
HAL Id: tel-03621447
https://theses.hal.science/tel-03621447v1

Submitted on 28 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Inference and Verification of Chemical
Reaction Networks

Mahmoud Bentriou

To cite this version:
Mahmoud Bentriou. Statistical Inference and Verification of Chemical Reaction Networks. Statistics
[math.ST]. Université Paris-Saclay, 2021. English. �NNT : 2021UPAST137�. �tel-03621447�

https://theses.hal.science/tel-03621447v1
https://hal.archives-ouvertes.fr

T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N

T
:2

02
1U

PA
ST

13
7

Statistical Inference and Verification

of Chemical Reaction Networks

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 573, Interfaces

Spécialité de doctorat: Mathématiques appliquées

Graduate School : Sciences de l’ingénierie et des systèmes

Référent : CentraleSupélec

Thèse préparée dans l’unité de recherche Mathématiques et Informatique pour la

Complexité et les Systèmes (Université Paris-Saclay, CentraleSupélec)

sous la direction de Paul-Henry Cournède, Professeur, et le co-encadrement de Paolo

Ballarini, Maitre de conférences.

Thèse soutenue à Paris-Saclay, le 8 décembre 2021, par

Mahmoud BENTRIOU

Composition du jury

Pascale Le Gall Présidente de jury

Professeure, MICS, CentraleSupélec

Adeline Leclercq-Samson Rapportrice et examinatrice

Professeure des universités (HDR), Laboratoire

Jean Kuntzmann, Université Grenoble-Alpes

Blaise Genest Rapporteur et examinateur

Directeur de recherche CNRS (HDR), IRISA, Uni-

versité de Rouen

Benoît Barbot Examinateur

Maître de conférences, LACL, Université Paris-Est

Créteil

Paul-Henry Cournède Directeur de thèse

Professeur, MICS, CentraleSupélec

Paolo Ballarini Co-encadrant

Maître de conférences, MICS, CentraleSupélec

“La clé de notre rapport aux nombres n’est pas à chercher chez eux, mais entre nous.
Cette clé n’est pas mathématique, mais historique et sociale. En d’autres termes, le
rapport des hommes aux chiffres reflète la relation des hommes entre eux.”

Olivier Rey

“C’est dans le vide de la pensée que s’inscrit le mal.”

Hannah Arendt

iii

Cette thèse est dédiée à Saadia Ali, ma mère.

“C’est la seule qui m’a assumé,
Mais, c’est aussi la seule qui a su m’aimer.

Donc j’vais continuer de lui dire que c’est la plus belle dame
Avec des cheveux gris,

Tant que son âme et que ses deux yeux brillent.”

Limsa d’Aulnay

iv

Remerciements

Tout d’abord, je tenais à remercier mes directeurs de thèse Paul-Henry Cournède
et Paolo Ballarini pour l’opportunité de réaliser cette thèse stimulante par ses dif-
férents aspects complèxes et variés. Merci Paul-Henry de m’avoir accordé ta confiance
dés le début de notre rencontre, d’avoir su être à l’écoute durant toutes ces années
pour les concrétiser en l’obtention de mon doctorat, en simultanéité avec ta promotion
de Directeur de la Recherche de CentraleSupélec (encore félicitations).

Merci aux rapporteur.trice.s de thèse Adeline Leclercq-Samson et Blaise Gen-
est d’avoir accepté de faire parti du jury, tant pour leurs retours pertinents sur
le manuscrit que les questions soulevées impregnées d’intérêt durant la soutenance.
Merci à Benoît Barbot qui a rapidement accepté d’examiner le manuscrit après une
indisponibilité d’un des membres du jury.

Ces années auraient été bien plus tristes sans l’ambiance et la bienveillance des
membres du laboratoire MICS. J’ai été plus que chanceux d’avoir partagé mon bu-
reau avec ces deux personnes brillantes et drôles que sont Brice et Antonin. Bien
entendu, je remercie la team Kwak pour les afterworks de qualité. Mathilde, on a
commencé ensemble, désolé d’avoir pris un peu de retard. Elvire, bon courage pour la
dernière ligne droite. Merci à l’équipe du mésocentre (Laurent, Rémi, Guillaume) qui
a permis de rendre le travail de cette thèse bien plus agréable. Merci à Sylvain pour
tes meilleures recommandations de festivals, Gautier pour tes tentatives journalières
manquées de me faire rendre le manuscrit à temps. Merci au babyfoot de m’avoir
permis d’infliger de lourdes défaites aux sus-cités ainsi qu’à Ludovic, Yoann, Romain
et d’autres (c’est ma page de remerciement, j’y écris ce que je veux). Merci à Fabienne
pour ta disponibilité ainsi que nos discussions. Mais l’expérience au laboratoire est un
tout. C’est pour cela que je compte remercier tous ceux qui ont rendu la vie du labo
agréable, les anciens (Benoit, Chloé, Pierre, Jean-Christophe, Xiangtuo, Alexandre,
Erwan, Sylvie), ceux arrivés après (Walid, Théo, Gurvan, Laura, Agathe, Stefania),
ainsi que tous ceux ayant fait un bout de chemin avec moi au laboratoire.

Je remercie bien entendu tous mes amis qui m’ont permis de me sentir très bien
entouré pendant ce long périple. Félicitations aux docteur.e.s Mezghani et Nadjahi,
deux brillant.e.s chercheur.e.s en devenir, merci pour ce voyage commun traversé
ensemble. Merci aux WOATs (Maxime, Antoine, Pierre, Maximilien) pour les SR,
le SS, et autres activités périscolaires. Merci Pierre d’avoir assisté sans t’endormir
à la soutenance, et d’assurer ma reconversion en tant qu’influenceur sur les réseaux
sociaux. Merci Greg d’avoir accompagné les ”quelques” coups pris à Paris, merci
Mathias pour les concerts et l’initiation à l’escalade malgré mon niveau claqué.

v

Merci l’Etat français de faciliter l’accès aux études supérieures, espérons que cela
reste encore le cas quelques temps.

Pour finir - last but not least comme disent les américains -, je remercie ma famille
pour tout leur amour et leur soutien indéfectibles, c’est aussi un peu votre diplôme.
Merci Maman, pour tout, ta persévérance et ta résilience sont un modèle qui me
servira de lanterne toute ma vie durant.

vi

Abstract

Chemical Reaction Networks (CRN) constitute a formalism used to model bi-
ological processes. When the population number is not significant and the system
is well-stirred, a Continuous-Time Markov Chain describes its stochastic dynamics.
This class of model is characterised by the memoryless property: the future state of
the system only depends on the current state.

Statistical inference of such CTMCs is complex: likelihood computations are gen-
erally intractable. Approximate Bayesian Computation is a recent class of likelihood-
free methods for Bayesian inference that allows approximating the posterior distribu-
tion with Monte Carlo simulations. It has proven its efficiency in the case of CTMCs.

Model-checking was initially developed for assessing hardware and software sys-
tems’ reliability. There is a growing interest in the verification of models from Systems
Biology to understand the complex molecular interactions within a biological system.
Unfortunately, the state space of a CTMC modelled by a CRN quickly explodes or
is infinite, which renders its complete exploration infeasible in practice. Statistical
model checking methods have been developed to overcome this issue. They simulate
the model and compute the ratio of simulations that fulfils a property. Recently,
Hybrid Automata Stochastic Logic (HASL) has been introduced for the statistical
verification of stochastic models. This temporal logic inherently adopts the statisti-
cal point of view of model checking.

In this thesis, we focus on statistical inference and verification of CTMCs defined
by CRNs. Our main contribution consists in the new formulation of an Approximate
Bayesian Computation procedure combined with HASL called automaton-ABC. We
apply this high-level method on several tasks of statistical inference and verification
for biological CTMCs, including oscillatory models and time-bounded reachability
problems. The implementation of our algorithms is documented and has led to a
package in the Julia Programming language.

vii

Résumé

Les réseaux de réactions chimiques (CRN) constituent un formalisme utilisé pour
modéliser des processus biologiques. Quand la population est de taille modérée et
supposée bien mélangée, le processus stochastique sous-jacent pour décrire ses dy-
namiques est une chaîne de Markov en temps continu (CTMC). Ce processus est dit
sans mémoire: l’état futur du système ne dépend que de l’état courant.

L’inférence statistique de ce type de CTMC est complexe: le calcul de la vraisem-
blance est en général difficile à résoudre. Les méthodes ABC (Approximate Bayesian
Computation) forment une classe de méthodes bayésiennes sans calcul de vraisem-
blance qui permettent d’approcher la distribution postérieure avec des simulations de
Monte-Carlo.

La vérification de modèles, qui fut à l’origine développée pour garantir la fiabilité
de systèmes et logiciels informatiques, se penche de plus en plus sur la biologie des
systèmes. En effet, il y a un réel besoin de comprendre les interactions complexes
entre molécules dans les systèmes biologiques. Malheureusement, l’espace d’états
d’un CTMC défini par un CRN explose généralement, voir est infini. Pour palier à
cela, des méthodes de vérification statistiques ont été développées. Le principe est de
simuler un certain nombre de fois le modèle et de calculer le ratio des simulations qui
ont vérifié une propriété. Récemment, une logique temporelle appelée HASL a été
introduite pour la vérification statistique de modèles: elle adopte intrinsèquement le
point de vue statistique de la vérification.

Dans cette thèse, nous nous intéressons à l’inférence statistique et la vérification
statistique de chaines de Markov en temps continu définies par un modèle de réseaux
de réactions chimiques. Notre contribution tient principalement dans la formulation
d’un algorithme ABC combiné avec le formalisme HASL appelé automaton-ABC.
Nous appliquons cette méthode haut niveau sur plusieurs tâches d’inférence statis-
tique et de vérification pour des CTMCs issus de systèmes biologiques, impliquant no-
tamment des modèles oscillatoires et des problèmes d’atteignabilité bornés en temps.
L’implémentation des méthodes présentées est documentée et a conduit au développe-
ment d’une bibliothèque dans le langage de programmation Julia.

viii

ix

Contents

Remerciements . v

Abstract . ix

Notations . xxv

1 Introduction . 1
1.1 Context . 1
1.2 Outline . 3

2 Markov Chains and Chemical Reaction Networks 5
2.1 Different perspectives on Markov Chains 6

2.1.1 Markov Chains as a stochastic process 6

Discrete-Time Markov Chain (DTMC) 6

Continuous-Time Markov Chain 9

2.1.2 CTMC as an oriented graph . 12

2.2 Probability measure of CTMCs. 13
2.2.1 Paths/Trajectories of a CTMC. 13

2.2.2 Probability measure over the set of paths. 14

2.3 Chemical Reaction Networks . 17
2.3.1 Definition of a Chemical Reaction Network 18

2.3.2 Example . 20

2.3.3 Different representations of the system evolution 20

Chemical Master Equation . 20

Random Time Change Representation 21

Tau-leap approximation and Chemical Langevin Equation . . . 22

Reaction Rate Equation: a macroscopic deterministic approxi-
mation of a CRN . 23

2.3.4 Stochastic simulation of a CRN 25

Stochastic simulation algorithm 25

Tau-leap approximation . 27

Example of simulations with the SIR model 27

2.4 Summary . 30

3 Statistical methods . 31
3.1 The Bayesian framework . 32
3.2 Monte Carlo methods . 34

3.2.1 Simulation of a density . 36

3.2.2 Accept-reject algorithm . 36

3.2.3 Importance sampling . 37

3.2.4 Sequential Monte Carlo methods 38

Sequential Importance Sampling 38

Resampling step . 39

3.2.5 Markov Chain Monte Carlo . 41

3.3 Approximate Bayesian Computation: a likelihood-free method 44
3.3.1 ABC Rejection algorithm . 45

Markov Chain Monte Carlo ABC 48

Sequential Monte Carlo ABC 48

3.3.2 Hyperparameters of ABC methods 50

Summary statistics . 50

Distance function . 51

Perturbation kernel in ABC-PMC Algorithm 51

Tolerance level . 52

3.4 Kernel Density Estimation . 53
3.4.1 Kernel density estimator . 53

3.4.2 Bandwidth selection and Least Squares Cross-Validation 55

3.4.3 Kernel functions . 56

Gaussian kernel . 56

Beta kernels . 57

3.5 Summary . 60

4 Verification of Continuous-Time Markov Chains 61
4.1 Temporal logic . 62

4.1.1 MITL . 62

4.1.2 CSL . 63

4.1.3 Eventually and global operators 64

4.2 Model checking of Continuous-Time Markov Chains 64
4.2.1 About numerical methods . 65

4.2.2 Statistical model checking . 66

Estimation problem - Confidence bounds 66

x

Threshold problem - Hypothesis testing 67

4.3 Model checking of parametric Continuous-Time Markov Chains 68
4.3.1 Estimation problem - Satisfaction function regression 68

Statistical methods . 69

4.3.2 Parameter synthesis - threshold problem 71

Statistical formulation . 72

4.4 Hybrid Automata Stochastic Logic . 72
4.4.1 Stochastic Petri Net . 73

4.4.2 Linear Hybrid Automata . 74

Definition . 74

Synchronised simulation . 76

4.4.3 HASL Expressions . 77

4.4.4 Cosmos Statistical Model Checker 79

4.5 Summary . 79

5 Automaton-ABC for the statistical inference of CTMCs 81
5.1 Observation model and likelihood . 81

5.1.1 Event-discrete observations . 82

5.1.2 Time-discrete observations: state-space model 84

5.1.3 Approximate Bayesian Computation for event-discrete obser-
vations . 86

Distance over paths of CTMC 86

Examples of ABC-SMC inference on parametric CTMC with
different observation schemes and distances 88

5.2 Automaton-ABC: ABC procedures with synchronised simulation . . . 92
5.3 Oscillatory trends of genetic networks 94

5.3.1 Period automaton Aper . 95

5.3.2 Applications of the automaton-ABC algorithm with Aper . . . 97

Doping 3-way oscillator . 97

Repressilator model . 100

5.4 Accelerating the ABC procedure with HASL formalism 106
5.4.1 Automaton AABC,ϵ . 107

5.4.2 Applications . 107

5.5 Summary . 109

6 Automaton-ABC for the statistical parametric verification of CTMCs . . . 111
6.1 Problem setting: time-bounded reachability 112
6.2 Satisfiability distances . 113

xi

6.3 Linear Hybrid Automata to compute satisfiability distances 119
6.3.1 Distance automaton AF . 120

6.3.2 Distance automaton AG . 122

6.3.3 Distance automaton AG∧F . 123

6.4 Automaton-ABC algorithm with LHA satisfiability distances 124
6.4.1 Simple ABC with satisfiability distance. 125

6.4.2 Estimation of the satisfaction probability function 127

Estimation of the πφ−ABC posterior distribution 127

Estimation of the constant C 129

6.5 Applications . 129
6.5.1 An example with Poisson processes 129

6.5.2 Enzymatic reaction system . 131

Model . 131

Experimental setting . 132

Test of LHA distances . 133

Satisfaction probability function estimation 134

Remarks . 137

6.5.3 SIR . 137

6.5.4 Intracellular viral infection . 139

6.5.5 About the implementation of the automaton-ABC method . . 140

6.6 A comparison with Smoothed Model Checking 141
6.7 Discussion . 143

6.7.1 About the distance of automaton AF before t1 143

6.7.2 Linear Hybrid Automata for non-elementary regions 144

6.8 Summary . 144

7 Conclusion . 147
7.1 Limits and Perspectives . 148

7.1.1 Scope of our work . 148

7.1.2 Automaton-ABC for statistical inference 148

7.1.3 Automaton-ABC for time-bounded reachability 149

7.1.4 Implementation . 150

7.2 Last words . 151

A MarkovProcesses.jl : A Julia package for efficient simulation, statistical in-
ference and verification methods of Markov Processes. 153
A.1 Introduction . 153
A.2 A few introductory examples . 154

xii

A.2.1 Simulation of the SIR model 154

A.2.2 Simulation of the ER model synchronised with AF automaton 157

A.2.3 Run of the automaton-ABC algorithm 159

A.3 Structure of the package . 160
A.4 Type diagram . 161
A.5 Implementation . 163

A.5.1 Simulation of ContinuousTimeModel 163

A.5.2 Simulation of SynchronizedModel 165

A.5.3 About trajectories . 165

A.5.4 Synchronisation with LHA . 166

A.6 Use of ABC methods . 166
A.6.1 Classical ABC . 166

A.6.2 ABC with synchronised simulation 167

A.7 Tests . 168
A.7.1 Execution test . 169

A.7.2 Cosmos based statistical tests 169

A.8 Benchmarks . 170
A.8.1 Versus Cosmos . 170

A.8.2 Versus Catalyst.jl/DifferentialEquations.jl 173

A.9 Conclusion . 174
A.9.1 Summary . 174

A.9.2 Perspectives . 174

B Measure theory . 177
B.1 Results from measure theory: Caratheodory’s theorem 177
B.2 Semiring of sets of Path(M) . 178
B.3 Statistical model of CTMCs . 180

B.3.1 Density of a CTMC . 180

C A simple analytical example of ABC inference 185
C.1 Computation of the true posterior and ABC posterior 185
C.2 Simulations . 187

D Synthèse en français . 191

Bibliography . 193

xiii

xiv

List of Figures

2.1 CTMC of a sleep cycle . 13

2.2 Graph of the SIR CTMC with the initial state s0 = (95, 5, 0). 28

2.3 Effect of the population size on the simulations of the SIR model (only
the number of infected people is plotted) with θ = (0.12/Npop, 0.05)

and τ = 5.0. On the left plot, s0 = (95, 5, 0) (Npop = 100). On the right
plot, s0 = (9500, 500, 0) (Npop = 10000). Red paths are simulated from
the SSA. Green paths are simulated from the Tau-leaping algorithm.
5 paths for each algorithm. 29

2.4 Effect of the tau-leap time step on the simulations of the SIR model
(only the number of infected people is plotted) with θ = (0.12/Npop, 0.05)

and s0 = (95, 5, 0) (Npop = 100). In the left plot, τ = 0.5. In the right
plot, τ = 5.0. Red paths are simulated from the SSA. Green paths are
simulated from the Tau-leaping algorithm. 5 paths for each algorithm. 29

3.1 An illustration of the SMC ABC algorithm 49

3.2 An illustration of Gaussian kernel density estimation. 54

4.1 SIR Stochastic Petri Net with initial marking m0 = (95, 5, 0) 74

4.2 An example of LHA Acount for SIR model. It accepts a trajectory if
the number of infected people reaches eight. 76

5.1 Plot of two 1-dimensional path. The L1 distance of these paths is the
sum of the areas hatched in green. 87

5.2 A trajectory from the simulated dataset. Left picture: 10-points ob-
servation. Right picture: 75-points observation. 89

5.3 ABC-SMC posteriors with the ER model. Nend = 106. Left: time-
discrete observations with 10 points, center: time-discrete observations
with 75 points, right: the 5 trajectories. 89

5.4 A trajectory from the simulated dataset. Left picture: 10-points ob-
servation. Right picture: 150-points observation. 90

5.5 ABC-SMC posterios with the SIR model. First row: Nend = 106,
second row: Nend = 107. Left: time-discrete observations with 10
points, center: time-discrete observations with 75 points, right: the 5
trajectories. 91

5.6 Period automaton Aper. 95

5.7 Example of a oscillatory trajectory simulation synchronised with Aper. 96

5.8 Automaton-ABC posterior of rA with Aper automaton for the 1D ex-
periment of doping 3-way oscillator. 99

5.9 Correlation plot of automaton-ABC posterior with Aper automaton
for the 3D experiment of doping 3-way oscillator. 100

5.10 Repressilator topology. Each protein represses the transcription of the
successor. 100

5.11 5 simulated trajectories of the species P1. α varies in {50, 200, 1000, 4000}.102

5.12 5 simulated trajectories of the species P1. β varies in {0.5, 1.0, 2.0, 4.0}. 102

5.13 5 simulated trajectories of the species P1. n varies in {0.5, 1.0, 2.0, 5.0}. 103

5.14 5 simulated trajectories of the species P1. α0 varies in {0.0, 0.01, 0.1, 1.0}.103

5.15 Correlation plot of automaton-ABC posterior with Aper posterior for
the 3D experiment of repressilator model. 104

5.16 Correlation plot of automaton-ABC posterior with Aper posterior for
the 4D experiment of repressilator model. 105

5.17 Automaton AABC,ϵ. 107

5.18 40-points observation of the species P1 from repressilator model over
[0.0, 400.0] with a time step of 10.0. 108

xv

5.19 Contour plot of ABC posteriors with marginals. Left: classical ABC
posterior. Right: automaton-ABC posterior with AABC,ϵ. 109

6.1 Example of a simulation. In purple: the trajectory. In blue and green:
the distances d1 and d2. The rectangle is the F region. 116

6.2 Examples of trajectories with zero-distance (top) and positive distance
(bottom) from an F, a G and a U region (positive distances are depicted
in red). 117

6.3 Automaton for eventual property AF 120

6.4 Automaton for global property AG. 122

6.5 Automaton for global and eventual property AG∧F when t2 ≤ t3. . . . 124

6.6 Histogram of the automaton-ABC posterior with N = 500 particles. In
red: estimated satisfaction probability function. In blue: the analytical
satisfaction probability function. 131

6.7 Trajectories of the ER system with θleft=(1, 1, 1) and time scale [0, 6],
θright=(0.1, 1, 0.1) and time scale [0, 30]. 132

6.8 Trajectories of ER system for product P , with TR1, TR2 and TR3
regions and k3 ∈ {10, 20, 50}. 132

6.9 Average distances of the automata for the six formulae φi, i ∈ {1, . . . , 6},
computed by the Statistical Model Checker Cosmos with approxima-
tion of 0.1 and 99% level of confidence. First row: Aφ1 ,Aφ2 and Aφ3 .
Second row: Aφ4 ,Aφ5 and Aφ6 . 133

6.10 Weighted histogram of automaton-ABC posteriors with 1000 particles.
In each experiment, k1 = k2 = 1 and πk3(.) ∼ U(0, 100). In blue: the
satisfaction probability function estimated on a selection of points with
Prism model checker by numerical method. In red: the satisfaction
function estimated through kernel density estimation method based
on automaton-ABC samples. 134

xvi

6.11 Results of 2D experiments of ER system with 1000 particles (πk1(.), πk2(.)∼
U(0, 100), k3=1). Top: the 2D weighted histograms of the automaton-
ABC posteriors. Middle: estimation of the satisfaction probability
function with Prism by Statistical model checking (99% confidence in-
terval with approximation 0.01). Bottom: kernel density estimation of
the satisfaction probability function. 135

6.12 Statistical Model Checking over [0.0, 0.0005]× [0.0, 20.0] with 10 points
for the first axis and 20 points for the second. 136

6.13 Results for the SIR model with φ = G[0,100](I > 0) ∧ F[100,120](I = 0).
On the top left figure: weighted histogram of automaton-ABC poste-
rior with 1000 particles for the 1D experiment; in blue: the true sat-
isfaction probability function computed with the Prism model checker
using the numerical engine of Prism over 40 points; in red: the esti-
mated satisfaction function with the kernel density estimation method.
The three other figures correspond to the 2D experiment. On the top
right figure: the 2D histogram of the automaton-ABC posterior. On
the bottom left figure: the kernel density estimation of the satisfac-
tion probability function. On the bottom right figure: the estimation
of the satisfaction probability function by the Prism model checker
(numerical method). 138

6.14 Results for the intracellular viral infection model with φ = G[0,50]G ≤
10∧F[50,200]G > 100. Left figure: the 2D histogram of the automaton-
ABC posterior. Middle figure: kernel density estimation of the satis-
faction probability function. Right figure: estimation of the satisfac-
tion probability function by Monte-Carlo simulations (based on a 99%
confidence level and approximation 0.01). 139

6.15 Estimation of the satisfaction probability functions in experiments
TR1, TR2, TR3 for the ER system reported in Figure 6.10 with
Smoothed MC algorithm. In blue: the estimated function; in green:
the lower bound; in orange: the upper bound. 142

A.1 Simulation of the SIR model with observation function g = [: I]. . . . 155

A.2 Simulation of the ER model synchronised with a AF automaton. . . . 158

A.3 Simulation of the ER model synchronised with a AF automaton. . . . 160

A.4 UML graph of the different types defined in the package. 162

xvii

C.1 Weighted histograms of ABC. In green the true posterior distribution,
in blue the true ABC posterior and in red the estimated ABC posterior
with gaussian kernel. On the left: 1000 particles. On the right: 10000
particles. 188

C.2 Weighted histograms of ABC run. In green the true posterior distri-
bution, in blue the true ABC posterior and in red the estimated ABC
posterior with gaussian kernel. On the left: 1000 particles. On the
right: 10000 particles. 188

C.3 Histogram of ABC run with 1000 particles. In green the true posterior
distribution, in blue the true ABC posterior and in red the estimated
ABC posterior with gaussian kernel. On the left: multinomial resam-
pling with the weights. On the right: weighted estimator. 189

xviii

xix

List of Tables

5.1 Statistics of the ABC posterior for the three observations settings for
the ER model with N = 106 particles. True value is k3 = 5.0. 90

5.2 Statistics of the ABC posterior for the three observations configura-
tions for the SIR model with N = 106 particles. The true parameter
is (ki, kr) = (1.2E−3, 5E−2). 91

5.3 Statistics of the ABC posterior for the three observations configura-
tions for the SIR model with N = 107 particles. The true parameter
is (ki, kr) = (1.2E−3, 5E−2). 91

5.4 Execution times of statistical inference with classical ABC compared
to automaton-ABC with AABC,ϵ . 109

6.1 Performance results for the one-dimensional experiments of automaton-
ABC. 141

6.2 Performance results for the two-dimensional experiments of automaton-
ABC. 141

6.3 Number of simulations before termination for both algorithms. For
automaton-ABC: number of N = 1000 particles. For smoothed MC:
each point of the dataset is estimated with 600 trajectories (default
value). 142

A.1 Cosmos: Benchmark 1; 100 runs. 171

A.2 Cosmos: Benchmark 2; 5 runs. 172

A.3 Cosmos: Benchmark 2 with 8 jobs (parallel execution); 5 runs. 172

A.4 Catalyst.jl: Benchmark 1 . 173

A.5 Catalyst.jl: Benchmark 2 . 174

xx

List of Scripts

1 Script (Simulation of the SIR model with SSA, Tau-leaping and ODE.) 30

2 Script (Bounded Kernel Density Estimation in Julia language) 59

3 Script (An example of a Cosmos run) 79

4 Script (Examples of ABC inference on parametric CTMC) 92
5 Script (Oscillatory trends of parametric CTMC) 105
6 Script (Example CTMC) . 109

7 Script (AF LHA in Cosmos) . 121
8 Script (AG LHA in Cosmos) . 122
9 Script (AG∧F LHA in Cosmos) . 124
10 Script (Automaton-ABC experiments related scripts) 141

11 Script (MarkovProcesses.jl package) 154
12 Script (Simulation of the SIR model with MarkovProcesses.jl) 155
13 Script (Synchronised simulation of the ER model with MarkovPro-

cesses.jl) . 158
14 Script (Experiment R1 of automaton-ABC with MarkovProcesses.jl) . 160
15 Script (Benchmarks of MarkovProcesses.jl) 170

xxi

List of Listings

A.1 Simulation of the SIR model. 154

A.2 Output of the print of the SIR variable created in Code A.1. 156

A.3 Creation of the SIR model with @network_model. 156

A.4 Output of the model created by a user in Code A.3. 157

A.5 Simulation of the ER model synchronised with a AF automaton. . . . 157

A.6 Automaton-ABC: Experience R1 of ER model with AF automaton. . 159

xxiii

Notations

Classical probability theory

ω An elementary event

Ω Sample space

P∗ A probability measure

FX A σ-field / σ-algebra generated by X

(Ω,F,P) A probability space

2X Power set of X

E[X] Expectation of the random variable X

V[X] Variance of the random variable X

δ∗ Dirac distribution

N (µ, σ2) Normal distribution with mean µ and variance σ2

P(λ) Poisson distribution with mean λ

Exp(λ) Exponential distribution with mean 1
λ

Markov Chains

[[p, q]] The set of integers {p, . . . , q − 1, q}

N Space of integers

R≥0 Space of non-negative real numbers

CTMC Abbreviation for Continuous-Time Markov Chain

S ⊆ Nd State space of a Markov Chain

s ∈ S State of a CTMC

s[i] i-th component of s

S A Markov Chain stochastic process, discrete or continuous time

(Sn)n∈N A Discrete-Time Markov Chain stochastic process

(St)t∈R≥0
A Continuous-Time Markov Chain stochastic process

M A Continuous-Time Markov Chain defined with a transition rate matrix

Q A transition rate matrix of a CTMC

P (s, s′) A transition probability

Ts The random sojourn time of state s

E(s) The total exit rate of state s

Paths of a CTMC

Path(M) Set of paths of the CTMC M

PrM ,PS Probability measure induced by a CTMC over the set of paths

σ, S(ω) A path / trajectory of a CTMC

δ(σ, i) Sojourn time of the i-th state of a trajectory

σ[i] i-th state of a trajectory

σ[t⟩ The trajectory σ shifted at time t

Chemical Reaction Networks

S Set of species

M Number of the reaction channels

Rj A reaction channel

ηj(s, θ) The kinetic rate of the reaction channel Rj

νj The stoichiometric vector of the reaction channel Rj

Statistical observations

i.i.d independent and identically distributed

1 : N The set {1, . . . , N}

X(1), . . . , X(N) N i.i.d random observations

x(1), . . . , x(N) A realisation of N i.i.d observations

xxiv

x1:N N correlated realisations of observations, e.g. from a Markov Chain

Probability density function

pdf probability density function

∝ proportional to

π a pdf

π̃ a function proportional to π

π̂ an estimation of π

q a proposal density

K a kernel density function

Approximate Bayesian Computation

ϵ Tolerance level

yexp A dataset / collection of observations

ρ The distance function

η The summary statistics function

Model checking

ϕ A CSL state formula

φ A CSL path formula or an MITL formula

true, false true / false formulae

F,G Eventually operator, Globally operator

Pr(φ;M) Satisfaction probability of φ

fφ Satisfaction probability function of φ

(G)SPN (Generalized) Stochastic Petri Net

A A Linear Hybrid Automaton (LHA)

xxv

1

Chapter 1

Introduction

1.1 Context

At the time of writing, the world has been hit for about a year by a pandemic of a
new coronavirus disease called Covid-19. The pandemic has impacted society a lot,
and the media has seized upon two types of questions only scientists were interested
in so far:

1. How can one infer the spread of the disease based on previously infected people
data?

2. How can we specify properties such as in which region vigilance should be
reinforced, the epidemic is stable or over?

The first problem is related to statistical inference (Casella and Berger, 2001).
Based on probability theory, statistical inference constructs estimators of properties
of a general population from samples, quantifies the uncertainty of such estimation
and predicts possible future observations based on available data.

The second problem is related to model checking (Baier and Katoen, 2008).
Based on theoretical computer science, this field groups techniques to check if a
model fulfils some specification φ expressed by formal logic. It provides methods that
explore the state-space model efficiently in order to assess whether the model verifies
the specification φ or not. Initially, it was developed to assess hardware and software
systems’ reliability, but there is a growing interest in model checking of Systems
Biology (Kwiatkowska, Norman, and Parker, 2008).

In this thesis, we focus on statistical inference and verification of stochastic chem-
ical kinetics. Chemical Reaction Network is a formalism that provides a way to model
the interactions between entities. A reaction is an event that can occur in the system,

2 1.1. Context

which modifies each entity’s quantities. Even if this formalism is originally used to
describe chemical systems (Feinberg, 2019), it is also used in gene regulatory net-
works (Karlebach and Shamir, 2008) or systems of interactions between humans. An
illustrative example that is a guideline model in the thesis is the SIR epidemiology
model:

Infection : S + I
ki−→ 2I

Recovery : I
kr−→ R

(1.1)

This Chemical Reaction Network has three types of entities (living beings in this
context): S is the population that can be infected, I is the infected people, whereas R
is the recovered/removed population. The system contains two reactions: either an
infection or an immunisation/death can occur.

Chemical Reaction Networks are algebraic models, but they induce mathematical
models. Traditionally, their dynamics are described by a system of Ordinary Differ-
ential Equations (ODE). Such kind of dynamics is continuous and deterministic. If
the deterministic model is relevant under some assumptions, such as a high enough
species density, they are not adapted to populations of small sizes. With relaxed
assumptions, the stochastic dynamics are described by a Continuous-Time Markov
Chain (CTMC). The main property of such a stochastic process is the memoryless
property (also known as Markov property): the system’s future state only depends on
the current state. For example, genetic networks have proven their stochastic nature
(Thattai and Van Oudenaarden, 2001).

Statistical inference of CTMCs has been widely studied in the literature, par-
ticularly Bayesian statistics (Craciun et al., 2013; Schnoerr, Sanguinetti, and Grima,
2017; Loskot, Atitey, and Mihaylova, 2019). A general issue raised by such a com-
plex stochastic model is the evaluation of the likelihood: it is intractable in most
cases. The Bayesian framework allows the use of preexisting expertise on models
via the prior distribution and quantifies the uncertainty of parameter inference with
the posterior distribution. Also, it offers groups of likelihood-free methods, which al-
lows approximating the posterior distribution. Approximate Bayesian Computation,
a specific family of likelihood-free methods, is specifically studied in this thesis as our
models have intractable likelihoods. It relies on Monte Carlo simulation methods:
the general idea is to draw a parameter θ, simulate the model y ∼ p(.|θ), and keep
the sample if y is close enough to observations yexp. Since its first appearance in the
literature of population genetics (Tavaré et al., 1997; Pritchard et al., 1999) ABC
methods have received much attention from the statistician community (Marin et al.,
2011) (Sisson, Fan, and Beaumont, 2018). They have proven efficiency in the case of
CTMCs (Warne, Baker, and Simpson, 2019; Alharbi, 2018).

Chapter 1. Introduction 3

Verification of a CTMC M has been studied for about two decades since the
appearance of CSL temporal logic (Aziz et al., 1996). As CTMCs are stochastic, ver-
ification of a CTMC considers the probability of verifying a specification φ. This kind
of methods is divided into two approaches. First, the qualitative approach assesses
whether the probability is above (or below) a threshold. Second, the quantitative
approach is related to the estimation of such probabilities. Numerical methods have
been developed for these purposes (Baier et al., 2003). To face the problem of state
space explosion, statistical methods for verification have been considered since 2002
(Legay, Delahaye, and Bensalem, 2010; Legay et al., 2019). This was enhanced by
the growing interest of Systems Biology field in verification methods: the state-space
of CTMCs defined by a Chemical Reaction Network quickly explodes or is infinite.
Initially, these methods were developed for a single CTMC, but now verification meth-
ods tackle model checking with CTMCs indexed by parameters (parametric CTMC).
The qualitative approach for parametric CTMC is called parameter synthesis. An
approximate numerical method has been first proposed (Han, Katoen, and Mereacre,
2008), and also statistical methods (Bortolussi and Silvetti, 2018). For the quan-
titative approach, statistical methods have been developed (Bortolussi, Milios, and
Sanguinetti, 2016).

1.2 Outline

This thesis focuses on statistical inference and verification of parametric Continuous-
Time Markov Chains defined by Chemical Reaction Networks. Our main methodolog-
ical contribution relies on the formulation of a general algorithm called automaton-
ABC, which uses HASL formalism within the ABC method. With this high-level
algorithm, we address several tasks of statistical inference and statistical verification.
The considered tools and problems are both issued from model checking and statis-
tical inference, which positions this thesis at the frontier between these two fields.
Efforts have been made to be intelligible for scientists of both fields.

The first three chapters are related to the literature.

• Chapter 2 presents the basics of Markov Chains theory. The main proper-
ties of Continuous-Time Markov Chains (CTMC) are discussed. We define the
probability measure over the set of càdlàg functions based on a CTMC. Then,
Chemical Reaction Network formalism is defined. We see how a CTMC de-
scribes the stochastic dynamics, we discuss the other possible equations of the

4 1.2. Outline

dynamics with additional assumptions, and we detail simulation algorithms for
CTMC.

• Chapter 3 recalls concepts on statistical methods in inference with a particular
focus on Monte Carlo simulations. First, some basic concept about statisti-
cal inference and Bayesian inference are discussed. Second, the main Monte
Carlo methods are discussed. Third, we describe the Approximate Bayesian
Computation (ABC) methods, detail several ABC samplers and discuss ABC
applications’ stakes. Finally, Kernel Density Estimation is presented.

• Chapter 4 discusses model checking for CTMCs. First, we detail two temporal
logics: CSL and MITL. Then, verification of CTMCs are discussed (model
checking for a single CTMC M, or parametric CTMC with a collection of
CTMCs (Mθ)θ∈Θ) with a particular focus on statistical methods. Finally, the
HASL formalism is detailed.

The last two chapters expose contributions.

• Chapter 5 details the statistical inference framework of CTMCs. We present
the automaton-ABC algorithm, which combines the synchronised simulation
offered by HASL formalism and ABC. We present two applications based on
automaton-ABC: detection of oscillatory trends in parametric CTMC and faster
implementation of classical ABC inference.

• Chapter 6 details a new statistical method based on automaton-ABC for the
quantitative approach of model checking parametric CTMC in time-bounded
reachability problems.

The new methods lead to a package in the cross-platform Julia language (Bezan-
son et al., 2014). The implementation is detailed in Appendix A. Efforts have been
made to make it easy to use, efficient and tested. The Scripts List showed above in
the thesis groups the scripts that mainly produce the results based on the package.
The git repository of the thesis is available at:

https://gitlab-research.centralesupelec.fr/2017bentrioum/phd-thesis

A Notations List is available before the introduction. It groups the common
notations used in this thesis.

5

Chapter 2

Markov Chains and Chemical
Reaction Networks

This chapter is an introduction to Markov Chains theory. The idea is to present
Markov Chains with stochastic process and model checking point of views and see
how they describe the dynamics of Chemical Reaction Networks, a formalism that
defines the interactions between chemical species.

Markov Chains are a specific class of stochastic models. They are characterised
by the memoryless property: if a value is known at a specific time, the future is
independent of the older values. In our work, this class of models is involved in
several tasks:

• Continuous-Time Markov Chains, also called Markov Jump Processes, is the
underlying probabilistic model involved in Chemical Reaction Networks, our
main study subject.

• Discrete-Time Markov Chains, sometimes simply called Markov Chains, are
involved in advanced statistical methods (Markov Chain Monte Carlo, Hidden
Markov Models).

In Section 2.1.1, we recall definitions and basic properties of Markov Chains in
a classical way for stochastic processes. Section 2.1.2 gives a Markov Chain descrip-
tion frequently used in model checking and based on the transition rate matrix. We
describe the set of paths of a CTMC. In Section 2.2, we construct a probability mea-
sure over the set of paths of a CTMC. This section is a requisite for the definition
of verification tasks of CTMC. In the last Section 2.3, we describe Chemical Reac-
tion Networks formalism for the description of chemical kinetics. We show that the
underlying probabilistic model that rules the stochastic dynamics is a CTMC. We

6 2.1. Different perspectives on Markov Chains

also detail the equations that rule the dynamics, under new assumptions or not, and
expose simulation algorithms of trajectories.

The notations related to this chapter are described in the Notations part at the
beginning of the thesis. We assume the reader is familiar with classical probability and
measure theory notions such as random variable, σ-algebra and probability measure.
For further exploration of the theory of Markov Chains, we refer the reader to the
books (Bladt and Nielsen, 2017), (Stroock, 2005), (Kulkarni, 1998).

In the whole chapter, Ω is the sample space with ω ∈ Ω an elementary event, F
a σ-field of Ω and (Ω,F,P) a probability space. FX is the σ-algebra generated by
a set X. S = {(s(i))i∈I} ⊆ Nd with I ⊆ N is the countable discrete state set. An
element s ∈ S is a d-dimensional vector of integers, and for i ∈ {1, . . . , d}, s[i] is the
i-th component. (St)t∈T ∈ S is a stochastic process (a collection of random variables)
defined on the measurable space (Ω,F,P) with T a countable or continuous set.

2.1 Different perspectives on Markov Chains

This section aims to define discrete space Markov Chains in discrete time and con-
tinuous time and detail their main properties. Proof and details of these results can
be found in (Bladt and Nielsen, 2017).

2.1.1 Markov Chains as a stochastic process

Discrete-Time Markov Chain (DTMC)

A Discrete-Time Markov Chain is a stochastic process indexed by an integer (T = N)
that fulfils the Markov property. This property states that the current state of the
chain only depends on the last state of the chain.

Definition 2.1.1 (Discrete-Time Markov Chain)
(Sn)n∈N is a time-homogeneous Discrete-Time Markov Chain with state space S ⊆ Nd

if

1. ∀n ∈ N, ∀s, sn, . . . , s0 ∈ S,P(Sn+1 = s|Sn = sn, . . . , S0 = s0) = P(Sn+1 = s|Sn =

sn) (Markov property)

2. ∀n ∈ N, ∀s, s′ ∈ S,P(Sn+1 = s′| Sn = s) = P(S1 = s′|S0 = s) (Time-
homogeneity)

Chapter 2. Markov Chains and Chemical Reaction Networks 7

In the following, we introduce some classical notations about Markov Chains.
They are involved in helpful results such as ergodic theorems.

Transition probabilities

Definition 2.1.2 (Transition matrix for a DTMC)
For a time-homogeneous DTMC (Sn)n∈N with state space S = {(s(i))i} ⊆ Nd, the
matrix

P = (pij)ij = (P(S1 = s(j)|S0 = s(i)))s(i),s(j)∈S

is called the transition matrix of the DTMC. P (s(i), s(j)) = pij is called a transition
probability.

pij is the probability that, being at the state s(i), the chain transitions to the
state s(j). One can generalise this definition with n-step transitions.

Definition 2.1.3 (n-step transition probability)
Let (Sn)n∈N be a time-homogeneous DTMC. For n ∈ N∗, the probability

p
(n)
ij = P(Sn = s(j)|S0 = s(i))

is called a n-step transition probability. We denote P (n) = (p
(n)
ij)ij.

Any transition probability p
(n+m)
ij can be computed with intermediate probabil-

ities by Kolmogorov’s equations.

Theorem 2.1.1 (Chapman-Kolmogorov equations)
Let (Sn)n∈N be a time-homogeneous DTMC with associated transition matrices (P (n))n∈N

2.1.3. Then:
∀n,m ∈ N, P (n+m) = P (n)P (m).

Ergodic chain A stationary distribution is a distribution invariant by the transi-
tion probability matrix (see Definition 2.1.10 further). The existence of such distri-
butions is an important result of Markov Chains. Under adequate hypotheses, the
matrix P (n) converges to the unique stationary distribution of the Markov Chain as
n grows to infinity. These results are known as ergodic theorems. They are especially
useful in advanced Bayesian statistical methods, as we will see in the next chapter.
We proceed by describing these hypotheses related to the states of the chain. We say
that a chain verifies a property if all its states verify this property.

8 2.1. Different perspectives on Markov Chains

Definition 2.1.4 (Initial passing time)
The random time of first entrance in a state s(i), also called initial passing time or
first hit time, is defined as:

τs(i) = inf{t ∈ N, t > 1/St = s(i)}

Definition 2.1.5 (Recurrent state)
A state s(i) is recurrent if

∑+∞
n=1 p

(n)
ii = +∞. Otherwise it is called transient.

This means that as n tends to infinity, the state will be visited by the Markov
Chain regularly. Indeed

∑+∞
n=1 p

(n)
ii is the expectation of the random variable Ns(i)

that counts the number of times the chain sojourns in s(i) when starting from s(i), i.e.
Ns(i) =

∑+∞
n=1 1(Sn = s(i)).

Definition 2.1.6 (Positive recurrent state)
A recurrent state s(i) is positive recurrent if E[τs(i) | S0 = s(i)] < +∞. Otherwise it is
called null recurrent.

A Markov Chain is positive recurrent if all its states are positive recurrent.

Definition 2.1.7 (Communication of states - Irreducibility)
A state s(i) leads to s(j) (s(i) → s(j)) if ∃n ∈ N, p

(n)
ij > 0. States s(i) and s(j)

communicate (s(i) ↔ s(j)) if s(i) → s(j) and s(j) → s(i).

A Markov Chain is irreducible if all its states communicate.

Definition 2.1.8 (Period of a state and aperiodicity)
The period of a state s(i) is defined as:

gcd{n ≥ 1/p
(n)
ii > 0}

where gcd is the greatest common divisor. If the period is 1, s(i) is called aperiodic.

A Markov Chain is aperiodic if all its states are aperiodic.

We obtain the notion of ergodicity by gathering all these properties.

Definition 2.1.9 (Ergodic Markov Chain)
A Markov Chain (Sn)n∈N is ergodic if it is positive reccurent, irreducible and aperiodic.

Ergodic Markov Chains have useful properties, which are mainly embodied by
the ergodic theorem.

Chapter 2. Markov Chains and Chemical Reaction Networks 9

Definition 2.1.10 (Stationary distribution)
A stationary distribution (πi)i∈N/s(i)∈S of a Markov Chain with transition matrix P

is a non-zero vector where for all i ∈ N corresponding to a state s(i) ∈ S, 0 ≤ πi < 1,
π = πP and

∑
i∈N/s(i)∈S

πi = 1.

Proposition 2.1.1 (Stationary distribution of a Markov Chain)
An ergodic Markov Chain admits a unique stationary distribution π.

In fact, it is sufficient for the Markov Chain to be irreducible and positive re-
current for Proposition 2.1.1 to be true. We have stated the required definitions and
properties for the ergodic theorem.

Theorem 2.1.2 (Ergodic theorem)
Let (Sn)n∈N be an ergodic Markov Chain with n-step transition probabilities p

(n)
ij and

its stationary distribution π. Then the n-step transition probabilities converge to the
stationary distribution, i.e

∀i, sup
j
|p(n)ij − πj | →

n→+∞
0.

This result is generalisable with continuous state spaces. They are especially
useful in Markov Chain Monte Carlo statistical methods, as we will see in Chapter 3.

Continuous-Time Markov Chain

We now extend the definitions described in the previous section to the case of a
continuous-time set T = R≥0 (state space S is still discrete).

Definition 2.1.11 (Continuous-Time Markov Chain (CTMC))
(St)t∈R≥0

is a time-homogeneous CTMC if it satisfies the following properties:

1. The trajectories (t→ St(ω))ω∈Ω are right-continuous

2. ∀t, s ∈ T,P(St|Sv, v ∈ [0, s]) = P(St|Ss) (Markov property)

3. ∀t, v ∈ R≥0, t > v,P(St|Sv) = P(St−v|S0) (Time-homogeneity).

Remark 2.1.1 (Time-homogeneity of a Markov Chain)
In our applications, unless otherwise stated, Markov Chains will be considered time-
homogeneous.

10 2.1. Different perspectives on Markov Chains

We define Ts (s ∈ S) the random sojourn time in state s, i.e. the time before a
state transition occurs while in s:

P(Ts ≥ t) = P({ω ∈ Ω, ∀t′ ∈ [0, t], St′(ω) = s})

Proposition 2.1.2 (Exponential times of a CTMC.)
The random variable Ts verifies the memoryless property, i.e. it follows an exponential
law.

As Ts follows an exponential law, we denote E(s) its parameter, which is called
total exit rate. Then, Ts ∼ Exp(E(s)) and E(Ts) = 1

E(s) . The event {STs = s′} is
defined as the set of elementary events ω so that the trajectory S(ω) reaches s′ after
a jump from s.

Definition 2.1.12 (Transition probability for a CTMC)
Let (St)t∈R≥0

be a CTMC.

∀s, s′ ∈ S, s ̸= s′, P (s, s′) = P(STs = s′|S0 = s)

is called a transition probability.

Then, we can prove the following properties based on the first-order Taylor’s
expansion of exponential and on the Markov property:

∀t ∈ T, ∀s, s′ ∈ S, s ̸= s′,P(St+h = s′|St = s) = P (s, s′)E(s)h+ o(h)

∀t ∈ T, ∀s ∈ S,P(St+h = s|St = s) = 1−
∑
s′ ̸=s

P (s, s′)E(s)h+ o(h).
(2.1)

If we are in state s at t, the probability that the Markov process jumps to s′ after
a time h only depends on h and s′, but does not depend on t. Let {STs0

= s′} the
event where trajectories go to s′ after a jump from s0. We obtain the following result:

Proposition 2.1.3
For s ∈ S and I ⊆ R≥0, the events {STs = s′} and {Ts ∈ I} are independent.

This property allows to define the transition rate matrix (or infinitesimal gener-
ator matrix) Q as:

Chapter 2. Markov Chains and Chemical Reaction Networks 11

∀s, s′ ∈ S, s ̸= s′, Q(s, s′) = P (s, s′)E(s)

∀s ∈ S, Q(s, s) = −
∑
s′ ̸=s

P (s, s′)E(s) (2.2)

In fact, Property 2.1 is sufficient for the definition of a CTMC.

Proposition 2.1.4 (Infinitesimal definition of a time-homogeneous CTMC)
A stochastic process (St)t∈R≥0

with state space S = {(s(i))i} ⊆ Nd is a time-homogenenous
CTMC if and only if there exists a matrix Q = (qij)ij called transition rate matrix so
that:

∀t ∈ R≥0, h > 0, s(i), s(j) ∈ S,P(St+h = s(j)|St = s(i)) = δij + qijh+ o(h).

Remark 2.1.2 (Description of a CTMC.)
A CTMC is fully defined by its initial distribution S0 and transition rate matrix Q.
E(s) =

∑
s′ ̸=s Q(s, s′) is the total exit rate of the state s.

The transition rate matrix Q is involved in the evolution of the chain’s state over
time. Let us define the transient probability vector.

Definition 2.1.13 (Transient state probability)
Considering the countable state space S = {(s(i))i}, we define the transient state
probability vector of a CTMC as the vector P (t) = (P

(t)
i)i where

P
(t)
i = P(St = s(i)).

The dynamics of the Continuous-Time Markov Chain is described by Kolmogorov’s
forward equations.

Proposition 2.1.5 (Kolmogorov’s forward equations)
Let P be the transient state probability vector (Definition 2.1.13). Then P verifies
the Kolmogorov forward equation:

d

dt
P (t) = P (t)Q.

This equivalence will be proven later in the context of Chemical Reaction Net-
works (Section 2.3.3).

Remark 2.1.3
For a finite state space (Card(S) < ∞), the solution of the Kolmogorov’s forward

12 2.1. Different perspectives on Markov Chains

equations is
P (t) = eQt.

