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Abstract

Clustering is a popular unsupervised machine learning method that consists
of grouping similar data objects in the same group and dissimilar objects in
different groups. Among the clustering family methods, we can distinguish
the partition-based methods which produce partitions of data objects. The
type of the obtained partitions depends on the theory used. Hard partitions
can be obtained with the hard sets theory whereas imprecision and uncer-
tainty theories such as the fuzzy sets theory and the Dempster-Shafer theory
of evidence can be used to obtain fuzzy partitions.

In this thesis, an extension of the fuzzy k-modes clustering method referred
to as categorical fuzzy entropy c-means is firstly proposed. The new method
uses the fuzzy sets theory to model the imprecision of object assignments
to clusters and the representation of the centers of the clusters by associat-
ing weights to each attribute category which indicates their importance. A
second new method referred to as categorical evidential c-means is proposed
as a categorical version the evidential c-means. The latter method uses the
Dempster-Shafer theory of evidence to capture the uncertainty of object la-
beling.

Several experiments on different datasets were conducted to illustrate the
strengths of the new methods and to compare them with existing numerical
and categorical clustering methods. In addition, the two methods were used
to investigate the replication of new findings in developmental sciences on
the influence of lifestyle factors on the cognitive health. The results of these
experiments showed that the proposed methods have good performances and
can handle imperfect data. Finally, research directions are given to extend
the two methods to capture non-linear relationships among the variables of
the input data and to suit time series data.

Key words: categorical data, fuzzy clustering, fuzzy centers, belief func-
tions, imprecision, uncertainty, health.
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Résumé
La classification non supervisée est une méthode d’apprentissage automa-
tique populaire qui consiste à regrouper des objets de données similaires
dans le même groupe et des objets dissemblables dans différents groupes.
Parmi les méthodes de classification, on peut distinguer les méthodes basées
sur des partitions qui produisent des partitions d’objets de données. Selon la
théorie utilisée, les partitions obtenues peuvent être de différents types. En
utilisant la théorie des ensembles (durs), les partitions produite sont dites
dures. Les théories d’imprécision et d’incertitude telles que la théorie des
ensembles flous et la théorie des fonctions de croyances de Dempster-Shafer
peuvent être utilisées pour obtenir des partitions floues.

Dans cette thèse, une extension de la méthode de classification des k-modes
flous appelée c-moyennes floues catégorielles avec entropie est proposée dans
un premier temps. La nouvelle méthode utilise la théorie des ensembles
flous pour modéliser l’imprécision des affectations d’objets aux classes et
la représentations des centres des classes en associant des poids à chaque
catégorie d’attributs qui indiquent leur importance. Par la suite, une deuxième
nouvelle méthode appelée c-moyennes évidentielles catégorielles est pro-
posée comme une version catégorielle de l’algorithme des c-moyennes évidentielles.
Cette dernière méthode utilise la théorie des fonctions de croyance de Dempster-
Shafer afin de modéliser l’incertitude de la classification des objets.

Plusieurs expériences sur différentes données ont été menées pour illustrer
les points forts des nouvelles méthodes et pour comparer ces dernières avec
des méthodes de classification numériques et catégorielles existantes. En
outre, les deux méthodes ont été utilisées pour étudier la réplication de nou-
velles découvertes en sciences du développement sur l’influence des facteurs
liés au mode de vie sur la santé cognitive. Les résultats de ces expériences
ont montré que les méthodes proposées ont de bonnes performances et peu-
vent gérer des données imparfaites. Enfin, des orientations de recherche
sont données pour étendre les deux méthodes afin de capturer les relations
non linéaires entre les variables des données d’entrée et pour des données de
temporelles.

Mots clés: données catégorielles, classification floue, centres flous, fonc-
tions de croyance, imprécision, incertitude, santé.

4



Publications

Thesis publications

International conferences

1. A. J. Djiberou Mahamadou, V. Antoine, E. M. Nguifo and S. Moreno,
”Categorical fuzzy entropy c-means” 2020 IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK.

2. A. J. Djiberou Mahamadou, V. Antoine, G. J. Christie, and S. Moreno,
”Evidential clustering for categorical data,” 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA,
2019.

National conferences

1. A. J. Djiberou Mahamadou, V. Antoine, E. M. Nguifo and S. Moreno,
“Apport de l’entropie pour les c-moyennes floues sur des données
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Nomenclature

V Fuzziness coefficient in clustering algorithms.

i Triangular norm.

∩ Intersection operator.

∪ Union operator.

k Triangular co-norm.

X Relative distance

n Input threshold used in the convergence of clustering algorithms.

W Statistical test level.

A Fuzzy set.

J Overall number of categories in X, i.e., J =
∑?

;=1 =;.

L Lagrangian.

Al ;Cℎ attribute of X.

A Hard set.

X Space of objects, if finite, denoted by X = {x1, . . . , xi, . . . , xn}.

`A Membership degree function of A.

`8: Fuzzy membership degree of object 8 in the :Cℎ cluster.

¬ Complement of a set.

Ω Space of finite hard sets. In evidence theory, Ω is called frame of
discernment.

l Subset of Ω.

⊕ Combination operator.
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NOMENCLATURE 9

Π Subset of cat-ECM clusters containing outliers.

Ψ Fuzzy entropy coefficient of CFE.

d Distance to the outliers cluster in cat-ECM.

g Algorithms iterations number.

r Number of desired subsets of clusters in ECM and cat-ECM algo-
rithm. For instance, r = 2 + 2 or r = 22.

0
(C)
;

CCℎ category of attribute Al.

14; Belief function.

2 Number of clusters.

� Shannon’s entropy.

<(∗) Mass function associated to A.

# Nonspecificity.

= Number of objects in X.

=; Number of categories in �;.

? Number of attributes.

?; Plausibility function.

& Time complexity to solve the linear system in equation (2.20).

) Number of iterations of an algorithm until convergence.

F
(C)
:;

Weight associated to the CCℎ category of the ;Cℎ attribute in the :Cℎ
cluster.

M Evidential partition of X.

U Fuzzy partition of X.

V Fuzzy centers.

BetP Belief to probability transformation function.

cat-ECM Categorical evidential c-means.

CFE Categorical fuzzy entropy c-means.

CRI Credal Rand Index.

ECM Evidential c-means.
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NOMENCLATURE 10

FC Fuzzy centers clustering.

FC* Fuzzy centers clustering with hard centers.

FCM Fuzzy c-means.

FKM Fuzzy k-modes.

FRI Fuzzy Rand Index.

FS Fuzzy Silhouette index.

KM K-means.

N Nonspecificity.

PC Partition Coefficient.

PE Partition Entropy.

RI Rand Index.
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Introduction

Pattern recognition methods aim at automatically finding patterns and reg-
ularities in data. The methods are designed according to the type of data
such as matrices, sequences, time series, images, texts, and so on. The input
data of these methods may incorporate uncertainty due to the lack of infor-
mation, conflicting evidence, ambiguity, measurement errors, and belief [2].
In addition to uncertainty, imprecision, vagueness, and inconsistency can be
associated with data [3]. Despite their meaning differences, confusion can
be made between the preceding four terms. We define below the lexical
definitions of these terms according to the Cambridge English Dictionary 1.

According to this dictionary, the term uncertain is defined as not be-
ing able to decide about something, something not known or fixed or not
completely unknown. For example, due to the COVID19 situation, I am un-
certain whether to invite people to physically assist in my thesis defense in
September 2021. The term imprecise is defined by the dictionary as some-
thing not accurate or exact. For example, an imprecise statement can be: I
am expecting between ten to twenty people to assist in my thesis defense.
The term vague is defined as something not clearly expressed, known, de-
scribed, or decided. For example, in the statement ”some people will assist
in my thesis defense”, the type of assistance is vague as it could be physi-
cally or virtually. Finally, the term inconsistent is defined as not agreeing on
opposed elements and or something that does not match. As an example, the
statement ”I will not recommend people that will physically attend my the-
sis defense to wear masks and respect the social distancing”. This statement
is inconsistent with the COVID19 context in 20212. It should be noted that
a statement can be imprecise and uncertain at the same time. For instance
the statement ”It is said that the COVID19 pandemic will end by Septem-
ber 2021”, the statement is imprecise by the fact that the information is not
precise and uncertain if we don’t trust it. For further discussions, we refer
the readers to (non-exhaustive references) [4, 5, 6].

1https://dictionary.cambridge.org/dictionary/english
2At the thesis writing and defense periods, mask-wearing is mandatory in physical

meetings.
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In this thesis, we propose two new clustering algorithms for categorical
data based on different mathematical frameworks for modeling and rea-
soning with imprecision, vagueness, and uncertainty. The first framework,
corresponding to the fuzzy sets theory introduced by Zadeh in [7], is an
extension of the hard sets theory that allows gradual assignment of objects
in sets instead of binary such as in hard sets. This framework, when ap-
plied to clustering, can capture imprecision and vagueness inherent in the
input data. The second framework is an extension of the fuzzy sets theory
and corresponds to the Dempster-Shafer theory of evidence introduced by
Dempster in [8] and developed by Shafer in [9]. The theory is based on
belief functions for uncertainty modeling. In addition to the latter theories,
the probability theory provides another way of modeling uncertainty. As an
application of this theory, Shannon’s entropy introduced in [10] has found
several applications such as in clustering.

The motivations behind our work are threefold. First, clustering pro-
vides a quick way for data exploration and does not require labeled data as
in supervised learning. Moreover, the results of cluster analysis due to their
interpretability are more accessible to non-experts of the domain. Second,
among the tools offering mathematical and computer science frameworks for
dealing with uncertain, imprecise, vague, and inconsistent data soft com-
puting has been gaining interest over decades. Particularly, several models
based on the fuzzy sets and the Dempster-Shafer theory of evidence have
been proposed in the literature and applied to clustering. However, when
applied to clustering, many of these methods are designed to fit only one
type of data, mostly numerical. Therefore to use these methods for categor-
ical, a conversion that can have several limitations such as the increasing of
the dimensions of the data is usually needed. The proposed new methods
categorical fuzzy entropy c-means and categorical evidential c-means respec-
tively referred to as CFE and cat-ECM are designed to fit categorical data
without transformations. While CFE uses Shannon’s entropy, and the fuzzy
sets theory for fuzzy assignments of objects in clusters and the centers of
the cluster representations, cat-ECM uses the Dempster-Shafer theory of
evidence for object labeling. Finally, our work was motivated by the real-
world applications of the new methods in developmental sciences to study
the influence of lifestyle factors on the cognitive health of older adults.

The organization of the report is as follows: In the first part I, we present
the probability, fuzzy sets, and Dempster-Shafer theories in Chapter 1 and a
review of clustering algorithms for categorical data in Chapter 2. In the next
part II, we present the two new methods CFE and cat-ECM respectively in
Chapter 3 and 4. Finally, in the last part III, we present the applications of
the new methods on the analysis of the interactions between lifestyle factors
and cognitive health.
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Introduction

To measure imprecision, vagueness, and uncertainty of information, several
theories have been proposed in the literature. Among the main theories, we
can cite the fuzzy sets theory introduced by Zadeh [7] that uses fuzzy sets
as extensions of hard sets for modeling imprecision and vagueness. For the
uncertainty measurement, until the 60s the probability theory and statistics
were considered as the only framework for reasoning and modeling uncer-
tainty. Among the probability measures, Shannon’s entropy [10] has been
used in information theory to measure the uncertainty inherent in a random
variable’s possible outcomes. In 1978, Zadeh introduced the possibility the-
ory as an extension of the fuzzy sets and fuzzy logic theories to deal with
uncertainty [11]. For the same purpose, imprecise probability [12], and the
evidence theories [9] have been proposed.

This chapter aims to present the hard sets theory and the mathematical
formulation of the probability, fuzzy sets, and evidence theories. Along
with the definitions, some properties and applications of the theories are
illustrated. A focus on the applications of these theories in clustering is also
given.

Remark 1. Along with this report, we consider fuzzy sets in the framework
of imprecision and vagueness modeling. Therefore, we dissociate applica-
tions of the fuzzy sets theory to other theories such as the possibility theory
for uncertainty modeling.

1.1 Hard sets theory as the foundation of impre-
cision and uncertainty theories

While the fuzzy sets and evidence theories are extensions of classical sets
also called hard or crisp sets, the probability theory uses the properties and
operations of hard sets to define the probability of collections of elements.
In this section, we define the notion of hard sets, some of their properties
and operations.

1.1.1 Hard sets

Let X be a space of points (objects), with a generic element of X denoted
by x (X = {x}).

Definition 1.1.1 (Hard set). A (hard) set A is a collection of distinct
elements called members. The membership of an object to A can be
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characterized by a function `A such that: X→ {0, 1}

`A(x) =
{

1 if x ∈ A,

0 otherwise.
(1.1)

Among the properties of the hard sets, we can cite the commutativity,
the associativity, the transitivity, and the De Morgan laws of the union and
intersection. These properties are presented in the next subsection.

1.1.2 Properties of hard sets

Let A, B, and C be three hard sets.

• The union and the intersection of A and B are commutative. In other
words, the union (respectively the intersection) of A and B is equal to
the union (respectively the intersection) of B and A.

A ∪ B = B ∪A

A ∩ B = B ∩A.

• The union and intersection of hard sets are associative, meaning that
the union (respectively the intersection) of hard sets can be decom-
posed to the union (respectively, the intersection) of tuples of the sets.

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C).

• The inclusion of hard sets is transitive, i.e., if a set � is contained in
another set � and itself contained in a set �, then � is contained in
�.

If A ⊆ B ⊆ C, then A ⊆ C.

• De Morgan’s law of hard sets are described as follows: the complement
of the union (respectively the intersection) of two hard sets is equal
to the intersection (respectively the union) of the complements of the
sets.

¬(A ∪ B) = ¬B ∩ ¬A

¬(A ∩ B) = ¬B ∪ ¬A.

In the next subsection, we present the basics operations of hard sets.
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1.1.3 Operations on hard sets

Operations on sets help to create new sets from existing ones. The main
operations are equality, containment, intersection, union, and complement.
They are respectively defined by Equations (1.2a), (1.2b), (1.2c), (1.2d), and
(1.2e).

Let A and B be two hard sets and x ∈ X,

Equality : A = B⇔ A ⊆ B and B ⊆ A. (1.2a)

Containment : A ⊂ B⇔ x ∈ A⇒ x ∈ B. (1.2b)

Intersection : A ∩ B = {x ∈ X|x ∈ A and x ∈ B}. (1.2c)

Union : A ∪ B = {x ∈ X|x ∈ A or x ∈ B}. (1.2d)

Complement : ¬A = {x ∈ X|x ∉ A}. (1.2e)

Equation (1.2a) expresses the equality of two hard sets: two hard sets
A and B are equal if and only if A is included in B and B is included in A.
The containment expressed by A is contained in B (1.2b) occurs if and only
if any element of A is included in B. The intersection of two sets A and B
(1.2c) corresponds to the elements that are both in A and B whereas their
union (1.2d) corresponds to a new set that contains all the elements of A
and B. Finally, the complementary of a set A (1.2e) denoted here by ¬A
contains all the elements not in A.

A dual representation of Equation (1.2) can be defined with the mem-
bership function ` as follows:

Equality : `A = `B ∀x ∈ X `A(x) = `B(x). (1.3a)

Containment : `A ≤ `B ∀x ∈ X : `A(x) ≤ `B(x). (1.3b)

Intersection : `A∩B(x) = min[`A(G), `B(x)], x ∈ X. (1.3c)

Union : `A∪B(x) = max[`A(x), `B(x)], x ∈ X. (1.3d)

Complement : `¬A(x) = 1 − `A(x), x ∈ X. (1.3e)

Operations on hard sets can be applied in different domains such as in
clustering. In the following subsection, we present a brief overview of the
applications of hard sets to this domain.

1.1.4 Applications of hard sets theory

The hard sets theory applications are common in mathematics particularly
in the construction of relations between mathematical objects. The theory
also serves as the base of the probability theory. In clustering, the hard sets
theory can be used to generate a hard c-partition (see in Section 2.1.1) from
an input dataset with 2 being an integer greater than 2. The most popular
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partitioning clustering method for generating such partitions is the k-means
algorithm presented in Section 2.2.1. Due to the limitations of this method
in handling only numerical data, it has been extended to categorical data.
We present some of the extensions in Chapter 2.

The binary representation of hard sets membership degrees limits appli-
cations of the hard sets theory on problems where the solutions can have
fuzzy boundaries. In the following subsection, we illustrate this limitation.

1.1.5 Limitations of hard sets theory

Let’s consider the statement ”The COVID19 pandemic is ending before De-
cember 2021!”1, the ending month is not precise, and all the months from
January to November 2021 are possible. With the hard sets theory, the
membership function will indicate for each month whether the pandemic is
ending 1 or not 0. However, this representation of the information does not
reflect reality because we do not know precisely the exact month at which
the pandemic is ending. There is therefore a need for new theories that can
model imprecise and vague information (data). In other words, for instance,
a theory that will assign a gradual degree for instance varying from 0 to 1 to
indicate the possible ending month of the pandemic. In the literature, many
theories have been proposed for that purpose. Among them, we have the
fuzzy sets and evidence theories discussed respectively in Section 1.3 and 1.4.

Before presenting the fuzzy sets and evidence theories, we first review
the probability theory and Shannon entropy which can be used to measure
uncertainty.

1.2 Probability theory

Until the emergence of new theories in the 50s, the probability theory was
considered as the only framework for modeling and reasoning with uncer-
tainty. As the foundation of statistics, the probability theory is still the
most accepted theory in the literature for uncertainty modeling [2]. In this
section, we present a brief review of this theory and its application to infor-
mation theory.

The probability theory measures the uncertainty of the outcome of a ran-
dom event through a mapping function from the set of possible outcomes
to the interval [0, 1]. Depending on the type of outcomes which can be dis-
crete or continuous, the probability distribution is said respectively discrete
or continuous. For simplicity, we limit the review to the discrete case.

1By considering we are in January 2021.
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Let’s define a probability function.

Definition 1.2.1 (Probability function). Let Ω called sample space be a
finite (hard) set of all possible outcomes of a random experiment and A and
B be two subsets of Ω. A probability function is a function % : Ω → [0, 1]
such that 

%(∅) = 0,

%(Ω) = 1,

%(A ∪ B) = %(A) + %(B) − %(A ∩ B).
(1.4)

�

To quantify uncertainty in the probability theory framework several mea-
sures have been proposed in the literature. Among these measures, entropy
quantifies the disorder of the state of a system. The former entropy measure
initially introduced by Shannon in [10] as a measure of information has been
adapted to the probability theory. In the next subsection, we present this
measure in the framework of the probability theory.

1.2.1 Shannon’s entropy

In information theory (i.e., mathematical theory of communication) Shan-
non’s entropy is a measure for quantifying the amount of uncertainty associ-
ated with the outcome of a random variable. It was introduced by Shannon
in 1948 [10].

Definition 1.2.2 (Shannon’s entropy). Let % = (?1, . . . , ?=) be a finite
probability distribution of a random variable . = (H1, . . . , H=) such that∑=
:=1 ?: = 1. The Shannon’s entropy associated to % usually denoted by

�= (?1, . . . , ?=) is defined by

�= (?1, . . . , ?=) = −
=∑
:=1

?: log1 (?:), (1.5)

where 1 is the base of the logarithm. In this report, we consider the natural
logarithm, i.e., 1 = 4. It will be referred as ;=.

In the following example, we consider the use of Shannon’s entropy to
measure the uncertainty of the effectiveness of COVID19 vaccines.
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Example 1.2.1. Let . = (Pfizer,AstraZeneca) be a set entitled ”the two
most used COVID19 vaccines in France”, and ?1 = 0.8 and ?2 = 0.2 be
respectively the probability of success of the vaccines on UK’s COVID19
variant. Shannon’s entropy �2(?1, ?2) representing the uncertainty of the
success of the two vaccines on the variant is given by

�2(?1, ?2) = − 0.8 ln(0.8) − 0.2 ln(0.2)
= 0.5.

In the framework of the probability theory, Shannon’s entropy is de-
scribed by different properties. In the next subsection, we present some of
them.

Properties

Shannon’s entropy defined in Equation (1.5) possesses several properties.
Among them, we have the non-negativity (1), the symmetry (1.6), the mono-
tonicity (6), the additivity (3), and the concavity (4).

1. �= (%) ≥ 0, with equality when ∃: such that ?: = 1. A zero entropy
implies that the process is deterministic.

2. The entropy �= (?1, . . . , ?=) does not depend on the order of ?8’s and
under an arbitrary permutation {U1, . . . , U=} of the set {1, . . . , =}

�= (?1, . . . , ?=) = �= (?U1 , . . . , ?U=). (1.6)

3. Consider two probability distributions % = (?1, . . . , ?=) and � = (41, . . . , 4=)
associated with independent random variables / and . . The joint
probability distribution of / and . is given by

P(/ = I8 , . = H 9) = ?84 9 ,∀8 ∈ {1, . . . , =},∀ 9 ∈ {1, . . . , <}. (1.7)

From (1.7), the entropy of the joint distribution
H=< = �=<(?141; . . . ; ?14<; . . . ; ?=41; . . . ; ?=4<) corresponds to the
sum of respective entropies associated with the independent random
variables:

H=< = �= (?1, . . . , ?=) + �<(41, . . . , 4=). (1.8)

4. �= is a concave function of ?8’s therefore its local maximum corre-
sponds to the global maximum.
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5. �= (%) ≤ �= (
1

=
, . . . ,

1

=
). It implies that maximum entropy or maximum

disorder is reached when all probabilities are equal. For instance the
maximum entropy of the weights associated to the attributes categories
in the fuzzy centers algorithm described in Section 2.2.8 is reached

when all the weights are equal to
1

=;
.

6. �= is a monotonically decreasing function of ?8’s (i.e., if the probabil-
ities ?8 increase, �= decreases).

We refer the readers to [13, 14] for detailed discussions on the properties of
Shannon’s entropy.

Due to its mathematical properties and its simplicity in calculus, Shan-
non’s entropy has been used in a wide range of domains. In the next sub-
section, we present some of these applications.

Applications

Although initially proposed in the context of communication theory, Shan-
non’s entropy has been applied in a wide range of problems ranging from
physical [15], engineering [16], finance [17], biological [18], social [19] and
environmental sciences [20] to pattern recognition [21]. In cluster analysis,
Shannon’s entropy has been used in two main applications: as an internal
measure and as a penalization function. The former application uses en-
tropy to quantify the goodness of fit of a clustering algorithm whereas the
latter application uses the entropy to regularize data or a learning process.
In Section 2.2.4, we present some examples of applications of Shannon’s en-
tropy in clustering as a penalization function.

As Shannon’s entropy, fuzzy sets have been used in several applications.
In the next section, we provide a brief description of the theory and its
applications.

28



1.3. FUZZY SETS THEORY 29

1.3 Fuzzy sets theory

Due to the limitations of the hard sets theory to handle fuzzy boundaries,
a new theory called fuzzy sets was introduced as an extension of hard sets
theory for modeling imprecise and vague data. In the next subsections, we
present the mathematical definition of fuzzy sets, some of their properties,
operations, and applications.

1.3.1 Fuzzy sets

A piece of information is said to be fuzzy or vague when its boundary is
not clear. Contrary to the hard sets theory in which elements memberships
are binary, the fuzzy sets allow gradual assignment of these elements. The
theory was introduced independently by Zadeh [7] and Klaua [22] in 1965.
The original idea of the theory is to model imprecise information expressed
in natural language. Zadeh referred to this in [7] by ”more often than not,
the classes of objects encountered in the real physical world do not have
precisely defined criteria of membership”. To illustrate the ambiguity in
natural language, we can consider the term ”young” in the context of aging.
Some people may define a young person as someone whose age is below 25
years old, whereas for other people, this threshold may not correspond to
their perception of the term.

Definition 1.3.1 (Fuzzy set). A fuzzy set A in X is characterized by a
membership (characteristic) function `A which associates to each element in
X a real number in the interval [0, 1], with the value of `A at x representing
the membership degree of x in A. The fuzzy set A is usually represented
by the pair (X, `A). When - is finite (i.e., X = {G1, . . . , x=}), A is often
denoted by:

A = {`A (x1)/x1, . . . , `A (xn)/xn}. (1.9)

�

Example 1.3.1 (Fuzzy set). Considering the preceding statement ”The
COVID19 pandemic is ending by December 2021!”, this statement is
imprecise as the ending month of the pandemic is not clear. To model
this imprecision, a fuzzy set can be used by associating membership values
indicating the possible ending of the pandemic to each month before
December such as: 0.02 to January (01), 0.02 to February (02), . . . , 0.5
to October (010), 0.7 to November (011).
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Let A be the fuzzy set associated to this event, following the nota-
tion in Equation (1.9), we have:

A = {0.02/01, 0.02/02, . . . , 0.5/010, 0.7/011}.

In the following subsection, we describe the main properties of fuzzy sets.

1.3.2 Properties of fuzzy sets

As an extension of the hard sets theory, the fuzzy sets theory inherits all
the properties of hard sets. Hence the properties of hard sets described in
Section 1.1 also apply to fuzzy sets.

In the next subsection, basics operations on fuzzy sets are discussed.

1.3.3 Operations on fuzzy sets

The main operations of fuzzy sets are defined in the same way as hard sets
in Equation (1.3). Apart from the equality operation, the results of the
remaining operations are new fuzzy sets. Furthermore, the minimum and
maximum functions in the Equations (1.3c) and (1.3d) can be respectively
generalized with the t-norm and s-norm (i.e., t-conorm) [23] for fuzzy sets.

Depending on the value of the membership degree function of fuzzy sets,
crisp sets can be related to the fuzzy sets through such as the notion of
support (Supp) and kernel (Kern) defined respectively by Equation (1.10)
and (1.11).

(D??(A) = {G ∈ X| `(G) > 0}. (1.10)

 4A=(A) = {G ∈ X| `(G) = 1}. (1.11)

With their ability to provide solutions to problems with fuzzy boundaries,
the fuzzy sets theory has successful applications in a wide range of domains.
In the next subsection, we present some of these applications with a focus
on fuzzy clustering.

1.3.4 Applications of fuzzy sets theory

The fuzzy sets theory has been applied both to other formal theories and real
problems. As examples of applications, we have fuzzy logic and approximate
reasoning, expert systems, control, databases and queries, data analysis,
engineering, and management [2]. In the latter book, Zimmermann classifies
the applications of the fuzzy sets theory into four families as follows:
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• Applications to mathematics, that is, generalizations of traditional
mathematics such as topology, graph theory, algebra, logic, and so on.

• Applications to algorithms such as clustering methods, control algo-
rithms, mathematical programming, and so on.

• Applications to standard models such as ”the transportation model”,
”inventory control models”, ”maintenance models”, and so on.

• Applications to real-world problems of different kinds such as engi-
neering and management.

We refer the readers to [13, 24, 2, 25] for detailed reviews on applications of
the theory to other theories and real problems.

In clustering, the fuzzy sets theory has been used among others for fuzzy
assignments of objects in clusters and cluster center representations. In the
former application, fuzzy partitions can be obtained with various cluster-
ing methods. The most popular method is the fuzzy c-means proposed by
Bezdek [26] in the 80s. Several extensions of the fuzzy c-means have been
proposed in the literature for handling different types of data: categorical,
time series, image, relational, and so on. Among the categorical extensions
of the fuzzy c-means, we have the fuzzy k-modes [27] algorithm which ex-
tends the k-modes [28, 29], the fuzzy centroids clustering [30] which uses the
fuzzy sets theory for representing the centroids. The preceding algorithms
are presented in Chapter 2.

Despite offering flexible ways of tackling fuzzy boundaries problems, the
fuzzy sets theory has some limitations discussed in the following paragraph.

