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Abstract

In this work, we investigate object detection algorithms with application to
astronomical images *. We specifically target to detect faint astronomical
sources which are near the image background level. Our main directions
include Mathematical Morphology (MM) and Convolutional Neural Network
(ConvNet). The contributions of this study are presented in two parts:

The first part proposes a novel morphological-based approach based on
component-graphs and statistical hypothesis tests. The component-graphs
can efficiently handle multi-band images while the statistical hypothesis tests
can identify components that are significantly different from the background
level. Beyond the classical component-trees and their multivariate exten-
sions, the component-graph holds the complete structural information of
multi-band images as directed acyclic graphs (DAGs). Such DAGs are more
general and more powerful at the cost of non-trivial object filtering algo-
rithms. Then, we introduce two algorithms to filter duplicated and partial
components in the component-graphs. Experiments demonstrate that our
proposed approach significantly improves object detection on both multi-
band simulated and real astronomical images.

The second part turns our attention to ConvNet direction. We introduce
a real dataset of annotated astronomical objects. Based on this dataset,
we propose two models: a ConvNet-based model and a hybrid model. The
ConvNet-based model tailors astronomical contexts with three novel compo-
nents, including a normalization layer, an object differentiation module, and
a smoothness regularizer. Besides, the hybrid model uses both Morphology
and ConvNet. In the hybrid method, morphological modules select region
proposals while ConvNet extracts relevant information from the selected pro-

*This research was funded by the European Union Horizon 2020 program under the
Marie Sklodowska-Curie grant agreement No. 721463 to the SUNDIAL ITN network and
by the Programme d’Investissements d’Avenir (LabEx BEZOUT ANR-10-LABX-58).
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posals. Ablation studies show that the two proposed models outperform the
state of the art on both synthetic and real datasets.

Keywords Object Detection, Astronomical Images, Mathematical Mor-
phology, Component-graphs, ConvNet, R-CNN.
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Resumé

This thesis aims at developing efficient object detection algorithms with ap-
plications to astronomical images. We have explored the use of Mathemati-
cal Morphology (MM) and Convolutional Neural Network (ConvNet) in our
proposed models. In astronomy, object detection (or finding sources) is the
fundamental preliminary stage before entering any analysis. Despite the long
historical development of astronomical source finders, it is challenging to de-
tect faint sources and to segment crowded sources. Faint structures stand for
structures lying near background levels while crowded sources are structures
at interacting regions. To tackle these difficulties, we relies on three main
ideas: Component-graphs, ConvNets, and Astronomical Context. We have
proposed three models, including a morphological-based model, a ConvNet-
based model, and a hybrid model. Experiments and ablation studies demon-
strate our proposed models gain significant improvements in detecting objects
on both multi-band simulated and real astronomical datasets.

A. Object Detection in Astronomy

We first cover the basis of astronomical images and the challenges of object
detection (or finding sources) in astronomy. We discuss our research interests
and methodological directions that lead to a novel dataset (in Sec. B) and our
proposed MM-based (in Sec. C) and ConvNet-based (in Sec. D) approaches.

In astronomy, astronomers measure the source’s radiation with an optical
filter produces a single-band image. The optical filter lets a certain wave-
length interval pass through. Normally, several images of the same field of
view are obtained with different filters covering several standard wavelength
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(a) Filter g (b) Filter r (c) Filter z (d) Filters (g,r,z)

Figure 1: The UGC 07332: (a-c) Three single-band images associate to three
filters g r z and (d) The composition of the g,r,z images, source SDSS.

ranges of interest. A multi-band image is the stack of these same-of-view
single-band images. Fig. 1 shows similar filters of UGC 07332 - a nearby,
blue, low surface brightness galaxy. As we can see, the multi-band image
provides a determination of the image colors.