The analytical form in 2.1.3 is convenient for describing the dynamics of a CTMC
system with few states, but the more the number of states increases, the less the
computation of the matrix exponential is feasible. This is known as the state-space
explosion problem, which justifies the use of statistical and approximate methods for
CTMC. The bypass of the state-space explosion problem is the driving force of our
work.

2.1.2 CTMC as an oriented graph

In this thesis, we are interested in verification of CTMC, which aims at verifying
if a set of logical properties are satisfied by the stochastic process. The common
representation of CTMCs used in this field is based on the transition rate matrix (see
Remark 2.1.2). They are represented by a tuple M = (S, α,Q) where:

• S is the set of states

• α : S→ [0, 1] with
∑
s∈S

α(s) = 1 is the initial distribution. It corresponds to the

distribution of S0, PS0
.

• Q : S× S→ R is the transition rate matrix where ∀s,
∑

s′∈S Q(s, s′) = 0.

Remark 2.1.4
In our applications, unless otherwise stated, the initial distribution is combined with a
fixed initial state s0, which means α = δs0. This case leads to a tuple M = (S, s0, Q).

In this case, a CTMC is illustrated by an oriented graph whose nodes are states
and edges/transitions represent the transition rate matrix Q.

Figure 2.1 depicts an example of a CTMC with two states (S = {Sleep, Awake}).
It describes the sleep cycle of a human. The transition rate matrix is defined by
Q(Sleep,Awake) = 1

8 , Q(Awake, Sleep) = 1
16 . As each row of Q should sum to zero,

the two others coefficients equal Q(Sleep, Sleep) = −1
8 and Q(Awake,Awake) = − 1

16 .
In this CTMC, only one edge arises from the Sleep state. So the sojourn time of
the Sleep state is TSleep ∼ Exp(Q(Sleep,Awake)). With a time scale of hours, this
modelisation considers that the average time of sleep is 8 hours.

Chapter 2. Markov Chains and Chemical Reaction Networks 13

Sleep Awake

1
8

1
16

Figure 2.1: CTMC of a sleep cycle

Depending on the literature, the property
∑

s′∈S Q(s, s′) = 0 can be either in-
cluded in the definition or not. We assume this property to hold. Simply speaking,
we do not allow self transitions (s t−→ s).

2.2 Probability measure of CTMCs.

In the following, we describe the set of trajectories of a CMTC and construct a
probability measure over this set. It is a requirement for verification of CTMCs: the
satisfaction of a formula is based on the computation of this probability measure. We
need to ensure that this probability measure is well defined.

2.2.1 Paths/Trajectories of a CTMC.

Definition 2.2.1 (Path/Trajectory of a CTMC)
A path (or trajectory) σ of a CTMC M = (S, α,Q) is a (possibly infinite) sequence
σ=s0

t0−→ . . .
tk−1−−−→ sk . . ., with ti∈R≥0 being the sojourn time in state si∈S such that

α(s0) > 0 and ∀i, Q(si, si+1) > 0.

Path(M) is the set of possible right-continuous paths of a CTMC M.

Several operators are associated with a path σ ∈ Path(M). For i ∈ N and
t ∈ R≥0, σ[i] = si is the i-th state of σ, δ(σ, i) = ti the sojourn time of σ in the
i-th state, σ@t the state of σ at time t and σ[t⟩ the truncated path of σ at time t

(σ[t⟩@0.2 = σ@(t+ 0.2)).

For example, if σ= s0
0.25−−→ s1

0.5−−→ s2
0.15−−→ s3

1−→ . . . we have σ[1] = s1, δ(σ, 2) =
0.15, σ@0.1 = s1. A finite path can be considered as an infinite path with tk = +∞.

Remark 2.2.1 (About the notation of the set of paths)
In the literature, the initial distribution is sometimes not included in the definition of
a CTMC. In this context, Path is used for the set of all paths with any possible initial
state and Path(s) for the paths originating in s. In our work, we deal with collections

14 2.2. Probability measure of CTMCs.

of CTMCs. Hence we do not want the reference of the CTMC to be implicit. As
the initial distribution is included in the representation of Section 2.1.2, we do not
mention the initial distribution in the notation. When necessary, an auxiliary CTMC
with a different initial state but the same transition matrix will be defined (for example,
in Definition 4.1.4 of the CSL satisfaction operator |=).

2.2.2 Probability measure over the set of paths.

Let (St)t∈R≥0
a CTMC. We need a probability measure over the set of paths to

quantify how probable a path/trajectory is from a CTMC. In statistical inference,
such a probability measure is defined by the pushforward measure of P under S .

Let ΦS be the function:

ΦS : (Ω,F)→ (SR
≥0,FSR

≥0
)

ω → S(ω)

with SR≥0 the set of right-continuous functions f : R≥0 → S, and FSR≥0 the σ-
algebra generated by SR

≥0. Then SP = P ◦ Φ−1
S defines a probability measure PS on

the measurable set (SR
≥0,FST). We have:

PS = SP = P ◦ Φ−1
S

If S is a CTMC, for ω ∈ Ω, S(ω) is a trajectory (like σ). If A is a subset of
trajectories, PS (A) = P({ω ∈ Ω, S(ω) ∈ A}).

However, in the representation M = (S, α,Q) of a CTMC, the notion of proba-
bility does not appear clearly (except the distribution over the initial state). We only
define a transition rate matrix Q, which defines the transitions between states and
the timing information of a transition. Intuitively, the elements Q(s, s′) represent the
velocity at which the transition s → s′ occurs. For verification purpose of these sys-
tems, the probability measure over the set of trajectories is constructed explicitely by
induction. It is based on the assumption that the time before an outgoing transition
from a non-absorbing state has an exponential time.

In the following, we define a probability measure PrM , based on the CTMC
M = (S, α,Q), over the measurable space (Path(M),FPath(M)), where FPath(M) is
the σ-algebra generated by Path(M).

Chapter 2. Markov Chains and Chemical Reaction Networks 15

Let si, sj ∈ S so that si ̸= sj and E(si) > 0. The probability that si → sj occurs
within t ∈ T is given by:

P (si, sj , t) = P (si, sj)(1− e−E(si)t) (2.3)

where P (si, sj) = Q(si,sj)
E(si) is called a transition probability and (1− e−E(si)t) is the

probability that the transition occurs within t.

We define the cylinder set C(s0, I0, . . . , Ik−1, sk) with Ij =]aj , bj [as:

C(s0, I0, . . . , Ik−1, sk) = {σ ∈ Path(M), ∀i ∈ {0, . . . , k}, σ[i] = si, δ(σ, i) ∈ Ii}

If σ ∈ C(s0, I0, . . . , Ik−1, sk), the sequence of states s0 → . . . → sk that a trajec-
tory traverses is fixed but the times spent in each state can vary. A way of visualising
C(s0, I0, . . . , Ik−1, sk) is s0

I0−→ . . .
Ik−1−−−→ sk.

The probability measure PrM is defined by induction:

PrM(C(s0)) =α(s0) = P (s0)

PrM(C(s0, I0, . . . , Ik−1, sk)) =PrM(C(s0, I0, . . . , Ik−2, sk−1))

· P (sk−1, sk)(e−akE(sk−1) − e−bkE(sk−1))

By denoting Tsk ∼ Exp(E(sk)),

PrM(C(s0, I0, . . . , Ik−1, sk)) = PrM(C(s0)) ·
k∏

i=1

P (si, si+1)P(Tsi ∈ Ii)

The probability measure is thus defined over a subset of FPath(M). It is sufficient
to define the measure over these cylinder sets: the measure is naturally extended over
the whole space (see Appendix B for details).

Proposition 2.2.1 (Consistency of the probability measures)

∀A ∈ FPath(M), P rM(A) = PS (A)

16 2.2. Probability measure of CTMCs.

Proof. It is sufficient to prove the equality of the measures over any cylinder set
C(s0, I0, . . . , Ik−1, sk). This is a consequence of Caratheodory’s extension theorem
(Klenke, 2008, Chapter 1). We refer the readers interested in the probabilistic details
of measure constructions to the Appendix B.

Let A = C(s0, I0, . . . , Ik−1, sk).

Let us prove this by induction over p ∈ {0, . . . , k}. Let p ≥ 1, Ap = C(s0, I0, . . . , Ip−1, sp).
Then Ak = A.

We set these events:

• E0 = {S0 = s0}

• E1 = {Ts0 ∈ I0, STs0
= s1}

• j ≥ 2, Ej = {aj−1+
∑j−2

i=0 Tsi ≤ Tsj−1 +
∑j−2

i=0 Tsi ≤ bj−1+
∑j−2

i=0 Tsi , S∑j−1
i=0 Tsi

=

sj} = {aj−1 ≤ Tsj−1 ≤ bj−1, S∑j−1
i=0 Tsi

= sj}

Ej is the event that after spending a time Tsj−1 ∈ Ij−1 in sj−1, we have a jump
from sj−1 to sj .

By time-homogeneity of the Markov Chain, PS (Ap) = P(E0, . . . , Ep).

Let us reason by finite induction on p ∈ {1, . . . , k}.

p = 1:
P(A1) = P(E1|E0)P(E0)

= P(Ts0 ∈ I0, STs0
= s1|S0 = s0)P(S0 = s0)

= P(Ts0 ∈ I0)P(STs0
= s1|S0 = s0)

= P (s0, s1)P(Ts0 ∈ I0)

p+ 1:

PS (Ap+1) = P(E0, . . . , Ep+1)

= P(Ep+1|E0, . . . , Ep)P(E0, . . . , Ep)

= P(Ep+1|E0, . . . , Ep)

p∏
i=1

P (si, si+1)P(Ti ∈ Ii)

Then,

Chapter 2. Markov Chains and Chemical Reaction Networks 17

P(Ep+1|E0, . . . , Ep) = P(Tsp ∈ Ip, S∑p
i=0 Tsi

= sp+1|E0, . . . , Ep)

= P(Tsp ∈ Ip, S∑p
i=0 Tsi

= sp+1|S0 = s0, Ts0 ∈ I0, . . . , Tsp−1 ∈ Ip−1, S∑p−1
i=0 Tsi

= sp)

Since the value of the next state only depends on the previous value, we have:

P(Ep+1|E0, . . . , Ep) = P(Tsp ∈ Ip, S∑p
i=0 Tsi

= sp+1|S∑p−1
i=0 Tsi

= sp)

Hence, as the CTMC is time-homogeneous, we translate the time by −
∑p−1

i=0 Tsi ,
and we obtain by the independence of {Ts0 ∈ I} and {STs0

= s′} (Proposition 2.1.3):

P(Ep+1|E0, . . . , Ep) = P (sp, sp+1)P(Tsp ∈ Ip)

By induction the result is proven.

Remark 2.2.2 (PrM or PS ?)
If these notations appoints the same probability measure, should we drop one of them?
In this thesis, we think both notations are useful. In model checking literature, the
representation of Section 2.1.2 and the construction of PrM are frequently presented
(e.g. (Aziz, 2000) or (Baier et al., 2003)). For a CTMC M = (S, α,Q), PrM

is often denoted Prα (the transition rate matrix is implicit due to the fact we only
consider one instance of CTMC in classical model checking).

However, it is convenient to use PS in a statistical context. Also, PrM does not
allow probability calculus with random variables, which deprives us of a useful tool.
For example, if we denote A the set of trajectories so that the value at time t1 is above
x1, one can rewrite PrM(A) as PS (A) = P(St1 ≥ x1).

2.3 Chemical Reaction Networks

In this section, we describe a specific formalism called Chemical Reaction Networks.
They are used to represent a class of biological models that describe the kinetics of
chemical phenomena.

In this kind of models, we consider an amount of different species molecules in
a specific constant volume: these molecules can collide and provoke transformations.
These phenomena are expressed by reactions:

18 2.3. Chemical Reaction Networks

Ri : ai1X1 + . . .+ aidXd︸ ︷︷ ︸
reactants

→ bi1X1 + . . . bidXd︸ ︷︷ ︸
products

Due to the complexity of the interactions between the species, the modelling
of Chemical Reaction Networks is stochastic. Under particular assumptions, the
underlying probabilistic model is a Continuous-Time Markov Chain. This stochastic
description is especially useful when the numbers of molecules are not significant.
Most models consider molecules that can collide and react, such as gene regulatory
networks (Karlebach and Shamir, 2008) or cell signaling pathways (Eungdamrong
and Iyengar, 2004). But this framework is also helpful in the study of interactions
between humans or animals such as the SIR (Kermack and McKendrick, 1927) or
Lokta-Volterra (Lotka, 1932) models.

2.3.1 Definition of a Chemical Reaction Network

In the most detailed description of chemical phenomena, one should describe the po-
sition and velocity of each molecule in time and fires a reaction when two molecules
collide. Stochastic semantics of Chemical Reaction Network are based on two as-
sumptions:

• The system is well-stirred in a constant volume. At any time t, the system
evolution is only represented by a state s ∈ Nd where each component s[i] is the
number of species. Thus, the system evolution can be described by a stochastic
process (St)t∈R≥0

.

• Each possible change of the population occurs through a reaction channel Rj .
It is defined by two quantities: νj the stoichiometric vector and ηj the kinetic
rate.

The stoichiometric vector νj represents the variation in number for each species
when Rj occurs. The kinetic rate ηj = ηj(s, θ) of a reaction channel Rj depends both
on the state s and some parameters θ. This quantity is defined so that given a state
s, the probability that the reaction j occurs within the infinitesimal interval [t, dt[is
ηj(s, θ)dt. In other words,

P(Rj occurs within [t, t+ dt]| population at time t is s) ≈ ηj(s, θ)dt (2.4)

The function s → ηj(s, θ)dt is called the propensity function (also called the hazard
function).

Chapter 2. Markov Chains and Chemical Reaction Networks 19

Definition 2.3.1 (Chemical Reaction Network)
A Chemical Reaction Network is fully described by:

• The set of species S of cardinal d.

• A set R1, . . . , Rm of reaction channels where each Rj is characterised by a pair
Rj : (νj , ηj) with νj = [ν1j , . . . , νdj] the stoichiometric vector, representing the
variation in number for each species determined by the occurrence of Rj, and
ηj = ηj(s, θ) the kinetic rate of the reaction Rj.

• A p-dimensional vector of parameters θ = [θ1, . . . , θp] affecting the kinetic rate
of the reaction channels, with θ in Θ ⊂ Rp.

The Equation 2.4 recalls the characterisation of a CTMC in Proposition 2.1.4.
Indeed, the assumptions on the Chemical Reaction Network system evolution leads
to a Continuous-Time Markov Chain.

Remark 2.3.1 (CTMC description of a Chemical Reaction Network)
The system evolution of a CRN is described by a CTMC (St)t∈R≥0

:

• A discrete state space S ⊆ Nd whose elements are vectors s = [s[1], . . . , s[d]]∈S
where s[i] is the population, in terms of number of molecules of the i-th species.

• An initial state s0.

• A transition rate matrix Qθ defined by ∀j ∈ {1, . . . ,M}, Qθ(s, s+ νj) = ηj(s, θ),
and 0 for the states that does not have the form s + νj.

We deduce the transitition probabilities and total exit rates:

• Pθ(st, st + νj) =
ηj(st,θ)

ηsum(st,θ)

• Eθ(s) = ηsum(st, θ) =
∑M

j=1 ηj(st, θ).

A CTMC whose a state represents the number of individuals of several cate-
gories/species is also often called a Markov Population Process.

A common assumption about the kinetic rate is the law of mass action. This
law states that the kinetic rate is proportional to the multiplication of the numbers
of reactant species.

Remark 2.3.2
Unless stated, the considered Chemical Reaction Networks follows the mass-action
law.

20 2.3. Chemical Reaction Networks

2.3.2 Example

Let us illustrate the definitions with an example. Let S = {A,B,C,D} be the set of
species, N4 be the state space. The i-th component i ∈ {1, . . . , 4} of a state is the
number of molecules of the species i. We consider the following set of reactions with
constant reaction rates θ = (k1, k2, k3):

R1: A+ C
k1−→ D (second order reaction)

R2: A
k2−→ B (first order reaction)

R3: ∅ k3−→ C (zero order reaction)

Then the associated stoichiometric vectors are:

ν1 = [−1︸︷︷︸
A is a reactant

in R1

, 0,−1, 1︸︷︷︸
D is a product

in R1

]

ν2 = [−1, 1, 0, 0]

ν3 = [0, 0, 1, 0].

The mass-action law leads to the kinetic rates:

η1(s, θ) = k1 · |A| · |C| = k1 · s[1] · s[3]

η2(s, θ) = k2 · |A| = k2 · s[1]

η3(s, θ) = k3.

2.3.3 Different representations of the system evolution

As we saw in the previous section, the formalism of Chemical Reaction Networks
leads to a CTMC (St)t∈R≥0

to describe the system evolution. In the following, we
describe the equations that govern (St)t∈R≥0

and how, with additional assumptions,
approximated equations can be deduced.

Chemical Master Equation

The Chemical Master Equation of a Chemical Reaction Network, also known as the
Kolmogorov equation in probability theory, is the set of equations that describes the
probability of each state at any time t.

Chapter 2. Markov Chains and Chemical Reaction Networks 21

Let s ∈ S a state. We want to describe the evolution of the probability to be in
this state over time.

Let the events E(0)
I = ”no reaction occurs in the interval I”, ∀j ∈ {1, . . . ,M}, E(j)

I =

”the reaction j occurs in the interval time I”. Let t > 0 be a time and dt > 0 be an
infinitesimal time. Then,

P(St+dt = s) = P(E(0)
[t,t+dt]| St = s)︸ ︷︷ ︸

no reaction occurs

P(St = s)+
M∑
j=1

P(E(j)
[t,t+dt]| St = s− νj)︸ ︷︷ ︸

one of the reactions occurs

P(St = s−νj)

Intuitively, this equation states that the probability of being in state s after an
infinitesimal time dt can be decomposed into the sum of two probabilities:

• The probability of being in state s at t and no reaction occurs until t+ dt.

• The probability of being in another state so that one of the reactions occurs
within dt and brings the system in the state s.

Based on the CTMC framework of a CRN 2.3.1,

P(E(0)
[t,t+dt]| St = s) = (1−

M∑
j=1

ηj(s, θ)dt)

∀j ∈ {1, . . . ,M},P(E(j)
[t,t+dt]| St = s− νj) = ηj(s− νj , θ)dt

Combining the Equation 2.3.3 and lim
dt→0

P(St+dt=s)−P(St=s)
dt , we obtain the Chemical

Master Equation:

d

dt
P(St = s) =

M∑
j=1

(ηj(s− νj , θ)P(St = s− νj)− ηj(s, θ)P(St = s)) (2.5)

Random Time Change Representation

In the previous section, we focused on an infinitesimal time to derive an exact equation
that describes the evolution in time of our system. Another option is to focus on the
total amount of reactions that occur within time t. For j ∈ {1, . . . ,M}, Nj(S0, t) is
the random variable that gives the number of occurrences of the j-th reaction until
time t. Then,

22 2.3. Chemical Reaction Networks

St =
M∑
j=1

Nj(S0, t)νj + S0.

(Kurtz, 1980) proves:

St =

M∑
j=1

P(
∫ t

0
ηj(Sv, θ)dv)νj + S0. (2.6)

where P(a) is a Poisson law with mean a. This is the Random Time Change
Representation of the CTMC.

Tau-leap approximation and Chemical Langevin Equation

Equations 2.5 and 2.6 are in practice difficult to solve. An efficient way to obtain
approximate equations that leads to faster simulation algorithms is to discretise the
time interval by a step τ . Equation 2.6 becomes:

St+τ =

M∑
j=1

P(
∫ t+τ

t
ηj(Sv, θ)dv)νj + St.

This equation is still exact. Two assumptions (Gillespie, 2007) for the interval
time τ can lead to good approximations of our equations:

• For any time t and given the state st, the propensity function does not vary a
lot over [t, t+ τ], i.e ηj(St′ , θ) ≈ η(st, θ) over t′ ∈ [t, t+ τ]. (Leap condition).

• There is a significant amount of reactions that occur within [t, t+ τ].

These assumptions seem contradictory. Indeed, they assume that τ is small
enough so that the propensity function does not vary a lot, but it should be long
enough to allow several reactions. In practice, these assumptions are valid if we have
enough molecules of each species in the studied system.

The first assumption means that if we know in which state the system is at time
t, then the propensity functions are constant over a time interval of length τ . We can
then estimate by Riemann sum the integral involved in Equation 2.6 for any N ∈ N:

Chapter 2. Markov Chains and Chemical Reaction Networks 23

∫ N ·τ

0
ηj(Sv, θ)dv ≈

N−1∑
i=0

ηj(Siτ , θ)τ

which gives the scheme

St+τ =
M∑
j=1

P(ηj(St, θ)τ)νj + St. (2.7)

Given the state st, the expected number of reactions that will occur is ηj(st, θ)τ .

The second assumption leads to an approximation of a Poisson distribution by
a Normal distribution (according to the central limit theorem and the fact that a
Poisson distribution is a sum of unit Poisson distributions).

P(ηj(st, θ)τ) ≈ N (ηj(st, θ)τ, ηj(st, θ)τ) = ηj(st, θ)τ +
√
ηj(st, θ)τN (0, 1)

This gives the scheme:

St+τ = τ

M∑
j=1

ηj(st, θ)νj +
M∑
j=1

νj

√
ηj(st, θ)τN (0, 1) + St (2.8)

which can be seen as a discretisation of the continuous stochastic differential
equation:

dSt =
M∑
j=1

ηj(St, θ)νjdt+
M∑
j=1

νj

√
ηj(st, θ)dW (j)

t (2.9)

where W
(j)
t are independent Brownian motions. The Equation 2.9 is called the Chem-

ical Langevin Equation (Gillespie, 2000).

Reaction Rate Equation: a macroscopic deterministic approximation of a
CRN

Initially, chemical kinetics were described by a set of ODE. The implicit assump-
tion is that the system evolves in a chemical equilibrum. For example, in (Kermack
and McKendrick, 1927) the system evolution of the SIR model is described by three
ordinary differential equations (ODE). However, a macroscopic and deterministic
equation can be derived from the CME 2.5 that corresponds to the classical ODE

24 2.3. Chemical Reaction Networks

description of chemical systems. We have for any s(i) ∈ S = {(s(i))i∈N}

d

dt
P(St = s(i)) =

M∑
j=1

(ηj(s(i) − νj , θ)P(St = s(i) − νj)− ηj(s(i), θ)P(St = s(i))). (2.10)

As St is a discrete random variable, E[St] =
∑

i s(i)P(St = s(i)). Then by multi-
plying the previous equation by s(i) and suming over i ∈ N

d

dt
E[St = s(i)] =

M∑
j=1

(∑
i∈N

ηj(s(i) − νj , θ)s(i)P(St = s(i) − νj)−
∑
i∈N

ηj(s(i), θ)s(i)P(St = s(i))
)
.

(2.11)

Then, as
∑

i∈N ηj(s(i)−νj , θ)s(i)P(St = s(i)−νj) =
∑

i∈N ηj(s(i), θ)(s(i)+νj)P(St =

s(i)) , it gives:

d

dt
E[St] =

M∑
j=1

E[ηj(St, θ)]νj (2.12)

which gives if we neglect the stochastic variations of our system (t → St is a deter-
ministic function):

dSt

dt
=

M∑
j=1

ηj(St, θ)νj . (2.13)

.

Equation 2.13 is called the Reaction Rate Equation (RRE). This equation is
considered a good approximation of the system’s dynamics if the population is very
large (Gillespie, 2000).

Remark 2.3.3 (RRE with the Chemical Langevin Equation)
If we assume that the stochastic fluctuations of (St)t are negligible, i.e. it is a constant
process, then by reconsidering the Chemical Langevin Equation 2.9

dSt =

M∑
j=1

ηj(St, θ)νj︸ ︷︷ ︸
deterministic part

dt+

M∑
j=1

νj

√
ηj(st, θ)dW (j)

t︸ ︷︷ ︸
stochastic part

. (2.14)

We obtain the Reaction Rate Equation 2.13 by neglecting the stochastic part.

Chapter 2. Markov Chains and Chemical Reaction Networks 25

2.3.4 Stochastic simulation of a CRN

We have derived useful exact or approximate equations for the description of the CRN
dynamics. Thus, one can derive simulation algorithms of paths from the CRN based
on these equations.

Stochastic simulation algorithm

Stochastic Simulation Algorithm (SSA) was first formulated in (Gillespie, 1977). It
is an exact method that simulates statistically correct paths of a CRN.

In Section 2.1.1, we described the distribution of the sojourn time of a state st,
which is Exponential, and the distribution of transition from one state to another.
These events are independent (Proposition 2.1.3). The probability density function
of the couple (STst

, Tst) is:

p(STst ,Tst)
(st + νj , τ |St = st) =

ηj(st, θ)
ηsum(st, θ)︸ ︷︷ ︸

Categorical distribution

ηsum(st, θ)e−ηsum(st,θ)τ︸ ︷︷ ︸
Exponential distribution

where

ηsum(st, θ) =
M∑
j=1

ηj(st, θ) (total exit rate of st).

Equation 2.3.4 means that given the state st at a time t, the time before a reaction
occurs and the next reaction that will occur are independent, so we can simulate them
step by step, which provides the Stochastic Simulation Algorithm 1.

26 2.3. Chemical Reaction Networks

Algorithm 1 Exact Stochastic Simulation Algorithm
Require: A CRN, an end time T, an initial state s0.
Ensure: Two collections (si)i and (ti)i that represent the simulated path.

t, t0 ← 0

i← 1

while t < T do
τ ∼ Exp(ηsum(st, θ))
Take j in {1, . . . ,M} with probability (

ηj(st,θ)
ηsum(st,θ))j∈{1,...,M}

si ← si−1 + νj

i← i+ 1

t, ti ← t+ τ

end while

The Modified Next Reaction Method is another exact stochastic simulation
method developed by (Anderson, 2007) based on (Gibson and Bruck, 2000). This
method needs drawing only one random number per simulated reaction instead of two
in the SSA 1. The simulation is based on the representation 2.6. Tj(t) =

∫ t
0 ηj(Sv, θ)dv

is called the internal time and depends on the propensity function. Algorithm 2 is
based on the sequential computation of the internal time, see (Anderson, 2007) for
more details.

Algorithm 2 Modified Next Reaction Method
Require: A CRN, an end time T, an initial state s0.
Ensure: Two collections (si)i and (ti)i that represent the simulated path.

t← 0

For j ∈ {1, . . . ,M}, Tj ← 0

i← 1

while t < T do
For j ∈ {1, . . . ,M}, Pj ∼ Exp(1)

For j ∈ {1, . . . ,M},∆tj ← Pj−Tj

ηj(si−1,θ)

j∗ ← arg min
{1,...,M}

∆tj

si ← si−1 + νj∗

t← t+∆tj∗

Tj ← Tj + ηj(si−1, θ)∆tj∗

s ∼ Exp(1), Pj∗ ← Pj∗ + s

i← i+ 1

end while

Chapter 2. Markov Chains and Chemical Reaction Networks 27

Tau-leap approximation

Exact simulation algorithms can be computationally expensive. The greater the
end time T , the greater the number of occurred reactions. The idea of the explicit
Tau-leaping simulation algorithm is to simulate a bunch of reactions with Poisson
distributions at each time step. Indeed, with the tau-leap assumptions, the scheme
in Equation 2.7 gives a sequential way to simulate the number of occurrences of each
reaction with Poisson distributions during a time τ .

Algorithm 3 Explicit Tau-leaping Simulation Algorithm
Require: A CRN, a number of time steps N , an initial state s0.
Ensure: Two collections (si)i and (ti)i that represent the simulated path.
i← 1

for i = 1:N do
∀j ∈ {1, . . . ,M}, kj ∼ P(ηj(s(i−1)τ , θ)τ)

si·τ ←
∑M

j=1 kjνj + s(i−1)τ

i← i+ 1

end for

More advanced tau-leaping methods with adaptive τ or implicit schemes can be
found (Rathinam et al., 2003; Cao, Gillespie, and Petzold, 2005; Cao, Gillespie, and
Petzold, 2006).

Example of simulations with the SIR model

To apply the concepts and algorithms we have described earlier in the chapter, we
consider the classical SIR compartmental model (Kermack and McKendrick, 1927).
The SIR model describes the spread of an infectious disease among a population of
constant size. The state vector is (XS , XI , XR) ∈ N3. Species S represents the sus-
ceptible individuals, I the infected and R the recovered ones. The system’s dynamics
is described by the Chemical Reaction Network 2.15. Reaction R1 is the infection
process: a susceptible person meets an infected person and gets infected. Reaction
R2 is the recovering process: the infected may become immune to the disease. The
parameter vector of the model is θ = (ki, kr).

R1 : S + I
ki−→ 2I

R2 : I
kr−→ R

(2.15)

28 2.3. Chemical Reaction Networks

(95, 5, 0) (94, 6, 0)

(95, 4, 1)

(93, 7, 0)

(94, 5, 1)

(95,1,4) (94,2,4)

(95,0,5)

ki · 95 · 5

k
r · 5

Figure 2.2: Graph of the SIR CTMC with the initial state s0 =
(95, 5, 0).

This chemical system is illustrated by a finite-state CTMC graph with an initial
state s0 = (95, 5, 0) in Figure 2.2.

We simulate different paths of the SIR system with θ = (0.12/Npop, 0.05) with
SSA and Tau-leaping simulations, and we plot the solution of the reaction rate equa-
tion for the infected people.

Figure 2.3 shows the different levels of approximation of the Reaction Rate Equa-
tion according to population sizes. On the left, the population is far smaller than
on the right. We can see the simulated paths diverges more from the ODE solution
than on the right plot. On the right plot, the ODE solution seems a much better
approximation.

Figure 2.4 shows the different levels of approximations of the stochastic simula-
tions according to the time step τ . On the right, τ is much higher, and the epidemic’s
peak is shifted to the right. Possibly a lot of reactions occurs between each time
step, so the kinetic rate varies within a time step (violation of one of the tau-leap
assumptions). Also, the tau leap paths diverge more from the SSA paths.

Chapter 2. Markov Chains and Chemical Reaction Networks 29

Figure 2.3: Effect of the population size on the simulations of the
SIR model (only the number of infected people is plotted) with θ =
(0.12/Npop, 0.05) and τ = 5.0. On the left plot, s0 = (95, 5, 0) (Npop =
100). On the right plot, s0 = (9500, 500, 0) (Npop = 10000). Red
paths are simulated from the SSA. Green paths are simulated from

the Tau-leaping algorithm. 5 paths for each algorithm.

Figure 2.4: Effect of the tau-leap time step on the simulations of
the SIR model (only the number of infected people is plotted) with
θ = (0.12/Npop, 0.05) and s0 = (95, 5, 0) (Npop = 100). In the left
plot, τ = 0.5. In the right plot, τ = 5.0. Red paths are simulated from
the SSA. Green paths are simulated from the Tau-leaping algorithm.

5 paths for each algorithm.

30 2.4. Summary

Script 1 (Simulation of the SIR model with SSA, Tau-leaping and ODE.)
This simulation is available in the git repository of this thesis at /code/chap1/sim_
sir.jl.

2.4 Summary

In this chapter, we described:

• The fundamentals of Markov Chains in both discrete-time and continuous-time
with different points of view.

• The construction of a probability measure of a CTMC over the set of trajecto-
ries. It will be used in the case of statistical inference and model checking of
CTMCs.

• The Chemical Reaction Network formalism, their stochastic dynamics related
to Continuous-Time Markov Chains and classical simulation algorithms of tra-
jectories.

Chemical Reaction Networks are our main subject of study to address both
statistical inference and verification tasks which are difficult in most cases. But
Markov Chains are also the basis of advanced statistical methods such as MCMC the
Bayesian method, which is the next chapter’s subject.

31

Chapter 3

Statistical methods

The general point of parametric statistics is to formalise observations data within a
probabilistic parametric model to treat, analyse, infer parameters and make predic-
tions from them.

Statistical inference considers probabilistic models parametrised by a vector θ.
It aims at estimating the parameters based on observations data.

Usually, two points of view are opposed in statistical inference. The first one, the
frequentist approach, supposes that a true parameter θtrue generates the observations.
Then, statisticians construct an estimator θ̂(X(1), . . . , X(n)) of θtrue: it is a function
of the random observations X(1), . . . , X(n) that should converge to θtrue and have
other convenient statistical properties.

The other one, called Bayesian inference, is the one we are the most focused
on in this thesis. In this case, we do not suppose that a parameter θtrue generates
the data. Instead, we define a prior distribution: it describes our first beliefs about
the parameters. Then, this distribution is updated according to observations. The
so-called posterior distribution represents our beliefs about the parameters after the
integration of observations. We are focused on this type of methods for two main
reasons:

• The class of models we are working on is complex, and likelihood computation
is, in most cases, intractable. Some groups of methods in the Bayesian approach
are likelihood-free. They make likelihood computation dispensable in exchange
for less precise inference. Approximate Bayesian Computation is one of them.
They have already proven efficiency in the context of Continuous-Time Markov
Chains (Warne, Baker, and Simpson, 2019; Alharbi, 2018).

• We use Approximate Bayesian Computation methods to create a statistical
verification method for time-bounded reachability problems.

32 3.1. The Bayesian framework

In Bayesian methods, several well-known techniques such as accept-reject, Se-
quential Monte Carlo, MCMC or Importance Sampling are available to sample pa-
rameters from the posterior distribution. However, these methods are not always
distinct: they are often connected to create more extensive algorithms to improve
performance. Sequential Monte Carlo ABC is an illustrative example. It is thus es-
sential to understand which technique refers to which algorithm to understand the
more complex ones. In this Chapter, we describe the different bricks of Bayesian
inference to detail a Bayesian inference method we were focused on in our work:
Sequential Monte Carlo ABC.

This Chapter is organised as follows. Section 3.1 details the basic notions for
Bayesian inference. Section 3.2 provides multiple Monte Carlo algorithms for sam-
pling from a probability density function π computable up to a constant. Section 3.3
details a family of likelihood-free methods called Approximate Bayesian Computa-
tion. Section 3.4 describes kernel density estimation, a non-parametric method to
obtain a continuous estimation π̂ of π after we have already managed to sample from
the density π.

3.1 The Bayesian framework

In mathematical statistics, we consider a statistical model (Definition 3.1.1) of a
probability space (Ω,F,P), i.e. a collection of probability distributions.

Definition 3.1.1
Let (Ω,F,P) be a probability space. A statistical model is a collection of probability
distributions (Pθ)θ∈Θ indexed by a parameter vector θ.

Usually, statistical models are dominated by a measure that implies a probability
density function pθ for any θ ∈ Θ. Thus, the likelihood function is defined based on
this density. It measures how probable observations y(1), . . . , y(N) are drawn from a
probability distribution Pθ.

Definition 3.1.2
Let (Pθ)θ∈Θ a parametric statistical model with corresponding densties (pθ)θ∈Θ. Let

Chapter 3. Statistical methods 33

y(1), . . . , y(N) idependant and identically distributed (i.i.d) observations. The likeli-
hood function is defined as:

l(.; y(1), . . . , y(N)) : Θ→ R≥0

θ → pθ(y
(1), . . . , y(N)) =

N∏
i=1

pθ(y
(i))

In the frequentist inference approach, the observations are supposed drawn from
a distribution Pθtrue , i.e. we suppose that one parameter vector θtrue generates the
data. An estimation of θtrue is obtained via the Maximum Likelihood Estimator
(Definition 3.1.3). It consists of maximising the log-likelihood. When this problem
is too complex, other methods are available such as the Expectation-Maximisation
algorithm, which ensures a local minimum.

Definition 3.1.3 (Maximum Likelihood Estimator)
Considering a statistical model (pθ)θ∈Θ and i.i.d observations y(1), . . . , y(N), a maxi-
mum likelihood estimator is a parameter θ̂ ∈ Θ that verifies:

l(θ̂; y(1), . . . , y(N)) = sup
θ∈Θ

l(θ; y(1), . . . , y(N)).

In the following, we describe the Bayesian inference framework. This other
statistical inference approach is the most focused on in this thesis. As the name
mentions, it is based on the Bayes formula, that for two events A and B,

P(A|B) =
P(B|A)P(A)

P(B)
.

.

In the Bayesian approach, uncertainty about the parameters is modelled by a
random variable ϑ. Pϑ is a probability distribution called prior distribution. This
distribution represents the first beliefs about the parameters before integrating the
observations.

In order to formalise the notion of ”integration of observations”, we need to define
the distribution of a random variable conditionally to another, which is embodied by
a transition kernel.

Definition 3.1.4 (Transition kernel)
Let (X ,FX) and (Y,FY) be two measurable spaces. The function Q : X × Y → [0, 1]

is a transition kernel if:

34 3.2. Monte Carlo methods

1. ∀x ∈ X , Q(x, .) is a probability measure over (Y,FY)

2. ∀A ∈ FY , Q(., A) is measurable.

In the case of two random variables X and Y defined on (X ,FX) and (Y,FY),
the transition kernel K that verifies ∀A,B ∈ FX×FY ,PX,Y (A×B) =

∫
X Q(x,B)dPX

is called the conditional law of Y given X and it is denoted PY | X .

Remark 3.1.1 (Conditional law of a CTMC)
If we consider a collection of CTMC (Sθ)θ∈Θ, (θ,A)→ PSθ(A) is a transition kernel
and admits densities.

We consider the random variable Y of observations and a prior distribution Pϑ.
We suppose conditional laws PY |ϑ and Pϑ|Y admit densities. Bayesian inference is
built upon the Bayes theorem:

p(θ|y) = Z−1p(y|θ)p(θ)

∝ p(y|θ)p(θ)

where Z =
∫
θ′∈Θ p(y|θ′)p(θ′)dθ′ and ∝ means ”proportional to”. p(.|y) is called the

posterior density of the observation y. This distribution shows how the belief about
the parameters is updated after observations of the studied phenomenon. Bayesian
estimation deals with the integration problem (instead of the optimisation problem for
the frequentist approach) because Z has an integral form. We want to estimate the
posterior distribution by estimating the constant Z or even avoiding its computation
when it is too complex.

3.2 Monte Carlo methods

Monte Carlo methods are a class of algorithmic methods based on simulations of
the model. They first appeared after WWII (see (Nicholas Metropolis, 1987) for the
emergence of the method). Given a probability P∗ with density π, the idea is to
sample x(1), . . . , x(n) from π to estimate the expectation of a random variable with
density π.

However, simulate samples from π when it is not fully known analytically is
difficult. Nicholas Metropolis formulates the first Monte Carlo method based on
Markov Chains theory (Metropolis et al., 1953; Hastings, 1970) when π is known up
to a constant. Due to the maturity of methods and the fast computing power increase

Chapter 3. Statistical methods 35

of computers, such related Monte Carlo methods are considered standard techniques
in the 2000s (Robert and Casella, 2004).

Until the end of the Chapter, the unknown target density to estimate is called π.

Definition 3.2.1 (Density of the empirical distribution)
Let X be a random variable with a density π on X . We consider X(1), . . . , X(N)

N i.i.d. (independent and identically distributed) observations drawn from π with a
realisation x(1), . . . , x(N). The density function of the empirical distribution is defined
as:

π̂(x) =
1

N

N∑
i=1

δx(i)(x)

By Glivenko-Cantelli theorem, 1
N

∑N
i=1 δx(i)(x)

a.s.−−→ π(x) which means π̂ is an
empirical approximation of the targeted density π. This can lead to an approximation
of the expectation for any function h:

Eπ[h(X)] =

∫
X
h(x)π(x)dx ≈

∫
X
h(x)π̂(x)dx =

1

N

N∑
i=1

h(xi)

The main issue of this estimation procedure is to know how to properly simulate
from the density π to get enough samples x(i) in a reasonable time so that the density
of the empirical distribution is a good enough approximation of the true probability
density function π. Description of the simulation algorithms is the subject of the
following sections. The knowledge about π is decreasing as we go along the chapter:

• In Section 3.2.1, π is fully known.

• In Sections 3.2.2, 3.2.3, 3.2.4, 3.2.5, π is known up to a constant, i.e. one can
compute a function π̃(x) ∝ π(x).

• In Section 3.3, the target density π is a possibly intractable posterior distri-
bution. It describes a likelihood-free method that samples approximatively the
posterior distribution.

These methods are of much importance in Bayesian inference. Indeed, the clas-
sical application of these methods is when π is the posterior distribution p(.|y), and
π̃ is p(y|.)p(.) because of the Bayes formula p(θ|y) ∝ p(y|θ)p(θ).

36 3.2. Monte Carlo methods

3.2.1 Simulation of a density

The simulation of random variables is based on an available generator of a uniform
random variable U(0, 1). Then, each simulation is based on the generalised inverse of
a cumulative distribution function (cdf).

Proposition 3.2.1 (Probability integral transform)
Let U = U(0, 1) be a uniform random variable over [0, 1]. Let X be a random variable
with cumulative distribution function (cdf) F (F (x) = P(X ≤ x)). Then F−1(U) has
the distribution F, where:

F−1(u) = inf{x/F (x) ≥ u}

is the generalised inverse of F .

Any random variable is represented by a transformation of a uniform variable.
If X has a cdf F , it suffices to simulate u ∼ U(0, 1) and take x = F−1(u). This
procedure of simulation requires an explicit computation of F−1.

3.2.2 Accept-reject algorithm

Sometimes the simulation of the target density π is too complex. The idea of the
accept-reject algorithm is to use an auxiliary density q(.) to get samples from π.

Let π̃(x) ∝ π(x) be an unnormalised density function proportional to the target
density. If the ratio π̃(x)

q(x) is bounded, the accept-reject algorithm is guaranteed to
generate samples from π, i.e. when:

∃M ≤ 0, ∀x, π̃(x) < Mq(x) (3.1)

Algorithm 4 samples from q(.) and accepts the sample with a probability that
depends on π. The inequality 3.1 ensures that the sample is drawn from π.

Chapter 3. Statistical methods 37

Algorithm 4 Accept-reject algorithm
Require: q proposal density
Ensure: (x(i))1≤i≤N N samples drawn from π

for i = 1 : N do
repeat

x ∼ q(.)

u ∼ U(0, 1)
until u < π̃(x)

Mq(x)

x(i) ← x

end for

One can prove that the probability of acceptance is
∫
π̃(x)dx
M , which means M

should be as small as possible.

3.2.3 Importance sampling

Another way of simulating the target distribution from an auxiliary density q is the
important sampling. In this algorithm, no bound condition is required except that the
support of q should include the support of π. The idea is to sample N i.i.d. samples
x(1), . . . , x(N) from the importance distribution q, and correct the contribution of each
sample x(i) in the empirical distribution 3.2.1 by a weight w(x(i)) called importance
weight. The distribution associated with the Importance Sampling for x(1), . . . , x(N)

drawn from q is:

π̂IS(x) =
1

N

N∑
i=1

π(x(i))

q(x(i))︸ ︷︷ ︸
w(x(i))

δx(i)(x)

.

This estimator is unbiased for integration estimation, indeed

Eπ[h(X)] =

∫
X
h(x)π(x)dx

=

∫
X
h(x)

p(x)

q(x)
q(x)dx

= Eq[h
π

q
(X ′)]

≈ 1

N

N∑
i=1

h(x(i))
π(x(i))

q(x(i))

As detailed before, sometimes π is only known up to a constant, i.e. π(x) ∝ π̃(x).

38 3.2. Monte Carlo methods

To bypass this issue, one can compute the weight with π̃ and normalise it by dividing
by the sum of all weights

∑N
i=1w(x

(i)).

3.2.4 Sequential Monte Carlo methods

In complex cases, finding a proposal density q that will aim at the crucial regions of
the target density π is difficult. Sequential Monte Carlo methods (Doucet, De Freitas,
and Gordon, 2001; Del Moral, Doucet, and Jasra, 2006; Liu, 2008) were designed to
overcome this issue. The idea is to sample from intermediate distributions (πm)m∈0:M

sequentially with proposals (qm)m∈0:M so that πM = π. These methods are helpful,
especially in two cases:

• State-space models. If for one observation x0:M , M+1 points are available, it is
natural to set πm as the density of the truncated observation p(x0:m), m ≤M .
As xm+1 ∼ p(.|xm), finding a sequential scheme based on each observation point
is more accessible. In this case, the density dimension increases. The target
distribution π is the full density p(x0:M).

• Densities with decreasing supports. π may have tiny unknown support com-
pared to the space of observations. A strategy is to define a sequence of densities
with decreasing support to find more efficiently the small support region of π.
In this case, the densities dimensions may be fixed. This paradigm is used in
the Sequential Monte Carlo version of the Approximate Bayesian Computation
method (Del Moral, Doucet, and Jasra, 2012a), which we will discuss later. It
is related to rare event analysis and subset simulation.

Sequential Importance Sampling

Sequential Importance Sampling is a specific method of Sequential Monte Carlo tech-
niques to overcome issues related to high-dimensional problems related to Importance
Sampling. In this part, we suppose each observation x is decomposable, i.e. x = x0:M .

As mentioned before, we want to sample from intermediate densities (πm)m∈0:M ,
i.e. from π0 to πM = π. At each step m, we sample from a proposal density qm.
A possible choice of proposal densities (Del Moral, Doucet, and Jasra, 2006) at each
step is:

qm(x0:m) = q̃m(xm| x0:m−1)qm−1(x0:m−1)

Chapter 3. Statistical methods 39

The computation of the weight in Importance Sampling for the intermediate
distributions can be rewritten as:

wm(x0:m) =
πm(x0:m)

qm(x0:m)
=

πm−1(x0:m−1)

qm−1(x0:m−1)︸ ︷︷ ︸
wm−1(x0:m−1)

πm(x0:m)

πm−1(x0:m−1)q̃m(xm| x0:m−1)

which gives a sequential scheme for the computation. This is the Sequential Impor-
tance Sampling method detailed in Algorithm 5.

This scheme is particularly interesting in the case of state-space models because
the proposal densities can be chosen so that they verify the Markov property, i.e.
q̃m(xm|x0:m−1) = q̃(xm|xm−1) (Del Moral, Doucet, and Jasra, 2006; Doucet and
Johansen, 2009).

Algorithm 5 Sequential Importance Sampling Algorithm
Require: (qm)m proposal densities, (π̃m)m unnormalised intermediate densities
Ensure: (x

(i)
0:M)1≤i≤N N samples drawn from π

for i = 1 : N do
x
(i)
0 ∼ q0

w
(i)
0 ←

π̃0(x
(i)
0)

q0(x
(i)
0)

end for
Normalise (w(i))i

for m = 1 : M do
for i = 1 : N do

x
(i)
m ∼ q̃m(.|x(i)0:m−1)

w
(i)
m ← w

(i)
m−1

π̃m(x
(i)
0:m)

π̃m−1(x
(i)
0:m−1)q̃m(x

(i)
m |x(i)

0:m−1)

end for
Normalise (w

(i)
m)i

end for

Resampling step

As the number of steps M increases, the estimator’s variance associated with (S)IS
procedures can increase exponentially even in simple cases (Doucet and Johansen,
2009). Resampling is a method to overcome this issue.

During the procedure, some samples can have low weights, but our goal is to
focus on high probability regions. These low weighted samples will perturb the whole
estimation. The more the number of low weights increases, the more the number
of valuable samples decreases. This phenomenon is known as particle degeneracy

40 3.2. Monte Carlo methods

(Gordon, Salmond, and Smith, 1993; Liu and Chen, 1998): after some steps, only a
few samples will be valuable in our estimation.

One possible solution is to add a step where the low weighted samples are replaced
by high weighted samples according to a distribution parametrised by the weights:
this is the resampling step. A common way to run this task is multinomial resampling:
the new indices of samples (x

(i)
0:m)i∈1:N are drawn from a multinomial distributionM

with parameters N, (wm(x
(i)
0:m)).

Algorithm 6 Multinomial resampling
Require: (x

(i)
0:m)1:N N samples with associated weights (w

(i)
m)1:N

Ensure: Resampling of (x(i)0:m)1:N

j1:N ∼M(N, (w
(i)
m)1:N)

for i = 1 : N do
x
(i)
0:m ← x

(ji)
0:m

w
(i)
0:m ← 1

N

end for

One could think this resampling step should be done at every step m to delete
the useless samples directly. In pratice, a low weight sample at a step m can have
a higher weight at a step m + 1. There is a trade-off between the occurrences of
resampling and stability: this is adaptive resampling (Del Moral, Doucet, and Jasra,
2012b).

Effective sample size (Kong and Liu, 1994) is a statistic to quantify the discrep-
ancy (variability) between the weights. It is defined as:

ESS((w(i))i∈1:N) =
1∑N

i=1(w
(i))2

.

ESS takes values between 1 (one weight is equal to one and the others 0, worst
case) and N (perfectly balanced weights equal 1

N). Thus, one can use this statistic to
construct a condition that will decide when we should resample or not. A threshold
NT is set (typically NT = N

2), and if the ESS is lower than the threshold, we resample
with Algorithm 7.

Chapter 3. Statistical methods 41

Algorithm 7 Adaptive resampling step with Effective Sample Size
Require: (x

(i)
0:m)1≤i≤N N samples with associated weights (w

(i)
m)1:N

Ensure: Resampling of (x(i)0:m)1≤i≤N

NESS ← ESS((w
(i)
m)1:N)

if NESS < NT then
j1:N ∼M(N, (w

(i)
m)1:N)

for i = 1 : N do
x
(i)
0:m ← x

(ji)
0:m

w
(i)
0:m ← 1

N

end for
end if

This resampling step can be then integrated into generic Sequential Monte Carlo
procedures. An example with Sequential Importance Sampling is described in Algo-
rithm 8.

Algorithm 8 Sequential Importance Sampling with Resampling Algorithm
Require: (qm)m proposal densities, (π̃m)m unnormalised intermediate densities
Ensure: (x

(i)
0:M)1≤i≤N N samples drawn from π

for i = 1 : N do
x
(i)
0 ∼ q0

w
(i)
0 ←

π̃0(x
(i)
0)

q0(x
(i)
0)

end for
Normalise (w(i))i

Resampling step for (x
(i)
0)1:N , (w

(i)
0)1:N as in Algorithm 6 or 7

for m = 1 : M do
for i = 1 : N do

x
(i)
m ∼ q̃m(.|x(i)0:m−1)

w
(i)
m ← w

(i)
m−1

π̃m(x
(i)
0:m)

π̃m−1(x
(i)
0:m−1)q̃m(x

(i)
m |x(i)

0:m−1)

end for
Normalise (w(i))i

Resampling step for (x
(i)
0:m)1:N , (w

(i)
0:m)1:N as in Algorithm 6 or 7

end for

3.2.5 Markov Chain Monte Carlo

Markov Chain Monte Carlo methods are another type of Monte Carlo methods that
sample from a target density π by knowing π̃ ∝ π. In Section 2.1.1 of Chapter 2,
we quickly recalled basis of ergodicity theory quickly for discrete state-space Markov

42 3.2. Monte Carlo methods

Chains. The idea of Markov Chain Monte Carlo methods is to define a Markov Chain
whose stationary distribution has density π.

