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Abstract

Title: Impulsive and Dependent Interference in IoT Networks
(Interférence Impulsive et Dépendante dans Les Réseaux IoT)

The number of devices in wireless Internet of Things (IoT) networks is
now rapidly increasing and is expected to continue growing in the com-
ing years. To support this massive connectivity, a number of new tech-
nologies, collectively known as Low Power Wide Area Network (LPWAN),
have been developed. Many devices in LPWANs limit their transmissions
by duty cycle constraints; i.e., the proportion of time allocated for trans-
mission. For nearby wireless networks using the same time-frequency re-
sources, the increasing number of devices leads to a high level of unin-
tended signals, known as interference.

In this thesis, we characterize the statistics of interference arising from
LPWANs, with a focus on protocols related to Narrowband IoT (NB-IoT)
and emerging approaches such as Sparse Code Multiple Access (SCMA).
Such a characterization is critical to improve signal processing at the re-
ceiver in order to mitigate the interference.

We approach the characterization of the interference statistics by ex-
ploiting a mathematical model of device locations, signal attenuation, and
the access protocols of individual interfering devices. While there has been
recent work developing empirical models for the interference statistics, this
has been limited to studies of the interference power, which has limited
utility in receiver design. The approach adopted in this thesis has the dual
benefits of providing a model for the amplitude and phase statistics and
while also yielding insights into the impact of key network parameters.

The first contribution in this work is to revisit interference in a single
subcarrier system, which is widely used in current implementations of IoT
networks. A basic model in this scenario distributes interfering devices ac-
cording to a homogeneous Poisson point process. It has been long known
that the resulting interference is well approximated via an α-stable model,
rather than a Gaussian model. In this work, the α-stable model is shown via
theoretical and simulation results to be valid in a wider range of models, in-
cluding the presence of guard zones, finite network radii, and non-Poisson
point processes governing device locations.

The second contribution in this thesis is the study, for the first time,
of interference statistics in multi-carrier IoT networks, including those that
exploit NB-IoT and SCMA. Motivated by the results in the single subcar-
rier setting, a multivariate model based on α-stable marginals and copula
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theory is developed. This model is verified by extensive simulations and
further justified via a new, near-optimal, parameter estimation algorithm,
which has very low complexity.

The third part of this thesis applies the characterizations of the inter-
ference statistics to receiver design. A new design for nonlinear receivers
is proposed that can significantly outperform the state of the art in multi-
carrier IoT systems. When receivers are restricted to be linear, the optimal
structure is identified and the bit error rate characterized. Numerical re-
sults also illustrate how the average quantity of data interfering devices are
required to transmit affects the receiver performance.

Index terms —– NB-IoT, SCMA, α-stable, t-copula, linear combining,
impulsive interference, receiver design.
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Résumé

Title: Interférences impulsives et dépendantes dans les réseaux IoT

Le nombre de dispositifs dans l’Internet des objets (IoT) communiquant
sans fil est en rapide augmentation et devrait continuer à croître dans les
années à venir. Pour soutenir cette connectivité massive, un certain nom-
bre de nouvelles technologies, collectivement connu sous le nom de Low
Power Wide Area Network (LPWAN), ont été développées. Le nombre de
transmission des objets dans les LPWANs est limitée par les contraintes de
duty cycle qui fixe la proportion de temps d’occupation d’une ressource
radio. Pour des réseaux sans fil coexistant dans une même zone géo-
graphique et utilisant les mêmes ressources fréquentielles, le nombre crois-
sant d’appareils entraîne la présence fréquente de signaux non désirés par
le récepteur et connus sous le nom d’interférences.

Dans cette thèse, nous caractérisons les statistiques d’interférence dans
des LPWANs, avec un accent particulier mis sur le NB-IoT et les approches
émergentes telles que le Sparse Code Multiple Access (SCMA). Une telle
caractérisation est essentielle pour améliorer le traitement du signal au
niveau du récepteur afin d’atténuer l’impact de l’interférence.

Plusieurs facteurs influent sur les propriétés statistiques de
l’interférence : l’emplacement des dispositifs, l’atténuation des sig-
naux, les protocoles d’accès à la ressource radio. De nombreux travaux
récents développent des modèles d’interférence mais beaucoup se limitent
à la puissance ce qui n’est pas suffisant pour la conception des récepteurs.
Nous proposons dans cette thèse un modèle de l’amplitude (complexe) de
l’interférence en le liant aux principaux paramètres du réseau.

La première contribution est de réexaminer l’interférence dans une
seule dimension (par exemple une sous-porteuse), un cas largement ren-
contré dans les solutions actuelles de l’IoT. Dans ce scénario, l’hypothèse
de départ est de distribuer les dispositifs interférents selon un processus
de Poisson homogène. Il est connu depuis longtemps que l’interférence ré-
sultante est bien approximée par un modèle α-stable, plutôt qu’un modèle
gaussien. Ce modèle est étendu au cas complexe (sous-Gaussien) et con-
fronté à des hypothèses plus réalistes, notamment la présence de zones de
garde, un réseau de rayon fini et des processus non homogènes régissant
l’emplacement des appareils.

La deuxième contribution est l’étude, pour la première fois, des statis-
tiques sur les interférences dans les réseaux IoT multi-porteuses, par ex-
emple le NB-IoT ou le SCMA. Motivé par les résultats obtenus dans le cas
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d’une seule sous-porteuse, un modèle multivarié basé sur des parginales
α-stable et des relations de dépendance modélisées par des copules est pro-
posé. Ce modèle est vérifié par simulation et justifié par un nouvel algo-
rithme d’estimation des paramètres qui se révèle très proche de l’optimal
mais avec une très faible complexité.

Dans la troisième partie, les modèles d’interférence sont utilisées pour
améliorer la conception des récepteurs. Les récepteurs non linéaires
améliorent de manière significative les performances des systèmes. Si l’on
se limité à des récepteurs linéaires, il est possible d’obtenir le système op-
timal et le taux d’erreurs binaires. Les résultats illustrent également com-
ment la charge du réseau et la quantité moyenne d’information que chaque
noeud essaie de transmettre affecte les performances du récepteur.
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Notation

Vectors or matrices are denoted by bold lowercase letters and ran-
dom vectors or matrices by bold uppercase letters, respectively (e.g., x,
X).

Symbol Description
I Identity matrix
∼ has the distribution of
≈ approximate
d
= Both sides of the equality have the same distribution

Φ Point process
Rn The n-dimensional space
Rn The n-dimensional real vector space
|x| Euclidean norm
| · | Lebesgue measure
(·)T Matrix transpose
E[·] Expectation
a.s.−→ converges almost surely to
1(·) Indicator function
Γ(·) Gamma distribution
{rj} The sequence
|| · || The 2 norm
Sd−1 Unit sphere in d dimensions
O(d) d-dimenional orthogonal matrix
Re(·) take the real part of
Im(·) take the imaginary part of
Φx(·) Characteristic function
ψx(·) Log characteristic function
N(B) Number of points in the area B
sign(·) Sign function
exp{·} Exponential function

CN (µ, σ2)
Complex symmetric normal distribution with mean µ and
variance σ2

Sα(γ, β, δ)

α-stable distribution with characteristic exponent α, scale
parameter γ, symmetry parameter β and location parame-
ter δ

P(·) The probability of
Γ(rmin, rmax) An annulus with rmin and rmax

Unif{+1,−1} distributed on +1 and −1 with equal probability
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Introduction

1.1 Background

The IoT is a network where large numbers of devices are deployed, con-
nected to the internet and transmit and receive data without necessarily
human intervention. According to [Ala18], the number of IoT devices will
reach over 75 billion by the year 2025. The performance of a receiver is de-
graded by undesired signals from other devices (in the form of interference)
and thermal noise. This huge amount of devices, without doubt, will lead
to a severe interference problem.

The massive scale of IoT networks means that individual devices must
be cheap, resulting in constraints on transmit power and computational re-
sources. As such, devices are more likely to employ simple modulation and
access schemes. In addition, the proliferation of these IoT devices means
that centralized scheduling is unfeasible; and thus, it is unrealistic for them
to work together. As a consequence, random access schemes based on ei-
ther Aloha (duty cycle), e.g., Sigfox and LoRa or carrier sensing (Listen be-
fore talk) are favored. In the Long Term Evolution (LTE) network, the chan-
nel bandwidth has been divided into physical resource blocks (PRB), which
is the smallest unit of resources with 180 kHz wide in frequency and 1 slot
long in time. And orthogonal frequency-division multiplexing (OFDM) is
employed.

Previous studies have been focused on the LTE network where each
device is allocated with at least one Resource Block (RB) and transmits on
OFDM subcarriers, which does not capture the features of IoT networks, es-
pecially for the NB-IoT. In NB-IoT, a single resource block is divided into 12

subcarriers in the uplink, and a device can transmit on 1, 3, 6 or 12 of theses
subcarriers. Due to this access protocol of NB-IoT, devices are more likely
to transmit on the same subcarriers which thus leads to severe co-channel
interference. This problem also arises when non-orthogonal multiple ac-
cess (NOMA) schemes are employed.

That is, when a large number of devices operate in an uncoordinated
fashion in the IoT networks, they will occupy and transmit on the same
channel resources. In this case, the accumulative undesired signals from
other devices—i.e., the interference—is difficult to characterize. It is even
more challenging when signal processing (e.g., OFDM) is used to reduce the
impact of variations in the wireless channel or in the Sparse Code Multiple
Access (SCMA) schemes, where interfering devices utilise non-orthogonal
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time-frequency resources.
The recent Aalborg measurements [Lau+17a; Cla+20] also suggest that

the interference is non-Gaussian and exhibits impulsiveness. That is, the
probability density function (PDF) of its distribution has heavier tails, and
it is more likely to have large values. Therefore, an appropriate model for
the interference is desired.

The non-Gaussian interference impacts the system design in two as-
pects: 1) At the network level, it changes the optimization of the network
parameters such as density of devices or power allocation. This is due to the
fact that most analyses of the average throughput and coverage probabil-
ity rely on the Gaussian noise assumption. As a consequence, the capacity
has to be revisited [DF+17], as well as the network throughput. 2) At the
device level, the receiver has to be redesigned. The performance of the re-
ceiver depends on the interference statistics as the interference changes the
PDF of the received signal and thus impacts the detection methods such as
Maximum Likelihood (ML) or linear combining. What is more, because the
devices transmit on common subcarriers as in the case of NB-IoT or NOMA,
the interference is on different subcarriers is statistically dependent. Con-
sequently, standard detection algorithms based on independent and identi-
cally distributed (i.i.d.) Gaussian interference have degraded performance.
Therefore, to improve the design of signal processing in the receiver, it is
essential to characterize the interference statistics.

1.2 Motivation and challenges

The goal of our thesis is to characterize the statistics of interference and
study its impact on the receiver performance in the IoT networks. This
work is initially motivated by networks exploiting NB-IoT or SCMA but
we expect that it can be extended to more general settings. To achieve this
aim, we address the following challenges:

Interference modeling on a single subcarrier

Previous studies have proposed several models to capture the impulsive
or non-Gaussian behavior of the interference, such as Middleton Model
[Mid77; Mid99], ϵ-contaminated [Pha+03; AB07; Alh+17] or Gaussian-
mixture [GDK06]. However, those models are either complex for analyt-
ical derivation of the receiver or lack accuracy. Therefore, a more tractable
characterization of the interference is required which is of simple form and
accurate.

Interference modeling on multiple subcarriers

As we mentioned, devices overlap on multiple subcarriers in networks em-
ploying NB-IoT or SCMA. Consequently, the sets of interferers on different
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subcarriers overlap as well, which leads to statistical dependence between
interference on different subcarriers. It is difficult to derive the exact char-
acterization of the interference vector and model such dependence.

Receiver performance

Existing receiver designs tailored to Gaussian interference may have de-
graded performance in IoT networks. As a result, it is required to have
new receiver designs tailored to interference arising from IoT networks.
Besides, to study the performance, characterization of metrics such as Bit
Error Rate (BER) is necessary.

1.3 Contribution

The contribution of this thesis is described as follows.
In Chapter 2, we develop a general mathematical formalization for the

physical layer and access policy:

• The framework takes into consideration the interferers’ location fol-
lowing point processes;

• Although it is developed based on NB-IoT, this formalization is quite
generic for other IoT networks.

In Chapter 3, we focus on modeling the interference on single subcarrier
with α-stable model:

• We consider the impact of the guard-zone on the validity of α-stable
model;

• In addition to homogeneous Poisson point process (HPPP), the valid-
ity of α-stable model is also checked under quite general point pro-
cesses.

In Chapter 4, we focus on modeling the interference on multiple subcar-
riers:

• We first derive the exact joint distribution of the interference vector
under special cases;

• For the general case, we proposed a t-copula model combined with
α-stable distribution, motivated by the results in Chapter 3;

• Tailor to this model, a low complexity estimation algorithm is pro-
posed.

In Chapter 5, we study the impact of the interference on the receiver
performance.
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• Based on the results in Chapter 4, optimal linear receiver is obtained
for certain scenarios and accurate approximations for BER are de-
rived;

• Performance of different receivers are studied and compared.

1.4 Scientific publications

This section summarizes the publications, conferences and collaborations
based on work that was done during the period of Ph.D. candidature.

Journal papers

• Ce Zheng, Malcolm Egan, Laurent Clavier, Gareth W. Peters and Jean-
Marie Gorce. “A Tractable Characterization of Multivariate Heavy-
Tailed Interference Arising from Nearly Poisson Spatial Point Pro-
cesses” In: IEEE Transactions on Communications (2020-under review)

• Malcolm Egan, Laurent Clavier, Ce Zheng, Mauro Lopes de Freitas,
Jean-Marie Gorce. “Dynamic Interference in Uplink SCMA for Large-
Scale Wireless Networks without Coordination,” In: EURASIP Journal
on Wireless Communications and Networking, vol. 2018, no. 1, p. 213,
2018.

International conference papers

• Ce Zheng, Malcolm Egan, Troels Pedersen, and Jean-Marie Gorce,
“Linear Combining in Dependent α-stable Interference”, In Proc.
IEEE International Conference on Communications (ICC), pp. 1-6, 2020.

• Ce Zheng, Malcolm Egan, Troels Pedersen, and Jean-Marie Gorce,
“Copula-based interference models for iot wireless networks”, In ICC
2019-53rd IEEE International Conference on Communications, pp. 16,
2019.

French national conference papers

• Ce Zheng, Malcolm Egan, Laurent Clavier, Gareth W. Peters and Jean-
Marie Gorce. “On the Validity of Isotropic Complex α-stable Interfer-
ence Models for Interference in the IoT,” Gretsi, 2019



5

Chapter 2

A Mathematical Formulation of
IoT Networks

2.1 General context

While the number of IoT devices is continuously increasing, communica-
tion paradigms are changing. Energy consumption and cost have to remain
low and a centralized network architecture, as it was the case in cellular
networks up to the 4th generation, is no longer an option. This results in
networks with a very limited coordination, if any. In such cases, orthogo-
nal multiple access schemes are too complex to implement and interference
becomes a crucial issue.

Let us consider an area where a large number of devices are attempt-
ing to transmit some information. Among all these devices, one will be
considered as the one we want to decode, the one that transmits useful in-
formation. This specific device will be designed as the desired user. It uses
a specific time-frequency resource to transmit its information. This resource
is composed of one or several physical resource blocks (PRB). In a general
setting, the transmission of the information can require several PRBs, either
separated in time or in frequency. The quantity of information transmit-
ted on each PRB is also dependent on the way the system is defined. It
can be very few bits in the frequency hopping strategy used by Bluetooth
[Haa98; Mor02] or Time-Hopping Ultra Wideband communications [BY09]
or a complete packet as in LoRa [Mek+19], Sigfox [Sig17; LPP19] or NB-IoT
[OS16].

We define interference as the accumulation of all undesired signals
transmitted, at least partially, on the same PRBs as the desired user. A fun-
damental question—and the focus of this thesis— is then how to character-
ize the statistics of the interference. This is a non-trivial question due to the
asynchronous nature of IoT communications, the range of applications that
IoT is intended to support, and also the variety of protocols that have been
adopted.

Many works have already addressed this question, from the early works
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from Middleton [Mid77; Mid99] to more recent works dealing with stochas-
tic geometry [Sou92; IH98; Gul+10; Pin+06; PW10a; PW10b]. The detailed
state of the art is left for the following chapters. We first want to set the
right framework for the study and the underlying assumptions. These as-
sumptions must be sufficiently precise to allow for analytical studies that
will be useful in defining the systems and flexible enough to apply to many
contexts. They will form the basis for the interference characterization in
the following chapters.

FIGURE 2.1: Structure of communication system.

The physical structure of a communication system (in IoT networks) is
illustrated in Fig. 2.1. Several aspects will impact the interference properties
and have to be considered to build a significant model:

1. The physical layer of communication. Interfering devices can belong to
the same network as the desired device (intra-network interference)
or to another network (inter-network interference). This latter case
is particularly significant in Industrial, Scientific and Medical (ISM)
bands. For instance the co-existence of SigFox and LoRa is an open
question.

2. The locations of interfering devices. Indeed, the received signal strength
from an interfering device is dependent on this distance. When study-
ing the efficiency of a cellular network, a regular (hexagonal) struc-
ture was used [Gil+91; ZD97; The+02; Gol05; SC09; XZA11], this is
no longer valid with IoT networks. Indeed, in many situations de-
vices will be randomly located and this randomness has to be ac-
counted for. Even in cellular networks, when more accurate eval-
uations are needed, the hexagonal structure is no longer sufficient
[Gil+91; ABG11; NJ15]. We will choose modeling approaches that
have recently been proposed for location modeling, coming from the
large literature on networks and stochastic geometry [HG09; Hae+09;
ABG11; Hae13; Car10; WA12; BB10b; Bła+18].

3. The access protocol adopted by the interfering devices. For instance, the
first networks deployed in ISM bands like Bluetooth or WIFI are using
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a listen before talk strategy [Fre02; SSH15]. On the contrary, more
recent LPWAN are using a duty-cycle based protocol. That is, they
do not listen to the channel before transmission but are limited in the
percentage of time they can access the channel [ZZ17].

Based on these three components, we detail the input-output relation-
ship for the desired communication link in the presence of interference
induced by other IoT devices, either from the same network or from an-
other network. We attempted to have both a general framework but simple
enough to allow tractable results. As much as possible, we constrained this
work by protocols that have been either standardized (NB-IoT) or channel
access strategies that have been proposed in the literature (SCMA). We kept
the physical layer and channel model as general as possible. Given known
statistics for the interference derived in Chapter 3 and Chapter 4, this input-
output relationship provides a means of designing improved receiver archi-
tectures and analyzing metrics such as the area spectral efficiency.

2.2 Existing technologies

The main concern of this work is the Low Power Wide Area Network
(LPWAN) technology. The LPWAN is a type of wireless telecommunica-
tion wide area network designed to allow long-range communications at a
low bit rate among things. In LPWAN, scalability is a bottleneck as interfer-
ence becomes the main limitation with the low-cost, long-life devices that
are deployed. Sigfox, Lora and NB-IoT are the three leading technologies.
We are going to give their main features that justify the assumptions we
make for the communication technologies.

2.2.1 Narrowband IoT

The NB-IoT is a LPWAN standard developed by the 3rd Generation
Partnership Project (3GPP) to support the Machine Type Communication
(MTC) in the LTE networks. It operates and coexists on both licensed and
unlicensed frequency bands in the LTE network. As opposed to other LTE
technologies, where the whole physical resource (frequency band) is allo-
cated to a single user, the NB-IoT is working over only on limited frequency
bands, i.e., 180 kHz. This 180 kHz bandwidth is divided equally into 12 or
48 sub-carriers or subbands, as shown in Fig. 2.2 from [MZW17]. In the
single-tone mode, each user is allocated with one sub-carrier. In the multi-
tone mode, each user is allocated with either 3, 6 or 12 sub-carriers.

To be flexibly deployed and compatible with the LTE network, NB-IoT
keeps many LTE design features. In the uplink, it uses the Single Carrier
Frequency-Division multiple access (SC-FDMA) scheme with each tone of
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FIGURE 2.2: NB-IoT transmission modes [MZW17]: (a)
single-tone mode; (b) single-tone and multi-tone mode.

FIGURE 2.3: LoRa channel frequencies [All17].

either 3.75kHz or 15 kHz. In the downlink, it keeps the OFDM scheme with
each tone of 15 kHz. However, with 12 or 48 sub-carriers, it is impossible to
meet the increase in the number of devices since NB-IoT adopts an orthog-
onal multiple access approach. What is more, the subsequent access delay
may also become a big issue for Ultra-Reliable Low-Latency Communica-
tion (URLLC) in a burst communication scenario due to the limited num-
ber of channel resources. To tackle such a problem, a promising solution is
the NOMA where devices can partially or fully share the same sub-carriers
[Sai+13; Sha+20], such as SCMA.

2.2.2 Sigfox and LoRa

Unlike NB-IoT working on licensed LTE frequency band, Sigfox and LoRa
are working on unlicensed bands. In Europe, they both operate on ISM 868
MHz band. For Sigfox, the band is divided into 400 channels of 100 Hz
starting at 868.180 MHz and ending at 868.220 MHz, though channel 181-
219 are reserved and not used [Mar+15]. In the United States, Canada and
South America, LoRa works on ISM 915 MHz band starting at 902 MHz
and ending at 928 MHz, shown in Fig. 2.3 [All17]. For the uplink, LoRa de-
fines 64 channels numbered 0 to 63, starting at 902.3 MHz and incrementing
linearly by 200 kHz to 914.9 MHz, and 8 channels numbered 64 to 71 start-
ing at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz. In
the downlink, 8 different channels will be used, starting at 923.3MHz and
incrementing linearly by 600 kHz to 927.5MHz.

The cost of the end-device is less than 2 euros for Sigfox and between 3
to 5 euros for LoRa, much lower comparative of NB-IoT (more than 20 eu-
ros) [Mek+19]. Such low-cost devices can not afford excessive signaling and
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control overhead. As such, simple random access schemes are favored. Sig-
fox and LoRa resort to Aloha, the first and simplest multiple access scheme,
which is categorized into the grant-free systems where channel resources
are accessed without undergoing assignment [WM19]. Nevertheless, Aloha
rapidly becomes inefficient when device density increases and the collision
probability is extremely high for the massive number of devices occupy
scarce radio resources.

2.3 Physical layer

Existing LPWAN technologies face the challenge of massive connectivity
caused by the increasing number of devices with the constraint of the lim-
ited frequency resources but also, in some use cases, low latency. To address
these issues, new access schemes are required, complying with existing
standards if possible but not necessary. A promising strategy, which can
both increase the number of connected devices and keep a reduced com-
plexity, is NOMA where devices can transmit concurrently utilizing non-
orthogonal resources. However, because devices partially or fully share
the same sub-carriers, NOMA yields more severe interference. Besides, the
level of interference is not necessarily independent on different sub-carriers
(illustrated further in the sequel). To design the network, it is necessary to
predict what the interference will look like. This requires some assumptions
on the different components influencing its distribution.

Any communication system can break down into three components: the
transmitter, the receiver and the channel as illustrated in Fig. 2.1. We will
keep the physical layer description as generic as possible so that our ap-
proach can be used for very different systems and conditions.

The transmitter is a device that has a set of information to transmit.
It transforms this set into a signal that will be transmitted according to the
channel access protocol. In this work, the information source has no impact,
only the waveform that is transmitted, even though a very wide range of
modulation schemes can be considered.

In its discrete baseband representation, it is a complex vector that we
will denote by Xn,k. Indexes n and k allow identifying the resource blocks
that are used as will be described in Section 2.6. In NB-IoT and Sigfox,
devices employ Quadrature Phase-shift Keying (QPSK) modulation and
Binary Phase Shift Keying (BPSK) modulation respectively, while LoRa uses
the Chirp Spread Spectrum (CSS) modulation that spreads a narrow-band
signal over a wider channel bandwidth.

Remark 2.3.1. In the rest of the work, we will assume that all interfering devices
employ the same linear modulation scheme. However, this could be extended to
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heterogeneous networks quite easily, either by separating the contribution of each
network in a first step or by considering a weighted mixture for the statistical prop-
erties of the source resulting from the combination of the properties of each network
contributing to the interference.

Furthermore, we will assume that each device is using the same trans-
mission power. Indeed, power control is a complicated process, difficult to
implement for IoT networks. Besides, if power is adjusted, this can be taken
into account in the channel model or as a variation in the user location; and
it does not modify the framework of the study.

2.4 Channel

Three main factors are to be considered that impact the channel attenuation:
path loss, large-scale fading and small-scale fading. We use a simple and
generic expression for a given radio link from a device to a receiver located
at a distance r:

l(r) = r−
η
2 h = r−

η
2Aejθ, (2.1)

where l(r) denotes the channel gain (in amplitude) at the distance r, η is the
path-loss exponent, and h = Aejθ is the fading.

This model has a significant drawback due to l(r) tending to infin-
ity as r tends to 0. However, this will be addressed by defining a guard
zone around the receiver where no interfering devices can occupy (see Sec-
tion 2.5.4).

Remark 2.4.1. In the rest of the work, we will consider Rayleigh fading, i.e.,
h ∼ CN (0, 1). The Rayleigh fading affects the received signal with a uniformly
distributed phase θ ∼ U[0, 2π] and Rayleigh distributed amplitude. Other mod-
els can be used instead with limited modifications in most of the results. Large
scale fading (shadowing) can impact the choice of the statistical properties of h
but can also be accounted for in the spatial process of the device locations. Non-
homogeneous Poisson processes like the doubly Poisson cluster process or Matérn
hard-core process of type II (see Section 2.5.2 and Section 2.5.3) can indeed account
for the presence of some obstacles by grouping users or suppressing the presence of
them in some areas.

2.5 Interferer locations

The dependence on the distance in the signal observed by a receiving de-
vice implies that the locations of interfering devices have a large impact on
interference statistics and thus the system performance. On the other hand,
the location of IoT devices is largely unstructured. As a consequence, it
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has become increasingly popular to model the locations of IoT devices via
stochastic processes, in particular the theory of point processes [Gha+16].

In this section, we introduce models for the locations of devices known
as point processes, i.e., the mathematical models of a discrete set of points
with random locations. Specifically, we introduce three point process mod-
els that we will consider in this work: homogeneous Poisson point process,
doubly Poisson cluster point process and Matérn hard-core process of type
II. The supplementary background is provided in Appendix A.

