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Abstract ix

Couches limites fluides et équations elliptiques dégénérées
Abstract

This thesis is devoted to the mathematical analysis of several boundary layer models in fluid dynamics.
The starting point of our study is the Proudman problem, which describes the behavior of an incom-
pressible highly rotating fluid between two spheres. In the low Rossby and low Ekman number limit,
multiple nested boundary layers appear. They had been described, at a formal level, in previous works.
The goal of the first part of this manuscript is to study rigorously several of them (in particular the
equatorial Ekman layer) and to propose strategies of proof to justify the complete asymptotic expansion.
In a second part we consider an MHD model, within which shear layers take place. They bear a strong
resemblance to the boundary layers studied in the first part.
Eventually, the last part is dedicated to a stationary Burgers equation with transverse viscosity, for
which we construct sign-changing solutions. Our long term goal is to construct solutions of the Prandtl
system with a recirculation bubble, for which the present system play the role of a toy-model.
Remarkably, several of the systems studied in the present manuscript belong to the class of degenerate
elliptic equations.

Keywords: boundary layers, fluid dynamics, multiscale analysis, degenerate elliptic equations, magne-
tohydrodynamics

Résumé

Cette thèse est consacrée à l’analyse mathématique de plusieurs modèles de couches limites en mécanique
des fluides.
Le point de départ de l’étude est le problème de Proudman qui modélise le comportement d’un fluide
incompressible en rotation rapide entre deux sphères. Dans la limite où le nombre de Rossby et le nombre
d’Ekman sont petits, de nombreuses couches limites imbriquées apparaissent, et avaient été décrites
formellement dans des travaux antérieurs. Le but de la première partie de cette thèse est d’étudier
rigoureusement plusieurs d’entre elles (en particulier la couche d’Ekman équatoriale) et de donner des
pistes pour justifier le développement asymptotique.
Dans une seconde partie on s’intéresse à un modèle issu de la magnétohydrodynamique, au sein duquel
apparaît une couche de cisaillement très similaire aux couches limites étudiées dans la première partie.
Enfin, en vue de construire des solutions stationnaires du système de Prandtl possédant des bulles de
recirculation, on étudie dans la dernière partie une équation de type Burgers stationnaire avec viscosité
transverse, pour laquelle on construit des solutions changeant de signe.
De façon remarquable plusieurs des systèmes étudiés entrent dans le cadre des équations elliptiques
dégénérées.

Mots clés : couches limites, mécanique des fluides, analyse multi-échelles, équations elliptiques dégé-
nérées, magnétohydrodynamique

Laboratoire Jacques-Louis Lions
4 place Jussieu – 75005 Paris – France
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Chapitre1
Présentation générale (en français)

Sommaire du présent chapitre
1.1 Mécanique des fluides et petits paramètres 1
1.2 Perturbations singulières et régulières 2
1.3 Équations elliptiques 7
1.4 Les couches limites: pourquoi et comment ? 8
1.5 Organisation du manuscrit 12

Cette thèse a pour sujet l’étude mathématique de plusieurs modèles de couches limites en méca-
nique des fluides : couche de Stewartson apparaissant entre deux sphères en rotation et couche
de cisaillement en MHD. On construira également des solutions changeant de signe pour une
équation de type Burgers avec viscosité transverse. Cette dernière équation peut être vue comme
un toy-model pour l’équation de Prandtl stationnaire.

L’objectif de cette introduction et du chapitre qui suit est de présenter les différents modèles
étudiés, les hypothèses physiques sous-jacentes ainsi que des outils mathématiques spécifiques
pour les étudier.

1.1 Mécanique des fluides et petits paramètres
Lors de l’étude des systèmes fluides, il est fréquent d’adimensionner les équations et de faire
apparaître des paramètres sans dimension, représentant les influences respectives des différents
phénomènes physiques. Parmi les paramètres qui joueront un rôle important dans cette thèse,
nous pouvons citer par exemple le nombre de Reynolds Re (mesurant l’influence des forces de
viscosité par rapport au terme d’advection) ou le nombre de Rossby Ro (mesurant l’intensité de
la rotation). D’autres paramètres fréquemment rencontrés mais qui n’interviendront pas ici sont
par exemple le nombre de Froude Fr (mesurant l’intensité de la stratification) et le nombre de
Mach Ma (mesurant le rapport entre la vitesse typique du fluide et la vitesse du son).

Lorsque ces paramètres sont petits, des phénomènes de pénalisation singulière peuvent appa-
raître. Les paragraphes suivants ont comme objectif d’expliquer ce phénomène de pénalisation
singulière et les conséquences attendues.

1



2 CHAPITRE 1. Présentation générale (en français)

1.2 Perturbations singulières et régulières
Mathématiquement le problème des petits paramètres adimensionnels en physique se traduit par
une équation dépendant d’un paramètre que l’on notera dans ce chapitre ε. Si ce paramètre ε
est très petit, peut-on raisonnablement le négliger face à 1, c’est-à-dire peut-on approximer le
problème pour ε≪ 1 par celui obtenu avec ε = 0 ?

Autrement dit, en traduisant ε≪ 1 par ε→ 0 :

Comment relier la limite de la solution de l’équation avec la solution de l’équation
limite ?

Avant d’aborder le cas des équations différentielles considérons pour commencer des équations
polynomiales.

1.2.1 Premier exemple de développement asymptotique
Un trinôme du second degré

Un des exemples les plus simples est le suivant :
Quelles sont les racines du polynôme Pε(X) = X2− εX− 1 lorsque ε est très petit devant 1 ?
Intuitivement les solutions sont proches de celles de P0 = X2−1 c’est-à-dire ±1. Ici un calcul

explicite est possible et les deux solutions exactes sont :

x±ε =
ε±

√
4 + ε2

2
= ±1 +

ε

2
+ o(ε)

À l’aide de la formule explicite précédente il est alors possible d’obtenir le développement
limité à tout ordre de x±ε .

Mais comment faire sans cette formule explicite ?
Une idée pour établir un développement asymptotique est de raffiner progressivement les

informations sur x±ε .

Bornes sur les solutions

Le point de départ de toute méthode est d’abord de montrer que pour ε assez petit on a bien
deux solutions ainsi que d’obtenir une borne sur celles-ci.

Ici le théorème des valeurs intermédiaires nous suffit : pour 1 > ε > 0 on a Pε(±2) ≥ 1 > 0
et Pε(± 1

2 ) ≤ − 3
4 . On en déduit qu’il existe une et unique solution dans [ 12 , 2] et une et unique

solution dans [− 1
2 ,−2]. On note ces solutions x+ε et x−ε respectivement.

Remarque 1.2.1. Cette étape est cruciale et le point de départ de toute l’analyse. On remarquera
que, pour le cas des EDP, ce sont les estimées d’énergie qui fournissent de telles informations.

Bootstraps

On effectue alors une méthode dite de bootstrap : on réinjecte successivement les approximations
obtenues dans l’équation pour en améliorer la précision.

Pour simplifier on se concentrera sur x−ε que l’on notera simplement xε dans la suite, le
traitement de x+ε étant identique.

Comme xε est bornée on en déduit que εxε → 0 quand ε→ 0. De l’équation :

x2ε − 1 = εxε
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on obtient donc x2ε − 1 → 0 et comme xε ∈ [−2,− 1
2 ] on conclus :

xε → −1

Remarque 1.2.2. Un argument plus topologique, et plus générique, est de remarquer que comme
xε est borné, on peut construire une sous-suite extraite convergeant vers un x̃0. En passant à la
limite l’équation on obtient x̃0 = −1 qui est indépendant de l’extraction d’où xε → −1.

En adoptant un vocabulaire plus proche de l’analyse fonctionelle on notera que, de par
Bolzanno-Weierstrass, la borne |xε| ≤ 2 permet de conclure directement la convergence forte.
En pratique pour des EDPs il faudra se contenter, dans un premier temps, de convergence faible.

Pour obtenir l’ordre suivant on écrit ensuite xε = −1+rε où rε = o(1) et on cherche à gagner
des informations sur rε.

L’équation sur rε est :
(−1 + rε)

2 − ε(−1 + rε)− 1 = 0

c’est-à-dire :
−2rε + r2ε + ε+ εrε = 0

sachant que rε = o(1) cela donne donc :

−2rε + o(rε) = −ε+ o(ε)

et donc
rε =

1

2
ε+ o(ε).

Pour obtenir l’ordre suivant la procédure est la même, avec rε = 1
2ε + sε on obtient comme

équation : (︃
−1 +

1

2
ε+ sε

)︃2

− ε

(︃
−1 +

1

2
ε+ sε

)︃
− 1

ce qui après simplification s’écrit :

−1

4
ε2 − 2sε + s2ε = 0

et en utilisant le fait que sε = o(ε)

sε = −1

8
ε2 + o(ε2).

On peut ensuite continuer en posant sε = − 1
8ε

2 + tε, puis en écrivant l’équation sur tε et en
utilisant tε = o(ε2), etc.

Utilisation d’ansatz

Plutôt que d’effectuer le développement comme précédemment une méthode utilisée est l’utili-
sation d’un ansatz. Il s’agit d’écrire la solution sous une forme faisant déjà ressortir les échelles
caractéristiques.

Ainsi dans notre exemple si l’on écrit :

xε = a0 + εa1 + ε2a2 + o(ε2)
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on obtient comme équation :

a20 + 2a0a1ε+
(︁
a21 + 2a0a2

)︁
ε2 − εa0 − ε2a1 − 1 + o(ε2) = 0.

On résout alors les équations pour chaque ordre en ε en commençant par l’ordre le plus bas :

• À l’ordre 0 l’équation est :
a20 − 1 = 0

et donc on a bien a0 = −1.

• À l’ordre 1 l’équation est :
2a0a1 − a0 = 0

ce qui donne en utilisant a0 = 1 la valeur a1 = 1
2 .

• À l’ordre 2 l’équation est :
a21 + 2a0a2 − a1 = 0

ce qui en utilisant les valeurs déjà trouvées permet d’obtenir a2 = − 1
8 .

Remarque 1.2.3. Même si l’utilisation d’un ansatz semble bien plus rapide, il faut noter qu’il est
nécessaire de trouver la bonne forme de l’ansatz, ce qui n’est pas forcément évident.

Quelques autres exemples

Le principe utilisé ici s’applique dès qu’on a un polynôme en X avec des coefficients polynomiaux
(ou analytiques) en ε,

Pε(X) =

d∑︂
k=0

ak(ε)X
k

du moment que ad(0) ̸= 0.
Si cette dernière condition est vérifiée on parle de perturbation régulière. Le fait que les racines

de Pε tendent vers les racines de P0 est par exemple le fameux théorème de continuité des racines
par rapport aux coefficients. De plus cette méthode est quantitative : elle permet d’obtenir de
manière explicite le développement même si l’on ne connaît pas une forme fermée pour les racines
(il s’agit d’une méthode de fonctions implicites).

Par exemple si l’on considère :

Pε(X) = X7 − εX − 1

on sait que pour ε > 0 assez petit il existe une unique solution réelle xε, mais il n’existe pas
de formule explicite donnant xε en fonction de ε. Néanmoins, en procédant exactement comme
précédemment, il est très facile d’obtenir par exemple :

xε = 1 +
1

7
ε+ o(ε).

Enfin il faut noter que le développement n’est pas nécessairement en puissances entières de ε
et qu’il faut donc être prudent au moment d’injecter des ansätze.

Par exemple considérons :

Pε(X) = X2 − 2X + (1− ε)
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alors si l’on essaye d’injecter un ansatz de la forme xε = a0 + a1ε+ o(ε) on obtient :

• À l’ordre 0, a0 = 1.

• À l’ordre 1, 2a0a1 − 2a1 − 1 = 0 i.e (2− 2)a1 = 1 ce qui est absurde.

La cause de cette contradiction est la non pertinence de l’ansatz. En effet les solutions sont
x±ε = 1 ±

√
ε ce qui ne correspond pas à l’ansatz précédent qui est uniquement en puissance

entière de
√
ε. Néanmoins avec xε = 1 + rε on obtient bien r2ε = ε. De plus l’ansatz (correct)

xε = a0 + a1
√
ε+ o(

√
ε) donne aussi a0 = 1, a1 = ±1.

1.2.2 Une perturbation singulière
Considérons désormais un problème légèrement différent :

Quelles sont les racines du polynôme Pε(X) = εX2 −X − 1 lorsque ε est très petit
devant 1 ?

On pourrait penser que la construction précédente s’adopte sans modification, mais ce n’est
pas le cas.

Ici le problème est le suivant : pour tout ε > 0 le polynôme Pε possède deux racines. Néan-
moins P0 n’en possédant qu’une il est impossible d’approximer naïvement celles de Pε par celle
de P0.

On parle dans ce cas, où l’équation pour ε = 0 n’a pas la même nature (ici degré) que
l’équation pour ε > 0, de perturbation singulière.

Afin de voir ce qui se passe, notons que pour le trinôme du second degré proposé la résolution
explicite est possible, et donne :

x±ε =
1±

√
1 + 4ε

2ε
.

Un développement limité à l’ordre le plus élevé est :

x−ε = −1 + o(1)

x+ε =
1

ε
+ o

(︃
1

ε

)︃
On a x−ε tend vers une racine de P0, mais x+ε est non borné.
si l’on cherche à obtenir comme précédemment une méthode générale on observe qu’une fois

le premier ordre du développement obtenu en posant x−ε = −1 + r−ε et x+ε = ε−1 + r+ε où
r−ε = o(1), r+ε = o(ε−1) on obtient :

r−ε + 2εr−ε − ε(r−ε )
2 − ε = 0

r+ε + (εr+ε )r
+
ε − 1 = 0

d’où :
r−ε = ε+ o(ε)

r+ε = 1 + o(1).

On voit bien que le problème supplémentaire est en fait d’obtenir ce premier terme du déve-
loppement.

Plus précisément, on peut montrer par le théorème des valeurs intermédiaires que x−ε est
borné et en déduire x−ε = −1 + o(1) mais ce n’est pas possible pour x+ε . si l’on peut ici utiliser
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des relations coefficients racines ou remarquer que εx+ε − 1 = 1/(x+ε ) de manière générale il faut
identifier l’échelle 1

ε avant tout autre analyse.
Une fois cette échelle en ε−1 établie, le changement de variable xε = ε−1ξε permet d’obtenir :

ξ2ε − ξε − ε = 0

ce qui permet de montrer que ξε est borné, i.e la première étape d’un développement asympto-
tique, puis de continuer à tous les ordres.

Principe de moindre dégénérescence

De manière générale, par compacité, les racines bornées tendent vers des racines de P0. La
difficulté principale est donc d’obtenir le premier ordre du développement des racines non bornées.

Dans le cas de polynômes on sait par des arguments d’analyse complexe [2], ou bien par un
calcul explicite, que si les coefficients sont des polynomes en ε alors à l’ordre le plus élevé les
racines sont en puissance de ε.

On recherche donc un développement en xε ∼ ξεε
−α où ξε est borné et loin de zéro, c’est-à-

dire ξε → ξ0 ∈ C\{0}. À cet effet, on pose x = ε−αξ et on regarde ce qui se passe selon la valeur
de α si l’on suppose que ξ reste borné.

Pour le trinôme précédent l’équation sur ξ est :

ε1−2αξ − ε−αξ − 1 = 0

d’où lorsque ε→ 0 :

• si α < 0 l’équation devient :
−1 = 0

ce qui est absurde.

• si α = 0 l’équation devient :
−ξ − 1 + o(1) = 0

ce qui est bien la racine en ε0 attendue.

• si 0 < α < 1 , on a 1− 2α > α > 0 et donc l’ordre principal de l’équation est :

ξ + o(1) = 0

ce qui ne permet pas d’obtenir davantage de précision.

• si α = 1 alors l’équation est :
ξ2 − ξ + o(1) = 0

ce qui permet d’obtenir que ξ → 1.

• enfin si α > 1 on obtient :
ξ2 + o(1) = 0

ce qui encore une fois ne permet pas de conclure.

On voit donc que le principe pour gagner des informations sur l’ordre en ε est le suivant :

On trouve un changement de variables x = ε−αξ tel que l’équation formelle sur ξ
obtenue en ε = 0 soit non triviale.
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Où par triviale on entend une équation soit absurde (0 = 1), soit ne permettant pas de pous-
ser le développement à l’ordre suivant (ξ = 0 + o(1)). D’où le nom de principe de moindre
dégénérescence : il faut garder au moins deux termes dans l’équation.

Il faut noter que l’identification des échelles idoines en ε est essentielle car ce sont ces échelles
qui permettent ensuite de commencer un bootstrap et qui dictent le type d’ansatz à utiliser.

1.2.3 Résumé
On considère une équation (polynomiale) dépendant d’un petit paramètre ε et on se demande
quel est le comportement des solutions quand ε→ 0.

• Si l’équation pour ε = 0 est de même nature que celle pour ε > 0 (perturbation régulière),
alors on peut attendre la convergence des solutions à ε > 0 vers celles de ε = 0. De plus
on peut obtenir un développement asymptotique en ε des solutions par bootstrap ou en
utilisant un ansatz bien choisi.

• Si l’équation pour ε = 0 est de nature différente de celles pour ε > 0 (perturbation singulière)
ce n’est plus le cas. Il est alors nécessaire d’identifier les échelles spécifiques au problème
avant d’espérer établir des résultats de convergence suite à une remise à l’échelle.

1.3 Équations elliptiques
En pratique les équations de la mécanique des fluides (ou de la physique en général) ne sont pas
des polynômes. De fait, une grande partie d’entre elles sont des équations aux dérivées partielles.
La grande majorité des démonstrations de cette thèse se basent sur des méthodes issues de la
théorie des équations différentielles elliptiques. Si l’étude de telles équations est extrêmement
vaste, donnons néanmoins un exemple d’équation elliptique et quelques méthodes permettant de
les étudier.

L’équation elliptique la plus simple est probablement la suivante : on se donne f une fonction
régulière de (−1, 1) et on cherche u tel que

−∂2xu(x) + u(x) = f(x) ∀x ∈ (−1, 1)

muni des conditions aux bords
u(−1) = u(1) = 0.

Ce problème est qualitativement différent d’un problème d’équation différentielle ordinaire
(EDO), où le domaine serait une demi-droite, par exemple (0,∞) et les conditions aux bords,
appellées dans ce cas conditions initiales, seraient u(0) = 0, u′(0) = 0. La théorie générale des
EDOs ne s’applique donc pas directement.

Les deux remarques cruciales sont les suivantes

• Deux fonctions v et w de (−1, 1) sont égales ssi pour toute fonction φ on a∫︂ 1

−1

v(x)φ(x)dx =

∫︂ 1

−1

w(x)φ(x).

• En effectuant une intégration par parties (IPP), pour tout φ tel que φ(−1) = φ(1) = 0 on
obtient

−
∫︂ 1

−1

∂2xu(x)φ(x)dx = [−∂xuφ]1−1⏞ ⏟⏟ ⏞
=0

+

∫︂ 1

−1

∂xu(x)∂xφ(x) = 0.
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L’équation précédente peut alors se réécrire

∀φ
∫︂ 1

−1

∂xu(x)∂xφ(x)dx+

∫︂ 1

−1

u(x)φ(x)dx⏞ ⏟⏟ ⏞
a(u,φ)

=

∫︂ 1

−1

f(x)φ(x)dx⏞ ⏟⏟ ⏞
L(φ)

.

On s’est donc ramené à un simple problème d’algèbre linéaire ∀φ, a(u, φ) = L(φ) où a(·, ·) est
une forme bilinéaire et L est une forme linéaire.

En pratique, comme il ne s’agit pas d’un problème de dimension finie, il faut être précaution-
neux sur les espaces auxquels appartiennent u et φ, pour obtenir notamment la continuité et la
coercivité des opérateurs.

En définissant l’espace fonctionnel

H1
0 =

{︃
u t.q

∫︂
Ω

(︁
|u|2 + |∇u|2

)︁
< +∞;u∂Ω = 0

}︃
Le théorème de Lax-Milgram nous assure que comme

• a est bilinéaire continu sur H1
0

• L est une forme linéaire continue sur H1
0 ,

• a est coercive sur H1
0 , c’est-à-dire

a(u, u) ≥ C∥u∥2H1
0

pour une certaine constante C.

Il existe bien une et unique solution à ce problème.
Notons que cette méthode permet de traiter des problèmes en dimension et pour des géométrie

quelconques, des systèmes d’équations et des variantes avec des termes d’ordre inférieur. Le point
clé étant la coercivité de la forme bilinéaire.

1.4 Les couches limites : pourquoi et comment ?
Même si les couches limites les plus connues, celles de Prandtl, ne sont pas issues d’un phénomène
linéaire, le phénomène de couches limites peut être souvent compris d’un point de vue linéaire.
Pour très brièvement reprendre l’explication de Gérard-Varet [31], les couches limites étant de
petits correcteurs, les termes non-linéaires qu’ils créent sont encore plus petits. On va donc dans
cette partie regarder ce qui se passe lorsque qu’une équation elliptique linéaire comporte un petit
paramètre ε.

1.4.1 Perturbation régulière
Considérons l’exemple le plus simple d’équation elliptique perturbée de manière régulière. On
cherche à résoudre sur un domaine régulier et borné Ω l’équation

−∆uε + εuε = f

avec f ∈ H−1, et munie de conditions aux bords de Dirichlet

u|∂Ω = 0. (1.1)
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L’estimée d’énergie naturelle associée à cette équation est∫︂
Ω

|∇u|2 + ε

∫︂
Ω

|u|2 ≤
∫︂
Ω

fu.

On peut remarquer que uε est borné puis passer à la limite faible dans H1 et forte dans L2.
Mais ici considérons simplement u0 solution de

−∆u0 = f

munie des conditions aux bords (1.1).
Comme uε − u0 est solution de

−∆(uε − u0) + ε(uε − u0) = −εu0

munie des conditons aux bords (1.1),et que ∥u0∥H1 ≤ C∥f∥H−1 , on obtient directement

∥uε − u0∥H1 ≤ Cε→ 0.

Il est tout aussi facile de continuer à tous les ordres, en écrivant

uapp,K =

K∑︂
k=0

εkuk

avec uk solution de
∆uk = uk−1

muni des conditions aux bords (1.1), on obtient⃦⃦⃦⃦
⃦uε −

K∑︂
k=0

εkuk

⃦⃦⃦⃦
⃦
H1

≤ CεK+1.

Remarque 1.4.1. D’un point de vue formel, cela correspond à effectuer le développement asymp-
totique (︁

Id− ε∆−1
)︁−1

=
∑︂
k

(︁
ε(∆)−1

)︁k
qui est valide d’un point de vue spectral pour |ε| < λ−1

0 avec λ0 > 0 la plus grande valeur propre
de l’opérateur (−∆)−1.

On voit donc que pour des exemples simples les perturbations régulières d’EDP ne posent
pas de problèmes particuliers.

1.4.2 Un petit exemple de perturbation singulière
Le cas des perturbations singulières étant plus complexe que le précédent, pour une fonction f
régulière, cherchons à résoudre sur le segment (−1, 1) l’équation

− ε∂2xu
ε + uε = f (1.2)

munie des conditions aux bords
uε(−1) = uε(1) = 0.
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On voit qu’en tant qu’équation elliptique (1.2) admet bien une unique solution vérifiant

ε

∫︂ 1

−1

|∂xuε|2dx+

∫︂ 1

−1

|uε|2dx ≤ C

∫︂ 1

−1

|f |2dx.

Maintenant si ε≪ 1 peut-on dire que uε ≃ u0 = f ?
L’approche qui vient naturellement est de regarder l’équation vérifiée par uε − u0

−ε∂2x(uε − u0) + (uε − u0) = ε∂2xf.

Mais ici si l’on essaye de multiplier par uε − u0 et intégrer par parties on obtient

ε

∫︂ 1

−1

|∂x(uε − u0)|2dx+
[︁
ε∂x(u

ε − u0)u0
]︁1
−1

+

∫︂ 1

−1

|(uε − u0)|2dx =

∫︂ 1

−1

f(uε − u0)dx

le terme de bords en rouge nous empêchant de conclure.
Une méthode efficace pour obtenir la convergence de uε vers u0 (et d’autres renseignements

plus précis) est de remplacer dans les estimations que l’on vient d’essayer de faire u0 par

uapp = u0 + ubl,g
(︃
1 + x√

ε

)︃
+ ubl,d

(︃
1− x√

ε

)︃
où les termes dits de couches limites ubl,g/d sont petits en norme, et donc ne se voient pas forcé-
ment dans la convergence (uapp ∼L2 u0), mais permettent d’avoir uapp qui vérifie les conditions
aux bords.

Notons que ces couches limites sont parfois plus qu’un simple artefact mathématique. En
effet si l’on poursuit le développement asymptotique de uε que ce soit en puissance de ε ou en
régularité, il est possible de voir de tels termes apparaître.

1.4.3 Bref historique
Prandtl proposa lors du 3ème congrès international des mathématiciens en 1904 le concept de
couche, pour décrire la limite non visqueuse des équations de Navier-Stokes en présence d’un
obstacle. Depuis une très large littérature mathématique sur les couches limites dites de Prandtl
a vu le jour. Le but ici n’est pas de faire une présentation exhaustive de ces résultats. Nous
citerons simplement quelques jalons parmi les développements récents

• dans le cas stationnaire, et tant que la vitesse tangentielle reste de signe constant, Olei-
nik [58] a montré le caractère bien posé des équations en s’appuyant sur une formulation
parabolique du problème. Plus récemment l’Ansatz de Prandtl a été justifié dans ce cadre et
pour deux situations différentes par Guo et Iyer [44], et par Gérard-Varet et Maekawa [34].

• Dans le cas dépendant du temps, l’équation est bien posée dans des espaces à forte régularité
(voir les travaux pionniers de Sammartino et Caflisch [64], [65] dans un cadre analytique,
récemment étendus à une régularité Gevrey par Gérard-Varet et Maekawa [36]). L’équation
est également bien posée pour des données monotones voir les travaux d’Oleinik [58] récem-
ment revisités par différents auteurs [57], [3], [50]. Néanmoins sans l’hypotèse de monotonie,
des instabilités apparaissent dans les espaces de Sobolev [39], [33].

Concernant les couches limites en géophysique, leur observation physique date aussi du début
du 20ème siècle, avec notamment l’explication par Ekman [25] dès 1905 de l’influence des couches
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Figure 1.1 – Maille uniforme et maille adaptée.

limites qui porteront son nom sur les courants océaniques. Les premiers travaux sur l’étude
mathématique de modèles océaniques remontent aux études de Lions, Temam et Wang [52]
ainsi que Embid et Majda [26] (voir aussi les travaux de Babin, Mahalov et Nicolaenko, par
exemple [4].) En ce qui concerne les couches d’Ekman on réfère à [12], [40], [56], [11], [21].

1.4.4 Couches limites et simulations numériques
Enfin, commentons rapidement l’importance du phénomène de couches limites pour les simu-
lations numériques. Comme des variations fortes ont lieu sur des petites distances, un schéma
numérique doit prendre en compte un tel comportement afin d’être précis.

Considérons par exemple des équations issues de la MHD, modélisant un fluide conducteur
en rotation se déplaçant dans un champ magnétique fixé. Les équations sur la vitesse v et sur la
perturbation du champ magnétique b sont de la forme :

B · ∇v −M−1(∆− 1)b = 0

B · ∇b−M−1(∆− 1)v = 0

où B est un champ magnétique fixé et M un nombre sans dimension appelé nombre d’Hart-
mann. Pour plus de détails sur la modélisation, notamment les conditions aux bords, et l’analyse
mathématique, voir Chapitre 5.

Supposons que l’on cherche à résoudre numériquement l’équation pour un grand nombre
d’Hartmann M . Alorsil faut s’attendre à des variations de la solution sur des échelles très petites,
nécessitant un pas de maille au moins aussi fin. En effet la Figure 1.2 obtenue avec un maillage
uniforme très fin (3 × 106 degrés de libertés) montre le phénomène suivant : près des bords et
le long d’une ligne de champ (appelée ligne de cisaillement) les fonctions v et b se mettent à
varier très rapidement sur des échelles très courtes. Il s’agit bien entendu de couches limites : des
couches d’Hartmann de taille M−1 près de la sphère extérieure et des couches de cisaillement de
taille M− 1

2 le long de la ligne de champ tangente à la sphère, on réfère de nouveau au chapitre 5
pour une description plus détaillée. La connaissance a priori de l’emplacement et de la taille de
ces couches limites permet alors d’adapter le maillage en conséquence.

Pour illustrer ce dernier point, on a choisi comme les paramètre numérique M = 400, la
résolution se faisant à l’aide d’éléments P1 et du logiciel FreeFem++ [46].
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Figure 1.2 – Comportement typique de v et b.

En calculant les erreurs effetuées, on observe, que ce soit en norme L2, H1 ou en terme
d’énergie associée au système

(︁
∥v∥2L2 + ∥b∥2L2

)︁
+ 1
M

(︁
∥v∥2H1 + ∥b∥2H1

)︁
, que la connaissance a priori

des couches limites permet de gagner un ordre de grandeur. Le tableau 1.1 montre bien ce résultat
pour les deux mailles de la Figure 1.1.

Degrés de liberté Erreur L2 Erreur H1 Erreur en énergie
Maille uniforme 3707 7× 10−3 2× 10−1 10−4

Maille adaptée 3256 8× 10−2 2× 100 10−2

Tableau 1.1 – Comparaison entre les mailles.

1.5 Organisation du manuscrit
Dans le chapitre suivant, on présente l’ensemble des modèles qui seront étudiés dans ce manuscrit,
ainsi que quelques outils utilisés à cet effet.

Le Chapitre 3 est dédié à l’étude du problème de Proudman (fluide en rotation rapide entre
deux sphères), ainsi qu’à l’analsye de plusieurs des couches limites qui apparaissent dans ce cas.

Le Chapitre 4 se concentre sur l’étude de la couche d’Ekman équatoriale, qui est précisément
une couche limite du problème de Proudman. Ce chapitre correspond à un article, accepté dans
ZAMP sous réserve de modifications mineures.

Le Chapitre 5 présente un problème de magnétohydrodynamique, dans lequel apparaissent
des couches de cisaillement cousines des couches limites du problème de Proudman.

Enfin, dans le Chapitre 6 on construit des solutions changeant de signe pour une équation
de type Burgers stationnaire avec viscosité transverse. Il s’agit d’un travail en collaboration avec
Frédéric Marbach et Anne-Laure Dalibard.
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2.1 Notations
Let us start by precising some notations used in this thesis.

Perhaps the most currently used and nevertheless misleading one is the use of “C” to denote
any constant. As often, we will denote C any positive constant, regardless of its exact value,
rather than tracking all the constants and their dependencies.

For example we can write, for a fixed polynomial P , something like∫︂ ∞

0

⃓⃓⃓
P (ζ)e−ζε

−1
⃓⃓⃓2
dζ ≤ C

∫︂ ∞

0

e−2C−1ζε−1

dζ ≤ Cε.

In all generality, we will not specify the dependencies with respect to the parameters of the
problem. However, if these dependencies are noteworthy, we will denote them by indices. For
example we will write, for ε > 0:

∀a, b ∈ R |ab| ≤ Cεa
2 + εb2.

2.1.1 Functions
Functional spaces

Let Ω be a sufficiently smooth subset of Rd.
We will use the classical, see for example [8], functional spaces on Ω. More precisely, for p ∈

[1,+∞], s ∈ R, k ∈ N we will denote Lp(Ω) the usual Lebesgue space, Hs(Ω) the usual Sobolev

13
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Figure 2.1 – A cut-off χ such that χ = 0 on (0, 1/5) ∪ (4/5, 1) and χ = 1 on (2/5, 3/5).

space, and Ck(Ω) the space of functions whose first through kth derivatives are continuous. Note
that we will consider inhomogeneous Sobolev space, for example

∥u∥2H1(Ω) =

∫︂
Ω

(︂
|∇u|2 + |u|2

)︂
If there is no possible confusion about the domain we will simply denote these spaces Lp, Hs,

Ck.

Norms

Let (H(Ω), ∥ · ∥H) be a usual functional space contained in D′(Ω). We will extend ∥ · ∥H as a
function from D′(Ω) to [0,+∞] by setting ∥f∥H = +∞ if f /∈ H.

This allow us to write for example

H(Ω) = {f s.t ∥f∥H < +∞} .

Note that, from a given norm, several spaces can be defined, notably when dealing with traces
condition. For example, for Ω a bounded domain and ∥u∥2H1(Ω) =

∫︁
Ω
|u|2 + |∇u|2, we have

H1(Ω) = C∞(Ω)
∥·∥H1(Ω)

H1
0 (Ω) = C∞

c (Ω)
∥·∥H1(Ω) .

Smooth functions

We will denote C∞(Ω) the space of infinitely many times differentiable functions and C∞
c the

subspace of C∞ with compact support. If the domain is unbounded, we will denote by C∞
b =

C∞ ∩ L∞ and C∞
0 the space of C∞ functions such that f(x) → 0 when |x| → ∞.

An important subspace of such functions will be cut-off functions. It is essentially a mol-
lification of an indicator function, see figure 2.1. We will often denote by χ such functions
independently of the sets.

Special functions

Some particular functions will be used repeatedly.
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• For K a regular subset of Ω, 1K will be the indicator function of K, i.e

1K(x) =

{︄
1 if x ∈ K

0 if x /∈ K.

• We will sometimes use the notation f(x) instead of f to emphasize on the dependency on
the variable x. A common example is that, for η ∈ C we will denote eηζ the function

eηζ : (σ, ζ) ↦→ eηζ .

Differential operators

We will denote by ∂ the partial derivative. For example if f : (x, y, z) ↦→ f(x, y, z) we will denote

∂f

∂y
= ∂yf.

For multiple derivatives
∂2f

∂y2
= (∂y)

2f = ∂2yf.

In order to avoid confusion when the indices is a number, it will refer to the position of the
variable. For example

∂2f = ∂yf.

Note that if no confusion are possible we will also use indices to denote derivatives, for
example

∂yf = fy

∂2yf = fyy.

We will also use indices on the Laplacian to specify the variables if needed.

∆f = ∂2xf + ∂2yf + ∂2zf

∆x,zf = ∂2xf + ∂2zf.

For a function of only one real variable we will sometimes use ′ to denote the derivative. For
example, for f : t ∈ R ↦→ f(t),

df

dt
= f ′ = ∂tf.

2.1.2 Smallness
As our objective is to construct asymptotic expansions, the notations about smallness are crucial.

We will use the standard Landau notation for real-valued functions o, O and ∼. For example

f(ε) = oε→0(g(ε))

means that there exists a real-valued function h such that limε→0 h(ε) = 0 and f = hg. If there
is no possible confusion we will also denote it by

f(ε) = oε(g(ε))
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or even
f(ε) = o(g(ε)).

We will also denote
f(ε) = o(ε∞)

which means that
∀k ∈ N, f(ε) = o(εk).

For functions having value in a normed space of finite dimension, the choice of the norm
does not modify the topology, so we will not precise it. But the choice of space is of utmost
importance in the infinite dimensional setting. For (H, ∥ · ∥H) a normed space and ε ↦→ uε from
a neighborhood of 0+ to H we will note

uε = oH(g(ε))

for a real-valued function g iff
∥uε∥H = o(g(ε)).

And we will note
uε = oH∞/C∞(g(ε))

for
∀k ∈ N, uε = oHk/Ck(g(ε)).

2.1.3 Some indications
We finish by some indications that are not mathematical notations, but rather guidelines that
we have tried to follow.

• The variable ξ ∈ Rd denotes the Fourier variable.

• The variable ζ denotes the boundary layer variable, i.e the rescaled distance to the bound-
ary.

• The variable λ will denote the Laplace variable, or exponential rate, like in eλx, or roots of
a characteristic polynomial, since the three are related. Sometimes it will be denoted by η
or µ.

• The variable δ will often be the size of the boundary layer.

When studying a function u, a certain number of “accents”, [bar/tilde/hat] and superscripts
will be used.

• The solution of an equation depending on a parameter ε will be denoted uε.

• The approximate solution will be denoted uapp.

• The function ˆ︁u will be the Fourier transform of u.

• The function ū will either be a “constant” u (either with respect of one variable or one
iteration of a procedure) or a limit, for example limε→0 u

ε(x) = ū(x).

• The function ˜︁u will sometimes be the Laplace transform, but mainly any modification of
u for technical reasons. For example a cut-off of u will can be denoted ũ = uχ.
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• The function u is a vector valued function. The coordinates will often be named after
corresponding physical quantities. For example in the Proudman problem we will often
denote u = (uv, uψ).

• We will also sometimes use the capital form to represent traces. For example the trace of
u can be named U .

• When making boundary layer expansions we will use two types of functions: interior (some-
times called outer by physicists) terms and boundary layer (sometimes called inner) terms.
The interior terms will be typically denoted uint. The boundary layer will be denoted ubl

when working in the global variable and uBL when working in the boundary layer variables.

ubl(x) = uBL (ζ) = uBL
(︂x
δ

)︂
• In order to distinguish between boundary layers, we will also add superscript corresponding

to the geometrical position, for example l/r for left and right and t/b for top and bottom.

• When doing expansions we will denote the order of the term by a superscript k. Thus, an
expansion can look like

uapp =
∑︂
k

εkuint,k(x) + εkubl,k,l(x) + εkubl,k,r(x)

=
∑︂
k

εkuint,k(x) + εkuBL,k,l
(︃
x− xl
δl

)︃
+ εkuBL,k,r

(︃
xr − x

δr

)︃
.

The most important point to note is that we will often drop all these superscript and accents
when focusing on specific term. In the previous expansion, if the focus of the paragraph is the
study of x ↦→ uBL,k,l

(︂
x−xl

δl

)︂
, then, for simplicity, we will instead denote it simply ζ ↦→ u(ζ).

2.2 Context of the thesis

2.2.1 Quick historical context
In 1904, at the Third International Mathematics Congress, Prandtl proposed the notion of bound-
ary layer to explain the the so-called d’Alembert paradox: incompressible and inviscid fluids does
not produce any drag, contrary to what is experimentally observed, see Figure 2.2.

In modern terms, the problem was that the approximation for large Reynolds number Re≫ 1
of

∂tu+ (u · ∇)u− 1

Re
∆u+∇p = 0

∇ · u = 0

u(t = 0) = u0

(2.1)

by non-viscous fluids and Euler equation

∂tu+ (u · ∇)u+∇p = 0

∇ · u = 0

u(t = 0) = u0

(2.2)
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Euler Flow past a circular cylinder Navier-Stokes Flow past a circular cylinder 

Boundary Layer

Figure 2.2 – Solution of Euler equation on the left, flow of a fluid with Re≫ 1 on the right.

is valid for the upcoming flow, but becomes invalid near the the domain boundary. One of
the main reason is that the boundary condition for the parabolic Navier-Stokes u|∂Ω = 0 is of
different nature than the one of the hyperbolic Euler equation (u ·n)|∂Ω = 0. The proposition of
Prandtl was to keep the Euler equation (2.2) far from the boundary, and in a neighborhood of
small size ( 1√

Re
) of the boundary to consider a boundary layer. For Ω = R+ ×R+ this is to take

uNS(t, x, y) =

{︄
uE(t, x, y) for y ≫

√
Re(︂

u
(︂
t, x, y√

E

)︂
,
√
Ev
(︂
t, x, y√

E

)︂)︂
for y ≤ C

√
Re.

And the boundary layer term (u(x, ζ), v(x, ζ)) is searched as a solution of the so-called Prandtl
equation

∂tu+ u∂xu+ v∂ζu− ∂2ζu = −∂xpe
∂xu+ ∂ζv = 0

with ad-hoc boundary condition to ensure both the no-slip boundary condition and the recon-
nection with the main flow

(u, v)|ζ=0 = 0, lim
ζ→∞

u = uE|y=0, u|t=0 = u0.

Since its first derivation, the Prandtl equation was widely studied, as was the reconnection
between Prandtl flow and the main flow. We refer to the introduction of Chapter 6 for more
details, but to summarize:

• for the stationary case, as long as u > 0 Oleinik [58] proved the well-posedness of the
equation, by using its parabolicity. And more recently, the Prandtl ansatz was justified for
this case, by Guo and Iyer [44], and by Gérard-Varet and Maekawa [34].

• For the time-dependent case the equation is well-posed for high regularity spaces (see the
seminal work of Sammartino and Caflisch [64], [65] in an analytic framework; these results
were recently extended to Gevrey regularity by Gérard-Varet and Maekawa [36]). The
equation is also well-posed for a monotonous initial data, see Oleinik’s works [58] which
was recently revisited by several authors [57], [3], [50]. However, without the assumption
of monotonicity, instabilities can appear in a Sobolev setting [39], [33].

On one hand, despite the recent advancement, notably for the stationary case with u > 0,
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it seems reasonable to state that the Prandtl expansion and the passage from Navier-Stokes to
Euler remains an open problem in its full generality.

On the other hand, boundary layers are not restricted to Navier-Stokes with large Reynolds
and Prandtl layer. Actually, this is a very generic phenomenon in singular perturbation of PDE.
As explained by Gérard-Varet [31], on a domain Ω (∂Ω ̸= ∅), for any problem of the form

Duε + 1

ε
Luε +Q(uε, uε) = fε in Ω

+ boundary conditions for uε on ∂Ω

where D,L are differential operators, with D of higher degree than L, and Q a non-linear term of
lower order, boundary layers are to be expected. More precisely, even if the approximation uε ⇀ ū
with ū solution of Lū = 0 can be valid in a very weak sense, in the energy norms required to
obtain traces and strong convergence such an approximation is insufficient. A symbolic analysis
shows that u can formally be approximated by

ū(x) +
∑︂
k

uBLk

(︃
d(x, ∂Ω)

δεk

)︃
where uBLk (ζ) being almost zero for ζ ≫ 1 are called boundary layer terms, and δεk going to 0
when ε→ 0 are called the boundary layer sizes.

Remark 2.2.1. Prandtl equation does not fit into this framework. Indeed, the main balance is
between 1

Re∆u and the non-linear ∂tu + (u · ∇)u + ∇p. This is one of the difficulties of this
equation.

Such singular perturbation problems appear naturally for geophysical fluids, as non-dimensional
quantities can be very small (see Table 3.2), One such example is the Rossby number Ro quan-
tifying the strength of inertia versus the earth rotation. For oceanic circulation Ro ≪ 1, which
added to the fact that Re ≫ 1 gives birth to the so called Ekman layers at the bottom and at
the top of oceans. But if the Ekman layers emerged around the same time as Prandtl, their first
description being in 1905 by Ekman [25], their mathematical study began much later. We can
cite, among others, the work of Grenier and Masmoudi [40] in 1997, Desjardins and Grenier in
1999 [21], and Masmoudi in 2000 [56], for the Navier-Stokes-Coriolis equation

∂tu+ (u · ∇)u+
1

Ro
e3 × u− 1

Reh
∆hu− 1

Rez
∂2zu+∇p = f

∇ · u = 0

u|∂Ω = 0

u(t = 0) = u0.

(2.3)

A simple version of the theorem they obtained can be stated as follows, in the well prepared
case

Theorem 2.2.1 (Grenier and Masmoudi [40]). Let Ω = T2 × [0, 1]. Let us suppose Reh is
fixed, 1

Rez
and Ro are bounded, that

Ro

Rez
= E → 0

and that RezRo→ 1
β , where β ∈ [0,∞] is called the Ekman pumping.

Let us suppose that the initial condition u0 ∈ L2(Ω) and source term f ∈ L2((0,∞)×Ω) are
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well prepared i.e
∂zu0 = 0,

∫︂
u0 = 0, u0 · e3 = 0

∂zf = 0, f · e3 = 0.

Then, there exists global weak solutions uRo,Rez of (2.3) such that

• if β < +∞
lim
E→0

∥uRo,Rez − (ū, 0)∥L∞((0,∞),L2(Ω) = 0

where ū is a two dimensional flow satisfying a damped Navier-Stokes equation

∂tū+ (ū · ∇x,y) ū−∆x,yū+
√︁
2βū+∇x,yp = f

∇ ·x,y ū = 0

ū|t=0 = u0.

• if β = ∞, then, ∀t0 > 0

lim
E→0

∥uRo,Rez − 0∥L∞((t0,∞),L2(Ω) = 0.

Remark 2.2.2. For stationary Ekman layers, the main balance is between the two linear terms
− 1
Rez

∂2zu and 1
Roe3 × u +∇p (and the divergence condition). As a consequence, the boundary

layer looks like a linear ODE in z, with an explicit solution called the Ekman spiral.
However, if we replace T2 × [0, 1] by Ω =

{︁
x ∈ R3 s.t r0 < |x| < r1

}︁
, i.e the volume between

two spheres , the question of the behavior of u in such limits remains open, due to difficulties
near the equator. In fact, the size of Ekman layers depends on the latitude θ and goes to +∞
when θ → π

2 , causing the construction to break down.
More generally, Gérard-Varet and Paul [37] showed that, in the linear case, the main obstacles

to the construction of the boundary layer expansion are the degeneracies:

• frequency degeneracy, when the size of the boundary layer depends strongly on the lateral
frequency,

• geometric degeneracy, when the size of the boundary layer depends on the lateral coordi-
nates.

Where in both cases lateral refers to the coordinates on ∂Ω.

2.2.2 Objective and methods
In this thesis, we will consider three different physical problems, all originating from geophysics
or fluid mechanics. In each case, a goal was to keep the mathematical justification as close as
possible to similar work done by physicists.

For the Proudman problem and the equatorial Ekman layer it is the work of Dormy, Mar-
cotte and Soward [54] and for the shear layer in Magnetohydrodynamics the one of Dormy and
Soward [22]. Concerning the recirculation, the starting point was the existence of explicit recir-
culating solution of the stationary Prandtl equation, called Falkner-Skan solutions [27].

From a methodological and mathematical point of view, the main works on which this thesis
is based are the following:
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1. The article of Gérard-Varet [31] explaining the study program of these boundary layers of
linear origin, completed by the one of Gérard-Varet and Paul [37] resolving the construc-
tion of these boundary layers outside the so-called degenerate cases (when the size of the
boundary layer varies according to the tangential frequency or tangential coordinates).

2. The work of Fichera [28], showing how to adapt the classical tools of the theory of elliptic
equations to degenerate equations. Here degenerate mean that the symbol of the operator
is non-negative, but not necessary positive. For example

∂xu− ∂2yu− 0 · ∂2xu = 0

can be seen as such an operator with specific boundary conditions. And using the the-
ory developed notably by Grisvard [41] such boundary conditions can be various and in
polygonal domains.

3. Finally, the works of Dalibard and Saint-Raymond [18], [17], highlighting among other
things, two key points in the construction of boundary layers: the notion of an approximate
solution in the sense of the energy balance and that of boundary layer operator.

Several methodological insights can be drawn from the experience.
The first is that formalism in terms of boundary layer/interior operators makes it possible

to approach the construction of the different terms in an almost algorithmic way. This con-
struction is very close to the widely used matched asymptotic expansion (see for example the
monographs [13], [49]), as it decomposes the problem into boundary layer (inner) and interior
(outer) regions. The main differences are the way we reconnect these regions, with the use of
compatibility conditions, and the way we treat each region, as we solve a PDE with the exact
number of degree of freedom of point 1, using methods from point 2.

As a consequence, this formalism is naturally adapted to the more general framework of
point 3: the energy norm of the remainders at each step is clearly identified, and the knowledge
of such norms is sufficient to pursue the expansion to the next order. Moreover, it is robust
enough to adapt to degenerate boundary layers.

The second one is that the robustness and results of the classical elliptical framework can
be used to carry out a thorough study of the so-called degenerate elliptic equations. This is of
particular interest for boundary layer originating from elliptic PDE, as these are naturally of this
type.

Let us now describe more precisely the organization of this manuscript. First, in Section 2.4,
we illustrate how the boundary layer and interior operator can be used to obtain an asymptotic
expansion. The example chosen is the one-dimensional variant of the Proudman problem, leading
to a simple mathematical analysis but keeping most difficulties of the articulation between orders
and regions. Then we will develop:

• Some results on the Proudman problem in Chapter 3, followed by a mathematical analysis
of the equatorial Ekman layer in Chapter 4.

• A similar construction for an equation coming from Magnetohydrodynamics shear layers
in Chapter 5.

• The study of a toy-model of recirculating Prandtl solution in Chapter 6.

2.2.3 Proudman problem and equatorial Ekman boundary layer
In Chapter 3, we look investigate the so-called Proudman problem. This problem represents
a stationary and linearized version of the Navier-Stokes-Coriolis equations (2.3). With v the
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Figure 2.3 – Summary of the different boundary layers in the Proudman problem.

azimuthal velocity and ψ the stream function, the main equation reads as

∂zv − E∆2
x,zψ = 0

∂zψ + E∆x,zv = 0
(2.4)

with boundary conditions on v, ∂nψ and ψ

v|∂Ω = v|∂Ω ∂nψ|∂Ω = 0

ψ|∂Ω = 0.
(2.5)

This equation may seem simple, but, in the case of a spherical geometry, a large number of
boundary layers appear when E → 0: the well-known Ekman layers of size E 1

2 (far from the
equator), several shear layers of sizes E 1

4 , E
2
7 and E

1
3 and an equatorial layer of size E 2

5 × E
1
5 ,

see Figure 2.3.

Fluid contained between two disks

Even though the Ekman layers are well-known, we start by re-deriving them in the case of a
fluid contained between two disks, i. e. a domain

Ω = {(x, z) ∈ T× R, s.t γ0(x) < z < γ1(x)}

with γ0, γ1 smooths, γ1 − γ0 ≥ c > 0. This allows us to use on a practical case the formalism of
boundary layer and interior operators.

Proposition 2.2.2 (Exemple of boundary layer operator). Let (V (x),Ψ(x),Υ(x)) be smooth
functions, satisfying the compatibility condition

− (1 + γ′0(x)
2)−

1
4

√
E

Ψ(x) +
1√
2
(V (x)−Υ(x)) = 0. (2.6)

Then, let us define the boundary layer size δ0 =
√
E(1 + γ′0(x)

2)
1
4 . Let us define the boundary
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layer term ubl = (v, δ0ψ)
(︂
d(x,Γ0)
δ0

)︂
, where u = (v, ψ) is solution boundary layer equation

∂ζ − ∂4ζψ = 0

∂ζv + ∂2ζv = 0
(2.7)

with boundary conditions v|ζ=0 = V , ∂nψ|ζ=0 = Υ, ψ|ζ=0 = δ0Ψ. Then ubl solves

∂zv
bl − E∆2

x,zψ
bl = rψ

∂zv
bl + E∆x,zv

bl = rv

with boundaries conditions:
(vbl, ψbl, ∂zψ

bl)|Γ0
= (V,Ψ,Υ)

(vbl, ψbl, ∂zψ
bl)|Γ1

= 0.

And the remainders, rv and rψ are acceptable remainders. In particular

∥rv∥L2 ≤ CE
3
4

∥rψ∥H−1 ≤ CE
1
4 .

Remark 2.2.3. Note that, the compatibility condition (2.6) (which can be related to the Ekman
pumping) and the corresponding boundary solution, depends strongly on the angle between the
axis of rotation and the boundary and on E.

This means that we can lift-up imperfect boundary condition with boundary layers, as long
as the conditions satisfies (2.6). All it remains is to solve an approximation of (2.4), but replacing
the 6 boundary conditions of (2.5) by the 2 compatibility conditions (2.6) at the top and the
bottom. This is simply achieved by considering an interior operator, similar to Proposition 2.2.2,
but replacing the boundary layer scaling ζ = d((x, z), ∂Ω)E

−1
2 ∈ [0,∞) simply by the original

scaling (x, z) ∈ Ω, and with interior equation

∂zv = 0

∂zψ = 0.

Remark 2.2.4. This construction can be further formalized to allow higher corrector, it is only
a matter of taking the remainders of one order as a source term in the boundary layer/interior
equation of the next order.

Assembling together these pieces allow us to conclude:

Proposition 2.2.3. Let γ0, γ1 ∈ C∞(T), such that C−1 < γ1 − γ0 < C. Then the solution
of (2.4) with boundary conditions

v|z=γi = vi ∂nψ|z=γi = 0

ψ|z=γi = 0

converges in L2×H1 towards (v̄, 0) where v̄ depends only on x (this is Taylor-Proudman theorem),
and is a mean between the top and bottom boundary condition, weighted by the relative size of
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the Ekman boundary layers:

v̄(x) =
(1 + γ′0(x)

2)−
1
4 v0(x) + (1 + γ′1(x)

2)−
1
4 v1(x)

(1 + γ′0(x)
2)−

1
4 + (1 + γ′1(x)

2)−
1
4

.

Case when the lower disk has a sigular shape

Consequently, we then investigate the physical case of a geometric degeneracy, where the bound-
ary admits a singularity with the shape γ0(x) ∼ (−x)α1x<0, the sphere corresponding to α = 1

2 .
Indeed, for such γ0, the corresponding v̄ is discontinuous so shear layers must appear, in order
to ensure v̄ ∈ H1. Using the first order Ekman boundary layer operator (2.6) as an effective
boundary condition (︃

(−1)i+1(1 + γ′i(x)
2)

1
4

1√
E
ψ +

1√
2
(v − vi)

)︃
|z=γi

= 0,

we derive formally the equation satisfied by the first order of the flow far from the boundary(︂
(1 + γ′20 )−

1
4 v0 + (1 + γ′21 )−

1
4 v1

)︂
−((1+γ′20 )−

1
4 v0+(1+γ′21 )−

1
4 v1)v̄−(γ1−γ0)

√
E∂2xv̄ = 0. (2.8)

Neglecting
√
E∂2x leads to the weighted mean (2.8) of the previous proposition. But for a singular

γ0, such approximation is invalid. Further analysis show that two different boundary layers
appears at x = 0:

• For x > 0, where γ0 is not singular, a E
1
4 layer corresponding to the boundary layer

equation
∂2ζu− u = f.

• For x < 0 where γ0 is singular, a E
1

3+α layer with boundary layer equation

∂2ζu− ζ
α−1
2 u = f.

Even though these equations admit explicit solutions, we choose to treat them using the previous
boundary layer operator framework and elliptic methods. As a consequence we are able to lift
off the discontinuities, recovering for example the value of v̄ at x = 0, v̄(0) = v0 +O(E

1
28 ) .

But these layers are not enough to conclude the construction. Indeed, ψ still has a jump at
x = 0. Another nested shear boundary layer is used to lift these discontinuities. It is the same
boundary layer as the one for a vertical wall, called the Stewartson E

1
3 layer, of size E 1

3 and
equation

∂zv − ∂4ζψ = 0

∂zψ + ∂2ζv = 0.

If this equation is close to what will be the equatorial Ekman equation, it avoids most of its
problems. Thus we can solve it without difficulties, the main notable fact being that the layer
size varies like (Ek)

1
3 , where k is the vertical frequency (i.e with respect to z)

For each of these layers we display the corresponding boundary layer operator. If all the
interconnections far from the equator are understood from a very formal point of view, we were
not able to complete the construction, precisely because of the equatorial layer.

Chapter 4, based on an article accepted under minor modifications in ZAMP, then focuses
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on this equatorial layer. The equation governing it is

∂zv + z∂yv −
1

2
∂4yψ = sψ

∂zψ + z∂yψ +
1

2
∂2yv = sv.

(2.9)

For the domain y > 0, z > 0, it does not fit into strict frameworks already pre-established in
PDE theory. However, a relevant angle of attack seems to be to use the theory of degenerate
elliptic equations and a Lions-Lax-Milgram theorem. The Theorem 4.2.1 shows that there exists
a weak solution in the energy space

Theorem 2.2.4. For any V,Υ ∈ H
1
2
0 (R+), Ψ ∈ H

3
2
0 (R+), and for various conditions at z = 0

( (I),(II),(III)) there exists a weak solution of (2.9) such that (v, ψ, ∂yψ)|y=0 = (V,Ψ,Υ). This
solution is such that

∥(v, ψ)∥2E0
=

∫︂
Ω

(︄
|∂yv|2 +

⃓⃓⃓⃓
v

1 + y

⃓⃓⃓⃓2)︄
+

∫︂
Ω

(︄⃓⃓
∂2yψ

⃓⃓2
+

⃓⃓⃓⃓
ψ

1 + y2

⃓⃓⃓⃓2)︄
< +∞.

Moreover if v ∈ L2, ψ ∈ L2 this solution is unique.

Remark 2.2.5. Thus, we are able to lift up to 3 boundary conditions at y = 0. For z = 0 the right
functional setting is to lift only one degree of freedom, for example v|z=0, ψ|z=0 or ψ|z=0−Λv|z=0.
Remark 2.2.6. The L2 integrability, which implies uniqueness, is recovered for multiple variants,
for example with the addition zeroth order terms, or if y is bounded.

In addition, a transparent boundary condition is exhibited. Not only this is an important
help for numerical simulations, but this also makes it possible to propose a credible candidate
for the boundary layer operator’s compatibility conditions. Unfortunately, technical difficulties
of integrability do not allow the study to be concluded completely.

The Figure 2.4 summarizes the location of the various boundary layer in the manuscript.

2.2.4 About shear layers in Magnetohydrodynamics
In Chapter 5, we look at an equation coming from Magnetohydrodynamics theory. It describes a
rotating conducting fluid between two shells, when a strong exterior magnetic field B is applied.
Under the scalings described in Section 5.1, the equation is of the form

M (B · ∇+ a) b+ (∆− c) v = 0

M (B · ∇ − a) v + (∆− c) b = 0

where the unknowns are the azimuthal velocity v and the magnetic field b. The Hartmann
number M being the origin of singular perturbation, as M ≫ 1.

This problem is very closely related to the Proudman problem of the previous chapters. For
example, in this setting, the equivalent of the Taylor-Proudman theorem is the Ferraro’s law of
iso-rotation, stating that when M → ∞, v and b depends only on the magnetic potential, i.e
B · ∇v = 0, B · ∇b = 0.

Note that, up to taking the potential vector A and the scalar potentialφ as new coordinates,
we can reduce the study to a uniform magnetic field B = Bez.

Without surprise, the mathematical results are similar to those of the Proudman problem,
the Ekman layers being replaced by the Hartman layers. Note that these Hartman layers are
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Section 3.4: Ekman layers

Chapter 4: Equatorial layer

Subsection 3.5.3 : E
1

3+α layer Subsection 3.5.3: E 1
4 layer

Subsection 3.5.5: E 1
3 layer

Section 3.5

Chapter 3

Figure 2.4 – The organization of the first part of this thesis.

simpler than the Ekman ones, as the compatibility condition we obtain does not depend on M
or a normal derivative.

