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Résumé 

   Dans cette thèse, les bus de fret sont introduits comme un nouveau moyen de 

transport collectif pour la logistique urbaine. Tout comme les bus, les bus de fret sont 

des véhicules normalisés avec les itinéraires et les horaires fixes. Grace aux services 

stables et précis fournis par ces bus de fret, les expéditeurs et les consommateurs 

peuvent organiser de manière flexible les délais de livraison et de ramassage de leurs 

commandes. 

Le problème de planification d'itinéraires de bus de fret pour la distribution urbaine 

est étudié, où chaque bus de fret effectue répétitivement un circuit partant d'un centre 

de distribution, se rendant à plusieurs dépôts et retournant au centre. Ce problème est 

une nouvelle variante du problème de tournées périodiques de véhicules, qui n'a jamais 

été étudiée dans la littérature. Nous avons étudié trois variantes du problème de 

planification d’itinéraires de bus de fret : le problème de base avec demandes de 

livraison uniquement, le problème avec ramassages et livraisons, et le problème avec 

demandes de ramassage et de livraison stochastiques. Pour chaque variante du 

problème, après avoir établi un modèle mathématique, nous avons développé un 

algorithme méta-heuristique pour la résoudre. Le choix de chaque algorithme prend en 

compte les caractéristiques de la variante correspondante du problème étudiée. La 

pertinence des modèles et l'efficacité des algorithmes proposés sont prouvées par des 

expérimentations numériques intensives.  

 

 

Mot clés： Logistique urbaine; Bus de fret; Problème de tournée de véhicule; 

Logistique collaborative; Optimisation combinatoire; Programmation mathématique; 

Métaheuristiques. 
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Abstract 

   In this thesis, freight buses are introduced as a new public transportation means for 

urban logistics that can replace city freighters operated by different private third-party 

logistics companies in the center of a city. As a public service provided for shippers, 

third-party logistics companies, and customers, the use of freight buses can achieve 

joint distribution. Like passenger buses, freight buses are standardized vehicles with 

fixed routes and time schedules. With stable and accurate services provided by freight 

buses, both shippers and customers can flexibly arrange their order delivery times. 

The route planning of freight buses for urban distribution of goods is studied. In the 

problem, each freight bus has a fixed route, it repeatedly performs a tour that leaves 

from a distribution center (DC), visits multiple depots, and returns to the DC. All depots 

in the urban distribution system are visited by freight buses with the same visiting 

frequency. The route planning problem can be considered a new variant of periodic 

vehicle routing problem. To the best of our knowledge, buses dedicated to the 

transportation of goods were rarely addressed in the literature and the freight bus 

routing problem considered in this thesis was never studied by other researchers. We 

have studied three variants of the freight bus routing planning problem, the basic freight 

bus routing problem with only delivery, the freight bus routing problem with both 

pickup and delivery, and the freight bus routing problem with stochastic pickup and 

delivery demands. We have established a mathematical model and developed a 

metaheuristic algorithm for each variant of the problem. These metaheuristic algorithms 

include a memetic algorithm, an adaptive large neighborhood search algorithm, and an 

immune genetic algorithm for scenario-based optimization. The choice of each 

algorithm considers the characteristics of the corresponding variant of the problem 

studied. The relevance of the mathematical models and the effectiveness of the 

proposed algorithms are proved by intensive numerical experiments. 

 

Key words： Urban logistics; Freight Bus; Vehicle Routing Problem; Collaborative 

logistics; Combinatorial optimization; Mathematical programming; Meta-heuristics. 
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CHAPTER 1 

General Introduction 

 

 

1.1 Research background 

More than half of the population in the world currently lives in urban areas. The 

World Health Organization predicts that the population in urban areas will continue to 

expand by more than 1.5% per year until 2030 (WHO, 2010). The likely consequences 

of this expansion are more traffic congestion, pollution, and noise, but also larger 

customer bases and business opportunities due to the economies of scale. Moving 

cargos between and within cities while preserving the residents’ high quality of life is 

a key challenge for city planners and logistics service providers. 

Logistics and transportation enable economic development, but they are 

traditionally quite inefficient in urban areas. As shown in Rose, Bell, Autry, and Cherry 

(2017) , urban areas are characterized by the interplay of stakeholders with different 

interests in close quarters, and, as highlighted in Kin, Verlinde, and Macharis (2017), 

megacities add growing sustainability challenges. Further obstacles include low load 

factors, empty trips, long dwell times at loading and unloading points, and large 

numbers of deliveries to individual customers ( Cepolina & Farina, 2015 ). The 

challenges and obstacles make us to rethink the way that the existing infrastructures are 

used and how new infrastructures are built, so that they are fully utilized and negative 

externalities are minimized. 

Surveys over existing logistics systems (Finnegan et al., 2005; Dablanc, 2007) 

suggest that the provision of logistics services is inappropriate to the growing demand. 

In the past decades, many efforts have been made to optimize various logistics systems 

in industries to operate more efficiently. Some logistics planning strategies have been 

proposed to promote the performance of goods transportation services in urban areas. 

An organizational and technological framework for the integrated management of 
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urban freight transportation was proposed and some planning issues were addressed in 

Crainic et al. (2004). Some logistics measures to regulate freight transportation and 

logistics systems, frequently found in European cities, were classified and evaluated 

with expected goals (Russo and Comi, 2010). A logistics hub model and system 

framework for Special Economic Trade Zones was designed and analyzed in Trappey 

et al. (2013). 

 One effective way to reduce logistics costs is the collaboration among businesses, 

logistics service providers, citizens, and the public sector. By working together, 

multiple actors or stakeholders increase their efficiency through sharing resources, such 

as vehicles, cargo consolidation or distribution centers, or last-mile delivery services. 

Collaboration could potentially lead to fewer vehicles in urban areas, less pollution, and 

lower logistics costs for the delivery of goods. In 1973, Japanese scholar Shize (1973) 

first put forward the joint distribution which has been proved to be an effective way for 

urban logistics. Joint distribution promotes enterprises with similar functions to use 

common facilities and equipment such as warehouses, logistics platforms, and vehicles, 

through which small orders of goods for delivery can be consolidated into a large-

volume distribution order to achieve the economics of scale in transportation and other 

logistics services. Gill and Allerheiligen (1996) pointed out that members of a 

distribution channel should cooperate with each other through joint distribution, and 

illustrated the effectiveness of joint distribution, and proposed several principles for 

implementing it. Hao and Su (2014) discussed the basic concepts and operation models 

of joint distribution in urban logistics. Xu and Yang (2017) proposed a model for cost 

sharing among small companies implementing joint distribution. 

  Through a large number of literature and industry observations, we can see that 

the main issues faced by urban logistics at present are as follows: Firstly, the 

infrastructure of urban logistics needs to be upgraded and transformed. Secondly, the 

quality and efficiency of the “last mile” service in urban logistics needs to be improved. 

Thirdly, Various logistics companies still lack cooperation. Fourthly, the urban 

logistics needs to improve its own mechanization and informatization level. Fifthly, 

The government needs to make unified planning and management for the healthy 

development of urban logistics. 

In response to these issues in urban logistics, in this thesis we put forward for the 

first time the concept of freight bus in urban distribution and study the route planning 

problem of freight buses. The introduction of a freight bus system in an urban area can 
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realize joint distribution of multiple shippers and help us to solve some problems in 

“last mile” logistics. 

1.2 Problems studied in this thesis and main contributions 

As we described in the last section, with the rapid development of e-commerce and 

urbanization, more and more city freighters operated by different private third-party 

logistics companies were born and circulate in the centers of cities, which makes traffic 

congestions and air pollutions more and more severe in metropolitan areas. This makes 

the traffic control for city freighters more difficult to be implemented on the one hand, 

and makes the delivery time windows of e-commerce orders more difficult to be 

respected on the other hand (Amaral & Aghezzaf, 2015). To reduce traffic congestions 

and improve the efficiency and time accuracy of delivery, it needs more collaboration 

among third-party logistics companies (carriers) in urban distribution  

Motivated by joint distribution, in this thesis, we put forward for the first time the 

concept of freight bus, which is a new public transportation means for urban logistics 

that can replace city freighters belonging to different private third-party logistics 

companies in the center of a metropolitan city such as Beijing and Paris. Just like buses 

for passengers, freight buses can be also run by the city government and provide a 

public service for urban logistics. Because of their utilization shared by all suppliers 

who want to deliver its goods to their customers, we can expect that the freight buses 

have some advantages compared with city freighters. Firstly, the freight buses can 

realize joint distribution of different third-party logistics companies, and can thus save 

urban logistics costs and reduce the air pollution; Secondly, because of having a regular 

schedule, the freight buses can improve the timeliness and accuracy of logistics services; 

Thirdly, replacing private city freighters by freight buses can facilitate the traffic control 

in a city and reduce the traffic congestion. Finally, the freight buses can improve the 

utilization rate of special lanes reserved for buses. 

The road transportation by vehicles is the most important part of many logistics 

systems, and the route optimization of vehicles has been a hot research topic for many 

scholars in the field of operations research and management science all over the world. 

In this thesis, we also study the route planning problem of freight buses in an urban 

distribution system. In the problem, each freight bus has a fixed route, it repeatedly 

performs a tour that leaves from a distribution center (DC), visits multiple depots, and 
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returns to the DC. All depots in the system are visited by multiple freight buses with 

the same visiting frequency. The route planning problem can be considered a new 

variant of periodic vehicle routing problem. To the best of our knowledge, buses 

dedicated to the transportation of freight were rarely addressed in the literature and the 

freight bus routing problem considered in this thesis was never studied by other 

researchers. Considering different real scenarios, this thesis has studied three variants 

of freight bus routing problem: the basic freight buses routing problem with only 

delivery, the freight buses routing problem with both pickup and delivery, the freight 

buses routing problem with stochastic pickup and delivery demands. For each variant 

of the freight buses routing problem, we establish a mathematical model and propose a 

metaheuristic algorithm to solve it. The choice of each algorithm considers the 

characteristics of the corresponding problem. The relevance of the mathematical 

models and the effectiveness of the proposed algorithms are proved by numerical 

experiments. The main research contents of this thesis are as follows： 

After presenting three-level urban distribution systems existing in big cities, Chapter 

3 innovatively puts forward the concept of freight bus system for the urban distribution 

in the second level, so as to use freight buses to replace existing city freighters 

dispersedly running in a city center. This chapter then describes the infrastructure and 

operation management of the freight bus distribution system after conducting a 

macroscopic analysis of the advantages of the freight bus in collaborative transportation, 

timely distribution, increase of road utilization and other aspects in comparison with 

city freighters. 

Chapter 4 studies the basic freight bus routing problem with only delivery. After an 

analysis of the characteristics of the problem and the literature of vehicle routing 

problems, we recognize this problem is a new variant of periodic vehicle routing 

problem. The problem is first described under some assumptions on the operation of 

freight buses and a Mixed-Integer Linear Programming (MILP) model is then 

formulated for it. In order to solve the problem, a memetic algorithm (genetic algorithm 

with local search) is developed. The relevance of the mathematical model and the 

effectiveness of the proposed memetic algorithm are proved by numerical experiments. 

Chapter 5 extends the work of Chapter 4. Since in practice, freight buses may 

perform both pickup and delivery of goods at every customer/supplier location they 

visit, we further study the route planning problem of freight buses with simultaneous 



Chapter 1. General Introduction 

 5 

delivery and pickup. As in Chapter 4, the problem is first described under some 

assumptions. In order to solve the problem, a Mixed-Integer Linear Programming 

(MILP) model is formulated and an Adaptive Large Neighborhood Search (ALNS) 

algorithm is developed, which considers the characteristics of the problem. The validity 

of the model and the effectiveness of our ALNS algorithm are also verified through 

numerical experiments. 

Chapter 4 and Chapter 5 both study the route planning of freight buses with 

deterministic demands. But in practice, when we make the route planning, the delivery 

demand and pickup demand at each station in each time period of each day may be not 

known, although we can obtain the probabilistic distributions of these demands by 

statistical analysis of their historical data. So in chapter 6 we study the route planning 

problem of freight buses with stochastic pickup and delivery demands. By adopting the 

scenario approach, this stochastic optimization problem is formulated as a deterministic 

equivalent mixed integer linear programming model, and an immune genetic algorithm 

combined with scenario-based optimization is then developed to solve the problem. The 

effectiveness of the proposed algorithm is proved by numerical experiments. 

The results of the research work of this thesis have been published in the proceedings 

of international conferences and submitted to international journals as given below.  

Conference papers: 

Chang,Z., Chen,H., & Yalaoui,F.(2017).Freight Buses in Three-Tiered Distribution 

Systems for City Logistics: Modeling and Evaluation. 7th IESM Conference, 

October 11 – 13,Saarbrucken,Germany. 

Chang,Z., Chen,H., & Yalaoui,F.(2019).Modeling and Evaluation of a City Logistics 

System with Freight Buses. 8th ICORES 2019,February 19-20,Prague,Czech. 

 

Journal articles: 

Chang,Z., Chen,H., & Yalaoui,F., Model and algorithm for route planning of freight 

buses. Submitted to Computer and Industry Engineer in 2018, revised and 

under the second round of review. 

Chang,Z., Chen,H., Dai,B., & Yalaoui,F. Adaptive large neighborhood search algorithm 

for route planning of freight buses with pickup and delivery. Submitted to 

Journal of Industrial and Management Optimization in 2018, revised and 

under the second round of review. 
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1.3 Significance of this research 

Accompanied with the development of urban logistics, this thesis puts forward a 

freight bus system as a mean of the urban fret distribution, and studies the routing 

problem of freight buses under different circumstances. This research has a practical 

and theoretical significance. 

1) From the application perspective, the introduction of freight buses provides new 

opportunities for a city government and logistics enterprises to improve logistics 

services to suppliers (manufacturers) and customers while reducing logistics costs and 

negative environment impact of urban fret distribution.  

2) Secondly, from the perspective of logistics enterprises, first of all, the freight 

bus is a kind of collaborative transportation distribution scheme for logistics enterprises. 

The collaborative transportation of freight bus can help logistics enterprises solve the 

problem of “last mile” for urban distribution to further help the logistics companies 

improve work efficiency, reduce distribution costs, and acquire greater profits. 

Secondly, for suppliers and e-commerce companies, the research of freight bus will be 

conducive to improve the service level of the logistics system, and further to promotion 

of the development of those enterprises. 

3) Thirdly, from the customer's point of view, because of having a regular schedule, 

the use of freight buses can improve the timeliness and accuracy of logistics services. 

The smooth handover of goods from the supplier to the customer is the basic need to 

ensure the normal operation of the customer's life. In the e-commerce environment, if 

the goods purchased by the customer are not delivered to the customer in time, it may 

affect the normal life of the customer, and cause their dissatisfaction with the e-

commerce enterprise and the express delivery enterprise. The freight bus will operate 

periodically and has an operational schedule to ensure that goods will be delivered to 

the customers on time, which will greatly improve the service level to the customers. 

   4) Fourthly, from the perspective of urban environment, an excellent distribution 

system is conducive to reducing the heavy traffic in the city, reducing noise pollution 

to the city and pollution by exhaust emissions. Segalou et a1. (2004) pointed out that 

emissions of nitrogen oxides and suspended particulates from cargo transport within 

cities accounted for 40% and 45% of total urban transport emissions. Therefore, 

through collaborative transportation and optimization of distribution routes, it is 

possible to reduce the number of trips, mileage, and empty-loading ratio of vehicles 
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while meeting the needs of customers, and finally alleviate traffic congestion, noise 

pollution, and reducing emission quantity of the tail gas. 

5) From the research perspective, the freight bus routing problem is a new periodic 

vehicle routing problem. This thesis considers this routing problem with three variants: 

the basic freight buses routing problem with delivery, the freight buses routing problem 

with both pickup and delivery, the freight buses routing problem with stochastic 

demands. The research results of this thesis enriches the literature of the vehicle routing 

problem. 

1.4 Organization of this thesis 

This thesis has 7 chapters, its structure is shown in Figure 1.1. The main contents 

and mutual relations of these chapters are outlined as follows: 

 

 

                Fig. 1.1. Organization of this thesis 

Chapter 1 mainly introduces the research background and significance of this 

thesis, and introduces the main research contents and the organization of this thesis. 

Chapter 2 gives a literature review of the research related to this thesis, with a 
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classification of vehicle routing problems and a presentation of main algorithms for 

solving various vehicle routing problems. Chapter 3 theoretically puts forward the 

concept of freight bus, and addresses some issues for the implementation of a freight 

bus system in urban logistics. The next three Chapters focus on the study of route 

planning problem of freight buses. Chapter 4 and Chapter 5 study the route planning 

problem of freight buses under deterministic demands. The basic route planning 

problem of freight buses with only delivery is studied in Chapter 4, whereas Chapter 5 

studies the route planning problem of freight buses with both pickup and delivery. 

Chapter 6 studies the route planning problem of freight buses with stochastic pickup 

and delivery demands. Chapter 7 summarizes the work of this thesis, and points out the 

future research directions following the work of this thesis. 
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As described in Chapter 1, this thesis will first propose the concept of freight bus 

systems under collaborative transportation and joint distribution, and then studies the 

route planning problem of freight buses by developing models and algorithms for the 

problem under different circumstances. Therefore, in this chapter we review the 

literature related to our study, including vehicle routing, collaborative logistics and 

collaborative urban transportation. We also provide a classification of vehicle routing 

problems and present main algorithms for solving the vehicle routing problems. 

2.1 Introduction of the vehicle routing problem 

The road transportation by vehicles is the most important part of many logistics 

systems, and the route optimization of vehicles has been a hot research topic for many 

scholars in the field of operations research and management science all over the world. 

According to whether a single vehicle is or multiple vehicles are involved, the route 

optimization problem can be further classified into the Travelling Salesman Problem 

(TSP) and the Vehicle Routing Problem (VRP). The traveling salesman problem refers 

to finding an optimal tour for a single vehicle that starts from a depot, visits all 

customers, and finally returns to the depot to minimize the total running distance (total 

cost) of the vehicle. The vehicle routing problem refers to finding optimal tours for 

multiple vehicles, each of them starts from a depot, visits a subset of customers, and 

finally returns to the depot, with all customers visited by the vehicles, subject to various 

constraints such vehicle capacity constraints and time window constraints. The TSP 

was first proposed by Flood in 1956. Later, the VRP was introduced by Dantzig and 

Ramser in 1959 as an extension of the TSP and VRP, belonging to classic combinatorial 

optimization problems, have broad applications in real life, including the vehicle route 

problem in the express delivery industry, medical rescue, garbage clearance, 

manufacturing workshop logistics equipment scheduling , postal delivery problem etc. 

For this reason, they have been attracting the research interest of many experts and 

scholars. 

The research on vehicle routing problem involves management, logistics science, 
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operations research, mathematics, computer application, graph theory, and other 

disciplines. A large variants of VRP have been proposed and studied in the literature, 

most of them have been proved to be NP-hard, which are very difficult to solve. 

Scholars have proposed exact algorithms (Christofides, 1981; Laporte et al., 1986; 

Lapone, 1992) and heuristic algorithms (Gendreau, 1994; Baker et al., 2003; Prins, 

2004) to solve such problems. Since the exact algorithms can only handle small-size 

vehicle routing problem with about 50 customers, and the computation time of such 

algorithms increases exponentially with the increase of the problem size, they cannot 

be used to solve large-size vehicle routing problems. Therefore, most scholars turn their 

attention to heuristic algorithms, which aim to find a satisfactory solution to a VRP in 

an acceptable computation time. 

In general, the vehicle routing problem covers many fields such as life, production, 

transportation, communication system, service system and so on. The scheduling object 

is not only vehicles, but also air flights and sea ships. Besides the minimum total cost, 

the goal of scheduling can also be the shortest total distance and time. In addition, what 

they have in common is to optimize the costs by choosing the right route. In order to 

describe conveniently and consistently, the transportation such as ships, airplanes, 

ambulances, garbage vehicles and transport vehicles are usually abstracted as Vehicle, 

the service objects of vehicles are abstracted as Customer, the service requirements of 

customers are abstracted as Demand, the vehicle dispatching center is abstracted as 

Distribution Centre（DC）, the vehicle route is abstracted as Route, and the dispatch 

cost, fuel consumption, time and distance of vehicles are abstracted as Cost. The 

schematic diagram of vehicle routing problem is shown in Figure 2.1. 
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Fig. 2.1 An example of vehicle routing problem 

2.2 Classification of vehicle routing problems 

According to the existing research results, the vehicle routing problem can be 

classified as follows based on the degree of information determination and the 

constraint conditions. 

(1)Vehicle routing problem with only delivery and with both pickup and 

delivery 

According to whether there are forward or reverse logistics operations or there are 

both, vehicle routing problems can be classified into vehicle routing problem with only 

delivery (or pickup) and the vehicle routing problem with both pickup and 

delivery(VRPPD). Vehicle routing problem with only delivery (or pickup) is also 

known as the Capacitated VRP (CVRP). The objective of this problem is to optimally 

assign all customers with delivery (or pickup) demand to vehicles and design an optimal 

route for each vehicle so that the total distance travelled by all vehicles is minimized 

without violating the capacity of each vehicle. A comprehensive review of this CVRP 

can be found in Bodin et al. (1983) and Eksioglu et al. (2009). Algorithms for solving 

CVRP are outlined in Laporte (2009), Chen et al. (2010), and Drexl (2013). These 

algorithms include simulated annealing, tabu search, and genetic algorithms. 

As an extension, Min (1989) studied the vehicle routing problem with both pickup 

and delivery, with an example of the problem which sends and returns books from a 

central library to 22 rural libraries. The author solved this problem by three-phase 
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heuristics. Firstly, customers were clustered by the average linkage method. In the 

second phase, vehicles are assigned to these clusters and the Traveling Salesman 

Problem (TSP) algorithm was used to find routing solutions in the last phase. Salhi et 

al.(1999) designed a heuristic method using single-point insertion, two-point insertion, 

and cluster insertion to solve the VRPPD and extended it to the multi-depot problem 

with backhauls. Bent and Hentenryck (2006) apply Variable Neighbor-hood Search 

(VNS) to the vehicle routing problem with both pickup and delivery(VRPPD) and their 

computational results show promising performance of their algorithm, compared with 

the previous VRPPD metaheuristics. Ropke and Pisinger (2006) design an ALNS 

algorithm which proved to be a effective meta-heuristic for the VRPPD, with results 

reported for up to 1000 customer nodes. 

(2) Periodic and non-periodic vehicle routing problem  

Vehicle routing problem can be divided into periodic problem and non-periodic 

problem(PVRP), according to whether the level of vehicle service time is periodic or 

not. The scheduling time of non-periodic problem is usually one day, and the scheduling 

time of a periodic problem can be a week, a month or a year. For periodic problems, 

the vehicle does not have to serve all customers every day, all the customer's demands 

within the cycle and the optimization goal is usually to minimize total cost at the whole 

cycle level. Yang et al.(2005) studied the taxi scheduling problem, established a multi-

period dynamic model and used Frank-Wolfe algorithm to solve it. Francis et al.(2006) 

studied the periodic problem with service selection. Gaudioso et al.(1992) studied the 

periodic problem of minimizing the vehicles number and solved it by Hybrid heuristic 

algorithm. Mourgaya et al.(2007) studied the periodic problem with a scheduling period 

of 5 days and a customer scale of 50-80, and solved it by using a column-generated 

heuristic algorithm. 

(3) Vehicle Routing Problem with Split Demand and Non-Split Demand 

According to whether the customer demand can be split, the vehicle routing 

problem can be divided into Vehicle Routing Problem with Split Demand (VRPSD) 

and Non-Split Demand. Modeling and solving of VRPSD are more difficult than the 

problem with non-split demand. Dror et al.(1990) pointed out that VRPSD is a kind of 
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VRP with relaxed constraints. When the demand of each customer in VRP except the 

parking lot can be completed by one vehicle, the number of vehicles and the total length 

of routes can be saved simultaneously. Sierksma et al.(1998) pointed out that when the 

average demand was greater than 1/2 and less than 2/3, the VRPSD model can be used 

to solve the problem to the greatest extent. Frizzell et al.(1995) used downward pruning 

heuristic algorithm to solve VRPSD, which took into account the factors of multi-time 

window, grid distance, multi-delay time and distribution time related to non-linear 

demand. 

(4) Deterministic and stochastic vehicle routing problem    

The vehicle routing problem can be divided into deterministic and stochastic 

problems based on whether the required information is predicted in advance. Because 

of the lack of information, the optimization objective of the stochastic problem is 

usually to minimize the expected total cost. According to the randomness of different 

information, the stochastic problem can be divided into the stochastic demands, the 

stochastic travel time and service time, and the stochastic customers. 

A. Vehicle Routing Problem with Stochastic Demands (VRPSD) 

In 1979, Golden et al. proposed a solution framework for Vehicle Routing Problem 

with Stochastic Demands (VRPSD)，and assumed that each customer's demand was 

independent and obeyed the Poisson distribution. Stewart and Golden （1983） 

established several different mathematical models and proposed several heuristic 

algorithms to solve the VRPSD. Based on Clarke-Wright saving algorithm, Dror et al.

（1986）proposed a forward modification saving algorithm to solve the VRPSD . 

Jaikumar and Solomon (1987) designed a scanning algorithm to solve the problem of 

random tugboat scheduling for port barges. In 1989, Dror et al. gave a brief review of 

the model and algorithm of VRPSD. Subsequently, in 1992, Dror et al. studied the 

inventory routing problem of fuel companies with uncertain fuel demands. Johnson 

(1996) turned their view to the automated material handling system, and considered the 

stochastic elements such as stochastic material demand and variable loading and 

unloading time, they established an stochastic modeling for automated material 

handling system. Teng (2003) used simulated annealing algorithm, threshold 
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acceptance method and Tabu search algorithm to solve the vehicle routing problem with 

stochastic demands, and the comparative analysis of the three algorithms shows that 

the Tabu search algorithm has the best performance. In terms of the computing time, 

the Tabu search algorithm takes less time than the simulated annealing algorithm. 

Although the threshold acceptance method takes the least time, the quality of its 

solution is poor. Mirmohammadsadeghi (2015) studied the truck and trailer routing 

problem with stochastic demands and time windows, and solved the problem by using 

genetic algorithm.  

B Vehicle Routing Problem with Stochastic Travel Time and Service Time 

Kenyon et al. (2003) used the branch cutting-plane method to solve the vehicle 

routing problem with dynamic travel time. Bertsimas et al.(1991) studied the vehicle 

routing problem with minimum expected total service time, proposed two queue 

priority processing strategies of "nearest neighbor" and "first come first service", and 

gave the lower bound of the problem. Fu et al.(1999) studied the scheduling problem 

of dynamic stochastic travel time assisted passenger transport system. Gu et al.(2008) 

studied the multi-depot ambulance scheduling problem with stochastic travel time. The 

optimal solution of total delay time and total travel time was obtained by genetic 

algorithm. Zhang et al.(2013) studied the vehicle routing problem with stochastic 

service time under the condition of on-time delivery, established a stochastic 

programming model with the objective of minimizing the total transportation cost, and 

solved it by the iterative tabu algorithm under the condition of guaranteeing the 

minimum on-time delivery probability of all customers. Binart et al. (2016) studied the 

vehicle routing problem with stochastic service and travel time with priority, and solved 

the problem by a 2-stage method consisting of planning stage and execution stage.. 

C Vehicle Routing Problem with Stochastic Customers  

   Bertsimas et al. (1993) studied the vehicle routing problem in the case of stochastic 

customers. Bent et al. (2004) studied the stochastic vehicle routing problem with the 

goal of maximizing the number of service customers, and solved it by the multi-scene 

method. Sambola et al. (2007) studied the stochastic location-routing problem of 

customers, and proposed a two-stage heuristic algorithm. The first stage was the 
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construction stage, which was used to determine the open parking lot and provide a 

prior route for all customers to be visited. The second stage was the improvement stage. 

Once the customers sent out the information that they needed services, the five 

neighborhood insertion mechanism was used to insert the client into the a priori route 

by minimizing the expected cost, and the post-optimization route was obtained. Thomas 

et al. (2007) studied the dynamic vehicle routing problem with service requests, 

formulated waiting strategies based on maximizing the number of expected service 

customers, and proposed a heuristic method to solve the problem. 

(5) Vehicle routing problem without time window and with time window 

According to whether the customer service has specific time window constraints, 

or whether the vehicle has time limit to start and return, the vehicle routing problem 

can be divided into the problem without time window and with time window(VRPTW). 

VRPTW can be further divided into hard time window problem and soft time window 

problem, time-varying problem and non-time-varying problem, single time window 

problem and multi-time window problem. For the time-window problems, Kallehauge 

(2008) and Tan et al. (2001) summarized the exact algorithms and heuristic algorithms 

respectively. Kim et al. (2006) studied the vehicle routing problem for garbage 

collection with time windows, which took the driver's lunch break into account, and 

increased the route compactness and work pressure balance goal in addition to 

minimizing the number of vehicles and vehicle travel time. Zhou et al. (2015) studied 

the multi-objective time window problem with minimizing the number of vehicles and 

the total service time of vehicles on the longest route. Chiang et al. (2014) used the 

evolutionary algorithm to solve the problem of multi-objective time window. Favaretto 

et al. (2007) studied the non-full load multi-time windows problem with limited 

maximum travel time, and solved the problem by ant colony algorithm.  

2.3 Main algorithms for solving vehicle routing problems 

The current algorithms for vehicle routing problems can be divided into accurate 

algorithm and heuristic algorithm. Because of the NP-Hard property of VPR, the 
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accurate algorithm can only solve the small-scale vehicle routing problem. For the 

vehicle routing problem with more than 50 customer points, the accurate algorithm 

cannot get the optimal solution of the problem. Therefore, the heuristic algorithm, 

which uses medium computing time to obtain the approximate or satisfactory solutions 

of VPR, has become the focus of scholars' research. In the following, only the heuristic 

algorithm (including Simple Heuristics Algorithm and Metaheuristic Algorithm) for 

solving the vehicle routing problem is reviewed.  

2.3.1 Simple heuristic algorithms 

2.3.1.1 Saving heuristic 

Saving Heuristic was proposed by Clarke and Wright in 1964 to solve the VRP 

with an unfixed number of vehicles. The Saving Heuristic is a successive 

approximation algorithm for vehicle routing based on the saving criterion. 

    The principle of the Saving Heuristic is simple and easy to implement. At present, 

it has become an initial solution algorithm for many heuristic algorithms to solve VRP. 

Because of the fast operation speed of the Saving Heuristic, the approximate optimal 

solution to the problem can be obtained efficiently in the small-scale distribution 

optimization, but the optimization effect is not ideal when the number of customer 

increases.  

2.3.1.2 Nearest neighbor method 

The nearest neighbor method was first proposed by Rosenkrantz(1977). The 

algorithm takes the distribution center as the starting point, searches for the nearest and 

unaccounted node to the distribution center as the next node, then searches for the 

neighboring and unaccounted nodes, repeats the above steps without exceeding the 

capacity limit, finishes the line after reaching the capacity limit, and continues to search 

for other new routes until all the nodes have been visited. This algorithm is simple to 

operate and can get the initial solution quickly, but it is easy to produce premature 

convergence and fall into local optimum. 
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2.3.1.3 Insertion method 

The insertion method is proposed by Mole and Jameson in 1976 to solve the VRP . 

The insertion method combines the ideas of the nearest neighbor method and the saving 

heuristic, and selects the most suitable unallocated nodes to insert. That is to build a 

distribution route until a new route is added when there is no viable insertion node. The 

solution obtained by the insertion method is better than the solution obtained by the 

nearest neighbor method, but the calculation amount is also larger. 

2.3.1.4 Sweep algorithm 

The sweep algorithm was proposed by Gillett and Miller in 1974. The basic idea 

of the algorithm is to assume that the vehicle route is located on a geometric plane, and 

the distribution center is used as the coordinate origin to establish a polar coordinate 

system. Firstly, the polar coordinates of the customer points to be visited are calculated 

and sorted according to the angle. Then, on the premise of the feasibility condition, the 

customers are added to the distribution route one by one in the clockwise or 

counterclockwise direction from the node with the smallest angle, and the distribution 

route is terminated when the constraint condition is not satisfied. Repeat the process 

and generate the new distribution routes until all customers are added.  

2.3.2 Metaheuristic algorithms 

As an improved heauristic algorithm, metaheuristic algorithm has been widely used 

with its powerful functions in combinatorial optimization problems. 

2.3.2.1 Tabu search algorithm  

The idea of Tabu Search (TS) was first proposed by Fred Glover in 1986. The Tabu 

Search algorithm is a global stepwise optimization algorithm, which is a simulation of 

human intelligence process. The TS algorithm avoids the roundabout search by 

introducing a flexible storage structure—the tabu table and setting the corresponding 
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tabu criteria, and uses the amnesty criteria to absolve some of the tabu good conditions, 

thus ensuring effective exploration of diversity to finally achieve global optimization.  

In 1991, Gendreau et al. first applied this method to solving the VRP. In 1993, 

E.Taillard used Tabu Search as an iterative search algorithm to solve the sub-problems.  

