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Abstract

Title: Wireless Communications in Dynamic Interference - modeling,
capacity and applications

This thesis focuses on the study of noise and interference exhibiting an
impulsive behavior, an attribute that can be found in many contexts such
as wireless communications or molecular communications. This interfer-
ence is characterized by the presence of high amplitudes during short dura-
tions, an effect that is not well represented by the classical Gaussian model.
In fact, these undesirable features lead to heavier tails in the distributions
and can be modeled by the α-stable distribution. In particular, we study
the impulsive behavior that occurs in large-scale communication networks
that forms the basis for our model of dynamic interference. More precisely,
such interference can be encountered in heterogeneous networks with short
packets to be transmitted, as in the Internet of Things, when the set of active
interferers varies rapidly.

The first part of this work is to study the capacity of α-stable additive
noise channels, which is not well understood at present, except in the case
of Cauchy noise (α = 1) with a logarithmic constraint and Gaussian noise
(α = 2) with a power constraint. We derive lower and upper bounds for
the capacity with an absolute moment (amplitude) constraint. We consider
additive symmetric α-stable noise channels with α ∈ ] 1, 2 ]. We then use
an algorithm inspired by the Blahut-Arimoto algorithm in order to compare
our bounds with a numerical approximation, which provides insight into
the effect of noise parameters on the bounds. In particular, we find that our
lower bound is in good agreement with the numerical approximation for α
close to 2. We then extend the work to the capacity of the additive complex
isotropic α-stable noise channel.

The second part consists in analyzing the impact of our bounds in prac-
tical contexts. We first study the case of parallel α-stable additive noise
channels and provide insight into the effect of the index α on the achievable
rate. We develop a new power allocation algorithm and show that our algo-
rithm can significantly improve achievable rates over standard approaches
assuming Gaussian noise. We then analyze the effect of slow fading. Fi-
nally, we derive the area spectral efficiency, i.e., the total rate per square
meter. Our analysis suggests that, similar to the conventional Gaussian
model, dense networks maximize the area spectral efficiency.
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Résumé

Titre: Communications sans fil dans des interférences dynamiques -
modélisation, capacité et applications

Cette thèse se concentre sur l’étude du bruit et des interférences présen-
tant un comportement impulsif, un attribut que l’on peut retrouver dans
de nombreux contextes comme les communications sans fil ou les commu-
nications moléculaires. Cette interférence est caractérisée par la présence
d’amplitudes élevées pendant des durées courtes, effet qui n’est pas bien
représenté par le modèle gaussien classique. En fait, ces caractéristiques in-
désirables conduisent à des queues de distributions plus lourdes qui peu-
vent être modélisées par la distribution α-stable. En particulier, nous étu-
dions le comportement impulsif qui se produit dans les réseaux de commu-
nication à grande échelle qui forme la base de notre modèle d’interférence
dynamique. Plus précisément, une telle interférence peut se rencon-
trer dans des réseaux hétérogènes avec des paquets courts à transmettre,
comme dans l’Internet des objets, lorsque l’ensemble des interférents actifs
varie rapidement.

La première partie de ce travail est d’étudier la capacité des canaux de
bruit α-stable, qui n’est pas bien comprise actuellement, sauf dans le cas
du bruit de Cauchy (α = 1) avec une contrainte logarithmique et du bruit
gaussien (α = 2) avec une contrainte de puissance. Nous calculons des
bornes inférieures et supérieures pour la capacité avec une contrainte de
moment de la valeur absolue (amplitude). Nous considérons les canaux à
bruit symétrique additif α-stable avec α ∈ ] 1, 2 ]. Nous utilisons ensuite
un algorithme inspiré du Blahut-Arimoto afin de comparer les bornes pro-
posées avec une approximation numérique, ce qui permet en particulier
d’évaluer l’effet des paramètres de bruit sur les bornes. En particulier, nous
trouvons que notre borne inférieure est en bon accord avec l’approximation
numérique pour α proche de 2. Nous étendons ensuite le travail à la capac-
ité de canaux à bruit additif complexe, isotrope α-stable.

La deuxième partie consiste à analyser l’impact de nos limites dans des
contextes pratiques. Nous étudions d’abord le cas des canaux parallèles à
bruit additif α-stable et donnons un aperçu de l’effet de l’indice α sur le
débit atteignable. Nous développons un nouvel algorithme d’allocation de
puissance et montrons que notre algorithme peut améliorer significative-
ment débit atteignable en comparaison des approches standards qui sup-
posent un bruit gaussien. Nous analysons ensuite l’effet des évanouisse-
ments lents. Enfin, nous obtenons l’efficacité spectrale par unité de surface,
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c’est à dire le débit total par mètre carré. Notre analyse suggère que, de
manière analogue au modèle gaussien conventionnel, les réseaux denses
maximisent l’efficacité spectrale par unité de surface.
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Introduction

TELECOMMUNICATION companies are struggling to coordinate limited
resources, in the form of spectrum and time slots, with increasing

number of users and data in modern wireless communications. This
takes place because traditionally the data rate for voice is around 10
kbps [APY16], however, the new data requirements are some orders of
magnitude larger. For instance, 4G technologies, such as WiMax and LTE-
A are encountering problems to accommodate the amount of data [EKR14;
AQM14].

Many alternatives have been proposed to overtake the data communi-
cation limitations. For instance, a new architecture of small cells has gained
attention, which encompass femtocells, picocells, and microcells [HM12;
WSKTEK15], that reduces the area where a Base Station (BS) is providing
communication in order to support the modern capacity-hungry devices.
Unfortunately, the area densification due to closer users increases the in-
terference for all receivers present, limiting the improvement of these tech-
niques.

To take advantage of the small cells, Device to Device (D2D) communi-
cation has emerged to cope with emerging data-hungry devices. It consists
in a link between two users without the use of a Base Station, differently
from the usual system in which all transmissions are forced to use the core
network. Although, a limitation of this architecture remains on the range
that devices can communicate with each other but keeping their sizes small
and saving energy consumption. In the end, D2D also suffers from interfer-
ence due to the high concentration of mobile users.

An important new paradigm arising that can be mentioned is the note-
worthy Internet of Things (IoT). Multiple IoT incarnations examples are re-
viewed below [WCXDZ13; HC17]:

• Machine to Machine (M2M): Generally, it is the counterpart of a
Human-to-Human communication (H2H). In other words, it refers to
a data communication with limited or without human intervention.
Examples are smart sensors, computers and mobile devices. Basically
this architecture has three principles, firstly, the amount of time to
create smart and ubiquitous services is facilitated. Secondly, more au-
tonomous applications can be achieved. Thirdly, the quantity of ma-
chines enables the use of a networked machine, which is more valu-
able than an isolated one.
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• Cyber Physical System (CPS): It is defined as collaborative compu-
tational elements controlling physical entities. M2M systems that
have decision-make and autonomous control can be upgraded to CPS.
They share the knowledge to control logistics and production sys-
tems, in contrast to traditional embedded systems that use standalone
devices. E.g. sensor, communications tools and smart grids.

• Wireless Sensor Networks (WSN): It is composed by distributed au-
tonomous sensors and are the basic scenario of IoT. They are respon-
sible for monitoring physical conditions and, for instance, creating a
mesh topology in order to pass information in a cooperative way to a
core network.

• Body-Area Network (BAN): It appears due to the new demands on
lightweight, small-size and ultra-low-power to monitor the human’s
physiology and actions.

Although the quantity of IoT devices is far from the stratospheric num-
ber of 50 billion by 2020 that Ericsson’s former CEO Hans Vestburg [Nor16]
predicted, 8.4 billion connected devices are estimated in 2017. In a more
realistic view, 20.8 billions devices are believed to exist by 2020 [Gar17], not
counting smartphones, tablets and computers. A number of nodes which
increases significantly, orders of magnitude more than H2H, in a manner
that, without any doubt, converges towards a new design where device-
centric communication horn in human-centric communication.

Besides cellular networks, IoT devices are deployed in the license
free industrial, scientific, and medical (ISM) bands. Long Range (LoRa)
WAN [SWH17; TMIPWMC16] and Sigfox [NGK16] are two of the most
common IoT connectivity technologies being deployed in the ISM band.
The bands available are however not numerous and, unfortunately, they
are shared by many technologies operating on the same or overlapping
frequency spectrum. For instance at 2.4 GHz, we can find the standards
802.11b (Wi-Fi) [ILII00], 802.15.1 (Bluetooth) [GXR09] and 802.15.4 (e.g. Zig-
Bee [Far08] and 6LoWPAN [Amm14]), resulting in a congested band. Al-
ternatively, the millimeter-wave bands have gained attention, nonetheless,
it is suitable to short-range and high-speed communications, restricting the
usage for WSN devices. The strong potential of the IoT technology is em-
phasized due to the new use of located information and the expansion for
spontaneous transmissions. However, it is important to notice that the con-
centration of devices poses a challenge for existing interference mitigation
techniques.

From previous examples it is clear that the interference will become one
of the main limitations to the systems performance and it is increasing the
importance of interference models for the near future of wireless commu-
nications.
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1.1 Focus of the Thesis and Overview of Contribu-
tions

In this thesis, we assess the impact of rapidly changing active transmitter
sets—or dynamic interference—in large-scale, e.g., M2M. We consider a sce-
nario where the network is has limited or no coordination between the de-
vices. This setup is relevant for networks supporting the internet of things
and in large-scale sensor networks, where transmitting devices are very
simple and have limited ability to coordinate. We also assume that the ac-
tive set of transmitters varies symbol-by-symbol, which contrasts with the
Gaussian model where the active transmitter set is fixed. We show in this
thesis that an impulsive interference is present, as such, the Gaussian model
is not recommended anymore. However, little is known about achievable
rates and optimal inputs in this scenario and the capacity of impulsive noise
channels can significantly differ from the capacity of Gaussian noise chan-
nels.

Our thesis focuses on the challenges at the physical layer to better un-
derstand interference caused by simultaneous transmissions, which is a
fundamental feature present in performance degradations to future sys-
tems. We assume that interference is modeled by an α-stable distribution.
Such heavy-tailed distributions can be seen as an extension of the Gaus-
sian distribution, a member of the family. Indeed, they share the stability
property meaning that the sum of α-stable random variable (with the same
α) is an α-stable random variable. This class of distribution allows heavy
tails that are well suited to model rare events and, consequently, impulsive
noise. With such an interference assumption and assuming an interference
limited setting, i.e. the interference dominates the noise floor, we replace
the traditional additive white Gaussian noise (AWGN) channel with the
additive symmetric (or isotropic in the complex case) α-stable noise chan-
nel (ASαSN and AIαSN channels in the real and the complex cases respec-
tively). We then address the question: what is the capacity of such a channel
and what are the consequences for wireless communications?

1.2 Contributions of this thesis

• We derive lower and upper bounds for the ASαSN channel with α ∈
(1, 2] and an absolute moment constraint.

– We numerically approximate the capacity via the Blahut-
Arimoto algorithm. This algorithm requires truncation and dis-
cretization of the support of the noise distribution. We provide
guidance for choices of step and support sizes to yield a good
approximation.
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– We compare our bounds and the numerical approximation to
gain insight into the effect of noise parameters. In particular,
we show that the lower bound is a good approximation of the
capacity obtained from the Blahut-Arimoto algorithm for α near
2.

– We prove the existence and uniqueness for the optimal input
with fractional moment constraints.

– We study the medium SIR lower bound behavior for the achiev-
able lower bound.

– We also show the importance of the parametrization used for
the input distribution, in which the lower bound results have
different behavior if the terms are written in function of γX or
E[|X|].

• We derive a complex extension of lower bounds for theAISαSN with
α < 2 case with absolute moment constraints. Moreover, we prove the
existence and uniqueness for the complex case. We also compare the
behavior of achievable rates varying the α parameter, the Gaussian
case (α = 2) being the basis of comparison.

• We analyze the impact of dynamic interference on the performance of
wireless communication systems:

– We study a relaxation of amplitude and fractional moment con-
straints applied to parallel AIαSN channels and the approxima-
tion of truncated α-stable when fractional moment constraint is
applied.

– We derive an outage probability upper bound when slow fading
and α-stable noise are present.

– We study our achievable rates for the AIαSN channel subjected
to a power constraint. We compare Gaussian and α-stable in-
puts, as well as their truncated versions to solve a power alloca-
tion problem in parallel symmetric α-stable noise channels.

– We study the expected total rate per square meter by means of
the effect of device density on the network performance.

1.3 Scientific production

This section summarizes the publications, conferences and collaborations
based on work that was done during the period of Ph.D. candidature.
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Journal

• M. de Freitas, M. Egan, L. Clavier, A. Goupil, G. W. Peters, and N.
Azzaoui. “Capacity Bounds for Additive Symmetric α-Stable Noise
Channels”. In: IEEE Transactions on Information Theory (2017)

• M. Egan, L. Clavier, C. Zheng, M. de Freitas, J. Gorce. "Dynamic Inter-
ference in Uplink SCMA for Large-Scale Wireless Networks without
Coordination". In: EURASIP Journal on Wireless Communications and
Networking (2018 - under review)

Letter

• M. de Freitas, M. Egan, L. Clavier, A. Savard, and J. Gorce. “Power
Control in Parallel Symmetric α-Stable Noise Channels”. In: IEEE
Communications Letters (2017 - under review)

Conference papers

• M. de Freitas, M. Egan, and L. Clavier. “Study of achievable Rates for
Additive Symmetric α-Stable Noise Channels”. In: Gretsi (2017)

• M. Egan, M. de Freitas, L. Clavier, A. Goupil, G. Peters, and N. Azza-
oui. “Achievable rates for additive isotropic α-stable noise channels”.
In: IEEE International Symposium on Information Theory. 2016

• M. Egan, L. Clavier, M. de Freitas, L. Dorville, J.-M. Gorce, and A.
Savard. “Wireless communication in dynamic interference”. In: IEEE
Globecom (2017 - Accepted for publication)

Workshop/others

• PhD Student Pitch Contest, In: Journée doctorants IRCICA: Ma thèse en
180 secondes, IRCICA, April 15, 2015

• Malcolm Egan, Mauro de Freitas, Laurent Clavier, Alban Goupil,
Gareth W. Peters and Nourddine Azzaoui, "Wireless Network Design
with Dynamic Interference", In: Cost action CA15104, TD(16)01067,
IRACON, 2nd MC meeting and first technical meeting, Lille, France, 30
May-1 June, 2016

• Malcolm Egan, Laurent Clavier, Mauro de Freitas and Louis Dorville,
"Communication in Dynamic Interference", In: Cost action CA15104
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31 May, 2017

• PhD Student Pitch Contest, In: 14th International Symposium on Wire-
less Communication Systems - ISWCS, 28-31 August, 2017
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Not related publications

Journal

• M. L. de Freitas, W. A. Martins, E. B. de Lima Filho, and W. S. da Silva
Júnior. “New Designs for Reduced-Redundancy Transceivers”. In:
Circuits, Systems, and Signal Processing 36.5 (2017), pp. 2075–2101
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• D. P. de Mello, M. L. de Freitas, L. C. Cordeiro, W. S. Júnior, I. V. de
Bessa, B. Eddie Filho, and L. Clavier. “Verification of Magnitude and
Phase Responses in Fixed-Point Digital Filters”. In: XXXV Simpósio
Brasileiro de Telecomunicações e processamento de sinais - SBRT (2017),
pp. 1184–1188
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Chapter 2

Impulsive interference and
α-stable processes

This chapter introduces the dynamic interference characterization. For that pur-
pose, noise and interference definitions are presented and principal models are re-
viewed. In particular, α-stable model and its properties are studied in univariate
and multivariate cases. This is the model that we are going to consider in the rest
of this manuscript.

2.1 Impulsive interference models

COMMUNICATION systems are limited by noise and interference, from
internal and external sources. Hence, the study of models has gained

importance and both theoretical and practical research have been devel-
oped. Noise is by definition an unwanted signal involving unpredictable
perturbations that degrade the desired information or measurement. In
order to facilitate the understanding, its source can be separated in many
categories [Vas00], including:

• Acoustic noise - a disturbance in the audio frequency range, which
may arise from moving objects, wind or rain, for instance.

• Electronic noise - examples are thermal noise, which has its origin
from the random thermal motion of electrons, and the shot noise.

• Electrostatic noise - generated when a voltage is present and with or
without current flow, such as, fluorescent lighting.

• Quantization noise - due to the package loss caused by a network
congestion.

• Communication channel - distortion and fading, as consequence of
non-ideal characteristics of communication channels.

In turn, interference refers to the unwanted signals added to the useful
one, producing a crucial impact in wireless communications. It is formed
when multiple uncoordinated links share a common communication chan-
nel. One scenario that experiences interference can be observed when a
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communication contains N principal links and start transmitting their sep-
arate information to N receivers on the same medium, causing N(N − 1)

interference links. Thus, it differs from thermal noise by being a special case
of artificial noise generated by other signals.

In the context of cellular communication, the interference appears due
to the technique of reusing frequencies and channels, known as frequency
planning, which is common to improve efficiency, both for spectral and
capacity. In turn, interference arises when access points share a common
channel in local area networks.

The traditional way to limit the impact of interference consists in avoid-
ing or mitigating interferences, in order, for instance, to improve some fea-
tures such as capacity and coverage in heterogeneous networks that con-
tains a large number of uncoordinated low-power nodes [CAG08; Gol05;
CLCC11]. Convenient techniques have been created to exclude their ef-
fects. We can cite approaches like interference alignments at the Physical
layer level to create systems without interference [EAPH13]. We can also
give the example of Interference Cancellation [WAYDV07; And05]: we have
several users that collides in a resource block but they are not seen as inter-
ference to the other signals but a simultaneous decoding of all the signals
is implemented. We can also cite all the efforts put in the Medium Ac-
cess Control layer like carrier sensing [YV05; JHMB05] in order to avoid
simultaneous transmissions and, consequently the system performance, or
in cellular network in 2G or 4G where orthogonal resource blocks are at-
tributed to different users. However, the number of transmitting devices
is continuously increasing, which necessitates an always higher spectral-
spatial efficiency. This leads to an increased usage of resource blocks per
m2. Techniques including spatial separation of users [CBVVJOP09], using
the same time-frequency resource, and Non Orthogonal Multiple Access
have been proposed. The consequence is either a huge overload due to sig-
nalization information or an increased impact of interference. But trying to
create systems without interference is not the optimal solution.

The reason is presented auspiciously in a work from Costa [Cos83] that
has proved in fact that the elimination of interference is a sub-optimal strat-
egy when the transmission is known at the transmitter, such as the chan-
nel state information, but not at the receiver. Alternatively, the optimal
approach consists in creating codes that will take advantage of the inter-
ference. This contributes to show the importance of studies about funda-
mental characteristics in transmissions containing interferences. In partic-
ular in information theory approach, Costa and El Gamal [CEG87], Car-
leial [Car78] and Sato [Sat81] have demonstrated that a very strong inter-
ference is less harmful in comparison to an interference with a power close
to the useful signal and comparable to a communication without interfer-
ence. These characteristics are examples that again underline the necessity
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of understanding the interference, its statistical properties and the theoreti-
cal limits that they induce on the communications.

To evaluate the effects of the noise and interference appearing in trans-
mission systems, it is first essential to comprehend its main characteristics.
Consequently in the following we are going to describe the main models
proposed in the literature. A fundamental model choice is the Gaussian
random variable (r.v.). It is motivated by the accumulated independent and
identically distributed (i.i.d.) signals that compose the interference term,
with the justification of the Central Limit Theorem (CLT). The beauty of this
model is its simplicity. Simplicity in the mathematical approach: so many
works have been done on this distribution that analytical expression ex-
ist for many derivations we can encounter in wireless communication. We
would like here to underline the benefits of the stability property, which
means that the addition of Gaussian r.v. is a Gaussian r.v.; simplicity in its
parametrization ; simplicity in its use in wireless communication: much in-
formation is simply given by the Signal plus Noise ratio and the optimal
receiver (obtained with the maximum log-likelihood) is a linear receiver,
very easy to practically implement.

Many works have taken advantage of this well-known distribution. We
can for instance cite the classic work of Shannon [Sha49] on capacity. The
Additive White Gaussian Noise assumption allows to obtain a very basic
formulation of this capacity,C = B log2(1+S/N), whereB is the bandwidth
of the transmission and S/N the Signal to Noise Ratio. However, from a
Information Theoretic point of view, results about capacity with interfering
communications are much more difficult to obtain. Works were initiated
by Shannon [Sha+61] and followed by [Ahl74]. This approach is specially
used when leading with a fixed active set of transmitting devices, as will be
clarified throughout this chapter.

Nevertheless, the drastic change in the environment in modern commu-
nication systems [Car10; PW10b] puts a limit on the validity of this classical
model. In particular, we focus in this thesis on impulsive noises, which can
be considered a fundamental limits in digital subscriber line (DSL) [KG95],
wireless [PFFR09] and power line communication (PLC) [MGC05] for in-
stance. Many works have shown in many contexts that the Gaussian ap-
proximation was not a good choice for the noise or the interference, then
alternatively many models characterized by density functions that have
heavier tails are assumed. The consequence is that large amplitude noise
is more probable. The presence of this noise yield different results in com-
parison with Gaussian noise channels: in terms of capacity, in terms of per-
formance, in terms of receiver design for instance. The mismatch has an
impact on the communication design.

Extended research was carried out during the last years investigating
new models in various scenarios to lead with interferences as alternative
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to the standard Gaussian r.v. One of the first significant contributions
comes for Middleton [Mid77b]. In the beginning of 2000, research on Ul-
tra Wide Band communication also gave rise to many empirical modeling
approaches. They are often based on pragmatic choices, that allow a good
fit with generally simulated data and an analytical solution for the maxi-
mum likelihood detector [GCASR10; FH06; ECD08]. But many other com-
munication contexts also gave rise to research on more appropriate models,
as in underwater [ZQ06] and molecular communications [FGCE15], man-
made and low frequency atmospheric noises [Raa10]. We can also mention
an important amount of works in multiple users communications and ad
hoc networks. The first can probably be traced back in 1992 [Sou92] but
more recently, the use of stochastic geometry in network analysis [WA12;
Car10; WPS09] has given a new insight in the interference modeling. One
of the important distributions that come out of those work is certainly the
α-stable.

