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Abstract

There is no mythical origin story like the Tower of Babel to explain the diversity of
programming languages and formal methods tools: instead, the idea that different
paradigms and frameworks are needed to solve different problems is intuitive to
computer scientists [1]. On the other hand, the need for efficiency and avoiding
duplication creates a tension that has led to the creation of common infrastructure
for formal methods.

In this chapter, we argue that advancing the state of the art for verification implies
creating a diversity of tools and domain-specific languages. This raises two issues:
first, making sure that efforts are shared across frameworks; second, making sure
that various domain-specific languages remain relevant for their target audience, i.e.
domain experts.
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L’outil simple, pauvre,
transparent est un humble
serviteur ; l’outil élaboré,
complexe, secret est un
maître arrogant.

(Ivan Illich, La Convivialité,
1973)

An ounce of practice is
generally worth more than a
ton of theory.

(Ernst Friedrich Schumacher,
Small is beautiful, 1973)



1.1. The Rise and Fall of the General-Purpose Framework

1.1. The Rise and Fall of the General-Purpose
Framework

This section paints a broad picture of the different technical methods of the
program verification community, and their implication in terms of tooling
infrastructure. More particularly, we point out the rising omnipresence of
a general-purpose proof assistant in the program verification community:
Coq. While it be considered a success and is generally unavoidable in its
fields, we claim that its continuous improvement will not be sufficient to
significantly push the state of the art. Indeed, it can be argued that Coq is
now reaching the limits imposed by its early technical design decisions. The
need for specialized tools is thus rising, as well as techniques to connect these
diverse tools together.

1.1.1. Background on program verification

This work, although centered around programming language design, is deeply
connected to formal methods and one of its active research areas: program
verification. The goal of program verification is to prove some properties about
the source code of a program, the result it returns upon execution and the
eventual side-effects it can have.

The properties that one can prove about a program are diverse. Some
are common to all programs : whether the computation terminates or not,
whether the program accesses the memory in a well-behaved fashion (memory
safety), etc. Some are very specific and relate to what a program is trying to
do: in that case, the property that we are trying to prove about the program is
akin to a specification of the program, expressed in a more concise or abstract
way than the program itself.

For instance, one might want to prove that the source code of a program P

implementing a map data structure as an optimized red-black tree does indeed
behave like an abstract map. This property can be expressed by attaching
to the state of P a ghost abstract map M , with an invariant I stating that a
value is stored in P if and only if it is stored in M . Then, the property holds if
we can prove that the invariant I is preserved by all the operations in P .

In this chapter, as well as the rest of the dissertation, we will focus on
applications of program verification to real-world examples: programs that
run in production inside some device or organization and provide services.
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1. Connecting Program to Proofs with Nimble Languages

This focus is of course very narrow and does not represent the whole diversity
and complexity of the program verification research. This editorial choice is
guided by our general inclination towards more applied research in the field.

A Fragmented State of the Union The definition we choose for program ver-
ification is intentionally broad so as to encompass the various techniques
that belong to it. Indeed, the approaches to encode the properties and the
programs into a logical system able to perform proofs are very diverse. We will
list here the major schools of thought in that regard. Note that we disregard
model checking for cyber-physical systems (e.g. UPPAAL [2]) in this subsection
and in the rest of the dissertation, as we consider program implementation
verification as opposed to specification model checking.

Symbolic Execution. Symbolic execution [3] is the earliest form of program
verification. As a recent survey [4] reminds us, the principle of symbolic exe-
cution is to replace the concrete program inputs with symbols, and propagate
those symbols by following the execution of the program. When encounter-
ing a conditional, one generally has to consider in parallel the two possible
execution paths corresponding to a true or false condition. The result of the
program can then be expressed as a logical expression that depends on the in-
puts symbols. However, since every branching in the programs leads to a new
path to consider, the number of paths quickly explodes with the program size:
this is “path explosion”. Another challenging problem for symbolic execution
is unbounded loops, which require inferring a loop invariant. Some tools work
around this problem by unrolling all loops to a fixed number of iterations,
in an example of bounded model checking. The main real-world application
of symbolic execution is fuzzing: crafting relevant tests for corner-cases of
the program using a source of randomness to explore the input space. Tools
like Klee [5] (built on top of LLVM) and SAGE [6] are used in conjunction with
fuzzers to find edge cases in all kinds of low-level, system software. This line
of research is still active today [7].

Abstract Interpretation. A solution for automatically inferring loop invariants
for unbounded loop came from abstract interpretation [8], [9]. This technique,
grounded in a solid theoretical framework that can adapt to virtually any
programming language semantics, can be succintly described as partitioning
the input space into domains, and mapping the evolution of these domains
throughout the execution of the program. By proving that a loop iteration
does not change the domain of the variables it mutates, a loop invariant
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1.1. The Rise and Fall of the General-Purpose Framework

can be inferred. Abstract interpretation has been successfully applied to
real-world aerospace software [10], with the famous Astrée [11] analyzer. The
downside of abstract interpretation is precisely its strength: the choice of
the input domains (and the corresponding abstraction function) can reveal
itself tedious. Too large a domain could make the analysis imprecise, while
making the domains too specific can create difficult proofs, and lead to an
explosion of the analysis resource consumption. Problematically, the choice
of the domains is the only way for the user to interact with the prover. This
interaction bottleneck makes it difficult to reason about locally-difficult parts
of the proof when the whole process is globally automated.

Hoare Logic and Weakest Preconditions. The two previous areas of program
verification both focus on mostly automatic program analysis and proofs, given
the source program and an initial user-provided tool configuration. However,
it is also possible for the developer to guide the proof more finely by annotating
each function of the program with pre- and post-conditions. These conditions
effectively define a contract for the function. The contract itself is backed by
a proof on the body of the function: the conclusion of this proof is that the
post-condition holds on the function result while assuming the preconditions.
On the other side each caller has to check whether the precondition holds,
in which case it can assume the post-condition after the function call. This
style of program verification corresponds to Hoare logic [12], and it allows
for increased proof modularity. Hoare logic is the foundation of program
verification frameworks embedded in many interactive proof assistants such
as Coq [13] or Isabelle/HOL [14]. The precision and flexibility of interactive
proofs based on Hoare logic have allowed program verification on real-world
critical software like the seL4 kernel [15]. Moreover, some automation can be
provided for this method thanks to the weakest-precondition transformer [16]
that composes sub-contracts together to yield a single property which, if
valid, achieves the proof. The resulting weakest-precondition property can be
encoded in automated solvers (SAT or SMT) and automatically checked. This
alliance between interactive proofs and automation is at the heart of program
verification frameworks like Why3 [17] or F⋆ [18]. Lastly, some provers chose
a mostly automatic approach to program verification while designing their
proof obligations around Hoare logic and separation logic for memory-related
properties, like Viper [19] and Verifast [20].

Altogether, the techniques described above have turned program verification
into a reliable technique that can be used to increase the assurance of real-
world software. But we have to be more precise about what the current state
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1. Connecting Program to Proofs with Nimble Languages

Property complexity

Program
size

State of the art
The Frontier

Figure 1.1: Illustration: where is the program verification frontier?

of the art can achieve. For that, consider the illustration of Figure 1.1. We
chose to project the state on the art on two axes, program size and property
complexity, chosen among many possible others. These axes match our focus
on real-world applications of program verification. The gist of this diagram is
as follows: we know well how to prove complex properties on small programs,
or weak properties on large programs. Let us justify these claims with a few
examples.

We will deliberately omit from the following discussions any considerations
about the foundational aspect of the technologies, as well as questions about
the certification of all their steps and abstractions. As stated before, we are
more interested about how these technologies can raise the level of assurance
of real-world software. To reach this objective, we are willing to adopt a
pragmatic approach to certification requirements and consider the chain of
trust in its entirety. As such, the chain of trust is as strong as its weakest
link. The weakest link may lie in the absence of certification of a compilation
step, but is often not so, as we will argue in Section 1.2.1.

Program Verification Through Error Messages on Steroïds Program verification
technology transfer to industry and real-world software historically started
using static analysis as its point of entry [21]. The prevalent logic in this
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1.1. The Rise and Fall of the General-Purpose Framework

setting is the following: a large organization running critical software wants
to improve the safety of its large, legacy codebase. The engineers of this
organization do not possess any formal methods skills, but luckily some of
them are familiar with typed languages and are used to the compiler error
feedback loop. The key to successful transfer, as detailed by this insightful
user story on Astrée [22], is to highjack the traditional formal of compiler
error messages with warning messages powered by more complex forms
of static analysis and program verification. As a well trained engineering
team is used to maintain a codebase with the -Wall flag enabled, and chase
down all warnings, supplying the development effort with more precise and
subtle warnings and indications of possible bugs will lead to improvement
of the codebase. This trojan horse method has several other industrial-
grade proponents, such as Frama-C [23], [24] by the French Atomic Energy
Commission (CEA) or Facebook’s Infer [25].

While this approach enabled filling the bottom right quadrant of Figure 1.1,
it has several drawbacks that limit its scope. First, its usefulness depends
greatly on the rate of false negatives and false positives of the underlying
static analysis method. Of course, too many false negatives means that the
tool is not effective at detecting bugs. But too many false positives can trigger
user attrition: when a programmer perceives that the tool is not providing
accurate information, she will stop trusting it and will stop caring about
warnings. Second, analysis tools can only reason about the bare source
code, and often do not have access to the various invariants and logical
conditions that underpin the program’s behavior. While some tools offer an
annotation language that lets users write in a formal fashion, annotating a
legacy codebase in such a way is a daunting task beyond the competence
and training of a regular software engineer. Hence, static analysis tools that
operate on large, legacy codebase are barred from proving complex properties
about programs due to this lack of formal global and local context on the
source code itself, but also the lack of manual guidance on the difficult parts
of the proof.

Program Verification as Applied Mechanized Meta-Theory On the other hand,
program verification frameworks embedded in general-purpose proof assis-
tants have allowed to reach the top left quadrant of Figure 1.1. The virtually
unbounded expressive power of the proof assistant, combined with the fine
control over all the parts of the proof, enable a complete specification and
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Domain-specific self-coherence properties

High-level specification

Low-level optimized target implementation

Functional correctness proofs

Functional correctness proofs

Figure 1.2: High-level schema of a typical program verification architecture
inside a general-purpose proof assistant.

proof of a program. The flagship real-world application of this program ver-
ification philosophy has traditionally been small to medium-sized low-level
systems programming and especially kernels. In their experience report on
the verification of the seL4 kernel [26], Klein et al. lay out the general ideas of
this technique. The verification relies on multiple versions of the same code
arranged in a layered infrastructure, from the more abstract to the lower-level:
see Figure 1.2. In seL4 as in other applications, the verification starts from
a high-level, executable (testable) specification of the program being verified,
usually written in the proof assistant’s language or in a shallowly embedded
language [27]. Then, we write the target, low-level, usually optimized version
of the program we wish to verify in the lower layer of this architecture. This
target program version is more often deeply embedded than shallowly em-
bedded, since reasoning about the meta-theory of the target programming
language can be useful to certify its compilation to a lower-level language.

This architecture enabled a significant progress of the program verification
frontier. On the top left quadrant of Figure 1.1, recent work [28] suggest that
we can provide a full specification and proof of a small-sized data structure,
even under a daunting weak-memory, concurrent computation environment.
Then, the crux of the issue turns to pushing the middle section of the veri-
fication frontier of Figure 1.1. This section concerns medium-to-large sized
programs, and properties like functional correctness or some more complex
domain-specific properties. This spot of the state of the art frontier will be the
subject of several chapters of this dissertation.

Designing the three components of the stack of Figure 1.2 together has the
advantage of minimizing the amount of proofs necessary to glue them. But
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each element of this stack is itself so complex, and calls for such a different
set of skills, that they often come in separate research artifacts. For instance,
inside the Coq proof assistant, Bedrock [29], RefinedC [30] and ClightX [31]
provide the bottom part of the stack. The former framework was used as
the basis of the CertikOS [32] kernel verification effort. Higher on the stack,
Fiat [33] or CoqEAL [34] provide a way to write declarative specifications in
Coq that can be used as a basis for program verification.

Lately, devising a successful program verification framework has become
a game of building a tangled, high-rising tower of complex abstractions.
Moreover, the development effort of this kind of framework follows a law
akin to Tsiolkovsky’s rocket equation. In the rocket world, the heavier a
rocket is, the more fuel you need to lift it. But since fuel is itself heavy, you
need more fuel to lift it: the fuel required to lift a rocket to target velocity v

depends exponentially on v. In the program verification framework world, the
more complex a proof is, the more abstractions you will need to present it
in a human-readable format. This proof explosion requires a large amount
of advanced engineering, and provides an endless playground for formal
methods research. However, we will argue in this dissertation that to further
the impact of program verification research, actively involving the end-users
of verified programs in industry organizations is required.

1.1.2. Coq, Fiat and Beyond

This draws us back to the main theme of this section, that is to say the rise
and fall of the general-purpose proof assistant Coq. While there exist many
different general-purpose proof assistants based on different semantics or
proof interaction techniques, the one that attracted the biggest community
and where most of the proof effort has been spent over the last three decades is
Coq, based on the calculus of constructions [35]. The expressive power of this
elegant foundation soon raised the hopes for building a mechanically-checked
theory of everything, directly following the Bourbakist tradition of French
mathematics. Indeed, as mathematicians had begun to accept the validity of
computer-aided proofs after the case of the four colors theorem [36], work-
shops and conferences such as CPP (Certified Programs and Proofs) helped
build a community of researchers dedicated to rewriting the foundations of
all the formal knowledge in Coq. For instance, the same four colors theorem
was proven again in Coq by Gonthier in 2008 [37]. But as the subjects of the
proofs continued to complexify, the unity that the community was longing for
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began to crumble. Gonthier decided to move his proofs to a dedicated library
called SSReflect [38], adding another layer of complexity on top of the original
framework.

A recent article [39] emphasizes the threat that this lack of user-friendliness
and interoperability poses to research in mathematics. On a more positive
note, astounding progress in mathematics formalization is recently coming
from the Lean [40] prover community, notably a full proof [41] of a state of
the art theorem in analytic geometry [42]. However, this proof is based on an
old version of the Lean math library and unification of the libraries is left as
future work.

This library diversification phenomenom stems from the same principle that
explains why there are multiple programming languages. Different domains
require different base assumptions and views of the objects studied that are
sometimes irreconcilable, even though they are expressed using the same cal-
culus of inductive constructions. Of course, this common calculus allows for a
theoretical possibility of connection between Coq frameworks. The translation
of values and proofs between a framework and another can be done via a com-
bination of metaprogramming and tactics, certified or not. When considering
the domain of program verification, this line of thought can be pushed towards
the logical conclusion presented by Chlipala et al. in 2017 [43]. Calling for
“the end of history”, Chlipala et al. condemn the custom implementations of
new domain-specific languages in this era where all languages can simply
be defined as a meta-theory library inside the Coq proof assistant – using
the Fiat [33] framework from the same authors. While the authors lay out
unquestionable arguments about their vision, namely the boost in correctness
and meta-theoretical interoperability that their proposal brings, some of their
arguments can be criticized. For instance, they claim that Coq-embedded
domain-specific languages will be easier to learn for newcomers, as their
familiarity with Coq’s syntax and concepts will provide a strong safety net
and basis for language learning, as opposed to a external domain-specific
language with a custom implementation and little documentation. In short
and pushing the caricature to the extreme, Chlipala et al. promote a new
world of cosmopolitan Coq proof engineers, spending some time applying their
wisdom to a specific domain that has to bend itself to enter the logic of the
all-powerful Coq semantics framework.

While deliberately provocative, this last commentary lays out in the open
some of the social assumptions behind program verification viewed as a
collaborative effort between domain experts and proof engineers. We claim in
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this work that program verification is actually an interdisciplinary problem,
which comes with all the classical issues of trans-disciplinary collaboration.
The recent developments in proof-assistant based program verifications have
placed, in our opinion, too much importance in the research for complex
tooling for its own sake. Our objective is to push out the program verification
frontier as laid out by Figure 1.1 for medium-to-large-sized programs into
proving domain-specific properties. To accomplish this objective, we believe
that the proof engineering techniques should leave the center of the stage and
be put in service of the domain where programs shall be verified.

Looking for the Verification Lingua Franca To conclude this subsection, the
hegemony of Coq has to be nuanced. To balance the proof size explosion,
interactive proof automation has become an active research domain. This line
of works seeks to integrate the automatic theorem provers and SMT solvers
used in static analysis tools inside general-purpose proof assistants. Unlike
Isabelle/HOL [44] or F⋆ [45] that integrate automation at their heart, reflecting
on their design choices, Coq chose early to rely on complex user-provided
abstractions to make proof manageable: tactics [46]. This early technical
decision made it more difficult to bring proof automation to Coq later on.
While some “hammers” have been recently developed [47] to connect Coq to
automated provers, their relatively low effectiveness and lack of feedback have
slowed their adoption inside the proof engineering community, as reported by
a recent survey [48].

Indeed, most automated theorem provers can only work on a restricted
logic base, usually first-order. This creates a tension with the higher-order,
sometimes dependent-types-heavy style of reasoning that is promoted by the
Coq proof assistant. Using the hammer requires translating the higher-order
proof obligations and context into the simpler, first-order logic of the prover.
This translation is usually lossy with respect to a lot of the proof structure,
and requires the prover to rebuild the proof structure, making it harder for it
to find the solution with a low ressource consumption. While this problem is
acute when considering general-purpose provers and hammers, some of its
effects can be mitigated with domain-specific proof assistants. The translation
of the higher-order proof obligations to the first-order logic of the prover can
be fined-tuned with techniques that are custom to a domain. Hence, the
past decade has seen the rise of a number of domain-specific provers such
as EasyCrypt [49] and SAW [50] for cryptography, or Why3 [17] for program
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verification. This recent trend suggest that domain-specific approaches for
proof tooling might be a viable alternative to the construction of more and
more massive, unified and abstract proof frameworks in general-purpose proof
assistants. The examples provided by this dissertation will later discuss this
idea in depth.

1.2. Domain-Specific Languages for Program
Verification

After having introduced the general context regarding program verification,
it is time to converge on the need for the central concept of this dissertation:
domain-specific languages. First, we feature the role such languages can
play in repairing the weakest link of the certification chain of trust for high-
assurance software. Then, we discuss the strengths and weaknesses of
domain-specific languages in general, and make the case for their use in
program verification frameworks.

1.2.1. The Specification Problem

In Section 1.1.1, we claimed that the strength of the program verification
chain of trust should be asserted by examining its weakest link, and thus
that certifying compilation steps may not always be the more efficient way to
raise the global level of assurance. We will further discuss this claim here,
and raise awareness about an often overlooked link of the verification chain
of trust: specification correctness.

In the rest of this section, we will be considering a typical verified program-
ming example involving an interactive proof assistant in which the program
to verify is embedded. Examples of that architecture include, as mentioned
before, the seL4 [15] kernel where a specification written in Haskell is trans-
lated to the Isabelle/HOL proof assistant, then proved equivalent to a C-like
implementation embedded inside Isabelle/HOL. This C-like program is then
extracted to C, the extraction being justified by a meta-theoretical model of C
inside Isabelle/HOL. In this examples as in others, the architecture features
a sequence of layers ranging from higher-level and concise to lower-level and
optimized. Between the nodes of this sequence, a series of translations act as
links. These links effectively form a chain of trust between the top and the
bottom of the architecture.
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Domain-specific source of truth

High-level specification

Low-level optimized target implementation

Low-level representation in compilation platform

Executable binary

(4) Domain encoding

(3) Functional correctness

(2) High-level compilation steps

(1) Low-level compilation steps

Figure 1.3: High-level schema of a typical program verification chain of trust
using a proof assistant.

Tracking Down the Weakest Link Figure 1.3 Illustrates the typical chain
of trust. We will discuss the relative vulnerabilities of each link of this
chain, starting from the bottom. The diagram starts with the executable
binary, but attentive readers know that there is a missing bottom layer to the
chain of trust: the hardware. Although recent major hardware attacks like
Spectre [51] and Meltdown [52] are reminders that the software assumptions
about hardware are frail, we will leave this issue out of the scope of this
dissertation.

The link (1) goes from a low-level representation in a compilation platform
to an executable binary. In most cases, the low-level representation is C,
LLVM IR [53] or WebAssembly [54]. Providing a high level of assurance for (1)
is the goal of the field of secure compilation. So far, Compcert [55] remains
the only major project capable of delivering C to assembly compilation with a
proof of semantics preservation. However, there are many types of properties
one might want to prove about a secure compilation; a recent survey [56]
provides a classification of such properties, as well as many examples of
formal works that provide secure compilations for various language subsets.
The major blocking point for the widespread adoption of certified compilers
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in real-world software compilation toolchains is the performance of the gen-
erated code. Indeed, proving the correctness of compiler optimizations is a
daunting task. While some work has been performed to improve CompCert’s
performance [57]–[59], it is still stuck at the level of an -O1 optimization flag
for GCC or LLVM. Hence, industrial users are often left with the dilemma
of choosing between proven certification and performance. Some industrial
sectors like aerospace choose the first, while others like cryptography might
choose the second due to their performance constraints. However, C com-
pilers like LLVM or GCC are heavily tested and enjoy a relatively high level
of assurance, continuously improved by techniques and tools coming from
academia, like the CSmith fuzzer [60].

Moving on to link (2) and the low-level optimized target implementation.
This implementation, in the case of a verified programming development, is
usually written in a shallowly or deeply embedded language inside a proof
assistant. For instance, seL4 relies on a deeply embedded model of C inside
Isabelle/HOL [61], while Fiat-crypto [62] has a built-in semantics of a domain-
specific subset of C. The assurance of link (2) is thus directly related to the
semantics model of the low-level language inside the proof assistant. A deeply-
embedded low-level language, accompanied by a semantics preservation proof
covering the translation from it to the target (usually C), offers the highest
level of assurance. The downside of this certified approach is the daunting
task of formalizing a big enough subset of C inside a proof assistant, while
avoiding the pitfalls of undefined behavior; Clight [63], deeply embedded
in Coq, is the reference in that area. So, when can (2) be considered the
weakest link of the trust chain? The vulnerability of this translation to bugs
increases with the domain covered by the low-level language in which the
optimized implementation is written. If optimized implementation depend
on aliased pointers, assembly and gotos in a weak memory model, then the
standard in existing literature requires a deeply embedded model of C (and/or
assembly). This might not be the case when the optimized implementation
merely requires arithmetic operations and regular functions. The smaller the
subset, the smaller the risk of introducing bugs in the translation. But in all
cases, the baseline for trust in existing literature is to have a formalization
of the languages involved, and at least an external, non-mechanized meta-
theoretical argument for the correctness of the translation.

Up next, we examine the link (3) between the high-level specification and the
low-level, optimized target implementation. Again, the high-level specification
is usually encoded as a shallowly or deeply embedded language inside a proof
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assistant. This embedding is crucial because (3) is where lie the bulk of
the domain-specific functional correctness proof for the verified development.
This functional correctness proof is therefore not the go-to suspect for the
weakest link of the trust chain, since it is precisely the step that program
verification attempts at making high-assurance. Note that while the high-
level specification can be written directly in the proof assistant [62], [64],
[65], another approach later developed in this dissertation is to have the
specification written in another high-level language, and then translated to
the proof assistant (for instance, seL4 and Haskell [15]). In that case, this
translation becomes part of the trust chain and needs an argument to justify
its correctness.

Last but not least, we raise the question of the provenance of the high-level
specification. What is the argument for their correctness? So far, the trusted
computing base that can be found in links (1), (2) and (3) is not domain-
specific. It concern various translations, and sometimes the proof assistant
itself. While foundational approaches like Coq’s meta-theory [66] assuredly
enjoy a maximum level of assurance, regular testing of a less foundational
proof assistant by a community of users yields some assurance by continuous
improvements, using the same assurance arguments for mainstream C com-
pilers like LLVM and GCC against CompCert. But link (4) is domain-specific,
and usually only receives attention from the domain-specific programmers
that participate in the implementation of the verified development. To answer
the question of whether it is or not the weakest link, we have to enter the
domain-specific matters that the program being verified aims to tackle.

Proving or Trusting Domain-Specific Truth Sometimes, the high-level speci-
fications can themselves be derived from a more high-level, more abstract
and mathematical property. As we will see in Chapter 2, the specifications
of the cryptographic primitives and protocol enjoy security properties like
computational security, confidentiality and authentication, forward security,
etc.

Then, an additional layer of proof can be added on top of the high-level
specifications to check whether they satisfy those meta-properties. These
proofs can either be written inside the main proof assistant, or require an
external domain-specific prover. The latter is often true for cryptography,
as a recent survey [67] points out. Depending on whether the property we
want to prove is expressible in the symbolic or in the computational model
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of the cryptographic application, one might chose a different solver. Since
the external solver has its own language to express the program and the
properties to prove, this step adds a fifth link to the chain of trust, with a
translation certification required to obtain the maximum assurance level.

However, not all specifications enjoy abstract mathematical properties that
ensure their internal coherence. In Part II of this dissertation, the source of
truth for the specifications is the text of the law, which is a social rather than
mathematical construction. In those cases, the link (4) of the chain of trust is
immaterial, and represents the assurance that the high-level specifications
correctly encodes the domain-specific source of truth.

But when the domain-specific source of truth is not formal in the first
place, link (4) relies on custom interpretations or decisions made by the
writer of the formal specification about what would happen in an situation
ambiguous for the domain-specific source of truth. When the writer of the
formal specification does not possess the sufficient domain-specific expertise,
such disambiguations should be reviewed by a proper domain expert. This
reviewing and validation of the specification is crucial to ensure a high-level
of assurance of step (4).

How can we have a non-computer scientist domain-expert review and
validate a formal specification of the domain-specific truth? If the specification
is written in the language of the proof assistant, then the domain expert can
be startled by the foreign concepts and syntax of the code presented before
her, making the validation difficult if not impossible in practice.

Even in domains like cryptography where specifications derive from some
sort of higher mathematical theory, existing verified cryptographic libraries
do not always package a proof layer for the specifications, by lack of proof
engineering ressources or because the mathematical theory behind the speci-
fications is beyond the verification state of the art. In this situation, the same
domain-specific validation problem arises; Chapter 3 explains this problem in
detail.

Languages for Domain Specifications Based on the careful examination
above, we conclude that link (4) can be the weakest link in verified develop-
ments and therefore deserves a greater deal of attention that what can be
found in the literature so far. Thus, we need a medium of communication
between the domain experts and the formalizers that write the specification.
In this dissertation, we argue that domain-specific languages can act as the
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medium of communication, when they are designed with this objective in
mind. These domain-specific languages can be shallowly embedded in a
proof assistant as suggested by Chlipala et al. [43], or benefit from a custom
frontend implementation, external syntax and tooling.

The important point of our proposal is to design these specification-friendly
domain-specific languages with the later proofs in mind. Usually, there is
a tradeoff between language complexity and program complexity: the more
advanced and domain-specific features a programming language offers, the
simpler the programs one can write inside it. Simpler programs can be
reviewed more thoroughly and are generally more trustable, as high-level
specifications. But making the programming language too complex results
in an uneasy formalization, making the connexion with the proof assistants
virtually impossible. This tradeoff will be especially explored in Chapter 6.

To sum up the direction of our work, we use the label proof-oriented domain-
specific languages for domain-specific languages designed with a formal appli-
cation in mind, usually a verified programming development. The term proof
oriented programming language is not new, as reminded by Aymeric Fromherz
in his recent dissertation [68]:

“To the best of our knowledge, this term was first used by Hoff-
mann [69] to describe Lucid, a language that ‘uses the same deno-
tation for writing and proving properties of programs, thus is, at
the same time, a formal proof system and a programming language’.
More recently, Jean-Karim Zinzindohoué [70] used the same term
to present F⋆, a general purpose programming language aimed at
program verification that we use throughout this thesis.”

Examples of such proof-oriented domain-specific programming languages
already exist in the literature: Usuba [71], Cryptol [72] and Jasmin [73] are
good examples in the domain of cryptography. This dissertation merely makes
this concept explicit and proposes a methodology to design and deploy those
languages. But before, let us discuss the specificities of domain-specific
languages compared to their general-purpose counterparts.

1.2.2. The Domain-Specific Solution

The topic of domain-specific languages has been extensively studied for a
long time, and this subsection will merely summarize the main points from
existing works [74]–[78].
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The frontier between a domain-specific and a general-purpose programming
language has always been blurry. Because of its community of programmers
and library ecosystem, a general-purpose programming language can special-
ize over time in one or several domains. For instance, C for embedded systems,
Java for business logic, Go for distributed systems, etc. On the other hand,
some languages initially thought for a specific domain or use have gained so
much popularity that they have de facto become general-purpose: Javascript,
initially designed in 10 days for animating Web pages [79], or Python, initially
suited for “throw-away programming” and “rapid prototyping” [80].

Hence, we need to be more precise as to the scope of the domain-specific
languages that are of interest to us. Here, we focus on domain-specific
languages whose syntax and semantics is designed with the explicit purpose of
improving communication with domain experts, while retaining executability.
Performance and optimization are also major features of domain-specific
language implementation, but we shall put them second in our priority list,
since we are interested in writing high-level specifications that will act as
sources of truth for more optimized implementations.

Conciseness as the Key to Correctness The crux of the domain-specific cor-
rectness issue boils down to code reviewing by domain experts. And the
main factor of external reviewing ineffectiveness is program verbosity. Some
verbosity cannot be avoided, when it comes from the domain itself. But some
sources of verbosity can be dealt with language design. The simplest tech-
nique is to encapsulate domain-specific concepts inside a library that exposes
high-level functions taken for granted. Next, syntax is a good candidate for
improvement, as defining syntactic sugars can help reduce the amount of
boilerplate code required.

But sometimes, verbosity comes from a semantics mismatch between the
programming concepts and the source domain concepts. A staple of domain-
specific language design is the handling of complicated conditional structures,
that can only be expressed poorly with if/then/else statements; but in
a clearer form using decision tables [81] or a negation as failure [82]. A
paradigm switch, from imperative to declarative, or from object-oriented to
functional, can also reduce verbosity. Other fruitful paradigms for domain-
specific languages include aspect-oriented programming [83] for enforcing
separation of concern in some applications, synchronous programming [84] for
cyber-physical systems or functional reactive programming [85] for specifying
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interfaces and user interactions.
The traditional way of software engineering to code conciseness, abstraction

through functions, classes or modules, can be unadapted to some domains.
Business-related software engineering uses the term of business rules [86]
to describe the way enterprise-ready specifications are described. In this
setting, the specifications are viewed as some kind of evolving data (stored in a
database) with a particularly complex and intricate structure. State-of-the-art
Business rules management systems such as Drools [87] are centered around
the database, and require a heavy runtime system to execute while offering a
versatile frontend for domain experts that can enter the business rules in the
syntax of their choosing.

Domain-specific language design can draw from all of those techniques to
cut down verbosity and foster communication with domain experts. However,
the complexity of its design comes with the tradeoff of the complexity of its
implementation.

Embedded and External Implementations Domain-specific languages are tra-
ditionally divided between the external and embedded (or internal) categories.
These categories relate to the way the languages are implemented. Embedded
domain-specific languages piggyback on a host programming language, from
which they can borrow the syntax or semantics, fully or partially. Thus,
an embedded domain-specific language can merely consist of a library in
the host language with a few macro-defined syntactic sugars. All embedded
domain-specific languages reuse at least some part of the tooling of the host
language, usually the compiler.

On the other hand, an externally-implemented domain-specific language
possesses its own tooling, especially the compiler. An external implementation
allows for more flexibility in the syntax and semantics, as the compiler for
a domain-specific language can be arbitrarily complex. However, external
implementations do have the effect of fragmenting the community as users
may have to learn a completely different set of syntax, compiler options, etc.
Some of this fragmenting can be mitigated by reusing an existing syntax
family (ML, C, Java, etc), or follow interface standards for the tooling. Another
downside of external implementations is the big development effort required
to produce the tooling that is expected of a modern programming language:
good error messages, linting, etc. There again, this effort can be mitigated by
choosing for the implementation of the compiler a functional language with a
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solid compiler-related library ecosystem like OCaml.
Recently, a third way of domain-specific language implementation has risen

in the form of language workbenches [88], [89] or, closer to the formal world,
“a programming language for creating new programming languages” [90],
Racket [91]. While this approach has yielded promising results in terms of
implementation efficiency and expressiveness, several challenges remain for
this way to connect elegantly to the world of proof assistants and program veri-
fication. As a recent Racket survey [92] points out, tying typechecking rules to
language constructs is difficult, leaving users to fallback on a manual external
typechecker implementation. On ther other side, semantics framework such
as the K framework [93] are currently oblivious of the implementation of the
language defined. Future work will maybe see a convergence between those
two lines of research.

In this dissertation, we will use a mix of embedded and external domain-
specific languages. Our implementations are backed by a formalization of the
domain-specific language, at least on paper, if not mechanized inside a proof
assistant and accompanied by a meta-theory.

Limitations of Domain-Specific Languages To offset the advantages presented
above, we list here the usual limitations of domain-specific language. These
limitation stem from their specificity: fragmentation of the user base and
community, need for the users to learn a new syntax or new programming
paradigm, difficulty and cost of maintaining specific tooling. Domain-specific
languages for verification suffer even more harshly from those drawbacks, as
the initial size of the verification community is already quite small. In his PhD
dissertation, Théo Zimmermann [94] reveals that despite having been created
in 1984, Coq only truly opened its development to external contributors in
2015 :

“Even if the development today is entirely open, transparent, dis-
tributed, and online, with the number of contributors steadily in-
creasing and now well over a hundred, it is still the case than the
main developers are Inria employees, and that Coq lacks the huge
environmental support that designers of a language within a large
company can benefit from. Furthermore, this is not just a matter of
financial support. Given the complexity of the Coq system, a high
level of expertise is needed to contribute, which excludes most soft-
ware engineers without strong mathematical and computer science
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backgrounds, and means that, like for most scientific software [95],
the developers are mainly researchers, or engineers with research
experience.”

Hence, the biggest proof assistant in the field already suffers from flaws
that usually affect domain-specific languages. Consequently, domain-specific
languages embedded in Coq are even more heavily impacted by this problem.
The F⋆ proof assistant, that will be extensively featured in this dissertation,
has similar problems since its user base is smaller than Coq’s.

Given the low adoption of program verification by industrial users, we
believe we cannot wait until the user base of these tools grows sufficiently to
address these problems. So, we advocate here for domain-specific languages
whose main public are experts: domain experts and language design experts.
The social implications of this statement will be discussed in the next section.

1.3. A Novel Methodology for Pushing the Verification
Frontier

Equipped with the context presented in the last two sections, we set out to
introduce the thesis of this dissertation. To push the program verification
state of the art frontier, we claim that a domain-specific approach can yield
significant contributions both in terms of raising the level of assurance on
the correctness of the development, and enabling specialized proof tactics
and tools. To support this domain-specific approach, we propose a novel
methodology that starts from an existing codebase, and uses domain-specific
language design to carve out a formal, executable subset. This subset serves
a dual purpose. First, it can be used as a medium of communication with
domain experts to validate the code, as discussed in Section 1.2.2. Second,
the subset should carry proof obligations related to the functional correctness
of the program, that can then be fed to off-the-shelf or custom proof backends.

1.3.1. Carving Out Subsets and Connecting to Proofs

In this section, we propose a methodology for incrementally verifying an
existing codebase. This endeavor involves several characters who will play a
different role: let us introduce them now. The main character, which we will
eventually describe as the language architect, is responsible for coordinating
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First step
Existing codebase Critical

core
Trusted

codebase

Figure 1.4: First step of the methodology: tidy up and isolate the critical code
parts.

all the phases of the work. The original maintainers of the codebase are
regular engineers, while the people working on the proofs shall be called proof
engineers. Finally, we use the term formalizers to designate the people in
the process that possess a training in formal methods, and domain experts
to designate the people that have a deep understanding of the sometimes
informal requirements of the system in the context of its domain-specific use.

The methodology requires a specific scenario we envision for the intervention
of the formalizers. The starting point of our program verification journey is
an existing real-world codebase, whose level of assurance we want to raise.
This codebase is usually written in a mainstream programming language,
but the formalizers can leverage a human connection with the engineers that
maintain the codebase, who are willing to refactor or replace certain parts
of it provided reasonable guarantees. This scenario assumes a collaborative
relationship between the formalizers and the domain experts who have control
over the codebase. This relationship is key to technology transfer, as the most
foundational and proven artefact may not enter a production codebase if its
creator does not establish trust with the maintainer of that codebase.

The first step (Figure 1.4) of the methodology for the formalizers is to divide
up the codebase between the core that will be verified, and the part that
shall remain part of the trusted computed base. This first step is usually
time-consuming as it requires refactoring the critical core of the codebase into
separate modules with clean interfaces. If the critical section of the codebase
is heavily optimized and written in an obscure style, then a higher-level,
concise and more readable version of the code should be written, that will act
as a reference for the optimized implementation. Note that the first step of
this methodology coincides perfectly with good software engineering practices.
It is also the occasion to take a deeper look at the critical core of the code
and fix some bugs before even using verification tools. Actually, it should be
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Second step
Critical

core
Optimized

implementation

High-level
specification

High-level
language subset

Low-level
language subset

Figure 1.5: Second step of the methodology: isolating the language subset(s) –
or domain-specific language(s) – for the core.

Third step

Optimized
implementation

High-level
specification

Compile to
proof backend

Optimized
implementation

High-level
specification

Figure 1.6: Third step of the methodology: translating the core code into the
proof backends.

reminded that this first step is sufficient for most projects that do not require
a very high level of assurance.

The second step (Figure 1.5) of the methodology is to carefully examine
the critical part of the codebase that has been put aside. The goal of this
examination is to determine and minimize the set of features that the critical
code is exercising inside the host programming language. For this step, a
tradeoff similar to the one presented in Section 1.2.2 has to be determined
between the verbosity and readability of the code, and the complexity of the
language features that it uses. The closer the language subset is to lambda
calculus or another semantic base, the easier the next steps will be. But
the more verbose and ugly the code is – especially the high-level, reference
version of it – the harder it will be to get domain experts on board. This step
is where the discussion with domain experts is the most intense, since the
formalizers have to co-design with them a subset of the host language that
will be the target of the verification process. If there are two versions of the
critical code, the high-level one and the optimized one, they can live in two
different subsets of the host language.

The third step (Figure 1.6) of the methodology is to formalize the one or two
subsets of the host language identified by the previous step. The formalization
can build on previous works, mechanized or not, concerning formalizations
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Fourth step

Optimized
implementation

High-level
specification

Optimized
implementation

High-level
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correctness
memory safety

...

Figure 1.7: Fourth step of the methodology: using proof backends on compiled
core code.

of the complete host language. The formalization can then be implemented
and tested with a subset-specific compiler, that can also build on existing
infrastructure for the host language. At this point, formalizers are doing the
heavy lifting, but interactions with domain experts are needed to determine
the trusted computed base of the verification endeavor. Some libraries of
the host language used in the critical code can be made to fit within the
formalized subset, or rather be considered as primitives and made part of the
trusted computing base. Then, the subset-specific compiler can be extended
with translations to proof backend languages: languages of proof assistants,
encoding of proof obligations. These translations can be certified mechanically
or just formalized on paper, depending on the target level of assurance and
the state of the whole trust chain.

The fourth step (Figure 1.7) of the methodology involves most of the actual
proofs of the verified programming development. Once the critical code has
been translated in a proof backend, proof engineers (who can be distinct from
the formalizers) take it from here. Several kind of proofs can be developed:
domain-specific specifications proofs to ensure the coherence of the high-level
specifications, functional correctness proofs between the high-level and the
optimized versions of the same critical code, memory-safety or security-related
proofs on the optimized implementation, etc. Critically, not all proofs of
this step have to be made with the same proof backend. The ability of the
subset-specific compiler to target multiple proof backends can be used to take
advantage of the specificities of each prover, and choose the right tool for each
different job. Of course, having different provers interact might introduce
breaches to the chain of trust, but the process is semantically controlled by
the shared formalization of the source subset.

Finally, an optional fifth step (Figure 1.8) can be added to this methodology
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Fifth step

Optimized
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High-level
specification

Extract from
proof backend

Optimized
implementation

Rest of the
original codebase

Figure 1.8: Optional fifth step of the methodology: extract verified code and
link back.

in order to loop back to the original source code. So far, we have assumed that
the proof backends are used in a model-checking fashion. But proof backends
can also be used to generate verified code via extraction and compilation
techniques. If that is the case, the proof backend can generate an executable,
optimized implementation whose functional correctness with respect to the
high-level specification has been verified. This generated optimized implemen-
tation can then be plugged back in the source critical code via direct source
code integration, or via the use of foreign-language interface bindings if there
is a mismatch between the host language and the language generated via
proof backend extraction.

Figure 1.9 shows the final state of the methodology, after having applied
the five steps in the most complete setting with different implementation and
specification domain-specific languages. The final diagram for less compre-
hensive applications of the methodology can be obtained by removing blocks
from the picture, while keeping the translation and equivalence links in place
when possible.

The important aspect of this methodology is its flexibility. The list of steps
is meant to be adapted to each domain, and especially the state of the art
of languages, compilers and proof backends available for the domain. The
overall goal is to connect programs to proofs with nimble languages, thus the
participants of this process should constantly question their choices, whether
it is to create a new language or intermediate representations, use existing
ones and formalize them, tackle difficult and complex properties or focus on
the easy ones that represent the main risk for high-assurance.
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Legend
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Figure 1.9: Overview illustration of the methodology proposed in this disser-
tation. Inside each block picturing a chunk of the software, the
left part labels the code while the right part labels the language
in which the code is written. Translations and equivalence proofs
can be done manually or mechanically.
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1.3.2. Proof-Oriented Domain-Specific Languages

At the heart of the methodology presented in Section 1.3.1 lies the concept of
domain-specific language, discussed in Section 1.2.2. While domain-specific
languages are an old concept in formal methods, the contribution of this
dissertation is to integrate the needs of later proof developments in their
design. Hence, we coin the concept of proof-oriented domain-specific language
design.

Designing a domain-specific language with later proof developments in
mind has several implications. First and foremost, the features of the domain-
specific language must remain completely formalized at all times. Nevertheless,
this is difficult to accommodate with the need of users and domain experts for
customized syntax and language features. To solve this problem, we advocate
using a compiler architecture similar to CompCert [55] or Nanopass [96],
centered on a restricted, regular and formalized intermediate representation
as simple as possible, layered with as much syntactic sugar as needed on top
of it.

Second, the language design should include space for proof obligations
that will come with the program. These obligations can either come from
contracts written by the user (in a contract domain-specific sub-language), or
be automatically generated and inserted by the compilation chain depending
on syntactic or semantic criteria. To benefit from the specialization of the
proof backends, the handling of proof obligations should be as structured
as possible, with sources of obligations separated by domains and attached
close to their location in the program. With this kind of architecture, the
domain-specific compiler can be turned into a proof platform that distributes
the workload as several packages, each sent to the right tool that can prove
it. In this strategy, crafting a good program verification stack is all about
reducing the complexity of the program space to its very essence, and applying
a divide and conquer strategy with proof obligations to cut them down into
bits that are manageable by off-the-shelf or custom proof backends. The
most important aspect of this method is to get rid of all complexity that is not
necessary for the programs of the domain.

This line of thought is not entirely new: the division of proof labor has
already been experimented in the Viper [19] framework, that features both
a custom symbolic execution backend and a backend to the Boogie [97]
verifier. Moreover, Viper possesses several frontend exposing verification
abilities to subsets of mainstream programming languages: Prusti [98] for
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Rust, Gobra [99] for Go, Nagini [100] for Python. The same line of research
produced a domain-specific language for verification of concurrent programs,
Chalice [101]. However, the philosophy and methodology behind the Viper
endeavor, unlike our proposal, goes from language theory and proof automa-
tion techniques to examples of programs to verify in the source languages.
Hence, the evaluation of the Viper-based verification tools very rarely features
real-world programs of more than a thousand lines of code. Moreover, due
to the very complex semantics of its internal representation, Viper cannot
be connected to an interactive proof assistant for the difficult parts of the
proof. Thus, this dissertation sets out from existing work by advocating not to
depend completely on a monolithic verification framework.

This dissertation mostly explores the division of proof labor in Chapter 4.
However, the domain-specific languages presented in Chapter 3 and Chapter 6
could be developed in future work to achieve this goal. But such achievements
cannot be completed by a single researcher: the methodology of Section 1.3.1
encompasses a tall stack of languages, implementations and proofs, and the
expertise required to master all steps is beyond the most skilled of researchers
or programmers. Hence, the social organization that underlies the contri-
butions of this dissertation is complex, requiring close interactions between
the domain experts, the language designers and the proof engineers. At this
point in program verification research, we claim that contributions should
acknowledge the size of the developments and take the social aspect of the
division of labor into account. This means defining clean interfaces to separate
layers of the verification stack. These interfaces must be understood by the
people on all sides: domain experts, compiler engineers, proof engineers.

Therefore, we propose that proof-oriented domain-specific languages fill the
role of these interfaces. In this scheme, the role of the software architect that
traditionally defines code interfaces would be matched by the role of language
architect. The language architect is in charge of designing the compilation
chain, and all intermediate representations and languages that may not exist
yet. When software architects use UML diagrams to convey their thoughts,
language architects should use semantics and translation formalizations.
From that comparison, we can note that UML succeeded as a lingua franca
precisely because of its ambiguous and flexible nature, despite many attempts
to formalize subsets of it [102]–[104]. Hence, rather than advocating for
all these formalizations to be constrained in a unifying Coq framework, we
recommend for language architects to adapt to the existing technologies of the
domain, and use paper proofs and descriptions as a backing lingua franca.
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The Language Architect Manifest At the end of the introduction for this
dissertation, it is time to turn back to Winograd’s 1979 paper on the future of
programming [105] and quote the author:

“We cannot turn programmers into native speakers of abstract
mathematics, but we can turn our programming formalisms in the
direction of natural descriptive forms.”

We claim that this task is precisely the job of programming language design-
ers, that ought to occupy a central role in projects involving critical software.
Software projects including a full-time language architect position can benefit
from productivity increases due to better communication between domain
experts and programmers, but also better tooling and reuse of language
infrastructure, for optimized compilation or correctness proofs.

The training of such language architects could be very close to existing
university-organized formations in theoretical computer science, and should
include as a basis: functional programming, compilation theory with a focus
on semantic analysis and compiler architecture, programming language theory
with semantics of the lambda calculus and its extensions. However, a formal
and theoretical training is not enough, as the key skill for the language
architect position is to listen and translate faithfully the requirements of
the system as stated by the domain experts. This skill may be hindered by
the pitfall of being in charge of a wide-ranging structural plan: blindness to
local particularities that can lead to oversimplification and destruction. This
nefarious behavior is masterfully described by the anthropologist James C.
Scott in his piece Seeing Like a State: How Certain Schemes to Improve the
Human Condition have Failed [106]. Throughout recent history, a number
of high-modernist State reformators have sought to apply uniformly to vast
empires rules of government for administrative and well-intentioned purposes.
But sometimes, oversimplified rules simply made no sense in the particular
local contexts. For instance, the Russian tsarist administration imposed in
the late XIXth a strict assignation of any piece of land to a unique owner in
rural Russia. This completely disrupted the local collective land ownership
patterns in place that ensured an equal division of labor and good yield for all
the crops. Eventually, the new system led to a decrease in production where
it had been applied. More interestingly, some villages kept the old system in
place while pretending to apply the new rules when official inspectors came
along.
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A parallel can be drawn with computer science and the high-modernist views
of certain software architects, advocating for a single paradigm/framework for
all applications, regarding of the local context. This view is quite prevalent in
large organizations, where software urbanists recommend the use of a single
programming language for an entire information system (often Java). Instead,
we advocate for Scott’s solution to the negative effect of over-planification and
simplification, which he designates using the Greek mêtis (“μῆτις”) concept. The
mêtis is the constant adaptation and local ingenuity that keeps organizations
and activities running. It is the individual autonomy of the user that can
modify its tools to maximise their fitness for the task at hand. It is also the
occasional breaking of the rules when their literate application to the local
context does not make any sense.

The high-modernist approach for Computer Science has yielded a number of
great pieces of infrastructure, as Section 1.1 reminds. However, we believe that
language architects should use a little more mêtis and show some adaptation
if they want to succeed at raising the level of quality and assurance of real-
world software. The first step in this direction is to be more aware of what
happens after the program executes: is anybody affected by the decision taken
by the program? What are the consequences of an error? Who understands
and defines what the program is doing? Who is able to maintain it after the
formalizers have left the scene? Answering these questions is hard when the
initial training of a language architect merely focuses on technical aspects.
Of course, advocating for more individual curiosity is welcome, but including
more humanities in the initial training of language architects might be a more
structural solution.

In conclusion, we claim that promoting the importance of the language
architect position, and the ethos that comes with it, to industrial users of
formal methods, will be key to provide more prospects to academic graduates
wishing to be employed for their formal abilities.

Contributions of this dissertation

This dissertation presents several variations of the strategy outlined in Sec-
tion 1.3.1, featuring proof-oriented domain-specific languages in the style of
Section 1.3.2. Each chapter presents a separate contribution, corresponding
to a peer-reviewed publication or a technical report. The chapters apply the
feature methodology of this dissertation to two different domains: cryptogra-
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phy and legal expert systems.
Even though they belong to different business universes, these two domains

feature critical programs who exercise the limits of the current program
verification state of the art. At the same time, the real-world uses of these
programs are important enough that it makes economic sense to spend a lot
of resources trying to formally verify their correctness and safety.

The first part of the dissertation, consisting of Chapter 2, Chapter 3 and
Chapter 4, deals with high-assurance cryptography. The main contribution of
Chapter 2 is the demonstration of a complete rundown of the methodology
of Section 1.3.1 on the Signal protocol, based on the F⋆ program verification
ecosystem state of the art and a new translation to WebAssembly. Chapter 3
solves the specification problem (in the sense of Section 1.2.1) for these
verified cryptographic developments, and opens up new connections between
specialized provers in the domain. As Chapter 2 emphasizes the limitation of
this state of the art, it also and motivates the need for the Steel framework
presented in Chapter 4, that brings automated proofs for programs specified
using separation logic in F⋆.

Moving outside the traditional application areas of formal methods, the
second part of this dissertation tackles the challenge of correctness of legal
expert computer systems that are supposed to follow a legislative specification.
Chapter 5 starts from a real-world, critical codebase, the French income tax
computation algorithm, and performs a reverse-engineering of the language
architecture of the whole system, bringing it up to date and enabling future
connections to formal tools. Finally, Chapter 6 examines what can be achieved
in this domain when starting from a clean slate, and proposes a high-level
domain-specific language designed with lawyers to efficiently and correctly
transform law into code. The generated code can either be distributed as
libraries in existing information system, or be sent to proof backends for
future coherence and safety proofs about the underlying logic of the legal text.

While not all of the main chapter feature a complete run-down of the steps,
they all illustrate this adaptability that we claim can help push the program
verification frontier.
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Abstract

The introductive chapter of this dissertation exposed the general principles and
methodology of our work. Now, we apply those to a first example: the LibSignal⋆ cryp-
tographic protocol implementation. Indeed, as real-world Web Applications embark
more and more security-critical components, formally verifying their implementation
becomes a more and more sensible option.

To begin our journey in the land of high-assurance cryptographic software, the
first two sections of this chapter introduce the F⋆ proof assistant, the Low⋆ program
verification domain-specific language, and related work around verified cryptographic
developments. Then, we unroll the steps of our signature methodology on LibSignal⋆,
the Web-compatible implementation of the Signal protocol using a novel Low⋆ to
WebAssembly toolchain.
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2.1. The F⋆ Verification Ecosystem

2.1. The F⋆ Verification Ecosystem

This chapter, as well as Chapter 4, present contributions that build on a
particular proof assistant developed since 2016 at Microsoft Research and
other academic institutions: F⋆ [1]. Hence, this first section describes the
language of this proof assistant, as well as the verification experience it offers.

2.1.1. The proof experience in F⋆

Since this dissertations focuses on language design, our primer on F⋆ in this
subsection will focus on the design elements of F⋆ as a verification tool and
the experience they provide, rather than the details of the system and its
logical foundations that are already documented in the literature [1]–[5].

Let us begin with a quote from fstar-lang.org:

F⋆ (pronounced F star) is a general-purpose functional programming
language with effects aimed at program verification. It puts together
the automation of an SMT-backed deductive verification tool with
the expressive power of a proof assistant based on dependent types.