Point process models provide a flexible means of accounting for a vari-
ety of applications; for example, the family of homogeneous Poisson point
process (HPPP)s induces device locations that are roughly independent of
each other. On the other hand, devices may exhibit similar behaviors and
group together due to human activity or network deployment. In hetero-
geneous networks, devices gather around their common access points and
are more “cohesive” in space. Therefore, point processes with attraction
are more favored such as the family of Poisson cluster processes. Besides,
devices also interact with each other due to access schemes. For example,
in Carrier-sense Multiple Access (CSMA) network, two devices close by
are usually forbidden to transmit simultaneously, which requires point pro-
cesses with repulsion. A typical model is the Matérn hard-core process of
type II where a minimum distance between two points is forced, and thus
points are more regular. In the extreme case, a lattice is obtained.

Snapshots of the aforementioned three point processes are given in
Fig. 2.4.
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FIGURE 2.4: Snapshots of three point processes over a circle
with radius of 500 m.

2.5.1 Homogeneous Poisson point process

The HPPP is the most common point process in wireless system models. It
was used to replace the regular hexagonal lattice model in cellular networks
[ABG11]. In the IoT networks, devices are more randomly and densely
distributed. What is more, many of the devices may be moving instead
of being installed in a fixed place. As such, the HPPP with the feature of
spatial randomness serves as a good model. Formally, a HPPP is defined as
follows:



12 Chapter 2. A Mathematical Formulation of IoT Networks

Definition 2.5.1. (Homogeneous Poisson point process) A point process is
homogeneous Poisson point process with density λ in R2 if

• Let N(B) denotes the number of points located within the bounded set B,
N(B) follows a Poisson distribution with mean λ|B|, i.e.,

P [N(B) = k] =
(λ|B|)k

k!
e−λ|B|; (2.2)

• If regions B1, · · · , Bn are non-overlapping, then N(Bi) are independent
random variables.

The HPPP exhibits complete spatial randomness due to this indepen-
dent property. That is there is no interaction between the points. A snap-
shot of the realization of HPPP is plotted in Fig. 2.4a.

2.5.2 Doubly Poisson cluster process

The hypothesis of HPPP may lead to inaccurate analysis. Indeed, many
causes of heterogeneity may occur. For instance, devices tend to gather to-
gether and be more clustered to some extent due to human activities. A
large amount of IoT devices can exist in hot-spot zones formed by humans,
such as business buildings and shopping malls. While outside these build-
ings, fewer devices are deployed, or in areas that are obstructed, the devices
will not be visible by a given receiver, creating some empty regions. Within
hospital complexes where patients may be grouped together, wireless wear-
ables also form clusters and send messages and medical data to the medical
personnel via a gateway at the cluster center. These networks and similar
scenarios, such as smart home or e-health, can be modeled with the Poisson
cluster process [AC18; Mek+17], which is a particular case of Neyman-Scott
cluster process [Hae+09]:

Definition 2.5.2. A Neyman-Scott cluster process is a cluster process where the
parent points form a HPPP with intensity λp and the daughter processes are i.i.d.
point processes.

If each cluster is itself a Poisson point process, the resulting process is
also called a doubly Poisson cluster process.

Definition 2.5.3. (Doubly Poisson cluster process) The doubly Poisson cluster
process is a cluster process where the parent points form a HPPP with density λp,
and each daughter cluster is an i.i.d. finite Poisson point process with density λd.

For the ease of analysis, in this thesis, we assume that each daughter
process is a HPPP with density λd restricted to a disc of radius rc. Points
from the parent HPPP are included into the daughter process. A similar
approach is also utilized in modeling heterogeneous networks where the
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parent points are kept as the base stations from the upper layer [SAD17].
Hence, the average number of points in each cluster is c = λdπr

2
c + 1. That

is

Φ =
⋃

z∈ΦP

[z+Φz] , (2.3)

where ΦP denotes the parent process following HPPP with intensity λp,
and Φz denotes the daughter point process following HPPP over the disc of
radius rc around the cluster center z with intensity λd.

Although the standard formulation of the doubly Poisson cluster pro-
cess studied in [Gul+10] does not include the parent process points, doing
so does not significantly change the interference statistics and enables the
rigorous approximation theorems in Section 3.3.

A snapshot of the realization of the doubly Poisson cluster process is
plotted in Fig. 2.4b. Compared with HPPP, points are more clustered and
grouped together.

2.5.3 Matérn hard-core process of type II

Carrier-sense Multiple Access (CSMA) is a Media Access Control (MAC)
protocol whereby a device detects the presence of the signal from another
device on the same carrier before it transmits. If there are no other sig-
nals, a transmission occurs. Otherwise, it postpones the transmission. This
guarantees that two devices close by do not transmit simultaneously, and it
reduces the collision risk. The feasibility of applications of CSMA in a IoT
network has been widely studied in recent works [Pha18; EA+19; LWK19].
The CSMA network is better modeled by Matérn hard-core process of type
II [Hae11; BBM06] where a distance of two nodes larger than a carrier-sense
range is forced.

As opposed to the cluster point process which exhibits attraction, hard-
core processes are point processes where points are forbidden to be closer
than a certain minimum distance, i.e., points repulse each other and are less
clustered compared with the Poisson point process. One significant hard-
core process is the Matérn hard-core process of type II, where the start-
ing locations of users are drawn from a HPPP, and points that violate the
minimum-distance condition are then removed. The definition of Matérn
hard-core process of type II is given as follows.

Definition 2.5.4. Starting with an underlying HPPP Φp with density λp, add to
each point x an independent random variablem(x) uniformly distributed on [0, 1],
called a mark. Flag for removal all points that have a neighbor within distance r
that has a smaller mark. Then remove all flagged points. That is

Φ
△
= {x ∈ Φp : m(x) < m(y), for all y ∈ Φp ∩ b(x, rh) \ {x}},
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where rh is the hard-core distance.

All points are removed simultaneously, so even points that are thinned
out can eliminate other points. According to [HG09], the density of Matérn
hard-core process of type II is

λ =
1− e−λpπr2h

πr2h
. (2.4)

The maximum density is achieved as λp → ∞: λ = 1
πr2h

.
A snapshot of the realization of Matérn hard-core process of type II is

plotted in Fig.2.4c. Compared with HPPP, points are more repulsive, and a
minimum distance is ensured.

2.5.4 Spatial region

The spatial region where devices are located is usually assumed to be R2.
However, practical considerations make it difficult to have a transmitter
with a very small distance from the desired receiver. This is even more un-
realistic if a CSMA approach is used because when close to the receiver,
a device should not transmit signals if its neighboring devices are active.
Consequently, it is essential to include a guard zone, i.e., a region around a
receiver where no active interferers can be located [HA07]. By setting up a
guard zone, the nearby interference is avoided to some extent. It also sup-
presses the problem induced by the channel model (see Section 2.4) where
the received power would tend to infinity if the interferer-receiver distance
is tending to zero.

The assumption of an infinite network radius is also not realistic. Nev-
ertheless, we can expect this assumption to have less impact because far
users contribute less to the cumulative interference.However, in personal
or local area network, e.g. within buildings such as shopping mall or hos-
pital complex, the transmission range is in the order of magnitude of 100
meters or 1 Km for NB-IoT networks [SZ08]. Thus, devices are grouped
within limited regions, and receivers actually experience interference from
finite-area regions. Consequently, we will include in our model the fact that
interfering devices are constrained over an annulus.

Let us consider a network of devices located according to a general point
process, denoted by Φ. These devices form interferers for a receiver located
at the origin. We introduce

• the radius of the network, rmax, the maximum distance at which an
interferer can be located, and

• the guard zone radius rmin, the minimum distance at which an inter-
ferer can be located.
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We define the annulus (see Fig. 2.5b)

Γ(rmin, rmax) = {x ∈ R2 : rmin ≤ ‖x‖ ≤ rmax}. (2.5)

(A) Case 1: rmin = 0 and rmax → ∞

rmax

rmin

(B) Case 2: 0 < rmin < ∞ and rmax < ∞

FIGURE 2.5: Two cases for the interference in a field of gen-
eral point process distributed interferers.

We restrict the original process Φ to this annulus, yielding a new point
process, which is denoted by

ΦΓ(rmin,rmax) = Φ ∩ Γ(rmin, rmax). (2.6)

The interferers are restricted on ΦΓ(rmin,rmax) with guard-zone radius
rmin and finite network radius rmax. This annular model of device locations
will be used in the remainder of the thesis.

2.6 Interferer access protocol

2.6.1 General model

Access policies in LPWAN systems are constrained by two key factors:
First, due to the low cost and low power budget of the LPWAN, the de-
vices can not employ complex control schemes or overloaded signaling
overhead. Therefore, the grant-free access scheme is a feasible approach
whereby users independently access channel resources without undergo-
ing any scheduling. Associated to this access scheme is a parameter p,
which stands for the simplest strategy that devices access the channel and
transmit immediately when they need to: a device, when it needs to send
data, transmits on any given resource block with probability p as will be
explained below. Second, the access probability p can also be interpreted in
terms of the service rate, i.e., the average quantity of data that each device is
required to transmit. For instance, in a system based on OFDM, the value of
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p is related to the amount of data to be transmitted and therefore the mean
number of subbands occupied by a user.

Note that some other properties of the channel access can be taken into
account by the spatial process modeling the position of interferers. For in-
stance, CSMA leads to the repulsion property, which can be captured by
Matérn hard-core process of type II described in Section 2.5.3.

Let us consider the time-frequency space S that the desired user can
access, represented in Fig. 2.6. S is divided into segments, each called a
time-frequency RB, and each RB is divided into elementary Resource Blocks
(eRB) which are the smallest units that a device can access.

FIGURE 2.6: Illustration of the channel access with six con-
secutive RBs, each containing N = 9 eRBs.

We consider a constant number N of eRBs per RB. The channel access
policy consists in attributing the required number of eRBs to each device
so that they can transmit a sufficient amount of information. Our objec-
tive is to have a general formulation that can result in tractable interference
models and can be applied to as many practical situations as possible. One
important access policy that inspires our model is certainly SCMA.

To do so, we introduce the general process as follows:

• We consider a RB.

• We group N eRBs into a minimum size Block (msB) and force that a
user uses all eRBs in the msB or none of them. We denote a msB by
Bu = {bu,1, . . . , bu,N}. Moreover, we assume that the eRBs in Bu are
disjoint from the eRBs in any other msB Bu′ for u′ 6= u. This step can
be useful if some specific codes are used at the transmitter.

• The total RB is divided into K msBs, denoted by B = {B1, . . . , BK},
so that the total number of eRBs in a RB is NK.

• On a given RB, each interfering device transmits on a set of msBs in
B. The decision is distributed and made by the devices without any
knowledge of other devices. To do so, the interfering device scans all
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msBs in B, selecting each msB Bu randomly and independently with
probability p. As a consequence, the probability that a given device
transmits on k msBs in B is given by

(
K
k

)
pk(1 − p)K−k. In fact, p is

related to the needs of the transmitting device: the higher required
rate, the higher the value of p. The access probability p is decided
by the devices or the IoT network according to the demands of data
transmission. For the ease of analysis, we assume that p is the same
for each device in this work. Based on the choices of p, we identify
three scenarios in this section:

– Heavily loaded networks, corresponding to p ≈ 1;

– Moderately loaded networks, corresponding to 0 < p < 1;

– Lightly loaded networks, corresponding to p ≈ 0.

• In IoT networks, devices are of various types and have different un-
predictable traffic patterns. As such, the uncoordinated cooperation
is preferred to simplify the hardware in order to reduce the cost and
energy consumption and prolong the battery life. Therefore, we as-
sume devices working uncoordinatedly. Specifically, we assume that
each of the msBs selected by any device k ∈ ΦΓ(rmin,rmax) is indepen-
dent of the msBs selected by any other device k′. The set of devices
transmitting on the msB Bu is denoted by ΦBu .

• Finally the interference on each eRB results from the contributions of
all interfering devices that do transmit on this eRB (devices in ΦBu).
The model is illustrated in Fig. 2.7 with K = 5 and N = 2.

2.6.2 Specific contexts

In the practical LPWAN protocols, the grouping of eRBs is not relevant yet.
In that case, eRB and msB are the same, and N = 1. For Sigfox and LoRa,
the RB could be a time frame that covers the whole packet duration and
the band of the desired signal in the ISM 868 or 915 MHz bands. The eRB
could cover the same frequency band but be reduced to the duration of the
symbol. Our approach would fit this environment with special attention to
the fact that some interferers can start or stop their transmission in the du-
ration of the RB so that p could not be drawn independently from one eRB
to another eRB. On the other hand, if the full packet length is considered
for the eRB, the model could fit with a p value close to zero.

In the NB-IoT protocol for the uplink transmissions — i.e., the
Narrowband Physical Uplink Shared Channel (NPUSCH) — each block can
contain N = 1, 3, 6, 12 subbands with a 15 kHz spacing [Bey+17], which
justifies the grouping. The RB would be a time slot and the eRBs be the
subbands in this time slot.
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FIGURE 2.7: Illustration of the channel access; only one RB
is considered, containing 10 eRBs grouped 5 by 2 (K = 5,
N = 2). eRB (u, i) is the i-th eRB from the u-th msB. We rep-
resent the contribution of each interferer: blue indicates that
the device is active. The resulting interference is a complex
vector with NK elements. The element Zu,i corresponds to
the sum of all contributions falling in the i-th eRB from the

u-th msB.

In this thesis, we focus on the case of a single time slot and multiple
subbands.

2.6.3 Complex baseband representation of the interference

Consider an eRB bu,i, i ∈ {1, . . . , N} associated with the block Bu. If used
by the desired user, the cumulative signal received is

Y (t) = h0r
− η

2
0

√
2E0

T
X(t) + Z(t) +N(t), t ∈ [0, T ], (2.7)

where

• h0 = A0e
jϕ0 is the complex channel fading with amplitude A0 and

phase ϕ0;

• r0 is the link distance;

• η is the path-loss exponent;

• E0 is the transmitted energy per symbol;

• T is the symbol duration;

• X(t) is the baseband representation of the transmitted signal;

• N(t) is the thermal noise;

• Z(t) is the interference.



2.6. Interferer access protocol 19

The interference term can be written as:

Z(t) =
∑
j∈Φ

hjr
− η

2
j

√
2Ej

Tj
Xj(t), (2.8)

where

• Φ is the set of active interferers;

• hj = Aje
jϕj is the complex channel fading with amplitude Aj and

phase ϕj for device j;

• rj is the distance between device j and the receiver;

• Ej is the transmitted energy per symbol;

• Tj is the user j symbol duration;

• Xj(t) is the modulated transmitted signal.

Hence, the baseband representation of the interference is

Z =
∑
j∈Φ

hjr
− η

2
j xj , (2.9)

where xj(t) is the counterpart of
√

2Ej

Tj
Xj(t) in (2.7) after demodulation.

In a M -ary phase shift keying system modulation for instance, if Xj(t) =

cos(2πfct + θj) where fc is the carrier frequency, and θj is the phase of the

transmitted signal of device j, then xj =
√

2
T

∫ T
0 Xj(t) cos(2πfct)dt.

Considering the interference on multiple eRBs with the access scheme
defined in Section 2.6, the interference on the i-th eRB in the msBBu is given
as

Zbu,i =
∑

j∈Φbu,i

r
− η

2
j hj,bu,ixj,bu,i , (2.10)

where xj,bu,i is the transmitted baseband signal.

Remark 2.6.1. For most of the results in this work, aside from weak technical
conditions detailed in the sequel, very few restrictions are placed on the distribu-
tions of hj,i and xj,i with the exception that hj,i and xj,i are independent for all
j ∈ ΦBu and i ∈ {1, . . . , N}. Concretely, the conditions are often satisfied when
hj,bu,i ∼ CN (0, 1) (i.e., Rayleigh fading) and xj,bu,i ∼ Unif({+1,−1}).

Finally, we give a vector representation in R2NK of the received inter-
ference consisting in stacking the interference on each eRB:

Z =
[
Re(Zb1,1), Im(Zb1,1), . . . ,Re(ZbK,N

), Im(ZbK,N
)
]T
. (2.11)
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2.7 Maximum likelihood receiver

In the interference-limited regime, where we neglect the thermal noise, if
the desired user is using K msBs, we have

Y = gX+ Z, (2.12)

where X is the transmitted vector in R2NK0 , g = [g1, · · · , g2NK0 ] is the chan-
nel of the desired user, and z = [z1, · · · , z2NK0 ] is the interference vector.

The distribution of channel coefficient gi depends on the considered
channel model (see Section 2.4, e.g. r−η/2 and Rayleigh fading). We assume
perfect Channel State Information (CSI) at the receiver.

Given the observation Y and equally likely sequences X, the error prob-
ability is minimized through the maximization of the likelihood. That is

max
X

f(Y|X,g), (2.13)

where f(·|X,g) is the PDF of the received signal given that the symbol X is
transmitted, and the channel coefficient is g. From (2.12), we have

f(Y|X,g) = fZ(Y − gX). (2.14)

As such, the statistics of the interference vector Z is essential to optimal
decoding.
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Chapter 3

Impulsive Interference in IoT
Networks

A great amount of work has focused on modeling interference in IoT Net-
works. In different kinds of settings, it has been shown that non-Gaussian
models naturally arises. Specifically, due to the large deployment of devices
and fast varying active transmitter set, the interference exhibits impulsive
behavior. A recent empirical study from Aalborg university suggests that
the interference power is heavy-tailed [Lau+17b; Cla+20].

We are going to quickly survey this literature, giving significant results
but not in an exhaustive manner. The main result we will be interested in
is that the interference follows an α-stable distribution under the Poisson
field network over the whole plane [Sou92; IH98; PW10a; Gul+10], un-
der some specific assumptions (HPPP, infinite area, no guard zone with
the channel gain going to infinity when transmission distance goes to 0).
But in practical systems, they are not necessarily verified. The interferers
are actually distributed over the finite area instead of the infinite plane. In
[Sou92], considering the effect of guard zone, the author set a threshold on
the amplitude path-loss function, i.e., a(r) = min{s, r−

η
2 } and the analytical

expression for the Characteristic Function (CF) was derived. Nonetheless,
the effect of guard zone is not further studied. In [SZ08], the author studied
the interference over finite area and gave the exact closed-form expressions
for the moments. In [Gul+09; Gul+10], the author derived the closed-form
approximation of the interference distribution from the field of Poisson and
Poisson cluster distributed interferers. It shows that the interference can be
modeled as Middleton Class A over the finite-area annular region. Nev-
ertheless, the Middleton seems not the best option for modeling the inter-
ference due to that it is of complicated form and thus difficult to be used
for analysis. Consequently, we resort to α-stable distribution of which the
characterization is simpler and more tractable.

Despite it is necessarily an approximation of the interference distribu-
tion, we will use α-stable distributions to model interference on a subband.
Indeed they are a powerful family of distribution, very well suited to model
rare events, so impulsive interference in our case. They do exhibit a lot of
properties that make them attractive, although their PDF is not known in
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closed form. But before addressing the multivariate case, it is necessary to
validate the accuracy of the α-stable model in more practical settings. As
opposed to the HPPP over the infinite plane, the system model is revis-
ited in two aspects: first, we restrict the distribution of the HPPP within
an annular Γ(rmin, rmax) with the guard-zone radius rmin and the finite net-
work radius rmax; second, the HPPP is extended with more general point
processes, i.e., Poisson cluster process for attraction and Matérn hard-core
process of type II for repulsion. This is the contribution presented in this
chapter.

To be self-contained, preliminaries on α-stable distribution is provided
in Appendix B along with references for further details.

3.1 Interference modeling

In many previous papers, it has been shown that the interference term is
not adequately modeled with a simple Gaussian distribution assumption.
We present here some of the key results in this regard.

3.1.1 Middleton model and extensions

We can trace back some works on non-Gaussian noise to 1960 [FI60] and
1972 [GH72] about atmospheric noise. Assuming Poisson distributed
sources, the CF of the impulsive noise can be obtained. Furthermore, ap-
propriate assumptions on the transmission medium and source waveforms
allow one to obtain the interference PDF. A similar approach based on the
CF was used by Middleton [Mid77; Mid99], who obtained more general
expressions based on series expansions. He classified interference in two
main categories depending on whether the noise bandwidth is less than
the useful signal (class A) or greater (class B). Class C is a sum of class A
and B. Expressions of the distribution functions, involving infinite series,
are obtained.

Middleton models have been widely used in different contexts (MIMO
[Cho+09], OFDM [III07] or power line communications [AP10]). It is clear,
however, that this popular model is challenging to work with since the PDF
is a doubly-infinite sum. Consequently, several approximation models have
been proposed. The main approach is to consider only the most significant
terms. For instance, it is claimed in [Vas84] that, in many situations for the
class A, two or three terms can be sufficient to obtain a good approxima-
tion leading to a Gaussian mixture [GDK06]. The two terms case is often
denoted as the ϵ-contaminated noise, see [Pha+03; AB07; Alh+17]. In this
case, the interference PDF is

P(x) = (1− p)N
(
0, σ2

)
+ pN

(
0, κσ2

)
, (3.1)
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where p denotes the probability to have an impulse, distributed from a Nor-
mal with variance κσ2, while (1 − p) gives the probability to only have the
Gaussian noise with variance σ2. Usually, p is small (p = 0.01) and κ large
(κ = 50, 100).

In [AB07; Pha+03; SZ01], an ϵ-contaminated channel is used but with
a different approach: pulses are generated in time according to a Poisson
distribution, and the shape of the pulse can be chosen. Some performance
metrics are studied showing, for instance, that an impulsive environment
can offer more capacity than a Gaussian situation. The ϵ-contaminated
model can also be expressed in the form of a Bernoulli-Gaussian noise
[dc12; Vu+14]. Noise plus interference is expressed as n + bi, where n is
the Gaussian noise, always present, and b is a Bernoulli random variable
with parameter p = P(b = 1) representing the frequency of impulsive noise
i occurrence. Usually, i is represented by a Gaussian random variable with
a larger variance than n.

In [FC09; NAHV14; Axe+17], the class A model is represented by a
Markov process: the noise distribution depends on the state of the process.
It reduces to the ϵ-contaminated case when only two states are present but
with an additional feature of time dependence structure, see [FC09].

The popular Class B model can be approximated by an α-stable distri-
bution [Mid99].

3.1.2 Empirical approaches

If the Gaussian model is not appropriate, a solution is to make an empirical
choice that allows analytical analysis of the receiver and can be justified
by simulations, observations of the estimated PDF and/or gains in per-
formance. The main solutions that have been proposed include Gaussian-
Laplace mixture [BN10], generalized Gaussian [Fio06; BSF08; KKLMC09],
Gaussian mixtures [HB08] or Cauchy-Gaussian mixture [Mei+17]. In this
last paper [Mei+17], it is mentioned that the heavier tail of the Gaussian
Mixture allows better performance than the Laplace approach. Some sur-
veys can be found in [BY09; Sha12].

The class of models of direct relevance to interference modeling we are
interested in this work is the α-stable and has often been used in the Ultra
Wide Band (UWB) context [Pin+06; Win+06; Rab+07; NB08; BY09; Gha+10].
But contrary to the previously discussed approaches, it relies (when no
power control is done) on a theoretical derivation (that can be related to
a physical interpretation), closely linked to the Middleton’s work and find-
ing its foundation in stochastic geometry [WA12; BB10b; BB10a].
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3.1.3 Stochastic geometry and α-stable model

Although the first papers were published in the 1990s [Sou92; TNS95;
IH98], the analysis of networks has recently attracted a lot of works relying
on stochastic geometry. As in Middleton’s work, interferers are assumed
spatially distributed according to a Poisson field. In this context, the distri-
bution of interference is expressed as

Z =
∑
i∈Ω

a(ri).Qi, (3.2)

where ri is the distance between interferer i and the destination, and
a(d) is the attenuation as a function of the distance; a classical model is
aη,ϵ(d) = d−

η
21r≥ϵ, r ∈ R+, where η is the channel attenuation coefficient; ϵ

accounts for a minimum distance between the receiver and the transmitter
for physical reasons or due to some MAC layer protocol like carrier sens-
ing; Qi accommodates various propagation effects, such as multipath fad-
ing and shadowing as well as the physical layer of the transmitters and the
receiver; and Ω is the set of interferers.

If applied in an ad hoc network, an unbounded received power assump-
tion makes the interference fall in the attraction domain of a stable law. This
unbounded assumption means taking the limit as ϵ → 0; in that case, the
received power tends to infinity when d tends towards zero. The accuracy
of the approximation has been questioned in [Ina+09; Car10], but working
without the unbounded received power assumption does allow an analyti-
cal derivation of the CF [WA12; DRG14]. A truncated α-stable distribution
is proposed in [Rab+11; Ega+17] to solve the infinite variance problem at
the cost of reduced tractability.

This result can be seen as a consequence of the Generalized Central
Limit Theorem (GCLT) [ST94; NS95]. The main advantage of the heavy-
tailed stable distributions is their ability to represent rare events. In many
communication situations, these events are in fact those that will limit the
system performance. The traditional Gaussian distribution ignores them
leading to poor results.

The proof of this result is generally done considering the log-CF of the
total interference, see for instance [Sou92; WPS09; Gha+10], which can be
written as:

ψZ (ω) = log
(
E
[
ejω

TZ
])

= −δα |ω|α , (3.3)

where Z is the total interference and T denotes the transpose. The right
term is the log-CF of a sub-Gaussian α-stable vector, defined in Appendix B,
where the marginals are symmetric α-stable (SαS) random variables with
dispersion δ. Another solution for the proof, based on the LePage series,
was proposed in [IH98]. This result will be further analyzed in the next
section.
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Stochastic geometry has explored more complex situations. For in-
stance, problems concerning the non-homogeneous position of users are
studied, for instance based on the cluster point process [Gul+10; GBA12] for
general ad hoc networks or Poisson hole process for cognitive radio [LH12].

3.2 Isotropic complex α-stable model under HPPP

Consider a network of devices located according to a HPPP on the plane
with density λ, denoted by Φ. As a first step, for the ease of derivation
and analytical analysis, we relax the condition of finite network radius in
Section 2.5.4. That is, we take rmax as infinite. What is more, we keep a
minimum distance between the receiver and the closest interferer, rmin.

The interference observed at the origin for a given time slot is given by

Z =
∑
j∈Φ

a(rj)hjxj , (3.4)

where rj is the distance from device j to the origin, hj ∼ CN (0, 1) is a
Rayleigh fading coefficient, and xj is the baseband emission.