1.3.5 Limitations of the fuzzy sets theory

In clustering, depending on the application, fuzzy partition degrees can be
hard to interpret. For instance they do not express the belief of object
assignment in the clusters. Indeed, in some real-life scenarios, the basics
interpretations of fuzzy membership degrees as similarity degrees might not
be sufficient. For instance, if the membership degree to a cluster is one,
one would like to say that it is certain that the corresponding objects be-
long to the cluster. Therefore, there is a need for new theories to model
the uncertainty of the object’s membership degrees. In the literature, the
Dempster-Shafer theory of evidence was proposed for that purpose. When
applied to clustering, the latter theory provides measures to quantify the
uncertainty of object labeling.

In the next section, we briefly review the Dempster-Shafer theory of
evidence.
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1.4 Theory of evidence

The belief functions theory also called Dempster-Shafer theory or theory
of evidence is a mathematical theory introduced by Glenn Shafer in 1976
[9] as a new approach of uncertainty modeling. The theory is described by
Shafer as a reinterpretation of Arthur P. Dempster’s work [8] in the context
of statistical inference on lower and upper bounds of probabilities: ”...it of-
fers a reinterpretation of Dempster’s work, a reinterpretation that identifies
his lower probabilities as epistemic probabilities or degrees of belief takes
the rule for combining such degrees of belief as fundamental and abandons
the idea that they arise as lower bounds over classes of Bayesian probabili-
ties” [8]. The theory considered as a generalization of the Bayesian theory
of subjective probability has been developed and popularized by Smets and
Kennes under the name of the transferable belief model [31]. This model
is an axiomatic approach of belief functions where a belief function can be
held at two levels [31]: (1) a credal level where beliefs are entertained and
quantified beliefs functions, (2) a pignistic level where beliefs can be used to
make decisions and are quantified by probability functions.

To introduce the notion of belief functions, let’s consider again the state-
ment ”It is said that the COVID19 pandemic will end before December
2021!” in the general introduction. We saw that this statement is both im-
precise due to the imprecise date of ending of the pandemic and uncertain if
the source of the information is unreliable. Let’s consider that our subjec-
tive probability of the reliability of the source is 0.8. Hence the subjective
probability of being unreliable is 0.2. Since we are considering probabilities,
the two probabilities sum up to 1. The statement is true if the source of
the information is reliable but not necessarily false if it is unreliable. With
the belief functions theory we say that with the statement alone, we have a
0.8 degree of belief that the pandemic will end by December 2021 and a 0
degree of belief (not a 0.2 degree of belief) that the pandemic will not end
by December 2021. Contrary to the probability theory, the 0 here does not
mean that we are not sure that the pandemic will not end by December
2021 but we have no reason to believe what is advanced in our example.
The previous example is inspired by Shafer’s in [32].

1.4.1 Representation of evidence

Let Ω = {l1, . . . , l: , . . . , l2} be a finite set of the states of a system called
the frame of discernment. In clustering, for instance, Ω represents the set
of desired clusters and l: the subsets of clusters. Partial knowledge about
these states can be characterized by mass function also called basic belief
assignment defined as follows:
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Definition 1.4.1 (Mass function). A mass (m) can be associated to any
subset � of Ω such that < : 2Ω → [0, 1] and∑

A⊆Ω
<(A) = 1. (1.12)

�

Depending on the values of < called basic belief masses special mass
functions can be derived. For instance, a subset A of Ω is called a focal set
when the corresponding mass function is positive (<(A) > 0). Special cases
of focal sets are the Bayesian, logical, and vacuous mass functions defined
as follows:

• A mass function is said to be Bayesian when all focal sets of Ω are
singletons (sets with cardinality one). In this case, the mass function
corresponds to a probability distribution.

• A mass function is said to be logical when it has only one focal set.

• A mass function is said to be vacuous if <(Ω) = 1. In this case, the
mass function represents a completely uninformative piece of evidence
(i.e., complete ignorance).

Example 1.4.1 (Mass function). Let Ω be the set of UK’s, South
Africa and Brazil COVID19 variants and the original virus: Ω =

{Original,UK, South Africa,Brazil}. Let’s suppose that the Pfizer vaccine
is efficient with a probability of 0.9 on the original virus and the UK’s vari-
ant. We know that the vaccine is efficient with a probability of at least 10%
with any kind of variants including the original virus. We can model this
information using a mass function < as follows:

<({Original,UK}) = 0.9

<(Ω) = 0.1.

The set {Original,UK} here is a focal set and <(Ω) represents the degree of
ignorance allocated to effectiveness of the vaccine on the variants.

From Equation (1.12), the value of the mass allocated to the empty set
can be positive. In the original work of Shafer in [9], this value is con-
strained to be 0 and represents a closed-world assumption, i.e., the frame of
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discernment is exhaustive. In contrast, in the open-world assumption [33],
the value of <(∅) > 0 is interpreted as the degree of the state of the system
not underlying in the frame of discernment.

In general, the closed-world assumption is considered and when <(∅) > 0,
different normalization procedures such as Dempster’s or Yager’s rules can
be performed.

Let A be a subset of Ω such that � ≠ ∅, <(A) the mass function of A and
<∗(�) the normalized mass function of A. The Dempster’s normalization
procedure of < given by the Equation (1.13) consists in allocating the mass
of the empty set to A:

<∗(�) =


<(A)
1 − <(∅) if � ≠ ∅

0 otherwise.
(1.13)

whereas Yager’s normalization procedure given by the Equation (1.14)
consists in assigning the mass of 0 to <∗(�) when A is the empty set, the
mass of Ω and the empty set when A corresponds to Ω and <(A) in the
other cases.

<∗(�) =


0 if A = ∅
<(Ω) + <(∅) if � = Ω

<(A) otherwise.

(1.14)

In cluster analysis, a normalization of a partition obtained with the
Dempster-Shafer theory can be performed when transforming the later par-
tition to other types of partitions such as fuzzy (see Chapter 2).

In some scenarios, the evidence of a subset of Ω can be used to determine
if the latter implies or contradicts the evidence of another subset of Ω. This
can be achieved by using belief and plausibility functions defined as follows.

Let A and B be two subsets of Ω such that A ⊆ B, if the evidence is true
for A then the evidence is said to support B. In other words, the evidence
of a set can be characterized by the evidence of all its nonempty subsets.
Similarly, if the evidence does not support the complement of B referred to
as ¬�, the evidence is said to be consistent with B.

Definition 1.4.2 (Belief function). Let < be a mass function, the belief in
B (i.e., the probability that the evidence implies B) is given by the function
14; : 2Ω → [0, 1]

14; (�) =
∑

A⊆B,A≠∅
<(A) and 14; (∅) = 0. (1.15)
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�

Definition 1.4.3 (Plausibility function). Let < be a mass function, the
plausibility in a set B (i.e., the probability that the evidence does not con-
tradict B) is given by the function ?; : 2Ω → [0, 1]

?; (B) =
∑

A∩B≠∅
<(A) = 1 − 14; (¬B) and ?; (∅) = 0. (1.16)

�

From the Definition 1.4.2 and 1.4.3, it can be noted that the belief
and plausibility degrees are equivalent representations of a mass function.
Furthermore, the two functions respectively represent the lower and upper
degree of belief of uncertainty. For any focal element � ⊆ Ω, the interval
[14; (�), ?; (�)] is called a belief interval.

In the following example, we provide a simulated application of the belief
and plausibility functions to model the uncertainty of the effectiveness of
COVID19 vaccines.

Example 1.4.2 (Belief and plausibility). The European Union (EU) would
like to conduct studies on the effectiveness before allowing their usage of
Pfizer, Moderna, AstraZeneca (random sample of vaccines) vaccines on the
original, UK’s, South Africa’s and Brazil’s variants of the COVID. A prior
study was conducted a few months ago on the effectiveness of Pfizer, Mod-
erna, and AstraZeneca vaccines on the original COVID19 virus. From this
study, the EU knows that these vaccines have respectively a probability of
failure of 0.1, 0.2 for the Pfizer and Moderna vaccines on the original virus.
From the same study, it is known that having a good combination of vac-
cines can reduce the probability of failure. For instance, when the Pfizer’s
and Moderna vaccines have combined the probability of failure is 0.18 and
when the Pfizer’s, and AstraZeneca’s are combined the probability of failure
is 0.15 when the Moderna and AstraZeneca are combined the probability
is 0.2 and when all the vaccines are combined, the probability of failure is
0.07. As AstraZeneca is the latest developed vaccine, the EU wants to take
some caution in including this vaccine in the study. The laboratory that
developed the vaccine assure that their vaccine is very efficient and has a
probability of failure of only 0.1 on the original virus. To avoid spending
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more time verifying the information given by the laboratory, the EU decided
to trust it. Two months later, the EU obtained the results of the failure of
the vaccines on the variants. The probabilities are reported in Table 1.1.

Vaccines Original UK South Africa Brazil Mean

{∅} 0 0 0.19 0 0
{Pfizer} 0.1 0.2 0.3 0.05 0.1625
{Moderna} 0.2 0.2 0.1 0.45 0.2375
{AstraZeneca} 0.1 0.1 0.2 0.15 0.1375
{Pfizer,Moderna} 0.18 0.18 0.1 0.15 0.1525
{Pfizer,AstraZeneca} 0.15 0.02 0.01 0.05 0.0575
{Moderna,AstraZeneca} 0.2 0.2 0.08 0.1 0.1450
{Pfizer,Moderna,AstraZeneca} 0.07 0.1 0.02 0.05 0.0600

Table 1.1: Probability of failure of the vaccines on all the studied virus of
COVID.

The EU would like now to know the most efficient vaccine or combi-
nation of vaccines (at most 2 vaccines) on both the original virus and the
studied variants. For precautions of using the obtained efficient vaccine(s),
the EU would like to also have a confidence interval.

To answer the EU’s requests, belief and plausibility degrees over all the
vaccines and combinations of vaccines can be computed to determine the
vaccine or combination that for instance maximizes the overall degrees.
These degrees will then serve as the lower and upper bounds of the
probability of effectiveness of the vaccines.

Let’s consider Ω the set of the following COVID19 vaccines: Ω =

{Pfizer,Moderna,AstraZeneca}. We have

2Ω = {∅, {Pfizer}, {Moderna},Ω}.

The computation the belief and plausibility of {Pfizer} are described as
follows:

1. Belief
From Equation (1.15) we have:

14;Original({Pfizer}) = <Original({Pfizer}) = 0.1.

2. Plausibility
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From Equation (1.16) we have:

?;Original({Pfizer}) = <Original({Pfizer})
+ <Original({Pfizer,Moderna})
+ <Original({Pfizer,AstraZeneca})
+ <Original({Pfizer, ,Moderna,AstraZeneca})

= 0.1 + 0.18 + 0.15 + 0.07

= 0.5.

As the belief and plausibility degrees correspond to the lower and upper
bounds of the probability of failure, if ?Original({Pfizer}) is the probability
of failure of the Pfizer’s vaccine on the original virus, we then have from 1
and 2 ?Original({Pfizer}) ∈ [0.1, 0.5].

By computing of the belief and plausibility degrees of all the subsets of
vaccines the tables 1.2 and 1.3 are obtained.

Vaccines 14;Original 14;UK 14;South Africa 14;Brazil belmean

{∅} 0 0 0 0 0
{Pfizer} 0.1 0.3 0.3 0.05 0.1875
{Moderna} 0.2 0.1 0.1 0.45 0.2125
{AstraZeneca} 0.1 0.2 0.2 0.15 0.1625
{Pfizer,Moderna} 0.48 0.58 0.5 0.65 0.5525
{Pfizer,AstraZeneca} 0.35 0.32 0.51 0.25 0.3575
{Moderna,AstraZeneca} 0.5 0.5 0.38 0.7 0.52
{Pfizer,Moderna,AstraZeneca} 1 1 1 1 1

Table 1.2: Belief of failure of all vaccines on the variants.

Vaccines ?;Original ?;UK ?;South Africa ?;Brazil plmean

{∅} 0 0 0 0 0
{Pfizer} 0.5 0.5 0.43 0.3 0.4325
{Moderna} 0.65 0.68 0.3 0.45 0.52
{AstraZeneca} 0.52 0.42 0.31 0.75 0.5
{Pfizer,Moderna} 0.9 0.9 0.8 0.85 0.8625
{Pfizer,AstraZeneca} 0.8 0.8 0.9 0.55 0.7625
{Moderna,AstraZeneca} 0.9 0.8 0.7 0.95 0.8375
{Pfizer,Moderna,AstraZeneca} 1 1 0.81 1 1

Table 1.3: Plausibility of failure of all vaccines on the variants.

Based on the hypothesis that the best vaccine corresponds to the vaccine
with the lowest degree of failure on overall on the COVID19 variants, from
Tables 1.1, 1.2 and 1.3, it can be deduced that, the best vaccine is Pfizer with
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a mean of probability of failure of 16.25% and a lower and upper bounds of
respectively 0.1875 and 0.4325.

In the following subsection, we present the main properties of belief
functions.

1.4.2 Properties of belief functions

Among the main properties of belief functions, monotonicity occupies an
important role. Indeed, the function bel is a completely monotone capacity.
In other words the function bel verifies:

14; (∅) = 0, (1.17a)

14; (Ω) = 1, (1.17b)

14;

( :⋃
8=1

Ai

)
≥

∑
� ⊆{1,...,: },�≠∅

(−1) |� |+114;
(⋂
8∈�

Ai

)
, (1.17c)

for any : ≥ 2 and for any subsets Ai, . . .Ak in 2Ω.

As consequence of this property, a unique mass function can be associ-
ated to a belief function as follows:

<(A) =
∑

B⊆A,B≠∅
(−1) |A |− |B |14; (B). (1.18)

In addition to being characterized by the preceding properties, several
operations can be applied to belief functions such as described in the next
subsection.

1.4.3 Operations on belief functions

As for the fuzzy sets theory, operations on belief functions can be used
in order to create new belief functions. Among the main operations, the
combination or fusion of two pieces of evidence from an independent frame
of discernment can be used to have a more informative mass function. For
that purpose, Dempster’s rule of combination may be employed. Depending
on the nature of the information of the sources, the combination can be
conjunctive when the sources are reliable and disjunctive when the sources
are not reliable.
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Definition 1.4.4 (Dempster’s rule of combination). Let <1 and <2 be two
mass functions on the same frame Ω induced by two independent pieces of
evidence. The Dempter’s rule of combination is defined by

(<1 ⊕ <2) (A) =
1

1 −  
∑

B∩C=A

<1(A)<2(C) ∀A ≠ ∅, (1.19)

where
 =

∑
B∩C=∅

<1(A)<2(C) (1.20)

is the degree of conflict between <1 and <2.

The conjunctive and disjunctive operations can be deduced from Demp-
ster’s rule of combination as follows:

Definition 1.4.5 (Conjunctive and disjunctive combinations). Let <1 and
<2 be two distinct mass functions.

The conjunctive combination of <1 and <2 denoted by the <1 ∩ <2 is
given by

(<1 ∩ <2) (A) =
∑

B∩C=A

<1(A)<2(C) ∀A ⊆ Ω. (1.21)

whereas the disjunctive combination of <1 and <2 denoted by the <1∪<2

is given by

(<1 ∪ <2) (A) =
∑

B∪C=A

<1(A)<2(C) ∀A ⊆ Ω. (1.22)

As a generalization of the Bayesian subjective probability theory, the
Dempster-Shafer theory of evidence provides transformation procedures for
converting belief degrees to probability degrees. An example of this trans-
formation is discussed in the next subsection.

1.4.4 Decision making

In Example 1.4.2 the best efficient COVID19 vaccine from the sample is
obtained by taking the vaccine having the lowest plausibility of failure. The
method used in the decision making is from [34] which consists of choosing
the singleton of Ω with the highest plausibility (in our case the lowest plausi-
bility as we want to minimize the probability of failure). More generally for

39



1.4. THEORY OF EVIDENCE 40

decision-making on belief functions, a formal approach would be to trans-
form the belief function models to probability models. For that purpose,
Smets in [35] introduced the pignistic transformation in the framework of
belief functions. In the transformation function denoted by BetP (for bet-
ting probability) and given by Equation (1.23) each mass of belief <(A) is
proportionally distributed among the elements of A.

�4C%(l) =
∑
l∈A

<(A)
|A| ∀l ∈ Ω and <(∅) = 0, (1.23)

where |A| corresponds to the cardinality of A ⊆ Ω.

In clustering, this transformation can be used to convert an evidential
partition a fuzzy partition (see Chapter 4).

As an uncertainty theory, the evidence theory provides several measures
to quantify uncertainty. In the next subsection, some of them are presented.

1.4.5 Uncertainty measures

Shannon’s entropy presented in Section 1.2 when applied to a fuzzy partition
quantifies the degree of disorder in the corresponding partition. Likewise, to
describe the uncertainty in a bba, entropy-like measures have been proposed
in the framework of belief functions such as the ambiguity [36] and the aggre-
gated uncertainty [37]. In [38], Klir and Wierman proposed a nonspecificity
measure given by Equation (1.24) of a subnormal bba as a generalization of
the Hartley entropy measure [39].

# (<) =
∑

�∈2Ω\∅
<(A) log2 |�| + <(∅) log2 |Ω|, (1.24)

where 0 ≤ # (<) ≤ log2 |Ω|.

A generalization of the nonspecificity in (1.24) can be deduced to obtained
the global nonspecificity associated to the mass functions <1, . . . , <2 with
the following equation:

# ({<1, . . . , <2}) =
1

= log2 |Ω|

2∑
:=1

# (<:). (1.25)

In evidential clustering (see Section 2.2.3 and Chapter 4), Equation
(1.25) can be used to determine the optimal number of clusters by mini-
mizing the global nonspecificity of the partition. In addition to Equation
(1.24), several nonspecificity measures have been proposed in the literature
such as Körner’s [40] # and Yager’s specificity #. defined respectively by
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Equation (1.26) and (1.27). Recently, Yang et al. introduced in [41] a new
nonspecificity measure based on belief intervals. The corresponding measure
referred here to as #. 0 is defined in Equation (1.28).

# (<) =
∑
�⊆Ω

log(<(�)) |�|. (1.26)

#. (<) =
∑

�⊆Ω/�≠∅

<(�)
|�| . (1.27)

#. 0 (<) = 1

2

2∑
:=1

(?; ({l: }) − 14; ({F: })). (1.28)

For detailed discussions on uncertainty measures in the framework of belief
functions, we refer the readers to the recent review in [42].

Since Shafer’s book publication ”A mathematical theory of evidence”
[9], the evidence theory has helped to overcome many problems. In the next
section, we present some applications of the theory.

1.4.6 Applications of evidence theory

Among the applications of the evidence theory, artificial intelligence [43, 44],
information fusion [45, 46], expert systems [47, 48], safety and reliability
modeling [49], geographic information systems [50] can be cited. In cluster-
ing, the evidential c-means algorithm was introduced by Masson et al. in
[51] as an extension of the fuzzy c-means algorithm. The extended method
presented in Section 2.2.3, generates a partition called credal or evidential.

Despite its advantages, the evidence theory is also characterized by some
limitations such as the use of large computational resources discussed in the
following subsection.

1.4.7 Limitations of the evidence theory

One of the main drawbacks of the evidence theory holds on the need for large
computational resources. Indeed, in clustering for instance the number of
clusters when the evidence theory is used can grow exponentially due to the
22 possible subsets of clusters (see the complexity analysis in Section 2.2.3
and 4.3). To limit the complexity of the methods, the size of the subsets
can be limited to a given number. A detailed discussion of this solution is
presented in Chapter 4.
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Theories Some advantages Some limitations Some properties

Fuzzy sets Extension of
hard sets the-
ory, model impre-
cise data, fuzzy
boundaries.

Interpretation of
membership de-
grees, capturing
overlapping clus-
ters, assignment
of crossover ob-
jects in clustering
(see Remark 3).

Commutative,
associative, tran-
sitive, De Mor-
gan’s laws.

Belief func-
tions

Extension of
hard and fuzzy
sets theories,
model impre-
cision and un-
certainty of ob-
jects assignment,
lower and upper
bounds of bba,
can capture over-
lapped clusters,
conversion of bba
to probabilities.

Large computa-
tional resources
(see Section 2.2.3
and 4.3).

Monotone, equiv-
alent represen-
tation of mass,
belief, and plausi-
bility functions.

Table 1.4: Summary of fuzzy sets, and belief functions advantages, limita-
tions, and properties.

Summary

In this chapter, we present the probability, fuzzy sets, and evidence theories
as uncertainty theories. We first discuss the hard sets theory as the basics
of the three theories. For the probability theory, we focus our discussion on
Shannon’s entropy and presented some of its applications of this measure in
clustering. In Section 1.2.1, 1.3 and 1.4 we respectively present the math-
ematical formulation and some properties of Shannon’s entropy, fuzzy sets
and belief functions.

In Table 1.4, we provide a summary of some advantages, limitations, and
properties of fuzzy sets and belief functions in general and in clustering.
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Key points

• The probability, fuzzy sets, and Dempster-Shafer theories are math-
ematical frameworks for modeling and reasoning with imprecision,
vagueness, and uncertainty in data.

• Fuzzy sets are extensions of hard sets that allow gradual assignments
of objects.

• Mass, belief, and plausibility functions are equivalent representations
to quantify the degree of evidence of the state of a system.
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Introduction

This chapter aims to present some numerical and categorical partition-
ing clustering algorithms in the frameworks of hard sets, fuzzy sets, and
Dempster-Shafer’s theory of evidence. We first describe hard and fuzzy c-
partitions and evidential partitions, then we provide examples of methods
from which these partitions can be generated.
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Definition 2.0.1 (Clustering). In pattern recognition, cluster analysis or
clustering is a family of unsupervised methods whose goal consists in finding
hidden structures from high dimensional unlabeled data. The algorithms
usually generate partitions of the data called clusters such that the objects
in the same clusters are more similar than the objects in different clusters.

In the literature, three main clustering families can be distinguished:
hierarchical, density-based, and partition-based. In hierarchical clustering
data objects are clustered using a hierarchy of clusters by either agglomera-
tive (bottom-up) or divisive (top-down) strategies. Density-based clustering
is a spatial clustering method that groups data based on the densest regions.
In partition-based clustering methods, objects are partitioned into different
clusters. This strategy also called objective function clustering optimizes a
generalized sum of squared errors.

Let X = {x1, . . . , xi, . . . , xn} be a set of = observations where each object
is described by ? attributes (z1, . . . , z;, . . . , z?). Let 2 be the number of
desired clusters, V = (v1, . . . , vk, . . . , vc) the centers of the clusters, `ik and
3 (xi, vk) = 38: be respectively the membership degree and distance between
the 8Cℎ object and the :Cℎ cluster center.

The generalized sum of squared errors referred to as � is given by the
following equation

� =

=∑
8=1

2∑
:=1

`
V

8:
328: , (2.1)

where V is a positive coefficient.

In the literature, the most frequent clustering family encountered is the
partition-based family. The reason behind this can be explained by the
extensive studies of these methods since the 60s and their flexibility to be
suited and extended to different types of data. Therefore this chapter will
focus on the review of the following partition-based clustering methods: k-
means and fuzzy c-means and some of their extensions to categorical data:
k-modes, fuzzy k-modes and fuzzy centers clustering. For general reviews of
clustering techniques, we refer the readers to the following survey papers
[52, 53].

The type of data partitions in clustering depends on the theory used
to express certainty, uncertainty, and imprecision. For instance, when the
hard and fuzzy sets theories are used the partitions are called respectively
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hard and fuzzy partitions. When the evidence theory is used, the partition
is called evidential or credal. Detailed characteristics of each partition are
discussed in the next subsection.

2.1 Types of clustering partitions

In a hard partition, an object can belong to at most one cluster whereas, in
a fuzzy partition, objects are known to belong in one cluster, however, due
to the imprecision of the assignments, the fuzzy sets theory is used to model
the imprecision which allows objects to have a membership degree in each
cluster. As the Dempster-Shafer theory of evidence is a generalization of
hard and fuzzy sets theory, evidential partitions extend the hard and fuzzy
partitions. In these partitions, similarly to fuzzy partitions, the evidence
theory is used to model the uncertainty of object assignments to clusters.

Before presenting the hard, fuzzy and evidential partitions let’s define
the notion of a partition.

Definition 2.1.1 (Partition). Let S be a set, a (hard) c-partition of S
corresponds to 2 nonempty subsets of S such that all the subsets are pairwise
disjoint and cover S. That is, if S is finite (|S| = =) and Ak,∀: ∈ {1, . . . , 2}
are the subsets of S then:

Ak ≠ ∅,∀:, (2.2a)

Ak ∩ � 9 = ∅,∀: ≠ 9 , (2.2b)
2⋃
:=1

Ak = S. (2.2c)

�

Definition 2.1.1 can be extended to fuzzy sets to define fuzzy c-partitions.
In the following subsection, we provide examples of hard c-partitions and
applications of the definition to clustering.

2.1.1 Hard c-partitions

To better understand hard c-partitions, let’s consider the case where the
number of partitions denoted by 2 is 2, the partition is then called hard
2-partitions.
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Hard 2-partitions

If A is a hard set and ¬A its complement, the pair (A,¬A) is a hard 2-
partition. Indeed, all Equation (2.2) are satisfied for the pair (A,¬A). Fol-
lowing the dual representation of hard sets operations in Equation (1.3), for
the pair (A,¬A), Equation (2.2) becomes

0 <
=∑
8=1

`�(G8) < =, 0 <
=∑
8=1

`¬�(G8) < =, (2.3a)

`�(G8), `¬�(G8) ∈ {0, 1} ∀8, (2.3b)

`�(G8) + `¬�(G8) = 1 ∀1 ≤ 8 ≤ =. (2.3c)

Example 2.1.1 (Hard 2-partitions). Let X = {x1, x2, x3, x4}, A = {x1, x2}
and B = {x3, x4}. The pair (A,B) is a hard 2-partitions. Indeed, we have
B = ¬A and ∀G ∈ - all the Equation (2.3) are satisfied.

A matrix representation of hard 2-partitions can be obtained by setting
the subsets as columns and the objects as rows. The values of the matrix
correspond to the membership degrees of objects.

Example 2.1.2 (Matrix representation of a hard 2-partitions). The matrix
representation of the hard 2-partitions in Example 2.1.1 is given by

Objects A B

x1 1 0
x2 1 0
x3 0 1
x4 0 1

Table 2.1: Matrix representation of the hard 2-partitions in Example 2.1.1

Equation (2.3) can be generalized to hard c-partitions with 2 ≥ 2.

Hard c-partitions

Let `8: = `: (xi) be the membership degree of the 8Cℎ object to the :Cℎ
cluster. When 2 ≥ 2, a generalization of Equations (2.3) to c-partitions is
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given by the following equations:

0 <
=∑
8=1

`8: < =, ∀ 1 ≤ : ≤ 2, (2.4a)

`8: ∈ {0, 1} ∀8,∀:, (2.4b)
2∑
:=1

`8: = 1 ∀ 1 ≤ 8 ≤ =. (2.4c)

As `8: is binary, Equation (2.4c) means that each G8 is exactly in one subset
of the c-subsets. Equation (2.4a) can be interpreted as no subset is empty
and no subset is -.

From the generalized c-partitions conditions (2.4c) and (2.4a), a formal
definition of hard c-partitions can be derived as follows:

Definition 2.1.2 (Hard c-partitions). Let X = {x1, . . . , xi, . . . , xn} be a finite
set, 2 an integer, such that 2 ≤ 2 < =, `8: the membership degree of G8 to
the set �: , * = [`8:] the matrix containing `8: and +=2 the set of real = ∗ 2
matrices. A partition is said to be a hard c-partitions [26] if

"ℎ? =
{
* ∈ +=2

�� `8: ∈ {0, 1}; 2∑
:=1

`8: = 1 ∀8; 0 <
=∑
8=1

`8: < = ∀:
}
. (2.5)

where "ℎ? is the set of all hard partitions matrices. �

As extensions of hard c-partitions, fuzzy c-partitions definitions can be
derived from the hard sets’s.

2.1.2 Fuzzy c-partitions

We first consider the case when 2 = 2.

