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Abstract

The main objective of this thesis is to improve the automatic capture of semantic information
with the goal of modeling and understanding human communication. We have advanced
the state of the art in discourse parsing, in particular in the retrieval of discourse structure
from chat, in order to implement, at the industrial level, tools to help explore conversations.
These include the production of automatic summaries, recommendations, dialogue acts
detection, identification of decisions, planning and semantic relations between dialogue acts
in order to understand dialogues. In multi-party conversations it is important to not only
understand the meaning of a participant’s utterance and to whom it is addressed, but also the
semantic relations that tie it to other utterances in the conversation and give rise to different
conversation threads. An answer must be recognized as an answer to a particular question;
an argument, as an argument for or against a proposal under discussion; a disagreement, as
the expression of a point of view contrasted with another idea already expressed.

Unfortunately, capturing such information using traditional supervised machine learning
methods from quality hand-annotated discourse data is costly and time-consuming, and we
do not have nearly enough data to train these machine learning models, much less deep
learning models. Another problem is that arguably, no amount of data will be sufficient for
machine learning models to learn the semantic characteristics of discourse relations without
some expert guidance; the data are simply too sparse. Long distance relations, in which
an utterance is semantically connected not to the immediately preceding utterance, but to
another utterance from further back in the conversation, are particularly difficult and rare,
though often central to comprehension. It is therefore necessary to find a more efficient
way to retrieve discourse structures from large corpora of multi-party conversations, such
as meeting transcripts or chats. This is one goal this thesis achieves. In addition, we not
only wanted to design a model that predicts discourse structure for multi-party conversation
without requiring large amounts of hand-annotated data, but also to develop an approach
that is transparent and explainable so that it can be modified and improved by experts. The
method detailed in this thesis achieves this goal as well.

Keywords: discourse structure, discourse relations, attachment, weak supervision, data
programming, computational linguistics.





Résumé

L’objectif principal de cette thèse est d’améliorer l’inférence automatique pour la modélisa-
tion et la compréhension des communications humaines. En particulier, le but est de faciliter
considérablement l’analyse du discours afin d’implémenter, au niveau industriel, des outils
d’aide à l’exploration des conversations. Il s’agit notamment de la production de résumés
automatiques, de recommandations, de la détection des actes de dialogue, de l’identification
des décisions, de la planification et des relations sémantiques entre les actes de dialogue afin
de comprendre les dialogues.

Dans les conversations à plusieurs locuteurs, il est important de comprendre non seule-
ment le sens de l’énoncé d’un locuteur et à qui il s’adresse, mais aussi les relations séman-
tiques qui le lient aux autres énoncés de la conversation et qui donnent lieu à différents fils de
discussion. Une réponse doit être reconnue comme une réponse à une question particulière ;
un argument, comme un argument pour ou contre une proposition en cours de discussion ;
un désaccord, comme l’expression d’un point de vue contrasté par rapport à une autre idée
déjà exprimée.

Malheureusement, les données de discours annotées à la main et de qualités sont coû-
teuses et prennent du temps, et nous sommes loin d’en avoir assez pour entraîner des modèles
d’apprentissage automatique traditionnels, et encore moins des modèles d’apprentissage
profond. Il est donc nécessaire de trouver un moyen plus efficace d’annoter en structures
discursives de grands corpus de conversations multi-locuteurs, tels que les transcriptions
de réunions ou les chats. Un autre problème est qu’aucune quantité de données ne sera
suffisante pour permettre aux modèles d’apprentissage automatique d’apprendre les carac-
téristiques sémantiques des relations discursives sans l’aide d’un expert ; les données sont
tout simplement trop rares. Les relations de longue distance, dans lesquelles un énoncé est
sémantiquement connecté non pas à l’énoncé qui le précède immédiatement, mais à un autre
énoncé plus antérieur/tôt dans la conversation, sont particulièrement difficiles et rares, bien
que souvent centrales pour la compréhension. Notre objectif dans cette thèse a donc été non
seulement de concevoir un modèle qui prédit la structure du discours pour une conversation
multipartite sans nécessiter de grandes quantités de données annotées manuellement, mais
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aussi de développer une approche qui soit transparente et explicable afin qu’elle puisse être
modifiée et améliorée par des experts.

Mots clés: structure discursive, relations discursives, attachements, supervision distante,
programmation par les données, linguistique computationnelle.
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Chapter 1

Getting Started

One of the fundamental objectives of discourse analysis is to understand how clauses work
together to express complex ideas and form coherent conversations. A speaker usually does
not explicitly indicate such relations between sentences; often, an interpreter can naturally
deduce them when they listen to a conversation or read a text. For this thesis, we are interested
in building computational models of text-level, multi-party discourse interpretation. This
chapter will explain how discourse relations and discourse structures are important to support
discourse coherence and why building models to infer them constitutes a linguistic, technical
and industrial challenge. We will also see that while individual utterances have features that
help to indicate which discourse relation is at play in a particular case, none of these features
are individually sufficient for inferring discourse structures in general. A computational
model of discourse structure must therefore be able to capture how these features work
together.

1.1 Motivation

When we listen or read, we naturally make inferences about the connections between individ-
ual propositions, or more specifically, discourse units (DUs) expressed in the conversation or
text, to find the coherent relations1; one might provide an explanation for or correction of
another, or it might provide an answer to a question, for example. One way of looking at the
process of inferring semantic relations is to consider it as an anaphoric process (Chomsky,
1993; Dalrymple, 2005; Hobbs, 1979; Kehler, 1993, 1994). The discourse relations that
constitute the complete structure of a conversation or a narration help to reveal the aims of
that conversation, such as informing, convincing, manipulating, entertaining, clarifying or

1Other terms used to refer to discourse relations are rhetorical relations or coherence relations.
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arguing a thesis. It is therefore important to understand how discourse relations are conveyed
by the content of utterances in order to follow the continuity of discourse as a whole and,
as is important for our industrial uses cases, be able to extract and exploit the most central
points in a conversation. Instead of seeing the conversation word by word, or turn by turn,
we want to perceive a coherent structure that shows the internal logic of the interactions or
the statements.

Discourse relations are often signaled by discourse markers (such as and, but, because,
however and although) (Das et al., 2018; Pitler et al., 2008; Sileo et al., 2019); we classify
these as explicit relations. But often, the relations are not fully determined by markers (Prasad
et al., 2010; Webber, 2016) or are not marked at all with discourse connectives. Consider
the following example composed of two sentences, each of which contributes to a single
discourse unit:

(1) There are so many people in the shop. There are sales going on right now.

The most straightforward interpretation that comes to mind when reading Example (1) is
that there are so many people in the shop because of the sales. On this interpretation, there
is a discourse relation of explanation that links the two DUs. However, depending on the
context, other types of discourse relations between the two sentences could be inferred. For
example, the two sentences of (1) might simply list independent events. We could then insert
and between the two DUs as follows: There are so many people in the shop, and there are
sales going on right now. In this Example (1), nothing in the content explicitly indicates the
right relation between these two DUs, apart from the fact that they are expressed together,
one after the other in the same discourse.

When discourse relations are left implicit, other linguistic clues can help guide inferences
about how discourse units are related. The order in which discourse units are presented as
well as the tense and aspect of verb phrases and anaphoric elements are just some examples.
Consider the following pair:

(2) The rain started. A squirrel hurried to its nest.

(3) A squirrel hurried to its nest. The rain started.

In (2), we understand that the rain started and then the squirrel headed for its nest. Reversing
the order of the sentences, as in (3), suggests the opposite order of events. But now suppose
we change the aspect of the second sentence in (3), as in (4):

(4) A squirrel hurried to its nest. The rain had started.
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In this example, we understand, as we did in (2), that the squirrel headed to its nest only after
the rain started, despite the fact that the sentence describing the squirrel’s move comes before
the description of the rain; the aspect of a verb phrase influences the temporal interpretation
of the eventuality it describes.

Anaphoric elements can also help clarify relations between discourse units, as shown in
the following pair:

(5) A man came in. A man sat down at the bar.

(6) A man came in. He sat down at the bar.

The pronoun in (6) indicates that the two discourse units in this example concern the same
man and suggest a narrative interpretation of this example, namely that the man first came in
and then he sat down at the bar. Such a narrative interpretation is less pronounced for (5): in
this case, it is much less clear that reversing the sentences, for example, would impact the
overall message conveyed by (5).

While order, tense and aspect, and anaphoric elements can help indicate how we are
supposed to understand eventualities described in a discourse as being related, none of these
elements is sufficient for determining discourse structure. In fact, the discourse relation
inferred between two discourse units can often have a critical impact on temporal and
anaphoric interpretation.

(7) John’s horse threw him to the ground. He broke his arm.

(8) John broke his arm. His horse threw him to the ground.

(8) reverses the order in which the relevant events are described, but this has no effect on the
discourse interpretation; the tendency to understand the horse’s throwing John as the cause
of his broken arm prevails over the tendency to understand events as happening in the order
in which they are described.

Discourse interpretation can also influence the interpretation of anaphoric phenomena.

(9) a. The asteroid hit the Earth.
b. It was destroyed.

Naturally, we interpret the pronoun It in (9-b) as referring to the asteroid and not the Earth.
World knowledge tells us that it is more likely that the asteroid would be destroyed in this
scenario, and in addition, it is statistically the case in grammar that a pronoun in subject
position more often refers to the subject of the preceding sentence, rather than the direct
object. However, if the following third sentence is added to the discourse: - c. Humanity has
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no home now., it is obvious now that It in (9-b) refers to the Earth and not the asteroid. This
is necessary in order to understand how the third sentence coherently relates to the rest of (9).
This is what we call Anaphoric ambiguity at the pragmatic level; a phrase or word that refers
to something previously mentioned, but there is more than one possibility. The result relation
between utterances ((9-a) and (9-b)) changed the reference of It in the cause-effect relation
between [(9-a) and ((9-b) + ((9) c))].

What the foregoing discussion shows is that the way discourse units are understood
as relating to each other has a crucial impact on the information conveyed by a discourse.
Sometimes, these relations are explicitly encoded by discourse markers such as because or
and then. When they are not, discourse interpretation becomes a very complicated affair that
involves, on the one hand, making use of linguistic clues that suggest certain interpretations,
and on the other, reasoning about the content of discourse units. A good model for discourse
parsing needs to take both into account: the content of discourse units and the form of the
sentences that are used to express them.

1.2 Industrial Context

Linguistic interaction plays a crucial role in collaborative work, from the extended conversa-
tions we have during professional meetings to interactions required to coordinate on activities
such as setting the time for a follow-up meeting. Intelligent Virtual Assistants are becoming
more and more common tools for assisting humans in collaborative tasks. They perform
simple actions such as sending messages or making appointments, which may require taking
into account information about a particular user such as prior commitments scheduled on their
calendars. Interaction with these assistants also takes the form of linguistic interaction, but
limited to a single user and to a single command; the capabilities of these agents are currently
constrained by task-specific frameworks and are based on a very superficial understanding of
the user.

Recent advances in Natural Language Processing (NLP) allow for a finer understanding
of sentential meaning (Devlin et al., 2018) and also provide models for sentential parsing.
However, identifying the discourse structure of dialogues involving two or more participants
is a major challenge in computational linguistics. Moreover, taking into account the context
of the interactions and relating them to the data associated with dialogue-related activities
remains at an embryonic stage (most evaluations focus on sentence pairs (Prasad et al.,
2007)).

Let’s consider the common situation (10) where we address Siri, Alexa or Google smart
assistant.
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(10) a. User: Ok Google!
b. User: Display the files of my Downloads folder.
c. SmartAssistant: Downloads folder, coming right up.
d. User: Send them all to john@linagora.com.
e. SmartAssistant: Here are some results from a search. [displaying several

website pages...]

In spite of the impressive improvements in the voice rendering and speech transcription
of virtual assistants, a user’s intentions are easily misunderstood. As illustrated in (10),
problems can arise when a user needs to refer back to something previously said (Schlangen,
2003), giving rise to unsatisfying responses along the lines of (10-e) or even, Excuse me, I
didn’t understand. Is there anything else I can do for you?. These answers are often the
result of a dialogue manager whose grammar does not recognize the request. We would like
these assistants to understand what we are referring to.

We would also like, for example, that when a user cancels a command to send an email,
the assistant does not interpret this move as a dictation of what should be in the email message,
as in (11), based on real interactions with Siri assistant. Ideally, it should understand that
(11-e) is a correction of the request in (11-a).

(11) a. User: Send an email to John.
b. SmartAssistant: What’s the subject of the email?
c. User: “Meeting time”.
d. SmartAssistant: What would you like your email to say?
e. User: Please, cancel the email.
f. SmartAssistant: Here’s your email message to John [“Please, cancel the

email.”]. Ready to send it?

Being able to infer discourse relations is crucial for interaction analysis. Finding ways
to model the relations that form the coherent structure of a conversation2 can contribute to
improving several aspects of NLP applications. For example, it can help to identify whom
a speaker is addressing if there are several participants, highlight important events, find
answers to questions asked or retrieve the decisions taken, and even interpret references back
to previous utterances. For example, an intelligent assistant could be told to send an email to

2While some researchers have argued that ideally each interlocutor should have his or her own model (and
hence his or her interpretation of the discourse structure) of a conversation he or she participates in (Asher,
2000; Asher and Lascarides, 1998; Ginzburg, 2012; Venant, 2016), in our project we will assume that all
interlocutors eventually reach the same interpretation in the context of a particular discussion and thus share a
common discourse model.
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all participants of a specific meeting. With Twitter, Facebook, forums, debates and meeting
recordings, interactions with virtual assistants or chatbots, strategic interactions during online
video games, and so on, there is a growing need for engineers, journalists, and researchers in
a variety of disciplines to exploit entire texts of complete conversations.

Linagora3, a French Small and Medium-sized enterprise (SME) specializing in the
development of open source software and collaborative platforms, has a research team
dedicated to automatic speech recognition (ASR) and recently, to discourse analysis. One of
the most important achievements of the Linagora team is the deployment of conversational
speech recognition models. The transcription of oral conversations with several speakers is a
very difficult task in advanced ASR systems, requiring large vocabulary language models for
transcribing full spontaneous conversations, as opposed to the more limited, closed-domain
command models in which command possibilities are predefined with a specific and limited
vocabulary. These models need to be able to handle a high level of disfluent speech, which can
be difficult for language models trained in grammatically correct speech without hesitations,
self-corrections, overlapping speech and other types of conversational movements specific to
spoken, multi-party and spontaneous conversation. Other obstacles include difficult recording
conditions and recognizing different speaker turns (speaker diarization).

The development of both command models and large-vocabulary ASR models for tran-
scribing full conversations have been a centerpiece of our conversational assistant, LinTO4,
which is designed to allow users to pilot a variety of software and tools with their voices.
LinTO is also meant to provide recommendations and task execution to help meetings run
smoothly, and also assist in the production of meeting summaries and minutes. These latter
tasks have led our team to in-depth study of discourse analysis in tandem with the devel-
opment of our speech recognition models. Adding to the need for discourse analysis is the
recent addition of the collaborative tool, Twake,5 which works like an IRC chat organized
in channels corresponding to as many topics of discussion. The platform also allows the
sharing and collaborative editing of files within conversations and integrates within them
external services such as GitHub or Dropbox to centralize the monitoring and management
of a project. These exchanges create an interest in being able to model the discourse relations
not only within chat threads or documents, but higher level connections between different
documents and chats and even emails so that important information can be extracted from
them.

Building models of discourse structure for spontaneous, multi-party conversation or chat
requires corpora specific to this kind of language. As noted above, spoken conversations

3https://linagora.com
4https://linto.ai
5https://twake.app/

https://linagora.com
https://linto.ai
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can contain a high level of disfluencies that pose problems for discourse parsers trained on
well-prepared text. Chat, too, has its own idiosyncrasies: meandering and crossing threads,
grammatically incomplete utterances, long threads of discussion, and emojis and GIFs. And
often, messages can be edited or deleted without leaving a trace of their original form, which
can make it difficult to recover semantic relations between the different utterances.

In addition, machine learning algorithms for discourse parsing generally need to be super-
vised and thus require annotated data, which can be very hard to come by for spontaneous
conversation and chat. In collaboration with the MELODI team, from the Toulouse Institute
for Research in Computer Science (IRIT)6, and the company Linagora, we undertook this
thesis work to find a way to automatically predict the coherent structures of spontaneous
multi-party interactions using very little training data or no annotated data in comparison
to traditional supervised machine learning and deep learning approaches. Due to a lack of
spontaneous, conversational data that is annotated for discourse structure, we decided to
focus on textual data, and in particular, chat, as we will explain in more detail in Chapter 3.

1.3 Agenda

We have shown in Section 1.1 that discourse understanding requires inferring relations
between discourse units. The structures that are built up from basic discourse units and
relations, often very ambiguous, between the different contents of the interactions, help us
understand what was intended to be conveyed through the statements. The order in which
utterances are made, anaphora resolution, the use of specific connectors, the tenses and
aspects of the verbs chosen, and much more, are all ingredients that help us infer discourse
relations, but none of them are individually sufficient. The coherent relations that determine
the logical structure of a discourse are not always clearly marked or lexically given via
discourse connectives; moreover, a given discourse connector can sometimes convey several
discourse relations. In addition, even with explicit and unambiguous discourse markers, it
can be very difficult to identify the point of attachment of the relation, which is needed to
build a determinate discourse structure. We have to find a way to take into account all of
these clues, as well as how they interact, in order to predict the structures we want to infer.

The advent of virtual assistants and collaborative platforms has radically changed the
way we communicate. In order for these tools to fulfill their potential, however, we need
to understand the structure of conversational interactions in the shared environment, how
various contributions by various conversational participants are connected together in a
coherent whole. However, the lack of annotated data, the noisy nature of spontaneous

6https://www.irit.fr/en

https://www.irit.fr/en
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conversational data, and the complexities of multi-party dialogues, raise technical challenges
that are important to solve.

To address all these areas of concern, we will first of all discuss in Chapter 2 different
theories and methods proposed for the analysis and formal modeling of textual discourse
and explain why we have chosen Segmented Discourse Representation Theory (SDRT),
which we argue is the most suitable for spontaneous, multi-speaker conversations. We will
then study in Chapter 3 the specificities of spontaneous conversational data in text format
and describe the STAC corpus, the only corpus of multi-party dialogues annotated with full
discourse structures, on which we chose to develop and test our model.

In Chapter 4, we will present statistic graphical tools that allow us to annotate and make
inferences in the field of uncertainty with distant, disparate knowledge sources. We are
interested in these algorithms because there is a real problem in terms of time and means for
data annotation, especially when expertise is required. We will present the graphical models
representation and how this helps to make inference by establishing dependencies between
limited observations. We will then present the Snorkel framework (Ratner et al., 2016) which
exploits these graphical representations for the annotation of massive data.

The two chapters that follow (5 and 6) provide a detailed presentation of our experi-
mentation. We will explain how we have used and adapted the discourse theories and tools
presented previously to predict coherent discourse structures for dialogues. We will also
describe how we incorporated contextual and logical heuristics to best capture and grasp
the coherence of interactions as a whole, and carry out the results’ analysis at each stage
of our experimentation. Our thesis work investigates and demonstrates the potential of
applying a weak supervision, data programming approach (Ratner et al., 2016) to the task
of learning discourse structure for multi-party dialogue. We assume discourse structures
are dependency structures (Li et al., 2014; Muller et al., 2012) and restrict the structure
learning problem to predicting edges or attachments between discourse unit (DU) pairs in the
dependency graph. Although the problem of attachment is only a part of the overall task of
discourse interpretation, it is a difficult problem that serves as a useful benchmark for various
approaches to discourse parsing. In addition, we will explain how we use discourse relation
types in our model to predict attachment.

Chapter 7 is devoted to a further examination of the results obtained by showing concrete
examples of predicted structures. These investigations will show that several predicted
interpretations may be correct and we will be able to see how our pre-processing and
heuristics directly influence the results.
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In the last chapter, Chapter 8, we will distance ourselves from the work carried out in this
thesis in order to assess its added value, and to discuss the future work that can be undertaken
following this thesis, as well as the benefits of this work at the industrial level.





Chapter 2

Foundations: Theories of Discourse
Structure

The examples in Chapter 1 suggest that a discourse will have a structure that is closely
related to its meaning. How should we represent these discourse structures formally? Several
theories of discourse analysis have been proposed but differ in the way they model the nature
of the structures and in the construction rules they propose. In Section 2.1 we will first
describe some approaches to modeling structures and constraining their construction. We
will then show, in Section 2.2, how dynamic semantic theories, and in particular, Discourse
Representation Theory (DRT; Kamp, 1981; Kamp and Reyle, 1993) have been able to create
a link between linguistic structure and formal semantics. This will allow us to explain why
we chose Segmented Discourse Representation Theory (SDRT; Asher, 1993; Asher and
Lascarides, 2003), which builds off of certain aspects of DRT, to represent the attachments
between the contents of dialogues.

2.1 Representing Discourse Structures

Discourse theories assume discourse structures to be derived in a process involving three
steps. It is necessary to first segment the text into Elementary Discourse Units (EDUs), the
basic atoms of the discourse which can be roughly thought of as clause-level contents.

The second step consists in identifying the attachments between the segments; that is,
determining for a given pair of discourse units, whether they are linked by a discourse relation
or not. Intuitively, the attachment problem concerns determining, for a given discourse unit,
to which units in the preceding discourse it is relevant or semantically related. The final step
is to interpret the type of attachment. It therefore consists in determining which discourse
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relation labels a given positive attachment from the second step. Steps 2 and 3 are closely
related but are conceptually distinct. We often can identify an attachment without identifying
its relation type—expert annotators might agree that there is a link without agreeing on the
type of link. On the other hand, when discourse markers are explicit, annotators might be
able to identify the type of relation via which a discourse unit should attach without agreeing
on where it should be attached. In reality, these steps need not occur consecutively; reasoning
about attachments and relation types arguably goes hand in hand.

The segmentation process, crucial in the construction of representations of discourse
structure, corresponds to the identification of the minimal spans of text that can serve as
arguments to discourse relations. The task definition differs between the different frameworks
and has been a subject of research for a long time and still is. Some theories privilege semantic
features for isolating minimal spans (Asher and Lascarides, 2003; Hobbs, 1985; Polanyi,
1988), while for others minimal spans are defined by a more pragmatic criterion like a
common communicative goal (Grosz and Sidner, 1986; Mann and Thompson, 1988). In both
cases, the task of identifying the boundaries of discourse is usually done by paying attention
to the syntax, punctuation, key terms and full grammatical construction of the text (Braud
et al., 2017b; Joty et al., 2015; Soricut and Marcu, 2003; Sporleder and Lapata, 2005). But
it can be said that the granularity of the segmentation is ultimately dictated by the need for
consistent relations to achieve the right scope in the modeling purposes of the theory and the
specific data annotation project.

The attachment step differs across the various existing formalisms. Each approach defines
a methodology for how to attach a new segment of the discourse to the already constructed
structure, and for how to form a hierarchical structure. In Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988), for example, a discourse unit can only be attached to another
unit that is immediately adjacent to it in the discourse, while this constraint does not hold
for Segmented Discourse Representation Theory (SDRT) (Asher and Lascarides, 2003), as
explained in more detail below. The different approaches to building high level structures
then yield different predictions for various linguistic phenomena that depend on discourse
structure, such as the resolution of anaphoric expressions.

If the designation of discourse relations varies among authors (Mann and Thompson
(1987) talk about rhetorical relations, Grosz and Sidner (1986) about structural relations and
Hobbs (1979) about coherence relations), their function is to make it possible to interpret
a discourse by linking parts of the text in a coherent way. The main point of divergence
concerning coherence relations lies in the set of relations adopted by the theories, which in
turn depends on the specific objectives and mechanism of the theory.
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What is noticeable in these different definitions of each stage is that even within the same
framework, the identification criteria very often differ between the different project annotation
guidelines (we will discuss this issue in more detail in section 3.1.1 of the next chapter). We
will now examine in more detail the idea of rhetorical relations and the constraints on the
construction of discourse structures through two theories; RST, which is the most widely
used and SDRT which is more precise from a formal semantic perspective but more difficult
to integrate computationally.

2.1.1 Rhetorical Structure Theory (RST)

Rhetorical Structure Theory (RST) (Mann and Thompson, 1987, 1988; Taboada and Mann,
2006) is the most commonly used discourse model in computational linguistics. The standard
version of RST, based on Mann and Thompson (1988), adopts a set of 25 rhetorical relations
(extended classical relations) that can hold between two EDUs (which do not necessarily
correspond to basic logical formulae or semantic arguments of relations, but chunks of text
in RST) or recursively between larger spans of text in a given discourse.

The graphic representation of a discourse in the RST formalism is a tree which is built by
the recursive application of schemata in a bottom-up procedure. Each schema application
ideally reflects the most plausible relation the writer intended between two contiguous spans
of text. The discourse relation inferred then determines the contribution of discourse units to
the overall hierarchical structure of the discourse. We explain these points in more detail in
the remainder of this subsection.

RST relations

In RST, most relations are asymmetric, in that one argument, which is assumed to contain
more discourse-essential content, serves as the nucleus (or N) of the relation and the other,
whose content is assumed to be less central and contingent on that of the nucleus, provides
the satellite (or S). Consider the following examples, courtesy of the RST website1.

(1) Concession(a,b)

a. (S) Tempting as it may be,
b. (N) we shouldn’t embrace every popular issue that comes along.

In Example (1) the author’s main point seems to be to convince the audience of the content
of (1-b); the associated text span is thus taken to be the nucleus of the Concession relation in

1https://www.sfu.ca/rst/01intro/definitions.html

https://www.sfu.ca/rst/01intro/definitions.html
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(1). The role of (1-a) seems to be to acknowledge that accepting the nuclear content might
be a little difficult for the audience. This span thus plays the role of helping the audience to
accept the content of (1-b), increasing the audience’s positive regard for it. Here, the writer
says that he can recognize that it is tempting to embrace (fund) every (this) popular issue,
and yet also hold the idea that such ideas (this idea) should not be embraced (funded). (2)
provides another example of an asymmetric

(2) Condition(a,b)

a. (N) Employees are urged to complete new beneficiary designation forms for
retirement or life insurance benefits

b. (S) whenever there is a change in marital or family status.

The Condition relation in RST recognizes how the content of the nucleus depends on the
realization of the satellite. For a full list of nuclear relations in RST, see Mann and Thompson
(1988) or the RST website: https://www.sfu.ca/rst/01intro/intro.html.

A small list of relations in RST are multi-nuclear, meaning that both arguments have the
status of nuclei. They include Conjunction, Contrast, Disjunction, Joint, List, Multinuclear
Restatement, and Sequence.

(3) Multi-nuclear Relation: Contrast(a,b)

a. Animals heal,
b. but trees compartmentalize.

This relation has been called Neutral Contrast to reflect the balance of nuclearity, unlike
Concession or Antithesis.

RST structure

RST structures can be represented in a variety of ways. To illustrate, consider the following
example from (Marcu, 1996):

[No matter how much one wants to stay a non-smoker]1A [the truth is that the pressure to
smoke in junior high is greater than it will be any other time of one’s life.]1B [We know
that 3,000 teens start smoking each day,]1C [although it is a fact that 90% of them once
thought that smoking was something that they’d never do.]1D (Marcu (1996))

In a standard tree representation, the minimal segments that provide arguments to dis-
course relations are represented as leaves, while the discourse relation that connects a pair

https://www.sfu.ca/rst/01intro/intro.html
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of segments is represented as a node whose children are either segments (leaves) or other
discourse relations. The arcs are labeled with N or S for Nucleus and Satellite, as shown in
the following graph.

1A

1B 1C

1D

Justification

Justification

Evidence

SN

S N

N S

An alternative to this representation is the Schema diagram2, the most common represen-
tation found in the RST literature. These diagrams use curved arrows to indicate nuclearity,
where an arrow points to the nucleus. The arrows are then labeled with the name of the
relation that connects the satellite of that relation to its nucleus, which furthermore is marked
by a vertical line that connects it to its embedding larger segment. (We have chosen option d
in Figure 4 of the article (Marcu, 1996) to illustrate our explanations, though another option
could have been selected.)

	

JUSTIFICATION

R

JUSTIFICATION

1A
	

EVIDENCE

1B 1C

1D

One of the major constraints adopted by this model is that a relation can hold between
only adjacent textual chunks (some exceptions exist with the Motivation relation for example
where several EDUs motivate one nuclear constituent). If we want to link the segment 1D to
the segment 1B by a Justification relation, we will link 1D to all the segments formed in the

2Schema diagram drawn with RST package created by Reitter (2003a).
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tree structure with Justification. But there is a problem even if the segments are adjacent but
not directly connected to each other. Consider in the example above, if we want to link the
segment 1C to the segment 1D by a Concession relation, it is not obvious how to connect
them with the chosen structure (option d from Figure 4 of the article (Marcu, 1996)).

Indeed, in the process of annotating a discourse with RST formalism, the main objective
after the segmentation of the text into EDUs is finding which adjacent units are to be
connected to each other and in which order. These decisions will constrain the hierarchical
structure of the tree for the whole discourse. The two following steps in the annotation
process are first, labeling attachments with relations and second, specifying the arguments of
each relation into nuclear or satellite. Those steps do not constrain the structure of the tree.
On the other hand, there may be restrictions on the relations that can be chosen in respect of
arguments already tagged as nuclear or satellite. Most discourse approaches ignore distant
connections between larger constituents. In RST, rhetorical relations can hold between EDUs
or larger textual chunks, given that those larger textual chunks are spanned by one and the
same rhetorical relation and the candidate for attachment textual spans are contiguous.

It is easy to see that this RST tree representation is inspired by syntactic trees, which
forces the discourse composition from bottom-up. And it is surely for this reason that there
is the constraint to bind the adjacent peers of spans together. The relation between span 1B
and 1D on the RST tree above is not well visible, this is why Morey et al. (2018); Venant
et al. (2013) and Ferracane et al. (2019) have shown how to convert these syntactic structures
into dependency trees to better see that the nodes (spans) are the semantic arguments of the
relations that contain them. Thus, these dependency-based structures allow relations between
non-adjacent utterances and for faster parsers.

The interpretation is ambiguous in relation to the form of the RST structure, but also
to the rhetorical relations themselves. They do not depend solely on the linguistic property
of the text or segments involved. The 25 asymmetric relations must convey the author’s
plan from the perspective of the reader. Different RST discourse analyses are therefore
possible since it depends on each person’s subjectivity, on how he or she understands the
writer’s intention. For this reason, Moore and Pollack (1992) raised a problem of intentional
structure of RST representation with regard to semantic and intentional relations. Moore and
Pollack (1992) pointed out that RST cannot be used as a means of controlling the structure of
discourse in an interactive dialogue system, because RST representations provide insufficient
information to support the generation of appropriate responses to follow-up questions.

Carlson et al. (2003); Marcu (2000) have demonstrated that the RST concepts are benefi-
cial for automatic text summarization applications and partial discourse parsing. In particular,
Marcu (2000) introduced the nuclearity principle which states that: a sequence of the nuclear
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EDUs of a discourse, connected in a way that reflects the coherent relations, should result in a
summary of the text. In the example presented above, the Justification relation holds between
EDUs 1A–1C (satellite) and 1D (nucleus), therefore it also holds between the nucleus of
1A–1C (i.e., 1B) and 1D. We can therefore summarize the text with Justification(1B, 1D).
However, this nuclearity principle does not solve the choice of the location of satellite spans,
or of nuclei spans in the case of multi-nuclear relations.

Another characteristic of these representations is the single root of the tree from which all
other relations are generated. Which forces, in a way, the discourse to have a single objective.
We will see in the following section that with SDRT there is no constraint on an additional
relation that would come from below the structure to the root.

