
HAL Id: tel-03621557
https://theses.hal.science/tel-03621557v1

Submitted on 28 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object detection and traffic prediction using Deep
Learning on compressed road images and videos

Benjamin Deguerre

To cite this version:
Benjamin Deguerre. Object detection and traffic prediction using Deep Learning on compressed road
images and videos. Computer Vision and Pattern Recognition [cs.CV]. Normandie Université, 2021.
English. �NNT : 2021NORMIR28�. �tel-03621557�

https://theses.hal.science/tel-03621557v1
https://hal.archives-ouvertes.fr

THESE
Pour obtenir le grade de Docteur de Normandie Université

Spécialité Informatique

Préparée au sein de l’INSA de Rouen Normandie, LITIS

Object detection and traffic prediction using Deep Learning on
compressed road images and videos

Détection d’objets et prédiction du trafic routier à l’aide de l’apprentissage profond sur des
images et des vidéos compressées de scènes routières.

Présentée et soutenue par
Benjamin DEGUERRE

Thèse soutenue publiquement le 25 Novembre 2021
devant le jury composé de

Mr Vincent FREMONT Professeur, Centrale Nantes, LS2N Rapporteur

Mr David PICARD Habilité à diriger des recherches, Ecoles
des Ponts ParisTech Rapporteur

Mme Marianne CLAUSEL Professeure, IECL Examinatrice
Mr Franck DAVOINE Habilité à diriger des recherches, CNRS Examinateur

Mr Clément Chatelain Habilité à diriger des recherches, INSA
de Rouen Normandie, LITIS Co-encadrant

Mr Gilles Gasso Professeur, INSA de Rouen Norman-
die, LITIS Directeur de thèse

Thèse dirigée par Gilles Gasso et Clément Chatelain, LITIS

Abstract

The PhD thesis is a CIFRE carried out with Actemium Paris Transport, a company that op-
erates in the field of Intelligent Transport Systems (ITS) and, in particular, provides solutions
for the surveillance of road tunnels. In the thesis, we address the learning of efficient deep
learning models that directly process compressed images/videos to lower the computation
resource requirements and to allow for large scale deployment of the solutions. More specific-
ally, we target two types of compression, JPEG image compression and MPEG4 part-2 video
compression, for two specific applications: object detection and traffic flow rate estimation.

The first contribution focuses on object detection in JPEG compressed images. As the
JPEG algorithm compresses the images from a spatial representation into a tiled frequency
space, the main challenge is to design detection models able to correctly estimate the position
of objects based on the frequency representation. Using JPEG compressed images as inputs,
we investigate deep learning architectures for object detection and demonstrate a ×1.7 speed
up at detection time, while only reducing the detection performance by 5.5%. Moreover, we
empirically demonstrate that only part of the compressed information, namely the luminance
component, is required to match the accuracy of the full input methods.

Our second contribution addresses the problem of estimating the flow rate (number of
vehicles/unit of time) from MPEG4 part-2 compressed video streams issued from road sur-
veillance cameras. The MPEG4 part-2 compression algorithm uses a coarse representation
of the pixel flow across frames to reduce the size of the videos to be encoded. Therefore, the
approximate flow representation appears relevant to estimate the flow rate, while reducing
the computation and memory requirements. We propose multiple end-to-end deep learning
architectures using this coarse pixel flow representation as input. Using these models, we
demonstrate that predicting the flow rate directly from MPEG4 part-2 compressed video
streams can be achieved, while reaching improved accuracy in comparison with a more clas-
sical RGB-based model. We also show an impressive speed up of ×3200. Furthermore, as
training data may be scarce due to practical constraints, we explore domain adaptation to
transfer learned models from one camera to another and provide with a thorough analysis of
the constraints that may impede such transfer.

Résumé

Cette thèse est une CIFRE réalisée avec Actemium Paris Transport, une société qui évolue
dans le domaine des Systèmes de Transport Intelligents (STI) et, en particulier, fournit des
solutions logicielles pour la surveillance des tunnels routiers. Dans cette thèse, nous nous
proposons d’étudier l’utilisation de méthodes d’apprentissage profond sur des images/vidéos
compressées, afin de réduire leurs besoins en ressources et de permettre un déploiement à
grande échelle des solutions logicielles développées par Actemium. Plus spécifiquement, nous
ciblons deux types de compressions (la compression d’images JPEG et la compression vidéo
MPEG4 part-2) pour deux applications spécifiques : la détection d’objets et l’estimation du
débit de flux routiers.

Dans un premier temps, nous nous concentrons sur la détection d’objets dans les images
compressées JPEG. Du fait que l’algorithme JPEG compresse les images depuis une représen-
tation spatiale en une représentation fréquentielle par blocs, le principal défi consiste à conce-
voir des modèles de détection capables d’estimer correctement la position des objets depuis
cette nouvelle représentation. En utilisant des images compressées au format JPEG comme
entrées, nous développons des architectures d’apprentissage profond de détection d’objets et
démontrons une accélération de la vitesse de prédiction d’un facteur 1,7 tout en ne réduisant
la performance de détection que de 5,5%. De plus, nous démontrons empiriquement que seule
une partie des informations compressées, la composante de luminance, est nécessaire pour
atteindre la précision des méthodes utilisant l’ensemble des informations contenues dans les
images.

Nous abordons ensuite le problème de l’estimation du débit routier (nombre de véhi-
cules/unité de temps) à partir de flux vidéo compressés MPEG4 part-2 provenant de caméras
de surveillance de tunnels routiers. L’algorithme de compression vidéo MPEG4 part-2 utilise
une représentation approximative du flux de pixels entre les images pour réduire la taille des
données à encoder. Cette représentation semble donc pertinente pour estimer le débit de flux
routiers tout en réduisant les besoins en resources de calcul et en mémoire. Nous proposons
plusieurs architectures d’apprentissage profond de type end-to-end qui utilisent cette repré-
sentation comme entrée. En utilisant ces architectures, nous démontrons que la prédiction du
débit routier à partir de flux vidéo compressés MPEG4 part-2 est possible tout en atteignant
une meilleure précision par rapport à un modèle plus classique, basé sur les vidéos RGB, et
permet, de plus, d’accélérer de façon impressionnante l’étape de prédiction (×3200). Enfin, les
données d’entraînement pouvant être difficiles à obtenir en raison de contraintes industrielles,
nous étudions la possibilité d’utiliser des méthodes d’adaptation de domaine pour transférer
les modèles appris d’une caméra à une autre et nous fournissons une analyse approfondie des
contraintes qui peuvent entraver un tel transfert.

Acknowledgements
Thanks all !

ii

Contents

Contents iii

Acronyms vii

Glossary ix

Introduction 1
Context and motivation . 1
Data compression . 2
Deep learning and computer vison tasks . 3
Contributions . 3
Publications . 4
Outline . 4

Introduction 5
Contexte et motivation . 5
Compression de données . 6
Apprentissage profond et traîtement d’image . 7
Contributions . 7
Publications . 8
Organisation . 8

I Background and preliminaries 11

1 Data compression 13
1.1 JPEG image compression . 15

1.1.1 Overview of the JPEG compression 16
1.1.2 YCbCr transform . 16
1.1.3 Sub-Sampling . 18
1.1.4 Block Discrete Cosine Transform (DCT) 19
1.1.5 Quantization . 21
1.1.6 Entropy encoding/RLE . 22
1.1.7 Conclusion . 23

1.2 MPEG4 part-2 video compression . 23
1.2.1 Simple Profile: General decoding pipeline 24
1.2.2 Inverse Scan . 26
1.2.3 Inverse Quantization . 26
1.2.4 Up-sampling . 27
1.2.5 Conclusion . 28

iii

CONTENTS

2 Deep Learning 29
2.1 Basics of deep learning . 31

2.1.1 Artificial Neural Networks . 31
2.1.2 Training ANNs . 31
2.1.3 Convolutional Neural Networks . 32
2.1.4 Recurrent Neural Networks . 35

2.2 Object detection . 37
2.2.1 Classical object detection formulation and learning 37
2.2.2 One-shot vs Two-shot detection architectures 38
2.2.3 Evaluation: mean Average Precision 40

2.3 Connectionist Temporal Classification . 41
2.3.1 From network output to labelling . 42
2.3.2 Training a CTC network: loss and dynamic programming 43

2.4 Conclusion . 45

II Contributions 47

3 Object detection in Compressed JPEG images 49
3.1 Detecting objects in images . 51

3.1.1 Object detection on RGB images . 52
3.1.2 Computer vision on compressed signals 56
3.1.3 Synthesis . 57

3.2 Object detection on compressed JPEG images 58
3.2.1 Details of the Single Shot Multibox Detector 58
3.2.2 From RGB images to object detection in the frequency domain 61
3.2.3 Proposed architectures . 62

3.3 Experiments and results . 65
3.3.1 Implementation details . 65
3.3.2 Evaluation of the classification networks 66
3.3.3 Detection . 68

3.4 Conclusion . 73

4 Object Counting in MPEG4 part-2 Compressed Videos 75
4.1 Estimation of flow parameters . 77

4.1.1 Tracking-based estimation . 78
4.1.2 Estimation from video stream parameters 79
4.1.3 Datasets in the wild: traffic videos . 80
4.1.4 Summary . 81

4.2 End-to-end learning in the MPEG4 part-2 compressed video domain for flow
rate estimation . 82
4.2.1 Problem statement . 82
4.2.2 Regression Approaches . 83
4.2.3 Temporal classification approach . 85
4.2.4 A synthetic dataset: Moving Digits . 86
4.2.5 Experiments . 87
4.2.6 Synthesis . 93

4.3 Domain Adaptation . 94
4.3.1 DeepJDOT . 95
4.3.2 Experiments . 96

4.4 Conclusion . 98

iv

CONTENTS

5 Vehicle Counting: A Real Case Application 99
5.1 Traffic flow theory and dataset . 101

5.1.1 Definition of the usual flow measurements variables 101
5.1.2 Actemium’s Tunnel Video Dataset . 103

5.2 Flow rate estimation from compressed MPEG4 part-2 videos: Application to
Actemium’s tunnel dataset . 107
5.2.1 Baseline: Detect and Track . 109
5.2.2 Estimation from the compressed MPEG4 part-2 representation 110
5.2.3 Domain Adaptation towards unseen cameras 114

5.3 Discussion on Domain Adaptation and DeepJDOT 117
5.3.1 The limits of domain adaptation . 117
5.3.2 Prediction with oracle . 120
5.3.3 Synthesis and perspectives . 122

5.4 Conclusion . 123

Conclusion and Perspectives 125
Conlusion . 125
Perspectives . 126

A CTC: Computation of the forward and backward variables I

B Object detection in JPEG images III

C Flow rate estimation: Moving Digits VII

D Traffic flow parameters estimation: Actemium Dataset IX

v

CONTENTS

vi

Acronyms

AC coefficient: Alternating Current coefficient. 20, 25, Glossary: AC coefficient

ANN: Artificial Neural Network. 31, 32, 37, Glossary: ANN

CNN: Convolutional Neural Network. 34, 36, Glossary: CNN

ConvLSTM: Convolutional Long Short-Term Memory. 35, 36, 83–85, 88, 93, 111, 126,
Glossary: ConvLSTM

CTC: Connectionist Temporal Classification. I, 4, 8, 30, 41–43, 45, Glossary: CTC

DC coefficient: Direct Current coefficient. 20, 23, 25, 27, Glossary: DC coefficient

DCT: Discrete Cosine Transform. 15, 16, 19–23, 25, 57, 58, 61, 74, Glossary: DCT

DPS: Datapoints Per Second. 93, 110, 111, Glossary: DPS

FPS: Frames Per Second. 50, 53–56, 58, 62, 66–72, 77, 81, 87, 88, 93, 94, 103, 110, 111,
114, Glossary: FPS

GPU: Graphics Processing Unit. 33, 53, 55–57, 66, 67, 71, 72, 85, 88, 93, 96, 110, 114,
Glossary: GPU

HNM: Hard Negative Mining. Glossary: HNM

I-VOP: Intra coded VOP. 24–27, Glossary: Intra coded VOP

IDCT: Inverse Discrete Cosine Transform. 16, 26, Glossary: IDCT

IoU: Intersection over Union. 39, 53, 59, Glossary: IoU

LSTM: Long Short-Term Memory. 35, 36, Glossary: LSTM

mAP: mean Average Precision. 40, 41, Glossary: MV

MV: Motion Vector. 24, 25, 28, 76, 79, 80, 83, 88, 94, 96, 98, 100, 101, 104, 107, 108, 110,
111, 114, 124, 126, Glossary: MV

NMS: Non-Maximum Suppression. 39, 55, Glossary: MV

P-VOP: Predictive coded VOP. 24–26, Glossary: Predictive coded VOP

RLE: Run Length Encoding. 16, 21–23, 61, Glossary: RLE

RNN: Recurrent Neural Network. 35–37, 84, 86, Glossary: RNN

vii

Acronyms

RoI: Region of Interest. 38, 52, 53, 78, 81, Glossary: RoI

VO: Video Object. 24, Glossary: Video Object

VOP: Video Object Plane. 24–26, Glossary: Video Object Plane

viii

Glossary

AC coefficient: An Alternating Current coefficient is a DCT coefficient for which the test-
ing frequency is non zero. 20

ANN: An Artificial Neural Network is a mathematical model in the deep learning frame-
work able to fit a target function. Its name comes from its architecture that supposedly
mimics the human brain. 31

CNN: A Convolutional Neural Network is a network based on convolutional layers. 34

ConvLSTM: A Convolutional Long Short-Term Memory (ConvLSTM) network is a pe-
culiar type of RNN introduced by Shi et al. [2015] to process sequences of images.
35

CTC: The Connectionist Temporal Classification is a method introduced by Graves et al.
[2006] to learn classification on unsegmented sequences. 4, 42

DC coefficient: The Direct Current coefficient is the DCT coefficient for which the testing
frequency is zero. 20

DCT: The Direct Cosine Transform is a transform aiming to extract the frequency inform-
ation contained within a signal. 15

DPS: Datapoints Per Second. 93, 110

FPS: Frames Per Second. 50, 66, 103

GPU: Graphics Processing Unit. 33

IDCT: The Inverse Direct Cosine Transform (IDCT) is the inverse function of the DCT.
It reconstructs a signal from its frequency components. 16

Intra coded VOP: An Intra coded VOP is a VOP that was coded without any reference
to other VOP. 24

IoU: The Intersection over Union is a measure of how well objects are overlapping. 39, 53

LSTM: A Long Short-Term Memory (LSTM) network is a peculiar type of RNN introduced
by Hochreiter and Schmidhuber [1997]. 35

MV: A Motion Vector is a vector indicating the position of the best matching macro-block
in the previous reference frame with regard to the current macro-block. 24, 76, 100

NMS: The Non-Maximum suppression is a procedure used for object detection that aims
to remove multiple overlapping detections. 39, 40, 55

ix

Glossary

Predictive coded VOP: A Predictive coded VOP is a VOP that was coded using a pre-
vious VOP as reference. 24

RLE: Run Length Encoding is a compression method that reduces the size of messages
through a smart representation of series of repeating symbols. 16

RNN: A Recurrent Neural Network is a network used for sequence processing that recalls
itself at each time step. It keeps an internal state to yield predictions based on previous
inputs. 35

RoI: Region of Interest. 38, 52, 78

Video Object: A Video Object is used in the MPEG4 part-2 compression to represent a
series of objects through time. Usually, for simplification purposes, a Video Object
represents a series of frames through time. 24

Video Object Plane: A Video Object Plane is used in the MPEG4 part-2 compression to
represent object at a given instant. Usually, for simplification purposes, a Video Object
Plane represents a given frame. 24

x

Introduction

“ The problem with quotes
found on the internet is that
they are often not true. ”

Abraham Lincoln

Context and motivation

In recent years, the field of artificial intelligence has experienced a rapid and unprecedented
growth. Problems that have been considered out of reach for many years can now be easily
solved thanks to deep learning methods. In particular, deep learning has been intensively
used in the field of computer vision. The craze started in 2012, when Krizhevsky et al. [2012]
won by a large margin the ImageNet image classification challenge [Russakovsky et al., 2015].
Since then, a plethora of methods, mostly RGB-based, have been proposed, covering many
image/video related applications. However, despite the apparent success of deep learning
solutions, many companies are still struggling to integrate these new technologies into their
products and decision-making procedures. The reasons for these difficulties are numerous
(high data and computation resources requirements, explainability, etc.) and solving these
issues is an active field for many industry companies.

Actemium Paris Transport is a subsidiary of Actemium working to develop systems for
the monitoring of Paris’ road tunnels. As of today, about 2000 cameras are deployed for
the surveillance of the tunnels, and, in order to help the operators with the monitoring,
semi-automatic surveillance systems are deployed. Such systems are critical as they help
the operators initiate safety protocols in case of incidents. The current surveillance systems,
and in particular the video processing modules, use methods heavily relying on heuristics.
Although effective, these methods have several drawbacks. They are inclined to high rate of
false alarms and may overload the operators with irrelevant alerts during rush hour. Moreover,
due to the dependence of such methods on heuristics, their large scale deployment is a tedious
task. As Actemium aims to develop solutions free from these limitations, they naturally seek
to develop and test new solutions based on deep learning architectures. However, deep
architectures require large datasets to train and high computation and memory resources
when deployed. Given the scale of the surveillance systems, costs would grow to unbearable
levels. Therefore, adaptations to the classical deep learning approaches must be considered
to circumvent the problems. In particular, Actemium considers leveraging the compressed
representation of the data, so far largely ignored by classical deep learning models, so as to
reduce computation costs.

Onsite, video streams produced by the surveillance cameras constantly transit over the
company closed internet network. As this network has limited bandwidth, all the video
streams are heavily compressed before being transferred. Therefore, the overall processing
pipeline of the automatic surveillance systems goes as follow: videos are compressed by onsite
coders, transferred to the processing units, uncompressed and then processed (c.f Figure 1a).
This processing scheme has the main drawback of not leveraging the compact compressed

1

Introduction

Compression Decompression Processing

(a) Current processing pipeline

Compression Decompression Processing

(b) Targeted processing pipeline

Figure 1 – Current processing pipeline (a) and the one we pursue throughout the thesis (b)

representation of the road videos. It also induces heavy computation requirements. Indeed,
not only is decompression costly computationally, but processing RGB images also requires
a lot of computation resources in order to extract meaningful information.

Herein, the goal we pursue is to alleviate these downsides by designing prediction models,
based on the compressed image and video representation, so as to skip the decompression
step during processing (c.f Figure 1b). We also explore if the compressed representation
of signals can be exploited to improve the processing stages. In particular, we target two
specific computer vision tasks: object detection in compressed JPEG images and traffic flow
rate estimation from compressed MPEG4 part-2 videos. Object detection is a critical task
for Actemium as it allows to detect vehicles stopped in unauthorized areas and to raise alerts
faster in case of an incident. As for flow rate estimation, the general surveillance of traffic
allows to take preventive actions such as the recommendation of a secondary itinerary, so as
to avoid congestions of the road network.

Data compression

Data compression is used extensively to avoid the saturation of the storage drives and inter-
net networks. It has never been as important as in the recent years, due to the ever growing
amount of data being exchanged and stored. As an example, in 2019, Snapchat users re-
portedly generated 527,760 photos every minute1. And, more recently, due to the lockdown,
Netflix had to lower its streaming quality to reduce the strain on European internet service
providers2.

Data compression can be traced back to the late forties/early fifties, with the development
of information theory by Claude Shannon [Shannon, 1948], Robert Fano [Fano, 1949] and
David Huffman [Huffman, 1952]. Over the years, a multitude of compression formats have
been proposed to cover an always larger range of uses (images, videos, sounds, etc.). For
instance, for image compression, JPEG was proposed in 1992, JPEG2000 in 2000 and, more
recently, WebP, created by Google, in 2018. Video compression followed a similar pace, with
the H.26x family of compression, starting from H.261 in 1988 and currently at H.265, released
in 2013 (H.262 in 1995, H.263, aka MPEG4 part-2, in 1999 and H.264 in 2003).

While targeting different usages, the image and video compression formats usually share
common attributes. For instance, most of the image compression algorithms take advantage
of either (or both) the limitations of the human eyes or spatial redundancies to reduce the
size of the images. As for video, beyond spatial redundancies, the compression formats also
leverage temporal redundancies and usually only encode the differences between subsequent
frames.

1https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-
should-read/

2https://www.bbc.com/news/technology-51968302

2

https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.bbc.com/news/technology-51968302

Introduction

Deep learning and computer vison tasks

Deep learning is a method for automatic learning renown for its impressive results (AlphaGo3,
DeepL4, etc.) and its need for data. Indeed, as the main strength of deep learning comes
from its capacity to extract statistical properties from data and to use it to estimate target
values, every ounce of added data improves the quality of learning. Due to its efficiency, deep
learning has rapidly replaced older methods that required to carefully handcraft a complex
processing pipeline, from the feature extractor to the estimation unit.

In particular, image and video processing have seen a surge of deep-learning-based solu-
tions over the past years. The models used for image processing heavily rely on convolutions
to extract information. Several convolutional deep learning architectures have been proposed
to solve a large variety of computer vision tasks ; image classification [Krizhevsky et al., 2012,
He et al., 2016, Simonyan and Zisserman, 2015], image segmentation [Long et al., 2015], ob-
ject detection [Liu et al., 2016, Redmon et al., 2016, Ren et al., 2015], action recognition
[Gowda et al., 2020], object tracking [Wojke et al., 2017], etc. However, while the emergence
of such methods has been made possible by the gathering of large datasets, they are, in
general, completely oblivious to the compressed representation of the images or videos.

Very recently, the combined usage of the data compressed representation and deep learn-
ing methods has seen a resurgence of interest so as to reduce both computation and bandwidth
requirements. For instance, Gueguen et al. [2018], propose a system based on compressed
JPEG images and deep learning for image classification. They show impressive results with
speedup gains up to ×1.77. Similarly, Chamain and Ding [2019] also manage to run classific-
ation on JPEG2000 compressed images. Such results are very encouraging and lean towards
the effective learning of deep vision models on compressed images/videos. Yet, many chal-
lenges still lie ahead before such tools can be widely generalized.

Contributions

The main proposition of the thesis is to exploit the compressed version of signals to perform
computer vision tasks. This proposition is declined amongst two main contributions, which
cover two compressed signals, JPEG image compression and MPEG4 part-2 video compres-
sion. The first contribution addresses object detection in compressed JPEG images and is
detailed as follows:

• We show that detection in the compressed domain can nearly reach detection perform-
ance of the RGB domain, and highlight its interest in settings where resources are
scarce.

• We experimentally demonstrate that images contain large portions of unnecessary in-
formation for the task of object detection.

The second contribution is the estimation of the flow rate of moving objects on videos based
on the compressed MPEG4 part-2 representation. We also introduce two new datasets for
traffic flow estimation. This contribution is summarized as follows:

• We propose a new method that can be trained in an end-to-end fashion for flow rate
estimation.

• We thoroughly study its behavior both on real and generated data.

• We demonstrate how domain adaptation can be used to overcome the lack of data and
statistical shift inherent to industrial applications.

3https://fr.wikipedia.org/wiki/AlphaGo
4https://fr.wikipedia.org/wiki/DeepL

3

https://fr.wikipedia.org/wiki/AlphaGo
https://fr.wikipedia.org/wiki/DeepL

Introduction

• We introduce a simulation dataset based on MNIST, that allows to generate video data
according to targeted camera settings.

• We collect and annotate a dataset based on real surveillance cameras in road tunnels.

Publications
The contributions on object detection have been published in the following papers:

• Benjamin Deguerre, Clément Chatelain, and Gilles Gasso. "Fast object detection in
compressed jpeg images", in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC).

• Benjamin Deguerre, Clement Chatelain, and Gilles Gasso. "Object detection in the
DCT domain: is luminance the solution?", in 2020 25th International Conference on
Pattern Recognition (ICPR).

Contributions related to video processing are in working progress.

Outline
The manuscript is divided into 5 chapters grouped into two parts. The first part focuses on
the base knowledge required to understand the contributions. The second part focuses on
the contributions. The content of the chapters is summarized as follows:

• Chapter 1 introduces the two compression formats, JPEG image compression and
MPEG4 part-2 video compression.

• Chapter 2 reviews the core concept of deep learning, with a specific focus on object
detection and the Connectionist Temporal Classification (CTC) loss (sequence seg-
mentation learning).

• Chapter 3 tackles the task of object detection in compressed JPEG images. Multiple
architectures addressing the specificities of the JPEG norm are proposed and we empir-
ically demonstrate that the usual RGB input contains more information than required
for the detection task.

• Chapter 4 addresses the task of flow rate estimation on compressed MPEG4 part-2
videos. Two types of deep architectures are proposed, one based on regression and
one based on temporal classification (CTC). The models are thoroughly evaluated on
a simulation dataset. Moreover, as data are often scarce in the industrial setting,
we also experiment on domain adaptation so as to provide with better generalization
capabilities for the proposed networks.

• Chapter 5 extends the work presented in chapter 4 towards real-world data. A new
dataset for traffic flow estimation in tunnel videos is presented and the flow rate es-
timation methods proposed in chapter 4 are tested on this real-life dataset. We also
extend the domain adaptation experiments, show limitations on the real-world data
and explain their causes.

• Finally, the manuscript summarizes the main findings and sketches the perspectives for
future work.

4

Introduction

“ Le problème des citations
trouvées sur Internet est
qu’elles sont souvent fausses. ”

Abraham Lincoln

Contexte et motivation

Au cours de ces dernières années, le domaine de l’intelligence artificielle a connu une crois-
sance rapide et sans précédent. Des problèmes considérés comme hors de portée pendant de
nombreuses années peuvent désormais être résolus de manière élégante grâce aux méthodes
d’apprentissage profond. En particulier, le domaine du traitement d’image a largement béné-
ficié des progrès récents. L’engouement pour l’apprentissage profond a commencé en 2012,
lorsque Krizhevsky et al. [2012] a remporté haut la main le défi ImageNet de classification
d’images [Russakovsky et al., 2015]. Dès lors, une pléthore de méthodes, principalement
basées sur les images RGB, ont été proposées, couvrant de nombreuses applications liées à
l’image/la vidéo. Cependant, malgré le succès apparent des solutions d’apprentissage pro-
fond, de nombreuses entreprises ont encore du mal à intégrer ces nouvelles technologies dans
leurs produits et leurs chaines de traitement. Les raisons de ces difficultés sont nombreuses
(besoins élevés en données et en ressources de calcul, difficultées à expliquer les décisions
des réseaux neuronaux, etc.) et la résolution de ces problèmes est un domaine actif pour de
nombreuses entreprises.

Actemium Paris Transport est une filiale d’Actemium qui travaille au développement de
systèmes pour la surveillance des tunnels routiers de Paris. A ce jour, environ 2000 caméras
sont déployées pour la surveillance des tunnels et, afin d’aider les opérateurs dans leur tâche,
des systèmes de surveillance semi-automatiques sont déployés. Ces systèmes sont essentiels
car ils aident les opérateurs à initier les protocoles de sécurité en cas d’incident. Les sys-
tèmes de surveillance actuels, et, en particulier, les modules de traitement vidéo, utilisent des
méthodes basées sur des heuristiques. Bien qu’efficaces, ces méthodes présentent plusieurs
inconvénients. Elles sont enclines à un taux élevé de fausses alarmes et peuvent surcharger les
opérateurs avec des alertes non pertinentes aux heures de pointe. De plus, ces méthodes néces-
sitent d’être manuellement calibrées, ce qui rend leur déploiement à grande échelle fastidieux.
Actemium, qui cherche à se libérer de ces limitations, se tourne naturellement vers le dévelop-
pement et le test de nouvelles solutions basées sur des architectures d’apprentissage profond.
Cependant, l’utilisation des architectures existantes engendrerait des coûts très élevés lors
de leur déploiement du fait de leurs besoins en ressources de calcul et en mémoire élevés.
Par conséquent, Actemium cherche à modifier les approches classiques afin de contourner ce
problème. En particulier, Actemium envisage de tirer parti de la représentation compressée
des données, jusqu’ici largement ignorée par les modèles classiques d’apprentissage profond,
afin de réduire les coûts en roussources de calcul.

Sur site, les flux vidéo produits par les caméras de surveillance transitent sur le réseau
Intranet de l’entreprise. Comme ce réseau a une bande passante limitée, tous les flux vidéos

5

Introduction

Compression Decompression Processing

(a) Pipeline de traitement actuel

Compression Decompression Processing

(b) Pipeline de traitement visé

Figure 2 – Pipeline de traitement actuel (a) et celui que nous cherchons à atteindre tout au long de
la thèse (b)

sont fortement compressés avant d’être transférés. Par conséquent, le pipeline de traitement
général des systèmes de surveillance automatique est le suivant : les vidéos sont compressées
sur site par des codeurs, transférées vers les unités de traitement, décompressées puis traitées
(cf. Figure 2a). Ce schéma de traitement présente le principal inconvénient de ne pas tirer
parti de la représentation compressée des vidéos routières. Il implique également des calculs
lourds. En effet, non seulement la décompression est coûteuse en termes de calcul, mais
le traitement des images RGB nécessite également beaucoup de ressources afin d’extraire
l’information présente dans les images.

Dans cette thèse, nous cherchons à contourner ces inconvénients en concevant des modèles
de prédiction basés sur la représentation de l’image et de la vidéo compressées, afin d’éviter
l’étape de décompression pendant le traitement (c.f Figure 1b). Nous cherchons également à
savoir si la représentation compressée du signal peut être utilisée pour améliorer les modèles
neuronaux. Plus particulièrement, nous ciblons deux tâches spécifiques du traitement d’image
: la détection d’objets dans des images JPEG compressées et l’estimation du débit du trafic
routier à partir de vidéos MPEG4 part-2 compressées. La détection d’objets est une tâche
critique pour Actemium car elle permet de détecter les véhicules arrêtés dans des zones non
autorisées et de déclencher les alertes plus rapidement en cas d’incident. Quant à l’estimation
du débit, la surveillance générale du trafic permet de prendre des mesures préventives telles
que la recommandation d’un itinéraire secondaire afin d’éviter les congestions sur le réseau
routier.

Compression de données

La compression des données est largement utilisée afin d’éviter la saturation des espaces
de stockage et du réseau Internet. Elle n’a jamais été aussi importante qu’au cours de ces
dernières années en raison de la quantité toujours plus importante de données échangées et
stockées. À titre d’exemple, en 2019, les utilisateurs de Snapchat ont généré 527 760 photos
chaque minute5. Et, plus récemment, en raison du confinement, Netflix a dû diminuer la
qualité de ses vidéos pour réduire la pression sur le réseau Internet européens6.

L’étude de la compression des données remonte à la fin des années 40 et au début des an-
nées 50, avec le développement de la théorie de l’information par Claude Shannon (Shannon),
Robert Fano (Fano) et David Huffman (Huffman). Au fil des ans, une multitude de formats
de compression ont été proposés pour couvrir un éventail toujours plus large d’utilisations
(images, vidéos, sons, etc.). Par exemple, pour la compression d’images, JPEG a été proposé
en 1992, JPEG2000 en 2000 et, plus récemment, WebP, a été créé par Google, en 2018. La

5https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-
should-read/

6https://www.bbc.com/news/technology-51968302

6

https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.bbc.com/news/technology-51968302

Introduction

compression vidéo a suivi un schéma de développement similaire avec la famille de compres-
sion H.26x, depuis H.261 en 1988 et jusqu’à H.265, sorti en 2013 (H.262 en 1995, H.263 alias
MPEG4 part-2 en 1999 et H.264 en 2003).

Bien qu’ils soient destinés à des usages différents, les formats de compression d’images
et de vidéos ont généralement des caractéristiques communes. Par exemple, la plupart des
algorithmes de compression d’image tirent parti des limites de l’œil humain et/ou des re-
dondances spatiales pour réduire la taille des images. En ce qui concerne la vidéo, en plus
des redondances spatiales, les formats de compression tirent également parti des redondances
temporelles et n’encodent généralement que les différences entre les images successives.

Apprentissage profond et traîtement d’image

L’apprentissage profond est une méthode d’apprentissage automatique réputée pour ses ré-
sultats impressionnants (AlphaGo7, DeepL8, etc.) et ses besoins important en données. En
effet, comme la principale force de l’apprentissage profond provient de sa capacité à extraire
des propriétés statistiques des données et à utiliser ces dernières pour estimer des valeurs à
prédire, chaque donnée ajoutée améliore la qualité de l’apprentissage. En raison de son effica-
cité, l’apprentissage profond a rapidement remplacé les anciennes méthodes qui nécessitaient
de mettre en place un pipeline de traitement complexe, de l’extracteur de caractéristiques,
jusqu’au module d’estimation.

Ces dernières années, les solutions basées sur l’apprentissage profond se sont multipliées
dans le traitement des images et des vidéos. Les modèles utilisés pour le traitement d’images
s’appuient fortement sur les convolutions pour extraire l’information des images. Plusieurs ar-
chitectures convolutives d’apprentissage profond ont été proposées pour résoudre une grande
variété de tâches de traîtement d’image : classification d’images [Krizhevsky et al., 2012,
He et al., 2016, Simonyan and Zisserman, 2015], segmentation d’images [Long et al., 2015],
détection d’objets [Liu et al., 2016, Redmon et al., 2016, Ren et al., 2015], reconnaissance
d’actions [Gowda et al., 2020], suivi d’objets [Wojke et al., 2017], etc. L’émergence de ces
méthodes a été rendue possible par la collecte de grands jeux de données. Cependant elles
sont le plus souvent basées sur l’utilisation de la représentation RGB des images et vidéos et
ne tirent généralement pas parti de la représentation compressée de ces dernières.

Très récemment, l’utilisation combinée de la représentation compressée des données et
des méthodes d’apprentissage profond a connu un regain d’intérêt afin de réduire les besoins
en calcul et en bande passante. Par exemple, Gueguen et al. [2018], propose un système basé
sur des images JPEG compressées et l’apprentissage profond pour la classification d’images.
Ils atteignent des résultats impressionnants avec des gains de vitesse allant jusqu’à ×1.77.
De même, Chamain and Ding [2019] réussissent également à faire de la classification sur des
images compressées JPEG2000. Ces résultats sont très encourageants et vont dans le sens
d’un apprentissage efficace de modèles de vision sur des images/vidéos compressées. Cepend-
ant, de nombreux défis restent à relever avant que de tels outils puissent être généralisés à
l’ensemble des traîtements existant.

Contributions

L’objectif majeur de cette thèse est d’exploiter la version compressée des signaux pour réaliser
des tâches de vision par ordinateur. Cette proposition se décline en deux contributions
principales qui sont basées deux signaux compressés différents : la compression d’image JPEG
et la compression vidéo MPEG4 part-2. La première contribution porte sur la détection
d’objets dans des images JPEG compressées et est détaillée comme suit :

7https://fr.wikipedia.org/wiki/AlphaGo
8https://fr.wikipedia.org/wiki/DeepL

7

https://fr.wikipedia.org/wiki/AlphaGo
https://fr.wikipedia.org/wiki/DeepL

Introduction

• Nous montrons que la détection dans le domaine compressé propose des résultats quasi
équivalent à ceux obtenus avec des méthodes de détection dans le domaine RGB. De
plus, nous soulignons l’intérêt de notre nouvelle méthode pour les cas où les ressources
sont limitées.

• Nous démontrons expérimentalement que les images contiennent de grandes quantités
d’informations inutiles pour la tâche de détection d’objets.

La deuxième contribution est l’estimation du débit d’objets dans des vidéos compressées au
format MPEG4 part-2. Nous introduisons également deux nouveaux ensembles de données
pour l’estimation du débit du trafic. Cette contribution est détaillée comme suit :

• Nous proposons une nouvelle méthode qui peut être entraînée de façon end-to-end pour
l’estimation du débit de flux d’objets.

• Nous étudions de façon détaillé le comportement de cette nouvelle méthode sur des
données réelles et générées.

• Nous démontrons comment l’adaptation au domaine peut être utilisée pour pallier au
manque de données et le décalage statistique inhérent aux applications industrielles.

• Nous introduisons un jeu de données de simulation basé sur MNIST qui permet de
générer des données vidéo en fonction de paramètres ciblés.

• Nous collectons et annotons un jeu de données basé sur des caméras de surveillance de
tunnels routiers.

Publications
Les contributions sur la détection d’objets ont été publiées dans les articles suivants :

• Benjamin Deguerre, Clément Chatelain, et Gilles Gasso. "Fast object detection in
compressed jpeg images", in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC).

• Benjamin Deguerre, Clement Chatelain, et Gilles Gasso. "Object detection in the DCT
domain : is luminance the solution ?", in 2020 25th International Conference on Pattern
Recognition (ICPR).

Les contributions relatives au traitement vidéo sont en cours de réalisation.

Organisation
Le manuscrit est divisé en 5 chapitres regroupés en deux parties. La première partie se
concentre sur les connaissances de base nécessaires à la compréhension des contributions. La
deuxième partie détaille les contributions. Le contenu des chapitres est résumé comme suit :

• Le chapitre 1 présente les deux formats de compression, la compression d’image JPEG
et la compression vidéo MPEG4 part-2.

• Le chapitre 2 passe en revue les concepts de base de l’apprentissage profond, en mettant
l’accent sur la détection des objets et la fonction objectif CTC (apprentissage de la
segmentation des séquences).

• Le chapitre 3 aborde la détection d’objets dans les images JPEG compressées. Plusieurs
architectures conçues pour la norme JPEG sont proposées et nous démontrons em-
piriquement que l’entrée RGB contient plus d’informations que nécessaire pour réaliser
la tâche de détection.

8

Introduction

• Le chapitre 4 aborde la tâche d’estimation du débit sur des vidéos MPEG4 part-2
compressées. Deux types d’architectures profondes sont proposés, l’une basée sur de la
régression et l’autre sur de la classification temporelle (CTC). Les modèles sont évalués
sur un jeu de données de simulation. De plus, comme ils est souvent difficile d’obtenir
des données représentatives du domaine industriel, nous expérimentons l’adaptation
de domaine afin de fournir de meilleures capacités de généralisation pour les réseaux
proposés.

• Le chapitre 5 étend le travail présenté au chapitre 4 aux données de tunnels. Un
nouveau jeu de données pour l’estimation du débit du trafic routier est présenté et
les méthodes d’estimation du débit proposées au chapitre 4 sont testées sur ce jeu de
données réelles. Nous étendons également les expériences d’adaptation de domaine,
montrons les limitations sur les données industrielles et détaillons les causes de ces
limitations.

• Enfin, le manuscrit résume les principaux résultats et esquisse les perspectives de
travaux futurs.

9

Introduction

10

Part I

Background and preliminaries

11

Chapter 1

Data compression

“ The suspense is terrible. I
hope it will last. ”

Oscar Wilde

Contents
1.1 JPEG image compression . 15

1.1.1 Overview of the JPEG compression 16
1.1.2 YCbCr transform . 16
1.1.3 Sub-Sampling . 18
1.1.4 Block Discrete Cosine Transform (DCT) 19
1.1.5 Quantization . 21
1.1.6 Entropy encoding/RLE . 22
1.1.7 Conclusion . 23

1.2 MPEG4 part-2 video compression 23
1.2.1 Simple Profile: General decoding pipeline 24
1.2.2 Inverse Scan . 26
1.2.3 Inverse Quantization . 26
1.2.4 Up-sampling . 27
1.2.5 Conclusion . 28

13

CHAPTER 1. DATA COMPRESSION

As an ever growing amount of data is being exchanged and processed on a daily basis, data
compression has become one of the most important part of computer science. In particular,
the rise of Deep Learning applications, that require tremendous amounts of data, would
not have been so remarkable without efficient data compression methods. Yet, despite its
importance, data compression is often overlooked as it is usually considered a mean rather
than an end. As the contributions presented in this thesis are related to object detection and
counting based on compressed information, this chapter aims to provide the reader with the
basic tools to understand data compression. More specifically, we focus on image and video
compression. Readers already familiar with these topics can skip this chapter.

Image compression aims to reduce the memory requirements for the storage and transfer
of digital images. To improve the compression ratio when compared with classical compres-
sion algorithms, image compression algorithms usually take advantage of the limitations of
the human eye (to remove imperceptible information) and spatial redundancies (to encode
only once spatially duplicated data). As not all the compression algorithms use the same
methods for compression, file formats are used to define the way images were encoded, and
therefore the way to decode them. Image file formats can be divided into two main cat-
egories: vector formats and raster formats. Vector formats contain the geometric description
of the images as group of connected points forming shapes. Due to the vectorial nature of
this representation, images can be rendered at any desired display size without aliasing1.
Vector images are, in some ways, the perfect representation to maximize the usage of spatial
redundancies for compression. Indeed, as all points within a shape share the same properties
they do not need to be encoded as long as the shape is correctly defined. Examples of vector
image file formats are CGM or SVG. Unlike vector formats, raster images are defined as
matrices of pixels and therefore do not cope well with zooms and other visual manipulations.
While having obvious visual drawbacks, raster images are the most commonly used images.
Indeed, when an image is recorded with a camera, it is hard to get a meaningful vectorial
representation. Furthermore, the approximated image representation allows for a stronger
and possibly lossy compression2. An example of strong lossy compression is given in Fig-
ure 1.1. The reconstructed image on the right loosely resembles the left image as the loss
of information was extremely strong. Examples of raster image file formats are GIF, PNG,
WebP, JPEG, JPEG 2000.

Figure 1.1 – Example of two different levels of compression. On the left, the image was lightly
compressed, whereas on the right, the image is more strongly compressed. The strong compression
results in loss of visual quality but also reduces the size of the image — from 235,8 ko to 2,2 ko.

1Aliasing is two different signals becoming indistinguishable. It can be seen, for instance, in images when
diagonals take a stair-stepped appearance.

2A lossy compression is a compression that will lose information and therefore will not allow to perfectly
reconstruct the original image.

14

CHAPTER 1. DATA COMPRESSION

As for images, video compression relies on the smart usage of spatial redundancies as well
as the limitations of the human eye to reduce the size of the data to encode. However, unlike
images, video compression algorithms also rely on temporal redundancies to further increase
the compression ratio. Because various algorithms for video compression were developed
over the years, compressed video data is usually stored in a video file format. A video file
format is usually made of a container, a video coding format and an audio coding format.
The container contains various metadata and is used to encapsulate the video data written
in a specific video coding format alongside the audio data written in an audio coding format.
Depending on the file format, multiple combinations of containers and coding formats can be
used. It is therefore possible to have multiple files with identical extensions (i.e .mp4) that
were encoded using completely different encoding specifications (i.e H.264, MPEG4 part-2,
MPEG-2, MPEG-1). While this flexibility brings many advantages for the development of
applications, it poses the problem of generalization for methods that are developed to take
advantage of a given coding format.

In the thesis manuscript, we are interested in understanding image and video coding
formats in order to bypass part of the decompression process for object detection and count-
ing. As the data sent by the tunnels’ cameras to the supervisors is encoded in either JPEG
or MPEG4 part-2, the rest of this chapter focuses on these two compression methods and is
divided as follow: first the JPEG compression algorithm is explained, and then the MPEG4
part-2 video compression algorithm is detailed.

1.1 JPEG image compression

JPEG is a compression norm introduced in 1992 by the Joint Photographic Expert Group3.
Although the JPEG compression theoretically defines both a lossy (based on the Discrete
Cosine Transform (DCT)) and a lossless version (that does not use the DCT for compression),
usually, the JPEG compression refers to the lossy encoding process. Hereafter, we solely focus
on the lossy version of the norm and leave aside its lossless form.

The JPEG norm defines multiple encoding processes (baseline, extended, . . .) each of
which defines parameters for a finer control of the related compression algorithms. To specify
the process and parameters used for the encoding of a given image, the norm also defines a file
format: the JPEG Interchange Format (JIF). However, this file format is rarely used on its
own4 due to the difficulties to implement every aspect of the norm and due to shortcomings
that would not ensure identical rendering between decoders (for instance lack of color space
definition). Therefore, extensions of the JIF were defined to reduce the range of encodings
for JPEG images. As of today, the two main variants of the format in use are the JPEG File
Interchange Format (JFIF, 1992) and the EXchangeable Image File format (EXIF, 1995).
Because of that and as the RFC 20465 specifies that images transmitted over the internet
should be JFIF compliant, we consider the JPEG norm to always follow the JPEG/JFIF
specifications.

The rest of the section details the compression steps of the JPEG format. First an
overview of the compression pipeline is given, then, each of the compression steps are more
thoroughly explained.

3https://jpeg.org/jpeg/
4https://datatracker.ietf.org/doc/html/rfc2046
5Request For Comments (RFC) are documents describing aspects of technical internet specifications. The

RFC 2046 aims to redefine the format of messages to allow for various body type (text, image . . .).

15

https://jpeg.org/jpeg/
https://datatracker.ietf.org/doc/html/rfc2046#section-4.2

CHAPTER 1. DATA COMPRESSION

1.1.1 Overview of the JPEG compression

The JPEG/JFIF encoding process can be divided into five main steps6: RGB to YCbCr
change of color space, sub-sampling, block DCT computation, quantization and entropy cod-
ing/Run Length Encoding (RLE). Although algorithmically independent, these steps are
semantically linked as they were designed to work together in order to improve image com-
pression through loss of information without loss of visual quality. The whole compression
pipeline is detailed in Figure 1.2, and the compression steps related to one another are enclosed
in red boxes. The first two steps (RGB to YCbCr change of color space and sub-sampling) are
designed to take advantage of the varying sensitivity of the human eye to color components
to reduce the size of the image to encode. The last three steps (block DCT, quantization and
entropy coding/RLE) exploit the differences in the human eye sensitivity to high and low
frequencies and the relative homogeneity of natural images to reduce the size of the image to
encode.

Sub-
Sampling

YCbCr
 Transform

Entropy/RLE
Coding

3

h

w

h

w

3

h

h/2

w

w/2

2

1

h/8

h/16
w/16

w/8

64 64

64

Block DCT Quantization

h/8

h/16
w/16

w/8

64 64

64

Figure 1.2 – The Full JPEG compression pipeline. The compression starts on the left with an RGB
image and ends on the right with the entropy coded image. The compression steps in light red are
lossy. The two red rectangles regroup the semantically linked compression operations. Image adapted
from Gueguen et al. [2018].

