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Abstract xv

On heterogeneous networks under non-Gaussian interferences:
experimental and theoretical aspects

Abstract

Internet of Things represents a technical challenge for 5G communications due to its
characteristic heterogeneity: the 2.4 GHz ISM band, for example, is shared between
different kind of technologies, such Wifi, Bluetooth and Zigbee. In addition to the loss of
quality of communication, recent studies show that interference increases significantly
the energy consumption. So, dealing with interference becomes an important task to
ensure successfull data transmission. The present thesis approaches two aspects of
heterogeneous networks. The first part presents an experimental study on the nature
of interference between IEEE 802.11 and IEEE 802.15.4 devices, its impacts on the
communication reliability and proposes a statistical description of it. The main conclu-
sion of this part is that, on this context, the interference may present a non-Gaussian
behavior, more precisely, an impulsive behavior. Recent theoretical works allied with
these experimental results show that the α-stable distribution is more adequate to
represent impulsive noises. It means that the, once optimal, classical communication
architectures based on the Gaussian assumption, particularly the Least Squares based
channel estimation and linear receiver, is not optimal anymore, presenting a significant
loss of performance. The second part presents a robust MIMO architecutre based on
Alamouti coding, supervised channel estimation based on Least Absolute Deviation
and p-norm receiver with an estimator for p. The proposed approach outperforms the
classical method.

Keywords: internet of things, sensor netowrks, non-gaussian interference

Institut de Recherche sur les Composants logiciels et matériels pour
l’Information et la Communication Avancée
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xvi Abstract

Réseaux de capteurs sous interférence non-Gaussienne :
aspects expérimentaux et théoriques

Résumé

L’Internet des Objets représente un défi technique pour la communication 5G à cause de
sa hétérogénéité caractéristique : la bande 2.4 GHz ISM, par exemple, est partagée entre
différentes types de technologies, comme Wifi, Bluetooth et Zigbee. En plus de la perte
de qualité de communication, des études récents montrent que l’interférence augmente
de façon significative la consommation d’énergie. Donc, traiter l’interférence devient un
tâche important pour assurer la réussite de la transmission de donnés. Cette thèse s’ap-
proche de deux aspects différents des réseaux hétérogènes. La première partie présente
un étude expérimentale sur la nature de l’interférence entre dispositifs IEEE 802.11 et
802.15.4, ses impacts dans la fiabilité de la communication et propose une description
statistique. La conclusion principale est que, dans ce contexte, l’interférence présente
un comportement non-Gaussien, plus précisément, impulsif. Des travaux théoriques
récents alliés avec ces résultats expérimentaux montrent que la distribution α-stable est
plus convenable pour représenter bruits impulsives. Cela signifie que, une fois optimal,
les architectures de communication classiques basé sur assomption Gaussienne, particu-
lièrement le méthode des moindres carrés et le récepteur linéaire, ne sont plus optimales
et présentent une perte de performance significative. La deuxième partie présente une
architecture MIMO basé sur codage Alamouti, estimation de canal supervisée basé
sur méthode Least Absolute Deviation et récepteur p-norme avec une estimation de p.
L’architecture proposée présente une performance supérieure au méthode classique.

Mots clés : internet des objets, réseaux de capteurs, interférences non-gaussiennes
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General Introduction

The concept of Internet of Things (IoT) refers to the transparent connection of

apparatuses, sensors, objects, buildings, machines, vehicles, etc. via fixed and

wireless sensor networks [Wei12]. It will play in a near future an essential role

in the evolution of telecommunications [Gu12; Yan15].

Telecom operators are investing a lot of money in IoT, either on the NB-IoT

standard or Orange or Bouygues which have deployed LoRa networks. New

players like SigFox also made their way on the market. As a consequence,

the quantity of IoT devices increases significantly: up to 50 billion objects

may be connected through wireless networks in 2020, using the license free

Industrial, Scientific and Medical (ISM) bands. Such band does not offer a

very wide spectrum, forcing many technologies to share these bands. As an

example, the 2.4 GHz ISM band is used by 802.11b (Wifi), 802.15.1(Bluetooth)

and 802.15.4 (ZigBee and 6LoWPAN), resulting in a congested and overloaded

band. Consequently, interference becomes a strong limiting factor [Mye+07;

YXG11; Yoo+06; YWL07].

A significant part of the energy consumption is due to the Radio-Frequency

(RF) circuit. The authors in [Tol+16] show that the energy consumption may

increase up to 4.8 times depending on the level of interference present on the

environment. In this case, the interference mitigation and the development of

systems exhibiting a robust behaviour when facing interference become two

priority problems for IoT, more precisely for sensor networks.

This challenge due to high nodes density is even more difficult to address

due to the energy constraints faced by the deployed nodes that are suppose to

have a life time of several years, if not decades. To avoid too much interference,

frequently, the Medium Access Control (MAC) protocol is based on carrier sense
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approaches. However if listening to a device using the same protocol as yourself

is one thing, it can be inefficient when it comes to listening to other types of

devices. Also, some recent approaches called LPWAN (e.g. SigFOX, LoRA)

question the efficiency of carrier sensing. Indeed, what the transmitter hears is

not necessarily significantly correlated to what the receiver hears.

One way to increase the robustness is the spatial diversity with Multiple

Input Multiple Output (MIMO) technologies. In most of the studies concerning

MIMO system, the noise is assumed to be Gaussian. One efficient way to estimate

the channel matrix Ĥ is to use a Least Squares (LS) estimator. The transmitted

symbol can then be optimally detected using Euclidean distance. This is efficient

as long as the Gaussian assumption is respected, but in many papers, interference

has been shown to exhibit an impulsive behaviour [LS95; Ega+17; WPS09;

MCA12]. Under the presence of such impulsive interference, the system will

present a significant loss of performance, so, new solutions must be proposed

assuming more realistic models. To model network interference, some works

propose the Symmetric α Stable model as a more adequate model [Ega+17;

WPS09]. This choice can be seen as the result of the Generalized Central Limit

Theorem and stable distributions allow to represent a higher variability in the

interference than what is allowed by the Gaussian representation and recently

some experimental works support this solution [MCA12].

Objectives

Our approach assumes a system with simple access scheme, ALOHA for instance,

under the presence of impulsive interference. The first objective of this thesis

is to try to characterize experimentally the environment. The second objective

is to design a simple, low power and reliable communication scheme for an

environment dominated by dynamic non-Gaussian interference.

To increase reliability we propose to implement a MIMO communication

system. Robustness is increased trough spatial diversity. However, we do not

want to increase significantly the energy consumption nor the complexity (and

the cost) at the transmitter side, even if we allow a complexity increase at

the receiver, inspired by the star topology of LPWAN. A relevant solution is
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then to adopt an Alamouti scheme, which improves the signal quality at the

receiver, so increasing reliability, without increasing the global transmitted

power; besides it does not require any channel state knowledge at the transmitter

side and consequently does not require any feedback from the receiver, being

very adequate to the IoT context.

In this context however, channel estimation is still needed at the receiving

side. The impulsive interference significantly impacts the channel estimation

method. Besides, it is also important to discuss the distance metric that is used

to make the decision in the detection part. An adequate choice can significantly

improve the receiver performance. In this work, we are going to replace Least

Squares (LS) estimator by the Least Absolute Deviation (LAD) for channel es-

timation. This is clearly better suited for environments with impulsive noise.

Similarly, the Euclidean distance is replaced by p-norm receiver which shows a

large flexibility and techniques rather simple to estimate the parameter p.

Contributions

The main contributions of the present thesis are:

1. experimental study of interference and its impact on traditional communi-

cations;

2. design of a robust communication strategy based on spatial diversity;

3. design of an adapted receiver that includes channel estimation and an

adapted decision for impulsive interference (decision strategy optimiza-

tion), including estimation method for the p value used for the p-norm

receiver. We present the performance of the global scheme and show its

significant improvement in comparison to a scheme designed for Gaussian

noise.
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Organization of this thesis

The present thesis is divided on two parts. The first one tries to characterize and

model the interference between IEEE 802.11 (Wifi) and IEEE 802.15.4 (Zigbee).

This part gives an overview on Wireless Sensor Networks and discusses the

co-existence of different technologies on 2.4 GHz ISM band, explains the experi-

mental setup to characterize the interference under heterogeneous environments

and presents an statistical analysis of the distribution of interference. Based on

the experimental results, this chapter ends presenting the main properties of

α-stable results.

The second part proposes a robust receiver design using space diversity,

comparing its performance with the existing classical approaches.
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• Nícolas de Araújo Moreira, Victor Toldov, Román José Igual-Pérez, Rahul

Vyas, Nathalie Mitton, and Laurent Clavier, Heterogeneous networks: ex-
perimental study of interference between IEEE 802.11 and IEEE 802.15.4
technologies,Journées Scientifiques URSI France 2017, pp. 9-16, Feb. 2017.

• Nícolas de Araújo Moreira and Laurent Clavier, Multiple antenna receiver
under impulsive SαS noise, IEEE Wireless Communications and Networking

Conference (WCNC) 2019, Marrakech, Apr. 2019.



Chapter1
Coexistence of WSNs and

interference characterization

The objective of this chapter is to present in details the impact of interference of

IEEE 802.11 (Wifi) technology on IEEE 802.15.4 (Zigbee) packets and its rela-

tion with energy consumption and batteries life time, combining experiments,

through a system capable of listening to 2.4 GHz ISM frequency, and theoreti-

cal results to understand the change that IoT will bring in the communication

environment.

1.1 Wireless Sensor Networks

Since several decades, mankind developed an interest in observing and acquiring

environmental parameters for industrial or scientific purposes, such as ecological

control and studies (forest fire detection, pollution surveillance, etc.), intelligent

houses (illumination and temperature control), roads surveillance and traffic

security [Mas12]. This part of the Internet of Things is taking more and more

importance nowadays but still face numerous challenges to fully impact our

everyday life. Two of these challenges are robustness and lifetime. Difficult to

ensure, those two aspects are crucial for an easy and large scale deployment of

IoT but they could also suffer from their potential success. Indeed, an increase

in the number and density of nodes will result in an increase in the interference

9
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level. Interference deeply impacts the reliability of communications and also the

energy efficiency of the network. In the following we describe the main aspects

of an IoT or more specifically a Wireless Sensor Network (WSN).

1.1.1 Architectures and components of a WSNs

The heterogeneous nature of the nodes and their miniaturization pushed the

development of Systems on Chip (SoC), which integrate a wide variety of sub-

systems: digital, analogical, Radio-Frequency (RF), etc [Mas12]. A node of a

sensor network contains one or more sensors, a microprocessor/microcontroller,

a wireless communication circuit and a power source that can be separated

in four units: data acquisition, signal processing, communication and energy

unities (see Fig. 1.1).

Figure 1.1 – Node Block Diagram.

• The data acquisition unit is composed by one or several sensors which are

responsible of the physical measurements and, generally, an Analog-Digital

Converter (ADC) to transfer the measured date to the signal processing

unit.

• The signal processing unit is composed by a processor and, possibly, mem-

ory. It has two interfaces, one with the data acquisition unit and another
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with the communication unit. Is responsible data analysis according to

applications, etc. [Mas12].

• The communication unit is responsible for the data transmission and

reception via wireless links. It can contain a digital processing part and

an analog part for its different functions (amplification, coding/decoding,

compression equalization, filtering, synchronization, estimation). It is also

responsible of multiple access protocols, routing algorithms...

• The Energy unit can simply be a battery or can also include some energy

harvesting schemes. It is in charge of furnishing the necessary energy to

all the other units.

1.1.2 WSN organisations.

WSN can be classified as event-driven, where one or several nodes detect an

event and report it to a monitoring station, or demand-driven, where sensors

remain silent until they receive a request from the monitoring station [CS04].

In a WSN, it is frequent to have nodes that play different roles so that we

can have a hierarchical organization. In that case some nodes are end-nodes

with limited capabilities, only transmitting what information they collect. Other

nodes can act as relays. They both transmit their own information but also the

one from other nodes, too far away to reach the sink in one hop. The sink or

gateway is the collecting point, connected to the cloud via any types of link (fiber,

radio,...). The network is then organized in a multihop and cooperative manner.

Many standards are issued from such ideas, the most famous being Zigbee or

Z-wave for instance (right picture in Fig. 1.2). Some other strategies were to

group nodes in clusters in a master/slave manner. Slaves communicate with the

master and masters take in charge the transmission, possibly via multihops, to

the destination. Such a strategy was proposed for instance by Bluetooth.

However, more recently, to overcome the energy challenge that is difficult

when routing is complex in multihop networks, star topologies have been pro-

posed in LPWANs (left picture in Fig. 1.2). Using robust waveform design,
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long range communications are possible with low power at the transmitter side.

Both ultra narrow band communication or wider bandwidth (with Chirp Spread

Spectrum for instance) can be used to make transmissions on ranges of several

kilometers, and even tenth of kilometers in open areas.

Figure 1.2 – Types of topologies.

1.1.3 Standards

Two main families of standards can be found in commercial deployment of WSN:

• The multihop, ad hoc, configuration is mainly represented by the IEEE

802.15.4 standard. It defines several PHY layer options for short range

communications (tens to hundreds of meters). The MAC and routing layers

are left to the users. The most famous protocol based on this standard

is certainly Zigbee, but others exist like Z-Wave, En-Ocean or 6LowPAN.

Most of these protocols are intended for local area networks and are used

in buildings. Bluetooth is also able to support multihop communications to

ensure some increased coverage. It is based on the IEEE 802.15.1 standard

and the network should organize in clusters to ensure the cooperative data

transfer. In both cases, the multiple point to point communications that

can arise at simultaneous times despite the carrier sensing approach used

at the MAC layer, imperfect in wireless context, generate interference that

will have to be handled at the receiver.
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• Single hop strategies have emerged around 2010 with SigFox bringing

old concepts to a new life. LoRa is a second famous solution proposing

such a strategy. This star approach is more similar to cellular network but

with very simple and low cost terminals so that scheduling is not possible.

SigFox and LoRa use ALOHA MAC layer. This simple scheme is a source

of interference that will have to be handled at the receiver.

LoRa is a LPWAN protocol for IoT applications. LoRa is a recent LPWAN

technology based on spread spectrum technique with a wider band. LoRA uses

the entire channel bandwidth to broadcast a signal which makes it resistant to

channel noise, long term relative frequency, Doppler effects, multipath fading,

jamming attacks and difficult to decode by an eavesdropper. The characteristics

of LoRa are based on Code Rate , Spreading Factor and Bandwidth [NBC17].

The transmitter generates chirp signals by varying their frequency over time

and keeping phase between adjacent symbols constant. Receiver can decode

even a severely attenuated signal 19.5 dBs below the noise level. Chirp Spread

Spectrum (CSS) is a particular type of Direct Sequence Spread Spectrum (DSSS)

and allows to send one bit per each chirp. It takes much larger bandwidth for

transmission than actually required for the considered data rate [NBC17].

The spread spectrum modulation technique implied in LoRa assures an

increased link budget as well as better immunity to network interferences. LoRa

utilizes wider band usually of 125 kHz or more to broadcast the signal. LoRa

allows the usage of scalable bandwidth of 125 kHz, 250 kHz or 500 kHz. But,

spreading a narrowband signal over wider band makes less efficient use of

spectrum until the end devices utilize orthogonal sequences and/or different

channels which result higher overall system capacity [NBC17].

SigFox supports narrowband (or ultra narrowband) technology with standard

Differential BPSK, which allows the receiver to only listen in a very small part of

the spectrum that avoids the noise impact. It requires an inexpensive endpoint

radio and a more sophisticated base station to manage the network. These

transmissions use unlicensed frequency bands [NBC17].
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1.1.4 Challenges in WSNs

WSNs are facing several challenges that are delaying the expected growth and

many possible applications. For instance we can mention environmental difficul-

ties for sensor deployment, ensuring a sufficient coverage, the miniaturization of

the nodes, the energy constraints and the increasing level of interference, etc.

These challenges are more or less crucial depending on the application, but they

can generally be related to the reliability, life time and latency constraints of the

application. We are mainly considering the two first aspects.

• Reliability: it is difficult to guarantee the successful transmission of a

packet in wireless communications. This is especially true in the IoT con-

text where transmitters are very low cost and have to spare their energy

as much as they can. The consequence is that channel state information

is unknown at the transmitter side and orthogonality of channels cannot

be ensured. As a consequence, in addition to the traditional Multipath

Interference (MPI) due to the wireless channel, Multiple Access Interfer-

ence (MAI) also arises. MPIs are due to the propagation in multiple paths

originated from reflections that arrive and overlap at the receiver. Many

different signal processing algorithms and techniques are available to deal

with MPI, e.g., equalization. They usually rely on channel estimation which

will be studied in the next chapter. MAI is the main focus of this work.

We state that MAI can no longer be accurately modelled with a Gaussian

distribution. To ensure robustness it is important to better model this type

of interference and to accordingly design the receiver. These will constitute

the main contributions of this chapter and the following one.

• Lifetime: The energy is a crucial constraint in sensor networks. Nodes

usually operates with batteries and they have to last as long as possible.

Recharging the batteries can be a solution but if this does not imply a

human manipulation. Even if circuits are becoming low power, the RF

circuits are still the most consuming parts. As we will see, once again the

transmission schemes adopted in WSN generate interference which reduces

reliability and, in the same time, increases consumption. This shows once
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again that it is essential to understand how interference behaves and how

we can modify the transmission/reception strategy to mitigate its effects.

1.2 The IEEE 802.15.4 technology and interference

with IEEE 802.11

The objective of this chapter is to present in details the impact of interference of

IEEE 802.11 (Wifi) technology on IEEE 802.15.4 (Zigbee) packets and its relation

with energy consumption and duration of batteries, combining experiments

and theoretical results to understand the changing communication environ-

ments, through a system capable of listening to 2.4 GHz ISM frequency. IEEE

802.15.4, also known as Zigbee, was designed to present low-complexity, ex-

tremely low-power and inexpensive wireless communication technology and

became a common technology for wireless sensor networks [Pet+06; Tje07;

Shi+06].

The IEEE 802.15.4 physical layer offers a total of 27 channels, one in the

868MHz band, 10 in the 915 MHz band and 16 in the 2.4 GHz band. The bit rates

on these frequencies are 20 kbps, 40 kbps and 250 kbps, respectively [Pet+06]

[Tje07].

The IEEE 802.15.4 supports the following PHY options: 868/915 MHz PHY,

known as low-band, use BPSK modulation, whereas the 2.4 GHz PHY, known as

high-band, uses OQPSK modulation[Pet+06] [Tje07]. It can reach up to 75 m

[Tje07].

A more detailed description of IEEE 802.15.4 standard can be found in

[Ada06] and [Erg04], a technical comparison between IEEE 802.15.4, IEEE

802.11, IEEE 802.15.1 and IEEE 802.15.6 is shown in [Tje07] and [Cav+14]. The

following table summarizes the main characteristics and allows to compare Wifi,

Zigbee and Bluetooth technologies.
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Wifi (WLAN) Zigbee Bluetooth
Specification IEEE 802.11 IEEE 802.15.4 IEEE 802.15.1

Channels and
Bandwidth

900 Hz, 2.4 GHz
3.6 GHz, 5 GHz, 60 GHz

868 MHz
(27 channels)

915 MHz
(10 channels)

2.4 GHz
(16 channels)

2.4 GHz

Data Rate
11 Mbps (802.11b)
54 Mbps (802.11g)

20 kbps
(for 868 MHz band)

40 kbps
(for 915 MHz band)

250 kbps
(for 2.4 GHz band)

up to 1 Mbps

Transmission
Technique

CSMA/CA
OFDM

(802.11a)
DSSS+CCK
(802.11b)

OFDM + CCK
(802.11g)

MIMO OFDM
(802.11n/ac)

BPSK
(868/915 MHz)

OQPSK
(2.4 GHz)

FHSS

Transmission
Range 100 m 75 m 10 m

Table 1.1 – Main characteristics and allows to compare Wifi, Zigbee and Blue-
tooth technologies.
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1.3 Coexistence between IEEE 802.15.4 and IEEE 802.11

devices

The 2.4 GHz ISM band is shared between different kind of devices using different

communication standards, see Figure 1.3. It is important to understand and

evaluate the coexistence problems and limitations on this band. As we can

see in Fig. 1.3, for the IEEE 802.11 and IEEE 802.15.4, the channel width is,

respectively, 22 MHz and 5 MHz.