2.1.2 Segmented Discourse Representation Theory (SDRT)

Before explaining the formalism of SDRT, we will briefly describe the theoretical and
methodological foundations of this theory, in order to situate it in the literature and to clarify
and justify the choices made with regard to discourse segmentation, hierarchization and
the content of the segments. SDRT is a linguistic theory that combines two paradigms of
discourse interpretation: dynamic semantics (which we will examine in Section 2.2.3) and
discourse analysis. It was introduced by Asher (1993) and Asher and Lascarides (2003)
as an extension of Kamp (1981)’s Discourse Representation Theory (DRT) to capture the
rhetorical properties at work in discourse. It can be defined as a semantic-pragmatic model
for discourse analysis. SDRT provides a consistent and coherent theoretical framework
for discourse modeling. It is a dynamic representational theory of discourse that takes
into account the segmentation and structural organization of discourse. It aims to describe
a deterministic method of constructing Segmented Discourse Representation Structures
(SDRSs). Its minimal units are instances of propositions and discourse relations are semantic
rather than pragmatically defined in terms of the author’s intentions concerning reader’s
actions as in RST.3.

SDRT structures (SDRS)

An SDRS is a directed acyclic graph (DAG), ⟨V,E1,E2, ℓ,Last⟩, where: V is a set of nodes
or Discourse Units (DUs) (including both elementary discourse units (EDUs) and complex
discourse units (CDUs)); E1 ⊆ V 2 is a set of directed edges between DUs representing
coherence relations; E2 ⊆V 2 represents a dependency relation between DUs; ℓ : E1 → R is

3Other work in dialogue (Asher, 2000; Asher and Lascarides, 1998) aims to extend SDRT to take into
account the interaction between intentional structure and semantic or informational structure.
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a labeling function that assigns a semantic type to an edge in E1 from a set R of discourse
relation types, and Last is a designated element of V giving the last DU relative to textual
or temporal order. E2 is used to represent Complex Discourse Units (CDUs) (Asher et al.,
2011), which are clusters of two or more DUs connected as an ensemble to other DUs in the
graph. Directed unlabeled edges E2 connect a complex constituent to its sub-constituents,
introducing recursivity in the structure.

The hierarchical structure built in SDRT is obtained by differentiating two types of
discourse relations from R: subordinating (cf. nucleus-satellite relation in RST) and co-
ordinating (cf. multi-nuclear in RST). A subordinating relation represents a dominance
relationship between the two arguments of the relation. It is typically represented by a verti-
cal arrow (→). In RST terminology, the dominant argument corresponds to the Nucleus, the
dominated argument to the Satellite. Elaboration, Evidence, Explanation, Background and
Purpose are subordinating relations. A coordinating relation indicates that the two arguments
are on equal presentational footing and contribute in the same way to a common dominating
topic (Asher and Vieu, 2005). Narration and Continuation are coordinating relations. A
coordinating relation is represented by a horizontal arrow (↓).

For the narration and dialogue analysis, we can enumerate the following main relations
that Asher and Lascarides (2003) proposed:

• Subordinating: Elaboration, Acknowledgement, Explanation, Comment, Question-
Elaboration, Background, Clarification Question, Question-Answer-Pair.

• Coordinating: Narration, Conditional, Alternation, Result, Continuation, Parallel,
Contrast, Correction.

Within the category of coordinating relations, we can, following Asher (1993), further
distinguish the structural relations Contrast and Parallel, which require their arguments
to have similar semantic structure. While the list above provides a basic set of discourse
relations, it should be noted that there is no definite list of relations in SDRT. The ones
that may be retained are all those whose presence in an SDRS can be shown to modify its
conditions of truth (semantic relations) and two relations are distinguished if their contribution
to the semantics of the SDRS is distinct.

An SDRS includes two kinds of nodes:

• Atomic nodes π that label EDUs, or the contents of atomic clauses uttered in a
particular discourse.

• Primed nodes π ′ that label CDUs and can thus take atomic labels π and other primed
nodes π ′ in their scope.
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Generally, edges that link a constituent to its sub-constituents are dashed in the SDRS
representation. Consider the following text example and the corresponding SDRS from
(Asher and Lascarides, 2003):

π1 Max has a great evening last night.

π2 He had a great meal.

π3 He ate salmon,

π4 He devoured lots of cheese.

π5 He then won a dancing competition.

Figure 2.1 Text example.

π1

π2

π3 π4

π5

π ′
1

π ′
2

π ′
3

Elaboration

Narration

Elaboration

Narration

Figure 2.2 The corresponding SDRS.

This example illustrates the role of CDUS. Intuitively, the EDUs π2-π5 together elaborate
on Max’s great evening, mentioned in π1. This elaboration is represented by grouping
π2-π5 into a CDU, labeled π ′

2, that connects to π1 via Elaboration. Similarly, π3 and π4 are
grouped into a CDU, π ′

3, that elaborates on Max’s great meal, introduced in π2. The entire
discourse can also be represented as a CDU, which we label here as π ′

1 and whose immediate
constituents are π1 and the CDU π ′

2.
The main observation of SDRT discourse representations is the clear understanding of the

structure; “what you see is what you get”. And one of the main reasons is the construction
of CDUs which are built from other DUs. Unlike the Hobbs or Polanyi approaches, the
building assembly of the segments is not represented by a tree structure, but directly by the
representations of the complex segments, the SDRSs themselves.

SDRT abandons the constraint, adopted in (Polanyi, 1988) and in RST (Mann and
Thompson, 1988), that a pair of segments can be linked by only one discourse relation; a pair
of EDUs in SDRT might be related by multiple relations. Consider the Example (4), where
we have a contrast and a narration relation connecting (4-a) and (4-b). It is essential here to
have these two relations because if we take out then, it doesn’t have the same meaning; we
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need to shift the time forward so they don’t overlap, which the contrast relation doesn’t do.
The marker but requires a contrast, but it is not sufficient to produce a coherent example.

(4) a. We used to rent our apartment.
b. But then we bought it.

Even though an SDRS is not a tree, it is an acyclic directed graph with a hierarchical
representation where we can determine levels for each constituent by exploiting the different
types of relations, coordinating or subordinating (Asher, 1993), that hold between the
segments: coordinating ones place their arguments on the same level, while subordinate
relations are such that the subordinated constituent is intuitively at a “lower level” than the
superordinate one. Also in SDRT CDUs are assigned a level n+1 if their maximal constituent
has level n. Thus SDRSs are well-founded structures, and this allows us to do proofs by
induction on the complexity of SDRSs.

The hierarchy inferred from the relations affects the available sites for attaching the next
segments of the discourse. This is what we call accessibility. To attach a new segment to the
already constructed discourse structure, SDRT formalizes a Right Frontier Constraint (RFC),
a constraint already suggested (Grosz and Sidner, 1986; Polanyi, 1988; Webber, 1988),
according to which not all segments of the discourse structure are available; a new segment
can only be attached to the last segment analyzed or to the segments that hierarchically
dominate this last segment.

In SDRT, the RFC requires a new EDU to attach to a node along the Right Frontier (RF)
of the discourse graph to date. The RF includes the last node attached to the discourse graph
to date, any node that dominates another node on the RF via a subordinating relation, or any
CDU that includes a node on the RF. Apart from rare exceptions, the dominant node of a
subordinating relation will precede the subordinate node in a linear ordering (utterance order)
of the EDUs in the discourse. If we look again at the graph representation in Figure 2.2, the
open attachment sites, i.e. the nodes of the right boundary, correspond to the leaves π5 and
π1 and to the complex segment π ′

2 (therefore π ′
1 as well). The remaining are closed, unless

the author explicitly signals the opening of a closed site by means of a linguistic expression
(Asher, 1993).

2.1.3 Brief Comparison

The foregoing discussion of RST and SDRT have demonstrated how graph structures can
be used to represent discourse structure and how different accounts can take very different
approaches. For example, while RST posits tree structures that restrict long -distance
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attachments, SDRSs are merely directed, acyclic graphs that allow for a wider range of
attachments. With SDRT, we better visualize the semantic arguments of the relations, and
the general graph representation allows us to represent more linguistic phenomena. This is
not only intuitive for representing the discourses discussed in this chapter, which involve a
single speaker, but is particularly suitable for modeling interactions in dialogue.

Dialogue can easily give rise to non-tree-like structures, as when one person addresses
several other people, individually, at once, as illustrated in the following example (5):

(5) a. John: Do you have a pen?
b. Paul: No.
c. Sarah: I don’t have one.
d. Lea: Sorry no.
e. John: It’s okay, thanks!

In this example, (5-b)-(5-d) do not work together to answer John’s question; they happen to all
be negative answers but intuitively, they are not sub-parts of one single, coordinated answer.
We therefore do not group these EDUs into a CDU. It follows that John’s utterance in (5-e)
serves to acknowledge multiple, individual EDUs, as indicated in the graph below (where
QAP stands for Question-Answer-Pair relation and ACK for Acknowledgement relation):

a

b c d

e

QAP QAP QAP

ACK ACK ACK

Figure 2.3 The diamond structure corresponding to Example (5).

This diamond shape cannot be represented with a tree. This is a question of representation
that distinguishes RST from SDRT, i.e. it motivates the need for general graphs rather than
trees because we cannot always have trees as a representation of discourse.

Note that we can reconstruct an SDRS from an RST tree if we assume an appropriate
nuclearity principle (Venant et al., 2013). To see this, consider again the example discussed
above from (Asher and Lascarides, 2003):
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π1 Max has a great evening last night.

π2 He had a great meal.

π3 He ate salmon,

π4 He devoured lots of cheese.

π5 He then won a dancing competition.

Figure 2.4 Text example.

π1

π2

π3 π4

π5

π ′
1

π ′
2

π ′
3

Elaboration

Narration

Elaboration

Narration

Figure 2.5 The corresponding SDRS.

The corresponding RST structure of the above text is as follows4:

π1

π2

π3 π4

π5

Elaboration

Narration

Elaboration

Narration

N S

N N

N S

N N

Figure 2.6 The corresponding RST representation.

How do these labels (N, S) help us recompute the SDRT graph from the RST tree? How do
they help us determine the semantic arguments of the relations? Let’s consider for instance
the subtree of the RST structure in Figure 2.6, with a Narration node at its root and spanning

4In order to show how to migrate from an RST structure to a SDRS, we have chosen to leave here the names
of the SDRT relations, which we could have modified by that of RST, i.e. Narration could have been replaced
by List, and Elaboration could have remained as it is (or replaced by Means). We recall that the semantic aspect
of relations does not exist in RST (see 2.2.3 for more details).



2.1 Representing Discourse Structures 23

π2−π5. The path from the root to π2 has two arcs in it each labeled with N. This is a nucleus
path and it determines in a dependency graph that π2 is the first argument of the instance
of Narration at the root. The SDRS formula defining the arguments of the Narration root
label is thus Narration(π2,π5). If we look at the subtree with Elaboration as its root spanning
π2−π4, we see that the second argument of the Elaboration is a span linked by an arc with an
S. Following Venant et al. (2013), this means that π3 and π4 are grouped together in a CDU
π_3 that is the second argument. The formula defining the Elaboration is Elaboration(π2,π

′
3

where π ′
3 is defined by the formula Narration(π3,π4).

Applying this procedure to the top node of the whole RST structure, we then get the
SDRT graph in Figure 2.5. While it is possible to reconstruct an SDRT structure from an
RST tree, the opposite is not always possible (Venant et al., 2013).

Both RST trees and SDRSs can be converted into dependency graphs. For RST, this
allows for long-distance attachments and better interpretation (Ferracane et al., 2019; Morey
et al., 2018; Venant et al., 2013), while in SDRT, for computational reasons, the DAG has
always been transformed into a dependency structure because the prediction of CDUs is very
complex to compute when taking into account the complete discourse. This transformation
replaces any attachment to a CDU by an attachment to the CDU’s head H, which is simply
the textually first EDU within the CDU that has no incoming links. This transformation
modifies the interpretations of the structures, i.e. we no longer have an SDRS where what
you see is what you get. These structures are therefore ambiguous because we cannot tell by
looking at them whether a DU is intuitively related to only the head or rather to the whole
structure of the flattened CDU whose head is H.

If expert annotators sometimes think that the discourse is ambiguous, i.e. that there are
several possible representational structures that are compatible with what has been said, the
logical form of SDRT makes it possible to determine several coherent SDRSs as well. Natural
language has ambiguities, whereas the language of SDRT, which is logical and therefore
precise, will produce at least two consistent SDRS for the same ambiguous discourse. Other
work in SDRT has also shown that it is possible to have a structure per interlocutor when
it comes to a discourse of interactions (in multi-party dialogues) (Asher, 2000; Asher and
Lascarides, 1998). This allows for a structure of what a participant has understood according
to his or her knowledge and context. However, the semantic or informational structure is not
dependent on the intentional structure of the interlocutors. In RST, several structures are also
possible for the same discourse (Marcu, 1996), but this is not related to the semantics of the
discourse, but rather to the schemata in a bottom-up procedure which gives the choice of
several options to form the hierarchical RST structure.
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2.2 Representation of Meaning

SDRT, in contrast to RST, is a semantic framework. The SDRSs provide a structure or logical
form for the discourse, and these structures determine the truth conditions for the discourse.
That is, the EDUs in SDRT are semantic contents (instances of propositions) and formulae of
the form R(α,β ), for some discourse relation R and DUs α and β , have clearly defined truth
conditions. In this section, we flesh out what it means for content to be semantic in SDRT’s
sense.

For several years now, formal semantics, which aims to describe and model natural
language meaning, have gone beyond the limits of sentences to give rise to dynamic semantics,
for instance with Discourse Representation Theory (DRT) introduced by Kamp (1981).
Similar works have been exposed in the same period by Heim (1982), Groenendijk and
Stokhof (1990). Below, we will review the different approaches to discourse analysis by
explaining how formal semantics describes the meaning of discourse evolution. If Montague
Grammar (Montague, 1974) lays the foundations of the principle of compositionality to
semantically represent the syntax of a discourse, we will not proceed in this Section to a
Montagovian analysis, but we will only use first-order logic on simple examples to show how
SDRT goes further to represent the semantics of discourse.

2.2.1 Background Concepts

Dynamic semantics developed from a need to model the behavior of anaphoric expressions.
Consider (6):

(6) [A squirrel]i arrived, and [it]i sat down.

Here, in Example (6), we assume that a squirrel and it are co-referential (indicated with
index i). Let’s give a simple syntactic structure for this sentence:

S

S

VP

sat down

NPi

it

Conj

and

S

VP

arrived

NPi

A squirrel
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We have two sentences, combined together with a conjunction and and we have co-indexed
the two noun phrases (NPs), A squirrel and it. If we want to analyze this sentence in terms of
semantics, we will get the following formula:

∃x(squirrel(x)∧arrived(x)∧ sat.down(x))

We have a proposition that is composed of a quantifier phrase and of conjoined propositions.
Each predicate has one argument. The single conjunction allows conjoining any number
of propositions. The indefinite determiner a, in a squirrel in our Example (6), introduces
an existential quantifier ∃ and a variable x in its scope that serves as an argument to the
predicates squirrel, arrived and sat.down.

Now consider Example (7):

(7) [A squirrel]i saw [a nut] j. Hei ate it j.

This example contains two separate sentences, whose logical forms we represent as follows:

∃x∃y(squirrel(x)∧nut(y)∧ see(x,y)), ate(x,y)

In (7), it seems to refer back to the nut introduced in the first sentence, while he picks out
the squirrel. So long as the logical forms for the two sentences are separate, however, the
existential quantifiers introduced by a squirrel and a nut cannot take scope over the variables
x and y, respectively, in the second formula. These variables remain free and we fail to
capture the propositional content expressed by the second sentence of (7).

A simple fix for the problem above would be to simply conjoin the formula ate(x,y) to
the logical form for the first sentence of (7) and extend the scope of the quantifiers:

∃x∃y(squirrel(x)∧nut(y)∧ see(x,y),∧ ate(x,y))

Unfortunately, such a solution would incorrectly predict that (8) is felicitous, as its content
would be equivalent to that of Every squirrel saw a nut and ate it.

(8) [Every squirrel]i saw [a nut] j. Hei ate it j.

In this example, the pronoun he in the second sentence fails to refer back to the variable
introduced by the quantifier every squirrel. Yet if we simply conjoin the content of the two
sentences and allow the quantifier to take scope over the content of he, we cannot explain
this observation.
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Another problem with the simple solution proposed above is that it would still fail to
prevent the occurrence of free variables in examples like (9):

(9) [Every squirrel]i whoi saw [a nut] j ate it j.

We can represent the content of (9) as follows:

∀x((squirrel(x)∧∃y(nut(y)∧ see(x,y)))→ ate(x,y))

The variable x is bound by the quantifier ∀x, but the variable y remains out of the scope of
the quantifier ∃y, as the latter is introduced in the antecedent of a conditional. This problem
is commonly referred to as Donkey sentence (Barker and Shan, 2008; Geach, 1962; Heim,
1990, 1982), and one of the most famous donkey sentences is: Every farmer that owns a
donkey beats it. A correct translation into first-order logic for the donkey sentence seems to
be:

∀x∀y( f armer(x)∧donkey(y)∧owns(x,y)→ beats(x,y))

This solves the problem of the free variable in the consequent of the logical form for
(9), as y is now in the scope of a universal quantifier. However, it introduces a new problem,
namely that the indefinite noun phrase a must sometimes be interpreted as contributing an
existential quantifier to logical form, and sometimes a universal quantifier.

The above discussion shows that standard quantifier logic doesn’t give a satisfactory
account for natural language anaphora. We need a dynamic semantics, such as Discourse
Representation Theory (DRT) (Kamp, 1981) to resolve these problems.

2.2.2 Discourse Representation Theory (DRT)

The invention of DRT led to a shift from a static to a dynamic view on natural language
semantics. Instead of working with first-order formula syntax, DRT makes it possible to
work with explicit semantic representations. Its logical forms, Discourse Representation
Structures (DRSs), describe the objects mentioned in a discourse and their properties. Let’s
take (6) again, ([A squirrel]i arrived, and [it]i sat down.), to see how DRT would deal with
this simple example and analyze its structure.
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(10)

x y

squirrel(x)

arrived(x)
y=x

sat.down(y)

The discourse in (6) gives rise to the DRS in (10), a structure in which we have a set of
discourse referents U (visually the top box in (10)) together with a set of conditions or first
order formulas over the discourse referents in U . Discourse referents translate into first order
variables but the construction algorithm of DRT has the effect that these variables have in
effect unbound rightward scope unless logical operators intervene.

The construction procedure for DRSs assumes a contextually given DRS (which might
be a pair of empty sets for the first sentence in a text) and provides rules for how to formulate
the semantic content of each syntactic constituent in a discourse representation structure
(DRS). For example, given a contextually given DRS (U,V ) when we’ve got an indefinite
a like in a squirrel, we introduce a new variable x into U , the common noun squirrel then
introduces a formula on x, squirrel(x), that is introduced into V . It is another noun phrase,
but because it is a pronoun we will introduce a new variable, here y, that we have to link to a
previous referent. In this case, the only previous referent that we’ve got is x so we are going
to link y to x via the condition y = x. In DRT, the pronouns require an inference, we have to
figure out what is it likely linked to. If we had additional context, the sentence (6) could be
interpreted differently where it could refer to another referent in the context.

We can easily handle (6) with both traditional logic or DRT. Now let us return to the
Example (7) ([A squirrel]i saw [a nut] j. Hei ate it j.), which we could not resolve with
traditional logic because the second proposition “He ate it.” had unbound variables. With
DRT, we will first create the following structure for the first proposition, “[A squirrel]i saw
[a nut] j.”:

(11)

x y

squirrel(x)

nut(y)
saw(x,y)
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The predicate squirrel is applied to the discourse referent x, and the predicate nut to y. And
we say that x saw y. Then we get the second sentence, Hei ate it j, and we want He to be
linked to A squirrel, and we want it to be co-referential with a nut. The DRS in (11) is now
our contextually given DRS that we update with the material from the new sentence. Thus we
expand on our discourse representation. We introduce a discourse referent z for the pronoun
He and v for the pronoun it. We obtain the following extended representation where z is
linked back to x and v is linked back to y, and we say that z ate v:

(12)

x y z v

squirrel(x)

nut(y)
saw(x,y)

z=x
v=y

ate(z,v)

We now know that it is The squirrel that ate the nut. This therefore requires inference to
associate co-references.

The idea of simply extending the DRS above to accommodate the content of the second
sentence of (7) is so far reminiscent of the simple solution proposed earlier, in which we
conjoin the logical forms of the two sentences in (7) and extend the scope of the existential
quantifier over this new conjunct. Let’s take a look at Example (8), ([Every squirrel]i saw [a
nut] j. Hei ate it j.), in which we introduce a universal quantifier ∀. We had trouble with the
He in this example because it intuitively cannot be linked to every squirrel. In DRT, we start
by introducing a set of squirrels in our universe of discourse.

(13) [Every squirrel]i saw [a nut] j.

(14) x

Squirrel(x) @
@@

�
��

@
@@

�
��

Every
x

y

nut(y)

saw(x,y)

Example (13) has a noun phrase, every squirrel that gives rise to a universal quantifier. In
DRT, every introduces a complex condition consisting of two DRSs related together by the
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quantifier; in (14) the quantifier is represented by the diamond shape and in the DRS on the
left we introduce a variable x and the condition squirrel(x). The DRS construction rules then
stipulate that the verb phrase in (13) saw a nut introduce material into the DRS on the right.
The diamond5 that connects the left and right DRS says that we’re going to look at every x in
our domain, and for each squirrel, there is a nut and he saw that nut.

We now add the second sentence of (8), namely Hei ate it j.:

(15) (8) [Every squirrel]i saw [a nut] j. Hei ate it j.

The question is where should the material from the second sentence be added? The DRS
construction rules stipulate that universal quantifiers have a fixed rightward scope; roughly
only the verb phrase (VP) of the first sentence is within the scope of the universal quantifier.
Thus the second sentence of (8) must contribute discourse referents and conditions in the
main DRS, not in the DRS on the right hand side of the quantifier relation (the diamond). So
we introduce the discourse referents z and v for the pronouns He and it in the main DRS or
largest box. This leaves us the following structure:

(16)

z v

x

Squirrel(x) @
@@

�
��

@
@@

�
��

Every
x

y

nut(y)

saw(x,y)

z=x
u=y

ate(z,v)

We notice that neither x nor y is introduced in the discourse domain of the main DRS; they
are only introduced in the sub-DRSs. In DRT, this means that the discourse referents x
and y are inaccessible to the discourse referents z and v, which allows us to predict that the

5DRT can also model universal sentences using conditionals. Here it would be, if a squirrel saw a nut, he
ate it, then there is a squirrel x and a nut y and x saw y in one box, and eat(u,v) in another box where u = x and
v = y. In the DRS, it would be a simple arrow that would connect the two structures/boxes (Kamp, 2016) in
the following manner, where square brackets indicate the limits of boxes [[x, y | squirrel(x), nut(y), saw(x,y)]
→ [u, v |u=x, v=y, eat(u,v)]]. The discourse referents introduced in the antecedent lie along the accessibility
path for u and v, allowing the latter discourse referents to be bound. Note that a makes the same contribution
as before: it simply introduces a discourse referent. The universal interpretation follows from the semantics
of the conditional itself (Kamp, 1981). But only the method described above (with diamonds/lozenge) for
representing the universal can be extended to other quantifiers like many, most or several.
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occurrence of He will be odd. In more detail, the hierarchical structure of DRSs determines
an accessibility path through a DRS, such that a discourse referent introduced in one DRS can
only be linked to a discourse referent on this path. Roughly, a discourse referent introduced
in one DRS can be linked to discourse referents introduced in the same DRS or in a DRS to
the left or above. More formally, the accessible domain of a DRS K, is the set of discourse
referents that occur in some DRS K′ that is accessible to K. K is accessible to K′ in DRT if
and only if K = K′ (every DRS is accessible to itself) or:

1. K contains ¬K′

2. K contains K′∨K′′

3. K contains K′ ⇒ K′′

4. K contains K′′ ⇒ K′

5. there is a K′′ that contains K ⇒ K′

6. there is a K′′ that contains K ⋄K′

7. K′ is accessible to K′′, and K′′ is accessible to K

The main constraint for the interpretation of the anaphora in DRT is through the accessi-
bility mechanism which stipulates that “A pronoun is represented by a discourse referent x
which must be equated to some discourse referent y ∈ the accessible domain of a DRS K,
where K is the DRS in which x is introduced” (Geurts et al., 2020).

Let’s take a look at (9), repeated below, to see how DRT manages to represent the content
of the discourse. Remember that with first-order formula, we couldn’t link the second
argument of predicate ate to the nut that the squirrel saw: ∀x((squirrel(x)∧∃y(nut(y)∧
see(x,y)))→ ate(x,y)). With DRT, it’s quite straightforward:

(9) [Every squirrel]i whoi saw [a nut] j ate it j.

x y

squirrel(x)

nut(y)
saw(x,y)

@
@@

�
��

@
@@

�
��

Every
x

ate(x,y)

This DRS first introduces a set of squirrels that saw a nut. Then it says that for every squirrel
x who saw a nut y, he ate that nut. We see that the accessibility mechanism described above
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allows the DRS that contains the predicate ate to access x and y introduced in the left DRS.
The idea of DRT is that once we leave the sub-structures, we cannot access x, or y that x saw.
We see now how DRT accounts for anaphora.

2.2.3 SDRT, a more elaborate version of DRT

In this section, we will explain why and how SDRT refines the DRT view of semantics. For
this, we will take the following examples from (Asher and Lascarides, 2003):

(17) a. Max fell.
b. John helped him up.

(18) a. Max fell.
b. John pushed him.

In (17), we understand that the two utterances happened chronologically in a logical or-
der. John helps Max after falling. There is a Narration relation holding between the two
chronological events. But in (18) the lexical semantics associated with fall and push change
our understanding of the logical order of events and ensure that information about (18-b)
and (18-a) verify a non-monotonic rule from which Explanation(a,b) is inferred. Max fell
because John pushed him, or John’s pushing Max was the cause that Max’s falling. There is
an Explanation relation between (18-a) and (18-b).

Consider the following Example (19):

(19) a. John kicked Max.
b. Max fell.
c. John pushed him.

Here John kicked Max, making or causing Max to fall, and then John pushes him again.
We notice that while our understanding of the order of events in (18) was that John’s pushing
Max was the cause of Max falling, in (19), we already have a cause of Max’s fall, which is that
John kicked him. Our first understanding of what the cause is blocks us from understanding
John pushed him as providing the cause. Traditional DRT is not going to be able to account
for the different interpretations we get depending on what has come before or comes after.
Temporal information in DRT is determined solely by temporal adverbials and verb tense
(Altshuler, 2014; Kamp, 1981; Partee, 1973; Partes, 1984). In SDRT this is not the case;
rhetorical relations often have an essential role in determining temporal order (Lascarides
and Asher, 1993). SDRT helps us interpret this logical order of events. Let’s see how we
could encode this semantically into a discourse representation structure following SDRT.



32 Foundations: Theories of Discourse Structure

If we encode the first utterance (17-a), we will have the same DRS, except that we add a
representation for times or events. So we have the entity x1 which we associate with Max,
and we have the temporal variable t1 tied to the verb, while the tense of the verb says that
t1 happened before now/the present. That is to say that t1 is past tense. And we’ve got our
proposition f all that x1 fell at time t1.

π0 :

x1, t1

Max(x1)
t1 < now
f all(x1, t1)

By adding the second utterance (17-b), we obtain a more complex structure. But first,
let’s begin with our preliminary SDRS for (17-b).

π1 :

x2,x3, t2

John(x2)
x3=?
t2 < now
hel p.up(x2,x3, t2)

We have now two entities, x2 and x3. x2 is associated with John. x3 being a pronoun,
should be linked to something. And we’ve got t2 being before now, and x2 helped up x3
at time t2. To understand how to merge the two above structures π0 and π1, we need to
understand what is the rhetorical relation holding between the two utterances. Here it involves
a narration relation; Max fell, then John helped him up. In SDRT, encoding the relation
between clauses, leads to solving the inference for pronouns, specifying tenses and all other
phenomena. The complex SDRT structure of (17) is as follows:
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π0π1

π0 :

x1, t1

Max(x1)
t1 < now
f all(x1, t1)

π1 :

x2,x3, t2

John(x2)
x3=x1
t2 < now
t2>t1
hel p.up(x2,x3, t2)

Narration(π0,π1)

π0 and π1 represent the semantic structures of the two utterances (17-a) and (17-b) and
we associate these two through narration relation. This rhetorical relation is going to tell us
that t2 happens after t1. We also solve the inference about x3 that access the structure π0 to
attach to x1 thanks to the accessibility rules.

For Example (18), its structure shows once again the importance of rhetorical relations in
SDRT for interpreting the discourse. Namely, the cause-effect relation, Result(π1,π0) will
tell us that t2 precedes t1. We also solve the association of the pronoun him = x3 with Max
= x1. As with the DRT, the SDRT provides a mechanism for accessibility. This is in line
with the explanations of the right frontier (RF) detailed in Section 2.1.2 which constrains the
available attachment points in the discourse structure for a new constituent to those of the
RF (the last simple constituent introduced in the structure, and any constituent dominating
the last one). The discourse referents available for anaphora resolution are those which are
DRT-accessible within the constituents of the right frontier from the attachment point. If
we look back at our example from (Asher and Lascarides, 2003), a discourse referent X is
accessible to a condition in π4, if X is associated with an SDRS that is associated in π4, or if
it has a direct relation with another SDRS (here a Narration with π3), or it goes above (we go
up the graph and look at the RF) and this CDU π ′

3 which contains π4 is linked to π2, so we
can link π2, we can also access π ′

2 and π1. This path is called path of accessibility in SDRT.
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π0π1

π0 :

x1, t1

Max(x1)
t1 < now
f all(x1, t1)

π1 :

x2,x3, t2

John(x2)
x3=x1
t2 < now
t2<t1
pushed(x2,x3, t2)

Result(π1,π0)

The following structure is the one corresponding to the more complex example (19). π0

is our first discourse representation for John kicked Max. π1 is the second one for Max fell.
Here the two first utterances are happening in chronological logical order; we got the cause
first and then the effect, therefore it is Result(π0,π1). We assume that the two Max’s are
the same, but we should encode it in the structure. Because there is still a possibility that
we are talking about two different Max’s, so if it’s not the case, we need to include that
inference in the structure. In this example, there is no other context, so x3 = x2. Those two
structures, connected with the relation Result, form the context π2 for our next discourse
utterance. So when we add the representation of the final utterance π3 of our discourse, it
takes as its context the structure π2. We’re going to merge π2 and π3 with the narration
relation; Narration(π2,π3). Because of this connection, t3 has to follow t2, and we get the
other inferences between x5 = Max and x3, and that John = x4 is the same person in the
whole discourse.
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π0π1π2π3

π2 :

π0 :

x1,x2, t1

John(x1)
Max(x2)
t1 < now
kick(x1,x2, t1)

π1 :

x3, t2

Max(x3)
x3=x2
t2 < now
t2>t1
f all(x3, t2)

Result(π0,π1)

π3 :

x4,x5, t3

John(x4)
x5=x3
x4=x1
t3 < now
t3>t2
push(x4,x5, t3)

Narration(π2,π3)

Through these examples, we can see why we would like to use SDRT and not another
approach. Other approaches cannot explain the logical order of events and other phenomena
of language. In SDRT, the rhetorical relations are semantic functions for the interpretation
of discourse. It defines what is going to be a possible and not possible connection between
semantic representations. SDRT is therefore a very promising approach for accurately
encoding linguistic phenomena.
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2.3 Conclusion

Human languages have a wide variety of features that are used to convey meaning. Among
the most important of these is the ability to convey a predicate-argument structure. First-order
logic offers this meaning representation; however, we have seen that it is quite limited for
representation of discourse in its context and dynamism. Our principal objective in this
chapter has been to introduce some of the main approaches to building representations of
discourse structure, with a special focus on RST and SDRT, by looking first at the mechanisms
of representation and then at the semantic side of SDRT (RST is unclear with regard to
the semantic interpretation of its rhetorical relations and does not offer a precise logical
framework). SDRT provides a language for representing the logical form of discourse and
of dialogue. An SDRS, which is the structure of a coherent discourse, is a discourse unit
consisting of rhetorically connected discourse units. Meaning representations for discourse
in SDRT have a dynamic semantic interpretation that capture, through discourse relations,
additional content to that given by compositional or lexical semantics of the utterances they
link together to form a complete coherent structure.

