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Abstract 
With the emergence and the production of a large volume of spatial data, supporting large 

scale and high-performance queries and analysis has become crucial and essential in several 

applications and fields. The tremendous advances in technology such as smartphones, internet of 

things, web, navigation systems and sensors, have led to the production of spatial datasets having 

large sizes. For example, climate and precision agriculture sector are ones of the fields affected by 

these advances in data acquisition technology where this kind of data is produced in high precision 

and large temporal sequences. Querying large-scale data allows extracting more valuable and 

meaningful information that is vital for decision-making, scientific advancement and scenario 

predictions. Unfortunately, most of existing methods and approaches are based on traditional 

computing framework (uniprocessors) which makes them not scalable and not adequate to deal 

with large-scale data.  

In this work, we show that using the GPGPU can reduce the time of spatial data processing 

and save computations. In this regard, we have proposed to speed up three classical queries that 

have never been tackled before in the literature. First, we have proposed an optimized parallel 

method based on GPGPU to produce overlapping aggregated data summaries by the computation 

of the average temperature for all overlapped raster subsequences of a determined length for the 

studied region.  

As a second contribution, we have tackled a raster selection query based on a threshold fixed by 

the user. In fact, in different analyses, users can be interested only in some rasters. Hence, we have 

implemented two solutions based on the GPGPU and the CPU that include a rejection procedure 

of rasters in the early stages of computations using on a sorting step. 

Finally, we have proposed two high-performance methods for a selection query based on GPGPU 

and CPU for massive spatio-temporal data. The query consists on selecting fixed size disjoint raster 

subsequences based on their average satisfying a user threshold condition. The two methods 

include a rejection procedure of subsequences based on sorting.  

 

Keywords: Spatial data science; Geographic Information System; Big data; General Purpose GPU; 

Parallel computing; Raster data; CUDA; CUB; Thrust. 
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Résumé 
Ces dernières années, la production des données spatiales a connu un bond qualitatif et 

quantitative. En effet, Les énormes progrès technologiques, tels que les smartphones, l'Internet des 

objets, les systèmes de navigation et les capteurs ont conduit à la production des données spatiales 

de grande taille et à haute définition. Les capteurs, par exemple, sont maintenant plus précis, moins 

chers et plus performants générant des données haute précision et à grande fréquence. Proposer des 

requêtes et des opérations d’analyse puissantes et à grande échelle devient cruciale et essentielle 

dans plusieurs applications et domaines. Le secteur d’agriculture et environnemental est l'un des 

domaines touchés par ces progrès de la technologie d'acquisition de données. Interroger et analyser 

ce jeu de données permet d'extraire des informations vitales pour la prédiction, la prise de décision, 

et l'avancement scientifique. Malheureusement, la plupart des méthodes et approches existantes 

sont basées sur une approche traditionnelle à base de CPU (monoprocesseurs), ce qui les rend non 

évolutives, inadéquates pour traiter des données à grande échelle et prennent beaucoup de temps 

pour l’exécution. 

Dans ce travail, nous montrons que l'utilisation du GPGPU peut réduire le temps de traitement des 

données spatiales et économiser les calculs. À cet égard, nous avons proposé d'accélérer une 

opération d’agrégation et deux requêtes classiques qui n'avaient jamais été abordées auparavant 

dans la littérature. 

Tout d'abord, nous avons proposé une méthode parallèle optimisée en utilisant GPGPU pour 

produire des résumés de données basée sur l’agrégation chevauchées, plus précisément, 

Le calcul de la température moyenne des séquences chevauchées des rasters de taille fixe. 

Dans un second temps, nous avons abordé la requête de sélection des rasters basée sur un seuil fixé 

par l'utilisateur. En effet, dans différents scénarios, les utilisateurs ne peuvent s'intéresser qu'à 

certains rasters. Par conséquent, nous avons mis en place deux solutions robustes basées sur le 

GPGPU et le CPU qui incluent une procédure de rejet des rasters aussitôt que possible pour réduire 

le temps d’exécution en utilisant une étape de trie.  

Finalement, nous avons proposé deux méthodes basées sur le GPGPU et le CPU pour une requête 

de sélection des séquences des rasters non chevauchés à base de leurs moyennes selon un seuil fixé 

par l’utilisateur. 
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This first part is organized in 3 chapters: 

• Chapter 1: General introduction. In which we present the context and the motivation of our 

work, we outline the contributions and we present our methodology of research.  

• Chapter 2: State of the art. In this chapter, we show the different methods used to process 

large-scale spatial data. We have classified them into three main categories: methods based 

on uniprocessor CPU, methods based on parallel processing using the GPGPU and finally 

the methods based on distributed systems. 

• Chapter 3: Background. This chapter is dedicated to present the different concepts related 

to:  Spatial data and their operations and parallel computation. 
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Chapter 1  

Introduction 
 

1.1 Context and motivation 

The emergence and the tremendous advances in technology such as smartphones, internet of 

things (Palmaccio et al., 2020), networking capabilities unmanned technologies, navigation 

systems and sensors, have led to the production of large size of dataset especially the environmental 

data. Sensors, for instance, are now smaller, cheaper and even smart (Melesse et al., 2007). Sensors 

now are portable; they can be mounted on various platforms, such as microstates, drones, airships, 

vehicles, water-based vessels, and may even be carried or embedded in robots (Tao et al., 2007). 

In the other hand, Wireless Sensor Network (WSN) which is an important element in Internet of 

Things (IoT), allows monitoring environmental conditions, such as temperature, pressure, or 

humidity using sensors cooperatively (Madakam et al., 2015). These actual advances cited above, 

have led to an explosive volume of data more precisely spatial data. Hence, Spatial data are 

produced in a high precision, high wide coverage, and in a high temporal frequency (i.e., at each 

second) (Sawant et al., 2017) (Pinet, 2012). These spatial data are deployed for many applications, 

and received remarkable attention in many areas such as military, homeland security, healthcare 

environmental monitoring, precision agriculture and so on (Madakam et al. ,2015). This massive 

amount of spatio-temporal data can be used for addressing scientific challenges: such as climate 

changes and global warming etc. (Yang et al., 2019).  Analyzing, this large set of data allows us to 

understand environmental phenomena better, make predictions that are more accurate, enhance 

surveillance and proactive decision-making in many applications. 

The fields that interest us are the agriculture and the environment. Hence, transforming this large 

volume of data into actionable knowledge for better decision support is crucial and very 

challenging task for industry and research. 

In the agriculture domain, especially the precision agriculture or the precision farming, geospatial 

data is collected, analyzed to maximize on yields (Grisso et al., 2004). This allows the farmer to 

gain more understanding on resources’ optimization such as fertilizers, pesticides and herbicides, 

water in order to use them more efficiently. This will reduce extra expenses, increase productivity 

and as results maximize the profits (Ait Issad et al., 2019). 
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These data can also be utilized to analyze the links between different agricultural activities 

(livestock, crops, etc.) and the climate changes (Hamere, 2015), at a large spatial and temporal 

scale. 

Many of these data take the form of raster sets. A raster is a geo-referenced 2-dimensional array in 

which each cell is associated with a value (Figure 1.1). The cells of a raster can be represented by 

pixels where the colors correspond to different values of a measure, such as temperature, vegetation 

density, CO2 measurements, etc. (Kang et al., 2015). Data availability and data storage are often 

no longer barriers, whereas the real bottleneck is, in many cases, the analysis of these spatial data 

that continue growing dramatically (Barbian and Assunção, 2017). 

 

  

 

 

 

 

 

 

 

 

 

In this work, we are interested in spatio-temporal rasters (Song et al., 2016) that can be viewed as 

a sequence of rasters for the same region and for a defined period of time. Each raster represents 

information related to the studied region at regular intervals of time (e.g. every second, minute, 

hour, etc.) – see Figure 1.2. Spatio-temporal rasters allow the analysis of the gradual evolution of 

temporal phenomena such as the detection of abnormal phenomenon evolution over time in the 

studied region. 

 

 

 

 

 

Figure 1.1. Raster is composed of rows and columns of 
cells. 
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Large spatio-temporal rasters are deployed in many applications such as climate science to 

analyze atmospheric and oceanic conditions, which allow us to better understand Earth’s system. 

These data are also useful in precision agriculture (Cisternas et al., 2020) to study the different 

factors affecting the crop yields in order to optimize the production cycle. Simultaneously, it also 

brings great challenges in management technology. In last decades, a large number of new 

approaches, parallel algorithms, processing tools, platforms, have been proposed and developed to 

improve the Deployment of these data, in order to extract the maximum knowledge that can help 

to get more accurate decisions and predictions. 

The aim of our PhD, is to propose new methods based on sequential and parallel approaches.  Our 

parallel approach is based on general-purpose processing on graphics processing units (GPGPU) 

(Harris, 2006), to process and analyze this large volume of spatio-temporal rasters efficiently in 

time and computation. Our purpose is to provide fast, efficient and scalable techniques for 

processing different massive computation queries over large-scale spatio-temporal data. 

The majority of the existing methods are based on traditional approaches (CPU uniprocessors) 

since only small datasets were used; hence, optimization was not a priority. However, sequential 

methods are not anymore suitable for large datasets, which are growing exponentially. Hence 

Figure 1.2. Spatio-temporal rasters representing the evolution of the temperature during N 
days for a studied region. 
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processing based on the GPGPU will be a good alternative to deal with the large-scale raster data. 

In fact, the GPGPU has been used in many applications such as image processing (Viola et al., 2003; 

Temizel et al., 2011), simulations (Walsh et al., 2009), and have shown good a performance of speed 

up.  Thus, the interest of using such approach in our work. 

Let D be a temporal sequence of rasters representing the temperature of the same 

geographical region, over a period of time, such that D = (R1, …, Rn).  Each raster Ri corresponds 

to a time i and each raster cell is associated with a temperature measurement value. We want to 

reduce the time execution of selection and aggregation queries over large raster data. Selection and 

aggregation operations are traditional queries useful in databases and data warehouse in our 

experiment; we use environmental and agricultural applications. However, it is possible to apply 

our approaches on other fields or data types. 

1.2 Contributions 

In our PhD, we tackle the problem of speeding up the processing of large spatio-temporal 

rasters for a studied region. As cited above, the majority of existing methods rely on classical 

approaches that are not suitable anymore, since we are dealing with large-scale spatio-temporal 

data.  Our contributions based on GPGPU reduce query execution time and save computation time 

for the users in order to allow him/her to understand, react and make decisions quickly. 

Let’s consider a sequence of rasters representing the evolution of temperature over time for a 

specific region as shown in Figure 1.2. At each step of time (i.e. each hour), one raster is produced, 

and each raster cell stores a temperature value. Several contributions have been proposed:  

• Our first contribution consists on proposing improved parallel methods based on 

GPGPU to produce overlapping aggregated data summaries by the calculation of 

the average values (e.g. temperature) for the studied region for all the possible 

overlapped raster subsequences of a determined length. The results show that our 

method can get a speed up of 60 compared to the classical approaches.  This 

contribution has been the subject of a journal publication (EN-NEJJARY, 2019). 

The method is based on two fundamental steps: Computing the mean of each raster 

cells and after that computing the mean over each overlapped raster subsequences 

of order L. Such processing will give us the possibility to produce data summary as 

used in data warehouse, select specific data according to their average values or to 
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check data consistency with integrity constraints (for example, finding the periods 

where the average temperature is aberrant) (EN-NEJJARY, 2019). 

• The second contribution has been the subject of the paper (EN-NEJJARY, 2018a). 

In this work, we have tackled raster selection queries based on a threshold fixed by 

the user. In fact, in different analyses, users can be interested only in some rasters 

(for example, days where the temperature were less than 15 C°). In that case, it is 

possible to reduce the processing time by implementing a rejection procedure of 

rasters based on the user’s threshold in the early stages of the computation. To this 

end, we have added a sorting step to reject rasters that not satisfying the condition 

in an early time. We have proposed two methods based on the CPU, the first one is 

straightforward approach and the second one is based on a sorting step.   

• In our third contribution, we have proposed the parallel version of the algorithm 

presented in the previous contribution. This work was materialized into a conference 

publication (EN-NEJJARY, 2018b).  

• Our last contribution consists in a GPGPU-based method to implement the selection 

of spatio-temporal raster subsequences (a sequence of rasters for the same region 

and for a defined period of time) from a large spatio-temporal raster set, based on a 

user-defined condition (e.g., the average of raster cells must be less than a certain 

threshold. The results show that GPGPU-based methods reduce the execution time 

and enable us to get the query response 3 times faster than the traditional methods. 

Moreover, we propose a parallel sorting step using GPGPU to boost the response 

time of the query. 

1.3 Methodology and publications 

In our research, we have followed the hereunder steps: 

● Providing a state of the art of spatial data and different techniques of processing. In 

this step we have studied spatial data, the map algebra (Tomlin, 1994), and the 

different proposed approaches to process large-scale raster data.  

● Learning about the GPGPU programming and different approaches of optimization. 

In this context, I have participated in two summer schools dedicated to GPGPU 

parallel computing and different approaches of optimization. 
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● Studying different queries that have never been tackled before and which are very 

interesting for environmental and agriculture applications. 

● Generating spatio-temporal raster datasets based on raw public dataset provided by 

the US National Oceanic and Atmospheric Administration: NOAA (Diamond et al., 

2013).  

● Formalizing the queries, proposing sequential and parallel resolutions, and 

comparing them. Making experiments and discussing the results. 

   

The work performed during the PhD has leaded to the following publications: 

1. EN-NEJJARY, D., PINET, F., KANG, M. -2019. Modeling and Computing 

Overlapping Aggregation of Large Data Sequences in Geographic Information 

Systems. International Journal of Information System Modeling and Design, 

vol.10(1), IGI Global USA, p. 20-41.  

 

2. EN-NEJJARY, D., PINET, F., KANG, M. -2018. A Method to Improve the 

Performance of Raster Selection Based on a User-Defined Condition: An Example 

of Application for Agri-environmental Data. Advances in Intelligent Systems and 

Computing 893, 190-201., Springer.  

 

3. EN-NEJJARY, D., PINET, F., KANG, M. -2018. Large-scale geo-spatial raster 

selection method based on a User-defined condition using GPGPU. 11th 

International Conference on Computer Science and Information Technology, Paris, 

France, 8 p.  

 

4.  Research poster for « 6 ème journée mobilité innovante - Robotique coopérative 

pour la transitique » in Aubiere, France. 
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1.4 Manuscript organization 

This manuscript is divided into four main parts: 

● The first part is organized in 3 chapters: 

o General introduction: in which we present the context and the motivation of our 

work, we outline the contributions and we present our methodology of research.  

o State of the art: In this chapter, we show the different methods used to process large-

scale spatial data. We have classified them into three main categories: methods 

based on uniprocessor CPU, methods based on parallel processing using the 

GPGPU and finally the methods based on distributed systems. 

o Background: This chapter is dedicated to present the different concepts related to:   

▪ Spatial data, especially raster data.   

▪ Operations on raster data called map algebra 

▪ Parallel computing and GPU architecture 

▪ GPU-accelerated Libraries for Computing 

Our aim is to make the readers comfortable while reading our manuscript and provide all the 

required knowledge to read and understand our methods without any difficulty. 

 

● The second part concerns our contributions. It is organized as follow: 

o  Chapter 4: This chapter concerns our first contribution related to the computing of 

overlapping aggregation of large raster sequences.  

o Chapter 5: This chapter provides a sequential method to improve the performance 

of raster selection based on a user-defined condition”. 

o Chapter 6: This chapter proposes a GPGPU approach for the raster selection based 

on a user-defined 

o Chapter 7: It applies our user-defined selection approach on raster sequences 

(using GPGPU). 

 

●  The third part concerns the two last chapters 8 and 9: 

o Chapter 8: The application of our methods on real data of INRAE Montoldre. We 

present the data set of Montoldre, the acquisition, the type of data and the data 

characteristics.  
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o Chapter 9: concerns the Conclusion and perspectives. We provide a summary of 

our work, give outlines of our proposals and contributions, and finally suggest 

new research trends to extend our work. 
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Chapter 2  

State of the Art of efficient raster processing 
 

2.1 Introduction  

Given its practical importance and the pressing need to process large-scale spatial data, 

several research works in the literature, have been proposed to speed up and optimize raster set 

processing. The proposed works tried to process more data with less computation time, which is 

highly required for aid decision support. Some works have tried to save computations and time 

processing by proposing new optimized algorithms based on the classical sequential CPU. The 

second category of works is based on new parallel architectures, for instance Graphics Processing 

Unit (GPU). The last one is based on distributed systems which are designed specifically for Big 

spatial data. In this chapter, we will present these methods, discussing some of the advantages and 

issues that arise. 