The TS algorithm has a strong dependence on the initial solution. Therefore, many 

scholars have adopted different initialization methods, for example Garcia et al.(1994) 

using Solomon's insertion heuristic algorithm to construct the initial solution, Cordeau 

et al.(2002) adopting an improved scanning method to generate the initial solution, 

Brandao using the lower bound algorithm and the K-tree algorithm to generate the 

initial solution, Lau et al.(2003) creating a candidate list and generating an initial 

solution by transposing the unvisited customers in the list. Rochat et al. (1995) proposed 

a method of adaptive memory, which first saves the excellent solutions found in the 

search process, and then through the combination of these solutions, generates an 

initialization new solution. The TS algorithm has been easily applied to other extended 

models of vehicle routing problems since it does not need to set special encoding rules 

and operators. 

2.3.2.2 Simulated annealing algorithm  

Simulated Annealing (SA) is a kind of algorithm for solving combinatorial 

optimization problems proposed by Kirkpatrick et al. in 1983, inspired by the principle 

of solid-state physics annealing and based on Metropolis criterion. The simulate anneal 

arithmetic is essentially a local search algorithm, but in order to avoid the algorithm 

falling into local optimum, it introduces a new mechanism, that is, to accept the poor 

solutions in the neighborhood in the way of probability so as to enhance the diversity 

of the algorithm. 

Bent et al.(2004 ) proposed a two-stage hybrid optimization method. In the first 

stage, the SA algorithm is used to minimize the number of vehicles. In the second stage, 

the Large Neighborhood Search algorithm is used to optimize the customer's ordering. 

The simulate anneal arithmetic is suitable for large-scale VRP problems. In theory, SA 
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can obtain the global optimal solution, but in practical applications, due to the limitation 

of calculation time, only an approximate optimal solution can be given.  

2.3.2.3 Genetic algorithm  

Genetic Algorithm is a kind of random search method which is derived from the 

evolutionary law of biology (survival of the fittest Genetic mechanism). It was first 

proposed by American professor J.Holland in 1975, and its main feature is to operate 

directly on structural objects. The operators include selection operators, crossover 

operators, and mutation operators.  

Thangiah et al.(1991)first applied genetic algorithms to solving the vehicle route 

problem with time window. Gehring et al. (2002)studied the application of two 

evolutionary strategies in vehicle routing problems. In the use of genetic algorithm to 

solve VRP problems, many scholars have improved the traditional evolutionary 

operations. Jean-Yves Potvin et al.(1996) proposed two special crossover operators: 

sequence-based crossover and route-based crossover. The mutation operator is used to 

reduce the number of lines. The selection strategy uses the so-called Linear Ranking 

Scheme, that is, the probability of selection of each individual is related to its ranking, 

and the ranking is determined based on the size and fitness of the swarm. Berger et al. 

(1998) first used the random insertion algorithm to generate the initial solution, and 

then used the improved Large Neighborhood Search (LNS) and improved Solomon 

insertion algorithm combined with genetic operations to redistribute customers to 

reduce the route. When Bouthillier et al.(2005) solved the VRP, the crossover operator 

uses edge recombination exchange, while the mutation operator uses local search 

operators 2-Opt, 3-Opt, Or-Opt. 

Pablo Moscato first proposed the concept of memetic algorithm in 1989. He 

viewed MA as being close to a form of population-based hybrid genetic algorithm (GA) 

coupled with an individual learning procedure capable of performing local refinements. 

And in the context of complex optimization, many different instantiations of memetic 

algorithms have been reported across a wide range of application domains, in general, 
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converging to high-quality solutions more efficiently than their conventional 

evolutionary counterparts (Samanlioglu, Ferrell, & Kurz, 2008; Mafarja & Abdullah, 

2013). So far, MA has been used with great success to solve various vehicle routing 

problems, including various single period VRPs (capacitated VRP, VRP with time 

windows, pickup and delivery problem) and the PVRP. 

2.3.2.4. Ant colony optimization algorithm 

In 1991, Dorigo was inspired by the foraging behavior of ants in nature, and 

simulated the path finding behavior of ants to put forward an ant colony optimization 

algorithm. The basic principle of the ant colony optimization algorithm is that ants will 

transmit information through pheromone to guide their movement direction in the 

process of searching for food. The colony behavior of a large number of ants will show 

an information positive feedback phenomenon, that is, the more ants passing on a route, 

the more likely the subsequent ants will choose the route. 

Bullnheimer et al.(1997) first applied the ant colony algorithm to solving the 

vehicle routing problem, after using the ACO, the 2-opt method is used to optimize the 

route, and in the research the optimal solution of the problem is obtained. Reimann et 

al.(2002) introduced the classical saving algorithm into the ant system and constructed 

the Savings-based Ant System (SbAS). Unlike the ant algorithm, its decision rules 

include not only the pheromone of ant algorithm, but also embeds the saving value 

therein. Reimann et al. (2002) extended the SbAS algorithm based on the literature, that 

is, using the scanning method to decompose the large-scale VRP problem, and then 

using the SbAS algorithm to solve each sub-problem. The improved SbAS algorithm 

can effectively improve the calculation speed.  

At present, although the ant colony algorithm has made great progress in solving 

the VRP problem, the solution speed and the quality of the obtained solution are still 

not ideal when solving the large-scale combinatorial optimization problems. 
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2.3.2.5. Particle swarm optimization 

Particle Swarm Optimization (PSO) is an evolutionary computational technique 

developed by Kennedy and Eberhart in 1995. The particle swarm algorithm expresses 

each possible solution as a particle in the swarm, and each particle has its own velocity 

and position vector, and an adaptive value determined by the objective function.  

At present, the application of particle swarm optimization in vehicle routing 

problems has not been extensively studied. Wu Bin （2008） proposed a particle swarm 

optimization method that uses integer encoding and real number encoding to solve the 

VRP problem in his doctoral thesis. In integer encoding, based on the number of 

exchanges, the velocity of the particle is redefined, and a velocity calculation method 

is used for integer encoding. The influence of each parameter in the particle swarm 

algorithm on the result is discussed in the thesis. Chen et al.(2006) studied the 

application of particle swarm optimization algorithm with mutation operator in vehicle 

routing problem, that is, in the basic framework of conventional particle swarm 

optimization algorithm, the random variation factor is added to improve the ability of 

the algorithm to jump out of local convergence by random mutation of gbest. Chen et 

al.(2006) proposed a method to solve the vehicle routing problem by combining 

Discrete Particle Swarm Optimization (DPSO) and the simulate anneal algorithm. 

2.3.2.6. Adaptive Large Neighborhood Search Algorithm 

The precursor of the Adaptive Large Neighborhood Search Algorithm (ALNS) is 

Large Neighborhood Search (LNS), introduced by Shaw(1998) for the capacitated 

vehicle routing problem (CVRP). LNS begins with an initial solution and improves the 

objective value gradually, by applying one destroy and one repair operator at each 

iteration. The destroy operator is a randomized heuristic removing a small subset of 

customers. The repair operator reinserts these customers optimally, using constraint 

programming and branch-and-bound, see Bent et Hentenryck (2006) for the VRPTW. 

The destroy and repair operators are also called ruin and recreate operators, or removal 
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and insertion operators. 

The application of a destroy/repair pair can be viewed as a move that implicitly 

defines a very large neighborhood. However, only one move is randomly selected at 

each iteration instead of exploring the neighborhood completely. LNS is conceptually 

simple but has some known drawbacks. The search is a bit blind because the 

destroy/repair moves sample a very small fraction of the large neighborhood. This can 

be compensated by more iterations but, added to the exact method used to reinsert 

customers, the metaheuristic becomes time-consuming. 

Adaptive Large Neighborhood Search (ALNS) is an extension of Large 

Neighborhood Search and was proposed by Ropke and Pisinger (2006) . The schema 

of ALNS is shown in Figure 2.2 in the form of a picture. 

 

Fig. 2.2 The schema of ALNS 

The ALNS involves several destroy and repair operators, which are all heuristics to 

achieve a time-saving purpose. At each iteration, a pair of operators is randomly chosen 

to make a move and statistics are computed to favor the most efficient pairs. The method 

is adaptive since the most frequent pairs may change during the search.  

Naturally, different problem instances and even different solutions to the same 

problem are handled by different destroy and repair heuristics with varying success. It 

may often be difficult to guess which heuristics will be the most advantageous. 
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Therefore, ALNS enables the user to select as many heuristics as he wants. The 

algorithm will then assign a weight to each heuristic which reflects its success. In the 

absence of other possibilities, it assumes the past success as the best indicator for future 

success. During the runtime, these weights are adjusted periodically. An update period 

consists of 𝑃𝑢 iterations. The selection of a heuristic in each iteration is then based on 

these weights. Let D = {𝑑𝑖|𝑖= 1, … , k } be the set of k destroy heuristics and R ={𝑟𝑖|𝑖= 

1, … , l } be the set of l repair heuristics. The initially equal weights of the heuristics 

are denoted by w(𝑟𝑖) and w(𝑑𝑖), so that the probabilities to select a heuristic are  

 

P(𝑟𝑖) = 
𝑤(𝑟𝑖)

∑ 𝑤(𝑟𝑗) 𝑘
𝑗=1

 ，P(𝑑𝑖) = 
𝑤(𝑑𝑖)

∑ 𝑤(𝑑𝑗) 𝑙
𝑗=1

  respectively      (2.1) 

 

Compared to many local search heuristics that only apply very small changes to a 

solution, ALNS works with a larger search space, the so-called neighborhood of the 

current solution. Within one iteration, ALNS can modify up to 30-40% of a solution. 

This characteristic is especially useful with tightly constrained problems like the VRP. 

The ALNS has been successfully applied to the VRPPD (Ropke & Pisinger,2006) and 

later to various rich vehicle routing problems (Pisinger & Ropke,2007). 

2.4 Collaborative logistics 

Collaborative logistics has received increasing attention in past years, often driven 

by the large potential in cost reduction, reduction of uncertainty, and environmental 

concerns (Verdonck et al., 2013; Du et al., 2016). There are many benefits to be 

achieved through collaboration, the main benefits of which are lower cost and higher 

fulfillment rate. On the social side, collaboration usually decreases the traveled distance 

by carriers, which implies fewer emissions. In that way, collaboration can promote 

green logistics and reduces negative impacts on the environment.(Cleophas, Cottrill, 

Ehmke, & Tierney, 2018) 

Examples of horizontal cooperation in logistics include group purchasing, use of 

a common inventory location to share fixed costs, collaborative transportation 
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(Quintero-Araujo et al., 2017), and production lines sharing. Horizontal collaboration 

in logistics has been studied in the maritime transport (Sheppard and Seidman, 2001), 

disaster relief (Schulz and Blecken, 2010; Garrido et al., 2015), and airline fields (Weng 

and Xu, 2014). 

The literature is rich in vertical cooperation (Huang et al., 2018; Liu et al., 2018), 

but the environment is quite different. A recurrent example of vertical collaboration can 

be found in the Collaborative Planning Forecasting and Replenishment, where 

manufacturers and retailers share information and make common predictions to 

improve demand visibility, thereby increasing the efficiency of the supply chain. We 

can anticipate that some practical issues in vertical collaboration apply also to 

horizontal collaboration. We recommend readers to Kanda and Deshmukh (2008) for a 

complete review of supply chain collaboration, including some practical issues. 

Kopfer et Krajewska (2007) provide an overview and a comparison of existing 

methods for modeling and solving the integrated transportation and forwarding 

problem. And this is an extension of the traditional path and scheduling issues for 

freight forwarders provided by 3rd and 4th party logistics. This study summarizes the 

reasons for the existence of the gap between theory and practice. 

D’Amours et Rönnqvist (2010) present a survey of previous contributions in the 

field of collaborative logistics. Firstly, they portray opportunities in collaborative 

transportation planning. Then they discuss key issues in forming alliances, such as 

sharing resources and profits, as well as the issues related to information protection and 

decisions technologies. Finally, they raise some question and describe the prospects of 

future research. 

Verdonck et al. (2013) provide a comprehensive literature review on the 

operational planning related to horizontal logistics collaboration. The authors divide 

the horizontal logistics collaboration into two main approaches : order sharing and 

capacity sharing. A detailed overview of solution technologies is provided to both 

research streams. For order sharing approaches, carriers may achieve an increase in 

capacity utilization, improved asset repositioning capabilities and a reduction in total 

transportation costs due to enhanced transportation planning. Existing researches 
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address different approaches to processing order sharing by optimal reallocation of 

requests. The authors divide order sharing approaches into five categories : joint route 

planning, auction-based mechanisms, bilateral lane exchanges, load swapping and 

shipment dispatching policies. Instead of sharing customer orders, carriers can also 

collaborate with each other horizontally by sharing of vehicle capacities. In this way, 

capital investments may be shared among partners and utilization rates of vehicles may 

be improved. Previous studies provide two general techniques to determine the most 

efficient way to share vehicle capacities, which namely the way based on mathematical 

programming and negotiation protocols. Finally, some promising future research 

directions in the field of collaborative logistics are proposed.( Li, Y., Chen, H., & Prins, 

C. 2016) 

2.5 Collaborative urban transportation 

Increasing urbanization has turned transporting freight from, to, and within urban 

areas into a major challenge. Freight transportation represents a lifeline of urban retail 

and industry, but it has a serious negative impacts on the quality of living in urban areas 

in terms of congestion, emissions and space consumption. Urban logistics initiatives 

have long suggested the need for collaborative and environmentally friendly urban 

transportation that could alleviate the negative impacts of urban transportation, but 

these face organizational and technological challenges of cooperation. Given 

technological advancements and innovative business models, concepts of collaborative 

urban transportation could contribute to a future paradigm of more sustainable and 

customer-friendly urban transportation.(Basso et.al, 2019) 

There are two main types of collaborative transport: vertical and horizontal. For 

vertical collaboration, transport is often organized according to modes and service 

operators. For instance, the first leg in the city can be carried out by conventional trucks, 

while the last mile of to the recipient can be operated by environment-friendly city 

freighters or freight bikes. In horizontal collaboration, multiple providers work together 

in the same section of the transport chain, potentially sharing orders and infrastructure. 
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In most cases, urban transport utilizes standard trucks or light goods vehicles up to 

3.5 tons, respectively. Browne, Allen, Nemoto, and Visser (2010) survey light-goods 

vehicles and analyze their rather negative impact on urban areas. Bektas , Crainic, and 

Van Woensel (2017) provide an overview of efforts from different perspectives: system 

(infrastructure), planning problems, and business models. The authors also summarize 

optimization methods that support planning and operation of urban transportation 

systems. They emphasize that innovations such as standardized containers，combined 

passenger and freight transportation could improve future urban delivery. Savelsbergh 

and Van Woensel (2016) give the most recent overview from the perspective of OR, 

and discuss trends that include the increase of e-commerce, need for speed, 

sustainability, the sharing economy, population growth, and technological 

advancements. The authors also consider the multi-level problem, which is at the core 

of synchronizing different levels and modes for vertical collaboration in urban 

transportation systems. 

Verdonck et al. (2013) and Cruijssen et al. (2007c) have related reviews. They both 

deal with transportation collaborations. However, Verdonck et al. (2013) only focus on 

the operational planning of road transportation carriers (i.e. the owners and operators 

of transportation equipment). The perspective of collaborating shippers (i.e. the owners 

of the shipments) is not considered. Guajardo and Ronnqvist (2016) comment on cost 

allocation in collaborative transportation, which is also an important aspect in 

collaborative vehicle routing. 

Rail infrastructure is usually provided in urban areas, but not used to realize freight 

deliveries. Motraghi and Marinov (2012) develop an event-based simulation model to 

study the advantages of using urban light rail networks for freight transportation. They 

investigate two scenarios, adding either scheduled or flexible freight trains. Dampier 

and Marinov (2015) discuss using a metropolitan railway network to transport freight 

directly to a city center for the example of Newcastle upon Tyne, UK. They compare 

traditional modes of transportation, inter-modal transport, urban logistics, and rail 

transport. They claim that many cities in the UK have existing light rail networks, and 
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there is increasing scope to use these systems for transporting freight. However, they 

also discuss the limitations: light rail systems cannot provide door-to-door services and 

lack last-mile transportation. Furthermore, some light rail systems already operate at 

maximum capacity to serve passenger demand. (Basso et.al, 2019) 

Therefore, we need to explore new solutions for the problems of how to carry out 

cooperative transportation more effectively and how to improve the service level of 

urban logistics..
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As described in Chapter 2, many large cities are currently exploring new solutions 

for collaborative logistics and collaborative transportation. In this chapter, we will 

propose the concept of a freight bus system in urban logistics , analyze its advantages, 

and address some important issues for the implementation of such a system in an urban 

area including the infrastructure and the operation management. 

3.1 Proposal of freight bus in urban logistics 

3.1.1 Key issues in our urban logistics  

    After analyzing a large number of literature and industry observations, we can 

identify some key issues in urban logistics as follows:  

First, the infrastructure of urban logistics transportation needs to be upgraded and 

transformed. The development of socialized production in modern time is reflected in 

the urban logistics field and is manifested in large-in and large-out as well as fast-in 

and fast-out of the goods, which requires us to upgrade and transform the old urban 

logistics infrastructure; Second, the quality and efficiency of the “last mile” service in 

urban logistics needs to be improved. With the investment from the government and 

enterprises in urban logistics, the logistics distribution has basically reached a certain 

level of service in truck-road transportation but due to the features of multiple demand 

points and complex traffic flow of the “last mile distribution”, at present, the 

distribution of “last mile” cannot meet the customer's service needs. Third, Various 

logistics companies still lack cooperation. Due to the lack of effective cooperation and 

management, repeated transportation and empty return in the transportation process still 

exist. The waste of transportation capacity, on the one hand, increases logistics costs 

and, on the other hand, intensifies the urban problems such as urban congestion, 

environmental pollution and noise pollution and so on. Fourth, the urban logistics needs 

to improve its own mechanization and informatization level, and with the development 

of e-commerce, the demand for urban logistics is featured by “more variety, small batch, 

multiple batches, short cycle”, which requires the urban logistics to be strengthened in 

mechanization and information level to adapt to new demands. Fifth, The government 
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needs to make unified planning and management for the healthy development of urban 

logistics. Currently, because of the huge market of urban logistics, some large logistics 

enterprises blindly expand and repeatedly construct the logistics network and logistics 

facilities and these homogeneity competitions in return cause a certain amount of social 

waste. The government needs to plan and manage urban logistics from the macro 

perspective. 

 In response to these problems in urban logistics, we put forward the freight bus 

distribution system. The freight bus system will focus on solving the problems such as 

“last mile”, coordinated distribution, and unified planning. First of all, the freight bus 

is running in the city center, which is a new distribution scheme focusing on solving 

the “last kilometer’ problem of the city. Secondly, the freight bus will replace the 

original city vehicles which are operated separately in the city to realize cooperative 

transportation, which will effectively improve the phenomenon of repeated 

transportation and empty return. Thirdly, the freight bus system will be unified 

construction and unified management and operation, which will greatly improve the 

situation of repeated construction and malicious competition. In addition, the 

construction of freight bus system will contribute to the specific implementation of 

information and mechanization of urban logistics service upgrading. 

3.1.2 Three-tiered distribution system  

The three-tiered distribution system evolved from the two-tiered system (Crainic et 

al., 2004). The first tier is between city distribution centers (CDCs) and satellite 

platforms. The second tier is between satellite platforms and depots. The third tier is 

between depots and customers. These three tiers have different types of vehicles 

employed: urban vehicles, city freighters and electro-tricycles. The following two 

figures show their differences. 
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Fig. 3.1. Two-tiered system          Fig.3.2. Three-tiered system 

City distribution centers (CDCs) are usually situated on the outskirts of a city. All the 

inbound freights are consolidated at CDCs at first. The goods coming from the CDCs 

are then transferred to satellites platforms (satellites for short) where goods are 

consolidated into full or almost full vehicles which are adapted for utilization in dense 

city zones. Finally, the goods coming from the satellites are transferred to depots where 

goods are consolidated into vehicles which are used to directly serve the customers. Each 

depot in the system may be a smart cabinet for temporary storage the goods. 

In the two-tiered distribution system, there are usually a lot of satellites in the center 

of a city. At first, the urban vehicles deliver the goods from a CDC to multiple satellites. 

Then the electro-tricycles deliver the goods from satellites to customers. The follow 

table gives the vehicles of different tiers: 

Table 3.1.  Vehicles used in different tiers 

 Two-tiered system  Three-tiered system 

First tier urban vehicle urban vehicle 

Second tier electro-tricycle city freighter 

Third tier × electro-tricycle 

 

We can see by adopting the three-tiered distribution system, the running distance of 

tricycles can be greatly reduced, and it will greatly reduce the labor costs. However, 

accompanied with the three-tiered distribution system, we can see that a lot of city 

freighters were born and circulate in the city center. The market opportunity of urban 
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logistics has been creating more and more city freighters in the city center. As a result, 

the traffic congestion in the city center becomes more and more severe. The traffic 

control for city freighters, on the one hand, is difficult to implement, and on the other 

hand cannot improve the efficiency of urban logistics significantly. In order to solve 

these problems, we put forward the concept of freight bus. 

3.1.3 Introduction of freight bus in urban logistics 

With the increase of freight distribution in urban transportation, and driven by the 

market demand, more private city freighters were born in the centers of cities, which 

makes their traffic more congested and the air pollution more severe in metropolitan 

areas. Motivated by joint distribution, in this thesis, we put forward the concept of the 

freight bus, which is a new public transportation means for urban logistics that can 

replace city freighters belonging to different private third-party logistics companies in 

the center of a city (Dai & Chen, 2009). In the following two figures, city freighters are 

compared with freight buses in urban distribution systems. We can see in Fig. 3.3, there 

are city freighters owned by two third-party logistics companies A and B, which 

separately deliver their customer orders from a distribution center to multiple depots. By 

contrast, in Fig. 3.4, freight buses deliver all the customer orders of company A and 

company B from a distribution center to depots. 

 

Fig. 3.3 City freighters in an urban distribution system 
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Fig. 3.4 Freight buses in an urban distribution system 

As a public service for third-party logistics companies and customers, the use of 

freight buses can achieve joint distribution. One important feature of freight buses is that 

they are standardized vehicles and have fixed routes and time schedules. Like passenger 

buses, a fixed vehicle route for each freight bus may not be the most economical in terms 

of cost, but with the fixed routes and schedules, freight buses can provide a stable and 

accurate service, and both shippers and customers can flexibly arrange their order 

delivery times. Each depot in such distribution system is a freight bus station, which 

may be a smart cabinet (depot) for temporary storage of goods. According to the 

schedules, customers can pick up their ordered products by self-service at the freight bus 

stations (depots), or ask the last-mile delivery men to deliver the goods from a freight 

bus station to their homes (Taniguchi & Van der Heijden, 2000). The following figure 

3.5 illustrates freight buses lines, where each freight bus station is visited and served by 

a freight bus line periodically. In each run (period), each freight bus starts from the 

distribution center, distributes goods to multiple depots, and finally returns back to the 

distribution center, according to a predefined route and time schedule. Moreover, as a 

public transportation means, freight buses can also enjoy the policy of bus priority and 

the use of special lanes reserved for buses, which can improve the timeliness and 

accuracy of logistics services. 
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Fig.3.5 An example of freight buses lines 

In a more precise way, the freight bus can be defined as follows: freight bus is a 

public vehicle travelling in a city, which provides services for urban logistics. Like a 

passenger bus, each freight bus has a fixed route and time schedule and can use special 

lanes reserved for buses.  

3.1.4 Advantage of freight bus system 

Compared with city freighters, we can expect that freight buses have some 

advantages because of their utilization shared by all suppliers and customers. Firstly, the 

use of freight buses can realize joint distribution of multiple third-party logistics 

companies, and can thus save urban logistics costs and reduce the air pollution; 

Secondly, because of having a regular schedule, the use of freight buses can improve the 

timeliness and accuracy of logistics services; Thirdly, replacing private city freighters 

by freight buses can facilitate traffic control in a city and reduce the traffic congestion. 

In addition, the use of freight buses can improve the utilization rates of special lanes 

reserved for buses. Just like buses, with the increase of freight transportation demand 

and the increase of city freighters in the city center, we believe that freight buses will 

certainly play an important role in modern urban distribution. 

We have quantitatively compared an urban distribution system with freight buses 

with a system with city freighters in terms of logistics costs under some assumptions on 

the operations of the two systems (see Chapter 5, section 5.4.4). From our preliminary 
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experimental results, we find that if we use the proposed freight bus system, the cost 

saving in percentage compared with the system without freight bus is ranged from 17.6% 

to 35.3% with the average cost saving 25.1%. The experimental results show that the 

system with freight bus can significantly reduce transportation costs compared with the 

system without freight bus. 

3.2 Implementation issues of the freight bus system 

In this section, we will discuss how to build and operate a freight bus system in 

terms of infrastructure and operation management:  

3.2.1 Infrastructure of freight bus system 

The proposed system can be technologically developed based on existing logistic 

devices to provide public logistics transportation service. A public freight bus system 

mainly consists of four components: user interface, freight bus stations, freight bus 

vehicles, communication devices. The structure of a public transit-based logistics 

transportation system is displayed in Figure 3.6, and each component is explained as 

follows. (Shen,Qiu,Li and Feng,2015). 
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                 Fig.3.6 The structure of freight bus logistics system 

 

1 User interface: 

In a freight bus system, user interface is utilized by customers to express their 

requests for freight transportation service. Freight transportation customers, including 

logistics companies, goods suppliers (companies in other industries such as 

manufacturers) and individuals, could reserve (book) goods transportation services, 

through the client side (booking website or software application) of the interface 

installed in a computer and a cell phone and get feedback from the system server for a 

detailed transportation schedule of their goods.  

    With this interface, customers can know the delivery status of their goods, and a 

pickup reminder will be sent from the system server to a customer when the goods are 

unloaded at a targeted bus station. 

2 Freight bus stations 

The location of freight bus stations should be as close as possible to passenger bus 

stations, so that passengers can pick up the goods when they commute to and from work 

(school). According to the daily volume of freight to deliver/pickup and the existing 

logistics equipment, the sizes and the required equipment of different freight bus 
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stations may be different, but each freight bus station should include the following three 

things: freight bus station sign, dedicated parking area, and good storage site. 

The freight bus station sign can help users and the freight bus driver determine the 

location to deliver/pickup goods. On the other hand, the freight bus station sign also 

shows the timetable for the access of a freight bus, so that the users can arrange their 

goods delivery/pickup plans. 

Because of a fixed access schedule, freight bus vehicles should have a fixed parking 

area. In addition, freight buses can also share existing passenger bus lanes to ensure the 

punctuality of goods delivery/pickup. 

According to the volume of goods to deliver/pickup, the goods storage site of a 

freight bus station can be a special shop (newsstand) or a smart cabinet. For example, 

in some cities in China, where e-commerce is relatively developed, special smart 

cabinets are installed in major residential areas. This smart cabinet allows users to make 

self-service delivery or pickup. 

    3 Freight buses  

As a new public transportation means for urban logistics, freight buses should be 

specially designed and manufactured. Firstly, since freight buses are to be operated in 

urban centers, the energy used by each freight bus should be green and clean, such as 

natural gas or pure electricity; Secondly, in order to facilitate the rapid loading and 

unloading of goods, a freight bus should have automatic loading/unloading devices for 

goods to facilitate the movement of goods up and down. Thirdly, in order to improve 

the efficiency of delivery and pickup, the space design inside a freight bus should 

maximize the loading capacity of goods. Fourthly, in order to provide customers with 

timely delivery/pickup information of goods, each freight bus should be equipped with 

a GPS system. Finally, the interior of each freight bus should be equipped with an 

appropriate equipment for safety, fire protection and operation in special condition (e.g. 

low temperature, etc.). 

4 Communication device 

A communication device is used as a link between two components of a freight 

bus system and to transmit real-time instructions and status updates. Generally, each 
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component of the system is connected through an existing internet infrastructure. Each 

freight bus relies on a wireless communication network to receive instructions and send 

its position and operational data back to the system server which is connected to 

customers logistics companies, and goods suppliers. 

3.2.2 Operation management of freight bus system 

1 Information Sharing 

As the upgrade and optimization of a current urban distribution system, it is 

necessary for a freight bus distribution system to strengthen its own information 

collection and sharing. The logistics participants such as customers, manufacturers, 

third-party logistics companies, couriers shall achieve information sharing and all 

participants in logistics activities shall be able to get access to the real-time status 

information of goods in delivery. 

2 Rules and Regulations 

As a public transportation means, the operation of freight buses shall enjoy the 

policy of " public transportation first". The freight buses shall have the priority in using 

urban roads, and  should able to use public transportation special lines if the road 

conditions of the lines are allowed. In addition, the safety of goods in each freight bus 

shall be protected by special rules and regulations. 

3 Cost share and revenue management strategy 

The freight bus system involves all participants of urban logistics, including third-

party logistics companies, goods suppliers, and customers, so it is necessary to adopt a 

reasonable revenue management strategy by fairly sharing costs among these 

participants. 

4 Standardization 

The construction of a freight bus system shall promote the standardization of urban 

logistics system, including the standardization of freight bus vehicles by considering 

environmental protection, safety and other aspects, the standardization of logistics 

distribution schedule, and the standardization of goods size and packaging and so on. 
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5 Training of professional personnel 

As a new urban logistics system, the efficient operation of the freight bus system 

needs a group of professional logistics practitioners, so it is necessary to have a 

professional training for all operators and service providers of the system to ensure its 

efficient and safe operation.
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4.1 Introduction 

After putting forward the concept of freight buses, we need to address the issue 

“how to operate them efficiently.” One important problem relevant to the operation of 

freight buses is their route planning, which is related to period vehicle routing problem. 

In the standard periodic vehicle routing problem (PVRP), each customer is required to 

be visited on one or multiple days within a planning period of several days, and there 

are a set of feasible visit options (days) for each customer. For example, a customer is 

required to be visited twice in the planning period of one week and a feasible visit 

option for the customer is Monday and Wednesday. After assigning a feasible visit to 

each customer, a VRP is solved for each day in the planning period. The objective of 

the problem is to minimize the total distance traveled over the planning period 

(Campbell and Wilson, 2014). However, our route planning problem of freight buses 

has the following two new features. Firstly, as one type of public transportation means, 

each freight bus has a fixed vehicle route, and all depots or customers are visited by the 

freight buses with the same number of times per day. Secondly, because of the capacity 

limitation of a freight bus，it is possible that the demand of a depot in a period is only 

partially met in this period. In this case, the unmet demand of the period can only be 

met in later periods and with a late delivery penalty. so our route planning problem of 

freight buses is a new variant of periodic vehicle routing problem. To the best of our 

knowledge, buses dedicated to the transportation of freight were rarely addressed in the 

literature and the freight bus routing problem considered in this thesis was never studied 

by other researchers.  

In this chapter, we will study the basic route planning of freight buses with only 

delivery. Each freight bus is assumed to be operated periodically with a fixed route. We 

consider an urban distribution system where freight buses deliver goods (customer 

orders) from an urban distribution center to a set of depots.  

  In order to solve the problem, In this chapter, we first formulate our basic route 

planning of freight buses with only delivery as a Mixed-Integer Linear Programming 
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(MILP) problem and then develop a memetic algorithm (genetic algorithm with local 

search) to solve it near-optimally. Our development of this memetic algorithm takes 

into consideration specific characteristics of the freight bus routing problem, such as 

fixed route for each freight bus, demand that can be served in a later period but with a 

late delivery penalty cost, etc. Moreover, we use problem-tailored methods to 

code/decode, calculate the fitness of each solution, and to perform local search in this 

algorithm. In order to verify the model and evaluate the performance of the algorithm, 

we then conduct numerical experiments on instances generated based on benchmark 

instances and analyze the numerical results. Through the experiments, we have proved 

the relevance of the mathematical model and the effectiveness of the proposed memetic 

algorithm. 

4.2 Problem description and mathematical model 

4.2.1 Problem description 

In the model, the freight buses deliver goods from a Distribution Center to a set of 

depots. For simplicity, we don’t consider the interactions of the freight buses with the 

electro-tricycles which perform last-mile deliveries from depots to customers. We divide 

the planning time horizon (e.g. one day) of freight bus operations into M periods (M > 

1). As the first study of freight bus routing problem in this thesis, we assume the demand 

at each depot in each period is known. This demand may be forecasted in advance every 

day or may be approximated by the average of historical demands of the depot in the 

same period and on the same day in each week during one year, one quarter, or one 

month. In addition, we assume each freight bus has a fixed route in the time horizon, 

and every depot must be served by one freight bus in each period. The total delivery 

demand of each depot must be met at the end of the time horizon, but it is possible that 

the demand of a depot in a period is only partially met in this period because of the 

capacity limitation of a freight bus. In this case, the unmet demand of the period will be 

met in later periods but with a late delivery penalty linearly depending on the quantity 
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of the late delivery and the number of periods delayed. Because of the late delivery 

penalty, all demands must be met as early as possible. 

The main parameters of the model are defined as follows: 

⚫ o   The distribution center where each freight bus leaves from and returns to. 

⚫ 𝑉   Set of freight buses. 

⚫ G   Set of depots.  

⚫ 𝑈   The capacity of each freight bus. 