We have seen that theories of discourse structure differ (mainly) with respect to their
definition of discourse relations, the arguments (semantic or not) of these relations, the
hierarchical constitution, thus also on different theoretical foundations, different aims, and
different tasks for which they are appropriate (or not). The general graphical form of SDRS
also makes it possible to represent linguistic phenomena, in particular diamond structure
for multi-party dialogues, which RST does not allow. Venant et al. (2013) have shown that
SDRT can integrate the representation of RST in a dependency-form, but not vice versa. It
is therefore natural to choose SDRT as the theoretical basis for an analysis of multi-party
conversations we want to address.

In the following chapter, which is dedicated to data, we will identify the features specific
to the data we want to analyze in order to review our insights into discourse theories. We
will also highlight a major problem for computational approaches to predicting discourse
structure (and even more generally on any type of data, as for images, or audio), namely the
annotation of data. Even within a single framework, data annotation is often a difficult task,
both in terms of the time it takes to annotate the data needed and in terms of disagreement on
the choice of structures.



Chapter 3

Foundations: Dialogue and Data sets

Our project is about predicting discourse structure for spontaneous, multi-party conversations,
and this chapter is devoted to the issue of data. We need data to build a model of conversational
discourse structure in order to strengthen or refute our intuitions. Science has always been
about collecting empirical data which experts analyze and then model. Recently, data driven
methods have promised automatically generated models. The catch is that they can do this
when there is enough data and of the right kind. Yet adequate discourse data is scarce.

We will structure this chapter around two objectives. First of all, we will use real data to
highlight features particular to spontaneous multi-party dialogue, through the presentation of
the STrAtegicConversation (STAC) project, on whose corpus we conducted our experiments.
As we will see, these specific features complicate the prediction of attachment. In the second
part, we will present recent efforts undertaken for the development of data-driven discourse
parsing and what the success of that has been. We will highlight the difficulties encountered
in the process of annotating data as well as the challenges this presents for computational
approaches.

3.1 Conversational Data (Spontaneous + Multi-party)

As explained in Chapter 1, monologue can leave certain ambiguities to be resolved in
the process of interpretation, but when a discourse involves several speakers, the game of
inference can become even richer and more sophisticated. Let’s take the following example
of a conversation with three people:

(1) a. Tom: How much are these flowers?
b. Jessica: Eleven euros a bouquet.
c. Sarah: Do you have white tulips?
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d. Tom: Why do you want white ones?
e. Jessica: No, sorry.
f. Sarah: (i) Never mind. (ii) We’ll buy those red ones.

Several conclusions can be drawn from (1). For example, we can ask where this conversa-
tion takes place and who Jessica is. The words flowers and bouquet together with the fact that
the speakers talk about prices suggest the conversation probably took place in a florist’s shop,
and not in a garden. But more importantly, we can ask ourselves questions to understand
what is being said and why. To whom is each conversational contribution addressed? To
one person in particular, or to all the conversational participants? Are (1-d) and (1-e) both
reactions to Sarah’s question (1-c)? Does Never mind in (1-f) refer to Jessica’s no sorry or to
the question in (1-d)? Is clause (ii) in (1-f) a Result only of Jessica’s answer (1-e) to Sarah’s
question in (1-c), or to both Jessica’s answer (1-e) and Tom’s intervention in (1-d)? Sarah’s
clause (ii) in (1-f) seems to be a cancellation of her implicit request in (1-c). To understand
this conversation, it is thus important to know who is speaking to whom.

(1) shows that modeling dialogue involves taking into consideration different kinds of
cues in addition to the ones encountered in monologue. To shed further light on the particular
nature of dialogue, we will present the STAC corpus of situated chats—the corpus that we
used for our experiments—and walk through some concrete examples from this corpus. First,
however, we begin with a brief overview of corpora that have been used to study the discourse
structure of monologues.

3.1.1 Data sets

Quite a few discourse annotated corpora now exist for single authored text—most notably
the Penn Discourse Treebank (PDTB) (Miltsakaki et al., 2004; Prasad et al., 2007) the
RST Discourse Treebank (RST-DT) corpus (Carlson et al., 2003, 2002) with full discourse
structure for texts, as well as smaller annotated corpora such as DISCOR (Baldridge et al.,
2007) or ANNODIS (Afantenos et al., 2012a). Recent years have seen the emergence
of corpora for segmentation, prediction of discourse relations and more seldom (or less
straightforwardly1) prediction of complete discourse structures. The study of discourse
structure in frameworks such as RST, and SDRT, has seen a revival in recent years, and
several researchers are now actively engaged in the creation of discourse data; we can
mention The Potsdam Commentary Corpus (Stede and Neumann, 2014), The Georgetown
University Multilayer (GUM) corpus (Zeldes, 2017), The RST Discourse Treebank (Carlson

1Full structure prediction is often achieved by reconstructing the entire dependency graph from the relations
and their directionality or the hierarchical frameworks they follow when this is possible.
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et al., 2002), Dutch Discourse Treebank (NLDT) (Redeker et al., 2012), Cross-document
Structure Theory News Corpus (Cardoso et al., 2011), Russian RST Treebank (Pisarevskaya
et al., 2017; Toldova et al., 2017), The RST Spanish Treebank (Da Cunha et al., 2011), The
RST Spanish-Chinese Treebank (Cao et al., 2016, 2017a, 2018, 2017b), The Penn Discourse
Treebank (PDTB) (Prasad et al., 2018), Chinese Discourse Treebank 0.5 (Zhou et al., 2014),
DISCOR project (Discourse Structure and Coreference Resolution (Baldridge et al., 2007;
Reese et al., 2007), ANNODIS (Afantenos et al., 2012a), and the STAC corpus (Afantenos
et al., 2012b; Asher et al., 2016).

While several discourse annotated corpora exist for single authored text, there are very
few discourse annotated corpora of multi-party interactions. In fact we know of only one,
the STAC corpus (Afantenos et al., 2012b; Asher et al., 2016), which provides full discourse
annotations on a corpus of chats from an online version of the game Settlers of Catan. Other
corpora of multi-party interactions exist, including meetings (e.g. ICSI (Morgan et al., 2001)2

and AMI (McCowan et al., 2005)),3 telephone conversations (Zhou et al., 2010), and emails
(Joty et al., 2011)), but they are either not annotated (raw data collection) or are not annotated
for full discourse structures. As STAC is the only corpus of multi-party dialogues annotated
with complete discourse structures following SDRT, this is the one we used in our work. This
corpus has two versions, one that has only the linguistic contributions that participants made
to the chat threads (Afantenos et al., 2012b), and another version that contains descriptions
of actions in the game, temporally ordered relative to the chat moves (Hunter et al., 2015).
These two corpora will allow us to transfer and evaluate our approach.

As mentioned in our industrial motivation in Chapter 1.2, we want to analyze and annotate
transcripts of meetings and messages in corporate chat platforms. The major difference
between oral meetings and chats is that even if both have spontaneous interactions, oral meet-
ings are synchronous and full of disfluencies such as filled pauses, stutters, self corrections
in mid-sentence, repetitions and false starts. One of the results of having disfluencies is that
it is hard to recover a continuous line of thought from spoken discourse (in comparison to
well-prepared written monologues). Instant messages such as chats are asynchronous with
reactive planning, corrections of discourse sequences, and meandering threads. While we
don’t have disfluencies in STAC, we have a similar problem of participants constructing the
discourse as they go along and getting off-topic and reformulating their discourse moves as a
reaction to other participants.

2https://groups.inf.ed.ac.uk/ami/icsi/
3https://groups.inf.ed.ac.uk/ami/corpus

https://groups.inf.ed.ac.uk/ami/icsi/
https://groups.inf.ed.ac.uk/ami/corpus
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The STAC corpus is therefore a good alternative to meeting transcripts given the current
state of conversational corpora, in order to develop and evaluate a dialogue model. We
describe the STAC corpus in more detail in the following section.

3.1.2 Strategic Conversation (STAC)

The STrAtegic Conversation (STAC) corpus is a collection of chats between three or four
players of an online version of the game The Settlers of Catan. The rules of the game4 allow
us to have a common context that can help us to interpret the linguistic chats. Players use
resources to build roads, settlements and cities on a game board (see Figure 3.1), the Island
of Catan, that consists of 19 terrain tiles (or hexes). The goal is to expand territory and be
the first player to reach 10 victory points (each settlement is worth 1 victory point, and each
city is worth 2 victory points) and thus win the game. They can acquire resources by trading
with other players or with the bank, by playing special cards, or by rolling two dice when it
is their turn. Each turn, the player rolls the dice, and the number rolled determines which
terrain hexes will yield resources. Each terrain hex is associated with a type of resource and
marked with a number between 2 and 12 (corresponding to the possible outcomes of the dice
rolls). If, for example, a 4 is rolled, all terrain hexes marked with a 4 will yield resources to
players that own a settlement or city on such a hex. The type and quantity of the resource
thus distributed depends on the resource associated with the hex. In Figure 3.1, for example,
a roll of 11 will distribute brick (red/brown) to Joel, who has a (white) settlement on a brick
hex marked with 11 (in the center). Rolling a 7 initiates a special series of actions: the current
player must move a game piece called the robber to a hex of his choice, and then steal a
resource from a player with a building on that hex. The robber will stay on that hex until it
is moved in another turn, and its presence will continue to have an impact on the game by
blocking the distribution of resources for the occupied hex. These rules provide background
knowledge that roughly models the sort of background knowledge that one might have about
meetings or other conversational situations.

Players interact via a chat window (Chat in the board game showed in Figure 3.1) and can
see the chat history in the window History. The game history, shown in the Game window,
provides descriptions of the principal extra-linguistic events from the game (e.g. dice rolls,
resource distributions, building events, card plays). Messages from the Game and History
windows, along with a record of every change made to the game board or to a player’s
hand, were recorded in User Interface (UI) logs. The game logs also automatically provide

4https://www.catan.com/service/game-rules

https://www.catan.com/service/game-rules
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Figure 3.1 The online interface of the Settlers of Catan game as seen from a single player’s
point of view.

information such as the timestamp for each linguistic and extra-linguistic moves, and the
moves’ emitters (player pseudonym, Server or UI).

The STAC corpus was annotated in two versions: the linguistic only version (or non
situated) and the situated version. During the first phase, relations were added only to the
linguistic chats between players from the Chat/History windows (these player utterances
are the linguistic conversational turns). During the second phase, descriptions of the game
moves were added in the form of non-linguistic units, which we call elementary event units or
EEUs, in order to situate the linguistic content. This situated corpus is built with descriptions
from the Game window (Server messages) together with certain descriptions that had to be
recovered from the game (UI) logs (Asher et al., 2016; Hunter et al., 2015, 2018).

Data from recent work on grounded agreement games (Attari et al., 2019; Chattopadhyay
et al., 2017; Das et al., 2017; Ilinykh et al., 2019; Kottur et al., 2018; Schlangen, 2019;
Schlangen et al., 2018; Skantze, 2005) shows some similarity with the STAC corpus; for
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example, there are, arguably, discourse relations between the messages exchanged by players,
and actions performed in the game. In both STAC and grounded agreement games, players
exploit visual/non-visual (non-linguistic information from UI logs + Server messages in the
Game window) and linguistic information. However, in STAC unlike the work of (visual)
Conversational Grounding players only rarely need to coordinate to understand what is going
on. In part this is because they have a common background knowledge of how to play the
game and also their virtual environment has only one event to attend to at a time.

The STAC data-set was developed within the context of the STAC (STrAtegic Conver-
sation) project supported by the European Research Council, Grant n. 269427. The STAC
project sought to provide a rich annotated corpus for analyzing multi-agent strategic conver-
sations. As such, each conversation typically involves a series of negotiations to reach an
agreement or to close a deal in the game. The conversations are spontaneous, and therefore
also offer opportunities for discussion outside the context of the negotiations. Figure 3.2
shows an example excerpt from the STAC corpus.

Figure 3.2 Example of a dialogue from the STAC corpus.

The resulting data-set consists of 45 games. Each game was then divided into what
were called dialogues, allowing us to increase the number of data structures from which to
learn. In the linguistic annotations, the breakdown of the games into dialogues was done by
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negotiation sessions (trade negotiations) but there are cases where there were links between
negotiation sessions (a discourse relation that clearly linked two dialogues), in which case
the annotators combined the negotiation sessions into one. In the situated annotations, game
moves had to be taken into account. The annotators then decided to separate the dialogues
by rolls of the dice (turns in the game). Each negotiation is properly included in a game
turn, though a game turn that can include more than one negotiation. A dialogue thus begins
with a roll of the dice by a particular person who then continues until they perform the
non-linguistic action in the game of ending their turn (see example from Figure 3.2). In the
interim, players can bargain with each other or make spontaneous conversation. The players
do not all stop conversing until the end of the game and they sign off. There are typically
many such conversations, each beginning with a non-linguistic turn in which a player is
designated to begin negotiations.

The annotation process has several levels in STAC. First, each dialogue is segmented
into Elementary Discourse Units (EDUs) and EEUs. Chat turns, which are automatically
delimited in the History window, provide a lot of information about EDU segmentation, as
a single EDU will never span two chat turns with different authors; however, some chat
turns needed to be further broken down for EDU segmentation. The example in Figure 3.2
shows a complex chat turn, 184, involving two EDUs, [no] and [thanks], that serve distinct
discourse functions. The EDU [no] is an answer to both Cat’s questions in turns 180 and 183,
and the clause [thanks] is a comment on Thomas’ answer no. Descriptions of game events
must also be further segmented to attain EEUs. Turn 179.0.0.1 in Example 3.2 is therefore
divided into three EEUs; [Cat has 6 resources.], [Thomas has 11 resources.] and [william
has 6 resources.].

After segmentation, each EDU or EEU was then annotated with labels for:

• Surface acts which are types of speech act: QUESTION, REQUEST, or ASSERTION.

• Dialogue acts that are more specific to the game: OFFER, COUNTEROFFER, AC-
CEPT, REFUSAL, or OTHER.

• The addressee: for each EDU or trade move in the game, annotators marked the
addressee for that move, where the addressee could be a single player, all the (non-
speaker) players, or some proper subgroup of the other players.

A third annotation process required identifying the discourse relations between EDUs
and, for the situated annotations, between EDUs and EEUs (which, together with CDUs, we
collectively refer to as DUs, or discourse units). This required solving two problems: the
attachment problem, which is finding to which DUs in the constructed SDRS an EDU/EEU
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Result
The source DU describes the cause of the eventuality described by
the target DU.

Acknowledgment
The target DU signals an understanding or an acceptance of what
was said in the DU to which it is attached.

Continuation
The target DU continues a discourse function of the source DU
and shares a topic with the source DU.

Elaboration
The target DU provides more information about the eventuality
described by the first DU.

Conditional
The source DU is a hypothesis and the target DU is a consequence
of the hypothesis.

Contrast
The two arguments are contrasting, meaning they are compared in
such a way as to emphasize the striking differences.

Question answer
pair

The source DU provides a question, and the target, an answer to
that question.

Q-elab
The target DU provides a question that elaborates on a question
provided by the source DU.

Narration
The target DU describes an event that occurs after that described
by the source.

Correction
The target DU provides a correction of something said in the
source DU. The target DU can negate the content of the source
DU.

Explanation
The target DU describes the cause of an eventuality described by
the source DU.

Alternation It marks a disjunction between the two DUs.

Parallel
Links two DUs whose contents are similar or analogous; the even-
tualities described are often taken to be simultaneous.

Comment
The target DU provides an opinion or an evaluation of the content
associated with the source DU.

Clarification
Question

The target DU provides a question that tries to clarify the content
of the source DU.

Background
The target DU provides a staging for the eventuality described by
the source DU.

Table 3.1 List of rhetorical relations used in the STAC corpus.

is attached as an argument of a discourse relation, and the labeling problem, which involves
labeling discourse attachments with labels for discourse relations. In the STAC corpus there
are 16 discourse relations displayed in Table 3.1, and they represent the rhetorical functions
between the EDUs and EEUs.
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Annotations for dialogue act information and discourse relations were performed with the
Glozz tool5. The annotations benefited from several passes—a first pass done by annotators
hired for the STAC project and subsequent revisions carried out by SDRT experts. Complete
discourse structures were built for each dialogue. Figure 3.4 shows the output structure of
the dialogue example in Figure 3.3. For visualizations of the discourse structures for all of
the dialogues in the STAC corpus, see the STAC website (www.irit.fr/STAC). In these graphs
the dots represent the segmented DUs (black for EDUs, yellow for EEUs and red for CDUs)
and the colored arrows indicate the different discourse relations.

Figure 3.3 Example of a dialogue structure in STAC.

3.1.3 Understanding the Dialogue’s Dynamics

If the analysis of monologue showed a dynamic formalization, the dynamic aspect is more
visible when we are in the presence of a dialogue involving two or more participants. We
will outline some concrete examples specific to dialogues and to our corpus, and we will
illustrate how these aspects represent additional problems for discourse attachment.

Non-treelike Structures in Dialogue

One of the particularities of the multi-party dialogue, which is less common, or even absent in
the monologue, is the presence of non tree-like structures. One such example is the diamond
structure (Afantenos et al., 2015; Asher et al., 2016; Perret et al., 2016) that was discussed
in Chapter 2. Diamond structures are a special kind of non-treelike structure, which can be

5http://www.glozz.org

https://www.irit.fr/STAC/stac_game_graphs/index.html
http://www.glozz.org
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Figure 3.4 Diagram showing a dialogue box from the project website where the first turn
is from the Server and the last one from the User Interface (UI) which indicate the initial
movement of Tomm and when he ends his turn.

called truly non-treelike, that is indeed not seen in monologue. This structure is characterized
by a DU that has two or more incoming arrows from different source DUs. In Figure 3.5
(Graph visualization link), in turn 234, GWFS makes an offer. After receiving three negative
responses (235, 236, 238), GWFS acknowledges all three responses at once in turn 239. Turn
239 has three incoming arrows from different source DUs.

Figure 3.5 A diamond structure from the STAC corpus.

Long Distance Attachments to Very Long Distance Attachments

One of the primary ways in which to analyze the structure of dialogues is through the
idea of the conversational turn. Because there are two or more agents (multi-party) in

https://www.irit.fr/STAC/stac_game_graphs/pilot01/superdoc_16/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/s2_leagueM_game2/superdoc_10/dialogues.html
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Figure 3.6 Greetings before the game starts.

dialogues, they typically have turns. But these conversational turns do not determine much
about the structure without the discourse relations that explain what is going on within each
participant’s contribution to the turn. Turn taking instantiate one or more discourse relations
between some constituent and available attachment site. Every conversational turn can
contain one or more EDUs, but one EDU cannot be contained in several conversational turns.
We need explicit cues to pair up the content of different DUs but as we saw it in Chapter 1,
even with explicit signals, it is often unclear and ambiguous what a constituent attaches to.

An indication to the attachment would be the pairwise organization of multi-party
conversations. The interactions can be broken down into a series of 2-utterance pairing
called adjacency pairs (which are not an explicative structure but only an indication pattern),
e.g. (command/acceptance), (greeting/counter-greeting) and (query/reply). Adjacency pairs
are two turns uttered by different speakers, one in response to the other. These simplified
patterns are observed in the STAC corpus as well; e.g. a polar question which is attached
to the expected yes-no answer, or X who greets Y followed by Y who greets X in turn. An
example from STAC in Figure 3.6 (Click here for full graph visualization) illustrates simple

https://www.irit.fr/STAC/stac_game_graphs/pilot04/superdoc_1/dialogues.html
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attachments for greetings. These expectations of specific type of move, which are often called
direct relevance, of what is going to be said after what has been said, have been studied a
lot, especially for the question/answer relations (Asher and Lascarides, 1998; Carlson, 1984;
Ginzburg, 2016; Walton and Macagno, 2017). Groups of expressions which often go together
can then be formed to link two discourse units. However, this concept is very simplified for
the spontaneous multi-party conversations we want to analyze. There can be several DUs in
one conversational turn with different dialogue acts. Thus in a following turn there might
be a response to a unit in the first turn, but also other material. Figure 3.6 illustrates a more
complex link between EDUs in different conversational turns, e.g. between Markus EDU
[you’re ready to go] and the EDU [ok] from skinnylinny in turn 6.

Adjacency pairs are frequently interrupted by an insertion sequence. Speakers insert an
additional sequence before the original adjacency pair is completed. Together, the adjacency
pair and insertion sequence form an exchange kind of structure, as illustrated by (2):

(2) a. John: Can I meet with you next week?
b. Diana: Where would you like us to meet during this lockdown?
c. John: The park is open.
d. Diana: All right!

In example (2), Diana in (2-b) is requesting clarification of (2-a) by questioning where
they could meet during the current lockdown (she doesn’t seem to mind meeting John, but
doesn’t understand where they could meet). John answers in (2-c), and then Diana accepts
by answering the first question, (2-a).

An insertion sequence can be long, leading to very distant attachments, as illustrated in
example (3):

(3) a. John: Can we get out next Tuesday?
b. Diana: Do you remember the first time we went out?
c. John: That was when the flamenco festival was held in the city?
d. Diana: [You wore a pirate costume,]d1 [nothing to do with the festivities’

theme.]d2

e. John: On the Garonne River wharf in late July back in 2010.
f. Diana: [Well, there won’t be any festivities on Tuesday,] f 1 [but I am looking

forward to seeing you.] f 2

We naturally succeed in inferring the discourse relations between the segments of this
dialogue using the same as those in STAC corpus: a Comment between (3-a) and (3-b), a
Clarification-question between (3-b) and (3-c), a Question-answer-pair between (3-c) and
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(3-d1), another Question-answer-pair between (3-b) and (3-e), a Continuation between (3-b)
and (3-f1) (the structure formed by EDUs b, c, d1, d2 and e can be viewed as a CDU), a
Contrast between the two EDUs of (3-f), finally a Question-answer-pair between (3-a) and
(3-f2). There are six discourse units between the two clauses that provide arguments to this
last relation. All these attachments can be represented with the following SDRS for better
clarity (the longest attachment is dashed) :

a

b

c

d1

d2

e

f1 f2

Comment
QAP

Clarif-Q QAP

QAP

Continuation

Comment

Contrast

These long-distance attachments, which often provide discourse-central information, are
very difficult to infer computationally because they are scarce, and some approaches simply
do not take these long-range relations into account (as we have seen in Chapter 2 for the
RST framework of Mann and Thompson, 1988). Through this little example, we can see the
importance of following what happens at each moment of the conversation, to understand
if people are still talking about the same subject, or if they have been sidetracked, or have
moved on to another point. This example (3) was made up, but this phenomenon is very
common in the STAC corpus and can be present in any multi-party conversation.

Overlapping/Separate Threads

Another feature of dialogues and multi-party conversations is that they can give rise to
overlapping threads. Overlapping threads are created when two or more participants engage
in two or more connected (via discourse relations) exchanges that are simultaneously and
independently developed (in relation to the topic). Figure 3.7 (from Asher et al., 2020)
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illustrates three discourse threads, represented by a solid, dashed and dotted lines. (Note
that these lines do not reflect discourse relations, click here for full graph visualization with
relations).

Figure 3.7 Three threads.

Intuitively, these strands do not have much to do with each other and so we have a forest
rather than a tree-like structure. A tree-like structure can be recovered if we consider the core
structure in the dialogue representation, the backbone, and then attach the separate threads as
branches to this backbone. These sidetrackings often occur when, in the course of a meeting
or any conversation settings, someone brings up a topic that is partly related, but does not
actually refer to the question at hand. Phrases such as By the way,..., Incidentally, Before I
forget,..., While we’re on the subject,..., On the subject of (noun),... or Out of interest,.., are
often used when someone sidetracks and introduces a new, but related, subject. Having got
sidetracked, participants can get back on track and return to the main subject.

https://www.irit.fr/STAC/stac_game_graphs/s1_league1_game3/superdoc_7/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/s1_league1_game3/superdoc_7/dialogues.html


3.1 Conversational Data (Spontaneous + Multi-party) 51

Much work has been carried out to identify and analyze threads in different discussion
platforms or email exchanges (Aumayr et al., 2011; Carenini et al., 2007; Elsner and Charniak,
2010, 2011; Joty et al., 2013b; Kim et al., 2010; QIU and JIANG, 2013; Wang et al., 2011a,
2010, 2011b). Several types of cues have been used such as the reply-to option or the
mention of the person being addressed with the common symbol @ used in instant messaging
platforms.

Addressees

Phenomena such as truly non-tree-like structures and overlapping threads arise mainly
because several agents are involved in the discussion. Knowing who is addressing whom can
help to infer the complicated attachments involved in such examples, but how do we know
who is being addressed when there are more than two participants?

Unless an addressee is explicitly mentioned, the task of inferring the addressee can be
rather complicated. This sometimes depends on the knowledge we have of the participants,
for example, if we ask a question about a specific result of a performance achieved and known
only by person A, we must deduce that the question is directed to person A. In meetings,
we often look at the person(s) we are talking to, so visual clues can help to identify the
audience being addressed. However, in the context of our project, we will only study written
conversations, so such clues cannot help us. This study is often referred to as addressee
identification or allocating turns (Hayashi, 2012; Sacks, 2004).

In the STAC corpus, we have three types of addressee annotations for each DU; All, if
a DU is addressed to all the participants, a set of participant pseudonyms, if it is aimed at
one or several players in particular, and ? if it cannot be determined. The pseudonym of the
person addressed is sometimes included in the EDU text (the second EDU (b) of GWFS’s
turn 175 in Figure 3.7, addresses explicitly LJAY who responded in turn 181), but this only
happens when it is one person addressed, and often when the intervention is far from the
action or DU to which one wants to respond or react. Consider the following example (4)
from STAC (Click here for full graph):

(4) 29 rennoc1: so anyone else played this before ?
...
32 Dave: is it still your turn rennoc ?

After a few players have responded to rennoc1, Dave returns back to ask if it’s rennoc’s turn
to play. It should be noted that occasionally the names are abbreviated (william by will, or
LJay by LJ for example) and are often placed at the beginning or the end of the EDU.

https://www.irit.fr/STAC/stac_game_graphs/pilot01/superdoc_2/dialogues.html
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(5) 727 Dave: need wheat ?
...
731 Dave: rennoc ?
732 rennoc: i’m ok for now

In (5), from the STAC corpus, after some players answered Dave’s question, Dave indirectly
repeats his question by addressing rennoc, who has not yet answered.

Situated Context

Dialogues often take place in some sort of non-linguistic environment. And this environment
contains information, i.e. reference to what we see, what we know, what happens, that
impacts our understanding of conversational interactions. The meaning of a dialogue depends
not only on linguistic content but also on the environmental information that may make the
linguistic content evolve over time. Sometimes, ignoring non-linguistic information can
introduce gaps in the linguistic content. For example, if person X asks person Y: Explain
to me the economic development of our company., and immediately afterwards the same
person X says: Oh great. We’ve done well this year. What was missing in this discussion is
that person Y may have presented figures that show the company’s turnover evolution for
example. In one way or another, something has happened that responds to the content of the
interactions without being mentioned.

Figure 3.8 Discourse relation between non-linguistic segments and linguistic units.
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As mentioned previously, the STAC corpus was annotated in two versions. The second
version is the situated one, where non-linguistic units (User Interface (UI) and Server logs)
were added to the structure in order to situate the linguistic content (Asher et al., 2016;
Hunter et al., 2015, 2018). In Figure 3.8 for example (excerpt from STAC), we can see how
the non-linguistic context can influence in a relevant way the content and structure of the
discourse. The linguistic moves (434, 437, 438, 441) only make sense if they are interpreted
in light of the extra-linguistic context. The attachments between linguistic and non-linguistic
DUs shows how the players react to the game moves, but also how the game moves are a
reaction to previous game events (players decisions) and discussions. Finding the connections
between non-linguistic and linguistic DUs is not a straightforward task. Firstly, EEUs can
be grouped together to form CDUs, which means that EEUs are not simply ordered linearly
by the time at which their associated events occur. Secondly, the sequential nature of the
game events is often interrupted by linguistic DUs, leading to the formation of non-tree-like
structures.

Other Phenomena in Spontaneous Text Conversations

Similar to self-repair (Schegloff et al., 1977), in STAC we often find examples of players
correcting their own chat moves, corrections made by the same person on their previous
intervention. Most of the time when someone is repairing his own utterance, she or he uses
the asterisk before the corrected word or expression; a star shaped symbol (*) often used in
chat to correct or clarify a spelling mistake when the mistake cannot be edited, as in example
(6).

(6) a. A: Java layout always feels like a nig
b. A: *nightmare

But other corrections exist besides mistypings/misspellings, as illustrated in (7).

(7) a. A: oh no
b. A: well, that wasn’t too bad

The latter type of corrections are difficult to detect, especially if the attachment is of long
distance, therefore it is hard to recover a continuous line of thought from chat.

Interjections and emoticons appear frequently in written digital interactions. Most of
the time, they serve to moderate the linguistic statements they accompany (“Good luck all
:D”, “Thanks :)” ). But sometimes, there are interactions that mainly use these emojis or
interjections as illustrated with Example (8):
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(8) a. A: :D
b. B: :O
c. B: Wow
d. A: I just nicked your wheat :P

We observe that people often write down the disfluencies they would have had/said if
they had conveyed their message orally (as in Example (9)).

(9) a. Tom: When was the last time you cried?
b. Eva: Euh. I euh. I
c. Tom: It’s fine if you don’t want to respond
d. Eva: Yeah. hhhh :)

If through these examples, we see that there is a meaning to each of these symbols, in STAC
the annotations of the links to these DUs (containing these emojis) are often labeled as
Comment relations. These phenomena have also been studied separately for conversation
analysis such as emojis, laughter, concurrent feedback (ok, uh-huh, yeah) or comprehension
checks (Ginzburg, 2016) that also contribute to the establishment of a mutual understanding
between participants of the conversation.

The STAC data differ considerably from well written text in other corpora. In addition
to the phenomena explained above, the STAC data feature various types of ellipses and/or
non-sentential utterances (NSUs) (Fernández et al., 2007; Schlangen, 2003, 2005). Short
answers such as the one illustrated in Example (10), or VP ellipsis illustrated in example (11)
from the STAC data, are very present traits in our corpus.

(10) Dave what have you got to trade ?
Tomm I have got sheep to trade.

(11) I can trade wheat for clay

Talking to more than one people is not as straightforward as we think. During a conversa-
tion between two or more people, the linguistic moves people make – greetings, explanations,
question-answering, clarifying, contradicting, etc. – are formulated according to the partic-
ular history of the exchange and extra-linguistic eventualities at that point. In this section,
we presented some problems of inferring attachments in the type of data we want to study:
spontaneous multi-party chat dialogues that contain messy text with ubiquitous misspellings,
missing punctuation, and other features such as ellipsis or emojis. The diamond structures,
long distance attachments, overlapping threads are all very challenging issues for attachment
task. However, the semantic conceptualization of non-linguistic events in relation to one
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another and in relation to linguistic moves offers us a richer, but also more complex structure
to induce.

3.2 Data driven Model Building and Discourse Parsing

Research on linguistic corpora usually focuses on particular phenomena of language and
requires a corpus representing these phenomena. When developing a model for a Natural
Language Processing (NLP) task, common issues to consider are: the type of input data
for each prediction, how to decide on the possible output labels (the approach itself) and
how to measure the effectiveness of the model. Annotation campaigns (creation of language
resources) are often required prior to performing NLP tasks, not only to train tools, but also
to create a baseline for evaluation.

When the task is simplified or straightforward, there are programs and tools that can be
used to extract particular items such as online ratings of products, in order to recommend an
appropriate list of items that may match a user’s preference or interest. But for more complex
tasks such as discourse analysis, the need for expert annotators is required, and hand-labeled
training sets are expensive and time-consuming to create—-taking months or years for large
benchmark sets.