The verification philosophy behind F⋆ differs from traditional proof assis-
tants. First, F⋆ is not implemented around a small “kernel” trusted code base
that checks all proof correctness, like Coq [6], Isabelle/HOl [7] or Lean [8].
Rather, F⋆ is based on a higher-order dependent type theory that separate
the programs from the proof context. For instance, the following definitions
defines a tree type and the nodes function counting the elements in the tree:

type tree (a: Type) : Type =

| Leaf: tree a

| Node: v:a -> l:tree a -> r:tree a -> tree a

let rec nodes (#a: Type) (t: tree a) : nat =

match t with
| Leaf -> 0

| Node _ l r -> 1 + nodes l + nodes r

The syntax of F⋆ programs is roughly the same as OCaml and ML, with a
few additions for the dependently-typed features. The # prefix indicates an
implicit argument that F⋆ will automatically try to infer by unification at the
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call site. The F⋆ programming style encourages the use of type refinements to
specify contracts, using the {...} syntax. Then, it is possible to define an
insert_left function that provably adds one node to the tree:

let rec insert_left (#a: Type) (t: tree a) (v: a)

: (t':tree a{nodes t' = nodes t + 1})

=

match t with
| Leaf -> Node v Leaf Leaf
| Node v' l r -> Node v' (insert_left l v) r

When typechecking this piece of code, F⋆ generates multiple guards that
stem from its typing rules. Guards can be generated from refinements types,
or at the top level from the effect system, e.g. to show that the weakest-
precondition of a function body implies the weakest-precondition of its con-
tract in the signature. F⋆ then tries to solve these guards by unification; in
case of failures, they are encoded as proof obligation in an SMT query by and
discharged to the Z3 [9] SMT solver.

Thus, inside F⋆, the proofs all happen within the refinements of the different
types being manipulated by functions, and the proof context has historically
not been directly accessible to the user. So much so that to force F⋆ to
check whether a property is true at a given program point, one can write the
following:

let _ : unit{(* property to prove *)} = () in ...

This pattern is how proofs are written in F⋆. By this, a lemma has the
following form:

(* The ubiquitous abbreviation for the refined unit *)

type squash (p: Type) : Type0 = x: unit{p}

let foo_lemma ... : squash ((* property to prove *)) =

(* proof of the lemma *)

In idiomatic F⋆ programs, this machinery is hidden by the better looking
syntactic sugar:

let foo_lemma ... : Lemma ((* property to prove *)) =

...
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The lemma can then be called as s simple unit-returning function inside
the program to prove. This call will bring the property of the lemma inside the
context, where it will be encoded into SMT and used for the proof. The proof
of a lemma can consist in calls to other lemmas, or simply (), as this is the
value returned by the lemma.

Instead of discussing the specifics of the technical implementation of the F⋆

compiler, we will instead focus of what it entails in terms of proof experience
for its users. The preferred development mode for F⋆ uses an Emacs plugin
that offers an experience similar to Proof General [10]. In this integrated de-
velopment environment, the user can type-check her programs incrementally
by feeding one top-level definition at a time to the F⋆ type-checker. When the
proof associated to the definition’s proof obligations goes through with Z3, the
user can move forward. But when F⋆’s preliminary type-checking or Z3 fails,
an error message is returned to the user.

Before the addition of a tactics system to F⋆ [4], the error messages were
the only way for the user to interact with her proof, and the context remained
hidden at all times. Moreover, the error messages often do not provide enough
information to locate the exact reason why the proof was failing: in the best
scenario, they only highlight the location of a failed assertion or precondition.
On top of that, F⋆’s encoding of proof obligations into Z3 via the weakest-
precondition calculus is such that assertions failures in the code are not
reported in order. For instance, if you have two consecutive assertions in a
proof and F⋆ reports a failure on the second one, this do not mean that the
first assertion succeeded. Because of these limitations, the F⋆ proof experience
is dominated by the “sliding admit” verification style.

The “sliding admit” verification style is a work-around that consists in
debugging proofs via the use of admit calls that will move through the proof
over time. admit : unit -> unit is a catch-all F⋆ predicate that, once
encoded into Z3, will mark as proven all the proof obligations coming from
a later point in the F⋆ program. Consider the following program whose type-
checking fails:

let difficult_function (i: input)

: o:output{conjunct1 i o /\ conjunct2 io}

=

let t1 = function1 i in
let t2 = function2 i t1 in
...
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let o = tn in
o

Instead of searching through the whole function to determine which pre-
condition or part of the post-condition is failing, you can put an admit after
the first let-binding. This admit call will admit the weakest-precondition
corresponding to everything that happens after it inside the expression:

let difficult_function i =

let t1 = function1 i in
admit()

If at that point you can already express parts of the post-condition, you can
also express them using assert:

let difficult_function i =

let t1 = function1 i in
assert(conjunct1 i t1);

admit()

You can move your way forward by sliding the admit down through the
function, hence the name of this verification style. Another big part of F⋆’s
proof experience is to fiddle with the SMT encoding parameters. The three
big parameters that have considerable influence on Z3’s ability to prove F⋆’s
proof obligations are the z3rlimit, the fuel and the ifuel. z3rlimit is
akin to a Z3 timeout, after which the prover stops searching for a proof and
returns control back to F⋆ that yields an error message. Actually, z3rlimit
is a machine-independent resource limit that differs from the wall clock time
to account for the different computing power and offer an uniform proof
experience across machines; but we’ll refer to it as a timeout in the rest of the
dissertation. A timeout is necessary for the proof experience because Z3 can
spend several minutes looking for a proof of an incorrect statement; in that
case, we prefer stopping the search early and return a prompt to the user
quickly. However, difficult but correct proofs also take more time for Z3, and
this case requires the user to specify an increased timeout; this also indicates
to code reviewers the difficult sections of the proof. Another hurdle in F⋆’s
proof experience is Z3’s non-deterministic behavior, that hinders replication of
proofs with a high z3rlimit over time. The only solution to that problem is to
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PURE DIV

GHOST

STATE

EXN

ALL

Figure 2.1: Lattice of builtin effects in F⋆, from [1]

give more details about the proof in the source code, by placing intermediate
lemma calls or asserting critical properties.

The two remaining parameters, fuel and ifuel, control respectively the
unrolling of recursive predicates and the inversion of inductive types in the
Z3 encoding. Indeed, some proofs relying on unrolling one or more times
the recursive definition of a function, or by case-matching on one or more
levels of the structure of an instance of an inductive datatype. For instance,
by setting fuel to 2, all recursive functions in the proof context will be
unrolled twice in the Z3 encoding. By setting ifuel to 1, the Z3 encoding will
feature proof branches that depend on the cases of all inductive values in the
context. The higher fuel and ifuel, the broader the proof search, but also
the bigger the query and the longer its resolution by Z3. Hence, a tradeoff has
to be determined by the user, who can also user finer-grained specification
mechanism for controlling unrolling of specific terms and types.

Overall, the F⋆ verification experience relies heavily on an intimate knowl-
edge of Z3’s behavior, and a sense about how things are encoded in the SMT
query. On the plus side, the automation provided by the prover is a relief
for bookkeeping-heavy proofs, and the unity of the syntax for proofs and
programs make for a good readability of the code. On the negative side, the
imprecision of F⋆’s error messages is puzzling and the “sliding” admit verifica-
tion style is a poor substitute for a closer and more transparent inspection of
the proof context at the problematic program point, which F⋆ cannot provide.

2.1.2. Using Effects for Specifications and Language Design

The previous subsection deliberately omitted a key feature of the F⋆ language:
its effect system. This effect system provides a lightweight and direct way of
writing and specifying programs that use advanced verification features like
state manipulation.

All computations in F⋆ are labeled with a monadic effect that maps the F⋆
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surface syntax to the combinators of the effect: bind, return, bind, subcomp,
if_then_else, etc. Figure 2.1 present the builtin effects defined in the F⋆

type-checker, and the lattice that their implicit conversions form. These
builtin effects support a weakest-preconditions predicate transformer that
can be elaborated to a pre- and post-condition sugar, Pure:

let pure_post (a: Type) (pre: Type) =

_: a{pre} -> GTot Type0

effect Pure
(a: Type)
(pre: Type0)
(post: pure_post' a pre)

=

PURE a

(fun (p: pure_post a) -> pre /\ (forall (pure_result: a).

post pure_result ==> p pure_result))

In the above snippet, Type0 is a refinement of Type that belongs to universe
zero, and GTot is an effect sugar for GHOST. Note that effect declarations
(effect) can be indexed by parameters. These parameters will in general
carry the specifications of the computation labeled by the effect. Here, Pure
is indexed by a pre- and post-condition. These pre- and post-conditions are
used in the effect definition to craft the corresponding weakest precondition
transformer of PURE.

By enabling the user to define effect sugars on top of the builtin effects, and
recently, in a completely abstract way [11], F⋆ offers a powerful mechanism
for defining proof-oriented domain-specific languages in F⋆. This approach
has been best illustrated by Protzenko et al.’s Low⋆ [12] language for low-level
programming in F⋆. Low⋆ effectively defines several effect sugars on top of
State, like Stack, intended for programs that only allocate memory on the
stack (and not on the heap).

Functions labeled with the Stack effect are specified using pre- and post-
conditions located in the indices of the effect. These pre- and post-conditions
can refer to the state of the memory before and after the computation. The
memory model is structured, inspired by Clight [13], and memory reasoning is
performed using the SMT automation of F⋆ via a library of memory locations.
In this model, the SMT query for a top-level computation labeled with the
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Stack will actually contain a mix of proof obligations concerning memory
separation and other proof obligations concerning, for instance, the functional
correctness of the computation with regards to a high-level specification
written in the PURE effect.

Low⋆ is effectively a domain-specific language for low-level programming and
not merely a model of such a language, because it is meant to be extracted
to C via the KreMLin compiler. This compilation toolchain starts within the
F⋆ type-checker, where all the sub-computations of the program labeled by
the GHOST effect or the Ghost.erased type are erased. The resulting program
is then dumped and picked by KreMLin which scans it to see whether it fits
within the Low⋆ domain-specific language: indeed, not all F⋆ constructions
can be extracted to C (especially the higher-order constructions). KreMLin
then performs a series of translation of the abstract syntax tree of the program
to reach a C abstract syntax tree inspired from Clight, and finally emit a valid
C program. This C program can then be compiled with CompCert [14] or
established C compilers like GCC or LLVM.

As we will see in the next section, Low⋆ has been used for several high-
profile real-world verified cryptography applications. The key feature that
enabled technology transfers for KreMLin-compiled artifacts has not been
compiler certification, but human readability of the generated code. Indeed,
while compiler certification is definitely a way to raise the level of assurance
of the trust chain as discussed in Section 1.2.1, the engineers at Firefox [15]
or Wireguard [16] who decided to swap their existing software with a KreMLin-
compiled artifact were most concerned about their ability to manually review
and understand the code they were integrating into their codebase.

For this purpose, KreMLin’s authors have written several compiler passes
whose sole purpose is to make the generated C code more readable, while
keeping the same semantics. Likely, F⋆ offers keywords like inline_for_e ⌋
xtraction which lets user control precisely how the code will be extracted,
while allowing functions to be sliced up arbitrarily to ease verification and
specification tasks. All of these features represent a non-negligible imple-
mentation overhead for the maintainers of the toolchain, that likely barred
them from moving to adding fancy new features that would have enabled the
tackling of a more advanced concepts of C like handling pointers to inside
data structures.

Indeed, Low⋆ is currently limited to sequential programs, and its user
experience is skewed towards programs that look like cryptographic primitives,
its main application so far. Because the Low⋆ subset seeks efficiency on real-
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world applications rather than the complexity of its language feature, it fully
represents the proof-oriented domain-specific language philosophy that we
advocate for in this dissertation.

2.2. Cryptographic Program Verification

After having introduced the context on the F⋆ verification ecosystem, we now
present its main real-world applications to verified cryptography. First, we
showcase a state of the art of current work on cryptographic formal verification.
Then, we focus more specifically on the project Everest collaboration between
Microsoft Research and multiple research institutions, including Inria. Its
goal was to verify all the components necessary to implement the Transport
Layer Security (TLS) protocol that secures the Internet. It notably led to the
creation of the EverCrypt cryptographic provider, which is the largest verified
cryptographic provider so far.

2.2.1. Related Work on Cryptographic Program Verification

The most recent and exhaustive survey has been completed by Barbosa
et al. [17] in 2021. This subsection is largely based on this survey, while
focusing on functional correctness of verified programming developments of
two categories of cryptographic programs: primitives and protocols.

The goal of a cryptographic primitive is to achieve an cryptographic oper-
ation with clearly defined inputs and outputs, that is often used as a basic
block for larger applications: encrypting a message, decrypting a message,
hashing a message, signing a message, etc. Each of these operations cor-
respond to a function signature that identifies the parameters and result of
the operation. For instance, encrypt: plaintext -> key -> ciphertext.
Hence, a program implementing a cryptographic primitive is a function cor-
responding to the signature of the operation it implements. Moreover, this
program must enjoy additional security guarantees: for encrypt, it should be
virtually impossible to get back the plain-text for the cipher-text in absence of
the key used to encrypt it. For hash, it should be virtually impossible to get
the input of the function given its output (one-way hashing).

On the other hand, cryptographic protocols use cryptographic primitives
as their building blocks, to implement each step of a codified communication
between two ore more parties. The goal of each step of this communication
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is to contribute to global security goals for the protocols: authentication,
confidentiality, forward security, etc. To prove these global security properties,
one assumes the properties that the cryptographic primitives should enjoy.
Hence, there is a clear separation between primitives and protocols concerning
cryptographic proofs, that is reflected in mechanized developments.

While some provers focus on proving the security properties for primitives
and protocols, using a symbolic model [18]–[20] or a computational model [21]–
[24], we will focus in this chapter on the verification of cryptographic imple-
mentations as opposed to specifications. This means that we consider a
high-level specification of the primitive or protocol as our source of truth, and
we assume that this specification successfully provides the security properties
mentioned above.

Given this assumption, several works have sought to provide ready-to-
use, high-assurance cryptographic implementations that formally enjoy as
many as four main properties: functional correctness with respect to a high-
level specification, memory safety, state-of-the-art performance and some
form of side-channel resistance. These works are all based on a verification
framework, and/or domain-specific language with its compiler.

First, the Galois, Inc. has developed over the years a domain-specific
language – Cryptol [25] – coupled with a multi-proof backend verification
framework – SAW [26]. Using these tools, they released a comprehensive
cryptographic library that targets Java ad C [27]. However, SAW is limited to
symbolic execution, which is adapted for proving memory safety but makes
it hard to verify the equivalence between a high-level specification and the
target optimized implementation.

Second, Fiat Crypto [28] is an application of the Fiat [29] Coq proof frame-
work to the synthesis of optimized C implementations of elliptic curve crypto-
graphic primitives from a high-level description in mathematical terms. All the
steps of the program synthesis are certified, making the level of assurance of
the resulting C library very high. However, this synthesis technique requires
manually writing optimization passes tailored for the implementation of each
category of primitives to reach state-of-the-art performance for the generated
code. Writing these optimizations (and certify them) is very costly, hence Fiat
Crypto has so far been only limited to cryptographic primitives based on ellip-
tic curves. A similar approach based on code synthesis trough compilation
of high-level specifications is featured by Usuba [30], an optimizing compiler
for a domain-specific language describing constant-time implementations of
block ciphers using bit-slicing.
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Third, EasyCrypt [31] is a specialized theorem prover for cryptography.
Its focus is security proofs of primitives using a computational model, but
it has been extended a first time [32] with an embedded domain-specific
language modeling imperative C-like programs, and a second time with a
model of the Jasmin [33] domain-specific language that generates assembly
implementations through certified compilation steps. Unlike Fiat Crypto that
extracts directly C programs from the reification of Coq term into an abstract
syntax tree of a small imperative language, EasyCrypt is mostly used as a
proof backend for external compilers that output a model of the code they
process.

This non-exhaustive review demonstrates the importance of domain-specific
languages and specialized provers in cryptographic program verification. In-
deed, proving the equivalence of optimized implementations with respect to
high-level mathematical specifications is increasingly harder, as optimized
implementations mix C and Assembly, and rely on low-level tricks to gain a
few cycles per byte.

All the works cited above enabled the production of high-assurance, ready-
to-use cryptographic libraries that have made their way into real-world pro-
duction environment, like Google’s BoringSSL library for Fiat Crypto. In the
next subsection, we will discuss the contributions of the largest of these
verified libraries in terms of number of algorithms covered: EverCrypt [34].

2.2.2. The EverCrypt Cryptographic Provider

EverCrypt [34] is the combination of several verified cryptography projects
built around the F⋆ theorem prover. Presenting its characteristics will be
necessary to introduce our later work on LibSignal⋆ (Section 2.3) and Steel
(Chapter 4).

The starting point of verified cryptography in F⋆ is the Low⋆ embedded
domain-specific language presented in Section 2.1.2. Indeed, Low⋆ perfectly
handles the kind of C programs that are found in cryptographic primitives’
implementations: mostly stack-based memory allocation, buffers as the most
complex data structure, lots of arithmetic and bit-wise manipulation of ma-
chine integers. Then, it is possible to write optimized implementations of
cryptographic primitives in Low⋆. These implementations are specified and
verified functionally equivalent to high-level specifications (also written in
F⋆) on the one hand, and extracted to human-readable C on the other hand.
The collection of all these implementations is called HACL⋆ [35], and features
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110,000 lines of hand-written verified Low⋆.
Figure 2.2 presents an example of HACL⋆ code. The same line function is

implemented twice. A first time as a concise, functional-style specification that
is part of the trusted code base and meant to be reviewed for correctness with
respect to the official pseudo-code description of the Chacha20 algorithm [36].
And a second time as a Low⋆ implementation using the Stack effect, indexed
by a post-condition ensuring that the contents of the st buffer after the
computation is equal to the action of the Spec.line function on the content
of st before the computation. This post-condition is encoded as an SMT
query at F⋆ type-checking time, and its verification guarantees the functional
correctness of line.

Once verified, the function is extracted to human-readable C; Figure 2.3
presents the result of this extraction for line. Note that in Low⋆, line is
marked as inline_for_extraction. This means that all occurrences of line
are inlined in the resulting C code; Figure 2.3 thus shows the quarter_round
function that originally contains four calls to line. As an example of the
measures KreMLin implements to preserve human readability of the extracted
code, the inlining preserves the original variable names while suffixing them
with low numbers (0,1,2, etc.) to preserve the semantics of the original code
after inlining.

While HACL⋆’s generated C implementation provide the bulk of the Ever-
Crypt provider, a modern cryptographic library needs some assembly-written
parts to be performance-competitive on major architectures. Similarly to the
Jasmin mentioned in Section 2.2.1, Vale [37] allows users to write assembly-
like implementations of cryptographic primitives in a domain-specific lan-
guage. These implementations are then checked for functional equivalence
with higher-level specifications inside the Dafny [38] prover. Later, the Vale
compiler was extended with an F⋆ backend [39], which has been used to
verify the correct interoperability between HACL⋆’s Low⋆ code and a certified
model of the Vale code in F⋆. With this new connection, EverCrypt was able
to integrate the 14,000 lines of hand-written Vale and provide high-speed
implementations for major primitives on popular platforms.

Orthogonally to integrating verified C and assembly through mixing and
interoperating two domain-specific languages, Low⋆ and Vale, EverCrypt offers
on top of the implementations a wide choice of APIs. Thanks to F⋆’s meta-
programming abilities [4], agile (choosing between multiple algorithms for the
same functionality) and multiplexed (choosing between multiple implemen-
tations of the same algorithm) interfaces have been automatically generated
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Chacha20’s Spec F⋆ module
let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state)

: Tot state
=
let m = m.[a] <- (m.[a] +. m.[b]) in
let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m

Chacha20’s Impl F⋆ module
inline_for_extraction
val line:

st:state
-> a:index
-> b:index
-> d:index
-> r:rotval U32 ->
Stack unit
(requires fun h -> live h st /\ v a <> v d)
(ensures fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st ==

Spec.line (v a) (v b) (v d) r (as_seq h0 st))

let line st a b d r =
let sta = st.(a) in
let stb = st.(b) in
let std = st.(d) in
let sta = sta +. stb in
let std = std ^. sta in
let std = rotate_left std r in
st.(a) <- sta;
st.(d) <- std

Figure 2.2: F⋆ specification and Low⋆ implementation of the line function of
the Chacha20 cryptographic primitive, as found in HACL⋆.
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Hacl_Chacha20.c
static inline void quarter_round(uint32_t *st, uint32_t a,
uint32_t b, uint32_t c, uint32_t d)

{
uint32_t sta0 = st[a];
uint32_t stb0 = st[b];
uint32_t std0 = st[d];
uint32_t sta10 = sta0 + stb0;
uint32_t std10 = std0 ^ sta10;
uint32_t std20 = std10 << (uint32_t)16U |

std10 >> (uint32_t)16U;
uint32_t sta2; uint32_t stb1;
uint32_t std3; uint32_t sta11;
uint32_t std11; uint32_t std21;
uint32_t sta3; uint32_t stb2;
uint32_t std4; uint32_t sta12;
uint32_t std12; uint32_t std22;
uint32_t sta; uint32_t stb;
uint32_t std; uint32_t sta1;
uint32_t std1; uint32_t std2;
st[a] = sta10; st[d] = std20;
sta2 = st[c]; stb1 = st[d]; std3 = st[b];
sta11 = sta2 + stb1;
std11 = std3 ^ sta11;
std21 = std11 << (uint32_t)12U | std11 >> (uint32_t)20U;
st[c] = sta11; st[b] = std21;
sta3 = st[a]; stb2 = st[b]; std4 = st[d];
sta12 = sta3 + stb2;
std12 = std4 ^ sta12;
std22 = std12 << (uint32_t)8U | std12 >> (uint32_t)24U;
st[a] = sta12; st[d] = std22;
sta = st[c]; stb = st[d]; std = st[b];
sta1 = sta + stb;
std1 = std ^ sta1;
std2 = std1 << (uint32_t)7U | std1 >> (uint32_t)25U;
st[c] = sta1; st[b] = std2;

}

Figure 2.3: C extraction of the Chacha20 Low⋆ implementation of Figure 2.2.
quarter_round features four inlined calls to line.

69



2. LibSignal⋆: Porting Verified Cryptography to the Web

to support all the combinations of algorithms and specific implementations
for each functionality of the cryptographic libraries. Agility and multiplexing
are especially important for applications that run on heterogeneous hardware
and platforms; these applications want to choose the more efficient cryptogra-
phy at runtime depending on system configuration and supported hardware
instructions.

Now that we have presented the context of verified cryptography within the
F⋆ ecosystem, we will showcase the agility of this domain-specific language-
based architecture with a case study about deploying a popular cryptographic
protocol on the Web.

2.3. High-Assurance Cryptography on the Web: A
Case Study

This section is based upon the following publication:

J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan, “Formally
verified cryptographic web applications in WebAssembly”, in 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 1256–1274. DOI:
10.1109/SP.2019.00064

My personal contribution to this publication has been a formalization
of the Low⋆ to WebAssembly translation, later revised and polished by
Jonathan Protzenko for the publication, as well as all the Javascript
development work in LibSignal⋆. I also designed and implemented the
secret independence translation validator for the generated WebAssembly
code.

Modern Web applications rely on a variety of cryptographic constructions
and protocols to protect sensitive user data from a wide range of attacks.
For the most part, applications can rely on standard builtin mechanisms.
To protect against network attacks, client-server connections are typically
encrypted using the Transport Layer Security (TLS) protocol, available in all
Web servers, browsers, and application frameworks like iOS, Android, and
Electron. To protect stored data, user devices and server databases are often
encrypted by default.

However, many Web applications have specific security requirements that
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require custom cryptographic mechanisms. For example, popular password
managers like LastPass [41] aim to synchronize a user’s passwords across
multiple devices and back them up on a server, without revealing these
passwords to the server. So, the password database is always stored encrypted,
with a key derived from a master passphrase known only to the user. If this
design is correctly implemented, even a disgruntled employee or a coercive
nation-state with full access to the LastPass server cannot obtain the stored
passwords. A similar example is that of a cryptocurrency wallet, which needs
to encrypt the wallet contents, as well as sign and verify currency transactions.

Secure messaging applications like WhatsApp and Skype use even more
sophisticated mechanisms to provide strong guarantees against subtle attacks.
For example, they provide end-to-end security between clients, so that a
compromised or coerced server cannot read or tamper with messages. They
guarantee forward secrecy, so that even if one of the devices used in a
conversation is compromised, messages sent before the compromise are still
secret. They even provide post-compromise security, so that a compromised
device can recover and continue to participate in a conversation. To obtain
these guarantees, many messaging applications today rely on some variant of
Signal, a cryptographic protocol designed by Moxie Marlinspike and Trevor
Perrin [42], [43].

To provide a seamless experience to users, most Web applications are
implemented for multiple platforms; e.g. native apps for iOS and Android,
Electron apps that work on most desktop operating systems, installable
browser extensions for specific browsers, or a website version accessible
from any Web browser. Except for the native apps, these are all written in
JavaScript. For example, most Signal-based messaging apps use the official
LibSignal library, which has C, Java, and JavaScript versions. The desktop
versions of WhatsApp and Skype use the JavaScript version, as depicted in
Figure 2.4.

In this section, we are concerned with the question of how we can gain higher
assurance in the implementations of such cryptographic Web applications.
The key novelty of our work is that we target WebAssembly rather than general
JavaScript. We show how to build verified implementations of cryptographic
primitives so that they can be deployed both within platform libraries (via
a C implementation) and within pure JavaScript apps (via a WebAssembly
implementation). We show how to build a verified implementation of the
Signal protocol (as a WebAssembly module) and use it to develop a drop-in
replacement for LibSignal-JavaScript.
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Figure 2.4: Secure Messaging Web App Architecture: The application includes
the official LibSignal library, which in turn uses the platform’s
crypto library, but also provides custom implementations for
crypto primitives that are not available on all platforms. The
security-critical components that we aim to verify are the core
signal protocol and all the crypto code it relies on.

Introduced in 2017, WebAssembly [44] is a portable execution environment
supported by all major browsers and Web application frameworks. It is de-
signed to be an alternative to but interoperable with JavaScript. WebAssembly
defines a compact, portable instruction set for a stack-based machine. The lan-
guage is made up of standard arithmetic, control-flow, and memory operators.
The language only has four value types: floating-point and signed numbers,
both 32-bit and 64-bit. Importantly, WebAssembly is typed, meaning that a
well-typed WebAssembly program can be safely executed without fear of com-
promising the host machine (WebAssembly relies on the OS page protection
mechanism to trap out-of-memory accesses). This allows applications to run
independently and generally deterministically. WebAssembly applications also
enjoy superior performance, since WebAssembly instructions can typically
be mapped directly to platform-specific assembly. Interaction with the rest
of the environment, e.g. the browser or a JavaScript application, is done via
an import mechanism, wherein each WebAssembly module declares a set of
imports whose symbols are resolved when the compiled WebAssembly code
is dynamically loaded into the browser. As such, WebAssembly is completely
platform-agnostic (it is portable) but also Web-agnostic (there is no mention of
the Document Object Model or the Web in the specification).
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Our approach is to compile WebAssembly code from formally verified source
code written in Low⋆ [12], a subset of the F⋆ programming language [1]. As
far as we know, this is the first verification toolchain for WebAssembly that
supports correctness, memory safety, and side-channel resistance.

Programmers, when authoring Web applications, have very few options
when it comes to efficient, trustworthy cryptographic libraries. When running
within a browser-like environment, the W3C WebCrypto API [45] provides a
limited choice of algorithms, while imposing the restriction that all code calling
into WebCrypto must be asynchronous via the mandatory use of promises.
This entails that WebAssembly code cannot call WebCrypto, since it does not
support async functions. When running within a framework like Electron,
programmers can use the crypto package, which calls OpenSSL under the
hood and hence supports more algorithms, but requires trust in a large
unverified library.

In both these scenarios, the main restriction is perhaps the lack of novel
algorithms: for a new algorithm to be available, the W3C must adopt a new
standard, and all browsers must implement it; or, OpenSSL must implement
it, issue a release, and binaries must percolate to all target environments. For
example, modern cryptographic standards such as Curve25519, Chacha20,
Poly1305, SHA-3 or Argon2i are not available in WebCrypto or older versions
of OpenSSL.

When an algorithm is not available on all platforms, Web developers rely on
hand-written, unverified JavaScript implementations or compile such imple-
mentations from unverified C code via Emscripten. In addition to correctness
questions, this JavaScript code is often vulnerable to new timing attacks. We
aim to address this issue, by providing application authors with a verified
crypto library that can be compiled to both C and WebAssembly: therefore,
our library is readily available in both native and Web environments.

Complex cryptographic protocols are hard to implement correctly, and
correctness flaws (e.g. [46]) or memory-safety bugs (e.g. HeartBleed) in their
code can result in devastating vulnerabilities. A number of previous works
have shown how to verify cryptographic protocol implementations to prove
the absence of some of these kinds of bugs. In particular, implementations of
TLS in F# [47], C [48], and JavaScript [49] have been verified for correctness,
memory safety, and cryptographic security. An implementation of a non-
standard variant of Signal written in a subset of JavaScript was also verified
for cryptographic security [50], but not for correctness.

We propose to build and verify a fully interoperable implementation of
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Signal in Low⋆ for memory safety and functional correctness with respect
to a high-level specification of the protocol in F⋆. We derive a formal model
from this specification and verify its symbolic security using the protocol
analyzer ProVerif [18]. We then compile our Low⋆ code to WebAssembly and
embed it within a modified version of LibSignal-JavaScript to obtain a drop-in
replacement for LibSignal for use in JavaScript Web applications.

Our contributions are twofold. First, we present the first verification and
compilation toolchain targeting WebAssembly, along with its formalization
and a compact auditable implementation. Second, we present WHACL⋆, the
first high-assurance cryptographic library in WebAssembly, based on the
existing HACL⋆ library [35] (presented in Section 2.2.2), and LibSignal⋆, a
novel verified implementation of the Signal protocol, that by virtue of our
toolchain, enjoys compilation to both C and WebAssembly, making it a prime
choice for application developers.

2.3.1. Compiling Low⋆ to WebAssembly

Before presenting our compilation from Low⋆ to WebAssembly, we begin by
motivating the creation of this new toolchain.

A New Toolchain Targeting WebAssembly WebAssembly is the culmination
of a series of experiments (NaCl, PNaCl, asm.js) whose goal was to enable
Web developers to write high-performance assembly-like code that can be run
within a browser. Now with WebAssembly, programmers can target a portable,
compact, efficient binary format that is supported by Chrome, Firefox, Safari
and Edge. For instance, Emscripten [51], a modified version of LLVM, can
generate WebAssembly. The code is then loaded by a browser, JIT’d to machine
code, and executed. This means that code written in, say, C, C++ or Rust, can
now be run efficiently on the web.

The syntax of WebAssembly (from [44]) is shown in Figure 2.5. We use i

for WebAssembly instructions and t for WebAssembly types. WebAssembly
is a typed, expression language that reduces using an operand stack; each
instruction has a function type that indicates the types of operands it con-
sumes from the stack, and the type of operand it pushes onto the stack. For
instance, if ` has type i32, then get_local ` has type [] → i32, i.e. it consumes
nothing and pushes a 32-bit value on the stack. Similarly, t.store has type
i32; t → [], i.e. it consumes a 32-bit address, a value of type t, and pushes
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f ∶∶= function
func tf local

Ð⇀
` ∶ t

Ð⇀
i

i ∶∶= instruction
if tf

Ð⇀
i else

Ð⇀
i conditional

call f function call
get_local ` read local variable
set_local ` set local variable
t.load load from memory
t.store write to memory
t.const k push constant
drop drop operand
loop

Ð⇀
i loop

br_if break-if-true
t.binop o binary arithmetic

t ∶∶= value type
i32 32-bits integer
i64 64-bits integer

tf ∶∶= function type
Ð⇀
t → t

o ∶∶= operator
add, sub,div, . . .

Figure 2.5: WebAssembly Syntax (selected constructs)
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nothing onto the stack.
We omit from this presentation: n-ary return types for functions (currently

not supported by any WebAssembly implementation); treatment of packed
8-bit and 16-bit integer arrays (supported by our implementation, elided for
clarity).

This human-readable syntax maps onto a compact binary format. The
programmer is not expected to directly write programs in WebAssembly; rather,
WebAssembly was designed as a compilation target. Indeed, WebAssembly
delivers performance: offline compilers generates better code than a JIT;
compiling WebAssembly code introduces no runtime-overhead (no GC); the
presence of 64-bit values and packed arrays enables more efficient arithmetic
and memory locality.

Previous works attempted to protect against the very loose, dynamic nature
of JavaScript (extending prototypes, overloading getters, rebinding this, etc.)
by either defining a “safe” subset [52], [53], or using a hardening compilation
scheme [54], [55]. By contrast, none of the JavaScript semantics leak into
WebAssembly, meaning that reasoning about a WebAssembly program within
a larger context boils down to reasoning about the boundary between Web-
Assembly and JavaScript.

From a security standpoint, this is a substantial leap forward, but some
issues still require attention. First, the boundary between WebAssembly and
JavaScript needs to be carefully audited: the JavaScript code is responsible for
setting up the WebAssembly memory and loading the WebAssembly modules.
This code must use defensive techniques, e.g. make sure that the Web-
Assembly memory is suitably hidden behind a closure. Second, the whole
module loading process needs to be reviewed, wherein one typically assumes
that the network content distribution is trusted, and that the WebAssembly
API cannot be tampered with (e.g. Module.instantiate).

The flagship toolchain for compiling to WebAssembly is Emscripten [51], a
compiler from C/C++ to JavaScript that combines LLVM and Binaryen, a Web-
Assembly-specific optimizer and code emitter. Using Emscripten, several large
projects, such as the Unity and Unreal game engines, or the Qt Framework
have been ported to WebAssembly. Recently, LLVM gained the ability to
directly emit WebAssembly code without going through Binaryen; this has
been used successfully by Rust and Mono.

Cryptographic libraries have been successfully ported to WebAssembly using
Emscripten. The most popular one is libsodium, which owing to its relatively
small size and simplicity (no plugins, no extensibility like OpenSSL) has
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successfully been compiled to both JavaScript and WebAssembly.
The core issue with the current toolchain is both the complexity of the

tooling involved and its lack of auditability. Trusting libsodium to be a correct
cryptographic library for the web involves trusting, in order: that the C code is
correct, something notoriously hard to achieve; that LLVM introduces no bugs;
that the runtime system of Emscripten does not interfere with the rest of the
code; that the Binaryen tool produces correct WebAssembly code; that none
of these tools introduce side-channels; that the code is sufficiently protected
against attackers.

In short, the trusted computing base (TCB) is very large. The source lan-
guage, C, is difficult to reason about. Numerous tools intervene, each of which
may be flawed in a different way. The final WebAssembly (and JavaScript)
code, being subjected to so many transformations and optimizations, can
neither be audited or related to the original source code.

Overview of the Toolchain Seeing that WebAssembly represents a compelling
compilation target for security-critical code on the web; seeing that F⋆ is a
prime language for writing security-critical code; we repurpose the Low⋆-to-C
toolchain and present a verified compilation path from Low⋆ to WebAssembly.

Protzenko et.al. [12] model the Low⋆-to-C compilation in three phases (Fig-
ure 2.6). The starting point is Explicitly Monadic F⋆ [2]. First, the erasure of
all computationally-irrelevant code yields a first-order program with relatively
few constructs, which they model as λow∗, a simply-typed lambda calculus
with mutable arrays. Second, λow∗ programs are translated to C∗, a state-
ment language with stack frames built into its reduction semantics. Third, C∗

programs go to CLight, CompCert’s internal frontend language for C [14].
Semantics preservation across these three steps is shown using a series of

simulations. More importantly, this Low⋆-to-C pipeline ensures a degree of
side-channel resistance, via type abstraction. This is achieved through traces
of execution, which track memory access and branches. The side-channel
resistance theorem states that if two programs verify against an abstract
secret type; if these two programs only differ in their secret values; if the only
functions that operate on secrets have secret-independent traces; then once
compiled to Clight, the two programs reduce by producing the same result
and emitting the same traces. In other words, if the same program operates
on different secrets, the traces of execution are indistinguishable.

We repurpose both the formalization and the implementation, and replace
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F⋆

KreMLin

GCC/Clang/CompCert

EMF⋆ Low⋆

1st-order EMF⋆

λow∗C∗Clight

.c Exe

≈ erase

partial ≈

hoist ≈

≈≈

print

compile

Figure 2.6: The original Low⋆-to-C translation

the λow∗
→ C∗

→ Clight toolchain with a new λow∗
→ C♭ → WebAssembly

translation. We provide a paper formalization in the present section and our
implementation is now up and running as a new backend of the KreMLin
compiler. (Following [12], we omit the handling of heap allocations, which are
not used in our target applications.)

Using off-the-shelf tools, one can already compile Low⋆ to C via KreMLin,
then to WebAssembly via Emscripten. As we mentioned earlier, this TCB is
substantial, but in addition to the trust issue, there are technical reasons
that justify a new pipeline to WebAssembly.

First, C is ill-suited as an intermediary language. C is a statement language,
where every local variable is potentially mutable and whose address can be
taken; LLVM immediately tries to recover information that was naturally
present in Low⋆ but lost in translation to C, such as immutable local variables
(“registers”), or an expression-based representation via a control-flow graph.
Second, going through C via C∗ puts a burden on both the formalization and
the implementation. On paper, this mandates the use of a nested stack of
continuations for the operational semantics of C∗. In KreMLin, this requires
not only dedicated transformations to go to a statement language, but also
forces KreMLin to be aware of C99 scopes and numerous other C details, such
as undefined behaviors. In contrast, C♭, the intermediary language we use
on the way to WebAssembly, is expression-based, has no C-specific concepts,
and targets WebAssembly whose semantics have no undefined-behavior. As
such, C♭ could be a natural compilation target for a suitable subset of OCaml,
Haskell, or any other expression-based programming language.
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τ ∶∶= int32 ∣ int64 ∣ unit ∣ {
ÐÐ⇀
f = τ} ∣ buf τ ∣ α

v ∶∶= x ∣ g ∣ k ∶ τ ∣ () ∣ {
ÐÐ⇀
f = v}

e ∶∶= readbuf e1 e2 ∣ writebuf e1 e2 e3 ∣ newbuf n (e1 ∶ τ)
∣ subbuf e1 e2 ∣ e.f ∣ v ∣ if e1 then e2 else e3

∣ dÐ⇀e ∣ let x ∶ τ = e1 in e2 ∣ {
ÐÐ⇀
f = e} ∣ e⊕ n ∣ for i ∈ [0;n) e

P ∶∶= ⋅ ∣ let d = λÐÐ⇀y ∶ τ . e1 ∶ τ1, P ∣ let g ∶ τ = e,P

Figure 2.7: λow∗ syntax

Translating λow∗ to C♭ We explain our translation via an example: the im-
plementation of the fadd function for Curve25519. The function takes two
arrays of five limbs each, adds up each limb pairwise (using a for-loop) and
stores the result in the output array. It comes with the precondition (elided)
that the addition must not overflow, and therefore limb addition does not
produce any carries. The loop has an invariant (elided) that guarantees that
the final result matches the high-level specification of fadd.

let fadd (dst: felem) (a b: felem): Stack unit ... =

let invariant = ... in
C.Loops.for 0ul 5ul invariant

(fun i -> dst.(i) <- a.(i) + b.(i))

This function formally belongs to EMF⋆, the formal model for F⋆ (Figure 2.6).
The first transformation is erasure, which gets rid of the computationally-
irrelevant parts of the program: this means removing the pre- and post-
condition, as well as any mention of the loop invariant, which is relevant only
for proofs. After erasure, this function belongs to λow∗.
λow∗ is presented in Figure 2.7. λow∗ is a first-order lambda calculus, with

recursion. It is equipped with stack-allocated buffers (arrays), which support:
writebuf, readbuf, newbuf, and subbuf for pointer arithmetic. These operations
take indices, lengths or offsets expressed in array elements (not bytes). λow∗

also supports structures, which can be passed around as values (as in C).
Structures may be stored within an array, or may appear within another
structure. They remain immutable; to pass a structure by reference, one
has to place it within an array of size one. None of: in-place mutation of a
field; taking the address of a field; flat (packed) arrays within structures are
supported. This accurately matches what is presently implemented in Low⋆

and the KreMLin compiler.
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τ̂ ∶∶= int32 ∣ int64 ∣ unit ∣ pointer
v̂ ∶∶= ` ∣ g ∣ k ∶ τ̂ ∣ ()

ê ∶∶= readn ê ∣ writen ê1 ê2 ∣ new ê ∣ ê1 ⊕ ê2 ∣ ` ∶= ê ∣ v̂ ∣ ê1; ê2

∣ if ê1 then ê2 else ê3 ∶ τ̂ ∣ for ` ∈ [0;n) ê ∣ ê1 × ê2 ∣ ê1 + ê2 ∣ d
Ð⇀
ê

P̂ ∶∶= ⋅ ∣ let d = λ
ÐÐ⇀
` ∶ τ̂ .

ÐÐ⇀
` ∶ τ̂ , ê ∶ τ̂ , P̂ ∣ let g ∶ τ̂ = ê, P̂

Figure 2.8: C♭ syntax

Base types are 32-bit and 64-bit integers; integer constants are annotated
with their types. The type α stands for a secret type, which we discuss in
the next section. For simplicity, the scope of a stack allocation is always the
enclosing function declaration.

Looking at the fadd example above, the function belongs to Low⋆ (after
erasure) because: its signature is in the Stack effect, i.e. it verifies against
the C-like memory model; it uses imperative mutable updates over pointers,
i.e. the felem types and the <- operator; it uses the C loops library. As such,
fadd can be successfully interpreted as the following λow∗ term:

let fadd = λ(dst ∶ buf int64)(a ∶ buf int64)(b ∶ buf int64).

for i ∈ [0; 5). writebuf dst i (readbuf a i + readbuf b i)

λow∗ enjoys typing preservation, but not subject reduction. Indeed, λow∗

programs are only guaranteed to terminate if they result from a well-typed F⋆

program that performed verification in order to guarantee spatial and temporal
safety. In the example above, the type system of λow∗ does not guarantee that
the memory accesses are within bounds; this is only true because verification
was performed over the original EMF⋆ program.

The differences here compared to the original presentation [12] are as follows.
First, we impose no syntactic constraints on λow∗, i.e. we do not need to
anticipate on the statement language by requiring that all writebuf operations
be immediately under a let. Second, we do not model in-place mutable
structures, something that remains, at the time of writing, unimplemented by
the Low⋆/KreMLin toolchain. Third, we add a raw pointer addition e⊕ n that
appears only as a temporary technical device during the structure allocation
transformation (below).

C♭ (Figure 2.8) resembles λow∗, but: i) eliminates structures altogether, ii)
only retains a generic pointer type, iii) expresses all memory operations (pointer
addition, write, reads, allocation) in terms of byte addresses, offsets and sizes,
and iv) trades lexical scoping in favor of local names. As in WebAssembly,

80



2.3. High-Assurance Cryptography on the Web: A Case Study

let d = λy ∶ τ1. e ∶ τ2 ↝ let d = λy ∶ buf τ1. [readbuf y 0/y]e ∶ τ2
if τ1 is a struct type

let d = λy ∶ τ1. e ∶ τ2 ↝ let d = λy ∶ τ1. λr ∶ buf τ2. let x ∶ τ2 = e in writebuf r 0 x ∶ unit
if τ2 is a struct type

f (e ∶ τ) ↝ let x ∶ buf τ = newbuf 1 e in f x
if τ is a struct type

(f e) ∶ τ ↝ let x ∶ buf τ = newbuf 1 (_ ∶ τ) in f e x; readbuf x 0
if τ is a struct type

let x ∶ τ = e1 in e2 ↝ let x ∶ buf τ = take_addr e1 in [readbuf x 0/x]e2
if τ is a struct type

{
ÐÐ⇀
f = e} (not under newbuf) ↝ let x ∶ buf {

ÐÐ⇀
f = τ} = newbuf 1 {

ÐÐ⇀
f = e} in readbuf x 0

if τ is a struct type

take_addr(readbuf e n) ↝ subbuf e n

take_addr((e ∶
ÐÐ⇀
f ∶ τ).f) ↝ take_addr(e) ⊕ offset(

ÐÐ⇀
f ∶ τ , f)

take_addr(let x ∶ τ = e1 in e2) ↝ let x ∶ τ = e1 in take_addr e2
take_addr(if e1 then e2 else e3) ↝ if e1 then take_addr e2 else take_addr e3

Figure 2.9: Ensuring all structures have an address

functions in C♭ declare the set of local mutable variables they introduce,
including their parameters.

Translating from λow∗ to C♭ involves three key steps: ensuring that all
structures have an address in memory; converting let-bindings into local
variable assignments; laying out structures in memory.

1) Desugaring structure values. Structures are values in λow∗ but not in
C♭. In order to compile these, we make sure every structure is allocated in
memory, and enforce that only pointers to such structures are passed around.
This is achieved via a mundane type-directed λow∗-to-λow∗ transformation
detailed in Figure 2.9. The first two rules change the calling-convention of
functions to take pointers instead of structures; and to take a destination
address instead of returning a structure. The next two rules enact the
calling-convention changes at call-site, introducing an uninitialized buffer
as a placeholder for the return value of f . The next rule ensures that let-
bindings have pointer types instead of structure types. The last rule actually
implements the allocation of structure literals in memory.
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size int32 = 4
size unit = 4
size int64 = 8
size buf τ = 4

size
ÐÐ⇀
f ∶ τ = offset (

ÐÐ⇀
f ∶ τ , fn) + size τn

offset (
ÐÐ⇀
f ∶ τ , f0) = 0

offset (
ÐÐ⇀
f ∶ τ , fi+1) = align(offset (

ÐÐ⇀
f ∶ τ , fi) + size τi,

alignment τi+1)

alignment(
ÐÐ⇀
f ∶ τ) = 8

alignment(τ) = size τ otherwise

align(k,n) = k if k mod n = 0
align(k,n) = k + n − (k mod n) otherwise

Figure 2.10: Structure layout algorithm

The auxiliary take_addr function propagates the address-taking operation
down the control flow. When taking the address of sub-fields, a raw pointer
addition, in bytes, is generated. Unspecified cases are ruled out either by
typing or by the previous transformations.

This phase, after introducing suitable let-bindings (elided), establishes the
following invariants: i) the only subexpressions that have structure types
are of the form {

ÐÐ⇀
f = e} or readbuf e n and ii) {

ÐÐ⇀
f = e} appears exclusively as an

argument to newbuf.
2) Assigning local variables. The desugaring of structure values was per-

formed within λow∗. We now present the translation rules from λow∗ to C♭
(Figure 2.11 and Figure 2.12). Our translation judgements from λow∗ to C♭
are of the form G;V ⊢ e ∶ τ ⇛ e′ ∶ τ ′ ⊣ V ′. The translation takes G, a (fixed) map
from λow∗ globals to C♭ globals; V , a mapping from λow∗ variables to C♭ locals;
and e ∶ τ , a λow∗ expression. It returns ê ∶ τ̂ , the translated C♭ expression, and
V ′, which extends V with the variable mappings allocated while translating e.

We leave the discussion of the WRITE* rules to the next paragraph, and now
focus on the general translation mechanism and the handling of variables.

Since λow∗ is a lambda-calculus with a true notion of value, let-bound
variables cannot be mutated, meaning that they can be trivially translated
as C♭ local variables. We thus compile a λow∗ let-binding let x = e1 to a C♭
assignment ` ∶= ê1 (rule LET). We chain the V environment throughout the
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LET
G;V ⊢ e1 ∶ τ1 ⇛ ê1 ∶ τ̂1 ⊣ V

′

` fresh G; (x↦ `, τ̂1) ⋅ V
′
⊢ e2 ∶ τ2 ⇛ ê2 ∶ τ̂2 ⊣ V

′′

G;V ⊢ let x ∶ τ1 = e1 in e2 ∶ τ2 ⇛ ` ∶= ê1; ê2 ∶ τ̂2 ⊣ V
′′

FUNDECL

G;
ÐÐÐÐ⇀
y ↦ `, τ̂ ⊢ e1 ∶ τ1 ⇛ ê1 ∶ τ̂1 ⊣

ÐÐÐÐÐ⇀

x↦ `′, τ̂ ′ ⋅
ÐÐÐÐ⇀
y ↦ `, τ̂

G ⊢ let d = λÐÐ⇀y ∶ τ . e1 ∶ τ1 ⇛ let d = λ
ÐÐ⇀
` ∶ τ̂ .

ÐÐ⇀

`′ ∶ τ̂ ′, ê1 ∶ τ̂1

VAR
V (x) = `, τ

G;V ⊢ x⇛ ` ∶ τ ⊣ V

BUFWRITE
G;V ⊢ writeB (e1 + e2 × size τ1) e3 ⇛ ê ⊣ V ′

G;V ⊢ writebuf (e1 ∶ τ1) e2 e3 ⇛ ê ∶ unit ⊣ V ′

WRITEINT32
G;V ⊢ e1 ⇛ ê1 ⊣ V

′ G;V ′
⊢ e2 ⇛ ê2 ⊣ V

′′

G;V ⊢ writeB e1 (e2 ∶ int32) ⇛ write4 ê1 ê2 ⊣ V
′′

WRITELITERAL

G;Vi ⊢ writeB (e + offset (
ÐÐ⇀
f ∶ τ , fi)) ei ⇛ êi ⊣ Vi+1

G;V0 ⊢ writeB e ({
ÐÐÐÐ⇀
f = e ∶ τ}) ⇛ ê0; . . . ; ên−1 ⊣ Vn

WRITEDEREF
` fresh V ′

= `, int32 ⋅ V G;V ⊢ vi ⇛ v̂i ⊣ V
memcpy v1 v2 n = for ` ∈ [0;n) write1 (v1 + `) (read1 (v2 + `) 1)

G;V ⊢ writeB v1 (readbuf (v2 ∶ τ2) 0) ⇛ memcpy v1 v2 (size τ2) ⊣ V
′

BUFNEW
`, `′ fresh G;x↦ (`, int32) ⋅ y ↦ (`′, int32) ⋅ V ⊢ writeB (x + size τ × y) v1 ⇛ ê ⊣ V ′

G;V ⊢ newbuf n (v ∶ τ) ⇛ ` ∶= new (n × size τ); for `′ ∈ [0;n) ê; ` ⊣ V ′

Figure 2.11: Translating from λow∗ to C♭ (selected rules)
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IFTHENELSE
G;V ⊢ e1 ∶ bool ⇛ ê1 ∶ bool ⊣ V ′

G;V ′
⊢ e2 ∶ τ ⇛ ê2 ∶ τ̂ ⊣ V

′′

G;V ′′
⊢ e3 ∶ τ ⇛ ê3 ∶ τ̂ ⊣ V

′′′

G;V ⊢ if e1 then e2 else e3 ∶ τ ⇛ if ê1 then ê2 else ê3 ∶ τ̂ ⊣ V
′′′

BUFREAD
G;V ⊢ e1 ∶ buf τ ⇛ ê1 ∶ pointer ⊣ V ′

G;V ′
⊢ e2 ∶ int32 ⇛ ê2 ∶ int32 ⊣ V ′′

size(τ) = n

G;V ⊢ readbuf e1 e2 ∶ τ ⇛ readn(ê1 + n × ê2) ∶ τ̂ ⊣ V
′′

BUFSUB
G;V ⊢ e1 ∶ buf τ ⇛ ê1 ∶ pointer ⊣ V ′

G;V ′
⊢ e2 ∶ int32 ⇛ ê2 ∶ int32 ⊣ V ′′

size(τ) = n

G;V ⊢ subbuf e1 e2 ∶ buf τ ⇛ ê1 + n × ê2 ∶ pointer ⊣ V ′′

FIELD
G;V ⊢ e ∶ buf τ ⇛ ê ∶ pointer ⊣ V ′

offset(τ, f) = k size(τf) = n

G;V ⊢ (readbuf e 0).f ∶ τf ⇛ readn(ê + k) ∶ τ̂f ⊣ V
′

POINTERADD
G;V ⊢ e ∶ buf τ ⇛ ê ∶ pointer ⊣ V ′

G;V ⊢ e⊕ n ∶ buf τ ⇛ ê + n ∶ pointer ⊣ V ′

FUNCALL
G;V ⊢ e ∶ τ1 ⇛ ê ∶ τ̂1 ⊣ V

′

G;V ⊢ d e ∶ τ2 ⇛ d ê ∶ τ̂2 ⊣ V
′

UNIT

G;V ⊢ () ∶ unit ⇛ () ∶ unit ⊣ V

CONSTANT

G;V ⊢ k ∶ τ ⇛ k ∶ τ̂ ⊣ V

GLOBAL
g ∈ G

G;V ⊢ g ∶ τ ⇛ g ∶ τ̂ ⊣ V

FORLOOP
G; (i↦ `, int32) ⋅ V ⊢ e ∶ unit ⇛ ê ∶ unit ⊣ V ′ ` fresh

G;V ⊢ for i ∈ [0;n) e ∶ unit ⇛ for ` ∈ [0;n) ê ∶ unit ⊣ V ′

Figure 2.12: Translating from λow∗ to C♭ (remaining rules). Some notes:
FIELD: the type τf can only be a non-struct type per our invariant.
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premises, meaning that the rule produces an extended V ′′ that contains the
additional x↦ `, τ̂ mapping. Translating a variable then boils down to a lookup
in V (rule VAR).