 

2.2 CPU based methods 

Driven by the idea of proposing a method that do not require implementing new 

functionalities or modifying existing ones of database management systems, the work presented in 

(Kang, 2015) proposes a method to improve query execution time to aggregate raster data stored 

in data warehouses (DW), by estimating the result instead of computing the exact result of the 

aggregation. The idea is about reducing the number of rasters required for the aggregation (using 

sum or average functions) and hence reducing the execution time of the query. This method 

includes a preprocessing step that groups the rasters, by similarity, into clusters. The similarity 

function depends on the nature of the data. Hence, each cluster contains rasters that are similar and 

each raster belongs to only one cluster. The proposed logical DW schema template for the raster 

can be seen in Figure 2.1 
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The second step consists on querying the data by proposing to use another query model that 

calculates an estimation of the final result based on the initial query that compute the exact results. 

The new query model uses the clustering to reduce the number of arithmetic operations hence 

reducing the computation time. The rasters in the clusters are considered as equivalent. So, instead 

of taking all grids for the computation, only one grid by cluster is used. For example, to aggregate 

the 8 grids of Figure 2.2, only 3 grids are used. In the calculation, each one of these 3 grids is 

pondered by the size of its cluster. This technique used with large clusters allows an increase in 

time performance. Nevertheless, the more the cluster size is large, the more the quality of the result 

is poor. 

 

 

 

 

 

 

 

Figure 2.1. Logical DW schema template for grid storage (Kang et al., 
2015). 
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So, the main advantages of this method are: 

● Reducing the number of arithmetic operations 

● Not requiring any modifications of data or the implementations of new functions in a 

database management system. 

However, the fact that the results are not exact may have a drastic impact in some critical 

applications that need exact results. A preprocessing step is also needed to group the rasters into 

clusters. 

 

Another method was proposed in (Baumann,2008) to speed up the computation of 

aggregation queries based on classical sequential CPU.  The idea relays on the use of a pre-

aggregated data step. Hence, the authors propose to use this step for aggregating query processing 

in multidimensional raster image databases. Furthermore, the authors propose a cost model to 

evaluate the efficiency of the pre-aggregated data step on the whole raster data analysis. This work 

focused on basic aggregations for instance: sum, average, count, maximum and minimum. The pre-

aggregated data step is implemented as an optimization and evaluation extension for the query 

processing module of Rasdaman (Array DBMS) (Baumann et al., 1997). The proposed algorithm 

Figure 2.2. An example of aggregation of 8 grids. 
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starts by checking the existence of a perfect-matching between the input query and pre-aggregated 

queries. If it exists, then the result of pre-aggregated relation is returned. If not, a partial-matching 

is searched. If it is found, the result is returned from the pre-aggregated results or from raw data 

based on the minimum cost. 

2.3 GPGPU based methods 

      Inspired by the power of the GPGPU to accelerate general purpose application (cited 

above), in the last years, different works have been proposed to speed up the processing and the 

analysis of raster data. 

Hence, the work presented in (Zhang et al, 2010a) investigates the use of GPU to speed 

local operation of map algebra in particular the addition operator.  Their goal is to reduce the 

computation of the addition of two giant rasters by mapping the traditional serial algorithms to 

GPU parallel processing architecture using CUDA (Compute Unified Device Architecture 

proposed by Nvidia) (Zeller, 2011). So, in their work, they suppose 2-layers data file of the same 

resolution (two rasters having the same resolution): file A and file B with the same size: m*n.  

These rasters are stored in float array: Array[2][m*n] .  The Figure 2.3 describes the local sum 

operation between two rasters. 

 

 
Figure 2.3. Addition operation between the two raster layers. 

  

Concerning the CPU implementation of this operation; the authors propose, one loop to operate the 

arrays and save the results in Res array: Res[m*n], as follow:  
 

Res[i]= Array[0][i]+ Array[1][i].  
      
This method consists in a trivial algorithm to perform the sequential addition of the two rasters. 
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To implement this method on the GPU, the authors fixed 256 threads per block. Hence, the number 

of blocks is obtained as follow:  
!ℎ#	%&'#	()	*ℎ#	+,%*#+	)&-#

The	thread	number	of	per	block 

 

As mentioned before, each raster file is aligned and both of them are stored in 2D array 

arr_d such that the number of the rows is 2 and the size of number of the columns is the size of the 

raster files.  

In order to get fast access to the rows and the best performance of cudaMemcpy2D(), the 

authors adopted a linear memory allocation using cudaMallocPitch() instead of allocating the 2D 

arrays with cudaMalloc. Hence, the access to the row i is realized by this instruction: 

 float*row=(float*)((char*)arr_d + pitch*i). 

To get the data in this row: data =row [index of the element] 

hence, the kernel is defined as follow: 

     global static void SumKernel (float* arr_d, size_t pitch, float* arry, int Z) {  

float data, Data=0.0f; 

for(int i=0; i<Z; i++) {  

            float*row=(float*)((char*)arr_d + pitch*i);  

            data=row[blockIdx.x*blockDim.x+threadIdx.x];  

            Data+=data;  

} 

            arry[blockIdx.x*blockDim.x+threadIdx.x]=Data; 

 } 

As we can see in the kernel, each thread will execute the loop “For”. It means that each thread 

will access to its corresponding cell in raster A and B and sum the values. Finally, the result will 

be stored in the arry. 

Note:   
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● arr_d: Corresponds to the input data Array containing the two rasters. 

● Arry: Corresponds to result raster Res 

● Pitch: Return value of the function cudaMallocPitch() 

● Z: The number of rasters (2)  

In most complex analysis, the processing of raster data is performed in many steps, one after 

another, using batch processing. The authors of (Steinbach et al., 2012) propose to speed up a batch 

processing of spatial raster analysis based on a specific use-case data flow using the computing 

power of the GPU on a map of 844 woodlands with a size of 2275 × 2263 (Figure 2.4). The data 

flow consists of two steps; each one requires many raster operations.  

 

 

 

 

 

 

 

 

 

 

The first step relay on a neighborhood analysis and consists in counting the cells in a specific wood 

neighborhood. The authors have chosen the wedge shape for neighborhood since it is a time-

consuming task (Figure 2.5).  

 

Figure 2.4. Dataflow Map (Steinbach et al.,2012) 
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These steps can be realized using raster data operations based on the sum operator for focal 

functions with different wedges. The second step concerns the mean value analysis which computes 

the center of each woodland. This analysis is done for each woodland individually. Hence, first, a 

single woodland is selected. Second, the Euclidean distance transformation (EDT) is applied to 

compute the shortest Euclidean distance from each cell to the nearest non empty cell. Finally, a 

zonal mean function is applied to compute the mean and hence get the center of each woodland. 

These operations have been implemented as a plugin for the open-source software GRASS (Neteler 

et al., 2012), based on GPU, using OpenCL, which is an open standard that can be used to program 

CPUs, GPUs, and other devices. OpenCL programs can be run on Nvidia, AMD and others, which 

make them slower than CUDA concerning the performance. 

Another work using the GPU to deal with raster analysis, is presented in (Wu et al.,2007). The 

authors have studied two types of raster analysis: raster local operation and neighborhood 

operation. In the case of raster local operation two subcases have been formalized as follow:   

● Local operation based on a single raster where the cell values of the output raster are 

computed by:  Outputi, j = f (Inputi, j).  

● Local operation based on many rasters. In this case, several rasters are used as input. The 

output will be one raster computed, such that, Output = f (Input0i,j , Input1i,j ,..., Inputni,j)  

where n represents the number of raster cells.  In this case, they propose a parallel 

implementation of weighted average local operation of many rasters. 

The neighborhood operation is for a single raster using the following filter mask (Figure 2.6): 

 

Figure 2.5. Wedge shape neighborhood (Steinbach et al.,2012). 
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To implement their algorithms on the GPU, the authors have used OpenGL 2 as graphic API and 

OpenGL Shading Language (GLSL) as shading language which is supported directly by OpenGL 

without extensions.  

Unfortunately, in their test they did not use a very large data set. They also have used only 4 rasters 

in the case of local operation with multiple rasters, which is a very small number. Moreover, the 

choice of OpenGL is not common, since it is a library used primary for accelerating the Graphics 

Rendering on the GPUs and not widely used for general purpose computing. 

Motivated by the need to provide large-scale raster geospatial data indexing, the work 

presented in (Zhang et al.,2010b) proposes a fast indexing of large-scale raster geospatial data to 

support Region-of-Interests (ROI) queries (or spatial range queries). This type of queries returns 

objects that satisfy one or more value range criteria, for instance temperature in the range 

[t_min,t_max]. To do that, the authors have designed a Cache Conscious Quadtree data structure 

(CCQ-Tree) based on the GPU, dedicated to fast indexing of large-scale raster data.  

To construct the CCQ-Tree, the authors propose an implementation in parallel of 3 steps: The first 

one is the construction of a pyramid of matrices from the raw raster data. Second, the computation 

of the First-Child Node Positions, and finally generating the CCQ-Tree. The steps are executed 

sequentially in the CPU, however each step itself is executed in parallel. Once constructed, the 

index will speed up the range queries. The proposed algorithms were tested on real climate dataset 

published by WorldClim (Hijmans et al., 2005) for 5 × 11 rasters of size: 4096 × 4096.  

Motivated by the power of the GPGPU devices, the work presented in (Zhang et al., 2013) 

proposes a parallel method to implement a quadtree for large-scale raster spatial indexing to speed 

up query processing and data analysis. The idea is mapping the geospatial processing into a set of 

data parallel primitives based on CUDA which are a highly-optimized functions. The design for 

the construction of a binned min–max quadtree (BMMQ-tree) (Zhang et al., 2010b) involves 

several steps (Figure 2.7):  

1 1 1 

1 1 1 

1 1 1 

 
Figure 2.6. Filter mask. 
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1. First step consists on mapping a 2D input raster grid into a Z-ordered 1D array 

(Orenstein, 1986). 

2. As a second step, recording the minimum and maximum values for every four 

consecutive Z-ordered raster cells. 

3. The third step, derive higher levels of min–max tables from the lower-level ones, 

by using a procedure similar to Step 2. 

4. The fourth step consists in two sub steps:  

a. Compute the positions of the first child nodes. 

b. Prune quadtree nodes that represent uniformly distributed quadrants. 

As cited before, to implement the BMMQ-tree in parallel, the authors have used parallel 

primitives in order to perform each step in the quadtree construction. For instance,  

● Scan parallel primitive; 

● Transform; 

● Scatter; 

 The use of these primitives allows the authors to focus on the design, rather than the 

implementation hardware specifications. 
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The work presented in (Xia et al., 2011) tackles two main problems in geospatial data analysis:  

● Interpolation using Inverse distance weighting (IDW) algorithm, that assigns geographical 

values to unknown spatial points using values from a usually scattered set of known points. 

● Viewshed analysis of digital elevation model (DEM) (Walker et al., 1999) to determine 

visibility to or from a particular cell. 

Since, these popular algorithms are very important in geospatial analysis and are highly 

computation-intensive, especial for large-scale spatial data, the authors propose to speed up these 

algorithms by using GPGPU and CUDA. To implement the IDW algorithm, first, a quadtree-based 

domain decomposition algorithm is applied for load balancing of the input data. Thus, the domain 

is decomposed into quads of different sizes (Figure 2.8). Finally, the IDW interpolation is executed 

on these quads.   

 

Figure 2.7. A BMMQ-tree (Zhang et al., 2010b). 



38  

 

 
Figure 2.8. An example of the quadtree-based domain decomposition algorithm (Xia et al., 2011). 

 

The parallel implementation of IDW, based on CUDA, consists in four steps (according to Clark 

parallel algorithm): spatial domain decomposition, interpolation, output data gathering, and 

visualization. Since the three steps, domain decomposition, data gathering, visualization are not 

computation-intensive, the authors decided to execute them on the CPU. However, the 

interpolation is executed on the GPU (Figure 2.9) because it is a massive computation task. Hence, 

each quad is assigned to a block of threads where its size is the maximum size of quad. Using IDW 

interpolation, each thread computes the interpolation value of one point based in the input 

neighborhood points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. The quads assignment to the GPU threads blocks of the 
maximum size (Xia et al., 2011). 
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The Viewshed algorithm called line-of-sight analysis or intervisibility analysis consists in 

determining visibility to or from a particular cell 

(observer)(https://en.wikipedia.org/wiki/Viewshed_analysis). This algorithm 

is based on two steps: (a) Finding all the rays from the observer; (b) Doing visibility analysis for 

all the cells passed by each ray (Figure 2.10) 

 
Figure 2.10. The two steps of Viewshed analysis on raster data (Xia et al., 2011). 

 

As we can see in Figure 2.10.a, the input raster represents an elevation grid called DEM (digital 

elevation model). A line of sight is produced from the origin point (the observer) identified by ‘O’ 

to another destination cell. By scanning the grid cell, we can compute all the rays of sight. 

In Figure 2.10.b, Moving along the line of sight from the observer O, all the pointed intersect with 

the line sight must be studied for visibility analysis. These two steps are implemented as two 

layered components: matrix traversal and ray traversal. The authors propose four combinations for 

viewshed implementation based on the CPU and the GPU. For instance, the method PMPR 

implements the two layered components completely in parallel (Figure 2.11), using threads matrix 

of GPU (Figure 2.12).  The gray elements represent threads allocated for visibility computation. 
 

 

    

 

 

 

 

 

 Figure 2.11. (Xia et al., 2011) 
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2.4 Distributed systems-based methods  

Motivated by the success of the use of high performance parallel super computing 

techniques in particular grid computing and cloud computing in simulations, the work presented 

by (Gunawardena et al., 2016) propose new solutions for earthquake simulation based on 

distributed computing in order to analysis petabytes of data required for simulation. The authors 

suggest the use of MapReduce (Maitrey et al., 2015) system using Hadoop 

(http://hadoop.apache.org/common/docs/current/hdfs design.html, 2009) and Mars (He et al., 

2008) which is Hadoop on the GPU, to overcome the complexity of the dataset. Hence, in this work 

an octree for CVM (community velocity models, ground models) (Schlosser et al., 2008). 

Another work trying to deal with large-scale geospatial data, the work presented in (Cary 

et al., 2009) experiments the use of MapReduce as a massively parallel computing tool in order to 

overcame non scalability of traditional approached based on single node. Hence the authors 

propose to solve two spatial data related problems using Hadoop on a Google & IBM cluster 

(Google and IBM Academic Cluster Computing Initiative): bulk-construction of R-Trees (Kriegel 

Figure 2.12. Threads matrix allocation on GPU for PMPR (Xia et al., 2011) 
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et al., 1990) using vector data and aerial image quality computation involving raster data, the 

obtained results show an improvement of the completion time of two problems. 

 

2.5 Synthesis and Strategy 

In this chapter we have shown different methodologies that have been used for processing 

large-scale spatial data. We have classified these methods on three main categories according to 

the used technology: methods based on uniprocessor CPU, parallel methods based on the GPGPU 

and finally methods based on distributed systems. The main presented methods deal with raster 

data.  