In the following, we present three key interference models. First, the
well-known Gaussian distribution is described, focusing on the simplicity
of probability density function and characteristic function and their analyt-
ical forms. We also present the Central Limit Theorem which apparently
could be invoked to model interference when it results from the sum of a
large number of interferers. We show however that this model is not well
suited for impulsiveness.

Next, two non-Gaussian models are described, namely Middleton and
α-stable interference models, with a special attention to the latter. The Mid-
dleton model is divided into classes, their origin and differences are de-
scribed. Finally, the main distribution used in this thesis is presented, the
α-stable model. In particular, the physical mechanism that leads to this
model is detailed. We also present several of its properties, which will be
necessary for the rest of the thesis.

2.2 Gaussian

The Gaussian distribution is the most common noise model in wireless sys-
tems, it appears basically from external environment sources and the ther-
mal vibration of atoms in conductors, known as thermal noise. Regarding
the latter, one way to understand this model arises from the distribution
that maximizes the entropy, which is a condition for thermal equilibrium.
Alternatively, the approach to prove this model is to use the Central Limit
Theorem (CLT), which is obtained by the superposition of a large number
of independent contributions and is defined as
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Definition 1 (Classical CLT). Let {Xj}j∈N be an i.i.d sequence and let the mean
µ = E[X1] and variance σ2 = E[(X1 − µ)2] <∞, then

1

σ
√
n

 n∑
j=1

Xj − nµ

 d−−−→
n→∞

X ∼ N (0, σ2) (2.1)

In summary, the CLT imposes that regardless the Xj distribution, the
sum tends to a normal if they are i.i.d. and have a finite variance.

The Gaussian model is convenient due to its analytical and tractable
forms. Formally, the Gaussian noise pdf for a continuous random variable
X is given by

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2.2)

where µ is the mean and σ2 the variance. Moreover, the characteristic func-
tion is represented by

φG(θ) = eiµθe−
1
2

(σθ)2 . (2.3)

Fig. 2.1 represents the samples generated by a standard Gaussian noise
N (0, 1). One may notice that the amplitudes are well framed, thus the pre-
sented model is inappropriate for impulsive behaviors. This is due to the
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FIGURE 2.1: Samples of Gaussian distribution N (0, 1) over
time. Window of 2000 seconds. The amplitudes are well

behaved.

fast tail decay of the pdf depicted in Fig. 2.2 and that can be quantified as

Definition 2 (see [Gor41]). Let X ∼ N (µ, σ2) then

Pr(|X − µ| > t) ≤
√

2

π

σ

t
e−

t2

2σ2 , t > 0, (2.4)

meaning that it decays exponentially. As such, the probability of large
samples is small.



12 Chapter 2. Impulsive interference and α-stable processes

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p
ro

b
a
b
ili

ty

FIGURE 2.2: Gaussian probability density function N (0, 1)

2.3 Middleton

In this section, a non-Gaussian model that copes with impulsive random
noise is presented. The Middleton models have been proposed in differ-
ent contexts, such as Multiple Input Multiple Output (MIMO) [CGETS09],
Orthogonal Frequency-Division Multiplexing (OFDM) [III07] and Power
Line Communications (PLC) [AP10]). This model gained popularity at-
tributable to the invariance to noise waveform, noise source and propa-
gation. The origin of this model can trace back to works from K. Furutsu
and T. Ishida [FI60], A. Giordano and F. Haber [GH72] that created statis-
tical treatment to atmospheric noise. The former separated its approach in
two parts. Firstly, a Poisson noise model was presented, composed by the
superposition of independent pulses. The waveforms may overlap and are
identical, but the amplitudes, phases and duration may be random. They
obtained the characteristic function of this impulsive model and, for the
narrow band case, and also the density. Examples of this model include
the ignition, precipitation and solar noises. In turn, their second model, a
Poisson-Poisson noise, is an extension of the first, replacing the elementary
impulses of Poisson Process by packets of Poisson noise, forming a repre-
sentative example of the Atmospheric radio noise.

The works from Middleton [Mid77a; Mid99] obtained a more general
result, based on series expansions, defined as an infinite weighted sum of
Gaussian densities with decreasing weights for Gaussian densities with in-
creasing variances. The model is divided in three classes:

• Class A is proposed when the noise bandwidth is smaller than the
receiver bandwidth.
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• The Class B is used for noise with a wider spectrum than the useful
signal.

• Lastly, the Class C is the sum of the two previous.

Regarding Class A, the pdf can be written as

Pr(x) = e−A
+∞∑
m=0

Am

m!
√

2πσ2
m

e
− x2

2σ2m , (2.5)

in which

σ2
m =

(
σ2
G + σ2

I

) (mA +
σ2
G

σ2
I

)
1 +

σ2
G

σ2
I

.

The impulsiviness is controlled by A > 0, which is called impulsive index,
or more recently, overlap index. It concerns the mean length of an emission
in seconds times the mean number of emissions per second. Smaller values
produce more impulsive noise (although A = 0 degenerates into purely
Gaussian), conversely, as A increases the noise tends towards the Gaussian
noise. σ2

G > 0 and σ2
I > 0 represent the Gaussian and impulsive powers,

respectively. The main appeal of this model is the possibility of interpret its
parameters directly from a physical perspective.

Next, the zero mean Class B pdf can be defined using a infinity series as

Pr(x) =
1

πΩ

+∞∑
m=0

(−A)m

m!
Γ

(
1 + αm

2

)
Ψ

(
1 + αm

2
;
1

2
;− x

2

Ω2

)
, (2.6)

the parameter A > 0 denotes again the intensity of the impulsive inter-
ference, Ψ (·; ·; ·) represents the confluent hypergeometric function. In ad-
dition, 0 < α < 2 controls the tails, such that smaller values correspond
to heavy tails and, consequently, greater impulsiveness. Finally, Ω plays a
similar role as the standard deviation in the Gaussian case.

The Fig. 2.3 gives a Middleton Class A with parameters A = 0.3, the
background-to-impulsive noise ratio σ2

G

σ2
I

= 0.1 and 10 terms of the summa-

tion in the Class A pdf are used, so that 2 · 103 samples are depicted. It has
been shown that the approximation of its pdf needs just a few terms [Vas84],
justifying the small number of terms considered.
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FIGURE 2.3: Middleton Class A samples over time. Win-
dow of 2000 seconds. Impulsive behavior is present

Next, Fig. 2.4 illustrates the probability density function in which dif-
ferent values for the impulsive index A and the background-to-impulsive
noise ratio are given. One can see that the curves obtained with a smaller
A have heavier pdf tails, while σ2

G

σ2
I

controls the spread or variety of possible
values under the distribution.
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It has been proven difficult to work with Middleton models in many
practical scenarios, due to the nature of infinity series. In particular, the
individual terms of the summation can yield large values, turning the com-
putational calculation problematic. Besides, the class B makes truncation
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challenging in order to guarantee the production of positive quantities
for the pdf. For that reason many approximations have been proposed,
such as Gaussian mixture [GDK06], ε-contaminated noise [AB07; PLZB03;
AALM17] and Bernoulli-Gaussian noise [HTLN12b; VTNH14]. In the next
section and in the rest of this thesis, we focus on the α-stable distribution,
which may be used to approximate the Middleton Class B model [NS95].

2.4 α-stable model

An important approach to modeling impulsive noise is via the α-stable
distribution. They are variables belonging to an important class contain-
ing heavy-tailed probability density functions, which have been widely
used to model impulsive signals [EFCGPA16]. They have—unlike Gaus-
sian noise— infinite variance. They are known to be a good approxima-
tion of the true interference distribution when the radius of the network is
large, there are no guard zones and the active interferer set changes rapidly
[GEAT10; YP03; IH98]. Moreover, these distributions form an approxima-
tion of Middleton’s noise models [Mid77a], which we have seen on previ-
ous section were derived for interference in wireless networks from a sta-
tistical physics perspective.

The challenge present in α-stable distribution is the lack of closed-form
expressions for the probability density function. Therefore, for instance, the
characterizations of achievable rates in the presence of α-stable noise have
been arduous to obtain and, as consequence, its use has been limited in
communication systems.

Recently,ASαSN channels have been directly shown to arise under cer-
tain conditions in the molecular timing channel [FGCE15]. Molecular com-
munication is a method of communicating between nanoscale devices by
encoding information into the number, type or release time of molecules,
which then diffuse through a fluid to a receiving device. In the case of one-
dimensional diffusion governed by Brownian motion without drift, the dis-
tribution for the diffusion time is Lévy. The ASαSN channel can then arise
when information is encoded into the release time of each molecule and
differential encoding is used [FGCE15]. More generally, in the presence of
diffusion governed by Lévy processes, the tail of the diffusion time distribu-
tion decays as a polynomial [MK04] and hence α-stable distributions form
natural approximate models.

In wireless networks, memoryless additive α-stable noise channel mod-
els have gained importance to characterize interference in reason of a
study initialized by Pinto [PW10a; PW10b]. When fast-varying (symbol-
by-symbol) active transmitter sets is present, assuming to be independent
at each time t, and the set of active transmitting devices with locations gov-
erned by a homogeneous Poisson point process changing rapidly occur, the
dynamic interference is produced, which means that the interference can be
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characterized by a LePage series [ST94a]. This implies that the interference
statistics are α-stable, as we will explain in detail in Section 2.5.1, after the
presentation of α-stable concepts.

2.4.1 Definitions and some α-stable concepts

In this section, definitions of α-stable are exploited. In addition, we outline
some characteristics of this distribution, such as the tail behavior, moments,
the probability density, characteristic functions and the use of series to rep-
resent α-stable random variables, as well as, properties that will be used
during the rest of this thesis.

The stable random variables follow the definition

Definition 3. Formally, a stable random variable is defined as

a′X1 + a′′X2
d
= aX + b, (2.7)

in which a′, a′′ ∈ R>0 and a ∈ R>0 and b ∈ R. In addition, X1 and X2 are in-
dependent random variables sharing the same distribution X . In particular, when
b = 0 it is strictly stable.

The Definition 3 justifies the stability notion, as the shape of X is con-
served under addition.

The α-stable random variables are characterized by four parameters:

• the exponent 0 < α ≤ 2: It controls the thickness of the tail of the
distribution. In other words, as larger the value of α becomes, less
rare events happen. When α decreases more impulsiveness is created.
In particular when α = 2 we return to a Gaussian random variable;

• the scale parameter γ ∈ R>0: Alternatively called dispersion, mea-
sures the width of the distribution. For the Gaussian case, γ is equiv-
alent to half of this variance;

• the skew parameter or symmetry parameter β ∈ [−1, 1]; Particularly
when β = 1 the distribution is totally skewed to right.

• the location parameter δ ∈ R: Determines the shift of the distribution.
Let pX(x) be the probability density function of an α-stable random
variable X ,

pX,δ(x) = pX(x− δ)

thus, δ is the location parameter.

An α-stable random variable X is then represented by X ∼ Sα(γ, β, δ).
Fig. 2.5 depicts the probability density function of a symmetric α-stable ran-
dom variable with parameters µ = 0, γ = 1, β = 0 and different α values.
A stable random variable is called standard when µ = 0 and γ = 1, but
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FIGURE 2.5: α-stable probability density function with µ =
0, γ = 1 and β = 0 (symmetric). α = 0.5, 1, 1.5, 2

it depends on the parametrization choice. As such, in Fig. 2.6 a standard
α-stable pdf is presented, with α = 1.2, µ = 0, γ = 1 and three skewness
values, namely, β = 1 (totally skewed to the right), β = 0 (symmetric) and
β = −1 (totally skewed to the left).
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FIGURE 2.6: α-stable probability density function to repre-
sent the skewness. Contains the parameters α = 1.2, µ = 0

varying the skewness β = −1, 0, 1

Furthermore, in Fig 2.7, 2000 samples in time are generated from an
α-stable distribution S1.5(0, 1, 0). When comparing with Fig 2.1, the impul-
siveness behavior is easily confirmed.

In fact, a very important extension of Definition 3 is that any linear com-
bination of stable random variables with characteristic exponent α has the
same parameter α, which gives the following definition
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FIGURE 2.7: 2000 noise samples induced by an α-stable dis-
tribution with parameters α = 1.5, β = 0, γ = 1, µ = 0

Definition 4. A random variable X is stable for all non-zero n ∈ Z6=0, if it exists
constants an ∈ R>0 and b ∈ R such that

n∑
j=1

Xj
d
= anX + bn, (2.8)

whereX1, X2, . . . Xn are independent random variables with the same distribution
X .

In addition, the constant an is obtained through the following lemma:

Lemma 1 ([Fel09, page 170]). The norming constants are of the form an = n1/α,
with 0 < α < 2.

This result helps us to note that stable random variables are the only
with a domain of attraction. In other words, an identically independently
distributed random variable {Xj}j∈N, a sequence of real positive an and a
real sequence bn, such that

1

an

 n∑
j=1

Xj − bn

 d−−−→
n→∞

X. (2.9)

or, equivalently,

lim
n→∞

Pr

 1

an

 n∑
j=1

Xj − bn

 < x

 = G(x) (2.10)

whereG(x) is a non-degenerate random variable X, for all continuity points
x of G. This case generalizes the well-known central limit theorem
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Remark 1 (Classical CLT). From 2.10, the Classical Central Limit Theorem is
derived using an = σ

√
n and bn = nµ

In general, the distributions of α-stable random variables do not have
closed form probability density functions, despite some rare cases (e.g. α =

1, 2). Instead, they are usually represented by their characteristic function,
given by

E[eiθX ]

=

{
exp

{
−γα|θ|α(1− iβ(sign(θ)) tan πα

2 ) + iδθ
}
, α 6= 1

exp
{
−γ|θ|(1 + iβ 2

π (sign(θ)) log |θ|) + iδθ
}
, α = 1

, (2.11)

in which

sign(θ) =


1 if θ > 0

0 if θ = 0

−1 if θ < 0

(2.12)

Remark 2. This form is presented in Samorodnitsky and Taqqu [ST94b, Definition
1.1.6], however this representation is not unique. See [CL97; Zol86; UZ99] for
more options.

An α-stable random variable is symmetric if β = 0 around δ = 0 and is
denoted by SαS, for which a distribution of X is equal to −X . Therefore,
a symmetric α-stable random variable is strictly stable, but the converse is
not true in general. Clearly, if (X − δ)/γ1/α is standard with characteristic
exponent α. The characteristic function for the symmetric α-stable random
variable is given by

φ(θ) = E[eiθX ]

= exp{−γα|θ|α}, θ ∈ R. (2.13)

By letting α receive values 0.5, 1 and 2, we obtain three special cases:

• Cauchy - Let C ∼ S1(γ, 0, δ) , S1S(γ, δ), then the probability density
function is

fC(x) =
1

π

γ

γ2 + (x− δ)2
, −∞ < x <∞ (2.14)

and with characteristic function

φC(θ) = exp{−γ|θ|+ iδt} (2.15)
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• Gaussian - Let G ∼ S2(γ, 0, δ) , S2S(γ, δ), then the probability den-
sity function is

fG(x) =
1√
4πγ

exp

[
−(x− δ)2

4γ

]
, −∞ < x <∞. (2.16)

As a consequence to obtain the normal distributionN (µ, σ2), we need
to modify the dispersion in a way that G ∼ S2S(σ/

√
2, µ) to yield the

density

fG(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
. (2.17)

In turn, the characteristic function is

φG(θ) = exp

[
−σ

2

2
θ2 + iµt

]
. (2.18)

• Lévy - Suppose L ∼ S1/2(γ, 1, δ), thus the density is

fL(x) =
( γ

2π

)1/2 1

(x− δ)3/2
exp

[
− γ

2(x− δ)

]
. (2.19)

where x ∈ [δ,∞).

Despite these rare cases as already mentioned, the α-stable random vari-
ables do not have closed form. Alternatively, making use of the in-
verse Fourier Transform for a given characteristic function φ(t) such
that

∫∞
−∞ |φ(t)| < ∞, the probability density function induced by X ∼

SαS(γ, β, δ) can be expressed as

fX(x) =
1

2π

∫ ∞
−∞

exp(−iθx)φX(θ)dθ. (2.20)

In particular, when dealing with symmetric α-stable and δ = 0, denoted as
SαS(γ, 0), we obtain a simpler expression as

fX(x) =
1

2π

∫ ∞
−∞

e−iθxe−γ
α|θ|αdθ

=
1

π

∫ ∞
0

e−(γα|θ|α) cos(θx)dθ (2.21)

where the last expression results from the fact that the function is real and
even.

2.4.2 Tails and moments

The behavior of Pr(X > x) and Pr(X < −x) for large x, respectively right
and left tails of an α-stable random variables are of the form



2.4. α-stable model 21

Proposition 1. Assume X ∼ Sα(γ, β, δ) with 0 < α < 2, Thus lim
t→∞

tα Pr(X > t) = γαCα
1+β

2

lim
t→∞

tα Pr(X < −t) = γαCα
1−β

2 ,
(2.22)

where an α dependent constant Cα is given by

Cα =

(∫ ∞
0

x−α sinxdx

)−1

=


1−α

Γ(2−α) cos(πα
2

) , if α 6= 1,

2
π , if α = 1.

(2.23)

Proof. For more information see [ST94a, Property 1.2.15].

Definition 5 (Heavy tail). A real-valued random variable X have a distribution
with heavy right tail if the probability tail Pr(X > x) decay more slowly than
those of any exponential distribution, such that

lim
x→∞

eλx · Pr(X > x) =∞, ∀λ > 0. (2.24)

A similar approach can be applied for heavy left tails. It is straightfor-
ward to show that α-stable densities have heavy tails by using (2.22) and
knowing that polynomial expressions have a slower decay than exponen-
tial, as showed in Fig. 2.8, where the tails of a standard Gaussian and a
S1.5S(

√
0.5, 0) r.v.’s are compared.
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FIGURE 2.8: Comparison between the left tail of a standard
Gaussian pdf and an α-stable pdf with α = 1.5, β = 0, γ =√

0.5 and µ = 0.

This tail behavior gives the following consequence on the moments:

Proposition 2. Let X ∼ Sα(γ, β, δ) with 0 < α < 2, then

E[|X|p] <∞, 0 < p < α,

E[|X|p] =∞, p ≥ α. (2.25)
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This implies that the use of expectations suffers some restrictions. For
instance, except the Gaussian case, α-stable random variables have infinite
second order moment.

Proposition 3. The fractional lower order moments (FLOM’s) of a SαS(γ, 0)

random variable have the form

E[|X|p] = C(p, α)γp, 0 < p < α, (2.26)

in which C(p, α) =
2p+1Γ( p+1

2 )Γ(− p
α)

α
√
πΓ(− p

2
)

and Γ(·) is the Gamma function defined for
x > 0 as

Γ(x) =

∫ ∞
0

tx−1e−tdt (2.27)

2.4.3 Lepage series to represent α-stable random variables

In this section we present a method regarding random variables using in-
finitely divisible series. These series are characterized by having an at-
traction domain and can represent, for instance, the Central Limit Theo-
rem. The representation of processes without fixed points of discontinuity
and containing independent increments having no Gaussian components
was firstly been introduced by Fergusson and Klass [FK72], later by Lep-
age [LeP89], with extensions by Rosinski [Ros90]. Particularly, we study
in this section a technique which consists in writing an α-stable process
through an infinite sum of independent random variables and an arrival
time induced by a Poisson process. To elucidate the following proposition
we denote the sequences (εi)i∈N, (Wi)i∈N and (τi)i∈N, such that

– The random variable sequence ε1, ε2, . . . is identical and indepen-
dently distributed having a Rademacher distribution. This distribu-
tion is characterized by Pr(εi = 1) = Pr(εi = −1) = 1

2 , with a support
εi ∈ {−1, 1}.

– W1,W2, . . . are i.i.d random variables with finite absolute αth mo-
ment.

– The τ1, τ2, . . . consist of a sequence of random variables representing
the arrival times of a Poisson process with intensity 1. τi variables are
dependent between each other and not identically distributed. On the
other hand, they can be viewed as

τi =
i∑

j=1

Ej (2.28)

where the Ej are, in turn, i.i.d random variables and follow an expo-
nential process with mean 1.
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Proposition 4 (Lepage series). LetW a random variable with finite fractional or-
der moment for 0 ≤ α < 2, i.e. E[|W |α] <∞. Then the sum

∑∞
i εiτ

−1/α
i Wi

a.s.→
X ∼ SαS((C−1

α E[|W1|α])1/α, 0), in which Cα is defined in Proposition 1

The notation Xn
a.s.→ X means that a sequence Xn converges almost

surely towards X or Pr
(

lim
n→∞

Xn = X
)

= 1. For the proof see [ST94a;
JW93].

The reverse statement is also possible, a symmetric α-stable random
variable has a Lepage series form, as shown below

Proposition 5. Let X a symmetric α-stable random variable such that X ∼
SαS(E[|W |α]

1
α , 0), then

X
d
= C1/α

α

∞∑
i

εiτ
−1/α
i Wi

It is important to notice that this representation is not unique, due to Wi

arbitrary as long as E[|W1|α] <∞. The proof is detailed in [ST94b]

2.4.4 Properties

In this section we provide key properties of α-stable random variables.
These properties are used throughout the remainder of the thesis.

The first property, known as the stability property, concerns the addition
of two α-stable random variables with the same characteristic exponent α.

Property 1 (stability property). Suppose Z1, Z2 are independent with Z1 ∼
Sα(γ1, β1, δ1) and Z2 ∼ Sα(γ2, β2, δ2). Then, Z1 + Z2 ∼ Sα(γ, β, δ), where

γ = (γα1 + γα2 )
1
α , (2.29)

β =
β1γ

α
1 + β2γ

α
2

γα1 + γα2
, (2.30)

δ = δ1 + δ2. (2.31)

The second property concerns the scaling of an α-stable random vari-
able by a constant.

Property 2. Let a ∈ R 6=0, i.e., a non null constant, and X ∼ Sα(γ, β, δ). Thus,

aX ∼ Sα(|a|γ, sign(a)β, aδ), if α 6= 1.

aX ∼ S1(|a|γ, sign(a)β, aδ − 2/πa(ln |a|)γβ), if α = 1.

(2.32)
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Corollary 1. Let Z ∼ Sα(γ, β, δ) and a ∈ R>0. If 1 < α < 2, then

aZ ∼ Sα(aγ, β, aδ). (2.33)

The third property concerns the addition of an α-stable random variable
with a constant.

Property 3. If Z ∼ Sα(γ, β, δ), then Z + µ ∼ Sα(γ, β, δ + µ).