Definition 2.1.3 (Fuzzy 2-partitions [26]). Let A be a fuzzy set and ¬A
its complement. The pair (A, ¬A) is a fuzzy 2-partition X if

A ≠ ∅ and ¬A ≠ ∅, (2.6a)

0 < `A < 1. (2.6b)

�
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Remark 2. 1) Equations (2.3) and (2.6) are equivalent. 2) the difference
between the hard and fuzzy 2-partitions holds on the fact that `A and `¬A

∈ {0, 1} whereas `A and `¬A ∈ [0, 1] .

Example 2.1.3 (Fuzzy 2-partitions). Let X = {x1, x2, x3, x4}, let A =

{0.3/x1, 0.6/x2, 0.5/x3} and B = {0.7/x1, 0.4/x2, 0.5/x3, 1/x4} be two fuzzy
sets. The pair (A,B) is a fuzzy 2-partition and the matrix representation
is given by

Objects A B
x1 0.3 0.7
x2 0.6 0.4
x3 0.5 0.5
x4 0 1

Table 2.2: Matrix representation of the fuzzy 2-partition.

While x4 is a full member of B, x1 and x2 are partially members of both
A and B. As the membership degree of x3 is 0.5, x3 is called a crossover
point.

Remark 3. A hard partition can be deduced from a fuzzy partition by
applying the maximum principle rule (i.e., each object is assigned to the
subset with the maximum membership degree). For instance the Table 2.2
can be converted into a hard 2-partition as follow:

Objects A B
x1 0 1
x2 1 0
x3 1 0
x4 0 1

Table 2.3: Hard 2-partition generated from the fuzzy partition Table 2.2.

It can be noted that when converting a fuzzy partition containing crossover
points (i.e., G/`(G) = 0.5) to a hard partition, these points can be miss-
assigned to a subset due to the maximum principle. For instance, x3 can be
assigned to both A and B. Depending on the application, for example in
medical science, the miss-assignment can have serious consequences.

Similarly to hard c-partitions, a fuzzy c-partition can be defined as fol-
lows:
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Definition 2.1.4 (Fuzzy c-partitions [26]). A matrix * is said to be a fuzzy
c-partition of - if

" 5 ? =
{
* ∈ +=2

�� `8: ∈ [0, 1]; 2∑
:=1

`8: = 1 ∀8; 0 <
=∑
8=1

`8: < = ∀:
}
. (2.7)

where " 5 ? is the set of all fuzzy c-partitions matrices. �

In the following section, we define evidential partitions.

2.1.3 Evidential partitions

Definition 2.1.5 (Evidential partition). Let Ω = {l1, . . . , l: , . . . , l2} be
the frame of discernment (sets of clusters) and Ak be a subset of Ω.

Let X = {x1, . . . , xi, . . . , xn} be a collection of = objects. The matrice
" = [<8 9] is called evidential or credal partition of Ω if for any object 8,
Equation (1.12) is satisfied, i.e, if +=22 is the set of real = ∗ 22 matrices, the
following equation should be satisfied:

"4? =
{
" ∈ +=22

�� <8: ∈ [0, 1]; ∑
�: ⊆Ω

<8: = 1 ∀8
}
. (2.8)

where "4? is the set of all evidential partitions matrices. �

Example 2.1.4 (Evidential partition). Let X = {x1, x2, x3, x4} be a collec-
tion of 4 objects. For 2 = 2 we have Ω = {l1, l2} and 2Ω = {∅, {l1}, {l2},Ω}.
The Table 2.4 is an evidential partition.

∅ {l1} {l2} Ω

x1 1 0 0 0
x2 0 0.2 0.8 0
x3 0 0 0 1
x4 0 1 0 0

Table 2.4: Example of an evidential partition.

50



2.1. TYPES OF CLUSTERING PARTITIONS 51

From Section 1.4, the following interpretations of the membership degrees
of an evidential partition can be deduced:

• An object is said to belong with certainty to a cluster when its mem-
bership degree is equal to 1. For example, the objects x1 and x4 from
the Example 2.1.4 respectively belong with certainty to the subset ∅
and {l1}.

• When an object belongs with certainty to the empty set, there is strong
evidence that the class of the object does not lie in the frame of discern-
ment. It is the case of the object x1 in the Example 2.4. In clustering,
the empty set class usually represents outliers.

• When an object belongs with certainty to the frame of discernment,
the class of the latter can not be precisely determined as it can belong
to all the subsets. For instance, the class of object 3 in Example 2.4
corresponds to complete ignorance.

In the following subsection, we describe the link between hard, fuzzy,
and evidential partitions.

Link between hard, fuzzy, and evidential partitions

As explained in Section 1.3, a fuzzy partition can be transformed to a hard
partition by applying the maximum principle rule. Similarly, an evidential
partition can be transformed into a fuzzy partition by applying transforma-
tion procedures of mass functions. The link between the three partitions is
as follows:

• When the bbas is certain and restricted to singletons, the evidential
partition corresponds to a hard partition and the class of each object
is known with certainty.

• When the bba of the objects are Bayesian and restricted to singletons,
the evidential partition corresponds to a fuzzy partition.

• When there is no equivalence between the evidential, fuzzy, and hard
partitions, a normalization of the evidential partition can be performed
as discussed in Section 1.4 then, the pignistic transformation �4C% in
(1.23) can be used to convert an evidential partition to a fuzzy. The
transformed partition can then be used to obtain a hard partition.

In addition to the preceding transformations of an evidential partition, the
latter can also be transformed into other types of partitions such as the
possibilistic [54] and rough [55] partitions. For detailed discussions on these
transformations, we refer the readers to [56].

In the following section, we describe some clustering algorithms in the frame-
works of hard sets, fuzzy sets, and evidence theory.
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2.2 Partitioning algorithms

In the literature, several partitioning clustering algorithms have been pro-
posed. Among the methods, the k-means, and fuzzy c-means algorithms
described below are the most famous hard and fuzzy methods for clustering
numerical data. Due to their limitations to numerical data, the two meth-
ods have been extended to other types of data such as categorical. The
extensions are usually performed by adapting the distance (e.g. k-modes
and fuzzy k-modes and centers of cluster representations (prototypes) (e.g.
fuzzy centers clustering).

2.2.1 k-means

The k-means is a hard partitioning clustering algorithm of numerical data
introduced independently in [28] and [29]. The term means refers to the
means of objects in each cluster used as centers.

Objective function

The cost function of the k-means algorithm is defined by Equation (2.1)
where V = 1:

� " (U,V) =
=∑
8=1

2∑
:=1

`ik3
2
8: , (2.9)

The latter cost function should be optimize under the constraints in Equa-
tion (2.5). In general the distance used in (2.9) is the Euclidean distance.

Optimization

The optimization problem can be solved using an alternate optimization
scheme proposed in [28]. It consists of fixing the variable let say U and to
minimize V and inversely.

Let U = (`1, . . . , `: , . . . , `2) be the hard c-partitions obtained with the
k-means and Λ: be the number of objects in the :Cℎ partition.

When + is fixed, objects G8 are assigned to their nearest cluster, i.e., their
membership degrees are given by:

`8: =


1 38: = 3A with A = arg min

>∈{1,...,2 }
38>

0 otherwise.
(2.10)
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When U is fixed, a solution of � " (vk) is given by

vk =
1

Λ:

∑
xi∈`:

xi. (2.11)

Algorithm and complexity analysis

The k-means algorithm is described in Algorithm 1 as follows: in the first
step, the centers are randomly initialized. Then the distance between ob-
jects xi and centers v: are computed, and each object is assigned to the
nearest cluster using the Equation (2.10). In the next step, the centers are
updated with the new means of the new clusters with Equation (2.11). Fi-
nally, the second step is repeated until convergence is reached (i.e., there is
no improvement of the centers from an iteration to another).

Let � = [38:]1≤8≤=,1≤:≤2 be the distance matrix and ) be the number of
iterations of an algorithm until convergence.

The time complexity of Algorithm 1 can be computed by taking into
account the number of operations in each step of the algorithm. The Eu-
clidean distance requires =2? operations. For the updating of the partition
matrix *, O(=2) operations are needed. Finally, to update the centers of
clusters, =2? operations are necessary. With ) iterations until convergence,
the time complexity of the k-means is given by O() (=?2 + =2 + =2?)) which
corresponds asymptotically to O(=2?)).

For the memory complexity, five main variables are used in Algorithm
1: X, �, U, V and � " . These variables require respectively =?, =2, =2,
2? and 1 memory space. Hence, the memory complexity of the k-means is
given by O(=? + =2 + 2?).

2.2.2 Fuzzy c-means

To overcome the limitations of hard sets in the framework of clustering, ap-
plications of the fuzzy sets theory have been proposed in this framework. In
[57], Dunn proposed in the Fuzzy ISODATA algorithm as a fuzzy extension
of the k-means. As an improvement of Dunn’s algorithm, Bezdek proposed
in [26] the fuzzy c-means (FCM ) algorithm.

Objective function

The objective function of FCM is defined by the cost function in Equation
(2.1):

���" (U,V) =
=∑
8=1

2∑
:=1

`
V

8:
328: , (2.12)
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Algorithm 1 k-means algorithm (KM)

Require: X = {x1, . . . , xi, . . . , xn} the numerical data, 2 ≤ 2 < = the
number of clusters, and n ≥ 0 a threshold.

Output: U hard c-partitions of X, and V the centers of clusters.
Begin
Randomly initialize V0.
g ← 0
repeat
g ← g + 1
Compute the distance matrix � with the Euclidean distance.
Update Ug = [`ik]g with Equation (2.10).
Update Vg with Equation (2.11).

until ‖�g−1
 "
− �g

 "
‖ ≤ Y

End

under the constraints (2.8). V > 1 corresponds to the fuzziness coefficient
(i.e, as V increases, the partition becomes fuzzier).

Optimization

The optimization problem can be solved using an alternate optimization
scheme as in k-means. Therefore, when U is fixed, ���" (v:) is minimized
iff

vk =

=∑
8=1

`
V

8:
xi

=∑
8=1

`
V

8:

, ∀: ∈ {1, . . . , 2}. (2.13)

By considering the centers of clusters fixed, the updates of the membership
degrees are given by

`ik =
1

2∑
ℎ=1

( 32
8:

32
8ℎ

) 1

V − 1

, ∀8 ∈ {1, . . . , =},∀: ∈ {1, . . . , 2}. (2.14)

The proof of Equations (2.13) and (2.14) are available in [26].

Algorithm and complexity analysis

Similar to the k-means algorithm, in the first step of FCM, the centers V are
randomly initialized. Then the distance between the objects and centers is
computed to update the partition matrix U with the Equation (2.14). This
update is used to determine the new centers with Equation (2.13). The up-
dating of the partition matrix and centers are repeated until the convergence
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is reached. The FCM algorithm is summarized in Algorithm 2.

The time and memory complexity of the FCM algorithm can be de-
termined in the same way as for the k-means algorithm. For the distance
matrix �, =2? operations are needed for the Euclidean distance. For the
partition matrix U, 22= operations are needed and for the centers of clusters
V, =2? operations are necessary. Therefore, the time complexity of Algo-
rithm 2 is O() (=2?+22=)). The time complexity of the centers updating can
be reduced to O(2=) [58], consequently, the overall time complexity of the
FCM algorithm is in O() (=2? + 2=)) → O(=2?)). The memory complexity
of this algorithm is the same as k-means’s as the size of the variables are
the same.

Algorithm 2 Fuzzy c-means algorithm (FCM)

Require: X = {x1, . . . , xi, . . . , xn} the numerical data, 2 ≤ 2 < = the
number of clusters, V > 1 weighting exponent, and n ≥ 0 a threshold.

Output: U fuzzy c-partitions of X, and V the centers of clusters.
Begin
Randomly initialize V0.
g ← 0
repeat
g ← g + 1
Compute the distance matrix � with the Euclidean distance.
Update Ug = [`8:]g with Equation (2.14).
Update Vg with Equation (2.13).

until ‖�g−1
��"

− �g
��"

‖ ≤ Y
End

2.2.3 Evidential c-means

The evidential c-means (ECM ) is a numerical data clustering method intro-
duced in [59] is an extension of the FCM algorithm in the framework of the
evidence theory. The method uses mass functions as membership degrees of
objects and generates evidential partition.

Objective function

Since any subsets A: of Ω = {l1, . . . , l: , . . . , l2} can be a focal set, the
ECM algorithm represents not only centers for clusters but also centers for
subsets with cardinality greater than one. For the latter, the authors in [59]
proposed to associate to each nonempty subset A: with cardinality greater
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than one, the barycenter of singletons defined by the following equation:

vk =
1

|A: |

2∑
a=1

Bava , (2.15)

where Ba =

{
1 if la ∈ A: ,

0 otherwise.
and Ea ∀1 ≤ a ≤ 2 the centers of singletons.

The objective function inspired from the noise clustering [60] is given
the following equation:

���" (M,V) =
=∑
8=1

∑
A: ⊆Ω

|A: |U<V8:3
2
8: +

=∑
8=1

d2<
V

8∅ (2.16)

such that, for all 8 = {1, . . . =} and for all A: ⊆ Ω,∑
A: ⊆Ω,A:≠∅

<8: + <8∅ = 1, <8: ≥ 0. (2.17)

where 38: corresponds to the Euclidean distance between the 8Cℎ object
and the :Cℎ center. The mass <8∅ denotes the mass of x8 allocated to the
empty set, d > 0 is a fixed parameter allowing the user to control the im-
portance given to the empty set i.e. d corresponds to the distance to the
noise cluster.

The weighting coefficient |A: |U, which corresponds to the cardinality
of A: as a power of U, allows the penalization of the allocation of belief
to subsets with high cardinality. As in FCM, V > 1 corresponds to the
fuzziness exponent: V close to 1 gives an evidential partition similar to
a crisp partition, whereas V with a high value provides a partition where
coefficients are equally distributed throughout the clusters. Usually, U is set
to 1 and V to 2 for numerical data clustering.

Optimization

The cost function (2.16) under the constraint (2.17) can be solved by an
alternate optimization scheme. When V is fixed, the updating formula of
the evidential partition M can be decomposed into two parts: 1) the updat-
ing of the masses of nonempty subsets and 2) the updating of the masses
corresponding to the empty set. The two updating formulas are respectively
given by Equation (2.18) and (2.19). The proof can be found in [59].

<8: =
|A: |−U/(V−1)3−2/(V−1)8:∑

�a≠∅ |�a |−U/(V−1)3
−2/(V−1)
8a

+ d−2/(V−1)
. (2.18)
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For A: = ∅, the mass is defined as:

<8∅ = 1 −
∑
�:≠∅

<8: ∀8 = 1, . . . =. (2.19)

When M is fixed, the updating formula of the centers of singletons cor-
respond to the solution of the linear system in (2.20) [59]

�V = Π, (2.20)

where � and Π are respectively the matrices (2 × 2) (2.21) and (2.22)
(2 × ?).

�b : =

=∑
8=1

∑
�: ⊇{lb ,l: }

|�: |U−2<V8: , ∀b, : = 1, 2. (2.21)

Π;a =

=∑
8=1

x8;
∑
la ∈�:

|�: |U−2<V8: , ∀a = 1, 2,∀; = 1, ?. (2.22)

Algorithm and complexity analysis

The first step of ECM ’s algorithm summarized in Algorithm 3 as for the
k-means and FCM algorithms consists in randomly initializing the centers.
Then the distances between objects and centers are used to update the ev-
idential matrix M and the centers V respectively with Equation (2.18) for
non-empty sets and (2.19) for the empty set and Equation (2.20). The up-
dates are repeated until convergence.

As the ECM algorithm uses subsets of clusters, the time complexity is
an exponential function of 2, i.e., 22. To reduce this complexity, the number
of subsets of clusters can be limited to the empty set, single clusters, and
Ω, i.e., 2 + 2 subsets. Below we analyze the time and memory complexity of
ECM.

Let r be the number of desired subsets of clusters from ECM, for in-
stance, r = 2 + 2 or r = 22 and let O(&) be the complexity of the linear
system used to solve (2.20).

The time complexity of the ECM algorithm is given by O(?2=r) +&)).
Indeed, the computation of the distance matrix needs =r? operations. For
<8: , for each 8, the denominator in (2.18) requires r operations to compute
the sum. For = objects and r subsets of clusters we have a time complexity
O(=r) to update the evidential partition. For the matrices � and Π, 22=r
and 2?=r operations are respectively needed. Then the time complexity to
update of the centers is O(=r? + =r + 22=r + 2?=r + &) → O(?2=r + &) by
considering ? >> 2. Consequently, the overall time complexity of the ECM
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algorithm is O(?2=r) + &)) with ) the number of iterations until conver-
gence.

The memory complexity of ECM is given by O(=? + =r + ?r) as X, �,
M and V respectively needs =?, =r, =r and r? memory allocations.

Algorithm 3 Evidential c-means algorithm (ECM)

Require: X = {x1, . . . , xi, . . . , xn} the numerical data, 2 ≤ 2 < = the
number of clusters, U ≥ 1 the weighting exponent for cardinality, V > 1
weighting exponent, and d > 0 the distance to the outliers cluster and
n ≥ 0 a threshold.

Output: M evidential partition of, X, and V the centers of clusters.
Begin
Randomly initialize M0.
g ← 0
repeat
g ← g + 1
Compute the distance matrix � with the Euclidean distance.
Update Vg with the solution of Equation (2.20).
Update Mg = [<8:]g with Equation (2.18) and (2.19).

until ‖�g−1
��"

− �g
��"

‖ ≤ Y
End
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Shannon’s entropy described in subsection 2.2.4 has been applied to par-
titioning clustering algorithms particularly in fuzzy clustering. The following
subsection presents some of these applications.

2.2.4 Entropy in fuzzy clustering

Entropy-based fuzzy clustering methods are extensions of fuzzy clustering
in which a weighted entropy is incorporated into the objective function. De-
pending on the application, the entropy can have different roles and mean-
ings. In [61, 62], the authors proposed a fuzzy clustering method in which
the entropy is seen as a regularizing function to the objective function of
FCM. While in [61] the authors use the entropy to propose a new generaliza-
tion of the k-means, in [62], the entropy is used to maximize the dissimilarity
between clusters. In [63], the authors used the entropy as a prior in Bayesian
context for image restoration and proposed a new clustering method based
on the fuzzy framework. In [64], an entropy-based fuzzy clustering method
that automatically identifies the number and initial locations of cluster cen-
ters is proposed. In [65], the entropy of the membership functions is in-
corporated into the objective function to allow a gradual transition from a
maximum uncertainty to a minimum uncertainty during the clustering pro-
cess. When applied for clustering validation, the entropy corresponds to an
internal validity index [26]. In this case, the entropy measures the fuzziness
of partitions produced by clusters.

The k-means, FCM and ECM algorithms described previously only han-
dle numerical data. However, real-world data is not limited to numerical.
Non-numerical data transformations are usually used in order to employ
numerical clustering methods. For instance, categorical data can be trans-
formed into numerical using encoding techniques. However, these transfor-
mations have drawbacks. We present and discuss in the following subset
some limitations of two popular encoding techniques namely label encoding
and one-hot encoding.

2.2.5 The need of categorical clustering algorithms

Let Dom(z;) = {0 (1)
;
, . . . , 0

(C)
;
, . . . , 0

(=;)
;
} be the domain of attributes z; ∀; of

X. The label and one-hot encoding techniques are performed as follows.

Label encoding

The label encoding method consists in assigning a numerical code to each
category 0 (C)

;
of z; ∀C and ∀;.
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Example 2.2.1 (Label encoding). Let z be a categorical variable and
�><(z) = { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday }. Using the label encoding technique, the categories Monday, Tues-
day, Wednesday, Thursday, Friday, Saturday, Sunday can be respectively
encoded 1, 2, 3, 4, 5, 6, 7.

Limitations of label encoding

Despite the simplicity of the label encoding method for converting categorical
data to numerical, it has some limitations. For instance, operations can be
applied on the transformed data that do not make sense when transposed
to the original data. For example, operations 1 + 2, 7 − 3, 6/2 or 3 ∗ 5
can be performed, but Monday − Tuesday or Wednesday ∗ Friday have no
meaning. Hence the distances used for instance in k-means FCM and ECM
algorithms that are based on operations of the variables is inappropriate on
the transformed data with label encoding.

One-hot encoding

Similarly to the label encoding, the one-hot encoding is a technique for trans-
forming categorical data to numerical. The method encodes each category
to binary with 1 if the category appear and 0 otherwise.

Example 2.2.2 (One-hot encoding). Let A1 and A2 be two categorical
variables and �><(A1) = {H4B, =>}, �><(A2) = {ℎ86ℎ, <438D<, B<0;;} be
their respective domains. Let consider the following table

Objects A1 A2

x1 yes medium
x2 no high
x3 yes small

Table 2.5: Categorical data to one-hot encode.

The corresponding one-hot encoded data is given by
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Objects A1(yes) A1(no) A2(high) A2(medium) A2(small)

x1 1 0 0 1 0
x2 0 1 1 0 0
x3 1 0 0 0 1

Table 2.6: One-hot encoding of Table 2.5.

Limitations of one-hot encoding

It can be noted that in Table 2.6 as =; increases the dimension of the one-hot
encoded data increases too. For instance, if X is a categorical data contain-
ing ? attributes and each attribute of X is described by =; categories then

the dimension of Xone-hot (X one-hot encoded) is

?∑
;=1

=;. Therefore, the one-

hot encoding technique is suited only for categorical data containing small
number of categories.

The limitations of the label encoding and one-hot encoding show that
clustering algorithms that can handle categorical data without transforma-
tion are needed especially for data with high categories per attribute. To
adapt numerical clustering methods to categorical data, categorical data
dissimilarity measures can be used. In the literature, several categorical
measures have been proposed (see [66] for a review). Among the measures,
the most used is the Hamming distance [67] also called simple matching
dissimilarity measure. It is defined as follows:

3� (xi, xk) =
?∑
;=1

X(xil, xkl), (2.23)

where

X(xil, xkl) =
{

0 if xil = xkl,

1 xil ≠ xkl.
(2.24)

Hence, the Hamming distance corresponds to the number of mismatch-
ing categories of two objects xi and xk.

The Hamming distance has been used in several categorical clustering
methods such as the k-modes [27], the fuzzy k-modes [68] and in fuzzy centers
clustering [30] of categorical data. The following sections describe each
method.
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2.2.6 k-modes

The k-modes [27] algorithm is an extension of k-means for clustering cat-
egorical data. The method uses the Hamming distance as a dissimilarity
measure between objects and cluster centers. The term modes refer to the
use of modes of objects as centers instead of means in the k-means algorithm.

Definition 2.2.1 (Mode). A mode of X described by ? categorical at-
tributes is a vector & = [@1, . . . , @;, . . . , @?] that minimizes

3 (-,&) =
=∑
8=1

3� (xi, &). (2.25)

Objective function

The objective function of the k-modes remains the same as the k-means’s
by setting the squared Euclidean distance by Hamming’s and the centers to
the modes of attributes in each cluster.

Optimization

The objective function of the k-modes can be optimized similarly to the k-
means. To constitute the hard partition matrix U, at each iteration, objects
are assigned to the closest centers by on the Hamming distance. The update
of the centers is performed by determining the modes of attributes in each
cluster with Equation (2.25).

Algorithm and complexity analysis

The k-modes algorithm can be derived from Algorithm 1. It is described in
Algorithm 6. For the time complexity, the algorithm requires =2? opera-
tions to compute the Hamming distance. The computation of the centers
of clusters, i.e., the modes, requires =2? operations, and the update of the
partition matrix =2 operations. Consequently, the overall time complexity
of this algorithm is the same as k-means’s with the Euclidean distance. Sim-
ilarly, the memory complexity remains the same as the size of variables as
the same.

2.2.7 Fuzzy k-modes

As discussed in Section 2.2.1, the k-means algorithm and the k-modes are
limited when expressing fuzziness. To overcome this limitation, Huang pro-
posed an extension of the k-modes algorithm to the fuzzy framework. The
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Algorithm 4 k-modes algorithm

Require: X = {x1, . . . , xi, . . . , xn} the categorical data, 2 ≤ 2 < = the
number of clusters, and n ≥ 0 a threshold.

Output: U hard c-partitions of X and V the clusters centers.
Begin
Randomly initialize V0.
g ← 0
repeat
g ← g + 1
Compute the distance matrix � with the Hamming distance.
Update Ug = [`ik]g with Equation (2.10) where 38: = 3

�
8:

.
Update Vg by determining the modes of attributes in each cluster
with Equation (2.25).

until ‖�g−1
:−<>34B − �

g
:−<>34B ‖ ≤ Y

End

new algorithm referred to as fuzzy k-modes (FKM )[68] is an adaptation of
the FCM algorithm. Similar to the adaptation of the k-means algorithm to
the k-modes, the FKM algorithm uses modes of objects instead of means to
represent the centers of the clusters and the Hamming distance as a dissim-
ilarity measure.

Objective function

The objective function of the FKM algorithm remains the same as FCM
with 32

8:
= 3�

8:
.

Optimization

The updating formula can be obtained by using an alternate optimization
scheme as for the FCM. Therefore when the centers V are fixed, the updating
formula of the membership degrees `8: is given by Equation (2.14). When
the partition matrix * is fixed, the updating of the centers vk are given by:
vkl = 0

(A )
;
∈ DOM(z;) where

A = arg max
C ∈{1,...,=; }

∑
8/xil=a

(t)
l

`
V

8:
(2.26)

Equation (2.26) denotes that the centers correspond to the categories of
z; 1 ≤ ; ≤ ? having the highest frequency

∑
8,xik=0

(C )
;

`
V

8:
, in other words the

centers correspond to the modes of objects.

Algorithm and complexity analysis

The FKM algorithm can be derived from FCM algorithm is as follows
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Algorithm 5 Fuzzy k-modes algorithm (FKM)

Require: X = {x1, . . . , xi, . . . , xn} the categorical data, 2 ≤ 2 < = the
number of clusters, and n ≥ 0 a threshold.

Output: U fuzzy c-partitions of X and V the clusters centers.
Begin
Randomly initialize V0.
g ← 0
repeat
g ← g + 1
Compute the distance matrix � with the Hamming distance.
Update Ug = [`ik]g with Equation (2.14) where 32

8:
= 3�

8:
.

Update Vg Equation (2.26).
until ‖�g−1

� "
− �g

� "
‖ ≤ Y

End

The time and memory complxity of the FKM algorithm remains the
same as FCM ’s, i.e., they are respectively O(=2?)) and O(=? + =2 + 2?).

Remark 4 (A limitation of frequency-based clustering methods). It can be
noticed that the frequency-based methods (here k-modes and the FKM ) can
be limited when the frequency of the attributes categories are close to each
other or the same. For instance, let’s consider the following example:

Example 2.2.3. Let z be a categorical attribute with DOM(z) = {H4B, =>}.
Let’s consider the frequency of the categories to be 50 and 49 respectively
for H4B and =>. The k-modes based methods will consider the category
H4B as representative of the attribute z even though the category => has
a similar frequency. When the frequencies are the same, a category will
be arbitrarily chosen to be the representative of the attribute which can
harm the performance of the method, and depending on the application the
miss-representation of the clusters can be problematic.

To overcome this limitation a new representation of cluster centers was
proposed in [30]. The authors introduced a fuzzy representation of the
cluster centers by using fuzzy sets.

