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Abstract

During the design stage of product manufacturing, the designers try to specify only the nec-
essary critical dimensions or what is called “Key Characteristics”. Knowing that dealing with
Key Characteristics is time consuming and costly, it is preferable to reduce their number and
exclude the non-contributing parameters. Different strategies that are based on qualitative or
quantitative approaches for the identification of these dimensions are followed by the compa-
nies. The common way is to define the critical functional requirements which are expressed
in terms of dimensions. When the functional requirements are set as critical, all the involved
dimensions are labelled as Key Characteristics. However they do not have the same importance
and need to be classified between contributing and non-contributing parameters. There is not
a quantitative method that serves for the identification of Key Characteristics in the critical
functional requirements. This thesis suggests numerical methodologies which are steps forward
to a better ranking of the Key Characteristics.

The first methodology is based on the global sensitivity analysis and more precisely on
Sobol’ approach. The sensitivity of the Non Conformity Rate corresponding to the production of
the product is measured with respect to the variable parameters characterizing the dimensions.
The method is applied, first on a simple two-part example, and on a system having a linearised
functional requirement and finally on a system with two non-linear functional requirements. The
results show the main effects of the dimensions in addition to their interactions. Consequently
it is possible to prioritize some and neglect the effect of the others and classify them respectively
as Key Characteristics or not.

The second methodology is based on iso-sensitivity tolerance allocation. It takes into
consideration the tolerance intervals, the capability requirements and the mathematical for-
mulation of the topological loop comprising the studied dimensions. This method consists of
considering that all the dimensions involved in a critical functional requirement have equal
sensitivities, and then estimate the corresponding tolerance intervals to match what is called



Abstract

“Iso-sensitivity tolerance allocation”. This is done under the conditions that are required by
the companies for a high quality production. The condition to be satisfied is that the Non
Conformity Rate should be equal to a target value. So this is an optimization problem with an
objective to have equal sensitivities and equality constraints on the Non Conformity Rate to
estimate the tolerance intervals. First a design is proposed and then an optimal design is found
after applying the proper optimization algorithm. The estimated tolerance intervals are then
compared to reference tolerance values that can be achieved by the manufacturer. So when a
tolerance interval for a corresponding dimension cannot be achieved, it is considered as a Key
Characteristic.

Finally both methodologies are applied on an over-constrained system, showing their abil-
ity to be extended to industrial cases.

Keywords: Tolerance analysis, Tolerance allocation, Key Characteristic, Sensitivity analy-
sis, Non Conformity Rate
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General Introduction

Context

This thesis is within the project AHTOLAND (Advanced Hybrid TOLerance ANalysis software
Diffusion). This project is funded by the FUI (Fonds Unique Interministériel) and joins the
LCFC - Arts et Métiers Paris Tech Campus of Metz, Sigma Clermont of the Institut Pascal,
Phimeca, Mécamaster, Pierburg, Valeo and Radiall. Each partner has a specific role to play,
as represented in Figure (1), to guarantee the success of the project. This project offers the
development of new methods that will address challenges for the tolerance analysis. It will
take into account the form defects, the deformability of parts and the sensitivity analysis.
Consequently, two objectives have to be fulfilled in the AHTOLAND project:

1. Industrialisation: introducing to the market a new software that enhances the value of the
scientific developments of previous and current projects: Tolsis. This software is based on
powerful methods of probabilistic tolerancing. It needs to be compatible with CAD software
and to new functionalities for a more detailed and realistic tolerance analysis. It covers the
following subjects:

- Tolerance analysis of over-constrained mechanisms.

- Verification of specifications.

2. R&D (Research and Development) :

- Development and implementation of tolerance analysis approaches by taking into account
the form defects (Goka, 2019).

- Analysis of the overall sensitivities of the tolerances and capabilities on the
failure probabilities or the Non-Conformity Rates (NCR). This is the idea con-
sidered in this work.
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Academic Partners

Project Leaders

End Users

Figure 1 – AHTOLand Project presentation.

Problematic

Manufacturing high quality products with reduced costs necessitates to monitor properly the
different phases of the production. The manufacturing of the products is a process subjected to
uncertainties. The uncertainties are revealed by the geometrical imperfections that the prod-
ucts are subjected to. The imperfections cause unfavourable effects on the performance of the
system. In addition, it is impossible to have the same geometries of the product parts, so it is
probable to have defects especially in mass productions. To prevent undesirable consequences
of these imperfections, it is preferable to consider them during the design phase. The proba-
bilistic approach provides a suitable framework to consider such imperfections, the dimensions
of a part can be modelled using random variables and the uncertainties are subsequently prop-
agated to the response of the system. The scatter associated with the system’s performance is
characterized, which allows designers to ensure the fulfilment of the quality requirements.

One of the main sources of uncertainty in products consisting of mating or interconnecting
sub-components is the variation arising from manufacturing processes. The ability to design
components when variations are presented is the goal of tolerancing. Tolerancing is therefore
an important part of design phase and a key element that should be considered when dealing
with robustness of any product. Tolerancing decisions should respect the limited capabilities
of the required manufacturing processes as well as the functionality of the product. Tolerance
analysis procedure’s objective is to study the impact of variations of an analysed dimension or
geometric feature for a given Geometric Dimensioning and Tolerancing (GD&T) scheme.

Generally, designers provide the manufacturers with drawings for the designed products
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where they specify the nominal dimensions and the corresponding allowable tolerance intervals
as well as the critical dimensions, i.e. the dimensions with a major impact on the performance of
the system. This is an important matter as additional inspection efforts are deployed during the
manufacturing for the critical dimensions. Consequently, a large number of critical dimensions
will cause high costs of production, so they need to be reduced as much as possible. The critical
dimensions are named Key Characteristics (KC) in this work.

Objectives of the thesis

Based on the stated problematic, this thesis aims to develop new approaches for the identi-
fication of Key Characteristics in a tolerancing framework. This is achieved by fulfilling the
following objectives:

O1 Understanding the tolerancing schemes and frameworks adopted in manufacturing pro-
cesses as well as the existing strategies to identify the KCs.

O2 Establishing a link between the statistical parameters defining the random variables and
the manufacturing processes capabilities.

O3 Developing the new approaches based on sensitivity analysis methods that should be
selected properly depending on the problem statement.

O4 Demonstrating the proposed approaches on study cases as well as industrial examples.

Uncertainty Quantification methodology

In order to reach the objectives described above, it is necessary to understand and follow
the steps of the Uncertainty Quantification methodology. The uncertainties in the geometric
dimensions and their propagation to the quantity of interest should be taken into account.
The different steps of this methodology are presented in Figure (2) and they are the following
(Pasanisi and Dutfoy, 2012):

Step A. The first step consists in specifying the model which can be defined analytically or
by a computer code. This step also includes specifying model inputs that are either random
or deterministic. Then the quantity of interest is defined, it can be the model output, or the
probability to exceed a threshold.

3
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Step B. The second step consists in quantifying the sources of uncertainties affecting the
input variables. This can be achieved by modelling the probability density function of the
random input variables. Modelling uncertain input variables can be done based on historical
data or on the expert opinion, or even by direct observation of the model outputs. In the
scope of this work, it is required to set the relation between the statistical parameters defining
the random input variables and the tolerance intervals deduced from the manufacturing
process capabilities.

Step C. The third step necessitates propagating uncertainties to estimate the quantity of
interest. In the scope of this work the failure probability (or NCR) is the most considered
output quantity. Various methods can be applied for the computation of this quantity such
as the analytical formula, Monte Carlo sampling strategies, approximation methods (FORM,
SORM), etc.

Step D. The fourth step involves analysing the sensitivity of the quantity of interest to the
inputs in order to rank uncertainty sources. This step is well established in this manuscript
since the sensitivity analysis is used as a tool to attain the objectives of the work.

Figure 2 – Uncertainty quantification methodology.

Organisation of the thesis

This manuscript is divided into five chapters which are presented as follows:

Chapter I draws up a review on the existing tolerance analysis methods, as well as the
available KCs identification practices.

Chapter II consists in an overview of the various sensitivity analysis methods and the
reliability sensitivity measures.
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Chapter III describes the first proposed approach for the identification of KCs. This
approach is based on the Sobol’ sensitivity indices.

Chapter IV describes the second approach proposed for the identification of the KCs. It
is based on the concept of iso-sensitivity tolerance allocation.

Chapter V illustrates the application of the two proposed approaches on an industrial
example.

Publications and communications

Some of the work carried out during this thesis has been published and presented in journals
and conferences:

Journal paper:
Idriss D, Beaurepaire P, Homri L, Gayton N (2020) Key Characteristics Identification by
Global Sensitivity Analysis. International Journal on Interactive Design and Manufacturing
(IJIDeM) 14(2):423-434. (Idriss et al., 2020)

International conference:
Idriss D, Beaurepaire P, Homri L, Gayton N (2018) Key Characteristics Identification by
Sensitivity Methods. Procedia CIRP, 75:33-38. (Idriss et al., 2018)

National conference:
Idriss D, Beaurepaire P, Homri L, Gayton N (2019) Key Characteristics Identification based
on Tolerance Allocation by Iso-Sensitivity. 24ème Congrès Français de Mécanique, Brest,
France.

International workshop:
Idriss D, Beaurepaire P, Homri L, Gayton N (2019) Key Characteristics Identification by iso-
sensitivity tolerance allocation. 17th International Probabilistic Workshop 2019- Edinburgh,
Scotland.
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Chapter I
Tolerance Analysis and Key Characteristics

I.1 Introduction

This chapter is divided into two main parts. The first part defines the tolerance analysis and
describes the common practices used in this context. Then, the probabilistic approaches that
have been used in previous works in the tolerancing context are detailed. These approaches
are used to estimate the failure probability of the system. The purpose of the first part is to
understand the basic notions of tolerance analysis schemes and to build the framework of the
problem statement of this thesis. The second part of this chapter states the existing definitions
of the Key Characteristics in the literature. Then, it sets the definition on which the work
of this thesis is based. Moreover, this part reviews some common practices used for the Key
Characteristics identification.

I.2 Tolerance analysis

The tolerance analysis, is a tool used in the design stage to verify that the geometric specifica-
tions and tolerances of the parts of a product are well respected and do not affect the assembly
and functionality of this product. The designer takes into account the manufacturing condi-
tions and works to add specifications expressing the acceptable variations from the nominal
model. These specifications are called tolerances and are defined with respect to ISO and ANSI
standards. Tolerances are defined as the acceptable deviations in the geometry and positioning
of parts in a mechanical assembly, to guarantee its functionality. According to Chase et al.
(2004), tolerances do not only affect the ability to assemble the final product, but also the cost
of production, process selection, tooling, installation cost and operator skills. They also affect



Chapter I

the engineering performance and robustness of a design. These tolerances should be analysed
to estimate the effects on the capability of a design to meet its design requirements using tol-
erance analysis. Tolerance analysis is a method for understanding how variations in different
dimensional or geometric tolerances affect the behaviour of a mechanical system with respect
to functional requirements. Dantan et al. (2012) have stated that the tolerance analysis makes
it possible to estimate the impact of geometrical and dimensional variations of dimensions on
the final assembly, as well as its performance. The integration of the tolerance analysis into
the product design cycle process is essential and affects the quality of the product, its cost and
its performance (Dantan et al.,2012).

The main objective of tolerance analysis is the evaluation of the quality of the product for
given design data such as the tolerance intervals. The analysis must therefore use a mathe-
matical formulation that is most representative of reality, and that is able to take into account
geometrical deviations and gaps. The essential concerns to consider in tolerance analysis are
the following (Dantan et al., 2012):

- The development of the tolerancing techniques such as worst-case searching and statistical
analysis.

- The models for representing the geometrical deviations.

- The mathematical model for calculating the system behaviour with deviations.

I.2.1 Basic concepts of tolerance analysis

Functional Characteristic

The design of a mechanical system is established with respect to the functional characteristic
on the quantity of interest. A functional characteristic can be modelled by a function relating
a chain of dimensions. The dimensions are modelled by random variables X that influence the
functional characteristic Y . In the case of an explicit function f , the functional characteristic
is written as following:

Y = f(X) (I.1)

This function depends on the mechanical system, it is explicit when the mechanical system is
simple. In the design of mechanical systems, the engineers’ challenge is to find the right com-
promise between manufacturing cost and product quality. The manufacturing cost is directly
related to the part tolerance intervals, imposed by the designer on the manufacturer. The
tighter these intervals are, the more costly is the production. From the analysis objectives, two
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techniques have been used for the tolerance analysis, the worst case tolerance analysis and the
statistical tolerance analysis.

Worst case tolerance analysis

The worst-case tolerance analysis involves establishing the dimensions and tolerances such that
any possible combination produces a functional assembly, i.e. the probability of non-assembly
is identically equal to zero. It considers the worst possible combinations of individual tolerances
and examines the functional characteristic (Greenwood and Chase, 1987; Scholz, 1995). The
worst-case method calculates the tolerance tY of the resulting dimension as an arithmetic sum
of tolerances ti of all partial dimensions. The variation interval is expressed as:

tY =
n∑
i=1
|ai| ti (I.2)

where ai is the linear coefficient of every dimension Xi and ti is the tolerance associated to Xi.

Statistical tolerance analysis

The statistical analysis, unlike the worst case method, does not result in a zero failure proba-
bility. It allows a certain number of non-compliant assemblies (Evans, 1975; Greenwood and
Chase, 1987; Scholz, 1995). The variation interval is given by the following expression:

tY =
√√√√ n∑
i=1

(aiti)2 (I.3)

The advantage of the worst-case method is that it guarantees a zero failure probability. How-
ever, it results unnecessarily tight tolerances and hence high production costs. In manufacturing
processes the tight tolerances require more efforts and hence high production costs. Designing
by using the worst-case analysis guarantee that the parts will assemble and function properly,
however, it is an expensive way to design. In the other hand, the statistical tolerancing, is a
more practical and economical way of looking at tolerances and works on setting the tolerances
so as to ensure a desired yield. For this reason, the statistical tolerancing is adopted in this
work.

I.2.2 Modelling of the geometrical variations

For the design of a mechanical part, the designer starts by setting the nominal geometry of
this part, this geometry remains perfect. However, it is impossible to manufacture the exact
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geometry of the part due to sources of variations that can affect the manufacturing process. The
imperfections in manufacturing processes are caused by form defects or geometrical deviations.
They are also called manufacturing deviations (Ballu et al., 2008). The geometry of a part is
shown in Figure (I.1). The three different surface models are the following:

- Nominal surface: is the perfect surface which dimensions and position ideally match the
design dimensions.

- Real surface : is the actual surface of the manufactured parts which are subjected to all
the imperfections produced during the manufacturing, measurement and assembly process
(ISO17450-1).

- Substitution surface: is often used to approximate the real surface without taking the form
defects into consideration. It is a representation of the real surface driven by a finite number
of parameters which ensure a compromise between the level of detail, the difficulty of calcu-
lation and the validity of the results. The orientations and positions of this model depend
on the real surface (Dantan, 2000).

Figure I.1 – Nominal surface and substitution surface related to the real surface (Dumas, 2014).

Assumptions of the work: The form defects are neglected in the work of this thesis. They
were taken into account in the work of Goka (2019) within the AHTOLAND project.

The geometrical deviations represent the deviations noted between the nominal surface
and the real one, they are expressed by random variables noted as the vector x = {x1 . . .xn}.
They are represented by:

- Dimensional deviations: they are specified for each substitution surface. They represent the
variation of the dimensions of the surface. For example, a cylinder dimensional deviation is
the variation of its diameter with respect to the nominal surface.
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- Positional deviations: they define the orientation and position of the substitution surface
with respect to the reference axis associated to the nominal surface.

One of the main steps of the tolerance analysis is the mathematical modelling of the devi-
ations. Numerous mathematical models exist in the literature for the modelling of the geomet-
rical deviations such as the vector loops (Chase and Parkinson, 1991), the Small Displacement
Torsors (SDT) (Bourdet et al., 1996; Dantan et al., 2005; Sergent et al., 2010; Qureshi et al.,
2012; Dumas et al., 2015), matrix representation (Gupta and Turner, 1993; Roy and Li, 1999;
Zou and Morse, 2004) and small kinematic adjustments (Walter et al., 2013). In the scope of
the AHTOLAND project the SDTs are used for the modelling of geometrical variables, therefore
the SDT method is adopted in this work. The concept of the SDT has been proposed by Bour-
det and Clement (1976) to characterize the geometrical deviations of manufactured surfaces.
The use of this method is done under the assumption that the produced parts are rigid bodies
and that their rotation is very small. A SDT of a plane is used to express the relationships
between the associated plane and the nominal plane in the origin of coordinates O. Two vectors
R and T are used to present respectively the rotations (α,β,γ) and the translations (u,v,w)
and are gathered in a SDT Tia/i of a surface a on a part i in a given base R0 and is expressed
as:

Tia/i =


αia/i uia/i

βia/i via/i

γia/i wia/i


R0

(I.4)

The gaps torsor is defined in a given base R0 and at a given point. A gap torsor represents
the possible displacement in position and orientation of a substitution surface with respect
to another of the two potentially contacting parts. The components of a gap torsor are free
variables. The variables sets are noted g. The expression of a gap torsor between a surface a
on part i and a surface a on part j is given by:

gia/ja =


αia/ja uia/ja

βia/ja via/ja

γia/ja wia/ja


R0

(I.5)

The gaps must be determined by the analysis method and depend on the types of contact
modelled (Dantan and Ballu, 2002).

Types of Contact

There exist three types of contact in the mechanical systems: fixed contact, slipping contact
and floating contact (see Figure (I.2)) (Dantan and Ballu, 2002).
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- Fixed contacts have contact surfaces held in a particular position because of a mechanical
stress which prevents any relative displacement of the two surfaces during the use of the
mechanism. The components of the gap torsor in this type of contact are set to zero on the
assumption that the surfaces are free from form defects.

- The slipping contacts have their connecting surfaces also maintained by a mechanical ac-
tion which allows tangential displacements during normal use; non tangential relative dis-
placements (normal displacements, displacements relative to the normals of the surfaces in
contact) are not possible. The components of the gap torsor in the cases of a slipping con-
tact are those of kinematic displacements i.e. displacements which are possible. The other
components are set to zero or to known specific values.

- Floating contacts are contacts where all the relative displacements of the two surfaces are
possible (tangential and normal displacements). The floating contact torsor has all the
components of the six degrees of freedom which are unknown.

Figure I.2 – Types of contacts (Dantan and Ballu, 2002).

I.2.3 Modelling of the geometrical behaviour of a mechanism

The geometrical behaviour of a mechanism is defined by various hulls such as:

- Compatibility equations: Cc(x,g) = 0.
The compatibility equations represent the relations between small displacements of the sur-
faces. The geometrical behaviour of the mechanism is defined by the composition relations
of displacements in the topological loops (Ballot and Bourdet, 1997; Dantan and Ballu,
2002). The compatibility equations between the deviations and the gaps are derived from
the composition relations. These equations define the propagation of the geometrical devia-
tions and the gaps in an assembly. It is necessary to know the equations relating the different
deviations and gaps to characterize the equilibrium between the positions and orientations

12



Tolerance Analysis and Key Characteristics

of the different parts of the mechanism. The topological structure of a mechanical system
is represented by a graph. The graph is composed of multiple topological loops. Every loop
starts from a point to end at the same point (see Figures (I.3) and (I.4)). Every loop allows
to write six compatibility equations, each one written according to the axes of each torsors’
component (3 translations and 3 rotations).

Figure I.3 – Example of a mechanism of three parts.

Figure I.4 – The graphical representation of the mechanism with topological loops.

- Interface constraints: Ci(x,g)≤ 0 and Ci∗(x,g) = 0.
The interface constraints limit the displacements relative to two substituted surfaces and
characterise the non-interference or association between these surfaces that are nominally in
contact (Walter et al., 2013). Then, the gaps between the two substituted surfaces are lim-
ited. The interface constraints depend on the type of surface contact. For a floating contact,
the relative positions of the substitution surfaces are constrained by the non-interference, so
the interface constraints are defined by inequalities Ci ≤ 0. For a fixed or slipping contact,
the relative positions are constrained by mechanical actions, so the corresponding interface
constraints are defined by equality equations Ci∗ = 0 (Dantan and Ballu, 2002).

- Functional requirement: Cf (x,g)≥ 0.
The functional requirement limits the orientation and/or the location between surfaces,
which are in functional relation. It represents the constraints on one or many functional
characteristics set for the mechanism. The expressions of the functional characteristics
can be written in function of the geometrical parameters by defining a topological loop
passing through the functional joint. It is then possible to write one or more compatibility
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equations taking into account the functional characteristic(s). It is possible to consider
several functional topological loops if several surfaces involved in contact are of functional
interest.

I.2.4 Tolerance analysis for over-constrained systems

An over-constrained system is a mechanical system where the response function between Y and
X is implicit. When the system is over-constrained, the gaps should be taken into account. For
this type of systems, the quality of the product is measured by taking into consideration two
different conditions: the assembly condition and the functionality condition.

- Assembly condition: a mechanism with gaps must be assembled despite the geometric devi-
ations and without there being any interpenetration between its parts.

- Functionality condition: the functional requirements for one or several functional character-
istics should be respected to ensure the functionality of the system after being assembled.
The variations of the functional characteristic are caused by the geometrical deviations and
by the gaps.

Two different approaches can be distinguished for the formulation of the tolerance analysis
problem: tolerance accumulation, and displacement accumulation.

1. Tolerance accumulation: the purpose of tolerance accumulation is to simulate tolerances
linearly. The acceptable geometrical deviations are established geometrically through an
allowable deviation domain. The bounds of this domain are defined by the specified toler-
ances on the components of the mechanism. For the gaps, the allowable displacement domain
ensures the non-penetration of the contact surfaces. Several techniques exist to represent
the allowable deviations such as: deviation domain (Giordano et al., 1999; Giordano et al.,
2003), T-Map® (Ameta et al., 2011), or specification hull (Morse and You, 2013). These
techniques are based on the use of different domains:

- Deviation Domain: the deviation domain represents the range of allowable variations of
the components modelling the displacement with respect to their tolerance zones. For the
deviation domains, only the variable components of the torsor of the small movements are
used to create the variation space. The space is also defined using geometrical deviations.
The values of the tolerances set the boundaries of the deviation domains (Ameta et al.,
2011). Figure (I.5) is an example of a deviation domain for a rectangular plane with a
normal ~z subjected to a location tolerance of tl value. The deviation domain limits three
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components: the tz translation along the ~z axis and the rx and ry rotations around the
x and y axes. The boundaries of the domain are defined by the values of the tolerance tl
and lengths a and b of the sides of the rectangular plane.

Figure I.5 – Representation of the deviation domain for a rectangular plane with dimen-
sions (a and b) and a normal vector ~z subjected to a tolerance t.

- Gap domain (or clearance domain as found in the literature): the gap domain represents
the space of the allowable variations of a surface compared to another. The domain is
not necessarily completely closed. Figure (I.6) shows a gap domain of a cylinder-cylinder
connection with an ~z axis and of which the difference in diameters is equal to J . The
gap domain shows the displacement tx, ty and tz translation components so that no
interpenetration is possible of matter. The translation component tz along the ~z of the
joint axis is not limited because it is a degree of freedom of the connection.

Figure I.6 – Representation of the gap domain for a cylinder to cylinder joint of z axis
and J difference in diameters.

- Functional domain: the functional domain is a specific gap domain that characterizes the
functional requirement. It is a permissible variation range for the functional characteristic
aspects of the mechanism (Ameta et al., 2011).

- Accumulation of the domains: the influence of deviations and gaps cannot be studied
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independently. The mechanism as a whole must be taken into account. The equations of
compatibility from the topological loops of the mechanism are used to combine deviation
and gap domains to build accumulation domains called residual gap domains (Mansuy,
2013). The intersection of residual gap domains allows to build the resulting gap domain.

