
HAL Id: tel-03622529
https://theses.hal.science/tel-03622529

Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial data Parallel Processing on GPGPU
Driss En-Nejjary

To cite this version:
Driss En-Nejjary. Spatial data Parallel Processing on GPGPU. Emerging Technologies [cs.ET]. Uni-
versité Clermont Auvergne, 2021. English. �NNT : 2021UCFAC032�. �tel-03622529�

https://theses.hal.science/tel-03622529
https://hal.archives-ouvertes.fr

École doctorale : Sciences pour l’ingénieur

THÈSE
Pour obtenir le grade de :

Docteur de l’Université Clermont Auvergne

Spécialité Doctorale en Informatique

Présentée et soutenue publiquement par
Driss EN-NEJJARY

Le 10 juin 2021

Des approches séquentielles et parallèles pour

L’amélioration des performances des sélections et Des

agrégations des données rasters
Membres du jury:

M. François Pinet DR INRAE Directeur de thèse

Mme. Myoung-Ah KANG MCF Univ. Clermont Auvergne Co-directeur de thèse

M. Alain Bouju MCF- HDR L3i, Univ. La Rochelle Rapporteur

M. Sofian Maabout MCF- HDR LaBRI, Univ. Bordeaux Rapporteur

M. Olivier Teste Professeur IRIT, Univ. Toulouse 2 Examinateur

M. Jean-Denis Mathias DR INRAE Examinateur

2

 Clermont Auvergne University
A thesis submitted in fulfillment of the requirements for the

Degree of Docteur de l’Université Clermont Auvergne

Discipline: Computer Science

Author: EN-NEJJARY Driss
Defended on: 10th June 2021

Spatial data Parallel Processing on GPGPU
Composition of the jury:

M. François Pinet DR INRAE Thesis Director

Mrs. Myoung-Ah KANG MCF Clermont Auvergne University Thesis Co-Director

M. Alain Bouju MCF- HDR L3i, La Rochelle University Reviewer

M. Sofian Maabout MCF- HDR LaBRI, Bordeaux University Reviewer

M. Olivier Teste Professor IRIT, Toulouse 2 University Examiner

M. Jean-Denis Mathias

DR INRAE Examiner

3

4

Abstract
With the emergence and the production of a large volume of spatial data, supporting large

scale and high-performance queries and analysis has become crucial and essential in several

applications and fields. The tremendous advances in technology such as smartphones, internet of

things, web, navigation systems and sensors, have led to the production of spatial datasets having

large sizes. For example, climate and precision agriculture sector are ones of the fields affected by

these advances in data acquisition technology where this kind of data is produced in high precision

and large temporal sequences. Querying large-scale data allows extracting more valuable and

meaningful information that is vital for decision-making, scientific advancement and scenario

predictions. Unfortunately, most of existing methods and approaches are based on traditional

computing framework (uniprocessors) which makes them not scalable and not adequate to deal

with large-scale data.

In this work, we show that using the GPGPU can reduce the time of spatial data processing

and save computations. In this regard, we have proposed to speed up three classical queries that

have never been tackled before in the literature. First, we have proposed an optimized parallel

method based on GPGPU to produce overlapping aggregated data summaries by the computation

of the average temperature for all overlapped raster subsequences of a determined length for the

studied region.

As a second contribution, we have tackled a raster selection query based on a threshold fixed by

the user. In fact, in different analyses, users can be interested only in some rasters. Hence, we have

implemented two solutions based on the GPGPU and the CPU that include a rejection procedure

of rasters in the early stages of computations using on a sorting step.

Finally, we have proposed two high-performance methods for a selection query based on GPGPU

and CPU for massive spatio-temporal data. The query consists on selecting fixed size disjoint raster

subsequences based on their average satisfying a user threshold condition. The two methods

include a rejection procedure of subsequences based on sorting.

Keywords: Spatial data science; Geographic Information System; Big data; General Purpose GPU;

Parallel computing; Raster data; CUDA; CUB; Thrust.

5

Résumé
Ces dernières années, la production des données spatiales a connu un bond qualitatif et

quantitative. En effet, Les énormes progrès technologiques, tels que les smartphones, l'Internet des

objets, les systèmes de navigation et les capteurs ont conduit à la production des données spatiales

de grande taille et à haute définition. Les capteurs, par exemple, sont maintenant plus précis, moins

chers et plus performants générant des données haute précision et à grande fréquence. Proposer des

requêtes et des opérations d’analyse puissantes et à grande échelle devient cruciale et essentielle

dans plusieurs applications et domaines. Le secteur d’agriculture et environnemental est l'un des

domaines touchés par ces progrès de la technologie d'acquisition de données. Interroger et analyser

ce jeu de données permet d'extraire des informations vitales pour la prédiction, la prise de décision,

et l'avancement scientifique. Malheureusement, la plupart des méthodes et approches existantes

sont basées sur une approche traditionnelle à base de CPU (monoprocesseurs), ce qui les rend non

évolutives, inadéquates pour traiter des données à grande échelle et prennent beaucoup de temps

pour l’exécution.

Dans ce travail, nous montrons que l'utilisation du GPGPU peut réduire le temps de traitement des

données spatiales et économiser les calculs. À cet égard, nous avons proposé d'accélérer une

opération d’agrégation et deux requêtes classiques qui n'avaient jamais été abordées auparavant

dans la littérature.

Tout d'abord, nous avons proposé une méthode parallèle optimisée en utilisant GPGPU pour

produire des résumés de données basée sur l’agrégation chevauchées, plus précisément,

Le calcul de la température moyenne des séquences chevauchées des rasters de taille fixe.

Dans un second temps, nous avons abordé la requête de sélection des rasters basée sur un seuil fixé

par l'utilisateur. En effet, dans différents scénarios, les utilisateurs ne peuvent s'intéresser qu'à

certains rasters. Par conséquent, nous avons mis en place deux solutions robustes basées sur le

GPGPU et le CPU qui incluent une procédure de rejet des rasters aussitôt que possible pour réduire

le temps d’exécution en utilisant une étape de trie.

Finalement, nous avons proposé deux méthodes basées sur le GPGPU et le CPU pour une requête

de sélection des séquences des rasters non chevauchés à base de leurs moyennes selon un seuil fixé

par l’utilisateur.

6

Mots-clef: Calcule Parallèle; Données spatiales;Big data ; spatial data science; GPGPU; Système

d’information Géographique, données rasters; CUDA; CUB; Thrust.

7

Acknowledgements

There are many people I would like to thank for helping me during my PhD.

First, I have to thank my supervisors: François Pinet research director (INRAE, TSCF) and the

Prof. Myoung-Ah Kang (ISIMA, LIMOS). Through all of our exchanges, they taught me a lot

about the problematic and their ideas made a big part of this work. They also gave me so many

wonderful opportunities like the chance of visiting another lab abroad, being part of a summer

school in Spain and attending conferences. they were not only advisers but real friends who always

supported me and helped me out not only with my work but also at personal level. They were

patient and encourage me a lot during my difficult situations especially the hard one where I was

blocked in Morocco for over than 5 months because of the Covid19. Without their support and

patience, I would not have finished my thesis especially with my difficult situation during these

last months.

Regarding my work they improved the quality of our papers hugely and their suggestions had

always a big impact. They would even take their personal time working on weekends to improve

our work. I am very thankful to them because they believed in me, they gave me the opportunity

to teach and supervise students’ projects at ISIMA and they were always by my side.

I would like to express my sincere appreciation and gratitude to the Prof. Alain Bouju (Rochelle

university, L3i) and Prof. Sofian Maabout (Bordeaux university, LaBRI) who honored me and

agreed to review this manuscript. I also would like to thank Prof. Olivier Teste (Toulouse 2

university, IRIT) and the research director M. Jean-Denis Mathias (INRAE, LISC) for accepting

to be part of my jury, for their valuable time and feedback.

Finally, I would like to thank my beautiful wife Sara NAKHLI, she was always there during this

journey. I will be eternally grateful. She has always believed in me, a lot more than I do myself.

This would not have been possible without her love and support.

8

This work was funded by grants from the French program « investissement d’avenir » managed by

the Agence Nationale de la Recherche of the French government (ANR), the European

Commission (Auvergne FEDER funds) and « Région Auvergne » under the LabEx IMobS 3 (ANR-

10- LABX-16-01).

9

Contents

Chapter 1 Introduction .. 19

1.1 Context and motivation ... 19
1.2 Contributions ... 21
1.3 Methodology and publications .. 22
1.4 Manuscript organization .. 25

Chapter 2 State of the Art of efficient raster processing .. 28

2.1 Introduction ... 28
2.2 CPU based methods ... 28
2.3 GPGPU based methods .. 31
2.4 Distributed systems-based methods .. 40
2.5 Synthesis and Strategy ... 41

Chapter 3 Background ... 45

3.1 Spatial Data .. 45
3.2 Map Algebra ... 51
3.3 GPU parallel computing ... 53
3.4 CUDA programming model .. 57

Chapter 4 Overlapping Aggregation of Raster Data Sequences using GPGPU ... 67

4.1 Context and motivation ... 67
4.2 Formulation of the problem ... 69
4.3 GPGPU-based method for the problem resolution .. 72
4.4 Experiments and results ... 79
4.5 Conclusions .. 84

Chapter 5 Selection of Rasters based on a User-Defined Condition: A Sequential Approach 86

5.1 Context and motivation ... 86
5.2 Raster data process improvement ... 88
5.3 Experiments and results ... 90

Chapter 6 Selection of Rasters based on a User-Defined Condition: A GPGPU Approach 95

6.1 Context and motivation ... 95

10

6.2 Raster Selection query: Data Parallel design .. 95
6.3 Experiments and results ... 99
6.4 Conclusion .. 101

Chapter 7 Selection of Raster Sequences based on a User-defined condition using GPGPU 103

7.1 Context and motivation ... 103
7.2 Query definition and the sequential algorithm .. 104
7.3 Parallel methods for query processing ... 105
7.4 Experiments and results ... 110
7.5 Conclusion .. 114

Chapter 8 Experiments of the different approaches on real data sets of Montoldre 119

8.1 Sensor network in Montoldre .. 119
8.2 Raw Dataset Description .. 120
8.3 Spatial data interpolation ... 121
8.4 Experiments on Montoldre hourly dataset .. 123
8.5 Discussion ... 127

Chapter 9 Conclusions and Perspectives .. 130

9.1 Summary of the work ... 130
9.2 Perspectives ... 131

Bibliography ... 133

11

List of Figures

Figure 1.1. Raster is composed of rows and columns of cells. ... 20

Figure 1.2. Spatio-temporal rasters representing the evolution of the temperature during N days for

a studied region. .. 21

Figure 2.1. Logical DW schema template for grid storage (Kang et al., 2015). 29

Figure 2.2. An example of aggregation of 8 grids. ... 30

Figure 2.3. Addition operation between the two raster layers. ... 31

Figure 2.4. Dataflow Map (Steinbach et al.,2012) ... 33

Figure 2.5. Wedge shape neighborhood (Steinbach et al.,2012). ... 34

Figure 2.6. Filter mask. ... 35

Figure 2.7. A BMMQ-tree (Zhang et al., 2010b). .. 37

Figure 2.8. An example of the quadtree-based domain decomposition algorithm (Xia et al., 2011).

 .. 38

Figure 2.9. The quads assignment to the GPU threads blocks of the maximum size (Xia et al.,

2011). .. 38

Figure 2.10. The two steps of Viewshed analysis on raster data (Xia et al., 2011). 39

Figure 2.11. (Xia et al., 2011) ... 39

Figure 2.12. Threads matrix allocation on GPU for PMPR (Xia et al., 2011) 40

Figure 3.1. Raster and Vector data. .. 45

Figure 3.2. Raster is composed of rows and columns of cells. ... 46

Figure 3.3. Raster interpolation(http://planet.botany.uwc.ac.za/nisl/gis/spatial/chap_1_11.htm).

 .. 47

Figure 3.4. Spatio-temporal rasters representing the evolution of the temperature during N days for

a studied region. .. 48

Figure 3.5. Example of a raster set. .. 48

Figure 3.6 Categories of vector data (National Ecological Observatory Network (NEON)) ... 50

Figure 3.7. The sum of two rasters (cell by cell). ... 51

Figure 3.8. Global functions. .. 52

Figure 3.9. Focal functions. .. 52

Figure 3.10. Zonal functions. .. 53

12

Figure 3.11. Difference between CPU and GPU architecture (Kirk and Hwu, 2013). 54

Figure 3.0.12. CPU-GPU Heterogeneous architecture (Kirk and Hwu, 2013). 55

Figure 3.13. The cooperation of the CPU and the GPU. .. 55

Figure 3.14. Example of an SM architecture (https://www.geforce.com/hardware/desktop-

gpus/geforce-gtx-580/architecture). .. 56

Figure 3.15. The CUDA concept of a grid of blocks (Cheng et al., 2014). 58

Figure 3.16. Thrust on the top CUDA C/C++. ... 59

Figure 3.17. Performance comparison between Thrust and CUB (https://nvlabs.github.io/cub/)62

Figure 4.1. Evolution of the temperature over days. .. 68

Figure 4.2. Example of a raster set. .. 68

Figure 4.3. The cell means for each raster in D calculated by step 1. 70

Figure 4.4. Example of raster set D. ... 70

Figure 4.5. Example of some sequences su of length 6. ... 71

Figure 4.6. Illustrative example of the reduction algorithm (sum operator) used for raster R1.74

Figure 4.7. A set of three rasters of size 4. ... 75

Figure 4.8. Aligning raster cells. .. 76

Figure 4.9. Segmented mean computations of rasters. ... 76

Figure 4.10. Single thread-based segmented reduction. ... 77

Figure 4.11. Illustrative example for Prefix Sum. .. 79

Figure 4.12. Impact of subsequence length on time processing. .. 84

Figure 5.1. Description of the raster data process. ... 87

Figure 5.2. Naive algorithm for step (c). .. 88

Figure 5.3. Improved algorithm for step (c). .. 90

Figure 6.1. Dividing the dataset into time windows (subsequence of rasters). 97

Figure 6.2. Illustration of our method for one raster(R1). ... 98

Figure 7.1. Overall framework for the query process. .. 104

Figure 7.2. A set of 6 rasters of size 4. ... 106

Figure 7.3. Alignment of the 6 rasters. ... 106

Figure 7.4. Example of two disjoint subsequences of size 3. ... 106

Figure 7.5. Example of two disjoint subsequences of size 3. ... 107

Figure 7.6. Illustration of our method for the first subsequence S1. 108

13

Figure 7.7. Strategy to avoid sorting all the rasters. ... 110

Figure 7.8. The time windows size’s impact on the performance over the dataset 6. 113

Figure 8.1. Montoldre INRAE experiment farm (Touseau and Le Sommer, 2019). 120

14

List of Tables
Table 2.1. A review of methods for spatial data processing. .. 42

Table 4.1. Computing time of the raster mean (step 1). ... 82

Table 4.2. Computing the average of the subsequences su of length 100. 83

Table 4.3. The execution time for the whole method including data transfer between the CPU and

the GPU. ... 83

Table 5.1. Dataset 1: Size of raster =100×100, contains 1420, Interleave =73. 91

Table 5.2. Dataset 2: Size of raster =200×200, contains 1420, Interleave =73. 92

Table 5.3. Dataset 3: Size of raster =240×240, contains 1420, Interleave =73. 92

Table 5.4. The impact of the interleave on the performance (Data set 1), Threshold =40 93

Table 6.1. Dataset 1: 6 stations, 365 days, Windows time = 5 days, Threshold=30. 100

Table 6.2. Dataset 2: 3 stations, Windows time = 5, 730 days, Threshold=30. 101

Table 7.1. Configuration. .. 111

Table 7.2. Threshold = 60, the size of subsequences = 10, the size of the windows = 10. 112

Table 7.3. .. 114

Table 8.1. Description of the measures. ... 121

Table 8.2. Statistical Description of the measures. ... 124

Table 8.3. Experiments on temperature - Results for Overlapping Aggregation of Raster Data

Sequences. .. 124

Table 8.4. Experiments on temperature - Results for the Selection of Raster Sequences based on a

User-defined condition. .. 125

Table 8.5. Experiments on air humidity – Results for Overlapping Aggregation of Raster Data

Sequences. .. 125

Table 8.6. Experiments on air humidity - Results for the selection of Raster Sequences based on a

User-defined condition. .. 126

Table 8.7. Watermark experiments – Results for Overlapping Aggregation of Raster Data

Sequences. .. 126

Table 8.8. Watermark experiments - Results for the selection of Raster Sequences based on a User-

defined condition. ... 127

15

16

Part 1

17

This first part is organized in 3 chapters:

• Chapter 1: General introduction. In which we present the context and the motivation of our

work, we outline the contributions and we present our methodology of research.

• Chapter 2: State of the art. In this chapter, we show the different methods used to process

large-scale spatial data. We have classified them into three main categories: methods based

on uniprocessor CPU, methods based on parallel processing using the GPGPU and finally

the methods based on distributed systems.

• Chapter 3: Background. This chapter is dedicated to present the different concepts related

to: Spatial data and their operations and parallel computation.

18

19

Chapter 1

Introduction

1.1 Context and motivation

The emergence and the tremendous advances in technology such as smartphones, internet of

things (Palmaccio et al., 2020), networking capabilities unmanned technologies, navigation

systems and sensors, have led to the production of large size of dataset especially the environmental

data. Sensors, for instance, are now smaller, cheaper and even smart (Melesse et al., 2007). Sensors

now are portable; they can be mounted on various platforms, such as microstates, drones, airships,

vehicles, water-based vessels, and may even be carried or embedded in robots (Tao et al., 2007).

In the other hand, Wireless Sensor Network (WSN) which is an important element in Internet of

Things (IoT), allows monitoring environmental conditions, such as temperature, pressure, or

humidity using sensors cooperatively (Madakam et al., 2015). These actual advances cited above,

have led to an explosive volume of data more precisely spatial data. Hence, Spatial data are

produced in a high precision, high wide coverage, and in a high temporal frequency (i.e., at each

second) (Sawant et al., 2017) (Pinet, 2012). These spatial data are deployed for many applications,

and received remarkable attention in many areas such as military, homeland security, healthcare

environmental monitoring, precision agriculture and so on (Madakam et al. ,2015). This massive

amount of spatio-temporal data can be used for addressing scientific challenges: such as climate

changes and global warming etc. (Yang et al., 2019). Analyzing, this large set of data allows us to

understand environmental phenomena better, make predictions that are more accurate, enhance

surveillance and proactive decision-making in many applications.

The fields that interest us are the agriculture and the environment. Hence, transforming this large

volume of data into actionable knowledge for better decision support is crucial and very

challenging task for industry and research.