 

Research work Studied Problem Computation 

technic 

Type of 

Result 

Pre-

processing 

Performance optimization of 

grid aggregation in spatial data 

warehouses (Kang et al., 2015) 

Raster 

aggregations 

CPU Estimated No 

Computing Aggregate Queries 

in Raster Image Databases 

Using Pre-Aggregated Data 

(Baumann, 2008) 

Raster 

aggregations 

CPU Exact Yes 

GPU-Accelerated Parallel 

Algorithms for Map Algebra 

(Zhang et al., 2010a) 

Addition of two 

rasters 

GPGPU Exact No 

Accelerating batch processing of 

spatial raster analysis using GPU 

(Steinbach et al., 2012) 

Raster analysis GPGPU Exact No 

Improving the performance of 

spatial raster analysis in GIS 

using GPU (Wu et al., 2007) 

Raster 

aggregations 

GPGPU Exact No 

Indexing Large-Scale Raster 

Geospatial Data Using 

Indexing GPGPU Exact No 
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Massively Parallel GPGPU 

Computing (Zhang et al., 2010b) 

High-performance quadtree 

constructions on large-scale 

geospatial rasters using GPGPU 

parallel primitives (Zhang et al., 

2013) 

Indexing GPGPU Exact No 

Accelerating geospatial analysis 

on GPUs using CUDA (Xia et 

al., 2011) 

IDW 

interpolation and 

Viewshed 

analysis  

GPGPU Exact No 

Spatial Data Processing with 

MapReduce (Gunawardena et 

al., 2016) 

Octree indexing 

for earthquake 

simulation 

Hybrid 

Distributed 

systems 

Exact No 

Experiences on processing 

spatial data with MapReduce 

(Cary et al., 2009) 

R-Trees 

Indexing and 

Image quality 

computation  

Distributed 

systems 

Exact No 

 

Table 2.1. A review of methods for spatial data processing. 

 

We summarize our state of the art in the table 2.1. The first notice which pops out in this 

review is that only few works have been proposed for the aggregation and no one for selection 

queries of raster data, which creates a need and opportunities to fulfil this lack. In fact, these types 

of queries are useful in data warehouses and many other applications.  

The CPU-based raster aggregation methods rely on providing an approximative solutions (and not 

exact solutions), and pre-processing step which is often also an intensive computation task that 

need to be optimized (Daras et al., 2018). Pre-processing is not always possible and realistic, 

especially with large-scale spatial dataset and complex applications. The preprocessing can be also 

difficult to do when the aggregation is computed only on a user-defined raster subregion that can 

change over the queries - this aspect can make the aggregation inputs non-predictable.  
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The parallel based approaches (GPGPU and distributed systems) are an efficient solution to tackle 

the problem of large-scale spatial data which are data and computation intensive. The GPGPU 

devices are dotted with thousands of processing cores that are capable of launching thousands of 

threads simultaneously which make it ideal solution for massively raster parallel applications. 

Currently, they are used as accelerators of CPUs. Thanks to its high throughput (Garland and Kirk, 

2010), the GPGPU are especially suitable for geospatial data processing due to the inherent 

parallelism of most of geospatial operations (Theobald, 2005). Furthermore, the GPGPU is based 

on the SIMD paradigm (single instruction multiple data) (Cardoso et al., 2017) which make it a 

convenient solution for our queries (raster cell aggregations based simple arithmetic operations 

such as addition). The GPGPU is low-cost powerful tool to speed up large-scale spatial data. It 

does not need complex infrastructure to manage the data. A single desktop or laptop computer 

having a GPU card can provide numerous parallel cores. In our opinion, GPGPU is a good 

candidate to implement raster processing like aggregation and selection.   

Distributed systems (Firoj et al., 2015) constitute a powerful tool for Big Data that usually includes 

heterogenous datasets with sizes of terabytes and petabytes. Distributed systems are powerful but 

they usually need to build complex architectures and infrastructures, which are often costly and 

time-consuming in terms of maintenance. Usual raster data sets are dealing with gigabytes. 
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Chapter 3  

Background 
 
The goal of this chapter is to provide the readers with the necessary knowledge concerning spatial 

data, the Map Algebra and GPU parallel computing. The introduction of these conventions will 

allow the readers to be comfortable with rest of our manuscript in particular the contribution part. 

 

3.1 Spatial Data   

In general, Spatial data are divided into two main categories: raster and vector data (Agosto, 

2013) (Figure 3.1). 

3.1.1 Raster Data 

 

Figure 3.1. Raster and Vector data. 

 

Raster data take the form of an 2D array or 2D-grid of cells. Each cell contains three information: 

the coordinates x and the y, and a value (Figure 3.2) that represent a measure of a characteristic in 

that geographic point such as: The pressure, temperature, elevation, soil pH, etc. 
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The rasters can represent spatial objects for instance: points and arcs. Thus, A point can be 

represented by one cell, and the arc can be a sequence of cells. The second category of spatial data 

is the vector data which are spatial objects that are constructed using points and lines(edges) as 

primitives (Halpin et al., 2006). 

Raster interpolation  

Spatial interpolation (Greenberg et al.,2011) is a technique widely and commonly used in 

Geographic Information System (GIS), to create continuous raster data from a subsample of 

measurement point values such as soil properties, temperature, and precipitation in specific 

locations. The goal is to create surface data using mathematical function (interpolation function) to 

predict the unknow values for the missing location points (Figure 3.3). 

Figure 3.2. Raster is composed of rows and columns of cells. 
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Figure 3.3. Raster interpolation(http://planet.botany.uwc.ac.za/nisl/gis/spatial/chap_1_11.htm). 

As we can see In the Figure 3.3. In the left we have the measurement points while in the right a 

raster is generated by the interpolation of these points. Thus, the missing values (unknown) are 

estimated based on the nearby measurement values. In the literature many methods have been 

proposed to perform spatial interpolation, for instance:  

• Inverse distance weighting (IDW) (Singh and Verma, 2019).  

• Least cost distance analysis (Greenberg et al.,2011). 

• Kriging Interpolation (Singh and Verma, 2019). 

 
Spatio-temporal data 

Spatio-temporal data are data that are related and collected over time and space. In general, 

it describes a phenomenon in a certain location and time which allow to study its behavior on 

specific area overtime for instance climate, meteorology and biology in order to make predictions 

and precise description allowing reliable decision making. Nowadays, the volume of the produced 

spatio-temporal is growing dramatically especially in climate and environmental data. Hereunder 

an example of spatial-temporal data. 

Figure 3.3. Raster 
interpolation(http://planet.botany.uwc.ac.za/nisl/gis/spatial/chap_1_11.htm). 
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Spatio-temporal rasters, in particular, can be viewed as a sequence of rasters for the same region 

and for a defined period of time. Each raster represents information related to the studied region at 

regular intervals of time or frame time (temporal granularity) (Pozzani and Zimányi, 2012) (e.g. 

every second, minute, hour, etc.) – see Figure 3.4 and 3.5. Spatio-temporal rasters allow the 

analysis of the gradual evolution of temporal phenomena such as the detection of abnormal 

phenomenon evolution over time in a studied region. 

 

 

Figure 3.5. Example of a raster set. 

 

Figure 3.4. Spatio-temporal rasters representing the evolution of the temperature during N days 
for a studied region. 
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3.1.2 Vector data 

Vectors are constructed using discrete geometric locations (x, y values) (points or vertices) that 

define the shape of the spatial object (Figure 3.6). The vectors can be:  

• Points: Points are defined using the coordinate x and y. Points can represent for example: 

the location of trees. 

• Lines: Lines are defined using at least two connected points. Lines can represent for 

instance roads and streams. 

• Polygons: Polygons defined by 3 or more connected and closed vertices. They represented 

for example lakes and oceans. 
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Points: defined by x and y locations 
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Polygons: defined by at least three connected and 

closed points 
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x, y 

Figure 3.6 Categories of vector data (National Ecological Observatory 
Network (NEON)) 



51  

 

3.2 Map Algebra 

Map algebra (Pullar, 2001) or Raster Math is a set of conventions, capabilities and 

techniques adopted by GIS to visualize and process raster data proposed by Tomlin (Tomlin, 1994). 

There are many operations that can be performed using Map algebra.  Some of them are simples 

and others are complexes:  

• Arithmetic operations use basic mathematical basic operations for instance: Addition, 

Subtraction, Multiplication and Division. 

• Statistical operations based on statistical operations such as: Minimum, Maximum, 

Average, and the Median. 

• Relational operations used for cell comparisons using the following function: Greater than, 

Smaller than, and Equal to. 

• Trigonometric operations using classical mathematics trigonometric functions such as: 

sine, cosine, tangent and arcsine. 

• Exponential and logarithmic operations use the exponent and logarithm functions. 
 

• Other more sophisticated operations. 
 

The Map Algebra functions can be classified as follow: 

• Local functions: they are based on cell-by-cell operations. For instance, suppose we 

have two rasters A and B, and we want to generate a third raster C which is the sum 

of cell by cell of the two rasters. Thus, we will add each cell in the same location of 

two rasters one by one (Figure 3.7) – this operation corresponds to a matrix sum. 

 

 
Figure 3.7. The sum of two rasters (cell by cell). 
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• Global functions: A global operation is a process or function that is performed on 

each output raster cell using all the cells of the input raster. As an example, the 

Euclidian distance is shown in (Figure 3.8) 

 
 
 
 

 
 
 
 
 
 

 

 

 

• Focal functions:  Focal or neighborhood functions are operations that compute an 

output value of each cell or raster using neighborhood its values. 

Such operations are widely used in image processing (convolution, kernel, filtering) 

(Ak et al., 2012). An example of focal functions the figure bellow, in which the 

studied cell in the output is computed by summing up the cells falling on its window 

neighborhood of size 3 × 3. 

 
 

 
 

 
 
 

 
 
 
 
 
 

 
 

Figure 3.8. Global functions. 

Figure 3.9. Focal functions. 
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• Zonal functions: A zonal operation is a spatial function that computes an output 

value of each cell using the zone containing that cell. An example of Zonal 

operations is the statistical zonal operations for instance: zonal mean where each 

output cell is obtained by computing the mean the zone containing the cell. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

3.3 GPU parallel computing 

The previous generations of computers contained only central processing units (CPUs) that are 

dedicated to performing general programming tasks. However, in the last decades, several 

computers with different architectures have emerged including other processing elements, for 

instance, GPUs (Graphics Processing Units). In the last decade, HPC (high-performance 

computing) (Assiroj et al., 2019) has known a significant evolution, because of the emergence of 

GPU-CPU heterogeneous architectures, which has led to a great revolution in parallel 

programming. 

Driven by the success that have been achieved using the GPU devices for video rendering, in 

the last decade, many researchers have tried to use the GPGPU for speeding up many applications 

in several fields. For instance: simulation, image processing, machine learning, and GIS. For 

1 1 2 

1 2 2 

3 3 3 

 Zonal grid 

1 2 5 

0 6 7 

12 10 8 

 Value grid 

1 1 6 

1 6 6 

10 10 10 

 Output grid 

Zonal Mean 

Figure 3.10. Zonal functions. 



54  

 

example, the research presented in (Viola et al., 2003), tackled the problem of various non-linear 

filters for volume smoothing with edge preservation in image processing using the GPGPU. The 

authors of (Yang et al.,2008) propose the implementation of several image processing algorithms 

like histogram equalization, and edge detection (and others), based on the GPGPU using CUDA. 

In (Temizel et al.,2011), implementation using the GPGPU is proposed for image and video 

processing to tackle real-time issues and optimization. 

GPUs (Graphics Processing Units) have had an incredible evolution. Driven by computer 

games, the performance and the capability of the GPUs have increased drastically in the past few 

years. After being a simple device for graphical tasks, GPUs have become devices with a highly 

parallel programmable processor which are capable of solving general problems (Kirk and Hwu, 

2013). GPGPUs (General-Purpose Computing on Graphics Processing Units), unlike GPUs, are 

intended to deal with more general problems, such as simulations, optimizations and other complex 

problems in several application fields. 

GPUs do not replace the CPU-based computing. In latency-oriented systems, CPUs are 

intended for several types of tasks and applications, especially those that involve intensive control 

task computing, branch prediction, large caches and data fetching (Kirk and Hwu, 2013). GPUs, 

which are throughput-oriented systems, are suitable for intensive parallel data computation tasks 

based on the SIMD paradigm (Single Instruction Multiple Data). Thus, thousands of efficient cores 

are used by the GPU to perform massive data parallel computing (Figure 3.11).  

 
Figure 3.11. Difference between CPU and GPU architecture (Kirk and Hwu, 2013). 
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In the traditional architecture composed of a CPU and one or many core GPUs, the GPUs are used 

as co-processors to the CPU. The cooperation between the CPU (Host) and GPU (Device) is 

achieved through the PCI-express bus (Figure 3.12).  

 
Figure 3.0.12. CPU-GPU Heterogeneous architecture (Kirk and Hwu, 2013). 

 
The cooperation of the CPU and the GPU (Figure 3.13) led to a high-performance and powerful 

computing capabilities which make the heterogeneous architectures a suitable tool for HPC (High 

Performance Computing). The host code is run on the CPUs while the device code is run on GPUs. 

An application executing on a heterogeneous platform is in the first time initialized by the CPU. 

This one is responsible for managing the environment, code, and data for the device. In the end, 

parallel tasks are loaded on the device (GPU). 

 
Figure 3.13. The cooperation of the CPU and the GPU. 

 
The GPU device is composed of many Streaming Multiprocessors (SMs) which are responsible for 

running the parallel functions called kernels. The number of SMs can vary from one generation of 

CUDA GPUs to another (Kirk and Hwu, 2013).  Each SM is composed of many computing units 

(cores), thousands of registers, several memory caches, warp schedulers, etc. (Figure 3.14). 
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Figure 3.14. Example of an SM architecture (https://www.geforce.com/hardware/desktop-

gpus/geforce-gtx-580/architecture). 
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3.4 CUDA programming model 

To exploit the power of this sophisticated architecture, new application programming 

interfaces (APIs) have been developed to use the GPU for non-graphics applications without using 

classical graphics-oriented APIs like OpenGL, by the use of extensions to high-level languages 

such as C, C++.  

Hence, for instance, NVIDIA has created a parallel computing platform and programming model 

called CUDA (Cheng et al.,2014). Khronos Group has created the Open Computing Language 

(OpenCL), and Microsoft has created DirectCompute (Sanders et al., 2015). In our work, we have 

used CUDA since OpenCL (Kirk and Hwu, 2013) is slower than CUDA which is highly optimized 

by Nvidia in order to be used widely on the GPU. 

While developing CUDA, NVIDIA took standard C and added a set of small number of 

keywords that are specific to CUDA. Thereby, using CUDA will be easier for the developers that 

are quite familiar with C. Thus, the programmer still code in C but in the same time, he incorporates 

the new CUDA keywords in his code to express the parallelism. In addition to C, developers can 

use CUDA with C++, Fortran and Python. Coding with CUDA requires a deep understanding of 

the different features of its architecture, especially the programming and the memory model.  

CUDA execution programs consist of 3 steps:   

● Initializing and copying the data from the CPU memory (i.e., the host) to memory to 

the GPU (i.e., the device). 

●  Invoking the kernel (parallel function executed on the Device (GPU) by many 

threads). 

● In the end of the processing, transferring the results from the Device to the Host. 

Kernels are functions that are executed on the GPU by many threads in parallel (Ruetsch and Oster, 

2008). A deep understanding of how threads are organized in the device is mandatory to write 

kernels. CUDA offers to the programmer the possibility of organizing threads. CUDA provides a 

thread hierarchy abstraction. Threads are grouped in structures called blocks. The blocks are 

grouped in structures called grids. Launching kernels requires the definition of the size of the blocks 

and the size of the grids (Figure 3.15). 
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Figure 3.15. The CUDA concept of a grid of blocks (Cheng et al., 2014). 

A grid is a set of many thread blocks, and thread blocks are made up of many threads that are 

cooperating with each other. Usually, the block is organized as a 3D array of threads and the grid 

as a 3D array of blocks. Each thread uses its block index combined with its own index to be 

identified in the global 

 
GPU-accelerated Libraries for Computing 
   

NVIDIA GPU-accelerated libraries provide highly-optimized functions that can help to 

write and optimally scale applications. Using them, allow to get highly efficient implementations 

of algorithms that are widely used as building blocks for many applications in several fields. Many 

kinds of libraries are available; there are libraries for linear algebra (Cublas and CUDA Math 

Library). For deep learning, there are libraries for parallel algorithms such as Thrust (used for 

parallel algorithms and data structures). The libraries that will be used in this thesis are Thrust and 

CUB since they provide a set of fundamental parallel algorithms that are implemented in an 

optimized and efficient way, such as reduction and sort which are used in this work. 