2.2.8 Fuzzy clustering with fuzzy centers

The k-modes and FKM clustering methods are hard centers based clus-
tering methods, i.e., as they use modes of attributes, only one category
per attribute is considered. In contrast, fuzzy centers (FC) introduced in
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[30] use the fuzzy sets theory by associating a weight to each attribute cate-
gory representing its membership degree to the corresponding centers (fuzzy
sets). With this representation, all the attribute categories can contribute
to the centers and their weights indicate their importance. More formally,
if vk = (vk1, . . . , vkl, . . . , vkp) is the center of the :Cℎ cluster and vkl the fuzzy

set (0 (C)
;
, F

(C)
:;
) ∀; ∈ {1, . . . , ?}, ∀C ∈ {1, . . . , =;} corresponding to the center

associated to the ;Cℎ attribute, then vkl is defined by:

vkl = {F (1):; /0
(1)
;
, . . . , F

(C)
:;
/0 (C)
;
, . . . , F

(=;)
:;

0
(=;)
;
} (2.27)

with
0 ≤ F (C)

:;
≤ 1, 1 ≤ C ≤ =; (2.28)

=;∑
C=1

F
(C)
:;
= 1, 1 ≤ ; ≤ ?. (2.29)

Equation (2.27) therefore corresponds to a generalization of hard centers
such as in the k-modes and FKM algorithms and overcome their limitation
when the frequencies of the categories are close to each other or the same.
In this equation, the weights F (C)

:;
are positive, less than 1 (2.28) and sum

up to 1 (2.29).

Example 2.2.4 (Fuzzy centers). Let A1 and A2 be two categorical at-

tributes with DOM(A1) = DOM(A2) = {0 (1)1 , 0
(2)
1 } = {H4B, =>}. Let’s

consider the following data set:

A1 A2

x1 yes no
x2 no yes
x3 yes no

Table 2.7: Categorical data set to illustrate fuzzy centers.

• A fuzzy centroid vk restricted to A1 can be

vk1 = {0.6/H4B, 0.4/=>}.

• A fuzzy center vk restricted to A2 can be

vk2 = {0.8/H4B, 0.2/=>}.

• A fuzzy centers vk of a cluster can be

vk = (vk1, vk2)
= ({0.6/H4B, 0.4/=>}, {0.8/H4B, 0.2/=>}).
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Objective function

The objective function of FC remains the same as FCM. Only the squared
distance in the Equation (2.12) changes:
��� (U,V) =

=∑
8=1

2∑
:=1

`
V

8:
3��8:

B.C. U satisfies Equation (2.8) and V satisfies Equations (2.28) and (2.29).

(2.30)
where 3�� is a generalized Hamming distance that takes into account

category weights. It is defined as follows:

3��8: =

?∑
;=1

=;∑
C=1

X(xil, 0
(C)
;
), (2.31)

where

X(xil, 0
(C)
;
) =

{
0 if xil = 0

(C)
;
,

F
(C)
:;

if xil ≠ 0
(C)
;
.

(2.32)

The new distance (2.31) is then the sum of weights of dissimilar categories
between objects xi and the centers vk. The following example illustrates this
distance.

Example 2.2.5 (Generalized Hamming distance example). Let’s consider
again the data set in Table 2.7 and the center vk defined in the Example
2.2.4. Let’s 3��1: be the distance between vk and x1. Let X (1)1: and X

(2)
1: be

respectively the relative distance between x11 and vk1 and x12 and vk2. We
have

• We have vk1 = {0.6/H4B, 0.4/=>}, and x11 = H4B. As 0 (1)1 = H4B and

0
(2)
1 = =>, from Equation (2.31) we add the weight of 0 (2)1 (i.e., F (2)

:1 )

to X (1)
:1 hence

X
(1)
:1 = F

(2)
:1

X
(1)
:1 = 0.4.

• We have vk2 = {0.8/H4B, 0.2/=>}, and x12 = =>. As 0 (1)2 = H4B and

0
(2)
2 = =>, from Equation (2.31) we add the weight of 0 (1)2 (i.e., F (1)

:2 )

to X (2)
:1 hence

X
(2)
:2 = F

(1)
:2

X
(2)
:2 = 0.8.
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Therefore we have

3��1: = X
(1)
:1 + X

(2)
:1

3��1: = 0.4 + 0.8

3��1: = 1.2.

Optimization

When V is fixed, i.e., the weights F (C)
:;

are fixed, the updating formula of the
membership degrees `8: is the same as FCM ’s with 32

8:
= 3��

8:
. When U is

fixed, the centers of clusters are updated by updating the weights associated
to each attribute category. In [30], these updates are given by the following
equation

F
(C)
:;
=

=∑
8=1

W(G8;), (2.33)

where

W(xil) =
{
`
V

8:
if xil = 0

(C)
;
,

0 if xil ≠ 0
(C)
;
.

(2.34)

Algorithm and complexity analysis

As for the FKM algorithm, the FC algorithm can be derived from FCM
algorithm is as follows

Algorithm 6 Fuzzy center algorithm (FC)

Require: X = {x1, . . . , xi, . . . , xn} the categorical data, 2 ≤ 2 < = the
number of clusters, and n a threshold.

Output: U fuzzy c-partitions of X and V the clusters centers.
Begin
Randomly initialize V0.
g ← 0
repeat
g ← g + 1
Compute the distance matrix � with the generalized Hamming dis-
tance.
Update Ug = [`ik]g with Equation (2.14) where 32

8:
= 3��

8:
.

Update Vg Equation (2.33).
until ‖�g−1

��
− �g

��
‖ ≤ Y

End
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Algorithms Time complexity Memory complexity

KM O(=?2)) O(=? + =2 + 2?)
FCM O(=2?)) O(=? + =2 + 2?)
ECM O(?2=r) +&)) O(=? + =r + r?)
k-modes O(=?2)) O(=? + =2 + 2?)
FKM O(=2?)) O(=? + =2 + 2?)
FC O(=2J)) O(=? + =2 + 2J)

Table 2.8: Time and memory complexity of KM, FCM, ECM, k-modes,
FKM and FC algorithms.

As the previous algorithms, the time complexity of the FC algorithm
can be determine by determining the complexity of the computation of �,
U, and V. For the distance, =2J operations are needed where J =

∑?

;=1 =;.
For U and V the time complexity are respectively O(22=) and O(2=J). By
applying the time complexity reducing in [58], the complexity of U becomes
O(2=). The overall time complexity is then given by O(=2J))).

For the memory complexity, only the memory size of the centers of clus-
ters change from the � " algorithm. The new memory size needed to store
V is 2J . Therefore, the overall memory complexity of the �� algorithm is
O(=? + =2 + 2J).

In Chapter 3, we show that (2.33) may present convergence issues.

Summary

In this chapter, we present applications of the hard sets, fuzzy sets, and ev-
idence theory in clustering. We define hard, and fuzzy c-partitions and the
evidential partitions that are based on the three theories. We then present
numerical clustering algorithms k-means, FCM and ECM for generating
such partitions. We illustrate some limitations of two popular encoding
techniques for transforming numerical data to categorical and introduced
the Hamming distance which is used in the k-modes and FKM algorithms.
For each of the described methods, the objective function, updating formula,
algorithm and complexity analysis are given.

Summary of time and memory complexity of KM, FCM, ECM, k-modes,
FKM and FC algorithms are reported in Table 2.8.
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Key points

• Clustering partitions depend on the theory used. When the hard sets,
fuzzy sets, and the evidence theories are used the partitions are linked
and are respectively called hard, fuzzy and evidential.

• Conversions of numerical data to categorical can have drawbacks such
as the increase of the data dimensions.

• The fuzzy sets theory can be used for cluster center representations in
which each attribute category contributes to the centers.

• The time and memory complexity of the ECM algorithm can be an
exponential function of the number of clusters.
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Introduction

Among the variants of the FKM algorithm, we presented in Chapter 2
the FC algorithm that uses the fuzzy sets theory for object assignments
in clusters and the centers of the cluster representations. We derived the
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objective function of this method and noted that the updating formula of the
centers may present convergence issues. In this chapter, an extended version
of the FC algorithm called categorical fuzzy entropy c-means and referred
to as CFE ). The new method uses Shannon’s entropy to regularized the
attribute category weights. Through the experiences on nine datasets having
different characteristics (number of objects, classes, attributes, categories),
we compare the performance of the new method to existing numerical and
categorical clustering methods. Finally, we demonstrate the strengths of
CFE and discuss some of its limitations.

3.1 Issues in FC

In [30], the authors introduced the fuzzy representation of categorical clus-
ters centers using the fuzzy sets theory. It can be noticed that the updating
of centers in Equation (2.33) presents some issues. We can note that the
Equation (2.33) does not satisfy the constraints (2.28) and (2.29). Indeed,
we have from Equation (2.33):

F
(C)
:;
=

=∑
8=1

W(xil)

=
∑

8,xil=0
(C )
;

`
V

8:
,

hence we have
=;∑
C=1

F
(C)
:;
=

=;∑
C=1

∑
8,xil=0

(C )
;

`
V

8:
≠ 1. (3.1)

Equation (3.1) shows that neither the constraint (2.28) nor (2.29) are
satisfied. Therefore the FC algorithm may not converge. To overcome this
issue, we derived the objective function FC. The new updating formula of
the centers is presented in the next section.

3.2 New updates of weights in FC algorithm

To rigorously determine the updating formula of the weights in FC algo-
rithm, we derived the objective and came up with the following theorem:

Theorem 3.2.1. Let ( (C)
:;

be the frequency corresponding to the CCℎ category

of the ;Cℎ attribute in the :Cℎ cluster, i.e., ( (C)
:;

is defined by

(
(C)
:;
=

∑
8,G8;=0

(C )
;

`
V

8:
.
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Let g1, . . . , g@−1 be the indices of attribute categories where the frequency
of the CCℎ category equals the frequencies of the categories g1, . . . , g@−1 such

that C ≠ g1 ≠ . . . ≠ g@−1, i.e., (
(C)
:;
= (

(g1)
:;

= . . . = (
(g@−1)
:;

, then when U fixed
the objective function (2.30) is minimized iff

F
(C)
:;
=



1 if ( (C)
:;
= (
(A )
:;

with A = arg max
a∈{1,...,=; }

(
(a)
:;

1

@
if ∃g1, . . . , g@−1 B.C. ( (A ):; = (

(g1)
:;

= . . . = (
(g@−1)
:;

> (
(C)
:;
,

∀A, C ∈ {1, . . . , =;} with

A ≠ g1 ≠ . . . ≠ g@−1 ≠ C.

0 otherwise

. (3.2)

Proof. The objective function ��� with the squared distance replaced by
(2.31) can be rewritten as

��� (U,V) =
=∑
8=1

2∑
:=1

`
V

8:
3��8:

=

=∑
8=1

2∑
:=1

`
V

8:

?∑
;=1

∑
C ,0
(C )
;
≠xil

F
(C)
:;
.

From (2.29) we have ∑
C ,0
(C )
;
≠xil

F
(C)
:;
= 1 −

∑
C ,0
(C )
;
=xil

F
(C)
:;
. (3.3)

Since the sums on objects, clusters and attributes are independent and using
(3.3) the objective function can be written as

��� (U,V) =
2∑
:=1

?∑
;=1

=∑
8=1

[
`
V

8:
− `V

8:

∑
C ,0
(C )
;
=xil

F
(C)
:;

]
.

Minimizing ��� is equivalent to minimizing

��� (`1: , `2: , . . . , vk) =
=∑
8=1

`
V

8:
−

=∑
8=1

`
V

8:

∑
0
(C )
;
=xil

F
(C)
:;
∀: ∈ [1, 2],∀; ∈ [1, ?] .

Since U is fixed, minimizing ��� is equivalent to maximizing

��� (v:) =
=∑
8=1

`
V

8:

∑
C ,0
(C )
;
=xil

F
(C)
:;
,
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under the constraints (2.28) and (2.29).

As the weights F:; are independent, maximizing ��� is equivalent to maxi-
mizing

��� (F:;) =
=∑
8=1

∑
C ,0
(C )
;
=xil

`
V

8:
F
(C)
:;
, ∀:,∀;

Since (see Remark 5 for more details)

=∑
8=1

∑
C ,0
(C )
;
=xil

`
V

8:
F
(C)
:;
=

=;∑
C=1

(
(C)
:;
F
(C)
:;

(3.4)

then the optimization problem becomes{
max ��� (F:;) =

∑=;
C=1 (

(C)
8;
F
(C)
:;
,

B.C. (2.28) and (2.29) are satisfied.
(3.5)

For U fixed, the term (
(C)
8;

is constant, the problem (3.5) then corresponds to
a linear optimization problem that is solved by giving the maximal weight
to the categorical value that is the most frequent in the cluster, i.e, when
Equation (3.2) is satisfied. �

With the new updating of the centers, we proposed an extension of FC
referred to as FC*.

Remark 5. To better understand Equation (3.4), let’s consider the dataset
in Table 3.1 to illustrate the equation. Let say we want to compute the left
term for the category yes of z. We can sum over objects, i.e., 8 to search
where the category appear: 8 ∈ {1, 3, 4}. Consequently, for the category yes,
we will consider the quantity `

V

8:
F
(C)
:;

for 8 ∈ {1, 3, 4}. Similarly, instead of
summing over 8, we can sum over the categories to search the occurrences
of a given category. For instance, the category yes appear for 8 ∈ {1, 3, 4}.
The latter case corresponds to the right term of Equation (3.4).

It can be noted that the new update of F (C)
:;

gives most of the time

binary values. Indeed, in practice the case (
(A )
:;

= (
(g1)
:;

= . . . = (
(g@−1)
:;

is very unlikely to appear. Consequently, the algorithm generates mostly
hard centers instead of fuzzy as proposed in [30]. It can also be noted that
in practice FC* is similar to FKM. Indeed, in practice, the two algorithms
have the same updates of the centers (see Equation (2.26)) and the partition
matrix.
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z

G1 yes
G2 no
G3 yes
G4 yes

Table 3.1: Illustration of Equation (3.4)

Algorithm and complexity analysis

With Equation (3.2), the algorithm of FC* can be derived from FC’s in
Section 2.2.8. The corresponding algorithm is summarized in Algorithm
7. For the time complexity, to compute the distance, =J operations are
needed. To compute ( (C)

:;
, = operations are needed, consequently, the time

complexity to update the centers is O(=2J). The overall time complexity is
given by O() (=J+=2+=2J)) → O(=2J)). Indeed, the time complexity of U
is the same as FCM ’s, i.e., O(2=) with [58]. For the memory complexity, to
store V, 2J memory size is needed. Hence, the overall memory complexity
is given by O(=? + =2 + 2J).

Remark 6. In application, as the FC* algorithm is similar to FKM ’s,
the time and memory complexity can be reduce respectively to O(=2?) and
O(=? + =2 + 2?).

Algorithm 7 Hard centers updates of FC algorithm (FC*)

Require: X = {x1, . . . , xi, . . . , xn} the categorical data, 2 ≤ 2 < = the
number of clusters, and n a stop criteria.

Output: U fuzzy c-partitions of X and V the centers of clusters.
Begin
Randomly initialize V0.
g ← 0
repeat
g ← g + 1
Compute the distance matrix � with the generalized Hamming dis-
tance.
Update Ug = [`ik]g with Equation (2.14) where 32

8:
= 3��

8:
.

Update Vg Equation (3.2).
until ‖�g−1

��∗ − �
g
��∗‖ ≤ Y

End

To follow the original idea in [30] (obtaining fuzzy centers), we used
Shannon’s entropy to regularize the attributes category weights. This pro-
cedure is presented in the next section.
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3.2.1 Entropy as regularization function

In subsection 2.2.4, we present some applications of Shannon’s entropy in
clustering. Among the presented methods, some use entropy as a regular-
ization function. In the following paragraphs, we describe how Shannon’s
entropy can be used to penalize attribute category weights.

From Equation (1.5), the Shannon entropy associated to the attribute
categories is given by the following equation

�=; (F
(1)
:;
, . . . , F

(=;)
:;
) = −

2∑
:=1

?∑
;=1

=;∑
C=1

F
(C)
:;

ln(F (C)
:;
). (3.6)

Equation (3.6) makes sense as F (C)
:;

satisfies
∑=;
C=1 F

(C)
:;
= 1. As discussed

in 1.2, �=; reaches its maximum when all the weights are equal

F
(C)
:;
=

1

=;
,∀C ∈ {1, . . . , =;}. (3.7)

Similarly, the minimum is reached when the weights are binary, hence

F
(C)
:;
∈ {0, 1}∀C ∈ {1, . . . , =;}. (3.8)

Therefore we have

0 ≤ �=; ≤
1

=;
. (3.9)

In hard centers clustering such as k-modes and FKM algorithms, the
weights associated to the attributes categories are binary. Applying Shan-
non entropy to these weights leads to a minimum entropy, i.e., a minimum
disorder. Maximizing the entropy will constrain the weights to be nonbi-
nary. However, a full maximization of the entropy leads to uniform weights.
To allow soft and accurate weights, a trade-off between the maximization of
the entropy and the minimization of the objective function of FC* can be
defined by associating a positive coefficient to the entropy that will indicate
the importance given to it.

In the following subsection, we describe the objective function of CFE by
considering Shannon’s entropy.

3.3 CFE : fuzzy entropy c-means

We integrated the entropy �=; into the cost function of FC as in [61, 62]
and proposed a new clustering method for categorical data called categorical
fuzzy entropy c-means (CFE ). The objective function, updating formula of
the partition matrix, and the centers, the algorithm and complexity analysis
of CFE are provided in the following subsections.
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Objective function

The cost function of CFE is given as follows

���� (U,V) = ��� −Ψ�=; (F
(1)
:;
, . . . , F

(=;)
:;
)

=

=∑
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8:
3��8: +Ψ

2∑
:=1

?∑
;=1
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F
(C)
:;

ln(F (C)
:;
),

where Ψ = Φ = with Φ an input parameter that controls the importance
given to the entropy and = the number of objects. The factor = in Ψ is
due to the fact that we noticed in the experiments that optimal values of Ψ
depend on =.

The optimization problem associated to CFE is then given by
���� (U,V) =

=∑
8=1

2∑
:=1
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ln(F (C)
:;
),

B.C. Equation (2.8), (2.28) and (2.29) are satisfied.

(3.10)

Optimization

As in previous algorithms, the problem (3.10) can be solved using the al-
ternate optimization scheme. When the centers V are fixed, the partition
matrix membership degrees `8: are updated with Equation (2.14). Indeed,

as the centers V are fixed, the distance which is a function of F (C)
:;

is fixed
and by applying the Lagrangian (let say L), all the derivatives of L with

respect to F (C)
:;

(
mL
mF
(C)
:;

) equal zero.

When U is fixed the updating of the centers is given by the following
theorem.

Theorem 3.3.1. For U fixed, the cluster centers V are minimized iff

F
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] , ∀: ∈ {1, . . . , 2},∀;{1, . . . , ?},∀B ∈ {1, . . . , =;}.
(3.11)

Proof. We have
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Since U is fixed, and the sum over clusters, and attributes are indepen-
dent, given : ∈ [1, 2], ; ∈ [1, ?], by using Equation (3.4), minimizing ����
is equivalent to minimizing

���� (F:;) =
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B.C.(2.28) and (2.29) are satisfied.

,∀:, ∀;.

Let L = ���� (F:;)+_:; (
∑=;
C=1 F

(C)
:;
−1) be the Lagrangian associated to the

optimization problem and _:; the Lagrangian multipliers. By differentiating
the Lagrangian with respect to F (B)

:;
and _:; we obtain
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Setting Equation (3.12) to 0 gives
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Replacing F (B)
:;

by Equation (3.14) in (3.13) set to 0 gives
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Reporting exp
[
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into Equation (3.14) gives
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Therefore ���� is minimized iff F
(C)
:;

satisfies Equation (3.11). �

Equation (3.11) shows that the application of Shannon’s entropy as a
regularization function of the category’s weights helps to construct fuzzy
centers. The new weights F (C)

:;
which are now non-binary indicate the im-

portance of each category in the clusters.

Remark 7. It can be noticed that (3.11) satisfies the constraint (2.28).
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Algorithm and complexity analysis

The algorithm of CFE is summarized in Algorithm 8.

Given the number of clusters 2, a chosen value of V and Φ, the first step
consists in initializing the centers such that Equations (2.28) and (2.29) are
satisfied. Then the cluster membership degrees `8: and the prototypes are
updated using respectively Equations (2.14) and (3.11). The preceding step
is repeated until there exists almost no change from an iteration to another
(i.e., when ‖Jg

���
− Jg−1

���
‖ reaches a variable Y set to a small value).

To update the weight of one attribute category, the denominator of Equa-
tion (3.11) requires =;= operations. By considering =; << =, = operations
are performed once for each attribute. For J categories, 2 clusters, =2J
operations are then needed. By taking into account the time complexity to
compute � and U with [58] of the �� algorithm (same as CFE ), the over-
all time complexity is given by O() (=2J + 2=)) → O(=2J)). Finally, the
memory complexity of CFE remains the same as FC, i.e., O(=? + =2 + 2J).

Algorithm 8 Categorical fuzzy entropy c-means algorithm (CFE).

Require: X = {G1, . . . , G=} the categorical data, 1 < 2 < = the number of
clusters, Φ > 0 the fuzzy entropy weighting coefficient, V > 1 a weighting
exponent, and n ≥ 0 a threshold.

Output: U fuzzy c-partitions of X and V the clusters centers.
Begin

Randomly initialize V0 according to Equation (2.28) and (2.29).
g ← 0
repeat
g ← g + 1
Compute the distance matrix D with the generalized Hamming dis-
tance.
Update Ug using (2.14) with 32

8:
= 3��

8:
.

Update centers Vg using (3.11).
until ‖Jg−1

���
− Jg

���
‖ ≤ Y

End

3.4 Experiments

In this section, we conduct several experiments to test the performance
of the new clustering algorithm CFE. We describe the datasets used, the
evaluation criteria, and the experimental protocol. Finally, we demonstrate
some properties (i.e., strengths) of CFE.
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3.4.1 Datasets

We simulate two categorical datasets to illustrate the behavior of CFE and
select nine clustering benchmark categorical datasets from the UCI reposi-
tory which are characterized by different dimensions, the number of objects,
and attributes categories to evaluate the performance of CFE. We then com-
pare CFE with existing numerical and categorical clustering methods. The
datasets are Zoo, Soybean, Congressional voting records, Breast Cancer,
Lung, Cars, Mushrooms, Credits, Dermatology. The description of each
dataset is provided in the following subsections.

Simulated data

We simulate datasets to illustrate the behavior of CFE in capturing fuzzy
centers. As discussed in Section 2.2.8, these centers can help to interpret
clusters according to the weights associated with each attribute category.
To better show it, we generated datasets of 200 objects which are assigned
in one of the two clusters. Each object is described by 2 attributes with two
categories per attribute. We vary the probability of occurrence of categories
in each cluster and compared them to the weights obtained by CFE with
the frequency of each category.

Benchmark datasets

The benchmark datasets described below will are used to test the perfor-
mance of CFE and to compare the latter with other clustering algorithms.

Zoo

The Zoo dataset contains 100 animals grouped in the 7 following classes
reptiles, invertebrates, birds, amphibians, fishes, mammals, and insects. The
number of objects per class is respectively 41, 20, 5, 13, 4, 8, 10. Each
object of the dataset is described by 16 Boolean-valued attributes (hair,
eggs, milk, tail, etc...) indicating whether the animals are concerned with
each attribute. For instance, a value of 1 indicates that the animal has hair,
and 0 specify that it hasn’t.

Soybean

The soybean dataset is a sample of 46 soybean crops diagnosed with 4 dis-
eases: Diaporthe stem canker, Charcoal rot, Rhizoctonia root rot, and Phy-
tophthora rot. The size of the classes (diseases) is respectively given by 9,
10, 10, 17. The crops are described by 35 categorical attributes from which
we can cite the date (April to October), the precipitation, and the temper-
ature taking values in (less than normal, normal, and greater than normal).
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We dropped all the attributes (14) having just one category. The number
of categories for the remaining attributes varies from 2 to 7.

Congressional voting records

The congressional voting records dataset denoted by votes includes Democrats
and Republicans votes for each of the United States House of representa-
tives congressmen. The sample size described by 16 Boolean attributes is
434. The number of objects in the Democrats and Republicans classes is
respectively 267 and 167.

Breast Cancer

The breast cancer dataset is a medical dataset of breast cancer diagnosis
of a sample of 699 patients. Each patient is characterized by 9 attributes
describing their tumor tissue. The sample is grouped into 2 classes indicat-
ing the malignant (cancerous cells) or benign (non-cancerous cells) tumors.
Among the patients, 241 were diagnosed with the malignant tumor and 458
with the benign. Most of the attributes (8 over 9) have 9 categories and one
attribute has 10.

Lung

The Lung dataset is a sample of 32 patients diagnosed with 3 types of patho-
logical lung cancer (Type A, Type B, Type C). Each patient is characterized
by 56 attributes extracted from the clinical data and X-ray data. The num-
ber of attributes categories varies between 2 and 3 and the number of objects
per class is 9, 10, and 13 respectively for Type A, Type B, and Type C.

Cars

The Cars dataset contains a sample of 1728 cars described by 6 attributes the
overall and maintenance prices (very high, high, medium, low), the number
of doors (2, 3, 4, 5 or more), the capacity in terms of persons to carry (2,
4, more than 4), the size of luggage boot (small, medium, big) and the
estimated safety of the cars (low, medium, high). The sample is grouped
into 4 classes indicating the comfort of the car which are bad (1210 objects),
acceptable (384 objects), good (65 objects), and very good (69 objects).

Mushrooms

The Mushrooms dataset contains data on the classification of mushrooms as
poisonous (4208 samples) or edible (3916 samples). The data is described
by 21 attributes which have between 2 and 12 categories. We dropped one
attribute having a single category.
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# Objects # Attributes Max # of categories # Classes

Lung 32 56 3 3
Soybean 46 21 7 4
Zoo 100 16 2 7
Breast Cancer 699 9 10 2
Dermatology 366 34 6 4
Votes 434 16 2 2
Credits 689 15 15 2
Cars 1728 6 4 4
Mushrooms 8124 21 12 2

Table 3.2: Categorical benchmark datasets.

Credits

The Credits dataset is a sample of 689 credit card application approval.
Each object of the dataset is described by 15 attributes having a number of
categories between 2 and 15. We dropped all the continuous attributes (6)
from the dataset. From the data, the number of approved and non-approved
credit cards is respectively 383 and 306.

Dermatology

The dermatology dataset is a medical database containing a sample of 366
patients diagnosed with erythema (redness of the skin caused by injury, in-
fection, or inflammation). The data contain 34 attributes of which 12 are
clinical features and 22 histopathological features determined by an analysis
of the samples under a microscope. Every feature except the family history
and the age was given a degree in the range of 0 to 3 where 0 indicates that
the feature was not present, 3 indicates the largest amount possible, and 1,
2 indicates the relative intermediate values. The family history feature has
the value of 1 if any of the 7 erythema diseases was observed in the family
of the patient and 0 otherwise. The sample size of each disease annotated
from 1 to 6 are respectively 112, 72, 61, 52, 49, 20.

A summary of the characteristics of datasets is provided in Table 3.2. To
visualize datasets, we performed a dimensionality reduction with principal
components analysis (PCA) by converting datasets to numerical with the
one-hot encoding technique. The first two dimensions are plotted in Figure
3.1. In this figure, colors correspond to the real classes of objects. In the
next subsection, we describe the evaluation criteria used to compare the
clustering algorithms.
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Figure 3.1: PCA results on datasets. The inertia on the axes indicates the
amount of explained variance.
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3.4.2 Evaluation criteria

To measure the performance of a clustering method, two main evaluation
criteria can be used: internal and external criteria. Internal evaluation cri-
teria measures describe the goodness of fit of a method from the partition
matrix. In contrast, for external measures, real object classes are needed
to evaluate the similarity between the latter with the produced partitions
of methods. It should be noted that, in general, internal measures are the
most used evaluation criteria as the real classes are not always known.

In the following subsections, we provide the descriptions of internal and
external evaluation criteria used in the comparisons.

Internal measures

In the literature, several fuzzy clustering internal validity measures have
been proposed (see [69] for a review). Among them, Bezdek proposed the
partition coefficient, and the partition entropy described as follows.

The partition coefficient index (PC) [26] corresponds to the average
quadratic sum of the fuzzy membership degrees `8 9 . It indicates the rel-
ative amount of membership sharing between pairs of fuzzy subsets in U.
The index is given by the following equation

%� =
1

=

=∑
8=1

2∑
:=1

`28: . (3.17)

The PC varies in the interval [1/2, 1] and can be used for selecting the
optimal number of clusters by maximizing Equation (3.17).