The translation of top-level functions (rule FUNDECL) calls into the transla-
tion of expressions. The input variable map is pre-populated with bindings
for the function parameters, and the output variable map generates extra
bindings Ð⇀y for the locals that are now needed by that function.

3) Performing struct layout. Going from λow∗ to C♭, BUFWRITE and BUFNEW

(Figure 2.11) call into an auxiliary writeB function, defined inductively via the
rules WRITE*. This function performs the layout of structures in memory,
relying on a set of mutually-defined functions (Figure 2.10): size computes the
number of bytes occupied in memory by an element of a given type, and offset

computes the offset in bytes of a field within a given structure. Fields within a
structure are aligned on 64-bit boundaries (for nested structures) or on their
intrinsic size (for integers), which WebAssembly can later leverage.

We use writeB as follows. From BUFWRITE and BUFNEW, we convert a pair of
a base pointer and an index into a byte address using size, then call writeB e1 e2
to issue a series of writes that will lay out e2 at address e1. Writing a base
type is trivial (rule WRITEINT32). Recall that from the earlier desugaring, only
two forms can appear as arguments to writebuf: writing a structure located
at another address boils down to a memcpy operation (rule WRITEDEREF),
while writing a literal involves recursively writing the individual fields at their
respective offsets (rule WRITELITERAL).

The allocation of a buffer whose initial value is a struct type is desugared
into the allocation of uninitialized memory followed by a series of writes in a
loop (rule BUFNEW).

After translation to C♭, the earlier fadd function now features four locals:
three of type pointer for the function arguments, and one for the loop index;
buffer operations take byte addresses and widths.

let fadd = λ(`0, `1, `2 ∶ pointer)(`3 ∶ int32).

for `3 ∈ [0; 5).

write8 (`0 + i × 8) (read8 (`1 + i × 8) + read8(`2 + i × 8))

Translating C♭ to WebAssembly The C♭ to WebAssembly translation appears
in Figure 2.13). A C♭ expression ê compiles to a series of WebAssembly
instructions

Ð⇀
i .

WRITE32 compiles a 4-byte write to WebAssembly. WebAssembly is a stack-
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WRITE32
ê1 ⇛

Ð⇀
i1 ê2 ⇛

Ð⇀
i2

write4 ê1 ê2 ⇛
Ð⇀
i1 ;
Ð⇀
i2 ; i32.store; i32.const 0

NEW

ê⇛
Ð⇀
i

new ê⇛
Ð⇀
i ; call grow_stack

FOR

ê⇛
Ð⇀
i

for ` ∈ [0;n) ê⇛

loop(
Ð⇀
i ; drop;

get_local `; i32.const 1; i32.op+; tee_local `;
i32.const n; i32.op =; br_if); i32.const 0

FUNC

ê⇛
Ð⇀
i τ̂i ⇛ ti

let d = λ
ÐÐÐ⇀
`1 ∶ τ̂1.

ÐÐÐ⇀
`2 ∶ τ̂2, ê ∶ τ̂ ⇛

d = func
Ð⇀
t1 → t local

ÐÐÐÐÐÐÐ⇀
`1 ∶ t1 ⋅ `2 ∶ t2 ⋅ ` ∶ t.

call get_stack;
Ð⇀
i ; store_local ` ; call set_stack; get_local `

Figure 2.13: Translating from C♭ to WebAssembly (selected rules)

based language, meaning we accumulate the arguments to a function on the
operand stack before issuing a call instruction: the sequence

Ð⇀
i1 ;
Ð⇀
i2 pushes

two arguments on the operand stack, one for the 32-bit address, and one for
the 32-bit value. The store instruction then consumes these two arguments.

By virtue of typing, this expression has type unit; for the translation to be
valid, we must push a unit value on the operand stack, compiled as i32.const 0.
A similar mechanism operates in FOR, where we drop the unit value pushed by
the loop body on the operand stack (a loop growing the operand stack would
be ill-typed in WebAssembly), and push it back after the loop has finished.

WebAssembly only offers a flat view of memory, but Low⋆ programs are
written against a memory stack where array allocations take place. We thus
need to implement run-time memory management, the only non-trivial bit of
our translation. Our implementation strategy is as follows. At address 0, the
memory always contains the address of the top of the stack, which is initially
1. We provide three functions for run-time memory stack management.
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get_stack = func [] → i32 local []

i32.const 0; i32.load

set_stack = func i32→ [] local
ÐÐÐ⇀
` ∶ i32

i32.const 0; get_local `; i32.store

grow_stack = func i32→ i32 local
ÐÐÐ⇀
` ∶ i32

call get_stack; get_local `; i32.op+;

call set_stack; call get_stack

Thus, allocating uninitialized memory on the memory stack merely amounts
to a call to grow_stack (rule NEW). Functions save the top of the memory stack
on top of the operand stack, then restore it before returning their value (rule
FUNC).

Combining all these rules, the earlier fadd is compiled as shown in Fig-
ure 2.14.

This formalization serves as a succinct description of our compiler as well
as a strong foundation for future theoretical developments, while subsequent
sections demonstrate the applicability and usefulness of our approach. This
is, we hope, only one of many future papers connecting state-of-the-art
verification tools to WebAssembly. As such, the present paper leaves many
areas to be explored. In particular, we leave proofs for these translations
to future work. The original formalization only provides paper proofs in the
appendix [12]; since we target simpler and cleaner semantics (WebAssembly
instead of C), we believe the next ambitious result should be to perform a
mechanical proof of our translation, leveraging recent formalizations of the
WebAssembly semantics [56].

Secret Independence in WebAssembly When compiling verified source code
in high-level programming language like F⋆ (or C) to a low-level machine
language like WebAssembly (or x86 assembly), a natural concern is whether
the compiler preserves the security guarantees proved about source code.
Verifying the compiler itself provides the strongest guarantees but is an
ambitious project [14].

Manual review of the generated code and comprehensive testing can provide
some assurance, and so indeed we extensively audit and test the WebAssembly
generated from our compiler. However, testing can only find memory errors
and correctness bugs. For cryptographic code, we are also concerned that
some compiler optimizations may well introduce side-channel leaks even if
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fadd = func [int32; int32; int32] → []

local [`0, `1, `2 ∶ int32; `3 ∶ int32; ` ∶ int32].
call get_stack; loop(

// Push dst + 8*i on the stack
get_local `0; get_local `3; i32.const 8; i32.binop∗; i32.binop+
// Load a + 8*i on the stack
get_local `1; get_local `3; i32.const 8; i32.binop∗; i32.binop+
i64.load
// Load b + 8*i on the stack (elided, same as above)
// Add a.[i] and b.[i], store into dst.[i]
i64.binop+; i64.store
// Per the rules, return unit
i32.const 0; drop
// Increment i; break if i == 5
get_local `3; i32.const 1; i32.binop+; tee_local `3
i32.const 5; i32.op =; br_if

); i32.const 0
store_local ` ; call set_stack; get_local `

Figure 2.14: Compilation of the fadd example to WebAssembly

they were not present in the source.
We illustrate the problem with a real-world example taken from the Curve-

25519 code in LibSignal-JavaScript, which is compiled using Emscripten from
C to JavaScript (not to WebAssembly). The source code includes an fadd

function in C very similar to the one we showed page 79. At the heart of this
function is 64-bit integer addition, which a C compiler translates to some
constant-time addition instruction on any modern platform.

Recall, however, that JavaScript has a single numeric type, IEEE-754 double
precision floats, which can accurately represent 32-bit values but not 64-bit
values. As such, JavaScript is a 32-bit target, so to compile fadd, Emscripten
generates and uses the following 64-bit addition function in JavaScript:

function _i64Add(a, b, c, d) {

// x = a + b*2^32 ; y = c + d*2^32 ; result = l + h*2^32

a = a|0; b = b|0; c = c|0; d = d|0;

var l = 0, h = 0;

l = (a + c)>>>0;

// Add carry from low word to high word on overflow.
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h = (b + d + (((l>>>0) < (a>>>0))|0))>>>0;

return ((tempRet0 = h,l|0)|0);

}

This function now has a potential side-channel leak, because of the (l>>>0)

< (a>>>0) subterm, a direct comparison between l and a, one or both of
which could be secret. Depending on how the JavaScript runtime executes
this comparison, it may take different amounts of time for different inputs,
hence leaking these secret values. These kinds of timing attacks are an
actual concern for LibSignal-JavaScript, in that an attacker who can measure
fine-grained running time (say from another JavaScript program running in
parallel) may be able to obtain the long-term identity keys of the participants.

This exact timing leak does not occur in the WebAssembly output of Em-
scripten, since 64-bit addition is available in WebAssembly, but how do we
know that other side-channels are not introduced by one of the many optimiza-
tions? This is a problem not just for Emscripten but for all optimizing compil-
ers, and the state-of-the-art for side-channel analysis of cryptographic code is
to check that the generated machine code preserves so-called “constant-time”
behaviour [57], [58].

We propose to build a validation pass on the WebAssembly code generated
from KreMLin to ensure that it preserves the side-channel guarantees proved
for the Low⋆ source code. To ensure that these guarantees are preserved
all the way to machine code, we hope to eventually connect our toolchain to
CT-Wasm [59], a new proposal that advocates for a notion of secrets directly
built into the WebAssembly semantics.

HACL⋆ code manipulates arrays of machine integers of various sizes and by
default, HACL⋆ treats all these machine integers as secret, representing them
by an abstract type (which we model as α in λow∗) defined in a secret integer
library. The only public integer values in HACL⋆ code are array lengths and
indices.

The secret integer library offers a controlled subset of integer operations
known to be constant-time, e.g. the library rules out division or direct
comparisons on secret integers. Secret integers cannot be converted to public
integers (although the reverse is allowed), and hence we cannot print a secret
integer, or use it as an index into an array, or compare its value with another
integer. This programming discipline guarantees a form of timing side-channel
resistance called secret independence at the level of the Low⋆ source [12].

Carrying this type-based information all the way to WebAssembly, we de-
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CLASSIFY
C ⊢ i ∶ π

C ⊢ i ∶ σ

BINOPPUB
o is constant-time

C ⊢ t.binop o ∶mm→m

BINOPPRIV
o is not constant-time

C ⊢ t.binop o ∶ π π → π

LOAD

C ⊢ t.load ∶ ∗σ π → σ

LOCAL
C(`) =m

C ⊢ get_local ` ∶ [] →m

COND

C ⊢
Ð⇀
i1 ∶
Ð⇀m → π C ⊢

ÐÐ⇀
i{2,3} ∶

Ð⇀m →Ð⇀m

C ⊢ if
Ð⇀
i1 then

Ð⇀
i2 else

Ð⇀
i3 ∶
Ð⇀m π →Ð⇀m

Figure 2.15: Secret Independence Checker (selected rules)

velop a checker that analyzes the generated WebAssembly code to ensure
that secret independence is preserved, even though Low⋆ secret integers are
compiled to regular integers in WebAssembly. We observe that adding such
a checker is only made possible by having a custom toolchain that allows
us to propagate secrecy information from the source code to the generated
WebAssembly. It would likely be much harder to apply the same analysis to
arbitrary optimized WebAssembly generated by Emscripten.

We ran our analysis on the entire WHACL⋆ library; the checker validated
all of the generated WebAssembly code. We experimented with introducing
deliberate bugs at various points throughout the toolchain, and were able to
confirm that the checker declined to validate the resulting code.

The rules for our secret independence checker are presented in Figure 2.15.
We mimic the typing rules from the original WebAssembly presentation [44]:
just like the typing judgement captures the effect of an instruction on the
operand stack via a judgement C ⊢ i ∶

Ð⇀
t →

Ð⇀
t , our judgement C ⊢ i ∶ Ð⇀m →

Ð⇀m

captures the information-flow effect of an instruction on the operand stack.
The context C maps each local variable to either π (public) or σ (secret). The

mode m is one of π, σ or ∗σ. The ∗σ mode indicates a pointer to secret data,
and embodies our hypothesis that all pointers point to secret data. (This
assumption holds for the HACL⋆ codebase, but we plan to include a more
fine-grained memory analysis in future work.)

For brevity, Figure 2.15 omits administrative rules regarding sequential
composition; empty sequences; and equivalence between Ð⇀m Ð⇀m1 →

Ð⇀m Ð⇀m2 and
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Ð⇀m1 →
Ð⇀m2. The mode of local variables is determined by the context C (rule

LOCAL). Constant time operations accept any mode m for their operands (rule
BINOPPUB); if needed, one can always classify data (rule CLASSIFY) to ensure
that the operands to BINOPPUB are homogeneous. For binary operations
that are not constant-time (e.g. equality, division), the rules require that the
operands be public. Conditionals always take a public value for the condition
(rule COND). For memory loads, the requirement is that the address be a
pointer to secret data (always true of all addresses), and that the index be
public data (rule LOAD).

In order to successfully validate a program, the checker needs to construct
a context C that assigns modes to variables. For function arguments, this
is done by examining the original λow∗ type for occurrences of α, i.e. secret
types. For function locals, we use a simple bidirectional inference mechanism,
which exploits the fact that i) our compilation scheme never re-uses a local
variable slot for different modes and ii) classifications are explicit, i.e. the
programmer needs to explicitly cast public integers to secret in HACL⋆.

2.3.2. LibSignal⋆, when F⋆ and HACL⋆ meets WebAssembly

We now describe the first application of our toolchain: WHACL⋆, a Web-
Assembly version of the (previously existing) verified HACL⋆ crypto library [35].
Compiling such a large body of code demonstrates the viability of our toolchain
approach. Then, we extend this artifact to a Web-compatible implementation
of the Signal protocol. To keep things brief, this subsection will only sum up
contributions by Benjamin Beurdouche, mentioned in his own PhD disser-
tation [60] (Chapter 4). Please refer to his work or the related article [40] for
more details.

WHACL⋆, HACL⋆ for the Browser We successfully compiled all the algorithms
above to WebAssembly using KreMLin, along with their respective test suites,
and dub the resulting library WHACL⋆, for Web-HACL⋆, a novel contribution.
All test vectors pass when the resulting WebAssembly code is run in a browser
or in node.js, which serves as experimental validation for our compiler.

Once compiled to WebAssembly, there are several ways clients can leverage
WHACL⋆. In a closed-world setting, the whole application can be written in
Low⋆, meaning one compiles the entire client program with KreMLin in a
single pass. In this scenario, JavaScript only serves as an entry point, and the

91



2. LibSignal⋆: Porting Verified Cryptography to the Web

rest of the program execution happens solely within WebAssembly. KreMLin
automatically generates boilerplate code to: load the WebAssembly modules;
link them together, relying on JavaScript for only a few library functions (e.g.
for debugging).

In an open-world setting, clients will want to use WHACL⋆ from JavaScript.
We rely on the KreMLin compiler to ensure that only the top-level API of
WHACL⋆ is exposed (via the exports mechanism of WebAssembly) to JavaScript.
These top-level entry points abide by the restrictions of the WebAssembly-
JavaScript FFI, and only use 32-bit integers (64-bit integers are not repre-
sentable in JavaScript). Next, we automatically generate a small amount
of glue code; this code is aware of the KreMLin compilation scheme, and
takes JavaScript ArrayBuffers as input, copies their contents into the Web-
Assembly memory, calls the top-level entry point, and marshals back the
data from the WebAssembly memory into a JavaScript value. We package the
resulting code as a portable node.js module for easy distribution.

We then evaluate WHACL⋆ against versions of HACL⋆ and libsodium com-
piled to WebAssembly using Emscripten. While the Emscripten-compiled
versions of HACL⋆ and libsodium exhibit somewhat similar performance,
WHACL⋆ is 1,5 to 3 times slower. This performance hit is consistent with
the fact that our custom toolchain targeting WebAssembly does not enjoy all
the fine-tuned optimizations that Emscripten performs, through its use of
LLVM. However, there are several low-hanging optimizations that could be
implemented in KreMLin for the kind of code used by WHACL⋆. We believe
they could reduce the performance gap to an acceptable level for production
deployments, but leave them as future work.

LibSignal⋆: Verified LibSignal in WebAssembly As our main case study, we
rewrite and verify the core protocol code of LibSignal in F*. We compile our
implementation to WebAssembly and embed the resulting code back within
LibSignal-JavaScript to obtain a high-assurance drop-in replacement for this
popular library, which is currently used in the desktop versions of WhatsApp,
Skype, and Signal.

Our Signal implementation is likely the first cryptographic protocol imple-
mentation to be compiled to WebAssembly, and is certainly the first to be
verified for correctness, memory safety, and side-channel resistance. In par-
ticular, we carefully design a defensive API between our verified WebAssembly
code and the outer LibSignal JavaScript code so that we can try to preserve
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Figure 2.16: LibSignal⋆: We write an F⋆ specification for the Signal protocol
and verify its security by transcribing it into a ProVerif model. We
then write a Low⋆ implementation of Signal and verify it against
the spec using F⋆. We compile the code to WebAssembly, link
it with WHACL⋆ and embed both modules within a defensive
JavaScript wrapper in LibSignal-JavaScript.
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some of the strong security guarantees of the Signal protocol, even against
bugs in LibSignal. LibSignal⋆ uses WHACL⋆ cryptography for all the primitives
that it needs, thus reaping the benefits of the previous application. Figure 2.16
offers an overview of the language and proof architecture of this verified arti-
fact. The size of the F⋆ development corresponding to the specification and
implementation of the protocol, excluding the cryptographic primitives it relies
on, is about 3,000 lines of code.

To craft LibSignal⋆, we followed all the steps of the methodology presented
in Section 1.3.1. First, we cleaned up the Javascript codebase of the official
Signal implementation, separating the critical core of the protocol aside from
the glue code and key storage system. Second and third, we used the existing
F⋆ language and Low⋆ domain-specific language to encode two versions of
the protocol core: a high-level specification, manually translated to pure F⋆

from the Javascript implementation, and a low-level implementation in Low⋆,
bound to be extracted to WebAssembly with our novel KreMLin toolchain.
Fourth, we prove functional equivalence between the two versions, as well as
security of the protocol in the symbolic model (using Proverif [18]) and secret-
independence for the implementation, which we carried down to WebAssembly
using a translation validator implemented in KreMLin. Fifth, we plugged
back the extracted WebAssembly to the original Signal codebase, using the
Javascript-to-WebAssembly interoperability layer provided by Web browsers.

LibSignal⋆ was evaluated on the official LibSignal test suite, and our new
version is fully interoperable down to the byte with other implementations
of the Signal protocol. We measured the performance of LibSignal⋆ in the
browser and found it to be on par with LibSignal; indeed, the performance
gains of using WebAssembly seem to be offset by the performance loss of
using WHACL⋆’s Ed25519 instead of libsodium’s Ed25519 compiled from C to
WebAssembly via Emscripten.

Conclusion

The layout of this chapter, starting from related work to detail our contribution
to the F⋆/Low⋆ ecosystem and finally LibSignal⋆, might leave the impression
that LibSignal⋆ is merely a pretext to showcase the agility of the F⋆ verification
ecosystem over other cryptographic verification provers. At the time of the
completion of this work, in 2019, the methodology of Section 1.3.1 had not
been clearly laid out and the primary motivation was indeed to extend HACL⋆

94



References

to cryptographic protocols; Signal was a desirable target in terms of impact
due to its large real-world usage. However, we did not stay in the closed
world of F⋆ and did not build another proof framework to prove everything
about Signal in the same theorem prover. Rather, we made use of the existing
specialized prover Proverif [18] and repurposed in a lightweight way the
KreMLin compiler to target an environment that critically lacked a high level
of assurance: the Web. Hence, we emphasize the size and reach of the final
artifact created, which attracted the attention of industrial users at the time,
though we could not complete the technology transfer due to a lack of time and
personal investment: establishing trust with the end-users and the engineers
usually requires one or more internships where the formalizer can carefully
study the codebase and perform the surgical operation of swapping existing
code with a new, verified artifact.

Although we believe the main reason why LibSignal⋆ was not adopted is
social, the resulting language architecture of the artifact is composite and
many steps are still uncertified or manual translations. This weakens the
chain of trust; if a bug is found in the unverified parts of the chain, and
has serious security consequences, this could hurt the credibility of formal
verification as a whole and delay its adoption by industrial end-users. To
improve these weaknesses, several measures could be taken: formalize and
implement an automatic translation from specialized provers like Proverif and
Cryptoverif [61] to F⋆, mechanize the semantics of WebAssembly and F⋆ to
mechanically certify the translation, etc. We leave those as future work.

Indeed, after LibSignal⋆, we chose to focus on a different improvement
point. As argued in Section 1.2.1, the chain of trust has a topmost link: the
correctness of the specifications used as the basis of the verified development.
In LibSignal⋆, those specifications amount to only 500 lines of code only for
the protocol part, excluding the specifications of the cryptographic primitives
involved. While conciseness of specifications is key to reducing the trusted
code base, we claim that ensuring that they are actually reviewed correctly by
domain experts is equally important. Hence, the next chapter will focus on
improving this review by cryptographers.
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Abstract

The verified cryptography developments of Chapter 2, while mechanized inside the F⋆

proof assistant, still suffer from the specification problem detailed in Section 1.2.1.
Indeed, cryptographers usually write reference implementations of the primitives and
protocols they design in low-level languages like C, making it hard to retro-engineer a
high-level specification.

Recently, the cryptographers have begun moving to Rust, and the codebase rewrites
this change triggered made a good occasion for nudging cryptographers into writing
higher-level specifications. In this chapter, we propose a domain-specific language,
hacspec, embedded inside Rust. We claim that hacspec is the right tool for cryp-
tographers to write succinct, executable, verifiable specifications for high-assurance
cryptography embedded in Rust. Moreover, it helps bridging the gap between formal-
izers and domain experts.
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Parler avec lui, surtout en
ligne, vous apprenait au
moins deux choses :
compacité et anticipation.
Laconique à l’extrême, il
l’était, par goût, par ascèse
aussi. C’était son élégance
de codeur : entre deux
formules, chercher
l’optimale : celle qui
contenait la plus forte
quantité d’infos en utilisant
le minimum de caractères.

(Alain Damasio, Les furtifs,
2019)

Turing is neither a mortal nor
a god. He is Antaeus. That
he bridges the
mathematical and physical
worlds is his strength and his
weakness.

(Neal Stephenson,
Cryptonomicon, 1999)



3.1. Motivating a New Domain-specific Language

This chapter is based upon the following publication:

D. Merigoux, F. Kiefer, and K. Bhargavan, “Hacspec: succinct, ex-
ecutable, verifiable specifications for high-assurance cryptography
embedded in Rust”, Inria, Technical Report, Mar. 2021. [Online].
Available: https://hal.inria.fr/hal-03176482

My personal contribution to this publication has been the design, formal-
ization and implementation of the hacspec domain-specific language.

3.1. Motivating a New Domain-specific Language

Modern Web applications use sophisticated cryptographic constructions and
protocols to protect sensitive user data that may be sent over the wire or
stored at rest. However, the additional design complexity and performance
cost of cryptography is only justified if it is implemented and used correctly. To
prevent common software bugs like buffer overflows [2] without compromising
on performance, developers of security-oriented applications, like the Zcash
and Libra blockchains, are increasingly turning to strongly typed languages
like Rust. However, these type systems cannot prevent deeper security flaws.
Any side-channel leak [3] or mathematical bug [4] in the cryptographic library,
any parsing bug [5] or state machine flaw [6] in the protocol code, or any
misused cryptographic API [7] may allow an attacker to steal sensitive user
data, bypassing all the cryptographic protections.

The problem is that these kinds of deep bugs often appear only in rarely-
used corner-cases that are hard to find by random testing, but can be easily
exploited by attackers who know of their existence. Furthermore, since
cryptographic computations often constitute a performance bottleneck in
high-speed network implementations, the code for these security-critical
components is typically written in low-level C and assembly and makes use
of subtle mathematical optimizations, making it hard to audit and test for
developers who are not domain experts.

3.1.1. Bridging Rust and Verified Cryptography

In recent years, formal methods for software verification have emerged as
effective tools for systematically preventing entire classes of bugs in crypto-
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graphic software (see [8] for a survey). For example, verification frameworks
like F⋆ [9], EasyCrypt [10], and Coq [11] are used to verify high-performance
cryptographic code written in C [12], [13] and assembly [14], [15]. Crypto-
graphic analysis tools like ProVerif [16] and CryptoVerif [17] are used to verify
protocols for security properties against sophisticated attackers [18], [19].
Languages like F⋆ have been used to write verified parsers [20] and protocol
code [21], [22].

By focusing on specific security-critical components, these tools have been
able to make practical contributions towards increasing the assurance of
widely-used cryptographic software. For example, verified C code from the
HACL⋆ cryptographic library [12] is currently deployed within the Firefox web
browser and Linux kernel.

Conversely, the use of domain-specific tools also has its drawbacks. Each
verification tool has its own formal specification language tailored for a partic-
ular class of analysis techniques. This fragmentation means that we cannot
easily compose a component verified against an F⋆ specification with another
verified using EasyCrypt. More worryingly, these formal languages are un-
familiar to developers, which can lead to misunderstandings of the verified
guarantees and the unintended misuse of the components. For example, an
application developer who incorrectly assumes that an elliptic curve imple-
mentation validates the peer’s public key may decide to skip this check and
become vulnerable to an attack [23].

A Better Way to Safely Integrate Verified Code Without sufficient care, the
interface between unverified application code and verified components can
become a point of vulnerability. Applications may misuse verified components
or compose them incorrectly. Even worse, a memory safety bug or a side-
channel leak in unverified application code may reveal cryptographic secrets
to the adversary, even if all the cryptographic code is formally verified. A
classic example is HeartBleed [5], a memory safety bug in the OpenSSL
implementation of an obscure protocol feature, which allowed remote attackers
to learn the private keys for thousands of web servers. A similar bug anywhere
in the millions of lines of C++ code in the Firefox web browser would invalidate
all the verification guarantees of the embedded HACL⋆ cryptographic code.

To address these concerns, we propose a hybrid framework (depicted in
Figure 3.1) that allows programmers to safely integrate application code
written in a strongly typed programming language with clearly specified
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3.1. Motivating a New Domain-specific Language

Figure 3.1: hacspec programming and verification workflow. The Rust
programmer writes executable specifications for cryptographic
components in hacspec and compiles them to formal specifica-
tions (in F⋆). The proof engineer implements the cryptographic
components (in Low*) and proves that they meet their specifica-
tions. The verified code is compiled to high-performance C or
assembly code, which is finally wrapped within Rust modules (us-
ing foreign function interfaces) that can safely replace the original
hacspec specifications.
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security-critical components that are verified using domain-specific tools. We
choose Rust as the application programming, and rely on the Rust type system
to guarantee memory safety. In addition, we provide a library of secret integers
that enforces a secret independent coding discipline to eliminate source-
level timing side-channels. Hence, well-typed code that only uses secret
integers does not break the security guarantees of embedded cryptographic
components. Of course, this claim only works if the application does not
include unverified code written in a low-level, not memory-safe language like
C (or unsafe Rust).

hacspec: Cryptographic Specifications In Rust At the heart of our frame-
work is hacspec, a specification language for cryptographic components with
several notable features: (1) Syntactically, hacspec is a subset of Rust, and
hence is familiar to developers, who can use the standard Rust development
toolchain to read and write specifications of cryptographic algorithms and
constructions. (2) Specifications written in hacspec are executable and so
they can be tested for correctness and interoperability, and they can be used
as prototype implementations of cryptography when testing the rest of the
application. (3) The hacspec library includes high-level abstractions for com-
monly used mathematical constructs like prime fields, modular arithmetic,
and arrays, allowing the developer to write succint specifications that corre-
spond closely with the pseudocode descriptions of cryptographic algorithms
in published standards. (4) hacspec is a purely functional language without
side-effects, equipped with a clean formal semantics that makes specifications
easy to reason about and easy to translate to other formal languages like F⋆.

These features set hacspec apart from other crypto-oriented specification
languages. The closest prior work that inspired the design of hacspec is
hacspec-python [24], a cryptographic specification language embedded in
Python that could also be compiled to languages like F⋆. However, unlike
Rust, Python is typically not used to build cryptographic software, so speci-
fications written in hacspec-python stand apart from the normal developer
workflow and serve more as documentation than as useful software compo-
nents. Furthermore, since Python is untyped, hacspec-python relies on a
custom type-checker, but building and maintaining a Python type-checker
that provides intuitive error messages is a challenging engineering task. Be-
cause of these usability challenges, hacspec-python has fallen into disuse,
but we believe that our approach of integrating hacspec specifications into
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the normal Rust development workflow offers greater concrete benefits to
application developers, which increases its chances of adoption.

Contributions and Outline We propose a new framework for safely integrating
verified cryptographic components into Rust applications. As depicted in
Figure 3.1, the developer starts with a hacspec specification of a cryptographic
component that serves as a prototype implementation for testing. Then, via
a series of compilation and verification steps, we obtain a Rust module that
meets the hacspec specification and can be used to replace the hacspec
module before the application is deployed. Hence, the programmer can
incrementally swap in verified components while retaining full control over
the specifications of each component.

Our main contribution is hacspec, a new specification language for security-
critical components that seeks to be accessible to Rust programmers, cryptog-
raphers, and verification experts. We present the formal syntax and semantics
of hacspec, which is the first formalization of a purely functional subset of
Rust, to our knowledge. We demonstrate the use of hacspec on a series of
popular cryptographic algorithms, but we believe that hacspec can be used
more generally to write functional specifications for Rust code. Our second
contribution is a set of tools for hacspec, including a compiler from hacspec
to F⋆ that enable the safe integration of verified C and assembly code HACL⋆

in Rust applications. Our third contribution is a set of libraries that any
Rust application may use independent of hacspec, including a secret integer
library that enforces a constant-time coding discipline, and Rust bindings for
the full EverCrypt cryptographic provider [25]. The source code for all these
contributions can be found on GitHub1.

The main technical limitation of our work is that not all the steps are for-
mally verified. To use verified C code from HACL⋆ for example, the programmer
needs to trust the compiler from hacspec to F⋆, the Rust binding code that
calls the C code from Rust, and the Rust and C compilers. We carefully
document each of these steps and intend to formalize and verify some of
these elements in the future. In this work, however, we focus on building a
pragmatic toolchain that solves a pressing software engineering problem in
real-world cryptographic software.

First, we discuss related work in section Section 3.1.2. Section Section 3.2.1
starts by presenting the hacspec language and its implementation. Then, we

1https://github/hacspec/hacspec
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introduce our security-oriented Rust libraries in section Section 3.2.2, that
can be used in conjunction with the hacspec language or in a standalone
context. Section Section 3.3.1 deals with the connection between the Rust-
based hacspec tooling and multiple verification frameworks having a track
record in cryptographic proofs. Finally, we evaluate the language on high-
assurance cryptographic primitives in Section 3.3.2.

3.1.2. The Emerging Rust Verification Scene

hacspec is not the first domain-specific language targeting cryptographic
specifications. The most notable works in this domain include Cryptol [26],
Jasmin [15], and Usuba [27]. There are two main differences between hacspec
and these languages.

The first difference is the embedded nature of hacspec’s language. By
leveraging the existing Rust ecosystem, we believe it is easier for programmers
to use our language, compared to the effort of learning a new domain-specific
language with its different syntax. We extend this claim to the tooling of the
domain-specific language, which is written completely in the host language
(Rust) and therefore does not require installing any extra dependency with
whom the developer might be unfamiliar (like an entire OCaml or Haskell
stack).

The second difference is the target of the domain-specific language. Cryptol
targets C and VHDL, Jasmin targets assembly and Usuba targets C. Cryptol
and Jasmin each are closely integrated with their respective proof assis-
tants/verification backend: SAW [28] and Easycrypt [10]. The code written
in those domain-specific languages is closer to an implementation than a
specification, as it is directly compiled to a performant target and is some-
times proven correct against a more high-level specification (like libjc [29]).
Instead, hacspec can target different verification toolchains and acts as a
bridge between those projects.

Rust-based Verification Tools hacspec is not the first attempt at a Rust
frontend for verification toolchains; we provide a summary of existing work
in Figure 3.2. The “input” column of the comparison table refers to the entry
point of the verification frameworks withing the Rust compiler architecture.
The unusual choice of hacspec for AST will be discussed later in Section 3.2.1.

We also classify the previous work according to the extent of formalization
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Frontend Target(s) Input Formal

KLEE [30] KLEE [31] MIR #
crux-mir [32] SAW [28] MIR #
Prusti [33] Viper [34] MIR H#
Electrolysis [35] Lean [36] MIR H#
SMACK [37] SMACK [38] LLVM IR H#
RustHorn [39] CHC [40] MIR  
µMIR [41] WhyML [42] MIR  
hacspec F⋆ [9], EasyCrypt* [10], Coq* [11] AST G#

# = DSL and translation to target not formalized
H# = DSL defined by its translation to formalized target
G# = DSL formalized but not the translation to target(s)

 = DSL and translation to target formalized

Figure 3.2: Rust frontends for verification toolchains.
* These backends are experimental, see Section 3.3.1.

that they contain. Indeed, multiple things can be formalized when creating
an embedded domain-specific language. First, the domain-specific language
can be defined as a subset of a formalization of the host language. In the
case of Rust, only RustBelt [43] currently provides a full formalization. But
no existing tool that uses RustBelt can extract to another target. On the other
hand, the domain-specific language can be defined intrinsically in terms of its
encoding in the formalized target (H#). Finally, the domain-specific language
itself can be formalized (G#), as well as its translation to the formalized target
( ).

We intend for hacspec to belong to the last category, corresponding to
the  case. However, we chose to prioritize the interoperability of hacspec
by targeting multiple backends, which increases the workload of translation
formalization. Hence, we leave the migration from G# to  as future work.

The main difference of hacspec compared to previous Rust frontend is the
scope of the subset it intends to capture. Indeed, hacspec does not deal
with memory manipulations and mutable borrows, which is the heart of Rust.
On the contrary, hacspec explicitly forbids these as its aim is to capture
the functional, pure subset of Rust. Of course, this makes it unsuitable for
verifying any kind of performance-oriented programs. Instead, we believe such
programs should be dealt by writing this optimized implementation inside
an adapted DSL like Jasmin or Low⋆, and then prove that implementation
functionally correct to a specification derived from a hacspec program trans-
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lated to the relevant proof assistant (Figure 3.1). hacspec provides to Rust
programmers an entry point into the verification world, inside the ecosystem
that they are familiar with.

3.2. The hacspec Embedded Language

hacspec is a domain-specific language embedded in the Rust programming
language and targeted towards cryptographic specifications. It serves several
purposes. Firstly, it acts as a frontend for verification toolchains. We provide
a formal description of the syntax, semantics and type system of hacspec
as a reference. Secondly, hacspec aims to be a shared language that can
foster communication between cryptographers, Rust programmers and proof
engineers.

As a motivating example, consider the ChaCha20 encryption algorithm stan-
dardized in RFC 8439 [44]. The RFC includes pseudocode for the ChaCha20
block function in 20 lines of informal syntax (see Figure 3.4). However, this
pseudocode is not executable and hence cannot be tested for bugs. Indeed,
an earlier version of this RFC has several errors in pseudocode. Further-
more, pseudocode lacks a formal semantics and cannot be used as a formal
specification for software verification tools.

Figure 3.3 shows code for the same function written in hacspec. It has 23
lines of code, and matches the RFC pseudocode almost line-by-line. The code
is concise and high-level, but at the same time is well-typed Rust code that
can be executed and debugged with standard programming tools. Finally, this
code has a well-defined formal semantics and can be seen as a reference for
formal verification.

We believe that hacspec programs straddle the fine line between pseu-
docode, formal specification, and prototype implementation and are useful
both as documentation and as software artifacts. In this section, we detail
the syntax, semantics and type system of hacspec, show how we embed it in
Rust, and describe our main design decisions.

3.2.1. Syntax, semantics, typing

hacspec is a typed subset of Rust, and hence all hacspec programs are valid
Rust programs. However, the expressiveness of hacspec is deliberately limited,
compared to the full Rust language. We believe that a side-effect-free purely-
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1 fn inner_block(state: State) -> State {
2 let state = quarter_round(0, 4, 8, 12, state);
3 let state = quarter_round(1, 5, 9, 13, state);
4 let state = quarter_round(2, 6, 10, 14, state);
5 let state = quarter_round(3, 7, 11, 15, state);
6 let state = quarter_round(0, 5, 10, 15, state);
7 let state = quarter_round(1, 6, 11, 12, state);
8 let state = quarter_round(2, 7, 8, 13, state);
9 quarter_round(3, 4, 9, 14, state)

10 }
11

12 fn block(key: Key, ctr: U32, iv: IV) -> StateBytes {
13 let mut state = State::from_seq(&constants_init()
14 .concat(&key_to_u32s(key))
15 .concat(&ctr_to_seq(ctr))
16 .concat(&iv_to_u32s(iv)));
17 let mut working_state = state;
18 for _i in 0..10 {
19 working_state = chacha_double_round(state);
20 }
21 state = state + working_state;
22 state_to_bytes(state)
23 }

Figure 3.3: hacspec’s version of Chacha20 Block

113



3. hacspec: High-Assurance Cryptographic Specifications

1 inner_block (state):
2 Qround(state, 0, 4, 8,12)
3 Qround(state, 1, 5, 9,13)
4 Qround(state, 2, 6,10,14)
5 Qround(state, 3, 7,11,15)
6 Qround(state, 0, 5,10,15)
7 Qround(state, 1, 6,11,12)
8 Qround(state, 2, 7, 8,13)
9 Qround(state, 3, 4, 9,14)

10 end
11

12 chacha20_block(key, counter, nonce):
13 state = constants | key | counter | nonce
14 working_state = state
15 for i=1 upto 10
16 inner_block(working_state)
17 end
18 state += working_state
19 return serialize(state)
20 end

Figure 3.4: The ChaCha20 Block Function in Pseudocode (RFC7532, 2.3.1)
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functional style is best suited for concise and understandable specifications.
Extensive use of mutable state, as in C and Rust programs, obscures the
flow of data and forces programmers to think about memory allocation and
state invariants, which detracts from the goal of writing “obviously correct”
specifications. Hence, we restrict hacspec to forbid mutable borrows, and we
limit immutable borrows to function arguments.

The usual way of writing side-effect-free code Rust is to use .clone() to
duplicate values. Figuring out where to insert .clone() calls is notably
difficult for new Rust users – in spite of good quality Rust compiler error
messages. We intentionally strived to reduce the need for .clone() calls in
hacspec. We leverage the Copy trait for all the values that can be represented
by an array of machine integers whose length is known at compile-time. This
holds true for all kinds of machine integers, but also for the value types
defined in the libraries (later discussed in Section 3.2.2).

hacspec benefits from the strong type system of Rust both to avoid spec-
ification bugs and to cleanly separate logically different values using types.
For instance, separately declared array types like Key and StateBytes are
disjoint, which forces the user to explicitly cast between them and avoids, for
instance, the inadvertent mixing of cryptographic keys with internal state.

We describe in detail a simplified version of hacspec. The main simplifi-
cation lies in the values of the language. We present our formalization with
a dummy integer type, but the full hacspec language features all kinds of
machine integers, as well as modular natural integers. The manipulation of
these other values, detailed in Section 3.2.2, does not involve new syntax or
unusual semantics rules, so we omit them from our presentation. Essentially,
the rules for binary and unary operators over each kind of machine and
natural integers are similar to the rules for our dummy integers; all other
operators are modeled as functions and therefore governed by the standard
rules about functions.

Syntax The syntax of hacspec (Figure 3.5) is a strict subset of Rust’s surface
syntax, with all the standard control flow operators, values, and functions.
However, hacspec source files are also expected to import a standard library
that defines several macros like array!. These macros add abstractions like
arrays an natural integers to hacspec. The other notable syntactic feature
of hacspec is the restriction on borrowing: hacspec only allows immutable
borrowings in function arguments. This is the key mechanism by which we
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are able to greatly simplify the general semantics of safe Rust, compared to
existing work like Oxide [45]. The attentive reader might have noticed an
apparent contradiction with our earlier claim that hacspec does not deal
with mutable state, since the syntax of Figure 3.5 includes mut let-bindings
declaring variables that can be reassigned later in the code. Indeed, mutable
variable constitute a form of mutable state, and hacspec is not completely
side-effect-free. The operational semantics of the language presented later
includes a context storing the values of each mutable variable. However, this
very restricted form of mutable state can be encoded as a instance of a state
monad in a completely side-effect-free language, as Section 3.3.1 will show.
Hence, we justify our claim of functional pureness for hacspec despite the
looks of mutability.

Another tricky point of the syntax concern the array types in hacspec. In
Rust, the go-to type for a collection of elements is Vec. hacspec does not
feature this type, nor the native Rust array types [T, n]. Instead, hacspec
offers two different kinds of arrays whose size is constant and fixed at creation
time: Seq and array!. Seq is designed for arrays whose length is not statically
known at compilation; usually messages (plaintext or ciphered) passed around
in cryptographic specifications. Specialized array types of fixed lengths created
with array! are also useful for cryptography, where specifications define a
number of “block” arrays that always have the same size. Defining a special
types for those arrays help prevent the mixing of, for instance, a key byte
array with a hash digest byte array.

Semantics The structured operational semantics for hacspec corresponds
to a simple first-order, imperative, call-by-value programming language. To
demonstrate the simplicity of these semantics, we will present them in full
here.

The first list of Figure 3.6 presents the values of the language: booleans,
integers, arrays and tuples. The evaluation context is an unordered map from
variable identifiers to values. Here are the different evaluation judgments that
we will present:

The second list of Figure 3.6 shows the evaluation judgments for the various
syntactic kinds of hacspec. The big-step evaluation judgment for expressions
p; Ω ⊢ e ⇓ v, reads as: “in program p (containing the function bodies to evaluate
function calls) and evaluation context Ω, the expression e evaluates to value
v”. The other evaluation judgments read in a similar way. The last evaluation
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p ∶∶= [i]∗ program items
i ∶∶= array!( t, µ, n ∈ N ) array type declaration

∣ fn f( [d]+ ) -> µ b function declaration
d ∶∶= x : τ function argument
µ ∶∶= unit ∣ bool ∣ int base types

∣ Seq< µ > sequence
∣ t type variable
∣ ( [µ]+ ) tuple

τ ∶∶= µ plain type
∣ &µ immutable reference

b ∶∶= { [s;]+ } block
s ∶∶= let x : τ = e let binding

∣ x = e variable reassignment
∣ if e then b ( else b) conditional statements
∣ for x in e .. e b for loop (integers only)
∣ x[ e ] = e array update
∣ e return expression
∣ b statement block

e ∶∶= () ∣ true ∣ false unit and boolean literals
∣ n ∈ N integer literal
∣ x variable
∣ f( [a]+ ) function call
∣ e ⊙ e binary operations
∣ ⊘ e unary operations
∣ ( [e]+ ) tuple constructor
∣ e.(n ∈ N) tuple field access
∣ x[ e ] array or seq index

a ∶∶= e linear argument
∣ &e call-site borrowing

⊙ ∶∶= + ∣ - ∣ *
∣ / ∣ && ∣ ||
∣ == ∣ != ∣ > ∣ <

⊘ ∶∶= - ∣ ˜

Figure 3.5: Syntax of hacspec
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Value v ∶∶= () ∣ true ∣ false
∣ n ∈ Z
∣ [ [v]∗ ]

∣ ( [v]∗ )
Evaluation context Ω ∶∶= ∅

(unordered map) ∣ x↦ v, Ω

Expression evaluation p; Ω ⊢ e ⇓ v
Function argument evaluation p; Ω ⊢ a ⇓ v
Statement evaluation p; Ω ⊢ s ⇓ v ⇛ Ω
Block evaluation p; Ω ⊢ b ⇓ v ⇛ Ω
Function evaluation p ⊢ f( v1,..., vn ) ⇓ v

Figure 3.6: Values and evaluation judgments of hacspec

judgment is the top-level function evaluation, which is meant as the entry
point of the evaluation of a hacspec program.

First, let us examine the simplest rules for values and variable evaluation:

EVALUNIT

p; Ω ⊢ () ⇓ ()

EVALBOOL

b ∈ {true, false}

p; Ω ⊢ b ⇓ b

EVALINT

n ∈ Z
p; Ω ⊢ n ⇓ n

EVALVAR

x↦ v ∈ Ω

p; Ω ⊢ x ⇓ v

We can now move to the rules for function calls evaluation. As shown in the
syntax, some immutable borrowing is authorized for function calls arguments.
This borrowing is basically transparent for our evaluation semantics, as the
following rules show:

EVALFUNCARG

p; Ω ⊢ e ⇓ v

p; Ω ⊢ e ⇓ v

EVALBORROWEDFUNCARG

p; Ω ⊢ e ⇓ v

p; Ω ⊢ &e ⇓ v

All values inside the evaluation context Ω are assumed to be duplicable at
will. Of course, an interpreter following these rules will be considerably slower
compared to the original Rust memory sharing discipline, because it will have
to copy a lot of values around. But we argue that this simpler evaluation
semantics yields the same results as the original Rust, for our very restricted
subset.
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We can now proceed to the function call evaluation rule, which looks up the
program p for the body of the function called.

EVALFUNCCALL

fn f( x1 : τ1,..., xn : τn ) -> µ b ∈ p

∀i ∈ [[1, n]], p; Ω ⊢ ai ⇓ vi p; x1 ↦ v1, . . . , xn ↦ vn ⊢ b ⇓ v

p; Ω ⊢ f( a1,..., an ) ⇓ v

Next, the evaluation rules for binary and unary operators. These rules are
completely standard and assume that the operator has been formally defined
on the values of hacspec it can operate on. The dummy arithmetic operators
that we have defined in our syntax are assumed to operate only on integers
and have the usual integer arithmetic behavior.

EVALBINARYOP

p; Ω ⊢ e1 ⇓ v1 p; Ω ⊢ e2 ⇓ v2

p; Ω ⊢ e1 ⊙ e2 ⇓ v1 ⊙ v2

EVALUNARYOP

p; Ω ⊢ e ⇓ v

p; Ω ⊢ ⊘ e ⇓ ⊘ v

The rules governing tuples are also very standard. Here, we chose to include
only tuple access e.n in our semantics but one can derive similar rules for a
tuple destructuring of the form let ( x1,..., xn ) : τ = e (which can also be
viewed as a syntactic sugar for multiple tuple accesses).

EVALTUPLE

∀i ∈ [[1, n]], p; Ω ⊢ ei ⇓ vi

p; Ω ⊢ ( e1,..., en ) ⇓ ( v1,..., vn )

EVALTUPLEACCESS

p; Ω ⊢ e ⇓ ( v1,..., vm ) n ∈ [[1,m]]

p; Ω ⊢ e.n ⇓ vn

Array accesses are handled similarly to tuple accesses. Note that while the
Rust syntax for array access is only a syntactic sugar that calls the .index()
function of the Index trait, we view it as a primitive of the language. By
giving a dedicated evaluation rule to this construct, we are able to hide the
immutable borrowing performed by the .index() function.
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EVALARRAYACCESS

p; Ω ⊢ x ⇓ [ v0, . . . , vm ] p; Ω ⊢ e ⇓ n n ∈ [[0,m]]

p; Ω ⊢ x[ e ] ⇓ vn

We have completely described the evaluation of expressions, let us now
move to statements. The next two rules are similar but correspond to two
very different variable assignments. The first rule is a traditional, expression-
based let binding that creates a new scope for the variable x. The second rule
deals with variable reassignment: x has to be created first with a let-binding
before reassigning it. We omit here the difference that Rust does between
immutable and mutable variables (mut). Rust has an immutable-by-default
policy that helps programmers better spot where they incorporate mutable
state, but here we just assume that all variables are mutable for the sake of
simplicity. As mentioned earlier, this apparent mutability does not contradict
our claim of functional pureness for hacspec since all this mutable state will
later be turned into pure code through a state-passing style transformation
(Section 3.3.1). Both statements have a unit return type, to match Rust’s
behavior.

EVALLET

x ∉ Ω p; Ω ⊢ e ⇓ v

p; Ω ⊢ let x : τ = e ⇓ ()⇛ x↦ v, Ω

EVALREASSIGN

p; x↦ v, Ω ⊢ e ⇓ v′

p; x↦ v, Ω ⊢ x = e ⇓ ()⇛ x↦ v′, Ω

The rules for conditional statements are standard. We do not currently
include inline conditional expressions in our syntax, although they are legal
in Rust and compatible with hacspec. This restricts the return type of
conditional blocks to unit.

EVALIFTHENTRUE

p; Ω ⊢ e1 ⇓ true p; Ω ⊢ b ⇓ ()⇛ Ω′

p; Ω ⊢ if e1 b ⇓ ()⇛ Ω′

EVALIFTHENFALSE

p; Ω ⊢ e1 ⇓ false

p; Ω ⊢ if e1 b ⇓ ()⇛ Ω
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EVALIFTHENELSETRUE

p; Ω ⊢ e1 ⇓ true p; Ω ⊢ b ⇓ ()⇛ Ω′

p; Ω ⊢ if e1 b else b
′
⇓ ()⇛ Ω′

EVALIFTHENELSEFALSE

p; Ω ⊢ e1 ⇓ false p; Ω ⊢ b′ ⇓ ()⇛ Ω′

p; Ω ⊢ if e1 b else b
′
⇓ ()⇛ Ω′

Looping is very restricted in hacspec, since we only allow for loops ranging
over an integer index. This restriction is purposeful, since general while loops
can be difficult to reason about in proof assistants. One could also easily
add a construct looping over each element of an array, which Rust already
supports. However, we chose not to include the idiomatic .iter().map()

calls to avoid closures.

EVALFORLOOP

p; Ω ⊢ e1 ⇓ n p; Ω ⊢ e2 ⇓m

Ωn = Ω ∀i ∈ [[n,m − 1]], p; x↦ i, Ωi ⊢ b ⇓ ()⇛ Ωi+1

p; Ω ⊢ for x in e1 .. e2 b ⇓ ()⇛ Ωm

The array update statement semantics are standard. Here, we require
that e1 evaluates to an in-bounds index. We chose to omit the error case
where the index falls outside the range of the array, to avoid including a
classic propagating error in our semantics. In Rust, the default behavior of
out-of-bounds indexing is to raise a panic!() that cannot be caught. Like
array indexing, array updating is treated by Rust as a syntactic sugar to
a .index_mut() call, which mutably borrows its argument. We treat this
syntactic sugar as a first-class syntactic construct in hacspec to carefully
specify the behavior of the underlying mutable borrow of the array.

EVALARRAYUPD

p; x↦ [ v0, . . . , vn ], Ω ⊢ e1 ⇓m m ∈ [[0, n]] p; x↦ [ v0, . . . , vn ], Ω ⊢ e2 ⇓ v

p; x↦ [ v0, . . . , vn ], Ω ⊢ x[ e1 ] = e2 ⇓ ()⇛

x↦ [ v0, . . . , vm−1, v, vm+1, . . . , vn ], Ω

The next two rules replicate the special case of the last statement of a block
in Rust. Indeed, the return keyword in Rust is optional for the last statement
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of a function, because the value returned by a function is assumed to be the
result of the expression contained in the last statement. In fact, our syntax
does not include the return keyword at all to avoid control-flow-breaking
effects.

EVALEXPRSTMT

p; Ω ⊢ e ⇓ v

p; Ω ⊢ e ⇓ v⇛ Ω

Blocks in Rust are a list of statements, which also act as a scoping unit: a
variable defined inside a block cannot escape it. This behavior is captured
by the intersection of the two contexts at then end of EVALBLOCKASSTATEMENT:
we keep all the values Ω′ that were already defined in Ω.