To design efficient astronomical object detection models, we relies on
three main ideas: Component-graphs, ConvNet, and Astronomical Context.

e Component-graphs: The information gain of the multi-band images
is useful to improve both object detection and segmentation, see Fig. 1.
For object detection, the information gain gives us more confident at
detecting faint structure that lies near the background level. For object
segmentation, the color information of the multi-band images helps to
deblend interacting regions.

To take advantage of the multi-band images, we propose to use component-
graph structures in our model, see Chapter 3. Compared to classical
component-trees, such component-graphs [Passat and Naegel, 2014]
are more general and more powerful at the cost of higher construction
and filtering complexities.

e ConvNet: We have chosen to integrate ConvNet into our models to
improve both object detection and segmentation, see Chapter 5. The
ConvNet architectures can naturally process multi-band images.

In contrast to morphology, ConvNet does not limit segmentation masks
to the thresholded components, then we have some degree of freedom
to define and optimize CNN-based models that allow overlapping seg-
mentation.

e Astronomical Context: Astronomical images are very different from
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natural images in terms of range, quantization, size, and other charac-
teristics. We see that many existing source finders just apply computer-
vision models without considering these differences. We target to tailor
the base models with characteristics of the astronomical context.

In astronomy, we observe that the center of the sources is usually
brighter and better localized than the outer parts, i.e., the center is
more important than the outer parts. We name it Centralization char-
acteristic. We have used that observation in several elements in our
proposed models. In Chapter 3, the centralization characteristic is
used to differentiate duplicated components in the component-graph.
In Chapter 5, the same characteristic is used in CC-NMS module to
detect multiple detections and being used in a smoothness regularizer.
Also, the difference between astronomical and natural images motivates
the development of a normalization layer in Chapter 5.

B. Astronomical Datasets

This work has used both simulated and real multi-band astronomical images.
In addition to the FDS Simulation [Venhola, 2019], we introduce a Real KiDS
Dataset of multi-band astronomical objects. The objects on the real KiDS
images are annotated semi-automatically, as shown in Fig. 2.

Figure 2: Real dataset: The KiDS images (left) and annotations (right).

The idea is to use high-quality reference images to manually correct au-
tomated detections on lower-quality images. The lower-quality images are
the real KiDS images, while the references are the images sharing the same
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field of view taken from the Hubble Space Telescope Cosmic Assembly Near-
infrared Deep Extra-galactic Legacy Survey [Hubble, 2000] (HST). Since the
HST images have a much higher resolution and signal-to-noise ratio than the
KiDS images, we can correct the pre-annotated objects with more confidence.

Given the KiDS images and the reference HST images, objects are firstly
extracted from the KiDS images using existing automated source finders,
such as Sourcerer and MTODbject [Teeninga et al., 2016; Wilkinson et al.,
2019]. Second, the pre-annotated objects enter a manual correction sup-
ported by higher quality HST images.

C. Morphological-based Approach

| ‘J »
- .
.
. . . |
-
[ i
Multi-band input Knowledge space
Construction Extraction
Filtering
e
Component-graph Relevant nodes

Figure 3: CGO filtering method using component-graphs.

This chapter proposes CGO [Nguyen et al., 2021a, 2020a] - a novel mor-
phological model for object detection in multi-band images, as shown in
Fig. 3. The model relies on component-graphs and statistical hypothesis tests.
The component-graph structure holds the whole structural information of
multi-band images at the cost of higher construction and filtering complex-
ities. Such information can improve object detection sensitivity and object
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segmentation capacity.
The main contributions of this morphological approach include:

Propose a novel multi-band object detection framework relying on
component-graphs and application to astronomical source detection.

Address that the component-graph is better at capturing image struc-
tures comparing to classical component-trees.

Introduce two filtering algorithms to detect duplicated and partial
nodes in the component-graphs.

Improve object detection results on simulated and real multi-band as-
tronomical images.

Experiments demonstrate a significant improvement in detecting objects
on both multi-band simulated and real astronomical images.