In the agriculture domain, especially the precision agriculture or the precision farming, geospatial

data is collected, analyzed to maximize on yields (Grisso et al., 2004). This allows the farmer to

gain more understanding on resources’ optimization such as fertilizers, pesticides and herbicides,

water in order to use them more efficiently. This will reduce extra expenses, increase productivity

and as results maximize the profits (Ait Issad et al., 2019).

20

These data can also be utilized to analyze the links between different agricultural activities

(livestock, crops, etc.) and the climate changes (Hamere, 2015), at a large spatial and temporal

scale.

Many of these data take the form of raster sets. A raster is a geo-referenced 2-dimensional array in

which each cell is associated with a value (Figure 1.1). The cells of a raster can be represented by

pixels where the colors correspond to different values of a measure, such as temperature, vegetation

density, CO2 measurements, etc. (Kang et al., 2015). Data availability and data storage are often

no longer barriers, whereas the real bottleneck is, in many cases, the analysis of these spatial data

that continue growing dramatically (Barbian and Assunção, 2017).

In this work, we are interested in spatio-temporal rasters (Song et al., 2016) that can be viewed as

a sequence of rasters for the same region and for a defined period of time. Each raster represents

information related to the studied region at regular intervals of time (e.g. every second, minute,

hour, etc.) – see Figure 1.2. Spatio-temporal rasters allow the analysis of the gradual evolution of

temporal phenomena such as the detection of abnormal phenomenon evolution over time in the

studied region.

Figure 1.1. Raster is composed of rows and columns of
cells.

21

Large spatio-temporal rasters are deployed in many applications such as climate science to

analyze atmospheric and oceanic conditions, which allow us to better understand Earth’s system.

These data are also useful in precision agriculture (Cisternas et al., 2020) to study the different

factors affecting the crop yields in order to optimize the production cycle. Simultaneously, it also

brings great challenges in management technology. In last decades, a large number of new

approaches, parallel algorithms, processing tools, platforms, have been proposed and developed to

improve the Deployment of these data, in order to extract the maximum knowledge that can help

to get more accurate decisions and predictions.

The aim of our PhD, is to propose new methods based on sequential and parallel approaches. Our

parallel approach is based on general-purpose processing on graphics processing units (GPGPU)

(Harris, 2006), to process and analyze this large volume of spatio-temporal rasters efficiently in

time and computation. Our purpose is to provide fast, efficient and scalable techniques for

processing different massive computation queries over large-scale spatio-temporal data.

The majority of the existing methods are based on traditional approaches (CPU uniprocessors)

since only small datasets were used; hence, optimization was not a priority. However, sequential

methods are not anymore suitable for large datasets, which are growing exponentially. Hence

Figure 1.2. Spatio-temporal rasters representing the evolution of the temperature during N
days for a studied region.

22

processing based on the GPGPU will be a good alternative to deal with the large-scale raster data.

In fact, the GPGPU has been used in many applications such as image processing (Viola et al., 2003;

Temizel et al., 2011), simulations (Walsh et al., 2009), and have shown good a performance of speed

up. Thus, the interest of using such approach in our work.

Let D be a temporal sequence of rasters representing the temperature of the same

geographical region, over a period of time, such that D = (R1, …, Rn). Each raster Ri corresponds

to a time i and each raster cell is associated with a temperature measurement value. We want to

reduce the time execution of selection and aggregation queries over large raster data. Selection and

aggregation operations are traditional queries useful in databases and data warehouse in our

experiment; we use environmental and agricultural applications. However, it is possible to apply

our approaches on other fields or data types.

1.2 Contributions

In our PhD, we tackle the problem of speeding up the processing of large spatio-temporal

rasters for a studied region. As cited above, the majority of existing methods rely on classical

approaches that are not suitable anymore, since we are dealing with large-scale spatio-temporal

data. Our contributions based on GPGPU reduce query execution time and save computation time

for the users in order to allow him/her to understand, react and make decisions quickly.

Let’s consider a sequence of rasters representing the evolution of temperature over time for a

specific region as shown in Figure 1.2. At each step of time (i.e. each hour), one raster is produced,

and each raster cell stores a temperature value. Several contributions have been proposed:

• Our first contribution consists on proposing improved parallel methods based on

GPGPU to produce overlapping aggregated data summaries by the calculation of

the average values (e.g. temperature) for the studied region for all the possible

overlapped raster subsequences of a determined length. The results show that our

method can get a speed up of 60 compared to the classical approaches. This

contribution has been the subject of a journal publication (EN-NEJJARY, 2019).

The method is based on two fundamental steps: Computing the mean of each raster

cells and after that computing the mean over each overlapped raster subsequences

of order L. Such processing will give us the possibility to produce data summary as

used in data warehouse, select specific data according to their average values or to

23

check data consistency with integrity constraints (for example, finding the periods

where the average temperature is aberrant) (EN-NEJJARY, 2019).

• The second contribution has been the subject of the paper (EN-NEJJARY, 2018a).

In this work, we have tackled raster selection queries based on a threshold fixed by

the user. In fact, in different analyses, users can be interested only in some rasters

(for example, days where the temperature were less than 15 C°). In that case, it is

possible to reduce the processing time by implementing a rejection procedure of

rasters based on the user’s threshold in the early stages of the computation. To this

end, we have added a sorting step to reject rasters that not satisfying the condition

in an early time. We have proposed two methods based on the CPU, the first one is

straightforward approach and the second one is based on a sorting step.

• In our third contribution, we have proposed the parallel version of the algorithm

presented in the previous contribution. This work was materialized into a conference

publication (EN-NEJJARY, 2018b).

• Our last contribution consists in a GPGPU-based method to implement the selection

of spatio-temporal raster subsequences (a sequence of rasters for the same region

and for a defined period of time) from a large spatio-temporal raster set, based on a

user-defined condition (e.g., the average of raster cells must be less than a certain

threshold. The results show that GPGPU-based methods reduce the execution time

and enable us to get the query response 3 times faster than the traditional methods.

Moreover, we propose a parallel sorting step using GPGPU to boost the response

time of the query.

1.3 Methodology and publications

In our research, we have followed the hereunder steps:

● Providing a state of the art of spatial data and different techniques of processing. In

this step we have studied spatial data, the map algebra (Tomlin, 1994), and the

different proposed approaches to process large-scale raster data.

● Learning about the GPGPU programming and different approaches of optimization.

In this context, I have participated in two summer schools dedicated to GPGPU

parallel computing and different approaches of optimization.

24

● Studying different queries that have never been tackled before and which are very

interesting for environmental and agriculture applications.

● Generating spatio-temporal raster datasets based on raw public dataset provided by

the US National Oceanic and Atmospheric Administration: NOAA (Diamond et al.,

2013).

● Formalizing the queries, proposing sequential and parallel resolutions, and

comparing them. Making experiments and discussing the results.

The work performed during the PhD has leaded to the following publications:

1. EN-NEJJARY, D., PINET, F., KANG, M. -2019. Modeling and Computing

Overlapping Aggregation of Large Data Sequences in Geographic Information

Systems. International Journal of Information System Modeling and Design,

vol.10(1), IGI Global USA, p. 20-41.

2. EN-NEJJARY, D., PINET, F., KANG, M. -2018. A Method to Improve the

Performance of Raster Selection Based on a User-Defined Condition: An Example

of Application for Agri-environmental Data. Advances in Intelligent Systems and

Computing 893, 190-201., Springer.

3. EN-NEJJARY, D., PINET, F., KANG, M. -2018. Large-scale geo-spatial raster

selection method based on a User-defined condition using GPGPU. 11th

International Conference on Computer Science and Information Technology, Paris,

France, 8 p.

4. Research poster for « 6 ème journée mobilité innovante - Robotique coopérative

pour la transitique » in Aubiere, France.

25

1.4 Manuscript organization

This manuscript is divided into four main parts:

● The first part is organized in 3 chapters:

o General introduction: in which we present the context and the motivation of our

work, we outline the contributions and we present our methodology of research.

o State of the art: In this chapter, we show the different methods used to process large-

scale spatial data. We have classified them into three main categories: methods

based on uniprocessor CPU, methods based on parallel processing using the

GPGPU and finally the methods based on distributed systems.

o Background: This chapter is dedicated to present the different concepts related to:

▪ Spatial data, especially raster data.

▪ Operations on raster data called map algebra

▪ Parallel computing and GPU architecture

▪ GPU-accelerated Libraries for Computing

Our aim is to make the readers comfortable while reading our manuscript and provide all the

required knowledge to read and understand our methods without any difficulty.

● The second part concerns our contributions. It is organized as follow:

o Chapter 4: This chapter concerns our first contribution related to the computing of

overlapping aggregation of large raster sequences.

o Chapter 5: This chapter provides a sequential method to improve the performance

of raster selection based on a user-defined condition”.

o Chapter 6: This chapter proposes a GPGPU approach for the raster selection based

on a user-defined

o Chapter 7: It applies our user-defined selection approach on raster sequences

(using GPGPU).

● The third part concerns the two last chapters 8 and 9:

o Chapter 8: The application of our methods on real data of INRAE Montoldre. We

present the data set of Montoldre, the acquisition, the type of data and the data

characteristics.

26

o Chapter 9: concerns the Conclusion and perspectives. We provide a summary of

our work, give outlines of our proposals and contributions, and finally suggest

new research trends to extend our work.

27

28

Chapter 2

State of the Art of efficient raster processing

2.1 Introduction

Given its practical importance and the pressing need to process large-scale spatial data,

several research works in the literature, have been proposed to speed up and optimize raster set

processing. The proposed works tried to process more data with less computation time, which is

highly required for aid decision support. Some works have tried to save computations and time

processing by proposing new optimized algorithms based on the classical sequential CPU. The

second category of works is based on new parallel architectures, for instance Graphics Processing

Unit (GPU). The last one is based on distributed systems which are designed specifically for Big

spatial data. In this chapter, we will present these methods, discussing some of the advantages and

issues that arise.

2.2 CPU based methods

Driven by the idea of proposing a method that do not require implementing new

functionalities or modifying existing ones of database management systems, the work presented in

(Kang, 2015) proposes a method to improve query execution time to aggregate raster data stored

in data warehouses (DW), by estimating the result instead of computing the exact result of the

aggregation. The idea is about reducing the number of rasters required for the aggregation (using

sum or average functions) and hence reducing the execution time of the query. This method

includes a preprocessing step that groups the rasters, by similarity, into clusters. The similarity

function depends on the nature of the data. Hence, each cluster contains rasters that are similar and

each raster belongs to only one cluster. The proposed logical DW schema template for the raster

can be seen in Figure 2.1

29

The second step consists on querying the data by proposing to use another query model that

calculates an estimation of the final result based on the initial query that compute the exact results.

The new query model uses the clustering to reduce the number of arithmetic operations hence

reducing the computation time. The rasters in the clusters are considered as equivalent. So, instead

of taking all grids for the computation, only one grid by cluster is used. For example, to aggregate

the 8 grids of Figure 2.2, only 3 grids are used. In the calculation, each one of these 3 grids is

pondered by the size of its cluster. This technique used with large clusters allows an increase in

time performance. Nevertheless, the more the cluster size is large, the more the quality of the result

is poor.

Figure 2.1. Logical DW schema template for grid storage (Kang et al.,
2015).

30

So, the main advantages of this method are:

● Reducing the number of arithmetic operations

● Not requiring any modifications of data or the implementations of new functions in a

database management system.

However, the fact that the results are not exact may have a drastic impact in some critical

applications that need exact results. A preprocessing step is also needed to group the rasters into

clusters.

Another method was proposed in (Baumann,2008) to speed up the computation of

aggregation queries based on classical sequential CPU. The idea relays on the use of a pre-

aggregated data step. Hence, the authors propose to use this step for aggregating query processing

in multidimensional raster image databases. Furthermore, the authors propose a cost model to

evaluate the efficiency of the pre-aggregated data step on the whole raster data analysis. This work

focused on basic aggregations for instance: sum, average, count, maximum and minimum. The pre-

aggregated data step is implemented as an optimization and evaluation extension for the query

processing module of Rasdaman (Array DBMS) (Baumann et al., 1997). The proposed algorithm

Figure 2.2. An example of aggregation of 8 grids.

31

starts by checking the existence of a perfect-matching between the input query and pre-aggregated

queries. If it exists, then the result of pre-aggregated relation is returned. If not, a partial-matching

is searched. If it is found, the result is returned from the pre-aggregated results or from raw data

based on the minimum cost.

2.3 GPGPU based methods

 Inspired by the power of the GPGPU to accelerate general purpose application (cited

above), in the last years, different works have been proposed to speed up the processing and the

analysis of raster data.

Hence, the work presented in (Zhang et al, 2010a) investigates the use of GPU to speed

local operation of map algebra in particular the addition operator. Their goal is to reduce the

computation of the addition of two giant rasters by mapping the traditional serial algorithms to

GPU parallel processing architecture using CUDA (Compute Unified Device Architecture

proposed by Nvidia) (Zeller, 2011). So, in their work, they suppose 2-layers data file of the same

resolution (two rasters having the same resolution): file A and file B with the same size: m*n.

These rasters are stored in float array: Array[2][m*n] . The Figure 2.3 describes the local sum

operation between two rasters.

Figure 2.3. Addition operation between the two raster layers.

Concerning the CPU implementation of this operation; the authors propose, one loop to operate the

arrays and save the results in Res array: Res[m*n], as follow:

Res[i]= Array[0][i]+ Array[1][i].

This method consists in a trivial algorithm to perform the sequential addition of the two rasters.

32

To implement this method on the GPU, the authors fixed 256 threads per block. Hence, the number

of blocks is obtained as follow:
!ℎ#	%&'#	()	*ℎ#	+,%*#+)&-#

The	thread	number	of	per	block

As mentioned before, each raster file is aligned and both of them are stored in 2D array

arr_d such that the number of the rows is 2 and the size of number of the columns is the size of the

raster files.

In order to get fast access to the rows and the best performance of cudaMemcpy2D(), the

authors adopted a linear memory allocation using cudaMallocPitch() instead of allocating the 2D

arrays with cudaMalloc. Hence, the access to the row i is realized by this instruction:

 float*row=(float*)((char*)arr_d + pitch*i).

To get the data in this row: data =row [index of the element]

hence, the kernel is defined as follow:

 global static void SumKernel (float* arr_d, size_t pitch, float* arry, int Z) {

float data, Data=0.0f;

for(int i=0; i<Z; i++) {

 float*row=(float*)((char*)arr_d + pitch*i);

 data=row[blockIdx.x*blockDim.x+threadIdx.x];

 Data+=data;

}

 arry[blockIdx.x*blockDim.x+threadIdx.x]=Data;

 }

As we can see in the kernel, each thread will execute the loop “For”. It means that each thread

will access to its corresponding cell in raster A and B and sum the values. Finally, the result will

be stored in the arry.

Note:

33

● arr_d: Corresponds to the input data Array containing the two rasters.

● Arry: Corresponds to result raster Res

● Pitch: Return value of the function cudaMallocPitch()

● Z: The number of rasters (2)

In most complex analysis, the processing of raster data is performed in many steps, one after

another, using batch processing. The authors of (Steinbach et al., 2012) propose to speed up a batch

processing of spatial raster analysis based on a specific use-case data flow using the computing

power of the GPU on a map of 844 woodlands with a size of 2275 × 2263 (Figure 2.4). The data

flow consists of two steps; each one requires many raster operations.

The first step relay on a neighborhood analysis and consists in counting the cells in a specific wood

neighborhood. The authors have chosen the wedge shape for neighborhood since it is a time-

consuming task (Figure 2.5).

Figure 2.4. Dataflow Map (Steinbach et al.,2012)

34

These steps can be realized using raster data operations based on the sum operator for focal

functions with different wedges. The second step concerns the mean value analysis which computes

the center of each woodland. This analysis is done for each woodland individually. Hence, first, a

single woodland is selected. Second, the Euclidean distance transformation (EDT) is applied to

compute the shortest Euclidean distance from each cell to the nearest non empty cell. Finally, a

zonal mean function is applied to compute the mean and hence get the center of each woodland.

These operations have been implemented as a plugin for the open-source software GRASS (Neteler

et al., 2012), based on GPU, using OpenCL, which is an open standard that can be used to program

CPUs, GPUs, and other devices. OpenCL programs can be run on Nvidia, AMD and others, which

make them slower than CUDA concerning the performance.

Another work using the GPU to deal with raster analysis, is presented in (Wu et al.,2007). The

authors have studied two types of raster analysis: raster local operation and neighborhood

operation. In the case of raster local operation two subcases have been formalized as follow:

● Local operation based on a single raster where the cell values of the output raster are

computed by: Outputi, j = f (Inputi, j).

● Local operation based on many rasters. In this case, several rasters are used as input. The

output will be one raster computed, such that, Output = f (Input0i,j , Input1i,j ,..., Inputni,j)

where n represents the number of raster cells. In this case, they propose a parallel

implementation of weighted average local operation of many rasters.

The neighborhood operation is for a single raster using the following filter mask (Figure 2.6):

Figure 2.5. Wedge shape neighborhood (Steinbach et al.,2012).

35

To implement their algorithms on the GPU, the authors have used OpenGL 2 as graphic API and

OpenGL Shading Language (GLSL) as shading language which is supported directly by OpenGL

without extensions.

Unfortunately, in their test they did not use a very large data set. They also have used only 4 rasters

in the case of local operation with multiple rasters, which is a very small number. Moreover, the

choice of OpenGL is not common, since it is a library used primary for accelerating the Graphics

Rendering on the GPUs and not widely used for general purpose computing.

Motivated by the need to provide large-scale raster geospatial data indexing, the work

presented in (Zhang et al.,2010b) proposes a fast indexing of large-scale raster geospatial data to

support Region-of-Interests (ROI) queries (or spatial range queries). This type of queries returns

objects that satisfy one or more value range criteria, for instance temperature in the range

[t_min,t_max]. To do that, the authors have designed a Cache Conscious Quadtree data structure

(CCQ-Tree) based on the GPU, dedicated to fast indexing of large-scale raster data.

To construct the CCQ-Tree, the authors propose an implementation in parallel of 3 steps: The first

one is the construction of a pyramid of matrices from the raw raster data. Second, the computation

of the First-Child Node Positions, and finally generating the CCQ-Tree. The steps are executed

sequentially in the CPU, however each step itself is executed in parallel. Once constructed, the

index will speed up the range queries. The proposed algorithms were tested on real climate dataset

published by WorldClim (Hijmans et al., 2005) for 5 × 11 rasters of size: 4096 × 4096.

Motivated by the power of the GPGPU devices, the work presented in (Zhang et al., 2013)

proposes a parallel method to implement a quadtree for large-scale raster spatial indexing to speed

up query processing and data analysis. The idea is mapping the geospatial processing into a set of

data parallel primitives based on CUDA which are a highly-optimized functions. The design for

the construction of a binned min–max quadtree (BMMQ-tree) (Zhang et al., 2010b) involves

several steps (Figure 2.7):

1 1 1

1 1 1

1 1 1

Figure 2.6. Filter mask.