The fourth property concerns the maximum value of α-stable probabil-
ity density functions.

Property 4. Let Z ∼ Sα(γ, β, δ) for α ∈ [1, 2), then

pZ(y) ≤
Γ
(

1
α

)
γαπ

. (2.34)

Proof. The characteristic function of a SαS random variable with δ = 0 is
φZ(t) = e−|γθ|

α
, γ > 0 and using (2.21), we have

pZ(y) = F ′Z(y) =
1

2π

∫
R
e−iθyφZ(θ)dθ

≤ 1

2π

∫
R
|e−iθyφZ(θ)|dθ

≤ 1

2π

∫
R
|e−|γθ|α |dθ

≤ 1

π

∫
R≥0

e−(γθ)αdθ

≤
Γ
(

1
α

)
γαπ

, (2.35)

in which Γ(·) is the Gamma function.

The fifth property gives E[|Z|] for symmetric α-stable random variables,
originally due to Zolotarev [Zol57] and can be seen from Proposition 3, for
p = 1.

Property 5. Let Z ∼ Sα(γ, 0, 0), with 1 < α ≤ 2. Then,

E[|Z|] =
2Γ
(
1− 1

α

)
π

γ. (2.36)

The sixth property concerns the asymptotic behavior of the probability
density function of symmetric α-stable distributions (see [ST94a; FN99]).

Property 6. Let Z ∼ Sα(γ, 0, δ) with 1 < α ≤ 2. Then, the probability density
function of Z satisfies

pZ(z) ∼ α(1− α)γα

Γ(2− α) cos
(
πα
2

) |z|−α−1 as |z| → ∞. (2.37)

Fig. 2.9 plots the asymptotic version of the probability density function
described in (2.37) and symmetric α-stable random variables with γ = 1
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and µ = 0 obtained numerically. One may notice that the asymptotic pdfs
act as upper bounds, becoming rapidly similar to the α-stable r.v.’s as z
increases.
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FIGURE 2.9: Comparison between the right tail of symmet-
ric α-stable pdfs and the asymptotic pdf in (2.37) for β = 0,

γ = 1 and µ = 0.

Finally, the seventh property is an important extension to a random
variable X is presented, in which a transform of Sα′S into a SαS is given
by

Property 7. Let X ∼ Sα′S(γ, 0) with 0 < α < α′ ≤ 2. Thus, for an A ∼
Sα/α′

(
cos
(
πα
2α′

)α′/α
, 1, 0

)
, such that X and A are independent, then

Z = A1/α′X ∼ SαS(γ, 0).

Proof.

E{exp{iθZ}} = E{exp{A1/α′X}}

= E{E{exp{iθa1/α′X}|A = a}}

(2.38)

After applying the characteristic function and Proposition 2, we obtain

E{exp{iθZ}} = E{E{exp{−(γα
′ |θ|α′aα′/α′)}|A = a}}

= E{exp{−(γα
′ |θ|α′A)}}. (2.39)

Next, choosing A ∼ Sα/α′
(

cos
(
πα
2α′

)α′/α
, 1, 0

)
with 0 < α < α′ ≤ 2, so

that the Laplace transform of A, an α/α′-stable totally skewed to the right,
is E{exp(−γA)} = exp(−γα/α′) [ST94b, Proposition 1.2.12], which is also
called as Kohlrausch-Williams-Watts function [PG10]. Consequently, we
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have

exp{iθZ} = exp{−(γα
′ |θ|α′)α/α′}

= exp{−γα|θ|α}, (2.40)

for γ > 0.

This result implies that when α′ = 2 and X is a zero mean Gaussian
random variable, the SαS random variables are conditionally Gaussian, i.e.
Z = A

1
2X ∼ SαS.

2.4.5 Bivariate Isotropic Stable Distributions

So far we have considered the univariate stable distribution. In this section,
it is extended to the multivariate distributions, specifically we focus on the
bivariate isotropic case. Like the univariate stable distributions presented
in the previous section, the multivariate stable distribution is defined by the
stability property and the generalized Central Limit Theorem.

Consequently, the Definition 3 (page 16) can be extended to the multi-
variate case defined as

Definition 6. Let X = (X1, . . . , Xd) in Rd a d-dimensional α-stable random
vector. X is stable if ∀(a, b) ∈ R2

>0, ∃ c ∈ R>0,D ∈ Rd such that aX1 + bX2
d
=

cX + D, where X1 and X2 are i.i.d. copies of X. If D is a null vector, it is said to be
strictly stable.

In fact, this stability property can be generalized to encompass linear
combinations in manner that the following property is given

Property 8. Let X ∈ Rd be an α-stable random vector, thus

• All linear combinations
∑d

j bjXj are α-stable random variables.

• If the linear combinations are symmetric stable, this implies that X is a sym-
metric stable random vector in Rd.

Proof. See [ST94a, Theorem 2.1.5] for more details.

The characteristic function plays a key role since α-stable random vari-
ables do not in general have closed-form probability density functions, sim-
ilarly to the univariate case. As such, the characteristic function for the bi-
variate stable distribution case (d = 2) is given by

φ(θ) =

{
exp(iθTδ − θTKθ), if α = 2

exp(iθTδ −
∫
S |θ

T s|µ(ds) + iβα(θ), if 0 < α < 2,

in which

βα(θ) =

{
tan απ

2

∫
S |θ

T s|αsign|θT s|µ(ds), if α 6= 1, 0 < α < 2,∫
S θ

T s log |θT s|µ(ds), if α = 1,
(2.41)
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where δ = (δ1, δ2),θ = (θ1, θ2) and the |θ| =
√
θ2

1 + θ2
2. In addition, S is

the unit circle, K represents a positive semidefinite symmetric matrix. The
measure µ(·) is the spectral measure.

Particularly, a notable example for the bivariate stable distribution is the
rotationally invariant case, i.e., the random variable does not change under
rotation, reflections or inversion operations. The stable distributions having
such features are called isotropic. The following proposition expresses the
necessary conditions

Proposition 6. A complex variable X is isotropic if it satisfies the following con-
ditions:

C1 : The random vector X = (X1, X2)T is symmetric in R2; i.e., Pr(−X ∈
A) = Pr(X ∈ A) for all Borel sets A in R2.

C2 : eiφX d
= X for any φ ∈ [0, 2π).

As a consequence, (2.41) is modified to the bivariate isotropic character-
istic function using θ = (θ1, θ2), yielding the following closed form

φ(θ1, θ2) = exp

{
i(δ1θ1 + δ2θ2)−

(
γ
√
θ2

1 + θ2
2

)α}
= exp {i(δ1θ1 + δ2θ2)− γα|θ|α} , (2.42)

in which the Corollary 2 is applied for vector representation. where the
parameter α is the characteristic exponent and γ represents the dispersion
as in the univariate case. The δ1 and δ2 are the location parameters.

2.4.6 Multivariate sub-Gaussian stable distribution

The multivariate sub-Gaussian representation is presented in this section,
which is a means of constructing a symmetric α-stable random variable
vector by multiplying an α/2-stable r.v. totally skewed to the right (β = 1)

and a normal random vector G. Therefore, the multivariate sub-Gaussian
can be expressed as

Definition 7. A vector X is said to be sub-Gaussian SαS in Rd with underlying
Gaussian vector G, when

X = (A1/2G1, A
1/2G2, . . . , A

1/2Gd),

where A ∼ Sα/2

(
cos
(
πα
4

)2/α
, 1, 0

)
, G = (G1, . . . , Gd) ∈ Rd are zero mean

Gaussian random vectors and α < 2. A and G are independent.

In other words, A is any positive r.v., but the product will be symmetric
α-stable only if A is the given α/2-stable random variable. In fact, differ-
ently from the linear spaces of Gaussian random variables, sub-Gaussian
r.v.’s do not have (nondegenerate) i.i.d. elements [CS84, Lemma 2.1]. In
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addition, X is completely parameterized by the statistics of the Gaussian
random vector G. As a consequence, to check stationarity, it is necessary
and sufficient to verify if the Gaussian term is stationary for instance.

Now, its characteristic function is presented as follows

Proposition 7. The characteristic function of a sub-Gaussian symmetric α-stable
random vector X is given by

E

{
exp

[
d∑

k=1

θkXk

]}
= exp

−
∣∣∣∣∣∣12

d∑
i=1

d∑
j=1

Rijθiθj

∣∣∣∣∣∣
α
2

 , (2.43)

in which Rij = E[GiGj ] is the covariance of the underlying zero mean Gaussian
random variable G = (G1, . . . , Gd).

2.4.7 Complex SαS random variables

It is worth noting that the complex α-stable random variables are denoted
as

X = X1 + iX2, (2.44)

but, instead of working with the complex representation, one may reformu-
late the problem in terms of a real valued vector representation, as follows

Definition 8. The complex random vectorX = (X1, . . . , Xd), where each element
has the formXj = X1

j +iX2
j for j = 1, . . . , d andX1

j , X
2
j are real random vectors,

is α-stable if and only if there exists a random vector whose elements are real α-
stable random variables (X1

1 , X
2
1 , . . . , X

1
d , X

2
d) ∈ R2d.

Therefore, plugging d = 1 into the previous definition we have

Corollary 2. A complex random vector X = X1 + iX2 is α-stable if and only
if there exists a random vector whose elements are real α-stable random variables
(X1, X2) ∈ R2.

Now that a complex representation is depicted, a reformulation of
the sub-Gaussian random vectors is possible and the key of this is given
in [ST94a, Corollary 2.6.4], yielding

Theorem 1. Let 0 < α < 2. A complex α-stable random variable Z = Z1 +iZ2 is
isotropic if and only if there are two independent and identically distributed zero-
mean Gaussian random variables G1, G2 with variance σ2

N and a random variable
A ∼ Sα

2
((cos(πα/4))2/α, 1, 0) independent of (G1, G2)T such that (Z1, Z2)T =

A
1
2 (G1, G2)T ; i.e., (Z1, Z2)T is a sub-Gaussian random vector.

2.4.8 Isotropic properties

The following property demonstrates the conditions necessary in order to
maintain an isotropic random variable when multiplied by a matrix.
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Property 9. Let Z be a random vector induced by the isotropic α-stable random
variable Z. Then, Z′ = VZ is another random vector induced by an isotropic
α-stable random variable Z ′ if and only if V satisfies VVT = cI for some c ≥ 0.

Proof. To prove (⇐), consider a matrix V ∈ R2. If Z′ is a random vector
induced by the isotropic α-stable random variable Z ′, then by Theorem 1

Z′ = VZ
d
= A1/2V(G1, G2)T . (2.45)

For this condition to hold, (G′1, G
′
2)T = V(G1, G2)T must be i.i.d normal.

Observe that the covariance of (G′1, G
′
2)T

cov((G′1, G
′
2)T ) = VσIVT = σVVT . (2.46)

As such, for G′1, G
′
2 to be i.i.d normal, we require VVT = cI for some c ≥ 0.

(⇒) follows immediately.

Alternatively, the characteristic function of an isotropic α-stable random
variable can be depicted as

Property 10. The characteristic function of a random vector Z induced by an
isotropic α-stable random variable Z (0 < α < 2) is given by

φZ(θ) = E[ei(θ1Z1+θ2Z2)] = e−2−α/2σαZ|θ|
α
, (2.47)

where σZ corresponds to square root of the variance of the i.i.d Gaussian random
variables in Theorem 1.

Proof. The proof follows directly from Proposition 7 and the characteristic
function of a multivariate Gaussian N (0,Σ), i.e. φ(θ) = e

1
2
θTΣθ, where Σ

is the covariance matrix. Yielding

φZ(θ) = exp

−
∣∣∣∣∣∣12

d∑
i=1

d∑
j=1

Rijθiθj

∣∣∣∣∣∣
α
2


= exp

−
∣∣∣∣∣∣12σ2

Z

d∑
j=1

σ2
j

∣∣∣∣∣∣
α
2

 , (2.48)

where |θ| =
√∑d

j=1 σ
2
j and using the fact that the multivariate Gaussian

has zero mean and independent components.

Next, we will investigate a model where the AIαSN channel naturally
arises.
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2.5 System Model and Dynamic Interference Charac-
terization

In this section, an important system model is introduced to demonstrate
that an α-stable interference can come from a realistic physical mechanism
when the nature of interference sources and some propagation conditions
are assumed.

Transmissions in a common band between networks providing multiple
services and supporting standard cellular or WLAN communication and
M2M ends up creating heterogeneous networks, due to several different
quantities, type of data and symbol durations [AFGMAA15]. Particularly
for small-cells and ad hoc networks, the heterogeneity appears from vari-
ations in transmit power constraints and non-uniform placement of base
stations. We also remark that device heterogeneity can be captured under
the assumption devices with a given protocol have the same probability for
each device.

Dynamic interference can be induced by two key physical mechanisms.
The first mechanism is any protocol where data is transmitted in non-
contiguous blocks, in other words, interferers do not transmit data contin-
uously. For instance, differently from the standard cellular services, which
data transmissions typically vary between 1 KB and 2 MB per transmis-
sion for text and image transfers and up to 3 GB for video transfer [Tol15],
M2M communications create a non-contiguous transmissions owing to a
very short transmission, as rare as 1 MB per month [Dig09]. As a con-
sequence, the active set of transmitting devices at each time can change
rapidly.

As a result, in M2M networks with a rapidly changing active trans-
mitter set, the Gaussian model does not represent the interference effects
reliably, yielding an impact on performance guarantees and resource al-
location, which is often based on the spectral efficiency of each link. In
particular, it was shown that the interfering signal in each time slot is α-
stable [ECFDGS17a]. This is specially the case when long range transmis-
sion are considered. Sensing the channel at the transmitter side does not
efficiently represent the channel at the receiver side. In fact, this idea even
lead to protocols based on a new ALOHA [Abr70] approach like in Sig-
fox [VLNKMS17]. The presence of strong colliding packets is then impor-
tant and the Gaussian model is no longer adapted.

Finally, we can mention that Non-orthogonal multiple access
(NOMA) [SKBNLH13]. An example is the promising strategy of Sparse
code multiple access (SCMA) for OFDM systems [NB13], where users can
transmit on a sparse subset of all frequency bands. This strategy leads
to a non-Gaussian interference when considering change at every sym-
bol [ECZFG18].
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The second mechanism arises when there are multiple coexisting com-
munication systems, such as IEEE 802.11 (Wi-Fi) and IEEE 802.15 (Zigbee,
Bluetooth). The IEEE 802.11 frame is composed of a fixed header of 34 bytes
and for a short payload of 250 bytes and data rate of 54 Mbps the on-air time
is 42.07 microseconds. On the other hand, the IEEE 802.15 Zigbee frame is
40 bytes with data rate 250 kbps, leading to an on-air time of 1.25 ms. More-
over, Bluetooth is frequency hopping and is present in a 802.15 band only
rarely and for a very short time. The result is that Bluetooth and Wi-Fi inter-
ferers are active for short periods of time relative to Zigbee transmissions,
resulting in dynamic interference.

To illustrate the second mechanism, Fig. 2.10 shows the result of an
experiment (detailed in [IP16, Section 2.5.2]) with coexisting Wi-Fi, Blue-
tooth and Zigbee transmissions. Observe that Bluetooth interference for
very short periods of time is sufficient to corrupt a Zigbee transmission.

FIGURE 2.10: Coexistence of technologies in the 2.4-GHz
band. Measurements made by a National Instruments

USRP (detailed in [IP16, Section 2.5.2]).

In order to characterize the interference in this scenario, consider a
large-scale wireless communication network consisting of K devices and
K access points, where each device transmits data to a unique access point.
The locations of the devices are governed by a homogeneous Poisson Point
Process (PPP) [ABW10; LP17], denoted by Φ, with intensity λ. We assume
that the network is uncoordinated, which forms a worst case model for
large-scale M2M communication networks.

For an access point at the origin, A0, served by device 0, the interference
at time t from the other devices is given by

It =
∑

k∈Φt\{0}

r
−η/2
k,t hk,txk,t, (2.49)

where η is the path loss exponent of the interfering links. hk,t is any cir-
cularly symmetric complex distributed random variable, which is assumed
to be the Rayleigh fading coefficient hk,t ∼ CN (0, 1) for the link from de-
vice k to the access point A0. The baseband emission of each interferer k
is denoted by xk,t. We assume that the real and imaginary parts of hk,txk,t
are symmetric and ejφhk,txk,t

d
= hk,txk,t for all φ ∈ [0, 2π), which means
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that hk,txk,t is isotropic. This is not a strong assumption and is satisfied, for
instance, in the case of Rayleigh fading with circularly symmetric complex
Gaussian baseband emissions.

The distance of the access point A0 to device 0 is denoted by rd, with
distribution Frd . The signal received by the access point A0 at time t is then
given by

yt = r
−η/2
d,t hd,txd,t + It +Nt, (2.50)

where hd,t is a circularly symmetric complex channel fading coefficient, e.g.,
a Rayleigh hd,t ∼ CN (0, 1), and xd,t is the baseband emission for the typ-
ical user. The additive white zero-mean Gaussian noise Nt ∼ CN (0, σ2)

corresponds to thermal noise at the access point.
In fact, the received signal by an access point A0 in the presence of dy-

namic interference for the interference-limited setting, i.e., where I domi-
nates over the noise, can be seen as the output of a memoryless additive
noise channel. Therefore, the output y is converted to

y = r
−η/2
d hdxd + I, (2.51)

where the time subscript was dropped due to the memoryless channel.
It is necessary to characterize the statistics of I in order to evaluate com-

munication in dynamic interference. The foundation of this characteriza-
tion is the theory of isotropic α-stable random variables, which we now
review.

2.5.1 Interference Characterization

We show in this section that the interference I is, in fact, an isotropic α-
stable random variable. For this purpose, consider a complex I = I1 +

iI2, where I1 and I2 are the real and imaginary components, respectively,
given that baseband signals are typical complex. The necessary conditions
that I has to follow to be an isotropic complex α-stable are presented in
Proposition 6 (page 27). In order to prove these conditions, let zk = hkxk

and denote the real and imaginary parts as zk,r and zk,i. The interference
can then be written as

I =

∞∑
k=1

r
−η/2
k (zk,r + izk,i), (2.52)

where each device in Φt is indexed by an integer k = 1, 2, . . . and we can
ignore the effect of the serving device. One can notice this by Slivnyak’s
theorem that is equal to
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Theorem 2 (Slivnyak-Mecke). Let X be a PPP with intensity measure µ. Thus

E

[∑
ε∈X

h(ε,X\{ε})

]
=

∫
Rd

E [h(ε,X)]µ(dε), (2.53)

where h is an arbitrary non-negative measurable function.

Proof. A direct proof is detailed in [MW03][Theorem 3.2].

This theorem is a means of showing that a property seen from a point at
x does not depend on having a point x in Φt. In other words, the stationarity
of Φt guarantees that the position of an arbitrary point does not change the
probability.

Recall that the distances, {rk}∞k=1, are from points in a PPP to the origin.
It follows that r2

k is an one-dimensional PPP with intensity λπ, which is
obtained by changing the coordinates from Cartesian into polar and apply-
ing the mapping theorem(see [IH98, Proposition 1] for more details). By an
application of the LePage series representation of symmetric α-stable ran-
dom variables presented in Proposition 4 (page 23), it also follows that I
converges almost surely to

I = Zr + iZi, (2.54)

where Zr and Zi are real and symmetric 4/η-stable random variables.
By Proposition 8 (page 26), the induced random vector I = (Zr, Zi)

T is
a symmetric 4/η-random vector, which implies that condition C1 presented
in Proposition 6 (page 27) holds.

To show that condition C2 holds, recall that eiφhkxk
d
= hkxk for any

φ ∈ [0, 2π). This implies that I is isotropic and hence I is an isotropic 4/η-
stable random variable.

In order to characterize the statistics of the interference I , all that re-
mains is to obtain the parameter σN in the scale mixture representation
stated in Theorem 1 (page 28). Again using the LePage series represen-
tation in Proposition 4 (page 23), the scale parameters of the real and

imaginary parts of I are equal to
(
πλC−1

η
4
E[|Re(hkxk)|

4
η ]
) η

4 . Using Prop-
erty 10 (page 29), we then have

σN = (πλC−1
η
4
E[|Re(hkxk)|

4
η ])

η
4 , (2.55)

where C η
4

is given in (2.57).
In summary, the interference I is characterized as follows.

Proposition 8. The interference I is an isotropic α-stable random variable, with
α = 4

η and parameter

σN =

(
πλC−1

4
η

E[|Re(hkxk)|
4
η ]

) η
4

, (2.56)
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where

Cα =

{
1−α

Γ(2−α) cos(πα/2) , if α 6= 1

2/π, if α = 1.
(2.57)

The main consequence of Proposition 8 (page 33) is that the channel in
(2.51) is a memoryless additive isotropic α-stable noise (AIαSN ) channel.
Unlike circularly symmetric complex Gaussian noise, the real and imagi-
nary parts of I are not independent, a consequence of the dependency cre-
ated in the sub-Gaussian representation in Theorem 1 and present in both
components. Therefore, it is not possible to treat anAIαSN channel as par-
allel real α-stable noise channels. Instead, it is useful to view the AIαSN
channel as a vector channel, where the real vector-valued noise is the vector
induced by the isotropic α-stable interference I .

2.6 Chapter conclusion

Noises and interferences present in many modern communications systems
were introduced. To cope with these features, different models for impul-
sive interference were depicted. Firstly, we started with the well-studied
Gaussian distribution, which leads to an inappropriate characterization of
impulsive scenarios due to the tail behavior that decays exponentially. The
simplicity of its probability density function, characteristic function and the
tail behavior as well as the reason that motivates the use of this model
were outlined. Next, to encompass impulsive noises and interferences,
non-Gaussian models were introduced. In a first step, the different classes
of Middleton distributions were detailed to illustrate its physical perspec-
tive although the difficulty to use in practical systems. Lastly, we focus on
the α-stable random variables, which will be necessary all along this thesis
work. It has been suggested that in the class of heavy-tailed distributions
the stable family are accurate solutions to model impulsive noise. Many
definitions and properties were demonstrated in the univariate and bivari-
ate cases. The tail was shown to be heavier when compared to Gaussian
models and the series representation was used to study scenarios that give
rise to α-stable interferences. Finally, the proof for the α-stable model in a
communication setting (interference arising from an homogeneous Poisson
Point Process with no guard zone) is presented.
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Chapter 3

Capacity of Additive α-Stable
Noise Channels

Capacity for continuous channels are in fact difficult to be address, a notorious
exception is the expression derived by Shannon for the Gaussian case with a power
constraint, which will be revisited. In this chapter, we are concerned with the
capacity of an additive impulsive channel using α-stable models. A new proposed
model allows the derivation of lower and upper bounds, as well as, the existence
and uniqueness of the optimal input. An algorithm is proposed to compare the
achievable bounds. Moreover, properties and parametrization of the lower bound
are studied.