It is to be noted that out of these five steps, three incur a non-reversible loss of information:
sub-sampling, block DCT and quantization (blocks in light red in Figure 1.2). Both the sub-
sampling and the quantization operations are lossy by design, they explicitly remove part
of the visually unnecessary information. However, the block DCT operation is lossy due to
algorithmic optimizations. To speed up the computation process using algorithms such as
the ones developed by Chen et al. [1977] or Löffler et al. [1989]7, the JPEG norm allows the
algorithm used for DCT/Inverse DCT (IDCT) computation some errors.

We now detail more thoroughly each step in the JPEG compression pipeline starting with
the RGB to YCbCr change of color space.

1.1.2 YCbCr transform

The first step in the JPEG/JFIF compression pipeline is the RGB to YCbCr change of color
space. This transformation aims to convert the image into a representation that will allow the
next step (sub-sampling) to discard useless information. As the human eye is more sensitive
to black and white than to color information [Lisa J. Croner, 2001, p. 204-205], using a smart
color representation of the image to encode can help improve the compression ratio without

6For the sake of simplicity, algorithmic tricks such as shifts, encoding order and others are not detailed
here. The interested reader can refer to the norm for more details.

7These references are given as examples of fast DCT algorithms, however, there is no guaranty that encoders
do use these specific methods.

16

https://www.w3.org/Graphics/JPEG/itu-t81.pdf

CHAPTER 1. DATA COMPRESSION

deteriorating the visual quality of the image. The YCbCr color representation separates the
image visual information into three components: Y (the luminance8) which contains the
black and white information of the image and CbCr (the chrominance) which contain the
color information of the image. It is therefore possible to use this representation to decrease
the size of the image (in the CbCr components) without reducing its visual quality. This is
shown in Figure 1.3, where various sampling factors are applied to the color components of
an image without loss of visual quality.

(a) Original image

(b) Image with a 4:2:0 sub-sampling (c) Image with a 4:1:0 sub-sampling

Figure 1.3 – The same image at various sampling rates in the YCbCr domain. Although data is
missing in the chroma components, the image is not visually altered.

As defined per the JPEG/JFIF specification, the linear formula to convert an image from
the RGB to the YCbCr color space is given in Equation 1.1.

Y = min(max(0, round(0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B)), 255)
Cb = min(max(0, round(−0.1687 ∗R− 0.3313 ∗G+ 0.5 ∗B + 128)), 255)
Cr = min(max(0, round(0.5 ∗R− 0.4187 ∗G− 0.0813 ∗B + 128)), 255)

(1.1)

And the inverse operation used for decompression is given in Equation 1.2.

R = min(max(0, round(Y + 1.402 ∗ (Cr − 128))), 255)
G = min(max(0, round(Y − 0.3441 ∗ (Cb − 128)− 0.7141 ∗ (Cr − 128))), 255)
B = min(max(0, round(Y + 1.772 ∗ (Cb − 128))), 255)

(1.2)

8It is important to note that the luminance is not used in its Physics meaning (that defines it as the
luminous intensity per unit area of light travelling in a given direction) but as black and white information.

17

CHAPTER 1. DATA COMPRESSION

1.1.3 Sub-Sampling

Following the YCbCr change of space, the next step in the JPEG compression is the sub-
sampling operation. Sub-sampling consists in removing part of a signal at regular interval.
For image processing, the sub-sampling operation is usually defined using a grid of 8 pixels
(4 columns and 2 lines). Three numbers J:a:b are then used to specify which pixels should
be kept:

• J represents the number of luminance samples to keep per line,

• a is the number of chrominance samples to keep on the first line,

• and b indicates the number of chrominance samples to keep on the second line.

The three most common sub-sampling formats are: 4:4:4, 4:2:2 and 4:2:0. In the first case
(4:4:4), no sub-sampling is applied and all the luminance and chrominance samples are kept
(see Figure 1.4a). The second sub-sampling format (4:2:2) is primarily used for video-related
applications. In this format, the Cb and Cr components are sub-sampled by a factor of two
in the horizontal dimension (see Figure 1.4b). The last format (4:2:0) is the most commonly
used format. The color components are sub-sampled by a factor of two in both the horizontal
and vertical dimensions (see Figure 1.4c).

Y

Cb Cr

Y

Cb Cr

Y

Cb Cr

Y

Cb Cr

Y

Cb Cr

Y

Cb Cr

Y

Cb Cr

Y

Cb Cr

(a) No sub-sampling
Y

Cb Cr

Y

Cb Cr

Y

Cb Cr

Y

Cb Cr

Y

Y Y

Y

(b) Sub-sampling 4:2:2

Y

Cb Cr

Y

Cb Cr

Y

YY

Y Y

Y

(c) Sub-sampling 4:2:0

Figure 1.4 – Examples of various sub-sampling formats. For each format, the 4 luminance components
are kept on the first and second lines (4:x:x). In a), no sub-sampling is applied. In b), 2 chrominance
components are kept on the first (4:2:2) and second (4:2:2) lines. And in c), 2 chrominance components
are kept on the first line (4:2:0) and 0 on the second (4:2:0). Images were modified from wikipedia.

It is to be noted that JPEG/JFIF does not specify how the sub-sampling operation should
be performed. In particular, the specification, while recommending the usage of anti-aliasing
filters9, does not specify which one to use. This means that a given image could be encoded
differently by two different encoders. Still, given the small differences this would produce, we
consider the subsampling operation to be similar amongst the encoders. Furthermore, the
JPEG norm does not define which component should or should not be sub-sampled. This
means that, in theory, any of the Y, Cb or Cr components could be sub-sampled. However,
the specification strongly discourages the usage of any sub-sampling format other than 4:2:0
and in practice, most of the images compressed in JPEG do use this specific sub-sampling
format. Therefore, for the rest of this document, we assume a compressed JPEG image to
always use the 4:2:0 sub-sampling format.

9Anti-aliasing filters aim to restrict the bandwidth of a signal to prevent aliasing (different frequencies
becoming indistinguishable). Typical anti-aliasing filters are low-pass filters that remove frequencies above
the Nyquist frequency (one-half of the sampling rate).

18

https://fr.wikipedia.org/wiki/Sous-�chantillonnage_de_la_chrominance

CHAPTER 1. DATA COMPRESSION

1.1.4 Block Discrete Cosine Transform (DCT)

The next step in the compression pipeline is the usage of the block DCT operation. This
operation was designed to allow the subsequent compression steps to take advantage of two
facts: first, small blocks of pixels are likely to have pixels of similar values (especially in
natural images) and second, the human eye is less sensitive to higher frequencies in images.
The latter can intuitively be visualized with a test image introduced by Campbell and Robson
[1968] and shown in Figure 1.5. In this figure, the frequency of the luminance bands increases
on the horizontal axis and the contrast decreases vertically. As the contrast decreases, our
eyes have more trouble distinguishing the variations in the high frequency patterns than in
the middle frequency patterns. Therefore, with a correct separation of the high and low
frequencies, one can reduce the size of the images to encode while limiting the impact on the
final rendering by discarding part of the high frequency information.

Figure 1.5 – Visual test chart for the accuracy of the human eye given changing frequencies. The
frequency of the luminance bands increases on the horizontal axis and the contrast decreases vertically.
Depending on the contrast and frequency values, our eyes are not able to see the alternating bands.

More specifically, the image to be JPEG compressed, after being converted to the YCbCr
color space and sub-sampled, is divided into blocks of size (8× 8). Then for each block, the
2D DCT is applied to extract the information at various frequencies in the blocks of pixels.
The 2D DCT is based on the combination of two DCT-II (which is 1D):

Sv =
N−1∑
y=0

sy cos (2y + 1)vπ
2N , (1.3)

where N is the number samples in the signal, v ∈ [0, N − 1] represents the frequency being
tested against and sy is the sample at position y in the signal. Each of the Sv expresses the
amount of information at frequency v present in the signal. The 2D DCT operation on block
of size 8× 8 is then defined as:

Suv = 1
4CuCv

7∑
x=0

7∑
y=0

syx cos (2x+ 1)uπ
16 cos (2y + 1)vπ

16 (1.4)

19

CHAPTER 1. DATA COMPRESSION

where,

Cu, Cv =

1√
2 , for u, v = 0

1, otherwise,
and, with Suv the DCT coefficient at position u, v in a given block, syx the pixel value at
position x, y in a given block and Cu, Cv normalization coefficients. Usually, the coefficient
at position (0, 0) is referred to as the DC coefficient and the others as AC coefficients. Equa-
tion 1.4 can be further re-written to highlight the combined usage of two DCT-II as follows:

Suv = 1
4CuCv

7∑
x=0

 7∑
y=0

syx cos (2y + 1)vπ
16

 cos (2x+ 1)uπ
16 (1.5)

Discrete Cosine Transform (DCT-II)

Extracted Frequency
informationInput signal

Test
frequencies

X

X

X

Figure 1.6 – Illustration of the DCT-II operation on a block of pixels. The pixel values are taken row
by row (left) and multiplied by the test frequency values. Then the frequency information is stored
in a row from low to high (left to right).

Intuitively, the inner part of Equation 1.5 will, for each row of the block to encode, apply
the DCT-II operation and extract the frequency components of the signal and store them
from low to high (from left to right), as illustrated in Figure 1.6. As a given block is expected
to have pixels of similar values, information will, at this point, likely be concentrated in the
low frequency coefficients and, for each DCT row of the block, be similar to one another.
Then, the outer part of Equation 1.5 will, for each column (representing the information at a
given frequency for each line), perform once more the DCT-II operation and extract frequency
components of the previously extracted row-wise frequency components and store them from
low to high (from top to bottom). This second DCT-II will therefore further concentrate most
of the information in the top-left of the block in the low frequency pixels. The combination
of the two operations will thus store the coefficients in a zig-zag pattern (from low to high)
for the next compression steps. The overall procedure is shown in Figure 1.7.

It is important to see that due to the previous sampling operation, DCT transformed
chrominance and luminance blocks do not represent an equivalent portion of the original
image. Indeed, as the Cb and Cr components are sub-sampled by a factor of two, a lumin-
ance block contains information from 8 × 8 pixels, while the chrominance blocks includes
information from 16× 16 pixels.

20

CHAPTER 1. DATA COMPRESSION

 1D DCT

0

0 1

1

1 7

7

7

0

 1D DCT

 2D DCT

Frequency
of the

cosinus

Block DCT
Spatial signal

Frequency information of
the spatial signal

Frequency information of the
frequency information

Figure 1.7 – Visual representation of the 2D DCT. First, each of the frequency components are
extracted line per line and stored from left to right (low to high). Then, for each of the column
representing the presence of a frequency in a line of pixels, the frequencies are again extracted. The
combination of the two operations will have the frequencies stored in a zig-zag pattern from low to
high.

Finally, notice that knowing DCT coefficient Suv, one can retrieved back pixel values syx
for a given block using the relation:

syx = 1
4

7∑
u=0

7∑
v=0

CuCvSvu cos (2x+ 1)uπ
16 cos (2y + 1)vπ

16 (1.6)

Equation 1.6 is utilized at decoding stage of a JPEG image.

1.1.5 Quantization

After converting the image from the spatial domain to the frequency domain, the quantization
step can be applied. The operation aims to filter part of the high frequencies in DCT blocks
by taking advantage of the separation of the low and high frequencies. Quantization is applied
using up to 2 quantization tables that are defined in the headers of JPEG files (as specified
in the norm). A quantization table is a matrix of size (8× 8) used to perform the following
quantization operation:

Sqvu = round
(
Svu
Qvu

)
(1.7)

where u, v ∈ [0, 7], Qvu is the quantization coefficient at position (v, u) in the quantization
table, Svu is the pixel at position (v, u) in the DCT block to be quantized and Sqvu is the
resulting quantized pixel at position (v, u).

The quantization increases the compression efficiency of the last step of the compression
pipeline in two ways. First, by squishing the range of values within a pixel block, the quantiza-
tion allows for a better compression with the entropy encoding (see subsection 1.1.6). Second,
by setting high values for the quantization coefficients at high frequencies, the operation gen-
erates series of zeros that can then be efficiently encoded using RLE (see subsection 1.1.6).
These two behaviors of Equation 1.7 are shown in Figure 1.8.

Finally, it is important to note the main limitation of the quantization operation. The
quantization tables can variate across image files and between components of a given image.
This variation limits the interpretation that can be given of pure quantized image repres-
entations as shown in Figure 1.9. In this example, two DCT blocks are encoded with two
different quantization tables but yield the same representation output.

At the decoding stage, the quantization is removed using the following equation:

Rvu = Sqvu ×Qvu (1.8)

21

CHAPTER 1. DATA COMPRESSION

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

All values will

High values will

Reduce
the data range

5
15
25
60

Generate
zeros

5
15
25
60

0
1
2
4

0
0
0
1

Figure 1.8 – Example of quantization table. When applied, all the coefficients will reduce the output
range and for high quantization coefficients, will likely generate series of zeros.

123 5 4 2

3 1 8 4

1 3 4 2

7 5 4 3

DCT block 1

10 2 4 6

2 4 6 8
4 6 8 16

6 8 16 32

Quantization Table 1

12 2 1 0

1 0 1 0

0 0 0 0

1 1 0 0

184 7 4 3

3 2 9 4

1 3 5 2

13 14 4 24

DCT block 2

15 3 6 12

3 6 12 16
6 12 16 32

12 16 32 64

Quantization Table 2

120 4 4 0

2 0 6 0

0 0 0 0

6 8 0 0

180 6 6 0

3 0 12 0

0 0 0 0

12 16 0 0

Quantization Quantization

Dequantization Dequantization

Dequantized
DCT block 2

Dequantized
DCT block 1

Shared
representation

Figure 1.9 – Difficulties to interpret the quantized blocks as two different blocks may be identical
while representing different input data.

where Rvu is the de-quantized pixel at position (v, u).

1.1.6 Entropy encoding/RLE

The last step in the JPEG compression pipeline is the Entropy encoding/RLE. It is this step
that takes advantage of the previously generated representations to compress the image into
its final representation. Each of the quantized DCT blocks are read through, and for each
pixel of the blocks, two cases are to be distinguished: if the pixel is not equal to zero, it is
encoded using Huffman coding, else, it is encoded using RLE.

Huffman coding [Huffman, 1952] is based on the probability of seeing a given symbol of
a dictionary (in our case, all the possible values for the quantized coefficients). For each

22

CHAPTER 1. DATA COMPRESSION

symbol, a code of varying size is generated. The aim is to represent the most likely symbols
with smaller codes to gain storage space. As the quantization operation squeezes the pixels
values, it improves the final compression ratio by reducing the number of large codes to be
used. The final compression is further improved by actually encoding the differences between
consecutive DC coefficients rather than the actual coefficients as they can have high values.
However, while it improves the compression ratio, this differential encoding also makes the
interpretation of the encoded coefficients more difficult. Furthermore, the JPEG compression
may use multiple lists of codes that are defined in multiple "Huffman tables". The usage of
multiple Huffman tables limits the interpretation of the encoded blocks of data as similar
entropy coded values may lead to completely different original blocks of data.

RLE is an operation which consists in transforming series of data into counts and val-
ues. For instance, the series "AAAAAAAAABBBBBBCCCCAAAAAAA" can be stored as
"9A6B4C7A". Moreover, as in the case of JPEG compression, when encoding only one value
with this method, only the size of the series can be used. As most of the information in blocks
is contained in the low frequencies and as the quantization tables usually define high quant-
ization values for high frequency pixels, it is expected to encounter large lists of following
zeros in the high frequencies, therefore improving the final compression ratio.

1.1.7 Conclusion

This section has detailed the main steps of the lossy DCT based JPEG compression. These
steps are RGB to YCbCr change of color space, sub-sampling, block DCT computation,
quantization and entropy coding/RLE. The first two steps leverage the human visual system
limits to reduce the amount of information to be stored. The last three steps take advantage of
the difficulties of the human eye to differentiate information in the high frequencies to reduce
the amount of information to be transmitted. The tunnel’s camera can take snapshots of the
road on request, such snapshots are encoded using the JPEG compression algorithm. Using
this compression format, the tunnel images, of size (352, 258, 3), i.e 352× 258× 3 ≈ 272.5 ko,
can be compressed to an average size of 9.5 ko, which makes for a compression ratio of
approximately 29. The next section details the MPEG4 part-2 video compression algorithm
(also DCT based), which is used to encode the video data recorded by the cameras.

1.2 MPEG4 part-2 video compression
The MPEG4 norm (ISO/IEC 14496) aims to provide with a standard for the coding of
audio-visual objects. It is composed of 33 parts, each of which covers a peculiar aspect of
the specification (audio, video, etc.). Particularly, the part-2 of the MPEG4 norm (ISO/IEC
14496-2) focuses on video compression and aims to facilitate the access to visual objects
within video streams. As the MPEG4 part-2 specification is aimed towards a large range of
applications, it provides with a substantial variety of objects to be encoded within a stream:
video objects, face and body animations objects and meshes objects. However, due to the
difficulty to implement every aspects of the specification, profiles and levels were defined in
order to limit the minimum requirements for a decoder to be considered compliant with the
norm. A profile defines a subset of features that can be found in a coded video stream.
A level defines a set of constraints imposed on parameters used in a profile. Decoders are
therefore compliant with given combination of profiles and levels rather than with the whole
MPEG4 part-2 norm. As this thesis targets video applications with industrial constraints,
we choose to solely focus on the profile used to encode the video scenes of road tunnels:
the "Simple Profile". This profile, as shown in the following subsections, is very similar to
the JPEG norm in many aspects. Finally, it is important to notice that the MPEG4 part-2
specification does not enforce any constraints on the compression of a video flux and that
only the decompression steps are given. Any flux that can be decoded by a decoder that is
compliant with the norm is considered MPEG4 part-2 encoded. There is no regards for the

23

CHAPTER 1. DATA COMPRESSION

information that could have been lost during the compression process. Therefore, only the
decompression steps are addressed herein.

The rest of the section is divided as follows: first an overview of the Simple Profile
decompression pipeline is given, and then, each main decompression steps is detailed.

1.2.1 Simple Profile: General decoding pipeline

Motion Vectors and residual information:
The MPEG4 part 2 compression procedure relies on temporal redundancies to reduce the

size of the coded video flux. The basic idea is to divide each of the video frames into blocks
of pixels, and for each of the block to look for the best match in adjacent frames. Once
the best match is found, the motion (difference between the position of the best match and
the original block) and the residual information (difference between the two blocks) can be
encoded. As the matching blocks are similar, the residual information is expected to be
mostly zeros, therefore improving the compression ratio. For the Simple profile, a Motion
Vector (MV) represent the motion information of a Macro Block of size (16×16). The whole
matching method is shown in Figure 1.10 and a representation of a given RGB frame and
the associated residual image and Motion Vector (MV)s is given in Figure 1.11.

Figure 1.10 – Generation of the MVs and residual information. MVs are vectors of size 2, with one
MV per block of image. Residual information is hold within matrices of the size of a block. In the
example the Residual block would be full of 0 as the matching is perfect.

The Simple Profile makes use of one main object in the coded stream: the Video Object
(VO). A VO is equivalent to a series of frames through time and a given frame at a given time
is called a Video Object Plane (VOP). Not all the VOPs are coded using motion compensated
predictions. Indeed, at least one fully encoded VOP is required to initialize the decoding
process. Therefore, there are two types of VOPs that are defined in the specification10: Intra
coded VOP (I-VOP, also called key frame) and the Predictive coded VOP (P-VOP, also
called P-frame). I-VOPs are coded without reference to other pictures. They are the frames
that the decoder will look for to "move" throughout or "join" a stream. P-VOPs are coded
with reference to past I-VOP or P-VOP. As such VOPs use motion compensated coding,
they are coded more efficiently than I-VOP. Thus, the number of I-VOPs within a coded flux
corresponds to a trade off between the requirements for random access to the stream and the

10The specification actually defines two more types of VOP (B-VOP and S-VOP), however, as they are not
used in the Simple Profile, they will not be detailed here.

24

CHAPTER 1. DATA COMPRESSION

Figure 1.11 – Visualization of the original frame of a video stream alongside its compressed represent-
ation. From left to right are the original RGB frame, the residual image and the MV representation.
We can see that only the vehicles generate data to be compressed as they are the only moving objects
on screen. Motion vectors point in the opposite direction of the vehicles flow as they refer to previous
frames.

compression ratio. Moreover, the number of I-VOPs also partly serves as an error resilience
mechanism as they allow to re-initialize the decoding process.

Variable Length
Decoding Inverse Scan

Inverse DC &
AC Prediction

Inverse
Quantization Inverse DCT Upsampling

Motion
Compensation

VOP Memory
 If I-VOP

 If full resolution

If Reduced resolution Decoded
Motion Vector

 Coded data

Decoded
Stream

Figure 1.12 – Full VOP decoding pipeline.

Decoding scheme:
Both I-VOPs and P-VOPs go through a similar decompression pipeline, the main difference

being the presence of the motion compensated prediction step. The whole decoding scheme
is shown in Figure 1.12. Notice that while a MV represents the information of a Macro Block
(16× 16), the decompression steps apply to sub-blocks of size (8× 8). First a coded block go
through Variable Length Decoding step which is similar to the entropy/Run Length decoding
step of the JPEG pipeline. Then the Inverse Scan Procedure is applied. This step aims to
recompose the blocks of data from series of 64 numbers. Following this step, Inverse DC and
AC prediction is applied. As for the JPEG compression, the coded flux actually contains
the difference between the DC coefficients rather than the original ones. The main difference
with the JPEG pipeline is that the first line (or column) of AC coefficients of a block can
also be differentially encoded. Identical to the JPEG compression, the DCT coefficients are

25

CHAPTER 1. DATA COMPRESSION

then inverse quantized (following a different procedure). Then the IDCT is applied to the
blocks of the VOP. After this step, there are two possibilities depending on the type of VOP
being decoded. If the VOP is an I-VOP, then there are no more steps (except for operations
such as color space transformation, data shifts, etc.) and the frame is stored for later motion
compensated prediction and returned as a decoded frame. If the VOP is a P-VOP, then it
is up-sampled (the Simple Profile implies a 4:2:0 sampling ratio) and motion compensated
using the previously reconstructed VOP in order to generate the current frame. Then, the
so reconstructed frame is process as for the I-VOPs.

The following subsections details the compression operations that significantly differ from
the JPEG compression: inverse scan, inverse quantization and up-sampling.

1.2.2 Inverse Scan

The inverse scan aims to transform an array of pixels into a block of pixels. More specifically,
it defines the position of each pixel in the entropy decoded array related to the quantized
block. Where only one scan was usable for the JPEG compression (zig-zag), three versions are
available for the MPEG4 part-2 compression. The three scan tables are shown in Figure 1.13.

0 1 2 3 10 11 12 13

4 5 8 9 17 16 15 14

6 7 19 18 26 27 28 29

20 21 24 25 30 31 32 33

22 23 34 35 42 43 44 45

36 37 40 41 46 47 48 49

38 39 50 51 56 57 58 59

52 53 54 55 60 61 62 63

0 4 6 20 22 36 38 52

1 5 7 21 23 37 39 53

2 8 19 24 34 40 50 54

3 9 18 25 35 41 51 55

10 17 26 30 42 46 56 60

11 16 27 31 43 47 57 61

12 15 28 32 44 48 58 62

13 14 29 33 45 49 59 63

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Zigzag scanAlternate-Vertical
scan

Alternate-Horizontal
scan

Figure 1.13 – Visual representation of the scan tables. The first two tables are transposes of one
another. In these tables, the order of the numbers tends to follow lines (or column). In the last table,
the ordering follows the same zig-zag pattern as for the JPEG compression.

Depending on the type of VOP, the scan tables that can be selected change. For P-VOP,
only the zig-zag table can be selected. For the I-VOP, however, any of the three tables
can apply. This possible variation in the coefficient order before the inverse scan operation
implies some major limitations about the meaning of the data that can be extracted from
the compressed flux before this point. Still, it can be noted that all the series share the same
basic ordering from low to high frequency values.

1.2.3 Inverse Quantization

The MPEG4 part 2 compression norm proposes two inverse quantization operations. As we
only consider the usage of the Simple Profile, only the second quantization method applies.
It is based on a single weight, quantiser_scale and is defined in Equation 1.9.

|Rvu| =

0 if Sqvu = 0
(2× |Sqvu|+ 1)× quantiser_scale if Sqvu 6= 0, quantiser_scale is odd,
(2× |Sqvu|+ 1)× quantiser_scale − 1 if Sqvu 6= 0, quantiser_scale is even.

(1.9)

26

CHAPTER 1. DATA COMPRESSION

Here Sqvu is the quantized coefficient of a given block of size 8 × 8 at position (u, v). The
signed value of the inverse quantized coefficients Rvu is obtained using the following equation:

Rvu = Sign(Sqvu)× |Rvu|. (1.10)
Furthermore, for the DC coefficients in the blocks of I-VOPs, inverse quantization is given
by

|R00| = dc_scaler × Sq00, (1.11)
where dc_scaler is a parameter that may be constant or indexed on quantiser_scale depend-
ing on the stream parameters. Although the quantization operation is solely defined by the
parameter quantiser_scale, as this parameter may change, there is no guarantee that two
identical quantized blocks across the stream represent the same decoded block of pixels.

1.2.4 Up-sampling

Contrary to the JPEG specification, the MPEG4 part-2 clearly defines the up-sampling op-
eration. This written normalization has the advantage to ensure that any coded stream that
is MPEG4 part-2 compliant, will present similar coded representation regarding color space.

As defined by the norm, there are two cases for the up-sampling operations: the first one,
for inner pixels of the coded blocks, is shown in Figure 1.14 and, the second one, for outer
pixels of the blocks, is illustrated in Figure 1.15.

A B

DC

ba

c d

Reduced-Resolution reconstructed prediction error

Reconstructed prediction error

Figure 1.14 – Up-sampling processing for inner pixels of the coded block.

A B

DC

ba c

d

Reduced-Resolution reconstructed prediction error

Reconstructed prediction error

e

Block
Boundary

Figure 1.15 – Up-sampling processing for outer pixels of the coded block.

27

CHAPTER 1. DATA COMPRESSION

1.2.5 Conclusion

In this section we have detailed the MPEG4 part-2 decompression steps. Similarly to the
JPEG norm, the MPEG4 part-2 norm takes advantage of the human visual system limits as
well as spatial redundancies to reduce the size of the data to be encoded. However, unlike the
JPEG compression, the MPEG4 part-2 norm also takes advantage of temporal redundancies
to further increase the compression ratio. This temporal compression mainly seeks to solely
encode the differences between frames in the form of MVs and residual data as illustrated in
Figure 1.11. The tunnel’s cameras are constantly recording the road for safety reasons and,
due to bandwidth limitations, the generated videos are encoded in a MPEG4 part-2 compliant
format. Using this compression format on the tunnel’s recording gives a compression ratio
that strongly variate between hours, from about 40 at 8 am, when the traffic is extremely
dense, to 213 at 8 pm11, when the vehicles are scarce on the road.

This chapter has provided with a deeper comprehension of data compression, in the light
of JPEG and MPEG4 part-2 norms, that is mandatory to understand the work developed in
this manuscript. The next chapter details the deep learning tools that are used throughout
the contributions.

11These values were extracted from a small sample of videos.

28

Chapter 2

Deep Learning

“ I am so clever that sometimes
I don’t understand a single word
of what I am saying. ”

Oscar Wilde

Contents
2.1 Basics of deep learning . 31

2.1.1 Artificial Neural Networks . 31
2.1.2 Training ANNs . 31
2.1.3 Convolutional Neural Networks . 32
2.1.4 Recurrent Neural Networks . 35

2.2 Object detection . 37
2.2.1 Classical object detection formulation and learning 37
2.2.2 One-shot vs Two-shot detection architectures 38
2.2.3 Evaluation: mean Average Precision 40

2.3 Connectionist Temporal Classification 41
2.3.1 From network output to labelling . 42
2.3.2 Training a CTC network: loss and dynamic programming 43

2.4 Conclusion . 45

29

CHAPTER 2. DEEP LEARNING

In the previous chapter, we have detailed JPEG image compression and MPEG4 part-2
video compression. In the thesis we aim at applying the deep learning framework to such
data for two main tasks: object detection and flow parameters estimation. This chapter
introduces the base concepts of deep learning as well as the tools required to understand the
contributions.

Before the deep learning era, data processing was usually done by carefully handcrafting
a feature extractor so as to generate a relevant representation from input data that could
then be used to estimate target values. While effective, this approach requires a deep un-
derstanding of the data nature as well as some intuitions about features that may reveal
important for prediction. Deep learning aims to learn both the feature extractor and the
predictor from data, limiting the needs for heuristics and feature engineering. Although enti-
cing, deep learning has two major drawbacks that have hindered its use for many years: it has
significant computational requirements and it necessitates a substantial data labelling effort.
Nonetheless, thanks to impressive improvements in computation capabilities over the past
years, as well as efforts from the scientific community to annotate and share large datasets,
deep learning is now becoming a standard for pattern recognition in many fields of research.

As an example, object detection is a common problem for image and video processing
that has been thoroughly studied over the years and is still an active domain of research.
Object detection is usually cast as a regression/classification problem where the aim is to
predict rectangular bounding boxes. Following this paradigm, a large number of deep learning
architectures have been proposed throughout the years (R-CNN [Girshick et al., 2014], SSD
[Liu et al., 2016], YOLO [Redmon et al., 2016], etc.), constantly improving the state of
the art accuracy on various detection datasets. For instance, accuracy of object detection
on the Pascal VOC challenge has almost quadruple since the start of the competition [Zou
et al., 2019a]. This series of improvements can probably be related to the release of several
carefully labelled datasets such as Pascal VOC [Everingham et al., 2010] or MS-COCO [Lin
et al., 2014]. In these datasets, every object is annotated with its position, bounding box
and class. This profusion of information, and more specifically the position, has been largely
leveraged to help deep networks focus their learning on the objects within the images, leading
to nowadays’ impressive results.

However, annotating the position information of each object within the input is sometimes
neither achievable in reasonable time nor desirable. Time achievability occurs for videos where
each frame needs to be annotated. In such a case, completion of the full labelling would take
a prohibitive amount of time. As for desirability, let’s consider audio recordings. While it
is simple to provide with the caption of each recording, their segmentations are much more
complicated to obtain. As we speak in a continuous manner, pinpointing the exact moment of
transition between two syllables is an arduous, if not impossible, task. For such cases, typical
deep learning methods that leverage the position of signal constituents to focus their learning
are usually voided. This issue has been, at least partially, addressed with the introduction
of the CTC paradigm by Graves et al. [2006]. The CTC loss is used to jointly learn the
recognition and the position of objects along a given dimension when only their ordering is
known. This makes the CTC framework a very interesting tool for practical applications,
where precise labelling may be complicated to obtain for time, cost and data quality reasons.

Hereafter, we begin by introducing the core of deep learning in order to provide with
a quick reminder on basic notions, as well as a focus on specific parts that will be used
throughout the contributions. Then, we focus on the RGB-based object detection (used in
chapter 3 and chapter 5), detail its general formulation and the typical existing architectures.
Finally, we provide with a deeper explanation of the CTC loss that is used throughout
chapter 4 and chapter 5.

30

CHAPTER 2. DEEP LEARNING

2.1 Basics of deep learning

Deep learning is a subset of the machine learning methods based on the usage of Artificial
Neural Networks (ANNs) which aims at learning patterns within data. Deep learning origin-
ated from various attempts to represent the human brain from a mathematical perspective
(Mcculloch and Pitts [1943], Rosenblatt [1963], etc.). The underlying hope was that such rep-
resentation would provide with powerful learning capabilities. While the biological accuracy
is, in the end, arguable, ANNs have proven themselves to be powerful learning tools.

In the deep learning framework, the aim is to construct a model parametrized by weights
(from a few thousands up to a trillion [Fedus et al., 2021]) in order to fit a given target
function. The learning of the models is done through gradient descent and more specifically
by using the backpropagation algorithm [Kelley, 1960]. Models are constructed by stacking
layers and multiple types of layers were proposed to handle different types of inputs. For
instance, convolutional layers [Fukushima, 1980] were introduced to process images. They
provide with translational invariance, which is extremely useful for task such as object detec-
tion. For sequence processing, "memory" was introduced through the recurrent layers. Such
layers process the input sequentially while keeping an internal state, the memory of previous
inputs, to help future decisions.

This section aims to introduce in more details the deep learning scheme as well as specific
layers used in our contributions. We begin by reviewing the core concepts of deep learning
(formulation and training), then move on to convolutional layers and finally detail recurrent
layers.

2.1.1 Artificial Neural Networks

Artificial Neural Networks are based on the usage of artificial neurons that were designed
to loosely mimic the functioning of the biological human neuron. A human neuron receives
inputs through axones and dendrites and, depending on the power of the electrical impulse
received, will in turn generate an impulse to subsequent neurons. Such functioning is math-
ematically formalized [Mcculloch and Pitts, 1943] using the following equation:

φw(x) = ϕ

 J∑
j=0

wjxj

 . (2.1)

Each input signal xj is multiplied by a dedicated weight wj , the resulting signals are then
summed and fed to an activation function ϕ that decides if the neuron should activate or
not and propagate the signal to subsequent neurons. Any function can serve as activation
function, as long as it is continuous and non-linear. Typical activation functions are shown
in Figure 2.1. Stacked neurons make a layer and stacked layers a deep model1 (inner layers
are called hidden layers). Therefore, to fit this model representation, we modify Equation 2.1
to the following (this peculiar equation represents a model made of dense layers):

xnk = φnwn
k
(xn−1) = ϕn

(
wn
k
Txn−1

)
, (2.2)

where wn
k is the vector of weights associated to the kth output neuron and n is the index of

the layer. Usually, x0 is referred to as input, xN (N being the number of layers in a model)
as prediction or output and the remaining xi (i = 1, . . . , N − 1) as feature maps.

2.1.2 Training ANNs

We have detailed the general architecture of the ANNs, we now review the training procedure
used to estimate the target function. Formally, we aim to train a modelM : X → Y, where

1The term deep learning actually refers to the depth of networks with multiple stacked layers

31

CHAPTER 2. DEEP LEARNING

(a) sigmoid function (b) tanh function (c) ReLU function (d) sin function

Figure 2.1 – Examples of activation functions.

X is called the input space and Y the output space, in order to approximate a unknown target
function. Models are trained to extract the statistical properties of the inputs in order to
maximize the posterior probability p(y|x) of getting the correct y ∈ Y given x ∈ X . Such
maximization is done through the minimization of an objective function:

min
W

E(x,y)[L(y,M(x,W))], (2.3)

where E is the expectation,M is the deep network, W are the weights ofM to be set and
L the loss function measuring how close M(x,W) is to the true output. To carry out the
minimization, gradient descent is usually used. The basic method to do such optimization is
Stochastic Gradient Descent (SGD). SGD computes the average gradient

∆Wk−1 = 1
|B|

∑
i∈B

∆Wk−1L(yi,M(xi,Wk−1)), (2.4)

where (xi, yi) is the i-th element of the current batch B sampled from the training data, and
updates the weights using the backpropagation algorithm as:

Wk = Wk−1 − η∆Wk−1, (2.5)

where ∆Wk−1 is the gradient at iteration k and η is called the learning rate. For such
optimization method, the speed and convergence towards a minima is highly dependent on
the shape of the surface of the objective function w.r.t the weights. As shown in Figure 2.2a,
in case of a ill-conditioned problem the optimization process may bounce back and forth,
as the slope is very steep (therefore creating a strong gradient). Multiple update rules have
been further developed to circumvent such problem: momentum [Qian, 1999] (Figure 2.2b),
Adagrad [Duchi et al., 2011], RMSprop [Tieleman and Hinton, 2012], Adam [Kingma and
Ba, 2015], to name the most common. Although each newer method is supposed to improve
the optimization process when compared to older ones, which algorithm to use is highly
application dependent and is still an open question.

2.1.3 Convolutional Neural Networks

In the previous subsection, we have detailed the basic architecture of ANNs as well as the
training procedure used to optimize them. However, we only have considered one type of
layer so far: the dense layer, where each output neuron is connected to each input through a
weight. This layer, while functional is not best suited for all types of input. For instance, for
image processing, each output neuron’s weight would be connected to each pixel, therefore
requiring a tremendous amount of weights. Furthermore, the dense layer is not invariant to
translations, which is not a desirable property for tasks such as object detection.

A workaround to these problems is to use layers that operate in a sliding window fashion.
As the window slides over the input image, weights are re-used at every target position. There-
fore, translated inputs result in feature maps with translated activated neurons. Moreover,

32

CHAPTER 2. DEEP LEARNING

(a) SGD optimization without momentum. (b) SGD optimization with momentum

Figure 2.2 – SGD optimization with and without momentum. On the left, without momentum the
optimization process will bounce between the ravine’s slopes whereas, on the right, with momentum,
optimization is smoother. Code to plot the curve was taken from the UvA DL course.

as the computations of each neuron within a feature map are independent, one can lever-
age the parallelism of GPUs to speed up processing. Layers with such behavior are called
convolutional layers and their functioning is formalized as follows (1D convolutional layer):

xni = ϕn
(

M∑
m=0

wmx
n−1
i+m + b

)
, (2.6)

where M is the size of the convolution kernel, and b is the bias parameter. It is to be noted
that the input features xl−1 can be padded with zeros to provide with an output feature map
xl with identical shape. Moreover, stride and dilation can be applied to provide with more
flexibility to the operation as illustrated in Figure 2.3.

(a) Classical convolution. (b) Convolution with a stride of 2. (c) Convolution with a dilation rate
of 2.

Figure 2.3 – Convolution with different parameters. For clarity, the same filter has been represented
with different colors. In a) classical convolution is applied at every position in the input. In b) the
stride parameter is 2, therefore the convolution kernel skips one position after each computation. In
c) the dilation parameter is 2 and only one input value out of two is considered at each position.

The formulation in Equation 2.6 allows for translational invariance. However, given a
model with a single convolutional layer, the context (receptive field) a given neuron can
gather is limited to the size of the kernel. Increasing context information requires to increase
the size of the kernel and therefore the computation needed as well as the number of weights.
A simple solution to this problem is to stack multiple convolutional layers. By doing so,
the receptive field will naturally increase, while keeping the desired translational invariance
property. This is illustrated in Figure 2.4.

33

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial4/Optimization_and_Initialization.html#Pathological-curvatures

CHAPTER 2. DEEP LEARNING

Receptive
field

Inputs

Outputs

Output neuron A

Figure 2.4 – The receptive field of neuron A on stacked convolutional layers with filters of size 3.

Finally, Equation 2.6 can easily be extended to any inputs of higher dimension. One
simply needs to add a summation term for each added dimension. For instance, for 3D
convolutions, Equation 2.6 becomes:

xnlmn = ϕn
(

H∑
h=0

W∑
w=0

T∑
t=0

wwhtx
n−1
l+h,m+w,n+t + b

)
. (2.7)

This 3D convolution is represented in Figure 2.5.

T

W

H

Convolution
kernel

Input
Data

Feature
Map

Figure 2.5 – Visual representation of the 3D Convolution operator.

Convolutional layers are extremely versatile tools. Thanks to their limited number of
weights they help mitigate over-parametrization problems inherent to dense layers. Further-
more, they allow for easy parallelisation by design. As a result, convolutional layers are used
nowadays throughout the scientific literature. For instance, 1D-CNNs have been used for
automatic speech recognition [Kiranyaz et al., 2021], 2D-CNNs are the standard for image
processing (Krizhevsky et al. [2012], He et al. [2016], Liu et al. [2016], Szegedy et al. [2016],
etc.) and 3D-CNNs are used for medical applications [Singh et al., 2020].

34

CHAPTER 2. DEEP LEARNING

2.1.4 Recurrent Neural Networks

While convolutional layers have interesting properties, they also have various limitations.
For instance, they can only gather information up to the receptive field size. Although such
behavior might be sufficient for entries of fixed shape, for entries of varying length, it would be
better to manage to implement some form of memory that can gather a potentially unlimited
amount of information. To do so, the Recurrent Neural Networks (RNNs) were introduced.

In essence, a RNN is based on the repetition of its architecture along the time axis. At
each time step, a RNN layer takes in the current input and its previous hidden state (memory)
and outputs the new hidden state (updated memory). This is expressed as:

ht = ϕ(Wxt + Uht−1 + b), (2.8)

where W and U are the inner weights used to respectively process the input and the previous
hidden state, ϕ is the activation function, b is the vector of biases and xt and ht are respect-
ively the input and hidden state at time t. The vanilla RNN is represented in Figure 2.6.

Figure 2.6 – Representation of a vanilla RNN network. For each input in the sequence, the layer
predicts the output based on past information.

This basic formulation, however, is subject to the vanishing/exploding gradient problems.
To correct this behavior, the Long Short-Term Memory (LSTM) network [Hochreiter and
Schmidhuber, 1997] was introduced. Multiple variations of LSTMs exist, and we base the
following description on Gers et al. [2000]. This architecture is made of a cell able to store
information controlled thanks to three "gates" and two inner states (resp. input gate, output
gate, forget gate, cell state and hidden state). They are given by:

ft = σ(Wfxt + Ufht−1 + bf),
it = σ(Wixt + Uiht−1 + bi),
ot = σ(Woxt + Uoht−1 + bo),
ct = ft � ct−1 + it tanh(Wcxt + Ucht−1 + bc),
ht = ot � tanh(ct),

(2.9)

where ft, it, ot, ct, ht are respectively the forget gate, input gate, output gate, cell state and
hidden state, σ is the sigmoid function, bx are the biases, the Wx and Ux are the weights,
and � is the Hadamard product. The architecture is further illustrated in Figure 2.7.

While extremely effective, the LSTM networks are not suited for sequence of images
as they only process vectors. Therefore, to handle such data, one must first generate a
meaningful vectorial representation and then apply the classical LSTM architecture. This
representation has the major drawback of not using the spatial information for temporal pro-
cessing. In order to correct this issue, Convolutional Long Short-Term Memory (ConvLSTM)

35

CHAPTER 2. DEEP LEARNING

Forget gate

Output gate

New cell state from input gate

Figure 2.7 – Representation of a LSTM network. The forget gate selects previous information to be
kept, then the input gate updates the cell state and, finally the output gate predicts the new output.

networks were introduced by Shi et al. [2015]. While Convolutional LSTMs keep the idea of
input, forget and output gates, they modify how the functions are used:

It = σ(Wxi ∗Xt + Whi ∗Ht−1 + Wci �Ct−1 + bi)
Ft = σ(Wxf ∗Xt + Whf ∗Ht−1 + Wcf �Ct−1 + bf)
Ct = Ft �Ct−1 + It � tanh(Wxc ∗Xt + Whc ∗Ht−1 + bc)
Ot = σ(Wxo ∗Xt + Who ∗Ht−1 + Wco �Ct + bo)
Ht = Ot � tanh(Ct)

(2.10)

where ∗ denotes the convolution operator and Ft, It, Ot, Ct, Ht,Xt are respectively the forget
gate, input gate, output gate, cell state, hidden state and input matrix. This architecture
adds peephole connections that allow the network to look at the cell state to make decisions.
This is highlighted in Figure 2.8.

Forget gate

Output gate

New cell state from input gate

Figure 2.8 – Representation of a ConvLSTM network. New peephole connections, used to peep at the
cell state, were highlighted with bold arrows.

RNNs facilitate the modeling of long-term dependencies through their potentially infinite
memory. Comparatively, CNNs are limited to a fixed receptive field, which is cumbersome in
case of sequences. However, the main drawback of the RNNs formulation is its limitation for

36

CHAPTER 2. DEEP LEARNING

parallel computations. As the previous state needs to be computed to output the next one, it
becomes mandatory to run the calculations sequentially. Yet, despite such limitation, RNNs
have been used with great success for Natural Language Processing (Lipton [2015], Wu et al.
[2016]), where the need for long-term dependencies outweighs the need for fast computation.

2.2 Object detection

In the previous section, we have detailed the base architecture of ANNs as well as specific
types of layers. We now present the task of object detection, a common computer vision task.

Object detection aims at detecting instances of certain types of objects within images
or videos. It has been an active field of research throughout the years due to its various
practical applications (pedestrian detection, face recognition, tracking, etc.). Although the
task of detection itself can be formulated in various ways, usually, in the literature, object
detection refers to the prediction of rectangular boxes (bounding boxes) enclosing each object
of interest. While the general usage of such formulation may be surprising as most existing
objects are not of rectangular shape, its prevalence is probably due to the simplicity of
annotating images with rectangular boxes, leading to the creation of multiple datasets (for
instance Pascal VOC [Everingham et al., 2010] or MS-COCO [Lin et al., 2014] for general
object detection, or BBD100K [Yu et al., 2020a] for vehicle detection).

Before the broad adoption of deep learning methods for image processing, object detec-
tion usually relied on a two steps pipeline: first, carefully selected discriminating features are
extracted, then, the so-extracted features are used to detect and classify objects. Examples of
such pipeline can be found with Haar-like features [Viola and Jones, 2001] for face detection
or with Scale-Invariant Feature Transform (SIFT) descriptors [Lowe, 2004] for general object
detection. More recently, thanks to the public release of the aforementioned large detection
datasets as well as the astute leverage of feature extractors initially trained on classification
tasks, deep learning based methods have completely supplanted older approaches for detec-
tion. Throughout the years, two main architectures have emerged: two-shot and one-shot
detectors. The two-shot architecture was introduced with R-CNN [Girshick et al., 2014],
which relied on non deep learning methods for some parts of its procedure. Further, R-CNN
was improved to an end-to-end architecture with Fast R-CNN [Girshick, 2015] and Faster
R-CNN [Ren et al., 2015]. Two-shot detectors are similar to the older detection methods:
features are extracted in a first step and then used in a second one to provide with the final
detection. However, due to the possibility to learn the whole pipeline, the two-shot detectors
are much more accurate. The one-shot architecture was popularized by Liu et al. [2016]
(SSD) and Redmon et al. [2016] (YOLO) in an effort to make the overall detection process
faster. To do so, one-shot detectors process the images and predict the detections in one go,
which avoids the computational overhead of two-shot detectors. However, due to the lack
of object’s features extraction, the gain in speed is achieved at the cost of a slight loss in
accuracy.

This section aims at providing with an understanding of the overall object detection task.
The rest of the section is divided as follows: we start by detailing the general formulation of
the loss usually used, then, we review the two classical architectures (one-shot and two-shot
detectors) and we finish by describing the usual metric used to evaluate detection tasks.