36

1. First step consists on mapping a 2D input raster grid into a Z-ordered 1D array

(Orenstein, 1986).

2. As a second step, recording the minimum and maximum values for every four

consecutive Z-ordered raster cells.

3. The third step, derive higher levels of min–max tables from the lower-level ones,

by using a procedure similar to Step 2.

4. The fourth step consists in two sub steps:

a. Compute the positions of the first child nodes.

b. Prune quadtree nodes that represent uniformly distributed quadrants.

As cited before, to implement the BMMQ-tree in parallel, the authors have used parallel

primitives in order to perform each step in the quadtree construction. For instance,

● Scan parallel primitive;

● Transform;

● Scatter;

 The use of these primitives allows the authors to focus on the design, rather than the

implementation hardware specifications.

37

The work presented in (Xia et al., 2011) tackles two main problems in geospatial data analysis:

● Interpolation using Inverse distance weighting (IDW) algorithm, that assigns geographical

values to unknown spatial points using values from a usually scattered set of known points.

● Viewshed analysis of digital elevation model (DEM) (Walker et al., 1999) to determine

visibility to or from a particular cell.

Since, these popular algorithms are very important in geospatial analysis and are highly

computation-intensive, especial for large-scale spatial data, the authors propose to speed up these

algorithms by using GPGPU and CUDA. To implement the IDW algorithm, first, a quadtree-based

domain decomposition algorithm is applied for load balancing of the input data. Thus, the domain

is decomposed into quads of different sizes (Figure 2.8). Finally, the IDW interpolation is executed

on these quads.

Figure 2.7. A BMMQ-tree (Zhang et al., 2010b).

38

Figure 2.8. An example of the quadtree-based domain decomposition algorithm (Xia et al., 2011).

The parallel implementation of IDW, based on CUDA, consists in four steps (according to Clark

parallel algorithm): spatial domain decomposition, interpolation, output data gathering, and

visualization. Since the three steps, domain decomposition, data gathering, visualization are not

computation-intensive, the authors decided to execute them on the CPU. However, the

interpolation is executed on the GPU (Figure 2.9) because it is a massive computation task. Hence,

each quad is assigned to a block of threads where its size is the maximum size of quad. Using IDW

interpolation, each thread computes the interpolation value of one point based in the input

neighborhood points.

Figure 2.9. The quads assignment to the GPU threads blocks of the
maximum size (Xia et al., 2011).

39

The Viewshed algorithm called line-of-sight analysis or intervisibility analysis consists in

determining visibility to or from a particular cell

(observer)(https://en.wikipedia.org/wiki/Viewshed_analysis). This algorithm

is based on two steps: (a) Finding all the rays from the observer; (b) Doing visibility analysis for

all the cells passed by each ray (Figure 2.10)

Figure 2.10. The two steps of Viewshed analysis on raster data (Xia et al., 2011).

As we can see in Figure 2.10.a, the input raster represents an elevation grid called DEM (digital

elevation model). A line of sight is produced from the origin point (the observer) identified by ‘O’

to another destination cell. By scanning the grid cell, we can compute all the rays of sight.

In Figure 2.10.b, Moving along the line of sight from the observer O, all the pointed intersect with

the line sight must be studied for visibility analysis. These two steps are implemented as two

layered components: matrix traversal and ray traversal. The authors propose four combinations for

viewshed implementation based on the CPU and the GPU. For instance, the method PMPR

implements the two layered components completely in parallel (Figure 2.11), using threads matrix

of GPU (Figure 2.12). The gray elements represent threads allocated for visibility computation.

 Figure 2.11. (Xia et al., 2011)

40

2.4 Distributed systems-based methods

Motivated by the success of the use of high performance parallel super computing

techniques in particular grid computing and cloud computing in simulations, the work presented

by (Gunawardena et al., 2016) propose new solutions for earthquake simulation based on

distributed computing in order to analysis petabytes of data required for simulation. The authors

suggest the use of MapReduce (Maitrey et al., 2015) system using Hadoop

(http://hadoop.apache.org/common/docs/current/hdfs design.html, 2009) and Mars (He et al.,

2008) which is Hadoop on the GPU, to overcome the complexity of the dataset. Hence, in this work

an octree for CVM (community velocity models, ground models) (Schlosser et al., 2008).

Another work trying to deal with large-scale geospatial data, the work presented in (Cary

et al., 2009) experiments the use of MapReduce as a massively parallel computing tool in order to

overcame non scalability of traditional approached based on single node. Hence the authors

propose to solve two spatial data related problems using Hadoop on a Google & IBM cluster

(Google and IBM Academic Cluster Computing Initiative): bulk-construction of R-Trees (Kriegel

Figure 2.12. Threads matrix allocation on GPU for PMPR (Xia et al., 2011)

41

et al., 1990) using vector data and aerial image quality computation involving raster data, the

obtained results show an improvement of the completion time of two problems.

2.5 Synthesis and Strategy

In this chapter we have shown different methodologies that have been used for processing

large-scale spatial data. We have classified these methods on three main categories according to

the used technology: methods based on uniprocessor CPU, parallel methods based on the GPGPU

and finally methods based on distributed systems. The main presented methods deal with raster

data.

Research work Studied Problem Computation

technic

Type of

Result

Pre-

processing

Performance optimization of

grid aggregation in spatial data

warehouses (Kang et al., 2015)

Raster

aggregations

CPU Estimated No

Computing Aggregate Queries

in Raster Image Databases

Using Pre-Aggregated Data

(Baumann, 2008)

Raster

aggregations

CPU Exact Yes

GPU-Accelerated Parallel

Algorithms for Map Algebra

(Zhang et al., 2010a)

Addition of two

rasters

GPGPU Exact No

Accelerating batch processing of

spatial raster analysis using GPU

(Steinbach et al., 2012)

Raster analysis GPGPU Exact No

Improving the performance of

spatial raster analysis in GIS

using GPU (Wu et al., 2007)

Raster

aggregations

GPGPU Exact No

Indexing Large-Scale Raster

Geospatial Data Using

Indexing GPGPU Exact No

42

Massively Parallel GPGPU

Computing (Zhang et al., 2010b)

High-performance quadtree

constructions on large-scale

geospatial rasters using GPGPU

parallel primitives (Zhang et al.,

2013)

Indexing GPGPU Exact No

Accelerating geospatial analysis

on GPUs using CUDA (Xia et

al., 2011)

IDW

interpolation and

Viewshed

analysis

GPGPU Exact No

Spatial Data Processing with

MapReduce (Gunawardena et

al., 2016)

Octree indexing

for earthquake

simulation

Hybrid

Distributed

systems

Exact No

Experiences on processing

spatial data with MapReduce

(Cary et al., 2009)

R-Trees

Indexing and

Image quality

computation

Distributed

systems

Exact No

Table 2.1. A review of methods for spatial data processing.

We summarize our state of the art in the table 2.1. The first notice which pops out in this

review is that only few works have been proposed for the aggregation and no one for selection

queries of raster data, which creates a need and opportunities to fulfil this lack. In fact, these types

of queries are useful in data warehouses and many other applications.

The CPU-based raster aggregation methods rely on providing an approximative solutions (and not

exact solutions), and pre-processing step which is often also an intensive computation task that

need to be optimized (Daras et al., 2018). Pre-processing is not always possible and realistic,

especially with large-scale spatial dataset and complex applications. The preprocessing can be also

difficult to do when the aggregation is computed only on a user-defined raster subregion that can

change over the queries - this aspect can make the aggregation inputs non-predictable.

43

The parallel based approaches (GPGPU and distributed systems) are an efficient solution to tackle

the problem of large-scale spatial data which are data and computation intensive. The GPGPU

devices are dotted with thousands of processing cores that are capable of launching thousands of

threads simultaneously which make it ideal solution for massively raster parallel applications.

Currently, they are used as accelerators of CPUs. Thanks to its high throughput (Garland and Kirk,

2010), the GPGPU are especially suitable for geospatial data processing due to the inherent

parallelism of most of geospatial operations (Theobald, 2005). Furthermore, the GPGPU is based

on the SIMD paradigm (single instruction multiple data) (Cardoso et al., 2017) which make it a

convenient solution for our queries (raster cell aggregations based simple arithmetic operations

such as addition). The GPGPU is low-cost powerful tool to speed up large-scale spatial data. It

does not need complex infrastructure to manage the data. A single desktop or laptop computer

having a GPU card can provide numerous parallel cores. In our opinion, GPGPU is a good

candidate to implement raster processing like aggregation and selection.

Distributed systems (Firoj et al., 2015) constitute a powerful tool for Big Data that usually includes

heterogenous datasets with sizes of terabytes and petabytes. Distributed systems are powerful but

they usually need to build complex architectures and infrastructures, which are often costly and

time-consuming in terms of maintenance. Usual raster data sets are dealing with gigabytes.

44

45

Chapter 3

Background

The goal of this chapter is to provide the readers with the necessary knowledge concerning spatial

data, the Map Algebra and GPU parallel computing. The introduction of these conventions will

allow the readers to be comfortable with rest of our manuscript in particular the contribution part.

3.1 Spatial Data

In general, Spatial data are divided into two main categories: raster and vector data (Agosto,

2013) (Figure 3.1).

3.1.1 Raster Data

Figure 3.1. Raster and Vector data.

Raster data take the form of an 2D array or 2D-grid of cells. Each cell contains three information:

the coordinates x and the y, and a value (Figure 3.2) that represent a measure of a characteristic in

that geographic point such as: The pressure, temperature, elevation, soil pH, etc.

46

The rasters can represent spatial objects for instance: points and arcs. Thus, A point can be

represented by one cell, and the arc can be a sequence of cells. The second category of spatial data

is the vector data which are spatial objects that are constructed using points and lines(edges) as

primitives (Halpin et al., 2006).

Raster interpolation

Spatial interpolation (Greenberg et al.,2011) is a technique widely and commonly used in

Geographic Information System (GIS), to create continuous raster data from a subsample of

measurement point values such as soil properties, temperature, and precipitation in specific

locations. The goal is to create surface data using mathematical function (interpolation function) to

predict the unknow values for the missing location points (Figure 3.3).

Figure 3.2. Raster is composed of rows and columns of cells.

47

Figure 3.3. Raster interpolation(http://planet.botany.uwc.ac.za/nisl/gis/spatial/chap_1_11.htm).

As we can see In the Figure 3.3. In the left we have the measurement points while in the right a

raster is generated by the interpolation of these points. Thus, the missing values (unknown) are

estimated based on the nearby measurement values. In the literature many methods have been

proposed to perform spatial interpolation, for instance:

• Inverse distance weighting (IDW) (Singh and Verma, 2019).

• Least cost distance analysis (Greenberg et al.,2011).

• Kriging Interpolation (Singh and Verma, 2019).

Spatio-temporal data

Spatio-temporal data are data that are related and collected over time and space. In general,

it describes a phenomenon in a certain location and time which allow to study its behavior on

specific area overtime for instance climate, meteorology and biology in order to make predictions

and precise description allowing reliable decision making. Nowadays, the volume of the produced

spatio-temporal is growing dramatically especially in climate and environmental data. Hereunder

an example of spatial-temporal data.

Figure 3.3. Raster
interpolation(http://planet.botany.uwc.ac.za/nisl/gis/spatial/chap_1_11.htm).

48

Spatio-temporal rasters, in particular, can be viewed as a sequence of rasters for the same region

and for a defined period of time. Each raster represents information related to the studied region at

regular intervals of time or frame time (temporal granularity) (Pozzani and Zimányi, 2012) (e.g.

every second, minute, hour, etc.) – see Figure 3.4 and 3.5. Spatio-temporal rasters allow the

analysis of the gradual evolution of temporal phenomena such as the detection of abnormal

phenomenon evolution over time in a studied region.

Figure 3.5. Example of a raster set.

Figure 3.4. Spatio-temporal rasters representing the evolution of the temperature during N days
for a studied region.

49

3.1.2 Vector data

Vectors are constructed using discrete geometric locations (x, y values) (points or vertices) that

define the shape of the spatial object (Figure 3.6). The vectors can be:

• Points: Points are defined using the coordinate x and y. Points can represent for example:

the location of trees.

• Lines: Lines are defined using at least two connected points. Lines can represent for

instance roads and streams.

• Polygons: Polygons defined by 3 or more connected and closed vertices. They represented

for example lakes and oceans.

50

Points: defined by x and y locations

x, y
x, y

x, y
x, y

x, y

Lines: defined by many connected points

x, y

x, y

x, y

x, y

Polygons: defined by at least three connected and

closed points

x, y

x, y

x, y

x, y

Figure 3.6 Categories of vector data (National Ecological Observatory
Network (NEON))

51

3.2 Map Algebra

Map algebra (Pullar, 2001) or Raster Math is a set of conventions, capabilities and

techniques adopted by GIS to visualize and process raster data proposed by Tomlin (Tomlin, 1994).

There are many operations that can be performed using Map algebra. Some of them are simples

and others are complexes:

• Arithmetic operations use basic mathematical basic operations for instance: Addition,

Subtraction, Multiplication and Division.

• Statistical operations based on statistical operations such as: Minimum, Maximum,

Average, and the Median.

• Relational operations used for cell comparisons using the following function: Greater than,

Smaller than, and Equal to.

• Trigonometric operations using classical mathematics trigonometric functions such as:

sine, cosine, tangent and arcsine.

• Exponential and logarithmic operations use the exponent and logarithm functions.

• Other more sophisticated operations.

The Map Algebra functions can be classified as follow:

• Local functions: they are based on cell-by-cell operations. For instance, suppose we

have two rasters A and B, and we want to generate a third raster C which is the sum

of cell by cell of the two rasters. Thus, we will add each cell in the same location of

two rasters one by one (Figure 3.7) – this operation corresponds to a matrix sum.

Figure 3.7. The sum of two rasters (cell by cell).

52

• Global functions: A global operation is a process or function that is performed on

each output raster cell using all the cells of the input raster. As an example, the

Euclidian distance is shown in (Figure 3.8)

• Focal functions: Focal or neighborhood functions are operations that compute an

output value of each cell or raster using neighborhood its values.

Such operations are widely used in image processing (convolution, kernel, filtering)

(Ak et al., 2012). An example of focal functions the figure bellow, in which the

studied cell in the output is computed by summing up the cells falling on its window

neighborhood of size 3 × 3.

Figure 3.8. Global functions.

Figure 3.9. Focal functions.

53

• Zonal functions: A zonal operation is a spatial function that computes an output

value of each cell using the zone containing that cell. An example of Zonal

operations is the statistical zonal operations for instance: zonal mean where each

output cell is obtained by computing the mean the zone containing the cell.

3.3 GPU parallel computing

The previous generations of computers contained only central processing units (CPUs) that are

dedicated to performing general programming tasks. However, in the last decades, several

computers with different architectures have emerged including other processing elements, for

instance, GPUs (Graphics Processing Units). In the last decade, HPC (high-performance

computing) (Assiroj et al., 2019) has known a significant evolution, because of the emergence of

GPU-CPU heterogeneous architectures, which has led to a great revolution in parallel

programming.

Driven by the success that have been achieved using the GPU devices for video rendering, in

the last decade, many researchers have tried to use the GPGPU for speeding up many applications

in several fields. For instance: simulation, image processing, machine learning, and GIS. For

1 1 2

1 2 2

3 3 3

 Zonal grid

1 2 5

0 6 7

12 10 8

 Value grid

1 1 6

1 6 6

10 10 10

 Output grid

Zonal Mean

Figure 3.10. Zonal functions.

54

example, the research presented in (Viola et al., 2003), tackled the problem of various non-linear

filters for volume smoothing with edge preservation in image processing using the GPGPU. The

authors of (Yang et al.,2008) propose the implementation of several image processing algorithms

like histogram equalization, and edge detection (and others), based on the GPGPU using CUDA.

In (Temizel et al.,2011), implementation using the GPGPU is proposed for image and video

processing to tackle real-time issues and optimization.

GPUs (Graphics Processing Units) have had an incredible evolution. Driven by computer

games, the performance and the capability of the GPUs have increased drastically in the past few

years. After being a simple device for graphical tasks, GPUs have become devices with a highly

parallel programmable processor which are capable of solving general problems (Kirk and Hwu,

2013). GPGPUs (General-Purpose Computing on Graphics Processing Units), unlike GPUs, are

intended to deal with more general problems, such as simulations, optimizations and other complex

problems in several application fields.

GPUs do not replace the CPU-based computing. In latency-oriented systems, CPUs are

intended for several types of tasks and applications, especially those that involve intensive control

task computing, branch prediction, large caches and data fetching (Kirk and Hwu, 2013). GPUs,

which are throughput-oriented systems, are suitable for intensive parallel data computation tasks

based on the SIMD paradigm (Single Instruction Multiple Data). Thus, thousands of efficient cores

are used by the GPU to perform massive data parallel computing (Figure 3.11).

Figure 3.11. Difference between CPU and GPU architecture (Kirk and Hwu, 2013).

55

In the traditional architecture composed of a CPU and one or many core GPUs, the GPUs are used

as co-processors to the CPU. The cooperation between the CPU (Host) and GPU (Device) is

achieved through the PCI-express bus (Figure 3.12).

Figure 3.0.12. CPU-GPU Heterogeneous architecture (Kirk and Hwu, 2013).

The cooperation of the CPU and the GPU (Figure 3.13) led to a high-performance and powerful

computing capabilities which make the heterogeneous architectures a suitable tool for HPC (High

Performance Computing). The host code is run on the CPUs while the device code is run on GPUs.

An application executing on a heterogeneous platform is in the first time initialized by the CPU.

This one is responsible for managing the environment, code, and data for the device. In the end,

parallel tasks are loaded on the device (GPU).

Figure 3.13. The cooperation of the CPU and the GPU.

The GPU device is composed of many Streaming Multiprocessors (SMs) which are responsible for

running the parallel functions called kernels. The number of SMs can vary from one generation of

CUDA GPUs to another (Kirk and Hwu, 2013). Each SM is composed of many computing units

(cores), thousands of registers, several memory caches, warp schedulers, etc. (Figure 3.14).

56

Figure 3.14. Example of an SM architecture (https://www.geforce.com/hardware/desktop-

gpus/geforce-gtx-580/architecture).

57

3.4 CUDA programming model

To exploit the power of this sophisticated architecture, new application programming

interfaces (APIs) have been developed to use the GPU for non-graphics applications without using

classical graphics-oriented APIs like OpenGL, by the use of extensions to high-level languages

such as C, C++.

Hence, for instance, NVIDIA has created a parallel computing platform and programming model

called CUDA (Cheng et al.,2014). Khronos Group has created the Open Computing Language

(OpenCL), and Microsoft has created DirectCompute (Sanders et al., 2015). In our work, we have

used CUDA since OpenCL (Kirk and Hwu, 2013) is slower than CUDA which is highly optimized

by Nvidia in order to be used widely on the GPU.