The tolerance accumulation mainly uses the worst-case method of analysis. This method
consists of defining the part dimensions and tolerances in such a way that all possible com-
binations of parts can be assembled, i.e. probability that a mechanism doesn’t assemble is
zero. For the functional requirement study, the worst combination of each possible deviation
is considered. Therefore, this type of analysis involves defining much tighter tolerances and
thus increase manufacturing costs resulting in possible over-quality (Hong and Chang, 2002).

2. Displacement accumulation: the displacement accumulation simulates the influences of
deviations on the geometrical behaviour of the mechanism. The geometrical deviations x
are modelled by random variables X whose distributions and their parameters are chosen in
accordance with the process of manufacturing and/or specified tolerances on components.
The displacement accumulation technique is based on the method of statistical analysis.
The purpose of this method is to consider that manufacturing variability has a sufficiently
controlled influence to ensure the quality of the production. In mass production, this means
allowing the production of a large number of products with a small proportion of the mech-
anisms not meeting the assembly requirements, or functionality. As a result, tolerances of
some components can be increased. This significantly reduces manufacturing costs. The
objective of the statistical analysis is to calculate the probability that the functional require-
ments and mountability conditions are met for given tolerances (Nigam and Turner, 1995;
Morse, 2018; Beaucaire et al., 2013). These probabilities are indicators of the quality of any
mechanism.

In fact, the calculated probability is the proportion of mechanisms that will not be mountable
or functional. From an industrial point of view, this probability is called Non-Conformity
Rate (NCR). According to the equations of the behaviour model, the assembly and functional
conditions are expressed as follows (Dantan and Ballu, 2002; Qureshi et al., 2012):

- Assembly condition: “If there exists on configuration of the mechanism such as the value
of the functional characteristic is less than or equal to the tolerance, then the geometrical
product requirement is respected". Mathematically speaking, it can be represented by the
quantifier ∃:

∃g ∈ Rm : {Cc(x,g) = 0∩Ci(x,g)≤ 0∩Ci∗(x,g) = 0} (I.6)
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- Functional requirement: “If for all configurations of the mechanism, the value of the func-
tional characteristic is less than or equal to the tolerance, then the geometrical product re-
quirement is respected". This condition uses the mathematical quantifier ∀:

Cf (x,g)> 0,∀g ∈ Rm : {Cc(x,g) = 0∩Ci(x,g)≤ 0∩Ci∗(x,g) = 0} (I.7)

In the case of assembly, checking the assembly condition is equivalent to checking the existence
of an admissible configuration of the mechanism such that all constraints are satisfied. As for
the functional requirement, it must be verified for all permissible configurations. However, it is
possible to check only one of them. It is sufficient to determine the permissible configuration
of the corresponding to the worst possible functional requirement. If for this configuration the
mechanism is functional, then it is functional for all permissible configurations. The difficulty
lies in in determining the worst case configuration.

I.2.5 Synthesis on the tolerance analysis

The tolerance analysis is an important quality measure for the manufactured products in
mass production. The two common policies to perform a tolerance analysis are the worst-case
and the statistical tolerancing. In one hand, the worst-case approach is used to ensure a zero
failure probability but engenders tight tolerances. In another hand, the statistical tolerancing
allows a certain number of non-functional systems but reduces the manufacturing costs. In the
context of the AHTOLAND project, the statistical approaches are adopted.

The dimensions included in the chains of dimensions are modelled as random variables.
Their distributions represent the manufacturing process. The uncertainty in the statistical
parameters propagates to the functional requirement and by consequence to Non-Conformity
Rate. The estimation of the Non-Conformity Rate can be performed by adopting the proba-
bilistic methods already used for reliability analysis and can be adapted to tolerance analysis
problems.

I.3 Probabilistic methods for tolerance analysis

This section describes briefly the probabilistic approaches to estimate the failure probability
when dealing with reliability problems. It summarizes some reliability methods that were
originally used in the structural reliability problems where the failure probability must be
estimated (Lemaire, 2009).
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I.3.1 Formulation of the failure probability

The uncertain parameters are modelled using the vector X = {X1 . . .Xn}. The vector of reali-
sations of a random variable is noted as x = {x1 . . .xn} ∈Dx. A failure state is defined using a
performance function G(x). Therefore, two domains can be defined:

1. Safe Domain Ds = {x ∈DX :G(x)> 0}.

2. Failure Domain Df = {x ∈DX :G(x)≤ 0}.

The two domains are separated by the zero performance function (G(x) = 0) called the limit-
state function. The reliability analysis becomes more difficult when the limit state function is
complex such for non-linear cases. The failure probability Pf is defined mathematically by:

Pf = Prob(G(X)≤ 0) (I.8)

This probability is also expressed by the joint density function fX(x) of X:

Pf =
∫
Df

fX(x)dx (I.9)

In most of the cases, Equation (I.9) does not have an analytical solution because either it is
impossible to integrate analytically the joint density function, or the failure domain Df has a
complex shape. Many reliability methods can be used for the calculation of the failure prob-
ability. Among these methods, the Monte Carlo (MC) simulation method, the approximation
methods such as FORM and SORM and the Importance Sampling (IS).

I.3.2 Monte Carlo simulation

Monte Carlo simulation is a widely used statistical analysis technique in engineering problems.
To estimate the failure probability, the MC sampling technique is employed. This sampling
technique consists of generating random or pseudo-random variables according to their prob-
ability distribution functions. The performance function is then evaluated and the number of
outcomes in the failure domain is counted. It is known that if the value of G(x) is less than
zero, it indicates failure. The MC simulation gives an approximation of the integral written in
Equation (I.9), an estimate of the failure probability can be expressed as:

Pf =
∫
DX

I(x)fX(x)dx (I.10)
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where I is an indicator function, defined by:

I(x) =
 1 if G(x)≤ 0

0 if G(x)> 0
(I.11)

The MC estimator of Pf is derived from the sample mean of the failure indicator function:

Pf ≈ P̃f
MC = 1

NMC

NMC∑
i=1

I(x(j)) (I.12)

where {x(j), j = 1 . . .NMC} are NMC independent samples of the random vector x, and NMC

is the sample size. This means that there is need to evaluate the performance function NMC

times to estimate the failure probability. Figure (I.7) shows the basic concept of the Monte
Carlo sampling technique in the physical space. The approximation P̃f becomes more accurate
when NMC tends to infinity. The accuracy of this approximation is estimated in terms of its
variance computed as:

Var(P̃f
MC) = (1− P̃f

MC)P̃f
MC

NMC
(I.13)

The statistical accuracy of the failure probability to be estimated is measured by the coefficient
of variation:

δ
P̃f

MC =

√
Var(P̃f

MC)

E
[
P̃f

MC
] ≈

1− P̃f
MC

NMC P̃f
MC

(I.14)

The less is the coefficient of variation, the better is the accuracy of the estimated failure
probability. It is noted from Equation (I.14) that the convergence rate of the Monte Carlo
simulation depends on NMC . It is proportional to 1/

√
NMC . It can be concluded that when

the failure probability to be estimated by the MC simulation get lower, a larger number of NMC

samples is needed. Alternative time reduced methods exist for the estimation of Pf such as the
approximations methods or the variance reduction technique such as the Importance Sampling
(IS). It is important to mention that the Monte Carlo simulation is the reference method when
the number of the simulations is enough for th estimation of Pf . The results’ accuracy from
alternative methods is checked by comparing them to the MC simulation results.
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Figure I.7 – Representation of Monte Carlo Simulation in the physical space.

I.3.3 Approximation methods

The approximation methods consist of replacing the limit state by an approximate form. These
methods are achieved through transforming the random variables X from their original physical
space DX into the variables U in the standard normal space Un. In the standard normal space,
the random variables follow the standard normal distribution (N (0,1)). Such transformations
are called iso-probabilistic transformation and are noted T :

U = T (X) (I.15)

They conserve the value of the failure probability. The performance function in the standard
normal space is noted H and is obtained as the following:

H(U) =G(T−1(U)) (I.16)

Pf = Prob(G(X)≤ 0) = Prob(H(U)≤ 0) (I.17)

The failure domain is now defined as Df = {u∈Un :H(u)≤ 0}. For the case of a non-correlated
Gaussian variable Xi, this transformation is simple and linear:

xi
T−→ ui = xi−µi

σi
(I.18)

where µi and σi are respectively the mean and the standard deviation of Xi. When the random
variable is independent and follow any distribution, the transformation is of the form:

xi
T−→ ui = Φ−1(FXi

(xi)) (I.19)
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where FXi
and Φ are the cumulative density functions of Xi and Ui. Different transformations

exists in the literature but not developed in this work such as the Rosenblatt transformation,
when the joint density is known, and the Nataf transformation, when the probabilistic model
is only made up of the marginal densities and of the matrix covariance (Lemaire, 2009).

Some methods require the identification of what is called the design point or the most
probable failure point noted as P ∗. It corresponds to the nearest point on limit state to the
origin of the standard normal space. The identification of this point is performed in the standard
normal space using the following optimization problem:

Find u∗such that

u∗ = Argmin||u||

s.t. H(u) = 0

(I.20)

where u∗ represents the coordinates of the design point P ∗. The distance between the design
point and the origin of the standard normal space is called the Hasofer-Lind index noted as β.

First Order Reliability Method: FORM

FORM consists in replacing the failure surface by a hyperplane tangent to the failure surface at
the design point in the standard normal space (see Figure (I.8)). The equation of the hyperplane
tangent to P ∗ is the following:

H̃(u) =
n∑
i=1

αiui+β = 0 (I.21)

where αi is the cosine direction of the variable Ui and allows the definition of the orientation of
the limit state. The hyperplane is orthogonal to the vector P ∗O and the approximated failure
domain is D̃f = {u ∈ Un : H̃(u)≤ 0}. The limit state is linearised using the first order Taylor
development around the point P ∗. The failure probability is given by:

Pf ≈ P̃f
FORM = Φ(−β) (I.22)

where Φ is the cumulative distribution of the standard normal density function.
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Figure I.8 – Concepts of FORM approximation.

Second Order Reliability Method: SORM

While FORM replaces the limit-state by hyperplane, SORM replaces it with a function of order
two (Lemaire, 2009). The Second Order Reliability Method (SORM) uses the second order
Taylor expansion to approximate the performance function at P ∗. The Second-order methods
improve the accuracy of first-order probability estimate by including curvature information at
the point P ∗, and approximating the failure surface by a quadratic surface (see Figure (I.9)).
As in FORM, it is necessary to identify the design point first. The difference between the first
and second-order estimates of the probability gives an indication of the curvature of the failure
surface. If there is a significant difference it suggests that the use of a reference method like
the Monte Carlo method that should be used to confirm the probability of failure estimate.

Figure I.9 – Concepts of SORM approximation.
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I.3.4 Importance Sampling

As stated previously, the main problem of the Monte Carlo method, when dealing with low
probabilities, is its time-consuming calculation. Importance sampling simulation has the ob-
jective of reducing the variance of Pf for a fixed calculation cost. The aim of this simulation
is to choose outputs of random variables in an area closer to the area of failure (Melchers,
1990). The outputs are centred around the point P ∗ such as shown in Figure (I.10), thus the
proportion of points belonging to the failure domain increases. This significantly improves the
accuracy of the failure probability. Consider another probability density function (pdf ) hX

called importance sampling pdf or instrumental pdf. The integral to be evaluated is then given
in the form of:

Pf =
∫
DX

I(x)fX
hX

hXdx (I.23)

The failure probability can also be defined as:

Pf ≈ P̃f
IS = 1

NIS

NIS∑
i=1

I(x(j))fX(x(j))
hX(x(j))

(I.24)

where {x(j), j = 1 . . .NIS} are NIS independent samples of the random vector x following the
pdf hX, and NIS is the sample size. The importance sampling density is selected to reduce the
variability of the term I(x(j)) fX(x(j))

hX(x(j)) . The variance of the Importance Sampling estimator is
given by:

Var
[
P̃f

IS
]

= 1
NIS

E
I(X)

(
fX(X)
hX(X)

)2−P 2
f

 (I.25)

The optimal importance sampling density function is defined as (Bucklew, 2004):

h(x) = I(x)fX(x)
Pf

(I.26)

The accuracy of the approximation given by importance sampling depends on the choice of the
probability density function. However, since the failure probability is not known, the optimal
importance sampling density function cannot be identified. This function is usually chosen
as a standard normal non-centred density such as: h(u) = ϕ(u−u∗) where u∗ represents the
coordinates of the design point in the standard normal space (Lemaire, 2009). Then the number
of points in the failure domain is higher and the estimation of the failure probability requires
less simulations.
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Figure I.10 – Representation of importance sampling simulation in physical and u-space.

I.3.5 Synthesis on the probabilistic methods

The probabilistic methods for reliability analysis will serve as a tool for the tolerancing problems
in this work. The concept of reliability methods is adopted with the following modifications:

- The term failure probability Pf is replaced by the NCR.

- The term performance function is replaced by the functional requirement.

This is done when the studied system is linear or non-linear. For over-constrained systems,
previous works exist where the reliability methods have been used in the tolerance analysis
problems to estimate the non-functionality or non-assembly probabilities of a system (Qureshi
et al., 2012; Dumas et al., 2015). The purpose of this work is not to find a tool for the
estimation of the NCR, but to study the effect of the tolerances associated to the dimensions
on this quantity of interest.

This study would enable to know the most and least contributing components in a chain
of dimensions and thus to eliminate the non-contributing components from the analysis. The
most contributing parts in a mechanical system are also known as Key Characteristics. Their
definition as well as the existing methods for their identification are detailed in the following.
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I.4 Key Characteristics

I.4.1 Definitions of Key Characteristics

Several definitions of the Key Characteristics can be found in the literature.
Definition 1. The European EN9100 has defined the KC “as an attribute on feature whose
variation has a significant effect on product fit, form, function, performance, service life".
Thornton has stated several definitions that have been collected from a variety of interviews
and work with companies (Thornton, 1999, 2004):
Definition 2. “Key Characteristics are designated to identify those part or assembly fea-
tures/interfaces where variation from nominal results in the greatest loss, statistical process
control (SPC) measurements are focused on these characteristics to minimize variation, ensure
capable processes and reduce unnecessary inspection requirements".
Definition 3. “A feature becomes a Key Characteristic if the variation from its nominal value
has significant effect on fit, performance, or service life of the product".
Definition 4. “Critical Parameters are the measurable design variables that directly affect the
performance of a system/subsystem".
Definition 5. “Significant Characteristics are those that are important to customer satisfac-
tion and require special control".
Definition 6. “Identifying features as important or critical does not make them good Key
Characteristics. If manufacturing cannot economically measure and chart such features, then
the basic requirement of a Key Characteristic—statistical control and process capability—cannot
be demonstrated".
Definition 7. “A Key Characteristic is a quantifiable feature of a product or its assemblies,
parts, or processes whose expected variation from target has an unacceptable impact on the cost,
performance, or safety of the product".
The last definition has been also adopted by Whitney (2006) and by Zheng et al. (2008).
Thornton (2004) has presented different vital notions that characterize a KC :

- The target value of the KC and the corresponding variation should be quantifiable. This
enables the evaluation of the production process whether it is convenient with the drawings
and allows the enhancement of the process.

- The expected variation of the KC must have important influence on the essential measures
such as the product cost, performance or safety.

- The expected variation of the KC should be probable. When the variation of is impossible
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to occur, the corresponding part is not a KC even if it has a significant impact on the system
measures.

The KCs can be categorized according to different point of views. Zheng and Chin (2005) have
classified the KCs into four categories based on the discipline of the characteristics :

- Geometric characteristics (such as dimension and tolerance, geometric tolerances, and rough-
ness).

- Mechanical characteristics (such as hardness and strength).

- Physical characteristic (such as weight).

- Chemical characteristic (such as chemical ingredients of component material, corrosion re-
sistance of surface).

In this work, since it is dealing with tolerancing problems, only geometric characteristics are
considered and more specifically the dimensions and tolerances of the parts involved in the
mechanical system.

Key Characteristics need special attention and efforts during their production for several
reasons:

- They have critical effects on the performance, safety or regulations of the mechanical system.

- There is a possibility that they will not be manufactured well due to the variations of the
process.

- They affect the satisfaction of the end customer, and may cause additional costs due to
adjustment of functionality, reliability and quality.

The identification of Key Characteristics engenders the following actions:

- Tightening tolerance intervals, increasing capability requirements.

- Monitoring manufacturing more regularly.

- No derogation possible on the desired level of quality.

- Means of control: specific repeatability and reproducibility on KCs.

26



Tolerance Analysis and Key Characteristics

Due to the high cost caused by these actions, the larger the number of dimensions set as KC
the higher is the cost of manufacturing. There is a need to reduce the number of KCs by
identifying only the necessary ones. The design department, in any manufacturing company,
work to have the highest quality of a product, by selecting concepts and dimensions to minimize
its sensitivity to variation. The majority of the products are transited into production after
encountering some variation-related problems. During this transition phase it is necessary to
verify that the products are within the required norms and to eliminate the excess variation.
The major problem in controlling the products is that there are thousands of tolerances given
by the designers. It is difficult and uneconomical to check and review all these values. Thornton
(1999) has stated that the organizations are using the KCs to overcome the problem of the large
number of tolerances to verify.

Different methods exist for the KCs’ identification. They can be distinguished between
qualitative and quantitative methods. The procedure of identifying the KCs needs a team
effort, and is done using any one or a combination of approaches (The Boeing Group, 1998).

I.4.2 Qualitative approaches

Some qualitative approaches are listed in the following:

- Risk Analysis: An analytic method using the ratings of selected criteria to identify significant
product or process characteristics for further study. Often the objective of this analysis is
to identify product characteristics that most influence the loss function. The criteria are
chosen such that they represent elements of the loss function. The criteria for the product
characteristics are then rated and multiplied together to produce a risk number representing
loss.

- Historical Data: It is convenient to begin a risk analysis having previous data on cause and
effect analysis. To estimate data on such things such as rejections, revise, discarded, unit
performance, test results, and warranty costs from actual or similar parts and assemblies, or
processes where patterns or repetitive nonconformities may indicate symptoms of root-cause
problems in a design or process.

- Flow-down: Some qualitative methods are based on the concept of the KC flow-down. To
flow down customer requirements is to identify end-item and high-level key characteristics.
To flow end-item or high-level key characteristics down to lower level key characteristics on
assemblies, components, details, processes and key process parameters. The KC flow-down
is a method that can identify the low level key characteristics such as the sub-assemblies of
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the product (The Boeing Group, 1998). However, the classification of the identified KCs is
not possible when KC flow-down approach is used. Dantan et al. (2008) have proposed an
information model, based on KC-Flowdown and some quantitative information, to formalize
and capitalize the causality between Manufacturing Process KCs and Part/Product KCs.

The lack of knowledge in the qualitative approaches pushed researchers to adopt quantitative
methods for the identification of KCs.

I.4.3 Quantitative approaches

Some quantitative approaches can be mentioned such as:

- Loss Function: to evaluate and compare the potential economic loss due to variation from
target of product features and characteristics. The greater the deviation from target, the
greater the loss. Exact loss is rarely known. The loss function is normally used conceptually
since it usually cannot be expressed explicitly. Thornton (1999) has identified the key
characteristics by applying a sensitivity analysis based on the Taguchi loss function. The
Taguchi loss function was used as a measure of the relative quality of the product-KC and
proposed a variation model to calculate the impact of a KC, which is dependent on the
sensitivity to the variation of product quality.

- Statistical variation: to study the overall variation of interacting dimensions by simulating
or statistically tolerancing combinations of components, where each component is defined in
terms of a statistical distribution.

I.4.4 Industrial practices

According to the EN16602-30-02 (2015), the Failure Mode and Effect Analysis (FMEA) is an
analysis by which each potential failure mode in a product is analysed to determine its effects.
It is a mutual examination tool for evaluating risks and reliability issues. It is a methodical
analysis of the failure modes of a product, process or project and how they take place, why they
occur, what effects the failure might lead to and what should be done in order to reduce the
risk. The FMEA is intended to recognize and evaluate potential failures of a product process
and the related effects, identify actions that could eliminate or reduce the chance of a failure
mode occurring, and document the process. The purpose of the FMEA is to find and prioritize
the potential failure modes so that the most efficient countermeasures are being deployed. The
FMEA is thus a tool for distributing resources to minimize the costs for unforeseen events along
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the product or process life cycle.
An extension of the FMEA with more quantitative focus that adds a criticality assessment to
the analysis - the so-called failure mode, effect and criticality analysis (FMECA). In FMECA,
the failure modes are classified according to their criticality, the combined measure of the
severity of a failure mode and its probability of occurrence (Reliability Analysis Center, 1968).
FMECA is one of the methods adopted by an important number of companies to control
the quality. It is a process that pushes industries to predict in order to not review later. It
is performed to examine the potential failures in products or processes, to evaluate the risk
associated with those failures, to classify them in terms of importance and to correct actions
that address the most critical concerns. FMECA is a methodical method of product or process
analysis that is implemented to identify potential failures that could affect the customer’s
expectations of product quality or process performance. It is relatively a new technique; it
started to be known in the early 1950s in the aerospace industries as flight control systems
became more complex (Military Standard, 1980). FMECA is a common method used for the
identification of critical chains (Reliability Analysis Center, 1968). In industrial practice, once
a chain od dimensions is set as critical, all the involved components are set as KCs (Van
Hoecke, 2013). This is a very conservative way to identify the KCs since the impact of these
parts is not the same. Some dimensions have first order impact and some others have reduced
impacts. The objective of this work is to develop methods for the identification of
the most influencing dimensions and classify them as KCs in one or several chains
of dimensions subjected to functional requirements. The approaches already mentioned
for the identification of KCs do not provide the uncertain impacts of each dimension in the
early design stage. Han et al. (2018) have detailed a review on the KCs, it is stated that both
the qualitative and the quantitative methods identify the key process characteristics. However,
the concern of this study is to identify the KCs in the design stage.

I.4.5 Synthesis on Key Characteristic methods

All the existing definitions of KC establish a relation between the variation from nominal with
the important measures of product. This variation decreases the quality of the product, and
dealing with this issue increases its cost. It is impossible to eliminate the variations, this is
why designers should find a way to improve the quality without increasing the cost. Based
on this information, the concern of this thesis is to identify the parts which variations have a
major impact on the failure probability of the product. It is believed that the identification
of KC would automatically decrease the cost of the product. The expected variations are
dependent of the tolerance intervals set for the dimensions and the capability requirements of
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the manufacturing process. Consequently, the approach to be followed should be quantitative,
compatible with tolerancing issues and applied in the design stage. The existing methods
for the identification of KCs do not give answers to the problematic of this work. Therefore,
it is needed to find quantitative new approaches based on sensitivity analysis that allow the
designers to set a reasonable number of KCs on the industrial drawings.