For a better comprehension of the impact of interference, We proposed the

following experiment: a TelosB (ZigBee based node) module used in [Tol+16] for

channel sniffing was replaced by the high performance National Instruments

Universal Software Radio Peripheral (NIUSRP) 2942R. The USRP was placed

close to a XBee node which sends a 100-bytes payload and a smart-phone with

the Bluetooth module activated placed at 2 m distant. The smart-phone com-

municates via Bluetooth with another smart-phone in the same room. Figure

1.4 shows the amplitude (y-axis) vs. time (x-axis) of the signal received on the

IEEE 802.15.4 channel 12, centred at 2.410 GHz. It is possible to identify a long

IEEE 802.15.4 packet (the Zigbee packet), a small IEEE 802.11 control packet

coming from a nearby WIFI access point and a short IEEE 802.15.1 pulse coming

from the phone. Although the Bluetooth packet is much shorter, it corrupts

the IEEE 802.15.4 packet, forcing the XBee node to stay in active mode for a

re-transmission and, consequently, increasing the energy consumption and de-

creasing the lifetime of the node. Is important to note that the noise presents

an impulsive behaviour. Even if carrier sensing is used, this will be difficult

to be sensed by Zigbee transceivers. The heterogeneity of future networks will

increase such difficulties resulting in a unavoidable level of interference.
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Figure 1.3 – 2.4 GHz ISM Spectrum: Channels of IEEE802.11 and 802.15.4.
Source: National Instruments.

Figure 1.4 – Co-existence of different technologies in 2.4 GHz ISM band. Mea-
surements with NI USRP. Source: [Mor+17].

Many other studies have shown that IEEE 802.15.4 is vulnerable to interfer-

ence by other wireless technologies working in the same band such as IEEE

802.11 and IEEE 802.15.1 [Pet+06]. Studies ([Pet+06] [Yoo+06]) state that

IEEE802.15.4 network has negligible or no impact on IEEE 802.11’s performance,

however, IEEE 802.11 can have a considerable impact on the IEEE 802.15.4 per-

formance [Shi+06]. About the last case, [Abr+14] shows similar results for

different scenarios.
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[Yoo+06] shows that if the distance between IEEE 802.15.4 and 802.11b is

larger than 8m, the interference of IEE 802.11b does not affect the performance

of 802.15.4. If the frequency offset is larger than 7 MHz, the interference of

IEEE 802.11b on IEEE 802.15.4 is negligible. [Pet+06] also confirms that there

should be at least a 7 MHz offset between carrier frequencies for a satisfactory

performance of Zigbee. Detailed studies about co-existence of IEEE 802.15.4 at

2.4 GHz can be found also in [NXP13] and [YXG11].

In [Mor+17], we discuss the coexistence of IEEE 802.15.4 network surrounded

by other types of networks, specially 802.11 devices, and the impulsiveness of

interferences in such scenarios, where linear receivers are not adapted, and

compare the complexity and performance of some non linear detection models.

1.4 The SYNERGIE platform

In order to study the impact of interference on energy consumption, a platform

called SYNERGIE was developed in IRCICA laboratory to calculate and measure

energy consumption of each electronic component in a WSN node separately

a rate of 1500 samples per second. This platform is based on commercially

available low cost and low power hardware to evaluate the impact of interference

on energy consumption on 2.4 GHz band based networks. The block diagram

is shown in Figures 1.5 and 1.6 and the board on Figures 1.7 and 1.8. It is

composed by a AT-mega328p microcontroller, which contains an embedded 10-

bit Analog-to-Digital-Converter (ADC) and five operational amplifiers XCT1086

able to acquire up to five independent measurements. The SYNERGIE platform

is connected to the node through a General Purpose Input-Output (GPIO) lines,

responsible for the synchronization between the different states of device and the

energy consumption data, and also connected to SYNERGIE platform through

a resistor interface through terminals the platform measures the voltage. The

measurements are transmitted to a computer via serial connection. More detailed

explanations about SYNERGIE platform can be found on [Tol+16].
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Figure 1.5 – Synergie Platform block diagram.

Figure 1.6 – Synergie Platform block diagram.
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Figure 1.7 – Synergie platform boards.



22 CHAPTER 1. Coexistence of WSNs and interference characterization

Figure 1.8 – Components of experiment. Source: [Mor+17]

1.5 Energy consumption and interference

Based on the Synergie platform, the quantitative relation between the inter-

ference level and the energy consumption is studied. The reliability is also

considered by making a difference between four cases, as shown in Fig. 1.9:

1. packet successfully sent on first trial, with reception of ACK,

2. packet successfully sent (or reception of ACK) on second attempt,

3. packet successfully sent (or reception of ACK) on third attempt,

4. failure on sending packet (or no ACK).
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Figure 1.9 – Transmission cases.

The main results of this work are shown in Figure 1.10, where we observe

the energy used to transmit one packet as a function of the Received Signal

Strength (RSS, as measured by a Zigbee module). The different makers indicate

the number of times the packet has been re-transmitted, referring to the four

cases previously described: red stars represent case 1, black stars case 2, green

stars case 3 and the blue ones case 4. The protocol was set such that after three

unsuccessful trials (no ACKnowledgment was received) the packet was dropped

so that the blue stars (case 4) indicate packets that were lost (or eventually,

but it happens less often, the ACKs were lost whereas the packet was indeed

successfully received). As it is possible to see, case 1 is more frequent under

low level of interference and the case 4 is quite rare. As the level of interference

increases, the number of failing cases also increases.
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Figure 1.10 shows that when interference gets high, not only the reliability is

decreased as shown by the number of lost packets, but also the energy consump-

tion significantly increases up to about 4.8 times for the full transmission of one

packet, when compared to scenarios without interference. Due to the very low

probability of success, it may be not interesting to try to send a packet a third

time after two unsuccessful attempts - in our scenario, such a re-transmission

policy happened to be very inefficient. The MAC layer usually attempts to

minimize interference (at least in local area networks like those based on IEEE

802.15.4). Conversely, the PHY layer designs solutions to adapt and tolerate a

certain level of interference. To incorporate these aspects, MAC protocols should

be modified. This could significantly improve the network efficiency and the

spatial reuse of the resource [Tol+16].

Figure 1.10 – Interference in WSN: Interference level, consumption and relia-
bility measurements on transmitter side.
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Figure 1.11 – Current consumed, in mA, on a WSN node in each componet.
The red, blue and green curve indicates the current consumed by the RF,
microcontroller and sensor components, respectively on transmitter side.

Previous results were obtained using TelosB to measure the received signal

strength and the level of interference, using a similar approach than the one used

for the carrier sensing. The goal was to analyze in a Zigbee network interference

created by other Zigbee nodes. The Figure 1.12 shows a typical interference

acquisition with TelosB. What we can comment from this figure is that TelosB

does not allow very accurate measurements. Both RSSI and energy consumption

are given at a macroscopic level but the sampling rate is low and the obtained

results can not be used for more accurate analysis.
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Figure 1.12 – Results for RSSI measurement acquired with TelosB.

Indeed, to calculate the RSSI, the TelosB uses a 128 µs frame. By definition,

RSSI = −10log(I2 +Q2). This needs to be compared to a WIFI packet duration

which is about. This long sampling period when compared to the length of a

IEEE 802.11 packet results in a RSSI, which is an average over many samples

acquired among which only a few really correspond to the WIFI packet, the

others corresponding to an idle channel. This significantly reduces the interest

of the information contained in the RSSI. This can be seen when looking at the

difference of the power consumption per packet as a function of the measured

RSSI when interferes are IEEE 802.15 devices or IEEE 802.11 devices. The crosses

when interference is from Zigbee devices is much clearer. Different areas can be

delineated depending on the number of active devices. The cloud point is much

more diffused in the WIFI case, one of the reason being the bad match between

the sensing process and the packets to be sensed.

1.6 Experimental Setup

To have more control of interference flow through WiFi network, we used the D-

ITG (Distributed Internet Traffic Generator) software installed on a notebook. It

is a PC-based software able to produce IPv4 and IPv6 packets used for measure,



1.6. Experimental Setup 27

for example, common performance metrics. It allows to accurately control

the sequence of generated traffic. D-ITG can also generate traffic according to

stochastic models [BDP12]. Our setup is shown in Figure 1.13. The sensors were

5.5 m distant from the USRP antenna.

Figure 1.13 – Experimental setup for experiment with D-ITG.

Figure 1.14 – XBee node, National Instruments USRP 2942R and PXI.
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1.6.1 Results and discussion

The Figure 1.15 shows 25 ms of the "I" component measured by the USRP. We

identify on this figures the repeated transmission of IEEE 802.15.4 packets and

the more sporadic transmissions from the IEEE 802.11. Fig. 1.15 shows the same

set of data but transformed to the RSSI.

The results show the size of Wifi Packet and Zigbee packet. Since the Wifi

signal is much smaller than a Zigbee signal, the probability to loose a Zigbee

packet due to a collision is high. It is important to note that each trial means

an additional energy consumption as it was already shown in [Tol+16] and,

consequently, reduces the lifetime of the node.

According to the specification of IEEE 802.15.4, the device tries to send the

packet up to three attempts. Each attempt is shown by the higher vertical lines

shown on Figure 1.15. Under a interference free environment, the average of RSSI

is about -40.70dB, while under Wifi interference, the RSSI increases up to -30 dB

(26.29%). Once that TelosB calculates the average over a long sampling period

and the short period of a WiFi packet, the RSSI obtained was not accurate (that

does not occur when using USRP2942R), because its sampling period is 128 µs

against 22 ns of USRP2942R. Due to its high sampling frequency, the presented

result is the given RSSI is much more feasible, giving a precise information about

when and how the interference occurs being possible to distinguish WiFi and

ZigBee packets and to detect the exact moment of the interference.

Due to the high sampling frequency of USRP2942R, is possible to verify in

detail the nature of a IEEE 802.11 packet. The result obtained is shown in Fig.

1.16 and suggests that a Wifi packet, seen by a Zigbee receiver, is an impulsive

signal. It means that a Gaussian model is inadequate to describe the behavior of

a Wifi signal and more realistic models are needed. Is possible to see also the

duration of a Wifi packet.
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Figure 1.15 – Data and RSSI of 2.4 GHz ISM band acquired by USRP2942R
with 1MHz band.

Figure 1.16 – Wifi packet.

In the context of IoT and WSN, the heterogeneity of nodes and networks

and the diversified requested data rates, symbol duration and packet lengths
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make the set of active interferer change rapidly [Ega+17]. Analyzing the packets

duration, we can evaluate the number of bits in IEEE 802.15.4 packet that

will be affected by a Wifi packet. Let’s denote tz and tw the duration of a

IEEE 802.15.4 and 802.11 packets, respectively. The ratio between tz and tw
is: tz

tw
= 30.43, in other words, the time on-air for IEEE 802.11 is significantly

shorter. A IEEE 802.11 frame occupies 40bytes
30.43 = 1.43bytes of IEEE 802.15.4

frame or 1.31 · 8bits = 10.51bits, enough to corrupt a IEEE 802.15.4 packet.

This dynamic interference results in a non-Gaussian interference and imposes

changes on the receiver design [Mor+17].

1.7 Distribution analysis of interference

To try to determine the type of distribution of interference between IEEE 802.11

and IEEE 802.15.4 devices, a new experiment was conducted using Signal Stu-

dio software and Agilent E4438C ESG Vector Signal Generator as source of

Wifi packets instead of using a notebook with D-ITG and PXA Signal Analyzer

N9030A 3Hz-50GHz and Keysight Technologies VSA Software for data acquisi-

tion. The Agilent E4438C ESG Vector Signal Generator was programed using

Signal Studio Software, to generate a sequence o Wifi packets on 2.4 GHz band.

PXA Signal Analyzer N9030A was centered also on 2.4 GHz band as hardware

interface and Keysight VSA software used to data analysis and recording. The

test was repeated for the following scenarios: (a) Wifi only; (b) Wifi and Zigbee

signals with 500ms between each Zigbee packet; (c) Wifi and Zigbee continuous

signals; (d) Zigbee only continuous signal; (e) Zigbee only signal with 500 ms

between each Zigbee packet; (f) Only background noise (no signal). For tests

envolving Zigbee, were used two DIGI Xbee S1 XB24 modules programmed

using XCTU (see Appendix A for details of configuration). For further details on

experimental setup for this experiment, see Appendix A.

1.7.1 Discussion and results

Figure 1.18 shows the analysis of the interference between Wifi and Zigbee

packets, obtained from the superposition of both packets seen on 1.17, and an
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attempt of curve fitting with Gaussian model. Its distribution, when compared

to Gaussian distribution, present an impulsive behavior. The non-Gaussian

behavior can also be confirmed by Kolmogorov-Smirnov hypothesis test. Using

parameters estimation techniques, to be discussed further, was obtained a charac-

teristic exponent, a parameter that indicate the "thickness" of tail of distribution,

α = 1.8, instead of α = 2, which indicates the non-Gaussian behavior.

Figure 1.17 – Differences between Wifi and Zigbee packets.
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Figure 1.18 – Experimental Results: the red and black curve represents a
Gaussian and α-stable approximation, respectively.

1.8 Partial conclusions

In the first part of this chapter USRP2942R and E4438C ESG Vector Signal

Generator were used to verify precisely the nature of a Wifi signal and its effects

over a Zigbee signal. The results obtained show that a Wifi packet is an impulsive

signal and show also the duration and size of Wifi and Zigbee packets, the instant

of collision of packets and how it increases RSSI. The data acquired is shown

on time domain. The result obtained, mainly for RSSI, is much more accurate

than using TelosB for the same measurement and shows an increase of RSSI

up to 26.29% . Instead of an average over a long period that cannot show the

effect of Wifi packet, USRP2942R shows the trials of sending Zigbee data and

instant RSSI, giving more feasible result. These results suggest that the protocols

should be modified to improve the network efficiency and the spatial reuse of

the resource.

Several conclusions can be drawn from these measurements. We can identify
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two important facts about interference in wireless sensor and ad hoc networks.

(a) Even in a context with a small number of items but with different protocols,

interference exhibits statistical properties that are different from the classical

thermal noise that is encountered in all communication systems. The interfer-

ence can exhibit non Gaussian properties and this impulsiveness can be critical.

This result is supported by some papers [WPS09] [WA12] where this interference

exhibits also an impulsive nature. This significantly impacts the performance of

the receiver that needs to be adapted to keep good performance in such environ-

ments. (b) The link between the interference level (as measured by the Zigbee

module) and the opportunity to transmit packets is not so obvious. Of course

when interference is low, more packets are transmitted successfully but with a

higher interference, all the cases (success at the first, the second, the third trial or

no success at all) can happen. We explain this because the way the Zigbee listens

to the channel is not adapted to the Wifi signal. Interference will generate long

sensing periods (most of the protocols are based on Carrier Sensing), difficulties

to initiate the communication and an increased number of transmissions. In

particular, if we want to keep the same Quality of Service (QoS), at least in terms

of packet error rate, this will significantly increase the objects consumption. So,

interference heavily impacts the reliability and the consumption of the Zigbee

network.

We experimentally studied in [Tol+16] interference in a Zigbee network. We

showed its impact on the reliability and energy consumption of the objects.

In this work we addressed the problem of interference coming from another

network [Abr+14]. The useful link uses and IEEE 802.15.4 based protocol

(more specifically a Zigbee link). Interference comes from an IEEE 802.11 (Wifi)

network. Both standards can use the 2.4 GHz band and interact on each other.

However, the physical layer characteristics are distinct - symbol duration, carrier

frequencies are different, there are no time synchronization between the systems,

the bandwidth and modulation schemes are different. The statistical properties

of the resulting interference on the digitized useful signal are not tractable and

we propose an experimental characterization.

The dinamicity of the interfering signal (its duration in comparison to a

packet duration of the useful signal) and the possibly fast changing set of inter-
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ferers make sensing extremely difficult. We further studied the nature of the

interference. With a single interferer, the Gaussian assumption is not verified.

When using a model adapted to a impulsive interference (α-stable), we estimated

characteristic exponent around 1.8, instead of 2, which means the interfering

signal is definitely impulsive.

From this experimental part, we can conclude that it is essential in a sensor

network to design communication strategies as robust as possible, especially

against interference. Then, we can also conclude that interference signal does

not follow a Gaussian distribution. Such a distribution cannot account for the

dynamic behavior of interference and new models are needed.

However, in our experiments, we failed to show two important aspects into

account: the high number of interfering nodes and the possible mobility of same

nodes. To do that, we would need some tests in real environments. That is

too long to organize and it was not feasible during this PhD. To have a better

understanding of these aspects, we need to rely an theoretical approach. That

will be the goal of the next chapter.



Chapter2
Statistical modelling: theoretical

approach

In noise modelling for telecommunications, the Gaussian assumption has played

a central role for many years. This is rather natural as long as point to point

communications are considered because the main source of noise is the so-called

thermal noise. Coming from the thermal agitation of the charge carriers, usually

the electrons, the thermal noise is the sum of many uncorrelated contributions

and, as such, a model for its distribution can be obtained from the Central Limit

Theorem [LS95]:

Theorem 2.0.1 (Central Limit Theorem) A physical phenomena is Gaussian if
there are infinitely independent and identically distributed (i.i.d.) contributing
factors, each of finite variance.

Consequently, the AWGN channel assumption is obtained and it is usually a

reasonable assumption. It clearly simplifies the design of receivers because

the maximum likelihood detection rule when the useful signal is corrupted by

Gaussian noise results in a simple linear decision rule. This will no longer be the

case if noise is non Gaussian. The impulsive noise will consequently require the

introduction of non-linearities [LS95] if the optimal receiver is implemented.

If we want to keep the simplicity of the linear receiver, it has been shown in

many contexts that the presence of non-Gaussian noise will significantly degrade

35
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the system performance [LS95; BY09; Cla+10]. To avoid this degradation, more

adequate models have to be proposed and used for a more appropriate receiver

design. The Probability Density Function (PDF) of Gaussian distribution is given

by:

fX,G(x;µ,σ2) =
1

σ
√

2π
exp

(x−µ)2

2σ2 , (2.1)

where x denotes the Random Variable (RV), µ the mean and σ the standard devia-

tion. The important fact that we want to underline is the exponential decrease of

the distribution. Such a distribution results in the absence of events “far from the

mean”. In other words, such a model is not adequate for representing suddenly

appearing large values. Because we think that such large but rare events are

highly impacting the communications, we state that other models, with heavier

tails, are needed for a better representation of the network interference in IoT.

2.1 Other non-Gaussian and impulsive models

2.1.1 Some empirical examples

Many works have identified situations where noise is not Gaussian and exhibits

some impulsive behaviour. A specifically active research domain in that case

was about Ultra Wide Band (UWB) systems in the first decade of the 21st century.

After showing that the standard Gaussian model is not accurate [DR02], non

Gaussian models were developed. The objective of the proposed models were of

two kinds:

1. increase the probability of rare events to better fit data, mainly issued form

simulations. The way to do it is to increase the weight of the tail.

2. obtain an analytical form, rather simple to deal with, of the probability

density function of the noise in order to design an adapted receiver, easy

to implement.

These works have generally proposed empirical choices, justified by simulations,

observations of the estimated PDF and/or gains in BER. The main proposed

solutions include
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• Gaussian-Laplace mixture [BN10], where the Laplace part increases the

tail weight,

• Generalized Gaussian [FH06; BSF08; KLC09], where the exponential decay

is kept but in the order of e−x
β
where β can be smaller than two resulting in

a slower decay,

• Gaussian mixtures [HB08], where non centred components can be used to

increase the tails or adding to the Gaussian representing the thermal noise

another Gaussian with a smaller weight but a much larger variance that

can generate the large samples,

• Cauchy-Gaussian mixture [Mei+17], where the Cauchy distribution has a

polynomial decay and in the class of heavy tail distributions.