While developing CUDA, NVIDIA took standard C and added a set of small number of

keywords that are specific to CUDA. Thereby, using CUDA will be easier for the developers that

are quite familiar with C. Thus, the programmer still code in C but in the same time, he incorporates

the new CUDA keywords in his code to express the parallelism. In addition to C, developers can

use CUDA with C++, Fortran and Python. Coding with CUDA requires a deep understanding of

the different features of its architecture, especially the programming and the memory model.

CUDA execution programs consist of 3 steps:

● Initializing and copying the data from the CPU memory (i.e., the host) to memory to

the GPU (i.e., the device).

● Invoking the kernel (parallel function executed on the Device (GPU) by many

threads).

● In the end of the processing, transferring the results from the Device to the Host.

Kernels are functions that are executed on the GPU by many threads in parallel (Ruetsch and Oster,

2008). A deep understanding of how threads are organized in the device is mandatory to write

kernels. CUDA offers to the programmer the possibility of organizing threads. CUDA provides a

thread hierarchy abstraction. Threads are grouped in structures called blocks. The blocks are

grouped in structures called grids. Launching kernels requires the definition of the size of the blocks

and the size of the grids (Figure 3.15).

58

Figure 3.15. The CUDA concept of a grid of blocks (Cheng et al., 2014).

A grid is a set of many thread blocks, and thread blocks are made up of many threads that are

cooperating with each other. Usually, the block is organized as a 3D array of threads and the grid

as a 3D array of blocks. Each thread uses its block index combined with its own index to be

identified in the global

GPU-accelerated Libraries for Computing

NVIDIA GPU-accelerated libraries provide highly-optimized functions that can help to

write and optimally scale applications. Using them, allow to get highly efficient implementations

of algorithms that are widely used as building blocks for many applications in several fields. Many

kinds of libraries are available; there are libraries for linear algebra (Cublas and CUDA Math

Library). For deep learning, there are libraries for parallel algorithms such as Thrust (used for

parallel algorithms and data structures). The libraries that will be used in this thesis are Thrust and

CUB since they provide a set of fundamental parallel algorithms that are implemented in an

optimized and efficient way, such as reduction and sort which are used in this work.

Thrust

Developed by NVIDIA, Thrust is a high-level CUDA library that enables the programmers to get

high performance and improve their productivity since it is based on STL (Standard Template

59

Library). While CUDA C/C++ offers a low-level control, which allow implementing high

performance algorithms which require significant optimization and deep manipulation for mapping

the algorithms onto the hardware. Thrust library is dedicated to problems which do not required

low-level control to map the algorithms onto the hardware. Hence, the users only describe their

algorithms in high-level, while the library takes over the decision of how the computation are

implemented efficiently, for instance: the number of threads, the size of block and grids etc. Thus,

the programmers do not worry about the hardware specification and are focused only on the design

of the algorithms which will allow them to get more efficient implementations and be more

productive. Thrust provides an efficient implementation of the fundamental and common parallel

algorithms that constitutes building blocks for more complex algorithms, for instance: sort,

reduction and scan algorithms. Moreover, the power of Thrust relies on its interoperability with

other technologies, for example, C++, Open MP, etc. It is a part of the CUDA toolkit.

Figure 3.16. Thrust on the top CUDA C/C++.

 Besides, programming with Thrust is not difficult and does not require extra knowledge since it is

analogous to the use of the C++ STL with standard C code. As we can see in the example hereunder,

with few lines, we can generate a vector of random numbers on the device (GPU) and sort them

with the primitive sort.

#include <thrust/host_vector.h>

 #include <thrust/device_vector.h>

#include <thrust/generate.h>

#include <thrust/sort.h>

#include <thrust/copy.h>

60

#include <cstdlib>

int main(void) {

thrust::host vector<int> h vec(1 << 24);

thrust::generate(h vec.begin(), h vec.end(), rand);

 // transfer data to the device

thrust::device vector<int> d vec = h vec; // sort data on the device

thrust::sort(d vec.begin(), d vec.end());

 // transfer data back to host

thrust::copy(d vec.begin(), d vec.end(), h vec.begin());

 return 0;

}

Also, you can notice that we did not specify the number of threads, the size of the blocks as well

as the size of the grid. As mentioned before, it is Thrust which will take in charge these

specifications in order to provide high performance implementation.

CUB (CUDA UnBound)

CUB is a very fast library CUB library developed by Duane Merrill of NVIDIA Research (ref) and

founded using the CUDA programming model. Unlike Thrust, CUB is deeply tied to CUDA, and

can deal with low-level implementations such as thread-block and thread-warp levels.

It provides state-of-the-art, reusable software components for every layer of the CUDA

programming model:

• Device-wide primitives.

• Block-wide "collective" primitives.

• Warp-wide "collective" primitives.

Like Thrust, it allows the programmer to get very high performance and efficiency and be more

productive. Hereunder an example that illustrates the power of the CUB library and its

interoperability with Thrust. First, in this example we have used Thrust library to define a device

vector such that all the elements of the vector are equal to “1”. After that we apply the prefix-sum

on this vector using the CUB primitive function: DeviceScan::ExclusiveSum . As We can see we

can use easily Thrust and CUB without any problem of interoperability.

61

#include <thrust/reduce.h>

#include <thrust/device_vector.h>

#include <thrust/iterator/transform_iterator.h>

#include <thrust/iterator/counting_iterator.h>

#include <thrust/iterator/discard_iterator.h>

#include <thrust/copy.h>

#include <thrust/execution_policy.h>

#include <iostream>

#include <stdio.h>

#include <cub/cub.cuh>

#include "TimingGPU.cuh"

#include "Utilities.cuh"

typedef int mytype;

using namespace cub;

int main() {

 int num_items =120000 ; // number of images

// the array that will contain the result(CPU)

 float *h_result = (float*)malloc(num_items * sizeof(float));

// create a device array with thrust which contain just ones

 thrust::device_vector<float> d_in(num_items, 1);

// cast iterator to raw pointer which CUB uses

 float *cub_d_in =thrust::raw_pointer_cast(&d_in[0]);

// create a device vector which will contain the result in the device

 thrust::device_vector<float> d_out(num_items);

// cast iterator to raw pointer which CUB uses

 float *cub_d_out =thrust::raw_pointer_cast(&d_out[0]);

 // Determine temporary device storage requirements

 void *d_temp_storage = NULL;

 size_t temp_storage_bytes = 0;

62

cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes, cub_d_in, cub_d_out,

num_items);

// Allocate temporary storage

cudaMalloc(&d_temp_storage, temp_storage_bytes);

timerGPU.StartCounter();

// run the PrefixSum

cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes, cub_d_in, cub_d_out,

num_items);

// copy just the first 10 elements of the result

cudaMemcpy(h_result, cub_d_out, 10*sizeof(float), cudaMemcpyDeviceToHost);

}

We have to highlight that CUB is the fasters library. The Figure 3.17 shows a comparison between

CUB and Thrust for reduction.

Figure 3.17. Performance comparison between Thrust and CUB
(https://nvlabs.github.io/cub/)

63

64

Part 2

65

We dedicate this second part to present in details the different contributions realized during

the PhD. Each chapter is related to a published paper contribution based on selections and

aggregations of rasters. Thus, this section is organized as follow:

Chapter 4: This chapter concerns our first contribution on the computing of overlapping

aggregation of large spatial data sequences.

Chapter 5: This chapter is related to a contribution to improve the performance of raster selection

based on a user-defined condition using a sequential approach.

Chapter 6: This chapter is dedicated to a GPGPU-based approach for a raster selection based on

a user-defined condition using GPGPU.

Chapter 7: This chapter proposes a disjoint raster subsequences selection method based on a user-

defined condition using GPGPU. This approach combines selection and aggregation operations.

Each chapter concludes with experiments on a simulated data set, initially presented in the

publication associated to the chapter - its reference is indicated after the chapter title.

In our approach, we consider that we do not know in advance on which data the queries will be

applied. The data set can change from a query to another. We take the point of view of a Database

Management System (DBMS) designer and the goal is to implement generic DBMS operations.

Our goal is not to improve the computation for a particular data set.

66

67

Chapter 4

Overlapping Aggregation of Raster Data Sequences using
GPGPU

Results obtained in this chapter have been published at International Journal of Information

System Modeling and Design, vol.10(1), IGI Global USA, p. 20-41.

4.1 Context and motivation

Using Data aggregations to produce data summaries is a classical approach that proved to

be efficient for many applications. It can be used as a prior step for many interesting queries such

as detecting abnormal phenomena or measurement errors provided by sensors. It is also central in

data warehouse and On-Line Analytical Processing techniques. In large data set, the goal is to

provide summaries to users in order to explore the data. In this chapter, overlapping aggregations

is tackled. When aggregations are overlapping, more value variation can be detected.

Here is an illustration of a short example of the interest of the overlapping aggregation use:

Figure.4.1 represents the evolution of the temperature during 11 days. Suppose one would like to

detect value peaks in data, in our case we focus on sequences of 4 days where the average

temperature over these sequences is greater than 25 C°. It is equivalent to the aggregation of the

temperatures for 4 days using the mean operator over four days. Non-overlapping aggregations

does not allow finding any sequence of four days satisfying the condition above, i.e., the

aggregations of days 1-4, days 5-8, etc. do not allow detecting this data peak. Overlapping

aggregations detects the sequence (days 3-6) which satisfies the condition.

68

Figure 4.1. Evolution of the temperature over days.

Figure 4.2. Example of a raster set.

The temperature value may come from raster cell aggregations. This paragraph provides

details on the overlapping raster aggregations used in this chapter. Suppose the rasters represent

the measurements of the temperature for the same region over many days. Figure 4.2 shows an

example of this data set type. (1) As a first step, each cell will be aggregated (e.g., using the mean

operator) for each raster r, in order to produce one average temperature value by raster. (2) In the

second step, the average temperature will be aggregated over time. As an example, an overlapping

temperature aggregation is considered in this chapter. This raster overlapping aggregations are

more general than the non-overlapping case, because the overlapping processing allows us to

compute more aggregations. More precisely, summarized data computed by disjoint aggregations

are included in the summarized data computed by the overlapping aggregations. As a result, raster

overlapping aggregations require intensive computations. Besides, the computation of summarized

data using raster overlapping aggregations with many steps of interleaves, provides users with more

data summaries. In this chapter, an interleave equal to 1 has been chosen for the test. The following

69

aggregations are computed for raster subsequences of length L: (R1, …, RL), (R2, …, RL+1), (R3,

…, RL+2),..,(RN-L, …, RN).

This interleave choice require the heaviest and massively computations as more subsequence

computations are needed. Nevertheless, our approach is generic and can be used for other interleave

values. As indicated in the state of art, with the rise of big data, some researchers start to care about

accelerating the processing of raster aggregation operations and apply the method to data

warehouses. Hence, a recent work presented in (Kang et al., 2015) tackled disjoint raster

aggregations. The authors tried to minimize the processing time by estimating the results instead

of calculating exacts results that require heavy computations. No work has been proposed to

improve overlapping aggregation processing time. In the era of big data, improving the processing

time of such aggregations is crucial.

 In this chapter, different GPGPU strategies for the implementation of the overlapping raster

aggregation described above are provided and compared. It is shown that GPGPUs provide a very

large improvement in terms of performance. Unlike the work proposed in (Kang et al., 2015), the

methods proposed in our chapter produce exact aggregation results.

4.2 Formulation of the problem

This subsection presents the details of the problem formulation and the pseudo code for its

resolution.

D = (R1, …, RN) is sequence of rasters Ri, and N is the number of rasters in D. All the rasters have

the same size p × q in D.

cellx,y(Ri) is a cell in the raster Ri , and (x, y) are the coordinates of the cell in the raster.

Our problem is the calculation of the cell mean for each raster subsequence of size L in D.

The resolution can be presented in two steps.

Step1)

Calculate the cell mean for each Ri ∈ D:

 Mean(R!) = 	 "
#×%∑

#
&'" ∑%('" cell&,((R!)

Once this first step is completed, the cell mean for each raster in D is obtained.

For instance, this result can correspond to the temperature mean of a studied region at each time t,

as illustrated in Figure 4.3.

70

Step 2)

In this second step, the average of these means is calculated for each subsequence su of size L in

D:

Mean(s*) = "
+∑

*,+-"
!'* Mean(R!)		

Here is an illustrative example for these two steps. Let D be a dataset that contains 10000 rasters

(N = 10000). The rasters represent the temperature of the same region over 10000 days. We will

calculate all the average temperatures of this region for all raster subsequences of size 6 (L = 6).

Our resolution consists of calculating the average temperature of the region for each period of 6

successive days.

Figure 4.4. Example of raster set D.

Figure 4.3. The cell means for each raster in D calculated by step 1.

71

For instance, some rasters are provided in Figure 4.4. In step 1, the mean of each raster R in D is

computed. The result for each raster is shown below in Fig. 8. The results can be represented by

one 1- dimensional array. In step 2, an average for each subsequence su of length 6 is calculated

(see Figure 4.5).

Figure 4.5. Example of some sequences su of length 6.

This chapter has chosen to split the resolution of the problem into two steps in order to make the

application of a value selection between the first and the second steps possible. For example, users

can decide to select only rasters having a mean greater than a defined threshold value after step 1.

In this case, the aggregation of the second step will be performed only on these selected rasters

mean values.

The sequential pseudo code for the two steps is as follow:

Step 1:
sum :=0
for j := 1 to p {
 for k :=1 to q {
 sum:= sum+ cellj,k(Ri)
 {
}
Mean_Ri := sum / (p*q)

Step 2 :
sum :=0
for j := u to u+L-1{
 sum := sum+A[j]
}
Mean_Su :=sum/L

72

4.3 GPGPU-based method for the problem resolution

This section shows the different approaches tested to implement the two steps of the problem

resolution on the GPGPU architecture.

4.3.1 Computing the mean of each raster (step 1)

The first step in our resolution is the computation of the mean of each raster in the dataset. This

operation refers to the reduction of the raster, which is a 2D array, to a single value (the mean)

using the average operator. In the literature, the reduction algorithms extract a single value from

an array of values using a binary associative operator (Martin et al., 2012).

 Given

• A binary associative operator with identity I.

• A set of n elements [a0, a1, ..., an-1].

Reduce (, s) returns a single value by computing the following: a0, a1 ,..., an-1.

The single value could be the sum, the maximal value, the minimal value, etc. For example, take

the following:

Reduce (+, [3 1 7 0 4 1 6 3]) = 25.

Reduction algorithms are one of the main parallel primitives. They are common in parallel

processing and are used as building blocks for many algorithms. To compute the mean of each

raster in the dataset, two approaches have been tested. The first one computes the mean of each

raster in the dataset one by one using an unsegmented reduction. The second method computes the

mean of each raster in the dataset at once. In this case, a segmented reduction-based approach is

used.

To be more efficient, our algorithms have been implemented by adopting an existing parallel

primitive approach since the main blocks of our method are already optimized and efficiently

implemented by NVIDA’s Libraries for instance Thrust (https://thrust.github.io) and CUB

(https://nvlabs.github.io/cub).As detailed in the state of art, Thrust and CUB provides a set of

fundamental parallel algorithms such as reduction and sort that are implemented in an optimized

and efficient way. Hence, Thrust, for instance, provides to the developers the possibility to describe

their computations in a high-level of abstraction which enhances the programmer productivity

while enabling a high performance. Thrust is based on the Standard Template Library (STL) and

73

it provides a full interoperability with technologies such as: C++, CUDA, open MP, TPP and now

it is a part of CUDA toolkit. The main characteristic of Thrust is that one can run the same code in

a parallel or in a serial manner by just changing some few parameters in the code.

CUB is the fastest library since it is optimized only for CUDA. It provides also a collection of

parallel primitive algorithms that are implemented in a very sophisticated way. Thrust's CUDA

backend is built on top of CUB.

4.3.1.1 Unsegmented reduction-based approach

Technically speaking, the main step for implementing an algorithm on the GPGPU is to

transfer data from the host (CPU) to the device (GPU). In our case, to compute the mean of each

raster with a GPU, we have to transfer all the rasters of our dataset to the GPU. The use of the

unsegmented reduction consists of transferring each raster of our dataset one by one from the CPU

to the GPU and applying the reduction using the mean operator to the raster. At the end, the results

are transferred back from the GPU to the CPU.

In the literature, many works have been proposed to improve the reduction algorithm processing

time (Harris, 2007a). This interest comes from the fact that the reduction algorithms are used as

one of the main components of many sophisticated programs. The fast reduction algorithm used in

our work is presented in (Harris, 2007a). By viewing the raster as a vector in memory, the mean of

this vector can be computed by applying the reduction algorithm with the sum operation.

In the algorithm, each thread will perform the sum operation of two interleaved pair values and

store the result in the memory. At each pass, the threads use the intermediate results stored by the

other threads. Since each thread takes two entries and produces one output, each step uses half the

number of threads of the previous step. In the example presented in Figure. 4.6, the reduction with

the sum operator is performed on the raster R1 (day 1 in Figure. 4.4). To reduce R1, it is needed to

run 8 threads (Th0,…,Th1) for the first pass. Each thread processes the interleaved pairs of R1 and

performs the reduction based on the sum operator.

74

Figure 4.6. Illustrative example of the reduction algorithm (sum operator) used for raster R1.

The unsegmented reduction algorithm is implemented and optimized in existing GPGPU parallel

libraries. Thrust (https://thrust.github.io) and CUB (https://nvlabs.github.io/cub) provide high

performance implementations of this algorithm. The use of these implementations has been tested.

The unsegmented method can be time consuming in our case because, for each raster, one must

wait for the completion of the reduction operation of the previous raster. Consequently, the mean

is computed in parallel for all the cells of the same raster but is computed sequentially for the raster

75

dataset. In this approach, the rasters are transferred one by one by applying a time-consuming back

and forth process between the host and device.

4.3.1.2 Segmentation-based approach

A segmentation-based method that overcomes the drawback of the unsegmented approach

has been tested. The segmented reduction is also a building block for many algorithms. It consists

of transferring the whole dataset from the CPU to the GPU in one single step. All the rasters are

contained in one single array that concatenates all the vectors representing the rasters. Each raster

forms a segment in this array. One unique key is assigned to each segment therefore to each raster.

If there are N rasters, there will be N fixed size segments. This approach allows us to transfer the

whole array to the GPU (if the GPU memory size is sufficient – otherwise several steps are

required) and call the kernel just once, which performs the segmented reduction on the whole array

based on the keys assigned to each segment. As an output, one 1D array containing all the mean

values of the rasters is obtained. The reduction is performed on all the rasters at once. An illustrative

Example is presented below.

Let R1, R2 and R3 be 3 rasters of size 2×2 (Figure 4.7).

4 8 6 24

5 12

10 12 36 14 8 12

Figure 4.7. A set of three rasters of size 4.