Proposition 2.2.5. Let V,B ∈ H2({r = r0}), and let f be with exponential decay of rate η < 1,
i.e ∫︂

Γ0

∫︂ ∞

0

∂2θf(x, ζ)e
2ηζdζdθ < +∞

Suppose that the following compatibility is satisfied

V (θ) +B(θ) =

∫︂ ∞

0

(1− e−ζ)(fv + fb)(θ, ζ)dζ. (2.10)

And, in order to avoid degeneracy, let us suppose that V − B and f cancels like cos(θ)2 when
θ → π

2 .

Then, there exist ubl = u
(︂
θ, r−r0

M cos(θ)

)︂
solution of the approximate equation

M (∂z + a) b+ (∆− c) v =M2f blv +Mrblv

M (∂z − a) v + (∆− c) b =M2f blb +Mrblb

(vbl, bbl)r=r0 = (V,B)

(vbl, bbl)r=r1 = (0, 0)

with source term fbl = f
(︂
θ, r−r0

M cos(θ)

)︂
. Moreover, the remainders are satisfying

∥rblv ∥L2 + ∥rblb ∥L2 ≤ CM− 1
2 .
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I

II

III

Figure 2.5 – The three different configuration of magnetic field line.

Boundary condition for M < +∞ Effective boundary condition
Dirichlet on b, Dirichlet on v Dirichlet on v + b or† on v − b

Dirichlet on b, Neumann (or Robin) on v Dirichlet for b
Neumann (or Robin) on b, Dirichlet on v Dirichlet for v

Table 2.1 – Effective boundary conditions.

The only additional step is to treat the boundary conditions for a conductive shell, as the
usual Dirichlet condition is replaced by a Robin transparent condition

(∂nb+ Λb)|Γ = 0.

But the formalism of boundary layer operators allows us to treat this without difficulty.
A consequence of Ferraro law of isorotation is that we must distinguish three types of field

line for the exterior magnetic field:

(I) When the field line goes from one shell and then goes back inside it without intersecting
the other shell.

(II) When the field line goes from one shell and then intersect the other shell.

(III) The tangent case, separating the two previous cases.

For the case (I), v and b are simply fixed by the compatibility condition of the Hartmann
layer on the shell. For the case (II) it is a simple mean between the two conditions. But across
the line of type (III) a discontinuity appears.

This discontinuity cannot be lifted by a simple use of the so-called Shercliff layers, equivalent
to the E 1

3 Stewartson layers. In fact, two degeneracies occur: a geometric degeneracy at the
tangency point between the field line and the boundary, but also a boundary condition degener-
acy. Indeed, from the analysis of the boundary layer operator, the effective boundary condition
obtained for the interior term changes according to the main boundary condition, see table 2.1.

This creates a shear-layer of size E 1
2 at the tangent magnetic field line (III), admitting a

singular behavior at the tangency point between the field line and the outer shell, as can be seen
in Figure 2.6.

†Following the sign of n · ez
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Figure 2.6 – Isovalues of v and b for a dipolar magnetic field B and M = 400.

∂zv = 0, b = 0 b = 0, v = 0

∂nb+ Λb = 0, v = vQ x

z

b = 0 b+ v = 0

v = vQ x

z

Figure 2.7 – Model for studying the boundary condition degeneracy, and effective boundary
conditions on the right.

In order to focus on the singularity created by the boundary condition degeneracy, we consider
a toy model, used by Dormy, Jault and Soward [22], where the geometric degeneracy is forgotten.
The shear layer equation is now, in Alfven variables v ± b, the two coupled parabolic equations
inside R× [0, 1]

(∂z(v + b)− a(v − b))− ∂2ζ (v + b) = 0

(∂z(v − b)− a(v + b)) + ∂2ζ (v − b) = 0
(2.11)

with effective boundary conditions of Figure 2.7

v|{z=1} = vQ b|{z=0,x<0} = 0 (v + b)|{z=0,x>0} = 0. (2.12)

Following the works of Grisvard [41], we know that the change of boundary condition type
at (x, z) = (0, 0) does not hinder existence in low regularity spaces, but create singularities,
preventing any higher order estimate.

For example, if we were to solve −∆u = f ∈ C∞
c on R × R+ with boundary conditions

u|y=0,x>0 = 0, ∂nu|y=0,x<0 = 0, we would obtain, for any R > 0, u ∈ H1(|r| < R) but u /∈
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H2(|r| < R). In fact one can show using duality arguments that

u = ureg⏞⏟⏟⏞
∈H2(|r|<R)

+γ
√
r sin

(︃
θ

2

)︃
⏞ ⏟⏟ ⏞
/∈H2(|r|<R)

where γ ∈ R and (r, θ) are the polar coordinates.
For our problem we also have existence in anisotropic Sobolev spaces, and by using parabolic

estimates we recover a similar behavior: the solution is the sum of a regular term and of a well
identified singular term.

Proposition 2.2.6. Let vQ be smooth. There exist one and only one solution (v, b) of (2.11), (2.12)
satisfying the estimate ∫︂

Ω

(︁
|v|2 + |b|2 + |∂ζv|2 + |∂ζb|2

)︁
≤ C.

In fact v, b are in H1(Ω\{|(s, z)| ≤ ϵ}) for all ϵ > 0. And, more precisely, there exist a constant
Ξ ∈ R and vreg, breg ∈ H2(Ω) such that

v = vreg⏞⏟⏟⏞
∈H1(Ω)

+Ξusing⏞ ⏟⏟ ⏞
/∈H1(Ω)

b = breg⏞⏟⏟⏞
∈H1(Ω)

+Ξusing⏞ ⏟⏟ ⏞
/∈H1(Ω)

.

Where using is a fixed function which look like erf
(︂

s√
z

)︂
near (0, 0).

In the process, we also discuss some numerical aspects of this shear layer. Lastly, we turn our
attention to the layer created by this singularity and show that it is in fact an equatorial layer.

2.2.5 The problem of recirculation for Prandtl layers
Let us start by briefly recalling the difficulties of the stationary Prandtl equation due to the
change of sign of u.

u∂x + v∂yu− ν∂2yu = −∂xp (2.13)

u|x=0 = u0 u|y=0 = 0 v|y=0 = v0

u(x, y) → U(x) when y → ∞.
(2.14)

Indeed, since Oleinik’s work, local existence of solutions holds under the assumption of posi-
tivity.

Theorem 2.2.7 (Oleinik, Samokhin [58]). Under the the following assumption

1. (positivity of initial condition) u0 > 0, u0(0) = 0, u′0(0) > 0 and u0(y) → U(0) when
y → ∞.

2. (regularity assumption) ∂xp and v0 are C1, u0, u′0 and u′′0 are bounded and satisfy Holdër
condition.

3. (compatibility condition) at the point (x, y) = (0, 0), v0(0)∂yu0−ν∂2yu0 = −∂xp(0)+O(y2).
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Figure 2.8 – The recirculation described by Prandtl in [59]

There exists a solution (u, v) of (2.13) with boundary conditions (2.14) on (0, X) × (0,∞) for
some X > 0.

Moreover, a number of bounds on theses solutions can be obtained, notably u > 0 for y > 0
and ∂yu > c > 0 for 0 < y < C.

And, in the case ∂xp ≤ 0, v0 ≤ 0 or ∂xp < 0 such result holds for any X > 0.

The constant sign of u being a crucial element of the proof, the question then arises of
the physical adequacy of this hypothesis in the case of an adverse pressure gradient, ∂xp > 0.
Unfortunately, it has been known for a long time that a phenomenon called boundary layer
separation might occur: for an adverse pressure gradient, in general there exist x∗ > 0 such that
uy(x

∗, 0) = 0. Formal asymptotic expansion by Goldstein [38] followed by Stewartson [71] show
that u may develop a singularity in the vicinity of x∗, namely

uy(x, 0) ∼x→x∗ C
√
x∗ − x

for some positive C. The validity of this singularity was proved recently by Dalibard and Mas-
moudi [15] (see also the recent work [66]). However, to the best of our knowledge, there is no
mathematical work addressing the behavior of the Prandtl equation beyond separation.

The rigorous construction of ”recirculating” solutions, i.e. for which u changes sign, is there-
fore an important step in understanding the Prandtl equation.

Despite the theoretical difficulties that appear when such changes of sign occurs, there are
explicit solutions of (2.13) with such recirculation. These self-similar solutions correspond to a
Euler flow uE = u∞x

m (m > −1), i.e a pressure gradient pE = mu2∞x
2m+1 negative for m < 0.

More precisely they are of the form u = u∞x
mf ′(yx

m−1
2 ) where f satisfies, in non-dimensional

variables, the so-called Falkner-Skan ODE, see Figure 2.9,

f ′′′ + ff ′′ +
2m

m+ 1⏞ ⏟⏟ ⏞
β

(1− (f ′)2) = 0

f(0) = 0, f ′(0) = 0 , lim
η→∞

f ′(η) = 1

(2.15)

A method to build a whole family of recirculating solutions would then be to work in a per-
turbative way in the neighborhood of such solutions. However, this raises a number of difficulties.
Some are linked to the non linearity of the Prandtl equation, and to the fact that the Prandtl
equation around a recirculating flow can be considered as a degenerate elliptic system. In such
a context, the correct linearization of the Prandtl system is not obvious. The other source of
difficulty stems from the non-locality of the equation. In order to focus on the interplay between
non-linearity and recirculation we decided to work on the following toy-model
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Figure 2.9 – Numerical solutions of the Falkner-Skan equation for various β.

u∂xu− ∂2yu = f. (2.16)

If a linear version
σ∂xu− ∂2yu = f. (2.17)

where σ has no sign, called the forward-backward heat equation has already been considered, for
example by Baouendi and Grisvard [6], to our knowledge (2.16) has never been studied precisely.

As long as u is far from zero, this can be seen as a quasi-linear version of the heat equation.
But when u changes sign, the equation behaves likes a forward parabolic equation in the zone
u > 0, and like a backward parabolic equation in the zone u < 0.

The objective is then to construct, using an iterative method, a sign-changing solution u, in
the neighborhood of an explicit solution ū. The key points are the following:

• A careful choice of boundary conditions. The idea is to perturb the boundary conditions
ū by small functions δi and to choose as boundary condition for u, at x = xi

u|Σi
= ū+ δi

where
Σi = {x = xi, (−1)i (ū+ δi) > 0}.

• The analysis of elliptic problems of the form (2.17). Since it is a degenerate elliptic
problem, this is done through methods inspired by Fichera [28] in anisotropic spaces
Xk = {u s.t ∀ 0 ≤ j ≤ k, ∂kxu ∈ L2, ∂kx∂yu ∈ L2}.

• Existence and estimate of weak solution in X0 of this elliptic problem.

• Under the hypothesis of existence of smooth solutions, existence and a priori estimates
of strong solution in X1. Then higher estimates (in X2). This is where compatibility
conditions on δi appears.

• The use of a well-chosen iterative scheme to conclude. Indeed, since the geometrical struc-
ture of u (the zone u > 0 and u < 0) plays an important role in the construction of a
solution, a standard linearization does not work. We rather rely on the following iterative
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u = 0

ū < 0
u|ū+δ1<0 = ū+ δ1

u = ū

ū > 0u|ū+δ0>0 = ū+ δ0

Figure 2.10 – Boundary conditions for (2.16).

scheme
(ū+ un)∂xun+1 − ∂2yun+1 = 0

un+1|Σi
= δi.

This allows to obtain Theorem 6.1.1, which can be summarized as

Sketch of Theorem 6.1.1. Assume that the existence in X1 for smooth data holds.
Let δ0, δ1 ∈ C4 satisfying some compatibility conditions.
Then, under the smallness condition on δi, there exists a strong solution u in the class X2 to

equation (2.16) endowed with the boundary conditions of Figure 2.10, which satisfies the stability
estimate

∥u− ū∥X2 ≤ C(∥δ0∥+ ∥δ1∥).

Moreover, this solution is unique in a X2 neighborhood of ū.

2.3 About degenerate elliptic equations
Several boundary layer problems studied in this manuscript fall into the scope of degenerate
elliptic equations. We have mostly presented self-contained proofs in the rest of this manuscript.
However, for the reader convenience let us recall the main ideas behind this theory. A typical
degenerate elliptic equation can be written as

σ(y)∂xu− ∂2yu = 0 (2.18)

in a domain [x0, x1]× [−1, 1] where σ(y) is allowed to change sign, and |{σ = 0}| = 0. The main
ideas are the following:

• In order to prove existence we mainly need an a priori estimate.

• In order to obtain an energy inequality for degenerate elliptic equations, we need to pre-
scribe adequate boundary conditions to obtain positivity of boundary terms obtained in
the integration by parts.

• In order to prove uniqueness, classically we need to have existence of solutions of the dual
problem which is similar to (2.18).
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• When formulating the dual problem, dual boundary conditions must be identified.

We refer the interested reader to the work of Fichera [28],Oleinik [61] and Baouendi and
Grisvard [6].

Assuming that σ is smooth, define the sets

Σi = {(x = xi; (−1)iσ(xi, y) > 0)}.

Let Di be two domains, Di ⊂ {x = xi, y ∈ (−1, 1)}, and ui ∈ L2(Di).
Then, it can be proved that the equation (2.18) has a solution a solution if the following

boundary conditions are enforced
u|y=±1 = 0

u|Di
= ui

with
Di ⊂ Σi.

And uniqueness holds if
Σi ⊂ Di.

This type of results will be used extensively in Chapters 4, 5 and 6. Notice that, in Chap-
ters 4, 5, the degenerate elliptic equations we will consider are actually systems, so they do not
fall exactly into the framework above. However, the strategy designed by Fichera [28] will allows
us to identify the correct boundary conditions for these problems.

2.4 The one dimensional Proudman problem
In order to illustrate some basic techniques of boundary layers expansions and specificities of
Ekman layers, let us focus first on a toy-model of the Proudman problem. We refer to the
Section 3.1 for the physical derivation.

The equation is the following linear ODE with constant coefficients

∂zv − E∂4zψ = 0

∂zψ + E∂2zv = 0
(2.19)

for z ∈ (0, 1) with boundary conditions

v(0) = v0, v(1) = v1, ∂zψ(0) = ∂zψ(1) = 0

ψ(0) = ψ(1) = 0.
(2.20)

Despite the fact that it is straightforward to obtain an explicit solution by solving a 6 × 6
linear system (see Figure 2.11), and to obtain an asymptotic expansion from it, namely

v =
v0 + v1

2
+

(︃
v0 − v1

2

)︃
e
− z√

2E cos

(︃
z√
2E

)︃
+

(︃
v1 − v0

2

)︃
e
− (1−z)√

2E cos

(︃
(1− z)√

2E

)︃
+OL∞(

√
E)

ψ =
√
E

(︃
v1 − v0

2
√
2

)︃
−
√
E

(︃
v1 − v0

2

)︃
e
− z√

2E sin

(︃
z√
2E

+
π

4

)︃
−
√
E

(︃
v1 − v0

2

)︃
e
− (1−z)√

2E sin

(︃
(1− z)√

2E
+
π

4

)︃
+OL∞(E)

we will try, in this subsection, to use more advanced tools to obtain such an expansion.
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Remark 2.4.1. Note that the explicit calculation is not uninteresting as it is the study of the
symbol in z of the operator in the original Proudman problem.

More precisely, if we look for solutions as (v, ψ) =
∑︁
µ(Vµ,Ψµ)e

µz (µ = iξ in a symbol
analysis), then the equation (2.19), for each µ, rewrites(︃

Eµ2 µ
µ −Eµ4

)︃
⏞ ⏟⏟ ⏞

Aµ

(︃
Vµ
Ψµ

)︃
=

(︃
0
0

)︃
.

So in order to obtain non-zero solutions we must have det (Aµ) = 0 i.e

E2µ6 + µ2 = 0.

This leads to 6 (counting the multiplicities) possibles values of µ, which are ±1±i√
2E

and 0. For
each such µ we then choose (Vµ,Ψµ) ∈ ker(Aµ). For µ = ±1±i√

2
we obtain a kernel of dimension 1,

when for µ = 0 we obtain a kernel of dimension 2. Thus, at the end,we have 6 = 1+1+1+1+2
linearly independent solutions, and there remain is to write down the 6 × 6 system associated
with the 6 boundary conditions (2.20) for these solutions and check if it is invertible.

The step in the following analysis are quite generic:

• Establishing an energy estimate, and from it obtain a notion of approximate solution.

• Finding the boundary layer scalings, and the number of degree of freedom.

• Establishing the boundary layers operators, alongside their compatibility conditions, if
needed.

• Establishing an interior operator, alongside its compatibility condition, if needed.

• Articulating the previous operator in order to obtain an approximate solution.

2.4.1 Energy estimate and stability
The existence and uniqueness in H1 × H2 of a solution of (2.19), (2.20) comes straight from
Lax-Milgram theorem along with the estimate

E

∫︂ 1

0

(︁
|∂zv|2 + |∂2zψ|2

)︁
≤ C

(︁
|v0|2 + |v1|2

)︁
.

In fact, we have a more precise estimate.

Proposition 2.4.1 (Stability estimate). Let (v, ψ) with homogeneous boundary conditions and
satisfying (2.19) with source terms

∂zv − E∂4zψ = fψ

∂zψ + E∂2zv = fv.

Then
E∥v∥2H1 + E∥ψ∥2H2 ≤ C

(︁
∥fv∥2H−1 + ∥fψ∥2H−2

)︁
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Figure 2.11 – Explicit solutions for v0 = 0, v1 = 1 and various values of E.
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and

∥v∥2L2 + ∥ψ∥2H1 ≤ C

(︄
∥fv∥2L2 + ∥fψ∥2H−1 +

1

E

(︃∫︂ 1

0

fv

)︃2
)︄
.

Proof. The first estimate is simply the one obtained by Lax-Milgram. The second one requires
a more elaborate construction.

Let us consider the equation
w + iE∂2zw = φ (2.21)

with boundary conditions w(0) = w(1) = 0.
Then, as ∫︂ 1

0

|w|2 − iE

∫︂ 1

0

|∂zw|2 =

∫︂ 1

0

φw̄

it is sufficient to show that w = v + i∂zψ solves (2.21) for a well chosen φ.
Let φ = ifv + Fψ, where ∂zFψ = fψ such that ∥Fψ∥L2 ≤ C∥fψ∥H−1 . We have

ℑ
(︁
w + iE∂2zw

)︁
= ∂zψ + E∂2zv = fv

∂zℜ
(︁
w + iE∂2zw

)︁
= ∂zv − E∂4zψ = fv = ∂zFψ.

Meaning that w + iE∂2zw = φ+K, with K ∈ R. So all it remains is to bound |K|.
Let ω be the solution on the dual equation

ω − iE∂2zω = 1

with ω(0) = ω(1) = 0. Then,∫︂
(w + iE∂2zw)ω =

∫︂
w(ω − iE∂2zω) =

∫︂
(φ+K)ω.

Taking the imaginary part, as
∫︁ 1

0
ω =

∫︁ 1

0
v ∈ R , we obtain

K = −
ℑ
(︁∫︁
φω
)︁

ℑ
(︁∫︁
ω
)︁ .

But ω is explicit, ω = 1− e
−1+i√

2E
z − e

−1+i√
2E

(1−z)
+ oC∞(E∞), so

|K| ≤ C

(︃
∥φ∥L2 +

1√
E

∫︂
fv

)︃

Remark 2.4.2. • The condition that
∫︁
fv must be small is a natural one. Indeed we imposed

ψ = 0 on all boundaries, whereas the physical condition is that ψ is constant on each
connected component of said boundaries.

• We already see that, in order to improve the results, the boundary layers, here of the dual
equation, must be constructed.

In fatc, the stability estimate can be rewritten as:

Proposition 2.4.2 (Stability and approximate solutions). For E > 0 let u = (v, ψ) ∈ H1 ×H2

be the solution of (2.19), (2.20), and let uapp = (vapp, ψapp) ∈ H1 ×H2 with (2.20) as boundary
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conditions and satisfying
∂zv − E∂4zψ = rψ

∂zψ + E∂2zv = rv.

Then

∥v − vapp∥2L2 + ∥ψ − ψapp∥2H1 ≤ C

(︄
∥rv∥2L2 + ∥rψ∥2H−1 +

1

E

(︃∫︂ 1

0

∂zrv

)︃2
)︄

∥v − vapp∥2H1 + ∥ψ − ψapp∥2H2 ≤ CE−1
(︂
∥rv∥2H−1 + ∥rψ∥2H−2

)︂ (2.22)

when E goes to 0.

Thus we see clearly the objective: to construct approximate solution uapp such that the
remainders r are small, in order to conclude for the convergence of u.

2.4.2 Boundary layer ansatz, boundary layer operator
The construction of an approximate solution relies on a boundary ansatz. We look for an ap-
proximate solution as the sum of two terms:

• An interior term satisfying (up to an acceptable remainder) the equation in the whole
domain but not all the boundary conditions. This will typically be the function ū, with
lower order terms if necessary. In our case, we see that ū from the Taylor Proudman
theorem fulfills the equation with an acceptable remainder, but we have only 2 degree of
freedom for the boundary conditions when 6 of them must be satisfied.

• A boundary layer term (or multiple boundary layers), localized in a small region near the
boundary, of size decreasing to 0 with E. These terms fulfill an approximate equation,
and the associated boundary conditions are such that the sum of both the interior and the
boundary layer terms satisfy the global boundary conditions. This boundary layer term,
even if fundamental to the construction, is very small in low regularity norms (such as L2),
and so may not appear directly in the convergence result.

This can be summarized (for only one boundary layer) as

uapp = uint(z) + ubl(z)⏞ ⏟⏟ ⏞
=u(d(z,Γ)/δE)

(2.23)

with uint satisfying the equation in the whole domain and ubl also solution of the equation but
localized in a region of size going to 0 when E goes to 0, d(z,Γ) < δE = oE→0(1).

The construction of ubl is such that ubl +uint satisfies the boundary conditions, this is why
we will state that the boundary layer is lifting the boundary conditions of the interior term.

Following a formalism used by Dalibard and Saint-Raymond [18] we will see this lifting as a
generic operator, constructing a boundary layer solution from boundary conditions. Here this
very simple operator reads as

Proposition 2.4.3 (Boundary layer operator). For (V,Ψ,Υ) such that

−
√︃

2

E
Ψ+ V −Υ = 0 (2.24)
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there exist a solution ubl = u
(︂
z/

√
E
)︂
χ(z) of (2.19) satisfying

∥r∥H∞ = o(E∞)†

(vbl, ψbl, ∂zψ
bl)|z=0 = (V,Ψ,Υ)

(vbl, ψbl, ∂zψ
bl)|z=1 = 0

and the following estimate

∥vbl∥Hs ≤ CE
1
4−

s
2 ∥ψbl∥Hs ≤ CE

3
4−

s
2 .

Remark 2.4.3. Some basic remarks can be made about this operator:

• This operator is the bottom boundary layer operator. The exact same result holds for
z = 1 substituting z by 1− z and (2.24) by√︃

2

E
Ψ+ V −Υ = 0 (2.25)

• In this simple setting r is essentially 0 in all norms, as the boundary layer equation is an
exact rescaling of the main equation. For more complex models we will have to check the
size of r in the adequate norms and if necessary take r as a source term for a higher order
correctors.

• Quite generally, the boundary layer operator can depend on the tangential coordinate or
frequency. In fact this formalism was introduced in [18], notably in order to consider the
degeneracy (in frequency) created by resonant surface stress.

• The cut-off function χ is a purely technical construction, and has close to no influence.
This is why we will forget it when writing ansatz and scaling from now on (we will write
u
(︂
z/

√
E
)︂

instead of u
(︂
z/

√
E
)︂
χ(z)).

Proof. The idea behind this corrector is a simple application of the generic method developed
notably by Gérard-Varet in [45] and later precised by Gérard-Varet and Paul in [37].

The first step is to identify the scaling
√
E through the study of the characteristic ”manifold”

(here a finite set of points). With A(ξ) the symbol of the operator

A(ξ) =

(︃
−Eξ4 iξ
iξ −Eξ2

)︃
this manifold is the set of ξ such that det(A(ξ) = E2ξ6 + ξ2 = 0.

Thus, the scaling is ξ ∼ C√
E

, and so we have a boundary layer size of
√
E.

In such boundary layer scaling with ζ = z√
E

and

(vbl(z), ψbl(z)) = (v(ζ),
√
Eψ(ζ)) (2.26)

the equation is simply (︃
−∂4ζ ∂ζ
∂ζ ∂2ζ

)︃(︃
ψ
v

)︃
=

(︃
0
0

)︃
(2.27)

†Meaning that ∀s, k ≥ 0 we have ∥r∥Hs = o(Ek), see th notations in Section 2.1.
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1

i

Figure 2.12 – The modes of the Ekman boundary layer operator.

with a rescaled characteristic polynomial

λ6 + λ2 = 0.

Here we can explicitly compute six roots: ±1±i√
2

and 0 with multiplicity 2, see Figure 2.12.

Remark 2.4.4. • A more usual approach would be to consider a Fourier transform and to
compute the determinant of the symbol. We choose here to consider characteristic poly-
nomial as it is an ODE, i.e we consider eλζ instead of eiξζ . It not only allows to clearly
see the decay at infinity in an ODE framework but, more importantly, it is closely related
to the initial boundary condition problem and to the Laplace transform (see for example
the use of such transform of Gérard-Varet and Paul [37]). Ultimately both approaches are
equivalent with λ = iξ.

• Note that the fact that λ = 0 is a mode is sometimes referred to as degeneracy of Ek-
man layer. This mode creates an additional term in the interior flow, as constants (and
polynomials) terms are relevant in both boundary layer and interior scalings. This mode
is exactly the one creating the Ekman pumping as it allows the exchange of energy be-
tween both scalings. However, following the general framework described in [45], we will
use specifically the terminology degenerate only for modes strongly dependent on tangent
coordinates or non-normal frequencies.

As we need decay to 0 when ζ → +∞, we only keep the two roots with negative real part:

λ± =
−1± i√

2
.

The next step is to compute the dimension of the kernels E± for both modes. We obtain
dim (E±) = 1 so we can lift up to 1 + 1 = 2 boundary conditions, Thus, we need 3 − 2 = 1
compatibility conditions.

More explicitly, the solution is of the form

v(ζ) = α+e
λ+ζ + α−e

λ−ζ

ψ(ζ) = −λ+α+e
λ+ζ − λ−α−e

λ−ζ
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where α± ∈ C. As a consequence⎛⎝ v(0)
ψ(0)
∂ζψ(0)

⎞⎠ = α+

⎛⎝ 1
−λ+
−λ2+

⎞⎠ eλ+0 + α−

⎛⎝ 1
−λ−
−λ2−

⎞⎠ eλ−0.

Therefore, the compatibility condition, i.e the additional constraint we require to recover the
right number of degrees of freedom, is to have boundary conditions in the 2 dimensional subspace
of C3 spanned by (1,−λ±,−λ2±) i.e

−
√
2ψ(0) + v(0)− ∂ζψ(0) = 0 (2.28)

which leads to (2.24) in rescaled variables.
Then, considering the scaling (2.26) with

∥v∥Hs = O(1) ∥ψ∥Hs = O(1)

we obtain the claimed estimates.
In fact to obtain traces vanishing exactly on Γ1 we must multiply the previous solution by a

cut-off function χ(z) such that χ = 1 on (0, 1/3) and χ = 0 on (2/3, 1)

As ubl and all its derivatives are oL∞(E∞) for z ∈ (1/3, 2/3), the remainder term created by
this cut-off is o(E∞) in all norms.

Construction of an approximate solution

Once both boundary layer operators have been identified, we can now look for an approximate
solution of the form (2.23).

More precisely we consider the ansatz

uapp =
∑︂
k

E
k
2

(︃
uint,k(z) + uBL,b,k

(︃
z√
E

)︃
+ uBL,t,k

(︃
1− z√
E

)︃)︃
. (2.29)

Identifying each order, the equations in the interior domain are

∂zv
int,k = ∂4zψ

int,k−2

∂zψ
int,k = −∂2zvint,k−2

(2.30)

and for the boundary layer terms we consider the equation (2.27).
The interior and boundary layer terms interact through the boundary conditions

vint,k(0) + vBL,b,k(0) = V k0 =

{︄
v0 for k = 0

0 for k ≥ 1
vint,k(1) + vBL,t,k(1) = V k1 =

{︄
v1 for k = 0

0 for k ≥ 1

ψint,k(0) + ψBL,b,k−1(0) = 0 ψint,k(1) + ψBL,t,k−1(0) = 0

∂zψ
int,k(0) + ∂zψ

BL,b,k(0) = 0 ∂zψ
int,k(1) + ∂zψ

BL,t,k(0) = 0

The previous study of the boundary layer operator allows us to decouple the interior and the
boundary layer. Thus, we can rewrite the previous expansion in terms of the interior flow alone:
the equation is (2.30) and the boundary conditions are given by



2.4. The one dimensional Proudman problem 41

−
√
2ψint,k+1(0) +

(︁
vint,k(0)− V k0

)︁
− ∂zψ

int,k(0) = 0
√
2ψint,k+1(1) +

(︁
vint,k(1)− V k1

)︁
− ∂zψ

int,k(1) = 0.
(2.31)

Remark 2.4.5. As expected, we obtain the right number of boundary conditions for the closed
expansion of the interior flow. Here this is simply because out of the 6 modes we choose 2 for the
top boundary layer, 2 for the bottom one and the two remaining are the ones associated with
the 0 modes (invariant by scaling) and correspond in fact to the interior problem.

In particular, with k = 0, the equation leads to ψint,0 and vint,0 being constant, and we
obtain with k = −1 that ψint,0(0) = ψint,0(1) = 0 so ψint,0 = 0.

With k = 1 we obtain that ψint,1 is also constant, and using again the boundary condition
of k = 0, denoting the constant vint,0 and ψint,1 by V0 and F1 respectively, (2.31) reads at the
first order

−
√
2F1 + (V0 − v0) = 0

√
2F1 + (V0 − v1) = 0

leading to the announced values for the first order for u.
As these interior terms and the associated boundary layer are an acceptable approximate

solution (as defined in 3.2.2), in particular we can finally conclude that

ū = (V0, 0) =

(︃
v0 + v1

2
, 0

)︃
.

The estimate on the remainder allowing us to derive the strong convergence in L2 (and even in
the energy space).

Note that, in this simplified setting, we can pursue the asymptotic expansion up to any higher
order without any additional difficulty.

Generic framework and diagrams summary

This whole construction can be summarized as a construction with the boundary layer operator
and interior operator.

This interior operator is the explicit integration of the equation (2.30), and can be expressed
in a similar way to the boundary layer operator of Proposition 2.4.3.

Proposition 2.4.4 (Interior operator for zero source term). For V0,Ψ0,Υ0, V1,Ψ1,Υ1 such that

V1 − V0 = 0

Ψ1 −Ψ0 = 0

(−1)iΥi = 0

(2.32)

there exist uint solution of (3.9) satisfying

∥r∥H∞ = 0

(vint, ψint, ∂nψ
int)|z=i = (Vi,Ψi,Υi)

and the following estimate for all s

∥vint∥Hs ≤ C ∥ψint∥Hs = 0.
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Indeed the interior equation is obtained by neglecting the E∂4zψ and the E∂2zv and reads as

∂zv = 0

∂zψ = 0.

Which is immediate to solve given the boundary conditions.
In fact it is as easy to solve for the equation with a source-term

Proposition 2.4.5 (Interior operator for a non-zero source term). Let f = (fv, fψ) be smooths
function and V0,Ψ0,Υ0, V1,Ψ1,Υ1 such that

V1 − V0 =

∫︂ 1

0

fψ(z)dz

Ψ1 −Ψ0 =

∫︂ 1

0

fv(z)dz

(−1)iΥi = fv(i).

(2.33)

Then there exist uint = (vint, ψint) solution of

∂zv
int − E∂4zψ

int = fψ + Erintψ

∂zψ
int + E∂2zv

int = fv + Erintv

(vint, ψint, ∂nψ
int)|z=i = (Vi,Ψi,Υi)

and
∥rintv ∥Hs ≤ ∥fψ∥Hs+1

∥rintψ ∥Hs ≤ ∥fv∥Hs+3 .

The proof being once more the explicit integration of the interior equation

∂zv = fψ

∂zψ = fv.

Note that the remainder rint, in this simple setting, is

rintv = ∂zfψ

rintψ = −∂3zfv.

Remark 2.4.6. The loss of regularity between the source and the remainder is a natural phe-
nomenon in singular perturbation expansions, but is of no concern in this particular example.
Indeed, in the following asymptotic expansion we have will f0 = 0 ∈ C∞ so by induction we
have in fact fk ∈ C∞ for all k.

In order to articulate these operators at each order we can follow matching methods popular-
ized by Van Dyke [72]. Here the boundary conditions for initializing the expansion are unknown,
so we let vint,0|z=0 = vint,0|z=1 = v̄ be a free parameter.

• We construct an interior term satisfying the equation up to a lower order remainder.

†Note that, in this case, as the resolution is explicit, there is no need for source term or remainder in the
boundary layer. This is why these are in gray on the Figure 2.13.
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BL operatorboundary conditions satisfying (2.24) ubl

source

remainder

INT operator

source f

remainder Er

boundary conditions satisfying (2.33)uint

Figure 2.13 – Boundary layer and interior operator blocks†.

vint,0|z=0 = vint,0|z=1 = v̄

source term 0

0

BL operator 0INT operator 0

rint,0

uint,0

v
bl,

0

|z=
i
=
V
0
i
− v

in
t,0

|z=
i

INT operator 1uint,1

rint,1

ubl,0

ψint,1z=i = (−1)i√
2
vbl,0|z=i

Figure 2.14 – The usual Van Dyke construction. The value of v̄ is chosen in order to have
boundary conditions on ψint,1 compatible with the interior operator.
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• The constructed solution does not satisfy all boundary conditions, so we lift the mismatch
in the boundary condition for v by a boundary layer, thus setting the values of vbl,0|z=i and
∂zψ

bl,0
|z=i.

• This creates a mismatch in the boundary conditions on ψ|z=0 and ψ|z=1.

• This is lifted by another interior term uint,1 of order
√
E. But in order to be compatible

with ∂zψ
int,1 = 0 we need ψ|z=0 = ψ|z=1.

• This condition leads to the choice of v̄.

This construction, summarized if Figure 2.14 can then be iterated to higher orders.
Remark 2.4.7. Apart from the terminology, interior instead of outer and boundary layer in-
stead of inner, there are two differences between this construction and the general framework of
boundary layers as used by physicists.

• The first one is that rather than the matching principle, which can be summarized as,

uint(z = γi) = ubl(ζ = +∞)

ubl(ζ = 0) = vi

we use the following
uint(z = γi) + ubl(ζ = 0) = vi

ubl(ζ = +∞) = 0.

These formulations are very close, but the second one allows us to work with functions
decaying at infinity rather than having a finite limit at infinity, leading to easier functional
spaces.

• The second one is the matching orders, as we see the second order of the interior expansion
exerts an influence on the first order of said expansion, through the choice of v̄. This free
parameter v̄ show that the principle (for example put forward by Van Dyke in [72]) that
higher order terms have no influence on lower order terms is not always satisfied.

But we see that the decomposition of the boundary conditions between the ones in the
hyperplane (2.24) and its orthogonal allow us to close directly the interior expansion, without
the need to navigate between multiple orders in order to set free parameters.

Thus, it is easier, at each step, to choose simultaneously the boundary condition for the
interior and boundary layer term to satisfy all compatibility conditions.

As we have 3 + 3 + 6 = 12 traces to choose (3 for the bottom boundary layer operator, 3
for the top boundary layer operator and 6 for the interior operator), satisfying 1 + 1 + 4 = 6
compatibility conditions (1 for each boundary layer operator and 4 for the interior operator), a
simple argument of dimension shows

Proposition 2.4.6 (Figure 2.15). Let (V0,Ψ0,Υ0, V1,Ψ1,Υ1) ∈ R6.
Then there exist one and only one (V bl0 ,Ψ

bl
0 ,Υ

bl
0 , V

bl
1 ,Ψ

bl
1 ,Υ

bl
1 , V

int
0 ,Ψint0 ,Υint0 , V int1 ,Ψint1 ,Υint1 )

such that

• V bl0 ,Ψ
bl
0 ,Υ

bl
0 satisfy (2.24);

• V bl1 ,Ψ
bl
1 ,Υ

bl
1 satisfy (2.25);

• V int0 ,Ψint0 ,Υint0 , V int1 ,Ψint1 ,Υint1 satisfy (2.32);
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BC
decomposition

V0,Ψ0,Υ0, V1,Ψ1,Υ1

V int0 ,Ψint0 ,Υint0 , V int1 ,Ψint1 ,Υint1
V bl0 ,Ψ

bl
0 ,Υ

bl
0

V bl1 ,Ψ
bl
1 ,Υ

bl
1

Figure 2.15 – The decomposition of boundary conditions.

• And
V int0 + V bl0 = V0, V int1 + V bl1 = V1,

Ψint0 +Ψbl0 = Ψ0, Ψint1 +Ψbl1 = Ψ1,

Υint0 +Υbl0 = Υ0, Υint1 +Υbl1 = Υ1.

Remark 2.4.8. It is important to note a crucial particularity of Ekman layers: this decompo-
sition mixes scales, meaning that Ψint0/1 is one order higher (in

√
E) than V int0/1 and Υint0/1 This

very phenomenon creates the dependency of the Ekman pumping with respect to the latitude.
This mixing of scales originates from the order of the bi-laplacian: as it requires two boundary
conditions, ψ = 0 and ∂nψ = 0, but of different orders (as differential operators) it is impossible
to satisfy both boundary conditions with only one scale.

This is a generic phenomenon: in order to lift a Dirichlet condition with a boundary layer
of size ε, a term like u(x/ε) is to be used, when, in order to lift a Neumann condition, it would
rather be εu(x/ε). The important consequence is the following: any Dirichlet corrector of order
1 creates a Neumann error of size ε−1 and any Neumann corrector of order 1 creates a Dirichlet
error of order ε. The same effect appears notably in the Munk boundary layers as there is also a
fourth order operator. Note that in the case of MHD, see Chapter 5, the equation is very similar
but the ∆2ψ is replaced by a ∆b. As a consequence the interior flow does not depend on the
latitude. However, such scale mixing still appears with Robin boundary conditions.
Remark 2.4.9. In this example we have done nothing more that choose a decomposition of bound-
ary conditions into subspaces adapted to the eigenvectors of a one dimensional differential oper-
ator. Quite generally the compatibility conditions can be Dirichlet to Neumann like conditions,
as both the interior and boundary layer equation will be PDE without explicit diagonalization.

With such decomposition, we can close both boundary layer and interior equation of each
order as in equation (2.31). This is illustrated in Figure 2.16.

This allows us to prove the validity of this boundary layer expansion:

Proposition 2.4.7. For v0, v1 ∈ R let uE be the solution of (2.19). Let uapp be the result of the
previous construction

uapp = u0,int + ubl,b,0 + ubl,t,0 + uint,1.

Then when E → 0
∥uE − uapp∥L2 = o(E∞)

∥uE − uapp∥H1 = o(E∞)
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0
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BC
decomposition

BL operator 0INT operator 0

rint,0

uint,0

INT operator 1uint,1

rint,1

Figure 2.16 – The use of boundary condition decomposition.

Proof. This is only an application of the previous operators, in the very particular case f = 0.

Remark 2.4.10. In this very particular equation we can close the expansion after a finite number
of application of the various operators. In all generality this is not the case and, as the total
order of the expansion is limited, the order of convergence is never o(E∞).
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3.1 Physical modelization
3.1.1 Context
When describing geophysical fluids, the classical Navier-Stokes equation

∂tu+ (u · ∇)u− ν∆u+∇p = 0

∇ · u = 0

taking into account both advective and diffusive terms for incompressible flow is not sufficient
to capture the observed behavior of fluids. In fact, additional physical effects described by
supplementary variables, such as temperature or salinity, come into play. Besides these thermo-
dynamical effects, one major specificity of geophysical fluids flows is the occurrence of additional
gravitational and inertial effects: the stratification and the Coriolis force arising from the rotation
of Earth.

Among these various effects, the Coriolis force alone is sufficient to explain some crucial ob-
servations such as the intensification of currents near the west coasts of oceans (for example the
Gulf Stream or the Kuroshio), the angle between the direction of the wind and the effective di-
rection of surface currents (the Ekman transport) or some behaviors of dynamo effects associated
with the magnetic field of Earth and other celestial bodies.

47
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In order to assess the importance of rotation, we can set up the ordering of the various time
scales associated with Earth’s dynamic as in Table 3.1. This show that, contrary to everyday
experiences with fluids, the effect Earth rotation cannot be neglected in a geophysical setting.

Physical effect Earth rotation Oceanic circulation
Typical time scale 1 day months

Table 3.1 – The time scales of geophysical effects.

In order to have a more quantitative approach, we can write down the usual Navier Stokes
equation in a rotating frame.

The derivation is standard, with the sum of three additional forces: Euler, centrifugal and
Coriolis.

dω⃗

dt
× x⏞ ⏟⏟ ⏞

Euler force

+ ω⃗ × (ω⃗ × x)⏞ ⏟⏟ ⏞
centrifugal force

+ 2ω⃗ × u⏞ ⏟⏟ ⏞
Coriolis force

As we will be dealing with a stationary rotation, we will use a cartesian basis (e1, e2, e3)
such that ω⃗ = f

2 e3, so the Euler force is zero, and as all potential terms, the centrifugal force
ω⃗ × (ω⃗ × x) = − 1

2∇|ω⃗ × x|2 can be absorbed into the pressure gradient term.
Thus, finally, within this framework only the Coriolis force matters and the resulting equation,

called Navier-Stokes-Coriolis, is

∂tu+ (u · ∇)u⏞ ⏟⏟ ⏞
inertia

− ν∆u⏞⏟⏟⏞
diffusion

+ fe3 × u⏞ ⏟⏟ ⏞
Coriolis

+∇p = 0

∇ · u = 0

(3.1)

in a domain Ω and completed with boundary conditions, for example no slip boundary conditions

u|∂Ω = 0. (3.2)

As in the remaining part of the chapter, we will treat the pressure force ∇p as a Lagrange
multiplier of the constraint ∇ · u = 0. If needed this pressure force can be recovered, for smooth
decaying solutions, through

−∆p = ∇ · ((u · ∇)u+ ωe3 × u).

3.1.2 Non-dimensional parameters and orders of magnitudes
As usual in Physics the relative strength of each component of equation (3.1) is displayed through
the identification of various non-dimensional parameters, Reynolds, Rossby, Ekman, etc.

Starting from now we will denote by ˜︁· the dimensional quantities and the non dimensional
will be tilde free.

The dimensional equation (3.1) is on ˜︁Ω
∂˜︁t˜︁u+ (˜︁u · ˜︁∇)˜︁u− ν ˜︁∆˜︁u+ ˜︁ωe3 × ˜︁u+ ˜︁∇˜︁p = 0˜︂∇·˜︁u = 0˜︁u|∂˜︁Ω = 0

with [˜︁t] = s−1, [˜︁u] = m s−1, [˜︁∇] = [˜︂∇·] = m−1, [˜︁ν] = m2 s−1[˜︁ω] = s−1,[˜︁p] = m2 s−2 and
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the dimension of ˜︁Ω in m. So, given the fact that the fluid is incompressible this is a kinematic
problem with only two independent physical dimensions at work.

The usual choice is to introduce L, the characteristic length of the problem (in m), and U
the typical velocity of the flow (in ms−1). Thus, we define

• ˜︁u = Uu

• ˜︁x = Lx

• ˜︁t = L
U t

and obtain
∂tu+ (u · ∇)u− 1

Re
∆u+

1

Ro
e× u+∇p = 0

∇ · u = 0
(3.3)

where

• Re = UL
ν is called the Reynolds number

• Ro = U
Lf is called the Rossby number.

Equation (3.3) is completed with non-dimensional boundary conditions on ∂Ω, for example
u|∂Ω = 0. As we will see later, the balance between rotation and diffusion is the one driving the
boundary layers. Therefore, we also introduce

E =
Ro

Re
=

ν

fL2

called the Ekman number.
It is to be noted that oceanic circulation displays two length scales (depth and width) and

a turbulent behavior, which can be modelized through anisotropic viscosity as written in the
book [11] by Chemin, Desjardins, Gallagher and Grenier:

To take this effect into account, it is usual in meteorology and oceanography to replace
the −ν∆ term by −νh∆h − νV ∂3.

Table 3.2 summarizes the definition and the typical values of the previous non dimensional
parameters in various contexts.

Ordinary fluid Ocean Geodynamo† Solar dynamo†

L 1m ∼ 103 − 105m 106m 109m
U 1ms−1 ∼ 10−3ms−1 10−4ms−1 101ms−1

ν 10−6m2s−1 ∼ 10−6m2s−1 10−6m2s−1 10−4m2s−1

f 1.5× 10−4rads−1 1.5× 10−4rads−1 1.5× 10−4rads−1 5× 10−6rads−1

Number Expression Balance Ordinary fluid Ocean Geodynamo Solar dynamo
Reynolds Re UL

ν
Inertia/Diffusion 106 106 109 1013

Rossby Ro U
Lf

Inertia/Rotation 1015 10−2 10−6 10−2

Ekman E ν
fL2 Rotation/Diffusion 107 10−8 10−15 10−15

Table 3.2 – The non-dimensional parameters for the Navier-Stokes-Coriolis system.

†The geodynamo is the movement of the inner liquid core of the earth, and the solar dynamo take place inside
the sun. See for example the book of Dormy and Soward [67] for a physical description and analysis of all of these
phenomenon.
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3.1.3 Taylor-Proudman theorem and Ekman layer
These values clearly indicate the usual ordering Ro≪ 1 ≪ Re for geophysical fluids, so one can
expect that at lowest order (i.e Ro = 0 and Re = +∞) the equation (3.3) reduces formally to

e3 × u+∇p = 0

∇ · u = 0
(3.4)

with boundary conditions
(u · n)∂Ω = 0

i.e ⎛⎝−u2
u1
0

⎞⎠+

⎛⎝∂1p∂2p
∂3p

⎞⎠ =

⎛⎝0
0
0

⎞⎠
∂1u1 + ∂2u2 + ∂3u3 = 0.

This leads to ∂3u1 = ∂3u2 = 0. Moreover, ∂1u1 + ∂2u2 = 0 and using the divergence free
condition we obtain ∂3u3 = 0.

As the remaining boundary condition is u ·n|∂Ω = 0, in the case of a flat boundary the formal
solution of (3.4) with Ro = 0 is

u = (u1, u2⏞ ⏟⏟ ⏞
uh

, 0) with ∂3uh = 0 (3.5)

meaning that the flow is two-dimensional and independent of the height. This is the Taylor-
Proudman theorem and is one of the key features of rotating fluids.

Another key feature comes from the fact that the Taylor-Proudman theorem is not compatible
with most boundary conditions if Ω is bounded in x3. For example if the boundary conditions
are uh(x3 = 0) = u0, uh(x3 = 1) = u1 and if u0 ̸= u1 then ∂3uh = 0 cannot be fulfilled.

In fact near the horizontal boundaries the hypothesis Ro≪ 1 i.e L≫ U
ω is no longer valid as

a new characteristic length is to be considered: the distance to the boundary. This problem can
be resolved by introducing boundary layers lifting these trace incompatibilities. The size of these
layers, called Ekman layers, scales typically as

√
E. The Ekman layers are responsible for both

the Ekman transport (the angle between the wind forcing direction and the surface courant) and
a phenomenon called the Ekman pumping, a dampening effect as these layers “pump” energy
from the main flow.

If Ekman pumping is not directly visible without writing down some equations it can be
illustrated by a simple experience (proposed in [20]). When stirring a cup of coffee/tea, the
beverage rapidly goes to rest. If the diffusion term − 1

Re∆u is the major source of dissipation
then the characteristic slowing down time is

τdiffusion =
L2

ν
≃ (5cm)2

10−6m2 s−1 ≃ 25min

this result clearly contradicts everyday experience. One can show that as the Ekman pumping
is caused by the normal velocity of order

√
E, the associated characteristic time is

τEkman pumping =

(︄√
ERω

ω

)︄−1

=
1√
Eω

=
R√
νω

≃ 5cm√
10−6m2 s−1 × 1s−1

≃ 1min

a value easily observed experimentally.
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Figure 3.1 – Taylor-Proudman columns and Ekman layers.

3.1.4 Proudman problem
In [60] Proudman proposed a simplified model in order to understand the effect of the spherical
geometry on rotating fluids. The idea is to consider a viscous fluid between two rotating spherical
shells and to use the following set of hypotheses:

• We assume that non-linear terms can be neglected in front of the other terms as the driving
mechanism is usually the linear balance between diffusion and rotation. The idea is to verify
a posteriori that these non-linearities indeed do not modify the general behavior of the flow
dynamics.

• Stationarity is also assumed system i.e ∂t = 0. Note that this assumption changes the na-
ture of the equation and disregards the possibility of waves created by the balance between
inertia and Coriolis forces, the so-called Rossby waves (we refer to [11] for more details
about these waves).

• Finally, we assume that the flows are axisymmetric. Indeed, if the problem is invariant
through rotation around the axe e = e3, so must be the function u.

Under these assumptions the problem writes

e3 × u− E∆u+∇p = 0

∇ · u = 0
(3.6)

in the domain Ω, the boundary conditions on ∂Ω = Γ = Γ0 ∪Γ1 (where Γi, i ∈ {0, 1} are the two
concentric spherical shell, see figure 3.2) are

(u · n)|Γ = 0 (non penetration condition)
(ut)|Γi

= vi (no slip condition)

vi being the driving velocity on the boundary of the spheres. This problem, called the Proudman
problem gives birth to various nested boundary layers of different scaling that we will discuss
later.
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Figure 3.2 – The Proudman problem.

Remark 3.1.1. Note that these hypotheses are justified from mathematical point of view far from
the equator, since in the fully non-linear and non-stationary problem the boundary layer are still
constructed from this linear part, see for example [11].

These hypotheses and the resulting equation can be extended to other configuration where the
flow is bounded by two rotating surfaces (for example two rotating wavy disks as in Section 3.4
or rotating shape looking like xα as in Section 3.5, α = 1

2 being the case of the sphere).
Even in this simplified configuration, no explicit (or almost explicit) solution exists and, as

the physical value of E is of order 10−8, direct numerical simulation is out of reach (presently
such DNS can only consider cases up to E = 10−6 − 10−7, see the discussion in the Phd thesis
of Marcotte [53]).

A precise understanding and a careful analysis of boundary layers effects are clearly needed
before any explicit or numerical resolution, because these layers can affect the main flow as the
Ekman pumping does.

Such an analysis, coupling a detailed study of the scaling and behavior of boundary layers
and a well-chosen numerical scheme for the most degenerate boundary layer was done recently
by Marcotte, Dormy and Soward in [54]. The main idea is to identify the different boundary
layers scales and equations and their coupling both between them and the main flow. The goal
of this chapter and of the following is to provide a mathematical background to such analysis.

3.1.5 Reformulation of the Proudman problem
Let us first reformulate the Proudman problem in the variables used in [54]. In the cylindrical co-
ordinates (s, φ, z) of Figure 3.2, the axisymmetric hypothesis assumption leads to a reformulation
of the problem. Since ∂φu = 0 the constraint ∇ · u = 0 reads in cylindrical coordinates

1

s
∂s(sus) + ∂zuz = 0.
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Thus there exist a scalar function ψ, the stream function, such that

us = −∂zψ, uz =
1

s
∂s(sψ).

Denoting v the azimuthal velocity we then obtain on the cylindrical basis

u =

⎛⎝ −∂zψ
v

1
s∂s (sψ)

⎞⎠ . (3.7)

The Stokes-Coriolis equation (3.6) in the φ component is

∂zψ = −EDv

and taking the curl we obtain
∂zv = ED2ψ.

where we have denoted
D = ∂s

(︃
1

s
∂s (s·)

)︃
+ ∂2z .

An important point is the boundary conditions in these new variables. The no-slip boundary
condition leads to v = 0, ∂nψ = 0 on the boundary, when the non-penetration condition leads to
ψ = 0.

So the problem is reduced to a 2-dimensional elliptic system in the two coordinates (s, z)

∂zv − ED2ψ = 0

∂zψ + EDv = 0.
(3.8)

The effect of the curvature, namely the 1
s∂s −

1
s2 , does not change the qualitative behavior near

the equator s = r0 > 0, and does not change the boundary layer as it is of lower order. Thus,
we will focus, in this chapter, on the following equation

∂zv − E∆2
x,zψ = 0

∂zψ + E∆x,zv = 0
(3.9)

with boundary conditions

v|Γi
= vi, ∂nψ|Γi

= 0

ψ|Γi
= 0.

(3.10)

3.1.6 Boundary layers

With these variables, when E ≪ 1, the Taylor Proudman theorem reads

∂zv = 0, ψ = 0
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Figure 3.3 – The two-dimensional Proudman problem for spheres.

and, as previously, we recover the incompatibility between the fact that v is independent of z
and the boundary conditions. Far from the equator this incompatibility is resolved by classical
Ekman layers. But as a straightforward calculation (detailed in Section 3.4) shows that the size
δ of the boundary layer depends on the latitude θ, more precisely

δ =

√︄
E

cos(θ)
.

Thus two consequences arise

• When approaching the equator, as θ → π/2, this size is no longer small with respect to 1,
thus the core hypothesis of boundary layer ansatz is no longer valid. This is the so called
degeneracy of the Ekman boundary layer near the equator. This ultimately leads to the
equatorial Ekman boundary layer of size E 1

5 × E
2
5 as we will see.

• Moreover, the strength of the Ekman pumping is in fact proportional to the size of the
Ekman layer. Therefore, the equation on the interior displays a discontinuity (in fact a soft
singularity) at the tangent cylinder s = R0 (see figure 3.3). This leads to additional nested
boundary layers of sizes E 2

7 , E
1
4 and E 1

3 named Stewartson layers. Note that the E 1
3 layer

is identical to the one near a vertical wall when the two other ones are shear layers driven
by the Ekman pumping.

A summary of these geometrical configuration of these boundary layers is depicted in Fig-
ure 3.4.

3.2 Preliminary results on the Proudman problem
3.2.1 Mathematical setting
In the following, Ω is a smooth bounded set of R2 with ∂Ω = Γ0∪Γ1, where Γi. For the spherical
problem we will have Ω =

{︁
(x, z) ∈ R2 s.t r20 < x2 + z2 < r1

}︁
, Γi being the circle x2 + z2 = ri.

In fact, if our focus is the various boundary layers, we can, using symmetries reduce the problem
to Ω = {(x, z) ∈ T× R s.t γ0(x) < z < γ1(x)}, see for example Figure 3.6.
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Figure 3.4 – Summary of the different boundary layers in the Proudman problem.

The mathematical setting is the following: for E > 0 let us consider uE = (v, ψ) solution
of (3.9):

∂zv − E∆2
x,zψ = 0

∂zψ + E∆x,zv = 0.

We also recall the boundary conditions (3.10)

v|Γ0
= v0 v|Γ1

= v1

∂nψ|Γ0
= 0 ∂nψ|Γ1

= 0

ψ|Γ0
= 0 ψ|Γ1

= 0.

We are interested in the behavior of uE when E → 0, i.e we look for a convergence result or
even an asymptotic expansion of uE in norms relevant to the physical problem.

Let us briefly go through standard estimates and methods.

3.2.2 Existence, energy estimate and weak convergence
The very first step is to notice that for all E > 0 equation (3.9) is an elliptic equation, as a
consequence

Proposition 3.2.1. Let E > 0. There exists a unique solution uE = (vE , ψE) ∈ H1(Ω)×H2(Ω)
of (3.9) with boundary conditions (3.10) fulfilling the energy inequality

E

∫︂
Ω

⃓⃓
∇vE

⃓⃓2
+ E

∫︂
Ω

⃓⃓
∇2ψE

⃓⃓2 ≤ C

(︃
∥v0∥2

H
1
2 (Γ0)

+ ∥v1∥2
H

1
2 (Γ1)

)︃
. (3.11)
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In fact, if vi ∈ Hs(Γi) with s sufficiently large, uE satisfies the more precise estimate∫︂
Ω

⃓⃓
vE
⃓⃓2

+

∫︂
Ω

⃓⃓
∂zψ

E
⃓⃓2

+ E

∫︂
Ω

⃓⃓
∇vE

⃓⃓2
+ E

∫︂
Ω

⃓⃓
∇2ψE

⃓⃓2 ≤ C
(︂
∥v0∥2Hs(Γ0)

+ ∥v1∥2Hs(Γ1)

)︂
. (3.12)

Remark 3.2.1. In terms of the velocity u, the estimate (3.12) is the analogous to

∥u∥L2 + E∥∇u∥L2 ≤ C∥u|Γ∥H 1
2
.

Where u is solution −E∆u+∇p = 0 with the previous symmetries and boundary conditions.

Note that we will refer to the norm and the associated space of estimate (3.12) as the energy
norm and the energy space.

Proof. The existence and uniqueness follows directly from the a priori estimate (3.11) and Lax-
milgram theorem. Let us remark that the estimate (3.11) does not involve the Coriolis force as
it is skew-symmetric ∫︂

Ω

(︁
∂zv

E · ψE + ∂zψ
E ·E v

)︁
= 0

as
(vEψE)∂Ω = 0.

The key point for the more precise estimate (3.12) in this estimate is the L2 control, and the
key idea is to use the ∂z terms to recover it.

The goal of this section is to be as simple as possible, but as this inequality is essential to the
definition of approximate solution we will give a short sketch of proof, to highlight some general
difficulties and ways to circumvent them. The first approach would be to multiply ∂zψ+E∆v = 0
by ∂zψ. This leads to ∥∂zψ∥L2 ≤ C. And formally multiplying ∂zv−E∆2ψ by eh(z)v we recover
− 1

2

∫︁
|v2|h′(z)eh(z) ≤

∫︁
∆2ψveh(z). But due to the fact that ψ and v do not belong to the space

functional space, not only veh(z) is not a valid test-function for this part of the equation, but
more importantly there is a problem in boundary terms when performing integrations by parts.
Therefore, we must use the structure of the equation more carefully.