In [HB08] it is mentioned that the heavier tail of the Gaussian Mixture allows

better performance than the Laplace approach. Some more details can be found

in the surveys [BY09; Sha12]. We give in the following a few examples of those

distributions.

Generalized Gaussian distributions Generalized Gaussian Distributions (GGD)

have been proposed to model MAI in UWB systems. One of its PDF can given

by [Yan15]:

fX,GG(x;Sm,σ ,β) =
1

γ(1 + 1
βA(β,σ ))

exp(−| − x − Sm
A(β,σ )

|β), (2.2)

where Sm denotes the mean, A(β,σ ) = [σ
2Γ (1/β)
Γ (3/β) ]0.5 is a scaling factor and β is the

shape parameter. This shape parameter is a positive real value. To represent

heavier tails than the Gaussian, one needs to choose β less than 2. β = 2 is the

Gaussian distribution and β = 1 gives the Laplace distribution.

Mixture of Gaussian models The mixture of Gaussian model is in general able

to represent any distribution. One way to obtain heavier tail is to add some non

centered components to a centered one that represents the thermal noise. In a
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general form, its PDF is given by

fX,GM;µ,σ (x) =
K∑
k=1

wk
1√

2πσ2
k

exp

(x −µk)2

2σ2
k

 , (2.3)

where µk denotes the mean values of the Gaussian components k and σk denotes

its variance. The relative weights wk verify
∑K
k=1wk = 1.

ε-contaminated The ε-contaminated (similar to the Bernouilli-Gaussian model)

is a special case of the Gaussian mixtures. However, in that case if one component

is still representative of the thermal noise, the other component, with a much

smaller weight, is also centered but with a significantly larger variance. The

impulsiveness of the model can then be adjusted by changing the weight of this

second component to change the frequency if the rare events or by modifying its

variance to change the amplitude that impulsive events can take. The PDF of

the ε-contaminated is given by

fX,ε(x) = (1− ε)fG(x;0,σ2) + εfG(x;0,υσ2), (2.4)

where ε represents the level of contamination (controls the proportion of impul-

sive part) and υ represents the impulsive strength.

2.1.2 Middleton class A and class B

We can trace back some works on non Gaussian noise to 1960 [FI60] and 1972

[GH72] about atmospheric noise. Assuming Poisson distributed sources, the

Characteristic Function (CF) of the impulsive noise can be obtained. Further-

more, appropriate assumptions on the transmission medium and source wave-

forms allow one to obtain the interference PDF. A similar approach based on

the CF was used by Middleton [Mid77; Mid99] who obtained more general

expressions based on series expansions. He classified interference in two main

categories depending if the noise bandwidth is less than the useful signal (class

A) or greater (class B). Class C is a sum of class A and B.
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The PDF of Middleton class A model is given by

fX,M(x;ρ) = e−A
+∞∑
m=0

Am

m!
√

2πρ2
m

e
− x2

2ρ2
m , (2.5)

where:

σ2
m = (ρ2

G + ρ2
I )
m
A +

ρ2
G

ρI2

1 +
ρ2
G

ρ2
I

, (2.6)

with ρ2
G denoting the Gaussian noise power and ρ2

I the impulsive noise power.

Class A noise describes the type of Electromagnetic Interference (EMI) often

encountered in telecommunications applications, where the noise is due to other

"intelligent" communications operation and is not an α-stable process nor is

reducible to such, except in the limiting Gaussian case of high noise density

where the Central Limit Theorem can apply [Mid99].

In [Vas84] the locally optimum (also called threshold or weak signal) detec-

tion problem in class A noise is considered. Class B noise usually represents

man-made or natural "non-intelligent" noises. It is highly impulsive [Mid99]

and is also asymptotically normal. Its PDF can be given by:

fX,M(x;α,σ ) =
1
πσ

∞∑
n=0

(−A)n

n!
Γ (

1 +αn
2

)Φ(
1 +αn

2
;
1
2

;−x2/σ2) (2.7)

where A > 0 denotes the intensity of the impulsive interference, while 0 < α < 2

measures the heaviness of the tail of the density function: small values indicates a

more impulsive behavior (heavier tail). σ > 0 plays a similar role to the standard

deviation. Φ is the confluent-hypergeometric function

Φ(a;c;x) =
∞∑
k=0

(a)k
(c)k

xk

k!
(2.8)

for c we have:

(c)k =


Γ (c+k)
Γ (c) , if k ≥ 1,

1, if k = 0.
(2.9)
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The PDF can also usually be approximated by a symmetric α-stable model

in the case of an narrowband reception or when the PDF is symmetric and a

skewed α-Stable model in broadband regime.

Figures 2.1 and Figures 2.2 shows the comparison between a Gaussian noise

with µ = 0,σ = 1 and a Middleton class A noise with A = 5,σ = 0.1, with a zoom

detailing the tail of both distributions on the second figure.

Figure 2.1 – Comparison between a Gaussian noise with µ = 0,σ = 1 and a
Middleton class A noise with A = 5,σ = 0.1.
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Figure 2.2 – Comparison between a Gaussian noise with µ = 0,σ = 1 and a
Middleton class A noise with A = 5,σ = 0.1 (zoom on tails).

2.2 Justification

Although the first papers were published in the nineties [Sou92; TNS95; IH98],

the analysis of networks has recently attracted a lot of works relying on stochastic

geometry. As in Middleton’s work, interferers are assumed spatially distributed

according to a Poisson field. In this context, the interference can be written as

I =
∑
i∈O

l(di)Qi , (2.10)

where l(·) denotes the attenuation, a function of distance d, and di is the distance

between the i-th interferer and the destination. Usually, l(d) is given by:

lh,ε(d) = d−hIr≥ε,d ∈ R+, (2.11)
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where h is the channel attenuation coefficient, ε accounts for a minimum distance

between the receiver and the transmitter for physical reasons or due to some

MAC layer protocol like carrier sensing, Qi includes diverse propagation effects

such as multipath fading and shadowing as well as the physical layer of the

transmitters and the receiver. O denotes the set of interferers.

If interferers in O are distributed according to an homogeneous Poisson Point

Process, infinite series are obtained to describe the statistical distribution of

I . In the case of an unbounded received power assumption, the interference

falls in the attraction domain of a stable law. Such an assumption means that

ε→ 0. In such case, the received power PR →∞ when d → 0. This of course

is not true, however the stable model appears to be rather accurate in many

cases [Cla+10]. The accuracy of the approximation was questioned in [Ina+09].

However, working without the unbounded received power assumption does not

allow an analytical derivation of the characteristic function [WA12], when the

use of the stable distribution allows to design efficient communication solutions.

The stable approximation for the generated interference can also be seen as a

consequence of the Generalized Central Limit Theorem [LS95]:

Theorem 2.2.1 (Generalized Central Limit Theorem) The sum of i.i.d. random
variables with finite or infinite variance converges to a distribution by increasing the
number of variables, with a stable distribution as a limiting case.

The proof of the result can be done considering the log-Characteristic Func-

tion of the total interference, which can be written as [Sou92; Cla+10]. Let us

consider the CF φI (ω):

φI (ω) = E
[
ejwI

]
, (2.12)

where I denotes the total interference and (·)T denotes the transpose. As pro-

posed in Sousa [Sou92], we define a circle C of radius R and denote by NI the

number of interferers present in C. We compute the characteristic function of I

but we first restrict the sum in (2.10) to the users included in C. We then make R

tends towards infinity. We suppose that the number of active interferers follow a

Poisson Point process, which means that the probability of the number of active
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interferers in C is given by:

P (NI = k) =
e−λπR

2 (
λπR2

)k
k!

(2.13)

λ is the expected number of interferer per unit area which is linked to the density

of the network.

We can then write:

φI (ω) = E
[
e
jω

(∑NI
i=1 l(di )Qi

)]
= lim

R→+∞

+∞∑
k=0

P (NI = k)E
[
ejωl(d)Q

]k
= lim

R→+∞

+∞∑
k=0

e−λπR
2 (
λπR2

)k
k!

E
[
ejωl(d)Q

]k
= lim

R→+∞
e−λπR

2
+∞∑
k=0

(
λπR2E

[
ejωl(d)Q

])k
k!

= lim
R→+∞

e−λπR
2
eλπR

2E[ejωl(d)Q] (2.14)

We take the logarithm:

ϕI (ω) = ln(φI )

= lim
R→+∞

λπR2
(
E
[
ejωl(d)Q

]
− 1

)
(2.15)

The expectation is taken over the two random variables l (d) and Q. In a first

step we will calculate the expectation over h = l (d) for a given R. We easily show

that the PDF of h = l (d) if l (d) = d−a and 0 ≤ d ≤ R is

fhi (x) =
4x−

4
a−1

aR2 for x ≥ R−
a
2 . (2.16)
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For x < R−
a
2 , fhi (x) = 0. Then,

E
[
ejωhQ

]
=

∫ +∞

R−
a
2
E
[
ejωh mathcalQ |h = x

]
fh(x)dx

=
∫ +∞

R−
a
2
φQ (ωx)

4x−
4
a−1

aR2 dx (2.17)

Integrating (2.17) by parts we obtain:

E
[
ejωγQ

]
=

[
− 1
R2x

− 4
aφQ (ωx)

]+∞

R−
a
2

+
1
R2

∫ +∞

R−
a
2
ω
dφQ
dx

(ωx)x−
4
adx

= φQ
(
ωR−

a
2
)

+
1
R2

∫ +∞

ωR−
a
2

dφQ
du

(u)
(u
ω

)− 4
a
du (2.18)

We can then use (2.18) in (2.15):

ϕI (ω) = lim
R→+∞

λπR2

φQ (ωR− a2 )+
1
R2

∫ +∞

ωR−
a
2

dφQ
du

(u)
(u
ω

)− 4
a
du − 1


= lim

R→+∞
λπR2

(
φQ

(
ωR−

a
2
)
− 1

)
+ lim
R→+∞

(
λπω

4
a

∫ +∞

ωR−
a
2

dφQ
du

(u)u−
4
adu

)
= lim

R→+∞
λπR2

(
φQ

(
ωR−

a
2
)
− 1

)
+λπω

4
a

∫ +∞

0

dφQ
du

(u)u−
4
adu (2.19)

We can show that lim
R→+∞

λπR2
(
φQ

(
ωR−

a
2
)
− 1

)
= 0. As a consequence only

the second term remains. If Q has a spherically symmetric probability density

function, we can then write φQ (ω) as φQ0
(‖ω‖), where ‖.‖ is the Euclidean norm.

Finally we can write:

ϕI (ω) = λπ ‖ω‖
4
a

∫ +∞

0

dφQ0

du
(u)u−

4
adu (2.20)

In (2.20), the integral does not depend on ω and we can finally write:
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ϕI (ω) = −σ ‖ω‖
4
a , (2.21)

with

σ = −λπ
∫ +∞

0

dφQ0

du
(u)u−

4
adu. (2.22)

As we will describe in section 2.4.3, (2.21) is the log-characteristic function for

the spherically symmetric stable distribution of exponent α = 4
a .

As it has just been shown, the unbounded path-loss model allows to derive

the characteristic function in an elegant way and, moreover, to end on the α-

stable family of distributions, and the special symmetric case. This allows to

have a statistical distribution for intereference which is parametrized by only

two parameters:

• the characteristic exponent α = 4
a . It defines the heaviness of the tail or, in

other words, the probability that (rare) large events appear. It only depends

on the attenuation coefficient a. If a increases, α decreases meaning a

heavier tail: the presence of close interferers impacts “more” when the

attenuation coefficient is large.

• the dispersion σ in (2.22) which can be related to the strength of the

intereference. It depends on λ, the density of interferer and on the different

system and environment parameters that are included in Q (small scale

fading, possible shadowing, waveform and signal processing at the PHY

layer).

This is one reason why the α-stable model is very attractive to model impulsive

noises, even if we do not have in the general case an analytical expression of the

PDF.

Another elegant way to obtain this result is to use the Lepages Series repre-

sentation of an α-stable random variable [IH98; Ega+17].
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2.3 Related works

Stable distributions often give a very good fit to empirical data and have been

applied to different areas: physics, hydrology, biology, electrical engineering

[LS95]. We can give some example here and a more detailed reference has been

given in [Nol97] and further information on applications can also be found in

[Kas88].

• Natural phenomena: Random variations of gravitational fields of stars in

space under certain natural conditions follows a stable law with α = 1.5

[LS95]. Some natural catastrophes also present non-Gaussian behavior

[Nol97]. Thunderstorms and lightning discharges behave as independent

sources in space while modeling the low-frequency atmospheric noise.

Considering a large number of this atmospheric phenomena and applying

the Generalized Central Limit Theorem may yield to a impulsive model

[Ibu66; WM57; Cri+60; HH56; FI61; Bec64; GH72].

• Man-made noises: Some man-made noises and interferences exhibit an

impulsive behavior, like automobile ignition spark plugs [Vas84; Mid77],

microwave ovens [KMM], neon lights [Vas84] and radar data [Nol01] and

others [Sko78; Mid72; Mid73; Mid77; Mid79; SM77a]. The α-stable models

have also been successfully used for noise reduction to suppress the "cracks"

when digitizing slightly damaged vinyl records.

• Economics In economics[Han10] α stable have often been used and many

phenomena present non-Gaussian behavior, like market dynamics, econo-

physics, price behavior, common stock price changes and data, fluctuations

in speculative prices, foreign exchange rate, interest rates and risk mea-

sures [Man63; LS95; Cis07; BHW05; Nol01]. It has been observed for

instance that asset returns are not normally distributed: empirical ob-

servations have shown that they exhibit heavy tails. This characteristic,

also named leptokurtic character of the distribution, of price changes has

been observed in various markets and extreme financial events like market

crashes [Nol97; Man63; SK14; Rac03].
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• Electronics Measured EMI generated by the clocks and buses in laptop

and desktop environments or theEMI from household appliances on digital

subscriber loop systems are shown to be well modeled by SαS distribution

[Nas+09].

• Communications Urban indoor, underwater acoustic communications,

channels and signals are not well modeled by Gaussian models [Vas84;

SM77a; Mid99; Gu12]. Ocean wave energy, submarine communications

and sonar systems on Artic regions may present some impulsive noise due

to ice cracking [Nol01; LS95; TR95; Vas84]. Studies on aquatic animals

such as snapping shrimp in Singapore show that it produces acoustic

shockwaves with (α ∈ [1.6,1.9]) [Vas84; PSK11]. We can also notice that

the α-stable process is used in queuing theory when the traffic is modeled

with Poisson process.

• Biology Molecular communication systems and molecular timing chan-

nels [Ega+16] also exhibits strong impulsive behavior where the α-stable

distribution can be an accurate modelling tool.

In the study of communication networks, the principle that have lead to the

use of stable distributions can be found in stochastic geometry and for instance

in [WPS09; WA12]. When users are spatially distributed according to a Poisson

point process, it has been shown that interference exhibits statistical properties

that are different from classical thermal noise and an impulsive nature. The

complex baseband noise derived from passband additive white symmetric α-

stable noise was studied and analyzed by [MCA12]. The paper proves that: (1)

all baseband noise samples are i.i.d.; (2) any given noise sample is shown to be

SαS and (3) under the condition fs/fc = 4, where fc and fs denote respectively the

carrier and passband sampling frequencies, respectively, the real and imaginary

components are independent for any given sample.

Figure 2.3 shows the comparison between a Gaussian noise with µ = 0,σ = 1

and a SαS noise with α = 0.8,h = 1,β = δ = 0.
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Figure 2.3 – Comparison between a Gaussian noise with µ = 0,σ = 1 and a SαS
noise with α = 0.8,γ = 1,β = δ = 0.

One specific property that makes α-stable laws attractive for modelling im-

pulsive noises is their tail behavior. The probability density function of a stable

model when α , 2 decays in the tails less rapidly than the Gaussian density, or in

other words, their tails are heavier, what makes the stable model more adequate

for modelling impulsive noises [LS95]. In probability theory, heavy-tailed distri-

butions are probability distributions whose tails are not exponentially bounded.

So, stable model is characterized by a higher probability of large amplitude value

[Ega+16].

When α < 2, it can be shown that: limx→∞x
αP(X > x) = Cα(1 + β)σα

limx→∞x
αP(X < −x) = Cα(1 + β)σα

(2.23)
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where:

Cα =
(
2
∫ ∞

0
x−αsin(x)dx

)−1

=
1
π
Γ (α)sin

πα
2
. (2.24)

We can say that a stable RV, for α < 2, has an algebric tail meaning there exist

c,α > 0 such that lim
x→∞

xαP(|X | > x) = c.

Many works about modern communications networks have used the α-stable

model. Interferences that exhibits impulsive behavior are also observed in Ultra-

Wide Band (UWB) impulse radios [BY09], environments where narrowband

and wide-band systems coexist, they are present in cognitive networks and are

also used for modeling accurately Multiple Access Interference (MAI) in ad hoc
or cellular networks [Sou92; Hug00; YP03; Hae+09; WPS09; PW10; Gul+10;

Cla+10; Car10; CKP12; Yan15; Ega+17].

[Cla+10] studies the MAI based on Time Hopping (TH)- Pulse Position

Modulation PPM-UWB, applying the α-stable model Impulse Radio (IR) based

physical layer up-converted to 60 GHz band and purposes the use of Cauchy

receiver for this scenario. [Sha12] investigates the impact of MAI on the per-

formance of UWB systems: it approximates PDF by the Laplacian, Generalized

Gaussian and Symmetric α-stable distributions. The results show that SαS dis-

tribution gives the best approximation to the PDF of the MAI. The Gaussian

underestimates the accurate Bit Error Rate (BER) for medium and large SNR

values even when there is a moderately large number of interferers in the UWB

system. The Laplacian approximation underestimates the accurate BER for large

SNR values and Generalized Gaussian gives much better approximation than

Gaussian and Laplacian approximations.

Wireless cellular networks modeled via Poisson Point Process (PPP) and also

in mollecular timing channels can also be described using α-stable models [IH98;

Far+]. As stated before, with such kind of interference, that is badly captured by

a Gaussian model, the classical linear receiver is no longer robust [Yan15].

In [Ega+16], the authors provide an example where AIαSN channels arise

in the context of wireless cellular communications and studied more precisely

the complex case. The authors considers a network, where base stations are

located according to an homogeneous Poisson Point Process with rate ν and
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assumes that the base band emission xk of each interfering base station k is a

circularly symmetric complex Gaussian random variable CN (0, P ). For a typical

user in this network, the interference can be expressed, very similarly as what

we previously presented in (2.10), by

I =
∞∑
k=1

r
−η/2
k hkxk , (2.25)

where η is the path loss exponent and hk ∼ CN (0,1) is Rayleigh fading. Let

zk = hkxk = R(zk) + iI (zk), where R(zk) and I (zk) denotes respectively the real

and imaginary parts of zk. Applying the LePage series representation for α-stable

RV, it follows that I converges almost surely to

I = Ir + iIi , (2.26)

where Ir , Ii are symmetric 2/η-stable RVs. We can observe that hk ,xk are isotropic

circularly symmetric Gaussian RVs, which implies that I is an isotropic α-stable

RV, also described as a sub-Gaussian RV.

2.4 Some properties of Stable distributions

2.4.1 Definition

One way to define an α-stable RV is through the stability property. A RV X

has a stable distribution if and only if for any independent samples X1 and X2,

with same distribution as X, and for any arbitrary constants a1 and a2, there are

constants a and b such that [ST94; LS95]:

aX + b d= a1X1 + a2X2, (2.27)

where X d= Y denotes equality in distribution. In other words, the sum of two

independent stable random variables with same characteristic exponent is again

stable with the same characteristic exponent. Stable distributions are the only

distribution that have this property. In the case where X has a finite variance, the
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resulting distribution is the Gaussian and the characteristic exponent is α = 2.

This property can be easily generalized for n independent stable RVs Xi
with same α,β, where all the linear combinations

∑n
i=1 aiXi are also stable with

characteristic exponent and symmetry parameters α and β, respectively.