D. ConvNet-based Approaches

We propose two models: an R-CNN-based model and a hybrid model that
takes the advantages of both morphological-based and ConvNet-based mod-
els to adapt to astronomical contexts, as shown in Fig. 4. On the one hand,
ConvNet has shown excellent results in visual perception tasks as convo-
lutional operators can efficiently process multi-band images. On the other
hand, ConvNet does not limit segmentation masks to the thresholded com-
ponents, then we have some degree of freedom to define and optimize models
that allow overlapping segmentation.
The main contributions of this approach include:

We proposed an RCNN-based model tailoring object detection on as-
tronomical images. The novelties of the proposed model consist of: a
trainable normalization layer that can be trained end-to-end with the
whole model; CC-NMS module is designed to replace the default NMS
at removing multiple detections of a single object; and a smoothness
regularizer for the segmentation head in the model.

We discussed a hybrid approach using both morphological trees and R-
CNN models for object detection. Intuitively, the hybrid model takes
advantage of a morphological tree to detect potential regions in the first



stage, then using convolutional heads to predict relevant information
such as labels and segmentation masks.

First Stage Second Stage
For each image . For each region

A}
\ FCN +
RPN + CCNMS 3 1 Mask Regularizer

ROIAlign >

Softmax Cls.
+ CCNMS

-

Figure 4: The proposed R-CNN model for astronomical object detection:
Three novel modules, including a NormLayer, a CC-NMS module, and a
Mask Regularizer are red-highlighted.

E. Experiments and Conclusion

We use precision, recall, and Fl-score, as in [Haigh et al., 2020]. The evalua-
tion matches at most one detected object in the detection map to each target
object in the ground-truth map. Each target object in the ground-truth map
is represented by its brightest pixel called its representative pixel, hence each
representative pixel is included in at most one object in the detection map.
If a detected object contains several representative pixels of different target
objects, then the detected object is associated to the target object with the
brightest representative pixel.

Comprehensive experiments demonstrate our proposed models can detect
astronomical objects on both multi-band simulated and real astronomical
images, with significantly better precision and recall than the state-of-the-
art method [Haigh et al., 2020] [Teeninga et al., 2016].

In summary, we have proposed three models for astronomical object de-
tection: the morphological-based model - CGO, the ConvNet-based model,
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Figure 5: Experimental results.

and the hybrid model. Experiments and ablation studies have demonstrated
significant improvement of the three proposed models compared to the base-

line MTODbject.

Despite showing great detection performance, a current

limitation of the proposed CGO is its time complexity which prevents the
processing of large images at once. On the other hand, both ConvNet-based
and hybrid models require training datasets that remain less practical for

astronomers.
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INTRODUCTION

This thesis aims at developing efficient object detection algorithms with ap-
plications to astronomical images. We have explored the use of mathematical
morphology (MM) and convolutional neural network (ConvNet) in our pro-
posed models.

In astronomy, object detection (or finding sources) is the fundamental
preliminary stage before entering any analysis. Despite the long histori-
cal development of astronomical source finders, it is challenging to detect
faint sources and to segment crowded sources. Faint structures stand for
structures lying near background levels while crowded sources are structures
at interacting regions. To tackle these difficulties, we relies on three main
ideas: Component-graphs, ConvNets, and Astronomical Context. We have
proposed three models, including a morphological-based model, a ConvNet-
based model, and a hybrid model. In the following, we summarize the thesis
organized in two parts, includes five chapters:

Chapter 1 - Object Detection in Astronomy This chapter introduces
and explains the chosen methodological directions of this manuscript for
multi-band object detection in astronomy. We first cover the basis of as-
tronomical images and the challenges of astronomical object detection (or
finding sources). Then we review and address the pros and cons of existing
state-of-the-art source finders. Based on the review, we discuss our research
interests and methodological directions that lead to two main proposed ap-
proaches presented in the two following parts.
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PART I - MATHEMATICAL MORPHOLOGY