Note that, along the way and due to the fact that the equation is homogeneous in ψ, we
recover better powers of E than announced:∫︂

Ω

⃓⃓
vE
⃓⃓2

+ E− 1
2

∫︂
Ω

⃓⃓
∂zψ

E
⃓⃓2

+ E
1
2

∫︂
Ω

⃓⃓
∇vE

⃓⃓2
+ E

1
2

∫︂
Ω

⃓⃓
∇2ψE

⃓⃓2 ≤ C
(︂
∥v0∥2Hs(Γ0)

+ ∥v1∥2Hs(Γ1)

)︂
.

(3.13)
But this is of no use in the rest of the chapter, since the cause of this improvement is the absence
of source terms.

The first step is to multiply the ∂zψE + E∆vE by ∂zψ
E . We then obtain, since ψE|∂Ω = 0,

∂nψ
E
|∂Ω = 0

∥∂zψE∥2L2 ≤ CE∥vE∥H1∥ψE∥H2 . (3.14)

In particular equation (3.11) leads to ∥∂zψE∥L2 ≤ C∥v0/1∥H 1
2

. As the domain is bounded in z,
through Poincaré inequality we recover ∥ψE∥L2 .

Moreover, we can notice that the previous estimate can be refined with respect to the powers of
E. We lift the non-homogeneous boundary conditions with a lifting term ul = (vl, ψl) ∈ H1×H2

(in this case ψl = 0). The fact that ∥vl∥H1 = O(1) led to (3.11). With χ a cut-off function and˜︁vl = vlχ
(︂
d(x,∂Ω)√

E

)︂
, then ˜︁vl is also a lifting of the boundary conditions but with ∥˜︁vl∥L2 = O(E

1
4 ),
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∥˜︁vl∥H1 = O(E− 1
4 ). We set (vE , ψE) = (v, ψ) + (˜︁vl, 0), with (v, ψ) solution of the same equation

but with homogeneous boundary condition and a non-zero right hand side.
As the exact estimate of (3.11) can be rewritten using (3.14)

E

∫︂
|∇v|2 +E

∫︂
|∆ψ|2 ≤ E

⃓⃓⃓⃓∫︂
∇v · ∇˜︁vl ⃓⃓⃓⃓+ ⃓⃓⃓⃓∫︂ ˜︁vl∂zψ ⃓⃓⃓⃓

≤
(︃
1

3
E∥v∥2H1 + CE∥˜︁vl∥2H1

)︃
+

(︃
1

3
E
(︁
∥v + ˜︁vl∥2H1 + ∥ψ + 0∥2H2

)︁
+ C∥˜︁vl∥2L2

)︃
with this lifting, we recover in fact

E
1
4 ∥v∥H1 + E

1
4 ∥ψ∥H2 ≤ C∥v0/1∥H 1

2
.

Remark 3.2.2. • This scaling
√
E is the one of the Ekman layer, but this construction does

not comes from a boundary layer. In fact this scaling comes from the balance between ˜︁vl
and E∆˜︁vl, which is not the Ekman balance.

• We cannot hope to improve these estimates, in the sense that we cannot have better powers
of E in front of each term of the sum. In fact, for the Ekman layers, all terms of (3.13) are
of order O(1).

We can then bootstrap higher regularity using elliptic regularity theory, provided that v0
and v1 are smooth enough. For example ∥∆vE∥L2 = E−1∥∂zψE∥L2 = O(E− 3

4 ), so ∥vE∥H2 =

O(E− 3
4 ), if vi ∈ H

3
2 (Γi). Using this with ∥∆(∆ψE)∥H1 = E−1∥∂zv∥H1 = O(E− 7

4 ) we obtain
∥ψE∥H5 = O(E− 7

4 ).
Using interpolation on k, we then obtain for all 1 ≤ k ≤ 2

∥v∥Hk ≤ Ck∥v0/1∥HsE− 2k−1
4 ∥ψ∥Hk+1 ≤ Ck∥v0/1∥HsE− 2k−1

4 .

To obtain the inequality on ∥v∥L2 , now that we know that v has enough regularity, we
consider ω a weight (typically an exponential), and use (vE − vl)ω as a test function on the
equation ∂z(v

E − vl)− E∆2ψ = −∂zvl.
The only problematic term when integrating by parts

∫︁
∆2(vE−vl)ω is

∫︁
∇∆ψ ·∇(vE−vl)ω,

as we cannot proceed to further integrations by parts due to boundary conditions. But as⃓⃓
E
∫︁
∇∆ψ · ∇(vE − vl)ω

⃓⃓
≤ E∥ψ∥H3∥(vE − vl)∥H1 ≤ CE1− 3

4−
1
4 ∥v0/1∥2Hs we finally obtain

∥vE∥L2 ≤ C∥v0/1∥Hs .

So uE is bounded in L2 × H1 and there exist u ∈ L2 × H1 so that, up to an extraction,
uE ⇀ ū in this space.

With (w, φ) a test function in H2 ×H3 compactly supported in Ω, integrating by parts and
taking the limit E → 0 in the weak formulation allows us to obtain, in a weak sense,

∂z v̄ = 0

ψ̄ = 0.

This is indeed the Taylor-Proudman theorem of 3.5, the flow is independent of z, and the velocity
of each column is in the plane orthogonal with the axe of rotation, as ψ = 0.
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In order to obtain strong convergence and additional information on v̄ we must rely on a
more elaborate construction.

3.2.3 Stability estimate, approximate solutions
The leading principle is to construct an approximate solution uapp such that

∂zv
app − E∆2ψapp = rψ

∂zψ
app + E∆vapp = rv

(3.15)

satisfying the set of exact boundary conditions

vapp|Γ0
= v0, v

app
|Γ1

= v1, ∂zψ
app
|Γ0

= ∂nψ
app
|Γ1

= 0

ψapp|Γ0
= ψapp|Γ1

= 0.
(3.16)

As the problem is linear, the energy estimates (3.11),(3.12) lead to a stability result: with
r = (rv, rψ) = r0 + r1 we have

E
⃦⃦
vE − vapp

⃦⃦2
H1 + E

⃦⃦
ψE − ψapp

⃦⃦2
H2 ≤ C

(︂⃦⃦
r0v
⃦⃦2
L2 +

⃦⃦
r0ψ
⃦⃦2
L2 + E−1

⃦⃦
r1v
⃦⃦2
H−1 + E−1

⃦⃦
r1ψ
⃦⃦2
H−2

)︂
⃦⃦
vE − vapp

⃦⃦2
L2 +

⃦⃦
ψE − ψapp

⃦⃦2
L2 ≤ C

(︂
∥rv∥2L2 + ∥rψ∥2L2

)︂
.

(3.17)
Thus, following Dalibard and Saint-Raymond [17], we define an approximate solution from the
energy balance:

Definition 3.2.2. A function uapp = (vapp, ψapp) ∈ H1 × H2 is said to be an approximate
solution of (3.9)-(3.10) if it is a solution of (3.15) with the exact boundary conditions (3.16),
such that r = (rv, rψ) is an acceptable remainder i.e

∥rv∥2L2 + ∥rψ∥2L2 = o
(︂
∥vapp∥2L2 + ∥ψapp∥2L2 + E

(︂
∥vapp∥2H1 + ∥ψapp∥2H2

)︂)︂
when E goes to 0.

Specifically, it is to be noted that if uapp is an approximate solution and is convergent in
L2 ×H1 to ū when E → 0, then we also have uE → ū.

The goal of the following subsections will be to construct such approximate solution in dif-
ferent settings.

3.2.4 Some bibliographical remarks
This problem was first proposed by Proudman in [60], the formal analysis of the scales being
completed by Stewartson [69, 70]. For both a physical and numerical detailed analysis we already
cited the work of Marcotte, Dormy and Soward [54], and for a formal derivation the article of
Gérard-Varet [31].

From a mathematical point of view, the Ekman layers (in the complete Navier-Stokes-Coriolis
problem) are well understood since Grenier and Masmoudi [40], and the monograph of Chemin,
Desjardins, Gallagher and Grenier [11].

Let us stress two main features of the complete Navier-Stokes-Coriolis problem, that does
not appear in the simplified setting of the Proudman problem.
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• First, contrary to Navier-Stokes-Coriolis, Proudman system is linear, removing the obvious
additional difficulty of the non-linearity, and allowing a full use of linear methods. But as
explained by Gérard-Varet [31], a quick a posteriori computation show that it does change
the nature of the boundary layers: (u · ∇)u = uh · ∇u + u3∂3u so for a flat boundary all
these terms are of low order, since u3 ≃ ψ = O(

√
E) compensate the ∂3 = O( 1√

E
).

• Moreover, the removal of the time dependency has two effects. On the one hand, we lose an
easy control of the L2 norm in the energy estimate at all scales. But on the other hand it
avoids the difficulties of the dispersive nature of the limiting equation when time is present.
These additional difficulties require attention to the domain (whole space, torus with or
without resonance) and to the initial condition, distinguishing the part contained in the
kernel of the singular operator (well-prepared case) from the part that is not (ill-prepared
case). If we were to add ∂tu to the equation, the time dependency would create waves.
Indeed, as the Coriolis operator L : u ↦→ e × u + ∇p is skew-symmetric, the interaction
between the two terms

∂tu+
1

Ro
Lu

create waves of frequency in 1
Ro . Thus, all convergence results require the application of a

filtering operator, e− L
Ro .

Several refinements of the Navier-Stokes-Coriolis have also been studied from a mathematical
point of view. Some of them, modifying and refining the boundary layer analysis, are the
following:

• The β-plane model, taking into account the variation of angle between the axe of rotation
and the normal of the surface, for example by Gallagher and Saint-Raymond [29], and by
Dutrifoy, Schochet and Majda [23].

• The model of a rough bottom, taking into account the rapid variations on the ocean floor,
see for example Gérard-Varet in [32].

• And the model taking into account the forcing of the wind at the top of the domain
was studied by Masmoudi [56], possible resonance being treated by Dalibard and Saint-
Raymond in [18].

3.3 Overall view of the construction
We first start with an analysis of the Ekman boundary layer for a non-flat, but non degenerate,
boundary. The key point is that the analysis of the Ekman boundary layer equation(︃

∂2ζ ∂ζ
∂ζ −∂4ζ

)︃(︃
v
ψ

)︃
=

(︃
0
0

)︃
show that there is only two degree of freedom (corresponding to the two roots of λ6 + λ2 such
that ℜ(λ) < 0) for the solution. As we must lift three boundary conditions, v, ∂nψ and ψ, we
obtain that we can lift such conditions if and only if we have one constraint satisfied, that is

±
√︁
cos(θ)√
E

ψ +
1√
2
(v − ∂nψ) = 0 (3.18)
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Figure 3.5 – Interior v for various values of E. The discontinuous v̄ is in red.

where cos(θ) is the angle between the axis of rotation ez and the normal to the boundary.
Following the same type of construction as in Section 2.4, for a fluid between two shells Γ0,

Γ1 rotating with respective speeds v0 and v1, we obtain a convergence in L2, when there is no
geometric singularity (i.e cos(θ) ≥ c > 0) toward (v̄, 0) with

v̄ =

v0√︁
cos(θ0)

+ v1√︁
cos(θ1)

1√︁
cos(θ0)

+ 1√︁
cos(θ1)

. (3.19)

We will consider this case in Section 3.4.
For a singular geometry, while the previous computation is formally justified, it cannot be a

good candidate for an approximate solution as it discontinuous.
In fact, using once more (3.18) we obtain an equation of the form

(︄
v0√︁

cos(θ0)
+

v1√︁
cos(θ1)

)︄
−

(︄
1√︁

cos(θ0)
+

1√︁
cos(θ1)

)︄
v + h

√
E∂2xv = 0 (3.20)

The Figure 3.5 is obtained, for Γ0 and Γ1 two circles, by solving equation (3.20) with finite
elements. We can see that two boundary layers appears at the left and the right of x = 0.
Computing the numerical solution for various values of E leads to the two sizes, E 2

7 and E 1
4 and

a value vE(0) ∼ E
1
28 .

In order to lift such discontinuity we need to introduce boundary layers at the right and left
of x = 0, of respective sizes E 1

4 and E
2
7 .

At this stage, if the v obtained is a good choice as an approximate solution, the associated ψ
is not. In order to lift it, we need to consider the equation

∂zv − E∂4xψ = 0

∂zψ + E∂2xv = 0
(3.21)

and to construct an other shear layer, of size E
1
3 . This last hear layer will be the focus of

Subsection 3.5.5
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Figure 3.6 – Two non-flat disks.

3.4 The Ekman layers for two disks
Let us now consider two non-flat disks i.e a domain defined by

Ω = {(x, z), x ∈ T, γ0(x) < z < γ1(x)} (3.22)

where γ0, γ1 are smooth functions (see Figure 3.6), such that γ1 − γ0 is far for 0, 0 < C−1 ≤
γ1 − γ0 ≤ C.

The goal of this subsection is to show that the Ekman pumping depends on the size of the
Ekman layers, size that increases drastically with the latitude.

Such results were already obtained by Chemin in a much more complete setting and can be
found in lecture notes by Chemin, to be published in Morningside Lectures in Mathematics [10].
Thus, we will not provide too many details of the inner computations in order to focus on the
expression of v̄, as this expression will be the main cause of the shear layers.

We will denote by θi(x) the angle between the normal vector and the vertical axis as showed
in Figure 3.7 i.e

cos (θi(x)) =
1√︁

1 + γ2i (x)
.

We recall the objective: to construct an approximate solution of (3.15)-(3.16) as

uapp = u(x) + uBL,t

(︃
x,

1− z

δ1

)︃
+ uBL,b

(︃
x,

z

δ0

)︃
+ · · · .

such that the remainder satisfies the Definition 3.2.2.
The approach is also the same as before:

• Identify the scaling and equation of the boundary layers and construct a boundary layer
operator.

• Construct an interior operator.

• Articulate these operators in order to obtain an asymptotic expansion, up to a sufficiently
small remainder.
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Figure 3.7 – Ekman layers for non-flat disks.

Boundary layer operator

Because of the topography, the boundary layer variable ζ, the rescaled distance to the boundary,
is no longer a simple multiple of z. In fact we have in boundary layer variables (see Figure 3.7
and equation (3.24))

∆x,z ∼ δ−2
i ∂2ζ ∂z ∼ δ−1

i cos(θi)∂ζ

and the corresponding boundary layer symbol is(︃
−Eδ−4

i ξ4 δ−1
i cos(θi)iξ

δ−1
i cos(θi)iξ −Eδ−2

i ξ2

)︃
.

This leads to a boundary layer size of

δi =

√︄
E

cos(θi)
.

Note that the boundary layer size varies with the tangential coordinate, but since γ0,1 are
smooth we always get δi = O(E

1
2 ).

As soon as the scaling is identified we can define precisely the boundary layer operator

Proposition 3.4.1. Let s0 ≥ 4 and V,Υ,Ψ ∈ Hs0(Γ0) such that

− 1

δ0(x)
Ψ(x) +

1√
2
(V (x)−Υ(x)) = 0. (3.23)

There exists ubl = u
(︂
x, d((x,z),Γ0)

δ0

)︂
∈ H1(Ω)×H2(Ω) solution of (3.15) satisfying

(vbl, ψbl, ∂zψ
bl)|Γ0

= (V,Ψ,Υ)

(vbl, ψbl, ∂zψ
bl)|Γ1

= 0
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with remainder terms satisfying for all s ≤ s0 − 2

∥rv∥Hs ≤ CE
1
4+

1
2−

s
2

∥rψ∥Hs−2 ≤ CE
3
4−

s
2

and the following estimate for all s ≤ s0

∥vbl∥Hs ≤ CE
1
4−

s
2 ∥ψbl∥Hs ≤ CE

3
4−

s
2 .

Remark 3.4.1. Note that the restriction on the regularity s for both the solutions and the re-
mainders is only a restriction of regularity with respect to x, due to the regularity on V,Υ,Ψ. If
these functions are C∞ then the same estimates hold for any s.

Proof. For this proof we will drop the index 0, writing for example cos(θ) = 1√︁
1+γ′2 instead of

cos(θ0) =
1√︂

1+γ′2
0

.

Since the boundary conditions are regular with respect to x and no degeneracy appears (cos(θ)
far from 0) the idea is to construct the boundary layer for each x as if it were a plane with a
constant slope.

More precisely, let ζ be the rescaled distance to the boundary, ζ = d ((x, z),Γ) /δ and σ the
tangential coordinate.

By the local inversion theorem there exists ρ > 0 such that, in the tubular neighborhood
d((x, z),Γ) < ρ, the change of variables (x, z) → (σ, ζ) is well-defined, and the jacobian is(︄

∂x
∂σ

∂x
∂ζ

∂z
∂σ

∂z
∂ζ

)︄
=

(︃
cos(θ) + ∂σθ cos(θ)δζ + ∂σδ sin(θ)ζ sin(θ)δ

− sin(θ)− ∂σθ sin(θ)δζ + ∂σδ cos(θ)δζ cos(θ)δ

)︃
. (3.24)

Noticing that as ∂σδ = 1
2∂σθ tan(θ)δ, as long as θ is far from π

2 (and θ ∈ C∞), we obtain(︃
∂σ
∂x

∂ζ
∂x

∂σ
∂z

∂ζ
∂z

)︃
=

(︃
(1 + oC∞(1)) cos(θ) (1 + oC∞(1))δ−1 sin(θ)
−(1 + oC∞(1)) sin(θ) (1 + oC∞(1))δ−1 cos(θ

)︃
.

Keeping only the main terms, we get the boundary layer equations in boundary layer variables
uBL = (v(σ, ζ), δ(σ)ψ(σ, ζ))

cos(θ)δ−1∂ζv − Eδ1−4∂4ζψ = 0

cos(θ)δ1−1∂ζψ + Eδ−2∂2ζv = 0

i.e considering the choice of δ, equation (2.27):(︃
−∂4ζ ∂ζ
∂ζ ∂2ζ

)︃(︃
ψ
v

)︃
=

(︃
0
0

)︃
.

The boundary conditions, in term of boundary layers variables, are

v|ζ=0 = V,
1

δ
ψ|ζ=0 = Ψ, ∂ζψ|ζ=0 = Υ.

Hence, the analysis is the same as in the 1D Ekman boundary layer of the preceding subsection,
since we consider that σ does not strongly vary. Thus, we have two modes with negative real
part and, for each of them, the corresponding kernel is of dimension 1. Thus, we can lift up to 2
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boundary conditions and, more precisely, any boundary condition in the hyperplane defined by
equation (2.28), which is exactly the relation (3.23) up to the boundary layer scaling.

Once such construction is done, we need to evaluate the remainders. For example, for u =
(v(σ, ζ), δ(σ)ψ(σ, ζ)) ∈ C4, the explicit computation leads to

|rv| =
⃓⃓
∂z(δψ) + E∆x,zv − cos(θ)

(︁
∂ζψ + ∂2ζv

)︁⃓⃓
≤ Cθ

⎛⎝ 1∑︂
k=0

2−k∑︂
j=0

E
2−k
2 |∂jσ∂kζ v|+ E

1
2 |∂2ζv|+ E

1
2

1∑︂
j=0

|∂jσψ|+ E
1
2 |∂ζψ|

⎞⎠ (3.25)

where Cθ depends on the function θ and is finite as long as 1
cos(θ) and ∂jσθ, 1 ≤ j ≤ 4 are finite.

Remark 3.4.2. • There are two main types of errors when approaching the whole equation
by the boundary layer equation: the variations with respect to the tangential variable σ
of the profile, i.e ∂σv, ∂σψ = O(1), and the variation with respect to σ of the angle and
boundary layer size i.e ∂σθ = O(1), ∂σδ = O(δ) (and all the lower order terms arising from
the cross derivatives).

• Thus, all these estimates are no longer valid when θ is too close to π
2 , or if variations with

respect to σ are no longer of order 1, i.e if the boundary layer is degenerated.

There is a last technical step: we need to multiply the obtained function by a cut-off function
χ(d((x, z),Γ0)) where χ(Y ) = 0 for Y > ρ and χ(Y ) = 1 for Y < ρ/2. This ensures both
the validity of the change of variables and the null boundary condition on Γ1. As the functions
display explicit exponential decay in ζ, this only introduces o(E∞) error terms, and we obtain the
claimed Hs bound from the scaling, the size of the remainder follows from (3.25) and a density
argument. To see a more detailed justification of such scalings, we refer to the Appendix (A.5),
keeping mind that the constructed profile has exponential decay.

Note that if we want to pursue the asymptotic expansion, we need to consider the remainder
terms as a source term for the next boundary layer corrector. The complete boundary layer
operator is given in the following Proposition (written in boundary layer variables)

Proposition 3.4.2. Let s0 ≥ 4 and f = (fv, fψ)(σ, ζ) ∈ Hs0(T×R+) exponentially decreasing,
i.e such that

∥feηζ∥Hs0−4(T×R+) ≤ C, ∀η < 1√
2
. (3.26)

There exists a constant Hf , depending linearly on f , such that for any (V (x),Ψ(x),Υ(x)) in the
affine hyperplane

− 1

δ(x)
Ψ(x) +

1√
2
(V (x)−Υ(x)) = Hf . (3.27)

there exists a solution ubl = (v(σ, ζ), δ(σ)ψ(σ, ζ)) of

∂zv
bl − E∆2

x,zψ
bl = E

−1
2 cos(θ)

3
2 fψ (σ, ζ) + rψ(σ, ζ)

∂zψ
bl + E∆x,zv

bl = cos(θ)fv (σ, ζ) + rv(σ, ζ)

with the same estimates as in Proposition 3.4.1. Moreover r is also exponentially decreasing in
the sense of (3.26).

The proof is the same as in the previous proposition with f = 0, the only difference being
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the source term in the equation solved by u, namely(︃
−∂4ζ ∂ζ
∂ζ ∂2ζ

)︃(︃
ψ
v

)︃
=

(︃
fψ(σ, ζ)
fv(ψ, ζ)

)︃
treated by the use of the explicit Duhamel formula or an explicit Laplace transform, both ap-
proaches leading to the condition (3.27).

For an example of explicit computation, see the example in Annex A or the construction of
the E 1

4 boundary layer operator in Proposition 3.5.3. Note that the condition to have exponential
decay, present both condition (3.26) and Lemma A.5.1 is not too restrictive. In fact, this is the
natural condition coming from the variational formulation of such ODE, see for example the use
of adapted weighted Sobolev spaces in Subsection 3.5.3.

Interior flow

Having obtained such conditions, we can consider the interior flow. The interior operator is still
the same as the one in one dimension (i.e an integration with respect to z) the conditions (2.33)
being slightly modified

Proposition 3.4.3 (Interior operator). Let s0 ≥ 4, f = (fv, fψ) ∈ Hs0(Ω) × Hs0(Ω) and
V0,Ψ0,Υ0 ∈ Hs0+4(Γ0),V1,Ψ1,Υ1 ∈ Hs0+4(Γ1). Let us suppose that the following compatibility
conditions are satisfied

V1(x)− V0(x) =

∫︂ γ1(x)

γ0(x)

fψ(x, z)dz

Ψ1(x)−Ψ0(x) =

∫︂ γ1(x)

γ0(x)

fv(x, z)dz

(−1)iΥi(x) =
1− γ′i(x)

2√︁
1 + γ′i(x)

2
fv(γi)

(3.28)

. Then there exist uint = (vint, ψint) solution of

∂zv
int − E∆2ψint = fψ + Erintψ

∂zψ
int + E∆vint = fv + Erintv

(vint, ψint, ∂nψ
int)|z=i = (Vi,Ψi,Υi)

and for s ≤ s0 − 4
∥rintv ∥Hs+2 ≤ CE

∥rintψ ∥Hs ≤ CE.

Remark 3.4.3. It is important to note that error terms are also coming from the fact that we
consider ∂x = O(1). For example, ψint(x, z) = Ψ0(x) +

∫︁ z
γ0(x)

f intv (x, τ)dτ , so

rintψ = ∆2
x,z

(︄
Ψ0(x) +

∫︂ z

γ0(x)

f intv (x, τ)dτ

)︄
.

So not only at each step do we have a loss in regularity with respect to z but also with respect
to x.
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More precisely we point out that the remainder rv is equal to

rintv = −∂2zvint − ∂2xv
int

the blue term will be the source of the shear layers in the next subsection. Indeed, it will be no
longer negligible when strong variations with respect to x appears, causing the various boundary
layers of Section 3.5.

Nevertheless, we finally state the following result

Theorem 3.4.4. Let uE be a solution of (3.9) in the domain Ω defined by (3.22), where
γ0, γ1 ∈ C∞(T), γ1 − γ0 ≥ c ≥ 0, with boundary conditions v0, v1 ∈ H2(T).

Then when E → 0 we have uE → (vint,0, 0) in the energy space (3.12) where

vint,0(x) =
δ0(x)v0(x) + δ1(x)v1(x)

δ0(x) + δ1(x)
=

(1 + γ′0(x)
2)−

1
4 v0(x) + (1 + γ′1(x)

2)−
1
4 v1(x)

(1 + γ′0(x)
2)−

1
4 + (1 + γ′1(x)

2)−
1
4

. (3.29)

Proof. The construction is exactly the same as the one in the 1D case, as we have sufficient regu-
larity with respect to x for the first iteration. Indeed, it is sufficient to construct vint,0, ψint,0, ψint,1,ubl,b/t,0

in order to have the precision required to conclude. The influence is seen in the splitting of the
boundary conditions. Here at first order the system is

∂nψ
int,0
|Γ1

= ∂nψ
int,0
|Γ0

= 0

vint,0|Γ1
− vint,0|Γ0

= 0

ψint,0|Γ1
− ψint,0|Γ0

= 0

ψint,1|Γ1
− ψint,1|Γ0

= 0

−
√︁
cos(θ0)√
E

ψBL,b,0|Γ0
+

1√
2
(vBL,b,0|Γ0

− ∂nψ
BL,b,0
|Γ0

) = 0√︁
cos(θ1)√
E

ψBL,b,1|Γ1
+

1√
2
(vBL,b,1|Γ1

− ∂nψ
BL,b,1
|Γ1

) = 0

vint,0|Γi
+ v

BL,b/t,0
|Γi

= vi

ψint,0|Γi
+ 0 = 0

∂nψ
int,0
|Γi

+ ∂nψ
BL,b/t,0
|Γi

= 0

ψint,1|Γi
+ ψ

BL,b/t,0
|Γi

= 0

so the closed equations on the interior term are

∂zψ
int,0 = 0

ψint,0|z=γ0 = ψint,0|z=γ1 = 0

∂zv
int,0 = 0

∂zψ
int,1 = 0

(−1)i+1
√︁
cos(θi)ψ

int,1
|z=γi +

1√
2

(︂
vint,0|z=γi − vi(x)

)︂
= 0.

From there we obtain
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vint,0(x) =

v0√︁
cos(θ0)

+ v1√︁
cos(θ1)

1√︁
cos(θ0)

+ 1√︁
cos(θ1)

ψint,1(x) =
v1 − v0√︁

2 cos(θ0) +
√︁

2 cos(θ1)

Note that if we have enough regularity on v0,1 we can pursue the asymptotic expansion up
to a higher order, see Figure 3.8.

In this case of a higher order expansion, we must keep track of the remainder in the boundary
layer operator. In fact these remainders are the source terms of the next boundary layer operator.
They modify the constant Hf of the next order boundary layer compatibility condition, and thus
the interior flow. This is why the splitting of the null boundary conditions for higher orders is
non-trivial.

Ekman pumping for Navier-Stokes-Coriolis

Here, the Ekman pumping manisfested through the fact that the limit flow satisfy, with κi =
(1 + γ′2i )

− 1
4 ,

κ0(x)v0 + κ1(x)v1 − (κ0(x) + κ1(x))v̄ = 0.

In the time dependent case instead of we expect that the Ekman pumping manifest through
a damping term in the evolution equation. And, formally, if we add the time dependency, by
integrating with respect to z (i.e projecting over the kernel of Coriolis operator) the formal limit
we obtain for w =

∫︁ γ1
γ0
v is

(γ1 − γ0)∂tw + (κ0(x)(w − v0) + κ1(x)(w − v1)) = 0.

As mentioned in the beginning of this section, the result (3.29) is only the stationary and
linear case of general result proved by Chemin [10]: the convergence in the non-linear and time
dependent case with an axisymmetric and well-prepared initial condition.

In our notation, with Ω =
{︁
(xh, z) = (r cos(θ), r sin(θ), z) ∈ R3, γ0(r) < z < 0 = γ1

}︁
the re-

sult of Chemin can be summarized as the following:

Theorem 3.4.5 (Chemin). For ε > 0 let Uε be a solution of

∂tU
ε +∇ · Uε ⊗ Uε − νε∆Uε +

1

ε
e3 × Uε +∇P ε = 0

∇ · Uε = 0, Uε∂Ω = 0, Uε(t = 0) = u0

With U0 well-prepared, i.e U0 = (0, v0(r), 0). Then (up to a smallness condition due to the
non-linearity) Uε converges in L2

loc(R+,Ω) to (0, v̄, 0) with v̄ solution of

∂tv̄(t, r) +
√
2ν

(︁
1 + γ′20 (r)

)︁ 1
4 + 1

0− γ0(r)
v̄ = 0

v̄(t = 0) = v0

Similar behavior was also derived by Rousset in [63] for the MHD system (and also with
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(v0, v1, 0, 0, 0, 0)

0

0

0

BC
decomposition

BC
decomposition

BC
decomposition

0

0

BL operator 0

BL operator 1
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Figure 3.8 – Higher order expansion.
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axisymmetric and well-prepared conditions) where the limit flow is solution of

∂tu+ E(x)u = 0

u(t = 0) = u0

where E(x) is the Ekman pumping (depending in fact on both the Ekman number, and the
Elsasser number Λ corresponding to the ration of magnetic and Coriolis forces), with strong
variations with respect to the distance to the axis, even being singular close to the equator

E(x) =

√
2

2| cos(θ)| 32

(︂
Λ| cos(θ)|+

√︁
1 + Λ2| cos(θ)|2

)︂ 1
2

.

It is to be noted that if the bottom topography is strongly varying, γ0(x) = ε ˜︁γ0 (︁xε )︁ then the
problem is very different. Indeed the boundary layer equation is a true PDE rather than an ODE,
in a possibly unbounded domain. We refer to the work of Gérard-Varet [32], of Dalibard and
Prange [16], and of Dalibard and Gérard-Varet [14]. Following Gérard-Varet and Masmoudi [35]
these authors reduce the analysis to this boundary layer PDE in a bounded (in one direction)
domain using a transparent boundary condition, relying on a Dirichlet to Neumann operator.

3.5 The shear layers

We have previously supposed that γ′i is regular and bounded, leading to the validity of the
boundary layer expansion.

If it not longer the case, for example in the sphere γ0(x) ∼ (−x) 1
21x<0, the previous ordering

and computation break down.
The goal of this section is to investigate the behavior of the main flow in such cases and, as

the exponent 1
2 is not specific, we will be interested in γ0 admitting a singular behavior like xα,

α ∈ (0, 1).

3.5.1 About the validity of Ekman layers

One of the questions to be answered is to determine the critical latitude θc up to which we can
use the Ekman layer expansion. In this perspective let us recall the size of Ekman layers

δi =

√︄
E

cos(θi)
=

√
E

(1 + γ′i(x)
2)

1
4

.

Let us notice that one of the core boundary layer hypotheses, the localization near the bound-
ary, namely δ ≪ 1, leads to the necessary (but not sufficient) condition cos(θc) ≫ E. But long
before this scaling, the predominant balance shifts from the Ekman balance to another one called
the equatorial scaling.

In fact the core assumption of the previous computation can be seen in the Jacobian (3.24),
namely

cos(θ) ≫ ∂σθδ

cos(θ)
. (3.30)

But in curvilinear coordinates if γ′0 goes to −∞ as xα−1 we have near x = 0 (with σ = 0
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corresponding to x = 0)

π

2
− θ ∼ cos(θ) ∼ c

γ′0
∼ cx1−α, σ ∼ cxα

so ∂σθ ∼ cos(θ)
1−2α
1−α , thus the previous assumption (3.30) is in fact

cos(θ)1+1+ 1
2−

1−2α
1−α = cos(θ)

3−α
2(1−α) ≫ E

1
2

i.e
cos(θ) ≫ E

1−α
3−α ⇔ x≫ E

1
3−α . (3.31)

Note that if α = 1
2 we indeed recover the 1

5 -scaling of the sphere.
When cos(θi) ≤ E

1−α
3−α another boundary layer appears, the so called equatorial Ekman bound-

ary layer. This boundary layer is probably the main difficulty of understanding the Proudman
problem for several reasons:

• Although the Ekman layers equation are simply linear ODEs with constant coefficients,
the boundary layer equation at the equator is a PDE which does not fit well in already
well understood classifications, see the discussion at the beginning of Chapter 4.

• The connection to the main flow is also less obvious. It would seem that a boundary layer of
size (Ez)

1
3 called by Marcotte, Dormy and Soward [54] a similarity sublayer is responsible

for this connection.

• Finally, the transition between the classical Ekman layer and the equatorial Ekman layer
is also non-trivial. The hope for this part, once the equatorial layer is sufficiently well
understood, would be to apply techniques similar to the ones by Dalibard and Saint-
Raymond [17] to connect two different kinds of boundary layers. Unfortunately we were
unable to prove uniqueness and to obtain strong decay estimates for the equatorial Ekman
layer, which prevented us from proving a convergence theorem in the spirit of [17].

A discussion about this layer will be the focus of the last section of this chapter and of
Chapter 4.

But as long as the distance and scalings to x = 0 are far greater than E
1

3−α it is reasonable
to study the interior flow as solution of the equation obtained through the use of non degenerate
Ekman layer. This study will, at least, lead to the description of 3 nested boundary layers, called
the Stewartson 1

4 ,
2
7 and 1

3 layers in the setting of a sphere.

3.5.2 Objective
The goal of this section is to study the equation of the interior flow with Ekman type boundary
condition, i.e assuming that the Ekman boundary condition is still valid.

For simplicity, we will work with x ∈ (−1, 1) identified as the torus T, and consider only

• x ↦→ γ1(x) smooth,

• γ0(x) = xα1x<0χ(x), where χ is cut-off function equal to 1 on (−1/3, 0) and 0 outside
(−2/3, 1/3),

• C−1 < γ1 − γ0 < C for some C > 0.
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Γ1

Γ0

x

E1/3

E1/(3+α)
E1/4

Figure 3.9 – The shear layers when γ0 ∼ (−x)α.

For the horizontal variable we will take periodic boundary conditions in x. This setting is
represented in Figure 3.9.

We will denote by v̄ the expression given by (3.29).
We recall that we are trying to construct a approximate solution as

uapp = uint (x, z) + ubl,Ekman

(︃
x,
d((x, z),Γi)

δi

)︃
.

If we keep all the terms in the main equation (3.9), and apply the boundary conditions
corresponding to the Ekman boundary layer operator of Proposition 3.4.1, we obtain that uint =
(vint, ψint) must satisfy, up to small enough remainders

∂zv
int − E∆2

x,zψ
int = 0

∂zψ
int + E∆x,zv

int = 0(︃
(−1)i+1 1

δi
ψint +

1√
2

(︁
(vint − vi)− ∂nψ

int
)︁)︃

|z=γi
= 0.

(3.32)

Remark 3.5.1. • Let us stress that we were not able to rigorously derive such an equation for
the interior flow, but that physical analysis and numerical simulations suggest that this is
indeed the correct equation, see [54].

• The equation 3.32 seems undetermined, as there is too little boundary conditions for its
order. This is indeed the case, but if we require uint to be bounded in H1(Ω) × H2(Ω)
uniformly in E, then the first order of the asymptotic behavior is unique. For example,
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in the non-singular case, it is in fact the one described by the vint,0, ψint,0, ψint,1 of the
previous subsection: uint = (vint,0, 0) +OL2(

√
E).

The idea to construct an approximate solution of (3.32) is, as before, to identify the right
asymptotic expansion and to compute the remaining terms.

But, for this case, since we have

cos(θ0) ∼

{︄
α−1(−x)(1−α) for x < 0

1 for x > 0

the v̄ given by (3.29) is discontinuous at x = 0 if v0(0−) ̸= δ0(0
+)v0(0

+)+δ1(0
+)v1(0

+)
δ0(0+)+δ1(0+) . The con-

sequence is that we do not have v̄ ∈ H1 and cannot continue the asymptotic expansion, as the
remainder from E∂2xv̄ will not be in H−1 (it is in fact the derivative of a Dirac mass).

The assumption to neglect E∂2xv in the interior operator is thus false, this term creates
boundary layers near x = 0.

Note that we have a similar problem for the expression of ψ1 in the previous subsection, as
it has a loss of regularity like x 1

4 we can keep all the terms as remainders except ∂4xψ1.
Thus, in order to construct an approximate solution uapp (in the sense of 3.2.2) of (3.32)

satisfying the L2 convergence
uapp → (v̄, 0)

we will in fact construct 3 boundary layers

uapp = (v̄, 0) + uBL,l
(︃

x

E
1

3+α

)︃
+ uBL,r

(︃
x

E
1
4

)︃
+ uBL,c

(︃
x

E
1
3

, z

)︃
+ oL2

(︂
E

1−α
4(3+α)

)︂
.

• The ubl,l and ubl,r are boundary layers, respectively at the left and the right of x = 0,
lifting the discontinuity of v̄. These will be constructed in Subsection (3.5.3).

• The ubl,c layer lifts the discontinuity of ψ and will be the subject of Subsection 3.5.5.

The rest of the section will be the study of the various layers. And Figure 3.10 illustrates the
articulation of the various boundary layers. In this section we will use the previous construction
of the Ekman layers, and focus on the blue terms.

3.5.3 Stewartson 2/7 and 1/4 layers
The usual asymptotic expansion vint = v + O(

√
E), ψint = 0 +

√
Eψ + O(E) suggests that the

rescaled equation we need to consider is in fact

∂zv − E
3
2 ∂4xψ = 0

∂zψ +
√
E∂2xv = 0(︄

(−1)i+1

√
E

δi
ψ +

1√
2
(v − vi)

)︄
|z=γi

= 0.

(3.33)

Indeed, the lower order terms from ∂nψ|z=γi and ∂2z∂2x can be treated as remainders, sufficiently
small in the correct spaces.

If the variation of x occurs on a scale Eβ , we expect E 3
2 ∂4x ≃ E

3
2−4β while

√
E∂2x ≃ E

1
2−2β .

Thus, as long as β > 1
2 (the Ekman scaling), E 3

2 ∂4x ≪ E
1
2 ∂2x
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Figure 3.10 – Objective of Section 3.5.

But, even from a formal point of view, a necessary condition for this expansion to hold is that
the scalings are of size Eβ with β > 1

3−α > 1
2 . Therefore, this heuristic prompts us to consider

first a constant (with respect to z) v.
This Taylor-Proudman theorem reads as ∂zvint,0 = 0, and ∂zψint,1 = C(x). As a consequence,

the integration of (3.33) with respect to z (i.e projection on the kernel of the singular operator)
gives as equation

(κ0(x)v0(x) + κ1(x)v1(x))− (κ0(x) + κ1(x))w(x)− (γ1(x)− γ0(x))
√
E∂2xw(x) = 0 (3.34)

where, for simplicity, we denoted w = vint,0 the first order of the interior operator expansion
corresponding to these heuristics, and with

1√
2
κi(x) =

δi√
E

=
1√︁

cos(θi(x))
= (1 + γ′i(x)

2)−
1
4 .

In the case where both κ0 and κ1 are smooth, we obtain the usual expansion. But here κ0(x) ∼
(−x)α−1

2 for x < 0 and 1 for x > 0.
Remark 3.5.2. Note that using κi instead of γi allows us to consider Neumann conditions for v
on Γi. Since Neumann boundary conditions does not create boundary layers (at least at the first
order), this indeed formally corresponds to κi = 0. This is the case for the Proudman problem
on a sphere where the symmetry conditions leads in fact to κ0(x) ≃ x−

1
41x<0, as the symmetry

leads to the condition ∂zv = 0 at z = 0.
The study of (3.34) in such a case will be the goal of this part. We will see that this ODE is

the one creating the E
1

3+α and E
1
4 boundary layers.
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Figure 3.11 – Objective of Subsection 3.5.3 in blue.

Proposition 3.5.1. Let v0, v1 ∈ H2. For E > 0 let w be the solution of (3.34). Let

v̄(x) =
κ0(x)v0(x) + κ1(x)v1(x)

κ0(x) + κ1(x)
.

Then, when E → 0

w(x) = v̄(x) + E
1−α

4(3+α)wBL,l
(︃

−x
E

1
3+α

)︃
+ wBL,r

(︃
x

E
1
4

)︃
+OL2(E

1
6+2α ).

Where wBL,l, wBL,l are boundary layers terms defined on R+.

But, first, let us comment on the stability estimates of (3.34) with a remainder r

(κ0 + κ1)w − (γ1 − γ0)
√
E∂2xw = r.

This equation is an elliptic equation and since (κ0 + κ1) ∼0− |x|α−1
2 , by Hardy inequality

0 ≤
∫︂

|w|2 (κ0 + κ1)

γ1 − γ0
≤ C∥w∥2H1

Thus, the problem is well-posed in H1 with the estimate∫︂
|w|2 (κ0 + κ1)

γ1 − γ0
dx+

√
E

∫︂
|∂xw|2 ≤ C

∫︂
wr.

If we had to study this equation on its own, the energy norm on the remainder r = r0 + r1

would be

∥r0(κ0 + κ1)
− 1

2 ∥L2 + E− 1
4 ∥r1∥H−1 .

Nevertheless, as our final goal is to study (3.32), we will not make use of the additional
(κ0 + κ1)

− 1
2 ∼ x

1−α
4 , even if difficulties come from x = 0.
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Scaling

Let us denote once more ζ the boundary layer variable. With ζ = E−βx, we obtain for x > 0
the equation

(κ1v1 + κ0v0)(E
βζ)− (κ1 + κ0)(E

βζ)v(ζ)− (γ1 − γ0)(E
βζ)E

1
2−2β∂ζv(ζ) = 0

and as all functions are smooth and the expected solution decays at an exponential rate we can
write for example κ0(Eβζ) = κ0(0) +O(Eβ). Thus, the predominant balance leads to β = 1

4 i.e
the boundary layer equation

(κ0v0 + κ1v1)(0
+)− (κ0 + κ1)(0

+)w(ζ)− (γ1 − γ0)(0)∂
2
ζw(ζ) = 0 for ζ > 0, (3.35)

where ζ = xE− 1
4 is the boundary layer variable. And for x < 0, with ζ = (−x)E−β , as

κ0(x) ∼ |x|α−1
2 we obtain

κ1(0)v1(0)+E
β·α−1

2 ζ
α−1
2 v0(0)−

(︂
κ1(0) + Eβ·

α−1
2 ζ

α−1
2

)︂
w(ζ)− (γ1−γ0)(Eβζ)E

1
2−2β∂2ζw(ζ) = 0.

The predominant balance principle leads to

β · α− 1

2
=

1

2
− 2β ⇔ β =

1

3 + α

i.e the boundary layer

ζ =
x

E
1

3+α

ζ
α−1
2 v0(0)− ζ

α−1
2 w(ζ)− (γ1 − γ0)(0)∂

2
ζw(ζ) = 0 for ζ > 0,

(3.36)

where ζ = −xE
−1
3+α is the boundary layer variable.

Note that in the case of most physical interest, namely the sphere α = 1
2 , we recover the

standard E
2
7 boundary layer.

For simplicity, we will denote κ0(0+) + κ1(0) = κ and γ1(0)− γ0(0) = h.

Boundary layer operators

In order to quantify the decay via weighted spaces, let us also define for s ∈ N and λ > 0 the
norm Hs

λ(R+) by

∥f∥2Hs
λ(R+) =

∫︂ ∞

0

|∂sζf |2e2λζdζ

and for p ∈ (0, 1]

∥f∥2Hs
λ,p(R+) =

∫︂ ∞

0

|∂sζf |2e2λζ
p

dζ.

The associated spaces are
Hs
λ = C∞

c ((0,∞))
Hs

λ

Hs
λ,p = C∞

c ((0,∞))
Hs

λ,p
.

We will use p = 1 for the 1
4 layer, and p < 1 for the 1

3+α layer.
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Remark 3.5.3. Note that Hs
λ,p(R+) ↪→ Hs((0, 1)) for all s ∈ N. As a consequence, trace inequal-

ities hold for all s ≥ 1. in particular, if if w ∈ Hs
λ,p and 0 ≤ k ≤ s− 1, then w(k)(0) = 0.

This allow us to easily derive a Hardy inequality with an explicit constant:

Lemma 3.5.2. Let λ > 0, p ∈ (0, 1]. Then for all w ∈ H1
λ,p we have∫︂ ∞

0

|∂ζw|2e2λζ
p

dζ ≥ p2λ2
∫︂ ∞

0

1

ζ2−2p
|w|2e2λζ

p

dζ − p(1− p)λ

∫︂ ∞

0

1

ζ2−p
|w|2e2λζ

p

dζ. (3.37)

Proof. This is a straightforward computation, for w ∈ C∞
c ((0,+∞)),∫︂ ∞

0

⃓⃓⃓
∂ζ(weλζ

p

)
⃓⃓⃓2
dζ =

∫︂ ∞

0

|∂ζw|2e2λζ
p

dζ −
∫︂ ∞

0

|w|2∂ζ
(︂
eλζ

p

∂ζ
(︂
eλζ

p
)︂)︂

dζ +

∫︂ ∞

0

|w|2
(︂
∂ζe

λζp
)︂2

dζ

=

∫︂ ∞

0

|∂ζw|2e2λζ
p

dζ −
∫︂ ∞

0

(︂
p2λ2ζ2(p−1) + p(p− 1)ζp−2λ

)︂
|w|2e2λζ

p

dζ ≥ 0

Remark 3.5.4. The term p(1− p)λ
∫︁∞
0

1
ζ2−p |w|2e2λζ

p

dζ is a lower order term far from 0, and can
be absorbed by

∫︁∞
0

1
ζ2−2p |w|2e2λζ

p

dζ for large ζ. In fact, this term, due to the behavior of ζp
near ζ = 0, disappear completely if we use as a norm

∥f∥2Hs
λ,p(R+) =

∫︂ ∞

0

|∂sζf |2e2λ(ζ+ζ0)
p

dζ

with ζp0 > 1−p
pλ . As all of this is of no practical consequence, we will keep the more natural

definition with a simple weight eλζp .

In the next two Propositions (3.5.3, 3.5.4), we will define the boundary layers operators. We
start with the E 1

4 boundary layer, which occurs on the right of the shear line x = 0.

Proposition 3.5.3 (Stewartson E
1
4 boundary layer operator). Let 0 < λ < κ

h . For all

f ∈ H0
η(R+)

there exists a constant Hf , depending linearly on f , given by

Hf = −
∫︂ ∞

0

f(τ)e−
√︁

κ
h τdτ

such that for any W 0,W 1 ∈ R satisfying√︃
κ

h
W0 + E

1
4W1 = Hf (3.38)

there exist wbl = w
(︂

x

E
1
4

)︂
solution of

(γ1 − γ0)(x)
√
E∂2xw

bl − (κ0 + κ1)(x)w
bl = f

(︃
x

E
1
4

)︃
+ E

1
4 rbl(x)
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with boundary conditions
wbl(0+) =W0

∂xw
bl(0+) =W1.

The boundary layer profile wbl(x) is identically zero outside (0, 1/2). The remainder rbl =

r
(︂

x

E
1
4

)︂
, with r ∈

⋂︁˜︁λ<λH0˜︁λ(R+) satisfies,

∥rbl∥Hs((0, 12 ))
≤ CE

1
8−

s
4 ∀s ≤ 0.

Remark 3.5.5. We can, in this proposition or in the following, replace H0
λ by Hs0

λ for s0 ∈ N and
the estimate on the remainder is then true for all s ≤ s0. A way to see it is to derive s0 times the
boundary layer equation with respect to ζ. As this introduces further difficulties and the only
estimations we need on the remainder are negative norms, we will not do so.

This can be derived from the explicit integration or Laplace transform of the boundary layer
equation

h∂2ζw(ζ)− κw(ζ) = f(ζ) (3.39)

w(0) =W0 w′(0) = E
1
4W1.

from where Hf = −
∫︁∞
0
f(τ)e−

√︁
κ
h τdτ , which is indeed a continuous linear form on H0

λ. We refer
to the Annex A.1 for this exact example.

However, in order to introduce a generic framework used for the next boundary layer operator,
let us also briefly use methods based on the theory of elliptic PDEs.

Proof. Let

0 < λ <

√︃
κ

h
. (3.40)

We search w ∈ H1
λ solution of the elliptic equation (3.39). The solution will be a varia-

tional solution, coming from Lax-Milgram theorem. In this setting, W0 and W1 are respectively
Dirichlet and Neumann traces.

First notice that up to a compactly supported lifting we can suppose that W0 = 0, i.e consider
an homogeneous Dirichlet problem.

Then, in order to use the Lax-Milgram theorem in our weighted setting, the only requirement
is to check whether ∫︂ ∞

0

(︂
−∂2ζw +

κ

h
w
)︂
· w e2λζdζ ≥ C∥w∥2H1

λ

holds for any w in a dense subset of H1
λ.

And integrating by parts, for w ∈ C∞
0 (Ω)∫︂ ∞

0

(︂
−∂2ζw +

κ

h
w
)︂
· w e2λζdζ =

∫︂ ∞

0

(︃
|∂ζw|2 e2λζ +

(︃
−1

2
∂2ζ e

2λζ +
κ

h
e2λζ

)︃
|w|2

)︃
dζ

=

∫︂ ∞

0

(︃
|∂ζw|2 +

(︃
−4

2
λ2 +

κ

h
e2λζ

)︃
|w|2

)︃
e2λζdζ

= ∥w∥2H1
λ
+ (−2λ2 +

κ

h
)∥w∥2H0

λ
.

Using the Hardy inequality (or simply Poincaré in this case) (3.37)

∥w∥2H1
λ
≥ λ2∥w∥2H0

λ
.
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We finally obtain the claimed coercivity as long as

−2λ2 + λ2 +
κ

h
> 0

i.e
κ

h
> λ2.

Once we have existence in H1
λ, using the equation ∂2ζw = κ

hw+ 1
hf ∈ H0

λ we obtain the elliptic
regularity

∥w∥H2
λ
≤ C

(︂
W0 + ∥f∥H0

λ

)︂
.

This allows us to define the Neumann trace ∂ζw(0). The function (W0, f) ↦→ ∂ζw(0) is obviously
linear, leading to the condition like (3.38) in order to have W1 = ∂ζw(0).

In order to obtain the explicit expression of this Dirichlet to Neumann operator, taking as a
test function a solution of the dual equation, namely e−

√︁
κ
h ζ we have∫︂ ∞

0

(︂
−∂2ζ +

κ

h

)︂
w · e−

√︁
κ
h ζdζ = −

∫︂ ∞

0

f(ζ) · e−
√︁

κ
h ζdζ[︂

−∂ζwe−
√︁

κ
h ζ + w∂ζe

−
√︁

κ
h ζ
]︂∞
0⏞ ⏟⏟ ⏞

W1+
√︁

κ
hW0

+

∫︂ ∞

0

(︂
−∂2ζ +

κ

h

)︂
e−
√︁

κ
h ζ · wdζ⏞ ⏟⏟ ⏞

0

= −
∫︂ ∞

0

f(ζ) · e−
√︁

κ
h ζdζ.

After introducing the cut-off χ, the remainder terms are

E
1
4 r(ζ) =

(︂(︂
(γ1 − γ0)(E

1
4 ζ)− (γ1 − γ0)(0)

)︂
∂2ζw(ζ)−

(︂
(κ1 − κ0)(E

1
4 ζ)− (κ1 − κ0)(0)

)︂
w(ζ)

)︂
χ(E

1
4 ζ)⏞ ⏟⏟ ⏞

errors from the approximation of no variation w.r.t x in the boundary layer

+ (γ1 − γ0)(E
1
4 ζ)
(︂
2E

1
4χ′(E

1
4 ζ)∂ζw + E

1
4χ(E

1
4 ζ)w

)︂
+ (1− χ(E

1
4 ζ))f(ζ)⏞ ⏟⏟ ⏞

errors from the cut-off χ

so, as γ0,1, κ0,1 admit a Taylor expansion, we obtain r ∈ H0˜︁λ for any ˜︁λ < λ, with a control of the
norm uniform in E

∥r∥H0˜︁λ ≤C˜︁λ,λ (∥γ1 − γ0∥W 1,∞ + ∥κ1 − κ0∥W 1,∞) ∥w∥H2
λ

+ C˜︁λ,λ∥γ1 − γ0∥L∞∥w∥H1
λ
+ C˜︁λ,λ∥f∥H0

λ

As this is true for any ˜︁λ < λ (but C˜︁λ,λ blow up when ˜︁λ→ λ) we obtain the proposition, since
the estimate on rbl comes from the scaling as before (see Annex A.5).

We now turn towards the so-called E
2
7 boundary layer, of size E

1
3+α for a generic boundary

profile. This layer occurs for x < 0, and its particularity is that the rate of decay, previously
√︁

κ
h

is now formally
√︂

κ
hζ

α−1
2 who depends on ζ, and goes to 0 as ζ → ∞ this is where the weighted

spaces Hs
λ,p are used.

Proposition 3.5.4 (Stewartson E
1

3+α boundary layer operator). Let

0 < λ <
4

3 + α
h

1
2
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and
f ∈ H0

λ, 3+α
4

(R+).

There exists a constant cα and a constant Hf , depending linearly on f such that, for any
W 0,W 1 ∈ R satisfying

cαh
− 2

α+3W0 + E
1

3+αW1 = Hf (3.41)

there exists wbl = w

(︃
− x

E
1

3+α

)︃
solution of

(γ1 − γ0)(x)
√
E∂2xw

bl − (κ0 + κ1)(x)w
bl = E− 1

3+α

(︃
f

(︃
− x

E
1

3+α

)︃
+ E

1
3+α

)︃
with boundary conditions

wbl(0−) =W0

wbl
′
(0−) =W1

and wbl(x) is identically zero outside (−1/2, 0). The remainders rbl = r

(︃
− x

E
1

3+α

)︃
, r ∈⋂︁˜︁λ<λH0˜︁λ, 3+α

4

(R+) satisfies, ∀s ≤ 0

∥rbl∥Hs((− 1
2 ,0))

≤ CE
1

6+2α− s
3+α

Proof. The boundary layer equation is

h∂2ζw(ζ)− ζ
α−1
2 w(ζ) = f(ζ).

Thanks to the change of variable ζ ↦→ h
2

3+α ζ we can restrict ourselves to h = 1.
Here we can also compute an explicit solution of the homogeneous equation in terms of Bessel

functions. With w(ζ) =W0

√
ζG
(︂
λζ

3+α
4

)︂
the homogeneous equation becomes

(λζ
3+α
4 )2G′′

(︂
λζ

3+α
4

)︂
+ λζ

3+α
4 G′

(︂
λζ

3+α
4

)︂
−

(︄(︃
4

α+ 3
ζ

3+α
4

)︃2

+

(︃
2

α+ 3

)︃2
)︄
G
(︂
λζ

3+α
4

)︂
= 0

with λ = 4
α+3 we obtain the very definition of the modified Bessel function of the second kind

([1] p.374). Since we look for decaying solutions, we finally obtain the explicit solution for the
homogeneous case

w(ζ) =W0

√︁
ζK 2

α+3

(︃
4

α+ 3
ζ

3+α
4

)︃
⏞ ⏟⏟ ⏞

wα

note that we recover the result of [54] for α = 1
2 .

We can then use Duhamel formula to obtain the generic solution and condition. The main
interest of this explicit solution is less its existence than the explicit value of cα, namely

cα =
w′
α(0)

wα(0)
=

(︃
α+ 3

2

)︃ 4
α+3 Γ

(︂
2

α+3

)︂
Γ
(︂
− 2
α+3

)︂
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and thanks to the asymptotic behavior of Bessel K functions we see that the rate of decay is

|w(ζ)| ≤ e−
4

3+α ζ
3+α
4
.

which is not an exponential decay, but is still decaying faster than any rational function. In
particular, we still have the size of o(E∞) for x≫ E

1
3+α .

To use a weighted Sobolev space as we did previously, the only point of importance is the
coercivity. Let us first notice that, the control the singularity of ζ α−1

2 near 0 is of no concern for
such formulation as we have H1-like regularity near 0, and α−1

2 > −2.
We will work in the space H1

λ,p for λ < λα, where p will be chosen later and λα will be fixed
small enough.

The computation is very similar to the previous one. For w ∈ C∞
0 ((0,∞)), we have∫︂ ∞

0

(︂
−∂2ζw + ζ

α−1
2 w

)︂
· w e2λζ

p

dζ =

∫︂ ∞

0

(︃
|∂ζw|2 e2λζ

p

+

(︃
−1

2
∂2ζ e

2λζp + ζ
α−1
2 e2λζ

p

)︃
|w|2

)︃
dζ

=

∫︂ ∞

0

(︃
|∂ζw|2 +

(︃
−1

2

(︁
4λ2p2ζ2p−2 − 2λp(1− p)ζp−2

)︁
+ ζ

α−1
2

)︃
|w|2

)︃
e2λζ

p

dζ

= ∥w∥2H1
λ,p

+ p(1− p)

∫︂ ∞

0

ζp−2|w|2⏞ ⏟⏟ ⏞
≥0

+

∫︂ ∞

0

(−2λ2p2ζ2p−2 + ζ
α−1
2 )|w|2e2λζ

p

dζ.

We must ensure the positivity (or at least positivity when combined with the other ones) of the
last term (in blue). Near 0 the two other terms can help, but at infinity the H1

λ,p norm contributes
to λ2p2ζ2p−2 at most†, and the other positive term is decaying too fast. More precisely, thanks
to (3.37), we have

(1− ϵ)

(︃
∥w∥2H1

λ,p
+ p(1− p)

∫︂ ∞

0

ζp−2|w|2
)︃
+

∫︂ ∞

0

(−2λ2p2ζ2p−2 + ζ
α−1
2 )|w|2e2λζ

p

dζ

≥
∫︂ ∞

0

(−(1 + ϵ)λ2p2ζ2p−2 + ζ
α−1
2 )|w|2e2λζ

p

dζ.