Previous studies assume that Φ is over the whole plane as shown in
Fig. 2.5a. Besides, the amplitude path-loss function is

a(r) = r−
η
2 , (3.5)

where η is the path-loss exponent.

However, (3.5) is an approximation only valid in the far field. It does
not fit for small values of r. In fact, as r → 0, due to (3.5), the power of
the received signal tends to infinity. This obviously cannot happen. When
a transmitter comes too close to the receiver, the model is no longer valid.

To solve this issue, a widely used solution, as in [Sou92], is to model the
path loss as a truncated function:

a(r) = min
{
r−

η
2 , s
}
. (3.6)

Another frequent way to address this issue is to consider physical rea-
sons. We will assume that two devices cannot be that close so that r cannot
tend to zero. One way to explain such a situation is in the case of a CSMA
based protocol. If a receiver is active, the protocol should avoid a transmit-
ter to be active close to it. In both cases, introducing a guard zone, i.e., an
area around the receiver where no active devices can be located, seems the
right thing to do.
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To capture the effect of guard zones, the signal attenuation is governed
by

a(r) =

r−
η
2 , r ≥ rmin

0, r < rmin.
(3.7)

That is, all interfering devices within rmin are inhibited as in [WA12; HA07;
LVK10].

3.2.1 Infinite plane

Denote Z in (3.4) with

Z = Z1 + iZ2, (3.8)

where Z1 = Re(Z), and Z2 = Im(Z).
For rmin = 0, i.e., the interferers are distributed over the whole plane,

we have the following theorem [Ega+17]:

Theorem 3.2.1. Consider the interference Z in (3.4), and Φ is over the whole
plane. Suppose that hjxj in (3.4) is an isotropic complex random variable, and

E[|Re(hjxj)|
4
η ] <∞ (3.9)

with η > 2, Then, Z in (3.4) converges almost surely to an isotropic 4/η-stable
random variable.

Moreover, if the fading coefficients hj are i.i.d., and baseband emissions xj are
also i.i.d., then the scale parameters of real and imaginary components are equal,
given by

γ =

(
πλC−1

4
η

E[|Re(hjxj)|
4
η ]

) η
4

, (3.10)

where

Cα =


1−α

Γ(2−α) cos(π
2
α)
, if α 6= 1

2
π , if α = 1.

(3.11)

Proof. We first prove that the marginal distribution follows the α-stable dis-
tribution first:

Let Xj = hjxj in (3.4), and denote Xj as

Xj = Xj,r + iXj,i, (3.12)

Then, (3.4) is rephrased as

Z =
∑
j∈Φ

r
− η

2
j (Xj,r + iXj,i). (3.13)
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And hence,

Z1 =
∑
j∈Φ

r
− η

2
j Xj,r,

Z2 =
∑
j∈Φ

r
− η

2
j Xj,i (3.14)

According to Proposition A.3.2, {r2j} is the one-dimensional HPPP with in-
tensity λπ. As such, according to Theorem B.2.14, Z1 and Z2 are α-stable
distributed with α = 4

η and scale parameter γ given in (3.10).
As Xj = hjxj is isotropic, i.e.,

ejϕXj
d
= Xj , ∀ϕ ∈ [0, 2π), (3.15)

we have

ejϕZ
d
= Z. (3.16)

Therefore, Z is isotropic α-stable.

3.2.2 Guard zone

Although Z = Z1 + iZ2 is isotropic α-stable when rmin = 0, the resulting
models are not analytically tractable for rmin 6= 0.

In [Sou92], the CF was derived with the truncated path-loss model of
(3.6). Similarly, we have the following proposition which follows the same
argument as in [Sou92].

Proposition 3.2.2. Consider the interference Z = Z1+iZ2 in (3.4) with the path-
loss function given in (3.7). The CF of Z = (Z1, Z2) can be obtained as follows:

E[eiθ·Z] = exp

{
λπ|θ|α

∫ |θ|r−η/2
min

0

Φ′
0(x)

xα
dx− λπr2minΦ0

(
r
−η/2
min |θ|

)}
, (3.17)

where α = 4/η.

Proof. Recall that Z = Z1 + iZ2 =
∑
j∈Φ

a(rj)hjxj .

Denote Xj = Xj,1 + iXj,2 = hjxj , we have

Z =
∑
j∈Φ

a(rj)Xj , (3.18)

where Z = [Z1, Z2] and Xj = [Xj,1, Xj,2].
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The CF of Z can be written as

ϕZ(θ) = E[exp{iθ · Z}]

= E

exp
∑

j∈Φ
ia(rj)θ ·Xj




= E

∏
j∈Φ

exp {ia(rj)θ ·Xj}

 . (3.19)

Since hj ∼ CN (0, 1), hj is isotropic, i.e.,

eiϕhj
d
= hj , ∀ϕ ∈ (0, 2π]. (3.20)

Hence, Xj and Z are also isotropic. And the vectors Z and Xj are spheri-
cally symmetric, i.e., its distribution only depends on |Xj |. The CF is also
spherically symmetric and can be written as ΦX(θ) = Φ0(|θ|).

To derive the CF, we first restrict all interferers within an annulus with
radius from rmin to b, denoted as D(rmin,b). Then let b→ ∞,

ϕZ(θ)

(1)
= lim

b→∞

∞∑
k=0

P[ND = k] · E

[
k∏

i=1

exp {ja(ri)θ ·X}

]
(2)
= lim

b→∞

∞∑
k=0

P[ND = k] · (E[exp{ja(r)θ ·X}])k

(3)
= lim

b→∞

∞∑
k=0

(λπ(b2 − r2min))
k

k!
e−λπ(b2−r2min) ·

(
E[exp{jr−

η
2 θ ·X}]

)k
(4)
= lim

b→∞
e−λπ(b2−r2min)

∞∑
k=0

1

k!

(
λπ(b2 − r2min)E[exp{jr−

η
2 θ ·X}]

)k
(5)
= lim

b→∞
e−λπ(b2−r2min)(1−E[exp{jr−

η
2 θ·X}]), (3.21)

where

(1) ND is the number of devices within the annulus D(rmin,b);

(2) According to Theorem A.2.2, each device is independent once ND is
fixed;

(3) ND follows Poisson distribution;

(4) Rephrase (3), we have (4);

(5) According to

∞∑
k=0

1

k!

(
λπ(b2 − r2min)E[exp{jr−

η
2 θ ·X}]

)k
· e−λπ(b2−r2min)E[exp{jr

− η
2 θ·X}] = 1,

(3.22)
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we get (5).

We take logarithm on both sides and have the log-CF, where we use the
PDF of the distance between an interferer and the receiver fr(r) = 2r

b2−r2min

if r ∈ [rmin, b], and fr(r) = 0 if r < rmin and r > b.

ψZ(θ)

= log ΦZ(θ)

= lim
b→∞

λπ(b2 − r2min)[E(exp(jr−
η
2 θ ·X))− 1]

= lim
b→∞

λπ(b2 − r2min)

[∫ b

rmin

exp(jr−
η
2 θ ·X)

2r

b2 − r2min

dr − 1

]
= lim

b→∞
λπ(b2 − r2min)

[∫ b

rmin

ΦX(r−
η
2 θ)

2r

b2 − r2min

dr − 1

]
= lim

b→∞
λπ

[∫ b

rmin

ΦX(r−
η
2 θ)dr2 − (b2 − r2min)

]
= lim

b→∞
λπ

[∫ b

rmin

ΦX(r−
η
2 θ)dr2 − (b2 − r2min)

]

= lim
b→∞

λπ

r2ΦX(r−
η
2 θ)|brmin

− (b2 − r2min)︸ ︷︷ ︸
T1

−
∫ b

rmin

r2d(ΦX(r−
η
2 θ)︸ ︷︷ ︸

T2

)

. (3.23)

And for T1, we have

T1 = lim
b→∞

λπ
[
r2ΦX(r−

η
2 θ)|brmin

− (b2 − r2min)
]

= lim
b→∞

λπ
[
b2ΦX(b−

η
2 θ)− r2minΦX(r

− η
2

minθ)− (b2 − r2min)
]

(a)
= lim

b→∞
λπb2

[
ΦX(b−

η
2 θ)− 1

]
− λπr2min

[
ΦX(r

− η
2

minθ)− 1
]

= −λπr2min

[
ΦX(r

− η
2

minθ)− 1
]

= −λπr2min

[
Φ0(r

− η
2

min|θ|)− 1
]
, (3.24)

where step (a) is based on L’Hopital’s rule and equivalent to

lim
x→0

Φ0(x
γ
2 |θ|)− 1

x2

= lim
x→0

γ
2x

γ
2
−1Φ′

0(x
γ
2 |θ|)

2x

= lim
x→0

γΦ′
0(x

γ
2 |θ|)

4x2−
γ
2

= lim
x→0

γ2

2 x
γ
2
−1Φ′′

0(x
γ
2 |θ|)

4(2− γ
2 )x

1− γ
2

= lim
x→0

γ2

4(4− γ)
xγ−2Φ′′

0(x
γ
2 |θ|)

=0. (3.25)
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For T2, we have

T2 = −λπ
∫ ∞

0
r2d(ΦX(a(r)θ))

= −λπ
∫ ∞

rmin

r2d(ΦX(r−
η
2 θ))

(b)
= λπ

∫ r
− η

2
min

0
t−αd(ΦX(tθ))

(c)
= λπ|θ|α

∫ |θ|r
− η

2
min

0
x−αd(Φ0(x))

= λπ|θ|α
∫ |θ|r

− η
2

min

0

Φ′
0(x)

xα
dx, (3.26)

where step (b) takes t = r−
η
2 , and step (c) takes ΦX(θ) = Φ0(|θ|) and x =

t|θ|.

Hence, taking (3.24) and (3.26) into (3.23), we get

ψZ(θ) = λπ|θ|α
∫ |θ|r

− η
2

min

0

Φ′
0(x)

xα
dx− λπr2min

[
Φ0(r

− η
2

min|θ|)− 1
]
. (3.27)

We can easily check that when rmin → 0, the CF becomes:

E[eiθ·Z] = exp

{
λπ

∫ ∞

0

Φ′
0(x)

xα
dx|θ|α

}
. (3.28)

According to (B.41) in Proposition B.2.27, Z is sub-Gaussian α-stable
with an underlying independent Gaussian vector. And the scale parameter
is [IH98]:

γ =

(
λπ

∫ ∞

0

Φ′
0(x)

xα
dx

) 1
α

=
(
λπC−1

α E[|Re(hjxj)|α]
) 1

α , (3.29)

which is consistent with Theorem 3.2.1.

3.2.3 Validity of the α-stable model

Assuming that the location of users is modeled with a HPPP over the whole
plane, the aggregated interference at the receiver follows an α-stable distri-
bution, as shown in Theorem 3.2.1. However, very limited works study the
impact of more realistic situations. Indeed, the infinite channel gain that
arises when the transmitter - receiver distance r tends to 0 with a path loss
proportional to r−

η
2 is unrealistic, and we have seen in Proposition 3.2.2 that

the α-stable model is no longer valid. The key question that we address in
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this section is under which conditions (the value of rmin) is the isotropic α-
stable model a good approximation of the interference arising in the system
model detailed in Section 3.2.

To do so, we will compare the α-stable model with interference simu-
lated in a network of finite radius and with the presence of a guard-zone
around the receiver. Our comparison will be based on two features of the
interference models:

• the marginal distributions: to study them we will consider two steps.
First, we will estimate the characteristic exponent α̂ [Sta]; theoreti-
cal analysis gives a value of α, which only depends on the channel
attenuation coefficient. We evaluate if this parameter is modified or
not by more realistic assumptions without compromising the accu-
racy of the α-stable model; Secondly, we will study the Cumulative
Distribution Function (CDF) and quantiles of the marginals, i.e.,
Probability-Probability plot (P-P plot) and Quantile-Quantile plot
(Q-Q plot). P-P plot is better for the central values of the distribution,
while Q-Q plot focuses more on the tails. They allow assessing the
goodness-of-fit of the model for the marginals as in previous works
[Zhe+19b; Gul+10; MC20; Cla+20];

• the dependence structure: between the real and imaginary part of the
received signal. Note that unlike isotropic Gaussian distribution, the
isotropic α-stable model exhibits dependence between its real and
imaginary components. As such, we will study this dependence
structure via copula.

In our tests, we simulate the data based on the system model in Sec-
tion 3.2 (simulated data set) and compare it with the data generated from
the theoretical isotropic α-stable model (α = 4

η ) (theoretical data set), the
fitted α-stable model (α̂) (fitted model data set) and the Gaussian model
with α = 2 (Gaussian data set).

The density is set as λ = 0.001 devices/m2, and the path-loss exponent is
η = 5, which corresponds to an average of one device in a disc of the radius
of approximately 18 m and a non-line of sight path-loss environment (e.g.,
indoor or urban).

Let Z(rmin) denote the interference with a guard-zone radius rmin. Then
the void probability can be treated as a measure of how close Z(rmin) is to
Z(0). That is

PV oid = P[No interfers within rmin]

= P[Z(rmin)− Z(0) = 0]

= e−λπr2min . (3.30)
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We will show, for realistic device densities, that when the guard-zone
radii do not exceed 5 meters, the α-stable model with theoretical character-
istic exponent α = 4

η is a good approximation. The estimated stable model
with α̂ keeps as a good approximation for different choices of guard-zone
radii, tending to the Gaussian case (α = 2) when the guard-zone radii be-
come very large.

Marginal distributions

We first examine the distributions of real and imaginary parts of the inter-
ference. In the isotropic α-stable model, the real and imaginary parts are
SαS random variables.

0 5 10 15 20 25 30 35 40 45 50
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FIGURE 3.1: Estimated α̂ under different guard-zone radii
rmin.
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FIGURE 3.2: Void probability under different guard-zone
radii rmin.
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Fig. 3.1 and Fig. 3.2 show the effect of increasing the guard-zone radius
rmin. We vary rmin between 0 and 50 m. From the simulated dataset, we
estimate the parameter α̂ of the marginals. It is to be mentioned that both
marginals (real and imaginary parts) give the same result, and we will only
present the results from one of them.

Observe that for small guard-zone radii, the estimated parameter α̂ is
approximately 0.8. This is expected from the theoretical model, which gives
α = 4

η = 0.8.
On the other hand, as rmin goes beyond 5 m, α̂ increases rapidly and

gets larger than 0.9 up to 2 when rmin reaches 30 m. This can be related
to the void probability which decreases in this region, from PV oid = 0.92

for rmin = 5. The increase in α̂ indicates that the interference becomes less
impulsive.

For rmin > 30 m, α̂ reaches approximately 2. This implies that for very
large values of rmin, a Gaussian model is the best fit, which is consistent
with the Gaussian assumption of interference in previous literature [GC05].

Nevertheless, for a guard zone such that 5 m < rmin < 30 m, neither the
theoretical α-stable model nor the Gaussian model is a good choice. Hence,
it requires a new model. An intuitive approach is to keep the stable model
but replacing α = 4

η with the fitted α̂.

To obtain further insights into the behavior of the distributions of
the real or imaginary parts of the interference Z, we study P-P plot and
Q-Q plot. They are two graphical tools for comparing two probability dis-
tributions, defined as follows:

Definition 3.2.3. A P-P plot plots two CDFs against each other: given two prob-
ability distributions, with CDFs F and G, it plots (F (z), G(z)).

Definition 3.2.4. A Q-Q plot plots the quantiles of two distributions against each
other.

Remark 3.2.5. According to [GK90], the P-P plot is good for the light-tailed and
moderate-tailed distributions, whereas the Q-Q plot is more powerful to the heavy-
tailed distributions.

We first compare the simulated data set to the theoretical one. We trans-
form the data set into the domain [0, 1]×[0, 1] via the CDF. In P-P plot, if the
two distributions being compared are similar, the points will approximately
lie on the line y = x.

Fig. 3.3 shows the P-P plots between the CDFs from the simulated data
set with rmin = 5, 10 and 30 m, denoted by PI , against the CDF from the
theoretical data set with rmin = 0, denoted by P0. As expected from Fig. 3.1,
when rmin ≤ 5 m, the theoretical model is in good agreement with the
simulated data. In particular, the curve exhibit straight lines. For rmin > 5
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m, the CDFs begin to significantly differ, suggesting that the theoretical
model is no longer suitable. Indeed, as rmin increases, the curves become
steeper, implying that the theoretical data set, giving P0, is more dispersed
than the simulated one giving PI . The “S” shaped curve indicates that the
P0 is more skewed and thus has heavier tails than PI .

FIGURE 3.3: P-P plots, the system model (rmin > 0) against
the theoretical model (rmin = 0).

To confirm the tendency, Fig. 3.4 shows the Q-Q plots. The quantiles
estimated from the simulated data set with rmin > 0 are denoted byXI , and
the ones estimated from the theoretical data set with rmin = 0 are denoted
by X0.
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FIGURE 3.4: Q-Q plots, the system model (rmin > 0) against
the theoretical model (rmin = 0).

The curve for rmin = 5 m is slightly ‘S’ shaped. The Q-Q plot has a very
better resolution in the tails than the P-P plot; thus, the slight deviation due
to the limitation of the very strong impulses can be observed. This further
implies that even for small values of rmin, the theoretical data set (giving
X0) is more “impulsive” than the simulated one (giving XI ). Indeed, XI is
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FIGURE 3.5: P-P plots, the system model (rmin > 0) against
the fitted model (α̂).

a bit less “impulsive” compared with X0. This is consistent with α̂ = 0.9

observed in Fig. 3.1. Nevertheless, we can expect that the α-stable model
can still be a good approximation for rmin ≤ 5 m.

As with the P-P plots, we see a larger distortion for rmin > 5 m. This
confirms that the theoretical data set does not represent the simulated data
set for larger rmin.

In a second step, we are going to compare the simulated data set with
the fitted model data set. We keep PI and replace P0 with the CDFs ob-
tained from the fitted model data set, using α̂, denoted as P1. We represent
the P-P plots in Fig. 3.5. We also keep the quantiles XI from the simulated
data set and plot them against the quantiles from the fitted model data set
X1 to make the Q-Q plots in Fig. 3.6.

In both Fig. 3.5 and Fig. 3.6, for the different values of rmin, the fitted
model data set is in good agreement with the simulated data set. For values
of rmin ≤ 5 m, those results are consistent with Fig. 3.4, and α̂ is close to 0.8

as shown in Fig. 3.1.
For rmin > 5 m, the P-P plots and Q-Q plots are still very close to the line

y = x, even if they start to slightly differ. In that case, the α-stable marginal
distribution still seems to be a good approximation, but the theoretical re-
sult without guard zone can no longer be used directly, and the parameters
α̂ have to be modified.

When rmin > 30 m, the fit becomes even better than when 5 m < rmin <

30 m. In that case, as observed in Fig. 3.1, α̂ is very close to 2. In fact,
interference in such cases exhibits a Gaussian behavior.
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FIGURE 3.6: Q-Q plots, the system model (rmin > 0) against
the fitted model (α̂).

In conclusion, α-stable models are a good approximation for different
rmin. Even if the theoretical values of the parameters cannot be used in all
cases, generalizing the Gaussian models to the family of stable distribu-
tions (which includes the Gaussian one) is a good option for an accurate
interference model.

Dependence structure

While the real and imaginary parts of isotropic Gaussian random variable
are independent, the isotropic α-stable random vector contains some de-
pendency according to Remark B.2.28. The correlation function is tradi-
tionally used to study dependence but it is not an option when working
with stable distributions. Indeed, covariances are infinite and the Pearson
correlation coefficient does not exist for α-stable random variables [Nel99;
ST94]. A large number of tools have been developed to replace the correla-
tion such as the covariation [GK09].

A more popular method for studying such a dependence structure
is based on copulas. The definition of copula is given in Appendix C.
In copula theory, the dependence structure is investigated by transform-
ing a random vector X in Rn to the copula space via the transformation
(x1, . . . , xn) 7→ (F1(x1), . . . , Fn(xn)) where Fi, i = 1, . . . , n are the marginal
distribution functions. It is well known that the marginal distribution of
the transformed vector follows a uniform distribution on [0, 1]. For inde-
pendent xi and xj , the joint vector (Fi(xi), Fj(xj)) is uniformly distributed
on [0, 1]× [0, 1].
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The perspective of studying the dependence in copula space is attractive
as it reveals the full dependence structure, and especially the non-linear
dependencies in data, often more important than linear dependencies in
heavy-tailed data (e.g., in α-stable models (α < 2)).

Fig. 3.7a and Fig. 3.7b are histograms of the simulated data set—from
the theoretical α-stable model with α = 0.8 and α = 1.99, respectively—
in the copula space corresponding to the pair of real and imaginary com-
ponents for the interference. By Theorem 3.2.1, the pair is sub-Gaussian
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FIGURE 3.7: Histogram for the samples of the real and
imaginary components of interference.

α-stable. In Fig. 3.7a, the key feature is the peaks present in the corners,
corresponding to large amplitude interference on both the real and imagi-
nary components. This means that even if the probability to have a large
sample is rare, the probability to have one large sample on one dimension,
conditioned on the fact that a large sample is present on the other dimen-
sion, gets higher. This can be understood because when a transmitter, close
to the receiver, strongly contributes to the interference, it is likely it does
it on both the real and the imaginary parts. This demonstrates a strong
dependence in the tails of the distribution for each component. However,
in Fig. 3.7b, the feature is less obvious as the distribution becomes more
Gaussian.

Figure. 3.8 shows the scatter plots for the data set simulated from the
system model corresponding to different rmin in the copula space.

First, in Fig. 3.8a, the scatter points concentrate in the diagonals as well
as in the four corners. It clearly shows the strong dependence arising in the
interference vector (despite the isotropic distribution).

When rmin < 5 m, the same behavior is observed. In this regime, we
have already seen that the distributions for the real and imaginary parts of
the interference are approximately SαS. For α < 2, isotropic complex α-
stable random variables do not have independent real and imaginary parts
and this is particularly evident by the concentration of points in the corners
of the scatter plot, i.e., strong tail dependence. What is more, the central part
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FIGURE 3.8: Samples in copula space under different
guard-zone radii rmin.
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of each figure remains approximately uniform. An implicit explanation is
that for rmin, the distribution of (Re(Z), Im(Z)) follows a sub-Gaussian α-
stable distribution where (Re(Z), Im(Z)) =

√
A(G1, G2), A is skewed sta-

ble, and G1 and G2 are independent Gaussian. When the absolute values of
Re(Z) and Im(Z) are small, the vector (G1, G2) takes dominance and results
in the more uniform behavior that can be observed in the central part.

Those plots confirm that the simulated interference behaves like an α-
stable random vector.

Fig. 3.8c, Fig. 3.8d and Fig. 3.8e show the impact of further increasing
rmin. In these cases, the scatter plot is again non-uniform but points are less
concentrated, which means that the Gaussian model is not an appropriate
choice. Nonetheless, tail dependence is necessary to include in the model
and the stable approach is a good way to do it.

Finally, observe in Fig. 3.8f that the scatter plot becomes approximately
uniform. It implies that the real and imaginary parts of the interference are
independent. This is expected because the interference Z is isotropic and
when rmin gets large, it becomes approximately Gaussian. Then, for a com-
plex Gaussian random variable, isotropic means that its real and imaginary
parts are independent.

In conclusion, the dependence structure arising in our simulated data
set is well aligned with the α-stable and sub-Gaussian α-stable models.
Again, the increase in the guard-zone radius will make the model go from
the theoretical stable one with α = 4/η to the Gaussian model. But it seems
relevant to remain in the stable family, adapting the value of α.

3.3 α-stable Interference under general point pro-
cesses

Although the HPPP model enables analytical expression and tractable anal-
ysis of the interference, it also imposes strong constraints over the universal
settings. The locations of devices are perfectly modeled with HPPP when
the network is of complete randomness. However, devices are not indepen-
dent and may interact with each other due to a list of reasons, e.g, access
schemes or human activity. Therefore, the homogeneous assumption is of-
ten not realistic, and there exists attraction or repulsion between devices,
which requires more general point processes. Toward this end, two general
point processes — the doubly Poisson cluster process and Matérn hard-
core process of type II— are considered, along with HPPP which captures
full randomness. The general family of doubly Poisson cluster processes is
able to account for clustering or attraction due to human activity in certain
regions, such as smart home devices or e-health devices in hospitals. On
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the other hand, devices exploiting Carrier-sense Multiple Access with Col-
lision Avoidance (CSMA/CD) induces repulsion of device locations, which
is better modeled by Matérn hard-core processes [BBM06]. In addition, we
further limit the interferers within an annular region as the assumption of
infinite plane in Section 3.2.3 is unrealistic.

We validate the α-stable approximation by first observing that each of
the more general families of point processes induce interference that con-
verges in distribution to interference induced by a HPPP. We then verify via
simulation that the Kullback-Leibler divergence (KL divergence) between
the α-stable interference model and the interference arising from the gen-
eral point process models is indeed small for practical parameter choices,
e.g., the guard-zone radius.

3.3.1 System model

Consider a network of devices located according to a general point process,
denoted by Φ. We consider the three point processes defined in Section 2.5:

(i) Homogeneous Poisson point process with intensity λ devices/m2;

(ii) Doubly Poisson cluster process: the parent point process is a HPPP
with intensity λp devices/m2, and each daughter process, centered
on its parent’s position is also a HPPP with intensity λd devices/m2

restricted to a disc of radius rc. Points from the parent HPPP are
included. Hence, the average number of points in each cluster is
c = λdπr

2
c + 1 devices;

(iii) Matérn hard-core process of type II: the underlying HPPP is with inten-
sity λp devices/m2, and the hard-core distance is rh.

In each case, the intensity — e.g., λ in the case of the HPPP — corre-
sponds to the intensity of active devices with data to transmit. In 5G, a com-
mon target is one device per square meter; however, the density of active
devices with a given protocol, in a given time-frame and spectrum band,
may be significantly lower. We will often set λ ∈ [0.001, 0.01] devices/m2.

We still keep the guard-zone radii as we did in Section 3.2.3. What is
more, we consider the network radius rmax as finite. That is we consider
the model ΦΓ(rmin,rmax) defined in (2.6) in Section 2.5.4.