EVALBLOCK

p; Ω ⊢ s1 ⇓ ()⇛ Ω′ p; Ω′
⊢ { s2;...; sn } ⇓ v⇛ Ω′′

p; Ω ⊢ { s1;...; sn } ⇓ v⇛ Ω′′

EVALBLOCKONE

p; Ω ⊢ s ⇓ v⇛ Ω′

p; Ω ⊢ { s } ⇓ v⇛ Ω′

EVALBLOCKASSTATEMENT

p; Ω ⊢ b ⇓ v⇛ Ω′

p; Ω ⊢ b ⇓ v⇛ Ω′
∩Ω

Finally, we can define the top-level rule that specifies the execution of a
function, given the values of its arguments.

EVALFUNC

fn f( x1 : τ1,..., xn : τn ) -> µ b ∈ p p; x1 ↦ v1, . . . , xn ↦ vn ⊢ b ⇓ v

p ⊢ f( v1,..., vn ) ⇓ v

Typing While the operational semantics of hacspec are simple, its typing
judgment is trickier. This judgment has to replicate Rust’s typechecking
on our restricted subset, including borrow-checking. The other complicated
part of Rust typechecking, trait resolution, is currently out of hacspec’s
scope, even though some polymorphism could be introduced in future work
to hacspec via a limited use of Rust traits.

The typing environnement of hacspec is fairly standard. We need a type
dictionary to enforce the named type discipline of Rust that covers the types
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declared by the array! macro. Please note that the contexts Γ and ∆ are
considered as unordered maps rather than ordered associative lists. As such,
the rules have the relevant elements appear at the end or the beginning of
those contexts without loss of generality.

Typing context Γ ∶∶= ∅

(unordered map) ∣ x ∶ τ , Γ

∣ f ∶ ( [τ]+ ) → µ, Γ

Type dictionary ∆ ∶∶= ∅

(unordered map) ∣ t→ [ µ; n ∈ N ], ∆

The restrictions on borrowing lead to severe limitations on how we can
manipulate values of linear type in our language, rendering it quite useless
at first sight. Indeed, when you receive a reference as a function argument,
you can only use it in expressions and perform identity let bindings with it.
You cannot store it in memory or in a tuple and pass it around indirectly in
your program. This behavior is well-suited for input and output buffers in
cryptographic code.

Linearity is at the heart of the Rust type system, and idiomatic Rust code
include a number of explicit .clone() indicating where we need to duplicate
values in the context. However, Rust also introduces an escape hatch from
linearity under the form of the Copy trait implementation. This trait, that
is primitive to the Rust language, is used to distinguish the values that
are “cheap” to copy. In hacspec, the Copy trait is implemented for all the
reference-free µ types except Seq, whose size is not known at compilation
time (and thus can be arbitrarily large). Hence, array! types, enjoy the
Copy trait and do not need to be cloned, they are passed around as pure
functional values. Indeed, because the length of array! types is known at
compilation time, the code generation backend of Rust (LLVM) can optimize
the representation of the array in memory, especially if the size is small.

Implementing the Copy trait ∆ ⊢ τ ∶ Copy
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COPYUNIT

∆ ⊢ unit ∶ Copy

COPYBOOL

∆ ⊢ bool ∶ Copy

COPYINT

∆ ⊢ int ∶ Copy

COPYTUPLE

∆ ⊢ τ1 ∶ Copy ⋯ ∆ ⊢ τn ∶ Copy

∆ ⊢ ( τ1, . . . , τn ) ∶ Copy

COPYARRAY

∆ ⊢ µ ∶ Copy

t→ [ µ; n ], ∆ ⊢ t ∶ Copy

Because Rust has an affine type system, hacspec also enjoys an affine
typing context with associated splitting rules (SPLITLINEAR). Please note
that immutable references values can be duplicated freely in the context
(SPLITDUPLICABLE). During an elaboration phase inside the Rust compiler,
the linearity of the type system gets circumvented for Copy values with the
insertion of clone() functions call that perform a copy of the value wherever
the linear type system forces a copy of the value to be made. We formalize
this behavior here by allowing Copy types duplication in the typing context,
like immutable references (SPLITCOPY). Lastly, functions are always duplicable
in the context (SPLITFUNCTION). In the following, Γ behaves like an unordered
map from variables to their types.

Context splitting ∆ ⊢ Γ = Γ1 ○ Γ2

SPLITEMPTY

∆ ⊢ ∅ = ∅ ○ ∅

SPLITLINEAR1
∆ ⊢ Γ = Γ1 ○ Γ2

∆ ⊢ x ∶ τ , Γ = ( x ∶ τ , Γ1 ) ○ Γ2

SPLITLINEAR2
∆ ⊢ Γ = Γ1 ○ Γ2

∆ ⊢ x ∶ τ , Γ = Γ1 ○ ( x ∶ τ , Γ2 )

SPLITDUPLICABLE

∆ ⊢ Γ = Γ1 ○ Γ2

∆ ⊢ x ∶ &τ , Γ = ( x ∶ &τ , Γ1 ) ○ ( x ∶ &τ , Γ2 )

SPLITCOPY

∆ ⊢ Γ = Γ1 ○ Γ2 ∆ ⊢ τ ∶ Copy

∆ ⊢ x ∶ τ , Γ = ( x ∶ τ , Γ1 ) ○ ( x ∶ τ , Γ2 )

SPLITFUNCTION

∆ ⊢ Γ = Γ1 ○ Γ2

∆ ⊢ f ∶ ( τ1, . . . , τn ) → µ, Γ = ( f ∶ ( τ1, . . . , τn ) → µ, Γ1 ) ○

( f ∶ ( τ1, . . . , τn ) → µ, Γ2 )

We can now proceed to the main typing judgments. TYPVARLINEAR and
TYPVARDUP reflect the variable typing present in the context. TYPTUPLECONS

only allows non-reference values inside a tuple, with a linear context split-
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foo(&(x,x))
- ^ value used here after move
|
value moved here

Figure 3.7: Rust error message for function argument borrowing

ting to check each term of the tuple. TYPARRAYACCESS, TYPSEQACCESS and
TYPSEQREFACCESS specify the array indexing syntax, which is overloaded to
work with both array!, Seq and &Seq. This corresponds to the implementing
of the Index trait in Rust.

The function call rule, TYPFUNCCALL, is the most complex rule of the typing
judgment, because it contains the restricted borrowing form allowed in hac-
spec. First, note that the context is split for typechecking the arguments of
the function, because a linear value cannot be used in two arguments.

While TYPFUNARG and TYPFUNARGBORROW are transparent, TYPFUNARGBORROWVAR

is the trickiest rule to explain. Let us imagine you are calling the function
foo(&(x,x)) where x is a non-borrowed, non-copyable value. The Rust
compiler will give you the error message of Figure 3.7.

This means that even though the argument of the function is borrowed, the
borrowing happens after the typechecking of the borrowed term using regular
rules and linearity. However, if you were to typecheck foo(&x, &x) Rust’s
typechecker would not complain because the borrowing directly affects x, and
not an object of which x is a part of.

This unintuitive feature of the type system becomes more regular when
looking at a desugared representation of the code like MIR. But in our type
system, we have to include several rules like TYPFUNARGBORROWVAR to reflect
it. Since we deal with the surface syntax of Rust, these special rules for
borrows are necessary. Although hacspec does not currently include structs,
we expect special rules to be added to deal with borrowing struct fields. Note
that the syntax of hacspec only allows array indexing to be done via x[ e ]

instead of the more general e1[ e2 ], with the objective of keeping rules simple,
since indexing implies borrowing in Rust.

The last rules for binary and unary operations are standard.
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Value typing Γ; ∆ ⊢ v ∶ µ

Expression typing Γ; ∆ ⊢ e ∶ τ ⇛ Γ′

Function argument typing Γ; ∆ ⊢ a ∼ τ ⇛ Γ′

TYPUNIT

Γ; ∆ ⊢ () ∶ unit

TYPBOOL

b ∈ {true, false}

Γ; ∆ ⊢ b ∶ bool

TYPINT

n ∈ N
Γ; ∆ ⊢ n ∶ int

TYPSEQVALUE

∀i ∈ [[1, n]], Γ; ∆ ⊢ vi ∶ µ

Γ; ∆ ⊢ [ v1, . . . , vn ] ∶ Seq< µ >

TYPARRAYVALUE

∀i ∈ [[1, n]], Γ; ∆ ⊢ vi ∶ µ

Γ; ∆ ⊢ [ v1, . . . , vn ] ∶ [ µ; n ]

TYPVALUEASEXPR

Γ; ∆ ⊢ v ∶ µ

Γ; ∆ ⊢ v ∶ µ⇛ Γ

TYPVARLINEAR

x ∶ τ , Γ; ∆ ⊢ x ∶ τ ⇛ Γ

TYPVARDUP

x ∶ &µ ∈ Γ

Γ; ∆ ⊢ x ∶ &µ⇛ Γ

TYPTUPLEELIM

Γ; ∆ ⊢ e ∶ ( µ1,..., µm )⇛ Γ′ n ∈ [[1,m]]

Γ; ∆ ⊢ e.n ∶ µn ⇛ Γ′

TYPTUPLEREFELIM

Γ; ∆ ⊢ e ∶ &( µ1,..., µm )⇛ Γ′ n ∈ [[1,m]]

Γ; ∆ ⊢ e.n ∶ &µn ⇛ Γ′

TYPTUPLEINTRO

∆ ⊢ Γ = Γ1 ○ ⋯ ○ Γn ∀i ∈ [[1, n]], Γi; ∆ ⊢ ei ∶ µi ⇛ Γ′
i ∆ ⊢ Γ′

= Γ′
1 ○ ⋯ ○ Γ′

n

Γ; ∆ ⊢ ( e1,..., en ) ∶ ( µ1,..., µn )⇛ Γ′

TYPARRAYACCESS

t→ [ µ; n ] ∈ ∆ ∆ ⊢ Γ = Γ1 ○ Γ2

Γ1; ∆ ⊢ x ∶ t⇛ Γ′
1 Γ2; ∆ ⊢ e ∶ int⇛ Γ′

2 ∆ ⊢ Γ′
= Γ′

1 ○ Γ′
2

Γ; ∆ ⊢ x[ e ] ∶ µ⇛ Γ′

TYPSEQACCESS

∆ ⊢ Γ = Γ1 ○ Γ2

Γ1; ∆ ⊢ x ∶ Seq< µ >⇛ Γ′
1 Γ2; ∆ ⊢ e ∶ int⇛ Γ′

2 ∆ ⊢ Γ′
= Γ′

1 ○ Γ′
2

Γ; ∆ ⊢ x[ e ] ∶ µ⇛ Γ′
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TYPSEQREFACCESS

∆ ⊢ Γ = Γ1 ○ Γ2

Γ1; ∆ ⊢ x ∶ &Seq< µ >⇛ Γ′
1 Γ2; ∆ ⊢ e ∶ int⇛ Γ′

2 ∆ ⊢ Γ′
= Γ′

1 ○ Γ′
2

Γ; ∆ ⊢ x[ e ] ∶ µ⇛ Γ′

TYPFUNCCALL

f ∶ ( µ1, . . . , µn ) → τ ∈ Γ

∆ ⊢ Γ = Γ1 ○ ⋯ ○ Γn ∀i ∈ [[1, n]], Γi; ∆ ⊢ ai ∼ τi ⇛ Γ′
i ∆ ⊢ Γ′

= Γ′
1 ○ ⋯ ○ Γ′

n

Γ; ∆ ⊢ f( a1,..., an ) ∶ µ⇛ Γ′

TYPFUNARG

Γ; ∆ ⊢ e ∶ µ⇛ Γ′

Γ; ∆ ⊢ e ∼ µ⇛ Γ′

TYPFUNARGBORROW

Γ; ∆ ⊢ e ∶ µ⇛ Γ′

Γ; ∆ ⊢ &e ∼ &µ⇛ Γ′

TYPFUNARGBORROWVAR

Γ; ∆ ⊢ x ∶ µ⇛ _

Γ; ∆ ⊢ &x ∼ &µ⇛ Γ

TYPBINOPINT

∆ ⊢ Γ = Γ1 ○ Γ2 Γ1; ∆ ⊢ e1 ∶ int⇛ Γ′
1

Γ2; ∆ ⊢ e2 ∶ int⇛ Γ′
2 ⊙ ∈ { + , - , * , / } ∆ ⊢ Γ′

= Γ′
1 ○ Γ′

2

Γ; ∆ ⊢ e1 ⊙ e2 ∶ int⇛ Γ′

TYPBINOPBOOL

∆ ⊢ Γ = Γ1 ○ Γ2 Γ1; ∆ ⊢ e1 ∶ bool⇛ Γ′
1

Γ2; ∆ ⊢ e2 ∶ bool⇛ Γ′
2 ⊙ ∈ { && , || } ∆ ⊢ Γ′

= Γ′
1 ○ Γ′

2

Γ; ∆ ⊢ e1 ⊙ e2 ∶ bool⇛ Γ′

TYPBINOPCOMP

∆ ⊢ Γ = Γ1 ○ Γ2 Γ1; ∆ ⊢ e1 ∶ int⇛ Γ′
1

Γ2; ∆ ⊢ e2 ∶ int⇛ Γ′
2 ⊙ ∈ { == , != , > , < } ∆ ⊢ Γ′

= Γ′
1 ○ Γ′

2

Γ; ∆ ⊢ e1 ⊙ e2 ∶ bool⇛ Γ′

TYPUNOPINT

Γ; ∆ ⊢ e ∶ int⇛ Γ′
⊘ ∈ { - }

Γ; ∆ ⊢ ⊘ e ∶ int⇛ Γ′

TYPUNOPBOOL

Γ; ∆ ⊢ e ∶ bool⇛ Γ′
⊘ ∈ {˜ }

Γ; ∆ ⊢ ⊘ e ∶ bool⇛ Γ′

Let’s now move to the statement typing. We’ve chosen statements here rather
than nested expressions because of the Rust behavior of the if statement and
the for loop. A list of statement corresponds to a block, introduced in Rust
by { ⋯ }. The single statement typing judgment produces a new Γ′ because
of variable definitions inside a block. Single statements also yield back a
type, because the last statement of the function is also the return value of the
function. All statement type except the last one should be unit.

The rule TYPLET introduces a new mutable local variable, that can later
be reassigned (TYPREASSIGN) in the program. In Rust, the mut indicates that
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the local variable is mutable, in its absence, variable reassignments are
prohibited. In this formalization, all variables are mutable for simplification.
The main use of mutable local variables is for variables that are mutated
inside a for loop. Indeed, because for loops are restricted to integer range
iteration, we cannot express what would normally be a fold without these
mutable variables. Because the mutable variables are local to a block, we do
not need to formalize a full-fledged heap for the operational semantics. Rather,
we will model them as a limited piece of state that gets passed around during
execution.

Next, TYPARRAYASSIGN and TYPSEQASSIGN define the overloading of the array
update syntax that works for both array! and Seq. Note that TYPIFTHENELSE

use the same context Γ for the two branches of the conditional.

Statement typing Γ; ∆ ⊢ s ∶ τ ⇛ Γ′

Block typing Γ; ∆ ⊢ b ∶ τ ⇛ Γ′

TYPLET

x ∉ Γ Γ; ∆ ⊢ e ∶ τ ⇛ Γ′

Γ; ∆ ⊢ let x : τ = e ∶ unit⇛ Γ′, x ∶ τ

TYPREASSIGN

x ∶ τ ∈ Γ Γ; ∆ ⊢ e ∶ τ ⇛ Γ′

Γ; ∆ ⊢ x = e ∶ unit⇛ Γ′, x ∶ τ

TYPARRAYASSIGN

x ∶ t ∈ Γ t→ [ µ; n ] ∈ ∆ ∆ ⊢ Γ = Γ1 ○ Γ2

x ∶ t ∈ Γ2 Γ1; ∆ ⊢ e1 ∶ int⇛ Γ′
1 Γ2; ∆ ⊢ e2 ∶ µ⇛ Γ′

2 ∆ ⊢ Γ′
= Γ′

1 ○ Γ′
2

Γ; ∆ ⊢ x[ e1 ] = e2 ∶ unit⇛ x ∶ t, Γ′

TYPSEQASSIGN

x ∶ Seq< µ > ∈ Γ ∆ ⊢ Γ = Γ1 ○ Γ2

Γ; ∆ ⊢ e1 ∶ int⇛ Γ′
1 Γ; ∆ ⊢ e2 ∶ µ⇛ Γ′

2 ∆ ⊢ Γ′
= Γ′

1 ○ Γ′
2

Γ; ∆ ⊢ x[ e1 ] = e2 ∶ unit⇛ x ∶ Seq< µ >, Γ′

TYPIFTHEN

Γ; ∆ ⊢ e : bool⇛ Γ′ Γ′; ∆ ⊢ b ∶ unit⇛ Γ′′

Γ; ∆ ⊢ if e then b ∶ unit⇛ Γ′′

TYPIFTHENELSE

Γ; ∆ ⊢ e : bool⇛ Γc
Γc; ∆ ⊢ b ∶ unit⇛ Γt Γc; ∆ ⊢ b′ ∶ unit⇛ Γf Γ′

= Γ ∩ Γf ∩ Γt

Γ; ∆ ⊢ if e then b else b′ ∶ unit⇛ Γ′
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TYPFORLOOP

Γ; ∆ ⊢ e1 ∶ int⇛ Γ1

Γ1; ∆ ⊢ e2 ∶ int⇛ Γ2 Γ2, x ∶ int; ∆ ⊢ b ∶ unit⇛ Γb Γ2 ⊂ Γb Γ′
= Γ ∩ Γb

Γ; ∆ ⊢ for x in e1 .. e2 b ∶ unit⇛ Γ′

TYPBLOCK

Γ; ∆ ⊢ s1 ∶ unit⇛ Γ′ Γ′; ∆ ⊢ { s2;...; sn } ∶ τ

Γ; ∆ ⊢ { s1;...; sn } ∶ τ

TYPBLOCKONE

Γ; ∆ ⊢ s1 ∶ τ ⇛ Γ′

Γ; ∆ ⊢ { s1 } ∶ τ

TYPBLOCKASSTATEMENT

Γ; ∆ ⊢ b ∶ τ

Γ; ∆ ⊢ b ∶ τ ⇛ Γ

TYPEXPTOSTMT

Γ; ∆ ⊢ e ∶ τ

Γ; ∆ ⊢ e ∶ τ ⇛ Γ

A hacspec program is a list of items i. Their typing judgment produces
both a new Γ and ∆, because an item introduces either a new function or
a new named type. Please note, as mentionned before, that the return type
of functions is restricted to µ, as returning a reference is forbidden. The
TYPFNDECL also means that recursion is forbidden in hacspec, since f is not
passed in its typing context.

Item typing Γ; ∆ ⊢ i⇛ Γ′; ∆′

TYPARRAYDECL

Γ; ∆ ⊢ array!( t, µ, n )⇛ Γ; ∆, t→ [ µ; n ]

TYPFNDECL

Γ, x1 ∶ τ1, . . . , xn ∶ τn; ∆ ⊢ b ∶ µ

Γ; ∆ ⊢ fn f( x1 : τ1,..., xn : τn ) -> µ b⇛ Γ, f ∶ ( τ1, . . . , τn ) → µ; ∆

Language extensions From this semantic base, we can add classical language
extensions following the same pattern. In particular, we added support for
algebraic data types (enums) whose reduction and typing rules are standatrd.

A second, more unusual extension is the the ? operator. Indeed, ? is
the idiomatic Rust way to perform error handling. Since the language does
not feature exceptions, errors flow through a Result<T,U> parametrized two-
cases enum where T is the type of the Ok case, and U is the type for the Err case.
Most Rust functions in idiomatic code then return a Result type, indicating
that they can fail. But then, composing such functions together requires
a lot of boilerplate match code, as shown by the bar_vanilla function of
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fn foo(x: bool) -> Result<u32, String> {
if x {

Ok(42u32)
} else {
Err("wrong argument!".to_string())

}
}

fn bar_question() -> Result<u64, String> {
let y = foo(true)?;
Ok(y as u64 + 1)

}

fn bar_vanilla() -> Result<u64, String> {
let y = match foo(true) {
Ok(x) => x,
Err(s) => return Err(s)

};
Ok(y as u64 + 1)

}

Figure 3.8: Example of using the ? operator in Rust. bar_vanilla is seman-
tically equivalent to bar_qestion.
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Figure 3.8. ? comes in as a syntactic sugar that perform the match, retrieving
the value of the Ok case and leaving the enclosing function early with the
value of the Err case when there is an error. Semantically, ? can be explained
completely with parametrized algebraic datatypes (of which Result is an
instance) and a semantics addition for early returns inside functions.

3.2.2. Compiler, Libraries and Domain-specific Integration

We implement the syntax and type system presented above in the hacspec
typechecker. Programmers need tooling that help them stay within the bounds
of the language, and it is precisely the role of the hacspec typechecker, which
kicks in after the regular Rust typechecker.

Compiler Architecture The hacspec typechecker is completely implemented
in Rust, integrated into the regular Rust ecosystem of cargo and the Rust
compiler. As such, programmers that already use Rust need not to install
complex dependencies to use hacspec. Concretely, the hacspec typechecker
uses the rustc_driver 2 crate, offering direct access to the Rust compiler API.
The Rust compiler is architected as a series of translations between several
intermediate representations:

AST
desugaring
ÐÐÐÐÐÐ→ HIR

to CFG
ÐÐÐ→MIR

to LLVM
ÐÐÐÐ→ LLVM IR

The borrow checking and typechecking are bound to be performed exclu-
sively on MIR, making it the richest and most interesting IR to target as a
verification toolchain input. However, MIR’s structure is quite far from the
original Rust AST. For instance, MIR is control-flow-graph-based (CFG) and
its control flow is destructured, making it hard for a deductive verification
toolchain to recover the structure needed to host loop invariants. For hacspec,
we chose to take the Rust AST as our input, for two reasons.

First, choosing the AST moves the formalization of hacspec closer to the
Rust source code, making it easier to understand. Second, it enables a
compilation to the target verification toolchains that preserves the overall look
of the code, easing the transition from Rust to the verified backends, and the
communication between a cryptography expert and a proof engineer. This

2https://doc.rust-lang.org/nightly/nightly-rustc/rustc_driver/
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error[hacspec]: type not allowed in hacspec
--> hacspec-poly1305/src/poly1305.rs:61:17
|

61 | pub fn poly(m: &[U8], key: KeyPoly) -> Tag {
| ^^^^

Figure 3.9: hacspec error message

choice makes hacspec quite different from the other Rust-based verification
tools discussed in Section 3.1.2.

Three-tier Typechecking The hacspec typechecker operates in three phases.
In the first phase, the program goes through its regular flow inside the Rust

compiler, up to regular Rust typechecking. Second, the Rust surface AST is
translated into a smaller AST, matching the formal syntax of hacspec. Third,
a typechecking phase following the formal typechecking rules of hacspec is
run on this restricted AST.

The second phase is the most helpful for the developers, as it will yield
useful error messages whenever the program does not fall withing the hacspec
subset of Rust. The error messages look like regular error messages emitted
by the Rust compiler, as shown in figure Figure 3.9.

Here, the error message points at the native Rust slice being used, which is
forbidden since native Rust slices are not part of hacspec (the corresponding
type is ByteSeq). These error messages are a key component of the security-
oriented aspect of hacspec, since they enforce the subset limits at compile-
time rather than at execution time. The goal of this tooling is to make it
impossible for the programmer to unknowingly break the abstraction of the
subset.

The third phase, corresponding to hacspec’s typechecking, should never
yield any error since the program has at this point already be type-checked
by Rust. If the program had a typing problem, it should have been caught by
the Rust typechecker first and never come to this third phase. However, the
hacspec typechecker still catches some restrictions of hacspec subset that
are not purely syntactic, and therefore pass the second phase.

Interacting With The Rust typechecker The first kind of errors caught by the
third phase concerns external function calls. Indeed, one should only call
in hacspec functions that are within the bounds of hacspec. But this rule
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suffer some exceptions, the main one being the primitive functions of the
hacspec library that operate on base types such as Seq, whose behavior is
part of the trusted computing base. Another issue is the import of functions
defined outside of the current crate. The import of the hacspec library is
recognized by the hacspec typechecker and given special treatment, but we
also allow importing regular crates. This allows hacspec programs to enjoy
some kind of modularity, as programs can be distributed over several crates.
The hacspec typechecker uses the Rust compiler’s “crate metadata reader” to
import function definitions from external crates, and scan their signatures. If
the signature of an imported function typechecks in hacspec, then its use
is valid and does not yield an error. This behavior, while practical, leaves
a gap opened for breaking the abstraction of the subset. Indeed, one could
import a function whose signature is in hacspec, but its body is not, thereby
increasing the trusted computing base. A solution to this problem would be
to define an allow-list of valid hacspec functions via Rust’s attribute system,
but technical constraints on the Rust compiler (custom attributes are erased
from crate metadata) makes this solution inoperable. A better system to close
this potential abstraction leak is left as future work.

The second kind of errors yielded by the third phase of hacspec program
processing relates to type inference. The hacspec typechecking procedure
does not support any kind of type inference, unlike regular Rust typechecking.
Nevertheless, idiomatic Rust programs often rely on type inference for things
like integer literal types, or methods operating on parametrized types. Hence,
hacspec forces programmers to explicitly annotate their integer literals with
their type, using regular Rust syntax like 1u32. This issue also arises with
methods. hacspec’s syntax does not include methods because a method call is
the same as calling a function whose first argument is the self. However, this
assumes that method resolution has already been performed. This is not the
case when taking the Rust AST as an input, which means that the hacspec
typechecker has to replicate the Rust method resolution algorithm. The
algorithm is very simple: it typechecks the first self argument, then looks into
a map from types to functions if the type contains the correct function being
called. This behavior is more complicated with parametric types such as Seq,
introducing a nested map for the type parameter, but keeps the same principle.
Hence, and because of the lack of type inference, the programmer has to
explicitly annotate the type parameter of methods concerning parametric
types, using regular Rust syntax like Seq::<U8>::new(16).

The hacspec language alone is not sufficient to write meaningful programs.
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Indeed, cryptographic and security-oriented programs manipulate a wide
range of values that need to be represented in hacspec. To that purpose,
we provide several Rust standalone libraries that implement security-related
abstractions. Although these libraries are tightly integrated in hacspec, they
can be used individually in regular Rust applications.

Secret Integers Timing side-channels are some of the most important threats
to cryptographic software, with many CVEs for popular libraries appearing
every year. To mitigate these attacks, cryptographic code is usually written to
be secret independent: the code never branches on a secret value and it never
uses a secret index to access an array. This discipline is sometimes called
constant time coding and many verification tools try to enforce these rules at
compile time or in the generated assembly [46], [47].

We follow the approach of HACL⋆ [12] to enforce secret indendence at the
source-code level using the standard Rust typechecker. We build a library
of secret machine integers that contains wrapped versions of all machine
integer types, signed and unsigned, supported by Rust. These wrappers
define a new type U8, U32,... corresponding to each integer type u8, u32,...
in Rust. To define our secret integer types, we make use of Rust’s struct
declaration semantics and nominal typing, which differs from a simple type
alias introduced with type.

For each integer type, the library defines only the operations that are known
to be constant-time, i.e. operations that are likely to be compiled to constant-
time instructions in most assembly architectures. Hence, secret integers
support addition, subtraction, multiplication (but not division), shifting and
rotation (for public shift values), bitwise operators, conversions to and from
big- and little-endian bytearrays, and constant-time masked comparison.

Secret integers can be converted to and from regular Rust integers, but only
by calling an explicit operation. The library provides the functions classify

and declassify, to make visible in the code the points where there is an
information flow between public and secret. Hence, a Rust program that
uses secret integers but never calls declassify is guaranteed to be secret
independent at the source-code level. We have carefully curated the integer
operations to ensure so that the Rust compiler should preserve this guarantee
down to assembly, but this is not a formal guarantee, and the generated
assembly should still be verified using other tools. However, our methodology
provides early feedback to the developer and allows them to eliminate an
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entire class of sofware side-channels.
Secret integers are extensively used in hacspec programs to check that our

code does not inadvertently leak secrets. However, these libraries can also be
used outside hacspec to add protections to any Rust program. The developer
simply replaces the types all potentially secret values (keys, messages, inter-
nal cryptographic state) from u8,u32,... to U8,U32,... and uses the Rust
typechecker to point out typing failures that may indicate timing leaks. The
developer can then selectively add declassify in cases that they carefully au-
dit and deem safe. To the best of our knowledge, this is the first static analysis
technique that can analyze Rust cryptographic code for secret independence.

Fixed-length Arrays Formal specifications of software components often need
to use arrays and sequences, but for clarity of specification and ease of
translation to purely functional specifications in languages like Coq and F⋆,
we believe that hacspec programs should only use arrays in simple ways.
Any sophisticated use of mutable or extensible arrays can quickly make a
specification muddled and bug-prone and its invariants harder to understand.
Consequently, in hacspec, we only allow fixed-length arrays that cannot be
extended (unlike the variable-size Vec type provided by Rust).

The hacspec library includes two kinds of fixed-length arrays. The go-to
type is Seq, which models a fixed-length sequence of any type. Seq supports a
large number of operations such as indexing, slicing and chunking. The Rust
typechecker ensures that the contents of the Seq have the correct type, and
C-like array pointer casting is forbidden. This forces the user to properly cast
the contents of the array rather than casting the array pointer itself, which
can be a source of bugs.

However, Seq has a blind spot triggered by a lot of usual cryptographic
specifications bugs: array bounds checking. Seq, like Vec, will trigger a
dynamic error if one tries to access an index outside its bounds. This Rust
dynamic error is better than the C undefined behavior (usually resulting in
a segfault), but is not enough for our security-oriented goals. A full proof
that array accesses are always within bounds typically requires the use of a
fully-fledged proof assistant, as we’ll see in Section 3.3.1. But the hacspec
libraries offers a mechanism to bake into Rust’s typechecking part of this
array bound proof.

This mechanism is offered by the array! macro. array!(State, U32, 16)

is the declaration of a named Rust type that will correspond to an array of
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16 secret 32-bit (secret) integers. The length of 16 is baked into Rust’s type-
system via the underlying use of the [U32;16] Rust native array type. Using
such a native known-length array type compared to a regular Seq has multiple
advantages.

First, the array!(State, U32, 16) macro call defines all the methods of
the State type on-the-spot, and uses its length to provide debug assertions
and dynamic error messages that help the user with the extra information
that State’s length should always be 16, whereas a Seq can have any length.
Moreover, the State constructor expects a literal Rust array of 16 integers,
whose length can be directly checked by Rust’s typechecker.

Second, the use of array!(State, U32, 16) acts as a length hint to the
verification backends of hacspec. Known-length arrays act as control points
in the proof that help inference of array lengths during the array bounds
proof.

While the two first advantages help increase the correctness of the hacspec
program, they often come as a burden to programmers which have to annotate
their program with explicit casts between Seq and array!-declared types.
However, a third advantage of the underlying native known-length array type
compensates the annoyance. Indeed, Seq, as Vec, does not implement the
Copy trait and therefore has to be explicitly .clone() every time it is used
multiple times without borrowing. As mutable borrowing is forbidden in
hacspec, this would lead to a high-number of .clone() calls for Seq values
mutated and used in the programs. But since array! uses Rust’s native
known-length array that implement Copy, their manipulation does not require
any explicit .clone() call. This feature is especially helpful for cryptographic
code, which usually manipulates small-sized chunks (represented using
array!) coming from a few big messages (represented using Seq).

Modular Natural Integers Many cryptographic algorithms rely on mathemati-
cal constructs like finite fields, groups, rings, and elliptic curves. Our goal
is to provide libraries for all these constructions in hacspec, so that the
programmer can specify cryptographic components using high-level concepts,
without worrying about how to implement them.

For example, one of the most common needs for cryptographic code is
modular arithmetic, that is the field of natural numbers between 0 and n with
all arithmetic operations performed modulo n. For example, by setting n to a
power of 2, we can build large integer types like u256; by setting it to a prime,

136



3.2. The hacspec Embedded Language

public_nat_mod!(
type_name: FieldElement,
type_of_canvas: FieldCanvas,
bit_size_of_field: 131,
modulo_value:

"03fffffffffffffffffffffffffffffffb"
);

Figure 3.10: Declaration of a (public) modular natural number in hacspec

we obtain a prime field; by choosing a product of primes, we get an RSA field
etc.

We provide a dedicated library for arbitrary-precision modular natural
integers, that can be manipulated by Rust programs just like machine integer
values, without worrying about any allocation or deallocation. Figure 3.10
shows what a finite field declaration looks like, taken from the Poly1305
specification. The public_nat_mod! macro call defines a fresh Rust type,
FieldElement, along with multiple methods corresponding to operations on
these natural integers. The two next arguments of the macro call concern the
underlying representation of the natural integer.

Our implementation of modular arithmetic relies on Rust’s BigInt crate3.
But BigInt does not implement the Copy trait and is therefore cumbersome
to use, requiring the insertion of numerous .clone() calls. To bypass this
limitation, hacspec’s modular integers use a concrete representation as a
big-endian, fixed-length array of bytes. The length of this array is determined
using the bit_size_of_field argument of the macro call. The methods of
FieldElement constantly switch back and forth between the Copyable array
representation and its BigInt equivalent to get the computations right.

The modulo_value argument contains the value for the modulus n as a hex
string because the value can be arbitrarily large and often cannot fit inside
a u128 literal. The type_of_canvas: FieldCanvas argument is required
merely because of Rust’s macro system fundamental limitation of forcing
the user to explicitly provide the identifier for all the types declared by the
macro. Indeed, the macro defines two types: FieldCanvas is the type for the
underlying array-of-bytes representation of the bounded natural integers, that
enjoys the Copy trait. FieldElement is a wrapper around FieldCanvas that

3https://crates.io/crates/bigint

137

https://crates.io/crates/bigint


3. hacspec: High-Assurance Cryptographic Specifications

takes the modulo value into account for all its operations.
hacspec’s natural modular integers also come in two versions, public and

secret. The secret version can only be converted to arrays of secret integers,
ensuring the continuity of information flow checking across machine and
natural integers. However, the underlying modular arithmetic arithmetic
operations themselves are not constant-time, so this inter-conversion serves
primarily to document information flow, not to enforce secret independence.

The seamless interoperability provided by hacspec between machine in-
tegers and modular natural integers allows programmers to mix in differ-
ent styles of specifications, ranging from high-level math-like to low-level
implementation-like code. hacspec allows programmers to write and test
code at both levels and bridge the gap between them, by allowing them to
interoperate, and also though formal verification, as we’ll see in Section 3.3.1.

3.3. hacspec as a Proof Frontend

hacspec is a security-oriented domain-specific language embedded in Rust,
along with a set of useful libraries for cryptographic specifications. However, as
strong as Rust type system is, it is not sufficient to catch common errors like
array indexing problems at compile time. To increase the level of assurance
on the correctness of specifications written in hacspec, we implement one
backends from hacspec to state-of-the art verification frameworks: F⋆ [9]
(Section 3.3.1). By using this backend, that could easily be extended to
other frameworks like Easycrypt [10] and Coq [11], the hacspec programmer
can further debug specifications, find non-trivial errors which may have
escaped manual audits, and formally connect the specification to an optimized
verified implementation We demonstrate this approach on a library of classic
cryptographic primitives (Section 3.3.2).

3.3.1. Translating hacspec to F⋆

The functional semantics of the hacspec language makes it easy to compile it
to the F⋆ language. To illustrate this claim, Figure 3.11 and Figure 3.12 show
what the same function, the main loop of the Poly1305 specification, looks
like both in hacspec and after its translation to F⋆.

The translation is very regular, as each hacspec assignment is translated
to an F⋆ let-binding. Variable names are suffixed with indexes coming from a
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1 pub fn poly(m: &ByteSeq, key: KeyPoly) -> Tag {
2 let r = le_bytes_to_num(&key.slice(0, BLOCKSIZE));
3 let r = clamp(r);
4 let s = le_bytes_to_num(
5 &key.slice(BLOCKSIZE, BLOCKSIZE));
6 let s = FieldElement::from_secret_literal(s);
7 let mut a = FieldElement::from_literal(0u128);
8 for i in 0..m.num_chunks(BLOCKSIZE) {
9 let (len, block) =

10 m.get_chunk(BLOCKSIZE, i);
11 let block_uint = le_bytes_to_num(&block);
12 let n = encode(block_uint, len);
13 a = a + n;
14 a = r * a;
15 }
16 poly_finish(a, s)
17 }

Figure 3.11: Poly1305 main loop in hacspec

name resolution pass happening in the hacspec typechecker, to ensure that
the scoping semantics are preserved by the compilation. Apart from syntax
changes, the bulk of this translation relates to the functional purification
of the mutable variables involved in loop and conditional statements. This
approach is similar to the earlier work of Electrolysis [35], although much
simpler because we do not deal with mutable references.

However, hacspec features mutable plain variables which can be reassigned
throughout the program. These reassignments are always translated into
functional let-bindings, but since statements are translated into expressions
during the compilation to F⋆, the assignment side-effects have to be hoisted up-
wards in the let-binding corresponding to conditional or loop statements. For
example, see the translation of the loop statement lines 8 to 15 of Figure 3.11,
to the loop expression lines 15 to 27 of Figure 3.12.

While conditional and loop statements constitute the main structural
changes of the translation, most of the compiler implementation work goes
into connecting the libraries handling arithmetic and sequences in F⋆. Fortu-
nately, this task is simplified by having access to the rich typing environment
provided by the hacspec typechecker, which allows us to insert annotations
and hints into the generated F⋆, significantly easing the out-of-the box type-
checking of the translated programs. For instance, FieldElement::from_s ⌋
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1 let poly (m_15: byte_seq) (key_16: key_poly) : tag =
2 let r_17 = le_bytes_to_num
3 (array_slice (key_16) (usize 0) (blocksize))
4 in
5 let r_18 = clamp (r_17) in
6 let s_19 = le_bytes_to_num
7 (array_slice (key_16) (blocksize) (blocksize))
8 in
9 let s_20 = nat_from_secret_literal

10 (0x03fffffffffffffffffffffffffffffffb) (s_19)
11 in
12 let a_21 = nat_from_literal
13 (0x03fffffffffffffffffffffffffffffffb) (pub_u128 0x0)
14 in
15 let (a_21) = foldi
16 (usize 0) (seq_num_chunks (m_15) (blocksize))
17 (fun i_22 (a_21) ->
18 let (len_23, block_24) =
19 seq_get_chunk (m_15) (blocksize) (i_22)
20 in
21 let block_uint_25 = le_bytes_to_num (block_24) in
22 let n_26 = encode (block_uint_25) (len_23) in
23 let a_21 = (a_21) +% (n_26) in
24 let a_21 = (r_18) *% (a_21) in
25 (a_21))
26 (a_21)
27 in
28 poly_finish (a_21) (s_20)

Figure 3.12: Poly1305 main loop in F⋆, compiled from Figure 3.11
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ecret_literal(s) (line 6 of Figure 3.11) is translated to the F⋆ expression
nat_from_secret_literal (0x03ff[...]ffb) (s_19) (lines 9-10 of Fig-
ure 3.12). The modulo value of the FieldElement integer type has been
automatically added during the translation, as a hint to F⋆ typechecking.

Overall, these annotations added automatically during the translation en-
able smooth typechecking and verification inside F⋆. The only manual proof
annotations still needed in F⋆ concern logical pre-conditions and loop invari-
ants that cannot be expressed using the Rust type system.

The Benefits Of Using Theorem Provers Once embedded in F⋆, various prop-
erties out of reach of the Rust type system can be proven correct about the
specification. The most obvious of these properties is the correctness of array
indexing.

RFC 8439 [44] is the second version of the ChaCha20Poly1305 RFC, written
after a number of errata were reported on the previous version. However, the
second version still contains a specification flaw that illustrates the need for
debugging specifications with proof assistants. RFC 8439 defines the core
loop in Poly1305 in a way that overruns the message if its length is not a
multiple of 16. Figure 3.13 shows the RFC8439 pseudocode, as well as its
corresponding snippets in hacspec and F⋆.

In our hacspec code, the get_chunk function always provides the correct
chunk length, preventing the bug. However, if we tried to precisely mimic the
RFC pseudocode, we would have introduced the bug, which would not have
been caught by the Rust or hacspec typecheckers. The issue could have been
uncovered by careful testing, but we note that the standard test vectors did
not prevent the introduction of this bug in the RFC.

We claim that using F⋆ to typecheck specifications can help optimize the
specification development workflow by catching this kind of bugs early. The
bug of RFC 8439 is indeed detected by F⋆ with a helpful error message.
hacspec offers an integrated experience for cryptographic specification devel-
opment: a cryptographer can write a Rust-embdded hacspec program that
looks like pseudocode, and do a first round of debugging with testing since
hacspec programs are executable. Then, the cryptographer can translate the
specification to F⋆ where a proof engineer can prove array-indexing and other
properties correct.

Once the specification has been fixed and proven correct, an optimized
implementation is required for the cryptographic primitive or protocol to be
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1 for i=1 upto ceil(msg length in bytes / 16)
2 n = le_bytes_to_num(
3 msg[((i-1)*16)..(i*16)] | [0x01])
4 a += n
5 a = (r * a) % p
6 end

11 let block_uint = le_bytes_to_num(
12 &m.slice(BLOCKSIZE * i, BLOCKSIZE));

21 let block_uint_1876 = le_bytes_to_num (
22 seq_slice (m_1868)
23 ((blocksize) * (i_1875))
24 (blocksize))
25 in

(Error 19) Subtyping check failed;
expected type len: uint_size{

blocksize * i_22 + len <= Lib.Seq.length m_15
};
got type uint_size; The SMT solver could not prove
the query, try to spell your proof in more detail
or increase fuel/ifuel

Figure 3.13: RFC 8439: first, the main Poly1305 loop pseudocode containing
the bug. Then in second and third, corresponding buggy snippets
in hacspec and F⋆ (line numbers of Figure 3.11 and Figure 3.12).
Fourth: F⋆ error message catching the bug
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embedded in a real-world application. There is often a wide gap between the
specification and the optimized code, and this spot is where formal methods
have proven their usefulness in the past. Proof assistants like F⋆ enable
proving the functional equivalence between a specification and an optimized
implementation. hacspec fits nicely into this process, since it directly provides
the specification in the language of the proof assistant (here F⋆), based on
hacspec code that can be audited by cryptographers.

A Platform To Connect Theorem Provers While proof assistants are powerful,
they are often specialized. In the cryptography space, Fiat-crypto uses Coq
and generate C implementations for elliptic curves [48], and Jasmin covers
more kinds of primitives using EasyCrypt [10] but only targets assembly [15].
HACL⋆ [12] and Vale [14], both using the F⋆ proof assistant, are currently the
only instance of proven-correct interoperability between C and assembly [49].

In this context, hacspec is a way to break the integration silo imposed
by proof assistant frameworks which typically cannot interoperate. The
simplicity of the hacspec language semantics, close to a first-order functional
language, makes it easy to translate in the specification languages of most
proof assistants. A Coq backend for hacspec was thus written by Mikkel Milo
from Aarhus University4, and we wrote a proof of concept for an Easycrypt
backend. The bulk of the work for creating a new backend comes from the port
of the hacspec Rust libraries into the target language, since some of them are
part of the trusted computing base and are not translated by the compiler. By
centralizing the source of truth for cryptographic specifications inside multiple
verified developments, hacspec will raise the level of assurance of all of them.
Of course, the weakness of a centralized system is the single point of failure,
and here a specification bug in the hacspec source will be reflected in all the
verified developments that depend on it. This is why hacspec source code
reviewing and debugging by domain experts (cryptographers) is crucial.

3.3.2. Evaluation on real-world software

To evaluate the hacspec language, libraries, typechecker and compiler, we
build a library of popular cryptographic algorithms in hacspec, presented
in Figure 3.14. For each primitive, we wrote a hacspec specification that
typechecks in Rust and with the hacspec typechecker. Then, we translated

4https://github.com/hacspec/hacspec/pull/123
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Primitive / Lines of code hacspec HACL⋆

ChaCha20 121 191
Poly1305 107 77
Chacha20Poly1305 52 89
NTRU-Prime 95 –
SHA256 148 219*

SHA3 173 227
P256 172 246
Curve25519 107 124
GF128 74 94
AES 366 425
AES128-GCM 130 –
ECDSA-P256-SHA256 52 60
HMAC 54 42
BLS12-381 540 –
Gimli 256 –
HKDF 56 –

Figure 3.14: Cryptographic Primitives written in hacspec, lines of code count.
The HACL⋆ column is included as reference.
* The HACL⋆ SHA2 specification covers all versions of SHA2, not
just 256.

some of these primitives to F⋆ and typechecked the result with the proof
assistant.

Some annotations (maximum 2-3 per primitive) are needed to typecheck the
specifications in the proof assistants. These annotations concern bounds for
array indexes passed as function parameters, as well as some loop invariants.
In the future, we may extend the Rust-embedded syntax of hacspec to include
design-by-contracts annotations. This functionality is already provided by
crates like contracts5, where the annotations are incorporated into Rust
debug_assert! assertions.

These hacspec specifications have been extensively tested and can be used
as prototype cryptographic implementations when building and debuging
larger Rust applications. Further, they form the basis for our verification
workflow.

5https://crates.io/crates/contracts
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3.3. hacspec as a Proof Frontend

Going Beyond Cryptography While cryptography is the main target of the
hacspec domain-specific language, early results suggest that it could target
other domains that rely on the same language feature. Critical sections of
kernel code often fit inside the same language subset as cryptographic code.
While kernel code is generally executed inside a parallel computing environ-
ment, which is outside the current scope of hacspec, some kernel features
have to run sequentially. This sequential setting is true for two case studies
from the RIOT [50] open-source: riot-bootloader and riot-runqueue.

First, riot-bootloader is the hacspec reimplementation of RIOT’s first
interactions with the machine on which it is booted. The bootloader’s mission
is to scan the memory of the boot partition, looking for headers whose signa-
ture matches the parameters expected by RIOT. The corresponding hacspec
program takes as input a list of available headers parsed from the memory
contents, and determines whether each header is valid (in the sense that it
correctly points to a bootable RIOT implementation). The validation process
involves a cryptographic-like operation that computes the Fletcher check-
sum [51] of the header. The whole process can be specified in 110 lines of
self-contained hacspec code.

Second, riot-runqueue concern a critical component of the operating
system: the scheduler, which allocates dynamically which thread to run on
the available processing cores. This allocation is decided based on threads’
priorities, and how long they have been waiting to run. The implementation
of the schedular has to enjoy both low-level properties (memory safety and
hard performance constraints) and high-level properties (fairness, absence of
deadlocks). This makes the scheduler code a good target for verification. We
implemented the core data structure of the RIOT scheduler, a bounded priority
runqueue, in hacspec. This case study amounts to 160 lines of code, and fully
models the data structure and its operations, based on bitwise manipulation
of the contents of two arrays storing the threads and the priority queues.
Scheduler verification has been a research area for a long time; notable, the
Bossa framework [52] introduces a domain-specific language for scheduling
algorithm specifications. Future work should investigate whether hacspec
is on par with prior scheduling literature, and examine what contribution it
could bring to this ecosystem.

145



3. hacspec: High-Assurance Cryptographic Specifications

Conclusion

In this chapter, our contribution to program verification in the traditional
acceptation of the term is not direct. The hacspec domain-specific language
does not have a novel semantics, and its compilation toolchain does not feature
novel techniques. However, hacspec completely illustrates the methodology
proposed in this dissertation for pushing the frontier of program verification.
First, we carve out a formal, executable subset of Rust, a language that
cryptographers use to implement their latest creations. Then, we build a
proof-oriented toolchain around this domain-specific language, whose goal
is twofold. First, fix the specification problem existing in many verified
cryptographic developments. Second, provide a gateway for domain-specific
experts using Rust to push their developments to various proof assistants,
therefore building a bridge with program verification experts.

A lot of work remains to be done on the hacspec language. Adding more
backends and useful language extensions will improve the languages’ ex-
pressivity, but that should not bar the way to a future certification of the
compilation steps of this toolchain. Particularly, the question whether hac-
spec is a faithful susbset of Rust should be proved within the Rustbelt [43]
framework; translations to proof asssistants should also be formalized and
mechanically certified (at least partially). However, the danger of discovering
toolchain bugs can be mitigated by the simplicity and standardness of the
language features, and a compiler design that restricts ambiguous programs
by default.

Overall, hacspec’s philosophy can be viewed as complementary to the
traditional philosophy of program verification frameworks. In recent pro-
gram verification works like this verified extraction framework for SQL-like
queriers [53], the domain-specific part of the study is merely anecdotal, and
serves as a playground to showcase the strenghts of a general-purpose frame-
work that pushes the frontier of program verification techniques. On the other
hand, this dissertation argues for a methodology that starts from the domain,
and then looks how the domain could be embedded into existing program
verification frameworks. We hope that combining the two approaches will
yield a more complete chain of trust.

That problem being fixed, remains the issue of performing functional cor-
rectness and security proofs for cryptographic programs. More generally, the
current program verification frontier is located on programs that have com-
plex memory manipulation patterns. For instance, the protocol code found
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in LibSignal⋆ (Chapter 2) exercises the limits of the Low⋆ domain-specific lan-
guage, especially concerning its way to reason about memory. The verification
of the protocol code required painful proof organization and fine-tuning of the
Z3 encoding parameters of F⋆ (see Section 2.1.1). It became apparent that
a new approach was necessary for verifying programs that manipulated the
memory in more complex ways than buffers of data. The next chapter will
focus on these issues that concern cryptographic programs but not only, thus
widening our application range.
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Abstract

Outside of the closed garden of cryptographic primitives, real-world software usually
manipulates the memory in intricate ways that involve aliasing and complex pointer
graphs. Verifying such programs has long remained a daunting task, until Reynolds
came up with separation logic in 2002 [1].

However, separation logic imposes a strict format on Hoare-style specifications, and
has traditionally limited automation through a tradeoff with expressiveness. Building
on the concepts of the recent Iris [2] framework, we propose Steel, a new embedded
domain-specific language for stateful program verification in F⋆, that mixes tactics
and SMT for automating proofs about memory and everything else, while retaining
the full expressive power of separation logic.
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Ah! que les charpentes
d’acier se multiplient donc,
dressent donc des édifices
utiles des villes heureuses,
des ponts pour franchir les
fleuves et les vallées et que
des rails jaillissent toujours
des laminoirs, allongent sans
fin les voies ferrées,
abolissent les frontières,
rapprochent les peuples,
conquièrent le monde entier
à la civilisation fraternelle de
demain !

(Émile Zola, Travail, 1901)

— It’s too brittle when pure,
Spencer said, but if we alloy
it just a bit we’ll have an
extremely light and strong
metal.
— Martian steel, Nadia said.
— Better than that.

(Kim Stanley Robinson,
Red Mars, 1992)



4.1. From Implicit Dynamic Frames to Separation Logic

void reverse_message(char* msg, int len) {
char* beginning = msg;
char* end = msg + len - 1;
// beginning and end both alias msg,
// pointing at different locations
for (int i = 0; i < len / 2; i++) {
// Swapping beginning and end contents
char tmp = *beginning;

*beginning = *end;

*end = tmp;
// Moving to the middle
beginning += 1;
end -= 1;

}
};

Figure 4.1: Illustrations of pointers-as-data and aliasing in C

4.1. From Implicit Dynamic Frames to Separation Logic

With LibSignal⋆, Chapter 2 explains how the methods for verifying crypto-
graphic primitives can be scaled up to verify cryptographic protocols. However,
the Low⋆ domain-specific language suffers from structural weaknesses that
place a limit to how complex memory manipulation can be. In this section,
we describe these weaknesses, and present a state of the art related program
verification framework that solves some of these weaknesses.

4.1.1. The Difficulties of Stateful Program Verification

A major source of difficulty for program verification is the presence of memory
manipulation in the source program. There are many kinds of memory
manipulation, and some can be formalized with lightweight constructs, such
as a state monad with a limited number of memory locations that only store
data. However, most low-level real-world software extensively uses a memory
manipulation style made popular by the C programming language, featuring
pointers-as-data and aliasing.

Figure 4.1 presents an example of C program that is both very idiomatic
and very hard to verify. The reverse_message function simply reverses the
order of the bytes stored in the array msg of length len. The implementation
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let rec reverse_message (msg: Char.t list) : Char.t list =
match msg with
| [] -> []
| hd::tl -> (reverse_message tl)@[hd]

Figure 4.2: Functional specification of Figure 4.1 in OCaml

uses two pointers that alias msg and range over its contents starting from
both end and progressing to the middle, while swapping contents on the way.