So we must at least have ζ α−1
2 stronger than ζ2p−2 at infinity i.e

2p− 2 ≤ α− 1

2
⇔ p ≤ 3 + α

4
.

Thus, we set p = pα = 3+α
4 . For p < pα we then need to control the behavior near 0 by the

H1
λ,p norm. But for p = pα, sufficient condition to have coercivity is then

−(1 + ϵ)λ2p2α + 1 ≥ 0

for some ϵ > 0. This leads to
λ < λα =

1

pα
=

4

3 + α
.

The rest of the proof is then exactly the same as before.

Remark 3.5.6. • Note that we obtain in fact a sharp estimate on the rate of decay, not only
on the power of ζ in the exponential but also on the λ.
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Ekman layers

Equatorial layer

E
1

3+α layer E
1
4 layer

E
1
3 layer

“Interior”

Far from the boundaries

Figure 3.12 – Objective of Subsection 3.5.4 are in blue.

• This approach is ultimately the same as considering w = meλζ
p before working on m.

• These proofs show that the angle of attack consisting in considering the boundary layer
equation as elliptic-like equation is not only relevant but also leads to robust and sometimes
sharp results.

3.5.4 Interior terms and connection between operators
Let us now focus on the interior terms. Since the limit problem is of order 0 as a differential
operator there no need for boundary conditions.

But, as mentioned before, since v̄ is discontinuous, it is not in the energy space H1. A first
approach is to consider that v̄ is like a Heaviside function,

v̄ ∼x→0 v̄(0
−)1x<0 + v̄(0+)1x>0 (3.42)

and that we would be able to lift the discontinuity by two boundary layers and linear algebra:

w = v̄ + wbl,l + wbl,r (3.43)

with wbl,l and wbl,r the results of the preceding boundary layer operators with respective traces
W l

0,W
l
1 and W r

0 ,W
r
1 satisfying

v̄(0−) +W l
0 = v̄(0+) +W r

0

0 +W l
1 = 0 +W r

1

clW
l
0 + E

1
3+αW l

1 = 0

crW
r
0 + E

1
4W r

1 = 0

from where we obtain a unique solution.
Remark 3.5.7. Note that the seconde condition W l

1 =W r
1 can be weakened. Indeed, if W l

1 ̸=W r
1 ,

we would still have w of (3.43) in H1, but it would introduce a remainder term
√
E
(︁
W l

1 −W r
1

)︁
δ′0
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which must be either o(1) in L2 or o(E 1
2 ) in H−1 in order to be an acceptable remainder. Thus,

we can instead choose only W l
1 −W r

1 = o(1).

The main point of this solution is that W r
0 = − [v̄]0

1− cr
cl
E

1
3+α

− 1
4

, W l
0 = −

[v̄]0
cr
cl
E

1
3+α

− 1
4

1− cr
cl
E

1
3+α

− 1
4

and that

we obtain
w(0) =

v̄(0−) + ϵv̄(0+)

1 + ϵ

where
ϵ = −cr

cl
E

1
3+α− 1

4 = −cr
cl
E

1−α
4(3+α) .

Remark 3.5.8. In the relevant case for physics, we have α = 1
2 , leading to 1−α

4(3+α) = 1
28 . As

a consequence even if E is small, typically E = 10−6, the value E 1
28 cannot be neglected for

applications. However, from a mathematical point of view, it is still a small parameter.

Unfortunately, the previous expansion is not quite complete from a mathematical point of
view. Indeed, if we expand v̄ near 0 we have

v̄ =
κ0v0 + κ1v1
κ0 + κ1

= v0(0
−)1x<0 +

κ0v0 + κ1v1
κ0 + κ1

(0+)1x>0⏞ ⏟⏟ ⏞
vdiscdiscontinuous

+κ1(v1 − v0)(0
−)x

1−α
2 1x<0 +O(x1−α)⏞ ⏟⏟ ⏞

vcont continuous but /∈H1

. (3.44)

As a matter of fact, apart from the discontinuity, the lack of regularity is only near x = 0−,
and can be removed with a cut-off localized near 0−. The scaling of this cut-off is, fortunately,
the same as the boundary layer, allowing us to lift the remainders by the left boundary layer
operator. These difficulties are more linked to the singular x− 1−α

2 of the equation than to the
discontinuity of v̄.

To illustrate the difficulties let us look at the toy-model of the 2
7 layer„ for α = 1

2 on (−1, 0),

x−
1
4w −

√
E∂2xw = f.

Note that we do not prescribe any boundary conditions, as they will be lifted by the boundary
layers. Then, when trying to construct without precautions a solution of the form w =

∑︁
k E

k
2wk.

We obtain, even at the first step

• If the source term has the same singularity than the coefficient, f = x−
1
4 then w0 = 1 and

the remainder is 0.

• If f ∈ C1 and f(0) = 0 then w0(x) = x
1
4 f(x) ∼0− x

5
4 and w0 ∈ H1.

• But if f = 1 then w0(x) = x
1
4 i.e w0 /∈ H1.

Our goal is to have as a source term κ0v0 + κ1v1. Following the decomposition (3.44), we
first isolate the discontinuous part of v̄, which we lift thanks to boundary layers of sizes E 1

4

and E
1

3+α , as described previously. There remains to treat the part vcont. This correspond to a
source term f cont = (κ0+κ1)v

cont. Note that not only vcont is continuous, but also vcont(0) = 0.
We cannot usevcont it the approximate solution up to x = 0−, since it will lead to vcont ∼0−
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(−x) 1−α
2 /∈ H1, so we isolate the singularity in this source term, by writing

f cont = χ
(︂ x

Eβ

)︂
f cont + χ

(︂ x

Eβ

)︂
f cont.

But if we cut-off at a size Eβ , the error created when differentiating two times the cut-off will
be of L∞ size E−2β , compensated by the smallness of vcont, of

(︁
Eβ
)︁ 1−α

2 . The critical scaling is
then, without surprise

smallness of the singular perturbation⏟⏞⏞⏟
E

1
2 ×E−2β⏞ ⏟⏟ ⏞

cut-off

× Eβ·
1−α
2⏞ ⏟⏟ ⏞

smallness of vcont

= 1 ⇔ β =
1

3 + α
.

Proposition 3.5.5 (Lifting of f cont). There exists wint ∈ H2 such that

f cont − (κ0 + κ1)w
int − (γ1 − γ0)

√
E∂2xw

int = r

with
wint ∈ H2, lim

E→0

⃦⃦⃦⃦
wint − f cont

κ0 + κ1

⃦⃦⃦⃦
L2

= 0.

The remainder satisfy
∥r∥L2 ≤ CE

1
6+2α

Proof. In order to prove this proposition, let χ be a cut-off function such that χ = 1 on (0, 1)
and χ = 0 on (2,+∞). Then with

wint =
f cont

κ0 + κ1

(︃
1− χ

(︃
−x
E

1
3+α

)︃)︃
we obtain

f cont − (κ0 + κ1)w
int − (γ1 − γ0)

√
E∂2xw

int =χ

(︃
−x
E

1
3+α

)︃
f cont(x)

− E
1
2 (γ1 − γ0)

(︃
1− χ

(︃
−x
E

1
3+α

)︃)︃
∂2x

(︃
f cont

κ0 + κ1

)︃
+ 2(γ1 − γ0)E

1
2−

1
3+αχ′

(︃
−x
E

1
3+α

)︃
∂x

(︃
f cont

κ1 + κ0

)︃
+ (γ1 − γ0)E

1
2−

2
3+αχ′′

(︃
−x
E

1
3+α

)︃(︃
f cont

κ1 + κ0

)︃

Remark 3.5.9. If we were to iterate the construction, the second term (in blue) is rint and all
the others (in green) are rbl.

All the terms are of same size in L2 et us compute for example the size of rint. We have

∥rint∥2L2 ≤ CE

∫︂
(−1,1)

1(︃
−E

1
3+α ,0

)︃|∂2x(vcont)|2dx
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and as vcont is uniformly smooth, except near 0− where it admits a singular expansion

vcont = (−x)
1−α
2 + a1(−x)1−α + a2(−x)

3(1−α)
2 + · · · .

Thus, we finally obtain

∥rint∥L2 ≤ Cmax
(︂
E

1
2+

−α−2−2·0
6+2α , E

1
2

)︂
= CE

1
6+2α .

We now have uapp = vdisc+vbl,l+vbl,r+wint. Let us comment on the associated remainders.
There is no difficulties for the ones coming from the shears layers used to lift the discontinuity.
Concerning the remainder in (1 − χ)

√
E∂2xv

cont the same type of computation as above shows
that we do not gain additional power of E iterating the procedure. The green remainders in the
previous proof can be considered as source terms for the next order boundary layer. It is possible
that this process could be iterated.

Remainder rblue rgreen rbl,r

L2 norm E
1

6+2α E
1

6+2α E
3
8 E

3
6+2α

Can be used as a source for the next order operator No Probably Yes Yes

Table 3.3 – The different remainders.

We can remark that, except for rblue all terms can be used as source term for next order
operators. This is unfortunate because the current expansion is not precise enough to ensure
the H1 convergence. If this difficulty was absent, then with an order sufficient to have all
remainders oL2(E

1
2 ), the stability estimate will ensure the H1 convergence, and in particular

that uE(x = 0) ∼ CαE
1
28 , a fact of physical importance.

At this point of the construction, we have thus constructed corrector for v̄ such that vint is
continuous. But,if we go back to equation (3.32), we see that the associated ψint can have jumps
across x = 0, as we will explain below. Lifting these jumps is the purpose of the next subsection.

3.5.5 Stewartson 1
3

layer

Indeed, if the previous shear layers are enough in order to construct v, the corresponding ψ̄ is

ψ̄ =
κ0κ1√

2(κ0 + κ1)
(v1 − v0).

Thus, far from x = 0 there is no problem but there is a discontinuity, ψ̄(0−) = κ1(0)√
2
(v1 − v0)

when ψ̄(0+) = κ1(0)√
2
(︂
1+

κ1(0)

κ0(0+)

)︂ (v1 − v0).

In order to lift this discontinuity, related to the fact that ∂zv = E
3
2 ∂4xψ was neglected, we

need another boundary layer. If we write the whole symbol of (3.32) its determinant is

∂2z + E2∂6x = 0

prompting the scaling
ζ =

x

E
1
3

.
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Ekman layers

Equatorial layer

E
1

3+α layer E
1
4 layer

E
1
3 layer

“Interior”

Far from the boundaries

Figure 3.13 – Objective of Subsection 3.5.5 are in blue.

And the corresponding kernel leads to

ψbl =
√
Eψ(ζ, z)

vbl = E
1
6 v(ζ, z).

Remark 3.5.10. Note that the
√
E is the exact scaling of the first order of the interior problem.

This means that, if we consider the scaling and equation of equation (3.33) this factor disappears.
The notable point is the E 1

6 in front of the v. Indeed, this shows that any error created in the
v variable will will be small, leading to a possible correction with next order shear layers.

The boundary layer equation is thus

∂zv − ∂4ζψ = 0

∂zψ + ∂2ζv = 0.
(3.45)

This is in fact the same boundary layer than the one near a vertical wall, called the Stewartson
layer. For the boundary condition we need the Ekman homogeneous condition. But as it write

(−1)i+1 1

κi
ψ +

1√
2

(︂
E

1
6 v −

√
E∂zψ

)︂
= 0 (3.46)

we will consider only the first order condition, ψ = 0. This approximation is only valid up to
x

1−α
2 ∼ E

1
6 i.e x ∼ E

1
3(1−α) ≪ E

1
3−α , so such approximation is acceptable within our framework.

The goal of this subsection will be to show that the boundary layer equation

∂zv − ∂4ζψ = 0

∂zψ + ∂2ζv = 0.
(3.47)

with boundary condition ψ|z=γi = 0 can lift the discontinuity on ψ at x = 0.
Unfortunately such layer is deeply connected to the equatorial layer. Therefore, we will still

try to lift discontinuity on ψ, but our proposition will only hold rigorously in the non degenerate
setting, κ0, κ1 smooth. For more explanations on the link between the vertical shear layer and
the equatorial layer, see the discussion at the end of this chapter.
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Let h = γ1(0)− γ0(0). The main ingredient is the construction of said boundary layer is the
flat case, i.e γ0 = 0, γ1 = h, near a vertical wall:

Proposition 3.5.6 (Flat stewartson 1
3 layer near a wall). Let Ωflat = (0, 1) × (0, h). Let

0 < η < 1
2

(︁
π
h

)︁ 1
3 and s0 ≥ 1.

Let Ψ, V,Υ ∈ Hs0((0, h))×Hs0− 1
3 ((0, h))×Hs0− 1

3 ((0, h)). Suppose

Ψ(0) = Ψ(h) = 0

Υ(0) = Υ(h) = 0
(3.48)

and ∫︂ h

0

V (z)dz = 0. (3.49)

Let f = (fψ, fv) such that

(fψ)|z=0 = (fψ)|z=h = 0 ,

∫︂ h

0

fv(ζ, z)dz = 0 (3.50)

with regularity
f = (fv, fψ) ∈ Hmax(0,s0−2)

η ×Hmax(0,s0−4)
η . (3.51)

Then, with the boundary layer scaling ζ = E− 1
3x, there exists

ubl(x, z) =
(︂
E

1
6 v(ζ, z), E

1
2ψ(ζ, z)

)︂
solution on Ωflat of

∂zv
bl − E∆2ψbl = E

1
6

(︃
fψ

(︃
·
E

1
3

, ·
)︃
+ rψ

(︃
·
E

1
3

, ·
)︃)︃

∂zψ
bl + E∆vbl = E

1
2

(︃
fv

(︃
·
E

1
3

, ·
)︃
+ rv

(︃
·
E

1
3

, ·
)︃)︃

with boundary conditions

ψbl|z=0 = ψblz=h = 0

(ψbl, vbl, ∂xψ
bl)|x=0 = (E

1
2Ψ, E

1
6V,E

1
6Υ)

u = 0 for x > 1

2
.

With the estimates
∥vbl∥Hs(Ωh) ≤ CE

1
6+

1
6−

s
3 , ∀s ≤ s0 +

1

6

∥ψbl∥Hs(Ωh) ≤ CE
1
2+

1
6−

s
3 , ∀s ≤ s0 −

1

6

and r satisfying the estimates

∥rv∥Hs
η((0,+∞)×(0,h)) ≤ E1, ∀s ≤ s0 −

13

6

∥rψ∥Hs
η((0,+∞)×(0,h)) ≤ E

1
3 , ∀s ≤ s0 −

23

3
.
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Remark 3.5.11. The condition (3.48) on ψ is a compatibility condition between ψ|x=0 and ψ|z=0.
And the one on V is not restrictive. Indeed, we can lift constant V (x) = V̄ simply by

ψ(x, z) = 0

v(x, z) = V̄ .

Note that, in this case, this is not a boundary layer profile but rather an interior one. We will
see in the proof that for a Fourier mode k in z the boundary layer size is actually

(︁
E
k

)︁3, so this
is no surprise that k = 0 correspond to an interior term.

Proof. We will use a boundary layer term satisfying (3.47), and compute the remainders.
As, contrary to the boundary layer operator we have constructed until this subsection, this

is a true PDE and not an ODE we will first focus on the homogeneous case f = 0.
We can, as previously, rely either on an explicit computation or an abstract argument.
For the explicit computation, as Ψ(0) = Ψ(h) = 0 and

∫︁ h
0
V dz = 0, let us use the decompo-

sition

ψ(ζ, z) =

∞∑︂
k=1

ak(ζ) sin(πkh
−1z)

v(ζ, z) =

∞∑︂
k=1

bk(ζ) cos(πkh
−1z)

Without loss of generality we can suppose that h = π.
Note that, for a non-flat Ω, such functions does not verify exactly the boundary condition,

as the boundary is not perfectly flat. Nevertheless, we will work as if γ0 and γ1 were constant,
computing the trace remainder later.

The homogeneous equations on ak, bk are

−kbk − ∂4ζak = 0

kak + ∂2ζ bk = 0.

This is a simple ODE, for each k ∈ N, and the characteristic polynomial is

λ6 − k2

with three roots with negative real part, and three with positive real part. In particular there
is no λ = 0 modes thanks to the boundary conditions at z = γi.

Thus, with

λl =

{︄
−1 if l = 0
−1+l

√
3i

2 if l = ±1

we obtain that any functions

ψ =

∞∑︂
k=1

∑︂
l∈{−1,0,+1}

ak,le
λl|k|

1
3 ζ sin(kz)

v =

∞∑︂
k=1

∑︂
l∈{−1,0,+1}

bk,le
λl|k|

1
3 ζ cos(kz)
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1

i

Figure 3.14 – The modes of the Stewartson boundary layer operator.

is solution, as long as

∀k ∈ N,∀l ∈ {−1, 0 + 1}, bk,l +
k

1
3

λ2l
ak,l = 0. (3.52)

Remark 3.5.12. It is important to observe that the size of the boundary layer is not E 1
3 but(︁

E
k

)︁ 1
3 . Thus, at high frequency this layer is too small to satisfy the assumption presiding the

derivation of the model. This was to be expected as the critical scaling is(︃
E

k

)︃ 1
3

≥ E
1

3−α ⇔ k ≤ E
α

3−α

i.e variation at scales z ≥ E
α

3−α . This is exactly the equatorial scaling (3.31), as z = xα. This is
why this layer, called the similarity sublayer since it size can be seen also as (Ez) 1

3 , is a candidate
for the connection between the equatorial zone and the main flow.

More precisely, with V (z) =
∑︁
k≥1 Vk cos(kz), Ψ(z) =

∑︁
k≥1 Ψk sin(kz), Υ =

∑︁
k≥1 Υk cos(kz)

we obtain for all k ≥ 1

⎛⎝ak,−1

ak,0
ak,1

⎞⎠ =

⎛⎜⎝ 1 1 1
(1−

√
3i)k

1
3

2 −k 1
3

(1+
√
3i)k

1
3

2
(−1−

√
3i)k

1
3

2 −k 1
3

(−1+
√
3i)k

1
3

2

⎞⎟⎠
−1⎛⎝Ψk

Vk
Υk

⎞⎠

= Ψk

⎛⎜⎝
i√
3

1
− i√

3

⎞⎟⎠+
1

k
1
3

Vk

⎛⎜⎝ 3−i
√
3

6
−1

3+i
√
3

6

⎞⎟⎠+
1

k
1
3

Υk

⎛⎜⎝−1+
√
3i

2
1

−1−
√
3i

2

⎞⎟⎠ .
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The computation of the size in Sobolev norms is then explicit, for η < 1
2 ,∫︂ ∞

0

∫︂ π

0

e2ηζ
⃓⃓⃓
∂
mζ

ζ ∂mz
z ψ

⃓⃓⃓2
dzdζ ≤ C

∑︂
k≥1

∫︂ ∞

0

∑︂
l

⃓⃓⃓⃓
ak,lk

(mζ+3mz)

3 e(λlk
1
3 −η)z

⃓⃓⃓⃓2
dzdζ

≤ C
∑︂
k≥1

k
2(kζ+3kz)

3

k
1
3 − 2η

(︃
|Ψk|2 +

1

k
2
3

|Vk|2 +
1

k
2
3

|Υk|2
)︃
.

Remark 3.5.13. Notice that, once more, the limiting regularity is with respect to the tangential
variable z. A more precise result could be obtained by considering anisotropic Sobolev spaces.
But as the final norms for the whole problem are isotropic we will not do so.

So for s ∈ N

∥ψeηζ∥Hs((0,1)×(0,+∞)) ≤ Cη

(︂
∥Ψ∥

Hs− 1
6 ((0,π))

+ ∥V ∥
Hs− 1

2 ((0,π))
+ ∥Ψ∥

Hs− 1
2 ((0,π))

)︂

Remark 3.5.14. Note that, since the high frequencies in z are localized in a region of size 1

k
1
3

, we
obtain in fact a slightly better (+ 1

6 ) regularity than expected.

We obtain similar results for v, noticing that bk,l = O(k
1
3 ak,l).

And the remainders are, in boundary layer variables

rv = E∂2zv = −E
∑︂
k≥1

∑︂
l

λ−2
l k2k

1
3 ak,le

λlk
1
3 ζ cos(kz)

so, as 2 · (2 + 1
3 )−

1
3 = 13/3,

∥rveηz∥2Hs((0,1)×(0,+∞)) ≤ CηE
2
∑︂
k≥1

k2s+
13
3

(︃
|Ψk|2 +

1

k
2
3

|Vk|2 +
1

k
2
3

|Υk|2
)︃
.

and similarly, as rψ is due to the fact that we neglect E∂4z + E1− 2
3 ∂2z∂

2
ζ

∥rψeηz∥2Hs ≤ Cη
∑︂
k≥1

(︂
E2k2s+8− 1

3 + E
2
3 k2s+4+ 4

3−
1
3

)︂(︃
|Ψk|2 +

1

k
2
3

|Vk|2 +
1

k
2
3

|Υk|2
)︃
.

After the cut-off and the scaling (see Lemmas A.5.1,A.5.2) we obtain the announced estimates.
For an source term f ̸= 0, one can simply solve the ODE with non zero right hand side

−kbk − ∂4ζak = fψ,k(ζ)

kak + ∂2ζ bk = fv,k(ζ)

where fψ,k, fv,k are the decomposition in sines and cosines of fv, fψ with respect to z.
But let us treat the case of arbitrary f and homogeneous traces with a more abstract frame-

work. Indeed, this will show us that the well-posedness of this system in not due to the explicit
Fourier transform and ODE resolution, but rather to the boundedness in the tangential variable
z.

Note that the estimates on regularity and decay obtained are not as good as the ones coming
from the previous explicit resolution. But this is more robust as (0, 1)× (0,+∞) can be replaced
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by most domains bounded in one direction.

These methods are very close to the ones used for the equatorial Ekman layer, and are detailed
in Chapter 4. Therefore, we will briefly use them and insist on the simplifications stemming from
the boundedness in z.

First, multiplying the equation by (ψ, v) we obtain the a-priori estimate∫︂ ∞

0

∫︂ 1

0

∂z (vψ) dzdζ⏞ ⏟⏟ ⏞
=0

+

∫︂ ∞

0

∫︂ 1

0

|∂ζv|2 dzdζ +
∫︂ ∞

0

∫︂ 1

0

⃓⃓
∂2ζψ

⃓⃓2
dzdζ ≤

∫︂ ∞

0

∫︂ 1

0

f · u.

If f has sufficient decay this allow to us to conclude the existence in the space∫︂
|∂ζv|2 +

∫︂
|∂2ζψ|2 < +∞

and Hardy inequality allow us to obtain the decay∫︂ (︄
|∂ζv|2 +

⃓⃓⃓⃓
v

ζ

⃓⃓⃓⃓2)︄
+

∫︂ (︄
|∂2ζψ|2 +

⃓⃓⃓⃓
ψ

ζ2

⃓⃓⃓⃓2)︄
< C

∫︂ (︁
|ζfv|2 + |ζ2fψ|2

)︁
< +∞.

But this not enough to obtain a small scaling or the uniqueness. Indeed, need at least a L2 decay
at ζ → ∞.

As this is an elliptic problem in ζ we can derive Caccioppoli inequalities. For a cut-off function
χ ∈ C∞

c such that χ(ζ) = 0 for ζ < 1
2 and ζ > M + 1, and χ(ζ) = 1 for 1 < ζ < M we have

∫︂
χ(ζ)4

(︁
|∂4ζψ|2 + |∂3ζv|2

)︁
≤ C

(︃∫︂ (︁
|∂ζv|2 + |∂2ζψ|2

)︁
+

∫︂ (︁
|ζ(∂2ζfv + fv)|2 + |ζ2(∂2ζfψ + fψ)|2

)︁)︃
.

And using the equation
∂zv = ∂4ζψ + fψ

∂zψ = −∂2ζv + fv

we thus obtain, for any η > 0∫︂ M

1

∫︂ 1

0

(︁
|∂zv|2 + |∂zψ|2

)︁
dzdζ ≤ C⏞⏟⏟⏞

uniform in M

(︃∫︂
Ω

(︁
|∂ζv|2 + |∂2ζψ|2

)︁
+

∫︂
eηζ |∂2ζf |2)

)︃
.

As ψ has Dirichlet conditions on z, we can conclude by Poincaré inequality with respect to the
z variable ∫︂ ∞

1

∫︂ 1

0

|ψ|2dζdz ≤ C

∫︂ ∞

1

∫︂ 1

0

|∂zψ|2dζdz < +∞.

Using Poincaré inequality again, but with respect to ζ ∈ (0, 1) we have∫︂ 1

0

∫︂ 1

0

|ψ|2 ≤ C

∫︂ 1

0

∫︂ 1

0

|∂ζψ|2dζdz < +∞.

Combining the two estimates, we obtain a control of the L2 norm,
∫︁∞
0

∫︁ 1

0
|ψ|2dzdζ < +∞.
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For v, we have

∂2ζ

∫︂ 1

0

v(ζ, z)dz =

∫︂ 1

0

∂2ζvdz = −
∫︂ 1

0

∂zψdz⏞ ⏟⏟ ⏞
ψ(ζ,1)−ψ(ζ,0)=0

+

∫︂ 1

0

fvdz⏞ ⏟⏟ ⏞
=0

so, as
∫︁ 1

0
v(0, z)dz = 0 we obtain

∫︁ 1

0
v(ζ, z)dz = aζ + 0. But the growth is controlled using the

fact that L1((0, 1)) ⊂ L2((0, 1)) and a Hardy inequality

⃓⃓⃓⃓
1

ζ

∫︂ 1

0

v(ζ, z)dz

⃓⃓⃓⃓
≤ C

√︄∫︂ 1

0

⃓⃓⃓⃓
v(ζ, z)

ζ

⃓⃓⃓⃓2
dz ∈ L2((0,+∞)).

The only possibility is thus a = 0. For almost any ζ,
∫︁ 1

0
v(ζ, z)dz = 0, therefore we can also use

a Poincaré-Wirtinger inequality to conclude∫︂ ∞

1

∫︂ 1

0

|v|2dζdz ≤ C

∫︂ ∞

1

∫︂ 1

0

|∂zv|2 ≤ C.

To obtain finally ∥v∥L2((0,∞)×(0,1)) ≤ C.
This L2 control of the solution is very useful: it ensures decay of the solution and is used to

rigorously prove uniqueness. In fact, if u is a valid test function, then the energy estimate leads
to uniqueness for 0 source term and homogeneous boundary conditions, the general uniqueness
follows from linearity. But, as detailed in Section 4.3 of the next chapter, the key obstacle to
such analysis is the integrability.

Note that we can in fact recover more than just L2 decay. Indeed, as the Caccioppoli in-
equalities are localized in ζ and Poincaré inequalities are pointwise in ζ, we have∫︂ M

1

∫︂ 1

0

(︁
|v2|+ |ψ2|

)︁
≤ C⏞⏟⏟⏞

uniform in M

∫︂ M+1

0

∫︂ 1

0

(︁
|∂ζv|2 + |∂2ζψ|2 + eηζ |∂2ζf |2

)︁
.

Remark 3.5.15. The only dependency of C is with respect to the size of the domain, trough the
use of Poincaré inequality. If the domain is (0,∞)× (0, h), then∫︂ M

1

∫︂ h

0

(︁
|v2|+ |ψ2|

)︁
≤ C1(1 + h2)

∫︂ M+1

0

∫︂ h

0

(︁
|∂ζv|2 + |∂2ζψ|2 + eηζ |∂2ζf |2

)︁
This shows that the L2 analysis is no longer possible if h = +∞. Moreover we will see that
the constant C leads the decay of the boundary layer, so the rate of decay will decrease when h
increase.

For an arbitrary weight ω, the energy inequality formally obtained by taking uω as a test
function is, if well defined,∫︂

(−vψ∂zω)+
∫︂ (︃

|∂2ζψ|2ω − 2|∂ζψ|2∂2ζω +
1

2
|ψ|2∂4ζω

)︃
+

∫︂ (︃
|∂ζv|2ω − 1

2
|v|2∂2ζω

)︃
≤
∫︂
(f ·u)ω.

Thus, for λ > 0 and χM a cut-off function such that χM (ζ) = 1 for ζ < M and is zero for
ζ > M + 1, taking eλζχM as a weight,
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∫︂ M

0

∫︂ 1

0

(︁
|∂2ζψ|2 + |∂ζv|2

)︁
eλζdzdζ ≤C

∫︂ M+1

M

∫︂ 1

0

(︁
|∂ζψ|2 + |ψ|2 + |v|2

)︁
eλζdzdζ

+ Cλ

∫︂ M+1

0

∫︂ 1

0

(︁
|∂ζψ|2 + |ψ|2 + |v|2

)︁
eλζdzdζ

+
C

λ

∫︂ M+1

0

∫︂ 1

0

|f |2eλζdzdζ

where C is uniformly bounded when M → +∞ and λ→ 0. So with

E0(M) =

∫︂ M

0

∫︂ 1

0

(︁
|∂ζψ|2 + |ψ|2 + |v|2

)︁
eλζdzdζ

E1(M) =

∫︂ M

0

∫︂ 1

0

(︁
|∂2ζψ|2 + |∂zv|2

)︁
eλζdzdζ

F (M) =

∫︂ M

0

∫︂ 1

0

|f |2eλζdzdζ

this can be rewritten as

E1(M) ≤ C(E0(M + 1)− E0(M)) + CλE1(M + 1) +
C

λ
F (M + 1). (3.53)

The important point is that we are able to control E0 by E1. More precisely, thanks to the
localized Caccioppoli∫︂ m+1

m

∫︂ 1

0

(︁
|∂ζψ|2 + |ψ|2 + |v|2

)︁
eλζdzdζ ≤ eλm

∫︂ m+1

m

∫︂ 1

0

(︁
|∂ζψ|2 + |ψ|2 + |v|2

)︁
dzdζ

≤ Ceλm
∫︂ m+2

m−1

∫︂ 1

0

(︁
|∂2ζψ|2 + |∂ζv|2

)︁
dzdζ

≤ Ceλ
∫︂ m+2

m−1

∫︂ 1

0

(︁
|∂2ζψ|2 + |∂ζv|2

)︁
eλζdzdζ

meaning that
E0(M + 1)− E0(M) ≤ C(E1(M + 2)− E1(M − 1)).

So combining this inequality with (3.53) and the monotony of M ↦→ E1(M) we obtain

E1(M) ≤ C (E1(M + 3)− E1(M)) + CλE1(M + 3) +
C

λ
F (M + 3).

Remark 3.5.16. Note that we do not explicitly compute the constants. The main point is that
they are uniformly bounded near M = 0 and λ = 0. The exact value of C and C will prescribe
the rate of decay we can obtain, but here we are only trying to obtain any rate λ > 0.

E1(M) ≤
(︃

C
1 + C

+ Cλ

)︃
⏞ ⏟⏟ ⏞

qλ

E1(M + 3) +
C

λ
F (M + 3).
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So, with M fixed, for all K ∈ N, using the fact that E1(N) ≤ Cλe
2λN

E1(M) ≤ qKλ E1(M + 3K) +
C

λ

K∑︂
k=1

qK−k
λ F (M + 3k)

≤ Cλ(qλe
6λ)Ke2λM +

C

λ

K∑︂
k=1

qK−k
λ F (∞).

As a consequence, if λ > 0 is small enough, since qλe6λ < 1 and F (∞) < +∞, we can deduce
that E1(M) is bounded (uniformly in M), i.e that∫︂ ∞

0

∫︂ 1

0

(︁
|∂2ζψ|2 + |∂ζv|2

)︁
eλζdzdζ = ∥v∥2H1

λ
+ ∥ψ∥2H2

λ
< +∞.

Let us comment on the trace remainders. Indeed, in the previous boundary layer operator,
we considered γ0 and γ1 to be constant. This is not the case, so the trace condition are not
exactly satisfied. As γ1 is smooth, given the decay of the profile we have, with ψk corresponding
to the k-mode in the previous Fourier decomposition

|ψbl,kz=γ1(x)| ≤ C

(︄∑︂
l

|ak,l|

)︄
E

1
2 e−ηk

1
3 xE− 1

3 k(γ1(x)− γ1(0))

≤ C

(︄∑︂
l

|ak,l|

)︄
k

2
3E

1
2+

1
3 ∥γ′1∥L∞ .

And as γ0(x)− γ0(0) ∼ xα1x<0 we have similarly

|ψbl,kz=γ0(x)| ≤ C

(︄∑︂
l

|ak,l|

)︄
E

1
2 e−ηk

1
3 xE− 1

3 k|x|α

≤ C

(︄∑︂
l

|ak,l|

)︄
k1−

α
3 E

1
2+

α
3 .

Using the fact that
∑︁
l |ak,l ≤ C(|Ψk|+k

1
3 |V k|+k− 1

3Υk), we can then estimate precisely the
error at z = γi(x). But, as the way to correct these traces errors is through a 1

3 -boundary layer,
the quantity of interest is ⃦⃦⃦

ψ
|z=γi(E

1
3 ζ)

⃦⃦⃦
Hs˜︁η(0,+∞)

.

for ˜︁η < η. Note the choice of s instead of s − 1
2 as the limiting regularity is the vertical one.

Therefore, lifting a trace ti ∈ Hs((0,∞)) by χi(z)ti(ζ) with χi a C∞ function is more than
enough in term of regularity. A crude estimate leads to⃦⃦⃦
ψ
|z=γ1(E

1
3 ζ)

⃦⃦⃦
Hs˜︁η(0,+∞)

≤ C˜︁η,ηE 1
3

∑︂
k

∑︂
l

|ak, l|k
2+s
3

≤ C˜︁η,ηE 1
3

√︄∑︂
k

k2s0
(︂
|Ψk|2 + k

2
3 |V k|2 + k−

2
3 |Υk|2

)︂√︄∑︂
k

k
2
(︂

2+s
3 −s0

)︂
.
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So we obtain a acceptable estimate as long as 2+s
3 − s0 < − 1

2 i.e s < 3s0 − 7
2 .

Remark 3.5.17. If s0 is large enough we obtain more regularity than s0, but this is not a surprise.
It is simply linked with the strong anisotropy of the regularity, and with the fact that higher
frequencies decay faster that the lower ones.

We can do a similar analysis for γ0. The main difference is that near ζ = 0 the trace admits
a singularity like ζα. So the estimates on (ζ0,+∞), ζ0 > 0 are of the same nature for any s > 0,
but we can only derive H0˜︁η estimate near 0⃦⃦⃦
ψ
|z=γ0(E

1
3 ζ)

⃦⃦⃦
H0˜︁η(0,+∞)

≤ C˜︁η,ηE α
3

∑︂
k

∑︂
l

|ak, l|k
3−α
3

≤ C˜︁η,ηE α
3

√︄∑︂
k

k2s0
(︂
|Ψk|2 + k

2
3 |V k|2 + k−

2
3 |Υk|2

)︂√︄∑︂
k

k2
(︁
1−α

3 −s0
)︁
.

We have similar estimates for the traces of v⃦⃦⃦
v
|z=γ1(E

1
3 ζ)

⃦⃦⃦
Hs˜︁η(0,+∞)

≤ C˜︁η,η (︂∥Ψ∥Hs0 + ∥V ∥
Hs0− 1

3
+ ∥Υ∥

Hs0− 1
3

)︂√︄∑︂
k

k
2
(︂

3+s
3 −s0

)︂

and for s = 0, at z = γ0⃦⃦⃦
v
|z=γ0(E

1
3 ζ)

⃦⃦⃦
H0˜︁η(0,+∞)

≤ C˜︁η,η (︂∥Ψ∥Hs0 + ∥V ∥
Hs0− 1

3
+ ∥Υ∥

Hs0− 1
3

)︂√︄∑︂
k

k
2
(︂

4−α
3 −s0

)︂
.

Remark 3.5.18. For v the derivative is not as singular as one can expect. Indeed the worse term
is cos(kE

α
3 ζα). So instead of a ζα singularity we obtain a ζ2α, which is in H1(0, 1) for α > 1

4 .
As a consequence, for α > 1

4 we can obtain estimates in H1˜︁η as long as s0 ≥ 2.

And for ∂nψ we also obtain⃦⃦⃦
∂nψ|z=γ1(E

1
3 ζ)

⃦⃦⃦
Hs˜︁η(0,+∞)

≤ C ∀s < 3s0 −
13

2⃦⃦⃦
∂nψ|z=γ0(E

1
3 ζ)

⃦⃦⃦
H0˜︁η(0,+∞)

≤ C ∀s0 >
5

2
− α

3
.

So with s0 ≥ 4 we obtain sufficient estimate on the traces on v, ψ, ∂nψ to bootstrap the
construction to get as close as wanted to the exact boundary condition (3.46)

(−1)i+1 1

κi
ψ +

1√
2

(︂
E

1
6 v −

√
E∂zψ

)︂
= 0.

Proposition 3.5.7. Let γ0, γ1 be two smooths functions. Let K ∈ N.
Then under the exact same hypotheses as Proposition 3.5.6, with the modifications

• Ωflat = (0, 1)× (0, h) is replaced by Ω = {(x, z) s.t 0 ≤ x ≤ 1, γ0(x) ≤ z ≤ γ1(x)}.

• s0 ≥ 1 is replaced by s0 ≥ 4.

we obtain the same results as Proposition 3.5.6, except for the boundary condition (3.5.6), ψ|z=0 =
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ψ|z=h = 0, which is replaced by, ∀˜︁η < η⃦⃦⃦⃦
(−1)i+1 1

κi
ψ +

1√
2

(︂
E

1
6 v −

√
E∂nψ

)︂⃦⃦⃦⃦
Hs0˜︁η

≤ CE
K+1

6 .

Proof. For the construction, let ε > 0 small enough, χ0, χ1 be C∞ function such that

χi|z=γi = 1

χi|z=γ1−i
= 0.

The proof is a simple induction on K. For K = 0 this is only the construction of Proposi-
tion 3.5.6 and the estimate of the trace remainder.

For K ≥ 0 let us suppose we can construct such approximate solution (vK , ψK), with TKi =

(−1)i+1 1
κi
ψK + 1√

2

(︂
E

1
6 vK −

√
E∂nψ

K
)︂
∈ Hs0˜︁η+ε(Γi) such that ∥T k∥ ≤ CE

K+1
6 .

Then let
ψl = κ0T

K
0 χ0 − κ1T

K
1 χ1.

We have (vK , ψK)+(0, ψl) satisfying exactly (3.5.6). And the error f l generated in the equation
by adding this lifting is such that

∥f l∥Hs0−2˜︁η+ε/2
×Hs0−4˜︁η+ε/2

≤ C∥ψl∥Hs0˜︁η+ε/2
≤ CE

K+1
6 .

When the solve the boundary layer equation with V = Ψ = Υ = 0 at ζ = 0, ψ = 0 at the top
and the bottom and with f l as a source term. And finally with ull such solution we have

uK+1 = uK + ul⏞⏟⏟⏞
lift the trace

+ ull⏞⏟⏟⏞
lift the error created byul

satisfies the equation up to an acceptable remainder, and has traces

⃦⃦
TK+1

⃦⃦
Hs0˜︁η =

⃦⃦⃦⃦
⃦⃦(−1)i+1 1

κi
ψll⏞⏟⏟⏞
0

+
1√
2

(︂
E

1
6 vll −

√
E∂nψ

ll
)︂⃦⃦⃦⃦⃦⃦

Hs0˜︁η
≤ CE

1
6 ∥ull∥Hs0˜︁η+ε/2

≤ CE
K+1

6 E
1
6 .

Remark 3.5.19. In fact, using the previous remark, for α > 1
4 , the source term corresponding to

this lifting, f = (fv, fψ) is in H1˜︁η ×H0˜︁η. So the loss of regularity is completely compensated by
the elliptic regularity, since f ∈ H1˜︁η ×H0˜︁η is enough to consider s0 = 3.

But, our goal is not to construct a boundary layer near a vertical wall. It is to lift the
discontinuity of ψ̄ without creating another discontinuity. The idea is to consider an approximate
solution u = u−1x<0+u+1x>0, and it seems that the conditions in order to have (v̄, ψ̄)+(u, ψ)
in the right functional space is

[ψ]x=0 = −[ψ̄]x=0 [v]x=0 = −[v̄]x=0 [∂xψ]x=0 = −[∂xψ̄]x=0

i.e, 3 conditions when we have 3+3 = 6 degrees of freedom. Using only this approach our problem
is under-determined. Nevertheless, we want not only to be in the right functional space, but also
to have a small remainder. And when computing

(︁
∂z(v + v̄)−∆2(ψ + ψ̄), ∂z(ψ + ψ̄) + ∆(v + v̄)

)︁
,
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due to the construction of u, terms like

rψ = [∂3x(ψ + ψ̄)]x=0 δx=0⏞⏟⏟⏞
∈H−2

+[∂2x(ψ + ψ̄)]x=0 δ
′
x=0⏞⏟⏟⏞

∈H−2

+ [∂x(ψ + ψ̄)]x=0⏞ ⏟⏟ ⏞
=0

δ′′x=0⏞⏟⏟⏞
/∈H−2

+ [(ψ + ψ̄)]x=0⏞ ⏟⏟ ⏞
=0

δ
(3)
x=0⏞⏟⏟⏞
/∈H−2

rv = [∂x(v + v̄)]x=0 δx=0⏞⏟⏟⏞
∈H−1

+ [(v + v̄)]x=0⏞ ⏟⏟ ⏞
=0

δ′x=0⏞⏟⏟⏞
/∈H−1

appears. If the term in red must be exactly 0 to have a remainder in an acceptable space, the
ones in blue are also problematic. In fact, the Definition 3.2.2 of an approximate solution allows
the remainder to be in negative Sobolev spaces, but the trade-off is that their norms must be
small, for example we need ∥rv∥L2 or E−1∥rv∥H−1 to be smaller that the energy norm of the
approximate solution. But δ0 /∈ L2, so we need to take [∂x(v + v̄)]x=0 = 0 (or at least o(E),
which is not the case for an arbitrary jump).

Note that, in all practical cases the jump created by the previous boundary layer are in
C∞((0, 1)) (and even constant), so we can choose an arbitrarily high regularity. This will be the
setting of the following proposition, even if one can replace C∞ with a high order Sobolev space.

Proposition 3.5.8 (Flat stewartson 1
3 layer for a jump). Let ū = (v̄, ψ̄) such that (v̄, ψ̄) ∈

H1(Ω)×H2(Ω), ū is an approximate solution of (3.32) on Ω\{x = 0}, and

|[v̄]C∞ | ≤ CE
1
6 |[∂xv̄]C∞ | ≤ CE− 1

6⃓⃓
[ψ̄]C∞

⃓⃓
≤ CE

1
2

⃓⃓
[∂xψ̄]C∞

⃓⃓
≤ CE

1
6⃓⃓

[∂2xψ̄]C∞
⃓⃓
≤ CE− 1

6

⃓⃓
[∂3xψ̄]C∞

⃓⃓
≤ CE− 1

2 .

Then there exists ubl, such that

• ū+ ubl ∈ H1(Ω)×H2(Ω);

• ū+ ubl is an approximate solution of (3.32) on the whole domain Ω.

Proof. The first step is to consider a version of the Stewartson layer for a wall (Proposition 3.5.6)
taking into account the higher order normal derivatives:

Lemma 3.5.9. Keeping the notation and hypothesis of Proposition 3.5.6, there exist Hf an
hyperplane of E = Hs0− 1

3 ×Hs0− 2
3 ×Hs0 ×Hs0− 1

3 ×Hs0− 2
3 ×Hs0−1 with codimension 3, such

that for any (V 0, V 1,Ψ0,Ψ1,Ψ2,Ψ3) ∈ E satisfying

(V 0, V 1,Ψ0,Ψ1,Ψ2,Ψ3) ∈ Hf (3.54)

there exists an approximate solution satisfying

(v, ∂xv, ψ, ∂xψ, ∂
2
xψ, ∂

3
xψ)|x=0 = (E

1
6V 0, E− 1

6V 1, E
1
2Ψ0, E

1
6Ψ1, E− 1

6Ψ2, E− 1
2Ψ3).

There is multiple ways to prove this lemma. For example, if f = 0 it follows directly from
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the explicit expression

ψ =

∞∑︂
k=1

∑︂
l∈{−1,0,+1}

ak,le
λl|k|

1
3 ζ sin(kz)

v = −
∞∑︂
k=1

∑︂
l∈{−1,0,+1}

ak,lλ
4
l k

1
3 eλl|k|

1
3 ζ cos(kz).

and the computation, for all k, of the kernel of the modified Vandermonde matrix⎛⎝−λ4−1k
1
3 λ5−1k

2
3 1 λ−1k

1
3 λ2−1k

2
3 kλ3−1

λ40k
1
3 λ50k

2
3 1 λ0k

1
3 λ20k

2
3 kλ30

λ4+1k
1
3 λ5+1k

2
3 1 λ+1k

1
3 λ2+1k

2
3 kλ3−1

⎞⎠ .

Whatever the method, we obtain three conditions defining Hf :

∀λ ∈
{︃
1,

1 +
√
3i

2
,
1−

√
3i

2

}︃
λ5Ψ0 + λ4k− 1

3Ψ1 + λ3k− 2
3Ψ2 + λ2k−1Ψ3 − λk− 1

3 V 0 − k− 2
3 V 1 =

∫︂ ∞

0

e−λk
1
3 ζ

(︂
λ2k−1fψ,k − k− 2

3 fv,k
)︂
(ζ)dζ.

Note that the existence of such operator can, as in Subsection 3.5.3, be derived from traces
operators once enough regularity on the solution is obtained, but it seems difficult to obtain the
claimed regularity on the traces using this method.

With this Lemma obtained, all it remains is to choose the 6 + 6 = 12 degrees of freedom
satisfying the 6 + 3 + 3 = 12 conditions

Ψ0
+ −Ψ0

− = −[ψ̄] V 0
+ − V 0

− = −[v̄] Ψ1
+ −Ψ1

− = −[∂xψ̄]

Ψ2
+ −Ψ2

− = −[∂2xψ̄] V 1
+ − V 1

− = −[∂xv̄] Ψ3
+ −Ψ3

− = −[∂3xψ̄]

(V 0
+, V

1
+,Ψ

0
+,Ψ

1
+,Ψ

2
+,Ψ

3
+) ∈ Hf+

(V 0
−,−V 1

−,Ψ
0
−,−Ψ1

−,Ψ
2
−,−Ψ3

−) ∈ Hf− .

Comparing to the previous computation, we need one more verification. Indeed, as {V i,Ψj}i=1,2,j=1,...,4

are function of z we have to check that the solution obtained by computing each mode k is in
the correct functional space. More precisely, we have to check that

([v̄], [∂xv̄], [ψ̄], [∂xψ̄], [∂
2
xψ̄], [∂

3
xψ̄]) ∈ Hs0− 1

3 ×Hs0− 2
3 ×Hs0 ×Hs0− 1

3 ×Hs0− 2
3 ×Hs0−1.

This is indeed the case, and in particular we can take s0 ≥ 4. Then, thanks to the previous
analysis we can obtain traces errors as small as needed. We then lift these remaining errors by
an arbitrary lifting, which is of size E K+1

6 in all pertinent norms.

3.5.6 How to put the pieces together ?
• For the reduced equation (3.32), which is justified at a formal level far from the x = 0, we

have constructed every building block, as long as δ0 remains small. It seems that the only
remaining difficulty is the change of boundary conditions when δ−1

0 → 0. Indeed, for the
E

1
3 layer, if δ0 is small, the first order of the effective boundary condition is ψ|z=γ0 = 0,

while it is v − ∂nψ = 0 for a large δ0. And we will see in Section 5.4 that this change of
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boundary condition create a singularity.
As a consequence, we could hope for an approximation result for (3.32) if δ0 is modified in
a neighborhood of 0 into a ˜︁δ0 such that ˜︁δ0 can be greater than

√
E but does not go to ∞.

• For the Proudman problem between two spheres me must avoid two obstacles: the degen-
eracy of the Ekman layer, creating among other the difficulties related to (3.32) we just
raised, and the equatorial Ekman layer. However, there are at least two ways to make the
previous computations sufficient to conclude in the whole Proudman problem.

1. The first one is to drop the degeneracy, but to keep the shear layers. This correspond
to either α = 1 (from a formal point of view) or a smooth κ0 but a v0 admitting a
discontinuity at x = 0. We will study this setting in the Subsection 3.5.6.

2. The second one is to choose carefully v0 and v1 such that the problematic boundary
layers does not appear at the relevant scalings. This correspond to a high order of
cancellation of v1 − v0 at x = 0, or a v1 − v0 supported outside a small equatorial
zone. Note that we were no able to do so in a way that let the shear layers appears.
Nevertheless, the computation of the following paragraphs suggest that these obstacles
are indeed local obstacles.

Smooth κi and discontinuous vi
In this subsection we will consider that κ0, κ1 are smooth but that v0 has a discontinuity at
x = 0. Note that the following result can be adapted in the case where κ0 is discontinuous but
not singular at x = 0. The case of physical interest is κ0 = 1x<0 corresponding to a rotating
cylinder inside another rotating cylinder of larger radius, κ0 = 0 being the Neumann condition
born from the symmetry of the problem.

This problem was described by Van der Vooren in [73] and already highlight the interaction
between the 1

4 and 1
3 layers, and the similarity sublayer.

We will make use the 1
4 -boundary layer operator of Proposition 3.5.3 and 1

3 -boundary layer
operator of Proposition 3.5.6.

In fact with these two operators identified the construction is almost immediate.

Proposition 3.5.10. Let γ0, γ1 ∈ C∞(T) and v0, v1 such that v1 ∈ C∞(T) and

v0 = vreg0⏞⏟⏟⏞
∈C∞(T)

+1x<0

. Let uE be the solution of (3.9) with boundary conditions (3.10). Then

lim
E→0

⃦⃦
uE − (v̄, 0)

⃦⃦
L2 = 0

with
v̄ =

κ0v0 + κ1v1
κ0 + κ1

.

Moreover we have in fact the asymptotic expansion

uE = (v̄, 0) + ubl,
1
4

(︃
x

E
1
4

)︃
+ ubl,

1
3

(︃
x

E
1
3

)︃
+ lower order terms (in L2).

Sketch of proof. This proof is only an application of the boundary layer operators of previous
section in the following order:
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1. We first construct an approximate solution from the Ekman and standard interior operator
of Section 3.4. The main problem is the fact that uapp /∈ H1 ×H2.

2. We then construct two E 1
4 operators, lifting the discontinuity on v̄. However we have still

a discontinuity on ψ̄.

3. We construct the E 1
3 operators in order to lift the discontinuity on ψ̄.

Note that we can continue up to any order with this configuration.

The case v0 ≃ v1

As all the shear layers at x = 0 are driven by (v0 − v1), we can avoid them by requiring that
v0 − v1 has a high order of cancellation near x = 0. This is the goal of this subsection.

In order to quantify more precisely how close to the equatorial zone we can get let us develop
the explicit calculation of Proposition 3.4.1 in the case of a sphere, i.e γ0(x) =

(︁
1−

√
−x
)︁
1x<0.

In this case (ζ, σ) =

(︃√︂
cos(θ)
E R, θ

)︃
where R is the usual radius of the polar coordinates.

Denoting by α±(θ) the two functions used to characterize the boundary layer functions of
Proposition 3.4.1, we have

v(r, θ) = α+(θ)e
− 1+i√

2
E− 1

2
√︁

cos(θ)(R−1)
+ α−(θ)e

− 1−i√
2
E− 1

2
√︁

cos(θ)(R−1)

ψ(r, θ) = −

√︄
E

cos(θ)

(︃
1 + i√

2
α+(θ)e

− 1+i√
2
E− 1

2
√︁

cos(θ)(R−1)
+

1− i√
2
α−(θ)e

− 1−i√
2
E− 1

2
√︁

cos(θ)(R−1)

)︃
so, dropping the ± for the sake of the computation,

∂zv = cos(θ)∂rv − r−1 sin(θ)∂θv

=
1√
E

cos(θ)
3
2λv − 1

r

⎛⎜⎜⎜⎝α′(θ)

α(θ)
sin(θ)− sin(θ)2

2 cos(θ)

√︁
cos(θ)(r − 1)√

E⏞ ⏟⏟ ⏞
ζ

⎞⎟⎟⎟⎠ v

and

∆x,zv = r−1∂r(r∂rv)) + r−2∂2
θv

=
λ2

E
cos(θ)v +

√︁
cos(θ)

r

λ√
E
v +

1

r2

(︃
α′′(θ)

α(θ)
− λ

α′(θ)

α(θ)

sin(θ)

cos(θ)
ζ +

sin(θ)2

4 cos(θ)2
(︁
λ2ζ2 − λζ

)︁
− λ

2
ζ

)︃
v.

Similarly

∂zψ = −λ2 cos(θ)v − 1

r

(︄
−
√
Eλ sin(θ)√︁
cos(θ)

α′(θ)

α(θ)
+
λ
√
E sin(θ)2

2 cos(θ)
3
2

(λζ − 1)

)︄
v

and a explicit expression for ∆2
x,zψ.

This allows us to compute explicitly the size of the boundary layer solutions. For example

∥ψ∥2L2 =

∫︂∫︂
E

cos(θ)
α2(θ)e−2λ

√︁
cos(θ)E− 1

2 (r−1)rdrdθ = C

(︃
E

3
2

∫︂
α2(θ)

cos(θ)
3
2

dθ + E2

∫︂
α2(θ)

cos(θ)2
dθ

)︃
.
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From there we can conclude the convergence but only in a setting that exclude any shear
layer

Proposition 3.5.11. Let v0, v1 ∈ C4 such that v0 − v1 cancels itself to the order 3 at x = 0, i.e
α±(0) = α′

±(0) = α′′
±(0) = α′′′

± (0) = 0.
Then when E → 0 we have uE → (v̄, 0) in the energy space, with

v̄ =

{︄
κ0v0+κ1v1
κ0+κ1

for x < 0

v1 for x > 0.

Remark 3.5.20. We have

κ0v0 + κ1v1
κ0 + κ1

= v1 + (v0 − v1)
1

1 + κ1

κ0⏞ ⏟⏟ ⏞
∼ v0(x)−v1(x)

1+x
1
4

.

The singularity of the red term, source of all the various shear layers, being compensated by the
cancellation of v0 − v1.

Sketch of proof. Constructing the interior and boundary layers up to the first order, as in the
case of two disks, and computing explicitly the remainders, we obtain the result.

The three points to keep in mind are the following:

• From the Ekman condition (2.24) we obtain, as vint = v̄

α± =
1

2
(v0 − v̄) =

κ1(v0 − v1)

2(κ1 + κ0)
.

• The associated ψint = 0+ does not create any additional difficulty.

• We cannot use a usual cut-off for the boundary layer created near the equator. As a
consequence, when the boundary layer size on Γ0 is greater than 1 this create a trace on
Γ1. This trace is at least C3 and of size (in terms of |V | + E− 1

2 |Ψ| + |∂nΨ|, which is the
adequate L∞ norm on Γ1)

1√︁
cos(θ)

e−C
√︁

cos(θ)E− 1
2 |α±(θ)| ≤ C

(︂π
2
− θ
)︂4− 1

2

e−C
√︂

π
2

−θ

E ≤ CE
5
2

which is sufficiently small to lift by any function without perturbing the energy estimates.

Remark 3.5.21. This result is far from optimal. For example Rousset in [63] managed to prove the
nonlinear stability of Ekman-Hartmann boundary layers with a well-prepared initial condition
u0 satisfying an assumption of cancellation near the equator, the hypothesis (H):

|u0(x)| ≤ C| cos(θ)| 12 .
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The use of a localized cut-off

Maybe the best approach to justify the construction would be to stop the Ekman layers at an
angle θ such that (π2 − θ) ≤ Eβ . More precisely, rather than considering α±, i.e v0 − v1, to
be like (π2 − θ)k for k large enough, a more natural construction would be to choose α± with
compact support. Indeed, our ultimate goal would be to use the methods proposed by Dalibard
and Saint-Raymond in [17]. In this study, they displayed that the best way to connect such
layers in not through a global boundary layer with varying size and amplitude, but the use of
cut-offs in different subregions.

χEkmanu
Ekman + χequatorialu

equatorial + · · ·

Where χEkman and χequatorial are localized so that χEkman(θ) = 0 for θ > π
2 − CEβ , and

χequatorial(θ) = 0 for θ < π
2 − CEβ

So we must evaluate the error with α± of the form α± = χ±

(︂
cos(θ)
Eβ

)︂
, with χ± smooths and

with support far from 0. This can be a perspective for future works.

3.6 Formal remarks on the equatorial problem
In the case relevant to geophysical physic the previous assumptions do not hold as the model
often studied is typically v0 = 0, v1 = 1X<0, and the sphere is α = 1

2 .
In order to find the equatorial scaling let (X,Z) be the global variables. We must look for the

new scaling and boundary layer near the equator X = 0, Z = 0. This layer has the particularity
to be a of small size both in the distance to the boundary and the angle θ. From this observation
we must expect two scalings and a PDE in a 2D domain instead of an ODE. In order to have a
simple fixed domain let us choose as coordinates y = X + Z

1
α (which behaves like the distance

to the boundary) and z = Z (rather than the exact distance to the boundary and θ).
With this change of variables followed by the rescaling y → Eβyy and z → Eβzz we obtain

∂Z = E−βz∂z + E−βy+ 1−α
α

·βz 1

α
z

1−α
α ∂y

∆X,Z = E−2βz∂2
z + E−2βy∂2

y +
1

α2
E−2βy+2 1−α

α
·βzz2

1−α
α ∂2

y + E−βy+ 1−2α
α

·βz
(︃
2
1

α
z

1−α
α ∂y∂z +

1− α

α2
z

1
α
−2∂y

)︃
.

As βz > 0 and 1 > α > 0 we have −2βy + 2 1−α
α · βz > −2βy and −βy + 1−2α

α · βz >
−2max(βy, βz). As always, we then neglect (i.e these will be put in the remainder) the lower
order differential operators if their power of E is greater than the one of higher order terms. This
leads to the approximation

∂Z = E−βz∂z + E−βy+
1−α
α ·βz

1

α
z

1−α
α ∂y

∆X,Z = E−2βz∂2z + E−2βy∂2y + E−βy+
1−2α

α ·βz2
1

α
z

1−α
α ∂y∂z + l.o.t.