We want to develop a model to automatically build the discourse attachment structures of
multi-party dialogues. In our industrial context, data are scarce, task-specific, and noisy. In
the following, we will present the computational approaches used for discourse analysis, we
will show their limitations, as well as the solutions we want to consider.

3.2.1 Approaches

Discourse parsing is the task of identifying the hierarchical structure of discourse relations
in a given discourse or dialogue. For most discourse parsers, regardless of the adopted
theoretical framework, building discourse structures computationally requires solving two
main problems; first discourse segmentation into EDUs, and then discourse parsing. In
SDRT the discourse parsing step can be divided into two stages; the attachment problem,
which is finding to which DUs in the constructed SDRS an EDU is attached as an argument
of a discourse relation, and the labeling problem, which involves labeling discourse attach-
ments with labels for discourse relations. In RST analysis, the parsing step is generally
divided into three sub-tasks; first the attachment structure prediction that identify how the
different segments are connected/related, then the nuclearity detection that identify what is
the nucleus of each pair of related segments, and finally relation labeling that labels with
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RST relations pairs of adjacent text spans. We focus in our work on the discourse attachment
task following SDRT. Discourse attachment is a difficult problem for automatic processing
because attachments are theoretically possible between any two DUs in a dialogue or text, and
often graphs include long-distance relations. Extraction of discourse structures for dialogues
with multiple interlocutors provides useful semantic information to the downstream models
used, for example, in the production of intelligent meeting managers or the analysis of user
interactions in on-line fora. Applications using these discourse features are becoming more
and more numerous, such as automatic meeting summarization, sentiment analysis, or text
categorization (Feng et al., 2020; Huber and Carenini, 2020a; Ji and Smith, 2017; Liu et al.,
2019; Meyer and Webber, 2013; Nejat et al., 2017).

However, despite considerable efforts to retrieve discourse structures automatically
(Duverle and Prendinger, 2009; Fisher and Roark, 2007; Ji and Eisenstein, 2014; Joty et al.,
2013a; Li et al., 2014; Surdeanu et al., 2015; Yoshida et al., 2014), we are still a long way
from usable discourse models, especially for dialogue. Evaluation of results in discourse
parsing has proven complicated (Carlson et al., 2003; Ferracane et al., 2019; Morey et al.,
2017). Scores on deep discourse parsing for well-studied and homogeneous resources such
as the English RST Discourse Treebank, are still well behind human annotators (Morey
et al., 2017). Standard supervised models struggle to capture the sparse attachments, even
when relatively large annotated corpora are available. In addition, the annotation process
is time-consuming and often fraught with errors and disagreements, even among expert
annotators. This motivated us to explore the data programming approach that exploits expert
linguistic knowledge in a more compact and consistent rule-based form.

The study of discourse structure in frameworks such as RST and SDRT, has led in recent
years to a considerable effort in the creation of corpora (as presented in section 3.1.1), but
also the development of discourse parsing models. Several discourse parsers have been
proposed (Afantenos et al., 2015; Braud et al., 2017a; Denis and Muller, 2011; Guz and
Carenini, 2020; Ji and Eisenstein, 2014; Joty et al., 2015; Matthiessen and Teruya, 2015;
Maziero et al., 2015; Perret et al., 2016; Shi and Huang, 2019; Surdeanu et al., 2015; Xue
et al., 2016; Zeldes, 2017).

Discourse parsing algorithms following the RST framework have been proposed; us-
ing statistical, rule-based, greedy bottom-up or transition-based methods (Feng and Hirst,
2014a,b; Hernault et al., 2010; Joty et al., 2015; Polanyi et al., 2004; Reitter, 2003b; Soricut
and Marcu, 2003; Subba and Di Eugenio, 2007). Rule-based approaches, that manipulate
syntactic and lexical information, require the creation of a large number of rules and have
proven infeasible up to now because of the heterogeneity of all possible texts. Other algo-
rithms use human-annotated data sets to train their models. In addition, constituency-based
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RST does not allow non-adjacent relations and is therefore not adapted to the analysis of
dialogues we want to achieve.

Previous work on discourse structure prediction following SDRT has given fairly good
results with basic discourse structure models. (Muller et al., 2012) is the first paper we
know of that focuses on the discourse parsing attachment problem, albeit for monologue.
It targeted a restricted version of an SDRT graph and trained a simple MaxEnt algorithm
to produce probability distributions over pairs of EDUs, what we call a local model with
a positive F1 attachment score of 0.635. They further applied global decoding constraints,
using A* algorithm, to produce a slight improvement in attachment scores. (Afantenos et al.,
2015) used a similar strategy for dialogue on an early version of the STAC corpus. They
first applied a MaxEnt model to each pair of EDUs to form a local dependency structure for
each dialogue from STAC. The model was trained on a SDRT structure that was transformed
into a dependency graph by replacing every attachment to a CDU with an attachment to the
CDU’s head. In the training set, each pair of EDUs was identified by a set of features grouped
into three categories: Positional (such as the position of each EDU in the dialogue), Lexical
(whether the EDUs end with a question mark), and Parsing (e.g., the dialogue acts). They
then applied the Maximum Spanning Trees algorithm to construct the global structure. (Perret
et al., 2016) targeted a more elaborate approximation of SDRT graphs using MaxEnt model
on the same version of the STAC corpus and reported a local model F1 attachment of 0.483.
They then used Integer Linear Programming (ILP) to encode global decoding constraints
particular to SDRT to improve the F1 attachment score to 0.689. However, because these
approaches require two separate stages6, they do not use efficiently the local information
of the EDU pairs in the decoding models, and also the local dependency prediction cannot
take advantage of the global predicted structure for better dependency parsing. Later in this
dissertation, we will compare our modeling approach to these three previous papers which
used the STAC corpus. Recent approaches try to re-establish this link between local content
and the global structure using an incremental approach (Shi and Huang, 2019) to build the
structures jointly and alternately. Shi and Huang (2019) reported 73.2 F1 score, the best
known score on the prediction of global attachment structure on the early version of the
STAC corpus.

Current discourse structure solutions are based on supervised machine learning that
suffer from a lack of annotated data sets. In recent years, machine learning approaches have
made enormous progress due to the advent of deep learning (DL) models. This progress
failed to benefit discourse analysis, because DL models are massively more complex than

6These discourse dependency parsing approaches adopted a pipeline framework by first estimating the local
probability of the dependency attachment between all pairs of EDUs, and then by constructing a complete
discourse structure using decoding algorithms.
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most traditional models and therefore require a proportionally larger amount of labeled
training data. How to deal with these data issues for our task of discourse parsing attachment
prediction?

3.2.2 The Importance of Data Sets

The main reason for the limited success of discourse parsers mentioned above is that they
require large volumes of expertly annotated data to train their models, data that is very
costly and time-consuming to create, and domain specific. The data sets that have been
constructed have required enormous effort and time, and even so aren’t often enough to
handle difficult questions about discourse parsing. In addition these data sets are almost
impossible practically to extend and often their consistency is an issue. The data sparsity
problem applies in particular to neural methods; due to the limited size of labeled data
in existing corpora, it is quite hard to train a data-hungry neural model without any prior
knowledge.

Moreover, even a single expert annotator, on a single data set, has difficulty annotating
data in a consistent manner (Marcu, 1997, 1998; Rath et al., 1961). Complex semantic tasks
like discourse annotation are thus sensitive to many factors and background beliefs that are
difficult to control. It has been shown that incoherent annotations lead to limited performance
of the tools trained with them (Alex et al., 2006; Reidsma and Carletta, 2008); unreliable
systems, generated responses are meaningless or inappropriate in conversational systems
as we showed through some examples in Chapter 1.2. The ambiguity of annotations often
depends on the particular theoretical framework applied (Ferracane et al., 2019). As we
explained in Chapter 2, RST can construct several final discourse structures from the same
text, and this is due to the ambiguity of the definition of the RST discourse relations that relate
to the intentions that the annotator assumes the author or the reader has. The annotation of a
discourse following SDRT can also produce different structures, but its logical framework
ensures that we can rigorously check for consistency and coherence.

The use of some form of weak supervision

To avoid asking experts to create costly annotated training data, and to satisfy industrial
demand for inexpensive learning, research in machine learning developed various approaches
to learn from a limited number of examples with supervised information. These techniques
are grouped in a machine learning paradigm called Few-shot Learning (FLS) (Wang et al.,
2020). We often hear about active learning (Druck et al., 2009), semi-supervised learning
(Chapelle et al., 2009), or multitask learning (Augenstein et al., 2015; Caruana, 1998)
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settings. These are usually used when we already have labeled samples (even from another
domain/task). In our context, we want to annotate unlabeled training data, data that do not
have a label for every training example that indicates its ground-truth output. In this setting
where prior knowledge is unlabeled data, FSL becomes weakly supervised learning problem
(Zhou, 2018). Instead of having a ground-truth labeled training set we have unlabeled data
and weak supervision sources, such that each one has a coverage set and an accuracy (defined
as the expected probability of the true label over its coverage set). Weak supervision sources
could be various types of higher-level, or otherwise less precise, forms of supervision, which
would be faster and easier to provide. The idea is to specify a set of heuristics or other
resources, that–if handled properly–could effectively replace thousands of training labels.

Luckily, recent approaches exploit weak supervision sources to infer discourse structures
(Huber and Carenini, 2019, 2020b; Liu and Lapata, 2018). Liu and Lapata (2018) have build
text document representations hierarchically, by first learning sentence representation (as a
sequence of words) using Bidirectional LSTM and a structured attention mechanism with a
variant of Kirchhoff’s Matrix-Tree Theorem (Koo et al., 2007), and analogously, applied the
same operations in the document level, which was viewed as a sequence of sentence vectors.
The idea behind the attention mechanism used by Liu and Lapata (2018) is to capture the pair-
wise interaction between text units (words, or sentences), to generate a context representation
for each unit with weak structural information, which form a non-projective dependency
tree. The produced trees are the result of Chu-Liu-Edmonds algorithm (Chu, 1965; Edmonds,
1967) to extract the maximum spanning tree from the attention scores. If this approach
has not been exposed to labeled training data, this has limited its performance on discourse
representations, probably due to the lack of discourse information. Recent work used distant
supervision approaches from sentiment-annotated data sets, to generate RST discourse
structures (Huber and Carenini, 2019, 2020b). They combined a variant of multiple-instance
learning (MILNet) (Angelidis and Lapata, 2018) and an attention mechanism to compute
sentiment values and attention scores (that encode the nuclearity/importance attributes) on
the document-level and the segments-level, that are combined to run an optimal CKY-style
tree generation algorithm (Jurafsky and Martin, 2014). To scale for arbitrary length document
restricted by the CKY approach, they applied heuristic beam-search strategies that enhance
the discourse tree structure prediction (Huber and Carenini, 2020b). These approaches allow
existing data to be extended with discourse trees which can be used as training data sets for
neural approaches. The use of distant supervision (along with other task-guided annotations
for the construction of discourse trees), or the use of weak structural constrains on the data
without external parser, allowed the structures produced to be generalized to mitigate domain
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and task specificity (Ferracane et al., 2019; Huber and Carenini, 2020b; Liu and Lapata,
2018).

Weak supervision approaches for NLP tasks, where we either don’t have the labels, or it
is too expensive to gather them, are what we want to exploit in this thesis. We want to use
the insights that can be gleaned from part of the data we want to label (all what has been
described in Section 3.1 of this chapter for the STAC corpus), but also the constraints specific
to the theory we chose to follow (SDRT as described in Chapter 2) as weak supervision
sources that need to be effectively combined to refine attachment structures in a data-driven
manner.

3.3 Conclusion

Spoken discourse tends to be less premeditated than written discourse and it is prone to
hesitations, corrections and other disfluencies inherent to oral communication. The ubiquity
of instant messaging applications have given rise to a new mode of written communication
that is extemporaneous, in virtue of the high rate of interactions and immediate responses. In
multi-party conversations, paying attention to what was said, by whom, to whom, how it was
said, give us the context of the interactions and the flow of the ideas’ organization. Trying to
find a logical form of natural language interactions can be very useful for automatic inference
dialogue models, especially if these interactions are performed with a machine to access or
process symbolic data. Simply restricting the processing of queries and their responses to
binary treatments is not enough to capture contextual semantics.

We have shown in the Section 3.1.3 that spontaneous multi-party conversations in text
format are characterized by a number of specific features. Certain data formats provide us
with important information for the analysis of interactions such as speaker identification, to
which utterance one comments and even addressee tags. These elements are meant to assist
us in following the threads of discussion in order to understand what is being said. It is also
necessary to find a way to identify automatically through the contents of the utterances and
the information provided, the function of each statement in the whole conversation and how
they are related. The STAC data is, to our knowledge, one of the largest annotated corpora
with SDRT available for multi-party dialogue analysis. It was therefore chosen to be our
study and evaluation data. Yet it provides too little data for predicting dialogue structures
using supervised methods.

The large number of discourse annotation campaigns have not solved the problem of
lack of data to effectively train deep learning algorithms. All discourse corpora are limited
in domain and in size, since annotation is time-consuming and very complex especially
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when domain expertise is required. The sparsity of discourse data makes learning difficult,
especially considering that discourse analysis involves several complex and interacting
factors, ranging from syntax and semantics to pragmatics. Another difficulty is the need to
collect corpora for each new task, to find examples of the patterns we want to analyze.

To circumvent these problems we investigated the possibility of automatically and accu-
rately generating large annotated data sets with the Snorkel’s data programming method that
uses high-level knowledge in the form of weak labeling sources. We will present the Snorkel
framework in the next Chapter 4, explaining first the theoretical bases used in its generative
models and the different stages of its pipeline. We will then describe in detail in Chapter 5
how we have used Snorkel and how we have adapted it in order to predict discourse structures
in the STAC dialogues using SDRT theory to build our set of weak supervision sources.





Chapter 4

Foundations: Tools for our project

As we saw in Chapter 3, it is difficult to collect large corpora for specific tasks. Moreover,
even when large corpora are available, it is very difficult, time-consuming and costly to
annotate these data. While the developed discourse parsers obtain fairly good results, they
are generally trained on these manual annotations and are very limited in their transferability
to other data.

When we turn to our industrial use case, then we therefore place ourselves in the situation
where we don’t have large and well-written corpora. And as we noted in the previous chapter,
building a discourse parser without data isn’t an option.

In this chapter we lay the foundations for what people call weakly supervised learning.
In this set up, we won’t assume ground truth annotations that we can learn from. Rather
we will estimate these ground truth annotations via a statistical technique exploiting several
possibly noisy information sources we observe and/or assume in the unlabeled data we want
to analyze.

An approach to estimating ground truth labels with easy algorithms is to represent these
information sources in graphical models, in which we can learn or estimate dependencies
between these sources as well. We will first explain why and how the use of graphical models
facilitates inference in the context of our weak supervision. We will then detail two types of
graphs, factor graphs and junction trees, which are used in the model we want to explore.
Finally, we will present in detail the Snorkel workflow, an open-source system that uses a
weak supervision method to apply labels to large data sets.

4.1 Introduction to Graphical Models

Graphical models have become very important because they facilitate the computation of
different algorithms directly on the graph (Nielsen and Jensen, 2009). They cover three
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fields; statistics, basic graph theory and computer science. They allow complex systems to
be built by combining simpler parts using the conditional probabilities of statistical theories
and the properties of graphs. In the following section, we will explain through examples the
fundamental bases of graphical model representation. The basic idea is that we are trying
to represent the knowledge, or observations, in a graphical form, where nodes are going to
correspond to the variables, i.e. the sensors of our model, or the characteristics that could
be observed, and the edges are going to represent the statistical dependencies between the
variables. We don’t know the dependencies of the variables in the data. We can only see the
co-occurrence or correlations between those variables. Thus we need to deal with the lack of
knowledge of the dependencies using other means.

4.1.1 Representation in Graphical Models

Throughout this section, we will illustrate the reasoning behind the graphic models with
the basic example of a disease diagnosis. We could take any other example; an aircraft
motion with the different sensors such as the aircraft mass and weight, speed, force, level
flight, velocity, location and time. The doctor knows that there are factors that may increase
the risk or cause lung cancer. Let’s imagine a doctor who can take several observations or
diagnoses for each of his/her patients: weight, age, whether the patient has lung cancer or
not, temperature, coughing, diabetes, bronchitis, whether the patient smokes or not, etc. The
doctor has a collection of information on his/her patients where each patient is described by
a vector of Boolean or discrete variables. One possible approach would be to construct a
graphical representation that indicates the possibility of a disease based on symptoms. At the
beginning, we have our various observations which can be represented by circles (nodes).
Then we link these variables according to their correlations (edges).

Why do we need graphical models representation? Some statisticians would say that they
don’t need graphs, they only need the equations. But graphs have become more and more
popular and there are several reasons for this. First, graphs are very intuitive. They are a very
nice way of globally visualizing relationships between variables (discourse structure, parsing
graphs, neural networks or even simpler such as family trees). Importantly, graphs allow us
to abstract out the dependencies between the variables from the details of their parametric
forms in equations. Pearl and his colleagues (Geiger et al., 1990; Pearl, 1982, 1986, 2014;
Pearl and Verma, 1995) were among the pioneers to argue that uncertain information could
be efficiently managed if one takes advantage of conditional independence relations in a
graphical representation. The conditional independence relationships between the variables
is a very important concept in graphical models that we will explain briefly further down in
this section to understand the main usefulness (but this concept becomes difficult to handle
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in the presence of hidden common causes in graphs). Thus we can answer questions like
“Is A dependent on B given that we know the value of C?” just by looking at the graph
and not caring about the distribution formed by dependencies, or if variables A, B and C
are binary, real, continuous or discrete. Another really important reason to use graphical
models is that they allow us to define general message-passing algorithms on the graph
that implement probabilistic inference efficiently. Thus enabling us to answer questions
like “What is p(A|C = c)?” just by sending messages in the graph, without enumerating all
settings of all variables in the model, in other words without computing the joint probability
of all variables.

Figure 4.1 A simple example of an undirected graph (left side) and a directed graph (right
side).

There exist different types of graphs. A distinction is drawn between Undirected Graphi-
cal Models (UGM) and Directed Graphical Models (DGM). Undirected graphs have edges
that do not have a direction. The edges indicate a two-way relationship, in that each edge
can be traversed in both directions. The Figure 4.1 shows a simple undirected graph with
three nodes and three edges. Directed graphs have edges with direction. The edges indicate
a one-way relationship, in that each edge can only be traversed in a single direction. The
Figure 4.1 shows a simple directed graph on the right side.

Directed Acyclic Graphical (DAG) model is one of the DGM that is widely used. The
concept behind its representation is that we consider arrows pointing at children (descendants)
from the parents (ancestors) so as we won’t form a cycle (directed graphs without directed
cycles). The DAG corresponds to a factorization of the joint probability distribution of the
form:
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p(X1, ...,Xn) =
n

∏
i=1

p(Xi|Xpar(i)) (4.1)

Where par(i) are the parents of node i.

Figure 4.2 A Directed Acyclic Graph (DAG) example. In this graph A⊥/⊥D but A⊥⊥D|C

For example, the joint distribution of the DAG in Figure 4.2 factors in the following way
(Equation 4.2):

p(A,B,C,D) = p(A)p(B)p(C|A,B)p(D|B,C) (4.2)

One of the reason why DAGs are interesting to use, is that they represent efficiently the
causal relationships. In Figure 4.2, if the variable A says that the patient gets influenced by
people (peer pressure), C says the patient smokes and D says that he has yellow fingers, so it
means that A causes C, and C may cause D, so A causes D indirectly through C, following
the direction of the arrows, not the other way. D being true does not cause A.

Factoring a probability distribution into a set of smaller conditional probability requires
that the variables be conditionally independent. We are interested to know if some variable
X is independent of some variable Y given some set of variables V (that dseparates X
from Y). This query is simple on DAGs because we can assume that directed edges are
causal connections. Formally, we can write X ⊥⊥Y which means that X is independent of Y
(p(X ,Y ) = p(X)p(Y )), and this implies p(X |Y ) = p(X). X is independent of Y conditioned
on V, written X ⊥⊥Y |V , iff p(X |Y,V ) = p(X |V ). We note that if X ⊥⊥Y |V = Y ⊥⊥X |V thus it
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implies that p(Y |X ,V ) = p(Y |V ). A generalization of this is called Markov Boundary for X.
This defines the independence of a variable X relative to all other variables given its parents,
its children and its parents of its children (the union). The Markov condition is an assumption
made in Bayesian probability theory, that every node in a DAG (a Bayesian network)
is conditionally independent of its nondescendants, given its parents. The conditional
independence statement has computational implications because we can ignore a part of the
graph when computing on a specific set of variables.

Let’s give a concrete example to show this difference between conditional independence
and marginal independence. Having yellow fingers should be independent whether we are
influenced by people or not. A typical situation where there is a conditional independence
is that both X and Y result from the same cause, V. For example, smoking causes yellow
fingers and lung cancer.

Figure 4.3 An undirected graph with its fully connected sub-graphs.

UGMs are also coming back in popularity for several reasons. Undirected graphs
correspond to a particular factorization of the joint distribution that involves looking at
all the cliques, i.e. the fully connected sub-graphs. This joint distribution is a product of
non-negative functions on the cliques re-normalized. The Equation 4.3 shows the joint
distribution of the undirected graph of Figure 4.3, where φ is a non-negative function and
1/Z is a normalization constant (partition function) to make sure that the product of the
non-negative functions, when we sum over all the variables, sums to one (or integrates to
one).

p(A,B,C,D) =
1
Z

φ(A,B)φ(B,E,D)φ(C,D) (4.3)
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Conditional independence for undirected graphs is expressed as follows: every node is
independent of all the other nodes given its neighbors. So in Figure 4.3 for example, D is
independent of A given B, E and C.

Figure 4.4 Equivalent graphical representations of a statistical model (plate notation on the
left shows that the variable xn gets repeated N times).

A statistical model also corresponds to a particular graphical model. If we consider
the following simple model where a data set of N points is generated (or distributed) in-
dependently and identically (i.i.d.) from a Gaussian with mean µ and standard deviation
σ , this corresponds graphically to the two graphs in Figure 4.4 and to the following joint
distribution in Equation 4.4 (we assume that the priors on µ and σ are independent in this
simple example):

p(x1, ..,xN ,µ,σ) = p(µ)p(σ)
N

∏
n=1

p(xn|µ,σ) (4.4)

Inference in Graphical Models

How do we use graphical models? Inference corresponds to evaluating the probability
distribution over some set of variables, given the values of another set of variables. In the
graph example in Figure 4.2, if we assume that each variable is binary (that it has only 2
values so that it’s Boolean (0,1)), a naive method to compute p(A|C = c) is as follows:
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p(A,C = c) = ∑
B,D

p(A,B,C = c,D)

p(C = c) = ∑
A

p(A,C = c)

p(A|C = c) =
p(A,C = c)
p(C = c)

(4.5)

As the variables are binary, the first sum over variables B and D corresponds to 2x2, i.e. 4
terms, and we have to compute this sum twice because A has two different values (4x2 = 8).
When we have p(A,C = c), we can sum up the variable A to get p(C = c) which corresponds
to 2 terms. Finally, we have to do two divisions to compute p(A|C = c). In total, we have
computed 8+2+2 = 12 quantities with this simple method. The question is, can we do that
more efficiently? Because we are only interested in the distribution oven A and C. A more
efficient method would be to take into account the fact that the joint distribution, induced
by our graphical model representation, factors in a certain way. This corresponds to the
calculations of the following Equation 4.6:

p(A,C = c) = ∑
B,D

p(A)p(B)p(C = c|A,B)p(D|B,C = c)

= ∑
B

p(A)p(B)p(C = c|A,B)∑
D

p(D|B,C = c)

= ∑
B

p(A)p(B)p(C = c|A,B)

(4.6)

We notice that some variables do not appear everywhere in the probability distribution,
in particular, the variable D only appears in p(D|B,C = c). So we can bring one of the two
sums on the only term where it appears (second line of the Equation 4.6). The sum over
some variable is always one. So the sum over D equals one, so it cancels in the equation. We
are left with the last expression (last line in the equation), where we are only summing over
B and this represents 2x2 = 4 terms to compute (2 for the sum over B, and additional 2 terms
for the two values of A). In total, instead of manipulating 12 terms, only 4+2+2 = 8 will
be computed (2 other terms for p(C = c), and 2 other terms for p(A|C = c)). It is interesting
to see in the graph 4.2 that when we are interested in the relationship between A and C, it
turns out that the variable D is irrelevant. This gain may not be significant, but in general, for
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large graphs, if we use the conditional independence relationships we can get exponential
gains in efficiency (for tree structures, singly connected graphs).

4.1.2 Factor graphs

A factor graph (Kschischang et al., 2001) is a graphical model representation that unifies
directed and undirected models. It is an undirected bipartite graph with two types of nodes.
Round nodes represent variables, and square nodes represent factors. Factors are simply the
conditional distributions in the DGMs. There is an edge from each variable to every factor
that mentions it. Factor graphs are a representation that makes calculations for inference even
easier by propagating messages from variable nodes to factor nodes and vice-versa. Factor
graph models convert a joint distribution into a product of functions of a subset of variables as
in the Equation 4.7 for the DAG example in Figure 4.2, where Z is a normalization constant.
The graphical representation of this joint distribution is showed in Figure 4.5.

p(A,B,C,D) = p(A)p(B)p(C|A,B)p(D|B,C)

=
1
Z

f1(A) f2(B) f3(A,B,C) f4(B,C,D)
(4.7)

Figure 4.5 An undirected graph with its fully connected sub-graphs.
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Let’s take a simpler example, which involves 3 discrete, binary variables A, B and C
that can take the values {0,1}. A joint distribution over these 3 variables has 7 parameters
(we have 8 choices that have to sum up to one). If we only have f1(A,B) and f2(B,C) in
the factor graph representing this simple example, it means that A⊥⊥C|B. So not all of the
7 terms satisfy the conditional independence statement. But what f1(A,B) could mean?
f1 is a function of two binary variables, so it can be represented by a two by two array of
non-negative numbers and they do not have to be summing to one, because the normalization
constant Z will take care of that in the distribution. Let’s assume we have these random
numbers in the f1 matrix factor

(
8 0
.2 4

)
. It is telling that there is a compatibility between A

and B for being 0 because of the value 8. The combination of both, A and B being 0 is much
more probable than anything else. But

(
8 0
.2 4

)
says that it is logically impossible for A to be 0

and B to be 1, and no matters what the other factors are. While the value 8 in f1 may get
influenced by what is in the factor f2.

There are two types of factor graph representations ; singly connected (tree representation)
and multiply connected factor graphs (with loops in the graph).

Factor Graph Propagation

How do we do inference in factor graphs? We are going to describe a general method for
computing on these factor graphs. Computing probabilities in a factor graph is done by
propagating messages from variable nodes to factor nodes and vice-versa. The message
mx→ f (x) from variable x to factor f is a function of variable x (we can induce the shape of
mx→ f (x). If variable x is binary, then mx→ f (x) is a two by one array) and it is obtained by
multiplying together for all the factors g that are neighbors of variable x, but not including
factor f, all the messages that these other factors g send to x (Equation 4.8 where n(x) denotes
the set of factor nodes that are neighbors of x).

mx→ f (x) = ∏
g∈n(x)/ f

mg→x(x) (4.8)

The message m f→x(x) from factor f to variable x is also a function of variable x, and it is
obtained by summing over all the other variables Y that factor f depends on, not including x,
of factor f(Y) times the product of all the messages from other variables h in n( f ) to factor f
(Equation 4.9 where n( f ) denotes the set of variable nodes that are neighbors of factor f):

m f→x(x) = ∑
Y/ x

( f (Y ) ∏
h∈n( f )/ x

mh→ f (h)) (4.9)
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The rule in factor graph propagation is that if a variable has only one factor as a neighbor,
it can initiate message propagation. Once a variable has received all messages from its
neighboring factor nodes, one can compute the probability of that variable by multiplying all
the messages and normalizing them:

p(x)≈ ∏
g∈n(x)

mg→x(x) (4.10)

When we are conditioning on a variable Z=z, we can change or set a factor that is out
of Z, to eliminate values that are not z, when running the message propagation again. If
the factor graph is singly connected (tree structure), we only need to propagate messages
in two directions (from root to leafs, and then from leafs to root) to have all the marginal
probabilities we are interested in.

We notice that all the equations for factor graphs propagation follows the basic sum (
p(x) = ∑y p(x,y)) and product rules (p(x,y) = p(x)p(y|x)) of probability. The factor graphs
propagation is also called the sum/product algorithm. The forward–backward algorithm in
hidden Markov models (HMMs), and the Kalman smoothing algorithm in linear Gaussian
state-space models (SSMs) are special cases of factor graph propagation (belief propagation).
These models can be represented as singly connected DAGs or even in an undirected graphical
form.

The probability distribution over variable of interest given the variables that we observed
is computed exactly in factor graph propagation for singly connected graphs. For multiply
connected graphs (with loops), there are other approximate inference algorithms. The
junction tree algorithm solves the exact inference problem for multiply connected graphs,
but can be very slow (exponential in the cardinality of the largest clique).

4.1.3 Junction Trees

Junction trees, also called joint-trees, clique trees or tree-clustering, are more easy-to-handle
graphs. Why is that? If our graph representation has undirected cycles, local message passing
algorithms run the risk of double counting evidence (the problem of common cause) (Beeri
et al., 1983). In fact, it can be proved that local propagation is correct if and only if the graph
is triangulated, i.e., there are no chordless cycles of length greater than 4. The most common
approach is therefore to convert the graph into a tree, by clustering nodes together, to form
what is called a junction tree, and then running a local message passing algorithm on this tree.
A junction tree is a tree where nodes and edges are labeled with sets of variables. Variable
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sets on nodes are called cliques, and variable sets on edges are separators. Cliques contain
all adjacent separators, and if two cliques contain variable Y , all cliques and separators on
the path between the two cliques contain Y (this last property is called running intersection
property). The notion of cliques is closely related to that of complete (sub)graphs (see UGMs
factorization in Section 4.1.1).

We can construct junctions trees from the factor graphs, or directly from an UG or DG
from the observations (see next Section 4.1.4). The steps are as follows:

• 1) First we need to infer an undirected graph: from a factor graph we only have to
make sure that every factor is contained in some maximal clique of the undirected
graph. The transformation from DAGs to undirected graph is called moralization,
where we simply“marry” all parents of each node by adding edges connecting them,
then drop all arrows on edges (see Figure 4.6).

• 2) Triangulation of undirected graphs: add edges to the graph so that every loop of
size > 4 has at least one chord (see Figure 4.7). The triangulation of a graph is not
unique and finding the optimal triangulation (in the sense of the minimum number of
added edges) is an NP-complete problem.

• 3) Chordal graphs to junction trees by searching for maximum cliques (see Figure 4.8)

Figure 4.6 Moralization: A DAG (on the left) and its corresponding moral graph (on the
right), with newly added arcs shown in red.

Finding a junction tree for a chordal graph is simply a matter of finding a maximum-
weight spanning tree, which can be efficiently solved using Kruskal’s algorithm or Prim’s
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Figure 4.7 Triangulation: Chordal or triangulated undirected graph.

Figure 4.8 Chordal graph to junction tree.

algorithm. For that, we need to find all maximal cliques in the chordal/triangulated graph,
and determine all the separators set sizes for the maximal cliques to build a weighted clique
graph. If a graph doesn’t have a junction tree, the key is to modify it so that we obtain a
chordal graph.
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Clique-tree Propagation

How do we simplify the joint distribution in junction trees? Inference in Markov networks
(UGs) (Lauritzen and Spiegelhalter, 1990) is performed by decomposing the joint distribution
into a combination of local potentials that are local joint distributions. The main steps of the
junction tree algorithm are:

• Graphical transformations (moralization and triangulation as explained above) that we
performed to transform the initial DAG into an undirected junction tree.

• Numerical operations allowing to integrate the initial local distributions into the new
structure then perform stabilization operation consisting in propagating marginals in
order to guarantee that the marginal distribution relative to a given variable appearing
in two adjacent clusters are the same.