I.5 Conclusion

This chapter has set the general framework of the tolerance analysis. It provides a review on the
different techniques and assumptions that are adopted in tolerancing schemes. The described
strategies serve as the first three steps of the uncertainty propagation methodology.
This chapter also presents the most common strategies adopted in industries and companies
to identify the Key Characteristics. In the scope of this work, it is required to identify the
KCs in the design stage of the production, and to reduce the number of KCs in one critical
chain of dimensions already specified by the FMECA method. The existing KCs methods are
either qualitative or quantitative applied mainly in the process stage. They cannot be applied
to fill the objective of this work. The methods to be developed for this purpose are based on
sensitivity analysis approaches that need to be adapted to tolerancing problems. The sensitivity
analysis represent the backward step of the uncertainty propagation methodology. In the next
chapter, a review of the main sensitivity analysis methods is provided.
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II.1 Introduction

The sensitivity analysis, also known as importance ranking, is a further step of the uncertainty
propagation in uncertainty quantification such as presented in Figure (2). It is the estimation
of sensitivity or importance indices of the components of the uncertain input variables with
respect to a given quantity of interest in the output (see Figure (II.1)). De Rocquigny et al.
(2008) have presented the sensitivity analysis as a propagation step, or a post-treatment spe-
cific to the sensitivity indices considered, normally including some statistical analysis of the
input/output relations that generate quantities of interest involving the measure of uncertainty
in the outputs and inputs. Saltelli et al. (2004) have defined the sensitivity analysis as the
study of how the uncertainty of input parameters can influence the uncertainty of the output
of a model. The idea behind the sensitivity analysis is to know the importance of the input
design parameters. The performance of the system can be improved by dealing carefully with
these important parameters. Numerous sensitivity analysis methods exist in the literature and
are being developed progressively. Mokhtari and Frey (2003) have categorized the sensitivity
analysis methods as mathematical, statistical and graphical methods. Another manner to clas-
sify these methods depending on the problem setting is to distinguish between local sensitivity
analysis, screening and global sensitivity analysis. Borgonovo and Plischke (2016) have given
detailed review of the existing local and global sensitivity methods and then have interpreted
the results of the sensitivity analysis by giving a classical example. Iooss et al. (2015) have
explained the methodological framework of different global sensitivity analysis methods. In
this manuscript, two different points of view are adopted to categorize the sensitivity analysis
methods.
The first categorization differentiates between the model output and the reliability sensitivity
measures. This classification depends on the quantity of interest chosen for the output. The
sensitivity analysis model output methods are considered when the quantity of interest is the
model output Y . The reliability sensitivity analysis methods when the quantity of interest
is, either related to the failure domain or a safety measure such as a failure probability or a
reliability index (In this work it is the failure probability see Figure (II.1)). Chabridon (2019)
has compared clearly the two different methodologies. They are also presented briefly in this
chapter.

The second categorization distinguishes between the local and the global sensitivity meth-
ods, and depends on the investigated domain of the input variables.

- Local sensitivity analysis studies the local impact of inputs’ variations on model output
by focusing on the sensitivity around a set of an input value. Such sensitivities are often
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evaluated through gradients or partial derivatives of the model output at this input value.
The values of other inputs are fixed when studying the local sensitivity of a specific input.

- Global sensitivity analysis focuses on the output uncertainty over the entire range of values
of the input parameters. Global sensitivity analysis explores the parameter space so that
they provide robust sensitivity measures in the case of non-linearity and in the presence of
interactions between the parameters. Global sensitivity method gives more detailed results
than local ones. However, it is more time consuming.

Figure II.1 – Possible input and output choices for a sensitivity analysis.

II.2 Sensitivity analysis model output

The Sensitivity Analysis Model Output methods are found frequently in the literature (Iooss
et al., 2015, Borgonovo and Plischke, 2016). They have been commonly used for the analysis of
the model output of computer models. This section presents the most widely used sensitivity
methods and that can be adapted in the context of reliability sensitivity analysis.

II.2.1 Local sensitivity analysis

Local sensitivity considers the influence of the input parameters in the vicinity of a reference
point in the space of input parameters denoted by x(0) = (x(0)

1 ,x
(0)
2 , . . . ,x

(0)
n ). Mathematically,

the local sensitivity analysis consists in estimating the partial derivative with respect to each
variable input that characterizes the effect on the model around a nominal value such as the
mean of the input random variables. Let x(0) be a particular realization of the input vector.
The local sensitivity index is expressed by the following relation:

Si(x(0)) = ∂f

∂xi
(x(0)) (II.1)
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In case all the input parameters are not expressed in the same units (e.g. the stiffness of the
spring is in N/m; dimensions are in mm; a Young’s modulus in GPa, etc), then all the sensitivity
indices are not expressed in the same unit as well, therefore they cannot be compared. To
overcome this problem the elasticity coefficients may be used instead by applying the following
formula:

Ei(x(0)) = xi

f(x(0))
.
∂f

∂xi
(x(0)) (II.2)

The derivatives give information only on the reference point x(0) where they are calculated and
do not investigate the rest of the input factors. According to Saltelli et al. (2008), the main
limitation of the derivative-based approach is that it gives results that may not be representative
when dealing with non-linear models. To overcome this limitation, screening methods can be
used.

II.2.2 Screening methods: elementary effects and Morris method

The local methods already described in Section (II.2.1) discuss the variation of a model around
only one point in the input variables. They do not allow a complete investigation of the per-
formance of the model at various points in the model input space. Screening methods permit
to generalize the local index by evaluating it several times over the concerned domain. The
objective of the screening methods is to identify the most important variables from among a
large number. They are computationally cheap since they require a small number of model
evaluations (Saltelli et al., 2004). They were considered in order to evaluate models involving
tens or hundreds of model inputs. Computationally expensive methods of sensitivity analysis
can be excluded if a model comprises a large number of inputs and computationally expensive.
In such cases, a possible alternative is the use of screening methods, which enable the identi-
fication of the most important among many model inputs. The principal assumption is that
the number of important inputs in the model is small compared to the total number of inputs.
Therefore, the purpose of screening is to exclude unimportant inputs in order to concentrate
efforts on the most significant. Screening methods are based on a discretization of the inputs in
levels (grid), and the computation of indices is done on a point of this grid (Iooss et al., 2015).
The simplest screening design is the One-At-a-Time designs (OAT) design. It consists of using
a reference condition and then modifies each parameter individually to a higher and a lower
value, while keeping other parameters at the reference value. The difference between the out-
come for the high and the low value is then used as a measure of the influence of the parameter
on the system. The main advantage of this design is its simplicity and the fact that it only
requires 2n experiments, with n being the number of parameters studied.

34



Sensitivity Analysis Methods

The Morris method proposes an experimental plan composed of a set of randomised OAT
experiments (Morris, 1991). The first step of this method consists of mapping the space to a
n-dimensional hypercube Hn = [0,1]n. Then, the input space is discretised in p levels. The
experimentation region is a n-dimensional p-level grid (see Figure (II.2)). A number of OAT
designs is performed along the grid following random sample paths. The application of Morris
method necessitates the computation of elementary effects. It is achieved by perturbing one
input variable for every path. The elementary effect of the ith input variable is defined as:

EEi(x) = f(x1, . . . ,xi−1,xi+ ∆,xi+1, . . .xn)−f(x)
∆ (II.3)

where ∆ is the perturbation step, it is set as multiple 1/(p− 1). The number of elementary
effects within the unit hypercube for each input variable is pn−1[p−∆(p−1)], which follows
a given discrete probability density function noted as Fi. The sensitivity measures, µ and σ,
proposed by Morris are respectively the mean and the standard deviation of the distribution Fi.
The mean µ assesses the overall influence of the factor on the output. The standard deviation
σ estimates the ensemble of the factor’s higher order effects, i.e. non-linear and/or due to
interactions with other factors. Consider EEn,i is performed on the trajectory (j = 1, . . . , r)
relative to the variation of the parameter Xi. The equations corresponding to the mean and
the standard deviation are the following:

µi = 1
r

r∑
j=1

EEj,i (II.4)

σi =
√√√√1
r

r∑
j=1

(EEj,i−µi)2 (II.5)

Campolongo et al. (2007) have presented an improved version of the Elementary Effects method,
where a new measure µ∗i is defined which alone assesses the factors’ importance:

µ∗i = 1
r

r∑
j=1
|EEj,i| (II.6)

The use of the absolute value of the EEi allows to solve the problem of the effects of opposite
signs which occurs when the model is non-monotonic. Figure (II.3) is a representation of how
the input parameters can be presented in a σ−µ∗ diagram. The points that are in group A
are the less effective since they are the closest to the origin. The points in group B have a large
mean, that is, they have an important linear effect on the output. The points in group C have
a large mean and a large standard deviation, that is, they have important non-linear effect on
the output, or they interact with other factors.
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Figure II.2 – Representation of a four-level grid (p= 4) in a three-dimensional input space.

Figure II.3 – Representation of input parameters in σ−µ∗ diagram.

As a conclusion, screening methods are known to be efficient for an approximate but
fast investigation of the input. However, the results they provide are more qualitative than
quantitative. The global methods providing quantitative importance measures are detailed in
the next section.

II.2.3 Derivative based Global Sensitivity Measures (DGSM)

The global sensitivity estimator called Derivative based Global Sensitivity Measures (DGSM)
is a generalization of the Morris method. DGSM are obtained by implementing a global pro-
cedure where local derivatives are considered and not variations on a fixed grid. This allows
to take into consideration the input distributions. The DGSM estimator was first introduced
by Sobol and Gershman (1995) and more investigated later by Kucherenko and Iooss (2010,
2017); Kucherenko and Song (2017). The idea of this method is to average local derivatives
using Monte Carlo or Quasi Monte Carlo sampling methods. Assume X= (X1, . . . ,Xn) a n-
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dimensional vector of n independent Gaussian random variables, with joint probability density
function fX defined onDX, the DGSM index υi associated with the ith inputXi, is the following
(Sobol and Kucherenko, 2009):

υi =
∫
DX

(
∂f(x)
∂xi

)2
fXdx (II.7)

Other indices can be defined when the variables follow other types of probability distributions
such as uniformly distributed random variables over the unit hypercube Hn (Kucherenko and
Song, 2017). The sensitivity indices estimates from DGSM are more accurate than those
obtained from Morris that only considers local sensitivities to evaluate the sensitivity measures.
The DGSM strategy is less time consuming than other global sensitivity measures. However,
the results that provide are more qualitative than quantitative. This means that the variables
can be only classified as important or non-important.

II.2.4 Variance-based sensitivity analysis (Sobol’ Method)

One of the global sensitivity analysis methods, is the variance-based approach. It uses variance
as a measure of uncertainty, and seeks to apportion a model’s output variance into contributions
from each of the factors, as well as their interactions. One of the most used variance based
methods is the Sobol’ approach which is based on the work of Cukier et al. (1973). This
approach was first introduced by Sobol (1993). He has demonstrated that a square integrable
function f can be decomposed into integrands therefore the variance of the model is also
decomposed into fractions that are used then as inputs for the model. In other words, f can
be expressed as the sum of elementary functions such as:

Y = f(X) = f0 +
n∑
i=1

fi(Xi) +
∑ ∑

16i6j6n
fij(Xi,Xj) + . . .f12...n(X1,X2, . . . ,Xn) (II.8)

where f0 =E[Y ] =
∫
Hn f(X)fX(x) is a constant, and fX the product of n uniform marginals over

the domain [0, 1]. Similar relations are obtained for higher order terms of the decomposition:

fi(Xi) = E[Y |Xi]−E[Y ] (II.9)

fij(Xi,Xj) = E[Y |Xi,Xj ]−E[Y |Xi]−E[Y |Xj ]−f0 (II.10)

where E is the mathematical expectation. Assume that the model parameters are independent
or uncorrelated, the total variance of model output is composed of the variance from individual
parameters, and the variances from cooperative parameters. The proportion of variance result-
ing from individual and cooperative parameters to the total variance is applied to estimate the
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first order and interactive sensitivity indices of parameters. The variance decomposition is also
called ANOVA decomposition and can be expressed as:

Var[Y ] =
n∑
i=1

Vi+
∑ ∑

16i6j6n
Vij + ...V12...n (II.11)

where Var[Y ] is the total variance of model output; Vi =Var[E[Y |Xi]] is the first order contribu-
tion of the ith model parameter; Vij =Var[E[Y |Xi,Xj ]]−Vi−Vj is the effect of the interaction of
the ith and jth parameters. The use of this approach allows the measurement of the first-order
sensitivity index, or the main effect which is the contribution to the output variance of the main
effect of one parameter, hence it measures the impact of the variation of an input parameter
alone, and averaged over variations in other input parameters. The equation corresponding to
the first order index is given by:

Si = Vi
Var[Y ] = Var[E[Y |Xi]]

Var[Y ] (II.12)

If the value of Si is zero, it can be deduced that the function f does not depend on Xi. In
another hand if Si is equal to 1, it means that f depends only on Xi. Another measurement
to be estimated using the Sobol’ approach is the second order sensitivity index. It gives the
sensitivity of the variance of the output to the interaction between the input factors Xi , Xj .
It is expressed as:

Sij = Vij
Var[Y ] = Var[E[Y |Xi,Xj ]]−Vi(Y )−Vj(Y )

Var[Y ] (II.13)

If n is the number of the model parameters, 2n−1 indices can be estimated. Finally, the total
Sensitivity index can be estimated. It measures the interaction of each variable with the other
variables (Homma and Saltelli, 1996). All the terms of the decomposition in Equation (II.11)
where i is involved are used. It is expressed as:

ST i = Si+
∑
j

Sij +
∑
j,k

Sijk + . . . (II.14)

It can be also expressed as:

ST i = 1− Var[E[Y |X−i]]
Var[Y ] (II.15)

where X−i stands for X without the ith component Xi. There is absence of interaction between
Xi and other variables, if the value of the total effects is equal to the value of the main effects.

Estimation of the Sobol’ indices

The common way to compute the Sobol’ indices is to use what is known as the brute forceMonte
Carlo approach (Saltelli et al., 2006; 2010). Two matrices A and B are generated comprising
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the input parameters denoted respectively aji and bji where i= 1, ...,n and j = 1...N . n is the
number of input variables and N is the number of generated samples.

A=



a11 · · · a1i · · · a1n
... · · · ... · · · ...
aj1 · · · aji · · · ajn
... · · · ... · · · ...

aN1 · · · aNi · · · aNn


B =



b11 · · · b1i · · · b1n
... · · · ... · · · ...
bj1 · · · bji · · · bjn
... · · · ... · · · ...
bN1 · · · bNi · · · bNn



A matrix AB is defined, having all the columns of matrix A except the ith column from
matrix B. The same concept is applied on a matrix called BA such that all its columns are
from matrix B except the ith column that comes from matrix A. They are presented as:

A
(i)
B =



a11 · · · b1i · · · a1n
... · · · ... · · · ...
aj1 · · · bji · · · ajn
... · · · ... · · · ...

aN1 · · · bNi · · · aNn


B

(i)
A =



b11 · · · a1i · · · b1n
... · · · ... · · · ...
bj1 · · · aji · · · bjn
... · · · ... · · · ...
bN1 · · · aNi · · · bNn



The first order index is calculated from the matrices A with B
(i)
A by applying the following

formula:

Vi = Var[E[Y |Xi]] = 1
N

N∑
j=1

f(A)jf(B(i)
A )−f2

0 (II.16)

where

f0 = 1
N

N∑
j=1

f(A)j (II.17)

The total order index is calculated from the matrices A and A
(i)
B by applying the following

formula:

Var[E[Y |X∼i]] = 1
N

N∑
j=1

f(A)jf(A(i)
B )−f2

0 (II.18)

The use of Sobol’ indices acquires a quantitative classification of the impacts of each input
on the variance of the output. However, Sobol’ indices are relevant only when the variance is
the real quantity of interest characterizing the model output. For example, when the output
distribution is multi-modal or highly skewed, the variance is no longer representative. In such
cases, the density-based sensitivity methods can be adopted.

39



Chapter II

II.2.5 Density-based sensitivity analysis

Density-based sensitivity methods consider the entire distribution and do not refer to a specific
moment, they are also called moment independent methods. A moment independent impor-
tance measure called Chun–Han–Tak (CHT) was introduced by Chun et al. (2000), it studies
the influence of parameters on the output uncertainty given a base case and a sensitivity case.
Borgonovo (2007) then has defined a new moment independent importance measure that does
not need previous hypothesis. It is a global sensitivity indicator which studies the influence of
input uncertainty on the entire output distribution without reference to a specific moment of
the output and which can be defined also in the presence of correlations among the parameters.
It is given that: fY (y) is the density function of the model Y , fY |Xi

is the conditional density
of Y when a fixed value is given to one of the parameters Xi and fXi

(xi) is the marginal density
of xi. The shaded region in figure (II.4) is the shift between the two densities fY (y) and fY |Xi

,

Figure II.4 – Shift between the density corresponding to Y and the conditional density.

this area is given by:

s(Xi) =
∫
| fY (y)−fY |Xi

(y) | dy (II.19)

The expected shift is the following:

EXi
[s(Xi)] =

∫
fXi

(xi)
[∫
| fY (y)−fY |Xi

(y) | dy
]
dxi (II.20)

The importance measure is called moment independent sensitivity indicator of parameter Xi

with respect to Y . δi is the normalized expected shift in the distribution of Y caused by Xi, it
is expressed in Equation (II.21), the signification of δi is given in Table (II.1).

δi = 1
2EXi

[s(Xi)] (II.21)
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Table II.1 – Properties of Borgonovo’s δ-index.

No. Property Description
1 0≤ δi ≤ 1 Bounds of δi
2 δi = 0 Applies if Y is independent of Xi

3 δ1,2,...,n = 1 δ for all input variables together
4 δij = δi Applies if Y is independent of Xj

5 δi ≤ δi,j ≤ δi+ δi|j Bounds of δij

The first property infers that the higher the index value the more important is the impact of
the corresponding input variable. The second property states that if Y is independent from
Xi, then Xi does not influence the variability of Y , then the index value is zero. If the index
is computed for a group of variables consisting of all input variables of the system, then the
index is equal to one. This property shall not be flawed that the sum of all individual indices
always equals to one. (δ1 + δ2 + ...+ δn 6= 1).

II.2.6 Synthesis on the sensitivity analysis methods

There exists a wide variety of sensitivity analysis model output methods. Some of them were
described in the previous section. These sensitivity measures give either qualitative or quan-
titative information regarding the ranking of variables. They are performed based on specific
assumptions and mathematical frameworks defining their computational effort, complexity and
efficiency. Table (II.2) summarises the properties corresponding to the sensitivity methods.
Some drawbacks of the sensitivity analysis model output are the following:

- type of Quantity of Interest (model output Y or failure probability Pf );

- goal of the study (fast screening or importance ranking);

- maximum allowable simulation budget (computational time or number of calls to the com-
puter code);

- characteristics of the inputs (independent or not, functional input, input dimension) and of
the outputs (single or multiple, functional output);

- type of the model (monotonic, linear, nonlinear);

- additional sources of uncertainties on the input probabilistic model.
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Table II.2 – Properties of Sensitivity analysis methods.

Sensitivity Methods Assumptions
Type (Qualitative or

Quantitative)
Computational

Effort
Complexity Efficiency

Local measures
Analysis around a
reference point

Quantitative x x x

Screening Methods
Independent

input variables
Qualitative xx xx xx

DGSM
Independent

input variables
Qualitative xxx xx xxx

Variance-based
Independent

input variables
Quantitative xxxx xxx xxx

Density -based No assumptions Quantitative xxxxx xxx xxxx

II.3 Reliability sensitivity analysis with respect to dis-

tribution parameters

The sensitivity of the reliability or the failure probability of a system is one of the most im-
portant concerns in the structural reliability domain. It is very important to know the impact
of an input variable in a reliability problem on the failure probability. This variable can either
be a distribution parameter of a random variable or a deterministic parameter of the limit
state function (Papaioannou et al., 2013). In the context of this thesis, the input variables are
distribution parameters. The reliability sensitivity analysis methods can be also categorised
into local and global analysis.

II.3.1 Local reliability sensitivity measures

The sensitivity measures based on the partial derivative of the probability of failure with respect
to the distribution parameters θ of a random input variable can be expressed as follows:

Sj,i = ∂Pf
∂θj,i

(II.22)

where Sj,i is the sensitivity measure of the ith input variable and its jth distribution parameter.
Several works deal with the partial derivative based indices in the reliability sensitivity context.
Hohenbichler and Rackwitz (1986) have presented the sensitivity measure based on the partial
derivation of the reliability index (see Section (I.3.3)) with respect to a deterministic model
parameter ∂β/∂θ. Bjerager and Krenk (1989) have proposed also a local derivative-based
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index by getting the partial derivation of the unit important direction ∂α/∂θ and have showed
some practical applications.

Local reliability sensitivity analysis by score functions

The local reliability-oriented sensitivity indices can be measured using the sampling-based tech-
niques. Several techniques can be found in the literature for the derivation of the failure proba-
bility with respect to the distribution parameters, such as the score functions based technique.
The sensitivity of the failure probability Pf with respect to the distributions’ parameters (de-
noted by θi) is derived by using the score function. Four assumptions, known as regularity
conditions are required (Rubinstein and Shapiro, 1993):

1. The probability density function fX(x, θ) is continuous.

2. The parameter θi ∈Θi⊂R, i= 1, . . . ,M whereM is the number of distribution parameter,Θi

is an open interval on R.

3. The partial derivative ∂fX(x,θ)/∂θi exists and is finite for all x and θi. In addition, Pf (θ)
is a differentiable function of θ.

4. There exists a Lebesgue integrable dominating function r(x) such that
∣∣∣I(x)∂fX(x,θ)

∂θi

∣∣∣≤ r(x)
for all θi, where r(x) is integrable in the sense of Lebesgue.

Taking the partial derivative of Pf with respect to θi yields :

∂Pf (θ)
∂θi

= ∂

∂θi

∫
DX

I(x)fx(x,θ)dx (II.23)

Since the joint density function is assumed continuously differentiable w.r.t. θi and the inte-
gration domain does not depend on θi, Equation (II.23) can be written as:

∂Pf (θ)
∂θi

=
∫
DX

I(x).∂fx(x,θ)
∂θi

dx (II.24)

After using an importance sampling trick, and interchanging differential and integral operators
using the Lebesgue dominated convergence theorem, the partial derivative with respect to the
distributions’ parameters can be expressed as:

∂Pf (θ)
∂θi

=
∫
DX

I(x).∂fx(x,θ)/∂θi
fx(x,θ) dx

=
∫
DX

I(x).∂ lnfx(x,θ)
∂θi

fx(x,θ)dx

= Eθ [I(X)sθi
(X,θ)] = Eθ[g(X)]

(II.25)
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where sθi
(x,θ) is the first order score function for the parameter θi:

sθi
(x,θ) = ∂ lnfX(x,θ)

∂θi
(II.26)

The derivation of sensitivities in a Monte Carlo setting has been introduced by Rubinstein
(1986) and then adopted by many others works such as Rahman (2009) and Millwater (2009).
The Monte Carlo estimator of the quantity ∂Pf (θ)

∂θi
, for NMC samples is given by:

∂Pf (θ)
∂θi

≈ 1
NMC

NMC∑
i=1

I(X(i))sθi
(X(i),θ) = g̃N (II.27)

where g̃N is a non-biased estimator of E[gN ]. The use of the score-function based technique
requires only one call of the MC samples, that will be reused for the estimation of Pf and its
gradient with respect to the distribution parameters. The variance of g̃N is expressed as:

Var[g̃N ] = Var
 1
NMC

NMC∑
i=1

g(X(i))


=
∫
DX

g2(X)fx(X)dX−E[g(X)]2dx

≈ 1
NMC

N∑
i=1

g2(X(i))−
 1
NMC

NMC∑
i=1

g(X(i))
2

= σ2
g

(II.28)

Considering the limit theorem, the random variable Z is defined as:

Z = g̃N −E[g(X)]
σg/
√
NMC

(II.29)

Considering that Z follows a standard normal distribution, the confidence interval length asso-
ciated to the risk α is:

CI(α,NMC) = 2u1−α/2
σg√
NMC

=
2u1−α/2
NMC

√√√√√NMC∑
i=1

g2(X(i))−
 1
NMC

N∑
i=1

g(X(i))
2

= σ2
g (II.30)

Other sensitivity indices strategies

Wu (1993) has defined a measure based on adaptive Importance Sampling and the partial
derivative of the probability of failure. Another technique based on Subset sampling has been
introduces by Song et al. (2009). In addition, several works have developed a reliability-
sensitivity measure based on the concept of Line Sampling such as the works of Lu et al.
(2008), Papaioannou et al. (2013) and Valdebenito et al. (2018). Other techniques combine the
tools of approximation methods and the sampling techniques such as the method that has been
proposed by Melchers and Ahammed (2004) for parameter sensitivity based on Monte Carlo
Sampling and the First Order Reliability Method (FORM).
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II.3.2 Screening methods for reliability sensitivity analysis

Xiao et al. (2016) proposed to adapt the modified Morris’ elementary effects method pro-
posed by Campolongo (see Section (II.2.2)) to the reliability sensitivity analysis context. The
inputs are independent epistemic uncertain distribution parameters presented by the vector
θ = (θ1, . . . , θnθ). The elementary effect is considered for j ∈ {1, . . . ,nθ} as the following:

EEj(x) = Pf (θ1, . . . , θj−1, θj + ∆, θj+1, . . . θnθ)−Pf (θ)
∆ (II.31)

where the failure probability Pf is estimated for each grid-point θj using a particular technique
for rare event estimation (Zhang and Pandey, 2013). The set of two indices (µ∗,σ) can be then
calculated following the formulas already given in Equations (II.5) and (II.6) .