And the operator to be considered is
⎛⎜⎜⎜⎜⎝
(︄
E1−2βz∂2

z + E
1−2βy ∂2

y + E
1−βy+1−2α

α
·βz 2 1

α
z
1−α
α ∂y∂z

)︄
E−βz ∂z + E

−βy+1−α
α

·βz 1
α

z
1−α
α ∂y

E−βz ∂z + E
−βy+1−α

α
·βz 1

α
z
1−α
α ∂y

(︄
E1−2βz∂2

z + E
1−2βy ∂2

y + E
1−βy+1−2α

α
·βz 2 1

α
z
1−α
α ∂y∂z

)︄2

⎞⎟⎟⎟⎟⎠ .

The predominant balance leads to βy = 1
3−α , βz = α

3−α . The scaling is v = v, ψ = E
1

3−αψ, and
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E
α

3−α

E
1

3−α

X

Z

y

z

x = 0

Figure 3.15 – The change of variables. The additional vertical Ekman layer is in darker blue.

the equation in this new scaling (keeping the same names for the rescaled variables)(︂
∂z + z

1−α
α ∂y

)︂
v − ∂4yψ − E4· 1−α

3−α ∂4zψ + l.o.t = 0(︂
∂z + z

1−α
α ∂y

)︂
ψ + ∂2yv + E2· 1−α

3−α ∂2zv + l.o.t = 0.

Note that, to neglect a priori the higher derivatives with respect to z (in blue) may leads to
the formation of a new nested boundary layer in z. This is indeed the case, and this boundary
layer is of size Eβ where −2β = 6 · 1−α

3−α − 6β i.e β = 3
2 · 1−α

3−α . Therefore, in the interior variables
the vertical boundary layer size is

E
3
2

1−α
3−α × E

α
3−α = E

1
2 .

And the associated equation is
∂˜︁z − ∂4˜︁zψ + l.o.t = 0

∂˜︁zψ + ∂2˜︁zv + l.o.t = 0.

So this is no more than a standard Ekman layer, as the geometry is flat. This additional layer
can be seen in Figure 3.15.

The final boundary layer equation we must investigate is thus

(︂
∂z + z

1−α
α ∂y

)︂
v − ∂4yψ = 0(︂

∂z + z
1−α
α ∂y

)︂
ψ + ∂2yv = 0

(3.55)

on the domain y > 0, z > 0 . This is the goal of the next chapter, but let us make some

preliminary formal remarks.
First, some heuristics of what happens when one term of the equation becomes negligible:

• If we forget about the ∂z term, i.e the degenerate nature of this layer, we can work as if z
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is constant, and end up with
z

1−α
α ∂yv − ∂4yψ = 0

z
1−α
α ∂yψ + ∂2yv = 0.

Therefore, in boundary layer variables, with the characteristic length ˜︁δz = z−
1−α
2α , and with

y = ˜︁δzζ we recover equation (2.27), i.e the classical Ekman layers equation. As the error
from making such assumption is ∂zuEkman

(︂
yz

1−α
2α

)︂
, i.e like

1

z
yz

1−α
2α exp

(︂
−λyz

1−α
2α

)︂
we see that we can hope to justify such approximation, for example via a series expansion
in inverse powers of z, only for z ≫ 1.

Moreover in (r, θ) variables, as y = (r−r0)E− 1
3−α and z ≃

(︂
cos(θ)

1
1−α

)︂α
E− α

3−α we obtain

u
(︂
yz

1−α
2α

)︂
= u

(︂
(r − r0)E

− 1
3−α cos(θ)

α
1−α · 1−α

2α E− α
3−α · 1−α

2α

)︂
= u

⎛⎝ (r − r0)√︂
E

cos(θ)

⎞⎠ .

This show that we reconnect, at least formally with the Ekman layers for large z.

• On the contrary if we forget about the z∂y term, i.e the influence of the geometry, we
obtain on the domain (0,∞)× (0,∞)

∂zv − ∂4yψ = 0

∂zψ + ∂2yv = 0
(3.56)

which is the unbounded version of the 1
3 -layer. Using a Laplace transform with respect to

z we obtain an ODE in y with characteristic polynomial

λ6 + p2 = 0

where p is the Laplace variable. Thus, as long as the traces at y = 0 (and source terms)
are in some space Hs

η with s ≥ 0 and η > 0, we can solve explicitly the equation and lift
up to three boundary conditions.
But, the striking feature of this approximation is less its explicit resolution than the asymp-
totic scaling. In fact, if we scale down to the equatorial layer but keep the orthogonal basis
(x, z) we recover (3.56) (with x instead of y) on the domain z ≥ 0, x ≥ −cz 1

α . Note that
this is the same as considering (3.55) along the characteristic of the transport ∂z+ z

1−α
α ∂y.

Anyway, in these variables the limit z → ∞ is the connection to the 1
3 -layer. And the

parabolic scaling we can derive formally is

z2 ∼ x6

i.e in the variables of the whole space

E
2α

3−α z2 ∼ E
6

3−αx6.
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z

τ

y

y   z
α−1

2α

x   τ
1

3

Vertical Ekman layer

Transition to degenerate 
Ekman layer

Transition to 
 Stewartson 1/3 layer

Figure 3.16 – The connections between the equatorial layer and the others boundary layers.

This is exactly the scaling x ∼ (Ez)
1
3 of the 1

3 -layer.
This connection between the asymptotic parabolic scaling of the equatorial layer and the
similarity sublayer is also present in the MHD problem of Chapter 5, where we will give
more precisions.

• Lastly, if we forget about the higher derivatives in y, we recover a transport equation whose
characteristic are the iso-x. This is just the Taylor-proudman columns, but has no effect
in our study where we search only the boundary layer terms.

Figure 3.16 summarize the connections to the others layers in the variables (y, z).
Let us now make remarks on the domain and boundary conditions of equation (3.55) in its

entirety.

• If the domain was rather y ∈ R, z > 0 than y > 0, z > 0 a simple Fourier transform in y

would leads to two equations on w± = v ± (−∆)
1
2 ψ,

∂zw± + z∂yw± = ± (−∆)
3
2 w±

so one behaves like a solution of a parabolic equation, the other as the solution of a
retrograde parabolic equation. Therefore, we must cancel the retrograde solution, that is,
in terms of degree of freedom, to constrain one with respect to z propagation. This is why
we can only prescribe 2−1 = 1 condition at z = 0. It is also to be noted that this analysis is
less obvious for the domain y > 0 due to the fractional character of the differential operator
and the importance of boundary conditions at y = 0. We nevertheless expect to have a
differential condition when taking traces in z. This will the idea behind the transparent
boundary condition.

• If we consider from a very formal point of view the characteristic polynomial in y of this
equation we obtain

λ6 − (zλ+ ∂z)
2

Therefore, as in Fourier ∂z = iξ we see that the mode λ = 0 appears only for low frequencies
in z. But the degenerated character is linked with the high frequencies. So it would seem
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reasonable to lift up to 3 boundary conditions on y = 0 (and not only 2 as for the Ekman
scaling).
Remark 3.6.1. The previous point shows that, contrary to what can be expected in a
bounded domain, the main obstacle here will be integrability rather than regularity.

• To give an example of this integrability obstruction, we were unable to prove existence
and uniqueness in the same space, for this equation and domain. However, we recover the
well-posedness as soon as an additional zeroth order term ensure a control of the L2 norms.
This additional control can probably be with time dependency, giving a L∞

t (L2(Ω)) control
and replacing Hs estimates by L2

t (H
s(Ω). But this introduce many more problems outside

this particular scaling, from internal waves to boundary layer stability.

• A less radical way would be to introduce damping terms, for example the equation

ϵψ∂
2
yψ +

(︂
∂z + z

1−α
α ∂y

)︂
v − ∂4yψ = 0

−ϵvv +
(︂
∂z + z

1−α
α ∂y

)︂
ψ + ∂2yv = 0.

This may seems innocuous in the interior scaling as this correspond to

ϵψE
1−α
3−α∆ψ + ∂Zv − E∆2ψ = 0

−ϵvE
1−α
3−α v + ∂Zψ + E∆2v = 0.

However, this create modifications the boundary layer scalings, and has no physical ground.

3.7 Conclusion and perspectives
We were able to recover the several boundary layers scalings of a variant of the Proudman
problem and to study for each one of them the boundary layer equation associated.

• The very well-known Ekman layer of size
√︂

E
cos(θ) .

• Two shear layers of respective sizes E
1

3+α and E
1
4 ( 1

4 can be seen as the very particular
case α = 1).

• A layer, corresponding to the 1
3 -Stewartson layer near a wall. This is to be noted that the

actual size is rather (Ek)
1
3 , explaining the connection to the equatorial problem.

• The E
1

3−α ×E
α

3−α equatorial layer. This last one is of a different nature from the preceding,
as it is a true PDE an cannot be reduced to a one dimensional problem.

From a methodological point of view, the two main ingredients are:

• The use of the boundary layer operator framework, introduced by Dalibard and Saint-
Raymond in [18]. This not only allows for a much simpler approach when closing equations,
but also is essential for the connection of the shear layers, especially when the size are
different.

• The program proposed by Gérard-Varet [31] in order to study these linear boundary layers
operators. And, even for simple ODE, the use of classical elliptic theory, rather than
explicit resolution, for more robustness.
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However, we were not able to conclude for the study of the whole problem, for three main
reasons:

(I) First, the interior operator associated with the E
1

3+α boundary layer, even if precise enough
to conclude the L2 study of (3.34), is not precise enough in high norms to pursue the
expansion and to connect to the others layers at higher order.

(II) Secondly, the Stewartson E
1
3 boundary layer operator seems no longer valid in a singular

geometry near z = 0, i.e when it connects to the equatorial zone.

(III) Lastly, the connection between the Ekman layers and the equatorial zone is also missing.

Note that if the first difficulty seems to be a technical one, probably due to a wrong choice of
cut-off, the two other ones are deeply connected to the equatorial Ekman boundary layer.

For this equatorial layer, we were able to obtain, up to a small variation of the problem,
existence and uniqueness. We were also able to obtain elliptic-like interior regularity. But the
main point is that we were able to identify a transparent boundary condition. This is highly
probable that this transparent boundary condition ensures the connection with the Ekman layer.
A clue to the connection with the Stewartson layer would have been estimates alongside transport
characteristic, but we were unable to find any.

The Figure 3.17 summarize the zones of difficulty.
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III

E
1/3

E
1/(3+α)

E
1/4

I

II

Figure 3.17 – Zones of difficulties for Proudman problem.
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In this paper we study the well-posedness of a simple model of boundary layer for rotating
fluids between two concentric spheres near the equator. We show that this model can be seen as
a degenerate elliptic equation, for which we prove an existence result thanks to a Lax-Milgram
type lemma. We also prove uniqueness under an additional integrability assumption and present
a transparent boundary condition for such layers.

4.1 Introduction
In this article we will study the linear Ekman boundary layer near the equator for a rotating fluid
between two concentric spheres. With v the azimuthal flow velocity and ψ the stream function,
the equation we will consider is

∂zv + z∂yv −
1

2
∂4yψ = sψ

∂zψ + z∂yψ +
1

2
∂2yv = sv.

(4.1)

109
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We will mainly consider three domains and boundary conditions:

(I) The domain is y > 0, z > 0 and the boundary condition at z = 0 is ψ|z=0 = 0.

(II) The domain is y > 0,H > z > 0, the boundary condition at z = 0 is ψ|z=0 = 0 and the
one at z = H is ψ|z=0 = Λv, where Λ : H

1
2
0 → H− 1

2 is a non-positive operator.

(III) The domain is y > 0, z > H and the boundary condition at z = H is v|z=H = vH ∈ H
1
2
0 .

Other cases can be obtained by altering the z boundary conditions (for example ψz=0 =
−Λv|z=0). The boundary condition at y = 0 will be

v|y=0 = V, ∂yψ|y=0 = Υ, ψ|y=0 = Ψ

and when not especially specified we will take V = Υ = 0, Ψ = 0.
Since their description by Proudman [60] and their formal analysis by Stewartson [69, 70]

the behavior of highly rotating fluids have been widely mathematically studied. We refer to
the book of Chemin, Desjardins, Gallagher and Grenier [11] for more details. Although the
case of a horizontal surface (and the resulting E

1
2 boundary layer called Ekman layer) is now

well understood, especially since Grenier and Masmoudi [40], several other geometries have been
considered. For a vertical surface (i.e the axis of rotation is perpendicular to the normal) the
resulting boundary layer of size E 1

3 is well known and analysed (for a formal analysis see for
example Van de Vooren [73], and for a detailed analysis with anisotropic viscosity see Bresch,
Desjardins and Gérard-Varet [7]). In the spherical case the main difficulty is near the equator: as
the latitude goes to 0 the Ekman boundary layer degenerates and the classical analysis becomes
invalid, leading to the need for an additional assumption of smallness near the equatorial area
(as in the article by Rousset [63]). It is to be noted that for small latitudes the β-plane model is
used to take into account the variations of the angle between the axe of rotation and the normal
of the surface as done by Dalibard and Saint-Raymond [19].

In this paper we will focus on a linear and time independent model taking into account the
spherical geometry (or any other similar geometry) in the vicinity of the equator. The resulting
boundary layer (of size E 1

5 × E
2
5 ) was first derived by Stewartson [69] and is a typical example

of so called degenerate boundary layer [45, 37]. The derivation of the equation and its numerical
analysis have been done notably by Marcotte, Dormy and Soward [54], and is briefly recalled
in the appendix, but up to our knowledge no formal proof of the well posedness of the problem
exists.

For equation (4.1) we will prove the existence in the natural energy space. We will also prove
the uniqueness assuming additional integrability. For case (II) and for variants these additional
assumptions are redundant and we have one and only one solution, however for case (I) and (III)
the resulting space is smaller leading to an incomplete result.

A simplified statement of the existence and uniqueness result for sv = sψ = 0 is:

Theorem 4.1.1. For any V,Υ ∈ H
1
2
0 (R+), Ψ ∈ H

3
2
0 (R+) there exists a weak solution of (4.1)

in cases (I),(II),(III). This solution is such that

∂yv ∈ L2(Ω), ∂2yψ ∈ L2(Ω).

Moreover if v ∈ L2, ψ ∈ L2 this solution is unique.
When uniqueness holds, a transparent boundary layer operator (similar to the one in [54])

will be described. Such an operator is of great interest for numerical analysis or for connecting
the boundary layer to the interior solution (or in this case to other boundary layers).



4.2. Existence and properties of weak solutions 111

The main difficulty of the problem is that each approach to prove well-posedness stumbles
on a different term. Let us observe the influence of each part of the equation:

• The ∂z term is the obvious source of the degenerate character of the equation as a boundary
layer equation as without it we recover a simple ODE with respect to y. More precisely at
each z we recover the classical Ekman layer. Even if its size diverges as z → 0 one can make
a formal expansion in powers of

√
z and y/

√
z which is the same as doing an expansion in

1√︁
cos(θ)

for the Ekman problem.

• The z∂y term associated to the fact that y > 0 is also a major source of difficulties as it
renders the spherical geometry. It prevents any simplification using symmetry arguments
and as a counterpart of a simple domain it creates transport along characteristics z−y2/2 =
c which will create problems when trying to prove uniqueness. A possible approach would
be to use well chosen weighted spaces that follow transport along those characteristics but
we were unable to obtain satisfactory results with it. Without this transport term we
recover the simple case of a vertical geometry.

• The fact that the equation is a system and without a maximum principle prevents us from
directly using modulated energy methods or entropy estimates that are usually helpful in
such situations, for example in cross-diffusion problems.

• Another main difference with standard cross-diffusion is the order of the operator in y:
one term is a laplacian but the other is a bilaplacian. This asymmetry coupled with the
boundary at y = 0 is the main obstacle when trying to find better variables for the problem
as the different regularity leads to mismatches in boundary conditions. The same problem
arises when trying to use the decomposition between symmetric and skew-symmetric term
for Carleman like estimate.

For these reasons, and the fact that the domain in y is unbounded, our approach will be to
consider the problem as a degenerate elliptic one. As a drawback this overlooks the structure of
the skew-symmetric term containing the ∂z and transport terms and leads to sub-optimal results
in terms of regularity with respect to z.

In the first part we will deal with existence with a proof similar to the ones used by Fichera [28].
The main point is the use of a well-chosen space of test functions for a duality approach. This
space must ensure both a coercivity condition for the adjoint via a positivity of boundary terms
and the recovery of the boundary conditions which are weakly formulated. These two constraints
dictate the set of admissible horizontal boundary conditions.

In the second part we will show the uniqueness by standard energy methods. We will also
propose variations of the main problem allowing a uniqueness result in the same space as exis-
tence. For such variants we will define a transparent boundary operator similar to a Dirichlet to
Neumann operator and of great importance for numerical simulation.

4.2 Existence and properties of weak solutions
In this section we prove the existence of weak solutions of (4.1) using duality and energy methods
for degenerate elliptic equations similar to the ones used by Fichera [28]. Thus, multiple boundary
conditions can be weakly prescribed at z = 0 and z = H, but the energy space is not regular
enough to guarantee proper traces.

In the rest of the article we will denote u = (v, ψ) and s = (sψ, sv). The equation can then
be formulated as Lu = (T − 1

2D)u = s where we defined the positive symmetric operator D and
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the skew-symmetric operator T as

T =

(︃
0 ∂z + z∂y

∂z + z∂y 0

)︃
, D =

(︃
∂4y 0
0 −∂2y

)︃
.

The operator D leads to the choice of the energy space E0 and the operator T prescribes both
the allowed horizontal boundary conditions and the choice of the test function space. It is to
be noted that the z derivative and dependence is only involved in T , so it has no corresponding
term in the energy space.

We will provide a detailed analysis for cases (I) and (II) and for homogeneous boundary
conditions.

The other cases follow the exact same analysis, except for the choice of the space of test
functions, which must be adapted to the horizontal boundary conditions. We will discuss non-
homogeneous boundary conditions in the next subsection.

4.2.1 Statement of the result

We define the Banach space E0 by

∥u∥2E0
=

∫︂
Ω

(︄
|∂yv|2 +

⃓⃓⃓⃓
v

1 + y

⃓⃓⃓⃓2)︄
+

∫︂
Ω

(︄⃓⃓
∂2yψ

⃓⃓2
+

⃓⃓⃓⃓
ψ

1 + y2

⃓⃓⃓⃓2)︄

and to enforce homogeneous boundary conditions at y = 0 we define

∥u∥2E0,0
=

∫︂
Ω

(︄
|∂yv|2 +

⃓⃓⃓⃓
v

y

⃓⃓⃓⃓2)︄
+

∫︂
Ω

(︄⃓⃓
∂2yψ

⃓⃓2
+

⃓⃓⃓⃓
ψ

y2

⃓⃓⃓⃓2)︄
.

Lastly for the weak formulation we denote the graph norm

∥u∥E1
= ∥u∥E0,0

+ ∥Tu∥E′
0,0
.

Note that E0 lacks regularity with respect to z to have traces at z = 0 (or z = H). Moreover,
u ∈ E1 requires not only some weak (negative) regularity on ∂zu but also a better integrability
than just E0.

An important point is that these z boundary conditions are derived from the space of test
functions. Let us consider

D = {ϖ(y, z) = (w(y, z), φ(y, z));w ∈ C∞
c ((0,+∞)× [0,+∞)), φ ∈ C∞

c ((0,+∞)× (0,+∞))}

for case (I) and

D = {ϖ = (w, φ);w ∈ C∞
c ((0,+∞)× [0,H]), φ ∈ C∞

c ((0,+∞)×(0,H]) s.t φ|z=H = −Λ∗w|z=H}

for case (II). Note that in fact we can replace D by its closure under the E1 norm.
Given this set of definitions, the following existence theorem holds, where as for the rest of

the paper C denotes a numerical constant

Theorem 4.2.1. Let s = (sv, sψ) ∈ E′
1.
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(i) (existence of weak solutions) There exists u ∈ E0,0 such that ∀ϖ = (w, φ) ∈ D∫︂
Ω

−v∂zφ− zv∂yφ− 1

2
∂2yψ∂

2
yφ+

∫︂
Ω

−ψ∂zw − zψ∂yw − 1

2
∂yv∂yw =

∫︂
Ω

sψφ+

∫︂
Ω

svw

(4.2)

and

∥u∥E0,0
≤ C ∥s∥E′

1

(ii) (boundary conditions) If u ∈ E0 ∩H2
loc then ψ|z=0 = 0 and in case (II), ψ|z=H = Λv|z=H .

(iii) (interior regularity) If ∂2ys ∈ E′
0 we have a Caccioppoli type inequality: for all y0 > 0, z1 > 0

there exist Cy0,z1 > 0 such that∫︂
(y0,∞)×(0,z1)

⃓⃓
∂4yψ

⃓⃓2
+
⃓⃓
∂3yv
⃓⃓2 ≤ Cy0,z1

(︂
∥u∥2E0

+
⃦⃦
∂2yu

⃦⃦
E′

0

)︂

Remark 4.2.1. as we have

∂zv = −z∂yv +
1

2
∂4yψ + sψ

∂z∂yψ = −z∂2yψ − 1

2
∂3yv + ∂ysv

from the interior regularity with respect to y we can obtain interior regularity with respect to z.

Points (i), (ii) and (iii) will be proved in subsection 4.2.3, 4.2.4 and 4.2.5 respectively.

4.2.2 Remarks on nonhomogeneous boundary conditions

The previous result only considers homogeneous boundary conditions. As usual we can recover
nonhomogeneous boundary condition by lifting these boundary conditions. In this subsection we
will briefly discuss this lifting.

Note that an important difference with Ekman boundary layers is that we are able to impose
3 boundary conditions at y = 0 whereas in classical Ekman boundary layers only 2 boundary
conditions can be imposed. This difference does not come from any particularity of our system
as the same number can be prescribed if we replace the transport ∂z + z∂y by λu + c∂y with
λ, c ̸= 0. On the contrary, one can only prescribe 2 2 conditions for Ekman layers. this comes
from a degeneracy of the Ekman system, which causes the Ekman pumping.

In order to consider nonhomogeneous boundary conditions we will need the following lemma:

Lemma 4.2.2. • Let Ψ ∈ H
3
2
0 (R+) i.e Ψ ∈ H

3
2 and Ψ(0) = 0. Moreover suppose that

zΨ ∈ H
3
2 . Then there exist r ∈ E0 such that

Lr ∈ E′
1 and ∥Lr∥E′

1
≤ C ∥(1 + z)Ψ∥

H
3
2
0

r|z=0 = 0, rv|y=0 = 0, rψ|y=0 = Ψ, ∂yrψ|y=0 = 0
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• Let Υ ∈ H
1
2
0 (R+) i.e such that Υ ∈ H

1
2 and∫︂ 1

0

|Υ|2(z)
z

dz < +∞. (4.3)

Let suppose moreover zΥ ∈ H
1
2 (R+). Then there exist r = (rv, rψ) ∈ E0 verifying

Lr ∈ E′
1 and ∥Lr∥E′

1
≤ C ∥(1 + z)Υ∥

H
1
2
0

r|z=0 = 0, rv|y=0 = 0, rψ|y=0 = 0, ∂yrψ|y=0 = Υ

• Let V, v0 ∈ H
1
2 (R+) such that ∫︂ 1

0

|V (ζ)− v0(ζ)|2

ζ
dζ < +∞ (4.4)

and zV ∈ H
1
2 . Then there exist r = (rv, rψ) ∈ E0 verifying

Lr ∈ E′
1

rv|z=0 = v0, rψ|z=0 = 0, rv|y=0 = V, rψ|y=0 = 0, ∂yrψ|y=0 = 0

and

∥Lr∥E′
1
≤ C

⎛⎝∥(1 + z)V ∥
H

1
2
+ ∥v0∥

H
1
2
+

√︄∫︂ 1

0

|V (ζ)− v0(ζ)|2
ζ

dζ

⎞⎠ .

The proof is exactly the same as the one of theorem 1.5.2.4 in Grisvard’s book [41]. Once
the compatibility conditions (4.3),(4.4) are verified, one can find rv ∈ H1(Ω) and rψ ∈ H2(Ω)
verifying the boundary conditions. The only difference is that we first need to lift (1+z)(V,Υ,Ψ)
and then divide the lifting by (1 + z) to obtain the correct integrability of z∂yr.

Note that there is no physical sense of non zero ψy|=0 in our problem. In fact this corresponds
to the non penetration condition, and a non zero Ψ will create a pumping similar to the Ekman
pumping. However we included this case for the sake of mathematical completeness.

Moreover these hypotheses are far from optimal, in fact we recover more regularity with
respect to z than needed for Lr.

Once this lemma is established, by linearity, considering the equation for u − r with source
term Lr we can solve the equation with source terms satisfying the hypothesis of the lemma.

In the rest of the paper we will thus consider only homogeneous boundary conditions at y = 0.
For a nonhomogeneous horizontal boundary condition in case (III) condition (4.4) then be-

comes
v|z=H = vH ∈ H

1
2
0 .

This condition will be used in the formulation of the transparent boundary condition.

4.2.3 Duality principle (proof of (i))

To prove the first part of theorem 4.2.1 we will consider the equation as an elliptic equation,
albeit a degenerate one. It will allow us to use classical functional analysis and to carefully
encode the boundary conditions in the functional spaces.
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Equation (4.2) can be seen formally as the following problem: find u ∈ E0,0 such that
∀ϖ = (w, φ) ∈ D ⊂ E1,

⟨Lu,ϖ⟩E′
1,E1

=

∫︂
Ω

−v∂zφ− zv∂yφ− 1

2
∂2yψ∂

2
yφ+

∫︂
Ω

−ψ∂zw − zψ∂yw − 1

2
∂yv∂yw

= +

∫︂
Ω

sψφ+

∫︂
Ω

svw = ⟨s,ϖ⟩E′
1,E1

where L : E0,0 → E′
1 is a continuous linear operator as ∥u∥E0

≤ ∥u∥E0,0
and⃓⃓⃓

⟨Lu,ϖ⟩E1,E′
1

⃓⃓⃓
=

⃓⃓⃓⃓∫︂
Ω

u · (Tϖ) +
1

2

∫︂
Ω

(∂2yv∂
2
yw + ∂yψ∂yφ)

⃓⃓⃓⃓
≤ (∥u∥E0,0

∥Tϖ∥E′
0,0

+∥u∥E0
∥ϖ∥E0

).

Through usual functional analysis methods (typically Lions-Lax-Milgram theorem, see lemma 4.4.1
for details) we have at least one solution of Lu = s as long there exist a coercivity inequality for
the adjoint operator L∗ : E1 → E′

0,0, i.e a constant C such that

∀ϖ ∈ D ⊂ E1 :

∥L∗ϖ∥E′
0,0

≥ C ∥ϖ∥E1
.

We have for ϖ ∈ D

⟨L∗ϖ,ϖ⟩E′
0,0,E0,0

=

∫︂
Ω

−∂zwφ− z∂ywφ− 1

2
∂2yφ∂

2
yφ+

∫︂
Ω

−∂zφw − z∂yφw − 1

2
∂yw∂yw

= −1

2

∫︂
Ω

|∂2yφ|2 + |∂yw|2 −
∫︂
Ω

∂z(wφ) + z∂y(wφ).

Using the fact that w and φ are in C∞
c ((0,+∞) × [0,+∞)) Hardy’s inequality (see for exam-

ple [55]) reads as

1

2

∫︂
Ω

|∂2yφ|2 + |∂yw|2 ≥ C ∥ϖ∥2E0,0
.

The first term arising from the skew-symmetric part T is∫︂
Ω

z∂y(wφ) = 0.

The last term arising from the skew-symmetric part T is

−
∫︂
Ω

∂z(wφ).

For case (I) this term is 0 thanks to the boundary condition i.e the fact that ϖ ∈ D.

For case (II) we have

−
∫︂
Ω

∂z(wφ) =

∫︂
y

w|z=HΛ∗w|z=Hdy ≤ 0.
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So for all cases

⟨L∗ϖ,ϖ⟩E′
0,0,E0,0

≤ −C ∥ϖ∥2E0,0

leading to the inequality

∥ϖ∥E0,0
≤ C ∥L∗ϖ∥E′

0,0
.

As ϖ ∈ D we have Tu = −L∗u− 1
2Du and as ∥Dϖ∥E′

0
≤ c ∥ϖ∥E0,0

∥ϖ∥E1
= ∥ϖ∥E0,0

+ ∥Tϖ∥E′
0,0

≤ ∥ϖ∥E0,0
+ ∥L∗ϖ∥E′

0,0
+ c ∥ϖ∥E0,0

≤ C ∥L∗ϖ∥E′
0,0
.

We recognize the coercivity inequality needed to prove the point (i) of the theorem.
It can be checked that all the other cases can be analyzed along the very same lines, the main

point and only part where z boundary conditions appear being the sign of −
∫︁
Ω
∂z(wφ).

4.2.4 Boundary conditions (proof of (ii))

As functions in the energy space E0 do not display sufficient regularity to have traces at z = 0,
we used the duality formulation to prescribe such boundary conditions in a weak sense. For
example ψ|z=0 = 0 means that for all w ∈ C∞

c ((0,+∞)× [0,∞]) we have∫︂
Ω

ψ∂zw = 0

It remains to demonstrate that for a sufficiently regular solution this formulation is equivalent
to the aforementioned boundary conditions.

To do so, let us consider u ∈ E0 ∩H2
loc a solution of (4.2) (note that all weak solutions for a

smooth source term have interior regularity by the point (iii)). Then all considered traces are
well defined.

Let h be a regular function such that h(0) = 1, supph ⊂ [0, 1) and g ∈ C∞
c ((0,+∞)). With

ϖη = (wη, φη) =
(︂
g(y)h

(︂
z
η

)︂
, 0
)︂
= (g(y)hη(z), 0) ∈ D used as a test function we get

−
∫︂
Ω

ψ∂zwη +

∫︂
Ω

(︃
−z∂ywηψ +

1

2
∂2ywηv

)︃
=

∫︂
Ω

svwη.

As ∥ϖη∥E0
→ 0 when η → 0,

lim
η→0

∫︂
Ω

ψ∂zwη = 0.

But ∂zhη is approximating the identity, so∫︂
Ω

∂zψwη →
∫︂ ∞

0

g(y)ψ(y, 0)dy
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thus for all smooth g ∫︂ ∞

0

g(y)ψ(y, 0)dy = 0

i.e ψ(y, 0) = 0.
Similarly for case (II) with

w = g(y)hη(z)

φ = −Λ∗g(y)hη(z)

as η goes to 0 we obtain ∫︂
Ω

(Λ∗g(y)v − ψg(y)) ∂zhη(z) = 0

which leads to ∫︂ ∞

0

(Λvy,H − ψy,H) (y)g(y)dy = 0

for all g. This is the expected result.
As for the previous point the other cases (notably v|z=H = 0) can be described along the

same lines.

4.2.5 Caccioppoli type inequality and interior regularity

In order to obtain interior regularity we use the elliptic character with respect to y (associated
with the D part of the linear operator) to obtain Caccioppoli type inequalities with respect to y.

Let θ a smooth function on R such that

θ(ζ)

⎧⎪⎨⎪⎩
= 0 if ζ ∈ (−∞, 0]

∈ [0, 1] if ζ ∈ (0, 1)

= 1 if ζ ∈ [1,+∞)

Let z − 1 > 0, L > y0 > 0 and define

χ(y, z) = θ

(︃
2z1 − z

z1

)︃
θ

(︃
2y − y0
y0

)︃
θ

(︃
2L− y

L

)︃
then χ is a smooth cut-off function such that χ = 0 outside (y0/2, 2L)× [0, 2z1) and χ = 1 inside
[y0, L]× [0, z1].

Let ρε an approximation of the identity with support inside R− and uε = ρε ∗y u. We have
uε smooth with respect to y and solution of equation (4.1) with a source term sε = ρε ∗y s.
Using the equation we can deduce that ∂zuε is also smooth with respect to y so ∂2yuεχ4 and its
derivatives with respect to y are in E′

1.
With ∂2y(∂2yuεχ4) as a test function, integrating by parts we obtain after cancellation of most

skew-symmetric terms
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−
∫︂
∂2yvε∂

2
yψε∂zχ

4 −
∫︂
z∂2yvε∂

2
yψε∂yχ

4 −
∫︂
∂6yψε∂

2
yψεχ

4 +

∫︂
∂4yvε∂

2
yvεχ

4 =

2

∫︂
∂2ySεψ∂

2
yψεχ

4 + ∂2ySεv∂
2
yvεχ

4.

Integrating by parts again, we get∫︂
∂4yvε∂

2
yvεχ

4 = −
∫︂

|∂3yvε|2χ4 +
1

2

∫︂
∂2yvε∂

2
yvε∂

2
yχ

4

= −
∫︂

|∂3yvε|2χ4 − 1

2

∫︂
∂3yvε∂yvε∂

2
yχ

4 +
1

4

∫︂
|∂yvε|2∂4yχ4∫︂

∂6yψε∂
2
yψεχ

4 =

∫︂
|∂4yψε|2χ4 +

∫︂
∂4yψε∂

2
yψε∂

2
yχ

4ψε −
∫︂
∂3yψε∂

3
yψε∂

2
yχ

4

=

∫︂
|∂4yψε|2χ4 + 2

∫︂
∂4yψε∂

2
yψε∂

2
yχ

4 − 1

2

∫︂
|∂2yψε|2∂4yχ4.

Moreover, defining η−1
1 = 16∥θ′∥2∞

(︂
1
z1

+ z1

(︂
2
y0

+ 1
L

)︂)︂
≥ 16 sup |(∂z+z∂y)χ|2 and using Cauchy-

Schwarz inequality⃓⃓⃓⃓∫︂
∂2yvε∂

2
yψε(∂z + z∂y)χ

4

⃓⃓⃓⃓
≤ 1

4η1

∫︂
(∂2yψε)

2χ4−2 + η1

∫︂
|∂2yvε|242|(∂z + z∂y)χ|2χ4

≤ 1

4η1

∫︂
(∂2yψε)

2χ4−2 +
η1
2

∫︂
(|∂yvε|2 + |∂3yvε|2)42|(∂z + z∂y)χ|2χ4

≤ 1

2

∫︂
|∂3yvε|2χ4 +

∫︂ (︃
1

2
|∂yvε|2 +

1

4η1
|∂2yψε|2χ2

)︃

and similarly with 1
16η

−1
2 =

(︂
∥θ′′∥2∞ 4

y20
+ 1

L2

)︂
+
(︂
∥θ′∥2∞ 2

y0
+ 1

L

)︂
⃓⃓⃓⃓∫︂

∂3yvε∂yvε∂
2
yχ

4

⃓⃓⃓⃓
≤ 1

4

∫︂
|∂3yvε|2χ4 +

∫︂
|∂yvε|2

(︁
42|∂2yχ|2χ4−2 + (4(4− 1))2|∂yχ|4χ4−4

)︁
≤ 1

4

∫︂
|∂3yvε|2χ4 +

1

η2

∫︂
|∂yvε|2

⃓⃓⃓⃓∫︂
∂4yψε∂

2
yψε∂

2
yχ

4

⃓⃓⃓⃓
≤ 1

4

∫︂
|∂4yψε|2χ4 +

∫︂
|∂2yψε|2

(︁
42|∂2yχ|2χ4−2 + (4(4− 1))2|∂yχ|4χ4−4

)︁
≤ 1

4

∫︂
|∂4yψε|2χ4 +

1

η2

∫︂
|∂2yψε|2.

Therefore combining all these previous inequalities we end up with

∫︂
|∂4yψε|2χ4 +

∫︂
|∂3yvε|2χ4 ≤ c

∫︂
(∂2ysεψ∂

2
yψεχ

4 + ∂2ysεv∂
2
yvεχ

4) + C

(︃
1

η1
+

1

η2

)︃∫︂
(|∂yvε|2 + |∂2yψε|2)

where c, C are numerical constants.
Using the fact that χ ≥ 0, χ = 1 on (y0, L)× (0, z1) and taking L→ +∞, we finally obtain
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∫︂
|∂4yψε|2χ4 +

∫︂
|∂3yvε|2χ4 ≤ Cy0,z1

(︂
∥uε∥2E0

+
⃦⃦
∂2ysε

⃦⃦2
E′

0

)︂
.

The claimed estimate follows from ε→ 0.
This concludes the proof of theorem 4.2.1.

4.3 Uniqueness and transparent boundary conditions
In order to prove that (4.1) admits a unique solution, we try to rely on an energy estimate.
However the drawback of the weak formulation is that such an estimate makes no sense in the
energy space as integrability with respect to z is missing. In other words, we cannot take u as
a test function. In this section we will show the uniqueness of the solution in a smaller space˜︂E0. It is to be noted that as the difficulties appear when z → ∞, in case (II) we can recover
uniqueness.

Once uniqueness is obtained we can reduce the study on the whole space to the study on a
bounded (in z) domain thanks to so called transparent boundary conditions. We will exhibit
such boundary conditions and in the last part briefly see their explicit formulation in a simple
setting.

4.3.1 Uniqueness
The main obstacle to uniqueness is once more the lack of information with respect to z in
the energy space. More precisely if, instead of a degenerate elliptic equation, we consider
(4.1) as a transport equation, the transport term being ∂z + z∂y with a cross-diffusion term
1
2

(︃
0 ∂4y

−∂2y 0

)︃
, the main risk is the loss of mass along the characteristics y − z2

2 = c. Unfor-

tunately, in the unbounded case we were not able to show that such a problem does not occur
as such characteristics go to infinity. However up to a hypothesis of integrability we can show
uniqueness of weak solutions.

Let ˜︂E0 be the set of all functions u = (v, ψ) ∈ E0 such that v ∈ L2 and ψ ∈ L2 i.e

∥u∥2˜︂E0
=

∫︂
Ω

(︄
|∂yv|2 +

⃓⃓⃓⃓
v

1 + y

⃓⃓⃓⃓2
+ |v|2

)︄
+

∫︂
Ω

(︄⃓⃓
∂2yψ

⃓⃓2
+

⃓⃓⃓⃓
ψ

1 + y2

⃓⃓⃓⃓2
+ |ψ|2

)︄
(4.5)

Theorem 4.3.1. There exists at most one solution of (4.2) in ˜︂E0.

Proof. As before we will focus on the case (I), the other cases following similar analysis.
By linearity it is sufficient to show that if u ∈ ˜︂E0 is a solution with homogeneous boundary

conditions and s = 0 then u = 0. Let u be such a function.
The formal argument is the following. Define

E(Z) =
∫︂ ∞

0

v(y, Z)ψ(y, Z)dy.

We obtain differentiating with respect to Z

dE
dZ

=
1

2

∫︂ ∞

0

⃓⃓
∂2yψ

⃓⃓2
(y, Z) + |∂yv|2 (y, Z)dy ≥ 0.
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So E is 0 at Z = 0, L1 and non-decreasing. The only option is then E = 0 almost everywhere.
This leads to ∫︂

Ω

|∂2yψ|2 + |∂yv|2 = 0

i.e ψ = 0 and v = 0 considering the boundary conditions.
However we cannot apply directly this formal argument as it requires to use u as a test

function, which is not possible due to insufficient z regularity, i.e E0 ̸⊂ E1.
So let uε be the convolution with respect to z of an approximation of the identity ρε (with

support in R−) with u.
Then uε ∈ E1 ∩ ˜︂E0, and the function

Eε(Z) =
∫︂ ∞

0

vε(y, Z)ψε(y, Z)dy

is well defined in L1. Moreover it is differentiable as vε, ψε ∈ C∞
z (L2

y) and using the fact that

∂zvε + z∂yvε −
1

2
∂4yψε = rψε

∂zψε + z∂yψε +
1

2
∂2yvε = rvε

where rε = z∂yuε − ρε ∗z (z∂yu) = (zρε(z)) ∗z ∂yu (which goes to 0 in L2 when ε → 0), we
obtain

dEε
dZ

(Z) =
1

2

∫︂ ∞

0

(︁
|∂2yψε|2 + |∂yvε|2

)︁
dy +

∫︂ ∞

0

(rψε ψε + rvεvε)dy.

So
Eε → E in L1.

and
dEε
dZ

→ 1

2

∫︂ ∞

0

⃓⃓
∂2yψ

⃓⃓2
(y, Z) + |∂yv|2 (y, Z)dy in L1.

From there dE
dZ = 1

2

∫︁∞
0

⃓⃓
∂2yψ

⃓⃓2
+ |∂yv|2 dy as a distribution so

E ∈W 1,1

To conclude it remains to show that the now well-defined E(0) is indeed 0.
By the Caccioppoli inequality of the theorem 4.2.1, for all a > 0 the trace v|z=0,y>a is well

defined and
∫︁∞
a
v(y, 0)ψ(y, 0)dy = 0, so

E(0) = 0

The previously formal argument can now be used to obtain uniqueness.

It should be noted that we can obtain the uniqueness in E0 in the following variants:

• If the domain is bounded in z (case (II)) then using the interior z regularity, the boundaries
at z = 0 and z = H and Poincaré inequalities in the z variable we can recover a control of
the L2 norm of u , the boundaries condition at z = H leading to E(H) ≤ 0.

• If the domain is y ∈ R, z > 0 then Fourier analysis leads easily to existence and uniqueness
(see last subsection).
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• If the equation includes additional zero order terms then the natural energy space (dictated
by D) is ˜︂E0 instead of E0 and thus include an L2 control so the existence and uniqueness
is assured (see next subsection).

• If there is no transport term then the equation is the same as the one for the E 1
3 Stewartson

layer and uniqueness can once more be recovered with explicit Fourier analysis.

It is reasonable to hope that uniqueness indeed holds for the case (I) of (4.1) but we need to
have a better control along characteristics to show it.

4.3.2 Transparent boundary conditions
Similarly to the Dirichlet to Neumann operator for elliptic problems (used for example by Gerard-
Varet and Masmoudi [35] for Navier-Stokes equations), in this section we show that solving the
equation on the whole space is equivalent to solving the same equation on the two subdomains
(0 < z < H and z > H) with adequate boundary conditions on both subdomains.

Such a decomposition can be used to focus the study in a bounded (with respect to z)
subdomain, which is especially useful for numerical analysis (as done in [54]) and for deriving
boundary layer operators as in [18].

Unfortunately to make such a study a proper uniqueness result is needed. For this reason we
will study variants of the initial problem, namely the one with additional zero order terms. It
ensures that the energy norm controls the L2 norm. The modified equation reads as

∂zv + z∂yv −
1

2
∂4yψ − ψ = sψ

∂zψ + z∂yψ +
1

2
∂2yv − v = sv.

(4.6)

As before, the boundary conditions at y = 0 will always be v|y=0 = ∂yψ|y=0 = 0, ψ|y=0 = 0.
The horizontal condition will be either (I), (II) or (III).

The previous analysis leads to both existence and uniqueness for (4.6). With ∥ϖ∥˜︂E1
=

∥ϖ∥˜︂E0
+ ∥ϖ∥˜︂E0

′ , where ˜︂E0 is defined by (4.5), we have

Lemma 4.3.2. There exist a weak solution of (4.6) in case (I), (II) and (III).
This solution is unique and

∥u∥˜︂E0
≤ ∥u∥˜︂E1

′ .

Moreover in case (I), if ∂zs ∈ ˜︂E1

′
and s ∈ ˜︃E0,0 we have ∂zu ∈ ˜︂E0 and

∥∂zu∥˜︂E0
≤ C

(︂
∥∂zs∥˜︂E1

′ + ∥s∥˜︂E0

)︂
.

Proof. The proof of this lemma is exactly the same as before, the only new point being the
control on ∂zu. This comes from the fact that in this particular case we can deduce boundary
conditions on ∂zu.

More precisely we have ∂zu verifying inside the domain

∂z(∂zv) + z∂y(∂zv)−
1

2
∂4y(∂zψ)− ∂zψ = ∂zsψ − ∂yv

∂z(∂zψ) + z∂y(∂zψ) +
1

2
∂2y(∂zv)− ∂zv = ∂zsv − ∂yψ

(4.7)
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and the boundary conditions at y = 0 are ∂zv = ∂y∂zψ = 0, ∂zψ = 0. Moreover, contrary to the
original problem (4.1), we have (∂yψ, ∂yv) ∈ L2 and ˜︂E1 ⊂ L2 so

∥(∂zsv − ∂yψ, ∂zsψ − ∂yv)∥˜︂E1
′ ≤ C

(︂
∥∂zs∥˜︂E1

′ + ∥s∥˜︂E1
′

)︂
.

All that remains is the boundary condition at z = 0. In case (I), the equation (4.1) leads to

∂zv|z=0 = sψ|z=0

which is an admissible boundary condition.

Once we have obtained this result we can now consider transparent boundary conditions.

Theorem 4.3.3. (i) (v-to-ψ operator) For all H > 0 there exists a non-positive operator
ΛH : H

1
2
0 → H− 1

2 such that the only solution of (4.6) in the domain y > 0, z > H with
boundary condition v|z=H = V verifies ψ|z=H = ΛHV .

(ii) (transparent BC) Let H0 > 0 and let s verifying the hypothesis of lemma 4.3.2 be a source
term with support inside 0 < z < H0. For any H > H0 let ub be the solution of (4.6) on
the domain y > 0,H > z > 0 with boundary conditions of type (II)

ψb|z=0 = 0, ψb|z=H = ΛHv
b
|z=H

and let ut be the solution of (4.6) on y > 0, z > H with type (III) boundary condition

vtz=H = vb|z=H

and zero source term. Then ub10<z<H + ut1z≥H is the solution of (4.6) on the whole
domain y > 0, z > 0 with boundary condition ψ|z=0 = 0.

Proof. We start by the point (i), i.e the definition of the operator ΛH .

For V ∈ H
1
2
0 let uV the solution of (4.6) in case (III) with nonhomogeneous boundary condition

v|z=H = V . Let us recall that such a solution is obtained by considering homogeneous boundary
condition but with a source term sV = LrV where rV is an appropriate lifting.

Similarly for any W ∈ H
1
2
0 let uW be the solution of (4.6) with w|z=H =W .

Using the same argument as in the proof of theorem 4.3.1

Q(Z) =

∫︂ ∞

0

(vWψV )(y, Z)dy

is well defined and in W 1,1 (note that E is the quadratic form associated with the bilinear form
Q) and

dQ
dZ

=

∫︂ ∞

0

(︁
∂2yψ

V ∂2yψ
W + ∂yv

V ∂yv
W + vV vW + ψV ψW

)︁
(y, Z)dy.
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So as

∥Q∥L∞ ≤ C∥Q∥W 1,1 ≤ C

(︃∫︂
|vWψV |+

∫︂ (︁
∂2yψ

V ∂2yψ
W + ∂yv

V ∂yv
W + vV vW + ψV ψW

)︁)︃
≤ C∥uV ∥˜︂E0

∥uW ∥˜︂E0
≤ C∥sV ∥˜︂E1

′∥sW ∥˜︂E1
′

≤ C∥V ∥
H

1
2
0

∥W∥
H

1
2
0

we obtain

∀W ∈ H
1
2
0 ,

⃓⃓⃓⃓∫︂ ∞

0

WψV|z=Hdy

⃓⃓⃓⃓
≤ C∥V ∥

H
1
2
0

∥W∥
H

1
2
0

.

This means that ψV|z=H ∈ H− 1
2 and moreover the application ΛH : V ↦→ ψV|z=H is continuous

from H
1
2
0 to its dual space.

At last since Q(Z) → 0 when Z → ∞ we have∫︂ ∞

0

V ΛHV dy =

∫︂ ∞

0

V ψV|z=Hdy = −
∫︂ ∞

H

∫︂ ∞

0

|∂2yψV |2 + |∂yvV |2 + |vV |2 + |ψV |2dydz ≤ 0.

and therefore ΛH is a non-positive operator.
It remains to prove (ii) i.e that this condition is indeed a transparent boundary condition.
First of all let u be the solution of (4.6) in case (I) and with source term s.

Then by lemma 4.3.2 v has proper trace in H
1
2
0 and v|z=H , ψ|z=H are well defined. So ψ|z=H =

ΛHv|z=H and u is a solution of (4.6) so by uniqueness in the case (II) we have u10≤z≤H = ub.
We deduce that ub|z=H is well defined and is an admissible trace so ut is well defined and

once more by uniqueness in case (III) u1z≥ = ut.
We can prove this result without solving the problem on the whole space: by constructing u

from ub and ut in order to show that such v-to-ψ operator is necessary to ensure the continuity
of both v and ψ.

With u = ub10≤z≤H + ut1z≥H it is straightforward to see that the weak formulation on the
whole space is verified for any test function with support inside 0 < z < H or z > H.

Let ϖ = (w, φ) ∈ D. Let χ be a smooth function such that χ(s) = 0 for |s| > 2 and χ(s) = 1
for |s| < 1.

Then with χε(z) = χ
(︁
z−H
ε

)︁
using the fact that ϖ = ϖχε +ϖ(1− χε) we obtain

⟨Lu,ϖ⟩ = ⟨Lu,ϖ(1− χε)⟩+ ⟨Lu,ϖχε⟩ = ⟨s+ 0,ϖ(1− χε)⟩+ ⟨Lu,ϖχε⟩

as ϖ(1−χε) is the sum of a function with support inside 0 < z < H and a function with support
inside z > H.

The last term is ∫︂
Ω

−v(∂zφχε + φ∂zχε)− zv∂yφχε −
1

2
∂2yψ∂

2
yφχε + ψφχε

+

∫︂
Ω

−ψ(∂zwχε + w∂zχε)− zψ∂ywχε −
1

2
∂yv∂ywχε + vwχε

and we will show that it goes to 0 when ε→ 0.



124 CHAPTER 4. Mathematical study of the equatorial Ekman boundary layer

Indeed as u ∈ ˜︂E0 and ϖ ∈ ˜︂E1 we have when ε→ 0∫︂
Ω

−v∂zφχε−zv∂yφχε−
1

2
∂2yψ∂

2
yφχε+ψφχε+

∫︂
Ω

−ψ∂zwχε−zψ∂ywχε−
1

2
∂yv∂ywχε+vwχε → 0.

As ϖ is identically 0 near y = 0 and s = 0 near z = H using once more the same arguments as
before ∫︂

Ω

vφ∂zχε + ψw∂zχε →
∫︂ ∞

y=0

(︁
(vb − vt)φ+ (ψb − ψt)w

)︁
(y,H)dy

which is zero, as the boundary conditions can be rewritten as vb − vt = 0 and ψb − ψt =
ΛHv

b − ψt = ΛHv
b − ΛHv

t = 0.

4.3.3 The case of the half plane

In the case where the domain is the half-plane z > 0 existence and uniqueness are a lot more
easier. In fact we can use Fourier transform. Denoting by ˆ︁f(ξ, z) the Fourier transform of f(y, z)
with respect to y one can see that the problem can be rewritten as an ODE for each ξ

(︃
∂z + ziξ −ξ4
−ξ2 ∂z + ziξ

)︃(︃ˆ︁vˆ︁ψ
)︃

=

(︃ˆ︂sψˆ︁sv
)︃
.

Hence with ˆ︂w± = ˆ︁v ± |ξ| ˆ︁ψ the problem is diagonalized

∂z ˆ︁w± + (ziξ ∓ |ξ|3)ˆ︂w± = ˆ︁s±
and the explicit solution is

ˆ︁w±(ξ, z) = ˆ︁w±(0)e
− z2

2 iξe±|ξ|3z +

∫︂ z

0

e−
z2−s2

2 iξe±|ξ|3(z−s)ˆ︂s±(s)ds
Note that two exponential modes appear: one in e−|ξ|3z and one in e|ξ|3z. To ensure that ˆ︁w+

ansd ˆ︁w− are both in L2, a necessary and sufficient condition is that the coefficient of exp(|ξ|3z)
is 0. This offers another explanation of why only one condition at z = 0 can be fixed.

For the transparent boundary condition, if there is no source term this condition simply
becomes ˆ︁w+(ξ,H) = 0 i.e

∀ξ, ˆ︁v + |ξ| ˆ︁ψ = 0

which in real space translates as ΛH = −(−∆)
−1
2 . This is exactly the condition used in [54] for

the numerical approximation.

It is to be noted that in this case the operator ΛH goes in fact from Ḣ
1
2 to Ḣ

3
2 which is the

expected regularity as ∂yψ is of the same regularity as v.
But in our case because of the transport term we cannot use symmetries to extend (4.1) to

the whole half space.
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4.4 Appendix

4.4.1 Physical derivation

We recall here the main steps of the derivation of (4.1) and refer to [54] for details.
We consider the Stokes-Coriolis problem between two surfaces of revolution Γ± (our main

focus will be spheres of radius R±) and denote by (X,Φ, Z) the cylindrical coordinates. The
Stokes equation of an incompressible fluid rotating around the axis eZ where we neglect the
transport, in non-dimensional variables and with E the Ekman number, can be written as

∇p+ eZ × U − E∆U = 0

∇ · U = 0.

We consider non-penetration boundary conditions on Γ±

U · n = 0

U = V±eΦ +Υ±eΦ × n.

If we consider an axisymmetric flow, U = (UX(X,Z), V (X,Z), UZ(X,Z)) then the incom-
pressibility condition becomes ∂XUX + ∂ZUZ = 0 so there exist a stream function Ψ such that

U =

⎛⎝ ∂ZΨ
V

−∂XΨ

⎞⎠
The corresponding equations are

∂zV − E∆2Ψ = 0

∂zΨ+ E∆V = 0

and the boundary conditions

V|Γ+ = V+, V|Γ− = V−

∂nΨ|Γ+ = Υ+, ∂nΨ|Γ− = Υ−

Ψ|Γ±=0 = 0

When E → 0 we obtain the formal equations ∂ZV = 0, ∂ZΨ = 0. So at the main order in E,
inside the domain

V (X,Z) = V 0(X) + o(1)

Ψ(X,Z) = 0 + o(1)

In order to find V 0 and pursue further the asymptotic expansion we must consider the boundary
layer ensuring that the boundary conditions are satisfied.

Near a horizontal boundary (i.e constant Z) we recover the classical Ekman scaling

V = v

(︃
X,

Z

E
1
2

)︃
Ψ = E

1
2ψ

(︃
X,

Z

E
1
2

)︃
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E
1
5

E
2
5

E
1
2√︁

cos(θ)

E
1
2√︁

cos(θ)

X

Z

Figure 4.1 – The different scalings and boundary layers

and with (x, z) the rescaled variables the boundary equation is

∂zv − ∂4zψ = 0

∂zψ + ∂2zv = 0.

Note that the same equation holds for any boundary as long as cos(θ) = eZ · n does not
approach 0 where θ is the angle between the normal of the surface and the axis of rotation. In
this case the scaling is

Z =
z

E
1
2 cos(θ)−

1
2

For a vertical boundary (i.e constant X) the scaling is

V = v

(︃
X

E
1
3

, Z

)︃
Ψ = E

1
3ψ

(︃
X

E
1
3

, Z

)︃
and the equation

∂zv − ∂4yψ = 0

∂zψ + ∂2yv = 0.

In the case of cos(θ) approaching 0 the previous scaling and equation are no longer correct.

If the boundary is Z = (−X)α1X<0, denoting by Y = X + Z
1
α the equation becomes(︂

∂Z + α−1Z
1−α
α ∂Y

)︂
V − E

(︂
∂2Z + ∂2Y + 2α−1Z

1−α
α ∂Y ∂Z

)︂2
Ψ = 0(︂

∂Z + α−1Z
1−α
α ∂Y

)︂
Ψ+ E

(︂
∂2Z + ∂2Y + 2α−1Z

1−α
α ∂Y ∂Z

)︂
V = 0
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The scaling is then

V = v

(︃
y

E
1

3−α

,
z

E
α

3−α

)︃
Ψ = E

1
3−αψ

(︃
y

E
1

3−α

,
z

E
α

3−α

)︃
and the associated equation becomes

∂zv + α−1z
1−α
α ∂yv − ∂4yψ − E

4(1−α)
(3−α) ∂4zψ = 0

∂zψ + α−1z
1−α
α ∂yψ + ∂2yv + E

2(1−α)
(3−α) ∂2zv = 0

with domain y > 0, z > 0.
The higher terms in ∂z lead to another boundary layer of size E

3(1−α)
2(3−α) in z i.e a standard

Ekman layer of size E
3(1−α)
2(3−α)

+ α
1−α = E

1
2 . Note that this Ekman layer can be expressed in term of

a boundary condition connecting v and ∂zψ but that in the physical case it is simply a symmetry
condition, ψ = 0.

Considering only the higher order in E we obtain the announced equation for the spherical
case α = 1

2 .
Note that there are other boundary layers in the vicinity of the equator or of the cylinder

X = R−, but since we do not describe them in this paper we did not include them in figure 4.1.
We refer to [69, 54] for a complete physical description.

4.4.2 Duality argument
To prove existence of a solution we used a simpler version of Lions-Lax-Milgram [51] which can
be rewritten as:

Lemma 4.4.1. Let E and F two reflexive Banach spaces and

L : E → F ′

a continuous operator.
Let D ⊂ F a dense subspace of F and L∗ the adjoint of L from F to E′.
If there exists a constant γ > 0 such that

∀v ∈ D, ∥L∗v∥E′ ≥ γ ∥v∥F (4.8)

then for all f ∈ F ′ there exist a solution u of

Lu = f

with
∥u∥E ≤ 1

γ
∥f∥F ′

The proof is elementary but as we did not find this exact formulation in the literature we
detail the proof for the reader’s convenience.

Let us first notice that the relation (4.8), also called observability inequality, ensures that L∗
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is injective. Thus the linear form

φ : L∗D → R
L∗v ↦→ ⟨f, v⟩F ′,F

is well defined. Moreover it is continuous

|φ(L∗v)| = | ⟨f, v⟩F ′,F | ≤ ∥f∥F ′ ∥v∥F ≤ 1

γ
∥f∥F ′ ∥L∗v∥E′ .

As D is dense we can define φ as a continuous form on L∗F ⊂ E′.
Using Hahn-Banach theorem, we then extend φ as a linear continuous form on the whole E′.