In [26, 70, 71], Bezdek introduced the partition entropy (PE) validity
index which measures the amount of fuzziness in a given partition U. It is
given by the following equation

%� = −1

=

=∑
8=1

2∑
:=1

`8: log(`8:). (3.18)

The PE index is bounded by 0 and ln(2) and can be used as the PC
index to determine the optimal number of clusters by minimizing Equation
(3.18).

In addition to the PC and PE indexes, we use the fuzzy silhouette index
FS [72], an extension of the silhouette index [73] to the fuzzy framework to
quantify the goodness of separations of clusters. It is defined by

�( =

∑=
8=1(`?8 − `@8) \ B8∑=
8=1(`?8 − `@8) \

, (3.19)

84



3.4. EXPERIMENTS 85

where `?8 and `@8 are the first and second largest membership degrees of
8Cℎ object, \ ≥ 0 a weighting exponent and B8 is the silhouette index defined
by

B8 =
18 − 08

<0G(18 , 08)
, (3.20)

where 08 is the average distance of between the 8Cℎ object and all objects
in the same cluster, and 18 the minimum distance between 8Cℎ object to its
nearest cluster it is not a part of.

As the silhouette index obtained when \ = 0, the FS index varies from
−1 to 1, with 1 indicating an optimal value. In all our experiments, we set
the value of \ to 1.

External measures

We use the Rand index (RI) [74] as an external measure to compare the pre-
dicted and real classes of objects. The RI computes the similarity measure
between the predicted and real classes by considering all pairs of samples
and counting pairs allocated to the same or separate clusters in the predicted
and real classes.

Let 0 and 1 be the pairs of samples assigned in respectively the same
and different clusters. The RI is defined by

'� =
2(0 + 1)
=(= − 1) . (3.21)

The RI score varies between 0 and 1 with higher values corresponding
to a good matching of the predicted and real classes of objects. A value of
RI close to 0.5 indicates a random labeling of objects.

As a generalization of the RI, we also use the fuzzy rand index (FRI)
[75] to compare the fuzzy partitions denoted by & = [@8 9]=×2 obtained from
the compared methods to the real objects classes (reference hard partition)
denoted by ' = [A8:]=×2. Contrary to the RI, the FRI takes advantage of
the fuzzy assignment of the objects to the clusters hence, it captures more
information on the similarity between the obtained fuzzy partitions and the
true classes. Moreover, the FRI has the ability to compare different fuzzy
partitions among them, i.e, the reference partition can be a fuzzy partition
obtained from the compared methods.

Let V, X, Y, and Z be four fuzzy sets such that:

• + is the fuzzy set of pairs of objects belonging to the same class in R.
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• - is the fuzzy set of pairs of objects belonging to different classes in
R.

• . is the fuzzy set of pairs of objects belonging to the same cluster in
Q.

• / is the fuzzy set of pairs of objects belonging to different clusters in
Q.

Let (81, 82) be a pair of different objects (in ' or in &), :1 and :2 be two
different classes in ' and 91 and 92 be two different clusters in &. Let i be
a triangular norm (e.g. min) and k a triangular co-norm (e.g. max). In the
following equations, 6iℎ and 6kℎ denotes respectively the triangular norm
and co-norm between 6 and ℎ.

The FRI is defined in [75] by

�'� =
|+ ∩ . | + |- ∩ / |

|+ ∩ . | + |+ ∩ / | + |- ∩ . | + |- ∩ / | , (3.22)

where

|+ ∩ . | =
82−1∑
81=1

=∑
82=2

+ (81, 82)i. (81, 82) (3.23)

|- ∩ / | =
82−1∑
81=1

=∑
82=2

- (81, 82)i/ (81, 82) (3.24)

|+ ∩ / | =
82−1∑
81=1

=∑
82=2

+ (81, 82)i/ (81, 82) (3.25)

|- ∩ . | =
82−1∑
81=1

=∑
82=2

- (81, 82)i. (81, 82) (3.26)

with

+ (81, 82) = (A811iA821)k . . . k(A81:iA82:) , k2:=1(A81:iA82:)
. (81, 82) , k2:=1(@81:i@82:)
- (81, 82) , k2:1,:2=1/:1≠:2 (A81:1i@82:2)
/ (81, 82) , k291, 92=1/ 91≠ 92 (@81 91i@82 92))

We use the presented five measures to evaluate and compare the perfor-
mance of CFE to existing methods. The next subsection describes how the
evaluations and comparisons are performed.
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Figure 3.2: Experimental protocol where �ℎ are datasets with ℎ = 1, . . . , 9.

3.4.3 Experimental protocol

To test the performance of the CFE, we perform several experiments. We
run the algorithm on the nine datasets described in Section 3.4.1. For each
dataset, we vary the value of the parameter V between 1.1 and 2 and execute
the algorithm for each value ten times with different initializations. Then,
we select the scores PC, PE, FS, RI, and FRI for the execution with the
lowest cost ���� . This protocol is summarized in Figure 3.2.

Remark 8. The choice of the scores at the lowest cost is due to the fact the
k-means-based clustering algorithms are very sensitive to the initialization
[76]. The lowest cost among the considered iterations corresponds to the
best local minimum of ���� and overcomes the variability of the scores
from one iteration to another.

We compare the performance of CFE and FC* 1 based on the five pre-
ceding scores with the k-modes, and FCM algorithms over the nine datasets.
For FCM, we use the one-hot encoding to transform datasets to numerical.

We follow the recommendations of Demsar in [77] to compare the meth-
ods over the nine datasets. The recommendations in [77] can be described
as follows: given the scores (e.g. RI) over the considered datasets, a Fried-
man test [78, 79] at a significance level of W (e.g. 0.05) is firstly performed to
rank the algorithms with the best performing algorithm having rank the first
rank. If the test is significant, a Wilcoxon signed ranks test [80] is performed
for pairwise comparisons of the models. In [77], Demsar introduced a graph-
ical visualization called critical difference diagram to represent the results
of the statistical analysis. In the latter diagram, non-statistically signifi-
cant algorithms are connected with a bold line while statistically significant
algorithms are not connected.

3.4.4 Parameter settings

For all the compared methods we vary the value of the parameter V from
1.1 to 2 as described in Figure 3.2 and we set the number of clusters 2 for

1This method is similar to FKM in practice.
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each dataset to the known values in Table 3.2.

The value of the parameter Ψ is critical in CFE. If it is too high, the
entropy in the cost function will be considered more important. Therefore,
the attributes category weights will be highly penalized and in some situ-
ations, all the weights will reach the same value 1/=;. If the value of Ψ is
too low, more importance will be accorded to ��� . In this situation, only
a small amount of weights will be greater than 0. Consequently, CFE will
behave as a crisp centers algorithm.

As = in Ψ is fixed, and Ψ = Φ=, we conduct prior experiments on the
nine datasets in which we vary the value Φ. The optimal value in term of a
good balance between ��� in the cost function of CFE, and the entropy is
Φ = 0.01. The same value provides good performances based on the scores
on all datasets.

In the next subsection, we describe the materials in the experiments.

3.4.5 Materials

To conduct the experiments we use several external software such as the
Python packages kmodes [81] (version 0.11.0) and scikit-fuzzy [82] (version
0.4.2) respectively for k-modes and FCM algorithms. For the scores FRI
and FS, we use the R package fclust [83] (version (2.1.1)). We use the code
provided in [84] for the critical difference diagrams.

We provide the code source of the implementations of CFE and FC* on
Github2.

In the next subsection, we describe the results of the experiments.

3.4.6 Results

In this subsection, we first discuss the results of CFE obtained on the nine
datasets, then we present the results of the statistical comparisons between
CFE, FC*, k-modes, and FCM.

CFE results

Tables A.1.1, A.1.2, A.1.3, A.1.4 and A.1.5 from Appendix A respectively
describe the scores of RI, FRI, FS, PC, and PE obtained with CFE on the
nine benchmark datasets. It can be noted that, for all scores, the values
differ from a dataset to another. For the Credits, Votes, and Cars datasets

2https//github.com/abdjiber/cfe
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the scores of RI, FRI, and FS are approximately the same for all values of V.
For all datasets, the FRI scores are lower than RI’s which can be interpreted
by the fact that FRI scores behave like an adjustment of the RI scores by
taking into account the fuzziness of the partitions.

Despite the low scores of RI, FRI, and FS of CFE on some datasets (e.g.
Cars and Mushrooms) the corresponding PC scores are high which can be
interpreted by the fact that CFE captures the fuzziness in these datasets.
Similarly, it can be noted that for all datasets, optimal scores of RI and FRI
are obtained with low values of V whereas, for the FS scores, optimal values
are obtained with high values of V.

Table A.1.4 shows that as the value of V increases, the PC scores de-
crease (inversely for the PE scores). The latter observation is expected as
V controls the fuzziness of the partitions. Indeed, small (respectively high)
values of V will lead to crisp-like (respectively fuzzy-like) partitions. There-
fore, optimal values of PE and PC are expected when the value of V is small
respectively high.

The analysis of the scores in the preceding paragraph shows that based
on the scores used, a trade-off should be made on the choice of the value of
the parameter V. Either choosing to have crisp-like partitions of CFE which
give optimal scores of PE and PC but also RI, FRI or to have fuzzy-like par-
titions and more separable clusters which give optimal scores of FS. From
the later remarks, in order to take advantage of the ground truth classes of
objects, in the remaining experiments, we set the value of V to 1.1.

In the following subsection, we present the results of the statistical anal-
ysis.

Statistical comparisons results

Remark 9. As the partitions of the k-modes algorithm are crisp, we com-
pare the latter to CFE, FC* and FCM only based on the RI scores. It should
be noted that the PC and PE are at their optimal values (1 respectively 0)
for any datasets for k-modes algorithm.

In the statistical analysis, we firstly set the significance level W value to
0.05. For this value, the difference of performances of all the models with
all scores, values of V, and overall datasets was not statistically significant.
We then increase the value of W to 0.1. For this new value, we observe a
difference of performance for some values of V for the PC and PE scores.

For the PC scores, the significance is observed for V ∈ {1.5, 1.6, 1.7, 1.8, 1.9}
whereas for the PE scores, it is observed for V ∈ {1.5, 1.6, 1.7}. For the FRI
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Figure 3.3: Critical difference diagram obtained for PC scores with W = 0.1
and V = 1.5.

Figure 3.4: Critical difference diagram obtained for PE scores with W = 0.1
and V = 1.5.

scores, the significance is observed only for V = 1.9 and W = 0.2. For the RI
scores, the significance is observed only for V = 2 and W = 0.25. Finally, for
the FS scores, the significance is observed only for W = 0.7 and V ∈ {1.2, 1.8}.

Remark 10. Among the values of V and W for which the statistical tests
were significant for the scores PE, PC, and FS, in the following paragraph,
we present only one critical difference diagram. The remaining diagrams are
available in section A.2 from Appendix A.

Figures 3.3, 3.4, 3.5, 3.6 and 3.7 correspond respectively the critical dif-
ference diagrams obtained for PC, PE, FRI, RI and FS scores where the
Friedman test is significant respectively for V = 1.5, V = 1.5, V = 1.9, V = 2,
V = 1.2.

In Figure 3.3, the difference of PC scores between all the compared
models is significant (all the models are not connected). From the critical
difference diagram, CFE, FC* and FCM are respectively ranked first, sec-
ond and third. Therefore, with V = 1.5, CFE has overall the best PC scores
over all datasets.

In Figure 3.4 similarly to the PC scores and V = 1.5, CFE outperform
FC* and FCM overall on all datasets.

In Figure 3.5, while the difference of FRI on all datasets is significant
between (CFE, FCM ) and (FC*, FCM ), it is not significant between FC*
and CFE. However, CFE has the first rank.
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Figure 3.5: Critical difference diagram obtained for FRI scores with W =
0.2 and V = 1.9.

Figure 3.6: Critical difference diagram obtained for RI scores with W =

0.25 and V = 2.

In Figure 3.6, the difference of RI scores is significant between (k-modes,
FCM ) and (CFE, FC* ) but not significant between the algorithms of each
tuple.

The difference between the critical difference diagrams of FRI and RI can
be explained as follows: in Figure 3.5, the FRI scores is significant between
CFE, FC*, and FCM only for the value of W = 0.2 which correspond to
two times the significance level of the PE and PC scores. In addition, it
can be noted in Table A.6 which contains the data used for the statistical
comparisons of the models on the FRI scores in Section A.2.1 from Appendix
A, that FCM achieved lower performances compared to CFE, and FC*
particularly on the Soybean, Zoo and Mushrooms datasets. For the RI
comparisons, contrary to the CFE and FCM methods which performances
are influenced by the value of V (good performances respectively for low
values of V such as in Tables A.7 for CFE and high values of V such as
in Table A.7 for FCM ), the k-modes performances are not affected by this
parameter.

Finally, in Figure 3.7, the difference of FS scores over all datasets is sig-
nificant between the compared models.

In the next section, we illustrate the strengths of CFE to capture fuzzy
centers.
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Figure 3.7: Critical difference diagram obtained for FS scores with W = 0.7
and V = 1.2.

Attributes Categories �1 �2

A1
0 0.8 0.27
1 0.2 0.73

A2
0 ≈ 0 ≈ 1
1 ≈ 1 ≈ 0

Table 3.3: category weights obtained with CFE with Φ = 0.05 on the
simulated data for ? = 0.8.

3.5 Strengths of CFE

In the following experiments, we demonstrate the behavior of CFE to cap-
ture fuzzy centers of clusters. To perform so, we randomly generate as in
the protocol described in Section 3.4.1 categorical datasets with 2 clusters
�1 and �2, 200 objects with 100 per cluster, 2 attributes A1 and A2 and 2
categories per attributes 0 and 1 such that the probability of occurrence are
? and 1 − ? respectively for categories 0 and 1 for A1 and 1 − ? and ? for
A2 in �1. Conversely, in �2 the probabilities are respectively 1− ? and ? for
categories 0 and 1 for A1 and ? and 1 − ? for A2. It should be noted that
the generation of attributes are independent conditionally to the cluster.

For ? = 0.8, the generated dataset is described by histograms in Figure
3.8. With this value of ?, the weights of categories 0 and 1 are respectively
expected to be close in �1 to 0.8 and 0.2 for A1 and 0.2 and 0.8 for A2. In
�2, they are expected to be close to 0.2 and 0.8 for A1, and 0.8 and 0.2 for
A2. We obtain the weights described in Table 3.3 with CFE for Φ = 0.05
and V = 1.1. In the latter table, the weights of categories of A1 in �1 are as
expected. For A2, they are slightly different. In �2, the weights are different
from the ones expected.

We repeat the preceding experience with the same configurations of CFE
by setting ? to 0.5. The results are summarized in Table 3.4. In the new
experience, despite the fuzziness of the centers, the weights are still different
from the ones expected.
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Figure 3.8: Simulated categorical data with ? = 0.8.

Attributes Categories �1 �2

A1
0 0.6 0.2
1 0.4 0.8

A2
0 ≈ 0 ≈ 1
1 ≈ 1 ≈ 0

Table 3.4: category weights obtained with CFE with Φ = 0.05 on the
simulated data for ? = 0.5.

In Section 3.6.2, we discuss the reasons why the weights obtained with
CFE are different from the probabilities used in the data generation.

In the following section, we present some limitations of CFE and how
to overcome them.

3.6 Limitations of CFE

As an extension of the FCM algorithm, CFE inherits most of the limita-
tions of the latter. In this section, we discuss the limitations on choosing
optimal values of the input parameters V and Φ, the non-correspondences
between categories frequencies and the weights obtained with CFE. Finally,
we discuss the difficulty to interpret the fuzzy membership values D8 9 .

3.6.1 Optimal values of V and Ψ

It is known in the literature that the value of the input parameter V called
fuzzier or fuzziness parameter has an impact on the performance and results
of FCM-like clustering algorithms (see for instance [85, 86]). For numerical
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data, it is generally suggested to set the value of V in [1.5, 2.5] [87]. Despite
the propositions by several authors in the literature of solutions to set opti-
mal values for V, there is no formal consensus.

As a consequence, the preceding experiments show that an optimal value
of V for a given dataset will not necessarily be optimal for another one. It
can be also noted that in these experiments, an increase of the value of V
leads in general to a decrease of performance of CFE such as RI, FRI scores.
Based on the results of the experiments, we recommend setting low values
of V in CFE when the desired output partitions are wanted to be crisp-like
and high values of V when fuzzier partitions are desired.

Similar to V, there is also no consensus for setting an optimal value of Ψ,
therefore for Φ. For numerical data, the authors in [88] proposed an iterative
updating of Φ described in Equation (3.27) during the minimization of an
objective function similar to CFE.

Φ(g) = Φ0 exp(− g
c
), (3.27)

where Φ0 is the initial value of Φ, g is the iteration number and c is an
input parameter.

In our theoretical work and experiments, the implementation of Davé’s
solution is not tested. In contrast, we conducted prior experiments with
different values the value of Φ and chose the optimal one overall datasets.
Consequently, we recommend the same procedure for determining an opti-
mal value of Φ.

In the next subsection, we discuss the difference between attributes cate-
gory frequencies and the weights of these categories obtained with CFE.

3.6.2 Category frequencies vs weights from CFE

The results of experiments in Section 3.5 show that the attribute category
frequencies are different with the weights obtained with CFE in most of the
cases. We discuss in this subsection the reasons behind the non-equivalences.

Let’s first consider the case where the frequencies of categories are dif-
ferent such as in Table 3.5. In this dataset, we consider 6 objects (3 per
cluster) described by 2 attributes.
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A1 A2

x1 yes no
x2 no yes
x3 yes no
x4 no yes

Table 3.6: ?H4B = ?=> = 0.5

A1 A2 Clusters

x1 yes no �1

x2 no yes �1

x3 yes no �1

x4 no yes �2

x5 yes no �2

x6 no yes �2

Table 3.5: Simulated dataset to compare the attribute categories frequen-
cies and their weights from CFE.

Based on the frequencies, we would expect the following cluster centers

• C1 {≈ 2
3/H4B, ≈

1
3/=>}

• �2 {≈ 1
3/H4B, ≈

2
3/=>}

Let U = [`8:]1≤8≤6;1≤:≤2 be the partition coefficient matrix obtained from
CFE.

With Equation (3.11) we have

F
(H4B)
11 =

exp
[
− 1
Ψ

∑
G81≠yes `

V

81

]
exp

[
− 1
Ψ

∑
G81≠yes `

V

81

]
+ exp

[
− 1
Ψ

∑
G81≠no `

V

81

] (3.28)

The same preceding calculations can be performed for categories yes and
no in C1 and �2. Equation (3.28) shows that in most of the cases the weights

F
(C)
9;

are not a linear function of the frequencies of the corresponding cate-
gories, i.e., it should not be expected for instance the weights to be equal to
the frequencies or two times, etc...

Let’s now consider the case where the frequencies of categories are the
same such as in Table 3.6. From this table, objects x1 and x3 belong to the
same cluster �1 while x2 and x4 belong to �2. The partition matrix * from
CFE will look like Table 3.7 with X close to 1.
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�1 �2

x1 X 1 − X
x2 1 − X X

x3 X 1 − X
x4 1 − X X

Table 3.7: Partition matrix format from Table 3.6.

From Table 3.7 and Equation (3.11) we have

F
(H4B)
11 =

1

1 + exp
[
− 1
Ψ
(`V11 + `

V

31 − (`
V

21 + `
V

41))
]

=
1

1 + exp
[
− 2
Ψ
(XV − (1 − X)V)

] (3.29)

Clearly the value of F
(H4B)
11 from Equation (3.29) is different from 0.5 for

almost all the values of X.

The two previous experiments explain the reasons why the weights of
attributes categories obtained with CFE are different from their frequencies.
We hypothesize that this observation is first due to the distance used by CFE
and second to the entropy as a penalization function of the weights.

3.6.3 Interpretation of fuzzy membership degrees

Despite the ability of FCM -based algorithms to capture imprecision and
vagueness in data, the membership degrees to clusters are hard to interpret.
As explained in Section 1.3.1, depending on the value of the membership,
basics interpretations such, the objects belong, partially belong, or fully be-
long to clusters, or as similarities may not be sufficient in some applications.
Indeed we may need to know for instance the degree of belief of the assign-
ments of objects into the cluster (i.e., is it certain or uncertain that the
object belongs to the clusters ?). In other words, we would want to quantify
the uncertainty of the assignments of objects into clusters. This limitation
is overcome with the cat-ECM algorithm presented in the next chapter.

Summary

In this chapter, we present the CFE algorithm, a new clustering method
for categorical data that uses the fuzzy sets theory for object assignment
in the clusters and the representation of the centers. We conduct several
experiments to test the performance and the behavior of the new method.
First, we compared the new method to existing numerical and categorical
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clustering methods namely k-modes, FC* (FKM ), and FCM. The results of
the comparisons based on internal and external evaluation criteria showed
that in most cases, the difference of performances is not statistically differ-
ent. While the Friedman test is significant for the scores PC and FE for low
values of V, larger values were needed for the other scores.

Second, we demonstrate the ability of CFE to successfully capture fuzzy
centers even if the attributes categories’ weights obtained from CFE are
different from their frequencies. We conduct two experiments in which we
showed the reasons why the differences are observed.

Despite the non-significance of the performance difference, CFE reached
the accuracy of the numerical clustering method FCM and contrary to the
latter there is no need to encode the input data which is in some cases can
lead to an explosion of the dimensions of the original data. Through the
fuzzy representation of the centers, CFE offers a better way to determine the
attributes categories that contribute the most to the centers compared to
hard centers. Therefore, CFE can provide a better explainability of the re-
sults compared to hard centers clustering methods such as k-modes and FC*.

As with many clustering methods, CFE has some limitations we discuss
and present some solutions.

Key points

• CFE is an extension of the FC algorithm that uses Shannon’s entropy
as regularization of the attributes category weights to obtained fuzzy
centers.

• In the experiments, 6 clustering evaluations criteria including inter-
nal and external measures were used to compared CFE and FC*
with existing numerical (FCM ) and categorical clustering methods
(k-modes). On overall, the statistical tests are not significant. Nev-
ertheless, CFE achieved the with some parameters configurations the
best performances.

• The experiments showed that a trade-off between obtaining crisp-like
or fuzzy-like partitions from CFE, should be made on the choice of the
value of V.

• The time and memory complexity of FC* and CFE are respectively
O(=2J)) and O(=? + =2 + 2J).
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Publications and Communications

The CFE algorithm was first presented at the IEEE International Confer-
ence on Fuzzy Systems in 2020, then a french version of the paper was
presented at the conference EGC 2021. In addition, the algorithm has been
presented in several seminars. We provide below the main references.

• A. J. Djiberou Mahamadou, V. Antoine, E. M. Nguifo and S. Moreno,
”Categorical fuzzy entropy c-means” 2020 IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK.

• A. J. Djiberou Mahamadou, V. Antoine, E. M. Nguifo and S. Moreno,
“Apport de l’entropie pour les c-moyennes floues sur des données
catégorielles”, EGC 2021.

• Rencontres des jeunes chercheurs africains en France. “Apport de
l’entropie pour les c-moyennes floues sur des données catégorielles”,
Decembre 2020.

• MINERS3 seminars.

3LIMOS workgroup on data mining https://limos.fr/workgroup/miners.
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Introduction

This chapter presents a new clustering method for categorical data that uses
the Dempster-Shafer theory to model uncertainty in the data. The new
method called categorical evidential c-means and referred to as cat-ECM
provides a more flexible way for object assignment in clusters and a better
interpretation of membership degrees. We conduct several experiments on
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different datasets 1) to compare the performance of the new method against
CFE and existing methods, and 2) to illustrate the properties of cat-ECM.
The chapter ends with a discussion on the limitations of the new method.

4.1 The need for subsets of clusters

Traditional clustering methods either numerical or categorical generally as-
sign objects into single clusters. As discussed previously, the fuzzy sets the-
ory when applied to clustering offers a more flexible way to assign objects
into clusters compared to the hard sets theory. However, assignments into
subsets of clusters in some scenarios (real or simulated) may be needed. For
instance, if �1 and �2 are two clusters, there might be objects that belong
to the subset �12, meaning that they belong to one of the clusters either �1

or �2 but there is an uncertainty to fully assign them in the corresponding
cluster. Therefore, they are assigned into the subset �12.

To better understand the notion of subsets, let’s consider the dataset in
Figure 4.1 is an ordinal categorical version of the Butterfly dataset used in
[59]. This dataset contains 13 objects and has a particular geometric shape.
Indeed, while objects in �1 = {o1, o2, o3, o4} and objects in �2 = {o8, o9,
o10, o11} are ”close” to each other within the same group (Cluster �1 or
cluster �2), objects o5, o6 and o7 are ”between” the previous ones, i.e, these
objects are expected to belong to �12. Objects o12 and o13 can be seen
as ”far” from all objects despite the fact that objects o6 and o13 have the
same coordinate on the x-axis. As these objects are ”far” from all the other
objects (i.e., given a distance threshold between objects and the centers of
the clusters, the distance of these objects is above the threshold) they can
be considered as outliers (represented by the empty set). When traditional
clustering algorithms are run on this dataset, only singletons will be gener-
ated as subsets of clusters.

Remark 11. The term ordinal in Figure 4.1 is due to the fact that in this
figure, an order is considered between the attribute categories which is not
the case in categorical data. Therefore, this figure corresponds to one of the
possible representations of the data.

More generally, we want a clustering method that given a number of
clusters 2, produces a partition containing 22 subsets of clusters, and that
can also handle outliers. In the literature, the ECM algorithm described in
Section 2.2.3 was proposed for numerical data to fit this need. To our best
knowledge, there exists no variant of ECM that can handle categorical.

To adapt the numerical ECM algorithm to categorical data, there are two
needs: an adaptation of the centers of the clusters and the distance. In
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Figure 4.1: Ordinal categorical version of the Butterfly dataset.

this next section, we provide a new cluster centers definition inspired from
the fuzzy centers introduced in [30] and consider the generalized Hamming
distance as in CFE.

4.2 Fuzzy centers and distance

Let z = (z1, . . . , z;, . . . , z?) be a set of ? categorical attributes and �><(z;) =
(0 (1)
;
. . . 0

(=;)
;
) be the domain of possible values for the attribute z;, Ω =

{l1, . . . , l: , . . . , l2} the frame of discernment with 2 the number of desired
clusters. Similarly to CFE, we define the fuzzy centers v: = (v:1, . . . , v:; , . . . , v: ?)
with v:; = {F (1):; /0

(1)
;
, . . . , F

(C)
:;
/0 (C)
;
, . . . , F

(=;)
:;
/0 (=;)
;
} such that

0 ≤ F (C)
:;
≤ 1, (4.1)

and
=;∑
C=1

F
(C)
:;
= 1 ∀; ∈ {1 . . . ?},∀A: ⊆ Ω,A: ≠ ∅. (4.2)

where

• When |A: | = 1, F (C)
:;

are obtained through the optimization of the cost
function of cat-ECM (see next subsection).
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• When |A: | > 1, i.e, 2 + 1 ≤ : ≤ 22 ,, similarly the barycenter of single
clusters centers of ECM in [59], we propose to use the mean of at-
tributes category weights of single clusters for subsets of clusters with
cardinality greater than one, i.e,

F
(C)
:;
=

1

|A: |
∑
la ∈�:

F
(C)
a;

(4.3)

To better understand this new notion of fuzzy sets, let’s consider the
Example 2.2.4. Let v1 = ({0.6/H4B, 0.4/=>}, {0.8/H4B, 0.2/=>}) be the center
of �1 and v2 = ({0.5/H4B, 0.5/=>}, {0.1/H4B, 0.9/=>}) the center of �2. From
Equation (4.2), the center corresponding to the subset Ω = {�1, �2} is given
by

vΩ = ({0.55/H4B, 0.45/=>}, {0.45/H4B, 0.55/=>}).