Rasters are aligned and stored in one array as follow (Figure 4.8):

76

Figure 4.8. Aligning raster cells.

The system will assign to each data in the same raster the same key after that the mean of each

raster is computed based on their keys (Figure 4.9).

Figure 4.9. Segmented mean computations of rasters.

As for the unsegmented reduction, the algorithm is implemented and optimized by the Thrust and

CUB libraries. In the segmented case, the segmented reduction function of CUB or Thrust is called

just once in order to compute the mean of all the rasters in our dataset, unlike the unsegmented

77

approach in which the reduction function is called N times (N is the number of rasters in our

dataset).

4.3.2 Computing the average of each sequence of size L (step 2)

After computing the mean of each raster in our dataset D, the next step consists of computing the

mean of the subsequences su of length L. This step computes the mean over each subsequence su in

D. This section presents a different approach that can be used.

4.3.2.1 Method 1: straightforward approach
In the first approach, each thread is assigned to one subsequence to compute the average. Each

thread computes the average of the subsequence su (Figure 4.10).

Figure 4.10. Single thread-based segmented reduction.

The limitations of this approach are twofold. First, all of the subsequences are processed in parallel,

but the computation of the average is sequential in each subsequence since one thread computes

sequentially all the operations to calculate the average of one sequence. It is possible to solve this

problem by assigning a block of threads to each sequence and using the unsegmented reduction

algorithm as described before. In this case, the average of subsequence su is computed by a block

of threads that will cooperate together. Second, as the aggregations are overlapping, many threads

compute the same calculation, which is redundant work. For instance, to compute the mean of s2,

thread2 will compute the sum (A[2]+ A[3]+ A[4]+ A[5]+ A[6]+ A[7]), while the sum (A[1] + A[2]

+ A[3]+ A[4]+ A[5]+ A[6]) is computed by thread1 for the subsequence s1. Consequently, the

elements in A will participate 6 times (the length of the subsequences) in the computations.

78

4.3.2.2 Method 2: Prefix Sum-based approach

To avoid the previous redundant computations, the Prefix Sum technique has been tested

(Blelloch, 1997). Several algorithms have been proposed either in sequential or in parallel

approaches for the implementation of this method. Our prefix sum is based on the efficient

implementation presented in (Harris, 2007b).

Using this technique allows us to reuse the results of previous addition operations and as a result

avoid extra redundant computations. There are two versions of Prefix Sum: the inclusive and the

exclusive. The exclusive Prefix Sum operation takes a binary associative operator and n elements

[a1, a2, ..., an] as parameters, and returns: [I, a1, (a1 a2), ..., (a1 a0 ... an)], such that I is the

identity element of the associative operator

The inclusive Prefix-sum operation takes a binary associative operator and n elements [a1, a2, ...,

an] as parameters, and returns: [a1, (a1 a2), ..., (a1 a0 ... an)]. In our method, the exclusive

Prefix Sum has been used. For example, if is the addition, then the Exclusive Prefix Sum

operation on the array [3 1 7 0 4 1 6 3] will return the array [0 3 4 11 11 15 16 22], which is denoted

by PS. The average of the subsequences su in S is computed as follows:

Mean(Su)=(PS[u+L-1]-PS[u])/L

It is shown below how to use the Prefix Sum to compute the mean over each subsequence in the

previous example. As input, the following array has been used.

27 25 27 26 26 25 26 25 26 29 ……….

The prefix sum (i.e., the array denoted by PS) of the previous array is as follows.
0 27 52 79 105 131 156 182 207 233 ……….

Consequently, now it is easy to get the mean over each subsequence of length L in the input, as

shown in Figure 4.11. It simply needed to subtract the prefix sum from the shifted prefix sum with

L elements to the right (in our example, L=6). Hence, the average of all subsequences su is obtained

79

in one pass. For the Prefix Sum implementation, we have used the efficient CUB and Thrust

libraries.

Figure 4.11. Illustrative example for Prefix Sum.

4.4 Experiments and results

To test the performance of the parallel implementation methods, experiments have been run

on a Tesla K20C GPU card with 5 Gb of global memory and 2496 NVIDIA CUDA cores, which

allowed us to test our method on large datasets and thus assess the stability of our method. The

sequential version is run on the host CPU Intel(R) Core(TM) i7-2600K running at 3.40 GHz with

16 Gb of RAM. Concerning the data, the experiments are conducted using a temperature public

dataset.

The experiments are designed in a way to test our method on different datasets with different

structures and features, and also to study the stability of the performance of the proposed method

with respect to the length of subsequences. To this end, we first created four datasets with the same

size. In each dataset, the size of the generated rasters is different, starting with rasters with small

size (32×32) to rasters with larger size (100×100). Furthermore, the number of generated rasters

was also modified in each dataset. Thus, our method has been tested on different datasets, in order

to study the impact of each of these parameters on the execution time and to have a clear idea about

the performance. Second, our method was run multiple times with different length of subsequences.

Shifting 6 elements to the right

80

4.4.1 Dataset
The public dataset provided by the US National Oceanic and Atmospheric Administration

has been used (Diamond et al., 2013). This dataset provides a large amount of climate and historical

weather data, including the following: air temperature, humidity, precipitation, etc. The data are

available in various temporal acquisition rates: monthly, daily, hourly and sub-hourly (5-minute).

This data covers many weather stations in the USA. In our work, hourly data for the Barrow station

temperature have been used. At every 60 minutes, there is the min, max and the mean of the

temperature of this station. Rasters have been simulated for the local studied region from this

station. It has been assumed that the temperature of the region has a Gaussian distribution. The

normal distribution is characterized by two parameters: the mean and the standard deviation. The

mean is provided by our dataset, and the standard deviation ST has been estimated using the min

and the max values provided by the dataset. The simple method to estimate the standard deviations

ST is the range rule of thumb (Honzo et al., 2005). The approximation of ST is calculated as

follows:

!" ≈ $%& −$()
4 	

In practice, the estimation of ST using the range rule of thumb is not sufficient when the n is

extremely small or large (Honzo et al., 2005). This estimation was improved by (Honzo et al.,

2005) to deal with this size problem:

!" ≈

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

	
1
√12

3($%& −$())!	 + ($%& − 2$ +min)!
4 :

#/!
) < 15	

$%& −$()
4 																																																																		15 <) < 70

$%& −$()
6) > 70

	
	

In our case, large rasters have been generated. Consequently, the estimation of our standard

deviation is calculated using the third case (n >70). Thus, the required parameters have been

obtained in order to generate raster data from the raw data using the normal distribution.

Four datasets were created with the same size. In each dataset, the size of the generated rasters is

different, starting with rasters with small size (32×32) to rasters with larger size (100×100).

Furthermore, the number of generated rasters was also modified in each dataset. Thus, our method

81

has been tested on different datasets with different structures in order to show the impact of each

of these parameters on the execution time.

4.4.2 Results

This subsection shows the results of our experiments based on the best approaches presented in our

work. Both the GPU-based implementation (based on the CUB library) and the CPU-based

implementation (based on the Thrust library) have been tested for Prefix Sum and reduction

operations. The GPU-based methods on CUB and Thrust have been implemented, but since CUB

is faster, only the results of our GPU-based implementation on CUB are presented in this chapter.

Concerning the CPU-based implementations, two CPU versions have been implemented, the first

one uses the pure C++ and the second one uses Thrust. Since a comparison of our GPU method

with the fastest version of the CPU is needed, only the Thrust-based CPU version is presented. It

is faster than our pure C++ based implementation. This can be done by changing the Thrust

execution policy.

Different values have been tested for three main parameters: the size of the rasters, the number of

rasters and the length of the subsequences. The goal was to identify their impacts on the computing

time.

To test our work, large datasets have been generated to saturate our GPU memory (5 Gb). In the

following, the first two subsections concern the experiments for each step of our method separately

without including the time for data transfer between the CPU and the GPU. Hence, the results

presented in Table 4.1 and Table 4.2, concern only the computation time of each step. Our two-

fold objective in these subsections: first, to have a clear idea about the execution time required by

each step in our method run on the GPU, and second to highlight the computation power of the

GPU by excluding the data transfer cost. The last subsection concerns the experiments for the

whole method (GPU version) including the time for the data transfer between the CPU and the

GPU. Thus, Table 4.3 shows the performance of the whole method.

4.4.2.1 Mean computation for each raster (step 1)

82

In the experiments of this step, four different datasets have been generated with the same

global Gb size by changing the raster size and the number of rasters. Table 1 compares the

computing time for the raster mean calculation (step 1).

As shown in Table 1, the GPU is able to perform step 1 faster than the CPU for all the generated

datasets. The results show clearly that our GPU implementation is 89 to 244 times faster than the

CPU implementation. The GPU performs better when the amount of work is large, which is the

case for the Dataset 1 in which the raster size is large.

However, the GPU acceleration decreases when the size of the rasters becomes small which is the

case for the fourth dataset.

 Raster

size
Number

of
rasters

CPU
(ms)

GPU
(ms)

Acceleration

Step 1 Dataset 1 100×100 120000 225160 922 244.20
 Dataset 2 96×96 130208 223316 965 231.41
 Dataset 3

Dataset 4
64×64
32×32

292968
1171875

 223102
224863

874
2499

258.51
89.98

Table 4.1. Computing time of the raster mean (step 1).

4.4.2.2 Computing the mean of subsequences su (step 2)
The test of the performance of our method is based on the same datasets used in the previous step.

Table 4.2 shows that, with the method based on the Prefix Sum, the GPU processing time is 7 to

11 times faster than for the CPU version.

Table 4.2 also shows that the processing time increases when the number of rasters increases, even

if the same amount of data is processed. The GPU always perform better when it has more work to

do as in the case of Dataset 4.

83

 Raster
size

Number
of

rasters

CPU (ms) GPU
(ms)

Acceleration

Step 2 Dataset 1 100×100 120000 44.66 5.8 7.7
 Dataset 2 96×96 130208 46 5.94 7.74
 Dataset 3

Dataset 4
64×64
32×32

292968
1171875

 104.16
 414.81

10.43
34.59

9.98
11.99

Table 4.2. Computing the average of the subsequences su of length 100.

4.4.2.3 The execution time for the whole method including the data transfer

In this subsection, the results for the whole method (step1 and step 2) are presented for the same

datasets used before. Furthermore, the time required for data transfer between the CPU and the

GPU is included to have a complete evaluation of our method.

As we can see in the table below (Table 4.3), our method is faster than the CPU version and a very

good speedup is obtained for all the generated datasets. Transferring data between the CPU and the

GPU is time consuming; the main reason why we have adopted the segmented approach is to avoid

multiple transfers between these devices.

 Raster
size

Number
of

rasters

CPU (ms) GPU
(ms)

Acceleration

 Dataset 1 100×100 120000 225204.66 3927.8 57.33
 Dataset 2 96×96 130208 223362 3970.94 56.24
 Dataset 3

Dataset 4
64×64
32×32

292968
1171875

223206.16
225277.81

3884.43
5533.59

57.46
40.71

Table 4.3. The execution time for the whole method including data transfer between the CPU and
the GPU.

Furthermore, the effect of the length of the subsequences su on the runtime processing of the GPU

has been analyzed. The performance has been tested for different values of su using dataset 1.

Figure 4.12 shows that there is almost no impact of the length of subsequences su on the processing

time of our method using the GPU. Thus, computations for subsequences of length 50 or 400 are

84

almost the same in terms of computing time. This result is an advantage of the Prefix Sum

technique.

Figure 4.12. Impact of subsequence length on time processing.

4.5 Conclusions

In this work, a parallel approach has been presented for the overlapping aggregation process of

raster sequences. This process is based on the map algebra principle. This type of overlapping

aggregation can be found in many environmental data analyses. The result of this chapter highlights

that the execution of such aggregations can significantly benefit from GPGPU processing. Our

results show that it is possible to accelerate the execution more than 200 times the corresponding

CPU execution, which clearly proves the potential for big data processing. Our methods are generic

and can be used for more general cases and for other types of data, such as array and vector

aggregation, since the cells coordinates are not required for computations and no assumptions are

made on data value to perform the computations.

In the experiments that are illustrated in this chapter, the overlapping raster number between su and

su+1 is equal to L-1, and thus, all the subsequences are calculated. The GPGPU-based approach

85

tested in this chapter is general and can also be applied in the case of aggregations with a larger

interleave between aggregated subsequences. For some applications in which all the subsequence

aggregations are not needed, this parameter can be changed, for example, by calculating only the

subsequences (R1, …, RL), (R6, …, RL+5), (R11, …, RL+10), etc., with L>5. In this type of case, the

operational overlap is smaller than in the aggregations presented in this chapter.

As mentioned before, overlapping aggregations is a traditional process. It is used as a prior step for

many spatial data queries and environmental data analyses. Hence, our method can be used as a

parallel primitive for these applications to accelerate their processing.

86

Chapter 5

Selection of Rasters based on a User-Defined Condition: A
Sequential Approach
Results obtained in this chapter have been published at Advances in Intelligent Systems and

Computing 893, 190-201., Springer.

5.1 Context and motivation

This contribution proposes a new technique to improve the execution time of the selection

of rasters in a raster sequence representing the evolution of a pheromone over time using only the

CPU. The processing of the rasters consists in three main steps (shown in Figure 5.1). The different

values of the raster cells are represented by colors. In the step (a), the user chooses a period of

interest. More precisely, he/she selects a temporal raster (sub)sequence of interest in the large

sequence of rasters. In the step (b), the user defines the geographical region to analyze in the

sequence of rasters selected in step (a). This geographical region to analyze is the same for all these

rasters. In the step (c), the system automatically selects every raster that satisfies a user-defined

condition.

We illustrate this process on an example. A user would like to analyze a sequence of rasters

representing the evolution of temperatures. For example, he/she wants to determine the set of

rasters having low temperatures in order to:

● Study more precisely these cases and their possible local causes. It is a typical case of

climate change analysis.

● Or analyze the impact of these temperatures on crops in agriculture in the context of farm

decision support.

Thus, he/she manually chooses the period to be analyzed in the whole sequence (step (a)). Second,

he/she manually chooses a geographical region of interest for his/her study (step (b)). Third, in the

step (c), the user would like to automatically select every raster in which the average temperature

of the region of interest is lower than a user-defined threshold (e.g., ≤ 10 C°). Consequently, the

result is the set of the rasters that satisfy this condition.

87

Figure 5.1. Description of the raster data process.

Our goal is to improve the execution time of the step (c) To illustrate, we use the following user-

defined selection criterion on temperature rasters: the calculation of the average temperature for

every raster and the selection of the temperature < 10C°. A naive algorithm for the step (c) is shown

in Figure 5.2:

S := the whole sequence of rasters

A := the (sub)sequence of rasters chosen in S by the user

b := the region of interest chosen by the user

Result := { }

for every raster Ri in A

{

avg := the cell average for the region b in Ri

88

if avg < 10 then Result := Result ∪{ Ri }

}
Figure 5.2. Naive algorithm for step (c).

5.2 Raster data process improvement

Based on the Naïve approach showed in Figure 5.2, we propose an improvement of the step

(c). The intuition behind this algorithm is to try to reject a raster that does not satisfy the user-

condition (i.e., the cell value average must be lesser then the user’s threshold) as soon as possible

to avoid useless computation. The proposed improvement technique can improve the computation

when the user’s threshold is low (compared to the raster cell values). In this technique, the cell

must contain only numerical positive value – consequently, a uniform translation or normalization

must be used if the rasters do not comply with this constraint.

The calculation of the average is computed for each raster (in the region of interest). The average

computation consists in calculating the sum of cell values for each raster. In our algorithm, we stop

the sum computation as soon as possible, when we are sure that this sum becomes superior to the

threshold value multiplied by the cell number of the region of interest.

We propose to sort the cell values in the region of interest in a descending order, for the average

computation. In that case, the threshold is reached faster for the rasters that do not satisfy the

condition. Unfortunately, the time complexity of a sort, i.e., O(n log n) for a quick sort, is higher

than the sum computation, i.e., O(n). Consequently, we propose the following stages:

1. We propose to sort the value of the region of interest only for some rasters, e.g., compute a

sort every 200 rasters, in sorting the cell values of the region of interest only for the rasters

Ri, Ri+200, Ri+400, etc. Each one of these sorts produces a cell ordering.

2. We propose to use the cell ordering of the sorted rasters, for computing the sums for the

other rasters. For example, the sort in Ri produces a cell ordering. This cell ordering will be

used for computing the sum for each raster from Ri to Ri+199. The cell ordering determined

by the sort of Ri+200 will be used for each raster from Ri+200 to Ri+399, etc.

The intuition behind this method is that in many phenomena the spatial distribution of values

evaluates rather slowly over time. In the case of temperature rasters produced every 5 minutes, the

highest values will often be on the same geographical part of the rasters for several tens of minutes

or several hours. The frequency of the sort computation can be adapted to the nature of the data

(e.g., sorting every 10 rasters, 50 rasters, 100 rasters, 200 rasters, etc.). This new version of the

89

algorithm is shown in Figure 5.2. In Figure 5.3, Ord is an array that corresponds to a mapping:

Ord(1) is equal to the cell number (#) in b that has the highest value; Ord(m) is equal to the cell

number (#) in b that has the lowest value. In Figure 5.3, the user-defined condition is “< threshold”,

but our approach can be used in the case of a condition “> threshold”. In this latter case, the raster

is accepted as soon as the threshold is reached (instead of being rejected when the threshold is

reached as in Figure 5.3).

S := the whole sequence of rasters

A := the (sub)sequence of rasters chosen in S by the user

b := the region of interest chosen by the user

m := the number of cells in b

begin := the number (#) of the first raster in S

end := the number (#) of the last raster in S

it := the interleave between two consecutive rasters on which a sort is calculated

th := the user-defined threshold

Result := { }

maxsum := th * m

for i := begin to end step it

{

Sort the cell values of the region b in Ri in descending order

and produce the corresponding cell ordering Ord

for j := i to i+it

{

 if j > end then { process completed ; stop } else

 {

 su := 0

 reject := false

 for k:= 1 to m {

 v := the value in the cell Ord(k) in Rj

 su := su + v

 if su >= maxsum then

90

 { reject := true ; break}

 }

 if reject is false then Result := Result ∪ { Rj }

 }

 }

}

Figure 5.3. Improved algorithm for step (c).

Several constraints must be satisfied in order to guarantee that this algorithm provides better

performances in terms of execution time, for example, a low user-defined threshold or a spatial

distribution of cell values sufficiently large in every raster to justify the interest of the sorting

operation.

In practice, performance improvement depends on two things:

1) The size of the time window which must not be too large and also not too small. If it is too

large the precision of sorting (reordering) the cells of the raster that falls in the same time

window as the real sorted raster will drop. Hence the performance will drop also (hence the

sort becomes useless). If the time window size is too small, the number of the sorted rasters

will increase and since it is expensive, it will slow down the execution time).

2) The type of data (the temperature, pressure, etc.). Less the data is evolving the more the

sorting is accurate.