As E is a reflexive Banach space there exists u ∈ E such that

∀g ∈ E′, ⟨u, g⟩E,E′ = φ(g)

and in particular

∀L∗v ∈ L∗F, ⟨u, L∗v⟩E,E′ = φ(L∗v) = ⟨f, v⟩F ′,F

i.e

∀v ∈ F, ⟨Lu, v⟩F ′,F = ⟨f, v⟩F ′,F .
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Chapter5
MHD shear layer
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5.5 Conclusion and perspectives 157

In this chapter we propose the study of a system closely related to the Proudman problem. From
the point of view a physics we consider a different context (magnetohydrodynamics rather than
geophysical fluids), although the governing equation share some similarities with the previous
Chapter. This problem was suggested by Emmanuel Dormy during a discussion.

5.1 Introduction

5.1.1 Physical derivation and orders of magnitude

We consider a viscous incompressible and electrically conducting fluid between two rotating
spheres and with an imposed exterior magnetic field, as proposed for example by Hollerbach [47].
This model can be seen as the simplest extension of the Proudman problem to MHD.

Let us briefly derive the equations of the problem. In addition to the fluid equation and
Coriolis force, we must take into account:

• the magnetic force in Navier-Stokes equation,

• the Ohm law in a moving fluid,

• both Maxwell-Ampère and Maxwell-Faraday equations.

129
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We end up with the equations of evolution of both the velocity u and magnetic fields B within
the context of dissipative MHD

∂tu+ (u · ∇)u+Ωe3 × u− ν∆u− (∇×B)×B

ρµ0
+

∇p
ρ

= 0

∂tB +∇×
(︃
∇×B

σµ0
− u×B

)︃
= 0

where ρ is the mass density and µ0 is the magnetic permittivity of vacuum, σ the electrical
conductivity, and ν the kinematic viscosity ensuring ohmic and viscous dissipation.

The terms involving the rotational operators in both equations can be rearranged to obtain :

∂tu+ (u · ∇)u+Ωe3 × u− ν∆u− (B · ∇)B −∇B2/2

ρµ0
+

∇p
ρ

= 0

∂tB −∇× (u×B)− ∆B

σµ0
= 0.

Introducing the typical length L and velocity U , we can define four independent adimensional
quantities describing the balances between the various dynamical processes described by these
MHD equations, summarized in Table 5.1. Their typical values can be found in the book of
Dormy and Soward [67].

Name Symbol Definition Balance
Reynolds Re UL/ν Inertia/Viscosity
Rossby Ro U/ΩL Inertia/Rotation

Magnetic Reynold Rm ULµ0σ Magnetic convection/Magnetic diffusion
Alfvenic Mach Ma U

√
µ0ρ/B Mass velocity/Alfven velocity

Table 5.1 – Primary adimensional parameters.

The rescaled MHD equations in a rotating fluid are thus given by

∂tu+ (u · ∇)u+
1

Ro
e3 × u− 1

Re
∆u− 1

Ma2
(B · ∇)B +∇p = 0

∂tB −∇× (u×B)− 1

Rm
∆B = 0.

Usually a set of three secondary adimensional parameters is introduced according to the defini-
tions:

Name Symbol Definition Relation
Ekman E ν/L2Ω E = Ro/Re = Λ/M2

Elsasser Λ σB2/ρΩ Λ = RoRm/Ma2 =M2E
Hartmann M L2B2σ/ρν M2 = RmRe/Ma2 = Λ/E

Table 5.2 – Secondary adimensional parameters.
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Ω + δΩ

Ω

Γ1

Γ0

B

Figure 5.1 – A conductive fluid between two rotating spheres, and with a dipolar magnetic field.

We assume a static equilibrium between two rotating spheres

− Λ

RoRm
(B · ∇)B +∇p = 0

∆B = 0

and consider a small differential in rotation between the two spheres,
⃓⃓
δΩ
Ω

⃓⃓
≪ 1. Then

the linearization in an axisymmetric setting and in cylindrical coordinates (s, φ, z) with a fluid
velocity and induced magnetic field along eφ.

B = B + Rm
M beφ

u = veφ.

with |v| ≪ 1, |b| ≪ 1 leads to the coupled equations

−∆veφ −M [(B · ∇) beφ + (beφ · ∇)B] = 0

−∆beφ +M [(veφ · ∇)B − (B · ∇) veφ] = 0.

This can be rewritten as

∆v − v

s2
+M

(︃
B

s
· ∇
)︃
sb = 0

∆b− b

s2
+M (sB · ∇)

v

s
= 0.

or
Remark 5.1.1. Following Kleeorin & al. [48] and Starchenko [68], we can also consider a more
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general linearization as it was done in the Proudman problem (3.7), with

u = veφ +

⎛⎝ −∂z
0

s−1∂s(s·)

⎞⎠φ

B = B + beφ +

⎛⎝ −∂z
0

s−1∂s(s·)

⎞⎠α.

In this case the equations we obtain are

2∂zψ + E(∆− s−2)v + Λ
1

s
(B · ∇)(sb) = 0

2∂zv − E(∆− s−2)2ψ + sΛ(B · ∇)
(︁
s−1(B · ∇)ψ

)︁
= 0

Ms(B · ∇)

(︃
1

s
v

)︃
+ (∆− s−2)b = 0

M

s
(B · ∇) (sψ) + (∆− s−2)α = 0

(5.1)

We remark that for Λ = 0 we recover the Proudamn equation (3.9), while our current setting
is the formal |ψ| ≪ 1.

Remark 5.1.2. Note the non zero commutators s±1(B · ∇)(s∓1•). We will see that these terms
create a coupling in the equations written in the so called Alfven variables.

The boundary condition for the azimuthal velocity is simply the no-slip condition on a moving
shell, i.e

v|Γ0
= v0, v|Γ1

= v1.

For the field b the main physical condition is to have the continuity of both b and its normal
derivative. The associate boundary condition varies following the electrical properties of the
shells. More precisely, according [68] and [22], we must distinguish the insulating shells from
the conductive shells.

• For an insulating shell the boundary condition is

b|Γ = 0

• For a conducting sphere we must have across the boundary

[b]Γ = 0[︃
1

σ
∂nb

]︃
Γ

= 0

where σ is the conductivity. The magnetic field b inside the conductive sphere b satisfying
the equation

(∆− a) b = 0 (5.2)

where a(s, z) = 1
s2 i.e the main equation with v = 0.

From a mathematical point of view, the continuity of b and ∂nb can be expressed trough the
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Ω1Ω0 Γ

n

Figure 5.2 – Illustration of Lemma 5.1.1.

Dirichlet to Neumann operator of the equation (5.2)

∂nb|Γ = −Λb|Γ

where −Λ is the Dirichlet to Neumann operator associated with the equation (5.2). As this result
is very useful, let us recall the simple demonstration of this fact.

Lemma 5.1.1. Let Ω1 ⊂ Ω0 be two smooth connected domains and let Γ = ∂Ω1 and n the
normal vector from Ω1 to Ω0 (see Figure 5.2). Let a ∈ L∞(Ω1). There exists an continuous and
negative operator Λ : H

1
2 (Γ) → H− 1

2 (Γ) such that

• Any b ∈ H1(Ω0) such that b is solution of (5.2) inside Ω1 and [b]Γ = 0 and [∂nb]Γ = 0
satisfies

∂nb|Γ + Λb|Γ = 0.

• For any ˜︁b ∈ Ω0\Ω1 such that
∂n˜︁b|Γ + Λ˜︁b|Γ = 0.

there exists a unique b inH1(Ω0) satisfying

– b|Ω0\Ω1
= b̃,

– b solution of (5.2) inside Ω1,
– [b]Γ = 0 and [∂nb]Γ = 0.

Remark 5.1.3. In most practical cases Λ can be explicitly computed. For example, if Ω1 is the
unit disk and a = 1 we obtain, in terms of Bessel functions,

−Λeinθ =
I ′|n|(1)

I|n|(1)
einθ.

Note that, thanks to the recurrence relations of Bessel function, we have I|n|(1)
′

I|n|(1)
∼ n.
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Proof. The main point is to establish the properties of the operator Λ.
Let T ∈ H

1
2 (Γ). Then, there exists bT ∈ H1(Ω1) solution of

∆bT − abT = 0 in Ω1

bT |Γ = T on ∂Ω1.

Moreover, ∥bT ∥H1(Ω1) ≤ C∥T∥
H

1
2 (Γ)

.
We then define ΛT by

−Λ(T ) = ∂nbT |Γ ∈ H− 1
2 (Γ).

The operator T is obviously linear. And, by definition, for any β ∈ H1(Ω1) we have

−
∫︂
Γ

Λ(T )β|Γ =

∫︂
Ω1

∇bT · ∇β +

∫︂
Ω1

abβ.

For any Θ ∈ H
1
2 (Γ), there exist β ∈ H1(Ω1) such that β|Γ = Θ and ∥β∥H1(Ω1) ≤ C∥Θ∥

H
1
2 (Γ)

,
with C a universal constant depending only on Ω1. Thus⃓⃓⃓

⟨ΛT,Θ⟩
H− 1

2 ,H
1
2

⃓⃓⃓
≤
∫︂
Ω1

∇bT · ∇β +

∫︂
Ω1

a(s)bβ

≤ ∥β∥H1(Ω1)∥b∥H1(Ω1)

≤ C∥Θ∥
H

1
2 (Γ)

∥b∥H1(Ω1) ≤ C∥Θ∥
H

1
2 (Γ)

∥T∥
H

1
2 (Γ)

.

This is the case ∀Θ ∈ H
1
2 (Γ), so ∥ΛT∥

H− 1
2
≤ C∥T∥

H
1
2

,and Λ is continuous. And with β = b we
recover the positivity of −Λ.

The first point of the Lemma is verified by definition, note that, thanks to the condition
[∂nb] = 0, there in no difficulty when defining ∂nb|Γ.

For the second point, let ˜︁b ∈ H1(Ω0\Ω1) such that
(︂
∂n˜︁b+ Λ˜︁b)︂

|Γ
= 0.

We define b by b|Ω0\Ω1
= ˜︁b, and b|Ω1

solution of

∆b|Ω1
− a(s)b|Ω1

= 0 in Ω1

b|Ω1
= ˜︁b|Γ on ∂Ω1.

(5.3)

Then [b]Γ = 0 by definition. By the jump-formula, as b is H1 on both subdomains and has no
Dirichlet jump b ∈ H1(Ω0). And as ∂nb|Ω1

= −Λb|Ω1
, ∂nb|Ω0\Ω1

= −Λb|Ω0\Ω1
we also obtain

the continuity of the normal derivative across Γ. The uniqueness follow from the uniqueness
of (5.3).

This physical problem exhibit multiple boundary layers when M ≫ 1, see Figure 5.3, but
before let us first simplify the problem.

5.1.2 Main setting

If the previous model, even if the domain Ω ⊂ R2, all the geometry comes from a three di-
mensional problem, for example for all integration by parts in a circular domain must use
∇ · (w) = ∂rwr +

1
rwr +

1
r∂θwθ. Thus, for simplicity, we choose to study a fully two-dimensional
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Figure 5.3 – The expected boundary layers.

model
M (B · ∇+ a(s, z)) b+ (∆− c(s, z)) v = 0

M (B · ∇ − a(s, z)) v + (∆− c(s, z)) b = 0
(5.4)

where a ≥ a0 > 0, c ≥ c0 > 0 are regular functions, representing arbitrarily the zeroth order
coupling.

The only difference in this two-dimensional model, is that B now satisfies B = ∇⊥A = −∇φ
(instead of B = ∇A× (eφs

−1)). So the dipolar field is

A =
s

r2

φ =
z

r2

B =

(︃
2sz

r4
,
z2 − s2

r4

)︃
instead of the formulas (2.1) of [22].

In order to focus on the shear layer we will consider the equation on the domain defined by
r ∈ (r0, r1) and A ∈ (A0, A1) where A0 and A1 are chosen such that A∗ ∈ (A0, A1). This choice
allows us to avoid the equatorial boundary layer near r = r0, z = 0 and simplify the analysis,
since iso-A surfaces are characteristics of the interior term.

Lastly thank to symmetries we can limit ourselves to z > 0.
With a source term f , the system we will consider is, inside Ω,

M (B · ∇+ a) b+ (∆− c) v =Mfv

M (B · ∇ − a) v + (∆− c) b =Mfb
(5.5)
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r
=
r
0

r
=
r
1

z = 0

Figure 5.4 – Physical domain Ω.

with homogeneous boundary conditions

v|r=r1 = 0, v|r=r0 = 0

b|r=r1 = 0, (∂rb+ Λb)|r=r0 = 0

∂zv|z=0 = 0, b|z=0 = 0

v|A=A0
= 0, b|A=A0

= 0

v|A=A1
= 0, b|A=A1

= 0.

(5.6)

Note that, if, instead of the variables (s, z), we use the variables (A,φ) we obtain (using only
∇⊥A = −∇φ)

M
(︁
|B|2∂φ + a(s, z)

)︁
b+

(︁
|B|2∆A,φ − c(s, z)

)︁
v =Mfv

M
(︁
|B|2∂φ − a(s, z)

)︁
v +

(︁
|B|2∆A,φ − c(s, z)

)︁
b =Mfb

(5.7)

so the dipole problem maps exactly to the constant B = Bez problem up to a change of a and c.

As a consequence, the equation we will consider in all generality will be

M (−∂z + a(s, z)) b+ (∆− c(s, z)) v =Mfv

M (−∂z − a(s, z)) v + (∆− c(s, z)) b =Mfb.
(5.8)

Introducing the Alfven variables V± = v ± b these equations write also as

M(∂zV+ − aV−)− (∆− c)V+ =MF+

M(∂zV− − aV+) + (∆− c)V− =MF−
(5.9)
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r =
r0

r
=
r
1

A
=
A
1

A
=
A
0

z = 0

√︁
A2 + φ2 = 1

r1

√︁
A2 + φ2 = 1

r0

A = A0

A = A1

φ = 0

Figure 5.5 – Reparametrization of the domain

with boundary conditions

V+|r=r1 = V−|r=r1 = 0

V+|r=r1 + V−|r=r1 = 0, (∂r (V+ − V−) + Λ(V+ − V−))|r=r1 = 0

(∂zV+ + ∂zV−)|z=0 = 0, (V+ − V−)|z=0 = 0

V+|A=A0
= V−|A=A0

= V+|A=A1
= V−|A=A1

= 0.

(5.10)

Moreover, we will also change the nature of the transparent boundary condition: instead of
taking for Λ the Dirichlet to Neumann operator we will simply take −Λ to be a positive constant.

Remark 5.1.4. This simplification keep the main properties of the Dirichlet to Neumann op-
erator, and many results remain the same. The only difference is in the construction of the
Hartmann layers when tangential frequency goes to +∞. This simplification will be discussed in
Subsection 5.3.3.

Remark 5.1.5. This system of equation is very close to the Proudman problem studied in Chap-
ter 3. Let us emphasis some differences

• First of all, one of the main difficulties of the Proudman problem was the asymmetry
between v and ψ, as the equivalent of Alfven variable V± would be the non-local w± =
v ± (−∆)

1
2ψ, leading to difficulties when considering boundary conditions. Consequently,

we can expect easier estimates.

• The geometrical coupling a seems not that important but in fact is of importance when
considering for example the shear layer, see Section 5.4.

• More importantly the boundary conditions are a crucial point of this model. Indeed even
for a = 0 the problem is non-obvious as V± are liked through the boundary conditions.
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5.2 Preliminary results

5.2.1 Existence, uniqueness and stability estimates

As usual, we start by deriving estimates for the main problem.

Proposition 5.2.1. For any f ∈ H−1 × H−1 there exists only one solution of (5.8), (5.6)
satisfying

∥v∥2H1 + ∥b∥2H1 ≤ CM
(︁
∥fb∥2H−1 + ∥fv∥2H−1

)︁
.

More over if f ∈ L2 × L2 then

∥v∥2L2 + ∥b∥2L2 ≤ C
(︁
∥fb∥2L2 + ∥fv∥2L2

)︁
.

Proof. Let E be the space of (u, v) ∈ H1 ×H1 satisfying v|r=r0 = v|r=r0 = b|r=r1 = 0.
The equation can be rewritten as: find (b, v) such that for all (ω, β) ∈ E we have

M

∫︂
Ω

(∂zbω + ∂zvβ + a(vβ − bω))+

∫︂
Ω

(∇v · ∇ω + cvω +∇b · ∇β + cbβ)−
∫︂
r=r0

Λbβ = M

∫︂
Ω

(fvω+fbβ)

From there, as −Λ > 0, the existence follows and with (ω, β) = (v, b) we obtain the claimed H1

estimate.
The idea to obtain the L2 estimate is to take a test function like (ω, b) = (b, v). Note that,

contrary to Proudman problem, there is no longer difficulties emerging from the asymmetry in
regularity between v and ψ, as both v and b are in H1. Unfortunately, because of the Robin
condition on b, it does not match the boundary conditions.

We can easily recover the estimate on v, with (ω, β) = (0, veh(z)) we obtain

M

∫︂
Ω

(︂
0 + ∂zvve

h(z) + av2eh(z)
)︂
+

∫︂
Ω

(︂
∇b · ∇

(︂
veh(z)

)︂
+ cbveh(z)

)︂
=M

∫︂
Ω

fbve
h(z)

and from there

M

∫︂
Ω

⃓⃓⃓⃓
a− h′

2

⃓⃓⃓⃓
|v|2eh ≤

⃓⃓⃓⃓∫︂
Ω

∇b · ∇veh
⃓⃓⃓⃓

⏞ ⏟⏟ ⏞
≤ChM∥f∥H−1

+

⃓⃓⃓⃓∫︂
Ω

(∂zbh
′ + cb) veh

⃓⃓⃓⃓
⏞ ⏟⏟ ⏞

≤Ch

√
M
√︂∫︁

|v|2eh

+MCh

√︄∫︂
f2b

√︄∫︂
|v|2eh

so with h(z) = λz with λ large enough (but independent of M) we obtain the claimed L2

inequality on v.
To obtain the same on b we reiterate this method but in Alfven variables. This will allow to

obtain bounds on b + v, which is sufficient as we already have bound on v. With V± = eλzṼ ±,
we have

M(∂zṼ + + λṼ + − aṼ −)− (∆ + 2λ∂z + λ2 − c)Ṽ + =MF̃+

M(∂zṼ − + λṼ − − aṼ +) + (∆ + 2λ∂z + λ2 − c)Ṽ − =MF̃−

so with ΩR = Ω ∩ {r ≤ R}, for r0 ≤ R < r1 we obtain dropping the ˜ and taking, from a
formal point of view, as test-function in the first equation V+1ΩR
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(M − 2λ)

∫︂
ΩR

1

2
∂z(V

2
+) +

∫︂
ΩR

(︁
(λM + c− λ2)V 2

+ − aMV+V−
)︁
+

∫︂
ΩR

|∇V+|2 −
∫︂
ΓR

∂rV+V+

=M

∫︂
ΩR

F+V+

(M − 2λ)

∫︂
ΓR

1

2
|V+|2+

∫︂
ΩR

(︁
(λM + c− λ2)V 2

+ + aMV+(V+ − 2v))
)︁

+

∫︂
ΩR

|∇V+|2 − ∂R

∫︂
ΓR

|V+|2 +
1

R

∫︂
ΓR

|V+|2 =M

∫︂
ΩR

F+V+

with E+(R) =
∫︁
ΩR

|V+|2 (all the previous computations can be justified by computing ∂RE+

in a weak sense) we thus obtain

(M − 2λ+R−1
max)∂RE

+ + ((λ+ amin − η)M + c− λ2)E+ − ∂2RE
+ ≤M

1

4η
∥F∥L2 −

∫︂
ΩR

|∇V+|2

i.e

α1∂RE
+ + α0E

+ −M−1∂2RE
+ = G

where ∥G∥L∞ ≤ C and α1, α0 far from 0 uniformly in M for λ large enough (but independent
of M).

More over we know that E+(r0) = 0, E+ is increasing and ∂RE
+(r1) =

∫︁
Γr1

|b|2 = O(M).
From there, for example by integrating with respect to R, we can conclude thatE+(r1) =

OM→∞(1), leading to the L2 stability.

Without surprise we will consider an approximate problem

M (−∂z + a(s, z)) bapp + (∆− c(s, z)) vapp =M(fv + rv)

M (−∂z − a(s, z)) vapp + (∆− c(s, z)) bapp =M(fb + rb)
(5.11)

the energy estimate being also a stability estimate: if uapp satisfies the approximate equation 5.11
with the exact boundary conditions (5.11) then

∥v − vapp∥2H1 + ∥b− bapp∥2H1 ≤ CM
(︁
∥rv∥2H−1 + ∥rb∥2H−1

)︁
∥v − vapp∥2L2 + ∥b− bapp∥2L2 ≤ C

(︁
∥rv∥2L2 + ∥rb∥2L2

)︁ (5.12)

From there, and following once more Dalibard and Saint-Raymond [17], we search an approx-
imate solution such that by denoting r = r0 + r1 the error term:

Definition 5.2.2. A function uapp = (vapp, bapp) ∈ H1 × H1 is said to be an approximate
solution of (5.8)-(5.6) if it is a solution of (5.11) with the exact boundary conditions (5.6), such
that r = (rv, rb) = r0 + r1 is an acceptable remainder, meaning it satisfies

lim
M→∞

∥r0∥L2 +M∥r1∥H−1

M∥u− uapp∥L2 + ∥u− uapp∥H1

= 0.
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5.2.2 Expected boundary layers
As mentioned in the introduction, we expect three kind of boundary layers, see Figure 5.3:

• The Hartmann layers of size M−1/z near the shells r = r0 and r = r1. These comes
from the scaling ∂z = cos(θ)dr ≃ E∂2r . It is to be noted that these layers degenerate near
z = 0, and that near the conductive shell, we expect a smaller amplitude, as we have Robin
boundary conditions.

• Near the line A = A∗, due to the discontinuity of the limit solution, a shear layer with a
scaling M 1

2 similar to Shercliff layers. This layer comes from the scaling ∂z ≃ E∂2x.

• Near r = r1, z = 0 these layers degenerate into the equatorial Hartmann layer of size
M− 1

3 ×M− 2
3 .

We will thus start, in Section 5.3, with a quick study of the non-degenerate Hartmann layers,
showing how to treat the Robin condition using such operator. Then, in Section 5.4, we will
analyse how these shears layers behave when A = A∗, i.e when a change of the boundary
conditions occurs.

Construction of an approximate solution

If we intend to construct an approximate solution on the whole domain the steps would be

• The construction of the Hartmann layer and the associated boundary layer compatibility
condition. These layer of size (Mz)−1 degenerate close to the equator and Proposition 5.3.2
provides their construction under an hypothesis of non-degeneracy.

• Using the compatibility condition the construction of an interior term. This rises no prob-
lem, but the term we obtain is discontinuous at A = A∗, i.e, x = 0.

• This discontinuity is lifted through a shear layer of size M− 1
2 .

• The boundary layer effective condition create a degeneracy of the boundary conditions for
the shear layer, leading to a singularity. This is the main objective of Section 5.4.

• Lastly an equatorial layer lifting this discontinuity must be constructed. It seems that
adapting tools from Chapter 4 for this context is sufficient to achieve such purpose.

5.3 Hartmann layers

5.3.1 Hartmann boundary layer operator
Let us first recall the definition of the weighted spaces we already used in Chapter 3 in order to
solve boundary layer equations:

Definition 5.3.1. Let λ > 0,s0 ∈ N and k ∈ N. For (θ, ζ) ↦→ u(θ, ζ) a function from (0, 1)×R+

we define

∥u∥2
Hs0,k

λ

=
∑︂

0≤i≤s0

∫︂ 1

0

∫︂ ∞

0

⃓⃓
∂kζ ∂

i
θu
⃓⃓2
e2ηλ.
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Then, we have already seen that for ˜︁s0 ≤ s0, ˜︁k ≤ k, ˜︁λ ≤ λ, Hs0,k
λ ↪→ H ˜︁s0,˜︁k˜︁λ , and more

importantly the technical Lemmas A.5.1, A.5.2 allowing us to write for example the scaling, for
s ≤ s0 ⃦⃦⃦

u
(︂
·, ·
ε

)︂⃦⃦⃦
Hs

≤ ε
1
2−sC ∥u∥Hs0,s0

λ
.

The Hartmann layers are very similar to the Ekman layers. In fact we have the following
boundary layer operator
Proposition 5.3.2 (Hartmann boundary layer operator). Let s0 = 2, V,B ∈ H2(Γ0), and let
f with be with exponential decay of rate η < 1, i.e

f ∈ H2,0
η ×H2,0

η . (5.13)

Suppose that the following compatibility is satisfied

V (θ) +B(θ) =

∫︂ ∞

0

(1− e−ζ)(fv + fb)(θ, ζ)dζ. (5.14)

And, in order to avoid degeneracy, let us suppose that f

V (θ)−B(θ) = O(cos(θ)2)

f = O(cos(θ)2).
(5.15)

There exist ubl = u
(︂
θ, r−r0δ0(θ)

)︂
solution of the approximate equation (5.11) with source term

fbl =Mf
(︂
θ, r−r0δ0(θ)

)︂
.

(vbl, bbl)r=r0 = (V,B)

(vbl, bbl)r=r1 = (0, 0)

and the estimates, for all ˜︁η < η

∥rv∥H0,0
η

+ ∥rb∥H0,0
η

≤ C

∥v∥H1,1
η

+ ∥b∥H1,1
η

≤ C.

leading to
∥rblv ∥L2 + ∥rblb ∥L2 ≤ CM− 1

2

∥vbl∥Hs + ∥bbl∥Hs ≤ CMs− 1
2 for s ∈ {0, 1}.

Remark 5.3.1. If
⃓⃓
θ − π

2

⃓⃓
≥ c > 0, then we can replace s0 = 2 by s0 ≥ 2. In this case we need

V,B to be in Hs0(Γ0) and f ∈ Hs0,s0−2
η . And, we obtain v, b ∈ Hs0,s0˜︁η , rv, rb ∈ Hs0−2,s0−2˜︁η , the

loss of derivative coming from the neglect of ∂2θ .
Remark 5.3.2. The condition (5.15) is far from optimal. Indeed, not only we can make a trade-off
between power of cos(θ) and power of M , but, moreover, the area where cos(θ)−1 ≫ 1 is small.
So if we are interested in the global L2 estimate of rbl we must take this into account.

Proof. Let us choose the polar coordinates (r, θ), and as for Ekman layers start with f = 0.
Then the equation is(︃

∂2r + r−1∂r + r−2∂2θ − c −M
(︁
cos(θ)∂r + r−1 sin(θ)∂θ + a

)︁
−M

(︁
cos(θ)∂r + r−1 sin(θ)∂θ − a

)︁
∂2r + r−1∂r + r−2∂2θ − c

)︃(︃
vbl

bbl

)︃
=

(︃
0
0

)︃
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1

i

Figure 5.6 – The modes of the Hartmann boundary layer operator.

so the, keeping only the higher order in ∂r we obtain as a characteristic manifold⃓⃓⃓⃓
−ξ2 −M cos(θ)iξ

−M cos(θ)iξ −ξ2
⃓⃓⃓⃓
= ξ4 −M cos(θ)2ξ = 0.

Therefore, the scaling is
r = r0 +

1

M cos(θ)⏞ ⏟⏟ ⏞
δ0

ζ.

And the boundary layer equation is

−∂ζb+ ∂2ζv = 0

−∂ζv + ∂2ζ b = 0.
(5.16)

of corresponding characteristic polynomial

λ4 − λ2 = 0.

There are 4 roots: −1,+1 and 0 as a double root. The only admissible mode is λ = −1
leading to

v(ζ) = αe−ζ

b(ζ) = −αe−ζ

for a α ∈ R. From there we deduce the compatibility condition

V +B = 0.

We can now estimate the remainders. By symmetry, it is sufficient to estimate rv.

Thanks to the simple form of v and b we have the explicit value of rv(θ, ζ).
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More precisely, with ubl = u

⎛⎜⎜⎝θ, r − r0
δ0⏞ ⏟⏟ ⏞
ζ

⎞⎟⎟⎠ we have the Jacobian

(︃
∂ru

bl

∂θu
bl

)︃
=

(︃ 1
δ0

0

−∂θδ0
δ0
ζ 1

)︃(︃
∂ζu
∂θu

)︃
.

And, as in our case −∂θδ0
δ0

= tan(θ), we obtain,

M |rv| ≤C
(︃
M cos(θ)|∂ζv|+ |∂2θv|+

1

cos(θ)
ζ|∂ζ∂θv|+

1

cos(θ)2
(︁
ζ|∂ζv|+ ζ2|∂2ζv|

)︁
+Mζ

1

cos(θ)
|∂ζb|+M |∂θb|+M |a||b|

)︃
.

(5.17)

We thus obtain the claimed estimate for θ far from π
2 . For θ close to π

2 , as b and v behave like
±(V −B)e−ζ , the condition to have rv ∈ H0,2˜︁η and of norm O(1) in this space is⃦⃦⃦⃦(︃

1

M

(︃
∂2θ +

1

cos(θ)
∂θ +

1

cos(θ)2

)︃
+

(︃
∂θ +

1

cos(θ)
)

)︃)︃
(V −B)

⃦⃦⃦⃦
L2

≤ C

which is indeed the case thanks to the condition (5.15).
For a source term f ̸= 0 the same computation applies. The only point where one must be

careful is the rescaling as(︃
∂2r −M cos(θ)∂r

−M cos(θ)M∂r ∂2r

)︃(︃
vbl

bbl

)︃
=

(︃
Mf blv
Mf blb

)︃
becomes (︃

∂2ζ −∂ζ
−∂ζ ∂2ζ

)︃(︃
v
b

)︃
=

1

cos(θ)2

(︃
Mf blv
Mf blb

)︃
so in order avoid degeneracy when θ → π

2 the condition (5.15) is used once more.

Lastly, for the estimate on ubl, rbl, terms like C
∫︁ π

2

0

∫︁ r1
r0

⃓⃓
cos(θ)βe−λM(r−r0) cos(θ)

⃓⃓2
rdrdθ must

be estimated near θ = π
2 . But thanks to (5.15), all the powers β are ≥ 0, so we recover

O(M−1).

Remark 5.3.3. The main difference with the Ekman layers of Chapter 3 is that all traces are
Dirichlet traces. As a consequence, the size of the boundary layer does not appears in the
compatibility condition (5.14).

Remark 5.3.4. The same operator exists for r = r1 with the only difference being that (5.14) is
replaced by

V −B =

∫︂ ∞

0

(1− e−ζ)(fv − fb)(ζ)dζ.

Note that both conditions can be rewritten naturally in terms of the Alfven variables V±.
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5.3.2 Expansion without shear layers
Since the interior equation is simply

(−∂z + a)bint = fv

(−∂z − a)vint = fb

there is no difficulty to construct an interior operator.
Remark 5.3.5. In the case where we have Dirichlet condition for b on both shells, and a = 0, we
can conclude that the geometry has no effect on the limiting flow. Indeed the previous operator
is sufficient to conclude that the limit of the solution (v, b) of

M∂zb+ (∆− c)v = 0

M∂zv + (∆− c)b = 0

inside
Ω = {(x, z); γ0(x) < z < γ1(x)}

and with boundary condition
(v, b)|z=γi = (vi, bi)

is (︁
v̄, b̄
)︁
=

(︃
v0 + v1

2
+
b0 − b1

2
,
b0 + b1

2
+
v0 − v1

2

)︃
.

And this is true no matter γ0, γ1, as long as they are smooth.
The only non-obvious step is how to work with the Robin condition. In fact, effect of scale

mixing comes from this Robin condition on b. In fact, as ∂rbblΓ0
is of the same size as 1

δ0
bblΓ0

, the
only way to lift a condition ∂rb + λb = 0 is to lift the Neumann trace ∂nb, leaving a Dirichlet
error one order smaller. This error is then lifted by the next order boundary layer operator.

More precisely, as the boundary layer solution are in a one dimensional affine space, we can
lift any k boundary conditions as long as k − 1 compatibility are given. These compatibility
conditions comes from the explicit solutions of the boundary layer equation, combined with the
boundary layer scaling.

For example, we have the exact same Proposition as Proposition 5.3.2 if we replace the
compatibility condition (5.14) by

V +
1

M cos(θ)
N =

∫︂ ∞

0

(︁
fv(ζ) + e−ζ(fv + fb)(ζ)

)︁
dζ (5.18)

and the boundary conditions by

(vbl, ∂rb
bl)r=r0 = (V,N)

(vbl, bbl) = (0, 0) for r > 2r0 + r1
3

.

Remark 5.3.6. We can as easily construct a boundary layer operator that lift directly the Robin
condition, but we will not do so. Indeed, such operator would mix the power of M at each step,
for example the asymptotic expansion with such operator look like

v =
∑︂
k

M−kvin,k +
∑︂
k

(︃
αk(θ) +

βk(θ)

M

)︃
e−M(r−r0) cos(θ0) +

∑︂
k

γke
−M(r1−r) cos(θ1) + · · ·
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which is correct but betrays the idea of asymptotic development where orders are ordered.

Proposition 5.3.3. Let us a, c ∈ C∞(Ω), c > 0, a > 0 with a|z=0 = 0. Let v0, v1 ∈
C∞
c (Γ0), C

∞
c (Γ1) Λ ≥ 0.

Let u = (v, b) ∈ H1(Ω)×H1(Ω) be the unique solution of (5.8) with boundary conditions (5.6).
Then when M → ∞ we have

lim
M→∞

⃦⃦
(v, b)− (v̄, b̄)

⃦⃦
L2 = 0

with

v̄(x, z) =

{︄
e
−
∫︁ z
r0(x)

a(x,τ)dτ
v0(x) for |x| < r0

e
∫︁ r1(x)
z

a(x,τ)dτv1(x) for |x| > r0

and

b̄(x, z) =

{︄
e
−
∫︁ z
r0(x)

a(x,τ)dτ
(v0 − v1)(x) for |x| < r0

0 for |x| > r0

In fact, for all K ∈ N we have an asymptotic expansion

u =

K∑︂
k=0

M−Kuint,K (x, z) +

K∑︂
k=0

M−Kuint,K,t (θ,M cos(θ)(r1 − r))

+

K∑︂
k=0

M−Kuint,K,b (θ,M cos(θ)(r − r0)) +OL2

(︂
M−(K+1)

)︂
.

Remark 5.3.7. A similar result holds for γ0, γ1 ∈ C∞(T), γ0 − γ1 > C and Ω = {(x, z); γ0(x) <
z < γ1(x)}.

Sketch of proof. We have all the operators we need, represented in Figures 5.7, 5.8, 5.9.

• The interior operator take a source term ri,k, two boundary conditions vi,k1 − bi,k1 , vi,k0 and
construct an approximate solution up to a remainder M−1ri,k+1.

• The top boundary layer operator take a source term rt,k and two boundary conditions
vk,t1 , bk,t1 satisfying condition (5.14), and construct an approximate solution up to a remain-
der M−1rt,k+1.

• The bottom boundary layer operator take a source term rb,k and two boundary condi-
tions vb,k0 , nb,k0 satisfying condition (5.18), and construct an approximate solution up to a
remainder M−1rt,k+1, and with a remainder bor the Robin conditions ∂nb− Λb = nb,k+1

0 .
More precisely, the idea is to lift at each step, in boundary layer variables

∂nb
k+1 = Λbk. (5.19)

And at each step we distribute the value of the parameters such that all conditions are
satisfied, as we have the exact number of degree of freedom.

As all terms are C∞, there is no problem with the loss of regularity. At the step k of the
construction the errors are

• For the interior remainder
ri,k+1 = OL2(M−K−1)
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Interior k

ri,k

ri,k+1

vi,k1 − bi,k1 vi,k0

vi,k1 + bi,k1 (∂zb− Λb)
i,k
0

Figure 5.7 – Interior operator if there are no shear layers.

Top BL k

rt,k

rt,k+1

(vt,k1 , bt,k1 ) t.q
(vt,k1 − bt,k1 ) +

∫︁∞
0

(1− e−ζ)rt,k− (ζ)dζ = 0

vt,k|z=1 = vt,k1

bt,k|z=1 = bt,k1

Figure 5.8 – Top boundary layer operator k

• For the boundary layer remainders

rb,k+1, rt,k+1 = OL2(M−K−1− 1
2 )

• For the boundary conditions

(∂nb− Λb)k+1 = OH2(M−K−1)

which can be lifted with an arbitrary function, corresponding to a remainder

rl,k = OL2(M−K).

So continuing the construction up to the order K + 1, we obtain the claimed expansion.

Bottom BL k

rb,k

rb,k+1

(vb,k0 , nb,k0 ) t.q
vb,k0 − nb,k0 +

∫︁∞
0
rb,kv (ζ)∂ζ = 0

∂nb|z=0 =M cos(θ0)n
b,k
0

vb,k|z=0 = vb,k0

Figure 5.9 – Bottom boundary layer operator k
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5.3.3 Remarks on the transparent condition
Instead of the transparent condition , which we will denote (∂rb+DtoNb)|Γ0

= 0 of the equation

(−∆+ c)b = 0

we choose for simplification a constant Robin condition. In a way, it correspond to the replace-
ment of ∆b by r−1∂r(r∂rb) + λ2b for some λ.

The main consequences of such simplification are the following

• The DtoN is non-local while the multiplication by Λ is localized. This is not a major
problem, as in the physical case DtoN is localized in frequency, i.e for each mode einθ we
can solve the problem with a fixed Λn.

• More importantly the corresponding Λn goes to ∞ when n→ +∞. This is more problem-
atic, but one can hope that such mode are not created by the boundary conditions.

In order to do explicit computation without the spherical geometry, let us consider a bottom
conductive shell in the half space z < γ0(x) = 0 and a top insulating shell in the half-space
z > γ1(x) = 1. We will also take a = 0, c = 1.

Then the equation is inside the domain T× [0, 1],

M∂zb− (∆− 1)v = 0

M∂zv − (∆− 1)b = 0.
(5.20)

If we suppose that the conductive half plane has the same conductivity than the fluid the bound-
ary conditions are

v|z=0 = vb, v|z=1 = vt

b|b=1 = 0

[b]z=0 = 0, [∂zb]z=0 = 0

(5.21)

where b satisfy inside the domain T× (−∞, 0)

(∆− 1)b = 0. (5.22)

The natural framework is to use Fourier series in the x variable.
Inside the conductive half plane

∂2z
ˆ︁b− (k2 + 1)b = 0

so ˆ︁b(k, z) = e−
√
1+k2z ˆ︁b0

and in particular
∂zˆ︁b(k, 0) = −

√︁
1 + k2ˆ︁b(k, 0).

Remark 5.3.8. We see that if k ≫ 1 we have what can be considered as a boundary layer inside
the conductor, of size 1√

1+k2
.

In Alfven variables with v± = v ± b the equation is

∓M∂zˆ︂v± + ∂2zˆ︂v± − (k2 + 1)ˆ︂v± = 0
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We obtain for v± two modes:

• an interior one

λ±i =
1

2

(︂
±M ∓

√︁
M2 + (1 + k2)

)︂
= ∓1 + k2

4
+OM→∞, |k|≪M

(︃
1

M

)︃
• and a boundary layer one

λ±bl =
1

2

(︂
±M ±

√︁
M2 + (1 + k2)

)︂
= ±M +OM→∞, |k|≪M (1).

Remark 5.3.9. The so-called interior terms are in fact, at high frequencies, boundary layer terms
too.

With ˆ︁v+ = c+i e
λ+
i z + c+ble

λ+
bl(z−1), ˆ︁v− = c−i e

λ−
i z + c−ble

λ−
blz the boundary conditions are⎛⎜⎜⎜⎝

1 e−λ
+
bl 1 1

eλ
+
i 1 eλ

−
i eλ

−
bl

λ+
i +

√
1 + k2 e−λ

+
bl
(︁
λ+
bl +

√
1 + k2

)︁
−λ−

i −
√
1 + k2 −λ−

bl −
√
1 + k2

eλ
+
i 1 −eλ

−
i −eλ

−
bl

⎞⎟⎟⎟⎠
⏞ ⏟⏟ ⏞⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1

eλ
+
i 1 eλ

−
i 0

λ+
i +

√
1 + k2 0 −λ−

i −
√
1 + k2 −λ−

bl −
√
1 + k2

eλ
+
i 1 −eλ

−
i 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+o(M−∞)

⎛⎜⎜⎝
c+i
c+bl
c−i
c−bl

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2 ˆ︁vb(k)
2ˆ︁vt(k)

0
0

⎞⎟⎟⎠

The first order is
c+i = 2ˆ︁vb − ˆ︁vt
c−i = ˆ︁vt
c+bl = −2ˆ︁vb + 2ˆ︁vt
c−bl =

1

M

(︂
2
√︁
1 + k2(−ˆ︁vb + ˆ︁vt))︂ .

And an explicit calculation seems to showthat if vb, vt are bounded in H3, uniformly in M , then
the limit in L2 is

(v̄, b̄) = (vb,
vb + vt

2
)

which is the same as in the case where the bottom boundary condition is a Robin condition.
But, unfortunately, when dealing with the whole problem, the shear layers create naturally

high frequencies (the inverse of the boundary layer size), so such heuristic is no longer valid.
However, from a numerical point of view [22] it seems that the construction of the boundary
layers does not changes too much, as there is no equatorial boundary layer on the conductive
shell.

5.4 Toy model for the shear layer
5.4.1 Setting
From the analysis of the Ekman equatorial layer in Chapter 3, it appears that the shear layers
are not due directly by the geometrical degeneracy of the problem, but by the discontinuity
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V+ − V− = 0 V+ = 0

V+ + V− = 2vQ
x

z

Figure 5.10 – Domain and boundary conditions.

arising from the change of boundary conditions. As a consequence, in order to investigate this
phenomenon without being perturbed by the degeneracy of Hartmann layer, let us consider (5.8)
on the domain T× (0, 1), with boundary conditions

v|z=1 = vQ b|z=1 = 0 v|z=0 = 0

{︄
b|z=0 = for x < 0

(∂nb+ Λb)|z=0 for x > 0.
(5.23)

Remark 5.4.1. As noted by Dormy, Jault and Soward [22], this approximation could be formally
justified a posteriori. Indeed, for a shear layer of size δ ≪ 1 in the x variable, the domain
z > (−x)α1x<0 becomes z > δα(−x)α1x<0 after rescaling. Thus, for the shear layers (and not
the equatorial layer) and Dirichlet traces, both geometry are very alike.

From the study of the first order of the Hartmann boundary layer operator, the effective
boundary condition are

• For z = 1, the conductive shell, we obtain

(V+ + V−)|z=1 = 2vQ

• For z = 0, x > 0, the insulating shell, we obtain the Hartmann condition

V+|z=0,x>0 = 0.

• For z = 0, x < 0 the symmetry conditions read as b = 0 i.e

(V+ − V−)|z=0,x<0 = 0.

The exact problem we are interested in is

M(∂zV+ − aV−)− (∆− c)V+ = 0

M(∂zV− − aV+) + (∆− c)V− = 0
(5.24)

with the boundary conditions of Figure 5.10. where the perturbation vQ is smooth.
Remark 5.4.2. In order to remain close to the physical problem, we choose to consider the
problem with no source term and non-homogeneous boundary conditions. What follows can
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be adapted for non-homogeneous source term. Indeed the only oversimplification would be to
choose boundary conditions in such a way that no singularity appears at (0, 0). But as we will
see this is not the case if vQ(0) ̸= 0.

The goal is to construct an approximate solution, in the sense of Definition 5.2.2. First, if vQ
si zero near x = 0, the usual construction works

Proposition 5.4.1 (Interior operator without shear layer). If vQ(0) = 0, v′Q(0) = 0, then there
exists V+, V− approximate solution of (5.24) satisfying the boundary conditions

(V+ + V−)|z=0 = 2vQ

(V+ − V−)|z=0,x<0 = 0 (V+)|z=0,x>0 = 0.
(5.25)

Proof. If we drop all lower order terms the equations we obtain is

∂zV+ − a(x, z)V− = 0

∂zV− − a(x, z)V+ = 0.

From there the solution is straightforward

V+ = α(x)e−
∫︁ 1
z
a(x,ζ)dζ + β(x)e−

∫︁ z
0
a(x,ζ)dζ

V− = α(x)e−
∫︁ 1
z
a(x,ζ)dζ − β(x)e−

∫︁ z
0
a(x,ζ)dζ

and this is not surprising that we have the right number of degree of freedom on the boundary
conditions, leading to

2α(x) = 2vQ(x){︄
2β(x) = 0 for x < 0

β(x) = −α(x)e−
∫︁ 1
0
a(x,ζ)dζ for x > 0.

This explicit expression, V± = vQ(x)e
−
∫︁ 1
z
a(x,ζ)dζ∓1x>0(vQ(x)e

−
∫︁ 1
0
a(x,ζ)dζ), leads to remain-

ders

r± = (∆− b)V±

= OL2(1)±
(︃
δ′x=0vQ(0) + 2δx=0

(︃
v′Q(0)−

∫︂ 1

0

a(0, ζ)dζvQ(0)

)︃)︃
e−
∫︁ 1
0
a(0,ζ)dζ .

So, as long as vQ(0) = 0 and v′Q(0) = o(1) we obtain an acceptable remainder in the sense
of 5.2.2.

From there one way would be to distinguish the first two order of the Taylor expansion of
vQ near 0, i.e write vQ(x) = vQ(0) + xv′Q(0) + ˜︂vQ(x). But a more robust way is to separate the
scales through judicious cut-off

vQ(x) = vQ(x)χ
(︂x
δ

)︂
+ vQ(x)

(︂
1− χ

(︂x
δ

)︂)︂
.

where χ(x) = 1 for |x| < 1
3 and is equal to 0 for |x| > 2

3 . In this case an additional error term is
created, of size δ−2 in L∞ norm, and localized in |x| ∈

[︁
δ
3 ,

2δ
3

]︁
With such cut-off, ∆x,z becomes M−2β∂2x + ∂2z . Thus, the balance is β = 1

2 , and the corre-
sponding scaling

x =M
1
2 s.
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5.4.2 Study of the shear layer equation

Let us study the equation (5.26) with boundary condition (5.27) near x = 0. The previous
scaling (x, z) → (xE− 1

2 , z) = (s, z) leads to

M
(︁
∂zV± − a(0, z)V∓ ∓ ∂2sV±

)︁
+
(︂
M(a(0, z)− a(M− 1

2 s, z))V∓ ± (∂2z + b(M− 1
2 s, z)V±

)︂
= 0.

Therefore the boundary layer equation we obtain

∂zV± − aV∓ ∓ ∂2sV± = 0. (5.26)

Existence and uniqueness

Proposition 5.4.2. For any κ ∈ C∞
c (R) there exist a solution of (5.26)

∂zV± − aV∓ ∓ ∂2sV± = 0.

with boundary condition

(V+ + V−)|z=0 = κ

(V+ − V−)|z=0,x<0 = 0 (V+)|z=0,x>0 = 0.
(5.27)

More over this solution is unique, and satisfies∫︂∫︂
R×(0,1)

(︁
|∂sV+|2 + |∂sV−|2 + |V+|2 + |V−|2

)︁
dzds ≤ C.

Proof. The first step is to consider, thanks to a well-chosen lifting, an equation with homogeneous
boundary conditions and a source term f localized near z = 1.

Using exactly the same proof as for Theorem 4.2.1 for the equatorial Ekman equation, we
obtain existence in the space

∥V ∥2E0
=

∫︂∫︂
R×(0,1)

(︄
|∂sV+|2 + |∂sV−|2 +

⃓⃓⃓⃓
V+

|s|+ 1

⃓⃓⃓⃓2
+

⃓⃓⃓⃓
V−

|s|+ 1

⃓⃓⃓⃓2)︄
dzds < +∞

as long as, for any solution of the dual equation

−∂zW± − a(0, z)W∓ ∓ ∂2sW± = F± (5.28)

with the dual boundary conditions of Figure 5.11

(W+ +W−)|z=0 = 0

(W+ −W−)|z=0,x<0 = 0 (W−)|z=0,x<0 = 0
(5.29)

we have the observability inequality

∥F±∥L2 ≥ C
(︁
∥W ∥E0

+ ∥∂zW ∥E′
0

)︁
.
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W+ −W− = 0 W− = 0

W+ +W− = 0
s

z

Figure 5.11 – Dual boundary conditions.

Thanks to the equation (5.28), it is enough to prove that

∥F±∥E′
0
≥ C∥W ∥E0

and, multiplying equation (5.28) by (W+,W−), we have indeed∫︂
(F+W+ + F−W−) =

∫︂ (︁
−∂zW+W+ − aW−W+ − ∂2sW+W+

)︁
+

∫︂ (︁
+∂zW−W− + aW+W− − ∂2sW−W−

)︁
=

∫︂ (︁
|∂sW+|2 + |∂sW−|2

)︁
+

1

2

∫︂
∂z
(︁
|W−|2 − |W+|2

)︁
=

∫︂ (︁
|∂sW+|2 + |∂sW−|2

)︁
+

1

2

(︃
0 +

∫︂
z=0,x>0

|W+|2
)︃

⏞ ⏟⏟ ⏞
≥0

.

In order to obtain the L2 integrability, for a ≥ a0 > 0 we use the formal computation∫︂∫︂
a(|V+|2 + |V−|2)dsdz =

[︃∫︂
(V+V−)(s, ·)ds

]︃z=1

z=0

+

∫︂∫︂
(f+V− + f−V+) dsdz

≤ 0 +

√︄∫︂∫︂
1

a
(|f+|2 + |f−|2)dsdz

√︄∫︂∫︂
a(|V+|2 + |V−|2)dsdz

which can be justified by computing in a weak sense (in the spirit of the proof of Theorem 4.3.1)

d

dZ

∫︂
z=Z

V+V−(s, Z)ds.

Or, alternatively without the hypothesis on the sign of a, we can use the same methods as in
Subsection 3.5.5: thanks to Cacciopoli inequalities, interior regularity in s (far from s = 0) to
have regularity on z and then Poincaré inequality as the domain is bounded in the z direction.

From this integrability, we recover the uniqueness, using the same methods as in the Theo-
rem 4.3.1 of Chapter 4.
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Remark 5.4.3. The dual boundary condition are formally the ones needed to have no boundary
terms when integrating by parts in order to obtain the weak formulation.

For example, here,∫︂
(∂zV+W+ − ∂zV−W−) =

∫︂
|z=1

(V+W+ − V−W−)−
∫︂
|z=0

(V+W+ − V−W−)

−
∫︂

(−V+∂zW+ + V−∂zW−)

and the condition
V+W+ − V−W− = 0

• for V+ − V− is equivalent to W+ +W− = 0,

• for V+ − V− is equivalent to W+ −W− = 0,

• for V+ = 0 is equivalent to W− = 0.

Regularity

Taking inspiration from Section 4.2.5, we see that we can obtain elliptic regularity far from
the boundaries. More precisely we recover regularity with respect to s thanks to Cacciopoli
inequalities, and we use the equation expressing ∂zV± from V∓ and ∂2sV± to recover regularity
with respect to z.

In fact, we can recover regularity far from (s, z) = (0, 0). In order to quantify the regularity
let us define, for k ∈ N and ω ⊂ Ω let

∥u∥2Ek(ω)
=

∫︂
ω

(︁
|∂kzu|2 + |∂k+1

y u|2
)︁
.

For example, the energy space is E0.

Proposition 5.4.3 (Regularity of the solution). The solution V of Proposition 5.4.2 is in fact
in E1(Ω\{|(s, z)| ≤ ϵ}) for all ϵ > 0.

More precisely there exist a constant Ξ ∈ R and V reg+ ∈ E1(Ω) such that

V− ∈ E1(Ω)

V+ = V reg+⏞⏟⏟⏞
∈E1(Ω)

+Ξ

∫︂ ∞

s√
z

e−
τ2

4 χ†(s−
√
zτ)dτ⏞ ⏟⏟ ⏞

∈E0(Ω)\E1(Ω)

.

Remark 5.4.4. Such behavior, that the solution are in higher regularity space modulo a finite
dimensional space of singular function is to be expected. Indeed, for elliptic equation with change
of boundary conditions such phenomenon appears, see the work of Grisvard [41], [43].

Proof. The idea is to look at each equation as a forward or backward heat equation with a
smooth source term.

†χ is any cut-off function such that χ(0) = 1.
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From V + ∈ L2, there exist z0 ∈ (0, 1) such that V+(·, z0) is well defined and L2.
Then, we solve the equation

∂zV+ + ∂2sV+ = F (s, z)

where F+ = −aV− is such that

∥F+∥2E0(Ω) =

∫︂
|F |2 + |∂sF |2 < +∞.

For z > z0 thanks to the smoothing properties of the heat equation, or the explicit expression

ˆ︂V+(ξ, z) = e−(z−z0)ξ2 ˆ︂V+|z=z0 −
∫︂ z

z0

e−ξ
2(z−τ)ˆ︂F+(ξ, τ)dτ

we recover that
V+ ∈ E1((z0 + ϵ, 1)× R)∀ϵ > 0.

And
V+|z=1 ∈ H2(R).

For z < 1 thanks to the smoothing of the backward heat equation

∂zV− + ∂2sV− = F− ∈ E0(Ω)

V−(z = 1) ∈ H2(R)

so, similarly we have
V− ∈ E1((0, 1)× R).

And
V−|z=0 ∈ H2(R).

Remark 5.4.5. We can continue the bootstraping in order to obtain C∞ regularity far from (0, 0).
The idea is that, at each step the regularity on V± is used to obtain more regularity on the source
term F± and V−|z=1.

The singularity of V+ is due to its initial condition

V+|z=0 = 1s<0V−|z=0

which can be discontinuous at s = 0.
Let us decompose by linearity V+ into V+ = V reg+ + V sing+ where

∂zV
reg
+ − ∂2sV

reg
+ = aV−

V reg+ (s, z = 0) = (V−(s, 0)− χ(s)V−(0, 0))1s<0

(5.30)

and
∂zV

sing
+ − ∂2sV

sing
+ = 0

V sing+ (s, z = 0) = χ(s)V−(0, 0)1s<0.
(5.31)

where χ is a cut-off function such that χ(0) = 1. Note that for χ = 1 we recover the erf(sz−
1
2 )

but that for an unbounded domain in s we must take χ decreasing at infinity. But the behavior
of the function near (s, z) = (0, 0) is nevertheless the same.

Since V−(s, 0) − χ(s)V−(0, 0) = 0, (V−(s, 0)− χ(s)V−(0, 0))1s<0 is H1, and we recover the
claimed regularity on V sing.
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And the expression of V sing+ is explicit from the heat kernel.

Remark 5.4.6. For the case κ = 1 we recover as singular part

Ξ

2
erf

(︃
s

2
√
z

)︃
which is exactly the singularity constructed by Dormy, Jault and Soward [22]. The main point
is the visible self-similar scaling

s√
z
.

5.4.3 About the singularity at (0, 0)

How to compute Ξ ?

A question that emerges from the previous Proposition is to find Ξ, or more generally V−|z=0,
as Ξ is a linear function of V−|z=0(0).

Note that we can formally write the linear form κ ↦→ Ξ. Indeed, for φ ∈ C∞
c (R) let Wφ be

the solution of the dual equation (5.28) with inhomogeneous boundary conditions (5.29)

(W+ +W−)|z=0 = 0

(W+ −W−)|z=0,x<0 = φ (W−)|z=0,x>0 = φ.

Then the weak formulation leads to∫︂ ∞

−∞
κ(s)Wφ

+(s, 1)ds = −
∫︂ ∞

−∞
φ(s)V−(s, 0)ds.

So with φ→ δ0 we recover V−(0, 0). Unfortunately, such method requires additional information
on the dual problem, which is exactly as difficult as the main problem.

In their paper [22] Dormy, Jault and Soward proposed a numerical scheme in order to compute
the solution and notably V−(s, 0) for a = 0. Let us comment the method they used.

Let Kt be the heat kernel at time t i.e

Ktu(s) =
1√
4πt

∫︂ 0

−∞
e−

(s−τ)2

4t u(τ)dτ.

Solving the heat equation on V+ from 0 to 1, followed by the backward heat equation on V−
from 1 to 0, we obtain V− as a fixed point:

• At z = 0, V+(s, 0) = 1s<0V−(s, 0).

• Solving the heat equation (as a = 0) there is no coupling we obtain

V+(s, 1) = K1 ∗ (1s<0V−(s, 0))

• At z = 1 we have V−(s, 1) = κ− V+(s, 1) = κK1 ∗ (1s<0V−(s, 0)).

• Solving the backward heat equation from 1 to 0 we recover

V−(s, 0) = K1 ∗ (κ−K1 ∗ (1s<0V−(s, 0)))

= K1 ∗ κ−K2 ∗ (1s<0V−(s, 0)).
(5.32)
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So it is necessary that V−|s=0 satisfy (5.32), and it is also a sufficient condition as this
construction from such V−|s=0 leads to a correct solution.

Formally the equation (5.32) reads as

v− = f − (K2 ∗ (gv−))

with g = 1s<0.

The scheme proposed by [22] in order to solve such integral equation is to write

v− =
∑︂
k

vk− (5.33)

where v0− and
vk+1
− = − (K2 ∗ (1s<0v

k
−))⏞ ⏟⏟ ⏞

G(vk−)

. (5.34)

However, the operatorG is not a contraction, and the numerical convergence rely on the positivity
of G, as (−G)k is of constant sign (−1)k, thus creating an alternating series.

In fact
G :L2 → L2

u ↦→ (K2 ∗ (1s<0u))

is a linear operator, bounded (and of norm ≤ 1) as

∥G(u)∥L2 = ∥K2 ∗ (ug)∥L2 ≤ ∥ug∥L2 ≤ ∥u∥H2 .

We can express explicitly ˆ︁G as e−2ξ times the Hilbert transform to obtain a full spectral
description of G. But here, as we only want (1 +G)−1, it is enough to notice that for λ, with

˜︁λ = max
ρ∈[0,1]

|λ− ρ| =
⃓⃓⃓⃓
λ− 1

2

⃓⃓⃓⃓
+

1

2
> |λ|

we have

∥(G− λ)u∥2 =

∫︂ (︃
|λ− e−2ξ2 |2|ˆ︂ug|2 + |λ|2 ˆ︂u(1− g) + 2λ(λ− e−2ξ2)ℜ(ˆ︂ug ˆ︂u(1− g))

)︃
≤ 2˜︁λ2∥u∥2L2 .