2.2.1 Classical object detection formulation and learning

The aim of object detection is to find an unknown number of objects within an image. An
object can be formalized as the composition of a bounding box b ∈ B and an associated class
c ∈ C, where B and C are respectively the sets of all the possible boxes and classes (for clarity’s
sake we use the scalar notation b and c, rather than the vectorial one, to denote a box and
a class). Therefore, the loss used to train the detection network is usually divided into two

37

CHAPTER 2. DEEP LEARNING

parts. The first part, the regression loss, aims at evaluating if the predicted boxes correctly
enclose the target objects. The second part, the classification loss, aims at evaluating the
quality of the class prediction for each predicted box. Given an input image X ∈ X , we
denote the associated target objects as y = {(b1, c1), ..., (bN , cN)} = {b, c} and the objects
estimated by the network as M(X) = ŷ = {(b̂1, ĉ1), ..., (b̂M , ĉM)} = {b̂, ĉ} (M and N can
be different). Let δij = {0, 1} be an indicator of matching the i-th ground truth box to the
j-th predicted box23 (a box can be matched multiple times). We denote the indexes j that
were matched positively to a ground truth box as Pos and the ones that were not matched
as Neg. Then, the regression loss can then be formulated as:

Lreg(b, b̂) =
∑
j∈Pos

∑
i

δij
∥∥∥bi − b̂j∥∥∥

b
, (2.11)

where ‖.‖b is a distance between boxes. As it would make no sense to regress the negative
examples that were not matched to a ground truth box, only the positive ones are accounted
for. And the classification loss can be formulated as:

Lclass(c, ĉ) =
∑
j∈Pos

∑
i

δijLc(ci, ĉj) +
∑
j∈Neg

∑
i

δijLc(ci, ĉj), (2.12)

where Lc(., .) is a classification loss function. For the boxes that were negatively matched, a
dummy class "background" is usually used to compute the loss. Grouping the two equations,
the overall object detection loss can be formulated as:

L(y, ŷ) = αLreg(b, b̂) + βLclass(c, ĉ), (2.13)

where α and β are hyper-parameters setting the relative importance of each part of the loss.
Depending on the type of detection network used, parts of the loss can be impacted differently.
For instance, one-shot detectors tend to generate a lot of negative boxes, which negatively
impact the classification loss as the sum on the set Neg can overwhelm the classification loss
(Equation 2.12).

2.2.2 One-shot vs Two-shot detection architectures

We have detailed the classical loss used to train detection networks, we now review the
typical existing architectures. Although object detection has been widely studied over the
years, most of the deep learning models that have been proposed boil down to two main types
of architectures: one-shot and two-shot detectors.

The two-shot detectors process the images in a two steps pipeline. First a backbone net-
work extracts a meaningful representation from images. Then, this extracted representation
is processed by a Region Proposal Network (RPN) to predict a set of possible objects (Region
of Interest [RoI]). After which, these RoIs are extracted from the feature map, usually using
a RoI pooling layer. Finally, all the extracted regions are regressed and classified to obtain
the predicted objects. The overall two steps detection pipeline is shown in Figure 2.9. Using
such an approach has the main advantage of explicitly extracting the features related to a
possible object. This allows a more focused processing of features of interest and, possibly,
the combination of multiple tasks (for instance detection and segmentation He et al. [2017]).
However, the downside is the low detection speed. As all the RoIs are processed one by one,
this make for a suboptimal computation process.

Opposite to the two-shot detectors are the one-shot detectors. They are very similar in
spirit with the RPN branch of the two-shot detectors. However, rather than using the pre-
dicted boxes to extract features for a second processing steps, the class is directly associated

2The matching strategy is highly dependent on the proposed architecture and will therefore not be described
here.

3It is to be noted that few authors (Law and Deng [2018], Duan et al. [2019]) have based their architecture
on predicting points of interests rather than boxes. In such case the points are matched instead of the boxes.

38

CHAPTER 2. DEEP LEARNING

Backbone

Region Proposal
Network

Regression and
classification

Feature mapInput
Image

Pr
ed

ic
tio

n
Pr

ed
ic

tio
n

Figure 2.9 – Detail of the two-shot detectors architecture. A feature map is first computed from the
image. Using this representation, Regions of Interest (RoIs) are predicted and, finally, the RoI are
extracted from the feature map and used for prediction.

BackboneInput
Image

Pr
ed

ic
tio

nsDetection head

Feature map

Figure 2.10 – Illustration of the one-shot detectors architecture. All the boxes are directly predicted
from the feature map, making for a faster processing.

to the predicted boxes. Obviously due to the avoidance of the extraction step, these networks
are order of magnitude faster than the two-shot detectors. This increase in speed, however,
usually comes at the cost of a slight loss in accuracy when compared with two shots detectors.
The functioning of one shot detectors is illustrated in Figure 2.10.

While using different pipelines, both architectures are likely to detect a given object
multiple times due to the large number of proposed boxes (c.f Figure 2.11). In order to filter
boxes that correspond to the same object, Non-Maximum Suppression (NMS) is usually used.
The NMS algorithm is illustrated in Figure 2.11 and works as detailed hereafter. First, a
detection network outputs a list of predicted boxes ŷ with a list of associated confidence
score (i.e a score of the confidence that the network has of a box as being an actual detection,
usually the classification accuracy is used). Then the following steps are repeated until no
box is left in ŷ:

• the box with the highest confidence score is selected from ŷ,

• this box is compared with all the remaining boxes in ŷ,

• if a remaining box is too close to a box from ŷ, then this box is considered a duplicate
detection and therefore removed from ŷ

• the selected box is added to the list of selected boxes.

Usually the distance used to measure if two boxes are close or not is the Intersection over
Union (IoU) (see Figure 2.12). It is to be noted that variations of the NMS algorithm have
been proposed such as the Soft-NMS [Bodla et al., 2017] (which changes the policy used to
remove a box from ŷ), however, the underlying algorithmic steps are usually unchanged.

39

CHAPTER 2. DEEP LEARNING

NMS

3) Remove overlapping
boxes

1) Select highest
confidence box

2)Compare with
remaining boxes

4) Add to
final boxes

Do all steps until
no box remaing

Orignal boxes Selected boxes

Figure 2.11 – Details of the Non-Maximum Suppression algorithm.

Intersection

over

Union

IoU =

Figure 2.12 – Illustration of the Intersection over Union.

2.2.3 Evaluation: mean Average Precision

So far we have seen how detection networks are trained and what are the two main architec-
tures in use. We now detail the evaluation metric used for most of the detection tasks: the
mean Average Precision (mAP).

The mAP is a metric that expresses how good a network is at predicting the correct boxes
while avoiding false positive detections. It is based on the computation of the precision and
the recall, which are respectively defined as the number of true positive elements over the
total of positive elements and the number of true positive elements over the total of elements
to be predicted (c.f Figure 2.13). The mAP is then defined as the mean value of the discrete
Average Precision (AP) of each class to be detected, where the discrete AP is defined as:

AP = 1
N

∑
r∈{0,0+ 1

N−1 ,...,1}

pinterp(r), (2.14)

40

CHAPTER 2. DEEP LEARNING

False
negatives

True
negatives

Selected
elements

True Positives False Positives

Precision = Recall =

Figure 2.13 – Visual representation of the precision and recall values. Precision is number of true
positive elements over the total of positive elements. Recall is the number of true positive elements
over the total elements to be predicted. Figure adapted from wikipedia.

where r is the recall value and

pinterp(r) = max
r̃:r̃≥r

p(r̃), (2.15)

with p being the precision function. The computation of each value of Equation 2.15 is
visually represented in Figure 2.14.

Rank Is True Positive ? Precision Recall

1 True 1 0.2

2 True 1 0.4

3 False 0.67 0.4

4 True 0.75 0.6

5 True 0.8 0.8

6 False 0.67 0.8

7 False 0.57 0.8

8 False 0.5 0.8

9 False 0.44 0.8

10 True 0.5 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

max of

Target
recall

Total boxes to be detected: 5

Figure 2.14 – Visual representation of the mAP formula.

2.3 Connectionist Temporal Classification

In the previous section, we have detail how networks are trained for object detection when
the position of the objects is known within input data. Such training is usually done with
a combined regression and classification loss. However, this two-part loss is conditioned on
the matching of the network propositions with the ground truth data. This is not possible
when the position of the objects is not known beforehand. For such a case, the Connectionist

41

https://en.wikipedia.org/wiki/Precision_and_recall

CHAPTER 2. DEEP LEARNING

Temporal Classification (CTC) loss [Graves et al., 2006] was introduced. Using this loss, it
becomes possible to train a neural network on temporally unsegmented data.

The aim is, given the input sequence x = (x1, . . . ,xT), where x ∈ X the input space, to
predict the correct target sequence z = (z1, . . . , zU), where z ∈ Z the target space (T and U
respectively represent the size of the input/target sequences). Z is defined as Z = L∗ where
L∗ is the set of all possible sequences over the finite alphabet L. In the rest of the thesis, we
call an element l of Z a labelling, z being the target labelling. In the setting we are interested
in, U ≤ T and therefore the two sequences cannot be a priori aligned. Such set-up can arise
for problem such as the optical recognition of word images (see Figure 2.15). In this problem,
series of slices that may or may not contain letters need to be classified in order to output
the target sequence, which in the case of the example is the word "too".

In order to ease the comprehension of the CTC loss, we start by detailing the output
representation that allows a neural network to be trained with such a loss. Then, building
up on this representation, we dive in the details of the CTC loss.

2.3.1 From network output to labelling

Let’s proceed with the toy problem of optical recognition of word images (without any lan-
guage model)4. Suppose that the image from which to predict a word is provided as a time
series of pixels slices as shown in Figure 2.15. We aim, given a network ("CTC network"
hereafter) that predicts the probability of each letter of the alphabet L to be contained in
each slice, to obtain the most probable labelling l ∈ Z.

Intuitively, one would consider selecting the most likely letter at each time step and then
convert the resulting sequence into a labelling. Such conversion is done by introducing a
mapping B that collapses a series of identical letters into one letter as illustrated in Fig-
ure 2.15. For this mapping to be fully functional one needs to introduce a blank symbol (’-’)
to serve as separator. Indeed, without such symbol, labellings with series of identical letters
such as ’too’ can not be obtained through B as they would be collapsed to ’to’. We denote
the alphabet augmented with the blank symbol as L′ = L ∪ {blank}.

TOO
t

One
time step

T

O

-

t
p = 1

p = 0
- - -O OT O

T O O

Figure 2.15 – Example of series of text input. Some of the inputs may have multiple labels, which
limits the meaning of the segmentation.

Using the most probable prediction at each time step to generate the labelling is called
"best path decoding". It consists in considering that the argmax of the prediction at each time
step will form the best prediction path. However, given the mapping function, several paths

4This peculiar example and Figure 2.15 are based on this post.

42

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c

CHAPTER 2. DEEP LEARNING

may lead to the desired labelling (for instance B(−TOO−O−) = B(−T −O−OO) = TOO).
Therefore, the probability of a labelling l given the input sequence x is actually computed
as:

p(l|x) =
∑

π∈B−1(l)
p(π|x) (2.16)

where π is a path and B−1(l) is the set of all paths π leading to l. The probability of a given
path is expressed as:

p(π|x) =
T∑
t=1

ytπt , ∀π ∈ L
′T , (2.17)

where ytπt is the computed probability at time step t of the path’s symbol at time step t and
0 ≤ p(π|x) ≤ 1. Because computing the probability of l implies that each path should be
tested, there is no tractable algorithm to compute it. However, Graves et al. [2006] propose
a method based on a modification of the forward-backward algorithm, used to compute the
CTC loss called "prefix-search decoding", that can be used to approximate the probability of
a given labelling.

2.3.2 Training a CTC network: loss and dynamic programming

In the previous subsection we have seen how to use a CTC network to predict labellings
of variating size from input sequences. We now consider the loss proposed to train such a
network. To train a CTC networkM, one considers minimizing the negative log likelihood:

O(M) = −
∑

(x,z)∼S
ln(p(z|x)), (2.18)

where S is the distribution from which the training data is drawn, x and z are respectively
input and target sequences. As the CTC loss is based on temporal data, we aim to compute
the following derivative to be able to apply the backpropagation algorithm:

∂O((x, z),M)
∂ytk

= −∂ ln(p(z|x))
∂ytk

, (2.19)

where ytk the output unit k at time t of the prediction network. However, Equation 2.16
suggests that to compute p(z|x), all the paths that can be mapped through B to the target
labelling z should be evaluated, which is not tractable.

To circumvent this problem, Graves et al. [2006] propose to use a forward-backward
algorithm based on dynamic programming. The main idea is to use two variables, the forward
one, that computes the probability of being in state s at time t given the beginning of the
sequence from 0 to t:

αt(s)
def=

∑
π∈ΠT

B(π1:t)=l1:s

t∏
t′=1

yt
′
πt′
, (2.20)

where πi:j represents the path from time i to time j, li:j represents the labelling from index i
to j and ΠT is the set of all possible paths of length T . And the backward one, that computes
the probability of being in state s at time t given the end of the sequence from t to T :

βt(s)
def=

∑
π∈ΠT

B(πt:T)=ls:|l|

T∏
t′=t

yt
′
πt′
. (2.21)

By multiplying them, one may compute the probability γ of all the paths going through ls at
time t and, therefore, by summing over all s one get p(l|x). This is illustrated in Figure 2.16.
It is to be noted that in order to allow for blanks in the path, rather than using l, the

43

CHAPTER 2. DEEP LEARNING

_

0

0

0

0

0

T

O

O

_

_

_ 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

t

1 4 5 6 732

1
4

5
6

7
3

2

s

(a) Details of the forward variable α. All the paths
leading to α4(4) are highlighted.

_

0

0

0

0

0

T

O

O

_

_

_ 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

t

1 4 5 6 732

1
4

5
6

7
3

2

s

(b) Details of the backward variable β. All the paths
leading to β4(4) are highlighted.

Figure 2.16 – Illustration of the forward and backward variables applied to the example "too". The
probability of the letter "o" at time t = 4 can be obtained by multiplying α4(4) and β4(4).

label sequence l′ is used. This sequence has blanks symbols inserted in-between the original
symbols as well as at the beginning and the end of l and is therefore of size 2|l|+ 1.

As we aim to compute p(z|x), the first step is to notice that the probability of a given
path going through a specific label can be obtained from α and β as follows:

αt(s)βt(s) =
∑

π∈B−1(l):
πt=l′s

ytl′s

T∏
t=1

ytπt

αt(s)βt(s)
ytl′s

=
∑

π∈B−1(l):
πt=l′s

T∏
t=1

ytπt

αt(s)βt(s)
ytl′s

=
∑

π∈B−1(l):
πt=l′s

p(π|x).

(2.22)

Looking at Figure 2.16, it is obvious that, to compute p(l|x), one simply have to sum the
probabilities of each path going through each label at any time t. Hence, we have:

p(l|x) =
|l′|∑
s=1

αt(s)βt(s)
ytl′s

. (2.23)

Therefore, replacing l by z the target labelling, we have:

∂p(z|x)
∂ytk

= 1
yt

2
k

∑
s∈lab(z,k)

αt(s)βt(s), (2.24)

where lab(z, k) = {s : l′s = k} is the set of s where output label k occurs (i.e for the example
word "too", lab(z, ’o’) = {4, 6}). Finally, starting from Equation 2.19 the derivative can be
computed as follows:

−∂ ln(p(z|x))
∂ytk

= 1
p(z|x)

∂p(z|x)
∂ytk

. (2.25)

This clever computation proposed by Graves et al. [2006] paved the way for the application
of the deep learning framework on tasks that previously seemed out of reach for such training

44

CHAPTER 2. DEEP LEARNING

paradigm. In particular, speech and handwriting recognition, where segmentation labelling
is difficult to obtain, have largely benefited from the CTC loss (Graves et al. [2013], Graves
and Jaitly [2014], Chorowski et al. [2015], Amodei et al. [2016], Greff et al. [2017]).

2.4 Conclusion
Deep learning is a machine learning method that aims to learn in an end-to-end manner a
prediction model given a task. Although the base formulation of neurons can be traced back
to the forties [Mcculloch and Pitts, 1943], it is only in the recent years with combination
of backpropagation [Kelley, 1960], increase in computation power and the sharing of huge
datasets (Russakovsky et al. [2015], Lin et al. [2014]), that deep learning was able to take off.

Notably, the task of object detection has largely benefited from the deep learning’s rise
and has seen impressive improvements lately. Throughout the years, two main architectures
have emerged, namely one-shot and two-shot detectors. One-shot detectors were popularized
by Liu et al. [2016] and Redmon et al. [2016]. They are fast and usually aimed towards real-
time detection, however, they fall behind the two-shot detectors when it comes to accuracy.
The two-shot architecture was initiated and improved through the series of R-CNN papers
(Girshick et al. [2014], Girshick [2015], Ren et al. [2015]). Opposite to the one-shot detectors,
they are usually slow but accurate. This is due to the two-step pipeline used, that allows for
a clear extraction of each object features. Such extraction can be used for a more focused or
multitask processing such as carried by He et al. [2017], doing both instance detection and
instance segmentation. While these two types of architecture differ in their processing, they
both rely on a dual loss, based on classification and regression. This loss, although effective,
requires the position of the objects to be known, which is a strong a priori.

For cases when positioning is not known, the CTC loss [Graves et al., 2006] was introduced.
The CTC loss relies on dynamic programming to compute the probability of labels from all
the possible output paths. Using this formulation, it becomes possible to estimate the position
of objects. However, in its current formulation, the CTC loss is limited to one dimension,
meaning that there should theoretically be only at most one object per step in the target
dimension.

45

CHAPTER 2. DEEP LEARNING

46

Part II

Contributions

47

Chapter 3

Object detection in Compressed
JPEG images

“ Time flies like an arrow; fruit
flies like a banana ”

Robin Hood

Contents
3.1 Detecting objects in images . 51

3.1.1 Object detection on RGB images . 52
Two-shot detectors . 52
One-shot detectors . 53

3.1.2 Computer vision on compressed signals 56
3.1.3 Synthesis . 57

3.2 Object detection on compressed JPEG images 58
3.2.1 Details of the Single Shot Multibox Detector 58
3.2.2 From RGB images to object detection in the frequency domain . . . 61
3.2.3 Proposed architectures . 62

RGB baselines . 63
YCbCr DCT methods . 63
YCbCr DCT Deconvolution methods 65

3.3 Experiments and results . 65
3.3.1 Implementation details . 65
3.3.2 Evaluation of the classification networks 66
3.3.3 Detection . 68

3.4 Conclusion . 73

49

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

This chapter is based upon our contributions Deguerre et al. [2019] and Deguerre et al.
[2021].

Deep architectures, especially Convolutional Neural Networks (CNN) have become a
standard for object detection [Zou et al., 2019b]. Most of the proposed architectures rely
on the same two components: a feature extractor (backbone) pre-trained on a classification
task and a detection head to output the box predictions. Impressive results were achieved
[Liu et al., 2021] on datasets growing in complexity such as Pascal VOC [Everingham et al.,
2010] or MS-COCO [Lin et al., 2014]. However, even though most of the images are com-
pressed in order to limit the storage and the transfer bandwidth requirements, state-of-the-art
detection architectures are designed for processing RGB inputs. Hence the usual procedure
for any detection task follows these steps:

• The image is uncompressed and possibly pre-processed, namely with normalization
and/or resizing operations.

• Then the detection task is performed, typically using a deep network.

Although effective, this procedure has some drawbacks as the image decoding step induces a
computational cost. Moreover, the involved deep architectures may include a large amount
of parameters, due to the RGB image resolution, making the network computationally ex-
pensive. These facts hinder the large scale deployment of detection networks for applications
with real-time constraints such as city surveillance [Ide et al., 2016] or road traffic monitoring
and management [Wang et al., 2017].

In this thesis we are concerned with the surveillance of road tunnels in Paris and, in
particular, with the Automatic Incident Detection (AID) system. The AID system has been
made mandatory by law (annex 2 of circular note 2000-63 of 25 August 2000) in order to
improve incident detection, monitoring and analysis. The main events that are to be detected
have been listed by the CEnter for TUnnel studies (CETU) and, in this work, we choose to
focus on the detection of vehicles stopped on unauthorized area (i.e hard shoulders, zebra
stripes, see Figure 3.1). It is an important part of the surveillance task as it allows the
operators to be quickly notified of potential risky situations within the tunnels. At the
moment, the detection of vehicles in Paris’ tunnels is done using classical image processing.
While functional, this approach relies on heuristics that require a manual calibration. To
remove this limitation, Actemium seeks to upgrade the existing detection system with newer
deep learning based methods. Directly applying existing deep architectures to this detection
problem would reveal costly as this task needs to run in real time (up to 25 Frames Per Second
(FPS) at full temporal resolution) on a high number of cameras (about 2000). Therefore, in
this chapter, we aim to skip the image decompression step and to perform object detection
on compressed image representation to reduce the computation and memory footprint.

Tunnel’s cameras have two operating modes: they can either output a MPEG4 part-2
coded stream or JPEG compressed snapshots on demand. Ideally, we would like to run ob-
ject detection on the MPEG4 part-2 coded streams. However, detection on compressed videos
raises two main issues: first, how to run detection on compressed frames and second, how
to take advantage of the encoded temporal information. In order to simplify the addressed
problem, we choose to first focus on object detection in compressed JPEG images, remov-
ing the temporal aspect. As the JPEG and MPEG4 part-2 compressions share processing
steps, it is likely that a method developed for JPEG compressed images will be applicable
to MPEG4 part-2 videos. Although previous work has demonstrated the possibility to carry
classification in the compressed JPEG domain [Gueguen et al., 2018], object detection brings
new challenges. Indeed, as the JPEG compression transforms images into a tiled frequency
space (8 pixels upper bound) through Discrete Cosine Transform (DCT), it raises the question
whether a detection network is able to efficiently map the frequency domain into a spatial
domain in order to output the position of the objects in the original image. Futhermore,

50

http://www.cetu.developpement-durable.gouv.fr/IMG/pdf/Circulaire_2000-63_Annexe2_cle126323.pdf
http://www.cetu.developpement-durable.gouv.fr/IMG/pdf/CETU_DocInfo_DAI_2015.pdf

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

Figure 3.1 – Examples of unauthorized areas (white shapes) and detected vehicles on the road. Images
from Actemium’s website.

detection in a JPEG compressed domain is faced with the chrominance (Cr and Cb com-
ponents) sub-sampling that leads to a resolution change when compared with the luminance
component (Y component), see Chapter 1, subsection 1.1.3.

In this chapter, not only do we demonstrate that object detection in the compressed
domain is achievable, but also that very close detection performances to those of RGB-based
architectures can be reached with a significant speed up gain. This is achieved by leveraging
the block compression of JPEG images to provide the detection networks with object location
information for the prediction while using inputs in the frequency domain. Additionally, we
investigate the use of the sole Y channel as input of the proposed detection networks so as to
get rid of the resolution change problem. Based on this solution, we empirically demonstrate
that using only the Y channel is enough to reach an accuracy equivalent to the one of networks
relying on YCbCr.

The remainder of the chapter is divided as follow: first, we review existing methods for
object detection, as well as for the processing of compressed data, and show their limitation
for the task at hand. Then, we present the proposed method to run object detection on
compressed JPEG images and, finally, we discuss the results obtained on the various test
datasets.

3.1 Detecting objects in images

Object detection aims at detecting all the objects of interest within a given image. As de-
tailed in section 2.2, the object detection task is usually cast as the prediction of bounding
boxes rather than the prediction of the objects themselves. Most of the existing deep neural
networks for detection rely on pre-trained classification modules to help improve the final
accuracy. For instance, detectors such as Fast R-CNN [Girshick, 2015], Faster R-CNN [Ren
et al., 2015], SSD [Liu et al., 2016] or FSSD [Li and Zhou, 2017] use the VGG16 network
[Simonyan and Zisserman, 2015] as a backbone, while R-FCN [Dai et al., 2016b] is instead
based on deep residual network [He et al., 2016]. In general, detection networks are not linked
to a specific classification module: they can easily be used with other classification backbones
(provided the dimensions of input images and network outputs are adjusted accordingly). As
the majority of the available backbones were trained on RGB images, most of the detection
methods use RGB images as input. Still, Gueguen et al. [2018] proved that at least classi-
fication is feasible using JPEG compressed images, hinting towards a possible adaptation to
the object detection tasks.

In order to get a better understanding of both object detection and the use of compressed

51

https://www.actemium.fr/entreprise/actemium-paris-transport/

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

JPEG image as inputs, we first details the existing related works for object detection in RGB
images. Then, we review the literature about the usage of the compressed representation for
image and video processing.

3.1.1 Object detection on RGB images

Methods for object detection are broadly based on RBG inputs and rely on two main deep
architectures: two-stage detectors and one-stage detectors. The former networks are based
on a region proposal stage followed by a box classification and/or regression stage while the
latter architectures predict a set of pre-defined boxes as object or background. While based
on a different architecture, both networks use a similar joint classification and regression
loss. Therefore, except for specific cases, we do not detail the loss function. All the methods
reviewed hereafter are summarized in Figure B.1 (see Appendix B) to help better grasp the
evolution of the detection architectures throughout the years, and, Table 3.1 regroups all
their performances.

Two-shot detectors

Two-stage detectors (c.f Figure 2.9) were introduced with R-CNN [Girshick et al., 2014]. This
first approach uses Selective Search [Uijlings et al., 2013] to extract object proposals that are
then refined through a classification network to remove false positives. This approach, while
effective, raises multiple issues. As classification networks expect a fixed size input, the
proposals need to be resized before the classification step, potentially deteriorating accuracy.
Furthermore, because of the Selective Search, the whole network can not be trained in an
end-to-end fashion. The first issue was addressed through Spatial Pyramid Pooling (SPP)
[He et al., 2014]. To avoid the loss in accuracy due to the wrapping, SPP introduces a new
pooling layer that adapts to any size of input and generates a fixed size representation. This
SPP layer was further improved in Fast R-CNN [Girshick, 2015]. Fast R-CNN replaces the
SPP layer with a simpler Region of Interest [RoI] pooling layer to provide with complete
backpropagation on the main network, from the classification head, down to the feature
extractor. Yet, this architecture still lacks the possibility to be completely trained end-
to-end, as the object proposals were still extracted using Selective Search. Faster R-CNN
[Ren et al., 2015] solves this issue by replacing the Selective Search algorithm with a Region
Proposal Network (RPN). These improvements lead to the possibility to train each part of
the detection pipeline, thus leading to the first "true" two-shot deep detection network (the
evolution of the architecture is shown in Figure 3.2).

Shared Feature
Extractor

Prediction Prediction

Selective
Search RGB Image

Ba
ck

pr
op

ag
at

io
n

Shared Feature
Extractor

(a) R-CNN

Feature Extractor

Prediction Prediction

Selective
Search

Shared
Feature map

RGB Image

Ba
ck

pr
op

ag
at

io
n

(b) Fast R-CNN

Feature Extractor

Prediction Prediction

Shared
Feature map

RGB Image

Ba
ck

pr
op

ag
at

io
n

RPN

Backpropagation

(c) Faster R-CNN

Figure 3.2 – Evolution of the R-CNN architectures, from the R-CNN (a) to Faster R-CNN (c). Fast
R-CNN (b) improves on R-CNN mostly through the shared feature map. Faster R-CNN adds a RPN
network, allowing to use backpropagation on both object proposal and classification.

52

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

As shown in Figure B.1 Faster-RCNN architecture serves as foundation for a large part of
the two-shot detectors: Multi-task Network Cascades (MNC) [Dai et al., 2016a], R-FCN [Dai
et al., 2016b], CoupleNet [Zhu et al., 2017b], Mask R-CNN [He et al., 2017], Feature Pyramid
Network (FPN) [Lin et al., 2017a], Cascade R-CNN, [Cai and Vasconcelos, 2018], InterTwiner
[Li et al., 2019a], TridentNet [Li et al., 2019b], Corner Proposal Network (CPN) [Duan et al.,
2020]. However, while all these methods were built on the same base architecture, different
types of approaches can be distinguished. For instance, MNC [Dai et al., 2016a] and Mask R-
CNN [He et al., 2017] use a multitask loss to train their network simultaneously on both object
detection and segmentation. Region-based Fully Convolutional Network (R-FCN) [Dai et al.,
2016b] and CoupleNet [Zhu et al., 2017b] remove the classification head applied to each object
proposal by relying on k2 position-sensitive score maps. As each of the score map contains
the class probability relative to the k×k RoIs pooled from the object proposals, classification
can be directly obtained for each proposal. Taking advantage of the RoI pooling layer,
InterTwiner [Li et al., 2019a] proposed to use optimal transport to reduce the discrepancy
between the embedded representation of similar objects across various images. TridentNet
[Li et al., 2019b] uses dilated convolutions to capture information at multiple scales. Cascade
R-CNN [Cai and Vasconcelos, 2018], adds a cascaded detection pipeline using increasing
Intersection over Union (IoU) thresholds to select the positive examples used for training.
And, Corner Proposal Networks [Duan et al., 2020], replace the anchor boxes-based RPN
with an anchor free detection that detects top-left and bottom-right corner of each box to get
the object proposals. Lastly, it is important to take note of the Feature Pyramid Networks
(FPN) [Lin et al., 2017a], as they are largely used throughout the literature and especially
for one-shot detectors. FPNs are based on a multi-scale pyramidal prediction and add an
up-sampling pyramid to the original feature extractor in order to provide each scale with
information from lower scales.

Apart from the Faster R-CNN based methods, few have proposed improvements that are
not directly linked to any network. SNIPER [Singh et al., 2018] extract chips of interest
to compute the feature extraction step only on targeted parts of large images. CBNet [Liu
et al., 2020a] stacks multiple backbones to improve the accuracy of the networks. And, finally,
Bag Of Freebies [Zhang et al., 2019] proposes with a series of methods to improve detection
accuracy of any type of network.

As of today, CPNs [Duan et al., 2020] represent the best two-shot detection networks for
a balance between accuracy and speed of detection (39.7 mAP at 43.3 FPS on MS-COCO,
c.f Table 3.1). However it is worth noticing that such speed was obtained using an high
end NVIDIA V100 GPU worth between 9000-10000 euros, which would make large scale
deployment order of magnitude too costly (this holds true even if we consider replacing the
V100s with a high end "low cost" GPUs). Furthermore older architectures such as Faster
R-CNN [Ren et al., 2015] or FPN [Lin et al., 2017a] are too slow to be usable for realtime
detection even on low cost GPUs. Overall, speed and resources requirements make the two-
shot detectors impractical for real-time applications, especially at large scale.

One-shot detectors

One-shot detectors (c.f Figure 2.10) are based on the prediction of densely pre-set bound-
ing boxes. They were popularized by SSD [Liu et al., 2016] and YOLOs [Redmon et al.,
2016, Redmon and Farhadi, 2017] architectures. Throughout the years, three main types of
architectures have emerged: FPN-based, prior-box free and transformer-based.

FPN-based networks are the most similar to the original YOLO/SSD formulation and
make up a major proportion of the existing literature (Deconvolutional SSD (DSSD) [Fu
et al., 2017], RetinaNet Lin et al. [2017b], RefineDet [Zhang et al., 2018], Neural Architecture
Search FPN (NAS-FPN) [Ghiasi et al., 2019], SpineNet [Du et al., 2020] YOLOv3 Redmon
and Farhadi [2018], YOLOv4 [Bochkovskiy et al., 2020], Scaled YOLOv4 [Wang et al., 2021]).
FPNs [Lin et al., 2017a] were originally designed for two-shot detectors, however they provide

53

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

with a nice synergy with one-shot detectors. Indeed, the added reversed pyramid allows to
improve the detection by providing each detection layer at a given scale with information
from lower scales (see Figure 3.3).

Predict

Predict

Predict

(a) Classical pyramidal feature hierarchy.

Predict

Predict

Predict

(b) Feature Pyramid Network architecture.

Figure 3.3 – The classical feature pyramidal architecture (a) and its FPN counterpart (b). As the
information can flow back to higher level in the FPN architecture, it allows for an improved accuracy.
Illustration modified from this post from "Towards data science".

FPN-based networks mostly improve on limitations from the original SSD and YOLO
architectures. For instance, RetinaNet [Lin et al., 2017b] proposed the focal loss to alleviate
the background imbalance problem of one-shot detectors. The original YOLOs were improved
multiple times with YOLOv3 [Redmon and Farhadi, 2018], YOLOv4 [Bochkovskiy et al.,
2020] and Scaled-YOLOv4 [Wang et al., 2021], mostly by applying various improvements,
such as specific network scaling rules [Tan and Le, 2019] or training freebies [Zhang et al.,
2019]. Scaled-YOLOv4 is the most impressive of all the YOLOs with a speed of 1774 FPS1

while maintaining an accuracy of 22.0 (MS-COCO), similar to the YOLOv2 architecture.
Taking another approach, others have also tried to improve the FPN module itself. DSSD [Fu
et al., 2017] uses deconvolution layers to learn the transition between scales in the ascending
pyramid. RefineDet [Zhang et al., 2018] adds a third series of layers after the FPN to better
refine the detection of objects. Based on [Tan and Le, 2019], EfficientDet [Tan et al., 2019],
proposes a new detection head, BiFPN, that stacks multiple FPN layers. Finally, a small part
of the FPN-networks were learned using the Neural Architecture Search (NAS) [Zoph and
Le, 2017] framework (NAS-FPN Ghiasi et al. [2019], SpineNet Du et al. [2020], MobileNetv3
Howard et al. [2019]). The main difference between the proposed methods being the search
space used during the NAS.

Moving away from the FPN framework, another series of papers based their architec-
tures on the anchor-free detectors. This type of network was introduced by CornerNet [Law
and Deng, 2018]. CornerNet detects two points of interest (the top-left and bottom right
corners) of the target bounding boxes on dedicated heatmaps and then aggregate the corners
to generate the final predictions (see Figure 3.4). Building on this idea, ExtremeNet [Zhou
et al., 2019] and CenterNet [Duan et al., 2019] propose to add more points of interest to

1This score is to be mitigated as it was obtained using TensorRT optimization. Some people have reached
similar results for other architectures (see this link for more details).

54

https://towardsdatascience.com/review-fpn-feature-pyramid-network-object-detection-262fc7482610
https://paulbridger.com/posts/tensorrt-object-detection-quantized/

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

Feature
Extractor

Top-left corner map

Bottom-right corner
map

Figure 3.4 – Base architecture for anchor free detection illustrated by CornerNet [Law and Deng,
2018]. The network detects the two corners of the objects and then associates them based on an
embedding. The example was taken from [Law and Deng, 2018].

robustify the aggregation step. Finally, RepPoints [Yang et al., 2019] proposes to use deform-
able convolution to estimate the shape of the objects to be predicted. RepPoints was then
improved into RepPointsv2 [Chen et al., 2020], adding constraints on the predicted points
during training.

Lastly, multiple transformers-based networks have been proposed [Carion et al., 2020, Zhu
et al., 2020, Liu et al., 2021]. Although transformers were originally designed for sequence pro-
cessing [Vaswani et al., 2017] they are now making the current SotA on detection challenges
(Swin [Liu et al., 2021], MS-COCO). These networks completely break the classical object
detection framework. Images are divided in patches and processed sequentially to output a
fixed number of boxes. As this number of boxes is usually very low, transformer-based net-
works do not require the Non-Maximum Suppression (NMS) postprocessing, simplifying the
overall processing pipeline (see Figure 3.5 for DETR [Carion et al., 2020] processing pipeline).
Furthermore, on top of being effective they also manage to reach high speed performances
(28 FPS). However, this score is obtained on an unknown GPU (likely V100), mitigating
the interest of the results for real-time (25 FPS) predictions at large scale. Similarly to the
two-shot CPN [Duan et al., 2020], the required high-end GPUs would make deployment order
of magnitude too costly.

Figure 3.5 – Example of transformer based object detection (image from DETR [Carion et al., 2020]).
Objects are predicted as a sequence, rather than densely from a feature map. Such pipeline reduces
the number of boxes predicted and, therefore, removes the need for NMS postprocessing.

55

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

One-shot paradigm started aiming to provide with fast detection networks. They managed
to do so at the cost of a reduced accuracy when compared with two-shot detectors. However,
the difference in accuracy has been erased over time and one-shot detectors have overthrown
two-shot detectors for both accuracy and detection speed, making them the ideal candidate
for accurate real-time predictions.

Architecture P-VOC 07 P-VOC 12 MS-COCO FPS test GPU
Two-shot detectors:
R-CNN, Girshick et al. [2014] 58.5 - - 0.08 -
SPP, He et al. [2014] 59.2 - - 2.6 Titan
Fast R-CNN, Girshick [2015] 66.9 68.4 - 3.13 K40
Faster R-CNN, Ren et al. [2015] 73.2 70.4 - 5 K40
MNC, Dai et al. [2016a] - 75.9 - 2.8 K40
R-FCN, Dai et al. [2016b] 80.5 77.6 - 5.9 K40
FPN, Lin et al. [2017a] - - 36.2 5.8 M40
Mask-RCNN, He et al. [2017] - - 38.2 (39.8) 5 M40
CoupleNet, Zhu et al. [2017b] 82.7 80.4 34.4 8.2 Titan X
SNIPER, Singh et al. [2018] - - 46.1 (47.6) 5 V100
Cascade R-CNN, Cai and Vasconcelos [2018] - - 42.8 7.1 Titan Xp
InterTwiner, Li et al. [2019a] - - 42.5 (44.2) 3.1 Titan X
TridentNet, Li et al. [2019b] - - 48.4 - -
CBNet, Liu et al. [2020a] - - 40.8 (53.3) 6.9 -
CPN, Duan et al. [2020] - - 39.7/41.6 (49.2) 43.3/26.2 V100
One-shot detectors:
YOLO, Redmon et al. [2016] 52.7/66.4 57.9 - 155/21 Titan X
SSD, Liu et al. [2016] 74.3/76.8 72.4/74.9 23.2/26.8 59/22 Titan X
YOLOv2, Redmon and Farhadi [2017] 69.0/78.6 -/73.4 -/21.6 91/40 Titan X
RetinaNet, Lin et al. [2017b] - - 32.5/37.8 (40.8) 13.7/5.1 M40
DSSD, Fu et al. [2017] 81.5 80.0 33.2 6.6 Titan X
MobileNet, Howard et al. [2017] - - 19.3 - -
CornerNet, Law and Deng [2018] - - 40.6 4.1 Titan X
YOLOv3, Redmon and Farhadi [2018] - - 28.2/33.0 45.5/19.6 Titan X
RefineDet, Zhang et al. [2018] 80.0/81.8 78.1/80.1 29.4/33.0 (41.8) 40.3/24.1 Titan X
MobileNetv2, Sandler et al. [2018] - - 22.1 5 CPU
ExtremeNet, Zhou et al. [2019] - - 40.2 (43.7) 3.1 -
CenterNet, Duan et al. [2019] - - 44.9 (47.0) 2.9 P100
RepPoints, Yang et al. [2019] - - 46.5 - -
NAS-FPN, Ghiasi et al. [2019] - - 37.0/48.3 26.7/3.6 P100
MobileNetv3, Howard et al. [2019] - - 16.1/22.0 23.3/8.4 Google Pixel Phone
MatrixNet, Rashwan et al. [2019] - - 42.7/44.7 (47.8) 4.0/2.8 -
EfficientDet, Tan et al. [2019] - - 34.6/55.1 83/3.5 Titan V
SpineNet, Du et al. [2020] - - 39.9/45.3 (52.1) 85.5/29.2 V100
RepPointsv2, Chen et al. [2020] - - 44.4/49.4 (52.1) 10.1/3.8 Titan XP
YOLOv4, Bochkovskiy et al. [2020] - - 41.2/43.5 96/62 V100
Scaled-YOLOv4, Wang et al. [2021] - - 55.5/22.0 16/1774* V100/2080 Ti
DetectoRS, Qiao et al. [2020] - - 51.3 (55.7) 3.9 Titan RTX
DETR, Carion et al. [2020] - - 42.0/44.9 28-10 -
Deformable DETR, Zhu et al. [2020] - - 46.9 (52.3) 19 V100
Swin, Liu et al. [2021] - - 47.2/51.9 (58.7) 22.3/11.6 V100

Table 3.1 – Accuracy, speed and test GPU for the existing detection methods. P-VOC denotes Pascal
VOC. Accuracy results in parenthesis are the best reported results in the literature, usually not running
in real-time speed due to the usage of various tricks such as multi-scale testing. The * denotes a result
that was obtained using TensorRT optimization, making comparison with other networks difficult.

3.1.2 Computer vision on compressed signals

Using compressed images has been explored in the past for various computer vision tasks
(such as, for instance, classification [Gueguen et al., 2018] or object counting [Wang et al.,
2017]). Many applications estimating flows from videos take advantage of the compression
format as the encoded data often include displacement information in order to reduce the size
of the videos by exploiting temporal redundancy. Wang et al. [2018] proposed an architecture
for object detection within compressed videos. They use motion vectors and residuals (c.f
section 1.2 of chapter 1) to infer objects through time, while only partially decoding the
compressed video flux. Wu et al. [2017] also proposed to exploit encoded motion vectors

56

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

and residuals to improve both accuracy and inference speed for a task of action recognition
in videos. Taking another approach, Shou et al. [2019] detects action by first generating an
optical flow from motion vectors and residuals and then using it to classify the action. We
shall mention that, while not coupled with deep learning, motion vectors and/or DCT coded
frames were leveraged to count vehicles Wang et al. [2017] or to estimate the vehicles’ speed
and density on highways Yu et al. [2002b].

Moving away from video processing, Gueguen et al. [2018] investigated different network
architectures for JPEG image classification. They reached state-of-the-art classification per-
formance while speeding-up the prediction stage. The gain for such architectures mainly
stems from the reduced data transfer between CPU and GPU due to the image compression.
Building on this method, several works have proposed to reduce or constrain the range of
the frequency components used as input [Santos et al., 2020, Xu et al., 2020, dos Santos and
Almeida, 2020, Dziedzic et al., 2019]. While [Santos et al., 2020, Xu et al., 2020, dos Santos
and Almeida, 2020] only study the limitation of the number of frequency components (espe-
cially in high frequencies), Dziedzic et al. [2019] sought to constrain the frequency spectra
of convolution filter for processing RGB images. Looking for networks adapted to the JPEG
compression, Ehrlich and Davis [2019] develop JPEG domain equivalent of the spatial con-
volution and batch normalization layers. They show equivalent accuracy to RGB images on
various classification datasets (MNIST [LeCun and Cortes, 2010], CIFAR10 and CIFAR100
[Krizhevsky et al.]). Lo and Hang [2019] tackle image segmentation using JPEG compressed
images. They adapted an RGB network by removing the down-sampling blocks to match
the shape of the DCT inputs. Impressive results almost reaching the RGB baseline with
similar level of FLOPs are achieved on the Cityscapes dataset [Cordts et al., 2016]. Finally,
relying on JPEG2000 compression norm, Chamain and Ding [2019] showed results matching
the RGB baseline as well as speed improvements for classification. To do so, they stack sub
bands of half decoded images and feed them to a modified neural network.

Overall, the usage of the compressed representation of data has drawn little attention
when compared to the classical RGB processing. However, in the recent years, it seems
that this peculiar topic has seen a resurgence of interest. Interestingly enough, where image
processing makes usage of the compressed frequency components, video processing methods
seem to mainly focus on the usage of the motion information. Aside video processing, the
existing works on compressed JPEG images, and especially Gueguen et al. [2018] and [Lo and
Hang, 2019] tend to demonstrate that object detection should be feasible using compressed
JPEG images.

3.1.3 Synthesis

Recently, a growing body of publications tried to take advantage of the data compression to
reduce the bandwidth and resources requirements. Such regain of interest for optimization
can probably be linked to the growing maturity of deep learning. As performances rise,
many try to adapt the advances to industrial applications, leading to a revived interest for
optimization. In particular, several have tried to leverage the JPEG compression and its
frequency representation to reduce bandwidth requirements ([Santos et al., 2020, Xu et al.,
2020, dos Santos and Almeida, 2020, Dziedzic et al., 2019]), based on the work from Gueguen
et al. [2018]. However, classification does not rely as much as object detection on spatial
information. As only the image as a whole is to be classified, position becomes irrelevant. This
is not the case for object detection, where each object needs to be precisely located. Therefore,
unlike classification, the loss of spatial information through DCT is likely to impede the
prediction results for object detection. Our works [Deguerre et al., 2019, 2021] demonstrate
how to leverage JPEG compressed information to carry object detection. It is to be noted
that following in our steps, others have tackle other spatial tasks such as segmentation [Lo
and Hang, 2019].

Object detection in the RGB domain was largely studied over the years. Two main archi-

57

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

tectures have emerged: one-shot and two-shot detectors. Nowadays, one-shot detectors are
amongst the best architectures. In particular, transformers-based architectures have shown
impressive results, improving the SotA [Liu et al., 2021] and, more generally taking spots
in the high ranking architectures ([Carion et al., 2020, Zhu et al., 2020]) on the MS-COCO
detection task. We aim to run object detection at large scale, therefore, if we were to select
an architecture for experimenting today, we would probably select Scaled-YOLOv4, with its
impressive 1774 FPS after optimization. However, at the time we started the thesis (2018),
the best architecture was the SSD [Liu et al., 2016], providing with a good balance between
speed and accuracy. As such, our proposed method for object detection using compressed
JPEG images is based on the SSD.

3.2 Object detection on compressed JPEG images
Our goal is to design an object detection network starting from compressed JPEG images.
The JPEG norm is mainly based on the block-DCT transform to improve the compression
ratio of images. While efficient for compression, such change of space, from pixels space to
frequency domain, brings new challenges for the localization and classification of objects.
Indeed, contrary to RGB images, the spatial information relative to the objects may be
impeded by the DCT transform. As we aim to improve the speed of prediction so as to
detect objects in real time, we lay our proposal on one-shot detection architectures and more
specifically on the SSD [Liu et al., 2016]. Because the one-shot networks were built to handle
RGB images, they cannot natively process JPEG compressed images. In particular, they were
designed to process RGB inputs 8 times larger in width and height than their compressed
counterparts. Futhermore, they were not designed to handle image components with multiple
resolution (Cb, Cr subsampling) In this section, we detail how to redesign one-shot detection
networks to handle these various discrepancies.

The rest of the section is divided as follow: first we detail the SSD architecture, then we
explain how one-shot architectures can be modified to exploit compressed JPEG images, and,
finally, we review our SSD networks newly redesigned to operate in the JPEG compressed
domain.