⚫ 𝐶𝑖𝑗  The operating cost for a freight bus travelling from node i to node j (i, jϵ{s} ∪

𝐺).  

⚫ M   The number of time periods we consider in the route planning problem.  

⚫ 𝑑𝑖(k)  The delivery demand of depot i during the k-th period, 𝑖 ∈ G, 𝑘 ∈ {1,2 … 𝑀}. 

⚫  P   Penalty coefficient (per period and per unit of demand) for the late delivery. 

We assume that the Distribution Center o serves all depots G in the distribution 

system considered. The distance between node i and node j is denoted by 𝐷𝑖𝑗.  Each 

Freight bus loads the goods at the Distribution Center o, delivers them to a subset of 

depots, and finally returns to the distribution center. The operating cost of a freight bus 

from node i to node j is calculated as 𝐶𝑖𝑗 = 𝐶 ∗ 𝐷𝑖𝑗 , where C is the unit distance 

operating cost of each freight bus. There are F (F is an integer) freight buses operated 

for the Distribution Center o, and the capacity of each freight bus is U.  

In each period, each freight bus leaves from the Distribution Center o, visits its served 

depots and returns to the Distribution Center. What’s more, every period, all the goods 

must be unloaded from the freight bus before it returns to the Distribution Center. It is 

assumed that the demand 𝑑𝑖(𝑘)  of each depot i in each period 𝑘 ∈ {1,2 … 𝑀} is 

known. In each period, the delivery of freight bus v at each depot i can be the demand 

of that period plus the demand (the partial demand) of earlier periods but cannot be the 

demand of a later period. 
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We need to plan the vehicle route for each freight bus v, and the delivery quantity of 

each freight bus at each depot in each period. Our objective is to minimize the operating 

costs of all the freight buses plus the late delivery penalty costs in the M periods. 

4.2.2 Mathematical model 

As we can see from the Problem Description, there are three important characteristics 

for the basic route planning of freight buses: Firstly, each freight bus has a fixed route 

in the time horizon, and each depot must be served by one freight bus in each period. 

Secondly, the demand of a depot in each period can be split into the demand delivered 

on-time in this period and the demand delivered in later periods because of the capacity 

limitation of a freight bus involved. Thirdly, because of the late delivery penalty, all 

demands must be met as early as possible. 

Combining these characteristics, in this subsection, we propose a mathematic model 

for this basic route planning of freight buses. With this mathematic model, we can 

calculate the operating costs of freight buses and the penalty cost for the late deliveries 

in the planning horizon. At the same time, we can also get the optimal routes of freight 

buses by solving the model. 

The detailed mathematical model for the route planning of freight buses is given as 

follows: 

Decision Variables 

⚫ x𝑖𝑗
v     A binary variable which is equal to 1 if the freight bus v 𝜖𝑉 goes from node 

i to j (i, j𝜖{𝑜} ∪ 𝐺), and 0 otherwise. 

⚫ y𝑖
v    A binary variable which is equal to 1 if and only if the depot i 𝜖𝐺 is served 

by the freighter bus v 𝜖𝑉,and 0 otherwise. 

⚫ d𝑖
v(k)   The quantity unloaded from freighter bus v 𝜖𝑉 at the depot i 𝜖𝐺 in its k-th 

visit k∈ {1,2 … 𝑀}, and 0 otherwise. 
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⚫ 𝑄𝑖
𝑣(k)   The load of the freighter bus v 𝜖𝑉 when it just arrives at node i 𝜖{𝑜} ∪ 𝐺 

during its k-th visit, k∈ {1,2 … 𝑀}. 

Objective Function 

   The objective is to minimize the sum of the costs which include the operating 

costs of the freight buses and the penalty costs for the late deliveries in the planning time 

horizon of M periods. 

Min Obj = 𝑀 ∗ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑣  𝑣∈𝑉  𝑗∈{0}∪𝐺𝑖∈{𝑜}∪𝐺 +  

P* ∑ ∑  (∑ 𝑑𝑖(𝑘)𝑛
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉

𝑀
𝑛=1𝑖∈𝐺 )  

Subject to 

∑ x𝑜𝑗
v

𝑗∈G = ∑ x𝑗𝑜
v

j∈G                ∀v ∈ 𝑉                        (4.1) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = ∑ x𝑗𝑖
v

𝑖∈{0}∪G        ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                    (4.2) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = y𝑗
v                ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                  (4.3) 

∑ y𝑗
v

v∈V  = 1                    ∀𝑗 ∈ 𝐺                         (4.4) 

 𝑄𝑗
𝑣(𝑘)>=𝑄𝑖

𝑣(𝑘)+𝑑𝑗
𝑣(𝑘)-𝑈(1-𝑥𝑖𝑗

𝑣 ) 

        ∀i ∈ G, ∀ j ∈ {o} ∪ G, ∀v ∈ V, ∀k∈ {1,2 … M}                (4.5) 

 𝑄𝑜
𝑣(𝑘) = 0                     ∀𝑣 ∈ 𝑉,   ∀k∈ {1,2 … 𝑀}                      (4.6) 

0<=  𝑄𝑖
𝑣(𝑘)<=U             ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉                     (4.7) 

∑ 𝑑𝑖
𝑣(𝑘)𝑀

𝑘=1 = 𝑑𝑖*𝑦𝑖
𝑣      ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉                          (4.8) 

∑ 𝑑𝑖
𝑣(𝑘)𝑛

𝑘=1 <= ∑ 𝑑𝑖(𝑘)𝑛
𝑘=1  *𝑦𝑖

𝑣 

   ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀n∈ {1,2 … 𝑀}                   (4.9) 

 𝑥𝑖𝑗
𝑣 ∈ {0,1}     𝑦𝑖

𝑣 ∈ {0,1}     

 ∀𝑖 ∈ {𝑜} ∪ 𝐺，∀𝑗 ∈ {𝑜} ∪ 𝐺, ∀𝑣 ∈ 𝑉                 (4.10) 
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Constraints (4.1) indicate that each freight bus leaves from and returns to the 

Distribution Center. Constraints (4.2) ensure that each freight bus arriving at a depot has 

to leave it. Constraints (4.3) and (4.4) guarantee that all depots must be served and each 

depot is served by at most one freight bus. Constraints (4.5) (4.6) and (4.7) formulate 

vehicle capacity constraints. Constraints (4.8) guarantee that all demands at each depot 

must be met in the time horizon of M periods. Constraints (4.9) indicate that in each 

period, the delivery of freight bus v at each depot i can be the demand of that period or 

earlier periods but cannot be the demand of later periods. Finally, constraints (4.10) 

define the domains of all decision variables. 

4.3 Memetic algorithm  

We tried to use CPLEX to solve the proposed mathematical model in section 4.2, but 

only small instances could be solved to optimality in a reasonable computation time. 

Since this basic route planning problem of freight buses is NP-hard problem, it is 

impossible to develop an exact algorithm that can solve the problem to optimality in a 

reasonable time. Instead, in this section, we design a memetic algorithm (genetic 

algorithm with local search) for this special periodic vehicle routing problem. 

4.3.1 Procedure of the memetic algorithm  

Pablo Moscato first proposed the concept of memetic algorithm in 1989. He viewed 

MA as being close to a form of population-based hybrid genetic algorithm (GA) coupled 

with an individual learning procedure capable of performing local refinements. And in 

the context of complex optimization, many different instantiations of memetic 

algorithms have been reported across a wide range of application domains, in general, 

converging to high-quality solutions more efficiently than their conventional 

evolutionary counterparts (Samanlioglu, Ferrell, & Kurz, 2008; Mafarja & Abdullah, 

2013). So far, MA has been used with great success to solve various vehicle routing 

problems, including various single period VRPs (capacitated VRP, VRP with time 

windows, pickup and delivery problem) and the PVRP. 
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Based on the conventional steps of genetic algorithms, the procedure framework of 

our Memetic Algorithm is shown in Fig.4.1 

 

        Fig.4.1 Memetic Algorithm 

4.3.2 Memetic algorithm design 

In this design, we take into account the specific characteristics of this problem: fixed 

route for each freight bus, the demand of each depot in each period can be split into 

multiple deliveries, late delivery penalty, etc. The most special features of this design 

are about the method of encoding and decoding of solutions, the method of calculating 

the fitness of each solution and the method of local search. 

4.3.2.1 Encoding and decoding of solutions 

The encoding of a solution is to transform it into a chromosome, whereas the 

decoding is to transform a chromosome into a solution in a genetic/memetic algorithm. 

In our memetic algorithm, integer string encoding is adopted. For the route planning 

problem of freight buses with N depots, each chromosome, which is an integer string of 

length N, is divided into N genes, and each gene represents a depot. The order of the 

genes in a chromosome will determine the subset of depots, the order of these depots 
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visited by each freight bus (Yang, Chen & Chu, 2011; Yalaoui, Amodeo, Yalaoui & 

Mahdi, 2014). 

Since the demands of each depot in different periods may be different, the condition 

that the total demand of a subset of depots visited by a freight bus over M periods does 

not exceed the capacity of the freight bus times M (i.e., the total capacity of the freight 

bus over M periods) is not sufficient to ensure that the total demand can be served 

(delivered) by the freight bus at the end of the M periods. For this reason, we propose 

the following decoding scheme that takes account of the demand of each depot in each 

period. 

We decode a chromosome from its first gene to its last gene. Through a series of 

mathematical calculations and checks, the chromosomes are divided into multiple 

segments, each segment corresponds to the vehicle route of a freight bus. These 

segments are indexed by integer numbers 1, 2, 3…. according to the order in which they 

are generated. Figure.4.2 gives an example of the generation of segments. For each 

segment, its corresponding freight bus starts from the distribution center, visits the 

depots represented by the genes in the segment and in the order given by the segment, 

and finally returns to the distribution center.  

 

Fig. 4.2  An example of the generation of segments 
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 For simplicity of explanation, the N genes (depots) in a chromosome are indexed 

from 1 to N as illustrated in Figure 4.2. With this indexing, the formulas used for the 

division of a chromosome into segments are given in the following, where the index i 

corresponds to the i-th gene (depot) in a chromosome and k is the index of a period. 

In the formulas, U is the capacity of each freight bus, a and b represents respectively 

the index of the first gene (depot) and the index of the last gene (depot) in a segment 

corresponding to the set and the order of depots visited by a freight bus;  𝑠𝑘 is the sum 

of the demands of the genes in the segment (the depots visited by the freight bus) in 

period k, which can be calculated by formula (4.11) ; 𝑞𝑘 is the total amount of demands 

of the depots that has not yet been served (delivered) after k visits of the freight bus, 

which can be calculated by formula (4.12); 𝑤𝑘 is the capacity not used of the freight 

bus in period k, which can be calculated by formula (4.13). The formula (4.14) implies 

that the total demand of the depots in the M periods does not exceed the total available 

capacity of the freight bus over the M periods minus its total unused capacity, which 

ensures that the capacity of the freight bus is sufficient to serve (deliver) all the demands 

of the depots at the end of the M periods. 

  𝑠𝑘= ∑ 𝑑𝑖(k)𝑖∈{𝑎,𝑏}              ∀k∈ {1,2 … 𝑀}               (4.11) 

  𝑞𝑘= max {𝑞𝑘−1+ (𝑠𝑘-U), 0}       𝑞0 =0; ∀k∈ {1,2 … 𝑀}       (4.12) 

 𝑤𝑘=max {0, U-𝑠𝑘- 𝑞𝑘−1 }  ∀k∈ {1,2 … 𝑀}                     (4.13) 

∑ 𝑠𝑘
𝑀
𝑘=1 <= M *U -∑ 𝑤𝑘

𝑀
𝑘=1                                   (4.14) 

The procedure for dividing a chromosome into segments (routes of freight buses) is 

given in pseudo code in Algorithm 4.1. 

Algorithm 4.1 - Division operation for a chromosome  

1 a←1, b ← 𝑎, r←0 

2 for b← a to N do 

3    Calculate  𝑠𝑘, 𝑞𝑘,  𝑤𝑘 by formulas (4.11) to (4.13) 
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4    if ∑ 𝑠𝑘
𝑀
𝑘=1  <= M *U -∑ 𝑤𝑘

𝑀
𝑘=1   

5       Continue 

6    else  

7       r←r+1 

8       segment(r)←(a, b-1) 

9       a←b 

10    end if 

11 end for 

As shown in Algorithm 4.1, for a chromosome, if the genes from 1 to b-1 satisfy the 

formula (4.14), and the genes from 1 to b cannot satisfy the formula (4.14), then we get 

the first segment segment(1) which consists of the genes from 1 to b-1, This means all 

the depots represented by genes from 1 to b-1 in the chromosome will be visited by the 

first freight bus, and the depot represented by the gene b will be visited by the second 

freight bus. To get the second segment or the set and the order of the depots to be visited 

by the second freight bus, we check the genes starting from the gene b with the formulas 

(4.11) to (4.14) again until the constraint (4.14) is violated. This procedure is repeated 

until the last gene N of the chromosome is checked. At the end of this procedure, the 

chromosome is divided into several segments, each segment corresponds to the route of 

a freight bus. 

4.3.2.2 Generation of the initial population 

In order to ensure the diversity of population, we generate the initial population 

randomly (a random integer number between 1 and the number of depots N is assigned 

to each gene of each chromosome). In general, the number of chromosomes (solutions) 

generated for the initial population is determined according to the problem size (Chen, 

Labadi & Amodeo, 2006; Pishvaee, Farahani & Dullaert, 2010). In our numerical test 

of the memetic algorithm, we set the population size to be 50~200. 
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4.3.2.3 Fitness function 

The process of searching for optimal or near-optimal solutions by genetic/memetic 

algorithm is accompanied by the evolutionary process of chromosomes. In order to 

evaluate the quality of each chromosome, we need to define its fitness. For our problem, 

let R denote the set of all routes in a solution (represented by a chromosome), the fitness 

of the chromosome, denoted by f , is defined as follows: 

     𝑠𝑘(𝑟)= ∑ 𝑑𝑖(k)𝑖∈𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑟)              ∀k∈ {1,2 … 𝑀}, r ∈ 𝑅      (4.15) 

 𝑞𝑘(𝑟)= max [𝑞𝑘−1(𝑟)+ (𝑠𝑘(𝑟)-U), 0]   𝑞0 =0; ∀k∈ {1,2 … 𝑀}; r ∈ 𝑅 (4.16) 

 CP= P*∑ ∑ 𝑞𝑘(𝑟)𝑀
𝑘=1

𝑅
𝑟=1                                        (4.17) 

Obj =𝑀 ∗ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑣

𝑣∈𝑉  𝑗∈{𝑠}∪𝐺𝑖∈{𝑠}∪𝐺 + P*∑ ∑ 𝑞𝑘(𝑟)𝑀
𝑘=1

𝑅
𝑟=1          (4.18) 

Fitness f =1/Obj                                               (4.19) 

 

The fitness can be calculated with the following steps: 

Step1: By the formulas (4.11)-(4.14), we decode a chromosome into a set of segments 

(routes) R, the genes 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑟) for each segment r, and the vehicle routes of all 

freight buses. 

Step2: By the formulas (4.15)-(4.16), we get the demand 𝑞𝑘(𝑟) that has not yet been 

served (delivered) after k visits of the freight bus for each route (segment) r.  

Step 3: By the formulas (4.17), we get the penalty cost CP for the late delivery in M 

periods for this chromosome (solution).  

Step 4: By the formulas (4.18), we get the total cost of the chromosome Obj which 

includes the operating costs of all freight buses and the penalty cost for the late delivery 

in M periods. 

Step 5: Calculate the fitness 𝑓 of the chromosome by the formula (4.19). 
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4.3.2.4 Selection 

The task of selection is to choose individuals chromosomes for genetic operations. In 

this thesis, we choose the best NC (NC is the population size) chromosomes from the 

pool comprising both the parent and child chromosomes. In this way, good 

chromosomes are chosen for genetic operations, while avoiding the premature 

convergence of the memetic algorithm (Amodeo, Chen & EI Hadji, 2008; Jouglet, Oǧuz, 

& Sevaux, 2009). 

4.3.2.5 Crossover 

Crossover is a randomized method of exchanging certain genes between two 

chromosomes to produce new chromosomes. Crossover can not only generate new 

individuals, but also ensure the diversity of the population (Hani, Amodeo, Yalaoui & 

Chen, 2008; Choong, Phon-Amnuaisuk & Alias, 2011). 

In this chapter, we use a method like two-point crossover to exchange some genes 

between two chromosomes. The repeating genes in the two new chromosomes obtained 

are then deleted in order to generate feasible solutions. The specific steps of this 

crossover are given as follows: 

Step 1: Randomly choose two chromosomes A1 and B1 to cross. 

Step 2: Randomly generate two integers g1 and g2 from the interval [1, N] (N is the 

total number of genes in each chromosome). 

Step 3:  Put the segment a1 defined by the genes from g1 to g2 of chromosome A1 

in the front of the chromosome B1, and delete all genes in chromosome B1 that repeat 

the genes in segment a1. This creates a new chromosome B2. 

Step 4:  Put the segment b1 defined by the genes from g1 to g2 of chromosome B1 

in the front of the chromosome A1, and delete all genes in chromosome A1 that repeat 

the genes in segment b1. This creates a new chromosome A2. 

The schematic diagram of crossover is as follows. 
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Fig.4.3 Crossover 

4.3.2.6 Mutation  

The mutation operator can make a genetic/memetic algorithm jump out of the current 

search region and avoid the search to be trapped in a local optimal solution (Park, Choi 

& Kim, 2003; Mavrovouniotis &Yang, 2013). The specific steps of the mutation used 

in our algorithm are given as follows: 

Step 1: Randomly choose a chromosome A to mutation. 

Step 2: Randomly generate two integers g1 and g2 from the interval [1, N] (N is the 

total number of genes in each chromosome). 

Step 3:  Reverse the segment s defined by the genes from s1 to s2 of chromosome 

A in the chromosome. This creates a new chromosome A’. 

The schematic diagram of the mutation is given as follows. 

 

Fig.4.4 Mutation 

4.3.2.7 Local search 

Genetic algorithms are global search algorithms. Such algorithms can be improved 

by local search to enhance search intensification (Wang, Chen & Lin, 2017; 

Mavrovouniotis & Yang, 2013) 
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By decoding a chromosome into segments, with each segment corresponding to the 

depots served by a freight bus, we have assigned depots to different freight buses 

(Fig.4.5 is an example of the assignment of depots to freight buses). However, the route 

of each freight bus that defines an order of depots visited by the freight bus needs to be 

optimized. The local search we design for our memetic algorithm is used to optimize the 

route of each freight bus when its visited depots are given. 

 

          Fig.4.5 An example of the assignment of freight buses to depots 

By formulas (4.15)-(4.18), we can see that no matter how we change the order of 

depots visited by a freight bus, the sum of demands 𝑠𝑘(𝑟) in every period k for this 

freight bus will not change; Moreover, by formulas (4.16), we know that 𝑞𝑘(𝑟), the 

total demand that has not yet been served after visit k of the freight bus, does not depend 

on the order. Consequently, by formulas (4.17), the penalty cost CP does not depend on 

the order as well. So, the optimization of each route by local search is equivalent to 

finding the shortest route for each freight bus that visits all its assigned depots. 

Two types of intra-route moves are implemented in our local search procedure, which 

are illustrated in Fig.4.6-4.7. 
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Fig.4. 6 The 2-Opt Exchange Operator 

 

Fig.4.7  The Or-Opt Operator 

The first move in Fig.4.6 is called 2-exchange or 2-opt. It aims at improving a route 

by replacing two of its edges by two other edges iteratively until no further improvement 

happens. The second move in Fig.4.7 is called Or-opt. It is achieved by replacing three 

edges in a route by three new edges without modifying the route orientation. (Olli & 

Michel, 2005; Li, Chen & Prins, 2016). The two moves are applied alternatively in our 

local search procedure and each move adopts the first move improvement method. In 

order to keep the CPU running time at a reasonable level, the local search stops when 

there is no improvement for one cycle of the application of the two moves. 

4.3.2.8 Stop criterion 

The memetic algorithm is an iterative search algorithm, so a stop criterion is required 

to stop its iteration process. In this thesis, we set a maximum number of iterations as the 

stop criterion for the algorithm (Chang & Hou, 2008). 

4.4 Numerical experiments 

In order to verify the mathematical model of freight buses routing and evaluate the 

effectiveness of our Memetic Algorithm, in this section, we design 70 instances in small, 
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medium and large sizes, and compare the performance of the Memetic Algorithm 

(implemented in MATLAB 2014a with Intel Core i5-4210M CPU 2.6GHz) with that of 

the MILP solver of CPLEX (CPLEX 12.6）on the instances. In addition, the impact of 

local search on the algorithm is evaluated and analyzed in this section. 

4.4.1 Instance generation 

The model of freight buses routing considered in this thesis is related to the 

Capacitated Vehicle Routing Problem. So when generating the instances, we use some 

data from the benchmark instances of Capacitated Vehicle Routing Problem provided 

by Augerat et al. and Christofides et al. at http://neo.lcc.uma.es/vrp/. However, since the 

freight bus routing model involves multiple periods, we have to generate demand data 

randomly based on the benchmark data.  

We designed 70 instances for the model which are grouped in instances of small size 

(N∈{7,13}; M∈{3,5}), instances of medium size (N∈{20, 30, 40}; M∈{3,5}) and 

instances of large size (N ∈ {60, 80}; M ∈ {3,5}) instances(see Table 4.3). For all 

instances, the following data are taken from the benchmark instances: the coordinates of 

all nodes, the number of vehicles, and the capacity of each vehicle. The other data are 

generated randomly or based on the benchmark instances: the demand of each depot in 

each period, the number of periods M, the unit distance operating cost C, the penalty 

coefficient P. 

For the number of periods M, it is set to 3 or 5. Since it is assumed that all freight 

buses have the same unit distance operating cost, we simply set C to 1 for all instances. 

And the delivery demand of each depot in each period is randomly generated from [1, 

40]. For the penalty coefficient P, because the ratio of P to C affects the tradeoff between 

the operating costs of the freight buses and the penalty costs for the late deliveries as 

well as the service level to customers, i.e., the percentage of customers delivered on-

time, we cannot set P too big or too small. After some tests with different P values (P=1, 

10, 20, 50, 100), in our numerical experiments we set P to 20 for all instances. 
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4.4.2 Parameter setting  

The parameters of the memetic algorithm were tuned by making a tradeoff between 

solution quality and CPU time.  

For our Memetic Algorithm (MA), we used the method of Taguchi to determine the 

values of its parameters (Tsai, Liu & Chou, 2004). After testing the algorithm with the 

generated instances, the parameters of our MA are chosen as follows. For small instances: 

population size=80, the probability of crossover=0.9, the probability of mutation=0.1, 

and the maximum number of iterations=80. For medium instances: population size=100, 

the probability of crossover=0.8, the probability of mutation=0.05, and the maximum 

number of iterations=100. For large instances: population size=150, the probability of 

crossover=0.7, the probability of mutation=0.03, and the maximum number of 

iterations=150. 

Table 4.1 Parameter Setting of the MA. 

Parameter Small Medium Large 

Population size 80 100 150 

Probability of crossover 0.9 0.8 0.7 

Probability of mutation 0.1 0.05 0.03 

Maximum number of iterations 80 100 150 

At the same time, since it is very time consuming for CPEX to find an optimal 

solution of the freight bus routing model in this chapter even for instances of small size, 

in order to make the solver of CPLEX able to find a high quality feasible solution of the 

MILP model for instances of different sizes, we preset its CUP running time to 1000, 

1800, 3600, 5400, 7200, 10800, 14400 seconds for instances with 7, 13, 20, 30, 40, 60, 

80 depot nodes, respectively.  

4.4.3 Experiments and results 

Three key values were used to evaluate the performance of our memetic algorithm: 
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1) The lower bound produced by CPLEX, which indicates a lower bound of the 

optimal objective value of the MILP model. 

2) The best feasible solution of the MILP model found by CPLEX, which is an upper 

bound of the optimal objective value. 

3) The best objective value obtained by the Memetic Algorithm. 

The indexes used in the performance evaluation and their definitions are given in 

Table 4.2. 

Table 4.2 Performance indexes. 

Abbreviation Definition 

𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 
The best feasible objective value found by CPLEX in a preset 

running time 

LB The lower bound produced by CPLEX in a preset running time 

𝑀𝐴𝑂𝑏𝑗 
The best feasible objective value obtained by MA after a preset 

number of iterations 

𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  
The gap between 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗  and LB, which is defined as 

(𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗- LB)/ 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗*100 

𝐺𝑎𝑝𝑀𝐴 
The gap between 𝑀𝐴𝑂𝑏𝑗 and LB, which is defined as (𝑀𝐴𝑂𝑏𝑗- 

LB)/ 𝑀𝐴𝑂𝑏𝑗*100 

𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 
The improvement (cost reduction) of 𝑀𝐴𝑜𝑏𝑗   over 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 , 

which is defined as (𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗- 𝑀𝐴𝑜𝑏𝑗)/ 𝑀𝐴𝑂𝑏𝑗*100 

𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥 The CPU time of CPLEX (in seconds) 

𝐶𝑃𝑈𝑀𝐴 The CPU time of MA (in seconds) 

 

The following three tables give the experimental results of small size instances, 

medium size instances, and large size instances, respectively. where each instance is 

identified by the number of depots and the number of periods. For example, instance 7-

3 is an instance with 7 depots and 3 periods.(7-3a,7-3b is the different delivery demands 

instances with 7 depots and 3 periods) 
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Table 4.3 Experimental results of small size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝑀𝐴𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝑀𝐴 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝑀𝐴 

7-3a 853.7  853.7  853.7 0.00  0.00  0.00  57.5 5.3  

7-3b 789.3  789.3  789.3 0.00  0.00  0.00  56.3 5.2  

7-3c 861.5  861.5  861.5 0.00  0.00  0.00  57.8 4.7  

7-3d 773.6  773.6  773.6 0.00  0.00  0.00  58.6 5.0  

7-3e 824.8  824.8  824.8 0.00  0.00  0.00  56.9 5.1  

7-5a 1587.3  1587.3  1587.3 0.00  0.00  0.00  189.7 16.8  

7-5b 1556.1  1556.1  1556.1 0.00  0.00  0.00  203.2 15.8  

7-5c 1509.6  1509.6  1509.6 0.00  0.00  0.00  179.1 14.3  

7-5d 1552.3 1552.3 1552.3 0.00  0.00  0.00  196.5 15.3  

7-5e 1517.3 1517.3 1517.3 0.00  0.00  0.00  183.4 16.3  

13-3a 1140.6  919.3  996.3 19.40  7.73  14.48  1800 20.5  

13-3b 1186.8  981.2  1098.6 17.33  10.69  8.03  1800 21.7  

13-3c 1406.3  1125.5  1246.7 19.97  9.72  12.80  1800 19.6  

13-3d 1091.7  907.9  996.3 16.83  8.87  9.58  1800 23.4  

13-3e 2249.0  1865.4  1998.7 17.06  6.67  12.52  1800 21.1  

13-5a 2938.4  2022.4  2256.4 31.17  10.37  30.23  1800 37.1  

13-5b 2525.6  1763.2  2028.3 30.19  13.07  24.52  1800 33.7  

13-5c 2601.2  1768.0  2006.6 32.03  11.89  29.63  1800 35.8  

13-5d 2658.4  1990.2  2154.1 25.14  7.61  23.41  1800 37.2  

13-5e 2660.6  1909.8  2109.6 28.22  9.47  26.12  1800 34.5  

 

Table 4.4 Experimental results of medium size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝑀𝐴𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝑀𝐴 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝑀𝐴 

20-3a 2185.2  1709.3  1851.3 21.78  7.67  18.04  3600 105.1  

20-3b 2283.5  1686.1  1785.9 26.16  5.59  27.86  3600 127.9  
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20-3c 2316.8  1741.2  1871.3 24.84  6.95  23.81  3600 98.5  

20-3d 2006.8  1515.3  1649.4 24.49  8.13  21.67  3600 105.9  

20-3e 2200.5  1619.6  1753.6 26.40  7.64  25.48  3600 99.3  

20-5a 3910.1  2592.7  2927.9 33.69  11.45  33.55  3600 168.6  

20-5b 3429.8  2495.8  2871.4 27.23  13.08  19.45  3600 183.5  

20-5c 3604.9  2716.5  3012.6 24.64  9.83  19.66  3600 154.7  

20-5d 3389.6  2420.0  2699.1 28.60  10.34  25.58  3600 176.1  

20-5e 3426.3  2380.9  2786.3 30.51  14.55  22.97  3600 151.3  

30-3a 3571.4  2210.1  2419.6 38.12  8.66  47.60  5400 198.6  

30-3b 3886.0  2217.3  2397.3 42.94  7.51  62.10  5400 234.9  

30-3c 3373.2  2182.1  2421.6 35.31  9.89  39.30  5400 229.5  

30-3d 3266.4  1964.1  2215.3 39.87  11.34  47.45  5400 220.4  

30-3e 3348.4  2109.3  2317.4 37.01  8.98  44.49  5400 217.3  

30-5a - 3503.2  4033.6 - 13.15  - 5400 326.6  

30-5b - 3256.2  3978.7 - 18.16  - 5400 287.4  

30-5c - 3631.9  4135.6 - 12.18  - 5400 307.5  

30-5d - 3228.8  3832.8 - 15.76  - 5400 296.1  

30-5e - 3354.1  3916.5 - 14.36  - 5400 303.8  

40-3a 4536.0  2458.3  2714.8 45.81  9.45  67.08  7200 403.5  

40-3b 4664.2  2394.1  2694.5 48.67  11.15  73.10  7200 376.9  

40-3c 4710.3  2425.4  2716.9 48.51  10.73  73.37  7200 427.1  

40-3d 4432.2  2188.0  2513.5 50.63  12.95  76.34  7200 381.0  

40-3e 4461.6  2355.5  2628.3 47.20  10.38  69.75  7200 412.0  

40-5a - 3687.1  4519.1 - 18.41  - 7200 550.7  

40-5b - 3903.0  4595.6 - 15.07  - 7200 512.9  

40-5c - 3920.0  4726.3 - 17.06  - 7200 523.9  

40-5d - 3706.0  4316.8 - 14.15  - 7200 520.7  

40-5e - 3808.5  4485.9 - 15.10  - 7200 516.3  
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Table 4.5. Experimental results of large size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝑀𝐴𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝑀𝐴 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝑀𝐴 

60-3a 8401.8  3985.4  4351.3 52.57  8.41  93.09  10800 725.1  

60-3b 9354.5  3677.7  4269.4 60.69  13.86  119.11  10800 860.6  

60-3c 8699.5  3836.9  4322.8 55.90  11.24  101.25  10800 620.3  

60-3d - 3906.5  4339.1 - 9.97  - 10800 731.6  

60-3e 8401.3  3717.9  4139.3 55.75  10.18  102.96  10800 623.7  

60-5a - 6150.6  7271.9 - 15.42  - 10800 914.7  

60-5b - 5740.8  7238.4 - 20.69  - 10800 1006.7  

60-5c - 6084.6  7354.8 - 17.27  - 10800 1135.6  

60-5d - 5967.4  7138.9 - 16.41  - 10800 930.3  

60-5e - 6008.1  7347.6 - 18.23  - 10800 1095.1  

80-3a - 4883.5  5469.3 - 10.71  - 14400 896.4  

80-3b - 4784.2  5457.1 - 12.33  - 14400 985.3  

80-3c - 4998.7  5533.8 - 9.67  - 14400 967.2  

80-3d - 4666.1  5267.1 - 11.41  - 14400 901.5  

80-3e - 4815.6  5345.3 - 9.91  - 14400 868.0  

80-5a - 7614.0  9149.3 - 16.78  - 14400 993.7  

80-5b - 7218.3  9109.4 - 20.76  - 14400 1356.2  

80-5c - 7520.5  9253.7 - 18.73  - 14400 1206.3  

80-5d - 7548.4  9176.3 - 17.74  - 14400 1304.5  

80-5e - 7530.7  9308.6 - 19.10  - 14400 1317.2  

 

Table 4.3 compares the solutions of our Memetic Algorithm with those of CPLEX 

solver on small size instances. We can see, for the instances with N=7, M=3 (7-3) and 

N=7, M=5 (7-5), both MA and CPLEX can solve the model to optimality, and our MA 

consumed less CPU time than CPLEX. When the number of depot nodes increases to 

13, no proven optima was obtained. In this case, we compare near-optimal solutions of 
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the two methods and their running times. Comparing their three indexes (𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  , 

𝐺𝑎𝑝𝑀𝐴 and 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥), we can see that MA found better solutions than CPLEX 

with an average percentage improvement 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥of 19.13% in terms of total cost. 

Furthermore, we can see our MA algorithm supersedes CPLEX in terms of running 

time, the longest CPU time for MA is only 37.2 seconds compared with the limit of 

1800 seconds reached by CPLEX. 

Table 4.4 gives in the same format the results for medium size instances. With the 

increase of the number of depot nodes, the gap of CPLEX 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥 ,  has a rapid 

growth from 21.78% to 50.63%, while our MA looks more stable with a relatively 

smaller change from 5.59% and 18.41%. As a result, there is a significant increase in the 

improvement 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 from 18.04% to 62.10%. For the instances with N=30, M=5 

(30-5) and N=40, M=5 (40-5), we can see CPLEX failed to find a feasible solution, even 

after a long running of 1.5h or 2h. In contrast, our MA always returned better quality 

feasible solutions. In parallel, the running time of the MA grows naturally with instance 

size but still represents a small fraction of the CPU time consumed by CPLEX. 