As a consequence rewriting

(1 +G) = (1 + λ)

(︃
1− λ−G

1 + λ

)︃
we obtain that the alternative scheme

v0− =
1

1 + λ
f

vk+1
− =

λ−G

1 + λ
vk−

(5.35)
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converges with geometric speed, as long as,
√
2˜︁λ < 1 + λ. In this case,

v− =

∞∑︂
k=0

vk−

is well defined in L2 and is indeed a solution of (5.32). Note that from v− ∈ L2 and the equation

v− = f −K2 ∗ (gv−)⏞ ⏟⏟ ⏞
smooth

we recover that v− has the same regularity than f .
Remark 5.4.7. In practice two values of λ are of particular interest: λ = 1

2 as it correspond to
the best rate of convergence, and λ = 1 as it is sign preserving. The scheme (5.34) correspond
to λ = 0.

In order to illustrate these methods, the Figure 5.12 represent the solution obtained after a
few iterations, and Figure 5.13 the norms of vk− with respect to k.

Link with the equatorial layer: some heuristics

The fact that V+ /∈ H1 was to be expected, as even the equation (5.26) has a change of boundary
conditions. But in order to be an approximate it need to be in H1. This is the same problem as
for the discontinuity at x = 0.

The term we neglected was, in shear layer variables, ∂2zV+. The equation we need to consider
is thus

∂zV
sing
+ − ∂2sV

sing
+ −M−1∂2zV

sing
+ = 0 (5.36)

with boundary condition at z = 0,

V sing+|z=0 = χ⏞⏟⏟⏞
∈C∞

1s<0.

The scaling is then
s =M− 1

2σ

z =M−1ζ.
(5.37)

Which is an equatorial like scaling. There would remain to decompose V+|z=0 as V+|z=0χ(sE
−β)+

V+|z=0(1− χ(sE−β) with a right β and χ a cut-off localized near 0, so that the first part create
an equatorial layer and the second one a non singular shear layer.

5.5 Conclusion and perspectives
In this chapter we have constructed various boundary layers for the main MHD problem, notably
the well-known Hartmann layers and a shear layer of size M− 1

2 . For this shear layer, the change
of effective boundary condition create a singularity. This singularity is expected to be lifted by
an equatorial layer.

Link with the equatorial layer

The scaling of the equatorial layer is dictated by the combination of two balances:
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Figure 5.12 – First terms of the series expansion of v−. Note that k iterations correspond to∑︁n
k=0 vk i.e n+ 1 terms in the series (5.33).
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λ = 1

2 , 1 we observe a decay of ratio ˜︁λ.
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• The parabolic scaling xE− 1
2√
z

.

• And the scaling of the geometric degeneracy, for example, for a sphere z =
√
x leading to

the E 2
3 × E

1
3 .

This is the same for the Proudman problem when we use both the scaling x = (Ek )
1
3 ≃ (Ez)

1
3

of the E 1
3 boundary layer and the geometry x ∼ (−x)α1x<0. But here, in the MHD problem,

we are clearly able to see the influence of the equatorial region: it is a well-identified singularity,
preventing the approximate solution to be in the space H1(Ω).

So the role of the equatorial layer is not only to lift the boundary conditions in a very
small area, but more importantly, it is to lift such singularity (as the shear layers were lifting a
discontinuity), in order to have the approximate solution in the energy space.
Remark 5.5.1. If we were to write down the equatorial layer equation, we will obtain a very close
to the equatorial Ekman equation

∂zv + z∂yv − ∂2yb = 0

∂zb+ z∂yb− ∂2yv = 0
(5.38)

on the domain
y > 0 z > 0.

But, this equation is much more simpler than the one studied in Chapter (4) as it can be explicitly
diagonalized into two independent parabolic equations

∂zV+ + z∂yV+ − ∂2yV+ = 0

∂zV− + z∂yV− + ∂2yV+ = 0.
(5.39)

Thus it is likely that in this case we can justify the full approximation.

Perspectives

This MHD toy-model proved itself to retain most characteristics of the Proudman model with
two main differences

• Contrary to the Ekman boundary layer compatibility condition, the Hartmann boundary
layer compatibility condition does not depends of the size of said layer. If it does not
prevents degeneracy, as we still have ∂θδ

δ → ∞, this has multiple consequences: for example
we no longer have the singularity in the effective boundary condition, (so there is no
equivalent of the E

1
3+α layer).

• From a technical point of view, the bilaplacian is replaced by a laplacian. This allows a
full use of the symmetries of the problem, as demonstrated by the diagonalization of the
equatorial equation, v and b playing symmetric roles (which was not the case for v and ψ
in the Proudman problem).

This model therefore seems to be an excellent choice for a complete study of the following
three behaviors: degenerate layers, shear layers and equatorial layer, as well as their respective
interactions. Indeed, the tools used for the Proudman problem can be adapted without further
difficulty (and even with simplification, see previous points).
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6.1 Introduction

The goal of this work is to prove the existence and uniqueness of sign-changing solutions for a
stationary Burgers equation with transverse viscosity. More precisely, let us consider the equation

u∂xu− ∂yyu = −1, (6.1)

in the domain Ω := (x0, x1)× (0,H), where x0 < x1 and H > 0 are real parameters. Then, for
all fixed ȳ ∈ (0,H), the function

ū :=
1

2
y(ȳ − y) (6.2)

is an exact solution to (6.1), that changes sign at y = ȳ. Our purpose is to construct a solution
to (6.1) in the vicinity of ū, by perturbing the lateral boundary data ū|x=x0

and ūx=x1
.

161
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6.1.1 Motivation from recirculation problems in fluid mechanics

Our motivation stems from fluid mechanics. Indeed, the stationary Prandtl equation, which
describes the behavior of a fluid with small viscosity in the vicinity of a wall, reads

u∂xu+ v∂yu− ∂yyu = −∂xpE ,
u|y=0 = v|y=0 = 0,

lim
y→∞

u(x, y) = uE(x),

(6.3)

where uE(x) (resp. pE(x)) is the trace of an outer Euler flow (resp. pressure) on the wall, and
satisfies uE∂xuE = −∂xpE .

As long as u remains positive, (6.3) can be seen as a nonlocal, nonlinear diffusion type
equation, the variable x being the evolution variable. Using this point of view, Oleinik (see
e.g. [58, Theorem 2.1.1]) proved the local well-posedness of a solution of (6.3) when the equation
(6.3) is supplemented with a boundary data u|x=0 = u0, where u0(y) > 0 for y > 0 and such
that u′0(0) > 0. Let us mention that such positive solutions exist globally when ∂xpE ≤ 0, but
are only local when ∂xpE > 0. More precisely, when ∂xpE = 1 for instance, for a large class
of boundary data u0, there exists x∗ > 0 such that limx→x∗ uy(x, 0) = 0. Furthermore, the
solution may develop a singularity at x = x∗, known as Goldstein singularity. The point x∗ is
called the separation point: intuitively, if the solution of Prandtl exists beyond x∗, then it must
have a negative sign close to the boundary (and therefore change sign). We refer to the seminal
works of [38] and Stewartson [71] for formal computations on this problem. A first mathematical
statement describing separation was given by Weinan E in [24] in a joint work with Luis Cafarelli,
but the complete proof was never published. Recently, the first author and Nader Masmoudi
gave a complete description of the formation of the Goldstein singularity [15]. A preprint of
Weiming Shen, Yue Wang and Zhifei Zhang indicates that this singularity holds for a large class
of initial data [66].

Because of this singularity, it is actually unclear that the Prandtl system is a relevant phys-
ical model in the vicinity of the separation point x∗, because the normal velocity v becomes
unbounded at x = x∗. Consequently, more refined models, such as the triple deck model (see
citeLagree for a presentation of the triple deck), were designed specifically to replace the Prandtl
system with a more intricate boundary layer model in the vicinity of the separation point. How-
ever, beyond the separation point, i.e. for x > x∗, it is expected that the Prandtl system becomes
valid again, but with a changing sign solution.

To the best of our knowledge, there are no results on the well-posedness of (6.3) when the
solution u is allowed to change sign. Such solutions are called “recirculating solutions”, and the
zone where u < 0 is called a recirculation bubble, the usual convention being that uE(x) > 0, so
that the flow is going forward far from the boundary.

A family of explicit self-similar solutions, called Falkner-Skan profiles, are known, and are
given by

u(x, y) = xmf ′(ζ), (6.4)

v(x, y) = −y−1ζf(ζ)− m− 1

m+ 1
y−1ζ2f ′(ζ), (6.5)

where ζ := (m+1
2 )

1
2 yx

m−1
2 is the self-similarity variable, m is a real parameter and f is the

solution to the Falkner-Skan equation

f ′′′ + ff ′′ + β(1− (f ′)2) = 0, (6.6)
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where β = 2m
m+1 , subject to the boundary conditions f(0) = f ′(0) = 0 and f ′(+∞) = 1. Such

flows correspond to an outer Euler velocity field uE(x) = xm.
For some particular values of m (or, equivalently, β), these formulas provide physical solutions

to (6.3) which exhibit recirculation (see [9]). But the question of solving (6.3) in the vicinity
of such flows is an open problem. Apart from the usual difficulties of the Prandtl equation
(nonlocality of the transport term v∂yu = −∂yu

∫︁ y
0
∂xu, nonlinearity), the issue here lies in the

fact that in the zone where u > 0, (6.3) can be considered as a (forward) heat equation, whereas
in the recirculation zone u < 0, (6.3) becomes a backward heat equation. As a consequence, the
intuition is that (6.3) must be supplemented with a boundary condition at x = x0 in the zone
where u > 0, and at x = x1 in the zone where u < 0. Of course the exact sets on which these
conditions are prescribed depend on the solution u itself, and the line {u = 0} can be seen as a
type of free boundary.

In order to focus on the difficulties associated with this change of sign, we have chosen in the
present work to consider the toy-model (6.1), which differs from (6.3) through the lack of the
nonlinear transport term v∂yu and through the boundedness of the domain. This allows us to
put aside the specific problems associated with the term v∂yu (nonlocality, loss of derivative).
Concerning the boundedness of the domain Ω, we emphasize that our results could most certainly
be adapted to a domain of the type (x0, x1) × (0,+∞), which would be closer to the Prandtl
setting (6.3). In the latter case, there are essentially two issues that we do not address here.
The first one is the construction of a special solution ū ∈ L∞((x0, x1) × (0,+∞)), such that
ū(x, y) → u∞(x) as y → ∞. It is then quite natural to look for ū as a self-similar solution, in
the spirit of Falkner-Skan flows. We are led to study a nonlinear 1d ODE; we do not expect this
step to give rise to any substantial difficulty. The second issue about the boundedness of Ω lies
in the fact that we repeatedly use the Poincaré inequality in the vertical variable in the proofs of
the present paper. When switching to a non-bounded domain, we will probably need to replace
the Poincaré inequality with some variants, such as the Hardy inequality, and thus to adapt the
functional spaces used here.

6.1.2 Statement of the main result

We must now specify the boundary conditions for equation (6.1). At y = 0 and y = H, we
simply choose Dirichlet boundary conditions, namely

u|y=0 = 0, u|y=H = ū|y=H . (6.7)

At x = x0 and x = x1, we perturb the trace of ū. Let δ0, δ1 ∈ C1([0,H]) vanishing at both
endpoints, i.e. such that δi(0) = δi(H) = 0 for i ∈ {0, 1}. We also define the sets

Σ0 := {(x0, y); ū(x0, y) + δ0(y) > 0},
Σ1 := {(x1, y); ū(x1, y) + δ1(y) < 0}.

(6.8)

Following the above discussion, we endow (6.1) with the lateral boundary conditions

u|Σi
= ū(xi, y) + δi(y), for i ∈ {0, 1}. (6.9)

When δ0 and δ1 are small enough in C1([0,H]), there exist y0, y1 ∈ (0,H) such that Σ0 =
{x0} × (y0,H] and Σ1 = {x1} × (0, y1) (see Lemma 6.6.1 in the Appendix). However, we do
not require that the critical points satisfy y0 = ȳ or y1 = ȳ (see e.g. Fig. 6.1 where y0 < ȳ and
y1 > ȳ).
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y = 0

Σ1

y = H

Σ0

y = ȳ

ū = 0

Figure 6.1 – Geometrical setting of the problem

Let us now introduce the functional spaces we will be working with. For k ∈ N, we set

Xk :=
{︁
u ∈ L2(Ω); ∂jxu ∈ L2((x0, x1);H

1(0,H)), 0 ≤ j ≤ k
}︁
,

∥u∥Xk :=

k∑︂
j=0

∥∂jxu∥L2(Ω) + ∥∂y∂jxu∥L2(Ω).
(6.10)

We also introduce Xk
0 given by replacing H1(0,H) with H1

0 (0,H) in the definition of Xk.

Our main result is the following local well-posedness result, which holds up to the validity of
a conjecture concerning the existence of strong solutions to a linearized problem.

Theorem 6.1.1. Assume that Conjecture 6.2.6 holds (see page 168). There exist constants
C, c, η > 0, depending only on Ω, such that the following statement holds. Let δ0, δ1 ∈ C4([0,H]),
vanishing at both endpoints, satisfying the following compatibility conditions

∥δi∥2ū :=

∫︂
Σi

|ū+ δi|δ2i +
∫︂
Σi

(δ′′i )
2

|ū+ δi|
+

∫︂
Σi

1

|ū+ δi|

(︄
∂2y

δ′′i
ū+ δi

−
(︃

δ′′i
ū+ δi

)︃2
)︄2

< +∞ (6.11)

and ∆1,i ∈ C([0,H]) with ∆1,0(H) = ∆1,1(0) = 0, where

∆1,i =
1

u(xi, ·)
[δ′′i + f(xi, ·)− b(xi, ·)δi] .

Then, under the smallness condition ∥δi∥C1 +∥δi∥ū ≤ c, there exists a strong solution u in the
class X2

0 to equation (6.1) endowed with the boundary conditions (6.7) and (6.9), which satisfies
the stability estimate

∥u− ū∥X2 ≤ C(∥δ0∥+ ∥δ1∥). (6.12)

Moreover, this solution is unique in a neighborhood of ū in X2
0 of size η.

Remark 6.1.1. Theorem 6.1.1 is a (conditional) well-posedness result in the vicinity of the
quadratic flow ū defined in (6.2). This allows to fix ideas and draw pictures (as in Fig. 6.1).
However, it is very likely that the theorem (and the proofs we develop) still hold with minor
adjustments when ū is a smooth function (depending on both x and y) with ∥ūx∥L∞ small
enough.
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6.1.3 Scheme of proof

We will prove existence and uniqueness of solutions separately. We consider here strong solutions,
so that uniqueness is fairly easy to prove (see Section 6.4).

Concerning the existence, a first natural idea would be to linearize equation (6.1) around the
solution ū, and to use a fixed point theorem. However, this strategy fails. Indeed, since ūx = 0,
the linearized equation would read

ū∂xu− ∂yyu = f, (6.13a)

u|y=0 = u|y=H = 0, (6.13b)

u|Σi
= δi. (6.13c)

There are several issues with this linearized equation. First, equation (6.13a) can be considered
as a degenerate elliptic equation (see [28]). As a consequence, we can supply (6.13a) with a
boundary condition at x = x0 (resp. x = x1) on the zone {ū(x0, y) > 0} (resp. {ū(x1, y) < 0}).
But, except for particular choices of δ0 (resp. δ1), this set differs a priori from Σ0 (resp. Σ1). As
a consequence, the boundary condition (6.13c) should be modified, but then there might be an
error in the boundary conditions. Second, if we perform a fixed point argument, the right-hand
side f in (6.13a) should be f = −u∂xu. Therefore we need to have regularity estimates on ∂xu
in order to close the fixed point argument, but solutions of the linearized equation do not satisfy
such estimates. This phenomenon corresponds to a “loss of derivative”.

Hence we will rather construct solutions of (6.1) through an iterative scheme, which does
not rely on the linearized equation (6.13a). In a way, the issues stemming from the linearized
equation (6.13a) come from the following fact: in equation (6.1), the geometry of the problem
is dictated by the line where the whole solution u changes sign. On the contrary, in (6.13a), the
geometry of the problem follows the cancellation of ū. Keeping this in mind, we will construct a
sequence (un)n∈N solving the following iterative scheme⎧⎪⎨⎪⎩

(ū+ un)∂xun+1 − ∂yyun+1 = 0,

un+1|y=0 = un+1|y=H = 0,

un+1|Σi
= δi.

(6.14)

We are able to prove the existence of un in X0. However, the existence of a solution in Xk for
k ≥ 1 (and its uniqueness) is harder to prove, in spite of the fact that we are able to obtain
a priori estimates in X2 on the solution if we know that it belongs to this space. Therefore,
unfortunately, our theorem only holds under a certain conjecture (see Sections 6.2 and 6.5 for
more details). Under this conjecture, we will prove that the sequence (un)n∈N converges strongly
in X1, and we will set u := limn→∞(ū + un). Although the equation for un bears a strong
resemblance with (6.13a), it does not share any of the issues mentioned above. This scheme is
similar to the one used to construct solutions of quasilinear symmetric hyperbolic systems, see
for instance [5, Section 4.3].

The plan of this work is as follows. In Section 6.2, we study the well-posedness of linear
problems which are generalized versions of (6.14). Section 6.3 is devoted to the proof of conver-
gence of the iterative scheme which proves the existence of a solution to the nonlinear problem.
Section 6.4 is devoted to the proof of the uniqueness of the solution to the nonlinear problem.
Eventually, Section 6.5 gives details on a possible strategy to prove Conjecture 6.2.6.
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6.2 Well-posedness results for the linear problem
We start by introducing notations and regularity assumptions which will be implicit throughout
this section. Let u ∈ X2 be a reference flow. We define the associated inflow lateral boundaries
at x = xi for i ∈ {0, 1} by

Σi :=
{︁
(xi, y); (−1)iu(xi, y) > 0

}︁
. (6.15)

We also introduce an associated weighted space L2
u
(Σi) for boundary data defined by the norm

∥δi∥2L2
u
(Σi)

:=

∫︂
Σi

|u|δ2i . (6.16)

Let b ∈ L∞(Ω), f ∈ L2(Ω) and δi ∈ L2
u
(Σi). These regularity assumptions, along with u ∈ X2,

will be implicit in the sequel. We consider the following linear problem, which will be denoted
by P[u, b, f, δ] when we will need to refer to it with different inputs:⎧⎪⎨⎪⎩

u∂xu+ bu− ∂yyu = f,

u|y=0 = u|y=H = 0,

u|Σi
= δi.

(6.17)

This system can be viewed as a degenerate elliptic system. Fichera studies such systems in [28]
and proves existence and uniqueness results concerning weak solutions under various assump-
tions, the key point being the choice of the regions where boundary conditions must be imposed
depending on the properties of the degenerate elliptic operator. His proofs mostly rely on maxi-
mum principles and the construction of signed super or sub-solutions. Here, we focus on solutions
to (6.17) with more regularity, which are not covered by Fichera’s work.

Definition 6.2.1 (Implicit constants). In this section, most results and estimates hold up to
a smallness assumption on some norm of the coefficients in (6.17). We will use the notation
∥ · ∥ ≪ 1 to denote the existence of a constant c > 0, depending only on the geometry of Ω (and
not on any other parameter), such that, if ∥ · ∥ ≤ c, the result holds. Similarly we will write
A ≲ B when there exists C > 0 depending only on the geometry of Ω such that A ≤ CB.

Lemma 6.2.2. For φ ∈ X1, there holds

∥φ∥L∞ ≲ ∥φ∥X1 . (6.18)

Proof. By Sobolev embeddings, one has ∥φ∥L∞ ≲ ∥φ∥L∞
x (H1

y)
≲ ∥φ∥H1

x(H
1
y)

≲ ∥φ∥X1 .

Definition 6.2.3 (Weak solution). We say that u ∈ L2(Ω) is a weak solution to (6.17) when, for
all v ∈ H1(Ω) vanishing on ∂Ω \ (Σ0 ∪ Σ1) with ∂yyv ∈ L2(Ω), the following weak formulation
holds ∫︂

Ω

u (−u∂xv − uxv + bv − ∂yyv) =

∫︂
Ω

fv −
∫︂
Σ1

uδ1v +

∫︂
Σ0

uδ0v. (6.19)

Definition 6.2.4 (Strong solution). We say that u ∈ H1(Ω) is a strong solution to (6.17) when
uyy ∈ L2(Ω), the partial differential equation (6.17) holds in L2(Ω) and the four trace equalities
hold in L2 of the four parts of the rectangular boundary of ∂Ω.
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Proposition 6.2.5 (Existence in X0). When ∥ux∥L∞ +∥b∥L∞ ≪ 1, there exists a weak solution
u ∈ X0

0 to (6.17) which moreover satisfies the estimate

∥u∥2X0 ≲ ∥f∥2L2 +
∑︂

i∈{0,1}

∥δi∥2L2
u
(Σi)

. (6.20)

Proof. We proceed by viscous regularization in the horizontal direction. For small ε > 0, we
consider the vanishing viscosity problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u∂xu
ε + buε − ε∂xxu

ε − ∂yyu
ε = f,

uε|y=0 = uε|y=H = 0,

(uuε − ε∂xu
ε)|Σi

= uδi,

(∂xu
ε)|Σc

i
= 0,

(6.21)

where Σci denotes ({xi}×[0,H])\Σi. For each fixed ε > 0, this is an elliptic problem set in a rect-
angle with mixed Dirichlet, Neumann and Robin boundary conditions, which are inhomogeneous
and with variable coefficients.

Let V := X0
0 ∩ H1(Ω). Hence V is a Hilbert space for the usual scalar product in H1(Ω).

The variational formulation associated with (6.21) is

∀v ∈ V, aε(uε, v) = ℓ(v), (6.22)

where we define

aε(u, v) :=

∫︂
Ω

∂yu∂yv + ε

∫︂
Ω

∂xu∂xv +

∫︂
Ω

u ((b− ux)v − u∂xv) +
∫︂
Σc

1

uuv −
∫︂
Σc

0

uuv, (6.23)

ℓ(v) :=

∫︂
Ω

fv −
∫︂
Σ1

uδ1v +

∫︂
Σ0

uδ0v. (6.24)

It is clear that aε is a continuous bilinear form on V and that ℓ is a continuous linear form on
V . Moreover, for all u ∈ V ,

aε(u, u) = ε

∫︂
Ω

(∂xu)
2 +

∫︂
Ω

(∂yu)
2 +

∫︂
Ω

(︃
b− 1

2
ux

)︃
u2 +

1

2

∑︂
i∈{0,1}

∫︂
Σi∪Σc

i

|u|u2

≥ ε

∫︂
Ω

(∂xu)
2 +

1

2

∫︂
Ω

(∂yu)
2 +

1

2

∑︂
i∈{0,1}

∫︂
Σi∪Σc

i

|u|u2,
(6.25)

thanks to Poincaré’s inequality in the vertical direction, provided that ∥b∥L∞ + ∥ux∥L∞ ≪ 1.
This proves that aε is V -coercive for each fixed ε > 0. Thanks to Lax-Milgram’s theorem, there
exists a unique uε ∈ V such that (6.22) holds.

Moreover, by Cauchy-Schwarz, for any γ > 0, one has the estimate

ℓ(uε) ≤ γ∥uε∥2L2 +
1

γ
∥f∥2L2 +

1

2

∑︂
i∈{0,1}

∫︂
Σi

|u|δ2i +
1

2

∑︂
i∈{0,1}

∫︂
Σi

|u|(uε)2. (6.26)

Using again Poincaré’s inequality in the vertical direction and choosing γ small enough, we
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conclude
∥uε∥2X0 + ε∥∂xuε∥2L2 ≲ ∥f∥2L2 +

∑︂
i∈{0,1}

∫︂
Σi

|u|δ2i . (6.27)

Hence, we can extract a subsequence which converges weakly in X0 to some limit u ∈ X0
0 .

Moreover, this limit satisfies the estimate (6.20).
Let us check that u is a weak solution to (6.17). Let v ∈ H1(Ω) vanishing on ∂Ω \ (Σ0 ∪Σ1)

with ∂yyv ∈ L2(Ω). Hence v ∈ V and we can plug v in (6.22) and integrate by parts to obtain∫︂
Ω

uε ((b− ux)v − u∂xv − ∂yyv) +

∫︂
Ω

ε∂xu
ε∂xv =

∫︂
Ω

fv −
∫︂
Σ1

uδ1v +

∫︂
Σ0

uδ0v. (6.28)

Using the fact that uε converges weakly to u in L2(Ω) and that ε∂xuε converges strongly to 0 in
L2(Ω) (thanks to (6.27)), we conclude that the weak formulation (6.19) holds.

Conjecture 6.2.6 (Existence in X1 for smooth data). When ∥ux∥L∞ + ∥b∥L∞ ≪ 1, if u, b, f ∈
C∞(Ω), δi ∈ C∞(Σi) with δ0(H) = δ1(0) = 0 and satisfy the compatibility conditions

∆1,i ∈ L2
u
(Σi), (6.29)

where

∆1,i :=
1

u(xi, ·)
[δ′′i + f(xi, ·)− b(xi, ·)δi] , (6.30)

there exists a strong solution u ∈ X1
0 to the linear problem (6.17).

We give details concerning a possible strategy to prove Conjecture 6.2.6 in Section 6.5.

Lemma 6.2.7 (Uniqueness of the weak solution for smooth coefficients). Assume that Con-
jecture 6.2.6 holds, ∥ux∥L∞ + ∥b∥L∞ ≪ 1 and u, b ∈ C∞(Ω). Then, for all f ∈ L2(Ω) and
δi ∈ L2

u
(Σi) there exists at most one weak solution u ∈ L2(Ω) to (6.17).

Proof. Let u1, u2 ∈ L2(Ω) be two weak solutions to (6.17). Then, for all v ∈ H1(Ω) vanishing
on ∂Ω \ (Σ0 ∪ Σ1) with ∂yyv ∈ L2(Ω), the weak formulations (6.19) give∫︂

Ω

(u1 − u2) (−u∂xv + (b− ux)v − ∂yyv) = 0. (6.31)

Let h ∈ C∞
c (Ω). We apply Conjecture 6.2.6 to obtain the existence of vh ∈ X1

0 , a weak solution to
the adjoint problem with a force term h (which is compactly supported in Ω) and null boundary
data, P[−u, b− ux, h, 0], i.e. vh solves −u∂xvh + (b− ux)vh − ∂yyvh = h and moreover vanishes
on ∂Ω \ (Σ0 ∪ Σ1). Since vh is a strong solution, ∂yyvh ∈ L2(Ω) and we can use it as a test
function in (6.31). Hence, for every h ∈ C∞

c (Ω)∫︂
Ω

(u1 − u2)h = 0. (6.32)

Thus u1 and u2 are equal.

Lemma 6.2.8 (Estimate in X1 for smooth data). Assume that Conjecture 6.2.6 holds. Under
the same assumptions as in Conjecture 6.2.6, when ∥bx∥L2 ≪ 1, the unique strong solution
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u ∈ X1
0 to (6.17) satisfies the estimate

∥u∥2X1 ≲ ∥f∥2H1
x(L

2
y)

+
∑︂

i∈{0,1}

(︂
∥δi∥2L2

u
(Σi)

+ ∥∆1,i∥2L2
u
(Σi)

)︂
. (6.33)

Proof. Let u ∈ X1
0 be the strong solution to (6.17) constructed in Conjecture 6.2.6, which is

unique thanks to Lemma 6.2.7. Let w ∈ H1(Ω) vanishing on ∂Ω \ (Σ0 ∪Σ1) with ∂yyw ∈ L2(Ω).
Then wx ∈ L2(Ω) and, since u is a strong solution to (6.17), there holds

−
∫︂
Ω

(u∂xu+ bu− ∂yyu)wx = −
∫︂
Ω

fwx. (6.34)

Integrating by parts and using u|Σi
= δi yields∫︂

Ω

(∂xu)(−u∂xw−uxw+(b+ux)w−∂yyw) =
∫︂
Ω

(fx−bxu)w−
∫︂
Σ1

u∆1,1w+

∫︂
Σ0

u∆1,0w. (6.35)

Hence ∂xu is a weak solution to the problem P[u, b+ux, fx− bxu,∆1], where fx− bxu ∈ L2(Ω).
Since u and b + ux are smooth, Lemma 6.2.7 applies and ∂xu is also the solution given by
Proposition 6.2.5 to this problem, for which (6.20) holds, which proves

∥∂xu∥2X0 ≲ ∥fx − bxu∥2L2 +
∑︂

i∈{0,1}

∥∆1,i∥2L2
u
(Σi)

. (6.36)

Moreover ∥bxu∥L2 ≤ ∥bx∥L2∥u∥L∞ ≲ ∥bx∥L2∥u∥X1 thanks to Lemma 6.2.2, which concludes the
proof of (6.33) in the regime ∥bx∥L2 ≪ 1.

Corollary 6.2.9 (Existence in X1). Assume that Conjecture 6.2.6 holds. When ∥ux∥L∞ +
∥b∥L∞ ≪ 1, for all u ∈ X2, b ∈ L∞(Ω) ∩ H1

x(L
2
y) such that ∥bx∥L2 ≪ 1, f ∈ H1

x(L
2
y) and

δi ∈ C0(Σi) satisfying δ0(H) = δ1(0) = 0 and (6.29), there exists a strong solution u ∈ X1
0 to

(6.17) which moreover satisfies the estimate (6.33).

Proof. Let c > 0 be given by Conjecture 6.2.6 and Lemma 6.2.8 such that, when ∥ux∥L∞ +
∥b∥L∞ + ∥bx∥L2 ≤ c, both results hold. Let u ∈ X2 and b ∈ L∞(Ω) ∩ H1

x(L
2
y) be such that

∥ux∥L∞ + ∥b∥L∞ + ∥bx∥L2 ≤ c/2. Let f ∈ H1
x(L

2
y) and δi ∈ C0(Σi) with δ0(H) = δ1(0) = 0 and

∆1,i ∈ L2
u
(Σi).

We construct a sequence un, bn, fn ∈ C∞(Ω) and δni ∈ C∞(Σi) with ∥unx∥L∞ + ∥bn∥L∞ +
∥bnx∥L2 ≤ c and

∫︁
Σi

|un|(∆n
1,i)

2 ≤
∫︁
Σi

|u|∆2
1,i, such that un → u in X2 (in particular unx → ux

in L∞(Ω)), bn → b in L∞(Ω), fn → f in L2(Ω) and δni → δi in L2(Σi). We choose un such that
Σni = Σi for all n ∈ N.

Regularization of the problem data. To this aim, we denote by Rn a sequence of regularization
operators from L2 to C∞ (e.g. defined by convolution with a kernel), for functions defined either
on Ω (in two variables) or on Σi (in one variable). We design this sequence such that it is
uniformly continuous from each Sobolev space to itself. We set un := Rn[u], bn := Rn[b],
fn := Rn[f ]. Moreover, we construct δni such that

∆n
1,i = |un|− 1

2Rn
[︂
|u| 12∆1,i

]︂
. (6.37)
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This means that δni are defined implicitly as the solutions to

(δni )
′′ − bn(xi, ·)δni = |un| 12Rn

[︂
|u| 12∆1,i

]︂
− fn(xi, ·), (6.38)

with δ0(H) = δ1(0) = 0 and δ′0(y0) = δ′1(y1) = 0 where Σ0 = (y0,H] and Σ1 = (0, y1). A
consequence of (6.37) is that∫︂

Σi

|un|(∆n
1,i)

2 =

∫︂
Σi

(︂
Rn
[︂
|u| 12∆1,i

]︂)︂2
≤ CR

∫︂
Σi

|u|∆2
1,i. (6.39)

One also has
∥fn∥H1

x(L
2
y)

≤ CR∥f∥H1
x(L

2
y)
. (6.40)

Convergence of the boundary data. Let gni denote the right-hand side of (6.38). One has
gni ∈ C∞(Σi) and gni → |u|∆1,i − f(xi, ·) in L2(Σi). Thanks to Poincaré’s inequality, for
∥bn∥L∞ ≪ 1, problem (6.38) has a unique solution δni ∈ H1(Σi) with the given boundary
conditions. Moreover, this solution depends continuously on the source term and on the zero-
order coefficient, so that δni → δi in L2(Σi).

Convergence of the sequence of approximate solutions. For each n ∈ N, we apply Lemma 6.2.8
to obtain the existence of un ∈ X1

0 , strong solution to the regularized problem. In particular,
there exists C > 0 given by Lemma 6.2.8 such that

∥un∥2X1 ≤ C∥fn∥2H1
x(L

2
y)

+ C
∑︂

i∈{0,1}

∫︂
Σi

|un|
(︁
(δni )

2 + (∆n
1,i)

2
)︁

≤ CCR∥f∥2H1
x(L

2
y)

+ CCR
∑︂

i∈{0,1}

∫︂
Σi

|u|∆2
1,i + C

∑︂
i∈{0,1}

∫︂
Σi

|un|(δni )2,
(6.41)

thanks to (6.39) and (6.40). Since δni → δi in L2(Σi) and un → u in L∞(Ω), the right-hand side
of (6.41) is bounded. Thus, the sequence un is uniformly bounded in X1

0 and we can extract a
sub-sequence weakly converging to some u ∈ X1

0 which satisfies (6.33). For each fixed v ∈ H1(Ω)
vanishing on ∂Ω \ (Σ0 ∪Σ1) with ∂yyv ∈ L2(Ω), for all n ∈ N, the weak formulation (6.19) reads∫︂

Ω

un (−un∂xv − unxv + bnv − ∂yyv) =

∫︂
Ω

fnv −
∫︂
Σ1

u
nδn1 v +

∫︂
Σ0

u
nδn0 v. (6.42)

The weak convergence of un in L2(Ω), the strong convergence of un and unx in L∞(Ω) and the
strong convergence of δni in L2(Σi) imply that u satisfies the weak formulation (6.19).

Lemma 6.2.10 (Uniqueness of the weak solution). Assume that Conjecture 6.2.6 holds. Then,
when b ∈ L∞(Ω) ∩H1

x(L
2
y) and in the regime ∥ux∥L∞ + ∥b∥L∞ + ∥bx∥L2 + ∥uxx∥L2 ≪ 1, there

exists at most one weak solution u ∈ L2(Ω) to (6.17).

Proof. The proof is exactly identical to that of the uniqueness result for smooth coefficients
Lemma 6.2.7, except that we obtain the existence of a solution to the adjoint problem from
Corollary 6.2.9 instead of Conjecture 6.2.6. Applying Corollary 6.2.9 requires the assumption
∥(b− ux)x∥L2 ≪ 1, which motivates the chosen regime.

Corollary 6.2.11 (Existence in X2). Assume that Conjecture 6.2.6 holds. Then, when b ∈
L∞(Ω) ∩H2

x(L
2
y) with ∥bxx∥L2 ≤ 1, f ∈ H2

x(L
2
y) and δi ∈ C0(Σi) satisfying ∥ux∥L∞ + ∥b∥L∞ +
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∥bx∥L2+∥uxx∥L2 ≪ 1, ∆1,i ∈ C0(Σi) with ∆1,0(H) = ∆1,1(0) = 0 and such that the compatibility
conditions

∆2,i ∈ L2
u
(Σi) (6.43)

are satisfied, where

∆2,i :=
1

u(xi, ·)
[︁
∆′′

1,i + fx(xi, ·)− bx(xi, ·)δi − (b+ ux)(xi, ·)∆1,i

]︁
, (6.44)

there exists a strong solution u ∈ X2
0 to (6.17), which moreover satisfies the estimate

∥u∥2X2 ≲ ∥f∥2H2
x(L

2
y)

+
∑︂

i∈{0,1}

∫︂
Σi

|ui|(δ2i +∆2
1,i +∆2

2,i). (6.45)

Proof. First, thanks to Corollary 6.2.9, there exists a solution u with regularity X1 which satisfies
(6.33) and it is unique thanks to (6.2.10). Moreover, ∂xu ∈ X0

0 is a weak solution to the
problem P[u, b + ux, fx − bxu,∆1]. This solution is unique thanks to Lemma 6.2.10 because
b+ux ∈ L∞(Ω)∩H1

x(L
2
y), ∥ux∥L∞ + ∥uxx∥L2 ≪ 1 and ∥b+ux∥L∞ + ∥(b+ux)x∥L2 ≪ 1. Hence

∂xu is also the solution given by Corollary 6.2.9 to the problem P[u, b+ux, fx−bxu,∆1]. Thanks
to (6.33), it satisfies the estimate

∥∂xu∥2X1 ≲ ∥fx − bxu∥2H1
x(L

2
y)

+
∑︂

i∈{0,1}

(︂
∥∆1,i∥2L2

u
(Σi)

+ ∥∆2,i∥2L2
u
(Σi)

)︂
. (6.46)

Moreover,

∥bxu∥H1
x(L

2
y)

≲ ∥bxu∥L2 + ∥bxxu∥L2 + ∥bx∂xu∥L2

≲ ∥bx∥L∞∥u∥X0 + ∥bxx∥L2∥u∥L∞ + ∥bx∥L∞∥∂xu∥L2

≲ (∥bx∥L∞ + ∥bxx∥L2)∥u∥X1 ,

(6.47)

using Lemma 6.2.2. This concludes the proof of (6.45) using the assumption ∥bxx∥L2 ≤ 1.
(If bxx is larger in L2(Ω), one can still obtain (6.45) up to multiplying the right-hand side by
1 + ∥bxx∥2L2).

Remark 6.2.1. It is likely that one can iterate the construction and prove the existence of solutions
with regularity Xk for k > 2, provided that one assumes enough regularity on the data and
enough compatibility conditions.

6.3 Fixed-point scheme for the nonlinear problem

In this section, we prove the existence statement of Theorem 6.1.1 thanks to a nonlinear fixed-
point scheme well-suited to the geometrical structure of the nonlinear problem, which avoids a
“loss of derivative” in the horizontal direction, as sketched out in Section 6.1.3.

Let c > 0 small enough to be chosen later. Let δ0, δ1 ∈ C4([0,H]) with ∥δi∥ ≤ c, for the norm
defined in (6.11) which corresponds to compatibility conditions, and vanishing at both endpoints.

Let χ ∈ C∞(R, [0, 1]), identically equal to one on [− 1
3 ,

1
3 ] and compactly supported in [− 1

2 ,
1
2 ].
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We define the initialization profile of our iterative scheme as

u0(x, y) := δ0(y)χ

(︃
x− x0
x1 − x0

)︃
+ δ1(y)χ

(︃
x1 − x

x1 − x0

)︃
. (6.48)

Hence, there exists Cχ > 0 such that u0 ∈ X2
0 and ∥u0∥X2 ≤ Cχ(∥δ0∥H1(0,H) + ∥δ1∥H1(0,H)) ≤

2cCχ.

We define the sequence (un)n∈N by induction on n where un+1 is the solution to (6.14) as
explained in Section 6.1.3. At each step, we intend to apply Corollary 6.2.11. Therefore, let
C2, c2 > 0 be given by Corollary 6.2.11 (i.e. for which ∥ux∥L∞ + ∥uxx∥L2 ≤ c2 implies the
existence of a solution u ∈ X2

0 with an energy estimate (6.45) holding up to the constant C2).
We apply the proposition with u = ū + un, u = un+1 and b = f = 0. From the boundary
conditions in x0, x1 of (6.14), we infer that un|Σi

= δi, so that ui = ū + δi is independent of n
and therefore the compatibility conditions (6.29) and (6.43) are satisfied once and for all, from
the assumption (6.11).

Let us prove by induction that ∥∂xun∥L∞ + ∥∂xxun∥L2 ≤ c2 and ∥un∥L∞ ≤ ∥ū∥L∞ . This is
true for n = 0 up to choosing c small enough. Applying estimate (6.45), we obtain

∥un+1∥2X2 ≤ 2C2c
2. (6.49)

Hence the bounds propagate if (2C2)
1
2 c ≤ min{ c22 , ∥ū∥L∞}. We deduce that the sequence un is

uniformly bounded in X2.

We now turn to the convergence of the sequence. Let wn := un+1 − un ∈ X2
0 . Then wn is

the strong solution to ⎧⎪⎨⎪⎩
(ū+ un)∂xwn − ∂yywn = −wn−1∂xun,

(wn)|y=0 = (wn)|y=H = 0,

(wn)|Σi
= 0.

(6.50)

The ∆1,i associated with this problem (6.50) are null because the boundary data is null and the
trace of the force also. From Corollary 6.2.9 and estimate (6.33), we obtain, under the condition
∥∂xun∥L∞ ≤ c1 (which is uniformly satisfied provided that c is small enough, and where c1 is
given by Corollary 6.2.9),

∥wn∥2X1 ≤ C1

(︁
∥wn−1∂xun∥2L2 + ∥∂x(wn−1∂xun)∥2L2

)︁
≤ C1

(︂
∥∂xun∥2L∞∥wn−1∥2H1

x(L
2
y)

+ ∥∂xxun∥2L2∥wn−1∥2L∞

)︂
≤ C1C

2
Ω∥un∥2X2∥wn−1∥2X1

≤ (2C1C2C
2
Ωc

2)∥wn−1∥2X1 .

(6.51)

Hence, the sequence ∥wn∥X1 decays geometrically provided that c is small enough. This guar-
antees that un converges strongly in X1 towards some limit u∞ ∈ X1

0 . Moreover, thanks to the
uniform bound in X2, one also has u∞ ∈ X2

0 with ∥u∞∥X2 ≲ ∥δ0∥+ ∥δ1∥.

We define u := ū + u∞. The strong convergence of un to u∞ in X1 allows to pass to the
limit in the weak formulation of the partial differential equation because un∂xun+1 → u∞∂xu∞
in L2(Ω). Hence, u ∈ X2 is a strong solution to (6.1) with boundary conditions (6.7) and (6.9),
and it satisfies the stability estimate (6.12).
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6.4 Local uniqueness of solutions to the nonlinear problem
We prove the local uniqueness statement in Theorem 6.1.1.

The argument is straightforward: if two strong solutions u1 and u2 exist which are close
enough to the reference solution ū, their difference w := u1 − u2 is the solution to a degenerate
elliptic linear equation with null source term and boundary values, so it vanishes identically.
Moreover, up to choosing c > 0 small enough (i.e. 2Cc < η), the solution u of which we prove
the existence is indeed in the ball of radius η > 0 within which we prove the uniqueness, thanks
to the smallness assumption ∥δi∥ ≤ c and the stability estimate (6.12).

Let c1 > 0 be given by Lemma 6.2.10 and CΩ > 0 as in Lemma 6.2.2. Let us prove that the
uniqueness holds within a ball of radius η := c1/(2CΩ) > 0.

Let u1, u2 ∈ X2 be two solutions to (6.1) with boundary conditions (6.7) and (6.9) satisfying
∥u1 − ū∥X2 ≤ η and ∥u2 − ū∥X2 ≤ η. Then w := u1 − u2 ∈ X2

0 and solves the system⎧⎪⎨⎪⎩
u1∂xw + (∂xu2)w − ∂2yw = 0,

w|y=0 = w|y=H = 0,

w|Σi
= 0.

(6.52)

According to Lemma 6.2.10 (applied with u = u1, w = ∂xu2, f = 0 and δi = 0), w is null as
soon as ∥∂xu1∥L∞ + ∥∂xu2∥L∞ ≤ c1. By the Sobolev embedding Lemma 6.2.2, ∥∂xu1∥L∞ ≤
CΩ∥u1 − ū∥X2 ≤ ηCΩ and the same bound holds for ∥∂xu2∥L∞ . This concludes the proof of the
uniqueness within the ball of radius η in X2.

6.5 Strategy of proof of Conjecture 6.2.6
In this section, we have gathered some steps towards the proof of Conjecture 6.2.6. We regularize
problem (6.17) by viscosity, and we consider throughout this section the problem⎧⎪⎨⎪⎩

u∂xu
ε + buε − ε∂xxu

ε − ∂yyu
ε = f,

uε|y=0 = uε|y=H = 0,

uε|x=xi
= δ̃i,

(6.53)

where δ̃i ∈ C∞([0,H]) is a smooth extension of δi ∈ C∞(Σi). We assume that u, b, f ∈ C∞(Ω).
Let us lift the boundary data by setting ul := χ0(x)δ̃0 + χ1(x)δ̃1, with χ0, χ1 ∈ C∞([x0, x1])

and χi ≡ 1 in a neighbourhood of x = xi, χi(x) = 0 if |x−xi| ≥ |x0−x1|/2. Then ũε := uε−ul is a
solution of (6.53) with homogeneous Dirichlet boundary conditions (thanks to δ̃0(H) = δ0(H) = 0

and δ̃1(0) = δ1(0) = 0) and with source term f̃
ε
:= f − u∂xul + bul − ε∂xxul − ∂yyul. Note that

f̃
ε

is bounded in W k0,∞(Ω) uniformly in ε. Hence, without loss of generality, we can always
assume that δ̃i = 0, which allows us to look for a solution in H1

0 (Ω). From now on, we drop the
tildas, and consider equation (6.53) with δi = 0.

Note that if ∥b∥∞ and ∥ux∥∞ are small enough, then existence and uniqueness of a solution
uε ∈ H1

0 (Ω) follow easily from the Lax-Milgram Lemma and the Poincaré inequality. This
solution satisfies, provided ∥ux∥L∞ ≤ c0, ∥b∥∞ ≤ c0,

∥∂yuε∥2L2 + ε∥∂xuε∥2L2 ≤ C0∥f∥2L2 . (6.54)
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The goal of the present section is to derive higher regularity bounds on the sequence (uε)ε > 0,
in order to give a partial proof of the validity of Conjecture 6.2.6. Note first that if f ∈ L2(Ω),
then the results on elliptic equations in corner domains (see for instance [42, 43]) ensure that
uε ∈ H2(Ω). Moreover, if f is more regular, say H∞(Ω), then it can be easily proved that
uε ∈ H∞(Ω) by induction. These arguments legitimate all the following integrations by parts,
where we attempt to obtain estimates independent on ε.

6.5.1 Difficulties with a mixed boundary conditions strategy
Instead of working with (6.53), it would also be natural to adopt the following scheme, with
mixed boundary conditions ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u∂xũ
ε + bũε − ε∂xxũ

ε − ∂yyũ
ε = f,

ũε|y=0 = ũε|y=H = 0,

ũε|Σi
= δ̃i,

∂xũ
ε
|{x=xi}\Σi

= 0.

(6.55)

The Neumann boundary condition on the sets {x = xi, (−1)iu(xi, y) < 0} is a kind of transparent
boundary condition, whose purpose is to avoid the boundary layers which will occur in the vicinity
of these sets with the approximation scheme (6.53) (see paragraph 6.5.5 below). It can be checked
that the solution of (6.55) also satisfies the estimate (6.54). It is then natural, keeping in mind
the X1 a priori estimates of section 6.2, to look for estimates on ∂xũ

ε. If ũε ∈ H2(Ω), then it is
legitimate to differentiate equation (6.55) with respect to x and to perform energy estimate. The
reader can then verify that if the compatibility condition (6.29) is satisfied, the family (ũε)ε>0

is uniformly bounded in X1. Passing to the limit, we would prove Conjecture 1.
However, this strategy fails. Indeed, looking at the results of Grisvard on elliptic equations in

polygonal domains [41], we see that in general, ũε does not belong to H2(Ω), because of the sharp
transition between Dirichlet and Neumann boundary conditions. More precisely, let yi ∈ (0,H)
be such that u(xi, yi) = 0, and (−1)iu(xi, y) < 0 for y ∈ (0, yi), (−1)iu(xi, y) > 0 for y ∈ (0, yi).
In other words, Σ0 = {(x0, y), y ∈ (y0,H)} and Σ1 = {(x1, y), y ∈ (0, y1)}. Then Theorem
4.4.3.7 in [41] implies that

ũε ∈ uεsing, 0 + uεsing, 1 +H2(Ω),

and
uεsing, i = Cε,ir

1/2
ε,i sin

(︃
θϵ,i
2

)︃
in the vicinity of (xi, yi), where

rε,i =

(︃
(x− xi)

2

ε
+ (y − yi)

2

)︃1/2

,

tan θε,i =
x− xi√
ε(y − yi)

.

The functions uεsing, i are smooth outside a neighborhood of (xi, yi), but their singularity in r1/2ε,i

prevents ũε from belonging to H2.
Unfortunately, it seems difficult to control the dependency with respect to ε of the constants

Cε,i, and to prove that they vanish in the limit ε → 0, for instance. Therefore, we rather chose
to work with the Dirichlet problem (6.53), and to deal with the boundary layers therein.
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6.5.2 Vertically weighted vertical regularity estimates
In order not to burden the presentation, we will present the vertical regularity estimates (and
the subsequent estimates on the trace of ∂xuε) in the slightly simplified setting where b = 0. The
extension to an arbitrary b (smooth and small in L∞ norm) is easy and left to the reader.

First-order estimate

We multiply (6.53) by −u2∂yyu
ε to obtain∫︂

u
2(∂yyu

ε)2 −
∫︂
u
3∂xu

ε∂yyu
ε + ε

∫︂
u
2∂xxu

ε∂yyu
ε = −

∫︂
fu2∂yyu

ε (6.56)

The second term is

−
∫︂
u
3∂xu

ε∂yyu
ε = 3

∫︂
u
2
uy∂xu

ε∂yu
ε +

∫︂
u
3∂xyu

ε∂yu
ε

= 3

∫︂
uuy(f + ε∂xxu

ε + ∂yyu
ε)∂yu

ε − 3

2

∫︂
u
2
ux(∂yu

ε)2

= −3ε

∫︂
(uxuy + uuxy)∂xu

ε∂yu
ε +

3

2
ε

∫︂
(uuyy + u

2
y)(∂xu

ε)2

+ 3

∫︂
uuy(f + ∂yyu

ε)∂yu
ε − 3

2

∫︂
u
2
ux(∂yu

ε)2.

(6.57)

The third term is

ε

∫︂
u
2∂xxu

ε∂yyu
ε = −2ε

∫︂
uux∂xu

ε∂yyu
ε − ε

∫︂
u
2∂xu

ε∂xyyu
ε

= −2ε

∫︂
uux∂xu

ε∂yyu
ε + ε

∫︂
u
2(∂xyu

ε)2 + 2ε

∫︂
uuy∂xu

ε∂xyu
ε

= −2ε

∫︂
uux∂xu

ε∂yyu
ε + ε

∫︂
u
2(∂xyu

ε)2 − ε

∫︂
(∂xu

ε)2(uuyy + u
2
y).

(6.58)

Hence, when u,ux,uy,uyy and uxy are bounded in L∞, we obtain

∥u∂yyuε∥2L2 + ε∥u∂xyuε∥2L2 ≤ C1∥f∥2. (6.59)

Higher-order estimates

Lemma 6.5.1 (Commutator formula). For every l ∈ N, there exists (l+1) functionals αl,0, . . . , αl,l :
Cl([0,H];R) → C0([0,H];R) such that, for every weight χ ∈ Cl([0,H];R) and every test function
φ ∈ C∞([0,H];R), there holds

χl+1∂lyφ =

l∑︂
l′=0

αl,l′ [χ]χ
l′∂l

′

y (χφ) . (6.60)

Moreover, there exists Cl > 0 such that, for all χ ∈ Cl([0,H]),

sup
0≤l′≤l

∥αl,l′ [χ]∥L∞ ≤ Cl

(︃
sup
0≤i≤l

∥χi−1∂iyχ∥L∞

)︃l
. (6.61)
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More precisely, for 0 ≤ l′ ≤ l, the function αl,l′ [χ] depends polynomialy on the functions χi−1∂iyχ
for 0 ≤ i ≤ l, with a total degree (in χ) of l − l′.

Proof. Let χ, φ ∈ C∞. For every l ∈ N, the Leibniz formula yields

1

l!
χl∂ly(χφ) =

l∑︂
l′=0

cl−l′
1

l′!
χl

′+1∂l
′

y φ, (6.62)

where we introduce, for i ∈ N,
ci :=

1

i!
χi−1∂iyχ, (6.63)

with, in particular, c0 ≡ 1. Letting similarly, for 0 ≤ i ≤ l, ai := χi∂iy(χφ)/i! and bi :=

χi+1(∂iyφ)/i!, one obtains the equality a(y) = C(y)b(y), where C(y) is the lower triangular
matrix with coefficients Ci,j(y) := ci−j(y)δi≥j . Since c0 ≡ 1, detC ≡ 1 and C is invertible.
Then, (6.60) and (6.61) are respectively consequences of the invertibility of C and of the explicit
computation of C−1 from the cofactor matrix.

We proceed by induction on k ∈ N∗. We differentiate (6.53) with respect to y, k times, we
multiply by u2k∂kyu

ε and we integrate on the whole domain. Hence

−
∫︂
u
2k∂k+2

y uε∂kyu
ε+

∫︂
u
2k∂ky (u∂xu

ε)∂kyu
ε−ε

∫︂
u
2k(∂xx∂

k
yu

ε)∂kyu
ε =

∫︂
u
2k(∂kyf)∂

k
yu

ε. (6.64)

The right-hand side is estimated by Cauchy-Scwharz as∫︂
u
2k(∂kyf)∂

k
yu

ε ≤ 1

2
∥uk+1∂kyf∥2L2 +

1

2
∥uk−1∂kyu

ε∥2L2 . (6.65)

We move on to the left-hand side. Integrations by parts in y in the first term yield

−
∫︂
u
2k∂k+2

y uε∂kyu
ε =

∫︂
u
2k(∂k+1

y uε)2 − k(2k − 1)

∫︂
u
2k−2(∂kyu

ε)2, (6.66)

where the boundary terms in y = 0 are null because u vanishes on y = 0. Concerning the
boundary terms in y = H, by induction we get estimates on ∂kyu

ε
|y=H . Up to a lifting of these

boundary condition before performing the estimates above, with a lifting compactly supported
in the zone where u > 0, we can always assume that these boundary terms are zero, without
affecting the rest of the estimates.

Integrations by parts in x in the third term and the homogeneous boundary conditions at
x = x0 and x = x1 for uε yield

−ε
∫︂
u
2k(∂xx∂

k
yu

ε)∂kyu
ε = ε

∫︂
u
2k(∂x∂

k
yu

ε)2 + 2kε

∫︂
u
2k−1

ux(∂x∂
k
yu

ε)(∂kyu
ε)

≥ ε

∫︂
u
2k(∂x∂

k
yu

ε)2 − kε∥uux∥L∞

(︃
c

∫︂
u
2k(∂x∂

k
yu

ε)2 + c−1

∫︂
u
2k−2(∂kyu

ε)2
)︃

≥ 2ε

3

∫︂
u
2k(∂x∂

k
yu

ε)2 − 3εk2∥uux∥2L∞

∫︂
u
2k−2(∂kyu

ε)2.

(6.67)

The second term is the trickiest. When all ∂y derivatives hit the ∂xuε term of the product,
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a single integration by parts in x and the homogeneous boundary conditions at x = x0, x1 yield∫︂
u
2k+1(∂x∂

k
yu

ε)∂kyu
ε = −2k + 1

2

∫︂
u
2k
ux(∂

k
yu

ε)2

≥ −2k + 1

2
∥u2

ux∥L∞

∫︂
u
2k−2(∂kyu

ε)2.

(6.68)

We compute the remaining terms using the Leibniz formula and using the commutator lemma
for χ = u and φ = ∂xu

ε.

I2 =

k−1∑︂
j=0

(︃
k

j

)︃∫︂
(∂k−jy u)(∂x∂

j
yu
ε)(∂kyu

ε)u2k

=
k−1∑︂
j=0

(︃
k

j

)︃∫︂
(uk−j∂k−jy u)(uj+1∂x∂

j
yu
ε)(∂kyu

ε)uk−1

=

k−1∑︂
j=0

(︃
k

j

)︃∫︂
(uk−j∂k−jy u)

(︄
j∑︂
l=0

αj,l[u]u
l∂ly(u∂xu

ε)

)︄
(∂kyu

ε)uk−1.

(6.69)

Plugging (6.53) to compute ∂ly(u∂xuε) yields

I2 =

k−1∑︂
j=0

j∑︂
l=0

(︃
k

j

)︃∫︂
(uk−j−1∂k−jy u)αj,l[u]u

l+1(∂lyf + ∂l+2
y uε + ε∂xx∂

l
yu
ε)(∂kyu

ε)uk−1. (6.70)

With obvious notations, we split I2 in three parts: I2,f , I2,∂yy
and I2,∂xx

. One obtains

|I2,f | ≤ Ck

(︃
sup

0≤i≤k
∥ui−1∂iyu∥L∞

)︃k(︄
∥uk−1∂kyu

ε∥2L2 +

k−1∑︂
i=0

∥ui+1∂iyf∥2L2

)︄
. (6.71)

In I2,∂yy
, we bound carefully the term corresponding to j = l = k − 1, and we bound roughly

the others. This yields

|I2,∂yy | ≤
1

2
∥uk∂k+1

y uε∥2L2 +
1

2
∥uy∥2L∞∥uk−1∂kyu

ε∥2L2

+ Ck

(︃
sup

0≤i≤k
∥ui−1∂iyu∥L∞

)︃k(︄
∥uε∥2L2 +

k−1∑︂
i=1

∥ui−1∂iyu
ε∥2L2

)︄
.

(6.72)

The I2,∂xx
term requires an integration by parts in x. The boundary terms in x = x0 and x = x1

vanish thanks to the homogeneous boundary conditions satisfied by uε and its y derivatives. For
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0 ≤ l ≤ j ≤ k − 1, one has

ε

∫︂
(uk−j−1∂k−jy u)αj,l[u]u

l+1(∂xx∂
l
yu
ε)(∂kyu

ε)uk−1

= −ε
∫︂
(uk−j−1∂k−jy u)αj,l[u](u

l∂x∂
l
yu
ε)(uk∂x∂

k
yu

ε)

− ε(l + k)

∫︂
(uk−j−1∂k−jy u)αj,l[u]ux(u

l∂x∂
l
yu
ε)(uk−1∂kyu

ε)

− ε

∫︂
u∂x(αj,l[u]u

k−j−1∂k−jy u)(ul∂x∂
l
yu
ε)(uk−1∂kyu

ε).

(6.73)

We conclude that there exists Ck > 0 such that

|I2,∂xx
| ≤ ε

3
∥uk∂x∂kyuε∥2L2 + εCkA

k

(︄
∥uk−1∂kyu

ε∥2L2 +

k−1∑︂
i=0

∥ui∂x∂iyuε∥2L2

)︄
, (6.74)

where we introduce

A := ∥ux∥L∞ + sup
0≤i≤k

∥ui−1∂iyu∥L∞ + ∥u∂x(ui−1∂iyu)∥L∞ . (6.75)

Plugging the estimates (6.65), (6.66), (6.67), (6.68), (6.71), (6.72), (6.74) in the energy equality
(6.64) yields by induction on k ∈ N∗,

∥uk∂k+1
y uε∥2L2 + ε∥uk∂x∂kyuε∥2L2 ≤ Ck(A)

(︄
∥f∥2L2 +

k∑︂
i=0

∥ui+1∂iyf∥2L2

)︄
, (6.76)

for some constant Ck(A) independent on f , ε, uε, but depending on u through A.