5.3 Experiments and results

5.3.1 Dataset

We simulated a dataset related to temperatures using the same technique and the same source data

as the one presented in Chapter 4. We have created 3 data sets having 3 different raster sizes; each

data set contains 1420 rasters. We have avoided negative value as it a constraint of our approach.

In our tests, the user-defined region of interest is the whole raster. In the produced data sets, we

have one raster every day for four years. The tests have been applied on all these rasters – these

rasters constitute the sequence A of rasters to analyze.

91

5.3.2 Results

 In this subsection, we show the results of our experiments performed on the generated data.

Different raster sizes have been tested. For each experiment, we test the naive algorithm and the

improved version on the same data set. In our experiments, we also evaluate the impact of the main

parameters on the execution time of our algorithm, for instance, the threshold and the interleave

between the sorted rasters. To do this, we have chosen different thresholds and interleaves and run

our algorithm using these different value parameters. Concerning the sort algorithm, we used a

quick sort.

The impact of the threshold on the performance

 Tables 5.1, 5.2 and 5.3 compare the computing time for the naive and the improved algorithm

for the three data sets for different threshold values. Table 1 shows that the improved algorithm is

faster than the naive one, especially when the threshold is not too low and not too high. The best

performance is with th=40; our algorithm I is faster than the naive one with 3.07 seconds less for

time execution. Whereas when the threshold is smaller, we obtain less performance (the case of

th=30).

 Threshold

th=30
Threshold
th=40

Threshold
th=45

Threshold
th=46

Threshold
th=50

Naive

Algorithm

8.5(s)

13.17(s)

12.30(s) 14(s) 14.91(s)

Improved

Algorithm

7.9(s)

10.1(s) 11.9(s)

12.9(s) 13(s)

Table 5.1. Dataset 1: Size of raster =100×100, contains 1420, Interleave =73.

In Table 5.2, our algorithm is faster than the naive one with 5 seconds less for execution time
(th=42).

92

 Threshold
th=39

Threshold
th=40

Threshold
th=41

Threshold
th=42

Threshold
th=50

Naive

Algorithm

44.57(s)

45.30(s) 47.80(s) 49.4(s) 53.76(s)

Improved

Algorithm

40.5(s) 42.28(s)

43.04(s)

44.47(s)

50.39(s)

Table 5.2. Dataset 2: Size of raster =200×200, contains 1420, Interleave =73.

 Threshold
th=30

Threshold
th=40

Threshold
th=42

Threshold
th=50

Threshold
th=70

Naive

Algorithm

36.81(s)

46.63(s) 48.53(s) 56.83(s) 67.03(s)

Improved

Algorithm

32.57 (s) 44.57(s) 46.78(s) 53.55(s) 62.40(s)

Table 5.3. Dataset 3: Size of raster =240×240, contains 1420, Interleave =73.

As we can see in the Table 5.3, our algorithm is still faster than the naive one. More

precisely, our algorithm is always faster than the naive one, whatever the value of the threshold.

The user-defined threshold value has a direct impact on the performance of the improved algorithm.

The impact of the interleave size on the performance

The interleave value between the sorted rasters is important. It has also an impact on the

performance of our algorithm. Choosing a low interleave implies sorting more rasters, which

decreases the performance. In the other hand, choosing large interleave means sorting less rasters

93

which is good for the performance, but in the same time, many rasters that are in the same interleave

will not follow the same behavior as the sorted raster.

In Table 5.4 we show how the interleave size influences the performance of our algorithm on the

data set 1. As an example, we have tested three interleave sizes. As we can see in table 5.4, the best

performance is obtained by choosing the size 73. The choice of the interleave value depends on the

nature of data and the frequency of its production.

 Interleave
=10

Interleave
=20

Interleave
=73

Naive

Algorithm

13.17(s)

13.17(s)

13.17(s) (s)

Improved

Algorithm

11.27(s)

10.53(s)

10.4

Table 5.4. The impact of the interleave on the performance (Data set 1), Threshold =40

Our algorithm shows interesting potential, it should be improved by using other faster sorting

algorithms and also using raster data sets with significant variation of data in the same raster

94

95

Chapter 6

Selection of Rasters based on a User-Defined Condition: A
GPGPU Approach

Results obtained in this chapter have been published at 11th International Conference on

Computer Science and Information Technology, Paris, France, 8 p.

6.1 Context and motivation

In this chapter, we propose an improved scalable GPGPU based method, to handle the

selection of large rasters from large temporal sequence dataset of rasters based on their average.

This problem has been tackled using only the CPU computation in the previous chapter. To speed

up the computation time, we decided to use the GPGPU since the underlined problem requires high

massive computations since we need to compute the average of each large raster in a large dataset

and check its average with a condition statement. In this work, we discuss in which cases our

method can reach the best performance and achieving a good speedup.

In the rest of this chapter, we present only the parallel approach of the problem since the

sequence versions (the naïve and the improved CPU version) have been presented in the previous

chapter.

6.2 Raster Selection query: Data Parallel design

6.2.1 Naive approach
The naive approach consists on firstly aligning each raster in the dataset after that one thread

is assigned to each raster; this later will be responsible for computing the raster average. As a result,

the average of each raster in D will be computed in sequential (because each thread will go through

each raster and computes the average of this later), but it will be performed in parallel for the dataset

D.

The naïve approach will work efficiently if the size of the raster is small, but in our scenario, the

rasters are acquired in a high precision and their size is very large. So, the average of each raster

must be computed in a parallel by assigning a block of threads to each raster rather than one thread.

96

Hence, the average is computed in parallel for each raster and all over the dataset. Furthermore, we

need to avoid the use of the “if" statement frequently, as there is a parallel computing. If we assign

one thread for each raster, we need to use the “if” statement for each raster L × H times which is

not efficient. Hence an improved approach is proposed to deal with these limitations.

6.2.2 Sorting-based method reminder and GPGPU-based approach

Our parallel improved approach consists on firstly aligning the rasters (we can use any

alignment method, since we do not need the position of cells). Secondly, since we need to reject

the raster if its average is greater than a certain threshold defined by the user, we decide to sort the

rasters in the descending order (as shown in the previous chapter) in order to achieve the threshold

as soon as possible and thus reject the raster in the early stages to avoid computing the average of

the whole raster which is expensive in terms of time and computation. We need to outline that the

sorting process is very expensive, thus sorting each raster is time consuming, which lead to a

performance worse than computing the average of the whole raster, a case we try to avoid. To

overcome this limitation, we propose to use the method shown in the previous chapter: instead of

sorting all the rasters of the large dataset, we will sort only some of them. In our illustrative

example, we divide our dataset D (sequence of rasters) into time windows (subsequence of rasters)

of size T, e.g., T = 6 (Figure 1.6).

As indicated in chapter 5, we suppose that the rasters that are falling in a certain window of

time have the same behavior in term of the values of cells. For example, if the rasters represent

hourly temperature of a specific region, the temperature will not change or will make a slight

change during a certain period of time (window) for instance 6 hours, so the rasters that fall in this

time window have the same behavior. Thus, we need to sort only one raster from each window and

reorder the others accordingly.

97

	
	
	
	
	
	
	
	
	
	

The final step in our algorithms relay on dividing each raster to a set of tiles with fixed size (each

tile has the same number of cells). The idea here consists in avoiding checking the average at each

cell. As a result, the average is tested only at each tile. The example in the Figure 6.2 represents

our method to compute the average of one raster. We need to outline that, instead of computing the

average of the raster, we will only compute the sum of the raster and scaling the threshold by the

size of the raster.

	
	

Figure 6.1. Dividing the dataset into time windows (subsequence
of rasters).

98

We have reminded above the case of one raster. The same processing will be performed for

each raster in parallel, which means that, for each raster, one thread will be assigned. This later will

call the function which executes the previous processing. At the beginning, while we have

developed our first algorithms on the GPU using pure CUDA implementations, we realized that

our implementations cannot perform better than the parallel primitive implementations in term of

productivity and efficiency. It is the reason why we decided to adopt a parallel primitive -based

approach where it is possible to reduce implementation complexity and improve development

productivity. Many of our algorithm’s blocks are already optimized by NVIDIA’s libraries such as

Thrust and CUB. Our improved algorithm is based on two main blocks: the reduction and the sort,

that are implemented efficiently in the libraries cited above. This allows us to have the best

performance and hence achieving a higher speed up by using the improved implementations of the

parallel primitives.

Figure 6.2. Illustration of our method for one raster(R1).

99

We summarize our method and provide an idea about its implementation on the GPU. Our

method has two passes, hence two CUDA kernels are implemented: the first kernel consists on

sorting the rasters of our dataset using the method cited above; our dataset D (sequence of rasters)

is divided on a set of time windows (e.g., 6 days)

So, in each time window, only one raster is sorted by using the thrust primitive:

thrust::sort_by_key or CUB primitive cub::DeviceRadixSort::SortPairs. Thus, we get the order

of indices of the sorted raster. The other rasters that fall in the same windows of time will be

reordered (sorted) according to the sorted raster using the gather transformation that we have

implemented using the primitive: thrust::gather. The second kernel will be responsible of

computing the average of rasters using our method described above. To do we can use the primitive:

thrust:: reduce or cub::DeviceReduce::Reduce.

6.3 Experiments and results

To evaluate and test the performance of our algorithms, we ran experiments on a Tesla

K20C GPU device with 5 Gb of global memory and 2496 NVIDIA CUDA cores. The sequential

algorithm is run on the host CPU Intel(R) Core(TM) i7-2600K running at 3.40 GHz with 16 Gb of

RAM. Concerning the data, we have used a temperature public dataset for our experiments.

6.3.1 Dataset
In our tests, we used the temperature data from public dataset provided by the US National

Oceanic and Atmospheric Administration (Diamond et al., 2013); the same source as the one

presented in the previous chapter. It provides several climate and weather data for many years

which are produced from many weather stations. Furthermore, for this experiment, our studied

region is composed from many stations that are near to each other for instance: Newton_5,

Newton_8, Newton_11 and Watkinsville_5, etc. based on their geographical coordinates. Doing

this allow us to have more variation of the values of data, hence the sorting step in our algorithm

will have sense. If the values of the cells of the same rasters are closed to each other, sorting process

does not have any sense.

To build our dataset, we have simulated temperature rasters for the local studied region

using the same approach than the one presented in the previous chapters. Also, we have avoided

negative value. For our experiments, we have generated two datasets, one dataset for a region

100

composed of 6 stations and another one composed of 3 stations. We have tested different values

for the size of rasters, the number of rasters and also the threshold fixed by the user.

6.3.2 Results
In this subsection we report the results obtained by our experimentations on the simulated

datasets. In the results shown in the tables below, we present the results only for the threshold equal

to 30 and for a window time equal to 5 since they give us the best performance. As we can see in

the table 1, we have tested the methods on different sizes of data. Table 6.1 shows that we obtained

a significant speed up (speed up= 5 for rasters of size 1200000) compared to the sequential version

and good speed up compared to the straightforward parallel approach (speed up =1.7 rasters of size

1200000) that does not use sorting phase. We have to mention that the straightforward parallel

approach is not the naïve approach. In fact, it is the improved approach but without sorting phase.	

 Raster
Size
36000

Raster
Size
60000

Raster
Size
120000

Sequential Naïve

Algorithm (ms)

504 841 1698

Improuved
Sequential

algorithm(ms)

460 737 1486

Straightforward
parallel approach

(ms)

241 421 571

Improuved parallel
approach (ms)

158

235 339

Table 6.1. Dataset 1: 6 stations, 365 days, Windows time = 5 days, Threshold=30.	

It is the same for Table 6.2 that shows the results for a sequence of rasters for 2 years (730 days).

As we can observe, we have obtained a good speed up compared to all the methods but in the other

hand we can see that we get less good speed up compared to the previous experiments on Dataset

1. This is due to two things: the first one is number of rasters which is greater than the previous

one and hence we need to sort more rasters. The second one is the distribution of data.

101

In the Dataset 2, our studied region is formed from 3 stations which mean less variation of data

inside our dataset and as a result sorting become less profitable compared to the Dataset 1.

 Raster

Size
18000

Raster
Size
30000

Raster
Size
60000

Sequential Naïve

Algorithm(ms)

541 852 1702

Improved

 Sequential
algorithm(ms)

483 761 1529

Straightforward
parallel

approach(ms)

275 463 591

Impoved parallel
approach (ms)

176

266 472

Table 6.2. Dataset 2: 3 stations, Windows time = 5, 730 days, Threshold=30.

6.4 Conclusion

To conclude, we have shown that we can speed up large scale geospatial queries by using

the power of recent GPU cards. Using parallel primitives based on CUDA allowed us to further

improvement our implementation and reducing coding complexity. Our experiments on our large-

scale geospatial data have shown a good performance in term of time and we were able to obtain a

significant speed up compared to CPU-based methods presented in the previous chapter.

102

103

Chapter 7

Selection of Raster Sequences based on a User-defined
condition using GPGPU
Results obtained in this chapter are under submission.

7.1 Context and motivation

 In previous chapters, we considered a selection criterion tested on each raster. This new chapter is

dedicated to test a user-based condition on non-overlapping aggregated sequence of raster. This

approach combines selection and aggregation operations. The workflow of the query is presented

in Figure 7.1. In this later, we compute a spatiotemporal average of raster cells. A single numerical

indicator is returned e.g., the average of the cells in all the raster in the studied temporal

subsequence (a week). A user-based condition will be tested on the whole sequences of rasters.

104

7.2

Query definition and the sequential algorithm

Let D be the data set (R1, …, RN) of N rasters, where each Ri is 2D grid that has the size of

p × q. All the rasters have the same size and correspond to the same geographical region.

Let cellx,y(Ri) be the cell in the raster Ri , and (x, y) be the coordinates of the cell in the raster.

Figure 7.1. Overall framework for the query process.

105

The query relies on finding all the disjoint (i.e., non-overlapping) raster subsequences Sj in D of

length L, such that the mean over Sj is less than T such that T is a threshold defined by the user.

The sequential straightforward method is as follow:

D := list of rasters

N:= the number of rasters in D

L:= the size of subsequences

T := the threshold chosen by the user

Result := { }

for every Sj in D {

sum_subseq:=0

for every raster Ri in Sj

{

avg_raster := the cell average for Ri

sum_subseq:= (sum _subseq +avg_raster)

}

avg_subseq:=(sum_ subseq)/L

if (avg < T)

then Result := Result ∪ { Sj }

}

7.3 Parallel methods for query processing

7.3.1 Straightforward parallel approach

This approach consists, as the first step, to compute the average of each subsequence in D

and then check if it is satisfying the user condition. Concerning the first step, we have used the

segmented reduction technique with the sum operator. The segmented reduction is a building block

for many algorithms. In general, it relies on reducing data over many irregular-length segments. In

our case, the segments have the same length which is the size of the subsequences L. In our method,

rasters are aligned and stored in one array. The segments are composed of the cells of all the rasters

106

belonging to them. To perform the segmented reduction, one unique key is assigned to each

segment therefore to each subsequence in our array. If there are N subsequences of size L, there

will be N fixed-size segments.

This approach allows performing the reduction on all the subsequences only once (based on their

keys). Hence the function (kernel) responsible for the reduction is called just once on the array

containing the data. The output will be a single 1D array containing the means of all the

subsequences Sj. An illustrative example is presented below.

Let’s consider a set of 6 rasters of size 4 (Figure 7.2)

Rasters are aligned and stored in one array as follow (Figure 7.3):

5 3 1 2 7 1 0 4 5 9 2 5 0 4 3 2 1 7 3 8 4 0 2 4

Our query allows selecting disjoint subsequences of size L such that the average over these

subsequences satisfying the user’s condition. In our example L= 3 (each subsequence contains 3

rasters see Figure 7.4).

R1 R2 R3 R4 R6 R5

5 3

1 2

7 1

0 4

5 9

2 5

0 4

3 2

1 7

3 8

4 0

2 4

5 3 1 2 7 1 0 4 5 9 2 5 0 4 3 2 1 7 3 8 4 0 2 4

S1 S2

Figure 7.2. A set of 6 rasters of size 4.

Figure 7.3. Alignment of the 6 rasters.

Figure 7.4. Example of two disjoint subsequences of size 3.

107

Now, the same key is assigned to each cell in the same subsequence. Hence, we get two segments

and the sum of each subsequence is computed based on their keys (Figure 7.5)

Concerning the second step which consists in testing if the average of each subsequence Sj is

satisfying the user’s condition, we assign one thread to each result in the output array which will

be responsible for checking the condition.

The straightforward parallel approach is quite simple since the segmented reduction function is

called only once. After that, threads are launched to check the user’s threshold condition. However,

the main limitation of this straightforward approach is that the reduction operation is very

expensive in time and computation.

7.3.2 Improved parallel approach
7.3.2.1 Based on a sort

In this subsection, we overcome the limitation of the straightforward parallel approach by

introducing a sorting step in the process. We have introduced this idea for the individual selection

of rasters in the previous chapters. Here, the idea behind the sorting is to try to reject the

subsequences not satisfying the query condition in early stages to avoid useless computations since

5 3 1 2 7 1 0 4 5 9 2 5 0 4 3 2 1 7 3 8 4 0 2 4

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

S1
S2

 44/12 38 /12

Figure 7.5. Example of two disjoint subsequences of size 3.

108

the goal of the query is not to compute the average of all subsequences. We do not have to complete

the average computation for the subsequence that does not satisfy the condition. A subsequence

average computation can be stopped as soon as we are sure that the user-defined condition will not

be satisfied. As a first step, we propose to sort the cells of each raster in descending order. In that

case, the threshold is reached faster for the subsequence Sj that does not satisfy the user-defined

threshold.

Figure 7.6 shows the first step consisting in sorting all the rasters in parallel in descending

order. To do that efficiently, we have adopted the segmented sort parallel technique to get all the

rasters sorted in one shot. To achieve this objective, we have chosen a data parallel primitives

approach, for instance, cub::DeviceSegmentedRadixSort parallel primitive function which

allows performing a batched radix sort across multiple non-overlapping sequences. The reason why

Figure 7.6. Illustration of our method for the first subsequence S1.

109

we decide to use these parallel primitives is to reduce the implementation complexity and maximize

the performance of our algorithms since these parallel primitives are highly improved.

Once the rasters are sorted, we move to the second step. It consists in splitting each sorted raster

into equal segments (tiles). Thus, the first tile of each raster contains the cells of the largest

numbers. We consider positive numbers for cell values. In the case of negative numbers in the

datasets, shifting by a large number is needed (e.g. adding 100 to all the values).

In the first iteration, we will compute only the sum of the first tiles of each raster for a given

subsequence Sj. If the result Res1 does not satisfy the query condition, then the subsequence Sj is

rejected. Otherwise, we repeat the same processing for the second tiles of each raster in Sj, add it

to Res1 (the previous results of the first segments) and check the results: if Res2 does not satisfy the

query condition then Sj is rejected. Otherwise, the process is repeated for the third segment of

rasters in Sj and so on. This will be done in parallel at the same time for all the disjoint

subsequences.