 
Thrust 
 
Developed by NVIDIA, Thrust is a high-level CUDA library that enables the programmers to get 

high performance and improve their productivity since it is based on STL (Standard Template 
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Library). While CUDA C/C++ offers a low-level control, which allow implementing high 

performance algorithms which require significant optimization and deep manipulation for mapping 

the algorithms onto the hardware. Thrust library is dedicated to problems which do not required 

low-level control to map the algorithms onto the hardware. Hence, the users only describe their 

algorithms in high-level, while the library takes over the decision of how the computation are 

implemented efficiently, for instance: the number of threads, the size of block and grids etc. Thus, 

the programmers do not worry about the hardware specification and are focused only on the design 

of the algorithms which will allow them to get more efficient implementations and be more 

productive. Thrust provides an efficient implementation of the fundamental and common parallel 

algorithms that constitutes building blocks for more complex algorithms, for instance: sort, 

reduction and scan algorithms. Moreover, the power of Thrust relies on its interoperability with 

other technologies, for example, C++, Open MP, etc. It is a part of the CUDA toolkit. 

 
Figure 3.16. Thrust on the top CUDA C/C++. 

 

 Besides, programming with Thrust is not difficult and does not require extra knowledge since it is 

analogous to the use of the C++ STL with standard C code. As we can see in the example hereunder, 

with few lines, we can generate a vector of random numbers on the device (GPU) and sort them 

with the primitive sort. 

 

#include <thrust/host_vector.h> 

 #include <thrust/device_vector.h>  

#include <thrust/generate.h>  

#include <thrust/sort.h> 

#include <thrust/copy.h>  
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#include <cstdlib> 

int main(void) { 

thrust::host vector<int> h vec(1 << 24);  

thrust::generate(h vec.begin(), h vec.end(), rand); 

  // transfer data to the device 

thrust::device vector<int> d vec = h vec; // sort data on the device 

thrust::sort(d vec.begin(), d vec.end()); 

  // transfer data back to host 

thrust::copy(d vec.begin(), d vec.end(), h vec.begin()); 

 return 0; 

} 

 

Also, you can notice that we did not specify the number of threads, the size of the blocks as well 

as the size of the grid. As mentioned before, it is Thrust which will take in charge these 

specifications in order to provide high performance implementation. 

 
CUB (CUDA UnBound) 
 
CUB is a very fast library CUB library developed by Duane Merrill of NVIDIA Research (ref) and 

founded using the CUDA programming model. Unlike Thrust, CUB is deeply tied to CUDA, and 

can deal with low-level implementations such as thread-block and thread-warp levels. 

It provides state-of-the-art, reusable software components for every layer of the CUDA 

programming model: 

• Device-wide primitives. 

• Block-wide "collective" primitives. 

• Warp-wide "collective" primitives. 

Like Thrust, it allows the programmer to get very high performance and efficiency and be more 

productive. Hereunder an example that illustrates the power of the CUB library and its 

interoperability with Thrust. First, in this example we have used Thrust library to define a device 

vector such that all the elements of the vector are equal to “1”. After that we apply the prefix-sum 

on this vector using the CUB primitive function: DeviceScan::ExclusiveSum . As We can see we 

can use easily Thrust and CUB without any problem of interoperability.  
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#include <thrust/reduce.h> 

#include <thrust/device_vector.h> 

#include <thrust/iterator/transform_iterator.h> 

#include <thrust/iterator/counting_iterator.h> 

#include <thrust/iterator/discard_iterator.h> 

#include <thrust/copy.h> 

#include <thrust/execution_policy.h> 

#include <iostream> 

#include <stdio.h> 

#include <cub/cub.cuh> 

#include "TimingGPU.cuh" 

#include "Utilities.cuh" 

typedef int mytype; 

using namespace cub; 

int main() { 

 int num_items =120000 ; // number of images 

// the array that will contain the result( CPU) 

 float *h_result = (float*)malloc(num_items * sizeof(float));  

// create a device array with  thrust which contain just ones 

 thrust::device_vector<float> d_in(num_items, 1);  

//  cast iterator to raw pointer which CUB uses 

 float   *cub_d_in =thrust::raw_pointer_cast(&d_in[0]);  

// create a device vector which will contain the result in the device 

 thrust::device_vector<float> d_out(num_items); 

//  cast iterator to raw pointer which CUB uses 

 float   *cub_d_out =thrust::raw_pointer_cast(&d_out[0]);  

 // Determine temporary device storage requirements 

 void     *d_temp_storage = NULL; 

 size_t   temp_storage_bytes = 0; 
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cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes, cub_d_in, cub_d_out, 

num_items); 

// Allocate temporary storage 

cudaMalloc(&d_temp_storage, temp_storage_bytes); 

timerGPU.StartCounter(); 

// run the PrefixSum 

cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes, cub_d_in, cub_d_out, 

num_items); 

// copy just the first 10 elements of the result 

 

cudaMemcpy(h_result, cub_d_out, 10*sizeof(float), cudaMemcpyDeviceToHost);  

 

} 

 

We have to highlight that CUB is the fasters library. The Figure 3.17 shows a comparison between 

CUB and Thrust for reduction. 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 3.17. Performance comparison between Thrust and CUB 
(https://nvlabs.github.io/cub/) 
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Part 2 
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We dedicate this second part to present in details the different contributions realized during 

the PhD. Each chapter is related to a published paper contribution based on selections and 

aggregations of rasters. Thus, this section is organized as follow: 

Chapter 4: This chapter concerns our first contribution on the computing of overlapping 

aggregation of large spatial data sequences.  

Chapter 5: This chapter is related to a contribution to improve the performance of raster selection 

based on a user-defined condition using a sequential approach. 

Chapter 6: This chapter is dedicated to a GPGPU-based approach for a raster selection based on 

a user-defined condition using GPGPU. 

Chapter 7: This chapter proposes a disjoint raster subsequences selection method based on a user-

defined condition using GPGPU. This approach combines selection and aggregation operations. 

Each chapter concludes with experiments on a simulated data set, initially presented in the 

publication associated to the chapter - its reference is indicated after the chapter title.  

In our approach, we consider that we do not know in advance on which data the queries will be 

applied. The data set can change from a query to another. We take the point of view of a Database 

Management System (DBMS) designer and the goal is to implement generic DBMS operations. 

Our goal is not to improve the computation for a particular data set.  
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Chapter 4  

Overlapping Aggregation of Raster Data Sequences using 
GPGPU 
 

Results obtained in this chapter have been published at International Journal of Information 

System Modeling and Design, vol.10(1), IGI Global USA, p. 20-41. 

 

4.1 Context and motivation 

Using Data aggregations to produce data summaries is a classical approach that proved to 

be efficient for many applications. It can be used as a prior step for many interesting queries such 

as detecting abnormal phenomena or measurement errors provided by sensors. It is also central in 

data warehouse and On-Line Analytical Processing techniques. In large data set, the goal is to 

provide summaries to users in order to explore the data. In this chapter, overlapping aggregations 

is tackled. When aggregations are overlapping, more value variation can be detected. 

Here is an illustration of a short example of the interest of the overlapping aggregation use: 

Figure.4.1 represents the evolution of the temperature during 11 days. Suppose one would like to 

detect value peaks in data, in our case we focus on sequences of 4 days where the average 

temperature over these sequences is greater than 25 C°. It is equivalent to the aggregation of the 

temperatures for 4 days using the mean operator over four days. Non-overlapping aggregations 

does not allow finding any sequence of four days satisfying the condition above, i.e., the 

aggregations of days 1-4, days 5-8, etc. do not allow detecting this data peak. Overlapping 

aggregations detects the sequence (days 3-6) which satisfies the condition. 
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Figure 4.1. Evolution of the temperature over days. 

 

 
Figure 4.2. Example of a raster set. 

 

The temperature value may come from raster cell aggregations. This paragraph provides 

details on the overlapping raster aggregations used in this chapter. Suppose the rasters represent 

the measurements of the temperature for the same region over many days. Figure 4.2 shows an 

example of this data set type. (1) As a first step, each cell will be aggregated (e.g., using the mean 

operator) for each raster r, in order to produce one average temperature value by raster. (2) In the 

second step, the average temperature will be aggregated over time. As an example, an overlapping 

temperature aggregation is considered in this chapter. This raster overlapping aggregations are 

more general than the non-overlapping case, because the overlapping processing allows us to 

compute more aggregations. More precisely, summarized data computed by disjoint aggregations 

are included in the summarized data computed by the overlapping aggregations. As a result, raster 

overlapping aggregations require intensive computations. Besides, the computation of summarized 

data using raster overlapping aggregations with many steps of interleaves, provides users with more 

data summaries. In this chapter, an interleave equal to 1 has been chosen for the test. The following 
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aggregations are computed for raster subsequences of length L: (R1, …, RL), (R2, …, RL+1), (R3, 

…, RL+2),..,( RN-L, …, RN). 

This interleave choice require the heaviest and massively computations as more subsequence 

computations are needed. Nevertheless, our approach is generic and can be used for other interleave 

values. As indicated in the state of art, with the rise of big data, some researchers start to care about 

accelerating the processing of raster aggregation operations and apply the method to data 

warehouses. Hence, a recent work presented in (Kang et al., 2015) tackled disjoint raster 

aggregations. The authors tried to minimize the processing time by estimating the results instead 

of calculating exacts results that require heavy computations. No work has been proposed to 

improve overlapping aggregation processing time. In the era of big data, improving the processing 

time of such aggregations is crucial. 

 In this chapter, different GPGPU strategies for the implementation of the overlapping raster 

aggregation described above are provided and compared. It is shown that GPGPUs provide a very 

large improvement in terms of performance. Unlike the work proposed in (Kang et al., 2015), the 

methods proposed in our chapter produce exact aggregation results. 

 
4.2 Formulation of the problem 

This subsection presents the details of the problem formulation and the pseudo code for its 

resolution.  

D = (R1, …, RN) is sequence of rasters Ri, and N is the number of rasters in D. All the rasters have 

the same size p × q in D. 

cellx,y(Ri) is a cell in the raster Ri , and (x, y) are the coordinates of the cell in the raster. 

Our problem is the calculation of the cell mean for each raster subsequence of size L in D.  

The resolution can be presented in two steps. 

 

Step1) 

Calculate the cell mean for each Ri ∈ D: 

 Mean(R!) = 	 "
#×%∑

#
&'" ∑%('" cell&,((R!) 

Once this first step is completed, the cell mean for each raster in D is obtained. 

For instance, this result can correspond to the temperature mean of a studied region at each time t, 

as illustrated in Figure 4.3. 
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Step 2)  

In this second step, the average of these means is calculated for each subsequence su of size L in 

D: 

Mean(s*) = "
+∑

*,+-"
!'* Mean(R!)		  

Here is an illustrative example for these two steps. Let D be a dataset that contains 10000 rasters 

(N = 10000). The rasters represent the temperature of the same region over 10000 days. We will 

calculate all the average temperatures of this region for all raster subsequences of size 6 (L = 6). 

Our resolution consists of calculating the average temperature of the region for each period of 6 

successive days.  
 

 
Figure 4.4. Example of raster set D. 

Figure 4.3. The cell means for each raster in D calculated by step 1. 
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For instance, some rasters are provided in Figure 4.4. In step 1, the mean of each raster R in D is 

computed. The result for each raster is shown below in Fig. 8. The results can be represented by 

one 1- dimensional array. In step 2, an average for each subsequence su of length 6 is calculated 

(see Figure 4.5).  

 
 

Figure 4.5. Example of some sequences su of length 6. 

 
This chapter has chosen to split the resolution of the problem into two steps in order to make the 

application of a value selection between the first and the second steps possible. For example, users 

can decide to select only rasters having a mean greater than a defined threshold value after step 1. 

In this case, the aggregation of the second step will be performed only on these selected rasters 

mean values. 
 
The sequential pseudo code for the two steps is as follow: 
 
Step 1: 
sum :=0 
for j := 1 to  p { 
 for k :=1 to q { 
                     sum:= sum+ cellj,k(Ri)  
         { 
} 
Mean_Ri := sum / (p*q) 

 
Step 2 : 
sum :=0 
for j := u to u+L-1{ 
 sum := sum+A[j] 
} 
Mean_Su :=sum/L 
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4.3 GPGPU-based method for the problem resolution  

 
This section shows the different approaches tested to implement the two steps of the problem 

resolution on the GPGPU architecture. 

4.3.1 Computing the mean of each raster (step 1) 

 
The first step in our resolution is the computation of the mean of each raster in the dataset. This 

operation refers to the reduction of the raster, which is a 2D array, to a single value (the mean) 

using the average operator. In the literature, the reduction algorithms extract a single value from 

an array of values using a binary associative operator (Martin et al., 2012). 

 Given  

• A binary associative operator with identity I. 

• A set of n elements [a0, a1, ..., an-1]. 

Reduce ( , s) returns a single value by computing the following: a0,  a1 ,...,  an-1. 

The single value could be the sum, the maximal value, the minimal value, etc. For example, take 

the following: 

Reduce (+, [3 1 7 0 4 1 6 3]) = 25. 

Reduction algorithms are one of the main parallel primitives. They are common in parallel 

processing and are used as building blocks for many algorithms. To compute the mean of each 

raster in the dataset, two approaches have been tested. The first one computes the mean of each 

raster in the dataset one by one using an unsegmented reduction. The second method computes the 

mean of each raster in the dataset at once. In this case, a segmented reduction-based approach is 

used. 

To be more efficient, our algorithms have been implemented by adopting an existing parallel 

primitive approach since the main blocks of our method are already optimized and efficiently 

implemented by NVIDA’s Libraries for instance Thrust (https://thrust.github.io) and CUB 

(https://nvlabs.github.io/cub).As detailed in the state of art, Thrust and CUB provides a set of 

fundamental parallel algorithms such as reduction and sort that are implemented in an optimized 

and efficient way. Hence, Thrust, for instance, provides to the developers the possibility to describe 

their computations in a high-level of abstraction which enhances the programmer productivity 

while enabling a high performance. Thrust is based on the Standard Template Library (STL) and 
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it provides a full interoperability with technologies such as: C++, CUDA, open MP, TPP and now 

it is a part of CUDA toolkit. The main characteristic of Thrust is that one can run the same code in 

a parallel or in a serial manner by just changing some few parameters in the code. 

CUB is the fastest library since it is optimized only for CUDA. It provides also a collection of 

parallel primitive algorithms that are implemented in a very sophisticated way. Thrust's CUDA 

backend is built on top of CUB. 

 

4.3.1.1 Unsegmented reduction-based approach 
 

Technically speaking, the main step for implementing an algorithm on the GPGPU is to 

transfer data from the host (CPU) to the device (GPU). In our case, to compute the mean of each 

raster with a GPU, we have to transfer all the rasters of our dataset to the GPU. The use of the 

unsegmented reduction consists of transferring each raster of our dataset one by one from the CPU 

to the GPU and applying the reduction using the mean operator to the raster. At the end, the results 

are transferred back from the GPU to the CPU.  

In the literature, many works have been proposed to improve the reduction algorithm processing 

time (Harris, 2007a). This interest comes from the fact that the reduction algorithms are used as 

one of the main components of many sophisticated programs. The fast reduction algorithm used in 

our work is presented in (Harris, 2007a). By viewing the raster as a vector in memory, the mean of 

this vector can be computed by applying the reduction algorithm with the sum operation.  

In the algorithm, each thread will perform the sum operation of two interleaved pair values and 

store the result in the memory. At each pass, the threads use the intermediate results stored by the 

other threads. Since each thread takes two entries and produces one output, each step uses half the 

number of threads of the previous step. In the example presented in Figure. 4.6, the reduction with 

the sum operator is performed on the raster R1 (day 1 in Figure. 4.4). To reduce R1, it is needed to 

run 8 threads (Th0,…,Th1) for the first pass. Each thread processes the interleaved pairs of R1 and 

performs the reduction based on the sum operator. 
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Figure 4.6. Illustrative example of the reduction algorithm (sum operator) used for raster R1. 

 

The unsegmented reduction algorithm is implemented and optimized in existing GPGPU parallel 

libraries. Thrust (https://thrust.github.io) and CUB (https://nvlabs.github.io/cub) provide high 

performance implementations of this algorithm. The use of these implementations has been tested. 

