t ≥ 0 and t ≤ 0, respectively.

We suppose that the manifolds W s (S 0 ) and W u (S 0 ) have dimensions j s 1 +m 2 and j u 1 +m 2 with j s 1 + j u 1 = m 1 .

Theorem 5.6. Consider a C ∞ family like 5.3, and let S 0 ⊂ S be a j-dimensional compact normally hyperbolic invariant manifold of the reduced problem (5.9) with a (j + j s 2 )dimensional local stable manifold W s and a (j + j u 2 )-dimensional local unstable manifold W u . Suppose that D x1 f 1 (x 0 , 0) has j s 1 and j u 1 eigenvalues with negative and positive real parts, respectively, for all x 0 ∈ S. Then there exists δ 1 > 0 such that the following hold:

• There exists a family of smooth manifolds {S 1 : 1 ∈ (0, 1 )} such that S 1 → S 0 when 1 → 0, according to Hausdorff distance, and S 1 is a hyperbolic invariant manifold of (5.6).

• There are families of (j + j s 1 + j s 2 )-dimensional and (j + j u 1 + j u 2 )-dimensional smooth manifolds {W s 1 : 1 ∈ (0, δ 1 )} and {W u 1 : 1 ∈ (0, δ 1 )} such that the manifolds W s 1 and W u 1 are local stable and unstable manifolds of S 1 .

Extension to the multi-scale systems

From system (5.5), we can extract n different time scales:

τ 1 , τ k = k-1 i=1 i τ 1 = k-1 τ k-1 for k ∈ {2, ..., n}.
τ 1 is the fastest time scale, τ n the slowest one, τ k the k-intermediate time scale (k ∈ {2, ..., n -1}). We note that system (5.5) is called the fastest system, when (5.11) is the k-intermediate system, and

k-1 i=j i żj = f j (z, ), j ∈ {1, ..., k -1} żk = f k (z, ) żl = l-1 i=k i f l (z, ), l ∈ {k + 1, ..., n}
n i=j i żj = f j (z, ), j ∈ {1, ..., n -1} żn = f n (z, )
(5.12) is the slowest system.

For each time scale, we will note the derivation by ż instead of dz dτ k if it is clear from the context. We note that when for each i ∈ {1, ..., n -1}, i = 0, then the three systems are equivalent. Now, if → 0, we obtain three different systems. The layer problem ż1 = f 1 (z, 0) żj = 0, j ∈ {2, ..., n},

(5.13) (5.14) and the reduced problem 0 = f j (z, 0), j ∈ {1, ..., n -1} żn = f n (z, 0).

5.2. SINGULAR PERTURBATION the k-intermediate problem (k ∈ {2, ..., n -1}) 0 = f j (z, 0), j ∈ {1, ..., k -1} żk = f k (z, 0) żl = 0, l ∈ {k + 1, ..., n},
(5.15)

For each k ∈ {1, ..., n -1}, let M k = {z ∈ U : f j (z, 0) = 0 for j = 1, ..., k}. We note that M n-1 ⊂ ... ⊂ M 1 . M 1 is the critical manifold and M k is called the k-critical manifold. We call the auxiliary system the following system f j (z, 0, ..., 0, k , ..., n-1 ) = 0 for j ∈ {1, ..., k -1} żk = f k (z, 0, ..., 0, k , ..., n-1 ) żl = l-1 i=k i f l (z, 0, ..., 0, k , ..., n-1 ) for l ∈ {k + 1, ..., n}.

(5.16)

These dynamical systems are defined on the manifold

M ( k ,..., n-1) k = {z ∈ U : f j (z, 0, ..., 0, k , ..., n-1 ) = 0 for j ∈ {1, ..., k -1}}.
For the following theorems, we consider the following assumption:

(H) For each k ∈ {1, ..., n -1}, if L ⊂ M k is a compact manifold, we assume that the matrix D z k f k (z 0 , 0) has no eigenvalue with zero real part for all z 0 ∈ L.

Theorem 5.7. Consider a C ∞ family like (5.5), with n ≥ 2. Let N ⊂ M n-1 be a compact manifold, possibly with a boundary, and assume that hypothesis (H) is fulfilled. Then there are small positive real numbers δ 1 , ..., δ n-1 and a family {N = N ( 1,..., n-1 ) : i ∈ (0, δ i ), i ∈ {1, ..., n -1}} of locally invariant manifolds under the flow of systems (5.5). Moreover, N has Hausdorff distance O( 1 + ... + n-1 ) from N , and it is diffeomorphic to N . Also, N is C r smooth for any r < ∞, and the flow on N converges to the slow flow (the reduced problem) (5.15) as → 0.

Corollary 5.8. Consider a C ∞ family like (5.5), with n ≥ 3. For each k ∈ {2, ..., n -1}, assume that k , ..., n-1 are fixed and nonzero, and let L ⊂ M ( k ,..., n-1) l be compact manifold, possibly with boundary, and assume that hypothesis (H) for the cases j ∈ {1, ..., k -1} is fulfilled. Then, for 1 , ..., k-1 positive and sufficiently small, there exists a manifold L ( 1,..., n-1) locally invariant under the flow of system (5.5). Moreover, L ( 1,..., n-1) has Hausdorff distance O( 1 , ..., k-1 ) from L, and it is diffeomorphic to L. Also, the flow on L ( 1,..., n-1) converges to the flow of system (5.11) as j → 0, j ∈ {1, ..., k -1}.

For k = 1, hypothesis (H) implies that each point z 0 ∈ N ⊂ M n-1 ⊂ M 1 is a hyperbolic fixed point of the layer problem (5.13). Let W s (z 0 ) and W u (z 0 ) be the local stable and unstable manifolds of z 0 ∈ N , respectively. The local stable and unstable manifolds of N are given by

W s (N ) = z0∈N W s (z 0 ) and W u (N ) = z0∈N W u (z 0 )
(5.17)

A TROPICAL SCALING PROCEDURE

A possible choice of the exponents is

γ i = round(p log * (k * i )) p ∈ Q, (5.20)
where p is a strictly positive integer controlling the precision of the rounding step. This choice leads to prefactors satisfying (5.19) with η = 1/(2p).

We further rescale the variables x k = y k d k * , where d k ∈ Q, and transform (2.2) into the rescaled system

S * := ẏi = r j=1 γj + d,αj -di * S ij k * j y αj | 1 ≤ i ≤ n (5.21) with d = (d 1 , d 2 , . . . , d n ).
The parameter and concentration orders γ i and d k should be understood as orders of magnitude. For instance, if = 1/10, a parameter or concentration of order d = 2 equals roughly 10 -2 . Thus, small orders mean large parameters or concentration values.

From now on, we will transform the numerical parameters * , k * into variables , k = (k 1 , . . . , k r ) such that k i = γi ki and consider the family of ODE systems indexed by

S := { ẏi = r j=1 γj + d,αj -di S ij kj y αj , 1 ≤ i ≤ n} (5.22)
Our initial model S * is a member of this family, obtained for = * , k = k * . We are interested in characterizing the behaviour of the solutions of this family of ODEs, when → 0. This limit will correspond to a reduced model that is a good approximation to the initial model if * is close to zero for k = k * and if several conditions ensuring the convergence of the solutions of S are satisfied.

As we require 1 , ..., n-1 ∈]0, 1[ in the theorems, we need that the powers of (that factorise the function) are positives. Then, we call

ψ ij = γ j + d, α j -d i and µ = min{ψ ij | 1 ≤ i ≤ n, 1 ≤ j ≤ r, S ij = 0}
. By performing a time scaling τ = µ t, we obtain the following equations for i ∈ {1, ..., n}

y i = r j=1 ψij -µ S ij kj y αj .
Factorising each equation by their minimal epsilon power, we obtain

y i = ψi-µ ( ψij =ψi S ij kj y αj + ψij =ψi S ij kj ψij -ψi y αj ), (5.23) when ψ i = min{ψ ij | 1 ≤ j ≤ r, S ij = 0}
and y denote the derivative w.r.t. τ , and all power of epsilon present in the equations are positives.

To obtain positives and integers powers, we define δ = 1/o where o ∈ N is the smallest common multiple of the denominators of ψ ij -µ (for all i and j), this is possible since we have a finite number of monomials. Then, (5.23) becomes

y i = δ bi ( f (1) i ( k, y) + δ b i f (2) i ( k, y, δ)), (5.24) where f (1) i ( k, y) = ψij =ψi S ij kj y αj , f (2) i ( k, y, δ) = ψij =ψi S ij kj δ b ij y αj ,
and all the powers of δ are positive integers, as follows:

b i = o(ψ i -µ) , b i = o min{ψ ij -ψ i | 1 ≤ j ≤ r, S ij = 0, ψ ij = ψ i } > 0, b ij = o(ψ ij -ψ i ) -b i > 0, 1 ≤ i ≤ n.
We call truncated system, the system obtained by retaining only the minimal order, dominant terms in (5.24)

y i = δ bi f (1) i ( k, y), 1 ≤ i ≤ n.
(5.25)

Let us define the truncated stoichiometric matrix S (1) whose entries are

S (1) ij = S ij if ψ ij = ψ i 0 if not (5.26)
Then, it follows

f (1) i ( k, y) = r j=1 S (1) ij kj y αj .
For several calculations it is convenient to return to the variables (x, t). In these variables, the truncated system reads ẋi = f

(1)

i (k, x), 1 ≤ i ≤ n, (5.27) 
where

f (1) i (k, x) = δ odi+bi+oµ f (1) i ( k, y) = r j=1 S (1) ij k j x αj .
By definition, min{ψ i | 1 ≤ i ≤ n} -µ = 0. Therefore min{b i | 1 ≤ i ≤ n} = 0 and up to a relabelling of the variables y i one can consider that b 1 = 0 ≤ b 2 ≤ . . . ≤ b n .

From (5.24) it follows that each rescaled variable y i have significant changes of order O(δ 0 ) on a time scale of order O(δ -bi ). Therefore, the powers δ bi indicate the time scales of the variables y i : the most rapid is y 1 and the slowest is y n . Of course, several variables can have the same time scale order, i.e. the same value of b i . Let us regroup the variables y i into vectors z k where z k = (y i k , y i k +1 , . . . , y i k +n k -1 ) regroups all variables such that b

i k = b i k +1 = . . . = b i k +n k -1 = b k , where n 1 + n 2 + . . . + n m = n. We then obtain z k = δ b k ( f (1) k ( k, z) + δ b k f (2) k ( k, z, δ)), (5.28) where b 1 = 0 < b 2 < . . . < b m , b k > 0, f (1) k ( k, z) ∈ Z[ k, z], f (2) k ( k, z, δ) ∈ Z[ k, z, δ]
. We call truncated system at the fastest time the system obtained by setting δ = 0 in (5.28) (5.29) with explicit valuations for the parameters. The corresponding ODEs are

z 1 = f (1) 1 ( k, z), z 2 = 0, . . . z m = 0,
ẋ1 = x 2 / -x 1 , ẋ2 = -x 2 / -x 2 2 / + 1.
The model does not have exact conservation laws. By imposing total tropical equilibration to this model we get

d 2 -1 = d 1 , min(d 2 -1, 2d 2 -1) = 0.
These equations have a unique solution d 1 = 0, d 2 = 1, meaning that the valuations of x 1 and x 2 are different. The corresponding scaling is x 1 = y 1 , x 2 = y 2 and the rescaled ODEs read

ẏ1 = y 2 -y 1 , ẏ2 = -1 (-y 2 -y 2 2 + 1).
This scaling shows that y 1 and y 2 are slow and fast variables, respectively. The truncated system at fastest time scale is ẏ2 = -1 (-y 2 + 1), and has a unique hyperbolic steady state y 2 = 1. This model is not an example of approximate conservation and standard singular perturbation theory results (quasi-steady state approximation) can be applied for its reduction.

Notice that [START_REF] Schneider | Model reduction by extended quasi-steady-state approximation[END_REF]] used non-scaled concentrations. By doing so, the truncated system is ẋ1 = x 2 / , ẋ2 = -x 2 / -x 2 2 / , where both variables x 1 and x 2 seem fast. Using the assumption of even concentration valuations also leads to the nonlinear approximate conservation law φ = x 1 + log(1 + x 2 ) (see [START_REF] Schneider | Model reduction by extended quasi-steady-state approximation[END_REF]).

Chapter 6

Approximated conservation laws for model reduction

Exact and approximate conservation laws

In order to introduce the notions of exact and approximate conservation laws we use an example.

Example 6.1. Let us consider again the irreversible Michaelis-Menten mechanism that is paradigmatic for enzymatic reactions. We choose rate constants corresponding to the socalled quasi-equilibrium, studied by Michaelis and Menten. The reaction network for this model is

S + E k1 k2 ES k3δ -→ E + P
where S is a substrate, E is an enzyme, ES is an enzyme-substrate complex and k 1 ,k 2 ,k 3 are rate constants. Here 0 < δ < 1 is a small positive scaling parameter, indicating that the third rate constant is small. According to the mass-action kinetics, the concentrations

x 1 = [S], x 2 = [SE] and x 3 = [E] satisfy the system of ODEs ẋ1 = -k 1 x 1 x 3 + k 2 x 2 ẋ2 = k 1 x 1 x 3 -k 2 x 2 -δk 3 x 2 ẋ3 = -k 1 x 1 x 3 + k 2 x 2 + δk 3 x 2 . (6.1)
We consider the truncated system of ODEs

ẋ1 = -k 1 x 1 x 3 + k 2 x 2 ẋ2 = k 1 x 1 x 3 -k 2 x 2 ẋ3 = -k 1 x 1 x 3 + k 2 x 2 (6.2)
which is obtained by setting δ = 0 in (6.1). The truncated system (6.2) describes the dynamics of the model on fast time scales of order O(δ 0 ).

EXACT AND APPROXIMATE CONSERVATION LAWS

The steady state of the fast dynamics is obtained by equating to zero the r.h.s. of (6.2). The resulting condition is called quasi-equilibrium (QE) because it means that the complex formation rate k 1 x 1 x 3 is equal to the complex dissociation rate k 2 x 2 . In other words, the reversible reaction S + E k1 k2

ES functions at equilibrium. The QE condition is reached only at the end of the fast dynamics, and is satisfied with a precision of order O(δ) during the slow dynamics [START_REF] Gorban | Asymptotology of chemical reaction networks[END_REF]. Because of its approximate validity, QE is different from the similar concept of detailed balance [Boltzmann, 1964].

We introduce the linear combinations of variables x 4 = x 1 + x 2 and x 5 = x 2 + x 3 , corresponding to the total substrate and total enzyme concentrations, respectively.

Addition of the last two equations of (6.1) leads to ẋ5 = 0 which means that for solutions of the full system x 5 is constant for all times. We will call such a quantity "exact conservation law".

Additions of the first two and the last two equations of (6.2) lead to ẋ4 = 0, and ẋ5 = 0. This means that x 4 is constant for solutions of the truncated dynamics, valid at short times t = O(δ 0 ), and is not constant at larger times t = O(δ -1 ). We call such a quantity "approximate conservation law". The quantity x 5 is both an exact and approximate conservation law. Definition 6.2.

A function φ(x) is an exact conservation law unconditionally on the parameters, if

it is a first integral of the full system (2.2), i.e. if

n i=1 ∂φ ∂x i (x)f i (k, x) = 0
for all k and x.

2. A function φ(x) is an approximate conservation law unconditionally on the parameters, if it is a first integral of the truncated system (5.27), i.e. if

n i=1 ∂φ ∂x i (x)f (1) i (k, x) = 0
for all k, x.

3. An exact (approximate) conservation law of the form c

1 x 1 + • • • + c n x n with coefficients c i ∈ R is called an exact (approximate) linear conservation law. If c i ≥ 0 for 1 ≤ i ≤ n, the linear conservation law is called semi-positive.
4. An exact (approximate) conservation law of the form

x m1 1 • • • x mn n with m i ∈ Z is called an exact (approximate) rational monomial conservation law. If m i ∈ Z + for 1 ≤ i ≤ n,
the conservation law is called monomial. For simplicity, in this paper, we will call both types monomial.