In the first part, we develop a morphological-based model to take advantage
of multi-band astronomical images. The topic is organized as two chapters:

Chapter 2 - Morphological Connected Operators In this chapter,
we present an overview of Connected Operators in mathematical morphol-
ogy that is the main context of our proposed morphological approach for
astronomical object detection. First, we cover the historical development of
connected operators from the early stage on binary images to the extensions
on grey-scale and multi-band images. The review includes primary morpho-
logical structures, construction algorithms, and filtering strategies of these
structures. Besides, we explicitly focus on several advances of connected
operators to handle multi-band images, including Component-graphs, Mul-
tivariate Tree-of-Shape, and Connected Component-Tree.

Chapter 3 - Object Detection with Component-graphs This chapter
proposes a novel morphological model for object detection in multi-band im-
ages. The model relies on component-graphs and statistical hypothesis tests.
The component-graph structure holds the whole structural information of
multi-band images at the cost of higher construction and filtering complex-
ities. Such information can improve object detection sensitivity and object
segmentation capacity. We first analyze the component-graph capacity at
capturing image structures comparing to the classical component-trees. We
then introduce two algorithms to filter duplicated and partial nodes in the
component-graphs. Experiments demonstrate a significant improvement in
detecting objects on both multi-band simulated and real astronomical im-
ages.

PART II - COMBINING MORPHOLOGY & CONVNET

The second part turns our attention to ConvNet-based direction to address
astronomical object detection. We explore the use of Region-Based Convo-
lutional Neural Network (R-CNN) to tackle object detection in multi-band
astronomical images. The topic is organized as two chapters:
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Chapter 4 - ConvNet Object Detection Literature

This chapter provides an overview of Convolutional Neural Network-based
(ConvNet/CNN) models for visual perception tasks in the field of machine
learning. We have chosen to specifically narrow down to the class of Region-
based Convolutional Neural Networks (R-CNN) as based model to later de-
velop our ideas. In particular, we describe the generalization, the evolution,
and the essential components of the R-CNN variants.

Chapter 5 - Combining ConvNet and Morphology

We propose two models: an R-CNN-based model and a hybrid model that
takes the advantages of both morphological-based and ConvNet-based mod-
els to adapt to astronomical contexts. On the one hand, ConvNet has shown
excellent results in visual perception tasks as convolutional operators can ef-
ficiently process multi-band images. On the other hand, ConvNet does not
limit segmentation masks to the thresholded components, then we have some
degree of freedom to define and optimize models that allow overlapping seg-
mentation. It is important to note that we introduce a pipeline to acquires
a novel real dataset of multi-band astronomical images. Then, a series of
experiments and ablation studies demonstrate our proposed models gain sig-
nificant improvements in detecting objects on both multi-band simulated and
real astronomical images.
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Chapter 1

Object Detection in Astronomy

This chapter aims at explaining the chosen methodological directions of this
manuscript for multi-band object detection in astronomy. We start by giving
the basis of astronomical images and the challenges of astronomical object
detection (or finding sources) in Sec. 1.1. Then Sec. 1.2 reviews and addresses
the pros and cons of existing state-of-the-art source finders. Finally, Sec. 1.3
discusses our research interests and directions for object detection in this
work.
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6 CHAPTER 1. OBJECT DETECTION IN ASTRONOMY

1.1 Astronomical Context

The main references for this section are the two books FElectronic Imaging
in Astronomy by [McLean, 2008] and Astronomy A Physical Perspective by
[Kutner, 2003]. The astronomical image acquisition process is reviewed in
Sec. 1.1.1 while Sec. 1.1.2 focuses on single-band and multi-band images.

1.1.1 Image Acquisition in Astronomy

What constitutes a perfect image acquisition system in astronomy? This
section briefly answers the question by covering the main aspects for astro-
nomical image acquisition, ranging from capturing devices (telescope design
and Charge-Coupled Devices CCDs) to environmental effects (atmosphere
and the Point Spread Function PSF).