The interference in (3.4) is rewritten as

Z =
∑

j∈ΦΓ(rmin,rmax)

r
− η

2
j hjxj . (3.31)
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3.3.2 Approximations of the interference distribution induced by
general point processes

As defined in Section 2.5, a key feature of doubly Poisson cluster process
and Matérn hard-core process of type II is that they are constructed from
HPPP. The limiting case where cluster radius λd → 0 for doubly Poisson
cluster processes or hard-core radius rh → 0 for Matérn hard-core process
of type II is a HPPP. As such, it may be expected that for certain choices of
parameters, the process is well approximated by a HPPP.

Moreover, the resulting distribution of the interference may be well ap-
proximated by the distribution of the interference arising from the HPPP.
We can then expect that the interference statistics arising from the HPPP
forms a unifying approximation for more general families of point pro-
cesses.

In Theorem 3.3.1, we make these assertions precise. We establish that
under a range of fading models, the interference induced by ΦΓ(rmin,rmax)

for the point processes in Section 3.2 converges in distribution to the inter-
ference induced by a HPPP restricted to the annulus Γ(rmin, rmax). This is
achieved by introducing a sequence of point processes parameterized by a
sequence of parameters (κn)

∞
n=1, which converges to a parameter κ0 corre-

sponding to a HPPP.

To present our approximation result, let Φκn

Γ(rmin,rmax)
be a doubly Pois-

son cluster process or a Matérn hard-core process of type II with intensity
λ and parameter κn. In the case of the doubly Poisson cluster process, κn
corresponds to the intensity λd of the daughter process, and κ0 = 0. On the
other hand, for the Matérn hard-core process of type II, κn corresponds to
the hard-core distance rh, and κ0 = 0. We denote the interference induced
by Φκn

Γ(rmin,rmax)
by Zn, where Zn corresponds to the interference random

vector in (2.11).

Theorem 3.3.1. Let Φκn

Γ(rmin,rmax)
be a doubly Poisson cluster process or a Matérn

hard-core process of type II with intensity λ and parameter κn such that κ0 =

limn→∞ κn. Suppose that Φκ0

Γ(0,∞) is a homogeneous Poisson point process with
intensity λ and supp(hj,ixj,i) in (3.31) is compact for all i = 1, . . . , N, j ∈
Φκn

Γ(rmin,rmax)
and n∈N. Then, Zn

d→Z0 as n→ ∞.

Proof. Let N1, N2, . . . be point processes on R2.
Then, the sequence (Nn)

∞
n=1 converges in distribution to a point process

N on R2; i.e., Nn
d→ N if and only if E[h(Nn)] → E[h(N)] for every bounded

continuous function h on the space N of all counting measures on R2.
Let BN = {B ∈ B : N(∂B) = 0 a.s.} and C+

c be the set of all continuous
functions f : R2 → R+ with compact support. Convergence in distribution
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is characterized in the following theorem, which will provide the link be-
tween convergence in distribution of a point process and the convergence
of the interference distribution it induces.

Theorem 3.3.2 (Theorem 6.1, [Ser90]). The following statements are equivalent:

(i) Nn
d→ N ;

(ii)
∫
R2 f(x)Nn(dx)

d→
∫
R2 f(x)N(dx) for all f ∈ C+

c .

In particular, consider the interference random vector in (2.11). The real
or imaginary component of the interference on a single subband can be
written in the form

Zκn =
∑

j∈Φκn
Γ(rmin,rmax)

wj‖xj‖−η/2, (3.32)

where Φκn

Γ(rmin,rmax)
is the point process inducing the interference, and wj

represents the real or imaginary part of a term hj,ixj,i in (2.10). Under the
hypotheses of Theorem 3.3.1, each wj has compact support.

Let f(x, w) = w‖x‖−η/2 which is bounded and continuous since
Φκn

Γ(rmin,rmax)
and each wj lie in compact sets. As such, we immediately ob-

tain convergence of distribution for Zκn as n → ∞ if (i) in Theorem 3.3.2
holds.

To establish that (i) in Theorem 3.3.2 holds, we require the following
result.

Theorem 3.3.3 (Theorem 6.2, [Ser90]). Suppose N is simple and

lim
m→∞

lim sup
n→∞

P (Nn(B) > m) = 0, B ∈ B. (3.33)

Then, Nn
d→ N if and only if

lim
n→∞

P (Nn(B) = 0) = P (N(B) = 0), B ∈ BN . (3.34)

A sufficient condition for (3.34) to hold is given by

lim sup
n→∞

E[Nn(I)] ≤ E[N(I)] <∞, I ∈ IN , (3.35)

where IN is the set of all intervals in BN .

To apply Theorem 3.3.3, we note that the point process inducing the
interference in (2.11) can be viewed as an independently marked point pro-
cess with points in R2 and marks in CKN , where KN is the total number of
subbands. As Φκn

Γ(rmin,rmax)
is simple, the resulting marked process is simple

as well.
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We now establish that (3.35) holds for the point processes identified in
Theorem 3.3.1. For the doubly Poisson cluster process, we have for all I ∈
BΦκn

Γ(rmin,rmax)
that

E
[
Φκn

Γ(rmin,rmax)
(I)
]
= E

[
Φκ0

Γ(rmin,rmax)
(I)
]
+ E

 ∑
j∈Φκ0

Γ(rmin,rmax)

Φκn
d,j(I)

 ,
(3.36)

where Φκn
d,j is the daughter point process corresponding to the jth point in

Φκ0

Γ(rmin,rmax)
. Therefore by (3.35), we only need to show that

lim sup
n→∞

E

 ∑
j∈Φκ0

Γ(rmin,rmax)

Φκn
d,j(I)

 = 0. (3.37)

Since each Φκn
d,j is a HPPP restricted to a particular region, it follows that the

number of points in each I does not exceed that of the unrestricted HPPP.
Since the expected number of points for a HPPP tends to zero as the in-
tensity tends to zero, it follows that (3.37) holds. For the Matérn hard-core
process of type II, (3.35) holds immediately since Φκn

Γ(rmin,rmax)
is a thinned

version of Φκ0

Γ(rmin,rmax)
.

Theorem 3.3.1 provides a justification for approximating the interfer-
ence statistics induced by a doubly Poisson cluster process or a Matérn
hard-core process of type II by the interference from HPPP. As such, we
verify via a simulation study that for practical choices of parameters, the
HPPP approximation is in fact valid.

3.3.3 Model verification

Theorem 3.2.1 and Theorem 3.3.1 suggest that the α-stable distribution is
a good approximation for interference induced by homogeneous Poisson
point processes, doubly Poisson cluster processes and Matérn hard-core
process of type II restricted to a finite annulus. In the sequel, we validate
this approximation in terms of KL divergence through simulations.

Definition 3.3.4 (Kullback-Leibler divergence). For distributions P and Q of
a continuous random variable, the KL divergence is defined to be the integral:

DKL(P ||Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
x. (3.38)

Remark 3.3.5. The KL divergence is a measure of how close one distribution is to
another. The value ofDKL is always greater than 0. The smaller ofDKL, the closer
p(x) is to q(x). And DKL = 0 if and only if p and q are the same distribution, i.e.,
p(x) = q(x).
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Homogeneous Poisson point process

We consider a set of interferers governed by the point process ΦΓ(rmin,500)

with path-loss exponent η = 5, where Φ is a HPPP with intensity
λ = 0.001 devices/m2. Fig. 3.9a plots the impact of varying rmin on
the KL divergence between the simulated interference over the annulus
Γ(rmin, rmax) and three different models:

(i) the α-stable model that assumes Φ over the whole plane (theoretical
stable);

(ii) an α-stable model with parameters estimated from a set of simulated
data;

(iii) a fitted Gaussian model.

Fig. 3.9b shows the estimated α̂ of the fitted stable model for different
guard-zone radii.
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FIGURE 3.9: Homogeneous Poisson point process under
different guard-zone radii rmin.

We can observe that for a very small guard-zone radius rmin < 5 m, the
theoretical model (α = 4

η ) exhibits a good fit as interference follows a stable
distribution with α = 4

η when rmin → 0. We also verify that the estimated
α̂ in Fig. 3.9b is approximately α̂ ≈ 4

η = 0.8, which further validates the
theoretical model.

For a large guard zone (rmin > 15 m in our set-up), the Gaussian model
becomes a good fit. Although the existence of interferers in proximity to
the receiver is rare, it has a large contribution in Zκn . The absence of them
reduce the impulsive behavior of the interference and explains the good fit
of the Gaussian model.

In the medium-range area (5 m < rmin < 15 m in our set-up), neither
the theoretical α-stable approach nor the Gaussian one fits. However, when
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FIGURE 3.10: Doubly Poisson cluster process under differ-
ent guard-zone radii rmin.

estimating the value of α, using the estimated α̂, the fitted stable model
yields a low KL divergence.

The values of the fitted parameter α̂ as a function of rmin ranging from
0.5 m to 50 m are shown in Fig. 3.9b. This value increases from approxi-
mately 0.8 (expected from the α-stable theoretical model since 4

η = 0.8) to
nearly 2.

The low KL divergence when using α̂ shows that the α̂-stable models
are robust to changes in rmin—implying that the techniques in this paper
hold rather generally, but the best choice of α may be larger than 4

η as pre-
dicted by Theorem 3.2.1.

Doubly Poisson cluster process

We now consider that the point process ΦΓ(rmin,500) governing the set of in-
terferers is a doubly Poisson cluster process with the following parameters:

• density of parent process λp = 2× 10−4 /m2;

• average number of devices for each cluster c = λdπr
2
c+1 = 11 devices,

thus the density of the process is λd = 1
πr2c

(c− 1);

• path-loss exponent η = 3.

Fig. 3.10 and Fig. 3.11 plot the impact of varying the guard-zone radius rmin

and the cluster radius rc. Since the doubly Poisson cluster process con-

verges to the HPPP, the interference with small rc is very similar to that
illustrated in Fig. 3.9. However, with an increase of the cluster radius rc,
the KL divergence between the data from simulation and the α̂-stable inter-
ference model approximation increases for rmin ≤ 20. Values remain low
but the accuracy of the model has to be questioned, implying that neither
the fitted α stable nor the Gaussian is a good model. Nevertheless, as ex-
pected from Theorem 3.3.1, the α-stable model remains valid. Indeed, for
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FIGURE 3.11: Doubly Poisson cluster process under differ-
ent cluster radii rmin.
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FIGURE 3.12: Matérn hard-core process of type II under dif-
ferent guard-zone radii rmin.

a cluster radius rc = 1 m, the KL divergence keeps small for all values of
rmin. Fig. 3.11 also verifies that the α̂-stable model is valid for a large set of
cluster radius when the guard-zone radius is small enough (less than 5 m
in our setup), consistent with Theorem 3.3.1.

Matérn hard-core process of type II

We finally consider that the point process ΦΓ(rmin,500) governing the set of
interferers is Matérn hard-core process of type II with the following param-
eters:

• λp = 0.002 devices/m2;

• η = 3.

Fig. 3.12 shows the impact of varying rmin under different hard-core
radius rh. We observe that unlike the doubly Poisson cluster process, the
fitted α-stable model is robust to changes in rmin. Similar to HPPP, the
estimated α̂ increases from a certain value — still be approximately 4

η for
rh < 10 but not for large values of rh — to nearly 2 as the guard-zone radius
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FIGURE 3.13: Matérn hard-core process of type II under dif-
ferent hard-core radii rh.

increases. This is because the Matérn hard-core process of type II can be
well approximated by the HPPP. The accuracy of such an approximation
is proved in [Hae11; CKJ13]. Fig. 3.13 illustrates the impact of rh under
different guard-zone radii rmin. Again, we observe that for a wide range
of rh, the KL divergence remains uniformly small, implying the HPPP a
good approximation for Matérn hard-core process of type II once more in
Fig. 3.13a. In Fig. 3.13b, the estimated α̂ decreases with the increase of rh,
this can be explained this way: The density of Matérn hard-core process of
type II is a decreasing function of rh as given in (2.4). As HPPP is a good
approximation of Matérn hard-core process of type II, the void probability,
given in (3.30), becomes smaller with the larger value of rh, which therefore
increases the impulsiveness.

3.4 Chapter conclusion

It is challenging to model interference in IoT networks due to its impulsive-
ness and non-Gaussian behavior. Although many distributions have been
studied, for instance Middleton class A and B, α-stable distribution proved
to be a promising model. Indeed they are a broad family of distribution,
including the Gaussian one, which allows modeling rare but large events
that will be critical in a communication. They have a large set of significant
properties that have been well studied and can be used to characterize the
behavior of interference.

While there were several works investigating the validity of α-stable
model for interference, the impact of the guard-zone radius is generally ne-
glected. In this chapter, this is the first aspect we consider, under the HPPP.
Although the theoretical stable model (with α = 4

η ) has degraded perfor-
mance as the guard-zone radius increases, the fitted stable model (with α̂)
is a good approximation for the interference. By checking the estimated α̂,
P-P plot, Q-Q plot and copula space, we validate our conclusion.
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We then further extend this work to more general point processes, i.e.,
the doubly Poisson cluster process for attraction and the Matérn hard-core
process of type II for repulsion. They generally allow a better model for the
spatial location of interferers. First, we proved that the interference induced
these two aforementioned point processes converges in distribution to the
interference induced by HPPP. This provides the intuition that α-stable
model could be a good approximation for the general point processes in
theory. Then we verify it via KL divergence with practical parameters.

The α-stable distribution is obtained for interference making three main
assumptions: no guard zone and an infinite plane, HPPP and a path loss
r−

η
2 that tends to infinity when r tends to zero. We have shown in this

chapter that these assumptions can be relaxed and the α-stable family pro-
vides a good fit for interference models in a wide variety of contexts.
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Chapter 4

Dependent Interference in IoT
Networks

In the IoT networks, devices transmit over non-orthogonal channel re-
sources to improve the spectral efficiency and support the demand of
a large number of transmissions over limited channel resources. In the
NB-IoT standard with multi-tone mode or the SCMA where devices get
access to the channels based on their own codebooks, devices operate on
multiple overlapping resource blocks. As a consequence, a statistical de-
pendence between interference on each subband arises. In the case of im-
pulsive interference, this dependence structure is tricky to characterize.

Although it has been shown that the marginal interference can be well
approximated as α-stable in Chapter 3, the joint distribution of the inter-
ference vector still remains unknown. We can expect however that the gap
between the joint distribution and the marginals — i.e., the dependence
structure of the interference vector — has a significant impact on the design
of the receivers.

The dependence of interference exists in many different settings and in
different dimensions: space, time and frequency. In a multiple receiving
antenna system, two or more antennas may receive strong interference at
the same time if there is a strong interferer in the vicinity of the receiver.
What is more, devices are usually active and transmitting signals for some
time, and thus, the assumption of independent interference in time is not
valid. In addition to the spatial and temporal dependence, the interference
exhibits dependence in frequency as devices transmit over multiple bands.
Empirical evidence is also shown in [Pet+14].

Although it is an important feature for the network analysis, the depen-
dence of interference has often been neglected in previous studies, essen-
tially because it is difficult to handle. Nevertheless, it is attracting many
works [GES12; Yan+15; MC17; Sor+17; Zhe+20]. Mahmood et al. studied
the dependence structure at the baseband between two α-stable interfer-
ence samples [MCA12b; MCA12a] and showed that with proper sampling
they could be made independent. In [YP03], the author studied the tempo-
ral dependence structure of interference. By assuming the holding time of
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interferers is a random variable under an infinite Poisson field, the CF and
joint CF are obtained. It showed that the interference vector is not necessar-
ily α-stable even if the marginals are α-stable. [GES12] further extends the
work of [YP03] with a bounded path loss and shows that the joint interfer-
ence follows a multivariate Gaussian mixture distribution. Recently, some
works are focusing on modeling the dependence structure separately from
modeling the marginals of the interference using copula functions[Yan+15;
Sor+17; Zhe+19a].

The Copula function is a powerful mathematical tool for modeling de-
pendence. It recently found a few applications in communication con-
texts. In Multiple-Input and Multiple-Output (MIMO) system, the chan-
nel estimation requires the density of the received signal composed of sev-
eral components, i.e., different signals from channels and the noise. These
components are dependent, and copulas are applied to model such depen-
dence. In [GAR13], a signal-dependent noise (SDN) channel is considered,
in which the noise characteristics depend highly on the transmitted signal.
Under the assumption of dependence between faded signal and noise, it
estimates the parameters of the Nakagami-m fading channels by determin-
ing the analytical PDF of the received signal using Gaussian copula and
Clayton copula. Similarly, a 2× 2 MIMO system with correlated Nakagami
channels is studied with Gaussian, t and Clayton copulas in [GAR15]. In
terms of information theory, it has been proved that the mutual informa-
tion is actually the copula entropy [MS11]. Hence, copula can be used for
the estimation of mutual information [ZD11]. In signal processing, the cop-
ula was used for Blind source separation (BSS). In [MS07; KM09], a copula-
based BSS method named Copula Component Analysis (CCA) is suggested
as an alternative as opposed to the popular Independent Component Anal-
ysis (ICA) method. In [SJ15; SJL16], the concept of cumulative capacity was
brought in, and bounds on the CDF of the cumulative capacity are derived
based on the copula theory. In [Lin+17; Lin+19], copulas are used to char-
acterize the channel orders for the capacity regions.

In this thesis, the copula will be mainly applied to modeling the depen-
dence structure of the interference. It will allow studying the impact of de-
pendence on the receiver performance, which is a continuation to previous
works in [Yan+15; Sor+17].

In this chapter, we characterize the multivariate statistics of the inter-
ference in IoT networks. Based on the model introduced in Chapter 2, we
derive the joint distribution of the interference vector for certain limiting
cases (p → 0 and p → 1). The general case (0 < p < 1) is not analytically
tractable or would require to use a multivariate stable vector which is non-
trivial. As a consequence, we develop a new model based on t-copula. A
low-complexity estimation algorithm tailored to our interference model is
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proposed based on an approximation of the tail dependence and Kendall’s
τ . The proposed model is validated using the KL divergence.

4.1 System model

We keep the model introduced in Chapter 2. That is, we consider a receiver
at the origin and the interferers’ locations following one of the three point
processes over the annular ΦΓ(rmin,rmax). Moreover, we keep the access pro-
tocol with service rate p over a RB consisting of K msB B = {B1, · · · , BK}.
Each msB containsN eRBBu = {bu,1, . . . , bu,N}. As such, the different eRBs
see sets of interferers that partially overlap [EP18].

Consider an eRB i ∈ {1, . . . , N} associated with the msB Bu, denoted as
bu,i. The interference observed by the receiver at the origin on this eRB is
given by

Zbu,i =
∑

j∈Φbu,i

r
− η

2
j hj,bu,ixj,bu,i , (4.1)

where rj is the distance from device j to the origin, η > 2 is the path-loss
exponent, hj,bu,i is the fading coefficient for device j on the eRB bu,i, and
xj,bu,i is the baseband emission.

After stacking the interference on each eRB for each msB, the resulting
interference random vector is given by

Z =
[
Re(Zb1,1), Im(Zb1,1), . . . ,Re(ZbK,N

), Im(ZbK,N
)
]T
. (4.2)

The distribution of each pair
[
Re(Zbu,i), Im(Zbu,i)

]
has been analyzed

and proved to be sub-Gaussian α-stable in Chapter 3. However, this repre-
sentation is not amenable to the study of the interference vector Z in (4.2)
since Zbu,i and Zbu′,i′ are not independent. As such, we investigate the joint
distribution of the Z in the following section.

4.2 Interference random vector characterization

It is difficult to derive or characterize the joint distribution of Z directly as
the dependence structure between msBs and that within msBs are different,
which need to be treated separately. Therefore, we first study the interfer-
ence vector for a single msB.

4.2.1 Interference over a minimum size block

In this section, we study the interference statistics on a msB, Bu ∈ B con-
sisting of N eRBs. Recall that if a device transmits on an eRB within a msB
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Bu, then it transmits on all eRBs in Bu so that the set of interferers remains
unchanged on all eRBs: Φbu,i = ΦBu for all eRBs in Bu.

For a given msB Bu, let ZBu denote the interference on all eRBs within
Bu; that is,

ZBu = [zbu,1,1, zbu,1,2, · · · , zbu,N ,1, zbu,N ,2]
T

= [Re(Zbu,1), Im(Zbu,1), . . . ,Re(Zbu,N ), Im(Zbu,N )]
T . (4.3)

In this special case, the interference random vector in (4.3) can be char-
acterized exactly as shown in the following theorem.

Theorem 4.2.1. Let j ∈ ΦBu denote an active interferer in the msB Bu. Sup-
pose that hj,bu,i ∼ CN (0, 1)(Rayleigh fading), Re(xj,bu,i) ∼ Unif({+1,−1}),
Im(xj,bu,i) ∼ Unif({+1,−1}), and that the conditions in Theorem 3.2.1 hold.
Then, the interference random vector ZBu follows the sub-Gaussian α-stable distri-
bution with an underlying Gaussian vector having i.i.d. N (0, σ2ZBu

) components,
α = 4

η and scale parameter

γZBu
=

(
πλpC−1

4
η

E[|Re(hj,bu,1xj,bu,1)|
4
η ]

) η
4

, (4.4)

where C 4
η

is given in (B.22), and γZBu
= 1√

2
σZBu

.

Proof. We fist rephrase the interference in (4.1) as

Zbu,i =
∑

j∈ΦBu

Zj
bu,i
, (4.5)

where Zj
bu,i

= r
− η

2
j hj,bu,ixj,bu,i corresponds to the contribution of device j ∈

ΦBu on the eRB bu,i.

The vector ZBu in (4.3) is rewritten as

ZBu =
∑

j∈ΦBu

Zj
Bu
, (4.6)

where

Zj
Bu

= [zjbu,1,1, z
j
bu,1,2

, · · · , zjbu,N ,1, z
j
bu,N ,2]

T

= [Re(Zj
bu,1

), Im(Zj
bu,1

), · · · ,Re(Zj
bu,N

), Im(Zj
bu,N

)]T . (4.7)

By Theorem 3.2.1, the elements of ZBu are 4
η -stable random variables

with parameter γZBu
. Consider the first and second components of ZBu ,

corresponding to the real and imaginary parts of the interference on the
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first subcarrier associated to msB Bu. These elements can be written as

zbu,1,1 =
∑
j∈Φb

r
− η

2
j

[
Re(hj,bu,1)Re(xj,bu,1)− Im(hj,bu,1)Im(xj,bu,1)

]
,

zbu,1,2 =
∑
j∈Φb

r
− η

2
j

[
Re(hj,bu,1)Im(xj,bu,1) + Im(hj,bu,1)Re(xj,bu,1)

]
. (4.8)

Assume that hj,bu,1 ∼ CN (0, 1), Re(xj,bu,1) ∼ Unif({+1,−1}), and
Im(xj,bu,1) ∼ Unif({+1,−1}). Consider the random vector Zj

Bu
, corre-

sponding to the contribution of device j ∈ ΦBu on each eRB associated
to the msB Bu. This can be written as

Zj
Bu

= r
−η/2
j (f � Re(xj,Bu) + g � Im(xj,Bu)) , (4.9)

where

f = [Re(hj,bu,1), Im(hj,bu,1), · · · ,Re(hj,bu,N ), Im(hj,bu,N )]
T ,

g = [−Im(hj,bu,1),Re(hj,bu,1), · · · ,−Im(hj,bu,N ),Re(hj,bu,N )]
T ,

xj,Bu = [xj,bu,1 , xj,bu,1 , · · · , xj,bu,N , xj,bu,N ]
T , (4.10)

and � is the Hadamard (element-wise) product.

Since hj,bu,i ∼ CN (0, 1), it follows that f and g are Gaussian random
vectors with independent components with the same variance. It then fol-
lows that for any orthogonal matrix U in the set of real orthogonal matrices
O(2N) of dimension 2N × 2N ,

f � Re(xj,Bu)
d
= U (f � Re(xj,Bu)) ,

g � Im(xj,Bu)
d
= U (g � Im(xj,Bu)) . (4.11)

This in turn implies that Zj
Bu

d
= UZj

Bu
and hence ZBu

d
= UZBu .

To complete the proof, we apply the following lemma which is a
straightforward generalization of [ST94, Theorem 2.6.3].

Lemma 4.2.2. Let O(d) be the set of real orthogonal matrices and U ∈ O(d).
Let Z be an α-stable random vector on Rd. Then, Z d

= UZ if and only if Z is a
sub-Gaussian α-stable random vector with an underlying Gaussian vector having
i.i.d. N (0, σ2) components.

This section mainly shows that if the set of interferers is the same on
each eRB, the resulting interference vector belongs to the sub-Gaussian α-
stable family, a particular case of α-stable random vectors that allow an
easier representation and can consequently be more easily used for instance
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in receiver design. However, when the set of interferers change (analyzing
different msBs), this result does not hold any longer.

4.2.2 Interference vector in the limiting cases (p → 0 or 1)

Recall that the resource allocation strategy is defined by the probability p

that each device chooses to transmit on a msB. The choice is made for all
available msBs one by one and independently. The value of p ranges from
0 to 1, and we will start with two particular cases: lightly loaded networks
for p → 0 and heavily loaded network corresponding for p → 0. We will
then address the more complex cases of any p value.

Lightly loaded scenario (p→ 0)

In the IoT networks, a common phenomenon is that many IoT devices only
transmit small amounts of data over a long period of time. This is especially
the case in the LPWAN, which very often requires low data rates. In that
context, devices transmit intermittent data packets; for example, sensors
in trash bins only transmit signals every one or two hours with a small
amount of information “empty/full”. Although the number of devices in
the IoT networks is large, many of them may be in “sleep” mode most of
the time. As a consequence, the network is lightly loaded, which can be
represented with the scenario p→ 0 in our model.

In the regime p → 0, when considering a full RB, the probability that a
device transmits on more than one msB becomes very small. Indeed few
users need to be served, and they do not need a significant amount of re-
sources. In such a scenario, the probability that the same two or more users
or devices transmit on different msBs is nearly zero. Since there are no com-
mon interferers on different msBs with high probability, it follows from
the independent thinning theorem of HPPP—detailed in Appendix. A—
that the interference on each msB is approximately independent. By Theo-
rem 4.2.1, the interference on each msB ZB1 , · · · ,ZBK

are independent sub-
Gaussian α-stable vector. As such, the full interference vector in (4.2) can
be rephrased as

Z = [ZT
B1
, · · · ,ZT

BK
]T (4.12)

and consists of K independent sub-Gaussian α-stable random vectors.
In particular, the joint density for Z factorizes as

pZ(Z) =
K∏

u=1

pZBu
(ZBu), (4.13)

where pZBu
(ZBu) is the joint density of a 2N -dimensional sub-Gaussian α-

stable random vector ZBu .
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We call such a model independent sub-Gaussian α-stable model.