An exact (approximate) conservation law of the form

s i=1 a i x m1i 1 • • • x mni n with m ji ∈ Z + and a i ∈ R is called an exact (approximate) polynomial conservation law.
CHAPTER 6. APPROXIMATED CONSERVATION LAWS FOR MODEL REDUCTION Some variables may not appear in a conservation law φ(x). This means that in case of a linear conservation law some coefficients c i may be zero, or in case of a nonlinear conservation law some partial derivatives ∂φ ∂xi (x) may vanish. If r is the number of all nonzero quantities ∂φ ∂xi (x), then we say that the conservation law depends on r variables. Sometimes, conservation laws depends on the parameter, in this case, we will note φ(k, x) instead of φ(x), it is generally the case when we are searching for monomial or polynomial conservation laws. Definition 6.3. An exact or approximated conservation law depending on r variables is called reducible if it can be split into the sum or the product of two conservation laws such that at least one of them depends on a number of variables r with 1 ≤ r < r. Otherwise it is called irreducible. Definition 6.4. For k ∈ R r + a steady state x is a solution of F (k, x) = 0 and we denote the steady state variety by S k . A steady state is degenerate or non-degenerate if the Jacobian D x F (k, x) is singular, or non-singular, respectively. Degeneracy of steady states usually results from the continuity of S k . Theorem 6.5. Assume that for k ∈ R r + , S k is a manifold. If the local dimension at a point x 0 ∈ S k is strictly positive, then x 0 is degenerate.

Proof. There is a neighborhood U of zero and a smooth function U → S k , α → x(α) with x(0) = x 0 . By differentiating in F (k, x(α)) = 0 with respect to α at 0 we get D x F (k, x 0 ) dx(0) dα = 0, and thus D x F (k, x 0 ) is singular.

Definition 6.6. A set Φ(x) = (φ 1 (x), . . . , φ s (x)) T of exact conservation laws is called complete if the Jacobian matrix

J F ,Φ (k, x) = D x (F (k, x), Φ(x)) T has rank n for any k ∈ R r + , x ∈ R n + satisfying F (k, x) = 0.
The set is called independent if the Jacobian matrix of Φ(x) T with respect to x has rank s for any k ∈ R r + , x ∈ R n + such that F (k, x) = 0. In the case of a set Φ(x) of approximate conservation laws completeness is defined with F (k, x) replaced by

F (1) ( k, x) = (δ b1 f (1) 1 ( k, x), . . . , δ bn f (1) n ( k, x)) T
where δ is treated as a parameter.

Proposition 6.7. If a system has a complete set of conservation laws, then the intersection of S k with {Φ(x) = c 0 } ∩ R n + , where c 0 ∈ R r is finite.

Proof. Suppose that the intersection is non-empty and contains x. Because the rank of J F ,φ in x is n, the implicit function theorem implies that, for k and c 0 , x is isolated from other solutions of F (k, x) = 0, Φ(x) = c 0 . As F is polynomial, the intersection is finite.

EXACT AND APPROXIMATE CONSERVATION LAWS

Remark 6.8. When Φ(x) is linear in x and results from a stoichiometric matrix, the set {Φ(x) = c 0 }∩R n + is called stoichiometric compatibility class, or reaction simplex [START_REF] Wei | [END_REF]Prater, 1962, Feinberg andHorn, 1974]. Stoichiometric compatibility classes of systems with complete sets of linear conservation laws contain a finite number of steady states. We note that some authors call completeness of linear conservation laws "non-degeneracy" [START_REF] Feliu | Preclusion of switch behavior in networks with mass-action kinetics[END_REF]. Remark 6.9. Because our concern is the number of positive solutions of F (k, x) = 0, Φ(x) = c 0 , in Definition 6.6 it would be more natural to consider the rank of

J F ,φ (k, x) on S k ∩ {Φ(x) = c 0 } ∩ R n + .
In fact, as this rank does not depend on c 0 , it is simpler and equivalent to impose its value on S k ∩ R n + . Remark 6.10. The independent linear conservation laws

Φ(x) = (x 1 + x 2 , x 2 + x 3 )
of Example 6.1 are complete. More precisely, the Jacobian of (F (x), Φ(x)) T , where F (x) is the vector of right hand sides of (6.2), has a 3 × 3 minor

M := det(D x (-k 1 x 1 x 3 + k 2 x 2 , Φ(x)) T ) = -k 2 -k 1 x 1 -k 1 x 3 .
This minor can not be zero for positive x, k, on the steady state variety defined by the equation -k 1 x 1 x 3 + k 2 x 2 = 0, therefore the rank of J F ,φ is three.

Furthermore, all stoichiometric compatibility classes defined by

x 1 + x 2 = c 01 , x 2 + x 3 = c 02 , x > 0 contain a unique steady state x 1 = k 1 (c 01 -c 02 ) -k 2 + √ ∆ /(2k 1 ), x 2 = k 1 (c 01 + c 02 ) + k 2 - √ ∆ /(2k 1 ), x 3 = k 1 (c 02 -c 01 ) -k 2 + √ ∆ /(2k 1 ), where ∆ = (c 01 -c 02 ) 2 k 2 1 + k 2 2 + 2k 1 k 2 (c 01 + c 02
). The notions of completeness and independence in Definition 6.6 are effective. Algorithm 17 tests for completeness. It uses in l.1 a parametric rank computation, which yields for a matrix A with parametric entries a set R = (Γ i , r i ) i=1,...,n of pairs. For each i = 1, . . . , n, Γ i is a conjunction of constraints of the form p = 0 or p = 0 where p is a polynomial in the parameters, and r i ∈ N. Let S 1 , . . . , S n be the semialgebraic sets defined by Γ 1 , . . . , Γ n , respectively. Then the following holds:

1. S 1 , . . . , S n form a finite partitioning of real parameter space. 2. Over each S i , we have invariantly rank(A) = r i .

On these grounds, we construct in l.2-3 an equivalent logic condition n for rank(J F ,φ (k, x)) = n. In l.4 we construct γ as a direct formalization of the definition of completeness. In l.5 we finally test validity of γ over the reals. Technically we use a combination of various effective quantifier elimination procedures for the theory of real closed fields [START_REF] Dolzmann | Real quantifier elimination in practice[END_REF],Sturm, 2017,Sturm, 2018, and the references there] combined with heuristic simplification techniques [Dolzmann and Sturm, 1997b] in the Redlog system [Dolzmann and Sturm, 1997a, Košta, 2016, Seidl, 2006]. Alternatively, one could use Satisfiability Modulo Theories solving over the logic QF NRA [START_REF] Nieuwenhuis | Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T)[END_REF], Barrett et al., 2017, Ábrahám et al., 2016]. Algorithm 18 proceeds analogously to Algorithm 17 and tests for independence.

Input: 1. F (k, x) = (f 1 (k, x)), . . . , f n (k, x)); 2. Φ(x) = (φ 1 (x), . . . φ s (x));
3. k = (k 1 , . . . , k r ); 4. x = (x 1 , . . . , x n ) Output: "yes" if Φ is complete according to Definition 6.6, "no" otherwise

1: R := ParametricRank J F ,φ (k, x) 2: R n := { (Γ, r) ∈ R | r = n } 3: n := (Γ,n)∈Rn Γ 4: γ := ∀k∀x(k > 0 ∧ x > 0 ∧ F (x) = 0 -→ n ) 5: if R |= γ then 6:
return "yes" 7: else 8:

return "no" 9: end if Algorithm 17: IsComplete

Input: 1. F (k, x) = (f 1 (k, x)), . . . , f n (k, x)); 2. Φ(x) = (φ 1 (x), . . . φ s (x)); 3. k = (k 1 , .
. . , k r ); 4. x = (x 1 , . . . , x n ) Output: "yes" if Φ is independent according to Definition 6.6, "no" otherwise 1: R :

= ParametricRank(D x Φ(x) T ) 2: R s := { (Γ, r) ∈ R | r = s } 3: s := (Γ,s)∈Rs Γ 4: ι := ∀k∀x(k > 0 ∧ x > 0 ∧ F (x) = 0 -→ s ) 5: if R |= ι then 6:
return "yes" 7: else 8:

return "no" 9: end if Algorithm 18: IsIndependent

EXACT AND APPROXIMATE CONSERVATION LAWS

Example 6.11. We automatically process Example 6.1 with our Algorithm 17 IsComplete. Our input is

F (k, x) = (-k 1 x 1 x 3 + k 2 x 2 , k 1 x 1 x 3 -k 2 x 2 , -k 1 x 1 x 3 + k 2 x 2 ), Φ(x) = (x 1 + x 2 , x 2 + x 3 ), k = (k 1 , k 2 )
, and x = (x 1 , x 2 , x 3 ). We obtain the parametric Jacobian

J F ,φ (k, x) =       -k 1 x 3 k 2 -k 1 x 1 k 1 x 3 -k 2 k 1 x 1 -k 1 x 3 k 2 -k 2 x 1 1 1 0 0 1 1      
and compute in l.1 the parametric rank

R = {(k 1 x 1 + k 1 x 3 + k 2 = 0, 3), (k 1 x 1 + k 1 x 3 + k 2 = 0, 2)}, from which we select R 3 = {(k 1 x 1 + k 1 x 3 + k 2 = 0, 3)} in l.2 and 3 = (k 1 x 1 + k 1 x 3 + k 2 = 0) in l.3. Completeness is straightforwardly formalized in l.4 by γ = ∀k∀x(k > 0 ∧ x > 0 ∧ k 1 x 1 x 3 -k 2 x 2 = 0 -→ k 1 x 1 + k 1 x 3 + k 2 = 0),
where some redundant equations are automatically removed from F (x) = 0 via the standard simplifier described in [Dolzmann and Sturm, 1997b]. Real quantifier elimination on γ in l.5 equivalently yields "true", which confirms completeness, and we return "yes" in l.6. Similarly, our Algorithm 18 IsIndependent computes

D x Φ(x) T = 1 1 0 0 1 1 , R = R 2 = {(true, 2)}, 2 = true . This yields ι = ∀k∀x(k > 0 ∧ x > 0 ∧ k 1 x 1 x 3 -k 2 x 2 = 0 -→ true)
, which by quantifier elimination is equivalent to "true", and we return "yes". Recall that any implication with "true" on the right hand side holds already due to Boolean logic [START_REF] Seidl | Boolean quantification in a firstorder context[END_REF].

In our framework here, this corresponds to the observation that completeness and independence hold whenever we encounter full rank of the corresponding Jacobian for all choices of parameters.

The automatic computations described here take less than 0.01 s altogether.

The following example shows that linear conservation laws are not always complete.

Example 6.12. One checks easily that the system

ẋ1 = 1 -x 1 -x 2 , ẋ2 = x 1 + x 2 -1
has the linear conservation law Φ(x) = x 1 + x 2 and that the Jacobian of (F (x), Φ(x)) T is constant and has rank 1. Trivially the Jacobian has everywhere rank 1 and so Φ(x) is not complete. The explicit solutions of the ODE system are x

1 (t) = (1 -c 0 )t + c 1 , x 2 (t) = (c 0 -1)t + c 0 -c 1 .
One can easily show that all invariant curves are of the form x 1 + x 2 = c 0 . We conclude that there are no further first integrals and so the system has no complete set of conservation laws. We can also note that the intersection of the steady state variety

x 1 + x 2 = 1 with a stoichiometric compatibility class x 1 + x 2 = c 0 is either empty or continuous.

In the absence of parameters k our Algorithm 17 IsComplete computes parametric rank R = {(true, 1)}. However, n = 2, which yields R 2 = ∅ and 2 = false. This gives us γ = ∀k∀x(true ∧ x > 0 ∧ x 1 + x 2 -1 = 0 -→ false), which quantifier elimination identifies to be "false", and the algorithm returns "no". Notice that γ is equivalent to ∀x(x > 0 -→ x 1 + x 2 -1 = 0), which illustrates that with deficient rank, completeness can only hold formally when there is no steady state in the positive orthant.

Parametric Rank Computation

In the following we present in more general setting algorithms which will allow us to check for completeness and independence of a set of exact and approximate conservation laws. For this purpose let P , N , M ∈ N and let R[v] be a polynomial ring in P indeterminates v = (v 1 , . . . , v P ). Further let A ∈ R[v] M ×N be a matrix whose entries are polynomials in v. We are interested in the rank of A in dependence of different values v ∈ R P for the variables v. Algorithm (19) will provide a decomposition of R P into disjoint sets such that for each set the rank of A is constant for all point v of this set.

By a guard Γ we mean a conjunction of polynomial constraints in the indeterminates v, i.e. polynomial equations and inequations in v with coefficients in R.

Conservation laws as slow variables

As an exact conservation law is constant over time, one can think that an approximate conservation law is a slow variable, this is the case for (at least) any polynomial CRN model of the type (2.2) and for all linear, monomial, or polynomial approximated linear conservation laws, as the following theorems show. Theorem 6.13. Let q = n i=1 c i x i , where c i ∈ N, be an approximate linear conservation law, that is conserved by the truncated ODE system (5.27). Let I = {i|c i = 0}, and consider that for all i ∈ I, c i = O(1). If q is irreducible, then the variable q is slower than the variables {x i |i ∈ I} of the system (2.2). Furthermore, if the timescales of x i , i ∈ I have the same order, then the concentrations of these variables have the same orders.

Before starting the proof, let use state the following Lemma 6.14. Consider that q = n i=1 c i x i is an irreducible linear conservation law. Then all the polynomials f (1) i (k, x) in the truncated system (5.27) have the same order in δ, i.e. od i + b i = od i + b i for all i, i ∈ I. If furthermore, the time scales of the variables x i have the same order in δ for all i ∈ I, i.e. b i = b i for all i, i ∈ I, then the concentrations x i have also the same order in δ, i.e. d i = d i for all i, i ∈ I.

Proof of Lemma 6.14. In the x variables the truncated system reads ẋi = δ odi ẏi = f

(1) i (k, x), where f (1) i (k, x) = δ odi+bi+oµ f (1)
i ( k, y) (see (5.27)). Since q is conserved by the ODE system (5.27) one has r i=1 c i f

(1) i (k, x) = 0, for all k, x. This can only be satisfied if for all i ∈ I there is at least one j ∈ I such that f

(1) i (k, x) and f

(1) j (k, x) have a common monomial. Since q is irreducible, for all i, j ∈ I, i = j, either f

(1) i (k, x) and f

(1) j (k, x) share a monomial, Input: An M × N -matrix A(v) with polynomial entries in parameters v. Output: A set of pairs {(Γ 1 (v), r 1 ), . . . , (Γ I (v), r I )}, where each Γ i (v) is a conjunction of polynomial equations and inequations and r i ∈ {1, . . . , N }. For any real choice v of parameters v there is one and only one i ∈ {1, . . . , I} such that R |= Γ i (v). For this i we have rank(A(v)) = r i . 1: I := 0 2: create an empty stack 3: push (true, A, 1) 4: while stack is not empty do end if 21: end while 22: return {(Γ 1 , r 1 ), . . . , (Γ I , r I )} Algorithm 19: ParametricRank or there is finite sequence i = i 0 , i 1 , . . . , i k = j such that f

(1)

i l (k, x) and f (1) 
i l+1 (k, x) share a monomial, for 0 ≤ l ≤ k. Since by definition of the truncated system, all the monomials in f

(1) i (k, x) have the same order, it follows that all the polynomials f (1) i (k, x) for some i ∈ I have the same order ν = od i + b i + oµ. The time scale order µ i of x i is the order of

ẋi xi = f (1) i (k,x) xi , namely µ i = ν -od i = b i + oµ.
Thus, the evenness of b i implies that of d i . The second part of the Theorem follows from the Lemma 6.14.