In this second step, we incorporate observations by fixing observed variables to take on
specific values as a pre-processing step. There are different variants of the Junction Tree
algorithm. By accounting for the structure of the edge potentials, we can simplify the Sum-
Product message passing equation, resulting in the Shafer-Shenoy algorithm (Shenoy and
Shafer, 2008). Additional clever bookkeeping to avoid having to multiply many messages
repeatedly yields the Hugun algorithm (Jensen et al., 1990). The computational complexity
of this algorithm is exponential in the size of the largest clique making this algorithm efficient
only on sparse networks.

Any probability distribution that satisfies the conditional independencies implied by
graph G can be factorized as:

p(x) =
∏c∈C p(xc)

∏s∈S p(xs)
(4.11)

where if s = {c1,c2} (s is a separator in the junction tree) then xs denotes xc1∩c2 .

Having built the junction tree graph, now we need to assign potentials to it. This is easy to
do. For edges, the potentials are merely indicator variables which enforce consistency among
adjacent cliques. For nodes, the potentials are the maximal clique potentials corresponding
to the triangulated graph. The only thing we need to be careful about is that we do not repeat
potentials, i.e., we do not assign the same potential in the original graph to multiple maximal
cliques in the triangulated graph. This can be done as follows: maintain a list of potentials
over all maximal cliques of the triangulated graph. Initialize all the potentials to one. Now
go over each potential in the original graph, and assign it to some maximal clique in the
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triangulated graph. At the end, the potential for each maximal clique is simply the product of
the potentials assigned to it.

4.1.4 Parameters and Structure Learning in Graphical Models

Parameters Learning

When we already have the graphical representation of a model, we have the factorization
of the joint distribution over all the variables as explained in the previous section. The
conditional probability tables Θ are the parameters of each factor in the distribution. The
learning problem is, given the structure of a graph, how do we learn its conditional probability
tables from data D = {x(n)}N

n=1 (N examples of the variables x).
For our DAG example in Figure 4.2, we have the following distribution in Equation 4.12.

The parameters of this model can be represented as 4 tables: θ1 has VA entries (VA are the
values that the variable A, assumed discrete, can take), θ2 has VA entries, θ3 has VCxVAxVB

entries and θ4 has VDxVBxVC entries. The θi of variable i can always be represented as a
2-dimensional table (∏ j∈par(i)Vj) x Vi.

p(A,B,C,D) = p(A)p(B)p(C|A,B)p(D|B,C) (4.12)

Let’s first describe the maximum likelihood (ML) procedure to learn θ from D =

{x(n)}N
n=1. We can also do Bayesian inference over parameters that are unknown, by putting

priors on parameters, then we compute the posterior distribution over the parameter given
the data, p(θ |D) = p(D|θ)p(θ)/p(D). For Maximum likelihood, we have to take the likeli-
hood function (Equation 4.13 where each term p(xn|θ) is represented using the conditional
independence structure of the graph) and maximize it with respect to Θ.

p(D|Θ) = ∏
n=1

N p(x(n)|θ) (4.13)

And then when we take the logarithm of the likelihood 4.14, the log of a product turns
into a sum over N data points, and a sum over variables i (for each data point, we have an
observation of all variables) of the term logp(x(n)i |x(n)par(i)).

logp(D|Θ) =
N

∑
n=1

∑
i

logp(x(n)i |x(n)par(i),θi) (4.14)
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The maximum likelihood algorithm is very simple when the data is fully observed for
optimizing the parameters.

In very realistic situations, we often have hidden variables (missing observation for
some data points). A naive thing to do is that we can throw out the data with variables that
are not observed, and calculate the parameters from the other observed data, but this doesn’t
give us the maximum likelihood solution. This naive procedure is not statistically efficient
unless we have a large amount of data observed, which is often not the case. There is a better
way to proceed by running the Expectation Maximization (EM) algorithm to optimize the
parameters (Dempster et al., 1977). The intuition of EM algorithm is as follows: we have
to iterate between applying the E step where we have to fill in the hidden/missing variables
by assigning some probabilities, and the M step where we apply complete data learning
to filled-in data (estimate the parameters by calculating the probability distribution/density
over all possible settings. This can be very hard, except for some simple linear models with
Gaussian noise). The goal is to maximize parameter log likelihood given the observable data
Y (the log likelihood p(Y |θ) in Equation 4.15, where we sum over the hidden variables X, of
the joint distribution of the hidden and observed variables).

logp(Y |Θ) = log∑
X

p(X ,Y |θ) (4.15)

The EM algorithm ensures that we have the maximum of the likelihood. It may not
be the global maximum, but it is certainly a local maximum of the likelihood. When we
have a non-linear model, or a non-Gaussian noise, we can apply sampling methods for the
E step such as Markov Chain Monte Carlo (MCMC), Gibbs (Geman and Geman, 1984;
Smith, 1991) that originate from the Metropolis-Hastings algorithm (a detailed review of
this method is given by Chib and Greenberg (1995)). And we can apply sampling methods
in both hidden variables and parameters because EM steps may not be very sensitive when
finding a single value of the parameters. A key issue in the successful implementation of
any MCMC sampler is the number of runs (steps) until the chain approaches stationarity (the
length of the burn-in period).

For easy situation, when we have complete data, Bayesian learning is not more costly
than maximum likelihood. But for a situation with incomplete data, it is a little bit harder
because we have to infer both parameters and the hidden variables. We can use EM algorithm,
or for Bayesian learning other methods like MCMC or Viterbi.
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Structure Learning

We assumed previously that we had the structure of the model, i.e. the graph representation.
But can we learn the structure of the graphical model given a data set of observations (set
of variables)? If we have N variables, and all what we observe is the settings of these N
variables; we don’t know whether a variable is correlated to another variable. We want to
infer the set of edges in the graph model.

There exist two different methods for structure learning. There is a learning approach
based on Constraints, where we use statistical tests of conditional and marginal independence
and find the set of DAGs whose d-separation relations match the results of conditional
independence tests. And there is Score-Based Learning, where we use a global score such as
the Bayesian marginal likelihood and find the structures that maximize this score.

For complete discrete observed data D for example, we can do Greedy search algorithm
by starting with a graphical model with structure m, and parameters θ , and compute the score
of the graph, score(m), from the data set, and evaluate adding or removing an edge to the
graph. We can iterate and choose each time the best score. If we have missing data, it is
more complicated because we have to estimate the scores. In structure learning, there is a
lot of research on learning causal relationships in DGMs which we are not going to address
in these explanations. In UGMs, the probability of all the variables p(X |θ) depends on
intractable normalization constant Z(θ), except for tree like structure where we can compute
Z(θ) exactly. There are several solutions to approximate this normalization constant or its
derivatives and compute inference for UGMs (Jordan et al., 1998; Murray and Ghahramani,
2012): e.g. Boltzmann machine learning, contrastive divergence, pseudo-likelihood, loopy
belief propagation or bounding methods.

Undirected graphs provide a natural description of constraints between k observa-
tions/variables X . Mutual compatibilities among variables are described by a factorized joint
probability distribution 4.16, where C j ⊂ {1, ...,k} indexes a subset of the variables and φ j is
a potential function, parameterized by θ j, expressing compatibilities among XC j :

pθ (X |θ) = 1
Z(θ)

exp

{
∑

j
φ j(XC j ,θ j)

}
(4.16)

The partition function Z(θ) is a sum or integral over all variables configurations:

Z(θ) = ∑
X

exp

{
∑

j
φ j(XC j ,θ j)

}
(4.17)
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The UGM representing the conditional independencies implied by the distribution 4.16
has a node for each variable and an undirected edge connecting every pair of variables
(xi,xm), if i,m ∈C j for some j. The subsets C j are cliques of the whole undirected graph. A
more general representation of UGM is a factor graph with the variables nodes (i ∈ {1, ...,k})
and the factors j (edge from variable i to a factor j if i ∈ C j). Factor graphs are a good
representation of the Boltzmann machine that assumes variables X to be binary (xi ∈ {0,1}),
so the undirected graph has edges for all non-zero elements of its weight matrix θ that
parameterizes the distribution.

For learning the Boltzmann machine, we usually use a maximum likelihood version of
the EM algorithm, where we assume some variables to be hidden xH and some observed
xO (Ackley et al., 1985). The gradient of the log probability p(X |θ) is the difference
between the expectation under the data distribution p(XH |XO,θ) and the expectation under
the distribution p(X |θ). If we consider a data set of N points that is generated (or distributed)
independently and identically (i.i.d.), the gradient of the log likelihood is simply summed
over N. Computing expectations of Boltzmann machines is exponential in time. The Gibbs
sampler is a popular choice for approximating these expectations (other inference algorithms
exist).

Computing the parameters p(θ |X) using Bayesian inference is of the form of Equation
4.18:

p(θ ,X) =
1
Z

exp

{
− 1

2σ2 ∑
j<i

θ
2
i j +∑

n
∑
j<i

θi jsn
i sn

j

}
(4.18)

The prior over the parameters when marginalizing 4.18 is of the form 4.19:

p(θ) = ∑
X

p(θ ,X) ∝ N (0,σ2I)Z(θ)N (4.19)

This p(θ) prior is dependent on the size of the data set, and its parametric form is very
complicated, favoring weights with large partition functions. To address this intractable
problem, the MCMC (Markov Chain Monte Carlo) (Neal, 1993) methods, such as Metropolis
or Langevin sampler, are being used to generate correlated samples from probability dis-
tribution with unknown normalization. These methods allow to generalize the inference to
any Bayesian learning in a general undirected model of the form 4.16. The Gibbs sampler
is a popular choice for approximating pairwise marginals for the computation of the joint
probability p(X ,θ) gradient or for parameters update (also called Brief sampling). But this
algorithm, inspired by Contrastive Divergence work, uses brief sampling starting from the
data, X , which gives biased but low variance estimates of the required expectations.
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In this section, we talked about an intuitive and computationally useful representation for
probabilistic modeling which are graphical models. We have shown the different solutions,
more or less simple and accurate, for learning this graphical structure from the observations.
The general approach to inference in arbitrary graphical models is to transform these graphical
models to ones belonging to an easy-to-handle class of graph representation. In the next
section, we will describe Snorkel Ratner et al. (2017a) and will show how it uses this approach
to annotate data.

4.2 Data Programming

Weak supervision is an approach to alleviating the issues around the difficulty of creating
training data. The problem with manually annotated data is its high cost and lack of
flexibility, especially when an expertise is required (see Section 3.1.1). One solution to this
concern is to program the data with domain expertise or other weak supervision information.
Some examples of sources of weak supervision include domain heuristics (e.g. common
patterns, rules, etc.), distant supervision sources (existing resources such as knowledge bases,
alternative data sets, or pre-trained models), and crowdsourcing workers. These are known
as weak supervision sources because they may be limited in accuracy and coverage.

To help reduce the cost of training set creation, Ratner et al. (2016) introduced the data
programming paradigm, along with an open source framework, called Snorkel Ratner et al.
(2017a). It uses a weak supervision method to apply labels to large data sets by way of
heuristic labeling functions that can access distant, disparate knowledge sources. These
labeling functions, that can issue a label or abstain, are represented as variables in graphical
models in order to observe their correlations, so as to estimate the labels we are looking for.

4.2.1 Snorkel

The Snorkel project1 began at Stanford in 2016 with the goal of getting more and more
training data by bringing a mathematical and system structure to the messy and often entirely
manual process of creating and managing training data. The key idea behind Snorkel, is to
take advantage of noisy (or weak) sources of labels, and be able to model their noise using
structure learning in graphical models, and combine them so that we can get labels more
efficiently. Let’s go through the basic steps of this system (Figure 4.9).

After loading in unlabeled data, Snorkel consists of three main steps :

1https://www.snorkel.org

https://www.snorkel.org
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• The first step is the labeling rules phase where subject-matter experts (SMEs) users
write Labeling Functions (LFs) which capture patterns and heuristics or/and connect
with external knowledge bases (distant supervision). A labeling function is a Python
method which given an input can either output a label or abstain.

• The second part of this Snorkel system is the algorithm that helps to learn and model
the previous heuristics that users wrote. This algorithm needs to know how accurate
the LFs are, and find out if they are correlated. When having this information, the
generative model of this step will combine them in an optimal manner to assign
training labels to the data that we have. The most important aspect of this step is that it
does not use ground-truth data, learning instead from the agreements and disagreements
of the LFs that the model represents as variables in a graph in order to use the various
structure learning methods presented in section 4.1.4

• Snorkel outputs a set of probabilistic labels which can then be used to train a wide
variety of machine learning models (any discriminative model).

Figure 4.9 An overview of the Snorkel workflow.

We need to access unlabeled data, which should be a fairly easy task depending on the
field. Snorkel breaks input data down into a context hierarchy made up of context types
(Context Hierarchy module in the top left side of the Snorkel system overview 4.9). The set of
context types that make sense will be data dependent. For, e.g. binary classifier text-relation
extraction, we might extract documents, sentences, spans, and entities. Tuples of relevant
entities are then passed to labeling functions as candidates.

4.2.2 Labeling Functions

The first step, which is the most meticulous part of the system, is writing LFs. It is a way of
encoding domain knowledge people have about the data they want to label. The LF concept
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is quite general. We often use knowledge/expertise/heuristics to form LFs, but it is perfectly
adequate to use a general pre-trained classifier as one too. A LF can look for words in a
sentence for example, or certain patterns that tell us a good enough signal of whether the
data candidate is true label y or false label y. If the pattern is not found the LFs can abstain,
i.e. they do not necessarily return a label. The convention in snorkel is to generally output 0
when the LF abstains. We can write multiple of these LFs, but none of them are going to be
perfect and cover the whole data. If we could write perfect rules then we wouldn’t need to do
Machine Learning for our specific classification tasks. So some of the LFs may only assign a
label to 10% of the data set, but they can be 90% accurate on that subset. Other LFs may be
only 60% accurate but they may have labeled 90% of the data. And these LFs don’t have
to be mutually exclusive, as the Generative Model will be able to learn their correlations.
The choice of polarity and class size is flexible for LFs as well. The important point that
characterizes LFs is that they can abstain. We are (then) faced with incomplete observations.
One method to improve the estimation of our LFs is to introduce dependencies to estimate
the scores according to correlations.

Figure 4.10 Label Matrix Λ obtained by applying the LFs over unlabeled data.

In this Snorkel system, the LFs (that can be any weak supervision sources) can be written
with a beginner’s knowledge of Python. For simple cases, we can use the built-in declarative
LFs instead of writing our own. This was one of the main goal of the Snorkel team; to
facilitate data handling and rules composition for everyone.

4.2.3 Modeling Weak Supervision Learning

After writing a collection of LFs, we can apply those on all the unlabeled candidates to
create a large number of labels (label matrix Λ in Figure 4.10) that are not perfect, but “good
enough” for a potentially huge training data set. We could intuitively use majority voting
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to determine the resulting labels. But majority voting works really well only in situations
where we don’t have many votes on an input candidate (e.g., most of the LFs abstain), and in
situations where we have lots of votes. But in-between these two extremes, taking a weighted
vote based on modeling LF parameters works better. In order to learn the LFs accuracies,
and their correlations, we can not rely on any label because we want to move away from
hand labeling the data. Instead the Generative model looks at the overlaps, conflicts and
dependencies among the labels assigned by these different LFs to assign probabilistic labels
using a graph-based model.; on a factor graph for the first version2 (Ratner et al., 2017a), and
on a junction tree for the second version3 (Ratner et al., 2019) of the Snorkel system. We are
in a situation where there is missing data (since the LFs can refrain from labeling data points),
and where we do not know the dependencies between the LFs. It is therefore necessary not
only to estimate the missing information, but also to find the structure of these observations.
And it is possible to do this through the algorithms applied to graphical models we saw in
section 4.1.4. Both versions of the Snorkel generative model are described in detail below.

First version of Snorkel

Let’s formally describe the learning problem to get an idea of everything that is taken into
account in the calculation of the first version of the Snorkel Generative Model. We will
be following the explanations of the three publications (Bach et al., 2017; Ratner et al.,
2017a, 2016). The configuration we have of a binary classification task (generalization to
the multi-class setting is very simple) is a set of m input candidates xi and their associated
latent random variable yi ∈ {−1,1} that is their true label (the set of true labels Y ). We don’t
have access to yi, but we do have n labeling functions λ1, ...,λn whose domain {−1,0,1} (for
False, Abstain, and True outputs) that can be applied to each xi to produce Λi1, ...,Λin outputs.
We end up having a matrix, a distribution Λ ∈ {−1,0,1}mxn and we want to estimate the
joint probability p(Λ,Y ) where Y ∈ {1,−1} are the predicted labels. The first assumption
that Snorkel does is that the LFs are conditionally independent given the true label y (the
label Y being estimated is dependent on the rules or observations). If we consider a LF λ j,
which gives output Λi j to input xi that has true label yi, we can model the accuracy of this LF
with φ Acc

j . We can set this accuracy function to 1 if λ j correctly labels a data point, and 0
otherwise:

φ
Acc
j (Λi,yi) := yiΛi j

2https://github.com/snorkel-team/snorkel-extraction
3https://github.com/snorkel-team/snorkel

https://github.com/snorkel-team/snorkel-extraction
https://github.com/snorkel-team/snorkel
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This φ Acc
j function is associated to a parameter θ Acc

j which models how accurate each
LF j is. The generative model, as specified in 4.20, provides a general distribution of n
conditionally independent LFs on m input data points:

pθ (Λ,Y ) ∝ exp(
m

∑
i=1

n

∑
j=1

θ
Acc
j φ

Acc
j (Λi,yi)) (4.20)

We can estimate the parameter θ Acc
j by minimizing the negative log marginal likelihood

of an observed matrix Λ for not giving the correct label (false or abstain outputs) using
stochastic gradient descent (Equation 4.21):

argminθ − log∑
Y

pθ (Λ,Y ) (4.21)

The gradient is the difference between the sufficient statistic of the joint distribution and
the same distribution conditioned on the observations Λ (4.22); in other words, the gradient
for the parameter θ Acc

j is given by the number of examples λ j correctly labels minus the
number of examples it fails to label correctly:

m

∑
i=1

(Eλ ,Y∼θ [φ j(Λi,yi)]−EY∼θ |Λ[φ j(Λ,yi)]) (4.22)

As mentioned in (Bach et al., 2017), “statistical dependencies arise naturally among
weak supervision sources”. What are the dependency types modeled in this original Snorkel
version? There are four of them (see Section 4 of the article (Ratner et al., 2016) for more
details of the computation of these dependencies.):

• dep_similar: when two LFs always agree on a label,

• dep_fixing: when a LFi fixes the mistakes made by another LFj,

• dep_reinforcing: when a LFi reinforces the label outputted by another LFj ,

• dep_exclusive: when two LFs always disagree on a label.

It is therefore important to model these LFs dependencies with a general model as
expressed in 4.23:

pθ (Λ,Y ) ∝ exp(
m

∑
i=1

∑
t∈T

∑
s∈St

θ
t
sφ

t
s(Λi,yi)) (4.23)

This leads us to model this distribution with a graphical model. The dependencies will
be of the form (lf_1, lf_2, type) where T is the set of the dependency types, St is a set of
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Figure 4.11 LF dependencies examples represented in the factor graph (from (Ratner et al.,
2016)).

index tuples of LFs participating in dependency type t ∈ T (this is similar to the formula 4.16
explained earlier). Snorkel built the generative model, using the dependencies, into a general
factor graph of the following form :

pθ (Λ,Y ) = Z−1
θ

exp(θ T h(Λ,Y )) (4.24)

Zθ is the partition function which ensures that pθ is a distribution and h is a set of factor
functions where each hi represents a factor (we recognize the similarity of these equations
with the Equation 4.16, described in section 4.1.4).

We want to learn the parameter θ t
s . But because of the latent variables Y , we need to

estimate the marginal likelihood pθ (Λ). The solution chosen by the Snorkel team is the
Gibbs sampler to estimate gradients (a popular choice as it is the cheapest way to sample).
The library Numbskull4, a Python NUMBA-based Gibbs sampler, is used to do a combination
of Gibbs sampling and stochastic gradient descent, which is similar to contrastive divergence,
for learning the generative label model. This is mainly with sample_and_sgd method from
the learning.py script of Numbskull that the Gibbs sampling (sample) and stochastic gradient
descent (SGD) are computed. It considers each LF in turn, optimizing the log marginal
pseudolikelihood of its outputs conditioned on the outputs of all the other LFs (Equation
4.25 where ε is a hyperparameter that controls the threshold and regularization strength):

argminθ − logpθ (Λ j|Λ\ j)+ ε||θ ||1 (4.25)

The algorithm in Figure 4.12 details how this is computed. If the gradient is computed
in polynomial time (Bach et al., 2017), it is relative to the number of LFs, all possible
dependencies, and more particularly to the number of candidates, which can increase the
runtime if the data is large enough (we noted this common issue in Section 4.1.4).

4https://github.com/HazyResearch/numbskull

https://github.com/HazyResearch/numbskull
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Figure 4.12 Structure learning in Snorkel.

Assuming that there exist some set of parameters which can capture the true dependencies
within the model we are using and that all non-zero parameters have at least a minimum
magnitude κ , the theoretical guaranty provided in (Bach et al., 2017) to recover the exact
dependency structure with a probability of at least 1−δ is to have m data inputs where:

m ≥ 32d
c2κ2 log

(
2nd
δ

)
(4.26)

d in 4.26 is the maximum number of possible dependencies a single LF can be involved
in, and c is a measure of how much better our dependency estimates are with each LF
than without (see Equation (7) in section 4 of the paper (Bach et al., 2017) for the official
definition). If we assume that the only dependency types we have are accuracy and correlation
dependencies, then we need an input data set of size:

m ≥ 64d
c2κ2 log

(
4nd
δ

)
(4.27)
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Second version of Snorkel

The structure learning in weak supervision setting done in (Bach et al., 2017) depends on
the number of data points and not on the graph structure learned on the weak supervision
sources Λ. The second version of Snorkel (Ratner et al., 2019) which was released in 20195,
has a different approach; the learning process depends on the structure of the graph made up
of the LFs, and not on the number of data points.

We are in the same problem setup; X is the input data, Y is the true label with (X ,Y )
drawn i.i.d from some distribution, and we never have access to the label Y ; instead we rely
on n weak supervision sources that outputs noisy labels λi for 0 ≤ i ≤ n. The joint distribution
of p(Λ,Y ) is modeled with an undirected graph (as in the previous version from (Bach et al.,
2017)) G = (V,E) with V = {λ1, ...,λn}, and if λi is not independent of λ j conditioned on Y
and the other sources, then (λi,λ j) is an edge in G. This dependency graph is then represented
in the generative model by its junction tree representation (see Figure 4.13) where dependent
sources outputs λi conditioned on Y are represented in a clique. However, this version of
Snorkel has not integrated the automatic computation of dependencies between the different
sources λi, i.e. in the source code, all LFs are independent.

Figure 4.13 A weak supervision source dependency graph (left) and its junction tree repre-
sentation (right).

This version of Snorkel is based on the work of (Loh and Wainwright, 2013) that uses
the inverse covariance matrix of indicator variables on the vertices of a graph, to induce the
conditional independence structure of the graph. It is therefore based on a class-conditional
model of the LFs, where we assume a different LF accuracy for each different class – label
value λi that each source emits (each source is modeled by more than a single accuracy

5If the multi-task learning (MTL) Snorkel MeTaL, whose project repository is in maintenance mode
https://github.com/HazyResearch/metal, the simplified version, which is discussed in this section, is on the
Snorkel team repository https://github.com/snorkel-team/snorkel

https://github.com/HazyResearch/metal
https://github.com/snorkel-team/snorkel
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parameter). To learn the generative model over weak supervision sources, we define an
indicator random variable for the event of a clique C taking on a set of values yC:

ψ(C,yC) = 1{∩i∈CVi = (yC)i} (4.28)

We therefore define ψ(C) ∈ {0,1}∏i∈C(|Yi|−1), a vector of indicator random variables for
all combinations of all but one of the labels emitted by each variable in clique C. The vector
of sufficient statistics for the generative model we want to learn is µ = E[ψ(C)].

To learn µ , Snorkel uses a matrix completion approach, where it considers two disjoint
subsets of C; the set O of observable cliques — i.e. those containing labels from weak
supervision sources — and the separator set S cliques of the junction tree — the unobserved
latent variable S = {Y}. The covariance matrix of the indicator variables for O∪S is written
in block form as follows (4.29 where T represent the multi-task setting):

Cov[ψ(O∪S)] = Σ =

[
ΣO ΣOS

ΣT
OS ΣS

]
(4.29)

Following the work (Loh and Wainwright, 2013) which states that the inverse covariance
matrix Cov[ψ(C)]−1 is structured according to the dependency graph formed by the weak
supervision sources, i.e. if there is no edge in the dependency graph between λi and λ j, then
the corresponding entries are O in the inverse covariance matrix. The inverse Σ−1 is of the
form:

K = Σ
−1 =

[
KO KOS

KT
OS KS

]
(4.30)

We can only observe ΣO = Cov[ψ(O)] ∈ Rnxn (n represents the total number of weak
supervision sources). The ΣOS = Cov[ψ(O),ψ(S)] is the unobserved block which is a
function of µ , the generative model parameter we want to learn. Finally, ΣS =Cov[ψ(S)] =
Cov[ψ(Y )] is a function of the class balance P(Y ), which is either known or has been
estimated according to the unsupervised approach detailed in Appendix A.3.5 in (Ratner
et al., 2019). Moreover, ΣS is scalar, as it is the covariance of a single indicator variable for Y
(see Appendix A.3.4 (Ratner et al., 2019)).

Given ΣO, and ΣS, the goal is to recover ΣOS from which we can recover µ . We apply the
block matrix inversion lemma to form the inverse covariance matrix of the observed cliques
in the following manner:

KO = Σ
−1
O + zzT (4.31)
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where z =
√

cΣ
−1
O ΣOS and c = (ΣS −ΣT

OSΣ
−1
O ΣOS)

−1. Σ
−1
O is therefore the sum of a graph

structured term (KO) and a low-rank matrix (zzT ) (Loh and Wainwright, 2013) that represents
marginalizing over the latent label Y .This leads to estimate z as a matrix completion problem
in order to recover an estimate of µ (see Figure 4.14 where Ω represents the set of indices
(i, j) where (KO)i, j = 0 = (Σ−1

O )i, j +(zzT )i, j.

Figure 4.14 Algorithm approach to the matrix completion problem to estimate the generative
model parameter µ .

We have just seen how to estimate the parameter µ of the generative model, which is also
called the label model in this second Snorkel version, with a class-conditional covariance
matrix approach using the observed conditional dependency graph of the weak supervision
sources. This is a very interesting approach (faster and clearer (better written) than the first
version) since it depends on the structure of the graph formed by the observations (LFs
outputs), and not on the number of data points.

However, this dependency graph is not automatically estimated in this version (neither
in Snorkel MeTaL nor in the stable version source code); users can manually provide the
conditional dependency structure, but the model won’t take them into account. We first tried
to add the dependencies generated by the first version into this model. We soon became aware
that we needed to implement additional methods to integrate them. It was first necessary
to add the triangulation step to create the junction tree from the conditional dependency
graph (see Section 4.1.3 for details on the Triangulation step). Then we had to integrate these
cliques (dependencies) in the matrices, however, to avoid some errors in the program, it was
necessary to add a small value to the diagonal of the K matrix which did not make sense in
the model. This conditional dependency structure could also be estimated using the same
covariance matrix approach as explained in (Varma et al., 2019). However, we had the same
errors when it came to including them in the matrices.

We seek to improve the performance of our LFs that abstain on some data points by using
dependencies to increase recall. Unfortunately, the assumptions used in the junction tree
model that works in some conditions are tricky. This is probably why dependencies are not
implemented in the last version of Snorkel. Even if the calculation time is slower in factor
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graph modeling (due to message propagation in the whole graph for every factor), we obtain
an accurate calculation of several types of dependencies. With junction trees and covariance
matrices, we can only distinguish whether the LFs are correlated or not, so as not to count
them up twice (Varma et al., 2019).

When we published our results, the new version had not yet been released. But because
of the importance of the dependencies for our work, we have continued our analysis using
the original version of snorkel.

4.2.4 Discriminative Model

Once we’ve learned the LFs accuracies, correlations and dependencies, we get these noisy
conflicting labels that we assign to the data and their associated confidence (the likelihood for
a label of being true). The next step in the Snorkel pipeline is that we want to use these labels
and train a Machine Learning model. We want to take advantage of all the rich structural
data that we have access to, and then train another end Discriminative model using these
labels. The second reason we want to train a second model is because LFs don’t necessarily
assign a label to every single data point. This discriminative model can retain the precision
of the LFs while learning to generalize beyond the LFs, increasing coverage and robustness
on unseen data. This is how Snorkel helps to get a large enough training data set to power
modern deep models.

4.3 Conclusion

In this chapter we have first described a common formalism, graphical models, for repre-
senting independent relationships and computing conditional probabilities among a set of
random observations. Graphical models make it possible to intuitively learn the structure
of the data by studying the interactions of observations, and to perform efficient estimation
algorithms faster, without worrying about the nature of each variable. We discussed the
graphical models such as factor graphs or junction trees, which are handy tools in the context
of probability distribution, particularly for non fully observed data.

In the second part of this chapter, we have introduced Snorkel which is a framework that
allows users to significantly reduce the amount of work required in labeling data for machine
learning applications. This project contains three main stages; the Labeling Functions (LFs)
that encode all forms of weak supervision sources (knowledge bases, other trained models,
domain expertise, crowd-sourcing etc.), the Generative Model that creates the noisy labels
by unifying the conflicting and weak Labeling Functions outputs, and an end Discriminative
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model that is our final classifier which is trained on the noisy generative labels. We explained
the intuition behind the Generative model that uses a graphical model to estimate efficiently
labels (annotations) for a large amount of unlabeled data. It models the correlations and
dependencies of the weak supervision inputs in a probabilistic graphical model, and infers
the marginal probabilities for each data point. If the recent version of the Snorkel system
has a source code that is easier to understand, and is faster in time to infer the labels;
nevertheless, the necessary modifications made for dependency estimation, made it very
difficult to interpret the matrices’ representation of the LFs, and thus the results of the
generative model. Moreover, the representation of dependencies is more complete in the first
version that uses factor graphs. We decided to keep the original version throughout our work.

The “tools” described in this Chapter are not only useful tools for our project, but their
motivation and presentation allows us to understand the reason for their use. According to
the project publications (Ratner et al. (2017b)), with the same amount of time writing the
LFs and training an end model, Snorkel does better in terms of model performance than hand
labeling data. The main reason is the scale that we can label data (five LFs can be applied to
hundreds of thousands of data points), but we spend weeks or even months hand labeling
data points. In our work, we would like to verify this performance with the difficult task of
discourse structure prediction. We are going to address the set-up and design decisions we
choose for our experiments in the following chapter.





Chapter 5

The Experiments

All classification attempts have to start from a theoretical position that tells one what there
is to classify in the first place. For our approach to attachments this is specified, as already
mentioned in Chapter 2, by theories of discourse structure—more specifically, the theory of
discourse structure as formalized in SDRT (Asher and Lascarides, 2003). Our aim is to find
attachments in multi-party conversations. We described the STAC corpus in Chapter 3 and
motivated why we used it.

We also mentioned the problem of annotation campaigns: manual annotation is very
costly in terms of time and human resources (linguistic experts). We then discussed the
Snorkel framework in Chapter 4, which uses graph theory in its generative model to be able
to annotate a great amount of data quickly and efficiently without having access to ground
truth labels.

In this chapter, we will explain how we used all these elements to construct our experiment
for the prediction of discourse attachments. We will first explain our choices of pre-treatments
performed on the STAC corpus. Then, we will explain how we adapted the snorkel framework
to write our labeling functions. Finally, we will describe how we proceeded to evaluate these
experiments.

5.1 Setting up the Working Environment

5.1.1 Data Preparation

We designed our weak supervision experiments on the “situated” STAC corpus (Asher et al.,
2016, 2020; Hunter et al., 2015). We also wanted to compare our results to earlier work on
multi-party discourse structure prediction on the same corpus, which was done by Afantenos
et al. (2015); Perret et al. (2016) and more recently by Shi and Huang (2019). However, these
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previous studies designed their prediction experiments on the linguistic-only version of the
STAC corpus. And so we had to test our framework on STAC linguistic corpus as well as the
situated corpus.