3.1 Problem formulation and related works.

THE central concern in communication systems is to transmit with fewer
errors, using high speeds to guarantee an efficient communication on

noisy channels. The capacity characterizes the maximum rate where the
error probability can be arbitrary close to zero.

Fortunately, the channel capacity in the class of discrete memoryless
channels is well understood as notably demonstrated by Shannon [Sha48].
Although, when we turn to the continuous channels, it has been proven
difficult to characterize the capacity, one exception is the case of the linear
additive white Gaussian noise (AWGN) constrained by power [Sha48]. To
illustrate some results obtained, Table 3.1 shows the optimal input distribu-
tions that induce the capacity for some discrete and continuous cases given
input constraints.

TABLE 3.1: Some known optimal distributions for distribu-
tions

Type of distribution Constraints Optimal distribution
Continuous and infinite support E[X2] < +∞ Gaussian distribution

Continuous and x > 0 E[X] < +∞ Exponential distribution
Continuous on [a, b] - Uniform distribution
Discrete and x > 0 E[X] < +∞ 1

Z exp(−λn)

Focusing on impulsive models, approximations of Middleton noise
have been known since Middleton’s early work. The capacity of channels



36 Chapter 3. Capacity of Additive α-Stable Noise Channels

with these simpler models have been derived and some examples may be
mentioned. For the capacity of the Bernoulli-Gaussian channel, results di-
vided into low and high input power regions were derived in [HTLN12a].
An optimal input to transform the channel output into Gaussian and the
conditions of its existence have been shown. Its premise is the fact that
Gaussian input maximizes the mutual information over all input distribu-
tions subjects to a power constraint E[X2] < P , as we will revisit Shan-
non’s result in Section 3.1.2. In fact, they have proven that for high in-
put power scenario, the Gaussian input is asymptomatically optimal in
Bernoulli-Gaussian channels. For low power regions, bounds for the capac-
ity of the Bernoulli-Gaussian channel were derived if assumed knowledge
of the impulsive noise, as well as, a lower bound when using Gaussian in-
puts.

Another example is the alternative Gaussian mixture models that have
been studied in [CE12]. They produce as result an outage probability per-
formance study for many diversity combining receivers, as well as, signal-
to-interference ratio (SIR) analytical expressions. Using a framework to an-
alyze common interferences scenarios, they also proposed novel diversities
to improve the outage probability.

Besides, when analyzing Middleton model itself, Wiklundh and
Stenumgaard and Tullberg have shown an analytical expression by means
of a non-physical perspective using aperiodic, stationary Markov chains to
represent the additive white class-A noise (AWCN) [WST09], where an im-
pulsive channel has a larger capacity than an AWGN channel. In addition,
a MIMO case was studied in [NAHV14], in which a channel capacity was
derived having different levels of channel state information (CSI).

Being the focus of this chapter, we turn the attention to ASαSN chan-
nels. There have recently been several new results characterizing the ca-
pacity of real additive α-stable noise channels subject to a range of con-
straints. Fahs and Abou-Faycal [FAF12] have shown that under the con-
straint E[|X|r] ≤ c, r > 1 with 1 < α ≤ 2 the second order moment does
not seem adapted to measure the power and the optimal input is compactly
supported and discrete. As a consequence, if a power infinite is allowed, the
optimal input does not lead to a rate increase. In [FAF14], they character-
ized the capacity with following logarithm constraint for the input distri-
bution

E

{
ln

[(
A+ γ

A

)2

+

(
X

A

)2
]}
≤ ln 4, (3.1)

where A ≥ γ and γ > 0 is the dispersion. They have shown that a
Cauchy distributed input is optimal for Cauchy noise (α = 1), which
leads to a closed-form expression for the capacity. In a more recent work,
[FAF16], they have presented results for more general constraints including
E[|X|r] ≤ c, 0 ≤ r < α, and shown that the optimal input distribution is
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again compactly supported and discrete.
In [PW10c], an analytical capacity expression, nevertheless with a sec-

ond order moment constraint and assuming that the transmitted signal is
Gaussian, was obtained for asynchronous interferers scattered according to
a spatial Poisson process in an infinity plane. The capacity channel has the
form

C(G0,P) = Eα0

{
log2(1 + α2

0Ψ)|G0, A
}
, (3.2)

where the r.v. A has a skewed stable distribution, the shadowing G0 ∼
N(0, 1), Ψ is the received signal-to-interference-plus-noise ratio and P the
position of the interferers.

Although an expression without a closed-form for the error probability
in the presence of α-stable interference was derived in [PW10a] and con-
sidering the obtention of numerical results via the Blahut-Arimoto algo-
rithm for the capacity of the ASαSN channel studied containing a power
constraint on the source [WKZ11], ASαSN channels are not well under-
stood and there are currently no characterizations of the achievable rates
for ASαSN channels with 0 < α < 2.

Before the study of α-stable Noise Channels, we outline the information
measure machinery necessary to this end. Next, the capacity in AWGN
noise channels is described, which will be adopted as a comparison metric.

3.1.1 Information Measures

In this section, we first introduce some notions of measure theory that can
be taken into account in order to extend the class of random variables.
Firstly, due to the differences that appeared because of the previous devel-
opment of probability theory without the connection with measure theory,
it should be pointed out a small vocabulary between a probability and the
measures theory depicted in Table 3.2 [Fol13, Section 10.1], which we will
use interchangeably

Analysts’ Term Probabilists’ Term
Measure space (X,M, µ) Sample space (Ω,B, P )
Measurable set Event
Measurable real valued function f Random variable X
σ-algebra σ-field
Convergence in measure Convergence in probability
Almost everywhere a.e. Almost surely
Borel probability measure on R Distribution
Fourier transform of a measure Characteristic function of a distribution

TABLE 3.2: Vocabulary between the probability and mea-
sures theories
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Now, we wish to gather the basic definitions that are important to be
mentioned for the work in the field of information measures. The σ-algebra
on X is defined as follow

Definition 9 (σ-algebra). Let X be a nonempty set equipped with a collection
M of subsets E, in which E is a proper subset of X , such thatM is closed under
complements and countable unions, in other words, whenever there is a sequence
Ej of sets inM, then ∪∞j=1Ej is also inM. Moreover, whenever E ∈ M, X \ E
is also inM. Finally, ∅ ∈ M. Then,M is a σ-algebra on X .

In fact, σ in σ-algebra concerns sum or union and, in turn, algebra refers
to formal operations. It is worth noting that the minimal (trivial) σ-algebra
concerns the empty ∅ and X sets. Furthermore, a measurable space regards
a pair (X,M).

Definition 10 (probability measure). Let M be a σ-algebra on X , such that
µ :M→ [0, 1] satisfies the conditions:

1. µ(∅) = 0,

2. µ(X) = 1, known as normalization,

3. if E1, E2, . . . is a disjoint sequence (i.e. Ei ∩ Ej = ∅, whenever i 6= j) in
M, then

µ
{
∪∞j=1Ej

}
=
∞∑
j=1

µ(Ej),

called countable additivity. Then µ is a probability measure onM and the
triple (X,M, µ) is called a probability measure space.

In addition, if there exists a measurable space (X,M), any E ∈ M is a
measurable set.

Definition 11 (measurable function). Given two measurable spaces (X,M)

and (X ′,M′), a function f : X → X ′ is said (M,M′)-measurable (or just mea-
surable) if for every E ∈M′, then f−1(E) ∈M.

Definition 12 (Borel σ-algebra). Assume that T is the topology of X (the col-
lection of all open subsets of X), in which X is a topological space. Thus, the
σ-algebra generated by T that produces the smallest σ-algebra containing all open
sets is called a Borel σ-algebra B on X . It is denoted as B =M(T ).

For instance, B(R) represents the smallest σ-algebra containing the open
intervals of R. Moreover, a measure on B is called a Borel measure.

Definition 13 (random variable). Assume a probability measure space
(Ω,M, P ) and a measurable space (Y,F). Thus a measurable function X is a
Y-valued random variable. Particularly, a measurable function called random vari-
able has Y = R and is a function from (Ω,M, P ) to (R,B(R)).
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In fact, assuming a random variable X on (Ω,M, P ) induces a measure
µ on (R,B), which is said a distribution measure or just distribution and is
represented as µ(B) = P [X ∈ B].

Definition 14. Let (X,M, µ) be a probability measure space andAj ∈M, where
j = 1, . . . , r. Then, a measurable partition of X is X = ∪rj=1Aj .

We first present the entropy for discrete measure given by

Definition 15 (Entropy). Let A ∈ ΩX , in which ΩX represents the collection
of all partitions of X formed by finitely measurable subsets and A is the partition
X = ∪rj=1Aj so that the entropy can be denoted as

h(A) , −
r∑
j=1

p(Aj) log(p(Aj)).

Regarding the unit measure, when using logarithms of base two, the
entropy unit is bits, while natural logarithms corresponds to nats.

Definition 16 (Conditional entropy). The conditional entropy of A given B is
h(A,B)− h(B), where B is the partition X = ∪sj=1Bj .

Definition 17 (Mutual information). The mutual information of A,B, where
A,B ∈ ΩX is given by

I(A,B) , h(B)− h(B|A).

After presenting the discrete definitions of entropy with discrete mea-
sures, the extension to more general cases is necessary for the next chapters
of this thesis. As such, the measures can be classified as

– discrete, which contains countable values.

– continuous, when Pr{X = x} = 0.

– mixed, as the name suggests, a mixed version of both.

However, simple replacing the summations by integrals into the previous
definitions is not a sufficient operation. In fact, the discrete entropy di-
verges when smaller divisions are used. Firstly, we present the notion of
absolute continuity as

Definition 18. Let (X,M, µ) and ν be a measure defined on M. A mea-
sure ν is called absolutely continuous with respect to µ, written ν � µ, if
∀E ∈M :µ(E) = 0 =⇒ ν(E) = 0.

In order to achieve the continuous case that will be used during the
following chapters, the integral of a non-negative measurable function f

concerning a measure µ is depicted, which is called expectation or expected
value and is defined as
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Definition 19. Let (X,M, µ) be a probability space and f be a measurable func-
tion of X , then the expectation of f over X is

Eµ[f(x)] =

∫
X
f(x)dµ =

∫
X
f(x)µ(dx),

The right-hand side consists of a Lebesgue-Stieljes integration, cover-
ing discrete, continuous and mixed cases. In addition the Kullback-Leibler
divergence (also known as relative entropy) can be represented as

Definition 20 (Relative entropy, Kullback–Leibler divergence). Let the mea-
sures P and Q having a common measurable space (X,M), then

D(P ||Q) =


∫

log fdP =
∫
f log fdQ, if P � Q,

∞, if P is not absolutely continuous

with respect to Q.

Moreover, a Radon-Nikodym derivative f = dP/dQ exists.

Proof. See [KL51] and [Csi92] for details. More information about Radon-
Nikodym derivative in [May79].

It may be noticed that the relative entropy depicts the distance between
two probability measures and is non-negative. However it is not generally
symmetric under the positions of P and Q, i.e. D(P ||Q) 6= D(Q||P ). As a
consequence, it does not satisfy the triangle inequality (i.e., for any two real
numbers x and y, |x + y| ≤ |x| + |y|), restricting its use as a metric. To rep-
resent the discrete relative entropy, consider P and Q as discrete measures,
such that P � Q and then the Radon-Nikodym derivative dP/dQ guaran-
tees the existence of probability mass functions p(x) and q(x), concluding
the discrete case. In turn, if P and Q are probability measures on X and
are absolutely continuous with respect to µ, then the probability density
functions p and q exist, yielding

D(P ||Q) = EQ [f log(f)] =

∫
f log(f)dQ (3.3)

=

∫
dP

dQ
log

(
dP

dQ

)
dQ

=

∫
p(x) log

(
p(x)

q(x)

)
dµ,

where the expected value is presented in Definition 19.

Property 11. Let two probability density functions p and q, then

D(p||q) ≥ 0
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Proof.

D(p||q) =

∫
p(x) log

p(x)

q(x)
dx

= Ep
[
log

(
p(x)

q(x)

)]
= Ep

[
− log

(
q(x)

p(x)

)]
≥ − logEp

[
q(x)

p(x)

]
= − log

∫
p(x)

q(x)

p(x)
dx

= − log

∫
q(x)dx

= − log 1

= 0,

where the Jensen’s inequality is used [Kuc09, Section 8.1].

Definition 21 (Mutual information [Bak79]). Let (X,M) and (Y,F) be mea-
surable spaces, µXY a probability measure on the product spaceM×F , in addi-
tion, µX and µY the projections of µXY . µX(E1) = µXY (E1 × Y ); µY (E2) =

µXY (X × E2) and µX ⊗ µY is the product measure. Then, if µXY � µX ⊗ µY ,
the mutual information is defined as

I(µXY ) ,
∫
X×Y

log

[
dµXY

dµX ⊗ µY
(x, y)

]
dµXY (x, y),

and I(µXY ) =∞ otherwise.

Corollary 3. Suppose X and Y be two continuous random variables with joint
probability density function p(x, y) and marginal probability density p(x) and
p(y) respectively. Then, the mutual information I(X,Y ) is

I(X;Y ) = D (p(x, y)||p(x)p(y))

=

∫
Y

∫
X
p(x, y) log

[
p(x, y)

p(x)p(y)

]
dxdy.

Definition 22 (Differential entropy). The entropy is defined as the mutual in-
formation between a random variable X and itself, yielding

h(X) = I(X;X),

= −
∫
X
p(x) log(p(x))dx

which is possible to see in the form I(X,X) = h(X)− h(X|X) = h(X),
because h(X|X) = 0 for any r.v. X . In fact, it extends the Definition 15
to the continuous case. This seems to be similar to the discrete Shannon
entropy, but differs since it can be positive or negative.
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Property 12. The differential entropy is invariant to translation, as such

h(X + c) = h(X).

This property follows directly from the definition.

Property 13. Let X be a continuous random variable, then the scaling property of
a differential entropy can be written as

h(aX) = h(X) + log(|a|),

in which a 6= 0.

Definition 23 (Weak convergence [LW14]). Let {µn}n∈N be a sequence of prob-
ability measures on (X,M). Then, µn converges weakly to a probability measure
µ on (X,M), written as µn ⇒ µ, if∫

fdµn →
∫
fdµ,

∀f ∈ Cb(X), whereCb(X) denotes the set of all continuous and bounded functions
f : X → R.

We preset the concept of tightness as follow

Definition 24 (Tightness [Bil99]). Let a probability measure µ on (R,B(R)). It
is called tight if for each ε there exists a compact set Kε such that µ(Kε) > 1− ε.

Definition 25 (Weakly closed [LVG12]). Let X be a normed linear space. A set
E ⊂ X is said to be weakly closed in X if all its weak limit points are in E. Thus
if {µn}n∈N ⊂ E, then µn ⇒ µ0 ∈ X implies x0 ∈ E.

Theorem 3 (Portmanteau theorem [Bil99]). For probability measures {µn}n∈N,
µ on (R,B(R)), the following statements are equivalent:

•
∫
fdµn →

∫
fdµ, for all f ∈ Cb(X); i.e. µn ⇒ µ.

• lim infn→∞ ≥
∫
fdµ, for every lower semicontinuous f bounded from be-

low.

3.1.2 Additive Gaussian Noise Channels Capacity

In this section, the emblematic expression created in 1948 in Shannon’s pub-
lication [Sha48] is revisited. The importance of this derivation for our fur-
ther study remains on the use of two features, namely, the stability property
and variance finiteness. The former allows the sum of two i.i.d. stable dis-
tributions and, consequently, of normal distributions and will be revisited
in future chapters when deriving new achievable bounds. The latter is a
limiting factor in α-stable models.



3.1. Problem formulation and related works. 43

The result arises in the case that N is a Gaussian noise, so that with a
channel input X , the channel output is

Y = X +N, (3.4)

where the noise is independent of X . In fact, it can be shown that a Gaus-
sian distribution for X allows to reach the maximum mutual information
I , so called the capacity, which can be written as the following Shannon’s
formula

C =
1

2
log2

(
1 +

P

σ2
N

)
in bit/s/Hz, (3.5)

in which the average power is P = σ2 = E[X2] and the noise power
σ2
N = E[N2]. The equation (3.5) gives the maximum rate that a transmission

can be reliable over a noisy communication channel containing a Gaussian
noise, which leads to the following definition

Definition 26. The capacity of the channel is described as the supremum of the
achievable rates. A rate R is called achievable for a Gaussian channel containing
a power constraint P if there exists a sequence of (2nR, n) codes with codewords
containing the appropriate constrained power such that the maximal probability of
error ε(n) → 0.

For more details see [CT06, Theorem 7.7.1].
The classical derivation assumes a maximal rate C = supX I(X;Y ) bits

per sample. As a result, we address in this section the solution of the fol-
lowing optimization problem

sup
fX(x)

I(X;Y )

subject to fX(x) = 1;∫
R

(x−m)2fX(x)dx ≤ σ2, (3.6)

considering X any r.v., fX(x) its probability density function and m is the
mean E[X]. The first constraint

∫
fX(x)dx = 1 is necessary to explicitly

guarantee the probability support. X has a finite mean power, such that
E[(X − E[X])2] ≤ σ2 < +∞ forms the second constraint.

The demonstration is in two steps: first, the random variable with finite
second order moments that leads to the entropy maximization is presented.
In the second part, the result is applied to show that the capacity will be ob-
tained with a Gaussian source which allows reaching capacity in an explicit
form.
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Proof - Step 1

In this section we address the optimization of the entropy ofX , as following

arg sup
fX(x)

h(X)

subject to fX(x) = 1;∫
R

(x−m)2fX(x)dx ≤ σ2, (3.7)

where a continuous source fX(.) is assumed, so that its entropy is given by
h(X) = −

∫
< fX(x) log2(fX(x))dx (see Definition 22, page 41). In order to

solve the optimization problem, the first derivation part is written using the
Lagrange Function [Ber99] with two constraints, constructed as

Φ(fX(x), λ1, λ2) = h(x) + λ1

(∫
<
fX(x)dx− 1

)
+ λ2

(∫
<

(x−m)2 fX(x)dx− σ2

)
= −

∫
<
fX(x) log2(fX(x))dx+ λ1

(∫
<
fX(x)dx− 1

)
+ λ2

(∫
<

(x−m)2 fX(x)dx− σ2

)
,

(3.8)

where λ1 and λ2 are the Lagrange multipliers.
In order to maximize the previous Lagrange function, the derivative

given by

dΦ(fX(x), λ1, λ2)

dfX(x)
= − ln(fX(x))− log2(e) + λ1 + λ2 (x−m)2 (3.9)

Next, letting this derivative be zero, yields

fX(x) = exp−
{

log2(e) + λ1 + λ2 (x−m)2
}

= exp

{
−1 +

λ1 + λ2 (x−m)2

log2(e)

}
. (3.10)

With the help of the two constraints, the equation can be rearranged.
Firstly, a bound for the probability density function is applied as
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• using
∫
< fX(x)dx = 1,

∫
<
fX(x)dx = exp

{
−1 +

λ1

log2(e)

}∫
<

exp

{
λ2 (x−m)2

log2(e)

}
dx

it is necessary λ2 < 0 and setting u =

√
−λ2

π log2(e)
(x−m)

= exp

{
−1 +

λ1

log2(e)

}√
−π log2(e)

λ2

∫
<

exp
{
−πu2

}
du

= exp

{
−1 +

λ1

log2(e)

}√
−π log2(e)

λ2
= 1, (3.11)

where
∫
< exp

{
−πu2

}
du is the Gaussian integral. Consequently

exp

{
−1 +

λ1

log2(e)

}
=

√
− λ2

π log2(e)
(3.12)

In turn, the variance is replaced as following

• using
∫
<(x−m)2fX(x)dx = σ2:∫
<

(x−m)2fX(x)dx = exp

{
−1 +

λ1

log2(e)

}
∫
<

(x−m)2 exp

{
λ2 (x−m)2

log2(e)

}
dx

= exp

{
−1 +

λ1

log2(e)

}√
2π

(
log2(e)

−2λ2

) 3
2

= σ2. (3.13)

Consequently

exp

{
−1 +

λ1

log2(e)

} √
π

2

(
log2(e)

−λ2

) 3
2

= σ2. (3.14)

From (3.12) and (3.14), we can get√
− λ2

π log2(e)

√
π

2

(
log2(e)

−λ2

) 3
2

= σ2 (3.15)

Then
λ2 = − log2(e)

2σ2
. (3.16)

From (3.12) and (3.16), yields

exp

{
−1 +

λ1

log2(e)

}
=

√
1

2πσ2
(3.17)
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Finally, applying to (3.10), we have

fX(x) = exp

{
−1 +

λ1

log2(e)

}
exp

{
λ2 (x−m)2

log2(e)

}

=

√
1

2πσ2
exp

{
− log2(e)

2σ2

(x−m)2

log2(e)

}

=

√
1

2πσ2
exp

{
−(x−m)2

2σ2

}
, (3.18)

which is exactly a Gaussian distribution with variance σ2.

Step 2

In order to demonstrate that the mutual information is maximized when
using an input induced by a Gaussian distribution, one may notice that
I(X;Y ) = h(Y )−h(Y |X) = h(Y )−h(X +N |X) = h(Y )−h(N) due to the
independence of noise and input. It is clear that I(X;Y ) is maximized (over
Pr(X)) if h(Y ) is maximized, knowing that I(X;Y ) ≥ 0 (see Property 11,
page 40, and Corollary 3, page 41).

Recall that the channel output presented in (3.4) is formulated as Y =

X +N , where N is assumed Gaussian and denoted by N (m,σ2
N ). By (3.7),

h(Y = X + N) is maximized by a Gaussian distribution. Consequently, X
has to be also Gaussian due to the stability property, which indicates that the
sum of two i.i.d normal random variables is normally distributed [Wal96,
Section 34.5].