Table 4.5 gives the experimental results for large size instances. We can see CPLEX 

failed to find a feasible solution for 16 out of 20 instances with a preset running time. 

For most of the instances, CPLEX terminated because of lack of memory, so we did not 

try longer time limit. In this case, we can only compare the lower bound LB produced 

by CPLEX and the upper bound found by the MA ( 𝑀𝐴𝑂𝑏𝑗). For large size instances, 

we can see our MA produced solutions with an average gap 𝐺𝑎𝑝𝑀𝐴 of 14.44%, and the 

best improvement 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 of the MA over CPLEX could reach 119.11%. 

Table 4.6 The average performances of the two solution methods. 

Instances 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝑀𝐴 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝑀𝐴  

7-3 0 0 0 57.42 5.1 

7-5 0 0 0 190.38 15.7 

13-3 18.12 8.74 11.48 1800 21.3 
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13-5 29.35 10.48 26.78 1800 35.7 

20-3 24.73 7.20 23.37 3600 107.3 

20-5 28.94 11.85 24.24 3600 166.8 

30-3 38.65 9.28 48.19 5400 220.1 

30-5 - 14.72 - 5400 304.3 

40-3 48.17 10.93 71.93 7200 400.1 

40-5 - 15.96 - 7200 524.9 

60-3 55.45 10.73 104.10 10800 712.3 

60-5 - 17.60 - 10800 1016.5 

80-3 - 10.81 - 14400 923.7 

80-5 - 18.62 - 14400 1235.6 

 

Table 4.6 concludes the average value of 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥 , 𝐺𝑎𝑝𝑀𝐴, and 𝐼𝑚𝑝𝑀𝐴−𝑐𝑝𝑙𝑒𝑥 

by instance size, respectively.  

4.4.4 Impact of the local search 

 In order to analyze the impact of local search on our memetic algorithm (MA), we 

also tested the instances considered in section 4.4.1 with the genetic algorithm without 

local search (GA). Table 4.7 compares the average performances of the two algorithms, 

where CostAVG and CUPAVG respectively denote the average cost and the average 

computation time for each set of instances, and 𝐼𝑚𝑝𝐿𝑆  = (CostAVG(𝐺𝐴) – CostAVG 

(𝑀𝐴))/ CostAGV(𝑀𝐴 )*100, ∆𝑐𝑝𝑢=(CPUAVG(𝑀𝐴) – CPUAVG (𝐺𝐴))/ CPUAGV(𝑀𝐴 )*100. 
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Table 4.7 Comparison of the average performances of GA and MA. 

Instance sets 

GA MA 

𝐼𝑚𝑝𝐿𝑆  ∆cpu 

CostAVG CPUAVG CostAVG CPUAVG 

7-3 820.6  5.1  820.6 5.1 0.00  0.00  

7-5 1544.5  15.7  1544.5 15.7 0.00  0.00  

13-3 1316.5  21.3  1267.3 21.3 3.88  0.00  

13-5 2202.4  35.6  2111.0 35.7 4.33  0.28  

20-3 1853.3  106.9  1782.3 107.3 3.98  0.37  

20-5 3001.8  165.8  2859.5 166.8 4.98  0.60  

30-3 2470.6  218.9  2354.2 220.1 4.94  0.55  

30-5 4207.9  301.9  3979.4 304.3 5.74  0.79  

40-3 2805.7  396.9  2653.6 400.1 5.73  0.80  

40-5 4828.0  519.3  4528.7 524.9 6.61  1.07  

60-3 4526.1  705.3  4284.4 712.3 5.64  0.98  

60-5 7763.3  1002.2  7270.3 1016.5 6.78  1.41  

80-3 5736.9  910.2  5414.5 923.7 5.95  1.46  

80-5 9873.9  1213.1  9199.5 1235.6 7.33  1.82  

The relative improvement of MA over GA in terms of cost reduction, denoted by 

𝐼𝑚𝑝𝐿𝑆  in Table 4.7, reflects the effect of local search. From the table, we can see 

𝐼𝑚𝑝𝐿𝑆 is ranged from 0% to 7.33% with the average percentage improvement 4.71%. 

Compared with GA, the average computation time of MA only slightly increases (∆𝑐𝑝𝑢 

is ranged from 0% to 1.82% with the average percentage of 0.72%) for all sets of 

instances.  
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These experimental results show that our memetic algorithm is effective for solving 

the freight bus routing problem studied in this chapter. 

4.5 Conclusion 

In this chapter, we have studied the basic route planning of freight buses with only 

delivery. After an analysis of the characteristics of the problem and the literature of 

vehicle routing problems, we recognize this problem is a new variant of periodic vehicle 

routing problem. The problem is first described under some assumptions on the 

operation of freight buses and a Mixed-Integer Linear Programming (MILP) model is 

then formulated for it. In order to solve the problem, a memetic algorithm (genetic 

algorithm with local search) is developed. The relevance of the mathematical model and 

the effectiveness of the proposed memetic algorithm are proved by numerical 

experiments. 

However, in practice，as a new public transportation means for urban logistics, 

freight buses should perform both pickup and delivery of goods at every 

customer/supplier location they visit. In the next chapter, we will research the route 

planning problem of freight buses with both pickup and delivery. 
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5.1 Introduction 

The problem studied in Chapter 5 is an extension of that studied in Chapter 4. To be 

more practical and more efficient, freight buses should perform both pickup and delivery 

of goods at every customer/supplier location they visit. In this chapter, we study the 

route planning problem of freight buses with pickup and delivery in an urban distribution 

system. For the vehicle routing problem with pickup and delivery, Bent and Hentenryck 

(2006) apply Variable Neighbor-hood Search (VNS) to the VRPPD and their 

computational results show promising performance of their algorithm, compared with 

the previous PDPTW metaheuristics. Ropke and Pisinger (2006) design an ALNS 

algorithm which proved to be a effective meta-heuristic for the VRPPD, with results 

reported for up to 1000 customer nodes. ALNS uses several destruction and repair 

operators to improve the current solution. The neighborhood of a solution can be 

obtained by deleting few customers from the current solution and re-inserting these 

customers (Demir,Bektaş and Laporte, 2012). In ALNS, the deletion operator and the 

insertion operator used in each iteration are dynamically selected according to their past 

performance; each operator is associated with a weight (a fraction). If the operator 

improves the current solution, its weight increases; Meanwhile, if the newly generated 

solution conforms to the acceptance criteria defined by ALNS, it is accepted as the 

current solution for the next iteration. ALNS has been successfully applied to solve 

various vehicle routing problems (Aksen, Kaya, Salman and Tüncel,2014). 

As in Chapter 4, the studied problem is first described. Each freight bus can perform 

pickup and deliver goods at each depot (customer/supplier location). The freight bus 

arrives at each customer/supplier location (station), unload goods first and load goods 

later. During the whole tour, the total amount of goods in the freight bus should not 

exceed its capacity. The objective is to minimize the operating costs of all freight buses 

plus the late delivery and pickup penalty costs.  

The rest of this chapter is organized as follows. Section 5.2 describes the problem of 

vehicle route planning of freight buses with both pickup and delivery in urban logistics. 
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And A mathematical formulation for this route planning problem of freight buses with 

both pickup and delivery is provided in this section. In section 5.3, we present an ALNS 

algorithm to solve this special periodic vehicle routing problem with pickup and delivery. 

In section 5.4, the relevance of the mathematical model and the effectiveness of the 

proposed algorithm are proved by numerical experiments. Finally, section 5.5 concludes 

Chapter with perspectives for future research. 

5.2 Problem description and mathematical model 

5.2.1 Problem description 

Different from the problem description in Chapter 4, in this problem, each freight bus 

can perform both pickup and delivery of goods at each depot (customer/supplier 

location) they visit . Key features of this problem are first introduced in the following. 

（1）Multiple periods: We consider a time horizon (e.g. one day) that is divided into 

M periods (M > 1) and assume that each freight bus visits its served depots once in each 

period, and the demand of delivery and pickup of goods to each depot in each period is 

known. 

（2）Fixed routes: As passenger buses，we assume that each freight bus has a fixed 

route in the time horizon, and every depot must be served by one freight bus in each 

period. 

(3) Both delivery and pick up: Each freight bus can perform pickup and deliver 

goods at each depot (customer/supplier location). The freight bus arrives at each 

customer/supplier location (station), unload goods first and load goods later. During the 

whole tour, the total amount of goods in the freight bus should not exceed its capacity. 

So it is possible that the delivery or the pickup demand of a depot in a period is only 

partially met in this period because of the capacity limitation of a freight bus, in this 

case, the unmet demand of the period can be only met in later periods. In other words, 

the goods loaded or unloaded by the freight bus must be the pickup or delivery demand 
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of this period or the previous periods that were not met due to the limitation of vehicle 

capacity. 

（ 4 ） Penalty of delivery/pickup delay. Delivery and pickup of goods at a 

customer/supplier location can be delayed but with penalties. There are two types of 

penalty introduced in this model. One is the penalty caused by the delay in the time 

horizon (e.g. one day) of M periods, which linearly depending on the quantity of the late 

delivery or pickup demands and the number of periods delayed，with the penalty per 

period and per unit of demand given by a coefficient 𝛼 (In this thesis, we assume late 

pickup and delivery have the same penalty coefficient). The other is the penalty for all 

unmet demands at the end of the time horizon (e.g. one day) of M periods, which linearly 

depending on the quantity of the late delivery or pickup demands, with the penalty per 

unit of demand given by another coefficient 𝛽.  

 In each period, each freight bus leaves from the Distribution Center o, visits its 

served depots and returns to the Distribution Center. What’s more, for one freight bus, 

every period, all goods loaded at the DC must be unloaded at its served depots before it 

returns to the Distribution Center; and all goods loaded at its served depots must be 

unloaded at the Distribution Center when it returns to the DC . In this chapter, it is also 

assumed that the demand 𝑑𝑖(𝑘)  and 𝑝𝑖 (k) of each depot i in each period 𝑘 ∈

{1,2 … 𝑀} is known.  

We need to plan the vehicle route for each freight bus v, and the delivery and pickup 

quantity of each freight bus at each depot in each period. The objective is to minimize 

the operating costs of all freight buses plus the late delivery and pickup penalty costs. 

5.2.2 Mathematical model 

In this subsection, we propose a mathematic model for the route planning of freight 

buses by considering its all characteristics. With this mathematic model, we can 

optimize the total cost of freight buses composed of their operating costs and penalty 
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costs for the late delivery and pickup of goods in the planning horizon. At the same time, 

we can also get the optimal routes of freight buses by solving the model. 

The detailed mathematical model for the route planning of freight buses is given as 

follows: 

Decision Variables 

⚫ 𝑥𝑖𝑗
𝑣     A binary variable which is equal to 1 if the freight bus v 𝜖𝑉 goes from node 

i to j (i, jϵ{o} ∪ G); 0 otherwise. 

⚫ yi
v    A binary variable which is equal to 1 if and only if the depot i 𝜖𝐺 is served 

by the freighter bus v 𝜖𝑉 ; 0 otherwise. 

⚫ 𝑑𝑖
𝑣(k)   The quantity unloaded from the freighter bus v 𝜖𝑉 at the depot i 𝜖𝐺 in the 

k-th visit k∈ {1,2 … 𝑀}; 0 otherwise. 

⚫ 𝑝𝑖
𝑣(k)   The quantity loaded to the freighter bus v 𝜖𝑉 at the depot i 𝜖𝐺 in the k-th 

visit k∈ {1,2 … 𝑀}; 0 otherwise. 

⚫ 𝑄𝑖
𝑣(k)   The quantity of all goods remaining to deliver in the freighter bus v 𝜖𝑉 

when it just arrives at node i 𝜖{𝑜} ∪ 𝐺 during the k-th visit, k∈ {1,2 … 𝑀}. 

⚫ 𝑊𝑖
𝑣(k)   The quantity of all goods picked up by the freighter bus v ϵV when it just 

arrives at node i 𝜖{𝑜} ∪ 𝐺 during the k-th visit, k∈ {1,2 … 𝑀}. 

Objective Function 

   The objective is to minimize the total cost including the operating costs of the 

freight buses and the penalty costs for the late delivery and pickup of goods in the 

planning time horizon of M periods. 

Min Obj =     𝑀 ∗  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑣  𝑣∈𝑉  𝑗∈{0}∪𝐺𝑖∈{𝑜}∪𝐺 + 

𝛼 * ∑ ∑ (∑ 𝑑𝑖(𝑘)𝑛
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉 )𝑀−1

𝑛=1𝑖∈𝐺  + 

𝛽 *∑ ( ∑ 𝑑𝑖(𝑘)𝑀
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑀
𝑘=1 )𝑣𝜖𝑉𝑖∈𝐺  

𝛼 * ∑ ∑ (∑ 𝑝𝑖(𝑘)𝑛
𝑘=1 − ∑ ∑ 𝑝𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉

𝑀−1
𝑛=1𝑖∈𝐺 ) + 
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𝛽 * ∑ ( ∑ 𝑝𝑖(𝑘)𝑀
𝑘=1 − ∑ ∑ 𝑝𝑖

𝑣(𝑘)𝑀
𝑘=1 )𝑣𝜖𝑉𝑖∈𝐺  

                                      (5.1) 

Subject to : 

∑ x𝑜𝑗
v

𝑗∈G = ∑ x𝑗𝑜
v

j∈G                ∀v ∈ 𝑉                           (5.2) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = ∑ x𝑗𝑖
v

𝑖∈{0}∪G        ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                       (5.3) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = y𝑗
v                ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                    (5.4) 

∑ y𝑗
v

v∈V  = 1                    ∀𝑗 ∈ 𝐺                            (5.5) 

 𝑄𝑗
𝑣(𝑘)<=𝑄𝑖

𝑣(𝑘)- 𝑑𝑖
𝑣(𝑘)+𝑈(1-𝑥𝑖𝑗

𝑣 ) 

        ∀i ∈ G, ∀ j ∈ {o} ∪ G, ∀v ∈ V, ∀k∈ {1,2 … M}                   (5.6) 

 𝑄𝑜
𝑣(𝑘) = 0                     ∀𝑣 ∈ 𝑉,   ∀k∈ {1,2 … 𝑀}                         (5.7) 

 W𝑗
v(𝑘)>=W𝑖

v(𝑘)+p𝑖
v(𝑘)-U(1-x𝑖𝑗

v ) 

        ∀𝑖 ∈ 𝐺, ∀ 𝑗 ∈ {o} ∪ G, ∀v ∈ 𝑉, ∀k∈ {1,2 … 𝑀}                   (5.8) 

 Wo
v(𝑘)= ∑ p𝑖

v
i∈G (𝑘)           ∀v ∈ 𝑉,   ∀k∈ {1,2 … 𝑀}                (5.9) 

0<=   Q𝑖
v(𝑘)+  W𝑖

v(𝑘) <=U   𝑖 ∈ {0} ∪ G, ∀v ∈ 𝑉                     (5.10) 

∑ 𝑑𝑖
𝑣(𝑘)𝑛

𝑘=1 <= ∑ 𝑑𝑖(𝑘)𝑛
𝑘=1  *𝑦𝑖

𝑣 

   ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀n∈ {1,2 … 𝑀}                    (5.11) 

∑ p𝑖
v(k)n

k=1 <= ∑ p𝑖(k)n
k=1  *y𝑖

v 

   ∀𝑖 ∈ G, ∀v ∈ 𝑉, ∀n∈ {1,2 … M}                                  (5.12) 

 𝑥𝑖𝑗
𝑣 ∈ {0,1}     𝑦𝑖

𝑣 ∈ {0,1}     

𝑑𝑖
𝑣(𝑘)>=0 ; p𝑖(k)>=0 ;  Q𝑖

v(𝑘)>=0 ;  W𝑖
v(𝑘)>=0 

 ∀𝑖 ∈ {𝑜} ∪ 𝐺，∀𝑗 ∈ {𝑜} ∪ 𝐺, ∀𝑣 ∈ 𝑉                  (5.13) 
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Constraints (5.2) indicate that each freight bus leaves from and returns to the DC. 

Constraints (5.3) ensure that each freight bus arriving at a depot has to leave it. 

Constraints (5.4) and (5.5) guarantee that all depots must be served and each depot is 

served by at most one freight bus. Constraints (5.6) (5.7) and (5.8) (5.9) (5.10) formulate 

vehicle capacity constraints. Constraints (5.11) (5.12) indicate that in each period, the 

delivery and pickup of freight bus v at each depot i can only be the demand of that period 

or earlier periods but cannot be the demand of later periods. Finally, constraints (5.13) 

define the domains of all decision variables. 

5.3 Adaptive Large Neighborhood Search (ALNS) 

We tried to use CPLEX to solve the proposed mathematical model in section 5.2, but 

only small instances could be solved to optimality in a reasonable computation time. For 

this reason, we propose an adaptive large neighborhood search algorithm to solve the 

route planning problem of freight buses with both pickup and delivery. 

5.3.1 Procedure of the ALNS  

The large-scale neighborhood search algorithm was first proposed by Shaw (1998). 

This is an iterative algorithm. The idea of the algorithm is to improve the current solution 

in each iteration by using a destruction operator that removes some customer nodes from 

the current routes and a repair operator that reinserts these customer nodes to the routes. 

If the new solution is better than the current solution, the former is accepted as the 

current solution for the next iteration.  

ALNS uses multiple destruction and repair operators to improve the current solution 

in each iteration. The neighborhood of a solution can be obtained by deleting several 

customer nodes from the current routes (solution) and re-inserting into them the 

customer nodes. In ALNS, a deletion operator and a re-insertion operator are 

dynamically selected in each iteration according to their past performance (Lv, Zhang 

and Wang, 2018); each operator is associated with a probability. If the operator improves 

the current solution, the probability will increase, otherwise the probability may decrease; 
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The newly generated solution is accepted if it improves the current solution, otherwise 

it will be accepted with a probability depending on a temperature and defined according 

to a Simulation Annealing (SA) rule, the temperature will be gradually decreased with 

the progress of the algorithm; If the new generated solution is accepted, it will update 

the current solution for the next iteration. ALNS has been successfully applied to solve 

various vehicle routing problems (Pisinger and Ropker,2007). 

The procedure framework of our ALNS is given in Fig.5.1. 

 

Fig.5.1 The procedure framework of ALNS 

5.3.2 ALNS design 

Taking into account the specific characteristics of our freight buses routing problem 

with both delivery and pickup, in this section, we design an ALNS to solve the problem. 

The most special features of this design are about the method of evaluation of a solution, 

the method of destroy operators and the method of repair operators.  
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5.3.2.1 Initial solution construction 

Firstly, we need to generate the initial route for each freight bus. Cordeau, Gendreau, 

and Laporte (2002) analyzed and reviewed methods for generating initial solutions for 

vehicle routing problems, and classified these methods based on four different aspects, 

which are generated accuracy, speed, simplicity and elasticity of solutions. After 

comparison, it is found that the method of Saving Algorithm (Clarke, Wright,1964) has 

advantages in generating an initial solution quickly and is simple and easy to implement. 

For this reason, firstly, we use Saving Algorithm to generate a single giant tour (long 

route), which contains all the nodes in the distribution system. Next, we randomly divide 

the long route into k segments (K is the maximum number of freight buses predefined 

for the system), and each segment corresponds to the initial route of a freight bus. The 

procedure of construction of the initial solution is given as follows: 

Step 1: Apply the Saving Algorithm to construct a giant tour containing all nodes in 

the distribution system. 

Step 2: The giant tour formed in the first step is randomly divided into K-segments 

(K is the number of freight buses predefined for the distribution system), and each 

segment corresponds to the initial route of a freight bus. 

5.3.2.2 Evaluation of a solution 

When we obtain a solution represented by given values of {𝑥𝑖𝑗
𝑣 } for the freight bus 

routing problem in ALNS, we need to evaluate its quality, i.e., the cost of the solution. 

Although this cost can be calculated by assigning the values to variables {𝑥𝑖𝑗
𝑣 } in the 

model of section 5.2.2 and then solving the derived linear programing model, it is time 

consuming because such cost evaluation must be done a large number of times in ALNS. 

In the following, we provide a much more efficient way to calculate the cost of a solution 

given the values of {𝑥𝑖𝑗
𝑣 } under some reasonable assumptions about the operation of the 

freight buses.  
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We assume all freight buses operate with the two rules: 1) When a freight bus 

arrives at a depot, it unloads/delivers goods first and then loads/pickup goods from the 

depot. This order of delivery and pickup can free more capacity for pickup. 2) For 

delivery, when a freight bus loads goods to be delivered on its route before its departure 

from the CDC, it gives a higher priority to the demand of a depot to be visited earlier, 

i.e., it loads goods to be delivered according to the order of depots to be visited on the 

route; On the other hand, for pickup, every time when a freight bus arrives a depot with 

pickup demand, it will pick up goods as much as possible, i.e., use as much as possible 

its remaining capacity to meet the pickup demand. Note that this rule of pickup and 

delivery will not affect the cost of a solution since we assume late pickup (resp. late 

delivery) at each depot node has the same penalty coefficient.  

With the operation rules, if we know the vehicle route of each freight bus, i.e., the 

values of 𝑥𝑖𝑗
𝑣  , in a solution, the delivery demand 𝑑𝑖(𝑘) of depot i in the k-th period, 

the pickup demand 𝑝𝑖(𝑘) of depot i in the k-th period, we can calculate the values of 

variables 𝑑𝑖
𝑣(𝑘)  and 𝑝𝑖

𝑣(𝑘)  in the model in section 5.2.2 and then the cost of the 

solution by the following formulas (5.14)-(5.19). 

 

Calculation of 𝑑𝑖
𝑣(𝑘): 

 

Define 𝑑𝑖
′ (k) as the sum of the delivery demand of depot i in the k-th period 

(i. e. , 𝑑𝑖(k) ) and the unmet delivery demands of depot i in all previous periods (periods 

1 to k-1), k∈ {1,2 … 𝑚}. 𝑑𝑖
′(k), which is referred to as the cumulative unmet delivery 

demand of depot i in the k-th period, can be calculated by the formula: 

 

                   𝑑𝑖
′(k-1)+ 𝑑𝑖(k)- 𝑑𝑖

𝑣(𝑘 − 1)   k>=2 

            𝑑𝑖
′(k)=                                                (5.14) 

    𝑑𝑖(1)                  k=1 
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Define 𝐶𝐷𝑖
𝑣(k) as the remaining goods to be delivered in freighter bus v  when it 

arrives at node i ϵG  on its route in the k-th visit, k∈ {1,2 … 𝑀} . 𝐶𝐷𝑖
𝑣 (k) can be 

recursively calculated from the first depot node to the last depot node visited by the 

freight bus v applying the following formula. 

 

                     𝐶𝐷𝑗
𝑣(k)- 𝑑𝑗

𝑣(𝑘)      for j with x𝑗𝑖
v=1, j ϵG 

       𝐶𝐷𝑖
𝑣(k)=                                               (5.15) 

                    Min [U, S(𝑘)′]       for i with x𝑜𝑖
v =1  

 

where U is the capacity of the freight bus and S(𝑘)′=∑ d𝑖
′

𝑖∈𝐺 (𝑘) ∗  𝑦𝑖
𝑣 is the total 

cumulative undelivered demand of all depots to be visited by freight bus v in the k-th 

period. In this formula, node j is visited by the freight bus v just before node i. Since 

each depot can only be visited once by a freight bus in each period, the depot node j in 

the formula is unique for any given depot node i. 

   Because goods loaded or unloaded by a freight bus must be the pickup or delivery 

demand of the current period or those of the previous periods that were not met due to 

the limited capacity of the freight bus. So 𝑑𝑖
𝑣(𝑘) (the quantity unloaded by freighter 

bus v ϵ𝑉 at the depot i ϵG in the k-th visit ) must take the smaller value between 𝑑𝑖
′(k) 

and 𝐶𝐷𝑖
𝑣(k). 

 

 𝑑𝑖
𝑣(𝑘)=min [𝑑𝑖

′(k), 𝐶𝐷𝑖
𝑣(k) ]                                (5.16) 

 

Calculation of 𝑝𝑖
𝑣(𝑘): 

Define 𝑝𝑖
′ (k) as the sum of the pickup demand of depot i in the k-th period 

(i. e. , 𝑑𝑖(k) ) and the unmet pickup demands of depot i in all previous periods (periods 

1 to k-1), k∈ {1,2 … 𝑚}. 𝑝𝑖
′(k), which is referred to as the cumulative unmet pickup 

demand of depot i in the k-th period, can be calculated by the formula: 
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 𝑝𝑖
′(k-1)+ 𝑝𝑖(k)- 𝑝𝑖

𝑣(𝑘 − 1)   k>=2 

              𝑝𝑖
′(k)=                                                (5.17) 

    𝑝𝑖(1)                    k=1 

 

Define 𝐶𝑃𝑖
𝑣(k) as the remaining capacity for pickup of the freighter bus v 𝜖𝑉 when 

it arrives at node i 𝜖𝐺  on its route in the k-th visit, k∈ {1,2 … 𝑀}. 𝐶𝑃𝑖
𝑣 (k) can be 

recursively calculated from the first depot node to the last depot node visited by the 

freight bus v applying the following formula. 

 

                      𝐶𝑃𝑗
𝑣(k)- 𝑝𝑗

𝑣(𝑘)+ 𝑑𝑖
𝑣(𝑘)   for j with x𝑗𝑖

v=1, j ϵG 

        𝐶𝑃𝑖
𝑣(k)=                                               (5.18) 

                    U- 𝑆𝑣(k)+ 𝑑𝑖
𝑣(𝑘);        for i with x𝑜𝑖

v =1  

 

where U is the capacity of the freight bus and  𝑆𝑣 (k)= ∑ 𝑑𝑖
𝑣

𝑖∈𝐺 (𝑘)   𝑦𝑖
𝑣  is the 

cumulative unmet delivery demand of all depots to be visited by freight bus v in the k-

th period. Similarly, in this formula, node j is visited by the freight bus v just before 

node i, and node j is unique for any given node i. 

So 𝑝𝑖
𝑣(𝑘) (the quantity loaded by the freighter bus v ϵ𝑉 at the depot i 𝜖𝐺 in the 

k-th visit) must also take the smaller value between 𝑝𝑖
′(k) and 𝐶𝑃𝑖

𝑣(k), i.e., 

 

 𝑝𝑖
𝑣(𝑘)=min [𝑝𝑖

′(k), 𝐶𝑃𝑖
𝑣(k) ]                              (5.19) 

 

On the whole, we can evaluate the cost of a solution by the following steps: 

Step1: Apply the formulas (5.14)-(5.16) to calculate the unloaded quantity 𝑑𝑖
𝑣(𝑘) of 

the freighter bus v ϵ𝑉 at the depot i ϵG in its k-th visit k∈ {1,2 … 𝑀}; 

Step2: Apply the formulas (5.17)-(5.19) to calculate the loaded quantity 𝑝𝑖
𝑣(𝑘) of 

the freighter bus v ϵ𝑉 at the depot i ϵG in its k-th visit k∈ {1,2 … 𝑀}; 
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Step3: Calculate the cost of the solution by applying the formula (5.1) in section 

5.2.2; 

5.3.2.3 Adaptive selection of destroy/repair operators 

Our ALNS chooses a removal operator and an insertion operator in each iteration by 

applying the roulette-wheel mechanism. At the beginning all removal operators and all 

insertion operators are selected with the same probability. In our ALNS algorithm, 8 

removal operators and 3 insertion operators are used. Therefore, the probability of initial 

selection of each removal operator and each insertion operator is 1/8 and 1/3,respectively. 

In the process of algorithm execution, the probability of each operator being selected is 

updated according to the following formula. 

𝑝𝑖
𝑡+1= 𝑝𝑖

𝑡(1-r) +𝑟𝛽𝑖
𝑡/𝛼𝑖

𝑡                 (5.20) 

𝑝𝑖
𝑡 is the probability of operator i being selected in the t-th iteration; 

𝑟 ∈[0,1] is the Roulette parameter predefined.  

𝛼𝑖
𝑡 is the number of times the operator i was selected in the past t iterations. 

𝛽𝑖
𝑡  is the resulting score of the operator i in the t-th iteration. 

The score of an operator is used to measure its performance in each iteration. If a new 

best solution is found, the score of the operator will increase by Q1；If the solution found 

is better than the current solution, the score of this operator will increases by Q2；If the 

solution found is worse than the incumbent solution, the score of this operator will 

increases by Q3（Roozbeh, Ozlen, Hearne,2018）. 

5.3.2.4 Destroy operators 

Our ALNS contains two classes of destroy operators. The first class of destroy 

operator is to remove a certain number of depots from different routes, which involves 

4 destroy operators. The second class of destroy operator chooses one route and then 

removes all the depots on this route, which involves 4 destroy operators too.  
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What’s more, for the first class of destroy operators, we will give the number n of 

all the depots in system and a removal fraction 𝜌 ∈[0,1], each of operators applies a 

strategy to select /𝜌 ∗ 𝑛/ depots to remove. 

Only one destroy operate is executed in each ALNS iteration, the details of those 8 

destroy operators are described as following:  

1 Random depot Removal 

  This operator randomly chooses k depots at a time,(k=/𝜌 ∗ 𝑛/,where 𝜌  is a 

removal fraction, n is the number of depots), removes them from the current vehicle 

routes, and places them in the removal list LR. This operator helps increase the diversity 

of solutions. 

2 Worst-distance depot Removal 

This operator removes 𝜌 ∗ 𝑛 depots with largest travel distances from different 

routes. The travel distance of each depot i is defined as 𝐿𝑗𝑖 + 𝐿𝑖𝑘, where node j and k 

are the depot or the DC visited before depot i and the depot or the DC visited after depot 

i in the same route, respectively. The depots with the largest travel distances will be 

removed from the current routes in turn. 

3 Proximity-based Removal 

The goal of this operator is to find out a set of depots that have some connection in 

terms of distance and remove them from the current solution. We use the way of Shaw 

removal（Shaw,1998）to define the relationship between depots. Firstly, a depot is 

chosen randomly and we place it in the removal list as the first depot to be removed. 

Then the next depot to be removed is the depot closest (Minimum distance) to the last 

removed depot. After repeating 𝜌 ∗ 𝑛 times Shaw removal , we get all the depots to 

removal in this operator.  

4 Historical depot Removal  

The operator records the distance information of every depot in the past iterations. 

The distance of a depot is defined as the sum of distances from the depot before and 

after the depot (The distance for a depot i is /𝐿𝑖−1,𝑖 + 𝐿𝑖,𝑖+1/). During the execution of 
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our algorithm, the optimal distance of depot i is its minimum distance obtained in all 

past iterations. This operator removes 𝜌 ∗ 𝑛 depots with the greatest distance difference 

between the current distance and its optimal distance in each iteration.  

5 Random Route Removal 

This operator removes an entire route from the current solution. The route to remove 

is randomly chosen from all routes in the current solution. 

6 Largest demand Route Removal 

This operator first calculates the sum of the delivery and pickup demands for all 

depots in each route in the current solution, then remove the route which has the largest 

total demand. 

7 Largest distance Route Removal 

This operator calculates the distance traveled by a freight bus in each route, then 

removes the route which has the largest travel distance. 

8 Least depots Route Removal 

This operator calculates the number of depots visited by each route, then removes the 

route which has the least number of depots served. 

5.3.2.5 Repair operators 

Our ALNS algorithm contains three kinds of insertion operators, which are mainly 

used to re-insert the depots in the removed list into the current solution to generate a new 

feasible solution. The following describes the function of each insertion operator in 

detail: 

1 Basic Greedy Insertion 

The idea of this operator is to insert each depot in the removal list into the best 

possible route and position. Firstly the insertion distance of each depot i is calculated for 

each possible route as 𝐿𝑖=𝐿𝑗𝑖 + 𝐿𝑖𝑘-𝐿𝑗𝑘, where j and k are the node preceding and to 

node following depot i in the route if i is inserted，then the depot with the lowest insertion 
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distance is selected and inserted into the best route and the best insertion position. 

(Goeke, Schneider,2015） 

2 Greedy Insertion with Noise function 

This operator is an extension of the basic greedy algorithm, but with a degree of 

freedom in selecting the insertion route and the insertion position for each depot to insert. 

The degree of freedom is realized by appropriately changing the insertion cost (distance) 

of each depot by adding a noise. The insertion cost(distance) of each node i becomes 

𝐿𝑖
′  = 𝐿𝑖（The actual insertion cost) + 𝐿𝑚𝑎𝑥*u*𝜀（Noise）, where 𝐿𝑚𝑎𝑥 is a constant 

(the maximum distance between any two depots); u is the noise parameter set to be 0.1 

in our numerical experiments, and 𝜀  is a random value between -1 and 1. This operator 

calculates the modified insertion costs of all depots in the removal list, and then selects 

the depot with the smallest insertion cost and insert it into the best route and the best 

position (Labadie, Mansini, Melechovsky and Wolfler-Calvo, 2012). 