However, MCMC methods aim at estimating distributions with continuous state
space X . The Markov property of a Markov Chain (Xn)n∈N with a continuous mea-
surable space (X ,FX) is formulated as:

P(Xn+1 ∈ An+1|Xn = xn, Xn−1, . . . , Xn) = P(Xn+1 ∈ A| Xn = xn).

The event {Xn = x} may have zero probability, so we define a continuous gener-
alisation of n-step transition probabilities (Definition 2.1.3) with the transition kernel
(Definition 3.1.4):

P (n)(x,A) = P(Xn ∈ A|X0 = x).

In this context, a stationary distribution Π of a Markov Chain with a transition
kernel P is defined as:

Π(A) =

∫
X
P (x,A)dΠ(x).

Similarly to Theorem 2.1.2 for discrete state-space Markov Chains, ergodic the-
orems for Markov Chain’s convergence to its stationary distribution exist in the con-
tinuous state-space case. It is based on Harris Chains, which redefine more generally
ergodicity of Markov Chains (Bladt and Nielsen, 2017, Chapter 7.3).

Construction of Markov Chains with a targeted stationary distribution is based
on the balance condition.

Proposition 3.2.2 (Balance condition)
Let (Xn)n∈N be a Markov Chain with a continuous state space X and a transition
kernel P . We suppose that for all x ∈ X the probability measure on (X ,FX) P (x, .)

has a density p(x, y). Let π be a density. If π and p verify the detailed balance
condition (or time reversibility conditon):

∀x, y ∈ X , π(x)p(x, y) = π(y)p(y, x) (3.2)

then π is a density of a stationary measure of the Markov Chain.

The Metropolis-Hasting algorithm (Metropolis et al., 1953; Hastings, 1970) is
the first formulation of an MCMC algorithm. The idea is to sample a chain from the

Chapter 3. Statistical methods 43

Markov Chain defined by:

p(xn, xn+1) = α(xn, xn+1)q(xn, xn+1), (3.3)

where

α(xn, xn+1) = min(1, π̃(xn+1)q(xn+1, xn)

π̃(xn)q(xn, xn+1)
) = min(1, π(xn+1)q(xn+1, xn)

π(xn)q(xn, xn+1)
)

and for xn ∈ X , q(xn, .) is a proposal density for the next chain’s value.

The transition kernel 3.3 verifies the detailed balance condition 3.2, which en-
sures the Metropolis-Hasting Algorithm’s convergence (Algorithm 9) to the stationary
distribution π.

Algorithm 9 Metropolis-Hasting Algorithm
Require: A proposal density q(., .), computable π̃ ∝ π

Ensure: (xn)0≤n≤N drawn from a Markov Chain
with limit stationary distribution π

Initialise a value x0

for n = 0 : N − 1 do
x∗ ∼ q(xn, .)

u ∼ U(0, 1)
xn+1 ← x∗n

if u ≤ α(xn, x
∗) then

xn+1 ← x∗

end if
end for

Another popular MCMC method is Gibbs sampling (Geman and Geman, 1984).
This sampler is useful when the variable of the targeted distribution is decomposable
into several blocks π(x) = π(x[1], . . . , x[k]).

Let xn = (xn[1], . . . , xn[k]). The sampling of xn+1 = (xn+1[1], . . . , xn+1[k]) is di-
vided into k steps, where the i-th step (i ∈ {1, . . . , k}) is:

xn+1[i] ∼ π(.|xn+1[1], . . . , xn+1[i−1], xn[i+1], . . . , xn[k])

44 3.3. Approximate Bayesian Computation: a likelihood-free method

Then each sampling step xn[i] is equivalent to a Metropolis-Hasting algorithm
step of acceptance probability α = 1 whose proposal distribution q is:

q(x, (x[1], . . . , x[i−1], y, x[i+1], . . . , x[k])) = π(y|x[−i])

=
π(x[1], . . . , x[i−1], y, x[i+1], . . . , x[k])

π(x[−i])

where y has the same dimension of x[i] and

x[−i] = x[1], . . . , x[i−1], x[i+1], . . . , x[k].

Thus, the sampling of xn+1 given xn is equivalent to k Metropolis Hasting steps.
One can prove that the target distribution is π (Robert and Casella, 2004), which
gives the Algorithm 10.

Algorithm 10 Gibbs Sampling
Require: A target distribution π

Ensure: (xn)0:N drawn from a Markov Chain with limit stationary distribution π

Initialise a value x0

for n = 0 : N − 1 do
x∗ ← xn

for i = 1 : k do
y ∼ π(.|x∗[−i])

x∗[i]← y

end for
xn+1 ← x∗

end for

More advanced MCMC methods based on Metropolis-Hasting, Gibbs and Se-
quential Monte Carlo methods such as particle filtering (Andrieu, Doucet, and Holen-
stein, 2010) were developed in the literature. We will not detail these methods here,
but we refer the reader to (Brooks et al., 2011), (Gilks, Richardson, and Spiegelhalter,
1996) for a deeper exploration of MCMC methods.

3.3 Approximate Bayesian Computation: a likelihood-
free method

So far, the Monte Carlo methods we presented aim at sampling from a distribu-
tion π, supposing it is computable up to a constant, i.e. one can compute π̃ ∝ π.

Chapter 3. Statistical methods 45

Approximate Bayesian Computation (ABC) is a Bayesian method for the approxi-
mate estimation of the posterior distribution when the likelihood is computationally
intractable or too expensive. ABC is not the only likelihood-free method; other al-
gorithms exist, such as pseudo-marginal MCMC (Andrieu and Roberts, 2009).

ABC algorithms have gained popularity over the last decade and are applied for
parameter inference or model selection in many modelling fields, including systems
biology (Toni et al., 2009; Ratmann et al., 2007; Koutroumpas et al., 2016; Lenive,
Kirk, and Stumpf, 2016) or ecology (Beaumont, 2010; Fasiolo and Wood, 2015). The
first fundamental work was developed in the field of population genetics (Pritchard
et al., 1999), which was motivated by the high dimension and structure of the studied
models. ABC methods have proved influential in many applications when classi-
cal Bayesian parameter inference methods are challenging to implement, including
CTMCs (Warne, Baker, and Simpson, 2019; Alharbi, 2018).

In this section, we suppose that we observe yexp = (y(1), . . . , y(N)) N i.i.d. ob-
servations with y(i) ∈ Y(i) potentially multidimensional, and we consider and prior
distribution with density θ → p(θ) and a likelihood p(.|θ). According to Bayes theo-
rem,

p(θ|yexp) ∝ p(yexp|θ)p(θ).

In complex models, p(yexp|θ)p(θ) is not even computable. For example, in the
case of CTMCs, we will see that the likelihood for time-discrete observations is in-
tractable in most cases (Section 5.1.2).

3.3.1 ABC Rejection algorithm

The ABC method relies on the same principle as Rejection Algorithm 4 (Sisson,
Fan, and Beaumont, 2018), except that it aims at drawing samples from an auxiliary
distribution πABC . The idea consists in drawing parameters from a proposal density
q, then simulate the model y ∼ p(.|θ) and accept (θ, y) with a probability proportional
to the discrepancy between y and yexp: the closer y is to yexp, the more probable it
is to accept the sample.

The quantification of the discrepancy between two samples is based on three
functions:

• The summary statistics function η : Y → H. It computes statistics over the
simulation result to reduce the dimension of the simulation while maximising
the information contained in it.

46 3.3. Approximate Bayesian Computation: a likelihood-free method

• The distance function ρ : H × H → R≥0. It is a distance over the summary
statistics space H.

• A kernel function Kϵ with a scale parameter ϵ.

Algorithm 11 ABC Rejection Sampling Algorithm
Require: q proposal density, Kϵ kernel function with a scale parameter ϵ, M ≥

Kϵ(0)maxθ
π(θ)
q(θ)

Ensure: (θ(i), y(i))1≤i≤n drawn from the ABC posterior πABC

for i = 1 : n do
repeat

θ ∼ q

y ∼ p(.|θ)
u ∼ U(0, 1)

until u <
Kε(ρ(η(y),η(yexp)))p(θ)

Mq(θ)

θ(i), y(i) ← θ, y

end for

By denoting q̃(θ, y) = q(θ)p(y|θ) and noticing that:

Kϵ(ρ(η(y), η(yexp)))p(θ)

Mq(θ)
=

Kϵ(ρ(η(y), η(yexp)))p(y|θ)p(θ)
Mq(θ)p(y|θ)

,

Algorithm 11 is equivalent to Algorithm 4 with the proposal density q̃. Thus, the
samples of Algorithm 11 are drawn from the distribution:

πϵ
ABC(θ, y| yexp) ∝ Kϵ(ρ(η(y), η(yexp)))p(y|θ)p(θ).

It is not clear that this density is an approximation of the posterior distribution.
Let us compute the marginal distribution of θ when η is the identity function.

πϵ
ABC(θ|yexp) ∝

∫
Y
πϵ
ABC(θ, y|yexp)dy

lim
ϵ→0

πϵ
ABC(θ|yexp) ∝ lim

ϵ→0

∫
Y
πϵ
ABC(θ, y|yexp)dy

∝ lim
ϵ→0

∫
Y
Kϵ(ρ(y, yexp))p(y|θ)p(θ)dy

∝
∫
Y
δyexp(y)p(y|θ)p(θ)dy

∝ p(yexp|θ)p(θ)

Chapter 3. Statistical methods 47

It shows that the smaller the tolerance level ϵ is, the closer we are from the
posterior. It is then essential to understand the different levels of approximations of
ABC:

π̂ϵ
ABC(.|η(yexp))→

(1)
πϵ
ABC(.|η(yexp))→

(2)
p(.|η(yexp)) ≈

(3)
p(.|yexp)

1. How the empirical posterior π̂ϵ
ABC(.|η(yexp)) based on the samples (θi, yi)i is

close to πϵ
ABC?

2. How to sample efficiently with small tolerance ϵ to be close to p(.|η(yexp))?

3. How informative should be η for p(.|η(yexp)) to be a good approximation of the
true posterior p(.|yexp)?

Remark 3.3.1 (Proposal density and kernel function)
In most of our applications, we use the prior distribution as the proposal density, i.e.
q(θ) = p(θ). Also, the kernel used is the indicator function Kϵ(u) =

1
2ϵ1(u ≤ ϵ). Then,

the acceptance probability condition becomes ρ(η(y), η(yexp)). These assumptions lead
to a simpler ABC rejection algorithm given in Algorithm 12.

Algorithm 12 Simple ABC rejection
Require: p(.) prior, ρ, η, ϵ
Ensure: (θ(i), y(i))1≤i≤n drawn from the ABC posterior πϵ

ABC

for i = 1 : n do
repeat

θ ∼ p(.)

y ∼ p(.|θ)
until ρ(η(y), η(yexp)) ≤ ϵ

θ(i), y(i) ← θ, y

end for

Remark 3.3.2 (ABC as a Bayesian inference with auxiliary likelihood)
ABC can be seen as a standard Bayesian inference method with the likelihood

pABC(yexp|θ) =
∫
Y
Kϵ(ρ(η(y), η(yexp)))p(y|θ)dy.

An example based on Gaussian law is detailed in Appendix C. The approximate like-
lihood is analytically computed, which allows showing ABC in practice and test our
algorithms.

In fine, ABC methods aim to draw samples from an auxiliary posterior distri-
bution that approximates the true posterior distribution. Thus, one can use Monte

48 3.3. Approximate Bayesian Computation: a likelihood-free method

Carlo methods developed in 3.2.4 and 3.2.5 with the auxiliary ABC posterior πϵ
ABC

as the target density: it is the goal of the following sections.

Markov Chain Monte Carlo ABC

A first improvement of the ABC rejection was proposed by (Marjoram et al., 2003).
The idea is to create a sampler based on MCMC methods with stationary distribution
πϵ
ABC .

Algorithm 13 Monte Carlo Markov Chain ABC
Require: q a proposal density, ϵ, ρ, η
Ensure: (θn)0≤n≤N drawn from a Markov Chain with limit stationary distribution
πϵ
ABC .

Find a value θ0 with Algorithm 12.
for n = 0 : N − 1 do

θ∗ ∼ q(.|θn)
y∗ ∼ p(.|θ∗)
u ∼ U(0, 1)
θn+1 ← θn

if u ≤ p(θ∗)q(θn|θ∗)
p(θn)q(θ∗|θn) and ρ(η(y∗), η(yexp)) ≤ ϵ then

θn+1 ← θn

end if
end for

Sequential Monte Carlo ABC

If the tolerance ϵ is tiny, the ABC rejection algorithm can be computationally pro-
hibitive. Thus, an alternative is to create a sampler based on Sequential Monte Carlo
method 3.2.4. The idea is to consider an intermediate sequence of tolerances (ϵm)0:M

with ϵM = ϵ. Naturally, the intermediate distributions chosen for the Sequential
Monte Carlo algorithm are:

πm = πϵm
ABC

Chapter 3. Statistical methods 49

Figure 3.1: An illustration of the SMC ABC algorithm

In the following, we present the SMC sampler (Algorithm 14) of (Beaumont et
al., 2009), which is based on (Sisson, Fan, and Tanaka, 2007) called Population Monte
Carlo ABC (ABC-PMC). At first, we try to sample from πϵ0

ABC with Algorithm 12.
ϵ0 should be big enough to have a moderate initialisation time (otherwise the SMC
algorithm is useless). Sometimes, ϵ0 equals +∞, which is equivalent to sample from
the prior. Then, at each step m, a particle θ

(i)
m−1 is moved locally through a proposal

density q̃m (for example, a Gaussian kernel), as depicted in Figure 3.1. If the resulting
simulation y′ of θ(i)m verifies the acceptance condition ρ(η(y′), η(yexp)), θ(i)m is a sample
from πϵm

ABC : the parameter is selected. Also, a multinomial resampling procedure is
taken into account (Algorithm 6).

50 3.3. Approximate Bayesian Computation: a likelihood-free method

Algorithm 14 Population Monte Carlo Algorithm ABC
Require: N : number of particles, yexp, (ϵm)0:M , ρ, η, (q̃m)0:M

Ensure: (w
(i)
M , θ

(i)
M)1≤i≤N weighted samples drawn from πϵM

ABC

Iteration m = 0: find (θ
(i)
0)1≤i≤N with Algorithm 12 and ϵ0.

w
(i)
0 ← 1

N , i ∈ {1, . . . , N}
for m = 1 : M do

for i = 1 : N do
repeat

Take θ′ from (θ
(j)
m−1)1≤jN with probabilities (w

(j)
m−1)1≤j≤N

θ
(i)
m ∼ q̃m(.|θ′

)

y′ ∼ p(.|θ(i)m)

until ρ(η(y′), η(yexp)) ≤ ϵm

w
(i)
m ←

p
(
θ
(i)
m

)
N
Σ

i′=1
w

(i′)
m−1q̃m(θ

(i)
m |θ(i

′)
m−1)

end for
Normalise (w

(i)
m)1≤i≤N

end for

(Del Moral, Doucet, and Jasra, 2012a) also proposes a generic ABC-SMC sam-
pler based on (Del Moral, Doucet, and Jasra, 2006), with the possibility of several
simulations per particle, an ESS resampling step 7, and an approximation of the
weights based on the kernel used in the ABC posterior. However, in the case of a
uniform kernel in the acceptance condition, many weights can equal zero after one
step (because they do not satisfy the acceptance condition). For a deeper review of
ABC samplers, we refer the reader to (Fan and Sisson, 2018; Marin et al., 2011).

3.3.2 Hyperparameters of ABC methods

Summary statistics

When the dimension of yexp is high, to satisfy the acceptance condition is challenging:
this issue is known as the curse of dimensionality. Thus, a summary statistics function
η is introduced to compute statistics over the observations to reduce the dimension
and keep the most complete amount of information contained in the observations. The
perfect case is when the statistics are sufficient (Definition 3.3.1). It means that the
reduction of the dimension by the summary statistics causes no lack of information.
Unfortunately, the Pitman-Koopman-Darmois theorem states that sufficient statistics
whose dimension is bounded while sample size increases only exist for distributions

Chapter 3. Statistical methods 51

of the exponential family. A practical analytical example with a sufficient statistic is
detailed in Appendix C.

Definition 3.3.1 (Sufficient statistic)
Let Y and ϑ be random variables. η is a sufficient statistic if PY | η(Y)=η(y),ϑ=θ does
not depend on θ for any y, θ.

Thus, selecting efficient statistics for the observations is challenging and depends
on the type of model knowledge (e.g. for time series (Jasra, 2015)). It can be
seen as a task of information theory: how can we retain maximally the information
contained in the samples with a fixed dimension? Thus, several methods based on
mutual information, projection techniques, subset selection or auxiliary likelihood
were proposed. We refer the reader to (Blum et al., 2012; Prangle, 2015) for a
complete review of these methods.

Distance function

The function ρ is a distance function over the summary statistics space H (H = Y
when η = id), i.e. it verifies symmetry, separation and triangle inequality. The most
common choice is the Euclidean distance:

ρ : H×H→ R≥0

(η(1), η(2))→
√∑

j

(η
(1)
j − η

(2)
j)2

Recently, considering the simulations as empirical distributions and using dis-
tances related to distributions like Kullback-Leibler divergence, Wasserstein or Slice-
Wasserstein distances were proposed (Bernton et al., 2019; Nadjahi et al., 2020). In
the last two chapters, we will propose new distances to address problems of inference
and verification of CTMCs.

Perturbation kernel in ABC-PMC Algorithm

In the SMC sampler of Algorithm 14, a perturbation kernel q̃m is involved in the
local moves of the particles at each step. In most of our computations, we use the
multivariate Gaussian kernel:

q̃m(.|θ′) ∼ N (θ′, Σ̂m)

52 3.3. Approximate Bayesian Computation: a likelihood-free method

where Σ̂m is the empirical covariance matrix of the parameters (θ
(i)
m)i. Other kernels

were proposed in (Filippi et al., 2011), for example, a multivariate Gaussian kernel
with the M nearest neighbours. We tested this method. However, even if it can result
in slightly fewer simulations, in practice we observed that the computation of a tree
that computes the nearest neighbors at each step increases the algorithm’s execution
time.

Tolerance level

There are several issues about the tolerance level choice. First, in the SMC version
of ABC, a fixed sequence of tolerances (ϵm)m is involved, but it is difficult to know
in advance which sequence will be computationally efficient. One can set the next ϵ

during the execution by considering the α-quantile of the simulation distances from
yexp, which gives the adaptive tolerance schedule:

ϵm+1 = quantile(α, (ρ(η(y(i)), η(yexp)))1≤i≤N).

In this case, a new hyperparameter α is involved. The difficulty is to choose α

so that we do not introduce too many useless steps with a big α (close to 1), but
also it should not be too small; otherwise, each step m will be too computationally
expensive. Another method developed in (Del Moral, Doucet, and Jasra, 2012a) is
to find the new ϵ based on the ESS statistic 7. In their SMC sampler, the weights
w

(i)
m depend on ϵm. Then, the idea is, for a given reduction factor α (typically 0.5 or

0.75),to find the next ϵ by solving the problem:

ESS((w(i)
m (ϵm))1≤i≤N) = αESS((w

(i)
m−1(ϵm−1))1≤i≤N) over ϵm ∈]0, ϵm−1].

Thus, we control the particle degeneracy (Section 3.2.4) of our samples with the
tolerance evolution.

Also, which final ϵ should we use? We know the smaller the tolerance is, the closer
we are to the posterior distribution. A typical practical technique is to fix the running
time or the number of simulation and reduce the ϵ as much as we can. However, to
our knowledge, no other automatic method exists. Work about asymptotics ABC
exists, but it is more related to the concentration of the ABC posterior to a true
parameter, which can be seen as a particular case of the posterior distribution when
p(.|yexp) = δθtrue(.) (Frazier et al., 2016; Li and Fearnhead, 2017; Robert, 2019).

Chapter 3. Statistical methods 53

3.4 Kernel Density Estimation

On the previous sections, we have described algorithms that sample from a target
density π, but they do not provide a continuous approximation of π. The goal of
kernel density estimation is to get an estimate π̂ with the help of kernel functions.
Indeed, if the empirical distribution 3.2.1 is taken as an approximation, the density
π̂(x) equals zero in most cases, except if x is one of the samples. The key idea of this
non-parametric method is that each observation will give mass to the density, i.e. we
will construct a density where points near the observations will have positive density.
This mass is given with a kernel function defined below.

Definition 3.4.1 (Kernel function)
A function K : R→ R≥0 is a kernel function if:

1.
∫
RK(u)du = 1

2. ∀u ∈ R,K(u) = K(−u)

This section does not intend to present all the existing methods of kernel density
estimation. For an exhaustive exploration, we refer the reader to the books (Silver-
man, 1986) and (Chacón and Duong, 2018).

3.4.1 Kernel density estimator

We give below the definition of a kernel density estimator (Silverman, 1986).

Definition 3.4.2 (Kernel density estimator)
Let X(1), . . . , X(N) be N i.i.d samples from an unknown density π on X . The kernel
density estimator π̂ associated with a kernel function K on X is:

∀x ∈ X , π̂h(x) =
1

N

N∑
i=1

Kh(x,X
(i))

Kh is a rescaled function based on kernel K. The scale factor h is called the
bandwidth parameter. h is either a scalar, a vector or a matrix depending on the
dimension of X and the choice of K.

In this estimator, each observation gives mass probability on the estimator over
the whole set X . The further from the observations, the lower the probability. Fig-
ure 3.2 illustrates this idea with a Gaussian kernel K.

54 3.4. Kernel Density Estimation

Figure 3.2: An illustration of Gaussian kernel density estimation.

This definition allows any form for Kh. In our work, we have focused on a specific
type of kernel density estimator when the density is multidimensional. The product
kernel estimator consists in considering the term Kh(x,X

(i)) as a product of univariate
kernel functions for each dimension of X(i). It was first defined in (Bouezmarni and
Rombouts, 2010).

Definition 3.4.3 (Product kernel multivariate density estimator)
Let X(1), . . . , X(N) N i.i.d samples from an unknown multidimensional density π on
X ⊂ Rd. The s-th component of X(i) is denoted X

(i)
s . The product kernel density

estimator π̂ associated with kernel functions (Ks)1≤s≤d on X is:

∀x = (x1, . . . , xd) ∈ X , π̂(x) =
1

N

N∑
i=1

d∏
s=1

Ks
hs
(xs, X

(i)
s)

where Ks is a unidimensional kernel function, Ks
hs
(xs, X

(i)
s) = Ks(xs−X

(i)
s

hs
) and

h = (h1, . . . , hs) ∈ Rd
≥0 is the bandwidth vector.

This estimator is flexible and has convenient properties. (Bouezmarni and Rom-
bouts, 2010) prove that it is free of boundary bias for specific kernels Ks, i.e. the
bounds’ bias is the same as for interior points of X .

Several choices for the kernel function K are possible and depends on the nature
of the estimation problem:

• When X is unbounded, one can preferably use Gaussian kernels 3.4.3,

• When X is bounded with positive probability on bounds, one can preferably
use beta or gamma kernels 3.4.3.

Chapter 3. Statistical methods 55

Note that making a supposition on which category our problem belongs to is
possible with an histogram visualisation.

3.4.2 Bandwidth selection and Least Squares Cross-Validation

Choosing h is critical to get a good estimator of the density. For the choice of the
optimal bandwidth, we consider the minimisation of the mean integrated square error
(Rosenblatt, 1956):

MISE(π̂h) = Eπ[

∫
R
(π̂h(x)− π(x))2dx]

This statistic is helpful to prevent our estimator from the bias-variance trade-off.
Analytical computations are often made with order-2 Taylor expansion of the MISE
to find the optimal bandwidth that minimises it. For example, if one assumes π is
a Gaussian density (π ∼ N (µ, σ)), then the optimal bandwidth is hopt ≈ 1.06σn−1.
However, in most cases, the analytical expression of the optimal bandwidth is based
on the unknown density π, which makes the computation intractable.

Thus, a popular automatic estimation method of the optimal bandwidth is the
minimisation of Least Squares Cross-Validation (LSCV). We want to estimate the
part of the integrated square error that depends on the bandwidth parameter h.

R(π̂h) =

∫
X
π̂2
h − 2

∫
X
π̂hπ

The first term is the squared L2-norm of π̂h. The second term is classically
estimated by Leave-One-Out Cross-Validation (Silverman, 1986).

Definition 3.4.4 (Leave-one out estimator)
The Leave-One-Out estimator of 2

∫
π̂hπ is:

LOO(h) =
2

N

N∑
i=1

π̂
(−i)
h (Xi)

where π̂
(−i)
h (Xi) =

1

N − 1

N∑
j=1,j ̸=i

Kh(Xj).

We can now define the LSCV estimator.

56 3.4. Kernel Density Estimation

Definition 3.4.5 (Least Squares Cross-Validation)
The Least Squares Cross-Validation estimator is defined by:

LSCV (h) =

∫
X
π̂2
h − LOO(h)

Thus, the difficulty in the computation of LSCV (h) relies on the first term of
the expression. In some cases, such as beta kernels 3.4.3, an analytical expression
is not available, and the numerical estimation can be prohibitive depending on the
number of observations and the complexity of the kernel. Other methods exist, such
as likelihood cross-validation or the test-graph method (Silverman, 1986), but we do
not address these techniques in our work.

The optimal bandwidth is chosen by solving:

arg min
h

LSCV (h)

3.4.3 Kernel functions

As we said previously in the introduction, the choice of the kernel function depends
on the nature of the problem, i.e. if X is bounded with positive probability on bounds
or not.

Gaussian kernel

For the multivariate Gaussian kernel estimator, we do not use the product of uni-
variate Gaussian kernels, but the multivariate Gaussian kernel. Let X(1), . . . , X(N)

N i.i.d samples from an unknown density π, X(i) = (X
(i)
1 , . . . , X

(i)
d) ∈ X .

∀x ∈ X , π̂h(x) =
1

N

N∑
i=1

1√
(2π)d det(H)

exp(−1

2
(x−X(i))⊺H−1(x−X(i)))

where H is a d× d bandwidth matrix.

In this case, the LSCV estimator and its properties are well established (Duong
and Hazelton, 2005) and tools such as the R package kernel smoothing (ks) (Duong
et al., 2020) to perform the estimation.

Chapter 3. Statistical methods 57

Beta kernels

In our procedures, we will face density estimation with bounded support. In the
following, we focus on the kernel density estimator using beta kernels. They proved
their efficiency for estimating probability densities on bounded support when the
density has positive probabilities on boundaries.

Thus, we have investigated methods for multivariate KDE with beta kernel and
the associated analytical forms of LSCV for beta kernels, which are numerically esti-
mated. This estimation has a non-negligible computation cost.

Univariate beta kernel estimator. In our work, we have to deal with densities
that have to be estimated on bounded support, where the probability is possibly not
zero on the bounds. To overcome this issue, (Chen, 1999) introduced beta kernel
estimators.

Let X(1), . . . , X(N) be N i.i.d observations from an unknown density π over
X = [a, b]. We denote the scaled observations X̃(1), . . . , X̃(N), i.e. X̃(i) = X(i)−a

b−a .
The univariate beta kernel estimator is defined as:

∀x ∈ [a, b], π̂C1,h(x) =
1

N(b− a)

N∑
i=1

Kβ

x−a
h(b−a)

+1,
1−x−a

b−a
h

+1

(X̃(i))

The kernel function Kβ
α,β(.) is the probability density function of a Beta law with

parameters α, β, i.e. Kβ
α,β(t) =

tα−1(1−t)β−1

B(α,β) where B is the beta function.

In this case, one can express the ISE:

∫ b

a
π̂C1,h(x)

2dx =

∫ b

a

(
1

N(b− a)

)2

 N∑
i=1

X̃(i)
x−a

h(b−a) (1− X̃(i))
1−x−a

b−a
h

B(x−a
h(b−a) + 1,

1−x−a
b−a

h + 1)

2

dx

=

(
1

N(b− a)

)2 N∑
i=1

N∑
j=1∫ b

a

X̃(i)
x−a

h(b−a) (1− X̃(i))
1−x−a

b−a
h X̃(j)

x−a
h(b−a) (1− X̃(j))

1−x−a
b−a
h

B(x−a
h(b−a) + 1,

1−x−a
b−a

h + 1)2
dx

︸ ︷︷ ︸
I(i,j)

58 3.4. Kernel Density Estimation

With an adequate change of variables,

I(i,j) = (b− a)

∫ 1

0

X̃(i) t
h (1− X̃(i))

1−t
h X̃(j) t

h (1− X̃(j))
1−t
h

B(t
h + 1, 1−t

h + 1)2
dt.

Then,

∫ b

a
π̂C1,h(x)

2dx =
1

N2(b− a)

(N∑
k=1

∫ 1

0

X̃(k) 2t
h (1− X̃(k))2

1−t
h

B(t
h + 1, 1− t

h + 1)2
dt

+ 2
N∑
i=1

N∑
j=i+1

∫ 1

0

X̃(i) t
h (1− X̃(i))

1−t
h X̃(j) t

h (1− X̃(j))
1−t
h

B(t
h + 1, 1−t

h + 1)2
dt

)

In fine, we want to minimise:

LSCV (h) =
1

N2(b− a)

(N∑
k=1

∫ 1

0

X̃(k) 2t
h (1− X̃(k))2

1−t
h

B(t
h + 1, 1− t

h + 1)2
dt

+ 2
N∑
i=1

N∑
j=i+1

∫ 1

0

X̃(i) t
h (1− X̃(i))

1−t
h X̃(j) t

h (1− X̃(j))
1−t
h

B(t
h + 1, 1−t

h + 1)2
dt

)

− 2

N(b− a)

N∑
i=1

1

N − 1

N∑
j=1,j ̸=i

Kβ

x−a
h(b−a)

+1,
1−x−a

b−a
h

+1

(X̃(j))

(Chen, 1999) proves that the optimal bandwidth is of order O(N
−2
5) as n grows

to infinity.

Product kernel estimator and beta kernels. Let X(1), . . . , X(N) be N i.i.d sam-
ples from an unknown density π on the hyperrectangle X = [a1, b1]× . . .× [ad, bd] with
X(i) = (X

(i)
1 , . . . , X

(i)
d) ∈ Rd. We denote the scaled observations X̃(1), . . . , X̃(N) with

X̃(i)
s = X(i)−as

bs−as
. Then, one can use the product kernel estimator (Definition 3.4.3)

for bounded kernel estimation on X with the beta kernel described in the previous
section:

π̂C1,h(x) =
1

N · V ol(C)

N∑
i=1

Kβ

xs−as
hs(bs−as)

+1,
1−xs−as

bs−as
hs

+1

(X̃(i)
s)

with V ol(C) =

d∏
s=1

(bs − as).

Thus, one can express the LCSV estimator as above.

Chapter 3. Statistical methods 59

LSCV (h) =
1

N2V ol(C)
(

N∑
k=1

∫ 1

0

d∏
s=1

X̃(k)
2t
hs
s (1− X̃(k)

s)
2 1−t

hs

B(t
hs

+ 1, 1− t
hs

+ 1)2
dt

+ 2

N∑
i=1

N∑
j=i+1

∫ 1

0

d∏
s=1

X̃(i)
t
hs
s (1− X̃(i)

s)
1−t
hs X̃(j)

t
hs
s (1− X̃(j)

s)
1−t
hs

B(t
hs

+ 1, 1−t
hs

+ 1)2
dt)

− 2

N · V ol(C)

N∑
i=1

1

N − 1

N∑
j=1,j ̸=i

Kβ

xs−as
hs(bs−as)

+1,
1−xs−as

bs−as
hs

+1

(X̃(j)
s)

(Bouezmarni and Rombouts, 2010) proves that the optimal bandwidth is of order
O(N

−2
d+4).

Remark 3.4.1 (Gamma kernels)
For estimation problems when X is partially bounded (e.g. X = [0,+∞[in the
univariate case), one can use gamma kernels (Kγ

k,θ(t) =
tk−1exp(−x

θ
)

Γ(k)θk
where Γ is the

gamma function) as proposed in (Chen, 2000; Bouezmarni and Rombouts, 2010).
The methodology is the same as developed above.

Estimation of the bandwidth in practice. The estimation of the bandwidth
parameter induces an optimisation problem:

arg min
h

 LSCV (h)

The bigger n, the more computationally expensive LSCV (h) is. Thus, we con-
sider the following gradient-free procedures for product kernel estimators:

• For the univariate beta kernel estimator, we consider Brent’s method (Brent,
1971).

• For the multivariate beta kernel, we consider the simulated annealing algorithm
(Goffe, Ferrier, and Rogers, 1994).

• If these methods are too computationally expensive, one can consider a grid
search around the convergence rate of the bandwidth O(N− 2

d+4). This proce-
dure is easily distributable.

Script 2 (Bounded Kernel Density Estimation in Julia language)
These procedures were implemented in Julia, accesible at the git repository https:
//gitlab-research.centralesupelec.fr/2017bentrioum/boundedkde.jl with a

60 3.5. Summary

focus on computation efficiency given that no implementation of product kernel esti-
mators was available in Julia.

Remark 3.4.2 (π is supposed unknown)
In the whole section, we have described non-parametric methods to estimate π when
the density is unknown. Suppose one has an intuition about the family of densities to
which the unknown density π belongs. In that case, one can consider a parametrised
family of probability density functions and fit the observations to reduce the complexity
of the problem.

3.5 Summary

In this chapter, we described:

• The Bayesian framework and most common Monte Carlo methods that sample
from an unknown density π when we can compute this density up to a constant.

• A family of likelihood-free methods called Approximate Bayesian Computation,
which approximately samples from a posterior density, even if the likelihood is
computationally intractable.

• Kernel density estimation methods for the estimation of an unknown density
based on its samples, focusing on bounded support distributions.

61

Chapter 4

Verification of Continuous-Time
Markov Chains

The world contains many complex systems such as communication networks, indus-
tries or transport that need to be safe, i.e. verify robust specifications. These systems
may be modelled by deterministic or probabilistic models. Model checking (Baier and
Katoen, 2008) groups several techniques for formal verification of models. This state-
ment raises two questions:

• How a specification is formally described?

• Which class of models can be considered? How the formulation of model check-
ing problems evolves along with the class of models?

In this Chapter, we focus on the verification of Continuous-Time Markov Chains.
This is motivated by the growing interest in model checking in Systems Biology
(Kwiatkowska, Norman, and Parker, 2008), which our subject study, Chemical Reac-
tion Network models, belongs to. In particular, we focus on the statistical methods
related to these verification tasks. Indeed, in the last two decades, statistical methods
have emerged to balance the state-space explosion from which numerical methods of
CTMC model checking suffer. These statistical methods are based on model simu-
lations. The most classical one, called statistical model checking, is based on Monte
Carlo simulations. Other statistical methods exist, and we propose a new one for
parametric CTMCs in Chapter 6.

More precisely, the goals of the Chapter are:

• To describe the model checking formalism of a CTMC given a specification φ.

• To define model checking of parametric CTMC, which is model checking on a
collection of parametrised CTMCs.

62 4.1. Temporal logic

• To give an overview of statistical methods related to model checking.

• To detail the HASL formalism, which is well-suited for CTMC verification.

The Chapter is organised as follows. Section 4.1 describes temporal logics to
formally define model specifications. Section 4.2 describes the verification tasks for
a CTMC and the related statistical methods. Section 4.3 describes the verification
tasks for a collection of CTMCs and the related statistical methods. Section 4.4
describes the HASL formalism based on Linear Hybrid Automata.

4.1 Temporal logic

To verify the specifications of our systems, we need a logical formalism to describe
them. In this section, we describe the syntax and the satisfaction relation of two
temporal logics: Metric-Interval Temporal Logic (MITL) (Alur, Feder, and Henzinger,
1991), which is based on the Linear Temporal Logic (LTL) and does not involve
probabilistic operator; and CSL (Aziz, 2000; Baier et al., 2003), which is based on
the Computation Tree Logic (CTL).

In the following, we consider a CTMC M = (S, α,Q) and its trajectory set
Path(M).

4.1.1 MITL

Definition 4.1.1 (Metric Interval Temporal Logic)
An MITL formula φ is a term of the following grammar:

φ ::= true | µ | ¬φ | φ1 ∧ φ2 | φ1UIφ2

where true stands for the true formula, µ ∈ AP is an atomic proposition, ¬ and
∧ are the negation and conjunction operators of propositional logic, and UI is the
until temporal operator with I ⊆ R≥0 a non-singular interval.

MITL formulae do not involve any probabilistic operator. The truth of an MITL
formula for a path σ ∈ Path(M) is expressed through a satisfaction relationship
denoted |= and defined below (see Section 2.2.1 of Chapter 2 for the notations of a
CTMC path).

Chapter 4. Verification of Continuous-Time Markov Chains 63

Definition 4.1.2 (Satisfaction relation |= of MITL)
The satisfaction relation |= of an MITL temporal formula is defined for a path σ ∈
Path(M) as follows:

σ |= true
σ |= µ ⇔ σ[0] |= µ

σ |= ¬φ ⇔ σ ̸|= φ

σ |= φ1 ∧ φ2 ⇔ σ |= φ1 and σ |= φ2

σ |= φ1UIφ2 ⇔ ∃t∈I,
σ[t⟩ |=φ2 and ∀t′<t, σ[t′⟩ |=φ1

For s a state of the CTMCM, s |= φ reads: state s satisfies φ. Although MITL
semantics is defined for paths of a CTMC the truth of an MITL formula is naturally
extended to states of a CTMC by considering the set of paths originating from a
given path (see the second row of Definition 4.1.2).

For example, as σ[t⟩ |= µ⇔ σ@t |= µ, a time-bounded until formula φ1 U[t1,t2] φ2

is satisfied at time t for a path σ if and only if there exists t′∈ [t1, t2] such that σ@(t+

t′) |= φ2 and ∀t′′ < t′, σ@(t + t′′) |= φ1, which is expressed as σ@t |= φ1 U[t1,t2] φ2.
σ |= φ means σ@0 |= φ1 U[t1,t2] φ2 as stated in Definition 4.1.2.

4.1.2 CSL

Continuous Stochastic Logic (CSL) (Aziz, 2000; Baier et al., 2003) is a logic derived
from CTL and adapted to Continuous-Time Markov Chains.

Definition 4.1.3 (Continuous Signal Logic)
A CSL formula ϕ is described by the following grammar:

ϕ ::= true | µ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | P▷◁pφ | S▷◁pϕ

φ ::= ϕUIϕ | XIϕ

where ▷◁∈ <,≤,≥, > and I ⊆ R≥0 is a non-singular interval.

ϕ is a state formula, whereas φ is a path formula. For path formulae, CSL has
an Until operator U, and a next operator X that asserts if the next state of the path
within the interval satisfies the property.

CSL includes two operators: the probability operator P and the steady-state
operator S (also called long run operator). P▷◁pφ means the probability that a path
verifies φ is ▷◁ p. S▷◁pϕ means the steady-state probability that ϕ holds is ▷◁ p.

64 4.2. Model checking of Continuous-Time Markov Chains

The two types of formula lead to the definition of two satisfaction relations, one
for state formulae and another for path formulae.

Definition 4.1.4 (Satisfaction relation |= for a CSL state formula ϕ)
The satisfaction relation |= over state formulae is defined as:

s |= true
s |= ¬ϕ ⇔ s ̸|= ϕ

s |= ϕ1 ∧ ϕ2 ⇔ s |= ϕ1 ∧ s |= ϕ2

s |= P▷◁pφ ⇔ PrM0({σ ∈ Path(M0), σ |= φ}) ▷◁ p

with M0 = (S, δs, Q,AP,L)

s |= S▷◁pϕ ⇔ lim
t→+∞

PrM({σ ∈ Path(M), σ@t |= ϕ}) ▷◁ p

PrM0({σ ∈ Path(M0), σ |= ϕ}) is the probability that σ |= ϕ when the CTMC
M begins at state s.

Remark 4.1.1
As detailed in the Remark 2.2.2 of Chapter 2, PrM is often denoted Prα in the liter-
ature. With this notation, PrM0({σ ∈ Path(M0), σ |= ϕ}) = Prs({σ ∈ Path(s), σ |=
ϕ}).

Definition 4.1.5 (Satisfaction relation |= for a CSL path formula φ)
The satisfaction relation |= over path formulae is defined as:

σ |= XIϕ ⇔ σ[1] |= ϕ ∧ δ(σ, 0) ∈ I

σ |= ϕ1UIϕ2 ⇔ ∃t ∈ I, σ@t |= ϕ2 ∧ ∀t′ < t, σ@t′ |= ϕ1

4.1.3 Eventually and global operators

The Until operator is less convenient if one wants to express properties like ”the
variable X reaches x1 between I” or ”the variable X is contained in [x1, x2] during
I”. Then, we consider two derivations of the Until operator: the eventually FIφ =

true UIφ, which stands for “at some point within I φ is satisfied”, and the globally
GIφ = ¬FI¬φ which stands for “φ is always satisfied within I”.

4.2 Model checking of Continuous-Time Markov Chains

Now that we have defined how to describe specifications for CTMCs with temporal
logic, we detail how we verify these specifications. Considering a specification ϕ, we

Chapter 4. Verification of Continuous-Time Markov Chains 65

want to know if a CTMCM fulfils ϕ. It relies on the computation of the probability
that a path formula φ is satisfied.

Definition 4.2.1 (Satisfaction probability of a path formula)
Let M be a CTMC and φ be an MITL formula. The probability that M satisfies φ

defined by
Pr(φ;M) = PrM({σ ∈ Path(M), σ |= φ})

is called the satisfaction probability of φ.

Two kinds of problems related to model checking are distinguishable.

Definition 4.2.2 (Estimation problem in model checking for CTMC)
Given an MITL formula φ and a CTMCM, the estimation problem in model checking
for CTMC is defined as:

Compute Pr(φ;M)

Definition 4.2.3 (Threshold problem in model checking for CTMC)
Given a CSL formula ϕ = P▷◁pφ with φ a path formula, and a CTMCM, the threshold
problem in model checking for CTMC is defined as:

Verify M |= ϕ, i.e. Pr(φ;M) ▷◁ p.

Remark 4.2.1 (Qualitative/quantitative approach of Probabilistic Model Check-
ing)
In the model checking literature, the threshold problem is sometimes referred to as the
qualitative approach; whereas the estimation problem is sometimes referred to as the
quantitative approach of model checking.

4.2.1 About numerical methods

Numerical methods are exact verification methods that exhaustively compute the
probabilities contained in a CSL formula ϕ over the whole CTMC state space. It
implies the evaluation of sub-formulae over the states of the CTMC to label the
states with the entire formula ϕ. For example, if ϕ = ¬ϕ2, the verification is done by
labelling with ϕ the states that are not labelled with ϕ2.

For example, in the case of a CSL formula ϕ = P▷◁pφ with φ a time-bounded
Until formula, the verification of ϕ implies transient analysis, i.e. the computation
of the transient probabilities described by Kolmogorov’s Forward Equations 2.1.5.

66 4.2. Model checking of Continuous-Time Markov Chains

As we have seen before, these methods can suffer from the state-space explosion,
adding that in practice, the required memory to run these algorithms is high and the
parallelism difficult. Several classical improvements exist for faster model checking as
the aggregation of states (reduction of the state space) or uniformisation of CTMC
(Baier et al., 2003), which we will not detail here.

Numerical methods for model checking of CTMC are available in the Prism model
checker software (Kwiatkowska, Norman, and Parker, 2011).

4.2.2 Statistical model checking

Estimation problem - Confidence bounds

We consider the estimation problem in Definition 4.2.2. We want to estimate p =

Pr(φ;M). Simulating σ ∼ M and verifying if σ |= φ can be seen as a draw from a
Bernoulli random variable X ∼ B(p). Indeed, there is a probability p that σ |= φ.
Statistical model checking aims at estimating p with statistical confidence: we want
to know how many simulation runs we need to have a certain level of statistical
confidence. This task is done by the computation of a confidence interval.

Definition 4.2.4
Let X be a random variable and p a parameter to estimate. A confidence interval of
level (1− α) is a random interval [b(X), u(X)] with

P(b(X) ≤ p ≤ u(X)) ≥ 1− α.

For our Bernoulli variable X ∼ B(p), E[X] = p. A natural estimator is XN =
X(1)+...+X(N)

N which converges to p.

The Hoeffding inequality gives for any c ∈ R≥0

P(|XN −X| ≥ c) ≤ 2 exp(−2c2N)

P(|XN −X| ≤ c) ≥ 1− 2 exp(−2c2N)

By setting c so that 2 exp(−2c2N) = α, we obtain the following confidence
interval:

P

(
XN −

√
− log(α/2)

2N
≤ p ≤ XN +

√
− log(α/2)

2N

)
≥ 1− α.

Chapter 4. Verification of Continuous-Time Markov Chains 67

With this equality, one can set the number N of simulations according to the
radius r =

√
− log(α/2)

2N of the desired confidence interval. Dividing r by two leads
to run four times more simulations. In (Jegourel, Sun, and Dong, 2019), they use
Massart bounds to sharpen the bounds of the confidence interval.

When p is tiny (less than 10−4), Statistical Model Checking is combined with a
specific field of statistics called rare event analysis. It deals with methods such as
subset simulation and important sampling mentioned in Chapter 3 (e.g. see (Barbot,
2014)). For a complete review of Statistical Model Checking methods, we refer the
reader to (Legay, Delahaye, and Bensalem, 2010; Legay et al., 2019).

Threshold problem - Hypothesis testing

We consider a CSL formula ϕ = P≤pφ and the threshold problem of Definition 4.2.3.
If numerical methods are too computationally expensive, a method to statistically
verify this specification is hypothesis testing.

The principle of hypothesis testing is to formulate two disjoint hypotheses and
test their validity based on observation data X(1), . . . , X(N). The first hypothesis
H0, called the null hypothesis, is a default position and H1 the alternative one.
Then, we compute a statistic T (X(1), . . . , X(N)), for which we can derive the exact or
asymptotic distribution under the null hypothesis. If the realisation of this statistic
with our data is too unlikely compared to the distribution under the null hypothesis,
the null hypothesis is rejected.

For statistical model checking, the most used statistic is Wald’s Sequential Prob-
ability Ratio Test. We define the two hypotheses as:

• H0 : p ≥ p0

• H1 : p ≤ p1

Let x(1), . . . , x(N) be a realisation of X(1), . . . , X(N) ∼ B(p). Then, the test
statistic is the quantity

t =
p1,N
p0,N

=
N∏
i=1

P(X(i) = x(i)|p = p1)

P(X(i) = x(i)|p = p0)
=

pdN1 (1− p1)
N−dN

pdN0 (1− p0)B−dN

where dN =
∑N

i=1 x
(i). t is computable sequentially, which is convienent to obtain

a decision without knowing the sufficient number of simulations in advance.

68 4.3. Model checking of parametric Continuous-Time Markov Chains

Let α be the probability of the type I error (rejection of the true null hypothesis)
and β be the probability of the type II error (not rejecting while H0 is false). Then,
the decision process is:

1. If t ≤ β
1−α , accept H0.

2. Else if t ≥ 1−β
α , accept H1.

3. Else, no conclusion.

4.3 Model checking of parametric Continuous-Time Markov
Chains

The previous section’s methods deal with an instance of a CTMC. In some cases,
a vector θ naturally parametrises CTMCs. CTMCs induced by Chemical Reaction
Networks (Section 2.3) are an illustrative example: they are parametrised by reaction
rate constants. In this section, we present verification methods for a collection of
CTMCs indexed by a parameter. These collections are called parametric Continuous-
Time Markov Chains, for which we give a definition below.

Definition 4.3.1 (Parametric CTMC)
Let Θ be a non-empty set. A parametric CTMC, abbreviated pCTMC, (Mθ)θ∈Θ (or
(Sθ)θ∈Θ) is a collection of CTMCs indexed by a parameter vector θ ∈ Θ.

The general goal of these methods is to analyse how the satisfaction probability
of temporal properties evolve along with the parameters.

4.3.1 Estimation problem - Satisfaction function regression

We extend the verification task described in Definition 4.2.2. We no longer want to es-
timate a value Pr(φ;M) for a specific value θ but rather a set of values (Pr(φ;Mθ))θ∈Θ.

Definition 4.3.2 (Satisfaction probability function)
Let (Mθ)θ∈Θ be a parametric CTMC and φ an MITL formula. The function

fφ :Θ→ [0, 1]

θ → Pr(φ;Mθ)

is called the satisfaction probability function.

Chapter 4. Verification of Continuous-Time Markov Chains 69

The satisfaction probability function (Definition 4.3.2) expresses how the satis-
faction probability of φ varies with the parameters. Then, the estimation problem
for parametric model checking is to estimate the satisfaction probability function.

If Θ is finite, then the task can be tackled by iterating numerical or statistical
methods of classical model checking for each parameter. If Θ is infinite, numeri-
cal methods are impossible (it requires an infinite computation time). The problem
becomes a task of function regression. An exact method means the analytical compu-
tation of transient probabilities is possible for every parameter θ ∈ Θ. In most cases,
it is impossible (we give an example that is simple enough to have an analytical
solution in Section 6.5.1). Such difficulties encourage statistical methods.

Remark 4.3.1 (Automaton-ABC method)
Chapter 6 details a new method for the estimation of the satisfaction probability
function based on ABC and Linear Hybrid Automata.

Statistical methods

In (Ceška et al., 2014), they formulate the max synthesis, aiming to estimate the
regions of Θ where the satisfaction probability function 4.3.2 is maximal, with confi-
dence bounds. A significant work about the estimation of the satisfaction probability
function for parametric CTMC 4.3.1 has been done in (Bortolussi, Milios, and San-
guinetti, 2016). The method is called Smoothed Model Checking. Smoothed MC
algorithm estimates the satisfaction probability function in a Bayesian framework
with the help of Gaussian Processes (GP).

Let us define the method’s framework based on Bayesian statistics. We want to
estimate the function fφ based on random observations denoted O(1), . . . , O(n) whose
realisations are o(1), . . . , o(n) (the meaning of these observations is detailed below).
Smoothed model checking is a Bayesian learning regression method. We have to
define

1. The prior f ,

2. The observation model.

Smoothed MC estimates fφ by estimating the posterior distribution:

p(f(θ∗)| O(1) = o(1), . . . , O(n) = o(n)), θ∗ ∈ Θ.