6.5.3 General strategy

In order to derive uniform X1 estimates on the sequence (uε)ε>0, a natural idea would be to try
and derive bounds on ∂xu

ε. However this strategy, if used without precaution, is bound to fail.
Indeed, as ε vanishes, we expect boundary layers to form in the vicinity of {x = xi} \ Σi. More
precisely, let us look for instance at the behavior of uε far from the line of cancellation of u, in
order to simplify the discussion. In such regions we have

−ε∂xxuε + u∂xuε = gε,

and gε is locally bounded in L2, according to the preceding paragraph. We then classically
observe that boundary layers occur close to x = x0 in the region where u < 0, and close to
x = x1 in the region where u > 0. More precisely, close to x = x0, we expect that

uε ≃
∫︂ x

x0

f

u

in the region where u > 0, and

uε ≃
∫︂ x f

u
+B(y) exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
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in the region where u < 0. This heuristics leads to

∂xu
ε ∼ u

ε
B(y) exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

close to {x = x0, u < 0}. Hence we do not expect ∂xuε to be bounded in L2 uniformly in ε.
However, if we substract this boundary layer part from ∂xu

ε, we can hope that the resulting
function is bounded in L2. This is the core of our strategy to prove Conjecture 6.2.6. More
precisely, the goal is to construct a boundary layer corrector W ε such that ∂xuε −W ε vanishes
on {x = xi} \Σi (except possibly in a neighborhood of size εα of the endpoints of Σi), and such
that

−ε∂xxW ε − ∂yyW
ε + u∂xW

ε + uxW
ε = O(1) in L2(Ω).

Indeed, if we are able to construct such a corrector, then vε := ∂xuε −W ε satisfies

−ε∂xxvε − ∂yyv
ε + u∂xv

ε + uxv
ε = O(1),

vεy=0 = vεy=H = 0,

vε|{x=xi}\Σi
= 0.

In the system above, we have assumed that the corrector lifts the trace of ∂xvε on the whole
domain {x = xi} \ Σi, which will not quite be the case.

A classical energy estimate would then prove that

ε

∫︂
(∂xv

ε)2 +

∫︂
(∂yv

ε)2 ≤ C.

Since the boundary layer part is exponentially small outside a small set whose size depends on
ε, we infer that ∂x∂yuε is bounded in L2((x0 + δ, x1 − δ) × (0,H)) for all δ > 0 (with a bound
independent of δ provided ε is small enough). Hence uε ⇀ u in X1, and u is a solution of (6.17).

This strategy is not quite complete in the present paper. Indeed, because of the degeneracy of
the vertical regularity estimates, we have a bad control of the traces of ∂xuε as we approach the
points where u(xi, ·) vanishes. Consequently, we are only able to lift the trace of ∂xuε outside a
neighborhood of size εα of such points. This prevents us from using directly the energy estimate
above, which must be modified. An option is to construct a suitable weight ρε, as we will explain
in paragraph 6.5.6.

6.5.4 Estimates on the traces of ∂xu
ε

Let us now go back to equation (6.53). We define V ε(X, y) := ε∂xu
ε(x0 + εX, y), for X ∈

(0, (x1 − x0)ε
−1), y ∈ (0,H). According to (6.54), we have

∥V ε∥L2((0,(x1−x0)ε−1)×(0,H)) ≤ C0∥f∥L2(Ω).

The estimates of the previous paragraph also entail that

∥u(x0 + εX, y)k∂kyV
ε∥L2((0,(x1−x0)ε−1)×(0,H)) ≤ C.

Furthermore, note that

−ε∂x
[︃
∂xu

ε exp

(︃
−1

ε

∫︂ x

0

u(x′, y)dx′
)︃]︃

= (f + ∂yyu
ε − buε) exp

(︃
−1

ε

∫︂ x

0

u(x′, y)dx′
)︃
.
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Therefore

∂X

[︄
V ε exp

(︄
−
∫︂ X

0

u(x0 + εX ′, y)dX ′

)︄]︄
= Gε(X ′, y),

where the function Gε is such that

∥uk+1(x0 + εX, y)∂kyG
ε∥L2((0,1)×(0,H)) ≤ Ck,

and the constant Ck does not depend on ε. Standard trace estimates immediately entail that

∥u(x0, y)k+1∂kyV
ε
|X=0∥L2(0,H) ≤ Ck

Going back to the original variables, we infer that

∥u(x0, y)k+1∂ky∂xu
ε
|x=x0

∥L2(0,H) ≤
Ck
ε
. (6.77)

Remark 6.5.1. This estimate is certainly sub-optimal on the sets Σi, where we expect ∂xuε to
be bounded. However, we will not need to lift the trace of ∂xuε on Σi, and therefore we do not
look for finer estimates.

6.5.5 Lifting of boundary layers

As in the previous paragraph, we focus on the boundary layers close to x = x0, and leave the
ones close to x = x1 to the reader.

Let us set
Bε(y) := ε∂xu

ε(x0, y).

The estimates of the previous paragraph ensure that for all k ∈ N, there exists a constant Ck
such that

∥u(x0, y)k+1∂kyB
ε∥L2(0,H) ≤ Ck. (6.78)

We will lift this trace thanks to a boundary layer corrector. In order to have a small enough
remainder in the equation, we will need to construct several orders of correctors. We first explain
how the main order corrector is constructed, and then how the iteration works.

• Main order boundary layer corrector:

Let us define, for x close to x0, y < y0,

V ε0 (x, y) := χ1

(︃
x− x0
εβ

)︃
χ2

(︃
y − y0
εα

)︃
Bε(y)

ε
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
,

where χ1, χ2 ∈ C∞(R), with χ2(Y ) = 0 for Y ≥ −1, χ2(Y ) = 1 for Y ≤ −2, and χ1(X) = 1 for
X ≤ 1, χ1(X) = 0 for X ≥ 2. The parameters α, β > 0 will be chosen later on. Let us merely
mention that we require that α < β < 1− α, so that α < 1/2.
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We then plug V ε0 into the equation satisfied by vε := ∂xu
ε. We have

Rε0 := −ε∂xxV ε0 − ∂yyV
ε
0 + u∂xV

ε
0 + uxV

ε
0

= − 1

ε1+β
χ′
1

(︃
x− x0
εβ

)︃
χ2

(︃
y − y0
εα

)︃
Bε(y)u(x, y) exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

− 1

ε2β
χ′′
1

(︃
x− x0
εβ

)︃
χ2

(︃
y − y0
εα

)︃
Bε(y) exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

−1

ε
χ1

(︃
x− x0
εβ

)︃
∂yy

[︃
χ2

(︃
y − y0
εα

)︃
Bε
]︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

− 2

ε2
χ1

(︃
x− x0
εβ

)︃
∂y

[︃
χ2

(︃
y − y0
εα

)︃
Bε
]︃(︃∫︂ x

x0

uy(x
′, y) dx′

)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

− 1

ε2
χ1

(︃
x− x0
εβ

)︃
χ2

(︃
y − y0
εα

)︃
Bε
(︃∫︂ x

x0

uyy(x
′, y) dx′

)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

− 1

ε3
χ1

(︃
x− x0
εβ

)︃
χ2

(︃
y − y0
εα

)︃
Bε
(︃∫︂ x

x0

uy(x
′, y) dx′

)︃2

exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
.

Let us now assume that uy(x0, y0) > 0. In a neighborhood of (x0, y0), we have, since u is
smooth,

u(x, y) = uy(y − y0) + ux(x0, y0)(x− x0) +O(|x− x0|2 + |y − y0|2).

If (x, y) belongs to the support of χ1((x− x− 0)/εβ)χ2((y − y0)/ε
α), then

|x− x0| ≤ 2εβ ≪ εα ≤ |y − y0|.

Consequently, there exists a positive constant C such that for (x, y) as above,

u(x, y) ≤ C(y − y0).

We infer then that ∫︂ x

x0

u(x′, y) dx′ ≤ C(y − y0)(x− x0). (6.79)

On the other hand, since u is smooth,⃓⃓⃓⃓∫︂ x

x0

∂kyu(x
′, y) dy

⃓⃓⃓⃓
≤ C|x− x0|.

In order to estimate the error associated with V ε0 and higher order correctors, we will rely on the
following Lemma:

Lemma 6.5.2. Let u ∈ C2(Ω) such that uy(x0, y0) > 0.
• For all k ∈ N, if |y − y0| ≥ εα,⃦⃦⃦⃦

(x− x0)
kχ1

(︃
x− x0
εβ

)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃⃦⃦⃦⃦

L2
x((x0,x1)

≤ C

(︃
ε

|y − y0|

)︃k+ 1
2

.

• For all m ∈ N, for all l ≥ 0,⃦⃦⃦⃦
|y − y0|−l∂my

(︃
Bε(y)χ2

(︃
y − y0
εα

)︃)︃⃦⃦⃦⃦
L2

y(0,H)

≤ Cε−(l+m+1)α.



182 CHAPTER 6. Sign-changing solutions of the stationary Burgers with transverse viscosity

• If x− x0 ∈ [εβ , 2εβ ], and y − y0 ≤ −εα,

exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

≤ exp(−Cεβ+α−1).

We postpone the proof of Lemma 6.5.2 to the end of this subsection.
Using our choice of α and β, the third property of Lemma 6.5.2 ensures that the terms

involving derivatives of χ1 are o(εN ) for all N . Let us explain how to estimate one of the terms
in Rε0 (we shall leave the other ones to the reader, since they follow a similar pattern.) We have,
using the first property,⃦⃦⃦⃦

1

ε
χ1

(︃
x− x0
εβ

)︃
χ2

(︃
y − y0
εα

)︃
∂yyB

ε exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃⃦⃦⃦⃦

L2
x((x0,x1)

≲ ε−1/2χ2

(︃
y − y0
εα

)︃
|y − y0L

−1/2|∂yyBε|.

The second property then implies⃦⃦⃦⃦
1

ε
χ1

(︃
x− x0
εβ

)︃
χ2

(︃
y − y0
εα

)︃
∂yyB

ε exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃⃦⃦⃦⃦

L2(Ω)

≲ ε−
1
2−

7α
2 .

It follows that
∥Rε0∥L2 ≲ ε−

1
2−

5α
2 .

Therefore the sole construction of Rε0 is not sufficient to have a remainder that is O(1) in L2,
and we must construct higher order correctors.

• In order to construct higher order correctors, the idea is the following: for every j ≥ 1, we
construct V εj such that V εj is an approximate solution of

−ε∂xxV εj + u∂xV
ε
j + uxV

ε
j = −Rεj−1,

V εj|x=x0,y<y0
= 0.

The error generated by ∂yyV εj will then go into the next error term, namely Rεj , since it is expected
to have a less singular behavior than −ε∂xx within this scaling. We will use the following result:

Lemma 6.5.3. Let ζ1, ζ2 ∈ C∞(R) with Suppζ1 ⊂ [−2, 2] and Suppζ2 ⊂ (−∞,−1]. Let a ∈
C∞(Ω), P ∈ R[X], N > 0, and define

P ε := ε−Na(x, y)ζ1

(︃
x− x0
εα

)︃
ζ2

(︃
y − y0
εβ

)︃
P

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
.

Then the following properties hold:

• ∥Rε∥L2 ≲ ε−N+ 1−α
2 ;

• Setting

Qε := ε1−N
a

u2
ζ1

(︃
x− x0
εα

)︃
ζ2

(︃
y − y0
εβ

)︃
Q

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
,
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where Q is the polynomial such that Q′′ +Q′ = −P and Q(0) = 0, we have

−ε∂xxQε − ∂yyQ
ε + u∂xQ

ε + uxQ
ε = P ε + Sε + o(1),

where the new remainder Sε is a linear combination of terms of the form

ε1−N−4αã(x, y)ζ1

(︃
x− x0
εα

)︃
ζ̃2

(︃
y − y0
εβ

)︃
T

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
,

with ã ∈ C∞(Ω), ζ̃2 ∈ C∞(R) satisfying the same assumptions as ζ2, and T ∈ R[X].

• As a consequence,
∥Sε∥L2 ≲ ε1−N+ 1−9α

2 .

It follows that if α < 1/4, we gain a factor ε1−4α with each iteration. More precisely, we
apply at each step the above Lemma with P ε = Rεj , and we set V εj+1 = Qε, Rεj+1 = Sε. In
particular, after k iterations, the remainder is of order εk(1−4α)− 1

2−
5α
2 . Therefore, as soon as

k ≥ 1 + 5α

2(1− 4α)
,

the remainder is O(1). For instance, if α < 1/13, we have an admissible remainder after just one
iteration.

We now prove Lemmas 6.5.2 and 6.5.3.

Proof of Lemma 6.5.2. • We recall that there exists a positive constant C such that for x in the
support of χ1((· − x0)/ε

β) and y such that y − y0 ≤ −εα, we have∫︂ x

x0

u(x′, y) dx′ ≤ C(y − y0)(x− x0).

Therefore ⃦⃦⃦⃦
(x− x0)

kχ1

(︃
x− x0
εβ

)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃⃦⃦⃦⃦2

L2
x((x0,x1)

≤
∫︂ x1

x0

(x− x0)
2k exp

(︃
−C
ε
|x− x0| |y − y0|

)︃
dx

≤ C

(︃
ε

|y − y0|

)︃2k+1

.
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• We use estimate (6.78). We have⃦⃦⃦⃦
|y − y0|−l∂my

(︃
Bε(y)χ2

(︃
y − y0
εα

)︃)︃⃦⃦⃦⃦
L2

y(0,H)

≤ ε−αl
m∑︂
k=0

ε−α(m−k) ⃦⃦∂kyBε1|y−y0|≥εα
⃦⃦
L2

y(0,H)

≤ ε−αl
m∑︂
k=0

ε−α(m−k)ε−α(k+1)
⃦⃦
u(x0, y)

k+1∂kyB
ε
⃦⃦
L2

y(0,H)

≤ ε−α(l+m+1).

• Let x ∈ [x0 + εβ , x0 + 2εβ ], y ≤ y0 − εα. Then, using (6.79), we infer that

exp

(︃
1

ε

∫︂ x

x0

u(x′, y) dx′
)︃

≤ exp

(︃
C

ε
|x− x0| |y − y0|

)︃
≤ exp

(︁
−Cε−1+β+α

)︁
.

This concludes the proof of the estimates.

Proof of Lemma 6.5.3. The estimate on P ε follows easily from a variant of Lemma 6.5.2. We
focus on the second property of the Lemma. We have

(−ε∂xx + u∂x)
[︃
Q

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃]︃

= −u
2

ε
(Q′′ +Q′)

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

+ux(Q−Q′)

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

=
u
2

ε
P

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

+ux(Q−Q′)

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
.

As a consequence, using Lemma 6.5.2, we have

(−ε∂xx + u∂x)Qε

= P ε

+ε1−N (−ε∂xx + u∂x)(
a

u2
)ζ1

(︃
x− x0
εα

)︃
ζ2

(︃
y − y0
εβ

)︃
Q

(︃
1

ε

∫︂ x

x0

u

)︃
exp

(︃
1

ε

∫︂ x

x0

u

)︃
−2ε2−N∂x(

a

u2
)ζ1

(︃
x− x0
εα

)︃
ζ2

(︃
y − y0
εβ

)︃
∂x

[︃
Q

(︃
1

ε

∫︂ x

x0

u

)︃
exp

(︃
1

ε

∫︂ x

x0

u

)︃]︃
+o(1).
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We observe that each term of the right-hand side (except for P ε) can be written as

εk−N−4αã(x, y)ζ̃2

(︃
y − y0
εβ

)︃
T

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃
exp

(︃
1

ε

∫︂ x

x0

u(x′, y)dx′
)︃

with k ≥ 1, ã a smooth function, ζ̃2 ∈ C∞(R) satisfying the same assumptions as ζ2, and
T ∈ R[X].

The same is true for ∂yyQε and for uxQε. The estimate on the new remainder Sε is a
consequence of Lemma 6.5.2.

6.5.6 Design of a weight function
Following the steps outlined in the previous paragraph, we construct a corrector W ε with the
following properties:

• −ε∂xxW ε + u∂xW
ε + uxW

ε − ∂yyW
ε = O(1) in L2(Ω);

• W ε is supported in |x− x0| ≤ εβ , |y − y0| ≥ εα;

• W ε(x0, y) = −∂xuε(x0, y) if y ≤ y0 − 2εα.
Of course the same scheme can be adapted to the other degeneracy points of u on the boundary,
namely near (x1, y1) and (x0, 0). As a consequence, setting vε := ∂xu

ε −W ε, we have

−ε∂xxvε + u∂xvε + uxvε − ∂yyv
ε = fx +O(1) =: g

and vε|y=0 = vε|y=H = 0.
Let ρε be a smooth, non-negative weight function. Multiplying the above equation by vερε

and integrating by parts, we have

ε

∫︂
Ω

(∂xv
ε)2ρε +

∫︂
Ω

(∂yv
ε)2ρε +

1

2

∫︂
Ω

ux(v
ε)2ρε

−1

2

∫︂
Ω

(vε)2 [ε∂xxρ
ε + ∂yyρ

ε + u∂xρ
ε]

−ε

[︄∫︂ H

0

∂xv
εvερε

]︄x=x1

x=x0

+
1

2

[︄∫︂ H

0

u(vε)2ρε

]︄x=x1

x=x0

+
ε

2

[︄∫︂ H

0

(vε)2∂xρ
ε

]︄x=x1

x=x0

≤ C∥vε∥L2

Here are some requirements that we wish to make on the weight function ρε:
• ρε ≡ 1 except in small neighborhoods (whose size should vanish with ε) of the points

(x0, y0), (x1, y1), (x0, 0);

• In small neighborhoods of the points (x0, y0), (x1, y1), (x0, 0), we require that

ε∂xxρ
ε + ∂yyρ

ε + u∂xρ
ε ≤ 0;

• Let us now look at the boundary terms. We distinguish between Σi and {x = xi} \ Σi.

– Close to the sets Σ0, Σ1, we have W ε = 0, and therefore vε = ∂xu
ε. As a consequence,

on these sets, using the equation satisfied by uε, we have

−ε∂xvε = f(xi) + δ′′i − uvε.
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Let us look for instance at the boundary term on Σ1. We have, assuming that ρε ≡ 1
in a vicinity of Σ1,

−ε
∫︂
Σ1

∂xv
εvε +

1

2

∫︂
Σ1

u(x1)(v
ε)2

=

∫︂
Σ1

(f(xi) + δ′′i )v
ε − 1

2

∫︂
Σ1

u(x1)(v
ε)2.

Using the compatibility condition (6.29) together with the definition of Σ1, we infer
that there exists a constant C, independent of ε, such that

−ε
∫︂
Σ1

∂xv
εvε +

1

2

∫︂
Σ1

u(x1)(v
ε)2 ≥ −C.

– We now address the sets {x = xi}\Σi. On these sets, if |y−yi| ≥ 2εα, by construction
vε vanishes, and therefore we have no constraint on ρε. Therefore we only need to
look at the trace of these terms close to the cancellation points of u. If we are able
to construct a weight function ρε with the properties stated above and such that the
boundary terms in a small vicinity of (xi, yi) and (x0, 0) are non-negative, then we
obtain a uniform X1 bound on the sequence uε and Conjecture 6.2.6 is proved.

Therefore the proof of Conjecture 6.2.6 relies on the construction of a suitable weight function.

6.6 Appendix: Technical lemmas
Lemma 6.6.1. There exists c > 0 such that, if δ0, δ1 ∈ C1([0,H]) satisfy δi(0) = δi(H) = 0 and
∥δi∥C1 ≤ c, then there exists y0, y1 ∈ (0,H) such that Σ0 = {x0}×(y0,H] and Σ1 = {x1}×(0, y1).

Proof. From the definition of ū in (6.2) and of Σi in (6.8), for δi = 0, one has Σ0(ū) = {x0}×(ȳ, H]
and Σ1(ū) = {x1} × (0, ȳ). Let η > 0 to be chosen below.

• For η small enough, there exists cη > 0 such that ū(y) ≥ cηy with for y ∈ [0, η]. Hence
(ū+ δi)(y) > 0 for y ∈ (0, η] when δi(0) = 0 and δi is small enough in C1.

• For η small enough, there exists cη > 0 such that ū′(y) ≥ cη for |y − ȳ| ≤ η. Hence, if δi is
small enough in C1, ū + δi is strictly increasing on [ȳ − η, ȳ + η] and there exists yi such
that ū(yi) + δi(yi) = 0 and (ū(y) + δi(y))(y − yi) > 0 for y ∈ [ȳ − η, ȳ + η] with y ̸= yi.

• For any η > 0, there exists cη > 0 such that |ū| ≥ cη on [η, ȳ − β] ∪ [ȳ + η,H]. Hence, for
δi small enough in C0, ū+ δi has the same sign as ū on [η, ȳ − β] ∪ [ȳ + η,H].

Combining these regions concludes the proof of Lemma 6.6.1.
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The goal of this appendix is to show on the simplest example possible some tools used in the
rest of the thesis. As a consequence, we will study specific examples rather than prove generic
results.

A.1 How to solve a linear ODE ?
When working with non-degenerate boundary layers, a sometimes easy but important step is
to compute the dimension of the kernel of each mode, i.e to compute the number of degrees of
freedom we have in order to lift boundary conditions. Therefore, in simple cases, we search the
number of initial conditions we can set on an ODE to have a solution with decay at infinity.

In this section, we will show very quickly from three different points of view how to solve
what is maybe the simplest ODE

∂2zw − α2w = f

w(0) = w0 w′(0) = w1.
(A.1)

Our goal is to find conditions on w0 and w1 such that the solution w is decaying at infinity.
For f = 0 we see that there are two modes as w = 1

2α ((αw0 + w1)e
αt + (αw0 − w1)e

−αt), so if
w0, w1 are chosen arbitrarily, there is no decaying solution. More precisely, we already see the
need to consider a linear subspace of initial condition.

Proposition A.1.1. Let α > 0 and β ∈ (−α, α). Let g ∈ C∞
0 (R+) and f(z) = g(z)eβz. Let

w0, w1 ∈ R.

187
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1

i

Figure A.1 – The modes of Equation (A.1).

Then there exists a (unique) solution of (A.1) such that w(z)eγz and all its derivatives are
bounded, for all γ < β if and only if

αw0 + w1 = −
∫︂ ∞

0

f(ζ)e−αζdζ. (A.2)

Remark A.1.1. In fact we can state almost as easily the same result for an ODE of any order,
the key ide being that we have one compatibility condition for each root of the characteristic
polynomial with real part greater than β.

A.2 Duhamel formula
The first method is simply to write down the solution of the equation using the method of
variation of parameters.

With W =

(︃
w
w′

)︃
we obtain

W ′(z) =

(︃
0 1
1 0

)︃
⏞ ⏟⏟ ⏞

M

W (z) +

(︃
0

f(z)

)︃
⏞ ⏟⏟ ⏞
B(z)

W (0) =

(︃
w0

w1

)︃
so

W (z) = eMz

(︃
W0 +

∫︂ z

0

e−MζB(ζ)dζ

)︃
.

We then decompose C2 in the two eigenspaces of M , C2 = E−1⊕E1, the condition coming from
it is indeed (A.2).

If we establish the pro and cons of this method, then the main problem is the lack its
robustness.

+ Simple and explicit for ODE with constant coefficients.
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- Difficult to adapt in other situations.

For an arbitrary ODE P (∂z)w = f , since M is the companion matrix of P we obtain the
announced result.

A.3 Laplace transform
A perhaps more suited method is the use of the Laplace transform (see for example [51]).

p2 ˜︁w(p)− pw0 − w1 − α2 ˜︁w(p) = ˜︁f(p)
so ˜︁w(p) = ˜︁f(p) + pw0 + w1

p2 − α2
.

So ˜︁w is a meromorphic function with two poles of at −α and α, both of order 1. And for all
µ > 1, ˜︁p is holomorphic on ℜ(p) > µ and with the necessary estimates on the lines ℜ(p) = σ > p.
In order to have the same result past the line ℜ(p) = µ = 1 a necessary and sufficient condition
is

( ˜︁f(p) + pw0 + w1)(p = α) = 0

i.e the condition (A.2) ∫︂ ∞

0

f(s)e−αsds+ αw0 + w1 = 0.

Indeed, if this condition is fulfilled, ˜︁w has no pole at p = α.
For a generic ODE we obtain

˜︁w(p) = ˜︁f(p) +Q(p)

P (p)

so we have a meromorphic function with d poles µ1, . . . , µd (with multiplicity). And in order to
to be holomorphic for ℜ(p) > β we must cancel out the r − d poles in the half-space ℜ(p) ≥ β.

This is no surprise that the pros and cons of this method are the same as the ones of Fourier
transform.

+ Leads to the Sobolev norms.

+ Can be adapted for PDE with constant coefficients.

- Difficult to adapt for variable coefficients.

A.4 Weighted Sobolev spaces
The previous method hints to the existence of natural spaces for these problems. In fact as in
Subsection 3.5.3, for λ > 0 and s ∈ N let us define

∥f∥2Hs
λ(R+) =

∫︂ ∞

0

|∂sζf |2e2λζdζ

and the associated space
Hs
λ = C∞

c ((0,∞))
Hs

λ
.

Tis methods retain all the advantages of elliptic methods.



190 APPENDIX A. Some basic methods and tools

+ Leads directly to the Sobolev norms.

+ Can be directly adapted for PDE.

+ Allow variable coefficients.

- Can be tricky for odd orders

A.5 Scalings, cut-offs and scaling
In this thesis we often use the scaling of the boundary layer solutions to derive the size of their
Sobolev norms with respect to the boundary layer size. The main idea comes from the following
naive computation in a one dimensional setting. For s ∈ N∫︂ ∞

0

⃓⃓⃓
∂z

(︂
f
(︂z
ε

)︂)︂⃓⃓⃓2
dz = ε1−2s

∫︂ ∞

0

|∂ζ (f (ζ))|2 dζ.

When the boundary layer equation leads to a solution f(σ, ζ), the corresponding term in the
asymptotic expansion is often f(σ, z

δ(σ) )χ(σ, z), where δ(σ) is the boundary layer size and χ a
cut-off function (in z).

Note that a cut-off of the same scaling as the function does not radically change its norms.
If χ ∈ C∞(Ω) then for any s there exists a constant Cs,χ such that

∥fχ∥Hs(Ω) ≤ Cs,χ∥f∥Hs(Ω)

as all derivatives of χ are in L∞.
The effect of such a cut-off is less obvious when multiple scales are involved. In particular, for

the boundary layer variables we often choose unbounded domain. In this case the inhomogeneous
and homogeneous Sobolev spaces are quite different. We stress that in the following lemmas the
Sobolev spaces are inhomogeneous Sobolev spaces. In particular we have Hs′ ↪→ Hs for s′ ≥ s
and more precisely L2 ↪→ Hs for s < 0.

Moreover we will only consider the case s ∈ Z and the tangential variable σ ∈ T. We can
replace the torus by any compact set, and the case s ̸∈ Z follows directly from interpolation.

Let us first show that knowing the norms in the boundary layer variables and the size of said
boundary layer is sufficient to have the norms in the main variables.

Lemma A.5.1. Let ˜︁δ ∈ C∞(σ) be a smooth function, bounded, and far from 0: 0 < δ0 < ˜︁δ(σ) <
δ1 ∀σ ∈ T.

Let f ∈ C∞(T× (0,+∞)) and for ε > 0, δ = ε˜︁δ. We define the rescaled f

fδ(σ,Z) = f

(︃
σ,

Z

δ(σ)

)︃
.

Then for s ≥ 0, with any η > 0 and cut-off χ such that χ(z) = 0 for z > 1, when ε→ 0

∥fδ∥Hs(T×(0,+∞)) ≤ C∥feηζ∥Hsε
1
2−s

∥fδχ∥Hs(T×(0,+∞)) ≤ C∥f∥Hsε
1
2−s.

And for s < 0

∥fδ∥Hs(T×(0,+∞)) ≤ C∥feηζ∥Hsε
1
2−s

∥fδ∥Hs(T×(0,+∞)) ≤ C∥f∥Hsε
1
2 .
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Remark A.5.1. These hypotheses are far from optimal, the important idea is to have enough
decay in z to have a control of the low frequency of f in z. For example instead of eηz any weight
increasing faster than any polynomial is sufficient, or for the L2 norm, s = 0, there is no need of
such weight.

Proof. For s ≥ 0 this follows from a direct computation,∫︂
T

∫︂ ∞

0

∑︂
kσ+kZ≤s

⃓⃓⃓⃓
∂kσσ ∂kZZ f

(︃
σ,

Z

δ(σ)

)︃⃓⃓⃓⃓2
dZdσ

=

∫︂
T

∫︂ ∞

0

∑︂
kσ+kZ≤s

⃓⃓⃓⃓
⃓∂kσσ

(︄
1˜︁δ(σ)kZ ε−kZ∂kZ2 f

(︄
σ,

ζ˜︁δ(σ)
)︄)︄⃓⃓⃓⃓

⃓
2

εdζdσ

≤ ε1−2s

∫︂
T

∫︂ ∞

0

∑︂
kσ+kZ≤s

⃓⃓⃓⃓
⃓∂kσσ

(︄
1˜︁δ(σ)kZ ∂kZ2 f

(︄
σ,

ζ˜︁δ(σ)
)︄)︄⃓⃓⃓⃓

⃓
2

dζdσ

≤ ε1−2s

∫︂
T

∫︂ ∞

0

C(˜︁δ)(σ)(1 + ζ2s)
∑︂

kσ+k2≤s,k1≤kσ

⃓⃓⃓⃓
⃓∂k11 ∂k22 f

(︄
σ,

ζ˜︁δ(σ)
)︄⃓⃓⃓⃓
⃓
2

dζdσ

where C(˜︁δ) is a smooth function, bounded as long as all derivatives up to ∂sσ of ˜︁δ are bounded
and ˜︁δ(σ) > δ0 > 0. And after the change of variables ζ ↦→ ˜︁δζ, and as (1 + ζs)e−ηζ and all its
derivatives are bounded, we obtain

∥fδ∥2Hs ≤ C˜︁δε1−2s∥feηζ∥2Hs .

In the case of a cut-off function χ(Z) the same computation leads to

∥fδχ∥2Hs ≤ ε

∫︂
T

∫︂ 1
ε

0

C(˜︁δ(σ)) ∑︂
kσ+k2≤s,k1≤kσ

⃓⃓⃓⃓
⃓ε−k1ζk2∂k11 ∂k22 f

(︄
σ,

ζ˜︁δ(σ)
)︄⃓⃓⃓⃓
⃓
2

dζdσ

≤ C
∑︂

kσ+k2≤s,k1≤kσ

ε1−2k1−2k2

∫︂
T

∫︂ 1
ε

0

⃓⃓⃓⃓
⃓∂k11 ∂k22 f

(︄
σ,

ζ˜︁δ(σ)
)︄⃓⃓⃓⃓
⃓
2

dζdσ ≤ Cε1−2s∥f∥2Hs

Remark A.5.2. Note that the same exact computation leads to ∥g 1
δ
∥Hs ≤ C√

ε
∥g∥Hs when ε→ 0.

The power − 1
2 , instead of s− 1

2 , is due to the fact that these Sobolev spaces are nonhomogeneous
with respect to the second variable, so we cannot hope to have a better scaling than the L2 one.

For s < 0 we use the definition of the norm

∥fδ∥Hs = sup
g∈H−s

0

∫︁
fδg

∥g∥H−s

.

Unfortunately, noticing
∫︁
fδg = δ

∫︁
fg 1

δ
in not enough to conclude as the L2 norm of g 1

δ
scales

like ε− 1
2 (see the previous remark).

But with the exponential decay⃓⃓⃓⃓∫︂
fδg

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
δfe

η
2 zg 1

δ
e−

η
2 z

⃓⃓⃓⃓
≤ C˜︁δε∥Fe η

2 z∥L2∥∂−sz
(︂
g 1

δ

)︂
e−

η
2 z∥L2 .
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where F such that ∂−sz F = f is obtained by integrating with respect to Z from +∞, in particular
∥Fe

η
2 z∥L2 ≤ ∥feηz∥Hs . And

∥∂−sz
(︂
g 1

δ

)︂
e−

η
2 z∥2L2 ≤ C˜︁δε−s− 1

2 ∥∂−s2 (g) ∥2L2

≤ C˜︁δε−s− 1
2 ∥g∥2H−s

so we finally obtain ∀g ∈ H−s
0 ⃓⃓⃓⃓∫︂

fδg

⃓⃓⃓⃓
≤ C˜︁δε1−s− 1

2 ∥g∥2H−s .

Remark A.5.3. With f(ζ) = (1 + ζ)−α, α > 1
2 we see that the decay is necessary as ∥fδχ∥Hs

scales like εα for s < 0. This is due to the L2 part of the H−s norm.

Another recurrent technical step is to show that by cutting-off the solution of the boundary
layer variable we do not introduce a too large error. Even if the remainders introduced by such
cut-off depends on the exact equation, in fact it is sufficient to estimate ∥uκ∥Hs for κ a cut-off
function being 0 near the boundary.

As an example, let us consider the equation

−ε∂2zu+ u = r on (0, 1).

With u an exact solution solution near z = 0 and χ a cut-off such that χ(z) =

{︄
1 for z < 1

3

0 for z > 2
3

then uχ is a solution with additional remainders terms

−ε∂2z (uχ) + (uχ) = rχ+ 2ε∂zu∂zχ+ εu∂2zχ⏞ ⏟⏟ ⏞
additional terms

so we need to estimate ∂zu∂zχ and u∂2zχ. The main point is that ∂zχ and ∂2zχ are being
supported inside ( 13 ,

2
3 ).

In order to estimate such terms we have the following lemma

Lemma A.5.2. Let ˜︁δ ∈ C∞(σ) be a smooth function, bounded, and far for from 0: 0 < δ0 <˜︁δ(σ) < δ1 ∀σ ∈ T.
Letf ∈ C∞ and and let us define, with

fδ(σ,Z) = f

(︃
σ,

Z

δ(σ)

)︃
.

Let κ ∈ C∞
c be a cut-off function such that

κ(σ,Z) = 0 for Z < 1.

Then for s ≥ 0, when ε→ 0 for any η > 0

∥fδκ∥Hs(T×(0,+∞)) ≤ C∥f∥Hsε
1
2−s

∥fδκ∥Hs(T×(0,+∞)) ≤ C∥feηζ∥Hsεk ∀k > 0.
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And for s < 0

∥fδκ∥Hs(T×(0,+∞)) ≤ C∥f∥Hsε
1
2

∥fδκ∥Hs(T×(0,+∞)) ≤ C∥feηζ∥Hsεk ∀k > 0.

Remark A.5.4. In fact the estimates with exponential weight are true even if κ has a non-compact
support.

Proof. For s > 0, as in the previous lemma, we see that, thanks to an explicit computation and
the fact that κ and all its derivatives are 0 for z < 1, we only need to estimate terms like

ε1−2k1

∫︂
T

∫︂ M
ε

1
ε

C(˜︁δ, κ)(σ) ⃓⃓⃓⃓ζk2∂k1ζ f (︃σ, ζ˜︁δ
)︃⃓⃓⃓⃓2

dζdσ ≤ C˜︁δ,κε1−2k1

∫︂
T

∫︂ M
ε

1
ε

⃓⃓⃓⃓
ζk2∂k1ζ f

(︃
σ,
ζ˜︁δ
)︃⃓⃓⃓⃓2

dζdσ.

In the case where f has exponential decay, we can simply write (for ε small enough)∫︂
T

∫︂ ∞

1
ε

⃓⃓⃓⃓
ζ2k2∂k1ζ f

(︃
σ,
ζ˜︁δ
)︃⃓⃓⃓⃓2

dζdσ ≤
∫︂
T

∫︂ ∞

1
ε

ζk2e−2ηζ

⃓⃓⃓⃓
eηζ∂k1ζ f

(︃
σ,
ζ˜︁δ
)︃⃓⃓⃓⃓2

dζdσ

≤ ε−2k2e−
2η
ε

∫︂
T

∫︂ ∞

1
ε

⃓⃓⃓⃓
eηζ∂k1ζ f

(︃
σ,
ζ˜︁δ
)︃⃓⃓⃓⃓2

dζdσ

≤ Cε−2k2e−
2η
ε

∫︂
T

∫︂ ∞

1
ε

⃓⃓⃓⃓
∂k1ζ

(︃
eηζf

(︃
σ,
ζ˜︁δ
)︃)︃⃓⃓⃓⃓2

dζdσ

≤ Ce−
η
ε ∥feηζ∥2Hs .

The case where we only know that f ∈ Hs is the same as before. And once more the s < 0
are done by duality.

Remark A.5.5. This is where we see the importance to control at least the L2 norm (in fact a much
stronger weighted norm) of solutions. For example, for s ∈ N let us consider the homogeneous
space Ḣs((0,+∞)), defined by

∥f∥2
Ḣs

=

∫︂ ∞

0

(︃
|∂sζu|2 +

|u|2

1 + ζ2s

)︃
dζ

then we have for any α < s+ 1
2 the function φα : ζ ↦→ (1 + ζ)α is in Ḣ

s. Then with κ a cut-off
with support inside (1,M).

⃦⃦⃦
φα

(︂ ·
ε

)︂
κ
⃦⃦⃦2
L2

≃ Cε

∫︂ M
ε

1
ε

ζ2αdζ ≃ Cε−2αM2α+1

which is by no mean small.



194 APPENDIX A. Some basic methods and tools



Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with formu-
las, graphs, and mathematical tables. Vol. 55. Courier Corporation, 1965.

[2] Lars V Ahlfors. Complex Analysis. 1979. 1973.
[3] Radjesvarane Alexandre et al. “Well-posedness of the Prandtl equation in Sobolev spaces”.

In: Journal of the American Mathematical Society 28.3 (2015), pp. 745–784.
[4] A. Babin, A. Mahalov, and B. Nicolaenko. “Regularity and integrability of 3D Euler and

Navier-Stokes equations for rotating fluids”. In: Asymptot. Anal. 15.2 (1997), pp. 103–150.
[5] Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin. Fourier analysis and nonlinear

partial differential equations. Vol. 343. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011, pp. xvi+523.

[6] MS Baouendi and P Grisvard. “Sur une équation d’évolution changeant de type”. In: Jour-
nal of Functional Analysis 2.3 (1968), pp. 352–367.

[7] Didier Bresch, Benoıt Desjardins, and David Gérard-Varet. “Rotating fluids in a cylinder”.
In: Discrete & Continuous Dynamical Systems-A 11.1 (2004), pp. 47–82.

[8] Haïm Brezis. Analyse fonctionnelle: théorie et applications. Vol. 91. Dunod Paris, 1999.
[9] Susan Brown and Keith Stewartson. “On the reversed flow solutions of the Falkner-Skan

equation”. In: Mathematika 13 (1966).
[10] Jean-Yves Chemin. Anisotropic phenomena in incompressible Navier-Stokes equations. Apr.

2018.
[11] Jean-Yves Chemin et al. Mathematical geophysics: An introduction to rotating fluids and

the Navier-Stokes equations. Vol. 32. Oxford University Press on Demand, 2006.
[12] T. Colin. “Remarks on a homogeneous model of ocean circulation”. In: Asymptotic Anal.

12.2 (1996), pp. 153–168.
[13] Jean Cousteix and Jacques Mauss. Asymptotic analysis and boundary layers. Springer

Science & Business Media, 2007.
[14] Anne-Laure Dalibard and David Gérard-Varet. “Nonlinear boundary layers for rotating

fluids”. In: Analysis & PDE 10.1 (2017), pp. 1–42.
[15] Anne-Laure Dalibard and Nader Masmoudi. “Separation for the stationary Prandtl equa-

tion”. to be published in Publications mathématiques de l’IHES, preprint hal-01706581.
2018.

[16] Anne-Laure Dalibard and Christophe Prange. “Well-posedness of the Stokes–Coriolis sys-
tem in the half-space over a rough surface”. In: Analysis & PDE 7.6 (2014), pp. 1253–
1315.

195



196 Bibliography

[17] Anne-Laure Dalibard and Laure Saint-Raymond. “Mathematical study of degenerate bound-
ary layers: a large scale ocean circulation problem”. In: Mem. Amer. Math. Soc. 253.1206
(2018), pp. vi+105.

[18] Anne-Laure Dalibard and Laure Saint-Raymond. “Mathematical study of resonant wind-
driven oceanic motions”. In: Journal of Differential Equations 246.6 (Mar. 2009), pp. 2304–
2354.

[19] Anne-Laure Dalibard and Laure Saint-Raymond. “Mathematical study of the β-plane
model for rotating fluids in a thin layer”. In: Journal de mathématiques pures et appliquées
94.2 (2010), pp. 131–169.

[20] P. A. Davidson. An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied
Mathematics. Cambridge University Press, 2001.

[21] Benoît Desjardins and Emmanuel Grenier. “On the homogeneous model of wind-driven
ocean circulation”. In: SIAM Journal on Applied Mathematics 60.1 (1999), pp. 43–60.

[22] Emmanuel Dormy, Dominique Jault, and AM Soward. “A super-rotating shear layer in
magnetohydrodynamic spherical Couette flow”. In: Journal of Fluid Mechanics 452 (2002),
pp. 263–291.

[23] Alexandre Dutrifoy, Steven Schochet, and Andrew J Majda. “A simple justification of the
singular limit for equatorial shallow-water dynamics”. In: Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences
62.3 (2009), pp. 322–333.

[24] Weinan E. “Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equa-
tion”. In: Acta Math. Sin. (Engl. Ser.) 16.2 (2000), pp. 207–218.

[25] Vagn Walfrid Ekman et al. “On the influence of the earth’s rotation on ocean-currents.”
In: (1905).

[26] Pedro F. Embid and Andrew J. Majda. “Averaging over fast gravity waves for geophysical
flows with arbitrary potential vorticity”. In: Comm. Partial Differential Equations 21.3-4
(1996), pp. 619–658.

[27] VM Falkneb and Sylvia W Skan. “LXXXV. Solutions of the boundary-layer equations”. In:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 12.80
(1931), pp. 865–896.

[28] Gaetano Fichera. On a unified theory of boundary value problems for elliptic-parabolic
equations of second order. Mathematics Research Center, United States Army, University
of Wisconsin, 1959.

[29] Isabelle Gallagher and Laure Saint-Raymond. Mathematical study of the betaplane model:
equatorial waves and convergence results. Société mathématique de France, 2006.

[30] D Gérard-Varet and E Dormy. “Ekman layers near wavy boundaries”. In: Journal of Fluid
Mechanics 565 (2006), pp. 115–134.

[31] David Gerard-Varet. “Formal Derivation of Boundary Layers in Fluid Mechanics”. In: Jour-
nal of Mathematical Fluid Mechanics 7.2 (May 2005), pp. 179–200.

[32] David Gérard-Varet. “Highly rotating fluids in rough domains”. In: Journal de Mathéma-
tiques Pures et Appliquées 82.11 (2003), pp. 1453–1498.

[33] David Gérard-Varet and Emmanuel Dormy. “On the ill-posedness of the Prandtl equation”.
In: Journal of the American Mathematical Society 23.2 (2010), pp. 591–609.



Bibliography 197

[34] David Gerard-Varet and Yasunori Maekawa. “Sobolev stability of Prandtl expansions for
the steady Navier–Stokes equations”. In: Archive for Rational Mechanics and Analysis
(2019), pp. 1–64.

[35] David Gérard-Varet and Nader Masmoudi. “Relevance of the slip condition for fluid flows
near an irregular boundary”. In: Communications in Mathematical Physics 295.1 (2010),
pp. 99–137.

[36] David Gerard-Varet and Nader Masmoudi. “Well-posedness for the Prandtl system with-
out analyticity or monotonicity”. In: Annales scientifiques de l’École normale supérieure.
Vol. 48. 6. Societe Mathematique de France. 2015, pp. 1273–1325.

[37] David Gerard-Varet and Thierry Paul. “Remarks on boundary layer expansions”. In: Com-
munications in Partial Differential Equations 33.1 (2008), pp. 97–130.

[38] S. Goldstein. “On laminar boundary-layer flow near a position of separation”. In: Quart.
J. Mech. Appl. Math. 1 (1948), pp. 43–69.

[39] Emmanuel Grenier. “On the nonlinear instability of Euler and Prandtl equations”. In:
Comm. Pure Appl. Math. 53.9 (2000), pp. 1067–1091.

[40] Emmanuel Grenier and Nader Masmoudi. “Ekman layers of rotating fluids, the case of well
prepared initial data”. In: Communications in Partial Differential Equations 22.5-6 (1997),
pp. 213–218.

[41] P. Grisvard. Elliptic problems in nonsmooth domains. Vol. 24. Monographs and Studies in
Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985, pp. xiv+410.

[42] Pierre Grisvard. Elliptic problems in nonsmooth domains. Vol. 69. SIAM, 2011.
[43] Pierre Grisvard. Singularities in boundary value problems. Vol. 22. Recherches en Mathé-

matiques Appliquées [Research in Applied Mathematics]. Masson, Paris; Springer-Verlag,
Berlin, 1992, pp. xiv+199. isbn: 2-225-82770-2.

[44] Yan Guo and Sameer Iyer. “Validity of steady Prandtl layer expansions”. In: arXiv preprint
arXiv:1805.05891 (2018).

[45] David Gérard-Varet. “Formal derivation of boundary layers in fluid mechanics”. In: Journal
of Mathematical Fluid Mechanics 7.2 (2005), pp. 179–200.

[46] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math. 20.3-4 (2012), pp. 251–
265. issn: 1570-2820.

[47] Rainer Hollerbach. “Magnetohydrodynamic Ekman and Stewartson layers in a rotating
spherical shell”. In: Proc. R. Soc. Lond. A 444.1921 (1994), pp. 333–346.

[48] N Kleeorin et al. “Axisymmetric flow between differentially rotating spheres in a dipole
magnetic field”. In: Journal of Fluid Mechanics 344 (1997), pp. 213–244.

[49] Paco Axel Lagerstrom. Matched asymptotic expansions: ideas and techniques. Vol. 76.
Springer Science & Business Media, 2013.

[50] Wei-Xi Li, Di Wu, and Chao-Jiang Xu. “Gevrey class smoothing effect for the Prandtl
equation”. In: SIAM Journal on Mathematical Analysis 48.3 (2016), pp. 1672–1726.

[51] Jacques Louis Lions. “Remarks on evolution inequalities”. In: Journal of the Mathematical
Society of Japan 18.4 (1966), pp. 331–342.

[52] Jacques-Louis Lions, Roger Temam, and Shou Hong Wang. “On the equations of the large-
scale ocean”. In: Nonlinearity 5.5 (1992), pp. 1007–1053.



198 Bibliography

[53] Florence Marcotte. “Modèles asymptotiques de fluides en rotation rapide: vers les dynamos
magnétostrophiques”. PhD thesis. Ecole Normale Supérieure, 2016.

[54] Florence Marcotte, Emmanuel Dormy, and Andrew Soward. “On the equatorial Ekman
layer”. In: Journal of Fluid Mechanics 803 (2016), pp. 395–435.

[55] Nader Masmoudi. “About the Hardy Inequality”. In: An Invitation to Mathematics. Springer,
2011, pp. 165–180.

[56] Nader Masmoudi. “Ekman layers of rotating fluids: the case of general initial data”. In:
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences 53.4 (2000), pp. 432–483.

[57] Nader Masmoudi and Tak Kwong Wong. “Local-in-time existence and uniqueness of so-
lutions to the Prandtl equations by energy methods”. In: Communications on Pure and
Applied Mathematics 68.10 (2015), pp. 1683–1741.

[58] Olga Arsenévna Oleinik and Viacheslav Nikolaevich Samokhin. Mathematical models in
boundary layer theory. Vol. 15. CRC Press, 1999.

[59] L Prandtl. “Motion of fluids with little viscosity”. In: NACA report 452 (1928).
[60] Ian Proudman. “The almost-rigid rotation of viscous fluid between concentric spheres”. In:

Journal of Fluid Mechanics 1.5 (1956), pp. 505–516.
[61] EV Radkevic and OA Olejnik. Second order equations with nonnegative characteristic form.

American Mathematical Society, 1973.
[62] Jean Rax. “Mathematical study of the equatorial Ekman boundary layer”. In: Zeitschrift

für angewandte Mathematik und Physik 70.6 (2019), p. 165.
[63] Frédéric Rousset. “Asymptotic behavior of geophysical fluids in highly rotating balls”. In:

Zeitschrift für angewandte Mathematik und Physik 58.1 (2007), pp. 53–67.
[64] Marco Sammartino and Russel E Caflisch. “Zero Viscosity Limit for Analytic Solutions, of

the Navier-Stokes Equation on a Half-Space. I. Existence for Euler and Prandtl Equations”.
In: Communications in Mathematical Physics 192.2 (1998), pp. 433–461.

[65] Marco Sammartino and Russel E Caflisch. “Zero Viscosity Limit for Analytic Solutions of
the Navier-Stokes Equation on a Half-Space. II. Construction of the Navier-Stokes Solu-
tion”. In: Communications in mathematical physics 192.2 (1998), pp. 463–491.

[66] Weiming Shen, Yue Wang, and Zhifei Zhang. “Boundary layer separation and local behavior
for the Steady Prandtl equation”. In: arXiv preprint arXiv:1904.08055 (2019).

[67] Andrew M Soward and Emmanuel Dormy. Mathematical aspects of natural dynamos. Chap-
man and Hall/CRC, 2007.

[68] SV Starchenko. “Magnetohydrodynamics of a viscous spherical layer rotating in a strong
potential field”. In: Journal of Experimental and Theoretical Physics 85.6 (1997), pp. 1125–
1137.

[69] K Stewartson. “On almost rigid rotations”. In: Journal of Fluid Mechanics 3.1 (1957),
pp. 17–26.

[70] K Stewartson. “On almost rigid rotations. Part 2”. In: Journal of fluid mechanics 26.1
(1966), pp. 131–144.

[71] K. Stewartson. “On Goldstein’s theory of laminar separation”. In: Quart. J. Mech. Appl.
Math. 11 (1958).



CHAPTER A. Bibliography 199

[72] Milton Van Dyke. Perturbation methods in fluid mechanics. Vol. 964. Academic press New
York, 1964.

[73] AI Van de Vooren. “The Stewartson layer of a rotating disk of finite radius”. In: Journal
of engineering mathematics 26.1 (1992), pp. 131–152.



200 CHAPTER A. Bibliography



Contents

Abstract ix

Contents xi

1 Présentation générale (en français) 1
1.1 Mécanique des fluides et petits paramètres . . . . . . . . . . . . . . . . . . . . . 1
1.2 Perturbations singulières et régulières . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Premier exemple de développement asymptotique . . . . . . . . . . . . . . 2
1.2.2 Une perturbation singulière . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Équations elliptiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Les couches limites: pourquoi et comment ? . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Perturbation régulière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Un petit exemple de perturbation singulière . . . . . . . . . . . . . . . . . 9
1.4.3 Bref historique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Couches limites et simulations numériques . . . . . . . . . . . . . . . . . . 11

1.5 Organisation du manuscrit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Introduction 13
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Smallness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Some indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Quick historical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Objective and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Proudman problem and equatorial Ekman boundary layer . . . . . . . . . 21
2.2.4 About shear layers in Magnetohydrodynamics . . . . . . . . . . . . . . . . 25
2.2.5 The problem of recirculation for Prandtl layers . . . . . . . . . . . . . . . 29

2.3 About degenerate elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 The one dimensional Proudman problem . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Energy estimate and stability . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Boundary layer ansatz, boundary layer operator . . . . . . . . . . . . . . 37

3 Proudman problem 47
3.1 Physical modelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Non-dimensional parameters and orders of magnitudes . . . . . . . . . . . 48

201



202 Contents

3.1.3 Taylor-Proudman theorem and Ekman layer . . . . . . . . . . . . . . . . . 50
3.1.4 Proudman problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.5 Reformulation of the Proudman problem . . . . . . . . . . . . . . . . . . . 52
3.1.6 Boundary layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Preliminary results on the Proudman problem . . . . . . . . . . . . . . . . . . . 54
3.2.1 Mathematical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Existence, energy estimate and weak convergence . . . . . . . . . . . . . . 55
3.2.3 Stability estimate, approximate solutions . . . . . . . . . . . . . . . . . . 58
3.2.4 Some bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Overall view of the construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 The Ekman layers for two disks . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 The shear layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1 About the validity of Ekman layers . . . . . . . . . . . . . . . . . . . . . . 69
3.5.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.3 Stewartson 2/7 and 1/4 layers . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.4 Interior terms and connection between operators . . . . . . . . . . . . . . 81
3.5.5 Stewartson 1

3 layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.6 How to put the pieces together ? . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Formal remarks on the equatorial problem . . . . . . . . . . . . . . . . . . . . . 101
3.7 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Mathematical study of the equatorial Ekman boundary layer 109
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Existence and properties of weak solutions . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Statement of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.2 Remarks on nonhomogeneous boundary conditions . . . . . . . . . . . . . 113
4.2.3 Duality principle (proof of (i)) . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2.4 Boundary conditions (proof of (ii)) . . . . . . . . . . . . . . . . . . . . . . 116
4.2.5 Caccioppoli type inequality and interior regularity . . . . . . . . . . . . . 117

4.3 Uniqueness and transparent boundary conditions . . . . . . . . . . . . . . . . . 119
4.3.1 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.2 Transparent boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 121
4.3.3 The case of the half plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.1 Physical derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.2 Duality argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 MHD shear layer 129
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.1 Physical derivation and orders of magnitude . . . . . . . . . . . . . . . . . 129
5.1.2 Main setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.1 Existence, uniqueness and stability estimates . . . . . . . . . . . . . . . . 138
5.2.2 Expected boundary layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Hartmann layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.1 Hartmann boundary layer operator . . . . . . . . . . . . . . . . . . . . . . 140
5.3.2 Expansion without shear layers . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3.3 Remarks on the transparent condition . . . . . . . . . . . . . . . . . . . . 147



Contents 203

5.4 Toy model for the shear layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.2 Study of the shear layer equation . . . . . . . . . . . . . . . . . . . . . . . 151
5.4.3 About the singularity at (0, 0) . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Sign-changing solutions to the stationary Burgers equation with transverse
viscosity 161
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.1.1 Motivation from recirculation problems in fluid mechanics . . . . . . . . . 162
6.1.2 Statement of the main result . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1.3 Scheme of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Well-posedness results for the linear problem . . . . . . . . . . . . . . . . . . . . 166
6.3 Fixed-point scheme for the nonlinear problem . . . . . . . . . . . . . . . . . . . 171
6.4 Local uniqueness of solutions to the nonlinear problem . . . . . . . . . . . . . . 173
6.5 Strategy of proof of Conjecture 6.2.6 . . . . . . . . . . . . . . . . . . . . . . . . 173

6.5.1 Difficulties with a mixed boundary conditions strategy . . . . . . . . . . . 174
6.5.2 Vertically weighted vertical regularity estimates . . . . . . . . . . . . . . . 175
6.5.3 General strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.5.4 Estimates on the traces of ∂xuε . . . . . . . . . . . . . . . . . . . . . . . . 179
6.5.5 Lifting of boundary layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.5.6 Design of a weight function . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.6 Appendix: Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A Some basic methods and tools 187
A.1 How to solve a linear ODE ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.2 Duhamel formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.3 Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.4 Weighted Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.5 Scalings, cut-offs and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Bibliography 195

Contents 201



204 Contents





Couches limites fluides et équations elliptiques dégénérées
Abstract

This thesis is devoted to the mathematical analysis of several boundary layer models in fluid dynamics.
The starting point of our study is the Proudman problem, which describes the behavior of an incom-
pressible highly rotating fluid between two spheres. In the low Rossby and low Ekman number limit,
multiple nested boundary layers appear. They had been described, at a formal level, in previous works.
The goal of the first part of this manuscript is to study rigorously several of them (in particular the
equatorial Ekman layer) and to propose strategies of proof to justify the complete asymptotic expansion.
In a second part we consider an MHD model, within which shear layers take place. They bear a strong
resemblance to the boundary layers studied in the first part.
Eventually, the last part is dedicated to a stationary Burgers equation with transverse viscosity, for
which we construct sign-changing solutions. Our long term goal is to construct solutions of the Prandtl
system with a recirculation bubble, for which the present system play the role of a toy-model.
Remarkably, several of the systems studied in the present manuscript belong to the class of degenerate
elliptic equations.

Keywords: boundary layers, fluid dynamics, multiscale analysis, degenerate elliptic equations, magne-
tohydrodynamics

Résumé

Cette thèse est consacrée à l’analyse mathématique de plusieurs modèles de couches limites en mécanique
des fluides.
Le point de départ de l’étude est le problème de Proudman qui modélise le comportement d’un fluide
incompressible en rotation rapide entre deux sphères. Dans la limite où le nombre de Rossby et le nombre
d’Ekman sont petits, de nombreuses couches limites imbriquées apparaissent, et avaient été décrites
formellement dans des travaux antérieurs. Le but de la première partie de cette thèse est d’étudier
rigoureusement plusieurs d’entre elles (en particulier la couche d’Ekman équatoriale) et de donner des
pistes pour justifier le développement asymptotique.
Dans une seconde partie on s’intéresse à un modèle issu de la magnétohydrodynamique, au sein duquel
apparaît une couche de cisaillement très similaire aux couches limites étudiées dans la première partie.
Enfin, en vue de construire des solutions stationnaires du système de Prandtl possédant des bulles de
recirculation, on étudie dans la dernière partie une équation de type Burgers stationnaire avec viscosité
transverse, pour laquelle on construit des solutions changeant de signe.
De façon remarquable plusieurs des systèmes étudiés entrent dans le cadre des équations elliptiques
dégénérées.

Mots clés : couches limites, mécanique des fluides, analyse multi-échelles, équations elliptiques dégé-
nérées, magnétohydrodynamique
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