3 Greedy Insertion with new route generated 

This operator is that combines basic greedy insertion to generate a new route. It 

consists of two steps: the first step is to randomly select a destroyed depot to connect 

with the Distribution Centre to form a new route (That is, we first generate a path that 

only serves one depot); The second step is to insert other destroyed depots into the 

existing routes according to the basic greedy insertion method introduced in repair 

operator 1. 

5.3.2.6 Acceptance and stop criterion 

The ALNS algorithm proposed in this thesis adopts simulated annealing as the 

external local search framework. The algorithm framework of the ALNS is given in 

Algorithm 5.1.The algorithm stops when a specified number of ALNS iterations is 

reached.  
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In the Algorithm, 𝑋𝑏𝑒𝑠𝑡 refers to the best solution found by the algorithm; 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

refers to the current solution; 𝑋𝑛𝑒𝑤  refers to a new temporary solution found in an 

iteration, which may be discarded or accepted as the current solution for the next 

iteration. The objective value of a feasible solution X is denoted by f(X). If f(𝑋𝑛𝑒𝑤)< 

f(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ), then 𝑋𝑛𝑒𝑤  is always accepted, otherwise 𝑋𝑛𝑒𝑤  will be accepted at a 

probability of 𝑒−(𝑓(𝑋𝑛𝑒𝑤)−𝑓(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡)/𝑇 , where T is the temperature of simulated 

annealing, set initially as f(𝑋𝑖𝑛𝑖𝑡)∗ 𝑃𝑖𝑛𝑖𝑡 , where f(𝑋𝑖𝑛𝑖𝑡) is the objective value of the 

initial solution, and 𝑃𝑖𝑛𝑖𝑡 is a constant. The cooling rate of the simulated annealing is 

denoted by h, and h∈ (0,1) is a given parameter. The algorithm returns the best solution 

after reaching the maximum number of iterations (Majidi, Hosseini-Motlagh and 

Ignatius,2018).  

Algorithm 5.1 - Pseudo-code of ALNS metaheuristic 

1:  Generate an Initial Solution by Saving Algorithm (Section 5.3.2.1) 

2:  Initialize weight and score of each destroy operator d and each repair operator i; 

Where d∈ 𝐷, i∈ 𝐼. 

3:  Initialize constant 𝑃𝑖𝑛𝑖𝑡, cooling rate h, removal fraction 𝜌 

4:  𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑋𝑖𝑛𝑖𝑡 

5:  T← 𝑇𝑏𝑒𝑔 

6:  for iter ←1 to niters do 

7:     Select a remove operator d from D with the probability 𝑃𝑑
𝑡 

8:     The remove operator d is applied to 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡  to obtain a partial solution 

X𝑛𝑒𝑤
‘ . 

9:     Select an insertion operator i from I with the probability 𝑃𝑖
𝑡 

10:    The insertion operator i is applied to X𝑛𝑒𝑤
‘  to obtain a new feasible solution 

𝑋𝑛𝑒𝑤 

11:    If f(𝑋𝑛𝑒𝑤)< f(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡), then  



Chapter 5. Route Planning of Freight Buses with both Pickup and Delivery 

                    84 

12:    𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑋𝑛𝑒𝑤;  

13:    else v← 𝑒−(𝑓(𝑋𝑛𝑒𝑤)−𝑓(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡)/𝑇 

14:        Randomly generate a number ε between 0 and 1 

15:        If 𝜀 < v, then 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑋𝑛𝑒𝑤; end if 

16:    end if 

17:    If f(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < f(𝑋𝑏𝑒𝑠𝑡), then 𝑋𝑏𝑒𝑠𝑡 ← 𝑋𝑛𝑒𝑤 end if 

18:    T← ℎ𝑇 

19:    Update the selection probability of each operator according to the adaptive 

weight adjustment strategy 

20:  end for 

5.4 Numerical experiments 

In order to verify the mathematical model of freight bus routing and evaluate the 

effectiveness of our ALSN, based on the generated instances in chapter 4 (basic vehicle 

route planning of freight buses with only delivery), in this section, we also design 70 

instances in small, medium and large sizes, and compare the performance of the ALSN 

(implemented in MATLAB 2014a with Intel Core i5-4210M CPU 2.6GHz) with that of 

the MILP solver of CPLEX (CPLEX 12.6）on the instances. In addition, the impact of 

joint distribution realized by this freight buses with both pickup and delivery system on 

the reduction of transportation costs is evaluated and analyzed in this section. 

5.4.1 Instance generation 

Based on the generated instances in chapter 4 (basic vehicle route planning of freight 

buses with only delivery), in this section, we also design 70 instances for the problem 

which are grouped in instances of small size (N∈{7,13}; M∈{3,5}), instances of medium 

size (N∈{20, 30, 40}; M∈{3,5}) and instances of large size (N∈{60, 80}; M∈{3,5}) 

instances. For all instances, the following data are same with the instances in chapter 4 
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: the coordinates of all nodes, the number of vehicles, and the capacity of each vehicle，

the number of periods M, the unit distance operating cost 𝛾. 

     In order to further evaluate the impact of the joint distribution realized by our 

freight buses with both pickup and delivery system, we generate the demand of each 

depot in each period by grouping the customer demands of two private third party 

logistics companies A and B at the depot in the period, where the demand (both the 

delivery and pickup) of each company at each depot in each period is randomly 

generated from [1, 20]. At each depot in each period , the demand (both the delivery and 

pickup) for freight bus is the sum of the demand for company A and B. For the penalty 

coefficient 𝛼  and 𝛽 , because the ratio of 𝛼  to 𝛾  and 𝛽  to 𝛾  affect the tradeoff 

between the operating costs of the freight buses and the penalty costs for late delivery 

and pickup as well as the service level to customers, i.e., the percentage of customer 

demands delivered/picked up on-time, we cannot set 𝛼 and 𝛽 too big or too small. 

After some tests with different 𝛼 and 𝛽 values, in our numerical experiments we set 

𝛼 to 20, 𝛽 to 400 for all instances. 

5.4.2 Parameter setting  

We used CPLEX to solve the MILP model, and used Matlab to implement our 

ALNS.  

Since the ALNS algorithm is composed of several procedures and each procedure 

has its own parameters, parameter setting was tuned by finding a tradeoff between 

solution quality and CPU time. The values of the parameters used are listed in Table 5.1. 

As we can see from the table, the parameters are divided into three groups. The first 

group consists of the parameters related to the roulette mechanism, and the second group 

consists of the parameters related to the simulated annealing. The third group consists 

of the parameters related to the removal operators and insertion operators (Yalaoui，

Amodeo,Yalaoui and Mahdi, 2014). 
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Table 5.1 Parameter Setting of the ALNS for different sizes of instances. 

Parameter 
Small 

instances 

Medium 

instances 

Large 

instances 

Maximum iterations number of ALNS （N） 25000 30000 35000 

The roulette parameter （r） 0.1 0.1 0.1 

The score increment of generating a new best solution (Q1) 5 5 5 

The score increment of generating a better solution (Q2) 3 3 3 

The score increment of generating a worse solution (Q3) 1 1 1 

Initial temperature parameter（𝑃𝑖𝑛𝑖𝑡） 100 120 120 

Cooling rate（h） 0.92 0.94 0.96 

Removal fraction (𝜌) 0.2 0.2 0.3 

Noise parameter（u） 0.1 0.1 0.1 

 

Since it is very time consuming for CPEX to find an optimal solution of the freight 

bus routing model in this chapter even for instances of small size, we preset its CPU 

running time to 1800，3600, 5400, 7200, 10800, 14400，18000 seconds for instances 

with 7, 13, 20, 30, 40, 60, 80 depot nodes, respectively.  

5.4.3 Experimental results 

The indexes used in the performance evaluation of our ALNS and their definitions 

are given in Table.5.2. 

Table 5.2 Performance indexes. 

Abbreviation Definition 

𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 
The best feasible objective value found by CPLEX in a preset running 

time 
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LB The lower bound produced by CPLEX in a preset running time 

𝐴𝐿𝑁𝑆𝑂𝑏𝑗 
The best feasible objective value obtained by ALNS after a preset 

number of iterations 

𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  
The gap between 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 and LB, which is defined as (𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗- 

LB)/ 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗*100 

𝐺𝑎𝑝𝐴𝐿𝑁𝑆 

The gap between 𝐴𝐿𝑁𝑆𝑂𝑏𝑗 and LB, which is defined as (𝐴𝐿𝑁𝑆𝑂𝑏𝑗- 

LB)/ 𝐴𝐿𝑁𝑆𝑂𝑏𝑗*100 

𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥 
The improvement (cost reduction) of 𝐴𝐿𝑁𝑆𝑜𝑏𝑗  over 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 , 

which is defined as (𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗- 𝐴𝐿𝑁𝑆𝑜𝑏𝑗)/ 𝐴𝐿𝑁𝑆𝑂𝑏𝑗*100 

𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  The CPU time of CPLEX (in seconds) 

𝐶𝑃𝑈𝐴𝐿𝑁𝑆 The CPU time of ALNS (in seconds) 

 

The following three tables give the experimental results of small size instances, 

medium size instances, and large size instances, respectively. 

 

Table 5.3 Experimental results of small size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝐴𝐿𝑁𝑆𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝐴𝐿𝑁𝑆 𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝐴𝐿𝑁𝑆 

7-3a 1067.1  1067.1  1067.1  0.00  0.00  0.00  86.3 7.9 

7-3b 986.6  986.6  986.6  0.00  0.00  0.00  89.6 7.6 

7-3c 1076.9  1076.9  1076.9  0.00  0.00  0.00  87.9 8.2 

7-3d 962.0  962.0  962.0  0.00  0.00  0.00  87.6 8.7 

7-3e 1005.8  1005.8  1005.8  0.00  0.00  0.00  87.5 7.9 

7-5a 1984.1  1984.1  1984.1  0.00  0.00  0.00  257.3 19.7 

7-5b 1945.1  1945.1  1945.1  0.00  0.00  0.00  262.1 20.3 

7-5c 1887.0  1887.0  1887.0  0.00  0.00  0.00  258.2 21.9 

7-5d 1940.4  1940.4  1940.4  0.00  0.00  0.00  259.3 19.8 

7-5e 1896.6  1896.6  1896.6  0.00  0.00  0.00  260.3 20.3 

13-3a 1459.9  1074.8  1197.0  26.38  10.21  21.96  3600 25.8 
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13-3b 1519.1  1089.3  1207.8  28.29  9.81  25.77  3600 25.6 

13-3c 1800.1  1342.1  1530.6  25.44  12.32  17.61  3600 26.9 

13-3d 1397.4  1007.7  1123.6  27.89  10.32  24.37  3600 26.3 

13-3e 2878.7  1848.4  2086.5  35.79  11.41  37.97  3600 27.1 

13-5a 3761.2  2527.9  2847.0  32.79  11.21  32.11  3600 40.3 

13-5b 3232.8  2264.2  2673.5  29.96  15.31  20.92  3600 39.7 

13-5c 3329.6  2220.5  2607.1  33.31  14.83  27.71  3600 42.3 

13-5d 3402.7  2238.7  2581.8  34.21  13.29  31.80  3600 41.2 

13-5e 3405.6  2427.8  2856.6  28.71  15.01  19.22  3600 40.3 

 

Table 5.4. Experimental results of medium size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝐴𝐿𝑁𝑆𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝐴𝐿𝑁𝑆 𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝐴𝐿𝑁𝑆 

20-3a 2884.5  1966.6  2161.4  31.82  9.01  33.46  5400 135.7 

20-3b 3014.2  2101.2  2251.3  30.29  6.67  33.89  5400 140.7 

20-3c 3058.2  2069.5  2268.2  32.33  8.76  34.83  5400 133.2 

20-3d 2649.0  1807.7  2013.2  31.76  10.21  31.58  5400 135.7 

20-3e 2904.7  1949.3  2141.2  32.89  8.96  35.66  5400 134.2 

20-5a 5161.4  2951.8  3365.4  42.81  12.29  53.37  5400 216.4 

20-5b 4527.3  2627.2  2992.6  41.97  12.21  51.28  5400 203.5 

20-5c 4758.4  2698.5  3065.1  43.29  11.96  55.24  5400 218.8 

20-5d 4474.2  2556.1  2852.5  42.87  10.39  56.85  5400 199.5 

20-5e 4522.8  2573.0  2927.5  43.11  12.11  54.49  5400 220.3 

30-3a 4964.2  2664.8  3003.9  46.32  11.29  65.26  7200 289.3 

30-3b 5401.6  2922.8  3321.7  45.89  12.01  62.62  7200 276.8 

30-3c 4688.7  2520.6  2860.1  46.24  11.87  63.93  7200 296.3 

30-3d 4540.4  2381.9  2728.1  47.54  12.69  66.43  7200 295.3 

30-3e 4654.2  2502.6  2844.2  46.23  12.01  63.64  7200 287.6 

30-5a - 4325.6  5167.3  - 16.29  - 7200 356.7 
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30-5b 8140.4  4084.0  4859.6  49.83  15.96  67.51  7200 320.7 

30-5c - 4390.0  5249.4  - 16.37  -  7200 364.3 

30-5d - 3973.0  4733.7  - 16.07  -  7200 378.9 

30-5e -  4154.9  4938.6  - 15.87  -  7200 352.1 

40-3a 6214.3  2835.6  3371.3  54.37  15.89  84.33  10800 478.7 

40-3b 6389.9  2832.7  3372.6  55.67  16.01  89.47  10800 480.3 

40-3c -  2917.5  3469.4  - 15.91  -  10800 437.9 

40-3d 6072.1  2832.0  3381.9  53.36  16.26  79.55  10800 509.3 

40-3e 6112.3  3008.5  3590.5  50.78  16.21  70.24  10800 469.5 

40-5a - 4824.4  6020.8  - 19.87  -  10800 597.3 

40-5b - 5065.7  6325.8  - 19.92  -  10800 600.1 

40-5c - 4944.1  6088.1  - 18.79  -  10800 623.5 

40-5d - 4823.4  5940.9  - 18.81  - 10800 591.2 

40-5e - 4664.0  5764.5  - 19.09  - 10800 589.7 

 

Table 5.5. Experimental results of large size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝐴𝐿𝑁𝑆𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝐴𝐿𝑁𝑆 𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝐴𝐿𝑁𝑆 

60-3a 11510.5  4550.1  5313.7  60.47 14.37  116.62  14400 979.3 

60-3b - 5140.4  5971.6  - 13.92  - 14400 1000.1 

60-3c 11918.4  4742.3  5507.3  60.21 13.89  116.41  14400 1005.3 

60-3d - 4340.2  5106.7  - 15.01  -  14400 989.3 

60-3e 11509.7  4694.8  5494.9  59.21 14.56  109.46  14400 996.1 

60-5a -  8123.9  9972.9  -  18.54  -  14400 1421.6 

60-5b -   7669.4  9493.1  -  19.21  -  14400 1432.3 

60-5c - 8041.2  9809.9  -  18.03  -  14400 1410.5 

60-5d - 8318.1  10172.5  -  18.23  -  14400 1396.3 

60-5e -   8372.7  10135.2  -  17.39  -  14400 1389.3 

80-3a -  6288.6  7419.3  -  15.24  -  18000 1523.4 
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80-3b -  5992.0  7135.8  -  16.03  -  18000 1612.3 

80-3c -  6431.5  7683.1  -  16.29  -  18000 1496.8 

80-3d -  5785.2  6836.7  -  15.38  -  18000 1527.4 

80-3e -  6104.0  7264.1  -  15.97  -  18000 1559.3 

80-5a -  8670.0  10889.2  -  20.38  -  18000 1963.2 

80-5b -  8260.9  10207.5  -  19.07  -  18000 2001.3 

80-5c -  8855.8  11163.3  -  20.67  -  18000 1989.7 

80-5d -  8611.5  10627.6  -  18.97  -  18000 1967.3 

80-5e -  8596.7  10703.1  -  19.68  -  18000 1995.3 

 

Table 5.3 reports the experimental results on the 20 small size instances. We can see, 

both ALNS and CPLEX can solve the model to optimality for the instances with N=7, 

M=3 and N=7, M=5 . However, when the number of depot nodes increases to 13, no 

proven optima was obtained. Comparing their three indexes (𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  , 𝐺𝑎𝑝𝐴𝐿𝑁𝑆 

and 𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥), we can see that ALNS found better solutions than CPLEX with 

an average percentage improvement 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 of 25.94% in terms of total cost. 

Furthermore, we can see our ALNS has a great advantage over CPLEX in terms of 

running time, the longest CPU time for ALNS is only 42.3 seconds compared with the 

limit of 3600 seconds reached by CPLEX. 

Table 5.4 compares the experimental results of the two solution methods for medium 

size instances. With the increase of the number of depot nodes, the gap of CPLEX 

𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥 ,  has a rapid growth from 31.82% to 55.67%, while our ALNS maintains a 

relatively smaller change from 6.67% to 19.92%. As a result, there is a significant 

increase in the improvement 𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥 from 31.58% to 89.47%. For the instances 

with N=30, M=5 (30-5) , N=40, M=3 (40-3), and N=40, M=5 (40-5), we can see 

sometimes CPLEX failed to find a feasible solution, even after a long running of 2h or 

3h. By contrast, the performance of our ALNS still remains stable with only a fraction 

of running time (average 476.68 seconds) of the CPLEX MILP solver. 
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Table 5.5 summarized the results for 20 large size instances. We can see CPLEX  

achieved to find a feasible solution for only 3 out of 20 instances with a preset running 

time. For most of the instances, CPLEX stopped due to out of memory. In this case, we 

can only compare the lower bound LB produced by CPLEX and the upper bound found 

by the ALNS ( 𝐴𝐿𝑁𝑆𝑂𝑏𝑗). For large size instances, we can see our ALNS produced 

solutions with an average gap 𝐺𝑎𝑝𝐴𝐿𝑁𝑆  of 17.04%, and the best improvement 

𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥 of the ALNS over CPLEX could reach 116.62%. 

Table 5.6 The average performances of the two solution methods. 

Instances 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝐴𝐿𝑁𝑆 𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝐴𝐿𝑁𝑆 

7-3 0 0 0 87.78 8.06 

7-5 0 0 0 259.44 20.4 

13-3 28.76 10.81 25.54 3600 26.3 

13-5 31.80 13.93 26.35 3600 40.76 

20-3 31.82 8.72 33.88 5400 135.9 

20-5 42.81 11.79 54.25 5400 211.7 

30-3 46.44 11.97 64.38 7200 289.1 

30-5 49.83 16.11 67.51 7200 354.5 

40-3 53.50 16.06 80.90 10800 475.1 

40-5 - 19.30 - 10800 600.4 

60-3 59.96 14.35 114.16 14400 994.0 

60-5 - 18.28 - 14400 1410.0 

80-3 - 15.78 - 18000 1543.8 

80-5 - 19.75 - 18000 1983.4 

Table 5.6 summarizes the average performances of our ALNS and the MILP solver 

of CPLEX on all instances tested. These experimental results show that our ALNS is 
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effective for solving the freight bus routing problem with both pickup and delivery 

studied in this chapter. 

5.4.4 Impact of the joint distribution realized by freight buses 

In this section, in order to preliminarily evaluate the impact of the joint distribution 

realized by our freight buses system, we compare a system with freight buses with its 

corresponding system without freight bus.  

In the system without freight bus, we assume that there are city freighters operated 

by two private third party logistics companies A and B, which separately deliver and 

pickup their customers' demands from a distribution center to multiple depots. Each city 

freighter of company A or B also visits its served depots once during each period 

k∈{1,2…M}, and the demand of each company’s customers at each depot i in each period 

must be served by its own city freighters. In each period, each city freighter also begins 

and ends its travel at the distribution center. What’s more, it is also possible that the 

demand of a depot in a period is totally or partially served in later periods because of the 

capacity limitation of a city freighter, and there are also two kinds of penalty costs for 

late delivery and pickup. 

   To simplify the comparison of the two systems, we assume that all city freighters 

operated by company A and company B have the same capacity U, the same unit 

distance operating cost 𝛾, the same penalty coefficient 𝛼 and 𝛽, the same number of 

periods M in the planning time horizon as those for the freight buses, and all city 

freighters also have fixed vehicle routes. The objective of each company is to minimize 

its total cost which includes the operating costs and the penalty costs of its own city 

freighters. With this assumption, we can use the ALNS proposed in this thesis to 

optimize the vehicle routes of the city freighters of each company and get its total cost. 

The total cost of the system without freight bus is thus the sum of the total costs of 

company A and B. The following table 5.7 compares the average costs of the two 

systems.  
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Table 5.7. The comparison of the average costs of the two systems. 

 Instances System without 

Freight bus 

System with 

Freight bus 

Cost Saving in 

percentage 

Small size 

instances 

7-3 1237.50 1019.7 17.6 

7-5 2363.04 1930.6 18.3 

13-3 1779.70 1429.1 19.7 

13-5 3400.00 2713.2 20.2 

Medium size 

instances 

20-3 2818.08 2167.1 23.1 

20-5 3938.60 3040.6 22.8 

30-3 3909.40 2951.6 24.5 

30-5 6635.24 4989.7 24.8 

40-3 4625.98 3437.1 25.7 

40-5 8168.02 6028.0 26.2 

Large size 

instances 

60-3 7749.36 5478.8 29.3 

60-5 14186.98 9916.7 30.1 

80-3 10945.48 7267.8 33.6 

80-5 16565.84 10718.1 35.3 

 

From the results in Table 5.7, we can see that if we use the proposed freight bus 

system, the cost saving in percentage compared with the corresponding system without 

freight bus is ranged from 17.6% to 35.3% with the average cost saving 25.1%. 

Moreover, we can see that the larger the size of an instance, the more the cost savings 

of the freight bus system. The experimental results show that the system with freight bus 
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can significantly reduce transportation costs compared with the system without freight 

bus. 

5.5 Conclusions  

In this chapter, we have studied the route planning problem of freight buses with 

both pickup and delivery in an urban distribution system. At first, we have described 

the operations of freight buses in such a system. Each freight bus can perform pickup 

and deliver goods at each depot (customer/supplier location). The freight bus arrives at 

each customer/supplier location (station), unload goods first and load goods later. 

During the whole tour, the total amount of goods in the freight bus should not exceed 

its capacity. The objective is to minimize the operating costs of all freight buses plus 

the late delivery and pickup penalty costs. In order to solve the problem, a Mixed-

Integer Linear Programming (MILP) model is formulated and an Adaptive Large 

Neighborhood Search (ALNS) algorithm is developed in combination with the 

characteristics of the problem, and the validity of the model and the effectiveness of 

our ALNS algorithm is verified through numerical experiments. Moreover, we have 

also assessed the impact of the joint distribution realized by our freight buses with both 

pickup and delivery system. 

   Chapter 4 and Chapter 5 are all the research on the vehicle routing problem of the 

freight buses with deterministic demands. But in practice, before make the routing 

planning for freight buses, the delivery demand and pickup demand at each station in 

each time period of each day are not known, although we can obtain the probabilistic 

distributions of these demands by statistical analysis of their historical data. So in next 

chapter 6 we will study the route planning problem of freight buses with stochastic 

demands. 
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6.1 Introduction 

In the traditional route planning problem, it is generally assumed that all 

information is complete and fixed, that is, the route planner has all the information 

before, including customer information, road network information and vehicle 

information, etc., which are fixed during the whole route planning and distribution. 

However, before the route construction and during the actual transportation process, all 

the information is not always known, and it is difficult for the route planner to fully 

grasp all the information at the nodes. For example, in real work, when we make the 

routing planning for freight buses, the delivery demand and pickup demand at each 

station in each time period (for example, from 9:00am to 10:00am) of each day is not 

known, although we can obtain the probabilistic distributions of these demands by 

statistical analysis of their historical data. So in this chapter we study the route planning 

problem of freight buses with stochastic pickup and delivery demands.  

The freight bus routing problem with stochastic pickup and delivery demands we 

study is a very complicated stochastic optimization problem, which is unlikely to be 

solved by an analytical approach. For this reason, we adopt a scenario-based 

optimization approach to solve the problem. The scenario approach is related to 

simulation-based optimization in which an optimization algorithm combined with 

simulation is used to solve a stochastic optimization problem. In such an approach, 

simulation experiments are used to evaluate the performance of a system when different 

values of its input variables (different solutions) are taken, and the algorithm is used as 

an optimization engine to find the best value of the input variables (the best solution) 

of the system in terms of its performance. Monte Carlo simulation is usually used for 

simulation experiments, which randomly generates a number of possible realizations of 

random parameters (called Monte Carlo sampling) in a stochastic system (Nguyen and 

Chen,2018). Each sample (a possible realization of random parameters) in Monte Carlo 

simulation can be considered a scenario. 

 The immune genetic algorithm is a hybrid genetic algorithm based on the 
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biological immune system. Unlike the classical genetic algorithm, our IGA has two 

additional functions: memory function and adjustment function. Different from the 

standard immune algorithm, genetic operators are introduced in our IGA. The immune 

genetic algorithm can overcome some disadvantages of genetic algorithms (e.g., 

prematurity) and improve global search ability and search efficiency. (Presbitero, 

Krzhizhanovskaya, Mancini, Brands and Sloot, 2016)  

The rest of this chapter is organized as follows. By adopting the scenario 

approach, a deterministic equivalence model of the route planning problem of freight 

buses with stochastic pickup and delivery demands is provided in section 6.3. In section 

6.4, we present an Immune Genetic algorithm (IGA) to solve the model approximately 

with the cost evaluation of each solution based on the model. In section 6.5, the 

relevance of the mathematical model and the effectiveness of the proposed algorithm 

are proved by numerical experiments. Finally, in section 6.6, we summarize the main 

work of this chapter. 

6.2 Scenario-based optimization 

The routing problem of freight buses is NP-hard as most vehicle routing problems. 

With stochastic demands, this problem becomes more difficult, which is unlikely to be 

solved by an analytical approach. So in this chapter, we adopt the scenario-based 

optimization approach to solve the problem. 

The scenario approach is related to simulation-based approach for stochastic 

optimization, because each sample (a possible realization of random parameters) in 

Monte Carlo simulation can be considered a scenario. This approach considers a 

number of scenarios corresponding to possible realizations of random parameters of a 

stochastic optimization model. For the given scenarios, this stochastic model can be 

transformed into a deterministic equivalent model, which is solved by an exact or 

approximate optimization algorithm. We adopt the scenario approach to solve our 

stochastic freight bus routing problem. In order to do this, we first formulate the 

deterministic equivalence Mixed-Integer Linear Programming (MILP) model of the 
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stochastic optimization problem for a given number of demand scenarios, and then 

develop an Immune Genetic Algorithm (IGA) to solve the model approximately with 

the cost evaluation of each solution based on the model. 

The demand scenarios can be generated based on their historical data. By statistical 

analysis, we can obtain the probability distributions of the pick-up demand and delivery 

demand of each depot in each time period of each day. The demand scenarios can then 

be randomly generated according to the probability distributions. If the number of 

scenarios is taken sufficiently large, we can guarantee that the optimal solution of the 

deterministic equivalence model is very close to the optimal solution of the stochastic 

optimization model.  

6.3 Deterministic equivalence of the stochastics freight bus routing problem 

In this section, by adopting the scenario approach, we establish the deterministic 

equivalence Mixed-Integer Linear Programming (MILP) model of our stochastic 

freight buses route planning problem for a given number of demand scenarios. 

6.3.1 Problem description 

As the problem descripted in chapter 5 (section 5.2.1) , in this model, each freight 

bus can perform both pickup and delivery goods at each depot (customer/supplier 

location) they visit . However, the difference is that in this chapter both pickup demand 

and delivery demand are stochastic at each depot.  

Through statistical analysis, we can get the probability distributions of the pickup 

demand and the probability distribution of the delivery demand of each depot in each 

period. Based on the probability distributions, L demand scenarios corresponding to 

possible realizations of the pickup and delivery demands of all depots are considered. 

We denote by 𝑑𝑖 (k)(l) the delivery demand of depot i in the k-th period under l-th 

scenario and by 𝑝𝑖(𝑘)(𝑙) the pickup demand of depot i in the k-th period under the l-th 

scenario. Then, the evaluation of the solution for each vehicle route base on the average 
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expected cost of each freight bus routing scheme in those L groups scenarios. 

(Hammami, Temponi and Frein, 2014; Marufuzzaman , Eksioglu and Huang , 2014). 

6.3.2 Deterministic equivalence model 

By adopting the scenario approach, we can propose a deterministic equivalence 

MILP model for our stochastic route planning problem of freight buses. Before 

presenting the model, we first introduce its decision variables: 

Decision Variables 

⚫ x𝑖𝑗
v     A binary variable which is equal to 1 if the freight bus v 𝜖𝑉 goes from node 

i to j (i, j𝜖{𝑜} ∪ 𝐺); and 0 otherwise. 

⚫ y𝑖
v    A binary variable which is equal to 1 if and only if the depot i 𝜖𝐺 is served 

by the freighter bus v 𝜖𝑉 ; and 0 otherwise. 

⚫ 𝑑𝑖
𝑣(k)(l)   The quantity unloaded from freight bus v 𝜖𝑉 at the depot i ϵG in its k-th 

visit (k∈ {1,2 … 𝑀}) under the l-th scenario (l∈ {1,2 … 𝐿}, 0 otherwise. 

⚫ 𝑝𝑖
𝑣(k)(l)   The quantity loaded to freight bus v 𝜖𝑉 at the depot i 𝜖𝐺 in its k-th visit 

(k∈ {1,2 … 𝑀}) under the l-th scenario (l∈ {1,2 … 𝐿}; 0 otherwise. 

⚫ 𝑄𝑖
𝑣(k)(l)   The quantity of all goods remaining to deliver by the freighter bus v 𝜖𝑉 

when it just arrives at node i 𝜖{𝑜} ∪ 𝐺 during its k-th visit (k∈ {1,2 … 𝑀}) under 

the l-th scenario (l∈ {1,2 … 𝐿}. 

⚫ 𝑊𝑖
𝑣(k)(l)   The quantity of all goods picked up by the freighter bus v 𝜖𝑉 when it 

just arrives at node i 𝜖{𝑜} ∪ 𝐺 during its k-th visit (k∈ {1,2 … 𝑀}) under the l-th 

scenario (l∈ {1,2 … 𝐿}. 