2.4.2 Generalized Central Limit theorem

As a consequence of stability property is that the sum of n i.i.d. RVs Xi , i =

1,2, ...,n, with or without finite variance, converges to a distribution by increas-

ing the number of variables (n→ ∞) and the limit distribution X is a stable

distribution (see Theorem 2.2.1). The Central Limit Theorem discussed in Theo-

rem 2.0.1 for Gaussian RVs is a particular case of the Generalized Central Limit

Theorem where Xi′s have finite variance.

2.4.3 Characteristic function and parameterization

Another way to describe a stable distribution is to use its characteristic function,

given by [LS95]

φ(t) = exp{jδt −γ |t|α [1 + jβsign(t)ω(t,α)]}, (2.28)

where

ω(t,α) =

tan(απ2 ) if α , 1
2
π log |t| if α = 1

sign(t) =


1 if t > 0

0 if t = 0

−1 if t < 0

,

and a ∈ R,γ ∈ R+
∗ ,α ∈ (0,2],β ∈ [−1,1]. For a RV distributed according to the CF

described in (2.28), we use the notation X ∼ Sα(σ,β,µ) [JW94].

Four parameters describe the α-stable distribution:
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• Parameter α ∈]0,2] is called characteristic exponent and measures the

"thickness" of the tails. Small values of α indicates high impulsiveness,

while values close to 2 indicates a more Gaussian behavior. When α = 2,

the RV is Gaussian.

• Parameter γ (strictly positive) is called dispersion and plays a similar role

to variance for Gaussian distribution. In the case α = 2, it is equal to half

of the variance.

• Parameter β ∈] − 1,1] is a symmetry parameter. β = 0 corresponds to a

symmetric variable, when β = 1 (respectively −1) corresponds to a variable

totally skewed to the right (respectively to the left).

• Parameter δ is the location parameter. When 1 < α ≤ 2 it represents the

mean and for 0 < α < 1 it represents the median [LS95].

2.4.4 Some difficulties

Stable distributions present two important drawbacks: the first one is that there

is no closed-form expression for the probability density function except for

three specific cases: the Gaussian (α = 2), Cauchy (α = 1,β = 0) and Levy cases

(α = 0.5,β = 1) [LS95]. On the other hand there exists efficient techniques to

generate stable RV so that Monte-Carlo based schemes can be used to make

calculations.

A second difficulty is that for α < 2, the p-th moments of a stable RV with

characteristic exponent α exist and are finite only for p < α. In particular, the

variance (second order moment) of a stable distribution with α < 2 does no exist.

This can be seen as the price to pay to allow abrupt changes and rare events in

the interference signal.
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2.4.5 The probability density function and its approximations

The PDF of the standard stable (β = δ = 0) density function can be obtained by

taking the inverse Fourier transform of the CF:

f (x;α,β) =
1
π

∫ ∞
0

exp(−tα)cos[xt + βtαω(t,α)]dt, (2.29)

Observe that f (x;α,β) = f (−x;α,−β). The PDFs of stable distributions are

bounded and have derivatives of arbitrary orders. The PDF can also repre-

sented by power series [LS95]. The Standard stable density function is given by

the following absolutely convergent series, for x > 0:

f (x;α,β) =


1
πx

∑∞
k=1

(−1)k−1

k! Γ (αk + 1)(xr )αksin[kπ2 (α + ξ)] if 0 < α < 1
1
πx

∑∞
k=1

(−1)k−1

k! Γ ( kα + 1)(xr )ksin[kπ2 (α + ξ)] if 1 < α ≤ 2
, (2.30)

where r = (1 + η2)−1/(2α) and ξ = −(2/π)arctanη, with η = β tan(πα/2) and Γ is

the Gamma function, given by:

Γ (x) =
∫ ∞

0
tx−1e−tdt, (2.31)

The maximum likelihood approach for estimation of PDF demands a rele-

vant computational effort due to numerical approximations used. Usually, two

approaches are used for calculating the PDF: apply Fast Fourier Transform (FFT)

to the characteristic function or direct integration. For data points between

the equally spaced FFT grid nodes an interpolation technique has to be used.

Taking a larger number of grid point increases the accuracy but, in the other

hand, demands a higher computational effort. The FFT based approach is faster

for large samples. In addition, the FFT-based approach is efficient only for

large values of α and only for PDF calculations. The direct integration method

presents best performance for small data set, since it can be computed at any

arbitrarily chosen point, but in some cases the integrand becomes very peaky

and numerical algorithms can miss the spike and underestimate the integral,

being interesting to calculate it as the sum of two integrals for different intervals
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[BHW05].

In [Bel05] different methods for the evaluation of PDF of stable distributions

are discussed: direct numerical integration methods, FFT and method of two

quadratures. [SK14] propose several methods of approximation of stable distri-

butions by some discrete distributions. Further information can also be found

[Nol97]. Figure 2.4 compares a Gaussian distribution with µ = 0,σ = 1 and a SαS

distribution with α = 0.8,γ = 1,β = δ = 0.

Figure 2.4 – Comparison between PDF of a Gaussian distribution with µ =
0,σ = 1 and a SαS distribution with α = 0.8,γ = 1,β = δ = 0.

2.4.6 Moments

As stated on 2.4.4, for an α-stable RV X, if 0 < α < 2, then:

E|X |p =∞,p ≥ α, (2.32)

If α = 2:

E|X |p <∞, ∀p ≥ 0, (2.33)
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what means that, except for the limiting case α = 2, where all moments exist,

there is no second-order moment for stable distributions and more generally for

0 < α ≤ 1, α-stable distributions have no finite first or higher order moments. We

can however define Fractional Lower-Order Moments (FLOMs) of order p < α.

2.4.7 Fractional Lower Order Moments

Let X be a SαS random variable with δ = 0 and dispersion γ , then

E(|X |p) = C(p,α)γp/α,0 < p < α, (2.34)

where

C(p,α) =
2p+1Γ (p+1

2 )Γ (−p/α)

α
√
πΓ (−p/2)

. (2.35)

2.4.8 Covariation

The covariation for SαS RVs plays a similar role to covariance for Gaussian RVs:

given two jointly SαS RVs X and Y with 1 < α ≤ 2, the covariation of X with Y is

defined by

[X,Y ]α =
∫
S
xy<α−1>µ(ds), (2.36)

where S is the unit circle and µ(·) is the spectral measure of the SαS random

vector (X,Y ) and

z<a> = |z|asign(z), (2.37)

for any given z ∈ R and a ≥ 0. The covariation coefficient of X with Y is given by

[LS95]:

λ =
[X,Y ]α
[Y ,Y ]α

. (2.38)

We note that the covariation [X,Y ]α is linear in X ([aX1 + bX2,Y ]α = a[X1,Y ]α +

b[X2,Y ]α) but not with respect to Y . Consequently, X and Y play asymmetric

roles according to the definition given above. Denoting now γy as the dispersion

of Y , we have

[Y ,Y ]α = ||Y ||αα = γy , (2.39)
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λXY =
E(XY <p−1>)

E(|Y |p)
,1 ≤ p < α, (2.40)

[X,Y ]α =
E(XY p−1)
E(|Y |p)

,1 ≤ p < α, (2.41)

It is interesting to note that the covariation can allow to define a norm and a

distance for α-stable RV. Besides, this norm can be estimated using the p-norm

as described by the following equations:

||X −Y ||α = [X −Y ,X −Y ]α =

[E|X −Y |p/C(α,p)]1/p, 1 ≤ α ≤ 2,

[E|X −Y |p/C(α,p)]α/p, 0 < α < 1,
(2.42)

where C(α,p) = 2p+1Γ ((p+1)/2)Γ (−p/α)
α
√
πΓ (−p/2)

, and Γ (.) is the gamma function.

2.4.9 Generation and simulation of α stable models

[LS95] presents an accurate and inexpensive algorithm for generating stable RVs

for arbitrary characteristic exponent α and skewness parameter β developed by

J.M. Chambers, C.L. Mallows and B.W. Stuck. The algorithm does a nonlinear

transformation of two independent uniform RVs into one stable random variable.

Let’s suppose that we want to generate a random sample X from the standard

stable distribution. The algorithm is shown in Algorithm 1. More details on

simulation of α-stable RV can be found in [JW94] and further information on

generation of α-stable RV can be found in [Yan15; Wei12].
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Algorithm 1 Simulation of α stable random variables. Source: [LS95].
begin SimulationSaS(α,β)

if α = 1 then
Define:

βA← β;

γA← π/2;

β′ = βA.

ϕX(t) = exp(−|t|(1 + 2
π jβ

′log |t|sign(t))).

else
Define:

k(α)← 1− |1−α|;
βA← 2arctan(β/cot(πα/2))/(π(α));

γB← cos(πβAk(α)/2);

Ξ0←−0.5πβA(k(α)/α);

β′←− tan(0.5π(1−α))tan(αΞ0);

ϕX(t)← exp(−|t|α − jt(1− |t|α−1)β′tan(0.5πα)).

end if
Generate two independent samples Ξ and W , where Ξ is uniform on

(−0.5π,0.5π) and W is exponentially distributed with unit mean;

ε← 1−α
τ← ε tan(αΞ0);

a← tan(0.5Ξ);

B← tan(0.5εΞ)/(0.5εΞ);

b← tan(0.5εΞ);

z← cos(εΞ)−tan(αΞ0 sin(εΞ)
W cos(Ξ) ;

d← zε/α−1
ε ;

X← 2(a−b)(1+ab)−ΞτB(b(1−a2)−2a)
((1−a2)(1−b2)) (1 + εd) + τd.

return X

end
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2.4.10 Complex symmetric stable variables and Isotropic sta-

ble variables

A complex RV X = X1 + jX2 is SαS if the random vector (X1,X2) is SαS in R2

[LS95; ST94].

A complex SαS RV X = X1 + iX2 is called isotropic (or rotationally invariant)

if X = X1 + iX2 where X1,X2 ∈ R and X = (X1,X2)T is symmetric in R2, i.e.,

P(−X ∈ A) = P(X ∈ A) for all Borel sets in R [ST94; Ega+16], i.e.:

eiφX
d= X, (2.43)

for any φ ∈ [0,2π).

2.5 Parameter estimation

One last important point we discuss in this chapter is the parameter estimation.

The classical literature presents three main approaches: Maximum Likelihood

(ML), used on this work, quantiles method and regression-type method. [DK]

solves the general problem of stable parameter estimation analitically by propos-

ing three solutions: weighted sums of independent α-stable variates, FLOM

methods and logarithmic moments. For this thesis, we will introduce the regres-

sion type method, FLOM methods and logarithmic moments. Further informa-

tion on quantiles method can be found in [Yan15; SN93] and on weighted sums

of independent α-stable variates in [DK].

2.5.1 Tail exponent estimation

According to [BHW05], the simplest way of estimating α is to plot the right

tail of the empirical CDF on a double logarithmic plot. The slope of the linear

regression for large values of x yields the estimate of the tail index α = −slope.
This method is very sensitive to the size of the sample and to the choice of the

number of regression observations [BHW05]. An estimator for stable index

based on the linear relation between U-statistics and V-statistics can be found in

[Pan14]. Further information can be found in [SN93; BHW05].
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2.5.2 Method of Sample Characteristic Function / Regression-

type method

Denoting c = γ1/α and let [SN93]:

φ̂(t) =
1
N

∑
k=1

N exp(jtxk), (2.44)

be the sample characteristic function, whereN is the sample size and x1,x2, ...,xN
are the observations. So [SN93]:

log(− log |φ(t)|2) = log(2cα) +α log |t| (2.45)

and
Iφ(t)
Rφ(t)

= tan(at), (2.46)

the parameters α and c can be estimated from the linear regression [SN93]:

rk = µ+αwk + εk , k = 1,2, ...,K, (2.47)

where rk = log(−log |φ(t)|2),µ = log(2cα),wk = log |tk |. εk , k = 1,2, ...,K denotes the

error terms which are assumed to be i.i.d. with mean zero and t1, t2, ..., tk are an

appropriate set of real numbers. The location parameter a can be estimated in a

similar way [SN93]:

zk = auk + εk , l = 1,2, ...,L, (2.48)

where

zk = arctan(I (φ̂(uk))/R(φ̂(uk))), (2.49)

and u1, ...,uL is an appropriate set of real numbers [SN93].

2.5.3 FLOM methods

• Estimator for α Let X ∼ Sα(β,γ,0) for α , 1, the estimate of α is the

solution to [DK]:
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sinc(
pπ

α
) = [a(

ApA−p
tanq

+ SpS−p tanq)]−1, (2.50)

where q = pπ
2 , Ap = E[|X |p],Sp = [X<p>], and:

E[X<p>] =
γ(1− p

α )
γ(1− p)

|
γ

cosθ
|p/α

sin(pθα )

sin(pπ2 )
for p ∈ (−2,−1)∪ (−1,α), (2.51)

E[|X |p] =
γ(1− p

α )
γ(1− p)

|
γ

cosθ
|p/α

sin(pθα )

sin(pπ2 )
for p ∈ (−1,α), (2.52)

where θ = arctan(β tanαπ2) and x<p> = sign(x)|x|p.

• Estimator for β Given an estimate of α, estimate θ can be found by solving

Sp/Ap = tan(
pθ

α
)/tan(

pπ

2
). (2.53)

Given this estimate of θ, the estimate of β is given by:

β̂ =
tan(θ)

tan(απ2 )
. (2.54)

• Estimator for γ Given an estimate for α and θ, the estimate of γ is given

by [DK]:

γ̂ = |cosθ|(
Γ (1− p)

Γ (1− p/α)
cospπ/2
cospθ/α

Ap)α/p. (2.55)

2.5.4 Logarithmic moments

Let X ∼ Sα(β,γ,0) [DK]:

E[(log |X |)n] = lim
p→0

dn

dpn
E[|X |p],n = 1,2,3... (2.56)

L1 = E[log |X |] = ψ0(1− 1
α

) +
1
α

log
∣∣∣∣ γ

cosθ

∣∣∣∣ , (2.57)
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L2 = E[(log |X | −E[log |X |])2] = ψ1(
1
2

+
1
α2 )− θ

2

α2 , (2.58)

L3 = E[(log |X | −E[log |X |])3] = ψ2(1− 1
α3 ), (2.59)

with ψk−1 = dk

dxk
logΓ (x)|x=1

• Estimator for α Parameter α can be estimated by

α̂ = (
L2

ψ1
− 0.5)−1/2. (2.60)

• Estimator for β Assuming that an estimate for α is available and δ = 0,

then

|θ| = ((
ψ1

2
−L2)α2 −ψ1)1/2, (2.61)

the estimate of β then, can be obtained by

Sp/Ap = tan(
pθ

α
)/tan(

pπ

2
). (2.62)

If centering was applied is necessary to transform the resulting b by 2+2α
2−2α

• Estimator for γ Assuming again δ = 0, then

γ̂ = cos(θ)exp((L1 −ψ0)α + 1), (2.63)

Again, if centering was applied, is necessary to transform the resulting γ

by multiplying it by 1
2+2α .

2.6 Conclusion

The fist part of this thesis presented an statistical analysis of interference on

heterogeneous sensor networks. Initially was discussed the importance of robust-

ness of communication on IoT, being followed by experimental studies on the

nature of interference between Zigbee and Wifi devices. These studies showed

the non-Gaussian behavior of this scenario. The theoretical analysis based on
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PPP assumption presented on this chapter led to the conclusion that this sce-

nario can be modelled by the α-stable model. An overview of main properties

of this model is presented to conclude the characterization and modelling of

interference based on experimental and theoretical approaches. The next chapter

present a robust receiver design using spacial diversity to deal with impulsive

interferneces.



Chapter3
Robust receiver design using space

diversity

Before coping with non Gaussian interference, it is important to keep in mind

that the first reliability issue in wireless communication is the radio channel. If

we can expect that the planning of the networks is done according to the possible

range of the communication, large and small scale fading give an uncertainty on

the link quality that can not be compensated by a higher transmission power,

which would reduce the life time of the nodes. In this chapter we will first

introduce the main aspects of the radio channel that impact the received signal

and the link quality. To face the channel variability, we propose to introduce

space diversity, slightly at the transmitter side, using 2 antennas, and more sig-

nificantly at the receiver side which will be considered as the gateway, connected

to a power source and with more computation capabilities. This scheme does

not hold for multihop communication but space diversity can then be achieved

by multiple relays and path for information transfer.

3.1 Wireless propagation channel

The propagation channel transforms the transmitted signal into the received

signal through electromagnetic waves. Propagation involves several physical

phenomena [Cho+10; Hon10; Mas12]:

63
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• Reflection occurs when electromagnetic waves are reflected on an obsta-

cle instead of passing through. The reflection occurs when obstacles are

present on the path of wave and their dimension are bigger than wave-

length. When the surface is not irregular, we have a specular reflexion

and the direction and amplitude of reflected wave are described by Snell-

Descartes and Fresnel laws, otherwise, when random and non-negligible

irregularities on the surface are present, we can have a diffuse reflection.

• Transmission occurs when a non radio-opaque environment is encoun-

tered. In that case, the electromagnetic wave goes through the obstacle.

• Diffraction occurs when the radio path between transmitter and receiver

is obstructed by a high dimension obstacle in front of the electromagnetic

wavelength with sharp irregularities or small openings and happens on

the edges of this obstacle.

• Diffusion corresponds to the superposition of a non-negligible number of

random diffractions. Usually it is supposed that the wave is redirected to

all directions with variable attenuations.

• Waveguiding corresponds to the successive reflections over two parallel

obstacles leading to the transmission of the electromagnetic wave according

to the guidance direction.

• Scattering occurs when an electromagnetic wave is deviated from a straight

path by one or more obstacles with small dimensions compared to the

wavelength.

The main consequences of these physical phenomena are: attenuation, shadow-

ing and multipath propagation.

3.1.1 Narrow-band analysis

Many IoT applications are low data rate and, consequently, can use a rather

narrow bandwidth for the transmission, the extreme case being represented by

SigFox, which uses a 100 Hz band. In that case the whole transmitted signal x(t)
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is attenuated by a single coefficient a(t), that can change in time and the received

signal (without interference nor thermal noise) is given by y(t) = a(t)x(t). The

variations in a(t) can be due to several factors: distance (pathloss), shadowing

from obstacles (large scale fading) or multipath propagation (small scale fading).

Free space propagation model and attenuation (path loss)

The strength of the signal attenuates as it goes through the environment. It

becomes weaker as the propagation distance increases [Hon10]. The attenuation,

or path loss, corresponds to the energy loss during this propagation and depends

on the frequency of the signal.

The attenuation is given by the ratio between the output and the input powers

of the signal, usually expressed in dB. In non homogeneous environment, the

pathloss refers to the mean received power at a given distance. Let Pt and Pr be

the transmitted and received power respectively, so:

ηdB = 10log10
Pt
Pr
. (3.1)

This ratio depends on the geographical characteristics of the environment. In

free space, no obstacle are present and the propagation environment can be

considered homogeneous in every directions. The propagation model then

allows to predict the exact received signal power according to the distance

between transmitter and receiver. This model also ignores atmospheric losses.

Let’s define Gt, Gr and d, respectively, the transmitter antenna gain, the

receiver antenna gain and the distance between transmitter and receiver. In free

space, the receiver power Pr for long distances (far field) is given by the Friss

law:

Pr = PtGtGr
L2

(4πd)2 (3.2)

where L is the wavelength of the electromagnetic wave. Denoting the carrier

frequency by fc, L is given by:

L =
C
fc

(3.3)

where C denotes the light speed (3 · 108ms−1). The path loss is a positive value
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measured in dB and defines the difference between the transmitted and received

powers:

AdB = −10log10

(
GtGr

λ2

(4πd)2

)
(3.4)

The Friss model is not applicable when obstacles are present and the propagation

environment is not homogeneous, i.e. the same in all directions. Consequently

we express an average received power as a function of the distance between the

transmitter and the receiver:

AdB = A0dB + 10h log10

(
d
d0

)
, (3.5)

where A0dB is the mean path loss at distance d0. The main difference with the

Friss law is given by the attenuation coefficient h. This coefficient h indicates the

attenuation speed according to the distance and depends on the environment.