3.2.1 Details of the Single Shot Multibox Detector

The Single Shot Multibox Detector (SSD) [Liu et al., 2016] is a one-shot detector. In its
initial formulation it is composed of a pre-trained VGG backbone [Simonyan and Zisserman,
2015] and extra feature layers that act as a detection head. The SSD was developed to predict
boxes at multiple scales and relies on a pyramidal architecture to do so. As the feature maps
are reduced in size throughout the network, each cell within the subsequent maps gather
information from a increasingly large portion of the original image (see Figure 3.6). Taking
advantage of the information embedded into these cells of lower resolution (when compared
with the original image), the probability of an object being present in a given cell can be
estimated. The SSD uses feature maps from the size of (38,38) to (1,1) for prediction and the
size of the objects being predicted is relative to the resolution of the cells. For instance, each
cell of the feature map of size (38,38) is used to predict objects of size 300

38 ≈ 8 pixels (300
being the number of pixels in the input image) while the feature map of size (1,1) predicts
objects of size ≈ 300 pixels. It is worth noticing that the number of objects the network can
predict per cell varies depending on the feature map and amounts to a grand total of 8732
possible objects. The whole network is detailed in Figure 3.6.

Each object that can be predicted from a given cell has a predefined box shape. These
boxes are called default boxes (also prior boxes or anchor boxes) and aim to account for the
variability in the shape of the objects. They are defined a priori and can be set manually (case
of the SSD) or estimated from the training set [Redmon and Farhadi, 2017]. A representation
of such boxes at various scales is shown in Figure 3.7. In the figure, the default boxes closest

58

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

87
32

 d
et

ec
tio

ns
 p

er
 c

la
ss

es

N
on

-M
ax

im
um

 S
up

pr
es

si
on

300

300

Image

38

38

19

19 19

19

10

10

5

5

3

3 1

VGG Backbone

VGG Conv layers VGG FC layers

Added layers

Figure 3.6 – Single Shot Multibox Detector architecture. The first part of the network is a VGG
network and the second part are added layers used for multi-scale prediction. Both the convolutional
layers and fully connected (FC) layers from the VGG are used for initialization of the SSD weights
(FC layers are cast as convolutions). Boxes are predicted at 6 different scales for a total of 8732 boxes.

to the objects (in term of IoU) are displayed in a color identical to the objects. Although
we see that the default boxes cover a large range of objects, we can notice that they do not
match perfectly the ground truth bounding boxes. To avoid too approximate predictions, the
SSD actually outputs the difference b between the default box d and the ground truth box
g rather than only relying on the prior boxes. On top of this prediction of differences, the
SSD also predicts its confidence c in each possible box to be of each possible class. As it is
obvious that many default boxes will not be associated to an object, the classification layer
includes a default background class. Finally, for each output feature map, a convolutional
layer is applied. It produces a final map of size (wf , hf , nboxes × (4 + nclasses + 1)), where
wf is the width of the map, hf its height and the part multiplied by the number of boxes
corresponds to the center positions, width and height of the box plus the number of classes
augmented with the background class.

Figure 3.7 – Example of the multi-scale box prediction (feature map shapes and number of boxes do
not follow the SSD architecture). On the left, the original image with the objects to be detected (a
cow, a person and two boats). In the middle, a feature map of size (9,9), with three possible boxes to
be predicted per cell. On the right an other feature map later in the pyramid. Detected objects are
highlighted with the same color (boat on the right is not shown for clarity).

We now review the proposed loss to train a SSD network. Let define as ŷ = {b̂, ĉ} =
{(b̂1, ĉ1), ..., (b̂8732, ĉ8732)} all the boxes and associated classes that are predicted by a SSD
network. The SSD loss is based on the two parts (regression and classification) formulation
provided in Equation 2.13. Given a set of ground truth boxes g, we denote δpij = {0, 1} an
indicator for matching the i-th ground truth box gi of class p to the j-th default box dj . The
indexes j that were matched positively to a ground truth box are noted as Pos and the ones

59

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

that were not matched as Neg. Then, the classification loss is defined as:

Lclass(ĉ) =
∑
j∈Pos

∑
i

∑
p

δpijLc(ĉj , p) +
∑
j∈Neg

Lc(ĉj , 0), (3.1)

where

Lc(ĉj , p) = − log
exp(ĉpj)∑nclass+1

q=1 exp(ĉqj)
, (3.2)

ĉpj ∈ [0,+∞] being the confidence of the network that box j is of class p2. For the default boxes
that were matched with a ground truth box, the aim is to maximize the probability of the
correct class p, and for the others, the probability of the background class. The second part of
the object detection loss is the regression loss. It aims to measure the difference between the
predicted boxes and the ground truth ones. As the SSD outputs boxes at multiple scales, the
values to be predicted need to be normalized. Without such normalization, errors on large
boxes may overrun the errors on small boxes. Given a ground truth box g = (gcx, gcy, gw, gh),
where gcx, gcy, gw and gh are respectively the location on the x-axis and y-axis of the center
of the box and of its width and height, and its associated default box d = (dcx, dcy, dw, dh),
the normalized box b = (bcx, bcy, bw, bh) is defined as:

bcxj =
gcxj − dcxi

dwi
,

bcyj =
gcyj − d

cy
i

dhi
,

bwj = log
(
gwj
dwi

)
,

bhj = log
(
ghj
dhi

)
.

(3.3)

Then, letting y = {b, c} be the target values, the regression loss is expressed as:

Lreg(b, b̂) =
∑
j∈Pos

∑
m∈{cx,cy,w,h}

smoothL1(b̂mj − bmj), (3.4)

where

smoothL1(x) =
{

0.5x2, if |x| < 1,
|x| − 0.5, otherwise,

(3.5)

is used to penalize more strongly large prediction errors. Finally, the overall loss can be
defined as:

L(y, ŷ) = 1
N

(Lclass(ĉ) + αLreg(b, b̂)), (3.6)

where N is the number of matched default boxes and α > 0 a hyper-parameter balancing
both losses.

The latter formulation has one main drawback: it is very sensitive to the high number
of Neg boxes during training. Although this problem has later been addressed by Lin et al.
[2017b] with the focal loss, in the SSD framework, class imbalance was addressed through
"hard negative mining". Hard Negative Mining (HNM) consists in removing part of the
background classes to avoid overwhelming the classification loss with negative examples. In
the present thesis, we used HNM similarly to the original SSD.

2In practice, the softmax operation usually acts as activation function of the network. Therefore ĉpj ∈ [0, 1]
and

∑
p
ĉpj = 1.

60

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

3.2.2 From RGB images to object detection in the frequency domain

We now seek to design a new framework for one-shot detection networks using compressed
JPEG input images. In particular, we seek to leverage the specificities of the compression
norm to speed up the detection networks and reduce their memory and bandwidth require-
ments. The JPEG compression algorithm is made of five steps which are: RGB to YCbCr
transform, sub-sampling, block DCT, quantization and entropy/RLE coding. As shown in
Figure 3.8, the SSD can only be used natively with YCbCr transformed images as this is the
only operation that does not change the shape of the images nor the number of channels. Past
this compression step, this assessment does not hold true as the various operations reshape
the image through information removal (subsampling) or change of space (blockwise DCT).
Therefore, depending on the considered input, the existing detection architectures must be
redesigned to take into account the specificities of the input domain. We start by discussing
which compression step should be used as data input and we then detail the newly proposed
architectures to fit such data.

Figure 3.8 – The Full JPEG compression pipeline. The compression starts on the left with an RGB
image and ends on the right with the entropy coded image. Image adapted from Gueguen et al. [2018].

Obviously we would like to avoid as much decoding steps as possible to keep the decom-
pression requirements low. As shown in Figure 1.9, compression steps past (including) the
quantization stage are problematic for data comprehension. Indeed, both the quantization
step and the Huffman coding are based on tables that might change across images, poten-
tially leading to identical representations originating from completely different uncompressed
images. Therefore, we choose to use the block DCT representation as input for the detection
network. The choice is bolstered by the fact that this compressed representation was used
with success by Gueguen et al. [2018] for the classification task.

Let now discuss how we adapt the detection network to handle block DCT images. Com-
pressed JPEG images have various specificities that need to be taken into account when
designing a detection network. First, the size of the input image is reduced by 8 due to the
blockwise DCT, second, not all the image components have the same resolution (CbCr are
a half of Y) and finally, information is stored as frequencies rather than color pixels. We
propose four different approaches that aim to account for and explore these specificities.

The simplest approach, as shown in Figure 3.9, consists in removing the first convolutional
layers of the genuine SSD and in plugging the DCT input into the convolution layers with
matching size. Although straightforward, the method is well fitted for object detection.
Indeed, each compressed DCT block (Y component) finds itself aligned with the smallest
boxes to be predicted (similarly the Cb and Cr components are aligned with the second
smallest boxes). However, as shown in Figure 3.9 this approach has a major issue: the

61

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

smallest predicted boxes are not provided with the chromatic information. Therefore, we
propose a second approach, where a deconvolution layer is used to scale up Cb and Cr so as
to use them in combination with the Y component.

The third modification we propose can apply to the first two approaches. It adds more
convolution layers at the beginning of the detection networks. This is done to provide each
detection layer with a receptive field identical to the one of the RGB networks. Indeed,
without this, when predicting the smallest boxes, networks in the compressed domain have a
receptive field of 56 pixels while RGB networks have a receptive field of 92 pixels. It is to be
noted that in order to keep the number of FPS constant when compared with the non RFA
architectures, the number of filters in the first convolutional layers needs to be reduced.

Finally, because of the change in resolution induced by the JPEG compression algorithm,
we assume that all the components may not be useful. Intuitively, as the sub-sampling
operation is carried before the blockwise DCT, the Cb and Cr 8 × 8 blocks are actually a
sparse representation of an equivalent four Y 8× 8 blocks. Hence, the learning algorithm has
to deal with both sparsity and resolution problems when the Cb and Cr inputs are merged
into the network, potentially impeding the training. We thus propose a last approach that
only uses the Y component as input.

R
G

B Conv
Group 1

Conv
Group 2

Conv
Group 3

Conv
Group 4

Conv
Group 5

Conv
Group 6

D
C

T

3

w
h

w/8
h/8

64 64
w/16h/16

h,w /2 /2 /2 /2 /2

64

Predictions PredictionsPredictions

Figure 3.9 – Principle of the DCT-based object detector. The further we advance in the network, the
bigger the predicted boxes. Depending on the setup, YCbCr or only Y inputs are fed to the networks.
For clarity, not all the prediction layers are shown.

3.2.3 Proposed architectures

We now detail all of the proposed architectures. Originally, the SSD was built on top of a
VGG classification network. Besides modified VGGs for frequency domain, we also investigate
ResNet50-based classification backbones, as such networks have provided impressive results
in terms of accuracy and inference speed for JPEG image classification [Gueguen et al.,
2018]. The main characteristics of the networks are summarized in Table 3.3 and the detail
of the layers of these detection architectures are summarized in Table B.1 (see Appendix
Appendix B). Notice that the networks using the sole Y channel are not detailed as they are
simplified instances of the YCbCr based networks. Similarly to Gueguen et al. [2018] we call
networks with a corrected receptive field, Receptive Field Aware (RFA).

We start by reviewing the RGB architectures. Then we detail the architectures us-
ing the compressed inputs that do not use deconvolution layers. And we finish with the
deconvolution-based architectures.

62

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

Conv Group Output Size VGG ResNet50

conv1 112× 112 [3× 3, 64]× 2,
3× 3 maxpool, s2 [7× 7, 64, s2]

conv2 56× 56 [3× 3, 128]× 2,
3× 3 maxpool, s2

3× 3 maxpool, s2, 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3 28× 28 [3× 3, 256]× 2,
3× 3 maxpool, s2

1× 1, 128
3× 3, 128
1× 1, 512

× 3

conv4 14× 14 [3× 3, 512]× 2,
3× 3 maxpool, s2

 1× 1, 256
3× 3, 256
1× 1, 1024

× 3

conv5 7× 7 [3× 3, 512]× 2,
3× 3 maxpool, s2

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

FC6 1× 1 FC-4096 -
FC7 1× 1 FC-4096 -

prediction 1× 1 FC-1000, softmax avg pool, FC-1000, softmax

Table 3.2 – Detail of the VGG and ResNet50 architectures. Note that the FC6 and FC7 layers can
be reshaped to have a size of 7× 7.

RGB baselines

For each of the backbones (VGG and ResNet50), we compare our results with the RGB-based
architecture. For the VGG-based SSD, we use the original architecture [Liu et al., 2016]. In
order to use the ResNet50 as backbone, few modifications must be applied to SSD. Originally,
part of the SSD convolutional layers, the FC6 and FC7 layers, were designed to use the VGG
dense layers’ weights (see Figure 3.6 for a visual reminder). As the ResNet50 does not contain
such layers, we need to modify the SSD architecture to correctly incorporate the ResNet50
backbone (a side by side comparison of VGG and ResNet50 is provided in Table 3.2). We
remove all the SSD layers up to (including) the fc7 layer and replace them with the ResNet50
ones (except for the last classification layer). This way, as for the VGG, only the weights
from the classification layer are not pre-loaded into the SSD.

YCbCr DCT methods

We present the DCT architectures that do not account for the discrepancies in resolution
between the Y and Cb, Cr components. Hence, for all the architectures of this subsection,
the smallest boxes only rely on the Y input for predictions (c.f Figure 3.10). The VGG-based
architectures, SSD DCT and SSD DCT RFA, are modifications of the original SSD. For the
ResNet50-based architectures, we select two classification networks, Late-Concat-RFA (LC-
RFA) and Late-Concat-RFA-Thinner, which have shown good precision/accuracy ratios as
evidenced in Gueguen et al. [2018]. The LC-RFA architectures imitate the original ResNet50
receptive field by removing the downsizing carried by some of the ResNet50 convolution
layers. LC-RFA-Thinner is a lighter, hence faster, variant of LC-RFA.

SSD DCT:
This method is based on the original SSD, the first three convolution blocks are removed and

63

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

the Y and Cb, Cr inputs are respectively plugged in the fourth and fifth block (Figure 3.10b).
As the first blocks are completely bypassed, this is one of the fastest detection architecture
proposed.

SSD DCT RFA:
The SSD DCT RFA is a modification of the above proposed SSD DCT network. In order

to mimic the receptive field of the original RGB SSD two main changes are applied. First,
three more convolution layers are added on the luminance component channel (Figure 3.10c).
Second, the number of filters in the first 6 feature maps are reduced from 512 to 324 in order
to keep the number of FLOPs constant with the non RFA approach.

Conv
Group 4

Conv
Group 5

End of the
network

Predictions Predictions

Conv Group
1-3

(a) Original RGB pipeline.

Conv
Group 4

Conv
Group 5

Predictions Predictions

End of the
network

(b) Simple "plug in" architecture.

RFA Conv
Group

Conv Group
4 (RFA)

Conv
Group 5

End of the
network

Predictions Predictions

(c) Receptive Field Aware architecture.

Conv
Group 4

Conv
Group 5

Predictions Predictions

Deconvolution
layer

End of the
network

(d) Deconvolution architecture.

Figure 3.10 – Representation of the main proposed modifications. a) is the original RGB approach
and b,c,d) are the proposed architectures. The Y only networks are not shown as they only require
to remove the Cb and Cr components.

SSD LC-RFA:
We integrate the LC-RFA classification network in the same way as the ResNet50 SSD

RGB version. This architecture does not prune away the first convolution blocks, instead,
the downsizing operations are removed by changing the stride of the convolutions from 2 to
1 when required. It is worth noticing that we had to modify part the original architecture
from Gueguen et al. [2018] as the one given by the authors lead to channel incompatibility
on some of the layers. Specifically, we reduce the number of feature map from 1024 to 512
on the last group of convolutions for both Y and Cb and Cr axis before concatenation.

SSD LC-RFA-Thinner:
It is a lighter version of SSD LC-RFA with a reduced number of layers. This approach

increases detection speed while keeping fairly good accuracy. Modifications in the number
of channels is as follows: along the Y axis, channels from the three first Convolution Blocks
(CB) are set from {1024, 512, 512} to {384, 384, 768} and along the Cb, Cr axis, the channels
of the CB set from {512} to {256}.

64

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

YCbCr DCT Deconvolution methods

We use deconvolution methods to align the size of the down-sampled Cb, Cr to the one of Y
(Figure 3.10d). The related architectures are given below.

SSD DCT-Deconv:
It is based on a VGG where the first three blocks are skipped. The Cb and Cr inputs first

go through a deconvolution layer each and are concatenated with the Y component. Then a
Batch Normalization is applied and outputs the input of the fourth block. The rest of the
network follows the original SSD.

SSD Deconvolution-RFA:
It is based on ResNet50. We test using the deconvolution module proposed in Gueguen

et al. [2018]. Contrary to SSD DCT-Deconv, the first blocks are not skipped, instead the
stride of the first convolutions is changed from 2 to 1 when required. This architecture is
mostly equivalent in speed and accuracy to the LC-RFA network for classification purpose.

Table 3.3 – Summary of the main characteristics of the proposed architectures.

Network ResNet50-based VGG-based Inputs aligned Corrected receptive field
SSD300 DCT X
SSD300 DCT RFA X X
SSD300 DCT Deconvolution X X
SSD300 DCT LC-RFA X X
SSD300 DCT LC-RFA-Thinner X X
SSD300 DCT Deconvolution-RFA X X X

3.3 Experiments and results
Experiments are conducted to evaluate the investigated detection networks. As a preliminary,
we first implement and train the classification networks ResNet50, VGG, LC-RFA and their
variants using compressed JPEG images (namely their block DCT coefficients). For this, we
use the ImageNet2012 training set [Russakovsky et al., 2015]. As for detection, we train and
evaluate on three datasets, Pascal VOC, MS-COCO and Actemium tunnel detection dataset.

3.3.1 Implementation details

Datasets ImageNet 2012 classification dataset [Russakovsky et al., 2015] is composed of
1,000 classes of images. The training set is made of 1,281,167 images and the validation set of
50,000 images. As the testing set is not available, we evaluate all our classification networks
on the validation set, as customary amongst the community.

Pascal VOC data (object detection, [Everingham et al., 2010]) are composed of 11,530
natural scene images containing a total of 20 classes with bounding boxes for each object.
We create 2 training sets by combining the data available: ‘07‘ for the Pascal VOC 2007
train-validation dataset and ‘07+12‘ for the union of the Pascal VOC 2007 train-validation
and 2012 train-validation dataset. All reported results on Pascal VOC are evaluation on 2007
test set.

MS-COCO dataset (object detection, [Lin et al., 2014]) is composed of more than 100,000
natural scene images with a total of 80 classes. The training set (version 2017) is made of
118,000 images and the validation set of 5,000 images. For the evaluation, we use the provided
evaluation server and the test-dev set.

Actemium dataset includes images taken from different cameras of a video surveillance
system intended to monitor road traffic in tunnels in Paris (France) area. The dataset contains
3 classes (car, truck, motorcycle) with their bounding boxes and is randomly split into 1578

65

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

training images, 380 validation images and 218 test ones. The class distribution is detailed
in table 3.4.

Set Number of images car truck motorcycle
training 1578 4303 658 142
validation 380 1012 143 22

test 218 588 79 29

Table 3.4 – Class distribution per set in Actemium dataset

Classification We train the classification networks using a distributed environment and
follow the recommendations from Goyal et al. [2017]. The models are trained using Horovod
on 4 nodes amounting to a total of 8 GPUs. Default training parameters are used for VGG
and ResNet as described in Simonyan and Zisserman [2015] and He et al. [2016]. For data-
augmentation, we rescale the images so that the smallest side is 256 pixels, we randomly crop
a 224x224 patch and then randomly apply horizontal flip. The learning rate is decayed by
10 whenever the validation loss plateaus. While the original articles apply weight decay on
the loss, due to framework limitation, we use a per layer one. We found out later that in
this setting, the weight decay should actually be reduced by a factor of 2. Given that we
get results close to the authors’ baselines for the RGB networks, we keep the setting. The
trained classification networks served as backbone for the detection networks.

We evaluate the number of Frames Per Second (FPS) that can be processed for each of
the networks. We use a NVIDIA GTX 1080, set the batch size to 8 and do 10 runs of 200
predictions. The final FPS value is the average over the runs. FPS from other papers (when
provided by the authors) are not reported as they used different GPUs.

Detection The SSD-based detection networks are trained on a single GPU. The networks
are initialized using the weights from the corresponding classification networks.

For the VGG-based SSD, we follow Liu et al. [2016] and convert the dense classification
layers into convolutional layers. When converting the VGG’s dense layers weights to fit the
convolution layers from the SSD, we use a pre-set sub-sampling of 0:4:4096 to extract 1024
channels from the original 4096.

For the PASCAL VOC, we train on two different sets, the original 2007 training/validation
and the 2007+2012 training/validation. They are respectively denoted as 07 and 07+12 in the
result tables. For MS-COCO and Actemium datasets, we use the provided training/validation
sets.

We evaluate the FPS of each detection network using the same parameters as for classi-
fication. When evaluating the speed of the networks we find the Non-Maximum Suppression
to be the limiting factor. For some of the architectures, this led to a sub-optimal usage of
the GPU’s capacities, especially for the DCT-based networks. To account for this, we report
two speed evaluations: i) with one instance of the model running on the GPU, and ii) with
two instances of the model running in parallel on the GPU. We stopped at two instances as
the models were saturating the capacities of the GPU.

3.3.2 Evaluation of the classification networks

We rescale the smallest side of the images to 256 and keep the aspect ratio constant. We feed
them to the networks and average the predictions through a Global Average Pooling layer
whenever required. For each of the networks, we also retrain on RGB images to set a baseline
given our data-augmentation. Results on the ImageNet validation dataset are reported in
Table 3.5 and the Accuracy vs FPS is shown in Figure 3.11. We now detail the results starting
with the full YCbCr networks and following with the Y only networks.

66

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

Network top-1 accuracy top-5 accuracy FPS
State of the Art:
VGG Simonyan and Zisserman [2015] 73.0 91.2 N/A
Resnet50 Gueguen et al. [2018] 75.78 92.65 N/A
LC-RFA (DCT) Gueguen et al. [2018] 75.92 92.81 N/A
LC-RFA-thinner (DCT) Gueguen et al. [2018] 75.39 92.57 N/A
Deconvolution-RFA (DCT) Gueguen et al. [2018] 76.06 92.02 N/A
Our trainings (VGG-based):
VGG 71.9 90.8 267
VGG-DCT 65.5 86.4 553
VGG-DCT Y 62.6 84.6 583
VGG-DCT RFA 66.5 87.0 540
VGG-DCT RFA Y 65.0 86.2 574
VGG-DCT Deconvolution 65.9 86.7 609
Our trainings (ResNet50-based):
Resnet50 74.73 92.33 324
LC-RFA (DCT) 74.82 92.58 318
LC-RFA Y (DCT) 73.25 91.40 329
LC-RFA-Thinner (DCT) 74.62 92.33 389
LC-RFA-Thinner Y (DCT) 72.48 91.04 395
Deconvolution-RFA (DCT) 74.55 92.39 313

Table 3.5 – Classification results on ImageNet. The top panel refers to the results from the literature.
The two last panels refer to our implementations. In bold are the best results of our trainings.

Training with YCbCr DCT inputs We first retrain all the architectures presented in
Gueguen et al. [2018], namely LC-RFA, LC-RFA-Thinner and Deconvolution-RFA and get
accuracy results that are about 1∼2 % lower that the original ones (see Table 3.5). We
attribute these differences to the fact that we evaluate on rescaled images rather than crops,
as well as some possible differences in hyper-parameters as they were not fully disclosed. The
main difference is related to the FPS of the networks: we do not reproduce the same speed
improvements from RGB to DCT architectures. The main gains are obtained for the LC-
RFA-Thinner architecture when compared with RGB with a ×1.2 (×1.77 in Gueguen et al.
[2018]) speed improvement, at almost equivalent accuracy. We believe these differences are
due to the different GPUs used for the evaluation. Our testing GPU does not process the
images at a rate sufficient to take advantage of the reduce data transfer between CPU and
GPU entailed by the compressed inputs.

We then train the VGG-DCT, VGG-DCT RFA and VGG-DCT Deconvolution networks.
All the architectures perform worse than the original RGB VGG. VGG-DCT and VGG-DCT
Deconvolution networks show similar performances, with the Deconvolution network slightly
faster (resp. ×2.1 and ×2.2). However, while the RFA version of the networks is the slowest
at 540 FPS, it is the more accurate with 67.0 top-1 accuracy.

If we compare the VGG-based networks with the ResNet50 ones, we can see that the
VGG networks are about a 39% to 50% faster but reduce the accuracy by 7 to 11 points
(10% to 16%). We attribute these differences to the hard pruning done on the first layers
of the RGB architecture. This can be see in Figure 3.11 were all the blue dots (VGG-based
networks) are at down-right position w.r.t the red points (ResNet50-based networks).

Training with only Y DCT input The related classification networks are respectively
denoted as VGG-DCT Y, VGG-DCT RFA Y, LC-RFA Y and LC-RFA-Thinner Y. The
obtained results (see Table 3.5) lead to the following remarks: the accuracy slightly decreases
while the networks’ speed increases. The smallest decrease is for the LC-RFA Y architecture

67

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

150 200 250 300 350 400 450 500 550 600
FPS

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Ac
cu

ra
cy VGG

ResNet50

VGG-DCT*

VGG-DCT RFA*

VGG-DCT RFA Y*

VGG-DCT Deconvolution*

VGG-DCT Y*

LC-RFA

LC-RFA-Y*
LC-RFA-Thinner

LC-RFA-Thinner Y*

Deconvolution-RFA

RGB Networks
VGG based DCT networks
Resnet based DCT networks

Figure 3.11 – Accuracy vs FPS for the classification networks. The starred networks are the ones
modified by us.

with 3.1% drop in accuracy, while the biggest is for the VGG-DCT RFA Y network with
a decrease of 8.0%. This seems to be consistent with the fact that ResNet50 classifier is
more accurate than the VGG. The speed improvements, ranging from 6 to 34 FPS, are due
to the reduction in computation entailed by the sole use of the Y input. While FPS gain
may be negligible when comparing with the drop in accuracy, the reduced bandwidth due
to the usage of the sole Y component makes such architecture attractive in case of limited
computation resources.

Synthesis Overall the ResNet50 based architectures seem more robust to the use of DCT
inputs, with accuracy performances similar to the RGB networks. However, this results in
a reduced speed up. Where the VGG-based architectures are twice faster than the original
RGB one, the ResNet50-based ones merely reach a 1.2 speed increase. This is likely due to
the hard pruning carried on the VGG-based networks. As could be expected, such pruning
leads to a trade off between speed and accuracy. Regarding the Y only networks, they incur a
small loss in accuracy (about 1-3 points drop in accuracy) and slightly increase the detection
speed (when compared with their YCbCr counterparts). Although such trade off might seem
undesirable, the main advantage of the Y only networks lies in the fact that they require less
bandwidth (about a third) for image transfer. This might suggest that images are overloaded
with information as in the best case, 1/3 of the compressed image data can be dropped while
only lowering the network accuracy by 3.1%.

3.3.3 Detection

We train the detection networks using the previous classification networks for weights ini-
tialization. For fairness of comparison, we also retrain the RGB networks with our trained
RGB classification networks. The results for the PASCAL VOC evaluation are reported in
Table 3.6, the MS-COCO results are reported in Table 3.7 and the ones for Actemium’s

68

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

dataset in Table 3.9. We evaluate the speed of inference on the networks trained on the
07+12 PASCAL VOC dataset. Accuracy vs Speed is detailed in Figure 3.12 and the speed
results are shown in Table 3.8. We start by detailing the results for the Pascal VOC and MS-
COCO datasets and extend the discussion towards Actemium’s dataset. Finally, we discuss
the impact of the number of frequency components on the detection results.

Comparison of the two RGB backbones Except when training on the Pascal VOC
2007, we manage to reproduce the detection results for the SSD300 architecture (see Table 3.6).
Regarding the ResNet50-based architecture, it performs worse than original SSD300 on the
Pascal VOC (65.0 and 74.0 vs. 61.3 and 73.1) dataset but performs better on the MS-COCO
dataset (24.5 vs. 26.8, c.f Table 3.7). These results seem to indicate that the ResNet50-based
architecture has a better convergence when provided with enough training data. For both
networks, FPS are mostly similar.

Network mAP (07) mAP (07+12) FPS
SotA:
SSD300 Liu et al. [2016] 68.0 74.3 N/A
Our trainings (VGG-based):
SSD300 65.0 74.0 102
SSD300 DCT 48.9 60.0 262
SSD300 DCT Y 50.7 59.8 278
SSD300 DCT RFA 52.4 61.7 283
SSD300 DCT RFA Y 54.5 63.0 281
SSD300 DCT Deconvolution 38.4 53.5 282
Our trainings (ResNet50-based):
SSD300-Resnet50 61.3 73.1 108
SSD300 DCT LC-RFA 61.7 70.7 110
SSD300 DCT LC-RFA Y 62.1 71.0 109
SSD300 DCT LC-RFA-Thinner 58.5 67.5 176
SSD300 DCT LC-RFA-Thinner Y 60.6 70.2 174
SSD300 DCT Deconvolution-RFA 54.7 68.8 104

Table 3.6 – Detection results on the PASCAL VOC 2007 test set, 07 is for trained on 2007 data and
07+12 means trained on 2007+2012 data. The last two panels report the performances of our trained
networks. In bold are the best results of our trainings.

Training with YCbCr DCT inputs We now detail all the results for the architectures
using the full compressed inputs, namely SSD300 DCT, SSD300 DCT RFA, SSD300 DCT
LC-RFA and SSD300 DCT LC-RFA-Thinner. For SSD300 DCT, on the Pascal VOC 07+12
dataset (Table 3.6) we reach 60.0 mAP, 14.0 points behind the RGB method (18.9% decrease
in accuracy). The RFA version of the network performs a bit better at 61.7 mAP, 12.7
points behind the RGB method (16.6% decrease in accuracy). On the MS-COCO dataset
(Table 3.7), both methods lose respectively 10.2 and 9.5 points when compared with the RGB
method that represent a 41.6%/38.8% decrease. As could be expected, the hard pruning of
the network is a limitation factor on more complex dataset such as MS-COCO.

Regarding the ResNet50-based methods, SSD300 DCT LC-RFA and SSD300 DCT LC-
RFA-Thinner outperform the VGG-based network by a large margin on the two datasets (see
Figure 3.12 for a visual representation on the Pascal VOC dataset). They even outperform the
original SSD on MS-COCO dataset (24.5 vs. respectively 25.8 and 25.4). While this might
be expected as the used classification backbones provide similar accuracy performances, the
gap is wider for detection. When comparing the SSD300 DCT LC-RFA with the SSD300
DCT LC-RFA-Thinner, we see that the second approach falls 3 points behind the first one

69

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

on the Pascal VOC (Table 3.6) datasets and has about the same accuracy on MS-COCO
(Table 3.7). The main advantage of the SSD300 DCT LC-RFA-Thinner is the number of
FPS it can process, ×1.63 more images than the SSD300 DCT LC-RFA while maintaining
an equivalent accuracy.

Network Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, #Dets: Avg. Recall, Area:
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

SSD300 Liu et al. [2016] 23.2 41.2 23.4 5.3 23.2 39.6 22.5 33.2 35.3 9.6 37.6 56.5

V
G
G

SSD300 (our training) 24.5 42.4 25.2 7.8 25.3 38.0 23.0 34.0 35.7 12.3 38.1 54.4
SSD300 DCT 14.3 27.0 13.7 2.1 12.1 26.2 15.8 22.4 23.4 3.4 21.1 42.5
SSD300 DCT Y 14.4 27.0 14.0 2.1 12.0 26.5 15.8 22.2 23.3 3.5 20.8 42.3
SSD300 DCT RFA 15.0 28.1 14.6 1.9 12.9 28.1 16.3 23.0 24.0 3.1 22.2 44.1
SSD300 DCT RFA Y 15.4 28.5 15.0 2.4 13.3 28.0 16.5 23.5 24.6 4.1 22.7 43.9
SSD300 DCT Deconvolution 13.5 26.0 12.6 2.5 11.3 23.8 15.3 21.9 23.1 4.5 21.1 39.6

R
es
N
et
50

SSD300 Resnet50 26.8 43.8 28.3 6.2 28.2 45.2 24.6 35.6 37.1 10.0 40.4 60.0
SSD300 DCT LC-RFA 25.8 42.4 27.1 5.1 27.0 44.4 23.9 34.2 35.6 8.0 38.8 59.0
SSD300 DCT LC-RFA-Y 25.2 41.6 26.5 5.2 25.7 43.7 23.6 33.7 35.0 8.1 37.4 58.2
SSD300 DCT LC-RFA-Thinner 25.4 41.8 26.9 4.7 26.3 44.6 23.7 33.8 35.1 7.2 38.0 59.4
SSD300 DCT LC-RFA-Thinner-Y 24.6 40.6 25.8 4.7 24.8 43.4 23.1 32.8 34.1 7.2 36.3 57.6
SSD300 DCT Deconvolution-RFA 25.9 42.5 27.2 5.4 26.7 44.4 24.0 34.5 36.0 8.5 39.0 59.4

Table 3.7 – Detection results on MS-COCO test-dev set. For the precision per area, S, M and L
respectively stand for Small, Medium and Large (size of the boxes). For the average recall per number
of detections, 1, 10 and 100 indicate that the average recall was computed respectively given 1, 10 or
100 detection(s) per image. In bold are the best results of our trainings.

Influence of the Deconvolution on detection performance While the deconvolution
networks tend to perform better for classification, we can see more mitigated results for
detection. For the networks trained on the Pascal 2007 data only, we see in Table 3.6 that
they have a mAP of 38.4 for the VGG-based network and 54.7 for the ResNet50-based one.
They are respectively 12.3 points and 7.4 points lower than the mAP of the best performing
DCT networks at equivalent speed (same backbone type, i.e VGG or ResNet). While the gap
is reduced for the network trained on the 07+12 data, they still lag behind. However for the
MS-COCO dataset, we can see in Table 3.7 that the SSD300 Deconvolution-RFA is the best
performing of all the DCT-based architectures. Moreover, when looking at results by size
of area (Small, Medium or Large), we can see that both of the deconvolution architectures
improve the accuracy for small objects. Overall, it seems that when provided with enough
data, the network reaches accuracy level equivalent to the non-deconvolution networks.

The SSD300 DCT Deconvolution is the fastest of all the detectors with a speed of 282 FPS
but with the worst overall accuracy. The SSD300 Deconvolution-RFA has a speed equivalent
to the RGB networks while not performing better than the SSD300 Resnet50.

Evaluation of the detection networks using only the Y input On the Pascal VOC
dataset (Table 3.6), we get similar mAP in comparison with the networks using the full
YCbCr input. The reverse holds true for the MS-COCO dataset (Table 3.7), where perform-
ances using only the Y input tend to be lower than their full input counter-parts (1 point
below). Yet, it appears that the Cb and Cr components are not critical to correctly detect
objects within images. Such result seems to be in adequation with the JPEG compression
norm, which aggressively sub-samples the chroma components as they contain less critical
information for our eye. Moreover, networks for detection using only the Y component have
equivalent or higher speed than the networks using the YCbCr inputs (c.f Figure 3.12) and
require less bandwidth. The SSD300 DCT LC-RFA-Thinner Y network is ×1.70 faster (with
2 instances, ×1.15 when using only one instance of the network) than the original SSD while
being only 3.8 point less accurate on the Pascal VOC dataset and more accurate on the MS-
COCO dataset. The SSD300 DCT Y/DCT RFA Y are even faster with a ×2.72/×2.75 speed
improvement (with 2 instances, ×1.59/×1.64 when using only one instance, c.f Table 3.8)

70

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

0 50 100 150 200 250 300 350
FPS

50

55

60

65

70

75

80

85

m
AP

SSD300

SSD DCT*
SSD DCT RFA*

SSD DCT RFA Y*

SSD DCT-Deconv*

SSD DCT Y*

SSD300-Resnet50*
SSD LC-RFA*

SSD LC-RFA-Y*

SSD LC-RFA-Thinner*
SSD LC-RFA-Thinner Y*

SSD Deconv-RFA*

RGB Networks
VGG based DCT networks
Resnet based DCT networks

Figure 3.12 – mAP vs FPS for the detection networks on Pascal VOC dataset. Networks with a star
at the end of their names are the ones modified by us.

but at the cost of 14.2/11.0 points drop in the mAP for the Pascal VOC dataset and 10.1/9.1
points for MS-COCO dataset.

On the speed of the networks The FPS ratio the networks can process are computed
either with one instance or with two instances of the model on one GPU (results are reported
in Table 3.8). While this may seem anecdotal, we see that most the DCT networks scale
effortlessly when using 2 instances. This indicates that these architectures do not use all the
computation resources available when only one network is instantiated on the GPU. However,
it also indicates they can be deployed on less powerful GPUs while not incurring a loss in
FPS. This is not true for the RGB-based networks, which almost use all the computation
capabilities of the GPU with only one model instantiated and thus would face important loss
in FPS if deployed on GPUs half as powerful. This means that the presented architectures
using the compressed inputs are good matches for usage in limited resources environment or
on small remote computation devices. By combining our approach with other methods, such
as MobileNets [Howard et al., 2017, Sandler et al., 2018, Howard et al., 2019] or TinySSD
[Wong et al., 2018], we expect to even better fit such conditions.

Extension towards vehicle detection in tunnels Table 3.9 gathers observed perform-
ances on Actemium dataset. Compared to Pascal VOC and MS-COCO, for the VGG-based
architectures, the drop in mAP metrics is slight for the proposed detection model (about
5 points). This could be explained by the small number of object classes to be identified,
hence allowing the SDD network to learn relevant feature maps. However, we can notice that
the loss is not equally divided among the classes. The motorcycle class seems to suffer the
most, with a drop of up to 16.7 points, while the cars lose in average about 3 points. Such
decrease in accuracy can probably be attributed to class imbalance as the motorcycle class is
largely under-represented. Still, this difference in precision between the classes could hinder
the deployment of the VGG-based architecture as motorcycles are more likely to be missed
while also more likely to stop on hard shoulders (to wait for the rain to stop for instance).

Regarding the ResNet50-based architectures, the results are even closer to the RGB
baseline with a limited drop in accuracy. Surprisingly, the LC-RFA architectures even score 1
point higher that the RGB architecture, with the highest accuracy for the LC-RFA Y version
at 86.8 mAP. However, they provide with a similar level of FPS when compared with the RGB

71

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

Network FPS (1 inst.) FPS (2 inst.)

V
G
G

SSD300 88 102
SSD300 DCT 136 262
SSD300 DCT Y 140 278
SSD300 DCT RFA 143 283
SSD300 DCT RFA Y 144 281
SSD300 DCT Deconvolution 144 282

R
es
N
et
50

SSD300-Resnet50 88 108
SSD300 DCT LC-RFA 87 110
SSD300 DCT LC-RFA Y 91 109
SSD300 DCT LC-RFA-Thinner 98 176
SSD300 DCT LC-RFA-Thinner Y 101 174
SSD300 DCT Deconvolution-RFA 87 104

Table 3.8 – Speed inference of the tested detection networks. The tests were performed on a GTX
1080, "1 inst." means that only one instance of the model was loaded on the GPU for testing, "2 inst."
means that two instances of the model were loaded on the GPU.

network (108 vs. 110 and 109). Finally, it is worth noting that the LC-RFA-Thinner Y ar-
chitecture, has a loss of mAP lower than 1 point, while improving detection speed by a factor
1.7. Such impressive results make LC-RFA-Thinner Y an extremely interesting candidate to
deploy in place of the RGB architectures.

Network mAP mAP (car) mAP (truck) mAP (motorcycle) FPS
SSD300 85.6 93.0 80.9 83.0 102
SSD300 DCT 81.6 90.0 77.8 76.9 262
SSD300 DCT Y 80.2 90.4 78.5 71.7 278
SSD300 DCT RFA 78.6 90.6 78.9 66.3 283
SSD300 DCT RFA Y 84.2 92.6 81.7 78.2 281
SSD300 DCT Deconvolution 80.5 89.0 76.9 75.6 282
SSD300 Resnet50 85.4 93.8 78.8 80.9 108
SSD300 LC-RFA 86.3 93.0 83.1 83.0 110
SSD300 LC-RFA Y 86.8 91.9 81.7 86.9 109
SSD300 LC-RFA-Thinner 83.8 92.8 84.2 74.2 176
SSD300 LC-RFA-Thinner Y 84.9 93.0 81.1 80.5 174
SSD300 Deconvolution-RFA 84.0 92.4 82.2 77.4 104

Table 3.9 – Detection results for the training of the SSD on Actemium dataset.

Impact of the different DCT coefficients Finally, we experiment on the importance of
the various DCT coefficients within the compressed input data. In particular, we are inter-
ested in the high frequency components, as they are supposed to contain minimal information
due to the JPEG compression algorithm. To test their importance, we re-run the evaluation
on the three detection datasets and only keep the X coefficients of lowest frequency (first
X coefficients in the zig-zag pattern, c.f Figure 1.7) and set the others to 0. We do so with
X ∈ {64, 32, 16, 8} and report the results in Table 3.10.

We see that, when half of the coefficients are set to 0, the mAP only drops by 1 to 3
points on all the datasets (except for the SSD300 DCT LC-RFA-Thinner which loses 4.4
points). Surprisingly, for some of the architectures, on the Actemium dataset, the accuracy
even rises when we remove the 32 highest coefficients. The SSD300 DCT, SSD300 DCT Y
and SSD300 DCT LC-RFA-Thinner Y go from respectively 81.6, 80.2 and 84.9 to 81.9, 81.7
and 84.9. Such results tend to empirically confirm that the information is indeed conveyed
by the lowest DCT coefficients generated by the JPEG compression. However, when more

72

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

(a) 64 coefficients kept (b) 32 coefficients kept (c) 16 coefficients kept (d) 8 coefficients kept

Figure 3.13 – Detection results (SSD DCT) in Actemium dataset depending on the number of DCT
coefficients kept. As can be seen, even when only 8 coefficients are kept, the network still outputs
correct detections. For clarity purposes, detection are displayed on the full resolution RGB images.

coefficients are removed, the accuracy drops more significantly on each dataset, with a loss of
approximately 30% to 40% when 16 coefficients are kept and a complete breakdown when only
8 coefficients remain. Still, with only 8 coefficients, the SSD300 DCT architecture reaches an
impressive 44.8 mAP on Actemium dataset. An example detection with the whole range of
coefficients is shown in Figure 3.13 for Actemium dataset and more examples can be found
in the appendices Figure B.2. Overall, these results show that, depending on the dataset, a
large part of the DCT coefficients may be dropped without incurring a decrease in accuracy.

Pascal VOC MS-COCO Actemium
64 32 16 8 64 32 16 8 64 32 16 8

VGG-based Networks:
SSD300 DCT 60.0 58.1 45.1 13.4 14.4 13.5 9.6 2.1 81.6 81.9 74.8 44.8
SSD300 DCT Y 59.8 57.5 42.0 9.7 14.3 13.4 8.8 1.4 80.2 81.7 69.7 34.1
SSD300 DCT RFA 61.7 60.1 47.4 13.1 15.2 14.3 10.2 2.1 78.6 77.0 69.9 38.2
SSD300 DCT RFA Y 63.0 61.0 45.3 8.5 15.3 14.3 9.4 1.2 84.2 83.7 69.6 32.1
SSD300 DCT Deconvolution 53.5 51.6 37.1 17.2 13.5 12.9 9.1 2.6 80.5 80.1 69.4 43.6
ResNet50-based Networks:
SSD300 DCT LC-RFA 70.7 68.4 51.1 5.5 25.7 23.7 15.4 0.8 86.3 84.4 67.6 23.4
SSD300 DCT LC-RFA Y 71.0 68.4 46.4 3.4 25.0 22.8 13.7 0.7 86.8 84.1 63.0 22.7
SSD300 DCT LC-RFA-Thinner 67.5 63.1 44.5 4.8 25.2 23.4 15.5 1.5 83.8 81.9 65.8 22.3
SSD300 DCT LC-RFA-Thinner Y 70.2 67.9 48.4 4.1 24.6 22.5 13.3 0.8 84.9 85.0 65.5 22.7
SSD300 DCT Deconvolution-RFA 68.8 67.6 53.1 12.0 25.7 24.4 16.7 1.3 84.0 80.5 68.9 40.8

Table 3.10 – Detection results on the three dataset depending on the number of DCT coefficients kept.
In grey are the results with all coefficients. Note that due to submission limitations on the online
MS-COCO evaluation server, the evaluation was done on the validation set rather than test set.

3.4 Conclusion

Object detection in the RGB domain has been largely studied over the years and many deep
neural architectures have been proposed. However, such networks are usually not fitted for
real-time large scale applications, as they require consequent amounts of computation and
bandwidth resources. To circumvent this problem, we have investigated object detection in
JPEG compressed images. One of the main difficulties of such task is related to the change
of input domain, from a spatial domain, to frequency one. As one-shot deep detectors rely
on densely predicted bounding boxes, we tackle this problem by leveraging the position of
DCT blocks in the input to provide the network with spatial information.

We have devised several deep architectures based on the SSD [Liu et al., 2016] detection
network framework. The architectures we explore differ in the classification backbones they
rely on. Experimental evaluations evidence that they are not all equal for detection perform-
ances. In particular, the VGG-based architectures do not perform well on the MS-COCO

73

CHAPTER 3. OBJECT DETECTION IN COMPRESSED JPEG IMAGES

dataset, while the ResNet50-based architecture almost match the accuracy of the RGB net-
work (performance drop of 5.3%) with a speed gain up to ×1.7 when using compressed input.
However, these results do not hold true when we test the architecture on Actemium’s dataset.
On this dataset, ResNet50-based DCT architectures improve the accuracy when compared
with the RGB counterpart. Moreover VGG-based networks only lose about 5 points in mAP
going from 85 to 80 while still maintaining a prediction speed more than twice as fast as the
RGB network. On top of these results, we also empirically demonstrate that using only the
Y input leads to detection performances similar to those of networks using the YCbCr input.
The benefit is the reduced bandwidth for image transfer. Finally, we study the impact of the
number of frequency coefficients on detection accuracy and demonstrate that, depending on
the complexity of the dataset, nearly half of them are not required to maintain the quality
of the detections. These findings are promising and may prove useful for the deployment of
large real-time monitoring applications.

Although we have demonstrated the possibility to use JPEG compressed image for object
detection, many questions are still to be explored. In particular, the transferability from
one compressed type of input to another remains a challenge. For instance, the MPEG4-
part10 compression relies on DCT blocks that can have a size of 4 by 4 pixels. If and how
a network trained on JPEG images can be adapted to such inputs is an open question.
Futhermore, while the JPEG compression is based on the DCT, others rely on different
transforms. In particular, the JPEG 2000 compression is based on wavelet transforms. It
would be interesting to see to which extent such input could be used for object detection.