As indicated in the previous chapter, the main drawback of this approach is that the sorting process

is expensive in time and computations, especially in the case of large rasters. We propose in the

next subsection avoiding sorting all the rasters and settling for sorting only a few of them. The

others will be somehow reordered according to the sorted rasters. This is the subject of the next

subsection.

7.3.2.2 Based on the sophisticated sort

We have experimented the sort-based approach used in the previous chapter (Figure 7.7). To

implement the parallel approach, first, we have sorted the indexes (keys) of rasters that must be

sorted. We used the sorted keys to reorders the other rasters. To sort the raster and indexes, two

solutions are available: the solution based on CUB with: cub::DeviceRadixSort::SortPairs and

the solution based on Thrust with : thrust::sort_by_key.

The other rasters that fall in same windows of time will be reordered (sorted) according to the

sorted raster using the gather transformation that can be implemented using the primitive:

thrust::gather.

110

The rasters are sorted as described above. We need to implement the kernel responsible for

computing the average of subsequences using our method described above. To do that, the

primitives thrust:: reduce or the cub::DeviceReduce::Reduce functions can be used.

7.4

Experiments and results

Our experiments were performed on two platforms. Concerning the parallel methods, we have used

a GPU-Based platform: Tesla K20 C. While the sequential approaches were performed on Intel(R)

Core(TM). To implement our methods we have used C++, CUDA and the libraries Thrust and

CUB.

Table 7.1 shows the details related to the used hardware and software configuration.

Figure 7.7. Strategy to avoid sorting all the rasters.

111

Platform Hardware	Configuration Software	Configuration

CPU

Intel(R) Core(TM) i7-2600K

CPU @ 3.40 GHz

Device global memory: 16 GB

Cache size: 20,480 KB

Linux Ubuntu 19.04

C/C++

CUDA 8.0

Thrust v10.1.105

CUB v1.8.0

GPU

Tesla K20C

CUDA Cores : 2496

Device global memory: 5 GB

Memory Bandwidth: 208 GB/s

Table 7.1. Configuration.

In the tests, we aimed to outline the power of using the GPGPU platform to speed up

spatiotemporal raster queries over the classical approaches based on the CPU. We used the same

method as the one presented in chapter 6 to generate the dataset.

7.4.1 Experiment Results and Analysis
7.4.1.1 The Impact of the type of data on the performance

As we can see in Table 7.2, we have fixed the size of the raster, the number of the rasters, threshold

and also the size of the subsequences that we want select, since they do not have a huge impact on

the performance.

112

Dataset Standard

deviation

Number of

rasters

Size of

rasters

CPU (ms) GPU

(ms)

Acceleration

Dataset 1 " =	7.21 3650 1000×100 261200 200150 1.31

Dataset 2 " =	7.88 3650 1000×100 273130 190700 1.43

Dataset 3 " =	8.82 3650 1000×100 280810 140600 2.00

Dataset 4 " =	9.95 3650 1000×100 259020 118720 2.18

Dataset 5 " =	11.22 3650 1000×100 262500 95130 2.76

Dataset 6 " =	12.57 3650 1000×100 257200 80147 3.21

Table 7.2. Threshold = 60, the size of subsequences = 10, the size of the windows = 10.

As shown in Table 7.2, the proposed method based on the GPGPU is better than the sequential

method based on the CPU for all the generated datasets. Our method is sensitive to data distribution,

that is why the results are better when the data has a large standard deviation due to an important

variation inside the dataset. On the other hand, execution is slower when the standard deviation of

the dataset is small. In fact, if the values in rasters are close to each other, the sort does not provide

a great improvement, as the goal of the descendent sort is to sum the highest values first to reach

the threshold as soon as possible. The evolution speed over time of the spatial distribution of cell

values is a crucial factor in this approach. In the case of rapid spatial distribution value changes,

our proposed heuristic will not increase the performance. Note that the sorting step costs about

40% of the computation cost. The fixed parameters of our datasets are not chosen arbitrary - they

are the best values that give good performance.

113

7.4.1.2 The Impact of the time window size on the performance

Let’s see how the time window size impacts the performance over “dataset 6” with the same

fixed parameters cited in the previous subsection. As we can see in Figure 7.8, when the time

window size is too small (size = 3), the number of time windows increases as well as the number

of sorted rasters. Since the sorting is expensive, it will increase the time execution. On the contrary,

when the time window size is too large (size= 15), it will impact the reordering precision of the

rasters and hence the sorting becomes useless which will lead to performance drops. However,

when the time window is not too small and not too large (size=10), we get good performance.

Figure 7.8. The time windows size’s impact on the performance over the dataset 6.

 7.4.1.3 The Impact of data size on the performance

In this subsection, we show the data size impact the performance of our method. To do that

we have generated different datasets with different raster sizes. We have fixed the standard

deviation which is equal to 12.57, the size of subsequences = 10 and the size of the time windows

= 10.

114

Dataset Number of

rasters

Size of rasters CPU (ms) GPU

(ms)

Acceleration

Dataset 1
3650 100×100 21350 6843 3.11

Dataset 2 3650 200×200 182070 57254 3.18

Dataset 3 3650 1000×100 257200 80147 3.21

Dataset 4 3650 500×500 415021 117040 3.54

Table 7.3.

As shown in Table 7.3, the proposed method is still better than the sequential over different dataset

sizes.

7.5 Conclusion

Analyzing large-scale spatiotemporal data allows extracting more valuable and crucial

information that is essential for many applications, for instance: supporting decision making,

science discovery and prediction making. The main requirement for spatial data-intensive

applications is the processing time and scalability. Unfortunately, most of the existing methods are

based on traditional approaches and architecture which make them not appropriate to support

querying massive spatial data efficiently.

In this work, we addressed the problem of speeding up the spatiotemporal rasters query consisting

in selecting only disjoint raster subsequences of fixed size, such that the average of the cells over

these subsequences is less than a user defined threshold. In our illustrations, we suppose that the

region of interest of the user is the entire raster and not only the sub-region for simplification’s

purpose.

In our work, first, we have shown that we can improve the processing of such query by

using the power of recent GPU cards. Furthermore, using parallel primitives based on CUDA

allowed us to further optimize our implementation and reducing coding complexity. Secondly, we

have designed and implement a new method including a rejection step based on sorting to reduce

computations and hence to further accelerate the processing time of our query. The proposed

115

approaches have been tested on temperature data. Our experiments on our large-scale geospatial

data have shown good performance in terms of time compared to the straightforward GPU method,

and we were able to obtain a significant speedup compared to CPU based methods. We have to

highlight that our methods based on sorting is sensitive to data distribution, as a result, the

performance change depending on the distribution of the data set.

116

Part 3

117

As mentioned above in the introduction, this part concerns the two last chapters:

• Chapter 8: We dedicate this chapter for the application of our methods on real data of

INRAE Montoldre. We present the data set of Montoldre, the acquisition, the type of data

and the data characteristics. Finally, we show the results of our methods on this real data.

• Chapter 9: concerns the conclusion and perspectives. We provide a summary of our work,

give outlines of our proposals and contributions, and finally suggest new research trends to

extend our work.

118

119

Chapter 8

Experiments of the different approaches on real data sets of
Montoldre

In this chapter, we extend the experimentations of our methods cited above to a real dataset

provided by INRAE Montoldre site (Roussey et al.,2020). Our goals were to evaluate the

performance of our methods on a real data set.

The chapter is organized as follow. First, we present the INRAE site located in Montoldre (Allier)

and we describe the raw dataset produced by the Montoldre sensor network. We talk about the

spatial interpolation used to produce rasters from these georeferenced sensor network data. We

show results of our methods on this real dataset.

8.1 Sensor network in Montoldre

INRAE has a large experimental farm located in Montoldre (Figure 8.1). This later is

dedicated to the development and the experimentation of agri-environmental techniques. Based on

a sensor network composed by Live nodes (developed by LIMOS), this platform provides a real

data that are used by researchers in their work related to environmental data. The measurements

are air and soil humidity, temperature and light. They are measured using several sensors

distributed over Montoldre site.

120

8.2 Raw Dataset Description

The Montoldre raw dataset produced by LiveNode is composed of two SQL tables: the

network table and the sensors table.

• The network table concerns information about 10 sensor nodes.

• The sensors table contains columns such as: myNodeID, battery, temperature, humidity,

light, etc., and 14970995 rows which correspond to the measurements of the different

sensors during many months with different fine-grained frequency of acquisition.

The table below shows the description of some measures:

Figure 8.1. Montoldre INRAE experiment farm (Touseau and Le Sommer, 2019).

121

Measure Meaning Units

Battery Battery state of node

 mV

Temperature Temperature measurement C degree

Humidity

Air humidity measurement Percent

Light Light measurement N/A

Watermark n Measurement value of the
n-th watermark device.
Watermark is a soil humidity
sensor. The Watermark
sensors is in the soil at
different soil depth.

Watermark's unit (range: 0 to

200)

Table 8.1. Description of the measures.

Note:

Watermark1: This sensor is deployed at 10 cm depth in the soil.

watermark2: This sensor is deployed at 20 cm depth in the soil.

watermark3: This sensor is deployed at 30 cm depth in the soil.

8.3 Spatial data interpolation

8.3.1 Spatial interpolation
Rasters are produced form the sensor network using spatial interpolation. Spatial Interpolation

methods can be classified into three categories: geographical statistics methods for instance Kriging

methods, non-geographical statistics (the main method in this category is the inverse distance

weighted - IDW) and finally the hybrid approach. In this subsection we will present the IDW and

kriging methods which are the eminent methods in geospatial interpolation methods.

Inverse Distance Weighted Interpolation Method

Based on the Tobler's first law of geography "everything is related to everything else, but near

things are more related than distant things" (Tobler,1970), the Inverse Distance Weighted

(IDW)(Li et al.,2018) is the most used interpolation method thanks to its simplicity and intuitive

interpolation. The main advantage of the IDW is the easiness of implementation and the fact that

122

is keeping the measured value at sample location. Thus, the IDW is used by several fields and

widely adopted by almost GIS. The idea behind the IDW is that the prediction of the values of

unsampled point realized by computing the weighted average of the closest sampled points.

Hence the formula of the IDW is as follow (Li et al.,2018):

Such that:

• Z: The unknown value for estimated value point,

• Zi: The known value for exact value point,

• di: the distance between exact point and estimated point,

• p: A power parameter,

• n: The number of sample data points.

Kriging Interpolation Method

Kriging is a powerful geostatistical interpolation method is named after D.G. Krige from South

Africa. The method is founded on the idea of estimating the unsampled points using sampled points

and their spatial relationships (Singh and Verma, 2019) using Semivariogram (Tan and Xu, 2014)

to assign optimal weights (kriging weights) to the sampled point values so as to compute the

unsampled points. The Semivariogram can be a Gaussian model or others models. There are several

variants of the kriging method, however the most used for spatial interpolation data is the ordinary

version which assumes that the mean and variance of the values is constant across the spatial field.

The optimal weights for each unsampled point computed in reference to all the sampled points

using the following formula:

123

Where:

the value of the predicted point (z-hat, at location x-nought) is equal to the sum of the value of each

sampled point (x, at location i) times that point’s unique weight (lambda, for location i).

From a subpart of the Montoldre sensor dataset, 4980 rasters have been produced in 4 different

resolutions (300x300, 350x350, 400x400, 450x450) for 3 types of measures (Temperature,

humidity, Watermark 2, using the IDW interpolation methods – for a total of 4980*4*3=59760

rasters. The IDW interpolation method allows predicting the messing values of the unsampled

locations. For each type of measurements and each resolution, one raster is generated by hour, with

at least 3 available sensor measures – as all the sensors are not always active at the same time.

8.4 Experiments on Montoldre hourly dataset

In this subsection we report the results obtained by our experimentations on the Montoldre dataset

using the overlapping aggregation of raster data sequences and the selection of raster sequences

based on a User-defined condition. The process related to the selection of raster sequences based

on a user-defined condition is a quite similar to the other raster selection process including

aggregations.

Note that (as a precaution) we have modified the temperature values (by using a translation) to

obtain only positive values.

Hereunder a table (Table 8.2) which shows the statistical description of the datasets such that:

• Min: The minimum value of the measure in the whole dataset.

• Max: The maximum value of the measure in the whole dataset.

• Mean: The mean value of the measure in the whole dataset.

• Standard deviation: The standard deviation of the measure in the whole dataset.

• Mean of rasters means: To compute this value, first we compute the mean of each raster

used for our experiments then we compute the global mean which is the mean over the

raster means).

• Mean of rasters standard deviation: To compute this value, first we compute the standard

deviation of each raster used for our experiments then we compute the mean over all the

standard deviations of the rasters).

124

Measure Min Max Mean Standard

deviation

Mean of rasters means Mean of raster standard

deviation

Temperature 0 45.7 11.89 8.73 12 2.73

Humidity 9.9 100 78 21.97 78.15 15.20

Watermark 2 1 200 63.80 88.96 61.71 43.79

Table 8.2. Statistical Description of the measures.

Dataset Raster size CPU

(ms)

GPU

(ms)

Acceleration

Dataset1 450×450 247256 3988 62

Dataset2 400×400 203058 3501 58

Dataset3 350×350 187089 3171 59

Dataset4 300×300 165474 2853 58

Table 8.3. Experiments on temperature - Results for Overlapping Aggregation of Raster Data
Sequences.

125

Dataset Size of rasters CPU (ms)

CPU

With
sorting(ms)

GPU (ms) GPU

With
sorting(ms)

 (ms)

Dataset 1 100×100 25464 34180 21023 29117

Dataset 2 200×200 240255 380521 190762 316284

Dataset 3 1000×100 349654 471290 260273 397641

Dataset 4 500×500 587323 697138 418012 631540

Table 8.4. Experiments on temperature - Results for the Selection of Raster Sequences based on a
User-defined condition.

Dataset Raster size CPU

(ms)

GPU

(ms)

Acceleration

Dataset1 450×450 247020 4117 60

Dataset2 400×400 195510 3430 57

Dataset3 350×350 187575 3075 61

Dataset4 300×300 162960 2910 56

Table 8.5. Experiments on air humidity – Results for Overlapping Aggregation of Raster Data
Sequences.

126

Dataset Size of rasters CPU (ms) GPU (ms) GPU with

sorting (ms)

Dataset 1 100×100 28231 17328 7133

Dataset 2 200×200 250165 131571 61604

Dataset 3 1000×100 369719 171803
83251

Dataset 4 500×500 608413 372631 127679

Table 8.6. Experiments on air humidity - Results for the selection of Raster Sequences based on a
User-defined condition.

Dataset Raster size CPU

(ms)

GPU

(ms)

Acceleration

Dataset1 450×450 241227 3829 63

Dataset2 400×400 203547 3571 57

Dataset3 350×350 190806 3234 59

Dataset4 300×300 156520 2795 56

Table 8.7. Watermark experiments – Results for Overlapping Aggregation of Raster Data
Sequences.

127

Dataset Size of rasters CPU (ms) GPU (ms) GPU with

sorting (ms)

Dataset 1 100×100 27647,508 12981 7275,66

Dataset 2 200×200 266498,904 116730 63452,12

Dataset 3 1000×100 382122,09 162014 84916,02

Dataset 4 500×500 625116,384 302833 130232,58

Table 8.8. Watermark experiments - Results for the selection of Raster Sequences based on a
User-defined condition.

8.5 Discussion

The overlapping aggregation of raster data sequence based on the GPU is still faster than

the CPU version over the three measures: Temperature (Table 8.3), humidity (Table 8.5) and

watermark (Table 8.7). As we can see in these tables, a very good speedup is obtained over all the

generated datasets. These results were been absolutely expected since the performance of our

method is independent to the data – the (GPGPU) parallel approach is better than the CPU

"sequential" one. Besides, our method is generic and can be used for more general cases and for

other types of data, such as array and vector aggregation.

Concerning the selection of raster disjoint subsequences based on a user-defined condition method,

the results using the temperature dataset showed always good results for using the GPU over the

CPU version. However, our optimized method based on rejection step based on sorting showed

bad results for the CPU and the GPU for the temperature dataset. In fact, the time of execution is

worse compared to methods without sorting. In fact, our optimized methods are based on a sorting

step that must allow to reject the raster sequences earlier. However, the values of the temperature

dataset are closer to each other, in rasters. The goal of the sorting step is to allow summing the

highest values first. Consequently, when the values are too close in rasters, the sorting step is

128

useless to reach quickly the threshold and to reject raster in an earlier stage. In this case, the sorting

step becomes a heavy step that burden off the shoulder of the method since sorting is expensive in

term of computations, hence the execution time is higher than the methods without sorting.

Unlike the previous results on the temperature data. In the case of Humidity and Watermark

datasets, our selection methods using the sort gets good results in the sequential and even better in

the parallel version. This is due to the sorting step which allows rejecting raster sequences in earlier

stages, because of the distribution of the humidity and watermark data values (Table 8.2).

129

130

Chapter 9

Conclusions and Perspectives

9.1 Summary of the work

The acquisition of environmental data has made a huge leap forward in term of technology

and the price. Sensors are now, smaller, cheaper and even smarter, moreover, more and more

georeferenced sensors are deployed for many applications such as environment monitoring,

precision agriculture, positioning, this leads to the production of large spatial data. Data availability

and data storage are often not anymore, a barrier, whereas the real bottleneck is, in many cases, the

analysis of these spatial data that does not cease to grow dramatically.

Unfortunately, most of existing methods and approaches are based on traditional computing

framework (uniprocessors) which makes them not scalable and not adequate to deal with large-

scale spatial data. Processing large volume of data is both a challenge and a real opportunity.

Querying large-scale spatial data allows extracting more valuable and meaningful information that

is vital for decision making especially in precision agriculture. It can be used for recommendations

on the use of agricultural inputs (water, phytosanitary treatments, etc.), to optimize production, for

crop management in order to optimize and to reduce the use of agro-equipment and decision

support systems for farmers. Spatial data is also important is scientific advancement and scenario

predictions. The major requirements for the data-intensive spatial applications are the processing

time and scalability. Spatial query processing must be fast and able to handle more large spatial

data efficiently.

The work in our thesis focused on the acceleration of the processing of spatial data in order

to support high-performance queries on this later. Our work is based on the use of the GPGPU

device to achieve the expected results.

We started tackling some problems of processing spatial data in order to speed up and

accelerate the time of processing.

131

First, we have worked on a classical problem of overlapping aggregations of large raster

sequences, this later has never have been studied before, according to our survey. In this context,

we have proposed many experiments and compared different GPGPU implementations strategies

for this problem. We have used a public dataset NOAA that provides the temperatures max min

and mean of a station at every 5 minutes for many years. The results show that our method is 60

times faster than the sequential version.