For free space, h = 2. In outdoor environments, e.g. GSM, usually 2 < h < 5.

However, in indoor situations, as corridors with behavior similar to wave guides,

h can be slightly below 2.

Shadowing

As stated before, the obstacles that appear along the transmission path may

absorb part of the signal energy of the electromagnetic wave, resulting in signal

strength degradation. This power variation is called shadowing effect and is

considered as large scale fading [Hon10] due to the size of the obstacles as

compared to the wavelength. For general statistical purpose, we can add the

shadowing to the path loss and obtain the following path loss plus shadowing

model:

AShdB = AdB +χσ = A0dB + 10h log10

(
d
d0

)
+χσ (3.6)

where χσ is a Gaussian random variable centered (in dB) and with standard

deviation σ (in dB) and describes the random effects of environment (shadowing).
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Multipath fading

The signal arriving at the receiver is most of the time the superposition of

signals from multiple propagation paths that add constructively or destructively.

It can create rapid fluctuations over time, space and frequency of the signal

strength. This is called multipath fading or small scale fading. To illustrate

this in the narrowband case we consider a source S which transmits a signal

x(t) = cos(2πfct) to a destination D and two possible paths: one direct and the

other resulting from a reflection with a delay t1. The received signal is then

given by:

r(t) = a0x(t) + a1x(t − t1) = a0 cos(2πfct) + a1 cos(2πfc(t − t1)). (3.7)

The resulting mean received power is given by

Pr =
1
2

(a2
0 + a2

1) + a0a1 cos(2πfct1). (3.8)

This means that Pc varies between 0.5(a0 + a1)2 and 0.5(a0 − a1)2.

The narrowband transmission can also be described as "flat-fading", referring

to frequency-non-selective fading [Cho+10; Hon10]. In that case, all paths

contribute to a single channel coefficient whose statistical properties have been

largely studied. The two most well-known distribution are the Rayleigh and the

Rice ones. Let’s consider now N paths, then:

r(t) =
N∑
i=1

ai cos(2πfc(t − ti)) =
N∑
i=1

ai cos(2πfct −φi)

=

 N∑
i=1

ai cos(φi)

cos(2πfct) +

 N∑
i=1

ai sin(φi)

sin(2πfct). (3.9)

In the equivalent baseband representation, the received signal amplitude can

be described as a complex random variable. So, each of its components, real

and imaginary ones, are the sum of a possibly large number of contributions. If

there is no more significant than others contribution, we can apply the central
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limit theorem and this amplitude will be a centered complex Gaussian random

variable and its module will obey the Rayleigh law:

fX(x) =
x

σ2 exp
{ x

2σ2

}
. (3.10)

So, we have the so-called Rayleigh channel, the absence of dominant contribution

being equivalent to no direct path. If there is a direct path, the amplitude will

obey a non-centered Gaussian complex law and its module will obey the Rice

law:

f (x) =
x

σ2 exp
(
−(x2 + a2)

2σ2

)
K0

(ax
σ2

)
, (3.11)

where K0(z) denotes the zero-order first kind modified Bessel function. In this

case, we have the so-called Rice channel, resulting from the presence of a fixed,

possibly line-of-sight (LoS), component.

Slow and fast fading

The radio channel evolution during the transmission of a packet depends on

the length of the packet and the mobility speed of the transmitter, receiver and

environment. We consider that the coherence time is the period of time during

which we can consider that the communication channel remains unchanged. If

the packet duration is shorter than this coherence time, we have a slow fading

channel, otherwise, we have a fast fading channel. In the rest of this chapter we

are going to consider slow fading (or equivalently called block fading). This is

representative of many wireless sensor networks applications where nodes are

attached to static things. This should however be further analyzed, especially

for LPWAN, where the time on, air of a packet can be very long, more than one

second in some specific situations in LoRa or Sigfox.

3.1.2 The MIMO Channel

As we will detail in the next section, the MIMO channel is represented by a

(NT ×NR) matrix where NT is the number of transmitting antennas and NR the

number of receiving antennas. Each coefficient of the matrix represents a Single
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Input Single Output (SISO) narrowband channel. They are commonly modeled

as a Rayleigh random variable, so zero-mean circularly symmetric complex

Gaussian random variables. In fact this Rayleigh assumption is the best case in

MIMO situations, giving a maximum diversity between each channel.

The degree of correlation between the individual NT ×NR channel gains is

a function of the scattering in the environment and the antenna spacing at the

transmitter and the receiver. If we consider the extreme event where all antenna

elements at the transmitter are collocated and likewise at the receiver, all ele-

ments of H will be fully correlated (in fact identical) and the spatial diversity

order of the channel is one. The typical antenna spacing required for decorrela-

tion is approximately λ/2, where λ denotes the wavelength corresponding to the

frequency of operation [Big+07].

The wideband situation is more complex to analyze because a third dimen-

sion (time) has to be added to channel matrix. In this work we will consider a

narrowband situation. This is relevant in IoT applications where the expected

data rate is very low so that transmission can be done on narrow bandwidth.

This is also relevant when techniques like Orthogonal Frequency Division Mul-

tiplexing are used and when we can consider the transmission on a sub-band

which is narrow by construction of the system.

3.2 MIMO technology

This thesis aims to design a reliable and low power communication scheme

for IoT. We want to take advantage of spatial diversity in order to reduce or

even eliminate the effects of small scale fading. However we do not want to

significantly increase the complexity and the cost at the transmitter side. This

implies that (a) we are going to use only two transmit antenna and (b) we do

not assume any knowledge of the channel state information at the transmitter.

On another hand we assume that complexity can be increased at the receiver

side, especially when the receiver is the gateway or sink. The MIMO technology

represents in the last decade one of the most significant advance in wireless

communications, in order to increase the rates and/or the number of transmitting

devices. It is possible to list four main advantages of the MIMO technology:
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array gain, spatial diversity gain, spatial multiplexing gain and interference

reduction and avoidance [Big+07]:

• Array gain improves resistance to noise, thereby improving the coverage

and the range of a wireless network;

• The spatial diversity gain improves robustness against radio channel fading

[BFC05];

• The spatial multiplexing gain increases the capacity of a wireless network;

• Interference may be mitigated in MIMO systems by exploiting the spatial

dimension to increase the separation between users. Interference reduction

and avoidance improve the coverage (range) in a wireless network.

Coding and signal processing are important elements of a successful implemen-

tation of a MIMO system and the communication channel represents a major

component that determines the system performance [GS05]. In the following we

will discuss these two important elements and see what advantages of MIMO

can be exploited in massive machine type communications.

3.2.1 System model

In a MIMO transmitter, the information bits to be transmitted are encoded and

mapped to data symbols. These data symbols are sent to space-time encoder.

The outputs are called spatial data streams: they are transmitted, propagate

through the channel and arrive to the receiver antenna array. The different

signals received at each antenna are then decoded through the receiver space-

time processing, symbol demapping and decoding [Big+07], as described in Fig.

3.1.
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Figure 3.1 – Diagram of complex equivalent baseband MIMO communica-
tion system, X and Y stand for the transmitted and received signal vectors,
respectively. Source: [Big+07].

We use the following notations: AM,N ∈ CM×N is a M ×N complex matrix, s

is a symbol taken from the set of possible symbols S = {sk}. Let us consider the

following communication system model:

• Ns is the number of transmitted symbols (different times), Nt is the number

of transmit antennas and Nr the number of receive antennas.

• All possible transmitted symbols that are equiprobable, i.e. P (s = si) =

P
(
s = sj

)
, ∀{i, j} , i , j.

• XNs,Nt ∈ C
Ns×Nt denotes the matrix of all transmitted symbols in a given

packet, where the column X(i)
Ns,1

, i = 1,2, ...,Nt represents the signals trans-

mitted over the ith transmitting antenna.

• The channel is represented by HNt ,Nr , with HNt ,Nr ∈ CNt×Nr , where the

matrix element hi,m ∈HNt ,Nr is the complex gain and represents the fading

channel coefficient between the ith transmit antenna and the mth receive

antenna, with i = 1,2, ...,Nt and m = 1, ..,Nr . The nth column of H is often
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referred to as the spatial signature of the nth transmit antenna across the

receive antenna array [Big+07].

• We denote NNs,Nr ∈ CNs×Nr the matrix of the noise which all elements

ni,m ∈NNs,Nr are assumed i.i.d.

We can then write the received signal as

YNs,Nr = XNs,NtHNt ,Nr + NNs,Nr . (3.12)

The vector Y(m)
Ns,1

denotes a column of YNs,Nr and represents the signal received

on the mth receive antenna. Due to a question of simplicity, except if necessary,

we will suppress the indexes.

3.2.2 Channel estimation

The received signal is distorted by the channel. In order to recover the transmit-

ted bits, the channel effect must be estimated and compensated at the receiver

[Cho+10]. A traditional way to achieve channel estimation is to use a preamble

(training sequence) or pilot symbols known to both transmitter and receiver. Var-

ious estimation or interpolation techniques can then be employed to estimate the

channel response. In our situation, we have a single narrow band transmission.

Our goal is then to estimate the channel matrix HNt ,Nr .

Denoting the known training sequence by T and assuming Gaussian noise,

the Maximum Likelihood (ML) estimate of the channel matrix is given by

[BW03]:

ĤML = argmin
H
||Y−

√
ρ

N
HT||2 =

√
ρ

N
YTH (TTH )−1. (3.13)

Where (·)H denotes the Hermitian operator. The optimal training symbol se-

quence T that minimizes the channel estimation error should satisfy:

TTH = T INT . (3.14)
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One way to generate such optimal training sequence is to use Hadamard matri-

ces.

To solve the estimation problem in a tractable way, two main approaches

can be used: the Least-Squares (LS) and Minimum-Mean-Square-Error (MMSE).

Both techniques are widely used [Cho+10].

Least Squares Estimation

The Least Squares (LS) method gives the channel matrix estimate ĤLS that mini-

mizes the Euclidean distance
∥∥∥TH−Y(m)′

∥∥∥
2

[Hei+04]. Let us take the example of

one receive antenna, two transmit antenna and one symbol. Then ĤLS ∈ C2×1.

We have

ĤLS = argmin
H

∥∥∥TH−Y(m)′
∥∥∥

2
. (3.15)

This problem can be solved taking the partial derivatives and finding the solution

of the following system of equations:

∂

∂ĤLS

∥∥∥(TĤLS −Y(m)′ )
∥∥∥

2
= 0. (3.16)

This equation can be solved:

− 2THY(m) + 2THTĤLS = 0⇔ 2THTĤLS = 2THY(m), (3.17)

which give the following solution:

ĤLS = (THT)†THY(m). (3.18)

where (·)† denotes the pseudo inverse.

3.2.3 Space-Time Coding and Diversity

Data to be transmitted can be considered as Space-Time Blocks. The benefit of

MIMO can be dealt at the transmitter side, using precoding techniques or at the

receiver side using some combining schemes. We present in the following some

important techniques.
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BLAST

Bell-Labs Layered Space Time (BLAST, see Fig. 3.2) is a high speed wireless

communication scheme employing multiple antennas at both the transmitter and

the receiver. The transmitted data are split equally intoNT transmitting antennas

and then simultaneously sent to a channel overlapping in time and frequency.

The signals are received by NR receive antennas and signal processor at the

receiver attempts to separate the received signals and recover the transmitted

data [BW03].

BLAST may use two detection algorithms: Maximum Likelihood (ML) and

Zero-Forcing (ZF). Its main drawbacks are: (1) it requires NT ≤ NR; (2) the

performance of the suboptimal BLAST decoding algorithms is limited by error

propagation[BW03].

Figure 3.2 – Schematic representation of a BLAST system. Source: [BW03]

Maximal Ratio Combining

The technique was invented by American engineer Leonard R. Kahn in 1954.

Maximum-Ratio Combining (MRC) is a method of diversity combining in which

the signals from each channel are added together, the gain of each channel

is made proportional to the square root of the received signal to noise power

ratio. MRC is the optimum combiner for independent Additive White Gaussian

Noise (AWGN) channels. The output Signal-to-Noise Ratio (SNR) of the linear

combiner is given by:

z[n] =
NR∑
k=1

αkyk[n], (3.19)
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is maximize with the set of coefficients

αk = ch∗k/σ
2
k , k = 1, ..,NR, (3.20)

where c is an arbitrary constant.

Space-Time Block Codes

Instead of transmitting independent data streams as in BLAST, the idea of Space-

Time Block Code (STBC) is to transmit the same information simultaneously

from different transmit antennas to obtain diversity. Comparing with BLAST,

STBC transmits less symbols [BW03] but reliability is increased. Because in IoT,

rate is not a crucial parameter, STBC can make sense. A STBC is defined by a

code matrix with orthogonal columns. Two main objectives of orthogonal space-

time code design are to achieve the diversity order of NTNR and to implement

computationally efficient per-symbol detection at the receiver that achieves the

ML performance [Cho+10; BFC05; Big+07; Hon10; OC07]. The output of the

space-time block encoder is a codeword matrix X with dimension of NT ×Ns
where Ns is the number of symbols of each block. Let xi denote the ith row of

the codeword matrix. Then xi will be transmitted by the ith antenna over Ns
symbols duration. The following property is required:

XXH = c||xi ||2INT , (3.21)

where c is constant. The above property implies that the row vectors of the

codeword matrix X are orthogonal:

xix
H
j =

T∑
t=1

xti (x
t
j)
∗ = 0, i , j, i,∈ {1,2,Ns}. (3.22)

STBCs are a generalization of the Alamouti transmission scheme that will

be detailed in section 3.4. We will use this specific scheme which is easy to

implement at the transmitter side, allowing a robustness increase with only two

transmit antennas and without the need of channel state information (at the
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transmitter side).

Space-Time Trellis Codes

The main advantage of STBCs is that a maximum diversity gain can be achieved

with a relatively simple linear-processing receiver. In general, however, the

coding gain can be further improved with another type of Space Time Codes

(STC), known as a Space-Time Trellis Code (STTC). The STTC encoder can be

considered as a convolutional encoder with the memory size of vk delay units

for the kth branch for each output symbol. The Viterbi algorithm can be used

for decoding the space-time trellis-coded systems [Cho+10; BFC05; Big+07;

Hon10; OC07]. It provides full diversity and coding gain, but has high decoding

complexity which grows exponentially with the number of antennas [BW03].

3.3 Receiver design

The linear detector is optimal in the presence of Gaussian noise. However it is no

longer adequate under the presence of impulsive noise, presenting a significant

loss of performance [LS95; LJL09]. This section gives an overview on receiver

design, especially for environments with impulsive interference.

3.3.1 Optimal receiver

In communication, an optimal receiver can be seen as the one minimizing the

BER Pe or, equivalently, to maximize the probability of successful transmission

Ps. Let:

• X = {xi}i=1,...,Ns be the set of symbols that can be transmitted,

• πi be the probability that xi was transmitted,

• Ns the number of source symbols,

• Pe|i is the probability that xi was transmitted but not decoded
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• f (y |xi ) is the probability density function of the received signal y if xi was

transmitted

• Ωi is the decision region associated to xi and Ω̄i its complementary region.

It means that if y ∈Ωi then the decision is x̂ = xi .

The error probability can be written as

Pe =
Ns∑
i=1

πiPe|i

=
Ns∑
i=1

πi

∫
Ω̄i

f (y |xi )dy (3.23)

and the probability of success is

Ps =
Ns∑
i=1

πiPs|i

=
Ns∑
i=1

πi

∫
Ωi

f (y |xi )dy (3.24)

The optimal receiver will consist in designing the decision regions Ωi that

minimize Pe or maximize Ps. So we need to maximize
∑Ns
i=1πi

∫
Ωi
f (y |xi ). We

know that πi
∫
Ωi
f (y |xi )dy ≥ 0 and that a point only belongs to one region.

Consequently, the decision regions can be defined as

Ωi =
{
y
∣∣∣∣πif (y |xi ) > πjf

(
y
∣∣∣xj ) , ∀j , i } (3.25)

Finally, we can write the optimal decision, in terms of maximum success rate

or minimum bit error rate

x̂ = argmax
xi

{πif (y |xi )} (3.26)
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Maximum A Posteriori

This can be seen as the Maximum A Posteriori (MAP) receiver. Indeed, the a
posteriori probability is given by

P
(
xi

∣∣∣y ) =
πif (y |xi )
f (y)

. (3.27)

The MAP is given by (3.26)

Maximum Likelihood

The Maximum Likelihood (ML) receiver consists in maximizing the a priori prob-

ability P (y |xi ). It is clearly equivalent to the MAP approach if the transmitted

symbols have the same probabilities (πi = πj , ∀(i, j)). The ML receiver is given

by

x̂ = argmax
xi

{f (y |xi )} (3.28)

Receiver design

In most of the communication schemes, source symbols are equiprobable and

the optimal receiver is then given by the ML detector. In the following we also

assume that the channel is known. When y is a multidimensionnal vector (for

instance the different replicas received on different antennas) and if we assume

the noise realization to be uncorrelated in the different dimensions, the decoding

rule is given by the solution to the following optimization problem:

x̂ = argmax
xi∈X

f (y |xi ;h )

= argmax
xi∈X

K∏
k=1

f (yk |xi ;hk )

= argmax
xi∈X

K∑
k=1

log(f (yk |xi ;hk )) , (3.29)
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where K is the number of dimensions of the received vector and the second

equality assumes independent noise samples.

Calculating (3.29) requires the evaluation of the measure f (yk |xi ;hk ), where

yk = hkxi + ik +nk:

1. We first need to specify the representation of the interference, either by

its characteristic function (CF) or its probability density function (PDF)

when it exists in closed form. If the interference is known through its CF

ϕik (ω) := E
[
eiikω

]
, we have to evaluate its PDF

fik (ζ) =
1

2π

∫ ∞
−∞
ϕik (t)e−iζtdt, ∀k ∈ {1, . . . ,K} . (3.30)

2. We then need to calculate the PDF of the interference plus thermal noise

ik +nk, via the convolution

fik+nk (ζ) =
1

2π

∫ ∞
−∞
fnk (τ)

∫ ∞
−∞
ϕik (t)e−i(ζ−τ)tdtdτ,

∀k ∈ {1, . . . ,K} . (3.31)

3. Finally, conditional on the channel state information, we need to find the

likelihood as a function of s denoted by f (y |xi ;h ).

The description of the different steps allows to highlight the difficulties

one can encounter when designing a receiver. Firstly, specifying the PDF of

the interference can simply be a priori impossible because the transmission

environment is not predictable. Besides, it is in some cases complex, especially

for the popular heavy tailed interference models such as α-stable distributions.

The following two points introduce some numerical complexity that can be

prohibitive for real time implementation. All these steps challenge how one

approaches receiver design.
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3.3.2 Gaussian case

The Gaussian receiver is derived by assuming that ik +nk is accurately modeled

by a Gaussian random variable. In that case the PDF of yk = hkxi + ik +nk, given

xi and hk, is complex Gaussian, centred with mean hkxi and variance σ2
k :

f (yk |xi ;hk ) =
1√

2πσ2
k

exp

−
∣∣∣yk − hkxi ∣∣∣2

2σ2
k

 . (3.32)

Taking the log, we have

log(f (yk |xi ;hk )) = log

 1√
2πσ2

k

−

∣∣∣yk − hkxi ∣∣∣2

2σ2
k

 . (3.33)

The decision rule in (3.29) can consequently be expressed as

x̂ = argmax
xi∈X

K∑
k=1

log

 1√
2πσ2

k

−

∣∣∣yk − hkxi ∣∣∣2

2σ2
k


 = argmin

xi∈X

K∑
k=1


∣∣∣yk − hkxi ∣∣∣2

2σ2
k

 .
In the case where ik +nk is identically distributed in the different dimensions

of the received vector, we have σk = σ, ∀k ∈ {1, ...,K} and the final decision can

be summarized by

x̂ = argmin
xi∈X

K∑
k=1

∣∣∣yk − hkxi ∣∣∣2 = argmin
xi∈X

∥∥∥y − hxi∥∥∥2
2
,

where ‖.‖2 denotes the Euclidean distance.