74

Chapter 4

Object Counting in MPEG4 part-2
Compressed Videos

“ Be yourself ; everyone else is
already taken. ”

Oscar Wilde

Contents
4.1 Estimation of flow parameters . 77

4.1.1 Tracking-based estimation . 78
4.1.2 Estimation from video stream parameters 79
4.1.3 Datasets in the wild: traffic videos 80
4.1.4 Summary . 81

4.2 End-to-end learning in the MPEG4 part-2 compressed video do-
main for flow rate estimation . 82

4.2.1 Problem statement . 82
4.2.2 Regression Approaches . 83
4.2.3 Temporal classification approach . 85
4.2.4 A synthetic dataset: Moving Digits 86
4.2.5 Experiments . 87
4.2.6 Synthesis . 93

4.3 Domain Adaptation . 94
4.3.1 DeepJDOT . 95
4.3.2 Experiments . 96

4.4 Conclusion . 98

75

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

This chapter and the following one focus on the estimation of traffic flow parameters from
MPEG4 part-2 compressed video streams. In particular, we address the task of estimating
the flow rate (number of passing objects over a given duration) of vehicles moving on a fixed
background.

Traffic flow theory is part of the larger field of Intelligent Transport System (ITS). It was
introduced by Wardrop [1952] and aims at providing with a mathematical support for the
optimization of transportation systems (for instance the minimization of the average commute
time in a city). It is used from conception of the road infrastructure (maximum flow of roads,
conception of intersections, etc.), to the management of built systems (changes in the road
lights cycles depending on the hour of the day, display of secondary itineraries, etc.). To
its core, traffic flow theory relies on a few base parameters (flow rate, density, velocity,
etc.) that are used to produce an overview of the road traffic [Immers and Logghe, 2002].
Currently, these traffic parameters are estimated using induction loops. Induction loops are
electromagnetic sensors installed beneath the road that activate when a vehicle passes. Such
tools allow for a microscopic (per vehicle) analysis of the flow of vehicles and therefore, for a
fine-grained analysis of the traffic flow in real-time. However, as they are recessed in the road,
they are expensive to deploy and maintain: for each installation/maintenance operation, one
needs to dig-in the road to access them. Because of these costs, induction loops are deployed
at strategic areas on the road network, leaving road sections without direct flow analysis.

Figure 4.1 – Visualization of a frame of a video stream alongside its compressed representation.
From left to right are the original RGB frame, the residual image and the Motion Vector (MV)
representation. We see that only the moving vehicles generate data to be compressed. Note that
motion vectors point in the opposite direction of the vehicles flow as they refer to previous frames.

While induction loops are scarcely deployed, cameras are intensively used for safety reas-
ons: operators need to see the road in case of incidents (accidents, congestions, etc.). There-
fore, the exploitation of the cameras for the estimation of traffic flow parameters would prove
beneficial, allowing to cover a larger portion of roads while limiting deployment costs. With
this in mind, many have tried to leverage the recorded RGB videos to provide with real-time
traffic flow estimation. The first proposed approaches [Cho and Rice [2006], Schoepflin and
Dailey [2007], Bernaś [2012], etc.] mainly rely on handcrafted features and complex pro-
cessings. Often, such methods are not fit for large scale deployment as they usually need
to be calibrated for each camera. More recently, due to the NVIDIA AI CITY challenge
[Naphade et al., 2017], deep learning based methods have emerged [Kumar et al. [2018], Liu
et al. [2020b], Bergmann et al. [2019], etc.]. However, as the challenge requires a microscopic
(per vehicle) flow parameters estimation, all the proposed solutions rely on a tracking model

76

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

followed by a handcrafted pipeline. Furthermore, as these solutions rely on deep detectors,
they are bounded in efficiency by their detectors’ FPS rate (c.f Table 3.1). Hence, these
methods are also not suitable for large scale deployment, as they would require a per camera
calibration as well as massive computation resources, to run in real-time (in our use-case, 2000
cameras recording at 25 FPS). Moreover, the compressed data representation is completely
overlooked, leaving aside potential speed up and reduction in bandwidth and computation
requirements.

Traffic cameras, and more generally surveillance cameras, have the particularity that
they record a fixed background, with only the objects of interest moving on screen. As
video compression algorithms usually only encode differences between images, the compressed
representation is interesting for flow prediction as it extracts the moving objects per design
(c.f Figure 4.1 for an example on tunnel images). Therefore, many [Yu et al. [2002a, 2006],
Li et al. [2004], etc.] have tried to leverage the compressed video data for the estimation of
various flow parameters. Still, these methods heavily rely on handcrafted features, limiting
de facto the possibilities of large scale deployment.

In such industrial context there are customary difficulties to provide with methods that
generalize well to unseen data. Indeed, labelled data are often scarce due to time, resource
and accessibility constraints. Moreover, even in case of available representative datasets,
environment shifts may happen over time. For instance, a percentage of the cameras may be
upgraded each year, leading to a change in input distribution or format. Therefore, developed
solutions usually need to be adapted both to unseen data, when deployed, and, gradually,
over time. Such problem may be addressed through domain adaptation [Li et al., 2021] and,
as shown in chapter 5, is one of the issues faced when applying traffic flow estimation models
on real data.

In this chapter, we propose a new method for the estimation of the flow rate q of objects
moving on fixed background from MPEG4 part-2 compressed videos. Especially, we get rid
of the pre-defined handcrafted procedures and we introduce a method that allows to learn
the target task in an end-to-end fashion. We first carry a fine analysis on simulation data,
such set-up allowing us to control and analyse the influence of the various cameras (according
to their angle, distance to road, etc.) that can operate in real conditions (the application
to Actemium’s tunnel videos is developed in chapter 5). Finally, we study the possibility to
adapt learnt deep models to unseen data and demonstrate the advantages and limitations of
such adaptation.

The remainder of the chapter is divided as follows: first we review the existing meth-
ods and datasets available for the estimation of traffic flow parameters (section 4.1). Then
we present our new method to count objects from compressed MPEG4 part-2 streams and
analyze the obtained results (section 4.2). Finally, we experiment and discuss on model
adaptation (section 4.3).

4.1 Estimation of flow parameters

Available methods can be divided into two main sub-groups: tracking-based (explicit) and
feature-based (implicit). The tracking-based estimation follows a general pipeline that con-
sists in detecting all the objects of interest in the stream, creating tracks from these detections,
and finally, estimating the parameters from the tracks using a projection from the 2D frame
space to the 3D road space. While efficient, this method has two main pitfalls. It highly
depends on the detector quality, which, for deep learning-based detectors, translates into a
need to manually annotate large sets of data, and, it requires to use heuristics and strong
priors to compute the projections.

Contrary to the tracking-based methods, the feature-based approaches extract a set of
salient features from the videos and use them to implicitly estimate the flow parameters.
Unlike tracking-based methods, multiple approaches relying on handcrafted features leverage

77

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

the compressed representation of the video data (Yu et al. [2002a, 2006], etc.). Still, due to
a blatant lack of data, such methods do not translate to deep learning and also heavily rely
on heuristics.

Hereafter we detail the tracking-based methods and the feature-based ones1. Then, we
present the existing datasets.

4.1.1 Tracking-based estimation

Tracking-based traffic flow estimation can be divided into two sub-groups: non deep learning
and deep learning methods. While the former has, for many years, represented a vast majority
of the proposed solutions, recently, the latter started to bloom mainly thanks to the yearly
NVIDIA CITY challenge [Naphade et al., 2017, 2018, 2019, 2020]. Still, both methods rely
on a similar pipeline of detection and tracking, the main difference being the upgrade of the
detector towards a deep learning-based solution for the most recent methods.

A large part of non deep learning methods are aimed towards the surveillance of roads
from Unmanned Aerial Vehicle (UAV) [Ke et al., 2017, 2019] or from high point of views
[Bernaś, 2012]. Such set-up has the main advantage to avoid occlusions thanks to the position
of the camera. For instance, Ke et al. [2017] carry vehicles counting through a multi-step
procedure. They identify points of interest using Shi-Tomasi features [Shi and Tomasi, 1994]
and use a Kanade-Lucas-Tomasi (KLT) feature tracker [Lucas and Kanade, 1981, Tomasi
and Kanade, 1991] to track these points of interest between frames. Then, they cluster the
points of interest based on their computed speed and direction so as to detect vehicles and
use the detections for counting. Ke et al. [2019] detect objects using Haar cascade and a
classification network, then a KLT tracker is used to generate the tracks in order to estimate
flow density and speed. Using Haar like features, Bernaś [2012] detects and tracks vehicles
from high view points by relying on a Lucas-Kanade (LK) tracker [Lucas and Kanade, 1981]
and uses the tracks to count objects. Moving away from vehicle flow estimation, few works
have also tackled the problem in the context of pedestrian surveillance. Lee et al. [2007] carry
foreground segmentation and use optical flow information to count the pedestrians crossing
a predefined line. And, using thermal images, Lahouli et al. [2018] extract Region of Interest
[RoI] through various processing steps and also use the optical flow to track pedestrians.

Figure 4.2 – Example of a typical processing pipeline. This peculiar example was taken from [Kumar
et al., 2018]. We can see the three main steps used to process the images before estimation: detection,
tracking and projection.

Recently, newer methods based on deep learning have emerged. However, due to the
scarcity of data, they are mostly related to the NVIDIA AI city challenge [Tran et al., 2018,
Tang et al., 2018, Shi et al., 2018, Kumar et al., 2018, Liu et al., 2020b, Bergmann et al.,

1Note that, while we aim for video processing, and, as such, focus on video-based articles, there are multiple
ways to predict traffic flow parameters (GPS data, partial loop detectors data, etc.). However, these methods
are out of the scope of the thesis.

78

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

2019, Yu et al., 2020b, Chang et al., 2020, Bui et al., 2020]. Most of these methods hinge on
closely related steps. As the challenge evaluation is based on the vehicles tracking, as well as
the microscopic velocity estimation, atypical approaches are implicitly discouraged. All the
methods apply the same global scheme of a deep detector followed by multi-object tracking,
2D to 3D projection and estimation (such as depicted in Figure 4.2). Mainly, the various
solutions change details in the processing pipeline. For instance, the detection network might
change: Faster R-CNN [Tran et al., 2018, Liu et al., 2020b, Bergmann et al., 2019], Mask
R-CNN [Kumar et al., 2018, Shi et al., 2018, Yu et al., 2020b, Chang et al., 2020], YOLOs
[Tang et al., 2018, Bui et al., 2020]. Or, the tracking algorithm used can variate: median
flow [Shi et al., 2018], hungarian matching [Chang et al., 2020], DeepSORT [Bui et al., 2020,
Liu et al., 2020b]. Or, the solution used for the projection-estimation can differ: areas from
landmarks [Tran et al., 2018], vanishing point estimation [Shi et al., 2018, Kumar et al., 2018],
intersections crossing [Liu et al., 2020b, Yu et al., 2020b, Chang et al., 2020]. Stepping away
from the AI City Challenge, Brkić et al. [2020] use a Faster R-CNN to detect vehicles from
an UAV and then estimate traffic flow parameters based on manually computed lane lengths.
[Li et al., 2021] tackle the problem of day to night adaptation by using a training pipeline
(for the detector) based on CycleGan [Zhu et al., 2017a]. They then rely on a KLT tracker
and salient road points to estimate the velocity of vehicles.

Finally, let mention that few research works have proposed to detect objects using com-
pressed videos. For instance, Tusch et al. [2012] extract and cluster groups of MVs to compute
handcrafted features that are then provided to a gaussian radial basis function network to
classify the level of service (free flow, congested, etc.). Also leveraging MVs to carry object
detection, Kas et al. [2009] adds RGB information to avoid mixing up multiple vehicles which
can then be tracked and counted.

4.1.2 Estimation from video stream parameters

Apart from the detect and track framework, another trend of methods directly extracts
features to predict the traffic flow parameters. These methods can be divided into two
groups: RGB-based and compressed-representation-based.

Part of the RGB-based methods lies on the usage of intensity profiles to determine the
speed of vehicles [Cho and Rice, 2006, Schoepflin and Dailey, 2007]. The main idea is to
segment road lanes with the presence or absence of vehicles and to compute the shift between
two segmentations at consecutive time steps. Knowing the ratio number of pixel/road dis-
tance, one can then estimate the mean speed of vehicles. Other RGB-based methods tackle
density estimation and vehicle counting. For instance, Sun et al. [2019] extract various salient
features such as edges or textures to predict density through regression. Zhang et al. [2017]
jointly address the tasks of vehicles counting and density estimation. Their approach based
on a learnt Fully Convolutional Network (FCN) is solely tested on images rather than videos.
Relying on the computation of a mean background image, Zhou et al. [2021] extract changes
in new frames and then estimate the traffic flow from the ratio of foreground over background
pixels.

Although RGB-based methods are efficient, they do not leverage the flow information
encoded in videos due to the compression algorithms. In particular, the MV frames and the
residual images, that respectively encompass flow and texture information, can be used. For
instance, Yu et al. [2002a] and Yu et al. [2006] extract the MVs from the video flux and filter
them based on their intensity and the texture information of the DCT coefficients. Then,
they project them from the 2D frame space into the 3D road space to estimate the speed and
density of vehicles on the road, based on the number and intensity of the MVs. Also using both
MVs and residual information, Li et al. [2004], handcraft a multi-dimensional feature vector
(based on multiple variables such as MVs mean, std, etc.) which is fed to Gaussian Mixture
Hidden Markov Models to estimate the traffic state (stopped, empty, etc.). Ignoring part
of the compressed information, other methods solely rely on the MVs to estimate the traffic

79

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

Figure 4.3 – Example of typical processing pipeline in the compressed domain. This peculiar example
is taken from [Wang et al., 2019]. Images are preprocessed using multiple handcrafted modules,
features are extracted and then the flow parameters are estimated.

flow parameters. For instance, Fu et al. [2009] use the MVs for calibration of the camera
(detection of the area to process in the frame) and to estimate the mean velocity. Wang
et al. [2019] extract various salient features (area, perimeter, shape of MVs blobs, histogram
of MVs, etc.) using a complex pipeline (c.f Figure 4.3), and then estimate the number of
vehicles on the road by a regression model. Finally, using both RGB and motion vectors
information, Mbonye and Ferrie [2006] leverage the MVs to correctly position a controllable
camera and then, estimate the traffic flow parameters in the RGB domain.

4.1.3 Datasets in the wild: traffic videos

Let us now review the existing traffic videos that can be used for our concern. We focus on
datasets with a fixed background and therefore, exclude all videos that were recorded from
moving objects, such as cars.

WebCamT, introduced by Zhang et al. [2017] contains about 60, 000 frames, recorded at a
low unknown frame rate. Each frame is annotated with the following information: bounding
boxes, vehicles type, vehicles orientation, vehicle density and weather. The dataset is divided
into training and testing sets, with 45,850 and 14,150 frames, respectively. Although the
dataset might seem satisfactory, the recording frame rate is to low to make it possible to
estimate flow parameter (c.f Figure 4.4 illustrating two consecutive frames).

(a) Frame n◦1 (b) Frame n◦2

Figure 4.4 – Two consecutive frames on the WebCamT dataset. Comparing the timestamps on top of
the frames, we can see that they are 24 seconds apart. Therefore, the frame rate is too low to produce
any usable video.

The highD dataset [Krajewski et al., 2018] is made of aerial views of german highways.
The dataset has recordings of 6 different locations for a total of 16.5 hours. Recordings were
done from drones flying over the highways. Although simplistic, due to the fixed top position
for the recording, this dataset is one of the few very interesting for traffic flow parameters
estimation. However, we were not granted access to it.

80

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

The AI CITY Challenge is a yearly challenge proposed by NVIDIA [Naphade et al., 2017,
2018, 2019, 2020]. Multiple tracks are available and are all related to traffic analysis. The
2020 tracks were: vehicle counts by class at multiple intersections, city-scale multi-camera
vehicle re-identification, city-scale multi-camera vehicle tracking, traffic anomaly detection.
Although seemingly fitted for the estimation of traffic flow parameters, the provided data does
not contain any useful labels. The only labels available are the Regions Of Interest (RoIs)
and the Movements Of Interest (MOI). Data used during the challenge was annotated by the
participant and not shared. Therefore this dataset is also of limited use for the estimation of
traffic flow parameters.

Suburban Traffic on GRaphs using CamEra NETworkS (STREETS) was introduced by
Snyder and Do [2019]. It regroups images that are the closest to Actemium’s operation
conditions (surveillance cameras with limited number of vehicle flows). However, data was
recorded at a frame rate of one frame per ten minutes. While 4 millions images over a period
of 2.5 months across 100 distinct cameras were collected, the data cannot be used for video
traffic flow estimation.

Finally, the UA-DETRAC Benchmark Wen et al. [2020] consists of sequences of images of
road traffic at 24 different locations, with 8250 manually annotated vehicles. The sequences
can be converted to videos, however, the total number of obtained datapoints after conversion
would be of 300. Such number is too low for proper usage of deep learning. Furthermore the
flows of vehicles are quite complex with urban crossings, greatly complicating the task when
compared with highways or tunnels.

4.1.4 Summary

Due to its many applications, the estimation of traffic flow parameter has been largely studied
over the years. Methods for estimation can be roughly divided into two main groups: detector-
based and feature-based.

In their early years, detector-based methods relied on handcrafted feature to detect
vehicles. The detected objects were then used to generate tracks, that were, in turn, used
to estimate traffic flow parameters. More recently, mainly thanks to the yearly NVIDIA AI
CITY Challenge [Naphade et al., 2017, 2018, 2019, 2020], detectors were replaced with newer
deep learning methods. However, due to the design of the challenge itself, the proposed solu-
tions still rely on a complex detection-tracking-estimation pipeline. As such methods require
careful calibration, they are not suited for large scale deployments. Furthermore, the detect-
ors used (Faster R-CNN, Mask R-CNN, YOLOv3) are not best suited for real time analysis
due to their FPS level (c.f Table 3.1). Finally, as it is common for deep learning-based meth-
ods, the proposed solutions completely overlook the available compressed representation of
the data and focus on the usage of the RGB representation.

Taking another approach, some avoided the detection-tracking-estimation pipeline by
directly estimating the traffic flow parameters from carefully handcrafted features. Usually,
such methods focus on a macroscopic estimation of the traffic flow parameters as the lack of
detection step prevents from a per vehicle analysis. Part of the proposed methods are only
based on RGB inputs and optical flow. However, as the video compression algorithms encode
flow and texture information, others improved this formulation by leveraging the compressed
data representation. While astute in their usage of available information, these methods also
rely on handcrafted pipelines and are therefore not suited for large scale deployments.

Overall, the existing literature does not provide with methods that can be trained in an
end-to-end fashion. Such gap in the existing solutions can be related to the lack of datasets fit
for such task. Indeed most of the proposed datasets are either too small, too difficult to obtain
or simply not suited for video processing. This fact is, most likely, due to the difficulties to
annotate videos with flow information when induction loop data is not available.

As such, we aim to solve both problems by proposing an end-to-end method for the
estimation of moving objects’ flow rate on a fixed background using compressed data rep-

81

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

resentation. And, because data are not available, we propose to work on two datasets, a
generated one (detailed in this chapter) and one obtained from real tunnel data through the
coupling of videos and induction loops information (detailed in chapter 5).

4.2 End-to-end learning in the MPEG4 part-2 compressed
video domain for flow rate estimation

We now detail the proposed method to estimate flow rate from compressed video streams.
We aim to provide with a generic deep learning-based method that can correctly estimate the
flow rate q from any camera and can scale up seamlessly. In particular, we focus on the usage
of compressed MPEG4 part-2 video stream as Actemium’s data is compressed in this format.
We devise two main approaches: first we propose deep networks that estimate q through
regression, then, we demonstrate how the problem of counting vehicles can be transformed
into a classification problem, using a sequence alignment strategy. Moreover, as training data
is scarce we evaluate the proposed methods on a toy dataset coined as: Moving Digits. This
dataset, coarsely simulating traffic flow, allows to control the size of the objects, as well as
the angle and the number of object flows. Its main purpose is to allow to thoroughly evaluate
the proposed methods to assess their strengths and weaknesses.

The rest of the section is divided as follows: we first detail the problem, we then present
our new method for traffic flow parameters estimation, after which we introduce the Moving
Digits dataset and, finally, we detail experimental results.

4.2.1 Problem statement

In Paris’s tunnels, about 2,000 cameras record the flows of vehicles. The long term goal is
to use these video streams to produce a real-time analysis of the traffic flow parameters, so
as to get rid of the costly counting induction loop sensors. In particular, we focus on the
estimation of the flow rate q which is defined as the number of vehicles ∆N that have crossed
a given road section during time interval ∆T (from 20 seconds up to 5 minutes in practice).

When compared with induction loop sensors, video analysis is a much more complex task
subject to numerous degrees of freedom. Indeed, where induction loops are simple on/off
sensors, video analysis suffers from camera orientation changes and illumination due to vehicle
lights. Moreover, where one induction loop is used per lane, often a camera records multiple
lanes and is therefore subject to occlusions. Also, there is the coarseness of the annotations.
Usually, only one flow rate value is associated to a given set of frames (for instance a 20
seconds long video with an associated single flow rate value q). Such lack of annotation
renders difficult the learning of a prediction model based on the microscopic identification of
vehicles. Furthermore, the reduced scale of labelled video streams prevent from covering all
these variability issues so as to evaluate the generalization abilities of proposed solutions.

Let us start by formally defining our flow rate estimation problem. We abstract from
the vehicle counting to a more general object related formulation. Let S be a set of training
examples drawn from a distribution DX×Y . The input space X ∈ (RH×W×C)∗ is the set of
all possible sequences (a sequence is denoted by the ∗ symbol) of video frames (compressed
or not) of height H, width W and with C channels. The output space Y ∈ R+ is the set
of flow rate values q (we consider the average value in case of multiple object flows) to be
predicted. Each example in S consists of a pair (x, y). In general, the sequence x is of length
L (in seconds), over which the value q is computed, in our case, L = 500. We also define
l ∈ [1, L] as the frame index of a given input sequence. As y refers to the passing objects over
the L frames, we make the assumption that each sequence is statistically independent from
the others. Then, the aim is to build a regression model h such that:

y = h(xL, . . . , xl, . . . , x1) + ε = h(x) + ε, (4.1)

82

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

XXXX XXX XXXX XXX XXXX XXX XXXX XXX

Figure 4.5 – Illustration of the problem formulation. Given sequences of L frames, we aim to predict
the related flow rate y. Note that we suppose that subsequent sequences are independent. Such
assumption is debatable as following sequences are likely to have similarly distributed flow rates.

where ε is the measurement error. The overall problem formulation is illustrated in Figure 4.5.
Hereafter, we will design h as a deep network trainable in end-to-end manner. It is important
to note that h must not require high computation and bandwidth resources as we aim to
produce a highly scalable solution.

4.2.2 Regression Approaches

Equation 4.1 addresses the counting problem by analyzing each frame within the targeted
time interval. Naively using the plain RGB videos will lead to cumbersome deep networks,
not suited to large scale deployments. Indeed, processing RGB input frames requires to
stack convolution layers to extract meaningful information from each frame. Hence, this may
induce high memory and computation footprints.

Rather, we seek to leverage the compressed video streams in order to benefit from a more
compact representation as input. The MPEG4 part-2 norm is based on a multi-step pipeline
that uses Motion Vector (MV) frames and Residual frames to compress videos. MV frames
contain a coarse representation of the flow of pixels between frames. They compress the
information by providing the motion information for blocks of pixels (16×16 for the MPEG4
part-2 compression) rather than pixels alone. Thus, using MV frames instead of RGB frames
allows to reduce the dimensionality of the input by a factor 256. Residual frames contain the
difference between frames. Although they are sparse due to the removal of the background,
residual frames are identical to RGB frames, both in shape and type of data (textures). As
such, Residual frames, if used in replacement of RGB frames, would not solve the deployment
issue. Therefore, we choose to base our proposed networks solely on sequences of MV frames.

We now devise models that can process MV frames to predict the associated q values. Such
processing requires to jointly analyse spatial (frame) and temporal (sequence) information.
Various layers can apply: 2D convolutions for spatial processing, ConvLSTM for temporal
processing or 3D convolutions for spatio-temporal processing. Therefore, we devise three
models that exploit different types of deep learning layers and are summarized in Figure 4.6:

1. DeepMotionCLF (short for DeepMotionConvLstmFrame): the input sequence is pro-
cessed frame per frame through 2D convolutions for spatial information processing and
a ConvLSTM layer to capture the temporal dependencies.

83

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

2. DeepMotionCLS (short for DeepMotionConvLstmSecond): in this network, inputs are
grouped by seconds, each second is processed using 3D convolutions and the resulting
representation is analysed using a ConvLSTM layer.

3. DeepMotion3D: in this architecture, the input is considered as a whole 3D signal and
processed only using stacked 3D convolutions.

ConvLSTM

ConvLSTM

3D Conv

Es
tim

at
io

n
Es

tim
at

io
n

Es
tim

at
io

n

CLF

CLS

3D

2D
Conv

3D
Conv

Figure 4.6 – The three proposed approaches for the estimation of the flow rate through regression.
On top is the DeepMotionCLF approach, middle is DeepMotionCLS and bottom is DeepMotion3D.

The first approach, DeepMotionCLF considers the problem in its most basic formulation.
At each time step, a frame representation is extracted, and then, each representation is
temporally processed. 2D convolutions are the most obvious tool for the spatial information
processing and RNNs for the temporal processing. More precisely, as we handle sequences
of images, we base our network on ConvLSTMs [Shi et al., 2015]. The overall pipeline is
shown in Figure 4.6, top panel. This approach may face shortcomings. In our case, the
network has to model a long temporal dependency, as the input sequence typically covers 20
seconds. It needs to memorize the passage of each object to take it into account for the total
count. Such task can prove difficult has demonstrated by Vecoven et al. [2020]. Moreover,
this architecture limits the parallelization capabilities on the GPU. Finally, we can question
the use of a per frame analysis of the data, given that an object takes more than a frame to
cross the counting section of the images.

In order to circumvent these problems, we propose to process the input data second
by second rather than frame by frame. By doing so, the ConvLSTM layer has to process
fewer time steps, consequently limiting the effect of both lack of parallelization and long-
term dependencies. For this approach we keep the ConvLSTM layer for temporal processing.
However, as the unit component is now formed of 25 consecutive frames, we replace the 2D
convolutions by 3D convolutions. This reduces the limitations on parallelization. We name
this architecture DeepMotionCLS. The approach is detailed in Figure 4.6, middle panel.

So far, the first two approaches have considered the input as a sequence. However, we
can see in DeepMotionCLS that the sequence size is partially reduced by grouping frames
per second. Such idea, when pushed to its limit, consists in considering the input sequence x
as a whole and processing the L frames altogether through stacked 3D convolutions. On the

84

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

one hand, such approach loses the capability to output a flow rate value at each time step
(whether it is a frame or a second), but, on the other hand, it maximizes the use of the GPU
by fully leveraging the parallelization capabilities. We name this approach DeepMotion3D.
It is detailed in Figure 4.6, bottom panel.

4.2.3 Temporal classification approach

The formulation Equation 4.1 considers the problem as a regression problem. This approach
is mainly dictated by the coarseness of the annotation, preventing the microscopic detection
of each object. However, this lack of intermediate labels can be tackled by considering the
problem as an original temporal classification problem rather than a regression. Let us
consider the simple case of flow rate prediction given, one flow of objects. If y = 8 objects
counted in the stream, we know that a series of 8 objects "oooooooo" have passed by, but we
do not know when. Considering a single object class (as the flow rate label does not allow to
distinguish between types of objects), the CTC loss can be used to learn both the detection
and the segmentation similarly to an induction loop (on/off). In this formulation, the output
y becomes a sequence y∗ of length L, such as yl ∈ {ō, o} is a binary label. The idea is to
represent the output in the same way as would an induction loop, yl = o if a object is over it,
yl = ō else. It is to be noted that such approach can be used on videos with multiple flows
of objects, by increasing the number of outputs to match the number of flows and using one
CTC loss per flow.

CLF

3D Conv 3D

ConvLSTM2D
Conv

Figure 4.7 – The two proposed approaches based on the CTC loss. It is to be noted that only the
prediction for one flow of objects is shown (in case of M flows, M outputs have to be considered). o
and ō stand for the presence/absence of objects.

Apart from the output, the processing is overall very similar to the one of the regres-
sion setting, and, as such, we devise two architectures based upon the previous ones (see
Figure 4.7):

1. DeepMotionCLF-CTC : Similarly to DeepMotionCLF, each frame is processed separ-
ately by a 2D convolution and then a ConvLSTM layer is applied for temporal pro-
cessing.

2. DeepMotion3D-CTC : in this architecture, only stacked 3D convolutions are used, then,
the output tensor is split along the time axis to provide with an output for the CTC
loss.

85

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

Remark that the DeepMotionCLS is not lifted to CTC version. This is due to the fact
that the CTC requires the output sequence to be twice as long as the number of objects to
be segmented. As the DeepMotionCLS processes the input sequence second by second, the
maximum number of objects to be found would be of 10, which is restrictive in practice.

The DeepMotionCLF-CTC processes the input sequence frame by frame, then, for each
frame, it outputs whether or not a new object appears. Using the CTC allows to get rid of the
long term dependency problem inherent to the DeepMotionCLF approach. As the network
only has to assess if an object has appeared, it only requires short term memory. However,
this architecture inherits the limitations in parallelization of DeepMotionCLF.

As the CTC breaks the long term dependencies in the case of flow rate estimation, using
an architecture only based on 3D convolutions is a promising lead. The convolutions can be
used to gather information spatially and temporally, while reducing the dimensionality of the
input data. This reduction, coupled with the high parallelization capabilities, allows for an
extremely fast prediction speed. We experiment such approach in the DeepMotion3D-CTC
architecture. Although unconventional in the sense that the CTC was originally designed
to be used with RNNs, we believe that this approach is very promising given this peculiar
problem.

4.2.4 A synthetic dataset: Moving Digits

To evaluate the proposed architectures for the estimation of the flow rate, we introduce a
new evaluation dataset: Moving Digits. The main goal is to provide with a framework to
test the behavior of the networks in various scenarios that will mimic real life conditions of
road tunnel recordings. In particular, we target the three following issues: change of camera
angle, change of object scale and change of number of lanes.

(a) Digits moving
from left to right

(b) Digits moving in
diagonal

(c) Digits with a dif-
ferent scale

(d) Two flows of digits
(left to right)

Figure 4.8 – Example of simulated frames by our generator. The frames are shown in chronological
order on each column. The first column represents digits moving from left to right. The second
column shows digits moving with a different orientation, from bottom right to top left. The third
column shows digits that are upscaled by a factor of two. The last column illustrates digits moving
on two separate flows.

86

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

The dataset we elaborate is based on MNIST [LeCun and Cortes, 2010]. It is composed
of randomly selected digits crossing a black screen in a given direction. We build a generator
so as to control the various target parameters during generation. The generator takes in a
configuration file and a number of videos to generate and outputs three sets: train, validation
and test. The configuration file contains the description for each flow of digits to appear on
screen:

• coordinates on the screen of the start and exit points,

• a scale factor,

• a speed value,

• the maximum number of digits in the stream,

• the generation frequency ratio.

The trajectory between the entry and the exit point is linear. The scale factor is unique for
a given flux but can change across flux (although in the experiments we keep it constant).
The speed value represents the number of frames the object will take to go from the entry
point to the exit one. Finally, the generation frequency ratio is the probability of an object
appearing at the start of the flux at each frame. Such generation being conditioned on the
defined maximum number of digits. Note that, we randomly apply dilation and erosion to
the digits throughout their displacement to add some noise and avoid too simplistic dataset.
Example of generated frames are shown in Figure 4.8.

We generate multiple datasets to test the three degrees of freedom. For the change of
camera orientation, we generate datasets with one flux of digit that always cross the center of
the video frames. We consider the following angle values {0, 45, 90, 135, 180, 225, 270, 315},
w.r.t the abscissa 0° being a horizontal flux from left to right. Flows ending in the top of
the frames (45°, 90°, 135°) can be considered to mimic tunnel cameras looking at the rear of
vehicles ("going"), the flows ending at the bottom (225°, 270°, 315°) mimic cameras looking
at the front of vehicles ("coming") and the remaining orientations (0°, 180°) are in-between
position neither "coming" nor "going". Examples for 0° and 135° are respectively given in
Figure 4.8a and Figure 4.8b. For scale, we generate three datasets with an angle of 0° and
the scale ratio varying in {1, 2, 4}. Example frames for an upscale of ×2 are provided in
Figure 4.8c. Finally, we experiment with two flows (resp. above and below x-axis) for the
angle fixed at 0° and a scale at 1 (see Figure 4.8d). For all those setups, we set the update
ratio to 0.01, the maximum number of digits to 20 and the speed to 120 frames. Videos are
20 seconds long, at a frame rate of 25 FPS and 200x200 pixels in width and height. For
each explored parameter, we simulate three sets (train, validation and test) with respectively
10,000, 2,000 and 5,000 videos.

4.2.5 Experiments

Experiments are conducted to assess the quality of the proposed architectures, as well as the
influence of the angle, scale and number of flow on the accuracy of the flow rate prediction.
We use the generated Moving Digit dataset for training and evaluation. As this works is
aimed towards a setting where available data is scarce and not available for all the camera
configurations (end application is Actemium’s tunnel dataset), we mainly study the gener-
alization capabilities of the networks. The results are evaluated on the generated datasets
described above. We use the Mean Absolute Error (MAE) to measure the accuracy of the
networks. In case of multiple flows of objects, the results per flow are averaged. In the rest of
the chapter, we call source domain, the dataset setting used to train the networks and target
domain the ones the networks are tested upon.

87

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

Implementation details The networks are trained on a single GPU. We use the Mean
Squared Error (MSE) as training loss so as to reduce large prediction errors. Given that we
do not know how changes in the recorded videos can affect the MV frames, we do not apply
data-augmentation. We use an Adam optimizer [Kingma and Ba, 2015] and set the batch size
to 32 and do not apply weight decay. Within each setting, the networks are trained once (the
procedure is not repeated), so as to demonstrate the ease of training of each architecture.

The proposed architectures based on regression (DeepMotionCLF, DeepMotionCLS, Deep-
Motion3D) are detailed in Table 4.1 (c.f Figure 4.6 for illustration). As the MV frames do
not contain texture information, we do not use as many convolution filters as we would with
classical RGB frames. For the DeepMotionCLF architecture, we use two 2D convolutions
with stride 2 so as to reduce the spatial dimension of the input data, then, we apply a Con-
vLSTM layer and finally use two consecutive dense layers. Similarly, for the DeepMotionCLS
network, we use two 3D convolutions, with stride 2, we further add an average pooling layer to
compact the information on the time axis, then, we also apply the ConvLSTM layer followed
by dense layers. Finally, for the DeepMotion3D architecture, we use two 3D convolutions
followed by an average pooling layer and directly use two dense layers for prediction.

DeepMotionCLF DeepMotionCLS DeepMotion3D
Layers Output Size Layers Output Size Layers Output Size

input layer 500× 13× 13× 2 input layer 20× 25× 13× 13× 2 input layer 500× 13× 13× 2
[3× 3, 32 (s2)] 500× 6× 6× 32 [3× 3× 3, 64 (s2)] 20× 12× 6× 6× 64 [3× 3× 3, 64 (s2)] 249× 6× 6× 64
[3× 3, 32 (s2)] 500× 2× 2× 32 [3× 3× 3, 64 (s2)] 20× 5× 2× 2× 64 [3× 3× 3, 64 (s2)] 124× 2× 2× 64
CL-[2× 2, 32] 1× 1× 1× 32 AvgPool-[5× 1× 1] 20× 1× 2× 2× 64 AvgPool-[2× 2× 2] 62× 1× 1× 64

- CL-[2× 2, 64] 1× 1× 1× 1× 64 Reshape 1× 1× 1× 3986
FC-64 1× 1× 1× 64 FC-64 1× 1× 1× 1× 64 FC-64 1× 1× 1× 64
FC-1 prediction FC-1 prediction FC-1 prediction

Table 4.1 – Proposed regression networks. DeepMotionCLF process the inputs frame per frame,
DeepMotionCLS second per second and DeepMotion3D ignores the sequential aspect of the data. For
the ConvLSTM-based networks, only the last time step is returned.

As for the two CTC-based architectures (DeepMotionCLF-CTC, DeepMotion3D-CTC),
we detail them in Table 4.2 (c.f Figure 4.7 for illustration). Both the DeepMotionCLF-
CTC and DeepMotion3D-CTC use the exact same processing pipeline as their non CTC
counterpart (DeepMotionCLF and DeepMotion3D). However, the ending dense layers are
applied at each time step output rather than at only the last one and they are duplicated
so as to match the number of flows to be predicted on the videos. Note that such network
only allows prediction on videos with similar number of flows. Indeed, in case of dissimilar
number of flows, if more flows are to be predicted, outputs will be missing and, if fewer flows
are to be predicted, there is no way to know which outputs will be used by the network.

Finally, we evaluate the number of FPS that can be processed for each of the networks.
We use a NVIDIA GTX 1080, set the batch size to 8 and run 1000 predictions. As the
proposed architectures are extremely fast due to their reduced size when compared with
classical RGB-based networks, we preload the datapoints into memory to avoid the data
input bottleneck. The final FPS value is the average over the total number of predictions.

Baselines We start by experimenting the estimation of q from the compress MV frames
by evaluating the quality of the methods when the training and the testing sets have similar
constraints. We run one training for each target orientation, scale and number of flow and
report the results in Table 4.3. Regarding the regression networks, they almost always provide
with accurate predictions. Only the DeepMotionCLF architecture seems to be a bit more
unstable, with 3 performances above 1 in MAE. Conversely, the CTC-based networks have
much more difficulties finding a satisfactory minimum, with 8 values of MAE above 2.8. In
such cases, the trained networks either output a constant value of 0 or largely underestimate

88

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

DeepMotionCLF-CTC DeepMotion3D-CTC
Layers Output Size Layers Output Size

input layer 500× 13× 13× 2 input layer 500× 13× 13× 2
[3× 3, 32 (s2)] 500× 6× 6× 32 [3× 3, 32 (s2)] 249× 6× 6× 32
[3× 3, 32 (s2)] 500× 2× 2× 32 [3× 3, 32 (s2)] 124× 2× 2× 32
CL-[2× 2, 32] 500× 1× 1× 32 AvgPool-[2× 2× 2] 62× 1× 1× 32

[FC-64]× nflow 500× 1× 1× 64 [FC-64]× nflow 62× 1× 1× 64

[FC-2]× nflow prediction [FC-2]× nflow prediction

Table 4.2 – Proposed CTC-based networks. The dense layer at the end of each network is applied
once per time step. One prediction is output per flow, with one unique dense layer per flow.

the number of objects, hinting towards networks stuck in bad local minima. However, it is
important to note that, for the DeepMotion3D-CTC network, when the training manages to
find a proper optimum, it provides with the smallest prediction error.

Orientation Scales Number of flows
0° 45° 90° 135° 180° 225° 270° 315° ×1 ×2 ×4 1 flow 2 flows

Regression based:
DeepMotionCLF 0.13 0.17 0.24 0.18 1.47 0.18 0.17 0.19 0.13 0.19 1.42 0.13 1.03
DeepMotionCLS 0.10 0.19 0.22 0.21 0.22 0.19 0.10 0.15 0.10 0.17 0.28 0.10 0.13
DeepMotion3D 0.19 0.20 0.25 0.19 0.23 0.20 0.19 0.16 0.19 0.25 0.37 0.19 0.17
CTC based:
DeepMotionCLF-CTC 0.24 0.21 3.40 3.32 0.16 0.33 3.28 3.37 0.24 0.25 3.37 0.24 0.26
DeepMotion3D-CTC 0.04 0.14 0.06 0.08 2.89 3.40 0.02 3.37 0.04 0.05 0.17 0.04 0.08

Table 4.3 – q value prediction when training and testing on generated datasets with similar settings.
Higher errors are highlighted using a more vivid orange and the best accuracy for each column is in
bold.

Effects of the direction of the flows We detail the impact of the change of flow ori-
entation (respectively the first and second column of Figure 4.8). The proposed networks
are trained on each orientation (from 0° to 315°) and, for each training, evaluated on the
remaining orientations. In Table 4.4 we report the results when training on the orientation
0°. Table 4.5 provides with results for the training on each orientation of the architecture
DeepMotion3D. The full results for each network on each orientation are available in the
appendices, Table C.1.

Source Target
0° 45° 90° 135° 180° 225° 270° 315°

Regression based:
DeepMotionCLF 0.13 3.14 3.66 1.45 0.68 2.44 3.21 1.91
DeepMotionCLS 0.10 3.08 2.62 2.26 1.14 2.92 2.61 2.72
DeepMotion3D 0.19 2.49 2.55 2.74 0.45 2.11 2.40 2.29
CTC based:
DeepMotionCLF-CTC 0.24 4.35 2.03 1.74 1.02 4.33 2.69 1.46
DeepMotion3D-CTC 0.04 4.37 4.38 4.30 0.87 4.39 4.26 4.36

Table 4.4 – q prediction results when training with angle 0 and testing on flows with angle >0°. Higher
errors are highlighted using a more vivid orange. Overall the networks show poor generalization
capabilities except for the opposite flow (180°). Furthermore, no method (with or without CTC)
seems to outperform the others.

89

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

Overall, results from Table 4.4 show that none of the proposed architectures properly
generalize when the camera angle are changed (which is a desirable property as data is
scarce in practice). However, in the case of inputs with opposite angles (such as 0°/180°),
the networks seem to generalize better (the MAE ranges from 0.45 to 1.14) than for the
other angles. Furthermore, as shown in Figure 4.9, even with an MAE of 1.14, the network
predictions are correctly aligned with the real outputs. However Table 4.5 suggests that
opposite orientation does not always provide with accurate results. Moreover, if the network
generalizes well from one orientation to another, the reverse does not hold. For instance, when
trained on the source orientation 0°, DeepMotion3D correctly predicts on the orientation
180° (MAE of 0.45). In the way around (180° to 0°), the achieved MAE is only of 2.16 (see
Table 4.5).

Figure 4.9 – Predicted q vs. real q values when training the network DeepMotionCLS on the flow
orientation 0° and testing on the flow orientation 180°. The red line represents the function of equation
y = x. Although the MAE precision is of 1.14, the network still provides with a correlation of 0.94
between the target and estimated values.

Target Angle
0° 45° 90° 135° 180° 225° 270° 315°

So
ur
ce

A
ng

le

0 0.19 2.49 2.55 2.74 0.45* 2.11 2.40 2.29
45 2.26 0.20 1.86 1.13* 0.99 1.47 2.28 2.91
90 1.70* 1.68* 0.25 2.01 1.34 2.13 0.76* 2.41
135 2.95 2.97 2.84 0.19 0.79 2.09 2.75 1.99
180 2.16 2.60 2.27 2.22 0.23 1.95 2.21 2.64
225 2.53 2.22 2.31 1.87 0.93 0.20 2.07 2.84
270 2.42 2.61 0.53* 2.20 2.16 2.35 0.19 1.88*
315 2.21 3.38 2.15 2.75 1.33 1.09* 1.21 0.16

Table 4.5 – Results for the training of the DeepMotion3D architecture on each of the available ori-
entations. Best results are shown in bold and second best in italic with a star. Higher errors are
highlighted using a more vivid orange. As can be expected, the network performs best when tested
on the same angle as at training stage.

We then aim to test the networks in case they are provided with data from all tested
orientations but one to see how this helps the networks to better generalize. Hence, we train
each of the networks in that setting and report the accuracy on the left-out camera’s angle

90

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

in Table 4.6. The results led us to the following remarks. The DeepMotionCLF-CTC is hard
to train with poor accuracy results. Overall, the CTC based networks yield higher errors.
However, such result may be caused by the fact that the CTC networks only predict integer
results. As such, for the CTC-based networks, each error is at least of order of 1, when
regression networks may have smaller errors. For the other networks, we observe that they
always generalize well to the unseen orientation. Such results strongly hint towards the fact
that, if a large enough pool of videos is provided, the proposed regression-based architectures
should be able to well generalize to videos from unseen cameras.

Source Target (All but one)
Avg 0° 45° 90° 135° 180° 225° 270° 315°

Regression based:
DeepMotionCLF 0.14± 0.04 0.86 0.67 0.34 0.47 0.59 0.36 0.36 0.91
DeepMotionCLS 0.16± 0.04 0.55 0.59 0.72 0.55 0.92 0.44 0.90 0.63
DeepMotion3D 0.18± 0.03 1.04 1.15 0.33 0.84 0.40 0.66 0.37 0.87
CTC based:
DeepMotionCLF-CTC 1.92± 1.37 1.60 3.38 3.80 3.32 3.39 2.32 3.26 0.39
DeepMotion3D-CTC 0.48± 0.95 0.79 0.93 1.04 1.06 0.82 0.74 0.96 2.90

Table 4.6 – Prediction error when training on all orientations but one. Each target column is the one
left out and tested upon. Source results are the average for all the source orientations. Best results
according to each target angle are marked in bold font. Higher errors are highlighted using a more
vivid orange.

Impact of the scaling factor We now aim to study the impact of objects’ scale on
the quality of the predictions. By this, we intend to evaluate the influence of the camera
location according to the objects to be monitored (close to or far from the camera). To do
so, we generate three datasets with a fixed angle (0°) and varying scale (×1, ×2 and ×4).
The proposed networks are then trained on each dataset (corresponding to one scale) and
evaluated on the two remaining ones. Results are reported in Table 4.7

Source Target Source Target Source Target
×1 ×2 ×4 ×2 ×1 ×4 ×4 ×1 ×2

Regression based:
DeepMotionCLF 0.13 0.99 1.63 0.19 0.97 1.96 1.42 1.53 1.52
DeepMotionCLS 0.10 1.26 1.54 0.17 0.51 0.61 0.28 2.10 1.89
DeepMotion3D 0.19 0.88 0.62 0.25 0.73 0.93 0.37 1.85 1.88
CTC based:
DeepMotionCLF-CTC 0.24 1.35 2.76 0.25 0.33 1.42 3.37 3.42 3.41
DeepMotion3D-CTC 0.04 1.85 2.26 0.05 0.20 1.82 0.17 0.75 0.68

Table 4.7 – Prediction results when training at multiple scale. Higher errors are highlighted using a
more vivid orange. First panel is when training at scale ×1 and predicting at ×2 and ×4, second
panel is training at scale ×2 and last at scale ×4.