Proof of Theorem 6.13 . Let us note that q = q i∈I c i ẋi . Since q is conserved by the truncated system (5.27) we have

n i=1 c i δ bi+odi+oµ f (1) i ( k, y) = 0, CHAPTER 6. APPROXIMATED CONSERVATION LAWS FOR MODEL REDUCTION for all k,y, δ. Furthermore q = n i=1 c i δ bi+odi+oµ f (1) i ( k, y) + δ b i f (2) i ( k, y, δ) = n i=1 c i δ bi+b i +odi+oµ f (2) i ( k, y, δ).
Let us denote by µ q the order of the time scale of q, i.e. the order of q q . The order of q is min{od i | i ∈ I}. Thus,

µ q = min{b i + b i + od i + oµ | i ∈ I} -min{od i | i ∈ I}
We prove now that q is a slow variable, that is, we need to check that b i + oµ < µ q , for all i ∈ I. These conditions are equivalent to

b i < min{b j + b j + od j | j ∈ I} -min{od j | j ∈ I}, ∀i ∈ I.
According to the Lemma 6.14, b i = ν -oµ -od i , for all i ∈ I. Obviously, it is enough to prove that

ν -oµ -min{od j | j ∈ I} < min{b j + b j + od j | j ∈ I} -min{od j | j ∈ I},
which leads us to the inequation ν -oµ < min{b j + b j + od j | j ∈ I}. Since ν = b j + od j + oµ and b j > 0 for all j ∈ I, all the above inequalities are satisfied.

Example 6.15. Consider the following chemical reaction network

x 1 x 3 x 2 x 4 k1 k3 k2 k5 k4
If the dynamics of this reaction network is of mass-action form, then it is given by the following set of ODEs:

ẋ1 = k 2 x 2 -k 1 x 1 , ẋ2 = k 1 x 1 -(k 2 + k 5 )x 2 , ẋ3 = k 5 x 2 + k 4 x 4 -k 3 x 3 , ẋ4 = k 3 x 3 -k 4 x 4 .
We consider the case where e 1 = e 2 = e 3 = e 4 = 0, e 5 = 1. The total equilibrations are solutions of the system

d 1 = d 2 , min(d 4 , d 2 +1) = d 3 , d 3 = d 4 that read d 1 = d 2 ≥ d 4 -1, d 3 = d 4 . Let us consider total equilibration d 1 = d 2 = -1, d 3 = d 4 = -2. The rescaled system corresponding to this situations is ẏ1 = k2 y 2 -k1 y 1 , ẏ2 = k1 y 1 -( k2 + k5 )y 2 , ẏ3 = 2 k5 y 2 + k4 y 4 -k3 y 3 , ẏ4 = k3 y 3 -k4 y 4 .
Since occurs with only integer powers we can choose δ = .

CONSERVATION LAWS AS SLOW VARIABLES

All species x i , 1 ≤ i ≤ 4 have the same time scale orders b i = 0. The truncated system is ẏ1 = k2 y 2 -k1 y 1 , ẏ2 = k1 y 1 -k2 y 2 , ẏ3 = k4 y 4 -k3 y 3 , ẏ4 = k3 y 3 -k4 y 4 , and the truncated stoichiometric matrix reads

S (1) =     -1 1 0 0 1 -1 0 0 0 0 -1 1 0 0 1 -1     .
The system has two irreducible conservation laws y 1 + y 2 and y 3 + y 4 . These correspond to the species pools q 1 = x 1 + x 2 and q 2 = x 3 + x 4 that have time scale orders µ q1 = 1 and µ q2 = 2, respectively. Thus, q 1 and q 2 are slower than the species x i , 1 ≤ i ≤ 4. To be noticed that the species concentrations in these pools have equal orders d 1 = d 2 and d 3 = d 4 , consistent with the fact that in irreducible pools, species with the same time scales have the same concentration orders (Lemma 6.14).

Theorem 6.16. Let q = n i=1 x mi i be an approximate, irreducible monomial conservation law conserved by the truncated system (5.27).

Let I = {i | 1 ≤ i ≤ n, m i = 0}.
If q is irreducible, then the variable q is slower than all the variables {x i | i ∈ I} of the system (2.2). Furthermore, x i , i ∈ I have the same time scale orders.

Proof. Let us note that q = q i∈I m i ẋi xi . Since q is conserved by the truncated system (5.27) we have

i∈I δ bi+oµ m i y i f (1) i ( k, y) = 0,
for all k,y, δ. As

f (1)
i yi is a sum of rational monomials, this is possible only if for any i ∈ I, there is j ∈ I such that f (1) i yi and f (1) j yj share a common monomial. Since q is irreducible, for all i, j ∈ I, either f (1) i yi and f (1) j yj share a common monomial, or there is a sequence

i = i 0 , i 1 , . . . , i k = j such that f (1) i l yi l and f (1) i l+1 yi l+1 share a common monomial, for 0 ≤ l ≤ k -1. It follows that f (1) i (k,x)
xi have the same order, i.e. b i + oµ is the same and for all i ∈ I. Let µ i be the time scale order of x i . As shown in the previous section

µ i = b i + oµ.
It follows that x i have the same time scale orders for i ∈ I.

In order to compute the time scale of q we use

q q = i∈I m i ẋi x i = i∈I m i δ bi+oµ f (1) i ( k, y) + δ b i f (2) i ( k, y, δ) y i = i∈I m i δ bi+b i +oµ f (2) i ( k, y, δ) y i ,
where the last equality follows from the fact that q is conserved by (5.27). Let us denote by µ q the order of the time scale of q, i.e. the order of q q . Considering that m i are small integers of order O(δ 0 ), it follows that

µ q = min i∈I {b i + b i + oµ}.
To prove that q is a slow variable with respect to the variables {x i , i ∈ I}, we need to show that ∀i ∈ I, µ i < µ q . So we need to prove that ∀i ∈ I, b i < min j∈I {b j + b j }

As ∀i, j ∈ I, b i = b j and b j > 0, we have ∀i ∈ I, b i = min j∈I b j < min j∈I {b j + b j }.

Theorem 6.17. Let q = r j=1 c j x mj , where c j ∈ R * and m j = (m 1j , . . . , m nj ) ∈ N n , be an approximated conservation law, conserved by (5.27). Let I = {i | m ij = 0 for some j, 1 ≤ j ≤ r}. If q is irreducible, then q is slower than all the variables x i , i ∈ I of the system (2.2). If furthermore, the timescales of the of the variables x i have the same order in δ, i.e. b i = b i for all i, i ∈ I, then the monomials in q have also the same order in δ, i.e. d, m j = d, m j for all j, j ∈ {1, . . . , r} such that m i,j = 0, m i ,j = 0 for some i, i ∈ I.

Proof. We note that q = r j=1 c j x mj (

r i=1 m ij ẋi xi ) = n i=1 ẋi xi ( mi,j =0 m ij c j x mj
). Let us define the sum of rational monomials

E i,j ( k, y, δ) = δ bi+oµ f (1) i ( k, y, δ) y i m ij c j δ o d,mj y mj .
As q is conserved by (5.27) it follows 1≤i≤n, 1≤j≤r, mi,j =0 E i,j ( k, y, δ) = 0, for all k, y, δ. This is only possible if for any i, j such that m i,j = 0, there is i , j such that m i ,j = 0, and such that E i,j and E i ,j share a common monomial. Because q is irreducible for all i, j, i , j such that m i,j = 0 and m i ,j = 0, either E i,j and E i ,j share a common monomial, or there is a sequence (i, j) = (i 0 , j 0 ), (i 1 , j 1 ), . . . , (i k , j k ) = (i , j ), such that E i l ,j l and E i l+1 ,j l+1 share a common monomial, for 0 ≤ l ≤ k -1. Thus, the expressions

f (1) i (k,x) xi
m ij c j x mj have the same order for all i, j such that m i,j = 0, i.e.

b i + oµ + o d, m j = b i + oµ + o d, m j ,
for all i, j, i , j such that m i,j = 0 and m i ,j = 0.

In particular, if all the variables x i have the same timescale order b i for all i ∈ I, it follows that d, m j are the same for all 1 ≤ j < r, such that m i,j = 0 for some i ∈ I, which proves the second part of the theorem.

As q is conserved by (5.27) it follows q = i,j,mi,j =0

δ bi+b i +oµ f (2) i ( k, y, δ) y i m ij c j δ o d,mj y mj .

CONSERVATION LAWS AS SLOW VARIABLES

The time scale order of q is

µ q = min mij =0 (b i + b i + oµ + o d, m j ) -min 1≤j≤r o d, m j .
Let i ∈ I and j such that m i,j = 0. Using

b i + oµ + o d, m j = min mi,j =0 (b i + oµ + o < d, m j ) and b i > 0 it follows b i + oµ = min mi,j =0 (b i + oµ + o d, m j ) -o d, m j < µ q ,
meaning that q is slower than all variables x i , i ∈ I.

Reduction of the Michaelis-Menten Model under Quasi-equilibrium

Conditions.

The Michaelis-Menten model has been used as a paradigmatic example as it allows to introduce the main concepts of model reduction. Both QSS and QE reductions were discussed in [START_REF] Noel | Tropicalization and tropical equilibration of chemical reactions[END_REF],Radulescu et al., 2015b,Samal et al., 2015], for a two variable Michaelis-Menten model obtained from the three variable one by exact reduction, using one exact linear conservation laws. In this subsection we illustrate a different approach that starts with the three variable model introduced in Example6.1. The scaling in (6.1) is based on the total tropical equilibration solution d 1 = d 2 = d 3 = 0 and δ = . According to this scaling all the three variables x 1 ,x 2 and x 3 have the same time scale. The new variables x 4 = x 1 + x 2 and x 5 = x 2 + x 3 are conservation laws (approximate and exact, respectively).

We use the approximate and exact conservation laws to eliminate two out of the three variables x 1 , x 2 , x 3 and obtain

x 2 = x 4 -x 1 , x 3 = x 5 -x 4 + x 1 .
(6.

3)

The remaining variables satisfy ẋ1 = -k 1 x 1 (x 5 -x 4 + x 1 ) + k 2 (x 4 -x 1 ) ẋ4 = -δk 3 (x 4 -x 1 ) ẋ5 = 0 (6.4)

The system (6.4) shows that x 4 is a slow variable and x 5 is a conserved, constant variable.

The constant variable can be turned into a parameter x 5 = k 4 that leads to ẋ1 = -k 1 x 1 (k 4 -x 4 + x 1 ) + k 2 (x 4 -x 1 ) (6.5) ẋ4 = δk 3 (x 4 -x 1 ) (6.6)

The system (6.5),(6.6) is typically a slow/fast system with x 1 fast and x 4 slow. The fast dynamics is described by ẋ1 = -k 1 x 1 (k 4 -x 4 + x 1 ) + k 2 (x 4 -x 1 ), (6.7) CHAPTER 6. APPROXIMATED CONSERVATION LAWS FOR MODEL REDUCTION and has two hyperbolic steady states, among which only one is positive and stable 1 :

x * 1 = -(k 1 (k 4 -x 4 ) + k 2 ) + (k 1 (k 4 -x 4 ) + k 2 ) 2 + 4k 1 k 2 x 4 2k 1 . (6.8)
By singular perturbation results [START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Hoppensteadt ; Hoppensteadt | On systems of ordinary differential equations with several parameters multiplying the derivatives[END_REF], Fenichel, 1979] the solutions of (6.5),(6.6) with appropriate initial conditions converge, when δ → 0, to the solutions of the differential-algebraic system

0 = -k 1 x 1 (k 4 -x 4 + x 1 ) + k 2 (x 4 -x 1 )
x 4 = k 3 (x 4 -x 1 ), (6.9)

where the derivative is with respect to the time τ = tδ.

Using the solution (6.8), the semi-explicit differential-algebraic system (6.9) can be transformed into the reduced ODE

x 4 = k 3 x 4 - -(k 1 (k 4 -x 4 ) + k 2 ) + (k 1 (k 4 -x 4 ) + k 2 ) 2 + 4k 1 k 2 x 4 2k 1 .
(6.10)

The Figure 6.1 illustrates the accuracy of this reduction.

1 all the eigenvalues of the Jacobian matrix computed in this state lie in the complex half-plane such that E and S have comparable concentrations; this is not compatible with the quasisteady state approximation but is compatible with the quasi-equilibrium approximation that has been used here.

Chapter 7

The Model Reduction Algorithms

In this section, to wrap up all the above developed concepts, we propose several model reduction algorithms. These take into account approximate conservation laws and are applicable to CRN models with multiple timescales and polynomial rate functions. We consider two types of reductions:

i) Reduction at the slowest timescale, and ii) Nested reductions at intermediate timescales.

In the case i), all the variables except the slowest one are eliminated during the reduction procedure. The reduced model is an ODE for the slowest variable. The elimination of fast variables proceeds hierarchically, the fastest variables being eliminated first.

In the case ii), all the fast variables up to the (l-1)-th fastest one satisfy polynomial quasi-steady state equations and can be eliminated. The remaining variables satisfy a reduced system of ODEs. The reduced dynamics takes place on the normally hyperbolic invariate manifold that is close to the critical manifold defined by the quasi-steady state equations. Changing l from l = 1 to l = m one obtains m nested, attractive, normally hyperbolic invariant manifolds along which the reduced dynamics evolves at successively slower timescales. Of course, the case i) results from ii) with l = m.

For both i) and ii) types of reduction, the elimination of the fast variables is possible only if the truncated system at the k-th timescale has hyperbolically stable steady states (with 1 ≤ k ≤ m in the case i) and 1 ≤ k ≤ l in the case ii)). When there are approximate conservation laws conserved by the truncated system, the hyperbolicity condition is not fulfilled and the standard reduction algorithm proposed in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF] does not apply. Our solution to this problem is to add approximate conservation laws to the set of variables, eliminate some of the fast variables and obtain a modified system that has no approximate conservation laws and satisfies the hyperbolicity condition.

THE SLOWEST TIMESCALE REDUCTION

The Slowest Timescale Reduction

Like in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF] we introduce the small parameters δ l-1 = δ b l -b l-1 , for 2 ≤ l ≤ m and the vector δ = (δ 1 , . . . , δ m ).

Let us change the time variable to τ = τ δ 1 δ 2 . . . δ m , the slowest timescale of the model. The system (5.28) becomes

δ 1 δ 2 . . . δ m-1 z 1 = f (1) 1 ( k, z) + ḡ1 ( k, z, δ), . . . δ m-1 z m-1 = f (1) m-1 ( k, z) + ḡm-1 ( k, z, δ), z m = f (1) m ( k, z) + ḡm ( k, z, δ) (7.1) where ḡk ( k, z, δ) = δ b k f (2) k ( k, z, δ) satisfy ḡk ( k, z, 0) = 0 for 1 ≤ k ≤ m.
We also assume that the functions ḡk are smooth in all their variables. The smoothness in δ can be tested algorithmically with methods introduced in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF].

By setting δ = 0 in (7.1) we obtain the slowest timescale reduced system

0 = f (1) 1 ( k, z), . . . 0 = f (1) m-1 ( k, z), z m = f (1) m ( k, z) (7.2)
For k ∈ R r + , z m ∈ R nm + , a state (z 1 , . . . , z m-1 ) satisfying the system of equations

f (1) 1 ( k, z 1 , . . . , z m-1 , z m ) = 0, . . . , f (1) m-1 ( k, z 1 , . . . , z m-1 , z m ) = 0 (7.3)
is called quasi-steady state. Consider that the system (7.3) can be solved for (z 1 , . . . , z m-1 ) in the following, hierarchical way. First, there is a differentiable function f 1 ( k, z 2 , . . . , z m ) such that

f (1) 1 ( k, f 1 ( k, z 2 , . . . , z m ), z 2 , . . . , z m ) = 0.
Next, consider that there is a differentiable function f 2 ( k, z 3 , . . . , z m ) such that

f (1) 2 ( k, f 1 ( k, f 2 ( k, z 3 , . . . , z m ), . . . , z m ), f 2 ( k, z 3 , . . . , z m ), . . . , z m ) = 0.
Assuming that the procedure can go on, consider finally that there is a function

f m-1 ( k, z m ) such that f (1) m-1 ( k, z 1 , z 2 , . . . , z m-1 , z m ) = 0,
where z 1 , z 2 , . . ., z m-1 are recursively replaced by f 1 ( k, z 2 , . . . , z m ), f 2 ( k, z 3 , . . . , z m ), . . ., f m-1 ( k, z m ), respectively. Consider the reduced system

z m = f * m ( k, z m ) (7.4) where f * m ( k, z m ) is obtained from f (1) m ( k, z 1 , .
. . , z m ) by substituting z 1 , z 2 , . . ., z m-1 as above.