The unsegmented method can be time consuming in our case because, for each raster, one must 

wait for the completion of the reduction operation of the previous raster. Consequently, the mean 

is computed in parallel for all the cells of the same raster but is computed sequentially for the raster 
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dataset. In this approach, the rasters are transferred one by one by applying a time-consuming back 

and forth process between the host and device. 

 

4.3.1.2 Segmentation-based approach 
 

A segmentation-based method that overcomes the drawback of the unsegmented approach 

has been tested. The segmented reduction is also a building block for many algorithms. It consists 

of transferring the whole dataset from the CPU to the GPU in one single step. All the rasters are 

contained in one single array that concatenates all the vectors representing the rasters. Each raster 

forms a segment in this array. One unique key is assigned to each segment therefore to each raster. 

If there are N rasters, there will be N fixed size segments. This approach allows us to transfer the 

whole array to the GPU (if the GPU memory size is sufficient – otherwise several steps are 

required) and call the kernel just once, which performs the segmented reduction on the whole array 

based on the keys assigned to each segment. As an output, one 1D array containing all the mean 

values of the rasters is obtained. The reduction is performed on all the rasters at once. An illustrative 

Example is presented below. 

Let R1, R2 and R3 be 3 rasters of size 2×2 (Figure 4.7).  

                                

4 8  6 24 

 

5 12 

10 12  36 14 8 12 

 

Figure 4.7. A set of three rasters of size 4. 

Rasters are aligned and stored in one array as follow (Figure 4.8): 
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Figure 4.8. Aligning raster cells.  

 

The system will assign to each data in the same raster the same key after that the mean of each 

raster is computed based on their keys (Figure 4.9). 

 

Figure 4.9. Segmented mean computations of rasters. 

  

As for the unsegmented reduction, the algorithm is implemented and optimized by the Thrust and 

CUB libraries. In the segmented case, the segmented reduction function of CUB or Thrust is called 

just once in order to compute the mean of all the rasters in our dataset, unlike the unsegmented 
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approach in which the reduction function is called N times (N is the number of rasters in our 

dataset).  

 

4.3.2 Computing the average of each sequence of size L (step 2) 

 
After computing the mean of each raster in our dataset D, the next step consists of computing the 

mean of the subsequences su of length L. This step computes the mean over each subsequence su in 

D. This section presents a different approach that can be used. 

 

4.3.2.1 Method 1: straightforward approach 
In the first approach, each thread is assigned to one subsequence to compute the average. Each 

thread computes the average of the subsequence su (Figure 4.10). 

  

 
Figure 4.10. Single thread-based segmented reduction. 

 

The limitations of this approach are twofold. First, all of the subsequences are processed in parallel, 

but the computation of the average is sequential in each subsequence since one thread computes 

sequentially all the operations to calculate the average of one sequence. It is possible to solve this 

problem by assigning a block of threads to each sequence and using the unsegmented reduction 

algorithm as described before. In this case, the average of subsequence su is computed by a block 

of threads that will cooperate together. Second, as the aggregations are overlapping, many threads 

compute the same calculation, which is redundant work. For instance, to compute the mean of s2, 

thread2 will compute the sum (A[2]+ A[3]+ A[4]+ A[5]+ A[6]+ A[7]), while the sum (A[1] + A[2] 

+ A[3]+ A[4]+ A[5]+ A[6]) is computed by thread1 for the subsequence s1. Consequently, the 

elements in A will participate 6 times (the length of the subsequences) in the computations.  
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4.3.2.2 Method 2: Prefix Sum-based approach 
 

To avoid the previous redundant computations, the Prefix Sum technique has been tested 

(Blelloch, 1997). Several algorithms have been proposed either in sequential or in parallel 

approaches for the implementation of this method. Our prefix sum is based on the efficient 

implementation presented in (Harris, 2007b). 

Using this technique allows us to reuse the results of previous addition operations and as a result 

avoid extra redundant computations.  There are two versions of Prefix Sum: the inclusive and the 

exclusive. The exclusive Prefix Sum operation takes a binary associative operator  and n elements 

[a1, a2, ..., an] as parameters, and returns: [I, a1, (a1  a2), ..., (a1  a0  ...  an)], such that I is the 

identity element of the associative operator 

The inclusive Prefix-sum operation takes a binary associative operator  and n elements [a1, a2, ..., 

an] as parameters, and returns: [a1, (a1  a2), ..., (a1  a0  ...  an)]. In our method, the exclusive 

Prefix Sum has been used. For example, if  is the addition, then the Exclusive Prefix Sum 

operation on the array [3 1 7 0 4 1 6 3] will return the array [0 3 4 11 11 15 16 22], which is denoted 

by PS. The average of the subsequences su in S is computed as follows:  

Mean( Su )=(PS[u+L-1]-PS[u])/L 

It is shown below how to use the Prefix Sum to compute the mean over each subsequence in the 

previous example. As input, the following array has been used. 

27 25 27 26 26 25 26 25 26 29        ………. 

 

The prefix sum (i.e., the array denoted by PS) of the previous array is as follows. 
0 27 52 79 105 131 156 182 207 233 ………. 

 

Consequently, now it is easy to get the mean over each subsequence of length L in the input, as 

shown in Figure 4.11. It simply needed to subtract the prefix sum from the shifted prefix sum with 

L elements to the right (in our example, L=6). Hence, the average of all subsequences su is obtained 
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in one pass. For the Prefix Sum implementation, we have used the efficient CUB and Thrust 

libraries. 

 
Figure 4.11. Illustrative example for Prefix Sum. 

 

4.4 Experiments and results 

To test the performance of the parallel implementation methods, experiments have been run 

on a Tesla K20C GPU card with 5 Gb of global memory and 2496 NVIDIA CUDA cores, which 

allowed us to test our method on large datasets and thus assess the stability of our method. The 

sequential version is run on the host CPU Intel(R) Core(TM) i7-2600K  running at 3.40 GHz with 

16 Gb of RAM. Concerning the data, the experiments are conducted using a temperature public 

dataset. 

The experiments are designed in a way to test our method on different datasets with different 

structures and features, and also to study the stability of the performance of the proposed method 

with respect to the length of subsequences. To this end, we first created four datasets with the same 

size. In each dataset, the size of the generated rasters is different, starting with rasters with small 

size (32×32) to rasters with larger size (100×100). Furthermore, the number of generated rasters 

was also modified in each dataset. Thus, our method has been tested on different datasets, in order 

to study the impact of each of these parameters on the execution time and to have a clear idea about 

the performance. Second, our method was run multiple times with different length of subsequences. 

Shifting 6 elements to the right 
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4.4.1 Dataset 
The public dataset provided by the US National Oceanic and Atmospheric Administration 

has been used (Diamond et al., 2013). This dataset provides a large amount of climate and historical 

weather data, including the following: air temperature, humidity, precipitation, etc. The data are 

available in various temporal acquisition rates: monthly, daily, hourly and sub-hourly (5-minute). 

This data covers many weather stations in the USA. In our work, hourly data for the Barrow station 

temperature have been used. At every 60 minutes, there is the min, max and the mean of the 

temperature of this station. Rasters have been simulated for the local studied region from this 

station. It has been assumed that the temperature of the region has a Gaussian distribution. The 

normal distribution is characterized by two parameters: the mean and the standard deviation. The 

mean is provided by our dataset, and the standard deviation ST has been estimated using the min 

and the max values provided by the dataset. The simple method to estimate the standard deviations 

ST is the range rule of thumb (Honzo et al., 2005). The approximation of ST is calculated as 

follows:  

!" ≈ $%& −$()
4 	

In practice, the estimation of ST using the range rule of thumb is not sufficient when the n is 

extremely small or large (Honzo et al., 2005). This estimation was improved by (Honzo et al., 

2005) to deal with this size problem: 
 

!" ≈

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

	
1
√12

3($%& −$())!	 + ($%& − 2$ +min	)!
4 :

#/!
	) < 15	

$%& −$()
4 																																																																		15 < 	) < 70

$%& −$()
6 																																																																					) > 70

	
	

 

 
In our case, large rasters have been generated. Consequently, the estimation of our standard 

deviation is calculated using the third case (n >70). Thus, the required parameters have been 

obtained in order to generate raster data from the raw data using the normal distribution. 

Four datasets were created with the same size. In each dataset, the size of the generated rasters is 

different, starting with rasters with small size (32×32) to rasters with larger size (100×100). 

Furthermore, the number of generated rasters was also modified in each dataset. Thus, our method 
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has been tested on different datasets with different structures in order to show the impact of each 

of these parameters on the execution time. 

 

4.4.2 Results 

 
This subsection shows the results of our experiments based on the best approaches presented in our 

work. Both the GPU-based implementation (based on the CUB library) and the CPU-based 

implementation (based on the Thrust library) have been tested for Prefix Sum and reduction 

operations. The GPU-based methods on CUB and Thrust have been implemented, but since CUB 

is faster, only the results of our GPU-based implementation on CUB are presented in this chapter. 

Concerning the CPU-based implementations, two CPU versions have been implemented, the first 

one uses the pure C++ and the second one uses Thrust. Since a comparison of our GPU method 

with the fastest version of the CPU is needed, only the Thrust-based CPU version is presented. It 

is faster than our pure C++ based implementation. This can be done by changing the Thrust 

execution policy. 

Different values have been tested for three main parameters: the size of the rasters, the number of 

rasters and the length of the subsequences. The goal was to identify their impacts on the computing 

time.  

To test our work, large datasets have been generated to saturate our GPU memory (5 Gb). In the 

following, the first two subsections concern the experiments for each step of our method separately 

without including the time for data transfer between the CPU and the GPU. Hence, the results 

presented in Table 4.1 and Table 4.2, concern only the computation time of each step. Our two-

fold objective in these subsections:  first, to have a clear idea about the execution time required by 

each step in our method run on the GPU, and second to highlight the computation power of the 

GPU by excluding the data transfer cost. The last subsection concerns the experiments for the 

whole method (GPU version) including the time for the data transfer between the CPU and the 

GPU. Thus, Table 4.3 shows the performance of the whole method. 
 
4.4.2.1 Mean computation for each raster (step 1) 
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In the experiments of this step, four different datasets have been generated with the same 

global Gb size by changing the raster size and the number of rasters. Table 1 compares the 

computing time for the raster mean calculation (step 1).  

As shown in Table 1, the GPU is able to perform step 1 faster than the CPU for all the generated 

datasets. The results show clearly that our GPU implementation is 89 to 244 times faster than the 

CPU implementation. The GPU performs better when the amount of work is large, which is the 

case for the Dataset 1 in which the raster size is large. 

However, the GPU acceleration decreases when the size of the rasters becomes small which is the 

case for the fourth dataset.  
 

 
     Raster 

size 
Number 

of 
rasters 

CPU  
(ms) 

GPU  
(ms) 

Acceleration 

Step 1   Dataset 1 100×100 120000 225160 922 244.20 
   Dataset 2 96×96 130208 223316 965 231.41 
   Dataset 3 

Dataset 4 
64×64 
32×32 

292968 
1171875 

 223102 
224863 

874 
2499 

258.51 
89.98 

Table 4.1. Computing time of the raster mean (step 1). 

 

4.4.2.2 Computing the mean of subsequences su (step 2) 
The test of the performance of our method is based on the same datasets used in the previous step. 

Table 4.2 shows that, with the method based on the Prefix Sum, the GPU processing time is 7 to 

11 times faster than for the CPU version.  

 

Table 4.2 also shows that the processing time increases when the number of rasters increases, even 

if the same amount of data is processed. The GPU always perform better when it has more work to 

do as in the case of Dataset 4. 
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   Raster 
size 

Number 
of 

rasters 

CPU  (ms) GPU  
(ms) 

Acceleration 

Step 2  Dataset 1 100×100 120000 44.66  5.8 7.7 
   Dataset 2 96×96 130208       46 5.94 7.74 
   Dataset 3 

Dataset 4 
64×64 
32×32 

292968 
1171875 

      104.16 
  414.81 

10.43 
34.59 

9.98 
11.99 

Table 4.2. Computing the average of the subsequences su of length 100. 

 

4.4.2.3 The execution time for the whole method including the data transfer 
 
In this subsection, the results for the whole method (step1 and step 2) are presented for the same 

datasets used before. Furthermore, the time required for data transfer between the CPU and the 

GPU is included to have a complete evaluation of our method. 

As we can see in the table below (Table 4.3), our method is faster than the CPU version and a very 

good speedup is obtained for all the generated datasets. Transferring data between the CPU and the 

GPU is time consuming; the main reason why we have adopted the segmented approach is to avoid 

multiple transfers between these devices. 

 

   Raster 
size 

Number 
of 

rasters 

CPU (ms) GPU  
(ms) 

Acceleration 

  Dataset 1 100×100 120000 225204.66 3927.8 57.33 
   Dataset 2 96×96 130208 223362 3970.94 56.24 
   Dataset 3 

Dataset 4 
64×64 
32×32 

292968 
1171875 

223206.16 
225277.81 

3884.43 
5533.59 

57.46 
40.71 

 

Table 4.3. The execution time for the whole method including data transfer between the CPU and 
the GPU. 

 

Furthermore, the effect of the length of the subsequences su on the runtime processing of the GPU 

has been analyzed. The performance has been tested for different values of su using dataset 1. 

Figure 4.12 shows that there is almost no impact of the length of subsequences su on the processing 

time of our method using the GPU. Thus, computations for subsequences of length 50 or 400 are 
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almost the same in terms of computing time. This result is an advantage of the Prefix Sum 

technique. 

 
Figure 4.12. Impact of subsequence length on time processing. 

 
 

4.5 Conclusions 

In this work, a parallel approach has been presented for the overlapping aggregation process of 

raster sequences. This process is based on the map algebra principle. This type of overlapping 

aggregation can be found in many environmental data analyses. The result of this chapter highlights 

that the execution of such aggregations can significantly benefit from GPGPU processing. Our 

results show that it is possible to accelerate the execution more than 200 times the corresponding 

CPU execution, which clearly proves the potential for big data processing. Our methods are generic 

and can be used for more general cases and for other types of data, such as array and vector 

aggregation, since the cells coordinates are not required for computations and no assumptions are 

made on data value to perform the computations.  

In the experiments that are illustrated in this chapter, the overlapping raster number between su and 

su+1 is equal to L-1, and thus, all the subsequences are calculated. The GPGPU-based approach 
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tested in this chapter is general and can also be applied in the case of aggregations with a larger 

interleave between aggregated subsequences. For some applications in which all the subsequence 

aggregations are not needed, this parameter can be changed, for example, by calculating only the 

subsequences (R1, …, RL), (R6, …, RL+5), (R11, …, RL+10), etc., with L>5. In this type of case, the 

operational overlap is smaller than in the aggregations presented in this chapter. 

As mentioned before, overlapping aggregations is a traditional process. It is used as a prior step for 

many spatial data queries and environmental data analyses. Hence, our method can be used as a 

parallel primitive for these applications to accelerate their processing. 
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Chapter 5  

Selection of Rasters based on a User-Defined Condition: A 
Sequential Approach 
Results obtained in this chapter have been published at Advances in Intelligent Systems and 

Computing 893, 190-201., Springer. 

 

5.1 Context and motivation 

This contribution proposes a new technique to improve the execution time of the selection 

of rasters in a raster sequence representing the evolution of a pheromone over time using only the 

CPU. The processing of the rasters consists in three main steps (shown in Figure 5.1). The different 

values of the raster cells are represented by colors. In the step (a), the user chooses a period of 

interest. More precisely, he/she selects a temporal raster (sub)sequence of interest in the large 

sequence of rasters. In the step (b), the user defines the geographical region to analyze in the 

sequence of rasters selected in step (a). This geographical region to analyze is the same for all these 

rasters. In the step (c), the system automatically selects every raster that satisfies a user-defined 

condition.  

We illustrate this process on an example. A user would like to analyze a sequence of rasters 

representing the evolution of temperatures. For example, he/she wants to determine the set of 

rasters having low temperatures in order to: 

● Study more precisely these cases and their possible local causes. It is a typical case of 

climate change analysis. 

● Or analyze the impact of these temperatures on crops in agriculture in the context of farm 

decision support.  

Thus, he/she manually chooses the period to be analyzed in the whole sequence (step (a)). Second, 

he/she manually chooses a geographical region of interest for his/her study (step (b)). Third, in the 

step (c), the user would like to automatically select every raster in which the average temperature 

of the region of interest is lower than a user-defined threshold (e.g., ≤ 10 C°). Consequently, the 

result is the set of the rasters that satisfy this condition. 
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Figure 5.1. Description of the raster data process. 