Interestingly enough, CTC-based networks seem to achieve better performances. Espe-
cially, when trained on data of a given scale, they can correctly estimate the flow rate at
smaller scales. However, we note that the DeepMotionCLF-CTC yields the worst results
on the source data at scale ×4. Finally, regarding the regression-based network, no clear
pattern emerges as to whether an architecture can generalize well to smaller or bigger objects
in the videos. However, it is worth noticing that the predictions are usually highly correlated
(> 0.8) with the real outputs, but with the flow rate values being under or over estimated.
For instance, this is illustrated in Figure 4.10 of the plot when training the architecture
DeepMotionCLS on scale ×4 and predicting on scale ×1.

91

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

Figure 4.10 – Predicted q vs. real q , for the DeepMotionCLS architecture trained on the ×4 scale
and used for prediction on the ×1 scale. While correlation between q and real q is high (0.91), the
network grossly under-estimate the flow rate value

.

Impact of the number of flows We use two datasets, with constant scale and orientation
(×1 and 0°), and generate data for respectively 1 and 2 flows. Obtained results are reported
in Table 4.8.

(a) Two flows test dataset. (b) One flow test dataset.

Figure 4.11 – Predicted q vs. real q for DeepMotionCLF architecture for estimating the flow rate of
two flows of digits. In both plots, the network fails to correctly correlate the predictions and real
values. Expected output is shown in Figure 4.9.

First, by design the CTC based architectures cannot generalize to data with more/less
flows than the one they were trained on. Indeed, as the number of flows is pre-set for the
CTC models, they cannot predict on data with a different number of flows. Regarding the
regression-based networks, we can see that none of them manages to correctly generalize
to data with a different number of flows. Furthermore in the case of the DeepMotionCLF,
according to Figure 4.11b, we see that while the MAE is somewhat low (1.03) when training
on two flows, the network fails to correctly count the number of objects within the video
streams. Such results support the previous conclusion that the DeepMotionCLF architecture
is hard to train. These difficulties in training are likely to be explained by the challenging
number of frames (L = 500). As the number of time steps increases, the network needs to

92

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

learn longer time dependencies.

Source Target Source Target
1 flow 2 flows 2 flows 1 flow

Regression based:
DeepMotionCLF 0.13 3.97 1.03 1.46
DeepMotionCLS 0.10 3.51 0.13 4.09
DeepMotion3D 0.19 1.91 0.17 1.82
CTC based:
DeepMotionCLF-CTC 0.24 - 0.26 -
DeepMotion3D-CTC 0.04 - 0.08 -

Table 4.8 – Prediction results when training with different number of flows. The CTC-based networks
are not tested on the target sets as they do not allow it by design. Higher errors are highlighted using
a more vivid orange.

Speed and memory comparison Finally, we study the speed and memory footprint of
each of the proposed architectures. Their evaluations at that regard are reported in Table 4.9.
As could be expected, the frame-based networks (DeepMotionCLF and DeepMotionCLF-
CTC) use the most memory space on the GPU and are the slowest due to the sequential
processing of each frame using a ConvLSTM layer, therefore preventing the parallelization
of the networks. Still, these networks are able to process about 40 Datapoints Per Second
(DPS) or about 20,000 FPS. Given Table 3.1, even these "worst" architectures are order of
magnitude faster (×67.6 when considering a detection network with a FPS rate of 300) than
any detection networks. Then, in increasing speed order, the DeepMotionCLS architecture
(also based on ConvLSTM) is the slowest at approximately 580 DPS, the DeepMotion3D-
CTC network comes second at 1,215 DPS and finally, the DeepMotion3D architecture is
the fastest at 1,619 DPS or 809,567 FPS. Such results were to be expected as the DeepMo-
tion3D-based architectures only use 3D convolutions and therefore can easily leverage the
parallelization capabilities of the GPU. Furthermore, it is important to notice that the non
frame-based architectures (DeepMotionCLS, DeepMotion3D, DeepMotion3D-CTC) use less
than 500 Mebibyte (MiB) on the GPU, showing great capacities for deployment in embedded
situations.

Network Accuracy GPU Memory (MiB) DataPoints/sec FPS
Regression based:
DeepMotionCLF 0.13 3,555 41 20,275
DeepMotionCLS 0.10 487 582 290,934
DeepMotion3D 0.19 487 1,619 809,567
CTC based:
DeepMotionCLF-CTC 0.24 3,565 40 19,808
DeepMotion3D-CTC 0.06 475 1,215 607,347

Table 4.9 – Speed comparison of the various architectures. Batch size is set to 8 for the inference.
MiB stands for Mebibyte (1 Mi equals 1,048,576 and one Mb equals 1,000,000). All of the prediction
networks provide with impressive processing speed.

4.2.6 Synthesis

All the proposed approaches can be used to correctly estimate traffic flow parameters. How-
ever, as expected from deep learning methods, the lack of data is a huge hindrance to the

93

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

generalization capabilities. More specifically, the networks do not manage to correctly gener-
alize in a consistent manner when the source dataset is too restrained. Still, when training the
networks with more data (orientation "all but one", experiment Table 4.6), they are able to
correctly generalize to unseen setups. Furthermore, experiments tend to indicate that data
with similar orientations are more easily generalized to. However, it is important to note
that frame-based network DeepMotionCLF-CTC is hard to train by comparison with the
other networks (c.f Table 4.6). Finally, both the CTC-based and non CTC-based approaches
provide with similar accuracy levels in each experimental settings, validating both methods.
Nonetheless, given that the CTC-based networks are a bit more unstable at training, the
regression-based models are more recommended for industrial deployments.

Regarding prediction speed, while the frame-based networks are the slowest, they still
provide with a significant advantage in FPS when compared to results on classical detection
networks (c.f Table 3.1). Even if we were to apply the detection method proposed chapter 3
(≈ 300 FPS), the slowest method presented here would be about 67 times faster. And, if we
were to compare with the fastest method (DeepMotion3D), we get to an impressive result
of more than 2,600 times faster while requiring very little memory. Given these results, the
DeepMotion3D architecture seems to be the more promising one as it is the fastest while
being on par with the other networks in terms of accuracy.

Overall, the results tend to indicate that using the compressed MV frames as input rather
than the RGB frames is beneficial. All the tested architectures manage to reach similar level
of accuracy while largely improving prediction speed when compared with RGB processing
(accuracy comparison between RGB-based and MV-based networks is provided in chapter 5).
Once presented with a correct solution to generalize to any unseen data in case of scare
training datasets, compressed input based networks will become very interesting tools for low
cost large scale deployment.

4.3 Domain Adaptation

In the previous section, we have seen that the proposed networks can learn to estimate the flow
rate of moving objects from the compressed motion vector representation. However, in case of
scarce data, the networks fail to generalize well. Such cases are bound to occur in industrial
environments. For instance, in the cases of Paris’ tunnels, due to technical constraints, it is
not possible to get labelled data covering all the camera orientations, number of flows, etc.
Therefore, we explore domain adaptation so as to adapt trained network to provide correct
prediction on unseen and unlabeled data.

We redefine our problem in the light of domain adaptation. Given a set Ss = {xsi , ysi } of
source domain cameras with labeled examples and a set St = {xti} of target domain cameras
without labels, we want to train a network on the source set Ss so as to output correct
predictions on the target set St. Let (xs, ys) ∼ ps(x, y) be the joint source distribution
and (xt, yt) ∼ pt(x, y), defined similarly, be the target distribution. The aim is to learn a
prediction function h(x) = f ◦ g(x), where g : X → Rd is a function that learns the feature
representation z (embedding) from the raw input x. Function f predicts the desired output
y based on z. Model h trained on Ss may not predict well on St, as in our application several
variations may occur across cameras. Indeed, the changes in camera orientation angle or
camera distance to the monitored objects likely induce changes in the statistical marginal
distribution psx(x) and ptx(x). Hence, so is for psz(g(xs)) and ptz(g(xt)). Also psy, the source
output distribution, may shift from the target one because of the flow rate or the number
of flows. Therefore, as psz 6= ptz and psy 6= pty, we seek to learn a function h based on the
source labeled set Ss and the unlabeled target one St able to predict approximately on St

by aligning the joint distributions. Specifically, we intend to match ps(zs, ys) with pt(zt, yt)
so as to adapt the distribution of learned source and target embeddings zs, zt and cope with
the shift in output distributions. To do so, we rely on DeepJDOT framework [Damodaran

94

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

et al., 2018].

4.3.1 DeepJDOT

DeepJDOT is a domain adaptation method that aims to estimate h by aligning the source
and target embedded representation of the data (resp. g(xs) and g(xt)) as well as their labels
through optimal transport. Let Π(µs, µt) be the space of joint probability distributions with
µs and µt respectively the source and target marginal distributions. Optimal transport
[Peyré and Cuturi, 2020] aims to find a joint probability γ ∈ Π(µs, µt) so as to minimize the
displacement cost:

OT (µs, µt) = inf
γ∈Π(µs,µt)

∫
R2
c(xs,xt)dγ(xs,xt) (4.2)

where c : X × X → R+ is the cost function giving the cost of moving xs towards xt. An
emblematic problem that optimal transports aim to solve is earth moving problem [Monge,
1781]. Given a pile of dirt, how to transport it so as to form a second pile of dirt shaped
differently while limiting the transportation cost (see Figure 4.12). Note that Equation 4.2

Target Distribution

So
ur

ce
 D

is
tri

bu
tio

n

Figure 4.12 – Representation of the earth moving problem as well as the solution (example taken from
POT library). The aim is to move the blue pile to match the red one. The blue matrix shows the
related transport map γ.

provides a discrepancy measure between distributions µs and µt. DeepJDOT uses optimal
transport to map the joint distributions ps(z, y) and pt(z, y), z being the embedding. More
specifically, given a network trained on the source domain the DeepJDOT algorithm works
as follows:

• embeddings are computed for a batch Bs = {(xsi , ysi)}
nB
i=1 of source data and a batch

Bt = {(xti)}
nB
i=1 of target data

• Using optimal transport, the coupling γ between the source and target embeddings is
computed

95

https://pythonot.github.io/auto_examples/plot_OT_1D.html

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

• The coupling is used to provide with proxy labels for samples of the target batch

• Finally, the network is trained on Bs and Bt so as to minimize the distance between
the coupled source and target embedding distributions, as well as the fitting error on
source domain data.

More formally, let h = f ◦ g, where g : x→ z is the embedding function and f : z→ y is the
prediction function, then the aim is to minimize the following objective:

min
γ∈Π(µs,µt),f,g

∑
i

∑
j

γijd(g(xsi), ysi ; g(xtj), h(xtj)) (4.3)

where d(g(xsi), ysi ; g(xtj), h(xtj)) = α‖g(xsi) − g(xtj)‖2 + λL(ysi , h(xtj)) is the generated cost.
Parameters α and λ control the trade of embedding distance/loss importance. As the effi-
ciency of the function h on the source domain is to be preserved, one rather aims at:

min
γ,f,g

1
ns

∑
i

L(ysi , h(xsi)) +
∑
i

∑
j

γijd(g(xsi), ysi ; g(xtj), h(xtj)). (4.4)

In our case, this means that we must design a network such that the embedding z rep-
resents information for the whole sequence of MV frames x (c.f Equation 4.1). For the
regression-based networks, we select the last vector of length 64 as embedding representa-
tion. For the CTC networks, there is no global representation as the optimization procedure
considers the output at each time step. Hence, we match each time step’s embedding of the
source sequences to a time step’s embedding in the target sequences globally. Such coupling
allows to minimize the discrepancy between embedding distributions, however, it does not
allow to apply the CTC loss to the target proxy outputs. Indeed, in its original formulation,
DeepJDOT optimizes the target output using proxy values. In the case of the CTC, the
loss needs the final output sequence (for instance "oooo" in case of 4 objects) to run the
optimization. However, as we match source and target embeddings globally (i.e disregarding
the sequences), each target sequence’s label after coupling can not be inferred. Therefore, in
case of the CTC, for the target domain, we use the source probability output as proxy for
each target output and apply the squared L2 distance (euclidean distance) as loss.

4.3.2 Experiments

Experiments are conducted to assess the ability of the domain adaptation to cope with
the variations on the cameras, namely the angle, scale and number of flows. We use the
same experimental setups as previously. However, to compute meaningful distance between
distributions in the DeepJDOT framework, we increase the batch size to 50. We keep all the
other parameters as proposed in the DeepJDOT article. We report the previously obtained
results and compare them with the ones we obtain after domain adaptation. It is important
to notice that due to GPU memory constraints, we were not able to carry domain adaptation
for the frame based networks, namely DeepMotionCLF and DeepMotionCLF-CTC.

Impact of the orientation of the flows We use as source the networks trained on
the camera with orientation angle of 0° and adapt to the other configurations. We report
the results in Table 4.10. Prediction error on the source domain after adaptation is the
average of each prediction error obtained on the source test set after adapting on each of the
target cameras. Overall, for the non CTC models, the adaptation works perfectly, does not
increase the error on the source domain and reduces it on the target domains. The results
for the CTC-based network are more mitigated. Although the adapted networks reduce the
prediction error for all the target sets, we can notice that the error is still high on some of
the target sets (for instance 1.67 at 225°). Such behavior can probably be explained by the
fact that, on the target domain, the CTC loss can not be applied due to the matching of each
time step separately through optimal transport.

96

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

Source Target
0 45 90 135 180 225 270 315

Regression based:
DeepMotionCLF - - - - - - - - - - - - - - -
DeepMotionCLS 0.10 0.10 3.08 0.55 2.62 0.61 2.26 0.56 1.14 0.56 2.92 0.47 2.61 0.47 2.72 0.45
DeepMotion3D 0.19 0.19 2.49 0.41 2.55 0.68 2.74 0.54 0.45 0.43 2.11 0.38 2.40 0.46 2.29 0.53
CTC based:
DeepMotionCLF-CTC - - - - - - - - - - - - - - -
DeepMotion3D-CTC 0.04 0.04 4.37 0.77 4.38 1.36 4.30 1.15 0.87 0.80 4.39 1.67 4.26 0.68 4.36 1.13

Table 4.10 – Results for domain adaptation from orientation of 0° towards all the other orientations.
Grayed cells denote the accuracy before the adaptation. A bold font indicates the best results. A
green cell shows the case where adaptation improved the accuracy.

Impact of the scaling factor We perform the adaptation from each available scale to the
remaining ones and report the results in Table 4.11. Overall we observe a similar behavior
as for the orientation of the flows. The non CTC methods perform best with impressive
improvements on the target domain while, at most, increasing the error on the source set by
0.01. Although improving the results, the adapted CTC method still presents a high level of
error, as before.

Source Target Source Target Source Target
×1 ×2 ×4 ×2 ×1 ×4 ×4 ×1 ×2

Regression based:
DeepMotionCLF - - - - - - - - - - - - - - - - - -
DeepMotionCLS 0.10 0.10 1.26 0.60 1.54 0.58 0.17 0.17 0.51 0.36 0.61 0.58 0.28 0.29 2.10 0.59 1.89 0.60
DeepMotion3D 0.19 0.19 0.88 0.55 0.62 0.54 0.25 0.24 0.73 0.42 0.93 0.59 0.37 0.36 1.85 0.66 1.88 0.70
CTC based:
DeepMotionCLF-CTC - - - - - - - - - - - - - - - - - -
DeepMotion3D-CTC 0.04 0.19 1.85 1.71 2.26 0.59 0.05 0.06 0.20 0.23 1.82 1.42 0.17 0.18 0.75 0.67 0.68 0.74

Table 4.11 – Domain adaptation results for varying scales. Grayed area are the accuracies before
adaptation. A green cell shows the case where adaptation improved the accuracy and a red cell where
it decreased the accuracy.

Source Target Source Target
1 flow 2 flows 2 flows 1 flow

Regression based:
DeepMotionCLF - - - - - - - -
DeepMotionCLS 0.10 0.09 3.51 0.96 0.13 0.13 4.09 0.61
DeepMotion3D 0.19 0.19 1.91 0.46 0.17 0.17 1.82 0.57
CTC based:
DeepMotionCLF-CTC - - - - - - - -
DeepMotion3D-CTC - - - - - - - -

Table 4.12 – Domain adaptation results when the number of flows is changing. Grayed area are the
accuracies before adaptation. The DeepMotion3D-CTC is not adapted as the CTC representation
does not allow it. A green cell shows the case where adaptation improved the accuracy and a red cell
where it decreased the accuracy.

Impact of the number of flows We study the adaptation from one flow to two flows
and reversely. As the CTC networks are by design not suited for such operation, the domain
adaptation is restricted to regression based architectures. The results are shown in Table 4.12.
Here again, the adaptation improves the prediction accuracy in all investigated settings.

Synthesis Overall, domain adaptation shows promising results. Whether it is for changes
of orientation, scale or number of flows, the accuracy almost always improves. And, when it
decreases, it only does so by a few hundredth. It is important to note that the DeepMotion3D-
CTC architecture suffers from the worse adapted results. This probably links to the fact

97

CHAPTER 4. OBJECT COUNTING IN MPEG4 PART-2 COMPRESSED VIDEOS

that the adaptation breaks the sequence assumption, preventing from using the CTC loss
on the target domain. Finally, few limitations are to be put forward. First, the frame-
based networks, DeepMotionCLF and DeepMotionCLF-CTC, could not be adapted due to
their size. As DeepJDOT requires large batches of source and target samples, it is hardly
applicable to networks that require large chunks of memory during training. Second, due
to the current design of the CTC-based networks, they cannot be adapted towards dataset
with changing number of flows. While these limitations do not jeopardize the adaptation as
a whole, they largely hinder the deployment of CTC-based architectures.

4.4 Conclusion
In this chapter, we have studied the estimation of object flow rate from MPEG4 part-2 com-
pressed videos. We propose to use the compressed MV frames to replace the cumbersome
RGB inputs and design several architectures to process them. In particular, we devise three
models based on regression (DeepMotionCLF, DeepMotionCLS and DeepMotion3D) and two
based on the CTC (DeepMotionCLF-CTC, DeepMotion3D-CTC). To test the proposed mod-
els, we introduce a simulation dataset: Moving Digit. Using this dataset, we have shown that
the proposed solutions generalize well to unseen settings, when provided with enough data.
However, our empirical findings reveal that this is not the case when training with limited
number of examples. We devise a solution based on domain adaptation, in particular DeepJ-
DOT. Using this framework, we show that it is possible to adapt trained networks to unseen
data. Overall, using the MV frames for flow rate estimation is a very promising solution as
all the proposed networks can be trained to reach an impressive accuracy on any of the tested
dataset.

Regarding the speed of the proposed models, we highlight a large improvement of the
frame processing speed over classical detectors. Moreover, the non frame-based architectures
(DeepMotionCLS, DeepMotion3D and DeepMotion3D-CTC) require little memory, hence,
perfectly fitting industrial constraints. If properly used, these methods can be of a huge
support for tunnel surveillance while limiting deployment costs. We discuss in the next
chapter application of the proposed methods to real data.

Although we provide models for flow rate estimation based on compressed data repres-
entation, we only exploit a fraction of the compressed information. For instance, we have
overlooked the usage of the residual information. As the moving objects are easily detected in
the residual matrices, it could be interesting to include such information to help the network
filter out noisy motion vectors. More specifically, as residual matrices are compressed in the
DCT domain similarly to JPEG images, and as a large part of the frequency coefficients can
be discarded without impeding detection accuracy in JPEG images (c.f previous chapter),
one could probably couple the MV frames with trimmed residual matrices to keep the com-
putation costs low. Finally, the newly presented CTC-based methods, while interesting, are
still faced with multiple issues. Adaptation, in the presented setting, does not allow to use the
CTC loss on the target outputs. Using other algorithms, such as the Dynamic Time Wrap-
ping (DTW), to match the whole sequence as one might be beneficial. Another challenge
faced by the CTC-based networks is the lack of flexibility regarding the number of outputs.
Recent work [Carion et al., 2020] have shown that transformers can be used for prediction
when the number of outputs varies. It would be interesting to see if this architecture can be
used to provide with more resilient CTC-based networks.

98

Chapter 5

Vehicle Counting: A Real Case
Application

“ The plural of the word
anecdote is not data. ”

Kenneth Kernaghan and P. K.
Kuruvilla

Contents
5.1 Traffic flow theory and dataset . 101

5.1.1 Definition of the usual flow measurements variables 101
5.1.2 Actemium’s Tunnel Video Dataset 103

Data collection and annotation . 103
Data analysis . 104

5.2 Flow rate estimation from compressed MPEG4 part-2 videos:
Application to Actemium’s tunnel dataset 107

5.2.1 Baseline: Detect and Track . 109
5.2.2 Estimation from the compressed MPEG4 part-2 representation . . . 110
5.2.3 Domain Adaptation towards unseen cameras 114

5.3 Discussion on Domain Adaptation and DeepJDOT 117
5.3.1 The limits of domain adaptation . 117
5.3.2 Prediction with oracle . 120
5.3.3 Synthesis and perspectives . 122

5.4 Conclusion . 123

99

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

In the previous chapter, we have presented deep architectures to estimate the flow rate of
moving objects on a fixed background using Motion Vector (MV) of compressed videos. The
proposed models are trainable in an end-to-end manner and amenable to domain adaptation.
However, we have only tested the proposed methods on generated data. In this chapter, we
are interested in their application to real-world data.

While the literature for traffic flow estimation is abundant, the related datasets are scarce.
A large part of works introduce their own data, and, to the best of our knowledge, no dataset
serves as reference. One of the most used for evaluation is the NVIDIA AI CITY challenge
dataset [Naphade et al., 2017, 2018, 2019, 2020]. However, this dataset is subject to strict
licensing that prevents anyone but the challenge participants to use it. This absence of
reference dataset is due to both annotation difficulty and the fact that traffic videos are
sensitive data. First, without access to induction loops, the annotation requires to detect
each vehicle, to track it throughout the video frames and to extrapolate the traffic flow
parameters from visual cues, such as lane marking. Given this process, annotating hours
of traffic videos reveals a daunting task. Second, as the recorded videos often come from
safety cameras, there is a requirement to both anonymize the vehicles and hide the locations
of the cameras. These combined difficulties greatly limit the public release of datasets and,
therefore, of new methods.

(a) Light saturation from
braking vehicles.

(b) Light saturation from
headlights.

(c) Truck occlusion
(front).

(d) Truck occlusion
(back).

Figure 5.1 – Examples of noise present in the videos recorded onsite. Apart from dirt on the cameras’
lens due to pollution, two main types of noise are present: illuminations (a and b) and occlusions (c
and d).

Although we have shown in chapter 4, on a synthetic dataset, that deep models using
MV frames as input can correctly estimate the flow rate, how such networks perform on
real data remains an open question. Indeed, real tunnel images we are interested in suffer
from various noises such as illuminations or occlusions (c.f Figure 5.1). In order to prove the
efficiency of those deep models in real-life conditions, we collected and annotated our own
dataset. Actemium has access to video recordings of road tunnels coupled with induction
loop readings. This greatly simplifies the annotation process. Moreover, as the recorded data
is of low visual quality, anonymization is made easier as the only information to be hidden is
the incrusted camera tag (see the black square at the bottom left of images in Figure 5.1).

We present Actemium dataset and show interesting properties related to traffic flow the-
ory. Then, we test our proposed method on this new dataset and demonstrate impressive
speed-up gains while maintaining and even improving the accuracy when compared with a
classical detection-tracking-estimation model. Relying on the methodological propositions
from chapter 4 we also study domain adaptation for cases where data are scarce. We show
limitations with the naive adaptation approach and explore a solution to improve estimation

100

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

accuracy on unseen cameras.
The remainder of the chapter is divided as follow. We start by introducing the basic

of traffic flow theory, the Actemium dataset and interestingly relate the two. We conduct
experiments on this new dataset, using the deep architectures (based on MV frames) presented
in chapter 4. Furthermore, so as to provide a comparison baseline, we also propose with a
RGB-based detection-tracking-estimation solution. Then, we develop on domain adaptation
and show that the naive approach on real data leads to unstable network accuracy. Finally,
we discuss on these limitations, relate them to discrepancies in the output distributions and
empirically validate our hypothesis using oracle information.

5.1 Traffic flow theory and dataset

Traffic surveillance cameras record roads subjected to the phenomenons described by traffic
flow theory. As such, it is likely that properties of traffic flow theory are to be tightly
intertwined with the recorded data properties. In this section, we introduce the core principle
of traffic flow theory, we detail the collected dataset and relate the two.

5.1.1 Definition of the usual flow measurements variables

The theory of traffic flow can be divided into two groups: microscopic and macroscopic
analysis. Where the former describes traffic flow by considering each vehicle separately, the
latter only considers the general state of the flow. As our end goal is to analyze traffic
from road videos, we are only interested in the mathematical formulations of the microscopic
approach1. In the real life setting, microscopic measurements are usually collected using
induction loops. Hence, one may compute and/or estimate the main flow parameters which
are: the flow rate q, the occupancy o, the velocity v2 and the density ρ.

Induction
loop

Figure 5.2 – Representation of the microscopic variables used to estimate the traffic flow parameters.

Let t0α and t1α be the time at which the front (resp. rear) of vehicle α crosses the induction
loop (vehicle counting sensor) and lα its length (c.f Figure 5.2). Then, the traffic flow q is
defined as:

q(x, t) = ∆N, (5.1)

1All the information detailed in this section, as well as the figures, were taken and adapted from Immers
and Logghe [2002].

2The velocity can only be computed with dual induction loops, as they allow to get a measurement of the
vehicle length. Otherwise, only an estimate is available.

101

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

where ∆N is the number of vehicles that have passed the cross-section at location x within
a time interval [t, t+ ∆t] (∆t usually varies between 20 seconds and 5 minutes depending on
the application). The occupancy o, which represents the average time during which a vehicle
was over the induction loop, is defined as:

o(x, t) = 1
∆t

α0+∆N−1∑
α=α0

(t1α − t0α). (5.2)

The average velocity is defined as:

v(x, t) = 1
1
m

∑α0+m−1
α=α0

1
vα

, (5.3)

where vα is the speed of vehicle α. It is to be noted that the harmonic mean is used rather
than the arithmetic mean as the speed is measured over a fixed distance rather than a fixed
period of time. In case of single loop detectors, vα can be estimated using an approximated
length l̄ for all vehicles:

vα = l̄

t0α − t1α
. (5.4)

Finally, while q, o and v can be directly measured from induction loops, the density can only
be estimated from the computed q and v as:

ρ = q

v
. (5.5)

Equation 5.5 is fundamental to traffic flow theory and leads to the diagrams presented in
Figure 5.3. In the diagrams, vf is the maximum velocity (or velocity at free flow), qc, vc
and ρc are respectively the flow rate, velocity and density at the road maximum capacity
and ρj is the density when the traffic is jammed. These diagrams are called the fundamental
diagrams of traffic flow theory. It is important to note, as we later show, that they correlate
interestingly with real data.

Figure 5.3 – Sketch of the fundamental diagrams of traffic flow theory. The diagram are road dependent
and therefore, the shape of the curve may change depending on its associated road.

102

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

5.1.2 Actemium’s Tunnel Video Dataset

Data collection for traffic flow estimation is a complex and daunting work. Leveraging ac-
temium’s access to both video recordings and induction loop readings, we annotate our own
dataset fitting the task at hand. Data annotation remains a complex challenge due to various
industrial limitations inducing approximations in the annotated data. Below, we introduce
an overall comprehension of our annotation challenges and related limitations and then detail
the collected data.

Data collection and annotation

We aim to create a dataset coupling video recordings and traffic flow information. Tunnel
videos are recorded and encoded using the MPEG4 part-2 compression format by onsite
coders. They are recorded at about 25 Frames Per Second (FPS) and the timestamp is
embedded within the frames. The traffic flow is recorded from induction loops and stored
by Automatic Data Recording (ADR) stations in log files at fixed intervals of 20 seconds.
Available data are the flow rate and the occupancy. We found the velocity data to be either
missing or unreliable. These variables are computed over a 20 seconds window. As both video
and traffic data come from separate sources, we need to synchronize them so as to annotate
the videos with the corresponding traffic flow labels. However two main problems arise: the
non-synchronization of the time clocks and inconsistencies in the videos frame rate.

Coders and ADR stations time clocks are not synchronized, furthermore, each coder has
its own clock. Therefore, the offset between each pair of coder/ADR station needs to be
computed. Obviously the computation of such offset can only be done by matching the
recorded flow rates with the visual video information. Luckily, the loop detectors compute
the flow parameters for each lane, simplifying this matching. We build a script based on
a detection-tracking-estimation method (similar to the one presented in subsection 5.2.1),
which estimates the flow rate values per lane and find the best alignment with the recorded
values. However, it is important to note that, as vehicles move at different speeds and can
switch lane easily, video and flow rate can only be matched if the camera is looking at the
induction loop. As such, only part of the cameras can be annotated and the number of
effectively available cameras is largely reduced (at most 203 cameras out of 2,000).

The second issue is the inconsistency of the video frame rate. Although the theoretical
frame rate is of 25 FPS, in practice, this is not the case. Overall, we found three main causes
of frame shift by analyzing the data:

• Frames get lost during the data transfer over the intranet network, and, while this is
visible on screen (visual artifacts), it cannot be seen from a pure data point of view.

• The coders sometimes encode only 24 frames for a second rather than 25 (probably for
clock synchronization).

• Seconds might be skipped in the frame embedded time (i.e from 18:00:56 to 18:00:58,
probably also for clock synchronization).

Hence, when associating video recordings with flow rate values, not only do we need to
compute the offset between each ADR station and the associated camera, but we also must
visually check that shifts do not occur in the stream. Such task is done in a semi-automated
way using a script, which prompts the user for confirmation at given intervals. This method-
ology possibly implies a slight shift in the data, and therefore we choose to associate videos
of 21 seconds with the recorded traffic flow measurements so as to ensure that each video
encompasses the whole measurement period of flow parameters. Consequently, annotations
might be noisy as more vehicles than the ones accounted for in the measurements may be
visible on screen. In the end, given all the limitations, we were able to annotate data from 5
cameras (c.f Figure 5.4).

103

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

(a) E72.433F3 (b) E72.722Y 2 (c) E73.268Y 4 (d) E73.332A4 (e) E73.531M3

Figure 5.4 – Screenshots of the recorded cameras. Each camera is identified by a tag. The index
indicates the number of lanes. Tags in italic correspond to the cameras looking at the front of the
vehicles.

Data analysis

We now detail the specificities of the collected data. The recordings were carried over 2 days
at various hours. The timeline is described in figure 5.5. Twelve hours of videos were recorded
per camera for a total of 59 hours (one hour had to be removed because of roadworks), which
amounts to about 10000 datapoints available for training and testing. Each datapoint covers
21 seconds of recording, with an overlap (about 1 second) with previous and subsequent
datapoints. For each of the datapoint, we collect the q and o values (although in this work
we only use the q values so as to restrain data variability and simplify the adaptation task), as
well as the RGB, MV and residual frames. Note that the residuals were not directly extracted
from the video flux and are in the RGB space, not in their frequency representation.

Day 1:
00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Day 2:
00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 5.5 – Timelines of the recorded videos. Recording time periods common to the two days are
in green and in red are the recordings that were done on only one day.

Orientation
Camera ID Coming In Driving Away Number of lanes Is outside
E72.433F3 X 3
E72.722Y 2 X 2 Yes
E73.268Y 4 X 4
E73.332A4 X 4
E73.531M3 X 3

Table 5.1 – Details for each of the available cameras.

Out of the five recorded cameras, three look at the back of the cars and two look at
them approaching. The number of lanes are not identical between the cameras, with one
camera with two lanes, two with three lanes and two with four lanes. Finally, one camera
(E72.722Y 2) is at the entry of a tunnel and is therefore subject to night and day illuminations.

104

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

(a) E72.433F3 (b) E72.722Y 2 (c) E73.268Y 4

(d) E73.332A4 (e) E73.531M3

Figure 5.6 – Distributions of the q values for each of the cameras.

The specificities of the cameras are detailed in Table 5.1. Note that, a camera tag is in italic
if it looks at car approaching and that the number in index indicates the number of lanes.
Regarding the distributions of the q values, we can see in Figure 5.6 that they vary between
the cameras. In particular, the mode varies between approximately 5 and 10. Moreover, for
some of the cameras, there is a second spike near 0. It is likely that, such differences between
the distributions, can cause generalization problem of investigated models.

Finally, we study q and o distributions, depending on the size of the 21 seconds long RGB
video files of each sample. The plots for each of the five cameras are provided in Figure 5.7.
All the cameras follow a somewhat similar pattern. In particular, for cameras E72.433F3
and E73.332A4 (first and fourth), the first part of the plot is linear in regards to the file size
and then becomes noisy. Such plot is very similar to the fundamental diagram of traffic flow
theory from Figure 5.3 (bottom left). In the first half of the plot, the traffic is in free flow and
both the flow rate and the occupancy grow linearly. In free flow, adding a car in the traffic
flow has no impact on the other cars and, as such, the file size increases by a given amount
for each added car. Then, when the vehicle flow reaches ρc the road density at maximum
capacity, it transitions into a congested state, where the flow rate start decreasing and the
occupancy explodes. As each car stays longer and longer in vision of the camera, the file
size keeps increasing while the reduced vehicles speed induces the reduction in flow rate and
augmentation in occupancy. For cameras E73.268Y 4 and E73.531M3 (third and fifth plots)
the data recorded only cover traffic in free flow. Finally, for camera E72.722Y 2 we see that
the flow rate does not follow the same linear relation with the file size. In particular, values
of flow rate of 10 are associated with a file size roughly ranging from 3 to 5 MiB. This can
be explained by the fact that the camera is located outside. Where tunnel’s camera have
constant light due to artificial illumination, the outside camera is subjected to night and day
illuminations (c.f Figure 5.8), likely inducing changes in the input distribution. This fact
raises some questions about transferability from any trained method (based on inside tunnel

105

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

(a) E72.433F3 (b) E72.722Y 2 (c) E73.268Y 4

(d) E73.332A4 (e) E73.531M3

Figure 5.7 – Heat map plot of the q and o values for each of the cameras against the 21 seconds
RGB video files’ sizes. Color scale is logarithmic, blue means little datapoints and red means a high
concentration of datapoints. MiB is Mebibyte.

cameras) to outside cameras.

106

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

(a) Reflects due to the sun
position and dirtying of
the lens.

(b) Typical day configura-
tion

(c) Typical night configur-
ation

(d) Intense illumination
probably due to the car
having headlights full on

Figure 5.8 – Examples of illumination changes in camera E72.722Y 2 caused by its outside positioning.
We can see multiple sources of noise, from reflections (a) to intense illumination due to the late night
hour (d).

5.2 Flow rate estimation from compressed MPEG4 part-2
videos: Application to Actemium’s tunnel dataset

We now seek to apply the flow rate estimation methods proposed in chapter 4 to Actemium
dataset. As a reminder, our end goal is to elaborate a flow rate estimation method, leveraging
the tunnel cameras in order to provide with an alternative for the costly induction loops. In
chapter 4 we have defined our problem as the estimation of a function h which takes sequences
of frames x ∈ X as input and that outputs the target value y ∈ Y:

y = h(x) + ε, (5.6)

where ε is the measurement error. Based on this formulation, we have proposed regression
networks (DeepMotionCLF, DeepMotionCLS, DeepMotion3D, see subsection 4.2.2) using se-
quences of MV frames as input. The usage of MV frames allows to greatly reduce the size
of networks and therefore to greatly speed up the prediction step. Recasting the regres-
sion problem as a temporal classification problem, we have proposed CTC-based networks
(DeepMotionCLF-CTC, DeepMotion3D-CTC, see subsection 4.2.3) that rely on a segmenting
and counting principle using the CTC loss. All the proposed models were tested on a syn-
thetic dataset. However, these methods have neither been tested on real data, nor compared
to a more classical RGB method based on a detection-tracking-estimation pipeline.

Application to real data raises multiple questions. For instance, although the synthetic
dataset allows to test variations of the inputs (camera orientation, objects’ scale, number
of flows), it does not account for the noise inherent to the real conditions (illumination,
dirtying, occlusions). Whether the proposed networks can learn to estimate flow rate, given
such noise affecting a camera, is an open question. Moreover, cameras are subjected to
both setting modifications (number of lanes, orientation, scale) and varying types of noise
(illumination, dirtying of the len, camera movements due to trucks, etc.). For instance,
cameras facing vehicles and cameras looking at the rear of vehicles will not suffer the same
type of illuminations (see Figure 5.8). Therefore, this raises the question of whether adding
data from various cameras during training, without accounting for such variations, will help
or impede the learning of the networks. Finally, generalization capabilities of the models are
to be tested, as a large number of cameras are left without annotations. If we want to leverage

107

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

each camera, the proposed networks need to be resilient to unseen settings. To summarize,
through the experiments, we aim to answer the following questions:

1. Do the methods proposed in chapter 4 allow to estimate the flow rate values when
trained on a single camera?

2. How do the MV-frames-based models compare with a RGB detection-tracking-estima-
tion method?

3. Does training on multiple cameras with varying sources of noises and configurations
improve or impede the overall accuracy?

4. Do the MV-frames-based models generalize well to unseen cameras?

Depending on the reached accuracy, the proposed methods can have different purposes.
For instance, a prediction accurate to the vehicle might be used to raise alert in a critical
surveillance system. Conversely, an estimation network solely capable to follow the trend of
the traffic flow rate may be used for a more global analysis of the traffic flow. In the presented
work we aim to address the second, less constrained, application. To assess the quality of
the models, we use the Mean Average Error (MAE) as a performance measure and set the
acceptable maximum error to 1. Moreover, to account for the capacity of the model to follow
the traffic flow trend over time, we aim for a correlation coefficient between predicted values
and real values of at least 0.8. For a better understanding of the selected values, Figure 5.9
shows the plots of predicted vs target values at different MAEs and correlation coefficients.
We see that only figure (a) allows for an accurate trend following.

(a) MAE: 0.91 ; R: 0.9 (b) MAE: 0.90 ; R: 0.8

(c) MAE: 1.93 ; R: 0.7 (d) MAE: 2.34 ; R: 0.5

Figure 5.9 – Visual representation of multiple values of MAE and correlation coefficients R.

108

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

The rest of the section is divided as follows. First, in order to produce with a RGB-based
baseline, we introduce a detection-tracking-estimation paradigm and detail the prediction
results. Then, we present the experimental results and their comments for the methods
proposed in chapter 4. Finally, as we show limitations on the generalization capacities of
the proposed networks, we study the use of domain adaptation so as to palliate the issue of
cameras that cannot be annotated.

5.2.1 Baseline: Detect and Track

We start by introducing a baseline RGB method that will be used as reference.

Description of the method The proposed model is based on the classical detection-
tracking-estimation pipeline. As the sought model is intended to operate in a real-time
setting (possibly on a high number of cameras), the detector needs to be fast and to have
low memory consumption. To that extent, we select the well known SSD detector [Liu et al.,
2016]. Regarding the tracking system, various solutions exist, the most renown being Sort
[Bewley et al., 2016] (a combination of a Kalman Filter [Kalman, 1960] for object displacement
estimation and the hungarian algorithm3 [Kuhn and Yaw, 1955] for object association between
frames) and its recent deep update DeepSORT [Wojke et al., 2017]. Because we are looking
for a method easy to deploy on cameras that may have different setups (angle, distance to
road, etc.), we choose to solely relies on the hungarian algorithm, with euclidean distance,
so as to minimize the required manual calibrations. Finally, for the estimation step we
rely on a simple emulation of induction loops to avoid cumbersome camera calibrations: for
each camera, we manually set a virtual induction loop and count the number of detected
tracks crossing the loop to estimate q. The overall procedure is detailed in Figure 5.10
and the detailed algorithms used for the detection, tracking and estimation are provided in
Appendix D.

Calibration CountingDetection Tracking

Figure 5.10 – Illustration of the RGB processing pipeline. First, the camera is manually calibrated
by drawing an "induction loop" (black line on the left image). Then, each frame is processed by the
detector, after which the detections are associated into tracks using the hungarian algorithm. Finally,
the tracks are used to compute the flow rate.

Implementation details Regarding the detection networks, we re-use the (RGB) SSD
network trained on Actemium detection dataset (c.f chapter 3). The threshold for the se-
lection of the detected boxes is set to 0.5. The emulated induction loops are manually set

3The hungarian algorithm is a method to find the best coupling of objects, while minimizing the cost of
associating two objects (for instance associating detections at subsequent frames while minimizing the distance
between each detection’s bounding box).

109

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

for each camera. Although no training is performed using the traffic flow dataset, we only
evaluate the method on the second day of recording for fair comparison with methods based
on MV frames. We detail the results camera per camera. We use the Mean Absolute Error
(MAE) and correlation coefficient with the discussed limitations (Figure 5.10) to evaluate
the method. For clarity of the notations, correlation coefficients are provided as exponent (in
italic) to the MAE results (i.e 0.910.9).

As the real time ability is needed, the number of FPS and Datapoints Per Second (DPS)
that can be processed are also evaluated. A NVIDIA GTX 1080 is used for computation.
The DPS and FPS are computed as the average inference time over 20 datapoints.

Achieved performances The obtained results are summarized in table 5.2. Apart from
camera E73.268Y 4, we see that for all the cameras we reach the desired performances.
Even camera E72.722Y 2, which is outside, has a MAE lower than one. Regarding cam-
era E73.268Y 4, two main reasons can justify the reported accuracy. First vehicles are seen
from the front, leading to camera illumination by the headlights and second, the monitored
road has 4 lanes subjected to occlusions due to the positioning of the camera (see Figure 5.6c).
Finally, regarding speed, we can see that the method can process up to approximately 3 video
flux in parallel at 69 FPS (videos are recorded at 25 FPS).

E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3 DPS FPS
SSD-hungarian 0.660.9 0.900.9 1.270.9 0.580.9 0.610.9 0.13 69

Table 5.2 – Mean Average Error for the RGB-based estimation method. Correlations between real
and predicted values are provided as exponent to the MAE values. Higher errors are highlighted using
a more vivid orange. DPS is Datapoints Per Second (525 frames representing 21 seconds of video)
and FPS Frames Per Second.

5.2.2 Estimation from the compressed MPEG4 part-2 representation

We now detail the empirical results on the compressed representation of the tunnel video
recordings. To answer the four raised questions, we evaluate the models proposed in chapter 4
by training them on each camera separately. These results are used to evaluate the feasibility
of the method on real data as well and to set a comparison basis with the RGB-based model
(first and second question). Networks are trained on multiple cameras to show the impact of
cameras with multiple settings on the overall accuracy (third question). Speed and memory
consumption of the various architectures are finally compared. Generalization capabilities of
the networks (fourth question) are evaluated throughout all experiments.

Implementation details Three of the five considered networks in chapter 4 (DeepMotion-
CLS, DeepMotion3D and DeepMotion3D-CTC) are trained on the Actemium dataset. How-
ever, the architectures are modified to fit the corresponding input shape (525 × 36 × 22 × 2
instead of 500×13×13×2 in chapter 4). These modifications are detailed in Table 5.3. Note
that we choose to drop the frame-based architectures (DeepMotionCLF and DeepMotionCLF-
CTC) due to the difficulties to train them, as well as their too high memory usage and
inference speed limitations (see chapter 4, section 4.2.5).

The networks are trained on a single GPU. For each of the five cameras, E72.433F3,
E72.722Y 2, E73.268Y 4, E73.332A4 and E73.531M3, we use the first day for training and
validation (for a gross total of respectively 3,982 and 995 datapoints, or about 800 and
200 per camera) and the second day for testing (5,233 datapoints in total, or about 1,050
datapoint per camera). We use the Mean Squared Error (MSE) as training loss so as to
reduce large prediction errors. No data-augmentation is performed and no weight decay is
applied. We use an Adam optimizer [Kingma and Ba, 2015] for each training and set the
batch size to 32.

110

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

DeepMotionCLS DeepMotion3D DeepMotion3D-CTC
Output Size Layers Output Size Layers Output Size Layers

21× 25× 36× 22× 2 input layer 525× 36× 22× 2 input layer 525× 36× 22× 2 input layer
21× 12× 17× 10× 64 [3× 3× 3, 64 (s2)] 262× 17× 10× 64 [3× 3× 3, 64 (s2)] 262× 17× 10× 64 [3× 3× 3, 64 (s2)]

21× 5× 8× 4× 64 [3× 3× 3, 64 (s2)] 130× 8× 4× 64 [3× 3× 3, 64 (s2)] 130× 8× 4× 64 [3× 3× 3, 64 (s2)]
21× 1× 8× 4× 64 AvgPool-[5× 1× 1] 64× 3× 1× 64 [3 × 3 × 3, 64 (s2)] 64× 3× 1× 64 [3 × 3 × 3, 64 (s2)]

1× 1× 6× 2× 64 CL-[3 × 3, 64] 32× 1× 1× 64 AvgPool-[2 × 3 × 1] 64× 1× 1× 64 AvgPool-[1 × 3 × 1]
1× 1× 1× 1× 768 Reshape 1× 1× 1× 2048 Reshape - -
1× 1× 1× 1× 64 FC-64 1× 1× 1× 64 FC-64 64× 1× 1× 64 (FC-64) ×nlanes

prediction FC-1 prediction FC-1 prediction (FC-2) ×nlanes

Table 5.3 – Updated networks for the new input shape. Changes are highlighted in bold. Deep-
MotionCLS changes the size of the ConvLSTM kernel and the dimension of the ConvLSTM output
representation (768 vs 64 for Moving Digit dataset). DeepMotion3D and DeepMotion3D-CTC have
an added Conv3D layer and small changes in the pooling layer.

We also evaluate the speed of the networks in both DPS and FPS. We use a NVIDIA
GTX 1080, set the batch size to 8 and run 1000 predictions. As the proposed architectures
are extremely fast, we preload the datapoints into memory to avoid the input bottleneck. The
final FPS value is the average over the total number of predictions (the higher, the better).

Single camera learning We train the three networks referred in Table 5.3 on a given
camera and evaluate their performances on the videos issued from the same camera. The
results are detailed in Table 5.4.

Overall, the average MAE shows that the proposed models perform well on real data. For
the regression architectures, DeepMotionCLS and DeepMotion3D, errors are lower than for
the RGB approach and more stable (lower standard deviation). Results on the CTC-based
architecture are more mitigated, with an increase in error, lower correlation between real and
predicted values, and higher standard deviation.