Solutions of the system (7.1) in the limit δ → 0 were studied by Tikhonov [START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF], Hoppensteadt [START_REF] Hoppensteadt ; Hoppensteadt | On systems of ordinary differential equations with several parameters multiplying the derivatives[END_REF] and O'Malley [O'Malley, 1971]. They showed that under appropriate conditions (roughly non-degeneracy and hyperbolicity, see Section 7.3), the solutions of the system (7.1) with initial conditions z i (0) = g i (δ), where g i (δ) are differentiable functions, converge to the solutions of the system (7.4) with initial conditions z m (0) = g m (0) when δ → 0. By this reduction, called quasi-steady state approximation, all the variables faster than the slowest one are eliminated and the reduced model describes the dynamics at the slowest timescale. This type of reduction is the most popular in applications, for instance in physical chemistry (where it is known as the Semenov-Bodenstein quasi-steady state approximation) and in computational systems biology [START_REF] Radulescu | Reduction of dynamical biochemical reactions networks in computational biology[END_REF].

Nested intermediate timescale reductions

This type of reduction was proposed by Cardin and Teixera [Cardin and Teixeira, 2017], and algorithmically formalized in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF]. We call it nested because the reduced dynamics at intermediate timescales are embedded in normally hyperbolic invariant manifolds that form a nested family (manifolds of slower variables are included in manifolds of faster variables). In [START_REF] Cardin | Fenichel theory for multiple time scale singular perturbation problems[END_REF] both stable and unstable manifolds were considered. Here, like in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF], we consider only the stable case. The stable, normally hyperbolic invariant manifolds attract and confine the dynamics at various timescales and are used to obtain reductions valid at intermediate timescales.

We provide here the formal description of the reduction at an intermediate timescale of order δ b l = δ b1 δ 1 δ 2 . . . δ l-1 .

By redefining the time to τ = τ δ b l , where 1 ≤ l ≤ m we get (7.5) where ḡk ( k, z, δ) are smooth functions such that ḡk ( k, z, 0) = 0 for 1 ≤ k ≤ m. We call reduced system at the l th fastest time or slower the system obtained by setting Let us define

δ 1 δ 2 . . . δ l-1 z 1 = ( f (1) 1 ( k, z) + ḡ1 ( k, z, δ)), . . . δ l-1 z l-1 = ( f (1) l-1 ( k, z) + ḡl-1 ( k, z, δ)), z l = ( f (1) l ( k, z) + ḡl ( k, z, δ)), z l+1 = δ l ( f (1) l+1 ( k, z) + ḡl+1 ( k, z, δ)), . . . z m = δ l δ l+1 . . . δ m-1 ( f (1) m ( k, z) + ḡm ( k, z, δ)),
Z k =    z 1 . . . z k    and 
F (1) k ( k, z) =     f (1) 1 ( k, z) . . . f (1) k ( k, z)     .
For any k, 1 ≤ k ≤ m, the set of positive solutions of F (1) k ( k, z) = 0 is denoted M k and represents the intersection of the k-th quasi-steady state variety and the first orthant. For any l, 1 ≤ l ≤ m, we call l-chain the chain of nested varieties intersected with the first orthant

M 0 = R n + ⊇ M 1 ⊇ . . . ⊇ M l . Let us solve F (1)
k ( k, z) = 0 by successive elimination of variables, starting with z 1 and ending with z k . During the elimination, the intermediary functions f * k ( k, z k , . . . , z m ), f k ( k, z k+1 , . . . , z m ), F k ( k, z k+1 , . . . , z m ) are defined in the following, recursive way: . . . , l}. (7.11) In order to prove this theorem we need the notion of Schur complement, that occurs naturally during the Gaussian elimination of variables (see, for instance, [Zhang, 2006]). (7.14) for all k ∈ {1, . . . , m -1} and z ∈ M k such that D Z k F (1) k is invertible.

z k = f k ( k, z k+1 , . . . , z m ) is a solution of f * k ( k, z k , . . . , z m ) = 0, (7.8) F k ( k, z k+1 , . . . , z m ) = F k-1 ( k, f k ( k, z k+1 , . . . , z m ), z k+1 , . . . , z m ) f k ( k, z k+1 , . . . , z m ) , (7.9) f * k+1 ( k, z k+1 , . . . , z m ) = f (1) k+1 ( k, F k ( k, z k+1 , . . . , z m ), z k+1 , . . . , z m ), if k < m, (7.10) for 1 ≤ k ≤ m and with f * 1 ( k, z 1 , . . . , z m ) = f (1) 1 ( k, z 1 , . . . , z m ). From the construction, it is straightforward that Proposition 7.1. z = (Z k , z k+1 , . . . , z m ), where Z k = F k ( k, z k+1 , . . . , z m ), is a solution of F ( 
|D Z k F (1) k | = 0 for z ∈ M k and k ∈ {1,
D z k+1 f * k+1 = D Z k+1 F (1) k+1 /D Z k F (1) k ,
Proof. Differentiating (7.10) with respect to z k+1 it follows

D z k+1 f * k+1 = (D Z k f (1) k+1 )D z k+1 F k + D z k+1 f (1) k+1 .
From the Proposition 7.1 it follows that

F (1) k ( k, F k ( k, z k+1 , . . . , z m ), z k+1 , . . . , z m ) = 0.
Differentiating with respect to z k+1 it follows

(D Z k F (1) k )D z k+1 F k + D z k+1 F (1) k = 0, for z ∈ M k . Finally, D z k+1 f * k+1 = -(D Z k f (1) k+1 )(D Z k F (1) k ) -1 D z k+1 F (1) k + D z k+1 f (1) k+1 = D Z k+1 F (1) k+1 /D Z k F (1) k .
Now we can prove the Theorem 7.3.

Proof. Using the Schur formula (7.12),

|D z k f * k ||D Z k-1 F (1) k-1 | = |D Z k F (1) k |, for k ∈ {2, . . . , l}, |D z1 f * 1 | = |D Z1 F (1) 1 |. This implies that |D z k f * k | = 0 for k ∈ {1, . . . , l} is equivalent to |D Z k F (1) k | = 0 for k ∈ {1, . . . , l}.
As discussed in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF] and [O'Malley, 1971], the validity of the quasi-steady state approximation depends also on the following, hyperbolicity condition: Condition 7.6 (Hyperbolicity). z l = f l ( k, z l+1 , . . . , z m ) is a hyperbolically stable steady state of the ODE z l = f * l ( k, z l , z l+1 , . . . , z m ), for all 1 ≤ l ≤ m -1, where f * l are defined like in subsection 7.3. By hyperbolically stable it is meant that all the eigenvalues of the Jacobian matrix computed at the steady state have strictly negative real values.

As discussed in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF], an important concept for the geometric theory of singular perturbations is the hyperbolically attractive chain.

Definition 7.7. The chain of nested quasi-steady state varieties intersected with the first orthant form a hyperbolically attractive l-chain if all eigenvalues of D z k f * k have negative real parts for all k ∈ {1, . . . , l}. In this case we write M 0 M 1 . . . M l .

From the Lemma 7.5 it follows Proposition 7.8. A l-chain is hyperbolically attractive if and only if all eigenvalues of D z1 f (1) 1 have negative real parts for z ∈ M 1 and all eigenvalues of

D Z k F (1) k /D Z k-1 F (1)
k-1

have negative real parts for z ∈ M k-1 and k ∈ {2 . . . , l}.

Remark 7.9. The nested reduction (7.6) is valid up to the l-th timescale if the l-th chain M 0 M 1 . . . M l is hyperbolically attractive (see [START_REF] Cardin | [END_REF]Teixeira, 2017,Kruff et al., 2020]). The slowest timescale reduction discussed in the section is valid if M 0 M 1 . . . M m is hyperbolically attractive.

The existence of approximate conservation laws corresponds to the so-called quasi-equilibrium condition [START_REF] Gorban | Asymptotology of chemical reaction networks[END_REF], Radulescu et al., 2012]. Let φ l (x) be a linear, monomial, or polynomial irreducible approximate conservation law depending only on variables having time-scales orders equal to or faster than b l . As shown in section (see Lemma 34,Theorems 33,39), in this case all the monomial terms at the r.h.s of ODEs obeyed by the variables involved in φ l (x) have the same order in δ, therefore

f (1) i (k, x) = δ µ l f (1) i ( k, z), for all i such that ∂φ l (x) ∂x i = 0. (7.15)
From the definition of approximate conservation laws we have D x φ l (x)F

(1) l (k, x) = 0. Because φ l depends only on X l , where X l contains all the variables x i faster or of the timescale b l , we got D X l φ l (x)F

(1) l (k, x) = 0. (7.16) Using (7.15) and (7.18) we find (7.17) meaning that φ l is also a conservation laws of the vector field F (1) l ( k, z). The existence of such approximated conservation laws implies failure of the condition (7.11) in the Theorem 7.3 as in the following Proposition 7.10. Let us consider that there is an approximate conservation law φ l (X l ),

D Z l φ l (z) F (1) l ( k, z) = 0,
where 1 ≤ l ≤ m -1. Then |D Z l F (1) l | = 0 if z ∈ M l .
Proof. From the definition of approximate conservation laws we have

D X l φ l (X l )F (1) l (k, x) = 0. (7.18)
Because the polynomials F

(1) l and F (1) l are identical we find

D Z l φ l (Z l ) F (1) l ( k, z) = 0. ( 7 

.19) CONSERVATION LAWS

Input: A CRN given by a polynomial vector field F (k, x).

Output: A differential algebraic CRN given by a modified polynomial vector field and a set of algebraic constraints. 1: ScaleAndTruncate. Find a complete set Φ l of independent conservation laws for F

(1) l satisfying the conditions (7.21), (7.22).

8:

for i := 1 to s l do 9:

if Φ il is not total then Add x c l = Φ il (x) to the set of algebraic constraints.

12:

else 13:

Delete the ODE satisfied by xil 14:

Define new constants k c il and concatenate them to k.

15:

Add k c il = Φ il (x) to the set of algebraic constraints.

16:

end if 17:

end for 18:

ScaleAndTruncate. 19: end while Algorithm 21: TransformCRNimplicit transformed system. More precisely, at each step l one concatenates the truncated vector field F (l) l (k, z) and the conservation law Φ l (z). The first one is used for the ODE part of the transformed system and the second defines the algebraic constraint (7.24). This choice is implemented in Algorithm 21. Using the Lemma 7.13 and the Proposition 7.8 we can show that the hyperbolicity test justifying this reduction should be performed on the eigenvalues of the Schur complement

D Z l F (1) l Φ l D žl Φ l D Z l-1 F (1) l-1 Φ l-1 D žl-1 Φ l-1 .
y 1 ← y 1 -y 2 , y 3 ← y 3 -y 4 , y 8 ← -y 5 -y 6 -y 7 +y 8 -y 18 -y 21 y 21 ← k 39 -(y 17 +y 18 ). The new variables must obey y 1 ≥ y 2 , y 3 ≥ y 4 , y 8 ≥ y 5 + y 6 + y 7 + y 8 + y 18 + y 21 and k 39 ≥ y 17 + y 18 . After this substitution, a fifth timescale occurs of order 4 (all the approximate conservation laws are slower variables, of timescales 3 and 4 ).

The resulting system satisfies

|D Z k F (1) k | = 0, k ∈ {1, 3} and |D Z4 F (1)
4 | = 0. We find two approximate conservation laws y 3 -y 5 -y 6 + y 17 + y 18 + y 19 + y 20 , y 12 + y 15 . In old variables, the first one corresponds to x 3 + x 4 -x 5 -x 6 + x 17 + x 18 + x 19 + x 20 . At this step ž4 = (y 3 , y 15 ) are substituted as y 3 ← y 3 + y 5 + y 6 -y 17 -y 18 -y 19 -y 20 , y 15 ← -y 12 + y 15 . All the new variables are of timescales 4 .

At the next step, |D

Z k F (1) k | = 0, k ∈ {1, 4} but |D Z5 F (1)
5 | = 0. We find two new approximate conservation laws y 3 + y 8 and y 3 -y 1 . The first one is an exact conservation as in old variables is x 3 + x 4 + x 7 + x 8 + x 18 + x 19 + x 20 + x 17 + x 18 + x 21 = k 39 + k 41 . At this step ž5 = (y 1 , y 3 ) are substituted as y 1 ← y 3 -y 1 , y 3 ← k 39 + k 41 -y 8 . After this step, a sixth timescale occurs, of order 5 for the variable y 1 .

At the last step we identify one more, exact, conservation law 2y 10 + 2y 9 -y 1 that in initial variables represents x 1 +x 2 +x 5 +x 6 +x 7 +x 8 +2x 9 +2x 10 +x 18 +x 21 = k 40 -k 39 -k 41 . The variable y 1 is eliminated and the timescale of order 5 disappears. The substitution is y 1 ← 2y 10 + 2y 9 -k 40 + k 39 + k 41 . After this step the full Jacobian matrix is non-singular and there is no more conservation law, approximate or exact. Five timescales remain, of orders 0 , 1 , 2 , 3 , 4 .

To summarize, 6 approximate and 3 exact conservation laws were used in this reduction. The 3 exact conservation laws were used to eliminate 3 of the initial model variables, see Table 7.1. Among the 6 approximate conservation laws, 2 were kept as variables in the final transformed model, the other being eliminated at different steps of the procedure. The final transformed model has a reduced dimensionality (18 variables) and no conservation laws. As can be seen from (7.33), this method unravels one new timescale that was not apparent in the initial rescaled model (7.31).

= 1 (k 1 k 40 -k 2 y 2 ), ẏ4 = 2 (k 3 k 41 -2k 3 y 4 ), ẏ5 = 1 (k 5 y 6 + k 7 y 7 + k 6 y 4 y 5 -k 6 k 41 y 5 ), ẏ6 = 1 (k 35 k 39 + k 9 y 8 + k 9 y 17 -k 9 k 39 -k 5 y 6 -k 9 y 7 -k 35 y 17 -k 35 y -k 8 y 4 y 6 ), ẏ7 = 2 (k 6 k 41 y 5 -k 7 y 7 -k 1 4y 7 -k 6 y 4 y 5 ), ẏ8 = 3 (
The new variables of the transformed model can be expressed in the old variables of the initial model as shown in Table 7.2. In order to find to inverse transformation, from new variable x i to old variables x o i , we need to add the three exact conservation laws that were used to eliminate three old variables. More precisely, we have to solve x 20 1

x 8 = x 5 + x 6 + x 7 + x o 8 + x 18 + x o 21 x 15 = x 12 + x o 15 k 39 = x 17 + x 18 + x o 21 k 40 = x o 1 + x 2 + x 5 + x 6 + x 7 + x o 8 + 2x 9 + 2x 10 + x 18 + x o k 41 = x o 3 + x 4 + x 7 + x o 8 + x 18 + x 19 + x 20 , (7.34) leading to x o 1 = k 40 -x 2 -x 8 -2x 9 -2x 10 x o 3 = k 39 + k 41 -x 4 + x 5 + x 6 -x 8 -x 17 -x 18 -x 19 -x x o 8 = x 8 + x 17 -x 5 -x 6 -x 7 -k 39 x o 15 = x 15 -x 12 x o 21 = k 39 -x 17 -x 18 . ( 7 
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Table 7.2: Transformed model: variables and their interpretation. The timescale column contains the power of multiplying the r.h.s. of the rescaled ODEs (the characteristic times scale like the reciprocal of these quantities, so slower means higher order). The variables of the transformed model are all positive and must also satisfy

k 40 -x 2 -x 8 -2x 9 -2x 10 ≥ 0, k 39 + k 41 -x 4 + x 5 + x 6 -x 8 -x 17 -x 18 -x 19 -x 20 ≥ 0, x 8 + x 17 -x 5 -x 6 -x 7 -k 39 ≥ 0, x 15 -x 12 ≥ 0, k 39 -x 17 -x 18 ≥ 0.
Figure 7.1, for various choices of k. As it can be noticed, especially at shorter timescales there are few species that are predicted with errors by the reduced model. There are two reasons to this phenomenon. The first reason is that the values of fast species are based on the truncated system of equations. Although all the terms neglected by truncation have orders larger than the dominant terms and therefore the reduction is justified in the limit → 0, for finite the quality of the approximation can be low if the number of the neglected terms is large. This source of error can be reduced by considering higher order terms in the approximation, for instance higher order Puiseux series to represent the fast variables. Another reason for bad approximation is the choice of the tropical equilibration used for the reduction. A tropical equilibration solution is valid in a domain in the space of concentrations but not for all species concentrations. Furthermore, several tropical equilibration solutions (a polytope in log scale) lead to the same reduced model, but again the corresponding polytope does not cover all the concentration. It is thus possible that the tropical equilibration solution and the reduced model has to change along a trajectory of the full model when this crosses polytopes corresponding to different reductions. This is the case for the transformed TGFβ model, see Figure 7.2. This source of error can be reduced by considering tropical equilibration solutions at the boundary between polytopes, leading to reductions valid for two or several polytopes of solutions.