Actually, the behavior of this function can be specified by the shorter
functional-style program of Figure 4.2. But this style is not at all idiomatic
in C, simply because it would lead to very poor performance at execution.
This is a classic example of the tension between correctness and performance
for low-level, real-world programs. Program verification is all about relieving
that tension by bridging the gap between Figure 4.1 and Figure 4.2 through a
functional correctness proof.

But the contents of this proof for the reverse_message involves modeling
the aliasing of beginning and end, and their evolution inside the loop. There
are several ways to model pointers and their aliasing. Here, Low⋆ [3] (presented
in Section 2.1.2) provides a good example of a modeling based on implicit
dynamic frames [4].

Low⋆ features a structured memory model à la Clight [5] with memory
references indexed by natural numbers. Each of these memory references
can hold any type of data, whose size can be arbitrary. Memory references
are first-class values in Low⋆ programs, and can be passed around functions.
However, references are limited to types in universe zero. The universes
mentioned here refer to the classic notion of type universes in constructive
type theory [6], [7], which has a strict equivalent in F⋆’s dependent type theory.

The crux of the modeling of memory manipulation is how it handles mod-
ularity, and proof composition. By default, every function call could modify
the contents of every memory location. But this overly conservative assump-
tion breaks any attempt at splitting the program into modular computation
units such as functions. Hence, the specification of each function should
state which part of the memory it modifies, the rest being left untouched.
This observation is the essence of the frame rule in Reynold’s separation
logic [1]. But Low⋆ uses implicit dynamic frames, which is more amenable
to encoding into first-order logic predicates (for automation). Hence, in Low⋆,
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the frame rule is replaced by a library of lemmas governing the behavior of
the modifies: location -> mem -> mem -> prop predicate, which can be
read as follows: “modifies l h0 h1 if and only if the only changes to memory
contents between memories h0 and h1 happen in the references contained in
location l”. A memory location l is simply a set of memory references, that can
be built be through successive unions of references. Another crucial predicate
interacting with modifies is disjoint: location -> location -> prop,
that indicates a separation between two memory locations. If disjoint l l'

and modifies l h0 h1, then every memory reference in l' is left untouched
between h0 and h1.

In this framework, the critical lemma replacing the frame rule is:

val modifies_reference_elim (#a: Type) (r: reference a)

(l: location) (h h': mem)

: Lemma
(requires (

disjoint (loc_of_reference r) l /\ modifies l h h'))

(ensures (reference_preserved r h h'))

Then, the heart of memory proofs in Low⋆ is all about applying inclusion,
associativity and commutativity lemmas to locations inside disjoint and
modifies predicates such that the proof context contains the right instances
to call modifies_reference_elim and obtain the desired outcome, proving
that a specific memory reference has been left untouched by a function call.
Unlike separation logic which promotes a style where pointers are separated
by default, Low⋆ considers pointers aliased by default, and it is up to the user
to separate them.

For instance, consider the following function:

let function_to_verify (a b c: reference U32.t) =

(* a <> c /\ b <> c *)

let h0 = get () in
step_1 a; (* modifies (loc_of_reference a) h0 h1 *)

let h1 = get () in
step_2 b; (* modifies (loc_of_reference b) h1 h2 *)

let h2 = get () in
assert(reference_preserved c h0 h2)

The proof goal reference_preserved c h0 h2 can only be solved by a
combination of lemmas about disjoint and modifies. Figure 4.3 shows all
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let function_to_verify (a b c: reference U32.t) =
(* a <> c /\ b <> c *)
let h0 = get () in
step_1 a; (* modifies (loc_of_reference a) h0 h1 *)
let h1 = get () in
step_2 b; (* modifies (loc_of_reference b) h1 h2 *)
let h2 = get () in
modifies_trans (loc_of_reference a) h0 h1

(loc_of_reference b) h2;
(* modifies

(loc_union (loc_of_reference a) (loc_of_reference b))
h0 h2 *)

loc_disjoint_adresses c a;
(* disjoint (loc_of_reference c) (loc_of_reference a) *)
loc_disjoint_adresses c b;
(* disjoint (loc_of_reference c) (loc_of_reference b) *)
loc_disjoint_union_r c a b;
(* disjoint

(loc_of_reference c)
(loc_union (loc_of_reference a) (loc_of_reference b)) *)

modifies_reference_elim c
(loc_union (loc_of_reference a) (loc_of_reference b))
h0 h2;

assert(reference_preserved c h0 h2)

Figure 4.3: Full F⋆ proof for a reference contents preservation result.

the lemma steps that are necessary to reach the goal, there are 5 of them
needed for this simple result. Imposing such a proof burden on Low⋆ proof
engineers is unthinkable more real-world programs, so F⋆ provides a form of
proof automation.

One method for automating these tedious proof would be to implement a
tactic to pattern match on usual shapes of memory proofs and call the correct
lemmas. But Low⋆ was designed before a tactics system [8] was added to
F⋆, hence the authors of the domain-specific language defaulted to the only
system of proof automation available in F⋆: SMT patterns.

SMT patterns are lemma annotations representing a syntactic pattern. Here
is what the SMT pattern looks like for our version of the frame rule:

val modifies_reference_elim (#a: Type) (r: reference a)

160



4.1. From Implicit Dynamic Frames to Separation Logic

(l: location) (h h': mem)

: Lemma
(requires (

disjoint (loc_of_reference r) l /\ modifies l h h'))

(ensures (reference_preserved r h h'))

[SMTPat (reference_preserved r h h');

SMTPat (modifies l h h')]

At SMT encoding time, F⋆ translates at all the SMT patterns present
in lemmas found in opened modules into e-matching directives of Z3 [9].
E-matching triggers when a program fragment matches the syntactic pat-
tern of an pattern, and instantiate the pattern with the corresponding ar-
guments, resulting in a call to the lemma behind the pattern. For in-
stance, for modifies_reference_elim, a call to the lemma will be trig-
gered every time expressions of the form reference_preserved r h h' and
modifies l h h' are found at the same time in the encoding.

Importantly, SMT pattern triggering is recursive: if an SMT pattern inserts
a lemma call that matches a pattern from another SMT pattern, this other
pattern is triggered too. Hence, one can build SMT pattern systems that
build whole proof trees ahead of time, based on syntactic structures of data
or programs. In the generated proof trees, not all the branches yield a valid
proofs, since the SMT patterns trigger regardless of whether the preconditions
of lemmas are satisfied. This is what happens within Low⋆; the lemma libraries
for disjoint and modifies contain a carefully crafted set of SMT patterns
whose goal is to silently build proof trees that will automatically solve the
most common kind of memory-related goals, using the SMT encoding of F⋆

and e-matching directives of Z3.
Alas, this convenient automation solution also comes with severe pitfalls

that limit its practicality. The root of the problem is precisely the recursiveness
of SMT pattern triggering that makes its strength. Indeed, the proof search
strategy induced by an SMT patterns systems is akin to a Datalog query,
where the SMT encoding fills the context with every possible branch of the
proof tree, leaving to Z3 the task of checking whether there is at least a path
in the tree that yields a correct proof, respecting all the preconditions of the
lemmas involved. But contrary to Datalog where it is easy to pattern match
on the desired result once the context is filled, Z3’s task becomes harder as
the size of the encoding generated by F⋆ grows.

For instance, the loc_union predicate in Low⋆ is associative and commu-
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tative, and the associated lemmas have SMT patterns that trigger for every
occurrence of loc_union. Hence, an expression as simple as loc_union

(loc_union a b) (loc_union c d) will trigger dozens of SMT patterns
that will generate all the possible associative-commutative rewritings of this
union expression. These rewritings are sometimes needed for a particular
application of the frame rule, but most of them are useless and pollute Z3’s
proof context, leading to a waste of the provers’ resources. There are other
documented patterns to avoid when relying on SMT for proofs in F⋆: a set of
patterns that trigger too often (other than the associate-commutative rewriting
we just mentioned), and non-linear arithmetic which is a known weak point
of SMT solvers [10].

This waste of resources is particularly visible when programming in Low⋆,
when the z3rlimit parameters (see Section 2.1.1) has to be set to very high
value, meaning that the proof of a single top-level function can take up to
several minutes for Z3 to complete. In Low⋆ programs, a z3rlimit of 100 or
above usually indicates a proof where the Z3 context explosion induced by the
SMT pattern system has reached a critical state. Those proofs are empirically
more prone to experience another of Z3’s corner cases pitfall: proof flakiness.
Indeed, the SMT solving heuristics of Z3 are non-deterministic and as such,
proving a theorem once with Z3 does not mean that Z3 will manage to prove
it again, even on the same machine and with the same condition. And the
harder the proof, the flakier Z3 will behave. Note that proof flakiness is not
limited to Low⋆ but is rather a general problem with F⋆ proofs that are not
carefully crafted to avoid SMT context explosion. Hence, Low⋆ programmers
are frequently forced to go back to proofs that once passed and try some
mitigation techniques to restore it.

The go-to mitigation technique is to add more details to the proof, by
asserting the key intermediate steps and explicitly calling the critical lemmas.
Nevertheless, this technique does not reduce the size of Z3’s proof context; it
merely give Z3 a more straightforward path through it. To reduce the proof
context, it is possible to configure a single SMT query to only include context
from a list of modules via the --using_facts_from option. SMT patterns
in modules outside the provided whitelist will not trigger, and this allows for
disabling a general proof infrastructure locally for a goal that is not related to
the usual proof structure of a module.

But sometimes, a given function is simply too big (in terms of proof context
generated) for Z3, and has to be split into smaller pieces. The process of
splitting a function into smaller pieces is quite painful, since it involves cutting

162



4.1. From Implicit Dynamic Frames to Separation Logic

the proof by writing manually the intermediate invariants and results as pre-
and post-conditions of the resulting pieces. And real-world programming in
Low⋆ involves a lot of splitting: in LibSignal⋆ (Section 2.3.2), each function
handled 5 or 6 different memory references, which led to the SMT pattern
triggering to flood Z3’s proof context with only one or two stateful calls per
body.

Overall, Low⋆’s memory-related lemma libraries and proof automation
techniques have been able to scale to real-world applications like HACL⋆,
LibSignal⋆ or EverParse [11]. However, these projects necessitated a lot of F⋆

expertise to craft proof contexts that didn’t explode, and the resulting proof
structure is not maintainable enough to scale to the next stage of applications.
This observation motivated the search for a replacement to Low⋆, that would
be built on the best practices of stateful program verification state of the art:
separation logic.

4.1.2. Separation Logic in the Program Verification Literature

Since the discovery of separation logic [1], [12] in 2001-2002, many program
verification frameworks have used it for their internal Hoare logic to specify
program states. The separating conjunction connective ⋆ is the staple of the
logic, which also introduces other specific connectives like the separating
implication (magic wand) −∗. Several program verification frameworks have
adopted separation logic in the next decades.

Viper [13] (already mentioned in Section 1.3.2) is based on an intermedi-
ate verification language that features a permission-based modeling closely
inspired by separation logic. The strength of Viper is the efficient encoding
of the verification conditions expressed in that intermediate language into
SMT or Boogie [14] queries; notably Viper has a special encoding of −∗ [15],
exposed through special inhale and exhale predicates in the intermediate
verification language.

VeriFast [16] is an older program verification framework whose input lan-
guage is a subset of C extended with contract annotations on functions,
as well as proof-related predicates. As its names states, VeriFast aims at
providing verification answers in real time. The typechecker has a custom
verifier implementation that handles automatically the solving of common
separation logic proof goals, and falls back to encoding obligations about
program data to an SMT solver. The reliance on a custom implementation for
separation-logic-related proof goals avoid the trap of Low⋆’s SMT encoding,
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and performs associative-commutative rewriting of separation logic terms
efficiently. Moreover, the speedy termination of the SMT calls is guaranteed by
a restriction on the rolling and unrolling of recursive predicates and inductive
data types. These rolling and unrolling must be specified manually in the
source program for the proofs to complete. In that regard, the SMT encoding
of VeriFast is less powerful than F⋆’s with its --fuel and --ifuel options –
but F⋆’s Z3 calls are not guaranteed to terminate quickly.

It is worth noting that some stateful program verification purposely avoid
separation logic, instead opting for imposing restrictions on pointer aliasing
that enable more amenable decision procedures for memory-related proofs.
This is the case of Why3 [17] and its pragmatic method of static aliasing [18].
But so far, the main applications of this framework have been limited to
classic data structures [19], [20].

The main innovation in program verification by separation logic in the last
decade has been the Iris [2] framework, embedded inside Coq. The notable dif-
ference with previous works is that Iris is a separation-logic-powered program
verification semantics that can be parametrized by any source programming
language semantics on which the verification is performed. To enable that
parametricity, the Iris authors meticulously carved out and combined the
minimal abstractions that were required to make concurrent separation logic
work. In their first paper [21], Jung et al. discover an “orthogonal basis for
concurrent reasoning” : partial commutative monoids and invariants.

Separation logic is not exclusive to computer memory, and can be applied
to any resource represented by a partial commutative monoid: a set governed
by a composition law that is associative, commutative, and has an absorbing
and a distinct unit element in the set. In the case of memory, elements of
the set are fragments of memory, and the composition law is the union of
those fragments. The unit element is the empty fragment of memory, and the
absorbant is a special undefined fragment. But the monoidal structure can
also apply to ghost state containing memory invariants about the program.

This monoidal structure allows reasoning over different threads that each
own a fragment of memory. But concurrent reasoning is all about shared
memory, and for that Iris introduces the notion of invariants. Invariants
encapsulate a separation logic term about a shared memory fragment, and
restrict its usage to atomic programs via strict open and close rules. The
combination of partial commutative monoids and invariants allow for a very
expressive resulting separation logic, parametrized over a programming lan-
guage semantics, that yields concurrent program verification frameworks.
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In their second paper, Jung et al. extend their original work to allow for
storing higher-order separation logic predicates inside ghost state. This
restricted form of self-referencing needed a significant theoretical work to
be proven sound, but enabled a critical leap in expressiveness needed for
real-world programs. For instance, the original version of Iris could not handle
programs that dynamically choose their communication channels between
main and worker threads. Finally, the theoretical foundations of Iris have
been rationalized and mechanically formalized in Coq in a third paper [22].

In parallel to these theoretical developments, Iris was successfully applied
to enable groundbreaking applications in concurrent program verification,
thanks to the Iris proof mode [23], which eased the proof engineering with
Iris thanks to custom syntax, tactics for the common cases and proof context
display. The first main real-world application of Iris has been the proof of
memory safety of critical unsafe parts of the Rust standard library [24]. Then,
applications of Iris have included a concurrent and crash-safe mail server
written in a subset of Go [25], a concurrent journaling system also written in
Go [26] a fixpoint solver for monotonic equations performing memoization [27],
a formalized weak memory semantics for multicore OCaml [28], and a multiple-
producer multiple-consumer concurrent queue in a weak memory setting [29].

While these first-class applications demonstrate the expressive power of Iris
on complex, critical, concurrent programs, its ability to scale up to programs
of several thousand lines of code (the middle of Figure 1.1 in Section 1.1.1) is
still unknown. Even with a good library of tactics, we believe that some form
of automation using SMT solvers is necessary to ease the proof burden. This
ambitious goal was our primary motivation to attempt to construction of our
own separation logic framework in F⋆: Steel.

4.2. Bringing Separation Logic to F⋆

While this section and the next focus on explaining the Steel framework
for concurrent separation logic program verification in F⋆, we start here
by describing two attempts at building the foundations of Steel. The first
attempt, ultimately failed and unpublished, provides an interesting look at the
motivation of program verification tool builders and the constraints that make
this task hard. The second attempt, more successful, was largely inspired by
the theoretical insights of Iris while bringing novel aspects.
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4.2.1. Breaking with the Low⋆ legacy

This subsection is based upon the following collaboration:

From August 2019 to October 2019, I visited the RiSE group of Microsoft
Research, as part of a collaborative effort to improve low-level programming
in F⋆: Steel. This subsection is a post-mortem of the failed first attempt
at founding Steel over Low⋆. The first attempt involved Nikhil Swamy,
Aseem Rastogi, Aymeric Fromherz, Danel Ahman, Guido Martinez, Tahina
Ramananandro, Jonathan Protzenko and me, and was based on previous
work also involving Zoe Paraskevopoulou. This succinct account of what
happened presented here is exclusive and my personal contribution. I
also contributed a presentation based on this work at the ADSL 2020
workshop.

Since this dissertation is about language design, we believe that the descrip-
tion of this failed attempt provides multiple insights about negative patterns
to avoid when evolving a program verification framework.

The main motivation for starting this project was Low⋆’s known weakness
for scaling up memory-safety-related proof, documented in Section 4.1.1. To
solve the SMT context explosion caused by the SMT patterns system, we
began by looking for ways to abstract and encapsulate memory predicates
for objects. Indeed, the memory safety for a linked list in Low⋆ involved the
proof of no less that 5 specialized lemmas relating the footprint of the list,
that way is was modified and how its head was disjoint from its tail while
unrolled [30]. The missing key property for this kind of proofs was a more
modular version of the frame-rule-like modifies_reference_elim predicate
from Section 4.1.1 that could be used to prove memory non-intereference for
whole structures at a time, rather than at the level of each reference.

The first attempt at Steel was thus to provide a methodology for building
component-wide frame-rule-like lemmas for user-defined data structures, all
of this as a proof layer on top of Low⋆. The inspiration for this attempt was
Parkinson and Summer’s work [31] of building a full separation logic on top
of implicit dynamic frames [4], which is the logical foundation of Low⋆.

After a previous failed attempt using the category theoretical concept of
lenses, we settled on a design related to the Views [32] framework for repre-
senting physical ressources. In this attempt, our ressources bundled three
components :
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1. the footprint of the resource, expressed in terms of Low⋆’s location type
(a set of memory references);

2. the invariant of the resource, a higher-order predicate that depends on a
memory where the footprint was live (i.e allocated and owned);

3. the view of the resource, another higher-order predicate depending on
a memory where the footprint is live, but whose goal is to express a
high-level specification of the content of the resource in memory (i.e a
functional list of a Low⋆ linked list).

Each of these components must satisfy a lemma that state their consistency
with the frame rule. For instance, for the footprint, one of the properties to
check is:

let footprint_frame_rule

(fp: mem -> GTot location)

(inv: mem -> prop)

: prop

=

forall (h0 h1: mem) (loc: location).

(loc_disjoint (fp h0) loc /\ modifies loc h0 h1 /\ inv h0)

==> fp h0 == fp h1

This states that all memory transformations that have a footprint (loc)
disjoint with the resources’ footprint (fp), should leave the resources’ footprint
intact. This kind of property must be proved once and for all when a data
structure is turned into a resource. Then, the resource’s implementation can
be hidden behind an abstraction layer (in F⋆, .fsti interface files) so that
Low⋆ programs using it do not see their proof context flooded with the data
structure’s internals.

This abstraction layer should also expose all the mid-level functions nec-
essary to interact with the data structure: allocation, deallocation, read and
write commands, sharing and gathering (permission-wise if the structure
has permissions). Above the abstraction layer, Low⋆ programs should use a
new RST abbreviation effect (see Section 2.1.2), equipped with five indexes
instead of three (for the regular Stack effect): the first one for the return type
of the computation, the last two for the pre- and post- conditions, and two
new intermediate ones describing the pre- and post-resources. The pre- and
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post-resource describe the state of memory before and after the computation;
indeed, resources can be composed together using a ⋆ operator similar to the
separating conjunction of separation logic.

The motivation for this dual specification baked in the effect (pre- and post-
resources as well as pre- and post-conditions) is the lack of expressivity and
flexibility of the resources. They cannot be easily changed since determined
once and for all for their invariant, footprint, views and basic operations are
determined once and for all for the whole data structure when building the
.fsti abstraction layer. Hence, a finer and more versatile specification using
pre- and post-condition was needed.

While this new effect enabled promising developments and uncovered the
need for more Steel proof infrastructure (that will appear in Section 4.3),
its foundations appeared to be flawed when trying to create a simple array
resource similar to Low⋆’s buffers. The flaw was stemming from the under-
lying memory model of Low⋆ and the modifies and disjoint predicates for
memory locations. Indeed, it was impossible to prove that allocation and
deallocation of arrays complied with the frame rule, in the sense of properties
like footprint_frame_rule. The culprit was a design flaw in the abstract
set theory underlying memory locations (viewed as a set of references). This
set theory did not support intersection nor complement, but only unions. We
made an attempt at retrofitting the set theory to add the features we needed,
but the new version broke the compatibility with the buffer libraries of Low⋆

due to the retrocompatibility with memory regions. Memory regions were a
feature initially present in Low⋆ and used in the miTLS [33] codebase, but
considered as deprecated in HACL⋆. Hence, the set theory needs to cope
with intertwined sets of references and sets of regions, making for a difficult
implementation.

Because of this incompatibility, the goal of making Steel programs verifiably
interoperable with Low⋆ programs by building the new theory on top of the
old one became inaccessible. Therefore, we wondered if building Steel on top
of Low⋆ was a good idea at all. What this deep dive into the foundations of
Low⋆ showed us was that the foundations of Low⋆ were not powerful enough
to enable the full expressive power of a complete separation logic. Moreover,
we wanted Steel to support concurrency out of the box to extend the field of
our applications. We thus decide to break with the Low⋆ legacy, go back to
the drawing board and design Steel from the ground up on more principled
foundations.
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4.2.2. SteelCore: A Foundational Core for Steel

This subsection is based upon the following publication:

N. Swamy, A. Rastogi, A. Fromherz, D. Merigoux, D. Ahman, and
G. Martinez, “Steelcore: an extensible concurrent separation logic for
effectful dependently typed programs”, Proc. ACM Program. Lang.,
vol. 4, no. ICFP, Aug. 2020. DOI: 10.1145/3409003. [Online]. Available:
https://doi.org/10.1145/3409003

My personal contribution was a design, implementation, and proof of an
intermediate version of the memory model. The version presented in the
published paper is substantially different.

Proof assistants based on type theory can be a programmers’ delight, allow-
ing one to build modular abstractions coupled with strong specifications that
ensure program correctness. Their expressive power also allows one to develop
new program logics within the same framework as the programs themselves.
A notable case in point is the Iris framework [2] embedded in Coq [35], which
provides an impredicative, higher-order, concurrent separation logic (CSL) [1],
[12], [36] within which to specify and prove programs.

Iris has been used to model various languages and constructs, and to
verify many interesting programs [25], [37], [38]. However, Iris is not in
itself a programming language: it must instead be instantiated with a deeply
embedded representation and semantics of one provided by the user. For
instance, several Iris-based papers work with a mini ML-like language deeply
embedded in Coq [23].

Taking a different approach, FCSL [39]–[41] embeds a predicative CSL in Coq
enabling proofs of Coq programs (rather than embedded-language programs)
within a semantics that accounts for effects like state and concurrency. This
allows programmers to use the full power of type theory not just for proving,
but also for programming, e.g., building dependently typed programs and
metaprograms over inductive datatypes, with typeclasses, a module system,
and other features of a full-fledged language. However, Nanevski et al.’s
program logics are inherently predicative, which makes it difficult to express
constructs like dynamically allocated invariants and locks, which are natural
in impredicative logics like Iris.

In this subsection, we present the highlights of a new framework called
SteelCore that aims to provide the benefits of Nanevski et al.’s shallow embed-
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Figure 4.4: An overview of SteelCore, section numbers from [34]

dings, while also supporting dynamically allocated invariants and1 locks in
the flavor of Iris. Specifically, we develop SteelCore in the effectful type theory
provided by the F⋆ proof assistant [42]. One of our main insights is that an ef-
fectful type theory is not only useful for programming; it can also be leveraged
to build new program logics for effectful program features like concurrency
(see also Section 2.1.2). Building on prior work [43] that models the effect of
monotonic state in F⋆, we develop a semantics for concurrent F⋆ programs
while simultaneously deriving a CSL to reason about F⋆ programs using the
effect of concurrency. The use of monotonic state enables us to account for
invariants and atomic actions entirely within SteelCore. The net result is
that we can program higher-order, dependently-typed, generally recursive,
shared-memory and message-passing concurrent F⋆ programs and prove their
partial correctness using SteelCore. Full explanations and evaluation of the
framework can be found in the related publication [34].

SteelCore is the core semantics of Steel, a DSL in F⋆ for programming and
proving concurrent programs. In this subsection, we focus primarily on the
semantics, leaving a treatment of other aspects of the Steel framework to
the next section. Building on the monotonic state effect, we prove sound a
generic program logic for concurrency, parametric in a memory model and a
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type ctree (st:state) :
a:Type -> pre:st.slprop ->
post:(a -> st.slprop) -> Type

=
| Ret : x:a -> ctree st a (post x) post
| Act : action pre post -> ctree st a pre post
| Par : ctree st a p q -> ctree st a' p' q' ->
ctree st (a & a') (p `st.star` p')
(fun (x, x') -> q x `st.star` q' x')

| Bind : ctree st a p q ->
((x:a) -> Dv (ctree st b (q x) r)) ->
ctree st b p r

Figure 4.5: SteelCore action trees as an F⋆ datatype

separation logic. We instantiate this semantics with a separation logic based
on partial commutative monoids, stored invariants, and state machines. Using
this logic, we program verified, dependently typed, higher-order libraries for
various kinds of concurrency constructs, culminating in a library for message-
passing on typed channels. We present an overview of several novel elements
of our contributions, next.

For starters, we need to extend F⋆ with concurrency. To do this, we follow
the well-known approach of encoding computational effects as definitional
interpreters over free monads [44]–[47]. That is, we can represent computa-
tions as a datatype of (infinitely branching) trees of atomic actions. When
providing a computational interpretation for action trees, one can pick an
execution strategy (e.g., an interleaving semantics) and build an interpreter
to run programs. The first main novelty of our work is that we provide an
intrinsically typed definitional interpreter [48] that both provides a semantics
for concurrency while also deriving a CSL in which to reason about concurrent
programs. Enabling this development is a new notion of indexed action trees,
which we describe next.

Indexed action trees for structured parallelism We represent concurrent com-
putations as an instance of the datatype ctree st a pre post, shown in
Figure 4.5. The ctree type is a tree of atomic computational actions, com-
posed sequentially or in parallel.

The type ctree st a pre post is parameterized by an instance st of the
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state typeclass, which provides a generic interface to memories, including
st.slprop, the type of separation logic assertions, and st.star, the separat-
ing conjunction. The index a is the result type of the computation, while pre

and post are separation logic assertions. The Act nodes hold stateful atomic
actions; Par nodes combine trees in parallel; while Bind nodes sequentially
compose a computation with a potentially divergent continuation, as signified
by the Dv effect label. Divergent computations are primitively expressible
within F⋆, and are soundly isolated from its logical core of total functions by
the effect system.

Interpreting action trees in the effects of nondeterminism and monotonic
state We interpret a term (e : ctree st a pre post) as both a com-
putation e as well as a proof of its own partial correctness Hoare triple
{pre} e : a {post}. To prove this sound, we define an interpreter that
non-deterministically interleaves atomic actions run in parallel. The inter-
preter is itself an effectful F⋆ function with the following (simplified) type,
capturing our main soundness theorem:

val run (e:ctree st a p q) : NMST a st.evolves

(fun m -> st.interp p m)

(fun _ x m' -> st.interp (q x) m')

where NMST is the effect of monotonic stateful computations extended with
nondeterminism. Here, we use it to represent abstract, stateful computations
whose states are constrained to evolve according to the preorder st.evolves,
and which when run in an initial state m satisfying the interpretation of the
precondition p, produce a result x and final state m' satisfying the postcondi-
tion q x. As such, using the Hoare types of NMST, the type of run validates
the Hoare rules of CSL given by the indexing structure on ctree. In doing so,
we avoid the indirection of traces in Brooke and Stephen’s original proof of
CSL [49] as well as in the work of Nanevski et al. [40].

Atomics and Invariants: Breaking circularities with monotonic state Although
most widely used concurrent programming frameworks, e.g., the POSIX
pthread API, support dynamically allocated locks, few existing CSL frame-
works actually support them, with some notable exceptions [2], [50]–[53]. The
main challenge is to avoid circularities that arise from storing locks that are
associated with assertions about the memory in the memory itself. Iris, with
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its step-indexed model of impredicativity, can express this. However, other
existing state of the art logics, including FCSL, cannot. We show in details in
the related publication [34] how to leverage the underlying model of monotonic
state to allocate a stored invariant, and to open and close it safely within an
atomic command, without introducing step indexing.

PCMs, ghost state, state machines, and implicit dynamic frames We base
our memory model on partial commutative monoids (PCMs), allowing the
user to associate a PCM of their choosing with each allocation unit. Relying
on F⋆’s existing support for computationally irrelevant erased types, we can
easily model ghost state by allocating values of erased types in the heap, and
manipulating these values only using atomic ghost actions – all of which are
erased during compilation. PCMs in SteelCore are orthogonal from ghost
state: they can be used both to separate and manage access permissions to
both concrete and ghost state – in practice, we use fractional permissions
to control read and write access to references. Further, SteelCore includes
a notion of monotonic references, which when coupled with F⋆’s existing
support for ghost values and invariants, allow programmers to code up
various forms of state machines to control the use and evolution of shared
resources. Demonstrating the flexibility of our semantics, we extend it to
allow augmenting CSL assertions with frameable heap predicates, a style that
combines CSL with implicit dynamic frames [4] within the same mechanized
framework.

Putting it to work We present several examples showing SteelCore at work,
aiming to illustrate the flexibility and extensibility of the logic and its smooth
interaction with dependently typed programming in F⋆. Starting with an
atomic compare-and-set (CAS) instruction, we program verified libraries for
spin-locks, for fork/join parallelism, and finally for protocol-indexed channel
types. Our channel-types library showcases dependent types at work with
SteelCore: its core construct is a type of channels, chan p, where p is itself a
free-monad-like computation structure “one-level up” describing an infinite
state machine on types. We prove, once and for all, that programs using a
c:chan p exchange a trace of messages on c accepted by the state machine
p.
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Summary of the paper’s contributions SteelCore is a fully mechanized CSL
embedded in F⋆, and applicable to F⋆ itself. The code and proofs are available
from https://fstar-lang.org/papers/steelcore. In summary, the new
design decisions behind SteelCore allowed us to go past the failed attempt
of Section 4.2.1, and build solid semantic foundations for a new separation-
logic-based, concurrent program verification framework in F⋆: Steel. The
contributions of these semantic foundations include the following:

• A new construction of indexed, effectful action trees, mixing data and
effectful computations to represent concurrent, stateful and potentially
divergent computations, with an indexing structure capturing the proof
rules of a generic CSL.

• An intrinsically typed definitional interpreter that interprets our effectful
action trees into another effect, namely the effect of nondeterminism
layered on the effect of monotonic state. This provides both a new style
of soundness proof for CSL, as well as providing a reference executable
semantics for our host language F⋆ extended with concurrency.

• An instantiation of our semantics with a modern CSL inspired by recent
logics like Iris, with a core memory model based on partial commutative
monoids and support for dynamically allocated invariants. Relying on the
underlying semantic model of monotonic state is a key element, allowing
us to internalize the step-indexing that is necessary in Iris for dealing
soundly with invariants.

• We use our logic to build several verified libraries, programmed in and
usable by dependently typed, effectful host-language programs, validat-
ing our goal of providing an Iris-style logic applicable to a shallow rather
than a deeply embedded programming language.

Summary of personal contributions My personal contributions to SteelCore
revolve around the memory model, whose final form is presented in Section
4.1 of the SteelCore paper. In particular, I added support for arrays within
references, and designed and implemented a library of atomic memory actions
compatible with the separation logic semantics and monotonic preorders.

I authored the pull request #1898 that contained an implementation (com-
plete with proofs) of a memory model for SteelCore including permissions and
atomic actions on references containing arrays. Later, I added support for
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monotonicity to this memory model by equipping each array cell inside each
memory cell with a preorder; the combination of all of these individual pre-
orders would form the heap-wide preorder, whose monotonicity is guaranteed
by the Steel effect. Finally, other SteelCore authors reshaped this memory
model to be based on the more generic notion of PCM, rather than on the
notion of cells containing arrays.

4.3. Separating Memory Proofs from Functional
Correctness

This section is based upon the following publication:

A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martinez, D. Merigoux,
and T. Ramananandro, “Steel: proof-oriented programming in a
dependently typed concurrent separation logic”, Proc. ACM Program.
Lang., vol. 5, no. ICFP, Aug. 2021. DOI: 10.1145/3473590. [Online].
Available: https://doi.org/10.1145/3473590

My personal contributions for this paper are less substantive than for the
SteelCore paper. Concretely, I proposed a design and implementation for
selectors and framing tactic in an early version of the Steel framework, on
which I worked from August to October 2019. The version of these items
presented in the published paper is substantially different.

Structuring programs with proofs in mind is a promising way to reduce
the effort of building high-assurance software. There are many benefits: the
program structure can simplify proofs, while proofs can simplify programming
too by, for example, eliminating checks and unnecessary cases. Programming
languages of many different flavors embrace this view and we use the phrase
proof-oriented programming to describe the paradigm of co-developing proofs
and programs.

Dependently typed programming languages, like Agda and Idris, are great ex-
amples of languages that promote proof-oriented programming. As Brady [55]
argues, the iterative “type-define-refine” style of type-driven development al-
lows programs to follow the structure of their dependently typed specifications,
simplifying both programming and proving. From a different community,
languages like Dafny [56], Chalice [57], and Viper [13] enrich imperative
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languages with first-order program logics for program correctness, driving
program development from Floyd-Hoare triples, with proof automation using
SMT solvers. Hoare Type Theory [39] combines these approaches, embedding
Hoare logic in dependently typed Coq with tactic-based proofs, while F⋆ [42]
follows a similar approach but, like Dafny, Chalice and Viper, uses an SMT
solver for proof automation.

In this section, we aim to present some aspect of a proof-oriented pro-
gramming language based on SteelCore [34] (see Section 4.2.2), the recent
concurrent separation logic (CSL) [1], [36] for dependently typed programs
formalized in F⋆. Our goal is to integrate the expressive power of the SteelCore
logic within a higher-order, dependently typed programming language with
shared-memory and message-passing concurrency, with proof automation
approaching what is offered by Dafny, Chalice, and Viper, but with soundness
ensured by construction upon the foundations of SteelCore.

We have our work cut out: SteelCore, despite providing many features
as a logic, including an impredicative, dependently typed CSL for partial-
correctness proofs, with a user-defined partial commutative monoid (PCM)-
based memory model, monotonic state, atomic and ghost computations, and
dynamically allocated invariants, all of whose soundness is derived from a
proof-oriented, intrinsically typed definitional interpreter in F⋆, is far from
being usable directly to build correct programs.

SteelCore’s main typing construct is a Hoare type, SteelCore a p q, de-
scribing potentially divergent, concurrent, stateful computations returning
a value of type a and whose pre- and postconditions are p:slprop and
q:a -> slprop, where slprop is the type of separation logic propositions.
Figure 4.6 shows, at the top, a SteelCore program that swaps the content
of two references. Calls to frame wrapping each action combined with re-
arrangements of slprops with commute_star overwhelm the program – the
pain is perceptible.

Through several steps, we offer instead Steel, an embedded domain-specific
language (DSL) within F⋆ based on SteelCore, which enables writing the swap
program at the bottom of Figure 4.6. We briefly call out some of its salient
features. First, we introduce a new “quintuple” computation type, shown
below:

Steel a (p:slprop) (q:a -> slprop)

(requires (r:pre p))

(ensures (s:post p a q))
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let swap (#v1 #v2:ghost int) (r1 r2:ref int)
: SteelCore unit

(pts_to r1 #v1 * pts_to r2 #v2)
(fun _ -> pts_to r1 #v2 * pts_to r2 #v1)

= let x1 = frame (read r1) (pts_to r2 #v2) in
commute_star (pts_to r1 #v1) (pts_to r2 #v2);
let x2 = frame (read r2) (pts_to r1 #v1) in
frame (write v2 x1) (pts_to r1 #x2);
commute_star (pts_to r2 #x1) (pts_to r1 #v1);
frame (write r1 x2) (pts_to r2 #v2);

let swap (r1 r2:ref int) : Steel unit
(ptr r1 * ptr r2) (fun _ -> ptr r1 * ptr r2)
(requires fun _ -> True)
(ensures fun s _ s' ->

s'.[r1] = s.[r2] /\ s'.[r2] = s.[r1])
= let x1 = read r1 in
let x2 = read r2 in
write r2 x1;
write r1 x2

Figure 4.6: SteelCore implementation of swap (top); Steel version (bottom)
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The additional indices r and s are selector predicates, that depend only on
the p-fragment of the initial memory and q-fragment of the final memory,
i.e., they are self-framing, in the terminology of Parkinson and Summers [31].
These predicates are SMT encodeable and allow a useful interplay between
tactic-based proofs on slprops and SMT reasoning on the content of memory.

In swap, these predicates also remove the need for existentially quantified
ghost variables to reason about the values stored in the two references (i.e.,
the function arguments v1 and v2). Next, through the use of F⋆’s effect system,
we encode a syntax-directed algorithm to automatically insert applications of
the frame rule at the leaves of a computation, while a tactic integrated with
the DSL solves for frames using a variant of AC-matching [58].

Freed from the burden of framing, the program’s intent is evident once more.
The swap program in Steel is perhaps close to what one would expect in Chalice
or Viper, but we emphasize that Steel is a shallow embedding in dependently
typed F⋆ and the full SteelCore logic is available within Steel. So, while Viper-
style program proofs are possible and encouraged, richer, dependently typed
idioms are also possible and enjoy many of the same benefits, e.g., automated
framing and partial automation via SMT. Indeed, our approach seeks only to
automate the most mundane aspects of proofs, focusing primarily on framing.
For the rest, including introducing and eliminating quantifiers, rolling and
unrolling recursive predicates, writing invariants, and manipulating ghost
state, the programmer can develop lemmas in F⋆’s underlying type theory
and invoke those lemmas at strategic points in their code – the Steel library
provides many generic building blocks for such lemmas. The result is a style
that Leino and Moskal [59] have called auto-active verification, a mixture of
automated and interactive proof that has been successful in several other
languages, including in other large F⋆ developments, but now applied to
SteelCore’s expressive CSL.

Steel is entirely implemented in the F⋆ proof assistant, with proofs fully
mechanized upon the SteelCore program logic. All of our code and proofs are
open-source, and publicly available online1.

4.3.1. From Hoare Triplets to Quintuples

Like any separation logic, SteelCore has rules for framing, sequential com-
position, and consequence, shown below in their first, most simple forms,

1https://zenodo.org/record/4768854
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where the type stc a p q represents a Hoare type with a:Type, p:slprop,
and q:a -> slprop. These proof rules are implemented in SteelCore as
combinators with the following signatures:

let stc a p q = unit -> SteelCore a p q

(* represents { p } x:a { q x } *)

val frame (_:stc a p q) : stc a (p * f) (fun x -> q x * f)

val bind (_:stc a_1 p q')

(_: (x:a_1 -> stc a_2 (q' x) r))

: stc a_2 p r

val conseq (_:stc a p' q') (_:squash (p -* p' /\ q' -* q))

: stc a p q

Our goal is to shallowly embed Steel as a DSL2 in F⋆, whereby Steel
user programs are constructed by repeated applications of combinators
like frame, bind and conseq. The result is a program whose inferred
type is a judgment in the SteelCore logic, subject to verification condi-
tions (VCs) that must be discharged, e.g., the second argument of conseq,
squash (p -* p' /\ q' -* q), is a proof obligation.

For this process to work, we need to make the elaboration of a Steel program
into the underlying combinator language algorithmic, resolving the inherent
nondeterminism in rules like BIND and CONSEQUENCE by deciding the following:
first, where exactly should BIND and CONSEQUENCE be applied; second, how
should existentially bound variables in the rules be chosen, notably the frame
f; and, finally, how should the proof obligations be discharged.

Verification Condition Generation for Separation Logic The standard ap-
proach to this problem is to define a form of weakest precondition (WP)
calculus for separation logic that strategically integrates the use of frame and
consequence into the other rules in the system. Starting with Ishtiaq and
O’Hearn’s [60] “backwards” rules, weakest precondition readings of separation
logic have been customary. Hobord and Villard [61] propose a ramified frame
rule that integrates the rule of consequence with framing, while Iris’ [2] “Texan
triples” combine both ideas, integrating a form of ramified framing in the

2A note on terminology: From one perspective, Steel is not domain-specific – it is a general-
purpose, Turing complete language, with many kinds of computational effects. But,
from the perspective of its host language F⋆, Steel is a domain-specific language for
proof-oriented stateful and concurrent programming.
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WP-Wand rule of its WP calculus. In the setting of interactive proofs, Texan
triples are convenient in that every command is always specified with respect
to a parametric postcondition, enabling it to be easily applied to a framed and
weakened (if necessary) postcondition.

Prior attempts at encoding separation logic in F⋆ [8] followed a similar
approach, whereby a Dijkstra monad [62] for separation logic computes
weakest preconditions while automatically inserting frames around every
function call or primitive action. However, Martínez et al. [8] have not scaled
their prototype to verify larger programs and we have, to date, failed to scale
their WP-based approach to a mostly-automated verifier for Steel.

The main difficulty is that a WP-calculus for separation logic computes a
single (often quite large) VC for a program in, naturally, separation logic. F⋆

aims to encode such VCs to an SMT solver. However, encoding a separation
logic VC to an SMT solver is non-trivial. SMT solvers like Z3 [63] do not
handle separation logic well, in part because slprops are equivalent up to
Associativity-Commutativity (AC) rewriting of *, and AC-rewriting is hard to
encode efficiently in SMT. Besides, WP-based VCs heavily use magic wand and
computing frames involves solving for existential quantifiers over AC terms,
which again is hard to automate in SMT. Viper (the underlying engine of
Chalice) does provide an SMT-encoding for a permission system with implicit
dynamic frames that is equivalent to a fragment of separation logic [31], how-
ever, we do not have such an encoding for SteelCore’s more expressive logic.
While some other off-the-shelf solvers for various fragments of separation
logic exist [64], [65], using them for a logic like SteelCore’s dependently typed,
impredicative CSL is an open challenge.

Martínez et al. [8] confront this problem and develop tactics to process a
separation logic VC computed by their Dijkstra monad, AC-rewriting terms
and solving for frame variables, and finally feeding a first-order logic goal to
an SMT solver. However, this scales poorly even on their simpler logic, with
the verification time of a program dominated by the tactic simply discovering
fragments of a VC that involve non-trivial separation logic reasoning, intro-
ducing existentially bound variables for frames, solving them and rewriting
the remainder of the VC iteratively.

Our solution addresses these difficulties by developing a verification condi-
tion generator for quintuples, and automatically discharging the computation
of frames using a combination of AC-matching tactics and SMT solving, while
requiring the programmer to write invariants and to provide lemmas in the
form of imperative ghost procedures. We now present our elaboration and VC
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constant T ∶∶= unit ∣ () ∣ Type ∣ prop ∣ slprop ∣ . . .
term e, t ∶∶= x ∣ T ∣ λx:t. e ∣ e1 e2 ∣ x:t→ C ∣ ret e ∣ bind e1 x.e2

∣ e1 ∗ e2 ∣ e1 –∗ e2 ∣ e1 ∧ e2 ∣ ∀x.e ∣ . . .
computation type C ∶∶= Tot t ∣ { P ∣ R } y:t { Q ∣ S }

program d ∶∶= val f (x ∶ t) ∶ C = e

Figure 4.7: Simplified syntax for Steel

generation strategy for Steel as a small idealized calculus.
We transcribe the rules omitting some side conditions (e.g., on the well-

typedness of some terms) when they add clutter – such conditions are all
captured formally in our mechanization. As such, these rules are implemented
as combinators in F⋆’s effect system and mechanically proven sound against
SteelCore’s logic in F⋆. See Section 4 of [54], for a study of the metatheory
of the system from the perspective of completeness and the solvability of the
constraints it produces.

A Type-and-Effect System for Separation Logic Quintuples Figure 4.7 presents
the syntax of a subset of the internal desugared, monadic language of Steel
in F⋆. Our implementation supports the full F⋆ language, including full de-
pendent types, inductive types, pattern matching, recursive definitions, local
let bindings, universes, implicit arguments, a module system, typeclasses,
etc. This is the advantage of a shallow embedding: Steel inherits the full
type system of F⋆. For the purposes of our minimalistic presentation, the
main constructs of interest are slprops and computation types, though an
essential preliminary notion is a memory, which we describe first.

A memory mem represents the mutable heap of a program and SteelCore
provides an abstract memory model of mutable higher-order typed references,
where each memory cell stores an element in the carrier type of a user-chosen
PCM. For the specifics of the memory model and case studies, see Section 5
of the related publication [54]. For now, it suffices to note that mem supports
two main operations:

• disjoint (m0 m1: mem) : prop, indicating that the domains of the
two memory maps are disjoint;

• join (m0:mem) (m1:mem{disjoint m0 m1}) : mem, the disjoint union
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of two memories.

An slprop is a typeclass that encapsulates two things: an interpretation as
a separation logic proposition and a self-framing memory representation called
a selector. This encapsulation is inspired by the findings of our first Steel
attempt (see Section 4.2.1). Specifically, it supports the following operations:

• An interpretation as an affine predicate on memories, namely interp

(_: slprop) : mem -> prop such that interp p m /\ disjoint m

m' ==> interp p (join m m'). We write fpmem (p:slprop) for a
memory validating p, i.e., m:mem { interp p m }.

• A selector type, type_of (p:slprop) : Type.

• A selector, sel (p:slprop) (m:fpmem p) : type_of p, with the prop-
erty that sel depends only on the p fragment of m: forall (m0:fpmem

p) m1. disjoint m0 m1 ==> sel p m0 = sel p (join m0 m1).

• slprops have all the usual connectives, including ∗ , –∗ , ∧, ∨, ∀, ∃
etc. We observe that the selectors provide a form of linear logic over
memory fragments as resources. For instance, the selector type for p * q

corresponds to a linear pair type_of p * type_of q, while the selector
type for p -* q is a map from memories validating p `star` (p -* q)

to the type of q. However, we do not yet exploit this connection deeply,
except to build typeclass instances for * and -* and to derive from the
double implication p *--* q a bidirectional coercion on selectors.

It is trivial to give a degenerate selector for any slprop simply by picking the
selector type to be unit. But, more interesting instances can be provided by
the programmer depending on their needs. For example, given a reference
r:ref a, the interpretation of ptr r : slprop could be that r is present
in a given memory; type_of (ptr r) = a; and sel (ptr r) m : a could
return the value of the reference r in m.

The type Tot t is the type of total computations and is not particularly
interesting. The main computation type is the quintuple { P ∣ R } x:t { Q ∣ S },
where:

• P : slprop is a separation logic precondition;

• R : fppred P, where R is a predicate on P’s selector, i.e. fppred p =

type_of p -> prop, where the predicate is applied to sel p on the
underlying memory;
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• x : t binds the name x to the t-typed return value of the computation;

• Q : slprop is a postcondition, with x:t in scope;

• S: fppost P Q is an additional postcondition, relating the selector of
P in the initial memory, to the result and the selector of Q in the final
memory. It also has x:t in scope: fppost (p:slprop) (q:slprop) =

type_of p -> type_of q -> prop.

SteelCore’s logic also provides support for a form of quintuples, but with one
major difference: instead of operating on selectors, SteelCore uses memory
predicates with proof obligations that they depend only on the appropriate
part of memory. Steel’s quintuples with selectors are proven sound in the
model of SteelCore’s “raw” quintuples, and the abstraction they provide yields
useful algebraic structure while freeing the user from proof-obligations on the
framing of memory predicates – proof-oriented programming at work!

4.3.2. A Case Study in Proof Backend Specialization

Now that we have presented the syntax of our quintuples, we move to type-
checking them. Beyond the inference rules, we discuss why this scheme
makes for a good splitting of verification conditions between tactics and SMT.

VC Generation for Steel Figure 4.8 presents selected rules for typechecking
Steel programs. There are 3 main ideas in the structure of the rules.

First, there are two kinds of judgments ⊢ and ⊢F . The ⊢ judgment applies
to terms on which no top-level occurrence of framing has been applied. The
⊢F judgment marks terms that have been framed. We use this modality to
ensure that frames are applied at the leaves, to effectful function calls only,
and nowhere else. The application of framing introduces metavariables to be
solved and introduces equalities among framed selector terms.

Second, the rule of consequence together with a form of framing is folded into
sequential composition. Both consequence and framing can also be triggered
by a user annotation in a val. Although Steel’s separation logic is affine, Steel
aims at representing and modeling a variety of concurrent programs, including
programs implemented in a language with manual memory management, such
as C. To this end, we need to ensure that separation logic predicates do not
implicitly disappear. As such, our VC generator uses equivalence ∗−∗ where
otherwise a reader might expect to see implications (−∗). Programmers are
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APP
Γ ⊢ e ∶ Tot t Γ ⊢ f ∶ x:t→ C

Γ ⊢ f e ∶ C[e/x]

let fpost ?F S = λ(sp0 , sf0) (sq1 , sf1).S sp0 sq1 ∧ seleq ?F sf0 sf1

FRAME
Γ ⊢ e ∶ { P ∣ R } y:t { Q ∣ S }

Γ ⊢F e ∶ { P ∗ ?F ∣ λ(sp0 , sf0).R sp0 } y:t { Q ∗ ?F ∣ fpost ?F S }

let pre χ R1 S1 R2 ?a ?b = λsp1 . R1 sp1 ∧ ∀x sp2 . ?a ∧ (S1[x/y] sp1 (χ sp2) Ô⇒ R2 sp2 ∧ ∀z. ?b)
let post χ1 χ2 S1 S2 = λsp1 sq. ∃x sp2 . S1 sp1 sp2 ∧ S2 (χ1 sp2) (χ2 sq)

BIND
Γ ⊢F e1 ∶ { P1 ∣ R1 } y:t1 { Q1 ∣ S1 } Γ, x:t1 ⊢F e2 ∶ { P2 ∣ R2 } z:t2 { Q2 ∣ S2 }

Γ, x:t1, ?a ⊧tac Q1[x/y] ∗−∗ P2 ∶ χ1 Γ, x:t1, z:t2, ?b ⊧tac Q2 ∗−∗?Q ∶ χ2 x ∉ FV (t2, ?Q)
Γ ⊢F bind e1 x.e2 ∶ { P1 ∣ pre χ1 R1 S1 R2 ?a ?b } z:t2 { ?Q ∣ post χ1 χ2 S1 S2 }

VAL
Γ, x ∶ t1 ⊢F e ∶ { P ′ ∣ R′ } y:t2 { Q′ ∣ S′ }

Γ, x:t1, ?a ⊧tac P ∗−∗ P ′ ∶ χp Γ, x:t1, y:t2, ?b ⊧tac Q′ ∗−∗ Q ∶ χq
Γ ⊧smt ∀x sp. (R sp Ô⇒ ?a ∧R′ (χp sp)) ∧ (∀y sq. S′ (χp sp) (χq sq) Ô⇒ ?b ∧ S sp sq)

Γ ⊢ val f (x ∶ t1) ∶ { P ∣ R } y:t2 { Q ∣ S } = e

Figure 4.8: Core rules of Steel’s type and effect system
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expected to explicitly drop separation logic predicates by either freeing memory
or calling ghost functions to drop ghost resources.

Finally, the proof obligations corresponding to the VCs in the rules appear in
the premises in two forms, ⊧tac and ⊧smt. The former involves solving separation
logic goals using a tactic, which can produce auxiliary propositional goals to
interact with SMT. The latter are SMT-encodeable goals – all non-separation
logic reasoning is collected in the other rules eventually dispatched to SMT at
the use of consequence triggered by a user annotation.

We now describe each of the rules in turn.
App This is a straightforward dependent function application rule. F⋆

internal syntax is already desugared into a monadic form, so we need only
consider the case where both the function f and the argument e are total
terms. Of course, the application may itself have an effect, depending on C.
The important aspect of this rule is that it is a ⊢ judgment, indicating that
this is a raw application – no frame has been added.

Frame This rule introduces a frame. Its premise requires a ⊢ judgment
to ensure that no repeated frames are added, while the conclusion is, of
course, in ⊢F , since a frame has just been applied. The rule involves picking
a fresh metavariable ?F and framing it across the pre- and postconditions.
The effect of framing of the memory postcondition S is particularly interesting:
we strengthen the postcondition with seleq ?F sf0 sf1, which is equivalent to
sel ?F sf0 = sel ?F sf1. We’ll present this predicate in detail in a later paragraph.