E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3 Average error
detection-tracking-estimation:
SSD-hungarian 0.660.9 0.900.9 1.270.9 0.580.9 0.610.9 0.800.9 ± 0.26
Regression-based:
DeepMotionCLS 0.571.0 0.910.9 0.680.9 0.640.9 0.441.0 0.650.9 ± 0.15
DeepMotion3D 0.630.9 1.120.9 0.830.9 0.740.8 0.560.9 0.780.9 ± 0.20
CTC-based:
DeepMotion3D-CTC 0.750.9 1.030.9 1.930.7 1.910.7 2.150.9 1.550.8 ± 0.56

Table 5.4 – Mean Absolute Error and correlation coefficient (between real and predicted values) for
each of the architectures trained on each camera separately. For clarity of the notations, correlation
coefficients are provided as exponent. Higher errors are highlighted using a more vivid orange. The
MV frames-based regression architectures provide with results on par with the RGB-based solution.
Results for DeepMotion3D-CTC are not satisfactory with an average error largely above the objective
threshold of 1.

In more details, when compared to the RGB-based method, DeepMotionCLS achieves the
best performances. The DeepMotion3D architecture is not far behind, with overall similar
accuracy and correlation values. Regarding the DeepMotion3D-CTC, we can see that the
MAE grows up to 2.15 and that the correlation coefficient decreases to 0.7. These results
show the difficulty of the CTC network to correctly learn to detect and count vehicles. Such
difficulty in training may be due to the imprecisions within the annotations. As we had
to match each recorded flow rate value (computed over 20 seconds) with 21 seconds long
videos during the annotation process, it is possible that more vehicles are visible than the
ones accounted for in the annotations. Because the CTC learns to identify each vehicle,
discrepancies between the number of vehicles on screen and the one annotated may lead to

111

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

an ill optimization. The network must simultaneously learn to detect the genuine vehicles
while ignoring the added ones.

Source Target
E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3

Regression-based:
DeepMotionCLS 0.571.0 3.910.3 2.830.1 2.15-0.1 2.340.5

DeepMotion3D 0.630.9 3.470.7 2.090.3 1.330.6 1.030.7

CTC-based:
DeepMotion3D-CTC 0.750.9 - - - 2.150.4

Table 5.5 – MAE and correlation between the real and predicted flow rate for the networks trained on
camera E72.433F3 acting as source data. The correlation coefficients are provided as exponent to the
MAE. Higher errors are highlighted using a more vivid orange. Results on other target cameras are
obtained without fine-tuning. Due to the limitations of the CTC-based architecture, only the camera
with a similar number of lanes as the source is considered.

We now seek to partially answer our fourth question and detail the capacity of the network
to generalize to unseen data. We select the networks trained on each camera and report the
accuracy performances on the other cameras. In this section we detail the results for camera
E72.433F3 (Table 5.5) as it is a camera with an intermediate number of lanes. Results for
the training on the other cameras are available in the appendices, (Table D.1). Note that the
DeepMotion3D-CTC architecture can only be evaluated on cameras with similar number of
lanes, i.e E73.531M3. Interestingly, while DeepMotionCLS shows the best results for single
camera training (Table 5.4), DeepMotion3D has the best generalization capability. Still, the
results, regardless of the target camera orientation (similar [E73.332A4 and E73.531M3] or
inverse [E72.722Y 2 and E73.268Y 4] to the source one), do not meet the targeted accuracies
(i.e MAE under 1 and correlation above 0.8). In particular, for DeepMotionCLS on camera
E73.332A4 the correlation between the real and predicted values drops to -0.1. Finally,
note that the CTC-based network provides the same level of generalization than the other
architectures.

Source Target
Average E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3

Regression-based:
DeepMotionCLS 0.690.9 ± 0.15 1.700.9 3.500.7 2.940.6 1.000.6 1.720.8

DeepMotion3D 0.830.9 ± 0.29 1.560.9 3.230.7 2.930.7 1.690.6 1.570.8

CTC-based:
DeepMotion3D-CTC - - - - - -

Table 5.6 – Mean Absolute Errors and correlation coefficients (between real and predicted values)
when training on all the cameras but one and predicting the flow rate on the camera left out. The
correlation coefficients are provided as exponents to the MAE. Higher errors are highlighted using a
more vivid orange. The first column is the average error on the source data. The remaining columns
are the errors for the left out camera.

Multiple camera learning Experiments in the setting where multiple cameras are used at
training time are now considered. Training are first carried in a leave-one-camera-out setting.
Results are compiled in Table 5.6. First, we can notice a slight degradation of the results on
the source data (first column). However, this slight increase in MAE is to be mitigated as
the results are still within the targeted performance bounds. These findings are important as
they show that data from several cameras can be gathered to form the training set, without
impeding prediction performances (third question). Regarding the target cameras, we can
see large improvements for the correlation coefficients, with the minimum value going from

112

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

0.1 (Table 5.5) to 0.6 (Table 5.6). However, such results are still not high enough to provide
with reliable predictions on unseen cameras. Finally, we note a tendency for the cameras
looking at the rear of the vehicles (E72.433F3, E73.332A4 and E73.531M3) to provide with a
lower MAE. Such results could be explained by the absence of the headlights, hence reducing
illumination issues. Overall, on the source data, the results are in acceptable range, however
on the target data, none of the results are satisfactory.

Source Target
Average E72.433F3 E73.332A4 E73.531M3

Regression-based:
DeepMotionCLS 0.590.9 ± 0.09 2.950.8 1.000.7 1.480.8

DeepMotion3D 0.670.9 ± 0.08 2.740.8 1.970.8 1.600.7

CTC-based:
DeepMotion3D-CTC 0.630.9 ± 0.12 3.670.4 - 2.150.4

Table 5.7 – MAE and correlation between the real and predicted flow rates when training on all
the cameras looking at the rear of the vehicles (E72.433F3, E73.332A4, E73.531M3) but one and
predicting on the left-out. Higher errors are highlighted using a more vivid orange. The first column
is the average MAE error for each of the source combinations, the remaining ones are the errors
for the left out camera. The correlation coefficients are provided as exponents to the MAE. For
DeepMotion3D-CTC only cameras with three lanes were used for adaptation due to the limitations
of the architecture.

Source Target
Average E72.722Y 2 E73.268Y 4

Regression-based:
DeepMotionCLS 0.900.9 ± 0.11 4.780.8 2.900.4

DeepMotion3D 0.980.9 ± 0.15 4.400.6 1.390.6

CTC-based:
DeepMotion3D-CTC - - -

Table 5.8 – MAE and correlation between the real and predicted flow rates when training on one
of the two cameras looking at the front of the vehicles (E72.722Y 2, E73.268Y 4) and predicting on
the remaining one. Higher errors are highlighted using a more vivid orange. The first column is the
average error for each of the fold, the remaining ones are the errors for the left out camera. The
correlation coefficients are in exponent of the MAE.

Given the differences in accuracy between the groups of cameras with different orienta-
tions, we now separate the dataset by camera orientation. The hope being that this will avoid
to train the networks on too dissimilar data and help them learn a better representation. As
for the previous experiments training are carried on all the cameras of similar orientation but
one and evaluated on the one left-out. Table 5.7 and Table 5.8 include the empirical evalu-
ations for respectively rear and front view of the vehicles. Comparing Table 5.7 and Table 5.6,
we see that removing cameras E72.722Y 2 and E73.268Y 4 from the training set helps im-
proving the correlation coefficients for the regression-based networks (from 0.6 minimum to
0.7 minimum). However, accuracy is not preserved. For instance on camera E72.433F3, for
the architectures DeepMotionCLS and DeepMotion3D the error goes from respectively 1.70
and 1.56 to 2.95 and 2.74. Similarly, for the cameras looking at the front of the vehicles
(Table 5.8), results either show a decrease in the correlation coefficient or an increase in
MAE. Finally, the CTC architecture, DeepMotion3D-CTC, presents with the worst results,
that is a correlation coefficient of 0.4 and a MAE superior to the ones of other architectures.
However, this result is to be mitigated as it is obtained using only one camera as source
due to the limitations imposed by the CTC architecture. Overall, removing cameras with
changing properties does not seem to help with the generalization issue.

113

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

On the prediction speed We now study the speed of the newly created architectures
and compare them with the RGB baseline. Results are provided in Table 5.9 and the ac-
curacies are the average of test errors while training on each camera separately. Regarding the
accuracies, we can see that the regression-based approaches (DeepMotionCLS and DeepMo-
tion3D) provide with more accurate and less varying results. Moreover, regarding prediction
speed, compressed-data-based architectures are far better, as they are at least 2000 times
faster (DeepMotionCLS) than the RGB network and at most 3200 times faster (DeepMo-
tion3D). Furthermore, compressed representation networks require far less memory. Finally,
we note that the architecture DeepMotion3D-CTC, while providing with impressive speed
has the highest MAE at 1.55 and is the less stable with a standard deviation of 0.56.

Network MAE GPU Memory (MiB) DPS FPS
SSD300 0.800.9 ± 0.26 7,805 0.13 69
Regression based:
DeepMotionCLS 0.650.9 ± 0.15 703 271 142,472
DeepMotion3D 0.780.9 ± 0.20 703 505 265,095
CTC based:
DeepMotion3D-CTC 1.550.8 ± 0.56 703 418 219,308

Table 5.9 – Speed comparison of the various architectures. The correlation between the predicted and
the real values is noted as exponent to the MAE. Higher errors are highlighted using a more vivid
orange. Batch size is set to 8 for the evaluations. All of the networks are much faster than any of the
detector seen so far.

Synthesis We have identified four questions to be answered, of which if the methods pro-
posed in chapter 4 allow to estimate the flow rate values when trained on a single camera
and how the MV-frames-based methods compare with an RGB detection-tracking-estimation
method. In this first set of experiments, we have shown that the proposed architectures using
the compressed representation can be used for flow rate estimation. In particular, for the
regression-based architectures, accuracy is better than the RGB-based method while provid-
ing with impressive speed gains, up to ×3200. However, the CTC based architecture shows
unsatisfactory results, not meeting the targeted accuracy with a MAE of 1.55.

Regarding whether training on multiple cameras with varying sources of noise and config-
urations would improve or impede the overall accuracy, Table 5.6 does not show improvements
of the accuracy. However, as both the MAE and the correlation coefficients fulfill the target
bounds, it is safe to assume that data from different cameras can be gathered in the training
set without degrading performances.

The last concern is how the MV-frames-based methods generalize to unseen cameras.
Tables 5.5, 5.6, 5.7 and 5.8 show that the trained networks do not generalize in a consistent
manner to unseen data from other cameras. Although the final accuracies are not satisfactory
enough yet, training with data from multiple cameras seems to help with the predictions (see
Table 5.6). Such results potentially may lead to significant performance improvements if a
larger, more diverse dataset was to be collected.

5.2.3 Domain Adaptation towards unseen cameras

Previous section shows estimation of the flow rate from traffic recording cameras can be effi-
ciently achieved using the proposed MV based networks. These models being extremely light
and fast, real time processing is achievable, which is of great interest for industrial purpose.
However these architectures have one main limitation: they do not generalize well to unseen
cameras. Given the difficulty to acquire labelled training data, we study the possibility to
apply a domain adaptation framework to deal with shifts in joint input and output distri-
butions across cameras. For that, we exploit the DeepJDOT method [Damodaran et al.,

114

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

2018] (see chapter 4, subsection 4.3.1 for the details). We first run the adaptation from one
camera to the others so as to see if any pattern emerges. Then, we run adaptation on the
networks trained on multiple cameras. The latter experiment aims to test the resilience of
the adaptation to training data from multiple sources, as well as to find out if added vari-
ation in the source dataset allows for improved results. As DeepJDOT aims to reduce the
joint input (embedding) and output distribution of the source and target datasets based on
optimal transport, it works best with large batch size. However, due to memory constraints,
we restrict the batch size to 32. We also set the value of α = 0.01 (in OT ground distance,
Equation 4.3) as we empirically find the value to work best.

Source Target
E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3

Regression-based:
DeepMotionCLS 0.571.0 0.591.0 3.910.3 3.980.5 2.830.1 2.430.6 2.15-0.1 1.340.4 2.340.5 1.150.7

DeepMotion3D 0.630.9 0.660.9 3.470.7 3.510.7 2.090.3 2.400.7 1.330.6 0.940.7 1.030.7 1.000.8

CTC-based:
DeepMotion3D-CTC 0.750.9 0.750.9 - - - - - - 2.150.4 1.490.5

Table 5.10 – MAE before (left grayed columns) and after adaptation (right column) when trained on
camera E72.433F3 and adapted towards the other cameras (one by one). The correlation between
predicted and real flow rates is provided as an exponent to the MAE value. A green cell means
improvements after adaptation and a red one means a decrease in accuracy.

Single camera adaptation The networks that were trained on camera E72.433F3 are
first adapted towards the other cameras. We select this peculiar camera as it has an inter-
mediate number of lanes and will showcase the behavior on cameras with similar (E73.332A4
and E73.531M3) and opposite orientations (E72.722Y 2 and E73.268Y 4). Results given in
Table 5.10 reveal that adapting towards cameras with opposite orientation worsens the ac-
curacy (3 red cells out of 4). However, this lowering in accuracy is to be mitigated as the
correlation coefficients largely improve in most cases. Regarding the two cameras with similar
orientation, the accuracy always improves, both in MAE and correlation. In particular, for
the architecture DeepMotion3D, the results are very close to the targeted accuracy (MAE
< 1 and correlation > 0.8). Finally, we can notice, on the source camera, a slight degradation
of the accuracy after adaptation. However, these performances on source domain are still in
the targeted range. Overall, it seems that cameras are more easily adapted towards cameras
with similar orientation.

Source Target
Average E72.433F3 E73.332A4 E73.531M3

Regression-based:
DeepMotionCLS 0.590.9 0.620.9 2.950.8 1.180.9 1.000.7 1.080.6 1.480.8 0.800.9

DeepMotion3D 0.670.9 0.650.9 2.740.8 1.300.8 1.970.8 0.810.8 1.600.7 0.940.8

CTC-based:
DeepMotion3D-CTC 0.630.9 0.630.9 3.670.4 3.460.5 - - 2.150.4 1.490.5

Table 5.11 – MAE and correlation between the real and predicted values on cameras looking at the
rear of vehicles. The networks were trained on two of the three available cameras and tested on the
one left out. Grayed columns contain the results before domain adaptation and lowest error on a
given camera are in bold. A red cell means a worsening of the error and a green one an improvement.
Correlation coefficients are exponent to the MAE values. Apart from one case, adaptation always
improve the accuracy of the networks.

Multiple camera adaptation Adaptation from one camera to another shows improve-
ment when the adaptation is performed on cameras with similar positioning (i.e looking at

115

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

the rear of the vehicles). However, results are not satisfactory enough yet. We now explore if
adding cameras with similar orientations to the training set can help improving the accuracy
of the adapted networks.

Let us detail the results for the cameras recording the goings of the vehicles (rear view,
Table 5.11). Experiments seem to confirm the intuition that adding similar cameras to
the training set helps both training and adaptation. Apart for DeepMotionCLS on cam-
era E73.332A4, which slightly decreases the accuracy after adaptation, all the other results
of regression-based networks show substantial improvements. Most of the accuracies after
adaptation match, at least partially, the targeted precision. DeepMotionCLS has two cor-
relation coefficients at 0.9 and DeepMotion3D yields two MAE below 1. By comparison,
results in Table 5.10 have a maximum correlation coefficient of 0.8 and only one MAE below
1. Regarding the results on the source cameras, they can be considered stable given that
the changes before and after adaptation are minimal. Notice that conclusions on the CTC
architecture are hard to devise as the adaptation was done from one camera to another due
to the lane number restriction of the method. There are improvements, but far from meeting
the targeted requirements.

Let us now consider adaptation for the cameras recording the comings of the vehicles
(front view, Table 5.12). Again, selecting cameras with similar orientation seems to help
during the adaptation process, with improvement in MAE on 3 out of the 4 target ones (only
1 in Table 5.10). Moreover, when the target MAE is not improving (in red), the correlation
goes from 0.6 to 0.8, showing that the adapted network better capture the behavior of the
traffic flow.

Source Target
Average E72.722Y 2 E73.268Y 4

Regression-based:
DeepMotionCLS 0.800.9 0.830.9 4.780.8 2.980.8 2.900.4 2.300.7

DeepMotion3D 0.980.9 1.010.9 4.400.6 3.060.7 1.390.6 2.180.8

CTC-based:
DeepMotion3D-CTC - - - - - -

Table 5.12 – MAE before (left grayed columns) and after adaptation (right column) on the cameras
viewing the front of the vehicles. Lowest errors on a given camera are in bold. A green cell refers to
improvement, otherwise red. Correlation coefficients are exponent to the MAE values.

Overall, results from Tables 5.11 and 5.12 seem to validate the hypothesis that adapting
from cameras with only similar orientation helps improving the accuracy. To further test that
hypothesis, we now seek to adapt networks trained on all the cameras but one to the left-out
camera. As data with different orientations are mixed-up in the source domain, we should not
expect improved results as this may penalize the adaptation procedure. Empirical results are
given in Table 5.13. For the cameras E72.433F3 and E73.531M3, the adaptation provides with
excellent results, with an error below 1 and a correlation fairly high (≥ 0.8). In particular,
3 out of 4 results are the best so far, showing that adding cameras with opposite orientation
can help the adaptation. However, for camera E73.332A4 the performances are degraded.
Finally, for the cameras viewing at approaching vehicles (E72.722Y 2 and E73.268Y 4), we
also get, out of 4 results, 3 of the best so far (but with fairly high MAE values). Still, such
results could be explained by the fact that the two cameras (E72.722Y 2 and E73.268Y 4) are
extremely dissimilar, hence providing with bad adaptation results.

Synthesis In subsection 5.2.2 we highlight difficulty for trained networks to generalize to
unseen cameras. To overcome the generalization issue, we have experimented on domain
adaptation. The first set of experiments (Tables 5.10, 5.11 and 5.12) show limited benefit
of the adaptation but seem to demonstrate that, adaptation towards cameras with similar

116

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

Source Target
Average E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3

Regression-based:
DeepMotionCLS 0.690.9 0.730.9 1.700.9 0.700.9 3.500.7 3.870.8 2.940.6 2.020.7 1.000.6 2.030.4 1.720.8 0.920.8

DeepMotion3D 0.830.9 0.850.9 1.560.9 0.820.9 3.230.7 3.020.7 2.930.7 1.570.8 1.690.6 2.080.5 1.570.8 0.880.8

CTC-based:
DeepMotion3D-CTC - - - - - - - - - - - -

Table 5.13 – MAE and correlation between the real and predicted values, before adaptation (grayed
column, left) and after adaptation (right). The source domain is represented by M-1 cameras and the
target domain is the left out camera (M being the total number of cameras). A green cell denotes
improvements after adaptation, a red one a decrease in accuracy and a blue one that the obtained
result is best out of all the experiments (Tables 5.10, 5.11 and 5.12).

orientation, helps providing with more accurate networks. However, in the last experiment
(Table 5.13) the accuracy after adaptation was further improved for some of the cameras
(although still not meeting the set accuracies) through the addition of more samples from
dissimilar cameras. As adaptation is key to the deployment of the proposed solution, we
study in more depth the DeepJDOT adaptation process to understand the root cause of its
instability on our data.

5.3 Discussion on Domain Adaptation and DeepJDOT

Domain adaptation experiments show that the effectiveness of the adaptations is not con-
sistent enough across cameras to allow for a reliable industrial usage. Moreover, no clear
pattern linking the cameras’ settings to the inconsistencies seem to emerge. As in industrial
applications the target domain set will not be annotated, there is no proper way to assess
correctness of the adaptation. In this section we discuss on these limitations.

5.3.1 The limits of domain adaptation

Let us consider the DeepMotionCLS model and the adaptation towards camera E73.531M3
from Table 5.10. The DeepJDOT framework manages to reduce the MAE, from 2.34 to 1.15,
and improves the correlation coefficient from 0.5 to 0.7. However, these results are not good
enough to avoid large errors. This can be seen in Figure 5.13c, which compares the estimated
values with the real flow rate values after DA. The network saturates around 6. This is
problematic as it leaves predictions oblivious to a large range of values.

In order to explain such behavior, we remind that DeepJDOT is based on a three part
loss (see subsection 4.3.1) that aims to: reduce the discrepancy between the source and tar-
get domain embeddings, as well as between the source and target labels, and to maintain
the original accuracy on the source set. Therefore, failure in learning to reduce the discrep-
ancies could explain the observed limitations. For that, we visualize the source and target
embeddings before (Figure 5.11) and after (Figure 5.12) adaptation using the t-SNE [van der
Maaten and Hinton, 2008]. In the plots, the circles are data of the source domain and the
crosses correspond to the target domain. The colors indicate the value of q to be predicted,
blue being a low value and green a high one. We observe that before adaptation, source and
target embeddings are almost apart. Also, the source samples are ordered by level of flow rate
contrary to the target embeddings which are more mixed up. After adaptation (Figure 5.12),
we see that both the target and source embeddings are now much better matched. However,
while the points (source and target) seem ordered from the lowest to the highest, we can
notice that the low and high output values from the target domain seem to be mixed up
towards mid range source values. This observation is validated by Figure 5.13c, where the
network underestimates high values and overestimate the low ones.

To get an insight on such mix up, we consider the output (flow rate) distributions on
the source (Figure 5.13a) and target (Figure 5.13b) sets. We see that the source and target

117

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

Figure 5.11 – t-SNE plot before domain adaptation. The circles correspond to the source domain and
the crosses to the target domain. The colors indicate the value of q to be predicted, blue being a low
value and green a high one.

118

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

Figure 5.12 – t-SNE plot after domain adaptation. The circles correspond to the source domain and
the crosses to the target domain. The colors indicate the value of q to be predicted, blue being a low
value and green a high one.

119

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

(a) q distribution on the source domain. (b) q distribution on the target domain.

(c) Scatter plot of the predicted vs. real
values on the target domain.

Figure 5.13 – Plots describing the distribution of outputs on the source (a) and target (b) domains as
well as the quality of the predictions on the target domain after adaptation (c).

distributions differ greatly. In particular, in the source distribution, the density of values
around 1 is very low when compared with the density of the values at 0 and close to 5. In
contrast, on the target distribution, the density is much stable across the flow rate values with
only a small decrease between 1 and 3. While this may seem anecdotal, DeepJDOT relies on
optimal transport to match (zs, ys) and (zt, f(zt)) and then, uses this matching to set the
source outputs as proxy for the target embedding outputs. Therefore, if the source and target
output distributions strongly differ, target output values will likely be pushed towards lower
or higher values. In that case, as the density between 1 and 3 of the target domain is much
higher than the one in the source domain, the values in that range get "pushed" towards 5
because of the coupling strategy. Similarly, as the source and target domains do not reach
their second density pic at the same flow rate value (respectively before and after 5), high
flow rate values of the target domain get "pushed" towards smaller values. This might justify
the over and under-estimation in Figure 5.13c.

5.3.2 Prediction with oracle

Limitation of domain adaptation applied to our flow rate estimation problem may come from
differences in the source and target output distributions. This may impede the matching
achieved by optimal transport in the mini-batches. To correct for that, let us assume we
have some weak information on the target distribution. Specifically, let us consider we have
at disposal the histogram bins of the target domain samples. Using oracle information, we
run DA by randomly selecting in the mini-batches the source and target samples, according to
the histograms bins, to prevent from output distribution shift. The subsequent experiments
are run with the same setups as previously.

120

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

Single camera adaptation Similarly to Table 5.11, we run adaptation from camera
E72.433F3 to the others. Results are summarized in Table 5.14. We see that the oracle-
based adaptation improves the prediction results on all the cameras (only 0.01 point drop on
the source camera for DeepMotionCLS). On the target cameras, the minimal correlation value
is now of 0.7 (previously 0.4) and the maximal MAE is of 1.93 (previously 3.98). Regarding
the "leaking" effect observed in the discussion, Figure 5.14 shows a comparison side by side
of the predicted vs. real values for the adaptation without and with oracle (DeepMotionCLS
on camera E73.531M3). We can see that the squeezing effect visible in Figure 5.14a tends
to disappear in Figure 5.14b. Such results show that discrepancies in the source and target
output distribution do impede the adaptation. Still, even with oracle information, for the
camera E73.332A4 the correlation value of 0.7 is lower than what we were aiming for. One
explanation for such behavior might be a lack of samples in some bins, leading to incorrect
estimation. If so, adding more samples should smooth the distributions and provide with
improved results. Finally, regarding the CTC network, the adaptation, even with the oracle
information is inefficient.

Source Target
E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3

Regression-based:
(0.591.0) (3.980.5) (2.430.6) (1.340.4) (1.150.7)

DeepMotionCLS 0.571.0 0.580.9 3.910.3 1.490.9 2.830.1 1.400.9 2.15-0.1 0.970.7 2.340.5 0.890.9

(0.660.9) (3.510.7) (2.400.7) (0.940.7) (1.000.8)
DeepMotion3D 0.630.9 0.630.9 3.470.7 1.930.8 2.090.3 1.020.8 1.330.6 0.910.7 1.030.7 0.890.8

CTC-based:
0.750.9 - - - - - - 1.490.5

DeepMotion3D-CTC 0.750.9 0.750.9 - - - - - - 2.150.4 1.200.6

Table 5.14 – MAE and correlation results from camera E72.433F3 to the others using the oracle
information. Grayed columns contain the results before domain adaptation. For clarity sake, we
report the accuracies without oracle information on top of the new ones (in between parenthesis). As
before, a green cell means that the results improve on both the source accuracy and the one obtained
from the vanilla adaptation, an orange cell means that the results only improves on one of the two
values.

(a) Scatter plot of the predicted vs. real values on the
target domain without oracle information.

(b) Scatter plot of the predicted vs. real values on the
target domain with oracle information.

Figure 5.14 – Plots of the Predicted q vs. real q values, without oracle information (a) and with oracle
information (b).

Multiple camera adaptation We now test the proposed oracle adaptation to the net-
works trained on multiple cameras. Adaptation is first carried out on the networks trained
on all the cameras but one. The results are reported in Table 5.15. Similarly, adaptation

121

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

with oracle information improves the final accuracy. The only worsening when compared
with the previous adaptation is for camera E72.433F3 on DeepMotion3D, where the MAE
goes up to 1.01 but is still acceptable in industrial environnement. Similar results can be
seen on the source cameras, with a slight increase that would have no impact on the final
application. Regarding the results overall, the maximum MAE went from 3.87 down to 1.79
and the correlation value from a minimum of 0.4 up to a minimum of 0.7. According to
performance measures, 7 errors values out of 10 are below 1 (4 previously) and 7 correlation
coefficients are of 0.8 or above (5 previously). Finally, it is important to note that the camera
with the worst results is E72.722Y 2, which is the only one placed outside and with only two
lanes. These facts could explain the adaptation difficulties.

Source Target
Average E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3

Regression-based:
(0.730.9) (0.700.9) (3.870.8) (2.020.7) (2.030.4) (0.920.8)

DeepMotionCLS 0.690.9 0.730.9 1.700.9 0.690.9 3.500.7 1.660.8 2.940.6 0.950.8 1.000.6 0.840.7 1.720.8 0.690.9

0.850.9 0.820.9 3.020.7 1.570.8 2.080.5 0.880.8

DeepMotion3D 0.830.9 0.850.9 1.560.9 1.010.9 3.230.7 1.790.7 2.930.7 0.800.9 1.690.6 0.980.7 1.570.8 0.670.9

CTC-based:
DeepMotion3D-CTC - - - - - - - - - - - -

Table 5.15 – MAE and correlation coefficient when the source network was trained on all cameras
but one and tested on the remaining one. Adaptation is done using equalized distributions. Grayed
columns contain the results before domain adaptation. We report the accuracies without oracle
information on top of the new ones (in between parenthesis) and add a color code as before. A green
cell means that the results improve on both the source accuracy and the one obtained from the vanilla
adaptation, an orange cell means that the results only improve on one of the two values.

We now analyse the results when grouping the cameras by orientation (i.e looking at the
rear or front of vehicles). Table 5.16 regroups the results for the cameras looking at the rear
of the vehicles and Table 5.17 regroups the results for the cameras looking at the front of
the vehicles. Results for the outgoing traffic are first detailed. Again, the accuracy improves
for all the target cameras (except for the CTC-based architecture which once again behaves
poorly). Moreover, the MAE on all the target cameras is lower than the target value of 1.
Similarly, the correlation coefficients are all equal or above 0.8. Then, Table 5.17, shows that
all the results on the target camera improve. In particular, all the correlation coefficients are
equal or above the targeted threshold. However, on the target cameras, 3 adaptations out
of 4 produce with MAE values above 1. Moreover, on the source camera, for architecture
DeepMotion3D we see a worsening of the results. Given that only two cameras are used and
that, one of them (E72.722Y 2) is outside and had shown the worst adaptation accuracy on
previous experiments, the results tend to advocate against the addition of outside cameras
to training sets.

5.3.3 Synthesis and perspectives

Domain adaptation using the DeepJDOT framework is a complex task that requires to meet a
few prior assumptions. We have shown that one requirement of the method is the similarity
between the source and target output distributions. In case of discrepancy between these
distributions source and target, the samples are wrongly matched, leading to poor accuracy.

Based on oracle information, domain adaptation using DeepJDOT can be largely im-
proved closing the estimation accuracy gap between annotated and unseen cameras. Spe-
cifically, using camera recordings with identical orientation seems to perform best. Such
results are extremely encouraging as they show that, when adapted with carefully selected
data, the proposed regression methods can be used to estimate traffic flow for any tunnel’s
camera setting.

While obtaining oracle information might seem to be impossible, simple solutions might
be accessible. Figure 5.7 suggest that the distribution of the flow rate values roughly follows

122

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

Source Target
Average E72.433F3 E73.332A4 E73.531M3

Regression-based:
(0.620.9) (1.180.9) (1.080.6) (0.800.9)

DeepMotionCLS 0.590.9 0.600.9 2.950.8 0.780.9 1.000.7 0.830.8 1.480.8 0.580.9

(0.650.9) (1.300.8) (0.810.8) (0.940.8)
DeepMotion3D 0.670.9 0.640.9 2.740.8 0.990.9 1.970.8 0.800.8 1.600.7 0.660.9

CTC-based:
(0.630.9) (3.460.5) (1.490.5)

DeepMotion3D-CTC 0.630.9 0.630.9 3.670.4 3.460.4 - - 2.150.4 1.200.6

Table 5.16 – MAE when only using the cameras looking at outgoing traffic. The source models were
trained on two cameras and the remaining one is used as target domain. The correlation coefficients
between the real and predicted data are given as exponent to the MAE values. We report the accuracies
without oracle information on top of the new ones (in between parenthesis). A green cell means that
the results improve on both the source accuracy and the one obtained from the vanilla adaptation, an
orange cell means that the results only improve on one of the two values.

Source Target
Average E73.268Y 4 E72.722Y 2

Regression-based:
(0.830.9) (2.980.8) (2.300.7)

DeepMotionCLS 0.800.9 0.830.9 4.780.8 1.340.9 2.900.4 1.130.8

(1.010.9) (3.060.7) (2.180.8)
DeepMotion3D 0.980.9 1.120.9 4.400.6 1.280.9 1.390.6 0.770.9

CTC-based:
DeepMotion3D-CTC - - - - - -

Table 5.17 – Adaptation errors (MAE) and correlation coefficients between the real and predicted val-
ues for the two cameras looking at incoming traffic. Grayed columns are the errors before adaptation.
We report the accuracies without oracle information on top of the new ones (in between parenthesis).
A green cell means that the results improve on both the source accuracy and the one obtained from
the vanilla adaptation, an orange cell means that the results only improve on one of the two values
and a red cell means that the results are worse for the two values. Adaptation is rendered difficult
as one of the camera is placed outside and due to the large difference in lane number between the
cameras.

the fundamental diagrams of traffic flow theory (Figure 5.3), first growing linearly while in
free flow and then decreasing when the traffic is jammed. As such, two solutions leveraging
this information might be proposed to estimate the flow rate values a priori. The first solution
consists in sampling inputs at various file size and annotating the selected files. Then, given a
datapoint with a given file size, the associated flow rate value can be interpolated from close
previously sampled inputs. The second solution consists in ensuring that data are equally
distributed in the source and target domain along the various video file sizes, to equalize the
densities of each flow rate value.

5.4 Conclusion

Gathering data is a tedious and lengthy process. While, for classical image processing, various
datasets are publicly released ([Everingham et al., 2010, Lin et al., 2014]), for applications
such as traffic flow estimation, data are much more scarce. For the purpose of traffic flow
estimation we collected videos from surveillance cameras from Paris’ tunnels. The dataset
regroups recordings from five cameras for a total of 59 hours over 2 days along with the
vehicles counting produced by induction loops every 20s.

Based on that, we explore the estimation of traffic flow rate using the compressed MPEG4

123

CHAPTER 5. VEHICLE COUNTING: A REAL CASE APPLICATION

part-2 representation of the videos. For the sake, we design lightweight deep architectures
that take as input MV frames either as sequences or as tensors. We show impressive speed
gains when compared with a classical RGB detection-tracking-estimation method, while im-
proving the accuracy. However, as data are still scarce, the trained networks barely generalize
from one camera to another. Therefore, we apply domain adaptation to improve the estim-
ation quality. Nevertheless, the domain adaptation results are not consistent enough across
cameras to provide with a system that could be readily applied in real life conditions. Fi-
nally, pushing the analysis further, we experimentally show that the difficulties of adaptation
are linked to changes between the source and the target domain output distributions. We
empirically demonstrate the validity of such hypothesis, using oracle information to reduce
the discrepancies between the source and target distributions during the adaptation process.

To conclude, the current work shows that the video compressed representation in a deep
learning framework can be used for direct estimation of traffic flow parameters. However,
multiple lines of research could be explored to try to improve the present work. To improve
on the obtained results, annotation of more a diverse and larger dataset is paramount so as
to consolidate and robustify the quality of the estimations. Furthermore, only the estimation
of q is studied. However, we also collected the occupancy values. Estimation of such values
is an interesting challenge that may require to modify the proposed approach. Indeed, as
the o values soar when the vehicles are immobile, the MVs might not be sufficient for proper
estimation. Two interesting lines of work to this problem are to add residual information or
to consider subsequent datapoints dependent from one another.

124

Conclusion and Perspectives

Conlusion

We have addressed the challenge of learning deep vision networks using compressed im-
ages/videos. Specifically, we have tackled object detection in JPEG images and object count-
ing from compressed MPEG4 part-2 videos, two tasks paramount to Actemium, a tech com-
pany in road surveillance. The main goal is to attain fast and lightweight networks which
training departs from the use of classical RGB image/video representations, and which infer-
ence time of memory requirements may be suitable for real time surveillance of road traffic.

In chapter 3, we propose object detection networks using DCT coefficients issued from
the JPEG representation as input. We demonstrate that a frequency representation can
be used to carry out a spatial task. While carrying object detection in such space may
seem counterintuitive, the tiled representation of the JPEG compression can be leveraged
by the detection networks to locate the objects within the compressed images. Moreover,
we empirically demonstrate that only part of the image information is required to produce
accurate detections. Indeed, half of the DCT coefficients (in the high frequencies), as well as
the color information, can be dropped without affecting on the detection accuracy. This lead
to detection models as accurate as their RGB counterpart but ×1.7 faster. These results are
shown to be consistent across multiple datasets, both academical (Pascal VOC [Everingham
et al., 2010] and MS-COCO [Lin et al., 2014]) and industrial (road tunnel images). These
results tend to indicate that the vast majority of the object detection literature might be
based on an over-informative input representation (RGB).

Chapters 4 and 5 tackle the task of flow rate estimation from compressed MPEG4 part-
2 videos. The task is reminiscent of object counting in videos using solely motion vectors
that characterize moving objects across video frames. The main issues are related to varying
object scales and camera settings (orientation, illumination, occlusion, etc.). For the sake, we
contribute two datasets: a synthetic one build upon MNIST and a real world dataset collected
from 5 road tunnels’ cameras during two days. Based on these datasets, we demonstrate
the possibility to estimate the flow rate using lightweight deep neural networks. We show
speed up gains up to ×3200, while improving the accuracy, when compared with a classical
detection-tracking-estimation method. However, we also highlight limitations in regard of
the generalization capabilities of the proposed deep models. Because of variability in the
camera settings, such a fact may hinder the effectiveness of the networks when deployed
for road surveillance. To circumvent this problem, we investigate adaptation of the learned
deep models to unannotated cameras, show the limitations of the method and demonstrate,
using oracle information, that such limitations are due to discrepancies between the output
distributions of the source and target domains.

In the thesis, we highlight the numerous advantages of rethinking existing methods to-
wards a usage based on the compressed representation of data. In particular, we show the ad-
vantages of such approach for both image (object detection) and video (flow rate estimation)
processing. We display impressive speed gains and bandwidth reduction while maintaining
satisfactory accuracy. This approach, based on data pruning, is opposite to the mainstream
deep learning way of tackling problems. Deep learning allows to learn the feature extraction

125

Conclusion and Perspectives

step, and, consequently, many have been considering the input fixed and have focused their
attention on the models. However, through the experiments carried out in the thesis, we
demonstrate twice over that impressive gains can be attained by trimming off unnecessary
information. Such findings echo with a recent push from a part of the deep learning com-
munity to consider a more data-centric approach4. As some consider improving the datasets
to challenge and improve the accuracy of the existing architectures, another approach would
be to consider rethinking the inputs themselves to lighten the overall computation costs.

Perspectives

In chapter 3, we have empirically demonstrated that images contain superfluous information.
Notably, the Cb and Cr channels, as well as the high frequency components in the DCT
representation, are not required to provide with accurate object detections. However, during
the experiments, we manually removed the high frequency coefficients at detection time. It
would be more beneficial to learn the filtering operation during the training stage. This
would allow to provide with the optimal number of DCT coefficients to remove, in order to
minimize the bandwidth requirements while keeping the best accuracy. Such filter could be
implemented using gates (e.g. similar to the ones used in ConvLSTM [Shi et al., 2015]) and
weights regularization on gates linked with high frequency inputs.

In chapter 4 and 5, we have tackled the problem of flow rate estimation from compressed
MPEG4 part-2 videos recording. Looking at the literature, it is obvious that the lack of
reference datasets have been stalling the development of such new methods. We believe that
the first and foremost task to be carried is the creation of a large reference dataset, so as to
provide with a unified benchmark between the existing flow estimation methods. Although
we come up with an interesting real-life dataset, the amount of collected data is far from
enough to thoroughly evaluate proposed solutions. As diversity in data is paramount to deep
learning, new annotation campaigns should be considered. Notably, a peculiar focus should
be brought to increasing the number of available cameras, as well as the number of available
hours per cameras.

Regarding the usage of compressed video representation for flow estimation, while we have
addressed the usage of MV frames, we do not use the information available in the residual
frames. However, such information has been used to filter out unreliable MVs [Yu et al., 2006].
The intuition being that vehicles’ coefficients distribution differs from the road one, therefore
providing with an easy way to remove MVs not tied to a vehicle. As such, combining MVs
with residual frames may likely help the network focus on relevant information. Moreover,
Yu et al. [2006] also show that only a few of the low frequency coefficients are required to
perform accurate vehicle/road binary classification. Therefore, there is a huge potential for
providing solutions that are fast, require few computation resources and little bandwidth, by
considering adding only these coefficients to the MV inputs.

Finally, regarding the CTC-based architectures, even if we did not succeed to make them
efficient in all configurations, promising results for some setups make us believe that the
approach may yield great potential. One of the main limitation faced was the fixed number
of outputs. Looking at the recent literature on image processing, such issue could be solved
using recent and efficient models such as transformers. For instance, Carion et al. [2020]
propose an object detection network that can output a varying number of objects, not tied a
priori to a specific position. Adapting such architecture to output a varying number of flows
would allow to solve the issue. If successful, such method for flow analysis could potentially
be applied on a broad set of flow related problems, where exact annotation is tedious and
difficult to obtain.

In the end, given the work proposed in the thesis as well as the perspectives, we trust
that using the compressed representation of the data can provide with considerable resources

4https://https-deeplearning-ai.github.io/data-centric-comp/

126

https://https-deeplearning-ai.github.io/data-centric-comp/

Conclusion and Perspectives

savings. In a context where global warming is an ever more pressing issue, we hope that such
approaches can become useful tools for the drastic energy consumption reduction challenges
that are to come.

127

Conclusion and Perspectives

128

Appendix A

CTC: Computation of the forward
and backward variables

We seek to compute the two variables α and β used in the computation of the CTC loss.
Only the computation of the α variable is visually explained as the same underlying logic
is applied to compute β. Formally, given the mapping B (as reminder: B(−TOO − O−) =
B(−T −O −OO) = TOO), α is recursively computed as:

αt(s) =
{

(αt−1(s) + αt−1(s− 1))ytl′s if l’s = blank or l’s−2 = l’s
(αt−1(s) + αt−1(s− 1) + αt−1(s− 2))ytl′s otherwise.

(A.1)

In equation Equation A.1, color matching Figure A.1 were used for better understanding.

_

0

0

0

0

0

T

O

O

_

_

_ 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

t

1 4 5 6 732

1
4

5
6

7
3

2

s

Figure A.1 – Representation of all possible forward paths. Colors were used to highlight the two
different computation of nodes.

I

APPENDIX A. CTC: COMPUTATION OF THE FORWARD AND BACKWARD
VARIABLES

Noticing that there are only two possible starts, we get the following initialization:

α1(1) = y1
b ,

α1(2) = y1
l′1 ,

α1(s) = 0, ∀s > 2.
(A.2)

Note that probabilities for symbols impossible to reach with a valid path are set to 0. Looking
at the end of the figure, we see that the probability of l can be computed as:

p(l|x) = αT (|l’|) + αT (|l’| − 1). (A.3)

Finally, we further introduce the backward variable β as:

βT (|l’|) = yTb

βT (|l’| − 1) = yTl′|l′|

βT (s) = 0, ∀s < |l’| − 1
(A.4)

βt =
{

(βt+1(s) + βt+1(s+ 1))ytl′s if l’s = blank or l’s−2 = l’s
(βt+1(s) + βt+1(s+ 1) + βt+1(s+ 2))ytl′s otherwise

(A.5)

II

Appendix B

Object detection in JPEG images

III

A
PPEN

D
IX

B
.

O
B

JEC
T

D
ET

EC
T

IO
N

IN
JPEG

IM
A

G
ES

2015

2016

2017

2018

2014

SSD,
Liu et al. [2016]YOLO,

Redmon et al. [2016]

YOLOv2,
Redmon and Farhadi [2017]

YOLOv3,
Redmon and Farhadi [2018]

R-CNN,
Girshick et al. [2014]

Fast R-CNN,
Girshick [2015]

Faster R-CNN,
Ren et al. [2015]

Mask R-CNN,
He et al. [2017]

RetinaNet,
Lin et al. [2017b]

SPP,
He et al. [2014]

CoupleNet,
Zhu et al. [2017b]

RefineDet
Zhang et al. [2018]

SNIPER,
Singh et al. [2018]CornerNet,

Law and Deng [2018]
2019

ExtremeNet,
Zhou et al. [2019] InterTwiner,

Li et al. [2019a]
CenterNet,

Duan et al. [2019]

CBNet,
Liu et al. [2020a]

EfficientDet,
Tan et al. [2019]

NAS-FPN,
Ghiasi et al. [2019]

SpineNet,
Du et al. [2020]

YOLOv4,
Bochkovskiy et al. [2020]

2020

DetectoRS,
Qiao et al. [2020]

Scaled-YOLOv4,
Wang et al. [2021]

FPN-based networks

Two-shots Detectors

One-shot Detectors

R-FCN,
Dai et al. [2016b]

MNC,
Dai et al. [2016a]

DSSD,
Fu et al. [2017]

FPN,
Lin et al. [2017a]

No Prior
Cascade R-CNN,

Cai and Vasconcelos [2018]

Bag of Freebies,
Zhang et al. [2019]

RepPoints,
Yang et al. [2019]

Learned architectures

MatrixNet,
Rashwan et al. [2019]

TridentNet,
Li et al. [2019b]

RepPoints v2,
Chen et al. [2020]

CPN,
Duan et al. [2020]

No Prior

MobileNet,
Howard et al. [2017]

MobileNetV2,
Sandler et al. [2018]

MobileNetV3,
Howard et al. [2019]

DETR,
Carion et al. [2020]

Transformer-based

Deformable DETR,
Zhu et al. [2020]

2021
ViT,

Dosovitskiy et al. [2021]
Swin,

Liu et al. [2021]

Figure B.1 – Evolution of the detection architectures through time.

IV

A
PPEN

D
IX

B
.

O
B

JEC
T

D
ET

EC
T

IO
N

IN
JPEG

IM
A

G
ES

Table B.1 – Features of the proposed detection networks. A * indicates that the layer is used for boxes prediction. The lines are arbitrary and do not represent the
shape of the layers. Note that LC-RFA-thinner is skipped as it is a variation of the LC-RFA model.

SSD Liu et al. [2016] SSD DCT SSD DCT RFA SSD DCT-deconv SSD ResNet SSD LC-RFA SSD Deconvolution-RFA
(reference: SSD) (reference: SSD) (reference: SSD) (reference: SSD) (reference: SSD ResNet) (reference SSD ResNet)

RGB (300,300,3) Y (38,38,64) Cb, Cr (19,19,128) Y (38,38,64) Cb, Cr (19,19,128) Y (38,38,64) Cb, Cr (19,19,128) RGB (300,300,3) Y (38,38,64) Cb, Cr (19,19,128) Y (38,38,64) Cb, Cr (19,19,128)
C11, C12
P1 C(64,7,2)
C21, C22 BN, R Deconv(28, 28, 128)
P2 M(3,2) Concat(39,39,192) - - - -
C31, C32, C33 BN Deconv(38,38,128) CB2(s=1) BN,CB4(k=1,s=1) CB4(k=1,s=1)
P3 BN, C(256,3,1) C(324,3,1), C(324,3,1), C(324,3,1) Concat(38,38,192) - - - - IB, IB IB(k=2), IB IB(k=2), IB
C41, C42, C*

43 C41, C42, C*
43 C(324,3,1), C(324,3,1), C(324,3,1)* BN, C41, C42, C*

43 CB3 CB3 ←
P4 P4 BN P4 BN P4 IB, IB, IB* IB, IB, IB*

Concat - - - - Concat - - - - CB3 BN, CB3(k=1, s=1)
C51, C52, C53 ← ← ← CB4 Concat - - - -
P5 IB, IB, IB, IB, IB ←
fc6, fc7* CB5(s=1), IB, IB, C61
C61, C*

62 C*
62

C71 ←
C*

72
C81, C*

82
C91, C*

92

Legend
RGB RGB pixel input Deconv Deconvolution with 64 output

channels, filter size 2, stride 2.
Separate deconvolution layers
are applied to Cb and to Cr,
resulting in 128 total output
channels

Y Y channel DCT input BN BatchNormalization
Cb, Cr Cb and Cr channel DCT input R Relu
Cij J-th convolution layer of the

I-th block in the original SSD
architecture

CBn ConvBlock stage n, with num-
ber of channels as in original
ResNet-50 paper, kernel size
= 3 and stride = 2 unless spe-
cified otherwise.