Conclusions

We have provided an algorithmic solution allowing to transform systems of polynomial ODEs with approximate conservation laws into equivalent systems that do not have approximate conservation laws. This allowed us to reduce the transformed systems by using geometric singular perturbation theory.

Our reduction algorithms are based on calculation of complete sets of linear, monomial or polynomial conservation laws.

Linear conservation laws are easier to compute and one should always start by looking for complete sets of linear conservation laws. We have seen that important CRN case studies can be reduced down to the slowest timescale by using only linear conservation laws. The large propensity for linear conservation laws in biochemical models coming from real life may be explained by the modularity of these networks: pools of species form cycles whose internal dynamics have well defined timescales and these cycles are nested hierarchically. Interestingly, the introduction of new variables corresponding to the linear conservation laws correspond to pooling the species taking part in a cycle into a single variable, whereas fast species elimination corresponds to pooling several reactions and pruning the internal variables [START_REF] Radulescu | Reduction of dynamical biochemical reactions networks in computational biology[END_REF]. It is thus possible, in certain cases, to accompany the reduction of the ODE system by reduction of the graph of chemical reactions using graph rewriting, in order to obtain a CRN structure for the reduced model. We will discuss this possibility in detail elsewhere.

The model rescaling and reduction is based on the choice of a tropical equilibration solution. Changing this solution usually leads to a change of the reduction, which is not surprising because a reduction have limited validity in concentration space and in time. However, some reductions are better than other in the sense that they have wider validity in the concentration space and in time. It would be therefore useful to define extra geometric criteria that lead to effective reduction. For instance, some tropical equilibration solutions may lead to approximate conservation laws that are not equilibrated (there are only positive or only negative dominant terms in the r.h.s. of the corresponding ODEs). Finding tropical equilibration solutions that lead to equilibrated approximate conservation laws is an interesting problem, although this may be very hard algorithmically. For each species we have plotted the log of positive (continuous line) and negative (dotted lines) rates producing and consuming these species, respectively. For tropically equilibrated species the two rates must have the same order (the log values should round up to the same integer for continuous and dotted curves of the same color). For times larger than 10 4 this condition is valid for all species. For shorter times, a few species are not equilibrated. Furthermore, some rates change abruptly at these timescales, suggesting that different tropical equilibration solutions should be considered at shorter timescales.

COMPUTING LINEAR CONSERVATION LAWS

Further C can be chosen such that its rows form a set of independent, irreducible exact linear conservation laws unconditional on k. Furthermore, all c = (c 1 , . . . , c n ) defining exact linear conservation laws unconditional on k are linear combinations of the rows of C.

Proof. As a direct consequence of the rank theorem, there is a matrix C with n -s independent rows such that CS = 0. If c = (c 1 , . . . , c n ) defines an exact linear conservation law unconditional on k it follows that r j=1 (cS) j k j x αj = 0 for all k, x. If i = j one has α i = α j or k i = k j . It follows that k j x αj are linearly independent in R[k, x] and cS = 0. Therefore, c is a linear combination of rows of C. Those rows of C that are not irreducible can be decomposed as a sum of irreducible linear conservation laws. The resulting conservation laws form a generating set for the vector space of linear conservation laws and therefore this set contains a basis. The n -s elements of this basis can be chosen as the irreducible rows of C.

Remark 8.2. Because S ij ∈ Z, the coefficients c i can be chosen to be integers. In most practical applications, c i are small integers and can be considered of order O(δ 0 ). This property will be used in Section 5.3. For conservative CRNs linear conservation laws can be chosen semi-positive, that is all c i ≥ 0 (see [START_REF] Schuster | Determining all extreme semipositive conservation relations in chemical reaction systems: a test criterion for conservativity[END_REF],Soliman, 2012,Lemaire and Temperville, 2014]). Semi-positive linear conservation laws are important because their existence implies that concentrations of some species are bounded. Algorithms to compute irreducible, semi-positive linear conservation laws can be found in [START_REF] Schuster | Determining all extreme semipositive conservation relations in chemical reaction systems: a test criterion for conservativity[END_REF], Soliman, 2012, Lemaire and Temperville, 2014].

Remark 8.3. In Example 6.12 we have seen that n -s independent, linear conservation laws may not form a complete system. The system in this example is of the type (2.2), although not a mass action network. 

∈ R r + ,x ∈ R n + satisfying F (k, x) = 0 we have i) rk(J (k, x)) = rk(S) = s, and 
ii) none of the rows of the product J(k, x)S can be zero.

Proof. We check that the assumptions imply the conditions in Definition 6.6. From i) it follows that J (k, x) has s independent rows. From ii) we obtain that these rows are not in the left kernel of S which is spanned by the n -s rows of C. Thus the matrix J (k, x) C has rank n.

The CRN in Example 6.12 has no complete set of linear conservation laws. This model fails to satisfy condition ii) of the theorem, but it fulfills i). The network is not a mass action CRN, so one may ask whether mass action CRNs automatically satisfy both i) and ii). The answer to this question is no, as it is shown by the following example.

Example 8.6. The CRN ẋ1

= -k 1 x 1 -k 2 x 1 -2k 3 x 2 1 , ẋ2 = 2k 3 x 2 1 + 2k 2 x 1 , ẋ3 = k 3 x 2 1 + k 1 x 1
is a mass action network described by the reactions

A 1 k1 -→ A 3 , A 1 k2 -→ 2A 2 , 2A 1 k3 -→ 2A 2 + A 3 . Its stoichiometric matrix is S =   -1 -1 -2 0 2 2 1 0 1
  and one easily checks that it has rank two. There is a single linear conservation law, namely φ(x) = 2x 1 + x 2 + 2x 3 . The Jacobian matrix of the system computes as

J(k, x) =   -k 1 -k 2 -4k 3 x 1 0 0 2k 2 + 4k 3 x 1 0 0 k 1 + 2k 3 x 1 0 0  
and clearly has rank one. Therefore this model does not satisfy condition i) of the Theorem 8.5, whereas ii) is fulfilled. Furthermore the system of equations F (k, x) = 0 and φ(x) = c 0 defining the intersection of S k with the stoichiometric compatibility class has degenerate solutions x 1 = 0, x 2 = c 0 -2x 3 , which means that the conservation law is not complete.

In [START_REF] Feliu | Preclusion of switch behavior in networks with mass-action kinetics[END_REF] sufficient conditions were found for mass action CRNs to be "injective", meaning to have a unique steady state in any stoichiometric compatibility class. The same conditions also imply completeness of any n -s independent, linear conservation laws (also see [START_REF] Feliu | Preclusion of switch behavior in networks with mass-action kinetics[END_REF]).

Computing monomial conservation laws

Proposition 8.7. Let E be a system of ODE given by: ẋi = f i (k, x). Let E the system of ODE given by: ẋi

= f i (k, x) x i .
E admits a monomial conservation law if and only if E admits a linear conservation law with integer coefficients. Moreover, if the linear conservation laws for E reads mi =0 m i x i then the monomial conservation law for E reads mi =0 x mi i (m i ∈ R * + ). The linear conservation laws of E are irreducible if and only if the corresponding monomial conservation laws of E are irreducible.

Remark 8.8. The system E can be any system of ODE, in particular it works for a system E of the form (2.2).

COMPUTING MONOMIAL CONSERVATION LAWS

Proof. Let M = n i=1 x mi i be a monomial conservation law for E, then the derivative of M reads:

Ṁ = n i=1 m i ẋi x i M.
Since M is a conservation law, we can suppose that ∀i ∈ {1, ..., n}, such that m i = 0, one has x i = 0; this reduces to considering only initial conditions such that M = 0. Then: According to the Algorithms 2 and Algorithm 1, (8.3) can be written under the form (2.2). It can be used to compute linear conservation laws for E , independent of k, and consequently, monomial conservation laws for E, independent of k. Indeed, if the stoichiometric matrix S of E have rank s = rk(S), which is the number of independent columns of S, then the Theorem (8.1) implies that there are n -s independent linear conservation laws of (8.3), independant of k, and consequently n -s independent monomial conservation laws of (8.2), independent of k. These linear conservation laws are the lines of a matrix C that satisfies CS = 0. Thus, irreducible, independent monomial conservation laws of (8.2), independent of k, can be computed using the corresponding algorithms for linear conservation laws. This procedure is summarized in the Algorithm 22.

Ṁ = 0 ⇐⇒ n i=1 m i ẋi x i = 0 ⇐⇒ n i=1 m i f i (k, x) x i = 0 Let φ = n i=1 m i x i be the linear conservation corresponding to M . If M is reducible then M = M 1 M 2 with Ṁ1 = 0 and Ṁ2 = 0. Write M k = n i=1 x m k,i i , then Ṁk = 0 ⇐⇒ n i=1 m k,i ẋi xi = 0, for k ∈ {1, 2}. Thus, φ = φ 1 + φ 2 , where φ k = n i=1 m k,i x i
However, existing examples of monomial conservation laws in the literature may depend on k [START_REF] Mahdi | Conservation laws in biochemical reaction networks[END_REF]. To find them, it exists another method based on the following theorem [Goldman, 1987]: Remark 8.11. One can see that algorithms 22 and 23 are very similar, the differences is that the stoechiometric matrix S depends on distincts monomials k j x αj of E and have coefficients in Z, when the matrix B depends on distincts monomials x Hj and have coefficient in R. These methods are equivalent in the case when in equation (2.2), x αj = x α h implies k j = k h .

We can use the Theorem 8.9 to gain more insight into the type of networks that have monomial conservation laws. To this end, we prove the following: Proposition 8.12. Let E is a polynomial system of ODE given by:

ẋi = P i (k, x), (P i ∈ R[x]).
E can have a monomial conservation law only if some of these ODE can be written as a product of the variable considered and a polynomial, ie. if

∃A ⊂ {1, ..., n}, A = ∅ s.t. ∀j ∈ A, ẋj = x j Q j (k, x), (Q j ∈ R[x]).
Or, in another terms, if it exist equations of E that are polynomials.

Moreover, if E is given by a chemical reaction network induced by mass action law, then E can have a monomial conservation law only if:

• It exists a partition A B of the set of species {x 1 , ..., x n }.

• For each reaction involving only species in A, the reaction is of the form:

k i,j =0 x i -→ (k i,j ± l)x i .
• For each reaction involving species in A and species in B, the product belongs to B, meaning that species in A can only be reactants in these reactions.

Proof. Suppose that E is a polynomial system of ODE, and write it as in equation (8. Since E is polynomial, we have for all i, j, h ji ∈ N ∪ {-1}. Moreover, h ji = -1 only if the monomial x Hj = x hj1 1 ...x -1 i ...x

hjn n

and is involved in ẋi . In such case, the vector B j associated to H j have a non zero term B ij , and, since E is polynomial, the monomial H j is involved only in ẋi , so B j is a one-component vector, non-zero on row i. If for all i ∈ {1, ..., n} it exists a such h ji = -1 (meaning that ẋi is not factorisable by x i ), then it exists n one-component vectors B (i) j that generate the full space R n . Then, no normal vector can be found, and the system E does not admit monomial conservation law. Now, suppose that the system E is following the mass action law. Then, each monomial with a negative sign of ẋi is factorisable by x i . For a monomial with positive sign, this is the case only if x i is a reactant of the reaction associated to this monomial, and also a product, appearing at least one more time (eg. x i → 2x i ). So, a reaction induce monomials factorisable by each species involved in this reaction if an only if the reaction is of the form :

k i,j =0 x i -→ (k i,j ± l)x i .
Example 8.13. The model

ẋ1 = x 1 (x 2 -x 1 ) -δx 1 , ẋ2 = x 2 (x 1 -x 2 )
is a mass action network described by

A 1 + A 2 1 -→ 2A 2 , A 1 + A 2 1 -→ ∅, A 2 + A 2 1 -→ ∅, A 1 δ -→ ∅.
The truncated system ẋ1 = x 1 (x 2 -x 1 ), ẋ2 = x 2 (x 1 -x 2 ) has a continuous steady state variety x 1 = x 2 and singular Jacobian on it.

After truncation and elimination of the factor x one gets ẋ1 = x 2 -x 1 , ẋ2 = x 1 -x 2 that has the linear, irreducible conservation law x 1 + x 2 . Therefore the model has φ(x 1 , x 2 ) = x 1 x 2 as approximate, monomial, irreducible conservation law. The intersection of the steady state variety with the set φ = c 0 is the point x 1 = x 2 = c 0 /2. The monomial conservation law is complete because the 2 × 2 minor of the Jacobian det(D(x 1 (x 2 -x 1 ), x 1 x 2 ) T ) = -2x 2 1 does not vanish identically. Remark 8.14. The proposition 8.12 is a necessary condition, determining the class of models when a monomial conservation law can be found, but it is not a sufficient condition, as the following example prove it.

Example 8.15. The Lotka-Volterra network is defined by the mass action reactions

A 1 k1 -→ 2A 1 , A 1 + A 2 k2 -→ 2A 2 , A 2 k3 -→ ∅
and the ODEs ẋ1 = x 1 (k 1 -k 2 x 2 ), ẋ2 = x 2 (k 2 x 1 -k 3 ).

Using algorithm 23, the matrix B is:

k 1 0 k 2 -k 3 -k 2 0
which have a full rank. Thus, according to the Theorem 8.9, the model has not monomial conservation laws.

However, this model has a non-linear conservation law φ = x k3 1 x k1 2 e -k2(x1+x2) . Furthermore, tested for k 1 = k 2 = k 3 = 1, the model has four discrete steady states, not a continuous variety of steady states. Two of these are non-degenerate, and two are degenerate, but the degeneracy does not follow from the continuity of the steady state variety. Therefore this example is outside the scope of the paper.

COMPUTING POLYNOMIAL CONSERVATION LAWS

Example 8.16. A singularly perturbed Volpert model is described by the mass action network

A 1 + A 2 1 -→ 2A 2 , A 2 + A 3 2 -→ 2A 3 , A 3 + A 1 2 -→ 2A 1 , A 1 δ -→ ∅, A 2 δ -→ ∅, A 3 δ -→ ∅,
and the ODEs ẋ1 = x 1 (x 3 -x 2 ) -δ(x 1 + x 2 + x 3 ), ẋ2 = x 2 (x 1 -x 3 ), ẋ3 = x 3 (x 2 -x 1 ).

The truncated system ẋ1 = x 1 (x 3 -x 2 ), ẋ2 = x 2 (x 1 -x 3 ), ẋ3 = x 3 (x 2 -x 1 ) has a continuous steady state variety x 1 = x 2 = x 3 and a singular Jacobian on this variety.

The stoichiometric matrix of the truncated system is S Therefore, the model has two approximate conservation laws, one linear φ 1 = x 1 +x 2 +x 3 and one monomial φ 2 = x 1 x 2 x 3 .

Each one of these conservation laws is complete. The Jacobian of (F 1 , F 2 , F 3 , φ 2 ) T has a non-vanishing 3 × 3 minor det(D(x 1 (x 3 -x 2 ), x 2 (x 1 -x 3 ), x 1 x 2 x 3 ) T ) = x 2 1 x 2 x 3 + x 1 x 2 2 x 3 + x 1 x 2 x 2 3 (this is equal to 3c 4/3 2 on the intersection of the steady state variety with φ 2 = c 2 ). The (F 1 , F 2 , F 3 , φ 1 ) T has a non-vanishing 3 × 3 minor det(D(x 1 (x 3 -x 2 ), x 2 (x 1 -x 3 ), x 1 + x 2 + x 3 ) T ) = -(x 1 -x 2 ) 2 + 2x 1 x 3 + 2x 2 x 3 -x 2 3 (this is equal to C 2 1 /3 on the intersection of the steady state variety with φ 1 = c 1 ).