II.3.3 DGSM for reliability sensitivity analysis

The concept of the global sensitivity measure based on the integral of local derivatives (see
Section (II.2.3)) has been adapted by Wang et al. (2013) in the reliability sensitivity analysis.
The formulation of this index is as follows:

υi =
∫
DΘ

(
∂Pf (θ)
∂θi

)2
fΘ(θ)dθ (II.32)

The partial derivative ∂Pf/∂θk is found using the score function estimator described in Equa-
tion (II.27). The quasi-Monte Carlo method and double-loop point estimate method are then
utilized to compute the derivative based sensitivity measure. This method allows to distinguish
between highly contributing parameters and non-contributing parameters, but it cannot give
an accurate raking of the parameters.

II.3.4 Variance-based reliability sensitivity analysis

The variance-based Sobol’ indices, already presented in Section (II.2.4), have been used in the
reliability sensitivity context by Morio (2011). He has evaluated the sensitivity of the failure
probability to the model parameters, and has proposed a methodology that is based on Sobol’
indices that enables to estimate the influence of each statistical parameter on the value of
the failure probability (Morio, 2011). Consider that the distribution parameters represented
in θ follow a density function fΘ, then the decomposition of functions already discussed in
Section.(II.2.4) can be applied. The first and total order Sobol’ indices can be expressed as:

Si = Var[E[Pf |θi]]
Var[Pf ] (II.33)
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STi
= 1− Var[E[Pf |θ−i]]

Var[Pf ] (II.34)

where θ−i is the distribution parameters’ vector θ without the ith component. This method
can rank of the influence of the statistical parameters on the failure probability, however it
needs more computational efforts DGSM or other local sensitivity measures.

II.3.5 Synthesis on reliability sensitivity measures

The reliability sensitivity measure are very common in the field of structural reliability where
the sensitivity of the failure probability of a structure is of great importance. The presented
reliability sensitivity measures can be adapted in the scope of this work. The difference is
that the quantity of interest is the NCR or the non-functionality or non-assembly probability
estimated in a tolerancing problem and based on probabilistic approaches that are described
in Section (I.3).

II.4 Conclusion

This chapter reviews the sensitivity analysis methods existing in the literature. Two major
poles of these methods were distinguished:

- First, the basic notions of the sensitivity analysis of model output were discussed. They
represent the methods where the quantity of interest is related to the model output Y . The
corresponding advantages and disadvantages of these methods are detailed.

- Then, some reliability sensitivity measures were also reviewed. They illustrate the ap-
proaches when the quantity of interest is related to a reliability measure such as the failure
probability. These measures will be adapted in this thesis to the tolerancing problems.

The presented sensitivity measures will be used in later chapters in tolerancing problems for
the KCs identification. The choice of the sensitivity method depends on:

- the type of the mechanical system (linear, non-linear, over-constrained).

- the dimensionality of the problem.

- the available data of the tolerancing problem.

- the requirements of the designers (classification or hierarchization of input variables).
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The next chapter presents the first proposed methodology for the identification of KCs that is
based on the reliability sensitivity Sobol’ measure applied in a tolerance analysis framework.
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III.1 Introduction

The objective of this chapter is to develop a new method for the identification of the most
influencing dimensions and classify them as Key Characteristics in the same critical functional
requirement during the design stage. Designers and manufacturing engineers adopt new prac-
tices, in the mechanical and industrial engineering fields, in the early phases of the design to
reach a product with high quality and minimum cost. They set the nominal dimensions, the tol-
erance intervals and the capability requirements that need to be respected in the manufacturing
process. They also indicate the dimensions that have to be considered as Key-Characteristics
(KCs) on the engineering drawings. The approaches already mentioned in chapter I for the
identification of KCs do not predict the uncertain impacts of each dimension in the early de-
sign stage. Further analysis is needed for this purpose. The proposed method defines the
most contributing dimensions using sensitivity analysis in the context of tolerancing. It allows
the classification of the dimensions with high or reduced impact on the performance of the
system, they are defined as KCs or not KCs. It quantifies the impact of the variation of the
statistical parameters on the variation of the failure probability. In tolerance analysis the
failure probability is called the Non Conformity Rate, which is the probability that
the functional requirement is not satisfied. In addition, this method is applicable when
the system comprises more than one functional requirement. It also allows the detection of
interactions between the input variables despite the linearity of the functional characteristic.
This method also allows an interactive environment between the designers and manufacturing
engineers by taking into account the uncertainties in tolerances in the design drawings and the
manufacturing variations during the processes.

The existing works in the literature where the sensitivity analysis is used in tolerancing
area are given in this chapter. The proposed approach for the KC identification and the
corresponding steps are also exposed. The proposed method is applied to a stack-up example
of linear function, to a linearised function, and to a system comprising two non-linear functions.

III.2 Sensitivity analysis in tolerancing area

The sensitivity methods are used to study the influence of input parameters on the output of
a model. They are distinguished between the local ones and the global ones as described in
previous sections in Chapter II. In tolerancing activities, it is essential to identify the contribu-
tion of input parameters corresponding to each dimension on the functionality, assemblability
and the performance of any system. For this purpose, sensitivity analysis is adopted for the
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categorization of low and high contributing parameters. Different works exist in the literature
where the sensitivity analysis is used in the context of tolerancing.

III.2.1 Local sensitivity analysis in tolerancing

Stuppy and Meerkamm (2009) have applied “arithmetical contributors analysis ” in tolerance
management, which is a local sensitivity analysis method to quantify the influence of the tol-
erances of each parameter on the variation of the functional dimension. The contribution of
each toleranced parameter is calculated by multiplying the corresponding absolute value of the
linearity coefficient with the tolerance interval of the toleranced parameter and dividing this
by the arithmetical tolerance of the functional dimension. The linearity coefficient reveals how
much a geometrical change of the toleranced parameter affects the functional dimension just
due to the geometrical relations in the mechanism. In addition, the arithmetical contribution
takes into account the range of the tolerance intervals. The tolerance analysis in this chapter is
based on arithmetical methods. Ledoux and Teissandier (2013) have proposed a method based
on local sensitivities to analyse the influence of the geometric and dimensional specifications
on the functional characteristic that they represent by “c ”. The sensitivities of each deviation
are calculated when considering worst-case analysis from the following equation:

Sxi = ∂c

∂xi
(III.1)

where xi represents the small displacement torsor of each dimension involving rotation and
translation deviations. There is a difficulty to interpret the sensitivity calculation since the
model includes both the rotation and translation deviations. To compare these deviations,
which are in different units, the elasticity is calculated. It consists of standardising each sen-
sitivity estimated in Equation (III.1) using the nominal values of the parameter studied and
that of c such as:

exi = xi
c

∂c

∂xi
(III.2)

When a statistical model is set for c, the tolerance zone of the dimension is assumed to be six
standard deviations (σi = ti/6).

III.2.2 Global sensitivity analysis

Ziegler and Wartzack (2015a,b) have implemented global sensitivity analysis methods on convex
hull based tolerancing techniques, such as deviation domains. The tolerancing is based on con-
vex hull techniques. The geometrical variations are represented by the variation of the position
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and orientation of geometric ideal elements with respect to their nominal position. Tolerances
are expressed by norms that represent the distance measures between the deviating points and
the nominal points. For sensitivity analysis the tolerance values ti of features fi are the input
parameters of the algorithms. These input parameters then define level sets for the Small Dis-
placement Torsors (SDT) – layers of the Deviation Domains. For performing sensitivity analysis
based on Xi, for position and orientation deviations (x,θ) the deviation characteristic λ(x,θ)
with respect to ti is introduced. A Small Displacement Torsor has the deviation characteristic
0≤ λ(x,θ)≤∞ , λ(x,θ) = 2

t c(x,θ) where c(x,θ) is the tolerance constraint function. For λ≤ 1,
the SDT is inside the Deviation Domain while for λ = 0 the considered SDT is (0,0), so the
feature is nominal. The procedure of identifying λ for a two-dimensional line is seen in Figure
(III.1). The red deviating line inside the tolerance zone (upper left) is identified with a SDT
(y,θ) inside the associated deviation domain (upper right). Following, the deviation domain is
scaled, until (y,θ) is on the edge of the deviation domain (lower right). This is equivalent to the
scaling of the tolerance zone until the line is just inside the tolerance zone (lower left). Finally,
the deviation quality is specified (centre). Two conditions are studied, the assembly condition
that ensures that the resulting clearance domain is not empty and the functionality condition,
that ensures that the resulting deviation domain is inside the functional domain. The variance
based sensitivity analysis was performed, this pushed the others to adopt alternative simula-
tion outputs for both cases. In assembly condition, the output of the simulation is the Relative
Clearance Domain Volume |Cdev/Cnom| which measures the variation of the Clearance Domain
size with respect to the nominal size. In functionality condition, the output of the simulation is
the Functional Deviation Characteristic λF (x,θ) = (2/tF )cF (x,θ) for the resulting deviation.

III.2.3 Limitations of the methods

The local sensitivity methods introduced in Section (III.2.1) are limited to one dimensional
tolerance stack-ups. Another global sensitivity analysis method adopted for more complex
tolerance analysis systems that are based on deviation domains is given in Section (III.2.2).
Several interrogations come to mind:

- What if the quantity of interest is not the functional requirement but the NCR?

- What if the dimensions involved in the critical functional requirement follow distributions
having in their turn variable statistical parameters that need to be taken into account?

- What is the most convenient sensitivity analysis method that can be applied for this type
of problems?
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Figure III.1 – Deviating 2D line (Ziegler and Wartzack, 2015a,b).

The possible procedures to perform a sensitivity analysis in tolerancing as well as the new
methodology proposed to overcome the limitations of the existing approaches are described in
the following section. A comparison of these procedures in done after their application on a
simple linear stack-up example.

III.3 Proposed approach based on Sobol’ sensitivity in-

dex

In this section, a new methodology is proposed for the classification of the dimensions according
to their influence on the performance of the system. It is inspired from previous works dealing
with sensitivity analysis in tolerancing as discussed in Section (III.2). The proposed approach
is based on the sensitivity analysis and more precisely on the global sensitivity analysis. It
allows the classification of the dimensions with high or reduced impact on the performance of
the system, these features are defined as KC or not. It quantifies the impact of the variation
of the statistical parameters on the variation of the Non Conformity Rate (NCR). The main
contribution of the proposed approach is that it takes into account the variability of the statis-
tical parameters corresponding to the dimensions, which is the variability of the corresponding
distributions’ parameters. This aspect is not taken into account in the previous works that
perform the sensitivity analysis in the context of tolerancing. In addition, this method is appli-
cable when the system comprises more than one functional requirement. The objective of this
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work is to define the most contributing dimensions using sensitivity analysis. The procedure
to be followed should respect the quality measures and the different requirements given for an
industrial problem. In order to perform a sensitivity analysis, it is required to select:

- the input random variables, that are also be referred as “variables of interest ”.

- an output quantity, which is expressed in terms of a set of input random variables referred
as “quantity of interest ”.

- a suitable sensitivity metrics, as multiple definitions of the sensitivity indices are available.

A model is considered in this study with input and output parameters that need to be selected
properly, such as detailed in Section (III.3.2).

III.3.1 Variation of the statistical samples

Over time, the process capability differs according to the different circumstances in which the
production is executed. The manufacturing process might differ from day to another depending
on these circumstances that can be the setting of the machines, the ambient temperature, the
materials used in the production, etc.. As a consequence, the characteristics will deviate from
the required specifications. Different types of process capability exist such as the short term
and the long-term capability (Thornton, 2004). Figure (III.2) presents the capability types of
the production. The short-term capability is the ideal case in the manufacturing process that
respects all the requirements set such as the target value, standard deviation and the capability
requirements. In the short term capability, the mean value is equal to the target value. In
the long term capability the parameters of the distributions of the process may differ. The
values of the mean µ of a characteristic and the standard deviation σ of the sample about
the mean express the variation of a statistical sample. When the process is assumed to be
in statistical control, the indices Cp and Cpk are used to define its capability. The process
capability ratio Cp is a quantitative way to express the process capability (Montgomery, 2009).
Another process capability ratio for off-centre process is Cpk, it takes into account the location
of the process mean with respect to the specifications. The reference standard ISO 22514-1
provides definitions and mathematical expressions for the capability indices Cp and Cpk that
are applicable for all types of distributions. When the process is in a state of statistical control,
Cp is expressed as the ratio of the tolerance interval t and the reference interval. The normal
distribution is usually assumed for the dimensions or the characteristics of a statistical sample,
being simple to implement and close to the real cases of the production (Thornton, 2004). For
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(a) Short term (b) Long Term

Figure III.2 – Types of process capability.

the case of a normal distribution, the capability requirements associated for each variable Xi

are expressed such as Equations (III.3) and (III.4).

Cpi = ti
6σi

(III.3)

Cpki = ti/2−|δi|
3σi

(III.4)

δi and σi are respectively the mean shift and the standard deviation corresponding to the
dimension Xi. The capability requirements to be respected for each variable Xi are Cpi ≥ C(r)

pi

and Cpki ≥ C
(r)
pki. C

(r)
pi and C(r)

pki are industrial requirements usually imposed by the companies.
A capability domain VD is defined for each dimension Xi as the set of acceptable (δ,σ) pairs (δ
is the mean shift of the off-centred distributions). The shape of this domain differs according to
the indices used and depends on the tolerancing practices of each company (Srinivasan, 1998).
It is usually represented on a σi-δi diagram. Several tolerance analysis methods exist in the
literature to deal with the variability of the process, such as inertial tolerancing, the process
tolerancing and the capability-based tolerance :

- Inertial tolerancing has been introduced by Pillet (2004) and Adragna et al. (2006). It is
used to overcome the problem of the mean shifts. For a production batch having a nominal
value µ, a target value T , and a standard deviation σ the inertia is defined as:

I =
√
δ2 +σ2, with δ = µ−T (III.5)

The inertial tolerancing is applicable when the mean shifts are around 1 and 2σ. For the
cases where the short term standard deviations are very low and the variation of the mean
around the target value can exceed ±3σ or ±5σ, the process tolerancing is adapted. The use

55



Chapter III

of the inertial tolerancing in this case will reject acceptable processes. The zone of acceptable
processes in inertial tolerancing is shown in Figure (III.3).

Figure III.3 – Zone of acceptable processes in Inertial Tolerancing.

- Process tolerancing consists of separating the tolerances into two parts, the dispersions and
the mean shift. Mansoor (1963) has proposed an off-centring factor m to separate each
tolerance interval into an off-centred component and a dispersion component, the first being
cumulated in arithmetic and the second in quadratic to obtain the following formula :

ti =m
∑

ti+ (1−m)
√∑

t2i (III.6)

Greenwood and Chase (1987) have given a more general formula to chains of dimensions
involving components with different multiplying coefficients ai and proposed to differentiate
the factor m to each variable X to obtain :

ti =
∑
|ai|miti+

Z

3

√∑
a2
i (1−mi)2t2i (III.7)

where Z is the number of σ required on Y , when the X are supposed to be at 3σ. The
stacking of the mean’s shifts (off-centering) is done in Worst-Case, and the stacking of the
dispersions is done in Statistic Root Sum Square (RSS). And then, both resulting tolerances
can be cumulated. The zone of acceptable processes in tolerancing is shown in Figure (III.4).

- In the capability-based tolerance, the two capability requirements C(r)
pi and C

(r)
pki should

be respected. The capability domain is bounded by the equations Cpi(σi) = C
(r)
pi and

Cpki(σi, δi) = C
(r)
pki. Figure (III.5) illustrates the capability domain corresponding to one

dimension. The shape of the capability domain is triangular in the case where C(r)
pi = C

(r)
pki

and trapezoidal in the case where C(r)
pi ≥ C

(r)
pki. The solid lines represent the boundary as-

sociated with C
(r)
pki, the dash lines represent the boundaries associated with Cpi and the

lower bound of the standard deviation. The hatched area at the bottom of the triangle is
associated with compliant batches, but the standard deviation is too low to be achieved.
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Figure III.4 – Zone of acceptable processes in Process Tolerancing.

Figure III.5 – Representation of the capability domain VD (grey area).

It can presumed that the uncertainty of the process leads to uncertainties in the distribution
parameters of the input variables. This will lead to uncertainties in the functional requirement
function that will affect in its turn the NCR. The sensitivity metrics is described in Section
(III.3.2).

III.3.2 Strategies for the selection of input and output parameters

of the model

Several strategies can be followed to check the importance of the variables. These strategies
depend on several issues such as:

- Quantity of Interest: The classical sensitivity analysis strategies use the functional charac-
teristic as the quantity of interest. The proposed method suggests the consideration
of the NCR of the model instead as an output. This choice is driven by the fact
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that the NCR is used by industries as a quality measure. In addition, the method remains
applicable when multiple functional requirements are involved, as the NCR can be computed
using system reliability.

- Variables of Interest: The variables of interest can be the input variables Xi or the
distributions’ parameters represented by θ. The adopted procedure herein consists
of investigating the effect of the variable statistical parameters, defined by the
vectors σ and δ, on the NCR. The uncertainty in the statistical parameters is considered
because the production is not perfect, therefore there is a variation in the mean shifts and
standard deviation of the dimensions. This variability has non negligible impact on the
NCR. In addition, their use as input parameters aggregates the effects of the capabilities
and of the tolerance intervals since there is a direct relation between these parameters.

- Single and double uncertainty levels: The single uncertainty level stands for the sup-
position that there is uncertainty in the basic random variables X following known distribu-
tions. The distribution parameters corresponding to the random variables can, in their turn,
follow other distributions. The double uncertainty level takes into account the uncertainty
in the random variables and that of the parameters’ distribution. When the NCR is the
quantity of interest, it is possible to work with single or with double uncertainty levels. In
the proposed approach, the choice of the distribution parameters as the variables
of interest implies the consideration of double uncertainty levels.

- Local or global sensitivity analysis: The local and the global sensitivity analysis can
be used regardless of the choice of the quantity of interest and of the variables of interest.
The selection between these two options depends on the concern on one specific value of
the input domain or on the whole domain. The proposed method adopts the global
analysis. The selection of the sensitivity method is detailed in the following section.

- Selection of the sensitivity analysis method: The choice of the sensitivity analysis
method depends on the required criteria of each problem. First, it is essential to know the
existing sensitivity analysis methods that among them, a proper one can be adapted for the
identification of the KCs. To recall, Saltelli et al. (2006) have defined the Sensitivity Analysis
as the study of how the uncertainty in input parameters can influence the uncertainty in the
output of a model. The idea behind the sensitivity analysis is to know the importance of
the input design parameters, so the performance of the system can be improved by dealing
carefully with these important parameters. An overview on the existing sensitivity analysis
methods is presented in Chapter II. Numerous sensitivity analysis methods exist in the
literature and have been developed progressively. The challenge of this work is to choose the
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appropriate approach that is suitable to the problem and that can give consistent results.
As already discussed in the first chapter, sensitivity analysis methods are categorized as
local methods and global methods. The local sensitivity considers the influence of the input
parameters in the vicinity of a reference point. The global sensitivity approach considers the
impact of an input factor by varying all other input factors (Saltelli et al., 2006). Several
approaches corresponding to the global sensitivity analysis exist such as the variance-based
and the density-based methods.

- The variance-based methods assume that output variance is a sensible measure of the
output uncertainty. They allow the estimation of the main effects of the input variables
on the variable output in addition to the total effects which are the interactions between
the input variables (Saltelli et al., 2010).

- The density-based methods consider the entire distribution without being dependent to
a particular moment. Their use is preferable when the variance is not an adequate proxy
of uncertainty, this is applicable when the output distribution is multi-modal or highly
skewed (Borgonovo et al., 2011; Pianosi and Wagener, 2015). This is not the case of our
problem.

The variance-based method is considered in this chapter since the concern is to have the
sensitivities by considering the variation on the whole domain and not only for a repre-
sentative point (local sensitivities) and since the variance is considered as a good proxy of
the uncertainty. Among the variance-based approaches, Sobol’ approach is adopted in this
study because of its efficient implementations that are well documented in the work of Sobol
(2001) and Kucherenko and Iooss (2017). Another reason for the choice of Sobol’ approach
is because of the possibility to perform the sensitivity analysis with moderate numerical
efforts.

III.3.3 Different steps of the proposed approach

After the selection of inputs, output and sensitivity method, the procedure to follow can be
described as given in Figure (III.6). The application of the proposed method necessitates the
estimation of the NCR which formulation is developed in Section (III.3.4). The sensitivity of
the NCR with respect to the variable parameters is performed by applying the Sobol’ approach
which is one of the most used variance based methods (see Section (III.3.5)). The use of this
method requires the estimation of the NCR N times, where N is the number of the Sobol’
iterations which is usually a large number. If the system is linear with dimensions following
normal distributions, the NCR has an explicit function, the calculation of the NCR N times
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is not challenging. However, if the system is non-linear, the estimation of the NCR is done
using the Monte Carlo technique and there is need to repeat the Monte Carlo simulation N

times. Therefore, combining Monte Carlo with the Sobol’ sensitivity analysis takes excessive
numerical efforts and is time consuming. An alternative way to deal with this problem is the
implementation of the re-weighting technique which is similar to the one applied in importance
sampling.

Once the sensitivity indices are evaluated, the contributing and non-contributing input
parameters can be known. Consequently, the KCs can be identified.

Generation of N variables (δ
σ) in their capability domain

Estimation of the NCR
(δ,σ) for each combination

of variables (N times)

Linear Model Non-linear Model

Analytical formula for
variables with nor-
mal distributions

Monte Carlo simulation
for a representative case

Re-weighting tech-
nique for all other cases

Application of the Sobol’
method and estimation
of sensitivity indices

Classification of the di-
mensions according to
their importance and
identification of KCs

Figure III.6 – Steps of the proposed Approach.
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III.3.4 Formulation of the Non-Conformity Rates

The dimensions are variables following normal distributions that in their turn have variable
parameters such as the mean shifts and the standard deviations. These parameters can follow
a range of distributions (uniform, normal, etc.). The random vector defining the mean shifts
is noted as δ = (δ1, ...δn) and the one for the standard deviations as σ = (σ1, ...σn), where n
is the number of dimensions. The calculation of the NCR in this work takes into account the
variability of the distributions’ parameters. The statistical parameters are random variables,
therefore the NCR is a random variable as well, it is expressed in terms of δ and σ and can
be noted as NCR(δ,σ). The distribution of σi and δi is defined inside the capability domain
already discussed in Section I.2.2. The points that are placed outside this area represent the
cases where the capability indices are below their threshold values and such parts should not
be used. In industry, the distribution may be identified using the production statistics, but
since no other information is available, a uniform distribution is assumed for this study. The
proposed approach can also be applied when the Inertial tolerancing (Pillet, 2004) or the Process
tolerancing (Mansoor, 1963) is adopted for the estimation of the NCR and the assumption of
the capability domains. They also take into account the variability of the statistical parameters.

III.3.4.1 Estimation of the NCR for a linear case with dimensions following normal
distributions

When the system is linear and the dimensions follow normal distributions, the estimation of
the NCR is done using the analytical formula:

NCR(δ,σ) = Φ
(
−µY (δ,σ)−LSLY

σY (δ,σ)

)
+ Φ

(
−USLY −µY (δ,σ)

σY (δ,σ)

)
(III.8)

where Φ is the cumulative density function of the standard normal distribution, LSLY and
USLY are respectively the lowest specification limit and the upper specification limit of tY .
However, when the system is non-linear, the computation of the NCR is preferred to be done
using Monte Carlo simulation.