Pi Pooling layer of the I-th block
in the original SSD architec-
ture

IB IdentityBlock, with number of
channels matched to preced-
ing CB layer (as in ResNet-50)

C Convolution(channels, filter
size, stride)

M MaxPooling(pool size, stride)

Concat Channel wise concatenation ← Layers after this point are the
same as reference

- - - - Channel is being concaten-
ated

* Layer is used for boxes predic-
tion

V

APPENDIX B. OBJECT DETECTION IN JPEG IMAGES

(a) 64 coefficients kept (b) 32 coefficients kept (c) 16 coefficients kept (d) 8 coefficients kept

Figure B.2 – Detection performances (SSD DCT) on Actemium dataset depending on the number of
DCT coefficients kept.

VI

Appendix C

Flow rate estimation: Moving
Digits

VII

APPENDIX C. FLOW RATE ESTIMATION: MOVING DIGITS

Network Source Angle 0 45 90 135 180 225 270 315

D
ee
pM

ot
io
nC

LF

0 0.13 3.14 3.66 1.45 0.68 2.44 3.21 1.91
45 2.56 0.17 3.60 3.03 0.70* 0.56* 3.25 3.53
90 3.71 3.29 0.24 3.43 3.71 3.31 0.51* 3.52
135 2.86 3.36 3.19 0.18 2.18 3.15 2.95 1.24*
180 1.45* 1.53 1.57 1.57 1.47 1.51 1.50 1.49
225 3.03 1.40* 2.99 2.91 2.58 0.18 3.22 3.07
270 2.37 2.89 0.45* 3.10 1.95 2.79 0.17 3.02
315 3.62 4.03 3.76 0.83* 3.01 3.53 3.41 0.19

D
ee
pM

ot
io
nC

LS

0 0.10 3.08 2.62 2.26 1.14 2.92 2.61 2.72
45 3.40 0.19 3.07 3.51 1.29 0.57* 2.73 3.89
90 3.90 3.71 0.22 2.16 3.69 3.27 0.55* 2.50
135 3.44 4.09 3.53 0.21 2.40 3.21 3.28 1.77*
180 2.05* 2.72 3.30 3.00 0.22 2.52 3.18 3.07
225 2.72 1.80* 3.12 3.18 1.62 0.19 3.20 3.38
270 2.46 2.28 0.75* 1.92 2.09 2.33 0.10 2.45
315 2.93 3.93 3.12 0.95* 0.70* 2.98 2.53 0.15

D
ee
pM

ot
io
n3

D

0 0.19 2.49 2.55 2.74 0.45* 2.11 2.40 2.29
45 2.26 0.20 1.86 1.13* 0.99 1.47 2.28 2.91
90 1.70* 1.68* 0.25 2.01 1.34 2.13 0.76* 2.41
135 2.95 2.97 2.84 0.19 0.79 2.09 2.75 1.99
180 2.16 2.60 2.27 2.22 0.23 1.95 2.21 2.64
225 2.53 2.22 2.31 1.87 0.93 0.20 2.07 2.84
270 2.42 2.61 0.53* 2.20 2.16 2.35 0.19 1.88*
315 2.21 3.38 2.15 2.75 1.33 1.09* 1.21 0.16

D
M
3D

C
LF

-C
T
C

0 0.24 4.35 2.03* 1.74 1.02 4.33 2.69 1.46*
45 0.38* 0.21 0.96 2.44* 0.74* 2.63* 4.68 0.86
90 3.42 3.38 3.40 3.32 3.42 3.40 3.28* 3.37
135 3.42 3.38 3.40 3.32 3.42 3.40 3.28* 3.37
180 0.66 4.31 4.38 2.96 0.16 4.28 4.26 3.66
225 1.36 0.85* 8.06 7.34 2.27 0.33 7.01 6.30
270 3.42 3.38 3.40 3.32 3.42 3.40 3.28* 3.37
315 3.42 3.38 3.40 3.32 3.42 3.40 3.28* 3.37

D
ee
pM

ot
io
n3

D
-C

T
C 0 0.04 4.37 4.38 4.30 0.87 4.39 4.26 4.36

45 0.59* 0.14 1.04 0.79* 1.08* 0.84 1.24* 0.80
90 4.40 4.35 0.06 4.24 4.41 3.34* 1.34 4.29
135 3.24 4.37 4.38 0.08 4.27 4.39 4.26 0.82*
180 3.01 3.38* 3.40 3.29 2.89 3.39 3.28 3.34
225 3.42 3.38* 3.40 3.32 3.42 3.40 3.28 3.37
270 4.40 4.37 0.89* 4.30 4.41 4.39 0.02 4.36
315 3.42 3.38* 3.40 3.32 3.42 3.40 3.28 3.37

Table C.1 – Accuracy for the various orientation trainings. Networks are trained on a single orientation
and tested on all remaining others. Bold font refers to the best accuracy from the column and italic
starred to the second best. Higher errors are highlighted using a more vivid orange.

VIII

Appendix D

Traffic flow parameters estimation:
Actemium Dataset

Source Target
E72.433F3 E72.722Y 2 E73.268Y 4 E73.332A4 E73.531M3

D
ee
pM

C
LS

E72.433F 0.571.0 3.910.3 2.830.1 2.15-0.1 2.340.5

E72.722Y 1.160.9 0.910.9 2.900.4 2.73-0.2 3.180.7

E73.268Y 2.100.9 4.780.8 0.680.9 2.010.3 3.270.5

E73.332A 2.660.8 6.070.2 2.620.75 0.640.9 1.920.8

E73.531M 3.090.8 6.520.3 4.730.3 0.900.8 0.441.0

D
ee
pM

3D

E72.433F 0.630.9 3.470.7 2.090.3 1.330.6 1.030.7

E72.722Y 0.930.9 1.120.9 1.390.6 1.330.5 1.480.5

E73.268Y 2.220.9 4.400.6 0.830.9 1.740.6 2.830.6

E73.332A 2.800.8 5.670.25 1.360.6 0.740.8 1.770.8

E73.531M 2.830.8 5.220.4 2.000.4 2.240.8 0.560.9

D
ee
pM

3D
-C

T
C E72.433F 0.750.9 - - - 2.150.4

E72.722Y - 1.030.9 - - -
E73.268Y - - 1.930.7 2.000.0 -
E73.332A - - 5.43-0.1 1.910.7 -
E73.531M 3.670.4 - - - 0.510.9

Table D.1 – Generalization performances (MAE and correlation coefficient) for the networks trained on
each camera separately. For clarity of the notations, correlation coefficients are provided as exponent.
Results on other target cameras are obtained without fine-tuning. Bold results are the best results for
a given architecture. Higher errors are highlighted using a more vivid orange. Due to the limitations
of the CTC-based architecture, only the camera with a similar number of lanes as the source are
considered.

IX

APPENDIX D. TRAFFIC FLOW PARAMETERS ESTIMATION: ACTEMIUM
DATASET

Algorithm 1 Estimation of q values
1: function EstimateQT(nol, threshold) # numberOfLanes
2: currentTracks← List()
3: lostTracks← List()
4: # First two modules (detection and tracking)
5: for frame in video do
6: detections← ObjectDetection(frame)
7: UpdateTracks(currentTracks, lostTracks, detections)
8: end for
9: for track in currentTracks do
10: lostTracks.add(track)
11: end for
12: # Post-Processing
13: ClearTracks(lostTracks)
14: # Estimate q
15: for track in lostTracks do
16: if track.length < threshold then
17: GoTo next track
18: end if
19: if CrossLoop(loopPosition, track) then
20: Q← Q+ 1
21: end if
22: end for
23: Q← Q/nol
24: end function

X

APPENDIX D. TRAFFIC FLOW PARAMETERS ESTIMATION: ACTEMIUM
DATASET

Algorithm 2 Update the active tracks and save the finished ones
1: function UpdateTracks(currentTracks, lostTracks, detections)
2: if detections.length == 0 then
3: for track in currentTracks do # Update
4: track.skippedFrames← track.skippedFrames+ 1
5: track.objectBBox.append(None)
6: end for
7: for track in currentTracks do # Clean
8: if track.skippedFrames > maxFrameSkipped then
9: processedTracks.append(track)

10: currentTracks.remove(track)
11: end if
12: end for

return
13: end if
14: if currentTracks.length == 0 then
15: for detection in detections do # Update
16: track ← Track(detection)
17: currentTracks.append(track)
18: end for

return
19: end if
20: cost← centerCost(currentTracks, detections)
21: assignments← linearSumAssignment(cost)
22: detectionAssigned← List(False, detections.length)
23: trackletAssigned← List(False, currentTracks.length)
24: for row, col in assignments do
25: if cost[row, col] <= costThreshold then
26: currentTracks[row].update(detections[col])
27: detectionAssigned[col]← True
28: trackletAssigned[row]← True
29: end if
30: end for

XI

APPENDIX D. TRAFFIC FLOW PARAMETERS ESTIMATION: ACTEMIUM
DATASET

31: for i = 1 to trackletAssigned.length do
32: if nottrackletAssigned[i] then
33: currentTracks[i].skippedFrames+ = 1
34: currentTracks[i].objectBBox.append(None)
35: end if
36: end for
37: for track in currentTracks do
38: if track.skippedFrames > maxFrameSkipped then
39: processedTracks.append(track)
40: currentTracks.remove(track)
41: end if
42: end for
43: for i = 1 to detectionAssigned.length do
44: if notdetectionAssigned[i] then
45: newTrack ← Track(detections[i])
46: currentTracks.append(newTrack)
47: end if
48: end for
49: end function

Algorithm 3 Tells if a tracks crosses one of the lanes
1: function CrossLoop(loopPosition, track)
2: for i = 1 to track.length− 1 do
3: trackPosition← [track.position[i], track.position[i+ 1]]
4: if intersects(loopPosition, trackPosition) then
5: return True
6: end if
7: end for
8: return False
9: end function

XII

Bibliography

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Batten-
berg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie Chen,
Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Ke Ding,
Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang, Linxi Fan, Christopher Fougner,
Liang Gao, Caixia Gong, Awni Hannun, Tony Han, Lappi Johannes, Bing Jiang, Cai
Ju, Billy Jun, Patrick LeGresley, Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang
Li, Dongpeng Ma, Sharan Narang, Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Pren-
ger, Sheng Qian, Zongfeng Quan, Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang,
Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang
Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan, and
Zhenyao Zhu. Deep speech 2 : End-to-end speech recognition in english and mandarin. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd Inter-
national Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 173–182, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
http://proceedings.mlr.press/v48/amodei16.html.

Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé. Tracking without bells and
whistles. In The IEEE International Conference on Computer Vision (ICCV), October
2019.

Marcin Bernaś. Objects detection and tracking in highly congested traffic using compressed
video sequences. In Leonard Bolc, Ryszard Tadeusiewicz, Leszek J. Chmielewski, and
Konrad Wojciechowski, editors, Computer Vision and Graphics, pages 296–303, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-33564-8.

Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and
realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP),
pages 3464–3468, 2016. doi: 10.1109/ICIP.2016.7533003.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed
and accuracy of object detection. CoRR, abs/2004.10934, 2020. URL https://arxiv.
org/abs/2004.10934.

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S. Davis. Soft-nms - im-
proving object detection with one line of code. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 5562–5570.
IEEE, 2017. ISBN 978-1-5386-1032-9. doi: 10.1109/ICCV.2017.593. URL http://doi.
ieeecomputersociety.org/10.1109/ICCV.2017.593.

Ivan Brkić, Mario Miler, Marko Ševrović, and Damir Medak. An analytical framework for
accurate traffic flow parameter calculation from uav aerial videos. Remote Sensing, 12
(22), 2020. ISSN 2072-4292. doi: 10.3390/rs12223844. URL https://www.mdpi.com/
2072-4292/12/22/3844.

XIII

http://proceedings.mlr.press/v48/amodei16.html
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.593
http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.593
https://www.mdpi.com/2072-4292/12/22/3844
https://www.mdpi.com/2072-4292/12/22/3844

BIBLIOGRAPHY

Nam Bui, Hongsuk Yi, and Jiho Cho. A vehicle counts by class framework using distinguished
regions tracking at multiple intersections. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.

Zhaowei Cai and N. Vasconcelos. Cascade r-cnn: Delving into high quality object detection.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6154–
6162, 2018.

F. W. Campbell and J. G. Robson. Application of fourier analysis to the visibility of gratings.
J Physiol, 197(3):551–566, August 1968.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV
2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I,
volume 12346 of Lecture Notes in Computer Science, pages 213–229. Springer, 2020. doi:
10.1007/978-3-030-58452-8_13. URL https://doi.org/10.1007/978-3-030-58452-8_
13.

L D. Chamain and Z Ding. Faster and accurate classification for jpeg2000 compressed images
in networked applications. ArXiv, abs/1909.05638, 2019.

M. Chang, C. Chiang, C. Tsai, Y. Chang, H. Chiang, Y. Wang, S. Chang, Y. Li, M. Tsai, and
H. Tseng. Ai city challenge 2020 – computer vision for smart transportation applications.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 2638–2647, 2020. doi: 10.1109/CVPRW50498.2020.00318.

W. Chen, C. Smith, and S. Fralick. A fast computational algorithm for the discrete cosine
transform. IEEE Trans. Commun., 25:1004–1009, 1977.

Yihong Chen, Zheng Zhang, Yue Cao, Liwei Wang, Stephen Lin, and Han Hu. Rep-
points v2: Verification meets regression for object detection. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
3ce3bd7d63a2c9c81983cc8e9bd02ae5-Abstract.html.

Y. Cho and J. Rice. Estimating velocity fields on a freeway from low-resolution videos.
IEEE Transactions on Intelligent Transportation Systems, 7(4):463–469, Dec 2006. ISSN
1524-9050. doi: 10.1109/TITS.2006.883934.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Ben-
gio. Attention-based models for speech recognition. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.
cc/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes data-
set for semantic urban scene understanding. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-task
network cascades. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3150–3158, 2016a.

XIV

https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8_13
https://proceedings.neurips.cc/paper/2020/hash/3ce3bd7d63a2c9c81983cc8e9bd02ae5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3ce3bd7d63a2c9c81983cc8e9bd02ae5-Abstract.html
https://proceedings.neurips.cc/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf

BIBLIOGRAPHY

Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett, editors, NIPS, pages 379–387, 2016b. URL http:
//dblp.uni-trier.de/db/conf/nips/nips2016.html#DaiLHS16.

Bharath B. Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas
Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain
adaptation. In European Conference in Computer Visions (ECCV), 2018.

Benjamin Deguerre, Clément Chatelain, and Gilles Gasso. Fast object detection in com-
pressed jpeg images. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
pages 333–338, 2019. doi: 10.1109/ITSC.2019.8916937.

Benjamin Deguerre, Clement Chatelain, and Gilles Gasso. Object detection in the dct domain:
is luminance the solution? In 2020 25th International Conference on Pattern Recognition
(ICPR), pages 2627–2634, 2021. doi: 10.1109/ICPR48806.2021.9412998.

Samuel Felipe dos Santos and Jurandy Almeida. Deep learning towards edge computing:
Neural networks straight from compressed data. CoRR, abs/2012.14426, 2020. URL https:
//arxiv.org/abs/2012.14426.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. ICLR, 2021.

Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan, Yin Cui, Quoc V.
Le, and Xiaodan Song. Spinenet: Learning scale-permuted backbone for recognition and
localization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11589–11598, 2020.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Centernet:
Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

Kaiwen Duan, Lingxi Xie, Honggang Qi, Song Bai, Qingming Huang, and Qi Tian. Corner
proposal network for anchor-free, two-stage object detection. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020,
pages 399–416, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58580-8.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159,
2011.

Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron Elmore, and Michael Frank-
lin. Band-limited training and inference for convolutional neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 1745–1754. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/
dziedzic19a.html.

Max Ehrlich and Larry S. Davis. Deep residual learning in the jpeg transform domain.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal
visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):
303–338, June 2010.

XV

http://dblp.uni-trier.de/db/conf/nips/nips2016.html#DaiLHS16
http://dblp.uni-trier.de/db/conf/nips/nips2016.html#DaiLHS16
https://arxiv.org/abs/2012.14426
https://arxiv.org/abs/2012.14426
http://proceedings.mlr.press/v97/dziedzic19a.html
http://proceedings.mlr.press/v97/dziedzic19a.html

BIBLIOGRAPHY

R. M. Fano. The transmission of information. Technical Report 65, Research Laboratory for
Electronics, MIT, Cambridge, MA, USA, 1949.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity, 2021.

Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C. Berg. DSSD :
Deconvolutional single shot detector. CoRR, abs/1701.06659, 2017. URL http://arxiv.
org/abs/1701.06659.

Yuan Hu Fu, Hichem Sahli, Xing Fa Dong, and Jian Wang. A high efficient system for
traffic mean speed estimation from mpeg video. Artificial Intelligence and Computational
Intelligence, International Conference on, 3:444–448, 01 2009. doi: 10.1109/AICI.2009.358.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193–202,
1980.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. Learning to forget:
Continual prediction with lstm. Neural Comput., 12(10):2451–2471, October 2000.
ISSN 0899-7667. doi: 10.1162/089976600300015015. URL https://doi.org/10.1162/
089976600300015015.

Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V. Le. Nas-fpn: Learning scal-
able feature pyramid architecture for object detection. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 7029–7038, 2019.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), volume 00, pages 580–587, June 2014. doi: 10.1109/CVPR.
2014.81. URL https://ieeexplore.ieee.org/abstract/document/6909475/.

Ross Girshick. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), ICCV ’15, page 1440–1448, USA, 2015. IEEE Computer Society.
ISBN 9781467383912. doi: 10.1109/ICCV.2015.169. URL https://doi.org/10.1109/
ICCV.2015.169.

Shreyank N. Gowda, Marcus Rohrbach, and Laura Sevilla-Lara. SMART frame selection for
action recognition. CoRR, abs/2012.10671, 2020. URL https://arxiv.org/abs/2012.
10671.

P Goyal, P Dollár, R B. Girshick, P Noordhuis, LWesolowski, A Kyrola, A Tulloch, Y Jia, and
K He. Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR, abs/1706.02677,
2017. URL http://arxiv.org/abs/1706.02677.

Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural
networks. In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pages 1764–1772, Bejing, China, 22–24 Jun 2014. PMLR. URL http://proceedings.
mlr.press/v32/graves14.html.

Alex Graves, Santiago Fernández, and Faustino Gomez. Connectionist temporal classification:
Labelling unsegmented sequence data with recurrent neural networks. In In Proceedings of
the International Conference on Machine Learning, ICML 2006, pages 369–376, 2006.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 6645–6649, 2013. doi: 10.1109/ICASSP.2013.6638947.

XVI

http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://ieeexplore.ieee.org/abstract/document/6909475/
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://arxiv.org/abs/2012.10671
https://arxiv.org/abs/2012.10671
http://arxiv.org/abs/1706.02677
http://proceedings.mlr.press/v32/graves14.html
http://proceedings.mlr.press/v32/graves14.html

BIBLIOGRAPHY

Klaus Greff, Rupesh K. Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE Transactions on Neural Networks
and Learning Systems, 28(10):2222–2232, 2017. doi: 10.1109/TNNLS.2016.2582924.

L. Gueguen, A. Sergeev, B. Kadlec, R. Liu, and J. Yosinski. Faster neural networks
straight from jpeg. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 3933–3944. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7649-faster-neural-networks-straight-from-jpeg.pdf.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE CVPR, pages 770–778, June 2016. doi: 10.1109/CVPR.2016.90.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in
deep convolutional networks for visual recognition. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 346–361,
Cham, 2014. Springer International Publishing. ISBN 978-3-319-10578-9.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2980–2988, 2017. doi: 10.
1109/ICCV.2017.322.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions. CoRR, abs/1704.04861, 2017. URL http://arxiv.org/abs/1704.04861.

Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan,
Grace Chu, Vijay Vasudevan, Yukun Zhu, Ruoming Pang, Hartwig Adam, and Quoc Le.
Searching for mobilenetv3. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1314–1324, 2019. doi: 10.1109/ICCV.2019.00140.

David Huffman. A method for the construction of minimum redundancy codes. Proceedings
of the Institute of Radio Engineers, 40(9):1098–1101, 1952. ISSN 0096-8390. doi: https:
//doi.org/10.1109/jrproc.1952.273898.

T Ide, T Katsuki, T Morimura, and R Morris. City-wide traffic flow estimation from a limited
number of low-quality cameras. IEEE Transactions on Intelligent Transportation Systems,
pages 1–10, 08 2016. doi: 10.1109/TITS.2016.2597160.

LH Immers and S Logghe. Traffic flow theory. Faculty of Engineering, Department of Civil
Engineering, Section Traffic and Infrastructure, Kasteelpark Arenberg, 40(21), 2002.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal
of Basic Engineering, 82(1):35, 1960. doi: 10.1115/1.3662552. URL http://dx.doi.org/
10.1115/1.3662552.

Christian Kas, Mathieu Brulin, Henri Nicolas, and Christophe Maillet. Compressed do-
main aided analysis of traffic surveillance videos. In 2009 Third ACM/IEEE Inter-
national Conference on Distributed Smart Cameras (ICDSC), pages 1–8, 2009. doi:
10.1109/ICDSC.2009.5289345.

Ruimin Ke, Zhibin Li, Sung Kim, John Ash, Zhiyong Cui, and Yinhai Wang. Real-time
bidirectional traffic flow parameter estimation from aerial videos. IEEE Transactions on
Intelligent Transportation Systems, 18(4):890–901, 2017. doi: 10.1109/TITS.2016.2595526.

XVII

http://papers.nips.cc/paper/7649-faster-neural-networks-straight-from-jpeg.pdf
http://papers.nips.cc/paper/7649-faster-neural-networks-straight-from-jpeg.pdf
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552

BIBLIOGRAPHY

Ruimin Ke, Zhibin Li, Jinjun Tang, Zewen Pan, and Yinhai Wang. Real-time traffic flow
parameter estimation from uav video based on ensemble classifier and optical flow. IEEE
Transactions on Intelligent Transportation Systems, 20(1):54–64, 2019. doi: 10.1109/TITS.
2018.2797697.

Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–954, 1960.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6980.

Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J.
Inman. 1d convolutional neural networks and applications: A survey. Mechanical Sys-
tems and Signal Processing, 151:107398, 2021. ISSN 0888-3270. doi: https://doi.org/10.
1016/j.ymssp.2020.107398. URL https://www.sciencedirect.com/science/article/
pii/S0888327020307846.

Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. The highd dataset:
A drone dataset of naturalistic vehicle trajectories on german highways for validation of
highly automated driving systems. In 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), pages 2118–2125, 2018. doi: 10.1109/ITSC.2018.8569552.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 (canadian institute
for advanced research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

H. W. Kuhn and Bryn Yaw. The hungarian method for the assignment problem. Naval Res.
Logist. Quart, pages 83–97, 1955.

Amit Kumar, Pirazh Khorramshahi, Wei-An Lin, Prithviraj Dhar, Jun-Cheng Chen, and
Rama Chellappa. A semi-automatic 2d solution for vehicle speed estimation from mon-
ocular videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2018.

Ichraf Lahouli, Zied Chtourou, Mohamed Ali Ben Ayed, Robby Haelterman, Geert De Cub-
ber, and Rabah Attia. Pedestrian detection and trajectory estimation in the compressed do-
main using thermal images. In Dominique Bechmann, Manuela Chessa, Ana Paula Cláudio,
Francisco H. Imai, Andreas Kerren, Paul Richard, Alexandru C. Telea, and Alain Trémeau,
editors, Computer Vision, Imaging and Computer Graphics Theory and Applications - 13th
International Joint Conference, VISIGRAPP 2018, Funchal, Madeira, Portugal, January
27-29, 2018, Revised Selected Papers, volume 997 of Communications in Computer and
Information Science, pages 212–227. Springer, 2018. doi: 10.1007/978-3-030-26756-8_10.
URL https://doi.org/10.1007/978-3-030-26756-8_10.

Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings of
the European Conference on Computer Vision (ECCV), September 2018.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:
//yann.lecun.com/exdb/mnist/.

XVIII

http://arxiv.org/abs/1412.6980
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.sciencedirect.com/science/article/pii/S0888327020307846
http://www.cs.toronto.edu/~kriz/cifar.html
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1007/978-3-030-26756-8_10
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY

Gwang-Gook Lee, Byeoung-su Kim, and Whoi-Yul Kim. Automatic estimation of pedestrian
flow. In 2007 First ACM/IEEE International Conference on Distributed Smart Cameras,
pages 291–296, 2007. doi: 10.1109/ICDSC.2007.4357536.

F. Li, Fatih Porikli, and Xiaokun Li. Traffic congestion estimation using hmm models without
vehicle tracking. In In IEEE Intelligent Vehicle Symposium, pages 188–193, 2004.

Hongyang Li, Bo Dai, Shaoshuai Shi, Wanli Ouyang, and XiaogangWang. Feature intertwiner
for object detection. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019a. URL https:
//openreview.net/forum?id=SyxZJn05YX.

Jinlong Li, Zhigang Xu, Lan Fu, Xuesong Zhou, and Hongkai Yu. Domain adaptation
from daytime to nighttime: A situation-sensitive vehicle detection and traffic flow para-
meter estimation framework. Transportation Research Part C: Emerging Technologies,
124:102946, 2021. ISSN 0968-090X. doi: https://doi.org/10.1016/j.trc.2020.102946. URL
https://www.sciencedirect.com/science/article/pii/S0968090X20308433.

Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhao-Xiang Zhang. Scale-aware trident net-
works for object detection. In 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 6053–
6062. IEEE, 2019b. doi: 10.1109/ICCV.2019.00615. URL https://doi.org/10.1109/
ICCV.2019.00615.

Z. Li and F. Zhou. FSSD: feature fusion single shot multibox detector. CoRR, abs/1712.00960,
2017. URL http://arxiv.org/abs/1712.00960.

Tsung-Yi Lin, M. Maire, Serge J. Belongie, James Hays, P. Perona, D. Ramanan, Piotr
Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 936–944, 2017a. doi:
10.1109/CVPR.2017.106.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In 2017 IEEE International Conference on Computer Vision (ICCV),
pages 2999–3007, 2017b. doi: 10.1109/ICCV.2017.324.

Zachary Chase Lipton. A critical review of recurrent neural networks for sequence learning.
CoRR, abs/1506.00019, 2015. URL http://arxiv.org/abs/1506.00019.

Christian J. van den Branden Lambrecht (eds.) Lisa J. Croner, Thomas Wachtler (auth.).
Vision Models and Applications to Image and Video Processing. Springer US, 1 edition,
2001. ISBN 978-1-4419-4905-9,978-1-4757-3411-9.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-
Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling, editors, ECCV (1), volume 9905 of Lecture
Notes in Computer Science, pages 21–37. Springer, 2016. ISBN 978-3-319-46447-3. URL
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16.

Yudong Liu, Yongtao Wang, Siwei Wang, Tingting Liang, Qijie Zhao, Zhi Tang, and Haibin
Ling. Cbnet: A novel composite backbone network architecture for object detection. In
AAAI, 2020a.

XIX

https://openreview.net/forum?id=SyxZJn05YX
https://openreview.net/forum?id=SyxZJn05YX
https://www.sciencedirect.com/science/article/pii/S0968090X20308433
https://doi.org/10.1109/ICCV.2019.00615
https://doi.org/10.1109/ICCV.2019.00615
http://arxiv.org/abs/1712.00960
http://arxiv.org/abs/1506.00019
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16

BIBLIOGRAPHY

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. CoRR,
abs/2103.14030, 2021. URL https://arxiv.org/abs/2103.14030.

Zhongji Liu, Wei Zhang, Xu Gao, Hao Meng, Xiao Tan, Xiaoxing Zhu, Zhan Xue, Xiaoqing
Ye, Hongwu Zhang, Shilei Wen, and Errui Ding. Robust movement-specific vehicle counting
at crowded intersections. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2020b.

Shao-Yuan Lo and Hsueh-Ming Hang. Exploring semantic segmentation on the dct rep-
resentation. In Proceedings of the ACM Multimedia Asia, MMAsia ’19, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450368414. doi:
10.1145/3338533.3366557. URL https://doi.org/10.1145/3338533.3366557.

C. Löffler, A. Ligtenberg, and G. Moschytz. Practical fast 1-d dct algorithms with 11 mul-
tiplications. International Conference on Acoustics, Speech, and Signal Processing,, pages
988–991 vol.2, 1989.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3431–3440, 2015. doi: 10.1109/CVPR.2015.7298965.

David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vision, 60(2):91–110, November 2004. ISSN 0920-5691. doi: 10.1023/B:VISI.0000029664.
99615.94. URL http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94.

Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an applic-
ation to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’81, page 674–679, San Francisco, CA, USA, 1981. Morgan
Kaufmann Publishers Inc.

K.P. Mbonye and F.P. Ferrie. Attentive visual servoing in the mpeg compressed domain for
un-calibrated motion parameter estimation of road traffic. In 18th International Conference
on Pattern Recognition (ICPR’06), volume 4, pages 908–911, 2006. doi: 10.1109/ICPR.
2006.281.

Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:127–147, 1943.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie Royale,
1781.

Milind Naphade, David C. Anastasiu, Anuj Sharma, Vamsi Jagrlamudi, Hyeran Jeon, Kaikai
Liu, Ming-Ching Chang, Siwei Lyu, and Zeyu Gao. The nvidia ai city challenge. In Prof.
SmartWorld, Santa Clara, CA, USA, 2017.

Milind Naphade, Ming-Ching Chang, Anuj Sharma, David C. Anastasiu, Vamsi Jagarlamudi,
Pranamesh Chakraborty, Tingting Huang, Shuo Wang, Ming-Yu Liu, Rama Chellappa,
Jenq-Neng Hwang, and Siwei Lyu. The 2018 nvidia ai city challenge. In Proc. CVPR
Workshops, pages 53––60, 2018.

Milind Naphade, Zheng Tang, Ming-Ching Chang, David C. Anastasiu, Anuj Sharma, Rama
Chellappa, Shuo Wang, Pranamesh Chakraborty, Tingting Huang, Jenq-Neng Hwang, and
Siwei Lyu. The 2019 ai city challenge. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, page 452–460, June 2019.

XX

https://arxiv.org/abs/2103.14030
https://doi.org/10.1145/3338533.3366557
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

BIBLIOGRAPHY

Milind Naphade, ShuoWang, David C. Anastasiu, Zheng Tang, Ming-Ching Chang, Xiaodong
Yang, Liang Zheng, Anuj Sharma, Rama Chellappa, and Pranamesh Chakraborty. The 4th
ai city challenge. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, page 2665–2674, June 2020.

Gabriel Peyré and Marco Cuturi. Computational optimal transport, 2020.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Net-
works, 12(1):145–151, 1999. URL http://dblp.uni-trier.de/db/journals/nn/nn12.
html#Qian99.

Siyuan Qiao, Liang-Chieh Chen, and Alan L. Yuille. Detectors: Detecting objects with
recursive feature pyramid and switchable atrous convolution. CoRR, abs/2006.02334, 2020.
URL https://arxiv.org/abs/2006.02334.

Abdullah Rashwan, Agastya Kalra, and Pascal Poupart. Matrix nets: A new deep ar-
chitecture for object detection. In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshops, ICCV Workshops 2019, Seoul, Korea (South), October 27-28,
2019, pages 2025–2028. IEEE, 2019. doi: 10.1109/ICCVW.2019.00252. URL https:
//doi.org/10.1109/ICCVW.2019.00252.

Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6517–6525, 2017. doi: 10.
1109/CVPR.2017.690.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR,
abs/1804.02767, 2018. URL http://arxiv.org/abs/1804.02767.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.
cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms.
American Journal of Psychology, 76:705, 1963.

O Russakovsky, J Deng, H Su, J Krause, S Satheesh, S Ma, Z Huang, A Karpathy, A Khosla,
M Bernstein, A C. Berg, and L Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
IJCV, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4510–4520, 2018. doi: 10.1109/CVPR.
2018.00474.

Samuel Felipe dos Santos, Nicu Sebe, and Jurandy Almeida. The good, the bad, and the
ugly: Neural networks straight from jpeg. In 2020 IEEE International Conference on
Image Processing (ICIP), pages 1896–1900, 2020. doi: 10.1109/ICIP40778.2020.9190741.

T. N. Schoepflin and D. J. Dailey. Algorithms for calibrating roadside traffic cameras and es-
timating mean vehicle speed. In 2007 IEEE Intelligent Transportation Systems Conference,
pages 277–283, 2007. doi: 10.1109/ITSC.2007.4357806.

XXI

http://dblp.uni-trier.de/db/journals/nn/nn12.html#Qian99
http://dblp.uni-trier.de/db/journals/nn/nn12.html#Qian99
https://arxiv.org/abs/2006.02334
https://doi.org/10.1109/ICCVW.2019.00252
https://doi.org/10.1109/ICCVW.2019.00252
http://arxiv.org/abs/1804.02767
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

BIBLIOGRAPHY

Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27
(3):379–423, 1948. URL http://dblp.uni-trier.de/db/journals/bstj/bstj27.html#
Shannon48.

H. Shi, Z. Wang, Y. Zhang, X. Wang, and T. Huang. Geometry-aware traffic flow analysis by
detection and tracking. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 116–1164, 2018. doi: 10.1109/CVPRW.2018.
00023.

Jianbo Shi and Carlo Tomasi. Good features to track. IEEE Conference on Computer Vision
and Pattern Recognition, pages 593–600, 1994.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-
chun WOO. Convolutional lstm network: A machine learning approach for precip-
itation nowcasting. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf.

Z Shou, Z Yan, Y Kalantidis, L Sevilla-Lara, M Rohrbach, X Lin, and S-F Chang. Dmc-net:
Generating discriminative motion cues for fast compressed video action recognition. CoRR,
abs/1901.03460, 2019. URL http://arxiv.org/abs/1901.03460.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015. URL http://arxiv.org/abs/1409.1556.

Bharat Singh, Mahyar Najibi, and Larry S Davis. Sniper: Efficient multi-scale train-
ing. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
166cee72e93a992007a89b39eb29628b-Paper.pdf.

Satya P. Singh, Lipo Wang, Sukrit Gupta, Haveesh Goli, Parasuraman Padmanabhan, and
Balázs Gulyás. 3d deep learning on medical images: A review. Sensors, 20(18), 2020.
ISSN 1424-8220. doi: 10.3390/s20185097. URL https://www.mdpi.com/1424-8220/20/
18/5097.

Corey Snyder and Minh Do. Streets: A novel camera network dataset for traffic flow.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
ee389847678a3a9d1ce9e4ca69200d06-Paper.pdf.

Yaohang Sun, Zhen Liu, and Zhisong Pan. Intersection traffic flow counting based on hybrid
regression model. In 2019 IEEE International Conference on Signal, Information and Data
Processing (ICSIDP), pages 1–4, 2019. doi: 10.1109/ICSIDP47821.2019.9173285.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition,, 2016. URL http://arxiv.org/abs/
1512.00567.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6105–6114. PMLR, 09–15 Jun 2019. URL http://proceedings.
mlr.press/v97/tan19a.html.

XXII

http://dblp.uni-trier.de/db/journals/bstj/bstj27.html#Shannon48
http://dblp.uni-trier.de/db/journals/bstj/bstj27.html#Shannon48
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
http://arxiv.org/abs/1901.03460
http://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper/2018/file/166cee72e93a992007a89b39eb29628b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/166cee72e93a992007a89b39eb29628b-Paper.pdf
https://www.mdpi.com/1424-8220/20/18/5097
https://www.mdpi.com/1424-8220/20/18/5097
https://proceedings.neurips.cc/paper/2019/file/ee389847678a3a9d1ce9e4ca69200d06-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ee389847678a3a9d1ce9e4ca69200d06-Paper.pdf
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html

BIBLIOGRAPHY

Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object
detection. CoRR, abs/1911.09070, 2019. URL http://arxiv.org/abs/1911.09070.

Zheng Tang, Gaoang Wang, Hao Xiao, Aotian Zheng, and Jenq-Neng Hwang. Single-camera
and inter-camera vehicle tracking and 3d speed estimation based on fusion of visual and
semantic features. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2018.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Technical report,
International Journal of Computer Vision, 1991.

M. Tran, T. Dinh-Duy, T. Truong, V. Ton-That, T. Do, Q. Luong, T. Nguyen, V. Nguyen,
and M. N. Do. Traffic flow analysis with multiple adaptive vehicle detectors and velocity
estimation with landmark-based scanlines. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages 100–1007, 2018. doi: 10.
1109/CVPRW.2018.00021.

Roland Tusch, Felix Pletzer, Armin Krätschmer, Laszlo Böszörmenyi, Bernhard Rinner,
Thomas Mariacher, and Manfred Harrer. Efficient level of service classification for traffic
monitoring in the compressed video domain. In 2012 IEEE International Conference on
Multimedia and Expo, pages 967–972, 2012. doi: 10.1109/ICME.2012.101.

J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders. Se-
lective search for object recognition. International Journal of Computer Vision,
2013. doi: 10.1007/s11263-013-0620-5. URL http://www.huppelen.nl/publications/
selectiveSearchDraft.pdf.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/
vandermaaten08a.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Nicolas Vecoven, Damien Ernst, and Guillaume Drion. A bio-inspired bistable recurrent cell
allows for long-lasting memory. CoRR, abs/2006.05252, 2020. URL https://arxiv.org/
abs/2006.05252.

Paul A. Viola and Michael J. Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR (1), pages 511–518. IEEE Computer Society, 2001. ISBN 0-7695-1272-0.
URL http://dblp.uni-trier.de/db/conf/cvpr/cvpr2001-1.html#ViolaJ01.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4: Scaling
cross stage partial network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 13029–13038, June 2021.

S Wang, H Lu, P A. Dmitriev, and Z Deng. Fast object detection in compressed video.
CoRR, abs/1811.11057, 2018. URL http://arxiv.org/abs/1811.11057.

XXIII

http://arxiv.org/abs/1911.09070
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2006.05252
https://arxiv.org/abs/2006.05252
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2001-1.html#ViolaJ01
http://arxiv.org/abs/1811.11057

BIBLIOGRAPHY

Z Wang, X Liu, J Feng, J Yang, and H Xi. Compressed-domain highway vehicle counting
by spatial and temporal regression. IEEE Transactions on Circuits and Systems for Video
Technology, PP:1–1, 10 2017. doi: 10.1109/TCSVT.2017.2761992.

Z. Wang, X. Liu, J. Feng, J. Yang, and H. Xi. Compressed-domain highway vehicle counting
by spatial and temporal regression. IEEE Transactions on Circuits and Systems for Video
Technology, 29(1):263–274, 2019. doi: 10.1109/TCSVT.2017.2761992.

J G Wardrop. Road paper. some theoretical aspects of road traffic research. Proceedings
of the Institution of Civil Engineers, 1(3):325–362, 1952. doi: 10.1680/ipeds.1952.11259.
URL https://doi.org/10.1680/ipeds.1952.11259.

Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang Qi, Jongwoo
Lim, Ming-Hsuan Yang, and Siwei Lyu. UA-DETRAC: A new benchmark and protocol
for multi-object detection and tracking. Computer Vision and Image Understanding, 2020.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with
a deep association metric. In 2017 IEEE International Conference on Image Processing
(ICIP), pages 3645–3649, 2017. doi: 10.1109/ICIP.2017.8296962.

A. Wong, M. Shafiee, Francis Li, and Brendan Chwyl. Tiny ssd: A tiny single-shot detection
deep convolutional neural network for real-time embedded object detection. 2018 15th
Conference on Computer and Robot Vision (CRV), pages 95–101, 2018.

C-Y Wu, M Zaheer, H Hu, R. Manmatha, A J. Smola, and P Krähenbühl. Compressed video
action recognition. CoRR, abs/1712.00636, 2017. URL http://arxiv.org/abs/1712.
00636.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff
Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the
gap between human and machine translation. CoRR, abs/1609.08144, 2016. URL http:
//arxiv.org/abs/1609.08144.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in
the frequency domain. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin. Reppoints: Point set repres-
entation for object detection. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9656–9665, 2019. doi: 10.1109/ICCV.2019.00975.

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020a.

Lijun Yu, Qianyu Feng, Yijun Qian, Wenhe Liu, and Alexander G. Hauptmann. Zero-virus:
Zero-shot vehicle route understanding system for intelligent transportation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020b.

Xiao Dong Yu, Ling-Yu Duan, and Qi Tian. Highway traffic information extraction from
skycam mpeg video. In Proceedings. The IEEE 5th International Conference on Intelligent
Transportation Systems, pages 37–42, 2002a. doi: 10.1109/ITSC.2002.1041185.

XXIV

https://doi.org/10.1680/ipeds.1952.11259
http://arxiv.org/abs/1712.00636
http://arxiv.org/abs/1712.00636
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

BIBLIOGRAPHY

XiaoDong Yu, Ling-Yu Duan, and Qi Tian. Highway traffic information extraction from
skycam mpeg video. In Proceedings. The IEEE 5th International Conference on Intelligent
Transportation Systems, pages 37–42, 2002b. doi: 10.1109/ITSC.2002.1041185.

Xiaodong Yu, P. Xue, Ling yu Duan, and Q. Tian. An algorithm to estimate mean vehicle
speed from mpeg skycam video. Multimedia Tools and Applications, 34:85–105, 2006.

Shanghang Zhang, Guanhang Wu, João Paulo Costeira, and José M. F. Moura. Understand-
ing traffic density from large-scale web camera data. CoRR, abs/1703.05868, 2017. URL
http://arxiv.org/abs/1703.05868.

Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z. Li. Single-shot refinement
neural network for object detection. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4203–4212, 2018. doi: 10.1109/CVPR.2018.00442.

Zhi Zhang, Tong He, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of
freebies for training object detection neural networks. CoRR, abs/1902.04103, 2019. URL
http://arxiv.org/abs/1902.04103.

Xingyi Zhou, Jiacheng Zhuo, and Philipp Krähenbühl. Bottom-up object detection by group-
ing extreme and center points. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 850–859, 2019.

Ying Zhou, Yu Lei, Shenghui Yang, Tao Shao, Dayong Tian, and Jiao Shi. A traffic flow
estimation method based on unsupervised change detection. Multimedia Systems, pages
1–9, 2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Computer Vision (ICCV), 2017
IEEE International Conference on, 2017a.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable
DETR: deformable transformers for end-to-end object detection. CoRR, abs/2010.04159,
2020. URL https://arxiv.org/abs/2010.04159.

Yousong Zhu, Chaoyang Zhao, Jinqiao Wang, X. Zhao, Yi Wu, and H. Lu. Couplenet:
Coupling global structure with local parts for object detection. 2017 IEEE International
Conference on Computer Vision (ICCV), pages 4146–4154, 2017b.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. 2017.
URL https://arxiv.org/abs/1611.01578.

Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years: A
survey. CoRR, abs/1905.05055, 2019a. URL http://arxiv.org/abs/1905.05055.

Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years: A
survey. arXiv preprint arXiv:1905.05055, 2019b.

XXV

http://arxiv.org/abs/1703.05868
http://arxiv.org/abs/1902.04103
https://arxiv.org/abs/2010.04159
https://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1905.05055

	Contents
	Acronyms
	Glossary
	Introduction
	Context and motivation
	Data compression
	Deep learning and computer vison tasks
	Contributions
	Publications
	Outline

	Introduction
	Contexte et motivation
	Compression de données
	Apprentissage profond et traîtement d'image
	Contributions
	Publications
	Organisation

	I Background and preliminaries
	Data compression
	JPEG image compression
	Overview of the JPEG compression
	YCbCr transform
	Sub-Sampling
	Block Discrete Cosine Transform (DCT)
	Quantization
	Entropy encoding/RLE
	Conclusion

	MPEG4 part-2 video compression
	Simple Profile: General decoding pipeline
	Inverse Scan
	Inverse Quantization
	Up-sampling
	Conclusion

	Deep Learning
	Basics of deep learning
	Artificial Neural Networks
	Training ANNs
	Convolutional Neural Networks
	Recurrent Neural Networks

	Object detection
	Classical object detection formulation and learning
	One-shot vs Two-shot detection architectures
	Evaluation: mean Average Precision

	Connectionist Temporal Classification
	From network output to labelling
	Training a CTC network: loss and dynamic programming

	Conclusion

	II Contributions
	Object detection in Compressed JPEG images
	Detecting objects in images
	Object detection on RGB images
	Computer vision on compressed signals
	Synthesis

	Object detection on compressed JPEG images
	Details of the Single Shot Multibox Detector
	From RGB images to object detection in the frequency domain
	Proposed architectures

	Experiments and results
	Implementation details
	Evaluation of the classification networks
	Detection

	Conclusion

	Object Counting in MPEG4 part-2 Compressed Videos
	Estimation of flow parameters
	Tracking-based estimation
	Estimation from video stream parameters
	Datasets in the wild: traffic videos
	Summary

	End-to-end learning in the MPEG4 part-2 compressed video domain for flow rate estimation
	Problem statement
	Regression Approaches
	Temporal classification approach
	A synthetic dataset: Moving Digits
	Experiments
	Synthesis

	Domain Adaptation
	DeepJDOT
	Experiments

	Conclusion

	Vehicle Counting: A Real Case Application
	Traffic flow theory and dataset
	Definition of the usual flow measurements variables
	Actemium's Tunnel Video Dataset

	Flow rate estimation from compressed MPEG4 part-2 videos: Application to Actemium's tunnel dataset
	Baseline: Detect and Track
	Estimation from the compressed MPEG4 part-2 representation
	Domain Adaptation towards unseen cameras

	Discussion on Domain Adaptation and DeepJDOT
	The limits of domain adaptation
	Prediction with oracle
	Synthesis and perspectives

	Conclusion

	Conclusion and Perspectives
	Conlusion
	Perspectives

	CTC: Computation of the forward and backward variables
	Object detection in JPEG images
	Flow rate estimation: Moving Digits
	Traffic flow parameters estimation: Actemium Dataset