Secondly, we have tackled raster selection queries based on a threshold fixed by the user.

In fact, in different analyses, users can be interested only in some rasters (for example, days where

the temperature were greater than 15 C°). In that case, it is possible to reduce the processing time

by implementing a rejection procedure of rasters based on the user’s threshold in the early stages

of the computation. To this end, we have added a sorting step to reject rasters that are not satisfying

the condition in an early time. First, we have implemented a sequential method and in a second

time, we have implemented a parallel-based method. Both methods have shown a good

performance and the rejection step has improved the performance in both versions of the method.

However, the GPGPU based method enhance allowed us to get more efficiency and time

processing.

In addition, we have worked on a new query that consist on searching disjoint raster

sequences data satisfying a user condition. We have implemented a parallel-based method to speed

up the query by including a sorting step in the process. We obtained good results and the paper is

almost done therefore almost ready for submission.

We have to highlight that our two last optimized methods based on sorting are sensitive to

data distribution, as a result, the performance changes depending on the data set.

Finally, we have tested all our methods on the Montoldre dataset. In this regard, we have

generated dataset based on the raw Montoldre dataset. Our methods were able to achieve good

results, which confirms the potential of using the GPGPU to support large-scale dataset and the use

of the rejection step to avoid useless additional computations in the case of suitable data.

9.2 Perspectives

The results of our work have clearly shown that the use of the GPGPU is very suitable to

support high performance query on massive large-scale dataset. To this regard, interesting research

132

perspectives could be derived from our works on several sides and aspects. In our contributions,

only simple map algebra operations were used for raster aggregations i.e., the sum. Hence, it will

be interesting to investigate and propose methods based on the GPGPU that covers other map

algebra operations such that, Max, min, etc. This will allow researchers to get a clear and complete

idea about the power of the use of the GPGPU to process map algebra operations.

Concerning the first contribution, our proposed method is based on two main steps: computation

of the mean of each raster then the computation of the mean over the overlapped sequences using

the prefix-sum. An improvement of this method can be proposed using only one-pass step to

compute the overlapped aggregations of rasters. In fact, the aggregation of the raster subsequences

can be computed using only the prefix sum which will absolutely improve the results. Another

interesting improvement can be done in the sorting step. In our works, the frequency of raster

sorting was fixed based on an empirical method. In fact, we run our methods with many frequencies

of sorting then we take the frequency that led to the best results. A good research contribution can

be to propose a method to set a criterion to determine the best frequency of sorting based on the

statistical description and the nature of data. Furthermore, in the case of the selection queries

presented in our works it will be a good idea to check the correlation between many measures (for

example temperature and humidity) if they have the same behavior during time. it will be possible

to make sorting only for the first measure and reuse it for the other measures having the same

behavior by reordering raster cells in order to answer the same selection queries which will avoid

additional time processing.

Also, we believe that our proposed methods can be applied and cover other fields which have the

same structure and behavior of our data. The investigation of the use of our methods (for instance

the rejection process based on sorting) on other fields will be very useful in order to study the

behavior of our methods on other types of data from other fields and applications. Finally,

implementing our methods on other parallel solutions such as OpenCL will be very useful to make

a complete comparison between all the solutions.

133

Bibliography

Agosto, E., 2013. Vector–raster server-side analysis: a PostGIS benchmark. Appl. Geomat. 5, 177–

184.

Ait Issad, H., Aoudjit, R., & Rodrigues, J. J. P. C. (2019). A comprehensive review of Data Mining

techniques in smart agriculture. Engineering in Agriculture, Environment and Food, 12(4), 511–

525. https://doi.org/10.1016/j.eaef.2019.11.003

Ak, J. N., Liktor, G., & Dachsbacher, C. (2012). GPU Computing : Image Convolution.

Assiroj, P., Warnars, H. L. H. S., Kosala, R., Ranti, B., Supangat, S., Kistijantoro, A. I., &

Abdurrachman, E. (2019). The Form of High-Performance Computing: A Survey. IOP

Conference Series: Materials Science and Engineering, 662(5). https://doi.org/10.1088/1757-

899X/662/5/052002

Barbian, M.H., Assunção, R.M., 2017. Spatial subsemble estimator for large geostatistical data.

Spatial Statistics 22, 68–88. https://doi.org/10.1016/j.spasta.2017.08.004

Baumann, P. (2008). Computing Aggregate Queries in Raster Image Databases Using Pre-Aggregated

Data. Lecture Notes in Engineering and Computer Science, 2173(1), 201–206.

Baumann, P., Furtado, P., Ritsch, R., Widmann, N., 1997. The RasDaMan approach to

multidimensional database management. In: Proceedings of the 1997 ACM Symposium on

Applied Computing ACM, San Jose, CA.

Blelloch, G., 1997. Prefix sums and their applications. Tech. Rep. CMUCS-90-190, School of

Computer Science, Carnegie Mellon University.

Cary, A., Sun, Z., Hristidis, V., & Rishe, N. (2009). Experiences on processing spatial data with

mapreduce. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

134

Intelligence and Lecture Notes in Bioinformatics), 5566 LNCS, 302–319.

https://doi.org/10.1007/978-3-642-02279-1_24

Cisternas, I., Velásquez, I., Caro, A., & Rodríguez, A. (2020). Systematic literature review of

implementations of precision agriculture. Computers and Electronics in Agriculture, 176(May),

105626. https://doi.org/10.1016/j.compag.2020.105626

Cheng, J., Grossman, M., & McKercher, T. (2013). Professional CUDA C Programming. In Journal

of Chemical Information and Modeling (Vol. 53, Issue 9).

Daras, G., Agard, B., & Penz, B. (2018). A spatial data pre-processing tool to improve the quality of

the analysis and to reduce preparation duration. Computers and Industrial Engineering,

119(February 2017), 219–232. https://doi.org/10.1016/j.cie.2018.03.025

Diamond, H. J., T. R. Karl, M. A. Palecki, C. B. Baker, J. E. Bell, R. D. Leeper, D. R. Easterling, J.

H. Lawrimore, T. P. Meyers, M. R. Helfert, G. Goodge, Thorne P. W., 2013: [dataset] U.S.

Climate Reference Network after one decade of operations: status and assessment. Bull. Amer.

Meteor. Soc., 94, 489-498. doi: 10.1175/BAMS-D-12-00170.1.

EN-NEJJARY, D., PINET, F., KANG, M. -2019. Modeling and Computing Overlapping Aggregation

of Large Data Sequences in Geographic Information Systems. International Journal of

Information System Modeling and Design, vol.10(1), IGI Global USA, p. 20-41.

EN-NEJJARY, D., PINET, F., KANG, M. -2018. A Method to Improve the Performance of Raster

Selection Based on a User-Defined Condition: An Example of Application for Agri-

environmental Data. Advances in Intelligent Systems and Computing 893, 190-201., Springer

EN-NEJJARY, D., PINET, F., KANG, M. -2018. Large-scale geo-spatial raster selection method

based on a User-defined condition using GPGPU. 11th International Conference on Computer

Science and Information Technology, Paris, France, 8 p

Garland, M. and Kirk, D.B., 2010. Understanding throughput-oriented architectures. Communications

of the ACM, 53 (11), 58–66.

135

Greenberg, J. A., Rueda, C., Hestir, E. L., Santos, M. J., & Ustin, S. L. (2011). Least cost distance

analysis for spatial interpolation. Computers and Geosciences, 37(2), 272–276.

https://doi.org/10.1016/j.cageo.2010.05.012

Grisso, R., Alley, M., McCellan, P., Brann, D., & Donohue, S. (2004). Precision Farming: A

comprehensive approach. Marketing Health Services, 24, 12–13.

Gunawardena, T., Vicari, A., & Mecca, G. (2016). Spatial data processing with MapReduce. 2015

IEEE 10th International Conference on Industrial and Information Systems, ICIIS 2015 -

Conference Proceedings, 485–490. https://doi.org/10.1109/ICIINFS.2015.7399060

Halpin, T., Melton, J., Simon, A. R., & Chisholm, M. (2006). The Morgan Kaufmann Series in Data

Management Systems. In Querying XML. https://doi.org/10.1016/b978-1-55860-711-8.50025-3

Harris, M. (n.d.). GPGPU Lessons Learned.

Harris M., Optimizing Parallel Reduction in CUDA, 2007a.

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduc

tion.pdf.

Harris M., Parallel Prefix Sum (Scan) with CUDA, 2007b.

https://www.mimuw.edu.pl/~ps209291/kgkp/slides/scan.pdf.

He, B., Fang, W., Luo, Q., Govindaraju, N. K., & Wang, T. (2008). Mars: A MapReduce framework

on graphics processors. Parallel Architectures and Compilation Techniques - Conference

Proceedings, PACT, 260–269. https://doi.org/10.1145/1454115.1454152

Hozo, S.P., Djulbegovic, B., Hozo, I., 2005. Estimating the mean and variance from the median, range,

and the size of a sample. BMC Medical Research Methodology 5, 13–13.

https://doi.org/10.1186/1471-2288-5-13

http://hadoop.apache.org/common/docs/current/hdfs design.html, 2009

136

https://en.wikipedia.org/wiki/Viewshed_analysis.

http://planet.botany.uwc.ac.za/nisl/gis/spatial/chap_1_11.htm.

https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-580/architecture.

https://nvlabs.github.io/cub/

https://thrust.github.io) and CUB

H, Y. (2015). A Review on Relationship between Climate Change and Agriculture. Journal of Earth

Science & Climatic Change, 07(02). https://doi.org/10.4172/2157-7617.1000335

J. A. Orenstein. Spatial query processing in an object- oriented database system. SIGMOD’86, 326-

336, 1986.

Kang, M.-A., Zaamoune, M., Pinet, F., Bimonte, S., Beaune, P., 2015. Performance optimization of

grid aggregation in spatial data warehouses. International Journal of Digital Earth 8, 970–988.

https://doi.org/10.1080/17538947.2014.962999

Kirk, D. B., Hwu, W. W., 2013. Programming massively parallel processors: A hands-on approach.

San Francisco, Calif: Morgan Kaufmann.

Kriegel, H. P., Seeger, B., Schneider, R., & Beckmann, N. (1990). The R-tree: an efficient and robust

access method for points and rectangles. GIS for the 1990s. Proc. National Conference, Ottawa,

1990, 448–455. https://doi.org/10.1145/93597.98741

Li, Z., Wang, K., Ma, H., & Wu, Y. (2018). An Adjusted Inverse Distance Weighted Spatial

Interpolation Method. 65(Cimns), 128–132. https://doi.org/10.2991/cimns-18.2018.29

Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A Literature

Review.Journal of Computer and Communications, 03(05), 164–173.

https://doi.org/10.4236/jcc.2015.35021

137

Maitrey, S., & Jha, C. K. (2015). MapReduce: Simplified Data Analysis of Big Data. Procedia

Computer Science, 57, 563–571. https://doi.org/10.1016/j.procs.2015.07.392

Martin, P., Ayuso, L., Torres, R., Gavilanes, A. 2012. Algorithmic Strategies for Optimizing the

Parallel Reduction Primitive in CUDA. 2012 International Conference on High Performance

Computing & Simulation (HPCS)

Md. Firoj Ali, & Rafiqul Zaman Khan. (2015). Distributed Computing: An Overview. International

Journal of Advanced Networking and Applications (IJANA), 7(01), 2630–2635.

http://www.ijana.in/papers/V7I-9.pdf

Melesse, A.M., Weng, Q., S.Thenkabail, P., Senay, G.B., 2007. Remote Sensing Sensors and

Applications in Environmental Resources Mapping and Modelling. Sensors (Basel, Switzerland)

7, 3209–3241

Neteler, M., Bowman, M. H., Landa, M., & Metz, M. (2012). GRASS GIS: A multi-purpose open

source GIS. Environmental Modelling and Software, 31, 124–130.

https://doi.org/10.1016/j.envsoft.2011.11.014

National Ecological Observatory Network (NEON)

Palmaccio, M., Dicuonzo, G., & Belyaeva, Z. S. (2020). The internet of things and corporate business

models: A systematic literature review. Journal of Business Research, May, 1–9.

https://doi.org/10.1016/j.jbusres.2020.09.069

Pinet, F. (2012). Entity-relationship and object-oriented formalisms for modeling spatial

environmental data. Environmental Modelling& Software 30 (80-91)

Pozzani, G., & Zimányi, E. (2012). Defining spatio-temporal granularities for raster data. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 6121 LNCS (May 2014), 96–107. https://doi.org/10.1007/978-

3-642-25704-9_10

138

Pullar, D., 2001. MapScript: A Map Algebra Programming Language Incorporating Neighborhood

Analysis. GeoInformatica 5, 145–163. https://doi.org/10.1023/A:1011438215225

R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. Very high-resolution interpolated

climate surfaces for global land areas. International Journal of Climatology, 25(15):1965-1978,

2005.

Roussey, C., Bernard, S., André, G., & Boffety, D. (2020). Weather data publication on the LOD

using SOSA/SSN ontology. Semantic Web, 11(4), 581–591. https://doi.org/10.3233/SW-200375

Ruetsch, G., & Oster, B. (2008). Getting started with cuda. Nvidia Corp, Aug, October.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Getting+Started+with+CUD

A#0

Sanders, J., Kandrot, E., Dongarra, J. J., 2015. CUDA by example: An introduction to general-purpose

GPU programming. Upper Saddle River: Addison-Wesley/Pearson Education

Sawant, S., Durbha, S.S., Jagarlapudi, A. (2017). Interoperable agro-meteorological observation and

Analysis platform for precision agriculture : A case study in citrus crop water requirement

estimation. Computers and Electronics in Agriculture 138 (175-187)

Schlosser, S. W., Ryan, M. P., Taborda, R., López, J., O’Hallaron, D. R., & Bielak, J. (2008).

Materialized community ground models for large-scale earthquake simulation. 2008 SC -

International Conference for High Performance Computing, Networking, Storage and Analysis,

SC 2008. https://doi.org/10.1109/SC.2008.5215657

Singh, P., & Verma, P. (2019). A comparative study of spatial interpolation technique (IDW and

Kriging) for determining groundwater quality. In GIS and Geostatistical Techniques for

Groundwater Science. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815413-7.00005-5

Song, M., Li, W., Zhou, B., & Lei, T. (2016). Spatiotemporal data representation and its effect on the

performance of spatial analysis in a cyberinfrastructure environment - A case study with raster

139

zonal analysis. Computers and Geosciences, 87, 11–21.

https://doi.org/10.1016/j.cageo.2015.11.005

Steinbach, M., & Hemmerling, R. (2012). Accelerating batch processing of spatial raster analysis

using GPU. Computers & Geosciences, 45, 212–220.

https://doi.org/10.1016/j.cageo.2011.11.012

Tan, Q., & Xu, X. (2014). Comparative analysis of spatial interpolation methods: An experimental

study. Sensors and Transducers, 165(2), 155–163.

Temizel, A., Halici, T., Logoglu, B., Temizel, T.T., Omruuzun, F., Karaman, E., 2011. Experiences

on image and video processing with CUDA and OpenCL. In: GPU Computing Gems. Morgan

Kaufmann, Boston, pp. 547–567. (Chapter 34)

Theobald, D.M., 2005. GIS concepts and ArcGIS methods. 2nd ed. Fort Collins, CO: Conservation

Planning Technologies, Inc.

Tomlin, C.D., 1994. Map algebra: one perspective. Landscape and Urban Planning 30, 3–12.

https://doi.org/10.1016/0169-2046(94)90063-9

Touseau, L., & Le Sommer, N. L. (2019). Contribution of the web of things and of the opportunistic

computing to the smart agriculture: A practical experiment. Future Internet, 11(2).

https://doi.org/10.3390/fi11020033

Vincent Tao, C., & Li, J. (2007). Advances in mobile mapping technology. Advances in Mobile

Mapping Technology,1–176.https://doi.org/10.4324/9780203961872

Viola, I., Kanitsar, A., Groller, M.E., 2003. Hardware-based nonlinear filtering and segmentation

using high-level shading languages, in: IEEE Transactions on Ultrasonics, Ferroelectrics and

Frequency Control. Presented at the IEEE Visualization 2003, IEEE, Seattle, WA, USA, pp. 309–

316. https://doi.org/10.1109/VISUAL.2003.1250387

140

Walker, J. P., & Willgoose, G. R. (1999). On the effect of digital elevation model accuracy on

hydrology and geomorphology. Water Resources Research, 35(7), 2259–2268.

https://doi.org/10.1029/1999WR900034

Walsh, S.D.C., Saar, M., Bailey, P., Lilja, D., 2009. Accelerating geoscience and engineering system

simulations on graphics hardware, Computers & Geosciences 35(12):2353-2364

W. R. Tobler. “A computer movie simulating urban growth in the Detroit region,” Econ Geogr, 1970,

46, 234-240.

Wu, Y., Ge, Y., Yan, W., & Li, X. (2007). Improving the performance of spatial raster analysis in GIS

using GPU. Geoinformatics 2007: Geospatial Information Technology and Applications, 6754,

67540P. https://doi.org/10.1117/12.764613

Xia, Y. J., Kuang, L., & Li, X. M. (2011). Accelerating geospatial analysis on GPUs using CUDA.

Journal of Zhejiang University: Science C, 12(12), 990–999.

https://doi.org/10.1631/jzus.C1100051

Yang, C., Yu, M., Li, Y., Hu, F., Jiang, Y., Liu, Q., Sha, D., Xu, M., & Gu, J. (2019). Big Earth data

analytics: a survey. Big Earth Data, 3(2), 83–107.

https://doi.org/10.1080/20964471.2019.1611175

Yang, Z., Zhu, Y., Pu, Y., 2008. Parallel Image Processing Based on CUDA, in: 2008 International

Conference on Computer Science and Software Engineering. Presented at the 2008 International

Conference on Computer Science and Software Engineering, IEEE, Wuhan, China, pp. 198–201.

https://doi.org/10.1109/CSSE.2008.1448

Zeller, C. (2011). CUDA C / C ++ Basics What is CUDA ? Slides.

Zhang, J., Yang, W., Sun, J., & Lv, Y. (2010). GPU-accelerated parallel algorithms for map

algebra.2010 2nd Conference on Environmental Science and Information Application

Technology, ESIAT 2010, 1, 882–885. https://doi.org/10.1109/ESIAT.2010.5567202

141

Zhang, J., & You, S. (2013). High-performance quadtree constructions on large-scale geospatial

rasters using GPGPU parallel primitives. International Journal of Geographical Information

Science, 27(11), 2207–2226. https://doi.org/10.1080/13658816.2013.828840

Zhang, J., You, S., & Gruenwald, L. (2010). Indexing large-scale raster geospatial data using

massively parallel GPGPU computing. GIS: Proceedings of the ACM International Symposium

on Advances in Geographic Information Systems, 450–453.

https://doi.org/10.1145/1869790.1869859