Bind The most interesting rule is BIND, with several subtle elements. First,
in order to sequentially compose e1 and e2, in the first two premises we re-
quire ⊢F judgments, to ensure that those computations have already been
framed. The third premise encodes an application of consequence, to re-
late the slprop-postcondition Q1 of e1 to the slprop-precondition P2 of e2.
Strictly speaking, we do not need a double implication here, but we generate
equivalence constraints to ensure that our constraint solving heuristics do
not implicitly drop resources. The premise Γ, x:t1, ?a ⊧tac Q1[x/y] ∗−∗ P2 ∶ χ1 is
a VC that is discharged by a tactic and, importantly, ?a is a propositional
metavariable that the tactic must solve. For example, in order to prove
Γ, x:t1, ?a ⊧tac (r− > u) ∗−∗ (r− > v), where the interpretation of r− > u is that the
reference r points to u, a tactic could instantiate ?a ∶= (u = v), i.e., the tactic is
free to pick a hypothesis ?a under which the entailment is true. The fourth
premise is similar, representing a use of consequence relating the postcondi-
tion of e2 to a freshly picked metavariable ?Q for the entire postcondition, again
not dropping resources implicitly. A technicality is the use of the selector
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coercions χ1, χ2 witnessing the equivalences, which are needed to ensure that
the generated pre- and postconditions are well-typed. Notice that this rule
does not have an SMT proof obligation. Instead, we gather in the precondition
the initial precondition R1 and the relation between the intermediate post- and
preconditions, S1 and R2. Importantly, we also include the tactic-computed
hypotheses ?a and ?b, enabling facts to be proved by the SMT solver to be
used in the separation logic tactic. Finally, in the postcondition, we gather
the intermediate and final postconditions.

Val The last rule checks that the inferred computation type for a Steel
program matches a user-provided annotation, and is similar to most elements
of BIND. As shown by the use of the entailment ⊢F , it requires its premise to be
framed. The next two premises are tactic VCs for relating the slprop-pre- and
postconditions, with the same flavor as before, allowing the tactic to abduct
a hypothesis under which the goal is validated. Finally, the last premise is
an SMT goal, which includes the freshly abducted hypotheses, and a rule
of consequence relating the annotated pre- and postconditon to what was
computed. Annotated computation types are considered to not have any
implicit frames, hence the use of ⊢ in the conclusion.

As an example, typechecking the swap program presented in Figure 4.6
proceeds as follows: The APP rule is applied to each of the read and write

function applications. Each application of APP is followed by an application
of FRAME; this enables the composition of the function applications using the
BIND rule, whose premises require ⊢F judgments. Finally, an application of
the OCAMLVal rule ensures that the annotated Steel computation type is
admissible for this swap program.

We prove in the supplement that the addition of the ⊢F modalities and the
removal of a nondeterministic frame and consequence rule do not compromise
completeness – we can still build the same derivations, but with the additional
structure, we have set the stage for tactics to focus on efficiently solving
slprop goals, while building carefully crafted SMT-friendly VCs that can be
fed as is to F⋆’s existing, heavily used SMT backend.

Why it Works: Proof-Oriented Programming In the introduction of this section,
we claimed that prior attempts at using a WP-based VC generator for separa-
tion logic in F⋆ did not scale. Here, we discuss some reasons why, and why the
design we present here fares better. As a general remark, recall that we want
the trusted computed base (TCB) of Steel to be the same as SteelCore, i.e., we
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trust F⋆ and its TCB, but nothing more. As such, our considerations for the
scalability of one design over another will be based, in part, on the difficulty
of writing efficient, untrusted tactics to solve various kinds of goals. Further,
we aim for a Steel verifier to process an entire procedure in a single go and
respond in no more than a few seconds or risk losing the user’s attention. In
contrast, in fully interactive verifiers, users analyze just a few commands at
a time and requirements on interactive performance may be somewhat less
demanding.

Separation logic provides a modular way to reason about memory, but
properties about memory are only one of several concerns when proving a pro-
gram. VCs for programs in F⋆ contain many other elements: exhaustiveness
checks for case analysis, refinement subtyping checks, termination checks,
hypotheses encoding the definitions of let-bound names, and several other
facts. In many existing F⋆ developments a VC for a single procedure can
contain several thousand logical connectives and the VC itself includes arbi-
trary pure F⋆ terms. Martínez et al. [8]’s tactics for separation logic process
this large term, applying verifiable but slow proof steps just to traverse the
formula – think repeated application of inspecting the head symbol of the
goal, introducing a binder, splitting a conjunction, introducing an existential
variable – even these simple steps are not cheap, since they incur a call to
the unifier on very large terms – until, finally an slprop-specific part of a VC
is found, split from the rest and solved, while the rest of the VC is rewritten
into propositional form and fed to the SMT solver. Although F⋆’s relatively
fresh and unoptimized tactic system bears some of the blame, tactics like
this are inherently inefficient. Anecdotally, in conversations with some Iris
users, we are told that running its WP-computations on large terms would
follow a similar strategy to Martínez et al.’s tactics and can also be quite
slow. Instead, high-performance tactics usually make use of techniques like
proof-by-reflection [66], but a reflective tactic for processing WP-based VCs
is hard, since one would need to reflect the entire abstract syntax of pure
F⋆ terms and write certified transformations over it – effectively building a
certified solver for separation logic.

A proof-oriented programming mindset suggests that producing a large
unstructured VC and trying to write tactics to recover structure from it is
the wrong way to go about things. Instead, our proof rules are designed to
produce VCs that have the right structure from the start, separating slprop

reasoning and other VCs by construction. The expensive unification-based
tactics to process large VCs are no longer needed. We only need to run tactics
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on very specific, well-identified sub-goals and the large SMT goals can be fed
as is by F⋆ to the SMT solver, once the tactics have completed.

Our tactics that focus on slprop implications are efficient because we use
proof-by-reflection. Rather than reflect the entire syntax of F⋆, we only reflect
the slprop skeleton of a term, and then can use certified, natively compiled
decision procedures for rewriting in commutative monoids and AC-matching
to (partially) decide slprop equivalence and solve for frames. What calls we
make to the unifier are only on relatively small terms.

Correspondence to Our Implementation The two judgments ⊢ and ⊢F cor-
respond to two new user-defined computation types in F⋆, namely Steel
and SteelF. F⋆’s effect system provides hooks to allow us to elaborate terms
written in direct style, let x = e in e' to bind_M_M' [[e]] (fun x ->

[[e']]) when e elaborates to [[e]] with a computation type whose head
constructor is M, and when the elaboration [[e']] has a type with a head
constructor M'. This allows us to compose, say, un-framed Steel computa-
tions with framed SteelF computations by first applying the frame around
the first computation and then calling the Bind rule. As such, we provide 4
binds for each of the combinations, rather than a single bind and a factored
frame. The precise details of how this works in F⋆ are beyond the scope of this
paper – Rastogi et al. [67] describe the facilities offered by F⋆’s effect system
which we use in this work.

Steel has two other kinds of computation types, for atomic computations
and for ghost (proof-only) computation steps. We apply the same recipe
to generate VCs for them, inserting frames at the leaves, and including
consequence and framing in copies of BIND and VAL used for these kinds of
computations. Ultimately, we have six computation types, three of which
are user-facing: Steel, SteelAtomic and SteelGhost. Behind the scenes,
each of these has a framed counterpart introduced by the elaborator and
eliminated whenever the user adds an annotation. These computation types
are ordered in an effect hierarchy, allowing smooth interoperation between
different kinds of computations; SteelAtomic computations are implicitly
lifted to Steel computations when needed, while SteelGhost can be used
transparently as either SteelAtomic or Steel.

An SMT-Friendly Encoding of Selectors We prove the soundness of our quin-
tuples with selectors by reducing them to raw quintuples in SteelCore. In Steel-
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Core quintuples { P ∣ R } x:t { Q ∣ S }raw, we have R:mempred P and S:mempost
P Q, capturing that R and S depend only on the P and Q fragments of the
initial and final memories, respectively.

mempred (p:slprop) =

f:(fpmem p -> prop){

forall (m:fpmem p) (m':mem{disjoint m m'}).

f m <==> f (join m m')}

mempost (p:slprop) (q:slprop) =

f:(fpmem p -> mempred q){

forall (m0:fpmem p) (m0':mem{disjoint m0 m0'})

(m1:fpmem q). f m0 m1 <==> f (join m0 m0') m1}

Thus every user annotation in SteelCore’s raw quintuples comes with an
obligation to show that the R and S terms depend only on their specified
footprint—these relational proofs on specifications can be overwhelming,
and require reasoning about disjoint and joined memories, breaking the
abstractions that separation logic offers. In comparison, selector predicates
are self-framing by construction: the predicates R and S can only access the
selectors of P and Q instead of the underlying memory, which are themselves
self-framing. By defining selector predicates as an abstraction on top of the
SteelCore program logic, we thus hide the complexity of the self-framing
property from both the user and the SMT solver.

To preserve the modularity inherent to separation logic reasoning when
using selector predicates, the postcondition of the FRAME rule previously
presented contains the proposition seleq ?F sf0 sf1, capturing that sel ?F sf0 =

sel ?F sf1.
Using this predicate, the SMT solver can derive that the selector of any

slprop contained in the frame is the same in the initial and final memories,
leveraging the fact that, for any m:fpmem (p * q), sel (p * q) m = (sel

p m, sel q m). But as the size of the frame grows, this becomes expensive;
the SMT solver needs to deconstruct and reconstruct increasingly large tuples.

Instead we encode seleq as the conjunction of equalities of the atomic
slprops selectors contained in the frame, where an atomic slprop does not
contain a *. For instance, p and q are the atomic slprops contained in p * q

Our observation is that most specifications pertain to atomic slprops; the
swap function presented in the introduction for instance is specified using
the selectors of ptr r1 and ptr r2, instead of (ptr r1 * ptr r2).
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Once the frame has been resolved using the approach presented in Section
4 of the related publication [54], generating these equalities is straightforward
using metaprogramming; we can flatten the frame according to the star
operator, and generate the conjunction of equalities to pass to the SMT solver.

Selectors can alleviate the need for existentially quantified ghost variables;
the value stored in a reference for instance can be expressed as a selector,
decluttering specifications. But, not all slprops have meaningful selectors,
nor do we expect that they should. For example, when using constructions
like PCMs to encode sharing disciplines, it is not always possible to define
a selector that returns the partial knowledge of a resource. However, when
applicable, selectors can significantly simplify specifications and proofs.

Evaluation This simplification can be illustrated by the two equivalent im-
plementations of Figure 4.6. Moreover, we evaluated the Steel framework on
several small-sized examples such as self-balancing trees and concurrent
data structures. The details of these examples can be found in Section 5 of
the related publication [54].

Summary of personal contributions I proposed an intermediate design and
implementation for selectors and framing tactic in an early version of the Steel
framework, on which I worked from August to October 2019. In particular, I
implemented the support for selectors in an intermediate version of the RST
Steel effect, as well as first version of the framing tactic that sorted the goals
waiting to be solved through a syntactic check, and fed them to the unifier in
the correct order. Lastly, I had minor contributions on the implementation of
section 5.2 of the paper for the self-balancing trees, which was refined and
rewritten by other Steel authors in the published version of the paper.

Conclusion

Starting with the analysis of the weaknesses of the Low⋆ domain-specific
languages, this chapter reflects a personal journey into the depths of stateful
program verification. When designing domain-specific languages like Low⋆ or
Steel, the proof obligations that the programs will generate are more important
that the expressiveness of the language itself. The quest of stateful program
verification to model programs like Figure 4.1 and offer a reasonable level of
proof automation for complex properties is not over.
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Conclusion

However, we believe that progress in this area will come with the diver-
sification of the proof backends used. The examples of Low⋆ and Iris (with
its applications) have shown that tactics and SMT automation each solve
one aspect of the program verification problem: tactics are adapted to the
algebraic structure of proof obligation coming from separation logic, while
SMT scales for proving functional equivalence properties for large programs
like HACL⋆ and LibSignal⋆ (see Chapter 2).

If the idea of splitting verification conditions and dispatching them to several
backends is not new in program verification (see Viper [68]), Steel chooses a
principled way both in its foundations (inspired by Iris) and its implementation,
sound by construction because completely mechanized within the F⋆ proof
assistant.

Of course, the new Steel framework needs to be evaluated more thoroughly
on real-world software to prove its effectiveness. However, once can note that
the development of this new framework directly came from the observation of
the shortcoming of the previous framework, Low⋆. These shortcomings (see
Section 4.1.1) can only be noticed when attempting large-scale applications
of the framework, largely beyond the traditional program verification evalua-
tions on hundred-lines-of-code-long functions and classical data structure
implementations.

Hence, this chapter illustrates the claims of Section 1.1.1 in the introduction
of this dissertation. We believe that effective progress in program verification
should embed the framework developers in a loop that goes from real-world
applications to theoretical foundations. That loop has already been experi-
mented successfully in high-profile projects like seL4 [69], and has somewhat
driven the design and implementation of the F⋆ proof assistant.

Nevertheless, opportunities for applying the current state of the art of
stateful program verification to real-world applications are becoming scarce, as
a lot of verification-friendly domains like kernel programming or cryptography
are reaching maturity. What is the next frontier for program verification?
If more general systems programming naturally comes up as an attractive
candidate, the techniques need to scale up to million lines of code, like the
Coccinelle [70]–[72] tool for semantic grep on device driver code.

Climbing this giant scaling step will take years of work and is completely
outside of the scope of an individual effort. Steel itself is a collaborative effort
involving a little less than a dozen people. To continue exploring the idea of
proof-oriented domain-specific language as part of our individual contribution,
we decided to leave Steel and F⋆, and focus on expanding program verification
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to a somewhat new area of application: legal expert systems. This will be the
subject of Chapter 5 and Chapter 6.
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C. Hriţcu, M. Narasimhamurthy, Z. Paraskevopoulou, C. Pit-Claudel,
J. Protzenko, et al., “Meta-F*: proof automation with SMT, tactics, and
metaprograms”, in European Symposium on Programming, Springer,
Cham, 2019, pp. 30–59.

[9] L. De Moura and N. Bjørner, “Efficient E-matching for SMT solvers”,
in International Conference on Automated Deduction, Springer, 2007,
pp. 183–198.
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Abstract

In the previous chapters, we have explored how domain-specific language design
can help bring formal methods to the table in the event of a rewrite of critical
applications in a new language. However, not all software gets re-written, and some
legacy implementation seem to never want to die. A classic example of such legacy
applications is banking software, which notoriously still runs on COBOL [1]–[3].

In this chapter, we make the case for domain-specific languages as gateways to
efficient modernization and formalization of legacy system. Luckily, the French tax
administration chose in 1988 to use a domain-specific language called M for its
income tax computation algorithm. Thanks to this fortuitous decision, we were able
to bring the aging system to the state of the art.
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Il faut reconnaître à la
pratique une logique qui
n’est pas celle de la logique
pour éviter de lui demander
plus de logique qu’elle n’en
peut donner et de se
condamner ainsi soit à lui
extorquer des incohérences,
soit à lui imposer une
cohérence forcée.

(Pierre Bourdieu,
Le sens pratique,1980)

Our new Constitution is now
established, and has an
appearance that promises
permanency; but in this
world nothing can be said to
be certain, except death
and taxes.

(Benjamin Franklin, in a letter
to Jean-Baptiste Le Roy,

1789)



5.1. The Challenge of Everlasting Maintenance

This chapter is based upon the following publication:

D. Merigoux, R. Monat, and J. Protzenko, “A modern compiler for the
french tax code”, in Proceedings of the 30th ACM SIGPLAN International
Conference on Compiler Construction, ser. CC 2021, Virtual, Republic of
Korea: Association for Computing Machinery, 2021, pp. 71–82, ISBN:
9781450383257. DOI: 10.1145/3446804.3446850. [Online]. Available:
https://doi.org/10.1145/3446804.3446850

My personal contribution to this publication has been the retro-engineering
of the M language, and half of the implementation of MLANG. I also led
the project and the discussions with the DGFiP.

5.1. The Challenge of Everlasting Maintenance

In this section, we discuss the general challenges associated with long-term
software maintenance, and how domain-specific languages can help. Then,
we introduce the case study for the rest of the chapter: the French income tax
computation algorithm.

5.1.1. The Language Obsolescence Trap

No1 software, unlike diamonds, lasts forever. But some, because of the
crucial objectives they accomplish, are intended to be used for an indefinite
period of time. In the 1960s and 1970s, banking institutions around the
world computerized their transaction management systems using the COBOL
programming language. Sixty years later, COBOL is no longer taught at
universities and is widely considered obsolete, but banks still use it to run
the global economy [5]. The choice of a programming language is necessary
to start a project. But even when choosing a language that is popular today,
one is not immune to the computer zeitgeist that has made many languages,
frameworks and technologies obsolete.

Considered on time scales of the duration of several careers, it is unlikely
that a technology of today will still be taught at university in 70 or 80 years.

1Section 5.1.1 is largely inspired by a blog post that I originally wrote in French. The English
translation credits should go to Dhruv Sharma.
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And as the original programmers retire, it becomes impossible to rely on the
labour market to provide a skilled, job-ready workforce.

What strategies should be adopted to guard against obsolescence in such
long-term projects? A first solution is available to very large organizations:
the creation of a generalist in-house language. This is the case of the Ada [6]
language, created in the 1980s by the US Department of Defense (DoD). By
imposing the use of this language in all its projects, the DoD was able to
create, from scratch, a demand for Ada programmers sufficient for the Ada
community to reach critical mass allowing it to survive in the long term. With
enough users and long term funding, Ada has been able to receive many
updates and its tooling continues to adapt to modern trends in programming
languages.

However, not all organizations have the size, the level of planning and
funding that the U.S. Department of Defense commands. Therefore, a second
strategy might be relevant for smaller projects that also have constraint of
long-term code maintenance. This chapter will make the claim that, thanks to
the use of a dedicated language, only two part-time PhD students are needed
to retrofit a formal semantics and modernize a compiler. Compare this with
the work required to port a code base. Of course, it is always easier for an
IT project manager to recruit a mass of low-skilled developers than to find
and retain profiles with a Masters in Computer Science, major in Compilation
and/or Theory.

With an established general-purpose language such as C or Java, one
only has the power to change the code to adapt and modify their software.
With a dedicated language and a well-tested compiler, the language itself
becomes a tool at the service of the software’s evolution, and no longer
a necessary evil to choose at the beginning which would inevitably turn
into insurmountable levels of technical debt anyway. A dedicated language
with a compiler well mastered by specialists trained in formal methods is a
formidable assurance of the project’s future and interoperability. The reason
for this is the agility of a dedicated language that can adapt to the evolution of
functional requirements as time passes. By adding language features to cover
new functional requirements, it is possible to keep the code concise and to
the point. By maintaining and evolving both the code and language together,
we are reminded that code and language form a coherent whole.

Beware, a dedicated language can become a double-edged sword without
the right skillset. The semantics of a language shouldn’t be changed on the
spur of the moment, because a tiny change can break the entire code base.
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For this reason, compiler engineers and formal methods specialists, far from
being rendered obsolete by statistical learning methods, remain and should
remain for a very long time absolutely crucial. The study of programming
languages, compiler theory and formal methods provide a real specific skill
that is extremely useful for many critical computing projects.

In a more figurative sense, the choice of the dedicated language and its
associated competence in formal methods can be compared to the choice
of craftsmanship in relation to an industrial process of porting code from
one language to another. Craftsmanship has a long tradition of transmitting
knowledge over the long term, based on a small number of independent
practitioners trained in high-level skills with relative versatility. In contrast,
the industry aims to transform the production process into a fairly rigid
chain of standardized tasks performed by low-skilled workers. Like other
production sectors, information technology tends to follow this process of
industrialization over the course of the time.

But industrialization requires critical mass and often the search for infinite
growth. We believe this analogy also applies to the programming languages.
In this chapter, we put this principle to application in a context particularly
favorable to its success : a forever-lasting critical codebase maintained in
a mid-sized public organization, that already made the choice of a domain-
specific language at the inception of the project. Our contributions should
demonstrate the effectiveness of our signature methodology (Section 1.3.1) for
the modernization of such a legacy critical infrastructure.

5.1.2. Case study: the French Income Tax Computation

The French Tax Code is a body of legislation amounting to roughly 3,500 pages
of text, defining the modalities of tax collection by the state. In particular, each
new fiscal year, a new edition of the Tax Code describes in natural language
how to compute the final amount of income tax (IR, for impôt sur le revenu)
owed by each household.

As in many other tax systems around the world, this computation is quite
complex. France uses a bracket system (as in, say, the US federal income
tax), along with a myriad of tax credits, deductions, optional rules, state-
sponsored direct aid, all of which are parameterized over the composition of
the household, that is, the number of children, their respective ages, potential
disabilities, and so on.

Unlike, say, the United States, the French system relies heavily on automa-
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“rules”
M files

“rules”
C files

“inter”
C files

Shared state
“calculette”

Shared library

DGFiP’s internal
compiler

GCC

Figure 5.1: Legacy architecture

tion. During tax season, French taxpayers log in to the online tax portal,
which is managed by the state. There, taxpayers are presented with online
forms, generally pre-filled. If applicable, taxpayers can adjust the forms, e.g.
by entering extra deductions or credits. Once the taxpayer is satisfied with
the contents of the online form, they send in their return. Behind the scenes,
the IR algorithm is run, and taking as input the contents of the forms, returns
the final amount of tax owed. The taxpayer is then presented with the result
at tax-collection time.

Naturally, the ability to independently reproduce and thus trust the IR
computation performed by the DGFiP is crucial. First, taxpayers need to un-
derstand the result, as their own estimate may differ (explainability). Second,
citizens may want to audit the algorithm, to ensure it faithfully implements
the law (correctness). Third, a standalone, reusable implementation allows
for a complete and precise simulation of the impacts of a tax reform, greatly
improving existing efforts [7], [8] (forecasting).

Unfortunately, we are currently far from a transparent, open-source, re-
producible computation. Following numerous requests (using a disposition
similar to the United States’ Freedom of Information Act), parts of the existing
source code were published. In doing so, the public learned that i) the existing
infrastructure is made up of various parts pieced together and that ii) key
data required to accurately reproduce IR computations was not shared with
the public.

The current, legacy architecture of the IR tax system is presented in Fig-
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ure 5.1. The bulk of the tax code is described as a set of “rules” authored
in M, a custom, non Turing-complete language. A total of 90,000 lines of M
rules compile to 535,000 lines of C (including whitespace and comments) via
a custom compiler. Rules are now mostly public [9]. Over time, the expressive
power of rules turned out to be too limited to express a particular feature,
known as liquidations multiples, which involves tax returns across different
years. Lacking the expertise to extend the M language, the DGFiP added in
1995 some high-level glue code in C, known as “inter”. The glue code is closer
to a full-fledged language, and has a non-recursive call-graph which may call
the “rules” computation multiple times with various parameters. The “inter”
driver amounts to 35,000 lines of C code and has not been released.

Both “inter” and “rules” are updated every year to follow updates in the law,
and as such, have been extensively modified over their 30-year operational
lifespan.

Our goal is to address these shortcomings by bringing the French tax code in-
frastructure into the 21st century. Specifically, we wish to: i) reverse-engineer
the unpublished parts of the DGFiP computation, so as to ii) provide an
explainable, open-source, correct implementation that can be independently
audited; furthermore, we wish to iii) modernize the compiler infrastructure,
eliminating in the process any hand-written C that could not be released
because of security concerns, thus enabling a host of modern applications,
simulations and use-cases.

• We start with a reverse-engineered formal semantics for the M domain-
specific language, along with a proof of type safety performed using the
Coq [10] proof assistant (Section 5.2.1).

• To eliminate C code from the ecosystem, we extend the M language with
enough capabilities to encode the logic of the high-level “inter” driver
(Figure 5.1) – we dub the new design M++ (Section 5.2.2).

• To execute M/M++ programs, we introduce MLANG, a complete re-
implementation which combines a reference interpreter along with an
optimizing compiler that generates C and Python code (Section 5.2.2).

• We evaluate our implementation: we show how we attained 100% confor-
mance on the legacy system’s testsuite, then proceed to enable a variety
of analyses and instrumentations to fuzz, measure and stress-test our
new system (Section 5.3.1).
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• We conclude with a plan for further modernization of the system, fore-
shadowing a big rewrite of the whole codebase (Section 5.3.2).

Our code is open-source and available on GitHub [11] and as an archived
artifact on Zenodo [12]. We have engaged with the DGFiP, and following
numerous discussions, iterations, and visits to their offices, we have been
formally approved to replace the legacy compiler infrastructure with our new
implementation, meaning that within a few years’ time, all French tax returns
should be processed using the compiler described in the present chapter.

5.2. Retrofitting a Domain-Specific Language

In this section, we apply our feature methodology of carving out a formal,
executable subset of a real-world critical codebase to the DGFiP’s income tax
computation. Starting from the legacy domain-specific language M, we extend
our efforts to a part of the code that ought to be programmed in a specific
language, weren’t it for historical mistakes.

5.2.1. The Formal Semantics of M

The 2018 version of the income tax computation [9] is split across 48 files, for
a total of 92,000 lines of code. The code is written in M, the input language
originally designed by the DGFiP. In order to understand this body of tax
code, we set out to give a semantics to M.

Overview of M M programs are made up of two parts: declarations and rules.
Declarations introduce input variables, intermediary variables, output vari-
ables and exceptions. Variables are either scalars or fixed-length arrays. Both
variables and exceptions are annotated with a human-readable description.
Variables that belong to the same section of the tax form are annotated with
the same kind. Examples of kinds include "triggers tax credit", or "is advance
payment". We will make use of those kinds later (Section 5.2.2) for partitioning
variables, and quickly checking whether any variable of a given kind has a
non-undef value.

Rules, on the other hand, capture the computational part of an M program;
they are either variable assignments or raise-if statements.
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As a first simplified example, the French tax code declares an input variable
V_0AC for whether an individual is single (value 1) or not (value 0). Lacking
any notion of data type or enumeration, there is no way to enforce statically
that an individual cannot be married (V_0AM) and single (V_0AC) at the same
time. Instead, an exception A031 is declared, along with a human-readable
description. Then, a rule raises an exception if the sum of the two variables
is greater than 1. (The seemingly superfluous + 0 is explained later in this
section.) For the sake of example, we drop irrelevant extra syntactic features,
and for the sake of readability, we translate keywords and descriptions into
English.

V_0AC : input family ... : "Checkbox : Single" type BOOLEAN ;

V_0AM : input family ... : "Checkbox : Married" type BOOLEAN ;

A031:exception :"A":"031":"00":"both married and single":"N";

if V_0AC + V_0AM + 0 > 1 then error A031 ;

As a second simplified example, the following M rule computes the value
of a hypothetical variable TAXBREAK. Its value is computed from variables
CHILDRENCOUNT (for the number of children in the household) and TAXOWED

(for the tax owed before the break) – the assigned expression relies on a
conditional and the built-in max function. This expression gives a better tax
break to households having three or more children.

TAXBREAK = if (CHILDRENCOUNT+0 > 2)

then max(MINTAXBREAK,TAXOWED * 20 / 100)

else MINTAXBREAK endif;

For the rest of this paper, we abandon concrete syntax and all-caps variable
names, in favor of a core calculus that faithfully models M: µM.

µM: A Core Model of M The µM core language omits variable declarations,
whose main purpose is to provide a human-readable description string that
relates them to the original tax form. The µM core language also elimi-
nates syntactic sugar, such as statically bounded loops, or type aliases (e.g.
BOOLEAN).

Finally, a particular feature of M is that rules may be provided in any order:
the M language has a built-in dependency resolution feature that automat-
ically re-orders computations (rules) and asserts that there are no loops in
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variable assignments. In our own implementation (that we will describe in
Section 5.2.2), we perform a topological sort; in our µM formalization, we
assume that computations are already in a suitable order.

Syntax of µM We describe the syntax of µM in Figure 5.2. A program is a
series of statements (“rules”). Statements are either raise-error-if, or assign-
ments. We define two forms of assignment: one for scalars and the other for
fixed-size arrays. The latter is of the form a[X, n] := e, where X is bound in
e (the index is always named X). Using Haskell’s list comprehension syntax,
this is to be understood as a ∶= [e∣X ← [0..n − 1]].

Expressions are a combination of variables (including the special index
expression X), values, comparisons, logic and arithmetic expressions, condi-
tionals, calls to builtin functions, or index accesses. Most functions exhibit
standard behavior on floating-point values, but M assumes the default IEEE-
754 rounding mode, that is, rounding to nearest and ties to even. The detailed
behavior of each function is described in Figure 5.3.

Values can be undef, which arises in two situations: references to variables
that have not been defined (i.e. for which the entry in the tax form has been
left blank) and out of bounds array accesses. All other values are IEEE-754
double-precision numbers, i.e. 64-bit floats. The earlier BOOLEAN type shown
in the introductory example is simply an alias for a float whose value is
implicitly 0 or 1. There is no other kind of value, as a reference to an array
variable is invalid. Function present discriminates the undef value from
floats.

Typing µM Types in µM are either scalar or array types. M does not offer
nested arrays. Therefore, typing is mostly about making sure scalars and
arrays are not mixed up.

In Figure 5.4, a first judgment Γ ⊢ e defines expression well-formedness.
It rules out references to arrays, hence enforcing that expressions have type
scalar and that no values of type array can be produced. Furthermore,
variables may have no assignment at all (if the underlying entry in the tax
form has been left blank) but may still be referred in other rules. Rather than
introduce spurious variable assignments with undef, we remain faithful to the
very loose nature of the M language and account for references to undefined
variables.

Then, Γ ⊢ ⟨program⟩ ⇛ Γ′ enforces well-formedness for a whole program
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⟨program⟩ ::= ⟨command⟩ | ⟨command⟩ ; ⟨program⟩

⟨command⟩ ::= if ⟨expr⟩ then ⟨error⟩
| ⟨var⟩ := ⟨expr⟩ | ⟨var⟩ [ X ; ⟨float⟩ ] := ⟨expr⟩

⟨expr⟩ ::= ⟨var⟩ | X | ⟨value⟩ | ⟨expr⟩ ⟨binop⟩ ⟨expr⟩
| ⟨unop⟩ ⟨expr⟩ |if ⟨expr⟩ then ⟨expr⟩ else ⟨expr⟩
| ⟨func⟩ ( ⟨expr⟩, . . . , ⟨expr⟩ ) | ⟨var⟩ [ ⟨expr⟩ ]

⟨value⟩ ::= undef | ⟨float⟩

⟨binop⟩ ::= ⟨arithop⟩ | ⟨boolop⟩

⟨arithop⟩ ::= + | - | * | /

⟨boolop⟩ ::= <= | < | > | >= | == | != | && | ||

⟨unop⟩ ::= - | ~

⟨func⟩ ::= round | truncate | max | min | abs
| pos | pos_or_null | null | present

Figure 5.2: Syntax of the µM language
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e1 ⊙ e2,⊙ ∈ {+,−} undef f2 ∈ F
undef undef 0⊙ f2
f1 ∈ F f1 ⊙ 0 f1 ⊙F f2

e1 ⊙ e2,⊙ ∈ {×,÷} undef f2 ∈ F, f2 ≠ 0 0
undef undef undef undef
f1 undef f1 ⊙F f2 0

b1 ⟨boolop⟩ b2 undef f2 ∈ F
undef undef undef
f1 ∈ F undef f1 ⟨boolop⟩F f2

m(e1, e2),m ∈ {min,max} undef f2 ∈ F
undef 0 mF(0, f2)
f1 ∈ F mF(f1,0) mF(f1, f2)

round(undef) = undef
round(f ∈ F) = floorF(f + sign(f) ∗ 0.50005)
truncate(undef) = undef
truncate(f ∈ F) = floorF(f + 10−6)
abs(x) ≡ if x >= 0 then x else -x
pos_or_null (x) ≡ x >= 0
pos(x) ≡ x > 0
null(x) ≡ x = 0
present(undef) = 0
present(f ∈ F) = 1

Figure 5.3: Function semantics. For context on round and truncate defini-
tions, see Section 5.2.2
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while returning an extended environment Γ′. We take advantage of the fact
that scalar and array assignments have different syntactic forms. M disallows
assigning different types to the same variable; we rule this out in T-ASSIGN-*.
A complete µM program is well-formed if ∅ ⊢ P ⇛ _.

Operational Semantics of µM At this stage, seeing that there are neither
unbounded loops nor user-defined (recursive) functions in the language, M
is obviously not Turing-complete. The language semantics are nonetheless
quite devious, owing to the undef value, which can be explicitly converted to
a float via a + 0, as seen in earlier examples. We proceed to formalize them in
Coq [10], using the Flocq library [13]. This ensures we correctly account for
all cases related to the undef value, and guides the implementation of MLANG

(Section 5.2.2).
The semantics of expressions is defined in Figure 5.5. The memory en-

vironment, written Ω is a function from variables to either scalar values
(usually denoted v), or arrays (written (v0, . . . , vn−1)). A value absent from the
environment evaluates to undef.

The special array index variable X is evaluated as a normal variable. Condi-
tionals reduce normally, except when the guard is undef: in that case, the
whole conditional evaluates into undef. If an index evaluates to undef, the
whole array access is undef. In the case of a negative out-of-bounds index
access the result is 0; in the case of a positive out-of-bounds index access
the result is undef. Otherwise, the index is truncated into an integer, used to
access Ω. The behavior of functions, unary and binary operators is described
in Figure 5.3.

Figuring out these (unusual) semantics took over a year. We initially worked
in a black-box setting, using as an oracle for our semantics the simplified
online tax simulator offered by the DGFiP. After the initial set of M rules
was open-sourced, we simply manually crafted test cases and fed those by
hand to the online simulator to adjust our semantics. This allowed us to
gain credibility and to have the DGFiP take us seriously. After that, we were
allowed to enter the DGFiP offices and browse the source of their M compiler,
as long as we did not exfiltrate any information. This final “code browsing”
allowed us to understand the “inter” part of their compiler, a well as nail down
the custom operators from Figure 5.11.

For statements, the memory environment Ω is extended into Ωc, to propagate
the error case that may be raised by exceptions. An assignment updates a
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Global function environment ∆:
∆(round) = ∆(truncate) = ∆(abs) = ∆(pos)

= ∆(pos_or_null) = ∆(null) = ∆(present) = 1

∆(min) = ∆(max) = ∆(⟨arithop⟩) = ∆(⟨boolop⟩) = 2

Judgment : Γ ⊢ e (“Under Γ, e is well-formed”)

T-FLOAT

Γ ⊢ ⟨float⟩

T-UNDEF

Γ ⊢ undef

T-VAR-UNDEF
x /∈ dom Γ

Γ ⊢ x

T-VAR
Γ(x) = scalar

Γ ⊢ x

T-INDEX-UNDEF
x /∈ dom Γ Γ ⊢ e

Γ ⊢ x[e]

T-CONDITIONAL
Γ ⊢ e1 Γ ⊢ e2 Γ ⊢ e3

Γ ⊢ if e1 then e2 else e3

T-INDEX
Γ(x) = array Γ ⊢ e

Γ ⊢ x[e]

T-FUNC
∆(f) = n Γ ⊢ e1 ⋯ Γ ⊢ en

Γ ⊢ f(e1, . . . , en)

Judgment : Γ ⊢ ⟨command⟩ ⇛ Γ′ and

Γ ⊢ ⟨program⟩ ⇛ Γ′ (“P transforms Γ to Γ′”)

T-COND
Γ ⊢ e

Γ ⊢ if e then ⟨error⟩ ⇛ Γ

T-SEQ

Γ0 ⊢ c⇛ Γ1 Γ1 ⊢ P ⇛ Γ2

Γ0 ⊢ c ; P ⇛ Γ2

T-ASSIGN-SCALAR
x ∈ Γ⇒ Γ(x) = scalar Γ ⊢ e

Γ ⊢ x := e ⇛ Γ[x↦ scalar]

T-ASSIGN-ARRAY
x ∈ Γ⇒ Γ(x) = array Γ[X↦ scalar] ⊢ e

Γ ⊢ x[X, n] := e ⇛ Γ[x↦ array]

Figure 5.4: Typing of expressions and programs
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Judgment : Ω ⊢ e ⇓ v (“Under Ω, e evaluates to v”)

D-VALUE
v ∈ ⟨value⟩

Ω ⊢ v ⇓ v

D-VAR-UNDEF
x /∈ dom Ω

Ω ⊢ x ⇓ undef

D-VAR
Ω(x) = v

Ω ⊢ x ⇓ v

D-COND-TRUE
Ω ⊢ e1 ⇓ f f ∉ {0,undef} Ω ⊢ e2 ⇓ v2

Ω ⊢ if e1 then e2 else e3 ⇓ v2

D-X
Ω(X) = v

Ω ⊢ X ⇓ v

D-COND-FALSE
Ω ⊢ e1 ⇓ 0 Ω ⊢ e3 ⇓ v3

Ω ⊢ if e1 then e2 else e3 ⇓ v3

D-INDEX-NEG
Ω ⊢ e ⇓ r r < 0

Ω ⊢ x[e] ⇓ 0

D-COND-UNDEF
Ω ⊢ e1 ⇓ undef

Ω ⊢ if e1 then e2 else e3 ⇓ undef

D-INDEX-UNDEF
Ω ⊢ e ⇓ undef

Ω ⊢ x[e] ⇓ undef

D-INDEX-OUTSIDE
Ω ⊢ e ⇓ r r ⩾ n ∣Ω(x)∣ = n

Ω ⊢ x[e] ⇓ undef

D-TAB-UNDEF
x /∈ dom Ω

Ω ⊢ x[e] ⇓ undef

D-INDEX
Ω(x) = (v0, . . . , vn−1) Ω ⊢ e ⇓ r r ∈ [0, n) r′ = truncateF(r)

Ω ⊢ x[e] ⇓ vr′

D-FUNC
Ω ⊢ e1 ⇓ v1 ⋯ Ω ⊢ en ⇓ vn

Ω ⊢ f(e1, . . . , en) ⇓ f(v1, . . . , vn)

Figure 5.5: Operational semantics: expressions
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Judgment : Ωc ⊢ c⇛ Ω′
c and

Ωc ⊢ P ⇛ Ω′
c (“Under Ωc, P produces Ω′

c”)

D-ASSIGN
Ωc ≠ error Ωc ⊢ e ⇓ v

Ωc ⊢ x := e⇛ Ωc[x↦ v]

D-ASSERT -OTHER
Ωc ≠ error Ωc ⊢ e ⇓ v v ∈ {0,undef}

Ωc ⊢ if e then ⟨error⟩ ⇛ Ωc

D-ASSERT -TRUE
Ωc ≠ error Ωc ⊢ e ⇓ f f ∉ {0,undef}

Ωc ⊢ if e then ⟨error⟩ ⇛ error

D-ERROR

error ⊢ c⇛ error

D-SEQ

Ωc,0 ⊢ c⇛ Ωc,1 Ωc,1 ⊢ P ⇛ Ωc,2

Ωc,0 ⊢ c ; P ⇛ Ωc,2

D-ASSIGN-TABLE
Ωc ≠ error Ωc[X↦ 0] ⊢ e ⇓ v0 ⋯ Ωc[X↦ n − 1] ⊢ e ⇓ vn−1

Ωc ⊢ x[X, n] := e⇛ Ωc[x↦ (v0, . . . , vn−1)]

Figure 5.6: Operational semantics: statements
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valid memory environment with the computed value. If an assertion’s guard
evaluates to a non-zero float, an error is raised; otherwise, program execu-
tion continues. Rule D-ERROR propagates a raised error across a program.
The whole-array assignment works by evaluating the expression in different
memory environments, one for each index.

Type Safety We now prove type safety in Coq. Owing to the unusual seman-
tics of the undef value, and to the lax treatment of undefined variables, this
provides an additional level of guarantee, by ensuring that reduction always
produces a value or an error (i.e. we haven’t forgotten any corner cases in our
semantics). Furthermore, we show in the process that the store is consistent
with the typing environment, written Γ ⊳ Ω. This entails store typing (i.e.
values of the right type are to be found in the store) and proper handling of
undefined variables (i.e. dom Ω ⊆ dom Γ).

Theorem (Expressions). If Γ ⊳ Ω and Γ ⊢ e , then there exists v such that
Γ ⊢ e ⇓ v.

We extend ⊳ to statements, so as to account for exceptions:

Γ ⊳c Ωc⇐⇒ Ωc = error ∨ Γ ⊳ Ωc

Theorem (Statements). If Γ ⊢ c⇛ Γ′ et Γ ⊳c Ωc, then there exists Ω′
c such that

Ωc ⊢ c⇛ Ω′
c and Γ′

⊳c Ω′
c.

We provide full proofs and definitions in Coq, along with a guided tour of
our development, in the supplement [12].

5.2.2. Overcoming Historical Mistakes with Language Design

As described in Figure 5.1, the internal compiler of the DGFiP compiles M
files (Section 5.2.1) to C code. Insofar as we understand, the M codebase
originally expressed the whole income tax computation. However, in the 1990s
(Section 5.1.2), the DGFiP started executing the M code twice, with slightly
different parameters, in order for the taxpayer to witness the impact of a tax
reform. Rather than extending M with support for user-defined functions,
the DGFiP wrote the new logic in C, in a folder called “inter”, for multi-year
computations. This piece of code can read and write variables used in the
M codebase using shared global state. To assemble the final executable,
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⟨program⟩ ::= ⟨fundecl⟩*

⟨fundecl⟩ ::= ⟨funname⟩ ( ⟨var⟩* ): ⟨command⟩*

⟨command⟩ ::= if ⟨expr⟩ then ⟨command⟩* else ⟨command⟩*
| partition with ⟨var_kind⟩ : ⟨command⟩*
| ⟨var⟩ = ⟨expr⟩ | ⟨var⟩* <- ⟨fun⟩() | del ⟨var⟩

⟨expr⟩ ::= ⟨var⟩ | ⟨float⟩ | undef | ⟨expr⟩ ⟨binop⟩ ⟨expr⟩ | ⟨unop⟩ ⟨expr⟩
| ⟨builtin⟩ ( ⟨expr⟩, . . . , ⟨expr⟩ ) | exists( ⟨var_kind⟩ )

⟨binop⟩ ::= ⟨arithop⟩ | ⟨boolop⟩

⟨arithop⟩ ::= + | - | * | /

⟨boolop⟩ ::= <= | < | > | >= | == | != | && | ||

⟨unop⟩ ::= - | ~

⟨var_kind⟩ ::= taxbenefit | deposit | ...

⟨fun⟩ ::= ⟨funname⟩ | call_m

⟨builtin⟩ ::= present | cast

Figure 5.7: Syntax of the M++ language
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M-produced C files and hand-written “inter” C files are compiled by GCC and
distributed as a shared library. Over time, the “inter” folder grew to handle a
variety of special cases, multiplying calls into the M codebase. At the time of
writing, the “inter” folder amounts to 35,000 lines of C code.

This poses numerous problems. First, the mere fact that “inter” is written
in C prevents it from being released to the public, the DGFiP fearing security
issues that might somehow be triggered by malicious inputs provided by the
taxpayer. Therefore, the taxpayer cannot reproduce the tax computation since
key parts of the logic are missing. Second, by virtue of being written in C,
“inter” does not compose with M, hindering maintainability, readability and
auditability. Third, C limits the ability to modernize the codebase; right now,
the online tax simulator is entirely written in C using Apache’s CGI feature
(including HTML code generation), a very legacy infrastructure for Web-based
development. Fourth, C is notoriously hard to analyze, preventing both the
DGFiP and the taxpayer from doing fine-grained analyses.

To address all of these limitations, we design M++, a companion domain-
specific language that is powerful enough to completely eliminate the hand-
written C code, and overcome the historical mistake of the “inter” files with
modern language design.

Concrete Syntax and New Constructions The chief purpose of the M++ domain-
specific language is to repeatedly call the M rules, with different M variable
assignments for each call. To assist with this task, M++ provides basic com-
putational facilities, such as functions and local variables. In essence, M++
allows implementing a “driver” for the M code.

Figure 5.8 shows concrete syntax for M++. We chose syntax resembling
Python, where block scope is defined by indentation. As the French adminis-
tration moves towards a modern digital infrastructure, Python seems to be
reasonably understood across various administrative services.

Figure 5.7 formally lists all of the language constructs that M++ provides. A
program is a sequence of function declarations. M++ features two flavors of
variables. Local variables follow scoping rules similar to Python: there is one
local variable scope per function body; however, unlike Python, we disallow
shadowing and have no block scope or nonlocal keyword. Local variables
exist only in M++. Variables in all-caps live in the M variable scope, which is
shared between M and M++, and obey particular semantics.
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Semantics of M++ Two constructs support the interaction between M and
M++: the <- and partition operators. They have slightly unusual semantics,
in the way that they deal with the M variable scope. These semantics are heav-
ily influenced by the needs of the DGFiP, as we strived to provide something
that would feel intuitive to technicians in the French administration.

To precisely define the expected behavior, Figure 5.9 presents reduction
semantics of the form ∆,Ω1 ⊢ c↝ Ω2, meaning command c updates the store
from Ω1 to Ω2, given the functions declared in ∆.

We distinguish built-ins, which may only appear in expressions and do not
modify the global store, from functions, which are declared at the top-level
and may modify the store. The call_m operation is a special function. The
<- operator takes a function call, and executes it in a copy of the memory.
Then, only those variables that appear on the left-hand side see their value
propagated to the parent execution environment. Thus, call_m only affects
variables X⃗.

To execute the function call, the <- operator either looks up definitions in
∆, the environment of user-defined functions, or executes the M rules in the
call_m case, relying on the earlier definition of ⇛ (Figure 5.6).

Worded differently, our semantics introduce a notion of call stack and treat
the M computation as a function call returning multiple values. It is to be
noted that the original C code had no such notion, and that the X⃗ were
nothing more than mere comments. As such, there was no way to statically
rule out potential hidden state persisting from one call_m to another since the
global scope was modified in place. With this formalization and its companion
implementation, we were able to confirm that there is currently no reliance on
hidden state (something which we suspect took considerable effort to enforce
in the hand-written C code), and were able to design a much more principled
semantics that we believe will lower the risk of future errors.

The partition operation operates over a variable kind k (Section 5.1.2).
The sub-block c of partition executes in a restricted scope, where variables
having kind k are temporarily set to undef. Upon completion of c, the vari-
ables at kind k are restored to their original value, while other variables are
propagated from the sub-computation into the parent scope. This allows
running computations while “disabling” groups of variables, e.g. ignoring an
entire category of tax credits.
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1 compute_benefits():
2 if exists(taxbenefit) or exists(deposit):
3 V_INDTEO = 1
4 V_CALCUL_NAPS = 1
5 partition with taxbenefit:
6 NAPSANSPENA, IAD11, INE, IRE, PREM8_11 <- call_m()
7 iad11 = cast(IAD11)
8 ire = cast(IRE)
9 ine = cast(INE)

10 prem = cast(PREM8_11)
11 V_CALCUL_NAPS = 0
12 V_IAD11TEO = iad11
13 V_IRETEO = ire
14 V_INETEO = ine
15 PREM8_11 = prem

Figure 5.8: Example function defined in M++

Example Figure 5.8 provides a complete M++ example, namely the function
compute_benefits. The conditional at line 2 uses a variable kind-check
(Section 5.1.2) to see if any variables of kind “tax benefit” have a non-undef
value. Then, lines 3-4 set some flags before calling M. Line 5 tells us that the
call to M at line 6 is to be executed in a restricted context where variables of
kind “tax benefit” are set to undef. Line 6 runs the M computation, over the
current state of the M variables; five M output variables are retained from this
M execution, while the rest are discarded. Lines 7-11 represent local variable
assignment, where cast has the same effect as + 0 in M, namely, forcing the
conversion of undef to 0. Then, lines 11-15 set M some variables as input for
later function calls.

After clarifying the semantics of M (Section 5.2.1), and designing a new
domain-specific language to address its shortcomings (M++), we now present
MLANG, a modern compiler for both M and M++.

Architecture of MLANG MLANG takes as input an M codebase, an M++ file,
and a file specifying assumptions (described in the next paragraph). MLANG

currently generates Python or C; it also offers a built-in interpreter for compu-
tations. MLANG is implemented in OCaml, with around 9,000 lines of code.
The general architecture is shown in Figure 5.10. The M files and the M++
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Judgments:

∆,Ω ⊢ e £ v (“Under ∆,Ω, e evaluates into v”)

∆,Ω1 ⊢ c↝ Ω2 (“Under ∆, c transforms Ω1 into Ω2”)

CAST -FLOAT
∆,Ω ⊢ e £ f f ≠ undef

∆,Ω ⊢ cast(e) £ f

CAST -UNDEF
∆,Ω ⊢ e £ undef

∆,Ω ⊢ cast(e) £ 0

EXISTS-TRUE
∃X ∈ Ω,kind(X) = k ∧Ω(X) ≠ undef

∆,Ω ⊢ exists(k) £ 1

EXISTS-FALSE
∀X ∈ Ω,kind(X) ≠ k ∨Ω(X) = undef

∆,Ω ⊢ exists(k) £ 0

CALL

Ω1 ⊢M rules ⇛ Ω2 if f = call_m
∆,Ω1 ⊢∆(f) ↝ Ω2 otherwise

Ω3(Y ) = Ω1(Y ) if Y /∈ X⃗

Ω3(Y ) = Ω2(Y ) if Y ∈ X⃗

∆,Ω1 ⊢ X⃗ ← f() ↝ Ω3

PARTITION
Ω2(Y ) = undef if kind(Y ) = k
Ω2(Y ) = Ω1(Y ) otherwise

∆,Ω2 ⊢ c↝ Ω3
Ω4(Y ) = Ω1(Y ) if kind(Y ) = k
Ω4(Y ) = Ω3(Y ) otherwise

∆,Ω1 ⊢ partition with k ∶ c↝ Ω4

DELETE
∆,Ω1 ⊢ v = undef↝ Ω2

∆,Ω1 ⊢ del v ↝ Ω2

Figure 5.9: Reduction rules of M++
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sources.m

source.mpp

M AST

M++ AST

M IR

M++ IR

BIR

assumptions.m_spec

OIR C

Python

Interpreter

Parsing Desugaring Inlining Optimization Transpiling

Figure 5.10: MLANG compilation passes

program are first parsed and transformed into intermediate representations.
These intermediate representations are inlined into a single backend inter-
mediate representation (BIR), consisting of assignments and conditionals.
Inlining is aware of the semantic subtleties described in Figure 5.9 and uses
temporary variable assignments to save/restore the shared M/M++ scope.
BIR code is then translated to the optimization intermediate representation
(OIR) in order to perform optimizations. OIR is the control-flow-graph (CFG)
equivalent of BIR.

OIR is the representation on which we perform our optimizations (Sec-
tion 5.3.1). For instance, in order to perform constant propagation, we must
check that a given assignment to a variable dominates all its subsequent uses.
A CFG is the best data structure for this kind of analysis. We later on switch
back to the AST-based BIR in order to generate textual C output.

In M, a variable not defined in the current memory environment evaluates
to undef (rule D-VAR-UNDEF, Figure 5.5). This permissive behavior is fine for
an interpreter which has a dynamic execution environment; however, our goal
is to generate efficient C and Python code that can be integrated into existing
software. As such, declaring every single one of the 27,113 possible variables
(as found in the original M rules) in C would be quite unsavory.

We therefore devise a mechanism that allows stating ahead of time which
variables can be truly treated as inputs, and which are the outputs that we
are interested in. Since these vary depending on the use-case, we choose to
list these assumptions in a separate file that can be provided alongside with
the M/M++ source code, rather than making this an intrinsic, immutable
property set at variable-declaration time. Doing so increases the quality of the
generated C or Python.
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// my_var1 is a local variable always defined
#define my_truncate(a) ( my_var1=(a)+0.000001,floor(my_var1) )
#define my_round(a) (floor(

(a<0) ? (double)(long long)(a-.50005)
: (double)(long long)(a+.50005)))

Figure 5.11: Custom rounding and truncation rules

We call these assumption files; we have hand-written 5 of those. All is the
empty file, i.e. no additional assumptions. This leaves 2459 input variables,
and 10,411 output variables for the 2018 codebase. Selected outs enables
all input variables, but retains only 11 output variables. Tests corresponds to
the inputs and outputs used in the test files used by the DGFiP. Simplified
corresponds to the simplified simulator released each year by the DGFiP a
few months before the full income tax computation is released. There are 214
inputs, and we chose 11 output variables. Basic accepts as inputs only the
marital status and the salaries of each individual of the couple. The output is
the income tax.