III.3.4.2 Estimation of the NCR for a non-linear case using re-weighting

When the system is non-linear the NCR is defined similarly to the failure probability which
is the integral of the probability density function on the failure domain. A mean shift and a
standard deviation is associated to each dimension. The expression of the NCR is given by:

NCR(δ,σ) =
∫
DX

I(x)fx(x|δ,σ)dx (III.9)
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where fx(x|δ,σ) is the joint probability density function, and I(x) is an indicator function
defined by:

I(x) =
 1 if Y /∈ [LSLY ;USLY ]

0 otherwise
(III.10)

The Monte Carlo simulation which is one of the most common sampling technique for the
estimation of the failure probability is used for the estimation of the NCR. The estimation of
the NCR for a particular case is given by:

NCR(δ,σ)≈ 1
NMC

NMC∑
i=1

I(x(i)) (III.11)

where NMC is the sample size and x(i) are samples following a set of independent normal
distributions with the mean shifts and the standard deviations. The NCR can be computed us-
ing Monte Carlo simulation, even when the problem involves multiple functional requirements.
Therefore, the proposed procedure is applicable to problems involving multiple functional con-
ditions.

Re-weighting technique

The re-weighting technique consists of considering one representative case where the mean
values are assumed equal to the target value and the standard deviations are assumed to have
their maximum values. A Monte Carlo simulation is conducted for the estimation of the NCR
for this particular case such as given in Equation (III.12).

NCR(δ0,σ0) =
∫
I(x)fx(x|δ0,σ0)dx (III.12)

The re-weighting technique is applied to estimate the NCR for the other cases of different means
and standard deviations. Equation ((III.13)) is the expression of the NCR for another case of
different mean shifts and standard deviations. It is then multiplied by the ratio of the density
function defined for the reference case to the same density function so that it is equal to 1, this
is given by Equation (III.14).

NCR(δ1,σ1) =
∫
I(x)fx(x|δ1,σ1)dx (III.13)

NCR(δ1,σ1) =
∫
I(x)fx(x|δ1,σ1)fx(x|δ0,σ0)

fx(x|δ0,σ0)dx

=
∫
I(x)fx(x|δ0,σ0)fx(x|δ1,σ1)

fx(x|δ0,σ0)dx
(III.14)
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The estimation of the NCR can be given by:

NCR(δ1,σ1)≈ 1
NMC

NMC∑
i=1

I(x(i))fx(x(i)|δ1,σ1)
fx(x(i)|δ0,σ0)

(III.15)

The new NCR can be deduced from the reference one that is already estimated from Equation
(III.12). After the application of this approach, there is no need to generate new samples
for each case where the density function parameters vary. The same sample points are kept
from the failure region that provide non-zero values of the indicator function I(x) and then
multiplied by the weights.

III.3.5 Sensitivity analysis of the statistical parameters on the NCR

The Sobol’ approach is described in Section (II.2.4). It has been demonstrated that a square
integrable function can be decomposed into a sum of functions. Based on this idea the NCR,
which is the studied quantity can be expressed as in Equation (III.16).

NCR(δ,σ) = NCR0

+
n∑
i

NCRi(δi,σi)

+
∑ ∑

16i6j6n
NCRij(δi,σi, δj ,σj)

+ ...NCR12...n(δ1,σ1, δ2,σ2, . . . , δn,σn)

(III.16)

where NCR0 = E(NCR) is a constant, NCRi(δi,σi) = E∼δiσi
(NCR | δi,σi), similar relations are

obtained for higher order terms of the decomposition. The variance decomposition is obtained
by taking into account that the input parameters θi are random and independent. The variance
of the model can be expressed as in Equation (III.17).

Var[NCR] =
n∑
i=1

Vi+
∑ ∑

16i6j6n
Vij + ...V12...n (III.17)

where Var[NCR] is the total variance of model output which is in this study the NCR,

Vi = Var(NCRi) = Var[E(NCR | δi,σi)]

Vij = Var[E(NCR | δi,σi, δj ,σj)]

−Var[E(NCR | δi,σi)]−Var[E(NCR | δj ,σj)]

Vi is the first order contribution of the ith model parameter, Vij is the effect of the interaction of
the ith and jth parameters. The use of this approach allows the measurement of the first-order
sensitivity index, or the main effect which is the contribution to the output variance of the main
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effect of one parameter, hence it measures the impact of the variation of an input parameter
alone, and averaged over variations in other input parameters. The equation corresponding to
the first order and the total order indices are given by Equations (III.18) and (III.19).

SNCRi = Var[E(NCR | δi,σi)]
Var [NCR] (III.18)

SNCRTi
= 1−

Var
[
E(NCR | δ−1,σ−1)

]
Var[NCR] (III.19)

where δ−1,σ−1 stand for the vectors δ and σ of distribution parameters without the ith com-
ponent. If the value of SNCRTi

is zero, it can be deduced that the function NCR does not depend
on δi,σi. In another hand if SNCRTi

is equal to 1, it means that NCR depends only on δi,σi.
The total Sensitivity measures the interaction of each variable with the other variables. There
is absence of interaction between Xi and other variables, if the value of the total effects is equal
to the value of the main effects. After the estimation of the NCR N times for both the linear
and non-linear cases, the sensitivity analysis based on Sobol’ method is performed. The Monte
Carlo methods are used for the estimation of the Sobol’ indices such as the work of Homma and
Saltelli (1996). In this work, the first and the total order indices are estimated. These indices
aggregate the contributions of the dimension to the variability of the NCR. Dimensions with
high Sobol’ indices need additional attention, as they can be associated with large variations
of the NCR.

III.4 Applications

The application of the proposed approach is done on three different systems. The first system
is a linear stack-up, the second one is an electrical plug procured by RADIALL having a
linearised functional requirement, and the third one is adapted from a Gas Pedal system from
Toyota having two non-linear functional requirements. The functional requirements in the three
examples are functions of a chain of dimensions. Target values Ti are set to each dimension. The
dimensions are subject to variations. These variations are expressed by tolerances intervals ti
which are assumed to be centred on the corresponding target values. In addition, the dimensions
follow normal distributions and are subject to capability requirements C(r)

pi = C
(r)
pki. The Sobol’

sensitivity analysis is performed on the NCR with respect to the distribution parameters δ and
σ that are set as variables. The statistical parameters are expected to vary uniformly in their
associated triangular capability domains.

64



Key Characteristics Identification by Sobol’ Sensitivity Index

III.4.1 Linear stack-up example

A simple linear stack-up composed of two parts is considered as shown in Figure (III.7). The
functional requirement can be expressed as:

Y = f(X) =X1 +X2 ∈ [9.5;10.5] (III.20)

Figure III.7 – Simple two-part example.

The objective is the identification of variables with a significant influence on the performance
of the system. Different cases are considered, they are presented in Table (III.1). The first
case is when the parts have equal input parameters such as the capability requirements and
the tolerance intervals. In the second and the third cases the tolerance intervals and capability
requirements are changed respectively. The fourth case presents a change in both, the process
capabilities and the tolerance intervals. The classical way to estimate the sensitivities is to apply
the local analysis by deriving the functional characteristic Y with respect to the input variables
Xi. When this analysis is performed, the parts have equal influence for all the different cases as
shown in Figure (III.8). This way the tolerance intervals and capability requirements associated
to each variable are not taken into consideration and the sensitivities are only dependent on
the variables coefficients in the functional characteristic. To overcome this problem, the Sobol’
sensitivity analysis method is applied. Two procedures can be followed. First the sensitivity
analysis is performed on the functional requirement with respect to the dimensions (in this case
the distributions’ parameters are fixed, δ = 0 and σ = t

6Cp
). Then the sensitivity analysis is

performed on the NCR with respect to the variable parameters characterizing the distribution
of the dimensions (mean shifts and standard deviations). A comparison between the two
procedures is then done to show the interest of the one adopted in this study. The results are
shown in Figures (III.9) and (III.10).
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Table III.1 – Four different process cases of the input data for the linear stack-up example.

Case: 1

Dimensions Ti ti C
(r)
pi = C

(r)
pki

X1 6 0.5 1
X2 4 0.5 1

Case: 2

Dimensions Ti ti C
(r)
pi = C

(r)
pki

X1 6 0.5 1
X2 4 0.5 0.8

Case: 3

Dimensions Ti ti C
(r)
pi = C

(r)
pki

X1 6 0.8 1
X2 4 0.2 1

Case: 4

Dimensions Ti ti C
(r)
pi = C

(r)
pki

X1 6 0.8 1
X2 4 0.2 0.8

In the first procedure where the sensitivity analysis is performed on the functional requirement,
the two parts have equal impact on the output with no interaction. It is expected since the
relation of the functional requirement is linear. In the second procedure, where the sensitivity
analysis is performed on the NCR, the interactions between the parts can be measured. The
sensitivities of the two parts are no longer independent. When the capability requirements are
different, the most important influence is for the part having the less value which is common in
the industrial practices. When the tolerance intervals have different values, the most important
influence is for the part having the highest value. This example shows the interests of the
method:

• it aggregates the effects of the tolerance intervals and of the capability requirements.

• it detects the interactions between input parameters regardless the linearity of the model.
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Figure III.8 – Local sensitivity indices calculated by the partial derivatives of Y with respect
to Xi for the four process cases.
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Figure III.9 – First and Total order indices based on Sobol’ sensitivity analysis on the functional
characteristic Y with respect to Xi.
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Figure III.10 – First and Total order indices based on Sobol’ sensitivity analysis on the NCR
with respect to the distribution parameters δi and σi corresponding to Xi.
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III.4.2 Linearized system of the electrical plug from RADIALL

The method is applied on a linearised functional characteristic. The case from RADIALL is
an electrical plug. Fourteen dimensions are involved in the chain of dimensions following the
relation given in Equation (III.21).

Y = f(X)≈ a0 +
14∑
0
aiXi (III.21)

The functional requirement is that the misalignment of the tip of the electric plug should not
exceed a threshold value such as shown in Figure (III.11) (The example is provided by an
industrial partner, we did not have access to the CAD model, the figure is included as an
illustration only). This functional requirement is set as critical according to an analysis based
on FMECA. All the dimensions involved are considered as KCs when the design procedure
used at RADIALL is applied. The input data of the problem is given in Table (III.2). The
purpose of this example is to be able to classify the dimensions regarding their importance
on the performance of the system. The first and total sensitivity indices are estimated by
the application of the Sobol’ sensitivity analysis on the NCR with respect to the statistical
parameters.

Figure III.11 – Simplified Electrical Plug.

The results are shown in Figure (III.12). It can be deduced that the variation of the statistical
parameters of X2 and X5 has the highest contribution on the value of the NCR. Looking at the
main effects, 50% of the variation of the NCR is due to the variation in the parameters corre-
sponding to X5 and almost 12% due to X2. The total effects show that there are interactions
between the input parameters and most probably between X2, X5, X11, X12 and X13. Based
on these results, the mentioned dimensions can be set as KCs.
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Table III.2 – Coefficients, target values, tolerance intervals and capability requirements for
RADIALL case input parameters.

Dimensions ai Ti ti C
(r)
pi = C

(r)
pki

X1 -0.04 10.53 0.2 1.1
X2 -0.5 0.1 0.2 1.1
X3 -0.5 0 0.06 1.1
X4 1.14 0.643 0.015 1.1
X5 0.91 0 0.06 1.1
X6 0.91 0.72 0.04 1.1
X7 1.10−3 1.325 0.05 1.1
X8 0.05 0.75 0.04 1.1
X9 1.10−3 0 0.04 1.1
X10 0.13 3.02 0.06 0.86
X11 -1.4 0.72 0.04 0.86
X12 -1.15 0 0.04 0.86
X13 -0.9 0.97 0.04 0.86
X14 0.13 0.4 0.06 0.86

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
Dimensions

0.0

0.2

0.4

0.6

0.8

1.0
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ti
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Main effects

Total effects

Figure III.12 – First and Total order Sobol’ Sensitivity indices for RADIALL case dimensions.
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Validation of the results

To validate the results of this approach, the dimensions that are set as KCs are grouped
together. The problem is to check the sensitivity of the NCR to the KCs alone and to the
Non-KCs. Figure (III.13) shows the percentage of the variability of the NCR caused by the
variability of the KCs, of the non-KCs and their interactions. The results show that when there
is a variation in the NCR, 88% of this variation is caused by the dimensions set as KCs, only
4% from the non-KCs, and the rest from their interaction. Relying on these values, it can be
deduced that the choice of the KCs is relevant since they have an important contribution on
the NCR (more than 80%).

SKCs

88%

Snon−KCs

4%
Sinteractions

8%

Figure III.13 – Sensitivity of the NCR to the KCs, to the non-KCs
and to their interactions.

The use of this approach allows the aggregation of the coefficients ai and the tolerance
intervals and the capability requirements and allows to see the interactions between the di-
mensions and to take into consideration the mean shifts and the variation of the standard
deviations.

III.4.3 Non-linear Toyota pedal system

Another application of the proposed method is performed on a Toyota gas Pedal system shown
in Figure (III.14) and inspired from the work of Moritz Göhler et al. (2016). Two functional
requirements should be satisfied in this example. The moment and the bending stress, give re-
spectively in Equation (III.22) and Equation (III.23), have maximum values that should not be
exceeded (Mmax = 500Nmm and σmax = 50MPa following a normal distribution with ±5MPa

its estimated variation). The interest of this example is to show that the choice of this method
overcomes the problem faced to identify KCs when the more than one functional requirement

70



Key Characteristics Identification by Sobol’ Sensitivity Index

exist in the system. The input data are given in Table (III.3). The sensitivity of the NCR with
respect to the dimensional variables is studied. A product is considered non-conform when the
corresponding moment or the bending stress does not lie in the required range of values.
The Monte Carlo method is used to calculate the NCR for a reference case where the mean
of each variable is equal to its target value, that the zero mean shifts, and where the stan-
dard deviations are maximum. The re-weighting technique is then used to calculate the NCR
associated with other cases where the mean shifts and standard deviations are variables.

Figure III.14 – Toyota Gas Pedal System.

M = Fspring.
(
b− c

d
.µf .a

)
(III.22)

σb = 6.Fspring.c
w.h2 (III.23)

Where Fspring = k.s

Table III.3 – Target values, tolerance intervals and capability requirements for Toyota gas pedal
input parameters.

Dimensions Ti ti C
(r)
p = C

(r)
pk

a 10 0.1 1.3
b 16 0.1 1.3
c 11 0.12 1.3
d 8 0.1 1.3
s 16 0.2 1
w 4 0.08 1
h 5 0.08 1
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The spring stiffness k and the coefficient of friction µf are also random variables following
uniform distributions. k varies in the interval [3.5;4.5] and µf varies in the interval [0.65;
0.75]. They are considered for the estimation of the NCR, however, they are excluded from the
sensitivity analysis since they are not dimensions and the designers cannot impose any changes
to these variables. The results of the analysis are shown in Figure (III.15). It is noticeable that
the main effects of the dimensions are negligible unlike the total effects that have significant
values for all the dimensions. It can be concluded that the variation of the NCR is caused by
the interactions between the input variables. It is also probable that the studied variables have
considerable interactions with the spring stiffness k and the coefficient of friction
muf . Consequently, all the dimensions are set as KCs since they are all contributing and it is
not possible to prioritize one on another .

a b c d s w h
Dimensions
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Figure III.15 – First and total order Sobol’ indices for Toyota Gas Pedal dimensions.

III.5 Conclusion

This chapter presents a new approach for the of KCs identification in the critical dimensional
chains. It allows the reduction of the number of KCs with respect to the existent practices
in the early design stage. Therefore, the efforts dedicated to check the KCs are reduced and
consequently the manufacturing production costs. The application of this approach allows the
production with a reduced cost but without losing the quality of the product. This proposed
method is a numerical method that takes into account the tolerances during the design stage
and the variation of the manufacturing processes. Therefore, it establishes a link between the
work in the design offices from one side and the production processes from another side and en-
ables them to work in an interactive environment. As a consequence it allows the interactivity
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between the designers and the manufacturing engineers. In addition, it prevents derogations
after the production (accepting the non-compliant products to be delivered). The sensitivity
analysis is performed on the NCR to identify the dimensions with high importance. The Sobol’
global sensitivity method is adopted in this context. For a better accuracy, the NCR is esti-
mated by taking into consideration the variability of the input parameters associated to the
dimensions such as the mean shifts and the standard deviations characterising their distribu-
tions. This is a sensitivity analysis performed on two levels of uncertainty. The application of
this approach is done first on a linear stack-up case with only two parts. The results show that
the proposed approach can show the interactions between parts even for a linear functional
characteristic knowing that the NCR is the quantity studied. Another reason for the use of
this approach is that it aggregates the input parameters, such as the tolerance intervals, the
capability requirements and the multiplying coefficients. This is illustrated in an example of the
electrical plug with a linearised functional characteristic. Furthermore, one other advantage of
this approach is that it can be applied for the case where more than one functional requirement
is needed. The application on a Toyota gas pedal illustrates this idea. It is also important
to mention that it is a model free method, that is can be performed for linear and non-linear
systems.
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Chapter IV

IV.1 Introduction

The proposed method based on Sobol’ indices in Chapter III for the identification of the Key
Characteristics is performed when the tolerance intervals, production process such as capability
requirements C(r)

p and C(r)
pk , are already known. The Sobol’ based method provides engineers

with the sensitivity indices corresponding to each dimension without imposing any conditions
on the NCR. It is performed in a tolerance analysis framework in addition to the use of global
sensitivity analysis methods. However, the following questions arise:

- what if the NCR should be less or equal than a target value?

- what if the tolerance intervals are not known and need to be allocated?

- how the KCs should be identified and what procedures should be followed in such cases?

To answer these questions, a new method is proposed in this chapter for the identification of
KCs. This method should be compatible with the situations discussed above. It should be
applicable when the tolerance intervals are not known in the early design stage and the quality
requirement of the production should be ensured. For all these reasons, the new method is
performed in a tolerance allocation framework with the use of sensitivity analysis. It allows the
estimation of the tolerance intervals for the dimensions corresponding to a critical functional
requirement. The proposed method is applied to a simple linear stack-up example of two parts
for three different statistical models cases. It is then applied to a linearised and to a non-linear
example for only one statistical model case.

IV.2 Tolerance allocation

Tolerance allocation, also known as tolerance synthesis, is the reciprocal view of the tolerance
analysis. It is a very important phase in product development. The objective of tolerance
allocation is setting the value of the tolerance interval corresponding to each dimension. The
assembly tolerance is distributed among the component dimensions such that the assembly
dimension lie within the acceptable tolerance range specified by the designer. Figure (IV.1)
shows a representation of the tolerance allocation concept. The assembly tolerance is designated
by tY and the individual dimensions tolerances are designated by the vector t = (t1, t2, . . . , tn),
where n is the number of the involved dimensions. The tolerance intervals can be associated
with a probabilistic distribution. For the same value of the assembly tolerance, it is possible
to deal with a large number of sets of dimensions’ tolerance values. Several approaches exist
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in the literature on the tolerance allocation. Some works give detailed reviews on tolerance
allocation methods such as the papers of Chase (1999b,a), Singh et al. (2009), Sampath Kumar
et al. (2009) and Hallmann et al. (2020). Many tolerance allocation approaches, categorised
as traditional or advanced, have developed over time. In this chapter the tolerance allocation
methods are described briefly. The objective of this work is not to improve the existing tolerance
allocation approaches but to know their mathematical framework, since the proposed method
for KC identification in this chapter will be performed in a tolerance allocation scheme.

𝑡𝑌

𝑡1

Assembly Components

𝑡2

𝑡𝑛

Figure IV.1 – Representation of tolerance allocation.

IV.2.1 Traditional tolerance allocation methods

The traditional methods are non-iterative tolerance allocation methods that are based on previ-
ous designs, standards, manuals, expertise and experience of the designers, and heuristics. The
previous designs, standards and manuals are usually used to design the primary tolerances on
each dimension, and the assembly tolerance is calculated using these tolerance values through
a convenient tolerance analysis method. Several heuristic methods, which are mathematical
non-iterative approaches, have been developed, e.g. the uniform scaling where equal tolerances
are assigned for each dimension, proportional scaling and constant precision factor where the
assignment of tolerances is with respect to weighting factors (Singh et al., 2009; Sampath Ku-
mar et al., 2009; Dantan, 2014). These methods do not need the use of computer technologies.
According to Sampath Kumar et al. (2009), the traditional methods do not take into account
the manufacturing cost. Therefore, the use of the traditional methods is not suitable to char-
acterize a tolerance design that preserves the quality of the product with an acceptable cost.
Their use is limited to the preliminary design of tolerances that give the base values for the
tolerance-cost optimization strategies described in the next section.
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IV.2.2 Tolerance cost optimization

When setting the tolerance intervals, the balance between the quality and cost should be main-
tained. Peter (1970) has introduced a graphical method to distribute the tolerances between the
components of an assembly to achieve the minimum cost requirement. Cheikh and McGoldrick
(1987) have showed that a high production cost is caused by both:

- an increase in manufacturing cost due to tight tolerances

- an increase in assembly scrap cost due to large tolerances (see Figure (IV.2)).

Figure IV.2 – Optimization Model.

The assignment of the optimal component tolerances can be performed by formulating a math-
ematical optimization problem that minimizes the sum of the production costs Cpr(t) (ob-
jective) of an assembly under quality requirements Qr (constraint) (Hong and Chang, 2002;
Walter et al., 2015). Therefore, the mathematical expression of the optimization problem is
the following:

t∗ = min Cpr(t)

Subject to Qr ≤Qmax
tmini ≤ ti ≤ tmaxi

(IV.1)

where Qmax is the upper limit of the quality requirement. According to Karmakar and Maiti
(2012), the choice of the objective functions for a tolerance-cost optimization can be the fol-
lowing:

- cost of manufacturing;

- quality loss;

78



Key Characteristics Identification based on Tolerance Allocation by Iso-Sensitivity

- manufacturing yield;

- process capability;

- any combination of the above.

The constraint of the tolerance-cost optimization depends on the objective of the optimization.
It can be represented by the limits of the functional requirement (Walter et al., 2015) or
extended to process capabilities (Mao et al., 2009).

Singh et al. (2009) have stated that tolerance cost optimization problems can be solved
using deterministic and stochastic optimization algorithms. They involve evaluating machining
costs of each component. The relationship between the machining costs and part tolerance
is expressed through a mathematical formula, and the total machining cost is optimized to a
minimum. It is subject to the constraints of the assembly function requirements. To achieve
this, there is a need for cost-tolerance data for each part in the assembly. A lot of models based
on the cost tolerance relationship have been proposed (Chase 1999a; Walter et al., 2015). A
number of different cost minimization algorithms to allocate component tolerances have been
developed. In this type of approach, a manufacturing cost is associated with each tolerance level
(cost-tolerance relationship), and the problem becomes finding the component tolerance config-
uration that minimizes total cost without exceeding a specified assembly tolerance (Clausing,
1988). The optimization variables of the problem are the tolerance intervals. The objective
of the optimization problem is therefore to determine the "best" tolerance intervals; those that
will entail a minimum cost subject to compliance with a certain number of constraints.

IV.2.3 Synthesis on tolerance allocation methods

The previous section reviews the most common tolerance allocation methods that exist in the
literature. They rely on various assumptions and mathematical frameworks. They are cate-
gorised as traditional and tolerance-cost optimization methods. In one hand, the traditional
methods are characterized by their simplicity, they do not require complex theories or numerical
work to be implemented. In another hand, the tolerance-cost optimization methods are more
formalized and backed by a stronger theoretical background since they consider the manufac-
turing processes, therefore they give more relevant results. One drawback of the tolerance-cost
methods is that the initial cost-tolerance data are hard to obtain for every part.