For the distance, we consider a new variation of the generalized Hamming
distance (2.31) by considering the subsets of clusters. We define the new
distance as follows:
Let D8; = Dom(z;) \ 0 (A ); such that 0 (A )

;
= G8;

���8: =

?∑
;=1

X(G8: , E:;) (4.4)

where

X(G8: , E:;) =
∑
C ∈D8;

F
(C)
:;
=

∑
C ∈D8;

1

|�: |
∑
la ∈�:

F
(C)
a;
. (4.5)

The factor
1

|�: |
in (4.5) is used to penalize subsets of clusters with high

cardinality.

Remark 12. A normalized version of the new generalized Hamming dis-

tance, i.e., ���
8:
∈ [0, 1] can be considered by multiplying ���

8:
by

1

?
.

In the next section, the objective function, updating formula of the cen-
ters, and evidential partition are presented.

4.3 cat-ECM: categorical evidential c-means

In this section, we present the objective function of cat-ECM, the updating
formula of the evidential partition and the cluster centers, and the algorithm
of cat-ECM.
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Objective function

The objective function of cat-ECM remains the same as ECM in Equation
(2.16) by replacing the squared distance with the new generalized Hamming
distance and considering the centers defined in Section 4.2.

Optimization

Following the alternate optimization scheme, when the variable V is fixed
the updating formula of the evidential partition is given by Equation (2.18)
and (2.19). When M is fixed, the updating formula of the attributes category
weights is given by the following equation:

F
(C)
a;
=



1 if 5
(C)
8a

= 5
(A )
8a

with A = arg max
I∈{1,...,=; }

5
(I)
8a

1
@

if ∃B1, . . . , B@−1B.C. 5 (C)8a = 5
(B1)
8a

= · · · = 5
(B@−1)
8a

> 5
(I)
8a
,

∀I ∈ {1 . . . =;}, B.C. I ≠ B1 ≠ · · · ≠ B@−1 ≠ C,
0 otherwise

(4.6)

∀a ∈ {1, . . . , 2}, ∀; ∈ {1, . . . , ?}, ∀C ∈ {1, . . . , =;}, with

5
(C)
8a

=
∑

�: ⊆Ω,la ∈A:

∑
8/xil=0

(C )
;

|A: |U−1<V8: .

Proof. Let �8; = Dom(z;) \ 0 (A ); and 0 (A )
;
= xil. We have

�20C−��" (M,V) =
=∑
8=1

∑
A: ⊆Ω

|A: |U<V8:�
��
8: +

=∑
8=1

d2<
V

8∅

=

=∑
8=1

∑
A: ⊆Ω

|A: |U−1<V8:
?∑
;=1

∑
C ∈�8;

∑
la ∈A:

F
(C)
a;
+

=∑
8=1

d2<
V

8∅ .

Since ∑
A: ⊆Ω

∑
la ∈A:

|A: |U−1<V8: =
2∑
a=1

∑
la ∈A: ,�: ⊆Ω

|A: |U−1<V8: , (4.7)

the objective function can be written as:

�20C−��" (M,V) =
2∑
a=1

?∑
;=1

=∑
8=1

∑
la ∈A: ,�: ⊆Ω

|A: |U−1<V8:
∑
C ∈�8;

F
(C)
a;
+

=∑
8=1

d2<
V

8∅ .

Let F (A )
a;

be the weight associated to the attribute value equal to xil. Us-

ing (4.2), we deduce that
∑
C ∈�8;

F
(C)
a;
= 1 − F (A )

a;
. Thus,

�20C−��" (M,V) =
2∑
a=1

?∑
;=1

=∑
8=1

∑
la ∈A: ,�: ⊆Ω

|A: |U−1<V8:
(
1 − F (A )

a;

)
+

=∑
8=1

d2<
V

8∅ .
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As M is fixed, the terms
=∑
8=1

d2<
V

8∅ and
=∑
8=1

∑
la ∈A: ,�: ⊆Ω

|A: |U−1<V8: are con-

stant. Since each element Fa; are independent, minimizing �20C−��" (V) is
equivalent to maximizing (4.8) under the same conditions.

�1(Fa;) =
=∑
8=1

∑
la ∈A: ,�: ⊆Ω

|A: |U−1<V8:F
(A )
a;
, ∀a ∈ {1, . . . , 2}, ∀; ∈ {1, . . . , ?}

(4.8)

Taking for all objects and all subsets Fa the values |A: |U−1<V8: and the
weight associated to xil is similar to taking separately each possible weight
F
(A )
a;

of the attribute z; and summing the values |A: |U−1<V8: associated to

objects having the same value 0 (A )
;

and subsets containing la. This leads to
write �1(Fa;) as follows:

�1(Fa;) =
=;∑
C=1

F
(C)
a;

∑
la ∈A: ,�: ⊆Ω

∑
8/xil=0

(C )
;

|A: |U−1<V8:︸                                     ︷︷                                     ︸
constant

, ∀a ∈ {1, . . . , 2}, ∀; ∈ {1, . . . , ?}

(4.9)

The two last sums correspond to a constant, thus, the maximization of the
objective function under the constraints (4.1) and (4.2) is a linear optimiza-
tion problem with linear constraints similarly to the problem (3.5). An
optimal solution to this problem is given by Equation (4.6). �

Remark 13. In the left term of (4.7), the sum over all l: are considered
at the same time while in the right term, they are considered independently.

It can be noted that in practice most of the time the obtained weights of
categories in single clusters are crisp. Consequently the weights of categories
in subsets of clusters A: with cardinality greater than one, i.e., |�: | > 1 are

1

|A: |
.

Algorithm and complexity analysis

An algorithm for the proposed method can be derived as follows: from the
input parameters, the centers of singletons are initialized such that Equa-
tion (4.1) and (4.2) are satisfied. Then the centers of subsets of clusters
with cardinality > 1 are computed by taking the means of category weights
of singletons. In the next step, the evidential partition and the centers are
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updated respectively with Equations (2.18) and (2.19) and (4.6). The algo-
rithm is summarized in Algorithm 9.

To compute 5
(C)
8a

, in the worst case, O(2=) operations are needed. For 2
single clusters, the time complexity is O(22=J). For subsets of clusters such
that |�: | > 1, the average of single clusters weights is computed. In the
worst case, i.e., �: = Ω, 2 averages are computed for J categories. As there
are 22−1 − 2 subsets with |�: | > 1, the time complexity for these subsets is
then O(222−1J) → O(222J). Hence, the overall time complexity to update
the weights is O(22=J + 2rJ) when r = 22, i.e., in the worst case. For the
distance, the time complexity O(=rJ). For the partition matrix, it is the
same as ECM ’s, i.e., O(=r). Consequently the overall time complexity is
O(22=J + 2rJ + =rJ + =r) → O(22=J + 2rJ + =rJ) for one iteration. By
considering ) iterations, the time complexity is O(22=J) + 2rJ) + =rJ)).

The memory complexity of cat-ECM is given by O(=? + =r + rJ) as X
is O(=?), � is O(=r), U is O(=r) and V is O(rJ).

Algorithm 9 Categorical evidential c-means algorithm (cat-ECM)

Require: X = {x1, . . . , xi, . . . , xn} the categorical data, 1 < 2 < = the
number of clusters, U ≥ 1 the weighting exponent for cardinality, V > 1
weighting exponent, d > 0 the distance to the outliers cluster, and n ≥ 0
a threshold.

Output: M evidential partition of X and V the centers of clusters.
Begin

Randomly initialize V0 that respects (4.1) and (4.2)
g ← 0
repeat
g ← g + 1
Compute the distance matrix with the new generalized Hamming dis-
tance in (4.4).
Update "g using (2.18) and (2.19) with 32

8:
= ���

8:
.

Update clusters center +g using (4.6).
until ‖Jg

20C−��" − Jg−1
20C−��" ‖ ≤ Y

End

In the next section, we describe the protocol of the experiments.

4.4 Experiments

This section presents the datasets used in experiments, the evaluation cri-
teria used to test the performance of cat-ECM and compares the latter to
existing methods, the experimental protocol, the materials used to conduct
experiments. Finally, the results of the experiments are presented.
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4.4.1 Data sets

We use the same datasets (Soybean, Zoo, Breast, Lung, Votes, Credits,
Cars, Dermatology, Mushrooms) presented in Section 3.4.1 to conduct exper-
iments. In addition, we use the categorical version of the Butterfly dataset
in Figure 4.1 to illustrate the strengths of cat-ECM.

4.4.2 Evaluation criteria

Internal measures

Like in experiments of CFE in Chapter 3, we use the PC, PE, and FS as
internal measures. Due to the evidential partitions obtained from cat-ECM
and ECM we also use the nonspecificity (N) in Equation (1.25) to quantify
and compare the uncertainty in these partitions.

External measures

In addition to the RI and FRI, we use the credal rand index (CRI) intro-
duced in [89]. The CRI is an extension of the RI and FRI in the belief
functions framework. It allows the comparison of different types of parti-
tions such as hard, fuzzy, possibilistic [90] and evidential.

Let M and M′ be two partitions to be compared and R = (<8 9)1≤8≤ 9≤=
and R′ = (<′8 9)1≤8≤ 9≤= be respectively their relational representations [89].
The CRI is defined as follows:

�'� = 1 −
2
∑
8< 9 i(<8 9 , <′8 9)
=(= − 1) , (4.10)

where i is a distance between mass functions and = the number of ob-
jects. In [89], the authors proposed two versions of the CRI where i corre-
sponds to Jousselme’s [91] (�'� � ) and belief [92] (�'��) distances.

The CRI varies from 0 to 1 with 1 corresponding to the optimal value.
When the true classes of objects are known, the consistency of the evidential
partitions with the true classes can be computed by considering the degree
of conflict (1.20) as i in Equation (4.10). Therefore, in this case, the con-
sistency is more useful than the �'� � and �'��.

Based on the credal index �'� and the nonspecificity #, an evidential
partition M is said preferable to another one M′ when M is more consistent
with the true classes and more precise [89], in other words, when

�'� (M) > �'� (M′) and # (M) < # (M′). (4.11)

We use the two measures to compare evidential partitions in experiments.
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Partitions Descriptions

TRUE Vector of real classes
k-modes Hard partition from k-modes
FC*-H Hard partition from FC*
FC*-F Fuzzy partition from FC*
CFE-H Hard partition from CFE
CFE-F Fuzzy partition from CFE
cat-ECM-H Hard partition from cat-ECM
cat-ECM-F Fuzzy partition from cat-ECM
cat-ECM-C Evidential partition from cat-ECM
ECM-H Hard partition from ECM
ECM-F Fuzzy partition from ECM
ECM-C Evidential partition from ECM

Table 4.1: Compared partitions based on the consistency with the true
classes.

4.4.3 Experimental protocol

We run experiments on the nine datasets following the protocol described in
Figure 3.2. We compare the performance of cat-ECM against ECM, CFE,
FCM, FC*, k-modes following the same procedures as in Chapter 3. In all
experiments, we transform the categorical datasets to numerical with the
one-hot encoding technique in order to use the numerical methods ECM
and FCM.

In addition to the performance comparisons, we also compare the parti-
tions obtained from the preceding methods using the CRI and nonspecificity
as proposed in [89]. As the evaluation criteria PE, PC, RI, FRI, and FS take
into account hard and fuzzy partitions, we generate these partitions from
evidential methods and hard partitions from fuzzy methods as follows:

• For evidential models (cat-ECM and ECM ) we normalize the evi-
dential partitions with Dempster normalization function in Equation
(1.13) and compute the fuzzy partitions with the pignistic transfor-
mation in Equation (1.23). From the latter partitions, we generate
hard partitions with the maximum principle rule i.e. the objects are
assigned to the cluster with the highest fuzzy membership degrees.

• For fuzzy models (FC* and FCM ), the hard partitions are obtained
as preceding with the maximum principle rule.

The obtained partitions are summarized in Table 4.1. In the next subsec-
tions, present the parameter settings and materials used in experiments.
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4.4.4 Parameter settings

In all experiments, we set the values of the parameter V in cat-ECM and
ECM which corresponds to < in CFE from 1.1 to 2. In addition, we keep
the default value of the parameter d in the implementation of ECM and set
the same value for cat-ECM. To reduce the time complexity of the methods,
we consider only subsets corresponding to the empty set, the subsets of size
less than 2 and Ω.

4.4.5 Materials

We use the same materials as in Chapter 3 to conduct experiments. For
the partitions comparisons, we use the implementations of ECM and CRI
provided by Antoine Violaine1

We provide the code source for the implementation of cat-ECM on Github2.
In the next section, the results of the experiments are presented.

4.4.6 Results

This section describes the results of the experiments from the protocol in
Section 4.4.3. We firstly discuss the scores of RI, FRI, FS, PC, and PE
obtained from cat-ECM. Secondly, we present the results of the statistical
comparisons of the models and finally we present the partitions comparisons
results.

cat-ECM results

Scores of RI, FRI, FS, PC, PE obtained with cat-ECM through the protocol
4.4.3 are summarized respectively in Tables B.1.1, B.1.2, B.1.3, B.1.4 and
B.1.5 from Appendix B. We can first note that contrary to CFE, there is no
continuous decrease in the scores when the value of V increases. From the
preceding tables, it can be seen that optimal scores over the datasets are
obtained with different values of V. For the FRI, PE, and PC scores, optimal
values are obtained for V = 1.1. For the FS and RI scores the optimal values
of V are not unique. Similarly to CFE, it can be noted that the scores PC
and PE behave similarly as explained in Chapter 3.

Statistical comparisons results

From the statistical comparisons of the models over the scores and the
datasets, we obtain the following results. For all the values of W ∈ {0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7} the difference of the performances of the
models is not statistically significant for almost the RI, FRI and FS scores.

1violaine.antoine@uca.fr
2https://github.com/abdjiber/catecm
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Figure 4.2: Critical difference diagram obtained for PC and PE scores
with W = 0.1 and V = 1.1.

Figure 4.3: Critical difference diagram obtained PC scores with W = 0.1
and V = 1.2.

For the PC and PE scores, a statistical significance is obtained for W = 0.1
and V ∈ {1.1, 1.2}. The Critical difference diagram for W = 0.1 and V = 1.1 of
these scores is represented in Figure 4.2. In this figure, the ranks of the mod-
els in order are respectively FCM, CFE, FC*, cat-ECM and ECM. While
the pairwise comparisons between CFE, FCM and FC* is not statistically
significant, the test is significant between the other models. it can be noted
that based on these scores, the FCM-like models have the highest perfor-
mance and the ECM-based models the lowest.

Figures 4.3 and 4.4 correspond respectively to the critical difference di-
agrams of PC and PE when W = 0.1 and V = 1.2. The difference between
the two figures holds on the ranking of FC* and FCM. While the ranks are
different in the former figure, they are the same in the latter one. For the
FRI scores, the Friedman test is significant for W = 0.5 and V = 1.1, the
corresponding Critical difference diagram is represented in Figure 4.5. In
the latter figure, all the models statistically outperformed ECM. As the tests
are not significant for the RI and FS scores for all the considered values of W,
we provide in Appendix B.2 the critical difference diagrams for the highest
and lowest value of V (1.1, and 2) and W = 0.1. In the next subsection, we
discuss the results of the partitions comparisons based on the consistency
with the true classes.
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Figure 4.4: Critical difference diagram obtained PE scores with W = 0.1
and V = 1.2.

Figure 4.5: Critical difference diagram obtained FRI scores with W = 0.5
and V = 1.1.

Partitions comparisons results

For the comparisons of the partitions described in Table 4.1, we select the
datasets in Table 3.2 with the smallest and highest number of categories
(Zoo, Votes, and Credits). Since the CFE, cat-ECM, FC* and k-modes
algorithms handle categorical data without encoding as for ECM and FCM,
the idea of the selection of these datasets is to compare the consistency of the
partitions with the true classes. When the number of categories is small,
i.e., with the one-hot encoding technique, the original categorical dataset
is slightly changed by the addition of few dimensions whereas for a higher
number of categories, the dimension of the original dataset will be drastically
changed. We also consider in the comparisons the cases when the value of
the parameter V are the smallest (1.1) and the highest (2).

Remark 14. It should be noted that the nonspecificity of all non-evidential
partitions is equal to 0.

Figures 4.6, 4.7 and, 4.8 correspond respectively to the results of compar-
isons of the partitions on the Zoo, Votes and Credits dataset when < = 1.1.
We describe below these results by the types of partitions (Evidential - Ev-
idential, Evidential - Fuzzy - Hard, Fuzzy - Hard) as follows:

• Evidential - Evidential: In Figures 4.6, 4.7, and 4.8, it can be
noted that based on Equation (4.11), the evidential partition of cat-
ECM is preferable to the one of ECM. In Section B.3 of Appendix B,
we provide the results of comparisons on the Zoo, Votes and Credits
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datasets of the partitions when < = 2. With this configuration, the
evidential partition of ECM is preferable to cat-ECM.

• Fuzzy - Hard - Evidential: In all the three preceding figures, the
consistencies of cat-ECM and ECM are higher than those of all the
fuzzy and hard partitions.

• Hard - Fuzzy: In Figure 4.6, it can be noted that the consistencies of
the fuzzy and hard partitions of CFE (not visible in the Figure: 0.93
for both partitions) are lower than those of FC* ’s partitions (0.94 for
FC*-H and 0.95 for FC*-F ) and k-modes’s (0.94) but higher than
those obtained with the partitions of FCM (0.92 for both FCM-H
and FCM-F ). In Figure 4.7, while the consistency of ECM-F is the
lowest, the one of ECM-H is the same as FCM-H and greater than
those of FC* ’s, CFE ’s and k-modes’s. In Figure 4.8, the consistencies
of FCM-F, FCM-H, and ECM-F are about 0.5 whereas the ones of
CFE-F, CFE-H, FC*H and k-modes are about 0.67.

From the consistencies in Section B.3 from Appendix B, the k-modes
partition obtain the third-highest consistency and the hard partition of
CFE the lowest on the Zoo dataset. On the Votes datasets, the consis-
tencies of the fuzzy partitions of ECM and FCM are the lowest while
their hard partitions have the third-highest consistencies (around 0.79
for both partitions). For the Credits dataset, the consistency of the
hard partition of CFE is higher than all of the other partitions except
the one of k-modes.

In the next section, we illustrate through the ordinal categorical Butterfly
and the Zoo datasets, the strengths of cat-ECM.

4.5 Strengths of cat-ECM

By using the Dempster Shafer theory and a noise clustering objective func-
tion cat-ECM allows capturing overlapping objects (the ones belonging to
subsets of clusters) and outliers. In this section, we conduct some experi-
ments on the Butterfly and Zoo dataset to illustrate these behaviors.

In the first experience, we run cat-ECM on the categorical Butterfly
dataset in Figure 4.1 with the following parameters 2 = 2 (Ω = {�1, �2}), V =
1.1, U = 1, and X = 1.2. We ran the algorithm 30 times and selected the
evidential partition at the minimum of the cost function. For each object
we plot the mass corresponding to the highest cluster membership degree
and obtained Figure 4.9.
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Figure 4.6: Nonspecificity against Consistency obtained on the Zoo
dataset with V = 1.1.

From Figure 4.9, it can be noted that the set of objects {>2, >3, >4},
{>8, >9, >10}, {>1, >5, >6, >7, >11} and {>12, >13} are respectively assigned
to cluster �2, �1, Ω and the empty set. In Section 4.1, we expected objects
{>1, >2, >3, >4} and {>8, >9, >10, >11} to be in the same clusters, objects
{>5, >6, >7} to be in Ω and objects {>12, >13} to be outliers (∈ ∅).

Apart >1 and >11, cat-ECM successfully assigned the objects into the
expected clusters. By ignoring the order, objects {>1, >5, >6, >7, >11} have
similar characteristics such as the same coordinate y. Consequently, based
on this similarity, these objects are expected to belong to the same cluster,
in our case Ω. It should be noted that the misassignments of objects >1 and
>11 can be due to inappropriate parameter settings of cat-ECM .Finally, ob-
jects >2 and >8 are assigned in �1 and �2 with full certainty, therefore these
objects correspond to the clusters of the centers.

In the second experiment, we select the Zoo dataset to illustrate again
the ability of cat-ECM to capture subsets of clusters. The selection of this
dataset among the nine is due to the simplicity of interpretation of the ob-
tained clusters. We use the results of the principal components analysis
in Figure 3.1 and illustrative images of each animal of the dataset to plot

112



4.5. STRENGTHS OF CAT-ECM 113

Figure 4.7: Nonspecificity against Consistency obtained on the Votes
dataset with V = 1.1.

Figure 4.10. We run the cat-ECM algorithm with the following parameters:
U = 1.5, V = 1.1, X = 10 over ten iterations and took the evidential partition
corresponding to the lowest cost function. From the evidential partitions,
we assign the objects to the cluster with the highest membership degree. In
Figure 4.10, we plot the obtained clusters and to each object’s coordinates,
we associate an image of the corresponding animal.

In the latter figure, cluster C1 mostly represents amphibians and rep-
tiles, C2 aquatic invertebrates, C3 aquatic mammals, C4 insects, C5 land
mammals, C6 birds, and C7 fishes. The subset C56={land mammals, birds}
corresponds to the fruit bat and vampire. These two animals are of the fam-
ily of bats and constitute the only flying mammals in the dataset. Therefore
their assignment to this subset makes sense.

The subset C35={aquatic mammals, land mammals} corresponds to the
mink which is a semi-aquatic mammal. The subset C16={amphibian, birds}
corresponds to the penguin. As it is an aquatic flightless bird it can be as-
signed with certainty neither in C1 nor in C6. The subset C17={reptiles, fishes}
corresponds to the pitviper and sea snake which is are reptiles and can be
aquatic animals, they then share similar characteristics as swimming with
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Figure 4.8: Nonspecificity against Consistency obtained on the Credits
dataset with V = 1.1.

fishes. In the dataset, the attribute aquatic is set 1 and 0 respectively for the
sea snake and pitviper. Hence, there is an uncertainty to fully assign them
to C1 or C7. The subset C13={amphibian, aquatic mammals} corresponds
to the platypus which is a semi-aquatic mammal.

The subset C15={reptiles, land mammals} corresponds to the tortoise
which is a reptile. Based on the features in the dataset, the assignment
of the tortoise in C5 can be explained by the fact that it has a tail like
all the land mammals of the dataset. Finally, the subset Ω corresponds to
the scorpion. The assignment of this animal to Ω represents a complete
ignorance about its subset. This observation can be explained by the fact
that the scorpion shares similar characteristics with most of the animals in
the dataset. Indeed the scorpion is a predator, breathes, and has a tail as
respectively 55%, 79% and 75% of the animals in the dataset.

In the upcoming section, we describe some limitations of the cat-ECM
algorithm.
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Figure 4.9: Mass obtained with cat-ECM on the ordinal categorical But-
terfly dataset.
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Figure 4.10: Subsets of clusters obtained with cat-ECM on the Zoo
dataset.
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4.6 Limitations of cat-ECM

In this section, we present some limits of cat-ECM namely, the setting of
optimal values of V and U and the time complexity of the method.

4.6.1 Optimal values of V and U

As an extension of FCM-like algorithms, cat-ECM inherits most of the limits
of FKM, particularly the setting of optimal value of V (m for CFE ) discussed
in Section 3.6. In addition to this parameter, the setting of an optimal value
of U and X is also problematic. As noted in [59], for the value of X, Davé
suggested in [93] an iterative value based on the average distance between
the objects and the clusters as follows

Xg =
d

=2

=∑
8=1

2∑
9=1

328: , (4.12)

where g is the corresponding iteration and d a user input parameter corre-
sponding to the multiple of the average distance
Davé’s solution for the setting of an optimal value of X is used neither in our
theoretical work nor in the experiments.

As |�: |U is a penalization term of subsets with high cardinality, a higher
(resp. lower) value of U leads to a high (resp. low) penalization. Similarly,
regarding the fuzzy entropy coefficient of CFE, there is no formal way to de-
termine an optimal value of U. Despite the setting of this value to 2 in most
of our experiments for simplicity, we recommend conducting experiments to
determine an optimal value.

Due to the use of subsets of clusters, cat-ECM may require high com-
putational resources. We discuss this limitation in the next subsection.

4.6.2 Time complexity

The time complexity analysis in Section 4.3 shows that the time complexity
of cat-ECM is O(22=J) + 2rJ) +=rJ)). Depending on the value of r, the
latter complexity can be an exponential function of the number of clusters,
i.e., when r = 22. For instance, for the Zoo dataset, 27 = 128 subsets will
be used. To overcome this issue, a solution would be to limit the number of
subsets. A common choice is to set the subsets to the empty set, singletons,
pairs, and Ω. By default, the implementation of cat-ECM in the open-source
takes into account this choice.
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Conclusion

We introduce in this chapter a categorical extension of the evidential c-
means algorithm. The new method referred to as cat-ECM uses a gener-
alized Hamming distance and fuzzy centers. We follow the experimental
protocol discussed in chapter 3 to evaluate the performance of the model.
To that end, we use different values of the input parameters of cat-ECM
and compare its performance to CFE, FC*, k-modes, FCM and ECM with
internal and external measures namely RI, FRI, FS, PE and PC. From the
obtained results, in most of the cases, the statistical difference between the
models is not significant. For the parameter settings where the statistical
tests were significant, CFE usually has the highest rank on the critical di-
agrams. In the next step, we compare the consistency of the hard, fuzzy,
and evidential partitions generated from the models with the true labels on
three selected datasets with the lowest and highest numbers of attributes
categories. For the evidential partitions obtained with cat-ECM and ECM,
in addition to the consistency we compare their nonspecificity. The results
of these comparisons suggest that cat-ECM works better with small values
of V whereas, for ECM, good performances are obtained in general with high
values of V.

Contrary to FCM-like clustering models, cat-ECM provides through the
Dempster Shafer theory more flexible ways to capture uncertainty on ob-
ject assignments to clusters. We illustrate this behavior on the categorical
Butterfly and Zoo datasets. Moreover, cat-ECM achieve the performance
of numerical methods such as ECM and FCM and sometimes better by
handling categorical data without transformations.

As with many clustering methods, cat-ECM has some limitations al-
ready known in the literature for not having a formal way of solving them.
For example, the setting of optimal values of V and U. Nonetheless, for the
parameter V, Davé proposed in [93] an iterative procedure to determine a
convenient value. In addition to the preceding limitations, due to the use of
subsets of clusters, the time complexity of cat-ECM can grow exponentially.
To overcome this problem, the subsets of clusters generated from cat-ECM
can be limited to for instance the empty set, the singletons, pairs, and Ω.

In the next chapter, we present real-world applications of CFE and cat-
ECM to study the influence of lifestyle activities on cognitive health.
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Key points

• cat-ECM is an extension of the ECM algorithm for categorical data.
The method generates subsets of clusters, allowing to capture uncer-
tainties from overlapped objects and outliers.

• In the experiments, in most of the cases, the statistical analysis that
compared the performances of cat-ECM and existing methods were
not significant.

• We illustrate the strengths of cat-ECM on the Butterfly and Zoo
datasets and discussed some of the limitations of the method.

• The time and memory complexity of cat-ECM are respectively O(22=J)+
2rJ) + =rJ)) and O(=? + =r + rJ).

Publications and communications

The cat-ECM algorithm was presented at the IEEE International Confer-
ence on Fuzzy Systems in 2019. We provide below a reference to the paper.