70 4.3. Model checking of parametric Continuous-Time Markov Chains

In function regression, defining a prior amounts to define a stochastic process
(also called random function) (f(θ))θ∈Θ. It is analogous to the prior definition in sta-
tistical parameter inference when one defines a random variable over the parameters
space. In the Smoothed MC method, the prior is set as a Gaussian process defined
below.

Definition 4.3.3 (Gaussian process)
A Gaussian process is a stochastic process (Yx)x∈X whose finite dimensional distri-
butions are Gaussian, i.e.

∀n ∈ N, ∀x1, . . . , xn ∈ X , (Yx1 , . . . , Yxn) ∼ N (µ,Σ)

It is uniquely defined by its mean function µ(x) = E[Yx], and its covariance function
k(x, x′) = Cov(Yx, Yx′). We can write Y ∼ GP (m(.), k(., .)).

A Gaussian process is entirely described by its mean function and covariance
function. The mean function is typically constant (either zero or the mean of the
dataset). The chosen covariance function in Smoothed MC is the Gaussian Radial
Basis function k(x, x′) = σ2e−∥x−x′∥2/λ2 .

Second, we consider n observations o(1), . . . , o(n) related to parameters θ(1), . . . , θ(n).
Each o(i) is the number of trajectories that verifies φ among the simulation of M tra-
jectories with the CTMC Mθ(i) (as it can be done in statistical model checking,
Section 4.2.2). Thus, o(i) is the result of M independent drawing from a Bernoulli
law B(fφ(θ(i))), it is a Binomial law Bin(M, fφ(θ

(i))).

O(i)| f(θ(i)) ∼ Bin(M, f(θ(i)))

Thanks to Bayes rule,

p(f(θ∗), f(θ(1)), . . . , f(θ(n))| o(1), . . . , o(n)) ∝ p(f(θ∗), f(θ(1)), . . . , f(θ(n)))︸ ︷︷ ︸
Gaussian process

·
n∏

i=1

p(o(i)| f(θ(i)))︸ ︷︷ ︸
Bin(M,f(θ(i)))

Then, the prediction is performed by the marginalisation of the density written
below.

p(f(θ∗)| o(1), . . . , o(n)) =
∫
Θn

p(f(θ∗), f(θ(1)), . . . , f(θ(n))| o(1), . . . , o(n))df(θ(1)) . . . df(θ(n))
(4.1)

Chapter 4. Verification of Continuous-Time Markov Chains 71

which is analytically intractable. Smoothed MC uses the Expectation-Propagation
algorithm (Minka, 2013) to compute an approximate posterior and control the error.

To have a good estimation over Θ, observations on the dataset are added itera-
tively (i.e. drawing a new θ∗ and perform statistical model checking over Mθ∗) until
a convergence criterion is met (about the estimated error).

Remark 4.3.2 (Smoothed MC and Gaussian Process regression)
As the matter of fact, Smoothed MC is not Gaussian Process regression. In classi-
cal GP regression, we consider observations (xi, yi)1:N where yi ∼ Yxi and Yx1:N =

(Yx1 , . . . , YxN)
t as the random sample. Let x∗ ∈ X . We want to address the pre-

diction task, i.e. estimate f(x∗). This task is done by identifying the conditional
law Yx∗ |Yx1:N . As Y is a Gaussian process, we know Yx∗ , Yx1 , . . . , YxN is a Gaussian
vector:

(
Yx1:N

Yx∗

)
∼ N

0,

(k(Yxi , Yxj))1:N

k(Yx1 , Yx∗)

...

 k(YxN , Yx∗)

k(Yx∗ , Yx1) . . . k(Yx∗ , YxN) k(Yx∗ , Yx∗)

Thus, the conditional law Yx∗ |Yx1:N is easily computable with Gaussian identities,
and the expectation has a closed form.

4.3.2 Parameter synthesis - threshold problem

Parameter synthesis aims at partitioning the parameter space Θ with a CSL formula
ϕ. We want to estimate two subsets of parameters Θϕ and Θ¬ϕ, such that Θϕ contains
the parameters for which Mθ satisfies the specifications, and conversely for Θ¬ϕ.

• Θϕ = {θ ∈ Θ,Mθ |= ϕ}

• Θ¬ϕ = {θ ∈ Θ,Mθ ̸|= ϕ}

which can be seen as a classification task. In practice, it is difficult to solve this
problem exactly. In the case of an infinite parameter space Θ, it would require that
transient analysis can be solved analytically. Thus, the parameter synthesis (also
called threshold synthesis) is formulated as follows.

Let ϕ be a CSL formula let ϵ > 0 be a tolerance error. We want to find a partition
(T, F, U) of Θ s.t.

72 4.4. Hybrid Automata Stochastic Logic

• T ⊆ Θϕ

• F ⊆ Θ¬ϕ

• U ⊂ Θ with V olume(U)/V olume(Θ) ≤ ϵ

Several numerical methods have been published to solve this problem. (Han,
Katoen, and Mereacre, 2008) address an approximate solution by discretising Θ for
time-bounded reachability probabilities. In (Ceška et al., 2014), they solve the prob-
lem by computing the bounds of transient probabilities of (Brim, Ceška, and Dražan,
2013).

Statistical formulation

If numerical methods are too computationally expensive, we can formulate a statis-
tical version of threshold synthesis.

Let ϕ = P≥pφ with φ a path formula. Considering an estimator f̂φ (a random
function) of the true satisfaction probability function fφ, a tolerance ϵ, a confidence
threshold α, we want to find a partition (T̂ , F̂ , Û) of Θ s.t.

• T̂ = {θ ∈ Θ,P(f̂φ(θ) ≥ p) ≥ 1− α}

• F̂ = {θ ∈ Θ,P(f̂φ(θ) < p) ≥ 1− α}

• Û ⊂ Θ with V olume(U)/V olume(Θ) ≤ ϵ

To our knowledge, a statistical approach of parameter synthesis has only been
tackled by (Bortolussi and Silvetti, 2018), which uses the Smoothed MC estimator of
the function to compute statistical bounds. In (Molyneux and Abate, 2020), they use
Support-Vector Machines to approximate the partition of Θ according to the CSL
formula. Indeed, parameter synthesis is a classification task. Thus any supervised
learning method is worth considering.

4.4 Hybrid Automata Stochastic Logic

Hybrid Automata Stochastic Logic (HASL) is a logic (Ballarini et al., 2011) designed
for Discrete-Event Stochastic Processes (DESP), including CTMCs. It is a quantita-
tive logic that allows operators to compute real-valued indicators like expectation or
maximum. This logic is more expressive than CSL for non-nested formulae (Ballarini

Chapter 4. Verification of Continuous-Time Markov Chains 73

et al., 2011, Section 3.3). This quantitative logic inherently adopts the statistical
point of view of verification, and is based on model simulations, which makes it well-
suited for statistical model checking of continuous-time models with discrete events.

An HASL formula is described by a couple (Z,A), where A is a linear hybrid
automaton A, and Z is an HASL expression.

4.4.1 Stochastic Petri Net

The implementation of HASL (see Section 4.4.4 further) is based on Generalised
Stochastic Petri Nets (GSPN) formalism. Chemical Reaction Network models can be
described by Stochastic Petri Nets (SPN), which is a special case of GSPNs.

Definition 4.4.1 (Stochastic Petri Net)
A Stochastic Petri Net is a tuple SPN = (P, T, F,M0,Λ) where

• P = {p1, . . . , pd} is a set of places.

• T = {t1, . . . , tM} is a set of transitions.

• W : (P × T) ∪ (T × P) → N is a function that assigns a multiplicity to each
possible arc.

• m0 ∈ Nd is the initial marking, which represents the initial distribution of tokens
over the places.

• Λ = {λ1(.), . . . , λM (.)} is a vector of firing rates that may depend on the marking
of the SPN.

An SPN is a bipartite graph. A place p can only be connected to a transition t

and vice versa, which is represented by W (p, t) > 0 (or W (t, p) > 0). A marking m is
a vector of dimension d. It assigns an integer to each place. Each integer represents
the number of tokens contained in a place. A firing rate λ(m) is a transition rate of
some transition ti, i.e. the firing time of ti is distributed as Exp(λ(m)).

An SPN easily describes a Chemical Reaction Network (Section 2.3, Chapter 2).
Indeed, the transitions are the chemical reactions, i.e. T = {R1, . . . , RM}. Each place
represents a species, the number of tokens contained in a place is the population of
species, and a marking m is an element s ∈ S.

For a marking m, the stochastic dynamics of an SPN are composed of two steps:

74 4.4. Hybrid Automata Stochastic Logic

• Enabling of transitions. A transition ti is enabled if all its input places p (which
means W (p, ti) > 0) have a number of tokens greater than W (p, ti).

• Firing of a transition. A enabled transition is fired if it has the minimum so-
journ time within the enabled transitions. The sojourn times are exponentially
distributed with mean 1

λi(m) . This is analogous to the SSA (Algorithm 1) over
the enabled transitions.

Let us illustrate this with the SIR Chemical Reaction Network whose equations
are recalled below:

R1 : S + I
ki−→ 2I

R2 : I
kr−→ R

Figure 4.1 illustrates the SIR CRN with the SPN formalism.

95

S R1

5
I R2 R

Figure 4.1: SIR Stochastic Petri Net with initial marking m0 =
(95, 5, 0)

This SPN has two transitions R1 and R2. The place S has 95 tokens, I has 5
tokens, whereas no tokens are in R. S and I have at least one token, which enables
R1. Also, I has at least one token, which enables R2. If R1 occurs, one token
is moved from the place S (W (S,R1) = 1), whereas the place I receives a token.
(W (R1, I)−W (I,R1) = 1). The marking is updated to m1 = (94, 6, 0).

Remark 4.4.1 (Generalised Stochastic Petri Nets)
GSPNs are SPNs that also include immediate transitions. The analogous stochastic
processes are Markov Renewal Processes. We refer the interested readers to (Bause
and Kritzinger, 2013) for a deeper exploration of Petri Net models and their timed
extensions.

4.4.2 Linear Hybrid Automata

Definition

Linear Hybrid Automata (LHA) are a class of automata that extends Deterministic
Timed Automata (DTA). They are equipped with clocks and can deal with continuous
variables as well as discrete changes.

Chapter 4. Verification of Continuous-Time Markov Chains 75

Definition 4.4.2 (Linear Hybrid Automaton)
A Linear Hybrid Automaton (LHA) is a tuple A = (E,L,Λ, Init,Final, X,Flow,→)

where

• E is a finite alphabet of events.

• L = {l0, . . . , lq} is a finite set of locations.

• Λ : L→ Prop is a location labelling function.

• Init ⊂ L is the set of initial locations.

• Final ⊂ L is the set of final locations.

• X = (x1, . . . , xn) is a n-tuple of data variables.

• Flow : L → Indn is a function which associates each location with n indicator
functions (one per data variable). Flowi is the i-th projection.

• The transition relation (the set of edges) →, which is a subset of
L×

(
(2E × Const) ⊎ ({♯} × lConst)

)
× Up× L where

– ♯ means the transition is asynchronous, i.e. the transition can be fired even
if it is not synchronised with an event of the stochastic model,

– Const is a set of constraints,

– lConst is a set of left-closed linear constraints.

A transition (l, (E, γ), U, l′) ∈→ is written l
E,γ,U−−−−→ l′.

This definition is coupled with additional properties.

• Initial determinism: ∀l, l′ ∈ Init with l ̸= l′, Λ(l) ∧ Λ(l′)⇔ false.

• Determinism on events: ∀E,E′ ⊆ E with E ∩ E′ ̸= ∅, ∀l0, l, l′ ∈ L, if
l0

E,γ,U−−−−→ l and l0
E′,γ′,U ′
−−−−−→ l′ with (l, E, γ, U) ̸= (l′, E′, γ′, U ′), then either Λ(l) ∧

Λ(l′) ⇔ false or γ ∧ γ′ ⇔ false. In other terms, if we are in the location l0 and
an event E0 ∈ E ∩ E′ occurs, then at most one transition can be fired.

• Determinism on asynchronous transitions ♯: ∀l0, l, l′ ∈ L, if l0
♯,γ,U−−−→ l

and l0
♯,γ′,U ′
−−−−→ l′ with (l, γ, U) ̸= (l′, γ′, U ′), then either Λ(l) ∧ Λ(l′) ⇔ false

or γ ∧ γ′ ⇔ false. In other terms, if we are in the location l0, at most one
asynchronous transition can be fired.

• No ♯-labelled loops: For all l0
E0,γ0,U0−−−−−→ l1

E1,γ1,U1−−−−−→ . . .
Ep−1,γp−1,Up−1−−−−−−−−−−→, there

exists i ≤ p so that Ei ̸= ♯. It means the automaton cannot loop infinitely with
asynchronous transitions.

76 4.4. Hybrid Automata Stochastic Logic

Remark 4.4.2 (Events for Chemical Reaction Network)
In the case of Chemical Reaction Network, the set of events E is the set of reactions
{R1, . . . , RM}.

Synchronised simulation

An LHA A is synchronised with the simulations of a GSPN model M. Each path is
infinitely simulated when either an accepting state of A is reached, or the synchro-
nisation can no longer proceeds (hence the path is rejected). The transitions of A
synchronises with the transitions of the trajectory σ being sampled. An LHA admits
two kinds of transitions.

• Synchronising transitions (associated with a subset of E, with ALL = E), which
may be traversed when an event (in E) is observed.

• Asynchronous transitions (denoted by ♯), which are traversed autonomously.
Asynchronous transitions have priority over synchronised ones.

l0

ṫ:1

l1

ṫ:1

l2

ṫ:1

♯,true,{n=xI}

{R
1 ,R

2},true,{n=x
I }

♯,n≥
8,∅

Figure 4.2: An example of LHA Acount for SIR model. It accepts a
trajectory if the number of infected people reaches eight.

Let us illustrate a synchronised simulation with a simple example. We consider
the SIR model M in Figure 4.1, and the LHA Acount depicted in Figure 4.2 (l0 is
the initial state, l2 the final state). The LHA accepts the trajectory if the population
reaches eight infected people.

The associated synchronised model is a couple (M,A). A state of the synchro-
nised model is (m, l,X, time) where m is a marking ofM, l ∈ L a location, X = (n, t)

are the automaton values, and time is the time.

Let us describe the synchronised simulation of the path σ = (95, 5, 0)
0.2−−→

(94, 6, 0)
0.1−−→ (93, 7, 0)

0.08−−→ (93, 6, 1)
0.02−−→ (92, 7, 1)

0.12−−→ (91, 8, 1).

Chapter 4. Verification of Continuous-Time Markov Chains 77

• First, the synchronised state is initialised: (m0, l0, (0.0, 0.0), 0.0).

• From l0, there exists only one edge l0 → l1. This edge is asynchronous, so it
does not need a reaction occurrence to be fired. The transition predicate is
true, so l0 → l1 is fired, and the variable n is updated. The state becomes
(m0, l1, (5.0, 0.0), 0.0).

• One asynchronous edge arises from l1, but the transition predicate γ = n ≥ 8 is
not satisfied, the edge is not fired. The other edge is synchronous, so we have
to wait that a reaction occurs.

• Time goes on until a duration of 0.2. In the location l1, ṫ = 1 gives that t has a
flow of 1 in l1. More precisely, Flow(l1) = (0.0, 1.0) which means the derivative
of t with respect to time is 1, whereas the derivative of n is zero. Thus t = 0.2.

• Then, R1 occurs. The marking evolves to m1 = (94, 6, 0). One edge l1
{R1,R2},true,{n=xI}−−−−−−−−−−−−−→

l1 is synchronous. As R1 ∈ {R1, R2} and γ = true is verified, this edge is fired.
The synchronised state becomes ((94, 6, 0), l1, (6.0, 0.2), 0.2).

• The transition predicate γ = n ≥ 8 is still not verified, so l1 → l2 is still not
fired.

• The last two steps are repeated until we arrive at the time t = 0.2+0.1+0.08+

0.02 + 0.12 = 0.52. Then R1 occurs, and the synchronised state is updated:
((91, 8, 1), l1, (8.0, 0.52), 0.52). This time, the transition predicate γ = n ≥ 8 is
fulfiled, so l1 → l2 is fired. As l2 is a final state, the simulation ends with state
((91, 8, 1), l2, (8.0, 0.52), 0.52). The path is accepted by the LHA.

Note that with the path σ = (95, 5, 0)
0.12−−→ (95, 4, 1)

0.13−−→ (95, 3, 2)
0.11−−→ (95, 2, 3)

0.021−−−→
(95, 1, 4)

0.38−−→ (95, 0, 5), the LHA would have rejected σ.

4.4.3 HASL Expressions

An HASL formula is described by a couple (Z,A), where A is an LHA and Z is an
expression built on top of the grammar in Definition 4.4.3. It leads to the evaluation
of an arithmetic expression based on synchronised simulations. Such an arithmetic
expression is formally described by the HASL expression Z.

78 4.4. Hybrid Automata Stochastic Logic

Definition 4.4.3 (HASL Expression)
An HASL expression Z is defined by the following grammar

Z ::= c | PROB | AV G(Y) | Z + Z |Z · Z

Y ::= c | Y + Y | Y · Y | Y /Y |

Last(y) | Min(y) | Max(y) | Int(y) | Mean(y)

y ::= c | x | y + y | y · y | y/y

In this definition, y is an arithmetic expression built on top of the automaton
variables, computed at each step. Y is called an HASL trajectory expression. It
represents a value computed at the end of an accepted trajectory. Z is an HASL
expression, evaluated over a set of simulated trajectories. For Z expressions, PROB

is the probability that a path is accepted by the LHA, AV G(Y) is the first moment
(expectation) of the HASL trajectory expression Y , which allows the computation of
any k−th order moments.

For an expression Y , several quantities are available:

• Last(y) is the value of y in the last state

• Min(y),Max(y),Mean(y) are the minimum, maximum and average value of y
along the trajectory

• Int(y) is the integral over time of y along the trajectory

Definition 4.4.4 (Notation for synchronised simulations)
Let Y an HASL trajectory expression, A an LHA and M a CTMC. The notation

x ∼ (Y,A)×M

describes the evaluation of the trajectory expression Y after a simulation of M syn-
chronised with A.

Considering the synchronised simulation example of Section 4.4.2, x ∼ (Last(n),Acount)×
M means that x stores the last value of n, which is 8.

Remark 4.4.3
The notation of Definition 4.4.4 is mainly used in the automaton-ABC procedure
detailed in the next chapter.

Chapter 4. Verification of Continuous-Time Markov Chains 79

4.4.4 Cosmos Statistical Model Checker

Cosmos (Ballarini et al., 2015) is a statistical model checker for HASL specifications
developed in C++. It takes as inputs a Generalised Stochastic Petri Net (GSPN)
and an HASL formula (i.e. an LHA and an HASL expression).

This tool implements the simulation of any Discrete-Event Stochastic Processes
described by a GSPN. This formalism allows efficient path simulation of the model.
Each simulation is synchronised with the LHA, and evaluation of the HASL expression
is done during the simulation. For more details, we refer the reader to (Djafri, 2012,
Chapter 6) and (Barbot, 2014, Chapter 6).

Script 3 (An example of a Cosmos run)
An example of a Cosmos script is available in code/chap3/example_cosmos_sir.sh
with the following HASL formula that computes the average time the SIR model
reaches eight infected people.

Z : AV G(Last(t))

l0

ṫ:1

l1

ṫ:1

l2

ṫ:1

♯,true,{n=xI}

{R
1 ,R

2},true,{n=x
I }

♯,n≥
8,∅

4.5 Summary

In this chapter, we described:

• Temporal logics to formally describe specifications over a CTMC.

• Model checking of CTMCs with a particular focus on two problems (estimation
and threshold problem) and the related statistical methods.

• Model checking on collections of CTMCs called model checking of parametric
Continuous-Time Markov Chain and the related statistical methods.

• The HASL formalism designed for discrete event stochastic processes such as
CTMCs.

80 4.5. Summary

At this point of the thesis, we have defined the main concepts to present our con-
tributions in statistical inference and verification of Continuous-Time Markov Chains,
based on ABC methods with Linear Hybrid Automata.

81

Chapter 5

Automaton-ABC for the
statistical inference of CTMCs

The difficulty of statistical inference for complex models relies on the lack of a closed
form of the likelihood. Continuous-Time Markov Chains form a class of stochastic
models that suffers from this difficulty: in most cases, the likelihood of observations
is intractable.

Thus, ABC likelihood-free methods (Section 3.3) seem adequate for the Bayesian
estimation of such models. In this chapter, our goal is to define the statistical frame-
work of CTMCs and apply ABC methods using the synchronised simulation included
in the HASL formalism (Section 4.4). We address several tasks:

• In Section 5.1, we describe the observation models of CTMCs. We consider two
types of observations: when trajectories are observed continuously, and when
trajectories are observed discretely in time.

• In Section 5.2, we detail a new algorithm called automaton-ABC, which com-
bines classical ABC methods with synchronised simulations (defined in Sec-
tion 4.4.2).

• Section 5.3 and Section 5.4 are applications of the automaton-ABC algorithm for
two different tasks: take into account oscillatory trends of models and Bayesian
inference.

5.1 Observation model and likelihood

Let us consider observations yexp. A statistical model induced by a parametric CTMC
(Definition 4.3.1) is a dominated model (Billingsley, 1961) (Proposition 5.1.1).

82 5.1. Observation model and likelihood

Proposition 5.1.1 (Statistical model of a parametric CTMC)
Let (Sθ)θ∈Θ a parametric CTMC. Then (PSθ)θ∈Θ is a statistical model dominated by
a measure µ.

Corollary 5.1.1 (Density of a CTMC)
Let S a CTMC. PS admits a density pS :

pS :Path(M)→ R≥0

σ =
(

s0
t0−→ . . .

tk−1−−−→ sk
)
→ P (s0)

k∏
i=1

Q(si−1, si)e−E(si−1)ti−1

Such properties are also helpful in the Bayesian framework (Proposition 5.1.2).

Proposition 5.1.2 (Conditional density of a parametric CTMC)
Let (Sθ)θ∈Θ be a parametric CTMC, Pϑ a prior distribution.

• (θ,A)→ PSθ(A) is a transition kernel.

• PS |ϑ=θ admits a continuous density σ → p(σ|θ) = pSθ(σ).

Before any mention of learning algorithm from data, we need to formulate the
nature of observations yexp mathematically in the case of Continuous-Time Markov
Chains. We consider two types of observations.

• Event-discrete observations. We observe a path σ ∈ Path(M) by observing the
transitions of the CTMC.

• Time-discrete observations. At fixed times t1, . . . , tN , we observe the state of
the CTMC. It corresponds to the classical case of observation of a state-space
dynamical model.

5.1.1 Event-discrete observations

Let Sθ = (St
θ)t∈R≥0

be a CTMC defined by a transition rate matrix Qθ, transition
probability matrix Pθ, and exit rate Eθ. We consider the paths σ(1), . . . , σ(N) as
observations.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 83

Definition 5.1.1 (Likelihood function of a parametric CTMC)
Let σ(1), . . . , σ(N) observation paths. The likelihood function is defined as:

l(θ;σ(1), . . . , σ(N)) =
N∏
k=1

p(σ(i)|θ)

=

N∏
i=1

P (σ(i)
[0])

k(i)∏
j=1

Qθ(σ
(i)

[j−1], σ(i)
[j])e−Eθ(σ

(i)[j−1]δ(σ(i),j−1))

where k(i) is the number of states of σ(i).

These observations correspond to the case where we fully observe the transitions
of the CTMC model. This case seems unrealistic for most biological phenomena, but
it is more reasonable for queueing network models or fault tolerance models because
computers can log any occurred event. An analytical form of the Maximum Likelihood
Estimator (Definition 3.1.3) can be derived (Bladt and Nielsen, 2017, Chapter 12).

Sometimes, we can only observe a subset of the state space. Thus, we introduce
an observation function γ defined over the set of trajectories by:

γ : Path(M)→ E

σ → γ(σ) = g(s0)
t0−→ . . .

tk−→ g(sk)

where g is the projection of an element s ∈ S over the set of observed states. Thus,
γ(σ) is a trajectory with a reduced state space.

A frequent case is when only a few variables of the system are observed. In the
Chemical Reaction Network framework, it means only a few species are observed. In
this case, we define Ig = {i1, . . . , idobs} ⊆ {1, . . . , d} as the set of observed species and
the observation function g is:

g : S→ Ndobs

s→ (s[i1], . . . , s[idobs])

For example, with the SIR model 2.15, we usually only observe the number of
infected people, so the observation function over the state space g is defined as

g : N3 → N

(XS , XI , XR)→ XI .

84 5.1. Observation model and likelihood

5.1.2 Time-discrete observations: state-space model

In most applications of continuous phenomena, observations are considered discrete
in time. In this case, the standard framework used for the observation model is the
state-space model (Cappé, Moulines, and Rydén, 2009).

Let S = (St)t∈R≥0
a CTMC. Let t1, . . . , tK a collection of observation times.

We suppose Z = (Sk)1≤k≤K is unobservable, and we consider Y = (Yk)1≤k≤K the
corresponding observable states. The state-space model is the Hidden Markov Model
(Y, Z) defined by the scheme, for k ∈ {1, . . . ,K}:

Yk ∼ g(.|Stk
, θy)

Zk = Stk
∼ p(.|Sv, θ) with t0 ≤ v ≤ tk

.

(Yk)k∈ N are the observations of some hidden/latent continuous trajectory. g is
the observation function, it models the link between the observed state and the latent
state. In this case, the i.i.d random observations are named (Y (1), . . . , Y (N)), which
a realisation is (y

(1)
1:K , . . . , y

(N)
1:K).

Due to the Markov property of CTMCs, the discrete scheme is rewritten as:

Yk ∼ g(.|Stk
, θy)

Stk
∼ p(.|Stk−1

, θ)

.

Let us compute the likelihood for one observation y1:K ∈ SK :

l(θ; y1:K) = pY (y1:K)

=

∫
z0:K∈SK+1

pY,Z(y1:K)dz0:K

=

∫
z0:K∈SK+1

pY |Z(y1:K | z0:K)pZ(z0:K)dz0:K

=

∫
z0:K∈SK+1

p(z0)

N∏
k=1

g(yk|zk)p(zk|zk−1)dz0:K

For i.i.d observations y
(1)
1:K , . . . , y

(N)
1:K , the likelihood is:

l(θ; y(1)1:K , . . . , y
(N)
1:K) =

N∏
i=1

∫
z0:K∈SK+1

p(z0)

N∏
k=1

g(y
(i)
k |zk)p(zk|zk−1)dz0:K

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 85

When the true state is observed at each step, Yk = Stk
and the likelihood becomes

l(θ; y(1)1:K , . . . , y
(N)
1:K) =

N∏
i=1

p(y0)

N∏
k=1

p(y
(i)
k |y

(i)
k−1).

Even in this simple case, the likelihood is difficult to compute. Indeed, the
transition function of a CTMC p(yk|yk−1), i.e. the probability of being in a state
at time tk given the state at time tk−1, is challenging to compute. The observations
times are not coincident with jumps/transitions of the system, so we only know

p(yk|yk−1) = P(Stk
= yk|Stk−1

= yk−1) = δyk−1
(yk)+Q(yk−1, yk)(tk−tk−1)+o(tk−tk−1).

Note that given observations yk, tk and a CTMC, methods that reconstruct the
most probable trajectory σ exist, such as Viterbi algorithm or more evolved methods
(Perkins, 2017).

Statistical inference of Continuous-Time Markov Chains based on time-discrete
observations has been much studied in the literature (Craciun et al., 2013; Schnoerr,
Sanguinetti, and Grima, 2017; Loskot, Atitey, and Mihaylova, 2019). Considera-
tion of time-discrete observations for CTMCs has been considered in (Bladt and
Sørensen, 2005). They proved the existence and uniqueness of the maximum likeli-
hood estimator under certain conditions, and the possibility of applying Expectation-
Maximisation (EM) and MCMC procedures. More evolved EM algorithms suited to
CTMCs exist. For example, stochastic approximation EM algorithm that involves an
ABC procedure is detailed in (Picchini and Samson, 2018). Some of these statistical
methods have been implemented in R (Pfeuffer, 2017).

Particularly, Bayesian inference for CTMCs has been considered (Gómez-Corral
et al., 2015). (Warne, Baker, and Simpson, 2019) reviews the main Bayesian tech-
niques for CTMCs with a particular focus on ABC related methods. They are illus-
trated by numerical examples.

In the thesis (Alharbi, 2018), Bayesian inference is considered on CTMCs, fo-
cusing on the two main likelihood-free methods of the Bayesian statistical literature:
ABC and Particle Marginal Metropolis-Hasting algorithm (Andrieu, Doucet, and
Holenstein, 2010). Note that to compare the likelihood-free posteriors, in (Alharbi,
2018, Chapter 6), they performed exact posterior distribution inference for the repres-
silator model (a model considered in the last two Sections of the Chapter) using the
Sequential Importance Sampling algorithm. It lasted 7137 hours after a state-space
reduction. The author had difficulties managing the run of the Particle Marginal

86 5.1. Observation model and likelihood

Metropolis-Hasting algorithm, because assessing a trustful convergence of a Markov
Chain is a challenging task. Driving the convergence of ABC-SMC (Algorithm 14)
was easier because the Sequential Monte Carlo scheme adapts the tolerance ϵ during
the run, and the α adaptive tolerance parameter (Section 3.3.2) easily adapts the
convergence speed.

More recently, ABC methods have been coupled with Multi-Level Monte Carlo
for CTMC inference. The main idea of Multi-Level Monte Carlo is to estimate (the
expectation of) a probability distribution with approximate samples. These samples
have different levels of accuracy l ∈ {1, . . . , L}. The Multi-Level Monte Carlo estima-
tor reduces the variance compared to the classical Monte Carlo estimator. In (Jasra
et al., 2019), the approximation is related to an ABC tolerance ϵl, l ∈ {1, . . . , L}, i.e.
the approximate samples are drawn from πϵl

ABC , {1, . . . , L}. In (Lester, 2018), the
approximation is related to the accuracy of the CTMC simulation. Instead of exact
CTMC simulation (Stochastic Simulation Algorithm, see Section 2.3.4), simulation
is performed by the Tauleap Algorithm 3 with a time step τl, l ∈ {1, . . . , L}.

ABC methods have proven efficiency in the context of CTMCs. In this chap-
ter, we will consider ABC procedures with a verification point of view for Bayesian
inference.

5.1.3 Approximate Bayesian Computation for event-discrete obser-
vations

As we saw in Section 3.3 and above in this chapter, Approximate Bayesian Compu-
tation methods are suitable for Bayesian inference when the likelihood is complex.
Hence, these methods are helpful for Continuous-Time Markov Chains. In this sec-
tion, we detail several configurations of ABC methods in order to show how they are
usable, and apply them to several models.

Distance over paths of CTMC

Here, we consider event-discrete observations (Section 5.1.1) yexp = (υ(1), . . . , υ(n))

where υ(i) = g(s0,(i))
t0,(i)−−−→ . . .

t
k(i)−1,(i)−−−−−−→ g(sk(i),(i)), Ig ⊆ {1, . . . , d} is the set of ob-

served species, and g ∈ {0, 1}d the observation function. By denoting g(sj,(i)) = y
(i)
j ,

one can represent the i-th observation with (y
(i)
j , t

(i)
j)j∈0:k(i) . The observation paths

are defined over [0, Tend], Tend ∈ R≥0, which means
∑

j tj,(i) = Tend.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 87

To execute the ABC algorithm, we have to define a distance function between
observations and simulations. A classical choice is the Euclidean distance:

d||.||2 : Rk × Rk → R≥0

(y(1), y(2))→
√∑

j

(y
(1)
j − y

(2)
j)2

(5.1)

However, the dimension of our observations is not fixed. To use the Euclidean
distance, we have to define a discrete timeline t1, . . . , tN over [0, Tend] and collect the
values of the paths γ(σ(i)) over this timeline. This operation is equivalent to consider
the scheme of time-discrete observations (Section 5.1.2), which lose information.

As the observations are step functions on a bounded interval [0, Tend], one can
use L1 and L2 distances for 1-dimensional trajectories:

dLp(σ1, σ2) = (

∫
[0,Tend]

|σ1@t− σ2@t|pdt)
1
p , p ∈ {1, 2} (5.2)

which guarantees the full use of the information contained in the observations.

As our observations are step functions, the integral is easy to compute. Fig-
ure 5.1 illustrates the computation for two one-dimensional paths σ1 and σ2. The
distance between the paths is the sum of the green areas. Hence, the computational
cost of the distance is proportional to the number of events for both trajectories.

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

σ1

σ2

t

Figure 5.1: Plot of two 1-dimensional path. The L1 distance of these
paths is the sum of the areas hatched in green.

88 5.1. Observation model and likelihood

Examples of ABC-SMC inference on parametric CTMC with different
observation schemes and distances

In this section, we present a few examples of Bayesian inference with ABC-SMC
(Algorithm 14). We compare the effect of three observation configurations based on
the same simulated dataset. We see the evolution of the resulting ABC posteriors
around the true parameter estimated with a fixed number of simulations.

We consider a simulated dataset of five observations yexp = (υ(1), . . . , υ(5)) and
the distance:

ρ : E5 × E5 → R≥0

(y, yexp)→ min
1≤i,j≤5

d(y[i], yexp[j]︸ ︷︷ ︸
υ(j)

) (5.3)

where d can either be the integral L2 distance (5.2) or the Euclidean distance (5.1).
For each model, two sets of observation times are used in the case of Euclidean
distance. Observations are collected according to these observation times.

Resulting posterior distributions should be comparable, so we fix a maximal
number of simulations Nend ∈ {106, 107}. Nend is the simulation budget. When
the number of simulations reaches Nend, we let the current step of the ABC-SMC
algorithm finish and end the algorithm’s run. In practice, it results in a similar
number of simulations. In this application, the adaptive tolerance schedule is set
with α = 0.75 (Section 3.3.2).

Enzymatic reaction model We consider the enzymatic reaction (ER) system. A
substrate species S is converted into a product P through the mediation of an enzyme
E. The processes are modelled by the CRN (5.4), parametrised by the parameter vec-
tor θ=(k1, k2, k3). k1, k2, k3 are the kinetic rate constants of the reactions R1, R2, R3.
The initial state is (E0, S0, ES0, P0)=(100, 100, 0, 0).

R1 : E + S
k1−→ ES

R2 : ES
k2−→ E + S

R3 : ES
k3−→ E + P

(5.4)

We simulate the dataset (five observations) with θtrue = (1, 1, 5) and Tend =

0.075. Parameter inference focuses on the parameter k3 (the two others are supposed
known) with the prior distribution k3 ∼ U(0, 100).

Three observation settings are considered with an end time of Tend = 0.075:

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 89

• 5 event-discrete observations yexp = (υ(1), . . . , υ(5)), with L2 distance.

• 5 time-discrete observations with 10 points y(1), . . . , y(5) with y(i) = (y
(i)
1 , . . . , y

(i)
10)

collected from (υ(1), . . . , υ(5)), with Euclidean distance.

• 5 time-discrete observations with 75 points y(1), . . . , y(5) with y(i) = (y
(i)
1 , . . . , y

(i)
75)

collected from (υ(1), . . . , υ(5)), with Euclidean distance.

One of the trajectories from the simulated dataset is shown in Figure 5.2 with
the two time-discrete observations settings.

Figure 5.2: A trajectory from the simulated dataset. Left picture:
10-points observation. Right picture: 75-points observation.

Figure 5.3 shows the resulting ABC-SMC posteriors. Table 5.1 reports statistics
about the posteriors. These results indicate that with the same simulation budget,
the resulting ABC posteriors are pretty similar in estimation accuracy. The estimated
mean (Table 5.1, first row) with the 10-points observations is slightly better, even if
it contains less information than the two other settings.

d||.||2 , 10 points d||.||2 , 75 points dL2

Figure 5.3: ABC-SMC posteriors with the ER model. Nend = 106.
Left: time-discrete observations with 10 points, center: time-discrete

observations with 75 points, right: the 5 trajectories.

90 5.1. Observation model and likelihood

d||.||2 , 10 points d||.||2 , 75 points dL2

Mean 5.02 4.78 4.82
Std 1.08 1.07 1.08

Table 5.1: Statistics of the ABC posterior for the three observations
settings for the ER model with N = 106 particles.

True value is k3 = 5.0.

SIR model We consider the SIR model already described in 2.15 with initial state
s0 = (95, 5, 0). We simulate the dataset with θtrue = (1.2E−3, 5.0E−2) and Tend =

150.0. Both parameters are infered with prior distributions ki ∼ U(5E−5, 3E−3) and
kr ∼ U(5E−3, 0.2).

The three observations settings are:

• 5 event-discrete observations yexp = (υ(1), . . . , υ(5)), with L2 distance.

• 5 time-discrete observations with 10 points y(1), . . . , y(5) with y(i) = (y
(i)
1 , . . . , y

(i)
10)

collected from (υ(1), . . . , υ(5)), with Euclidean distance.

• 5 time-discrete observations with 150 points y(1), . . . , y(5) with y(i) = (y
(i)
1 , . . . , y

(i)
150)

collected from (υ(1), . . . , υ(5)), with Euclidean distance.

One of the trajectories from the simulated dataset is shown in Figure 5.4 with
the two time-discrete observations settings.

Figure 5.4: A trajectory from the simulated dataset. Left picture:
10-points observation. Right picture: 150-points observation.

Figure 5.5 shows the resulting ABC-SMC posteriors. Tables 5.2 and 5.3 report
statistics about the posteriors. For the two simulation budgets Nend = 106 and
Nend = 107, no significant improvement in the parameter inference has been noticed
for the 10-points observations than the two more informative configurations.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 91

d||.||2 , 10 points d||.||2 , 150 points dL2

Nend = 106

Nend = 107

Figure 5.5: ABC-SMC posterios with the SIR model. First row:
Nend = 106, second row: Nend = 107. Left: time-discrete observations
with 10 points, center: time-discrete observations with 75 points, right:

the 5 trajectories.

d||.||2 , 10 points d||.||2 , 150 points dL2

Mean ki 1.27E−3 1.32E−3 1.31E−3
Std ki 3.31E−4 3.14E−4 3.14E−4
Mean kr 4.70E−2 4.75E−2 4.72E−2
Std kr 7.54E−3 6.35E−3 6.35E−3

Table 5.2: Statistics of the ABC posterior for the three observations
configurations for the SIR model with N = 106 particles.

The true parameter is (ki, kr) = (1.2E−3, 5E−2).

d||.||2 , 10 points d||.||2 , 150 points dL2

Mean ki 1.25E−3 1.27E−3 1.27E−3
Std ki 3.4E−4 2.90E−4 3.25E−4
Mean kr 4.57E−2 4.75E−2 4.73E−2
Std kr 6.96E−3 6.54E−3 6.6E−3

Table 5.3: Statistics of the ABC posterior for the three observations
configurations for the SIR model with N = 107 particles.

The true parameter is (ki, kr) = (1.2E−3, 5E−2).

Discussion The most time-consuming experiment (SIR model with Nend = 107,
150-points observations) has not exceeded 35 minutes with eight jobs. These two
experiments showed that adding information in the observations does not constantly
improve the inference in likelihood-free ABC methods. Indeed, the little information
contained in the addition of more observations is counterbalanced by the curse of
dimensionality. Adding more points leads to the increase of the observation space

92 5.2. Automaton-ABC: ABC procedures with synchronised simulation

dimension. Thus, an important task is to compute informative statistics (Sisson, Fan,
and Beaumont, 2019, Chapter 5) over the observations. This task can be considered
more important than collecting more observations in some cases. An original approach
with parametric CTMC oscillators is presented in Section 5.3.

Script 4 (Examples of ABC inference on parametric CTMC)
The scripts of these ABC inference examples can be found in the git repository of the
thesis at code/chap4/inference.

5.2 Automaton-ABC: ABC procedures with synchronised
simulation

In Section 4.4.2 of Chapter 4, we have defined synchronised simulations of CTMCs
with a Linear Hybrid Automaton.

Evaluating an HASL trajectory expression Y with the synchronised simulation of
a CTMC can be seen as an efficient method to compute complex summary statistics
based on properties. Indeed, the automaton variables are updated within the simu-
lation, which can be seen as statistics of the simulated trajectory. In this context,
HASL formalism offers two main advantages:

• It offers a well-suited and visual tool for the definition of properties over CTMC
trajectories.

• A synchronised simulation does not need the storage of trajectory values which
saves memory allocation time.

In the following, we formulate an adaptation of ABC procedures (Section 3.3)
with HASL formalism called automaton-ABC. As classical ABC for a parametric
CTMC (Mθ)θ∈Θ, automaton-ABC requires a prior π and a tolerance ϵ. In this con-
text, we do not consider observations yexp. Instead, we consider an HASL trajectory
expression Y and an LHA A. The main difference with classical ABC is that the
simulation of the CTMC is replaced by the synchronised simulation (Y,A)×M (Def-
inition 4.4.4). Algorithm 15 details the automaton-ABC analogous to the simple ABC
Algorithm 12.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 93

Algorithm 15 General automaton-ABC Algorithm
Require: (Mθ)θ∈Θ parametric CTMC, π prior,
N : number of particles, ϵ: tolerance level,
Y : HASL trajectory expression, A : LHA

Ensure: (θ(i))1≤i≤N drawn from πϵ
ABC

for i = 1 : N do
repeat

θ′ ∼ π

d′ ∼ (Y,A)×Mθ′

until d′ ≤ ϵ

θ(i) ← θ′

end for

Algorithm 16 is the Sequential Monte Carlo version of Algorithm 15, with the
adaptive tolerance schedule of Section 3.3.2.

Algorithm 16 General automaton-ABC Sequential Monte Carlo Algorithm
Require: (Mθ)θ∈Θ parametric CTMC, π prior,
N : number of particles, ϵ: tolerance level, α: quantile level,
Y HASL trajectory expression, A LHA, K: kernel proposal density

Ensure: (ω(i), θ(i))1≤i≤N weighted samples drawn from πϵ
ABC

θ
(i)
0 ∼ π, i ∈ 1, . . . , N
di ∼ (Y,A)×M

θ
(i)
0

, 0 ∈ 1, . . . , N

ϵcurrent ← quantile(α, (di)1≤i≤N)

(ω
(i)
0)1≤i≤N ← 1

N
m← 1
while ϵcurrent > ϵ do

for i = 1 : N do
repeat

Take θ′ from (θ
(j)
m−1)1≤j≤N with probabilities (ω

(j)
m−1)1≤j≤N

θ
(i)
m ∼ K(.|θ′)
di ∼ (Y,A)×M

θ
(i)
m

until di ≤ ϵcurrent

ω
(i)
m ←

π
(
θ
(i)
m

)
N
Σ

i′=1
ω
(i′)
m−1K(θ

(i)
m |θ(i

′)
m−1)

end for
Normalise (ω

(i)
m)1≤i≤N

ϵcurrent ← quantile(α, (di)1≤i≤N)
m← m+ 1

end while
return (ω

(i)
m , θ

(i)
m)1≤i≤N

The fact that yexp is not mentioned does not mean that these procedures cannot
be related to statistical inference. Indeed, the constants of the automaton A may

94 5.3. Oscillatory trends of genetic networks

contain the observations, which will be the case in Section 5.4. In the rest of the
chapter, as well as the next chapter, automaton-ABC procedures are used to tackle
several problems of statistical inference and statistical verification.

5.3 Oscillatory trends of genetic networks

In computational biology, quantitative analysis of the biological system’s dynamics is
challenging even for simple models (Baldan et al., 2010).

This section focuses on a specific behaviour of dynamical systems: oscillatory
trends of gene regulatory networks. Genetics oscillators have grown much interest
in the domain of synthetic biology over the past two decades (Purcell et al., 2010;
O’Brien, Van Itallie, and Bennett, 2012; Li and Yang, 2018). They allow modelling
many rhythmed physiological phenomena such as circadian clock (Leloup and Gold-
beter, 2003), heartbeat or cell cycle.

Characterisation of oscillations in model checking CTMC has been considered in
the literature (Ballarini, Mardare, and Mura, 2009) (Spieler, 2014, Chapter 7). In
(Ballarini and Duflot, 2015), they use the expressiveness of HASL for the characteri-
sation of noisy oscillations. In this work, we define a Linear Hybrid Automaton Aper

based on (Ballarini and Duflot, 2015) that measures a CTMC trajectory time period
and computes a distance to oscillations. We explore the parameter space of paramet-
ric CTMCs that show oscillatory behaviours with an indicated time period, based on
the LHA Aper. The main idea is to use this automaton that measures the mean time
period of a trajectory within automaton-ABC (Section 5.2) to find the subset of the
parameter space that produces trajectories with an indicated time period.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 95

5.3.1 Period automaton Aper

l0begin l′0

ṫ = 1

low
ṫ = 1

ṫp = 1

mid
ṫ = 1

ṫp = 1

high
ṫ = 1

ṫp = 1

final

xO > L

xO ≤ L L < xO < H xO ≥ H

ALL, true, ∅
ALL, true, ∅

ALL, n<N, ∅

ALL, n<N, ∅

ALL, n<N, ∅

♯, t ≥ initT, ∅

A
LL
, tr

ue,
{tp
:=
0,
n=

−1
}

A
L
L
,t

ru
e,

{t
p
:=

0
,n

=
−
1
}

ALL, n<N, ∅ ALL, n<N, {top := 1}

ALL, n<N, ∅ALL, (n<N ∧ top = 0), ∅

ALL, (n= −1 ∧ top = 1),

{n++, tp:=0, top:=0}

ALL, (0 ≤ n ≤ 1 ∧ top=1),

{n++, top:=0,m(t̄p, tp, n), tp:=0}

ALL, (2 ≤ n < N ∧ top=1), {n++,

top:=0, t̄p=m(t̄p, tp, n), ftp=v(ftp , t̄p, tp, n), tp:=0}

♯, n=N, d:=dist(t̄p, ftp , t̄p(obs))

♯,n
=
N
,d
:=

dist(t̄
p ,f

t
p
,t̄

p
(o

b
s
))

♯,
n=

N
, d
:=

dis
t(
¯tp
, f
tp
,
¯tp

(o
bs
))

Figure 5.6: Period automaton Aper.

We consider the LHA Aper in Figure 5.6 to measure oscillatory trends of trajectories.
This automaton is designed to compute two measures for the trajectory of a species
O: the period duration mean t̄p and the period variance ftp .

It is mainly formed of three locations: low, mid and high, plus other locations
related to the initialisation and the end of the simulation. These three locations
outline three levels of the species population O. Being in the location low means
that the species population is below a user-defined level L, i.e. xO ≤ L, whereas
entering mid (resp. high) means L < xO < H (resp. xO ≥ H). L and H are
hyperparameters of the automaton and have to be defined during the creation of the
automaton. Moreover:

• n is the number of detected periods.

• top is a boolean that indicates if the automaton has entered high location.

• t̄p is the period mean, and ftp is the period variance.

96 5.3. Oscillatory trends of genetic networks

• tp is the current computed time period. It equals zero when t̄p and ftp are
updated after the detection of a period, i.e. when mid → low occurs with
top⇔ true.

• L,H and Nper are hyperparameters of the automaton. L,H defines the partition
of the population species. Nper is the number of periods to be detected. After
the detection of Nper periods, the automaton ends.

• d is the distance from a period mean reference called t̄p
(obs).

A period duration is computed each time a trajectory contains a sub-trajectory
that corresponds to a Aper trace of the form low · (low|mid)∗ · high · (high|mid)∗ ·
mid · low:

• We start to count a period when the automaton enters low.

• The trajectory oscillates between low and mid.

• The automaton enters high at least once.

• The period duration finishes when mid→ low is observed with top⇔ true.

Figure 5.7: Example of a oscillatory trajectory simulation synchro-
nised with Aper.

Figure 5.7 illustrates the behaviour of Aper for a trajectory simulated by the
doping 3-way oscillator (see section below) with L = 300,H = 360, Nper = 5. Let us
describe this trajectory step by step:

• The grey part corresponds to the initial locations l0 and l′0. The automaton is
in one of these locations until it reaches low, i.e. xO ≤ L.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 97

• When the automaton reaches low, n = −1. The automaton waits to detect a
period before computing the measures.

• The trajectory continues until a period is detected, n is updated to 0.

• The trajectory continues until another period is detected. n is updated to one,
and the period mean is updated to tp.

• For the next period, the period mean and variance period are updated according
to Equations 5.5.

• The trajectory continues until n reaches Nper = 5.

m(t̄p, tp, n) =
(n− 1)t̄p + tp

n

v(ftp , t̄p, tp, n) =
n− 2

n− 1
· ftp +

(t̄p − tp)
2

n

(5.5)

At the end of the simulation (i.e Nper periods are detected), the variable d is
updated. The automaton computes a distance from a duration period mean.

dist(t̄p, ftp , t̄p(obs)) = min(t̄p − t̄p
(obs)

t̄p
(obs)

,

√
ftp

t̄p
(obs)

)

The variation coefficient helps discard trajectories with, for example, periods of
duration 0.5t̄p

(obs) and 2t̄p
(obs) but a resulting period mean of t̄p(obs). Thus, if d ≤ 0.1,

the relative error from the period mean reference is less than 10%, as well as the
variation coefficient.

5.3.2 Applications of the automaton-ABC algorithm with Aper

In the following, we use the automaton-ABC algorithm with the period automaton
Aper.

Doping 3-way oscillator

Model. First, we consider a toy model for oscillatons called doping 3-way oscillator,
from which a probabilistic model checking description has been detailed in (Ballarini,
Mardare, and Mura, 2009). It is described by the following six reactions with mass-
action law:

98 5.3. Oscillatory trends of genetic networks

A+B
rA−→ 2B B + C

rB−→ 2C C +A
rC−→ 2A (5.6)

DA + C
rC−→ A DB +A

rA−→ DB +B DC +B
rB−→ DC + C (5.7)

The number of species is constant in time. Equations 5.6 creates oscillations of
species by creating positive loop feedback. If the first reaction occurs a few times,
the number of species B increases, which makes the second reaction (that induces
consumption of B) more probable, and so on. Equations 5.7, called doping reactions,
permit sustained oscillations by avoiding that one species vanishes.

Results. We apply the automaton-ABC algorithm with the synchronised simulation
(Last(t̄p),Aper). We want to find the subset of parameters for which oscillations have
a period duration mean of 0.02.

We made two experiments. The first is one-dimensional, the setting is:

• Nper = 4 periods, L = 300 and H = 360

• t̄p
(obs) = 0.01

• rA ∼ U(0, 10) and other parameters are fixed (rB = rC = 1.0).