Telescope

Secondary { Primary
Mirror > Mirror

(a) Newtonian

7 [ v

Axis

(b) Cassegrain (¢) Coudé

Figure 1.1: Focal arrangements in (a) Newtonian, (b) Cassegrain and (c)
Coudé telescopes. In each case the light enters the telescope from left to
right [Kutner, 2003].
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Ground

Figure 1.2: Bending of a light ray as it passes through the atmosphere with
different fraction layers [McLean, 2008].

The first and foremost element of any imaging system in astronomy is
the telescope. The telescopes can be thought as of a camera system with
a special design to capture distant objects that we can not see with naked
eyes.

The telescope system generally consists of two or three mirrors: a Primary
Mirror collects a maximum of incoming light; a Secondary Mirror focuses the
flux; and an optional third plane mirror redirects the rays towards the sensor.
Fig. 1.1 illustrates the basic layouts of the Newtonian, the Cassegrain, and
the Coudé telescopes.

We can think of light as a stream of photons coming from the space
objects to the receiver (telescope or eye) with a certain number of photons
per unit area per second. It is trivial that the more photons the receiver
collects, the more information the receiver captures. The telescope provides
a large collecting area and a long exposure time to intercept as much of the
incoming photons as possible. For each frame taken, naked eyes fix exposures
time about 1/20 second while modern telescopes can exposure up to hours. In
other words, the telescope can see much fainter objects compared to human
eyes.
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Figure 1.3: Atmospheric absorption percentages throughout the electromag-
netic spectrum, source NASA.

Charge-Coupled Devices (CCDs)

The collected light (photons) coming out from the telescope focal system will
be recorded by CCDs - the detector system. CCDs contain a grid of high
quantum efficiency detectors. Each grid element corresponds to a pixel. The
element record the intensity of light (i.e., the number of photons) striking
the pixel. To use these CCDs records, there has to be a read-out and data
handling phase.

Atmosphere

The light has to pass through the Earth’s atmosphere before reaching the
telescopes (except space telescopes). The atmosphere absorbs, transmits,
and refracts incoming light differently at different wavelengths.

For refraction, the atmosphere can be thought of as multiple layers with
different refraction indexes. When light passes from one layer to the other,
it is bent towards the vertical direction, as shown in Fig. 1.2. For absorption
(how much energy is absorbed) and transmission (how much energy is able
to pass through), the atmosphere absorbs/transmits electromagnetic energy
at certain wavelengths, see Fig. 1.3. While most of the energy in the Ultra-
violet wavelength is absorbed, very little energy in the Visible wavelength is
absorbed. In contrast, the Visible wavelength can largely pass through the
atmosphere.

If the Earth’s atmosphere were stable, the absorption, transmission, and
refraction effects would be corrected. However, it varies a lot, causing blurred
image, called the seeing effect in astronomy. The seeing effect is generally
approximated by Point Spread Function (PSF) [McLean, 2008].

A solution to avoid the atmosphere effects is to use space telescopes,
such as Hubble Space Telescope. From space-based stations, observation can
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Figure 1.4: SDSS optical filter responses [Doi et al., 2010].

be carried out without atmosphere refraction, absorption, and transmission
to acquire higher quality images. However, space telescopes are costly, the
majority are currently ground-based telescopes.

1.1.2 Single-band and multi-band Images

Optical Filters We do not measure the source’s radiation at a wavelength
or at the whole spectrum, we instead measure them in some wavelength
ranges. These ranges are defined by Optical Filters that let a certain wave-
length interval pass through. When using an optical filter, we actually mea-
sure the integral of incoming energy over some wavelength range.

Standard filters are U (for ultraviolet), B (for blue), V (for visible, mean-
ing the center of the visible part of the spectrum), R (for red), and I (for
infrared). Fig. 1.4 present the five filter curves that have been used in the
SDSS Survey [Blanton et al., 2017].