Heavily loaded scenario (p→ 1)

In addition to the lightly loaded case, we can imagine a scenario where
users need to transmit a large amount of data in a limited time. This could
be similar to a scarce resource, i.e. a limited number of eRBs per RB. Under
such situations, each device needs to use most of the msBs, and the network
becomes heavily loaded. This is translated in our model by p→ 1.

In this regime, if a device transmits on one msB, it transmits on all
msBs within the RB, B. The set of interferers on each subband is almost
the same on each msB and, consequently, on each eRB. As was shown in
Theorem 4.2.1, the interference vector Z, in that case, is a 2KN -dimensional
sub-Gaussian α-stable random vector.

We call such a model 2KN sub-Gaussian α-stable model.

4.2.3 Interference vector in the general case (0 < p < 1)

We now turn to the general case (0 < p < 1), where devices may neither
necessarily transmit on all msBs simultaneously nor on a single msB.

In this scenario, the interference on the eRBs within the same msB has
the same set of interferers, while these sets are different on the eRBs from
different msBs. Therefore, the multivariate statistics of interference are
tricky to characterize due to the complicated dependence between different
eRBs. As the distribution of marginal interference is already known (and
can be approximated as α-stable), a popular approach in statistics to cope
with this scenario is to exploit copulas to model the dependence structure
separately from modeling the marginals.

Copula intuition

The preliminaries on Copula Theory are given in Appendix. C. According
to Sklar’s theorem [Nel99], any random vector X = [X1, · · · , Xn]

T has the
following form

F (x1, · · · , xn) = C (F1(x1), · · · , Fn(xn)) , (4.14)

where Fi(·), i = 1, . . . , n are the marginal distribution functions, and C :

[0, 1]n → [0, 1] is called copula function. C(·) is unique if the marginal CDFs
Fi(·) are continuous. When both the joint and marginal distributions admit
density functions (as is the case in the interference models considered in
this section), the joint PDF has the form

pX(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))

n∏
i=1

pXi(xi). (4.15)
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From (4.15) we see that the joint PDF decomposes into the product of
the marginal densities and another function c : [0, 1]n → R+, which cap-
tures dependence between the different components of X. More details on
copulas are given in Appendix. C.

In our system, the marginals are proved to be approximated as α-stable.
As such, we only need to model the dependence, i.e., the copula density c
in (4.15) which is unique according to Sklar’s Theorem [Nel99].

A highly desirable property of copula models is that they provide a
parametric representation of the joint distribution for random vectors. By
varying these parameters, one can reach a wide range of dependence struc-
ture with flexibility. Nevertheless, deriving the exact copula can be a very
challenging problem. Besides, it also raises difficulties when we need to
efficiently estimate its parameters and simulate the resulting random vec-
tor. These tasks become even more tricky in our case due to the α-stable
marginals, which do not have a closed-form expression for their PDFs. Con-
sequently, we seek copula models for the interference vector over multiple
eRBs that satisfy the following properties:

1. The true distribution of the interference random vector Z is well ap-
proximated by the copula model;

2. The copula has a closed-form representation or, at least, is computa-
tionally feasible to numerically evaluate.

T-Copula inference (α-stable) model

Among the standard parametric classes of copulas, e.g., Archimedean cop-
ulas and elliptical copulas, t-copula is a good candidate to approximate the
interference random vector Z.

The t-copula function has the form

Ct
ν,Σ(u) = Fν,Σ

(
F−1
ν (u1), . . . , F

−1
ν (un)

)
. (4.16)

where Fν(·) is the univariate t-distribution function, and Fν,Σ(·) is the joint
multivariate t-distribution function:

Fv(x) =

∫ x

−∞

Γ(ν+1
2 )

√
vπΓ(ν2 )

(
1 +

t2

ν

)− ν+1
2

dt, (4.17)

Fv,Σ(x) =

∫ x1

−∞
· · ·
∫ xn

−∞

Γ(ν+d
2 )

Γ(ν2 )
√
(πν)d|Σ|

(
1 +

tTΣ−1t

ν

)− ν+d
2

dt. (4.18)

Our intuition on t-copula arises from the following properties:
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1. The dependence structure of t-copula is controlled by two parame-
ters: a scalar — the degree of freedom ν; and the scale matrix Σ.
By varying ν and Σ, we can reach a wide range of dependence. For
ν → ∞ and Σ = I, the random vector has independent components;

2. Both the sub-Gaussian α-stable distribution (p ≈ 1) and t-distribution
belong to the family of elliptical distribution and share many similar
properties. For instance, t-copula has the same tail dependence as the
sub-Gaussian α-stable when ν = α. This property will be used for
parameter estimation.

Therefore, t-copula may be suitable for modeling interference and in-
clude the limiting cases — lightly loaded (independent sub-Gaussian α-
stable model) and heavily loaded (2KN sub-Gaussian α-stable model).

As shown in (4.16), the t-copula captures the dependence structure
of a multivariate t-distribution without necessarily having t-distributed
marginals. In particular, (4.16) can be used in (4.14) to construct multivari-
ate distributions with α-stable marginals. That is, the dependence structure
is modeled with t-copula function, and the marginals are modeled as α-
stable distributed. This t-copula inference (α-stable) model provides a basis
to tractably model the interference random vectors arising from the system
model in Section 4.1.

Aside from well-modeling the interference distribution, t-copula mod-
els are also tractable. That is, well-established parameter estimation and
simulation methods already exist. In fact, as we will develop in Sec-
tion 4.3, the system features detailed in Section 4.1 can be exploited to obtain
even more efficient estimation and simulation procedures than the classical
methods in [DM05].

4.3 Parameter estimation

To have practical models, it is essential to be able to estimate their param-
eters. Equation (4.14) implies that every marginal distribution of the un-
derlying random vectors must be evaluated, and the data samples must be
transformed onto the “copula scale” before estimating the copula param-
eters. Therefore, the estimation of a joint distribution based on copulas is
usually comprised of two major parts: First, the estimation of the marginals;
Second, the estimation of the copulas.

In our model, the process of estimating marginals is to fit the parametric
(α-stable) distribution to the marginals, known as Inference-Functions-for-
Margins (IFM) method. Many studies and methods have been proposed for
α-stable distribution parameters estimation [Nol01]. This task is not com-
plex because they process on a single dimension, and, in many cases, we
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can even expect a similar marginal on each dimension. However, the pa-
rameters of the dependence structure are more complex to estimate, and the
estimation becomes computationally demanding in large dimensions for
the general t-copula model [DM05]. An alternative approach is to exploit
the connections between the t-copula parameters Σ, ν, Kendall’s τ rank cor-
relation and tail dependence. In this section, we use these connections in
order to establish a low-complexity estimation procedure tailored to the in-
terference model in Section 4.2.3.

For i.i.d. vector samples X1, · · · ,XN where Xi = [Xi,1, · · · , Xi,d]
T , we

assume that the marginal distribution for each dimension is already known
through the IFM method. Then, we define the pseudo-copula data as fol-
lows:

Definition 4.3.1. The pseudo-copula data is defined as

Ûi = [Ûi,1, · · · , Ûi,d]
T , i = 1, · · · , N, (4.19)

where

Ûi,j = F̂ (Xi,j), (4.20)

and F̂ (·) is the marginal distribution function, which can be obtained through the
α-stable estimation in our model.

The t-copula parameters can be estimated by the ML method (Sec-
tion 4.3.1) or based on Kendall’s τ (Section 4.3.2) [DM05]. We also propose
an alternative approach, suited to our context, in Section 4.3.3.

4.3.1 Maximum likelihood method

Assume that the marginal distribution has been estimated, and the pseudo-
copula data has been obtained as

Ûi = (Ûi,1, · · · , Ûi,d)
T

= (F̂ (Xi,1), · · · , F̂ (Xi,d))
T , i = 1, · · · , N. (4.21)

We can estimate the parameters ν and Σ of t-copula through the ML
method by maximizing

logL(ν,Σ, Û1, · · · , ÛN ) =

N∑
i=1

log cν,Σ(Ûi). (4.22)

However, the ML method is computationally taxing, particularly for
high dimensions. For this reason, an alternative method is proposed based
on Kendall’s τ [DM05].
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4.3.2 Methods using Kendall’s τ

A simpler approach for parameter estimation in t-copula models proceeds
as follows. Consider a d-dimensional random vector X = [X1, . . . , Xd]

T on
Rd governed by a t-copula with parameters ν,Σ. According to [LMS03], the
elements of Σ can be obtained via Kendall’s τ rank correlation ρ̂τ (Xj , Xk).

Let Xi = [Xi,1, . . . , Xi,d]
T , i = 1, . . . , n be n independent samples of X.

A natural estimator for Σj,k—the element of Σ—is then given by [DM05]

Σ̂jk = sin
(π
2
ρ̂τ (Xj , Xk)

)
, (4.23)

where

ρ̂τ (Xj , Xk) =

(
n

2

)−1 ∑
1≤i1≤i2≤n

sign ((Xi1,j −Xi2,j)(Xi1,k −Xi2,k)) . (4.24)

In general, there are no guarantees that this estimation solution leads
to a positive definite Σ̂. It is then recommended to apply adjustment tech-
niques [RM93] to ensure positive definiteness. Having estimated Σ, the
standard approach then obtains the degree of freedom ν via a ML estima-
tor given Σ̂[DM05]:

ν̂ = argmax
ν

logL(ν|Σ̂, Û1, · · · , ÛN )

= argmax
ν

N∑
i=1

log cν(Σ̂, Ûi). (4.25)

This approach still suffers from the necessity to solve a likelihood maxi-
mization problem in (4.25). An alternative method relies on the tail depen-
dence.

4.3.3 A low-complexity estimation procedure

Consider a bivariate random vector (X1, X2) with marginal distributions
F1, F2, respectively. Then, the (upper) tail dependence λX is defined by

λX = lim
u→1

P
(
X1 > F−1

1 (u)|X2 > F−1
2 (u)

)
. (4.26)

In the case that (X1, X2) is governed by a t-copula, [DM05, Proposition 1]
provides a link between the tail dependence and the degree of freedom ν.

Consider a random vector X governed by t-copula. If the off-diagonal
elements of Σ are a constant denoted by ρ, the tail dependence is known to
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be constant amongst each pair of elements in X. It can be expressed as a
function of the degrees of freedom and ρ:

λX = 2Fν+1

(√
1 + ν

√
1− ρ√

1 + ρ

)
, (4.27)

where Fν+1 is defined in (4.17) with the degree of freedom ν + 1, and ρ is
the correlation coefficient.

From (4.27), when λX and ρ are known, it is rather straightforward to
obtain the degree of freedom ν [DM05]. Based on (4.27), we now develop a
new low-complexity estimation procedure for the t-copula inference model
proposed in Section 4.2.3. Our approach is still based on the IFM method,
and we require estimates of the tail dependence λZ to obtain the degree of
freedom ν, and the scale matrix Σ. We first approximate the scale matrix Σ

based on our specific context. We then derive the approximation for the tail
dependence λZ.

Scale matrix Σ

To derive an estimate of Σ, we recall that for p = 1, the interference ran-
dom vector Z approximately forms a spherically distributed sub-Gaussian
α-stable random vector (by Theorem 4.2.1). It means that the underlying
Gaussian vector of Z has i.i.d. components. In this case, the Kendall’s τ
for each pair of Z is zero, and thus Σ is the identity matrix. To obtain an
approximation of Σ for p ≈ 1, we therefore base our estimate on the case
p = 1.

For the small value of p, Z forms an independent sub-Gaussian α-stable
vector defined in Section 4.2.2. The Kendall’s τ between the pair of interfer-
ence within the msB Bu is zero as the vector ZBu is sub-Gaussian α-stable.
The pair of interference between different msBs Bu and B′

u are approxi-
mately independent. As a consequence, Kendall’s τ between such a pair is
again close to zero. Therefore, the scale matrix Σ can also be approximated
as the identity matrix.

Fig. 4.1 shows the scale matrix Σ̂ estimated from Kendall’s τ based on
(4.23) under different values of p. It is clear from this figure that Σ̂ is almost
the identity matrix.

We verify for other values of p that the off-diagonal values of the scale
matrix are very low. This means that there is no significant linear depen-
dence in the interference. This could probably become untrue if some de-
pendence structure is coming from a correlation between the channel fad-
ings on different eRBs that we did not include, only considering Rayleigh
i.i.d. channels. This could arise if different eRBs are close subbands or com-
ing from slightly separated antennas. However, the scale matrix should still
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(D) p = 0.8

FIGURE 4.1: Estimated scale matrix Σ̂ based on Kendall’s τ
in (4.23) for different values of p.

be able to be predicted if in the case p = 1, we have a sub-Gaussian α-stable
random vector with some correlated underlying Gaussian random vector.

Nevertheless, for our general framework though, we can set the scale
matrix as

Σ = I2KN , (4.28)

where I2KN is the 2KN dimensional identity matrix.

Tail dependence λZ

To derive an approximation of the tail dependence in (4.27), we first observe
that the tail dependence is not the same for each pair of elements in Z. This
is due to the fact that the tail dependence within a given msB Bu and that
between two different msBs Bu and B′

u are not the same. In the first case,
the set of interferers is the same on the different components when it is not
in the second case.

• For a given msB Bu, the random vector ZBu is sub-Gaussian α-stable.
This implies that for any pair of elements in ZBu , the tail dependence
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is given by [Kri+09]

λZBu
=

∫ 1√
2

0
uα

√
1−u2

du∫ 1
0

uα√
1−u2

du
, (4.29)

where α is the stable exponent.

• For a pair of eRBs coming from different msBs Bu and Bu′ , the tail
dependence depends on the service rate p. For example, as p → 0,
elements of Z from different msBs are approximately independent.
This means that the tail dependence for these pairs, denoted by λZ̃, is
approximately zero. And as p → 1, Z is sub-Gaussian α-stable, and
λZ̃ is approximated in (4.29).

When the number of msBs–K is large compare to the number of eRBs
in one msB, there are significantly more pairs of eRBs with tail dependence
λZ̃ than with λZBu

. For this reason, we will base our estimate of the degree
of freedom ν on λZ̃ instead of λZBu

and verify that this approximation is
accurate enough.

The first step is then to obtain an approximation of the tail dependence
λZ̃. We can show that such an approximation is given by

λZ̃ ≈ 2p

E [|Z1,1|α]

∫ ∞

0
[1− FZ1,1(z)]

2αzα−1dz, (4.30)

where α = 4
η , and Z1,1 = Re(h1,1x1,1).

Proof. By definition,

λZ̃ = lim
u→1

P

∑
j∈Φ1

r
−η

2
j Zj,1 > F−1(u)

∣∣∣∣ ∑
j∈Φ2

r
− η

2
j Zj,2 > F−1(u)


= lim

u→1

P
(∑

j∈Φ1
r
− η

2
j Zj,1 > F−1(u),

∑
j∈Φ2

r
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2
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)
P
(∑
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r
− η

2
j Zj,2 > F−1(u)

) . (4.31)

By Remark B.2.15 in Appendeix B, for l ∈ {1, 2}, as x→ ∞,

P

∑
j∈Φl

r
− η

2
j Zj,l > x

 =
1

2
Cαγ

αx
− 4

η + o
(
x
− 4

η

)
=

1

2
pλπE [|Z1,1|α]x−

4
η + o

(
x
− 4

η

)
. (4.32)
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Moreover, the dependence is also the strongest between terms that have the
same distance. For p ≈ 1, this suggests the approximation

P

∑
j∈Φ1

r
− η

2
j Zj,1 > F−1(u),

∑
j∈Φ2

r
− η

2
j Zj,2 > F−1(u)


≈pP

(
r
− η

2
1 Z1,1 > F−1(u), r

− η
2

1 Z1,2>F
−1(u)

)
. (4.33)

Since r1 is the closest point in a HPPP,

fr1(r) = 2pλπre−pλπr2 . (4.34)

This yields

P
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j∈Φ1

r
− η

2
j Zj,1 > F−1(u),

∑
j∈Φ2

r
− η

2
j Zj,2 > F−1(u)


≈ pP
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η
2
1 , Z1,2 > F−1(u)r

η
2
1

)
= p

∫ ∞
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P
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Z1,1 > F−1(u)r

η
2 , Z1,2 > F−1(u)r

η
2 |r
)
2pλπre−pλπr2dr

= p

∫ ∞

0

[
1− FZ1,1

(
F−1(u)rη/2

)]2
2pλπre−pλπr2dr. (4.35)

At this point, we make the change of variables

z = F−1(u)r
η
2 , (4.36)

which yields

P

∑
j∈Φ1

r
−η

2
j Zj,1 > F−1(u),

∑
j∈Φ2

r
− η

2
j Zj,2 > F−1(u)


≈ 4

η
p2λπF−1(u)

− 4
η

∫ ∞

0
[1− FZ1,1(z)]

2e−pλπz
4
η F−1(u)

− 4
η
z

4
η
−1
dz. (4.37)

Combining (4.37) and (4.32), it follows that the tail dependence is well
approximated in (4.30).

Note that the validity of swapping the limit and integral can be readily
justified by an application of the dominated convergence theorem.

A key observation is that the approximation of λZ̃ in (4.30) scales lin-
early with p with a maximum value corresponding to p = 1, which is
the sub-Gaussian α-stable scenario by Theorem 4.2.1. In this case, the tail-
dependence is given by

λZ̃ ≈ 2

E [|Z1,1|α]

∫ ∞

0
[1− FZ1,1(z)]

2αzα−1dz. (4.38)
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To verify the approximation in (4.38), we consider the case p = 1. By
Theorem 4.2.1, the interference random vector is sub-Gaussian α-stable. As
a consequence, the tail dependence is given by (4.29).
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FIGURE 4.2: Theoretical and estimated tail dependence for
varying α.

Fig. 4.2 plots the tail dependence under different α where we take hi,j ∼
CN (0, 1) and xi,j ∼ Unif({+1,−1}). It shows that the approximation in
(4.38) is in good agreement with the exact expression in (4.29), even as α is
varied. The tail dependence is strong with small values of α, i.e., when the
marginals are more impulsive. With α increases, the marginals are more
“Gaussian”, and the tail dependence becomes small.

The validity of the approximation will be further studied in Section 4.4.
The quality of the estimation procedure will be evaluated in terms of the
KL divergence between the resulting interference model and the system
model in Section 4.1 for the three families of point processes.

As (4.30) exhibits a good analytical approximation for the tail depen-
dence, the ML estimation of ν is not required, reducing the computational
complexity in model calibration. As Zi,j ∼ CN (0, 1), (4.30) is just a compu-
tation of integrals.

A new efficient algorithm

The observation that the tail dependence approximation in (4.38) is accurate
suggests a new estimation procedure for the t-copula α-stable interference
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model. We recall here the approximation of λZ̃ and Σ:

Σ = I2KN ,

λZ̃ ≈ 2p

E [|Re(Z1,1)|α]

∫ ∞

0
[1− FZ1,1(z)]

2αzα−1dz.

Using these two results in combination with (4.27) allows us to propose
the procedure detailed in Algorithm 1.

Algorithm 1 Proposed Copula Parameter Estimation Algorithm with α = 4
η

Input: Path-loss exponent η and S independent samples of the interference
random vector Z1, . . . ,ZS .

1: Set α = 4
η .

2: Estimate the dispersion of the α-stable marginals, γ;
3: Set the scale matrix for the t-copula model Σ = I2KN ;
4: Set the tail dependence for the t-copula model to be λZ̃ in (4.30);
5: Compute the degree of freedom for the t-copula model via (4.27).

In Algorithm 1, in order to perform the parameter estimation in step 1,
we require independent observations of the interference random vector Z

as the input. Assuming that the lifetime of device transmissions is not long
(as it is typically the case in NB-IoT networks), these samples can be col-
lected from consecutive frames. Following the IFM methodology, the first
steps in Line 1 and 2 are then to estimate the parameters for the statistics of
the in-phase and quadrature components on a single subcarrier. As these
statistics are approximately symmetric α-stable by Theorem 3.2.1, only two
parameters, α and γ, need to be estimated.

The second and third steps are to obtain Σ and λZ̃ from (4.30). It is
straightforward to obtain Σ by simply setting it as an identity matrix. For
λZ̃, if the fading statistics hi,j and the path-loss exponent η are known, Z =

Re(h1,1x1,1) and α = 4
η in (4.30) are known, and λZ̃ can be calculated. From

λZ̃, we can then numerically calculate ν based on (4.27). In fact, no samples
are required in order to compute the degree of freedom ν, or Σ. This forms
a contrast with the estimation of general t-copula models (i.e., without the
structure of the interference random vector Z), where a large number of
samples are required.

Note that derivation of the tail dependence in (4.30) is based on the
model of HPPP over the whole plane. Nevertheless, (4.34) does not apply
to the scenarios with guard-zone radius. What is more, the closest point
in the doubly Poisson cluster process and the Matérn hard-core process of
type II process does not follow (4.34). Thus, (4.30) may not be a good ap-
proximation.
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To address this issue, we take α̂ instead of 4
η , and all the rest remain the

same. That is, we keep

λZ̃ ≈ pλZBu
, (4.39)

where λZBu
is in (4.29) with the estimated α̂ and has an approximation in

(4.38).

As proved in Fig. 4.5 and Fig. 4.6 in Section 4.4, the vector Z is ap-
proximated as sub-Gaussian α-stable for p = 1, and thus ZBu is also sub-
Gaussian α-stable with estimated α̂. Therefore, instead of setting α = 4

η , we
take the estimated α̂ into (4.29) and (4.39) to estimate the tail dependence.

Algorithm 2 Proposed Copula Parameter Estimation Algorithm with α̂
Input: S independent samples of the interference random vector
Z1, . . . ,ZS .
The same steps with Algorithm 1 except estimating the tail dependence
using (4.39) and (4.29) with estimated α̂ in step 3.

4.4 Model verification

In this section, we compare the interference models developed in Section 4.2
with the interference arising from the scenarios detailed in Section 4.1 based
on the KL divergence. We also study the dependence structure of our
model and the simulated data set via transformation to the copula space.
This provides additional insights into the behavior of the interference, par-
ticularly when multiple eRBs experience large amplitude interference.

In order to perform the model evaluation, it is necessary to calibrate and
simulate the t-copula model. As such, we first detail the estimation and
simulation procedures. We will then represent the dependence structure
in the copula space to have an idea of the specificity of the interference
random vector. Finally, we will assess the performance of the models in
terms of KL divergence.

4.4.1 Estimation

Let us consider a set of samples

Xd = [xd1, · · · , xd2KN ]T , d = 1, · · · , D. (4.40)

The estimation process of the t-copula model with α-stable marginals is
decomposed into three steps:

1. Estimate the parameters of the α-stable marginals (α̂ and γ̂);
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2. With α̂ and γ̂, translate Xd to the “copula space” via the α̂-stable CDF.
We then obtain

Ud = (Ud
1 , · · · , Ud

2KN ) =
(
Fα̂(X

d
1 ), · · · , Fα̂(X

d
2KN )

)
, (4.41)

where Fα̂(·) denotes the α̂-stable CDF.

3. Estimate the degree of freedom ν̂ and the scale matrix Σ̂ of the t-
copula based on Ud.

In Step 1 and 2, the parameters of the marginals, α̂ and γ̂ were esti-
mated, and Xd were obtained using the stblfit and stblcdf MATLAB pack-
ages, respectively [Sta]. The estimation is based on the fitting of the four
parameters to the empirical characteristic function estimated from the data
proposed by Koutrouvelis [Kou80; Kou81]. Note that the parameters β and
δ are set zero as the interference is symmetric.

In Step 3, the t-copula parameters can be estimated using the copulafit

MATLAB package [T ca] via ML. They can also be estimated either using
Algorithm 1 or Algorithm 2 from (4.39) with the estimated α̂.

4.4.2 Simulation

Knowing the parameters of the stable marginals (α̂ and γ̂) and of the t-
copula (ν̂ and Σ̂), we can simulate the t-copula α-stable interference with
following steps:

1. Simulate data samples from the t-copula model with ν̂ and Σ̂ and get
Ûd = [Ûd

1 , · · · , Ûd
2KN ];

2. Do the stable inverse CDF for each marginals Ûd
i based on α̂ and γ̂

and get X̂d.

In Step 1, simulation methods for t-copula models are detailed in
[DM05] and can be implemented via the copularnd MATLAB package [T
cb]. In Step 2, the inverse distribution function is obtained using the stblinv

MATLAB package [Sta].

4.4.3 Interference random vector: Copula-space representations

The copula modeling allows to qualitatively verify that the dependence
structure of our multivariate interference model is consistent with the in-
terference arising from the simulated data. This is achieved by transform-
ing the d-dimensional simulated data into the copula space, which yields a
random vector on [0, 1]d. In particular, for both the data simulated from
the system detailed in Section 4.1 and our copula model developed in Sec-
tion 4.2, we apply the transformation

Z 7→ [Hα,γ(Z1), . . . , Hα,γ(Z2KN )]T , (4.42)
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where Hα,γ(·) is the CDF of the α-stable random variable Zi with α and γ.

In Fig. 4.3 we plot the estimated density of the simulated samples aris-
ing from a HPPP with λ = 0.001 devices/m2 over the infinite plane with
no guard zones. We consider the real components of eRBs in two differ-
ent msBs transformed into the copula space drawn from the simulated data
set. The case of eRBs in the same msB is similar to the real and imaginary
parts studied in the paragraph “Dependence Structure” in section 3.2.3. We
set p = 0.6, which means that the pair of real components do not have a
sub-Gaussian α-stable distribution. We again observe the large probability
mass in the corners of the figure, corresponding to strong dependence in
the tails.
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(A) The system model with p = 0.6.
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(B) The t-copula model with p = 0.6.

FIGURE 4.3: Copula space transformation for real compo-
nents of interference samples in different msBs with p = 0.6.

This fact is important and reveals why traditional second-order ways
to model dependence are not sufficient. Indeed, this tail dependence can
not be captured by linear dependence that is characterized through the
correlation function for instance. On the contrary, this feature is well cap-
tured by the t-copula, as illustrated in Fig. 4.3b, where we represent the
estimated density from the real components of eRBs in two different msBs
transformed to the copula space. Samples are drawn from the proposed t-
copula model. The densities are very similar and suggest that the t-copula
model fits well in this scenario. This will be confirmed by the KL divergence
analysis.