The DGFiP’s legacy system has a single backend that produces pre-ANSI
(K&R) C. For each M rule, two C computations are emitted. The first one
aims to determine whether the resulting value is defined. It operates on C’s
char type, where 0 is undefined or 1 is defined. The second computation
is syntactically identical, except it operates on double and thus computes
the actual arithmetic expression. This two-step process explains some of the
operational semantics: with 0 being undefined, the special value undef is
absorbing for e.g. the multiplication. Careful study of the generated code also
allowed us to nail down some non-standard rounding and truncation rules
which had until then eluded us. We list them in Figure 5.11; these are used
to implement the built-in operators from Figure 5.2 in both our interpreter
and backends.

Our backend generates C and Python from BIR. Since BIR only features
assignments, arithmetic and conditionals, we plan to extend it with backends
for JavaScript, R/MatLab and even SQL for in-database native tax computa-
tion. Depending on the DGFiP’s appetite for formal verification, we may verify
the whole compiler since the semantics are relatively small.

Implementing a new backend is not very onerous: it took us 500 lines for
the C backend and 375 lines for the Python backend. Both backends are
validated by running them over the entire test suite and comparing the result
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with our reference interpreter.
Our generated code only relies on a small library of helpers which imple-

ment operations over M values. These helpers are aware of all the semantic
subtleties of M and are manually audited against the paper semantics.

5.3. Modernizing Programs and Languages Together

Building on this custom-domain specific patchwork of languages handled
through a unified compiler, we reach for a few low-hanging fruits that bring
novel insights about the codebase and how it could be improve. Finally, we
discuss future work for a complete and principled incremental rewrite of
the income tax algorithm that would be compatible with the constrains of
continuous service.

5.3.1. The Compiler as a Program Analysis Platform

A semantics-aware compiler for a domain-specific language can take advan-
tage of all the domain-specific assumptions one can make on the programs.
Hence, we implemented in MLANG several optimization and analysis passes
over M and M++ programs. With a minimal compiler implementation effort,
we are able to access critical global information about the precision of the
income tax computation, or generate efficient code for batch processing.

Optimizations In the 2018 tax code, the initial number of BIR instructions
after inlining M and M++ files together is 656,020. This essentially corre-
sponds to what the legacy compiler normally generates, since it performs no
optimizations.

Thanks to its modern compiler architecture, MLANG can easily perform
numerous textbook optimizations, namely dead code elimination, inlining and
partial evaluation. This allows greatly improving the quality of the generated
code.

We now present a series of optimizations, performed on the OIR intermediate
representation. The number of instructions after these optimizations is shown
in Figure 5.12. Without any assumption (All), the optimizations shrink the
generated C code to 15% of the unoptimized size (a factor of 6.5). With the most
restrictive assumption file (Simplified), only 0.47% of the original instructions
remain after optimization.
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Spec. name # inputs # outputs # instructions

All 2,459 10,411 129,683
Selected outs 2,459 11 99,922
Tests 1,635 646 111,839
Simplified 228 11 4,172
Basic 3 1 553

Figure 5.12: Number of instructions generated after optimization. Instruc-
tions with optimizations disabled: 656,020.

⊺

undef#
⟨float⟩#

�

Figure 5.13: Definedness lattice

Due to the presence of undef, some usual optimizations are not avail-
able. For example, optimizing e * 0 into 0 is incorrect when e is undef, as
undef * 0 = undef. Similarly, e + 0 cannot be rewritten as e. Our partial
evaluation is thus combined with a simple definedness analysis. The lattice of
the analysis is shown in Figure 5.13; we use the standard sharp symbol of
abstract interpretation [14] to denote abstract elements. The transfer function
absorb# defined in Figure 5.14 is used to compute the definedness in the
case of the multiplication, the division and all operators in ⟨boolop⟩. The
cast# transfer function is used for the addition and the subtraction.

This definedness analysis enables finer-grained partial evaluation rules,
such as those presented in Figure 5.15.

d1 d2 absorb#
(d1, d2) cast#

(d1, d2)

undef# undef# undef# undef#

undef#
⟨float⟩# undef#

⟨float⟩#

⟨float⟩# undef# undef#
⟨float⟩#

⟨float⟩# ⟨float⟩# ⟨float⟩# ⟨float⟩#

Figure 5.14: Transfer functions over the definedness lattice, implicitly lifted
to the full lattice.
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e + undef↝ e e ∶ ⟨float⟩# + 0↝ e

e ∗ 1↝ e e ∶ ⟨float⟩# ∗ 0↝ 0
max(0,min(0, x)) ↝ 0 present(undef) ↝ 0

max(0,−max(0, x)) ↝ 0 present(e ∶ ⟨float⟩#) ↝ 1

Figure 5.15: Examples of optimizations

The optimizations for + 0 and * 0 are invalid in the presence of IEEE-754
special values (NaN, minus zero, infinities) [15], [16]. We have instrumented
the M code to confirm that these are valid on the values used. But for safety,
these unsafe optimizations are only enabled if the --fast_math flag is set.

Performance of the Generated Code Due to the sheer size of the code and
number of variables, generating efficient code is somewhat delicate – we had
the pleasure of breaking both the Clang and Python parsers because of an
exceedingly naïve translation. Thankfully, owing to our flexible architecture
for MLANG, we were able to quickly iterate and evaluate several design choices.

We now show the benefits of a modern compiler infrastructure, and proceed
to describe a variety of instrumentations, techniques and tweaking knobs
that allowed us to gain insights on the the tax computation. By bringing the
M language into the 21st century, we not only greatly enhance the quality of
the generated code, but also unlock a host of techniques that significantly
increase our confidence in the French tax computation.

We initially generated C code that would emit one local variable per M
variable. But with tens of thousands of local variables, running the code
required ulimit -s. We analyzed the legacy code and found out that the
DGFiP stored all of the M variables in a global array. We implemented the
same technique and found out that with -O1, we were almost as fast as the
legacy code. We attribute this improvement to the fact that the array, which
is a few dozen kB, which fits in the L2 cache of most modern processors. This
is a surprisingly fortuitous choice by the DGFiP.

See Figure 5.16 for full results. In the grand scheme of things, the cost of
computing the final tax is dwarfed by the time spent generating a PDF sum-
mary for the taxpayer (∼200ms). The 500μs difference between the DGFiP’s
system and ours is thus insignificant.
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Scheme M compiler C compiler Bin. size Time

Original DGFiP GCC -O0 7 Mo ∼ 1.5 ms
Original DGFiP GCC -O1 7 Mo ∼ 1.5 ms
Array MLANG Clang -O0 19 Mo ∼ 4 ms
Array MLANG Clang -O1 10 Mo ∼ 2 ms

Figure 5.16: Performance of the C code generated by various compilation
schemes for the M code. The time measured is the time spent
inside the main tax computation function for one fiscal household
picked in the set of test cases. Size of the compiled binary is
indicated. “Original” corresponds to the DGFiP’s legacy system.
“Local vars” corresponds to MLANG’s C backend mapping each M
variable to a C local variable.

The Cost of IEEE-754 Relying on IEEE-754 and its limited precision for some-
thing as crucial as the income tax of an entire nation naturally raises ques-
tions. Thanks to our new infrastructure, we were able to instrument the
generated code and gain numerous insights.

We tweaked our backend to use the MPFR multiprecision library [17]. With
1024-bit floats, all tests still pass, meaning that there is no loss of precision
with the double-precision 64-bit format.

We then instrumented the code to measure the effect of the IEEE-754
rounding mode on the final result. Anything other than the default (rounding
to nearest, ties to even) generates incorrect results. The control-flow remains
roughly the same, but some comparisons against 0 do give out different
results as the computation skews negatively or positively. We plan in the
future to devise a static analysis that could formally detect errors, such as
comparisons that are always false, or numbers that may be suspiciously close
to zero (denormals).

Nevertheless, floating-point computations are notoriously hard to analyze
and reason about, so we set out to investigate replacing floats with integer
values. In our first experiment, we adopted big decimals, i.e. a bignum for
the integer part and a fixed amount of digits for the fractional part. Our test
suite indicates that the integer part never exceeds 9999999999 (encodable in
37 bits); it also indicates that with 40 bits of precision for the fractional part,
we get correct results. This means that a 128-bit integer would be a viable
alternative to a double, with the added advantage that formal analysis tools
would be able to deal with it much better.
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Finally, we wondered if it was possible to completely work without floating-
point and eliminate imprecision altogether, taking low-level details such as
rounding mode and signed zeroes completely out of the picture.

To that end, we encoded values as fractions where both numerator and de-
nominator are big integers. We observed that both never exceed 2128, meaning
we could conceivably implement values as a struct with two 128-bit integers
and a sign bit. We have yet to investigate the performance impact of this
change.

Test-case Generation The DGFiP test suite is painstakingly constructed by
hand by lawyers year after year. From this test suite, we extracted 476 usable
test cases that don’t raise any exceptions (see Section 5.1.2). The DGFiP has
no infrastructure to automatically generate cases that would exercise new
situations. As such, the test suite remains relatively limited in the variety
of households it covers. Furthermore, many of the hand-written tests are
for previous editions of the tax code, and describe situations that would be
rejected by the current tax code.

Generating test cases is actually non-trivial: the search space is incredibly
large, owing to the amount of variables, but also deeply constrained, owing to
the fact that most variables only admit a few possible values (Section 5.1.2),
and are further constrained in relationship to other variables.

We now set out to automatically generate fresh (valid) test cases for the
tax computation, with two objectives: assert on a very large number of test
cases that our code and the legacy implementation compute the same result;
and exhibit corner cases that were previously not exercised, so as to generate
fresh novel tax situations for lawmakers to consider.

We start by randomly mutating the legacy test suite, in order to generate
new distinct, valid test cases. If a test case raises an exception, we discard it.
We obtain 1267 tests, but these are, unsurprisingly, very close to the legacy
test suite and do not exercise very many new situations. They did, however,
help us when reverse-engineering the semantics of M. We now have 100%
conformance on those tests.

In order to better explore the search space, we turn to AFL [18]. The tool
admits several usage modes – finding genuine crashes (e.g. segfaults), or
generating test cases for further seeding into the rest of the testing pipeline.
We focus on the latter mode, meaning that we generate an artificial “crash”
when a synthesized testcase raises no M errors, that is, when we have found
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a valid testcase. We first devise an injection from opaque binary inputs,
which AFL controls, to the DGFiP input variables. Once “crashes” have been
collected, we simply emit a set of test inputs that has the same format as the
DGFiP.

Thanks to this very flexible architecture, we were able to perform fully
general fuzzing exercising all input variables, as well as targeted fuzzing that
focuses on a subset of the variables. The former takes a few hours on a
high-end machine; the latter mere minutes. We synthesized around 30,000
tests cases, which we reduced down to 275 using afl-cmin.

So far, the fuzzer-generated test case have pointed out of a few bugs in
MLANG’s optimizations and backends. We plan to further use AFL to find
find test cases that satisfy extra properties not originally present in the tax
code, e.g. an excessively high marginal tax rate that might raise some legality
questions.

We attempted to use dynamic symbolic execution tool KLEE [19], but found
out that it only had extremely limited support for floating-point computations.
As detailed earlier, we have found that integer based computations are a valid
replacement for floats, and plan to use this alternate compilation scheme to
investigate whether KLEE would provide interesting test cases.

Coverage Measurements Finally, we wish to evaluate how “good” our new
test cases are. Code coverage seems like a natural notion, especially seeing
that there is currently none in the DGFiP infrastructure. However, traditional
code coverage makes little sense: conditionals are very rare in the generated
code.

Rather, we focus on value coverage: for each assignment in the code, we
count the number of distinct values assigned during the execution of an entire
test case. This is a good proxy for test quality: the more different values flow
through an assignment, the more interesting the tax situation is.

Figure 5.17 shows our measurements. The first take-away is that our
randomized tests did not result in meaningful tests: the number of assign-
ments that are uncovered actually increased. The tests we obtained with AFL,
however, significantly increase the quality of test coverage. We managed to
synthesize many tests that exercise statements previously unvisited by the
DGFiP’s test suite, and exhibit much more complex assignments (2 or more
different values assigned).

Our knowledge of the existing DGFiP test suite is incomplete, as we only
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Figure 5.17: Value coverage of assignments for each test suite

have access to a partial set of tests. In particular, a special set of rules apply
when the tax needs to be adjusted later on following an audit, and the tests
for these have not been communicated to us. We hope to obtain visibility onto
those in the future.

5.3.2. Thinking Ahead: Planning for a Smooth Transition

Although the work presented in this chapter could give the income tax legacy
infrastructure a sunny future, a social problem sentences the M codebase to
a short lifespan. Indeed, the M codebase is the brainchild of two DGFiP civil
servants that have been charged of its development and maintenance since
1988. After more than 30 years of service, these civil servants are now nearing
retirement age, leaving the DGFiP with a serious medium-term conundrum.
Who will continue to update the tax computation algorithm each year with
the recurring changes in tax law?

One option could be to train successors, a new generation of “M-masters”.
This approach has been tried in the recent years, with little success. The
reason of the failure is that given the complexity and intrication of the M
codebase, it has empirically taken between three and five years to train a
new “M-master”. This very long training period entails a lot of attrition for
the trainees confronted to the general obsolescence of the infrastructure, and
who may not picture themselves working on it for the next 30 years. Moreover,
the DGFiP has no incentives to retain civil servants at the same position for
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extended periods of time, due to its internal human ressources policy.
Hence, there is no other option than considering a complete rewrite of

the M codebase. A civil servant, former project lead on the income tax
computation, Christophe Gaie, outlines his thoughts on such a rewrite in a
research article [20]. According to him, the critical availability constraints
of the system mandates an incremental rewrite associated with an extended
transition period where both systems run in parallel. Concretely, this would
mean that the new codebase would slowly implement more and more features
over time, defaulting on the old codebase for missing parts of the computation.
Gaie proposes an API-based interoperability scheme for this transition period.

Improving on this proposal, we would keep the idea of a transition period
where both systems run in parallel, but consider a different interoperability
scheme. The shortcoming of Gaie’s proposal is that it entails a massive
refactoring of the entire DGFiP IT system. Currently, the income tax algorithm
is distributed to the various DGFiP applications that require it either as a
binary shared library (.so), either as C source files. Switching to an API-
based interoperability scheme would require refactoring a myriad of DGFiP
applications, from the GUI calculator used by tax collectors in local tax offices,
to the mainframe that performs the batch processing of tax returns.

Instead, my proposal is to keep the current interoperability scheme by
using compilation techniques to generate C source code from the high-level
language in which the rewriting of the M codebase will be done. Anticipating
on the next chapter, we could imagine a system where the compiler of the M
rewriting language directly connects (at an intermediate representation level)
with MLANG. Such a connection could enjoy a high level of assurance with
respect to semantics preservation (for instance via partial or total certification),
while maximizing toolchain reuse.

Of course, this proposal would only work if we choose for the language of the
M rewriting a language that has both a formal semantics and a flexible com-
piler that can be easily repurposed. Interestingly, the kind of domain-specific
languages we advocate for in this dissertation enjoys those two qualities.

Conclusion

In this chapter, we demonstrate how our methodology can be leveraged for a
particular class of high-assurance software deemed to serve for an indefinite
period of time. On top of bringing existing code to the formal world, we can use
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the compiler infrastructure to help evolve the codebase with smart program
analysis or certified interoperability.

If the DGFiP had chosen to write its income tax computation in a language
that was mainstream in mainframe computing in 1988, we would have ended
up with a COBOL or pure C implementation. Because C and COBOL are
general-purpose languages with very tricky semantics, the only choice would
have been to treat this code as a black box, with perhaps the faint hope of
proving some form of memory safety.

One could argue that the simplicity of the M domain-specific language
makes it closer to a toy language than a real object of study for formal
methods research. Indeed, the formalization and analysis presented in the
chapter, though absent from the original language design and thus novel, do
not involve any complex or unusual semantic feature. To this valid criticism,
we would answer that programming language research should be at least
partially guided by the real-world artifacts that need our expertise. Far from
the spotlights of the current trends, there are still domains where basic
programming language techniques can create a lot of value for the users.

Beyond building modern, much-needed tools to applications on their way
to obsolescence, the use of domain-specific languages can create novel formal
artifacts that test the limits of current state-of-the-art tools. For instance,
the M codebase, despite being completely loop-free, contains hundred of
thousands of variables and disjunctions, as well as non-linear arithmetic (on
floating-point values). Analyzing this kind of code is a challenge in itself, and
may lead to future interesting developments for program analysis and prover
tooling.

One of the intents of this work is to get formal methods out of its decades-
long application trinity: compilers/cryptography/low-level systems. Business-
related software has historically been neglected by the programming languages
theory community. Very early on, this neglect led to the creation of COBOL [21]
in 1959, whose standardization was done through a committee composed
entirely of representatives from the US Army and big tech companies of the
time. Later, in the Java golden era, the Unified Modeling Language (UML) [22]
quickly become an international norm among software architects, but its
variants based on a rigorous formalization [23]–[25] failed to have widespread
industry impact. More recently, in the Business Rules Management Systems
(BRMS) community, the leading open-source solution, Drools [26] is still based
on an informal base language.

Formalizing an existing system is hard, especially after decades of feature
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additions and evolving; the recent attempt of Benzaken and Contejean to find
a formal semantics for SQL [27] is a stark reminder. If the methodology of this
dissertation allows for an intermediate path by carving out a workable subset,
being able to deal with the entire codebase is even better. To achieve this goal,
and in the absence of a lucky historical legacy such as the M domain-specific
language, it is paramount for programming language experts to influence the
design process from its inception.

The motivations of the DGFiP for choosing to create their own domain-
specific language were of course completely alien to this line of thinking in
1988. After some detective work, we were able to locate and contact the person
directly responsible for the invention and development of the M language at the
time: Dominique Fulcrand, principal tax inspector at the DGFiP. According to
him, the project originated from the need to create a version of the income tax
calculator accessible to the general public through Minitel [28], the French
proto-Internet. A complete rewrite of the codebase was necessary because the
historical COBOL implementation dating from the 1970s could not be run
elsewhere than the GCOS Bull mainframe that it was operating on. Other
DGFiP applications were also in need of a tax calculator at the time. Hence,
the main design requirement was to provide a portable implementation of
a tax calculator: C was thus chosen as the goto language, as it could be
compiled with GCC to all the needed platforms.

However, writing tax computation rules directly in C was seen as a no-go.
The M language then was created as a way to directly transpose how domain
experts (tax inspectors) were thinking about tax computations: as a series
of equations tying variables together. As such, the M language design did
not incorporate any software engineering considerations. Retrospectively,
this was a partial failure since it promoted an organizational shift where two
non-programmers tax inspectors would write the M code completely and be
in charge of the codebase maintenance and evolution. Because of their lack
of computer science education, the code they produced turns out to be very
difficult to maintain, and relies on a lot of implicit invariants.

Today, a number of scholars continue to recommend the use of low-code/no-
code tools [29], [30] with the promise that non-programmers domain experts
could write the code of this class of law-related applications called legal expert
systems. Instead, we believe that the expertise of the software engineer is
paramount to create and organize systems that can be efficiently run and
maintained. Hence, we claim that the goal for such domain-specific languages
is not for non-programmers domain experts to be able to write the code, but
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rather to be able to review it as a way to tackle the specification correctness
problem. This argument will be put to practice in the next chapter.
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Abstract

The real-world legal expert system presented in the last chapter prompted this
legitimate question: can we do better? The use of a domain-specific language by the
French tax administration since the 1990’s hints at a deeper problem when turning
law into code. Indeed, the logical structure of legal texts breaks the design patterns
of most programming languages, turning legal expert systems into spaghetti code.

After a careful analysis of this logical structure, we propose Catala, a novel proof-
oriented domain-specific language for writing executable specifications of legal expert
systems. The design process of this domain-specific language heavily involves lawyers,
which are the domain experts in this case. We believe that Catala can be the entry
point of future formal methods developments in the world of computational law.
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On a vu, cependant, que la
méthode de l’explicitation a
pour particularité
dominante de rationaliser
l’écriture des textes. Cela
conduit à se demander si on
ne pourrait pas ab initio
conformer leur rédaction à
cette rationalité formelle.

(Pierre Catala, Le Droit
à l’épreuve du numérique,1998)

[...] the temptation is to
surrender the vital logic
which has actually yielded
the conclusion and to
substitute for it forms of
speech which are rigorous in
appearance and which
give an illusion of certitude.

(Jonh Dewey,
Logical Method and Law,

1924)



6.1. Formal Methods for the Law

This chapter is based upon the following publication:

D. Merigoux, N. Chataing, and J. Protzenko, “Catala: a program-
ming language for the law”, Proc. ACM Program. Lang., vol. 5,
no. ICFP, Aug. 2021. DOI: 10 . 1145 / 3473582. [Online]. Available:
https://doi.org/10.1145/3473582

My personal contribution to this publication has been the design of the
Catala language, its surface syntax, the implementation of the compiler
and code examples. I co-authored the semantics of the language.

6.1. Formal Methods for the Law

We now know that since at least 2000 B.C.E. and the Code of Ur-Nammu [2],
various societies have attempted to edict, codify and record their governing
principles, customs and rules in a set of legal texts – the law. Nowadays, most
aspects of one’s daily life are regulated by a set of laws or another, ranging
from family law, tax law, criminal law, to maritime laws, business laws or
civil rights law. No law is set in stone; laws are, over time, amended, revoked
and modified by legislative bodies. The resulting legal texts eventually reflect
the complexity of the process and embody the centuries of practice, debates,
power struggles and political compromises between various parties.

The practice of law thus oftentimes requires substantial human input.
First, to navigate the patchwork of exceptions, amendments, statutes and
jurisprudence relevant to a given case. Second, to fully appreciate and identify
the situation at play; understand whether one party falls in a given category
or another; and generally classify and categorize, in order to interpret a
real-world situation into something the law can talk about.

This latter aspect is perhaps the greatest challenge for a computer scientist:
a general classification system remains an elusive prospect when so much
human judgement and appreciation is involved. Fortunately, a subset of the
law, called computational law or sometimes rules as code, concerns itself with
situations where entities are well-defined, and where human appreciation,
judgement or interpretation are not generally expected. Examples of compu-
tational law include, but are not limited to: tax law, family benefits, pension
computations, monetary penalties and private billing contracts. All of these
are algorithms in disguise: the law (roughly) defines a function that produces
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outcomes based on a set of inputs.
As such, one might think computational law would be easily translatable

into a computer program. Unfortunately, formidable challenges remain. First,
as mentioned above, the law is the result of a centuries-long process: its con-
voluted structure demands tremendous expertise and training to successfully
navigate and understand, something that a computer programmer may not
have. Second, the language in which legal statutes are drafted is so different
from existing programming languages that a tremendous gap remains between
the legal text and its implementation, leaving the door open for discrepancies,
divergence and eventual bugs, all with dramatic societal consequences.

Examples abound. In France, the military’s payroll computation involves
174 different bonuses and supplemental compensations. Three successive
attempts were made to rewrite and modernize the military paycheck infras-
tructure; but with a complete disconnect between the military statutes and the
implementation teams that were contracted, the system had to be scrapped [3].
Software engineering failures are perhaps a fact of life in the IT world; but
in this particular case, actual humans bore the consequences of the failure,
with military spouses receiving a 3-cent paycheck, or learning years later that
they owe astronomical amounts to the French state. Perhaps more relevant
to the current news, the US government issued a decree intended to provide
financial relief to US taxpayers whose personal economic situation had been
affected by the Covid-19 pandemic. Owing to an incorrect implementation by
the Internal Revenue Service (IRS), nearly one million Americans received an
incorrect Economic Impact Payment (EIP), or none at all [4].

Both examples are similar, in that a seemingly pure engineering failure
turns out to have dramatic consequences in terms of human livelihoods.
When a family is at the mercy of the next paycheck or EIP, a bug in those
systems could mean bankruptcy. In our view, these is no doubt that these
systems are yet another flavor of critical software.

A natural thought is perhaps to try to simplify the law itself. Unfortunately,
this recurrent theme of the political discourse often conflicts with the political
reality that requires compromise and fined-grained distinctions. Hence, the
authors do not anticipate a drastic improvement around the world concerning
legal complexity. Therefore, our only hope for improvement lies on the side of
programming languages and tools.

Tax law provides a quintessential example. While many of the implemen-
tations around the world are shrouded in secrecy, the public occasionally
gets a glimpse of the underlying infrastructure. Recently, Merigoux et al. [5]
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reverse-engineered the computation of the French income tax, only to discover
that the tax returns of an entire nation were processed using an antiquated
system designed in 1990, relying on 80,000 lines of code written in a cus-
tom, in-house language, along with 6,000 lines of hand-written C directly
manipulating tens of thousands of global variables. This particular situation
highlights the perils of using the wrong tool for the job: inability to evolve,
resulting in hand-written C patch-ups; exotic semantics which make repro-
ducing the computation extremely challenging; and a lack of accountability,
as the cryptic in-house language cannot be audited by anyone, except by the
handful of experts who maintain it. This is by no means a “French excep-
tion”: owing to an infrastructure designed while Kennedy was still president,
the IRS recently handed over $300,000,000’s worth of fraudulent refunds to
taxpayers [6]. The rewrite, decades in planning, keeps being pushed further
away in the future [7].

In this work, we propose a new language, Catala, tailored specifically for the
purpose of faithfully, crisply translating computational law into executable
specifications. Catala is designed to follow the existing structure of legal
statutes, enabling a one-to-one correspondence between a legal paragraph
and its corresponding translation in Catala. Under the hood, Catala uses
prioritized default logic [8]; to the best of our knowledge, Catala is the first
instance of a programming language designed with this logic as its core system.
Catala has clear semantics, and compiles to a generic lambda-calculus that
can then be translated to any existing language. We formalize the compilation
scheme of Catala with F⋆ and show that it is correct. In doing so, we bridge
the gap between legal statutes and their implementation; we avoid the in-
house language trap; and we provide a solid theoretical foundation to audit,
reproduce, evaluate and reuse computational parts of the law. Our evaluation,
which includes user studies, shows that Catala can successfully express
complex sections of the US Internal Revenue Code and the French family
benefits computation.

The benefits of using Catala are many: lawmakers and lawyers are given a
formal language that accurately captures their intent and faithfully mirrors
the prose; programmers can derive and distribute a canonical implementation,
compiled to the programming language of their choice; citizens can audit,
understand and evaluate computational parts of the law; and advocacy groups
can shed more light on oftentimes obscure, yet essential, parts of civil society.
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6.1.1. The Language of Legislative Drafting

Legal statutes are written in a style that can be confounding for a computer
scientist. While a program’s control-flow (as a first approximation) makes
forward progress, statutes frequently back-patch previous definitions and
re-interpret earlier paragraphs within different contexts. The result more
closely resembles assembly with arbitrary jumps and code rewriting, rather
than a structured language.

To illustrate how the law works, we focus on Section 121 of the US Internal
Revenue Code [9], our running example throughout this paper. Section 121 is
written in English, making it accessible to an international audience without
awkward translations; it features every single difficulty we wish to tackle with
Catala; and it is a well-studied and well-understood part of the tax law. We go
through the first few paragraphs of the section; for each of them, we informally
describe the intended meaning, then highlight the surprising semantics of the
excerpt. These paragraphs are contiguous in the law; we intersperse our own
commentary in-between the quoted blocks.

Section 121 is concerned with the “Exclusion of gain from sale of principal
residence”. In common parlance, if the taxpayer sells their residence, they
are not required to report the profits as income, hence making such profits
non-taxable. Paragraph (a) defines the exclusion itself.

(a) Exclusion
Gross income shall not include gain from the sale or exchange
of property if, during the 5-year period ending on the date of
the sale or exchange, such property has been owned and used
by the taxpayer as the taxpayer’s principal residence for periods
aggregating 2 years or more.

The part of the sentence that follows the “if” enumerates conditions under
which this tax exclusion can be applied. This whole paragraph is valid unless
specified otherwise, as we shall see shortly.

Out-of-Order Definitions Paragraph (b) immediately proceeds to list limitations,
that is, situations in which (a) does not apply, or needs to be refined. Section
121 thus consists of a general case, (a), followed by a long enumeration of
limitations ranging from (b) to (g). We focus only on (b). The first limitation
(b)(1) sets a maximum for the exclusion, “generally” $250,000. Left implicit is
the fact that any proceeds of the sale beyond that are taxed as regular income.
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(b) Limitations
(1) In general
The amount of gain excluded from gross income under subsection
(a) with respect to any sale or exchange shall not exceed $250,000.

We remark that even though (b)(1) is a key piece of information for the
application of Section 121, the reader will find it only if they keep going after
(a). This is a general feature of legal texts: relevant information is scattered
throughout, and (a) alone is nowhere near enough information to make a
determination of whether the exclusion applies to a taxpayer.

Backpatching; Exceptions Entering (b)(2), paragraph (A) modifies (b)(1) in
place, stating for “joint returns” (i.e. married couples), the maximum exclusion
can be $500,000.

(A) $500,000 Limitation for certain joint returns
Paragraph (1) shall be applied by substituting “$500,000” for
“$250,000” if—
(i) either spouse meets the ownership requirements of subsection
(a) with respect to such property;
(ii) both spouses meet the use requirements of subsection (a) with
respect to such property; and
(iii) neither spouse is ineligible for the benefits of subsection (a)
with respect to such property by reason of paragraph (3).

Several key aspects of paragraph (A) are worth mentioning. First, (A) back-
patches paragraph (b)(1); the law essentially encodes a search-and-replace in
its semantics.

Second, (A) overrides a previous general case under specific conditions. In a
functional programming language, a pattern-match first lists the most specific
matching cases, and catches all remaining cases with a final wildcard. A text
of law proceeds in the exact opposite way: the general case in (a) above is listed
first, then followed by limitations that modify the general case under certain
conditions. This is by design: legal statutes routinely follow a “general case
first, special cases later” approach which mirrors the legislator’s intentions.

Third, conditions (i) through (iii) are a conjunction, as indicated by the “and”
at the end of (ii). We note that (iii) contains a forward-reference to (3) which we
have not seen yet. (Through our work, we fortunately have never encountered
a circular reference.)
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Re-interpreting If limitation (A) doesn’t apply, we move on to (B), which
essentially stipulates that the exclusion in (b)(1) should be re-interpreted for
each spouse separately as if they were not married; the final exclusion is then
the sum of the two sub-computations.

(B) Other joint returns
If such spouses do not meet the requirements of subparagraph
(A), the limitation under paragraph (1) shall be the sum of the
limitations under paragraph (1) to which each spouse would be
entitled if such spouses had not been married. For purposes of the
preceding sentence, each spouse shall be treated as owning the
property during the period that either spouse owned the property.

We thus observe that the law is re-entrant and can call itself recursively under
different conditions. This is indicated here by the use of the conditional tense,
i.e. “would”.

Out-of-Order Backpatching In another striking example, (3) cancels the
whole exclusion (a) under certain conditions.

(3) Application to only 1 sale or exchange every 2 years
Subsection (a) shall not apply to any sale or exchange by the
taxpayer if, during the 2-year period ending on the date of such
sale or exchange, there was any other sale or exchange by the
taxpayer to which subsection (a) applied.

Paragraph (3) comes a little further down; a key takeaway is that, for a piece
of law, one must process the entire document; barring that, the reader might
be missing a crucial limitation that only surfaces much later in the text.

A Final Example Paragraph (4) concerns the specific case of a surviving
spouse that sells the residence within two years of the death of their spouse,
knowing that the conditions from (A) applied (i.e. “returned true”) right before
the date of the death.

(4) Special rule for certain sales by surviving spouses
In the case of a sale or exchange of property by an unmarried
individual whose spouse is deceased on the date of such sale,
paragraph (1) shall be applied by substituting “$500,000” for
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“$250,000” if such sale occurs not later than 2 years after the date
of death of such spouse and the requirements of paragraph (2)(A)
were met immediately before such date of death.

Paragraph (4) combines several of the complexities we saw above. It not only
back-patches (1), but also recursively calls (2)(A) under a different context,
namely, executing (2)(A) at a previous date in which the situation was different.
In functional programming lingo, one might say that there is a hidden lambda
in (2)(A), that binds the date of the sale.

Formal Insights on Legal Logic We have now seen how legal statutes are
written, the thought process they exhibit, and how one is generally supposed
to interpret them. We wish to emphasize that the concepts described are
by no means specific to tax law or the US legal system: we found the exact
same patterns in other parts of US law and non-US legal systems. Section
121 contains many more paragraphs; however, the first few we saw above are
sufficient to illustrate the challenges in formally describing the law.

The main issue in modeling legal texts therefore lies in their underlying
logic, which relies heavily on the pattern of having a default case followed by
exceptions. This nonmonotonic logic is known as default logic [10]. Several
refinements of default logic have been proposed over time; the one closest
to the purposes of the law is known as prioritized default logic [8], wherein
default values are guarded by justifications, and defaults can be ordered
according to their relative precedence. Lawsky [11] argues that this flavor of
default logic is the best suited to expressing the law. We concur, and adopt
prioritized default logic as a foundation for Catala.

In default logic, formulas include defaults, of the form a ∶ b⃗i/c, wherein: if
formula a holds; if the b⃗i are consistent with the set of known facts; then c

holds. One can think of a as the precondition for c, and the b⃗i as a set of
exceptions that will prevent the default fact c from being applicable. Prioritized
logic adds a strict partial order over defaults, to resolve conflicts when multiple
defaults may be admissible at the same time.

The main design goal of Catala is to provide the design and implementation
of a language tailored for the law, using default logic as its core building block,
both in its syntax and semantics. Catala thus allows lawyers to express
the general case / exceptions pattern naturally. We now informally present
Catala.

Our introduction to legal texts above mixes informal, high-level overviews
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of what each paragraph intends to express, along with excerpts from the law
itself. Our English prose is too informal to express anything precisely; but
“legalese” requires a high degree of familiarity with the law to successfully
grasp all of the limitations and compute what may or may not be applicable
to a given taxpayer’s situation.

We now introduce Catala by example, and show how the subtleties of each
paragraph can be handled unambiguously and clearly by Catala. Our guiding
principle is twofold: we want to formally express the intended meaning without
being obscured by the verbosity of legal prose; yet, we wish to remain close to
the legal text, so that the formal specification remains in close correspondence
with the reference legal text, and can be understood by lawyers. Catala
achieves this with a dedicated surface language that allows legal experts to
follow their usual thinking.

Metadata: Turning Implicits into Explicits Legal prose is very dense, and uses a
number of concepts without explicitly defining them in the text. For instance,
in Section 121, the notion of time period is implicit, and so are the various
types of tax returns one might file (individual or joint). Furthermore, entities
such as the taxpayers (whom we will call “Person 1” and “Person 2”) need to
be materialized. Finally, for each one of those entities, there are a number
of inputs that are implicitly referred to throughout the legal statute, such
as: time periods in which each Person was occupying the residence as their
primary home; whether there was already a sale in the past two years; and
many more, as evidenced by the myriad of variables involved in (i)-(iii).

Our first task when transcribing legal prose into a formal Catala description
is thus to enumerate all structures, entities and variables relevant to the
problem at stake. We provide the definitions and relationships between
variables later on. This is a conscious design choice of Catala: before even
talking about how things are computed, we state what we are talking about.
In doing so, we mimic the behavior of lawyers, who are able to infer what
information is relevant based on the legal text. We call this description of
entities the metadata.

1 declaration structure Period:
2 data start content date
3 data end content date
4

5 declaration structure PersonalData:
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6 data property_ownership content collection Period
7 data property_usage_as_principal_residence content
8 collection Period
9

10 declaration scope Section121SinglePerson:
11 context gain_from_sale_or_exchange_of_property

12 content money
13 context personal content PersonalData
14 context requirements_ownership_met condition
15 context requirements_usage_met condition
16 context requirements_met condition
17 context amount_excluded_from_gross_income_uncapped

18 content money
19 context amount_excluded_from_gross_income content money
20

21 context aggregate_periods_from_last_five_years content
22 duration depends on collection Period

Catala features a number of built-in types. dates are triples of a year, month
and a day. Catala provide syntax for US-centric and non-US-centric input
formats. Distinct from date is duration, the type of a time interval, always
expressed as a number of days. If the law introduces durations such as "two
years", it is up to the user to specify how "two years" should be interpreted.
Booleans have type condition. Monetary amounts have type money. The
higher-kinded type collection is also built-in.

The snippet above shows an excerpt from Section 121’s metadata. The first
two declarations declare product types via the structure keyword. The
type Period contains two fields, start and end.

A word about aesthetics: while programmers generally prize compactness of
notation, advocating e.g. point-free-styles or custom operators, non-experts
are for the most part puzzled by compact notations. Our surface syntax
was designed in collaboration with lawyers, who confirmed that the generous
keywords improve readability, thus making Catala easier to understand by
legal minds.

Line 10 declares Section121SinglePerson, a scope. A key technical
device and contribution of Catala, scopes allow the programmer to follow
the law’s structure, revealing the implicit modularity in legal texts. Scopes
are declared in the metadata section: the context keyword indicates that
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the value of the field might be determined later, depending on the context.
Anticipating on Section 6.2.2, the intuition is that scopes are functions and
contexts are their parameters and local variables.

Context variables are declarative; once a Catala program is compiled to a
suitable target language, it is up to the programmer to invoke a given scope
with suitable initial values for those context variables that are known to be
inputs of the program; after the Catala program has executed, the programmer
can read from the context variables that they know are outputs of the program.
From the point of view of Catala, there is no difference between input and
output variables; but we are planning a minor syntactic improvement to
allow programmers to annotate these variables for readability and simpler
interoperation with hand-written code. If at run-time the program reads
the value of a context variable that was left unspecified by the programmer,
execution aborts.

The main purpose of Section 121 is to talk about the gain that a person
derived from the sale of their residence (line 11), of type money. Paragraph
(a) implicitly assumes the existence of time periods of ownership and usage
of the residence; we materialize these via the personal field which holds
two collection Periods. These in turn allow us to define whether the
ownership and usage requirements are met (of type condition, lines 14-15).
A further condition captures whether all requirements are met (line 16). The
outcome of the law is the amount that can be excluded from the gross income,
of type money (line 19). (The need for an intermediary variable at line 18
becomes apparent when talking about split scopes.) A local helper computes
the aggregate number of days in a set of time periods; the helper takes a single
argument of type collection Period (line 21) and, being a local closure,
can capture other context variables.

Scopes and Contexts: Declarative Rules and Definitions We now continue
with our formalization of (a) and define the context-dependent variables,
as well as the relationships between them. Catala is declarative: the user
relates context variables together, via the definition keyword, or the rule
keyword for conditions. We offer separate syntax for two reasons. First, for
legal minds, conditions and data are different objects and reflecting that in
the surface syntax helps with readability. Second, there is a core semantic
difference: booleans (conditions) are false by default in the law; however, other
types of data have no default value. Internally, Catala desugars rules to
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definitions equipped with a default value of false (see Section 6.2.1).

1 scope Section121SinglePerson:
2 rule requirements_ownership_met under condition
3 aggregate_periods_from_last_five_years of
4 personal.property_ownership

5 >=^ 730 day

6 consequence fulfilled
7 rule requirements_usage_met under condition
8 aggregate_periods_from_last_five_years of
9 personal.property_usage_as_principal_residence

10 >=^ 730 day

11 consequence fulfilled
12 rule requirements_met under condition
13 requirements_ownership_met and requirements_usage_met

14 consequence fulfilled
15 definition amount_excluded_from_gross_income_uncapped

16 equals
17 if requirements_met then
18 gain_from_sale_or_exchange_of_property

19 else $0

Lines 2-4 capture the ownership requirement, by calling the helper function
aggregate_periods_... with argument property_ownership, a previously-
defined context variable. (The full definition of the helper, which involves
another context variable for the date of sale, is available in the artifact [12].)
Paragraph (a) states “for periods aggregating 2 years or more”: for the pur-
poses of Section 121, and as defined in Regulation 1.121-1(c)(1), a year is
always 365 days. Catala resolves the ambiguity by simply not offering any
built-in notion of yearly duration, and thus makes the law clearer. The ^ suffix
of the comparison operator >=^ means that we are comparing durations.

The ownership requirement is “fulfilled” (i.e. defined to true) under a certain
condition. This is our first taste of prioritized default logic expressed through
the syntax of Catala: the built-in default, set to false, is overridden with a
rule that has higher priority. This is a simple case and more complex priorities
appear in later sections. However, this example points to a key insight of
Catala: rather than having an arbitrary priority order resolved at run-time
between various rules, we encode priorities statically in the surface syntax
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of the language, and the pre-order is derived directly from the syntax tree of
rules and definitions. We explain this in depth later on Section 6.2.1.

Similarly, lines 5-7 define the usage requirement using the rule keyword to
trigger a condition: the value of requirements_usage_met is false unless
the boolean expression at lines 6-7 is true. One legal subtlety, implicit in
(a), is that ownership and usage periods do not have to overlap. The Catala
program makes this explicit by having two collections of time periods.

The requirements are met if both ownership and usage requirements are
met (lines 9-11). In that case, the income gain can be excluded from the
income tax (lines 12-13). The latter is defined via the definition keyword,
as rule is reserved for booleans.

We have now formalized Paragraph (a) in Catala. At this stage, if the user
fills out the remaining inputs, such as the gain obtained from the sale of
the property, and the various time periods, the interpreter automatically
computes the resulting value for the amount to be excluded from the gross
income. The interpreter does so by performing a control-flow analysis and
computing a topological sort of assignments. Cycles are rejected, since the
law is not supposed to have dependency cycles. (Section 6.2.2 describes the
full semantics of the language.)

We note that a single sentence required us to explicitly declare otherwise
implicit concepts, such as the definition of a year; and to clarify ambiguities,
such as whether time periods may overlap. With this concise example, we
observe that the benefits of formalizing a piece of law are the same as for-
malizing any piece of critical software: numerous subtleties are resolved, and
non-experts are provided with an explicit, transparent executable specification
that obviates the need for an expert legal interpretation of implicit semantics.

Split Scopes: Embracing the Structure of the Law We now move on to limita-
tions (paragraph (b) of Section 121). A key feature of Catala is that it enables
a literate programming style [13], where each paragraph of law is immediately
followed by its Catala transcription. Now that we’re done with (a), we insert a
textual copy of the legal prose for (b), then proceed to transcribe it in Catala.

1 scope Section121SinglePerson:
2 definition gain_cap equals $250,000

3 definition amount_excluded_from_gross_income equals
4 if amount_excluded_from_gross_income_uncapped >=$

5 gain_cap
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6 then gain_cap

7 else amount_excluded_from_gross_income_uncapped

In Paragraph (b)(1), the law overwrites the earlier definition from (a) and re-
defines it to be capped by $250,000. In line with our earlier design choices, we
rule out confusion and rely on the auxiliary variable (the “uncapped” variant),
to then compute the final amount excluded from the gross income (lines 3-7).
Out-of-order definitions that are provided at a later phase in the source are
an idiomatic pattern in Catala.

Complex Usage of the Default Calculus; Exceptions Before making any further
progress, we need to introduce new entities to take into account the fact that
we may now possibly be dealing with a joint return. We introduce a new
abstraction or, in Catala lingo, scope: Section121Return.

1 declaration structure CoupleData:
2 data personal1 content PersonalData
3 data personal2 content PersonalData
4

5 declaration enumeration ReturnType:
6 -- SingleReturn content PersonalData
7 -- JointReturn content CoupleData
8

9 declaration scope Section121Return:
10 context return_data content ReturnType
11 context person1 scope Section121SinglePerson
12 context person2 scope Section121SinglePerson
13 context gain_cap content money

We follow the out-of-order structure of the law; only from here on do we
consider the possibility of a joint return. Having introduced a new level of
abstraction, we need to relate the ReturnType to the persons involved. We do
so by introducing new equalities, of which we show the first one.

1 scope Section121Return:
2 definition person1.personal equals match return_data with
3 -- SingleReturn of personal1 : personal1

4 -- JointReturn of couple : couple.personal1
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Having set up a proper notion of joint return, we now turn our attention to
(b)(2)(A).

1 scope Section121Return:
2 definition gain_cap equals person1.gain_cap

3 rule paragraph_A_applies under condition
4 (return_data is JointReturn) and

5 (person1.requirements_ownership_met or

6 person2.requirements_ownership_met) and

7 (person1.requirements_usage_met and

8 person2.requirements_usage_met) and

9 (not (paragraph_3_applies of
10 person1.other_section_121a_sale)) and

11 (not (paragraph_3_applies of
12 person2.other_section_121a_sale))

13 consequence fulfilled
14 exception definition gain_cap under condition
15 paragraph_A_applies consequence equals $500,000

Until now, the gain cap was defined to be that of the taxpayer, that is,
Person 1 (line 2). We now need to determine whether the conditions from
Paragraph (A) apply (line 3). To that end, we introduce an intermediary
variable, paragraph_A_applies. This variable will be used later on for (B),
whose opening sentence is “if such spouses do not meet the requirements of
(A)”.

We now introduce the notion of exception (line 14). In Catala, if, at run-
time, more than a single applicable definition for any context variable applies,
program execution aborts with a fatal error. In the absence of the exception
keyword, and in the presence of a joint return that satisfies paragraph (A),
the program would be statically accepted by Catala, but would be rejected
at run-time: there are two definitions for gain_cap, both their conditions
hold (true and paragraph_A_applies), and there is no priority ordering
indicating how to resolve the conflict. The exception keyword allows solving
this very issue. The keyword indicates that, in the pre-order of definitions,
the definition at line 14 has a higher priority than the one at 2.

Generally, Catala allows an arbitrary tree of definitions each refined by
exceptions, including exceptions to exceptions (which we have encountered
in the law); the rule of thumb remains: only one single definition should be
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applicable at a time, and any violation of that rule indicates either programmer
error, or a fatal flaw in the law.

Recapping Modeling the law is labor-intensive, owing to all of the implicit
assumptions present in what is seemingly “just legalese”. In our experience,
this process is best achieved through pair-programming, in which a Catala
expert transcribes a statute with the help of a legal expert. We thus stop
here our Catala tutorial and defer the full modelization of Section 121 to the
artifact [12]. Briefly, modeling (B) requires introducing a new scope for a
two-pass processing that models the re-entrancy (“if such spouses had not
been married”). Modeling the forward-reference to (3) requires introducing a
helper paragraph_3_applies whose definition is provided later on, after
Paragraph (3) has been suitably declared (line 10, above).

As this tutorial wraps up, we look back on all of the language features
we presented. While Catala at first glance resembles a functional language
with heavy syntactic sugar, diving into the subtleties of the law exhibits the
need for two features that are not generally found in lambda-calculi. First,
we allow the user to define context variables through a combination of an
(optional) default case, along with an arbitrary number of special cases, either
prioritized or non-overlapping. The theoretical underpinning of this feature is
the prioritized default calculus. Second, the out-of-order nature of definitions
means that Catala is entirely declarative, and it is up to the Catala compiler to
compute a suitable dependency order for all the definitions in a given program.
Fortunately, the law does not have general recursion, meaning that we do not
need to compute fixed points, and do not risk running into circular definitions.
Hence, our language is not Turing-complete, purposefully.

We mentioned earlier that we have found both US and French legal systems
to exhibit the same patterns in the way their statutes are drafted. Namely,
the general case / exceptions control-flow; out-of-order declarations; and
overrides of one scope into another seem to be universal features found in
all statutes, regardless of the country or even the language they are drafted
in. Based on conversations with S. Lawsky, and a broader assessment of the
legal landscape, we thus posit that Catala captures the fundamentals of legal
reasoning.
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6.1.2. A Century of Language Design

Catala follows a long tradition of scholarly works that aim to extract the
logical essence of legal statutes, starting as early as 1924 [14]. To provide
some context, we compare our work with two seminal articles in the field.

In his visionary 1956 article, Allen [15] notes that symbolic logic can be
used to remove ambiguity in the law, and proposes its use for a wide range
of applications: legal drafting, interpretation, simplification and comparison.
Using custom notations that map transparently to first-order logic, Allen
does not provide an operational tool to translate law into formalism but
rather points out the challenges such as law ambiguity and rightfully sets
the limits of his approach, stating for instance that in generality, “filling of
gaps in legislation by courts cannot and should not be entirely eliminated”.
Interestingly, he also manually computes a truth table to prove that two
sections of the US Internal Revenue Code are equivalent.

The vision laid out by Allen is refined in 1986 by Sergot et al. [16]. This
article narrows the range of its formalism to statutory law (as opposed to case
law), and focuses on the British Nationality Act, a statute used to determine
whether a person can qualify for the British nationality based on various
criteria. Co-authored by Robert Kowalski, this works features the use of
Prolog [17] as the target programming language, showing the usefulness of
declarative logic programming for the formalization task. However, the work
acknowledges a major limitation concerning the expression of negation in
the legal text, and points out that “the type of default reasoning that the act
prescribes for dealing with abandoned infants is non-monotonic”, confirming
the later insights of Lawsky [11]. A major difference with Catala is the absence
of literate programming; instead, Sergot et al. derived a synthetic and/or
diagram as the specification for their Prolog program.

The logic programming community later built on non-monotonicity by
proposing increasingly refined languages for legal discourse [18], [19]. These
languages all choose some form of deontic logic [20] as formal base, as its
categorization between obligation and permission fits legal reasoning. By
extending deontic logic with non-monotonic defeasability [21], it is possible to
model very accurately the reasoning subtleties of real-world legal cases [22].
The community did not however reach an consensus over the correct way to
formally model legal argumentation in theory, as argued by McCarty [23].

Thus, the line of work around logic programming never took hold in the
industry and the large organizations managing legal expert systems. The
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reasons, various and diagnosed by Leith [24], mix the inherent difficulty of
translating law to code, with the social gap between the legal and computer
world. As a reaction, several and so far unsuccessful attempts were made to
automate the translation using natural language processing techniques [25],
[26]. Others propose to lower the barriers to the programming world using
low-code/no-code tools, so that lawyers can code their own legal expert
systems [27].

The main recent research direction around the formalization of law is
spearheaded by optimistic proponents of computational law [28], promising a
future based on Web-based, automated legal reasoning by autonomous agents
negotiating smart contracts on a blockchain-powered network [29]–[32].

By contrast, we focus on the challenges related to maintaining existing legal
expert systems in large public or private organizations, providing essential
services to millions of citizens and customers. Catala aims to provide an
industrial-grade tool that enables close collaboration of legal and IT profes-
sionals towards the construction of correct, comprehensive and performant
implementations of algorithmic statutory law. The formal foundation of Catala
is inspired by the prior logic programming research. More precisely, it ex-
actly implements McCarty suggestion of 1997 [23]: “If we used only stratified
negation-as-failure with metalevel references in our representation language,
we would have a powerful normal form for statutes and regulations.”

6.2. Catala as a Formalization Platform

We now formally introduce the semantics and compilation of Catala. Notably,
we focus on what makes Catala special: its default calculus. To that end,
we describe a series of compilation steps: we desugar the concrete syntax to
a scope language; we define the semantics of scopes via a translation to a
default calculus; we then finally compile the default calculus to a language
equipped with exceptions, such as OCaml. This last part is where the most
crucial compilation steps occur: we prove its soundness via a mechanization
in the F⋆ proof assistant.

6.2.1. Default Calculus, a Simple Desugared Core

The scope language resembles Catala’s user-facing language: the notion of
scope is still present; rules and definitions remain, via a unified def dec-
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Scope name S
Sub-scope instance Sn
Location ` ∶∶= x scope variable

∣ Sn[x] sub-scope variable
Type τ ∶∶= bool ∣ unit base types

∣ τ → τ function type
Expression e ∶∶= x ∣ true ∣ false ∣ () variable, literals

∣ λ (x : τ). e ∣ e e λ-calculus
∣ ` location
∣ d default term

Default d ∶∶= ⟨e⃗ ∣ e :- e⟩ default term
∣ ⊛ conflict error term
∣ ∅ empty error term

Atom a ∶∶= def ` : τ = ⟨e⃗ ∣ e :- e⟩ location definition
∣ call Sn sub-scope call

Scope declaration σ ∶∶= scope S : a⃗
Program P ∶∶= σ⃗

Figure 6.1: The scope language, our first intermediate representation

laration devoid of any syntactic sugar. Perhaps more importantly, definitions
are provided in-order and our usage of default calculus becomes clear.