The first thing to be noticed is that the ML receiver is equivalent to mini-

mizing the Euclidean distance between the received symbol and the possible

transmitted ones (after crossing the channel). Then we can further develop
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(3.34):

x̂ = argmin
xi∈X

K∑
k=1

∣∣∣yk − hkxi ∣∣∣2 = argmin
xi∈X

K∑
k=1

(
|yk |2 − h∗kx

∗
iyk − hkxiy

∗
k + |hkxi |2

)
= argmin

xi∈X

−2
K∑
k=1

R
(
h∗kx
∗
iyk

)
+

K∑
k=1

|hkxi |2
 ,

where R(.) denotes the real part. What is important to notice in (3.34) is that

the operation to be executed on the received signal y is a linear function. The

optimal receiver in Gaussian noise is linear which makes it simple to implement

and so attractive.

Finally, if the xi have the same energy (|xi |2 = Ex, ∀xi ∈ X ), the decision rule

can be further simplified:

x̂ = argmin
xi∈X

−2
K∑
k=1

R
(
h∗kx
∗
iyk

)
+Ex

K∑
k=1

|hk |2
 = argmax

xi∈X

R
x∗i K∑

k=1

h∗kyk


 ,

This last operation
∑K
k=1h

∗
kyk is called Maximum Ratio Combining MRC. It

is shown that this operation is the way to combine the received symbols that

maximizes the signal to noise ratio before the decision step.

3.3.3 Impulsive case

It has been shown that the Gaussian detector gives poor performance compared

to the optimal one when noise is impulsive [Yan15; LS95; Cla+10]. The second

observation is the difficulty in developing an optimal receiver. One reason is

the variety of proposed interference models: which model should I design my

receiver for and how will it perform if my environment changes? If empirical

models, chosen to offer analytic solutions, are attractive, their ability to adapt to

different contexts is to be proven. Another reason is that implementing a receiver

can be complex for some specific interference distributions, for instance with

the infinite series from Middleton’s model, stochastic geometry or the absence of

closed-form α-stable PDF. Consequently several sub-optimal receiving strategies
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Figure 3.3 – Realization examples for different noise processes. The following
parameters were used in each case: Gaussian case (µ = 0 and σ2 = 0.2); α-stable
(α = 1.5, γ = 0.1); ε-contaminated case (ε = 0.01, Ns = 100, σ2 = 0.2); sum of
Gaussian and α-stable in a moderately impulsive case (α = 1.5, γ = 0.1 and
σ2 = 0.2 (NIR = 0)).

have been developed to improve performance in non Gaussian situations.

Impact of impulsiveness on the optimal decision

An efficient way to characterize and understand the influence of impulsive noise

is to visualize the impact of the non linearities by representing the decision

regions. This was proposed by Saaifan and Henkel [SH12] for the Middleton

class A case and by Shehat et al. [SME10] and by Saleh et al. [SME12] for the

α-stable case.

We represent in Fig. 3.3 four different examples of noise realizations. Then

we show in Fig. 3.4 the decision regions that the optimal receiver must produce

in a binary case under each of the different models, i.e., the regions that maximize

the probability of having transmitted s when y = (y1, y2) is received.

It is well known that the optimal decision regions are linearly separated under

interference with exponential tail decay, such as the Gaussian case shown in

Fig. 3.4. However, the optimal decision regions under heavy tailed interference

produce non-linear frontiers and disjoint regions, as seen with the α-stable

noise. We can identify two operating regions: for small received values y1, y2,

boundaries are linear. However, when at least one value becomes larger, linear
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Figure 3.4 – Optimal decision regions for the different noise processes. We
follow the framework proposed in [SME12] and use the same parameters
defined in Fig. 3.3: the received vector Y is composed of two received samples
(two dimensions, Y = [y1 y2]), the wireless channel is set to h = [1 1], and we
consider two possible transmitted values (ie. Ω = {−1,1}). The areas in black
correspond to a decision ŝ = +1, the areas in white to ŝ = −1.
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boundaries completely fail to recover the most likely transmitted symbol. In the

ε-contaminated case, we see that for large values, the exponential tails makes

the decision boundary become linear again. However, the impulses generated

by the rare but large variance Gaussian component in the noise distribution

create a non linear area; very similar to the α-stable case. Finally, in the α-stable

and Gaussian mixture, the heavy-tailed interference noise dominates the light

tailed Gaussian thermal noise in extremes and dictates the extent of the non

linearity in the decision boundaries, considerably increasing the complexity of

the optimal receiver design.

Receivers

In the following we do not try to be exhaustive about the existing receiver

strategies but we propose to classify the different receiver design approaches

into three categories, see Table 3.1. We will then describe some of them.

Receiver Strategies
Type of receiver Examples
Linear Linear combiner [Joh96; NB09; NB10; CE13]
Noise distribu-
tion approxima-
tion

Gaussian mixture [ECD08], ε-contaminated [Nam+06], Gen-
eralized Gaussian [FH06], mixture of Laplacian and Gaus-
sian [BN10], Cauchy [Cla+10], Myriad [GA01; NB08; SME12],
NIG[Gu+12]

LLR inspired Soft limiter and Hole puncher [LS95; AIH94; TNS95; SME12;
Maa+13], p-norm [GC12], LLR approximation [Dim+14], ap-
proximation of f ′I+N (.)/fI+N (.) [SM77a; SM77b; ZBA06]

Table 3.1 – Receiver strategies discussed in this paper.

Linear approaches : if the MRC is optimal in Gaussian noise, it is known to

perform poorly in impulsive situations [Yan15; LS95; Cla+10]. Johnson [Joh96]

proposes a general study of linear optimal receivers in non Gaussian noise

and takes the specific example of α-stable noise. This is further studied for a

rake receiver in [NB09; NB10] and for diversity combining schemes in a multi-

antenna receiver in [CE13] in presence of symmetric α-stable interference. A
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linear combiner can in general be written as

z =
K∑
k=1

wkyk (3.34)

where w = {wk}Kk=1 ∈ R
K are the combiner weights. The conventional MRC leads

to wk = h∗k and is optimal for independent Gaussian channels. When SαS noise

is present, the optimal weights are given by
wk = sign(yk)|yk |

1
α−1 if 1 < α ≤ 2

wj = sign(yj) and wk = 0 ∀k , j and j = argmax
k
|hk | if 0 < α ≤ 1

(3.35)

Noise distribution approximation : When the optimal receiver is complex to

design, a solution is to find a distribution that approximates well the true noise

plus interference PDF fik+nk (.) (whatever the dominant noise term), having an

analytical expression and parameters that can be simply estimated. Erseghe et al.
used a Gaussian mixture for UWB communications [ECD08]. In [Nam+06], the

ε-contaminated is used to study the impact of impulsive noise on Parity Check

Codes. The importance to take the real noise model into account during the

decoding is underlined. A review in the UWB case can be found in [BY09]. For

instance Fiorina [FH06] proposed a receiver based on a generalized Gaussian

distribution approximation. Beaulieu and Niranjayan [BN10] considered a

mixture of Laplacian and Gaussian noise. The Cauchy model is proposed in

[Cla+10]. Each solution is shown to significantly improve the performance in

their specific context. We can wonder how robust they will be in case of a model

mismatch. We can give a few solutions that use such an approach:

• Generalized Gaussian Model (GGM): a Generalized Gaussian is used to

model the noise plus interference. In that case the likelihood can be given

in closed form. In the binary case, the log likelihood ratio is given by

[NB08]:

Λ =
Ns∑
i=1

|γi,b + s|α/ςα −
Ns∑
i=1

|γi,b − s|α/ςα (3.36)
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and its sign gives the transmitted bit.

• Normal Inverse Gaussian (NIG) approximation: The NIG distributions

have analytical expressions for the PDF and their parameters can be es-

timated by the Method of Moments using four moments. Gaussian and

Cauchy distributions are special limiting cases. This solution was proposed

in [Gu12; Gu+12; GC12]. The density function is given by

fNIG(y;α,β,µ,δ) =
αδ
π

exp[g(y)]
h(y)

K1[α(y)] (3.37)

where g(y) = δ
√
α2 − β2 + β(y − µ) and h(y) = [(y − µ)2 + δ2]1/2, K1(·) is a

modified second kind Bessel function with index 1. The parameter α is

inversely related to the heaviness, i.e., where small values of α corresponds

to heavy tails, the skewness is controlled by β (0 ≤ |β| ≤ α)and β = 0

indicates the skewness. µ (µ ∈ R) and δ (δ > 0) represents, respectively, the

location and scale parameters. Considering a symmetric case (β = 0), the

mean, variance, skewness and kurtosis of NIG model are given, respectively,

by

E[yk] = µ (3.38)

Var[yk] =
δ
α

(3.39)

Skew[yk] = 0 (3.40)

K[yk] =
3
δα

(3.41)

These equations allow to estimate the model parameters and the receiver

can be implemented.

• Cauchy and Myriad Detector In general, α-stable random variables do

not have a closed form PDF. However, such a closed form exist for α = 1,

which corresponds to a Cauchy distribution,

f (y) =
γ

π
1

γ2 + (y)2 (3.42)

If we make this assumption, we can design the Cauchy detector [SME12;
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Gu+12; GC12; Gu12]:

K∏
k=1

[ξ2 + (γi,b + s)2]−
Ns∏
i=1

[ξ2 + (γi,b − s)2] (3.43)

In the binary case and taking the log, we can express the Log-Likelihood

Ratio (LLR):

ΛCauchy =
N∑
k=1

log

{
γ2 + [yk + hk]2

γ2 + [y(k)− hk]2

}
(3.44)

Several works have proposed to improve the Cauchy receiver to the case of

1 < α ≤ 2 or to the sum of an α-stable noise and a Gaussian noise. Instead

of using γ , a term κ is used to adapt the Myriad filter to get near-optimal

performance [SME12].

The Myriad detector is given by [NB08]:

Ns∏
i=1

[K2 + (γi,b + s)2]−
Ns∏
i=1

[K2 + (γi,b − s)2] (3.45)

And in the binary case:

ΛMyriad =
N∑
k=1

log

{
κ2 + [y(k) + s1(k)]2

κ2 + [y(k)− s0(k)]2

}
(3.46)

The choice of κ depends on the noise conditions. When α = 2 the Myriad

reaches optimal efficiency for κ =∞. For α = 1, the optmality is obtained

for κ = γ and for α → 0, the optimality is reached when κ = 0. Let α,γ

the characteristic exponent and dispersion parameter, respectively, of a

SαS distribution. An optimal tuning value of κ, κ0(α,γ) that minimizes a

performance criterion (usually variance) is given by [GA01]:

κ0(α,γ) = κ0(α,1)γ1/α (3.47)

Another choice for κ0 can be given also by the following empirical formula
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[GA01; NB08]:

κ(α) =

√
α

2−α
γ1/α (3.48)

For a detailed discussion on the optimality of the Myriad filter in the

α-stable model see [GA01; Nas+12; ND07].

• It is also possible to use approximation of the PDF. In the α-stable case

for instance, [ND07] suggests the use of an approximation proposed by

Kuruoglu:

fα,0,γ,µ(z) =

∑N
i=1 2e

− (z−µ)2

2γv2
i fY (v2

i )∑N
i=1 fY (v2

i )
(3.49)

• Algebraic-tailed Zero-Memory Non Linearity (AZMNL) Another possi-

ble approximation can be obtained using the properties of the α-stable

PDF [LJL09]. The standard SαS density function can be represented by

series expansion:

fα(x) =
1
πα

∞∑
k=0

(−1)k

2k!
Γ

(
2k + 1
α

)
x2k . (3.50)

For 1 < α < 2, we have, near x = 0:

fα(x) ≈ 1
πα

Γ (1/α)−
Γ
(

3
α

)
2

x2

 (3.51)

and the derivative is given by

f ′α(x) ≈ Γ (3/α)x
πα

. (3.52)

Then, the PDF in the vicinity of x = 0 can be approximated by

g(x;α) ≈ Γ (3/α)
Γ (1/α)

x (3.53)

i.e., a linear function with slope Γ (3/α)
Γ (1/α) . For large values, we consider the
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tail property

P(x > λ) ≈ σαCα
2
λ−α (3.54)

as λ→∞ and 1 < α < 2, where

Cα =
1−α

Γ (2−α)cos(πα/2)
. (3.55)

The approximation for large values of x can then be

g(x|x→∞,α) =
α + 1
x

. (3.56)

This indicates that the α-stable distribution has an algebraic tail as (α+1)/x.

The AZMNL is finally

g(x) =


K(α)
x if |x| > τ

kx if |x| ≤ τ
(3.57)

where k = Γ (3/α)/Γ (1/α), τ =
√
K(α)/k and K(α) is a polynomial expression

on α, which near-optimum value can be obtained through the Mean Square

Error (MSE) criterion

MSE(K(α)) =
∫
R

(
−f ′α,σ (x)
fα,σ (x)

− g(x)
)
fα,σ (x)dx (3.58)

LLR inspired solutions When we consider the binary case and when noise

is impulsive, the optimal LLR, Λ = log f (y|xi=1,h)
f (y|xi=−1,h) , tends to reduce the weight

of large values in the decision, when in the Gaussian case the resulting linear

function always increases whan the received value increases. It means that

we should not trust large positive or negative received values, contrary to the

decision weight that the linear receiver would attribute. This is illustrated in

Fig. 3.5, which represents the LLR as a function of the received value for the

four previously described noise settings. Except for the Gaussian noise whose

LLR is a linear function, the three other cases reaches a maximum and then

decrease and tends towards 0. We notice the strong resemblance between the
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Figure 3.5 – LLR for the different noise processes.

pure α-stable and the mixture with the Gaussian noise, curves being nearly

superposed.

This idea leads to a modification of the LLR function. The received signal

is modified by this function and the decision is made through a classical linear

approach. Classical examples are the soft limiter and the hole puncher [LS95;

AIH94; TNS95; SME12; Maa+13].

• Soft Limiter Small values are transformed through a linear operation and

larger values are clipped:

g(yk) =


−b if yk < −b

ayk if |yk | ≤ b
a

b if yk > b

(3.59)

• Hole Puncher Similarly to the soft limiter, small values are transformed

through a linear operation but larger values are set to 0 [ND07; Gu+12]:

g(yk) =

0 if |yk | > b

ayk if |yk | ≤ b
a

(3.60)
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• Another approximation is given by:

f (yk) = sign(yk)min

a ∣∣∣yk∣∣∣ , b∣∣∣yk∣∣∣
 (3.61)

where sign(x) is the sign of x. It was proposed in [Dim+14] for Low Density

Parity Check codes. The model fits the linear part of the LLR for small

values of x and the 1/x approximation is inspired from the limit of the

likelihood ratio for high values of x in the α-stable case. Parameters a

and b are estimated with different methods. Good results are obtained in

α-stable and Middleton class A interference. This can be further improved

using f (yk) = sign(yk)min
(
a
∣∣∣yk∣∣∣ , b
|yk | , c

)
which however gives one further

parameter to estimate.

• Some more solutions exist, always giving a linear approximation for small

values and a 1/x approximation for larger values. For instance:

f (yk) =
yk

a+ by2
k

(3.62)

3.3.4 Comparison Between the Receivers

It as been shown, for instance in [GC12; Gu+12; Gu12; ND07], that the lin-

ear receiver and MRC has good performance only when the Gaussian noise is

dominant.

The Hole-Puncher and Soft-Limiter are good choices if the thresholds are well

configured but they are still far from optimality under strong impulsive noise.

This is for instance shown in [SME12] and a better non-linearity is obtained

by approximating the PDF by a finite Gaussian mixture, at the expanse of an

increased complexity.

The Cauchy detector is optimum for α = 1 and can be used as a suboptimal

detector for any value of α, outperforming the Gaussian detector as soon as some

impulsiveness is present, but remains however more complex to implement. The

Myriad filter has similar complexity but improved performance when α gets

closer to 2 or when a non negligible thermal noise is present [SME12]. The NIG



92 CHAPTER 3. Robust receiver design using space diversity

approximation presents very good performance in most of the environments

and is generally very close to the optimal receiver when impulsiveness increases.

[ND07] also investigates methods to mitigate α-stable interference. We

did not discuss in this section the p-norm receiver. This approach could be

introduced by approximating the noise density with a Generalized Gaussian

distribution. It could also be seen as an approximation of the LLR function with

g(x) = ‖x‖p. As we will see, it can also be seen as a modified version of distance

calculation. We selected this approach because it is efficient in both impulsive

and Gaussian situations and also because it is reduced to a single parameter p

that can be efficiently estimated.

3.4 A MIMO transceiver robust against SαS noise.

We now propose a transmission scheme with spatial diversity and a receiver

strategy adapted to impulsive noise but also able to well behave in traditional

Gaussian noise. For the transmission, we add a second antenna. If it slightly

increases the cost of the end device it will also allow a significant increase in

robustness. We choose an Alamouti scheme for transmission because it does

not require any channel state information at the transmitter side but allows

to benefit from the spatial diversity. At the receiver side, we can either have

two antennas or more if the receiver is the gateway, less constraint both in cost

and energy. To face impulsive noise we adapt the channel estimation and the

decision strategy.

3.4.1 System model

The proposed system is shown in Fig. 3.6. It is composed by

• a Quadrature Phase Shift Keying (QPSK) modulator,

• an Alamouti encoder,

• 2 transmitting antennas

• Nr receiving antennas,
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• QPSK demodulator,

• a channel estimator and

• a decision block, including a parameter estimation step.

Figure 3.6 – System Diagram. Copyright 2019 IEEE. Reprinted, with permis-
sion, from Nicolas de Araujo Moreira and Laurent Clavier, Multiple antenna
receiver under impulsive SαS noise, WCNC, 2019.

The general model was presented in section 3.2.1, but we now consider the

Alamouti coding. It means that we have two transmitting antennas (Nt = 2)

and Nr receiver antennas. Let’s recall that we denote by s a symbol defined on

the discrete support S = {sk}k∈{1,2,3,4}. All possible transmitted symbols that are

equiprobable, i.e. Psi = Psj , ∀ (i, j) ∈ {1,2,3,4}2, i , j.
XNs,2 ∈ C

Ns×2 denotes the matrix of all transmitted symbols in a given packet.

The channel is represented by H2,Nr , with H2,Nr ∈ C2×Nr . Finally, denoting

NNs,Nr ∈ CNs×Nr the matrix of symmetric α-stable noise, which all elements

ni,m ∈NNs,Nr are assumed i.i.d., then, the received signal is given by:

YNs,Nr = XNs,2H2,Nr + NNs,Nr (3.63)

We consider the case where NNs,Nr is an i.i.d. random vector. Each marginal

is a complex symetric α-stable random variable with independant real and

imaginary part.
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3.4.2 Alamouti coding

The Alamouti coding is a particular STBC. It is a simple two-branch diversity

transmit scheme that uses NT = 2 transmitting antennas and NR receiving

antennas [M A98; BW03; Big+07]. The Alamouti coding is effective in all of the

applications where the system capacity is limited by the multipath fading [M

A98].

The Alamouti Scheme is defined by three functions:

1. encoding and transmission sequence of symbols at transmitter,

2. combining scheme and

3. the decision rule for (ML) detection.

Advantages

The Alamouti scheme improves the signal quality at the receiver by processing

the signal across the two transmitting antennas, improving the error perfor-

mance. It does not require bandwidth expansion nor any feedback from the

receiver to the transmitter, including channel state knowledge [OC07]. The

Alamouti coding is cost-effictive and presents quality and efficiency without a

complete redesign of existing systems.

Transmission sequence and encoding

The Alamouti coding requires two transmitting antennas, which simultaneously

transmit two different symbols. We denote by T a symbol period, si ∈ C the

complex symbol transmitted from antenna 0 and sj ∈ C the complex symbol

transmitted from antenna 1 during a given symbol period [t, t + T ]. During the

next symbol period starting at t + T , antenna 0 transmits −s∗j and antenna 1

transmits s∗i , where (·)∗ denotes the complex conjugate operation. So, during a

time interval 2T , the transmission sequence is given by the codeword matrix

CAla ∈ C, where C is the set of all possibilities for the codeword matrix:

CAla =

si −s∗jsj s∗i

 (3.64)
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where the first and second column represent times starting at t and at t + T ,

respectively and the first and second rows represent the symbols transmitted

over antennas 0 and 1, respectively, with sk ∈ S.