• A. J. Djiberou Mahamadou, V. Antoine, G. J. Christie, and S. Moreno,
”Evidential clustering for categorical data,” 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA,
2019.
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Introduction

Every 3 second, someone in the world develops Dementia1 [94]. Conse-
quently, an exponential increase of the total cost of the diseases related to

1Dementia is a collection of neurodegenerative diseases. Alzheimer’s disease is
among the most frequent.
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Dementia is observed: from 818 billion dollars in 2015 to a trillion in 2018
[94]. With the rapid growth of the older adults population worldwide (1
in 6 people in the world will be over the age of 65 by 2050, up from 1 in
11 in 2019 according to the United Nations [95]) from which 152 million
are expected to develop Dementia by 2050 [96], public health policymakers
and healthcare systems face many challenges. It then becomes an urge to
better understand the mechanism of older adults aging and prevent their
cognitive decline. To this end, researchers have conducted several studies
in which different research questions on aging were explored. Among the
studies, the impact of environment (lifestyle activities) on cognitive health
in older adults received much interest. Indeed, several studies have shown in
the literature the critical role played by the environment in the preservation
or the decline of cognitive health. In this chapter, we conduct a complemen-
tary analysis based on the developed clustering methods to investigate the
replication of recent findings on the influence of environmental conditions
on older adults.

In the next section, we provide a background on the literature on the
influence of environmental conditions on cognitive health, a review of the
differential susceptibility theory, and some applications of soft computing in
medicine and health.

5.1 Background

Over decades, cognitive decline has become a growing public health issue.
The risk factors related to cognitive decline can be summarized into two
groups: non-modifiable and modifiable factors. The first group of risk fac-
tors characterized by age and genes constitutes the factors that cannot be
modified by medical interventions or individual behavior. Among the modi-
fiable risk factors, several lifestyle factors, i.e. environment, have been iden-
tified such as education, smoking, physical activities, diet, alcohol, cognitive
training, depression, and sleep (see [97] for example for a review). In [98],
Christie et al. highlight the importance of basic lifestyle activities such as
physical exercise, mediation, and musical experience to slow down the pro-
gression of Dementia in older adults as there are low cost, easily scalable,
and can be brought to market quickly.

In the next subsection, we review some papers that studied the influence
of lifestyle factors on cognitive health.

5.1.1 Lifestyle factors and cognitive health in older adults

To assess the interactions between environmental factors and cognitive health,
in data-driven studies (i.e., involving statistical models), memory measures
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are usually used as dependent (outputs) variables and environmental fac-
tors as independent variables. Indeed, memory function has been shown to
decline with age [99]. In the literature, a panel of memory assessment tests
has been proposed (see [100] for a review). We review below some studies
on the impact of lifestyle activities on cognitive health.

In [101], the authors used the longitudinal clinical pathologic data from
the Rush Memory and Aging Project [102] which contains 1148 individuals
with a mean age and education of respectively 80.4 and 14.5 years, to test
the hypothesis that late-life participation in mentally stimulating activities
affects subsequent cognitive health. The assessment of cognitive function in
the study was carried out with 20 individual performance tests, including
the Mini-Mental State Examination (MMSE) [103]. A composite measure
of global cognition is created with 19 tests. The statistical analysis results
with cross-lagged panel models [104, 105] suggest that more frequent men-
tal stimulation in old age leads to better cognitive functioning. In [106], the
authors investigated the role of cognitive reserve 2 and lifestyle factors early
in life on healthy aging. More specifically, the authors studied three ques-
tions about the cognitive reserve: (1) Does cognitive reserve follow a static
or dynamic change pattern across the lifespan? 2) can cognitive reserve be
increased across the lifespan? And 3) does participation in different leisure
and/or occupational activities in early life impact differently aging cognitive
functioning? The studied sample of 349 participants from the Cleveland
Longitudinal Aging Studies [107] has a mean age, years of education respec-
tively of 74.8 and 15.9. The cognitive functioning in the study was assessed
with the Modified Telephone Interview for Cognitive Status (TICS-m) [108]
which is a telephone version of the MMSE. The results of the study ob-
tained with path analysis [109, 110] suggest that reserve is dynamic but
most amenable to change in early life, and educational pursuits in early life
can positively impact cognitive functioning in late life. Lee et al. in [111]
got interested in the type of social activity that reduces cognitive decline 4
years later among young-old (age 65-74) and old-old (age ≥ 75) adults. To
that end, the authors used a sample of 1568 non-demented participants from
two waves of the Korean Longitudinal Study of Aging 3. The assessment
of cognitive functioning is carried with the Korean version of the MMSE
[112]. The authors used multiple linear regression analysis to evaluate the
effects of 6 social activities on cognitive decline in the statistical analysis.
The results of the study revealed that the participation in senior citizen
clubs or having frequent contacts with adult children by phone or letters
might help reduce cognitive decline in later life among older adults and the
participation in various formal social activities may also have a beneficial

2Cognitive reserve is the mind’s resistance to damage of the brain. Wikipedia
3https://survey.keis.or.kr/eng/klosa/klosa01.jsp
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effect on preventing cognitive decline in older adults.

In a recent study, Rodrigues et al. [1] investigated the impact of the
environment on cognitive health in older adults. The authors studied two
hypotheses: the relationship between lifestyle factors and cognitive health
in aging and the impact of stratification of the aging population to promote
a better understanding of the aging process. The authors considered a sam-
ple of 3507 participants (average of age: 72 years; and an average number
of years of education: 12.9) of the Health and Retirement Study (HRS)
dataset4 and used the ordinal logistic regression (OLR) [113] as a statistical
model. As a dependent variable, the authors considered a composite word
recall (immediate + delayed) 5 from which five cognitive categories (from 1
to 5 with 1 the lowest) were computed. In addition to the age, the number
of years of education, and the sex of the participants, 35 lifestyle activities
were selected in the model of analysis. The results of the research show that
enriching lifestyle factors, particularly those that require extended periods
of focus (ex. often reading and using a computer) have a positive relation-
ship with cognitive health. In contrast, deleterious lifestyle activities such
as financial constraints and smoking have a negative impact. Moreover, a
marginal effect analysis6 from the OLR shows a dichotomy pattern of the
effects of the lifestyle factors on cognitive health among the sample of partic-
ipants (see Figure 5.1). Indeed, while environmental factors such as housing
problems, reading, and using computers have a high influence either posi-
tively or negatively on cognitive categories 1, 2, 4, and 5, the influence of
these factors is low for cognitive category 3.

The results of the preceding study are similar to the orchid and dandelion
theory observed within the children population in developmental sciences.
We present a brief review of the theory in the next subsection.

5.1.2 Orchid and dandelion theory

In the 90s, a new theory referred to as orchid and dandelion theory 7 emerged
in developmental sciences from the work of Thomas Boyce and Bruce Ellis

4https://hrs.isr.umich.edu/about
5Participants are asked to recall a list of 10 words either immediately or with a de-

layed time.
6A marginal effect analysis quantifies the amount of change in the dependent vari-

able when a unit change of an independent variable is observed. In other words, it cor-
responds to the derivative of the dependent variable with respect to the independent
variable.

7The terms dandelion and orchid are originated from flowers of the same names.
The dandelion flowers are resistant flowers that can grow independently to their en-
vironmental conditions, whereas the orchid flowers’ growth is highly related to their
environmental conditions (either good or bad).
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in [114]. In the latter paper, the authors examined the interactive influences
of environmental stressors and biological stress reactivity on the incidence of
respiratory illnesses in young children. Unexpected findings from the study
show that the lowest rates of illness with the studied samples were found for
equally high reactivity children reared in low-stress, highly supportive, and
nurturant family environments. From the latter results, the authors intro-
duced the orchid and dandelion theory which stated two different types of
reactions to adversity within children: the sensitivity to environment chil-
dren labelled as orchids respond positively and negatively under good or poor
environmental conditions, whereas the dandelions children are less affected
by environmental conditions. Over two decades, the theory has been devel-
oped, and different studies (clinical and data-driven) have been conducted to
replicate the new observations and better understand the phenomenon. In
[115], Belsky studied the effect of maternal sensitivity on infant attachment
security and concluded that children vary in their susceptibility to rearing
experience. In [116], the studies of Barr et al. on young rhesus macaques
highlighted that in more stressful contexts, highly sensitive or orchid-like
young monkeys are likely to do poorly, whereas, in supportive settings, the
same individuals show better outcomes than their robust, relatively insensi-
tive dandelion-like peers. Studies on the interactions between genetics and
environment (GxE) revealed that some individuals and animals with par-
ticular genotypes are more susceptible than others [117]. In addition to the
genetic and environmental factors, authors in [118] highlighted the neces-
sity to consider the developmental time component in the context of biology
adversity and resilience studies. While some longitudinal studies reported
the fading of differential susceptibility over time (ex. see [119, 120]), con-
tradictory results (increasing of differential susceptibility over time) have
been published [121]. Nonetheless, both types of results suggest a monotone
behavior of differential susceptibility over time.

While the preceding studies focused on the replication of the orchid
and dandelion theory within children, any of the studies investigated the
observation of the phenomenon within older adults despite the worldwide
exponential increase of this proportion of the population. For the first time,
the phenomenon has been observed within the older adult population in [1].
As for the orchid and dandelion phenomenon within the children popula-
tion, validation of the findings in [1] is needed. To that end, we conduct a
complimentary analysis by using the clustering methods CFE and cat-ECM
as alternatives to the OLR model.

Due to the nature of medical and health data, special mathematical and
computer science frameworks are needed to mine them. The next subsection
presents the use of soft computing in medical and health researches.
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5.1.3 Soft computing in medicine and healthcare

Health data sets, usually collected through longitudinal surveys 8 offer a
good way for studying individual trajectories particularly older adults. In
general, these data are collected through questionnaires and interviews. De-
pending on the nature of the studies, the characteristics of the data vary on
the sample size, modules of questionnaires, and the types (ex. raw, images,
medical and non-medical) of the collected data. In addition to the preceding
specificity, health data incorporate uncertain and imperfect knowledge due
to their nature [122]. To handle uncertainty and imperfection in these data
several techniques such as soft computing9 have been proposed in the liter-
ature. A recent review of papers published between 1991 and 2020 on han-
dling uncertainty in medical data shows that the most frequent techniques
used are Bayesian inference, fuzzy systems, Monte Carlo simulation, rough
classification, Dempster-Shafer theory, and imprecise probability [123]. In
[124], the authors surveyed the utilization of fuzzy technologies particularly
fuzzy logic in different medical domains ranging from internal medicine to
image and signal processing and biomedical laboratory tests. The same au-
thors reported the development of a health status index of patients proposed
in [125] as the first application of fuzzy logic in healthcare. The development
of the index was motivated by the fuzzy boundaries of patient statuses. In
addition to fuzzy logic, fuzzy clustering can be used to find relationships be-
tween patients and to assist physicians [125, 126]. As the Fuzzy Sets Theory,
the Dempster-Shafer theory has also been used for managing uncertainty in
health data sets. In [127], SShenoy discussed how the theory can be used
in the framework of valuation-based systems that serve as a framework for
managing uncertainty in expert systems. The Dempster-Shafer theory has
been used in health data analysis such as heart and brain strokes predic-
tion [128], medicine recommendation [129], breast cancer tumors prediction
[130], obesity epidemic [131], prostate cancer prediction [132], medical in-
formation fusion [133, 134, 135], drug-drug interactions [136] and so on.

In the next section, we present the protocol and the results of the exper-
iments.

5.2 Experiments

In this section, we propose a complementary analysis to investigate the repli-
cation of the findings from Rodriguez et al [1]. To that end, we use the same
data set as the previous authors and use the developed clustering methods
discussed in Chapter 3 and 4 as alternatives to the ordinal logistic regression

8The same individuals are followed up during several years.
9Ensemble of techniques for reasoning and modeling with uncertain, imprecise, and

incomplete information.
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model [137] in [1]. Therefore, our goals are 1) to verify whether or not we
can obtain 5 clusters with each cluster corresponding to one cognitive cate-
gory, and 2) to determine the effect of each lifestyle factor in the clusters as
the marginal effect analysis in Figure 5.1. The interests of the new methods
are two-fold. On one hand, contrary to supervised learning methods such
as OLR, the new clustering methods CFE and cat-ECM do not require la-
beled data offering therefore more applicability of these methods compared
to supervised learning methods. On the other hand, with the HRS data set,
we are expecting both methods to capture fuzzy boundaries between orchids
and dandelions older adults and the uncertainty in the assignments of the
individuals in these classes and subsets of classes.

5.2.1 Data set

In this subsection, we provide a detailed description of the HRS data set.

The HRS data set is a longitudinal survey data started in 1992. The
initial number of participants in the database was 41 000 over 50 years
old. The data set has many components such as surveys on income and
wealth, health and use of health services, employment, and psycho-social
and lifestyle factors. In [1], the authors considered the data from the 2012
and 2016 waves. In order to have the same individuals in both waves and
with no missing values, the data were filtered, and the final sample size is
3507. To model the impact of environmental factors (lifestyle factors) on
cognitive health with the OLR model, a composite cognitive function score
composed of the immediate and delayed word recall tests was considered
as a dependent variable in [1]. A stratification of the final score (referred
to as Cogn) values ranging from 0 to 20 (with 20 being the highest score)
into five cognitive categories (from 1 to 5 with 1 corresponding to the lowest
category) was applied in order to have a uniform distribution of participants
in each category. The number of individuals in these categories is respec-
tively 735, 786, 971, 868, and 616 respectively for cognitive categories 1 to
5. With the latter stratification, from the work of Rodrigues et al, cognitive
categories 1, 2, 4, and 5 correspond to orchids and the 3rd category to dan-
delions. In our analysis, we will consider the top eleven 10 most significant
factors from the OLR model in [1] to fit our models. The marginal effects
of these factors correspond to Figure 5.1. Among the factors, the age of
participants and their number of years of education is considered in [1] as
control variables. The remaining seven variables were binarized in the latter
study to indicate whether or not the participants are concerned by the cor-

10The choice of the most eleven significant factors holds on the fact that these factors
have the most significant impact on cognitive health as it can be seen in Figure 5.1.
Also, for a preliminary replication analysis, we were interested in running the analysis
with few variables in order to reduce the noise in the data.

128



5.2. EXPERIMENTS 129

Variables Descriptions

Housing Problems Indicates if the participants have housing problems.
Read Indicates if the participants often read.
Word Games Indicates if the participants often do word games.
Use Computer Indicates if the participants often us a computer.
Sew/Knit Indicates if the participants often sew or knit.
Walk 20min Indicates if the participants often walking 20 minutes.
Mild Activities Indicates if the participants often do mild activities.
Smokes Indicates if the participants smoke.
Drinks Indicates if the participants often drink.

Table 5.1: Binary variables from the HRS dataset used in our cluster anal-
ysis.

responding lifestyle factors. The binary variables are described in Table 5.1.

Table 5.3 corresponds to the mean years of education and age in each
cognitive category. From this table, the lowest cognitive category (1) corre-
sponds to old-old adults in the sample with the lowest number of years of
education whereas the highest cognitive category (5) corresponds to young-
old adults with the highest number of years of education. We provide the
descriptive statistics of the selected lifestyle factors for the cluster analysis
in Table C.1 in Appendix C. The profiles of individuals in each cognitive
category are described in Table 5.2.

To visualize the HRS data, we use principal components analysis and
plot cognitive categories in Figure 5.2. In the latter figure, the top left, top
right, bottom left and bottom right sub-figures respectively correspond to
the plotting of all cognitive categories, cognitive categories 1 and 5, cog-
nitive categories 2 and 4, and cognitive categories 1, 3, and 5. It can be
noted that in the first sub-figure that there is an overlap between almost
all cognitive categories. In the second sub-figure, the difference between the
extreme cognitive categories (1 and 5) can be seen on the x-axis.

In the next subsection, we describe the evaluation criteria used in the
experiments.

5.2.2 Evaluation criteria

To evaluate the performances of CFE and cat-ECM on the HRS data set and
the similarities between the obtained clusters and the cognition (Cogn) vari-
able we use the same internal and external evaluation criteria as in Chapter
3. Namely, we use the partition coefficient, the partition entropy, the rand
index, the fuzzy rand index, and the fuzzy silhouette index. In order to ex-
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Cognitive categories Profiles

1 Most individuals often read and do
not have housing problems. In con-
trast, they do not often do mild ac-
tivities, do word games, use a com-
puter, sew or knit, walk 20mins,
drink, and smoke.

2 Most individuals often read, walk
20mins and drink, and do not have
housing problems. In contrast, they
do not often do mild activities, do
word games, use a computer, sew or
knit, and Smoke.

3 Most individuals often have mild
activities, read, walk 20mins, use a
computer, drink, and do not have
housing problems. In contrast, they
do not often do word games, sew or
knit, and Smoke.

4 Same profile as in cognitive cate-
gory.

5 Most individuals often have mild
activities, read, do word games,
walk 20mins, use a computer,
drink, and do not have housing
problems. In contrast, they do not
often sew or knit and Smoke. mild
activities and use computers

Table 5.2: Profiles of individuals in each cognitive category based on the
attribute categories frequencies.

Years of Education Age

Cogn
1 11.51 76.22
2 12.42 73.12
3 12.95 71.47
4 13.44 70.28
5 14.34 68.83

Table 5.3: Mean number of years of education and age per cognitive cate-
gory.
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Figure 5.2: Projection of the HRS data with principal component analysis
with different cognitive categories configurations. The x and y axes respec-
tively correspond to the first and second components which explain 19%
and 12% of the total inertia (variance).

amine the behavior of each lifestyle factor in the clusters produced by CFE
and cat-ECM, we use the test value statistic [138] defined by Equation (5.1).

Given a sample of objects and their classes (obtained clusters from the
algorithms in our case), the test value determines the significance of the
variables in each cluster. For numerical variables, the test value compares
the mean of each variable to the overall mean of the sample. Similarly, for
categorical data, the test value compares the proportions of the correspond-
ing categories of the variables in the clusters to the overall proportion of
the category in the sample. As all the input variables of CFE and cat-ECM
are categorical, we use the test value for categorical which is given by the
following equation

Let 0; be the category for which we want to compute the test value in a
cluster (e.g C). Let ?;/� be the proportion of the category in C and =� be
the number of objects in C. Let ?; be the overall proportion of the category
and = the total number of objects in the sample. The test value (referred to
as vTest) is then defined by

E)4BC (0;) =
√
=� ×

?;/� − ?;√
= − =�
= − 1

× ?; × (1 − ?;)
. (5.1)

As it can be noted in Equation (5.1), the test value is similar to a z-score
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and is approximately normally distributed [138]. Therefore, critical values
for a two-sided significance test at 5% are −1.96 and 1.96. A negative (re-
spectively positive) value of the test value indicates that the proportion of
the corresponding category in the cluster is statistically lower (respectively
greater) than the overall proportion of the sample. From this value, by con-
sidering category 1 for each lifestyle factor, we can determine the influence
of the latter factors on cognitive health11.

In the next subsections, we describe the protocol of the experiments, the
materials used to conduct the experiments, and the results of the cluster
analysis.

5.2.3 Experimental protocol

In the experiments, we run the CFE and cat-ECM algorithms over ten runs
with different initialization and computed the mean scores and standard
deviations. We use the test value to determine the statistical significance of
each attribute category in the obtained clusters. Then, we compare the test
values of the lifestyle factors categories in the clusters to the corresponding
test values in each cognitive category.

5.2.4 Parameter settings

To run the experiments, we set the number of clusters of CFE and cat-ECM
to the number of cognitive categories (5) and the values of parameters <
and U of the CFE algorithm respectively to 1.1 and 14−2. For cat-ECM we
set V to 1.1, U to 1.4 and d to 6.

5.2.5 Materials

We use the same materials presented in Chapter 3 and 4 in the experiments.

5.2.6 Results

In this subsection, we present the mean scores of CFE and cat-ECM on
the HRS data set followed by comparisons of clusters obtained from the two
methods and the comparisons of the test values of the attribute categories
with the corresponding test values in the five cognitive categories.

11As the factors considered in the cluster analysis are binary, the test value can be
computed for both categories 0 and 1. The test values of one category are sufficient for
determining the influence of the corresponding factor. Therefore, we choose to compute
the test values associated with the category 1.
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PC PE RI FRI FS

CFE 0.87 (0.06) 0.19 (0.09) 0.67 (0) 0.65 (0.01) 0.26 (0.02)
cat-ECM 0.65 (0.07) 0.63 (0.07) 0.64 (0.02) 0.59 (0.02) 0.29 (0.04)

Table 5.4: Mean scores of CFE and cat-ECM on HRS data set. The val-
ues in brackets correspond to the standard deviations. For external mea-
sures the scores are computed between the cognition variable (Cogn) and
the obtained clusters.

Comparisons of scores and partitions

Table 5.4 corresponds to the mean scores and standard deviations obtained
with CFE and cat-ECM. From this table, CFE obtain the best perfor-
mances except for the FS score. In addition to the score comparisons, we
also compared the hard partitions obtained from CFE and cat-ECM. For
this purpose, we compute the relative and absolute frequencies of each cogni-
tive category in the clusters. Figure C.1 and C.2 in Appendix C correspond
respectively to the frequencies obtained from CFE and cat-ECM. It can be
first noted on the latter figures that all the clusters from the two methods
contain the five cognitive categories. Second, we can note that based on
the absolute frequencies of cognitive categories some clusters (1 and 3 for
CFE and 1 and 2 for cat-ECM ) contains mostly individuals with cognitive
categories 1 and 2. Similarly, the clusters 2 and 5 for CFE and 3 and 5
for cat-ECM contain mostly individuals with cognitive categories 4 and 5.
Third, in both of the two partitions, we can note that there is a cluster
(cluster 4 for CFE and cat-ECM ) in which the five cognitive categories are
approximately uniformly distributed. Consequently, for CFE we merge the
clusters 1 and 3 (referred to as C{13}, which contains 1466 objects) and the
clusters 2 and 5 (referred as C{25} and contain 2086 objects). For cat-ECM
we merged the clusters 1 and 2 (referred as C{12} and contain 1990 objects)
and the clusters 3 and 5 (referred as C{35} and contain 1768 objects). We
let the cluster 4 of the two methods which contains respectively 424 and 218
objects and referred it as C{4}.

The new relative and global percentage of cognitive categories are re-
ported in Figure 5.3 and Figure 5.4 for respectively CFE and cat-ECM.

Remark 15. Merged clusters from CFE and cat-ECM are note C{...} (e.g
C{25}) whereas the focal sets from cat-ECM are noted C25, C12 etc...

In the next subsection, we present the results of the statistical compar-
isons.
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Figure 5.3: Relative and global percentage of cognitive categories in
merged clusters from CFE.

Figure 5.4: Relative and global percentage of cognitive categories in
merged clusters from cat-ECM.
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Comparisons of test values

We use the test value as an alternative to the analysis of the marginal ef-
fects in Figure 5.1 to determine the effect of each lifestyle factor on cognitive
health. We first compute the test values of the lifestyles (category 1 for each
lifestyle factor) in each cognitive level (see Figure C.3 in Appendix C). The
latter test values correspond to the expected values when there is a 1-to-1
correspondence between cognitive categories and the clusters from CFE and
cat-ECM. As we merge the clusters of orchid older adults with low and high
cognitive categories, we also combine cognitive categories 1 and 2 and 4 and
5 in the cognition variable Cogn. The cognitive category 3, representing the
dandelions is kept as is. The obtained test values are summarized in Figure
5.5. We can note in this figure a similar opposite effect of the lifestyle factors
on cognition such as in the analysis of the marginal effects in Figure 5.1.
Indeed, while the test values of most of the lifestyle factors categories are
significant for individuals with low and high cognitive categories, only a few
lifestyles are significant (Use Computer 2.9 and Drink 2.5) for individuals
with cognitive category 3.

As a quick reminder, a positive (respectively negative) test value of a
lifestyle factor category indicates that the individuals in the corresponding
class have a significantly high (respectively low) percentage of that category
compared to the overall category frequency. Therefore, in cognitive class
{12} the individuals do not often do mild activities, do not often read, do
not often do word games, do not often use a computer, do not often sew or
knit, do not often walk 20 min, have housing problems, do not often drink
and often smoke. These results are overall consistent with the marginal ef-
fect analysis. We can note that the most significant lifestyle factor is Use
Computer which is also consistent with the marginal effect analysis.

Figures 5.6 and 5.7 correspond respectively to the test values of the
merged clusters from CFE and cat-ECM. It can be noted that there is an
opposite behavior of the lifestyle factors in the classes with respectively low
and high cognitive category. We can also notice that the test values in
cluster C{4} from CFE and cat-ECM are overall lower than those of the
preceding two classes. In the latter cluster, for CFE the lifestyles factors Use
Computer and Housing problems are not significant (their test values are
respectively −1.77 and −0.48), for cat-ECM the test value is not significant
only for lifestyle factor Sew/Knit. From these observations, the test values
of merged clusters from CFE and cat-ECM that contain orchids of older
adults are consistent with the analysis of the marginal effects. For clusters
C{4} from the two methods that contain uniform distribution of the five
cognitive categories, the test values should be interpreted with cautions as
explained few paragraphs later.
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Figure 5.5: Test values of lifestyle factors categories in each cognitive cate-
gory where the classes {12} and {45} correspond respectively to the merge
of cognitive categories 1 and 2 and 4 and 5. The class {3} corresponds to
cognitive category 3.
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Figure 5.6: test values of lifestyle factors categories obtained from the
hard partition of CFE. The classes {14} and {235} correspond respectively
to the merging of clusters 1, 4 and 2, 3, 5 and correspond to older adults
respectively with low and high cognitive levels.

To take advantage of the evidential partition generated from cat-ECM
with the number of clusters equals 5, we compute the hard partition of the
focal sets by assigning the objects to the clusters with the highest member-
ship degree. We then compute the test values of each lifestyle factor. Figure
5.8 describes the distribution of cognitive categories in each focal set. In the
latter figure, the bars correspond to the number of objects in cognitive and
focal set categories.

It can be noticed in this figure that focal sets C1 to C5 contain respec-
tively mostly cognitive categories 3, 4, 1, and 2. For Ω, the most frequent
cognitive category is 3. We can also note that subsets with cardinality two
successfully retrieve individuals in corresponding singletons. For instance,
the subset C12 contains mostly individuals with cognitive categories 3 and
4 which correspond to the highest cognitive categories respectively in sin-
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Figure 5.7: test values of lifestyle factors categories obtained from the
hard partition of cat-ECM. The classes {12} and {345} correspond respec-
tively to the merging of clusters 1, 2 and 3, 4, 5 and correspond to older
adults respectively with high and low cognitive levels.
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Figure 5.8: Distribution of cognitive categories in focal sets obtained from
cat-ECM.

gletons C1 and C2. Figure 5.9 corresponds to the Venn diagram of the focal
sets which shows the ability of cat-ECM to capture uncertainty in object
assignments to clusters. Indeed, individuals in subsets with cardinality 2
are expected from cluster assignments as it is known in the literature that
in addition to individuals with high sensitivity (orchids) and low sensitivity
(dandelions) there also exists individuals with medium sensitivity referred
to as tulips [139].

We compute the test values of each lifestyle factor of the focal sets from
cat-ECM. The results are reported in Figure 5.10. We can note in that fig-
ure that the test values of subsets C13 (2 objects), C14 (3 objects), C24 (3
objects), and C25 (10 objects) are the lowest. This observation is due to the
sensitivity of the test value to the sample size. Indeed, as it can be noticed
in Equation 5.1, there is a factor

√
=� which corresponds to the number

of objects in the corresponding cluster the test value is computed. Hence,
when the number of objects is multiplied (respectively divided) by 100 the
value of the test is multiplied (respectively divided) by 10. In Figures 5.6
and 5.7, there is a factor about 2 and 3 between the merged clusters of CFE
and cat-ECM and the clusters C{4}.

In the next section, we discuss the results of the statistical analysis.
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Figure 5.9: Venn diagram from the focal sets obtained from cat-ECM. The
numbers correspond to the number of objects in each subset.
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Figure 5.10: Test values of focal sets obtained from cat-ECM.
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5.3 Discussions

The statistical analysis results described in the previous section show that
CFE and cat-ECM are able to successfully capture older adults in the HRS
data set with similar cognitive categories. While orchid older adults are
identified by the two methods in different clusters, most of the dandelions
older adults are assigned into the merged clusters of CFE and cat-ECM, and
the clusters C{4} in which there is a uniform distribution of all cognitive
categories. The latter distribution can be explained by the fact that CFE
and cat-ECM are frequency-based clustering methods. Indeed, as described
in Table C.1 in Appendix C, the most frequent categories of the lifestyle
factors in cognitive levels 2 and 3 on one hand and 3, 4, 5 in another hand
are similar. As CFE and cat-ECM cluster centers are based on the fre-
quencies of the attributes categories, it is then not surprising to observe the
distribution of individuals with cognitive level 3 in other clusters.