• s0 = (A0, B0, C0, (DA)0, (DB)0, (DC)0) = (333, 333, 333, 10, 10, 10)

• N = 1000 particles

• Tolerance of 20% (ϵ = 0.2)

Figure 5.8 shows the resulting automaton-ABC posterior. The sequential run
lasted 140 seconds and performed 19846 simulations. First, we can observe that
the support is included in [0.0, 4.0], which is shrinker than the support of the prior:
we have reduced the parameter space to a subset where it is probable to obtain
trajectories with a period mean of 0.01 (relatively to a tolerance of 20%). Second,
the posterior has only one mode, which is quite intuitive. As we have fixed rB and
rC , one could expect that the period duration mean is directly linked to the kinetics
of reaction 1, which is only parametrised by rA.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 99

Figure 5.8: Automaton-ABC posterior of rA with Aper automaton
for the 1D experiment of doping 3-way oscillator.

The second experiment considers variations over the whole parameter space. The
setting is:

• Nper = 4 periods, L = 300 and H = 360

• t̄p
(obs) = 0.01

• rA, rB, rC ∼ U(0, 10)

• s0 = (A0, B0, C0, (DA)0, (DB)0, (DC)0) = (333, 333, 333, 10, 10, 10)

• N = 1000 particles

• Tolerance of 20% (ϵ = 0.2)

Figure 5.9 shows the correlation plot of the resulting automaton-ABC posterior.
The parallel run (120 jobs) performed 533003 simulations and lasted 268 seconds.
We can see that the different parameters have structured correlations: the three
histograms have parabolic shapes. Also, one can notice that for each histogram, the
area near the point (1, 1) is a high probability area. This is consistent with the above
one-dimensional experiment.

100 5.3. Oscillatory trends of genetic networks

Figure 5.9: Correlation plot of automaton-ABC posterior with Aper
automaton for the 3D experiment of doping 3-way oscillator.

Repressilator model

Model. Repressilator models are synthetic genetic networks that describe a cycle
of three genes with a negative feedback loop (Purcell et al., 2010). In this part,
we consider one of the first repressilator model developed by (Elowitz, Leibler, and
Leibier, 2000). This model includes three genes lacI, tetR and cI (called Gi, i ∈
{1, 2, 3} in the equations) and their corresponding proteins LacI, TetR and CI (called
Pi, i ∈ {1, 2, 3}). mRNAi is the messenger RNA corresponding to the gene Gi.

This synthetic genetic network was developed to reproduce oscillatory behaviours
within a cell. It is based on a three-gene circuit illustrated in Figure 5.10: each
protein represses the transcription of the successor gene. Protein P1 represses the
transcription of the gene G2 (i.e. represses the production of mRNA2), whereas P2

represses the transcription of the gene G3, and so on. This mechanism is commonly
called a negative feedback loop; it leads to oscillatory behaviours.

1

23

Figure 5.10: Repressilator topology. Each protein represses the tran-
scription of the successor.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 101

Equations 5.8, 5.9 and 5.10 below constitute a possible reduced description of
the processes involved in the repressilator dynamics.

tr1 : G1
r1−→ G1 +mRNA1 tr2 : G2

r2−→ G2 +mRNA2 tr3 : G3
r3−→ G3 +mRNA3

(5.8)

trl1 : mRNA1
β−→ mRNA1 + P1 trl2 : mRNA2

β−→ mRNA2 + P2 trl3 : mRNA3
β−→ mRNA3 + P3

(5.9)

degr1 : mRNA1
1−→ ∅ degr2 : mRNA2

1−→ ∅ degr3 : mRNA3
1−→ ∅

degr4 : P1
1−→ ∅ degr5 : P2

1−→ ∅ degr6 : P3
1−→ ∅
(5.10)

The kinetic rates are:

• r1 =
α

1+[P3]n
+ α0, r2 = α

1+[P1]n
+ α0 and r3 =

α
1+[P2]n

+ α0 for the transcription
reactions,

• mass-action law for the translation reactions (i.e. β · [mRNAi]),

• 1 for the degradation reactions (independent of the concentrations of Pi).

These reaction channels do not follow mass-action law. Indeed they use a
reparametrisation of the model detailed in (Elowitz, Leibler, and Leibier, 2000, Box
1), which is convenient to study the dynamics of the related Reaction Rate Equations
of the CRN (continuous ODE system):

• β is the ratio of the protein decay rate over the mRNA decay rate. Equa-
tions 5.9 are thus parametrised by β, whereas degradation Equations 5.10 are
not parametrised.

• n is the Hill coefficient: it measures the interaction affinity between species, i.e.
how much the ligands will bind to create macromolecules.

• α is the parameter related to transcription growth.

• α0 is the parameter related to a minimum level of transcription growth. Indeed
ri →

[Pi+1]→+∞
α0, which means α0 models a saturation of the repressors’ effect.

With Equations 5.8 5.9 5.10, we neglect several aspects of molecular interactions:

• Binding and unbinding of RNA polymerase with promoters, which is a necessary
phenomenon for any transcription, is implicit in Equations 5.8.

102 5.3. Oscillatory trends of genetic networks

• The observation of one protein species is initially measured in (Elowitz, Leibler,
and Leibier, 2000) by a green fluorescent protein (GFP), which has the role of
a reporter for the TetR protein. Our model supposes that we directly observe
the protein (or the link between GFP and TetR is known and invertible).

Simulations. To better understand the system’s dynamics, we present a few sim-
ulations. Default parameter values are (α, β, n, α0) = (200.0, 2.0, 2.0, 0.0).

Figure 5.11 and Figure 5.12 show simulations with different parameter values of
α and β. It illustrates trajectories with different amplitudes and period duration, but
oscillations are pretty stable.

Figure 5.11: 5 simulated trajectories of the species P1. α varies in
{50, 200, 1000, 4000}.

Figure 5.12: 5 simulated trajectories of the species P1. β varies in
{0.5, 1.0, 2.0, 4.0}.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 103

Figure 5.13 shows simulations with different parameter values of n. This param-
eter has more influence on the stability of oscillations since simulations with n = 0.5

and n = 1.0 are very noisy.

Figure 5.13: 5 simulated trajectories of the species P1. n varies in
{0.5, 1.0, 2.0, 5.0}.

Last, Figure 5.14 shows simulations with different parameter values of α0. Os-
cillations with α0 = 0.0 or α0 = 0.01 are quite stable. With α0 = 0.1, stability gets
worst whereas simulations with α0 = 1.0 oscillations are much noisier. This remark
is consistent with the stability diagram from (Elowitz, Leibler, and Leibier, 2000,
Figure 1a.). Considering the continuous ODE model, they deduced that the system
is steady-state unstable if α

α0
≥ 10−3, which is the case for α0 = 1.0 (as α = 200.0).

Figure 5.14: 5 simulated trajectories of the species P1. α0 varies in
{0.0, 0.01, 0.1, 1.0}.

104 5.3. Oscillatory trends of genetic networks

Results. We apply the automaton-ABC algorithm with the synchronised simulation
(Last(d),Aper). We want to find the subset of parameters for which oscillations have
a period duration mean of 20.0.

We did two experiments. The first is three-dimensional, the setting is:

• Nper = 4 periods, L = 50 and H = 200

• t̄p
(obs) = 20.0

• α ∼ U(50, 5000), β ∼ U(0.1, 5.0), n ∼ U(0.5, 5.0) (α0 = 0.0).

• s0 = ((mRNA1)0, (mRNA2)0, (mRNA3)0, (P1)0, (P2)0, (P3)0) = (0, 0, 0, 5, 0, 15)

• N = 1000 particles

• Tolerance of 10% (ϵ = 0.1)

Figure 5.15 shows the correlation plot of the resulting automaton-ABC posterior.
The parallel run (250 jobs) performed 15333 simulations and lasted 2040 seconds.
The parameter n has the shrinkest marginal posterior, consistent with the simulation
study detailed above: varying n induces more instability than α and β.

Figure 5.15: Correlation plot of automaton-ABC posterior with
Aper posterior for the 3D experiment of repressilator model.

The second experiment is four-dimensional. The setting is:

• Nper = 4 periods, L = 50 and H = 200

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 105

• t̄p
(obs) = 20.0

• α ∼ U(50, 5000), β ∼ U(0.1, 5.0), n ∼ U(0.5, 5.0), α0 ∼ U(0.0, 5.0).

• s0 = ((mRNA1)0, (mRNA2)0, (mRNA3)0, (P1)0, (P2)0, (P3)0) = (0, 0, 0, 5, 0, 15)

• N = 1000 particles

• Tolerance of 10% (ϵ = 0.1)

Figure 5.16 shows the correlation plot of the resulting automaton-ABC posterior.
The parallel run (250 jobs) performed 22291 simulations and lasted 491 seconds. One
can see adding a degree of freedom on α0 has changed the correlation between α and
β as well as α and n, whereas the correlation between β and n seems to have the
same shape.

Figure 5.16: Correlation plot of automaton-ABC posterior with
Aper posterior for the 4D experiment of repressilator model.

Script 5 (Oscillatory trends of parametric CTMC)
The scripts about oscillations of the doping 3-way oscillator and repressilator can be
found in the git repository of the thesis at code/chap4/oscillators.

106 5.4. Accelerating the ABC procedure with HASL formalism

5.4 Accelerating the ABC procedure with HASL formal-
ism

This section presents an automaton that aims to speed up the general ABC procedure
used in Bayesian statistical inference.

In complex models, one simulation can be quite computationally expensive de-
pending on the time window. The repressilator model is an illustrative example (cf
Section 5.3.2). As ABC methods are based on a lot of model simulations, the con-
vergence of ABC methods is directly linked to the cost of simulations.

ABC procedures simulate the model until the distance between a simulation and
the observations are lower than a tolerance ϵ. However, this tolerance can be reached
before the simulation ends.

Let (ti, yi)1≤i≤K be time-discrete observations of a one-dimensional trajectory
and let σ be a path of a CTMC model. The Euclidean distance between the obser-
vations and the simulation is: √√√√ K∑

i=1

(yi − σ@ti)2

If the simulation σ differs a lot from the observations, it may exist i∗ < K

with
√∑i∗

i=1(yi − σ@ti)2 > ϵ. One can deduce that, within the ABC procedure, the
simulation could have been stopped at time ti∗ instead of simulating until tK .

This section presents a Linear Hybrid Automaton called AABC,ϵ that computes
the Euclidean distance between a trajectory and observations. The synchronised
simulation with AABC,ϵ calculates the Euclidean distance to the observations on the
fly of the simulation. It terminates if the distance exceeds the tolerance ϵ or time
reaches tK . The main goal is to save computation time in ABC procedures by cutting
off useless simulation steps when the simulation already exceeds the tolerance ϵ before
tK .

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 107

5.4.1 Automaton AABC,ϵ

l0start
l1

ṫ = 1
l2

♯, true,
{n = x0, d = 0, idx = 1}

♯, t ≥ tidx,

{d+=(n− yidx)
2, idx+=1}

ALL, true, {n = xO}

♯, idx ≥ Nobs + 1, {d =
√
d}

♯, d > ϵ2, {d = +∞}

Figure 5.17: Automaton AABC,ϵ.

Figure 5.17 shows the AABC,ϵ Linear Hybrid Automaton. The automaton variables
are:

• n is the population of the observed species O,

• (ti, yi)1≤i≤K are the one-dimensional time-discrete observations,

• idx ∈ {1, . . . ,K} is the index of the next observation (yidx) to add,

• ϵ is the tolerance level of the computed distance.

For any synchronised simulation, first, the distance d is initialised to 0, and idx

is initialised to 1 because the next observation to add is y1. It corresponds to the
firing of the transition l0 → l1.

While in l1, for any occurred reaction, n is updated (synchronous bottom self
loop). If time t reaches tidx, the distance d is updated by adding (n− yidx)

2 and idx

is incremented by one (asynchronous top self edge loop). Note that while in l1, d is
the square of the Euclidean distance.

The simulation finishes in l2 in two ways. Either the distance has exceeded the
tolerance ϵ (d > ϵ2) and bottom edge l1 → l2 fires, or all the observations have been
counted and l1 → l2 top edge fires.

5.4.2 Applications

To illustrate the potential gain of computational time for automaton-ABC with
AABC,ϵ, we consider a challenging task of inference with the repressilator model in-
spired from data exposed in (Elowitz, Leibler, and Leibier, 2000).

108 5.4. Accelerating the ABC procedure with HASL formalism

We considerer a simulated dataset of a 40-points observation of the popula-
tion of the species P1 from t1 = 0.0 to t40 = 400.0 with parameters (α, α0, β, n) =

(200.0, 0.0, 5.0, 4.0), which is plotted in Figure 5.18.

Figure 5.18: 40-points observation of the species P1 from repressila-
tor model over [0.0, 400.0] with a time step of 10.0.

In the following, we run two parallel ABC-like procedures with 80 jobs on HPC
resources from the “Mésocentre”:

• Classical ABC-SMC: at each iteration, we simulate until tK and then computes
the Euclidean distance from the observations.

• Automaton-ABC-SMC with (Last(d),AABC,ϵ).

For both ABC and automaton-ABC runs, the setting is:

• N = 500 particles,

• β ∼ U(0.5, 10.0), n ∼ U(0.5, 10.0) (α = 200.0 and α0 = 0.0 are fixed),

• Tolerance of 50% relative error ϵ = 0.5||yexp||.

Figure 5.19 shows the ABC posteriors for both ABC procedures. These two
posteriors are very similar, which means that the two procedures behaved in the
same way, as expected.

Chapter 5. Automaton-ABC for the statistical inference of CTMCs 109

Figure 5.19: Contour plot of ABC posteriors with marginals.
Left: classical ABC posterior. Right: automaton-ABC posterior with

AABC,ϵ.

Table 5.4 shows the execution time of both runs. The automaton-ABC run was
at least three times faster than the classical ABC procedure.

Number of jobs Number of simulations Execution time (sec)
Automaton-ABC 80 2300706 16294
Classical ABC 80 2554773 54049

Table 5.4: Execution times of statistical inference with classical ABC
compared to automaton-ABC with AABC,ϵ

With a longer timeline of observations or a more complex model, the saved
computational time could be even greater.

Script 6 (Example CTMC)
This experiment can be found in the git repository of the thesis at code/chap4/
reject_abc_automaton.

5.5 Summary

In this Chapter:

• We have detailed the statistical framework of CTMCs, the different types of ob-
servations, and distances between observations. We have discussed the available
techniques for statistical inference of CTMCs.

• We have detailed automaton-ABC, a new ABC procedure based on synchronised
simulations of a CTMC with a Linear Hybrid Automaton.

110 5.5. Summary

• We have applied the automaton-ABC procedure on two main tasks. First, we
describe oscillatory trends of models such as repressilator with the help of Aper.
Second, we have speeded up classical ABC inference with the help of AABC,ϵ.

The next chapter tackles the estimation problem in model checking parametric
CTMC (Section 4.3.1) with the help of automaton-ABC.

111

Chapter 6

Automaton-ABC for the
statistical parametric
verification of CTMCs

Approximate Bayesian Computation (ABC) methods (Section 3.3) allow approximat-
ing the posterior distribution of a model without evaluating the likelihood function
when the computation cost is too high or even impossible. These methods rely on
model simulations and a discrepancy between simulations and observations. Sim-
ply speaking, only parameters for which simulated summary statistics are close to
observed ones, relative to a distance, are preserved while the others are dismissed.
These parameters are sampled from the ABC posterior, which approximates the true
posterior distribution.

This chapter proposes a new method based on the ABC algorithm for the esti-
mation problem of parametric CTMC in verification, described in Section 4.3.1. We
want to estimate the satisfaction probability function given a time-bounded reacha-
bility specification φ related to a parameter θ. The initial idea of this work relies
on transposing this concept originally developed with observations data to temporal
logic: only parameters for which simulations are close to fulfilling a given formula are
kept while the others are discarded.

Thus, the last statement supposes that one can measure the discrepancy between
a simulation and a specification φ. We formally define a satisfiability distance of a
trajectory of a CTMC from a logical property φ and use Linear Hybrid Automata
to compute this distance. This distance is integrated within the ABC procedure
to estimate the subset of the parameter space in which the logical property can
be satisfied thanks to the obtained ABC posterior. We show that the sequential
version of ABC (Algorithm 18) is well suited to using the distance from a property,

112 6.1. Problem setting: time-bounded reachability

leading to an efficient exploration of the parameter space. Our method also allows the
estimation of the satisfaction function of a formula, with a remarkable result linking
this satisfaction function to the ABC posterior (Theorem 6.4.1). We demonstrate the
effectiveness of our method by its application to several models of Chemical Reaction
Networks (CRN).

This Chapter is organised as follows. In Section 6.2, the notion of satisfiability
distance for time-bounded reachability problems is introduced. We see in Section 6.3
how simulations synchronised with Linear Hybrid Automata compute the satisfiability
distances. The automaton-ABC procedure with LHA related to satisfiability distances
is detailed in Section 6.4: the objective is to find the parameter subspace for which the
probability of reaching the target region is positive. Its effectiveness is demonstrated
through several experiments in Section 6.5 and Section 6.6, while some conclusive
remarks and perspectives are discussed in Section 6.7.

6.1 Problem setting: time-bounded reachability

In this Chapter, we tackle the estimation problem detailed in Section 4.3.1. We
consider a parametric CTMC (Mθ)θ∈Θ (Section 4.3.1) with a state space of dimension
d. This work is focused on CTMCs whose states represent the number of individuals of
several species, which is also called Markov Population Processes (see Remark 2.3.1).
φ is a specification described by an MITL formula (Definition 4.1.1). Our goal is to
estimate the satisfaction probability function fφ (Definition 4.3.2):

fφ : Θ→ [0, 1]

θ → Pr(φ;Mθ)

where Pr(φ;Mθ) (Definition 4.2.1) is the probability that a trajectory ofMθ verifies
φ.

In particular, we consider specifications φ related to time-bounded reachability.
The term reachability problem identifies the class of problems that checks if a given
model reaches (i.e. enters) at some point during its execution a specific region of
its state space. For models that produce time series, time-bounded reachability aims
to establish whether the state space’s target region is entered within a time-interval
[t1, t2] ⊂ R≥0.

Based on MITL formulae, we distinguish three kinds of time-bounded reachabil-
ity problems:

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 113

• Eventual reachability problems (FIµ) are concerned with model trajectories that
fulfil µ at least once within a given time interval I.

• Global reachability problems (GIµ) are concerned with trajectories that consis-
tently fulfil µ within a time interval I.

• Conditional reachability problems (µ1UIµ2) are concerned with trajectories that
fulfil µ2 at least once within a time interval I and fulfil µ1 beforehand.

Each kind of problem induces a satisfiability region that characterises the trajec-
tories verifying the corresponding formula.

Definition 6.1.1 (CTMC region)
LetM a d-dimensional CTMC. A region R of the CTMCM is a collection of subsets
of S ⊆ Nd.

Definition 6.1.2 (CTMC time-bounded region)
Let M a d-dimensional CTMC. A time-bounded region TR = R× T is the cartesian
product of a region R of M with a time set T ⊂ R≥0.

A region is elementary if it is characterised by a single subset of S. We denote
[[p, q]] the set of integers {p, . . . , q−1, q}. For example, let a bi-dimensional CTMC S

with a state space S = N2. R1 = [[1, 2]]×N is an elementary region (S[1] in [[1, 2]] while
S[2] is unbounded), R2 = ([[0, 3]]∪ [[5, 8]])× [[5,∞[[is a non-elementary region (S[1] is
either in [[0, 3]] or [[5, 8]], S[2] is larger than 5), whereas TR1 = ([[1, 2]]×N)×[0.2, 1.41]
is an elementary time-bounded region (similar to R1, but with the supplemental
condition that the time is in [0.2, 1.41]).

6.2 Satisfiability distances

The adaptation of the parameter space exploration by ABC algorithms to reachability
problems requires the definition of a satisfiability distance d(σ, φ). This distance
represents how far a trajectory σ ∈ Path(M) is from satisfying an MITL formula
φ. Note that we call it a distance to keep up with the ABC vocabulary: it is not
mathematically strictly a distance function, but rather a discrepancy. Indeed, (σ, φ)
is not a pair of elements of the same set.

Definition 6.2.1 (Satisfiability distance)
Let φ an MITL formula. f is a satisfiability distance if ∀σ, f(σ, φ) ≥ 0 and f(σ, φ) =

0⇔ σ |= φ

114 6.2. Satisfiability distances

MITL propositional formulae µ ∈ AP induce CTMC regions called satisfiability
region.

Definition 6.2.2 (Satisfiability region of µ)
A satisfiability region Sµ of a propositional formula µ is a CTMC region (Defini-
tion 6.1.1) where µ is fulfilled, i.e. Sµ = {s ∈ S, | s |=µ}.

Definition 6.2.3 (Time-bounded satisfiability region of µ)
A time-bounded satisfiability region Sµ

[t1,t2] is a time-bounded region (Definition 6.1.2)
Sµ × [t1, t2], with Sµ a satisfiability region.

For example, for a bi-dimensional CTMC, the formula µ1 = x1 ≥ 1 ∧ x1 ≤ 2

induces the satisfiability region R1 = [[1, 2]]×N while µ2 = [(x1 ≤ 3)∨ (x1 ≥ 5∧x1 ≤
8)] ∧ x2 > 4 induces the satisfiability region R2 = ([[0, 3]] × [[5,+∞[) ∪ ([[5, 8]] ×
[[5,+∞[). By a slight abuse of vocabulary, we identify µ with its satisfiability region,
and we say that two formulae µ1, µ2 are disjoint if their corresponding regions are.

Let µ be a propositional formula. We introduce the notion of satisfiability dis-
tance of a trajectory from a temporal formula build on top of µ over [t1, t2]. These
distances are related to the time-bounded reachability problems described in Sec-
tion 6.1. The following definitions hold for any trajectory σ, whose last jump oc-
curred at time tlast ≤ t2, where tlast = min{t ∈ R≥0, ∀t′ ∈ [t, t2], σ@t′ = σ@t}.
Indeed, jumps after t2 do not affect a reachability problem over [t1, t2]. In the fol-
lowing, de(s, Sµ) = min

s′∈Sµ

√∑d
i=1(s[i]− s′[i])2 is the least Euclidean distance between

s and Sµ, whereas de((t, s), Sµ
[t1,t2]) is the least Euclidean distance between (t, s) and

Sµ
[t1,t2].

Definition 6.2.4 (Distances from several MITL formulas)
LetM a CTMC, [t1, t2] ⊆ R≥0. Let σ ∈ Path(M) a trajectory observed until t2, with
tlast = min{t ∈ R≥0, ∀t′ ∈ [t, t2], σ@t′ = σ@t}. We define the distance d(σ, φ) for the
following kinds of temporal formulae φ built on top of an elementary propositional
formula µ:

• φ=F[t1,t2]µ

d(σ,F[t1,t2]µ) =

 de((tlast, σ@tlast), Sµ
[t1,t2]) if tlast < t1 and σ@tlast ̸∈ Sµ

min
t∈[t1,t2]

de(σ@t, Sµ) elsewhere

(6.1)

For non-elementary propositional formulae µ =
∨
µi, we define the distance:

d(σ,F[t1,t2]
∨

µi) = min
i

d(σ,F[t1,t2]µi)

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 115

where µi are elementary formulae.

• φ=G[t1,t2]µ

d(σ,G[t1,t2]µ) =

∫ t2

t1

de(σ@t, Sµ)dt (6.2)

Similarly, for non-elementary propositional formulae, we define the distance

d(σ,G[t1,t2]
∨

µi) = min
i

d(σ,G[t1,t2]µi)

where µi are elementary formulae.

• φ=µ1U[t1,t2]µ2

d(σ, µ1U[t1,t2]µ2) =d(σ,G[0,t1]µ1) + d(σ,F[t1,t2]µ2)+

d(σ,G[t1,tmin](µ1 ∨ µ2))
(6.3)

where tmin = min(arg min
t∈[t1,t2]

de(σ@t, Sµ2)) is the earliest time corresponding to

the closest point between σ and region µ2.

These distances are illustrated on Figure 6.2.

d(σ,F[t1,t2]µ) is a piecewise function. The first condition tlast < t1 and σ@tlast ̸∈
Sµ means that the last transition/jump of the trajectory occurs before t1, and the
last state of the trajectory does not belong to Sµ. In this case, the satisfiability
distance computes the Euclidean distance between (tlast, σ@tlast) and Sµ

[t1,t2]. This
is related to the choice of ranking trajectories when no reactions occur before t1.
Indeed, the efficiency (but not correctness) of our new method for the estimation of
Definition 4.3.2 relies on a particular aspect of satisfiability distances, which is not
included in the definition. It should compare trajectories fairly by how far they are
from satisfying the formula. Suppose σ1, σ2 ∈ Path(M). If σ1 is further to fulfil φ
than σ2, then the distance should verify d(σ1, φ) > d(σ2, φ) for better efficiency.

An example of a trajectory is depicted in Figure 6.1. d1 is the satisfiability
distance of the violet trajectory because no reactions occur after t1. d2 would be the
computed distance by the second sub-function in Equation 6.1. The closer tlast is to
t1, the smaller d1. But d1 is consistently greater than d2. This makes a good ranking
of trajectories in which no reaction occurs after t, t < t1. This is particularly the
case when a trajectory reaches an absorbing state before t1: it implies no possible
evolution of the system after tlast that could make the trajectory fulfil the formula.
In this case, the further tlast is from t1, the further the trajectory is from satisfying
the formula.

116 6.2. Satisfiability distances

Figure 6.1: Example of a simulation. In purple: the trajectory. In
blue and green: the distances d1 and d2. The rectangle is the F region.

.

Otherwise, the distance d(σ,F[t1,t2]µ) is the minimal Euclidean distance of any
point of σ within [t1, t2] from Sµ.

d(σ,G[t1,t2]µ) is the integral of the Euclidean distance from Sµ of any point of σ
within [t1, t2]. The bigger the distance, the more the trajectory is globally outside of
Sµ over [t1, t2].

Concerning the Until formula, the distance (6.3) bears three components:

• d(σ,G[0,t1]µ1) accounts for the fact that a trajectory satisfying (µ1U[t1,t2]µ2)

must never leave region µ1 before t1.

• d(σ,F[t1,t2]µ2) accounts for the fact that σ must enter region µ2 within [t1, t2]

• d(σ,G[t1,tmin](µ1 ∨ µ2)) accounts for the fact that there must be a time tmin

where σ switches from region µ1 to region µ2 directly, without spending time in
an intermediate region. If that is not the case (i.e. if σ within [t1, t2] has points
in the complementary region ¬(µ1 ∨ µ2)), then the distance 6.3 is incremented
by this term that quantifies how far we are from one of the two regions µ1 or
µ2.

Remark 6.2.1 (Until distance)
In the following, we only designed an LHA (AG∧F) for computing the Until distance
when µ1∨µ2 (the exclusive disjunction) is always true over any state of the CTMC,
which implies the third term of the distance is zero.

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 117

distance = 0

t1
<latexit sha1_base64="YR9GKJdm/nAVxYnmSI+1ktaJ3f0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieONnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/f1SqOex1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwKwjZI=</latexit>

t2
<latexit sha1_base64="q4Z1mjf/m0KX4dq2zkHwfEBDBKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u7rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwQ0jZM=</latexit>

�
<latexit sha1_base64="yFe8seVdCSCup38Ir/Jyh1jABIw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQb0FvHiMYB6QLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4dua3n6g2TMkHO0loKPBQspgRbJ3U6hk2FLhfrvhVfw60SoKcVCBHo1/+6g0USQWVlnBsTDfwExtmWFtGOJ2WeqmhCSZjPKRdRyUW1ITZ/NopOnPKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauPrMGMySS2VZLEoTjmyCs1eRwOmKbF84ggmmrlbERlhjYl1AZVcCMHyy6ukVasGF9Xa/WWlfpPHUYQTOIVzCOAK6nAHDWgCgUd4hld485T34r17H4vWgpfPHMMfeJ8/mviPHg==</latexit>

µ

<latexit sha1_base64="LEvYMHK43+qkPM9aSb3njsgkw80=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV0JqLeAF48RzQOSJcxOJsmQmdllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj25nfeuLGilg/4iThoaJDLQaCUXTSQ1elvVLZr/hzkFUS5KQMOeq90le3H7NUcY1MUms7gZ9gmFGDgkk+LXZTyxPKxnTIO45qqrgNs/mpU3LulD4ZxMaVRjJXf09kVFk7UZHrVBRHdtmbif95nRQH12EmdJIi12yxaJBKgjGZ/U36wnCGcuIIZUa4WwkbUUMZunSKLoRg+eVV0rysBNXKzX21XKvmcRTgFM7gAgK4ghrcQR0awGAIz/AKb570Xrx372PRuublMyfwB97nD10IjdQ=</latexit>

t1
<latexit sha1_base64="YR9GKJdm/nAVxYnmSI+1ktaJ3f0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieONnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/f1SqOex1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwKwjZI=</latexit>

t2
<latexit sha1_base64="q4Z1mjf/m0KX4dq2zkHwfEBDBKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u7rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwQ0jZM=</latexit>

�
<latexit sha1_base64="yFe8seVdCSCup38Ir/Jyh1jABIw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQb0FvHiMYB6QLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4dua3n6g2TMkHO0loKPBQspgRbJ3U6hk2FLhfrvhVfw60SoKcVCBHo1/+6g0USQWVlnBsTDfwExtmWFtGOJ2WeqmhCSZjPKRdRyUW1ITZ/NopOnPKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauPrMGMySS2VZLEoTjmyCs1eRwOmKbF84ggmmrlbERlhjYl1AZVcCMHyy6ukVasGF9Xa/WWlfpPHUYQTOIVzCOAK6nAHDWgCgUd4hld485T34r17H4vWgpfPHMMfeJ8/mviPHg==</latexit>

µ

<latexit sha1_base64="LEvYMHK43+qkPM9aSb3njsgkw80=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV0JqLeAF48RzQOSJcxOJsmQmdllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj25nfeuLGilg/4iThoaJDLQaCUXTSQ1elvVLZr/hzkFUS5KQMOeq90le3H7NUcY1MUms7gZ9gmFGDgkk+LXZTyxPKxnTIO45qqrgNs/mpU3LulD4ZxMaVRjJXf09kVFk7UZHrVBRHdtmbif95nRQH12EmdJIi12yxaJBKgjGZ/U36wnCGcuIIZUa4WwkbUUMZunSKLoRg+eVV0rysBNXKzX21XKvmcRTgFM7gAgK4ghrcQR0awGAIz/AKb570Xrx372PRuublMyfwB97nD10IjdQ=</latexit>

t1
<latexit sha1_base64="YR9GKJdm/nAVxYnmSI+1ktaJ3f0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieONnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/f1SqOex1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwKwjZI=</latexit>

t2
<latexit sha1_base64="q4Z1mjf/m0KX4dq2zkHwfEBDBKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u7rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwQ0jZM=</latexit>

�
<latexit sha1_base64="yFe8seVdCSCup38Ir/Jyh1jABIw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQb0FvHiMYB6QLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4dua3n6g2TMkHO0loKPBQspgRbJ3U6hk2FLhfrvhVfw60SoKcVCBHo1/+6g0USQWVlnBsTDfwExtmWFtGOJ2WeqmhCSZjPKRdRyUW1ITZ/NopOnPKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauPrMGMySS2VZLEoTjmyCs1eRwOmKbF84ggmmrlbERlhjYl1AZVcCMHyy6ukVasGF9Xa/WWlfpPHUYQTOIVzCOAK6nAHDWgCgUd4hld485T34r17H4vWgpfPHMMfeJ8/mviPHg==</latexit>

t0

<latexit sha1_base64="3T/jM3KodMvxfQgvWVLb32bfQiI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoseCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilBzzvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhjZ8JlaTIFVssClNJMCazt8lAaM5QTiyhTAt7K2EjqilDG07JhuAtv7xKWpdVr1a9uq9V6rU8jiKcwClcgAfXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AT8OjSM=</latexit>

µ1

<latexit sha1_base64="+KUmXLi1tiIV3RVENwHxZLtjMp4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YQTCo1vy6vwBaJ0FBalCgNah+9YcpsYJKQzjWuhf4mYlyrAwjnM4qfatphskEj2jPUYkF1VG+OHaGLpwyREmqXEmDFurviRwLracidp0Cm7Fe9ebif17PmuQmypnMrKGSLBclliOTovnnaMgUJYZPHcFEMXcrImOsMDEun4oLIVh9eZ20r+pBo3770Kg1G0UcZTiDc7iEAK6hCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz+EBI54</latexit>

µ2

<latexit sha1_base64="BA9CXKXAs9+OcN58IOVo8cVCWQA=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWgnorePFYwW2FdinZNNuGJtklyQpl6W/w4kERr/4gb/4b03YP2vpg4PHeDDPzolRwYz3vG5U2Nre2d8q7lb39g8Oj6vFJxySZpiygiUj0Y0QME1yxwHIr2GOqGZGRYN1ocjv3u09MG56oBztNWSjJSPGYU2KdFPRlNmgMqjWv7i2A14lfkBoUaA+qX/1hQjPJlKWCGNPzvdSGOdGWU8FmlX5mWErohIxYz1FFJDNhvjh2hi+cMsRxol0pixfq74mcSGOmMnKdktixWfXm4n9eL7PxdZhzlWaWKbpcFGcC2wTPP8dDrhm1YuoIoZq7WzEdE02odflUXAj+6svrpNOo+836zX2z1moWcZThDM7hEny4ghbcQRsCoMDhGV7hDSn0gt7Rx7K1hIqZU/gD9PkDhYiOeQ==</latexit>

F[t1,t2]µ G[t1,t2]µ µ1U[t1,t2]µ2

distance > 0

t1
<latexit sha1_base64="YR9GKJdm/nAVxYnmSI+1ktaJ3f0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieONnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/f1SqOex1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwKwjZI=</latexit>

t2
<latexit sha1_base64="q4Z1mjf/m0KX4dq2zkHwfEBDBKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u7rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwQ0jZM=</latexit>�

<latexit sha1_base64="yFe8seVdCSCup38Ir/Jyh1jABIw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQb0FvHiMYB6QLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4dua3n6g2TMkHO0loKPBQspgRbJ3U6hk2FLhfrvhVfw60SoKcVCBHo1/+6g0USQWVlnBsTDfwExtmWFtGOJ2WeqmhCSZjPKRdRyUW1ITZ/NopOnPKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauPrMGMySS2VZLEoTjmyCs1eRwOmKbF84ggmmrlbERlhjYl1AZVcCMHyy6ukVasGF9Xa/WWlfpPHUYQTOIVzCOAK6nAHDWgCgUd4hld485T34r17H4vWgpfPHMMfeJ8/mviPHg==</latexit>

µ

<latexit sha1_base64="LEvYMHK43+qkPM9aSb3njsgkw80=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV0JqLeAF48RzQOSJcxOJsmQmdllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj25nfeuLGilg/4iThoaJDLQaCUXTSQ1elvVLZr/hzkFUS5KQMOeq90le3H7NUcY1MUms7gZ9gmFGDgkk+LXZTyxPKxnTIO45qqrgNs/mpU3LulD4ZxMaVRjJXf09kVFk7UZHrVBRHdtmbif95nRQH12EmdJIi12yxaJBKgjGZ/U36wnCGcuIIZUa4WwkbUUMZunSKLoRg+eVV0rysBNXKzX21XKvmcRTgFM7gAgK4ghrcQR0awGAIz/AKb570Xrx372PRuublMyfwB97nD10IjdQ=</latexit>

t1
<latexit sha1_base64="YR9GKJdm/nAVxYnmSI+1ktaJ3f0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieONnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/f1SqOex1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwKwjZI=</latexit>

t2
<latexit sha1_base64="q4Z1mjf/m0KX4dq2zkHwfEBDBKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u7rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwQ0jZM=</latexit>

�
<latexit sha1_base64="yFe8seVdCSCup38Ir/Jyh1jABIw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQb0FvHiMYB6QLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4dua3n6g2TMkHO0loKPBQspgRbJ3U6hk2FLhfrvhVfw60SoKcVCBHo1/+6g0USQWVlnBsTDfwExtmWFtGOJ2WeqmhCSZjPKRdRyUW1ITZ/NopOnPKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauPrMGMySS2VZLEoTjmyCs1eRwOmKbF84ggmmrlbERlhjYl1AZVcCMHyy6ukVasGF9Xa/WWlfpPHUYQTOIVzCOAK6nAHDWgCgUd4hld485T34r17H4vWgpfPHMMfeJ8/mviPHg==</latexit>

µ

<latexit sha1_base64="LEvYMHK43+qkPM9aSb3njsgkw80=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV0JqLeAF48RzQOSJcxOJsmQmdllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqSw6Pvf3tr6xubWdmGnuLu3f3BYOjpu2jg1jDdYLGPTjqjlUmjeQIGStxPDqYokb0Xj25nfeuLGilg/4iThoaJDLQaCUXTSQ1elvVLZr/hzkFUS5KQMOeq90le3H7NUcY1MUms7gZ9gmFGDgkk+LXZTyxPKxnTIO45qqrgNs/mpU3LulD4ZxMaVRjJXf09kVFk7UZHrVBRHdtmbif95nRQH12EmdJIi12yxaJBKgjGZ/U36wnCGcuIIZUa4WwkbUUMZunSKLoRg+eVV0rysBNXKzX21XKvmcRTgFM7gAgK4ghrcQR0awGAIz/AKb570Xrx372PRuublMyfwB97nD10IjdQ=</latexit>

�3

<latexit sha1_base64="pyxeEO3TvoqbTTrdogV1MBUUZbM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexqQHMLePEYwcRAsoTZyWwyZB7rzKwQlvyEFw+KePV3vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUNirVhLaI4kp3ImwoZ5K2LLOcdhJNsYg4fYjGNzP/4Ylqw5S8t5OEhgIPJYsZwdZJnZ5hQ4H7l/1yxa/6c6BVEuSkAjma/fJXb6BIKqi0hGNjuoGf2DDD2jLC6bTUSw1NMBnjIe06KrGgJszm907RmVMGKFbalbRorv6eyLAwZiIi1ymwHZllbyb+53VTG1+HGZNJaqkki0VxypFVaPY8GjBNieUTRzDRzN2KyAhrTKyLqORCCJZfXiXti2pQq9bvapVGPY+jCCdwCucQwBU04Baa0AICHJ7hFd68R+/Fe/c+Fq0FL585hj/wPn8AyfiPzA==</latexit>

µ1

<latexit sha1_base64="+KUmXLi1tiIV3RVENwHxZLtjMp4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YQTCo1vy6vwBaJ0FBalCgNah+9YcpsYJKQzjWuhf4mYlyrAwjnM4qfatphskEj2jPUYkF1VG+OHaGLpwyREmqXEmDFurviRwLracidp0Cm7Fe9ebif17PmuQmypnMrKGSLBclliOTovnnaMgUJYZPHcFEMXcrImOsMDEun4oLIVh9eZ20r+pBo3770Kg1G0UcZTiDc7iEAK6hCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz+EBI54</latexit>

t1
<latexit sha1_base64="YR9GKJdm/nAVxYnmSI+1ktaJ3f0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieONnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/f1SqOex1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwKwjZI=</latexit>

t2
<latexit sha1_base64="q4Z1mjf/m0KX4dq2zkHwfEBDBKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u7rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwQ0jZM=</latexit>

t0

<latexit sha1_base64="3T/jM3KodMvxfQgvWVLb32bfQiI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoseCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilBzzvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6miETd+Nr90Ss6sMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhjZ8JlaTIFVssClNJMCazt8lAaM5QTiyhTAt7K2EjqilDG07JhuAtv7xKWpdVr1a9uq9V6rU8jiKcwClcgAfXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AT8OjSM=</latexit>

µ2

<latexit sha1_base64="BA9CXKXAs9+OcN58IOVo8cVCWQA=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWgnorePFYwW2FdinZNNuGJtklyQpl6W/w4kERr/4gb/4b03YP2vpg4PHeDDPzolRwYz3vG5U2Nre2d8q7lb39g8Oj6vFJxySZpiygiUj0Y0QME1yxwHIr2GOqGZGRYN1ocjv3u09MG56oBztNWSjJSPGYU2KdFPRlNmgMqjWv7i2A14lfkBoUaA+qX/1hQjPJlKWCGNPzvdSGOdGWU8FmlX5mWErohIxYz1FFJDNhvjh2hi+cMsRxol0pixfq74mcSGOmMnKdktixWfXm4n9eL7PxdZhzlWaWKbpcFGcC2wTPP8dDrhm1YuoIoZq7WzEdE02odflUXAj+6svrpNOo+836zX2z1moWcZThDM7hEny4ghbcQRsCoMDhGV7hDSn0gt7Rx7K1hIqZU/gD9PkDhYiOeQ==</latexit>

F[t1,t2]µ G[t1,t2]µ µ1U[t1,t2]µ2

Figure 6.2: Examples of trajectories with zero-distance (top) and
positive distance (bottom) from an F, a G and a U region (positive

distances are depicted in red).

The correctness of the satisfiability distances introduced above is stated with the
following proposition.

Proposition 6.2.1 (Soundness of distances from Definition 6.2.4)
Let σ ∈Path(M) be a path of a CTMC M, and φ an MITL temporal that has the
form F[t1,t2]µ, G[t1,t2]µ or µ1U[t1,t2]µ2 with µ, µ1, µ2 propositional formulae. Let d the
distance from Definition 6.2.4. Then:

σ |= φ⇐⇒ d(σ, φ) = 0

d is a satisfiability distance.

We should first prove this result for F[t1,t2]µ and G[t1,t2]µ where µ is elementary.

Lemma 6.2.1
For an elementary proposition µ and an MITL temporal formula φ = F[t1,t2]µ, σ |=
φ⇐⇒ d(σ, φ) = 0

Proof. ⇒⇒ Suppose that σ |= F[t1,t2]µ. Let us prove d(σ,F[t1,t2]µ) = 0.

As σ |= φ, ∃t∗ ∈ [t1, t2], s∗ ∈ Sµ/σ@t∗ = s∗. If tlast < t1 and σ@tlast ̸∈ Sµ, then
∀t ∈ [t1, t2], σ@t ̸|= µ, which is impossible.

118 6.2. Satisfiability distances

Thus, by definition, de(σ@t∗, Sµ) = min
s′∈Sµ

√∑d
i=1(σ@t∗[i]− s′[i])2. As s∗ ∈ Sµ,

de(σ@t∗, Sµ) = 0. In fine, d(σ,F[t1,t2]µ) = 0.

⇐⇐ Suppose that d(σ,F[t1,t2]µ) = 0. Let us prove σ |= F[t1,t2]µ.

As d(σ,F[t1,t2]µ) = 0, there are two possible cases.

First case: tlast < t1 and σ@tlast ̸∈ Sµ. de((tlast, σ@tlast), Sµ
[t1,t2]) = 0 implies

tlast = t1: impossible.

Second case: ∃t∗ ∈ [t1, t2]/de(σ@t∗, Sµ) = 0.

By definition, de(σ@t∗, Sµ) = min
s′∈Sµ

√∑d
i=1(σ@t∗[i]− s′[i])2.

There exists s∗ ∈ Sµ with
√∑d

i=1(σ@t∗[i]− s∗[i])2 = 0, which implies σ@t∗ = s∗. As
t∗ ∈ [t1, t2] and σ@t∗ = s∗ ∈ Sµ, the trajectory σ verifies F[t1,t2]µ.

Lemma 6.2.2
For an elementary proposition µ and an MITL temporal formula G[t1,t2]µ, σ |= φ⇐⇒
d(σ, φ) = 0

Proof. ⇒⇒ Suppose that σ |= G[t1,t2]µ. Let us prove d(σ,G[t1,t2]µ) = 0.

As σ |= G[t1,t2]µ, ∀t ∈ [t1, t2], σ@t ∈ Sµ. We have ∀s′ ∈ Sµ, de(s′, Sµ) =

0. So ∀t ∈ [t1, t2], de(σ@t, Sµ) = 0, hence
∫ t2
t1

de(σ@t, Sµ)dt = 0. In conclusion,
d(σ,G[t1,t2]µ) = 0.

⇐⇐ Suppose that d(σ,G[t1,t2]µ) = 0. Let us prove σ |= G[t1,t2]µ.

We have:
∫ t2
t1

de(σ@t, Sµ)dt = 0. As t→ de(σ@t, Sµ) is a non-negative continuous
function and its integral equals 0, then this function is the null function over [t1, t2].
So, ∀t ∈ [t1, t2], de(σ@t, Sµ) = 0. This means ∀t ∈ [t1, t2], σ@t ∈ Sµ. In other words,
σ |= G[t1,t2]µ.

Now we can tackle the proof of Proposition 6.2.1.

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 119

Proof.
d(σ,F[t1,t2]

∨
µi) = 0⇔ min

i
d(σ,F[t1,t2]µi) = 0

⇔ ∃i/d(σ,F[t1,t2]µi) = 0

⇔ ∃i/σ |= F[t1,t2]µi

⇔ σ |= F[t1,t2]
∨
µi

Result 6.2.1

Def. of disjunction

d(σ,G[t1,t2]
∨
µi) = 0⇔ min

i
d(σ,G[t1,t2]µi) = 0

⇔ ∃i/d(σ,G[t1,t2]µi) = 0

⇔ ∃i/σ |= G[t1,t2]µi

⇔ σ |= G[t1,t2]
∨
µi

Result 6.2.2

Def. of disjunction

For the Until formula, the result follows from σ |= µ1U[t1,t2]µ2 ⇔ σ |= G[0,t1]µ1 ∧
G[t1,tmin]µ1∧F[tmin,t2]µ2 with the proof of the distances for eventual and global regions.

6.3 Linear Hybrid Automata to compute satisfiability
distances

Based on the HASL formalism (Section 4.4), we discuss the definitions of hybrid
automata to measure the satisfiability distances with synchronised simulations (Sec-
tion 4.4.2). The automata presented here refer to temporal formulae built on top
of a generic mono-dimensional (elementary) proposition µ = x1 ≤ xO ≤ x2 (where
xO denotes the population of an observable quantity O of a CTMC model M, and
x1<x2∈N).

Each synchronised simulation of a trajectory is associated with the HASL trajec-
tory expression Last(d). The last value of the computed distance variable d is kept.
The Linear Hybrid Automata update the distance on the fly of the simulation.

Remark 6.3.1 (Dashed red edge in the automata)
In each automaton, the dashed red edge corresponds to an asynchronous edge that
is fired if the current state of the CTMC is absorbing, even if it does not fulfil the
condition based on the time t.

More precisely t≥t2∧γ,U−−−−−−→ defines two edges: ♯,t≥t2∧γ,U−−−−−−−→ and ♯,E(x)=0∧γ,U−−−−−−−−−→, where
E(x) is the total exit rate of the state. This implies the definition of a variable
test_abs that equal true if no more reaction can occur, which is updated at each

120 6.3. Linear Hybrid Automata to compute satisfiability distances

reaction occurence by the total exit rate. It allows for the acceptance by the automaton
of any trajectory, even if it has reached an absorbing state.

This variable will not be mentioned in the presentation of the three automata.

6.3.1 Distance automaton AF

Automaton AF (Figure 6.3) is designed to measure the satisfiability distance (Equa-
tion 6.1) of trajectories of a CTMC modelM from the time-bounded region associated
with F[t1,t2](x1≤xO≤x2), i.e. the time-bounded satisfiability region S[t1,t2]

(x1≤xO≤x2)
.

l0
ṫ:1

l1
ṫ:1

l2
ṫ:1

l3
ṫ:1

♯,⊤,{n:=xO,d:=∞}

♯,t≥t1∧d=0, ∅

♯,t≥t2∧(n>x2∨x1>n),

{∅}

♯,t≤t1∧(x1>n∨n>x2),
{d:=min(

√
(t−t1)2+(n−x2)2,

√
(t−t1)2+(n−x1)2)}

♯,(x1≤n≤x2),{d:=0}

♯,t≥t1∧(x1>n∨n>x2),

{d:=min(d,min(|n−x1|,|n−x2|))}

ALL,⊤,{n:=xO}
t≥t2∨(t≥t1∧d=0),{∅}

Figure 6.3: Automaton for eventual property AF .

Three variables are defined:

• d, the satisfiability distance,

• t, the current time,

• n, the population of the observed species O.

The initial location is l0, and the final location is l2. First, the distance is
initialised to d :=∞ (l0 → l1), and the initial value of the observed species is stored
in n :=xO.

Once in l1, there are two ways of reaching the final location l2. If the distance d

is zero and time exceeds t1, the trajectory has entered the time-bounded satisfiability
region. Then, the transition l1

t≤t1∧d=0,∅−−−−−−−→ l2 fires. Otherwise, if the time exceeds t2,
the second transition to l2 is traversed without updating the variables.

If, while in l1, the trajectory has not entered the time-bounded satisfiability
region yet, the distance d must be updated. It deals with three autonomous transitions
l1 → l3.

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 121

On the one hand, in case xO has entered [x1, x2], the distance is set to d := 0

(l1
(x1≤n≤x2),{d:=0}−−−−−−−−−−−−→ l3). Indeed, since CTMC trajectories are stepwise functions, if

the next reaction occurs at time t > t1, the current trajectory has at least one point
within the time-bounded satisfiability region.

On the other hand, if xO has not entered [x1, x2], d is computed with two different

equations. First, if t ≤ t1, l1

♯,(x1>n∨n>x2)∧(t≤t1),

{d:=min(
√

(t−t1)2+(n−x2)2,
√

(t−t1)2+(n−x1)2)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ l3 fires: it
computes the distance between the trajectory and the nearest corner of the eventual
region. It corresponds to the first sub-function of the piecewise Equation 6.1.

Second, if t ≥ t1, the third transition fires. d is computed as the minimum
distance between d and the distance of n to the bounds x1 and x2, which corresponds
to the second sub-function of the piecewise Equation 6.1.

In l3, two edges can be traversed. First, the asynchronous transition brings the
automaton to the final location l2 if either the distance is zero within [t1, t2], time
exceeds t2 or the trajectory reaches an absorbing state. In addition, the transition
l3

ALL,true,{n:=xO}−−−−−−−−−−−→ l1 is traversed whenever a new reaction occurs, which brings the
automaton back to l1 so that the distance can be updated accordingly.

Remark 6.3.2 (Left-closed constraints on transition predicates)
In the definition of an LHA, transition predicates of autonomous transitions have
to be left closed linear constraints (Definition 4.4.2). But, for example t ≥ t2 ∧
(n > x2 ∨ x1 > n) is not a left-closed constraint. Thus, the autonomous tran-
sition l1

♯,t≥t1∧(x1>n∨n>x2),d=...−−−−−−−−−−−−−−−−−→ l3 defines, in fact, two autonomous transitions:
l1

♯,t≥t1∧x1+1≥n,d=...−−−−−−−−−−−−−→ l3 and l1
♯,t≥t1∧n≥x2+1,d=...−−−−−−−−−−−−−→ l3 as n, x1 and x2 are integers.