The proposed method in this chapter for the identification of KCs is a method that can
model a tolerance allocation problem with a better respect of the target NCR. Furthermore, the
willingness to identify the KCs pushes the use of sensitivity indices in the context of tolerance
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allocation (recall that the sensitivity analysis methods are described in Chapter II). Therefore,
the proposed method follows the same concept of the tolerance-cost optimization methods, with
a difference in the choice of the objective function on sensitivities and of the constraints on the
NCR. This is called the iso-sensitivity optimisation and it is presented in the following section.

IV.3 Proposed approach based on iso-sensitivity toler-

ance allocation

IV.3.1 Formulation of the problem

The proposed method is a step forward to be considered after the identification of the critical
functional requirements. The main purpose of this method is to reduce the number of KCs in one
functional requirement and by consequence decrease the manufacturing costs. As mentioned in
the introduction, the most common practice for the identification of KCs is done by specifying
the critical functional requirements using FMECA then set all the involved dimensions as KCs.
This is very conservative method that engenders high production costs. In such situations, all
the dimensions involved in the critical chains are supposed to have the same sensitivity index.
In fact, the dimensions do not have the same contribution on the performance of the system.
They should be classified as KCs if they have a high impact on the system or non-KCs when
this impact is negligible. First, based on the idea that set all the dimensions in one critical
functional requirement as KCs, the proposed method suggests to set equal sensitivities for
them. Assuming that all dimensions have equal sensitivity indices is the best situation since
they would be seen as all equally important, therefore they are defined either all as KCs or
all non-KCs. In addition, a target NCR to be respected during the manufacturing is imposed.
The constraint on the NCR guarantees that the assigned tolerances:

- will not be zero since the NCR is different from zero;

- will not be very large since the tolerated NCR would not be very large.

Finally, optimal tolerance intervals associated to each dimension are to be estimated. Therefore,
an optimization problem with an objective to have equal sensitivities and equality constraints
on the NCR to estimate the tolerance intervals is defined. First a design is proposed and then
an optimal design is found after applying the proper optimization algorithm. The optimization
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problem can be expressed as:

t∗ = Argmin
n∑
i=1

(Si(t)−S(t))2

Subject to NCR(t)−NCRtarget ≤ 0

tmini ≤ ti ≤ tmaxi for i= 1 . . .n

(IV.2)

where t∗ is the vector comprising the optimal tolerance intervals associated to the dimensions,
n is the total number of variables, Si(t) is the sensitivity index associated to each dimension
and is a function of the tolerance interval t, and S(t) is the average of the sensitivities with
respect to the dimensions, it is expressed as:

S(t) = 1
n

(S1(t) +S2(t + · · ·+Sn(t)) (IV.3)

If all the dimensions have equal sensitivity indices, then their difference to the mean value is
equal to zero. The sensitivity indices are estimated in this work by the local sensitivity analysis
since they are easy to implement and numerically less demanding. Other sensitivity metrics
could be applied, but this is not investigated in depth herein. Furthermore, it may be necessary
to use Monte Carlo simulation to compute the NCR . Then if a Monte Carlo sensitivity index
is used such as Morris and Sobol’ indices, the problem would involve a triple loop algorithm
(reliability nested within sensitivity nested within optimization).
The sensitivity of the NCR(t) to the tolerance intervals are expressed such that:

Si = ∂NCR(t)
∂ti

(IV.4)

In an industrial context, it is expected that the estimated tolerance intervals are compared
to reference values that are provided by the company. The reference values are within the
CAD model, they regroup all the constraints associated with the manufacturing such as the
manufacturing tools, customer requirements, etc.. For example, if the reference values are the
minimum tolerances that the machine can attain (the machine cannot manufacture dimensions
with tolerances below the reference values). The dimensions having tolerances that are
tighter than the reference ones are critical. In such situations, the dimensions cannot be
produced properly in such a way to have equal sensitivities. Consequently, these dimensions
are critical so they are set as KCs. When the tolerance intervals are changed, the optimization
problem can be repeated with the new values until the optimal intervals are reached. The
method can be applied when dealing with uncertain distribution parameters of the dimensions
whether the system is linear or non-linear.
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IV.3.2 Statistical models’ assumptions

In mass production, there exist a large number of different production batches that should
respect the design capability requirements. The quality requirements of a mass produced sys-
tem are needed to assure that the assembled product is robust with respect to manufacturing
variability. A target NCR is assigned for each functional requirement. In order to estimate
the NCR and the sensitivity indices, assumptions associated on the statistical model should
be made. These assumptions are associated with the mean and the standard deviation of the
dimensions knowing that the Gaussian distributions are used. Three assumptions are taken
into consideration:

- Case 1: The dimensions are centred and the standard deviations have maximum values such
that δi = 0 and σi = t

6C(r)
pki

such as shown in Figure (IV.3). This approach maximizes the

total number of off-tolerance dimensions. It is pessimistic but not necessarily the worse at
the level of assembly.

- Case 2: The dimensions are not centred and the standard deviation is constant such that
σi = cst and δi = 3Cpkiσi− ti

2 (or δi =−3Cpkiσi+ ti
2 ) such as illustrated in Figure (IV.3). The

mean value of the dimensions can be set to the minimum or to the maximum. The dimensions
can be a mixture of minimum and maximum values. The worst case mixture need to be
identified, often it is the configuration that maximizes or minimizes the average amount of
matter. This approach is based on the assumption that the standard deviation is associated
with the tools or the manufacturing technology. Therefore, it does not change. The mean
is associated with set-ups of the tools, which change frequently after each maintenance
operation, consequently it can vary over a certain range. This is a pessimistic approach
where only the worst-case is considered.

- Case 3: The dimensions have variable mean shifts and the standard deviation is constant.
According to the geometry shown in Figure (IV.3), the mean shift lies in the interval
[δmin;δmax] = [3Cpkiσi− ti

2 ;−3Cpkiσi+ ti
2 ]. This approach is the average over the long term.
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Case 1 Case 2 and 3

Figure IV.3 – Capability domains.

IV.3.3 NCR and Sensitivity analysis for different statistical models

The NCR is computed following the same procedure described in Section (III.3.4). In this
chapter, the analytical formula is used when the system is linear, and the general formula using
Monte Carlo simulations is used for the non-linear systems.

The sensitivity analysis is an important stage in the proposed method. As already men-
tioned in Chapter III, the application of sensitivity analysis needs the selection of the input
variables, the output quantity and the proper approach to estimate the impact of input on out-
put. The proposed method requires nesting the sensitivity indices in it, therefore, the tolerance
intervals are set as the input variables and the NCR as the output of the sensitivity analysis
problem. The approach to be used should be able to value the impact of the tolerance intervals
on the NCR. The adopted approach in this study that estimates the sensitivity indices is the
local analysis by the partial derivatives. Applying the chain rule, the sensitivities are expressed
as the following:

Si = ∂NCR

∂ti
= ∂NCR

∂σi
.
∂σi
∂ti

+ ∂NCR

∂δi
.
∂δi
∂ti

(IV.5)

Si is the sensitivity index corresponding to each tolerance. This choice is motivated by the
reduction of the numerical efforts, as the sensitivity indices’ estimation will be combined with an
optimization problem. The estimation of the sensitivity indices differs depending on the type of
the system whether it is linear or non-linear. When the system is linear, the analytical formulas
are used. However, when the system is non-linear, the score functions are implemented. The use
of the score functions based sensitivity indices allows the computation of the partial derivatives
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without additional efforts. The sensitivity indices estimation also depends on the assumptions
taken for the variations of the statistical parameters ( case 1, 2 or 3). Multiple strategies can be
used to define the distributions’ parameters σi and δi that only affect their partial derivatives
with respect to the tolerance interval. The score functions provide an efficient framework to
compute the partial derivatives with respect to the parameters, and can be applied regardless
of the strategy used to define the statistical model.

Sensitivity analysis for linear systems

When the functional characteristic is linear, the expression of the NCR is analytical such as
given in Equation (III.8). The expression of the sensitivity index differs depending on the
assumption taken on the statistical parameters. The derivatives of the NCR with respect to t
are:

- Case1: δi = 0 and σi = t

6C(r)
pki

Si = ∂NCR(δ,σ)
∂ti

= −a2ti

36(C(r)
pi )2σ3

Y

[
(LSLY −µY )φ

(
LSLY −µY

σY

)

+(µY −USLY )φ
(
µY −USLY

σY

)]
(IV.6)

- Case 2: σi = cst and δi = 3Cpkiσi− ti
2 (or δi =−3Cpkiσi+ ti

2 )

Si = ∂NCR(δ,σ)
∂ti

= 1
2σY

[
φ
(
LSLY −µY

σY

)
−φ

(
µY −USLY

σY

)] (IV.7)

- Case 3: [δmin;δmax] = [3Cpkiσi− ti
2 ;−3Cpkiσi+ ti

2 ]

Si = ∂NCR(δ,σ)
∂ti

(IV.8)

For this case the finite differences are used to estimate the sensitivities.

Sensitivity analysis by score functions for non-linear systems

When the system is non-linear, the sensitivity of the NCR with respect to the distributions’
parameters (denoted by θi = {δ1,σ1, δ2,σ2, . . . , δn,σn}) is derived by using the score function.
The regularity conditions described in Chapter II are assumed to be satisfied (Rubinstein and
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Shapiro, 1993; Rahman, 2009). Taking the partial derivative of NCR(θ) with respect to θi
yields:

∂NCR(θ)
∂θi

= ∂

∂θi

∫
Dx

I(x)fx(x,θ)dx (IV.9)

The position of the integral and the partial derivative can be interchanged using the Lebesgue
dominated convergence theorem, Equation (II.23) can be expressed as:

∂NCR(θ)
∂θi

=
∫
DX

I(x).∂fx(x,θ)
∂θi

=
∫
DX

I(x).∂ lnfx(x,θ)
∂θi

fx(x,θ)dx

= Eθ [I(X)sθi
(X,θ)]

(IV.10)

where sθi
(x,θ) is the first order score function for the parameter θi:

sθi
(x,θ) = ∂ lnfx(x,θ)

∂θi
(IV.11)

The Monte Carlo estimator of the quantity ∂NCR(θ)
∂θi

for Nmc samples is given by:

∂NCR(θ)
∂θi

≈ 1
Nmc

Nmc∑
i=1

I(X(i))sθi
(X(i),θ) (IV.12)

This estimator enables the use of the same samples for estimating the failure probability and
its gradients with respect to distribution parameters. This method is used here as it provides
local reliability-oriented sensitivity indices through the use of sampling-based techniques. In
addition, it only requires one Monte Carlo iteration. Note that the first-order score function
is derived from the sensitivity of the joint distribution, which can be analytically obtained.
The probabilistic response NCR(θ) and its sensitivity ∂NCR(θ)

∂θi
are formulated as the expec-

tation of stochastic quantities with respect to the same density function. It facilitates their
concurrent evaluations in a single stochastic analysis by using Monte Carlo method. In this
study, the vector of distribution parameters θ are replaced by µ and σ for the sensitivity
of the reliability function. Consider a random input X, where the components X1 . . .XN are
independent random variables. Let Xi follow the probability density function fXi

(Xi,µi,σi)
for i = 1, . . .N , with mean µi = Ti + δi and standard deviation σi. The joint density of X is
fX(x,θ) =∏N

i=1 fXi
(Xi,µi,σi),θ) = {µ1,σ1 . . . ,µN ,σN}T . Therefore, from Equation (II.26), the

first-order score functions for µi and σi become:

Sµi(x,µ) = ∂ lnfx(xi,µi,σi)
∂µi

= xi−µi
σ2
i

(IV.13)

Sσi(x,σ) = ∂ lnfx(xi,µi,σi)
∂σi

= 1
σi

[(xi−µi
σi

)2
−1

]
(IV.14)
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Sensitivity analysis by Score functions under two uncertainty levels

When the dimensions have variable mean shifts and the standard deviation is constant, the
variables are considered to have two uncertainty levels. The first uncertainty level is on the
dimensions X and the second uncertainty level is on the distributions’ parameters θ. In this
case the sensitivities are calculated by score functions in the augmented space. Under the
bi-level input uncertainty, the NCR is defined as the following:

NCR(t) =
∫
DΘ

NCR(θ)fθ|t(θ|t)dθ (IV.15)

where NCR(θ) is the conditional NCR given by:

NCR(θ) =
∫
DX

I(x)fx(x,θ)dx (IV.16)

Referring to the work of Chabridon (2019), the NCR can be estimated by considering the
augmented space. The joint PDf fZ = fXfθ. The partial derivative of the NCR with respect
to the i-th component of t is given by:

∂NCR(t)
∂ti

= ∂

∂ti

[∫
DΘ

NCR(θ)fθ|t(θ|t)dθ
]

=
∫
DΘ

NCR(θ)
∂fθ|t(θ|t)

∂ti
dθ (IV.17)

Note that, in the previous derivations, the differential and integral operators are switched due
to Lebesgue’s dominated convergence theorem. Following the idea given by Rubinstein (1986),
the importance sampling can be used to get an expectation with respect to the same probability
measure as that used for the NCR estimation. Thus it is given as:

∂NCR(t)
∂ti

=
∫
DΘ

NCR(θ).
∂
∂ti
fθ|t(θ|t)

fΘ|t(θ|t) fθ|t(θ|t)dθ

=
∫
DΘ

(∫
DX

I(x)fx(x)dx
)
.
∂ lnfθ|t(θ|t)

∂ti
fθ|t(θ|t)dθ

=
∫
DΘ

(∫
DX

I(x)si(θ,t)fx(x)dx
)
fθ|t(θ|t)dθ

= Eθ [I(Z)si(θ,t)]

(IV.18)

The computation of the partial derivative requires only one Monte Carlo simulation. The
random variables are generated by taking into account the variability in X and θ).

IV.3.4 Gradient-based optimization

Numerous optimization algorithms and strategies exist in the literature. The choice of the
optimization algorithm depends on the problem to be solved. In this work, only the gradient-
based strategies are presented since they are enough to solve these types of optimization problem
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without a need for extensive numerical efforts. According to Stromholm (1968), the derivatives
and tangents have been proposed by Fermat and Lagrange. The minimum of a function is
reached using an iterative process on gradients to decrease its value. The local variations of this
function are checked by the use of the tangent. The main idea of the gradient-based algorithms
is that they follow a one-dimensional path in the n-dimensional design space. Consequently,
only local convergence can occur with a moderate computational cost. In the first order gradient
optimization, a Taylor expansion of the objective function is done such as:

f(x)≈ f(x(0) + (x−x(0))T∆f(x(0)) (IV.19)

In many problems, the use of first order gradient based optimization algorithms causes the
non-convergence of the solution and many objective function evaluations. Hence, the second
order methods are used. The Taylor expansion would become:

f(x)≈ f(x(0) + (x−x(0))T∆f(x(0)) + 1
2x

T∆2f(x(0)) (IV.20)

The Hessian matrix is composed of the second order partial derivatives of the objective function,
it is in most cases expensive to compute. Therefore, it is approximated using only the first order
partial derivatives. This is called the Quasi-Newton approach. The most popular Quasi-Newton
method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Nocedal and Wright, 2006).
The optimization problem in this work is a constrained problem, therefore the Sequential Least
Squares Programming (SLSQP) algorithm is adopted. The SLSQP is an extension of the BFGS
algorithm and it is detailed by the following.

Sequential Least SQuares Programming (SLSQP)

The non-linear programming is expressed as the following:

NLP : minf(x)

Subject to gj(x) = 0, j = 1, . . . ,meq

gj(x)≥ 0, j =meq + 1, . . . ,m

xl ≤ x≤ xu

(IV.21)

where f and g are assumed to be continuous and differentiable functions with no specific
structure. The Sequential Least SQuares Programming (SLSQP) is a computation method
to solves non-linear programming problems. The estimation of xk+1 is deduced from xk by
following the the equation:

xk+1 = xk +αkdk (IV.22)
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where dk is the k-th search direction and αk is the step size. The search direction is defined by
a quadratic sub-problem formulated by the Lagrange function such as:

L(x,λ) = f(x) +
m∑
j=1

λjgj(x) (IV.23)

and a linear approximation of the constraints gj . In the SLSQP, the search direction is esti-
mated by a quadratic function. Its objective is to replace the initial problem with a sequence of
quadratic problems with constraints. The quadratic function is approximated by the second-
order Taylor series. The NLP is substituted by the standard quadratic programming minimizing
over the difference of x (Kraft, 1988). The SQP algorithm for an optimization problem com-
posed of equations and inequalities as constraints is shown as follows:

QPk = min
d∈Rn

∆f(xk)Td + 1
2dTHkd

Subject to gj(xk) + ∆gj(xk)Td = 0, j = 1, . . . ,meq,

gj(xk) + ∆gj(xk)Td≥ 0, j =meq + 1, . . . ,m

(IV.24)

The proposed search direction is the following:

H := ∆2L(x,λ) (IV.25)

Step size

In this thesis, the gradients are estimated by the finite difference formula:

∆f(x) = f(x+α)−f(x)
α

(IV.26)

The results of the optimization depend on the value of the step size ε. The default value of α
in the optimization algorithm is 1.10−7. A very small step size would lead to inaccuracy in the
calculation due to the fact that the Monte Carlo simulations are used to construct the objective
and constraint functions. In this work, the step size is assumed to be 0.1 since a very small
value will cause the stop of the calculation.

Fixing the seed

In this optimization, the objective and the constraint functions necessitate the evaluation of
the NCR. The estimation of the NCR is performed using Monte Carlo simulations. This leads
to biased expected value of the NCR and consequently the objective and constraint function of
the optimization. This can be considered as noise in the optimization functions. This would
make non-smooth curves for the functions, therefore the use of gradient-based methods would
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be challenging. To overcome this problem, it is required to reduce the noise of the functions by
reducing the variance of the estimates of NCR that correspond to different choices of t. This is
achieved by fixing the seed in the simulations generating different estimates of the NCR. This
procedure has been proposed by Taflanidis and Beck (2008) and referred as common random
numbers (CRN).

Different steps of the proposed approach

The steps of the proposed approach in this chapter are summarized in Figure (IV.4). They can
be summarized as the following:
Step1. Initialization.
The Monte Carlo sampling size NMC is set. The iteration counter k is initialized. The starting
point t(0) is given. The lower and upper bounds of t are defined.
Step2. Set-up of sequential quadratic programming (SQP).
Let t(k) be the tolerance interval estimated at the kth iteration, t(k+1) = t(k) +αk where αk is
the step size. The sub-problem in the SQP is:

minft(t(k+1)) = ft(t(k) +αk)

∼= ft(t(k)) + cT t + 1
2tTHt

Subject to NCR(t(k+1)) =NCR(t(k) +αk)
∼= NCR(t(k)) + sTi αk

where c = ∂ft
∂t

,H = ∂2ft
∂tltm

si = ∂NCR(t)
∂t

(IV.27)

Step3. Stochastic sensitivity calculation.
The sensitivity of the failure probability Si is calculated by using score function such as given
in Equation (IV.11) for one uncertainty level and such as given in Equation (IV.18) for double
uncertainty level.
Step 4. Checking for convergence and updating.
There are several stopping criteria in SLSQP python toolbox such as the precision goal of
the objective function ft named ftol and maximum number of iterations, etc.. The general
convergence condition is adopted. That is, if ‖t(k)‖≤ ftol (default ftol value = 1.10−6), then
t = t(k) and stop. If not, set k = k+ 1, t(k+1) = t(k) +α and go to Step 2.
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Figure IV.4 – Steps of the method with imposed gradients.

IV.4 Applications

The proposed method in this chapter is applied first on a linear stack-up example with two
dimensions, i.e. two optimization variables. The numerical solutions are tested for this example
in the three statistical models. Then, the method is implemented in the case of a linearised
function as well as the case of a non-linear system for only one statistical model case.

IV.4.1 Linear stack-up example

A linear stack-up of two dimensions shown in Figure (III.7) is considered. The corresponding
data are given in Table (IV.1).
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Table IV.1 – Input parameters of the linear stack-up example.

Dimensions Ti t0 C
(r)
p = C

(r)
pk Distribution

X1 6 1 1.33 Normal
X2 4 1 1.33 Normal

The optimization problem involving two optimization variables can be written in the standard
form as follows:

t∗ = Argmin(S1(t1)− S̄(t))2 + (S2(t2)− S̄(t))2

Subject to NCR(t)≤ 0.005
(IV.28)

The bounds of the tolerance intervals depend on the statistical model. The sensitivities are
estimated by the analytical formula and by the score functions. The sensitivities by score
functions are estimated for this example to make sure that their use can give relevant results.
Therefore, they can be adopted for the non-linear or over-constrained systems. The evaluation
of this problem is performed for the three different statistical models already exposed in Section
(IV.3.2).

- Case1: considering the first case where the dimensions follow normal distributions with fixed
parameters, such that the standard deviations have maximum values and the values of the
means are equal to the target values. The problem is solved following two strategies:

1. using the analytical formulas of the NCR given in Equation (III.8) and that of the sen-
sitivity indices given in Equation (IV.6). The results are illustrated in Figure (IV.5a).
The solution is spotted by the blue circle. It represents the intersection of the constraint
function with the minimum of the objective function;

2. using the NCR estimated by Monte Carlo simulation given in Equation (III.11) and the
sensitivity indices by score functions given in Equation (IV.14). The results are illustrated
in Figure (IV.5b). This strategy is applied to validate the results obtained from the first
strategies.

The same solution can be deduced from the two strategies. Some small perturbations are
noted in the contours of the objective function when using the score functions. This is
because the score functions are deduced from a Monte Carlo simulation (NMC = 1× 105),
so this is linked to the sample size. Increasing the number of samples reduces the noise, but
cannot eliminate it completely. However, this does not cause excessive perturbations in the
results of the optimization problem. In addition, the iso-sensitivity criteria is checked. The
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number of the MC samples depends on the accuracy need for the objective and constraint
functions in the optimization. Figure (IV.6) shows the accuracy of optimization functions
with respect to the evolution of the number of the MC samples. Table (IV.2) shows that, for
both strategies, the sensitivities deduced from the estimated tolerance intervals are equal.
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(a) Analytical formula
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Figure IV.5 – Representation of the objective and constraint functions for case 1 as well as the
optimization solution obtained from two different strategies.
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Figure IV.6 – The objective and the constraint function with respect to the number of MC
samples.
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Table IV.2 – Tolerance intervals and sensitivities for case 1 when analytical formulas and score
functions are performed.

Dimensions tai Sai Dimensions tsi Ssi

X1 1.005 0.0216 X1 1.004 0.0218
X2 1.005 0.0216 X2 1.005 0.0215

The NCR corresponding to the optimal tolerance values is computed for both strategies. It
is equal to NCRtarget, this proves that the constraint of the optimization is respected.

- Case 2: the second case considers a constant standard deviation (e.g. σi = 0.1) with the
corresponding maximum of the mean shift. The NCR is estimated using the analytical
formula. The NCR is quasi-linear, so the corresponding derivatives are constant. As a
consequence, the expressions of the sensitivities in this case are no longer expressed in terms
of tolerance intervals t. Therefore the objective function is zero. So the problem in this
case is to find the tolerance intervals that give the target NCR taking into consideration
the sensitivities is not a function of t. Therefore, the problem is no longer an optimization
problem, since the objective function is always satisfied. The solution is a set of tolerances
that give the target NCR. Therefore there exist an infinite number of solutions that are
equally good.

- Case 3: the third case is also performed where the standard deviation is constant and the
mean shift is variable. The mean shift varies uniformly in the interval [3Cpkσ− t

2 ,−3Cpkσ+
t
2 ]. The problem is solved following two strategies:

1. using the analytical formulas of the NCR given in Equation (III.8) and the finite differ-
ences for the estimation of the sensitivity indices. The corresponding solution is given in
Figure (IV.7a).