The objective function of the model, which is to minimize the average total cost 

including the operating costs of the freight buses and the penalty costs for late 

delivery and pickup of goods in the planning time horizon of M periods, can be 

formulated as: 
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Objective Function 

Min Obj =    [ 𝑀 ∗ 𝐿 ∗  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑣  𝑣∈𝑉  𝑗∈{0}∪𝐺𝑖∈{𝑜}∪𝐺 + 

𝛼 * ∑ ∑ ∑ (∑ 𝑑𝑖(𝑘)(𝑙)𝑛
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉 (𝑙))𝑀−1

𝑛=1𝑙∈{1,2…L}𝑖∈𝐺  + 

 𝛽 *∑ ∑  (∑ 𝑑𝑖(𝑘)(𝑙)𝑀
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑀
𝑘=1 (𝑙))𝑣𝜖𝑉𝑙∈{1,2…L}𝑖∈𝐺  

𝛼 * ∑ ∑ ∑ (∑ 𝑝𝑖(𝑘)𝑛
𝑘=1 (𝑙) − ∑ ∑ 𝑝𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉 (𝑙))𝑀−1

𝑛=1𝑙∈{1,2…L}𝑖∈𝐺  + 

 𝛽 * ∑ ∑ (∑ 𝑑𝑖(𝑘)(𝑙)𝑀
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑀
𝑘=1 (𝑙))𝑣𝜖𝑉𝑙∈{1,2…L}𝑖∈𝐺  ] /L 

                                                                                              

(6.1) 

The constraints of this model can be formulated as : 

Constraints 

∑ 𝑥𝑜𝑗
𝑣

𝑗∈𝐺 = ∑ 𝑥𝑗𝑜
𝑣

𝑗∈𝐺                 ∀𝑣 ∈ 𝑉                        (6.2) 

∑ 𝑥𝑖𝑗
𝑣

𝑖∈{𝑜}∪𝐺 = ∑ 𝑥𝑗𝑖
𝑣

𝑖∈{0}∪𝐺         ∀𝑗 ∈ 𝐺, ∀𝑣 ∈ 𝑉                  (6.3) 

∑ 𝑥𝑖𝑗
𝑣

𝑖∈{𝑜}∪𝐺 = 𝑦𝑗
𝑣                 ∀𝑗 ∈ 𝐺, ∀𝑣 ∈ 𝑉                  (6.4) 

∑ 𝑦𝑗
𝑣

𝑣∈𝑉  = 1                     ∀𝑗 ∈ 𝐺                         (6.5) 

 𝑄𝑗
𝑣(𝑘)(𝑙)<=𝑄𝑖

𝑣(𝑘)(𝑙)- 𝑑𝑖
𝑣(𝑘)(𝑙)+𝑈(1-𝑥𝑖𝑗

𝑣 ) 

   ∀𝑖 ∈ 𝐺, ∀ 𝑗 ∈ {𝑜} ∪ 𝐺, ∀𝑣 ∈ 𝑉, ∀k∈ {1,2 … 𝑀}, ∀l∈ {1,2 … 𝐿}       (6.6) 

 𝑄𝑜
𝑣(𝑘)(𝑙) = 0                     ∀𝑣 ∈ 𝑉,   ∀k∈ {1,2 … 𝑀}, ∀l∈ {1,2 … 𝐿}         (6.7) 

 𝑊𝑗
𝑣(𝑘)(𝑙)>=𝑊𝑖

𝑣(𝑘)(𝑙)+𝑝𝑖
𝑣(𝑘)(𝑙)-𝑈(1-𝑥𝑖𝑗

𝑣 ) 

        ∀𝑖 ∈ 𝐺, ∀ 𝑗 ∈ {𝑜} ∪ 𝐺, ∀𝑣 ∈ 𝑉, ∀k∈ {1,2 … 𝑀}, ∀l∈ {1,2 … 𝐿}     (6.8) 

 𝑊𝑜
𝑣(𝑘)(𝑙)= ∑ 𝑝𝑖

𝑣
𝑖∈𝐺 (𝑘)(𝑙)   ∀𝑣 ∈ 𝑉,   ∀k∈ {1,2 … 𝑀} , ∀l∈ {1,2 … 𝐿}    (6.9) 

0<=   𝑄𝑖
𝑣(𝑘)(𝑙)+  𝑊𝑖

𝑣(𝑘)(𝑙) <=U  
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  𝑖 ∈ {0} ∪ 𝐺, ∀𝑣 ∈ 𝑉, ∀k∈ {1,2 … 𝑀} , ∀l∈ {1,2 … 𝐿}      (6.10) 

∑ 𝑑𝑖
𝑣(𝑘)𝑛

𝑘=1 (𝑙)<= ∑ 𝑑𝑖(𝑘)(𝑙)𝑛
𝑘=1  *𝑦𝑖

𝑣 

   ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀n∈ {1,2 … 𝑀}, ∀l∈ {1,2 … 𝐿}      (6.11) 

∑ 𝑝𝑖
𝑣(𝑘)(𝑙)𝑛

𝑘=1 <= ∑ 𝑝𝑖(𝑘)𝑛
𝑘=1 (𝑙) *𝑦𝑖

𝑣 

   ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀n∈ {1,2 … 𝑀}, ∀l∈ {1,2 … 𝐿}                   (6.12) 

 𝑥𝑖𝑗
𝑣 ∈ {0,1}     𝑦𝑖

𝑣 ∈ {0,1}     

𝑑𝑖
𝑣(𝑘)(𝑙)>=0 ; 𝑝𝑖(𝑘)(𝑙)>=0 ;  𝑄𝑖

𝑣(𝑘)(𝑙)>=0 ;  𝑊𝑖
𝑣(𝑘)(𝑙)>=0 

 ∀𝑖 ∈ {𝑜} ∪ 𝐺，∀𝑗 ∈ {𝑜} ∪ 𝐺, ∀𝑣 ∈ 𝑉, ∀k∈ {1,2 … 𝑀} , ∀l∈ {1,2 … 𝐿} (6.13) 

Constraints (6.2) indicate that each freight bus leaves from and returns to the 

Distribution Center. Constraints (6.3) ensure that each freight bus arriving at a depot has 

to leave it. Constraints (6.4) and (6.5) guarantee that all depots must be served and each 

depot is served by at most one freight bus. Constraints (6.6) (6.7) and (6.8) (6.9) (6.10) 

formulate vehicle capacity constraints. Constraints (6.11) (6.12) indicate that under each 

scenario, in each period, each freight bus v can only deliver/pick up the demand in that 

period or earlier periods at each depot visited but cannot deliver/pick up the demand of 

later periods. Finally, constraints (6.13) define the domains of all decision variables. 

6.4 Immune genetic algorithm  

The immune genetic algorithm is a hybrid genetic algorithm based on the biological 

immune system and natural evolution. Unlike a pure genetic algorithm, the memory 

function and adjustment function of the biological immune system are included in this 

hybrid algorithm. Also different from a pure immune algorithm, genetic operators are 

included in the hybrid algorithm. (Presbitero, Krzhizhanovskaya, Mancini, Brands and 

Sloot, 2016)The immune genetic algorithm can effectively overcome the disadvantages 

of pure genetic algorithms (e.g., prematurity) and improve global search ability and 

search efficiency. In the algorithm, the objective function value of the problem 

corresponds to “antigen'' of the biological immune mechanism, and the solution of the 
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problem corresponds to “antibody” of the biological immune mechanism. The diversity 

of antibody populations is maintained by immunological selection, which is realized by 

the immune memory function and self-regulating function of the immune system.（

Wang, Geng, Zhang and Ruan,2018） 

6.4.1 Principle and procedure of immune genetic algorithm  

The procedure framework of our designed Immune Genetic algorithm is shown in 

Fig.6.1. 

 

Fig.6.1 Immune Genetic algorithm 

The immune system is composed of antigen recognition system, memory 

mechanism, and antibody promotion and suppression section. In the immune genetic 

algorithm, antibody population’s evolutionary learning process and antigen recognition 

constitute the optimization process. (Ali, Devika and Kaliyan, 2013)The antigen 

corresponds to the objective function value, and each antibody corresponds to a feasible 

candidate solution. The matching degree of candidate solutions with respect to the 
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objective function reflects the affinity between their antigen and antibody, and the 

higher the matching degree, the greater the affinity and the better the quality of the 

candidate solutions. The affinity of antibodies is reflected by the similarity between 

candidate solutions, each antibody group is assessed (evaluated) by its two affinities. 

Through selection, crossover, and mutation operation, all antibody groups are updated, 

and the immune memory mechanism records the optimal antibody group in each 

generation. Through mutual promotion and inhibition between antibodies, search 

efficiency is improved and the goal of convergence to the global optimum or high 

quality near-optimal solutions can be achieved.（Wang, Geng, Zhang and Ruan,2018） 

6.4.2 Immune genetic algorithm design 

6.4.2.1 Antibody expression 

Let D = |G| and F = |V| denote the number of depots and the number of freight buses, 

respectively. For the freight buses route planning problem studied, D depots are 

represented by natural numbers from 1 to D; F freight buses are represented by natural 

numbers from D+1 to D+F, where D+1 denotes the first freight bus and D+F denotes 

the last freight bus. Each solution of the problem is represented by an antibody w which 

is a string of non-repeating natural numbers between 1 and D+F-1 with the length of 

D+F-1.   

For each antibody string w, let w’ denote the string generated from w by adding in 

front of it the number D+F denoting the last freight bus. The extended string w’ can be 

divided into F segments corresponding F routes with possible empty routes. Each 

segment contains one and only one number lager than or equal to D+1 which indicate a 

freight bus or a route. Each segment starts with such a number which either follows a 

series of natural numbers less than D+1 denoting depots or follows nothing. If a segment 

is composed of a number D + j (j ≥1) and a series of natural numbers less than D+1, this 

segment represents the j-th route performed by the j-th freight bus, where the order of 

depots visited by the freight bus is defined by the orders of the natural numbers in the 
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segment. Otherwise, if a segment is composed of only one number D + j without any 

number denoting a depot, this route is empty, i.e., the j-th freight bus is not used. 

 

 

Fig.6.2 An example of Antibody coding 

 For example, suppose that there are 10 depots and 4 freight buses in a distribution 

system, with D=10 and F=4. The string representing an antibody is given by w = 6-4-3-

9-11-12-5-2-1-7-13-8-10 (see the figure 4). By adding D+ F in the front of w, we can 

get w’ = 14-6-4-3-9-11-12-5-2-1-7-13-8-10 which can be divided into 4 segments: 14-

6-4-3-9, 11, 12-5-2-1-7, and 13-8-10, so the freight bus routes represented by this 

antibody are given as follows: the freight bus 4 visits the depots 6, 4, 3, 9 successively; 

the freight bus 1 does not visit any depot; the freight bus 2 visits the depots 5, 2, 1, 7 

successively; and the freight bus 3 visits the depots 8, 10 successively. 

Note that we use w instead of w’ to represent an antibody string (a solution of the 

freight bus routing problem) is because if w’ is used, a new antibody string generated by 

cross-over may have its first number less than D+1, i.e., a depot number, which is not 

consistent with the format of w’. Otherwise, if w is used, such inconsistence problem 

will not happen. 
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6.4.2.2 Generation of initial antibodies 

In order to ensure the diversity of antibodies, we generate the initial antibodies 

randomly (a randomly generated non-repeating integer number between 1 and D+F-1 is 

assigned to each character of each antibody string). In general, the number N of initial 

antibodies (solutions) generated is determined according to the problem size.  

6.4.2.3 Calculation of antibody affinity 

(1) Antibody fitness 

For each antibody w, based on the scenario-based deterministic equivalence model 

in section 6.3.2 and the proposed Method in section 5.3.2.2 (Evaluation of a solution), 

we can calculate the fitness 𝐴𝑤 of w by formula (6.14) ,and then evaluate the quality 

of this antibody. Note that when we use the formula (6.1) (in section 6.3.2）to get the 

objective function 𝑣𝑎𝑙𝑢𝑒 𝐹𝑤  𝑜𝑓 𝑖𝑡𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤, we get the values of variables 𝑥𝑖𝑗
𝑣  and 

y𝑖
v which are represented by w, based on the antibody expression in section 6.4.2.1.. 

 

                     𝐴𝑤= 1/𝐹𝑤                            (6.14) 

 

The sum of fitness of all antibodies is given by SA=∑ 𝐴𝑤𝑤∈𝑁 .  

In each iteration of the immune genetic algorithm, the top m (m is taken as 10% to 

20% of N) antibody individuals (in terms of fitness) are stored in a memory library. 

Using this elitist strategy, after the antibody updating in each generation (iteration), the 

best antibodies and some better antibodies are put into memory. This immune memory 

mechanism (memory function) record each generation antibody group’s optimal 

antibody group (Cheng and Zhong, 2014). 

(2)Antibody-antibody affinity 

The antibody-antibody affinity reflects degree of the similarity degree between the 

antibodies. Here, the antibody-antibody affinity is defined referring to the R-bit 
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continuous method：The formula for calculating the affinity 𝑆𝑤,𝑥 between antibody w 

and antibody x is defined as follows. 

 

                        𝑆𝑤,𝑥＝𝐾𝑤,𝑥／(D+F-1)               (6.15) 

 

where 𝐾𝑤,𝑥 is the number of same digits appeared in both the antibody w and the 

antibody x, and D+F-1 is the antibody length. For example, for the antibody 1 

represented by the string [642531] and the antibody 2 represented by the string [632512], 

their antibody-antibody affinity 𝐾1,2 is 3, because there are 3 identical digits (6, 2, 5) 

in the two antibodies (Wang, Geng, Zhang and Ruan,2018). 

6.4.2.4 Calculation of antibody concentration 

For each antibody w, its antibody concentration 𝐶𝑤, which reflects the proportion of 

similar antibodies in the population, is defined as: 

 

                      𝐶𝑤= 1/N*(∑ 𝑆𝑤,𝑥
′

𝑥∈𝑁 )                  (6.16) 

Where 𝑆𝑤,𝑥
′

={
1, 𝑆𝑤,𝑥 ≥ 𝑇  

0, 𝑆𝑤,𝑥 < 𝑇
,  

 

where T is a preset threshold and N is the total number of antibodies. In our numerical 

experiments, we set T to be 0.7 for all instances. 

 The sum of all antibody concentrations is given by SC=∑ 𝐶𝑤𝑤∈𝑁 . 

6.4.2.5 Inhibition and promotion of antibodies 

The inhibition and promotion of antibodies are not only based on the fitness of an 

antibody but also based on its concentration (diversity) with respect to all other 

antibodies. 

The promotion and inhibition of antibodies is realized by changing the expected 

reproductive probability of antibodies. In a population of antibodies, the expected 
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reproductive probability of each individual w is determined by both its fitness 𝐴𝑤 and 

its antibody concentration 𝐶𝑤. Let 𝑝𝑤 denote the expected reproductive probability of 

antibody w, 𝑝𝑤 is defined as follows: 

 

𝑝𝑤=𝜇*𝐴𝑤/SA+(1-𝜇)* 𝑒−𝐶𝑤          (6.17) 

 

where μ is a constant between 0 and 1. In our numerical experiments, we set μ 

to 0.6 for all instances. 

It can be seen from the above formula that the higher the antibody fitness 𝐴𝑤, the 

greater the expected reproduction probability 𝑝𝑤; the greater the antibody concentration 

𝐶𝑤, the smaller the expected reproduction probability 𝑝𝑤. This implies that the updating 

of 𝑝𝑤 not only promotes antibodies with high fitness, but also inhibits antibodies with 

high concentrations to ensure the diversity of the antibody population）, which helps to 

increase the search efficiency in each iteration and further reduce the number of 

iterations required to obtain a high quality solution (Presbitero, Krzhizhanovskaya,  

Mancini, Brands and Sloot, 2016). 

6.4.2.6 Genetic manipulation 

Through genetic manipulations, new progeny antibodies can be generated. The 

genetic manipulations are realized in three steps: selection, crossover and mutation, 

which are explained as follows: 

1)Selection 

The task of selection is to choose parent antibodies for evolution. In our numerical 

experiments, we choose the best N (N is the population size) antibodies from the 

antibody pool comprising both the parent and child antibodies based on their expected 

reproduction probability (calculated by the formula (6.17)). In this way, promising 

antibodies are chosen for evolution.  

2) Crossover 
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In this thesis, we use a method like two-point crossover to exchange some digits 

(genes) between two antibodies. The obtained repeating genes in the two new antibodies 

are then deleted in order to generate feasible antibodies (solutions).  

3)Mutation  

The mutation operation can make a genetic algorithm jump out of the current search 

region and then avoid the search to be trapped in a local optimal solution. As the example 

in Fig.6.2, the Reverse method is used in our Mutation Operation. 

 

    Fig.6.3 An example of Mutation operation 

The genetic manipulations follow the immunization operations in each iteration of 

the immune genetic algorithm. After the genetic operations, the newly generated 

progeny antibodies and the antibodies in the memory library together form a new 

generation of antibody population. 

6.4.2.7 Stop Criterion 

A stop criterion is required to stop its iteration process. In our numerical experiments, 

we adopt a maximum number of iterations, denoted by Maxiter, as the stop criterion for 

the algorithm (Chang & Hou, 2008). 

The Pseudo-code of our Immune Genetic algorithm metaheuristic can be seen in 

Algorithm 6.1. 

Algorithm 6.1 - Pseudo-code of the Immune Genetic algorithm metaheuristic 

1:  Generate N Initial Solutions  

2:  Initialize the probability of crossover 𝑃𝑐, the probability of mutation 𝑃𝑚, the size 

of memory library m  

3:  for iter ←1 to Maxiters do 
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4:    Calculate the antibody fitness 𝐴𝑤 based on the scenario-based deterministic 

equivalence model in section 6.3.2 and the proposed Method in section 5.3.2.2 

(Evaluation of a solution). 

5:     The top m antibodies (in the term of fitness)are stored in the memory library. 

6:     Calculate the antibody concentration 𝐶𝑤  for each antibody w the formula 

(6.16) 

7:     Calculate the expected reproductive probability of antibodies 𝑝𝑤  of each 

antibody w by the formula (6.17) 

8:     Select the parent antibodies based on expected reproductive probability 𝑝𝑤 

of each antibody w.  

9:     Perform crossover and mutation operations on the parent antibodies with the 

probability of crossover 𝑃𝑐 and the probability of mutation 𝑃𝑚 

10:    Update the population with the newly generated progeny antibodies and the 

antibodies in the memory library. 

11:  end for 

 

6.5 Numerical experiments  

Based on the generated instances in chapter 4 and 5, in this chapter, we design 14 sets 

of instances of small, medium and large sizes, and compare the performance of the 

Immune Genetic algorithm (implemented in MATLAB 2014a with Intel Core i5-4210M 

CPU 2.6GHz) with that of the MILP solver of CPLEX 12.6 on the instances. In addition, 

we compare of the performances of IGA and GA in the section 6.5.5. 

6.5.1 Instance generation 

Based on the generated instances in chapter 5（route planning problem of freight 

buses with both pickup and delivery）, in this chapter, we generated 14 sets of instances  
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for the scenario-based optimization problem which are also grouped in instances of 

small size (N∈{7,13}, M∈{3,5}), instances of medium size (N∈{20, 30, 40}, M∈{3,5}) 

and instances of large size (N∈{60, 80}, M∈{3,5}) instances (see Table 6.2). For all 

instances, the following data are same with the instances in chapter 5 : the coordinates 

of all nodes, the number of vehicles (freight buses), and the capacity of each vehicle 

(freight buses)，the number of periods M, the unit distance operating cost γ, the penalty 

coefficient 𝛼 and 𝛽.  

And in our instances, refer to Golden (1979), the delivery demand and the pickup 

demand of each depot in each period are assumed subject to Poisson distributions, with 

the average delivery demand and the average pickup demand of each depot i in each 

period k is randomly generated from [1, 40]. The demands 𝑑𝑖(k)(l) and 𝑝𝑖(k)(l) in each 

scenario l are then randomly generated according the Poisson distributions. (The 

determination of the number of scenarios for different size of instances will be descripted 

in section 6.5.3.) 

6.5.2 Parameter setting  

We used CPLEX to solve the MILP model, and used Matlab to implement our 

Immune Genetic algorithm.  

The parameters values were determined to achieve a good trade-off between solution 

quality and CPU time, as follows. For small instances: the population size of Antibodies 

= 30, the size of memory library = 5, the probability of crossover=0.9, the probability of 

mutation=0.4, and the maximum number of iterations=40. For medium instances: the 

population size of Antibodies=50, the size of memory library = 10，the probability of 

crossover=0.85, the probability of mutation=0.35, and the maximum number of 

iterations=50. For large instances: the population size of Antibody=80, the size of 

memory library = 15；the probability of crossover=0.8, the probability of mutation=0.3, 

and the maximum number of iterations=60.  

Moreover, we preset its CPU running time to 7200,10800, 18000, 25200, 32400, 

36000 seconds for instances with 7, 13, 20, 30, 40, 60, 80 depot nodes, respectively. The 
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long preset time aims to ensure that the resolution of the MIP model can obtain at least 

one feasible solution served as a comparison indicator with our algorithm, although in 

most cases it failed to achieve such a goal. 

6.5.3 Determination of the number of scenarios by Monte Carlo Sampling Method 

By adopting the scenario approach, a stochastic optimization problem is 

transformed into a deterministic optimization problem called deterministic equivalence 

model. However, if the number of scenarios is too large, the resolution of the 

deterministic equivalence model requires an enormous memory and computational 

effort. Using a statistical method introduced in Shapiro and Homem-de Mello (1998), 

we are able to determine the minimum number of scenarios required to obtain a solution 

within a confidence interval for a given level of confidence 𝛼. Based on the theory of 

probability, this approach provides a relationship between the reliability of the obtained 

solution and the number of scenarios. Let 𝜎(𝑛) denote the sampling variance 𝜎(𝑛) 

obtained with n scenarios (samples) given as follows: 
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Where 𝑐𝑜𝑠𝑡𝑠 is the system cost obtained under scenario (sample) s. For a given 

confidence interval with length H and a given level of confidence 𝛼, the minimum 

number of scenarios N required can be calculated by: 
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          (6.19) 

where value 𝑍𝛼/2 is determined by Pr(Z<=𝑍𝛼/2)=1- α/2, where Z is the random 

variable subject to the standard normal distribution N(0, 1). In summary, the procedure 

for determining the minimum number of scenarios is given as follows: 

1) Generate a small number of n (n>=30) demand scenarios (samples), and solve 

the deterministic equivalence model in Section 6.3.2 for each scenario s to get 

𝑐𝑜𝑠𝑡𝑠. 
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2) Estimate the standard deviation 𝜎(𝑛) of the costs obtained in 1) by formula 

(6.18). 

3) Determine the number of scenarios N required for a given confidence interval 

H and level of confidence 𝛼 according to (6.19). If N ≥ n, stop. Otherwise, set 

n = N, and go to Step 1) (Nguyen and Chen,2018). 

Based on the Monte Carlo sampling method, we set the number of scenarios to 40, 

80, 200 for instances of small size, medium size, large size, respectively. 

6.5.4 Experimental results 

   The performance indexes used in the performance evaluation of our Immune 

Genetic algorithm and their definitions are given in Table.6.1 

Table 6.1.Performance indexes. 

Abbreviation Definition 

𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 
The best feasible objective value of the MILP model found by 

CPLEX in a preset running time 

LB The lower bound produced by CPLEX in a preset running time 

𝐼𝐺𝐴𝑂𝑏𝑗  
The best objective value of the MILP model obtained by the 

Immune Genetic algorithm after a preset number of iterations 

𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  
The relative gap between 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 and LB, which is defined 

as (𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗- LB)/ 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗*100 

𝐺𝑎𝑝𝐼𝐺𝐴  
The gap between 𝐼𝐺𝐴𝑂𝑏𝑗  and LB, which is defined as (𝐼𝐺𝐴𝑂𝑏𝑗- 

LB)/ 𝐼𝐺𝐴𝑂𝑏𝑗*100 

𝐼𝑚𝑝𝐼𝐺𝐴−𝐶𝑝𝑙𝑒𝑥 
The improvement (cost reduction) of 𝐼𝐺𝐴𝑜𝑏𝑗  over 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗, 

which is defined as (𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗- 𝐼𝐺𝐴𝑜𝑏𝑗)/ 𝐼𝐺𝐴𝑂𝑏𝑗*100 

𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥 The CPU time of CPLEX (in seconds)  

𝐶𝑃𝑈𝐼𝐺𝐴 The CPU time of the Immune Genetic algorithm (in seconds) 

 

The following three tables give the computational results of small instances, medium 

instances, and large instances, respectively. 
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Table 6.2. Results of small size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝐴𝐼𝐴𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝐼𝐺𝐴 𝐼𝑚𝑝𝐼𝐺𝐴−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝐼𝐺𝐴 

7-3 987.0 987.0 987.0 0 0 0.00 2908.8 98.6 

7-5 2050.0 1871.0 1931.3 8.73 3.12 6.15 7200.0 198.5 

13-3 1637.3 1432.5 1483.8 12.51 3.46 10.34 10800.0 241.6 

13-5 3117.2 2504.1 2742.4 19.67 8.69 13.67 10800.0 368.3 

 

Table 6.3. Results of medium size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝐴𝐼𝐴𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝐼𝐺𝐴 𝐼𝑚𝑝𝐼𝐺𝐴−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝐼𝐺𝐴 

20-3 2321.4 1911.7 2109.1 17.65 9.36 10.07 18000.0 920.4 

20-5 3714.2 2924.9 3154.6 21.25 7.28 17.74 18000.0 1345.6 

30-3 4187.6 2645.7 3014.7 36.82 12.24 38.90 21600.0 1462.9 

30-5 - 4290.9  5041.6  - 14.89 - 21600.0 2089.7 

40-3 6465.3 3060.0 3538.4 52.67 13.52 82.72 25200.0 2073.2 

40-5 - 5027.3  6019.3  - 16.48 - 25200.0 2696.7 

 

Table 6.4. Results of large size instances. 

Instances 𝐶𝑝𝑙𝑒𝑥𝑂𝑏𝑗 LB 𝐴𝐼𝐴𝑂𝑏𝑗 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  𝐺𝑎𝑝𝐼𝐺𝐴 𝐼𝑚𝑝𝐼𝐺𝐴−𝐶𝑝𝑙𝑒𝑥 𝐶𝑃𝑈𝐶𝑝𝑙𝑒𝑥  𝐶𝑃𝑈𝐼𝐺𝐴 

60-3 - 4686.0  5527.2  - 15.22 - 32400.0 7269.8 

60-5 -  8349.5  9974.3  - 16.29 - 32400.0 9708.1 

80-3 -  5871.5  7428.5  - 20.96 - 36000.0 11071.3 

80-5 -  9631.3  11798.7  - 18.37 - 36000.0 15060.3 

 

Table 6.2 compares the solutions obtained by our Immune Genetic algorithm with 

that obtained by CPLEX solver on small size instances. We can see, for the instance 

with N=7 and M=3, both IGA and CPLEX can solve the MILP model to optimality. 

However, for the other instances (N=7, M=5; N=13,M=3;and N=13,M=5),no proven 
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optimal solution was obtained by CPLEX. In this case, we can only compare the near-

optimal solutions obtained by the two methods and their running times. We can see for 

those instances the Immune Genetic algorithm could find a better solutions than CPLEX 

with an average percentage improvement 𝐼𝑚𝑝𝐼𝐺𝐴−𝐶𝑝𝑙𝑒𝑥  of 10.05% in terms of total 

cost. Furthermore, our Immune Genetic algorithm has a much shorter running time than 

CPLEX. 

Table 6.3 compares the performances of the two solution methods for medium size 

instances. With the increase of the number of depots, the relative gap 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  

between the upper bound and the lower bound obtained by CPLEX rapidly grows from 

17.65% to 52.67%, whereas our Immune Genetic algorithm has a relatively smaller 

change of the relative gap 𝐺𝑎𝑝𝐼𝐺𝐴  from 7.28% to 16.48%. As a result, there is a 

significant increase in the improvement 𝐼𝑚𝑝𝐼𝐺𝐴−𝐶𝑝𝑙𝑒𝑥 from 10.07% to 82.72%. For the 

sets of instances with N=30, M=5 and N=40, M=5, we can see CPLEX failed to find a 

feasible solution, even after a long running of 6h to 7h. By contrast, our Immune Genetic 

algorithm could always find a better feasible solutions. Although the running time of the 

IGA increases from 2089.7 seconds to 2696.7 seconds, it is much shorter than that of 

CPLEX for all instances. 

Table 6.4 compares the results obtained by two methods for large size instances. We 

can see CPLEX failed to find a feasible solution for all the instances with a preset 

running time. For most of the instances, CPLEX stopped due to out of memory. In this 

case, we can only compare the lower bound LB produced by CPLEX and the upper 

bound 𝐼𝐺𝐴𝑂𝑏𝑗  found by the Immune Genetic algorithm. For the large size instances, we 

can see our Immune Genetic algorithm could produce a solution with an average gap 

𝐺𝑎𝑝𝐼𝐺𝐴  of 17.71% between 𝐼𝐺𝐴𝑂𝑏𝑗  and the lower bound LB, our algorithm 

outperforms CPLEX very significantly in terms of CPU time. 

6.5.5 Comparison of the performances of IGA and GA. 

   In this section, In order to evaluate the advantage of the introduction of the immune 

functions in our Immune Genetic algorithm, we also compare our IGA with GA without 
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Immune functions (memory function and adjustment function) on the instances 

considered. Table 6.5 compares the average performances of the two algorithms, where 

CostIGA , CostGA and CUPIGA, CUPGA respectively denote the average cost and the 

average computation time of IGA and GA for each set of instances, and 𝐼𝑚𝑝𝐼𝐺𝐴 = 

(CostGA – CostIGA )/ CostIGA*100, ∆𝑐𝑝𝑢=(CPUIGA – CPUGA )/ CPUIGA*100. 

 

Table 6.5 Comparison of the performances of IGA and GA. 

Instance sets 

IGA 𝐺𝐴 

𝐼𝑚𝑝𝐼𝐺𝐴 ∆cpu 

CostIGA CPUIGA CostGA CPUGA 

7-3 987.0  98.6 987.0  98.1  0.00  0.51  

7-5 1931.3  198.5 1931.3  197.1  0.00  0.71  

13-3 1483.8  241.6 1499.5  239.5  1.06  0.87  

13-5 2742.4  368.3 2776.0  365.7  1.23  0.71  

20-3 2109.1  920.4 2148.4  907.8  1.86  1.37  

20-5 3154.6  1345.6 3284.0  1333.7  4.10  0.88  

30-3 3014.7  1462.9 3099.3  1441.8  2.81  1.44  

30-5 5041.6  2089.7 5274.2  2070.4  4.61  0.92  

40-3 3538.4  2073.2 3720.3  2040.8  5.14  1.56  

40-5 6019.3  2696.7 6314.2  2671.1  4.90  0.95  

60-3 5527.2  7269.8 5815.0  7156.7  5.21  1.56  

60-5 9974.3  9708.1 10579.4  9616.7  6.07  0.94  

80-3 7428.5  11071.3 7904.3  10915.2  6.41  1.41  

80-5 11798.7  15060.3 12539.8  14796.9  6.28  1.75  

 

The relative improvement of IGA over GA in terms of cost reduction, denoted by 

𝐼𝑚𝑝𝐼𝐺𝐴, reflects the immune functions in IGA. From this table, we can see for the sets 

of instances with N=7, M=3 and N=7, M=5), GA and IGA could obtain the same results, 

and GA took less computation time. However, for the medium and large instances, we 

can see 𝐼𝑚𝑝𝐼𝐺𝐴  is ranged from 1.86% to 6.28% with the average percentage 
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improvement 4.74%. Compared with GA, the average computation time of IGA only 

slightly increases for all sets of instances (∆𝑐𝑝𝑢 is ranged from 0.88% to 1.75% with the 

average percentage of 1.28%) for all sets of instances.  

These computational results show that our Immune Genetic algorithm is much more 

effective than CPLEX for solving the freight bus routing problem with stochastic 

demands studied in this thesis. 

6.6 Conclusions  

Chapter 4 and Chapter 5 are all the research on the vehicle routing problem of the 

freight buses with deterministic demands. But in practice, before we arrange the freight 

bus route, we don't know the exact delivery and pickup demand of each depot in each 

period. So base on the research in chapter 4 and 5, in this chapter we further study the 

route planning problem of freight buses with stochastic demands, this problem is solved 

by using a scenario-based optimization(SBO) Method. Combining with Monte Carlo 

simulation, we establish the corresponding mathematical model, and design an Immune 

Genetic algorithm(IGA). the validity of the model and the effectiveness of our 

algorithm is verified through numerical experiments. Moreover, we have also compare 

the performances of IGA and GA in our research. 

However, in this thesis, we have not quantitatively analyzed the advantages of 

freight buses over city freighters owned by private third-party logistics companies in 

terms of on-time delivery or pickup, traffic congestion reduction, and use of fast lanes. 

And the effectiveness of freight buses needs to be further evaluated by considering other 

factors. In next chapter, we will summarizes all the work of this thesis, and points out 

the future research direction on the basis of analyzing the shortcomings of this research.  
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CHAPTER 7 

Conclusion and Perspectives  

 

7.1 Conclusions 

With the rapid development of e-commerce and urbanization, more and more city 

freighters operated by different private third-party logistics companies were born and 

circulate in the centers of cities, which makes traffic congestions and air pollutions 

more and more severe in metropolitan areas.  

   Motivated by joint distribution, in Chapter 3, we put forward for the first time the 

concept of freight bus, which is a new public transportation means for urban logistics 

that can replace city freighters belonging to different private third-party logistics 

companies in the center of a metropolitan city such as Beijing and Shanghai. Just like 

buses for passengers, freight buses can be also run by the city government and provide 

a public service for urban logistics. In Chapter 3, we describes the facilities and 

equipment required for the implementation of a freight bus system and its operation 

management. We also conduct a macroscopic analysis of the advantages of using freight 

buses in collaborative transportation, especially in timely distribution, increase of road 

utilization and other aspects in comparison with city freighter.  

Chapter 4 studies the basic vehicle routing problem of freight buses with only 

delivery demands. It is a new variant of periodic vehicle routing problem. In order to 

solve the problem, a Mixed-Integer Linear Programming (MILP) model is formulated 

and a memetic algorithm (genetic algorithm with local search) is developed. The 

relevance of the mathematical model and the effectiveness of the proposed memetic 

algorithm are proved by numerical experiments. 

In Chapter 5, we consider a more general freight bus routing problem with the 

consideration of both pickup and delivery demands. As in Chapter 4, we first establish 
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a Mixed-Integer Linear Programming (MILP) model for the problem and then develop 

an Adaptive Large Neighborhood Search (ALNS) algorithm to solve it. The validity of 

the model and the effectiveness of our ALNS algorithm are verified through numerical 

experiments. 

Chapter 4 and Chapter 5 study the route planning problem of freight buses with 

deterministic demands. Since in practice, before we plan the routes for freight buses, 

we may not know the exact delivery and pickup demands of each depot in each period 

of each day, so we study the freight bus routing problem with stochastic pickup and 

delivery demands in Chapter 6. By adopting the scenario-based optimization approach, 

this problem is solved by using an Immune Genetic algorithm (IGA) with the cost of 

each solution evaluated based on a deterministic equivalence model. For a given 

number of demand scenarios, we first establish the corresponding deterministic 

equivalence model, and then develop the Immune Genetic algorithm (IGA). The 

relevance of the mathematical model and the effectiveness of the proposed algorithm 

are proved by numerical experiments. 

7.2 Perspectives 

As a preliminary study of freight buses, there are still many research works 

remaining to do in order to implement freight buses in reality. 

Firstly, this thesis only analyzes the economic benefits (joint distribution) of freight 

buses versus city freighters in terms of transportation cost reduction. To prove other 

potential advantages of freight buses such as schedule regularity, traffic congestion 

reduction, and use of fast lanes, more quantitative analysis is required. Due to the lack 

of real data, we have not taken into account of the use of fast lanes in our freight bus 

routing models, which will be the next step of our study on freight bus.  