Despite the sensitivity of the test value to the sample size, the results of
our analysis show promising results as we use unsupervised learning com-
pared to the ordinal logistic regression used in [1]. Indeed, with cluster
analysis even with desired output classes such as in our case (cognitive cat-
egories), there is no guarantee that the obtained clusters will correspond or
be similar to the output classes. In addition, supervised learning methods
such as the ordinal logistic regression are able to capture non-linear relation-
ships between dependent and independent variables in particular in health
data sets that are known to be mostly non-linear [140]. Therefore, CFE and
cat-ECM which are linear methods show encouraging results.

5.4 Conclusion

In this chapter, we investigate the replication of new findings on the impact
of environmental factors on the cognitive health of older adults. Our re-
sults show that older adults with low and high cognitive levels that behave
positively when the conditions are positive and negatively when the latter
are negative represent the environment-sensitive individual - orchids. Older
adults with mild cognitive levels that are less sensitive to environmental
conditions represent environment non-sensitive individual - dandelions. In
our process of replication, we use the most significant lifestyle factors from
[1] and use cluster analysis with CFE and cat-ECM as an alternative to
the logistic regression-based model used by the authors. We first compare
the scores of the internal and external measures of PC, PE, RI, FRI, and
FS of CFE and cat-ECM. Based on these scores, CFE produced better per-
formances compared to cat-ECM. In the next step, we compare the hard
partitions of the two methods with the cognitive variable. From the latter
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comparisons, we merge some clusters of the two methods and compute the
statistical test values which compare the proportions of lifestyle factors cat-
egories in the obtained clusters to their overall proportions in the sample.
From the results of this analysis, we determine the most significant lifestyle
factors categories in each cluster which show opposite interactions between
lifestyle factors and cognitive health similar to the original findings. On
the overall, CFE and cat-ECM capture all cognitive categories. While the
orchid’s older adults are approximately grouped as expected, the dandelions
were distributed among clusters. The latter observation can be explained
by the fact the frequencies of the lifestyle factors categories or dandelions
are similar to the orchids and as CFE and cat-ECM are frequency-based
methods. Nonetheless, our methods were able to capture imprecision and
uncertainty of object assignments into the clusters. Finally, the obtained
results show new research directions of the replication of orchid and dande-
lion phenomenon in older adults with cluster analysis.

Improvements of our experimental results can consist in first, selecting
a statistical measure less sensitive to the sample size such as Cohen effect
size [141]. Second, the two clustering methods CFE and cat-ECM can
be applied to the original lifestyle factors without binarization used in [1].
Third, different parameter settings of the clustering methods can be used as
we limit our analysis to several chosen parameters.

Key points

• The analysis of the dataset HRS in [1] led to the observation of the or-
chid and dandelion phenomenon in older adults. We conduct a cluster
analysis to investigate the replication of the findings.

• We use CFE and cat-ECM in the cluster analysis. The statistical test
values computed from the obtained clusters show opposite behavior
of the lifestyle factors on orchids older adults with low and high cog-
nitive categories. The two methods distributed the dandelions older
adults into other clusters with one of the clusters containing a uniform
distribution of all cognitive categories.

• Our analysis shows encouraging results despite 1) the sensitivity of
the test value statistic to the number of objects in clusters, and 2) the
linearity of CFE and cat-ECM in contrast to the non-linear method
used in [1].

Publications and Communications

The results of cluster analysis have been presented in several laboratory
meetings. We are planning to publish these results in an international jour-
nal.

143



Conclusion and perspectives

Conclusion

In this report, we propose two new clustering methods for categorical data.
The first method referred to as CFE, uses the fuzzy sets theory to model
the imprecision of object assignments to clusters and cluster centers. The
second method referred to as cat-ECM uses the Dempster-Shafer theory of
evidence to model the uncertainty of object labeling.

We introduce the CFE algorithm, an extension of the fuzzy k-modes
clustering method. The objective function of CFE incorporates Shannon’s
entropy as a regularization function of the weights of attribute categories
which indicate their importance. We conduct several experiments on nine
data sets with different characteristics to compare the performance of CFE
against existing numerical and categorical clustering methods. The compar-
isons are based on five evaluation criteria with both internal and external
measures. In addition to these measures, we perform statistical compar-
isons based on critical difference diagrams. The results of the comparisons
show that overall there is not a statistical significance between the methods.
Nonetheless, CFE achieved good performance and sometimes even better
than numerical clustering methods such as fuzzy c-means. As many clus-
tering methods, CFE presents some limitations that we discussed and some
solutions have been proposed to handle these issues. The main strengths of
CFE hold on the ability to capture fuzzy boundaries in categorical data and
the fuzzy representation of the centers of the clusters that can help to have
more interpretability of the results.

We present the cat-ECM clustering algorithm which is an extension of
the numerical evidential c-means (ECM ) algorithm. The new method has
the same objective function as ECM. Despite the use of fuzzy sets theory for
cluster centers representation, the updating formula of singletons obtained
through an alternate optimization scheme are hard. In the experiments, we
use the same data sets and evaluation criteria as for CFE. The performance
comparisons of the methods over the nine data sets show that overall there
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is no statistical difference. Moreover, we compare the evidential partitions
of cat-ECM and ECM based on the consistency with the true classes of
objects and the nonspecificity. The results of these comparisons with some
parameter settings highlight that, the partitions obtained from cat-ECM are
preferable to those obtained with ECM.

Finally, we present a real-world application of CFE and cat-ECM in
which we investigate the replication of new findings on the influence of en-
vironmental conditions on the cognitive health of older adults. To that end,
we use the most significant lifestyle factors from the study [1] and use the
two new methods as alternatives to the ordinal logistic regression model that
leads to the findings. The test values statistics are alternative to the anal-
ysis of the marginal effects used by the authors. The results of the analysis
show that CFE and cat-ECM were able to successfully capture older adults
with high sensitivity to environment labeled orchids. Similar to orchid older
adults, the methods were also able to capture dandelion older adults who
have low sensitivity to environmental conditions. Due to the use of attribute
category frequency similarities among the two types of individuals, the dan-
delion’s older adults were uniformly distributed in the clusters containing
orchids with low and high cognitive levels.

Perspectives

Several research directions can be proposed to improve the performances of
the new methods and to develop new clustering methods:

• The use of non-linear dissimilarity measures into the objective func-
tions of CFE and cat-ECM. As reported in [140], most health data sets
features have non-linear relationships. Therefore, a modification of the
objective function such as a non-linear distance can be used to capture
these relationships. Other alternatives such as density, kernel, graph,
and manifold fuzzy clustering approach [142] can be investigated.

• CFE and cat-ECM can be extended to fit time series data by using
for instance categorical time series dissimilarity measures such as in
[143]. These extensions can for example be used on all the waves of the
HRS dataset in order to capture the dynamic evolution of the lifestyle
factors and cognitive health.

• New clustering methods that can handle both numerical and categori-
cal data at the same time can be derived by combining CFE and FCM
in one hand and cat-ECM and ECM in another hand.

• The updating formula of the centers of singletons of cat-ECM is cur-
rently hard. To take advantage of fuzzy centers, penalization functions
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can be used on the weights of attribute categories such as Shannon’s
entropy used in CFE and the L2 penalization defined as follows:

| |, | |2 =
2∑
:=1

?∑
;=1

=;∑
C=1

(F (C)
:;
)2, (5.2)

where , is the matrix of attributes categories weights, 2, ? and =; are
respectively the number of clusters, the number of attributes and the
number of categories per attribute.

• Feature selection process can be incorporated into the objective func-
tions of the developed clustering methods by associating a weight to
each attribute. The latter corresponds to the importance of the at-
tribute and can be optimized by solving the optimization problems
associated to the methods. In high dimensional data such as Health
data, the feature selection can be used to determine the most relevant
features in the data.

• In order to match the attribute categories frequencies in the data sets
to the weights obtained by CFE, frequency-based dissimilarity mea-
sures of categorical data can be used (see [144]).

• With the fuzzy representations of the centers and their ability to model
imperfect data, applications of CFE and cat-ECM can be considered
in explainable artificial intelligence to explain classifiers.

Two Ph.D. theses are planned to continue the work of this thesis. In addi-
tion, masters internships and school projects are expected.
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A — Complementary exper-
iments results on CFE

A.1 CFE scores

This Section contains the scores of CFE with different values of V on the
datasets used in the experiments in Chapter 3. Optimal scores are in bold.

A.1.1 Rand Index (RI)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 1 1 1 1 1 0.93 0.95 0.97 0.95 0.95
Zoo 0.93 0.92 0.88 0.89 0.98 0.88 0.87 0.87 0.94 0.82
Breast 0.62 0.62 0.58 0.61 0.56 0.58 0.56 0.54 0.57 0.63
Lung 0.64 0.64 0.62 0.61 0.64 0.58 0.62 0.6 0.61 0.59
Credits 0.67 0.67 0.67 0.67 0.68 0.67 0.68 0.67 0.67 0.67
Votes 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Cars 0.49 0.51 0.51 0.5 0.48 0.51 0.51 0.49 0.52 0.48
Dermatology 0.86 0.77 0.76 0.76 0.78 0.74 0.68 0.59 0.64 0.22
Mushrooms 0.51 0.51 0.52 0.53 0.52 0.52 0.53 0.53 0.53 0.52

Mean 0.72 0.71 0.7 0.7 0.71 0.69 0.68 0.67 0.69 0.63
Standard deviation 0.18 0.17 0.17 0.17 0.19 0.15 0.15 0.17 0.16 0.21

Table A.1: RI scores obtained with CFE with different values of V on the
datasets.
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A.1.2 Fuzzy Rand Index (FRI)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 1.0 0.98 0.95 0.92 0.9 0.85 0.83 0.81 0.79 0.77
Zoo 0.93 0.92 0.87 0.86 0.94 0.85 0.82 0.81 0.85 0.67
Breast 0.53 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.5 0.51
Lung 0.64 0.62 0.58 0.57 0.56 0.53 0.53 0.53 0.52 0.52
Credits 0.66 0.65 0.64 0.62 0.62 0.61 0.60 0.58 0.57 0.57
Votes 0.7 0.7 0.69 0.69 0.68 0.67 0.67 0.66 0.65 0.64
Cars 0.48 0.49 0.5 0.49 0.48 0.5 0.49 0.5 0.5 0.5
Dermatology 0.84 0.7 0.65 0.63 0.61 0.54 0.51 0.5 0.5 0.5
Mushrooms 0.58 0.59 0.6 0.62 0.6 0.6 0.59 0.58 0.58 0.57

Mean 0.71 0.69 0.67 0.66 0.66 0.63 0.62 0.61 0.61 0.58
Standard deviation 0.18 0.17 0.15 0.15 0.16 0.14 0.13 0.12 0.13 0.09

Table A.2: FRI scores obtained with CFE with different values of V on
the datasets.

A.1.3 Fuzzy Silhouette Index (FS)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 0.47 0.48 0.49 0.49 0.5 0.47 0.48 0.49 0.48 0.48
Zoo 0.47 0.50 0.51 0.49 0.61 0.50 0.51 0.51 0.65 0.46
Breast 0.16 0.17 0.18 0.18 0.19 0.19 0.2 0.2 0.21 0.29
Lung 0.12 0.12 0.11 0.12 0.13 0.12 0.14 0.13 0.15 0.13
Credits 0.23 0.24 0.25 0.26 0.29 0.28 0.29 0.27 0.27 0.28
Votes 0.54 0.55 0.56 0.57 0.57 0.58 0.59 0.59 0.6 0.6
Cars 0.11 0.12 0.12 0.12 0.13 0.13 0.17 0.15 0.15 0.14
Dermatology 0.20 0.17 0.18 0.19 0.2 0.18 0.14 0.11 0.15 0.25
Mushrooms 0.23 0.24 0.25 0.26 0.26 0.27 0.28 0.28 0.28 0.28

Mean 0.28 0.29 0.29 0.30 0.32 0.30 0.31 0.3 0.33 0.32
Standard deviation 0.17 0.17 0.18 0.17 0.19 0.17 0.17 0.18 0.2 0.16

Table A.3: FS scores obtained with CFE with different values of V on the
datasets.
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A.1.4 Partition Coefficient (PC)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 1.0 0.98 0.94 0.90 0.85 0.78 0.72 0.67 0.62 0.58
Zoo 0.99 0.96 0.86 0.86 0.87 0.80 0.72 0.69 0.65 0.35
Breast 0.77 0.73 0.70 0.67 0.64 0.63 0.61 0.59 0.59 0.58
Lung 0.96 0.89 0.74 0.63 0.55 0.48 0.43 0.4 0.38 0.37
Credits 0.99 0.93 0.85 0.80 0.76 0.73 0.7 0.68 0.65 0.64
Votes 0.98 0.96 0.95 0.93 0.92 0.90 0.88 0.87 0.85 0.83
Cars 0.82 0.75 0.65 0.57 0.50 0.44 0.33 0.26 0.26 0.26
Dermatology 0.91 0.64 0.53 0.46 0.41 0.27 0.25 0.25 0.25 0.25
Mushrooms 0.96 0.90 0.83 0.78 0.73 0.70 0.67 0.64 0.63 0.60

Mean 0.93 0.86 0.78 0.73 0.69 0.64 0.59 0.56 0.54 0.50
Standard deviation 0.08 0.12 0.14 0.16 0.18 0.20 0.21 0.21 0.20 0.20

Table A.4: PC scores obtained with CFE with different values of V on the
datasets.

A.1.5 Partition Entropy (PE)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 0 0.04 0.11 0.21 0.32 0.45 0.56 0.65 0.75 0.83
Zoo 0.02 0.08 0.25 0.30 0.29 0.44 0.61 0.69 0.81 1.48
Breast 0.34 0.40 0.44 0.49 0.52 0.54 0.56 0.58 0.59 0.6
Lung 0.07 0.21 0.48 0.66 0.77 0.88 0.96 0.99 1.02 1.04
Credits 0.02 0.14 0.25 0.32 0.38 0.42 0.46 0.49 0.51 0.54
Votes 0.03 0.06 0.08 0.11 0.14 0.16 0.19 0.22 0.25 0.28
Cars 0.28 0.44 0.64 0.80 0.93 1.04 1.24 1.36 1.37 1.38
Dermatology 0.15 0.64 0.84 0.97 1.07 1.34 1.38 1.39 1.39 1.39
Mushrooms 0.07 0.18 0.28 0.35 0.41 0.46 0.50 0.54 0.55 0.58

Mean 0.11 0.24 0.37 0.47 0.54 0.64 0.72 0.77 0.8 0.9
Standard deviation 0.12 0.21 0.25 0.29 0.32 0.37 0.39 0.4 0.39 0.44

Table A.5: PE scores obtained with CFE with different values of V on the
datasets.

A.2 Critical difference diagrams

This section contains complement figures of the critical difference diagrams
and some data used in the comparisons.
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A.2.1 FRI and RI scores of CFE, FC* and FCM on the
datasets

Table A.6: FRI scores obtained with CFE, FC*, and FCM for V = 1.9 on
the datasets. This table correspond to the data for the critical difference
diagram in Figure 3.5.

CFE FC* FCM

Soybean 0.79 0.79 0.68
Zoo 0.85 0.8 0.73
Breast 0.5 0.5 0.57
Lung 0.52 0.53 0.5
Credits 0.57 0.57 0.5
Votes 0.65 0.66 0.62
Cars 0.5 0.49 0.5
Dermatology 0.5 0.51 0.5
Mushrooms 0.58 0.57 0.5

Table A.7: RI scores obtained with CFE, FC*, and FCM for V = 2 on
the datasets. This table correspond to the data for the critical difference
diagram in Figure 3.6.

CFE FC* FCM

Soybean 0.95 0.85 1
Zoo 0.82 0.87 0.89
Breast 0.63 0.51 0.87
Lung 0.59 0.59 0.67
Credits 0.67 0.67 0.56
Votes 0.76 0.76 0.79
Cars 0.48 0.48 0.54
Dermatology 0.22 0.56 0.66
Mushrooms 0.52 0.57 0.77
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A.2.2 Partition Coefficient critical difference diagrams

Figure A.1: Critical difference diagram obtained for PC scores with W =
0.1 and V = 1.6.

Figure A.2: Critical difference diagram obtained for PC scores with W =
0.1 and V = 1.7.

Figure A.3: Critical difference diagram obtained for PC scores with W =
0.1 and V = 1.8.

Figure A.4: Critical difference diagram obtained for PC scores with W =
0.1 and V = 1.9.
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A.2.3 Partition Entropy critical difference diagrams

Figure A.5: Critical difference diagram obtained for PE scores with W =
0.1 and V = 1.6.

Figure A.6: Critical difference diagram obtained for PE scores with W =
0.1 and V = 1.7.

A.2.4 Fuzzy Silhouette Index critical difference diagrams

Figure A.7: Critical difference diagram obtained for FS scores with W = 0.7
and V = 1.8.
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B — Complementary exper-
iments results on cat-
ECM

B.1 cat-ECM scores

In this section, scores of Ccat-ECM with different values of V on the nine
datasets are provided. The optimal scores are in bold.

B.1.1 Rand Index (RI)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 0.84 1.0 1.0 0.91 0.89 1.0 1.0 0.83 0.81 0.82
Zoo 0.88 0.94 0.93 0.95 0.86 0.92 0.91 0.89 0.96 0.86
Breast 0.51 0.52 0.52 0.51 0.51 0.51 0.52 0.52 0.51 0.51
Lung 0.62 0.63 0.62 0.59 0.32 0.48 0.52 0.6 0.6 0.61
Credits 0.67 0.67 0.71 0.71 0.67 0.71 0.71 0.71 0.71 0.71
Votes 0.76 0.79 0.79 0.79 0.76 0.79 0.79 0.76 0.79 0.79
Cars 0.48 0.49 0.48 0.49 0.48 0.48 0.49 0.47 0.48 0.49
Dermatology 0.79 0.72 0.74 0.74 0.69 0.66 0.54 0.67 0.52 0.6
Mushrooms 0.67 0.55 0.57 0.69 0.63 0.63 0.63 0.63 0.63 0.63

Mean 0.69 0.7 0.71 0.71 0.65 0.69 0.68 0.68 0.67 0.67
Standard deviation 0.14 0.18 0.18 0.16 0.18 0.19 0.19 0.14 0.16 0.13

Table B.1: RI scores obtained with cat-ECM with different values of V on
the datasets.
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B.1.2 Fuzzy Rand Index (FRI)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 0.74 0.94 0.9 0.84 0.79 0.78 0.72 0.70 0.67 0.67
Zoo 0.86 0.89 0.92 0.91 0.82 0.8 0.78 0.77 0.76 0.69
Breast 0.52 0.51 0.51 0.51 0.5 0.5 0.5 0.50 0.50 0.5
Lung 0.58 0.55 0.54 0.52 0.5 0.5 0.5 0.51 0.51 0.51
Credits 0.65 0.63 0.63 0.61 0.59 0.58 0.57 0.56 0.56 0.55
Votes 0.71 0.7 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.63
Cars 0.47 0.49 0.49 0.49 0.5 0.5 0.5 0.49 0.49 0.5
Dermatology 0.73 0.57 0.55 0.54 0.52 0.51 0.51 0.51 0.50 0.51
Mushrooms 0.94 0.66 0.65 0.64 0.62 0.61 0.59 0.58 0.58 0.57

Mean 0.69 0.66 0.65 0.64 0.61 0.6 0.59 0.58 0.58 0.57
Standard deviation 0.15 0.16 0.16 0.15 0.12 0.12 0.1 0.10 0.09 0.08

Table B.2: FRI scores obtained with cat-ECM with different values of V
on the datasets.

B.1.3 Fuzzy Silhouette Index (FS)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 0.38 0.48 0.49 0.46 0.46 0.5 0.5 0.37 0.37 0.37
Zoo 0.42 0.55 0.57 0.55 0.49 0.52 0.52 0.61 0.57 0.5
Breast 0.11 0.19 0.20 0.15 0.15 0.15 0.21 0.12 0.15 0.15
Lung 0.11 0.11 0.09 0.08 NaN 0.05 0.03 0.12 0.11 0.18
Credits 0.27 0.25 0.33 0.33 0.31 0.33 0.33 0.72 0.33 0.72
Votes 0.54 0.57 0.58 0.58 0.59 0.6 0.6 0.6 0.61 0.62
Cars 0.12 0.12 0.14 0.14 0.15 0.15 0.15 0.16 0.16 0.15
Dermatology 0.15 0.12 0.15 0.19 0.07 0.21 0.25 0.09 NaN 0.06
Mushrooms 0.26 0.25 0.27 0.29 0.35 0.36 0.36 0.36 0.36 0.36

Mean 0.26 0.29 0.31 0.31 0.32 0.32 0.33 0.35 0.33 0.35
Standard deviation 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.24 0.19 0.23

Table B.3: FS scores obtained with cat-ECM with different values of V on
the datasets.
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B.1.4 Partition Coefficient (PC)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 0.96 0.92 0.86 0.77 0.67 0.58 0.52 0.46 0.42 0.40
Zoo 0.89 0.88 0.85 0.77 0.71 0.63 0.56 0.47 0.44 0.43
Breast 0.74 0.70 0.66 0.63 0.6 0.59 0.57 0.55 0.56 0.55
Lung 0.72 0.59 0.48 0.44 0.33 0.34 0.34 0.35 0.35 0.34
Credits 0.96 0.86 0.78 0.73 0.69 0.66 0.64 0.62 0.59 0.59
Votes 0.98 0.95 0.93 0.91 0.89 0.86 0.84 0.81 0.79 0.77
Cars 0.78 0.63 0.51 0.43 0.38 0.35 0.32 0.31 0.29 0.29
Dermatology 0.71 0.37 0.32 0.28 0.26 0.25 0.25 0.25 0.25 0.25
Mushrooms 0.93 0.78 0.73 0.69 0.66 0.63 0.61 0.59 0.58 0.57

Mean 0.85 0.74 0.68 0.63 0.58 0.54 0.52 0.49 0.47 0.47
Standard deviation 0.11 0.19 0.20 0.20 0.21 0.19 0.19 0.17 0.17 0.17

Table B.4: PC scores obtained with cat-ECM with different values of V on
the datasets.

B.1.5 Partition Entropy (PE)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Soybean 0.07 0.15 0.28 0.46 0.64 0.81 0.91 1.02 1.09 1.12
Zoo 0.18 0.21 0.3 0.50 0.64 0.8 0.96 1.18 1.25 1.27
Breast 0.37 0.44 0.5 0.54 0.58 0.59 0.61 0.63 0.62 0.63
Lung 0.48 0.69 0.87 0.93 1.1 1.1 1.09 1.08 1.08 1.09
Credits 0.08 0.24 0.35 0.42 0.47 0.51 0.54 0.56 0.59 0.59
Votes 0.04 0.08 0.12 0.15 0.19 0.23 0.27 0.3 0.34 0.37
Cars 0.39 0.69 0.92 1.05 1.15 1.21 1.26 1.28 1.31 1.32
Dermatology 0.52 1.16 1.26 1.32 1.37 1.38 1.38 1.38 1.38 1.38
Mushrooms 0.12 0.33 0.4 0.46 0.51 0.54 0.57 0.59 0.61 0.62

Mean 0.25 0.44 0.56 0.65 0.74 0.8 0.84 0.89 0.92 0.93
Standard deviation 0.19 0.35 0.38 0.37 0.38 0.37 0.37 0.38 0.38 0.38

Table B.5: PE scores obtained with cat-ECM with different values of V on
the datasets.
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B.2 Critical difference diagrams

B.2.1 Rand Index critical difference diagrams

Figure B.1: Critical difference diagram obtained for RI scores with W = 0.1
and V = 2.

Figure B.2: Critical difference diagram obtained for RI scores with W = 0.1
and V = 1.1.

B.2.2 Fuzzy Silhouette Index critical difference diagrams

Figure B.3: Critical difference diagram obtained for FS scores with W = 0.1
and V = 1.1.
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Figure B.4: Critical difference diagram obtained for FS scores with W = 0.1
and V = 2.

B.3 Partitions comparisons

This section contains complement figures of the partition comparisons results
in Chapter 4. The partitions are described in Table 4.1.

Figure B.5: Nonspecificity against Consistency obtained on the Zoo
dataset with V = 2.
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Figure B.6: Nonspecificity against consistency obtained on the Votes
dataset with V = 2.
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Figure B.7: Nonspecificity against consistency obtained on the Credits
dataset with V = 2.
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C — Complementary real-world
applications results

In this appendix, supplement results of the experiments conducted in Chap-
ter 5 are provided.

C.1 Descriptive statistics on the HRS dataset

The following table describes the most frequent attributes categories of the
HRS dataset. Variables in this table are presented in Table 5.1.

Cogn 1 2 3 4 5

Mild Activities top 0 0 1 1 1
freq 66 54 52 62 62

Read top 1 1 1 1 1
freq 71 80 80 86 88

Word Games top 0 0 0 0 1
freq 72 67 60 58 50

Use Computer top 0 0 1 1 1
freq 68 53 61 69 81

Sew/Knit top 0 0 0 0 0
freq 96 95 95 92 91

Walk 20min top 0 1 1 1 1
freq 53 50 51 54 56

Housing Problems top 0 0 0 0 0
freq 78 77 84 84 87

Drinks top 0 1 1 1 1
freq 52 53 64 65 72

Smokes top 0 0 0 0 0
freq 79 81 82 82 86

Table C.1: Frequencies in % of lifestyle factors categories.
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C.2 Frequencies of cognitive categories in clusters

In this section, the relative and absolute frequencies of the five cognitive
categories in each cluster obtained on the HRS dataset from CFE and cat-
ECM are provided.

Figure C.1: Relative and absolute cognitive categories frequencies in clus-
ters from CFE.
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Figure C.2: Relative and absolute cognitive categories frequencies in clus-
ters from cat-ECM.

C.3 Test values in each cognitive categories

Figure C.3 corresponds to the test values in each cognitive category. These
values represent the expected test values if the is a 1-to-1 correspondence
between the five clusters obtained from CFE and cat-ECM and the cognitive
categories.
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Figure C.3: vTests of lifestyle factors categories in each cognitive cate-
gories where the classes {12} and {45} correspond respectively the merged
of cognitive categories 1 and 2 and 4 and 5. The class {3} corresponds to
the cognitive category 3.
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[13] C. Kahraman, B. Öztaysi, and S. C. Onar, “A comprehensive litera-
ture review of 50 years of fuzzy set theory,” International Journal of
Computational Intelligence Systems, vol. 9, pp. 3–24, 2016.

[14] A. Rényi et al., “On measures of entropy and information,” in Pro-
ceedings of the Fourth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Contributions to the Theory of Statistics,
The Regents of the University of California, 1961.

[15] C. Beck, “Generalised information and entropy measures in physics,”
Contemporary Physics, vol. 50, no. 4, pp. 495–510, 2009.

[16] A. B. Templeman, “Entropy and civil engineering optimization,” in
Optimization and Artificial Intelligence in Civil and Structural Engi-
neering, pp. 87–105, Springer, 1992.

[17] R. Zhou, R. Cai, and G. Tong, “Applications of entropy in finance: A
review,” Entropy, vol. 15, no. 11, pp. 4909–4931, 2013.

[18] C. Adami, “Information theory in molecular biology,” Physics of Life
Reviews, vol. 1, no. 1, pp. 3–22, 2004.

[19] K. D. Bailey, Social entropy theory. SUNY Press, 1990.

[20] V. P. Singh, Entropy theory and its application in environmental and
water engineering. John Wiley & Sons, 2013.
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