Is important to observe that Alamouti codeword CAla is a complex orthogonal

matrix [Cho+10; Hon10]:

CAlaC
H
Ala =

|si |2 +
∣∣∣sj ∣∣∣2 0

0 |si |2 +
∣∣∣sj ∣∣∣2

 = (|si |2 +
∣∣∣sj ∣∣∣2)I2 (3.65)

where I2 denotes the 2× 2 identity matrix.

Fig. 3.7 shows a schematic of Alamouti coding from the point of view of

transmitter.

Figure 3.7 – Alamouti Scheme.

Additional information

Further basic information on Alamouti coding can be found also in [GS05;

Hon10; Gui06]. [KZ10] presents also the application of Alamouti coding for

UWB systems. [Hut+05] studies the perfomance of Alamouti-based space-

frequency coding for OFDM systems. [SPV13] discusses the design of Alamouti

scheme for MIMO receiver embedded on a Field Programmable Gate Array

(FPGA).

3.4.3 Channel estimation algorithms

Let’s denote TL,2 a training sequence, known at the receiver, where L denotes its

length and which is transmitted through the unknown channel H2,Nr under the
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presence of a complex symmetric α-stable noise NL,Nr as previously described.

The received signal at the m-th antenna is denoted by the column-vector YmL,1.

From now on, we will omit the dimensions of matrices for a question of simplicity.

The objective of the estimator is to find the estimated channel matrix Ĥ ≈H.

Channel estimation under SαS noise

Although it is very suitable under Gaussian assumption, LS is no longer appro-

priate under the presence of impulsive noise due to its lack of robustness against

outliers in the data set. In other words, it means that for extreme events, its

performance deteriorates significantly [LS95].

The authors in [PC13] study the channel estimation in environments that

exhibit sparse, time-varying impulse responses and impulsive noise with SαS

statistics. They design online adaptive algorithms that exploit channel sparseness

and achieve robust performance:

• Recursive Least-Squares (RLS) type algorithms based on differentiable cost

function that combines robust nonlinear methods with sparse-prompting

L0 norm regularization;

• Natural Gradient (NG) incorporating nonlinear methods for channel pre-

diction error as well the L0 norm of the channel taps.

The performance of both approaches are compared with conventional robust

algorithms, such as Recursive Least M-Estimate (RLM) and Recursive Least

p-norm algorithm (RLP). The paper shows that RLM is not robust under specific

SαS noise conditions and demonstrates the superiority of the NG-type algorithms

over the RLS-type ones, once NG-type filters use the Riemannian distance 1 to

modify the gradient search direction for faster adaptation.

Least Absolute Deviation

The Least Absolute Deviation (LAD) estimation tries to find ĤLAD ∈ C2×1 that

minimizes the L1-norm loss function below [LA04] which can be solved using

1the length of a curve in the riemmanian manifold between two points having the minimum
length (geodesic)
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classical linear programming techniques:

ĤLAD = argmin
H

Ns∑
i=1

∣∣∣∣∣∣∣yi −
2∑
r=1

tirhrj

∣∣∣∣∣∣∣ (3.66)

∀i, j,1 ≤ i ≤ L,1 ≤ j ≤M, with yi ∈ Y(m)′ , tir ∈ T.

The algorithm for finding ĤLAD is shown in Algorithm 2. Its a recursive

algorithm, where Hold denotes the channel matrix found on previous iteration

and starts with a null matrix and Hold denotes the channel matrix found on the

current iteration and is initialized with aNr byNt matrix with all entries equal to

0.5. The stop criteria is based on an arbitrary threshold for the different between

previous and current channel matrix and an arbitrary number of iterations.

Obviously, the criteria for choosing them is based on time for computing and

precision. These procedures of finding Ĥ are repeated for each receiving antenna

for both estimators.

Algorithm 2 Optimization algorithm for LAD Estimation.
begin EstimationLAD(Y,X,Nr ,Nt,L)

H← 0.51NrNt ;
Hold ← 0NrNt ;
Hnew←H;

W← X;

i← 0;

while max|hnew − hold | > threshold and i < max_iterations do
Hold ←Hnew

Hnew← [(WHX)(WHY)]†

W← matdiv(X, |Y−XHnew|p)

i← i + 1;

end while
return Hnew
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3.4.4 Decision strategy.

Classical approach

Assuming block fading channel, i.e., the channel remains constant over a packet

and more specifically over two successive symbol periods from t to t + 2T , i.e.,

we denote hi,m(t) = hi,m(t +T ) = |hi,m|ejθi,m , where θi,m denotes the phase rotation

with i = 1,2 and m = 1,2, ...,NR. Assuming NT = 2 transmitting antennas and NR
receiving antennas, the received signals for the m-th receiver antenna is given byrm = h0,msi + h1,msj +n0,m at [t, t + T ]

rm = −h0,ms
∗
j + h1,ms

∗
i +n1,m at [t + T ,t + 2T ].

(3.67)

The Alamouti receiver is composed by a combining scheme and a decision rule.

For (ML) detection, the combiner generates the following signals:

s̃i = h∗0,mr0 + h1,mr
∗
1

s̃j = h∗1,mr0 − h0,mr
∗
1.

(3.68)

Applying (3.67) in (3.68) we have

s̃i = (|h0,m|2 + |h1,m|2)si + h∗0,mn0,m + h1,mn
∗
1,m

s̃j = (|h0,m|2 + |h1,m|2)sj + h∗0,mn0,m + h1,mn
∗
1,m.

(3.69)

The combined signals are then used for the decision: choose sk if and only if

d2(s̃i , sk) ≤ d2(s̃i , sl), ∀k , l (3.70)

Fig. 3.8 shows the full block diagram of the Alamouti scheme for the cases

NR = 1 (left) and NR = 2 (right).
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(a) Alamouti Scheme for NR = 1

(b) Alamouti Scheme for NR = 2.

Figure 3.8 – Alamouti coding for the cases NR = 1 (left) and NR = 2 (right).

The Alamouti scheme under α-stable noise

Few works have studied the effects of SαS noise over STBC. Receiver and code

designs issues (gain and diversity) are discussed in [GT07; LT11]. The perfor-

mance of a Genie-Aided Receiver (GAR), Minimum-Distance Receiver (MDR)

and MAP receivers in the first paper and GAR , MDR, ML and Asymptotically

Optimal Receiver (AOR) in the second are compared. The MAP or ML presents

the best performance but the AOR is very close but necessitates the knowledge

of the noise parameters. Besides, both works assume that the channel is perfectly

known at the receiver and does not perform any channel estimation. Papers

on impulsive noise usually focus on channel estimation or decision algorithms

but not both. The present thesis aims to fill this gap on research on dynamic

interference and impulsive noises.
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p-norm receiver

The classical Euclidean distance based receivers present poor performance under

non-Gaussian noise. Thus, it is important to develop new sub-optimal receivers.

The design and implementation of optimal receivers is a complex task, especially

with α-stable noise because we do not dispose of any analytical expression of

the density. One way to adress the question is to find a metric better suited to

α-stable random variables. As discussed in B.3, we can not rely on second order

moments, which do not exist for α-stable RV with 0 < α < 2. On another hand,

the covariation allows to define a norm for α-stable vectors: given an α-stable

random vector Y and an α with 1 < α < 2, then:

||Y ||α = ([Y ,Y ]α)1/α (3.71)

This α-norm can be used for distance estimation between the received symbol

and the possible transmitted ones. One imprtant property is then that we can

estilate this α-norm using the p-norm. The link for 1 < α < 2, p < α is given by

[GC12; Gu+12; Gu12]

||X −Y ||α =
(
|X−Y|p

C(α,p)

)1/p

, (3.72)

where Cα,p was defined in B.1. Using the p-norm metric, the decision statistic

can be expressed as [GC12; Gu+12; Gu12]

X̂ = min
X∈X

(∥∥∥Y − ĤX∥∥∥
p

)
. (3.73)

The p-norm receiver has robust performance in impulsive but also in Gaus-

sian noise. A simulated comparison between the p-norm and Euclidean metric

is shown in [Gu12].

Estimation of p

To estimate p we use the same approach that is used to estimate the shape

parameter β of a generalized Gaussian distribution. Indeed, in Generalized

Gaussian noise, the optimal receiver is also given by the p-norm. The maximum
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likelihood can be used with the Newton-Raphson method.

Letm1 andm2 denote the first and second statistical moments of the absolute

values:

m1 =
1
N

N∑
i=1

|xi |,m2 =
1
N

N∑
i=1

|xi |2, (3.74)

And g ′(β) denotes the derivative of g(β), defined on on Algorithm 3, and ψm(·)
denotes the polygamma function, which is given by:

ψ(m)(z) =
dm+1

dzm+1 lnΓ (z), with ψ(0)(z) =
Γ ′(z)
Γ (z)

(3.75)

The estimation procedure for p is shown on Algorithm 3.

Algorithm 3 Estimation algorithm for p. Source: [Yan15].
begin EstimateOfBeta(X,N)

Set β0 = m1√
m2

Set initial value for β: β← β0

repeat

g(β)← 1 + ψ(0)(1/β)
β −

∑N
i=1 |xi |

β log |xi |∑N
i=1 |xi |β

+ log( βN
∑N
i=1 |xi |

β)
β

βi+1← βi −
g(βi )
g ′(βi )

until get the estimated β

p← β

return p

end

3.4.5 Results and discussions

A Matlab™ script was developed for simulating different situations and envi-

ronments which includes the number of receiving antennas, the modulation

type, the channel estimation approach, the type of noise and different receiver

designs for simulation. Its pseudo-code is shown on Algorithm 4. a Graphical

User Interface (GUI), shown on Figure 3.9 was created using Matlab™ GUIDE

application.
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Algorithm 4 Simulation Algorithm
Define data to be transmitted XNs ∈ C

Ns ;

XNs,2 = AlamoutiCoding(XNs);
Generate random SαS noise matrix NNs,M ∈ C

Ns×M

Generate complex channel coefficients matrix H2,M ∈ C2×M

Received signal YNs,M = XNs,2H2,M + NNs,M

Estimate channel coefficients matrix:

Generate (previously known) training sequence TNs ∈ C
Ns ;

TNs,2 = AlamoutiCoding(TNs);
Calculate expected received signal Y′Ns,M = TNs,2H2,M + NNs,M

ĤLAD2,M
= LAD(Y′Ns,M ,TNs);

ĤLS2,M
= LS(Y′Ns,M ,TNs);

Estimate p value

Decision: D=pnormDetector(Y′,Ĥ2,M ,p)
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Figure 3.9 – The (GUI) for the Matlab™ simulation environment.

Value of p

A preliminary analysis focuses on the estimated p-value for the p-norm receiver.

It compares it with the value that minimizes the BER, obtained with exhaustive

search and Monte-Carlo simulations [Sob09]. Examples of results are shown in

Table 3.2. The estimated p are always close to the optimum value and the impact

on the BER is small, validating our proposal. The simulations showed also that

optimal p changes according to γ and α values (Fig. 3.10).
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Optimal Estimated Optimal Estimated

α = 0.8 α = 1.4

P 4.00 · 10−1 2.43 · 10−1 7.00 · 10−1 6.11 · 10−1

BER 1.65 · 10−2 1.68 · 10−2 3.96 · 10−3 4.10 · 10−3

α = 1.9 α = 2.0

P 1.10 1.38 2.00 1.98

BER 8.44 · 10−4 1.07 · 10−3 3.75 · 10−4 4.00 · 10−4

Table 3.2 – Comparison between simulated optimal p and estimated p for γ = 0.9

Figure 3.10 – BER behavior and estimated p according to value of α. Copyright
2019 IEEE. Reprinted, with permission, from Nicolas de Araujo Moreira and
Laurent Clavier, Multiple antenna receiver under impulsive SαS noise, WCNC,
2019.
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Receiver performance

In a second step, we analyzed the performance of receiver under the following

scenarios:

• 10.000 packets were sent for evaluating the BER,

• Ns = 100 per packet,

• Nr = 6 received antennas,

• the noise is a symmetric (β = 0,µ = 0) α-stable noise with α = 1.4 and

γdB ∈ [−1.5,1.5],

• for both channel estimation scheme (LS and LAD), a training sequence of

length L = 500 is used.

The performance is compared with a GAR, with the channel state perfectly

known, but with the estimation of the value of p. We also use the original L2-

norm and the LS channel estimation to evaluate the gain of our proposal over this

usual approach. Results are shown in Fig. 3.11. The BER for γdB ∈ {−1.5,0,1.5}
are also shown in Table 3.3.

The results show that LAD estimator when combined with p-norm receiver

presents a performance close to the case of perfectly known channel. Similar

results were obtained for α = 0.8,1.1,1.43,1.9,2.0, different γ intervals. The

LAD is in any case outperforming the other systems, except for α = 2, where

LS presents a small advantage. The simulation was repeated for two different

sizes of training sequence, L = 200 and L = 500, giving similar results. The

simulation was also repeated for different number of receiving antenna, Nr =

1,2,4,6, with more significant gains when Nr increases. Fig. 3.12,3.13 and

3.14 show the case for NR = 2 and α = 1.4, NR = 6 and α = 0.8, NR = 6 and

α = 2.0. It is important to observe and emphasize that the purposed system

does not degrade its performance when the impulsive interference is not present

and noise reduces to the thermal Gaussian noise. This gives robustness against

changes in transmission conditions.
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The purposed approach outperforms the traditional method and presents a

performance close to the optimal receiver assuming the perfect knowledge of

channel behavior and the noise distribution.

γdB Ideal Case LAD LS LS,p=2

-1.5 -1.47 -1.46 -1.24 -0.82

0 -2.14 -2.12 -1.81 -1.09

1.5 -3.03 -3.01 -2.58 -1.30

Table 3.3 – log10(BER) for γdB ∈ {−1.5,0,1.5}

Figure 3.11 – Results for a 2x6 MIMO system, with 10.000 sent packets, Ns =
100 under Sα-stable noise with α = 1.4,γdB ∈ [−1.5,1.5]. Obs: PN indicates the
p-norm receiver.
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Figure 3.12 – Results for a 2x2 MIMO system, with 10.000 sent packets, Ns =
100 under Sα-stable noise with α = 1.4,γdB ∈ [−1.5,1.5]. Obs: PN indicates
the p-norm receiver. Copyright 2019 IEEE. Reprinted, with permission, from
Nicolas de Araujo Moreira and Laurent Clavier, Multiple antenna receiver
under impulsive SαS noise, WCNC, 2019.
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Figure 3.13 – Results for a 2x6 MIMO system, with 10.000 sent packets, Ns =
100 under Sα-stable noise with α = 0.8,γdB ∈ [−1.5,1.5]. Obs: PN indicates
the p-norm receiver. Copyright 2019 IEEE. Reprinted, with permission, from
Nicolas de Araujo Moreira and Laurent Clavier, Multiple antenna receiver
under impulsive SαS noise, WCNC, 2019.
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Figure 3.14 – Results for a 2x6 MIMO system, with 10.000 sent packets, Ns =
100 under Sα-stable noise with α = 2.0,γdB ∈ [−1.5,1.5]. Obs: PN indicates
the p-norm receiver. Copyright 2019 IEEE. Reprinted, with permission, from
Nicolas de Araujo Moreira and Laurent Clavier, Multiple antenna receiver
under impulsive SαS noise, WCNC, 2019.
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Conclusion

In this work, we studied the coexistence of different networks in the same

frequency bands. More specifically, we started with an experimental evaluation

of the effect of WIFI interferers on a Zigbee network. We showed the significant

impact of such a coexistence on both reliability and energy consumption. We

also noticed the non Gaussian behaviour of the interfering signal. To comfort

this observation, we did a theoretical analysis of this interference. Many works

have addressed the problem and the α-stable assumption seems to be a good

one, allowing some interesting analytical studies.

Based on those results, we presented a MIMO communication system robust

against SαS noise. The proposed system is composed by a QPSK modulation

and an Alamouti coder. Two transmitting antennas and M receiving antennas

are used. To increase robustness against the impulsive noise, a p-norm receiver

is used. To complete the receiver architecture, we proposed an estimator for the

value of p, a supervised channel estimator and a decoder on receiver side. For the

channel, two different estimators were tested: LS and LAD. Their performance

were compared with the ideal case when the channel state is perfectly known.

Monte-Carlo simulations showed that the estimation of p gives a near-optimal

value. The optimal p changes according to γ and α. For different scenarios with

α , 2, LAD outperforms LS. For α = 2, both estimators present results close to

the perfect channel knowledge. The simulations were executed for different

values of NR (receiving antennas), α,γ and L.

Our proposal is a relevant design of flexible communication architecture that

outperforms the conventional Gaussian-based approaches under the presence of

SαS noise. Besides, the performance are still very close to the traditional scheme

111
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under the presence of purely Gaussian noise.

Future Works

Experimental works with higher number of mobile interfering nodes under a real

environment are necessary to approach to a more dynamic realistic scenario. We

assume however that our proposal will adapt to any type of noise, impulsive with

statistics that differs from the α-stable case or to the more traditional Gaussian

context.

Low complexity alternatives for the algorithm for finding the optimal value

of p could improve the performance of the receiver. Especially, we can notice

that the performance is not so sensitive to this estimation step, the performance

remaining equal for a rather large set of p values.

An implementation of the proposed architecture would be interesting to

evaluate the impact on energy saving while under the presence of high level

of impulsive noises. Further studies are also necessary to take into account

the dependency in space and/or in time of the interference. This dependence

structure with α-stable noise is not trivial and on-going works propose the use

of copula-based techniques.
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AppendixA
Software and equipment list

Figure A.1 – Hardware set used during the experiments.
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Figure A.2 – Signal studio software interface.
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Figure A.3 – Keyseigth VSA software.

Materials List: Hardware:

• 2 DIGI Xbee S1 XB24 modules;

• Agilent E4438C ESG Vector Signal Generator (250kHZ - 6.06GHz);

• PXA Signal Analyzer N9030A 3Hz-50GHz

• 1 Netbook and 1 PC Desktop

Software:

• XCTU;

• Keysight Technologies VSA Software;

• Signal Studio (for signal generation).
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A.0.1 XCTU configuration

Figure A.4 – XCTU configuration panel.

Emitter Xbee configuration (XCTU):

• Port: COM7;

• MAC: 0013A200407C84D1;

• Channel: C;

• PAN ID: 1100;

• DH destination address high: 0;

• DH destination address low: 0;

• My 16-bit source address: 1;

• SH serial number high: 131200;

• SL serial number low: 407C84R1;

• MM MAC Mode: 802.15.4 MaxStream Header with/ ACK;

• RR XBee retries: 6;



APPENDIX A. Software and equipment list 131

• BD interface data rate: 57600;

• Parity: No parity.

Receiver Xbee configuration (XCTU):

• Port: COM6;

• MAC: 0013A200407BE7F9;

• Channel: C;

• PAN ID: 1100;

• DH destination address high: 0;

• DH destination address low: 1;

• My 16-bit source address: 0;

• SH serial number high: 131200;

• SL serial number low: 407BE7F9;

• MM MAC Mode: 802.15.4 MaxStream Header with/ ACK;

• RR XBee retries: 6;

• BD interface data rate: 57600;

• Parity: No parity.

Package configuration on XCTU

• Package content: Test1;

• Transmit interval level: 0 or 500ms, depending on test;

• Loop ifinitely: Active.