The two conservation laws are not independent on the steady state variety. However, none of these intersections are hyperbolic steady states (see Section) and this model is outside the scope of the paper.

Computing polynomial conservation laws

We begin by showing some simple examples that introduce polynomial conservation laws.

Example 8.17. If we take as conservation law x 1 x 2 + x 3 then ẋ3 = -ẋ1 x 2 -x 1 ẋ2 . Reciprocally, the polynomial system: ẋ1 = -k 1 x 1 , ẋ2 = -k 2 x 2 , ẋ3 = (k 1 + k 2 )x 1 x 2 admits x 1 x 2 + x 3 as polynomial conservation law.

If we take as conservation law x 1 x 2 + x 1 x 3 then ẋ3 = -ẋ2 -x2 x1 ẋ1 -x3 x1 ẋ1 . Reciprocally, the polynomial system: ẋ1 = -k 1 x 1 , ẋ2 = -k 2 x 2 , ẋ3 = k 2 x 2 + k 1 x 2 + k 1 x 3 admits x 1 x 2 + x 1 x 3 as polynomial conservation law.

In this section, we present two algorithms for computing polynomial conservation laws, that is, conservation laws Φ(x) ∈ R[x]. Our first algorithm uses syzygies, a well-known concept in computational commutative algebra and algebraic geometry. Computing syzygies can be expensive, as it is based on computing Gröbner bases. Our second algorithm avoids using syzygies; it uses educated guesses (Ansatzes) of polynomial conservation laws and obtains a linear system from which the coefficients of the conservation laws can be computed. Definition 8.18. Let R = K[x 1 , . . . , x n ] = K[x] be the ring of polynomials over the field K and I = (f 1 , . . . , f m ) ⊆ R be an ideal in R. A syzygy of I is an element (g 1 , . . . , g m ) ∈ R m such that g 1 f 1 + . . . + g m f m = 0.

Syzygies of an ideal form a submodule of R m as an R-module.

Remark 8.19. Note that in the definition of a syzygy, some authors require {f 1 , . . . , f m } to be a minimal generating set of the ideal I. However, for the purpose of this paper, we do not require such a condition on the generators.

As an example, consider the ideal I = (x, y) ⊆ R[x, y]. As (-y)x + (x)y = 0, (-y, x) ∈ R[x, y] 2 is a syzygy of the ideal I. In general, for an ideal I = (f 1 , . . . , f m ) ⊆ R, a syzygy of the form (0, . . . , 0, f j , 0 . . . , 0, -f i , 0, . . . , 0), where f j is the i-th coordinate and -f i is the j-th coordinate, is called a trivial syzygy of I.

Syzygies have been extensively studied in commutative algebra and algebraic geometry. Buchberger's algorithm for computing Gröbner bases [Buchberger, 1965, Bose, 1995] leads to an algorithm for computing a basis for a syzygy module. Several authors have worked on algorithms for computing a basis for a syzygy module, among which, Schreyer presented his algorithm in [Schreyer, 1991]. Many computer algebra systems such as Singular, CoCoA, etc. include implementations for computing syzygies. For more on syzygies, in particular on algorithms for computing syzygies, See, e.g., Weispfenning's book [START_REF] Becker | Gröbner Bases, a Computational Approach to Commutative Algebra[END_REF], or [Cox et al., 2006, Ch. 5.3].

Consider the ODE system (2.2) of a chemical reaction network, i.e., ẋ1 = f 1 (k, x), . . . , ẋn = f n (k, x) ∈ Z[k, x] and let φ(x) ∈ R[x] be an exact polynomial conservation law of the CRN. By Definition 6.2, n i=1 ∂φ ∂xi (x)f i (k, x) = 0, for all k and x. Assuming unconditionality on k and x in this paper, one can see that ( ∂φ ∂x1 (x)), . . . , ∂φ ∂xn (x) ∈ R[x] n ⊆ R[k, x] n is a syzygy of the steady state ideal I = (f 1 , . . . , f n ) ⊆ R[k, x], that is, the gradient of a polynomial conservation law φ, i.e., ∇φ(x) = ( ∂φ ∂x1 (x), . . . , ∂φ ∂xn (x)) is a syzygy of the steady state ideal. On the other hand, if we are given a syzygy of the steady state ideal that contains variables x but does not contain rate constant k, such that it is the gradient of a polynomial φ(x) ∈ R[x], then φ(x) is a polynomial conservation law. Roughly speaking, this implies that for a syzygy g = (g 1 , . . . , g n ), one can obtain a conservation law by integrating g. Below we clarify this idea.

Consider the differential form dg = g 1 dx 1 + • • • + g n dx n . Take a piecewise smooth curve connecting the origin to x. For instance The result of this integration is a polynomial φ(k, x) ∈ R [k, x]. The rotational of the vector field g defined as the tensor [∇ × g] ij = ∂gi ∂xj -∂gi ∂xj is important in this procedure. If ∇ × g = 0, the result of the integration depends on the path and there is no function φ satisfying ∇φ = g for all x. φ is well defined in a simply connected domain D ⊂ R n only if ∇ × g = 0 everywhere in D, in other words only when g defines a conservative vector field in D. If this irrotationality condition is satisfied, than one has ∇φ = g, ∇φ • F = 0 everywhere in D.

C = {(sx 1 , 0, 0) | s ∈ [0, 1]} ∪ {(x 1 , sx 2 , 0) | s ∈ [0, 1]} ∪ {(x 1 , x 2 , sx 3 ) | s ∈ [0, 1]}.
Another method to obtain a conservation law out of a syzygy is by taking the symbolic integration of each coordinate g i of a syzygy (g 1 , . . . , g n ). However, some considerations should be taken into account. First of all, the integration of the polynomial in i-th coordinate of a syzygy vector is done with respect to the variable x i , and therefore, it includes a polynomial in variables other than x i , that is, φ(x) = xi g i + C i (x i ), where C i (x i ) is a polynomial in all variables but x i . The polynomial C i (x i ) can be obtained by making an ansatz, that is, by taking its coefficients as indeterminates. Identifying monomials with the same degree, one can obtain a linear system of equations, the solutions of which will give us the coefficients of C i (x i ). The caveat of this method is the large number of linear equations obtained. However, from the complexity point of view, given the fact that computing syzygies essentially requires computing Gröbner bases, and that computing Gröbner bases is more expensive than solving the linear system, this will not add a cost to the computations. In practice, obtaining and solving those linear equations can be expensive.

As noticed above, having obtained a syzygy, one has to check if the vector field defined by it is conservative. As a classical result, a vector field is conservative over a simply connected set if and only if it is irrotational, that is ∇ × g(x) = 0. If this condition is not satisfied, the linear system in the second method is incompatible, as the equation ∇φ = g has no solution. As an example, consider the trivial syzygy (-y, x) for the ideal (x, y). As the vector field arising from this particular syzygy is not irrotational, i.e., ∇ × (-y, x) = 0, one cannot obtain a polynomial conservation laws from this syzygy. There exist vector fields whose trivial syzygy is the gradient of a conservation law. For example, consider the vector field (x, -y) with (y, x) as its trivial syzygy. Then ∇ × (y, x) = 0, which means that the trivial syzygy is irrotational, hence it is the gradient of a conservation law, which is xy = c, where c is a constant. In the context of CRNs, vector fields defining CRN dynamics (2.2) must satisfy the condition ∂fi ∂xi < 0, for all 1 ≤ i ≤ n and at least for some x ∈ R n + , ensuring stability. This condition, implies that trivial syzygies of CRNs are not gradients.

Another issue to be considered on computing conservation laws via syzygies is that for the steady state ideal I ⊆ R[k, x], the syzygy module is a submodule of R[k, x] n . However, according to our definition, the conservation laws that we are interested in do not depend on the rate constants, i.e., they are polynomials in R[x]. Hence, in order to use syzygies for computing conservation laws, we are only interested in those syzygies that depend on the variables x 1 , . . . , x n and in which the rate constants k do not appear. One can obtain such conservation laws by first computing the ideal of conservation laws in R[k, x] n and then intersecting it with the ring R[x].

By definition of independence of conservation laws, if two polynomial conservation laws φ 1 (x), φ 2 (x) are independent then the Jacobian matrix ∂φ1(x) ∂x1

. . . ∂φ1(x) ∂xn ∂φ2(x) ∂x1

. . . ∂φ2(x) ∂xn is full rank. This implies that the rows of the Jacobian are linearly independent, which means that the rows as syzygies are linearly independent. Conversely, if two linearly independent syzygies are the gradients of two conservation laws, then the conservation laws are independent.

Discussions above lead to the following algorithm, which uses syzygies in order to compute conservation laws.

Input: A polynomial ODE system F (k, x) = (f 1 (k, x), . . . , f n (k, x)) whose r.h.s. are polynomials in Z[k, x], homogeneous of degree one in k:

ẋi = f i (k, x) = ri j=1 z ij k ij x αij
where z ij ∈ Z, α ij ∈ N n , k ij ∈ {k 1 , . . . , k r }, for 1 ≤ i ≤ n, 1 ≤ j ≤ r i . Output: A Set of Polynomial Conservation Laws φ(x) ∈ Z[x] for F (k, x).

1: PolCons := ∅ 2: Compute Syz(F ), a basis for the set of syzygies of F of all orders. end if 8: end for 9: UncondLaws := Ideal(PolCons) ∩ Z[x] 10: return UncondLaws.

Algorithm 24: PolynomialConservationLawsViaSyzygies Remark 8.20. As Syz(F ) computed in line 2 of Algorithm 24 gives a basis of the syzygy module, which includes linearly independent syzygies, the output conservation laws of the algorithm are independent. Moreover, if there exists a complete set of polynomial conservation laws, then the algorithm outputs such a complete set of conservation laws.

Example 8.21 (BIOMD0000000629, [START_REF] Chelliah | BioModels: Ten-year anniversary[END_REF]). The ODEs corresponding to A basis for the syzygy module is {G 1 =(-1, 0, 1, 0, 0)

G 2 =(0, -1, 1, 1, 0)

G 3 =(0, 0, 0, 1, 1)

G 4 =(k 2 x 1 x 3 -k 4 x 2 x 4 -k 3 x 2 + k 5 x 5 , k 2 x 1 x 3 -k 3 x 2 , 0, 0, 0)}.

Integrating the conservative elements of the syzygy basis, we obtain

φ 1 (k, x) = -x 1 + x 3 φ 2 (k, x) = -x 2 + x 3 + x 4 φ 3 (k, x) =x 4 + x 5
So we have three independent polynomial conservation laws for the biomodel 629. One should note that G 4 (k, x) is not conservative, ∇ × G 4 = 0.

Example 8.22. Consider the example in Subsection 8.17. The ODEs in that example are

ẋ1 = -k 1 x 1 , ẋ2 = -k 2 x 2 , ẋ3 =(k 1 + k 2 )x 1 x 2
Running Algorithm 24, we first compute a basis for the syzygy of the steady state ideal I: Syz(I) = {(x 2 , x 1 , 1), (-k 2 x 2 , k 1 x 1 , 0)}.

The first element of the syzygy basis is conservative and integrates to the conservation law φ 1 = x 1 x 2 + x 3 . The second element is not conservative ∇ × (-k 2 x 2 , k 1 x 1 , 0) = 0, because

∂-k2x2 ∂x2

-∂k1x1 ∂x1 = -(k 1 + k 2 ) = 0. There is only one conservation law and one can easily check its completeness. Indeed, the jacobian matrix

D x (-k 1 x 1 , -k 2 x 2 , x 1 x 2 + x 3 ) T , which is   -k 1 0 0 0 -k 2 0 x 2
x 1 1   have rank 3, then it is for D x (-k 1 x 1 , -k 2 x 2 , (k 1 + k 2 )x 1 x 2 , x 1 x 2 + x 3 ) T . One can compute the following basis for the syzygy module:

{(0, x 2 , -1), (x 1 , -x 2 , 0)}.

Both elements are conservatives and integrate to the following independent conservation laws:

1 2 x 2 2 -x 3 , 1 2 x 2 1 - 1 2 x 2 2 .
The conservation laws obtained are polynomial and one can easily check that this is a complete set of conservation laws. Indeed,

D x (x 2 , x 1 , 1 2 x 2 2 -x 3 ) T is   0 1 0 1 0 0 0 x 2 -1   which have rank 3.
Algorithm 24 first computes a polynomial φ(k, x) ∈ R[k, x] and then obtains conservation laws via eliminating k. This may lead to extra computations, in particular when there is no conservation law φ(x). One idea to avoid computations in R[k, x], but just to do computations in R[x] is not to compute a basis for the syzygy module, but to ansatz a conservation law φ(x) ∈ R[x] and check if ∇φ(x) • F = 0. Algorithm 25 below uses this idea, starting from degree two polynomials and continuing to higher degrees until a conservation law is found. The algorithm stops when the first conservation law is found and does not necessarily compute a complete set of conservation laws. In worst case, the degree of the ansatz polynomial is the max degree of the polynomials in a syzygy plus one. Instead of stopping once a conservation law is found, one can also continue running the algorithm until the degree bound on syzygies, so that all the conservation laws are found. 123

COMPUTING POLYNOMIAL CONSERVATION LAWS

Input: A polynomial ODE system F (k, x) = (f 1 (k, x), . . . , f n (k, x)) whose r.h.s. are polynomials in Z[k, x], homogeneous of degree one in k:

ẋi = f i (k, x) = ri j=1 z ij k ij x αij
where z ij ∈ Z, α ij ∈ N n , k ij ∈ {k 1 , . . . , k r }, for 1 ≤ i ≤ n, 1 ≤ j ≤ r i . Output: A Set of Polynomial Conservation Laws φ(x) ∈ Z[x] for F (k, x).

1: i = 2 2: while ∇φ • F = 0 do 3:

(Ansatz)Let φ(x) := c α x α with indeterminate coefficients c α and of degree i 4:

Obtain linear equations in the indeterminates c α by putting the coefficient of each monomial equal to zero in cα |αi|

x α xi f i (k, x).

5:

Find real solutions of the linear equations and obtain c α and consequently φ(x).

6:

i = i + 1 7: end while 8: return φ(x).

Algorithm 25: PolynomialConservationLawsViaAnsatz

  Figure2.1: The red line correspond to the steady states w.r.t the parameter λ. The two black dots are the saddle-node bifurcation. The dashed part of the red curve denotes the unstable steady-states. Blue and green arrows denote the steady-state that we obtain when we slowly move the parameter.

  min p∈P (Φ y (p)) = 4.625 max p∈P (Φ y (p)) = 5.375

  Figure 3.1: From the root: Spain, France, Swiss, Italy. Each pathway that doesn't encounter a // is a solution of the problem and is denoted with thick blue arrows. The symbol // represents a branch cutting by the algorithm.
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 3 Consider that we are searching for (xy-1, x-y) = (0, 0) in the box [0.25, 4]× [0.25, 4], then we get as a possible tree the following figure 3.2. In the initial box, the two intervals for the constraints are [x].[y] -1 = [0.25, 4].[0.25, 4] -1 = [0.0625, 16] -1 = [-0.9375, 15] 0 and [0.25, 4] -[0.25, 4] = [
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 32 Figure 3.2: The tree search. The dashed line correspond to the right pathway to get the solution. Each other terminal node violates a constraint, as illustrated by the absence of one of the colored curve, and are then removed from the list of possible solutions.
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 33 Figure 3.3: An example of HC4Revise for the constraint 2x = z -y 2 . Intervals in bold are results of the backward phase. The other ones are the result of the forward (natural extension) phase.
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 34 Figure 3.4: The three steps of var3BCID.

  Figure 3.5: Comparison between homotopy and IbexSolve steady states. All the tested models are multistationary. a) Models were partitioned into two classes, with 3 (appearing first) and 4 homotopy solutions, then sorted by the average of the steady state concentrations in the homotopy solutions. Homotopy and IbexSolve solutions are represented as lines (red, green and blue for models with 3 steady states, cyan for the fourth) and crosses, respectively. b) Values of the steady state concentration a computed by homotopy and IbexSolve. Each IbexSolve steady state was related to the closest homotopy state (red +), in the Euclidean distance sense; reciprocally, each homotopy state was related to the closest IbexSolve state (blue crosses).
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 4 Figure 4.1: Trajectories (in log scale) of the models with different initial values of x 5 and x 6 , compared to the tropical equilibration.