Script 7 (AF LHA in Cosmos)
An example of automaton AF in Cosmos is available at code/chap5/cosmos/ER/
dist_F.lha.

122 6.3. Linear Hybrid Automata to compute satisfiability distances

6.3.2 Distance automaton AG

l0
ṫ:1

l1
ṫ:1

l3
ṫ:1

ṫ′:0

l4
ṫ:1

ṫ′:1

l2
ṫ:1

♯,true,{n:=xO, d:=0,in:=true}

♯,in∧t1≤t≤t2∧(x1≤n≤x2), {t′:=0}

♯,t≤t1∧(x1≤n≤x2)

{d:=0,in:=false}

♯,¬in∧t1≤t≤t2∧(x1≤n≤x2)
{d:=d·(t−t1),t′:=0}

♯,t≤t1∧(n<x1∨n>x2), {d:=min(|x1−n|,|x2−n|),in:=false}

♯,¬in∧
t1

≤t≤t2
∧(n

<x1
∨n>x2

),

{d+
=d·(t

−t1
)}

♯,in∧t1
≤t≤t2

∧(n<x1
∨n>x2

), ∅

ALL,true,{n:=xO}

♯,in
∧t≥

t2

{d
=
d·(

t2
−t1

)}

♯,
¬in∧

t≥
t 2

,{∅
}

ALL,true,{d+
=t

′ ·min(|x1
−n|,|x2

−n|))},

{t
′ :=0,n

:=xO
,in:=

true}

♯,t≥t2,{d+=t′·min(|x1−n|,|x2−n|))}

Figure 6.4: Automaton for global property AG.

Automaton AG (Figure 6.4) is designed to measure the satisfiability distance (Equa-
tion 6.2) of trajectories of a CTMC modelM from the time-bounded region associated
with G[t1,t2](x1≤xO≤x2), i.e. the time-bounded satisfiability region S[t1,t2]

(x1≤xO≤x2)
.

It uses the same variables as AF plus an extra timer t′, to measure the duration
of a segment falling outside the satisfiability region within [t1, t2], and a boolean flag
in, which is set to true if the last state of the path is originating in [t1, t2] and is
outside of the region [x1, x2]. in is used to distinguish cases where the path is out
of the region [x1, x2] with t′ < t1, and a new event occurs at time t′′ > t1, to add
(t′′ − t1) ∗min(|n− x1|, |n− x2|) instead of (t′′ − t′) ∗min(|n− x1|, |n− x2|).

After the initialisation of the variables (l0 → l1), analysis begins in l1. For jumps
occurring before t1, we distinguish two cases. If σ@t∈ [x1, x2], the distance is set to
zero (l1 → l3 top arc). Otherwise, d is the distance of σ@t from [x1, x2] (l1 → l3

midway arc). Indeed, if, for example, the next jump of σ happens at t > t2, then the
final distance is given by d · (t2 − t1) (l1 → l2 bottom arc).

For jumps occurring within t∈ [t1, t2], if σ@t ̸∈ [x1, x2] (sequence l1 → l4 → l1),
the distance is incremented by the surface contoured with the trajectory segment (of
duration t′) laying outside [x1, x2], and the closest border of [x1, x2]. The distance is
left unchanged if σ@t∈ [x1, x2] (sequence l1 → l3 → l1).

Script 8 (AG LHA in Cosmos)
An example of automaton AG in Cosmos is available at code/chap5/cosmos/ER/

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 123

dist_G.lha.

6.3.3 Distance automaton AG∧F

Automaton AG∧F (Figure 6.5) is designed to compute the distance of trajectories
from a sequence of time-bounded regions consisting of a formula G[t1,t2](x1≤xO≤x2)

(related to an observed quantity O) followed by a formula F[t3,t4](x3 ≤ xO′ ≤ x4)

(related to an observed quantity O′). This automaton is associated with the MITL
formula φ = G[t1,t2](x1 ≤ xO ≤ x2) ∧ F[t3,t4](x3 ≤ xO′ ≤ x4). We assume t2 ≤ t3, i.e.
the global region precedes the eventual region, while x1, x2, x3, x4 ∈ N, and xO, resp.
xO′ , denotes the population of species O, resp. O′.

In particular, it deals with the satisfiabily distance of conditional time-bounded
reachability because G[0,s](x1 ≤ xO ≤ x2) ∧ F[s,t](x3 ≤ xO′ ≤ x4) = (x1 ≤ xO ≤
x2)U[s,t](x3 ≤ xO′ ≤ x4) when µ = (x1 ≤ xO ≤ x2)∨(x3 ≤ xO′ ≤ x4) is verified for
all states of any possible trajectory of the CTMC (see Remark 6.2.1).

We combine the automata AG and AF by linking them with an autonomous
transition l2G → l1F . d stores the distance for the G region, while d′ stores the
distance for the F region. The sum of the two distances is stored in d at the end of
the simulation.

124 6.4. Automaton-ABC algorithm with LHA satisfiability distances

l0G
ṫ:1

l1G
ṫ:1

l3G
ṫ:1

ṫ′:0

l4G
ṫ:1

ṫ′:1

l2G
ṫ:1

l1F
ṫ:1

l2F
ṫ:1

l3F
ṫ:1

♯,true,{n:=xO, d:=0,in:=true}

♯,in∧t1≤t≤t2∧(x1≤n≤x2), {t′:=0}

♯,t≤t1∧(x1≤n≤x2)
{d:=0,in:=false}

♯,¬in∧t1≤t≤t2∧(x1≤n≤x2)
{d:=d·(t−t1),t′:=0}

♯,t≤t1∧(n<x1∨n>x2), {d:=min(|x1−n|,|x2−n|),in:=false}

♯,¬
in∧

t1
≤t≤

t2
∧(n

<
x1

∨n>
x2

),

{d
+
=
d·(

t−
t1

)}

♯,in∧
t1

≤t≤t2
∧(n

<x1
∨n>x2

), ∅
in∧

t≥
t2

{d
=
d·(

t2
−t1

)}

¬in∧
t≥

t 2
,{∅

}

ALL,true,{n:=xO}

ALL,true,{d
′ +=t

′ ·min(
|x1

−n|,|x2
−n|))}

,

{t
′ :=0,n

:=
xO

,in:
=true}

♯,t≥t2,{d+=t′·min(|x1−n|,|x2−n|))}

♯,true,{n:=xO
′ ,d

′ :=∞}

♯,t≥t1∧d′=0, {∅}

♯,t≥t2∧(n>x2∨x1>n),

{d=d+d′}

♯, t≤t1∧(x1>n∨n>x2),
{d′:=min(

√
(t−t1)2+(n−x2)2,

√
(t−t1)2+(n−x1)2)}

♯,(x1≤n≤x2),{d′:=0}

♯,t≥t1∧(x1>n∨n>x2),

{d′:=min(d′,min(|n−x1|,|n−x2|))}

ALL,true,{n:=x
O′ }

t≥t2∨(t≥t1∧d=0),{d=d+d′}

Figure 6.5: Automaton for global and eventual property AG∧F when
t2 ≤ t3.

Script 9 (AG∧F LHA in Cosmos)
An example of automaton AG∧F in Cosmos is available at code/chap5/cosmos/ER/
dist_G_F.lha.

6.4 Automaton-ABC algorithm with LHA satisfiability
distances

In this part, we define the automaton-ABC framework with satisfiability distances to
estimate the satisfaction probability function (Section 6.1). The framework aims to
first find the subset of parameters of a parametric CTMC model (Mθ)θ∈Θ for which
a reachability formula φ can be satisfied by efficiently exploring the whole parameter
space, and then estimate the satisfaction function probability. The intuition behind
this method is that the exploration of the parameter space can be driven efficiently by

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 125

taking into account the notion of distance of a trajectory σ∈Path(Mθ) from the time-
bounded satisfiability region corresponding to φ (see Section 6.2). In this formulation
of the ABC algorithm, the estimation of the posterior distribution (πφ−ABC) is no
longer computed as a limit approximation (i.e. lim

ϵ→0
π̂ϵ
ABC(.|yexp)), as with classical

ABC, but rather as an estimation of the exact ABC distribution, since trajectories
are accepted exclusively if their distance to the satisfiability region is zero.

6.4.1 Simple ABC with satisfiability distance.

We consider a parametric CTMC (Mθ)θ∈Θ, and we define a prior distribution π

over Θ. In Algorithm 17, we propose a modified version of the general automaton-
ABC Algorithm 15 adapted to satisfiability distances. At each iteration, we draw
a parameter θ′ from the prior π(.), we simulate a path σ′ from the CTMC Mθ′

synchronised with an LHA Aφ (Section 4.4.2) and accept θ′ if the distance from φ is
d(σ′, φ)=0. (i.e. if σ′ |= φ by Proposition 6.2.1).

Algorithm 17 Automaton-ABC with Aφ automaton
Require: (Mθ)θ∈Θ a pCTMC, π(.) prior,
Aφ automaton distance for MITL formula φ, N : number of particles

Ensure: (θ(i))1≤i≤N drawn from πφ−ABC

for i = 1 : N do
repeat

θ′ ∼ π(.)

d(σ′, φ) ∼ (Last(d),Aφ)×Mθ′

until d(σ′, φ) = 0

θ(i) ← θ′

end for

The Theorem 6.4.1 below links the Algorithm 17 with the satisfaction probability
function.

Theorem 6.4.1
Let (Mθ)θ∈Θ be a parametric CTMC, φ an MITL formula, and the associated sat-
isfaction probability function θ → Pr(φ;Mθ). Given a prior distribution π over
the parameter set Θ, the (θ(i))1≤i≤N sampled by the Algorithm 17 are drawn from a
density πφ−ABC :

πφ−ABC(θ) = Pr(φ;Mθ)
π(θ)

C

where C ∈ R≥0 is a positive constant.

126 6.4. Automaton-ABC algorithm with LHA satisfiability distances

Proof. Let Cφ
Mθ

= {σ ∈ Path(Mθ)/σ |= φ}. Then PrMθ
(Cφ

Mθ
) = Pr(φ;Mθ).

ABC is a reformulation of the accept-reject algorithm (see Section 3.2.2 and
Algorithm 11). Thus, the samples (θ(i), σ(i))1≤i≤N from Algorithm 17 are drawn
from a density πφ−ABC :

πφ−ABC(θ
(i), σ(i)) ∝ 1d(.,φ)=0(σ

(i))︸ ︷︷ ︸
σ(i) |=φ

pM
θ(i)

(σ(i))︸ ︷︷ ︸
σ(i)∼M

θ(i)

π(θ(i))︸ ︷︷ ︸
prior

where pM
θ(i)

is the density related to the CTMC Mθ(i) with respect to a measure µ.

As σ(i) ∈ Cφ
M

θ(i)
⇔ d(σ(i), φ) = 0, 1d(.,φ)=0(σ

(i)) = 1Cϕ
M

θ(i)

(σ(i)). One can
obtain the marginal distribution of θ by integration over the whole set of trajectories
Path(Mθ):

πφ−ABC(θ) ∝
∫
σ∈Path(Mθ)

1Cϕ
Mθ

(σ)pMθ
(σ)π(θ)dµ

∝ π(θ)
∫
σ∈Cϕ

Mθ

pMθ
(σ)dµ

∝ PrMθ
(Cφ

Mθ
)π(θ)

density of Mθ

As PrMθ
(Cφ

Mθ
) = Pr(φ;Mθ), we can conlude that there exists C ∈ R≥0 so that

πφ−ABC(θ) = Pr(φ;Mθ)
π(θ)
C .

This result transforms the regression of the smooth function fφ into the den-
sity estimation of πφ−ABC . First, each parameter sampled from the πφ−ABC gives
information because it produces a simulation that verifies φ. Also, as πφ−ABC is
a probability density function, the relative position of each parameter to the other
sampled parameters gives much information about the satisfaction probability func-
tion. The denser in sampled parameters a subset of parameters space, the higher the
satisfaction probability function over the subset.

Following the same approach, we formulate a comparable version for the ABC-
SMC Algorithm 18, which leads to a smaller runtime than Algorithm 17, keeping the
guarantee of Theorem 6.4.1. Indeed, Algorithm 17 do not really exploit the conti-
nuity of the distance. We only accept/reject trajectories depending on whether their
distance is zero, i.e. if they satisfy φ. On the contrary, with Algorithm 18, we use the
satisfiability distance to rank paths and accept the parameters whose corresponding
paths are closer to the satisfiability regions (better ranked) than others, even if they

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 127

do not necessarily satisfy φ. This new feature can lead to faster convergence of the
algorithm corresponding to a faster exploration of the parameter space.

Algorithm 18 has the same inputs as Algorithm 17, plus a kernel distribution K

and a hyperparameter α ∈]0, 1[representing how fast the tolerance ϵ decreases with
the iterations.

It works as follows. Initially, N parameters/particles (θ(i)0)1≤j≤N are drawn from
the prior π, and the first tolerance level ϵ to reach equals the α-quantile of the
distances di, resulting from the synchronised simulations M

θ
(i)
0

×Aφ. Then, at each

iteration m, a parameter is drawn among the parameters θ
(i)
m (i ∈ {1, . . . , N}), and

is moved by a kernel distribution K, and the synchronised simulation M
θ
(i)
m
× Aφ

is performed. This procedure is done until the resulting distance di is below the
current tolerance level ϵ, inducing that the parameter θ

(i)
m is kept. After doing so for

the N parameters, we compute a new tolerance level ϵ that equals the α-quantile of
the distances di. These iterations are repeated until the last tolerance level ϵ = 0 is
reached. The introduction of several steps with positive decreasing tolerances leads
to an efficient exploration of the parameter space driven by Aφ.

Another interesting point is that any algorithm inherited from the family of ABC
methods keeps the guarantee of Theorem 6.4.1. Thus depending on the problem, one
can use any Monte-Carlo based sampler (ABC-MCMC, ABC-SMC and so on) and
still estimate the satisfaction probability function.

6.4.2 Estimation of the satisfaction probability function

Based on the samples (θ(i))1≤i≤N (Algorithm 17 or Algorithm 18), we can estimate the
satisfaction probability function thanks to Theorem 6.4.1. This procedure is twofold:
estimation of the ABC posterior density and estimation of the constant C.

Estimation of the πφ−ABC posterior distribution

In the applications, we estimate the ABC posterior πφ−ABC based on the samples
(θ(i))1≤i≤N with kernel density estimation (Section 3.4): ∀θ ∈ R, π̂h(θ) =

1
N

∑d
i=1Kh(θ, θ

(i)).
Two kernels are used: Gaussian and Beta kernels. The last one is helpful when we
have to estimate densities over bounded supports with positive probabilities on the
boundaries. The optimal bandwidth is obtained by Least Squares Cross-Validation.

128 6.4. Automaton-ABC algorithm with LHA satisfiability distances

Algorithm 18 Automaton-ABC Sequential Monte Carlo with Aφ automaton
Require: (Mθ)θ∈Θ a pCTMC, π prior,
Aφ distance automaton for MITL formula φ,
N : number of particles, α ∈ (0, 1), K kernel distribution

Ensure: (ω(i), θ(i))1≤i≤N weighted samples drawn from πφ−ABC

θ
(i)
0 ∼ π, i ∈ 1, . . . , N
di ∼ (Last(d),Aφ)×Mθ

(i)
0

, i ∈ 1, . . . , N

ϵ← quantile(α, (di)1≤i≤N)

(ω
(i)
0)1≤i≤N ← 1

N
m← 1
while ϵ > 0 do

for i = 1 : N do
repeat

Take θ′ from (θ
(j)
m−1)1≤j≤N with probabilities (ω

(j)
m−1)1≤j≤N

θ
(i)
m ∼ K(.|θ′)
di ∼ (Last(d),Aφ)×Mθ

(i)
m

until di ≤ ϵ

ω
(i)
m ←

π
(
θ
(i)
m

)
N
Σ

i′=1
ω
(i′)
m−1K(θ

(i)
m |θ(i

′)
m−1)

end for
Normalise (ω

(i)
m)1≤i≤N

ϵ← quantile(α, (di)1≤i≤N)
m← m+ 1

end while
return (ω

(i)
m , θ

(i)
m)1≤i≤N

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 129

Estimation of the constant C

An estimation of C can be obtained by a single-point estimation of Pr(φ;Mθ∗) and
πφ−ABC(θ

∗). θ∗ should be chosen wisely: verifying φ should not be rare and θ∗ should
be in a region where πφ−ABC can be well approximated (a region of high posterior
probability). Then, Pr(φ;Mθ∗) can be estimated with statistical model checkers. In
order to have a more stable kernel density estimation, one can also choose several θ∗

and estimate the constants and compute the mean.

6.5 Applications

We applied the automaton-ABC method with satisfiability distances to estimate the
satisfaction probability function of Poisson processes and three models of biological
systems: an enzymatic reaction network (Michaelis-Menten kinetics), a model of viral
infection and SIR chemical reaction network. Our results are compared with model
checking or statistical model checking from Prism or Cosmos. We also provide an
estimation of the experiments’ computational times.

6.5.1 An example with Poisson processes

Let Mλ be the CTMC defined on a space set S = N by the initial distribution and
the transition rate matrix Q:

α = δ0 (the initial state is 0)

Q(i, i+ 1) = λ for i ∈ N

Q(i, i) = −λ for i ∈ N

Q(i, j) = 0 otherwise

We have defined a Poisson process of parameter λ, described by the Chemical
Reaction Network

X
λ−→ 2X

where the kinetic rate is constant and equals λ (it does not follow mass-action law).

The associated stochastic process is denoted Sλ = (Sλ
t)t≥0. Let us solve the

reachability problem:

Estimate the function λ→ PrMλ
(σ |= F[t1,t2](x1 ≤ s ≤ x2)).

130 6.5. Applications

The set Cφ
Mλ

is the set of trajectories of Mλ that satisfies φ = F[t1,t2](x1 ≤ s ≤
x2) for the CTMC Mλ. There are powerful known results on Poisson processes such
as:

i. The trajectories are increasing step functions with jumps of value one (i.e has
the form 1

t1−→ 2
t2−→ 3→ . . .).

ii. ∀t, v ∈ R≥0 with v ≤ t, Sλ
t − Sλ,v ∼ P(λ(t − v)), i.e. a Poisson distribution of

parameter λ(t− v).

With the property i), having one point in the time-bounded satisfiability region
of F[t1,t2](x1 ≤ s ≤ x2) is equivalent to having σ@t1 ≤ x2 and σ@t2 ≥ x1. Indeed, if
σ@t1 > x2, the trajectory is on the top of the region, and if σ@t2 < x1, the trajectory
is below the region. Else, the trajectory must traverse [x1, x2].

With this remark, PSλ(C
φ
Mλ

) = P(Sλ
t1 ≤ x2, S

λ
t2 ≥ x1).

P(Sλ
t1 ≤ x2, S

λ
t2 ≥ x1) = P(Sλ

t2 ≥ x1|Sλ
t1 ≤ x2)P(Sλ

t1 ≤ x2)

=
∑x2

k=0 P(Sλ
t2 ≥ x1|Sλ

t1 = k)P(Sλ
t1 = k|Sλ

t1 ≤ x2)

=
∑x2

k=0 P(Sλ
t2 − Sλ

t1 ≥ x1 − k)P(Sλ
t1 = k)

=
∑x2

k=0(1− P(Sλ
t2 − Sλ

t1 < x1 − k))P(Sλ
t1 = k)

=
∑x2

k=0(1− P(Sλ
t2 − Sλ

t1 ≤ x1 − k − 1))P(Sλ
t1 = k)

{Sλ
t1 = k}k=[[0,x2]]

is a partition
of {Sλ

t1 ≤ x2}

As Sλ
t2 −Sλ

t1 ∼ P(λ(t2− t1))) and Sλ
t1 ∼ P(λt1), PSλ(C

φ
Mλ

) can be expressed an-
alytically. As PSλ = PrMλ

(Proposition 2.2.1), the satisfaction probability function
λ → PrMλ

(σ |= F[t1,t2](x1 ≤ s ≤ x2)) is expressed analytically. We have solved the
time-bounded reachability problem analytically, which offers the possibility to test
our method with exact continuous solutions.

The Figure 6.6 below shows the run of the automaton-ABC algorithm with a
prior π(.) ∼ U(0, 30), N = 500 particles with x1, x2 = 5.0, 7.0 and t1, t2 = 0.75, 1.0.
The estimated satisfaction probability function with Gaussian kernel estimation of the
ABC posterior is illustrated in red, whereas the true satisfaction probability function
is in blue. One can see that our estimation suits well the exact satisfaction probability
function.

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 131

Figure 6.6: Histogram of the automaton-ABC posterior with N =
500 particles.

In red: estimated satisfaction probability function.
In blue: the analytical satisfaction probability function.

6.5.2 Enzymatic reaction system

Model

We consider the Enzymatic Reaction system (Michaelis-Mentens kinetics (Michaelis
et al., 2011)) described in Equations 6.4 in which a substrate species S is converted
into a product P through the mediation of an enzyme E. The dynamics depend
on the reaction rate constants that define a parameter vector θ = {k1, k2, k3}. We
thus consider the underlying parametric CTMC (M)θ∈[0,100]3 . The initial state is
(E0, S0, ES0, P0)=(100, 100, 0, 0).

R1 : E + S
k1−→ ES

R2 : ES
k2−→ E + S

R3 : ES
k3−→ E + P

(6.4)

Figure 6.7 shows two (4-dimensional) trajectories sampled from the CTMC model
Mθ of the enzymatic reaction system with parameters θ = (1, 1, 1) (left) and θ =

(0.1, 1, 0.1) (right).

The dynamic of the ER system (Figure 6.7) is such that the totality of the
substrate (initially S0 = 100) is converted into the product at a speed dependent
on parameters θ. With θ= (1, 1, 1), the totality of S is converted before time = 5,
whereas with a tenfold speed reduction in the formation of the ES complex and

132 6.5. Applications

synthesis of P (i.e. θ = (0.1, 1, 0.1)), we have that only about 30% of S has been
converted at time = 5.

Figure 6.7: Trajectories of the ER system with θleft = (1, 1, 1) and
time scale [0, 6], θright=(0.1, 1, 0.1) and time scale [0, 30].

Figure 6.8: Trajectories of ER system for product P , with TR1, TR2
and TR3 regions and k3 ∈ {10, 20, 50}.

Experimental setting

In the following, we run a few experiments on the ER system. We consider six
time-bounded reachability formulae and their associated time-bounded satisfiability
regions:

• φ1 : F[0.025,0.05](50 ≤ P ≤ 75) associated with region TR1,

• φ2 : F[0.05,0.075](50 ≤ P ≤ 75) associated with region TR2,

• φ3 : F[0.05,0.075](25 ≤ P ≤ 50) associated with region TR3,

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 133

• φ4 : F[8.0,10.0](5 ≤ P ≤ 15) associated with region TR4,

• φ5 : G[0.0,0.8](50 ≤ E ≤ 100) associated with region TR5,

• φ6 : G[0.0,0.8](50 ≤ E ≤ 100) ∧ F[0.8,0.9](30 ≤ P ≤ 100) associated with region
TR6.

φ1, φ2, φ3 correspond to formulae that are probably fulfilled when k3 varies over
[0, 100] (with k1 = k2 = 1), whereas φ4, φ5, φ6 are formulae for which only a small
subset of k1, k2 ∈ [0, 100]2 (with k3 = 1) can produce trajectories that fulfil these
formulae.

Test of LHA distances

Figure 6.8 shows batches of trajectories of the ER model for product P , correspond-
ing to parameters θ1 : (1, 1, 50), θ2 = (1, 1, 20) and θ3 = (1, 1, 10). It appears that
trajectories for Mθ1 (red) are more likely to traverse TR1, those for Mθ2 (blue) to
traverse TR2 and those for Mθ3 (green) to traverse TR3.

Such intuition is confirmed by plots in Figure 6.9, which depicts the average value
of the distance of trajectories from time regions TR1, TR2 and TR3 as a function of
k3. We use the Statistical Model Checker Cosmos (Ballarini et al., 2015) with specific
instances of AF i.e. Aφ1 , Aφ2 and Aφ3 . We observe that for example the measured
distance from region TR1 monotonically decreases as k3 increases and cancels for
k3 ≥ 30, while the distance from region TR3 is zero when 10 ≤ k3 ≤ 15 whereas it
grows as we increase k3.

Figure 6.9: Average distances of the automata for the six formulae
φi, i ∈ {1, . . . , 6}, computed by the Statistical Model Checker Cosmos

with approximation of 0.1 and 99% level of confidence.
First row: Aφ1

,Aφ2
and Aφ3

. Second row: Aφ4
,Aφ5

and Aφ6
.

134 6.5. Applications

Satisfaction probability function estimation

We apply the automaton-ABC Algorithm 18 to the ER parametric CTMC defined
over [0, 100]3, with formulae described in Section 6.5.2.

TR1, TR2 and TR3 correspond to the one-dimensional experiments: only k3

varies over [0, 100] (k1 = k2 = 1.0 are fixed), a uniform prior π(.) ∼ U(0, 100) is set.
TR4, TR5 and TR6 correspond to the two-dimensional experiments: k1 and k2 varies
over [0, 100] (k3 = 1.0 is fixed), a uniform prior π(.) ∼ U(0, 100) over each parameter
is set.

TR1 TR2 TR3

F[0.025,0.05](50≤P ≤75) F[0.05,0.075](50≤P ≤75) F[0.05,0.075](25≤P ≤50)

Figure 6.10: Weighted histogram of automaton-ABC posteriors with
1000 particles. In each experiment, k1=k2=1 and πk3

(.)∼U(0, 100).
In blue: the satisfaction probability function estimated on a selection

of points with Prism model checker by numerical method.
In red: the satisfaction function estimated through kernel density es-

timation method based on automaton-ABC samples.

Figure 6.10 illustrates the evaluation of the posterior distribution πφ−ABC and
the estimation of the satisfaction probability as a function of parameter k3 (1D exper-
iments) obtained with the automaton-ABC method (Algorithm 18) over the formulae
φ1, φ2, φ3.

The estimated function of TR1 exhibits a uniform profile with a 95% credibility
interval that φ1 is satisfied for k3 ∈ [20, 100] (approximately), which is in agreement
with the average distance measure (Figure 6.9). When the average distance is zero,
the estimated probability by both Prism model checking and automaton-ABC is 1.
Instead, the estimated functions for TR2 and TR3 result in narrower 95% credibility
intervals with k3∈ [15, 50] (TR2), and k3∈ [5, 25] (TR3), again in line with measured
distance (Figure 6.9).

Figure 6.11 depicts the results of the 2D experiments on the ER system with
φ4, φ5, φ6 formulae. The triangular profile of the joint posterior in experiments TR4

and TR5 (computed with k3 = 1 and πk1(.), πk2(.) ∼ U(0, 100)) indicates that only
very low values of k1 (k1≤0.015 for TR4, k1≤1 for TR5) combined with rather high

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 135

TR4 TR5 TR6

F[8.0,10.0](5≤P ≤15) G[0.0,0.8](50≤E≤100)
G[0.0,0.8](50≤E≤100)∧
F[0.8,0.9](30≤P ≤100)

Figure 6.11: Results of 2D experiments of ER system with 1000
particles (πk1(.), πk2(.)∼U(0, 100), k3=1).

Top: the 2D weighted histograms of the automaton-ABC posteriors.
Middle: estimation of the satisfaction probability function with Prism
by Statistical model checking (99% confidence interval with approxi-

mation 0.01).
Bottom: kernel density estimation of the satisfaction probability func-

tion.

136 6.5. Applications

Figure 6.12: Statistical Model Checking over [0.0, 0.0005]×[0.0, 20.0]
with 10 points for the first axis and 20 points for the second.

values of k2 (i.e. k2 ∈ [40, 100] for TR4, k2 ∈ [50, 100] for TR5) result in trajectories
entering TR4, or never leaving TR5, which means that the algorithm managed to
catch the correlation between the parameters. This is intuitively correct in both
cases. In fact, TR4 corresponds to a very low synthesis of P , which is not compatible
with fast creation of the ES complex (i.e. only very small k1 are not ruled out), and
even the compensation effect obtained by fast decomplexation (i.e. large k2) will not
suffice for the different trajectories to stay in TR4.

One can notice that the estimated satisfaction probability function of region TR4

(most-left bottom picture of Figure 6.11) has much probability mass around (0, 0).
At first glance, one can conclude in a problem of bias of the kernel density estimator
since the satisfaction probability function estimated by Statistical Model Checking
(second row, first column picture) does not show the same shape in this area. But, if
we execute Statistical MC with a refined grid around zero (Figure 6.12), one can see
surprisingly that probability values are high around (0, 0). This behaviour was not
expected and automaton-ABC algorithm permits to discover this small area of high
satisfaction probability that was not caught by Statistical Model Checking over the
grid of 20 points per axis.

Similarly to experiment TR4, TR5 limits the speed of the initial decrease of
E (which is initially E0 = 100), to 50 within t ≤ 0.8. Again, this behaviour is
only compatible with a slow ES complexation and cannot be compensated by fast
decomplexation. The TR6 experiment caught an even more important correlation
between parameters. In fact, the support of TR6 posterior is contained within the
support of TR5 posterior. Indeed, a trajectory that verifies φ6 also verifies φ5.

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 137

Remarks

Results have been obtained by running Algorithm 18 with a sample size N = 1000.
There are no notable differences in performance between Algorithm 17 and 18 for
1D experiments on regions TR1, TR2, TR3 because of the large size of the resulting
distributions. However, simple automaton-ABC Algorithm 17 is not worth consider-
ing for TR4 and TR5. Given the large size of the support for the considered priors
([0, 100]×[0, 100]) we remark that the probability of sampling (a pair of) parameters
in the resulting posterior-distribution is about

90×0.03
2

100∗100 ≈ 10−4. This leads to a tiny
probability of drawing from the prior N = 1000 particles that fall in such a narrow
distribution, let alone that even a parameter sampled in the obtained distribution
could produce paths that do not satisfy φ. By adding several transitional steps with
the SMC version (Algorithm 18), the problem becomes treatable. The results for
TR4 required about 2 × 105 simulations of the model, which is the highest number
of simulations in all experiments.

6.5.3 SIR

We consider the SIR compartmental model (Kermack and McKendrick, 1927) al-
ready described in Equations 2.15. We tested our algorithm on a single formula
φ = G[0,100](I > 0) ∧ F[100,120](I = 0) with one 1D experiment and one 2D exper-
iment. This formula means that the considered epidemic is active within the time
interval [0, 100] but disappears during the time interval [100, 120]. In the 1D exper-
iment, ki = 0.0012 is fixed, whereas kr ∼U(0.005, 0.2). In the 2D experiment, both
parameters vary: ki∼U(5 ·10−4, 0.003) and kr∼U(0.005, 0.2). Figure 6.13 reports the
results of both experiments, including comparing of the satisfaction probability func-
tion obtained with the automaton-ABC method with that obtained with the Prism
model checker (numerical method for both 1D and 2D experiments). One can see
that the satisfaction probability function is well reconstructed in both cases.

Whereas success is quite expected in the 1D experiment because the histogram
suggests a Gaussian-like shape of the density, the result for the 2D experiment is more
remarkable because it is hard to guess the density shape based on the 2D histogram.
However, our algorithm managed to reproduce the same complex shape and values
given by the Model Checking estimates.

138 6.5. Applications

Figure 6.13: Results for the SIR model with φ = G[0,100](I > 0) ∧
F[100,120](I = 0).

On the top left figure: weighted histogram of automaton-ABC poste-
rior with 1000 particles for the 1D experiment; in blue: the true satis-
faction probability function computed with the Prism model checker
using the numerical engine of Prism over 40 points; in red: the esti-
mated satisfaction function with the kernel density estimation method.
The three other figures correspond to the 2D experiment. On the top
right figure: the 2D histogram of the automaton-ABC posterior. On
the bottom left figure: the kernel density estimation of the satisfaction
probability function. On the bottom right figure: the estimation of the
satisfaction probability function by the Prism model checker (numeri-

cal method).

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 139

Figure 6.14: Results for the intracellular viral infection model with
φ = G[0,50]G ≤ 10 ∧ F[50,200]G > 100.

Left figure: the 2D histogram of the automaton-ABC posterior.
Middle figure: kernel density estimation of the satisfaction probability

function.
Right figure: estimation of the satisfaction probability function by
Monte-Carlo simulations (based on a 99% confidence level and ap-

proximation 0.01).

6.5.4 Intracellular viral infection

We consider a model of cell viral infection (Haseltine and Rawlings, 2002) described
by Equations 6.5.4.

N + T
k1XT cn−−−−−→ G+ T T

k4XT−−−→∅

N +G
k2XGcn−−−−−→ T S

k5XS−−−→∅

N +A+ T
k3XT cnca−−−−−−→ S + T G+ S

k6XGXS−−−−−→V

N represents the nucleotides and A the amino acids. G is the genomic nucleic
acids, T the template nucleic acids, S the viral structural protein and V the secreted
virus. In this model, we assume nucleotides and amino acids have constant concen-
trations cn and ca: we suppose these species are in large number.

Satisfaction probability function estimation A 2D experiment is considered
with the following logical property: φ = G[0,50](G ≤ 10) ∧ F[50,200](G > 100). This
property expresses that the species G remains stable and low within time [0, 50], and
then a burst of speed in the creation of G occurs within [50, 100], which gives the
necessary material for the creation of the virus V .

We vary the concentrations of nucleotides and amino acids: cn ∼ U(0.6, 1.1)
and ca ∼ U(0.5, 2.0). Figure 6.14 reports the results of the experiment. Consider-
ing the end time of the formula, each simulation of this model is computationally
expensive. But our methodology still allows a proper run of the experiment, and we
get a reasonable approximation of the satisfaction function (it required about 7 · 103

simulations).

140 6.5. Applications

6.5.5 About the implementation of the automaton-ABC method

The implementation of automaton-ABC methods led to the development of a Julia
package. It includes both simulation and synchronised simulation of CTMC, easy
modeling of CTMCs based on Chemical Reaction Network, and ABC related methods.
Many details are provided in Appendix A.

ABC related algorithms are distributed and the above applications were per-
formed using HPC resources from the “Mésocentre” computing center of Centrale-
Supélec and École Normale Supérieure Paris-Saclay supported by CNRS and Région
Île-de-France (http://mesocentre.centralesupelec.fr/).

Tables 6.1 and 6.2 show the performance results for the whole set of experiments.
We omit the Kernel Density Estimation. It only depends on the number of particles
N , the length of the grid, and the choice of the kernel we set. Still, the computa-
tional time of Least Squares Cross-Validation can be prohibitive when the kernel is a
multivariate beta kernel with a high number of particles (N ≥ 1000) and grid search
(1000 is already high even if the computation of LSCV is distributed).

When the number of jobs is 120, the run was distributed on the Mesocentre HPC
cluster. Otherwise, it was run on a Dell XPS 9370 with CPU Intel i7 8550U @ 1.8GHz
x 8 cores.

Our tool for automaton-ABC in Julia is very efficient because, in our applications,
any experiment run is rarely higher than one minute. For example, the experiment
about the region TR4 of the ER model performs 256000 simulations within a minute
over the cluster (without counting the other computations of the ABC algorithm),
knowing that each simulation that reaches TR4 is about 2000 steps of Stochastic
Simulation Algorithm 1. In Appendix A, we compare the performance of our tool
with state-of-the-art softwares.

The SIR 2D experiment has a higher computational time than the 1D experiment,
even if it is run with 120 jobs. This is explained by the fact that creating and dealing
with many jobs has a higher computational cost when the execution time per job is
low. It is the case here: less than 7 seconds of computation has to be distributed over
120 jobs, which is not helpful. The viral infection model has a higher computational
cost per simulation because it is a much more complex model than the two others.

This computational time has to be put in perspective to classical Statistical
Model Checking methods. For example, in experiment TR4, Statistical Model Check-
ing has been performed over a grid of 200 points of a much smaller set than [0, 100]×

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 141

Exp ER TR1 ER TR2 ER TR3 SIR 1D
Number of jobs 1 1 1 1
Number of sim. 2263 4896 7197 25404
Time (sec) 7.5 10.9 8.7 7.1

Table 6.1: Performance results for the one-dimensional experiments
of automaton-ABC.

Exp ER TR4 ER TR5 ER TR6 SIR 2D Viral infection
Number of jobs 120 120 120 120 120
Number of sim. 256641 32367 47649 17284 6125
Time (sec) 66.18 29.2 31.9 13.1 70.1

Table 6.2: Performance results for the two-dimensional experiments
of automaton-ABC.

[0, 100]. It lasted more than one hour, and we saw this grid missed a region of high
probability for φ4 formula.

Script 10 (Automaton-ABC experiments related scripts)
Several scripts can be found in the git repository of the thesis:

• code/chap5/prism are related to model checking and statistical model checking
estimations of the satisfaction probability function.

• code/chap5/cosmos are related to the computation of average distances with
Cosmos.

• code/chap5/julia are related to the run of automaton-ABC algorithm, which
are based on our package (Appendix A), as well as illustrations of the Applica-
tions Section 6.5.

6.6 A comparison with Smoothed Model Checking

In this chapter, we have presented a method that tackles the estimation problem (Def-
inition) in stochastic model checking. As seen in Chapter 3, it is in line with the work
of (Bortolussi, Milios, and Sanguinetti, 2016) where the so-called Smoothed Model
Checking (Smoothed MC) method estimates the satisfaction probability function of
parametric CTMC. Methods belonging to this family do not solve the parameter syn-
thesis problem explicitely but provide reasonable estimates of the satisfaction function
that can lead to parameter synthesis, e.g. (Bortolussi and Silvetti, 2018) which is also
based on Smoothed MC. In this section, we discuss some results of Smoothed MC
algorithm for which a Python version is given in (Bortolussi and Silvetti, 2018). We
have already described this method in Section 4.3.1. For the sake of comparison, we

142 6.6. A comparison with Smoothed Model Checking

reproduced the 1D experiments for the ER model (Section 6.5.2) using the Smoothed
MC tool.

Figure 6.15 depicts plots of the satisfaction probabilities obtained with Smoothed
MC, which show a good agreement with those obtained with the automaton-ABC ap-
proach and Prism model checker (Figure 6.10). Table 6.3 reports the number of tra-
jectories generated by both algorithms, showing a clear advantage for the automaton-
ABC approach. In this table, we omit simulations involved in estimating Pr(φ;Mθ∗)

for the automaton-ABC. On the contrary, this table does not show the cost of nor-
malisation constant estimation in the Smoothed MC posterior (Equation 4.1) by
Expectation-Propagation. Also, a default value of 600 trajectories is set for each
satisfiability probability estimation by Statistical Model Checking, which should be
higher if one wants a high confidence level and a precise approximation.

Figure 6.15: Estimation of the satisfaction probability functions in
experiments TR1, TR2, TR3 for the ER system reported in Figure 6.10
with Smoothed MC algorithm. In blue: the estimated function; in

green: the lower bound; in orange: the upper bound.

TR1 TR2 TR3
Smoothed MC 27000 37200 32400
Automaton-ABC 2263 4896 7197

Table 6.3: Number of simulations before termination for both al-
gorithms. For automaton-ABC: number of N = 1000 particles. For
smoothed MC: each point of the dataset is estimated with 600 trajec-

tories (default value).

In return, the ABC method does not have the same statistical guarantees as
Smoothed MC. Indeed, we do not assume any specific form for the density πφ−ABC :
we minimise Least Squares Cross-Validation criterion to have the better trade-off
between bias and variance over the N =1000 particles in kernel density estimation.
To run the 2D experiments, we have adapted the available Smoothed MC code, but
preliminary tests seem to indicate a prohibitive computational time. Indeed, conver-
gence for 2D experiments such as TR4 required many more trajectories simulation
(∼ 2 · 105). The end time of simulations is much higher than the 1D experiments
(t2 = 10.0≫0.075).

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 143

The 2D experiments on the ER system show that our method gives an efficient
way to identify the region of the parameter space where the satisfaction function is
positive. After such an exploration is performed, one can use either kernel density
estimation procedure, or use regression function methods such as Smoothed MC, that
trade higher computational cost for better statistical guarantees.

Note that since the main computational cost of the ABC approach is the simu-
lation of trajectories, our method is well suited for distributed computing, which is
not the case for all regression methods (e.g. Smoothed MC is, by nature, sequential).

6.7 Discussion

6.7.1 About the distance of automaton AF before t1

In Section 6.2, we detailed a particular aspect of the automaton: if the entire system
does not evolve between a time t′ < t1 until t2, the distance computed by AF equal
the first part of Equation 6.1. However, with this behaviour, if the system evolves
but the number of species xO remains the same, the distance will be updated. For
example, in Figure 6.1, if reactions occur between [t1, t2] = [8.0, 10.0] that does not
affect the copy number of P , the output of AF is d2 (the smaller one). It can be
problematical if there are reactions completely uncorrelated to the others that can
still occur (for example, adding a reaction ∅ → A to the ER system).

If one wants to change this behaviour, a possible solution is to add an extra
variable n′ that stores the second to last value of the number of the studied species
O. Then, the edges l1 → l3 must contain a new predicate n ̸= n′ to know whether
the automaton should update the distance or not. This approach increases the com-
putational time of the synchronised simulation.

Another solution is to defined the set RO ⊆ ALL of reactions that change the
number of the studied species O. If R ∈ RO, the species O is a reactant or a product
of the reaction R (its population number changes). If R ∈ ALL \ RO occurs, the
number of species O remains equal. Then, we only have to change ALL by RO in
the automata edges. This also improves the computational cost, because n and the
distance d are updated only when a reaction in RO occurs.

144 6.8. Summary

6.7.2 Linear Hybrid Automata for non-elementary regions

The presented automata and results were developed for elementary regions µ. How-
ever, the automata are extendable to non-elementary regions. Here, we discuss two
cases that induce non-elementary regions and describe automatic rules to construct
automata for these non-elementary regions.

First, when the condition implies two species O and P , we have to make dis-
junction elimination. Let us consider µ = (x

(O)
1 ≤ xO ≤ x

(O)
2) ∨ (x

(P)
1 ≤ xP ≤ x

(P)
2).

We duplicate automaton variables (e.g d becomes d(O) and d(P)). Each asynchronous
edge of the two automata can be written as l

γt∧γO,UO−−−−−−→ l′ where:

• γt refers to the conditions relative to the time t and γO the other ones (these
are the conditions that depend on xO, x

(O)
1 , x

(O)
2 in our case),

• UO refers to the updates of variables related to O (all of the updates are related
to O in our case).

Thus, any asynchronous edge has to be replaced by three edges:

• l
γt∧γO∧γP ,{UO,UP }−−−−−−−−−−−−−→ l′

• l
γt∧γO∧¬γP ,{UO}−−−−−−−−−−−→ l′

• l
γt∧¬γO∧γP ,{UP }−−−−−−−−−−−→ l′

Each edge that goes to the final location has to update the final distance, dfinal =
min(d(O), d(P)). Also, the synchronised transitions must update n(O) and n(P).

Second, for a species O, we consider µ = (x1 ≤ xO ≤ x2) ∨ (x3 ≤ xO ≤ x4)

when it is not an elementary region (it means x1 ≤ x2 < x3 ≤ x4). Thus, one can
apply the methodology detailed above by taking P = O and x

(O)
1 , x

(O)
2 , x

(P)
1 , x

(P)
2 =

x1, x2, x3, x4.

These rules can be iterated to obtain automata with non-elementary regions that
define n ∈ N elementary regions. Finally, one can construct a new AG∧F automata
based on these transformations. Indeed, this automaton is composed of the two
automata AG and AF linked by an asynchronous transition.

6.8 Summary

In this Chapter:

Chapter 6. Automaton-ABC for the statistical parametric verification of CTMCs 145

• We have developed a new method to estimate the satisfaction probability func-
tion related to time-bounded reachability problems. The new procedure involves
automaton-ABC with satisfiability distances between a trajectory and a prop-
erty, computed by synchronised simulation of a CTMC with a Linear Hybrid
Automaton.

• We have proved their efficiency in terms of correctness of the results and the
efficiency of the implemented methods over several biological models.

Several tracks are worth considering to continue and improve this work:

• Any satisfiability distance in accordance with an MITL formula can be consid-
ered if the Proposition 6.2.1 still holds.

• Develop a program in our package that automatically creates the extended
automata based on rules detailed in Section 6.7.2, and design an automaton for
all types of Until formulae.

• Creates a new procedure of parameter synthesis based on automaton-ABC.
Indeed, in Algorithm 18 the considered ϵ tolerance is zero in this new ABC
procedure: it guarantees the link of the ABC posterior with the satisfaction
probability function. However, one can think to relax this tolerance to have
better confidence over the subset of parameters that do not fulfil the property φ

(i.e. the complementary of the parameter space subset estimated by automaton-
ABC).

• Describe how automaton-ABC statistically behaves if the trajectories are ap-
proximatively simulated with, for example, Tauleap Algorithm 3.

147

Chapter 7

Conclusion

Chemical Reaction Networks model a wide range of biological phenomena. If tra-
ditionally their dynamics are described by Ordinary Differential Equations, this ap-
proach is not relevant when the population is low. It is especially the case when one
studies interactions between molecular species at the scale of the living cell (genetic
regulatory networks, signalling pathways). By the reduction of such assumption,
stochastic dynamics of CRN are described by CTMCs.

This thesis addressed several tasks of statistical inference and verification for
Continuous-Time Markov Chains described by Chemical Reaction Networks. We
have endeavoured to prove the efficiency of the synchronised simulation of a CTMC
with a Linear Hybrid Automaton within the ABC algorithm. This new method called
automaton-ABC has been applied to several problems from Systems Biology.

First, we gave an overview of the literature for Bayesian statistical inference and
statistical model checking for parametric CTMCs. We introduced the notations from
both fields, detailed what makes the considered problems complex, and discussed
state-of-the-art techniques.

Second, we used automaton-ABC for statistical inference of oscillatory genetic
networks. The nature of observations concerns the oscillations. They are described
by sentences such as ”we observe N oscillations between values L and H with mean
period duration t̄p

(obs)”. This qualitative behaviour is measured by an LHA Aper

(Ballarini et al., 2015), and we define a distance over such property of an oscillatory
trajectory. The use of automaton-ABC over two oscillatory models (doping three-
way oscillator and repressilator) allowed to show the parameter space subsets where
specific kind of oscillations are the most probable.

Third, we used automaton-ABC to gain computational time in classical infer-
ence. HASL formalism offers a framework that tailors the simulation according to a

148 7.1. Limits and Perspectives

specification. In this context, it was used to stop the simulation each time the Eu-
clidean distance to observations exceeds the tolerance ϵ in the ABC procedure. In an
experiment with the repressilator model, we showed that ABC computational time
was divided by more than three compared to classical ABC.

Fourth, we used automaton-ABC for time-bounded reachability problems. The
satisfiability distances represent the distance of a trajectory σ from specific forms of
MITL formula φ. We designed LHA to compute these distances and used automaton-
ABC to address quantitative model checking for parametric CTMCs. More precisely,
we highlighted the link between the satisfaction probability function Pr(φ;M) and
the automaton-ABC posterior with Aφ named πφ−ABC . Automaton-ABC-SMC al-
lows exploring the parameter space concerning the formula φ efficiently. The results
were obtained over several models of CRN and constantly compared to either an ana-
lytical solution, model checking with Prism, or statistical model checking with Cosmos
or Prism. Due to optimisation and parallelisation of our implementation, the runs
of automaton-ABC did not exceed two minutes, and outperformed state-of-the-art
statistical model checking methods.

Finally, since these methods mix several concepts from both fields, we have
tried to make their use accessible and efficient. We chose to use Julia because of its
high-level syntax, efficiency, and great possibility of metaprogramming and code gen-
eration. It led to a Julia package that is much detailed in Appendix A. All the Julia
scripts related to the results are documented within the Chapters, and the Scripts
List above the introduction.

7.1 Limits and Perspectives

7.1.1 Scope of our work

This work focused on CTMCs defined by Chemical Reaction Networks. Indeed, they
quickly challenge statistical inference or verification problems. However, the methods
are easily generalisable to generalised semi-Markov processes (which corresponds to
Generalised Stochastic Petri Nets).

7.1.2 Automaton-ABC for statistical inference

In Section 5.3, we gave a new approach to study oscillations in genetic networks
whose stochastic dynamics are described by CTMCs. Another qualitative behaviour

Chapter 7. Conclusion 149

much observed in biological systems is bistability (Tyson et al., 2008). Bistable
models are characterised by the existence of two steady states (and possibly unstable
states). However, such stochastic models can produce trajectories that switch between
two steady states. Thus, one can imagine an LHA that would characterises this
behaviour, for example, by quantifying the time spent in a detected steady state or
the duration time of a transition between two steady states, and use this LHA within
the automaton-ABC procedure to identify the regions of the parameter space that
reproduces this behaviour.

7.1.3 Automaton-ABC for time-bounded reachability

As already mentioned in Section 6.7.2, the method only covers a fragment of MITL.
Further work has to be done to cover all MITL formulae. Instead of trying to design an
automaton for each kind of formula, defining operations on HASL trajectory formulae
could improve the coverage of MITL.

To illustrate this, we consider the computation of satisfiability distances of MITL
formulae φ1 ∧φ2 or φ1 ∨φ2. We suppose φ1 and φ2 are formulae whose satisfiability
distances are computed by already defined LHA Aφ1 and Aφ2 with HASL trajec-
tory formulae (Last(dφ1),Aφ1) and (Last(dφ2),Aφ2). The idea is to define an LHA
Aφ1 × Aφ2 that integrates the behaviours of Aφ1 and Aφ2 into one LHA. One can
construct this automaton by defining a product over two LHA, whose location set is
the cartesian product of Aφ1 and Aφ2 ; variables and flows are the concatenation of
those from the two automata. For example, let us consider these two simple LHA:

l1 l2

E, γ, U

l′1 l′2

E′, γ′, U ′

Its product could be defined as:

150 7.1. Limits and Perspectives

(l1, l
′
1)begin (l1, l

′
2)

(l2, l
′
1) (l2, l

′
2)

E
,γ

,U

E
,γ

,U

E′, γ′, U ′

E′, γ′, U ′

E
∩
E ′, γ ∧

γ ′, U
∪
U ′

With such operations, the distances from both formulae φ1 and φ2 would be
computed even if simultaneous updates of the two automata variables occur. Indeed,
(l1, l

′
1)→ (l2, l

′
2) is fired if the occurred event is in E ∩ E′ and the predicate γ ∧ γ′ is

fulfilled. Thus, the satisfiability distance of φ1 ∧φ2 could be (Last(dφ1 + dφ2),Aφ1 ×
Aφ2). For φ1 ∨ φ2, the satisfiability distance could be (Last(dφ1 ∗ dφ2),Aφ1 ×Aφ2).