4.4.4 Interference random vector: KL divergence

We now turn to our model for the interference random vector developed
in Section 4.2. We numerically investigate the behavior of our proposed
models by evaluating the KL divergence between the interference arising
from the scenario in Section 4.1 and our proposed models in Section 4.2.
That is, we estimate DKL(P ||Q) where P is the distribution corresponding
to the interference from the system model, and Q is the distribution of the
interference arising from our models. The interference random vector has
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in general a high dimension (2KN dimensions for K msBs and N eRBs
in each msB as detailed in Section 4.1). This high dimension makes the
numerical evaluation non-trivial.

In the sequel, all figures are generated using a simulated data set with
80, 000 samples. We use the k-nearest neighbor method [WKV06] im-
plemented in the MATLAB package [Sza14] for the computation of the
KL divergence. Due to the high dimension of the interference random vec-
tor, the k-nearest neighbor method can output very small negative values
when the distributions P and Q are very close [WKV06]. In the figures,
these negative values are rounded to zero.

In the experiments, we compare five models all with α-stable marginal
distributions motivated by Theorem 4.2.1:

1. The t-copula α-stable model detailed in Section 4.2 with three differ-
ent parameter estimation algorithms:

a) via ML estimation, called “t-copula” in the following figures;

b) via Algorithm 1, i.e., based on tail dependence with α = 4
η , called

“Tail dependence (α = 4
η )” in the following figures;

c) via Algorithm 2, i.e., based on tail dependence with α̂, called “Tail
dependence (estimated α̂)” in the following figures.

2. The independent sub-Gaussian α-stable model consisting of inde-
pendent 2N -dimensional sub-Gaussian α-stable random vectors. In
this model, the 2KN -dimensional random interference vector Z is
decomposed into K 2N -dimensional random vectors (corresponding
to the real and imaginary parts of N eRBs in one msB). Each 2N -
dimensional random vector is assumed to be sub-Gaussian α-stable,
independent from each of the other K − 1 2N -dimensional random
vectors, as detailed in Section 4.2.2. This model is exact when inter-
fering devices only transmit on a single msB, the guard-zone radius
rmin = 0, and the network radius rmax → ∞.

3. The 2KN sub-Gaussian α-stable model consisting of a 2KN -
dimensional sub-Gaussian α-stable random vector. This model cor-
responds to the scenario where all devices transmit on every msB in
B, i.e., p = 1 (see Theorem 4.2.1).

We consider the three general point processes introduced in Section 2.5,
i.e., the HPPP, doubly Poisson cluster process and Matérn hard-core pro-
cess of type II. Specifically, we consider the scenarios with the following
parameters:

• Number of msBs: K = 4;

• Number of eRBs in each msB: N = 2;
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FIGURE 4.4: Plots of the KL divergence between the data
generated from the models and interference samples simu-
lated from a HPPP: we use the five different models and es-
timation methods: t-copula model (ML estimation, α = 4/η
and α̂); independent sub-Gaussian α-stable model; and 4K
sub-Gaussian α-stable model. We have K = 4 msBs and

N = 2 eRBs in each msB.

• Path-loss exponent: η = 3;

• Fading: h ∼ CN (0, 1);

• Transmitted signal: xj,i is uniformly drawn from {−1, 1} ∀ i, j;

• Guard-zone radius: rmin = 0;

• Network radius: rmax = 500 m.

Homogeneous Poisson point process

We first consider the HPPP. Fig. 4.4 plots the KL divergence between the
simulated data set and the three proposed interference models with the fol-
lowing parameters:

• Density of interferers: λ = 0.001 devices/m2.

Observe that the 2KN sub-Gaussian α-stable model is in good agree-
ment with the simulated data set as p → 1. This is consistent with the
characterization in Theorem 4.2.1 as when p→ 1 all devices transmit on all
subbands with high probability. On the other hand as p decreases, the 2KN

sub-Gaussian α-stable model is a poor fit for the simulated data set. In this
lightly loaded scenario where p → 0, each device transmits on more than
one msB with a very low probability. By the independent thinning theo-
rem for HPPP, it follows that the interference on each msB is independent.
As a consequence, the independent sub-Gaussian α-stable model is a good
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FIGURE 4.5: Plots of the KL divergence between the data
generated from the models and interference samples simu-
lated from a doubly Poisson cluster process: we use the five
different models and estimation methods: t-copula model
(ML estimation, α = 4/η and α̂); independent sub-Gaussian
α-stable model; and 4K sub-Gaussian α-stable model. We

have K = 4 msBs and N = 2 eRBs in each msB.

choice. This observation is verified in Fig. 4.4, where the KL divergence for
this model is nearly zero for small values of p.

Fig. 4.4 also shows that the t-copula model is a good fit for a much larger
range of p than the 2KN sub-Gaussian α-stable model. As such, it is a
good choice for medium to heavily loaded IoT networks. However, for
small p the t-copula model is not satisfactory. The Algorithm 1 and Algo-
rithm 2 based on tail dependence have almost equivalent performance as
the t-copula model based on the ML estimation. However, our proposed al-
gorithms have faster runtime as we compute parameters directly, and only
have the analytical expressions in (4.30) to calculate.

Doubly Poisson cluster process

Fig. 4.5 plots the KL divergence for each of the proposed models for loca-
tions governed by a doubly Poisson cluster process with parameters:

• Density of parent process: λp = 2× 10−4 devices/m2;

• Radius of the disc for daughter cluster process: rc = 30 m;

• Density of daughter point process: λd = 10
πr2c

= 0.0035 devices/m2, i.e.,
the average number of points in each cluster: c = λdπr

2
c + 1 = 11.

Observe that the t-copula model has a very similar behavior quali-
tatively consistent with the HPPP case in Fig. 4.4. However, the low-
complexity estimation procedures in Algorithm 1 and Algorithm 2 have
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FIGURE 4.6: Plots of the KL divergence between the data
generated from the models and interference samples sim-
ulated from a Matérn hard-core process of type II: we use
the five different models and estimation methods: t-copula
model (ML estimation, α = 4/η and α̂); independent sub-
Gaussian α-stable model; and 4K sub-Gaussian α-stable
model. We have K = 4 msBs and N = 2 eRBs in each

msB.

a slightly reduced performance. This is due to the implicit assumption in
the estimation procedure that the void probability is that of a HPPP. That
is, the tail dependence in (4.30) is derived from (4.34), the PDF of the closest
point which does not apply to the doubly Poisson point process.

Note that under the doubly Poisson cluster process, though the α-stable
distribution is still a good approximation for the interference marginals, the
stable parameter α̂ is not equal to 4

η , even in the case when rmin = 0. As a
consequence, a slight improvement can be observed with an estimated α

(Algorithm 1) rather than with α = 4
η (algorithm 2).

Matérn hard-core process of type II

Fig. 4.6 plots the KL divergence for each of the proposed models for loca-
tions governed by a Matérn hard-core process of type II with the following
parameters:

• Density of parent process: λp = 0.001 devices/m2;

• Hard-core distance: rh = 20 m.

Observe again that all five models have a very similar behavior in
terms of KL divergence as under the HPPP in Fig. 4.4. The proposed
model is valid on a large range of values of p, but exhibits a degradation
when p becomes small. This is consistent with Theorem 3.3.1 and previous
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works establishing that the Matérn hard-core process of type II can be well-
approximated by a homogeneous Poisson point process [CKJ13; Hae11].
Under the Matérn hard-core process of type II, at most one point is kept
within the hard-core distance based on its underlying HPPP.

Besides, unlike the doubly Poisson cluster process, the distribution
of the closest interferer can also be approximated by (4.34) as shown in
[IEEK13, Lemma 1]. As such, the low-complexity estimation procedures
in Algorithm 1 and Algorithm 2 yields an estimate that well approximates
the ML estimate.

4.5 Conclusion

We have shown that the dependence structure in an interference vector
when devices are transmitting on several eRBs grouped in several msB is
non-trivial. When the set of interferers remains the same, i.e., we consider
the eRBs belonging to the same msB or the case where service rate p ≈ 1,
a sub-Gaussian α-stable model is theoretically obtained for a homogeneous
Poisson point process (HPPP) in an infinite plane without guard zone. And
when p ≈ 0, an independent α-stable model is obtained as well. These
two models remain accurate for different point processes (Doubly Poisson
Cluster Process and Matérn hard-core process of type II).

Although the independent sub-Gaussian α-stable and the 2KN -
dimensional sub-Gaussian α-stable models are good models when, respec-
tively, p is small and p is close to one, the t-copula model is the most appro-
priate one for a large range of service rates p. It degrades for small values
of p, which probably comes from the strong dependence in msBs and weak
one between eRBs. Taking a single degree of freedom to represent these
contradictory effects is no longer efficient. A hierarchical model should be
proposed and further studied.

The proposed estimation algorithms for the t-copula parameters exhibit
a significantly lower complexity but do not degrade the accuracy of our
model. The validation was made using the KL divergence. This again jus-
tifies the proposed t-copula α-stable model.
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Chapter 5

Receiver Design in IoT
networks

In previous chapters, we studied and characterized the interference in IoT
networks. The marginal interference is well modeled as α-stable and the
joint distribution of the interference vector is fitted with different interfer-
ence models which reflect the service rate p.

At the receiver side, the received signal is mixed with this additive in-
terference, which we consider as a noise. The optimal decoding strategy in
the interference-limited regime is based on ML. We recall here the problem
to be solved as discussed in Section 2.7, equation (2.13).

max
X

fZ(Y − gX),

where fZ(·|X,g) is the PDF of the interference, given that the symbol X is
transmitted, and the channel coefficient is g.

Calculating (2.13) requires the evaluation of the measure fZ(·), which is
tricky to implement in the sense that it requires the knowledge of the joint
PDF of the interference vector.

Although the marginals have been proved to be symmetric α-stable,
their densities are not known in closed form except for a few values of α:
α = 0.5, 1, and 2. What is more, the joint distribution of z is not known in
the general case, and it may even not be joint α-stable [Ega+18; Zhe+19a].
As such, getting the densities of the interference vector involves more com-
putation for estimation and non-linear signal processing. Due to the con-
straints of IoT features, i.e., low power, low cost and low complexity, IoT
devices cannot afford to employ too complicated receiver structure. There-
fore, a viable solution is through the sub-optimal receiver based on linear
combining. Compared with optimal receiver from ML, linear combining is
easier and simpler to implement as it only requires the knowledge of opti-
mal weights wi.

In the following, we will focus on the linear receiver. It appears that
the optimal combiner with sub-Gaussian α-stable interference, i.e. when p
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is close or equal to 1, is Maximum Ratio Combining (MRC). Even if it re-
mains suboptimal in a more general context, when 0 < p < 1, its simplicity
justifies a careful study of its performance in such settings. We provide an
exact characterization of the interference random vector and show that it is,
in fact, α-stable as a random vector. Using this exact characterization, we
derive the optimal combiner.

In this chapter, we evaluate the impact of the interference on the receiver
design in terms of BER. For the ease of analysis, we made some modifica-
tions on the model proposed in Chapter. 2.

5.1 Previous works

In the following, we do not try to be exhaustive about the existing receiver
strategies but instead give a few details about previous works about re-
ceiver design in impulsive noise, α-stable or not. It is to be noted that most
of these works rely on an i.i.d. assumption.

5.1.1 Noise distribution approximation

When the interference distribution is too complex to be handled, a first way
to solve (2.13) is to find a distribution that would approximate well the
true interference PDF fZ(·) with an analytical expression and parameters
that can be simply estimated. Erseghe et al. used a Gaussian mixture for
UWB communications [ECD08]. In [Nam+06], the ϵ-contaminated is used
to study the impact of impulsive noise on Parity Check Codes. However,
the importance to take the real noise model into account during the decod-
ing is underlined. And a review on the receiver design in the UWB case
can be found in [BY09]. For instance, Fiorina [Fio06] proposed a receiver
based on a generalized Gaussian distribution approximation. Beaulieu and
Niranjayan [BN10] considered a mixture of Laplacian and Gaussian noise.
The Cauchy model is proposed in [Gha+10]. Each solution is shown to sig-
nificantly improve the performance in their specific context.

5.1.2 LLR inspired solutions

When noise is impulsive, the optimal Log-Likelihood Ratio (LLR) is no
longer a monotonic increasing function but tends to reduce the weight of
large values in the decision, as shown in the case of α-stable distributions in
[Dim+14]. It means that we should not trust large positive or negative re-
ceived values, contrary to the decision weight that the linear receiver would
attribute.

This idea leads to a modification of the LLR function, and classical ex-
amples are the soft limiter and the hole puncher [NS95; AIH94; TNS95;
SMET12; Maa+13]. For small received samples, a linear function is used;
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and for large samples, respectively, a constant value or a zero are used as
output of the LLR function. Another approximation is given by [Mes+19]:

LLR(y) = sign (y)min

(
a |y| , b

|y|

)
, (5.1)

where sign(x) is the sign of x. It was proposed in [Dim+14] for Low-Density
Parity-Check (LDPC) codes. The model fits the linear part of the LLR for
small values of x, and the 1/x approximation is inspired from the limit of
the likelihood ratio for high values of x in the α-stable case. Parameters a
and b are estimated with different methods. Good results are obtained in
α-stable and Middleton class A interference.

Other works for weak signal detection approximate the function
f ′Z(.)/fZ(.) where f ′(.) is the derivative of f(.). Zozor et al. [ZBA06], for
instance, used a polynomial approximation of the function. Spaulding and
Middleton [SM77a; SM77b] proposed optimal and suboptimal strategies for
coherent and non-coherent detection in Middleton Noises. In the coherent
case, the optimal detector necessitates evaluating a ratio of infinite sums,
too complex to be implemented. A locally optimum detector is proposed,
using a series expansion for small signals. It results in applying a logarithm
to the received signal followed by the linear operation.

5.1.3 Linear approaches

The previous approaches induce approximation on the interference distri-
bution and do not completely resolve the issue of complexity. It is then
important to evaluate the linear approaches for their simple implementa-
tion structures. It is well known that MRC maximizes the Signal-to-Noise
Ratio (SNR) in Gaussian noise. In [Joh96], Johnson proposes a general study
of linear optimal receivers in non-Gaussian noise and takes the specific ex-
ample of α-stable noise. This is further studied for a rake receiver in [NB08;
NB09; NB10] and for diversity combining schemes in a multi-antenna re-
ceiver in [CE12] in presence of symmetric α-stable interference.

Previous works have assumed i.i.d. additive impulsive noise or inter-
ference. Recently, few works considered the receiver under dependent α-
stable interference. We can find the first trials in [Yan+15; Sor+17], which
introduce copula for modeling dependence. In the following, we are focus-
ing on the linear receiver strategy. It offers a low complexity and is optimal,
as we will see, in the sub-Gaussian α-stable case.

5.2 System model

As fully described in Chapter 2, we consider a Single-Input and Single-
Output (SISO) system on K orthogonal msBs, each containing N eRBs. The
transmitter seeks to send a binary symbol x ∈ {+1,−1}. We simplify (2.12)
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by choosing a repetition code for the source, meaning that the transmitted
word is composed of NK0 times the same bit x. Given x, the receiver ob-
serves an output y ∈ R2NK0 defined by

y = hx+ z+ n, (5.2)

where h ∈ R2NK0 corresponds to channel fading and z ∈ R2NK0 is the
interference in a set of NK0 orthogonal eRBs, real and imaginary parts. n

is the thermal noise. The channel fading is assumed to be perfectly known
to the receiver; e.g., using pilots to estimate CSI.

The statistical model for the interference z was introduced in Chapter 2.
For the analytical derivations we will only consider a network of the inter-
fering devices located according to the HPPP over the whole plane, denoted
by Φ with intensity λ. We further assume that the thermal noise has a neg-
ligible impact on the distribution of z+ n and can be ignored.

After stacking the interference on each eRB, real and imaginary parts,
the resulting interference random vector is given by z = (z1, . . . , z2NK0)

T .
Each component can be modeled by an α-stable distributed random vari-
able. Theorem 3.2.1 gives their (marginal) distributions:

Theorem 5.2.1. Consider the interference on a given eRB, real or imaginary part,
denoted by zi:

zi =
∑
j∈Φi

r
− η

2
j xj,i, i ∈ {1, · · · ,K}, (5.3)

where Φi is the set of interferers that transmit on the i-th eRB, rj is the distance
from device j in Φi to the desired receiver, η is the path-loss exponent, and xj,i ∈
R ∼ N (0, σ2I ) are i.i.d. and correspond to the combination of baseband emission
and small-scale fading.

Then, zi converges almost surely to a symmetric 4/η-stable random variable
with the scale parameter given by

γzi =

(
πλpC−1

4
η

E[|xj,i|
4
η ]

) η
4

, (5.4)

where Cα is given in (3.11).

Given the observation y and equally likely symbols (i.e., +1 and −1),
the BER is minimized by the LLR test

Λ(y) =
f(y|x = 1)

f(y|x = −1)

x=1
≷

x=−1
1. (5.5)

Due to the interference models studied in previous chapters, the likeli-
hoods in (5.5) do not admit tractable closed-form solutions. Consequently,
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we will base our decoding on a statistic obtained from linear combining.
The resulting detection rule is then given by

ỹ = wTy
x=1
≷

x=−1
0, (5.6)

where the weights w ∈ R2NK0 satisfy ‖w‖ = 1.

5.3 Optimal linear receiver for sub-Gaussian α-stable
interference

When the network is heavily loaded, i.e., p close to one, the set of interfer-
ence is the same on all eRBs, which means that the set of interferers verifies
Φi = Φ almost surely. In that case, as shown in Section 4.2.2, the interference
vector z is sub-Gaussian α-stable.

The optimal linear combiner is well known in the case of Gaussian
noise. It has also been studied in more general non-Gaussian settings
[Joh96] and the optimal weights w are known for the i.i.d. symmetric α-
stable interference case [NB09; NB10].

However, when the i.i.d. assumption is dropped, for instance with the
sub-Gaussian α-stable interference we consider, little work has been pro-
posed.

5.3.1 Optimal linear combiner when p = 1

Assume z is sub-Gaussian α-stable. We take x ∈ {+1,−1} with equal prob-
ability. Using the linear detection rule in (5.6), the BER can be expressed
by

Pe(w) =
1

2

[
P(wTy > 0|x = −1) + P(wTy ≤ 0|x = 1)

]
. (5.7)

Expressing y with (5.2), it follows that

P(wTy > 0|x = −1) = P(−wTh+wT z > 0)

= P(wT z > wTh), (5.8)

and

P(wTy ≤ 0|x = 1) = P(wTh+wT z ≤ 0)

= P(wT z ≥ wTh). (5.9)

Therefore, we have

Pe(w) = P(wT z ≥ wTh). (5.10)
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Since z is a sub-Gaussian α-stable, a special case of a symmetric α-stable
random vector, wT z is symmetric α-stable according to Theorem B.2.22.
The optimal linear combiner is given in the following theorem.

Theorem 5.3.1. Let z be a sub-Gaussian α-stable random vector with underlying
Gaussian vector G ∼ N (0, σzI) and parameter σz > 0. Then, the optimal weight
vector w minimizing the BER in (5.10) is given by

w =
h

‖h‖
, (5.11)

where ‖h‖ is the Euclidean norm of h. That is, the optimal linear combiner is
maximal ratio combining.

Proof. We first establish that

Pe(w) = P
(
z̃ >

1

‖w‖
wTh

)
, (5.12)

where

z̃ =
1

‖w‖
wTz ∼ Sα (γz, 0, 0) , γz =

σz√
2
. (5.13)

Since z is sub-Gaussian α-stable with parameter σz, it admits the scale-
mixture representation

z = A
1
2 (G1, G2, . . . , G2NK0)

T , (5.14)

where A ∼ Sα/2

((
cosπ4α

)2/α
, 1, 0

)
and Gk ∼ N (0, σz), k = 1, . . . , 2NK0,

all independent. As such,

wT z = A
1
2

2NK0∑
k=1

wkGk
d
= A

1
2 G̃, (5.15)

where G̃ ∼ N
(
0, σ2z

∑2NK0
k=1 w2

k

)
, which after dividing by ‖w‖ yields (5.13).

By the fact that z̃ ∼ Sα (γz, 0, 0)—i.e., the parameters are independent
of w—in (5.12) and the cumulative distribution of z̃ is non-decreasing, it
follows that minimizing Pe(w) is equivalent to maximizing 1

∥w∥w
Th.

Applying the Cauchy-Schwarz inequality then yields

|wTh|2 ≤ ‖w‖2‖h‖2. (5.16)

In (5.16), equality holds if and only if w and h are linearly dependent; i.e.,
w = ch, for some c > 0. Setting c = 1

∥h∥ to satisfy the constraint ‖w‖ = 1,
the equality (5.11) is obtained.
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5.3.2 Bit error rate

We now want to characterize the BER when the interference random vec-
tor is sub-Gaussian α-stable. The basis of the analysis is the following
lemma of symmetric α-stable random variables, which is derived from
Property B.2.12 in Appendix B.

Lemma 5.3.2. Let X ∼ Sα(γ, 0, 0). Then as b→ ∞,

P(X > b) =
1

2
Cαγ

αb−α + o(b−α), (5.17)

where Cα is given in (3.11).

With Lemma 5.3.2, it is straightforward to characterize the BER. We note
n = 2NK0, and we have the following theorem:

Theorem 5.3.3. Let z be an n-dimensional sub-Gaussian α-stable random vec-
tor with underlying Gaussian vector G ∼ N (0, σ2zI) and the linear combining
weights be w ∈ Rn. Then, as ‖h‖ → ∞,

Pe(w) =
1

2
Cαγ

α
z

(
1

‖w‖
wTh

)−α

+ o

((
1

‖w‖
wTh

)−α
)
, (5.18)

where γz = σz/
√
2.

When the optimal linear weights are used, the BER is given by

Pe(h) =
1

2
Cαγ

α
z ‖h‖−α + o(‖h‖−α). (5.19)

Proof. We apply Lemma 5.3.2 to calculate (5.12). To do so we replace X and
b with z̃ and 1

∥w∥w
Th and apply (5.17). This directly gives us (5.18).

One observation is that the form of BER in (5.18) bears striking similar-
ities with the BER of linear combining in Rayleigh fading with Gaussian
noise. In particular, the exponent α plays a role similar to a fractional di-
versity gain with the key difference from the Rayleigh fading scenario that
it lies in 0 < α < 2. Similarly, the factor 1

2Cαγ
α
z plays the role of an array

gain.

5.4 Optimal linear receiver for general α-stable inter-
ference

We now turn to the general interference model detailed in Section 4.1. We
study the case in two dimensions. It means we consider two msBs contain-
ing a single eRB, and the transmission is made with real signal (no com-
plex digital modulation schemes), which is different with the model in Sec-
tion 4.1. This real-valued model arises in the case where signaling is only



82 Chapter 5. Receiver Design in IoT networks

performed on either the in-phase or quadrature components. This choice
offers us a clear way to explicitly write analytical analysis. The framework
can, however, be extended to higher dimensions.

We first establish that the interference random vector remains symmet-
ric α-stable. This is non-trivial as, unlike the Gaussian noise case, a random
vector with symmetric α-stable marginals is not necessarily symmetric α-
stable as a random vector, which is formally defined in Appendix B. We
then develop new bounds on the error probability.

5.4.1 Interference statistics

Let Φ be a HPPP with intensity λ. We consider two msBs containing a single
eRB. The transmission is made with one-dimensional digital modulation
schemes (e.g. BPSK). Under the model in Section 5.2, the interference on
each eRB is given by

z1 =
∑
j∈Φ1

r
− η

2
j xj,1, (5.20)

z2 =
∑
j∈Φ2

r
− η

2
j xj,2, (5.21)

where xj,i, i = 1, 2 is defined in (5.3).

A general exact characterization of the interference random vector z =

[z1, z2]
T is given in the following theorem.

Theorem 5.4.1. The interference random vector z = (z1, z2) ∈ R2 given by (5.20)
and (5.21) has the CF

Φz(θ) = E [exp{i(θ1z1 + θ2z2)}]

= exp
(
iγα1 |θ21 + θ22|

α
2 + iγα2 |θ1|α + iγα2 |θ2|α

)
, (5.22)

where

γ1 = σI

(
πλp2C−1

4
η

E[|Z0|
4
η ]

) η
4

,

γ2 = σI

(
πλp(1− p)C−1

4
η

E[|Z0|
4
η ]

) η
4

(5.23)

with Z0 ∼ N (0, 1). That is, z is a symmetric α-stable random vector with spectral
measure on the unit sphere S1 of R2 given by Γ = Γ1+Γ2, with Γ1 uniform on S1

and Γ2 concentrated on (±1, 0), (0,±1).

Proof. Since each device independently chooses to access each eRB Bi, i =

1, 2 with probability p, it follows that the processes Φ1 ∪ Φ2, Φ1 \ Φ2 and
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Φ2 \ Φ1 are independent HPPPs with intensities, respectively.

λ1 = p2λ,

λ2 = λ3 = p(1− p)λ. (5.24)

The CF Φz(θ) is then given by

Φz(θ) = E[exp{i(θ1z1 + θ2z2)}]

= exp

i
 ∑
k1∈Φ1∪Φ2

r
− η

2
k1

(θ1xk1,1 + θ2xk1,2)

+
∑

k2∈Φ1\Φ2

r
− η

2
k2
θ1xk2,1 +

∑
k3∈Φ2\Φ1

r
− η

2
k3
θ2xk3,2

 . (5.25)

Noting that {r2kj} are one-dimensional Poisson point process with param-
eters πλj [IH98] and using the LePage series representation of symmetric
α-stable random variables [ST94, Corollary 1.4.3], it follows that

V1 =
∑

k1∈Φ1∪Φ2

r
− η

2
k1

(θ1xk1,1 + θ2xk1,2),

V2 =
∑

k2∈Φ1\Φ2

r
− η

2
k2
θ1xk2,1,

V3 =
∑

k3∈Φ2\Φ1

r
− η

2
k3
θ2xk3,2 (5.26)

are each independent symmetric α-stable random variables. In particular,
let Z0 ∼ N (0, 1), then

V1 ∼ Sα

(
σI

√
θ21 + θ22

(
πλp2C−1

α E[|Z0|α]
) 1

α , 0, 0

)
,

V2 ∼ Sα

(
σI |θ1|

(
πλp(1− p)C−1

α E[|Z0|α]
) 1

α , 0, 0
)
,

V3 ∼ Sα

(
σI |θ2|

(
πλp(1− p)C−1

α E[|Z0|α]
) 1

α , 0, 0
)
, (5.27)

where α = 4
η .