For this result, assume h(X) = h(φ(x)) the entropy of a Gaussian distri-
bution as follow

h(φ(x)) =

∫
φ(x) log2 (φ(x)) dx

=

∫
φ(x) log2

(
1

2πσ2
exp

(
−(x− µ)2

2σ2

))
dx

=
1

2
log2

(
2πσ2

) ∫
φ(x)dx+

1

2σ2 ln(2)

∫
(x− µ)2φ(x)dx

=
1

2
log2

(
2πσ2

)
+

log2(e)

2

=
1

2
log2

(
2πeσ2

)
. (3.19)

To conclude the proof, we can now calculate the capacity of the Gaussian
channel given by X ∼ N (0, P ) and N ∼ N (0, σ2

N ). Then, as X and N are
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independent, we obtain var(Y ) = var(X +N) = P + σ2
N . Finally:

I(X,Y ) = h(Y )− h(N)

=
1

2
log2

(
2πe(P + σ2

N )
)
− 1

2
log2

(
2πeσ2

N

)
=

1

2
log2

(
2πe(P + σ2

N )

2πeσ2
N

)
=

1

2
log2

(
1 +

P

σ2
N

)
, (3.20)

and the capacity problem is solved analytically.
The demonstration is important to understand that the Gaussian noise

is, in fact, an exception in the continuous distributions. The finiteness of the
second order moment helps to achieve the result, which is not always the
case when using α-stable models to impulsive noise as will be clear in the
following section.

3.2 Additive α-stable Noise Channels Capacity

A proposed model for interference is via the symmetric α-stable distri-
butions. This approach leads to the additive symmetric α-stable noise
(ASαSN ) channel given by

Y = X +N, (3.21)

where the noise is distributed according to the symmetric α-stable distribu-
tion.

The difficulty in characterizing the capacity of ASαSN channels is in
part due to the fact that a power constraint E[X2] ≤ P is typically imposed
and, unlike the Gaussian case, the second moment of α-stable distributions
is infinite for α < 2. As such, even lower bounds are challenging since the
stability property of α-stable random variables cannot be applied. Com-
bined with the fact that the only analytical results for the capacity due to
Fahs and Abou-Faycal were obtained using different constraints, this sug-
gests that a more appropriate approach is to modify the constraint.

From a practical perspective, adopting non-second order constraints can
be motivated in both wireless and molecular communication systems. In
wireless networks, there are generally both amplitude [OU11; RQZ05] and
power constraints; however, it is common practice in the presence of Gaus-
sian noise to relax the amplitude constraint in order to obtain a tractable rate
expression and gain design insights. A similar approach is also possible in
the ASαSN channel, where a fractional moment constraint is considered
and the amplitude constraint is relaxed. In the case of the molecular timing
channel, information is encoded into the time a molecule is released. As
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such, a first-order constraint is natural and has been studied under various
noise models in [SEA12; LMG14].

In this chapter, we adopt the constraint

E[|X|] ≤ c, c > 0. (3.22)

A key feature of our choice of the constraint is to obtain a new, tractable
upper and lower bounds for the capacity of the ASαSN channel with α in
(1, 2]. In particular, we show that the capacity is lower bounded by

C ≥ 1

α
log2

(
1 +

(
c

E[|N |]

)α)
, (3.23)

obtained by matching the input and noise distributions.
We investigate the tightness of our bounds by numerically approximat-

ing the capacity using the Blahut-Arimoto algorithm [Ari72; Bla72], which
provides evidence that our lower bound is, in fact, very tight for α near
2 (α = 2 corresponds to the Gaussian noise channel). This is important
as our lower bound is easy to work with, facilitating further analysis and
optimization.

The remainder of this section is organized as follows. In Section 3.2.1,
we define the capacity optimization problem. In Section 3.2.2, we prove
existence and uniqueness of the optimal input distribution, and we derive
upper and lower bounds on the capacity. In Section 3.2.5, we numerically
compute the capacity using the Blahut-Arimoto algorithm and make a com-
parison with our upper and lower bounds. To do this, we provide parame-
ters that yield accurate approximations within ≈ 0.01 bits. In Section 3.2.6,
more properties regarding the lower bounds are depicted, such as the bend-
ing point and the parametrization choice.

3.2.1 Problem Formulation

The channel considered is additive with symmetric α-stable noise,N , given
by (3.21). We constraint our study in this chapter to real case, X and N are
real valued, and symmetric α-stable distributions with 1 < α < 2. In that
case, we remind that the characteristic function given by

φN (t) = E[eiNt]

= exp (−γα|t|α) , t ∈ R. (3.24)

As can be observed, the characteristic function is defined by only two pa-
rameters, the exponent α, restricted in the interval (1, 2], and the dispersion
γ.
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Capacity Optimization Problem

Let B(R) be the Borel σ-algebra on R and let P denote the collection of Borel
probability measures on (R,B(R)) equipped with the topology of weak con-
vergence (see Definition 23, page 42). We define the capacity of theASαSN
channel as the solution to the following optimization problem.

maximize
µ∈P

I(X;Y )

subject to Eµ[|X|] ≤ c,
(3.25)

where I(X;Y ) is the mutual information of the channel in (3.21), and µ is
the probability measure of X . If it exists, we denote the probability density
function of X as pX and the probability density function of Y as pY (·;µ),
which is parameterized by the input probability measure µ.

In the following section, we show this choice for the constraint in (3.25)
leads to tractable upper and lower bounds, unlike other standard choices
such as E[X2] ≤ P .

3.2.2 Properties of the Capacity

In this section, we prove several properties of the capacity defined by
(3.25). To begin, we show that there exists a unique solution to (3.25). This
forms the basis for new upper and lower bounds, which we derive in Sec-
tions 3.2.2 and 3.2.2, respectively.

Existence and Uniqueness

Denote Λ(c) as the set of probability measures µ with support R, such that
Eµ[|X|] ≤ c. We first prove that the capacity achieving distribution µ∗ exists.
To do this, we need to show that Λ(c) is compact in P . In turn, if I(X;Y ) is
continuous on Λ(c), the extreme value theorem then implies that the mutual
information achieves its supremum on Λ(c).

We first need to show that I(X;Y ) is continuous on Λ(c).

Theorem 4. I(X;Y ) is continuous on Λ(c).

Proof. Suppose µk ⇒ µ, which means that µk converges to µ weakly. Now,
the mutual information I(Xk;Xk+Z), where Z ∼ Sα(γ, 0, 0) can be written
as

I(Xk;Xk + Z) = h(Xk + Z)− h(Xk + Z|Xk)

= h(Xk + Z)− h(Z). (3.26)

Note that h(Z) is bounded, which follows by applying Property 4 (page 24).
It also means that I(Xk;Xk + Z) is bounded by using the condition that
Eµk [|Xk|] ≤ c for all µk ∈ Λ(c) and applying the following lemma [WV12,
Lemma 3]
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Lemma 2. Let Z have a density with h(Z) > −∞. Let ψ : R≥0 → R be an
increasing continuous function that satisfies the following conditions:

1.
∫
R≥0

exp{−ψ(x)}dx <∞

2. For any 0 ≤ λ ≤ 1, there exists aλ, bλ, cλ ≥ 0, such that
ψ(λx+ (1− λ)y) ≤ aλψ(x) + bλψ(y) + cλ, ∀x, y ≥ 0

If E[ψ(|X|)] <∞ and E[ψ(|Z|)] <∞

then

1. I(X,Z, snr) = I(X;
√

snrX + Z) <∞ for all snr ≥ 0;

2. snr 7→ I(X,Z, snr) is continuous on R≥0.

Now consider

lim
k→∞

h(Xk + Z) = − lim
k→∞

∫ ∞
−∞

pYk(x) log pYk(x)dx. (3.27)

Since I(Xk;Xk +Z) and h(Z) are bounded, it follows that h(Xk +Z) is also
bounded.

Let Yk = Xk + Z. Then,

pYk(x) =

∫ ∞
−∞

pZ(x− y)µk(dy). (3.28)

In addition, we present the dominated convergence theorem given by

Theorem 5 (Lebesgue dominated convergence theorem [BR95]). Suppose
fn : R → [−∞,∞] are (Lebesgue) measurable functions such that the pointwise
limit f(x) = limn→∞ fn(x) exists. Assume there is an integrable g : R→ [0,∞]

with |fn(x)| ≤ g(x) for each x ∈ R. Then f is integrable as is fn for each n, and

lim
n→∞

∫
R
fndµ =

∫
R

lim
n→∞

fndµ =

∫
R
fdµ.

By applying the dominated convergence theorem, we can swap the in-
tegral and the limit. Analyzing (3.27), this means that to prove the desired
result, we need to use (3.28) to show that

lim
k→∞

∫ ∞
−∞

pZ(x− y)µk(dy) =

∫ ∞
−∞

pZ(x− y)µ(dy). (3.29)

To do this, note that pZ is bounded and continuous, since the probability
density function of SαS random variables is absolutely continuous. Ap-
plying the definition of weak convergence (see Definition 23, page 42) then
concludes the proof.

We now turn to showing that Λ(c) is compact in P .

Theorem 6. The set of probability measures Λ(c) is compact in the topology of
weak convergence. Moreover, the capacity achieving probability measure µ∗ exists.
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Proof. By Prokhorov’s theorem, Λ(c) is compact if it is tight (see Defini-
tion 24, page 42) and closed (see Definition 25, page 42) in the topology of
weak convergence [Bil99; Sha11]. Now, to see that Λ(c) is tight, observe that
for any ε > 0, there exists an aε > 0 such that for all µ ∈ Λ(c),

Pr(|X| ≥ aε) ≤
Eµ[|X|]
aε

≤ c

aε
< ε (3.30)

by Markov’s inequality and the condition Eµ[|X|] ≤ c. Choose Kε =

[−aε, aε], then Kε is compact on R and µ(Kε) > 1 − ε for all µ ∈ Λ(c). As
such, Λ(c) is tight.

To show that Λ(c) is closed, let {µn}∞n=1 be a convergent sequence in
Λ(c) with limit µ0. Let f(x) = |x|, which is bounded below (i.e. f(x) ≥ 0),
continuous and, therefore, also lower semicontinuous. By the Portmanteau
theorem for weak convergence (see Theorem 3, page 42),

Eµ0 [|X|] =

∫ ∞
−∞

f(x)µ0(dx)

≤ lim inf
n→∞

∫ ∞
−∞

f(x)µn(dx) ≤ c. (3.31)

This means that µ0 ∈ Λ(c). As our choice of convergent sequence was
arbitrary, it follows that Λ(c) is closed. As such, Λ(c) is compact.

The existence of a probability measure µ is studied. We present the ex-
treme value theorem given by

Theorem 7 (The extreme value theorem). Suppose a function f(x) is continu-
ous on a compact interval [a, b]. Then f(x) attains both a maximum and minimum,
that is, there are points xmax and xmin in [a, b], so that for every other x ∈ [a, b],
f(xmin) ≤ f(x) ≤ f(xmax).

Using Theorem 4 (page 49), I(X;Y ) is continuous on Λ(c). As such,
by the extreme value theorem the capacity achieving probability measure µ
exists.

We now turn to the problem of showing that the capacity achieving
probability measure is unique.

Theorem 8. The capacity achieving probability measure µ∗ on Λ(c) is unique.

Proof. By [LMG14], the mutual information is concave. Then the input-
output mutual information I(X;Y ) of the ASαSN channel is concave in
Λ(c).

To prove strict concavity, we use the same approach as [LMG14] and
show that if µ0, µ1 both achieve the maximum, then µ0, µ1 are identical.
This is implied if

Eµ0 [pN (y − x)] = pY (y;µ0) = pY (y;µ1) = Eµ1 [pN (y − x)],∀y. (3.32)
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Let φN (t) be the characteristic function of N ∼ Sα(γ, 0, 0) and φµ(t) be the
characteristic function of the probability measure µ. As N and µ are inde-
pendent, the characteristic function can be written as φN+µ(t) = φN (t)φµ(t).
Moreover, the Lévy continuity theorem is given by

Theorem 9 (Lévy’s Continuity Theorem on R). Let (µn)n∈N be a sequence of
probability measures on R, with characteristic functions (φn)n∈N. If µn ⇒ µ, then
φn converges pointwise to φ (the characteristic function of µ), that is, lim

n→∞
φn = φ.

Conversely if φn converges pointwise to a function φwhich is continuous at 0, then
φ is the characteristic function of a probability measure µ, and µn ⇒ µ.

Then, by applying the above theorem, pY (y;µ0) = pY (y;µ1) is equiva-
lent to φN (t)φµ0(t) = φN (t)φµ1(t). Since the characteristic function φN (t) is
non-zero for all t (see (3.24)), this implies µ0 = µ1; completing the proof.

We remark that in [FAF16], Fahs and Abou-Faycal have recently estab-
lished a general method for proving that the support of the optimal input
is compact and finitely supported for additive noise channels. In particular,
in [FAF16, Theorem 9], they show that this result applies to moment con-
straints of the form E[|X|r] ≤ c, 0 < r < α. Therefore, the optimal input
exists, unique, compact and finitely supported.

Lower Bound

We now turn to obtain a lower bound of the capacity obtained from (3.25).
We get inspired by the Gaussian case. The stability property is needed to
derive the explicit form of the capacity. Our idea is to use as an input an α-
stable distribution, showing the same α exponent. In that case, the resulting
output is also α-stable and we are able to obtain an analytical expression of
the achievable rate, which, indeed, is a lower bound of the capacity.

We compute the mutual information when the input distribution is the
same as the noise, up to the scale and location parameters; in particular,
the characteristic exponent α ∈ (1, 2] is the same for both the noise and the
input distribution. This yields a closed-form expression, as we show in the
following theorem.

Theorem 10. The capacity of the ASαSN channel with N ∼ Sα(γ, 0, 0) with
1 < α < 2 is lower bounded by

C ≥ 1

α
log2

(
1 +Mα

(
c

γN

)α)
, (3.33)

where

Mα =

(
π

2Γ
(
1− 1

α

))α , (3.34)
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Proof. Let X ∼ Sα(γX , 0, 0) and γX ∈ R>0. Consider the random variable
U ∼ Sα(1, 0, 0). By the scaling and translation properties of α-stable ran-
dom variables (Corollary 1, page 23, and Property 3, page 24), we can write

X
d
= γXU

N
d
= γNU. (3.35)

Moreover, by Property 1,

Y = X +N ∼ Sα((γαX + γαN )
1
α , 0, 0) (3.36)

and hence

Y
d
= γY U, (3.37)

where γY = (γαX + γαN )
1
α .

The mutual information is then given by

I(X;Y ) = h(Y )− h(Y |X)

= h(γY U)− h(γNU)

= h(U) + log2(γY )− h(U)− log2(γN )

= log2

(
(γαX + γαN )

1
α

γN

)

= log2

((
γαX + γαN
γαN

) 1
α

)

=
1

α
log2

(
1 +

γαX
γαN

)
=

1

α
log2

(
1 +

(
γX
γN

)α)
=

1

α
log2

(
1 +

(
cπ

2γNΓ
(
1− 1

α

))α) , (3.38)

where we used Property 5 (page 24) and the constraint E[|X|] ≤ c.

Remark 3. Observe that by applying Property 5 (page 24) to γN in our lower
bound in Theorem 10 yields (3.23).

Remark 4. Differently from the Gaussian case, the stable distribution does not
maximize the entropy with a fractional lower or absolute moment constraint, so
that the lower bound differs from the capacity.

Upper Bounds

Denote W (·|x) as the channel law corresponding to the random variable
Z = x + N, x ∈ R, which is absolutely continuous since the noise, N , is
absolutely continuous. Let R(·) be any absolutely continuous probability



54 Chapter 3. Capacity of Additive α-Stable Noise Channels

measure on R, with corresponding probability density function pR. Since
the alphabet of the input and output is R, which is separable1, we can apply
Theorem 5.1 in [LM03]. This provides a means of obtaining an upper bound
on the capacity by choosing any absolutely continuous probability measure
R(·), which is given by

C ≤
∫ ∞
−∞

D(W (·|x)||R(·))dµ∗, (3.39)

whereD(·||·) is the Kullback-Leibler divergence (see Definition 20, page 40)
and µ∗ is the optimal input measure. By the results in Section 3.2.2, µ∗ exists
and is unique; however, there is no explicit characterization of µ∗ beyond
its existence and uniqueness.

Since W (·|x) and R admit absolutely continuous probability density
functions w.r.t the Lebesgue measure, we can write

C ≤ Eµ∗
[∫ ∞
−∞

pZ(y) log2

(
pZ(y)

pR(y)

)
dy

]
. (3.40)

As such, the key problem is to choose an appropriate measure R on the
output. We consider two choices, in order to find tight bounds, which each
lead to a tractable upper bound on the capacity. As we will show in Sec-
tion 3.2.3, the first bound is tighter when c is small, while the second bound
is tighter when c is large. The distributions that we use to obtain tractable
upper bounds are given by:

(i) The Laplace distribution, with probability density function

pRS (y) =
λ

2
exp(−λ|x|), (3.41)

where λ > 0 is a free parameter to be chosen.

(ii) The polynomial distribution, with probability density function

pRP (x) =

{ cx0
|x| , |x| ≤ x0
cx0

1+|x| , |x| > x0,
(3.42)

where x0 > 0 and cx0 is chosen to normalize the density function.

Our choices of the two distributions are informed by known proper-
ties of symmetric α-stable random variables. In particular, we seek to ex-
ploit the properties detailed in Section 2.4.1; namely, the fractional moment
and asymptotic probability density expressions. These properties provide a
means of obtaining closed-form upper bounds, as we show in Theorems 11
and 12.

Our first upper bound is obtained from the choice of the Laplace distri-
bution.

1A topological space is separable if it contains a countable, dense subset. Since R contains
Q, it follows that R is separable since every point in R is a limit point of Q.
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Theorem 11. The solution to (3.25) is upper bounded by

C ≤ log2

(
2Γ
(

1
α

)
λγNαπ

)

+ (log 2)−1λ

(
2γNΓ

(
1− 1

α

)
π

+ c

)
. (3.43)

Proof. By (3.39), the capacity is upper bounded by

C ≤ (log 2)−1Eµ∗
[∫ ∞
−∞

pZ(y) log

(
pZ(y)

pRS (y)

)
dy

]
. (3.44)

Using Property 4 (page 24) yields

C ≤ (log 2)−1 log

(
2Γ
(

1
α

)
λγNαπ

)

+ (log 2)−1λEµ∗
[∫ ∞
−∞

pZ(y)|y|dy
]

= log2

(
2Γ
(

1
α

)
λγNαπ

)

+ (log 2)−1λEµ∗
[∫ ∞
−∞

pN (y)|y +X|dy
]
. (3.45)

Applying the triangle inequality (i.e., for any two real numbers x and y,
|x+ y| ≤ |x|+ |y|), then gives

C ≤ log2

(
2Γ
(

1
α

)
λγNαπ

)
+ (log 2)−1λ (E[|N |] + Eµ∗ [|X|]) . (3.46)

Finally, from from Property 5 (page 24)

C ≤ log2

(
2Γ
(

1
α

)
λγNαπ

)

+ (log 2)−1λ

(
2γNΓ

(
1− 1

α

)
π

+ c

)
. (3.47)

We now turn to proving a second approximate upper bound, obtained
by using the polynomial distribution on the output. As we show in the
following sections, this result forms a tighter approximation to the Blahut-
Arimoto numerical capacity calculation than our first upper bound for large
values of c.
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Theorem 12. Let x0 > 1. The capacity satisfies the following approximate upper
bound

C / log

(
Cαx

−α−1
0

cx0
(1 + EN [|N |] + c) +

Γ(1/α)

απγcx0
[EN [|N |] + c]

)
, (3.48)

where / denotes asymptotically less than.

Proof. By (3.39), the capacity is upper bounded by

C ≤ Eµ∗
[∫ ∞
−∞

pZ(y) log

(
pZ(y)

pRP (y)

)
dy

]
≤ log

(
Eµ∗

[∫ ∞
−∞

pZ(y)
pZ(y)

pRP (y)
dy

])
, (3.49)

where we applied Jensen’s inequality twice. Now, let

pRP (x) =

{ cx0
1+|x| , |x| ≤ x0
cx0
|x| , |x| > x0,

(3.50)

where cx0 is chosen so that pRP (x) is normalized to one. Recall that x0 > 1.
Now,

C ≤ log

(
Eµ∗

[∫
|z|>x0

pN (z)
pN (z)

pRP (z + x)
dz

]

+Eµ∗
[∫
|z|≤x0

pN (z)
pN (z)

pRP (z + x)
dz

])

/ log

(
Eµ∗

[∫
|z|>x0

pN (z)
Cα|z|−α−1

pRP (z + x)
dz

]

+Eµ∗
[∫
|z|≤x0

pN (z)
Γ(1/α)

απγpRP (z + x)
dz

])
, (3.51)

where we applied the asymptotic tail representation in Property 6 (page 24),
from which Cα arises.

Replacing pRP (z + x) in the second integral by its expression in (3.42)
and applying the triangle inequality becomes

C / log

(
Eµ∗

[∫
|z|>x0

pN (z)Cα|z|−α−1

pRP (z + x)
dz

]

+Eµ∗
[∫
|z|≤x0

pN (z)Γ(1/α)(|z|+ |x|)
απγcx0

dz

])

/ log

(
Eµ∗

[∫
|z|>x0

pN (z)Cα|z|−α−1

pRP (z + x)
dz

]

+
Γ(1/α)

απγcx0
[EN [|N |] + Eµ∗ [|X|]]

)
. (3.52)
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We note that

Eµ∗
[∫
|z|>x0

pN (z)Cα|z|−α−1

pRP (z + x)
dz

]

= Eµ∗
[∫
|z|>x0

pN (z)Cα(1 + |z + x|)|z|−α−1

cx0
dz

]

≤ Eµ∗
[∫
|z|>x0

pN (z)Cα(1 + |z + x|)x−α−1
0

cx0
dz

]

≤ Cαx
−α−1
0

cx0
(1 + EN [|N |] + Eµ∗ [|X|]) , (3.53)

where the triangle inequality was again applied in order to produce the
expected values.