2. using the NCR estimated by Monte Carlo simulation given in Equation (III.11) and the
sensitivity indices by score functions in the augmented space such as given in Equation
(IV.18). The corresponding solution is given in Figure (IV.7b).

For this case also the same solution can be deduced from the two strategies. Similarly to
case 1, some small perturbations are noted in the contours of the objective function for the
same reason. In addition, the iso-sensitivity criteria is checked. Table (IV.3) shows that, for
both strategies, the sensitivities deduced from the estimated tolerance intervals are equal.
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Figure IV.7 – Representation of the objective and constraint functions for case 3 as well as the
optimization solution obtained from two different strategies.

Table IV.3 – Tolerance intervals and sensitivities for case 3 when analytical formulas and score
functions are performed.

Dimensions tai Sai Dimensions tsi Ssi

X1 1.08 0.0231 X1 1.08 0.0231
X2 1.08 0.0231 X2 1.075 0.0228

The tolerance intervals estimated by the use of the sensitivity indices based on the score func-
tions are almost the same as the ones obtained by the analytical formulas. This proves that
the sensitivities by the score functions give acceptable and relevant results. As a consequence
they will be adapted in the more complex systems such the non-linear or the over-constrained
systems.

IV.4.2 Linearised system of the Electrical plug from RADIALL

The application of the method is done also on a linearised function. The case from RADIALL
is an electrical plug. Fourteen dimensions are involved in the tolerance intervals chain following
the relation given in Equation (III.21). The input data already given in Table (III.2) are used.
The value of the initial NCR0 corresponding the input data is equal to 0.12. This value is
considered higher than the required NCR. Therefore, there is need to reach a small NCR under
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the iso-sensitivity condition. Consequently, the optimization problem involving all the tolerance
intervals is written in the standard form as follows:

t∗ = Argmin
14∑
i=1

(Si(ti)− S̄(t))2

Subject to NCR(t)≤ 0.0001
(IV.29)

The tolerances associated to every dimension are considered the initial tolerances which form
the starting tolerance vector of the optimization. The statistical model assumed in this example
is the model of Case 1 (centred dimensions, maximum standard deviation). The NCR and the
sensitivities are estimated using the analytical formula since the functional characteristic is
linearised. The results of the optimization are given in Table (IV.4).

Table IV.4 – Estimated tolerance intervals and sensitivity indices by analytical formula for
RADIALL case input parameters.

Dimensions t0 Allocated tolerances t∗ Si(×10−5)

X1 0.2 3.31×10−2 1.38
X2 0.2 2.12×10−4 1.38
X3 0.06 2.12×10−4 1.38
X4 0.15 2.66×10−5 1.38
X5 0.2 6.41×10−5 1.38
X6 0.04 6.41×10−5 1.38
X7 0.05 5.31×101 1.38
X8 0.04 2.12×10−2 1.38
X9 0.04 5.31×101 1.38
X10 0.06 1.92×10−3 1.38
X11 0.04 1.65×10−5 1.38
X12 0.04 2.45×10−5 1.38
X13 0.04 4.00×10−5 1.38
X14 0.06 1.91×10−3 1.38

The new sensitivities are all equal, this proves that the optimum solution is reached.
It also demonstrates that the optimization problem is sufficiently well conditioned to obtain
convergence, and that the method is applicable with a moderately large number of variables. It
is noticed that the estimated tolerance intervals are very small with respect to the original
tolerances except for the variables X7 and X9. The corresponding tolerance intervals are
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relatively large. It can be concluded that these two variables are not influencing the variability
of the NCR, so their values can be fixed as their initial ones and then excluded from the analysis.
For the rest of the variables, the low values of tolerance intervals that should give the target
NCR cannot be achieved during the manufacturing process. As a consequence, they are all set
as KCs.

IV.4.3 Non-linear clutch system

The one-way mechanical clutch shown in Figure (IV.8) is an example of a non-linear dimensional
chain (Glancy and Chase, 1999). The main parts of the clutch are an outer ring, four rollers
accompanied by four springs and a central hub. This is a device used to transmit rotary
motion in only one direction. The independent manufacturing variables are the hub dimension
A, the cylinder radius C, and the ring radius E. It is defined geometrically by the dimensions
X = (A,C,D,E). The variables C and D are equal since they both represent the radius of the
ring. The angle α is expected to vary due to manufacturing variations in the clutch component
dimensions. The analytical expression of the chain of dimensions is the following:

α = arccos
(
A+C

E−D

)
(IV.30)

and the functional requirement on the angle α is the following: α∈ [6.4184◦;7.6184◦]. The input
data of the clutch mechanism variables are given in Table (IV.5). The assumed statistical model
is also the model of Case 1.

Figure IV.8 – Non-linear clutch mechanism (Glancy and Chase, 1999).
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Table IV.5 – Input data for variables of the clutch mechanism.

Dimension Mean (in mm) t0 C(r)
p Distribution

A 27.645 0.1 1.33 Normal
C, D 11.43 0.02 1.33 Normal
E 50.8 0.025 1.33 Normal

The value of the initial NCR0 corresponding the input data is equal to 4×10−4. This value is
considered higher than the required NCR. Therefore, there is need to reach a small NCR under
the iso-sensitivity condition. Therefore, the optimization problem involving all the optimization
variables is written in the standard form as follows:

t∗ = Argmin
3∑
i=1

(Si(ti)− S̄(t))2

Subject to NCR(t)≤ 3×10−4
(IV.31)

The variables are assumed to have a maximum standard deviation and a zero mean shift
(case 1: peak of the triangular capability domain). The NCR is estimated using the Monte
Carlo simulation and the sensitivities are estimated using the score functions formulas that
is based on the NCR estimation. The results of the optimization are shown in Table (IV.6).
In this case the obtained sensitivities are also all equal, proving that the optimum is reached.
It is noticed that the estimated tolerance intervals are very small with respect to the original
tolerances. The low values of tolerance intervals required to meet the target NCR cannot be
achieved during the manufacturing process. As a consequence, they are all set as KCs.

Table IV.6 – Tolerances allocated by iso-sensitivity and the corresponding sensitivities for vari-
ables of the clutch mechanism.

Dimension Allocated tolerances t∗ Sensitivities by score functions
A 0.073 0.269

C, D 0.015 0.269
E 0.07 0.271
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IV.5 Conclusion

This chapter presents a new method for the identification of the Key Characteristics in a critical
functional requirement. The method is based on the tolerance allocation concept combined
with sensitivity analysis. The principle tolerance allocation procedures from the literature are
described in this chapter. It is shown that they do not respect a target value for the NCR. They
also do not consider the capability requirements of the production process. The identification
of KCs is performed by allocating the tolerance intervals in a way to respect a target value
of the NCR and assuming that the sensitivities of all the involved parts are identical. This is
conducted by an optimization problem that the objective function is a metrics defined as the
sum of the square of the differences to the mean sensitivity index, and the condition on the
NCR as a constraint. This problem is solved graphically for the systems involving only two
variables for a visual validation of the method. Then it is applied on various types of systems.
The application of the proposed approach is performed on the linear stack-up example with two
parts for three statistical model assumptions. The results from the graphical and numerical
solutions show that this approach can be applied when estimating sensitivities by analytical
formulas in addition to the sensitivities based on score functions. It is also convenient to
apply this approach for double level of uncertainty input. The only case where the method
is not applicable is when a maximum or a minimum matter is considered. Other applications
of the proposed approach were performed on an electrical plug having a linearised functional
requirement and on a clutch mechanism having a non-linear functional requirement. This is only
applied for one statistical model assumption. The obtained tolerance intervals are compared
to reference values (e.g. as they appear on the CAD model) already specified by the designers.
If the tolerance interval corresponding to one dimension cannot be achieved, the corresponding
part is considered as a KC.
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Chapter V

V.1 Introduction

The objective of this chapter is to apply the already presented methods for the identification
of KCs on a 3D mechanical system. Two methods are tested on this system. The first one
is based on the Sobol’ indices in the context of tolerancing and it was presented in Chapter
III. The second one is based on tolerance allocation under iso-sensitivity conditions and was
developed in Chapter IV. The mechanical system on which the methods are tested is an over-
constrained system. The tolerance analysis and the geometrical modelling of over-constrained
systems are already described in Section (I.2). The two methods have a common point, that
they both need the estimation of the failure probability of the system. The calculation of the
failure probability of an over-constrained system is not detailed because this has been already
studied by Qureshi et al. (2012) and Dumas (2014). The adopted approach in this work is that
of Qureshi et al. (2012) where the tolerance analysis approach is based on optimization and
Monte Carlo simulation. The full description of the mechanism is in the following section.

V.2 Description of the system

The over-constrained system is an electrical plug adapted from RADIALL (see Figure (V.1)).
This example has been treated by Dumas (2014) in his thesis dissertation. This mechanism
consists of two parts in relative movement: part (1) is the casing and part (2) is the male
contact. The casing is composed of the casing itself and a base allowing the male contact to
be inserted in the casing. The casing and base plate are assumed to be fixed in relation to
each other. In order for the male contact to fit into the casing without any problems, some
gaps are provided between these two parts. However, in order for the electrical plug to be
functional, the axes of the small cylinder of the male contact and of the outer cylinder of the
casing must be aligned with each other to have maximum angular displacement. The functional
requirement of this mechanism specifies that the maximum deflection of the small cylinder of
the male contact with respect to the outer cylinder of the casing along ~x and ~y axes does not
exceed a maximum value. Since form defects are neglected, this results in a requirement for
the edge of the male contact (point E). The study of this mechanism implies the definition of
an assembly condition and a functional requirement. Dumas (2014) has applied new tolerance
approaches to get the probability of non-assembly and the probability of non-functionality. The
application of the proposed methods for the identification of KCs does not require to repeat the
tolerance analysis. They only require getting access to the input and to the output variables.
The input variables were modelled as small displacement torsors. The output can be either
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the non-assembly or the non-functionality probabilities. In this work, only the non-assembly
probability is considered. The geometrical modelling and the formulation of the assembly and
functionality problems are given in the following.

Figure V.1 – Representation of the electrical plug by RADIALL (Dumas, 2014).

V.2.1 Geometrical modelling

The point A is the origin to localise the other points (see Figure (V.1)). The corresponding
coordinates are parametrised by the variables li, i= {1,2,3,4} in the system R1 = (A,~x,~y,~z).

−→
AB =


0
0
l1

−→AC =


0
0
l2

−−→CD =


0
0
l3

−−→BE =


0
0
l4

 (V.1)
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Topological loop

The graph of the mechanism is presented in Figure (V.2) showing the two parts of the system.
There are in total 4 joints (without that of the functional requirement), for 2 parts. The number
of topological loops to write is equal to Nloops =Njoints−Nparts+1 = 4−2+1 = 3. These loops
allow to write a total of twenty compatibility equations (see Appendix (A)).

Figure V.2 – Graph of the mechanism (Dumas,2014).

Geometrical deviations

The substitution surfaces of the mechanism are the following:

• plane surfaces a and c.

• cylindrical surfaces b, d, and e.

For the cylindrical surfaces b and d, the intrinsic deviations are defined:

• d1b: deviation of the diameter of the casing at the surface b.

• d2b: deviation of the diameter of the male contact at the surface b.
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• d1d: deviation of the diameter of the casing at the surface d.

• d2d: deviation of the diameter of the male contact at the surface d.

The deviation torsor is associated with each substitution surface (and for each part). The shape
of the torsor depends on the type of associated surface. The torsors are expressed in the same
base (~x,~y,~z) but with different application points:

{T1a1}=


α1a1 0
β1a1 0
0 w1a1


A

{T1b1}=


α1b1 u1b1

β1b1 v1b1

0 0


A

{T1c1}=


α1c1 0
β1c1 0
0 w1c1


B

{T2a2}=


α2a2 0
β2a2 0
0 w2a2


A

{T2b2}=


α2b2 u2b2

β2b2 v2b2

0 0


A

{T2c2}=


α2c2 0
β2c2 0
0 w2c2


B

{T1d1}=


α1d1 u1d1

β1d1 v1d1

0 0


C

{T2d2}=


α2d2 u2d2

β2d2 v2d2

0 0


C

{T1e1}=


α1e1 u1e1

β1e1 v1e1

0 0


E

Gaps

There are four joints in the mechanism to consider: two plane support connections at surfaces
a and c and two pivot sliding connections at level surfaces b and d. All the gaps are of floating
type therefore the gap torsors associated with connections are as the following:

{G2a/1a}=


α2a1a u2a1a

β2a1a v2a1a

γ2a1a w2a1a


A

{G2b/1b}=


α3b1b u3b1b

β3b1b v3b1b

γ3b1b w3b1b


A

{G2c/1c}=


α4c1c u4c1c

β4c1c v4c1c

γ4c1c w4c1c


B

{G2d/1d}=


α4d1d u4d1d

β4d1d v4d1d

γ4d1d w4d1d


C

As stated in the presentation of the mechanism, the study of the displacements of point E
with respect to the outer cylinder e. The functional torsor contains the two components of
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displacements along the axes ~x and ~y:

{G2d/1e}=


− u2d1e

− v2d1e

− −


E

Types of surfaces

The surfaces involved in the over-constrained mechanism are plane and cylindrical surfaces.
Table V.1 shows the small displacement torsors to be used and the corresponding constraints.

Table V.1 – SDT according to the type of surface and torsor according to the type of tolerance.

Surface Surface Torsor Tolerance Zone Torsor Constraint
Plane

𝑥

𝑦

𝑧

{TS,N}=


α 0
β 0
0 w

 𝑥

𝑦

𝑧

𝑙𝑝1

𝑙𝑝2

𝑡

−t
2 ≤ w ≤

t
2

−t
lp1
≤ α≤ t

lp1
−t
lp2
≤ β ≤ t

lp2

Cylindrical

𝑥

𝑦

𝑧

{TS,N}=


α u

β v

0 0


𝑥

𝑧

𝑦

𝑙𝑐
𝑡

u2 +v2 ≤
(
t
2

)2

−t
lc
≤ α≤ t

lc
−t
lc
≤ β ≤ t

lc

V.2.2 Formulation of the assembly problem and non-assembly prob-

ability

The formulation of the assembly condition is given by Equation (I.6). By definition, a mecha-
nism can be assembled if, for a given set of geometrical deviations x given, there exist at least
one gap vector g such that interface constraints are respected. This means finding a position
for the parts of the mechanism so that it can be assembled It is necessary to use another
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formulation based on an optimization problem. The used formulation is given by:

Ra(x) = min
g∈RNt

C
(1)
i (x,g)

Subject to C(j)
c (x,g) = 0 ∀j = {1, . . . ,NCc}

C
(l)
i (x,g)≤ 0 ∀l = {1, . . . ,NCi

}

(V.2)

where NT is the total number of compatibility and interface constraints, NCc is the number of
the compatibility equations and and NCi

the number of the interface constraints. The problem
consists in minimizing an interface constraint, subject to all the constraints characterizing the
model behaviour including the interface constraint to minimize. A solution means that there
exists a configuration of gaps so that the constraints are respected. Consider the event Ea that
states:
“For a given vector x, it doesn’t exist a gap vector g so that Ra(x) has a solution”. The coupling
of Monte Carlo and optimization techniques that allows the calculation of the non-assembly
probability Pa have been proposed by Qureshi et al. (2012). This probability of non-assembly,
which is an indication of the manufactured products, is estimated using the relation:

Pa ≈ P̃a = 1
NMCop

NMCop∑
i=1

Ia
(
x(i)

)
(V.3)

where Ia represents the indicator function defined as:

I(x) =
 1 if Ra(x) has not a solution

0 if Ra(x) has a solution
(V.4)

V.2.3 Input random variables

The random variables follow a normal distribution X ∼N (µX ,σX). The values of the distri-
butions’ parameters corresponding to the input random variables are given in Table (V.2).

Table V.2 – Values of the random variables of the electrical plug.

µd1b
σd1b

µd2b
σd2b

µd1d
σd1d

µd2d
σd2d

µXt σXt Xr

12.1 0.03 12 0.03 6.1 0.03 6 0.03 0 0.01 0.01

The displacement geometrical deviations Xt and the rotational geometrical deviations Xr are
the following:

Xt = {w1a1,w2a2,u1b1,v1b1,u2b2,v2b2,w1c1,w2c2,u1d1,v1d1,u2d2,v2d2,u1e1,v1e1}.
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Xr = {α1a1,β1a1,α1b1,β1b1,α1c1,β1c1,α1d1,β1d1,α2a2,β2a2,α2b2,β2b2,α2c2,β2c2,α2d2,β2d2}

The rotational deviations are considered to have deterministic values, so they are not taken
into account in the analysis.

In this chapter, the procedure followed by Qureshi et al. (2012) to get the non-assembly
probability is considered. It uses the optimization and Monte Carlo simulation to get the results.
The non-assembly probability of the electrical plug system described in this chapter was already
performed using the "Tolsis" solver. This solver was developed by Phimeca and Mecamaster
to solve tolerance analysis problems for over-constrained mechanisms. Both strategies tested
for the KCs identification require the use of the input and the output variables. They can be
extracted from the procured code.

V.3 Application of Method 1: Sobol’ sensitivity indices

The application of the Sobol’ based method for KC identification on the electrical plug requires
the knowledge of the small displacement torsors, their distributions and the corresponding rela-
tions with manufacturing capabilities. The displacement deviations follow normal distributions.
The corresponding distribution parameters are assumed to be variable and propagating from
the manufacturing processes requirements such as the tolerance intervals ti and the capabili-
ties C(r)

pi and C(r)
pki. The input generated samples are assumed to lie in the capability domain

already introduced in Section (III.3.1). The reweighing technique is used for the estimation of
non-assembly probability, to prevent repeated calls of the Monte Carlo simulations, thus the
computational efforts are reduced.

V.3.1 Sobol’ for 2D problem

For the sake of simplicity, as a first attempt of the Sobol’ based strategy on over-constrained
systems, the dimensionality of the problem is reduced. It is assumed that the variables associ-
ated to part (1) of the assembly has a common tolerance interval t1 and similarly the variables
associated to part (2) of the assembly has a common tolerance interval t2. So this is a 2D
optimisation problem but the MCs still involves nineteen random variables. The torsors corre-
sponding to part (1) and part (2) are grouped and are represented respectively by P1 and P2.
The results are shown in Figure (V.3). It is noted that the main effects are negligible, and the
total effects are important.
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Figure V.3 – Sobol’ sensitivity indices of the non-assembly probability to the geometrical dis-
placement deviations.

V.3.2 Problem with nineteen variables

The same strategy is applied on the problem by taking into account all the random variables.
The Sobol’ indices corresponding to each variable are shown in Figure (V.4). The results show
that the main effects of the variables are negligible, however the total effects are significant for
some variables are small for others. This shows that the variation of one translational deviation
does not impact alone the non-assembly probability, but the interactions of the variables have
major impact on the quantity of interest. It can be also noted that the diameters d1b1,d2b2,d1d1

and d2b2 have an important impact on the non-assembly probability Pna. This is due to the
higher values of the corresponding standard deviations. In addition, from the graph it is clear
that the effects of the variables w1a1 and w1c1 are negligible, so they can be excluded from
the analysis. The remaining variables seem to have more interaction effects, they can be set
as KCs. A further step can be done by checking which variables are interacting together by
estimating the higher order Sobol’ indices.

w1a1w2a2 u1b1 v1b1 u2b2 v2b2 w1c1w2c2 u1d1 v1d1 u2d2 v2d2 u1e1 v1e1 d1b1 d2b2 d1d1 d2d2 d1e1

Translation deviations
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S
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Main effects

Total effects

Figure V.4 – Sobol’ sensitivity indices of the non-assembly probability to the geometrical dis-
placement deviations.
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V.4 Application of Method 2: Tolerance allocation by

iso-sensitivity

The proposed method based on tolerance allocation by iso-sensitivity for KC identification is
also applied on the electrical plug. The same procedure described in Chapter IV is followed in
this example. An optimization problem is formulated and it can be written as the following:

t∗ = Argmin
19∑
i=1

(Si(ti)− S̄(t))2

Subject to Pna(t)≤ 0.01
(V.5)

The sensitivities are computed by the implementation of the score functions that estimate
the influence of the probability of non-assembly to the distributions’ parameters. So it is a
reliability based optimization under uncertainty, as the constraint involves a failure probability
and the objective function involves the derivatives of the failure probability. According to
Schuëller and Jensen (2008), this type of problems need considerable computational efforts
since the optimization and reliability analysis are both demanding. The objective function
and the constraint function require the call of the coupled optimization with Monte Carlo
simulation (Tolsis solver) at every iteration. In addition the number of variables is relatively
high for such optimization. Two strategies to reduce the computational efforts are tested.
The first strategy consists in providing the optimization with the gradients corresponding to
the objective and to the constraint functions. This choice is taken since the optimization
solver used is gradient based. The general strategy used in the optimization procedure that
provides a gradient and using the chain rule has been adopted by Rumelhart et al. (1986) in the
calibration of neural networks with the so-called back-propagation. The second strategy uses
the re-weighting technique for the computation of the sensitivities based on score functions. For
both strategies, the optimization algorithm chosen in Python is the Sequential Least Squares
Programming (SLSQP), which is a gradient based algorithm.

V.4.1 Optimization with imposed gradient functions

Knowing that optimization algorithm used is a gradient based one, the gradients of the objective
function and that of the constraints are imposed in the calculation to simplify the calculation
and to reduce the computational time of the numerical simulation. The default way of the
gradients’ calculation in the algorithm of the program is the estimation of Finite Differences
(FD). This procedure has been adopted by Jensen et al. (2009) for reliability-based optimization
of stochastic systems. The different steps of this strategy are given in Figure (V.5).
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Figure V.5 – Steps of the method with imposed gradients.

The steps of the strategy are summarized as the following:
Step1. Initialization. The Monte Carlo sampling size Nmc is set. The iteration counter k is
initialized. The starting point t(0) is given. The lower and upper bounds of t are defined.
Step2. Setup of sequential quadratic programming (SQP).
Let t(k) be the tolerance interval estimated at the kth iteration, t(k+1) = t(k) +αk where αk is
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the step size. The sub-problem in the SQP is as the following:

minft(t(k+1)) = ft(t(k) +αk)

∼= ft(t(k)) + cT t + 1
2tTHt

Subject to Pna(t(k+1)) = Pna(t(k) +αk)
∼= Pna(t(k)) + sTi αk

where c = ∂ft
∂t

,H = ∂2ft
∂tltm

si = ∂Pna(t)
∂t

(V.6)

In one hand, the gradients of the constraint function are the derivatives of the non-assembly
probability with respect to the tolerance intervals ∂Pna

∂ti
. They are the sensitivities used in

the objective function (see Equation (IV.9)). In another hand, the gradients of the objective
functions are obtained by getting the derivative of the objective function with respect to the
tolerance intervals. Therefore, the derivatives of the sensitivity indices ∂2Pna

∂ti∂tj
need to be com-

puted. By consequence, the second order score functions are calculated. The gradient of the
objective function is expressed as:
∂fobj
∂ti

= ∂

∂ti

[
(S1− S̄)2 + · · ·+ (Sj− S̄)2 + . . .(Sn− S̄)2

]
= 2(S1− S̄) ∂

∂ti
(S1− S̄) + · · ·+ 2(Si− S̄) ∂

∂ti
(Sj− S̄) + · · ·+ 2(Sn− S̄) ∂

∂ti
(Sn− S̄)

(V.7)

with:
∂

∂ti
(Sj− S̄) = ∂Sj

∂ti
− ∂S̄
∂ti

= ∂Sj
∂ti
− ∂

∂ti

1
n

(S1 + · · ·+Sj + · · ·+Sn)
(V.8)

To recall that the sensitivity indices are defined as the influence of the tolerance intervals on
Pna, they are computed using the first order score function. Therefore, the derivative of the
sensitivity indices with respect to ti necessitates the calculation of the second order sensitivity
indices such as:

∂2Pna(θ)
∂θi∂θj

= ∂

∂θj

∫
DX

I(x)sθi
(X,θ)fx(x,θ)dx

=
∫
DX

I(x)sθi
(X,θ)∂fx(x,θ)

∂θj
dx +

∫
DX

I(x)∂sθi
(X,θ)
∂θj

fx(x,θ)dx

=
∫
DX

I(x)sθi
(X,θ)sθj

(X,θ)dx +
∫
DX

I(x)∂sθi
(X,θ)
∂θj

fx(x,θ)dx

(V.9)

For independent variables, the expression of the second order score functions becomes:

∂2Pna(θ)
∂θi∂θj

=
∫
DX

I(x)sθi
(X,θ)sθj

(X,θ)dx (V.10)
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When the second derivation is performed with respect to the same variable the formula becomes:

∂2Pna(θ)
∂θi∂θj

=
∫
DX

I(x)s2
θi

(X,θ)dx +
∫
DX

I(x)∂sθi
(X,θ)
∂θi

fx(x,θ)dx (V.11)

Step3. Stochastic sensitivity calculation.
The sensitivity of the non-assembly probability si is calculated by using score function without
re-weighting such as given in Equation (IV.11).
Step 4. Checking for convergence and updating.
There are several stopping criteria in SLSQP python toolbox such as the precision goal of
the objective function ft named ftol and maximum number of iterations, etc.. The general
convergence condition is adopted. That is, if ‖t(k)‖≤ ftol (default ftol value = 1.10−6), then
t = t(k) and stop. If not, set k = k+ 1, t(k+1) = t(k) +α and go to Step 2. Here it is changed
to 0.1, because the value of the objective function is based on MC simulation, therefore there
is no need for a lot accuracy.