Our goal is to improve the execution time of the step (c) To illustrate, we use the following user-

defined selection criterion on temperature rasters:  the calculation of the average temperature for 

every raster and the selection of the temperature < 10C°. A naive algorithm for the step (c) is shown 

in Figure 5.2: 

 
S := the whole sequence of rasters 

A := the (sub)sequence of rasters chosen in S by the user 

b := the region of interest chosen by the user 

Result := { } 

 

for every raster Ri in A  

{ 

avg := the cell average for the region b in Ri 
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if avg < 10 then Result := Result ∪{ Ri } 

} 
Figure 5.2. Naive algorithm for step (c). 

5.2 Raster data process improvement 

Based on the Naïve approach showed in Figure 5.2, we propose an improvement of the step 

(c). The intuition behind this algorithm is to try to reject a raster that does not satisfy the user-

condition (i.e., the cell value average must be lesser then the user’s threshold) as soon as possible 

to avoid useless computation. The proposed improvement technique can improve the computation 

when the user’s threshold is low (compared to the raster cell values). In this technique, the cell 

must contain only numerical positive value – consequently, a uniform translation or normalization 

must be used if the rasters do not comply with this constraint. 

The calculation of the average is computed for each raster (in the region of interest). The average 

computation consists in calculating the sum of cell values for each raster. In our algorithm, we stop 

the sum computation as soon as possible, when we are sure that this sum becomes superior to the 

threshold value multiplied by the cell number of the region of interest. 

We propose to sort the cell values in the region of interest in a descending order, for the average 

computation. In that case, the threshold is reached faster for the rasters that do not satisfy the 

condition. Unfortunately, the time complexity of a sort, i.e., O(n log n) for a quick sort, is higher 

than the sum computation, i.e., O(n). Consequently, we propose the following stages: 

1. We propose to sort the value of the region of interest only for some rasters, e.g., compute a 

sort every 200 rasters, in sorting the cell values of the region of interest only for the rasters 

Ri, Ri+200, Ri+400, etc. Each one of these sorts produces a cell ordering. 

2. We propose to use the cell ordering of the sorted rasters, for computing the sums for the 

other rasters. For example, the sort in Ri produces a cell ordering. This cell ordering will be 

used for computing the sum for each raster from Ri to Ri+199. The cell ordering determined 

by the sort of Ri+200 will be used for each raster from Ri+200 to Ri+399, etc. 

The intuition behind this method is that in many phenomena the spatial distribution of values 

evaluates rather slowly over time. In the case of temperature rasters produced every 5 minutes, the 

highest values will often be on the same geographical part of the rasters for several tens of minutes 

or several hours. The frequency of the sort computation can be adapted to the nature of the data 

(e.g., sorting every 10 rasters, 50 rasters, 100 rasters, 200 rasters, etc.). This new version of the 
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algorithm is shown in Figure 5.2. In Figure 5.3, Ord is an array that corresponds to a mapping: 

Ord(1) is equal to the cell number (#) in b that has the highest value; Ord(m) is equal to the cell 

number (#) in b that has the lowest value. In Figure 5.3, the user-defined condition is “< threshold”, 

but our approach can be used in the case of a condition “> threshold”. In this latter case, the raster 

is accepted as soon as the threshold is reached (instead of being rejected when the threshold is 

reached as in Figure 5.3).  

S := the whole sequence of rasters 

A := the (sub)sequence of rasters chosen in S by the user 

b := the region of interest chosen by the user 

m := the number of cells in b 

begin := the number (#) of the first raster in S 

end := the number (#) of the last raster in S 

it := the interleave between two consecutive rasters on which a sort is calculated 

th := the user-defined threshold 

 

Result := { } 

maxsum := th * m 

for i :=  begin to end step it 

{ 

Sort the cell values of the region b in Ri in descending order 

and produce the corresponding cell ordering Ord 

for j := i to i+it 

{ 

 if j > end  then { process completed ; stop } else 

 { 

  su := 0 

  reject := false 

  for k:= 1 to m { 

   v := the value in the cell Ord(k) in Rj 

                                   su := su + v 

   if su >= maxsum then  
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                                          { reject := true ; break} 

  } 

  if reject is false then Result := Result ∪ { Rj } 

 } 

    } 

} 

 

Figure 5.3. Improved algorithm for step (c). 

Several constraints must be satisfied in order to guarantee that this algorithm provides better 

performances in terms of execution time, for example, a low user-defined threshold or a spatial 

distribution of cell values sufficiently large in every raster to justify the interest of the sorting 

operation.  

In practice, performance improvement depends on two things: 

1) The size of the time window which must not be too large and also not too small. If it is too 

large the precision of sorting (reordering) the cells of the raster that falls in the same time 

window as the real sorted raster will drop. Hence the performance will drop also (hence the 

sort becomes useless). If the time window size is too small, the number of the sorted rasters 

will increase and since it is expensive, it will slow down the execution time).    

2) The type of data (the temperature, pressure, etc.). Less the data is evolving the more the 

sorting is accurate. 

5.3 Experiments and results 

5.3.1 Dataset 
 
We simulated a dataset related to temperatures using the same technique and the same source data 

as the one presented in Chapter 4.  We have created 3 data sets having 3 different raster sizes; each 

data set contains 1420 rasters. We have avoided negative value as it a constraint of our approach. 

In our tests, the user-defined region of interest is the whole raster. In the produced data sets, we 

have one raster every day for four years. The tests have been applied on all these rasters – these 

rasters constitute the sequence A of rasters to analyze.  
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5.3.2 Results 
 
 In this subsection, we show the results of our experiments performed on the generated data. 

Different raster sizes have been tested. For each experiment, we test the naive algorithm and the 

improved version on the same data set. In our experiments, we also evaluate the impact of the main 

parameters on the execution time of our algorithm, for instance, the threshold and the interleave 

between the sorted rasters. To do this, we have chosen different thresholds and interleaves and run 

our algorithm using these different value parameters. Concerning the sort algorithm, we used a 

quick sort. 

The impact of the threshold on the performance 

  Tables 5.1, 5.2 and 5.3 compare the computing time for the naive and the improved algorithm 

for the three data sets for different threshold values. Table 1 shows that the improved algorithm is 

faster than the naive one, especially when the threshold is not too low and not too high. The best 

performance is with th=40; our algorithm I is faster than the naive one with 3.07 seconds less for 

time execution. Whereas when the threshold is smaller, we obtain less performance (the case of 

th=30). 

 
 Threshold 

th=30 
Threshold 
th=40                      

Threshold 
th=45                      

Threshold 
th=46                      

Threshold 
th=50                      

Naive 

Algorithm 

8.5(s) 
 

13.17(s) 

 

 

12.30(s) 14(s) 14.91(s) 

Improved 

Algorithm  

7.9(s) 
 

10.1(s) 11.9(s) 
 

12.9(s) 13(s) 

 

Table 5.1. Dataset 1:  Size of raster =100×100, contains 1420, Interleave =73. 

 
In Table 5.2, our algorithm is faster than the naive one with 5 seconds less for execution time 
(th=42). 
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 Threshold 
th=39                      

Threshold 
th=40                      

Threshold 
th=41                      

Threshold 
th=42                      

Threshold 
th=50                      

Naive 

Algorithm 

 

44.57(s) 
 

45.30(s) 47.80(s) 49.4(s) 53.76(s) 
 

Improved 

Algorithm  

40.5(s) 42.28(s) 
 

43.04(s) 
 

44.47(s) 
 

50.39(s) 
 

 

Table 5.2. Dataset 2:  Size of raster =200×200, contains 1420, Interleave =73. 

  
 

 Threshold 
th=30                      

Threshold 
th=40                      

Threshold 
th=42                      

Threshold 
th=50                      

Threshold 
th=70                      

Naive 

Algorithm 

 

36.81(s) 
 

46.63(s) 48.53(s) 56.83(s) 67.03(s) 

Improved 

Algorithm  

32.57 (s) 44.57(s) 46.78(s) 53.55(s) 62.40(s) 

Table 5.3. Dataset 3:  Size of raster =240×240, contains 1420, Interleave =73. 

 
As we can see in the Table 5.3, our algorithm is still faster than the naive one. More 

precisely, our algorithm is always faster than the naive one, whatever the value of the threshold. 

The user-defined threshold value has a direct impact on the performance of the improved algorithm.  

The impact of the interleave size on the performance 

The interleave value between the sorted rasters is important. It has also an impact on the 

performance of our algorithm. Choosing a low interleave implies sorting more rasters, which 

decreases the performance. In the other hand, choosing large interleave means sorting less rasters 
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which is good for the performance, but in the same time, many rasters that are in the same interleave 

will not follow the same behavior as the sorted raster.   

In Table 5.4 we show how the interleave size influences the performance of our algorithm on the 

data set 1. As an example, we have tested three interleave sizes. As we can see in table 5.4, the best 

performance is obtained by choosing the size 73. The choice of the interleave value depends on the 

nature of data and the frequency of its production. 

 
 

 Interleave 
=10 

Interleave 
=20 

Interleave 
=73 

 
Naive 

Algorithm 

 
13.17(s) 

 

 
13.17(s) 

 
 

 
13.17(s) (s) 

 

 

Improved 

Algorithm  

 

11.27(s) 

 

 

10.53(s) 

 

10.4 

 

 
Table 5.4. The impact of the interleave on the performance (Data set 1), Threshold =40 

 
Our algorithm shows interesting potential, it should be improved by using other faster sorting 

algorithms and also using raster data sets with significant variation of data in the same raster 
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Chapter 6  

Selection of Rasters based on a User-Defined Condition: A 
GPGPU Approach  
 

Results obtained in this chapter have been published at 11th International Conference on 

Computer Science and Information Technology, Paris, France, 8 p. 

 

6.1 Context and motivation  

In this chapter, we propose an improved scalable GPGPU based method, to handle the 

selection of large rasters from large temporal sequence dataset of rasters based on their average. 

This problem has been tackled using only the CPU computation in the previous chapter. To speed 

up the computation time, we decided to use the GPGPU since the underlined problem requires high 

massive computations since we need to compute the average of each large raster in a large dataset 

and check its average with a condition statement. In this work, we discuss in which cases our 

method can reach the best performance and achieving a good speedup.   

In the rest of this chapter, we present only the parallel approach of the problem since the 

sequence versions (the naïve and the improved CPU version) have been presented in the previous 

chapter. 

 

6.2 Raster Selection query: Data Parallel design 

6.2.1 Naive approach 
The naive approach consists on firstly aligning each raster in the dataset after that one thread 

is assigned to each raster; this later will be responsible for computing the raster average. As a result, 

the average of each raster in D will be computed in sequential (because each thread will go through 

each raster and computes the average of this later), but it will be performed in parallel for the dataset 

D. 

The naïve approach will work efficiently if the size of the raster is small, but in our scenario, the 

rasters are acquired in a high precision and their size is very large. So, the average of each raster 

must be computed in a parallel by assigning a block of threads to each raster rather than one thread. 
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Hence, the average is computed in parallel for each raster and all over the dataset. Furthermore, we 

need to avoid the use of the “if" statement frequently, as there is a parallel computing. If we assign 

one thread for each raster, we need to use the “if” statement for each raster L × H times which is 

not efficient. Hence an improved approach is proposed to deal with these limitations. 

 

6.2.2 Sorting-based method reminder and GPGPU-based approach 

 
Our parallel improved approach consists on firstly aligning the rasters (we can use any 

alignment method, since we do not need the position of cells). Secondly, since we need to reject 

the raster if its average is greater than a certain threshold defined by the user, we decide to sort the 

rasters in the descending order (as shown in the previous chapter) in order to achieve the threshold 

as soon as possible and thus reject the raster in the early stages to avoid computing the average of 

the whole raster which is expensive in terms of time and computation. We need to outline that the 

sorting process is very expensive, thus sorting each raster is time consuming, which lead to a 

performance worse than computing the average of the whole raster, a case we try to avoid. To 

overcome this limitation, we propose to use the method shown in the previous chapter: instead of 

sorting all the rasters of the large dataset, we will sort only some of them. In our illustrative 

example, we divide our dataset D (sequence of rasters) into time windows (subsequence of rasters) 

of size T, e.g., T = 6 (Figure 1.6). 

As indicated in chapter 5, we suppose that the rasters that are falling in a certain window of 

time have the same behavior in term of the values of cells. For example, if the rasters represent 

hourly temperature of a specific region, the temperature will not change or will make a slight 

change during a certain period of time (window) for instance 6 hours, so the rasters that fall in this 

time window have the same behavior. Thus, we need to sort only one raster from each window and 

reorder the others accordingly. 
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The final step in our algorithms relay on dividing each raster to a set of tiles with fixed size (each 

tile has the same number of cells). The idea here consists in avoiding checking the average at each 

cell. As a result, the average is tested only at each tile. The example in the Figure 6.2 represents 

our method to compute the average of one raster. We need to outline that, instead of computing the 

average of the raster, we will only compute the sum of the raster and scaling the threshold by the 

size of the raster. 

 

 

 

 

	
	

 

 

 

Figure 6.1. Dividing the dataset into time windows (subsequence 
of rasters). 



98  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have reminded above the case of one raster. The same processing will be performed for 

each raster in parallel, which means that, for each raster, one thread will be assigned. This later will 

call the function which executes the previous processing. At the beginning, while we have 

developed our first algorithms on the GPU using pure CUDA implementations, we realized that 

our implementations cannot perform better than the parallel primitive implementations in term of 

productivity and efficiency. It is the reason why we decided to adopt a parallel primitive -based 

approach where it is possible to reduce implementation complexity and improve development 

productivity. Many of our algorithm’s blocks are already optimized by NVIDIA’s libraries such as 

Thrust and CUB. Our improved algorithm is based on two main blocks: the reduction and the sort, 

that are implemented efficiently in the libraries cited above. This allows us to have the best 

performance and hence achieving a higher speed up by using the improved implementations of the 

parallel primitives. 

Figure 6.2. Illustration of our method for one raster(R1). 



99  

 

We summarize our method and provide an idea about its implementation on the GPU. Our 

method has two passes, hence two CUDA kernels are implemented: the first kernel consists on 

sorting the rasters of our dataset using the method cited above; our dataset D (sequence of rasters) 

is divided on a set of time windows (e.g., 6 days) 

So, in each time window, only one raster is sorted by using the thrust primitive: 

thrust::sort_by_key or CUB primitive cub::DeviceRadixSort::SortPairs. Thus, we get the order 

of indices of the sorted raster. The other rasters that fall in the same windows of time will be 

reordered (sorted) according to the sorted raster using the gather transformation that we have 

implemented using the primitive: thrust::gather. The second kernel will be responsible of 

computing the average of rasters using our method described above. To do we can use the primitive: 

thrust:: reduce or cub::DeviceReduce::Reduce. 

 
6.3 Experiments and results  

To evaluate and test the performance of our algorithms, we ran experiments on a Tesla 

K20C GPU device with 5 Gb of global memory and 2496 NVIDIA CUDA cores. The sequential 

algorithm is run on the host CPU Intel(R) Core(TM) i7-2600K running at 3.40 GHz with 16 Gb of 

RAM. Concerning the data, we have used a temperature public dataset for our experiments. 

 

6.3.1 Dataset 
In our tests, we used the temperature data from public dataset provided by the US National 

Oceanic and Atmospheric Administration (Diamond et al., 2013); the same source as the one 

presented in the previous chapter. It provides several climate and weather data for many years 

which are produced from many weather stations. Furthermore, for this experiment, our studied 

region is composed from many stations that are near to each other for instance: Newton_5, 

Newton_8, Newton_11 and Watkinsville_5, etc. based on their geographical coordinates. Doing 

this allow us to have more variation of the values of data, hence the sorting step in our algorithm 

will have sense. If the values of the cells of the same rasters are closed to each other, sorting process 

does not have any sense. 

To build our dataset, we have simulated temperature rasters for the local studied region 

using the same approach than the one presented in the previous chapters. Also, we have avoided 

negative value. For our experiments, we have generated two datasets, one dataset for a region 
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composed of 6 stations and another one composed of 3 stations. We have tested different values 

for the size of rasters, the number of rasters and also the threshold fixed by the user. 