Putting it all together, we have

C / log

(
Cαx

−α−1
0

cx0
(1 + EN [|N |] + Eµ∗ [|X|])

+
Γ(1/α)

απγcx0
[EN [|N |] + Eµ∗ [|X|]]

)
. (3.54)

Note that when x0 → ∞, our approximate bound is in fact an upper
bound. We remark that this is an asymptotic approximation and other val-
ues may not hold. This is due to the fact that we used the asymptotic tail
representation of α-stable probability density functions from Property 6
(page 24). Despite this, Fofack and Nolan [FN99] have numerically shown
that polynomial tails are a very good approximation of the tail as can be
seen in Fig. 2.9.

We also remark that another variation on the Lapidoth-Moser bound
[LM03] yields an alternative method to upper bound the capacity, which
corresponds to the dual problem [BV04] for the capacity. In particular, the
capacity can be upper bounded by

C ≤ min
γ≥0

max
x∈R

[D(W (·|x)||R(·)) + γ(c− E[|X|])]. (3.55)

This bound has been investigated by Katz and Shamai [KS04] in the con-
text of non-coherent and partially coherent AWGN channels. However, in
our case the optimization problem is challenging due to the fact that the
channel law is not available in closed-form. As such, the bound cannot
be obtained in closed-form and numerical methods are required. In the
following section, we numerically study the ASαSN channel capacity via
the Arimoto-Blahut algorithm, which has the advantage over the Katz and
Shamai approach that the algorithm converges to the capacity as the chan-
nel law approximation converges to the stable channel law.
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3.2.3 Numerical Analysis

In this section, we study numerical properties of the capacity optimization
problem in (3.25). In particular, we consider a numerical approximation of
the capacity using a variation of the Blahut-Arimoto algorithm. In contrast
with [WKZ11], our numerical study considers the constraint E[|X|] ≤ c,
rather than an average power constraint. Our key result is a set of guide-
lines for the choice of support size of the noise and input signal distri-
butions in order to ensure that the error in the capacity obtained via the
Blahut-Arimoto algorithm is less than approximately 0.01 bits.

Numerical Capacity Approximation Algorithm

The Blahut-Arimoto algorithm provides a means of numerically approxi-
mating the capacity of a discrete memoryless channel in the case of an input
with discrete and bounded support. To approximate the capacity in (3.25),
the variant of the algorithm for the capacity with constraints is required
[Bla72, Section IV].

In this section, we provide details of our variation on the Blahut-
Arimoto algorithm. These details are important as our discussion in Sec-
tion 3.2.4 is only guaranteed to apply for our particular algorithm.

In the ASαSN channel, the support of the noise density is not discrete
and bounded. As such, it is necessary to approximate the noise with a ran-
dom variable with discrete and bounded support. More precisely, we con-
sider the channel

Y = XXmax,hX +NNmax,hN , (3.56)

where the random variable XXmax,hX has support SX = hXZ ∩
[−Xmax, Xmax] and NNmax,hN has support SN = hNZ ∩ [−Nmax, Nmax],
where hN and hX are the step sizes of the supports. The probability mass
function of NNmax,hN is obtained by discretizing the absolutely continuous
density of the α-stable distributed noise, N , and the channel law is denoted
by Q(·|x).

The corresponding optimization problem for the capacity of the channel
in (3.57) with constraint E[|XXmax,hX |] ≤ c is then

maximize
q∈Q

m∑
i=1

n∑
j=1

q(xi)Q(yj |xi) log2

(
Q(yj |xi)q(xj)
p(yi)q(xj)

)

subject to
m∑
i=1

|xi|q(xi) ≤ c,
(3.57)

where m = |SX |, n = |SN |, and Q is the set of probability mass functions
on SX .
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To obtain the solution, Capprox, to (3.57), the key observation due to
Blahut and Arimoto [Bla72; Ari72] is that

Capprox = max
q:
∑m
i=1 |xi|q(xi)≤c

max
Φ

J(q,Φ), (3.58)

where

J(q,Φ) =

m∑
i=1

n∑
j=1

q(xi)Q(yj |xi) log2

(
Φ(xi|yj)
q(xi)

)
(3.59)

and Φ is an arbitrary m× n transition probability matrix. The approximate
capacity is then obtained by alternating between the maximization prob-
lems, which leads to Algorithm 12.

Algorithm 1 Computation of the approximate capacity in (3.57).

Initialize:
(1) Set r(0)(x) = 1

|SX | .
(2) Set C0 = 0, C−1 = −2ε.
while Cn − Cn−1 > ε do

Compute:
(1) Cn−1 = Cn.
(2) Q(n)(x|y) = r(n−1)(x)P (y|x)∑m

x=1 r
(n−1)(x)P (y|x)

.

(3) Cn =
∑m

x=1

∑n
y=1 r

(n−1)(x)P (y|x)

log2

(
Q(n)(x|y)

r(n−1)(x)

)
.

Solve for ν such that
m∑
x=1

(
1− |x|

c

)
eν|x|

n∏
y=1

Q(n)(x|y)P (y|x) = 0. (3.60)

Compute:

r(n)(x) =
eν|x|

∏n
y=1Q

(n)(x|y)P (y|x)∑m
x′=1 e

ν|x′|∏n
y=1Q

(n)(x′|y)P (y|x′) . (3.61)

end while
return Cn.

3.2.4 Effect of the Support Size

To compute the capacity with the Blahut-Arimoto algorithm accurately
requires a good choice of the step size (hX , hN ) and support sizes
(Xmax, Nmax) in Algorithm 1. Moreover, an important question is whether
the output of the Blahut-Arimoto algorithm converges to the capacity as the
approximate channel law converges to the stable channel law. To see that
this holds, consider the following bound on the error which is justified in

2The Dekker algorithm [Bre73] is used to solve for ν in (3.60). An implementation of this
code is available at https://github.com/maurokenny/BlahutArimoto_brent
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[EPK17]

|C∗ − Capprox| ≤M |‖pN − pN,approx‖TV +

|o(‖pN − pN,approx‖TV )|, (3.62)

where M <∞ and

‖pN − pN,approx‖TV =
1

2

∫
R
|pN (x)− pN,approx(x)|dx, (3.63)

where ‖ · ‖TV is the total variation defined as

Definition 27. Let the measures P and Q having a common measurable space
(X,M), then the total variation is given by

sup
E∈M

|P (E)−Q(E)|.

As such, the Blahut-Arimoto algorithm approximation converges to the
capacity.

It is also possible to establish the rate of convergence. Suppose that there
is no discretization and the truncation level is T . Then, by [EPK17] the error
is of the order O(T−α).

To address the choice of hX and hN , Fig. 3.1 shows the support size
required to obtain the capacity for different choices of constraint value c
such that the error is approximately 0.01 with a step size of hX = hN = 0.01.
For reference, we used a support size of Nmax = 220. Observe that the
support size is increasing as the constraint increases.
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FIGURE 3.1: Plot of the support size required to ensure an
error in capacity of approximately 0.01 bits for each value of
the constraint, c, with γN = 1 and step size hX = hN = 0.01.
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3.2.5 Behavior of the Bounds and Numerical Approximation

In this section, we compare our bounds with the numerical approximation
obtained using the Blahut-Arimoto algorithm. We also investigate the be-
havior of the approximate capacity via the Blahut-Arimoto algorithm as the
ratio c

γN
varies. We then evaluate the tightness of our bounds and study the

effect of noise parameters.

On the Ratio c
γN

In the Gaussian channel with a power constraint, the capacity is determined
by the signal-to-noise ratio (SNR). In the case of the ASαSN channel, the
analogous quantity is the ratio c

γN
. As such, we can ask whether this ratio

plays a similar role to the SNR. To do this, we compare in Fig. 3.2 the nu-
merical approximation of the capacity when c varies with γN fixed, or when
γN varies with c fixed.

Observe that the curves agree when α is fixed, which shows that for the
choices of α in Fig. 3.2, c

γN
determines the capacity analogously to the role of

the SNR in the Gaussian channel with a power constraint. This observation
is consistent with our lower bound, which is also determined by the ratio
c
γN

; however, this is not the case for our upper bounds. We also note that
for different α values, this ratio is not sufficient and comparing different
ASαSN channels is not straightforward.
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FIGURE 3.2: Plot of the capacity with γN = 1 or c = 1 using
βN = 0, δN = 0.
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Effect of Noise Parameters on the Bounds

We now compare our bounds and the numerical capacity approximation
using Algorithm 1 for α = 1.9 and α = 1.1 in Fig. 3.3 and 3.4. Since we
observed from Fig. 3.2 that only the ratio c

γN
needs to be varied —not c

and γN separately— we only vary c and fix γN =
√

0.5. Regarding our
first upper bound, we assume λ = 0.1 in Theorem 11 (page 55), obtained
by a numerical search to optimize the tightness of the bound for a range
of choices of E[|X|]. We note that our second upper bound in Theorem 12
(page 55) is asymptotic, that holds as the parameter x0 → ∞, due to the
fact that the probability density function of a symmetric α-stable random
variable only has asymptotically polynomial tails (see Property 4, page 24).
As polynomial tails are a very good approximation of the tail, we consider
through an empirical approach the approximation of the bound, with x0 =

10 in (3.42).
Fig. 3.3 compares the bounds and the numerical approximation with

α = 1.9. Observe that the lower bound and the numerical approximation
are in very good agreement. Moreover, the gap between the lower and the
asymptotic upper bound from Theorem 12 (page 55) is about 1 bit. We also
observe that the upper bound based on the Laplace distribution in Theo-
rem 11 (page 55) is tighter than the upper bound from Theorem 12 for a
range of c between 5 and 10.

Fig. 3.4 compares the bounds and numerical approximation with α =

1.1. In this case, the lower bound and the numerical approximation are
within 2 bits for sufficiently large c. The gap between the asymptotic upper
bound from Theorem 12 and the numerical approximation is also within 2

bits.
Comparing the two figures, observe that increasing α leads to an in-

crease in the capacity. This is consistent with the results in [WKZ11], where
the second moment constraint E[X2] ≤ P was considered.

3.2.6 Further Properties of the Lower Bounds

So far, we have focused on characterizing the capacity arising from the opti-
mization problem in (3.25). In particular, we showed that our lower bound
in Theorem 10 (page 52) is a good approximation compared with the nu-
merical approximation in Section 3.2.3 for sufficiently large α.

In this section, we discuss the bend point property of the lower bound,
which is the behavior of the lower bound at medium c and the parametriza-
tion of the input distribution. The tractability of the lower bound means
that it is an attractive performance metric in settings based on the ASαSN
channel, and can play a role similar to the power constrained capacity in
settings based on the Gaussian channel.
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FIGURE 3.3: Comparison of capacity bounds and approxi-
mations with α = 1.9.
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Medium c Behavior

We now consider the behavior of the lower bound for medium c. As ob-
served in [Ega15] in the context of Gaussian noise channels, a fundamental
qualitative feature of the capacity curve in the medium SNR region is the
bend point. The bend point provides a means of quantifying the transition
from low to high SNR. This is defined for the ASαSN channel as follows.

Definition 28 (Bend point). Consider the capacity lower bound in Theorem 10
(page 52), given by

CLB =
1

α
log2

(
1 +Mα

(
c

γN

)α)
, (3.64)

where Mα is given by (3.34).
The bend point, cbend, is then the cdB = 10 log10 c such that the second deriva-

tive of (3.64) is maximized.

For the ASαSN channel, the bend point corresponds to the point on
the capacity lower bound curve where the rate of change of the slope is
maximized. As such, it can be viewed as the transition between high and
low c as the rate of change of the slope tends to zero as cdB → −∞, reaches
its maximum value at the bend point, and then tends to zero as cdB →∞.

An important observation in [Ega15] is that the bend point is intimately
related to the intersection of high and low SNR asymptotes in the capac-
ity of power constrained Gaussian channels. We now investigate the bend
point in the context of the ASαSN channel.

Theorem 13. The bend point is given by

cbend =
10

α
log10

(
γαN
Mα

)
. (3.65)

Proof. The third derivative of the lower bound in (3.33) in Theorem 10
(page 52) is given by

C ′′′LB =
Mα

(
α
10 log 10

)3
αγαN log 2

10αcdb/10
(

1− Mα
γαN

10αcdB/10
)

(
1 + Mα

γαN
10αcdB/10

)3

 , (3.66)

which satisfies C ′′′LB = 0 when cdB = 10
α log10

(
γαN
Mα

)
. Note also that the

second derivative of (3.33) is given by

C ′′LB =
Mα

(
α
10 log 10

)2
αγαN log 2

 10αcdB/10(
1 + Mα

γαN
10αcdB/10

)2

 , (3.67)

and is symmetric around cdB = 10
α log10

(
γαN
Mα

)
and decreasing for cdB >

10
α log10

(
γαN
Mα

)
, which proves the theorem.
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In Fig. 3.5, the second derivative of our lower bound CLB is plotted for
varying α and γN with β = 0 and δN = 0 fixed, where one may seem the
symmetry around the maximum point cbend.

-30 -20 -10 0 10 20 30 40

c
dB

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

C
L

B
''

=1.1, N
=1

=1.1, N
=3

=1.5, 
N

=1

=1.7, N
=1

maximum amplitude at c
dB

=10/1.1log
10

(1 1.1 /M
1.1

)

maximum amplitude at c
dB

=10/1.1log
10

(3 1.1 /M
1.1

)

maximum amplitude at c
dB

=10/1.5log
10

(1 1.5 /M
1.5

)

maximum amplitude at cdB
=10/1.7log

10
(1 1.7 /M

1.7
)

FIGURE 3.5: Plot of the second derivative of the capacity
lower bound, C ′′

LB for varying α and γN with β = 0 and
δN = 0. The dot on each curve is the maximum point on

each curve.

Now, define the asymptote (as cdB →∞) of the lower bound as

Casymp =
1

α
log2

(
10αcdB/10

)
+

1

α
log2

(
Mα

γαN

)
. (3.68)

Observe that Casymp = 0 when cdB = 10
α log10

(
γαN
Mα

)
, which agrees with the

bend point cbend, from Theorem 13. This means that as for the power con-
strained Gaussian channel, the intercept asymptote of the capacity lower
bound for theASαSN channel agrees with the bend point; however, unlike
the power constrained Gaussian channel, the bend point does not always
occur at cdB = 0.

Fig. 3.6 plots the capacity lower bound for varying α. Observe that the
bend point cbend is reduced as α increases. This suggests that using the
asymptotic approximation is more accurate for Gaussian channels than for
theASαSN channel at lower values of c. As asymptotic approximations are
widely used, it may mean that approximations that are valid in the Gaus-
sian case are less accurate for other values of α.

Parametrization of the Input Distribution

A interesting feature of the lower bound is that the influence of α depends
on whether it is written in terms of γX or E[|X|]. To see this, first write the
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lower bound as

CLB,γX =
1

α
log2

(
1 +

γαX
γαN

)
, (3.69)

with γX and γN fixed. In this case, the lower bound (3.69) increases as α is
reduced (Fig. 3.7a). Now write the lower bound, equivalently, as

CLB,E[|X|] =
1

α
log2

(
1 +Mα

(
c

γN

)α)
, (3.70)

with E[|X|] = c and γN fixed. In this case, the lower bound (3.70) increases
as α increases (Fig. 3.7b). We note that the behavior of CLB,E[|X|] as α varies
is also consistent with the effect of α with the constraint E[X2] ≤ P numer-
ically studied in [WKZ11].

This behavior arises because the relationship between γX and E[|X|]
itself depends on α, as detailed in Property 5 (page 24). The consequence
is that the role of α is dependent on how the input signal is written (i.e.,
whether it is in terms of γX or E[|X|]), and must be carefully considered if
the bound is applied in a physical setting.

Another remark is that the comparison between different α, meaning
different impulsiveness, is tricky. A criterion equivalent to the SNR that
would also include impulsiveness index and sufficient to qualify the link
quality in different impulsiveness conditions is needed. Further research in
that direction is required.
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3.3 Conclusion

Impulsive noise plays a key role in many communication systems, rang-
ing from wireless to molecular. Firstly, the capacity in many scenarios were
outlined. The emblematic classical expression of the theory is Shannon’s
formula was revisited to be used as comparative for further impulsive sce-
narios. For this purpose, many information measure tools were presented,
which will also be important along next chapters.

In particular, impulsive noise modeled with the symmetric α-stable dis-
tributions were studied in this chapter. We have derived lower and up-
per bounds for the ASαSN channel, with α ∈ (1, 2] and the existence and
uniqueness of the optimal input distribution were proved. We have also
investigated a numerical approximation via the Blahut-Arimoto algorithm,
which requires discretization and truncation. A study was made in order to
adjust the steps and supports sizes for the algorithm. Particularly, we show
that the lower bound is a good approximation of the capacity obtained from
the Blahut-Arimoto algorithm for α near 2.

We investigate the behavior of the quantity c/γN , in order to discover
if it leads to a similar role as the SNR in Gaussian channel. In fact, it has
been showed that our lower bound is consistent, although the comparison
between many impulsiveness scenarios is difficult. Moreover, two addi-
tional studies were presented concerning the derived lower bound. First,
the bend point case, a medium to characterize the behavior between low
and high rates, was outlined. As a result, bend points may be shifted by a
calculable amount in comparison to the Gaussian case. Second, the impor-
tance of the input parametrization was discussed.

There are several avenues for future work. For instance, this opens the
question of the behavior and design of algorithms for parallel and MIMO
additive α-stable noise channels. For the former, an approach will be pre-
sented in section 4.4.
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Chapter 4

Capacity of Additive Isotropic
α-Stable Noise Channels

In this chapter, we extend the capacity achievable bound for two dimensions, in
which the channel is isotropic. Existence and uniqueness of the optimal input are
proved. The achievable rate is then initially considered in the parallel channels case
with fractional moments. Furthermore, the parametrization α is studied in the
achievable rates using a perturbation approach from the Gaussian case, in order to
understand its effect.

4.1 Position of the problem

PREVIOUS chapter has focused on the channel

Y = X +N, (4.1)

whereN is a real-valued symmetric α-stable random variable. In this chap-
ter, we study the capacity of a generalization of (4.1), where the noise is an
isotropic complex α-stable random variable. The additive isotropic α-stable
noise (AIαSN ) channel naturally arises in the context of the baseband in
wireless cellular communication networks with base stations distributed
according to a homogeneous Poisson point process. For the AIαSN chan-
nel, we can still rely on the same system model as (4.1) but with complex
valued signals. The details will be further defined in Section 4.2.

In order to study the AIαSN channel, we provide a real-valued vector
channel representation. Unlike the Gaussian case (α = 2) , the real and
imaginary parts of isotropic α-stable random variables (α < 2) are not in-
dependent. As such, it cannot be reduced to two parallel real-valued scalar
channels and must be treated instead as a real-valued vector channel.

For the AIαSN channel we prove two key results:

1. We show that the optimal input for the AIαSN channel subject to
a constraint E[|X|r] = (E[|X1|r],E[|X2|r])T � c, r < α exists and
is unique, where � denotes a componentwise inequality, that is,
E[|Xi|r] ≤ ci for i = 1, 2.
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2. We derive a lower bound on the capacity subject to E[|X|r] � c, r < α,
given by

C ≥ 1

α
log

1 +

(√
2
(

min{c1,c2}
C(r,α)

)1/r
)α

σαN

 nats, (4.2)

where σN is a parameter characterizing the noise (defined in Sec-
tion 4.2).

4.2 Additive Isotropic α-Stable Noise Channels

Firstly, it is important to establish the vector channel representation of the
AIαSN channel. Theorem 1 (page 28) implies that we can write theAIαSN
channel as the vector channel in R2

Y = X + N, (4.3)

where N = (N1, N2)T is the sub-Gaussian random vector induced by the
isotropic α-stable noise N .

Next, we now turn to studying the capacity of this channel.

4.3 Capacity of AIαSN Channels

4.3.1 Capacity Optimization Problem

Let B(R2) be the Borel σ-algebra on R2 and P denote the collection of Borel
probability measures on (R2,B(R2)) equipped with the topology of weak
convergence. We define the capacity of the AIαSN channel as the solution
to the following optimization problem,

maximize
µ∈P

I(X; Y)

subject to Eµ[|X|r] � c,
(4.4)

where E[|X|r] = (E[|X1|r],E[|X2|r])T , I(X; Y) is the mutual information of
the channel (4.3), µ is the probability measure of X , and we restrict r to
satisfy r < α. Note that E[|X|r] � c = [c1, c2]T if and only if E[|X1|r] ≤ c1

and E[|X2|r] ≤ c2.

4.3.2 Existence and Uniqueness

Denote Λ(c) as the set of probability measures µ with support R2, such
that E[|X|r] � c. We first prove that the capacity achieving probability
measure µ∗ exists. To do this, as in the real case, we need to show that Λ(c)

is compact in P . In turn, if I(X; Y) is continuous on Λ(c), the extreme value
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theorem then implies that the mutual information achieves its supremum
on Λ(c).

The first step is then to show that I(X; Y) is continuous on Λ(c).

Theorem 14. I(X; Y) is continuous on Λ(c).

Proof. Suppose that µk ⇒ µ, which means that the sequence of random
vectors {Xk} in R2 converges weakly to a random vector X with measure
µ. The mutual information of Xk is given by

I(Xk; Xk + N) = h(Xk + N)− h(N). (4.5)

Since h(N) = h(N1, N2) ≤ h(N1)+h(N2) andN1, N2 are symmetric α-stable
random variables, it follows that |h(N)| <∞.

We now show that I(X; Y) <∞. Define

q(x) =
1

4
∫
R2
≥0
e−x

r
1−xr2dx1dx2

e−|x1|
r−|x2|r . (4.6)

We have

I(X; Y) = −
∫
R2

pX+N(x) log pX+N(x)dx− h(N) (4.7)

The Kullback-Leibler divergence D(·||·) (see (3.3)) is applied to write the
mutual information as

I(X; Y) = −D(pX+N||q) + E[log q(X + N)]− h(N). (4.8)

Recall that Proposition 11 (page 40) guarantees the D(pX+N||q) ≥ 0, then

I(X; Y) ≤ E[log q(X + N)]− h(N)

= −E[|X1 +N1|r + |X2 +N2|r]

− E

[
log

(∫
R2
≥0

4e−x
r
1−xr2dx1dx2

)]
− h(N)

≤ |−E[|X1 +N1|r + |X2 +N2|r]

− log

(∫
R2
≥0

4e−x
r
1−xr2dx1dx2

)∣∣∣∣∣− h(N), (4.9)

using the fact that the expected value of a constant is a constant itself.
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Applying the triangle inequality and log(x) ≤ x− 1, for x > 0, we have

I(X; Y) ≤ E[|X1 +N1|r + |X2 +N2|r]

+

∫
R2
≥0

4e−x
r
1−xr2dx1dx2 − 1− h(N)

≤ E[|X1 +N1|r + |X2 +N2|r]

+

∫
R2
≥0

4e−x
r
1−xr2dx1dx2 − h(N)

≤ 2r(E[|X1|r + |N1|r + |X2|r + |N2|r])

+

∫
R2
≥0

4e−x
r
1−xr2dx1dx2 − h(N)

<∞, (4.10)

recalling that r < α.