V.4.2 Optimization with re-weighting technique

The re-weighting technique is used to reduce the computational efforts of the problem, which
circumvents the problem of repeated model simulations. It requires the call of only one op-
timization coupled with Monte Carlo simulation (Tolsis solver) to estimate the non-assembly
probability Pna and the sensitivities calculated by the score functions. Therefore, there is need
to give an initial guess of the tolerance intervals. The re-weighting is used to estimate Pna and
the sensitivities by score functions giving other tolerance intervals values. The different steps
of this strategy are given in Figure (V.6). By using a re-weighting scheme, the derivative of
Pna with respect to the distributions’ parameters is written as:

∂Pna(θ)
∂θi

=
∫
I(x)sθi

(x,θ)fx(x, θ)
f∗x(x, θ)f

∗
x(x, θ)dx (V.12)

where f∗x(x, θ) is the probability density function of the base distribution. Hesterberg (1995)
has presented various re-weighting techniques for estimating the expected value of an output
distribution without evaluating the model for the input distribution. The weight function,
which is the ratio of the probability density function, is defined as:

w(x, θ) = fx(x, θ)
f∗x(x, θ) (V.13)

The sensitivities of Pna(θ) are then expressed as:

∂Pna(θ)
∂θi

=
∫
I(x)sθi

(x,θ)w(x, θ)f∗x(x, θ)dx (V.14)
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By using the Monte Carlo simulation, the sensitivities of Pna(θ) are written as:

∂Pna(θ)
∂θi

≈ 1
Nmc

Nmc∑
i=1

I(X(i))sθi
(X(i),θ)w(x, θ) (V.15)

Figure V.6 – Steps of the method with re-weighting.

V.4.3 Transformation into a 2D problem

As a first attempt to apply the proposed strategies to solve the optimization based on iso-
sensitivity, the problem involving nineteen variables is transformed into a 2D problem. This
will serve to test the performance of the approaches in low dimensionality problems. Consid-
ering only one tolerance interval value for every part (such as done in Section (V.3.1)), the
optimization problem is formulated as the following:

t∗ = Argmin
2∑
i=1

(Si(ti)− S̄(t))2

Subject to Pna(t)≤ 0.01
(V.16)
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The sensitivities of the non-assembly probability to the tolerance intervals and based on score
functions are calculated using the chain rule.

S1 = ∂Pna
t1

=
n∑
i=1

∂Pna
∂σi

∂σi
∂t1

S2 = ∂Pna
t2

=
m∑
j=1

∂Pna
∂σj

∂σj
∂t2

(V.17)

where n and m represent the number of variables involved respectively in part (1) and part
(2). The optimization with imposed gradient function and the optimization with re-weighting
technique are tested for this simplified example.

Optimization with imposed gradient functions on 2D problem

To check the validity of the approach on this example, there is need to verify that the imposed
gradients of the objective function and that of the constraint function are accurate. Figures
(V.7b), (V.7b) show the direction of the gradients associated with the constraint and objective
functions for multiple Monte Carlo simulations. The obtained directions are normal to the
functions curves, this validates the accuracy of the imposed gradients. Then the optimization
is tested on this problem. Figure (V.7c) shows a plot of the objective, the constraint function
and the path of the optimization performed with gradients. The results show that the algorithm
works well for two input variables.
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Figure V.7 – Representation of the direction of the gradients of (a) the constraint function and
(b) the objective function, and (c) the optimization path.
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Optimization with re-weighting on the objective and constraint functions

The optimization is repeated with the use of the re-weighting technique to estimate the con-
straint and objective functions. To validate the use of this approach, the constraint and ob-
jective functions estimated by the re-weighting are compared to the original functions for two
different starting points such as shown in Figures (V.8) and (V.9). The illustrations show that
the re-weighting technique works locally in the region surrounding the starting point (tref in
the figures).
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(a) tref = {0.15,0.25}
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Figure V.8 – The contour-lines of the non-assembly probability estimated by the re-weighting
technique for two different starting points (a) and (b) and the reference ones (c).
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Figure V.9 – The contour-lines of the objective function estimated by the re-weighting technique
for two different starting points (a) and (b) and the reference ones (c).
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V.4.4 Problem with nineteen variables

After checking the optimization algorithm and the techniques on the 2D problem, it is applied
on the original problem with nineteen variables. The same steps described in this section are
followed. The results showing the obtained tolerance intervals from both techniques (gradients’
imposition, re-weighting) are given in Table (V.3) and the deduced sensitivities calculated by
score functions are shown in Figures (V.10) and (V.11). The obtained tolerance intervals are
to be compared to reference tolerance intervals given by the manufacturer. The variables with
tighter tolerance intervals are considered as KCs. The results show that the use of the opti-
mization with gradients imposition works better than the re-weighting technique. A comparison
between both techniques is given in Table (V.4).

Table V.3 – Tolerance intervals obtained from the reference optimization and from the one
coupled with re-weighting.

Input Variables Initial Tolerances t0 Tolerance intervals t∗ t∗rew
w1a1 0.08 0.14 0.11
w2a2 0.08 0.14 0.22
u1b1 0.08 0.13 0.10
v1b1 0.08 0.11 0.11
u2b2 0.08 0.11 0.20
v2b2 0.08 0.11 0.10
w1c1 0.08 0.14 0.11
w2c2 0.08 0.15 0.10
u1d1 0.08 0.11 0.12
v1d1 0.08 0.16 0.12
u2d2 0.08 0.16 0.14
v2d2 0.08 0.11 0.10
u1e1 0.08 0.11 0.12
v1e1 0.08 0.14 0.21
d1b1 0.24 0.11 0.11
d2b2 0.24 0.11 0.12
d1d1 0.24 0.13 0.10
d2d2 0.24 0.12 0.09
d1e1 0.24 0.13 0.09

115



Chapter V

w1a1w2a2u1b1 v1b1 u2b2 v2b2w1c1w2c2u1d1 v1d1 u2d2 v2d2 u1e1 v1e1 d1b1 d2b2 d1d1 d2d2 d1e1

Translation deviations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
en

si
ti

vi
ty

in
d

ic
es

Score function

Figure V.10 – Sensitivity indices by score functions of the non-assembly probability to the
geometrical displacement deviations.
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Figure V.11 – Sensitivity indices by score functions of the non-assembly probability to the
geometrical displacement deviations with re-weighting.

Table V.4 – Comparison between the two strategies used for iso-sensitivity based optimization.

Gradients’ imposition Re-weighting technique

Gradients are imposed in the program Gradients are calculated by default by
the program using Finite Differences

Need to call the optimization coupled with
MC simulation at every iteration

Needs only one Monte Carlo simulation

Dependent on the initial estimate Strong dependency on the initial estimate

Slight differences between the obtained
sensitivities

More important differences between the
obtained sensitivities
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V.5 Conclusion

In this chapter, the methodologies for KCs identification proposed in the two previous chapters
have been applied on an over-constrained industrial system. A brief description of the system
as well as the problem formulation are given in this chapter. The first methodology tested on
this system is based on Sobol’ indices, it takes into account the variability of the distributions’
parameters. The method shows that the KCs can be identified for a double uncertainty levels
in an over-constrained system. The second methodology is based on tolerance allocation by
iso-sensitivity. It is performed as a reliability-based optimization. Two techniques were tested
to reduce the computational efforts of this problem. The first one considers the calculation of
the gradients and the second one is performed in a re-weighting scheme. A comparison between
both techniques is also given. It can be concluded, that both KCs identification methods can
be extended to an over-constrained system. Consequently, the two methods can be validated
regarding such an industrial test-case. This motivates further improvements and perspectives
for the proposed methodologies. These perspectives are summarized in the following concluding
chapter.
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Conclusion

In the scope of AHTOLAND project, the objective of this work is to develop new numerical
tools for the identification of Key Characteristics (KCs) in a tolerancing framework. This is
achieved by the analysis of the sensitivities of the tolerances and capabilities on the failure
probabilities or Non-Conformity Rates as named in this work.
Chapter I of this manuscript reviews the basic tolerance analysis notions that will build an
adequate framework for the problem of the thesis. The second part of this chapter focuses on
the existing Key Characteristics practices. The industrial partners of this project apply the
FMECA to get the critical chain of dimensions, then they consider all the involved dimensions
as KCs. The purpose of this work is to reduce the number of KCs in the same critical chain.
The sensitivity methods were used for this purpose.
Chapter II presents the existing sensitivity analysis methods that can be divided into two main
categories: the model output sensitivity measures and the reliability sensitivity measures. They
can be also classified as local analysis and global analysis depending on whether or not they
consider the whole domain of variation of the random variable. In later chapters, these methods
will serve as tools to be used in the approaches to identify KCs for tolerancing problems. The
choice of the sensitivity method depends on:

- the type of the mechanical system (linear, non-linear, over-constrained).

- the dimensionality of the problem.

- the available data of the tolerancing problem

- the requirements of the designers (classification or hierarchization of input variables).
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Chapter III proposes a method for KCs identification, that provides the ranking of the di-
mensions. It is based on the Sobol’ reliability sensitivity indices applied in tolerancing context.
The quantity of interest is the NCR and the input variables are the distribution parameters.
The method is applied, first on a simple two-part example, on a system having a linearised
functional requirement and finally on a system with two non-linear functional requirements.
The results show the main effects of the dimensions in addition to total effects (interactions).
Consequently, it is possible to prioritize some and neglect the effect of the others and classify
them respectively as KCs or not. The advantage of this method is that it aggregates
the input parameters, such as the tolerance intervals, the capability requirements
and the multiplying coefficients by integrating their influence into the analysis.
This approach is used when the process data are predefined such as the tolerance intervals and
capability requirements. In addition, it does not put conditions on the value of the NCR. Other
methods are needed when tolerance intervals are not known and when the NCR need to be in
a specific range of values.
Chapter IV introduces iso-sensitivity tolerance allocation based method for the KCs iden-
tification. It takes into consideration the tolerance intervals, the capability requirements and
the mathematical formulation of the topological loop comprising the studied dimensions. This
method consists of considering that all the dimensions involved in a critical functional require-
ment have equal sensitivities, and then estimate the corresponding tolerance intervals to match
what is called “Iso-sensitivity tolerance allocation”. The tolerance intervals are re-allocated
such that this procedure does not impact the quality of the manufacturing. The condition to
be satisfied is that the NCR should be equal to a target value. So, this is an optimization
problem with an objective to have equal sensitivities and equality constraints on the NCR to
estimate the tolerance intervals. First a design is proposed and then an optimal design is found
after applying the proper optimization algorithm. The estimated tolerance intervals are then
compared to reference tolerance values that can be achieved by the manufacturer. So when
a tolerance interval for a corresponding dimension cannot be achieved, it is considered as a
KC. This approach is convenient when there is a lack of information on the manufacturing
processes such as the tolerance intervals. One drawback of this approach is that it measures
the sensitivities using local analysis. It is also important to mention that the results depend on
the initial assumption of tolerance intervals, which reduces the accuracy of the obtained results
when this assumption is not appropriate.
Finally, in Chapter V, the two proposed methods in this work are applied on an over-
constrained system to allow the characterization of KCs. This shows their ability to be ex-
tended to industrial cases (electrical plug adapted from RADIALL). The tolerance analysis
of this system has been performed previously by Dumas (2014) who applied approaches for

120



Conclusion and Perspectives

the estimation of the non-functionality and non-assembly probabilities of the system. In this
chapter, only the non-assembly condition is considered. First, the Sobol’ method is applied to
this problem. This enables the KCs identification in an over-constrained system assuming the
variability of the distributions’ parameters of input variables. Then, the method of tolerance
allocation based on iso-sensitivity is applied. This method needs significant computational time
because it is an optimization coupled with MC simulation embedded in another optimization
problem. To overcome this concern, two strategies are considered. The first consists in impos-
ing the gradients to the optimization problem. The second one uses the re-weighting technique
so only one call of MC simulation is needed. The first strategy used shows more relevant results
in spite of a increase of the computational time.

The two proposed methods in this work are applied for two different problem statements,
therefore, it is inconvenient to choose which one works better than the other. Table (V.5)
provides a comparison between both methods.

Table V.5 – Comparison between the two proposed methods in this work.

Method 1: Sobol’-based
Method 2: Iso-sensitivity
tolerance allocation

Framework Tolerance analysis Tolerance allocation

Sensitivity method
Global analysis: Sobol’
(input: statistical parameters, output: NCR)

Local analysis: Score functions
(input: statistical parameters, output: NCR)

Statistical models Variable statistical parameters Fixed statistical parameters

Computational efforts Moderate
Moderate for linear and non-linear mechanisms,
but high for over-constrained mechanism

Advantages
Aggregates Cpi, ti and ai
Detects interactions between parts

Aggrergates Cpi, ti and ai
NCR is controlled

Disadvantages NCR is not controlled Not able to check interactions

Perspectives

The proposed methods in this work, have brought many advances in order to evaluate the
sensitivity of quality level of the mechanism to the involved dimensions and being consistent
with the reality of manufacturing processes. However, several improvement paths can be added
at all levels in order to improve the different proposals of these thesis works.
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Perspective for method 1: Sobol’-based

The Sobol’ based method estimates the first and the total order indices, representing the main
and the interaction effects of the dimensions. This method can be extended to check the
interactions between only two dimensions or more by calculating the second or higher order
Sobol’ indices. By doing so, selective assembly would be possible. The dimensions that have
important interaction can be related to each others. If two dimensions strongly interact, it is
possible to strongly compensate the deviations.

Perspectives for method 2: iso-sensitivity tolerance allocation

- The behaviour of iso-sensitivity tolerance allocation method is tested for a double uncertainty
levels only on a simple 2D example. It is expected to study this situation for the non-linear
and the over-constrained examples. It is manageable when the input variables are placed in
an augmented space.

- The iso-sensitivity tolerance allocation method for over-constrained mechanism when applied
with re-weighting did not give equal sensitivities, so the optimal tolerances were not reached.
The reason behind this is most probably the choice of t0 that might be very far from the
optimum value of t. This would be solved by following an iterative algorithm. This means
repeating the problem by considering the obtained t is the new t0 until the convergence of
the problem.

Perspectives for both methods

- When the proposed approaches were applied on the industrial system, only the translation
deviations are taken into account in the analysis. The orientation deviations are considered
to have deterministic values, so they are considered in the analysis. It is likely to consider
in later works the orientation deviations. This can be achieved by assigning the variability
domain of the orientation deviation based on the deviation domains. In such situation,
the problem becomes computationally expensive due to the increased number of variables
enclosed in the analysis.

- The two proposed methods, when applied to over-constrained mechanisms, the probability of
non-assembly is taken as the quantity of interest. The probability of non-functionality could
be also considered. The same steps already described for both approaches can be followed
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with the only difference in the choice of the quantity of interest. The non-functionality
probability formulation has been treated by Dumas (2014) and is given in Appendix A.

- Tolerance analysis is a particular case of reliability analysis. The concept of KC is specific
to tolerancing, so it would be worth expanding it to reliability analysis. Therefore, the two
proposed methods in this thesis adopt the reliability sensitivity measures. They evaluate
the influence of the input variables on the NCR of the system. It is interesting to investigate
these approaches with a new sensitivity measure that takes into account only the non-
conform points of the model output and checks its sensitivity to each dimension. The main
idea is to launch a Monte Carlo simulation, check the local derivatives of the points in the
failure domain only. The sensitivity measure can be expressed as:

Si =
∫
Df

(
∂f(x)
∂xi

)2
fXdx (V.18)
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Appendix A
Geometrical modelling of the RADIALL
electrical plug

Compatibility equations the loops used to write the compatibility equations are the follow-
ing:

• Loop 1a/2a/2b/1b at point A:

{T1/1}A = {0}

= {T1/1a}+{G1a/2a}+{T2a/2}+{T2/2b}+{G2b/1b}+{T1b/1}
(A.1)

• Loop 1a/2a/2c/1c at point A:

{T1/1}A = {0}

= {T1/1a}+{G1a/2a}+{T2a/2}+{T2/2c}+{G2c/1c}+{T1c/1}
(A.2)

• Loop 1a/2a/2d/1d at point A:

{T1/1}A = {0}

= {T1/1a}+{G1a/2a}+{T2a/2}+{T2/2d}+{G2d/1d}+{T1d/1}
(A.3)

The torsors defined at a point different from A are transferred to point A via the relation from
Varignon.
Interface constraints: the four joints of the mechanism lead to write the interface constraints
depending on the type of joint:

• The links 2a/1a and 2c/1c are circular plan support links, the surface is so discretized in
Nda facets in order to be able to define calculation points for constraints. The inequalities
C

(k)
i , for k = 1 and k = 2, correspond to these interface constraints.
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• The links 2b/1b and 2d/1d are sliding pivot links involving writing quadratic interface
constraints. The linearisation procedure is applied to these constraints. They correspond
interface constraints C(k)

i ,k = 3, ...,6.

The expressions of the constraints are written in the formulation of the optimization problem
equation.So that the functional characteristics are related to the other geometrical parameters,
it is necessary to write the equations of compatibility of a topological loop passing through the
functional gap torsor. The loop 1d/2d/1e is written in point E:

{T1/1}E = {0}

= {T1/1d}+{G1d/2d}+{G2d/1e}+{T1e/1}
(A.4)

Functional requirement

The functional requirement concerns the study of the angular displacement of the point E of
the male contact with respect to the outer cylinder 1e along the ~x and ~y axes. The functional
characteristics chosen are the two components of displacement along the ~x and ~y axes: u2d1e and
v2d1e. A topological loop passing through the functional link allows to connect these functional
requirement of an electrical plug parameters to the other parameters of the mechanism. This
makes it possible to write two additional compatibility equations. The functionality of the
mechanism is ensured if the alignment of the edge of the male contact does not exceed a
tolerance t. The functional requirement relates to the maximum and minimum displacements
of point E along the ~x and ~y axes. Each displacement must be maintained within a range to
ensure the functionality of the mechanism such as:

u2d1e ∈
[
− t2; t2

]
(A.5)

v2d1e ∈
[
− t2; t2

]
(A.6)

Four functional requirements should be respected:

C
(1)
f (x,g) = t

2 −u2d1e ≥ 0

C
(2)
f (x,g) =− t2 +u2d1e ≥ 0

C
(3)
f (x,g) = t

2 −v2d1e ≥ 0

C
(4)
f (x,g) =− t2 +v2d1e ≥ 0

(A.7)
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Formulation of the functional problem

There are four functional requirements, so four different optimization problems need to be
defined. The optimization problems are however all subject to the same constraints. They are
defined as follows:

R
(k)
f =min C

(k)
f (x,g)

Subject to C(j)
c (x,g) = 0 ∀j = {1, . . . ,20}

C
(l)
i (x,g)≤ 0 ∀l = {1, . . . ,2×Nda+ 4×Nd}

(A.8)

with k = {1, . . . ,4} and Nda is the number of the discretizations of the circular surfaces a and
c and Nd is the number of the linearisation of the quadratic constraints. The expression of the
probability of non-functionality Pnf is expressed as:

Pnf = Prob
 4⋃
k=1

R
(k)
f (X)≤ 0

 (A.9)
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R
(k)
f (x) = min Ckf (x,g)

s.t. C(1)
c (x,g) =−α1a1−α2a1a+α2a2−α2b2 +α2b1b+α1b1 = 0

C(2)
c (x,g) =−β1a1−β2a1a+β2a2−β2b2 +β2b1b+β1b1 = 0

C(3)
c (x,g) =−γ2a1a+γ2b1b = 0

C(4)
c (x,g) =−u2a1a−u2b2 +u2b1b+u1b1 = 0

C(5)
c (x,g) =−v2a1a−v2b2 +v2b1b+v1b1 = 0

C(6)
c (x,g) =−w1a1−w2a1a+w2a2 +w2b1b = 0

C(7)
c (x,g) =−α1a1−α2a1a+α2a2 +α2c2 +α2c1c+α1c1 = 0

C(8)
c (x,g) =−β1a1−β2a1a+β2a2 +β2c2 +β2c1c+β1c1 = 0

C(9)
c (x,g) =−γ2a1a+γ2c1c = 0

C(10)
c (x,g) =−u2a1a+u2c1c− l1β2c1c = 0

C(11)
c (x,g) =−v2a1a+v2b1b+ l1α2c1c = 0

C(12)
c (x,g) =−w1a1−w2a1a+w2a2−w2c2 +w2c1c+w1c1 = 0

C(13)
c (x,g) =−α1a1−α2a1a+α2a2−α2d2 +α2d1d+α1d1 = 0

C(14)
c (x,g) =−β1a1−β2a1a+β2a2−β2d2 +β2d1d+β1d1 = 0

C(15)
c (x,g) =−γ2a1a+γ2d1d= 0

C(16)
c (x,g) =−u2a1a−u2d2 + l2β2d2 +u2b1b− l2β2d1d+u1d1− l2β1d1 = 0

C(17)
c (x,g) = v2a1a−v2d2 + l2α2d2 +v2b1b− l2α2d1d+v1d1− l2α1d1 = 0

C(18)
c (x,g) =−w1a1−w2a1a+w2a2 +w2d1d = 0

C(19)
c (x,g) = l4β1c1−u2c1c+ l4β2c1c+u2c1e+u1e1 = 0

C(20)
c (x,g) =−l4α1c1−v2c1c− l4α2c1c+v2c1e+v1e1 = 0

C
(1)
i (x,g) =−

(
w2a1a−β2a1a

d2b
2 cosθu+α2a1a

d2b
2 sinθu

)
≤ 0

C
(2)
i (x,g) = w2c1c−β2c1c

d2c
2 cosθu+α2c1c

d2c
2 sinθu(l2− l1)≤ 0

C
(3)
i (x,g) = u2

2b1b+v2
2b1b−

(
d1b−d2b

2

)2
≤ 0

C
(4)
i (x,g) = (u2b1b+ l1β2b1b)2 + (v2b1b− l1α2b1b)2−

(
d1b−d2b

2

)2
≤ 0

C
(5)
i (x,g) = u2

2d1d+v2
2d1d−

(
d1d−d2d

2

)2
≤ 0

C
(6)
i (x,g) = (u2d1d+ l3β2d1d)2 + (v2d1d− l3α2d1d)2−

(
d1d−d2d

2

)2
≤ 0

(A.10)
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withθu = 2uπ
Nda

,u = {1, . . . ,Nda}, where Nda is te number of discretizations of the circular plane
surfaces.
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