The corpus from (Perret et al., 2016), used by Shi and Huang (2019) is an early version of
a “linguistic only” of the STAC corpus. It contains no non-linguistic DUs, unlike the STAC
multimodal corpus. There is also on the STAC website an updated “linguistic only” version of
the STAC corpus, which is the one we have been working with. It has 1,091 dialogues, 11,961
linguistic only DUs and 12,271 semantic relations (Table 5.1). The data set from (Perret
et al., 2016) is similar to our linguistic only STAC corpus but is still substantially different
and degraded in quality. Asher et al. (2016) report significant error rates in annotation on
the earlier versions of the STAC corpus and that the current linguistic-only corpus of STAC
offers an improvement over the (Perret et al., 2016) corpus used by Shi and Huang (2019). It
also contains quite a few errors; for example, about 60 stories in the (Perret et al., 2016) data
set have no discourse structure in them at all and consist of only one DU. These dialogues
were removed in the recent only linguistic version we used, as these stories were obviously
not a correct representation of what was going on in the game at the relevant point. The
following two tables, table 5.1 and 5.2, illustrate the number of attachments per relation type
on the two corpora we downloaded from the STAC project website1 for our experiments.

We downloaded both corpora and reconstructed, from the incoming and outgoing relation
files, a single table that contains the semantic relations between the DU pairs {(s, t,r)|s ̸= t}
that stands for a link of relation type r from the DU source s to target t. All discourse
annotations associated with the DU pairs are included as shown in the following fields list.

• doc_id: The game id.

• dialogue_num: The dialogue number.

• relation_type: The discourse relation r between the two DUs (s, t).

• source and target_text: text of the source and target DU

• source and target_dialogue_act: dialogue_acts of each DU

• source and target_surface_act: surface_acts of each DU

• distance: distance between the source and the target DU

• source and target_turn_id: turn number

• source and target_emitter: speaker of each DU

• source and target_addressee: DUs addressees

• source and target_segment_type: linguistic or non-linguistic segment
1https://www.irit.fr/STAC/corpus.html

https://www.irit.fr/STAC/corpus.html
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Types Counts
Acknowledgment 1543
Alternation 141
Background 86
Clarification_question 456
Comment 2037
Conditional 155
Continuation 1194
Contrast 537
Correction 232
Elaboration 1044
Explanation 527
Narration 103
Parallel 212
Q_Elab 645
Question_answer_pair 2914
Result 445

Table 5.1 The 12,271 relations in the only linguistic annotations.

Types Counts
Acknowledgment 1771
Alternation 128
Background 134
Clarification_question 529
Comment 2529
Conditional 154
Continuation 9391
Contrast 539
Correction 293
Elaboration 1631
Explanation 567
Narration 69
Parallel 193
Q_Elab 661
Question_answer_pair 3865
Result 13741
Sequence 6863

Table 5.2 The 43,058 relation_types in the situated STAC corpus.
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We formulate the attachment problem on the STAC multi-party dialogues (linguistic
only and the situated corpus) as follows: given a dialogue (dialogue_num) that has been
segmented into a sequence of EDUs, the goal is to predict directed attachments between
the EDUs. We then had to construct all possible pairs of EDUs as our candidates for the
attachment prediction task. The following section shows how we proceeded to construct
these candidates.

5.1.2 Candidate Extraction

Candidates are the units of data for which labels are predicted. For this study, the candidates
are all DU pairs, which could possibly be connected by a discourse relation. As mentioned in
Chapter 4, Snorkel has a whole framework for building potential candidates from a document
(the context hierarchy which breaks input documents down into sentences, spans, and entities
for example when working on text). However, the context hierarchy functionalities are not
adapted to our more complicated discourse segmentation task in this specific chat corpus.
It is not straightforward to group by conversations without dialogue_num annotations, and
to segment the dialogues into EDUs following a theoretical framework and therefore even
less with this Snorkel functionality. We use our own method to create candidates from the
annotated EDUs culled from the texts of the dialogues, making sure to limit the pairs to those
that occur in the same dialogues.

Roughly 56% of the dialogues in the situated corpus contain only non-linguistic DUs.
The discourse structure of these dialogues is more regular and thus less challenging; so we
ignore these dialogues for our prediction task.

Following (Muller et al., 2012; Perret et al., 2016) we “flatten” Complex Discourse Units
(CDUs), which remain challenging to predict. As discussed in Chapter 2, we adopted the
same strategy by connecting all relations incoming or outgoing from a CDU to the “head” of
the CDU, or its first DU that has no incoming link (see Figure 5.1).

98% of the discourse relations in both corpora span 10 DUs or less (see Figure 5.2).
To reduce class imbalance and evaluate our work in comparison with previous work, we
restricted the relations we consider to a distance of ≤ 10 as previously done (see Figure 5.3)
ensuring that the graph structure in each dialogue is fully connected.

We added two other constraints to our candidate extraction step. First, we made sure
that there are no backward links between non-player segments (Server/UI segments). We
then ruled out the possibility of backwards relations between two DUs which have different
speakers: it is linguistically impossible for a speaker of, say, an assertion d1 at time t1 to
answer a question d2, asked by a different speaker at time t2 > t1, i.e. before d2 was asked.
That is, we include (d1,d2) in our candidates but rule out (d2,d1). We keep backwards
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Figure 5.1 Flattening graphs process: we attached the incoming or outgoing links to the head
of each CDU (red dot), the head being the segment of the CDU that has no incoming link.

Figure 5.2 Distance plotting on the development set.

relations only within a single speaker turn — a single speaker turn can be extended, if a
succession of turns are from the same speaker. This is when a player presses the Enter key
after each piece of message.
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Figure 5.3 We do not consider relations that have a distance of 10 or more to reduce the
sparsity problem and to compare the results to previous work.

We also performed the same operations on our version of the linguistic only corpus.
These processes allowed us to generate the candidates on the two corpora as illustrated in
Table 5.3:

Candidates Non-Attached EDUs Attached EDUs
Target Situated STAC corpus 234600 204042 30558
Linguistic-only STAC corpus 76131 64037 12094

Table 5.3 Number of candidates of our weak supervision discourse attachment task.

The two tables, 5.4 and 5.5, show the remaining attachments by discourse relation type
following our pre-processing. We have 12,500 fewer attachments in the situated corpus
we used, the “Target situated STAC corpus”. Whereas for the corpus containing only the
linguistic segments, there is only a reduction of 177 attachments.
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Types Counts
Continuation 1162
Explanation 524
Background 83
Question_answer_pair 2901
Comment 2019
Acknowledgement 1506
Clarification_question 448
Contrast 524
Correction 227
Result 439
Elaboration 1035
Conditional 151
Narration 94
Parallel 206
Q_Elab 635
Alternation 140

Table 5.4 The 12,094 relations in the only linguistic annotations.

Types Counts
Sequence 4086
Acknowledgement 1669
Clarification_question 495
Result 8644
Continuation 5456
Question_answer_pair 3628
Comment 2396
Correction 246
Contrast 503
Explanation 546
Narration 63
Conditional 149
Elaboration 1597
Q_Elab 644
Alternation 127
Parallel 178
Background 131

Table 5.5 The 30,558 relations in the Target situated STAC corpus.
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The Candidate Split

The corpora we used are divided into a development (DEV), train and test set (Table 5.6).
The development and test sets are each 10% of the total size of each corpus. We took the
same data sets (the same set of game_id) as the previous work on linguistic only STAC
corpus (Afantenos et al., 2015; Perret et al., 2016), but we chose to take the DEV set as part
of the training set (Figure 5.4). Our approach is to automatically annotate the entire training
set, based on our understanding of part of it (the DEV set).

Target Situated STAC Linguistic-only STAC
non-attached attached non-attached attached

Train 186198 27803 58671 10980
Dev 27310 3868 10798 1794
Test 17844 2755 5366 1114

Table 5.6 Number of candidates per train/dev/test set.

Figure 5.4 Sets distribution.

5.2 Developing and Adapting Snorkel Tools

In building the rules for the generative model for our task, we used the definition of the
SDRT discourse relations in the STAC corpus, but we also looked at the annotations of the
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DEV set, to identify particular patterns. We have chosen to look at the manual annotations of
the DEV set, because for each task, it is important to look at the data we want to analyze,
and to produce a number of annotations to capture the essential elements we want to learn
– here the important patterns for discourse attachment. In this section, we will explain
how we have designed these rules. Our rule set and their description are available in
https://tizirinagh.github.io/acl2019/.

5.2.1 Labeling Functions

The choice of rule types

We wrote a set of labeling functions (LFs) to apply to the candidates X . Each LF λ makes an
attachment decision for a given candidate x: it returns a 1, a 0 or a −1 (‘attached” / “do not
know” / “not attached”).

In Chapter 2 and 3, we discussed complex structures, such as the non-treelike structures
and in particular the so-called double relations. This representation is characterized by a DU
that has two incoming links from the same source DU, but with different labels. Consider the
following example (1) (Graph visualization link) composed of two EDUs. They have been
annotated with two relations in STAC: Contrast(a,b) and Comment(a,b).

(1) amycharl: [it s not your fault,]a [but grr]b

To help us in building attachments, we wanted to conceptualize the dependencies between
discourse relations for attachment. The idea is to allow the generative model of Snorkel to
find the dependencies between our LF types. Each of our LFs is written and evaluated with a
specific relation type in mind. In this way, LFs leverage a kind of type-related information,
which makes sense from an empirical perspective as well as an epistemological one. An
attachment decision concerning two DUs is tightly linked to the type of relation relating the
DUs: when an annotator decides that two DUs are attached, he or she does so with some
knowledge of what type of relation attaches them. Thinking of attachment in the abstract was
rather unintuitive; as human experts and as designers of the rules, we thought of the attach-
ments with a discourse relation in mind. We have chosen the following discourse relations:
Result, Question-answer-pair (QAP), Continuation, Sequence, Acknowledgement, Condi-
tional, Contrast, Elaboration and Comment. These are the most frequent relations therefore
those that cover the most attachments, but also the most important ones for understanding
multi-party dialogues.

https://tizirinagh.github.io/acl2019/
https://www.irit.fr/STAC/stac_game_graphs/s1_league2_game3/superdoc_16/dialogues.html
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Attachment categorization between linguistic and non-linguistic EDUs

NL_NL attachments

There are four different types of EDU pairs in our situated corpus: “NL_NL” pairs (non-
linguistic source → non-linguistic target), “NL_L” or “L_NL” pairs (non-linguistic source
→ linguistic target, or linguistic source → non-linguistic target), and linguistic-only pairs
( “L_L” for linguistic source → linguistic target). To construct our LFs, we first focused
on the most regular links; the attachments between the non-linguistic segments, “NL_NL”
(non-linguistic source → non-linguistic target). These are based on the game rules2.

We first built lists of keywords, such as the resources that players use in the game:

resources = ["clay", "ore","sheep", "wheat", "wood", "knights"]
card = ["Soldier", "Year of Plenty", "Road Building", "Monopoly",

"development"]
building = ["settlement", "road", "city"]
bank = ["bank", "port"]

We also constructed generic forms of the logs —game messages produced by the system
— displayed in the game interface using simple regular expressions (regex) called by our LFs,
which we have referred to as the “helper functions”.

def XplayedAPCard(text):
if re.search(" played a " +

("|".join(card)) + " card", text) is None:
return False

else:
return True

def traded(text):
if re.search(" traded [0-9]+ " +

("|".join(resources)) + " for [0-9]+ " +
("|".join(resources)) + " from", text) is None:

return False
2https://www.catan.com/service/game-rules

https://www.catan.com/service/game-rules
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else:
return True

We then constructed our attachment rules, consulting the DEV set, sorting them by
discourse relations, and using the helper functions. Some examples of these attachments that
translate the non-linguistic moves in the game are the sequence of moves that end and begin
a dialogue in our corpus, the resource distributions made after a player has rolled the die, the
trade moves followed by an accept or reject of these trades, the end of turn for a player and
the invitation of another player to roll the dice.

(2) X ended their turn - [result] - It’s Y’s turn to roll the dice

(3) X made an offer to trade M R1 for N R2 - [QAP] - X traded M R1 for N R2 from Y

Below is the source code 5.1 written in Python for Example (3) where we make sure that
the name X of the player mentioned at the beginning of each of the two EDUs (source and
target) is the same.

def LF_QAP_NL_NL_case1(row):
l=0
if madeanoffertotrade(row.source_text)
and traded(row.target_text) \
and row.source_emitter == "Server"
and row.target_emitter == "Server":

if row.source_text.split(' ')[0] == row.target_text.split(' ')[0]:
l=1

else:
l=0

return l

Code 5.1 Example of a NL_NL attachment rule.

As discussed in Chapter 2, we had to flatten the SDRT structures because we could not
handle the CDUs in relation to the rest of the graph. This flattening process led to paying
attention to the head of CDUs. We built a helper function to check if a segment is either
the first or the only segment in a turn, to ensure that we attach to the head of the CDU.
These operations have been used for “NL_NL” attachment rules easily, but for linguistic
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only rules, it was more complicated. Figure 5.5 shows the changes made in Example (5) to
accommodate the flattening process for Example (4).

(4) X rolled an M1 and M2 A - [result CDU] - [ Y gets N1 R1s B - [continuation] Z gets
N2 R2s C ]

(5) X rolled an M1 and M2 A - [result] - Y gets N1 R1sB - [continuation] Z gets N2 R2sC

Figure 5.5 CDU elimination.

Figure 5.6 Relations between EEUs.

The exchanges in the situated STAC corpus are broken down into turns that begin when a
player gets the dice and end when he finishes his turn and passes the dice to the next player.
These events are related with Result, Continuation and Sequence relations. EEUs are also
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frequently arguments to QAP and Elaboration relations (as seen in Example 5.6 (Click here
for full graph)). The final outcome is that we wrote NL_NL rules in the category Result,
Continuation, Elaboration, QAP and Sequence. These NL_NL LFs form the events of the
game in which the EEUs are semantically connected.

NL_L / L_NL attachments

We examined attachments between linguistic and non-linguistic segments in the DEV set.
We generally find links beyond the boundaries of the game turn, such as when a player
comments on a game move from the previous turn (as seen in Example 5.6 when GWFS
thanks in turn 53 the trade william made with him in turn 52). In the non-linguistic source
and linguistic target attachments, “NL_L” direction, we are often dealing with comment or
acknowledgment relations. While the opposite direction, i.e. “L_NL” attachments (linguistic
source → non-linguistic target), is more often a cause-effect or a Sequence relation.

(6) inca: see you :) - [result] - Server: inca left the game

(7) jon: nice game though - [sequence] - UI: jon ended their turn.

def LF_Acknowledgement_NL_L(row):
#non-ling --> ling
if ( ( itsXsTurnToBuildP(row.source_text)

or satDownAtSeat(row.source_text)
or wonthegame(row.source_text)
or traded(row.source_text)
or joinedTheGame(row.source_text) )

and (any( x in row.target_text.lower()
for x in acknowl+opinionWords+helloWords) )

and (row.source_emitter != row.target_emitter)
and (row.distance <= 9)):

l=1
else:

l=0
return l

def LF_Result_NL_L(row):

https://www.irit.fr/STAC/stac_game_graphs/s1_league1_game5/superdoc_2/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/s1_league1_game5/superdoc_2/dialogues.html
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#non-ling --> ling
if ("type *addtime* to extend this game another"

in row.source_text.lower()) \
and ("addtime" in row.target_text.lower()):

l=1
else:

l=0
return l

Code 5.2 Example of NL_L attachment rules.

As shown in “LF_Acknowledgement_NL_L” in the Code 5.2, our rules exploit the
distance between pairs of segments, constraints that we observe in the development set. We
tried to constrain the long distance attachment for some links (especially for acknowledgment
or comment relation) to try to reduce false positive attachments.

L_L attachments

We constructed several rules for linguistic-only attachments according to the 8 discourse
relations we chose: Result, Question-answer-pair (QAP), Continuation, Acknowledgement,
Conditional, Contrast, Elaboration and Comment (Sequence rules we wrote are only NL_L
and NL_NL).

For the Result_LFs, we built a causal link by exploiting the presence of explicit connectors
such as those listed below. Without explicit markers, we look for a causal link between the
expression of a wish (for a specific resource, for example) and another player’s response to
grant those wishes.

resultWords = [ "so", "accordingly" , "as a result", "consequently",
"hence", "in the end", "now that", "then", "thereby",
"therefore", "thus"]

Offers and counter-offers are often in the form of questions in our chat corpus. We
have therefore used Dialogue acts and Surface acts annotations3 to link “Question, Request,

3Due to lack of time before submitting our results, we used these manual annotations which we later
replaced with regular expressions that only take into account the raw text of the input segments (see Chapter 7).
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OFFER or COUNTEROFFER” to “ACCEPT or REFUSAL” segments. We have also
exploited the addresses annotations in this category of Question-answer-pair (QAP)’ rules.

For the Continuation rules, we constrained this type of attachment in two ways; first,
we added a constraint to attach two close segments (distance less than or equal to 3) which
address the same person and whose target segment contains the and connector; second, we
added another constraint to attach two close segments from the same player whose source
segment contain comment words such as mmm, yay, arrrrrgh, lulz, sorry, well, anyhoo, man,
yup, ouch, lol, oh, ugh, and the target segment is a question.

Acknowledgments are signaled by words like OK, Right, Right then, Good, Fine, etc..
It is difficult to determine what is being acknowledged, i.e. the first argument of the Ac-
knowledgement relation, but it is also difficult to determine whether the acknowledgment
signals an understanding or an acceptance of what was said. For these rules, we made sure
that the emitters of the two segments were not the same, that if the addressee X is specified
in the source segment, it is X that responds, otherwise that the target segment which contains
the acceptance words is addressed to all players, “All”, and the distance between the two
segments is 1.

Conditional is often introduced by an if... then. To capture attachments that involve the
discourse relation Conditional we have an attachment rule that attaches two nearby segments
when they have the same speaker and the same addressee, and that the first segment start
with “if” or “once”.

But, however, unfortunately, on the other hand, nevertheless are all strong cues for
Contrast. We made a rule that links an offer or counter-offer (Dialogue acts annotations) to a
nearby target segment that contains the keywords for contrast.

Elaborations typically occur, when an agent makes an offer and then further specifies
it. Sometimes the speaker will follow up one question with another. These questions often
stand on an elaboration-like relation, as shown in example (9) from the STAC DEV set. In
example (8) taken from the DEV set, william is specifying his offer given in (8-a).

(8) a. william: Does anyone have ore?
b. william: I have wheat

(9) a. ljaybrad123: Does anyone want sheep for ore?
b. ljaybrad123: Does anyone want 2 sheep for 1 ore?

We constrained the Elaboration attachment to successive segments that have the same emitters,
that may have the same resources to exchange, the target segment which may be a question
or a segment that contains expressions such as I have, I will, give, etc..
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The STAC corpus is full of markers for Comment, like sorry, Ooh, bah, etc. Emoticons
also indicate Comments. However, as with acknowledgment, it is very difficult to determine
what is being commented on —i.e. the first term of the Comment relation. We only distance-
constrained to 1 the pair of segments and token-constrained the target segment that contains
comment keywords, emoticons or emojis.

We finally combined our rules by discourse relation type to form 9 Labeling Functions;
e.g. for Acknowledgement we wrote 3 rules — two for L_L attachments and one for NL_L
links — that we combined into a single LF, LF_Acknowledgement, that outputs 1 (attached)
if one of the three rules outputs 1 for a given candidate, otherwise 0 (abstain). Only linguistic
L_L LFs have been applied to the Linguistic-only STAC corpus, while all the rest of the LFs
(L_L, NL_NL, NL_L and L_NL) were applied to the target situated candidates.

Intra-turn rule

As noted in (Perret et al., 2016), intra-turn segments are typically very locally attached. To
capture this Turn Constraint, we have also written an Intra-turn LF that connects all segments
within a turn, i.e. if the two EDUs are consecutive and from the same speaker turn, then the
rule outputs 1 for a forwards link.

Hail-Mary rule

Our constraints on distances are not definite enough for long distance attachment and for
non-attachment predictions. We therefore wrote the “Hail-Mary” rule,4 which says that if all
LF rules (the 9 LFs one for each relation type, plus the Intra-turn rule) return 0 (abstain) for
a given candidate, then the Hail Mary rule outputs −1 (for not −attached).

5.2.2 The order in which the rules on candidates are applied

Candidates are pairs of dialogue units occurring in the same dialogue between which an
attachment is possible, and are the units of data for which labels are predicted. The LFs use
local information to determine whether the dialogue units in a candidate are attached, such
as speaker identity, raw text, dialogue and speech acts and distance between units. Relying
only on the local information of two considered EDUs/EEUs for the prediction of attachment
in a whole conversation is a great disadvantage, because we know that attachments are

4Our Hail-Mary rule for non-attachment predictions refers to the expression used in American football,
a “Hail Mary pass” which is a very long forward pass, usually made in desperation, with great difficulty of
achieving a completed pass. Because of its low chance of success, it makes reference to the Catholic Hail Mary
prayer for help.
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conditioned by the surrounding discourse context. To address this drawback, we controlled
the order in which each LF is applied to the candidates such that, the LFs are given access to
some global contextual information, such as location in a dialogue, and what attachments
have been predicted in the dialogue up to that point. We do not order the candidates between
LFs— the LF for each relation type and intra-turn rule—, because otherwise we would
interfere with the generative model that seeks to find the dependencies between these LFs.

Consider an example, where, given dialogue D with DUs A,B,C,D, appearing in that
order, the set of possible candidates is: (A,B), (A,C), (A,D), (B,C), (B,D) and (C,D). We
put the candidates in order of salient previous information, which for dialogue D yields
the following ordered list L of candidates : [(A,B),(B,C),(A,C),(C,D),(B,D),(A,D)]. As
a LF is applied to L, it first sees, for each target unit, the immediately preceding source
unit, followed by the source units at incrementally increasing distances to the target unit.
Chronologically speaking, an LF considers the immediate present before moving into the
past of a dialogue, where it considers everything which took place before.

In other words, we ordered the DUs in a dialogue (all the DUs in a dialogue are ordered
chronologically), then they are converted into an ordered list of candidates. We have a script
for the order of application for each type of LF. For each pair of candidates in the generated
ordered list, we only look at the candidates that are most likely to be attached given the
relation type considered by the LF. Since we know that backwards relations only occur for
Comment and Conditional relation types among the nine relation types that we implemented,
for any other relation type we immediately register a −1 (for notattached) for each candidate
where the target comes before the source. We then apply each of the LF rules, looking only
at the candidates with DUs’ linguistic or non-linguistic status we want to consider (we only
look at linguistic → linguistic cases for “L_L” rules for example). As mentioned above, the
outputs of all the rules of an LF are combined to give a single value (1,0 or −1 for “attached”,
“don’t know” and “not attached”) per specific LF for a given candidate. Our label matrix is
therefore an (11−by−m) matrix, where m is the number of candidates to label (see Figure
5.7).

The way that we apply the QAP labeling function differs from the other LFs. The QAP
LF encodes two assumptions: first that for each question/source– answer/target pair, the
answer segment is the answer to only one question segment in the dialogue; second, that
each speaker can answer a question only once5. To illustrate the latter assumption, while a
question like “does anyone have any wheat?” can be answered separately by all (non-asking)
players, we will only count one response by each player. This is not always the case in

5We made this assumption because it is chat and people are not being so repetitive. They want to play the
game.
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Figure 5.7 Our Label Matrix Λ.

the STAC data though multiple responses by one player were very rare. In effect, this was
a simplifying assumption that allowed us to reduce false positives in the LF applications
process.

We tested, improved and evaluated our LFs on the DEV set (our LFs performance and
explanations are available here: https://tizirinagh.github.io/acl2019/).

5.3 The Mechanism for Predictions and Evaluations

5.3.1 The Generative Model

We are now ready to apply our LFs to as much data as we want, and to train the generative
model with only the outputs of these weak supervision sources. We have not changed the
parameters fixed by the authors for learning the structure (step size = m−1, epoch count
= 10, and truncation frequency = 10). However, we have changed some parameters for the
generative model training; we have used a cross-validated grid-search over a parameter grid
on the DEV set to select the number of training epochs (100) and the multiplicative decay

of step size (0.95). We also fixed the gradient step size to
0.1
m

(where m in the number of
candidates labeled by the LFs).

When passing our (11−by−m) label matrix Λ to the generative model, it will return an
m-D array representing the marginal probability of each candidate being True. The model

https://tizirinagh.github.io/acl2019/
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does not give binary outputs for binary settings, such as our attachment classification. We
have not changed the model, but we have decided to calculate the threshold that gives us
the best F1 score on the DEV set for attachment predictions, and apply it to the rest of the
data (Train and Test sets) to have binary outputs (1 for attached, 0 for not attached). The best
threshold is 0.85 (p > .85 for positive attachment) in the STAC DEV set.

Since we developed our labeling functions using the DEV set as a guide, and our
generative model is composed of these labeling functions, we expect it to score very well
on this set. We will use micro precision P, recall R, F1score and accuracy, to evaluate our
generative model which will be trained on the whole training set. We will apply several
additional end extraction models (discriminative models) which will generalize beyond the
DEV set, and which we will evaluate on a blind test set (i.e. one we never looked at during
development).

5.3.2 The Discriminative Models

The standard Snorkel approach inputs the marginal probabilities from the generative step
directly into a discriminative model, which is trained on those probabilities using a noise-
aware loss function (Ratner et al., 2016). Ideally, this step generalizes the LFs by augmenting
the feature representation - from, say, dozens of LFs to a high dimensional feature space -
and allows the model to predict labels for more new data. Thus the precision potentially lost
in the generalization is offset by a larger increase in recall.

We tested three discriminative models in our study. First, we tried a single layer BI-LSTM
with 300 neurons, which takes as input 100 dimensional-embeddings for the text of each DU
in the candidate pair (Figure 5.8). We concatenated the outputs of the BI-LSTM and fed them
to a simple perceptron with one hidden layer and Rectified Linear Unit (ReLU) activation
(Hahnloser et al., 2000; Jarrett et al., 2009; Nair and Hinton, 2010) and optimized with
Adam (Kingma and Ba, 2014). Given that our data is extremely unbalanced in favor of the
unattached class (attached candidates are roughly 13% of the candidates on the development
set), we also implemented a class-balancing method inspired by (King and Zeng, 2001) which
maps class indices to weight values used for weighting the loss function during training.

We also implemented BERT (Devlin et al., 2018)’s sequence classification model (source
code on the link below6) with 10 training epochs and all default parameters otherwise (see
Figure 5.9). BERT, the Bidirectional Encoder Representations from Transformers, is a text
encoder pre-trained using language models where the system has to guess a missing word or
word piece removed at random from the text. Originally designed for automatic translation

6Link to BERT sequence classification model code: https://github.com/huggingface/pytorch-pretrained-
BERT/blob/master/examples/run_classifier.py

https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/examples/run_classifier.py
https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/examples/run_classifier.py
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Figure 5.8 BiLSTM

tasks, BERT uses bi-directional self-attention to produce the encodings and performs at
the state of the art on many textual classification tasks. In order to use BERT’s sequence
classification model, we had to binarize the marginal probabilities before moving to the
discriminative step, using a threshold of p > .85 as explained in Section 5.3.1. Though this
marks a departure from the standard Snorkel approach, we found that our discriminative
model results were higher when the marginals were binarized and when the class re-balancing
was used, albeit much lower than expected overall.

Finally, to facilitate comparison with earlier work, we also implemented a local model,
LogReg* as mentioned in the following of the dissertation, that used marginal probabilities
together with handcrafted features and a Logistic Regression classifier. Features are attributes
that help the model learn (they can be specific words from the candidate’s text itself or
additional information inferred based on the original text). We applied the same features as
in (Afantenos et al., 2015) (listed in their Table 2) in the discriminative LogReg model. This
includes :

source/target Speaker_initiated_theDialog : If the source or target emitter initiated the
dialogue,

source/target Speaker_first: First utterance of the emitter in the dialogue,

source/target_position: Utterance position in the dialogue,

distance : Distance between the pair of EDUs,

same speaker : If the two EDUs have the same emitter,

source/target_EndsExclamation : Ends with exclamation mark,
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Figure 5.9 BERT sequence classification model

source/target_EndsInterrogation : Ends with interrogation mark,

source/target_possessive_pronouns: Contains possessive pronouns,

source/target_lexicons: Contains words from list of lexicons (“clay”, “ore”, “wood”,
“sheep”, “wheat”, “brick”),

source/target_modal_modifiers: Contains modal modifiers (“could”, “should”, “may”,
“might”, “can”, “must”, “will”, “would”),

source/target_question_words : Contains question words,

source/target_player_names : If the source or the target text contains a player’s name,

source/target_subject_lemma: Subject lemmas given by syntactic dependency parsing,

source/target_first and last : First and last words,

source/target_emoticons: Contains emoticons,

source/target_connectors: Contains connectors,

source/target_da and sa : Dialogue_act and surface_act of each segment.
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We build the classifier by using the LogisticRegression module from sklearn. We fit the listed
features into the classifier to train the model.

We also adopted these three models as a baseline (trained on the gold labeled data in the
Training set of the STAC corpus), as well as a fourth model, LAST, which attaches every
EDU in a dialogue to the EDU directly preceding it.

5.4 Conclusion

Predicting the discourse structure of a multi-party conversation is a difficult task. As we
explained in Chapter 2, predicting attachment is crucial to building these connected discourse
structures. But it is also a difficult problem for automatic processing. This chapter explains
what we set out to do and how, to predict discourse attachment using the Snorkel data
programming paradigm. We show how we modeled our prediction candidates, what kind of
rules for the attachment labeling functions we chose, how we applied them on our structured
candidates and we listed some of the final ((Badene et al., 2019b) version) written rules.

The Snorkel implementation of the data programming paradigm inspired our weak
supervision approach for discourse attachment prediction. The LFs exploit information
about the DUs’ linguistic or non-linguistic status, the dialogue acts they express, their
lexical content, grammatical category and speaker, and the distance between them—features
also used in supervised learning methods (Afantenos et al., 2015; Perret et al., 2016). We
wanted to create our own input label matrix for the generative model to mimic the flow of
conversational events by controlling how our LFs apply on the candidates. This allows LFs
to exploit information about previously predicted attachments and dialogue history in new
predictions. We have presented the models we used for the discriminative step, as well as the
baseline models trained on the gold manual annotations. The next chapter will present the
results obtained.



Chapter 6

Snorkel Results

Most of the previous work on discourse structures prediction uses already annotated data to
train their models (see Chapter 3.2). Such training sets are enormously expensive to create.
In contrast with supervised approaches, we learn our models and the different weights on
the classifiers without access to ground truth annotated data. Snorkel is designed so that no
ground truth is needed, since we work in settings where access to good annotations (even a
few) on which to train might be very expensive or difficult.

In this chapter, we will compare the results of our data programming approach, which
has not been trained on the ground truth labels, with earlier supervision work on the same
data. We will examine the set of probability-weighted labels that are generated from the
combination of our handful weak supervision sources encoded in the LFs. We will investigate
the Snorkel final models we chose that are trained on the generated labels.

6.1 Overall Results Analysis

We set out to test the performance of combinations of generative and discriminative models
along the lines of the Snorkel data programming paradigm on the task of dialogue attachment
structure prediction in order to automatically generate SDRT corpus data. While our results
were consistent with what data programming promises—more data with accuracy comparable
if not slightly below that of hand-labeled data—our most surprising and interesting result
was the performance of the generative model on its own. As shown in Table 6.1 on target
situated STAC test data, the generative model (GEN) dramatically outperformed our deep
learning baselines—BiLSTM, BERT, and BERT + LogReg* architectures trained on gold
labels—as well as the LAST baseline, which attaches every DU in a dialogue to the DU
directly preceding it. In addition, stand-alone GEN also outperformed all the coupled Snorkel
models, in which GEN is combined with an added discriminative step, by up to a 0.3 point
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improvement in F1 score (GEN vs. GEN+BiLSTM). We did not expect this, given that
adding a discriminative model in Snorkel is meant to generalize, and hence improve, what
GEN learns.