As (Bortolussi and Silvetti, 2018) did with (Bortolussi, Milios, and Sanguinetti,
2016), a statistical parameter synthesis method may be constructed on top of automaton-
ABC for time-bounded reachability. The stake is to statistically control the approxi-
mation of kernel density estimator based on automaton-ABC samples. For example,
one can relax the tolerance by setting ϵ > 0 to have better confidence for parameters
that do not verify a formula φ.

In complex CTMC models, exact simulation has a high computational cost. One
can use approximate simulation methods such as Tauleaping (Algorithm 3) to reduce
the computational cost. The smaller the time resolution τ , the better the simulation
approximation. The Multi-Level ABC method (Lester, 2018), evoked in Section 5.1.2,
could be a solution to improve the performance of our automaton-ABC procedure.

7.1.4 Implementation

In our implementation detailed in Appendix A, defining a CTMC by a CRN and
apply ABC-SMC and automaton-ABC-SMC is easy with the LHA presented in this
thesis. However, further work will be performed to improve our tool:

• It is possible but challenging (without help) to design its own LHA. Thus, work
is in progress to render the creation of LHA as simple as CTMCs in the package.

Chapter 7. Conclusion 151

• Our implementation does not cover the whole HASL expression grammar, which
would be interesting for more sophisticated runs of automaton-ABC.

7.2 Last words

Many phenomena in Systems Biology involve complex behaviours that are stochas-
tic and complex. Performing inference or verification on such models is generally
difficult. In this thesis, we attempted to show how Bayesian inference and statis-
tical verification, via the Approximate Bayesian Computation (ABC) methods and
the Hybrid Automata Stochastic Language (HASL), could both benefit from each
other. Bayesian inference has benefited from HASL by its capacity of formally de-
scribe such behaviours. Statistical verification has benefited from Bayesian inference
by its efficiency to explore the parameter space of statistical models.

153

Appendix A

MarkovProcesses.jl : A Julia
package for efficient simulation,
statistical inference and
verification methods of Markov
Processes.

A.1 Introduction

This thesis introduced a framework for statistical inference and verification of CTMCs
with quite heavy notations and concepts. Thus, there is a need of developing an
interface that allows users to be familiar with these methods easily and run them
efficiently.

We choose Julia (Bezanson et al., 2014) as a programming language to address
this task because it is both an efficient language and an easily usable one. Julia
is a high-level multi-paradigm language, combining functional and object-oriented
programming. It is adapted to mathematical notations, near Python syntax, can
easily call and import Python and R objects, and can interact easily with C and
Fortran code.

We wanted to construct a package that implements the concepts presented in
this thesis with qualities such as:

• Computationally efficient.

• Easy to use.

154 A.2. A few introductory examples

• Deeply tested, both in terms of execution and statistical relevance.

Efforts have been made to conjugate these three requirements. The two first ones,
which seem contradictory, are reachable via the use of the Julia language. Indeed,
Julia allows a simple mathematical oriented syntax, but performance is reachable
with 100% Julia code using computational diagnosis tools mainly described in the
web page (JuliaLang, 2020).

Remark A.1.1 (Some Julia notations)
In the following, T1::AT means the type T1 is a subtype of AT . It can be interpreted
as ”T1 inherits from AT” in classical object-oriented programming. var::T1 means
var has type T1 (typeof(var)<:T1).

In Julia, naming a function with an exclamation mark (for example, set_x0!)
is a convention to tell the user that one of the variables may be modified to prevent
side effects.

Script 11 (MarkovProcesses.jl package)
MarkovProcesses.jl package is available at the git repository https://gitlab-research.
centralesupelec.fr/2017bentrioum/markovprocesses.jl.

A.2 A few introductory examples

A.2.1 Simulation of the SIR model

Let us start with the simulation of the SIR model.

1 using MarkovProcesses
2 load_plots()
3 load_model("SIR")
4 σ = simulate(SIR)
5 plot(σ)

Listing A.1: Simulation of the SIR model.

Code A.1 simulates the SIR model and plots Figure A.1. Let us describe this
code line by line.

i. using MarkovProcesses loads the package.

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 155

ii. load_plots() loads methods about plotting special objects of our package
such as Trajectory .

iii. load_model("SIR") searches on the models/ directory of the package repos-
itory and includes the file SIR.jl. It creates a variable called SIR of type
T<:ContinuousTimeModel (this means T is a type that inherits from ContinuousTimeModel
in Julia language).

iv. σ = simulate(SIR) simulates the SIR model and stores the simulation in the
variable σ. It has a type typeof(σ)<:AbstractTrajectory that stores the
values of the simulations, the times and the transitions/events.

v. plot(σ) plots the trajectory σ.

Figure A.1: Simulation of the SIR model with observation function
g = [: I].

Script 12 (Simulation of the SIR model with MarkovProcesses.jl)
Figure A.1 can be generated by running the Julia script located in code/appendix_
pkg/sim_sir.jl.

One can notice that the plotted trajectory has only one dimension. Indeed, any
Model object contains an observation model described by a function g (defined in
Section 5.1.1 of Chapter 5). In this case, g is the function (XS , XI , XR) → XI ,
implemented in Julia by SIR.g = [:I] . The output of println(SIR) is given in
Listing A.2.

156 A.2. A few introductory examples

SIR SSA pkg model (ContinuousTimeModel)
- variables :
* S (index = 1 in state space)
* I (index = 2 in state space)
* R (index = 3 in state space)
- parameters :
* kr (index = 2 in parameter space)
* ki (index = 1 in parameter space)
- transitions : R1,R2
- observed variables :
* I (index = 1 in observed state space, index = 2 in state space)
p = [0.0012, 0.05]
x0 = [95, 5, 0]
t0 = 0.0
time bound = Inf

Listing A.2: Output of the print of the SIR variable created in
Code A.1.

One can easily create a model that is not available in models/ thanks to the
@network_model macro.

1 my_model = @network_model begin
2 Infection: (S+I => 2I, ki*S*I)
3 Recovery: (I => R, kr*I)
4 end "My awesome SIR"

Listing A.3: Creation of the SIR model with @network_model.

Code A.3 creates a SIR model and stores it in my_model . Each reaction is de-
scribed by a couple of expressions. The first expression describes the interactions be-
tween species (reactants => products). The second expression describes the kinetic
rate (Equation 2.4). Each symbol that cannot be found in any reaction is considered
as a parameter. The output of println(my_model) is given in Listing A.4.

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 157

My awesome SIR model (ContinuousTimeModel)
- variables :
* S (index = 1 in state space)
* I (index = 2 in state space)
* R (index = 3 in state space)
- parameters :
* kr (index = 2 in parameter space)
* ki (index = 1 in parameter space)
- transitions : Infection,Recovery
- observed variables :
* S (index = 1 in observed state space, index = 1 in state space)
* I (index = 2 in observed state space, index = 2 in state space)
* R (index = 3 in observed state space, index = 3 in state space)
p = [0.0, 0.0]
x0 = [0, 0, 0]
t0 = 0.0
time bound = Inf

Listing A.4: Output of the model created by a user in Code A.3.

The parameters and initial state of models created with @network_model are
set to zero, and all the variables are observed. One can change that with set_x0! ,
set_param! , set_time_bound! or set_observed_var! .

A.2.2 Simulation of the ER model synchronised with AF automaton

The package also allows the simulation of a CTMC synchronised with a Linear Hybrid
Automaton described in Section 4.4 of Chapter 4.

1 using MarkovProcesses
2 load_plots()
3 load_model("ER")
4 load_automaton("automaton_F")
5 A_F = create_automaton_F(ER, 50.0, 75.0, 0.025, 0.05, :P)
6 sync_ER = A_F * ER
7 σ = simulate(sync_ER)
8 plot(σ)

Listing A.5: Simulation of the ER model synchronised with a AF

automaton.

158 A.2. A few introductory examples

Figure A.2: Simulation of the ER model synchronised with a AF

automaton.

Code A.5 simulates the Enzymatic Reaction model and plots Figure A.2. A
watchful eye may have noticed that this the configuration of AF in experiment R1 of
Section 6.5.2. Let us describe the crucial lines of the code.

i. load_model("ER") loads the ER model.

ii. load_automaton("automaton_F") loads a function create_automaton_F that
creates an automaton AF described in Figure 6.3 of Chapter 6.

iii. A_F = create_automaton_F(ER, 50.0, 75.0, 0.025, 0.05, :P) creates an
automaton AF with constants x1 = 50, x2 = 100, t1 = 0.025, t2 = 0.05.

iv. σ = simulate(sync_ER) simulates the sync_ER model and stores the simu-
lation in the variable σ.

v. plot(σ) plots the trajectory σ.

Script 13 (Synchronised simulation of the ER model with MarkovProcesses.jl)
Figure A.2 can be generated by running the Julia script located in code/appendix_
pkg/sim_sync_er.jl.

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 159

A.2.3 Run of the automaton-ABC algorithm

1 using MarkovProcesses
2 using Plots
3 load_model("ER")
4 load_automaton("automaton_F")
5 A_F_R1 = create_automaton_F(ER, 50.0, 75.0, 0.025, 0.05, :P)
6 sync_ER = A_F_R1*ER
7 parametric_sync_ER = ParametricModel(sync_ER, (:k3, Uniform(0.0,

100.0)))↪→

8 res = automaton_abc(parametric_sync_ER; nbr_particles = 1000)
9 histogram(res.mat_p_end', weights = res.weights, normalize =

:density)↪→

Listing A.6: Automaton-ABC: Experience R1 of ER model with AF

automaton.

Code A.6 runs the automaton-ABC algorithm of the ER model with AF and
k3 ∼ U(0, 100). The result is showed in Figure A.6. Let us describe the last three
lines:

• Line 7 defines a prior distribution on the parameter k3 for the SynchronizedModel
sync_er . It is represented by the creation of the variable parametric_sync_er
(of type ParametricModel).

• Line 8 runs the automaton-ABC algorithm and stores the results in res .
One can access the ABC empirical posterior distribution by res.mat_p_end
. As there is only one degree of freedom in our parametric model, the size of
mat_p_end is 1x1000.

• Line 9 plots the histogram of the ABC empirical distribution.

160 A.3. Structure of the package

Figure A.3: Simulation of the ER model synchronised with a AF

automaton.

Script 14 (Experiment R1 of automaton-ABC with MarkovProcesses.jl)
Figure A.3 can be generated by running the Julia script located in code/appendix_
pkg/R1.jl.

A.3 Structure of the package

The package proposes several tools for Markovian models, i.e. models whose transi-
tion function only depends on the last value of the state. In its minimum requirements,
it has to:

i. Simulate a CTMC,

ii. Model Linear Hybrid Automata,

iii. Implements the synchronised simulation detailed in Section 4.4 of Chapter 4,

iv. Run automaton-ABC-SMC (Algorithm 16) and ABC-SMC (Algorithm 14).

This is the minimal requirement list. It can, and it will be extended to other
features. The idea is to present a framework where statistical inference or verification
algorithms can be implemented easily with the framework.

The source code is organised as follows:

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 161

• core/common.jl: Contains the definition of the common types (struct) and
constructors of the variables of our package. This file regroups all the required
type definitions.

• core/model.jl: Contains methods related to models, for example, simulation,
access or modification of fields.

• core/trajectory.jl: Contains methods related to trajectories (a trajectory is
a type of variable returned by a simulation of a model).

• core/lha.jl: Contains methods related to Linear Hybrid Automata.

• core/network_model.jl: Implementation of @network_model .

• models/: Each file is an implementation of a model. It creates a variable whose
type is T <: Model .

• algorithms/: Contains statistical inference and verification algorithms.

• tests/: Contains tests of our package powered by the Test Julia package.

• bench/: Contains benchmarks of several tasks powered by the BenchmarkTools
Julia package.

A.4 Type diagram

In this section, we describe the general structure of the project. The package was
developed with an object-oriented point of view because it is more suited for the
various concepts in this thesis.

162 A.4. Type diagram

ParametricModel

+ m = Model

+ distribution = Distribution

Model

ContinuousTimeModel

+ name = attribute

+ variables = String[] 1..dim_state

+ parameters = String[] 1..dim_params

+ transitions: Transition[]

+ p = Float64[] 1..dim_state

+ x0 = Float64[] 1..dim_params

+ f! = Function

+ g = String[]

+ isabsorbing = Function

+ time_bound = Float64

SynchronizedModel

+ m = ContinuousTimeModel

+ A = LHA

LHA

+ transitions = Transition[]

+ locations = Location[]

+ Λ = (Location => Function)[]

+ locations_init = Location[]

+ locations_final = Location[]

+ flow = (Location => Float64)[]

+ edges = Edge[]

+ constants = Float64[]

Edge

+ transitions = Transition[]

+ check_constraints = Function

+ update_state! = Function

AbstractTrajectory

Trajectory

+ values = Float64[][]

+ times = Float64[]

+ transitions = Transition[]

SynchronizedTrajectory

+ state_lha_end = StateLHA

+ values = Float64[][]

+ times = Float64[]

+ transitions = Transition[]

StateLHA

+ loc = Location

+ variables = Float64[]

+ time : Float64

Transition =
Union{Nothing,String}

Location = String

1

0..*

1

0..*

simulates

simulates

1

0..*

updates

Figure A.4: UML graph of the different types defined in the package.

Figure A.4 is a UML description of the types/classes involved in the package.
Let us describe these types with a top-down approach.

i. A ParametricModel is a Model associated with a prior distribution over the
parameters of the model. It implements Definition 4.3.1 with a prior over the
parameter space.

ii. A Model is an abstract type . Any type that is inherited from Model should
have the possibility to be simulated, i.e. a method simulate(model::T) where
T <: Model should be implemented.

iii. A ContinuousTimeModel is a Markovian model, i.e. a model that can be simu-
lated only by knowing the previous state. In practice, it means we can define a
function f!(xnplus1, ..., xn,...) that updates the state n+1 by accessing
the state xn. More details are discussed later in Section A.5.1.

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 163

iv. An LHA is a Linear Hybrid Automaton. The fields follow Definition 4.4.2.

v. A SynchronizedModel is a ContinuousTimeModel synchronised with an LHA .

vi. An AbstractTrajectory is a simulation/observation of a model. A Trajectory
is the result of a ContinuousTimeModel and a SynchronizedTrajectory is the
result of a SynchronizedModel .

A.5 Implementation

A.5.1 Simulation of ContinuousTimeModel

In this section, we describe the simulation of an object model of type ContinuousTimeModel
.

The method simulate(model::ContinuousTimeModel) relies on the evaluation
of a method model.f! , which must have the signature:

1 f!(xnplus1::Vector{Int}, l_t::Vector{Float64},
2 l_tr::Vector{Union{Nothing,String}},
3 xn::Vector{Int}, tn::Float64, p::Vector{Float64})

This function represents the transition function between two time steps of any
simulation. It can either compute the simulation of the next reaction as in the SSA
(Algorithm 1) or a leap of several reactions as in the tau leap Algorithm 3. The
pseudo-code 19 shows how the model is simulated with this method.

164 A.5. Implementation

Algorithm 19 Simulation of a ContinuousTimeModel.
Require: A ContinuousTimeModel with parameters p and initial state x0.
Ensure: A Trajectory object that contains the simulation.

Init: xn ← x0, tn ← t0, trn ← nothing

Allocate : values, times, transitions

Allocate : xn+1, l_t, l_tr

repeat
f !(xn+1, l_t, l_tr, xn, tn, p)

push!(values, xn+1)

push!(times, l_t[1])

push!(transitions, l_tr[1])

Copy: xn, tn, trn ← xn+1, l_t[1], l_tr[1]

until tn > time_bound or xn is an absorbing state.

The variables xn+1, l_t, l_tr are vectors in which the simulation of the next time
step is stored. This kind of implementation is used to decrease memory allocation,
which gives better performance. That leads to l_t being a 1-length vector for the
next time and ltr being a 1-length vector for the next transition/event.

The pseudo-code is simplified. Among other things such as the observation of the
model and how the variables are mapped to an index, we have implemented a buffering
system for allocating memory at two levels in order to reach better performance.

• The field model.estim_min_states gives an approximative estimation of the
number of states. Then, the simulator will allocate a vector of length
model.estim_min_states for each variable instead of pushing the values step
by step, requiring (approximately) reallocation at each step during execution.
The vectors are resized if there are not enough simulation steps. By default,
the value is set to 50.

• The field model.buffer_size is the length of the buffer after reaching
model.estim_min_states . Then, the same buffering system described above
is executed. The default value is 10.

Even if there is a slight improvement of the performance, the gain is a bit dis-
appointing because by default, Julia allocates and manages arrays ingeniously (for
example preallocation).

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 165

A.5.2 Simulation of SynchronizedModel

In this section, we describe the simulation of an object sync_model of type
SynchronizedModel . It is the synchronised simulation detailed in Section 4.4 of
Chapter 4. sync_model is a couple of an LHA and a ContinuousTimeModel . The
simulation is similar to a ContinuousTimeModel , except that at each simulation, we
update a StateLHA related to the automaton, thanks to te next_state! method.
Also, we add a stopping criterion: the state of the LHA is in one of the final locations.

Algorithm 20 Simulation of a SynchronizedModel.
Require: A well defined SynchronizedModel with LHA A, parameters p and initial

state x0.
Ensure: A SynchronizedTrajectory object that contains the simulation.

Init: xn ← x0, tn ← t0, trn ← nothing

Sn ← init_state(A, x0)

Allocate : values, times, transitions

Allocate : Sn+1, xn+1, l_t, l_tr

repeat
f !(xn+1, l_t, l_tr, xn, tn, p)

next_state!(Sn+1, xn+1, l_t, l_tr, Sn, xn, p)

push!(values, xn+1)

push!(times, l_t[1])

push!(transitions, l_tr[1])

Copy: Sn, xn, tn, trn ← Sn+1, xn+1, l_t[1], l_tr[1]

until tn > time_bound or xn is an absorbing state or Sn.loc is a final location.

A.5.3 About trajectories

An object Trajectory contains any simulation or observation of a ContinuousTimeModel
. Values of a trajectory σ are easily accessible:

• σ.I or σ[:I] returns the whole 1-dimensional trajectory of the variable I.

• σ.I[4] or σ[:I,4] returns the value of variable I in the 4− t state.

• σ[4] returns the whole 4 − th state. Be careful with this notation because it
allocates a new array. This is due to the data structure of σ.values
(typeof(σ.values)<:Vector{Vector{Float64}}).

166 A.6. Use of ABC methods

• times(σ) returns the times of the transitions related to transitions(σ) (for
example, the times when a reaction occurred in the SIR model). If a transi-
tion equals nothing , then no transition occurred at the time (for any simula-
tion, transitions(σ)[1] == nothing). If the trajectory is simulated from a
bounded model, then the last transition is nothing and vice versa.

An object SynchronizedTrajectory is similar to Trajectory , except it contains
the last state of the LHA.

A.5.4 Synchronisation with LHA

The synchronisation of a ContinuousTimeModel with an LHA is mainly embodied by
the next_state! method:

1 function next_state!(Snplus1::StateLHA, A::LHA,
2 xnplus1::Vector{Int}, tnplus1::Float64,

tr_nplus1::Transition,↪→

3 Sn::StateLHA, xn::Vector{Int}, p::Vector{Float64};
verbose::Bool = false)↪→

After the simulation of the next transition / event whose characteristics are stored
in xnplus1,tnplus1,tr_nplus1 (next state, next time, next transition), next_state!
is executed. The automaton fires the edges until one synchronous edge that contains
tr_nplus1 is fired. The fire of an edge E::Edge is embodied by the execution of
E.update_state!(Snplus1, A.constants, xnplus1, p) .

A.6 Use of ABC methods

A.6.1 Classical ABC

ABC-SMC Algorithm 14 is run through the method abc_smc :

1 function abc_smc(pm::ParametricModel, l_obs::AbstractVector,
func_dist::Function;↪→

2 nbr_particles::Int = 100, tolerance::Float64 = 0.0,
alpha::Float64 = 0.75,↪→

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 167

3 duration_time::Float64 = Inf,
dir_results::Union{Nothing,String} = nothing,↪→

4 bound_sim::Int = typemax(Int), save_iterations::Bool =
false,↪→

5 init_mat_p::Union{Matrix{Float64},Nothing} = nothing,
6 init_weights::Union{Vector{Float64},Nothing} = nothing,

init_vec_dist::Union{Vector{Float64},Nothing} =
nothing)

↪→

↪→

• func_dist(l_sim, l_obs) is the distance function between simulations and
observations. It corresponds to ρ(η(ysim), η(yexp)).

• l_obs::Vector{T2} is a collection of observations.

• func_dist must have the signature func_dist(l_sim::Vector{T1}, l_obs::Vector{T2})
where T1 is the type of the simulation returned by the model in pm .

The keyword arguments are:

• nbr_particles is the number of particles

• tolerance is the final tolerance ϵ.

• duration_time is a threshold for the time execution. When it is exceeded, the
algorithm finishes its current execution and ends.

• bound_sim is a threshold for the number of simulations. When it is exceeded,
the algorithm finishes its current execution and ends.

• If save_iterations equals true , the parameters matrix, the associated weights
and computed distances are saved at each iteration.

• If init_mat_p (a parameters’ matrix), init_weights (a weights’ vector) and
init_vec_dist (a distances’ vector) are specified, the ABC-SMC algorithm
begins with these values instead of simulating from the prior.

Examples can be found in Script 4.

A.6.2 ABC with synchronised simulation

Automaton-ABC-SMC Algorithm 16 is run through the method automaton_abc :

168 A.7. Tests

1 function automaton_abc(pm::ParametricModel, l_obs::AbstractVector,
func_dist::Function;↪→

2 nbr_particles::Int = 100, tolerance::Float64 = 0.0,
alpha::Float64 = 0.75,↪→

3 duration_time::Float64 = Inf,
dir_results::Union{Nothing,String} = nothing,↪→

4 bound_sim::Int = typemax(Int), save_iterations::Bool
= false,↪→

5 sym_var_aut::VariableAutomaton = :d,
6 init_mat_p::Union{Matrix{Float64},Nothing} = nothing,
7 init_weights::Union{Vector{Float64},Nothing} =

nothing,
init_vec_dist::Union{Vector{Float64},Nothing} =
nothing)

↪→

↪→

↪→

The ParametricModel pm has to contain a SynchronizedModel . Keywords are
the same as described in Section A.6.1 above. sym_var_aut is the last value of the
synchronised simulation to keep. It corresponds to the HASL trajectory expression
Last(sym_var_aut) in the automaton-ABC algorithm. At the time of writing, the
use of other HASL trajectory expression is not implemented.

Several examples with different automata are available:

• Aper period automaton in Script 5,

• AABC,ϵ ABC euclidean distance automaton in Script 6,

• AF ,AG,AG∧F automata for satisfiability distances of time-bounded reachabil-
ity in Script 10.

A.7 Tests

In the following, we describe the tests of the package located in tests/. Each sub-
directory represents a specific group of tests, and each Julia file of a sub-directory is
a test.

For example, tests/unit contains all the unit tests of the package. Each file
tests a specific characteristic. These tests are grouped in the file tests/run_unit.jl
with the Test package and @testset macro. Running tests/run_unit.jl runs all
the unit tests contained in tests/unit. This is done for every sub-directory.

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 169

One can run tests/run_all.jl to run all the tests group.

A.7.1 Execution test

These tests check if the execution behaves correctly for essential package functions.

• tests/unit groups the unit tests.

• tests/dist_lp groups the tests of the Lp distance between two trajectories.
Some trajectories are hard-written to test specific behaviours, whereas other
computations are tested with a Riemann sum.

• tests/automata groups tests of linear hybrid automata and synchronised sim-
ulations.

• tests/automaton_abc checks if automaton_abc method runs without errors.

• tests/abc_smc checks if abc_smc method runs without errors.

A.7.2 Cosmos based statistical tests

A more original approach to test our methods is done by statistically testing the
behaviour of our algorithms with the statistical model checker Cosmos (Ballarini et
al., 2015). Each automaton implemented in our package is written in Cosmos with a
.lha file. For now, only the distance values of AF ,AG,AG∧F automata are tested.

The basic structure of a test follows:

• A configuration is set:

– Type of model, initial state and parameters.

– Type of automaton and its constants.

– Statistical configuration: width, level

• The test runs a system call of Cosmos and parses the results files.

• The same configuration is run by the package, with the same Cosmos number
of simulations.

• It tests if the package result of the average distance is statistically consistent
with the width of the confidence interval. It also tests if all the simulated tra-
jectories are accepted by both our package and Cosmos runs because automata
AF ,AG,AG∧F were designed to accept all the trajectories.

170 A.8. Benchmarks

These tests are located in tests/cosmos. For now, there are three Julia files,
one file per automaton.

• tests/cosmos/distance_F/ER_1D.jl runs the test described above for R1,
R2 and R3 configurations of the AF automaton for the ER model described in
Section 6.5.2. k3 varies over the range [0, 100] with a step of 10.

• tests/cosmos/distance_G/ER_R5.jl runs the test for R5 configurations of the
automaton AG for ER model. k1 varies in {0, 0.5, 1.0, 1.5} and k2 in {0, 40, 80}.

• tests/cosmos/distance_G_F/ER_R6.jl runs the test for the R5 configuration
of the automaton AG∧F for the ER model. k1 varies in {0, 0.5, 1.0, 1.5} and k2

varies in {0, 40, 80}.

We do not pretend these tests guarantee correct behaviours of any user-defined
automaton, but the distances automata can be relatively trusted.

A.8 Benchmarks

In this thesis, the computational efficiency of simulations is critical because likelihood-
free inference and statistical verification methods require a massive amount of simu-
lations. In this section, we present benchmarks of the execution time of simulations.
In this package, efforts have been made to reduce useless computations and limit
memory allocation to reach better performances. All the benchmarks were run on a
Dell XPS 9370 with CPU Intel i7 8550U @ 1.8GHz x 8 cores.

Script 15 (Benchmarks of MarkovProcesses.jl)
Benchmark scripts are available at code/appendix_pkg/bench. Each file runs a
benchmark and generates LATEX files, which are included in this appendix.

A.8.1 Versus Cosmos

Cosmos is a program developed in C++. It is a well-known compiled language very
often used when performance is critical. Julia is a high-level dynamic language, and
Julia’s compiler produces LLVM native code, a compiler written in C++.

The idea of this benchmark is to show how close the package can be from a
program written in C++. For such a scripting language as Julia, it is easy to use
syntaxes that allocate too much memory considering our tasks. A simple illustrating

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 171

example is Julia’s slicing array. The syntax v[m:n] creates a copy of the accessed
vector v, which can be too computationally expensive if we only want to read these
values (for the record, it is solvable with @view). Thus, we paid much attention to
the computational cost of methods that can be executed a considerable number of
times, such as model.f! or next_state! . For example, any ContinuousTimeModel
created by @network_model creates a function f! that allocates 0 bytes after a few
executions.

We designed several benchmarks:

• Benchmark 1: Compute the mean distance of AG automaton of configuration
R5 (ER model) with a width confidence interval equal to 0.1, confidence level
equal to 0.99, and parameter vector p = [1.5, 1.0, 1.0].

• Benchmark 2: Compute the mean distance of AG automaton of configuration
R5 (ER model) with a width equal to 0.01, confidence level equal to 0.99, and
parameter vector p = [1.5, 40.0, 1.0]

Each benchmark implies the following steps:

• A configuration is set:

– Type of model, initial state and parameters.

– Type of automaton and its constants.

– Statistical configuration: width of confidence interval, confidence level in-
terval

• The benchmark runs a system call of Cosmos and parses the results files: num-
ber of simulations, time, used memory.

• The same task is run by the package with the same number of simulations.

Bench 1
Mean

Time (s)
Max.

Time (s)
Min.

Time (s)
Mean

Memory (MB)
Simulations

Package 3.41 5.13 2.59 20.51 20000
Cosmos 7.3 10.13 5.76 559.86 20000

Table A.1: Cosmos: Benchmark 1; 100 runs.

172 A.8. Benchmarks

Bench 2
Mean

Time (s)
Max.

Time (s)
Min.

Time (s)
Mean

Memory (MB)
Simulations

Package 117.22 126.51 109.63 62.64 62000
Cosmos 179.04 195.98 167.41 549.94 62000

Table A.2: Cosmos: Benchmark 2; 5 runs.

Bench 2
Mean

Time (s)
Max.

Time (s)
Min.

Time (s)
Mean

Memory (MB)
Simulations

Package 47.68 51.14 44.19 X 62000
Cosmos 64.15 65.08 62.38 647.98 62000

Table A.3: Cosmos: Benchmark 2 with 8 jobs (parallel execution);
5 runs.

Table A.1 groups the results for Benchmark 1. We can see that all the execution
statistics are of the same order. For the mean execution time, our package slightly
outperforms Cosmos, and we use much less memory.

Table A.2 and Table A.3 group the results of Benchmark 2 with two configura-
tions: a sequential run and a parallel run. We can see that our package outperforms
Cosmos. However, the execution times are of the same order (the difference is always
less than the execution time itself).

We can observe that the package allocates less memory compared to Cosmos. A
deep memory allocation analysis was performed on the package to reduce efficiently
useless allocations, which implies some specific knowledge about the Julia language.

These encouraging results need to be put into perspective because our package
does not have all the functionalities of Cosmos, which is a more evolved machinery.
Our package does not handle all HASL expressions, which requires computations
at each simulation step. For now, only the last value of an automaton variable is
available. Also, our benchmarks were not scaled to more complex models. Thus, it
is impossible to state that our package will perform better for every model and task.
However, it shows that our package is comparable in terms of execution time and
performs better for the tasks considered in the thesis. This is quite challenging for
such a high-level dynamic language as Julia compared to a C++ written program.

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 173

A.8.2 Versus Catalyst.jl/DifferentialEquations.jl

We developed a new package because we wanted to implement synchronisation of
CTMC in Julia. Nevertheless, simulation of Chemical Reaction Networks is already
available in Julia with Catalyst.jl. This package designs any model based on the
Chemical Reaction Network representation. Then, this model can be used by the
DifferentialEquations.jl package to solve any simulation problem, i.e. simulates the
model by different methods such as Gillepsie or SDE. DifferentialEquations.jl is a well-
known efficient package that can solve numerically any type of differential equations.

Thus, the combination of the two packages can simulate any ContinuousTimeModel
, except that there is less flexibility in their @reaction_network macro than ours.
Indeed, in Catalyst.jl, they assume mass-action law for the kinetics, whereas any
form can be written for the propensity function in our package. In the following, we
can compare the performance of our package to the combination of Catalyst.jl and
DifferentialEquations.jl.

We made two benchmarks of performance:

• Benchmark 1: One simulation of the ER model with parameter vector p =

[0.2, 40.0, 1.0]. This parameter vector is chosen because the number of steps is
significant (at least 7000 states for a simulated trajectory in practice).

• Benchmark 2: Creation of the ER model + the simulation task described in
Benchmark 1.

Bench 1
Mean

Time (ms)
Max.

Time (ms)
Min.

Time (ms)
Mean

Memory (KB)
Package 0.54 1.95 0.32 376.08

Catalyst.jl 0.91 3.6 0.56 807.22

Table A.4: Catalyst.jl: Benchmark 1

Table A.4 groups the results of Benchmark 1. We can observe that our mean
execution time is 40% to that of Catalyst.jl. This performance gain is non-negligible
if this task is repeated a considerable number of times, which is our case. Also, we
allocate two times less memory while we also store the occurred reactions/transitions.

174 A.9. Conclusion

Bench 2
Mean

Time (ms)
Max.

Time (ms)
Min.

Time (ms)
Mean

Memory (KB)
Package 27.95 106.88 24.6 1303.95

Catalyst.jl 1.01 4.57 0.66 862.83

Table A.5: Catalyst.jl: Benchmark 2

Table A.5 groups the results of Benchmark 2. Creating a model is more costly for
our package than Catalyst.jl. It needs to be put into perspective: creating a model
only occurs a few time in a single run of a program.

These benchmarks do not even take into account the loading of modules. For
example, a using Catalyst can take about 20 seconds at the first execution of a
Julia session (but not the first-ever, which means the package is already precompiled),
whereas using MarkovProcesses takes about 3 seconds. This is non-negligible if
one distributes computations over an HPC cluster, for example.

A.9 Conclusion

A.9.1 Summary

We have developed a Julia package to simulate CTMCs and synchronised CTMCs
with a Linear Hybrid Automata, and the automaton-based ABC methods developed
in this thesis. The call of methods is high-level (it takes only a few lines). Tests were
developed to verify our experiments statistically. Benchmarks were made to compare
performance to other existing programs. We showed that our package performs better
than one of Julia’s reference package. Execution times are of the same order, which
is encouraging, considering that Cosmos is a C++ program.

A.9.2 Perspectives

However, we believe this work builds the foundations of a tool with room for improve-
ment in many ways.

• Use of any form of HASL trajectory expression in automaton-ABC.

• A macro that facilitates the creation of LHA. For now, they are Julia handwrit-
ten coded.

Appendix A. MarkovProcesses.jl : A Julia package for efficient simulation, statistical
inference and verification methods of Markov Processes. 175

• Tests with other more complicated models.

• Statistical tests of created models with --loop option of Cosmos.

• Statistical tests with automata that are not related to time-bounded reachabil-
ity.

For the integration of this package into Julia’s community, perspectives are:

• Creation of a ReactionSystem object of the ModelingToolkit.jl API.

• Analyse how our methods can be integrated into the Turing.jl framework, which
regroups many Bayesian inference methods.

177

Appendix B

Measure theory

This appendix aims at giving the main tools of probability theory for the construction
of probability measures.

Section 2.2 constructs a measure and proves the equality of measures over a
σ-algebra generated by a semiring. The consistency of the construction of these
measures is based on Caratheodory’s extension theorem.

B.1 Results from measure theory: Caratheodory’s theo-
rem

The definitions and theorems presented in this section are based on (Klenke, 2008,
Chapter 1).

Let X be a set of elements. In the following definitions, A ⊂ P(X) is a subset
of the power set of X.

Definition B.1.1 (Semiring of sets.)
Let X be a set of elements and A ⊂ P(X). A is called a semiring of sets if :

• i) ∅ ∈ A.

• ii) It is stable by set difference (A,B ∈ A ⇒ A \B is a finite disjoint union of
elements of A).

• iii) It is stable by intersection (A,B ∈ A ⇒ A ∩B ∈ A).

Definition B.1.2 (additive set function.)
Let µ : A → R≥0 be a set function. µ is additive if for any A1, . . . , An (n ∈ N∗) that

178 B.2. Semiring of sets of Path(M)

are disjoint and verifies
⋃n

i=1An ∈ A we have :

µ(

n⋃
i=1

An) =

n∑
i=1

µ(An)

µ is called a content.

Definition B.1.3 (σ-subadditive function.)
Let µ : A → R≥0 be a set function. µ is σ-subadditive if for any (An)n∈N and
A ⊂

⋃+∞
n=0An we have :

µ(A) ≤
+∞∑
n=0

µ(An)

Definition B.1.4 (σ-finite content.)
Let µ : R → R≥0 be a content (an additive set function) over a semiring R. µ is
σ-finite if ∃(Rn)n∈N countable set of elements in R s.t.

+∞⋃
n=0

Rn = R∧ ∀n ∈ N, µ(Rn) < +∞

Definition B.1.5 (Definition of the outer measure µ∗.)
The outer measure µ∗ : P(X)→ R≥0 of a set function µ over a semiring R is defined
as :

µ∗(A) = inf{
+∞∑
k=0

µ(Ak)/Ak ∈ R and A ⊂
⋃
n∈N

An}

It is monotone and σ-subadditive.

Theorem B.1.1 (Caratheodory’s theorem for extended measure)
Let R be a semiring and let µ0 : R→ R≥0. If µ0 is :

• additive

• σ-subadditive

• σ-finite

Then it admits a unique extended measure µ defined on F(R), and µ0 = µ|R = µ∗
|R.

B.2 Semiring of sets of Path(M)

Let M a CTMC (Section 2.1.2). The probability measure PrM is defined on the
cylinder sets:

Appendix B. Measure theory 179

C(s0, I0, . . . , Ik−1, sk) = {σ ∈ Path(M), ∀i ∈ {0, . . . , k}, σ[i] = si, δ(σ, i) ∈ Ii}

with Ij =]aj , bj [.

Let R be the set that contains all the cylinder sets C(s0, I0, . . . , Ik−1, sk) (R ⊂
P(Path(M)).

Proposition B.2.1 (Semiring of sets of trajectories.)
Let M be a CTMC defined by an initial distribution α and a transition rate matrix
Q. Let :

R ={C(s0, I0, . . . , Ik−1, sk), k ∈ N, (si ∈ S)0≤i≤k,

and for i ∈ {0, . . . , k − 1}, Ii =]ai, bi[with ai, bi ∈ R≥0} ∪ {∅}

where C(s0, I0, . . . , Ik−1, sk) is the set of paths σ ∈ Path(M) with σ[i] = si and
δ(σ, i) ∈ Ii. Then R is a semiring of sets of trajectories.

Proof. ii) Stable by \

Let A,B ∈ R. By definition of R, A = C(s(A)
0 , I

(A)
0 , . . . , I

(A)
kA−1, s

(A)
kA

) and B =

C(s(B)
0 , I

(B)
0 , . . . , I

(B)
kB−1, s

(B)
kB

).

Let k− = min(kA, kB).

If s(A)
0:k− ̸= s(B)

0:k− , A \B = A.

Otherwise, let us distinguish two cases.

If kB ≤ kA, then we can define : ∀i ≤ kB, I
(A\B)
i = I

(A)
i \ I(B)

i and ∀kB ≤ i ≤
kA, I

(A\B)
i = I

(A)
i .

Then A \B = C(s(A)
0 , I

(A\B)
0 , . . . , I

(A\B)
kA−1 , s(A)

kA
).

If kB > kA, we can define ∀i ≤ kA, I
(A\B)
i = I

(A)
i \ I(B)

i and ∀kA ≤ i ≤
kB, I

(A\B)
i = R≥0 \ I(B)

i . Then,

180 B.3. Statistical model of CTMCs

A \B =
⋃

s∗
0:(kB−kA−1)

∈D
C(s(A)

0 , I
(A\B)
0 , . . . , I

(A\B)
kA−1 ,

s(A)
kA

, I
(A\B)
kA

, s∗0,R≥0, . . . ,R≥0, s∗kB−kA−1)

∪ C(s(A)
0 , I

(A\B)
0 , . . . , I

(A\B)
kA−1 , s(A)

kA
,

I
(A\B)
kA

, s(B)
kA+1, I

(A\B)
kA+1 , . . . , I

(A\B)
kB−1 , s(B)

kB
)

with D = {s′0:(kB−kA−1) ∈ SkB−kA−1 with s′0:(kB−kA−1) ̸= s(B)
kA+1:kB

and Q(sA, s′0) >

0, Q(s′i, s′i+1) > 0}. In other words, A \B is the set of paths in A that does not have
the sequence s(B)

kA+1:kB
at the end or have this sequence but out of the intervals of B.

This union is disjoint and also finite if for each state the number of transitions
is finite.

iii) Stable by ∩

Let A,B ∈ R. By definition of R, A = C(s(A)
0 , I

(A)
0 , . . . , I

(A)
kA−1, s

(A)
kA

) and B =

C(s(B)
0 , I

(B)
0 , . . . , I

(B)
p−1, s

(B)
kB

). We suppose without loss of generality that kA ≥ kB.

It appears that if ∃i ≤ kB, s(A)
i ̸= s(B)

i , then A ∩B = ∅

In the other case, A ∩ B = C(s(A∩B)
0 , I

(A∩B)
0 , . . . , I

(A∩B)
kA−1 , s(A∩B)

kA
) where ∀i ≤

kA, s(A∩B)
i = s(A)

i and I
(A∩B)
i = I

(A)
i ∩ I

(B)
i . With this form, A ∩B ∈ R.

In both cases A ∩B ∈ R.

B.3 Statistical model of CTMCs

B.3.1 Density of a CTMC

In classical statistical theory, we often consider a set of probability measures (Pθ)θ∈Θ

called a statistical model. To have good statistical guarantees, we want our family of
measures to be dominated by some measure. In this section, we construct a measure
µ independent of PS so that µ dominates PS (i.e PS ≪ µ, absolute continuity).

The set of trajectories of a CTMC can be seen as a subset of (S,R≥0)
N. Then,

C(k, s0:k, I0:k−1) can be rewritten as {(s0, . . . , sk)}×(I0:k−1∪{+∞}) which is a subset
of (S,R≥0)

k+1.

Appendix B. Measure theory 181

We can define a product measure on
⊗k

i=0(S,R≥0). δk+1 is the counting measure
on Sk+1 and λk is the Lebesgue measure on Rk.

Let k ∈ N∗. Let µ : R → R≥0 be the monotone set function defined on the
semiring R :

µ(C(k, s0:k, I0:k−1)) = 1 · λ(k)
(
I0:k−1

)
Basically, this operation means that if A ∈ R, then the measure of A is the

volume of I0 × . . . × Ik−1. The measure of any intersection of sets of R is defined
because it is a semiring, so stable by ∩.

The measure of any union of sets in F(R) is defined by the outer measure µ∗ in
Definition B.1.5.

Remark B.3.1
On any set A = C(s0, I0, . . . , Ik−1, sk), A can be represented as {s0:k}×I0× . . .×Ik−1.
In this case, µ(A) = (δ(k+1) ⊗ λ(k))({s0:k} × (I0 × . . .× Ik−1))

Proposition B.3.1
µ is (i) additive, (ii) σ-subadditive and (iii) σ-finite on F(R).

Proof. (i) (ii) Here we do not dive into the details, but the σ-subadditivity of µ∗
becomes an additivity in F(R). This is done by the definition of M(µ) that defines
the µ-measurable sets which is proven to be a σ-algebra, so F(R) is contained in it
(Lemma 1.50 and 1.51 in Klenke, 2008).

(iii) Let us prove µ is σ-finite.

C(k, s0:k, [0, n]k) is entirely defined by

(s0:k, n) = (s0[1], . . . , s0[d], . . . , sk[1], . . . , sk[d], n) ∈ Nd·(k+1)+1

i.e. a stationary sequence of integers. The set of stationary sequences of integers
called S0 is countable (as a countable union of the sets of stationary sequences of
order i ∈ N).

{C(s0:k, [0, n]k)}(s0:k,n)∈S0
is countable, the union of all is (S,R≥0)

N (set of any
trajectory) and ∀(s0:k, n) ∈ S0, µ(C(s0:k, [0, n])) < +∞ (by definition). µ is σ-finite.

182 B.3. Statistical model of CTMCs

Proposition B.3.2 (Unique measure on F(Path(M)) defined on R.)
There exists a unique measure µ on F(Path(M)) with µ|R = µ = µ∗

|R.

Proof. By proposition B.3.1, we can apply the extension theorem of Caratheodory B.1.1.

Proposition B.3.3 (Absolute continuity of PS .)
Let S be a time-homogeneous CTMC. Then PS ≪ µ.

Proof. Let A ∈ F(Path(M)) with µ(A) = 0. Let us prove PS (A) = 0.

By Caratheodory’s theorem B.1.1, µ∗(A) = µ(A) so ∃(An)n∈ N in R with A ⊂⋃+∞
n=0An s.t. µ(A) =

∑+∞
k=0 µ(An). We can rewrite An as An = C(kn, s(An)

0:kn
, I

(An)
0:kn−1).

We have a series with positive values whose limit sum is equal to zero, hence all
the terms of the series are equal to zero.

On the other hand, µ(An) = λkn(I
(An)
0:kn−1) = 0, i.e. ∀n, ∃i < kn,]a

(An)
i , b

(An)
i [= ∅.

It follows PS (An) ∝
∏kn−1

i=0 (e−E(si)a(An)
i − e−E(si)b(An)

i) = 0.

Then PS
∗(A) ≤

∑+∞
n=0 PS (An) = 0 by definition of the outer measure with inf.

We can conclude PS ≪ µ.

Corollary B.3.1 (Density of a CTMC)
Let S be a CTMC. PS admits a density pS with respect to µ :

pS :Path(M)→ R≥0

σ =
(

s0
t0−→ . . .

tk−1−−−→ sk
)
→ P (s0)

k∏
i=1

Q(si−1, si)e−E(si−1)ti−1

Proof. Let S be a time-homogeneous CTMC with a infinitesimal generator matrix
Q. First, by Radon-Nykodym and Proposition B.3.3, PS has a density dPS

dµ . Let

Appendix B. Measure theory 183

Ts ∼ Exp(E(s)), pTs its density and :

p
(k)
S :

k⊗
i=0

(S,R≥0)→ R≥0

(s′0:k, t′0:k−1)→ P (s0)
k∏

i=1

P (s′i−1, s′i)pTs(t
′
i−1)

pS :(S,R≥0)
N→ R≥0

(s′0:k, t′0:k−1)→ p
(k)
S (s′0:k, t′0:k)

µS :F(R)→ R≥0

A→
∫
σ∈A

ps(σ)dµ(σ)

µS is by construction a measure (it is sometimes denoted as µS = pS · µ). Let
us prove µS |R = PS |R.

Let C ∈ R. Then C = C(s0:k, I0:k−1) (= {s0:k} × (I0 × . . .× Ik−1))

µS (C) =
∫

σ∈C
pS (σ)d(δ

(k+1) ⊗ λ(k))(σ)(Remark B.3.1)

=
∫∫

(s′,t′0:k)∈{s0:k}×I0×...×Ik−1

p
(k)
S (s′, t′)d(δ(k+1) ⊗ λ(k))(ds′, dt′)

=
∫
t′∈I0×...×Ik−1

(∫
s′∈{s0:k} p

(k)
S (s′, t′)dδ(k+1)(ds′)

)
λ(k)(dt′)(Fubini)

= P (s0)
∏k

i=1 P (si−1, si)
∫
t′∈I0×...×Ik−1

∏k
i=1 pTs(t

′
i−1)λ

(k)(dt′)

= P (s0)
∏k

i=1 P (si−1, si)P(Tsi−1 ∈ Ii−1)

= PS (C)

We can conclude µS |R = PS |R. Hence, as they are two measures on F(R),
µS = PS by Theorem B.1.1.

Finally, dPS
dµ = pS (µ almost everywhere).

Then, ∀σ = s0
t0−→ . . .

tk−1−−−→ sk, pS (σ) = P (s0)
∏k

i=1Q(si−1, si)e−E(si−1)ti−1 .

185

Appendix C

A simple analytical example of
ABC inference

Let us illustrate the ABC method and kernel density estimation with a simple exam-
ple. We consider n i.i.d observations yexp = (y(1), . . . , y(n)) from N (µ, σ2

0). We want
to estimate θ = µ via Approximate Bayesian Computation (σ0 = 1.0 is known). The
prior is uniform over [−1, 1] (p(θ) ∝ 1).

C.1 Computation of the true posterior and ABC poste-
rior

In this case, the different posteriors can be computed analytically, and the mean

estimator is a sufficient statistic. We denote η(yexp) = yexp =
1

n

n∑
i=1

y(i).

First, let us compute the true posterior distribution.

p(θ|yexp) ∝ p(yexp|θ)p(θ)

∝
n∏

i=1

p(y(i)|θ)

∝ e
1

2σ2
0
(
∑n

i=1(y
(i)−θ)2)

∝ e
1

2σ2
0
(
∑n

i=1 y
(i))2

e
nyexp

2

2σ2
0 e

n

2σ2
0
(yexp−θ)2︸ ︷︷ ︸

∝ density of N (yexp,(
σ0√
n
)2)

So p(.|yexp) ∼ N (yexp, (
σ0√
n
)2) by the factorisation theorem and η is a sufficient

statistic. The prior being uniform, p(.|θ) ∼ N (θ, (σ0√
n
)2).

186 C.1. Computation of the true posterior and ABC posterior

Let us compute the ABC posterior distribution. ABC can be seen as a regular
bayesian method with an approximate likelihood 3.3.2:

pϵABC(yexp|θ) =
∫

1(||y − yexp|| ≤ ϵ)p(y|θ)dy

πϵ
ABC(θ|yobs) ∝ pϵABC(yexp|θ)p(θ)

Let us compute the approximate likelihood:

pϵABC(yexp|θ) = pϵABC(yexp|θ)

=

∫
R

1(||y − yexp||)p(y|θ)dy

=

∫ yexp+ϵ

yexp−ϵ
pN (θ,(

σ0√
n
)2)(y)dy

Then pϵABC(yexp|θ) = P(Yθ ≤ yexp+ϵ)−P(Yθ ≤ yexp−ϵ) where Yθ ∼ N (θ, (σ0√
n
)2).

Hence, by uniform prior πϵ
ABC(θ|yexp) ∝ pϵABC(yexp|θ).

By Fubini and by recognising a law N (θ, (σ0√
n
)2),

∫
R
pϵABC(yexp|θ)dθ =

∫
R
(

∫ yexp+ϵ

yexp−ϵ

√
n√
2π

e
n

2σ2
0
(y−θ)2

dy)dθ

= 2ϵ

In conclusion:

πϵ
ABC(θ|yexp) =

P(Yθ ≤ yexp + ϵ)− P(Yθ ≤ yexp − ϵ)

2ϵ

If Z ∼ πϵ
ABC(.|yexp),

E[Z] =

∫
R
θπABC,ϵ(.|yexp)dθ

=
1

2ϵ

∫
R
θ(

∫ yexp+ϵ

yexp−ϵ

√
n√
2π

e
n

2σ2
0
(y−θ)2

dy)dθ

=
1

2ϵ

∫ yexp+ϵ

yexp−ϵ
(

∫
R
θ

√
n√
2π

e
n

2σ2
0
(y−θ)2

)dy

Appendix C. A simple analytical example of ABC inference 187

We recognise the expectation of N (y,
σ2
0
n), then:

E[Z] =
1

2ϵ

∫ yexp+ϵ

yexp−ϵ
ydy =

1

4ϵ
((yexp + ϵ)2 − (yexp − ϵ)2) = yexp

By the same ideas of computations:

E[Z2] =
1

2ϵ

∫ yexp+ϵ

yexp−ϵ
(

∫
R
θ2
√
n√
2π

e
n

2σ2
0
(y−θ)2

)dy

=
1

2ϵ

∫ yexp+ϵ

yexp−ϵ
y2

σ2
0

n
dy

=
σ2
0

n
+

1

6ϵ
((yexp + ϵ)3 − (yexp − ϵ)3)

=
σ2
0

n
+ yexp

2 +
ϵ2

3

It follows: V[Z] = E[Z2]− E[Z]2 =
σ2
0

n
+

ϵ2

3
−−→
ϵ→0

σ2
0

n

In conclusion,

E[Z] = yexp

V[Z] =
σ2
0

n
+

ϵ2

3

C.2 Simulations

We run the ABC-SMC algorithm with 100, 1000 and 10000 particles.