Figure 4

 4 Figure 4.2: the yellow open space represent the constraint b 4 > b i for i ∈ T . Points and colored lines represent each a polyhedron defined by the other constraints and described above. The two lines defined with a 3 = 2 are the full tropical equilibration.

  there is m ∈ {p, . . . , M }, n ∈ {p, . . . , N } s.t. Γ A mn = 0 then 8: in A, swap rows p with m and columns p with n 9: in A, use row p to obtain A p+1,p = • • • = A m,p = 0 10: push (Γ, A, p + 1) 11: else if there is m ∈ {p, . . . , M }, n ∈ {p, . . . , N } s.t. Γ A mn = 0 then 12: a := A mn 13: push (Γ ∧ a = 0, A, p) 14:in A, set A mn :=

Figure 6

 6 Figure6.1: Comparison of numerical solutions obtained with the full Michaelis-Menten model (continuous lines) and with the reduced model (crosses). The variables S, E and SE are fast and slaved (in the reduced model, their values are obtained as solutions of algebraic equations) and the approximated conservation law S + SE is slow. The initial values are such that E and S have comparable concentrations; this is not compatible with the quasisteady state approximation but is compatible with the quasi-equilibrium approximation that has been used here.

  1) k ( k, z) = 0. From (7.8), the existence of the implicit functions f k , F k needs the following nondegeneracy condition Condition 7.2. The solution of the equation f * k ( k, z k , . . . , z m ) = 0 is unique (non-degenerate), which is equivalent to |D z k f * k | = 0. This condition can be more conveniently written as follows Theorem 7.3. The implicit functions f k ( k, z k+1 , . . . , z m ), F k ( k, z k+1 , . . . , z m ) exist and are differentiable for k ∈ {1, . . . , l}, if and only if

  matrix such that A is invertible. The matrixM/A = D -CA -1 B is called Schur complement of the block A of M . It satisfied several elementary properties[Zhang, 2006]:|M | = |M/A||A|, Schur formula,(7.12) rk(M ) = rk(M/A) + rk(A), Guttman rank additivity formula. The matrix D z k+1 f * k+1 is a Schur complement. More precisely,

10 :

 10 Replace the ODE satisfied by xil by ẋcil = D x Φ il F (k, x)11:

  7.5. CASE STUDY: TGFβ and the truncated rescaled transformed model reads ẏ2

Figure 7 . 1 :Figure 7

 717 Figure7.1: Comparison of numerical solutions obtained with the transformed TGFβ model (continuous lines) and with slowest timescale reduced models (crosses). For each reduced model, a small number of variables (slow) follow ODEs. The initial values of these were chosen the same as the values computed with the full transformed model at a large enough time. The remaining fast variables were computed as functions of the slow variables. The large errors for a few species at times shorther than 10 4 could be explained by lack of validity of the tropical equilibration used for the reduction at these shorter timescales, see also Figure7.2.

  Remark 8.4. Approximate conservation laws are computed in the same way as the exact ones after replacing the matrix S by the truncated stoichiometric matrix S (1) . Theorem 8.5. Consider the Jacobian matrix J (k, x) = D x F (k, x) and the matrix C introduced in Theorem 8.1. The rows of C provide a complete set of linear conservation laws, if for all k

  are linear conservation laws of E , for k ∈ {1, 2}. This means that the linear conservation for E is also reducible. The reverse follows the same reasoning.Let us consider that E is a rational system of ODE of the form ẋi B j = (b 1j , ..., b nj ) ∈ R n , H j = (h j1 , ..., h jn ) ∈ Z n , m denotes the number of distinct monomials x Hj , and • denotes the Hadamard, element-wise product.In this case E reads ẋ

  Hjwhere H j = (h j1 , ..., h jn ) ∈ Z n , x Hj = x Hj1 1 ...x Hjn n , B j = (B 1j , ..., B nj ), and m denote the number of distinct monomials x Hj .

  s = 2 and its left kernel is generated by c = (1, 1, 1).The stoichiometric matrix of the system obtained after truncation and elimination of the factor x is S (1) rank s = 2 and its left kernel is generated by the same c = (1, 1, 1).

  119 8.3. COMPUTING POLYNOMIAL CONSERVATION LAWS Integrate the differential form dg along C, i.e., x1 0 g 1 (•, 0, ..., 0)dx 1 + x2 0 g 2 (x 1 , •, 0, ..., 0)dx 2 + • • • + xn 0 g n (x 1 , ..., x n-1 , •)dx n .

  3: for G(k, x) = (g 1 (k, x), . . . , g n (k, x)) ∈ Syz(F ) do 4: if ∇ × G = 0 then 5: φ G (k, x) := x1 0 g 1 (x 1 , 0, . . . , 0)dx 1 + x2 0 g 2 (x 1 , x 2 , 0, . . . , 0)dx 2 + • • • + xn 0 g n (x 1 , . . . , x n )dx n . 6: PolCons = PolCons ∪{φ G (k, x)} 7:

  the BioModels' repository 1 are the following;ẋ1 = -k 2 x 1 x 3 + k 3 x 2 , ẋ2 =k 2 x 1 x 3 -k 3 x 2 -k 4 x 2 x 4 + k 5 x 5 , ẋ3 = -k 2 x 1 x 3 + k 3 x 2 , ẋ4 = -k 4 x 2 x 4 + k 5 x 5 , ẋ5 =k 4 x 2 x 4 -k 5 x 5 .

  

  An interval [x i ] = [x i , x i ] defines the set of reals x i such that x i ≤ x i ≤ x i .

	Contrary to standard numerical analysis methods that work with single values, interval
	methods can manage sets of values enclosed in intervals. By these methods one can handle
	exhaustively the set of possible constraint systems solutions, with guarantees on the an-
	swer. Interval methods are therefore particularly useful for handling nonlinear, non-convex
	constraint systems.
	Definition 3.3.1. IR denotes the set of all intervals. A box [x] denotes a Cartesian product of intervals
	[x] = [x 1 ] × ... × [x n ]. The size or width of a box [x] is given by w

  HC4 contract the box B w.r.t each constraint. HC4Revise is the contraction of B for the constraint c. If the contraction is inefficient, we remove c from the set of constraint considered. If the contraction is efficient, we retrieve in S each constraint for which a variable contracted is involved (this imply c itself), since an inefficient contraction at a moment can be efficient later. HC4Revise follows a forward backward scheme. The constraint c is viewed as a tree t c , each leaf representing a variable or constant, and other nodes representing operations, the root being the relation. The forward evaluation follows the natural extension of each side of c, and gives two intervals I l resulting from the l.h.s. of c, and I r resulting from the r.h.s. of c. The backward propagation consider the intersection of I r and I l (if equality, else it considers the intersection of these intervals extended to infinity on one border). Then, descending the tree, for an operation op(x old , y old ), x new (resp. y new ) is computed as the minimal interval leading to I new = op(x new , y old ) (resp. I new = op(x old , y new )).

	S\{c} Algorithm 3: Algorithm HC4Revise(c, B = I 1 × ... × I n ) return B D ← B ForwardEvaluation(c, D) BackwardPropagation(c, D) B ← hull (D) return B 2 x [0, 20] [0, 16] [0, 16] = [0, 16] z Algorithm 4: 3.3. CONSTRAINT METHODS FOR INTERVAL ARITHMETIC ŷ [0, 100] [-10, 10] [0, 16] [-4, 4] × -[-100, 16] [0, 40] [0, 16] [0, 16]	2

Table 3

 3 times the larger of the initial box for the unused variables. For example, the Biomodel 233 which is a two variables model, have four variables in the given input. It have only two solutions if we correct the input, but with the two unused variables in the original one, the solver is out of timeout since it need to split the space [0, 1e14] 2 in small boxes. It is then important to enhance my parser to take into account these unused variables.With these observations, these results are very encouraging since multistationarity is a computationally hard problem with numerous applications to cell fate decision processes in development, cancer, tissue remodelling.

	M338-2	3	4	3	0.020087	2.9101e-05
	M464-1	3	4	3	0.012388	4.7049e-05
	M464-2	3	4	3	0.029019	3.5893e-05
	M488-1	3	4	3	0.011739	2.4117e-05
	M488-2	3	4	3	0.010935	2.3473e-05
	M488-3	3	4	3	0.017165	5.5298e-05
	M506-1	4	3	4	0.10086	2.6487e-05
	M506-2	4	3	4	0.0069613	4.3250e-06
	M506-14	4	3	4	0.0092411	5.0559e-05
	M95-1	4	3	4	0.0033133	1.1911e-05
	M95-2	4	3	4	0.00063113 1.1230e-05

.1: Comparison of most divergent Ibex vs. homotopy solutions to symbolic solutions. n is the number of steady states. dist is the distance between sets of steady states solutions computed by homotopy or IbexSolve and the symbolic solutions, computed as

1 2n ( n i=1 min j d i,j ) + 1 2ns ( ns j=1 min i d i,j

), where d i,j is the Euclidean distance between the numerical solution i and the symbolic solution j, n s is either the number of solutions n h found by the homotopy method or the number n i found by IbexSolve.

model n sym n h homo n i Ibex dist homo dist Ibex

  time course test starting from the steady state indicated by IbexSolve has been achieved in order to remove models that presents a cycling behavior.

	Test	# tested # passed
	|steady states| ≥ 1 (IbexSolve)	297	191
	unique steady state > 0	191	107
	non-oscillatory steady state (COPASI)	107	72

  The algorithm used to find the partial tropical equilibration for T .

	Algorithm smtcutpartial((2.3),(4.3),T ) bb ← makePolyhedraForPTE((2.3), (4.3), T ) rr ← computePolyhedronDnf(bb) return rr bb ← ∅ foreach i ∈ T do bb ← bb ∪ equilibrate( ẋi ) foreach j ∈ {1, ..., n}\T do bb ← bb ∪ slowFastPol( ẋi , ẋj ) Algorithm 13: Algorithm makePolyhedraForPTE((2.3),(4.3), T ) return bb

  k 16 k 40 y 11 -k 17 k 36 y 6 ), ẏ9 = 2 (k 10 y 2 5 -k 11 y 9 -k 15 y 9 ), ẏ10 = 2 (k 15 y 9 + k 12 y 2 6 -k 13 y 10 ), ẏ11 = 3 (k 23 y 14 -k 30 y 11 ), ẏ12 = 2 (k 27 y 15 -k 26 y 12 ), ẏ13 = 0 (k 19 + k 30 y 11 -k 22 k 37 y 12 y 13 ), ẏ14 = 2 (k 22 k 37 y 12 y 13 -k 23 y 14 -k 25 y 14 ), ẏ15 = 4 (k 18 + k 30 y 11 -k 20 y 12 -k 22 k 37 y 12 y 13 ), ẏ16 = 3 (k 28 y 13 -k 29 y 16 ), ẏ17 = 2 (k 35 k 39 + k 31 k 39 y 17 + k 31 y 7 y 17 -k 35 y 17 -k 35 y 18 -k 31 y 2 17 -k 31 y 8 y 17 ), ẏ18 = 2 (k 31 y 2 17 + k 31 y 8 y 17 -k 34 y 18 -k 31 k 39 y 17 -k 31 y 7 y 17 ), ẏ19 = 2 (k 34 y 18 -k 32 y 19 ), ẏ20 = 1 (k 32 y 19 -k 33 k 38 y 20 ).

	(7.33)

  .35) 

	Variable Definition	Timescale Interpretation
	x 2	x 2	1	SMAD2n
	x 4	x 4	2	SMAD4n
	x 5	x 5	1	pSMAD2c
	x 6	x 6	1	pSMAD2n
	x 7	x 7	2	pSMAD24c
	x 8	x 5 + x 6 + x 7 + x 8 + x 18 + x 21	3	total pSMAD2 without pSMAD22
	x 9	x 9	2	pSMAD22c
	x 10	x 10	2	pSMAD22n
	x 11	x 11	3	LRe
	x 12	x 12	2	RI
	x 13	x 13	0	RII
	x 14	x 14	2	LR
	x 15	x 12 + x 15	4	total free RI
	x 16	x 16	3	RIIe
	x 17	x 17	2	TIF
	x 18	x 18	2	pSMAD24nTIF
	x 19	x 19	2	SMAD4ubn
	x 20			

CHAPTER 5. MODEL REDUCTION Theorem 5.9. Under the hypotheses of theorem 5.7, for 1 , ..., n-1 positive and sufficiently small, there exist local stable and unstable manifolds W s (N ) and W u (N ) which are locally invariant under the flow of system (5.5). They are C r smooth for any r < ∞, and they are diffeomorphic to W s (N ) and W u (N ), respectively. Moreover, W s (N ) and W u (N ) have Hausdorff distance O( 1 + ... + n-1 ) from W s (N ) and W u (N ), respectively. Supposing that W s (N ) and W u (N ) have dimensions j s 1 + m 2 + ... + m n and j u 1 + m 2 + ... + m n , respectively, with j s 1 + j u 1 = m 1 .

Theorem 5.10. Under the hypotheses of theorem 5.7, for every z ∈ N , with 1 , ..., n-1 positive and sufficiently small, there are j s 1 -dimensional and j u 1 -dimensional manifolds W s (z ) ⊂ W s (N ) and W u (z ) ⊂ W u (N ) that have Hausdorff distance O( 1 +...+ n-1 ) from W s (z 0 ) and W u (z 0 ), respectively. Moreover, they are C r smooth for any r < ∞, and the families {W s (z ) : z ∈ N } and {W u (z ) : z ∈ N } are invariant in the sense that W s (z ).t ⊂ W s (z .t) and W u (z ).t ⊂ W u (z .t) for all t ≥ 0 and t ≤ 0, respectively.

Theorem 5.11. Consider a C ∞ family like (5.5), with n ≥ 2. Let N ⊂ M n-1 be a j-dimensional compact invariant manifold of the reduced problem (5.15) with a (j + j s n )dimensional local stable manifold W s and a (j +j u n )-dimensional local unstable manifold W u . Assume that hypothesis (H) is fulfilled. Then there are positive real numbers δ 1 , ..., δ n-1 such that the following hold:

• There exists a family of smooth manifolds {N ( 1,..., n-1) : i ∈ (0, δ i ), i ∈ {1, ..., n -1}} such that N ( 1,..., n-1) → N when → 0, according to the Hausdorff distance, and N ( 1,..., n-1) is a hyperbolic invariant manifold of (5.5).

• There are families of (j + j s 1 + ... + j s n )-dimensional and (j + j u 1 + ... + j u n )-dimensional smooth manifolds {W s

( 1,..., n-1 ) : i ∈ (0, δ i ), i ∈ {1, ..., n -1}} and {W u ( 1 ,..., n-1) : i ∈ (0, δ i ), i ∈ {1, ..., n -1}} such that the manifolds W s

( 1,..., n-1) and W u ( 1,..., n-1) are local stable and unstable manifolds of N ( 1,..., n-1 ) , respectively.

A tropical Scaling Procedure

We define here a method to get the scaling of a system in order to apply the previous theorems. We consider CRN models described by the system of ODEs (2.2). The goal is to obtain from this system, the system (5.5) that is the starting point of the reduction.

Supposing that the parameters k have a numeric value k * , we can choose a new parameter * ∈]0, 1[, and rescale the model parameters k * by powers of * : (5.18) where the exponents γ i ∈ Q. Furthermore, the prefactors k * i have the order O( 0 * ), more precisely (5.19) for 1 ≤ i ≤ r, where η is a positive parameter much smaller than one.

By redefining again the time to τ = τ δ b l , where 2 ≤ l ≤ m we get

We call truncated system at the l th fastest time the system obtained by setting δ = 0 in (7.5)

(5.31)

It should be noted that our scaling, to be used by the previous theorems, needs to satisfy some conditions. Indeed, we need that fast species satisfy QE or QSS conditions. So, to be used, our scaling needs to satisfy a partial or total tropical equilibration.