Precision Recall F1 score Accuracy
SUPERVISED BASELINES

LAST 0.54 0.55 0.55 0.84
BiLSTM on Gold labels 0.33 0.80 0.47 0.75
BERT on Gold labels 0.56 0.48 0.52 0.88
LogReg* on Gold labels 0.73 0.52 0.61 0.91
BERT+LogReg* on Gold labels 0.59 0.49 0.53 0.89

SNORKEL PIPELINE
GEN + Disc (BiLSTM) 0.28 0.59 0.38 0.74
GEN + Disc (BERT) 0.49 0.40 0.44 0.86
GEN + Disc (LogReg*) 0.68 0.65 0.67 0.91
GENERATIVE STAND ALONE
GEN 0.69 0.66 0.68 0.92

Table 6.1 Evaluations of weakly supervised (Snorkel and stand-alone GEN) and supervised
approaches on the target situated STAC TEST data set.

Critical to this success was the inclusion of higher order dependencies in GEN and the
fact that our LFs exploited contextual information about the DUs that was unavailable to the
deep learning models or even the handcrafted feature model (see Table 6.2). GEN beats all
competitors in terms of F1 score while taking a fraction of the annotated data to develop and
train the model, showing the power and promise of the generative model.

One might wonder whether GEN and discriminative models are directly comparable.
Generative machine learning algorithms learn the joint probability of X and Y, whereas
discriminative algorithms learn the conditional probability of Y given X. Nevertheless, when
we exploit the generative model we are trying to find the Y for which P(X ∧Y ) is maximized.
In effect, we are producing, though not learning, a conditional probability. So it makes sense
to compare our generative model’s output with that of other, discriminative machine learning
approaches.

We also got surprising results concerning the supervised model benchmarks. Table 6.1
shows that LogReg* (Logistic Regression classifier described in Chapter 5.3.2) was the
best supervised learning method on the target situated STAC data in terms of producing
local models. This is evidence that handcrafted features capturing non local information
about a DU’s contexts do better than all purpose contextual encodings from neural nets at
least on this task. We also implemented BERT+LogReg*, a learning algorithm that uses
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BERT’s encodings together with a Logistic Regression classifier trained on STAC’s gold
data with handcrafted features—in fact the same features as those from (Afantenos et al.,
2015) and used in (Perret et al., 2016). BERT+LogReg* outputs a local model that improves
upon BERT’s local model, but it did not do as well as LogReg* on its own (let alone GEN),
suggesting that BERT’s encodings actually interfered with the correct predictions.

We will now look in detail at the results of each stage of the Snorkel pipeline, and we
will also analyze the results on the linguistic-only version of STAC.

6.1.1 The Generative Step

Dependencies

GEN does not have access to the gold labels (attachments labels) on the Training set but
uses the Training set as unlabeled data. It has only access to the 11xM Label Matrix Λ (M
candidates partially labeled by our 11 labeling functions (LFs)). So in this model, the true
class labels yi are latent variables that are inferred from the LF outputs, which are estimated
via Gibbs sampling over the Training set (80% of the STAC corpus + 10% of the DEV set),
after it has been partially labeled by the LFs.

Generative Model on dev set Precision Recall F1 score Accuracy
Without higher order dependencies 0.45 0.70 0.55 0.87
With higher order dependencies 0.68 0.67 0.67 0.92

Table 6.2 Evaluations of positive attachment on Dev set with and without higher order
dependencies.

If the default GEN model presupposes that the LFs are independent, this assumption does
not always hold: one LF might be a variation of another or they might depend on a common
source of information (Ratner et al., 2016). If we don’t take these dependencies into account,
we risk assigning incorrect accuracies to the LFs. Snorkel provides a more complex model
that automatically calculates the dependencies between LFs and marginal probabilities which
we use for the generative step. The higher order dependencies significantly improved the
generative model’s results on the STAC corpus (see Table 6.2).

Interpreting Marginal Distributions

When we obtain the results from the generative model GEN, we choose a threshold on the
DEV corpus to apply to these marginals by calculating the threshold that gives us the best F1
score. The best threshold is 0.85 (p > .85 for positive attachment) in the target situated DEV
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STAC corpus, where in the only-linguistic DEV set the threshold is 0.9. Figure 6.1 shows
the probability distribution, on which even taking 0.8 as a threshold gives a lower F1 score
because of false positive attachments. Binarizing these marginals allows us to evaluate GEN
with respect to gold attachment labels on the STAC data.

Figure 6.1 Probability distribution for positive attachment in the target situated STAC devel-
opment set.

Figure 6.2 Probability distribution for positive attachment in the only-linguistic STAC
development set.

Confused marginals’ estimation would cluster at 0.5 in the histogram 6.1 and 6.2. Instead,
we have a clear differentiation between 0.0 and 0.1. This shows that the generative model is
very confident about the attachments to the right on the histogram, and not at all confident
about attachments on the left of the diagram.
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6.1.2 The Discriminative Step

We investigated GEN coupled with various discriminative models to test the standard Snorkel.
Table 6.1 reports scores for various GEN-coupled discriminative models that take the bina-
rized GEN predictions as input. In keeping with our analysis of the supervised benchmarks,
we found that the best discriminative model to couple with GEN in the Snorkel architecture
was LogReg*, far outperforming GEN with either a BiLSTM or BERT on the target situated
STAC test set. Its results were only slightly less good than those of stand-alone GEN. We
note that the intended result of the snorkel pipeline is a discriminative model, but our results
suggest that it is better to stay with the generative mode. The dependency structure learned
from our weak supervision sources seem to be good enough on its own to infer the latent
variables.

In order to use the discriminative models we selected, we had to binarize the marginal
probabilities before moving to the discriminative step, using a threshold of p > .85 on target
situated STAC and p > .9 on linguistic-only STAC data as explained in Section 6.1.1. The
standard Snorkel approach inputs the marginal probabilities from the generative step directly
into a discriminative model, which is trained on those probabilities using a noise-aware
loss function (Ratner et al., 2016). Ideally, this step generalizes the LFs by augmenting
the feature representation - from, say, dozens of LFs to a high dimensional feature space
- and allows the model to predict labels for more new data. Thus the precision potentially
lost in the generalization is offset by a larger increase in recall. We observe this trend by
comparing the results of LogReg* baseline model on the gold labels, and then GEN + Disc
(LogReg*) in Table 6.1 (decreased in precision, but increased in recall). The binarization of
GEN predictions marks a departure from the standard Snorkel approach, which may explain
the unexpected results on Gen+Disc (BiLSTM) and on Gen+Disc (BERT) on the target
situated STAC.

6.1.3 Comparison with Previous Work

The generative model shares with other local models (models presented in Section 3.2) the
feature that it considers pairs of DUs in isolation of the whole structure. However, unlike
other local models, our LFs enable the generative model to exploit prior decisions on pairs of
DUs, and thus we exploit more global contextual information about discourse structure in
the generative model than in our classical, supervised local models.

The two recent results of the work on the attachment prediction done by Perret et al.
(2016) and Shi and Huang (2019), are obtained from supervised approaches that have been
trained on a previous version of the linguistic STAC corpus, the Perret et al. (2016) version.
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The deep sequential model in (Shi and Huang, 2019) decides the dependency links between
EDUs incrementally, using local representations of the predicted path of EDUs. This model
therefore uses jointly local and global information on attachment structure. If our LFs encode
global information, the generative model classification is done on the DU pairs. So we can
not really compare these two approaches, but it seems that this sequential model outperforms
all the state-of-the-art baselines for dependency prediction (with 73,2% F1 score) on the
previous linguistic-only STAC data version. For comparison to the local model of Perret
et al. (2016), which is closer to our classification approach on pairs of EDUs, we adopted
the same LogReg* classifier as a baseline to predict attachment on the latest (corrected)
linguistic-only STAC data. We have also decided to include BERT’s sequence classification
model as another baseline on the linguistic-only STAC data.

Local Models Precision Recall F1
LogReg* 0.64 0.39 0.48
BERT 0.43 0.31 0.36
GEN 0.58 0.50 0.54
GEN + LogReg* 0.59 0.53 0.56

Table 6.3 Evaluation of positive attachments on linguistic-only STAC TEST data set.

The results reported by Perret et al. (2016) on local attachment with LogReg* classifier
are 0.66 in precision, 0.38 in recall and 0.48 on F1 score. On our version of the linguistic-
only corpus, we had a decrease in precision (of 0.02) and a slight increase in recall of one
hundredth of a point with LogReg*.

In Table 6.3, we show how our model GEN and GEN + LogReg* on STAC test data
compares to that of the linguistic-only STAC data. LogReg* outperforms the BERT model on
the gold attachments labels (12 points difference on F1 score). Comparing GEN to LogReg*
on the linguistic-only STAC data set, GEN has higher scores on F1 and recall than LogReg*
model (through dependency estimation). However, we lose **6 points** in precision, which
indicates that our LFs are not precise enough on the linguistic-only attachments. The results
improved slightly when the discriminative LogReg* model was trained on the generated
predictions. This shows that the parameters learned by the LogReg* model improved the
coverage of the information that our LFs encode without loss of precision. This is what
we aim by training a final model, the discriminative model, that can learn a more general
representation.
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6.2 Predicted Structures

The metrics we compared do not show the predicted structures. We therefore wrote a script
to visualize the structure predicted by the binarized GEN model results. We found that these
underlying graphs were not fully connected within a dialogue. Consider the small dialogue
from STAC (click here for full structure visualization with relations) and its GEN predicted
structure illustrated in Figure 6.3. The GEN graph is not fully connected. This may be
because of the binarization process which does not take into account probabilities less than
or equal to the threshold, thus potentially eliminating many attachments.

Figure 6.3 Comparison of the manually annotated Gold attachment structure and that pre-
dicted by Gen. The blue dashed arrows represent false negative (FN) attachment predictions
and the magenta arrows represent FPs.

In addition to local information, our LFs include global structural constraints in the
way they approach the candidates in the context of the dialogue before labeling them. The
generative model performed better than (Perret et al., 2016)’s local model (in terms of F1
score). However, the structure generated by the Snorkel local results is not a directed acyclic
graph (DAG), required by SDRT. We followed the previous work and implemented simple
decoding steps with additional constraints in order to build a connected structure for each
dialogue. We will compare our results with those of the global models from previous work.

https://www.irit.fr/STAC/stac_game_graphs/pilot02/superdoc_7/dialogues.html


122 Snorkel Results

6.2.1 Decoding Models

A set of highly accurate predictions for individual candidates does not necessarily lead to
accurate discourse structures; for instance, without global structural constraints, GEN and
local models may not yield the directed acyclic graphs (DAGs), required by SDRT.

MST and MST/short

As in previous work (Afantenos et al., 2015; Muller et al., 2012; Perret et al., 2016), we
adopted the Maximum Spanning Tree (MST) algorithm, and a variation thereof, to ensure
that the dialogue structures predicted conform to some more general structural principle. We
implemented the Chu-Liu-Edmonds algorithm (Chu, 1965; Edmonds, 1967), an efficient
method of finding the highest-scoring non-projective tree in a directed graph, as described
in Jurafsky and Martin1. The algorithm greedily selects the relations with the highest
probabilities from the dependency graphs produced by the local model, then removes any
cycles. The result is a tree structure with one incoming relation per node. In cases of nodes
with multiple equiprobable incoming relations, the algorithm takes whichever relation it sees
first (the full algorithm is shown in Figure 6.4, where CONTRACT the cycle C means treat
all nodes in the cycle as a single unit). When contracting the cycle C, the algorithm finds the
incoming link J to the unit with the highest probability. Keeping the link J, which connects
to the unit via node N, will remove any other incoming link to the node N. The algorithm
then uncollapses or expands the cycle C to return the tree T and check again for cycles until
no more cycles are found.

In addition, we implemented two MST variants MST/short and MST/long that always
choose the shortest/longest relation (in terms of distance between DUs) among multiple
high-probability relations.

MS-DAG and MS-DAG/short

Since SDRT structures can contain nodes with multiple incoming relations, i.e. are not
always tree-like, we altered the MST algorithm in the manner of (Afantenos et al., 2015;
Muller et al., 2012; Perret et al., 2016), forcing the MST to include all high-probability
incoming relations which do not create cycles. This produces MS-DAG structures which are
in principle more faithful to SDRT and dialogue structures. To implement this we ran MST
algorithm 6.4, but kept track of all the links removed. Then we re-add each of these removed
links one by one, checking for cycles each time. We do not re-add these removed links in
any particular order.

1https://web.stanford.edu/ jurafsky/slp3/14.pdf

https://web.stanford.edu/~jurafsky/slp3/14.pdf
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Figure 6.4 The Chu-Liu Edmonds algorithm for finding maximum spanning tree in a weighted
directed graph.

As well as for MST, we also implemented the MS-DAG/short and MS-DAG/long variants.

6.2.2 Decoding Step Results

Decoding on target situated STAC data

To further investigate comparisons between different architectures for solving the attachment
problem, we compared various local models extended with the MS-DAG/short decoding
algorithm, giving the global results shown in the right-hand columns of Tables 6.4 and 6.6.

With MS-DAG/short added, GEN continued to outperform the supervised approach
LogReg* on target situated STAC TEST data. In Table 6.5, we experimented with adding
all decoding algorithms to the local GEN results on target situated STAC TEST data set.
This gave a boost in F1 score—2 points with classic MST and MS-DAG, and 4 points with
the variants favoring relation instances with shorter attachments. The results of MST/long
and MSDAG/long are similar to those of classic MST and MSDAG in terms of F1 score.
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Local Model Global Model
Precision Recall F1 Precision Recall F1

LogReg* on STAC 0.73 0.52 0.61 0.65 0.64 0.65
GEN 0.69 0.66 0.68 0.73 0.72 0.73

Table 6.4 Comparison of local and global models (MS-DAG/short) on target situated STAC
data.

MS-DAG/short improved the precision and recall of the GEN scores, although the boost was
greater for recall than precision.

MS-DAG MST MST/short MS-DAG/short
F1 Score 0.709 0.709 0.726 0.726

Table 6.5 F1 scores of MST and MSDAG variants using GEN marginals as inputs.

It is not surprising that the decoding step improves the GEN results, since it eliminates
some of the false positive relations that pass the generative threshold and includes some
of the false negative relations that fall below the threshold. The general inverse power
law distribution of discourse attachments (many short-distance attachments and fewer long-
distance attachments) explains the good performance of the MST and MS-DAG shortest link
variants on target situated STAC data. GEN + MST/short has the highest attachment score of
all approaches to the problem of attachment in the literature (Morey et al., 2018), though we
are cautious in comparing scores for systems applied to different corpora. This is what we
will see in the following section, with the linguistic-only STAC data.

Decoding on linguistic-only STAC data

We also wanted to see how the decoding step fared on our version of the linguistic-only data
set. With a decoding mechanism similar to that reported in Perret et al. (2016), LogReg*’s
global model significantly improves over the GEN’s. We see a 4 point loss in F1 score on
GEN’s global model relative to LogReg*’s, even though both used identical MS-DAG/short
decoding mechanisms. This is what one would expect from a Snorkel based architecture,
although it’s not the rule that we observed for GEN. GEN did not beat LogReg* because it
did not get a sufficient boost from decoding. We think that this happened because our LFs
already contain some global information about the discourse structure, which meant that the
decoding had less of an effect.
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Local Model Global Model
Precision Recall F1 Precision Recall F1

LogReg* 0.64 0.39 0.48 0.59 0.61 0.60
BERT 0.43 0.31 0.36 0.46 0.47 0.46
GEN 0.58 0.50 0.54 0.58 0.54 0.56
GEN + LogReg* 0.59 0.53 0.56 0.59 0.55 0.57

Table 6.6 Decoding results (MS-DAG/short) of our methods on linguistic-only STAC corpus.

In comparison with the MS-DAG/short results on the target situated STAC corpus where
GEN beats LogReg* (see Table 6.4), Gen+MS-DAG/short did not beat LogReg*+MS-
DAG/short on linguistic-only data partly because the GEN’s overconfidence (threshold to
0.9 on linguistic-only annotations) makes the rules too precise, which may explain why Gen
don’t gain much in recall with the MS-DAG/short decoding. Table 6.7 illustrates another
important fact that the performance of the decoding algorithms depends on the type of data
to which it is applied. On the linguistic-only annotations, the MS-DAG algorithms give the
best results, while for the target situated annotations, both MST and MS-DAG provide the
best score with their short variant (Table 6.5). The relatively higher performance of MST on
the target situated annotations is arguably due to the fact that the situated structures are much
more regular, while the structures in the linguistic-only annotations are more complicated
and less predictable.

MS-DAG MST MST/short MS-DAG/short
F1 Score 0.548 0.44 0.452 0.558

Table 6.7 F1 scores of MST and MSDAG variants using GEN marginals as inputs on
linguistic-only STAC data.

Comparison to previous decoding results

The two recent results of the work on the attachment prediction done by Perret et al. (2016)
and Shi and Huang (2019) are reported in Table 6.8.

The MS-DAG/short decoding mechanism on the linguistic-only data set provided Lo-
gReg* only a boost of 12 F1 points, as seen in Table 6.6, which is significantly lower than
what is reported in (Perret et al., 2016) with MST (see Table 6.8). This 12 point boost is
the upper limit for boosts with MS-DAG/short that we were able to reproduce. This could
be a result of our eliminating the degraded one EDU stories from the data set. What we
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Local Model Global Model
Precision Recall F1 Precision Recall F1

Perret et al. 2016 0.66 0.38 0.48 0.68 0.65 0.67
Shi et al. 2019 - - - - - 0.732

Table 6.8 Decoding results on Perret et al. version of linguistic-only STAC corpus.

note is that taking into account the non-linguistic context is fundamental for the prediction
of discourse structure. The results of Gen+MS-DAG/Short do not surpass Shi and Huang
(2019)’s results, but are still very promising relative to our approach using weak supervision
sources.

Connected Structures

While the best results are with MSDAG/short, the visualization of these structures is very
difficult because many incoming links are taken into account. We could restrict the number
of incoming links in the MS-DAG algorithm, but we want first to analyze those links that can
form the diamond structures presented in Chapter 2 and 3 (analysis presented in Chapter 7).

Figure 6.5 Comparison of the manually annotated, GEN binarized structure and that predicted
by MST. The blue dashed arrows represent false negative (FN) attachment predictions and
the magenta arrows represent FPs.

For better visibility, the Figure 6.5 shows the structure produced with MST algorithm. The
decoding process has indeed produced a connected graph as we intended it to be. However,
there are more FNs and FPs on the graph produced by the decoding step than the one
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produced by GEN. This is due to the fact that the decoding model takes all the probabilities
produced by Gen, whereas the Gen structure is based on the binarized scores. We note
however, that the prediction errors, compared to the manual annotations, remain consistent
(with the interpretation of the interactions) and allow long distance attachments. The false
positive attachment between EDU [no sorry] from Cat and EDU [Thomas ended their turn]
from UI, can be read as a result of cat’s response [no sorry], without taking into account the
diamond structure when Thomas acknowledges both [none] and [no sorry] responses. This is
a violation of the right frontier, but it may be due to a higher weight of one LF compared to
another. This is what we will seek to investigate in the next chapter.

6.3 Conclusion

In this chapter we have presented the potential of weak supervision for the prediction
of discourse attachment. We show how our approach, which follows the Snorkel data
programming paradigm, compares to other supervision models on the same data.

The most surprising result is that the generative model alone was able to outperform (or
slightly underperform compared to GEN + the discriminative model LogReg* on linguistic-
only data) all other approaches in terms of F1 score, suggesting that our 11 weak supervision
sources described in Chapter 6 might be a good enough classifier on their own. The injection
of higher-order dependencies into the generative model has been crucial to this success. We
note, however, that GEN’s results on the linguistic-only STAC data are not as good, which
implies that our linguistic LFs (L_L rules) are not accurate enough.

The structures built by the GEN model are often not fully connected graphs, which is why
a decoding step is desirable. It was important for the discourse structure to be complete within
a single dialogue, as this is what our abstract model predicts must be the case for coherent
dialogues. The decoding models we implemented, which are not included in the Snorkel
pipeline, allows us to group the dialogue threads into a connected graph, structures that
are consistent due to our rules which encode logical patterns. No wonder the results of the
short decoding variants that choose the shortest attachment among multiple high-probability
relations are better since discourse attachments in general follow an inverse power law (many
short-distance attachments and fewer long-distance attachments). However, the constraints
applied to the decoding are weak as the global model does not have access to the discourse
features used by the local model.

In Chapter 7, we will further analyze the results and we will endeavor to improve some
linguistic LFs to improve the discourse attachment precision scores.





Chapter 7

Results Exploration

The Snorkel approach facilitates error analysis because we have more control over the
algorithms that are guided by expertise. We want to conduct an in-depth analysis of the
results in order to understand the mechanism step by step and to be more confident about our
model. Our goal is to be able to explain prediction errors and know how to solve them. In
this way, we will bring transparency, explicability and feedback on our weak supervision
approach.

In this chapter we will first look at which examples are predicted and which are not
and why. We will also describe the refinements we have made to improve the precision of
our linguistic LFs by focusing on two discourse relations; Question-Answering-Pairs and
Acknowledgment. We will see how this affects the prediction results.

7.1 Quantitative and Qualitative Analysis

In Chapter 6 we have seen the performance of the generative model (GEN) which outper-
formed most of the machine learning models it was compared to. The decoding stage that we
have implemented in addition to the Snorkel architecture has shown that the best decoding
results were achieved by the short distant variant of MS-DAG.

In this section we will quantitatively explore the results of our predictions from the gener-
ative model (GEN) and the decoding MS-DAG/short mechanism (DEC) in all the training
data that we have annotated automatically, and then we will interpret them qualitatively.
We will be concentrating on two aspects; long distance attachments and complex predicted
structures. We will proceed with a series of questions about our model’s performance and
then provide replies.
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7.1.1 Error Analysis on Long Distance Attachments

What happened to the long distance links in the corpus?

We wanted to know if we were able to predict long distance attachments which are computa-
tionally difficult to determine, so we first counted the attachments with a distance greater
than or equal to 2.

Data TP FP Total
GOLD 9959 0 9959
GEN 4721 6605 11326
DEC 3186 1583 4769

Table 7.1 True and false positive long distance attachments.

The GOLD annotations have nearly 10,000 long distance links; nearly half of these are
predicted in the Generative Model, while about a third of these are ultimately predicted in
the MS-DAG/short decoding model (DEC). As explained in Chapter 6, the constraint of
choosing the short distance attachment in our MS-DAG model is too strong, especially since
we have no direct source information (linguistic or contextual) from the data. MS-DAG only
chooses the shortest link among several same probability values. This explains the drop in
DEC for true positive (TP) long attachments as shown in Table 7.1.

Among the FPs predicted by the Generative Model, there are also candidates not attached
in the corpus, but which may be consistent given what transpired in the conversation. Many
of these FPs are annotated attached by the LF which encodes the Comment discourse relation.

We have not written any rules for negative attachments (apart from “Hail-Mary”), but
some of our rules contain distance constraints. There are 173,341 true negative (TN) long
attachments in all GOLD candidate pairs. Among them, 166,736 were correctly predicted by
GEN. This result is mainly due to our “Hail-Mary” rule, which predicted 165,504 TNs and
1,232 other cases are due to our constraints in the different LFs.

Can we find patterns in the contexts in which the true links were predicted (TPs) and
those in which they were not (FNs) with GEN?

The Generative Model missed a lot of long distance links in Comments (1077 FNs), in
Question_answer_pair (785 FNs) and Acknowledgement relations (725 FNs); but it did
best with Result (1504), Sequence (1418) and Question_answer_pair (1125) (the first three
relations where we find the most TP long distance attachments).
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It is very difficult to know what someone is commenting on, especially when that person
comments on an eventuality that did not happen just beforehand without explicitly referring
to that eventuality. More than half of the unpredicted long-distance comments have a distance
of more than 5. An example of an unpredicted long distance Comment is illustrated in
(1) (Click here for full graph visualization). For this candidate, where there is a distance
of 6 between the pair of segments, all LFs abstained, so only Hail-Mary rule predicted a
non-attachment.

(1) 372 Server: Tomm rolled a 3 and a 5.
...
374 Dave: Thank god.

While it would be interesting to study the influence of interjections and extra information
such as emojis in a conversation, it is even more important to identify the questions and their
answers, as well as the acknowledgements.

GEN predicted more TPs (1125) than FNs (785) long-distance Question_answer_pair
(QAP) attachments. The questions and answers should be the links that are most easily
covered, we therefore have to find a way to reduce the 40% of FNs. We wrote rules mainly
to align offers and counter offers using Dialogue acts and Surface acts annotations without
restricting distances. The FNs in the QAP category are mainly unrestricted spontaneous
questions/answers, as illustrated by example (2) (Click here for full graph visualization),
where players coordinate to meet in Markus’ office on a particular day and time.

(2) 704 Dave: any particular time you’d prefer?
...
706.1 Markus: I’ve no preference for Wednesday

The target segment was not annotated by the dialogue/surface acts that were taken into
consideration in the LF. We need to write more global rules that will consider the general
forms of questions and answers (see Section 7.2).

Acknowledgment attachments are very difficult to identify, yet are very important in
multi-party conversations to track participants’ agreement and coordination. GEN predicted a
lot of long distance FNs (725) because our Acknowledgment rules had restricted the distance
to 1 between the pair of EDUs. We assumed incorrectly in our rules that acknowledgements
were close to what is being acknowledged. Whereas in the DEV data set there are more long
distance acknowledgement attachments (123) than short distance ones (81). These are the
Continuation, QAP and Result rules that attached 129 TP long distance Acknowledgment
links in GEN.

https://www.irit.fr/STAC/stac_game_graphs/pilot01/superdoc_26/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/pilot01/superdoc_39/dialogues.html
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How many TP long distance links in DEC were already in GEN and how many were
new in DEC?

Nearly a third of long-distance attachments are predicted in DEC (see Table 7.1). 4705
long distance attachments were predicted in both GEN and DEC and of these 3179 are true
positive ones.

All but 7 of the true positive long distance links in DEC were already predicted by GEN
(long TP in DEC (3186) minus long TP that were preserved from GEN (3179)), so we should
concentrate on the move from GEN to DEC.

These 7 cases are all 9 segments apart; 3 of them are Comment and one sample for
each of Explanation, Elaboration, Sequence and Acknowledgment attachments. We have
not implemented a rule for the Explanation attachment type. The Sequence case shown in
(3) is an “NL_NL” link (non-linguistic source → non-linguistic target) which we have not
considered in our rule:

(3) UI: Charlotte ended their turn.
...
Server: »> Less than 2 minutes remaining.

The other cases (Comment, Elaboration and Acknowledgment attachments) matched the
written regexes, but as we constrained in distance the pair of segments, none of the GEN
rules attached these candidates. It is clearly not a good idea to have distance constraints for
attachments in multi-party dialogues, but it was the quick solution to limit false positives.

151 long distance candidates were predicted attached by DEC but not by GEN. Of these
predicted links, only the 7 we saw above are true positives. DEC connected the graphical
structure of the dialogues, thus taking into account the 7 TP long links (out of the 151 positive
attachments) that GEN missed because of the threshold applied.

7.1.2 A closer look at complex structures

Why did we lose 1542 TP long distance attachments when we moved from GEN to
DEC?

1542 TP long distance attachments were predicted by GEN but not by DEC. QAP and
Sequence were the most frequently dropped and in 3rd position is the Acknowledgement
relations. The Sequence attachments we missed are mainly non-linguistic ones that we did
not take into account in our rules.
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There are only m=1532 target segments in the long target set (TPs in GEN and FNs in
DEC). We hypothesize that there were 10 cases in which the long distance links with the
same target were dropped from GEN to DEC.

We want to consider all long distance links that were removed from diamonds or that
were replaced by short distance links, even if the original long distance link in GEN was
FP. There are 74 TP and 1258 FP short links (l,m) in GEN and DEC such that there is a
long link (k,m) that is TP in GEN and FN in DEC. In the Example (4), which is FP short
link (l,m), QAP and Comment LFs predicted a positive attachment (Click here for full graph
visualization).

(4) 261 Kersti: which?
262 Tyrant Lord: oh wait

There is no short link (l,m) in DEC missing in GEN such that there is a long link (k,m)
that is TP in GEN and FN in DEC. There are no long link (l,m) in DEC and missing in GEN
either such that there is a long link (k,m) that is TP in GEN and FN in DEC. 198 FP and 2
TP long attachments had targets that were involved in long distance links (j,m), where source
j is different from source k preserved from GEN to DEC.

Have we been able to predict correct diamond structures?

There are 238 diamond structures in GOLD annotations. None were fully predicted by DEC.
There are only 12 out of 1868 fully correctly predicted diamonds in GEN (same head, tail
and middle nodes in the graph). This shows the importance of the semantic content conveyed
by the LFs in the generative model, even though the final scores have been thresholded. The
global model constructs a DAG from the GEN probabilities but has no semantic information
reflected.

An example of a diamond correctly predicted by GEN is the structure that contains the
following segments (Click here for full graph visualization):

(5) 230 Chameleon: thoughts?
231 skinnylinny: Hmmm, do we want to? [230-Clarif-Question-231]
232 Chameleon: I am happy to keep playing [(230,231)-QAP-232]
233 Nancy: me too [232-Parallel-233] [230-QAP-233]
234 skinnylinny: fair enough [(232,233)-Acknowledgment-234]

A false positive (FP) attachment is predicted between EDU 231 and 234 (output from our
Comment rule). The TP attachment between segments 233 and 234 is the consequence

https://www.irit.fr/STAC/stac_game_graphs/s2_practice4/superdoc_17/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/s2_practice4/superdoc_17/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/pilot04/superdoc_12/dialogues.html
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of the two positive outputs of our Comment and Acknowledgment rules. The EDU peer
attachments (230 - 231) and (230 - 232) are the result of the positive outputs of our Comment
rule. These results reinforce our idea of modeling attachment through different types of
discourse relations (see Section 5.2.1). However, we need to redefine the QAP type rules
which do not cover many corresponding attachments and in addition are based on manual
annotations.

We had also observed cases in which a question, Q, had (at least) two responses, R1 and
R2, in GOLD annotations but R2 was attached to R1 in GEN rather than to Q. The example
in Figure 7.1 (shown in Chapter 6) illustrates this phenomenon (click here for full structure
visualization with relations).

Figure 7.1 Comparison of the manually annotated, GEN binarized structure and that predicted
by MST. The blue dashed arrows represent false negative (FN) attachment predictions and
the magenta arrows represent FPs.

7.2 Two Case Studies

As mentioned in Chapter 5, we have used some manual annotations associated with individual
EDUs/EEUs of the STAC corpus in our LFs. As for the distance, DU type (linguistic or
non-linguistic segment) or the speaker names, this is information that we can easily have
for the data we want to process, i.e. the meeting transcripts. We said in Chapter 5 that
we can apply our LFs “to as much data as we want”. This is not the case, since we need
the annotations of addresses, dialogue acts and surface acts, which our rules exploit. My
colleagues Thompson et al. (2019) have also successfully predicted the dialogue acts for

https://www.irit.fr/STAC/stac_game_graphs/pilot02/superdoc_7/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/pilot02/superdoc_7/dialogues.html
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another conversational corpus using Snorkel framework. However, we spent some time
editing the LFs on replacing the addressees and dialogue+surface acts annotations used and
capture their patterns with regular expressions. This process did not change our scores in a
significant way, but it did give us ideas for better expressing the discourse relations that the
LFs convey.

The difference between the results on the target situated STAC data and the linguistic-only
one presented in Chapter 6, indicated that our linguistic LFs (L_L rules) are more complex
to define than the rules that encode the game moves. In Section 7.1 we have seen that
many errors are related to Acknowledgment (ACK) and Question_answer_pair (QAP) links,
discourse relations which are very important for the understanding of multi-party dialogues.