 

6.3.2 Results 
In this subsection we report the results obtained by our experimentations on the simulated 

datasets. In the results shown in the tables below, we present the results only for the threshold equal 

to 30 and for a window time equal to 5 since they give us the best performance. As we can see in 

the table 1, we have tested the methods on different sizes of data. Table 6.1 shows that we obtained 

a significant speed up (speed up= 5 for rasters of size 1200000) compared to the sequential version 

and good speed up compared to the straightforward parallel approach (speed up =1.7 rasters of size 

1200000) that does not use sorting phase. We have to mention that the straightforward parallel 

approach is not the naïve approach. In fact, it is the improved approach but without sorting phase.	 
 

 Raster 
Size 
36000 

Raster 
Size 
60000 

Raster 
Size 
120000 

Sequential Naïve 

Algorithm (ms) 

504 841 1698 

Improuved 
Sequential 

algorithm(ms) 

460 737 1486 

Straightforward 
parallel approach 

(ms) 

241 421 571 

Improuved parallel 
approach (ms) 

158 
 

235 339 
 

 

Table 6.1. Dataset 1: 6 stations, 365 days, Windows time = 5 days, Threshold=30.	
 

It is the same for Table 6.2 that shows the results for a sequence of rasters for 2 years (730 days). 

As we can observe, we have obtained a good speed up compared to all the methods but in the other 

hand we can see that we get less good speed up compared to the previous experiments on Dataset 

1. This is due to two things: the first one is number of rasters which is greater than the previous 

one and hence we need to sort more rasters. The second one is the distribution of data.  
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In the Dataset 2, our studied region is formed from 3 stations which mean less variation of data 

inside our dataset and as a result sorting become less profitable compared to the Dataset 1.  

 
 Raster 

Size 
18000 

Raster 
Size 
30000 

Raster 
Size 
60000 

Sequential Naïve 

Algorithm(ms) 

541 852 1702 

Improved 

 Sequential 
algorithm(ms) 

483 761 1529 

Straightforward 
parallel 

approach(ms) 

275  463   591 

Impoved parallel 
approach (ms) 

176 
 

266    472 
 

Table 6.2. Dataset 2: 3 stations, Windows time = 5, 730 days, Threshold=30. 

 

6.4 Conclusion  

To conclude, we have shown that we can speed up large scale geospatial queries by using 

the power of recent GPU cards. Using parallel primitives based on CUDA allowed us to further 

improvement our implementation and reducing coding complexity. Our experiments on our large-

scale geospatial data have shown a good performance in term of time and we were able to obtain a 

significant speed up compared to CPU-based methods presented in the previous chapter.  
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Chapter 7  

Selection of Raster Sequences based on a User-defined 
condition using GPGPU 
Results obtained in this chapter are under submission. 

 

7.1 Context and motivation  

 In previous chapters, we considered a selection criterion tested on each raster. This new chapter is 

dedicated to test a user-based condition on non-overlapping aggregated sequence of raster. This 

approach combines selection and aggregation operations. The workflow of the query is presented 

in Figure 7.1. In this later, we compute a spatiotemporal average of raster cells. A single numerical 

indicator is returned e.g., the average of the cells in all the raster in the studied temporal 

subsequence (a week). A user-based condition will be tested on the whole sequences of rasters. 
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7.2  

 

 

 

 

 

 

 

 

 

 

 

 

Query definition and the sequential algorithm  

Let D be the data set (R1, …, RN) of N rasters, where each Ri is 2D grid that has the size of 

p × q. All the rasters have the same size and correspond to the same geographical region. 

Let cellx,y(Ri) be the cell in the raster Ri , and (x, y) be the coordinates of the cell in the raster. 

Figure 7.1. Overall framework for the query process. 
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The query relies on finding all the disjoint (i.e., non-overlapping) raster subsequences Sj in D of 

length L, such that the mean over Sj is less than T such that T is a threshold defined by the user. 

 

The sequential straightforward method is as follow: 

D := list of rasters 

N:= the number of rasters in D 

L:= the size of subsequences 

T := the threshold chosen by the user 

Result := { } 

for every Sj in D { 

sum_subseq:=0 

for every raster Ri in Sj 

{ 

avg_raster := the cell average for Ri 

sum_subseq:= (sum _subseq +avg_raster) 

} 

avg_subseq:=(sum_ subseq)/L 

if (avg < T) 

then Result := Result ∪ { Sj } 

} 

  

7.3 Parallel methods for query processing 

7.3.1 Straightforward parallel approach 

This approach consists, as the first step, to compute the average of each subsequence in D 

and then check if it is satisfying the user condition. Concerning the first step, we have used the 

segmented reduction technique with the sum operator. The segmented reduction is a building block 

for many algorithms. In general, it relies on reducing data over many irregular-length segments. In 

our case, the segments have the same length which is the size of the subsequences L.  In our method, 

rasters are aligned and stored in one array. The segments are composed of the cells of all the rasters 
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belonging to them. To perform the segmented reduction, one unique key is assigned to each 

segment therefore to each subsequence in our array. If there are N subsequences of size L, there 

will be N fixed-size segments.  

This approach allows performing the reduction on all the subsequences only once (based on their 

keys). Hence the function (kernel) responsible for the reduction is called just once on the array 

containing the data. The output will be a single 1D array containing the means of all the 

subsequences Sj. An illustrative example is presented below. 

Let’s consider a set of 6 rasters of size 4 (Figure 7.2) 

 
 

 

 

 

Rasters are aligned and stored in one array as follow (Figure 7.3):  

 

 

5 3 1 2 7 1 0 4 5 9 2 5 0 4 3 2 1 7 3 8 4 0 2 4 

 

Our query allows selecting disjoint subsequences of size L such that the average over these 

subsequences satisfying the user’s condition. In our example L= 3 (each subsequence contains 3 

rasters see Figure 7.4). 

 

 

 

 

R1 R2 R3 R4 R6 R5 

5 3 

1 2 

 

7 1 

0 4 

 

5 9 

2 5 

 

0 4 

3 2 

 

1 7 

3 8 

 

4 0 

2 4 

 

5 3 1 2 7 1 0 4 5 9 2 5 0 4 3 2 1 7 3 8 4 0 2 4 

 

S1 S2 

Figure 7.2. A set of 6 rasters of size 4. 

Figure 7.3. Alignment of the 6 rasters. 

Figure 7.4. Example of two disjoint subsequences of size 3. 
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Now, the same key is assigned to each cell in the same subsequence. Hence, we get two segments 

and the sum of each subsequence is computed based on their keys (Figure 7.5) 

 

 

  

  

 

 

 

Concerning the second step which consists in testing if the average of each subsequence Sj is 

satisfying the user’s condition, we assign one thread to each result in the output array which will 

be responsible for checking the condition. 

The straightforward parallel approach is quite simple since the segmented reduction function is 

called only once. After that, threads are launched to check the user’s threshold condition. However, 

the main limitation of this straightforward approach is that the reduction operation is very 

expensive in time and computation. 

 

7.3.2 Improved parallel approach 
7.3.2.1 Based on a sort 

In this subsection, we overcome the limitation of the straightforward parallel approach by 

introducing a sorting step in the process. We have introduced this idea for the individual selection 

of rasters in the previous chapters. Here, the idea behind the sorting is to try to reject the 

subsequences not satisfying the query condition in early stages to avoid useless computations since 

5 3 1 2 7 1 0 4 5 9 2 5 0 4 3 2 1 7 3 8 4 0 2 4 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

 

S1 
S2 

              44/12                 38 /12 

 
Figure 7.5. Example of two disjoint subsequences of size 3. 
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the goal of the query is not to compute the average of all subsequences. We do not have to complete 

the average computation for the subsequence that does not satisfy the condition. A subsequence 

average computation can be stopped as soon as we are sure that the user-defined condition will not 

be satisfied. As a first step, we propose to sort the cells of each raster in descending order. In that 

case, the threshold is reached faster for the subsequence Sj that does not satisfy the user-defined 

threshold.  

 

Figure 7.6 shows the first step consisting in sorting all the rasters in parallel in descending 

order. To do that efficiently, we have adopted the segmented sort parallel technique to get all the 

rasters sorted in one shot. To achieve this objective, we have chosen a data parallel primitives 

approach, for instance, cub::DeviceSegmentedRadixSort parallel primitive function which 

allows performing a batched radix sort across multiple non-overlapping sequences. The reason why 

Figure 7.6. Illustration of our method for the first subsequence S1. 
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we decide to use these parallel primitives is to reduce the implementation complexity and maximize 

the performance of our algorithms since these parallel primitives are highly improved.  

Once the rasters are sorted, we move to the second step. It consists in splitting each sorted raster 

into equal segments (tiles). Thus, the first tile of each raster contains the cells of the largest 

numbers. We consider positive numbers for cell values. In the case of negative numbers in the 

datasets, shifting by a large number is needed (e.g. adding 100 to all the values). 

In the first iteration, we will compute only the sum of the first tiles of each raster for a given 

subsequence Sj. If the result Res1 does not satisfy the query condition, then the subsequence Sj is 

rejected. Otherwise, we repeat the same processing for the second tiles of each raster in Sj, add it 

to Res1 (the previous results of the first segments) and check the results: if Res2 does not satisfy the 

query condition then Sj is rejected. Otherwise, the process is repeated for the third segment of 

rasters in Sj and so on. This will be done in parallel at the same time for all the disjoint 

subsequences. 

As indicated in the previous chapter, the main drawback of this approach is that the sorting process 

is expensive in time and computations, especially in the case of large rasters. We propose in the 

next subsection avoiding sorting all the rasters and settling for sorting only a few of them. The 

others will be somehow reordered according to the sorted rasters. This is the subject of the next 

subsection. 

7.3.2.2 Based on the sophisticated sort 

We have experimented the sort-based approach used in the previous chapter (Figure 7.7). To 

implement the parallel approach, first, we have sorted the indexes (keys) of rasters that must be 

sorted. We used the sorted keys to reorders the other rasters. To sort the raster and indexes, two 

solutions are available: the solution based on CUB with: cub::DeviceRadixSort::SortPairs and 

the solution based on Thrust with : thrust::sort_by_key. 

The other rasters that fall in same windows of time will be reordered (sorted) according to the 

sorted raster using the gather transformation that can be implemented using the primitive: 

thrust::gather. 
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The rasters are sorted as described above. We need to implement the kernel responsible for 

computing the average of subsequences using our method described above. To do that, the 

primitives thrust:: reduce or the cub::DeviceReduce::Reduce functions can be used. 

 

7.4  

 

 

 

Experiments and results 

Our experiments were performed on two platforms. Concerning the parallel methods, we have used 

a GPU-Based platform: Tesla K20 C. While the sequential approaches were performed on Intel(R) 

Core(TM). To implement our methods we have used C++, CUDA and the libraries Thrust and 

CUB. 

Table 7.1 shows the details related to the used hardware and software configuration. 

Figure 7.7. Strategy to avoid sorting all the rasters. 
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Platform Hardware	Configuration Software	Configuration 

CPU 

Intel(R) Core(TM)  i7-2600K 

CPU @ 3.40 GHz  

Device global memory: 16 GB 

Cache size: 20,480 KB 

Linux Ubuntu 19.04 

C/C++ 

CUDA 8.0 

Thrust v10.1.105 

CUB v1.8.0 

 
GPU 

Tesla K20C 

CUDA Cores : 2496 

Device global memory: 5 GB 

Memory Bandwidth: 208 GB/s 

Table 7.1. Configuration.  

In the tests, we aimed to outline the power of using the GPGPU platform to speed up 

spatiotemporal raster queries over the classical approaches based on the CPU. We used the same 

method as the one presented in chapter 6 to generate the dataset. 

7.4.1 Experiment Results and Analysis 
7.4.1.1 The Impact of the type of data on the performance 

As we can see in Table 7.2, we have fixed the size of the raster, the number of the rasters, threshold 

and also the size of the subsequences that we want select, since they do not have a huge impact on 

the performance. 
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Dataset Standard 

deviation 

Number of 

rasters 

Size of 

rasters 

CPU (ms) GPU 

(ms) 

Acceleration 

Dataset 1 " =	7.21 3650 1000×100 261200 200150 1.31 

Dataset 2 " =	7.88 3650 1000×100 273130 190700 1.43 

Dataset 3 " =	8.82 3650 1000×100 280810 140600 2.00 

Dataset 4 " =	9.95 3650 1000×100 259020 118720 2.18 

Dataset 5 " =	11.22 3650 1000×100 262500 95130 2.76 

Dataset 6 " =	12.57 3650 1000×100 257200 80147 3.21 

Table 7.2. Threshold = 60, the size of subsequences = 10, the size of the windows = 10. 

 

As shown in Table 7.2, the proposed method based on the GPGPU is better than the sequential 

method based on the CPU for all the generated datasets. Our method is sensitive to data distribution, 

that is why the results are better when the data has a large standard deviation due to an important 

variation inside the dataset. On the other hand, execution is slower when the standard deviation of 

the dataset is small. In fact, if the values in rasters are close to each other, the sort does not provide 

a great improvement, as the goal of the descendent sort is to sum the highest values first to reach 

the threshold as soon as possible. The evolution speed over time of the spatial distribution of cell 

values is a crucial factor in this approach. In the case of rapid spatial distribution value changes, 

our proposed heuristic will not increase the performance. Note that the sorting step costs about 

40% of the computation cost. The fixed parameters of our datasets are not chosen arbitrary - they 

are the best values that give good performance. 
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7.4.1.2 The Impact of the time window size on the performance 

Let’s see how the time window size impacts the performance over “dataset 6” with the same 

fixed parameters cited in the previous subsection. As we can see in Figure 7.8, when the time 

window size is too small (size = 3), the number of time windows increases as well as the number 

of sorted rasters. Since the sorting is expensive, it will increase the time execution. On the contrary, 

when the time window size is too large (size= 15), it will impact the reordering precision of the 

rasters and hence the sorting becomes useless which will lead to performance drops. However, 

when the time window is not too small and not too large (size=10), we get good performance. 

 

Figure 7.8. The time windows size’s impact on the performance over the dataset 6. 

 7.4.1.3 The Impact of data size on the performance 

In this subsection, we show the data size impact the performance of our method. To do that 

we have generated different datasets with different raster sizes. We have fixed the standard 

deviation which is equal to 12.57, the size of subsequences = 10 and the size of the time windows 

= 10. 
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Dataset Number of 

rasters 

Size of rasters CPU (ms) GPU 

(ms) 

Acceleration 

Dataset 1 
3650 100×100 21350 6843 3.11 

Dataset 2 3650 200×200 182070 57254 3.18 

Dataset 3 3650 1000×100 257200 80147 3.21 

Dataset 4 3650 500×500 415021 117040 3.54 

Table 7.3. 

As shown in Table 7.3, the proposed method is still better than the sequential over different dataset 

sizes. 

7.5 Conclusion 

Analyzing large-scale spatiotemporal data allows extracting more valuable and crucial 

information that is essential for many applications, for instance: supporting decision making, 

science discovery and prediction making. The main requirement for spatial data-intensive 

applications is the processing time and scalability. Unfortunately, most of the existing methods are 

based on traditional approaches and architecture which make them not appropriate to support 

querying massive spatial data efficiently. 

In this work, we addressed the problem of speeding up the spatiotemporal rasters query consisting 

in selecting only disjoint raster subsequences of fixed size, such that the average of the cells over 

these subsequences is less than a user defined threshold. In our illustrations, we suppose that the 

region of interest of the user is the entire raster and not only the sub-region for simplification’s 

purpose. 

In our work, first, we have shown that we can improve the processing of such query by 

using the power of recent GPU cards. Furthermore, using parallel primitives based on CUDA 

allowed us to further optimize our implementation and reducing coding complexity. Secondly, we 

have designed and implement a new method including a rejection step based on sorting to reduce 

computations and hence to further accelerate the processing time of our query. The proposed 
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approaches have been tested on temperature data. Our experiments on our large-scale geospatial 

data have shown good performance in terms of time compared to the straightforward GPU method, 

and we were able to obtain a significant speedup compared to CPU based methods. We have to 

highlight that our methods based on sorting is sensitive to data distribution, as a result, the 

performance change depending on the distribution of the data set.   
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Part 3 
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As mentioned above in the introduction, this part concerns the two last chapters:  
 

• Chapter 8: We dedicate this chapter for the application of our methods on real data of 

INRAE Montoldre. We present the data set of Montoldre, the acquisition, the type of data 

and the data characteristics. Finally, we show the results of our methods on this real data. 