Importance of Concentration Valuations for the Scaling

In many studies, valuations are computed for, and scalings are applied only to parameters. This is because concentration are unknown and in this case it is handy to consider even concentration valuations. However, rather systematically, this leads to flaws because species concentrations have not even valuations in general.

To illustrate this common mistake, let us consider the following example, adapted from [START_REF] Schneider | Model reduction by extended quasi-steady-state approximation[END_REF].

Example 5.12. Let us consider the following mass action CRN

with δ = (0, . . . , 0, δ l , . . . , δ m-1 ).

In [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF] we have also defined the simpler reduced system

that emphasizes three groups of variables: slaved (faster than δ b l ), driving (timescale δ b l ), and quenched (slower than δ b l ).

If regularity and hyperbolicity conditions are satisfied (see [START_REF] Cardin | Fenichel theory for multiple time scale singular perturbation problems[END_REF]] and Section 7.3) then the solutions of the system (7.5) converge to the solutions of the system (7.6) when k → 0 for 1 ≤ k ≤ l -1 (Corrolary of Theorem A in [START_REF] Cardin | Fenichel theory for multiple time scale singular perturbation problems[END_REF]).

The limit (δ l , . . . , δ m-1 ) → 0 leading from (7.6) to (7.7) can be treated in the simpler framework of regular perturbations. Using the same regularity and hyperbolicity conditions one can show that there is a time T > 0 such that the solutions of (7.5) converge towards solutions of (7.7) when δ → 0, uniformly on any close subinterval (0, T ] (See Theorem 1 of [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF]). This result implies that the reduction (7.7) is valid on a time interval

whereas the reduction (7.6) has a broader validity including times longer than δ -b l .

Hyperbolically attractive chains

The two types of reductions are based on hierarchical elimination of fast variables, previously discussed in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF]. We revisit here this construction, using the concept of Schur complement.

HYPERBOLICALLY ATTRACTIVE CHAINS

By differentiating (7.19) we get d 2 φ l dZ l 2

l dZ l = 0, where d 2 φ l dZ l 2 is the second derivative of φ l with respect to Z l . If z ∈ M l , then

In this case, the variables X l will be eliminated from the extended set of equations (7.20) where Φ l is a complete set of approximate conservation laws. We call (7.20) the quasiequilibrium conditions. More precisely, let us consider that Condition 7.11. The following conditions are satisfied:

1. There exists x ∈ R n >0 such that F

(1)

There is a set of s l , where 0 < s l ≤ n l , irreducible approximate conservation laws Φ l (x) = (φ 1l (x), . . . , φ s l l (x)) T depending only on X l , such that

These conservation laws are complete, namely rk D X l F

(1) l

for x ∈ R n >0 such that F

(1) l (x) = 0. 3. These conservation laws are independent as functions of x l , namely rk(D x l Φ l ) = s l .

(7.22) 4. Furthermore, F

(1) k Φ l are independent as functions of (X k , x l ), namely

l (x) = 0. In this case, the CRN (2.2) can be modified in such a way that the condition (7.11) is fulfilled for k ∈ {1, . . . , l}. This modification is detailed below.

First, consider the equation

From (7.22) it follows that, up to a relabelling of the coordinates of X l , we have the following splitting

l ), allowing to eliminate the variables xl . The above splitting of X l induces the splitting

where

k , for k ∈ {1, . . . , l -1}, and

Theorem 7.12. If the Conditions 7.11 are fulfilled and

The proof is based on the following lemmas Lemma 7.13. i)

Proof. Differentiating (7.24) with respect to Xl we get

ii) is proved similarly.

Lemma 7.14. For all x such that F

(1)

l ) = 0. In block matrix form this reads

The proof of the Theorem7.12 follows. CONSERVATION LAWS

Using the completeness of Φ l , the Guttman rank additivity formula (7.13), Lemma 7.13, and Lemma 7.14 we find that rk D Xl F red,1

Remark 7.15. The 4 th part of Condition 7.11 is automatically satisfied if the functions

Remark 7.16. The Theorem 7.12 allows defining l-chains in the case of quasi-equilibrium. The set of positive solutions of

and represents the k-th quasi-equilibrium variety (intersected with the first orthant). These sets satisfy

. The concept of hyperbolically attractive l-chains is applicable to quasi-equilibrium varieties as well. It is obtained by replacing Z k with Xk and

The transformed functions (7.25) allow to define the transformed system of differential equations

By the results of the Section ??, the new variables x c l are slower than Xl , and by Theorem 7.12, the transformed system satisfies the non-degeneracy conditions |D Xk F (red,1) k | = 0 up to order l. If the approximate conservation laws are also exact, the new variables x c l are constant and stand for new parameters. Then, the new equations (7.27) are not added to the transformed ones (7.26),(7.28). In this case as well, the transformed system (7.26),(7.28) satisfies the non-degeneracy conditions up to order l.

Algorithmic solutions for eliminating the approximate conservation laws

The previous section allows us to define an algorithm transforming the CRN (2.2) into an equivalent CRN that does not have approximate conservation laws and that can be further reduced using the method introduced in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF]. According to this method, some old variables are substituted by new ones, representing approximate conservation laws. Algorithm 20 transforms the CRN into another CRN that satisfies the condition |D X l F k | = 0 for k ∈ {1, . . . , l} up to the l-th timescale. It further iterates the procedure for increasing l, computes a rescaled and truncated version of the CRN at each step by implementing the algorithm ScaleAndTruncate introduced in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF].

Input: A CRN given by a polynomial vector field F (k, x).

Output: A transformed CRN given by a modified polynomial vector field.

1: ScaleAndTruncate.

2: l:=0 3: while l < m do 4:

while |D X l F

(1)

end while 7:

Find a complete set Φ l of independent conservation laws for F

(1) l satisfying the conditions (7.21), (7.22).

8:

Compute ψ il (X l-1 , xl , x c l ) the solution of the equation x c l = Φ l (x).

9:

for i := 1 to s l do 10:

if Φ il is not total then 11:

Replace the ODE satisfied by xil by ẋc

13: else 14:

Delete the ODE satisfied by xil 15:

Define new constants k c il and concatenate them to k.

16:

end for

19:

ScaleAndTruncate. 20: end while Algorithm 20: TransformCRNexplicit

If none of the approximate conservation laws used in the transformation are exact, the resulting CRN has the same number of variables, ODEs and parameters as the initial one. Any exact conservation law used in the transformation reduces both numbers of variables and ODEs by one and increases the number of parameters by one.

Because at each step the total number of variables can only decrease, the total number of variables having slower timescales and remaining to be treated is strictly decreasing. This shows that the algorithm terminates in a finite number of steps. Furthermore, at each step l of the algorithm the set of variables X k having timescales of order δ b k , remains unchanged for all 1 ≤ k ≤ l -1. This is a consequence of the fact (see Theorems 6.13,6.16,?? ) that approximate conservation laws are slower than the variables X l and need to be treated at later steps. This property guarantees that the transformed system satisfies D X l F

(1) l = 0 for 1 ≤ l ≤ m and therefore has no approximate conservations.

The applicability of the Algorithm 20 is limited by the possibility of solving the equation x l = Φ l (x) symbolically (step 8 of the algorithm). This is always possible when the approximate conservation laws Φ l are linear, but may not be easy when Φ l are polynomial. However, for most biochemical CRN models used in computational biology, linear conservation laws are enough for obtaining completeness (condition (7.21)).

If one wants to avoid the elimination step (for instance, for polynomial conservation laws) there is another possible algorithmic solution whose output is a differential algebraic 7.5 Case study: TGFβ

Model and its scaling

The TGFβ signaling model including including transcriptional repression of SMAD by TIF1γ is described by 21 ODEs [START_REF] Andrieux | Dynamic regulation of tgf-b signaling by tif1γ: a computational approach[END_REF]: This model is particularly interesting because it contains multiple exact and approximate conservation laws, at various timescales. The model has three exact linear conservations laws x 17 +x 18 +x 21 , x 1 +x 2 +x 5 +x 6 +x 7 +x 8 +2x 9 +2x 10 +x 18 +x 21 , x 3 +x 4 +x 7 +x 8 +x 18 +x 19 +x 20 , that can be interpreted as the total amounts of TIF1γ, SMAD2, and SMAD4, respectivelly.

We propose a reduction based on the full tropical equilibration a = (-2, -1, -2, -2, 0, 0, -1, -1, 1, 1, 1, 1, 4, 2, 0, 3, -1, -1, -1), computed for = 1/11. This equilibration is the closest, in logarithmic coordinates, to the steady state of the TGFb model.

CASE STUDY: TGFβ

The rescaled set of ODEs is ẏ1 = ( k2 y 2 -k1 y 1 -2 k16 y 1 y 11 ) ẏ2 = ( k1 y 1 + 2 k17 k36 y 6 -k2 y 2 ) ẏ3 = ( k3 y 4 + k7 y 7 + k33 k38 y 20 -k3 y 3 -k6 y 3 y 5 ) ẏ4 = ( k3 y 3 + k9 y 8 -k3 y 4 -k8 y 4 y 6 ) ẏ5 = ( k5 y 6 + k7 y 7 + 2 2 k11 y 9 + k16 y 1 y 11 -2 2 k10 y 2 5 -k4 y 5 -k6 y 3 y 5 ) ẏ6 = ( k9 y 8 + k35 y 21 + 2 2 k13 y 10 + k4 y 5 -k5 y 6 -2 2 k12 y 2 6 -k8 y 4 y 6 -k17 k36 y 6 ) ẏ7 = ( k6 y 3 y 5 -k7 y 7 -k14 y 7 ) ẏ8 = ( k14 y 7 + k8 y 4 y 6 -k9 y 8 -k31 y 8 y 17 ) ẏ9 = ( k10 y 2 5 -k11 y 9 -k15 y 9 ) ẏ10 = ( k15 y 9 + k12 y 2 6 -k13 y 10 ) ẏ11 = ( k23 y 14 -k30 y 11 ) ẏ12 = ( k18 + k27 y 15 + k30 y 11 -k26 y 12 -k20 y 12 -k22 k37 y 12 y 13 ) ẏ13 = ( k19 + k30 y 11 + 2 k29 y 16 -3 k21 y 13 -2 k28 y 13 -k22 k37 y 12 y 13 ) ẏ14 = ( k22 k37 y 12 y 13 -k23 y 14 -k25 y 14 -k24 y After this scaling four timescales are apparent, represented by the reciprocal orders, in order from the fastest to the slowest: 0 , 1 , 2 , 3 . The corresponding groups of variables are from the fastest to the slowest: z 1 = y 13 , z 2 = (y 2 , y 5 , y 6 , y 20 ), z 3 = (y 1 , y 3 , y 4 , y 7 , y 8 , y 9 , y 10 , y 12 , y 14 , y 17 , y 18 , y 19 , y 21 ), z 4 = (y 11 , y 15 , y 16 ).

Elimination of the conservation laws

We now transform the model into an equivalent one that has no conservation laws. At the first steps of the transformation algorithm

3 we find four linear, independent, approximate conservation laws that satisfy the conditions: y 1 + y 2 , y 3 + y 4 , y 5 + y 6 + y 7 + y 8 + y 18 + y 21 , y 17 + y 18 + y 21 . The last one is an exact conservation law that we have already interpreted. The first three are approximate conservation laws and can be interpreted as: the total free (non complexified) SMAD2 in cytosol and nucleus, the total free (non modified, non complexified) SMAD4 in cytosol and nucleus, and the total SMAD2 phosphorylated or forming heteromers (excluding pS22, that is a homodimer), respectively. At this step ž3 = (y 1 , y 3 , y 8 , y 21 ) are substituted as CHAPTER 7. THE MODEL REDUCTION ALGORITHMS The transformed model reads:

Groups of variables ToV z 1 = y 13 0 z 2 = (y 2 , y 5 , y 6 , y 20 ) 1 z 3 = (y 1 , y 3 , y 4 , y 7 , y 8 , y 9 , y 10 , y 14 , y 17 , y 18 , y 19 , y 21 ) 2 z 4 = (y 11 , y 15 , y 16 , y 3 + y 4 , y 5 + y 6 + y 7 + y 8 + y 18 + y 21 ) 7.1: Transformed model: various steps and conservation laws. The ToV column contains the timescale order of the variable, i.e. the power of multiplying the r.h.s. of the rescaled ODEs of the slowest variable included in the conservation laws (the characteristic times scale like the reciprocal of these quantities, so slower means higher order) and the ToC column the same thing for conservation laws. Exact conservations have infinite timescale orders.

Because the old variables are all positive this leads to the following constraints for the new variables:

(7.36)

Reduced models

The non-degeneracy condition being satisfied, the transformed model can be now reduced by successive elimination of the fast variables, obtained nested or slowest timescale reductions.

The hyperbolicity condition can be tested with methods exposed in [START_REF] Kruff | Algorithmic reduction of biological networks with multiple time scales[END_REF]. The reduced models at various last slow timescales are summarized in the Tables 7.3,7.4, and 7.5. In order to test numerically the accuracy of the reduction we have eliminated the fast variables up to timescale order q k by symbolically solving the algebraic truncated system F (1) k (k, x) = 0, eliminating the variables X k , and numerically solving the system of ODEs for the remaining slow variables (nested reduction (7.6) = k5(k35-k9)k39+k5(k7-k9)y7+k5k9(y8+y17)-k5k35(y17+y18)+k7k8y4y7 k6(k5+k8y4)(k41-y4)

, y 6 = -(k9-k35)k39+k9(y7-y8)+(k35-k9)y17+k35y18 k5+k8y4 , y 13 = k19+k30y11 k22k37y12 , y 20 = k32y19 k33k38 . Chapter 8

Fast variables

Computing Conservation laws

The model reduction algorithm presented in the previous chapter uses complete exact and approximate conservation laws. In this chapter we present algorithmic methods for computing these conservation laws.

Computing Linear Conservation Laws

Let us consider again model (2.2). The truncated vector field of this model has been obtained by a formal scaling procedure as described in Section 5.3. The right hand side of the truncated system is of the form The matrix S (1) = (S

(1) ij ) ∈ Z n×r is called truncated stoichiometric matrix. Since the truncated system contains less monomials than the full system, S (1) is obtained from S by setting the respective entries in S to zero. The matrix S (1) can be also computed by applying Algorithm 2 to the truncated vector field.

A vector c = (c 1 , . . . , c n ) ∈ R n defines an exact linear conservation law Φ(x) =

(cS) j k j x αj = 0, for all k, x. Exact linear conservation laws of (2.2) can be obtained from the matrix S in the following way.

Theorem 8.1. Assume that all monomial reaction rates with the same multi-index have different rate constants, i.e. α j = α j with j = j implies k j = k j . Let s be the rank of the matrix S. Then there is a full rank matrix C with n -s rows such that CS = 0. Algorithm StoechiometricMonomialConservation(system E as in equation

(2.2)) for i=1 to n do ẋi := ẋi xi /* transforms E to E */ E :=CompareAndSplitCoefficients( ẋ) S := Smatrix(E ) return LeftKernel(S )

Algorithm 22: Given a system of EDO as in (2.2), find monomial conservation laws of this system using the stoichiometric matrix of E . This allows to find monomial conservation laws independent of the parameters.

Theorem 8.9 (Goldman, 1985). Let E as in (8.2), and let W be the subspace of R n generated by B 1 , ..., B m . Then x φ is a conservation law for E if and only if φ is normal to W .

Example 8.10. Let the E be the Volpert model:

and the ODEs ẋ1 = x 1 (k 2 x 3 -k 1 x 2 ), ẋ2 = x 2 (k 1 x 1 -k 2 x 3 ), ẋ3 = x 3 (k 2 x 2 -k 3 x 1 ).

In this example, the stoechiometric matrix for the system E is   1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1   which is of full rank. However, the subspace generated by the B j is:

which is of rank 2. The left-kernel of this matrix is given by the vector (k 2 , k 3 , k 1 ). This means that x k2 1 x k3 2 x k1 3 is a monomial conservation law for E, depending on k, but existing for all k. Algorithm MonomialConservation(system E as in equation (8.2))

B := (B 1 ...B m ) return LeftKernel(B)

Algorithm 23: Given a system of EDO as in (8.2), find monomial conservation laws depending or not of the parameters.