As such,

V = V1 + V2 + V3 = θ1z1 + θ2z2 (5.28)

is also a symmetric α-stable random variable, irrespective of the choice θ ∈
R2. Specifically, we have

V ∼ Sα

(
σI

[
p2(θ21+θ

2
2)

α
2 +p(1−p)(|θ1|α+|θ2|α)

] 1
α (
πλC−1

α E[|Z0|α]
) 1

α , 0, 0

)
,

(5.29)
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where α = 4
η .

By Theorem 2.1.5 in [ST94], it then follows that z is a symmetric α-stable
random vector with its CF given by

Φz(θ) = E[exp{i(θ1z1 + θ2z2)}]

= E[exp{ibV }]|b=1

= exp
(
iγα1 |θ21 + θ22|

α
2 + iγα2 |θ1|α + iγα2 |θ2|α

)
, (5.30)

where γ1 and γ2 are given in (5.23).

As expected, when p → 1, we recover the sub-Gaussian α-stable CF
studied in Section 5.3.

5.4.2 Optimal linear combining

We now study the BER for the general interference statistics in Theo-
rem 5.4.1.

Theorem 5.4.2. Let z have the CF given in Theorem 5.4.1, corresponding to the
general interference model in Section 5.4.1. Then, the optimal combining weights
are the solution of

max
w∈R2:∥w∥=1

wTh[
γα1 (w

2
1 + w2

2)
α
2 + γα2 |w1|α + γα2 |w2|α

] 1
α

. (5.31)

Proof. According to (5.10), the BER is given by

Pe = P (w1z1 + w2z2 > w1h1 + w2h2) . (5.32)

Now,

w1z1 + w2z2

=
∑

k∈Φ1∩Φ2

r
− η

2
k (w1xk,1 +w2xk,2) +

∑
k∈Φ1\Φ2

w1r
− η

2
k xk,1 +

∑
k∈Φ2\Φ1

w2r
− η

2
k xk,1.

(5.33)

Suppose that xk,j ∼ N (0, σ2I ) and call the three terms above V1, V2, V3, re-
spectively. Then

V1 ∼ Sα

(
γ1

√
w2
1 + w2

2, 0, 0

)
,

V2 ∼ Sα(γ2|w1|, 0, 0),

V3 ∼ Sα(γ2|w2|, 0, 0). (5.34)
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As such,

w1z1 + w2z2 ∼ Sα

((
γα1 (w

2
1 + w2

2)
α
2 + γα2 |w1|α + γα2 |w2|α

) 1
α
, 0, 0

)
. (5.35)

Hence,

Pe = P

N >
wTh(

γα1 (w
2
1 + w2

2)
α
2 + γα2 |w1|α + γα2 |w2|α

) 1
α

 , (5.36)

where N ∼ Sα(1, 0, 0).
An examination of (5.36), reveals that scaling w does not affect the BER.

Without loss of generality, we therefore set ‖w‖ = 1. Under this condition
w2
1 + w2

2 = 1, the optimal weights are given by the solution of (5.31).

5.5 Numerical results

5.5.1 Sub-Gaussian α-stable interference

In this section, we validate our analysis by evaluating the BER through
Monte Carlo simulations. To study the BER in the presence of sub-Gaussian
α-stable interference as described in Section 5.3, we set γz = 1, α = 0.8 and
x = ±1. For the clarity of illustration, we select a single channel vector

h =
√
ρ× [0.0949, 0.3237, 0.3988, 0.1522, 0.0563, 0.2308

0.0765, 0.0605, 0.6317, 0.4889] , (5.37)

where ‖h‖2 = ρ.
The system behavior under this choice of channel vector is representa-

tive. Indeed, it was validated through an extensive simulation study for
other choices of h. While it is also possible to study the average behav-
ior under, for example, Rayleigh fading, the choice of a fixed h enables an
easier interpretation of the resulting curves.

Fig. 5.1 plots BER for varying ‖h‖2 = ρ and both the optimal combiner,
i.e., MRC (by Theorem 5.3.1) and Equal Gain Combining (EGC) as a com-
parison. As expected from Theorem 5.3.1, the MRC combiner performs
better than EGC, even if the gap is limited. In fact in such impulsive in-
terference (α = 0.8), the RB with a set including one or several strong in-
terferers is difficult to recover, whatever the combining solution used. For
small values of ‖h‖—that is, the received signal is very week compared to
the interference— the gap disappears between MRC and EGC, but this is
not relevant because interference is strong and the situation is bad on every
channel. However, as ‖h‖ increases, the gap becomes obvious. Moreover,
the asymptotic approximation of the BER of sub-Gaussian α-stable in (5.19)
of Theorem 5.3.3, is plotted as well. It is in very good agreement with the
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FIGURE 5.1: Bit error rates comparison of MRC and EGC
for sub-Gaussian α-stable interference under different ‖h‖

with K = 10 channels, γz = 1, α = 0.8 and x = ±1.

Monte Carlo simulation for sufficiently large ‖h‖. For large values of ‖h‖,
the curves for MRC and EGC become straight lines, which can be deduced
from (5.18).

5.5.2 Symmetric α-stable random vector

We now turn to the model in Section 5.4.1 in 2 dimensions. To validate the
model is consistent with Theorem 5.4.1, we first make a visual inspection of
the samples simulated from the system model and the samples generated
from (5.22). They are plotted in Fig. 5.2 and the corresponding joint PDFs
in Fig. 5.3.

We can observe that the samples and the joint PDF from the model in
Theorem 5.4.1 are consistent with the samples and the joint PDF from the
simulated set detailed in Section 4.1.

Fig. 5.4 plots the BER for varying p with parameters: λ = 0.001 m−2,
‖h‖ = 10−3, η = 5, and σI = 1. Optimal linear combining (OLC) based on
Theorem 5.4.2, MRC and EGC are considered.

The BER for p ≈ 1 under OLC and MRC approximately equal. This is
consistent with the result of Theorem 5.3.1, stating that the optimal com-
biner for sub-Gaussian α-stable interference is MRC.

In Fig. 5.4, when p is low, i.e., each device transmits with a low proba-
bility, and the BER gets smaller, which is consistent with the fact that inter-
ference becomes smaller.
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FIGURE 5.2: Scatter plots of the interference random vector
with p = 0.5, λ = 0.001 m−2, η = 5, and σI = 1.
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FIGURE 5.3: Probability density functions of the interfer-
ence random vector with settings as in Fig. 5.2.
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FIGURE 5.4: Bit error rates of OLC, MRC and EGC under
different p with λ = 0.001 m−2, ‖h‖ = 10−3, η = 5, and

σI = 1.

Increasing p changes the statistics of the interference vector in two ways.
First, it increases the scale parameter of each marginal—i.e., γzi given in
(5.4)– leading to a higher BER. Second, the dependence structure is mod-
ified, and the interference vector becomes approximately sub-Gaussian α-
stable when p ≈ 1, which—for equal scale parameters—reduces the BER.

In particular, for the sub-Gaussian α-stable and independent α-stable
vector with the same marginal distributions, the scale parameter—γw of
the weighted sum zw = w1z1 +w2z2—is different. Observe that γw for sub-
Gaussian α-stable is less than γw for independent case. For instance, when
zw = w1z1 + w2z2, w1 = w2 = 1 and zi ∼ Sα(1, 0, 0), we have γw =

√
2

for (z1, z2) following sub-Gaussian α-stable and γw = 21/α for independent
α-stable.

We conclude from Fig. 5.4 that increasing p will increase the scale pa-
rameter of the marginal interference and therefore increase the scale pa-
rameter, γw of their weighted sum. On the other hand, the increase of p also
changes the dependence structure of the interference vector, which makes
it more “sub-Gaussian”, which decrease the scale parameter γw. But the
former takes dominance.

5.5.3 General case and non-linear receiver.

We now turn to the general scenario from Chapter 4. In this section, we
study the impact of the dependence structure, parametrized by the service
rate p, on the receiver performance. To do so, we use our tractable interfer-
ence models detailed in Section 4.2.
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The simulation is as follows. We assume that a transmitter seeks to send
a binary symbol x ∈ {+1,−1} in the presence of interference. We choose
K0 = 4 msBs with N = 2 eRBs per msB, i.e., an interference vector of
dimension 2NK0 = 16.

Given the transmitted symbol x, the receiver observes an output y ∈
R2NK0 defined by

y = gAx+ z, (5.38)

where A =
√
Pr−η/2 is the combination of path loss and transmitted sig-

nal power P , g ∈ R2NK0 corresponds to channel fading stacking the real
and imaginary components in NK0 eRBs, and z ∈ R2NK0 is interference
stacking the real and imaginary components in NK0 eRBs, detailed in Sec-
tion 4.1.

Each eRB experiences i.i.d. Rayleigh fading, i.e., g = [g1, · · · , g2NK0 ],
where gi ∼ N (0, 1) is i.i.d.. We also assume that g for the desired link is
known to the receiver, which comes to assuming that the channel estima-
tion is perfect.

Given the observation y and equally likely symbols x, the probability of
error is minimized by the likelihood ratio test

Λ(y) =
f(y|x = 1,g)

f(y|x = −1,g)

x=1
≷

x=−1
1, (5.39)

where f(·|x,g) is the PDF of the received signal given that the symbol x is
transmitted and the fading is g.

Applying the copula function, (5.39) is expressed as

Λ(y) =
f(y|x = 1,g)

f(y|x = −1,g)
(5.40)

=
cz(F (y1 − g1A), · · · , F (y2NK − g2NKA))

cz(F (y1 + g1A), · · · , F (y2NK + g2NKA))

2NK∏
i=1

fzi(yi − giA)

fzi(yi + giA)
,

where f(zi) are the densities of the marginals, and cz(·) is the density of
copula.

To evaluate the impact of the receiver design, we consider the following
solutions:

1. the t-copula α-stable receiver: it assumes that interference follows the
t-copula α-stable model detailed in Section 4.2.3;

2. the MRC receiver: a linear combiner optimal for Gaussian and sub-
Gaussian α-stable interference;
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FIGURE 5.5: Probability of error under different service
rates, η = 3, A = 0.01 and λ = 0.001 devices/m2.

3. the independent α-stable receiver: it assumes independent α-stable
components in the interference vector.

The α-stable densities can be computed using the method in [Nol97] via
the stblpdf MATLAB package [Sta]. The density of sub-Gaussian α-stable
distribution is given in [Nol13, eq.13]. The density of the t-copula α-stable
model is given in (4.15) and (C.24).

To evaluate the different models in terms of the probability of error, we
study the impact of the service rate, p. Recall that the service rate is the key
parameter which controls the dependence between interference on different
eRBs. In our study, we consider the following parameters:

• hj,i ∼ CN (0, 1);

• λ = 0.001 devices/m2;

• xj,i is uniformly drawn from {+1,−1}, ∀i, j;

• K0 = 4; and N = 2.

Fig. 5.5 gives the probability of error under each of the different re-
ceivers. The transmitted signal amplitude is A = 0.01. Results are based
on 200, 000 Monte Carlo iterations.
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We observe that when p → 1, the MRC receiver gives a lower BER than
the other receivers. It is indeed optimal [Zhe+20] in sub-Gaussian α-stable
interference. However, there is a negligible performance improvement over
the t-copula α-stable receiver. As p < 0.8, the MRC receiver has signifi-
cantly degraded performance.

On the other hand, the t-copula α-stable receiver exhibits better per-
formance than the receiver tailored to independent α-stable noise [NB09;
NB10], when p ∈ [0.3, 1]. This suggests that the t-copula α-stable receiver is
a tractable means of obtaining improved performance for a wide range of
network parameters.

5.6 Conclusion

The optimal linear receiver under the independent α-stable noise has been
proved by Niranjayan[NB08; NB09; NB10] to be either MRC for 1 < α < 2

or Selection Combining (SC) for 0 < α < 1. However, the effect of de-
pendent α-stable interference on receiver design was neglected and lacks
study.

In this chapter, we prove that the optimal linear receiver is MRC in sub-
Gaussian α-stable interference. This shows that the dependence structure,
along with the marginal distributions, has a non-trivial impact. What is
more, we also give an asymptotic approximation of the BER. Under 2 di-
mensions, we derive the exact CF of the interference. With the exact charac-
terization of interference, we are able to study the impact of the service rate
p, on the performance of linear receiver. For high dimensions, we study the
impact of dependence structure on the performance with different receiver
under different values of p. The p impacts the receiver in two different
ways: First, it increases or reduces the scale parameter of marginal inter-
ference; Second, it changes the dependence structure of the interference.
Results show that the t-copula has a better performance for a wide range
of p. This allows us to account for this dependence structure and obtain a
tractable receiver.

These preliminary results pave the way towards further studies. Know-
ing the dependence structure in the interference vector allows us to signifi-
cantly improve the receiver design. As long as this dependence is controlled
by a system parameter (p in our case), the receiver can be a priori optimized.
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Chapter 6

Conclusion

This thesis focus on characterizing interference and designing receivers in
the IoT networks. The performance of the receiver is mainly degraded by
the interference which is accumulative undesired signals from other de-
vices. However, the interference arising in IoT networks is not i.i.d. Gaus-
sian. Hence, an exact characterization of the interference statistics becomes
a prerequisite for improving the receiver designs.

Motivated by NB-IoT and SCMA, we first develop a mathematical for-
mulation for the physical layer and access scheme. The point process is
applied for modeling the interferers’ location. In addition to the assump-
tion of the HPPP over the whole plane, two general point processes are
introduced as well: doubly Poisson cluster process and Matérn hard-core
process of type II, which can account for either the clustering due to human
activity or the repulsion caused by CSMA. Besides, a guard zone is intro-
duced and a finite network radius is considered. A simple access scheme
model based on a probability p is proposed. This probability p can be in-
terpreted as the service rate which is the amount of data to be transmitted
and thus the average frequency resources occupied. Although it is built
on NB-IoT, our framework is kept as generic as possible so that it is also
suitable for other IoT networks.

We then verify the validity of the α-stable model on a single subcarrier.
We first consider a HPPP with guard-zone radius rmin. The impact of rmin

on the α-stable model is well studied in terms of estimated α̂, Quantile-
Quantile plot (Q-Q plot), Probability-Probability plot (P-P plot) and copula
space. It is verified that the fitted stable model (with estimated α̂) is a good
approximation under different rmin. The interference induced by the dou-
bly Poisson cluster point process and Matérn hard-core process of type II is
then studied. In theory, it is proved to converge in distribution to the inter-
ference induced by HPPP. The approximation of α-stable under these two
point processes is also proved through simulation with practical parame-
ters in terms of KL divergence.

The interference on multiple subcarriers is studied in the next. Based on
the simple access scheme we developed, we first derive the joint distribu-
tion of the interference vector under HPPP for two limiting cases: 1) heavily
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loaded network (p ≈ 1) where interferers transmit on all msBs, the inter-
ference follows the sub-Gaussian α-stable distribution; 2) lightily loaded
network (p ≈ 0) where interferers transmit on one msB at most, the in-
terference follows the independent sub-Gaussian α-stable distribution. For
the general case (0 < p < 1), we propose a t-copula α-stable model. Tai-
lored to this model, a low complexity estimation algorithm is proposed and
its accuracy is further proved. Considering the aforementioned three point
processes, we study and compare the accuracy of the five models in terms
of KL divergence: the fully sub-Gaussian α-stable model, independent sub-
Gaussian α-stable model and the t-copula α-stable model (which are three
models based on three estimation algorithms).

In the last, we study the impact of the interference on the receiver perfor-
mance. We prove that the optimal linear receiver under the sub-Gaussian
α-stable distribution (p ≈ 1) is the MRC. And an accurate approximation of
the BER is derived. Furthermore, the exact characterization of the interfer-
ence with 2 dimensions is derived for p < 1, and the optimal linear receiver
for such case is studied. To obtain further insight, we study the three re-
ceivers under different service rates p: the t-copula α-stable receiver, the
MRC receiver and the independent α-stable receiver.

The work in this thesis can be further improved and extended in many
aspects. One is to fit α-stable distribution with practical data. Although
α-stable distribution has been studied and proves to be a good approxima-
tion in theory, its validity in practice has not been proved. To the best of
our knowledge, only the work in [Cla+20] studied the accuracy of α-stable
model for practical measurement data. The t-copula model proposed in this
work is a good approximation for a wide range of p, but a more accurate
model may exist by exploiting a hierarchical copula which incorporates t-
copula to model the dependence structure interference on eRBs associated
with different msBs. Time dependence should also be considered as devices
usually stay active and transmit on several consecutive slots. A Markov
chain may be an approach to introduce such dependence, or the life session
introduced in [YP03]. Analogous to the dependence in frequency, the im-
pact of time dependent interference on receiver design can be explored. A
more wide range of dependence structure may exist in IoT networks, for
instance, the channel fading may be correlated and the interference on msB
is not isotropic sub-Gaussian. What is more, trade-offs between the perfor-
mance and complexity in the receiver also need to be accounted for.
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Appendix A

Preliminaries on Point
Processes

In this section, definitions and properties on point processes are given
as complementary to the three general point processes introduced in Sec-
tion 2.5

A.1 Point process

Loosely speaking, a point process is a random collection of points within
some spatial region. Its formal definition is given as [Hae13]

Definition A.1.1. A point process is a countable random collection of points that
reside in some measure space, usually the Euclidean space Rd.

A common representation of the point process is through counting mea-
sure. That is to count the number of points falling into the set B ⊂ Rd:

N(B) =
∞∑
i=1

1(xi ∈ B), (A.1)

where N(B) denotes the number of points in B and 1 is the indicator func-
tion. N is called the (random) counting measure.

The expectation of the counting measure is the intensity measure:

Definition A.1.2. The intensity measure is defined as

Λ(B) = E[N(B)], (A.2)

where B ⊂ Rd.

A.2 Binomial point process

Definition A.2.1. A point process Φ = {x1, · · · , xn} consisting of n i.i.d. points
with intensity λ on the set B is called a Binomial Point Process (BPP).
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And for independent subsets Ai ⊂ B, we have

P (x1 ∈ A1, · · · , xn ∈ An) =
|A1| · · · |An|

|B|n
, (A.3)

where | · | is the Lebesgue measure.
The Poisson point process can be treated as a conditional BPP:

Theorem A.2.2 (Conditional property for HPPP). Consider a HPPP in R2

with density λ. Let A ⊂ R2 be any subset with 0 < |A| < ∞. Given that
N(A) = n, the distribution of N(B) for B ⊂ A is binomial:

P (N(B) = k|N(A) = n) =

(
n

k

)
pk(1− p)(n−k), (A.4)

where p = |B|/|A|.

In addition, this theorem also provides an approach to simulate the ho-
mogeneous Poisson point process over the region A:

1. Draw a random number from the Poisson distribution with mean
λ|A|, say n;

2. Distributed n points uniformly over the area of A.

A.3 Transformation of Poisson point process

A.3.1 Mapping

For a point process, each point may be mapped to another point in the same
space or the space of other dimensions. In most cases, the resulting process
keeps as Poisson point process when it applies to the Poisson point process.

Theorem A.3.1. Let Φ be a Poisson point process (PPP) with intensity measure
Λ and intensity function λ. And let f : Rd → Rs and Λ(f−1(y)) = 0, ∀y ∈ Rs.
Then

Φ′ = f(Φ) = ∪x∈Φ{f(x)} (A.5)

is also a Poisson point process with intensity measure

Λ′(B′) = Λ(f−1(B′)) =

∫
f−1(B′)

λ(x)dx. (A.6)

Therefore, the relationship between HPPP over the plane (R2) and Pois-
son distribution (R1) is given in the following proposition:

Proposition A.3.2. For a HPPP in the plane with the rate λ, assuming that points
are at distances ri(r1 < r2 < · · · ) from the origin, Γi = r2i represents Poisson
arrival times on the line with the constant arrival rate λπ.
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This proposition is linked with the LePage series representation in Ap-
pendix B and serves as the part of the proof that the interference under the
Poisson network is α-stable.

A.3.2 Thinning

Generally, thinning is the removal of certain points from the point process.
According to [Hae13], the thinning is called independent if the removal is
independent for each point. And in particular, we have

Theorem A.3.3. For a HPPP with intensity λ, each point is retained with prob-
ability p and deleted with probability 1 − p independent of all other points. The
resulting process is still a HPPP with pλ.
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Appendix B

Preliminaries on α-stable
Distribution

In this section, preliminaries of α-stable distribution are given which are
used throughout this thesis. Definitions and properties on α-stable distri-
bution are introduced. LePage series representation based on the Poisson
process is elaborated. Sub-Gaussian α-stable, isotropic α-stable and their
relationships are given in detail.

B.1 Gaussian distribution

The most common approach to modeling interference is the Gaussian
model. Such a model is widely used due to its analytical expression and
tractability. The probability density function (PDF) ofX ∼ N(µ, σ2) is given
as:

f(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 , (B.1)

where µ is the mean and σ2 is the variance.
The validity of the Gaussian model is also proved by the classical

Central Limit Theorem (CLT):

Theorem B.1.1 (Classical CLT). Let {X1, · · · , Xn} be an i.i.d sequence with
E[Xi] = µ and Var[Xi] = σ2 <∞. Then as n→ ∞, we have

√
n (Sn − µ)

d→ N(0, σ2), (B.2)

where Sn = 1
n

∑n
i=1Xi.

Fig. B.1 shows the Gaussian samples, there is no "outlier" out of the
frame, which indicates the Gaussian model an inappropriate method for
modeling impulsiveness.

Fig. B.2 shows PDF of Gaussian distribution in which its tail probability
decreases in an exponential way implying a low probability of having large
values.
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B.2 α-stable distribution

In many scenarios, the interference exhibits impulsiveness, i.e., there exist
heavy tails in its PDF. Such an impulsive or non-Gaussian behavior can
not be well captured by the Gaussian model and hence, distributions with
heavy tails are introduced such as Middleton Class A and B or α-stable
models. Among all the heavy-tailed models, it has been shown that α-stable
distribution is a promising one.

The α-stable distribution is a generalization of Gaussian distribution
and shares many properties of Gaussian distribution such as stability and
isotropy. It is usually characterized by its CF due to the lack of closed-form
PDF. Nevertheless, methods of parameters estimation and sample gener-
ation for α-stable have been extensively studied and already exist, which
guarantees its tractability.

In this section, we give definitions of α-stable distribution. In addition,
we also outline the properties and theorems related with α-stable distribu-
tion such as Lepage series representation theorem. These properties and
theorems will be used in the rest of this thesis.

B.2.1 Definitions

According to [ST94], the α-stable distribution can be defined in terms of sta-
bility, GCLT and CF. We will give four equivalent definitions in this section.
And each definition provides a different perspective for interpretation. The
first two are defined in terms of stability:

Definition B.2.1. A random variable X is said to have a stable distribution if for
any positive number A and B, there is a positive number C and a real number D
such that

AX1 +BX2
d
= CX +D, (B.3)

where X1 and X2 are independent copies of X .

A random variable X is called strictly stable if D = 0. And X is called
symmetric stable if it is symmetric, i.e., X d

= −X .

Theorem B.2.2. For any stable random variable X , there is a number α ∈ (0, 2]

such that

Cα = Aα +Bα, (B.4)

where A, B and C are in (B.3).

Definition B.2.3. A random variable X is said to have a stable distribution if for
any n ≥ 2, there is a positive number Cn and a real number Dn such that

X1 +X2 + · · ·+Xn
d
= CnX +Dn, (B.5)
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where X1, X2, · · · , Xn are independent copies of X .

It is shown that Cn = n1/α.
Although the variance of α-stable distribution is infinite, it keeps the

property as GCLT, which is shown in the third definition.

Definition B.2.4 (Generalized CLT). A random variable X is said to have a
stable distribution if it has a domain of attraction, i.e., if there is a sequence of
i.i.d. random variables Y1, Y2, · · · and sequences of positive numbers {dn} and
real numbers {an}, such that

Y1 + Y2 + · · ·+ Yn
n

+ an
d→ X. (B.6)

When Yi are i.i.d. with finite variance and X is Gaussian, it is classical
CLT.

Generally, the α-stable distribution doesn’t have a closed-form PDF.
Hence, it is often characterized by its CF:

Definition B.2.5. A random variable X is said to have a stable distribution if
there are parameters: 0 < α ≤ 2, γ > 0, −1 < β < 1 and δ real such that its CF
has the following form

E[eiθX ] =

exp
{
−γα|θ|α(1− iβ(sign(θ)) tan πα

2 ) + iδθ
}
, α 6= 1

exp
{
−γ|θ|(1 + iβ 2

π (sign(θ)) log |θ|) + iδθ
}
, α = 1

, (B.7)

where sign(·) is the sign function.

It is fully determined by four parameters: α, β, γ and δ, where

• α – characteristic exponent (0 < α 6= 2): It controls the heaviness of the
tail of the stable density. Small values of α imply strong impulsive-
ness. And large values of α exhibit more Gaussian behavior. Special
cases are Gaussian (α = 2), Cauchy (α = 1) and Lévy (α = 0.5);

• γ – scale parameter (γ > 0) or dispersion: It is similar to the variance
of the Gaussian distribution. And in the Gaussian case, it equals to
half of the variance;

• β – symmetry parameter (−1 < β < 1): It characterizes the symmetry
or skewness of the density function. It is symmetric when β = 0. And
when β = ±1, the distribution is totally skewed to the right or left;

• δ – the location parameter (δ ∈ R).