Figure 6.1 presents the syntax of the scope language. We focus on the
essence of Catala, i.e. how to formalize a language with default calculus at its
core; to that end, and from this section onwards, we omit auxiliary features,
such as data types, in order to focus on a core calculus.

To avoid carrying an environment, a reference to a sub-scope variable, such
as person1.personal earlier, is modeled as a reference to a sub-scope an-
notated with a unique identifier, such as Section121SinglePerson1.personal.
Therefore, locations are either a local variable x, or a sub-scope variable, of the
form Sn[x]. Note that sub-scoping enables scope calls nesting in all generality.
However, we do not allow in our syntax references to sub-scopes’ sub-scopes
like Sn[S′n′[x]], as this would unnecessarily complicate our semantics model.

Types and expressions are standard, save for default terms d of the form
⟨e⃗i ∣ e′ :- e′′⟩. This form resembles default logic terms a ∶ b⃗i/c introduced
earlier (Section 6.1.1); the exceptions b⃗i become e⃗i; the precondition a becomes
e′; and the consequence c becomes e′′. We adopt the following reduction
semantics for d. Each of the exceptions ei is evaluated; if two or more are valid
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(i.e. not of the form ∅), a conflict error ⊛ is raised. If exactly one exception ei
is valid, the final result is ei. If no exception is valid, and e′ evaluates to true

the final result is e′′. If no exception is valid, and e′ evaluates to false, the
final result is ∅. We provide a full formal semantics of default terms later.

The syntactic form ⟨e⃗i ∣ e′ :- e′′⟩ encodes a static tree of priorities, baking
the pre-order directly in the syntax tree of each definition. We thus offer a
restricted form of prioritized default logic, in which each definition is its own
world, equipped with a static pre-order.

Atoms a either define a new location, gathering all default cases and excep-
tions in a single place; or, rules indicate that a sub-scope needs to be called
to compute further definitions.

We now explain how to desugar the surface syntax, presented in Sec-
tion 6.1.1, to this scope language.

Syntactic sugar Table 6.1 presents rewriting rules, whose transitive closure
forms our desugaring. These rules operate within the surface language;
Table 6.1 abbreviates surface-level keywords for easier typesetting.

In its full generality, Catala allows exceptions to definitions, followed by
an arbitrary nesting of exceptions to exceptions. This is achieved by a label
mechanism: all exceptions and definitions are labeled, and each exception
refers to the definition or exception it overrides. Exceptions to exceptions
are actually found in the law, and while we spared the reader in our earlier
tutorial, we have found actual use-cases where this complex scenario was
needed. Exceptions to exceptions remain rare; the goal of our syntactic sugar
is to allow for a more compact notation in common cases, which later gets
translated to a series of fully labeled definitions and exceptions.

After desugaring, definitions and exceptions form a forest, with exactly
one root definitions node for each variable X, holding an n-ary tree of
exception nodes.

We start with the desugaring of rule which, as mentioned earlier, is a
boolean definition with a base case of false (i). Definitions without conditions
desugar to the trivial true condition (ii).

The formulation of (iiia) allows the user to provide multiple definitions for
the same variable X without labeling any of them; thanks to (iiia), these
are implicitly understood to be a series of exceptions without a default case.
The surface syntax always requires a default to be provided; internally, the
nodefault simply becomes condition true consequence equals ∅.
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Table 6.1.: Desugaring the surface language into an explicit surface syntax

Syntactic sugar . . . rewrites to

(i) rule X under cond. Y
cons. fulfilled

label LX def. X equals false
(inserted once)
exception LX def. X under cond.
Y cons. equals true

(ii) def. X equals Y def. X under cond. true cons.
equals Y

(iiia) def. X ...
(multiple definitions of X, no
exceptions)

label LX def. X nodefault (in-
serted once)
exception LX def. X ...

(iiib) def. X ...
(single definition of X)

label LX def. X ...

(iv) exception def. X exception LX def. X

We provide another alternative to the fully labeled form via (iiib); the rule
allows the user to provide a single base definition, which may then be overrid-
den via a series of exceptions. To that end, we introduce a unique label LX
which un-annotated exceptions are understood to refer to (iv).

Materializing the default tree Equipped with our default expressions d, we
show how to translate a scattered series of Catala definitions into a single def
rule from the scope language. We write X,L↝ d, meaning that the definition of
X labeled L, along with all the (transitive) exceptions to L, collectively translate
to d. We use an auxiliary helper lookup(X,L) = C,D, L⃗i, meaning that at label
L, under condition C, X is defined to be D, subject to a series of exceptions
labeled Li.

Rule D-LABEL performs the bulk of the work, and gathers the exception
labels Li; each of them translates to a default expression di, all of which appear
on the left-hand side of the resulting translation; if all of the di are empty, the
expression evaluates to D guarded under condition C. As an illustration, if
no exceptions are to be found, the translation is simply ⟨ ∣ C :- D⟩. Finally,
rule D-ENTRYPOINT states that the translation starts at the root definition
nodes.
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D-LABEL

lookup(X,L) = C,D, L⃗i X,Li ↝ di

X,L↝ ⟨d⃗i ∣ C :- D⟩

D-ENTRYPOINT

X,L↝ ⟨d⃗i ∣ C :- D⟩

label L definition X . . .↝ def X = ⟨d⃗i ∣ C :- D⟩

Figure 6.2: Building the default tree and translating surface definitions

Reordering definitions Our final steps consists in dealing with the fact that
defs remain unordered. To that end, we perform two topological sorts. First,
for each scope S, we collect all definitions and re-order them according to a
local dependency relation →:

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

y → x if def x = . . . y . . .

Sn → x if def x = . . . Sn[y] . . .

y → Sn if def Sn[x] = . . . y . . .

After re-ordering, we obtain a scope S where definitions can be processed
linearly. Sub-scope nodes of the form Sn become calls, to indicate the
position at which the sub-scope computation can be performed, i.e. once its
parameters have been filled and before its outputs are needed.

We then topologically sort the scopes themselves to obtain a linearized order.
We thus move from a declarative language to a functional language where
programs can be processed in evaluation order. In both cases, we detect the
presence of cycles, and error out. General recursion is not found in the law,
and is likely to indicate an error in modeling. Bounded recursion, which we
saw in Section 6.1.1, can be manually unrolled to make it apparent.

From the Scope Language to a Default Calculus For the next step of our
translation, we remove the scope mechanism, replacing defs and calls
with regular λ-abstractions and applications. The resulting language, a core
lambda calculus equipped only with default terms, is the default calculus
(Figure 6.3). The typing rules of the default calculus are standard (Figure 6.4);
we note that the error terms from the default calculus are polymorphic.
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Type τ ∶∶= bool ∣ unit boolean and unit types
∣ τ → τ function type

Expression e ∶∶= x ∣ s ∣ true ∣ false ∣ () variable, top-level name, literals
∣ λ (x : τ). e ∣ e e λ-calculus
∣ d default term

Default d ∶∶= ⟨e⃗ ∣ e :- e⟩ default term
∣ ⊛ conflict error term
∣ ∅ empty error term

Top-level declaration σ ∶∶= let s = e
Program P ∶∶= σ⃗

Figure 6.3: The default calculus, our second intermediate representation

CONFLICTERROR

Γ ⊢ ⊛ ∶ τ
EMPTYERROR

Γ ⊢ ∅ ∶ τ

T-DEFAULT
Γ ⊢ ei ∶ τ Γ ⊢ ejust ∶ bool Γ ⊢ econs ∶ τ

Γ ⊢ ⟨e1,. . .,en ∣ ejust :- econs⟩ ∶ τ

Figure 6.4: Typing rules for the default calculus

Reduction rules We present small-step operational semantics, of the form
eÐ→ e′ . For efficiency, we describe reduction under a context, using a
standard notion of value (Figure 6.5), which includes our two types of errors, ⊛
and ∅. We intentionally distinguish regular contexts Cλ from general contexts
C.

Figure 6.6 presents the reduction rules for the default calculus. Rule
D-CONTEXT follows standard call-by-value reduction rules for non-error terms;
D-BETA needs no further comment. ⊛ is made fatal by D-CONTEXTCONFLICTERROR:
the reduction aborts, under any context C. The behavior of ∅ is different: such
an error propagates only up to its enclosing “regular” context Cλ; this means

Values v ∶∶= λ (x : τ). e functions
∣ true ∣ false booleans
∣ ⊛ ∣ ∅ errors

Evaluation Cλ ∶∶= ⋅ e ∣ v ⋅ function application evaluation
contexts ∣ ⟨v⃗ ∣ ⋅ :- e⟩ default justification evaluation

∣ ⟨v⃗ ∣ true :- ⋅⟩ default consequence evaluation
C ∶∶= Cλ regular contexts

∣ ⟨v⃗,⋅,e⃗ ∣ e :- e⟩ default exceptions evaluation

Figure 6.5: Evaluation contexts for the default calculus
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D-CONTEXT
eÐ→ e′ e′ ∉ {⊛,∅}

C[e] Ð→ C[e′]
D-BETA
(λ (x : τ). e) v Ð→ e[x↦ v]

D-CONTEXTCONFLICTERROR
eÐ→ ⊛

C[e] Ð→ ⊛

D-CONTEXTEMPTYERROR
eÐ→ ∅

Cλ[e] Ð→ ∅
D-DEFAULTTRUENOEXCEPTIONS
⟨∅,. . .,∅ ∣ true :- v⟩ Ð→ v

D-DEFAULTFALSENOEXCEPTIONS
⟨∅,. . .,∅ ∣ false :- e⟩ Ð→ ∅

D-DEFAULTONEEXCEPTION
v ≠ ∅

⟨∅,. . .,∅,v,∅,. . .,∅ ∣ e1 :- e2⟩ Ð→ v

D-DEFAULTEXCEPTIONSCONFLICT
vi ≠ ∅ vj ≠ ∅

⟨. . .,vi,. . .,vj,. . . ∣ e1 :- e2⟩ Ð→ ⊛

Figure 6.6: Reduction rules for the default calculus

that such an ∅-error can be caught, as long as it appears in the exception list
of an enclosing default expression. Therefore, we now turn our attention to
the rules that govern the evaluation of default expressions.

If no exception is valid, i.e. if the left-hand side contains only ∅s; and if
after further evaluation, the justification is true for the consequence v, then
the whole default reduces to v (D-DEFAULTTRUENOEXCEPTIONS). If no exception
is valid, and if the justification is false, then we do not need to evaluate
the consequence, and the default is empty, i.e. the expression reduces to
∅. If exactly one exception is a non-empty value v, then the default reduces
to v. In that case, we evaluate neither the justification or the consequence
(D-DEFAULTONEEXCEPTION). Finally, if two or more exceptions are non-empty,
we cannot determine the priority order between them, and abort program
execution (D-DEFAULTEXCEPTIONSCONFLICT).

Compiling the scope language We succinctly describe the compilation of the
scope language to the default calculus in Figure 6.7. Our goal is to get rid of
scopes in favor of regular lambda-abstractions, all the while preserving the
evaluation semantics; incorrect order of evaluation might lead to propagating
premature errors (i.e. throwing exceptions too early).

We assume for simplicity of presentation that we are equipped with tuples,
where (x1, . . . , xn) is concisely written (x⃗). We also assume that we are equipped
with let-bindings, of the form let (x1, . . . , xn) = e, for which we adopt the same

265



6. Catala: A Specification Language for the Law

C-SCOPE

local_vars(S) = ÐÐ→x ∶ τ calls(S) = S⃗

local_vars(Si) =
ÐÐÐ→

Si[x] S, [] ⊢ a⃗↪ e

scope S ∶ a⃗ ↪

let S(
ÐÐÐÐÐÐ→
x ∶ ()→ τ) =

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

let (

ÐÐÐ→

Si[x]) = (
ÐÐÐÐÐ→
λ (). ∅) in e

C-EMPTY
local_vars(S) = x⃗

S,∆ ⊢ [] ↪ (

ÐÐÐÐÐÐ→

force(∆, x))

C-DEF
S, ` ⋅∆ ⊢ a⃗↪ erest

S,∆ ⊢ def ` = e ∶∶ a⃗ ↪

let ` = ⟨` () ∣ true :- e⟩ in erest

C-CALL

S ≠ Si S,
ÐÐÐ→

Si[x] ⋅∆ ⊢ a⃗↪ erest

local_vars(Si) =
ÐÐÐ→

Si[x]

S,∆ ⊢ call Si ∶∶ a⃗ ↪

let (

ÐÐÐ→

Si[x]) = Si(
ÐÐÐÐÐÐÐÐÐÐ→

thunk(∆, Si[x])) in erest

F-IN
x ∈ ∆

force(∆, x) = x

F-NOTIN
x /∈ ∆

force(∆, x) = x ()

T-IN
x ∈ ∆

thunk(∆, x) = λ (). x

T-NOTIN
x /∈ ∆

thunk(∆, x) = x

Figure 6.7: Compiling the scope language to a default calculus
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concise notation. Given a scope S made up of atoms a⃗, local_vars(S) returns
all variables x for which def x ∈ a⃗. Note that this does not include rules that
override sub-scope variables, which are of the form def Sn[x]. We now turn to
our judgement, of the form S,∆ ⊢ a↪ e , to be read as “in the translation of
scope S, knowing that variables in ∆ have been forced, scope rule r translates
to default calculus expression e”.

A scope S with local variables x⃗ compiles to a function that takes an n-tuple
(x⃗) containing potential overrides for all of its context variables (C-SCOPE).
In the translation, each x therefore becomes a thunk, so as to preserve
reduction semantics: should the caller decide to leave a local variable xi to
be ∅, having a thunk prevents D-CONTEXTEMPTYERROR from triggering and
returning prematurely. Rule C-SCOPE performs additional duties. For each
one of the sub-scopes Si used by S, we set all of the arguments to Si, denoted
ÐÐÐ→

Si[x], to be a thunked ∅ to start with.
Advancing through the scope S, we may encounter definitions or calls. For

definitions (C-DEF), we simply insert a shadowing let-binding, and record that
` has been forced by extending ∆. Whether ` is of the form x or Sn[x], we
know that the previous binding was thunked, since our previous desugaring
guarantees that any variable ` now has a single definition. The rewritten
default expression gives the caller-provided argument higher precedence;
barring any useful information provided by the caller, we fall back on the
existing definition e. This key step explains how our law-centric syntax, which
allows caller scopes to override variables local to a callee scope, translates to
the default calculus.

For calls (C-CALL), we ensure all of the arguments are thunked before calling
the sub-scope; the return tuple contains forced values, which we record by
extending ∆ with all

ÐÐÐ→

Si[x]. The premise S ≠ Si captures the fact that recursion
is not allowed.

Finally, after all rules have been translated and we are left with nothing
but the empty list [] (C-EMPTY), we simply force all scope-local variables x⃗ and
return them as a tuple.

Discussion of Design Choices The current shape of Catala represents the
culmination of a long design process for the language. We now discuss a few
of the insights we gained as we iterated through previous versions of Catala.

For the surface language, a guiding design principle was to always guarantee
that the Catala source code matches the structure of the law. We have
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managed to establish this property not only for Section 121 (Section 6.1.1),
but also for all of the other examples we currently have in the Catala repository.
To achieve this, a key insight was the realization that every piece of statutory
law we looked at (in the US and French legal systems) follows a general
case / exceptions drafting style. This style, which we saw earlier, means
that the law encodes a static priority structure. Intuitively, computing a
given value boils down to evaluating an n-ary tree of definitions, where nodes
and edges are statically known. The children of a given node are mutually-
exclusive exceptions to their parent definition; either one exception applies,
and the computation stops. Or if no exception applies, the parent definition is
evaluated instead. This recursive evaluation proceeds all the way up to the
root of the tree, which represents the initial default definition.

The surface language was crafted to support encoding that tree of exceptions
within the syntax of the language via the label mechanism. This informed our
various choices for the syntactic sugar; notably, we make it easy to define n
mutually-exclusive definitions in one go thanks to syntactic sugars (i) and
(iiia) in Table 6.1.

A consequence of designing Catala around a static tree of exceptions for
each defined value is that the internal default calculus representation was
drastically simplified. In the original presentation of prioritized default logic,
values have the form ⟨e1, . . . , en∣ec ∶ ed∣ ⩽⟩ where ⩽ is a pre-order that compares
the ei at run-time to determine the order of priorities. We initially adopted
this very general presentation for Catala, but found out that this made the
semantics nearly impossible to explain; made the rules overly complicated
and the proof of soundness very challenging; and more importantly, was
not necessary to capture the essence of Western statutory law. Dropping
a run-time pre-order ⩽ was the key insight that made the internal default
calculus representation tractable, both in the paper formalization and in the
formal proof.

The scope language was introduced to eliminate the curious scoping rules
and parent-overrides of definitions, which are unusual in a lambda-calculus.
We initially envisioned a general override mechanism that would allow a parent
scope to override a sub-scope definition at any depth; that is, not just re-define
sub-scope variables, but also sub-sub-scope variables and so on. We were
initially tempted to go for this most general solution; however, we have yet to
find a single example of statutory law that needs this feature; and allowing
sub-sub-scope override would have greatly complicated the translation step.
We eventually decided to not implement this feature, to keep the compiler, the
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Type τ ∶∶= bool ∣ unit boolean and unit types
∣ τ → τ function type
∣ list τ list type
∣ option τ option type

Expression e ∶∶= x ∣ s ∣ true ∣ false ∣ () variable, scopes, literals
∣ λ (x : τ). e ∣ e e λ-calculus
∣ None ∣ Some e option constructors
∣ match e with option destructuring

∣ None → e ∣ Some x → e
∣ [e⃗] ∣ fold_left e e e list introduction and fold
∣ raise ε ∣ try e with ε → e exceptions

Exception ε ∶∶= ∅ empty exception
∣ ⊛ conflict exception

Declaration σ ∶∶= let s = e
Program P ∶∶= σ⃗

Figure 6.8: The enriched lambda calculus, our final translation target

paper rules and the formalization simple enough.
All of those insights stemmed from a close collaboration with lawyers, and

the authors of this paper are very much indebted to Sarah Lawsky and Liane
Huttner for their invaluable legal insights. Barring any legal expertise, we
would have lacked the experimental evaluation that was able to justify our
simplification choices and revisions of the language.

6.2.2. Bringing Non-monotonicity to Functional Programming

While sufficient to power the Catala surface language, the relatively simple
semantics of our default calculus are non-standard. We now wish to compile
to more standard constructs found in existing programming languages. We
remark that the reduction semantics for default terms resembles that of
exceptions: empty-default errors propagate (“are thrown”) only up to the en-
closing default term (“the try-catch”). Confirming this intuition and providing
a safe path from Catala to existing programming languages, we now present a
compilation scheme from the default calculus to a lambda calculus enriched
with a few standard additions: lists, options and exceptions.

Figure 6.8 shows the syntax of the target lambda calculus. In order to focus
on the gist of the translation, we introduce list and option as special, built-
in datatypes, rather than a full facility for user-defined inductive types. For
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C-DEFAULT
e1 ⇉ e′1 ⋯ en ⇉ e′n ejust ⇉ e′just econs ⇉ e′cons

⟨e1,. . .,en ∣ ejust :- econs⟩ ⇉
let rexceptions = process_exceptions [λ _ → e′1;. . .;λ _ → e′n] in

match rexceptions with Some e′ → e′ ∣ None → if e′just then e′cons else raise ∅

C-EMPTYERROR

∅ ⇉ raise ∅
C-CONFLICTERROR

⊛ ⇉ raise ⊛
C-VAR

x ⇉ x

C-LITERAL
e ∈ {(), true, false}

e ⇉ e

C-ABS
e ⇉ e′

λ (x : τ). e ⇉ λ (x : τ). e′

C-APP
e1 ⇉ e′1 e2 ⇉ e′2

e1 e2 ⇉ e′1 e
′
2

Figure 6.9: Translation rules from default calculus to lambda calculus

those reasons, we offer the minimum set of operations we need: constructors
and destructors for option, and a left fold for lists. We omit typing and
reduction rules, which are standard. The only source term that does not
belong to the target lambda calculus is the default term ⟨e⃗ ∣ ejust :- econs⟩.
Hence, translating this term is the crux of our translation.

Our translation is of the form e ⇉ e′ , where e is a term of the default
calculus and e′ is a term of the target lambda calculus. Figure 6.9 presents
our translation scheme. The semantics of default terms are intertwined
with those of ∅ and ⊛. The translation of ∅ and ⊛ is simple: both compile
to exceptions in the target language. We now focus on C-DEFAULT, which
deals with default terms. As a warm-up, we start with a special case:
⟨ ∣ ejust :- econs⟩. We translate this term to if ejust then econs else raise ∅,
which obeys the evaluation semantics of both D-DEFAULTTRUENOEXCEPTIONS

and D-DEFAULTFALSENOEXCEPTIONS. This simple example serves as a blueprint
for the more general case, which has to take into account the list of exceptions
e⃗, and specifically count how many of them are ∅.

In the general case, C-DEFAULT relies on a helper, process_exceptions;
each exception is translated, thunked, then passed to the helper; if the helper
returns Some , exactly one exception did not evaluate to ∅; we return it. If the
helper returns None, no exception applied, and we fall back to the simple case
we previously described.
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process_exceptions : list (unit → τ) → option τ

process_exceptions ≜ fold_left (λ (a : option τ) (e′ : unit → τ).

let e′ : τ = try Some (e′()) with ∅ → None in

match (a, e′) with

∣ (None, e′) → e′

∣ (Some a, None) → Some a

∣ (Some a, Some e′) → raise ⊛ ) None

Figure 6.10: process_exceptions translation helper

We now review process_exceptions defined in Figure 6.10. It folds over
the list of exceptions, with the accumulator initially set to None, meaning
no applicable exception was found. Each exception is forced in order, thus
implementing the reduction semantics of the default calculus. The accumu-
lator transitions from None to Some if a non-empty exception is found, thus
implementing a simple automaton that counts the number of non-empty
exceptions. If two non-∅ exceptions are found, the automaton detects an
invalid transition and aborts with a non-catchable ⊛.

Certifying the Translation The translation from scope language to default
calculus focuses on turning scopes into the lambda-abstractions that they
truly are underneath the concrete syntax. This is a mundane transformation,
concerned mostly with syntax. The final step from default calculus to lambda
calculus with exceptions is much more delicate, as it involves compiling
custom evaluation semantics. To rule out any errors in the most sensitive
compilation step of Catala, we formally prove our translation correct, using
F⋆ [33]–[35], a proof assistant based on dependent types, featuring support
for semi-automated reasoning via the SMT-solver Z3 [36].

Correctness statement We wish to state two theorems about our translation
scheme. First, typing is preserved: if de ⇉ le and ∅ ⊢ de ∶ dtau, then ∅ ⊢ le ∶ ltau

in the target lambda calculus where ltau is the (identity) translation of dtau.
Second, we want to establish a simulation result, i.e. the compiled program
le faithfully simulates a reduction step from the source language, using n
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de de′

le le′

Ð→

⇉

Ð→
∗

⇉

A

de de′

le le′

target

Ð→

⇉ ⇉
Ð
→
∗

Ð
→ ∗

B

Figure 6.11: Translation correctness theorems. A shows a regular simulation;
B shows our variant of the theorem.

steps in the target language.
The usual simulation result is shown in Figure 6.11, A. If de is a term of the

default calculus and if deÐ→ de′, and de ⇉ le, then there exists a term le′ of
the lambda calculus such that leÐ→ ∗le′ and de′ ⇉ le′. This specific theorem
does not apply in our case, because of the thunking we introduce in our
translation. As a counter-example, consider the reduction of e1 within default
term ⟨v0,e1 ∣ ejust :- econs⟩. If e1 steps to e′1 in the default calculus, then the
whole term steps to ⟨v0,e′1 ∣ ejust :- econs⟩. However, we translate exceptions to
thunks; and our target lambda calculus does not support strong reduction,
meaning λ _ → eλ,1 does not step into λ _ → e′λ,1. Diagram A is therefore not
applicable in our case.

The theorem that actually holds in our case is shown as diagram B (Fig-
ure 6.11). The two translated terms le and le′ eventually reduce to a common
form target. Taking the transitive closure of form B, we obtain that if de

reduces to a value dv, then its translation le reduces to a value lv that is the
translation of dv, a familiar result.

Overview of the proof We have mechanically formalized the semantics of both
the default calculus and target lambda calculus, as well as the translation
scheme itself, inside the F⋆ proof assistant. Figure 6.12 shows the exact
theorem we prove, using concrete F⋆ syntax; the theorem as stated establishes
both type preservation and variant B, via the take_l_steps predicate and the
existentially quantified n1 and n2. We remark that if the starting term de is
a value to start with, we have le = translate_exp de. Inspecting translate_exp
(elided), we establish that source values translate to identical target values.
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module D = DefaultCalculus; module L = LambdaCalculus
val translation_correctness (de: D.exp) (dtau: D.ty) : Lemma

(requires (D.typing D.empty de dtau)) (ensures (
let le = translate_exp de in
let ltau = translate_ty dtau in
L.typing L.empty le ltau ∧ begin

if D.is_value de then L.is_value le else begin
D.progress de dtau; D.preservation de dtau;
let de' = Some?.v (D.step de) in
translation_preserves_empty_typ de dtau;
translation_preserves_empty_typ de' dtau;
let le' : typed_l_exp ltau = translate_exp de' in
exists (n1 n2:N) (target: typed_l_exp ltau).

(take_l_steps ltau le n1 == Some target ∧

take_l_steps ltau le' n2 == Some target) end end))

Figure 6.12: Translation certification theorem, in F⋆

Proof effort and engineering Including the proof of type safety for the source
and target language, our F⋆ mechanization amounts to approximately 3,500
lines of code and required 1 person-month. We rely on partial automation
via Z3, and the total verification time for the entire development is of the
order of a few minutes. The choice of F⋆ was not motivated by any of its
advanced features, such as its effect system: the mechanization fits inside
the pure fragment of F⋆. Our main motivation was the usage of the SMT
solver which can typically perform a fair amount of symbolic reasoning and
definition unrolling, thus decreasing the amount of manual effort involved.

To focus the proof effort on the constructs that truly matter (i.e. default
expressions), the semantics of lists, folds and options are baked into the target
calculus. That is, our target calculus does not support user-defined algebraic
data types. We believe this is not a limitation, and instead allows the proof to
focus on the key parts of the translation. We use De Bruijn indices for our
binder representation, since the unrolling of process_exceptions results in
variable shadowing. Given those simplifications, we were surprised to find
that our proof still required 3,500 lines of F⋆. A lot of the complexity budget
was spent on the deep embedding of the process_exceptions helper. It is
during the mechanization effort that we found out that theorem A does not
hold, and that we need to establish B instead. Our mechanized proof thus
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significantly increases our confidence in the Catala compilation toolchain; the
proof is evidence that even for a small calculus and a simple translation, a lot
of subtleties still remain.

While F⋆ extracts to OCaml, we chose not to use the extracted F⋆ code within
the Catala compiler. First, the proof does not take into account all language
features. Second, the actual translation occupies about 100 lines of code
in both the production Catala compiler and the proof; we are content with
comparing both side-by-side. Third, the Catala compiler features advanced
engineering for locations, error messages, and propagating those to the proof
would be difficult.

6.3. Catala As an Interdisciplinary Vehicle

We claim that the design process of Catala as well as our comprehensive
code co-production process proposal maximizes the potential for adoption by
professionals. To support this claim, we report early user study results and
demonstrate an end-to-end use case with the computation of an important
French social benefit.

6.3.1. Bringing Code Review to Lawyers

Catala’s design has been supervized and influenced by lawyers since its
inception. Indeed, the project started out of Sarah Lawsky’s insight on the
logical structure of legal statutes [11], [37]–[39]. As well as providing the
formal base building block of Catala, lawyers also reviewed the syntax of
Catala, choosing the keywords and providing insights counter-intuitive to
programmers, such as the rule/definition distinction of Section 6.1.1.

We also conducted a careful analysis of the production process of legal
expert systems. We found that in France, administrative agencies always
use a V-shaped development cycle for their legal expert systems. In practice,
lawyers of the legal department take the input set of legal statutes and write
a detailed natural language specification, that is supposed to make explicit
the different legal interpretations required to turn the legal statute into an
algorithm. Then, legal expert systems programmers from the IT department
take the natural specification and turn it into code, often never referring back
to the original statute text.
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Exclusive interviews conducted by the authors with legal expert systems
programmers and lawyers inside a high-profile French administration reveal
that this theoretical division of labor is artificial. Indeed, the natural language
specification often proves insufficient or ambiguous to programmers, which
leads to programmers having to spend hours on the phone with the lawyers
to clarify and get the algorithm right. Furthermore, the validation of the
implementation depends on lawyer-written test cases, whose number and
quality suffer from budget restrictions.

This insight suggests that a more agile development process associating
lawyers and programmers from the beginning would be more efficient. We
claim the Catala is the right tool for the job, since it allows lawyers and
programmers to perform pair programming on a shared medium that locally
combines the legal text as well as the executable code.

We do not expect lawyers to write Catala code by themselves. A number of
frameworks such as Drools [40] are built on this promise. For our part, we
believe that software engineering expertise is needed to produce maintainable,
performant, high-quality code. Hence, we envision for lawyers to act as
observers and reviewers of the code production process, safeguarding the
correctness with respect to the legal specification.

We don’t expect adoption difficulties from the programmers’ side, since
Catala is morally a pure functional language with a few oddities that makes it
well-suited to legal specifications. To assess our claim of readability by lawyers,
we conducted a small user study with N = 18 law graduate students enrolled
in the Masters program “Droit de la création et numérique” (Intellectual
Property and Digital Law) at Université Panthéon-Sorbonne. The students
are anonymous recruits, enrolled in a course taught by a lawyer friend of
the project. The study was conducted during a 2-hour-long video conference,
during which the students were able to submit feedback in real time thanks to
an online form. None of the students had any prior programming experience;
this question was asked orally at the beginning of the session.

The methodology of the study is the following: the participants were given a
30 min. presentation of Catala’s context and goals, but were not exposed to
any program or syntax. Then, participants were briefed during 15 min. about
Section 121 and its first paragraph (Section 6.1.1) and received a copy of the
corresponding Catala code. Finally, the participants were told the protocol of
the study: 10 min. for reading the Catala code of Section 121, then fill the
questionnaire listed in Table 6.2; 15 min. of collective Q&A with the Catala
authors (over group video conference) about the Catala code of Section 121,
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Table 6.2.: Questions of the user study

# Exact text of the question

(1) Do you understand the project? Is there anything that is unclear
about it?

(2) Can you read the code without getting a headache?
(3) Can you understand the code?
(4) Can you link the code to the meaning of the law it codifies?
(5) Can you certify that the code does exactly what the law says and

nothing more? If not, are there any mistakes in the code?

(1) (2) (3) (4) (5)
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Figure 6.13: Results of the first round of questions in the user study

then fill a second time the same questionnaire listed in Table 6.2.

The participants and experimenters carried out the study according to the
aforementioned protocol. After all students had filled the questionnaire for
the second time, a short debriefing was conducted. The full answers of the
participants to all the questions of both rounds are available in the artifact
corresponding to this paper [12]. The answers given by the participants
in free text were interpreted as positive, negative or mixed by the authors.
Figure 6.13 and Figure 6.14 show the results for the first and second fillings
of the questionnaire by the participants.

These early results, while lacking the rigor of a scientific user study, indicate
a relatively good reception of the literate programming paradigm by lawyers.
The significant increase in positive answers between the first and second
round of questions indicates that while puzzled at first, lawyers can quickly
grasp the intent and gist of Catala once given a minimal amount of Q&A time
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Figure 6.14: Results of the second round of questions in the user study

(15 minutes in our study). One participant to the study was enthusiastic
about the project, and contacted the authors later to join the project and
tackle the modeling of French inheritance law in Catala.

After investigation, we believe that the large number of negative answers for
question (5) in the second round could be explained by a lack of familiarity
with the US Internal Revenue Code from the French lawyers. Indeed, the
wording of the question (“certify”) implies that the lawyer would be confident
enough to defend their opinion in court. We believe, from deeper interactions
with lawyers closer to the project, that familiarity with the formalized law
combined with basic Catala training could bring the lawyers’ confidence to
this level.

We deliberately introduced a bug in the code shown to the lawyers in this
user study. The bug involved a ⩽ operator replaced by ⩾. Of the 7 who
answered “Yes” to (5) in the second round, 2 were able to spot it, which we
interpret to be a very encouraging indication that lawyers can make sense of
the Catala code with just a two-hour crash course.

6.3.2. Improving Compliance in Legal Expert Systems

Based on the formalization of Section 6.2, we implement Catala in a stan-
dalone compiler and interpreter. The architecture of the compiler is based on
a series of intermediate representations, in the tradition of CompCert [41] or
Nanopass [42]. Figure 6.15 provides a high-level overview of the architecture,
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Source code Surface language

Desugared language Scope language

Default calculus λ-calculus

OCaml Interpeter

JavaScript

Section 6.1.1

Section 6.2.1 Section 6.2.1

Section 6.2.2 Section 6.2.2

via js_of_ocaml [46]

Figure 6.15: High-level architecture of the Catala compiler (red box)

[ERROR] Syntax error at token "years"
[ERROR] Message: expected a unit for this literal, or a valid operator
[ERROR] to complete the expression
[ERROR] Autosuggestion: did you mean "year", or maybe "or", or maybe "and",
[ERROR] or maybe "day", or maybe ".", or maybe ">", [...]
[ERROR] Error token:
[ERROR] --> section_121.catala_en
[ERROR] |
[ERROR] 180 | if date_of_sale_or_exchange <=@ period.begin +@ 5 years then
[ERROR] | ^^^^^
[ERROR] Last good token:
[ERROR] --> section_121.catala_en
[ERROR] |
[ERROR] 180 | if date_of_sale_or_exchange <=@ period.begin +@ 5 years then
[ERROR] | ^

Figure 6.16: Example of Catala syntax error message

with links to relevant sections alongside each intermediate representation.
The compiler is written in OCaml and features approximately 13,000 lines

of code. This implementation, available as open-source software on GitHub
and in the artifact accompanying this paper [12], makes good use of the
rich and state-of-the art library ecosystem for compiler writing, including
ocamlgraph [43] for the e.g. the two topological sorts we saw (Section 6.2.1),
bindlib [44] for efficient and safe manipulation of variables and terms, and
the menhir parser generator [45]. Thanks to these libraries, we estimate that
the development effort was 5 person-months.

Usability We devoted a great of attention towards the usability of the compiler.
Indeed, while we don’t expect lawyers to use Catala unaccompanied, we
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would not want to restrict its usage to λ-savvy functional programmers. To
improve the programmer experience, we use the special parser error reporting
scheme of menhir [47], to provide customized and context-aware syntax error
messages that depend on the set of tokens acceptable by the grammar at the
site of the erroneous token (see Figure 6.16). The shape of the error messages
is heavily inspired by the Rust compiler design [48]. Error messages flow
through the compiler code via a unique exception containing the structured
data of the error message:

exception StructuredError of
(string * (string option * Pos.t) list)

This structure enables on-the-fly rewriting of error messages as they propagate
up the call stack, which is useful for e.g. adding a new piece of context linking
to a code position of a surrounding AST node. In this spirit, error messages
for scope variable cycle detection display the precise location for where the
variables in the cycle are used; error messages for default logic conflict errors
⊛ show the location of the multiple definitions that apply at the same time for
a unique variable definition.

Finally, we have instrumented the Catala interpreter with helpful debugging
features. Indeed, when pair programming with a lawyer and a programmer
over the formalization of a piece of law, it is helpful to see what the execution
of the program would look like on carefully crafted test cases. While test
cases can be directly written in Catala using a top-level scope that simply
defines the arguments of the sub-scope to test, the compilation chain inserts
special log hooks at critical code points. When executing a test case, the
interpreter then displays a meaningful log featuring code positions coupled
with the position inside the legal statute for each default logic definition taken.

We believe that this latter feature can easily be extended to provide a com-
prehensive and legal-oriented explanation of the result of a Catala program
over a particular input. Such an explanation would help increase trust of
the system by its users, e.g. citizens subject to a complex taxation regime;
thereby constituting a concrete instance of a much sought-after “explainable
AI” [49], [50].

Performance We ran the French family benefits Catala program described
in a later paragraph; it is as complex as Section 121 of the US Internal
Revenue Code but featuring approximately 1500 lines of Catala code (literate
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programming included). Given the description of a French household, we
benchmark the time required to compute the amount of monthly family
benefits owed.

The Catala interpreter for this program runs in approximately 150ms. We
conclude that the performance of the interpreter remains acceptable even
for a production environment. When the Catala code is compiled to OCaml,
execution time drops to 0.5ms. Therefore, we conclude that performance
problems are, at this stage of the project, nonexistent.

Extensible Compiler Backend A crucial consideration in designing a DSL is
the interoperability story within existing environments. While some DSLs
operate in isolation, we envision Catala programs being exposed as reusable
libraries that can be called from any development platform, following the
needs of our adopters. In the context of legal systems, this is a very strong
requirement: such environments oftentimes include legacy, mainframe-based
systems operating in large private organizations or government agencies [51].
Furthermore, since the algorithms that Catala is designed to model are at the
very heart of e.g. tax collection systems, proposing a classic interoperability
scheme based on APIs or inter-language FFIs might create an undesirable
barrier to adoption; a system designed in the 1960s probably has no notion of
API or FFI whatsoever!

Instead, we choose for Catala an unusually simple and straightforward
interoperability scheme: direct source code generation to virtually any pro-
gramming language. This solution is generally impractical, requiring consid-
erable workarounds to reconcile semantic mismatches between target and
source, along with a significant run-time support library. In the case of Catala,
however, our intentional simplicity makes this “transpiling” scheme possible.

Indeed, the final intermediate representation of the Catala compiler is a pure
and generic lambda calculus operating over simply-typed values. By re-using
standard functional compilation techniques such as closure conversion [52],
we claim that it is possible to compile Catala to any programming language
that has functions, arrays, structures, unions, and support for exceptions. We
also believe that a more complex version of the compilation scheme presented
in Section 6.2.2 would remove the need for exceptions (in favor of option
types), but leave this as future work.

The run-time required for generated programs only has to include an infinite
precision arithmetic library (or can default to fixed-sized arithmetic and floats)
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and a calendar library to compute the days difference between two dates,
taking leap years into account. We demonstrate this with the OCaml backend
of the Catala compiler, which amounts to 350 lines of compiler code and 150
lines of run-time code (excluding the zarith [53] and calendar [54] libraries).
Merely compiling to OCaml already unlocks multiple target environments,
such as the Web, via the js_of_ocaml compiler [46]. We thus effortlessly
bring Catala to the Web.

A Look Back to Section 121 We have used Section 121 of the US Internal
Revenue Code as a support for introducing Catala in Section 6.1.1. But
more interestingly, this piece of law is also our complexity benchmark for
legal statutes, as it was deemed (by a lawyer collaborator) to be one of the
most difficult sections of the tax code. This reputation comes from its dense
wording featuring various layers of exceptions to every parameter of the gross
income deduction.

We have so far formalized it up to paragraph (b)(4), which is approximately
15% of the whole section and around 350 lines of code (including the text
of the law), but contain its core and most used exceptions. We include the
result of this effort in the artifact [12]. The current formalization was done in
four 2-hour sessions of pair programming between the authors and lawyers
specialized in the US Internal Revenue Code. Progress is relatively slow
because we consider in the process every possible situation or input that
could happen, as in a real formalization process. However, this early estimate
indicates that formalizing the whole US Internal Revenue Code is a completely
reachable target for a small interdisciplinary team given a few years’ time.

While finishing the formalization of Section 121 is left as future work, we
are confident that the rest of the section can be successfully expressed in
Catala: the maze of exceptions is localized to (a) and (b), and the rest of the
limitations are just a long tail of special cases; with our general design that
supports arbitrary trees of exceptions in default logic, this should pose no
problem.

Case Study: French Family Benefits Section 6.3 argues that Catala is received
positively by lawyers. This is only half of the journey: we need to make sure
Catala is also successfully adopted by the large private or public organization
where legacy systems are ripe for a principled rewrite. To support our claims
concerning the toolchain and interoperability scheme in a real-world setting,

281



6. Catala: A Specification Language for the Law

we formalized the entire French family benefits computation in Catala and
exposed the compiled program as an OCaml library and JavaScript Web
simulator. The full code of this example can be found in the supplementary
material of this article, although it is written in French.

A crucial part of the French welfare state, family benefits are distributed to
households on the basis of the number of their dependent children. Created
in the early 1930’s, this benefit was designed to boost French natality by
offsetting the additional costs incurred by child custody to families. Family
benefits are a good example of a turbulent historical construction, as the
conditions to access the benefits have been regularly amended over the quasi-
century of existence of the program. For instance, while family benefits were
distributed to any family without an income cap, a 2015 reform lowered the
amount for wealthy households [55], [56].

The computation can be summarized with the following steps. First, de-
termine how many dependent children are relevant for the family benefits
(depending on their age and personal income). Second, compute the base
amount, which depends on the household income, the location (there are
special rules for overseas territories) and a coefficient updated each year by
the government to track inflation. Third, modulate this amount in the case of
alternating custody or social services custody. Fourth, apply special rules for
when a child is exactly at the age limit for eligibility, or when the household
income is right above a threshold. All of these rules are specified by 27 articles
of the French Social Security Code, as well as various executive orders.

The Catala formalization of this computation amounts to approximately
1,500 lines of code, including the text of the law. The code is split between
6 different scopes featuring 63 context variables and 83 definitions and
rules. We believe these numbers to fairly representative of the authoring
effort required for a medium-size legal document. Distributed as an OCaml
library, our code for the French family benefits is also used to power an online
simulator (see Figure 6.17).

After writing the code as well as some test cases, we compared the results of
our program with the official state-sponsored simulator mes-droits-sociaux.
gouv.fr, and found no issue. However, the case where a child is in the cus-
tody of social services was absent from the official simulator, meaning we
could not compare results for this case. Fortunately, the source code of the
simulator is available as part of the OpenFisca software project [57]. The
OpenFisca source file corresponding to the family benefits, amounts to 365
lines of Python. After close inspection of the OpenFisca code, a discrepancy
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Figure 6.17: Screenshot of the Web family benefits simulator powered by
Catala

was located with the Catala implementation. Indeed, according to article
L755-12 of the Social Security Code, the income cap for the family benefits
does not apply in overseas territories with single-child families. This subtlety
was not taken into account by OpenFisca, and was fixed after its disclosure
by the authors.

Formalizing a piece of law is thus no different from formalizing a piece of
software with a proof assistant. In both cases, bugs are found in existing
software, and with the aid of a formal mechanization, can be reported and
fixed.

Conclusion

The last chapter of this dissertation is also the most forward-thinking and
holistic illustration of the proof-oriented domain-specific language design
methodology that we advocate for. The collaboration with domain experts on
the topic was paramount; it should be noted that we were extremely lucky
to collaborate directly with Sarah Lawsky, who is probably the only tax law
professor who also holds a PhD degree in formal logic. In fact, Sarah Lawsky
and the prior logic programming researchers working on formal modeling of
law already had done the hard work of uncovering the right paradigms for
an efficient formalization. However, this community of logicians was miss-
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ing a proper programming languages culture, as the logical languages they
produced never incorporated elements that could have made them actually
usable or deployable.

The added value of this work and Catala is thus to adapt the existing logical
research about legal formalization into an artifact that is both usable and
deployable in the critical software context of the organizations that run legal
expert systems. Hence, to get the end result, three layers of intermediation
and distinct expertise were needed. First, the legal layer with its knowledge of
statutes and their interpretation. Second, the logic layer with its formalism
and fine-grained modeling of legal reasoning into mathematical theories. Then,
the programming language layer with its constraints about usability, software
implementation and maintainability. All three layers are equally important
in this chain that goes from in vivo domain practices to digital tools that
faithfully automate some of them without perverting their intent.

The risk of perverting the intent of legal practices through automation is
real, and stems from the simplifications that must occur at each level of
the chain. Indeed, the goal of law is to regulate the reality of the world,
where everything can happen and whose complexity will forever escape the
formalist’s high-modernist rule. It is then important to always check that the
end product, as simple as an extended lambda calculus can be, allows for
programs written in it the flexibility of the original legal text. This problem
is thoroughly explored in a recent article of the MIT Computational Law
Report [58], and we believe that Catala’s design partially incorporate this
contraint; for instance, two different interpretations of a same article can be
both encoded, and discriminated against at run-time with a user input or
condition. However, we believe that the source Catala code should enjoy a
high-level of consensus before execution, to avoid ex post court cases where
an affected party would contest the translation of law into Catala code. That
is why we strongly advocate for the code of legal expert systems to be open
source and accept external contributions.
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Epilogue

At the end of this journey into proof-oriented domain-specific language design,
it is useful to come back to the methodology of Section 1.3.1 and Figure 1.9
of page 36. We can summarize what steps of this methodology are illustrated
by the chapters of this dissertation.

Chapter 2: LibSignal⋆ is a comprehensive case study for the methodology. By
re-purposing an existing program verification framework, we could bring
to the Web ecosystem the high assurance cryptographic standards exist-
ing for native implementations with WHACL⋆. Moreover, the LibSignal⋆

artefact has been crafted by carving out a critical part from a real-world
implementation, lowering the barrier to a transfer to industrial users.

Chapter 3: hacspec focuses on the second and third steps of the method-
ology, by filling the gap between cryptographers and proof engineers
around the specifications of cryptographic primitives and protocols. It
also demonstrates the power of a custom compilation platform to target
multiple proof frameworks and take advantage of their diversity and
distinct strengths.

Chapter 4: Steel is a exercise in proof-oriented language design inside a
general-purpose proof assistant, corresponding to step four of the method-
ology. This experiment shows that to tackle the difficult problem of
stateful program verification, a divide-and-conquer strategy ought to be
applied to proof obligations. Only then can adapted proof automation
backends be efficiently used to push the program verification frontier
forward.

Chapter 5: MLANG applies step two of the methodology to an existing, real-
world domain-specific language for critical tax software. Although the
work presented does not feature fully-fledged functional correctness
verification, the first static analysis performed on the codebase show
promising future work opportunities.
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Epilogue

Chapter 6: Catala also illustrates step two of the methodology, in an attempt
to re-design tax domain-specific languages with solid logic foundations
adapted to legal reasoning. By enjoying a partially certified compilation
from a fully formalized core language, this contribution is also related
to steps four and five of the methodology. Future work should connect
Catala to deep or shallow embedding inside proof assistant for more
complex verification.

In the three years and a half that spanned the completion of these contribu-
tions, our convergence to language design as opposed to other specific skills in
formal methods is visible. Language design as an activity is hard to evaluate
quantitatively, as its success inherently tied to the user experience of all the
beneficiaries of the project: source code writer, receptors of generated code,
etc. Recently, Coblenz et al.1 lay out a comprehensive framework for this
evaluation with user-centered methods. We believe this kind of evaluation
process is the best tool currently available to guide programming language
design research, but it comes with limitations. Correctly interpreting user
feedback and avoiding all the bias that comes with subjective perception is
hard, and the right solutions required a big investment in time and social
science research skills. Coblenz et al. note:

“Late in the project, we found that designing and running user
studies of low-level features typically required much more time than
implementing the features”.

This observation might come as a paradox to some members of the pro-
gramming languages community, that highly value technical difficulty and
mathematical elegance when reviewing the works of their peers, and tend to
disregard this sort of “soft science” contributions. To interpret this paradox,
we claim that the technical aspect of language design has enjoyed an attention
hypertrophy compared to the social aspect of language design. The verifi-
cation frameworks presented in Section 1.1.1 and Section 1.1.2 have made
it easy to produce new languages that can be connected to a rich technical
infrastructure ecosystem. Meanwhile, too few new languages are designed
with user-centric methods in mind; we believe that this limitation actively

1M. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise, C. Barnaby, J. Sunshine, J.
Aldrich, and B. A. Myers, “Pliers: a process that integrates user-centered methods into
programming language design”, ACM Transactions on Computer-Human Interaction (TOCHI),
vol. 28, no. 4, pp. 1–53, 2021
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hurts the advancement of the formal methods field, by restricting it to a set of
well-known technical niches in which progress now comes at higher cost and
with diminishing returns.

Unfortunately, mastering the technical state of the art is still a hard re-
quirement before innovating from it, and that is why three chapters of this
dissertation are dedicated to more traditional areas of program verification.
The last two chapters present practical examples of how to leverage the cur-
rent state of the art technical tooling and frameworks to a new domain, thus
opening many new research leads and opportunities. We acknowledge that
replicating this kind of individual journey is unlikely, the one presented here
being the specific product of a particular personal trajectory. Hence, we rather
advocate for increased interdisciplinary collaboration, moving from individuals
to teams with a shared objective driven by real-world applications. Building
the right environment for this sort of work to happen in good conditions is an
organizational challenge by itself; but our future work in this area is bound to
include a holistic approach to innovation that includes and goes beyond the
technical challenges presented in this dissertation.
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MOTS CLÉS

vérification de programme, langage dédié, méthodes formelles, cryptographie, droit

RÉSUMÉ

La vérification de programme consiste en l’analyse d’un programme informatique vu comme un artefact formel, afin de
prouver l’absence de certaines catégories de bogues avant l’éxécution. Mais pour utiliser un cadriciel de vérification de
programme, il faut auparavant traduire le code source originel du programme dans le langage formel du cadriciel. De
plus, il est possible d’utiliser plusieurs cadriciels de vérification pour prouver des propriétés de plus en plus spécialisées
à propos du programme.
Pour répondre au besoin de traductions multiples du programme source vers différents cadriciels de vérification de pro-
gramme ayant chacun leur paradigme de preuve, nous défendons l’utilisation de langages dédiés orientés vers la preuve.
Ces langages dédiés devraient être pensés comme une sur-couche au dessus des cadriciels de preuves, avec un design
qui incorpore et distribue les obligations de preuves entre les prouveurs.
De plus, le programme originel est souvent déjà traduit depuis des spécifications d’exigences informelles liées au domaine
d’activité afférent. Afin de raffermir le maillon le plus haut de la chaîne de confiance, nous soutenons que les langages
dédiés orientés vers la preuve peuvent aider les experts du domaine à relire la spécification du programme, spécification
à la base d’ultérieurs développements d’implantations vérifiées.
Cette dissertation traite du design et de l’utilité des langages dédiés orientés vers la preuve au travers de cinq études
de cas. Ces études de cas portent sur des domaines allant des implantations cryptographiques aux systèmes experts
légaux, et sur des logiciels à haut niveau d’assurance actuellement utilisés en production.

Chaque étude de cas donne son nom à l’un des chapitres de cette dissertation. LibSignal⋆ est une implémentation

vérifiée du protocole cryptographique Signal à destination du Web. hacspec est un langage dédié pour les spécifica-

tions cryptographiques en Rust. Steel est un cadriciel de vérification de programme utilisant la logique de séparation à

l’intérieur de l’assistant de preuve F⋆. MLANG est un compilateur pour un langage dédié aux calculs fiscaux utilisé par la

DGFiP. Enfin, Catala est un nouveau langage qui permet l’encodage de spécifications législatives dans un code source

exécutable et analysable.

ABSTRACT

Program verification consists in analyzing a computer program as a formal artifact in order to prove the absence of
certain categories of bugs before execution. But to use a program verification framework, one has to first translate the
original source code of the program to verify in the formal language of the framework. Moreover, one might use different
verification frameworks to prove increasingly specialized properties about the program.
To answer the need for multiple translations of the source program to various program verification frameworks with different
proof paradigms, we advocate for the use of proof-oriented domain-specific languages. These domain-specific language
should act as a frontend to proof backends, with a language design that incorporates and distributes the proof obligations
between provers.
Moreover, the original program has often already been translated from informal domain-specific requirements that act as
its specification. To close the top layer of the chain of trust, we claim that proof-oriented domain-specific language can
help domain experts review the program specification at the base of formally verified implementation developments.
This dissertation discusses the design and usefulness of proof-oriented domain-specific languages in five case studies.
These case studies range from the domain of cryptographic implementations to legal expert systems, and often target
real-world high-assurance software.

Each of the case study gives its name to a chapter of this dissertation. LibSignal⋆ is a verified implementation of the

Signal cryptographic protocol for the Web. hacspec is a domain-specific language for cryptographic specifications in

Rust. Steel is a separation-logic-powered program verification framework for the F⋆ proof assistant. MLANG is a compiler

for a tax computation domain-specific language used by the French tax authority. Finally, Catala is a novel language for

encoding legislative specifications into executable and analyzable artifacts.

KEYWORDS

programme verification, domain-specific language, formal methods, cryptography, law
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