The test was repeated for the following scenarios:
Test sequence

• Wifi only;

• Wifi and Zigbee signals with 500ms between each Zigbee packet;

• Wifi and Zigbee continuous signals;

• Zigbee only continuous signal;

• Zigbee only signal with 500 ms between each Zigbee packet;

• Only background noise (no signal).
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AppendixB
Some additional properties of
α-stable RVs

B.1 Fractional Lower Order Moments, Negative Lower
Order Moments

As stated on 2.4.6, the second order moments of a SαS random variable with
0 < α < 2 does not exist, all the FLOMs of order less than α do exist. Let X be a
SαS random variable with a = 0 and dispersion γ , then [LS95]:

E(|X |p) = C(p,α)γp/α,0 < p < α, (B.1)

where

C(p,α) =
2p+1Γ (p+1

2 )Γ (−p/α)

α
√
πΓ (−p/2)

. (B.2)

[LS95] presents also the proof of existence of Negative-Order Moments, that can
be expressed by:

E(|X |p) = C(p,α)γp/α,−1 < p < α. (B.3)

B.2 Fractional Absolute Moments

[MP13] uses techniques of fractional differentiation to obtain expressions for
E[|X−µ|ζ] with 1 < ζ < 2 and µ ∈ R in terms of Laplace transform or characteristic
function and gives applications on stable distributions, Pareto law, geometric
stable law, Linnik law and combination of stable law with Linnik law.

Let ζ = k +λ,k ∈ N,0 < λ < 1 and denoting mp := E[|X |p] a fractional absolute

133
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moment of order 0 < p < 2 and mµ,p := E[|X − µ|p] a µ-centered moment with
µ ∈ R. If 0 < α < 1 and X is a stable with Laplace transform given by E[e−tX] =
exp{−σαtα}, then for −∞ < ζ < α:

E[Xζ] =
Γ (1− ζ/α)
Γ (1− ζ)

σζ . (B.4)

In symmetric case, i.e. β = 0, with δ = 0 is shown that:

mζ =
2ζΓ ((1 + ζ)/2)Γ (1− ζ/α)

Γ (1− ζ/2)Γ (1/2)
σζ ,−1 < ζ < α, (B.5)

For general β and δ = 0 we have:

mζ = κ−1Γ (1− ζ
α

)(1 +θ2)
ζ

2α cos(
ζ
α
arctanθ)σζ ,−1 < ζ < α, (B.6)

where θ = β tan(πα2 ) and:

κ =

Γ (1− ζ)cos(ζπ2 ), if ζ , 1,
π
2 , if ζ = 1.

(B.7)

Let X have a stable distribution with real parameters α > 1, |β| ≤ 1,δ = 0 and
σ > 0. Then, for 0 < λ < α − 1 we have:

m1+λ =
λΓ (1− 1+λ

α )

sin(λπ2 )Γ (1−λ)
σ1+λ(1 +θ2)

1+λ
2α −0.5×

×cos[(1− 1 +λ
α

)arctanθ] +θ sin[(1− 1 +λ
α

arctanθ)],

(B.8)

and for µ ∈ R,

mµ,1+λ =
λ

sin(λπ2 )Γ (1−λ)
{µ

∫ ∞
0
u−(1+λ)e−σ

αuα sin(µu −θσαuα)du+

+ασα
∫ ∞

0
uα−λ−2e−σ

αuα [cos(µu −θσαuα)−θ sin(µu −θσαuα)]du},
(B.9)

where θ = β tan(πα2 ). If X is symmetric, i.e. β = 0,it follows that:

m1+λ =
λΓ (1− 1+λ

α )

sinsin(λπ2 )Γ (1−λ)
σ1+λ, (B.10)
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and

mµ,1+λ =
λσ1+λ

sin(
λpi
2 )Γ (1−λ)

[
µ

σ

∫ ∞
0
u−(1+λ)e−u

α
sin(

µu

σ
)du+

+α
∫ ∞

0
uα−λ−2e−u

α
cos(

µu

σ
)du].

(B.11)

For proofs and further information see [MP13]. More information on applica-
tions of Fractional Calculus on Probability and Random Variables see: [CD09]
and [DP12].

B.3 Covariation, covariation estimation and condi-
tional expectation

As discussed in 2.4.6, due to lack of finite variance, covariance does note exist
for SαS RVs with α , 2. In this section, the concept of covariation is introduced
[LS95]. The covariation for SαS RVs plays a similar role to covariance for Gaus-
sian RVs: Given two jointly SαS RVs X and Y with 1 < α ≤ 2, the covariation of
X with Y is defined by [LS95]:

[X,Y ]α =
∫
S
xy<α−1>µ(ds), (B.12)

where S is the unit circle and µ(·) is the spectral measure of the SαS random
vector (X,Y ) and

z<a> = |z|asign(z), (B.13)

for any given z ∈ R and a ≥ 0. The covariation coefficient of X with Y is given by
[LS95]:

λ =
[X,Y ]α
[Y ,Y ]α

. (B.14)

X and Y play asymmetric roles according to the definition given above. Denoting
now γy as the dispersion of Y , we have [LS95]:

[Y ,Y ]α = ||Y ||αα = γy , (B.15)

λXY =
E(XY <p−1>)

E(|Y |p)
,1 ≤ p < α, (B.16)

[X,Y ]α =
E(XY p−1)
E(|Y |p)

,1 ≤ p < α, (B.17)
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B.3.1 Properties of covariations

Linearity in X

Given jointly SαS X1,X2 and Y , for any a,b ∈ R, the covariation [X,Y ]α is linear
in X [LS95]:

[aX1 + bX2,Y ]α = a[X1,Y ]α + b[X2,Y ]α. (B.18)

The Gaussian particular case

When X,Y are jointly Gaussian (α = 2) with mean zero, the covariation of X with
Y reduces to the covariance of X and Y [LS95]:

[X,Y ]α = E(XY ). (B.19)

Pseudo-linearity

Usually, [X,Y ]α is not linear with respect to Y . However, if Y1,Y2 are independent
and X,Y1,Y2 are jointly SαS, then, for any given constants a,b ∈ R [LS95]:

[X,aY1 + bY2]α = a<α−1>[X,Y1]α + b<α−1>[X,Y2]α. (B.20)

X,Y independent

If X,Y are independent and jointly SαS, then [LS95]:

.[X,Y ]α = 0 (B.21)

The inverse in not necessarily true.

Cauchy-Schwartz inequality

Let X,Y be any two SαS given RVs, the Cauchy-Schwartz inequality holds [LS95]:

|[X,Y ]α | ≤ ||X ||α ||Y ||<α−1>
α . (B.22)

If X,Y have unit dispersion [LS95]:

|[X,Y ]α | ≤ 1. (B.23)
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B.3.2 Proposition

Let Ui independent SαS RVs with dispersion γi , for any ai ,bi with bi , 0 i =
1,2, ...,n:

X =
n∑
i=1

aiUi . (B.24)

Y =
n∑
i=1

biUi . (B.25)

Then [LS95]:

[X,X]α =
n∑
i=1

γi |an|α, (B.26)

[Y ,Y ]α =
n∑
i=1

γi |bn|α, (B.27)

[X,Y ]α =
n∑
i=1

γianb
<α−1>
n , (B.28)

λXY =
∑n
i=1γianb

<α−1>
n∑n

i=1γi |bn|α
. (B.29)

B.3.3 Covariation estimation

Given n independent observations (Xi ,Yi), with i = 1,2, ...,n, the FLOM estimator
is given by [LS95; SN93]:

λ̂FLOM(p) =
∑n
i=1Xi |Yi |p−1sign(Yi)∑n

i=1 |Yi |
. (B.30)

Screened Ratio Estimator (SRE) is an unbiased estimator that can also be used
for covariation estimation, and is given by [LS95; SN93]:

λ̂SCR =

∑n
i=1(XiY

−1
i XYi )∑n

i=1XYi
, (B.31)

where:

XY =

1 if c1 < |Y | < c2

0 otherwise,
(B.32)
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for arbitrary 0 < c1 < c2 ≤∞. The LS estimation can also be applied for estimating
λ̂ [LS95; SN93]:

λ̂LS =
∑n
i=1XiYi∑n
i=1Y

2
i

. (B.33)

B.3.4 Conditional expectation and linear regression

Given Xi , with i = 0,1, ...,n jointly SαS RV with 1 < α ≤ 2, spectral measure µ(·).
The regression of X0 in terms of Xi is the conditional expectation E(X0|X1, ...,Xn),
which, usually, in the SαS case is not linear. For the regression estimate to
be linear, the following theorem presents a necessary and sufficient condition
[LS95]:

Theorem B.3.1 Let X0,X1, ...,Xn be jointly SαS RV with 1 < α ≤ 2 and spectral
measure µ(·) on the sphere unit S in Rn+1, then

E(X0|X1, ...,Xn) =
n∑
i=1

aiXi ⇐⇒
∫
S
(x0 −

n∑
i=1

aixi)(
n∑
i=1

rixi)
<α−1>µ(dx) = 0,∀ri ,

(B.34)
with i = 1,2, ...,n.

In other words, if the regression is linear, then the coefficients ai are uniquely
determined by µ(·) if and only if Xi are linearly independents elements in the
space of integrable random variables [LS95].

Corollary B.3.1.1 If X0,X1,X2 are jointly SαS and

E(X0|X1,X2) = a1X1 + a2X2, (B.35)

then a1, a2 satisfy [LS95]:

a1[X1,X1]α + a2[X2,X1]α = [X0,X1]α, (B.36)

a1[X1,X2]α + a2[X2,X2]α = [X0,X2]α, (B.37)

Theorem B.3.2 If Xi , with i = 1,2, ...,n are jointly independent and non-degenerate
SαS RVs then [LS95]:

E(X0|X1, ...,Xn) =
n∑
i=1

λ0iXi , (B.38)

where λ0i is the covariation coefficient of X0 with Xi , i = 1,2, ...,n.

It is important to observe that a SαS process has the linear regression property if
and only if it is sub-Gaussian [LS95].
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B.4 Zero-order statistics

FLOM do not provide a universal framework for the characterization of algebric-
tailed process: for a given p > 0, the processes with α ≤ p the associated FLOM

does not exist. [GPA06] presents the concept of Zero-Order Statistics (ZOS),
introducing three new parameters: geometric power, zero-order location and
zero-order dispersion. They play a similar role to those played by power, ex-
pected vale and standard deviation in the theory of second-order processes,
respectively. ZOS is based on logarithmic moments of the form E log |X |. Let X
be a RV with algebric or lighter tails, then E log |X | <∞ [GPA06].

Let X be a logarithmic order RV. We define the geometric power of X as
[GPA06]:

S0 = S0(X) = eElog |X |. (B.39)

B.4.1 ZOS properties

The ZOS have the following properties [GPA06]:

S0 is a scale parameter

For any logarithmic-order process X, and any constant c:

• S0(X) ≥ 0

• S0(cX) = |c|S0(X)

S0 is an indicator of process strength

• S0 = |c|

• 0 ≥ c1 < |X | < c2 implies c1 > S0 < c2

• S0(X) = 0⇔ P(|X | < ε) > 0∀ε > 0, which implies that zero power is only
attained when there is a "pile up" of probability mass around zero.

Multiplicity

For any pair of logarithmic order RV X,Y and any real constant c:

• S0(XY ) = S0(X)S0(Y );

• S0(X/Y ) = S0(X)/S0(Y );

• S0(Xc) = S0(X)c.
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Absolute value inequality

For any pair of log-arithmetic-order RV X and Y :

S0(|X |+ |Y |) ≥ S0(X) + S0(Y ). (B.40)

B.4.2 Geometric Power

[GPA06] gives a closed-form expression for the geometric power of SαS RVs:

S0 =
(Cgγ)1/α

Cg
, (B.41)

where Cg ≈ 1.78 is the exponential of the Euler constant. The proof is given in
[GPA06]. Let Lx(p) = E|X |p a moment function, then [GPA06]:

S0(X) = eL
′
x(0), (B.42)

where L′X(p) denotes the derivative of LX(p). For the proof and the results for the
geometric and second order power of some common distributions, see [GPA06].
An estimation for the geometric power is given by [GPA06]:

Ŝ0 = exp(
1
N

N∑
i=1

log |xi |) = (
N∏
i=1

|xi |)1/N . (B.43)

The geometric power is related to FLOM through the following theorem [GPA06]:
Let Sp = (|X |p)1/p denote the scale parameter derived from the p-th order moment
of X. If Sp exists for sufficiently small values of p, then [GPA06]:

S0 = lim
p→0

Sp. (B.44)

Signal quality is defined as the ratio between the channel information and noise
powers, in the second order-sense, known as Signal-to-Noise Ratio (SNR) of the
communication system: high values of SNR indicates good quality, otherwise,
indicates poor performance. Due to the infinite-variance of impulsive noises,
the SNR is always zero, becoming a meaningless indicator of signal quality. The
geometric power gives a universal indicator of signal quality that is meaningful
and model-independent: let A be the amplitude of a modulated signal in an
additive-noise channel with noise geometric power S0, the G-SNR is given by
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[GPA06]:

GSNR =
1

2Cg
(
A
S0

)2. (B.45)

B.4.3 Zero-Order Location

Let X be a logarithmic order variable. The zero-order indicator of location, µ0,
as the value that minimizes the geometric power of the shifted variable X − µ,
this is [GPA06]:

µ0 = µ0(X) = argmin
µ

S0(X −µ). (B.46)

Properties

• µ0 is a location parameter: Let X be symmetric and unimodal with symme-
try center c, then µ0(X) = c.

• Shift and scale invariance: for any constants a,b:

µ0(aX + b) = aµ0(X) + b. (B.47)

When locating a logarithmic-order distribution, we refer µ0 as the center
of the distribution and is said that X is zero-centered when µ0(X) = 0.

Zero-order estimation of location

Defining:
µ̂δ = argmin

µ∈∆δ

∑
i=1

N log |xi −µ|, (B.48)

where

∆δ = R−
N⋃
i=1

(xi − δ,xi + δ), (B.49)

then:
µ̂0 = lim

δ→0
µ̂d . (B.50)

Another simples definition is: given a sample of values x1, ...,xN , the zero-order
estimator of location can be calculated as:

µ̂0 = argmin
xj∈M

N∏
i=1,xi,xj

|xi − xj |, (B.51)
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whereM = xm1
,xm2

, ...,xmn is the set of modes, or most repeated values in the
sample.

Properties of the ZOS location estimator

• Shift and scale invariance: let zi = axi + b for i = 1, ...,N , then:

µ̂0(z1, ..., zN ) = aµ̂0(x1, ...,xN ) + b (B.52)

• No overshoot/undershoot: µ̂0 is always bounded by:

x2 ≤ µ̂0 ≤ xN−1 (B.53)

where xi denotes the i-th order statistic of the sample. If N = 3, µ̂0 is
equivalent to the sample median.

• Unbiasedness: Let Xi , i = 1, ...,N be all independent and symmetrically
distributed around the symmetry center c, then µ̂0 = µ̂0(X1,X2, ...,XN )
is also symmetrically distributed around c, in particular, if E ˆ{µ}0 exists,
thenE ˆ{µ}0 = c.

Proofs and a discussion about optimality of µ̂0 in very impulsive environments
is given in [GPA06]

B.4.4 Zero-order dispersion

Let X be a logarithmic-order RV, the zero-order indicator of dispersion σ0 is
given by [GPA06]:

σ0 =min
µ
S0(X −µ) = S0(X −µ0). (B.54)

B.5 Multivariate stable distributions

For a stable k-dimensional distribution F(S),S ∈ Rk, its characteristic function is
given by [LS95]:

ϕ(t) =

exp{jtT a− tTAt} if a = 2
exp{jtT a−

∫
s
|tT s|αµ(ds) + jβα(t)} if 0 < α < 2

(B.55)

with

βα =

tan απ
2

∫
s
|tT s|µ(ds) if 0 < α < 2,α , 1∫

s
tT slog |tT s|µ(ds) if α = 1

(B.56)
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where a,t ∈ Rk. S is the k-dimensional unit sphere. µ(·) is a finite Borel spec-
tral measure on S and A is positive semi-definite symmetric matrix. α is the
characteristic exponent. For the case α = 2, we have a multivariate Gaussian
distribution with mean a (the location vector) and covariance matrix. 2A. βα(t) is
called skewed function. If βα(t) ≡ 0 we have a symmetric stable distribution, also
called Symmetric α Stable, SαS. As in the univariate case, for the multivariate
case, there’s no closed-form expression for the density function [LS95].

B.5.1 Properties

Stability Property

A k-dimensional distribution function F(X),X ∈ Rk is called stable if, for any i.i.d.

random vectors X1,X2 with distribution function F(X) and arbitrary constants
a1, a2, there exist a ∈ R,b ∈ Rk and a random vector X with the same distribution
function F(X) such that [LS95]:

aX + b d= a1X1 + a2X2. (B.57)

If 1 < α ≤ 2, then, a random vector X follows a multivariate stable law with
characteristic exponent α if and only if all components of X follows a univariate
stable (SαS) law with the same characteristic exponent α. The family of multi-
variate stable distributions forms a nonparametric set, except for α = 2, instead
of a parametric one in the case of univariate stable distributions [LS95].

Moments

If X1,X2, ...,Xn are independent and α-stable, then [LS95]:

E(|X1|p1 ...|Xn|pn) <∞, (B.58)

if and only if pi < α, i = 1, ...,n. If X1,X2, ...,Xn are dependent and jointly SαS,
then the equation B.58 will be true if and only if 0 <

∑n
i=1pi < α [LS95].
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On heterogeneous networks under non-Gaussian interferences:
experimental and theoretical aspects

Abstract

Internet of Things represents a technical challenge for 5G communications due to its
characteristic heterogeneity: the 2.4 GHz ISM band, for example, is shared between
different kind of technologies, such Wifi, Bluetooth and Zigbee. In addition to the loss of
quality of communication, recent studies show that interference increases significantly
the energy consumption. So, dealing with interference becomes an important task to
ensure successfull data transmission. The present thesis approaches two aspects of
heterogeneous networks. The first part presents an experimental study on the nature
of interference between IEEE 802.11 and IEEE 802.15.4 devices, its impacts on the
communication reliability and proposes a statistical description of it. The main conclu-
sion of this part is that, on this context, the interference may present a non-Gaussian
behavior, more precisely, an impulsive behavior. Recent theoretical works allied with
these experimental results show that the α-stable distribution is more adequate to
represent impulsive noises. It means that the, once optimal, classical communication
architectures based on the Gaussian assumption, particularly the Least Squares based
channel estimation and linear receiver, is not optimal anymore, presenting a significant
loss of performance. The second part presents a robust MIMO architecutre based on
Alamouti coding, supervised channel estimation based on Least Absolute Deviation
and p-norm receiver with an estimator for p. The proposed approach outperforms the
classical method.

Keywords: internet of things, sensor netowrks, non-gaussian interference
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Réseaux de capteurs sous interférence non-Gaussienne :
aspects expérimentaux et théoriques

Résumé

L’Internet des Objets représente un défi technique pour la communication 5G à cause de
sa hétérogénéité caractéristique : la bande 2.4 GHz ISM, par exemple, est partagée entre
différentes types de technologies, comme Wifi, Bluetooth et Zigbee. En plus de la perte
de qualité de communication, des études récents montrent que l’interférence augmente
de façon significative la consommation d’énergie. Donc, traiter l’interférence devient un
tâche important pour assurer la réussite de la transmission de donnés. Cette thèse s’ap-
proche de deux aspects différents des réseaux hétérogènes. La première partie présente
un étude expérimentale sur la nature de l’interférence entre dispositifs IEEE 802.11 et
802.15.4, ses impacts dans la fiabilité de la communication et propose une description
statistique. La conclusion principale est que, dans ce contexte, l’interférence présente
un comportement non-Gaussien, plus précisément, impulsif. Des travaux théoriques
récents alliés avec ces résultats expérimentaux montrent que la distribution α-stable est
plus convenable pour représenter bruits impulsives. Cela signifie que, une fois optimal,
les architectures de communication classiques basé sur assomption Gaussienne, particu-
lièrement le méthode des moindres carrés et le récepteur linéaire, ne sont plus optimales
et présentent une perte de performance significative. La deuxième partie présente une
architecture MIMO basé sur codage Alamouti, estimation de canal supervisée basé
sur méthode Least Absolute Deviation et récepteur p-norme avec une estimation de p.
L’architecture proposée présente une performance supérieure au méthode classique.

Mots clés : internet des objets, réseaux de capteurs, interférences non-gaussiennes
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