To conclude the proof, let Yk = Xk + N. Then,

pYk
(x) =

∫
pN(x− y)µk(dy). (4.11)

Now consider

lim
k→∞

h(Xk + N) = − lim
k→∞

∫
pYk

(x) log pYk
(x)dx. (4.12)

Since I(Xk; Y) < ∞ and |h(N)| < ∞, it follows that |h(Xk + N)| < ∞. An
argument based on splitting the integral in (4.12) into positive and negative
parts, justifies swapping the limit and the integral. Using the fact that pN

is bounded and continuous and the application definition of weak conver-
gence in R2 yields the desired result, similarly to the real case.

We now turn to showing that Λ(c) is compact in P .

Theorem 15. The set of probability measures Λ(c) is compact in the topology of
weak convergence. Moreover, the capacity achieving probability measure µ∗ exists.

Proof. Using a similar approach as in the real case, Λ(c) is compact if it is
tight and closed by Prokhorov’s theorem [Bil99; Sha11]. To see that Λ(c) is
tight, observe that for any ε > 0, there exists an aε = [a1,ε, a2,ε] � 0 such
that for all µ ∈ Λ(c),

Pr(|X1|r > a1,ε, |X2|r > a2,ε) ≤ min
i=1,2

E[|Xi|r]
ai,ε

≤ min
i=1,2

ci
ai,ε

< ε, (4.13)

where the first inequality follows from the generalized Markov inequality
[Mar84, Proposition 2.1]. Now, choose Kε = [−a1,ε, a1,ε] × [−a2,ε, a2,ε], then
Kε is compact and µ(Kε) ≥ 1− ε for all µ ∈ Λ(c). As such, Λ(c) is tight.
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To show that Λ(c) is closed, let {µn}∞n=1 be a convergent sequence in
Λ(c) with limit µ0. Consider the vector valued function f(x) = |x|r =

[|x1|r, |x2|r]T , which is continuous and bounded below. By the Portmanteau
theorem for weak convergence [Bil99],

Eµ0 [|X|r] =

∫
f(x)µ0(dx)

� lim inf
n→∞

∫
f(x)µn(dx) � c. (4.14)

This means that µ0 ∈ Λ(c). As our choice of convergent sequence was
arbitrary, it follows that Λ(c) is closed. As such, Λ(c) is compact.

To prove existence of µ∗, by Theorem 14 (page 71) I(X; Y) is continuous
on Λ(c). As such, by the extreme value theorem, the capacity achieving
probability measure µ∗ exists.

Next, we prove that the optimal input distribution is unique.

Theorem 16. The capacity achieving probability measure µ∗ on Λ(c) is unique.

Proof. By [LMG14, Theorem 12], the mutual information is concave. To
prove strict concavity, we need to show that if µ0 and µ1 both achieve
the maximum, then µ0, µ1 are identical. By the Lévy continuity theorem,
this holds if both probability measures correspond to the same charac-
teristic function. As X and N are independent, we have φN(θ)φµ1(θ) =

φN(θ)φµ2(θ). Since φN(θ) is non-zero for all θ, the uniqueness of µ∗ then
follows from the strict concavity of the mutual information and the fact that
Λ(c) is convex.

4.3.3 Capacity Lower Bound

We now turn to deriving a lower bound on the capacity defined by (4.4).
Our result is given as follows.

Theorem 17. The capacity of the AIαSN channel defined by (4.4) with noise
parameter σN (see Property 10, page 29) is lower bounded by

C ≥ 1

α
log

1 +

(√
2
(

min{c1,c2}
C(r,α)

)1/r
)α

σαN

 nats, (4.15)

and C(r, α) is given by (5.10).

Proof. Consider the random vector N induced by the isotropic α-stable
noise N . Recall from Property 10 (page 29) that N has characteristic func-
tion φN(θ) = e−2−α/2σαN|θ|

α
.

To obtain a lower bound on the capacity, suppose that X is also a ran-
dom vector induced by an isotropic α-stable random variable with σX. The
characteristic function of X is then given by φX(θ) = e−2−α/2σαX|θ|

α
.
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By Property 9 (page 29), the distributions of N and X can be written
in terms of another random vector U induced by a complex isotropic α-
stable random variable with σU. In particular, there exist matrices VN,VX

satisfying the condition in Property 9 such that

X
d
= σXVXU, N

d
= σNVNU. (4.16)

Since both X and N are α-stable random vectors, the random vector
Y = X + N is also, due to the stability property in Property 1 (page 23) and
can be written in terms of U. In particular, Y has characteristic function

φY(θ) = e−2−α/2(σαX+σαN)|θ|α . (4.17)

This implies that there exists a matrix VY satisfying VYVT
Y = cI for some

c ≥ 0 such that

Y
d
= (σαX + σαN)1/αVYU. (4.18)

Let σY = (σαX + σαN)1/α. The mutual information is then given by

I(X; Y) = h(Y)− h(Y|X)

= h(σYVYU)− h(σNVNU)

= log σY + h(U)− log σN − h(U)

=
1

α
log

(
1 +

σαX
σαN

)
. (4.19)

All that remains is to write σX in terms of E[|X1|r] = E[|X2|r]. Using
[Zol81], we have

E[|X1|r] = C(r, α)

(
σX√

2

)r
, (4.20)

where

C(r, α) =
2r+1Γ

(
r+1

2

)
Γ(−r/α)

α
√
πΓ(−r/2)

. (4.21)

The result then follows by substituting (4.20) into (4.19)

4.4 Parallel Channels

A natural extension of the AIαSN channel is to the case of parallel chan-
nels. It is clear that our lower bound bears strong similarities with the ca-
pacity of Gaussian noise channels with a power constraint. To study the
consequences of this observation, we apply our lower bound to compute
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the achievable rate of n parallel AIαSN channels subject to the constraint

n∑
i=1

E[|X|r] ◦ E[|X|r] � c ◦ c, r < α, (4.22)

where ◦ is the Hadamard product. With this purpose, we consider the sce-
nario where there are n parallelAIαSN channels subject to a sum fractional
moment constraint. In order to study this parallel channel setting, we make
use of our lower bound to compute achievable rates (in nats). More pre-
cisely, we consider the optimization problem

maximize
σX,k, k=1,2,...,n

n∑
k=1

1

α
log

(
1 +

σαX,k
σαN,k

)
(4.23)

subject to
n∑
k=1

σ2
X,k ≤ σ2

X,max

σX,k ≥ 0, k = 1, 2, . . . , n,

where σX can be mapped to E[|X|r] via (4.20).
The key results in this section are a study of the convexity properties

of this optimization problem and a comparison with the Gaussian case
(α = 2). In particular, we derive a bound that allows for the analytical
comparison of the achievable rate for a given α < 2 and the Gaussian case
(α = 2). We observe that in the case that α = 2, the optimization prob-
lem reduces to the standard waterfilling solution in the case of Gaussian
channels with a power constraint.

4.4.1 Convexity Properties

Observe that we can rewrite (5.28) as

maximize
ρ

n∑
k=1

1

α
log

(
1 +

ρ
α/2
k

σαN,k

)
(4.24)

subject to
n∑
k=1

ρk ≤ σ2
X,max

ρk ≥ 0, k = 1, 2, . . . , n.

The optimization problem (4.24) is convex. To see this, observe that

g(ρi) = 1+
ρ
α/2
i
σαN,k

are concave since α ≤ 2. Using the fact that log(·) is concave
and non-decreasing, it follows by [BV04, Eq. (3.10)] that

R =

n∑
k=1

1

α
log

(
1 +

ρ
α/2
k

σαN,k

)
(4.25)

is a sum of concave functions, which implies the problem in (4.24) is convex.
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The convexity of (5.28) implies that the problem can be solved efficiently
by standard solvers (e.g., CVX). Moreover, for α = 2, the problem reduces
to the standard waterfilling problem that arises in the case of Gaussian noise
with a power constraint.

4.4.2 The Effect of α

In this section, we are concerned with the variation of α producing mod-
ifications in the achievable rates in the case the noise has this parameter.
Let R∗(α) denote the achievable rate arising from the solution of (4.24),
which is continuous. We study the effect of varying the stability param-
eter as it is perturbed away from the Gaussian case (α = 2) via the distance
|R∗(α)−R∗(2)|.

We begin by applying Taylor’s theorem [KC02; Fis12] to the value func-
tion R∗(α), which is differentiable, yielding

R∗(α) = R∗(2) + (DαR
∗)(2)(α− 2) + o(|α− 2|), α→ 2, (4.26)

where DαR
∗(2) is the derivative of the rate R∗ in the direction of α eval-

uated at the point 2. To produce the distance between the rates, (4.26) is
rearranged as following

R∗(α)−R∗(2) = (DαR
∗)(2)(α− 2) + o(|α− 2|), α→ 2. (4.27)

Applying the triangle inequality, we produce

|R∗(α)−R∗(2)| ≤ |(DαR
∗)(2)||α− 2|+ |o(|α− 2|)|, α→ 2, (4.28)

which is equivalent to the following

|R∗(α)−R∗(2)| ≤ |(DαR
∗)(2)||2− α|+ |o(|2− α|)|, α→ 2, (4.29)

due to the fact that |α − 2| =
√

(α2 − 4α+ 22) = |2 − α|. The challenge in
evaluating (4.29) lies in evaluating the directional derivative. To proceed,
we can adapt a lemma from [Dan67, pg. 23], which provides an expression
for the directional derivative, given by

Lemma 3. Let the real valued function f(x, y) be twice differentiable on a compact
convex subset X of Rn+1, strictly concave in x. Let x∗ be the optimal value of f
on X and denote ψ(y) = f(x∗, y). Then, the directional derivative of ψ(y) in the
direction y is given by

ψ′(y) = fy(x
∗(y), y) (4.30)

Proof. By the implicit function theorem, we can solve for x∗, which yields
the function as a continuously differentiable function of y, denoted by
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x∗ = x∗(y). Hence, ψ(y) = f(x∗(y), y), so that ψ(y) is a continuously differ-
entiable function of y. The derivative is then given by

ψ′(y) = fy(x
∗(y), y) + (∇xf(x∗(y), y))T

dx∗(y)

dy

= fy(x
∗(y), y), (4.31)

as required.

We now evaluate (4.29). In particular, for the case σN,k = 1, k =

1, 2, . . . , n we have the approximate bound

|R∗(α)−R∗(2)| . |2− α|

×

∣∣∣∣∣−1

4

n∑
k=1

log (1 + ρ∗k) +
1

4

n∑
k=1

ρ∗k log ρ∗k
1 + ρ∗k

∣∣∣∣∣ . (4.32)

Fig. 4.1 illustrates the effect of α as it is varied away from the Gaus-
sian case (α = 2), using our approximate bound and numerical solution
of (4.24). Observe that for values of α near 2 our approximate bound is
in good agreement with the numerical result. Note that the difference for
larger |2−α| is in part due to the o(|2−α|) term in (4.29), which means that
the approximation is not a strict upper bound for large |2− α|.
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4.5 Chapter conclusion

The Gaussian channels constrained by a second order moment are an ex-
ception in characterizing the capacity of continuous channels due to the
limited success to characterize the capacity in the domain of continuous
channels. A key question is therefore what rates are achievable in the pres-
ence of isotropic α-stable interference. We have studied the capacity of the
AIαSN channel. In particular, we derived a tractable lower bound on the
capacity, as well as existence and uniqueness of the optimal input distribu-
tion. We then applied our lower bound and the effect of α on the achievable
rate was demonstrated in order to contribute with the understanding of the
capacity regarding the parametrization.

We applied our lower bound to the case of parallel AIαSN channels,
and demonstrated the effect of α on the achievable rate. The tractability of
our lower bound suggests that it may play a useful role in the analysis and
design of more complicated systems with α-stable noise, as will be study in
the next chapters.
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Chapter 5

Physical Layer Design with
Dynamic Interference

Practical approaches for dynamic interference are the main interest in this chapter.
Firstly, we study the effect of fading in our achievable rate. Next, the constraints
are discussed for practical scenarios and some input distributions are considered.
The amount of devices in an area is studied through the area spectral analysis.
Finally, the parallel channels are revisited, but considering power allocation.

5.1 The Effect of Fading

FADING plays an important role in many Gaussian channels. In the case
of the additive α-stable noise, we obtain the channel model given by

Y = gX +N, (5.1)

where g represents the real-valued fading coefficient. For a fixed g, the
capacity is lower bounded by

C ≥ 1

α
log2

(
1 + |g|αMα

cα

γαN

)
, (5.2)

which follows from Theorem 10, page 52, where Mα is defined in (3.34).
In the case of slow fading (g varies slowly, but randomly according to a

fixed distribution Fg), the transmission quality is often characterized by the
outage probability, which is given by

Pout = Pr(C ≤ R0) (5.3)

Using the lower bound in (5.2), we can give an upper bound to the outage
probability:

Pout ≤ Pr

(
1

α
log2

(
1 + |g|αMα

cα

γαN

)
≤ R0

)
. (5.4)
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A common choice for the distribution of g2 is Fg2(x) = 1−e−λx, correspond-
ing to Rayleigh fading. The outage probability is then bounded by

Pout ≤ Pr

(
|g| ≤ γN

M
1
α
α c

(
2αR0 − 1

) 1
α

)

= 1− exp

[
−λ

(
γ2
N

M
2
α
α c2

(
2αR0 − 1

) 2
α

)]
= PUB (5.5)

In Fig. 5.1, we represent the outage probability upper bound, where the
simulated points are plotted based on (5.4) under the Rayleigh fading, by
means of 104 samples. In turn, the exact curves are plotted using (5.5).
Observe that for small R0 the outage probability upper bound is heavily
influenced by α.
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FIGURE 5.1: Plot of the outage probability upper bound
(5.5) for varying R0 and α, with β = 0, c = γN = 1, δN = 0,

and λ = 1.

5.2 Achievable Rates with Dynamic Interference

Rapid changes in the active transmitter set is a characteristic of wireless
communication networks with very short transmissions, which arises in
M2M communications. A consequence of the rapid changes in the active
transmitter set is that the interference is dynamic. We have shown that dy-
namic interference is not Gaussian, as discussed in Section 2.5.1. In fact, the
interference is isotropic α-stable for large scale networks with interferers
located according to a PPP.
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In this section, we derive the achievable rate for the access point at the
origin. Unlike the power constrained Gaussian noise channel, tractable ex-
pressions are not known for the power constrained AIαSN channel. For
this reason, it is desirable to consider alternative constraints.

To characterize the capacity of the AIαSN channel subject to the con-
straints in (5.7), recall the output y in (2.51), given by

y = r
−η/2
d hdxd + I. (5.6)

where hd,t ∼ CN (0, 1) is the Rayleigh fading coefficient and xd,t is the base-
band emission for the typical user.

One choice of constraints is the combination of amplitude and fractional
moment constraints. In particular, the input signal xd in (5.6) is required to
satisfy

E[|Re(xd)|r] ≤ c

E[|Im(xd)|r] ≤ c

|Re(xd)| ≤ A

|Im(xd)| ≤ A, (5.7)

where 0 < r < α. Note that the presence of the amplitude constraint en-
sures that the input has finite moments, including power.

We proceed in two steps. First, we relax the amplitude constraints and
consider the capacity optimization problem given by

maximize
µ∈P

I(X; y)

subject to E[|Re(X)|r] ≤ c,

E[|Im(X)|r] ≤ c,

(5.8)

where P is the set of probability measures on C and 0 < r < α. The unique
solution (see Chapter 4) to (5.8) is lower bounded in the following corollary,
which arrives directly from Theorem 17 (page 73).

Corollary 4. For fixed rd and hd, the capacity of the additive isotropic 4
η -stable

noise channel in (5.6) subject to the fractional moment constraints in (5.8) is lower
bounded by:

CL =
η

4
log

1 +

(√
2|r−

η
2

d hd|2
(

c
C(r, 4

η
)

) 1
r

) 4
η

σ
4
η

N

 , (5.9)
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where Γ(·) is the Gamma function and

C

(
r,

4

η

)
=

2r+1Γ
(
r+1

2

)
Γ(−ηr/4)

4
η

√
πΓ(−r/2)

. (5.10)

Proof. We consider the case that xd is an isotropic α-stable random variable
satisfying the constraints in (5.8). By Theorem 17 (page 73), the mutual
information of the channel Y = xd + I is given by

I(xd;Y ) =
η

4
log

1 +

(
√

2

(
c

C(r, 4
η

)

)1/r
) 4

η

σ
4
η

N

 (5.11)

The result then follows by observing that r
− η

2
d hdxd is also an isotropic 4

η -

stable random variable with parameter |r−
η
2

d hd|σN using the fact that xd is
isotropic and Property 2 (page 23).

One can notice that the achievable rate in Corollary 4 is obtained by us-
ing input signals that are isotropic α-stable random variables, which does
not satisfy the amplitude constraints in (5.7). The second step in charac-
terizing the capacity of the AIαSN channel subject to (5.7) is therefore to
consider a truncated isotropic α-stable input. This guarantees the amplitude
constraints are satisfied and, as we will show, yields a mutual information
in the AIαSN channel that is well approximated by Corollary 4 for a suffi-
ciently large truncation level T .

The truncated isotropic α-stable random variables are defined as fol-
lows. Let X be an isotropic α-stable random variable, with real part Xr and
imaginary part Xi. The truncation of X , denoted by XT , is given by

XT =


X, |Xr| ≤ T, |Xi| ≤ T
sign(Xr)T + iXi, |Xr| > T, |Xi| ≤ T
Xr + i sign(Xi)T, |Xr| ≤ T, |Xi| > T

sign(Xr)T + i sign(Xi)T, |Xr| > T, |Xi| > T.

(5.12)

Using the truncated isotropic α-stable input, an achievable rate of the
amplitude and fractional moment constrained AIαSN channel is obtained
by evaluating the mutual information I(y;XT ), where y is the output of
the channel in (5.18). In fact, using a similar argument to that for the
power constrained Gaussian noise channel presented in Definition 26, it
is straightforward to show that all rates R < I(y;XT ) are achievable by
using a codebook consisting of 2nR codewords Wn(1), . . . ,Wn(2nR) with
Wi(w), i = 1, 2, . . . , n, w = 1, 2, . . . , 2nR independent truncated isotropic
α-stable random variables.
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Unfortunately, truncated isotropic α-stable inputs do not lead to a
closed-form mutual information for the channel in (5.18). In fact, only scal-
ing laws for the capacity have been recently derived for real-valued inputs
[EPK17]. In order to characterize the achievable rates in the presence of dy-
namic interference, we therefore approximate I(XT ; y) by the lower bound
in Corollary 4.

To verify that this approximation is indeed accurate, we numerically
compute the mutual information I(XT ; y) and compare it with the result in
Corollary 4 in Fig. 5.2 and Fig. 5.3 for α = 1.7 and α = 1.3, respectively. Ob-
serve that for a sufficiently large truncation level, the approximation based
on Corollary 4 is in good agreement with I(XT ; y). Moreover, the achiev-
able rate is significantly larger than the case of a Gaussian input. This sug-
gests that Gaussian signaling is not necessarily desirable in the presence of
dynamic interference.
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FIGURE 5.2: Achievable rates for an AIαSN channel with
α = 1.7, σN = 0.1 and a constraint E[|X|] ≤ 1. The curves
correspond to a Gaussian input, an isotropic α-stable input
and a truncated isotropic α-stable input (defined in (5.26)).

5.3 Area Spectral Efficiency Analysis

In this section, we investigate the effect of device density λ on network
performance. In particular, we study the area spectral efficiency, which is
defined as the expected total rate per square meter. Its importance is ex-
plained due to the tradeoff between the distance of each device and its base
station. In fact, the interference increases when the density is increased.
Formally, letA1 ⊂ A2 ⊂ · · · be a sequence of discs such that Area(An)→∞
as n→∞. The area spectral efficiency is then given by

ζ = lim
n→∞

1

Area(An)
E

 ∑
i∈Φ(An)

Ri(An)

 , (5.13)



84 Chapter 5. Physical Layer Design with Dynamic Interference

1 2 3 4 5 6 7 8 9 10 11 12
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Threshold Level T

A
c
h
ie

v
a
b
le

 R
a
te

 (
b
it
s
)

 

 

Gaussian Input

α−Stable Input

Truncated α−Stable Input

FIGURE 5.3: Achievable rates for an AIαSN channel with
α = 1.3, σN = 0.5 and a constraint E[|X|] ≤ 1. The curves
correspond to a Gaussian input, an isotropic α-stable input
and a truncated isotropic α-stable input (defined in (5.26)).

where Φ(An) is the PPP Φ restricted to the disc An and Ri(An) corresponds
to the achievable rate with a truncated isotropic α-stable input and devices
in Φ(An).

The area spectral efficiency in the large-scale network detailed in Sec-
tion 2.5 is given in the following theorem.

Theorem 18. The area spectral efficiency with device locations governed by a PPP,
dynamic interference and truncated isotropic α-stable inputs is given by

ζ = λErd,hd [Ri], (5.14)

whereRi is the achievable rate with a truncated isotropic α-stable input and devices
in Φ.

Proof. See Appendix A.