In this section we describe the changes we made for Question_answer_pair and Acknowl-
edgment rules and we will see how this affects the scores on the two data sets.

7.2.1 Question_answer_pair Rules

When we wrote our rules (described in Chapter 5), we relied on the GOLD annotated
attachments seen on the DEV set trying to cover as many attachments as possible. We did
not evaluate our rules on attachments by type of discourse relation that the rules encode.
Table 7.2 shows the generative model results of our QAP rules described in Chapter 5 on the
linguistic-only data taking into account only QAP attachments, i.e. the labels are 1 for QAP
attachments and 0 for no_QAP attachments.

Local Model Precision Recall F1
GEN 0.61 0.68 0.65

Table 7.2 Previous results on linguistic-only QAP / no_QAP attachments on the DEV set.

We’ve written seven rules to cover QAP attachments relying on the annotations of the
linguistic only DEV set and other intuitive principles:

1. LF_QAP_1 :This rule takes account of cases where the source is an EDUs of the
“Offer” dialogue_act type and the target EDU is of the type “Refusal”, “Counteroffer”,
“Accept” or “Request” dialogue_act. To do this we used game-specific regexes [e.g.
“I can offer + resources + for + resources”] and elements from a resource list (sheep,
rock, ore,...).

2. LF_QAP_2 : This rule takes account of the case where the source is a WH question
and the target an answer, that does not have a question mark, at a distance less than or
equal to 6.
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3. LF_QAP_3 : This rule takes account of the case where the source_surface_act is of
the form “Please choose...” and the target EDU is a response that take the form of
opinions, comments, have emojis or that responds to a choice for the trade. It limits
the attachments to a distance of 3.

4. LF_QAP_4 : This rule takes account of cases where the source is a WH question or
an EDU that contains a question mark and the target is a response that takes the form
of an opinion, a comment, has emojis or that responds to a choice for a trade. The
distance is limited to 5 between source and target EDUs.

5. LF_QAP_5 : This rule takes account of cases where the source is an EDUs of the
“Request” source_surface_act and target EDU is a response that takes the form of
opinions, comments, has emojis or that respond to a choice for the trade. The distance
is limited to 5.

6. LF_QAP_6 : This rule takes account of cases where the source EDU is a question
formed using inversion (subject–auxiliary inversion) and the target segment is at a
maximum distance of 5 (see Code 7.1).

7. LF_QAP_7 : This rule takes account of cases where the source EDU is a question that
has one of the following words [“if anyone”, “anyone got”, “anybody have”, “anyone”],
where the object to be exchanged appears in both source and target_text and where the
answer is an opinion, decline or possession. It limits the attachments to a distance of 5.

8. LF_QAP_8 : This rule takes account of cases where the EDU source contains a
question mark and where the EDU target does not have one. It limits the attachments
to a distance of 5.

def subj_verb_inversion(phrase):
subj_verb_inversion = []
for token in phrase[:-1]:

if (token.pos_ == 'VERB' and phrase[token.i+1].pos_ == 'PRON'):
subj_verb_inversion += \
[(str(phrase[token.i])+ ' ' + str(phrase[token.i+1]) )]

elif ( token.pos_ == 'VERB' and
phrase[token.i+1].pos_ == 'PUNCT'
and token.i+2 < len(phrase)
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and (phrase[token.i+2].pos_ == 'PRON'
or phrase[token.i+2].pos_ == 'NOUN' ) ):

subj_verb_inversion += [(str(phrase[token.i])+ ' '
+ str(phrase[token.i+1])
+ ' ' + str(phrase[token.i+2]) )]

return(subj_verb_inversion)

def LF_QAP_LL_case6(row):
l=0
if any( subj_verb_inversion(nlp(row.source_text.lower())) ) \
and (row.source_emitter != row.target_emitter) \
and ( row.distance <= 5 ):

l=1
return l

Code 7.1 An example of QAP rule with subject-verb inversion question.

As explained in 5.2.2 for all these LFs, we don’t allow a speaker to answer his own
question. We control the order in which each rule is applied to the candidates such that,
given a particular segment x, the possible relations with segments closer to x with respect to
textual distance are considered before relations with segments farther from x. This allows us
to observe the history of the conversation on the discourse relation we want to apply. These
new rules, which form the QAP_LF, have improved the scores as illustrated in the table 7.3:

Local Model Precision Recall F1
GEN 0.74 0.70 0.72

Table 7.3 New results on linguistic-only QAP / no_QAP attachments on the DEV set.

7.2.2 Acknowledgment

GEN’s results on ACK attachments are equal to zero as shown in Table 7.4. The ACK_LF did
not predict much TPs (only 50 TP ACK attachments of 187 TP ACK attachments in DEV)
compared to TNs, FNs and FPs (9863 no_ACK attachments) due to the distance constraint
of 1.
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Local Model Precision Recall F1
GEN 0.00 0.00 0.00

Table 7.4 Previous results on linguistic-only ACK / no_ACK attachments on the DEV set.

We’ve written seven rules to cover ACK attachments relying on the annotations of the
linguistic only DEV set and on the pairwise organization of some expressions which often
go together (that we described in Chapter 3) such as when participants greet each other at the
beginning of the game or when they say goodbye at the end of the game:

1. LF_ACK_1 : This rule accounts for cases where the source and target are greeting
messages; it limits the attachments to a distance of 5 (see Code 7.2).

2. LF_ACK_2 : This rule models goodbye messages by limiting the distance to 4.

3. LF_ACK_3 : This rule takes account of cases where two pairs of EDUs from different
emitters are at most 5 segments apart, that contain words from the ack_list such as
the expressions [“ah”, “excellent”, “dommage”, “fair enough”, “fair point”, “glad”,
“gotcha”, “fixed”, “damn”, “perfect”, “congrats”, “good”, “good game”, “good luck”,
“great”, “deal”, “right”, “done”, “fine”, “pleasure”].

4. LF_ACK_4 : This rule takes account of cases where two pairs of EDUs from different
emitters, up to 7 segments apart, whose source segment does not contain a question
mark and whose target segment contains words from the core_ack list such as the
words [“agreed”, “doesn’t matter”, “i can”, “i did”, “i see”, “indeed”, “k”, “kk”, “never
mind”, “no doubt”, “no problem”, “no worries”, “not your fault”, “sold”, “sounds
good”, “sure”, “me too”, “my bad”, “true”, “fair enough”, “will do”, “ya”, “yeah”,
“yeh”, “yep”, “yey”, “you too”, “sure thing”].

5. LF_ACK_5 : This rule accounts for an attachment between a source segment in the
form of game-specific refusal or offer (e.g. “I can offer + resources + for + resources”)
that does not contain a question mark, and the target segment contains the expressions
of the core_ack list. It limits the attachments to a distance of 7.

6. LF_ACK_6 : This rule is the same as rule 5, except that we check that the target
segment contains emojis (we finally did not use this rule since it lowered the precision
on ACK attachments even if the recall increases slightly).
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7. LF_ACK_7 : This rule accounts for cases where the source segment does not contain
a question mark or WH questions and the target segment of a different emitter is limited
to 7 in the number of tokens it contains. It limits the attachments to a distance of 4.

8. LF_ACK_8 : This rule accounts for cases where the source segment does not contain
a question mark or WH questions but contains at least one resource word and the
target segment from a different emitter that contains the expressions of the ack_list or
core_ack lists. It limits the attachments to a distance of 4.

greetings= ["hey", "bonjour", "hi", "bonjourno", "hola", "hello",
"morning", "evening", "yo"]

byelist= ["bye", "cheers", "indeed", "thanks", "thank you", "yo",
"see you"]

def LF_ACK_LL_case1(row):
l=0
if (any( t.strip() in

re.findall(r"[\w']+|[.,!?;]", row.source_text.lower())
for t in (greetings) ) ) \

and (any( t.strip() in
re.findall(r"[\w']+|[.,!?;]", row.target_text.lower())
for t in (greetings) ) ) \

and (row.source_emitter != row.target_emitter) \
and (row.distance <=5) :

l=1
return l

Code 7.2 An example of new Acknowledgment rule.

Local Model Precision Recall F1
GEN 0.21 0.27 0.24

Table 7.5 New results on linguistic-only ACK / no_ACK attachments on the DEV set.

These rules output −1 (“not attached”) when the candidate is a backward link. The GEN
evaluation of ACK_LF with the new rules has improved (Table 7.5). The improvement was
mainly in TN and FP ACK attachments on the DEV set.
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7.2.3 New Results

By only replacing the QAP_LF and ACK_LF described in Chapter 5 with the new versions
described in this chapter, we significantly improve the precision of the generative model GEN
on both corpora: by 9 points for the target situated corpus (Table 7.6) and by 5 on the linguistic
only data (Table 7.7). These results highlight the power of weakly supervised methods to
efficiently capture discourse local attachments. By applying the Logistic Regression LogReg*
discriminative model on the GEN scores we have a slight improvement in recall particularly
in the linguistic-only data.

Local Model Global Model
Precision Recall F1 Precision Recall F1

Previous GEN 0.69 0.66 0.68 0.73 0.71 0.72
GEN 0.78 0.58 0.67 0.74 0.72 0.73
GEN + LogReg* 0.76 0.59 0.66 0.72 0.70 0.71

Table 7.6 Comparison of previous (from Chapter 6) and new results of our methods on target
situated STAC test data set (MS-DAG/short for the global model).

Local Model Global Model
Precision Recall F1 Precision Recall F1

Previous GEN 0.58 0.50 0.54 0.58 0.54 0.56
GEN 0.63 0.45 0.52 0.57 0.53 0.55
GEN + LogReg* 0.57 0.48 0.52 0.57 0.53 0.55

Table 7.7 Comparison of previous (from Chapter 6) and new results of our methods on
linguistic-only STAC test data set (MS-DAG/short for the global model).

The MS-DAG/short decoding model lowered the precision of the generative model, but
significantly improved the recall compared to the previous results from Chapter 6 (allowing us
to reach the state-of-the-art score (Shi and Huang, 2019) on the target situated data, although
this is not a direct comparison as Shi and Huang (2019) use the previous version of linguistic-
only annotations (73,3% F1 score on target situated data)). However, compared to the
results of the previous GEN raw, the global model scores improved by only 1% on the target
situated data. On the linguistic only annotations, the MS-DAG/short decoding model scores
decreased by 1%. Our simple and exogenous decoding model relies only on the probabilities
of the generative model but does not encode global structuring discourse constraints to form
SDRSs. We think we can put much more sophisticated decoding constraints (that we outline
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in Chapter 8.2.1) that don’t just work off local probabilities of arcs but on the full information
about the arc in its discourse context.

We improved the true positives from 2473 to 2547 out of 3269 TP QAP attachments.
While for ACK attachments, the TPs have not changed, but rather there is an increase in TNs
and a decrease in FPs with our new ACK rules.

Let us see whether the added rules have improved the predictions we described in the
first section of this chapter.

(6) 230 Chameleon: thoughts?
231 skinnylinny: Hmmm, do we want to? [230-Clarif-Question-231]
232 Chameleon: I am happy to keep playing [(230,231)-QAP-232]
233 Nancy: me too [232-Parallel-233] [230-QAP-233]
234 skinnylinny: fair enough [(232,233)-Acknowledgment-234]

The positive attachment output of our Comment rule is now reinforced by the new QAP LF
for the attachment of segments 230 and 232.

We also observed the local attachment between answers, e.g. R1 to R2, rather than the
attachment of long answers to the question, Q to R2. Our hypothesis is that local attachment
won out over the other factors. Our rules have corrected these errors in the example shown in
Figure 7.1 and also for other cases (click to see another simple example that starts with the
question at turn 29).

More complex cases have also been solved where there are interwoven threads, or
comments in the way of questions and their answers (click to see a more complex example
that starts with the question at turn 86 of the dialogue). Adding QAP labeling rules helps
override this preference of local attachment and improves the QAP predictions.

7.3 Conclusion

In this chapter we have given an example of how weak supervision can lead to a successful
error analysis and how it naturally leads us to rules not only for attachment but also rules that
enable us to assign discourse relation labels to attachments. We’ve also shown that refining
the rules has led to modest improvements in our system’s performance.

We concentrated on two relations. Question_answer_pair (QAP) and Acknowledgment
(ACK) relations are essential in a semantic model of conversation to keep track of the
participant points of view by linking their various contributions and acknowledgments.
Through the different predicted examples, we found that the constraints modeled in the
previous LFs were either too restrictive (distance to 1 for acknowledgments) or too broad

https://www.irit.fr/STAC/stac_game_graphs/pilot01/superdoc_2/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/pilot01/superdoc_2/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/pilot03/superdoc_4/dialogues.html
https://www.irit.fr/STAC/stac_game_graphs/pilot03/superdoc_4/dialogues.html
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(based on the dialogues acts annotations for QAP). We improved these two LFs and found
that the individual improvement for these types of relations was not proportional to the
improvement in all attachments. Relying only on the local information of two considered
EDUs/EEUs for the prediction of attachment in a whole conversation is a great drawback,
because we know that attachments are conditioned by the surrounding discourse context. The
constraints on the order of application of our rules are not sufficient for a complete discourse
structure.

The MS-DAG/short decoding predictions described in this chapter show that the prefer-
ence for local attachment won out over other factors and that there are many FPs because of
the choice to include all high-probability links. We have observed what this simple decoding
model could predict as discourse structure from the scores of the generative model. The FPs
can be reduced by limiting the number of links to be included in the graph, but for a better
representation of the discourse structure following SDRT, more sophisticated constraints
have to be put in place, which we will discuss in the next chapter.



Chapter 8

Conclusion

The work presented in this thesis reflects the fact that the understanding of linguistic interac-
tions is often based on common sense reasoning, for which knowledge of semantic relations
and the structures to which they give rise is indispensable. In spite of the progress in machine
learning in the field of Natural Language Processing (NLP) for practical applications of AI
(Chatbots Language translator, Social Media Monitoring, Language Model in Automatic
Speech recognition, Autocorrect, Autocomplete, targeted advertising), the need for a large
amount of annotated data remains necessary but hard in practice to get. Our studies have
shown that weakly supervised methods (Pan and Yang, 2009; Wang et al., 2020) allow both
the automatic creation of sufficient training data containing complex language semantic
information for machine learning, but also the creation of generative models that are compet-
itive with the best that deep learning can offer. The data-driven programming method we
explore allows us to model all kinds of logical linguistic constraints and to automatically
learn dependencies between the available sources of information for the data we want to
analyze.

In what follows, we review the main contributions of this dissertation by chapter before
concluding with some remarks on future work and planned improvements.

8.1 Contributions

In Chapter 1, we described the context of our project from two angles: the linguistic and
industrial contexts. We began by showing that when a speaker engages in conversation, it is
important that her/his contributions can be easily followed by the listener or reader. To make
a discourse coherent, it is natural to exploit linguistic tools—e.g., verb tenses, anaphora or
the order of speaker turns (utterances)—to suggest how statements semantically connect to
each other, as well as explicit transitional elements, such as conjunctions or other discourse
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markers, that indicate these connections. We saw, however, that these explicit features are
not sufficient individually; what matters is the reasoning about the content of the discourse
units and the way in which the features interact. These discourse relations together with the
discourse units they relate form a discourse structure that is essential to comprehension.

The next part of Chapter 1 motivated our interest in multi-speaker conversations in
our industrial context. We explained that being able to infer discourse relations is crucial
for the goals that we want to achieve in terms of conversation understanding. In particular,
discourse structures for dialogues are beneficial for a variety of NLP tasks, including dialogue
understanding, automatic summarization, sentiment analysis, and recommendations. Direct
business applications are the Linagora Conversational Manager tool and LinTO meeting
assistant.

The analysis of interactions between several agents is more difficult than the analysis of
monologues because each agent has its own understanding and context. The emergence of
communication platforms, and audio and video recordings of conversations offers a wealth of
raw dialogue data to explore and process. This data gives us hope that we might find a way to
combine discursive clues and other information available to us in order to predict discourse
relations in a conversation, if only we can find a way to produce reliable annotations of
the conversation data. At Linagora, our automatic speech recognition (ASR) team focuses
on developing models for multi-speaker conversational speech recognition for meetings
in order to provide transcripts that can be exploited to perform various tasks such as real-
time recommendation or automatic summarization. As explained in Chapter 1, however,
errors in automatic transcription, combined with the lack of discourse annotated data, the
noisy nature of spontaneous conversational data and the complexity of multiparty dialogues
present technical challenges that need to be addressed; the remainder of this dissertation has
attempted to provide a solution to the problem of lack of annotated dialogue data.

In Chapter 2, we presented theoretical approaches to modeling discourse structure, fo-
cusing on the two leading theories, Rhetorical Structure Theory (RST) (Mann and Thompson,
1988) and Segmented Discourse Representation Theory (SDRT) (Asher, 1993; Asher and
Lascarides, 2003). We have explained how they identify relations between discourse units
and construct the discourse structure that these units form. Building (dependency) discourse
structures requires three steps in these formalisms: first, segmenting the text into the basic
units of the discourse (Discourse Units (DUs)); second, predicting the attachments between
DUs; and third, predicting the semantic type of the attachment. Theories of discourse struc-
ture differ with respect to the definition of discourse relations, the arguments (semantic or
not) of these relations and their methods for constructing hierarchical structures. While much
work has been based on RST, this theory is designed for written monologue; the theory does
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not countenance non tree-like discourse structures and only allows discourse relations to
arise between adjacent discourse units without reinterpretation of the structures. This does
not allow the representation of dialogue structures which have a more complex form of their
constituents. SDRT allows for a more general and readable graphical representation of the
discourse structure and more precisely formalizes discourse relations. This is therefore the
theory we decided to follow in order to build our dialogue parsing model.

In Chapter 3 we presented, through different examples, the linguistic features of multi-
party communication we wanted to analyze in the work presented in this dissertation. At
this point, we described the corpus that we used for our project, namely the STAC corpus
of multi-party on-line chats from an online version of the board game the Settlers of Catan.
The STAC corpus is the largest corpus of annotated dialogues with complete discourse
structures following SDRT (it is actually the largest corpus of dialogues annotated for
discourse structure following any discourse theory). Moreover, it is the annotated corpus
that most closely matches the meeting interactions we want to annotate (as explained in the
industrial context in Chapter 1); there is a known goal during the exchanges between the
participants (Asher et al., 2016; Hunter et al., 2018) and if the dialogues are asynchronous,
the chat data can meander and go off topic; it is not edited to yield a single, clear thread,
as most text documents are. However, while these annotations are helpful for developing
models for dialogue parsing, they highlight a major problem with the annotation process: it
took at least four years to produce them (Asher et al., 2016). Discourse structure annotation
is a difficult task that requires linguistic expertise, which is costly and time-consuming to
accomplish.

The effort required for manual annotation led us to explore new ways of annotating large
data quickly and efficiently, which we explained in Chapter 4. We began our discussion
by presenting graphical statistical approaches (Nielsen and Jensen, 2009) that allow us
to estimate missing observations in data by estimating the dependencies of other known
observations. We then introduced the data programming paradigm, along with an open source
framework, called Snorkel, which consists of three main parts. First, there are Labeling
Functions (or LFs) which are expert-composed functions that represent weak supervision
sources on data points. Their distinctive feature is that these LFs can abstain when they do
not observe the pattern they encode. Then comes the training data generation performed by
the Generative Model which uses graphical statistical sampling approaches to combine all
the valuable information given by the LFs, while at the same time mitigating the noise they
may bring, to learn a noisy training set. The last piece of the pipeline is a Discriminative
Model that is trained on the data annotated automatically by the Generative Model. It allows,
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through other means than LFs, to learn other features on the data points to increase the
coverage of the annotation results.

The more recent version of the Snorkel pipeline uses a matrix-based approach to repre-
sent the different outputs of the LFs that we needed to modify in order to implement the
dependency estimation. Unfortunately, the necessary modifications made it very difficult to
understand the label weights. Furthermore, there is no thorough exploration of the differ-
ent types of statistical dependencies, whereas in the original version the dependencies are
categorized (Similar, Fixing, Reinforcing, and Exclusive correlations (Ratner et al., 2017a)).
Because the dependency estimation between the different sources is the most important
aspect of this approach for our purposes, we decided to keep the original Generative Model
of Snorkel throughout our project.

In Chapter 5 we defined our task, what we set out to do and how, namely to predict
attachment using the “data programming” paradigm with Snorkel. Predicting attachment
is crucial to building connected discourse structures but it is also a difficult problem for
automatic processing as attachments can be long distance. That is, a Discourse Unit (DU)
will not necessarily be attached to the DU immediately preceding it, and can in fact be related
to a DU introduced much earlier in the discourse. Another challenge stems from the sparsity
of discourse connections: while there may be a great many candidate source-target DUs pairs
in a dialogue, only a very small percentage of these candidates will actually be connected.
A third challenge is that the question of attachment is a context sensitive one; whether a
constituent is attached to another depends on other attachments in the context.

To allow for attachments in the whole dialogue, we generated all possible pairs (source-
target) of DUs for each dialogue in the STAC corpus; these were the candidates on which
we predicted attachment. To guide and facilitate the attachment task, we implemented some
simplifying measures on the corpus, similar to previous work on the same corpus, which
allowed us to evaluate ourselves by comparison with them. After motivating and describing
these choices, Chapter 5 then presented our methodology in writing LFs for attachment based
on the definition of discourse relations in SDRT, as well as the features available to us in the
development set.

As explained later in the chapter, the difficulty of writing LFs to predict non-attachment
led us to develop a “Hail Mary” rule which generates non-attachment outputs when other
LFs abstain. In order to include global constraints in the attachment decisions and address
the context sensitivity of attachments, we modified the Snorkel process to apply LFs to the
data. We employed the context of what precedes in the discourse to apply our LFs to preserve
tractability and exploit structure at the level of the sentence (description of DUs in our LFs)
and the discourse (in the type of LFs and the application order of LFs). We chose to apply
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each LF one at a time over every pair in the corpus, following an ordering determined by
the chronological sequence of the DUs in a given dialogue. This allowed Snorkel find the
dependencies between the different types of discourse relations, and thus the different types
of LFs. We concluded Chapter 5 by presenting the discriminative models that we have tested,
which we also used as baselines, as well as our evaluation process.

In Chapter 6 we reported and analyzed the results of the attachment task with the Snorkel
pipeline. While our results were consistent with what data programming promises—more
data with accuracy comparable, even if slightly below, that of hand-labeled data—our most
surprising and interesting result was the performance of the generative model on its own. For
the baselines, we had the best F1 score with the model that used handcrafted features and
logistic regression. When applying the Snorkel pipeline we also had the best score with the
Logistic regression discriminative Model. Our results are significantly better than those of
the baselines or those presented in previous work (Afantenos et al., 2015; Perret et al., 2016).
The Discriminative Model did not improve the results of the Generative Model, arguably
because there was already little conflict between the LF outputs. It should be noted, however,
that the results of our Snorkel-based model rely almost exclusively on local information
pertaining to the DUs in each candidate pair, although we did add some global constraints
with the order of application of our LFs on the data.

In the second part of Chapter 6 we aimed to improve and build the global structure of
the different dialogues by implementing a decoding step. A set of highly accurate predictions
for individual candidates does not necessarily lead to accurate discourse structures; for
instance, without global structural constraints, GEN and local models may not yield the
directed acyclic graphs (DAGs) required by SDRT. As Afantenos et al. (2015); Perret et al.
(2016), we used the Maximum Spanning Tree (MST) algorithm and a variation thereof, an
MS-DAG that includes all high-probability incoming relations that do not create cycles, to
ensure that the predicted dialogue structures conformed to more general structural principles.
Since discourse attachments in general follow an inverse power law (many short-distance
attachments and fewer long-distance attachments), we implemented two MST/MS-DAG
variants that always choose the shortest relation among multiple high-probability relations
(MST/short and MS-DAG/short). A drawback of this post hoc decoding approach is that
the decoding step does not have access to the local information of the DUs or to global
information about the discourse graph, since it only takes into account the probabilities
of the previous model. Furthermore, the constraint of taking short attachments with high
probabilities eliminates our chances of finding long distance attachments (we will discuss in
section 8.2 a perception to remedy this lack of global structural information).
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While the local model of Perret et al. (2016) did not have strong results, they dramatically
improved performance by taking the complete graph of their local model and decoding it
using the MST algorithm. We improved our local results by about 5 points using the decoding
model on the STAC data. The contrast between these model scores is explained by the fact
that Perret et al. (2016)’s model only uses local information from the two DUs, while our
“local” model actually includes some minimal global structural constraints in addition to local
information, so there was less for the decoding step to do.

In Chapter 7 we qualitatively explored our results by undertaking an error analysis. We
wanted to perceive the patterns’ constructions that were not expressed in our LFs. Due
to time constraints, we used manual annotations of Dialogue Acts and Addresses in our
LFs (we published the results in (Badene et al., 2019a,b)). In parallel, our colleagues were
able to successfully predict dialogue acts in a corpus of written conversations between
tele-advisors and clients using Snorkel (Thompson et al., 2019), so we could have used
Snorkel to predict these features as well. We modified our LFs to capture this information
syntactically with regular expressions. The tasks of segmentation, attachment and identifying
discourse relations are interrelated, and our rules for attachment even rely on information
about discourse relations and their context, as explained in Chapter 5. This made it natural
to proceed with an error analysis by looking at particular relations to see how we did on
attachments of a particular kind. In the chapter, we described experiments that we conducted
to improve the precision of our results focusing on the most important relations for meeting
transcripts; we reported our results for Question-Answering-Pairs and Acknowledgment
relations. The reason why we chose these relations is that accurately modeling Questions-
Answering-Pairs and Acknowledgments (and others important relation such as Result and
Contrast) is essential for capturing decisions, when the participants’ intentions diverge, as
well as cases where they are aligned—in other words core components of the game process
and arguably core components of a future industrial application that aims to find decisions
disagreements and action items within transcripts of business meetings.

To sum up, a central objective of our work (Badene et al., 2019a,b) was to build dialogue
models that allow us to exploit the structural and semantic relations that hold between the
contents of different utterances in order to automatically extract more detailed information
from conversation data. This requires recognizing the role that each statement plays in
a given interaction by having access to what was said, to whom it was said, and to the
textual and situational context. Our approach, which focused on the prediction of discourse
attachments, revolved around weak supervision, or using high-level knowledge in the form
of noisy labeling sources to efficiently label massive data-sets of the sort required to train
hungry machine learning models. However, our approach of using a local model that is
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independent of the global model shows us our limitations in incorporating more complete
structural and contextual constraints.

The biggest advantage of the data programming method that we have experienced for this
difficult task of predicting discourse structures is the computation of dependency structures
for various weak supervision sources without using any labeled data for training. We moved
beyond a model-centric approach, where the data is fixed and we iteratively improve the
code/model and parameters, to a data-centric view where data consistency is paramount.
Snorkel drastically reduces the costs involved with annotations, both economic and time-wise.
The annotations are based on LFs, each of which provides distinct useful cues that adapt and
contribute to some understanding of the training data. Snorkel provides many functionalities
to iterate on the LFs and investigating their performances in coverage, accuracy, conflict, and
polarity.

8.2 Perspectives

The work presented here evokes many other questions for future study. One such question
is how the postulated representations should be further formalized, and how reasoning
with these formalizations is to be performed. A second question is how this conception
of discourse processing may be integrated with theories of discourse structure. While we
have looked primarily at two-clause structures, the ramifications that the claims have on
multi-clause discourse structure require further investigation. Such studies will form the
basis for further characterization of the role of coherence establishment in discourse analysis.

8.2.1 Enhancement

As we have discussed above, a major limitation of our approach is the use of a local model
that is independent of the decoding model. We need to draw on the formalisms described
in Chapter 2 and be able to incorporate more complete structural and contextual constraints
such as the Right Frontier Constraint (RFC) (Grosz and Sidner, 1986; Polanyi, 1988; Webber,
1988). A possible way to model the global structure of a conversation is to graphically
represent the interactions as formalized by SDRT, so as to find the available sites for attaching
the next DUs by jointly taking into account the probabilities provided by the Generative
Model for the choice of the attachment point and the subordinating/coordinating type of LF
that attached the pair of DUs. In this way the arcs of the DAG have two items of information;
the probability of attachment and the type of subordinating or coordinating link. Inspired by
the work of Shi and Huang (2019), we want to find a way to connect our decoding process to
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the discourse relations pattern and incorporate more sophisticated global constraints. In the
same way, we want to incrementally build our dialogue structures.

For the linguistic aspect of the data, we did not include important linguistic cues for
discourse structure in our LFs. Examples of such cues are temporal adverbials and changes in
verbal tense and aspect; these have driven the discussion of discourse structure in the linguistic
literature—for instance, (Altshuler, 2014, 2016; Asher and Guéron, 2015; Lascarides and
Asher, 1993). If our LFs incorporate some expressions that include verbal forms, we need to
construct patterns to encompass verbal tenses and their aspects.

At the time of finalizing this dissertation, Snorkel team released the AI platform1 which
uses data-driven programming to easily annotate data. We have yet to study the new features
of this platform. Nevertheless, previous versions of Snorkel can also be easily upgraded. The
Gibbs sampling used in the original generative model we have used could be replaced by
more sophisticated sampling approaches that can perform better, such as Swendsen-Wang
sampler used to sample from any graphical model (see Chapter 4). Moreover, if the concept
of the generative model is a successful option for classification, other ways of inferring more
complex structures should be explored.

The industrial applications we want to develop for spoken conversations (discussed in
the next section) pose several challenges that we need to address before transferring our data
programming approach for inferring discourse structures for dialogues.

8.2.2 Applications

With the development of digital technologies, many new uses are emerging: on the one
hand, smartphones, tablets and connected objects create a pervasive environment where
humans are immersed in a continuous flow of information that they need to process, and
on the other, the need for customized collaborative assistance between multiple users is
more and more pressing. We are interested in the applications of these technologies in
the area of professional collaboration, a field in which discourse understanding is highly
expected. We are particularly interested in organizing and exploiting information related
to meetings but also information conveyed via platforms for instant messaging (such as
Slack or Linagora’s platform Twake2). Finding ways to formally model the understanding of
linguistic interactions in relation to the context of different interlocutors (their commitments,
their availability, unoccupied meeting rooms, shared documents etc.) will be a huge boon for
these industrial applications.

1https://snorkel.ai
2https://twake.app

https://snorkel.ai
https://twake.app
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As a part of the LinTO project3, which supported the work in this thesis, the Linagora
research team began the design of its Conversation Manager (CM), a tool for editing tran-
scripts and producing summaries, as a complement to its LinTO platform, which provides a
variety of voice-operated solutions for businesses. The CM has two main components. The
Transcript Editor is a transcription tool that allows users to read and edit the transcript of a
conversation, and will soon allow them to add manual and automatic annotations to highlight
important points such as action items, decisions, dates, questions and their answers, and
so on. The second component, the Summary Assistant, allows users to exploit transcripts
and annotations from the Transcript Editor to produce summaries and meeting minutes.
The LinTO project involved several research areas: automatic recognition of command and
conversational speech, Speaker diarization, natural language processing and understanding,
discourse analysis, text summary and discourse structure.

The objective of our work has been to be able to predict the structure of the conversations
in order to provide the necessary elements for summaries, recommendations and other
modules relevant to the CM, as well as other applications with a high and growing need for
accurate discourse structures (Feng et al., 2020; Huber and Carenini, 2020a; Ji and Smith,
2017; Liu et al., 2019; Nejat et al., 2017). We believe that data-driven programming is a
powerful way to integrate different types of information (audio, video, calendar, textual
content) to develop various applications in this context. Many questions arise regarding the
representation of oral conversations in our applications (overlaps or false starts) but also
regarding the editing and deletion of messages in collaborative chat platforms that we need
to address. While research on discourse analysis was largely limited to English in the LinTO
project due to a lack of corpora for multi-party conversations in French, the recently begun
ANR project SUMM-RE (ANR-20-CE23-0017) will allow us to extend our weak supervision
model to treat meeting-style conversations in French, as part of the project involves creating
such a corpus.

3https://linto.ai/

https://linto.ai/
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