With ϵ = 0.01.

188 C.2. Simulations

Figure C.1: Weighted histograms of ABC. In green the true posterior
distribution, in blue the true ABC posterior and in red the estimated
ABC posterior with gaussian kernel. On the left: 1000 particles. On

the right: 10000 particles.
.

With ϵ = 0.1.

Figure C.2: Weighted histograms of ABC run. In green the true
posterior distribution, in blue the true ABC posterior and in red the
estimated ABC posterior with gaussian kernel. On the left: 1000

particles. On the right: 10000 particles.

Here is a detailed run with ϵ = 0.2 and 1000 particies.

Appendix C. A simple analytical example of ABC inference 189

Figure C.3: Histogram of ABC run with 1000 particles. In green
the true posterior distribution, in blue the true ABC posterior and
in red the estimated ABC posterior with gaussian kernel. On the
left: multinomial resampling with the weights. On the right: weighted

estimator.
.

191

Appendix D

Synthèse en français

Les réseaux de réactions chimiques (CRN) constituent un formalisme utilisé pour
modéliser des processus biologiques. Quand la population est de taille modérée et
supposée bien mélangée, le processus stochastique sous-jacent pour décrire ses dy-
namiques est une chaîne de Markov en temps continu (CTMC). Ce processus est dit
sans mémoire: l’état futur du système ne dépend que de l’état courant.

L’inférence statistique de ce type de CTMC est complexe: le calcul de la vraisem-
blance est en général difficile à résoudre. Les méthodes ABC (Approximate Bayesian
Computation) forment une classe de méthodes bayésiennes sans calcul de vraisem-
blance qui permettent d’approcher la distribution postérieure avec des simulations de
Monte-Carlo.

La vérification de modèles, qui fut à l’origine développée pour garantir la fiabilité
de systèmes et logiciels informatiques, se penche de plus en plus sur la biologie des
systèmes. En effet, il y a un réel besoin de comprendre les interactions complexes
entre molécules dans les systèmes biologiques. Malheureusement, l’espace d’états
d’un CTMC défini par un CRN explose généralement, voir est infini. Pour palier à
cela, des méthodes de vérification statistiques ont été développées. Le principe est de
simuler un certain nombre de fois le modèle et de calculer le ratio des simulations qui
ont vérifié une propriété. Récemment, une logique temporelle appelée HASL a été
introduite pour la vérification statistique de modèles: elle adopte intrinsèquement le
point de vue statistique de la vérification.

Dans cette thèse, nous nous intéressons à l’inférence statistique et la vérification
statistique de chaines de Markov en temps continu définies par un modèle de réseaux
de réactions chimiques. Notre contribution tient principalement dans la formulation
d’un algorithme ABC combiné avec le formalisme HASL appelé automaton-ABC.

Les trois premiers chapitres réfèrent à l’état de l’art des différents domaines

192

étudies. Le premier chapitre présente les bases la théorie des chaines de Markov.
Après avoir discuté des principales définitions et propriétés des CTMC (chaines de
Markov continues en temps), nous définissons la mesure de probabilité induit par
un CTMC sur son espace de trajectoires. Ensuite, le formalisme des CRN (réseaux
de réactions chimiques) est présenté, ainsi que les différentes manières de simuler
ces modèles. Le chapitre 2 rappelle les méthodes d’inférence statistique basées sur
les simulations de Monte-Carlo. On y présente les bases de l’inférence bayésienne,
et de ses algorithmes associés (Importance Sampling, Markov Chain Monte Carlo,
Sequential Monte Carlo). Ensuite, une revue des méthodes de type ABC (Approx-
imate Bayesian Computation, famille de méthodes sans calcul de vraissemblance)
est détailée. Plusieurs algorithmes d’échantillonnage sont présentés, dont la version
séquentielle de Monte Carlo de la méthode ABC (ABC-SMC). Enfin, les méthodes
d’estimation des densités par noyaux sont présentées. Le chapitre 3 discute de la véri-
fication de modèles pour les CMTCs. On y présente des logiques temporelles (MITL,
CSL), puis on détaille les différents problèmes de vérification (estimation, seuil) pour
un CTMC ou une famille paramétrisée de CTMCs. Enfin, le formalisme HASL est
présenté, avec la définition des automates linéaires hybrides (LHA), et la simulation
synchronisée avec ces automates.

Les deux autres chapitres présentent les contributions. Le chapitre 4 discute de
l’inférence statistique pour les CTMCs. On y développe la formulation d’un nouvel
algorithme appelé automaton-ABC, qui combine la simulation synchronisée par un
automate d’un CTMC permise par le formalisme HASL. Deux applications en sont
faites. Premièrement, nous utilisons un automate issu du formalisme HASL qui dé-
tecte les comportements oscillatoires pour explorer les zones de paramètres de certains
modèles biologiques définis par un CRN qui permettent de produire des oscillations.
Deuxièmement, nous utilisons le formalisme HASL pour une implémentation plus
efficace de l’inférence ABC classique. Le chapitre 5 développe une nouvelle méthode
de vérification statistique basée sur l’algorithme automaton-ABC pour la vérification
statistique quantitative pour des problèmes d’atteignabilité bornée en temps. Nous
définissons la distance d’une trajectoire issu d’un CTMC à une formule logique MITL,
pour ensuite construire des automates (LHA) qui calculent cette distance. A l’aide
de ces automates, la méthode automaton-ABC permet de trouver les paramètres des
modèles biologiques définis par un CRN qui vont satisfaire certaines formules MITL.

L’implémentation des méthodes présentées est documentée et a conduit au développe-
ment d’une bibliothèque dans le langage de programmation Julia. Les détails de
l’implémentation sont présents en annexe.

193

Bibliography

Alharbi, Randa (2018). “Bayesian Inference for Continuous Time Markov Chains”.
In.

Alur, Rajeev, Tomás Feder, and Thomas A. Henzinger (1991). “The benefits of relax-
ing punctuality”. In: Proceedings of the Annual ACM Symposium on Principles of
Distributed Computing 43.1, pp. 139–152. doi: 10.1145/112600.112613.

Anderson, David F. (2007). “A modified next reaction method for simulating chemical
systems with time dependent propensities and delays”. In: Journal of Chemical
Physics 127.21. issn: 00219606. doi: 10.1063/1.2799998. arXiv: 0708.0370.

Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society. Series B:
Statistical Methodology 72.3, pp. 269–342. issn: 13697412. doi: 10.1111/j.1467-
9868.2009.00736.x.

Andrieu, Christophe and Gareth O. Roberts (2009). “The pseudo-marginal approach
for efficient Monte Carlo computations”. In: Annals of Statistics 37.2, pp. 697–725.
issn: 00905364. doi: 10.1214/07-AOS574.

Aziz, Adnan (2000). “Model Checking Continuous Time Markov Chains”. In: ACM
Transactions on Computational Logic, pp. 162–170.

Aziz, Adnan et al. (1996). “Verifying Continuous Time Markov Chains”. In: LNCS.
Vol. 1102 of LN. isbn: 978-3-540-61474-6. doi: 10.1007/3-540-61474-5_75.

Baier, Christel. and Joost-Pieter. Katoen (2008). Principles of model checking. MIT
Press, p. 975. isbn: 9780262026499.

Baier, Christel et al. (2003). “Model-Checking Algorithms for Continuous-Time Markov
Chains”. In: IEEE Transactions on Software Engineering, pp. 524–541. doi: https:
//doi.org/10.1109/TSE.2003.1205180.

Baldan, Paolo et al. (2010). Petri nets for modelling metabolic pathways: A survey.
Vol. 9. 4, pp. 955–989. isbn: 1104701091806. doi: 10.1007/s11047-010-9180-6.

Ballarini, Paolo and Marie Duflot (2015). “Applications of an expressive statistical
model checking approach to the analysis of genetic circuits”. In: Theoretical Com-
puter Science 599, pp. 4–33. issn: 03043975. doi: 10.1016/j.tcs.2015.05.018.
url: http://dx.doi.org/10.1016/j.tcs.2015.05.018.

https://doi.org/10.1145/112600.112613
https://doi.org/10.1063/1.2799998
https://arxiv.org/abs/0708.0370
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1214/07-AOS574
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1016/j.tcs.2015.05.018
http://dx.doi.org/10.1016/j.tcs.2015.05.018

194 Bibliography

Ballarini, Paolo, Radu Mardare, and Ivan Mura (2009). “Analysing Biochemical Oscil-
lation through Probabilistic Model Checking”. In: Electronic Notes in Theoretical
Computer Science. issn: 15710661. doi: 10.1016/j.entcs.2009.02.002.

Ballarini, Paolo et al. (2011). “HASL: An expressive language for statistical verifi-
cation of stochastic models”. In: VALUETOOLS 2011 - 5th International ICST
Conference on Performance Evaluation Methodologies and Tools May, pp. 306–
315. doi: 10.4108/icst.valuetools.2011.245710.

Ballarini, Paolo et al. (2015). “HASL: A new approach for performance evaluation and
model checking from concepts to experimentation”. In: Performance Evaluation
90, pp. 53–77. issn: 01665316. doi: 10.1016/j.peva.2015.04.003.

Barbot, Benoît (2014). “Acceleration for Statistical Model Checking”. In.
Bause, Falko and Pieter Kritzinger (2013). Stochastic Petri Nets - An Introduction to

the Theory. Vieweg. isbn: 3-528-15535-3.
Beaumont, Mark A. (2010). “Approximate Bayesian computation in evolution and

ecology”. In: Annual Review of Ecology, Evolution, and Systematics 41, pp. 379–
406. issn: 1543592X. doi: 10.1146/annurev-ecolsys-102209-144621.

Beaumont, Mark A. et al. (2009). “Adaptive approximate Bayesian computation”.
In: Biometrika 96.4, pp. 983–990. issn: 00063444, 14643510. url: http://www.
jstor.org/stable/27798882.

Bernton, Espen et al. (2019). “Approximate Bayesian computation with the Wasser-
stein distance”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 81. doi: 10.1111/rssb.12312.

Bezanson, Jeff et al. (2014). “Julia: A Fresh Approach to Numerical Computing”. In:
59.1, pp. 65–98. issn: 0036-1445. doi: 10.1137/141000671. arXiv: 1411.1607.
url: http://arxiv.org/abs/1411.1607.

Billingsley, Patrick (1961). “Statistical Inference for Markov Processes”. In: The Uni-
versity of Chicago. issn: 15372723. doi: 10.1080/00401706.1963.10490116.

Bladt, Mogens and Bo Friis Nielsen (2017). Matrix-Exponential Distributions in Ap-
plied Probability. Vol. 81. isbn: 978-1-4939-7047-6. doi: 10.1007/978-1-4939-
7049-0.

Bladt, Mogens and Michael Sørensen (2005). “Statistical inference for discretely ob-
served Markov jump processes”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 67.3, pp. 395–410. doi: https://doi.org/10.1111/
j.1467-9868.2005.00508.x. url: https://rss.onlinelibrary.wiley.com/
doi/abs/10.1111/j.1467-9868.2005.00508.x.

Blum, Michael G.B. B. et al. (2012). “A comparative review of dimension reduc-
tion methods in approximate Bayesian computation”. In: Statistical Science 28.2,
pp. 189–208. doi: 10.1214/12-STS406. arXiv: 1202.3819.

https://doi.org/10.1016/j.entcs.2009.02.002
https://doi.org/10.4108/icst.valuetools.2011.245710
https://doi.org/10.1016/j.peva.2015.04.003
https://doi.org/10.1146/annurev-ecolsys-102209-144621
http://www.jstor.org/stable/27798882
http://www.jstor.org/stable/27798882
https://doi.org/10.1111/rssb.12312
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1411.1607
http://arxiv.org/abs/1411.1607
https://doi.org/10.1080/00401706.1963.10490116
https://doi.org/10.1007/978-1-4939-7049-0
https://doi.org/10.1007/978-1-4939-7049-0
https://doi.org/https://doi.org/10.1111/j.1467-9868.2005.00508.x
https://doi.org/https://doi.org/10.1111/j.1467-9868.2005.00508.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00508.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00508.x
https://doi.org/10.1214/12-STS406
https://arxiv.org/abs/1202.3819

Bibliography 195

Bortolussi, Luca, Dimitrios Milios, and Guido Sanguinetti (2016). “Smoothed model
checking for uncertain Continuous-Time Markov Chains”. In: Information and
Computation 247, pp. 235–253. issn: 0890-5401. doi: 10.1016/J.IC.2016.
01. 004. url: https: // www. sciencedirect .com /science /article /pii /
S0890540116000055.

Bortolussi, Luca and Simone Silvetti (2018). “Bayesian statistical parameter synthesis
for linear temporal properties of stochastic models”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 10806 LNCS. Springer Verlag, pp. 396–413. isbn:
9783319899626. doi: 10.1007/978-3-319-89963-3_23.

Bouezmarni, Taoufik and Jeroen V.K. Rombouts (2010). “Nonparametric density
estimation for multivariate bounded data”. In: Journal of Statistical Planning and
Inference 140.1, pp. 139–152. issn: 03783758. doi: 10.1016/j.jspi.2009.07.
013.

Brent, Richard (1971). “An Algorithm with Guaranteed Convergence for Finding a
Zero of a Function.” In: Comput. J. 14, pp. 422–425. doi: 10.1093/comjnl/14.
4.422.

Brim, Luboš, Milaň Ceška, and Sven Dražan (2013). Exploring Parameter Space of
Stochastic Biochemical Systems Using Quantitative Model Checking. Tech. rep.

Brooks, Steve et al. (2011). Handbook of Markov Chain Monte Carlo. doi: 10.1201/
b10905.

Cao, Yang, Daniel T. Gillespie, and Linda R. Petzold (2005). “Avoiding negative
populations in explicit Poisson tau-leaping”. In: Journal of Chemical Physics 123.5.
issn: 00219606. doi: 10.1063/1.1992473.

— (2006). “Efficient step size selection for the tau-leaping simulation method”. In:
Journal of Chemical Physics 124.4. issn: 00219606. doi: 10.1063/1.2159468.

Cappé, Olivier, Eric Moulines, and Tobias Rydén (2009). Inference in Hidden Markov
Models. Tech. rep.

Casella, George and Roger Berger (2001). Statistical Inference. Duxbury Resource
Center. isbn: 0534243126.

Ceška, Milaň et al. (2014). Precise Parameter Synthesis for Stochastic Biochemical
Systems. Tech. rep.

Chacón, José and Tarn Duong (2018). Multivariate Kernel Smoothing and its Appli-
cations. isbn: 9780429485572. doi: 10.1201/9780429485572.

Chen, Song (2000). “Probability Density Function Estimation Using Gamma Ker-
nels”. In: Annals of the Institute of Statistical Mathematics 52, pp. 471–480. doi:
10.1023/A:1004165218295.

Chen, Song Xi (1999). Beta kernel estimators for density functions. Tech. rep.,
pp. 131–145. url: www.elsevier.com/locate/csda.

https://doi.org/10.1016/J.IC.2016.01.004
https://doi.org/10.1016/J.IC.2016.01.004
https://www.sciencedirect.com/science/article/pii/S0890540116000055
https://www.sciencedirect.com/science/article/pii/S0890540116000055
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1016/j.jspi.2009.07.013
https://doi.org/10.1016/j.jspi.2009.07.013
https://doi.org/10.1093/comjnl/14.4.422
https://doi.org/10.1093/comjnl/14.4.422
https://doi.org/10.1201/b10905
https://doi.org/10.1201/b10905
https://doi.org/10.1063/1.1992473
https://doi.org/10.1063/1.2159468
https://doi.org/10.1201/9780429485572
https://doi.org/10.1023/A:1004165218295
www.elsevier.com/locate/csda

196 Bibliography

Craciun, Gheorghe et al. (2013). “Statistical model for biochemical network inference”.
In: Communications in Statistics: Simulation and Computation 42.1, pp. 121–137.
issn: 03610918. doi: 10.1080/03610918.2011.633200.

Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra (2006). “Sequential Monte Carlo
samplers”. In: Journal of the Royal Statistical Society B 68.3, pp. 411–436. issn:
1369-7412. doi: 10.1111/j.1467-9868.2006.00553.x.

— (2012a). “An adaptive sequential Monte Carlo method for approximate Bayesian
computation”. In: Statistics and Computing 22.5, pp. 1009–1020. issn: 09603174.
doi: 10.1007/s11222-011-9271-y.

— (2012b). “On adaptive resampling strategies for sequential Monte Carlo methods”.
In: Bernoulli 18.1, pp. 252–278. issn: 13507265. doi: 10.3150/10-BEJ335.

Djafri, Hilal (2012). “Numerical and statistical approaches for model checking of
stochastic processes”. In.

Doucet, Arnaud, Nando De Freitas, and Neil Gordon (2001). Sequential Monte Carlo
Methods in Practice. Ed. by Arnaud Doucet, Nando De Freitas, and Neil Gordon.
Springer, New York, NY. doi: https://doi.org/10.1007/978-1-4757-3437-9.

Doucet, Arnaud and A M Johansen (2009). “A tutorial on particle filtering and
smoothing: Fifteen years later”. In: Handbook of Nonlinear Filtering December.
Ed. by D Crisan and B Rozovsky, pp. 4–6. url: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.157.772{\&}rep=rep1{\&}type=pdf.

Duong, Tarn and Martin Hazelton (2005). “Cross-validation Bandwidth Matrices for
Multivariate Kernel Density Estimation”. In: Scandinavian Journal of Statistics
32, pp. 485–506. doi: 10.1111/j.1467-9469.2005.00445.x.

Duong, Tarn et al. (2020). ks: Kernel Smoothing. R package version 1.11.7. isbn:
9780429485572. doi: 10.1201/9780429485572>.License. url: https://cran.
r-project.org/package=ks.

Elowitz, Michael B., Stanislas Leibler, and Stanislas Leibier (2000). “A synthetic
oscillatory network of transcriptional regulators”. In: Nature 403.6767, pp. 335–
338. issn: 00280836. doi: 10.1038/35002125. arXiv: NIHMS150003. url: http:
//www.nature.com/nature/journal/v403/n6767/full/403335a0.html.

Eungdamrong, Narat and Ravi Iyengar (2004). “Modeling Cell Signaling Networks”.
In: Biology of the cell / under the auspices of the European Cell Biology Organi-
zation 96, pp. 355–362. doi: 10.1016/j.biolcel.2004.03.004.

Fan, Y. and S. A. Sisson (2018). “ABC Samplers”. In: pp. 1–46. arXiv: 1802.09650.
url: http://arxiv.org/abs/1802.09650.

Fasiolo, Matteo and Simon N. Wood (2015). “Approximate methods for dynamic
ecological models”. In: pp. 1–22. arXiv: 1511.02644. url: http://arxiv.org/
abs/1511.02644.

https://doi.org/10.1080/03610918.2011.633200
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1007/s11222-011-9271-y
https://doi.org/10.3150/10-BEJ335
https://doi.org/https://doi.org/10.1007/978-1-4757-3437-9
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.772{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.772{\&}rep=rep1{\&}type=pdf
https://doi.org/10.1111/j.1467-9469.2005.00445.x
https://doi.org/10.1201/9780429485572>.License
https://cran.r-project.org/package=ks
https://cran.r-project.org/package=ks
https://doi.org/10.1038/35002125
https://arxiv.org/abs/NIHMS150003
http://www.nature.com/nature/journal/v403/n6767/full/403335a0.html
http://www.nature.com/nature/journal/v403/n6767/full/403335a0.html
https://doi.org/10.1016/j.biolcel.2004.03.004
https://arxiv.org/abs/1802.09650
http://arxiv.org/abs/1802.09650
https://arxiv.org/abs/1511.02644
http://arxiv.org/abs/1511.02644
http://arxiv.org/abs/1511.02644

Bibliography 197

Feinberg, Martin (2019). Foundations of Chemical Reaction Network Theory. isbn:
978-3-030-03857-1. doi: 10.1007/978-3-030-03858-8.

Filippi, Sarah et al. (2011). “On optimality of kernels for approximate Bayesian com-
putation using sequential Monte Carlo”. In: arXiv: 1106.6280. url: http://
arxiv.org/abs/1106.6280.

Frazier, David T. et al. (2016). “Asymptotic Properties of Approximate Bayesian
Computation”. In: arXiv: 1607.06903. url: http://arxiv.org/abs/1607.
06903.

Geman, Stuart and Donald Geman (1984). “Stochastic Relaxation, Gibbs Distribu-
tions, and the Bayesian Restoration of Images”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-6.6, pp. 721–741. issn: 01628828. doi:
10.1109/TPAMI.1984.4767596.

Gibson, Michael A. and Jehoshua Bruck (2000). “Efficient exact stochastic simulation
of chemical systems with many species and many channels”. In: Journal of Physical
Chemistry A 104.9, pp. 1876–1889. issn: 10895639. doi: 10.1021/jp993732q.

Gilks, Walter, Sylvia Richardson, and D J E Spiegelhalter (1996). Markov Chain
Monte Carlo In Practice. Vol. xvii. doi: 10.1007/978-1-4899-4485-6_1.

Gillespie, Daniel (1977). “Exact Stochastic Simulation Of Coupled Chemical-Reactions”.
In: J. of Physical Chemistry 81, pp. 2340–2361. doi: 10.1021/j100540a008.

— (2000). “The Chemical Langevin Equation”. In: Journal of Chemical Physics 115,
pp. 297–306. doi: 10.1063/1.481811.

— (2007). “Stochastic Simulation of Chemical Kinetics”. In: Annual review of physical
chemistry 58, pp. 35–55. doi: 10.1146/annurev.physchem.58.032806.104637.

Goffe, William, Gary Ferrier, and John Rogers (1994). “Global Optimization of Sta-
tistical Functions with Simulated Annealing”. In: Journal of Econometrics 60,
pp. 65–99. doi: 10.1016/0304-4076(94)90038-8.

Gómez-Corral, A. et al. (2015). “Bayesian Inference of Markov Processes”. In: Wiley
StatsRef: Statistics Reference Online, pp. 1–15. doi: 10.1002/9781118445112.
stat07837.

Gordon, N. J., D. J. Salmond, and A. F.M. Smith (1993). “Novel approach to nonlinear/non-
gaussian Bayesian state estimation”. In: IEE Proceedings, Part F: Radar and
Signal Processing 140.2, pp. 107–113. issn: 0956375X. doi: 10.1049/ip- f-
2.1993.0015.

Han, Tingting, Joost Pieter Katoen, and Alexandru Mereacre (2008). “Approximate
parameter synthesis for probabilistic time-bounded reachability”. In: Proceedings
- Real-Time Systems Symposium, pp. 173–182. isbn: 9780769534770. doi: 10.
1109/RTSS.2008.19.

https://doi.org/10.1007/978-3-030-03858-8
https://arxiv.org/abs/1106.6280
http://arxiv.org/abs/1106.6280
http://arxiv.org/abs/1106.6280
https://arxiv.org/abs/1607.06903
http://arxiv.org/abs/1607.06903
http://arxiv.org/abs/1607.06903
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1021/jp993732q
https://doi.org/10.1007/978-1-4899-4485-6_1
https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.481811
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.1016/0304-4076(94)90038-8
https://doi.org/10.1002/9781118445112.stat07837
https://doi.org/10.1002/9781118445112.stat07837
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1109/RTSS.2008.19
https://doi.org/10.1109/RTSS.2008.19

198 Bibliography

Haseltine, Eric L. and James B. Rawlings (2002). “Approximate simulation of coupled
fast and slow reactions for stochastic chemical kinetics”. In: Journal of Chemical
Physics 117.15, pp. 6959–6969. issn: 00219606. doi: 10.1063/1.1505860.

Hastings, W (1970). “Monte Carlo Sampling Methods Using Markov Chains and
Their Application”. In: Biometrika 57. doi: 10.1093/biomet/57.1.97.

Jasra, Ajay (2015). “Approximate Bayesian computation for a class of time series
models”. In: International Statistical Review 83.3, pp. 405–435. issn: 17515823.
doi: 10.1111/insr.12089. arXiv: 1401.0265.

Jasra, Ajay et al. (2019). “Multilevel Monte Carlo in approximate Bayesian computa-
tion”. In: Stochastic Analysis and Applications 37.3, pp. 346–360. issn: 15329356.
doi: 10.1080/07362994.2019.1566006. arXiv: 1702.03628. url: https://doi.
org/10.1080/07362994.2019.1566006.

Jegourel, Cyrille, Jun Sun, and Jin Song Dong (2019). “Sequential schemes for fre-
quentist estimation of properties in statistical model checking”. In: ACM Transac-
tions on Modeling and Computer Simulation 29.4. issn: 15581195. doi: 10.1145/
3310226.

JuliaLang (2020). Performance tips of Julia language. url: https://docs.julialang.
org/en/v1/manual/performance-tips/.

Karlebach, Guy and Ron Shamir (2008). “Modelling and analysis of gene regulatory
networks”. In: Nature Reviews Molecular Cell Biology 9.10, pp. 770–780. issn:
14710072. doi: 10.1038/nrm2503.

Kermack, W. O. 0 and A. G. McKendrick (1927). “A Contribution to the Math-
ematical Theory of Epidemics”. In: Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 115.772, pp. 700–721. issn: 1364-
5021. doi: 10.1098/rspa.1927.0118. arXiv: 1301.2791. url: http://rspa.
royalsocietypublishing.org/http://rspa.royalsocietypublishing.org/
cgi/doi/10.1098/rspa.1927.0118.

Klenke, Achim (2008). Probability Theory. doi: 10.1007/3-540-33414-9.
Kong, Augustine and Jun S. Liu (1994). “Sequential imputations and Bayesian miss-

ing data problems”. In: Journal of the American Statistical Association 89.425,
pp. 278–288. issn: 1537274X. doi: 10.1080/01621459.1994.10476469.

Koutroumpas, Konstantinos et al. (2016). “Bayesian parameter estimation for the
Wnt pathway: An infinite mixture models approach”. In: Bioinformatics. Bioin-
formatics. doi: 10.1093/bioinformatics/btw471.

Kulkarni, Vidyadhar (1998). “Modeling and Analysis of Stochastic Systems”. In: Jour-
nal of the American Statistical Association 93. doi: 10.2307/2669884.

Kurtz, Thomas G (1980). Representations of Markov Processes as Multiparameter
Time Changes. doi: 10.1214/aop/1176994660.

https://doi.org/10.1063/1.1505860
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1111/insr.12089
https://arxiv.org/abs/1401.0265
https://doi.org/10.1080/07362994.2019.1566006
https://arxiv.org/abs/1702.03628
https://doi.org/10.1080/07362994.2019.1566006
https://doi.org/10.1080/07362994.2019.1566006
https://doi.org/10.1145/3310226
https://doi.org/10.1145/3310226
https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/manual/performance-tips/
https://doi.org/10.1038/nrm2503
https://doi.org/10.1098/rspa.1927.0118
https://arxiv.org/abs/1301.2791
http://rspa.royalsocietypublishing.org/ http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1927.0118
http://rspa.royalsocietypublishing.org/ http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1927.0118
http://rspa.royalsocietypublishing.org/ http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1927.0118
https://doi.org/10.1007/3-540-33414-9
https://doi.org/10.1080/01621459.1994.10476469
https://doi.org/10.1093/bioinformatics/btw471
https://doi.org/10.2307/2669884
https://doi.org/10.1214/aop/1176994660

Bibliography 199

Kwiatkowska, M, G Norman, and D Parker (2011). “{PRISM} 4.0: Verification of
Probabilistic Real-time Systems”. In: Proc. 23rd International Conference on
Computer Aided Verification (CAV’11). Ed. by G Gopalakrishnan and S Qadeer.
Vol. 6806. LNCS. Springer, pp. 585–591.

Kwiatkowska, Marta, Gethin Norman, and David Parker (2008). “Using Probabilistic
Model Checking in Systems Biology”. In: SIGMETRICS Perform. Eval. Rev. 35.4,
pp. 14–21. issn: 0163-5999. doi: 10.1145/1364644.1364651. url: https://doi-
org.ezproxy.universite-paris-saclay.fr/10.1145/1364644.1364651.

Legay, Axel, Benoît Delahaye, and Saddek Bensalem (2010). “Statistical model check-
ing: An overview”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6418
LNCS, pp. 122–135. issn: 03029743. doi: 10.1007/978-3-642-16612-9_11.
arXiv: 1005.1327.

Legay, Axel et al. (2019). “Statistical Model Checking”. In: Computing and Software
Science: State of the Art and Perspectives. Ed. by Bernhard Steffen and Gerhard
Woeginger. Cham: Springer International Publishing, pp. 478–504. isbn: 978-3-
319-91908-9. doi: 10.1007/978-3-319-91908-9_23. url: https://doi.org/
10.1007/978-3-319-91908-9{_}23.

Leloup, J.-C. and A. Goldbeter (2003). “Toward a detailed computational model
for the mammalian circadian clock”. In: Proceedings of the National Academy of
Sciences 100.12, pp. 7051–7056. issn: 0027-8424. doi: 10.1073/pnas.1132112100.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.1132112100.

Lenive, Oleg, Paul D.W. Kirk, and Michael P.H. Stumpf (2016). “Inferring extrinsic
noise from single-cell gene expression data using approximate Bayesian compu-
tation”. In: BMC Systems Biology. issn: 17520509. doi: 10.1186/s12918-016-
0324-x.

Lester, Christopher (2018). “Multi-level Approximate Bayesian Computation”. In:
arXiv: 1811.08866. url: http://arxiv.org/abs/1811.08866.

Li, Wentao and Paul Fearnhead (2017). “On the Asymptotic Efficiency of Approx-
imate Bayesian Computation Estimators”. In: Biometrika 105. doi: 10.1093/
biomet/asx078.

Li, Zhengda and Qiong Yang (2018). “Systems and synthetic biology approaches in
understanding biological oscillators”. In: Quantitative Biology 6.1, pp. 1–14. issn:
20954697. doi: 10.1007/s40484-017-0120-7.

Liu, Jun S (2008). Monte Carlo Strategies in Scientific Computing. Corrected. isbn:
0387952306,9780387952307. url: http://gen.lib.rus.ec/book/index.php?
md5=fc8bb07ef2ffed66509ec1bb3c9706e0.

https://doi.org/10.1145/1364644.1364651
https://doi-org.ezproxy.universite-paris-saclay.fr/10.1145/1364644.1364651
https://doi-org.ezproxy.universite-paris-saclay.fr/10.1145/1364644.1364651
https://doi.org/10.1007/978-3-642-16612-9_11
https://arxiv.org/abs/1005.1327
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9{_}23
https://doi.org/10.1007/978-3-319-91908-9{_}23
https://doi.org/10.1073/pnas.1132112100
http://www.pnas.org/cgi/doi/10.1073/pnas.1132112100
https://doi.org/10.1186/s12918-016-0324-x
https://doi.org/10.1186/s12918-016-0324-x
https://arxiv.org/abs/1811.08866
http://arxiv.org/abs/1811.08866
https://doi.org/10.1093/biomet/asx078
https://doi.org/10.1093/biomet/asx078
https://doi.org/10.1007/s40484-017-0120-7
http://gen.lib.rus.ec/book/index.php?md5=fc8bb07ef2ffed66509ec1bb3c9706e0
http://gen.lib.rus.ec/book/index.php?md5=fc8bb07ef2ffed66509ec1bb3c9706e0

200 Bibliography

Liu, Jun S. and Rong Chen (1998). “Sequential monte carlo methods for dynamic
systems”. In: Journal of the American Statistical Association 93.443, pp. 1032–
1044. issn: 1537274X. doi: 10.1080/01621459.1998.10473765.

Loskot, Pavel, Komlan Atitey, and Lyudmila Mihaylova (2019). “Comprehensive re-
view of models and methods for inferences in bio-chemical reaction networks”. In:
Frontiers in Genetics 10.JUN. issn: 16648021. doi: 10.3389/fgene.2019.00549.
arXiv: 1902.05828.

Lotka, Aj (1932). “The growth of mixed populations: Two species competing for a
common food supply”. In: J. Wash. Acad. Sci. 22.

Marin, Jean-Michel et al. (2011). “Approximate Bayesian Computational methods”.
In: 1, pp. 1167–1180. issn: 0960-3174. doi: 10.1007/s11222-011-9288-2. arXiv:
1101.0955. url: http://arxiv.org/abs/1101.0955.

Marjoram, Paul et al. (2003). “Markov chain Monte Carlo without likelihoods”. In:
Proceedings of the National Academy of Sciences 100.26, pp. 15324–15328. issn:
0027-8424. doi: 10.1073/pnas.0306899100. url: https://www.pnas.org/
content/100/26/15324.

Metropolis et al. (1953). “Equation of state calculations for fast computing machines”.
In: Journal of Chemical Physics 6 21, pp. 1087–.

Michaelis, Leonor et al. (2011). “The Original Michaelis Constant: Translation of
the 1913 Michaelis-Menten Paper”. In: Biochemistry 50, pp. 8264–8269. doi: 10.
1021/bi201284u.

Minka, Thomas P. (2013). “Expectation Propagation for approximate Bayesian in-
ference”. In: pp. 362–369. arXiv: 1301.2294. url: http://arxiv.org/abs/1301.
2294.

Molyneux, Gareth W. and Alessandro Abate (2020). “ABC (SMC) 2 : Simultane-
ous Inference and Model Checking of Chemical”. In: Computational Methods in
Systems Biology, 18th International Conference, CMSB 2020, pp. 255–279. url:
http://dx.doi.org/10.1007/978-3-030-60327-4{_}14.

Nadjahi, Kimia et al. (2020). “Approximate Bayesian Computation with the Sliced-
Wasserstein Distance”. In: pp. 5470–5474. doi: 10.1109/ICASSP40776.2020.
9054735.

Nicholas Metropolis (1987). “The Beginning of the Monte Carlo Method”. In: Los
Alamos Science 15, pp. 125–130.

O’Brien, Erin L., Elizabeth Van Itallie, and Matthew R. Bennett (2012). Modeling
synthetic gene oscillators. doi: 10.1016/j.mbs.2012.01.001.

Perkins, Theodore J (2017). Maximum likelihood trajectories for continuous-time
Markov chains. Tech. rep.

https://doi.org/10.1080/01621459.1998.10473765
https://doi.org/10.3389/fgene.2019.00549
https://arxiv.org/abs/1902.05828
https://doi.org/10.1007/s11222-011-9288-2
https://arxiv.org/abs/1101.0955
http://arxiv.org/abs/1101.0955
https://doi.org/10.1073/pnas.0306899100
https://www.pnas.org/content/100/26/15324
https://www.pnas.org/content/100/26/15324
https://doi.org/10.1021/bi201284u
https://doi.org/10.1021/bi201284u
https://arxiv.org/abs/1301.2294
http://arxiv.org/abs/1301.2294
http://arxiv.org/abs/1301.2294
http://dx.doi.org/10.1007/978-3-030-60327-4{_}14
https://doi.org/10.1109/ICASSP40776.2020.9054735
https://doi.org/10.1109/ICASSP40776.2020.9054735
https://doi.org/10.1016/j.mbs.2012.01.001

Bibliography 201

Pfeuffer, Marius (2017). “Ctmcd: An R package for estimating the parameters of
a continuous-time Markov chain from discrete-time data”. In: R Journal 9.2,
pp. 127–141. issn: 20734859. doi: 10.32614/rj-2017-038.

Picchini, Umberto and Adeline Samson (2018). “Coupling stochastic EM and ap-
proximate Bayesian computation for parameter inference in state-space models”.
In: Computational Statistics 33.1, pp. 179–212. issn: 16139658. doi: 10.1007/
s00180-017-0770-y. arXiv: 1512.04831.

Prangle, Dennis (2015). “Summary Statistics in Approximate Bayesian Computa-
tion”. In: issn: 0031-5125. doi: 10.2466/06.30.PMS.120v19x9. arXiv: 1512.
05633.

Pritchard, Jonathan K et al. (1999). “Population Growth of Human Y Chromosomes:
A Study of Y Chromosome Microsatellites”. In: Mol. Biol. Evol 16.12, pp. 1791–
1798. issn: 0737-4038.

Purcell, Oliver et al. (2010). “A comparative analysis of synthetic genetic oscillators”.
In: Journal of the Royal Society Interface 7.52, pp. 1503–1524. issn: 17425662.
doi: 10.1098/rsif.2010.0183.

Rathinam, Muruhan et al. (2003). “Stiffness in stochastic chemically reacting sys-
tems: The implicit tau-leaping method”. In: Journal of Chemical Physics 119.24,
pp. 12784–12794. issn: 00219606. doi: 10.1063/1.1627296.

Ratmann, Oliver et al. (2007). “Using likelihood-free inference to compare evolution-
ary dynamics of the protein networks of H. pylori and P. falciparum”. In: PLoS
Computational Biology. issn: 1553734X. doi: 10.1371/journal.pcbi.0030230.

Robert, Christian P. (2019). Asymptotics of ABC. url: https://fr.slideshare.
net/xianblog/asymptotics-of-abc.

Robert, Christian P. and George Casella (2004). Monte Carlo Statistical Methods.
isbn: 978-1-4419-1939-7. doi: 10.2307/1270959. arXiv: arXiv:1011.1669v3.

Rosenblatt, M (1956). “Remarks on Some Nonparametric Estimate of a Density Func-
tion”. In: The Annals of Mathematical Statistics 27, pp. 832–835.

Schnoerr, David, Guido Sanguinetti, and Ramon Grima (2017). “Approximation and
inference methods for stochastic biochemical kinetics - A tutorial review”. In:
Journal of Physics A: Mathematical and Theoretical 50.9. issn: 17518121. doi:
10.1088/1751-8121/aa54d9. arXiv: 1608.06582.

Silverman, B W (1986). Density Estimation for Statistics and Data Analysis. London:
Chapman & Hall.

Sisson, S. A., Y. Fan, and M. A. Beaumont (2018). “Overview of Approximate
Bayesian Computation”. In: 1, pp. 1–66. arXiv: 1802.09720. url: http://arxiv.
org/abs/1802.09720.

Sisson, S. A., Y. Fan, and Mark M. Tanaka (2007). “Sequential Monte Carlo without
likelihoods”. In: Proceedings of the National Academy of Sciences of the United

https://doi.org/10.32614/rj-2017-038
https://doi.org/10.1007/s00180-017-0770-y
https://doi.org/10.1007/s00180-017-0770-y
https://arxiv.org/abs/1512.04831
https://doi.org/10.2466/06.30.PMS.120v19x9
https://arxiv.org/abs/1512.05633
https://arxiv.org/abs/1512.05633
https://doi.org/10.1098/rsif.2010.0183
https://doi.org/10.1063/1.1627296
https://doi.org/10.1371/journal.pcbi.0030230
https://fr.slideshare.net/xianblog/asymptotics-of-abc
https://fr.slideshare.net/xianblog/asymptotics-of-abc
https://doi.org/10.2307/1270959
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1088/1751-8121/aa54d9
https://arxiv.org/abs/1608.06582
https://arxiv.org/abs/1802.09720
http://arxiv.org/abs/1802.09720
http://arxiv.org/abs/1802.09720

States of America 104.6, pp. 1760–1765. issn: 00278424. doi: 10.1073/pnas.
0607208104.

Sisson, Scott A., Yanan Fan, and Mark A. Beaumont (2019). Handbook of Approx-
imate Bayesian Computation. Ed. by Scott A. Sisson, Yanan Fan, and Mark A.
Beaumont. Chapman and Hall/CRC. isbn: 9780367733728.

Spieler, David (2014). “Numerical Analysis of Long-Run Properties for Markov Pop-
ulation Model”. In.

Stroock, Daniel (2005). “An Introduction to Markov Processes”. In: 230. doi: 10.
1007/b138428.

Tavaré, Simon et al. (1997). “Inferring coalescence times from DNA sequence data”. In:
Genetics 145.2, pp. 505–518. issn: 00166731. doi: 10.1093/genetics/145.2.505.

Thattai, M. and A. Van Oudenaarden (2001). “Intrinsic noise in gene regulatory
networks”. In: Proceedings of the National Academy of Sciences of the United States
of America 98.15, pp. 8614–8619. issn: 00278424. doi: 10.1073/pnas.151588598.

Toni, Tina et al. (2009). “Approximate Bayesian computation scheme for parameter
inference and model selection in dynamical systems”. In: Journal of the Royal
Society Interface 6.31, pp. 187–202. issn: 17425662. doi: 10.1098/rsif.2008.
0172. arXiv: 0901.1925.

Tyson, John J. et al. (2008). “Biological switches and clocks”. In: Journal of the Royal
Society Interface 5.SUPPL. 1. issn: 17425662. doi: 10.1098/rsif.2008.0179.
focus.

Warne, David J., Ruth E. Baker, and Matthew J. Simpson (2019). “Simulation and
inference algorithms for stochastic biochemical reaction networks: From basic con-
cepts to state-of-the-art”. In: Journal of the Royal Society Interface 16.151. issn:
17425662. doi: 10.1098/rsif.2018.0943. arXiv: 1812.05759.

https://doi.org/10.1073/pnas.0607208104
https://doi.org/10.1073/pnas.0607208104
https://doi.org/10.1007/b138428
https://doi.org/10.1007/b138428
https://doi.org/10.1093/genetics/145.2.505
https://doi.org/10.1073/pnas.151588598
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1098/rsif.2008.0172
https://arxiv.org/abs/0901.1925
https://doi.org/10.1098/rsif.2008.0179.focus
https://doi.org/10.1098/rsif.2008.0179.focus
https://doi.org/10.1098/rsif.2018.0943
https://arxiv.org/abs/1812.05759

Titre: Inférence et vérification statistiques de réseaux de réactions chimiques.

Mots clés: Réseaux de réactions chimiques, inférence, vérification, ABC, HASL, Julia

Résumé: Les réseaux de réactions chimiques (CRN)
constituent un formalisme utilisé pour modéliser des
processus biologiques. Sous certaines hypothèses, le
processus stochastique sous-jacent pour décrire ses dy-
namiques est une chaîne de Markov en temps continu
(CTMC): l’état futur du système ne dépend que de
l’état courant. L’inférence statistique de ce type de
CTMC est complexe: le calcul de la vraisemblance est
en général difficile à résoudre. Les méthodes ABC (Ap-
proximate Bayesian Computation) forment une classe
de méthodes bayésiennes sans calcul de vraisemblance
qui permettent d’approcher la distribution postérieure
avec des simulations de Monte-Carlo. La vérification
de modèles se penche de plus en plus sur la biolo-
gie des systèmes. En effet, il y a un réel besoin de
comprendre les interactions complexes entre molécules
dans les systèmes biologiques. Des méthodes de vérifi-
cation statistiques ont été développées pour appliquer
ces méthodes dans des modèles plus complèxes. Le
principe est de simuler un certain nombre de fois le

modèle et de calculer le ratio des simulations qui ont
vérifié une propriété. Récemment, une logique tem-
porelle appelée HASL a été introduite pour la vérifica-
tion statistique de modèles: elle adopte intrinsèque-
ment le point de vue statistique de la vérification.
Dans cette thèse, nous nous intéressons à l’inférence
statistique et la vérification statistique de chaines de
Markov en temps continu définies par un modèle de
réseaux de réactions chimiques. Notre contribution
tient principalement dans la formulation d’un algo-
rithme ABC combiné avec le formalisme HASL ap-
pelé automaton-ABC. Nous appliquons cette méthode
haut niveau sur plusieurs tâches d’inférence statistique
et de vérification pour des CTMCs issus de systèmes
biologiques, impliquant notamment des modèles os-
cillatoires et des problèmes d’atteignabilité bornés en
temps. L’implémentation des méthodes présentées est
rendue disponible sous la forme d’une bibliothèque dans
le langage de programmation Julia.

Title: Statistical inference and verification of Chemical Reaction Networks

Keywords: Chemical Reaction Networks, inference, model checking, ABC, HASL, Julia

Abstract: Chemical Reaction Networks (CRN) con-
stitute a formalism used to model biological processes.
Under certain assumptions, a Continuous-Time Markov
Chain describes its stochastic dynamics: the future
state of the system only depends on the current state.
Statistical inference of such CTMCs is complex: like-
lihood computations are generally intractable. Ap-
proximate Bayesian Computation is a recent class of
likelihood-free methods for Bayesian inference that
allows approximating the posterior distribution with
Monte Carlo simulations. It has proven its efficiency
in the case of CTMCs. There is a growing interest in
the verification (model-checking) of models from Sys-
tems Biology to understand the complex molecular in-
teractions within a biological system. Statistical model
checking methods have been developed to apply these

methods on more complex models. They simulate the
model and compute the ratio of simulations that ful-
fils a property. Recently, Hybrid Automata Stochas-
tic Logic (HASL) has been introduced for the statis-
tical verification of stochastic models. This temporal
logic inherently adopts the statistical point of view of
model-checking. In this thesis, we focus on statistical
inference and verification of CTMCs defined by CRNs.
Our main contribution consists in the new formulation
of an Approximate Bayesian Computation procedure
combined with HASL called automaton-ABC. We ap-
ply this high-level method on several tasks of statistical
inference and verification for biological CTMCs, includ-
ing oscillatory models and time-bounded reachability
problems. The implementation of our algorithms has
led to a package in the Julia Programming language.

	Remerciements
	Abstract
	Notations
	Introduction
	Context
	Outline

	Markov Chains and Chemical Reaction Networks
	Different perspectives on Markov Chains
	Markov Chains as a stochastic process
	Discrete-Time Markov Chain (DTMC)
	Continuous-Time Markov Chain

	CTMC as an oriented graph

	Probability measure of CTMCs.
	Paths/Trajectories of a CTMC.
	Probability measure over the set of paths.

	Chemical Reaction Networks
	Definition of a Chemical Reaction Network
	Example
	Different representations of the system evolution
	Chemical Master Equation
	Random Time Change Representation
	Tau-leap approximation and Chemical Langevin Equation
	Reaction Rate Equation: a macroscopic deterministic approximation of a CRN

	Stochastic simulation of a CRN
	Stochastic simulation algorithm
	Tau-leap approximation
	Example of simulations with the SIR model

	Summary

	Statistical methods
	The Bayesian framework
	Monte Carlo methods
	Simulation of a density
	Accept-reject algorithm
	Importance sampling
	Sequential Monte Carlo methods
	Sequential Importance Sampling
	Resampling step

	Markov Chain Monte Carlo

	Approximate Bayesian Computation: a likelihood-free method
	ABC Rejection algorithm
	Markov Chain Monte Carlo ABC
	Sequential Monte Carlo ABC

	Hyperparameters of ABC methods
	Summary statistics
	Distance function
	Perturbation kernel in ABC-PMC Algorithm
	Tolerance level

	Kernel Density Estimation
	Kernel density estimator
	Bandwidth selection and Least Squares Cross-Validation
	Kernel functions
	Gaussian kernel
	Beta kernels

	Summary

	Verification of Continuous-Time Markov Chains
	Temporal logic
	MITL
	CSL
	Eventually and global operators

	Model checking of Continuous-Time Markov Chains
	About numerical methods
	Statistical model checking
	Estimation problem - Confidence bounds
	Threshold problem - Hypothesis testing

	Model checking of parametric Continuous-Time Markov Chains
	Estimation problem - Satisfaction function regression
	Statistical methods

	Parameter synthesis - threshold problem
	Statistical formulation

	Hybrid Automata Stochastic Logic
	Stochastic Petri Net
	Linear Hybrid Automata
	Definition
	Synchronised simulation

	HASL Expressions
	Cosmos Statistical Model Checker

	Summary

	Automaton-ABC for the statistical inference of CTMCs
	Observation model and likelihood
	Event-discrete observations
	Time-discrete observations: state-space model
	Approximate Bayesian Computation for event-discrete observations
	Distance over paths of CTMC
	Examples of ABC-SMC inference on parametric CTMC with different observation schemes and distances

	Automaton-ABC: ABC procedures with synchronised simulation
	Oscillatory trends of genetic networks
	Period automaton Aper
	Applications of the automaton-ABC algorithm with Aper
	Doping 3-way oscillator
	Repressilator model

	Accelerating the ABC procedure with HASL formalism
	Automaton AABC,
	Applications

	Summary

	Automaton-ABC for the statistical parametric verification of CTMCs
	Problem setting: time-bounded reachability
	Satisfiability distances
	Linear Hybrid Automata to compute satisfiability distances
	Distance automaton AF
	Distance automaton AG
	Distance automaton AG F

	Automaton-ABC algorithm with LHA satisfiability distances
	Simple ABC with satisfiability distance.
	Estimation of the satisfaction probability function
	Estimation of the -ABC posterior distribution
	Estimation of the constant C

	Applications
	An example with Poisson processes
	Enzymatic reaction system
	Model
	Experimental setting
	Test of LHA distances
	Satisfaction probability function estimation
	Remarks

	SIR
	Intracellular viral infection
	About the implementation of the automaton-ABC method

	A comparison with Smoothed Model Checking
	Discussion
	About the distance of automaton AF before t1
	Linear Hybrid Automata for non-elementary regions

	Summary

	Conclusion
	Limits and Perspectives
	Scope of our work
	Automaton-ABC for statistical inference
	Automaton-ABC for time-bounded reachability
	Implementation

	Last words

	MarkovProcesses.jl : A Julia package for efficient simulation, statistical inference and verification methods of Markov Processes.
	Introduction
	A few introductory examples
	Simulation of the SIR model
	Simulation of the ER model synchronised with AF automaton
	Run of the automaton-ABC algorithm

	Structure of the package
	Type diagram
	Implementation
	Simulation of juliaContinuousTimeModel
	Simulation of juliaSynchronizedModel
	About trajectories
	Synchronisation with juliaLHA

	Use of ABC methods
	Classical ABC
	ABC with synchronised simulation

	Tests
	Execution test
	Cosmos based statistical tests

	Benchmarks
	Versus Cosmos
	Versus Catalyst.jl/DifferentialEquations.jl

	Conclusion
	Summary
	Perspectives

	Measure theory
	Results from measure theory: Caratheodory's theorem
	Semiring of sets of
	Statistical model of CTMCs
	Density of a CTMC

	A simple analytical example of ABC inference
	Computation of the true posterior and ABC posterior
	Simulations

	Synthèse en français
	Bibliography