As observed in Section 5.2, Ri = I(yi;XT ) does not have a closed-form
expression which makes characterizing the area spectral efficiency ζ chal-
lenging. To proceed, we exploit the approximation of I(yi;XT ) based on
Corollary 4. In particular, we obtain the following approximation for the
area spectral efficiency

ζ ≈ λErd,hd


η

4
log

1 +

(√
2|rdhd|2

(
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C(r, 4
η

)

) 1
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) 4
η
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η
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 (5.15)

which is tight when the truncation level for the input T is sufficiently large.
The expression in (5.15) provides insight into the effect of the device

density λ. In particular, consider a function of the form

f(λ) = λ log

(
1 +

1

λ

)
, (5.16)

which captures the dependence of the spatial rate density approximation in
(5.15) on the device density λ. We seek to find a stationary point such that
f ′(λ) = 0. Evaluating the derivative yields the condition

log

(
1 +

1

λ

)
− 1

1 + λ
= 0. (5.17)

Since log x > 1 − 1
x for x > 1, it follows that log

(
1 + 1

λ

)
> 1

1+λ and hence
for λ > 0, f ′(λ) > 0. This implies that the area spectral efficiency ζ is an
increasing function of the density λ (illustrated in Fig. 5.4). We therefore
conclude that dense networks maximize the area spectral efficiency. We remark
that dense networks are also desirable for slowly varying active interferer
sets [DWLPML16]. This implies that although the optimal signaling strat-
egy for each link is no longer Gaussian, the basic network structure is the
same both for dynamic interference and interference arising from a slowly
varying active interferer set.
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FIGURE 5.4: Plot of f(λ) in (5.16).

5.4 Power allocation - Parallel channels

In this section, we consider the problem of power allocation in parallel sym-
metric α-stable noise channels subject to a power constraint. In the case of a



86 Chapter 5. Physical Layer Design with Dynamic Interference

Gaussian input in the presence of additive Gaussian noise, the rate-optimal
solution is the well-known waterfilling algorithm. However, the waterfill-
ing algorithm is tailored to Gaussian noise channel, and for it to be used in
symmetric α-stable noise channels, it is necessary to assume that the noise
is Gaussian when in fact it is non-Gaussian. As such, it is highly desir-
able to develop alternative power control strategies that do not rely on the
Gaussian noise assumption.

We adopt a two-step approach to the design of power control for the
symmetric α-stable noise channel. The first step is to select the input dis-
tribution. To this end, we numerically evaluate the achievable rates of the
symmetric α-stable noise channel with Gaussian and truncated symmetric
α-stable inputs. Here, we show that Gaussian inputs perform comparably
or outperform truncated symmetric α-stable inputs, despite the fact that the
truncated symmetric α-stable inputs approximately match the input with
the noise distribution.

The second step is to optimize the power control for the selected input
distribution. Using the capacity lower bound in Theorem 10 (page 52), we
develop a new power allocation scheme for Gaussian inputs. We show
that this scheme is a convex optimization problem—readily solved using
standard solvers—but differs from the waterfilling algorithm. In particular,
numerical results show that our power control schemes can outperform by
up to 1 bit the rate achieved by waterfilling for Gaussian inputs, where the
α-stable noise is assumed to be Gaussian.

Regarding the following sections, in Section 5.4.1, we detail the parallel
symmetric α-stable noise model. In Section 5.4.2, we study the effect of
different input distributions. In Section 5.4.3, we develop our power control
scheme. In Section 5.4.4, we explain how our algorithms can be generalized
to complex noise. In Section 5.5 we conclude.

5.4.1 System Model

We are concerned with the memoryless additive symmetric α-stable noise
(ASαSN ) channel

Y = hX +N, (5.18)

where h ∈ R is a constant, X ∈ R is the channel input, and N ∈ R is
symmetric α-stable noise.

We recall the derived closed-form expressions for achievable rates. In
particular, the rate of the ASαSN channel with a symmetric α-stable input
was derived in Theorem 10 (page 52), given by

R =
1

α
log

(
1 + |h|α

γαX
γαN

)
, (5.19)
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where γX is the scale parameter of the symmetric α-stable input and γN is
the scale parameter of the symmetric α-stable noise.

The main problem we consider in this section is power control for K
parallel ASαSN channels. In this case, the system consists of K channels
defined by

Yi = hiXi +Ni, i = 1, 2, . . . ,K, (5.20)

where hi ∈ R, Xi is the real-valued input to the i-th channel and Ni is
real symmetric α-stable noise, independent for each i but not necessarily
identically distributed. Since each of the channels is independent, it follows
from (5.19) that the sum-rate achieved using a symmetric α-stable input for
each channel is given by

RS =
K∑
k=1

1

α
log

(
1 + |hk|α

γαX,k
γαN,k

)
. (5.21)

This result will provide a basis to construct the optimization problems un-
derlying our power control algorithms.

5.4.2 The Input Distribution

Although the optimal input distribution for the power constrained additive
Gaussian noise channel is well-known to be Gaussian, this is not the case for
symmetric α-stable noise channels. In fact, the optimal input distribution
is known to be discrete [FAF16], with the probability masses dependent
on the power level. As such, for the purposes of power control, it is highly
desirable to obtain input distributions that yield a high achievable rate with
a simple parametric form.

In this section, we investigate the choice of the input distribution for the
AIαSN channel in (5.18) subject to a power constraint. Formally, we study
lower bounds of the capacity optimization problem

maximize
µ∈P

I(X;Y )

subject to Eµ[X2] ≤ P,
(5.22)

where P is the set of probability measures on (R,B(R)). The optimal in-
put distribution for (5.22) is known to be discrete and compactly supported
[FAF16]; however, there are no known closed-form expressions or tight
bounds for the capacity in the presence of a power constraint.

In order to investigate the choice of the input distribution, we consider
the following three choices:
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(i) Zero-mean Gaussian input XG with probability density function

pXG(x) =
1√

2πσ2
exp

(
−x

2

σ2

)
. (5.23)

(ii) Truncated symmetric α-stable inputs, which are defined as follows.
Let XS be a symmetric α-stable random variable, then the truncated
symmetric α-stable input XT with truncation level T is constructed
via

XT =

{
XS , |XS | ≤ T
sign(XS)T |XS | > T.

(5.24)

The power of the truncated symmetric α-stable input is given by

E[X2
T ] =

∫ T

−T
x2pXS (x)dx+ 2

∫ ∞
T

T 2pXS (x)dx, (5.25)

where pXS is the probability density function of the symmetric α-
stable random variable XS .

(iii) Truncated Gaussian inputs, which are defined as follows. Let XG be
a Gaussian random variable, then the truncated Gaussian input XG,T

with truncation level T is constructed via

XG,T =

{
XG, |XG| ≤ T
sign(XG)T |XG| > T.

(5.26)

The power of the truncated Gaussian input is given by

E[X2
G,T ] =

∫ T

−T
x2pG(x)dx+ 2

∫ ∞
T

T 2pG(x)dx, (5.27)

where pG is the probability density function of the Gaussian random
variable XG.

We have selected these distributions for the following reasons. First, the
Gaussian input is a standard reference. Second, the truncated symmetric
α-stable input is chosen because it approximately matches the noise distri-
bution and also satisfies the finite power constraint. It is also an appropriate
choice of input for the case where the channel is both power and amplitude
constrained [Smi71], which are essential in practical systems. Third, the
truncated Gaussian input is selected as it forms a natural choice of input
in the case of both power and amplitude constraints, for further compari-
son with the truncated symmetric α-stable input. In each case, closed-form
expressions for the corresponding rates are not known.

To understand how the choice of input distribution affects the achiev-
able rate, Fig. 5.5 plots the achievable rates using a Gaussian input, a
truncated symmetric α-stable input, and also a truncated Gaussian input.
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In each case, the power is constrained to be P = 3 and the figure shows the
impact on the truncation level for each input distribution. As the achievable
rates of additive symmetric α-stable noise channels with the inputs de-
tailed in Section 5.4.2 are not known, in the experiment they are estimated
via Monte Carlo simulation. In particular, we use 5 · 106 input samples,
the entropy of the output and the noise are obtained by estimating the
corresponding probability density functions via the kernel method [BA97],
which was performed by using a grid of 106 points and support [−200, 200].
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FIGURE 5.5: Comparison of achievable rates using a trun-
cated symmetric α-stable input (α = 1.4, E[X2

T ] = 3), a
Gaussian input and a truncated Gaussian Input (E[X2

G] =
E[X2

G,T ] = 3) in the presence of symmetric α-stable noise
(α = 1.4, γN = 0.1).

We observe in Fig. 5.5 that the Gaussian input outperforms both the
truncated Gaussian and truncated symmetric α-stable inputs. Similarly, for
most choices of the truncation level, the truncated Gaussian input also out-
performs the truncated symmetric α-stable input. Moreover, the truncation
level rapidly has no effect on the achievable rate for the truncated Gaussian
input. We remark that based on extensive numerical experiments, we have
observed that these trends hold for a wide range of channel parameters.
This suggests that as in the Gaussian noise channel, a Gaussian input is a
good choice for the symmetric α-stable noise channel. We also note that the
fact that a Gaussian input performs well in the presence of a power con-
straint differs from the case of an absolute moment constraint, where an
α-stable input performs near capacity, as presented in previews chapters.

5.4.3 Power Control Algorithm

In this section, we develop a power control algorithm for Gaussian inputs
in parallel ASαSN channels, which is motivated by the results obtained
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in Section 5.4.2. Our approach is to view the Gaussian inputs as approxi-
mations of symmetric α-stable inputs. This is possible since both of these
inputs lie in the α-stable family. As such, the sum-rate in (5.21) can be used
to approximate the sum-rate with each input. We verify the performance of
our algorithms via numerical simulation.

The Algorithm Zero-mean Gaussian random variables are a special case
of symmetric α-stable random variables corresponding to α = 2. As such,
a method to approximate a general symmetric α-stable random variable
with scale parameter γX is via a zero-mean Gaussian random variable with
variance 2γ2

X . Moreover, the achievable rate with Gaussian inputs can be
approximated by (5.21). These considerations motivate the following opti-
mization problem:

maximize
γX,k, k=1,2,...,n

n∑
k=1

1

α
log

(
1 + |hk|α

γαX,k
γαN,k

)
(5.28)

subject to
n∑
k=1

2γ2
X,k ≤ Pmax

γX,k ≥ 0, k = 1, 2, . . . , n.

Here, the parameter γX,k is the parameter for a symmetric α-stable in-
put. Our effective Gaussian inputs are assumed to have the same parame-
ters γX,k and as such, the power levels of the inputs are obtained via [ST94a]

PX,k = 2γ2
X,k. (5.29)

Note that this relationship also implies that the constraint

n∑
k=1

2γ2
X,k ≤ Pmax (5.30)

in (5.28) is in fact a sum power constraint for Gaussian inputs.
To solve (5.28), we apply the transformation ρk = γ2

X,k, which yields the
problem

maximize
ρk, k=1,2,...,n

n∑
k=1

1

α
log

(
1 + |hk|α

ρ
α/2
k

γαN,k

)
(5.31)

subject to
n∑
k=1

2ρk ≤ Pmax

ρk ≥ 0, k = 1, 2, . . . , n.

We observe that the problem in (5.28) is convex (see section 4.4.1), which
follows from the fact that the function ρα/2k is concave for 0 < α < 2 and the
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linearity of the constraints. As such (5.31) can be solved efficiently using
standard convex optimization solvers such as CVX [GB13].

Numerical Results To evaluate the performance of our algorithm, we
compare it with the waterfilling algorithm designed for Gaussian noise in
the case of two parallel channels. In applying the waterfilling algorithm, we
assume that the system does not know the noise is non-Gaussian. As such,
the variance of the noise is estimated by observing NS = 5 · 106 samples
and applying the estimator

γ̂2
G,k =

1

NS − 1

NS∑
i=1

n2
i,k, k = 1, 2, (5.32)

where ni,k is the i-th noise sample on the k-th channel. Note that since the
variance of α-stable noise is infinite, it follows that the variance estimate in
(5.32) does not converge (illustrated in Fig. 5.6). Nevertheless, (5.32) pro-
vides a means of systematically choosing the noise variance parameter re-
quired for the waterfilling algorithm, corresponding to the behavior of a
system that does not know the noise is non-Gaussian.
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FIGURE 5.6: Estimated variance for waterfilling.

In order to provide a fair comparison with power allocation based on
our proposed method, the exponent α is also estimated based on NS =

5 ·106 samples, using the characteristic function method in [McC86; Kou81].
This is to ensure that noise parameters are estimated rather than assumed
known.

In the experiments, the scale parameter of the symmetric α-stable noise
is γN,k = 0.1, k = 1, 2 and 5 · 106 Gaussian input samples are generated.
Table 5.1 shows the estimated achievable rate for each choice of α, channel
h and power allocation method. The rates are estimated using the same
procedure as for Fig. 5.5 with 50 Monte Carlo iterations. Observe that our
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TABLE 5.1: Estimated Achievable Rates

Waterfilling (nats) Proposed (nats)
α = 1.4, h = [0.5; 0.5] 1.5607 2.4291
α = 1.4, h = [0.9; 0.7] 2.0496 3.2443
α = 1.4, h = [0.9; 0.85] 2.2280 3.4203
α = 1.7, h = [0.5; 0.5] 2.3745 2.6966
α = 1.7, h = [0.9; 0.7] 3.2320 3.5605
α = 1.7, h = [0.9; 0.85] 3.4501 3.7454

proposed algorithm implemented in CVX [GB13] outperforms the water-
filling algorithm for each choice of parameters. In particular, for α = 1.4

and h = [0.9; 0.7] a gain of more than 1 nat is obtained.
Note that the proposed algorithm does not approximate the symmetric

α-stable noise as Gaussian. Instead, the Gaussian input is approximated as
a symmetric α-stable random variable (in order to approximate the achiev-
able rate via (5.21)). Our experiments suggest that it is necessary to care-
fully account for the impulsive nature of the noise for resource allocation in
symmetric α-stable noise.

5.4.4 Extensions to the Complex Case

In wireless communications, it is common to use baseband representations
which induce the additive isotropic α-stable noise (AIαSN ) channel. For
instance, theAIαSN channel arises in large-scale communication networks
with fast-varying active transmitter sets as discussed in Section 2.5.

In Chapter 4, the rate of the AIαSN channel with an isotropic α-stable
input with E[|X|r] = c, r < α, was shown to satisfy

RI =
1

α
log

1 +

(
|h|
(

c
C(r,α)

) 1
r

)α
γαN

 , (5.33)

Note that the form of (5.33) is similar to the rate in (5.19). This observa-
tion provides a straightforward means of extending the algorithms in Sec-
tion 5.4.3 to the complex case and also can be used as base to the fading
study in Section 5.1.

5.5 Chapter conclusion

We have investigated the effect of fading using the closed-form approxi-
mation for the achievable rate when an isotropic α-stable input was used.
The numerical results suggest that it well approximates the achievable rate
when the input signal is truncated, which corresponds to an amplitude con-
straint, for sufficiently large truncation levels.
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Furthermore, in order to establish the effect of device density in large
scale networks with dynamic interference, the area spectral efficiency was
considered. The approximation suggests that dense networks maximize the
area spectral efficiency. This result is consistent with analysis for networks
with slowly varying active transmitter sets, which means that the basic net-
work architecture in both settings is the same.

We then considered the problem of power control for parallel symmet-
ric α-stable noise channels and considering a power constraint on the input.
We have shown that, in this case, Gaussian inputs are a good choice, consis-
tent with the Gaussian noise case. We then developed a new power control
algorithm for Gaussian inputs tailored to symmetric α-stable noise. This
algorithm significantly outperforms the rate achieved when the impulsive
nature of the noise is ignored. We have also shown that our algorithm can
be extended to the case of complex α-stable noise, which arise in wireless
communication systems.
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Conclusion

THIS thesis focused on the dynamic interference study, which is a subject
that will play an essential role in the future of wireless communication

networks with very short transmissions, as in machine-to-machine and het-
erogeneous networks.

We first show that communications in wireless networks can lead to an
interference model with an impulsive behavior that will represent a sig-
nificant limitation in future systems. Several models have been proposed
in literature to represent this impulsive behavior. The classical Gaussian
is detailed but it has been shown to poorly represent the rare events that
strongly limit the performance. We then introduced two non-Gaussian
models, namely, the Middleton and α-stable distributions. Though many
models have been proposed, they are two of the most used. The rest of our
work is based on the stable family. We describe this family and introduce
some of the properties for univariate and multivariate variables that will be
useful for our work. The heavier tails from α-stable models are depicted,
showing that they are better suitable for impulsive behaviors in compar-
ison to Gaussian approaches. Furthermore, the finiteness of α-stable r.v.s
moments are discussed, as well as, the series representation in the form of
Lepage series.

We then study the capacity of additive noise channels in impulsive en-
vironments. Information measures are introduced and the classical Gaus-
sian noise channel capacity for continuous input constrained in power is
reviewed, working as a base for our extension to impulsive scenarios. We
propose achievable rates for the ASαSN channel, in which α ∈ (1, 2]. To
obtain them we use a fractional lower order moment constraint on the in-
put distribution and make the choice of an α-stable input. The stability
property allows to obtain a bound. We then derive upper bounds based on
Laplace and polynomial distributions. In fact, the derived lower bound is
a reasonable approximation of the capacity for α near 2. Moreover, the ex-
istence and uniqueness of the optimal input distribution are proved. Next,
in order to verify the behavior of our achievable rates, a Blahut-Arimoto
algorithm is proposed. The parametrization study of this algorithm was
necessary due to the discretization and truncation requirements. As such,
we propose guidelines to approximate the capacity. After the acquirement
of new bounds, we investigate the lower bound parameters, showing that
the quantity c/γN , where c is the maximum fractional absolute moment for
the input distribution and γN is the noise dispersion. This parameter plays
a similar role as the SNR for AWGN channels, although the comparison for
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different impulsiveness is difficult. Finally, we studied the behavior of the
lower bound by means of the bend point, showing similar behavior as the
capacity of the Gaussian case.

The next section extends the lower bound to the complex case with
0 < α < 2. Its importance comes from its natural presence in the con-
text of baseband in wireless cellular communication networks with inter-
ferers distributed according to a homogeneous Poisson point process. We
also proved the existence and uniqueness of the optimal input distribution.
We then applied the derived lower bound to parallel channels constrained
by fractional order moment and we studied the convexity of this problem,
which allowed its solution by standard convex solvers. Moreover, the effect
of the impulsiveness controlled by the exponent α was analyzed, through
a perturbation away from the Gaussian case, with the latter working as a
base comparison.

Finally, in the last chapter, we apply the achievable rates obtained in
Additive Isotropic α-Stable channels in practical scenarios. Firstly, the ef-
fect of slow fading modeled with a Rayleigh random variable is studied,
producing an upper bound on the outage probability. We question the in-
put distribution. Indeed an α-stable input presents an infinite mean power,
which is not realistic. We first consider an amplitude constraint and, in a
second time, a power constraint. In the case of amplitude constraint, we
show that truncated α-stable r.v.s achieve better rates when compared with
the traditional Gaussian input in the presence of dynamic interference. We
also investigate the area spectral efficiency, in order to have a tool to under-
stand how the density of devices affects the achievable rate. In fact, dense
networks maximize the area spectral efficiency. Finally, when a power con-
straint is imposed, the Gaussian distributed input is a good choice. We
propose a power allocation scheme for parallel channels that takes into ac-
count impulsiveness in the noise. Our proposed algorithm outperforms the
traditional waterfilling in dynamic interference scenarios.

The work in this thesis motivates many future research directions. One
interesting research topic would be to investigate extensions of this work as
well as the application of our techniques to other non-Gaussian noise chan-
nels. In particular, the problems of bounding the capacity with alternative
constraints, the case of 0 < α ≤ 1, and asymmetric α-stable noise distribu-
tions remain open. The tractability of our lower bound and its close rela-
tionship to the capacity of Gaussian noise channel with a power constraint
also suggests that it may be able to play an analogous role in applications.
One interesting property that it offers is the fact that there is a parameter
that accounts for the impulsiveness in the channel. This impulsiveness may
play an important role and the usual traditional capacity ignores such an ef-
fect. Another important aspect to consider is an extension towards higher
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dimensions. It can be important for MIMO and Massive MIMO in the addi-
tive α-stable noise channels. Such a context raises many challenges. Deal-
ing with multi-dimensionnal stable distribution is not straightforward. For
example, the dependence structure has to be re-visited, usual correlation
being unable to model upper or lower tail dependence (the simultaneaous
occurence of large samples on different dimensions). Also, an algorithm to
estimate the capacity in a higher dimension case with a fast convergence
may be necessary to assess the accuracy of bounds.

An avenue of future research is the study of dynamic interference in
networks using general SCMA codebooks that have improved decoding
complexity. The general class of additive vector α-stable noise channels
seems a promising approach to exploit copula models in this scenario and
fundamental limits of the SCMA channel remains an open question.
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Proof of Theorem 18

In order to compute the area spectral efficiency ζ, observe that the random
variables Ri(An) are identically distributed (but not independent) since the
distances rd are independent and identically distributed, and the locations
of the devices are independently and uniformly distributed in An condi-
tioned on the number of devices N(An) in An [DVJ03]. By the strong law
of large numbers for PPPs [Hae13], N(An)

Area(An)
∼= λ a.s. as n→∞. Let ε > 0, it

then follows that

ζ = lim
n→∞

1

Area(An)
E

Area(An)
N(An)

Area(An)∑
i=1

Ri(An)


= lim

n→∞

1

Area(An)

E

bArea(An)λ1c∑
i=1

Ri(An)|λ1 ∈ [λ− ε, λ+ ε]


×Pr(λ1 ∈ [λ− ε, λ+ ε])

+E

bArea(An)λ1c∑
i=1

Ri(An)|λ1 6∈ [λ− ε, λ+ ε]


×Pr(λ1 6∈ [λ− ε, λ+ ε])) (A.1)

A direct consequence of the strong law of large numbers of PPPs is that as
n→∞,

Pr(λ1 ∈ [λ− ε, λ+ ε])→ 1. (A.2)

Next, for fixed large n selected An such that λAn is an integer and ε > 0

sufficiently small such that λArea(An) is the only integer in [λ− ε, λ+ ε]. It
then follows that

ζ = lim
n→∞

1

Area(An)
Area(An)λE[Ri(An)]

= λ lim
n→∞

E[Ri(An)]. (A.3)

To evaluate limn→∞ E[Ri(An)], let yi,An be the received signal at the ac-
cess point served by the i-th device in Φ(An). For fixed rd, hd, Ri(An) =

I(yi,An ;XT ). From the LePage series representation of the interference in
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(2.52), it follows that the signal received by the access point served by the

i-th device in Φ satisfies yi
(d)
= r

− η
2

d hdXT + I, a.s. as n→∞.
Since the conditions in [FAF16, Theorem 1] hold, it follows that for fixed

rd, hd we have I(yi,An ;XT ) → I(yi;XT ) as n → ∞. As Ri(An) is positive
and Ri(An)→ Ri as n→∞, we then obtain the desired result.
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