• Chapter 9: concerns the conclusion and perspectives. We provide a summary of our work, 

give outlines of our proposals and contributions, and finally suggest new research trends to 

extend our work. 
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Chapter 8  

Experiments of the different approaches on real data sets of 
Montoldre 
 

In this chapter, we extend the experimentations of our methods cited above to a real dataset 

provided by INRAE Montoldre site (Roussey et al.,2020). Our goals were to evaluate the 

performance of our methods on a real data set. 

The chapter is organized as follow. First, we present the INRAE site located in Montoldre (Allier) 

and we describe the raw dataset produced by the Montoldre sensor network. We talk about the 

spatial interpolation used to produce rasters from these georeferenced sensor network data. We 

show results of our methods on this real dataset. 

8.1 Sensor network in Montoldre  

INRAE has a large experimental farm located in Montoldre (Figure 8.1). This later is 

dedicated to the development and the experimentation of agri-environmental techniques. Based on 

a sensor network composed by Live nodes (developed by LIMOS), this platform provides a real 

data that are used by researchers in their work related to environmental data. The measurements 

are air and soil humidity, temperature and light. They are measured using several sensors 

distributed over Montoldre site.  



120  

 

 

 

 

8.2 Raw Dataset Description 

The Montoldre raw dataset produced by LiveNode is composed of two SQL tables: the 

network table and the sensors table. 

• The network table concerns information about 10 sensor nodes. 

• The sensors table contains columns such as: myNodeID, battery, temperature, humidity, 

light, etc., and 14970995 rows which correspond to the measurements of the different 

sensors during many months with different fine-grained frequency of acquisition. 

The table below shows the description of some measures: 

 

 

 

 

 

 

Figure 8.1. Montoldre INRAE experiment farm (Touseau and Le Sommer, 2019). 
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Measure Meaning Units 

Battery Battery state of node 

 

 mV 

 

Temperature Temperature measurement  C degree 

Humidity 

 

Air humidity measurement  Percent 

 

Light Light measurement N/A 

 

Watermark n Measurement value of the  
n-th watermark device. 
Watermark is a soil humidity 
sensor. The Watermark 
sensors is in the soil at 
different soil depth. 

Watermark's unit (range: 0 to 

200) 

 

Table 8.1. Description of the measures. 

      

Note: 

Watermark1: This sensor is deployed at 10 cm depth in the soil. 

watermark2: This sensor is deployed at 20 cm depth in the soil. 

watermark3: This sensor is deployed at 30 cm depth in the soil. 

8.3 Spatial data interpolation 

8.3.1 Spatial interpolation 
Rasters are produced form the sensor network using spatial interpolation. Spatial Interpolation 

methods can be classified into three categories: geographical statistics methods for instance Kriging 

methods, non-geographical statistics (the main method in this category is the inverse distance 

weighted - IDW) and finally the hybrid approach. In this subsection we will present the IDW and 

kriging methods which are the eminent methods in geospatial interpolation methods. 

Inverse Distance Weighted Interpolation Method 

Based on the Tobler's first law of geography "everything is related to everything else, but near 

things are more related than distant things" (Tobler,1970), the Inverse Distance Weighted 

(IDW)(Li et al.,2018) is the most used interpolation method thanks to its simplicity and intuitive 

interpolation. The main advantage of the IDW is the easiness of implementation and the fact that 
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is keeping the measured value at sample location. Thus, the IDW is used by several fields and 

widely adopted by almost GIS. The idea behind the IDW is that the prediction of the values of 

unsampled point realized by computing the weighted average of the closest sampled points.  

Hence the formula of the IDW is as follow (Li et al.,2018): 

 

    

 

 

Such that: 

• Z: The unknown value for estimated value point, 

• Zi: The known value for exact value point,  

• di: the distance between exact point and estimated point,  

• p: A power parameter,  

• n:  The number of sample data points.  

 

Kriging Interpolation Method 

Kriging is a powerful geostatistical interpolation method is named after D.G. Krige from South 

Africa. The method is founded on the idea of estimating the unsampled points using sampled points 

and their spatial relationships (Singh and Verma, 2019) using Semivariogram (Tan and Xu, 2014) 

to assign optimal weights (kriging weights) to the sampled point values so as to compute the 

unsampled points. The Semivariogram can be a Gaussian model or others models. There are several 

variants of the kriging method, however the most used for spatial interpolation data is the ordinary 

version which assumes that the mean and variance of the values is constant across the spatial field. 

The optimal weights for each unsampled point computed in reference to all the sampled points 

using the following formula: 
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Where: 

the value of the predicted point (z-hat, at location x-nought) is equal to the sum of the value of each 

sampled point (x, at location i) times that point’s unique weight (lambda, for location i). 

From a subpart of the Montoldre sensor dataset, 4980 rasters have been produced in 4 different 

resolutions (300x300, 350x350, 400x400, 450x450) for 3 types of measures (Temperature, 

humidity, Watermark 2, using the IDW interpolation methods – for a total of 4980*4*3=59760 

rasters. The IDW interpolation method allows predicting the messing values of the unsampled 

locations. For each type of measurements and each resolution, one raster is generated by hour, with 

at least 3 available sensor measures – as all the sensors are not always active at the same time. 

8.4 Experiments on Montoldre hourly dataset 

In this subsection we report the results obtained by our experimentations on the Montoldre dataset 

using the overlapping aggregation of raster data sequences and the selection of raster sequences 

based on a User-defined condition. The process related to the selection of raster sequences based 

on a user-defined condition is a quite similar to the other raster selection process including 

aggregations. 

Note that (as a precaution) we have modified the temperature values (by using a translation) to 

obtain only positive values. 

Hereunder a table (Table 8.2) which shows the statistical description of the datasets such that: 

• Min: The minimum value of the measure in the whole dataset. 

• Max: The maximum value of the measure in the whole dataset. 

• Mean: The mean value of the measure in the whole dataset. 

• Standard deviation: The standard deviation of the measure in the whole dataset. 

• Mean of rasters means: To compute this value, first we compute the mean of each raster 

used for our experiments then we compute the global mean which is the mean over the 

raster means). 

• Mean of rasters standard deviation: To compute this value, first we compute the standard 

deviation of each raster used for our experiments then we compute the mean over all the 

standard deviations of the rasters). 
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Measure Min Max Mean Standard 

deviation   

Mean of rasters means Mean of raster standard 

deviation 

Temperature 0 45.7 11.89 8.73 12 2.73 

Humidity 9.9 100 78 21.97 78.15 15.20 

Watermark 2 1 200 63.80 88.96 61.71 43.79 

Table 8.2. Statistical Description of the measures. 

 

Dataset Raster size CPU   

(ms) 

GPU 

(ms) 

Acceleration 

Dataset1 450×450 247256 3988 62 

Dataset2 400×400 203058 3501 58 

Dataset3 350×350 187089 3171 59 

Dataset4 300×300 165474 2853 58 

Table 8.3. Experiments on temperature - Results for Overlapping Aggregation of Raster Data 
Sequences.  
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Dataset Size of rasters CPU (ms) 

 

CPU 

With 
sorting(ms) 

GPU (ms) GPU 

With 
sorting(ms) 

 (ms) 

Dataset 1 100×100 25464 34180 21023 29117 

Dataset 2 200×200 240255 380521 190762 316284 

Dataset 3 1000×100 349654 471290 260273 397641 

Dataset 4 500×500 587323 697138 418012 631540 

Table 8.4. Experiments on temperature - Results for the Selection of Raster Sequences based on a 
User-defined condition. 

 

Dataset Raster size CPU   

(ms) 

GPU 

(ms) 

Acceleration 

Dataset1 450×450 247020 4117 60 

Dataset2 400×400 195510 3430 57 

Dataset3 350×350 187575 3075 61 

Dataset4 300×300 162960 2910 56 

 

Table 8.5. Experiments on air humidity – Results for Overlapping Aggregation of Raster Data 
Sequences. 
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Dataset Size of rasters CPU (ms) GPU (ms) GPU with 

sorting (ms) 

Dataset 1 100×100      28231 17328 7133 

Dataset 2 200×200 250165 131571 61604 

Dataset 3 1000×100 369719 171803 
83251 

Dataset 4 500×500 608413 372631 127679 

 

Table 8.6. Experiments on air humidity - Results for the selection of Raster Sequences based on a 
User-defined condition. 

  

 
Dataset Raster size CPU   

(ms) 

GPU 

(ms) 

Acceleration 

Dataset1 450×450 241227 3829 63 

Dataset2 400×400 203547 3571 57 

Dataset3 350×350 190806 3234 59 

Dataset4 300×300 156520 2795 56 

 

Table 8.7. Watermark experiments – Results for Overlapping Aggregation of Raster Data 
Sequences. 
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Dataset Size of rasters CPU (ms) GPU (ms) GPU with 

sorting (ms) 

Dataset 1 100×100 27647,508 12981 7275,66 

Dataset 2 200×200 266498,904 116730 63452,12 

Dataset 3 1000×100 382122,09 162014 84916,02 

Dataset 4 500×500 625116,384 302833 130232,58 

 

Table 8.8. Watermark experiments - Results for the selection of Raster Sequences based on a 
User-defined condition. 

     

8.5 Discussion  

The overlapping aggregation of raster data sequence based on the GPU is still faster than 

the CPU version over the three measures: Temperature (Table 8.3), humidity (Table 8.5) and 

watermark (Table 8.7). As we can see in these tables, a very good speedup is obtained over all the 

generated datasets. These results were been absolutely expected since the performance of our 

method is independent to the data – the (GPGPU) parallel approach is better than the CPU 

"sequential" one. Besides, our method is generic and can be used for more general cases and for 

other types of data, such as array and vector aggregation. 

Concerning the selection of raster disjoint subsequences based on a user-defined condition method, 

the results using the temperature dataset showed always good results for using the GPU over the 

CPU version. However, our optimized method based on rejection step based on sorting showed 

bad results for the CPU and the GPU for the temperature dataset. In fact, the time of execution is 

worse compared to methods without sorting. In fact, our optimized methods are based on a sorting 

step that must allow to reject the raster sequences earlier. However, the values of the temperature 

dataset are closer to each other, in rasters.  The goal of the sorting step is to allow summing the 

highest values first. Consequently, when the values are too close in rasters, the sorting step is 
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useless to reach quickly the threshold and to reject raster in an earlier stage. In this case, the sorting 

step becomes a heavy step that burden off the shoulder of the method since sorting is expensive in 

term of computations, hence the execution time is higher than the methods without sorting. 

Unlike the previous results on the temperature data. In the case of Humidity and Watermark 

datasets, our selection methods using the sort gets good results in the sequential and even better in 

the parallel version. This is due to the sorting step which allows rejecting raster sequences in earlier 

stages, because of the distribution of the humidity and watermark data values (Table 8.2).  
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Chapter 9  

Conclusions and Perspectives 
 

9.1 Summary of the work  

The acquisition of environmental data has made a huge leap forward in term of technology 

and the price. Sensors are now, smaller, cheaper and even smarter, moreover, more and more 

georeferenced sensors are deployed for many applications such as environment monitoring, 

precision agriculture, positioning, this leads to the production of large spatial data. Data availability 

and data storage are often not anymore, a barrier, whereas the real bottleneck is, in many cases, the 

analysis of these spatial data that does not cease to grow dramatically. 

Unfortunately, most of existing methods and approaches are based on traditional computing 

framework (uniprocessors) which makes them not scalable and not adequate to deal with large-

scale spatial data. Processing large volume of data is both a challenge and a real opportunity. 

Querying large-scale spatial data allows extracting more valuable and meaningful information that 

is vital for decision making especially in precision agriculture. It can be used for recommendations 

on the use of agricultural inputs (water, phytosanitary treatments, etc.), to optimize production, for 

crop management in order to optimize and to reduce the use of agro-equipment and decision 

support systems for farmers. Spatial data is also important is scientific advancement and scenario 

predictions. The major requirements for the data-intensive spatial applications are the processing 

time and scalability. Spatial query processing must be fast and able to handle more large spatial 

data efficiently. 

The work in our thesis focused on the acceleration of the processing of spatial data in order 

to support high-performance queries on this later. Our work is based on the use of the GPGPU 

device to achieve the expected results. 

We started tackling some problems of processing spatial data in order to speed up and 

accelerate the time of processing. 
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First, we have worked on a classical problem of overlapping aggregations of large raster 

sequences, this later has never have been studied before, according to our survey. In this context, 

we have proposed many experiments and compared different GPGPU implementations strategies 

for this problem. We have used a public dataset NOAA that provides the temperatures max min 

and mean of a station at every 5 minutes for many years. The results show that our method is 60 

times faster than the sequential version.  

Secondly, we have tackled raster selection queries based on a threshold fixed by the user. 

In fact, in different analyses, users can be interested only in some rasters (for example, days where 

the temperature were greater than 15 C°). In that case, it is possible to reduce the processing time 

by implementing a rejection procedure of rasters based on the user’s threshold in the early stages 

of the computation. To this end, we have added a sorting step to reject rasters that are not satisfying 

the condition in an early time. First, we have implemented a sequential method and in a second 

time, we have implemented a parallel-based method. Both methods have shown a good 

performance and the rejection step has improved the performance in both versions of the method. 

However, the GPGPU based method enhance allowed us to get more efficiency and time 

processing.  

In addition, we have worked on a new query that consist on searching disjoint raster 

sequences data satisfying a user condition. We have implemented a parallel-based method to speed 

up the query by including a sorting step in the process. We obtained good results and the paper is 

almost done therefore almost ready for submission.   

We have to highlight that our two last optimized methods based on sorting are sensitive to 

data distribution, as a result, the performance changes depending on the data set.  

Finally, we have tested all our methods on the Montoldre dataset. In this regard, we have 

generated dataset based on the raw Montoldre dataset. Our methods were able to achieve good 

results, which confirms the potential of using the GPGPU to support large-scale dataset and the use 

of the rejection step to avoid useless additional computations in the case of suitable data. 

 

9.2 Perspectives 

The results of our work have clearly shown that the use of the GPGPU is very suitable to 

support high performance query on massive large-scale dataset. To this regard, interesting research 
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perspectives could be derived from our works on several sides and aspects. In our contributions, 

only simple map algebra operations were used for raster aggregations i.e., the sum. Hence, it will 

be interesting to investigate and propose methods based on the GPGPU that covers other map 

algebra operations such that, Max, min, etc. This will allow researchers to get a clear and complete 

idea about the power of the use of the GPGPU to process map algebra operations. 

Concerning the first contribution, our proposed method is based on two main steps: computation 

of the mean of each raster then the computation of the mean over the overlapped sequences using 

the prefix-sum. An improvement of this method can be proposed using only one-pass step to 

compute the overlapped aggregations of rasters. In fact, the aggregation of the raster subsequences 

can be computed using only the prefix sum which will absolutely improve the results. Another 

interesting improvement can be done in the sorting step. In our works, the frequency of raster 

sorting was fixed based on an empirical method. In fact, we run our methods with many frequencies 

of sorting then we take the frequency that led to the best results. A good research contribution can 

be to propose a method to set a criterion to determine the best frequency of sorting based on the 

statistical description and the nature of data. Furthermore, in the case of the selection queries 

presented in our works it will be a good idea to check the correlation between many measures (for 

example temperature and humidity) if they have the same behavior during time. it will be possible 

to make sorting only for the first measure and reuse it for the other measures having the same 

behavior by reordering raster cells in order to answer the same selection queries which will avoid 

additional time processing. 

Also, we believe that our proposed methods can be applied and cover other fields which have the 

same structure and behavior of our data. The investigation of the use of our methods (for instance 

the rejection process based on sorting) on other fields will be very useful in order to study the 

behavior of our methods on other types of data from other fields and applications. Finally, 

implementing our methods on other parallel solutions such as OpenCL will be very useful to make 

a complete comparison between all the solutions.  
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