Secondly, in chapter 4, 5and 6, we have proposed one metaheuristic algorithm for 

each of the three variants of the freight bus routing problem. Since all we study are new 

variants of periodic vehicle routing problem, we could not compare these algorithms 

with other algorithms in the literature on benchmark instances, because such algorithms 
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and benchmark instances do not exist. So in the future, we should either develop more 

heuristic algorithms, evaluate and compare them with real data, or improve the 

algorithms proposed in this thesis. 

Thirdly, in the environment of electronic commerce, the requirements for timely 

distribution may be different for different customers, so in the future, we should 

consider the freight bus routing problem with different priorities for different freight 

transportation demands in order to meet the diversified market demands. With different 

priorities for different pickup/delivery demands, the penalty costs for the late services 

of these demands will be different, which will greatly increase the complexity of the 

routing problem to solve, which needs us to further improve the existing models and 

algorithms. 

Finally, in the routing problems we have studied, each freight bus station is only 

visited by one freight bus for regular service. In the future, according to different freight 

volumes at different stations, we may consider the freight bus routing problem where 

some stations (depots) are passed (visited) by multiple freight bus lines. 

Just like passenger buses, with the rapid development of e-commerce and 

urbanization, and the increase of freight transportation demands in a city center, we 

believe that freight buses will play an important role in modern urban distribution 

systems. We hope that we can conduct a better and deeper study of the freight routing 

problem in a project of the real implementation of a urban logistics system with freight 

buses in the future. 
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A.1 Introduction générale 

Plus de moitié de la population mondiale vit actuellement dans des zones urbaines. 

L'Organisation Mondiale de la Santé prévoit que la population des zones urbaines 

continuera de croître de plus de 1.5% par an jusqu'en 2030 (OMS, 2010). Les 

conséquences probables de cette expansion sont d’augmentation des embouteillages du 

trafic, de pollution atmosphère et sonore, mais également une grande base de clients et 

des opportunités commerciales plus importantes en raison des économies d’échelle. 

Déplacer les cargos entre les villes et à l’intérieur des villes tout en préservant la qualité 

de vie des résidents est un défi majeur pour les urbanistes et les prestataires des services 

logistiques. 

À travers un grand nombre de littérature scientifique et d’observations industrielles, 

nous pouvons constater que les principaux problèmes auxquels la logistique urbaine est 

actuellement confrontée sont les suivants: Premièrement, l'infrastructure de la 

logistique urbaine a besoin de mise à jour et d’être transformée. Deuxièmement, la 

qualité et l'efficacité du service du ‘dernier kilomètre’ dans la logistique urbaine a 

besoin d’améliorer. Troisièmement, diverses entreprises de logistique manquent encore 

de coopération. Quatrièmement, la logistique urbaine a besoin d’améliorer son propre 

niveau de mécanisation et d’informatisation. Cinquièmement, le gouvernement a 

besoin de mettre en place une planification et une gestion unifiées pour un 

développement sain de la logistique urbaine. 

Motivés par la distribution conjointe, nous avons présenté pour la première fois 

dans cette thèse le concept de bus de fret, un nouveau moyen de transport en commun 

pour la logistique urbaine qui peut remplacer les cargos urbains appartenant à des 

différentes entreprises de logistique tierces privées situées au centre d’une métropole 

comme Pékin et Paris. Tout comme les bus de passagers, les bus de fret peuvent être 

gérés par la mairie, et fournir un service public pour la logistique de la ville. Du fait de 

leur utilisation partagée par tous les fournisseurs qui souhaitent livrer ses marchandises 

à leurs clients, on peut s’attendre à ce que les bus de fret présentent certains avantages 
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par rapport aux cargos urbains: Premièrement, les bus de fret peuvent assurer la 

distribution conjointe de différentes entreprises de logistique tierces, ce qui permet de 

réduire les coûts de logistique urbaine et de réduire la pollution atmosphérique; 

Deuxièmement, grâce à un horaire régulier, les bus de fret peuvent améliorer la rapidité 

et la précision des services logistiques; Troisièmement, le remplacement des cargos 

urbains privés par des bus de fret peut faciliter le contrôle du trafic dans une ville et 

réduire les embouteillages. Enfin, les bus de fret peuvent améliorer le taux d'utilisation 

des voies spéciales réservées aux bus. 

Le transport routier par véhicule est la partie la plus importante de nombreux 

systèmes logistiques, et l'optimisation de l'itinéraire des véhicules a été un sujet de 

recherche d’actualité pour de nombreux chercheurs dans le domaine de la recherche 

opérationnelle et de la science de la gestion dans le monde entier. Dans cette thèse, nous 

étudions également le problème de la planification de l'itinéraire des bus de fret dans 

un système de distribution urbain. Dans le problème, chaque bus de fret a un itinéraire 

fixe, il effectue à plusieurs reprises un circuit partant d'un centre de distribution (CD), 

se rendant à plusieurs dépôts et revenant au centre de distribution. Tous les dépôts du 

système sont visités par plusieurs bus de fret avec la même fréquence de visite. Le 

problème de planification d'itinéraire peut être considéré comme une nouvelle variante 

du Problème de tournées périodique des véhicules. Pour autant que nous sachions, les 

bus dédiés au transport de fret ont rarement été abordés dans la littérature et le problème 

de tournées du fret dans ce thèse n'a jamais été étudié par d'autres chercheurs. Nous 

avons étudié trois variantes du problème de planification d’itinéraires de bus de fret : 

le problème de base avec demandes de livraison uniquement, le problème avec 

ramassages et livraisons, et le problème avec demandes de ramassage et de livraison 

stochastiques. Pour chaque variante du problème, après avoir établi un modèle 

mathématique, nous avons développé un algorithme métaheuristique pour la résoudre. 

Le choix de chaque algorithme prend en compte les caractéristiques de la variante 

correspondante du problème étudiée. La pertinence des modèles et l'efficacité des 

algorithmes proposés sont prouvées par des expérimentations numériques intensives. 

  Ce mémoire de thèse comprend un total de 7 chapitres. Le chapitre 1 présente 
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principalement le contexte de la recherche et la signification du travail de cette thèse, 

ainsi que le contenu principal et l'organisation de cette thèse. Le chapitre 2 donne une 

synthèse de la littérature des travaux de recherche liés à cette thèse, résume une 

classification des problèmes de tournées de véhicules étudiés dans la litérature, et décrit 

les principaux algorithmes pour résoudre les problèmes de tournées de véhicules. Le 

chapitre 3 présente le concept de bus de fret, et décrit l’infrastructure ainsi que le mode 

de fonctionnement du système de distribution de bus de fret. Les trois chapitres suivants 

sont consacrés à l’étude du problème de planification d’itinéraires de bus de fret : Les 

chapitres 4 et 5 étudient le problème de planification d’itinéraires de bus de fret avec 

demandes déterministes. Le problème de base de la planification d’ itinéraires des bus 

de fret avec seulement des demandes de livraison est étudié au chapitre 4, et le chapitre 

5 étudie le problème de tournées de bus de fret avec ramassages et livraisons; Le 

chapitre 6 étudie le problème d’itinéraires de bus de fret avec demandes stochastiques. 

Le chapitre 7 résume les travaux de cette thèse et indique la recherche future pour la 

mise en place de buses de fret. 

Accompagnée du développement de la logistique urbaine, cette thèse met en avant 

un système de bus de fret comme moyen de distribution de fret urbain, et étudie le 

problème de la planification d’itinéraires des bus de fret dans circonstances différentes. 

Cette recherche a une signification pratique et théorique. 

1) Du point de vue d’application, l’introduction de bus de fret offre de nouvelles 

possibilités à la mairie et aux entreprises de logistiques d’améliorer les services 

logistiques fournis aux fournisseurs (fabricants) et aux clients, tout en réduisant les 

coûts de logistique et l’impact négatif de la distribution de fret urbain sur 

l’environnement. 

2) Deuxièmement, du point de vue des entreprises de logistique, tout d’abord, le 

bus de fret est un nouveau type de système de transport collaboratif pour les entreprises 

de logistique. Le transport collaboratif des bus de fret peut aider les entreprises de 

logistique à résoudre le problème du «dernier kilomètre» pour la distribution urbaine 

afin d’aider davantage les entreprises de logistique à améliorer l’efficacité du travail, à 

réduire les coûts de distribution et à réaliser des profits plus importants. Deuxièmement, 
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pour les fournisseurs et les entreprises de commerce électronique, la recherche sur les 

bus de fret contribuera à améliorer le niveau de service du système logistique et à 

promouvoir davantage le développement de ces entreprises. 

3) Troisièmement, du point de vue du client, grâce à un horaire régulier, l'utilisation 

des bus de fret peut améliorer la rapidité et la précision des services logistiques. Le 

transfert en douceur des marchandises du fournisseur au client est la condition sine qua 

non pour assurer le fonctionnement normal de la vie du client. Dans l'environnement 

du commerce électronique, si les marchandises achetées par le client ne lui sont pas 

livrées à temps, cela peut affecter la vie normale du client et causer son mécontentement 

à l'égard de l'entreprise de commerce électronique et de l'entreprise de livraison express. 

Chaque bus de transport de fret sera exploité périodiquement et a un horaire 

opérationnel régulier pour s'assurer que les marchandises seront livrées aux clients à 

temps, ce qui améliorera considérablement le niveau de service pour les clients. 

4) Quatrièmement, du point de vue de l’environnement urbain, un excellent système 

de distribution est propice à la réduction de la circulation dense dans la ville, à la 

réduction de la pollution sonore et atmosphère de la ville. Segalou et al. (2004) ont 

souligné que les émissions d'oxydes d'azote et de particules en suspension provenant 

du transport de marchandises dans les villes représentaient 40% et 45% des émissions 

totales des transports urbains. Par conséquent, grâce au transport collaboratif et à 

l'optimisation des itinéraires des buses de fret, il est possible de réduire le nombre de 

trajets, le kilométrage et le taux de chargement à vide des véhicules tout en répondant 

aux besoins des clients, et enfin de réduire les embouteillages, les nuisances sonores et 

les émissions de gaz d'échappement. 

5) Du point de vue de la recherche, le problème de la planification d’itinéraires des 

bus de fret est un nouveau problème de tournées périodique des véhicules. Dans cette 

thèse, nous avons étudié trois variantes du problème de planification d’itinéraires de 

bus de fret : le problème de base avec demandes de livraison uniquement, le problème 

avec ramassages et livraisons, et le problème avec demandes de ramassage et de 

livraison stochastiques. Les résultats de recherche de cette thèse enrichissent la 

littérature sur le problème de tournées de véhicules. 



French Abstract 

                    125 

A.2 Synthèse de littérature 

Le VRP a été introduit par Dantzig et Ramser en 1959 comme une extension du 

TSP. Les TSP et les VRP, appartenant aux problèmes classiques d’optimisation 

combinatoire, ont de nombreuses applications dans la vie courante, notamment le 

problème de la route des véhicules dans le secteur de la livraison express, le secours 

médical, le dédouanement des déchets, la planification des équipements logistiques des 

ateliers de fabrication, le problème de la livraison postale, etc. Pour cette raison, ils ont 

attiré l'intérêt de nombreux experts et chercheurs en matière de recherche. 

Les recherches sur la tournée des véhicules concernent la gestion, les sciences de la 

logistique, la recherche opérationnelle, les mathématiques, les applications 

informatiques, la théorie des graphes et d'autres disciplines. De grandes variantes de 

VRP ont été proposées et étudiées dans la littérature. La plupart d'entre elles se sont 

avérées NP-difficiles, ce qui est très difficile à résoudre. Les chercheurs ont proposé 

des algorithmes exacts (Christofides, 1981; Laporte et al., 1986; Lapone, 1992) et des 

algorithmes heuristiques (Gendreau, 1994; Baker et al., 2003; Prins, 2004) pour 

résoudre ces problèmes. Étant donné que les algorithmes exacts ne peuvent traiter que 

des problème de tournées de véhicules de petite taille avec environ 50 clients et que le 

temps de calcul de ces algorithmes augmente de manière exponentielle avec 

l'augmentation de la taille du problème, ils ne peuvent pas être utilisés pour résoudre 

des problème de tournées de véhicules de grande taille. Par conséquent, la plupart des 

spécialistes se tournent vers les algorithmes heuristiques, qui visent à trouver une 

solution satisfaisante à un PRV dans un temps de calcul satisfaisant. 

Logistique collaborative a attiré une attention croissante au cours des dernières 

années, souvent conduit par le potentiel important de réduction des coûts et d'incertitude, 

et de préoccupations environnementales (Verdonck et al., 2013; Du et al., 2016). La 

collaboration offre de nombreux avantages, notamment la réduction des coûts et 

l’augmentation du taux d’exécution. Sur le plan social, la collaboration diminue 

généralement la distance parcourue par les transporteurs, ce qui implique moins 

d'émissions. De cette manière, la collaboration encourage la logistique verte et réduit 
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les impacts environnementaux négatifs. 

Pour la plupart, les transports urbains utilisent des camions standards ou des 

véhicules utilitaires légers moins de 3.5 tonnes. Browne, Allen, Nemoto et Visser (2010) 

étudient les véhicules utilitaires légers et analysent leur impact plutôt négatif sur les 

zones urbaines. Bektas, Crainic et Van Woensel (2017) fournissent une vue d'ensemble 

décrivant les efforts sous différents angles: système (infrastructure), problèmes de 

planification et modèles d'entreprise. Les auteurs résument également les approches 

d'optimisation qui soutiennent la planification et l'exploitation des systèmes de 

transport urbain. Ils soulignent que des innovations telles que les conteneurs 

standardisés et le transport combiné de passagers et de marchandises peuvent améliorer 

les futures livraisons urbaines. Savelsbergh et Van Woensel (2016) donnent une 

synthèse plus récente du point de vue d'un bloc opératoire, en analysant les tendances 

qui incluent l'augmentation du commerce électronique, le besoin de rapidité, la 

durabilité, l'économie collaborative, la croissance démographique et les avancées 

technologiques. Les auteurs considèrent également le problème multi-échelons, qui est 

au cœur de la synchronisation des différents niveaux et modes de collaboration verticale 

dans les systèmes de transport urbain. 

Dans commentaires connexes de Verdonck et al. (2013) et Cruijssen et al. (2007c). 

Les deux traitent de collaborations en matière de transport. Cependant, Verdonck et al. 

(2013) se concentrent uniquement sur la planification opérationnelle des transporteurs 

routiers (c'est-à-dire les propriétaires et les exploitants de matériel de transport). La 

perspective des expéditeurs collaborateurs (c'est-à-dire les propriétaires des envois) 

n'est pas prise en compte. L'examen de Guajardo et Ronnqvist (2016) traite de la 

répartition des coûts dans le transport collaboratif, qui constitue également un aspect 

important de la tournée collaborative de véhicules. 

A.3 Bus de fret dans la logistique urbaine 

Avec l’augmentation de la distribution de fret dans les transports urbains et sous 

l’effet de la demande du marché, de plus en plus de cargos de villes privées sont nés 
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dans les centres-villes, ce qui rend leur trafic plus dense et la pollution de l’air plus 

grave dans les zones métropolitaines. Motivés par la distribution conjointe, nous avons 

présenté dans ce mémoire de thèse le concept de bus de fret, un nouveau moyen de 

transport en commun pour la logistique urbaine qui peut remplacer les cargos 

appartenant à différentes entreprises privées de logistique tierce au centre-ville ( Dai et 

Chen, 2009). Dans les deux figures suivantes, les cargos urbains sont comparés aux bus 

de fret dans les systèmes de distribution urbains.  

En tant que service public pour les entreprises de logistique tierces et les clients, 

l'utilisation de bus de fret peut permettre une distribution conjointe. Une caractéristique 

importante des bus de fret est qu’ils sont des véhicules standardisés et qu’ils ont des 

itinéraires et des horaires fixes. Comme les bus de passagers, un itinéraire de véhicule 

fixe pour chaque bus de fret peut ne pas être le plus économique en termes de coût, 

mais avec les itinéraires et les horaires fixes, les bus de fret peuvent fournir un service 

stable et précis, et les expéditeurs et les clients peuvent organiser les délais de livraison 

de leurs commandes. Chaque dépôt dans ce système de distribution est une station de 

bus de fret, qui peut être une armoire intelligente (dépôt) pour le stockage temporaire 

de marchandises. Selon les horaires, les clients peuvent retirer leurs produits 

commandés en libre-service dans les stations de bus (dépôts) pour le transport de 

marchandises (dépôts) ou demander aux livreurs du dernier kilomètre de livrer les 

marchandises d'une station de bus à leur domicile (Taniguchi & Van der Heijden, 2000).  

De manière plus précise, le bus de fret peut être défini comme: le fret est un véhicule 

public circulant dans une ville et fournissant des services de logistique urbaine. Comme 

un bus de passagers, chaque bus de fret a un itinéraire et un horaire fixe et peut utiliser 

des voies spéciales réservées aux bus. 

A.4 Modèle et algorithme pour la planification d'itinéraire des bus de fret avec 

livraisons seulement 

A.4.1 Description du problème 

Dans le modèle, les bus de fret acheminent les marchandises d'un centre de 
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distribution à un ensemble de dépôts. Pour des raisons de simplicité, nous 

n’envisageons pas les interactions des bus de fret avec les tricycles électriques qui 

effectuent les livraisons du dernier kilomètre des dépôts aux clients. Nous divisons 

l'horizon temporel de planification (par exemple, un jour) des opérations des bus de fret 

en M périodes (M> 1). En tant que étude 1 du problème d’ itinéraires des bus de fret, 

nous supposons que la demande à chaque dépôt est connue. Cette demande peut être 

prévue à l'avance tous les jours ou peut être estimée par la moyenne des demandes 

historiques du dépôt pour la même période et le même jour de chaque semaine pendant 

un an, un trimestre ou un mois. De plus, nous supposons que chaque bus de fret a un 

itinéraire fixe dans l’horizon temporel et que chaque dépôt doit être desservi par un bus 

de fret à chaque période. La demande totale de livraison de chaque dépôt doit être 

satisfaite à la fin de l'horizon temporel, mais il est possible que la demande d'un dépôt 

au cours d'une période donnée ne soit que partiellement satisfaite au cours de cette 

période en raison de la capacité limitée d'un bus de fret. Dans ce cas, la demande non 

satisfaite de la période sera satisfaite au cours de périodes ultérieures, mais avec une 

pénalité pour livraison tardive dépend linéairement en fonction de la quantité de retard 

et du nombre de périodes retardées. En raison de la pénalité de retard de livraison, toutes 

les demandes doivent être satisfaites au plus tôt possible. 

Les principaux paramètres du modèle sont définis comme suit: 

⚫ o   Le centre de distribution d'où chaque bus de fret part et revient. 

⚫ 𝑉   Ensemble des bus de fret. 

⚫ G   Ensemble de dépôts.  

⚫ 𝑈   La capacité de chaque bus de fret. 

⚫ 𝐶𝑖𝑗  Coût de fonctionnement d'un bus de fret lorsqu'il passe d'un noeud i à un 

noeud j (i, jϵ{s} ∪ 𝐺).  

⚫ M   Le nombre de périodes prises en compte dans le problème de planification 

d'itinéraire.  

⚫ 𝑑𝑖(k)  La demande du dépôt i pendant la k-ième période, 𝑖 ∈ G, 𝑘 ∈ {1,2 … 𝑀}. 

⚫  P   Coefficient de pénalité (par période et par unité de demande) pour le retard 

de livraison. 
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Nous supposons que le centre de distribution dessert tous les dépôts G du système 

de distribution considéré. La distance entre le noeud i et le noeud j est notée 𝐷𝑖𝑗. Chaque 

bus de fret charge les marchandises au centre de distribution, les livre à un sous-

ensemble de dépôts et les ramène enfin au centre de distribution. Le coût d'exploitation 

d'un bus de fret du nœud i au nœud j est calculé comme suit: 𝐶𝑖𝑗 = 𝐶 ∗ 𝐷𝑖𝑗 , où C est le 

coût d'exploitation unitaire à la distance de chaque bus de fret. Il existe F (F est un 

nombre entier) de bus de fret exploités pour le centre de distribution o, et la capacité de 

chaque bus de fret est de U. 

A chaque période, chaque bus de fret part du centre de distribution o, se rend dans 

ses dépôts desservis et retourne au centre de distribution. De plus, chaque période, 

toutes les marchandises doivent être déchargées de l’bus de fret avant de revenir au 

centre de distribution. On suppose que la demande 𝑑𝑖(𝑘) de chaque dépôt i à chaque 

période k∈ {1,2… M} est connue. Dans chaque période, la livraison de bus de fret v à 

chaque dépôt i peut être la demande de cette période plus la demande (la demande 

partielle) des périodes précédentes, mais ne peut pas être la demande d'une période 

ultérieure. 

Nous devons planifier le parcours des véhicules pour chaque bus de fret v et la 

quantité de livraison de chaque bus de fret à chaque dépôt à chaque période. Notre 

objectif est de minimiser les coûts d’exploitation de tous les bus de fret, ainsi que les 

pénalités de retard de livraison pour les périodes M. 

A.4.2 Modèle mathématique 

Comme nous pouvions observer de la description du problème, il existe trois 

caractéristiques importantes pour la planification d’itinéraire des bus de fret avec 

livraisons seulement: Premièrement, chaque bus de fret a un itinéraire fixe dans 

l'horizon temporel, et chaque dépôt doit être desservi par un bus de fret à chaque période; 

Deuxièmement, la demande d'un dépôt à chaque période peut être divisée en une 

demande livrée à temps dans cette période et une demande livrée à des périodes 

ultérieures en raison de la capacité limitée d'un bus de fret en cause. Troisièmement, en 
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raison de la pénalité de retard de livraison, toutes les demandes doivent être satisfaites 

le plus tôt possible. 

Le modèle mathématique détaillé pour la planification d'itinéraire des bus de fret 

est donné comme suit: 

Variables de décision 

x𝑖𝑗
v     Une variable binaire égale à 1 si le bus de fret v ϵV passe du noeud i à j (i, jϵ {o} 

∪G); 0 sinon. 

y𝑖
v  Une variable binaire égale à 1 si et seulement si le dépôt i ϵG est desservi par le 

bus cargo v ϵV; 0 sinon. 

𝑑𝑖
𝑣(k)  Quantité non chargée de l'bus de fret v ϵV au dépôt i ϵG lors de la k-ème visite 

k∈ {1,2… m}; 0 sinon. 

𝑄𝑖
𝑣(k)  Charge du bus de fret v ϵV lorsqu'il vient d'arriver au noeud i ϵ {o}∪G lors de 

la k-ième visite, k∈ {1,2… M}. 

 

Fonction objectif : 

L'objectif est de minimiser la somme des coûts, qui comprennent les coûts 

d'exploitation des bus de fret et les coûts des pénalités pour retard de livraison dans 

l'horizon de planification des M périodes. 

 

Min Obj = 𝑀 ∗  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑣  𝑣∈𝑉  𝑗∈{0}∪𝐺𝑖∈{𝑜}∪𝐺 + 

P* ∑ ∑  (∑ 𝑑𝑖(𝑘)𝑛
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉

𝑀
𝑛=1𝑖∈𝐺 ) 

Constraints 

∑ x𝑜𝑗
v

𝑗∈G = ∑ x𝑗𝑜
v

j∈G                 ∀v ∈ 𝑉                        (4.1) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = ∑ x𝑗𝑖
v

𝑖∈{0}∪G         ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                   (4.2) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = y𝑗
v                 ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                  (4.3) 
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∑ y𝑗
v

v∈V  = 1                     ∀𝑗 ∈ 𝐺                          (4.4) 

 𝑄𝑗
𝑣(𝑘)>=𝑄𝑖

𝑣(𝑘)+𝑑𝑗
𝑣(𝑘)-𝑈(1-𝑥𝑖𝑗

𝑣 ) 

        ∀i ∈ G, ∀ j ∈ {o} ∪ G, ∀v ∈ V, ∀k∈ {1,2 … M}                      (4.5) 

 𝑄𝑜
𝑣(𝑘) = 0                     ∀𝑣 ∈ 𝑉,   ∀k∈ {1,2 … 𝑀}                        (4.6) 

0<=  𝑄𝑖
𝑣(𝑘)<=U             ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉                       (4.7) 

∑ 𝑑𝑖
𝑣(𝑘)𝑀

𝑘=1 = 𝑑𝑖*𝑦𝑖
𝑣      ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉                            (4.8) 

∑ 𝑑𝑖
𝑣(𝑘)𝑛

𝑘=1 <= ∑ 𝑑𝑖(𝑘)𝑛
𝑘=1  *𝑦𝑖

𝑣 

   ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀n∈ {1,2 … 𝑀}                                  (4.9) 

 𝑥𝑖𝑗
𝑣 ∈ {0,1}     𝑦𝑖

𝑣 ∈ {0,1}     

 ∀𝑖 ∈ {𝑜} ∪ 𝐺，∀𝑗 ∈ {𝑜} ∪ 𝐺, ∀𝑣 ∈ 𝑉                              (4.10) 

Les contraintes (4.1) indiquent que chaque bus de fret part et revient au centre de 

distribution. Les contraintes (4.2) garantissent que chaque bus de fret arrivant à un 

dépôt doit le quitter. Les contraintes (4.3) et (4.4) garantissent que tous les dépôts 

doivent être desservis et que chaque dépôt est desservi par au plus un bus de fret. Les 

contraintes (4.5) (4.6) et (4.7) définissent les contraintes de capacité des véhicules. Les 

contraintes (4.8) garantissent que toutes les demandes de chaque dépôt doivent être 

satisfaites dans l'horizon temporel de M périodes. Les contraintes (4.9) indiquent que, 

pour chaque période, la livraison de bus de fret v à chaque dépôt i peut correspondre à 

la demande de cette période ou de périodes antérieures, mais ne peut pas être à la 

demande de périodes ultérieures. Enfin, les contraintes (4.10) définissent les domaines 

de toutes les variables de décision. 

A.4.3 Algorithme mémétique 

Dans ce chapitre, nous concevons un algorithme mémétique (algorithme génétique 

avec recherche locale) pour résoudre ce problème particulier de tournée périodique des 

véhicules. En particulier, notre développement de cet algorithme prend en compte les 
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caractéristiques spécifiques de ce problème, telles que l'itinéraire fixe pour chaque bus 

de fret, la demande peut être servie plus tard, mais avec un coût de pénalité de livraison 

tardive, etc. Méthodes pour coder / décoder, calculer l'adéquation de chaque solution, 

pour effectuer une recherche locale dans l'algorithme. 

Basé sur les étapes conventionnelles des algorithmes génétiques, le cadre de 

procédure de notre algorithme Mémétique est illustré à la Fig.4.1 

 

                                Fig.4.1 Algorithme Memetique 

Nous concevons 70 instances de tailles petite, moyenne et grande et comparons 

les performances de l'algorithme mémétique (implémenté dans MATLAB) avec celles 

du solveur CPLEX MILP sur les instances. Pour les petites instances, en comparant 

leurs trois indicateurs (index 𝐺𝑎𝑝𝐶𝑝𝑙𝑒𝑥  , 𝐺𝑎𝑝𝑀𝐴  et 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 ), nous pouvons 

constater que MA a trouvé de meilleures solutions que CPLEX avec un pourcentage 

moyen d’amélioration 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 de 19.31% en termes de coût total. De plus, nous 

constatons que notre MA a un grand avantage sur CPLEX en termes de temps 

d’exécution. Le temps de calcul le plus long pour MA est de seulement 37,2 secondes 

par rapport à la limite de 1800 secondes atteinte par CPLEX. Pour les instances de taille 

moyenne, en revanche, notre MA pourrait toujours trouver de meilleures solutions 

réalisables. Bien que le temps d'exécution de l'agent de gestion augmente de 98,5 

secondes à 550,7 secondes, son temps de calcul est bien inférieur à celui de CPLEX 

dans toutes les instances. Pour les instances de grande taille, nous pouvons voir que nos 
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solutions élaborées par MA ont un écart moyen 𝐺𝑎𝑝𝑀𝐴 de 14,44% et que la meilleure 

amélioration B de l’EM par rapport à CPLEX pourrait atteindre 119,11%. Ces résultats 

expérimentaux montrent que notre algorithme memetic est efficace pour résoudre le 

problème de la plannification d’itinéraires de bus de fret étudié dans cette thèse. 

A.5 Modèle et algorithme pour la planification d'itinéraire des bus de fret avec 

ramassages et livraisons 

A.5.1 Description du problème 

Au chapitre 5, le thèse fait de la recherche supplémentaire sur le problème de 

l’itinéraire de bus de fret sur la base du chapitre 4. Étant donné qu’en pratique, en tant 

que nouveau moyen de transport en commun pour la logistique urbaine, les bus de fret 

doivent effectuer le ramassage et la livraison des marchandises sur chaque site client / 

fournisseur visité. Dans ce chapitre, nous étudions le problème de la planification 

d'itinéraire de bus de fret avec ramassage et livraison dans un système de distribution 

urbain. 

Comme le chapitre 4, le problème est décrit en premier lieu, chaque bus de fret peut 

effectuer le ramassage et la livraison des marchandises à chaque dépôt (emplacement 

client / fournisseur). Le bus de fret arrive à chaque emplacement client / fournisseur 

(gare), décharge les marchandises en premier et charge les marchandises plus tard. 

Pendant toute la durée du voyage, la quantité totale de marchandises dans le bus ne doit 

pas dépasser sa capacité. L’objectif est de minimiser les coûts d’exploitation de tous les 

bus de fret, ainsi que les frais de retard de livraison et de ramassage. Afin de résoudre 

ce problème, un modèle MILP (Mixed-Integer Linear Programming) est formulé et un 

algorithme ALNS (Algorithme de recherche adaptative à grand voisinage) est 

développé en combinaison avec les caractéristiques du problème, la validité du modèle 

et l'efficacité de notre algorithme ALNS est vérifié par des expérimentations 

numériques. 

Dans le modèle, chaque bus de fret circule entre un centre de distribution et un 

ensemble de dépôts. Pour des raisons de simplicité, nous n’envisageons pas les 
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interactions des bus de fret avec les tricycles électriques qui effectuent les livraisons du 

dernier kilomètre des dépôts aux clients. Les principales caractéristiques du modèle 

sont d'abord présentées dans ce qui suit. 

（1） Plusieurs périodes: nous considérons un horizon temporel (par exemple un jour) 

divisé en M périodes (M> 1) et supposons que chaque bus de fret visite ses dépôts 

desservis une fois par période, ainsi que la demande de livraison et de ramassage des 

marchandises. Marchandises à chaque dépôt à chaque période est connue. 

（2） Routes itinéraires fixes: comme bus de passagers, nous supposons que chaque 

bus de fret a un itinéraire fixe dans l'horizon temporel et que chaque dépôt doit être 

desservi par un bus de fret à chaque période. 

(3)  Livraison et enlèvement: chaque bus de fret peut effectuer l'enlèvement et la 

livraison des marchandises à chaque dépôt (emplacement client / fournisseur). Le bus 

de fret arrive à chaque emplacement client / fournisseur (gare), décharge les 

marchandises en premier et charge les marchandises plus tard. Pendant toute la durée 

du voyage, la quantité totale de marchandises dans le bus ne doit pas dépasser sa 

capacité. Il est donc possible que la livraison ou la demande de ramassage d'un dépôt 

au cours d'une période donnée ne soit que partiellement satisfaite au cours de cette 

période en raison de la capacité limitée d'un bus de fret. Dans ce cas, la demande non 

satisfaite de la période ne peut être satisfaite que ultérieurement.. En d'autres termes, 

les marchandises chargées ou déchargées par l'bus de fret doivent correspondre aux 

demandes de ramassage ou de livraison de cette période ou des périodes précédentes 

qui n'étaient pas satisfaites en raison de la limitation de la capacité du véhicule. 

（4） Pénalité de retard de livraison / ramassage. La livraison et le ramassage des 

marchandises chez un client ou un fournisseur peuvent être en retard, mais avec des 

pénalités. Deux types de pénalités sont introduits dans ce modèle. L’une est la pénalité 

causée par le retard dans l’horizon temporel (par exemple, un jour) de M périodes, qui 

dépend linéairement de la quantité des demandes de livraison ou de ramassage tardives 

et du nombre de périodes retardées avec la pénalité par période et par unité de temps. 

demande donnée par un coefficient α (dans cet article, nous supposons que le ramassage 
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et la livraison tardifs ont le même coefficient de pénalité). L’autre est la pénalité pour 

toutes les demandes non satisfaites à la fin de l’horizon temporel (par exemple un jour) 

de M périodes, qui dépend linéairement de la quantité des demandes de livraison ou de 

ramassage tardives, avec la pénalité par unité de demande donnée par un autre 

coefficient. β. 

De plus, à cause de ces deux types de pénalités, nous pouvons supposer que le 

fonctionnement du bus de fret a deux caractéristiques: 1, lorsque le bus de fret arrive à 

un dépôt, il décharge / livre en premier lieu, puis charge / ramasse les marchandises. 