Single-band and Multi-band Images The measurement of the source’s
radiation with an optical filter produces a single-band image. Normally, sev-
eral images of the same field of view are obtained with different filters cov-
ering several wavelength ranges of interest. A multi-band image is the stack
of these same-of-view single-band images. Fig. 1.5 presents images of the
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(a) Filter g (b) Filter r (c) Filter i

(d) The composition of filter (g, r, i)

Figure 1.5: The M51 Galaxy: (a-c) Three single-band images associate to
three filters g r i and (d) The composition of the three single-band images,
source SDSS.

Galaxy M51 in three SDSS filters (g, r, i) and the color composition of them.
Fig. 1.6 shows similar filters of UGC 07332 - a nearby, blue, low surface
brightness galaxy. As we can see, some details are only visible in the image
compositions.

The multiple bands allow a determination of the colors of the image.
Technically, the multi-band image acquisition is usually observed simultane-
ously in one go for all filters to have the same environmental effects.

1.2 Astronomical Object Detection

In astronomy, object detection (or finding sources) is the fundamental pre-
liminary stage before entering any further analysis. The following sections
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Figure 1.6: The UGC 07332: (a-c) Three single-band images associate to
three filters g r i and (d) The composition of the three single-band images,
source SDSS.

review the pros and cons of existing methods that mainly fall into two direc-
tions using mathematical morphology and convolutional neural network.

1.2.1 Morphological Approaches and Limitations

SExtractor [Bertin and Arnouts, 1996] is the most widely known and stan-
dard use program. The primary strategy of SExtractor relies on filtering a
coarse thresholding structure of the input image. It is fast and easy to use
but performs poorly at the detection of faint and diffused objects.

To go deeper into the noise, MTObject/Sourcerer [Teeninga et al., 2016]
[Wilkinson et al., 2019] suggested filtering a fine thresholding structure of
input image, namely Max-Tree, a type of component-trees widely used in
mathematical morphology. Thanks to the fine thresholding, the Max-Tree
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(a) A simulated single-band image containing two Gaussian-like objects: Pixel
intensity is viewed as elevation for visualization purpose.

Input signal Max-Tree of the input

1 -

(b) The simulated image and its corresponding Max-Tree.

Figure 1.7: Simulation: a single-band image and its morphological Max-Tree.

can represent input images as the hierarchy of connected components without
losing any bit of information, i.e., the input image can be recovered entirely
from the Max-Tree. MTObject/Sourcerer uses statistical hypothesis testing
to determine potential connected components which are significantly different
from the background level. MTObject/Sourcerer is efficient to detect faint
sources while having far fewer parameters SExtractor.

In addition, NoiseChisel [Akhlaghi and Ichikawa, 2015] is another pro-
gram leveraging mathematical morphology. It iteratively performs binary
thresholding to separate background and foreground. Noisechisel claims to
be able to detect nebulous objects, it is fast but is designed to be hand-tuned
with a lot of parameters.

Last but not least of morphological-based tools, ProFound [Robotham

et al., 2018] is a watershed-based method. It firstly estimates a background
image and then applies watershed algorithms on the background-subtracted
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a) Over-segmented case: The first object is over-segmented while the second is
under segmented.
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Figure 1.8: Simulation: usual object segmentation strategies on the Max-
Tree representation of the single-band simulated image.

image to produce initial segmentation. An iterative segmentation dilation
and background re-estimation is performed to obtain a final segmentation.
Practically, ProFound is more suitable for galaxy profiling.

Limitations

The two limitations of existing morphological-based methods [Bertin and
Arnouts, 1996; Teeninga et al., 2016; Robotham et al., 2018; Akhlaghi and
Ichikawa, 2015; Wilkinson et al., 2019] are single-band processing and de-
blending crowded sources.

e Single-band Processing. Even though multi-band astronomical im-
ages are available, most source finders were designed for single-band
images. In the case of multi-band images, a reasonable option is to
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extract sources from the best quality band without considering other
bands. However, that option ignores the multi-band information that
can improve detection sensitivity.