Notation. Since (B.7) is fully described by the aforementioned four parameters:

α ∈ (0, 2]; γ ∈ (0,∞); β ∈ [−1, 1]; δ ∈ R. (B.8)
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we will denote the stable distribution by Sα(γ, β, δ) and write

X ∼ Sα(γ, β, δ) (B.9)

to indicate X follows stable distribution Sα(γ, β, δ).
When β = δ = 0, X is symmetric α-stable since X d

= −X according to (B.7).
And we write

X ∼ SαS. (B.10)

The PDFs of α-stable distribution exist and are continuous, but in gen-
eral are not in closed form with only a few exceptions:

a). The Gaussian distribution X ∼ S2(γ, 0, δ)
d
= N(µ, σ2), where δ = µ

and σ =
√
2γ. Its PDF is given as

fG(x) =
1

2
√
πγ
e
− (x−δ)2

4γ2 , x ∈ (−∞,+∞). (B.11)

And its CF is given as

ϕG(θ) = exp
{
−γ2θ2 + iδθ

}
. (B.12)

b). The Cauchy distribution X ∼ S1(γ, 0, δ), its PDF is given as

f(x) =
1

π

γ

(x− δ)2 + γ2
, x ∈ (−∞,+∞). (B.13)

And its CF is given as

ϕC(θ) = exp {γ|θ|+ iδθ} . (B.14)

c). The Lévy distribution X ∼ S 1
2
(γ, 1, δ), its PDF is given as

f(x) =
( γ
2π

)1/2 1

(x− δ)3/2
exp

{
− γ

2(x− δ)

}
, x ∈ (0,+∞). (B.15)

And it CF is given as

ϕL(θ) = exp
{
−|γθ|1/2(1− isign(θ)) + iδθ

}
. (B.16)

Fig. B.3 shows the PDFs of α-stable distribution under different α with
δ = 0 and γ = 1.

B.2.2 Properties

The α-stable distribution keeps the stable property of Gaussian distribu-
tion:
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Property B.2.6 (Stable Property). Suppose that X1 and X2 are independent
random variables with X1 ∼ Sα(γ1, β1, δ1) and X2 ∼ Sα(γ2, β2, δ2). Then X1 +

X2 ∼ Sα(γ, β, δ), where

γ = (γα1 + γα2 )
1
α ; β =

β1γ
α
1 + β2γ

α
2

γα1 + γα2
; δ = δ1 + δ2. (B.17)

For the summation of several SαS random variables, we have the fol-
lowing corollary:

Corollary B.2.7. Let Xi ∼ Sα(γi, 0, 0), i = 1, 2, · · · ,K, then
∑K

i=1Xi ∼

Sα(γ, 0, 0), where γ =
(∑K

i=1 γ
α
i

) 1
α .

Property B.2.8 (Shifting Property). Let X ∼ Sα(γ, β, δ) and let a be a con-
stant. Then X + a ∼ Sα(γ, β, δ + a)

For X ∼ G(µ, σ2), aX ∼ G(aµ, a2σ2). Stable distribution has similar
properties as Gaussian.

Property B.2.9 (Scaling Property). LetX ∼ Sα(γ, β, δ+a) and a as a non-zero
real constant. Then

aX ∼ Sα(|a|γsign(a)β, aδ) if a 6= 1; (B.18)

aX ∼ Sα(|a|γsign(a)β, aδ −
2

π
a(ln(|a|))γβ) if a = 1. (B.19)

Property B.2.10. For any 0 < α < 2,

X ∼ Sα(γ, β, 0) ⇔ −X ∼ Sα(γ,−β, 0). (B.20)

Property B.2.11 (Symmetric Property). X ∼ Sα(γ, β, δ) is symmetric if and
only if β = 0 and δ = 0. It is symmetric about δ if and only if β = 0.
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Unlike Gaussian, α-stable has heavy tails

Property B.2.12 (Tail Probability). Let X ∼ Sα(γ, β, δ) with 0 < α < 2. Then
lim
t→∞

tαP{X > t} = Cα
1 + β

2
γα

lim
t→∞

tαP{X < −t} = Cα
1− β

2
γα

, (B.21)

where

Cα =

(∫ ∞

0
x−α sinx

)−1

=


1−α

Γ(2−α) cos π
2
α if α 6= 1

2
π if α = 1

, (B.22)

Property B.2.13 (Order of Moments). Let X ∼ Sα(γ, β, δ) with 0 < α < 2.
Then

E|X|p <∞, 0 < p < α; (B.23)

E|X|p = ∞, p ≥ α. (B.24)

The α-stable distribution (α 6= 2) does not have finite variance. And for
0 < α < 1, E|X| = ∞.

B.2.3 Series representation of α-stable distribution

An α-stable random variable can also be represented as the convergent sum
of infinite series involving Poisson arrival in one dimension. Such an infi-
nite series is called LePage series. The following theorem in this section
shows the relationship between the α-stable random variable and the LeP-
age series.

Let {ϵ1, ϵ2, . . . }, {W1,W2, . . . }, {Γ1,Γ2, . . . } be three independent se-
quences of random variables such that

• ϵ1, ϵ2, . . . is an i.i.d. sequence of Rademacher variables, i.e., P [ϵi = 1] =

P [ϵi = −1] = 1
2 ;

• W1,W2, . . . is an i.i.d. sequence of random variables;

• Γ1,Γ2, . . . is a sequence of arrival times of Poisson process with unit
arrival rate, i.e., Γi =

∑i
j=1 ej , where ej are i.i.d. exponential random

variables with E[ej ] = 1.

Theorem B.2.14 (LePage Series). Suppose 0 < α < 2. then∑∞
i=1 ϵiΓ

− 1
α

i Wi
a.s.−→ X ∼ Sα (γ, 0, 0), where Cα is the constant defined in (B.22),

and

γ = (C−1
α E[|Wi|α])

1
α . (B.25)
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The notation Xn
a.s.−→ X denotes that the sequence Xn converges almost

surely to X or P
[
lim
n→∞

Xn = X
]
= 1.

According to [ST94], we have the following remark:

Remark B.2.15. The first summand ϵ1Γ
− 1

α
1 W1 is stochastically the greatest in

absolute value. Its probability tail has the same asymptotic rate of growth as the
α-stable random variable:

lim
t→∞

tαP

[∣∣∣∣ϵ1Γ− 1
α

1 W1

∣∣∣∣ > t

]
= E [|W1|α] . (B.26)

Proof. Let F|W1| be the distribution of |W1|. Since Γ
− 1

α
1 W1 is symmetric, it

follows that

Pr

(
Γ
− 1

α
1 W1 > t

)
=

1

2
Pr

(∣∣∣∣Γ− 1
α

1 W1

∣∣∣∣ > t

)
=

1

2

∫ ∞

0
Pr(Γ1 < wαt−α)F|W1|(dw)

=
1

2

∫ ∞

0

(
1− e−wαt−α

)
F|W1|(dw)

=
1

2

∫ ∞

0

[
wαt−α −

∞∑
n=2

(−1)nwnαt−nα

n!

]
F|W1|(dw)

=
1

2
E[|W1|α]t−α −

∞∑
n=2

(−1)nE[|W1|nα]t−nα

n!

=
1

2
E[|W1|α]t−α + o(t−α). (B.27)

Using (B.25), it then follows that

E[|W1|α] = γαCα, (B.28)

and hence,

Pr

(
Γ
− 1

α
1 W1 > t

)
=
Cα

2
γαt−α + o(t−α) (B.29)

as required.

Let X =
∑∞

i=1 ϵiΓ
− 1

α
i Wi ∼ Sα (γ, 0, 0), according to Property B.2.12, we

have

1

2
lim
t→∞

P{X > t} = Cαγ
αt−α. (B.30)
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B.2.4 Symmetric α-stable distribution

When X ∼ SαS, its CF becomes

E[eiθX ] = exp {−γα|θ|α} . (B.31)

The SαS random variable is only characterized by its characteristic expo-
nent α and its scale parameter γ. A random variable X is called standard
SαS if γ = 1. For SαS with α = 2, it follows Gaussian distribution with
zero mean and variance as 2γ2.

The following proposition shows that any Sα′S random variable can be
transformed into another SαS random variable as long as 0 < α < α′.

Proposition B.2.16. Let X ∼ Sα′(γ, 0, 0) with 0 < α′ ≤ 2 and let 0 < α < α′.
Let A be a skewed α/α-stable variable where A ∼ Sα/α′

((
cos πα

2α′

)α′/α
, 1, 0

)
. If

X and A are independent, then

Z = A
1
α′X ∼ Sα(γ, 0, 0). (B.32)

In particular, this leads to the following remark which shows the link
between α-stable distribution and Gaussian distribution.

Remark B.2.17. If X ∼ N (0, σ2) where σ2 = 2γ2, A ∼
Sα/2

((
cos πα

4

)2/α
, 1, 0

)
and X and A are independent, then

Z =
√
AX ∼ SαS. (B.33)

Hence, every SαS random variable is conditional Gaussian. And Z can
be treated as N (0, σ2A), i.e., the Gaussian distribution with variance σ2A.

B.2.5 Multivariate α-stable distribution

It is possible to extend the notion of an α-stable random variable to the
multivariate setting, i.e., the α-stable vector.

Definition B.2.18. A random vector X = [X1, · · · , Xd] is said to be a stable
random vector in Rd if for any positive numbersA andB there is a positive number
C and a vector D ∈ Rd such that

AX(1) +BX(2) d
= CX(3), (B.34)

where X(1) and X(2) are independent copies of X.

We note that each element in X is an α-stable random variable if X

is an α-stable vector, but not all random vectors with symmetric α-stable
marginals form symmetric α-stable random vectors.
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The vector “X” is called strictly stable if (B.34) holds for with D = 0,
∀A,B. The vector is called symmetric stable if it is stable and satisfies

P (X ∈ A) = P (−X ∈ A) (B.35)

for any Borel set A of Rd.

Theorem B.2.19. Let X = [X1, · · · , Xd] be a stable (respectively strictly stable,
symmetric stable) vector in Rd. Then there is a constant α ∈ (0, 2], such that in
(B.34), Cα = Aα + Bα. Moreover, any linear combination of the components in
X of the type Y =

∑d
i=1 biXi = b ·X is also α-stable (respectively strictly stable,

symmetric stable).

Corollary B.2.20. A random vector in X is stable if and only if for any n ≤ 2,
there is an α ∈ (0, 2] and a vector Dn such that

X(1) +X(2) + · · ·+X(n) d
= n

1
αX+Dn, (B.36)

where X(1),X(2), · · · ,X(n) are independent copies of X.

Definition B.2.21. A random vector in X in Rd is called α-stable if (B.34) holds
with C = (Aα +Bα)

1
α or equivalently, if (B.36) holds.

Theorem B.2.22. Let X be a random vector in Rd.

(a) If all linear combinations Y =
∑d

k=1 bkXk have strictly stable distribution,
then X is a strictly stable random vector in Rd;

(b) If all linear combinations are symmetric stable, then X is a symmetric stable
random vector;

(c) If all linear combinations are stable with the index of stability greater or equal
to 1, then X is a stable vector.

Theorem B.2.23. Let 0 < α < 2. X = [X1, · · · , Xd] is an α-stable vector in Rd

if and only if there exists a finite measure Γ on the unit sphere Sd−1 of Rd and a
vector µ in Rd such that:

(a) If α 6= 1

E [exp {iθ ·X}]

= exp

{
−
∫
Sd

|θ · s|α
(
1− i sign(θ · s) tan πα

2

)
Γ(ds) + i(θ · µ)

}
;

(B.37)

(b) If α = 1

E [exp {iθ ·X}]

= exp

{
−
∫
Sd

|θ · s|
(
1 + i

2

π
sign(θ · s) ln |θ · s|

)
Γ(ds) + i(θ · µ)

}
.

(B.38)
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Definition B.2.24. The vector X = [X1, · · · , Xd] is said to have spectrum rep-
resentation (Γ,µ). The measure Γ is called the spectrum measure of the α-stable
random vector X.

B.2.6 Multivariate sub-Gaussian α-stable distribution

A particular class of α-stable random vectors is sub-Gaussian α-stable vec-
tor, which is defined based on Remark B.2.17.

Definition B.2.25. Any vector X distributed as X = A1/2[G1, · · · , Gd]
T is

called a sub-Gaussian α-stable random vector in Rd with underlying Gaussian
vector G = [G1, . . . , Gd]

T if it satisfies

A ∼ Sα/2

((
cos

π

4
α
)2/α

, 1, 0

)
, (B.39)

where A and G are independent. If G ∼ N (0, σ2I), then Xi ∼ Sα(γ, 0, 0) where
γ = σ/

√
2 and σ is called the parameter of X.

Sub-Gaussian α-stable random vectors are typically characterized by ei-
ther the scale-mixture representation in Definition B.2.25 or via their CFs in
the following proposition.

Proposition B.2.26. The CF of sub-Gaussian α-stable vector X is given as

E[eiθ·X] = exp

−

∣∣∣∣∣∣12
d∑

i=1

d∑
j=1

θiθjRij

∣∣∣∣∣∣
α/2
 , (B.40)

where Rij = E[GiGj ] are the covariances of the underlying Gaussian vector G.

A special case of sub-Gaussian α-stable vectors is the one with its un-
derlying Gaussian vector G ∼ N (0, σ2I) and has the following proposition
according to [ST94].

Proposition B.2.27. Let X be a SαS random vector in Rd where α < 2. Then
the following three statements are equivalent:

1). X is sub-Gaussian α-stable with an underlying Gaussian vector G ∼
N (0, σ2I);

2). The CF X has the form

E[eiθ·X] = exp {γα|θ|α} , (B.41)

where γ = σ√
2
. That is, it only depends on the magnitude of θ =

(θ1, · · · , θd);

3). The spectral measure is uniform.

Similar to Remark B.2.17, we have
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Remark B.2.28. Every sub-Gaussian α-stable random vector is conditionally
Gaussian. Specifically, if X =

√
AG is sub-Gaussian α-stable with an under-

lying Gaussian vector G ∼ N (0,Σ), X ∼ N (0, AΣ) and is not independent.

B.2.7 Complex α-stable distribution and isotropy

Note that a complex random variable X can be denoted as

X = X1 + iX2. (B.42)

Note that it is the joint distribution of X1 and X2 that characterizes X .

Definition B.2.29. A complex random variableX = X1+iX2 is called symmetric
α-stable (SαS) if (X1, X2) is SαS.

Definition B.2.30. A complex SαS random variable X = X1 + iX2 is isotropic
if

eiϕX
d
= X, ∀ϕ ∈ (0, 2π]. (B.43)

The following theorem shows that isotropy implies a special spectral
measure for X = (X1, X2).

Theorem B.2.31. Let 0 < α < 2. A complex SαS random variable X = X1 +

iX2 is isotropic if and only if (X1, X2) has a uniform spectral measure.

The following proposition ([ST94], Corollary 2.6.4) highlights the link
between isotropic α-stable random variables and the sub-Gaussian α-
stable.

Proposition B.2.32. Let 0 < α < 2. A complex SαS random variable X =

X1 + iX2 is isotropic if and only if there are two i.i.d. zero mean Gaussian ran-
dom variables G1 and G2 and a random variable A ∼ Sα/α′

((
cos πα

2α′

)α′/α
, 1, 0

)
independent of (G1, G2) such that (X1, X2) is sub-Gaussian with the underlying
Gaussian vector (G1, G2).
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Preliminaries on Copula

A popular method in statistics for tractably modeling the dependence of
a random vector is based on copulas. The word “Copula” is a Latin word
which means “a link, tie, bond”. It is a multivariate distribution function
whose one-dimensional margins are uniform on the interval [0, 1].

Definition C.0.1. The copula C : [0, 1]n → [0, 1] is defined as the joint CDF of
(U1, · · · , Un):

C(u1, · · · , un) = P (U1 ≤ u1, · · · , Un ≤ un), (C.1)

where Ui are uniformly distributed on [0, 1]

Consider a continuous random vector (X1, · · · , Xn) and its marginal
CDFs are Fi(xi) = P [Xi ≤ xi], the vector

(U1, · · · , Un) = (F1(x1), · · · , Fd(xn)) (C.2)

has marginals that are uniformly distributed on the interval [0, 1]. There-
fore, from another point of view, copula is treated as a function that joins
or couples multivariate distribution functions to their one-dimensional
marginal distribution functions. Such a role that copula plays between joint
distribution and marginals is elucidated in Sklar’s theorem.

C.1 Sklar’s theorem

Sklar’s theorem, named after Abe Sklar, provides the theoretical foundation
for the application of copulas.

Theorem C.1.1 (Sklar’s Theorem). LetH be a d-dimensional multivariate joint
distribution function of (X1, · · · , Xn) with marginal CDFs F1, · · · , Fn. There
exists a copula function C, such that

H(x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) (C.3)

for all xi ∈ (−∞,∞), i = 1, · · · , n. Furthermore, if Fi is continuous for all
i = 1, · · · , n, then C is unique; otherwise, C is uniquely determined only on
Ran F1 × Ran Fn, where Ran Fi denotes the range of Fi.



114 Appendix C. Preliminaries on Copula

Conversely, with H and its margins F1, . . . , Fn known, we can derive its
copula function:

Corollary C.1.2 (Inversion Method). Let C, H , F1, . . . , Fn be as in Theo-
rem C.1.1, and let F (−1)

1 , . . . , F
(−1)
n be quasi-inverse of F1, . . . , Fn, respectively.

Then for (u1, · · · , un) ∈ [0, 1]n,

C(u1, . . . , un) = H
(
F

(−1)
1 (u1), . . . , F

(−1)
n (un)

)
. (C.4)

This provides a method of constructing copulas, i.e., using the inversion
method with joint distribution and its marginals which are already known.
One of the major families of copulas–elliptical copula–is constructed in this
way. Taking the derivatives of (C.3) on both sides, we have the following
proposition:

Proposition C.1.3.

h(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))
n∏

k=1

fk(xk), (C.5)

where h(·) is the joint density of x, fk(xk) is the univariate density of xk, and c(·)
is the density of copula function:

c(u1, . . . , un) =
dnC(u1, . . . , un)

du1 . . . dun
. (C.6)

The proposition above shows that the copula density c(·) contains all
information on the dependence structure, whereas the margins F1, . . . , Fn

contain all information on the marginal distributions. This enables us to
model the dependence separately from modeling the marginals.

Theorem C.1.4. Random variable Xi, i = 1, · · · , d are independent if and only
if C(u1, · · · , un) = Π(u1, · · · , un), where Π = Πn

i=1ui is called indepndent
copula.

Property C.1.5 (Invariance under Monotonic Transformation). Suppose
that X1, · · · , Xn have continuous marginals and copula CX. Let Ti : R → R
for i = 1, · · · , n be strictly increasing functions. Then the dependence structure of
random variables:

Yi = Ti(Xi), i = 1, · · · , n (C.7)

is also given by the Copula CX.

C.2 Measure of dependence

The most common measure of dependence is the Pearson correlation co-
efficient. Though it is a perfect measure for the linear dependence, it fails
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to measure the dependence when it is nonlinear. Here we introduce other
measures of dependence such as Kendall’s τ and tail dependence.

Definition C.2.1 (Pearson correlation coefficient). Given a pair of random
variables (X,Y ), the Pearson correlation coefficient is defined as

ρX,Y =
Cov(X,Y )

σXσY
. (C.8)

However, the correlation coefficient can only measure the linear depen-
dence and has the constraint of finite second order of moments. For in-
stance, we take a symmetric random variable X and let Y = X2, then
ρX,Y = 0.

A more popular measure of dependence is rank correlation, such as
Kendall’s τ . Before embarking on the definition of Kendall’s τ , we first
give the definition of concordance.

Definition C.2.2 (Concordance). Let (xi, yi) and (xj , yj) denote two observa-
tions from a vector (X,Y ) of continuous random variables. We say that (xi, yi)
and (xj , yj) are

• Concordant if (xi − xj)(yi − yj) > 0;

• Discordant if (xi − xj)(yi − yj) < 0

C.2.1 Kendall’s τ

Kendall’s tau, also referred to as Kendall rank correlation coefficient is the
rank correlation between two random variables. It is defined in terms of
concordance as follows:

Definition C.2.3. Let {(x1, y1), · · · , (xn, yn)} be a set of observations from a ran-
dom vector of continuous random variables. Then Kendall’s τ is defined as:

ρτ =
Nconcordant −Ndiscordant

n(n− 1)/2
, (C.9)

where Nconcordant and Ndiscordant are the numbers of concordant pairs and discor-
dant pairs, respectively.

An alternative definition is based on probability.

Definition C.2.4. For two i.i.d pairs of random variables (X1, Y1) and (X2, Y2),
Kendall’s τ is defined as the probability of concordance minus the probability of
discordance:

ρτ = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]. (C.10)

The following theorem describes the relationship between Kendall’s τ
and copula [Nel99]:
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Theorem C.2.5. LetX and Y be continuous random variables whose copula is C.
Then the population version of Kendall’s τ for X and Y is given by

ρτX,Y = 4E(C(U, V ))− 1

= 4

∫∫
I2
C(u, v)dC(u, c)− 1, (C.11)

where I2 = [0, 1]× [0, 1].

Property C.2.6. The Kendall’s τ is a measure of concordance, rank correlation
more precisely with

• −1≤ρτ≤1;

• If the agreement between the two rankings is perfect (i.e., the two rankings
are the same) the coefficient has value 1;

• If the disagreement between the two rankings is perfect (i.e., one ranking is
the reverse of the other) the coefficient has value −1;

• If X and Y are independent, then we would expect the coefficient to be ap-
proximately zero.

C.3 Tail dependence

Tail dependence is a concept that is relevant for the study of dependence
between extreme values. It turns out that tail dependence between two
continuous random variables X and Y is a copula property, and hence the
amount of tail dependence is invariant under strictly increasing transfor-
mations of X and Y.

Definition C.3.1. The lower tail dependence is defined as:

λl = lim
u↓0

P
(
X2 < F−1

2 (u)|X1 < F−1
1 (u)

)
. (C.12)

The upper tail dependence is defined as:

λu = lim
u↑1

P
(
X2 > F−1

2 (u)|X1 > F−1
1 (u)

)
. (C.13)

Property C.3.2.

λl = lim
u↓0

1− 2u+ C(u, u)

1− u
, (C.14)

λu = lim
u↑1

C(u, u)

u
. (C.15)

Remark C.3.3. Tail dependence provides an approach to quantification of the de-
pendence in extremes of a multivariate distribution and can be related directly to
the parameters of the copula statistical model.
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C.4 Elliptical distribution and t-copula

C.4.1 Elliptical distribution

Definition C.4.1. A d-dimensional random vector X is said to have an elliptical
distribution (denoted as X ∼ Ed(µ,Σ)) with parameters µ (d×1) and Σ (d×d) if
it has stochastic representation

X
d
= µ+ rΛU, (C.16)

where U is uniformly distributed on a unit sphere Sd−1 in Rd and is independent
of r, Λ is a d×d matrix such that ΛΛ⊤ = Σ, called dispersion matrix.

Remark C.4.2. Gaussian distribution, t-distribution and sub-Gaussian α-stable
distribution all belong to the family of elliptical distribution.

For multivariate Gaussian distribution, we have the following proposi-
tion:

Proposition C.4.3. For a multivariate Gaussian vector X = (X1, · · · , Xd)
T ∼

N (µ,Σ), it can be represented as

X = µ+
√
χ2
dΛU, (C.17)

where χ2
d is a chi-square distributed random variable, U is uniformly distributed

on a unit sphere Sd−1 and ΛΛ⊤ = Σ.

Definition C.4.4 (Multivariate t-distribution). The d-dimensional random
vector X = (X1, · · · , Xd) is said to have a multivariate t-distribution with
the degree of freedom ν, mean vector µ and positive scale matrix Σ, denoted as
X ∼ td(ν,µ,Σ), if its PDF is given by

f(X) =
Γ(ν+d

2 )

Γ(ν2 )
√

(πν)d|Σ|

(
1 +

(X− µ)TΣ−1(X− µ)

ν

) ν+d
2

. (C.18)

Multivariate t-distribution belongs to the class of elliptical distributions
and has the following representation:

Proposition C.4.5. For a multivariate vector Y = (Y1, · · · , Yd)T ∼ td(ν,µ,Σ),
it can be represented as

X = µ+

√
χ2
d√

χ2
ν/ν

U, (C.19)

where χ2 is a Chi-square distributed random variable, U is uniformly distributed
on a unit sphere Sd−1, and ΛΛ⊤ = Σ.

Since lim
ν→∞

χ2
ν

ν
= 1, we have the following remark
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Remark C.4.6. Multivariate Gaussian distribution is a special case of multivari-
ate t-distribution when ν → ∞.

Proposition C.4.7 (Tail Dependence). Let X ∼ Ed(0, ν,Σ) be regular varying
with tail index α. The tail dependence for the pair (Xi, Xj) where Xi, Xj are the
elements of X, is given as [Kri+09]

λi,j =

∫√
1+ρ
2

0
uα

√
1−u2

du∫ 1
0

uα√
1−u2

du
, (C.20)

where ρ is the off-diagonal element of the correlation matrix Σ. And α is the
stable exponent for sub-Gaussian α-stable distribution or the degree of freedom for
t-distribution.

Proposition C.4.8. The Kendall’s τ , ρτ , for elliptical distribution is given as
[LMS03]

ρτ =
2

π
arcsin ρ, (C.21)

where ρ is the correlation coefficient from Σ.

C.4.2 Student t-copula

According to the Corollary C.1.2, we can derive the copula of multivari-
ate t-distribution, i.e., t-copula. Due to the Property C.1.5, the copula of
td(ν,µ,P) is identical to that of td(ν,0,Σ) where Σ is the correlation matrix
implied by the dispersion matrix P. And t-copula is given by

Definition C.4.9 (T-copula). The t-copula has the form

Ct
ν,Σ(u) =

∫ t−1
ν (u1)

−∞
· · ·
∫ t−1

ν (ud)

−∞

Γ(ν+d
2 )

Γ(ν2 )
√
(πν)d|Σ|

(
1 +

xTΣ−1x

ν

) ν+d
2

dx,

(C.22)

and t−1
ν is the inverse distribution function of a standard univariate t-distribution.

That is,

tν(x) =

∫ x

−∞

Γ(ν+1
2 )

√
νπΓ(ν2 )

(
1 +

t2

ν

)− ν+1
2

dt. (C.23)

The density of t-copula is given as

ctν,Σ(u) =
fν,Σ

(
t−1
ν (u1), · · · , t−1

ν (ud)
)∏d

i=1 fν(t
−1
ν (ui))

, u ∈ (0, 1)d, (C.24)

where fν,Σ is the joint density of td(ν,0,Σ) distributed random vector and
fν is the density of univariate standard t-distribution with the degree of
freedom, ν .
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The tail dependence of t-copula is given by [DM05]

Proposition C.4.10. For continuously distributed random variables of the t-
copula with ν and Σ, the tail dependence is also given by

λX = 2tν+1

(
−
√
ν + 1

√
ρ− 1√

ρ+ 1

)
, (C.25)

where ρ is the correlation coefficient from Σ, and tν+1(·) is the distribution func-
tion of a standard univariate t-distribution with the degree of freedom, ν + 1.
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