(Afin de libérer plus de capacité de ramassage). 2, pour la livraison, le bus de fret 

donnera la priorité à la satisfaction des besoins des dépôts de visite précédents en 

fonction de l'ordre de visite; lors du ramassage, l’bus de fret fera de son mieux pour 

répondre aux besoins de chargement des dépôts en fonction de sa capacité restante 

maximale (car le ramassage et la livraison tardifs ont le même coefficient de pénalité). 

A.5.2 Modèle mathématique 

Dans cette sous-section, nous proposons un modèle mathématique pour la 

planification de l'itinéraire des bus de fret en prenant en compte toutes ses 

caractéristiques. Avec ce modèle mathématique, nous pouvons optimiser le coût total 

des bus de fret composés de leurs coûts d’exploitation et des frais de pénalité pour retard 

de livraison et de ramassage des marchandises dans l’horizon de planification. En 

même temps, nous pouvons également obtenir les itinéraires optimaux des bus de fret 

en résolvant le modèle. 

Le modèle mathématique détaillé pour la planification d'itinéraire des bus de fret 

est donné comme suit: 

Variables de décision : 

𝑥𝑖𝑗
𝑣      Une variable binaire égale à 1 si le bus de fret v ϵV passe du nœud i à j (i, jϵ 

{o}∪G); 0 sinon. 

𝑦𝑖
𝑣     Une variable binaire égale à 1 si et seulement si le dépôt i ϵG est desservi par 

le bus cargo v ϵV; 0 sinon. 



French Abstract 

                    136 

𝑑𝑖
𝑣(k)   Quantité non chargée de l'bus de fret v ϵV au dépôt i ϵG lors de la k-ème visite 

k∈ {1,2… m}; 0 sinon. 

𝑝𝑖
𝑣(k)   La quantité de charge du bus de fret v ϵV au dépôt i ϵG lors de la k-ème visite 

k∈ {1,2… m}; 0 sinon. 

𝑄𝑖
𝑣(k)   La quantité de toutes les marchandises restant à livrer dans le bus de cargo v 

ϵV quand il vient d'arriver au nœud i ϵ {o} ∪G pendant la k-ième visite, k∈ {1,2… 

M}. 

𝑊𝑖
𝑣(k)  La quantité de toutes les marchandises récupérées par le bus de fret v ϵV quand 

il vient d'arriver au nœud i ϵ{o}∪G lors de la k-ème visite, k∈ {1,2… M}. 

Fonction objectif : 

    L’objectif est de minimiser les coûts totaux, y compris les coûts d’exploitation des 

bus de fret et les pénalités liées aux retards de livraison et de ramassage des 

marchandises dans l’horizon de planification des M périodes. 

 

Min Obj =     𝑀 ∗ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑣  𝑣∈𝑉  𝑗∈{0}∪𝐺𝑖∈{𝑜}∪𝐺 + 

𝛼 * ∑ ∑ (∑ 𝑑𝑖(𝑘)𝑛
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉 )𝑀−1

𝑛=1𝑖∈𝐺  + 

𝛽 *∑ ( ∑ 𝑑𝑖(𝑘)𝑀
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑀
𝑘=1 )𝑣𝜖𝑉𝑖∈𝐺  

𝛼 * ∑ ∑ (∑ 𝑝𝑖(𝑘)𝑛
𝑘=1 − ∑ ∑ 𝑝𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉

𝑀−1
𝑛=1𝑖∈𝐺 ) + 

𝛽 * ∑ ( ∑ 𝑝𝑖(𝑘)𝑀
𝑘=1 − ∑ ∑ 𝑝𝑖

𝑣(𝑘)𝑀
𝑘=1 )𝑣𝜖𝑉𝑖∈𝐺  

                                                             (5.1) 

Constraints 

∑ x𝑜𝑗
v

𝑗∈G = ∑ x𝑗𝑜
v

j∈G                 ∀v ∈ 𝑉                      (5.2) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = ∑ x𝑗𝑖
v

𝑖∈{0}∪G         ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                (5.3) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = y𝑗
v                 ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                (5.4) 
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∑ y𝑗
v

v∈V  = 1                     ∀𝑗 ∈ 𝐺                       (5.5) 

 𝑄𝑗
𝑣(𝑘)<=𝑄𝑖

𝑣(𝑘)- 𝑑𝑖
𝑣(𝑘)+𝑈(1-𝑥𝑖𝑗

𝑣 ) 

        ∀i ∈ G, ∀ j ∈ {o} ∪ G, ∀v ∈ V, ∀k∈ {1,2 … M}                    (5.6) 

 𝑄𝑜
𝑣(𝑘) = 0                     ∀𝑣 ∈ 𝑉,   ∀k∈ {1,2 … 𝑀}                      (5.7) 

 W𝑗
v(𝑘)>=W𝑖

v(𝑘)+p𝑖
v(𝑘)-U(1-x𝑖𝑗

v ) 

        ∀𝑖 ∈ 𝐺, ∀ 𝑗 ∈ {o} ∪ G, ∀v ∈ 𝑉, ∀k∈ {1,2 … 𝑀}                   (5.8) 

 Wo
v(𝑘)= ∑ p𝑖

v
i∈G (𝑘)           ∀v ∈ 𝑉,   ∀k∈ {1,2 … 𝑀}              (5.9) 

0<=   Q𝑖
v(𝑘)+  W𝑖

v(𝑘) <=U   𝑖 ∈ {0} ∪ G, ∀v ∈ 𝑉                   (5.10) 

∑ 𝑑𝑖
𝑣(𝑘)𝑛

𝑘=1 <= ∑ 𝑑𝑖(𝑘)𝑛
𝑘=1  *𝑦𝑖

𝑣 

   ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀n∈ {1,2 … 𝑀}                               (5.11) 

∑ p𝑖
v(k)n

k=1 <= ∑ p𝑖(k)n
k=1  *y𝑖

v 

   ∀𝑖 ∈ G, ∀v ∈ 𝑉, ∀n∈ {1,2 … M}                                (5.12) 

 𝑥𝑖𝑗
𝑣 ∈ {0,1}     𝑦𝑖

𝑣 ∈ {0,1}     

𝑑𝑖
𝑣(𝑘)>=0 ; p𝑖(k)>=0 ;  Q𝑖

v(𝑘)>=0 ;  W𝑖
v(𝑘)>=0 

 ∀𝑖 ∈ {𝑜} ∪ 𝐺，∀𝑗 ∈ {𝑜} ∪ 𝐺, ∀𝑣 ∈ 𝑉                            (5.13) 

Les contraintes (5.2) indiquent que chaque bus de fret part et revient au centre de 

distribution. Des contraintes (5.3) garantissent que chaque bus de fret arrivant à un 

dépôt doit le quitter. Les contraintes (5.4) et (5.5) garantissent que tous les dépôts 

doivent être desservis et que chaque dépôt est desservi par au plus un bus de fret. Les 

contraintes (5.6) (5.7) et (5.8) (5.9) (5.10) définissent les contraintes de capacité des 

véhicules. Les contraintes (5.11) (5.12) indiquent que pour chaque période, la livraison 

et le ramassage des bus de fret v à chaque dépôt i ne peuvent être que la demande de 

cette période ou de périodes antérieures, mais ne peuvent pas être la demande de 

périodes ultérieures. Enfin, les contraintes (5.13) définissent les domaines de toutes les 
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variables de décision. 

A.5.3 Algorithme de recherche adaptative à grand voisinage (ALNS) 

L'algorithme de recherche de voisinage à grande échelle a été proposé pour la 

première fois par Shaw (1998). Ceci est un algorithme itératif. L’idée de l’algorithme 

est d’améliorer la solution actuelle à chaque itération en utilisant un opérateur de 

destruction qui supprime certains nœuds clients des itinéraires actuels et un opérateur 

de réparation qui réinsère ces nœuds clients dans les itinéraires. Si la nouvelle solution 

est meilleure que la solution actuelle, celle-ci est acceptée comme solution actuelle pour 

la prochaine itération. 

ALNS utilise plusieurs opérateurs de destruction et de réparation pour améliorer la 

solution actuelle à chaque itération. Le voisinage d’une solution peut être obtenu en 

supprimant plusieurs nœuds client des itinéraires actuels (solution) et en réinsérant les 

nœuds client. Dans ALNS, un opérateur de suppression et un opérateur de réinsertion 

sont sélectionnés de manière dynamique à chaque itération en fonction de leurs 

performances passées ( Lv，Zhang，and Wang，2018); chaque opérateur est associé 

à une probabilité. Si l'opérateur améliore la solution actuelle, la probabilité augmente, 

sinon la probabilité peut diminuer. La solution nouvellement générée est acceptée si 

elle améliore la solution actuelle, sinon elle sera acceptée avec une probabilité 

dépendant de la température et définie selon une règle de recuit par simulation (SA), la 

température sera progressivement diminuée avec la progression de l'algorithme; Si la 

nouvelle solution générée est acceptée, la solution actuelle sera mise à jour pour la 

prochaine itération. ALNS a été appliqué avec succès pour résoudre divers problème 

de tournées des véhicules（Pisinger and Ropker，2007）. 

Le cadre de procédure de notre système ALNS est présenté à la Fig.5.1. 
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Fig.5.1 Le cadre de procédure de ALNS 

Afin de vérifier le modèle mathématique de la planification d’itinéraires des bus 

de fret et d’évaluer l’efficacité de notre ALSN, sur la base des instances générées au 

chapitre 4, nous avons également conçu 70 instances de petites, moyennes et grandes 

tailles, et comparé les performances du ALSN (implémenté dans MATLAB) avec celui 

du résolveur MILP de CPLEX sur les instances. Pour tous les cas, nous pouvons voir 

notre ALNS a un grand avantage sur CPLEX en termes de temps d'exécution. Pour les 

petites instances, nous pouvons constater que ALNS a trouvé de meilleures solutions 

que CPLEX avec un pourcentage moyen d’amélioration 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥  de 25,94% en 

termes de coût total. Pour les instances de taille moyenne, l'amélioration 𝐼𝑚𝑝𝑀𝐴−𝐶𝑝𝑙𝑒𝑥 

est passée de 31,82% à 55,67%. Pour les instances de grande taille, nous pouvons voir 

que nos solutions ALNS offrent un écart moyen 𝐺𝑎𝑝𝐴𝐿𝑁𝑆  de 17,04% et que la 

meilleure amélioration 𝐼𝑚𝑝𝐴𝐿𝑁𝑆−𝐶𝑝𝑙𝑒𝑥  de l’ALNS par rapport à CPLEX pourrait 

atteindre 116,62%. Ces résultats expérimentaux montrent que notre système ALNS est 

efficace pour résoudre le problème de la planification d’itinéraires de bus de fret étudié 

dans cette thèse. 
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A.6 Modèle et algorithme pour la planification d'itinéraire des bus de fret avec 

demandes stochastiques de ramassage et de livraison 

A.6.1 Optimisation par scénarios 

Dans le problème traditionnel du calcul d'itinéraires, on suppose généralement que 

toutes les informations sont complètes et connues, c'est-à-dire que le planificateur 

d'itinéraires dispose de toutes les informations préalables, y compris les informations 

sur les clients, le réseau routier et les véhicules, etc. qui sont fixées pendant toute la 

durée de la planification d’itinéraire et de la distribution. Cependant, avant la 

construction de l'itinéraire et pendant le processus de transport proprement dit, toutes 

les informations ne sont pas toujours connues, et il est difficile pour le planificateur 

d'itinéraire de saisir pleinement toutes les informations aux nœuds. Par exemple, dans 

le cadre d'un travail réel, lorsque nous organisons le trajet d'un bus de fret, nous ne 

connaissons pas la demande exacte de livraison et de ramassage de chaque dépôt pour 

chaque période. C'est pourquoi, dans ce chapitre, nous étudions le problème de 

planification d’itinéraires de bus de fret avec demandes stochastiques de ramassage et 

de livraison. 

Le problème d’itinéraires de bus de fret avec demandes stochastiques que nous 

étudions est un problème d'optimisation très compliquée, ce qui est peu susceptible 

d'être résolu par une approche analytique. Pour cette raison, nous adoptons une 

approche d'optimisation basée sur des scénarios pour résoudre le problème. 

L'approche par scénario est liée à l'approche par simulation pour l'optimisation 

stochastique, car chaque échantillon (réalisation possible de paramètres aléatoires) dans 

la simulation de Monte Carlo peut être considéré comme un scénario. Cette approche 

considère un certain nombre de scénarios correspondant à des réalisations possibles de 

paramètres aléatoires d'un modèle d'optimisation stochastique. Pour les scénarios 

donnés, ce modèle stochastique peut être transformé en un modèle équivalent 

déterministe, qui est résolu par un algorithme d'optimisation exact ou approximatif. 

Nous adoptons l'approche du scénario pour résoudre notre problème d’itinéraires de 
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bus de fret avec demandes stochastiques. Pour ce faire, nous formulons d’abord le 

modèle de programmation linéaire mixte à nombres entiers (MILP) du problème 

d’optimisation stochastique pour un nombre donné de scénarios de demande, puis 

développons un algorithme génétique immunitaire (IGA) pour résoudre le modèle 

approximativement avec l'évaluation du coût de chaque solution basée sur le modèle. 

A.6.2 Description du problème 

Comme le problème décrit au chapitre 5, dans le système de bus de fret, chaque bus 

de fret circule entre un centre de distribution et un ensemble de dépôts. La différence 

est que, dans ce chapitre, les demandes (ramassage et livraison) à chaque dépôt sont 

stochastiques. Grâce aux statistiques, nous pouvons obtenir les demandes moyennes de 

ramassage et de livraison de chaque dépôt à chaque cycle. Dans cette thèse, nous nous 

référons à Golden (1979) qui a supposé que la demande de ramassage et de livraison 

de chaque dépôt obéissait à la distribution de Poisson. Sur la base de la méthode 

théorique d'optimisation basée sur la simulation, nous générons des scénarios de 

demande de groupes L pour la simulation.. Ensuite, nous obtenons la demande de 

livraison au dépôt i dans la k-ième période du l-ième scénario 𝑑𝑖(k)(l) et la demande de 

ramassage au dépôt i dans la k-ième période du l-ième scénario  𝑝𝑖 (k)(l). De cette 

manière, l’évaluation de la solution pour chaque itinéraire de véhicule se base sur le 

coût moyen attendu de chaque schéma d’ itinéraires de bus de fret dans ces scénarios 

de groupes L. 

A.6.3 Modèle d'équivalence déterministe 

Avec les hypothèses de la dernière sous-section et en adoptant l'approche par 

scénario, nous proposons un modèle mathématique pour la planification d'itinéraire de 

bus de fret en prenant en compte toutes ses caractéristiques. Avec ce modèle 

mathématique, nous pouvons optimiser le coût total des bus de fret composés de leurs 

coûts d’exploitation et des frais de pénalité pour retard de livraison et de ramassage des 

marchandises dans l’horizon de planification. En même temps, nous pouvons 
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également obtenir les itinéraires optimaux des bus de fret en résolvant le modèle. 

Le modèle mathématique détaillé pour la planification d'itinéraire des bus de fret 

est donné comme suit: 

Variables de décision : 

𝑥𝑖𝑗
𝑣      Une variable binaire égale à 1 si le bus de fret v ϵV passe du nœud i à j (i, jϵ 

{o}∪G); 0 sinon. 

y𝑖
v    Une variable binaire égale à 1 si et seulement si le dépôt i ϵG est desservi par le  

bus cargo v ϵV; 0 sinon. 

𝑑𝑖
𝑣(k)(l)   La quantité non chargée du bus de cargo v ϵV au dépôt i ϵG lors de la k-ème 

visite (k∈ {1,2… M}) du l-ème scénario (l∈ { 1,2… L}, 0 sinon. 

𝑝𝑖
𝑣(k)(l)  La quantité chargée de l'bus de fret v ϵV au dépôt i ϵG lors de la k-ème visite 

(k∈ {1,2… M}) du l-ème scénario (l∈ { 1,2… L}; 0 sinon. 

𝑄𝑖
𝑣(k)(l)   La quantité de toutes les marchandises restant à livrer dans le bus de fret   

v ϵV quand il vient d'arriver au noeud iϵ{o}∪G lors de la k-ième visite (k∈ 

{1,2… M}) du l ième scénario (l∈ {1,2… L}. 

𝑊𝑖
𝑣(k)(l)   La quantité de toutes les marchandises récupérées par le bus de fret v ϵV 

quand il vient d'arriver au noeud i ϵ{o}∪G lors de la k-ième visite (k∈ {1,2… 

M }) du l-ème scénario (l∈ {1,2… L}. 

Fonction objectif : 

    L’objectif est de minimiser le coût moyen simulé, y compris les coûts d’exploitation 

des bus de fret et les frais de pénalité pour retard de livraison et de ramassage des 

marchandises dans l’horizon de planification des M périodes. 

Min Obj =[ 𝑀 ∗ 𝐿 ∗ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑣  𝑣∈𝑉  𝑗∈{0}∪𝐺𝑖∈{𝑜}∪𝐺 + 

𝛼 * ∑ ∑ ∑ (∑ 𝑑𝑖(𝑘)(𝑙)𝑛
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉 (𝑙))𝑀−1

𝑛=1𝑙∈{1,2…L}𝑖∈𝐺  + 

 𝛽 *∑ ∑  (∑ 𝑑𝑖(𝑘)(𝑙)𝑀
𝑘=1 − ∑ ∑ 𝑑𝑖

𝑣(𝑘)𝑀
𝑘=1 (𝑙))𝑣𝜖𝑉𝑙∈{1,2…L}𝑖∈𝐺  
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𝛼 * ∑ ∑ ∑ (∑ 𝑝𝑖(𝑘)𝑛
𝑘=1 (𝑙) − ∑ ∑ 𝑝𝑖

𝑣(𝑘)𝑛
𝑘=1𝑣𝜖𝑉 (𝑙))𝑀−1

𝑛=1𝑙∈{1,2…L}𝑖∈𝐺  + 

 𝛽 * ∑ ∑ (∑ 𝑝𝑖(𝑘)(𝑙)𝑀
𝑘=1 − ∑ ∑ 𝑝𝑖

𝑣(𝑘)𝑀
𝑘=1 (𝑙))𝑣𝜖𝑉𝑙∈{1,2…L}𝑖∈𝐺 ]/L 

                                                                                  

(6.1) 

Constraints 

∑ x𝑜𝑗
v

𝑗∈G = ∑ x𝑗𝑜
v

j∈G                 ∀v ∈ 𝑉                       (6.2) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = ∑ x𝑗𝑖
v

𝑖∈{0}∪G         ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                  (6.3) 

∑ x𝑖𝑗
v

𝑖∈{o}∪G = y𝑗
v                 ∀𝑗 ∈ 𝐺, ∀v ∈ 𝑉                 (6.4) 

∑ y𝑗
v

v∈V  = 1                     ∀𝑗 ∈ 𝐺                        (6.5) 

 𝑄𝑗
𝑣(𝑘)(𝑙)<=𝑄𝑖

𝑣(𝑘)(𝑙)- 𝑑𝑖
𝑣(𝑘)(𝑙)+𝑈(1-𝑥𝑖𝑗

𝑣 ) 

   ∀i ∈ G, ∀ j ∈ {o} ∪ G, ∀v ∈ V, ∀k∈ {1,2 … M}, ∀l∈ {1,2 … L}          (6.6) 

 𝑄𝑜
𝑣(𝑘)(𝑙) = 0                     ∀𝑣 ∈ 𝑉,   ∀k∈ {1,2 … 𝑀}, ∀l∈ {1,2 … L}        (6.7) 

 W𝑗
v(𝑘)(l)>=W𝑖

v(𝑘)(l)+p𝑖
v(𝑘)(l)-U(1-x𝑖𝑗

v ) 

        ∀𝑖 ∈ 𝐺, ∀ 𝑗 ∈ {o} ∪ G, ∀v ∈ 𝑉, ∀k∈ {1,2 … 𝑀}, ∀l∈ {1,2 … L}      (6.8) 

 Wo
v(𝑘)(l)= ∑ p𝑖

v
i∈G (𝑘)(l)   ∀v ∈ 𝑉,   ∀k∈ {1,2 … 𝑀} , ∀l∈ {1,2 … L}   (6.9) 

0<=   Q𝑖
v(𝑘)(l)+  W𝑖

v(𝑘)(l) <=U  

  𝑖 ∈ {0} ∪ G, ∀v ∈ 𝑉, ∀k∈ {1,2 … 𝑀} , ∀l∈ {1,2 … L}                (6.10) 

∑ 𝑑𝑖
𝑣(𝑘)𝑛

𝑘=1 (𝑙)<= ∑ 𝑑𝑖(𝑘)(l)𝑛
𝑘=1  *𝑦𝑖

𝑣 

   ∀𝑖 ∈ 𝐺, ∀𝑣 ∈ 𝑉, ∀n∈ {1,2 … 𝑀}, ∀l∈ {1,2 … L}                   (6.11) 

∑ p𝑖
v(k)(l)n

k=1 <= ∑ p𝑖(k)n
k=1 (𝑙) *y𝑖

v 

   ∀𝑖 ∈ G, ∀v ∈ 𝑉, ∀n∈ {1,2 … M}, ∀l∈ {1,2 … L}                  (6.12) 

 𝑥𝑖𝑗
𝑣 ∈ {0,1}     𝑦𝑖

𝑣 ∈ {0,1}     
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𝑑𝑖
𝑣(𝑘)(l)>=0 ; p𝑖(k)(l)>=0 ;  Q𝑖

v(𝑘)(l)>=0 ;  W𝑖
v(𝑘)(l)>=0 

 ∀𝑖 ∈ {𝑜} ∪ 𝐺，∀𝑗 ∈ {𝑜} ∪ 𝐺, ∀𝑣 ∈ 𝑉, ∀k∈ {1,2 … 𝑀} , ∀l∈ {1,2 … L} (6.13) 

Les contraintes (6.2) indiquent que chaque bus de fret part et revient au centre de 

distribution. Les contraintes (6.3) garantissent que chaque bus de fret arrivant à un 

dépôt doit le quitter. Les contraintes (6.4) et (6.5) garantissent que tous les dépôts 

doivent être desservis et que chaque dépôt est desservi par au plus un bus de fret. Les 

contraintes (6.6) (6.7) et (6.8) (6.9) (6.10) définissent les contraintes de capacité des 

véhicules. Les contraintes (6.11) (6.12) indiquent que pour chaque période, la livraison 

et le ramassage des bus de fret v à chaque dépôt i ne peuvent être que la demande de 

cette période ou de périodes antérieures, mais ne peuvent pas être la demande de 

périodes ultérieures. Enfin, les contraintes (6.13) définissent les domaines de toutes les 

variables de décision. 

A.6.4 Algorithme immunitaire génétique 

Le système immunitaire est composé d'un système de reconnaissance d'antigène, 

d'un mécanisme de mémoire et d'une section de promotion et de suppression des 

anticorps. Dans l’algorithme génétique immunitaire, le processus d’apprentissage 

évolutif et la reconnaissance des antigènes de la population d’anticorps constituent le 

processus d’optimisation. L'antigène correspond à la fonction recherchée et l'anticorps 

correspond aux solutions candidates réalisables. Le degré d'appariement des solutions 

candidates à la fonction objective reflète l'affinité entre antigène et anticorps, et plus le 

degré d'appariement est élevé, plus l'affinité et la qualité des solutions candidates sont 

élevées. L'affinité des anticorps se reflète dans les solutions de degré de similarité 

candidat, l'évaluation du groupe d'anticorps est entreprise par les deux affinités. Par 

sélection, croisement, opération génétique de mutation, les groupes d’anticorps sont 

mis à jour et le mécanisme de la mémoire immunitaire enregistre le groupe d’anticorps 

optimal de chaque génération d’anticorps. Grâce à la promotion mutuelle et à 

l'inhibition entre anticorps, l'efficacité de la recherche est améliorée près des solutions 

optimales pour atteindre l'objectif de convergence vers l'optimum global. 
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Le cadre de procédure de notre algorithme génétique immunitaire conçu est 

illustré à la Fig.6.1. 

 

Fig.6.1 Algorithme génétique immunitaire 

Sur la base des instances générées dans les chapitres 4 et 5, nous avons généré 

dans ce chapitre 14 ensembles d’instances pour le problème, regroupées dans des 

instances de petite taille, instances de taille moyenne et instances de grande taille. Pour 

les petites instances, nous pouvons voir que l'algorithme Immune Génétique pourrait 

trouver de meilleures solutions que CPLEX avec un pourcentage moyen d'amélioration 

𝐼𝑚𝑝𝐼𝐺𝐴−𝐶𝑝𝑙𝑒𝑥 de 12,01% en termes de coût total. De plus, nous pouvons voir que notre 

algorithme immunitaire génétique a un temps d'exécution beaucoup plus court que 

CPLEX. Pour les instances de taille moyenne, il y a une augmentation significative de 

l'amélioration  𝐼𝑚𝑝𝐼𝐺𝐴−𝐶𝑝𝑙𝑒𝑥  de 10,07% à 82,72%. Pour les grandes instances, nous 

pouvons constater que CPLEX n'a pas réussi à trouver une solution réalisable pour 

toutes les instances avec une durée d'exécution prédéfinie. Dans ce cas, nous ne 

pouvons comparer que la limite inférieure LB produite par CPLEX et la limite 



French Abstract 

                    146 

supérieure 𝐼𝐺𝐴𝑂𝑏𝑗   trouvée par l'IGA. nous pouvons voir que notre IGA pourrait 

produire une solution avec un écart moyen 𝐺𝑎𝑝𝐼𝐺𝐴  de 17,71% entre la limite 

supérieure et la limite inférieure, notre algorithme surpasse de manière très significative 

CPLEX en termes de temps de calcul. Ces résultats informatiques montrent que notre 

IGA est beaucoup plus efficace que CPLEX pour résoudre le problème de la 

planification d’itinéraires de bus de fret avec des demandes stochastiques étudiées dans 

cette thèse. 

A.7 Conclusions et perspectives 

A.7.1 Conclusions 

Motivés par la distribution conjointe, nous avons présenté pour la première fois au 

chapitre 3 le concept de bus de fret, un nouveau moyen de transport en commun pour 

la logistique urbaine qui peut remplacer les cargos urbains appartenant à différentes 

entreprises de logistique tierces privées se situes au centre d'une ville métropolitaine 

telle que Beijing et Shanghai. Tout comme les bus, les bus de fret sont des véhicules 

normalisés avec les itinéraires et les horaires fixes. Grace aux services stables et précis 

fournis par ces bus de fret, les expéditeurs et les consommateurs peuvent organiser de 

manière flexible les délais de livraison et de ramassage de leurs commandes. 

Le problème de planification d'itinéraires de bus de fret pour la distribution 

urbaine est étudié, où chaque bus de fret effectue répétitivement un circuit partant d'un 

centre de distribution, se rendant à plusieurs dépôts et retournant au centre. Ce problème 

est une nouvelle variante du problème de tournées périodiques de véhicules, qui n'a 

jamais été étudiée dans la littérature. Nous avons étudié trois variantes du problème de 

planification d’itinéraires de bus de fret aux chapitres 4, 5 et 6 : le problème de base 

avec demandes de livraison uniquement, le problème avec ramassages et livraisons, et 

le problème avec demandes de ramassage et de livraison stochastiques. Pour chaque 

variante du problème, après avoir établi un modèle mathématique, nous avons 

développé un algorithme méta-heuristique pour la résoudre. Le choix de chaque 

algorithme prend en compte les caractéristiques de la variante correspondante du 
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problème étudiée. La pertinence des modèles et l'efficacité des algorithmes proposés 

sont prouvées par des expérimentations numériques intensives. 

A.7.2 Perspectives 

En tant qu’une étude préliminaire sur les bus de fret, il reste encore beaucoup à faire 

pour améliorer la recherche sur nos bus de fret. 

Premièrement, cette thèse analyse uniquement les avantages économiques des bus 

de fret par rapport aux cargos de ville en termes de réduction de coûts de transport au 

chapitre 5. Pour vérifier d'autres avantages potentiels des bus de fret tels que les horaires 

réguliers, la réduction de l’embouteillage et l'utilisation de voies rapides dédiées au bus 

de passagers, une analyse quantitative est également requise. En raison du manque de 

données réelles, nous n’avons pas pris en compte l’utilisation de voies rapides dans 

notre modèle d’itinéraire de bus de fret, qui constituera une prochaine étape de notre 

étude sur les bus de fret. 

Deuxièmement, dans chaque chapitre 4,5 et 6, nous avons proposé un type 

d’algorithme méta-heuristique pour chaque variante du problème. Notre recherche sur 

les bus de fret étant une nouvelle variante du problème de tournées de véhicules 

périodique, nous n’avons aucun moyen de le comparer avec d’autres algorithmes 

conçus ou exemple de référence. Ainsi, dans la suite de notre étude, nous devrions 

développer davantage d’algorithmes heuristiques, de les comparer et de les tester avec 

des données réelles, ou améliorer nos algorithmes conçus. 

Troisièmement, dans le contexte du commerce électronique, les exigences de 

ponctualité de distribution peut être différentes selon les clients. Dans nos futures 

recherches, nous devrons donc examiner le problème de tournées dans le cas d'une 

demande de fret de priorité différente afin de répondre à la demande diversifiée du 

marché. Sous la demande de fret de priorité différente, les retards de cargaison seront 

différents, ce qui augmentera considérablement la difficulté de résolution du problème 

et nécessitera une amélioration supplémentaire des modèles et des algorithmes existants. 

Enfin, dans nos recherches sur l’tournées des véhicules, une gare des bus de fret n’a 
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besoin que d’un bus de fret pour un service régulier; À l'avenir, en fonction des 

différentes demandes de fret des différentes gares, nous pouvons considérer le problème 

de tournées des véhicules sous le service de plusieurs lignes de bus de fret dans certaines 

gares. 

Tout comme les bus, avec le développement rapide du commerce électronique et de 

l'urbanisation et l'augmentation de la demande de transport de marchandises dans le 

centre-ville, nous pensons que bus de fret va jouer un rôle important dans le système de 

distribution urbain moderne. Espérons qu'à l'avenir, nous pourrons mener une étude 

meilleure et plus approfondie sur la construction d'un système logistique de bus de fret 

en ville.
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Modèles et algorithmes pour la planifi-
cation d'itinéraire de bus de fret 
 
 
Dans cette thèse, les bus de fret sont introduits 
comme un nouveau moyen de transport collectif 
pour la logistique urbaine. Tout comme les autobus, 
les bus de fret sont des véhicules normalisés avec 
les itinéraires et les horaires fixes. Grace aux ser-
vices stables et précis fournis par ces bus de fret, 
les expéditeurs et les consommateurs peuvent or-
ganiser de manière flexible les délais de livraison et 
de ramassage de leurs commandes. 
Le problème de planification d'itinéraires de bus de 
fret pour la distribution urbaine est étudié, où 
chaque bus de fret effectue répétitivement un circuit 
partant d'un centre de distribution, se rendant à 
plusieurs dépôts et retournant au centre. Ce prob-
lème est une nouvelle variante du problème de tour-
nées périodiques de véhicules, qui n'a jamais été 
étudiée dans la littérature. Nous avons étudié trois 
variantes du problème de planification d’itinéraires 
de bus de fret : le problème de base avec demandes 
de livraison uniquement, le problème avec 
ramassages et livraisons, et le problème avec de-
mandes de ramassage et de livraison stochastiques. 
Pour chaque variante du problème, après avoir établi 
un modèle mathématique, nous avons développé un 
algorithme métaheuristique pour la résoudre. Le 
choix de chaque algorithme prend en compte les 
caractéristiques de la variante correspondante du 
problème étudiée. La pertinence des modèles et 
l'efficacité des algorithmes proposés sont prouvées 
par des expérimentations numériques intensives. 
 
 
Mots clés : logistique urbaine – optimisation combi-
natoire – métaheuristiques – logistique collaborative 
– programmation (mathématiques) – problème de 
tournée de véhicule. 
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Models and Algorithms for Route Plan-
ning of Freight Buses 
 
 
In this thesis, freight buses are introduced as a new 
public transportation means for city logistics. Like 
passenger buses, freight buses are standardized 
vehicles with fixed routes and time schedules. With 
stable and accurate services provided by freight 
buses, both shippers and customers can flexibly 
arrange their order delivery times. 
The route planning problem of freight buses for 
urban distribution is studied, where each freight bus 
repeatedly performs a tour that leaves from a distri-
bution center, visits multiple depots, and returns to 
the center. This problem is a new variant of periodic 
vehicle routing problem, which was never studied in 
the literature. We have studied three variants of the 
freight bus routing planning problem: the basic 
freight bus routing problem with only deliveries, the 
freight bus routing problem with both pickups and 
deliveries, and the freight bus routing problem with 
stochastic demands. For each variant of the pro-
blem, after establishing its mathematical model, we 
have developed a metaheuristic algorithm to solve it. 
These metaheuristic algorithms include a memetic 
algorithm, an adaptive large neighborhood search 
algorithm, and an immune genetic algorithm combi-
ned with scenario-based optimization for cost eva-
luation. The choice of each algorithm considers the 
characteristics of the corresponding variant of the 
problem studied. The relevance of the mathematical 
models and the effectiveness of the proposed algo-
rithms are proved by intensive numerical experi-
ments. 
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tion – meta, heuristics – collaborative logistics – 
programming (mathematics) – vehicle routing pro-
blem. 
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