¢ Deblending Crowded Sources. Existing methods eventually still
rely on morphological forms of thresholding. This fact consequences
under-segmented and over-segmented interacting sources at crowded
regions, see Fig. 1.7 and Fig. 1.8. Especially, extended objects super-
impose on top of larger objects are usually under-segmented because
part of the extended object brightness is thresholded to the lower level
components represent the large objects.

1.2.2 ConvNet-based Approaches and Limitations

Despite the early development stages, the ConvNet-based tools [Hausen and
Robertson, 2020; Farias et al., 2020; Burke et al., 2019] have shown potential
results comparing to the morphological-based tools. These tools are generally
limited to applying computer vision models into astronomical datasets. The
main approaches include U-net models for semantic segmentation and R-
CNN models for instance segmentation.

Morpheus [Hausen and Robertson, 2020] - a pixel-level analysis frame-
work was introduced to perform source detection, source segmentation, and
morphological classification. Morpheus uses the U-net [Ronneberger et al.,
2015] model to generate semantic segmentation for astronomical images. The
fact is that semantic segmentation models classify each pixel to a particular
label, but they are not trained to distinguish different instances of the same
label. Hence, Morpheus later uses watershed to deblend the semantic out-
put into separated objects. The U-net part was trained on fixed-size crops
of real images from the CANDELS Survey [Koekemoer et al., 2011]. To
handle large images, the framework performs a raster scan and accumulates
semantic output crops. This simple strategy can approximate segmentation
for such large images, but the accumulation usually produces non-realistic
segmentation maps.

On the other hand, Astro R-CNN [Burke et al., 2019] addresses astro-
nomical object detection with the Mask R-CNN [He et al., 2017] model on a
simulation. Astro R-CNN completely relies on The PhoSim Simulator [Peter-
son et al., 2015] to generate both training and testing datasets. Even though
the evaluation results of Astro R-CNN are very flattering on the simulation,
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the simplicity and non-realisticity of the simulated images are questionable.
In fact, Astro R-CNN performs poorly on real images and crowded regions
which are different from the simulated images.

Mask Galaxy[Farias et al., 2020] is another tool toward the direction of
using R-CNN models [Girshick et al., 2014]. Mask Galaxy narrows down
the problem to detection, segmentation, and morphological classification of
galaxies. Like Astro R-CNN, Mask Galaxy purely utilizes the well-known
Mask R-CNN [He et al., 2017] but on a quantized real image dataset. The
quantized dataset consists of JPEG images from Galaxy Zoo Catalog and
Sloan Digital Sky Survey SDSS [Blanton et al., 2017]. Given the default Mask
R-CNN model on the quantized dataset the loss of the JPEG compression,
Mask Galaxy still shows reasonable detection results at galaxy detection,
segmentation, and classification.

Limitations

In contrast, ConvNet-based methods [Hausen and Robertson, 2020; Burke
et al., 2019; Farias et al., 2020] naturally adapt well with multi-band images
(such as RGB). The two limitations of these approaches are the availability
of astronomical datasets and the adaptation to the astronomical context.

e Availability of Astronomical Dataset. There is a lack of availabil-
ity and consistency of standard astronomical datasets with labels for
computer vision tasks. To date, the most well-known one is Galaxy
Zoo with JPEG compressed images and crowded classification labels
only. Some other small Catalogs (on CANDELS and SDSS images)
provide sorts of variable-size crops with labels. As we can see, some
tools tried to learn on non-realistic simulated datasets, but the models
broke down when processing unseen real images.

e Astronomical Context Adaptation. Existing ConvNet-based source
finders are at the early stage of applying computer vision models with-
out considering the astronomical context. However, astronomical im-
ages are very di